NM - 74

GENERAL CORRESPONDENCE

YEAR(S):

CLOSED

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

July 7, 1998

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-461

Mr. M.Y. Merchant Penroc Oil Corporation P.O. Box 5970 Hobbs, NM 88241

RE: Waste Disposal Pits

NW/4, Section 5, Township 17 South, Range 33 East, NMPM

Lea County, New Mexico

Dear Mr. Merchant:

The New Mexico Oil Conservation Division (OCD) received Penroc Oil Corporation's (Penroc) Pit Remediation and Closure Report dated June 30, 1998 concerning the above-referenced waste disposal pits. The OCD reviewed the pit remediation and closure report for Penroc and found it to be complete. The site was inspected by the OCD on June 19, 1998 and found to be closed. The OCD hereby approves of the closure of the above referenced waste disposal pits.

Thank you for your timely response. If you have any questions, please feel free to call me at (505) 827-7153.

Sincerely,

Martyne J. Kieling

Environmental Geologist

Enclosure

xc:

Hobbs OCD Office

District I
P.O. Box 1980, Hobbs, NM
District II
P.O. Drawer DD, Arlesia, NM 88211
District III
1000 Rio Brazos Rd, Azlec, NM 87410

State of New Mexico Energy, Minerals and Natural Resources Department

OIL CONSERVATION DIVISION
P.O. Box 2088
Santa Fe, New Mexico 87504-2088

SUBMIT 1 COPY TO APPROPRIATE DISTRICT OFFICE AND 1 COPY TO SANTA FE OFFICE

(Revised 3/9/94)

PIT REMEDIATION AND CLOSURE REPORT

			The second section of the second second second second second second second section section section section second				
	BOX 5970, HO						
Facility Or:/	V. E. Maljamar U	nul # 1					
Location: Unit or O	gtr/Qtr SecSe	ec 5 1175 R 33 E Cou	inty Lea				
4	or Dehydrator O						
		•	104) [800]-11 (41)				
Land Type: BLM, State X_, Fee, Other							
lf	t dimensions: length						
Foo	otage from reference:	360'west \$ 75	5 North				
	rection from referenc						
			of West South				
·							
Depth To Ground Wa (Vertical distance fr contaminants to seaso high water elevation ground water)	onal (209.02)	Less than 50 feet 50 feet to 99 feet Greater than 100 i					
Wellhead Protection (Less than 200 feet for domestic water source 1000 feet from all ot	rom a private e, or; less than		Yes (20 points) No (0 points)				
Distance To Surface (Horizontal distance lakes, ponds, rivers, irrigation canals and	to perennial streams, creeks,	Less than 200 feet 200 feet to 1000 f Greater than 1000	feet (10 points) feet (0 points)				
		RANKING SCORE (TO	ral points): $\frac{\hat{\theta}}{}$				

Date Remediation St	arted: 3-4-98 Date Completed: 3-4-98
Remediation Method: (Check all appropriate	Excavation V Approx. cubic yards 462
sections)	Landfarmed Insitu Bioremediation
	Other
Remediation Locatio	n: onsite offsite * To CRI Facility located
otisite iscrittà)	n: onsite_offsite* To CRI Facility located half way between Hobbs & Carls bad
General Description	of Remedial Action: Exeavated impacted Soil
removed	1 offsite to CRI facility - NMOCD approved
tucilit	y. Collect buttern Samples ton TPH, B+XE
Chas	offsite to CRI facility - NMOCD approved y. Collect buttom samples ton TPH, B+x & vides - Site was back filled with clean
top :	501/-purchased frax CRI.
Ground Water Encoun	tered: No X Yes Depth -
Final Pit: Closure Sampling: (if multiple samples,	Sample location 5 Point Composite
attach sample results and diagram of sample	Sample depth 4 fee f
locations and depths)	Sample date $\frac{3/5/98}{}$ Sample time $\frac{2^{16}Ph}{}$
	Sample Results
	Benzene (nom) 7 sep attached previous
	Benzene (ppm) See attached previous Total BTEX (ppm) Schulted report.
	Total Brex (ppm)
	Field headspace (ppm) <u>set a Hached</u> clesene report TPH
	TPH fubmitted
Ground Water Sample	: Yes No X (If yes, attach sample results)
I HEREBY CERTIFY TH OF MY KNOWLEDGE AND	AT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST
Or WI WHOMPEDGE WIND	
DAME (1/3/19/2	
DATE 4/30/98	

NEW MEXICO EXERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 South Pachaco Street Santa Fe, New Mexico 87505 (505) 827-7131

June 24, 1998

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-456

Mr. M.Y. Merchant Penroc Oil Corporation P.O. Box 5970 Hobbs, NM 88241

RE:

Waste Disposal Pits

NW/4, Section 5, Township 17 South, Range 33 East, NMPM

Lea County, New Mexico

Dear Mr. Merchant:

The New Mexico Oil Conservation Division (OCD) received Penroc Oil Corporation's (Penroc) letter and pit closure report dated April 3, 1998 concerning the above-referenced waste disposal pits. The OCD reviewed the pit closure report compiled by Constructive Solutions, Inc. (CSI) for Penroc and found it to be complete. The site was inspected by the OCD on June 19, 1998 and found to be closed. As stated in the CSI report the surface pits are closed, compacted and mounded over. However, for the OCD records to be complete a Pit Remediation and Closure Report form must be completed and signed. Please find a copy of this form enclosed

Penroc shall submit a completed Pit Remediation and Closure Report form to the OCD Santa Fe and Hobbs District offices no later than July 8, 1998.

Please be advised that the State Land Office may require additional surface stabilization which may include re-seeding the site with native vegetation.

If you have any questions, please feel free to call me at (505) 827-7153.

Sincerely,

Martyne J. Kieling

Environmental Geologist

Martyn g They

Enclosure

xc:

Hobbs OCD Office

Mike Matush, State Land Office

Hobbs State Land Office

Kieling, Martyne

From:

Kieling, Martyne

Sent:

Wednesday, June 17, 1998 2:20 PM

To:

Price, Wayne

Subject: Importance:

Penroc High

Wayne Price,

I am in the process of reviewing the closure report for Penroc's pit located in NW/4, Section 5, Township 17 South, Range 33 East, NMPM, LeaCounty, New Mexico. On my last trip to Hobbs I was unable to visit the site for a final inspection. I would very much apreciate it if you or someone from your office could make it out there to inspect the site for the OCD.

Thanks.

Martyne Kieling

Ms. Martyne J. Keiling Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re: Final Closure Report NW/4, Section 5, Township 17 South, Range 33 East.,NMPM Lea County, New Mexico

Dear Ms. Keiling:

Attached you will find a Site Remediation Report on the captioned prepared by CSI of Hobbs, New Mexico. I hope you will find it to your satisfaction and will contact me if you have any questions.

I will be out of the country from approximately April 14th through the end of the month. If you have any questions or comments during this period, I will address them on my return. I appreciate your cooperation in this matter and look forward to final closing of this matter in the very near future. Thank you.

Sincerely,

M. Y. (Merch) Merchant

President

Attachments.

APR 90 (058)

Off Constraint, United on

APR 06 1998

Presented to:

Environmental Baleau Oil Conservation Division

Penroc Oil Corporation

P.O. Box 5970 Hobbs, New Mexico 88241

Waste Disposal Pit NW/4 Sec. 5, T17S, R33E Lea Co., New Mexico

SITE REMEDIATION REPORT

From:

Constructive Solutions, Inc.

4007 Lovington Hwy. Hobbs, New Mexico 88240

INDEX

- I. OVERVIEW AND CHRONOLOGICAL SUMMARY
- II. ON SITE TPH ANALYSIS REPORTS
- III. LAB ANALYSIS REPORTS
- IV. NMOCD APPROVAL LETTERS
- V. SITE MAPS
- VI. JOB/SITE PHOTOS

OVERVIEW AND CHRONOLOGICAL SUMMARY

Constructive Solutions, Inc.

Building a Better Environment

March 20, 1998

Penroc Oil Corporation P.O. Box 5970 Hobbs, New Mexico 88241

Attn.: Mr. M.Y. Merchant

Re: Overview and Chronological Summary of Pit Closure Operations

Dear Mr. Merchant

Constructive Solutions, Inc. (CSI) would like to take this time to thank you and Penroc Oil Corp. for the opportunity to be of service on the clean up and remediation of the old waste pit located in the NW/4 Sec. 5, T17S, R33E of Lea County, New Mexico.

Overview Summary

The pit at the above location was a single well production pit that has been out of service for a number of years. The pit had lost it's exemption due to the fact that trash had been put in the pit. The pit was sampled by the Environmental Bureau's February 4, 1998 sampling event. The TCLP and hazardous characteristic analytical results verified that the non-exempt pit at the above site location contained non-hazardous waste. Approval was given from the NMOCD to dispose of the waste at an NMOCD approved facility. (See NMOCD Approval Letters)

There was 462 cyds of impacted soils that were removed off site for disposal at the CRI Facility located half way between Hobbs & Carlsbad, NM. The CRI facility is a NMOCD approved and permitted facility that accepts waste that was generated by the Oil and Gas Industry. Once source removal was complete and the concerns of the NMOCD addressed the site was ready for final soil samples. The total depth of the excavation was 4' with the final readings from the lab of, <50 ppm of TPH, BTEX was <.050 ppm and Chlorides (CL) at 57 ppm.

Constructive colutions, Inc.

Page Two

On location the 3-5-98 from the NMOCD was Mr. Jack Griffin a field representative who was there to look at the clean up operations at the site. Mr. Griffin felt that the operations were going well and that he had no problems with the site operations. The site was then backfilled with clean material and crowned to prevent ponding of water.

The site as a whole has cleaned up very well with the complete removal of all the source material. This should make closure of the site with the NMOCD possible, being that the site was cleaned up to less than 100 ppm of TPH. This site should pose little, if any, further environmental threat and should require no further action.

Findings

- Exceeding NMOCD guidelines for unlined surface impoundment closure guidelines, the site at an elevation 209' above ground water, has been vertically defined and remediated to a level of less than 100 ppm of TPH above the top of ground water, with < 50 ppm of TPH, BTEX at <0.050 ppm and CL at 57 ppm on the location, the NMOCD only requires TPH at < 5,000 ppm.
- 2. There was a total of 462 cyds of impacted soils taken for disposal at the CRI facility
- 3. The ground water is estimated to be at 209.02' below surface as per the New Mexico State Engineers office in Roswell, New Mexico.

Conclusions

- 1. The site as a whole has cleaned up very well with minimal impact. (See attached lab analysis)
 - 2. The site is stable and should remain so with no further action required.
 - 3. The site was crowned to prevent the ponding of water.
- 4. All of the concerns of the NMOCD have been met for unlined surface impoundments. This site should require no further action at this time.

Page Three

Chronological Summary

On 3-4-98 CSI was on location to start the clean up of the old pit. One call was maid with no lines on location found. The fence around the pit was taken down and a backhoe was used to load the impacted soils into 24 cyd trucks for transportation to disposal at CRI. There was 200 cyds taken out

On 3-5-98 the loading and hauling of impacted soils was completed, with 262 cyds taken out for a total of 462 cyds of impacted soils. Mr. Jack Griffin from the NMOCD was on location to look at the clean up operations and felt that it was going well. Final samples were taken for third party analysis to be tested for TPH, BTEX and CL. Backfilling of the site was started but not complete.

On 3-6-98 backfilling of the site was completed with the site being crowned to prevent the ponding of water, final site photos were taken and all trash removed and clean up operation finished

NOTE This report may include and/or disclose sensitive information and is intended only for the use of the client, except as limited and/or required by the consultant to disclose cretin findings to governmental agencies. All data, maps, test results, notes, reports and other information held by consultant are confidential and restricted, and are only available to the client.

If you have any question or need additional information in regards to this project, please call at any time 505-392-4498

Sincerely

Allen Hodge, REM

Hobbs Operations Manager Constructive Solutions, Inc.

VP Operations

Western Environmental Consultants

ON SITE TPH ANALYSIS REPORTS

P.O. Box 1816 Hobbs, New Mexico 88241 Phone (505) 392-5021 Fax (505) 397-2597

SOIL ANALYSIS REPORT

INTERPRETA

DATE: 3-4&5-98

CLIENT: Penroc Oil Corp. SUPERVISOR: A. Hodge

CODE

Sample Matrix: Soil

FACILITY: NE Maljamar Pit Test Method: EPA 418.1 Order No. M. Y. Merchant

TOGATION

SAMPLE RECEIVED: Intact on site

	ТРН		DEPTH	LOCATION
SAMPLE NO. 1:	87,240	PPM	0-6"	Composite of pit material
SAMPLE NO. 2:	67	PPM	4'	Grab from pit bottom
SAMPLE NO. 3:	41	PPM	4'	Composite of pit bottom
SAMPLE NO. 4:		PPM		
SAMPLE NO. 5:		PPM		
SAMPLE NO. 6:		PPM		
SAMPLE NO. 7:		PPM		
SAMPLE NO. 8:		PPM		
SAMPLE NO. 9:		PPM		
SAMPLE NO. 10:		PPM		

COMMENTS: These samples were taken to confirm the level of the impacted soils that were being taken for disposal. Samples 2 & 3 were taken from the pit bottom to confirm that all of the concerns of the NMOCD had been addressed.

LAB ANALYSIS REPORTS

TRACEANALYSIS, INC.

				C001			,9			1			
			03000238	ct and	VW		TOTAL	BTEX	mg/Kg)	<0.050			
298 1944			Lab Receiving # : 9803000238		eived By:		M, P, O	XYLENE	(mg/Kg)	<0.050	<0.050	0.05	0.275
FAX 806 • 794 • 1298 FAX 915 • 585 • 4944		S	Lab Receiving #	Sample Condition:	Sample Received By:		ETHYL-	BENZENE	(mg/Kg)	<0.050	<0.050	0.05	0.092
806 • 794 • 1296 915 • 585 • 3443		onsultant	,					TOLUENE	(mg/Kg)	<0.050	<0.050	0.05	0.091
800 • 378 • 1296 888 • 588 • 3443	E-Mail: lab@traceanalysis.com L RESULTS FOR	umental C	odge	NM				BENZENE	(mg/Kg)	<0.050	<0.050	0.05	0.098
e 9 Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443	E-Mail: lab@traceanalysis ANALYTICAL RESULTS FOR	Western Environmental Consultants	Attention Allen Hodge P.O. Box 1816	Lovington				MATRIX		Soil			
6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A	Al	W	At		, , ,	T175, R33E		MA		·			
			Mar 19, 1998	3/12/98	Pit Bottom	NW/4 SEL 5,		Field Code		T 93365 Pit Bottom @ 4'	٦.	imit .	
			Date: Mar	Date Rec:	Proj Name:	Proj Loc:		TA# Fie		T 93365 Pit	Method Blank	Reporting Limit	бc

スプフ				→	7	1	1		
% Extraction Accuracy	Accuracy			105	86	101	100		
% Instrument Accuracy	Accuracy			86	91	92	92		
TEST	PREP METHOD	PREP DATE	ANALYSIS	ANAL	ANALYSIS COMPLETED	CHEMIST	QC: (mq/L)	SPIKE: mq/Kq)	

3-15-98

3/16/98

EPA 8021B

3/16/98

EPA 5030

BTEX

5 ea mg/Kg)

(mg/L) 0.100 ea

> Dr. Blair Leftwil Di recco:

91F

6701 Aberdeen Avenue, Suite 9

Lubbock, Texas 79424 800 • 378 • 1296 806 • 794 • 1296

FAX 806 • 794 • 1298

4725 Ripley Avenue, Suite A

El Paso, Texas 79922 888 • 588 • 3443 915 • 585 • 3443 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com ANALYTICAL RESULTS FOR

Western Environmental Consultants

Attention Allen Hodge

P.O. Box 1816

Date Rec:

3/12/98

Lovington

MM

Lab Receiving # : 9803000238

Sampling Date: 3/12/98

Sample Condition: Intact and Cool

Sample Received By: VW

Date: Mar 17, 1998

PEU ROC Oil Corp. Project:

Proj Loc:

Proj Name: Pit Bottom

NW/4 SEL 5, T175, R33E

TA# Field Code	MATRIX	C6-C10 (mg/Kg)	>C10-C28 (mg/Kg)	C6-C28 (mg/Kg)
T93365 Pit Bottom @ 4'	Soil	<50	<50	<50
Method Blank		<50	<50	<50
Reporting Limit		50	50	50 -
QC		288	247	535

RPD % Extraction Accuracy % Instrument Accuracy

14 19 8 24 56 40 115 99 107

TEST	PREP METHOD	PREP DATE	ANALYSIS METHOD	ANALYSIS COMPLETED	CHEMIST	QC: (mg/L)	SPIKE: (mg/Kg)
TX1005	N/A	3/15/98	TX1005	3/15/98	MS	· 250 each	250 each

3-17-98

Dr. Blair Leftwich Director,

Date

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas 79424 El Paso, Texas 79922

806 • 794 • 1296

FAX 806 • 794 • 1298

E-Mail: lab@traceanalysis.com

888 • 588 • 3443 915 • 585 • 3443 FAX 915 • 585 • 4944

ANALYTICAL RESULTS FOR

WESTERN ENVIRONMENTAL CONSULTANTS

Attention: Allen Hodge P. O. Box 1816 Hobbs, NM 88240

March 20, 1998

Receiving Date: 03/12/98 Sample Type: Soil Project No: NA

Project Location: PeuRoc Oil Corp.

NW/4, Sec5, T175, R33E

Extraction Date: 03/16/98 Analysis Date: 03/16/98 Sampling Date: 03/12/98 Sample Condition: I & C Sample Received by: VW Project Name: Pit Bottom

TA#	FIELD CODE	CHLORIDE (mg/kg)
T93365 ICV CCV	Pit Bottom @ 4'	57 13.37 12.03
REPORTING LIMIT		5.0
RPD % Extraction Accuracy % Instrument Accuracy		1 101 106
METHODS: EPA 300.0.		

CHEMIST: JS

CHLORIDE SPIKE: 125 mg/kg CHLORIDE. CHLORIDE CV: 12.5 mg/L CHLORIDE.

Director, Dr. Blair Leftwich

3-20-98

DATE

NMOCD APPROVAL LETTERS

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

February 19, 1998

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT NO. P-326-936-399</u>

Mr. M.Y. Merchant Penroc Oil Corporation P.O. Box 5970 Hobbs, NM 88241

RE: Unauthorized Waste Disposal Pits

NW/4, Section 5, Township 17 South, Range 33 East, NMPM

Lea County, New Mexico

Dear Mr. Merchant:

The New Mexico Oil Conservation Division (OCD) received Penroc Oil Corporation's (Penroc) letter and pit closure plan dated February 3, 1998 concerning the above-referenced waste disposal pits. The OCD has found that the pit closure plan submitted by Constructive Solutions, Inc. (CSI) for Penroc is complete. However, the OCD Santa Fe and Hobbs District offices shall be notified **two (2) working days** prior to CSI taking final confirmatory samples. As written in the pit closure plan, the final confirmatory samples will be analyzed at a third party laboratory for TPH, BTEX, and chloride prior to backfilling the pits.

In addition, the OCD has received preliminary analytical results from the Environmental Bureau's February 4, 1998 sampling event. The TCLP and hazardous characteristic analytical results verified that the non-exempt pits at the above location contained non-hazardous waste. Therefore, this waste may be removed to an OCD approved waste management facility. Please find enclosed a copy of the preliminary OCD results from American Environmental Network.

Penroc shall submit a final closure report to the OCD Santa Fe and Hobbs District offices no later than April 24, 1998.

If you have any questions, please feel free to call me at (505) 827-7153.

Sincerely,

Martyne J. Kieling

Environmental Geologist

xc: Hobbs OCD Office

Jens W. Deichmann, State Land Office

Allen Hodge, CSI Ken Marsh, CRI

Martyn Thuly

American Environmental Network

FAX TRANSMITTAL SHEET

DELIVER TO: Martine	PHONE NUMBE	CR:
COMPANY: NECO	FAX NUMBER:	505-877-8177
NUMBER OF PAGES BEING SENT: _	IO (INCLUI	DING THIS PAGE)
From:		Date: 2/18
H. Mitchell Rubenstein, Ph.D., G	eneral Manager	Time:
Kimberly D. McNeill, Project Ma	_	
Francine J. Torivio, Administrative Brian Price, Sample Control		FAX NUMBER:
Christopher Froehlich, QA Coord		(505) 344-4413
This information contained in this Facsimile message use of the designated recipients named above, information of a client, and as such is privileged and the intended recipient or any agent responsible for hereby notified that you have received this documed distribution or copying of this message is strictly prohin error, please notify us immediately by telephone Thank you	This message may be confidential. If the read delivering it to the int in error, and that an libited. If you have received.	proprietary confidential der of this message is not ended recipient, you are y review, dissemination, eived this communication
Penroc date		
	er since sumetimes	the numbers
do not fox very well.		

If you did not receive all pages of this transmission or if you experience Fax Transmission problems.

Please call (505) 344-3777, as soon as possible after the receipt.

P.1710

Preliminary Results Final report will be issued following deta review

GC/MS RESULTS

TEST CLIENT	: VOLATILE ORG	: :	r 🔿 iv	100 020C	AEN I.D	. :	802321
PROJECT#	: (none)	1		כ	ATE RECEIVED);	2/5/98
PROJECT NAME	: PENROC	<u> </u>					
SAMPLE				DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MAT	RIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
802321-01	NE MALJAMAR P	IT NON	-AQ	2/4/68	2/6/98	02/06/98	1000 /
PARAMETER	DET. LIMIT			UNITS		····	
Diohlorodifluoromethane	0.05	< 5.0		MG/KG			
Chloromethane	0.05	< 5.0		MG/KG			
Vinyl Chlorida	0.05	< 5.0		MG/KG			
Bromomethane	0.05	< 5.0		MG/KG			
Chloroethane	0.05	< 5.0		MG/KG			
Trichlorofluoromethane	0.05	< 5.0		MG/KG			
Acatona	0.5	< 50		MG/KG			
Acrolein	0.25	< 25		MG/KG			
1,1-Dichloroethene	0.05	< 5.0		MG/KG			
lodomethane	0.05	< 5.0		MG/KG			
Methylene Chloride	0.05	< 5.0		MG/KG			
Acrylonitrile	0.25	< 25		MG/KG			
cis-1,2-Dichloroethene	0.05	< 5.0		MG/KG			
Methyl-I-butyl Ether	0,05	< 5.0		MG/KG			
1,1,2,1,2,2-Trichlorotrifluoroethane	0.05	< 5.0		MG/KG			
1,1-Dichloroethane	0.05	< 5.0		MG/KG			
trans-1,2-Dichloroethene	0.05	< 5.0		MG/KG			
2-Butanons	0.5	< 50		MG/KG			
Carbon Disulfide	0.05	< 5.0		MG/KG			
Bromochioromethane:	0.05	< 5.0		MG/KG			
Chloroform	0.05	< 5.0		MG/KG			
2,2-Dichloropropane	0.05	< 5.0		MG/KG			
1,2-Dichloroethane	0.05	< 5.0		MG/KG			
Vinyl Acatate	0.05	< 5.0		MG/KG			
1,1,1-Trichlorosthans	0.05	< 5.0		MG/KG			
1,1-Dichloropropene	0.05	< 5.0		MG/KG			
Carbon Tetrachiorida	0.05	< 5.0	,	MG/KG			
Benzene	0.05	47	~	MG/KG			
1,2-Dichloropropane	0,05	< 5.0		MG/KG			
Trichloroethene	0.05	< 5.0		MG/KG			
Bromodichloromethane	0.05	< 5.0		MG/KG			
2-Chloroethyl Vinyl Ether	0.5	< 50		MG/KG			
cis-1,3-Dichloropropene	0.05	< 5.0		MG/KG			
trans-1,3-Dichloropropene	0.05	< 5.0		MG/KG			
1,1,2-Triohloroethane	0.05	< 5.0		MG/KG			
1,3-Dichloropropane	0,05	< 5.0		MG/KG			
Dibromomethane	0.05	< 5.0	,	MG/KG			
Toluene	0.05	19 🗸		MG/KG			
1,2-Dibromoethans	0.05	< 5.0		MG/KG			
4-Methyl-2-Pentanone	0.5	< 50		MG/KG			
2-Hexanone	0,5	< 50		MG/KG			
Dibromochloromethane	0.05	< 5.0		MG/KG			
Tetrachloroethene	0.05	< 5.0		MG/KG			
Chlorobenzana	0.05	< 5.0	/	MG/KG			
Ethylbenzene	0.05	41	-	MG/KG			
1.1,1,2-Tetrachloroethane	0.05	< 5.0		MG/KG			

Preliminary Results
Final raport will be issued
following data review

GC/MS RESULTS

TEST CLIENT PROJECT # PROJECT NAME	: VOLATILE ORGAN : NMOCD : (node) : PENROC	METHOD 826 0	802321 2/5/98			
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
802321-01	NE MALJAMAR PIT	NON-AQ	2/4/98	2/6/98	02/06/98	100
PARAMETER	DET. LIMIT		UNITS	•		
m&p Xylenes	0,05	54	MG/KG			
o-Xylene	0.05	18 /	MG/KG			
Styrene	0,05 < 8	5.0	MG/KG			
Bromoform	0.05 < 9	5.0	MG/KG			
1,1,2,2-Tetrachloroethane	0.05 < 8	5.0	MG/KG			
1,2,3-Trichloropropane	0.05 < 9	5.0	MG/KG			
Isopropyl Benzene	0.05	13 ~	MG/KG			
Bromobenzene	0.05 < 5	5.0	MG/KG			
trans-1,4-Dichloro-2-Butene	0.05 < 5	5.0	MG/KG			
n-Propylbenzene	0.05	15	MG/KG			
2-Chlorotolyege	0.05 < 6	5.0	MG/KG			
4-Chlorotoluene	0.05 < 6	5.0	MG/KG			
1,3,5-Trimethylbenzene		10 🗸	MG/KG			
tert-Butylbenzene		5.0	MG/KG			
1,2,4-Trimethylbenzene		33	MG/KG			
sec-Butylbenzene		3.4	MG/KG			
1,3-Dichlorobenzene		5.0	MG/KG			
1,4-Dichlorobenzene		5.0	MG/KG			
p-laopropyltoluene	0.05 < 5		MG/KG			
1,2-Dighlorobenzene		5.0	MG/KG			
n-Butylbenzene		2 /	MG/KG			
1,2-Dibromomo-3-chloropropane		5.0	MG/KG			
1,2,4-Triohloropenzene		5.0	MG/KG			
Naphthalene		18	MGIKG			
Hexachlorobutadiene		5.0	MG/KG			
1,2,3-Trichlorobenzene	0.05 < 5		MG/KG			
SURROGATE % RECOVERY					١.	45
1,2-Dichloroethane-d4		92			, /^	•
		(80 - 120)			0/0/	
Toluene-d8		103			< 40 \	
		(81 - 117)				
Bromofluorobenzene		92			Kg/n/	
		(74 - 121)			•	
					H 3	1.0/98

REXCOS CR

AMERICAN ENVIRONMENTAL NETWORK 11 East Olive Road Pensacola, Plorida 32514 (904) 474-1001

"PRELIMINARY RESULTS ONLY - SINGLE"

Accession: Client; Project Number: Project Name; Project Location; Test; Matrix: QC Lavel;	NMOCD PENROC	VIRONMENTAL NET	WORK (NEW MEX)	(CO) INC.	wad 6
Lab ID:	001				- { 0/
Client Sample ID;	802321-01		Sample D Received	ate/Time: 0	-PRB-98 1330
Parametera;	Unite:	Results:		nare: 0	6-PIB-98
CYANIDE, REACTIVE		uanarra!	Rpt Lmts:	Q: Batch	Analysti
(9010)	Mg/kg	מא	0.25	173 MARIA A A	
EULFIDE, REACTIVE (9030)	MG/KG	סא		RCXOO	CR.
	,	~~	5	BOVAAL	l an

Comments:

American Environmental Network (OR), Inc. 17400 SW Upper Boones Ferry Rd. / Buite 270 / Durham, OR 97324

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Date: 02/17/1998
AEN Account No.: 90147
AEN Job Number: 98.00249

Project: 802321 / NM Oil Cons. Division Location: Penroc

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

gangia gaddud	Comple Description	HECKIN	Date	Date
30043	Sample Description SULLEN WE HALVANAR PIT	Typa MISC, SOLID	Tekon 02/04/1998	Reseived 82/06/1998
30092	ME MALJAMAR PIT/802321-1 TCLP	MISC. SOLID	03/04/1998	23/26/2994

Approved by:

Project Manager AEN, INC.

Technical Review AEN, INC.

The results from these samples relate only to the items tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998

Job No.: 98.00249

Page: 2

Project Name: Date Received:

802321 / NM Oil Cons. Division 02/06/1998

Auspla Munber Sample Description SOREST ME MALJAMAR PIT 90089

PARAMETRIS	МЕТНОД	RESULTS	DEPORT LIMIT	UNITE	DATE ANALYEED	<u> </u>
Flashpoint	1010 94	34	140	Degree	02/11/1904	A.C.
ICP/AR Digestion - Sail	ICP	-	•		02/05/1395	
Aluminum, ICP	1010 A00	400	10	ng/Xg	09/09/1998	
hatimony, 109	6010	ЖD	1.0	ng/Kg	02/89/1998	
Armenio, ICP	8070 114	47	1.0	TME/KM	02/05/1998	
Barius, ICP	8010 57	37	1.0	ng/Xg	02/09/1990	
Beryllium, ICP	6010) COK	1.0	ng/Xg	02/09/1998	
Borma, ICP	6015 6.6	6.4	10	re/Ke	02/49/1998	
Cadmium, ICP	6010	MD	1.0	Mg/Kg	62/89/1998	
Calcium, ICP	6010 4700	4700	10	Mg/Kg	02/09/1998	
Chromium, ICP	6010 2.0	2.0	1.0	ng/Kg	02/09/1998	
Cobalt, ICP	£010	NID.	1.0	ng/Xg	02/09/1998	
Copper, ICP	6020 7.5	7.5	1.0	ng/Kg	03/03/1998	
Tron, ICP	6620 3800	3800	5.0	Eg/Ks	02/03/1998	Q
Lead, ICP	6010 G4	E4	1,0	mg/kg	02/09/1998	•
Magnesium, ICP	6010 560	260	10	mg/Xg	02/09/1988	
Manganese, ICP	6010 26	26	1.0	ma/Xa	02/09/1999	
Marcury Prop (E)	7671	•		J. J	02/10/1990	
Mercury. CVAA (5)	7471	MO	0.10	mg/Kg	02/10/1998	
Molyhdanum, ICP	6020 1.6	1.6	1.0	ng/Kg	02/09/1998	
Mickel, ICP	6010 6.1	4.1	1.0	ng/kg	02/09/1990	
Potentium, ICP	6010 /20	120	5.0	ng/Xa	02/09/1998	
Selenium, ICF	6010	MD .	1.0	mg/Yg	02/03/1994	
Silver, ICP	6010	NO	1.0	ng/Kg	02/09/1996	
Thallium, ICP	6070	MD	2.0	ng/Xg	02/09/1998	
Venadium, ICP	6010 .	1.1	1.0	mg/Xg	02/09/1994	
Rine. ICP	6020 140	140	5.0	ng/Kg	02/09/1990	Q
Correctivity (px)	6.5	6.5		UALTA	02/09/1990	_
Frop. BKA (8)		•			02/10/1998	
8270 BNA's (8)					,	
Dilution Factor		1500			02/14/1999	
2-Pisoline	8270	100	340	mg/Xg	02/14/1898	
				- -		

A sample result of MD indicates the parameter was May Detacted at the reporting limit.

American Environmental Matwork, Inc. (503) 684-0447 (503) 620-0393 FAX 17400 SM Upper Boones Farry Rd., Suite 270, Portland, OR 97224
PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998

Job No.: 98.00249

Page: 3

Project Name: Date Received: 802321 / NM Oil Cons. Division

02/05/1998

Sample Mumber Sample Description 90089 802321/ M2 MALJAMAR FIT

PARAMETERS	HETHODA	PRETUTS	REPORT LIMIT	UNTER	DATE ANALYERD	21.34
N-Microsodimethylamine	5270	MD	2.466	wg/¥g	02/14/1998	
Methyl methanesulfonate	8275	MD.	260	mg/Y/g	02/14/1898	
Manol	£270	MO	510	wg/Kg	03/14/1988	
Stbyl methanemulforate	1270	MD COK	260	mg/Kg	02/14/1995	
his (2-Chloroethyl) ether	8270	MID	260	ng/Xa	02/14/1952	
2-Chlorophenol	8270	MD.	266	ng/Xg	02/14/1998	
1,3-Dichlorobensese	6270	MO	266	ng/Kg	02/14/1998	
1,4-Dichlorobensens	8279	*D	360	mg/Xg	03/14/1999	
1,2-Dichlorobensess	1279	MD	340	ME/XE	02/14/1998	
o-Cresol	1275	300	210	mg/Xg	02/14/1998	
Bensyl Alsohol	8270	MD	360	ng/Xg	02/14/1988	
m,p-Czesol	8275	MO	260	mg/Xe	02/14/1998	
bis(2-Chloroisopropyl)ether	8270	ND.	260	ng/Xg	02/14/1998	
M-nitroso-di-n-propylamine	8270	סמ	260	mg/Kg	02/14/1998	
Nestableroschame	1270	MD.	260	ng/Kg	62/14/1994	
Acecophenone	8270	XED	260	mg/Xg	02/14/1998	
Witrobenzene	8270	מזא	260	ng/Xg	02/14/1998	
W-Mitrosopiperidine	8270)ALD	269	mg/Xg	02/14/1994	
Isophorona	8270	MD .	360	ng/Xg	02/14/1090	
2-Mitrophenol	1270	סמ	360	mg/Kg	02/14/1998	
2,4-Dimethylphenel	8270	MD	260	mg/Kg	02/14/1988	
bis (2-Chlorosthomy) mothers	8270	MD	260	ng/¥g	02/14/1996	
2,4-Dichlerephenol	8270	MED	260	mg/Xg	03/14/1998	
1,2.4-Trichlorobenseno	#270	200	260	ng/Xg	62/14/1998	
Naphehalene	8270	88 <i>5</i> 75	360	ng/Kg	02/14/1996	.
2,6-Dicklorphenol	8270	720	260	ng/Kg	02/14/1998	
Hexachlereburadiane	8279	MED	260	mg/Kg	02/14/1998	
e.aDimarkylphanylamine	1270	MID	260	rg/Kg	02/14/1998	
N-Nitroso-di-n-busylamins	8270	MD	260	mg/Kg	02/14/1998	
4-Chloro-3-mathylphenal	8270	מע	260	mer/Ker	02/14/1998	
2-Methylnaphthalens	8270	160 160	260	ng/Kg	02/14/1998	3
Manachierocyclopentadiane	#276	NED COM	360	ng/Kg	02/14/1998	

A sample result of MD indicates the parameter was Not Detected At the reporting limit,

American Environmental Metwork, Inc. (503) 694-0447 (503) 628-0393 FAR 17408 SM Depor Boones Perry Ed., Suits 270, Portland, OR 97224 PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998

Job No.: 98.00249

Page: 4

Project Name:

802321 / NM Oil Cons. Division 02/06/1998

Data Received: 02/06/1998

Sample Number

Sample Description

TIT RUMLIAN BY \ICECOS

PARAMETERS	METHODS	LESUT AS	REPORT LIMIT	UNIXTA	DATE ANALYSED	T.M.
1,2,4.5-Tetraphlurebonzene	9270	MO	268	Mg/Rg	02/14/1998	
2,4,4.Trichlorophanol	6270	NSD	360	mg/ Xg	02/14/1998	
1,4,5-Trichlorophenol	8270	MID	260	mg/kg	02/14/1998	
2-Chleronaphehalene	8270	30	360	mg/Kg	02/14/1998	
1-Chloronaphthalane	8270	PLD	350	10g/Yg	02/14/1998	
2-Wirresailine	8270	MO	260	mg/Xg	02/24/1998	
Dimethylphthelate	8270	RD	260	mg/Kg	02/14/19##	
Pentachlorobensone	1270	M20	260	mg/Kg	03/14/1998	
2,#-Dinitrotoluene	\$270	מע	250	-4/38	\$2/14/1938	
Acenaphthylene	4274	MD	260	ma/¥g	02/14/1958	
Adanaphthene	2270	NO	260	≥g/Xg	03/14/1998	
2,4-Dinitrophenel	8270	363	1,000	ng/Kg	02/14/1998	
4-Mitrophenol	8270	MD	260	mg/Kg	02/14/1998	
Dibensofuran	8270	מע	349	eg/xg	02/14/1998	
2,4-Dinitrotolume	9276	ЖD	240	ng/¥g	02/14/1996	
3,3,4,6-Tetrachlorophenel	4274	מא	260	mg/Xg	02/14/1998	
Disthylphchalate	8270	MD	260	mg/Kg	02/14/1998	
i-Chlorophanyl-phanylether	8270	200	260	#4/14	02/14/1998	
Tlucrene	8270	37 0	260	mg/Xg	03/14/1394	
4-Vitrospiline	1270	MID	260	mg/Kg	63/14/1998	
4.6-Dinitro-2-methylphenol	8270	720	2,400	mg/Xg	02/24/2994	
N-nitrosodiphenylamina	8270	AD	260	mg/Xy	02/14/1998	
Phanasetin	6270	ЖD	260	15 / Ya	02/14/1998	
4-Excephenyl-phenylether	5270	MD	264	mg/Xg	03/14/1998	
Nexachlerobunsane	0270	MED	260	vg/Yg	02/14/1998	
Pentachiamephenel	8270) COK	510	ng/Kg	02/14/1998	
4-Aminobiphenyl	8275)KD	510	ng/Kg	02/14/1998	
Pentachloronitrobenzene	1270	MED	260	ng/Yg	02/14/1998	
Pronamide	#27A	750	360	mg/Kg	02/14/1994	
Phananthrene	8270	120 120	260	PHE / YOU	03/14/1998	3
Anthréconc	8270	MD	260	mg/Xg	02/14/1998	
Di-n-bucylphthælate	1270	360	240	mg/Kg	02/14/1998	

A sample result of ND indicates the parameter was Not Detected at the reporting limit.

American Environmental Matwork, Inc. (503) 684-0447 (503) 620-0393 FAX
17406 SW Upper Boomes Forry Rd., Suite 270, Portland, OR 97224
PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107 02/17/1998

Job No.: 98.00249

Page: 5

Project Name: Date Received: 802321 / NM Oil Cons. Division

02/06/1998

Sample Number Sample Description
90000 902331/ NB HALJAMAR PIT

PARAMOTRAS	METHODS	RESULTS	REPORT LIMIT	DELTA	DESTRUCTION REAC	PLACE TABLE
fluoranthens	8275	MO	260	ng/Ke	43/14/1998	
Pyrone	8270	MD	260	Ng/Xg	02/14/1998	
p-Diemthylaminemobenmene	6270	MED	260	ng/Xg	02/14/1990	
Burylhansylphthalate	8270	MD	260	ng/Kg	02/14/1998	
3,3-Dichlorobenzidine	9270	MD	260	mg/Mg	02/14/1998	
Rig(2-achylhoxyl)phchalate	8278	MO	260	ng/Ke	02/14/1998	
Benso (a) anthragens	8270	100	260	ng/Xg	02/14/1998	
Chrysene	9276	KD	260	mg/Kg	02/14/1998	
Di-m-octylphthalAte	8270	ND	260	kg/Kg	02/14/1998	
7,12-Dimeshylbans (a) anthraceno	8270) TO	260	ng/Kg	02/14/1994	
Bonzo (b) fluorencheno	1270	פע	240	ng/kg	02/16/19##	
Banzo (k) \$1 washithana	8270	720	340	ng/Kg	02/14/1998	
Benzo (a) pyrano	6270	סבוג	260	bg/Kg	02/14/1998	
Dibenz (a, j) aeridine	8270	MED	1,000	14g/Xg	02/14/1998	
1-methyl chlosuphrens	\$270	MCD	260	ng/Eg	02/14/1984	
Indeno (1, 2, 3-cd) syrene	£270	MO	260	ng/Kg	02/14/1990	
Dibense (ah) anthwasene	1270	MO	260	ng/Kg	02/14/1998	
Benzo (g, h, i) porylana	8278	X20	260	ng/Yg	02/14/1998	

Sample Funber Hample Description
50090 ME MALJANOR MIT/803321-1 TCLF

PARAMETERS ICR/AA Digestion - Water	METTERN TCP	RESULTS	PERCET LIMIT	UNITE	DATE ANALYSED 02/10/1998	YLAG
Heroury Frep (W)	7470	-			02/11/1998	
TOLD EXTRACTION PARS	1317	•			02/20/29\$8	
TCLP - Arrenia, ICP	6010	MD	0.05	Mg/L	02/12/1098	
TCLF - Barium, ICF	8029	0.12 0.12	0.05	mg/2	02/12/1998	
TCLP - Cadmium, ICP	6070	NO.	0.05	mg/L	02/12/1998	
TCLP - Chromium, ICF	6010	MD	0.05	mg/l	02/12/1994	
TCLP - Lead, ICP	E010	MD.	0.63	mg/Z	02/13/1998	
TGLP - Mexcury	7470	MD CDK	9.0002	mg/L	02/12/1998	

A sample result of MD indicates the parameter was Not Detected at the reporting limit.

American Environmental Network, Inc. (503) 684-0447 (503) 620-0393 PAX 17400 SW Upper Macones Ferry Rd., Suits 276, Pertiand, CR 97224 PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998

Job No.: 98.00249

Paga: 6

Project Name: Date Received: 802321 / NM Oil Cons. Division 02/06/1998

Pample Mumber

Sample Description

30098

HE MALJAMAR PIT/802321-1 TCLP

PARAMETERS	METHODA	RECOLTS	BREGET LIMIT	Dires.	CERTAIN REAL	PLAG
TCLP - Selenium, ICP	6070	MED	0,08	mg/L	02/12/1998	
TOLD - Silvay, ICP	6010	MD COM	0.05	mg/L	02/12/1998	
Frep, BHA (N)		•		_	02/10/1998	
TCLP - \$240		_				
TOLP - Mengone	B240 0.97	0.379	0,5	mg/L	02/10/1999	
TCLF - CARbon tetraobloride	5240	MED	0.5	mg/L	02/10/1995	
TCLP - Chlorebensane	8240	MO	100	WE/L	02/10/1000	
TCLF - Caloxaform	B240	סעו	6.0	me/L	04/10/1998	
TCLF - 1,4-Dichlerobensess	2240	מוע	7.8	mg/L	02/10/1558	
TCLP - 1,2-Dichlorosthans	8340	300	5. 5	ng/L	02/10/1998	
TCLF - 1,1-Dioblorostheno	8240	עות	0.7	mg/L	02/10/1998	
TCLF - Methyl Sthyl Ketone	8240	NO.	200	mg/L	02/10/1000	
TCLF - Tetrachloreethane	3240	N ED	0.7	ng/L	02/16/1999	
TCLP - Trichlorothens	8240	740	0.5	mg/L	02/10/1996	
TILP - Vinyl Chloride	4240	MD CM	9.2	rg/L	02/10/1998	
BASE WEUTELL COMPOUNDS - TCLP						
TCLP-1,4-bichlerobensene	3270	MD	7.5	mg/L	02/11/1998	
TCLP-3,4-Dinitreteluane	3270	XC.	0.13	19/ 2	02/11/1996	
TCLP-Hexachlorobensone	#270	NO	0.13	ng/L	02/11/1998	
TCLF-Massehlorobutadiene	6275	MD	0.5	ME/E	02/11/1998	
TCLF-Hemsehlorcethane	2270	380	3.0	mg/L	02/11/1996	
YCCF-Mitrobensone	8270	MO	2.0	ng/L	02/11/1998	
TCLY-Pyridine	6276	жo	5.0	mg/L	02/11/1998	
ACID COMPOUNDS - TCLP						
TCLF-map-Cresol	6270)XID	200	mg/2	02/11/1998	
TCLP-e-Creenl	1270	жD	200	ng/L	02/11/1998	
TCLP-Pentachlorophenel	4279	MID	140	mg/L	02/11/1998	
TCLF-2,4,5-Trichlorophenol	8270	MD	400	mg/L	02/11/1998	
TCLF-2,4,5-Trichlorophenol	8270	MD	3.5	mg/L	02/11/1995	

A sample result of MD indicates the parameter was Not Detected at the reporting limit.

American Environmental Welwork, Inc. (603) 684-0447 (503) 620-0293 TAX 17400 SW Upper Boones Perry Ed., Suite 274, Portland, OR 57224 PRELIMINARY REPORT

8260 (Landfill) Volatile Organics

Base/Neutral/Acid Compounds GC/MS (625/8270) Polynuclear Aromatics (610/8310)

(5262)

8270

Pesticides /PCB (608/8081) Herbicides (615/8151)

P=VUA TCLP- SUUA

Priority Pollutant Metals (13) Target Analyte List Metals (23)

Metals: 6010 + Hs. Se

RCRA Metals by TCLP (Method 1311)

General Chemistry:

RCRA Metals (8)

American Environmental Network (NM), Inc.

DISTRIBUTION: White - AEN, Canary - Originator

Date

Printed Name

Date

Company

Signature

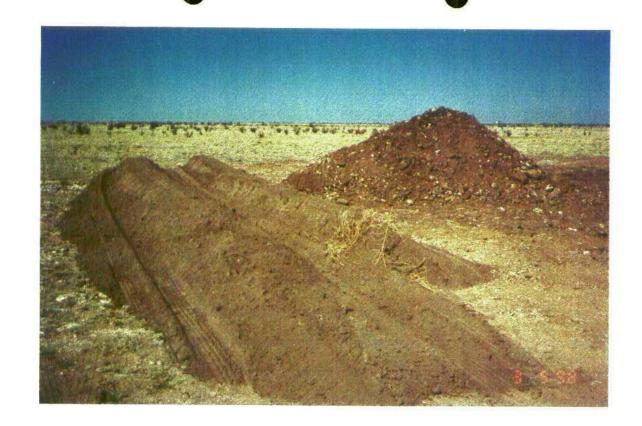
Time

SITE MAPS

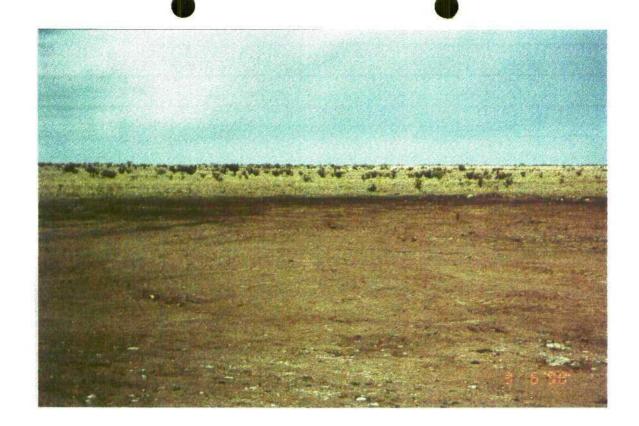
PA. X WELL Pit 3712 PENROC OIL CORP. OLD PIT SITE NW/4 SEC. 5, T175, R33E LEA COUNTY, MEW MExico

JOB/SITE PHOTOS

JOB/SITE PHOTOS


JOB/SITE PHOTOS

JOB/SITE PHOTOS


JOB/SITE PHOTOS



JOB/SITE PHOTOS

JOB/SITE PHOTOS

March 26, 1998

Mr. Rodman C. Johnson Bracewell & Patterson, L.L.P. 111 Congress Avenue Ste 2300 Austin, Texas 78701-4052

Re: Records Request to the Oil Conservation Division

Dear Mr. Johnson:

The Oil Conservation Division received your request for certain documents related to Warrier, Inc. and Penroc Oil. We have in our records in Santa Fe documents related to Penroc Oil. We will have those documents copied and mailed to you within two weeks. The copying charge is \$0.25 per page.

However, the complete records of the nature you are seeking are maintained at the Division's district offices. For Lea County, the Hobbs District Office of the Division is the custodian of such records. The mailing address for the Hobbs District Office is: P.O. Box 1980, Hobbs, NM 87241. The location is 1000 W. Broadway, and the phone number is (505) 393-6161.

I am forwarding your request to the Hobbs District Office for response.

CONFIDENTIAL PENROC OIL CORPORATION

MAILING ADDRES	58:	PHYSICAL ADDRESS:			
P.O. Box 5970 Hobbs, NM 8824 Office: (505) Fax: (505)	397-3596	5014 Carlsbad Highway Hobbs, NM 88240			
	FAX TRANSMISSION COV	ER SHEET			
Date:	February 3, 1998				
Company: Attention:		/ Mr. Martyne Kielins			
Fax Number: Sender:	(505) 827-8177 M. Y. Mercha	L'IN P			
YOU SHOULD REC	CEIVE PAGE(5), INCL CEIVE ALL THE PAGES, PLEAS	UDING THIS COVER SHEET. IF SE CALL (505) 397-3596.			
MESSAGE:					
The state of the s					

PRODUCING OIL AND GAS FOR AMERICA SINCE 1961

the first of the f

Via Fax: 505/827-8177

February 3, 1998

Mr. Rand Carroll NMOCD-Santa Fe 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re: Abandoned Pit NW/4, Section 5, Township 17 South, Range 33 East Lea County, New Mexico

Dear Rand:

This letter is in response to your letter dated January 30, 1998. I have reviewed your letter after my return from Houston yesterday.

Attached you will find a closure and remedial plan prepared by CSI of Hobbs. I had filed a similar plan under the NMOCD pit closure guidelines and Mr. Wayne Price of Hobbs, NMOCD, approved a C-103 on September 26, 1997.

I have noted your schedule for February 4, 1998. I am leaving the same day for Houston and onwards to Middle East on a previously scheduled trip. I will tentatively return after the 25th of February. Mr. Allen Hodges of CSI will witness the sample collection by NMOCD at this pit. Please note NMOCD representative can be any one except Mr. Wayne Price. I make this request because of well-documented discriminatory and unethical actions by Mr. Wayne Price against my firm and me since 1993.

Also, please note the law firm of Mr. William F. Carr is not representing Penroc or me at this time. I plan to resolve these problems in an amicable way, however, if legal representation is needed in the future, I will retain the same.

Please contact me at the above phone or fax for any comments or questions you may have. Thank you for your attention to this matter.

Sincerely.

M. Y. (Merch) Merchant

President

TRAIL THE BUTTON

CC: All Interested Parties

MAILING ADDRESS: I'O Box 5970 Hohbs, NM 88241-5970 DELIVERY ADDRESS: 5014 Carisbad Hwy, Hobbs, NM 88240-1118

(505) 397-3596 Phone (505) 393-7051 FAX

Engineering and Construction Services

Constructive Solutions, Inc.

Building a Better Environment

February 2,1998

Mr. M.Y. Merchant

Penroc Oil Corporation
PO Box 5970
Hobbs, New Mexico 88241

RE: Work Plan for Disposal Pit located NW/4, Sec. 5, T175, R33E of Lea County, NM

Mr. Merchant

Constructive Solutions, Inc. (CSI) is pleased to present this work plan to close the pit at the above listed site. The work plan was developed to close the pit in accordance with New Mexico Oil Conservation Division (NMOCD) Unlined Surface Impoundment Closure Guides as specified in the NMOCD's guidelines dated February, 1993. It is our understanding that any potential contamination of the pit was the result of activities associated with the operation of an oil and gas company.

The potential contaminates of concern are expected to be mid level concentrations of petroleum hydrocarbons, produced water and possibly metals that may have been discharged into the pits and absorbed by the surrounding soils.

The NMOCD regulates disposal of non-domestic wastes resulting from the production of the oil and gas industry. In addition, the NMOCD administers all Water Quality Act regulations pertaining to surface and ground water except sewage for the oil field service industry. This authority includes the disposition of non-domestic, non-hazardous wastes at oil field facilities.

Scope of Work

- 1 Excavate the pit and any near surface soils containing any observed potential contamination. Initial excavation operations will consist of removing the soils to a depth to where the TPH levels have dropped below 100 ppm to minimize the volume of waste generated (estimated waste volume is approximately 233 cubic yards based on a pit that is 25 x 25 x 10). The excavated soils will be stockpiled at an on-site location pending waste characterization and disposal. The soils will be staged on and covered with plastic to prevent the potential spread of contamination.
- 2 Collect five (5) soil samples of the excavated area for Total Petroleum Hydrocarbons (TPH) analysis to verify that the remaining surface soils at the site are below NMOCD clean up guidelines for TPH levels for spills/releases. Should the TPH concentrations in the remaining soils exceed NMOCD levels, an additional excavation layer of soil will be removed and stockpiled.
- 3 Once TPH levels are below the NMOCD clean up guidelines, final samples will be taken to be analyzed at a third party lab for TPH, BTEX and Chlorides CL before backfilling operations begin.

P.O. Box 25547 • Albuquerque, NM 87125 • (505) 242-6464 • Fax (505) 247-4941 3711 East Miami • Phoenix, AZ 85040 • (602) 431-1600 • Fax (602) 431-0900

Page Two

- 4 Collect a composite sample of the excavated material for laboratory analysis. The purpose of the composite sample is to characterize the excavated material for waste classification in accordance with RCRA Subtitle C regulations. The sample will be analyzed for TPH, volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), eight RCRA metals, and solid waste characteristics (ignitability, corrositivity, reactivity, and toxicity).
- 5 Should the analytical results from the sample of excavated material record levels of individual compounds that exceed EPA maximum concentration levels (MCL) for toxicity characteristics, a sampling plan to verify the soils remaining in the excavated area are below MCL levels will be developed. This plan will include the collection of a minimum of two (2) soil samples from randomly selected locations with in the excavated area. In order to minimize costs, the samples will be analyzed for only compounds that exceeded MCL levels.
- 6 Should the analytical results record individual compound concentrations below EPA listed MCL, the tested materials will be considered a non-hazardous waste generated at an oil field facility. The materials will be transported to a NMOCD permitted commercial waste disposal facility. Each load of material will be accompanied by a manifest in accordance with Section 711 of the New Mexico Solid Waste Management Regulations.
- 7 Once excavation operations have been completed and the analysis from the lab meets the NMOCD levels for closure, the site will be backfilled back to grade and restored back to it's natural state.

Should excavation operations identify any additional concerns outside the scope of work, an approval from a representative of Penroc will be obtained prior to performing any additional services

CSI appreciates this opportunity to provide you with our professional services. Please feel free to call us at any time for further information or questions you may have with regards to our work plan.

Respectfully

Allen Hodge, REM

Hobbs Operations Manager

Constructive Solutions, Inc.

American Environmental Network

FAX TRANSMITTAL SHEET

DELIVER TO: Market PHONE NUMBER:					
COMPANY:	MKACID	FAX NUMBER:	Sus-877-8177		
NUMB	ER OF PAGES BEING SENT: _	10 (INCLUDIN	IG THIS PAGE)		
From:		Dat	te: 2/18		
	H. Mitchell Rubenstein, Ph.D., C	Seneral Manager Tin	ne:		
	Kimberly D. McNeill, Project M Francine J. Torivio, Administrati Brian Price, Sample Control Christopher Froehlich, QA Coord	ve Assistant FA	X NUMBER: 5) 344-4413		
use of the de information of the intended re hereby notified distribution or	en contained in this Facsimile message signated recipients named above. a client, and as such is privileged and ecipient or any agent responsible for that you have received this docume copying of this message is strictly proposed notify us immediately by telephone	This message may be pro- confidential. If the reader of delivering it to the intend- ent in error, and that any re- hibited. If you have receive	oprietary confidential of this message is not ed recipient, you are eview, dissemination, d this communication		
COMMENTS					
I rewrote s	tenror douter	er since sumetimes t	he numbers		
	x very well.	7			
	V				

If you did not receive all pages of this transmission or if you experience Fax Transmission problems. Please call (505) 344-3777, as soon as possible after the receipt.

Preliminary Results Final report will be Issued following data review

GC/MS RESULTS

TEST CLIENT	: VOLATILE ORG	ANICS EP	A METHOD 8260	AEN I.D.		802321
PROJECT #	: (none)		r	ATE RECEIVED		2/5/98
PROJECT NAME	PENROC		C	ATE RECEIVED		215196
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATR		EXTRACTED	ANALYZED	FACTOR
802321-01	NE MALJAMAR PI	r non-A	\Q 2/4/98	2/6/98	02/06/98	ىم 1000
PARAMETER	DET. LIMIT		UNITS			
Diohlorodifluoromethane	0.05	< 5,0	MG/KG			
Chloromethane		< 5.0	MG/KG			
Vinyl Chlorida	0,05	< 5.0	MG/KG			
Bromomethane		< 5.0	MG/KG			
Chloroethane	0.05	< 5.0	MG/KG			
Trichlorofluoromathane	0.05	< 5.0	MG/KG			
Acetone	0.5	< 50	MG/KG			
Acrolein	0.25	< 25	MG/KG			
1,1-Dichloroethene	0.05	< 5.0	MG/KG			
lodomethane	0.05	< 5.0	MG/KG			
Methylene Chloride	0.05	< 5.0	MG/KG			
Acrylonitrile	0.25	< 25	MG/KG			
cls-1,2-Dichloroethene	0.05	< 5.0	MG/KG			
Methyl-f-butyl Ether	0.05	< 5.0	MG/KG			
1,1,2,1,2,2-Trichlorotrifluoroethane	0.05	< 5.0	MG/KG			
1,1-Dichloroethane		< 5.0	MG/KG			
trans-1,2-Dichloroethene	0.05	< 5.0	MG/KG			
2-Butanone	0.5	< 50	MG/KG			
Carbon Disulfide	0,05	< 5.0	MG/KG			
Bromochloromethane:	0,05	< 5.0	MG/KG			
Chloroform	0.05	< 5.0	MG/KG			
2,2-Dichloropropane	0.05	< 5.0	MG/KG			
1,2-Dichloroethane	0.05	< 5.0	MG/KG			
Vinyl Acetate	0.05	< 5.0	MG/KG			
1,1,1-Trichloroethane	0.05	< 5.0	MG/KG			
1,1-Dichloropropene	0.05	< 5,0	MG/KG			
Carbon Tetrachloride	0.05	< 5.0	, MG/KG			
Benzene	0.05	47 2	/ MG/KG			
1,2-Dichloropropane	0.05	< 5,0	MG/KG			
Trichlorgethene	0.05	< 5.0	MG/KG			
Bromodichioromethans	0.05	< 6,0	MG/KG			
2-Chloroethyl Vinyl Ether	0.5	< 50	MG/KG			
cis-1,3-Dichloropropens	0.05	< 5.0	MG/KG			
trans-1,3-Dichloropropene	0.05	< 5.0	MG/KG			
1,1,2-Triohloroethane	0.05	< 5.0	MG/KG			
1,3-Dichloropropane	0.05	< 5.0	MG/KG			
Dibromomethane	0.05	< 5.0	MG/KG			
Toluene	0.05	19 🗸	MG/KG			
1,2-Dibromoethans	0.05	< 5.0	MG/KG			
4-Methyl-2-Pentanone	0.5	< 50	MG/KG			
2-Hexanone	0.5	< 50	MG/KG			
Dibromochloromethane	0.05	< 5.0	MG/KG			
Tetrachloroethene	0.05	< 5.0	MG/KG			
Chlorobenzene	0,05	< 5.0	/ MG/KG			
Ethylbenzene	0.05	41 🗸	MG/KG			
1,1,1,2-Tetrachloroethane	0.05	< 5.0	MG/KG			

Preliminary Results Final report will be issued following data review

GC/MS RESULTS

TEST	VOLATILE ORG	ANICS EPA I	METHOD 826			Test water to the transfer
CLIENT	NMOCD	61 1		AEN I.D.		802321
PROJECT#	: (none)	il.	L	DATE RECEIVED	1 :	2/5/95
PROJECT NAME	PENROC	<u> </u>				
SAMPLE	mi imaia in	14 4 W/D 114	DATE	DATE	DATE	DIL.
(D#	CLIENTID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
802321-01	NE MALJAMAR P	T NON-AQ	2/4/98	2/6/98	02/06/98	100
PARAMETER	OET, LIMIT		UNITS			
m&p Xylenes	0,05	54	MG/KG			
o-Xylene	0.05	16	MG/KG			
Styrana	D,05	< 5.0	MG/KG			
Bromoform	0.05	< 5.0	MG/KG			
1,1,2,2-Tetrachloroethane	0.05	< 5.0	MG/KG			
1,2,3-Trichloropropane	0.05	< 5.0	MG/KG			
Isopropyl Benzene	0.05	س 13	MG/KG			
Bromobenzene	0.05	< 5.0	MG/KG			
trans-1,4-Dichloro-2-Butene	0.05	< 5.0	MG/KG			
n-Propylbenzene	0.05	15	MG/KG			
2-Chlorotoluene	0.05	< 5.0	MG/KG			
4-Chlorotoluene	0.05	< 5.0	MG/KG			
1,3,5-Trimethylbenzene	0.05	10 1	MG/KG			
tert-Butylbenzene	0.05	< 5.0	MG/KG			
1,2,4-Triniethylbenzene	0.05	33	MG/KG			
sec-Butylbenzene	0.05	8.4	MG/KG			
1,3-Dichlorobenzene	0.05	< 5.0	MG/KG			
1.4-Dichlorobenzene	0.05	< 5.0	MG/KG			
p-isopropyitoluene	0.05	< 5.0	MG/KG			
1,2-Diahlarobenzene	0.05	< 5.0	MG/KG			
n-Butylbenzene	0.05	12 /	MG/KG			
1,2-Dibromomo-3-chloropropana	0.05	< 5.0	MG/KG			
1,2,4-Trichlorobenzene	0.05	< 5.0	MG/KG			
Naphthalene	0.05	18	MG/KG			
Hexaphlorobutadiene	0.05	< 5.0	MG/KG			
1,2,3-Trichlorobenzene	0.05	< 5.0				
1,2,0-11(CHOTODEHZB) IB	(),03	~ 5,0	MG/KG			
SURROGATE % RECOVERY					E8/0/2	44
1,2-Dichloroethane-d4		92			, *	, v
		(80 - 120)		~ \n \	
Toluene-d8		103	•		~ W \	
		(81 - 117	•		V ,,	
Bromofluorobenzena		92	,		13	
		(74 - 121	1		•	
		(11 12)	,			400
					11	100
					1a	10/10
					200	40/88
					ø	1 1

P.5

AMERICAN ENVIRONMENTAL NETWORK 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

PRELIMINARY RESULTS ONLY - SINGLE

Accession: Client; Project Number: Project Hame; Project Location; Test: Matrix: QC Level;	nmocd Penroc	ENVIRONMENTAL METWO	承长 (设置说 MEX:	ICO) INC.	wad 6	
Lab ID; Client Sample ID;	001		Dame I - F		. 7 07	وخالات
	802321-01		Received	ate/Time:	04-FRB-98 1330 06-FBB-98)
Parametera:	Unite:	Results:		4.4.	00.20.30	
CYANIDE, REACTIVE		webut ta;	Rpt Lmts:	Q: Bat	ch: Analyst:	
(9010) SULFIDE, REACTIVE	MG/KG	מא	0.25	15 494	I	
(9030) KEACITY	MG/KG	LVID.		RCX	oos Cr	
•	May Ku	ND	5	克品 义	005 CR	

Comments:

American Environmental Network (OR), Inc. 17400 SW Upper Boones Ferry Rd. / Suite 270 / Durham, OR 97224 503-684-0447

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Date: 02/17/1998

AEN Account No.: 90147 AEN Job Number: 98,00249

Project:

802321 / NM Oil Cons. Division

Location: Penroc

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

*ample		Macrix	Date	Date
Mumber	Sample Description	Тура	Tekon	Received
90089	802321/ NE MALJAMAR PIT	MISC, SOLID	02/04/1998	02/05/1994
90090	ME MALJAMAR PIT/802321-1 TCLP	MISC. SOLID	03/04/1968	42/46/1944

Approved by:

Project Manager AEN, INC.

Technical Review AEN, INC.

The results from these samples relate only to the items tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998 Job No.: 98.00249

Page: 2

Project Name: Date Received:

802321 / NM Oil Cons. Division 02/06/1998

Eample Muber Sample Description 90089 \$02321/ ME MALJAMAR PIT

PARAMETRIA	METHODS	RESULTS	DEPORT LIMIT	UNITE	DATE ANALYEED	PLAG
Flashyoint	1010 94	94	140	Degree	02/11/1906	
ICE/AR Digestion - Sell	ICP	-	~		02/05/1998	
Aluminum, ICP	£010 400	400	10	ng/Kg	03/03/1958	
Anticony, ICP	6010	ND	1.0	mg/Kg	02/09/1555	
Artenia, ICP	6010 114	47	1.0	THE / Kg	02/09/1999	
marium, ICP	6010 BT	57	1.0	ng/Kg	02/05/1990	
paryllium, ICP	6010	ND	1.0	ng/Kg	02/09/1998	
Boron, ICP	6015 6.6	6.4	10	ng/Kg	02/09/1998	
Cadmium, ICP	£010	MD	1.0	mg/Kg	52/99/1998	
Calcium. TCP	6010 4700	4700	10	Mg/Kg	02/09/1998	
Chromium, ICP	6010 2.6	2.0	1.0	mg/Kg	02/09/1998	
Cobalt, ICP	6070	NID	1.0	ng/Xg	02/09/1998	
Capper, ICA	6010 7.5	7.5	1.0	ng/kg	03/03/1994	
Iron, ICP	6010 3800	3800	5.0	ng/Kg	02/09/1998	Q
Lond, ICP	6010 G4	64	1.0	ng/kg	02/09/1998	
Magnesium, ICP	6010 560	560	10	mg/kg	02/09/19##	
Manganese, ICP	6010 26	26	1.0	ng/Kg	02/09/1998	
Marcury Prop (S)	7471	-			02/10/1996	
Marcury. CVAA (8)	7471	MD	0.10	mg/Kg	02/10/1998	
Molyhdenum, ICP	6010 1.6	1.4	1.0	mg/Kg	02/09/1998	
Nickel, ICP	6010 6.1	4.1	1.0	mg/Kg	02/09/1998	
Potespáum, ICP	6010 /20	120	5.0	ng/Kg	02/09/1998	
Selenium, ICP	6010	MD	1.0	mg/Kg	02/09/1998	
Silver, ICP	6010	NO	1.0	ng/Kg	02/09/1998	
Thallium, ICP	6010	MD	2.0	mg/Kg	02/09/1998	
Vanadium, ICP	6010 -1	1.1	1.0	mg/Xg	02/09/1998	
Rine, ICF	8010 140	140	5.0	mg/Kg	02/09/1994	Q
Coxvesivity (px)	6.5	6.5		unita	02/09/1996	
Prop. BMA (8)		•			02/10/1998	
8270 BNA's (8)						
Dilution Factor		1500			02/14/1998	
2-Fisoline	5270	MD	360	mg/Kgr	02/14/1998	

A sample result of MD indicates the parameter was Men Detected at the reporting limit.

American Environmental Network, Inc. (503) 684-0447 (503) 620-0393 FAX 17400 SW Upper Boones Ferry Rd., Suite 270, Portland, OR 97224
PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998 Job No.: 98.00249

Page: 3

Project Name:

• `•

802321 / NM Oil Cons. Division 02/06/1998

Date Received: 02/06/1998

Manualo Mumbar Sanga 90089 80232

Sample Description 802321/ Nº MALJAMAR SIT

PANAMETERS	METHODS	Permas	REPORT LIMIT	imita	DATE ANALYSED	PLACE
N-Nicrosodimethylamine	5270	MD	2.400	wa/Xa	02/14/1998	N-ANG/A
Methyl mathaneaulfonate	8275	MD	260	ing/Kigr	02/14/1898	
Phenol	£270	CM	516	ws/Kg	03/14/1998	
Ethyl methanesulfonsts	E270	AID.	260	mg/Ksr	03/14/1906	
bis (2-Chlorosthyl) ether	8270	MTD CTM	260	mgr/Ker	02/14/1958	
2-Chlorophenol	8270	MO	260	mg/Xa	02/14/1998	
1.3-Dichlorobensame	8270	NO	260	mg/Kg	02/14/1988	
1,4-Dichlorobensenc	8279	MD	260	mg/Kg	02/14/1908	
1,3-Dichlorobenseas	8270	MD	360	ng/Xg	02/14/1998	
o-Cresol	8276	MD	260	ng/Ku	02/14/1998	
Bonsyl Alcohol	8270	MD	260	mg/Kg	02/14/1998	
m,p-Crewal	8270	N/D	260	mg/Mg	02/14/1998	
bis (2-Chloroisopropyl) ether	8270	MD	26g	ng/kg	92/14/1998	
N-nitreso-di-n-propylamine	8270	ND	260	har/Kar	02/14/1998	
Hexachlesoschaue	6270	סמ	260	ng/kg	02/14/1998	
Acecophenone	8279	XID	260	mg/Kg	02/14/1998	
Mitrobensene	6270	מוע	260	mg/Kg	02/14/1998	
W-Mitrosopiperidine	8270	מוע	260	mg/Kg	02/14/1994	
Teophorone	8276	bitó	360	ma/Ket	02/14/1090	
2-Mitrophenol	1276	סוע	260	mg/Kg	02/14/1998	
2,4-Dimochylphenol	1270	ND	360	mg/Kg	03/14/1998	
bis (2-Chlorosthomy) mothers	8270	Мa	260	mg/¥g	02/14/1996	
2,4-Dichlorophenol	8270	MID	260	mar/Xa	02/14/1988	
1,2.4-Trichlerobenzeno	8270	NO	260	rog / Kur	02/14/1998	
Waphchalene	8270	ss 55	360	mg/Rg	02/14/1996	J
2,6-Dichlorphanol	8270	77.07	250	mg/Kg	02/14/1998	
Hexachlereburadiane	6279	MD	260	mg/Kg	02/14/1999	
s, a, -Dimethylphanylamins	8270	CINC	260	mar/Kaj	02/14/1999	
N-Nitroso-di-n-butylaming	8270	ND	260	ma/Ke	02/14/1998	
4-Chloro-3-mathylphenol	8270	. מוע	260	mer/Kar	03/14/1898	
2-Methylnaphthalone	6276	JE0 160	260	ng/Kg	02/14/1998	J
Kexachlorocyclopentadiene	4276	ND	360	mg/Kg	02/14/1996	•
			-	·*************************************	AE \ 74 \ # 128	

A sample result of MD indicates the parameter was Not Detected at the reporting limit,

American Environmental Metwork, Inc. (503) 684-0447 (603) 620-0395 FAX 17400 SM Upper Boones Forry Rd., Suite 270, Portland, OR 97224 PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998 Job No.: 98.00249

Page: 4

Project Name: Date Received:

802321 / NM Oil Cons. Division 02/06/1998

Sample Number 94689

Sample Description TIT RAMALIAN SE VICEGOS

PARAMETERS	METHODA	nesults	REPORT LIMIT	DNITE	DATE ANALYSED	PLAG
1,2,4,5-Tetrachlurebenzene	\$270	QK	268	Mg/Kg	02/14/1998	
2.4.4.Trichiorophanol	6270	MD	260	mg/Kg	02/14/1008	
2,4,5-Trichlorophenol	8270	MD	260	mg/kg	02/14/1999	
3-Chleronaphebalane	8270	Dia.	360	ma/ka	02/14/1996	
1-Chleronaphthalene	6270	ND	360	ng/Kg	02/14/1998	
2-Witrosniline	8270	MÓ	260	mg/Xg	02/14/1998	
Dimethylphthelate	8270	MD	260	ng/Ka	02/14/1988	
Pentachlorobencene	4270	NE	260	mes/Kes	02/14/1999	
2.4-Dinitrotolueno	#270	מע	260	mys/Ker	02/14/1986	
Acenaphthylene	6270	MID	260	ng/Kg	02/14/1998	
Adenaphthene	8270	ND	260	ag/Kg	02/14/1998	
2,4-Dinitrophenol	#270	MID	1,000	ng/Kg	02/14/1998	
4-Mitrophonol	8270	MD	260	mg/Kg	02/14/1998	
Dibenzofugen	8270	מא	260	ng/xg	02/14/1998	
2,4-Dinicrotoluene	9270	30723	240	mg/Xg	02/14/1998	
2,3,4,6-Terrachlorophanel	4274	מא	260	mg/Kg	02/14/1998	
Disthylphrhalass	8270	MD	260	mg/Kg	02/14/1998	
d-Chlorophanyl-phanylecher	\$ 270	Mo	260	Max / No	02/14/1998	
Fluerene	6270	סוא	260	mg/ 1/4	03/14/1994	
4-Witrosmilino	6270	NID	260	mgs / Key	02/14/1998	
4,6-Dinitro-2-methylphesol	8270	מע	2,400	mg/Kg	02/14/1998	
N-nitrosodiphenylamina	8270	מא	260	mgt/Mgg	02/14/1486	
Phenasctin	6270	ND	260	ng/kg	02/14/1998	
4-Mromophenyl-phonylether	8270	MD	249	ng/Kg	02/14/1998	
Nexachlarobunsens	6276	MED	260	wg/Kg	02/14/1558	
Pentachinrophenol	6270	CIM	410	mg/Kg	02/14/1998	
4-Aminobipbenyl	8270	NO	510	ng/kg	02/14/1998	
Pansachloronitrobenzene	8270	MD	260	ng/Yg	02/14/1996	
Propinide	8370	MP	260	mg/Kg	02/14/1996	
Phenanchiene	8270	120 120	260	mg/Kg	02/14/1998	3
Anthrécono	8270	MD	260	mg/Kg	02/14/1998	
Di-n-busylphthalate	1270	MD	260	ma/Kar	02/14/1998	

A sample result of ND indicates the parameter was Not Detected at the reporting limit.

American Environmental Metwork, Inc. (503) 584-0447 (503) 620-0393 FAX 17400 SW Upper Boomes Perry Md., Suite 270, Pertland, OR 97224

PRELIMINARY REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998 Job No.: 98.00249

Page: 5

Project Name:

802321 / NM Oil Cons. Division 02/06/1998

Date Received:

Edmola Mumber 90009

Sample Description

TEG SAMALIAM BN \155500

PARAMETRIE	METHODS	HEAULAS	REPORT LIMIT	UNITE	AATR ANALYERO	PLAG
Fluoreschene	8270	NO	310	ing/Xa	02/14/1998	E-MARK
Pyrone	#370	MD	260	mg/Xg	02/14/1998	
p-Diemchylaminesobensene	6270	NO	260	ma/Ka	02/14/1996	
Bucylbensylphthalate	6270	MD	260	mg/Kg	02/14/1999	
1,3-Dichlorobenzidine	8270	MD	250	mgr/Kigr	02/14/1998	
his (2-erby)howy) phebalace	8270	DAID.	260	wa/Ka	02/14/1998	
Manto (a) anchrecens	8270	MIL	260	mg/Kg	02/14/1998	
Chrysene	9270	ND	260	rag/Kg	02/14/1998	
Di-n-octylphthelate	5270	ND	260	mg/Kg	02/14/1998	
7,12-Dimeshylbens(a) anthracens	8270	ND	260	mg/kg	02/14/1998	
Bearo (b) fluorencheno	#27¢	מא	260	mg/kg	02/14/1996	
Benzo (k) fluoranthano	1270	ЯÞ	366	mg/Kg	02/14/1998	
Benzo (2) pyrane	8270	מוא	260	ng/Kg	02/14/1998	
Dibens(a,j) aeridine	6270	MD	1,000	mg/Kg	02/14/1988	
3-mathyl chloanthrana	8270	KED	260	mg/Kg	02/14/1986	
Indeno (1,2,3-cd) pyrene	8270	MO	260	mg/Kg	02/14/1990	
Dibenso (ah) anthraseno	1270	MD	360	mg/Kg	02/14/1998	
Benzo (g.h, 1) porylana	8270	מוג	260	ng/Kg	02/14/1998	

Sample Number

Mample Description

90090

ME MALJAMAR PIT/803321-1 TCLP

PARAMETRIA ICP/AA Digastion - Water Mercury Brap (W) TCLP EXTRACTION PREP TCLP - Arsonic, ICP TCLF - Barlum, ICP TCLF - Cadmium, ICP TCLP - Chromium, ICP TCLP - Lead, ICP	1CP 7470 1311 6010 6010 6010 6010	- CI.O.IJ. CM CM CM CM CM CM CM CM CM C	0.05 0.05 0.05 0.05 0.05 0.05	Mg/L mg/L mg/L mg/L	DATE ANALYZED 02/10/1998 02/11/1998 02/10/1998 02/12/1998 02/12/1998 02/12/1998 02/12/1998 02/12/1998	YLAG
TOLP - Mercury	7470	dia	0.0002	mg/L	02/12/1598	

A sample result of MD indicates the parameter was Not Detected at the reporting limit.

American Environmental Network, Inc. (503) 684-0447 (503) 620-0393 PAX 17400 SW Upper Moones Ferry Rd., Suite 270, Partland, CR 97224

PRELIMINARY REPORT

Kim McNelll

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998 Job No.: 98.00249

Page: 6

Project Name: Date Received: 802321 / NM Oil Cons. Division 02/06/1998

Mample Number

Samplo Description

90090

WE MALJAMAR PIT/602321-1 TCLP

EARAMETERA	MATHODS	RESULTS	PPROFIT LIMIT	UMITS	DATA ANALYZED	PLAG
TCLP - Balenium, ICP	6070	MD	0,08	ng/L	02/12/1998	
TOLP - Silvay, ICP	£010	NO	0.05	ng/L	02/12/1998	
Prep, BNA (W)		•			02/10/1998	
TCLP - \$240		_				
TCLP - Menuone	B240 0.97	0.970	Ċ,S	mg/L	02/10/1999	
TCLP - Carbon tatrachlorida	5240	ND	0.5	ing/L	02/10/1358	
TCLP - Chlorobensens	8240	MD	100	mg/L	02/10/1998	
TCLP - Chloroform	8240	מא	6.0	mes/L	03/10/1999	
YCLF - 1,4-Dichlorobensens	8240	MD CIN	7.5	mg/L	02/10/1998	
TCLP - 1,2-Dichlorosthuns	8240	900	0.5	mg/L	02/10/1998	
TCLF - 1,1-Dichlorosthenc	8240	ND	0.7	mg/L	02/10/1998	
TCLF - Mathyl Ethyl Katons	8240	MO	200	mg/L	02/10/1998	
TCLF - Tetrachlorosthane	8240	מא	0.7	mg/L	02/10/1998	
TCLP - Trichlorothene	6240	MD	0. 5	mg/L	02/10/1996	
TCLP - Vinyl Chloride	6240	MD	0.2	ing/L	02/10/1998	
base abolikyt comboning - lcta						
TCLP-1,4-Dichlorobensens	B270	NO	1.5	mg/L	02/11/1998	
TCLP-9,4-Dinitrateluene	8270	MC OM	0.13	ng/L	02/11/1998	
TCLP-Hexachlorobensone	6270	NO	0.13	mg/L	02/11/1956	
TCLF-Herschlorobutediene	6275	MI	0.5	W#/\$	02/11/1998	
TCLF-Hemethlorosthene	8270	ND	3.0	ng/L	02/11/1998	
lcrb-mitropenseus	5270	CINE	2.4	mg/L	02/11/1998	
ICLU-Pyridine	6270	AMD .	5.0	mg/L	02/11/1998	
ACID COMPOUNDS - TCLP						
TCLP-map-Cresol	6270	DO	200	mg/L	02/11/1998	
TCLP-e-Cresol	£27¢	ND	200	mg/L	02/11/1598	
TCLP-Feztachlorophenel	6270	MD CIR	100	mg/L	02/11/1990	
TCLF-2.4.5-Trichlorophenol	8270	CIM	400	mg/⊑	02/11/1998	
TCLF+2,4,5-Trichlorophanol	8270	MO	2.0	mg/L	02/11/1998	

A sample result of MD indicates the parameter was Not Detected at the reporting limit.

American Environmental Welwork, Inc. (603) 684-0447 (503) 620-0393 PAX 17400 SW Upper Buones Parry Rd., Suita 270, Fortland, OR 97224
PRELIMINARY REPORT

American Environmental Network (NM), Inc. CHAIR

a pice is	
\	
<u>5</u>	- OF
\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>	نین
5	- PAGE
う _.	200
Z	15/2

**	NU P OF CONTAINERS	W										
	「ころるマロック」	×										
	Metals: 60/0 + H, 5e 6, AA	X										
	RCRA Metals by TCLP (Method 1311)	×				<u> </u>						16
	RCRA Metals (8)	<u> </u>										li≥
50	Target Analyte List Metals (S3)											ŀĠ
	Priority Pollutant Metals (13)	<u> </u>										PEI INOITICHED BY
Į,	(1669) 1000 = 1110L	×										Ş
	(つりころ) ひロルーレフコレ	×										ū
	General Chemistry:											
	Polynuclear Aromatics (610/8310)											
5	Base/Neutral/Acid Compounds GC/MS (625/8270)	X			-	T	1					
REQUEST	Herbicides (615/8151)			do								
3	Pesticides /PCB (608/808)			15								Fat
I	8260 (Landfill) Volatile Organics			85/81/							\Box	RELINOLICHEDRY
ANALYSIS	8260 (CUST) Volatile Organics			`							\neg	Į Į
Ž	8260 (Full) Volatile Organics	X		N							\neg	2116
Ž	8260 (TCL) Volatile Organics										\dashv	Ž
	FUSS 1002 + CON (XIVI)	×		_							一	ď
	20⊄1 EDB□\DBCb□	Ħ	\vdash	AFI)				ع کے	وسيد	\neg	
	8021 (CUST)			ſΤ	1	ďι				, P	ㅓ	2
Ì	8021 (HALO)	┢		\triangleleft	<u> </u>	Š			6	_	\dashv	L
	8021 (EDX)		_					,			_	S BEQUIRED FOR BUSH PROJECTS
	8051 (TCL)				. ز	ಕ್ಷ	-	+			ㅓ	٦
	8021 (BTEX) MTBE TMB PCE	 		3	?	_		ò			\dashv	Z =
h	8021 (BTEX)/8015 (Gasoline)			/	2	3		(cepor			-	a
	(M8015) Gas/Purge & Trap	 		9	_	Ÿ	(.	2			\dashv	G
	toeinl toeriO\Desel((2108.00M)	-				_		C.			\dashv	L
	Petroleum Hydrocarbons (418.1) HPPH			ì			,	×				
ij.	Take the same	itara.	en e	')		1-	1				E C
	Division 7505	0		7			`	>				2
	19 19	7			•		•	Ž				2
	P. D. OST		-	7)		-	Z				
-		ata ste									- 1	217
		2									ᅵ	UH
	1 S S S S S S S S S S S S S S S S S S S	ွ										
Z	10-4 mm	13.				I			l	I	, Ì	PRIOR AUTHORIZATION
16001	1825 V-1 8 11M 1 8 17 4 2 8 17 4	200								_	\vdash	Jia Dia
5	Alm sor Wet Am NIM 7-7-7154 7-8177	6/1	.									٥
	8827- 6827- 6827-	2/4/98 1330								1		J.
2/17	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ė			_	<u> </u>				 	$\vdash \vdash \vdash$	ľ
Q		+	٠.									Įξ
	040 040 505 205	410										MAT
H.	E 0, 195 @	ے								İ		E
9	SS:	Q.										PROJECT INFORMATION
Ž V	> · · · · · · · · · · · · · · · · · · ·	, Z	- 7									ECI
<u>-</u>	PAN EES(PAN)	کے	,									င္ကြ
PHOJECI MANAGER:	COMPANY: ADDRESS: PHONE: FAX: BILL TO: COMPANY: ADDRESS:	NE Meliamor			'							
욁	CC CC CC CC	17										
_	· · · · · · · · · · · · · · · · · · ·	\leq	ų	L		<u> </u>		<u> </u>		<u> </u>		95

SHADED AREAS ARE FOR LAB USE ONLY.

PROJECT INFORMATION	PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS	RELINQUISHED BY.	RELINQUISHED BY:
PROJ. NO.:	(RUSH) ☐ 24hr ☐ 48hr ☐ 72hr 💢 WEEK (NORMAL) ☐	Signature: 7/1/ Time. 1225	Signature: Time.
PROJ. NAME PAROC	CERTIFICATION REQUIRED: NM SDWA OTHER	12.1	Printed Name: Date:
P.O. NO.:	METHANOL PRESERVATION [☐]	B:11 0/50, 2/5/58	
SHIPPED VIA:	COMMENTS: FIXED FEE	Company, NM OCD	Company:
SAMPLE RECEIPT			RECEIVED BY: (LAB)
		Signature: Time:	Signature: The Time 1725
CUSTODY SEALS Y/N (NA)		Printed Name: Date:	Printed Name. Date:
BUJE ICĘŃCE)		Сотралу:	American Environmental Network (NM), Inc.

COMMONLY REQUESTED GENERAL CHEMISTRY

тох	Toc	S-2	S04	TSS	TDS	PH	O-G	TXZ	N02	N02/N03	N03	TI	CN	E.C.	COD	Ω	BR	BOD	NH4	ALK	ABV.
Total Organic Halide	Total Organic Carbon	Sulfide	Sulfate	Total Suspended Solids	Total Dissolved Solids	PH	Oil-Grease	Total Kjaidahl Nitrogen	Nitrite	Nitrite/Nitrate	Nitrate	Fluoride	Cyanide, Total	Conductivity	Chemical Oxygen Demand	Chloride	Bromide	Biochemical Oxygen Demand	Ammonia	Alkalinity (Bicarbonate+Carbonate)	ANALYSES

SW846-UPDATE III DEFINITIONS (6/25/97)

Per EPA methods 8010, 8020, and 8240 have been deleted. The following test codes and definitions replace these methods:

GC

New Method	Analysis
8021 (BTEX)	Formerly 8020 (BTEX) Compound List
8021 (TCL)	Formerly 8020/8010 Target Compound List
8021 (EDX)	BTEX + EDB, EDC
8021 (HALO)	Formerly 8010 Halogenated Compound List
8021 (CUST)	A partial/customer defined list

GCMS

New Method	Analysis
8260 (TCL)	Formerly 8240 Target Compound List
8260 (FULL)	Full 8260 Compound List
8260 (CUST)	A partial/customer defined list
8260 (LANDFILL)	NM Landfill (WQCC) list

METALS COMMONLY ANALYZED

PRIORITY POLLUTANT LIST (PP) • RCRA • TARGET ANALYTE LIST (TAL)

PP, TAL	Zn	Zinc
TAL	<	Vanadium
	C	Uranium
	=	Titanium
	Sn	Ť
PP, TAL	╛	Thallium
	S	Sultur
	Şr	Strontium
TAL	Na	Sodium
RCRA, PP, TAL	Ag	Silver
	<u>S</u>	Silicon
RCRA, PP, TAL	Se	Selenium
TAL	X	Potassium
PP, TAL	Z	Nickel
	Mo	Molybdenum
RCRA, PP, TAL	Hg	Mercury
TAL	N _n	Manganese
TAL	Mg	Magnesium
	드	Litium
RCRA, PP, TAL	Pb	Lead
TAL	Fe	Fon
	Αu	Gold
PP, TAL	5	Copper
TAL	င္ပ	Cobalt
RCRA, PP, TAL	Ç	Chromium
TAL	Ca	Calcium
RCRA, PP, TAL	G	Cadmium
	œ	Boron
	₿.	Bismuth
PP,TAL	Ве	Beryllium
RCRA, TAL	Ba	Barium
RCRA, PP, TAL	As	Arsenic
PP,TAL	Sb	Antimony
TAL	A	Aluminum
LIST	SYMBOL	NAME
LIST (TAL)	ANALYIE	IARGE

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

February 19, 1998

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT NO. P-326-936-399</u>

Mr. M.Y. Merchant Penroc Oil Corporation P.O. Box 5970 Hobbs, NM 88241

RE:

Unauthorized Waste Disposal Pits

NW/4, Section 5, Township 17 South, Range 33 East, NMPM

Lea County, New Mexico

Dear Mr. Merchant:

The New Mexico Oil Conservation Division (OCD) received Penroc Oil Corporation's (Penroc) letter and pit closure plan dated February 3, 1998 concerning the above-referenced waste disposal pits. The OCD has found that the pit closure plan submitted by Constructive Solutions, Inc. (CSI) for Penroc is complete. However, the OCD Santa Fe and Hobbs District offices shall be notified **two (2) working days** prior to CSI taking final confirmatory samples. As written in the pit closure plan, the final confirmatory samples will be analyzed at a third party laboratory for TPH, BTEX, and chloride prior to backfilling the pits.

In addition, the OCD has received preliminary analytical results from the Environmental Bureau's February 4, 1998 sampling event. The TCLP and hazardous characteristic analytical results verified that the non-exempt pits at the above location contained non-hazardous waste. Therefore, this waste may be removed to an OCD approved waste management facility. Please find enclosed a copy of the preliminary OCD results from American Environmental Network.

Penroc shall submit a final closure report to the OCD Santa Fe and Hobbs District offices no later than April 24, 1998.

If you have any questions, please feel free to call me at (505) 827-7153.

Sincerely,

Martyne J. Kieling

Environmental Geologist

xc:

Hobbs OCD Office

Martym Johnly

Jens W. Deichmann, State Land Office

Allen Hodge, CSI Ken Marsh, CRI

CONFIDENTIAL PENROC OIL CORPORATION

MAILING ADDRES	58:	PHYSICAL ADDRESS:				
P.O. Box 5970 Hobbs, NM 8824 Office: (505) Fax: (505)) 397-3596	5014 Carlsbad Highwa Hobbs, NM 88240				
	FAX TRANSMISSIO	N COVER SHEET				
Date:	February 3, 10	998				
Company:	NMOCD					
Attention:	Mr. Rand Carr	oll / Ms. Martyne Kioling				
Fax Number:	(505) 827.81	77				
Sender:	M. Y. Me	rchant				
		INCLUDING THIS COVER SHEET. IF PLEASE CALL (505) 397-3596.				
MESSAGE:						
	111171 (11111) (11111 (11111 (11111 (11111) (11111 (11111) (11111) (11111) (11111 (11111) (11111) (11111) (11111) (11111) (1111111) (111111) (111111) (1111111) (111111) (111111) (111111) (111111) (1111					

PRODUCING OIL AND GAS FOR AMERICA SINCE 1961

Via Fax: 505/827-8177

February 3, 1998

Mr. Rand Carroll NMOCD-Santa Fe 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re: Abandoned Pit

NW/4, Section 5, Township 17 South, Range 33 East

Lea County, New Mexico

Dear Rand:

This letter is in response to your letter dated January 30, 1998. I have reviewed your letter after my return from Houston yesterday.

Attached you will find a closure and remedial plan prepared by CSI of Hobbs. I had filed a similar plan under the NMOCD pit closure guidelines and Mr. Wayne Price of Hobbs, NMOCD, approved a C-103 on September 26, 1997.

I have noted your schedule for February 4, 1998. I am leaving the same day for Houston and onwards to Middle East on a previously scheduled trip. I will tentatively return after the 25th of February. Mr. Allen Hodges of CSI will witness the sample collection by NMOCD at this pit. Please note NMOCD representative can be any one except Mr. Wayne Price. I make this request because of well-documented discriminatory and unethical actions by Mr. Wayne Price against my firm and me since 1993.

Also, please note the law firm of Mr. William F. Carr is not representing Penroc or me at this time. I plan to resolve these problems in an amicable way, however, if legal representation is needed in the future, I will retain the same.

Please contact me at the above phone or fax for any comments or questions you may have. Thank you for your attention to this matter.

Sincerely,

M. Y. (Merch) Merchant

President

CC: All Interested Parties

MAILING ADDRESS: PO Box 5970
Hobbs, NM
88241-5970
DELIVERY ADDRESS: 5014 Carlsbad Hwy. Hobbs, NM
88240-1118
(505) 397-3596 Phone
(505) 393-7051 FAX

PENROC OIL CORPORATION — EXPLORATION & PRODUCTION SINCE 1961

Engineering and Construction Services

Constructive Solutions, Inc.

Building a Better Environment

February 2,1998

Mr. M.Y. Merchant

Penroc Oil Corporation PO Box 5970 Hobbs, New Mexico 88241

RE: Work Plan for Disposal Pit located NW/4, Sec. 5, T178, R33E of Lea County, NM

Mr. Merchant

Constructive Solutions, Inc. (CSI) is pleased to present this work plan to close the pit at the above listed site. The work plan was developed to close the pit in accordance with New Mexico Oil Conservation Division (NMOCD). Unlined Surface Impoundment Closure Guides as specified in the NMOCD's guidelines dated February, 1993. It is our understanding that any potential contamination of the pit was the result of activities associated with the operation of an oil and gas company.

The potential contaminates of concern are expected to be mid level concentrations of petroleum hydrocarbons, produced water and possibly metals that may have been discharged into the pits and absorbed by the surrounding soils.

The NMOCD regulates disposal of non-domestic wastes resulting from the production of the oil and gas industry. In addition, the NMOCD administers all Water Quality Act regulations pertaining to surface and ground water except sewage for the oil field service industry. This authority includes the disposition of non-domestic, non-hazardous wastes at oil field facilities.

Scope of Work

- 1 Excavate the pit and any near surface soils containing any observed potential contamination. Initial excavation operations will consist of removing the soils to a depth to where the TPH levels have dropped below 100 ppm to minimize the volume of waste generated (estimated waste volume is approximately 233 cubic yards based on a pit that is 25 x 25 x 10). The excavated soils will be stockpiled at an on-site location pending waste characterization and disposal. The soils will be staged on and covered with plastic to prevent the potential spread of contamination.
- Collect five (5) soil samples of the excavated area for Total Petroleum Hydrocarbons (TPH) analysis to verify that the remaining surface soils at the site are below NMOCD clean up guidelines for TPH levels for spills/releases. Should the TPH concentrations in the remaining soils exceed NMOCD levels, an additional excavation layer of soil will be removed and stockpiled.
- 3 Once TPH levels are below the NMOCD clean up guidelines, final samples will be taken to be analyzed at a third party lab for TPH, BTEX and Chlorides CL before backfilling operations begin.

P.O. Box 25547 • Albuquerque, NM 87125 • (505) 242-6464 • Fax (505) 247-4941 3711 East Miami • Phoenix, AZ 85040 • (602) 431-1600 • Fax (602) 431-0900

Constructive Solutions, Inc.

Page Two

- 4 Collect a composite sample of the excavated material for laboratory analysis. The purpose of the composite sample is to characterize the excavated material for waste classification in accordance with RCRA Subtitle C regulations. The sample will be analyzed for TPH, volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), eight RCRA metals, and solid waste characteristics (ignitability, corrositivity, reactivity, and toxicity).
- Should the analytical results from the sample of excavated material record levels of individual compounds that exceed EPA maximum concentration levels (MCL) for toxicity characteristics, a sampling plan to verify the soils remaining in the excavated area are below MCL levels will be developed. This plan will include the collection of a minimum of two (2) soil samples from randomly selected locations with in the excavated area. In order to minimize costs, the samples will be analyzed for only compounds that exceeded MCL levels.
- Should the analytical results record individual compound concentrations below EPA listed MCL, the tested materials will be considered a non-hazardous waste generated at an oil field facility. The materials will be transported to a NMOCD permitted commercial waste disposal facility. Each load of material will be accompanied by a manifest in accordance with Section 711 of the New Mexico Solid Waste Management Regulations.
- 7 Once excavation operations have been completed and the analysis from the lab meets the NMOCD levels for closure, the site will be backfilled back to grade and restored back to it's natural state.

Should excavation operations identify any additional concerns outside the scope of work, an approval from a representative of Penroc will be obtained prior to performing any additional services

CSI appreciates this opportunity to provide you with our professional services. Please feel free to call us at any time for further information or questions you may have with regards to our work plan.

Respectfully

Allen Hodge, REM

Hobbs Operations Manager

Constructive Solutions, Inc.

MEMORANDUM OF CONVERSATION

TELEPHONE PERSONAL TIME 10:50 DATE 1-30-97
ORIGINATTING PARTY On Martyne Kieling
OTHER PARTIES 2 Secretary - For Penhoc
DISCUSSION
Left Message That we OCD were Available is
Mr. Merchant Had Any Questions Concerning the Funcil letter
Secretary Asked IF She Should Noting Mr. Merchant Imediaty
I told Her Her that would be in Their Best intrests
Because of the time Limits Listed in the letter.
She Said that She would Page Mr Penroc that
he was out of town untill Monday Feb 2, 1998.
I Left My Name + Number Show He wish to tAL
about Any tecnical Aspects of the letter.
CONCLUSIONS
CHRIS EUSTICE Martyn of Kily

January 28, 1998

Marc:

When you are at AEN this afternoon could you order a sample kit for Wayne Price to sample the Penroc pit.

Tell the lab that we will be needing 2 week turn around and that this may end up in court

Send sample kit for one composite soil/solid sample for EPA SW 846 methods:

TCLP Metals
TCLP Volatiles
TCLP Semi Volatiles base neutral acids without Pest and Herb
RC1 Reactivity / Corrosivity / Ignitability

To Post Office

Oil Conservation Division Hobbs District Office P.O. Box 1980 Hobbs, New Mexico 88240 Attn: Wayne Price **FEDX Deliveries**

Oil Conservation Division Hobbs District Office 1000 West Broadway Hobbs, New Mexico 88240 Attn: Wayne Price

Thanks Martyne

Please Deliver This Fax To:

Mr. M. Y. Merchant	
(505) 393-7051	·
(303) 3.4	

From:

 Martyne	Kieling	•		
J	U			

Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505 (505) 827-7131 Office (505) 827-8177 Fax

Date:	1-30-98	
Pages: _	1 of 3	
Subject:	Penroc	Pit Remediation

(If you have trouble receiving this fax, please call the phone number above.)

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

January 30, 1998

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-385

Mr. M.Y. Merchant Penroc Oil Corporation P.O. Box 5970 Hobbs, NM 88241

RE: Unauthorized Waste Disposal Pits NW/4, Section 5, Township 17 South, Range 33 East, NMPM Lea County, New Mexico

Dear Mr. Merchant:

The New Mexico Oil Conservation Division (OCD) received Penroc Oil Corporation's (Penroc) letter and data packet dated December 26, 1997 concerning the samples taken at the above-referenced waste disposal pits. Penroc's response to the OCD November 20, 1997 letter is deficient for a number of reasons:

- Penroc failed to respond by the required date. The response was due
 December 1, 1997. The OCD was willing to grant a reasonable extension
 (after Penroc contacted the OCD to say it could not get lab results back by
 December 1) if Penroc would commit to a date certain by which it could
 get the lab results to the OCD. Penroc did not do this.
- The OCD was not notified prior to sampling nor was there an OCD representative present to witness the sampling of pit contents. The OCD cannot therefor be assured that proper samples were taken from the pits.
- 3. Penroc still has not submitted a pit closure plan.

To assure a proper sample is taken, the OCD will take an independent sample from the Penroc unlined pits at the above referenced location on February 4, 1998 at 1:00 PM. The OCD requests that a representative for Penroc be present during the sampling of the pits and is welcome to split samples with the OCD.

Page 2 Mr. Merchant January 30, 1998

The OCD has also grants Penroc an extension to submit a detailed closure plan as to how the pits will be remediated. The pit closure plan is due to the Santa Fe OCD office by 5:00 PM, February 16, 1998.

If Penroc fails to submit a pit closure plan by 5:00 PM, February 16, 1998, a show cause hearing will be filed for March 19, 1998, requiring Penroc Oil Corporation to appear and show cause why it should not be ordered to close these pits in a manner approved by the OCD and why it should not also be assessed civil penalties for failure to do so.

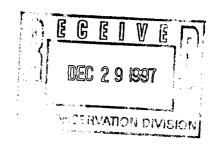
If you have any questions, please feel free to call me at (505) 827-8156.

Rand Carroll

Legal Counsel

xc: Hobbs OCD Office

Jami Bailey, State Land Office


William F. Carr--Campbell, Carr, Berge & Sheridan

Ken Marsh, CRI

December 26, 1997

Ms. Martyne J. Kieling Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re: Analysis of Oil Field Waste NW/4, Section 5, Township 17 South, Range 33 East, NMPM Lea County, New Mexico

Dear Ms. Kieling:

As per request from the New Mexico Oil Conservation Division, PENROC OIL CORPORATION hereby submits an analysis of the waste done by Cardinal Laboratories. The analysis shows this is non-hazardous material. The analysis was performed by Cardinal on request by Controlled Recovery Inc. as they are a party to this on going saga.

Please approve the attachment and allow PENROC OIL CORPORATION to proceed with the excavation of the remainder of the dirt at this location. Your cooperation in this matter will be greatly appreciated.

Sincerely,

M. Y. (Merch) Merchant

President

CC: Mr. Ken Marsh

Harcor Unocal Maralo

Great Western & Others NMOCD-Hobbs Office

MAILING ADDRESS: PO Box 5970 Hobbs, NM 88241-5970

DELIVERY ADDRESS: 5014 Carlsbad Hwy. Hobbs, NM 88240-1118

(505) 397-3596 Phone (505) 393-7051 FAX

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR CONTROLLED RECOVERY, INC. ATTN: KEN MARSH P.O. BOX 369 HOBBS, NM 88241 FAX TO: 505-393-3615

Receiving Date: 10/31/97 Reporting Date: 11/07/97 Project Number: NOT GIVEN

Project Name: PENROC OIL CORP. Project Location: NEMU#1 UNIT #1

Sampling Date: 10/31/97

Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: GP

Analyzed By: GP

TCLP METALS

LAB NUMBER SAMPLE ID	As	Ag	Ва	Cd	Cr	Pb	Hg	Se
	ppm							
					_			
ANALYSIS DATE:	11/07/97	11/06/97	11/07/97	11/06/97	11/06/97	11/06/97	11/04/97	11/07/97
EPA LIMITS:	5	5	100	1	5	5	0.2	1
H3298-1 PIT COMPOSITE	<1	<1	<10	<0.1	<1	<1	<0.02	<0.1
Quality Control	0.199	4.96	9.90	1.989	2.51	3.98	0.0099	0.050
True Value QC	0.200	5.00	10.00	2.000	2.50	4.00	0.0100	0.050
% Recovery	100	99	99	99	100	100	99	100
Relative Standard Deviation	1.9	0.3	9.3	0.2	0.3	0.7	13.2	4.0
METHODS: EPA 1311, 600/4-91/0	206.2	272.1	208.1	213.1	218.1	239.1	245.1	270.2

Gayle A. Potter, Chemist

11/07/97 Data

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliate 1328 MAXLS 3 rising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR CONTROLLED RECOVERY, INC.

ATTN: KEN MARSH P.O. BOX 369 HOBBS, NM 88241 FAX TO: 505-393-3615

Receiving Date: 10/31/97 Reporting Date: 11/04/97 Project Number: NOT GIVEN

Project Name: PENROC OIL CORP. Project Location: NEMU#1 UNIT #1

Lab Number: H3298-1 ... Sample ID: PIT COMPOSITE

Analysis Date: 11/04/97 Sampling Date: 10/31/97

Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: GP

Analyzed By: BC

TCLP SEMIVOLATILES (ppm	EPA LIMIT	Sample Result H3298-1	Method Blank	QC	% Recov.	True Value QC
Pyridine	5.00	<0.020	<0.005	0.043	43	0.100
1,4-Dichlorobenzene	7.50	<0.020	<0.005	0.065	65	0.100
o-Cresol	200	<0.020	<0.005	0.080	80	0.100
m, p-Cresol	200	<0.020	<0.005	0.142	71	0.200
Hexachloroethane	3.00	<0.020	<0.005	0.067	67	0.100
Nitrobenzene	2.00	<0.020	<0.005	0.091	91	0.100
Hexachloro-1,3-butadiene	0.500	<0.020	<0.005	0.078	78	0.100
2,4,6-Trichlorophenol	2.00	<0.020	<0.005	0.102	102	0.100
2,4,5-Trichlorophenol	400	<0.020	<0.005	0.096	96	0.100
2,4-Dinitrotoluene	0.130	<0.020	<0.005	0.096	96	0.100
Hexachlorobenzene	0.130	<0.020	<0.005	0.108	108	0.100
Pentachlorophenol	100	<0.020	<0.005	0.104	104	0.100

% RECOVERY

Fluorophenol	52		
Phenol-d5	47		
Nitrobenzene-d5	94		
2-Fluorobiphenyl	98		
2,4,6-Tribromophenol	98		
Terphenyl-d14	113		

METHODS: EPA SW 846-8270, 1311

Date

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR CONTROLLED RECOVERY, INC. ATTN: KEN MARSH P.O. BOX 369 HOBBS, NM 88241 FAX TO: 505-393-3615

Receiving Date: 10/31/97 Reporting Date: 11/03/97 Project Number: NOT GIVEN Project Name: PENROC OIL CORP.

Project Name: PENROC OIL CORP.
Project Location: NEMU#1 UNIT #1

Lab Number: H3298-1 Sample ID: PIT COMPOSITE

Analysis Date: 11/03/97 Sampling Date: 10/31/97 Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: GP

Analyzed By: BC

TCLP VOLATILES (ppm)	EPA LIMIT	Sample Result H3298-1	Method Blank	QC	%Recov.	True Value QC
Vinyl Chloride	0.20	<0.005	<0.005	0.083	83	0.100
1,1-Dichloroethylene	0.7	<0.005	<0.005	0.099	99	0.100
Methyl Ethyl Ketone	200	<0.050	<0.050	0.082	82	0.100
Chloroform	6.0	< 0.005	<0.005	0.097	97	0.100
1,2-Dichloroethane	0.5	<0.005	<0.005	0.107	107	0.100
Benzene	0.5	0.048	<0.005	0.104	104	0.100
Carbon Tetrachloride	0.5	<0.005	<0.005	0.107	107	0.100
Trichloroethylene	0.5	<0.005	<0.005	0.108	108	0.100
Tetrachloroethylene	0.7	<0.005	<0.005	0.103	103	0.100
Chlorobenzene	100	<0.005	<0.005	0.111	111	0.100
1,4-Dichlorobenzene	7.5	<0.005	<0.005	0.111	111	0.100

% RECOVERY

Dibromofluoromethane	89
Toluene-d8	88
Bromofluorobenzene	87

METHODS: EPA SW 846-8260, 1311

Burgess J.A. Cooke, Ph. D.

Date

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR CONTROLLED RECOVERY, INC.

ATTN: KEN MARSH P.O. BOX 369 HOBBS. NM 88241

FAX TO: 505-393-3615

Sampling Date: 10/31/97

Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: GP Analyzed By: AH/BC

Receiving Date: 10/31/97 Reporting Date: 11/03/97

Project Number: NOT GIVEN

Project Name: PENROC OIL CORP. Project Location: NEMU#1 UNIT #1

REACTIVITY

LAB NUMBER SAMPLE ID

Sulfide Cyanide CORROSIVITY IGNITABILITY

(ppm) (ppm) (pH)

(°F)

ANALYSIS D	ATE:	11/03/97	11/03/97	11/03/97	11/03/97
H3298-1	PIT COMPOSITE	<50	<50	7.02	Nonflammable
Quality Contro	ol	NR	NR	7.00	NR
True Value Q	С	NR	NR	7.00	NR
% Accuracy		NR	NR	100	NR
Relative Perc	ent Difference	NR	NR	0	NR

METHOD: EPA SW 846-7.3, 7.2, 1010, 1311, 40 CFR 261

Date

PLEASE NOTE: Llability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates 43298435 XISB out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

PHONE 9151573-7001 . 2111 BEECHWOCD . - BILENE. "1 3501

PHONE :5051 393-2375 . 101 E MARLAND . - L'985, 1M 38240

ARDINAL LABORATORIES

8 REOUEST ANALYSIS 0123 2/20 TIME SAMPLING a DATE \otimes Marsh : ABHTO KE / COOF City: H 0 665 VCID: State: N M : X3HTO Company: Address: Phone #: STODOE Attn: Fax#: MATRIX ЭЮ 0128 TIOS **MYSTEWATER ЯЗТАМ**ФИООЯО * CONTAINERS COMP(C) OR CRAB(C) State: Nm Zlp: # 59 ならず 22 10 887 COMPOSITE Sample LD. Monsit 0,0 1 (EBSE NEMU Project Name: PENBOC Project Location: Project Manager: LAB LD.# Company Name: CHY: HOBBS Address: Project #: Phone #: Fax #:

ALGE HOTE: Lability and Danugea. Cordina's hat my are chart such me All colours, accloudy group in proportion and my first taken missioners that hat street, in my event yould Cardina's be labyly for robotium at correspondents driving similate as accretions among and at explaining in the protomerica of services hand.

Phone Result | Yes | No Additional Pax #: Fax Results: | Yes | No REMARKS: CHECKED BY: (Lab Stath) Yes No Nos Received BY. Received By: 1031/97 11me: 2:00? Date: Tme: · Bus · Other: Delivered By: (Circle One) ReInquished By: UPS - Fed Ex Sampler

Via Fax: (505) 827-8177

November 14, 1997

Ms. Martyne J. Kieling
Oil Conservation Division
2040 South Pacheco Street
Santa Fe, New Mexico 87505

Re: Letter Dated October 30, 1997 NW/4, Section 5, Township 17 South, Range 33 East, NMPM Lea County, New Mexico

Dear Ms. Kieling:

Thank you for your faxed letter dated October 30, 1997. After reviewing the same, we are of the opinion that the old pit containing oil field waste is exempt material and hereby request that your office permit us to complete the job as approved by the Hobbs NMOCD office on commission form C-103 on September 26, 1997. We are also requesting the Department consider a time extension to resolve this matter before we submit any plans.

This is not a new matter and as I informed you earlier, Penroc has never used this pit. It was brought to our attention by the Hobbs NMOCD in late 1993. Several conversations with and two letters to the Hobbs NMOCD in 1994 (copies of which have been furnished to you previously) did not prompt any one in the NMOCD to approve our request to close the pit.

We also fail to understand why the Department is behaving in the present manner when after over four years of requesting to take care of the pit (which was not ours and we never used it), Wayne Price of Hobbs District approved the C-103 and told us "if the abandoned pit can be taken care of as soon as possible, no action will be taken and that he has spoken to some one in Santa Fe".

PENROC OIL CORPORATION is requesting this matter be given immediate attention and a face to face meeting in Hobbs with the Division and District personnel so this matter can be resolved. Your cooperation will be greatly appreciated.

Sincerely.

M. Y. (Merch) Merchant

President

CC: Please see attachment

MAILING ADDRESS: PO Box 5970 Hobbs, NM 88241-5970 DELIVERY ADDRESS: 5014 Carlsbad Hwy, Hobbs, NM 88240-1118

(505) 397-3596 Phone (505) 393-7051 FAX

Attachment to Letter to NMOCD Dated November 14, 1997

CC: Mr. Arnold Divine
Mr. Ken Marsh
Mr. Bill LeMay
Senator Steve Pearce
Senator Don Whitaker
Mr. Francis Roth
Unocal
Maralo
Great Western
Mr. Chris Williams
Ms. Jami Bailey

P. S. Please note once again Penroc nor any of its employees ever used this pit, and it is not being used now as indicated in your previous correspondence.

FAN SHEET

This fax comes from the Oil Conservation Division 2040 S. Pacheco Santa Fe, New Mexico 87505 (505) 827-7133

Please Letiver To:	Mr. Stevan Pearce
	(505) 392 - 4579
Date:	November 12, 1997
From:	Roger Anderson Env. Bureau Chief
	Hard Copy to Follow Via Mail
_ 	104 16
-	
-	

If you have any problems receiving this fax, please call the telephone number above.

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

November 10, 1997

The Honorable Stevan Pearce New Mexico State Representative 2009 N. McKinley Hobbs, New Mexico 88240

Re: Penroc Oil Pit

Dear Representative Pearce:

Mr. Bill LeMay, Director, Oil Conservation Division, has asked me to supply you with examples of oil and gas companies that have been required to perform tests for hazardous constituents on pits they propose or are being required to close. Enclosed are letters sent to an arbitrarily chosen sample. These companies were required to supply the RCRA Toxic Constituent analyses because there were indications that the pits had received wastes that were not exempt. Also enclosed are copies of the OCD requirement letters to Penroc Oil Co. and photographs of the pit in question.

If you have any questions, please call me at (505) 827-7152.

Sincerely,

Roger C. Anderson

Environmental Bureau Chief

xc: Chris Williams, OCD Hobbs

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE. NEW MEXICO 87505 (505) 827-7131

September 30, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-410-431-223

Mr. Ricky D. Cosby El Paso Field Services P.O. Box 4990 Farmington, New Mexico

87499

RE: FINAL SAN JUAN BASIN PIT CLOSURE REPORTS

Dear Mr. Cosby:

The New Mexico Oil Conservation Division (OCD) has completed a review of El Paso Field Services (EPFS) April 10, 1997 "EL PASO FIELD SERVICES PIT PROJECT". This document contains the results of the closure of 719 unlined oil and gas production pits in the San Juan Basin.

The OCD's review of the above referenced documents is addressed below:

A. The pit closure/soil remediation activities conducted at the sites listed on Attachment A are approved.

Please be advised that OCD approval does not relieve EPFS of liability if remaining contaminants are found to pose a future threat to surface water, ground water, human health or the environment. In addition, OCD approval does not relieve EPFS of responsibility for compliance with any other federal, state or local laws and/or regulations.

- B. The closure reports for the sites listed below show that the pits were used for the disposal of compressor station wastes. The reports appear to indicate that non-exempt RCRA wastes were placed in these pits. Subsequently, the OCD cannot issue final closure approval at this time and approval of closure actions at these sites is denied. The OCD requires that EPFS analyze the soils from each of these pit sites for RCRA hazardous waste characteristics. The OCD will reconsider issuing final closure approval when the reports are resubmitted with the results of the RCRA hazardous characteristics analyses.
 - 1. Bisti 1 Compressor (Compressor drain pit) Unit N, Sec. 29, T25N, R10W.
 - 2. Bisti Compressor #2, Pit #1(Waste pit) Unit I, Sec. 13, T25N, R12W.
 - 3. Bisti Compressor #2, Pit#2 (Waste pit) Unit I, Sec. 13, T25N, R12W.

- C. The closure report for the site listed below shows that the pit is located in a Farmington, New Mexico residential housing subdivision and adjacent to a subdivision park. Due to the potential for public impacts approval of the closure actions at these sites is denied. The OCD requires that EPFS remediate the soils at this pit site to the OCD's high risk recommended remediation level (10 ppm benzene, 50 ppm BTEX and 100 ppm TPH) and resubmit a closure report for this site upon completion.
 - 1. Southern Union #1 (Dehy pit)

Unit B, Sec. 03, T29N, R13W.

If you have any questions, please call me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist

Environmental Bureau

xc:

OCD Aztec District Office

Bill Liess, BLM Farmington District Office

David Deardorff, New Mexico State Land Office

Kurt Sandoval, Jicarilla Apache Environmental Protection Office

Charmaine Tso, Navajo Nation EPA

PS Form 38	100.	April 1	1995							- G	JZ'	<u> </u>
Postmark or Date		Return Receipt Showing to Whom. Date, & Addressee's Address	Return Receipt Showing to	Restricted Delivery Fee	Special Delivery Fee	Certified Fee	Postage	Post Office, State, & ZIP Code	Street & Number	Sent to	No Insurance Coverage Provided. Do not use for International Mail (See reverse)	US Postal Service Receipt for Certified Mail
	\$						6.3				Mail (See reverse)	ied Mail

in in

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

January 13, 1993

BRUCE KING

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE. NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P667-242-149

Mr. Clark Evans Environmental Spill Control, Inc. P.O. Box 5890 Hobbs, New Mexico 88241

RE: Tank Bottom Disposal

Greenhill Petroleum Corp.

Dear Mr. Evans:

The Oil Conservation Division (OCD) has evaluated your request for the proper disposal of materials from the "duck ponds" and the Walter-Getty pit. In your request you stated the materials were tank bottoms and were exempt from RCRA regulations.

Based on the information and analyses provided, the materials cannot be disposed of without further investigation. The analytical results for lead indicate wastes other than exploration and production exempt wastes may have been placed in the pits. A full TCLP analysis must be run on a representative sample to determine if the materials will be disposed of and the pits closed pursuant to hazardous waste regulations or pursuant to OCD disposal regulations. The representative sample will be obtained pursuant to hazardous waste and EPA SW 846 sampling procedures.

For information on hazardous waste regulations and requirements on hazardous waste disposal please contact Mr. Ed Horst, Hazardous Waste Program Manager, New Mexico Environment Department, at (505) 827-4308.

If you have any questions please do not hesitate to contact me at (505) 827-5812.

Sincerely:

Rogér C. Anderson

Environmental Bureau Chief

xc: Rich Myers - Greenhill Petroleum Ed Horst - NMED Hazardous Waste

Jerry Sexton - OCD Hobbs

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

October 29, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-351

Mr. Robert E. McKnight Northland Operating Company 3500 Oak Lawn Suite 380 Dallas, TX 75219-4398

RE: NOTICE OF VIOLATION

Unauthorized Waste Disposal Pits Northland Operating Company SE/4, NW/4, Section 30, Township 13, Range 32 East, NMPM Lea County, New Mexico

Dear Mr. McKnight:

On September 22, 1997 The New Mexico Oil Conservation Division (OCD), identified two unauthorized, waste disposal pits one unlined and the other with a badly damaged fiberglass liner located in the SE/4, NW/4, Section 30, Township 13, Range 32 East, NMPM, Lea County, New Mexico (see attached map). These unauthorized pits are owned by Northland Operating Company (Northland).

OCD personnel performed an onsite inspection of the facility on September 22 and 25, 1997 and noted the following:

- 1. These pits are owned by Northland (see photo 1) and are being utilized on land that according to county records is New Mexico State Trust Land;
- 2. These pits are accepting oilfield waste (see photos 6, 7 and 8);
- 3. One pit containing BS&W is unlined and contains buckets causing the waste to be classified as non-exempt (see photo 6);
- 4. One pit has a fiberglass liner that contains numerous cracks and holes (see photos 7 and 8);
- 5. There is no leak detection system below either pit;

Mr. Robert E. McKnight October 29, 1997 Page 2

- 6. These pits were not screened or netted (see photos 6, 7 and 8);
- 7. There was evidence of spills form the tank battery and pit area having reached the fresh water playa (see photos 3, 4 and 5);
- 8. There was evidence of numerous spills, leaks and overflows from the tank battery, piping, valves, and pumps (see photo 2, 9, 10, 11, 12, 13, 14, 15, and 16);
- 9. There is no secondary containment around the tank battery (see photo 1, 2, 4, 6, 7, 9, 10, 11, 14 and 16) to protect the nearby fresh water playa from leaks, spills, and storm water runoff;
- 10. All of the pumps have leaked and lack drip pans to catch spills and leaks (see photos 9, 12 and 13);
- 11. Buckets containing waste oil were stored directly on the ground instead of on impermeable pad and curb type containment;
- 12. The sump located at the valve has overflowed or leaked (see photo 16).

Surface waste management facilities must be permitted pursuant to Rule 711 (as amended 1-1-96). In addition, pursuant to the OCD Order R-8952, all tanks exceeding 16 feet in diameter and all exposed pits and ponds shall be screened, netted or covered unless rendered non-hazardous to migratory birds. Order R-3221, as amended, prohibits the disposal of water produced in conjunction with the production of oil and gas in unlined pits or ponds where such disposal may impact fresh water supplies of the state of New Mexico. Therefore, all discharges into the unauthorized, unlined pits or pits with damaged liners must cease.

The OCD hearby requires Northland Operating Company to submit the following information: 1) the names and addresses of all waste generators who are utilizing the pits; 2) the names and addresses of all waste transporters; 3) the location of all waste generation (exact well locations); and 4) the total volume of waste from each location that has gone into the unauthorized pits.

In addition, Northland Operating Company must either permit the facility as a waste management facility or close the pits. Regardless of whether the facility is to be permitted or closed, Northland must submit a closure plan to the Santa Fe OCD office and a copy to the Hobbs District office. Included in the closure plan must be a plan for determining the nature and extent of contamination that has left the pits, how far the contamination has migrated and whether the fresh water playa has been impacted. Northland Operating Company is instructed by the OCD not to remove any waste from the unlined pit identified as photo 6 in this NOV until the waste has been tested for RCRA

Mr. Robert E. McKnight October 29, 1997 Page 3

Hazardous Characteristic according to 40 CFR 261. For your use please find enclosed a copy of the Order amending Rule 711, a form C-137 and OCD's pit closure guidelines. A response is required by Northland Oil Corporation to these deficiencies by November 12, 1997.

Failure to respond to this notice of violation by November 12, 1997 may result in a show cause hearing against Northland, requiring Northland to appear and show cause why it should not be ordered to close these pits and why it should not also be assessed civil penalties.

In addition to these violations Northland Operating Company has in the past failed to notify the OCD of pipeline ruptures and leaks. Pursuant to the New Mexico Water Quality Control Commission Regulations and to the OCD Rule 116 a release of any volume which may with reasonable probability be detrimental to water or cause an exceedance of the standards in Rule 19 is a major release and must be reported. A release shall be reported verbally within twenty-four (24) hours of discovery to the Division district office and to the Division's Environmental Bureau Chief. The verbal notification shall provide the information required on the Division Form C-141. In addition, a written notification shall follow within fifteen (15) days to the Division district office and to the Division's Environmental Bureau Chief. Repeated violations of these regulations may result in civil penalties

If you require any further information concerning permitting/closure procedures please contact me at (505) 827-7153.

Sincerely,

Mortyne of Kiely Martyne J. Kieling

Environmental Geologist

Attachments- location map, photos, Order R-10411-B (Rule 711), Form C-137, pit closure guidelines, Order R-10766 (Rule 116), and Order R-10767-A (Rule 19).

xc:

Hobbs OCD Office Jami Bailey, State Land Office Ed Morney, Northland, P.O. Box 119, Maljamar, NM 88264 July 23, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-316

Mr. Jimmie T. Cooper P.O. Box 55 Monument, NM 88265

RE: Waste Disposal Pit

Located 30 feet west of the highway ride-of-way in the NE/4 SE/4 of Section 8, Township 20 South, Range 37 East, NMPM

Lea County, New Mexico

Dear Mr. Cooper:

On June 30, 1997 The New Mexico Oil Conservation Division (OCD), identified an unauthorized, unlined waste disposal pit located approximately 30 feet west of the Monument highway ride-of-way in the NE/4 SE/4 of Section 8, Township 20 South, Range 37 East, NMPM, Lea County, New Mexico. A location map is attached.

OCD personnel performed an onsite inspection of the facility and noted the following: 1) An unauthorized, unlined pit is being utilized on land that according to county records is owned by Jimmie T. Cooper; 2) The unauthorized, unlined pit is accepting oilfield waste; 3) The pit was observed to have trash, debris, and crude oil contained within the berms (see photos 1, 2, and 3); 4) The pit was not screened or netted; and 5) The perimeter was not fenced.

Pursuant to OCD rules and regulations, facilities that manage waste in unlined pits must be permitted pursuant to 19 NMAC 15.I.711 (as amended 1-1-96). Therefor all discharges into the unauthorized pit must cease until such time the OCD can ascertain the pit status.

The OCD is requiring the landowner, Jimmie T. Cooper, to submit the following information: 1) The names and addresses of who is utilizing the pit; 2) The names and addresses of all waste generators; 3) The names and addresses of all waste transporters; 4) The location of all waste generation (exact well locations); and 5) The total volume of waste from each location that has gone into the unauthorized pit. A response is required by Jimmie T. Cooper to these deficiencies by August 25, 1997.

Upon OCD pit status determination the owner/operator of the pit must either permit or close the pit.

Mr. Jimmie T. Cooper April 23, 1997 Page 2

For your use please find enclosed a copy of the Order amending Rule 711, a form C-137 and OCD's pit closure guidelines with closure form.

If you require any further information concerning permitting/closure procedures please contact me at (505) 827-7153.

Sincerely,

Martyne J. Kieling

Environmental Geologist

Mattyn & Thely.

attachments- map, pictures, pit closure guidelines and form, Order R-10411-B, and C-137 form

xc: Hobbs OCD Office

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

September 24, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-288-258-976

Mr. Duane Winkler
Mallon Oil Company
P.O. Box 3256
Carlsbad, New Mexico 88220

RE: Discharge Plan GW-132 Renewal Gavilan Compressor Station Rio Arriba County, New Mexico

Dear Mr. Winkler:

The ground water discharge plan GW-132, for the Mallon Oil Company (Mallon) Gavilan Compressor Station located in the SW/4 SE/4 of Section 11, Township 25 North, Range 2 West, NMPM, Rio Arriba County, New Mexico, is hereby approved under the conditions contained in the enclosed attachment. The discharge plan consists of the original discharge plan as approved December 9, 1992, and the discharge plan renewal application dated August 5, 1997. Enclosed are two copies of the conditions of approval. Please sign and return one copy to the New Mexico Oil Conservation Division (OCD) Santa Fe Office within 10 working days of receipt of this letter.

The discharge plan was submitted pursuant to Section 3106 of the New Mexico Water Quality Control Commission (WQCC) Regulations. It is approved pursuant to Section 3109.A. Please note Sections 3109.E and 3109.F., which provide for possible future amendments or modifications of the plan. Please be advised that approval of this plan does not relieve Mallon of liability should operations result in pollution of surface water, ground water, or the environment.

Please be advised that all exposed pits, including lined pits and open tanks (tanks exceeding 16 feet in diameter), shall be screened, netted, or otherwise rendered nonhazardous to wildlife including migratory birds.

Mr. Duane Winkler September 24, 1997 Page 2

Please note that Section 3104 of the regulations require "When a facility has been approved, discharges must be consistent with the terms and conditions of the plan." Pursuant to Section 3107.C. Mallon is required to notify the Director of any facility expansion, production increase, or process modification that would result in any change in the discharge of water quality or volume.

Pursuant to Section 3109.G.4., this plan is for a period of five years. This approval will expire on September 24, 2002, and Mallon should submit an application in ample time before this date. Note that under Section 3106.F. of the regulations, if a discharger submits a discharge plan renewal application at least 120 days before the discharge plan expires and is in compliance with the approved plan, then the existing discharge plan will not expire until the application for renewal has been approved or disapproved. It should be noted that all discharge plan facilities will be required to submit the results of an underground drainage testing program as a requirement for discharge plan renewal.

The discharge plan renewal application for the Mallon Oil Company Gavilan Compressor Station is subject to WQCC Regulation 3114. Every billable facility submitting a discharge plan will be assessed a fee equal to the filing fee of \$50 plus a flat fee of \$1,667.50 for compressor stations. The OCD has not received the filing fee or the flat fee. The filing fee is due upon receipt of this approval. The flat fee may be paid in a single payment due on the date of the discharge plan approval or in five equal installments over the expected duration of the discharge plan. Installment payments shall be remitted yearly, with the first installment due on the date of the discharge plan approval.

Please make all checks payable to: NMED-Water Quality Management and addressed to the OCD Santa Fe Office.

On behalf of the staff of the OCD, I wish to thank you and your staff for your cooperation during this discharge plan review.

Sincerely,

William J. LeMa

Director

WJL/mwa Attachment

xc: OCD Aztec Office

ATTACHMENT TO THE DISCHARGE PLAN GW-132 RENEWAL MALLON OIL COMPANY GAVILAN COMPRESSOR STATION DISCHARGE PLAN APPROVAL CONDITIONS (September 24, 1997)

- 1. Payment of Discharge Plan Fees: The \$50.00 filing fee shall be submitted upon receipt of the approval. The \$1,667.50 required flat fee may be paid in a single payment due at the time of approval, or in equal annual installments over the duration of the plan, with the first payment due upon receipt of this approval.
- 2. <u>Mallon Commitments:</u> Mallon will abide by all commitments submitted in the discharge plan application dated August 5, 1997.
- 3. <u>Waste Disposal</u>: All wastes shall be disposed of at an OCD approved facility. Only oilfield exempt wastes shall be disposed of down Class II injection wells. Non-exempt oilfield wastes that are non-hazardous by characteristics may be disposed of at an OCD approved facility upon proper waste characterization per 40 CFR Part 261.
- 4. <u>Drum Storage:</u> All drums containing materials other than fresh water must be stored on an impermeable pad with curbing. All empty drums will be stored on their sides with the bungs in and lined up on a horizontal plane. Chemicals in other containers such as sacks or buckets will also be stored on an impermeable pad and curb type containment.
- 5. <u>Process Areas:</u> All process and maintenance areas which show evidence that leaks and spills are reaching the ground surface must be either paved and curbed or have some type of spill collection device incorporated into the design.
- 6. Above Ground Tanks: All above ground tanks which contain fluids other than fresh water must be bermed to contain a volume of one-third more than the total volume of the largest tank or of all interconnected tanks. All new facilities or modifications to existing facilities must place the tank on an impermeable type pad within the berm.
- 7. Above Ground Saddle Tanks: Above ground saddle tanks must have impermeable pad and curb type containment unless they contain fresh water or fluids that are gases at atmospheric temperature and pressure.
- 8. <u>Labeling:</u> All tanks, drums and containers should be clearly labeled to identify their contents and other emergency information necessary if they were to rupture, spill, or ignite.

- 9. <u>Below Grade Tanks/Sumps:</u> All below grade tanks, sumps, and pits must be approved by the OCD prior to installation or upon modification and must incorporate secondary containment and leak-detection into the design. All pre-existing sumps and below-grade tanks must demonstrate integrity on an annual basis. Integrity tests include pressure testing to 3 pounds per square inch above normal operating pressure and/or visual inspection of cleaned out tanks and/or sumps, or other OCD approved methods. The OCD will be notified at least 72 hours prior to all testing.
- 10. <u>Underground Process/Wastewater Lines:</u> All underground process/wastewater pipelines must be tested to demonstrate their mechanical integrity at present and then every 5 years thereafter, or prior to discharge plan renewal. Permittees may propose various methods for testing such as pressure testing to 3 pounds per square inch above normal operating pressure or other means acceptable to the OCD. The OCD will be notified at least 72 hours prior to all testing.
- 11. Class V Wells: Leach fields and other wastewater disposal systems at OCD regulated facilities which inject fluid other than domestic waste sewage below the surface are considered Class V injection wells under the EPA UIC program. All class V wells will be closed unless, it can be demonstrated that protectable groundwater will not be impacted in the reasonably foreseeable future. Class V wells must be closed through the Santa Fe Office. The OCD allows industry to submit closure plans which are protective of human health, environment and groundwater as defined by the WQCC, and are cost effective.
- 12. <u>Housekeeping:</u> All systems designed for spill collection/prevention should be inspected to ensure proper operation and to prevent overtopping or system failure.
- 13. Spill Reporting: All spills/releases shall be reported pursuant to OCD Rule 116 and WQCC 1203 to the OCD Aztec District Office.
- 14. Transfer of Discharge Plan: The OCD will be notified prior to any transfer of ownership, control, or possession of a facility with an approved discharge plan. A written commitment to comply with the terms and conditions of the previously approved discharge plan must be submitted by the purchaser and approved by the OCD prior to transfer.
- 15. Closure: The OCD will be notified when operations of the facility are discontinued for a period in excess of six months. Prior to closure of the facility a closure plan will be submitted for approval by the Director. Closure and waste disposal will be in accordance with the statutes, rules and regulations in effect at the time of closure.

16. Certification: Mallon, by the officer whose signature appears below, accepts this permit and agrees to comply with all terms and conditions contained herein. Mallon further acknowledges that these conditions and requirements of this permit may be changed administratively by the Division for good cause shown as necessary to protect fresh water, human health and the environment.

Accepted:
MALLON OIL COMPANY
by
Title

UC1-28-87 :83 From:	9127718	15053938	3758. T-223 P.02/02 Job-266
Subseit 3 Courses to Appropriate District Office	Ene Manerals and Natural Ro		** ** ** ** ** ** ** ** ** ** ** ** **
DISTRICT I P.O. Box 1980, Hobbs, NM 88240	OIL CONSERVATIO	St.	WELL API NO.
P.O. Drawer DD, Artesia, NM 88210	Santa Fe, N	M 87505	5. Indicate Type of Lanse STATE FEE
DISTRICT III 1000 Rio Brazos Rd., Aziac, NM 87410			6. State Oil & Gee Leese No.
DO NOT USE THIS PORM FOR PRI DIFFERENT RESEI (FORM C	ICES AND REPORTS ON WEL OPOSALS TO DRILL OR TO DEEPEN RVOIR. USE "APPLICATION FOR PEI -101) FOR SUCH PROPOSALS.)	OR PLUG BACK TO A	7. Lease Name or Unit Agreement Name
1. Type of Well: OIL WELL ORL WELL	UNLINED PIT CLOSUR	26	
	C OIL CARPORA	Tio M	8. Well No.
	BOX 5970, HUBBS	, NM 88241	9. Pool same or Wildest
4. Well Location Unit Lener;	Feet From The	Line and	Feet From The Line
Section 5	Township 17 S Ra	33E	NMPM Lea Courty
	10. Elevation (Show whether	DF, REB, RT, GR, etc.)	
	Appropriate Box to Indicate !	Nature of Notice, R	eport, or Other Data
NOTICE OF INT	ENTION TO:	SUB	SEQUENT REPORT OF:
PERFORM REMEDIAL WORK	PLUG AND ABANDON	REMEDIAL WORK	ALTERING CASING
TEMPORARILY ABANDON	CHANGE PLANS	COMMENCE DRILLING	OPNS. PLUG AND ABANDONMENT
PULL OR ALTER CASING	A. 112 12 14 14-	CASING TEST AND CE	EMENT JOB
OTHER: Closure plans	ocan-lined pil.	OTHER:	
more: SEE BIT F 1103			ting estimated date of sturning any proposed
As per NMOCD	quicklines for un-	lined proluc	stron pit closure, Penroc
Oil Corporation Al	smis following pl	an:	7 - 20 - 20 (1) (20)
1. PICK UP FAIR & dispose in	. water accumulate SWD.	ed que rain	e has zeoppm chlorides)
a Dia and	sick up sluck & oi	ly dirt and	haul to Controlled Recovery
3. Catch soil	'Sample and amal	gre @ Cardi	nal hab. per NMOCD
guide line.	·		
4. After satisf	backing results of	soil analys	is backfill the pit area
with clean 5. Once appr	oved by the NMOC	D Pit Remed	ication & Closure Report will be fred.
SIGNATURE	Much	Bendent.	9 /26 / 97 DATE: 310:002123 9 /26 / 97
TYPE CIE PEDIT NAME M. Y.	Merchant	/.	5\397-359 G

AS PER PMOCD GUINGLINGS!

October 16, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-349

Mr. M.Y. Merchant Penroc Oil Corporation P.O. Box 5970 Hobbs, NM 88241

RE: NOTICE OF VIOLATION

Unauthorized Waste Disposal Pit

NW/4, Section 5, Township 17 South, Range 33 East, NMPM

Lea County, New Mexico

Dear Mr. Merchant:

On September 22, 1997 the New Mexico Oil Conservation Division (OCD), identified two unauthorized, unlined waste disposal pits located approximately 5 miles east of Maljamar, NM in NW/4, Section 5, Township 17 South, Range 33 East, NMPM, Lea County, New Mexico (see attached map). These pits are owned by Penroc Oil Corporation (Penroc).

OCD personnel performed an onsite inspection of the facility on September 22, 1997 and noted the following:

- 1) These pits owned by Penroc are being utilized on land that according to county records is New Mexico State Trust Land.
- 2) These pits are accepting oilfield waste;
- 3) These pits were observed to have trash including buckets, cans and crude oil contained within the berms (see pictures 1, 2, 3, 4, 7 and 8);
- 4) These pits were not screened or netted (see pictures, 2, 3 and 8);
- 5) An open discharge pipe was found extending from one of the pits (see picture 1);
- 6) Evidence of surface discharges from the pits extended east northeast and southeast from the pits toward the lake (see pictures 2, 3, 4, 5, and 6);
- 7) The pit area is lacking a sign that identifies the legal location and owner of the facility.

Surface waste management facilities must be permitted pursuant to Rule 711 (as amended 1-1-96). In addition, pursuant to the OCD Order R-8952, all tanks exceeding 16 feet in diameter and all

Mr. M.Y. Merchant October 16, 1997 Page 2

exposed pits and ponds shall be screened, netted or covered unless rendered non-hazardous to migratory birds. Order R-3221, as amended, prohibits the disposal of water produced in conjunction with the production of oil and gas in unlined pits or ponds where such disposal may impact fresh water supplies of the state of New Mexico. Therefor, all discharges into the unauthorized, unlined pits must cease.

The OCD hearby requires Penroc Oil Corporation to submit the following information: 1) the names and addresses of all waste generators who are utilizing the pits; 2) the names and addresses of all waste transporters; 3) the location of all waste generation (exact well locations); and 4) the total volume of waste from each location that has gone into the unauthorized pits.

In addition, Penroc Oil Corporation must either permit the facility as a waste management facility or close the pits. Regardless of whether the facility is to be permitted or closed, Penroc must submit a closure plan to the Santa Fe OCD office and a copy to the Hobbs District office. Included in the closure plan must be a plan for determining the nature and extent of contamination that has left the pits, how far the contamination has migrated and whether the lake has been impacted. For your use please find enclosed a copy of the Order amending Rule 711, a form C-137 and OCD's pit closure guidelines. A response is required by Penroc Oil Corporation to these deficiencies by October 29, 1997.

Failure to respond to this notice of violation by October 29, 1997 may result in a show cause hearing against Penroc, requiring Penroc to appear and show cause why it should not be ordered to close these pits and why it should not also be assessed civil penalties.

If you require any further information concerning permitting/closure procedures please contact me at (505) 827-7153.

Sincerely,

Martyne J Kieling

Environmental Geologist

Attachments- location map, pictures, Order R-10411-B (Rule 711), Form C-137, and pit closure guidelines.

xc:

Hobbs OCD Office

Jami Bailey, State Land Office

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

October 30, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-358

Mr. M.Y. Merchant Penroc Oil Corporation P.O. Box 5970 Hobbs, NM 88241

RE: NOTICE OF VIOLATION Clarification

Unauthorized Waste Disposal Pits NW/4, Section 5, Township 17 South, Range 33 East, NMPM

Lea County, New Mexico

Dear Mr. Merchant:

The New Mexico Oil Conservation Division (OCD) would like to clarify a few things that were written in the October 16, 1997 letter to Penroc Oil Corporation. In the October 16, 1997 letter the OCD stated in point three (3) that "these pits were observed to have trash including buckets, cans and crude oil contained within the berms".

The presence of the buckets and cans within the pits is cause for the OCD to determine that the waste is non-exempt. (Penroc Oil Corporation is instructed not to remove any additional waste from the unlined pits identified in the Notice Of Violation letter dated October 16, 1997, until the waste has been tested for RCRA Hazardous Characteristic according to 40 CFR 261. (Analysis of the waste Shall include corrosivity, reactivity, ignitability, TCLP metals, TCLP semivolatiles and TCLP volatiles. The OCD Hobbs District office shall be notified 24 hours prior to sampling of the waste material to allow a representative the opportunity to witness the sampling. All closure activities and correspondence regarding this facility shall be coordinated directly through the NMOCD Environmental Bureau in Santa Fe. In addition, Penroc Oil Corporation shall copy the Hobbs District office on all correspondence.

A response by Penroc Oil Corporation to the deficiencies noted in the October 16, 1997 letter was received by the October 29, 1997 deadline. However, OCD requires Penroc Oil Corporation to submit a closure plan to include more detailed information than that submitted to the Hobbs District office on the C-103 Form. The additional information in the closure plan shall include a plan for determining the nature and extent of contamination that has left the pits (both vertically and horizontally), how far the contamination has migrated and whether the lake has been impacted.

Mr. M.Y. Merchant October 30, 1997 Page 2

Penroc Oil Corporation shall submit this detailed pit closure plan no later than 5:00 pm Santa Fe time on November 14, 1997 and copy the Hobbs District office.

Failure to respond to this notice of violation by November 14, 1997 may result in a show cause hearing against Penroc, requiring Penroc to appear and show cause why it should not be ordered to close these pits and why it should not also be assessed civil penalties.

If you require any further information concerning permitting/closure procedures please contact me at (505) 827-7153.

Sincerely,

Martyne J. Kieling

Environmental Geologist

Martyn & Thuly

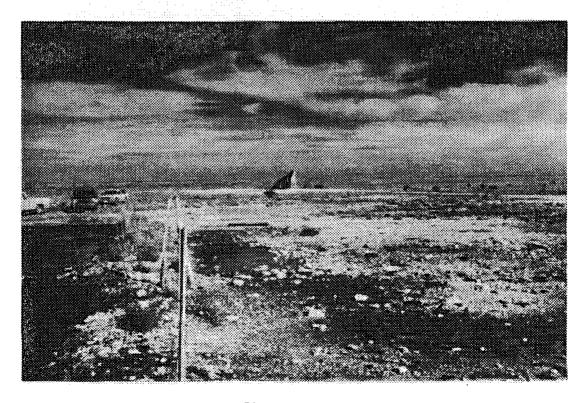

xc: Hobbs OCD Office

Tamel Dellare State I and Off

Jami Bailey, State Land Office

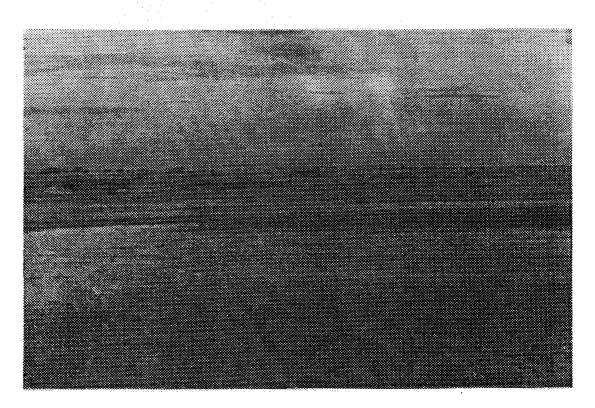


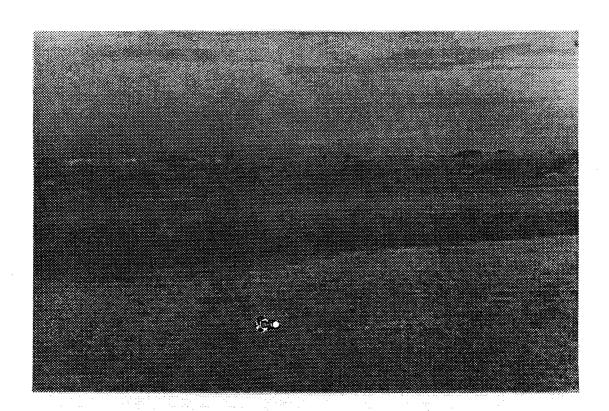
Picture 1 Date 9/22/97

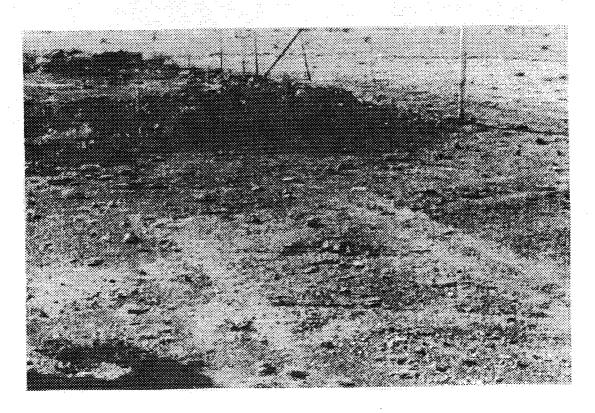


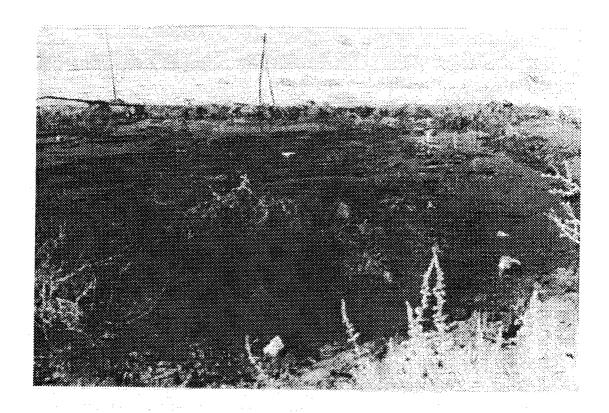
Picture 2 Date 9/22/97

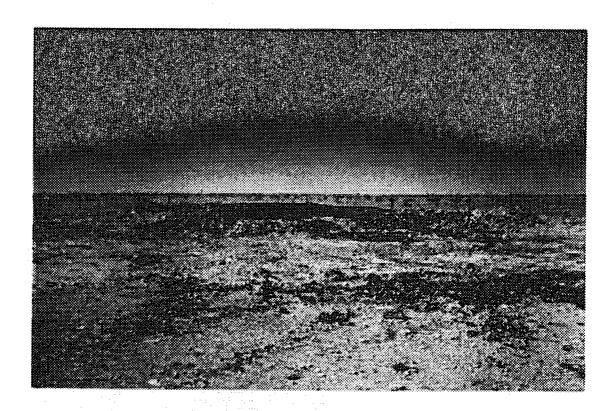

Picture 3 Date 9/22/97

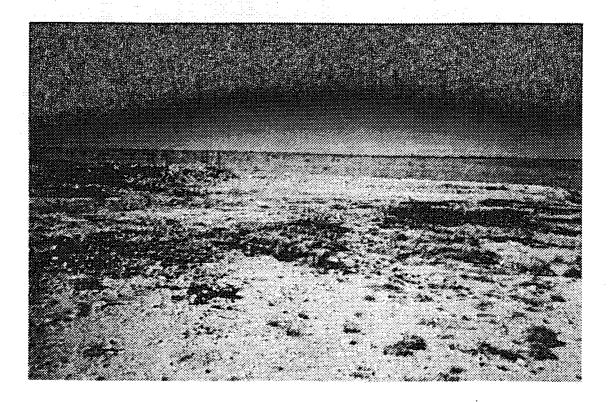

Picture 4 Date 9/22/97




Picture 5 Date 9/22/97


Picture 6 Date 9/22/97


Picture 7 Date 9/22/97


Picture 8 Date 9/22/97


Picture 9 Date 9/22/97

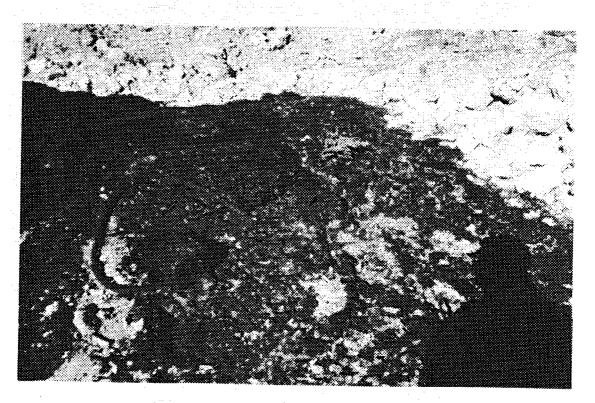
Picture 1 Date 10/30/97

Picture 2 Date 10/30/97



Picture 5 Date 10/30/97

Picture 6 Date 10/30/97


Picture 7 Date 10/30/97

Picture 8 Date 10/30/97

Penroc Oil Corporation Unlined Pits: NW/4, Sec 5, T 17 S, R33 E, NMPM, Lea County, New Mexico

Picture 9 Date 10/30/97

Picture 10 Date 10/30/97

Penroc Oil Corporation Unlined Pits: NW/4, Sec 5, T 17 S, R33 E, NMPM, Lea County, New Mexico

Picture 11 Date 10/30/97

G

Picture 12 Date 10/30/97

October 25, 1997

Santa Fe. New Mexico 87505

Mr. Martyne J. Kieling
Oil Conservation Division
2040 South Pacheo Street

Re: Letter Dated October 16, 1997 NW/4, Section 5, Township 17 South, Range 33 East, NMPM Lea County, New Mexico

Dear Mr. Kieling:

Thank you very much for your captioned letter and attachments. For your information Penroc et al bought the well located in the NW/4 from Southland Royalty Company (now Burlington) effective October 1, 1990. Due to mechanical problems with the well, it was plugged and abandoned as per approval by NMOCD-Hobbs, in April 1993. The pit mentioned in your letter was never used by Penroc or its personnel. When the pit came to our attention, attempts were made to clean up and close the pit under the guidelines, but Penroc was not allowed to do the same. (Copies of correspondence with NMOCD attached.)

In Penroc's defense the following needs to come your attention:

- 1. Penroc does not own the pit.
- 2. The pit, to the best of our knowledge is not accepting any oilfield waste. What waste you noticed in the pit was left by Southland. In fact an analysis of the fluid in the pit showed to be water with chlorides of 200ppm (as analyzed by Halliburton Hobbs Lab-copy attached).

Penroc being a good citizen took the obligation to close the pit under the NMOCD guidelines and finally on September 26, 1997, Mr. Wayne Price of Hobbs, NMOCD, approved pit closure plan. (Copy of C-103 attached.) Due to on and off wet weather, the implementation of the plan is delayed, and we plan to complete the task as soon as Mother Nature permits, with final closure expected on or before November 30, 1997.

Your cooperation in this matter is greatly appreciated. If you have any questions or comments, please do not hesitate to contact me anytime. Thank you.

Sincerely,

M. Y. (Merch) Merchant

President

CC: Mr. Bill Lee

Harcor Unocal

NMOCD (Hobbs)

Jami Bailey, State Land Office

MAILING ADDRESS: PO Box 5970 Hobbs, NM 88241-5970

DELIVERY ADDRESS: 5014 Carlsbad Hwy. Hobbs, NM 88240-1118

(505) 397-3596 Phone (505) 393-7051 FAX

Submit 3 Copies to Appropriate District Office

State of New Mexico Energy nerals and Natural Resources Department

<u>DISTRICT I</u> P.O. Box 1980, Hobbs, NM 88240

OIL CONSERVATION DIVISION 2040 Pacheco St.

t		Form C-103 Revised 1-1-89
	WELL API NO.	
	5. Indicate Type	of Lease STATE FEE
	6. State Oil & Ga	s Lease No.
\ 	7. Lease Name or	Unit Agreement Name
	8. Well No.	
_	9. Pool name or V	Wildcat
	Feet From	n The Line
1	NMPM	Lea County
NG CE	OPNS. MENT JOB	REPORT OF: ALTERING CASING PLUG AND ABANDONMENT
		starting any proposed Closure, Penroc
አ	e has z	ooppm chlorides)
el li	'haul to nal hab.	Controlled Recovery
P	is backf	ill the pit area
d	iation & C	Closure Report will be fled.
<u> </u>	- (3) (33 to 0.)	9 /26 / 97 DATE: 397-359 6 TELEPHONE NO.
1/2	Received	2627

2040 Tache	CO DE.	
DISTRICT II Santa Fe, P.O. Drawer DD, Anesia, NM 88210	NM 87505	5. Indicate Type of Lease
DISTRICT III 1000 Rio Brazos Rd., Azzec, NM 87410	 .	STATE FEE 6. State Oil & Gas Lease No.
SUNDRY NOTICES AND REPORTS ON (DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR TO DE DIFFERENT RESERVOIR. USE "APPLICATION FO (FORM C-101) FOR SUCH PROPOSALS.	EPEN OR PLUG BACK TO A R PERMIT")	7. Lease Name or Unit Agreement Name
1. Type of Well: OIL WELL OTHER OTHER	TURE	
2 Name of Operator PENROC OIL CORPO	RATION	8. Well No.
3. Address of Operator P.O. Box 5970, Hor	885, NM 88241	9. Pool name or Wildcat
4. Well Location Unit Letter : Feet From The	Line and	Feet From The Line
Section 5 Township 17 S	Range 33E	NMPM Lea County
	neiher DF, RKB, RT, GR, etc.)	NAME AND THE COUNTY
11. Check Appropriate Box to Indic	ate Nature of Notice, Re	eport, or Other Data
NOTICE OF INTENTION TO:	SUB	SEQUENT REPORT OF:
PERFORM REMEDIAL WORK PLUG AND ABANDON	REMEDIAL WORK	ALTERING CASING
TEMPORARILY ABANDON CHANGE PLANS	COMMENCE DRILLING	OPNS. PLUG AND ABANDONMENT
PULL OR ALTER CASING LOTHER: Closure plan for un-lined pit.	CASING TEST AND CE	MENT JOB
OTHER: Closure plans for all-thed pic.	OTHER:	
12. Describe Proposed or Completed Operations (Clearly state all persinent describer) SEE RULE 1103. As per NMOCD guide lines for a	un-lined produc	
Oil Corporation Submits following 1. Pick up rain water (accumul		a has zon par shlorides)
# dispose in SWD.	ated que rain	
a Dia and pick up sluth &	oily dirt and	I haul to Controlled Recover
3. Catch soil sample and am	algre @ Cardi	nal hab. per NMOCD
guide line.		
4. After satisfactory results	of soil analys	is backfill the pit area
I hereby certify that the information above is true and complete to the best of my knowled	ge and belief. A	iation & Closure Report will be fled.
SIGNATURE BOLLING MICCA	me Benclent	PATE 9/26/97
TYPE OR PRINT NAME M. Y. Merchant	/.	397-359 G
(This space for State Use)	12	#0 26; 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a Jame Price	TIME ENVA ENGR	DATE 0 9/26/97
CONDITIONS OF APPROVAL, IF ANY:	TITLE	DATE OF
CONDITIONS OF APPROVAL, IF ANY: AS PER PMOCN G	- UIAISLINISS!	1230

District. I - (505) 393-6161 P. O. Box 1980

District III - (505) 334-6178

District IV - (505) 827-7131

Artesia, NM 88210

Aztec, NM 87410

1000 Rio Brazos Road

Hobbs, NM 88241-1980 District II - (505) 748-1283 811 S. First

New Mexico Energy Merals and Natural Resources Dartment Oil Conservation Division 2040 South Pacheco Street

Santa Fe. New Mexico 87505 (505) 827-7131

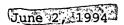
Originated 6/27/97

Submit Original Plus 1 Čopy to Santa Fe

PIT INVENTORY FORM
Operator: PENROC OIL CORPORATION
Operator: PENROC OIL CORPORATION Address: P.O. BOX 5970 HOBBS, NM 88241
Phone Number: (505) 397-359 6
Previous Operator(s): SOCETHEAND ROYALTY CO.
Is the pit permitted: Yes No X
Unit Letter: Section: 5 Township: 175 Range: 33E
County: LEA
Location Name: N.E. MALJAMAR CLAIT NO. /
Number of wells to the pit: One-Well is P&A'd.
Are the wells to the pit operated by one operator 🖾 or multiple operators 🗌
Total daily volume (in barrels) to the pit: NONE - WELL PSA'D. CURRENT OPERATOR NEVER USED IT.
Pit Type: BS & W / Tank Bottom 5
(Emergency, Production, Workover, Reserve/Drilling(greater than 6 months old), Flare, Blowdown, Seperator, Dehydrator, Line Drip, BS&W/Tank Bottoms, Compressor, Pigging, Washdown, or other)
What types of wastes are accepted in the pit (Exempt, Non-exempt, Both, None):
Pit age (years):
Is the pit lined or uniined 🛛
Type of liner (None, Synthetic, Clay): None
Is leak detection present: Yes No 🗵
Is the pit netted: Yes No 🗵
Pit dimensions (LxWxD): Zo × Zo × 2.5
CERTIFICATION
I hereby certify that the information submitted is true and correct to the best of my knowledge and belief.
Name: M-4. MERCHANT Title: PRESIDENT
Name: M-9. MERCHANT Title: PRESIDENT Signature: Monday Date: 7/27/97
A pit is defined as any below grade or surface feature which receives any materials other than fresh water.

WATER ANALYSIS REPORT **HOBBS NEW MEXICO**

HALLIBURTON
WATER ANALYSIS REPORT
HOBBS NEW MEXICO


COMPANY		Penroc			REPORT DATE	97-314 9/22/97		
		Fax:393-7051	y -	DISTRICT	Hobbs			
	SUBMITTED BY	Merchant						
	WELL COUNTY		DEPTH FIELD		_FORMATIONSOURCE	Pit		
	SAMPLE	*			_		_	
	RESISTIVITY SPECIFIC GR.	9.46 @ 1.000 6.59	<u>70</u> ° F	@	°F	@	°F 	
	CALCIUM MAGNESIUM CHLORIDE	250 0 200	mpi mpi		mpl mpl		mpl mpl	
	SULFATES BICARBONATES SOLUBLE IRON	less than 100	· · · · · · · · · · · · · · · · · · ·		mpl mpl		mpl mpl mpl	
							_	
	OIL GRAVITY	@	°F	<u> </u>	°F	@	¯°F	
RE	MARKS					· .		
	· ·							

This report is the property of Halliburton Company and neither it nor any part thereof nor a copy thereof is to be published or disclosed without first securing the express written approval of laboratory management: it may however, be used in the course of regular business operations by any person or concern and employees thereof receiving such report from Halliburton Co.

Resitivity measured in: Ohm/m2/m

ANALYST: John Eubank

MR. JERRY SEXTON
NEW MEXICO OIL CONSERVATION DIVISION
P. O. BOX 1980
HOBBS, NEW MEXICO 88240-1980

RE: ABANDONED PIT

N.E. MALJAMAR UNIT WELL NO. 1

NW/4 SECTION 5, T-17-S, R-33-E

LEA COUNTY, NEW MEXICO

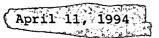
Dear Mr. Sexton:

This letter is a follow-up to my letter of April 11, 1994 and various discussions regarding the captioned. As you know, I had Sonny's Oil Field Services vacuum truck at the pit on May 23, 1994. It was able to pick up 120 barrels of water. The remainder of the material in part of the pit is a film of oil and in the other part is heavy tank bottom no more than 3" deep.

Penroc plans to dig the pit two feet down and use cow manure to mix with the dirt. It will be monitored for next six months and will be returned to better than it ever was.

I appreciate your cooperation in the above matter and am confident with cooperation between industry and regulators, any problem of any size can be handled to the satisfaction of all. Thank you.

Sincerely,


M. Y. (Merch) Merchant

President & Chief Executive Officer

MYM/lm

(505) 393-7051 FAX

Mr. Jerry Sexton
New Mexico Oil Conservation Division
P. O. Box 1980
Hobbs, New Mexico 88240

RE: OLD PIT

N.E. MALJAMAR UNIT #1

NW/4 SECTION 5, T-17-S, R-33-E

LEA COUNTY, NEW MEXICO

Dear Mr. Sexton:

This letter is to confirm our discussion over two weeks ago about the un-used pit at the captioned plugged and abandoned well. As I informed you in person, this pit was there when Penroc took over operations from Southland Royalty Company on October 13, 1990. It was never used by Penroc's personnel from the take over date until the well was plugged the week of April 16, 1993. This fact was also confirmed by Mr. Ed Cartwright, Penroc's contract pumper, on April 8, 1994.

Since the pit was not in use by Penroc, and it was dry, we would have taken care of the pit properly once the tank battery was moved and location cleaned up. (With NMOCD permission we still plan to do the same.

Penroc has been a prudent operator since its inception in 1961, and will continue to be environmentally friendly operator for the years to come. If you desire any more information please contact me at the above address.

Sincerely,

M. Y. (Merch) Merchant

President & Chief Executive Officer

MYM/lm

(505) 393-7051 FAX

NMOCD INTER-OFFICE CORRESPONDENCE

TO: NMOCD District I Complaint File

From: Wayne Price-Environmental Engineer

Date: October 29, 1997

Reference: Penroc Pit Closure sec 5-Ts17s-R33e

Subject: Ken Marsh- inquiry & complaint.

Comment:

Mr. Marsh met with W. Price & C. Williams and lodged a complaint on behalf of Penroc and CRI concerning Wayne Price's letter to Penroc dated October 27, 1997.

Mr. Marsh had the following comments:

- 1. Mr. Marsh indicated that Penroc's contractor (dirt Contractor) has signed that this material is exempt and Mr. Marsh went to the site and in his opinion this pit is no different than any other oil field pit and it should be classified as exempt.
- 2. Mr. Marsh expressed to us that it will cost him \$10,000 dollars to isolate this waste. He assured the NMOCD his company will re-coop their expenses from OCD.
- 3. Mr. Marsh indicated in this particular case he has aligned himself with the interest of Penroc and indicated that he has previous documents which show that NMOCD is harassing Penroc and there could be legal action.
- 4. Mr. Marsh pointed out that there is an approved C-103 which indicated that this material was going to be hauled to CRI, and this issue should remain on a district level and not be handled out of Santa Fe. He pointed out that the NOV letter from Martyne Kieling did not mention anything about non-exempt waste or any requirement for testing.

Mr. Marsh pointed out that letters to District I Supervisor Mr. Jerry Sexton indicated that this material has been hauled off as normal exempt oil field material and this precedence has already been set and the NMOCD does not have the right to change their mind on this issue.

5. Mr. Marsh is up-set that this document exist because he feels it will become part of the record and particularly if this material is sampled and the test show it to be hazardous waste it will ruin his business.

Rebuttal and Comments from Wayne Price & Chris Williams:

Wayne Price:

I informed Mr. Marsh this project is be handled out of Santa Fe and requested him to contact Mr. Anderson. The reason the letter was written was to make sure all parties were notified in a timely fashion so as to protect them from making a possible mistake concerning the hazardous waste issue.

I informed Mr. Marsh the pit closure was approved pursuant to the NMOCD Guidelines, the Guidelines specifically point out (page 4) Under Note: Concerning sampling and test; that only oil field contaminated soils which are exempt from federal RCRA subtitle C hazardous waste provisions applied. Any Unlined pits receiving non-exempt waste are subject to evaluation for RCRA hazardous waste characteristics.

Also pointed out to Mr. Marsh his permit conditions require the generator to make this demonstration before accepting this material. I also pointed out the generator has this responsibility at all times and no previous approvals such as the C-103 will negate this condition.

There was a round table discussion concerning easier ways or more cost effective ways of isolating the waste, and or maybe sampling the waste in place at the landfill. Mr. Marsh was not receptive of any of these ideals at this time, as he felt it was his business and responsibility as to how to do this. He reiterate that it will cost \$10,000 dollars. He also indicated there might be legal action.

Chris Williams: Informed Mr. Marsh if they have any legal issue please contact our legal department, but assured him that the NMOCD District I will contact Mr. Anderson and set up a conference call to discuss this particle situation in a timely manner.

cc: Chris Williams-NMOCD District I Supervisor
Roger Anderson-Environmental Bureau Chief, Santa Fe, NM
Martyne ¹Kieling-Environmental Bureau, Santa Fe, NM

1. These comments are exclusive to Mr. Price's minutes of the meeting, they may not represent the other parties interpretation.

NMOCD INTER-OFFICE CORRESPONDENCE

TO:

NMOCD District I Complaint File

From:

Wayne Price-Environmental Engineer

Date:

October 29, 1997

Reference:

Penroc Pit Closure sec 5-Ts17s-R33e

Subject:

Ken Marsh- inquiry & complaint.

Comment:

Mr. Marsh met with W. Price & C. Williams and lodged a complaint on behalf of Penroc and CRI concerning Wayne Price's letter to Penroc dated October 27, 1997.

Mr. Marsh had the following comments:

- 1. Mr. Marsh indicated that Penroc's contractor (dirt Clobe Contractor) has signed that this material is exempt and Mr. Construct Marsh went to the site and in his opinion this pit is no different than any other oil field pit and it should be classified as exempt.
- 2. Mr. Marsh expressed to us that it will cost him \$10,000 dollars to isolate this waste. He assured the NMOCD his company will re-coop their expenses from OCD.
- 3. Mr. Marsh indicated in this particular case he has aligned himself with the interest of Penroc and indicated that he has previous documents which show that NMOCD is harassing Penroc and there could be legal action.
- 4. Mr. Marsh pointed out that there is an approved C-103 which indicated that this material was going to be hauled to CRI, and this issue should remain on a district level and not be handled out of Santa Fe. He pointed out that the NOV letter from Martyne Kieling did not mention anything about non-exempt waste or any requirements for testing.
 - Mr. Marsh pointed out that letters to District I Supervisor Mr. Jerry Sexton indicated that this material has been hauled off as normal exempt oil field material and this precedence has already been set and the NMOCD does not have the right to Change their mind on this issue.

5. Mr. Marsh is up-set that this document exist because he feels it will become part of the record and particularly if this material is sampled and the test show it to be hazardous waste it will ruin his business.

Rebuttal and Comments from Wayne Price & Chris Williams:

Wayne Price:

I informed Mr. Marsh this project is be handled out of Santa Fe and requested him to contact Mr. Anderson. The reason the letter was written was to make sure all parties were notified in a timely fashion so as to protect them from making a possible mistake concerning the hazardous waste issue.

I informed Mr. Marsh the pit closure was approved pursuant to the NMOCD Guidelines, the Guidelines specifically point out (page 4) Under Note: Concerning sampling and test; that only oil field contaminated soils which are exempt from federal RCRA subtitle C hazardous waste provisions applied. Any Unlined pits receiving non-exempt wasterare subject to evaluation for RCRA hazardous waste characteristics.

Also pointed out to Mr. Marsh his permit conditions require the generator to make this demonstration before accepting this material. I also pointed out the generator has this responsibility at all times and no previous approvals such as the C-103 will negate this condition.

There was a round table discussion concerning easier ways or more cost effective ways of isolating the waste, and or maybe sampling the waste in place at the landfill. Mr. Marsh was not receptive of any of these ideals at this time, as he felt it was his business and responsibility as to how to do this. He reiterate that it will cost \$10,000 dollars. He also indicated there might be legal action.

Chris Williams: Informed Mr. Marsh if they have any legal issue please contact our legal department, but assured him that the NMOCD District I will contact Mr. Anderson and set up a conference call to discuss this particle situation in a timely manner.

cc: Chris Williams-NMOCD District I Supervisor
Roger Anderson-Environmental Bureau Chief, Santa Fe, NM
Martyne ¹Kieling-Environmental Bureau, Santa Fe, NM

1. These comments are exclusive to Mr. Price's minutes of the meeting, they may not represent the other parties interpretation.

NMOCD INTER-OFFICE CORRESPONDENCE

TO:

NMOCD District I Complaint File

From:

Wayne Price-Environmental Engineer

Date:

October 29, 1997

Reference:

Penroc Pit Closure sec 5-Ts17s-R33e

Subject:

Ken Marsh- inquiry & complaint.

Comment:

Mr. Marsh met with W. Price & C. Williams and lodged a complaint on behalf of Penroc and CRI concerning Wayne Price's letter to Penroc dated October 27, 1997

Mr. Marsh had the following comments:

- 1. Mr. Marsh indicated that Penroc's contractor (dirt Contractor) has signed that this material is exempt and Mr. Marsh went to the site and in his opinion this pit is no different than any other oil field pit and it should be classified as exempt.
- 2. Mr. Marsh expressed to us that it will cost him \$10,000 dollars to isolate this waste. He assured the NMOCD his company will re-coop their expenses from OCD.
- 3. Mr. Marsh indicated in this particular case he has aligned himself with the interest of Penroc and indicated that he has previous documents which show that NMOCD is harassing Penroc and there could be legal action.
- 4. Mr. Marsh pointed out that there is an approved C-103 which indicated that this material was going to be hauled to CRI, and this issue should remain on a district level and not be handled out of Santa Fe. He pointed out that the NOV letter from Martyne Kieling did not mention anything about non-exempt waste or any requirement for testing.

Mr. Marsh pointed out that letters to District I Supervisor Mr. Jerry Sexton indicated that this material has been hauled off as normal exempt oil field material and this precedence has already been set and the NMOCD does not have the right to change their mind on this issue.

5. Mr. Marsh is up-set that this document exist because he feels it will become part of the record and particularly if this material is sampled and the test show it to be hazardous waste it will ruin his business.

Rebuttal and Comments from Wayne Price & Chris Williams:

Wayne Price:

I informed Mr. Marsh this project is be handled out of Santa Fe and requested him to contact Mr. Anderson. The reason the letter was written was to make sure all parties were notified in a timely fashion so as to protect them from making a possible mistake concerning the hazardous waste issue.

I informed Mr. Marsh the pit closure was approved pursuant to the NMOCD Guidelines, the Guidelines specifically point out (page 4) Under Note: Concerning sampling and test; that only oil field contaminated soils which are exempt from federal RCRA subtitle C hazardous waste provisions applied. Any Unlined pits receiving non-exempt waste are subject to evaluation for RCRA hazardous waste characteristics.

Also pointed out to Mr. Marsh his permit conditions require the generator to make this demonstration before accepting this material. I also pointed out the generator has this responsibility at all times and no previous approvals such as the C-103 will negate this condition.

There was a round table discussion concerning easier ways or more cost effective ways of isolating the waste, and or maybe sampling the waste in place at the landfill. Mr. Marsh was not receptive of any of these ideals at this time, as he felt it was his business and responsibility as to how to do this. He reiterate that it will cost \$10,000 dollars. He also indicated there might be legal action.

Chris Williams: Informed Mr. Marsh if they have any legal issue please contact our legal department, but assured him that the NMOCD District I will contact Mr. Anderson and set up a conference call to discuss this particle situation in a timely manner.

cc: Chris Williams-NMOCD District I Supervisor
Roger Anderson-Environmental Bureau Chief, Santa Fe, NM
Martyne ¹Kieling-Environmental Bureau, Santa Fe, NM

1. These comments are exclusive to Mr. Price's minutes of the meeting, they may not represent the other parties interpretation.

OCD APPROVAL CONDITIONS FOR RCRA EXEMPT UNLINED PIT CLOSURES

- 1. The following closure actions will be performed in accordance with OCD's February 1993 "SURFACE IMPOUNDMENT CLOSURE GUIDELINES":
 - a. Vertical and horizontal extent of contamination will be determined either prior to, during or upon completion of remedial actions.
 - b. Contaminated soils will be remediated to the OCD's recommended levels or a risk assessment will be provided which shows that an alternate cleanup level is protective of surface water, ground water, human health and the environment.
 - c. Final soil contaminant concentrations will be determined upon completion of remedial actions.
 - d. Soil samples for verification of completion of remedial actions will be sampled and analyzed for benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbons.
- 2. All wastes removed from a specific site will be disposed of at an OCD approved facility.
- 3. The OCD Santa Fe Office's Environmental Bureau Chief and the OCD Hobbs District Office will be notified within 24 hours of the discovery of ground water contamination related to a pit closure.
- 4. Upon completion of all closure activities, a completed OCD "Pit Remediation and Closure Report" form containing the results of all pit closure and soil remediation activities will be submitted to the OCD for approval. The report will include the concentrations and application rates of any materials or additives used to enhance bioremediation of the contaminants and the final concentrations of any soils landfarmed onsite or the final disposition of soils removed from the site. To simplify the approval process, the OCD requests that the final pit closure reports be submitted only upon completion of all closure activities including onsite remediation or landfarming of contaminated soils.
- 5. All original documents will be submitted to the OCD Hobbs Office for approval with copies provided to the OCD Santa Fe Office.
- 6. OCD approval does not relieve you of liability should closure activities determine that contamination exists which is beyond the scope of the work plan or if the closure activities fail to adequately remediate contamination related to your activities. In addition, OCD approval does not relieve you of responsibility for compliance with other federal, state or local laws and regulations.

October 27, 1997

Mr. M.Y. Merchant Penroc Oil Corporation (POC) P.O. Box 5970 Hobbs, NM 88241

RE:

Notice Of Violation letter from NMOCD Environmental Bureau

dated October 16, 1997 issue to Mr. M.Y. Merchant Penroc Oil Corporation.

Subject:

Pit Closure

Nw/4 Sec 5-Ts17s-R33e

Lea Co., NM

Dear Mr. Merchant,

Pursuant to your and Mr. Devine's inquiry at the New Mexico Conservation Div. (NMOCD) District I office this Monday morning October 27, 1997 at 8:30 am, and after resultant telephone conversations with the NMOCD Environmental Bureau concerning this issue, the NMOCD District I has the following information and instructions concerning the above referenced site.

The pit closure submittal submitted to the District I office on September 26, 1997 and approved with conditions on September 26, 1997 will be forwarded to the NMOCD Environmental Bureau from this office. You are hereby notified that the regulatory requirements for this closure will be transferred from the District I office to the NMOCD Environmental Bureau, attention of Martyne J. Kieling (505-827-7153) 2040 South Pacheco, Santa Fe, NM 87505. All closure activities and correspondence from this point and time shall be coordinated directly through the NMOCD Environmental Bureau. POC shall copy the District office on all correspondence between POC and NMOCD Environmental Bureau.

Due to the issue of EPA RCRA Non-Exempt waste discovered in the pit during the inspection team visit on September 22, 1997, POC is instructed not to dispose of any waste from the referenced location until a proper waste classification and/or hazardous waste determination has been made on the waste. Also, POC shall notify the disposal company in which any waste from this site has already been disposed of and POC shall have the disposal company isolate this waste pending hazardous waste determinations.

If you require any further information or assistance please do not hesitate to call (505-393-6161) or write this office.

Sincerely Yours,

Wayne Price-Environmental Engineer

cc: Chris Williams-NMOCD District I Supervisor

Roger Anderson-Environmental Bureau Chief, Santa Fe, NM Martyne Kieling-Environmental Bureau, Santa Fe, NM

NM - 34-

MONITORING REPORTS

YEAR(S):

AEN I.D.

802321

O'L CONSERVATION DIVIS

March 6, 1998

NM-OCD 2040 S. PACHEO

SANTA FE.

NM

87505

Project Name

PENROC

Project Number

(none)

Attention:

BILL OLSON

On 2/5/98 American Environmental Network (NM), Inc. (ADHS License No. AZ0015), received a request to analyze non-aq samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

EPA method 8260 was analyzed by American Environmental Network (NM) Inc., Albuquerque, NM.

EPA methods 9010, 9030 and 6010 were analyzed by American Environmental Network (FL) Inc., Pensacola, FL.

All other parameters were analyzed by American Environmental Network (OR) Inc., Portland, OR.

If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

Kimberly D. McNeill **Project Manager**

H. Mitchell Rubenstein, Ph. D.

General Manager

MR: mt

Enclosure

CLIENT	: NM-OCD	AEN I.D.	: 802321
PROJECT#	: (none)	DATE RECEIVED	: 2/5/98
PROJECT NAME	: PENROC	REPORT DATE	: 3/6/98
AEN			DATE
ID. #	CLIENT DESCRIPTION	MATRIX	COLLECTED
01	NE MALJAMAR PIT	NON-AQ	2/4/98

GC/MS RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT PROJECT # : NMOCD

AEN I.D. :

802321

: (none)

DATE RECEIVED:

2/5/98

FROJECT#	. (none)			DATE RECEIVED	, .	2/3/90
PROJECT NAME	: PENROC			·		
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
802321-01	NE MALJAMAR PIT	NON-AQ	2/4/98	2/6/98	02/06/98	100
PARAMETER	DET. LIMIT		UNITS			
Dichlorodifluoromethane	0.05	< 5.0	MG/KG			
Chloromethane		< 5.0	MG/KG			
Vinyl Chloride		< 5.0	MG/KG			
Bromomethane		< 5.0	MG/KG			
Chloroethane		< 5.0	MG/KG			
Trichlorofluoromethane		< 5.0	MG/KG			
Acetone		< 50	MG/KG			
Acralein		< 25	MG/KG			
1,1-Dichloroethene		< 5.0	MG/KG			
lodomethane		< 5.0	MG/KG			
Methylene Chloride		< 5.0	MG/KG			
Acrylonitrile		< 25	MG/KG			
cis-1,2-Dichloroethene		< 5.0	MG/KG			
		< 5.0	MG/KG MG/KG			
Methyl-t-butyl Ether 1,1,2,1,2,2-Trichlorotrifluoroethane		< 5.0	MG/KG			
		< 5.0 < 5.0	MG/KG MG/KG			
1,1-Dichloroethane		< 5.0	MG/KG MG/KG			
trans-1,2-Dichloroethene		< 5.0 < 50	MG/KG MG/KG			
2-Butanone Carbon Disulfide		< 5.0	MG/KG MG/KG			
Bromochloromethane		< 5.0	MG/KG			
Chloroform		< 5.0	MG/KG			
2,2-Dichloropropane		< 5.0	MG/KG			
1,2-Dichloroethane		< 5.0	MG/KG			
Vinyl Acetate		< 5.0	MG/KG			
1,1,1-Trichloroethane		< 5.0	MG/KG			
1,1-Dichloropropene		< 5.0	MG/KG			
Carbon Tetrachloride		< 5.0	MG/KG			
Benzene	0.05	47	MG/KG			
1,2-Dichloropropane		< 5.0	MG/KG			
Trichloroethene		< 5.0	MG/KG			
Bromodichloromethane		< 5.0	MG/KG			
2-Chloroethyl Vinyl Ether		< 50	MG/KG			
cis-1,3-Dichloropropene		< 5.0	MG/KG			
trans-1,3-Dichloropropene		< 5.0	MG/KG			
1,1,2-Trichloroethane		< 5.0	MG/KG			•
1,3-Dichloropropane	0.05	< 5.0	MG/KG			
Dibromomethane	0.05	< 5.0	MG/KG			
Toluene	0.05	19	MG/KG			
1,2-Dibromoethane	0.05	< 5.0	MG/KG			
4-Methyl-2-Pentanone	0.5	< 50	MG/KG			
2-Hexanone	0.5	< 50	MG/KG			
Dibromochloromethane		< 5.0	MG/KG			
Tetrachloroethene		< 5.0	MG/KG			
Chlorobenzene		< 5.0	MG/KG			
Ethylbenzene	0.05	41	MG/KG			

GC/MS RESULTS

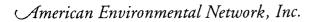
TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT

PROJECT NAME

: NMOCD


: PENROC

PROJECT# : (none) AEN I.D.:

802321

DATE RECEIVED:

T NOJECT INAME	. FLINIOU					
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
802321-01	NE MALJAMAR PIT	NON-AQ	2/4/98	2/6/98	02/06/98	100
PARAMETER	DET. LIMIT		UNITS			
1,1,1,2-Tetrachloroethane	0.05	< 5.0	MG/KG			
m&p Xylenes	0.05	54	MG/KG			
o-Xylene	0.05	16	MG/KG			
Styrene	0.05	< 5.0	MG/KG			
Bromoform	0.05	< 5.0	MG/KG			
1,1,2,2-Tetrachloroethane	0.05	< 5.0	MG/KG			
1,2,3-Trichloropropane	0.05	< 5.0	MG/KG			
isopropyi Benzene	0.05	13	MG/KG			
Bromobenzene	0.05	< 5.0	MG/KG			
trans-1,4-Dichloro-2-Butene	0.05	< 5.0	MG/KG			
n-Propylbenzene	0.05	15	MG/KG			
2-Chlorotoluene	0.05	< 5.0	MG/KG			
4-Chlorotoluene		< 5.0	MG/KG			
1,3,5-Trimethylbenzene	0.05	10	MG/KG			
tert-Butylbenzene		< 5.0	MG/KG			
1,2,4-Trimethylbenzene	0.05	33	MG/KG			
sec-Butylbenzene	0.05	8.4	MG/KG			
1,3-Dichlorobenzene	0.05	< 5.0	MG/KG			
1,4-Dichlorobenzene	0.05	< 5.0	MG/KG			
p-Isopropyltoluene	0.05	< 5.0	MG/KG			
1,2-Dichlorobenzene	0.05	< 5.0	MG/KG			
n-Butylbenzene	0.05	12	MG/KG			
1,2-Dibromomo-3-chloropropane	0.05	< 5.0	MG/KG			
1,2,4-Trichlorobenzene	0.05	< 5.0	MG/KG			
Naphthalene	0.05	18	MG/KG			
Hexachlorobutadiene	0.05	< 5.0	MG/KG			
1,2,3-Trichlorobenzene	0.05	< 5.0	MG/KG			
SURROGATE % RECOVERY						
1,2-Dichloroethane-d4		92				
		(80 - 120)				
Toluene-d8		103				
		(81 - 117)				
Bromofluorobenzene		92				
		(74 - 121)				

GC/MS RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT

NMOCD

PROJECT#

: (none)

PROJECT NAME

: PENROC

AEN I.D. :

802321

SAMPLE	: PENRUC		· · · · · · · · · · · · · · · · · · ·	DATE	DATE	DIL.
ID#	BATCH		MATRIX	EXTRACTED	ANALYZED	FACTOR
REAGENT BLANK	020698		NON-AQ	2/6/98	02/06/98	1
PARAMETER	DET. LIMIT		UNITS			
Dichlorodifluoromethane	0.05	< 0.05	MG/KG			
Chloromethane	0.05	< 0.05	MG/KG			
Vinyl Chloride	0.05	< 0.05	MG/KG			
Bromomethane	0.05	< 0.05	MG/KG			
Chloroethane	0.05	< 0.05	MG/KG			
Trichlorofluoromethane	0.05	< 0.05	MG/KG			
Acetone	0.5	< 0.5	MG/KG			
Acrolein	0.25	< 0.25	MG/KG			
1,1-Dichloroethene	0.05	< 0.05	MG/KG			
łodomethane	0.05	< 0.05	MG/KG			
Methylene Chloride	0.05	< 0.05	MG/KG			
Acrylonitrile	0.25	< 0.25	MG/KG			
cis-1,2-Dichloroethene	0.05	< 0.05	MG/KG			
Methyl-t-butyl Ether	0.05	< 0.05	MG/KG			
1,1,2,1,2,2-Trichlorotrifluoroethane	0.05	< 0.05	MG/KG			
1,1-Dichloroethane	0.05	< 0.05	MG/KG			
trans-1,2-Dichloroethene	0.05	< 0.05	MG/KG			
2-Butanone	0.5	< 0.5	MG/KG			
Carbon Disulfide	0.05	< 0.05	MG/KG			
Bromochloromethane	0.05	< 0.05	MG/KG			
Chloroform	0.05	< 0.05	MG/KG			
2,2-Dichloropropane	0.05	< 0.05	MG/KG			
1,2-Dichloroethane	0.05	< 0.05	MG/KG			
Vinyl Acetate	0.05	< 0.05	MG/KG			
1,1,1-Trichloroethane	0.05	< 0.05	MG/KG			
1,1-Dichloropropene	0.05	< 0.05	MG/KG			
Carbon Tetrachloride	0.05	< 0.05	MG/KG			
Benzene	0.05	< 0.05	MG/KG MG/KG			
1,2-Dichloropropane	0.05	< 0.05	MG/KG			
Trichloroethene	0.05	< 0.05	MG/KG			
Bromodichloromethane	0.05	< 0.05	MG/KG			
2-Chloroethyl Vinyl Ether	0.5	< 0.5	MG/KG			
cis-1,3-Dichloropropene	0.05	< 0.05	MG/KG MG/KG			
trans-1,3-Dichloropropene	0.05	< 0.05	MG/KG			
1,1,2-Trichloroethane	0.05	< 0.05	MG/KG			
• •		< 0.05	MG/KG			•
1,3-Dichloropropane	0.05 0.05	< 0.05	MG/KG			
Dibromomethane Takkana		< 0.05 < 0.05	MG/KG MG/KG			
Toluene	0.05					
1,2-Dibromoethane	0.05	< 0.05	MG/KG			
4-Methyl-2-Pentanone	0.5	< 0.5	MG/KG			
2-Hexanone	0.5	< 0.5	MG/KG			
Dibromochloromethane	0.05	< 0.05	MG/KG			
Tetrachloroethene	0.05	< 0.05	MG/KG			
Chlorobenzene	0.05	< 0.05	MG/KG			
Ethylbenzene	0.05	< 0.05	MG/KG			

GC/MS RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT

: NMOCD

PROJECT# PROJECT NAME

: (none)

: PENROC

AEN I.D. :

SAMPLE				DATE	DATE	DIL.
ID#	BATCH		MATRIX	EXTRACTED	ANALYZED	FACTOR
REAGENT BLANK	020698		NON-AQ	2/6/98	02/06/98	1
PARAMETER	DET. LIMIT		UNITS			
1,1,1,2-Tetrachloroethane	0.05	< 0.05	MG/KG			
m&p Xylenes	0.05	< 0.05	MG/KG			
o-Xylene	0.05	< 0.05	MG/KG			
Styrene	0.05	< 0.05	MG/KG			
Bromoform	0.05	< 0.05	MG/KG			
1,1,2,2-Tetrachloroethane	0.05	< 0.05	MG/KG			
1,2,3-Trichloropropane	0.05	< 0.05	MG/KG			
Isopropyl Benzene	0.05	< 0.05	MG/KG			
Bromobenzene	0.05	< 0.05	MG/KG			
trans-1,4-Dichloro-2-Butene	0.05	< 0.05	MG/KG			
n-Propylbenzene	0.05	< 0.05	MG/KG			
2-Chlorotoluene	0.05	< 0.05	MG/KG			
4-Chlorotoluene	0.05	< 0.05	MG/KG			
1,3,5-Trimethylbenzene	0.05	< 0.05	MG/KG			
tert-Butylbenzene	0.05	< 0.05	MG/KG			
1,2,4-Trimethylbenzene	0.05	< 0.05	MG/KG			
sec-Butylbenzene	0.05	< 0.05	MG/KG			
1,3-Dichlorobenzene	0.05	< 0.05	MG/KG			
1,4-Dichlorobenzene	0.05	< 0.05	MG/KG			
p-isopropyltoluene	0.05	< 0.05	MG/KG			
1,2-Dichlorobenzene	0.05	< 0.05	MG/KG			
n-Butylbenzene	0.05	< 0.05	MG/KG			
1,2-Dibromomo-3-chloropropane	0.05	< 0.05	MG/KG			
1,2,4-Trichlorobenzene	0.05	< 0.05	MG/KG			
Naphthalene	0.05	< 0.05	MG/KG			
Hexachlorobutadiene	0.05	< 0.05	MG/KG			
1,2,3-Trichlorobenzene	0.05	< 0.05	MG/KG			
SURROGATE % RECOVERY						
1,2-Dichloroethane-d4		1	12			
		(80 -	120)			
Toluene-d8		` 10	•			
		(81 -	117)			
Bromofluorobenzene		9				
		(74 -	-			

Spike Recovery and RPD Summary Report - SOIL

: C:\HPCHEM\1\METHODS\82600203.M (RTE Integrator) Method

: AEN New Mexico GC/MS Title

Last Update : Tue Feb 03 15:31:09 1998 Response via : Initial Calibration

Non-Spiked Sample: 020698B2.D

Spike

Sample Duplicate Sample

File ID: 020698S1.D 020698S2.D

Sample : SEBS SEBSD

Acq Time: 6 Feb 98 3:35 pm 6 Feb 98 4:12 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	0.00 0.00 0.00 0.00	2.50 2.50 2.50	2.65 2.58 2.64	2.61 2.60 2.52 2.48 2.57	106 103 106	104 104 101 99 103	3 2 2 6 3	22 21 24 21 21 21	59-172 66-142 62-137 59-139 60-133

- Fails Limit Check

82600203.M Mon Feb 09 08:15:27 1998

11 EAST OLIVE ROAD • PENSACOLA, FL 32514 • (850) 474-1001

SIGNATURE PAGE

Reviewed by:

AEN Project Manager

Client:

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

ALBUQUERQUE, NEW MEXICO

Project Name: Project Number: NMOCD 802321

Project Location:

PENROC

Accession Number: 802138

Project Manager:

KIMBERLY D. MCNEILL

Sampled By:

N/S

Analysis Report

Analysis: Group of Single Wetchem

Accession: Client:

802138 AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

802321 NMOCD

Project Number: Project Name: Project Location: Department:

PENROC WET CHEM 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 1 Date 10-Feb-98

"FINAL REPORT FORMAT - SINGLE"

Accession:

802138

Client:

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Project Number: 802321
Project Name: NMOCD
Project Location: PENROC

Test:

Group of Single Wetchem

Matrix: QC Level:

SOLID II

Lab ID: 001 Client Sample Id: 802321-01

Sample Date/Time: 04-FEB-98 1330 Received Date:

06-FEB-98

Parameters:

Units:

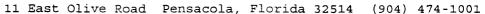
MG/KG

Results:

Rpt Lmts:

Q: Batch:

Analyst:


CYANIDE, REACTIVE (9010) SULFIDE, REACTIVE (9030) MG/KG

ND

0.25 5

RCX005 RSX005

Comments:

Analysis Report

Analysis: Group of Single Metals

Accession: 802138

Client: AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Project Number: 802321
Project Name: NMOCD
Project Location: PENROC
Department: METALS

[0) Page 1 Date 04-Mar-98

"FINAL REPORT FORMAT - SINGLE"

Accession:

802138

Client:

Project Number:

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Project Name: NMOCD Project Location: PENROC

802321

Test:

Group of Single Metals

Matrix:

SOLID

QC Level:

II

Lab Id:

001

Sample Date/Time: 04-FEB-98 1330 Received Date:

06-FEB-98

Client Sample Id: 802321-01

Results:

Rpt Lmts:

Q: Batch:

Analyst:

SILICON (6010)

Parameters:

Units: MG/KG

160

10

26S031

JR

Comments:

AMERICAN ENVIRONMENTAL NETWORK 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0] Page 2 Date 04-Mar-98

"Method Report Summary"

Accession Number: 802138

Client: AMER

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Project Number: 802321 Project Name: NMOCD Project Location: PENROC

Test: Group of Single Metals

Client Sample Id: Parameter: Unit: Result:

802321-01 SILICON (6010) MG/KG 160

Data Qualifiers for Final Report

AEN-Pensacola Inorganic/Organic

@ Adjusted reporting limit due to sample matrix (dilution prior to digestion and/or analysis)

+ Elevated reporting limit due to dilution into calibration range

Elevated reporting limit due to matrix interference (dilution prior to digestion and/or analysis)

Elevated reporting limit due to insufficient sample size

D Diluted out

J5 The reported value is quantitated as a TIC; therefore, it is estimated

ND = Not Detected N/S = Not Submitted N/A = Not Applicable

Florida Projects Inorganic/Organic

Y1 Improper preservation, no preservative present in sample upon receipt
Y2 Improper preservation, incorrect preservative present in sample upon receipt

Y3 Improper preservation, sample temperature exceeded EPA temperature limits of 2-6°C upon receipt

Y (FL description) The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate.

Q Sample held beyond the accepted holding time

I The reported value is < Laboratory RL and > laboratory MDL

Ul The reported value is ≤ Laboratory MDL (value for sample result is reported as the MDL)

U (FL description) Indicates the compound was analyzed for but not detected.

The reported value is < Laboratory MDL (value shall not be used for statistical analysis)

V The analyte was detected in both the sample and the associated method blank.

J1 Surrogate recovery limits have been exceeded

J2 The sample matrix interfered with the ability to make any accurate determinations

J3 The reported value failed to meet the established quality control criteria for either precision or accuracy

J (FL description) Estimated value; not accurate.

AFCEE Projects (under QAPP) and All Other (AEN-PN) Projects/Sites for Inorganic/Organic Parameters

J4(For positive results)Temperature limits exceeded (\leq 2°C or \geq 6°C)J (AFCEE description)The analyte was positively identified, the quantitation is an estimationR1(For nondetects)Temperature limits exceeded (\leq 2°C or \geq 6°C)R2Improper preservation, no preservative present in sample upon receiptR3Improper preservation, incorrect preservative present in sample upon receiptR4Holding time exceeded

R5 Collection requirements not met, improper container used for sample

R (AFCEE description) The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria

F < RL and > laboratory MDL

F (AFCEE description) The analyte was positively identified but the associated numerical value is below the AFCEE or lab RL

U2 ≤ Laboratory MDL (value for result will be the MDL, never below the MDL)

U (AFCEE description) The analyte was analyzed for but not detected. The associated numerical value is at or below the MDL

B (AFCEE description) The analyte was found in the associated blank, as well as in the sample

ICR Projects Inorganic/Organic

A Acceptable R6 Rejected

Examples: ICR Flags

R6 = Laboratory extracted the sample but the refrigerator malfunctioned so the extract became warm and client was notified

R6 = Sample arrived in laboratory in good condition; however, the laboratory did not analyze it within EPA's established holding time limit.

CLP and CLP-like Projects

Refer to referenced CLP Statement of Work (SOW) for explanation of data qualifiers

IDL = Laboratory Instrument Detection Limit

MDL = Laboratory Method Detection Limit

RL = Reporting Limit (AFCEE RLs are listed in the AFCEE QAPP)

CLP CRDL = CLP Contract Required Detection Limit (these limits are listed in the EPA CLP Statement of Work or SOW)

CLP CRQL = CLP Contract Required Quantitation Limit (these limits are listed in the EPA CLP Statement of Work or SOW)

Any time a sample arrives at the laboratory improperly preserved (at improper pH or temperature) or after holding time has expired or prepared or analyzed after holding time, client must be notified in writing (i.e. case narrative).

AEN-Pensacola uses the most current promulgated methods contained in the reference manuals.

word\forms\flags\ksh revised 10/13/97

Quality Control Report

Analysis: Group of Single Wetchem

Accession:

802138

Client:

AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

Project Number: Project Name: Project Location:

802321 NMOCD PENROC

Department:

WET CHEM

[0) Page 1 Date 10-Feb-98

trol Report"

Parameter: Batch Id: Blank Result: Anal. Method: Prep. Method: Analysis Date: Prep. Date:	CYANIDE RCX005 <0.25 9010 N/A 10-FEB-98 09-FEB-98	"WetChem SULFIDE RSX005 <5 9030 N/A 09-FEB-98 09-FEB-98	Quality	Cont
Sample Dup	lication		-	
Sample Dup: Rept Limit:	801690-2 <0.25	801690-2 <5	_	
Sample Result: Dup Result: Sample RPD: Max RPD: Dry Weight%	<0.25 <0.25 N/C 0.25 N/A	<1 <1 N/C 5 N/A		
Matrix Spi	ke		-	
Sample Spiked: Rept Limit:	N/A N/A	N/A N/A		
Sample Result: Spiked Result: Spike Added: % Recovery: % Rec Limits: Dry Weight%				
ICV			- _	
ICV Result: True Result: % Recovery: % Rec Limits:		18.2 20.0 91 90-110		
LCS			- -	
LCS Result: True Result: % Recovery: % Rec Limits:				

[0] Page 2 Date 10-Feb-98

---- Common Footnotes WetChem ----

N/A = NOT APPLICABLE. N/S = NOT SUBMITTED.

N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW AEN REPORTING LIMIT; THEREFORE. THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY. N/D = NOT DETECTED.

R = REACTIVE

T = TOTAL

G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT

THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT OR BELOW AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

THE ANALYTICAL (POST-DISTILLATION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DISTILLATION) SPIKE.

ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE.

ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.

ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE (DILUTION PRIOR DIGESTION

AND/OR ANALYSIS).

@ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX (DILUTION PRIOR TO DIGESTION AND/OR ANALYSIS).
P = ANALYTICAL (POST DIGESTION) SPIKE.

I = DUPLICATE INJECTION.

automated

F = SAMPLE SPIKED > 4 X SPIKE CONCENTRATION. N/C+ = NOT CALCULABLE

H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN REPORTING

LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".

Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT.

THIS RESULT IS REPORTED FOR ACCURATE OC CALCULATIONS.

NH= SAMPLE AND / OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

SAMPLE IS NON-HOMOGENEOUS.

(*) = REPORTING LIMITS RAISED DUE TO CLP METHOD NOT REQUIRING A CONCENTRATION STEP FOR CN. (CA) = SEE CORRECTIVE ACTIONS FORM.

**= MATRIX INTERFERENCE

SW-846, 3rd Edition, latest EPA-approved edition.

EPA 600/4-79-020, Revised March 1983.

STANDARD METHODS, For the Examination of Water and Wastewater, latest EPA-approved edition.

NIOSH Manual of Analytical Methods, 4th Edition.
ANNUAL BOOK OF ASTM STANDARDS, VOLUMES 11.01 and 11.02, latest EPA-approved edition.
METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES,

EPA600/R-93/100, AUGUST 1993
METHODS FOR SOIL ANALYSIS, PART 2, CHEMICAL AND MICROBILOGICAL PROPERTIES, 2ND EDITION.
AEN-PN USES THE MOST CURRENT PROMULGATED METHODS FROM THE REFERENCES LISTED ABOVE.

COLIFORM PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN COLIFORM.

THE LOGARITHM OF COLONIES PER 100 MLS OF SAMPLE ON DUPLICATE PLATES. PH PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE 2. PH.

SAMPLE AND DUPLICATE ANALYSIS.

3. FLASHPOINT. FLASHPOINT PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE ANALYSIS.

RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION).

RPT LMTS = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.

JL = JANET LECLEAR CR = CYNTHIA ROBERTS DPH = DOLLY P. HWANG RB = REBECCA BROWN MM = MIKE MCKENZIE ED = ESTHER DANTIN

= LASSANDRA VON APPEN JTZ = JONATHAN T. ZIENTARSKI PLD = PAULA L. DOUGHTY LV

RH = RICKY HAGENDORFER NK = NIKKI KILBURN = MARY GUTIERREZ MG AB = AMY BRADLEY

= BETTY EVERTON BE

Quality Control Report

Analysis: Group of Single Metals

Accession:

Client: AMERICAN ENVIRONMENTAL NETWORK (NEW MEXICO) INC.

802138

Project Number: 802321
Project Name: NMOCD
Project Location: PENROC
Department: METALS

[0) Page 1 Date 04-Mar-98

"Metals Quality Control Report"

Parameter: SILICON
Batch Id: 26S031
Blank Result: <10
Anal. Method: 6010A
Prep. Method: 3050A
Analysis Date: 26-FEB-98
Prep. Date: 25-FEB-98

Sample Duplication

Sample Dup: 802138-1
Rept Limit: <10

Sample Result: 250 A
Dup Result: 320 A
Sample RPD: 25
Max RPD: 20
Dry Weight% N/A

Matrix Spike

Sample Spiked: 802138-1
Rept Limit: <10

Sample Result: 160
Spiked Result: 340 Q
Spike Added: 200
% Recovery: 90
% Rec Limits: 75-125
Dry Weight% N/A

ICV

ICV Result: 10

True Result: 10
% Recovery: 100
% Rec Limits: 95-105

LCS

LCS Result: 140

True Result: 200
% Recovery: 70
% Rec Limits: 80-120

AMERICAN ENVIRONMENTAL NETWORK

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 2 Date 04-Mar-98

"Quality Control Comments"

Batch Id:

Comments:

26S031 26S031

ANALYST: JR The results reported under 'Sample Duplication' are the ${\sf MS/MSD}$.

[0) Page 3 Date 04-Mar-98

---- Common Footnotes Metals ----

N/A = NOT APPLICABLE.

N/S = NOT SUBMITTED.

N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW THE REPORTING LIMIT; THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.

N/D = NOT DETECTED.

DISS. OR D = DISSOLVED

T & D = TOTAL AND DISSOLVED

R = REACTIVE

T = TOTAL

G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X THE REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT OR BELOW AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

Q = THE ANALYTICAL (POST-DIGESTION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY

BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DIGESTION) SPIKE.

= ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE.

= ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.

= ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE. (DILUTION PRIOR TO ANALYSIS)

@ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX. (DILUTION PRIOR TO DIGESTION)

= ANALYTICAL (POST DIGESTION) SPIKE.

I = DUPLICATE INJECTION.

& = AUTOMATED

= SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.

N/C+ = NOT CALCULABLE

N/C* = NOT CALCULABLE; SAMPLE SPIKED > 4 X SPIKE CONCENTRATION. H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X AEN REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE AEN REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".

= THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT. HOWEVER,

THIS RESULT IS REPORTED FOR ACCURATE QC CALCULATIONS.

NH= THE RELATIVE PERCENT DIFFERENCE (RPD) EXCEEDS THE AEN CONTROL LIMIT AND IS "OUT OF CONTROL; DUE TO A NON-HOMOGENEOUS SAMPLE MATRIX.

J = (FLORIDA DEP 'J' FLAG) - MATRIX SPIKE AND POST SPIKE RECOVERY IS OUT OF THE ACCEPTABLE RANGE. SEE OUT OF CONTROL EVENTS FORM.

U = (FLORIDA DEP 'U' FLAG) - THE COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED.

S = METHOD OF STANDARD ADDITIONS (MSA) WAS PERFORMED ON THIS SAMPLE.

FROM QUALITY CONTROL REPORT:

RPD= RELATIVE PERCENT DEVIATION.

REPT LIMIT= REPORTING LIMIT BASED ON METHOD DETECTION LIMIT STUDIES.

THE UNITS REPORTED ON THE QUALITY CONTROL REPORT ARE REPORTED ON AN AS RUN BASIS. (NOT ADJUSTED FOR DRY WEIGHT). NOTE:

SW-846, 3rd Edition, EPA - approved method update. EPA 600/4-79-020, Revised March 1983.

NIOSH Manual of Analytical Methods, 4th Edition.

Standard Methods For the Examination of Water and Wastewater, 18th Edition, 1992. Methods For the Determination of Metals in Environmental Samples - Supplement I, EPA 600/R-94-111, May 1994.

GJ = GARY JACOBS JLH = JAMES L. HERED

JR = JOHN REED JL = JANET LECLEAR

American Environmental Network of Florida PROJECT SAMPLE INSPECTION FORM

Lab Accession #:	802138	Date Received: 06-4eb-98
1. Was there a Chain of	Custody? Yes No*	8. Were samples checked for Yes No N/A preservative? (Check pH of all H ₂ O requiring preservative except VOA vials that
2. Was Chain of Custody filled out and relinquis	shed?	9. Is there sufficient volume for analysis requested?
3. Were samples receive (Criteria: 2° - 6°C: AEN 1055)		10. Were samples received within Holding Time? (REFER TO AEN-SOP 1040)
4. Were all samples proplabeled and identified5. Did samples require s		11. Is Headspace visible > ¼ " in Yes* No (N/A) diameter in VOA vials?* If any headspace is evident, comment
Req By: PM Client 6. Were samples receive	Other*	in out-of-control section. 12. If sent, were matrix spike Yes No N/A
proper containers for requested?7. Were all sample containers		bottles returned? 13. Was Project Manager notified Yes No* N/A
received intact?	iners res No	of problems? (initials:)
Airbill Number(s):	3484014423	Shipped By: FEDEX
Cooler Number(s):	N/5	Shipping Charges: N/A
Cooler Weight(s):	NA	Cooler Temp(s) (°C): 4 C - CC4 /
<u></u>	,	(LIST THERMOMETER NUMBER(S) FOR VERIFICATION)
_	and Inspection Comments	S: -NM ADD SILION CE 10-00.
		2/6/28 C 10:
		•
		· · · · · ·
		(USE BACK OF PSIFFOR ADDITIONAL NOTES AND COMMENTS)
Inspected By:	Par Date: 2/6/9	& Logged By: # Date: 2/6/98
	end/or questionable events on Common e splitting of semples on the Commont	

All proservatives for the State of North Carolina, the State of New York, and other requested samples are to be recorded on the sheet

According to EPA, % of headspace is allowed in 40 ml visis requiring volatile analysis, however, AEN makes it policy to record any

provided to record pH results (AEN-SOP 938, section 2.2.9).

Albuquerque, New Mexico American Environmental Network

Interlab Chain of Custody 802/38 DATE: 2/5

SPECIAL CERTIFICATION REQUIRED: TYPES TIMO	1		TAT: STANDARD (RUSHT)	OC REQUIRED: MS MSD BLANK	OCLEVEL: (STD.) IV	PROJECT NAME: FOR POR MINOCO	11,	PROJECT INFORMATION								802321-01 24/08 1	SAMPLE ID DATE	Kim McNeill	ENT PROJECT MANAGER:	COMPANY: American Environmental ADDRESS: 2709-D Pan American Freeway, NE Albuquerque, NM 87107	NETWORK PROJECT MANAGER: KIMBERLY D. McNEILL
	beck lust		LAB NUMBER	RECEIVED GOOD COND/COLD	INTACT?	CHAIN OF CUSTODY SEALS	TOTAL NUMBER OF CONTAINERS	SAMPLE RECEIPT								1330 MAQ 1	TIME MATRIX LABID			way,NE), McNEILL
							RS										Me Me	tals -	PP Li:	1	
			PHOENIX	PORTLAND	PENSACOLA	DENTON"	SAN DIEGO	SAMPLES SENT TO:								X).eac X		by TCLP (1311) Fy (CN + Sulfide)	
_			1		Z	\dagger				1	7	1	1	1-	L				emistr	у	
Company:	Printed Name: Date:	Signature: Time:	RECEIVED BY:	Albuquerque	(blunta lowel) 2/5		Signature Time:	USHED									BO CO Pes Hes Bas	D sticid rbicid se/Ner	les (61 utral Ac		ANALYSIS REQUEST
Company: QF/F/	Printed Name! Date: 2/6/7&	Signature: 8 Time: 082	T. RECEIVED BY: (LAB)	Company	KK KO'S	Printed Name: Date:	Signature: 0/1/1968	1. RELINQUISHED BY:									Pol 824 827	ynuc 40 (T 70 (T	lear A	romatics (610/8310) 311) ZHE 311)	÷.
	12		.~		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$?		\bot	土	士	\perp				NUI	MBER	OF CO	ONTAINERS	

PLEASE FILL THIS FORM IN COMPLETELY.

PROJ. NAME: PAROC

CERTIFICATION REQUIRED: METHANOL PRESERVATION

COMMENTS:

FIXED FEE

Company NM OCD

.

Signature: Signature:

Printed Name:

Date:

(RUSH) ∐24hr ☐48hr

□ 72hr O N N N

XI WEEK SDWA

(NORMAL)

RELINQUISHED BY TO A STATE OF THE PARTY OF T

Printed Name:

Date

PROJ. NO.

PROJECT INFORMATION

PRIOR AUTHORIZATIONIS REQUIRED FOR RUSH RROJECTS

P.O. NO.: SHIPPED VIA:

PROJECT MANAGER: BILL TO: PHONE: COMPANY: **ADDRESS** ADDRESS: COMPANY: 198 /330 - interfe Petroleum Hydrocarbons (418.1) TRPH (MOD.8015) Diesel/Direct Inject (M8015) Gas/Purge & Trap 8021 (BTEX)/8015 (Gasoline) 8021 (BTEX) ☐ MTBE ☐ TMB ☐ PCE 8021 (TCL) 8021 (EDX) 8021 (HALO) 8021 (CUST) 504.1 EDB □ / DBCP □ FLASH PONT + COVE 8260 (TCL) Volatile Organics 8260 (Full) Volatile Organics 8260 (CUST) Volatile Organics 8260 (Landfill) Volatile Organics Pesticides /PCB (608/8081) Herbicides (615/8151) Base/Neutral/Acid Compounds GC/MS (625/8270) Polynuclear Aromatics (610/8310) General Chemistry: 8260 TCLP-roA SVOA 8271 TCL D -Priority Pollutant Metals (13) Target Analyte List Metals (23) RCRA Metals (8) RCRA Metals by TCLP (Method 1311 Metals: 60/0 + REA CTIVIT

American Environmental Network (NM), Inc.

DATE: 2/51

CHAIN OF CUSTODY

/5/98 AEN Inc.: American Environmental Network (NM), Inc. • 2709-D Pan American Freeway, NE • Albuquerque, New Mexico 87107 • (505) 344-3777 • Fax (505) 344-4413

Company:

DISTRIBUTION: White - AEN, Canary - Originato

17400 SW Upper Boones Ferry Road • Suite 270 • Portland, OR 97224 • (503) 684-0447

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Date: 02/17/1998

AEN Account No.: 90147 AEN Job Number: 98.00249

Project:

802321 / NM Oil Cons. Division

Location: Penroc

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Sample		Matrix	Date	Date
Number	Sample Description	Туре	Taken	Received
90089	802321/ NE MALJAMAR PIT	MISC. SOLID	02/04/1998	02/06/1998
90090	NE MALJAMAR PIT/802321-1 TCLP	MISC. SOLID	02/04/1998	02/06/1998

Approved by:

Andi Hoevet Project Manager

AEN, INC.

AEN, INC.

The results from these samples relate only to the items tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

Analytical Services for the Environment

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998 Job No.: 98.00249

Page: 2

Project Name: Date Received:

802321 / NM Oil Cons. Division 02/06/1998

Sample Number 90089

Sample Description

802321/ NE MALJAMAR PIT

PARAMETERS	METHODS	RESULTS	REPORT LIMIT	UNITS	DATE ANALYZED	FLAG
Flashpoint	1010	94	140	Degree	02/11/1998	
ICP/AA Digestion - Soil	ICP	-	-		02/09/1998	
Aluminum, ICP	6010	400	10	mg/Kg	02/09/1998	
Antimony, ICP	6010	ND	1.0	mg/Kg	02/09/1998	
Arsenic, ICP	6010	47	1.0	mg/Kg	02/09/1998	
Barium, ICP	6010	57	1.0	mg/Kg	02/09/1998	
Beryllium, ICP	6010	ND	1.0	mg/Kg	02/09/1998	
Boron, ICP	6010	6.6	10	mg/Kg	02/09/1998	
Cadmium, ICP	6010	ND	1.0	mg/Kg	02/09/1998	
Calcium, ICP	6010	4700	10	mg/Kg	02/09/1998	
Chromium, ICP	6010	2.0	1.0	mg/Kg	02/09/1998	
Cobalt, ICP	6010	ND	1.0	mg/Kg	02/09/1998	
Copper, ICP	6010	7.5	1.0	mg/Kg	02/09/1998	
Iron, ICP	6010	3800	5.0	mg/Kg	02/09/1998	Q
Lead, ICP	6010	64	1.0	mg/kg	02/09/1998	
Magnesium, ICP	6010	560	10	mg/Kg	02/09/1998	
Manganese, ICP	6010	26	1.0	mg/Kg	02/09/1998	
Mercury Prep (S)	7471	-			02/10/1998	
Mercury, CVAA (S)	7471	ND	0.10	mg/Kg	02/10/1998	
Molybdenum, ICP	6010	1.6	1.0	mg/Kg	02/09/1998	
Nickel, ICP	6010	6.1	1.0	mg/Kg	02/09/1998	
Potassium, ICP	6010	120	5.0	mg/Kg	02/09/1998	
Selenium, ICP	6010	ND	1.0	mg/Kg	02/09/1998	
Silver, ICP	6010	ND	1.0	mg/Kg	02/09/1998	
Thallium, ICP	6010	ND	2.0	mg/Kg	02/09/1998	
Vanadium, ICP	6010	1.1	1.0	mg/Kg	02/09/1998	
Zinc, ICP	6010	140	5.0	mg/Kg	02/09/1998	Q
Corrosivity (pH)		6.5		units	02/09/1998	
Prep, BNA (S)		-			02/10/1998	
8270 BNA's (S)						
Dilution Factor		1500			02/14/1998	
2-Picoline	8270	ND	260	mg/Kg	02/14/1998	

A sample result of ND indicates the parameter was Not Detected at the reporting limit.

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107 02/17/1998

Job No.: 98.00249

Page: 3

Project Name:

802321 / NM Oil Cons. Division 02/06/1998

Date Received: 02/06/1998

Sample Number

Sample Description

90089

802321/ NE MALJAMAR PIT

PARAMETERS	METHODS	RESULTS	REPORT LIMIT	UNITS	DATE ANALYZED	FLAG
N-Nitrosodimethylamine	8270	ND	2,600	mg/Kg	02/14/1998	
Methyl methanesulfonate	8270	ND	260	mg/Kg	02/14/1998	
Phenol	8270	ND	510	mg/Kg	02/14/1998	
Ethyl methanesulfonate	8270	ND	260	mg/Kg	02/14/1998	
bis(2-Chloroethyl)ether	8270	ND	260	mg/Kg	02/14/1998	
2-Chlorophenol	8270	ND	260	mg/Kg	02/14/1998	
1,3-Dichlorobenzene	8270	ND	260	mg/Kg	02/14/1998	
1,4-Dichlorobenzene	8270	ND	260	mg/Kg	02/14/1998	
1,2-Dichlorobenzene	8270	ND	260	mg/Kg	02/14/1998	
o-Cresol	8270	ND	260	mg/Kg	02/14/1998	
Benzyl Alcohol	8270	ND	260	mg/Kg	02/14/1998	
m,p-Cresol	8270	ND	260	mg/Kg	02/14/1998	
bis(2-Chloroisopropyl)ether	8270	ND	260	mg/Kg	02/14/1998	
N-nitroso-di-n-propylamine	8270	ND	260	mg/Kg	02/14/1998	
Hexachloroethane	8270	ND	260	mg/Kg	02/14/1998	
Acetophenone	8270	ND	260	mg/Kg	02/14/1998	
Nitrobenzene	8270	ND	260	mg/Kg	02/14/1998	
N-Nitrosopiperidine	8270	ND	260	mg/Kg	02/14/1998	
Isophorone	8270	ND	260	mg/Kg	02/14/1998	
2-Nitrophenol	8270	ND	260	mg/Kg	02/14/1998	
2,4-Dimethylphenol	8270	ND	260	mg/Kg	02/14/1998	
bis(2-Chloroethoxy)methane	8270	ND	260	mg/Kg	02/14/1998	
2,4-Dichlorophenol	8270	ND	260	mg/Kg	02/14/1998	
1,2,4-Trichlorobenzene	8270	ND	260	mg/Kg	02/14/1998	
Naphthalene	8270	55	260	mg/Kg	02/14/1998	J
2,6-Dichlorphenol	8270	ND	260	mg/Kg	02/14/1998	
Hexachlorobutadiene	8270	ND	260	mg/Kg	02/14/1998	
a,a,-Dimethylphenylamine	8270	ND	260	mg/Kg	02/14/1998	
N-Nitroso-di-n-butylamine	8270	ND	260	mg/Kg	02/14/1998	
4-Chloro-3-methylphenol	8270	ND	260	mg/Kg	02/14/1998	
2-Methylnaphthalene	8270	160	260	mg/Kg	02/14/1998	J
Hexachlorocyclopentadiene	8270	ND	260	mg/Kg	02/14/1998	

A sample result of ND indicates the parameter was Not Detected at the reporting limit.

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998

Job No.: 98.00249

Page: 4

Project Name:

802321 / NM Oil Cons. Division 02/06/1998

Date Received: 02/06/1998

Sample Number

Sample Description

90089

802321/ NE MALJAMAR PIT

PARAMETERS	METHODS	RESULTS	REPORT LIMIT	UNITS	DATE ANALYZED	FLAG
1,2,4,5-Tetrachlorobenzene	8270	ND	260	mg/Kg	02/14/1998	
2,4,6-Trichlorophenol	8270	ND	260	mg/Kg	02/14/1998	
2,4,5-Trichlorophenol	8270	ND	260	mg/Kg	02/14/1998	
2-Chloronaphthalene	8270	ND	260	mg/Kg	02/14/1998	
1-Chloronaphthalene	8270	ND	260	mg/Kg	02/14/1998	
2-Nitroaniline	8270	ND	260	mg/Kg	02/14/1998	
Dimethylphthalate	8270	ND	260	mg/Kg	02/14/1998	
Pentachlorobenzene	8270	ND	260	mg/Kg	02/14/1998	
2,6-Dinitrotoluene	8270	ND	260	mg/Kg	02/14/1998	
Acenaphthylene	8270	ND	260	mg/Kg	02/14/1998	
Acenaphthene	8270	ND	260	mg/Kg	02/14/1998	
2,4-Dinitrophenol	8270	ND	1,000	mg/Kg	02/14/1998	
4-Nitrophenol	8270	ND	260	mg/Kg	02/14/1998	
Dibenzofuran	8270	ND	260	mg/Kg	02/14/1998	
2,4-Dinitrotoluene	8270	ND	260	mg/Kg	02/14/1998	
2,3,4,6-Tetrachlorophenol	8270	ND	260	mg/Kg	02/14/1998	
Diethylphthalate	8270	ND	260	mg/Kg	02/14/1998	
4-Chlorophenyl-phenylether	8270	ND	260	mg/Kg	02/14/1998	
Fluorene	8270	ND	260	mg/Kg	02/14/1998	
4-Nitroaniline	8270	ND	260	mg/Kg	02/14/1998	
4,6-Dinitro-2-methylphenol	8270	ND	2,600	mg/Kg	02/14/1998	
N-nitrosodiphenylamine	8270	ND	260	mg/Kg	02/14/1998	
Phenacetin	8270	ND	260	mg/Kg	02/14/1998	
4-Bromophenyl-phenylether	8270	ND	260	mg/Kg	02/14/1998	
Hexachlorobenzene	8270	ND	260	mg/Kg	02/14/1998	
Pentachlorophenol	8270	ND	510	mg/Kg	02/14/1998	
4-Aminobiphenyl	8270	ND	510	mg/Kg	02/14/1998	
Pentachloronitrobenzene	8270	ND	260	mg/Kg	02/14/1998	
Pronamide	8270	ND	260	mg/Kg	02/14/1998	
Phenanthrene	8270	120	260	mg/Kg	02/14/1998	J
Anthracene	8270	ND	260	mg/Kg	02/14/1998	
Di-n-butylphthalate	8270	ND	260	mg/Kg	02/14/1998	

A sample result of ND indicates the parameter was Not Detected at the reporting limit.

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107 02/17/1998

Job No.: 98.00249

Page: 5

Project Name:

802321 / NM Oil Cons. Division 02/06/1998

Date Received: 02/06/1998

Sample Number

Sample Description

90089

802321/ NE MALJAMAR PIT

PARAMETERS	METHODS	RESULTS	REPORT LIMIT	UNITS	DATE ANALYZED	FLAG
Fluoranthene	8270	ND	260	mg/Kg	02/14/1998	
Pyrene	8270	ND	260	mg/Kg	02/14/1998	
p-Diemthylaminozobenzene	8270	ND	260	mg/Kg	02/14/1998	
Butylbenzylphthalate	8270	ND	260	mg/Kg	02/14/1998	
3,3-Dichlorobenzidine	8270	ND	260	mg/Kg	02/14/1998	
Bis(2-ethylhexyl)phthalate	8270	ND	260	mg/Kg	02/14/1998	
Benzo(a) anthracene	8270	ND	260	mg/Kg	02/14/1998	
Chrysene	8270	ND	260	mg/Kg	02/14/1998	
Di-n-octylphthalate	8270	ND	260	mg/Kg	02/14/1998	
7,12-Dimethylbenz(a)anthracene	8270	ND	260	mg/Kg	02/14/1998	
Benzo(b) fluoranthene	8270	ND	260	mg/Kg	02/14/1998	
Benzo(k) fluoranthene	8270	ND	260	mg/Kg	02/14/1998	
Benzo (a) pyrene	8270	ND	260	mg/Kg	02/14/1998	
Dibenz(a,j)acridine	8270	ND	1,000	mg/Kg	02/14/1998	
3-methyl chloanthrene	8270	ND	260	mg/Kg	02/14/1998	
Indeno(1,2,3-cd)pyrene	8270	ND	260	mg/Kg	02/14/1998	
Dibenzo(ah)anthracene	8270	ND	260	mg/Kg	02/14/1998	
Benzo(g,h,i)perylene	8270	ND	260	mg/Kg	02/14/1998	

Sample Number

Sample Description

90090

NE MALJAMAR PIT/802321-1 TCLP

PARAMETERS	METHODS	RESULTS	REPORT LIMIT	UNITS	DATE ANALYZED	FLAG
ICP/AA Digestion - Water	ICP	-			02/10/1998	
Mercury Prep (W)	74 70	-			02/11/1998	
TCLP EXTRACTION PREP	1311	-			02/10/1998	
TCLP - Arsenic, ICP	6010	ND	0.05	mg/L	02/12/1998	
TCLP - Barium, ICP	6010	0.12	0.05	mg/L	02/12/1998	
TCLP - Cadmium, ICP	6010	ND	0.05	mg/L	02/12/1998	
TCLP - Chromium, ICP	6010	ND	0.05	mg/L	02/12/1998	
TCLP - Lead, ICP	6010	ND	0.05	mg/L	02/12/1998	
TCLP - Mercury	7470	ND	0.0002	mq/L	02/12/1998	

A sample result of ND indicates the parameter was Not Detected at the reporting limit.

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107 02/17/1998

Job No.: 98.00249

Page: 6

Project Name:

802321 / NM Oil Cons. Division

Date Received: 02/06/1998

Sample Number

Sample Description

90090

NE MALJAMAR PIT/802321-1 TCLP

PARAMETERS	METHODS	RESULTS	REPORT LIMIT	UNITS	DATE ANALYZED	FLAG
TCLP - Selenium, ICP	6010	ND	0.05	mg/L	02/12/1998	
TCLP - Silver, ICP	6010	ND	0.05	mg/L	02/12/1998	
Prep, BNA (W)		-			02/10/1998	
TCLP - 8240						
TCLP - Benzene	8240	0.970	0.5	mg/L	02/10/1998	
TCLP - Carbon tetrachloride	8240	ND	0.5	mg/L	02/10/1998	
TCLP - Chlorobenzene	8240	ND	100	mg/L	02/10/1998	
TCLP - Chloroform	8240	ND	6.0	mg/L	02/10/1998	
TCLP - 1,4-Dichlorobenzene	8240	ND	7.5	mg/L	02/10/1998	
TCLP - 1,2-Dichloroethane	8240	ND	0.5	mg/L	02/10/1998	
TCLP - 1,1-Dichloroethene	8240	ND	0.7	mg/L	02/10/1998	
TCLP - Methyl Ethyl Ketone	8240	ND	200	mg/L	02/10/1998	
TCLP - Tetrachloroethene	8240	ND	0.7	mg/L	02/10/1998	
TCLP - Trichlorothene	8240	ND	0.5	mg/L	02/10/1998	
TCLP - Vinyl Chloride	8240	ND .	0.2	mg/L	02/10/1998	
BASE NEUTRAL COMPOUNDS - TCLP						
TCLP-1,4-Dichlorobenzene	8270	ND	7.5	mg/L	02/11/1998	
TCLP-2,4-Dinitrotoluene	8270	ND	0.13	mg/L	02/11/1998	
TCLP-Hexachlorobenzene	8270	ND	0.13	mg/L	02/11/1998	
TCLP-Hexachlorobutadiene	8270	ND	0.5	mg/L	02/11/1998	
TCLP-Hexachloroethane	8270	ND	3.0	mg/L	02/11/1998	
TCLP-Nitrobenzene	8270	ND	2.0	mg/L	02/11/1998	
TCLP-Pyridine	8270	ND	5.0	mg/L	02/11/1998	
ACID COMPOUNDS - TCLP						
TCLP-m&p-Cresol	8270	ND	200	mg/L	02/11/1998	
TCLP-o-Cresol	8270	ND	200	mg/L	02/11/1998	
TCLP-Pentachlorophenol	8270	ND	100	mg/L	02/11/1998	
TCLP-2,4,5-Trichlorophenol	8270	ND	400	mg/L	02/11/1998	
TCLP-2,4,6-Trichlorophenol	8270	ND	2.0	mg/L	02/11/1998	

A sample result of ND indicates the parameter was Not Detected at the reporting limit.

SURROGATE REPORT

Kim McNeill AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

02/17/1998

Job No.: 98.00249

Page: 7

Project Name: Date Received:

802321 / NM Oil Cons. Division 02/06/1998

SURROGATES	METHODS	RESULTS		DATE ANALYZED	FLAG
Sample Number Sample I	Description	n			
90089 802321/	NE MALJAM	AR PIT			
				00/01/000	
2-Fluorophenol	8270	NA	*	02/14/1998	
Phenol-d5	8270	NA	*	02/14/1998	
Nitrobenzene-d5	8270	NA	*	02/14/1998	
2-Fluorobiphenyl	8270	NA	*	02/14/1998	
2,4,6-Tribromophenol	8270	NA	*	02/14/1998	
Terphenyl-d14	8270	NA	*	02/14/1998	
Sample Number Sample 1	Description	n.			
90090 NE MALJZ	AMAR PIT/8	02321-1 T	CLP		
1,2-Dichloroethane-d4	8240	99	ક	02/10/1998	
Toluene - d8	8240	100	*	02/10/1998	
Bromofluorobenzene	8240	95	¥	02/10/1998	
Nitrobenzene-d5 (Surr.)		68	*	02/11/1998	
2-Fluorobiphenyl (Surr.)		80	¥	02/11/1998	
Terphenyl-d14 (Surr.)		90	*	02/11/1998	
Phenol-d5 (Surr.)	8270	25	*	02/11/1998	
2-Fluorophenol (Surr.)	8270	50	*	02/11/1998	
2,4,6-Tribromophenol (Surr.)		83	*	02/11/1998	
-, -, (-	,,	

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Date: 02/17/1998

Job Number: 98.00249

Contact: Kim McNeill Project: 802321 / NM Oil Cons. Division

	CCV			
	True	Concentration	Percent	Date
Analyte	Concentration	Found	Recovery	Analyzed
Flashpoint	81.	80	98.8	02/11/1998
Aluminum, ICP	25.0	23.4	93.6	02/09/1998
Antimony, ICP	0.500	0.499	99.8	02/09/1998
Arsenic, ICP	0.500	0.506	101.2	02/09/1998
Barium, ICP	0.500	0.505	101.0	02/09/1998
Beryllium, ICP	0.500	0.513	102.6	02/09/1998
Boron, ICP	0.500	0.505	101.0	02/09/1998
Cadmium, ICP	0.500	0.501	100.2	02/09/1998
Calcium, ICP	25.0	23.8	95.2	02/09/1998
Chromium, ICP	0.500	0.508	101.6	02/09/1998
Cobalt, ICP	0.500	0.501	100.2	02/09/1998
Iron, ICP	0.500	0.521	104.2	02/09/1998
Lead, ICP	0.500	0.508	101.6	02/09/1998
Magnesium, ICP	25.0	23.0	92.0	02/09/1998
Manganese, ICP	0.500	0.504	100.8	02/09/1998
Mercury, CVAA (S)	1.00	1.08	108.0	02/10/1998
Molybdenum, ICP	0.500	0.499	99.8	02/09/1998
Nickel, ICP	0.500	0.511	102.2	02/09/1998
Potassium, ICP	5.00	5.06	101.2	02/09/1998
Selenium, ICP	0.500	0.505	101.0	02/09/1998
Silver, ICP	0.500	0.500	100.0	02/09/1998
Thallium, ICP	0.500	0.503	100.6	02/09/1998
Vanadium, ICP	0.500	0.503	100.6	02/09/1998
Zinc, ICP	0.500	0.503	100.6	02/09/1998
Corrosivity (pH)	8.0	7.90	98.8	02/09/1998
TCLP - Arsenic, ICP	0.500	0.493	98.6	02/12/1998
TCLP - Barium, ICP	0.500	0.511	102.2	02/12/1998
TCLP - Cadmium, ICP	0.500	0.489	97.8	02/12/1998
TCLP - Chromium, ICP	0.500	0.510	102.0	02/12/1998
TCLP - Lead, ICP	0.500	0.499	99.8	02/12/1998

CCV - Continuing Calibration Verification

QUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107 Date: 02/17/1998

Job Number: 98.00249

Contact: Kim McNeill

Project: 802321 / NM Oil Cons. Division

	CCV			
	True	Concentration	Percent	Date
Analyte	Concentration	Found	Recovery	Analyzed
TCLP - Mercury	0.00200	0.00191	95.5	02/12/1998
TCLP - Selenium, ICP	0.500	0.499	99.8	02/12/1998
TCLP - Silver, ICP	0.500	0.508	101.6	02/12/1998
TCLP - 8240				
TCLP - Benzene	50	49.3	98.6	02/10/1998
TCLP - Chlorobenzene	50	49.0	98.0	02/10/1998
TCLP - 1,1-Dichloroethene	50	48.5	97.0	02/10/1998
TCLP - Trichlorothene	50	48.7	97.4	02/10/1998
BASE NEUTRAL COMPOUNDS - TCLP				
TCLP-1,4-Dichlorobenzene	50	52.1	104.2	02/11/1998
TCLP-Hexachlorobutadiene	50	50.5	101.0	02/11/1998
8270 BNA's (S)				
Phenol	50	47.8	95.6	02/14/1998
1,4-Dichlorobenzene	50	51.0	102.0	02/14/1998
2-Nitrophenol	50	51.6	103.2	02/14/1998
2,4-Dichlorophenol	50	50.3	100.6	02/14/1998
Hexachlorobutadiene	50	51.2	102.4	02/14/1998
4-Chloro-3-methylphenol	50	50.6	101.2	02/14/1998
Acenaphthene	50	51.7	103.4	02/14/1998
Pentachlorophenol	50	44.5	89.0	02/14/1998
Fluoranthene	50	50.8	101.6	02/14/1998
Di-n-octylphthalate	50	50.0	100.0	02/14/1998
Benzo(a)pyrene	50	51.2	102.4	02/14/1998

CCV - Continuing Calibration Verification

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Date: 02/17/1998

Job Number: 98.00249

Contact: Kim McNeill

Project: 802321 / NM Oil Cons. Division

	LCS				
	True	Concentration	LCS		Date
Analyte	Concentration	Found	% Recovery	Flags	Analyzed
Aluminum, ICP	500	485	97.0		02/09/1998
Antimony, ICP	50.0	48.3	96.6		02/09/1998
Arsenic, ICP	50.0	48.1	96.2		02/09/1998
Barium, ICP	50.0	49.4	98.8		02/09/1998
Beryllium, ICP	50.0	50.1	100.2		02/09/1998
Boron, ICP	50	48.4	96.8		02/09/1998
Cadmium, ICP	50.0	48.1	96.2		02/09/1998
Calcium, ICP	500	490	98.0		02/09/1998
Chromium, ICP	50.0	49.4	98.8		02/09/1998
Cobalt, ICP	50.0	48.1	96.2		02/09/1998
Copper, ICP	50.0	49.5	99.0		02/09/1998
Iron, ICP	250	204	81.6		02/09/1998
Lead, ICP	50.0	48.3	96.6		02/09/1998
Magnesium, ICP	500	495	99.0		02/09/1998
Manganese, ICP	50.0	49.1	98.2		02/09/1998
Mercury, CVAA (S)	0.500	0.483	96.6		02/10/1998
Molybdenum, ICP	50.0	48.7	97.4		02/09/1998
Nickel, ICP	50.0	48.3	96.6		02/09/1998
Potassium, ICP	500	487	97.4		02/09/1998
Selenium, ICP	50.0	46.6	93.2		02/09/1998
Silver, ICP	50.0	48.3	96.6		02/09/1998
Thallium, ICP	50.0	48.1	96.2		02/09/1998
Vanadium, ICP	50.0	49.4	98.8		02/09/1998
Zinc, ICP	50.0	50.1	100.2		02/09/1998
TCLP - Arsenic, ICP	0.500	0.502	100.4		02/12/1998
TCLP - Barium, ICP	0.500	0.505	101.0		02/12/1998
TCLP - Cadmium, ICP	0.500	0.497	99.4		02/12/1998
TCLP - Chromium, ICP	0.500	0.507	101.4		02/12/1998
TCLP - Lead, ICP	0.500	0.501	100.2		02/12/1998
TCLP - Mercury	0.00100	0.00109	109.0		02/12/1998

LCS - Laboratory Control Standard

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Job Number: 98.00249

Date: 02/17/1998

Contact: Kim McNeill

Project: 802321 / NM Oil Cons. Division

	LCS			
	True	Concentration	LCS	Date
Analyte	Concentration	Found	% Recovery Flags	Analyzed
TCLP - Selenium, ICP	0.500	0.498	99.6	02/12/1998
TCLP - Silver, ICP	0.500	0.500	100.0	02/12/1998
TCLP - 8240				
TCLP - Benzene	0.050	0.050	100.0	02/10/1998
TCLP - Chlorobenzene	0.050	0.050	100.0	02/10/1998
TCLP - 1,1-Dichloroethene	0.050	0.047	94.0	02/10/1998
TCLP - Trichlorothene	0.050	0.049	98.0	02/10/1998
BASE NEUTRAL COMPOUNDS - TCLP				
TCLP-1,4-Dichlorobenzene	50.0	30.2	60.4	02/11/1998
TCLP-2,4-Dinitrotoluene	50.0	33.4	66.8	02/11/1998
BASE NEUTRAL COMPOUNDS - TCLP				
TCLP-1,4-Dichlorobenzene	50.0	32.1	64.2	02/11/1998
TCLP-2,4-Dinitrotoluene	50.0	33.7	67.4	02/11/1998
ACID COMPOUNDS - TCLP				
TCLP-Pentachlorophenol	100	47.3	47.3	02/11/1998
ACID COMPOUNDS - TCLP				
TCLP-Pentachlorophenol	100	45.8	45.8	02/11/1998

LCS - Laboratory Control Standard

QUALITY CONTROL REPORT MATRIX SPIKE/MATRIX SPIKE DUPLICATE

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107 Date: 02/17/1998

Job Number: 98.00249

Contact: Kim McNeill

Project: 802321 / NM Oil Cons. Division

	Matrix						MSD				
	Spike	Sample	Spike		Percent	MSD	Spike		Percent	MS/MSD	
Analyte	Result	Result	Amount	Units	Recovery	Result	Amount	Units	Recovery	RPD	Flags
Aluminum, ICP		9600	500	mg/Kg			500	mg/Kg			MD
Antimony, ICP	29.8	2.1	50.0	mg/Kg	55.4	28.8	50.0	mg/Kg	53.4	3.7	M,P
Arsenic, ICP	42.6	ND	50.0	mg/Kg	85.2	42.3	50.0	mg/Kg	84.6	0.7	
Barium, ICP	209	110	50.0	mg/Kg	198.0	188	50.0	mg/Kg	156.0	23.7	M,P,MR
Beryllium, ICP	44.5	ND	50.0	mg/Kg	89.0	45.0	50.0	mg/Kg	90.0	1.1	
Boron, ICP	44.7	1.7	50	mg/Kg	86.0	44.7	50	mg/Kg	86.0	0.0	
Cadmium, ICP	41.7	ND	50.0	mg/Kg	83.4	42.1	50.0	mg/Kg	84.2	1.0	
Calcium, ICP		4700	500	mg/Kg			500	mg/Kg			MD
Chromium, ICP	53.4	15	50.0	mg/Kg	76.8	54.9	50.0	mg/Kg	79.8	3.8	M, P
Cobalt, ICP	55.2	16	50.0	mg/Kg	78.4	55.1	50.0	mg/Kg	78.2	0.3	M,P
Copper, ICP	54.7	10	50.0	mg/Kg	89.4	54.8	50.0	mg/Kg	89.6	0.2	M, P
Iron, ICP		34000	250	mg/Kg			250	mg/Kg			DIL,Q,
Lead, ICP	42.9	1.1	50.0	mg/kg	83.6	43.1	50.0	mg/kg	84.0	0.5	
Magnesium, ICP		4100	500	mg/Kg			500	mg/Kg			MD
Manganese, ICP		390	50.0	mg/Kg			50.0	mg/Kg			MD
Mercury, CVAA (S)	0.880	ND	1.00	mg/Kg	88.0	0.866	1.00	mg/Kg	86.6	1.6	
Molybdenum, ICP	42.3	ND	50.0	mg/Kg	84.6	42.5	50.0	mg/Kg	85.0	0.5	
Nickel, ICP	54.4	18	50.0	mg/Kg	72.8	58.3	50.0	mg/Kg	80.6	10.2	M, P
Potassium, ICP	840	460	200	mg/Kg	190.0	801	200	mg/Kg	170.5	10.8	M, P
Selenium, ICP	38.3	ND	50.0	mg/Kg	76.6	39.1	50.0	mg/Kg	78.2	2.1	M, P
Silver, ICP	43.4	ND	50.0	mg/Kg	86.8	43.7	50.0	mg/Kg	87.4	0.7	
QC Sample:											

NOTE: Matrix Spike Samples may not be samples from this job.

MS - Matrix Spike

90021

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

dil.= Diluted Out

American Environmental Network, Inc. (503)684-0447 (503)620-0393 FAX 17400 SW Upper Boones Ferry Rd., Portland, OR 97224

OUALITY CONTROL REPORT MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Date: 02/17/1998

AEN - Albuquerque 2709-D Pan American Fwy NE

Albuquerque, NM 87107 Job Number: 98.00249

Contact: Kim McNeill

Project: 802321 / NM Oil Cons. Division

Analyte	Matrix Spike Result	Sample Result	Spike Amount	Units	Percent Recovery	MSD Result	MSD Spike Amount	Units	Percent Recovery	MS/MSD RPD	Flags
Vanadium, ICP	115	100	50.0	mg/Kg	30.0	108	50.0	mg/Kg	16.0	60.9	M,P
Zinc, ICP	90.6	56	50.0	mg/Kg	69.2	91.3	50.0	mg/Kg	70.6	2.0	M,P,Q
TCLP - Arsenic, ICP	0.543	ND	0.500	mg/L	108.6	0.541	0.500	mg/L	108.2	0.4	
TCLP - Barium, ICP	0.607	0.12	0.500	mg/L	97.4	0.613	0.500	mg/L	98.6	1.2	
TCLP - Cadmium, ICP	0.485	ND	0.500	mg/L	97.0	0.484	0.500	mg/L	96.8	0.2	
TCLP - Chromium, ICP	0.489	ND	0.500	mg/L	97.8	0.491	0.500	mg/L	98.2	0.4	
TCLP - Lead, ICP	0.483	ND	0.500	mg/L	96.6	0.483	0.500	mg/L	96.6	0.0	
TCLP - Mercury	0.00209	ND	0.0020	mg/L	104.5	0.0021	0.0020	mg/L	105.0	0.5	
TCLP - Selenium, ICP	0.528	ND	0.500	mg/L	105.6	0.530	0.500	mg/L	106.0	0.4	
TCLP - Silver, ICP	0.520	ND	0.500	mg/L	104.0	0.520	0.500	mg/L	104.0	0.0	
TCLP - 8240											
TCLP - Benzene	0.047	ND	0.050	mg/L	94.0	0.047	0.050	mg/L	94.0	0.0	
TCLP - Chlorobenzene	0.047	ND	0.050	mg/L	94.0	0.048	0.050	mg/L	96.0	2.1	
TCLP - 1,1-Dichloroethene	0.044	ND	0.050	mg/L	88.0	0.045	0.050	mg/L	90.0	2.2	
TCLP - Trichlorothene	0.046	ND	0.050	mg/L	92.0	0.046	0.050	mg/L	92.0	0.0	

QC Sample:

NOTE: Matrix Spike Samples may not be samples from this job.

MS - Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

dil.= Diluted Out

American Environmental Network, Inc. (503)684-0447 (503)620-0393 FAX

17400 SW Upper Boones Ferry Rd., Portland, OR 97224

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Date: 02/17/1998

Job Number: 98.00249

Contact: Kim McNeill Project: 802321 / NM Oil Cons. Division Location: Penroc

	Blank	Report		Date
Analyte	Analysis	Limit	Units	Analyzed
Aluminum, ICP	ND	10	mg/Kg	02/09/1998
Antimony, ICP	ND	1.0	mg/Kg	02/09/1998
Arsenic, ICP	ND	1.0	mg/Kg	02/09/1998
Barium, ICP	ND	1.0	mg/Kg	02/09/1998
Beryllium, ICP	ND	1.0	mg/Kg	02/09/1998
Boron, ICP	ND	10	mg/Kg	02/09/1998
Cadmium, ICP	ND	1.0	mg/Kg	02/09/1998
Calcium, ICP	ND	10	mg/Kg	02/09/1998
Chromium, ICP	ND	1.0	mg/Kg	02/09/1998
Cobalt, ICP	ND	1.0	mg/Kg	02/09/1998
Copper, ICP	ND	1.0	mg/Kg	02/09/1998
Iron, ICP	ND	2.0	mg/Kg	02/09/1998
Lead, ICP	ND	1.0	mg/kg	02/09/1998
Magnesium, ICP	ND	10	mg/Kg	02/09/1998
Manganese, ICP	ND	1.0	mg/Kg	02/09/1998
Mercury, CVAA (S)	ND	0.10	mg/Kg	02/10/1998
Molybdenum, ICP	ND	1.0	mg/Kg	02/09/1998
Nickel, ICP	ND	1.0	mg/Kg	02/09/1998
Potassium, ICP	ND	5.0	mg/Kg	02/09/1998
Selenium, ICP	ND	1.0	mg/Kg	02/09/1998
Silver, ICP	ND	1.0	mg/Kg	02/09/1998
Thallium, ICP	ND	2.0	mg/Kg	02/09/1998
Vanadium, ICP	ND	1.0	mg/Kg	02/09/1998
Zinc, ICP	ND	1.0	mg/Kg	02/09/1998
TCLP - Arsenic, ICP	ND	0.005	mg/L	02/12/1998
TCLP - Barium, ICP	ND	0.005	mg/L	02/12/1998

American Environmental Network, Inc. (503)684-0447 (503)620-0393 FAX 17400 SW Upper Boones Ferry Rd., Portland, OR 97224

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107 Date: 02/17/1998

Job Number: 98.00249

Contact: Kim McNeill

Project: 802321 / NM Oil Cons. Division

Location: Penroc

	Blank	Report		Date
Analyte	Analysis	Limit	Units	Analyzed
TCLP - Cadmium, ICP	ND	0.002	mg/L	02/12/1998
TCLP - Chromium, ICP	ND	0.005	mg/L	02/12/1998
TCLP - Lead, ICP	ND	0.005	mg/L	02/12/1998
TCLP - Mercury	ND	0.0002	mg/L	02/12/1998
TCLP - Selenium, ICP	ND	0.005	mg/L	02/12/1998
TCLP - Silver, ICP	ND	0.005	mg/L	02/12/1998
TCLP - 8240				
TCLP - Benzene	ND	0.5	mg/L	02/10/1998
TCLP - Carbon tetrachloride	ND	0.5	mg/L	02/10/1998
TCLP - Chlorobenzene	ND	100	mg/L	02/10/1998
TCLP - Chloroform	ND	6.0	mg/L	02/10/1998
TCLP - 1,4-Dichlorobenzene	ND	7.5	mg/L	02/10/1998
TCLP - 1,2-Dichloroethane	ND	0.5	mg/L	02/10/1998
TCLP - 1,1-Dichloroethene	ND	0.7	mg/L	02/10/1998
TCLP - Methyl Ethyl Ketone	ND	200	mg/L	02/10/1998
TCLP - Tetrachloroethene	ND	0.7	mg/L	02/10/1998
TCLP - Trichlorothene	ND	0.5	mg/L	02/10/1998
TCLP - Vinyl Chloride	ND	0.2	mg/L	02/10/1998
1,2-Dichloroethane-d4	100		*	02/10/1998
Toluene - d8	100		*	02/10/1998
Bromofluorobenzene	94		*	02/10/1998
TCLP - 8240				
TCLP - Benzene	ND	0.5	mg/L	02/10/1998
TCLP - Carbon tetrachloride	ND	0.5	mg/L	02/10/1998
TCLP - Chlorobenzene	ND	100	mg/L	02/10/1998
TCLP - Chloroform	ND	6.0	mg/L	02/10/1998

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Date: 02/17/1998

Job Number: 98.00249

Contact: Kim McNeill

Project: 802321 / NM Oil Cons. Division Location: Penroc

	Blank	Report		Date
Analyte	Analysis	Limit	Units	Analyzed
TCLP - 1,4-Dichlorobenzene	ND	7.5	mg/L	02/10/1998
TCLP - 1,2-Dichloroethane	ND	0.5	mg/L	02/10/1998
TCLP - 1,1-Dichloroethene	ND	0.7	mg/L	02/10/1998
TCLP - Methyl Ethyl Ketone	ND	200	mg/L	02/10/1998
TCLP - Tetrachloroethene	ND	0.7	mg/L	02/10/1998
TCLP - Trichlorothene	ND	0.5	mg/L	02/10/1998
TCLP - Vinyl Chloride	ND	0.2	mg/L	02/10/1998
1,2-Dichloroethane-d4	101		*	02/10/1998
Toluene - d8	99		ł	02/10/1998
Bromofluorobenzene	96		*	02/10/1998
BASE NEUTRAL COMPOUNDS - TCLP				
TCLP-Pyridine	ND	5	ug/L	02/11/1998
TCLP-1,4-Dichlorobenzene	ND	5	ug/L	02/11/1998
TCLP-Hexachloroethane	ND	5	ug/L	02/11/1998
TCLP-Nitrobenzene	ND	5	ug/L	02/11/1998
TCLP-Hexachlorobutadiene	ND	5	ug/L	02/11/1998
TCLP-2,4-Dinitrotoluene	ND	5	ug/L	02/11/1998
TCLP-Hexachlorobenzene	ND	5	ug/L	02/11/1998
Nitrobenzene-d5 (Surr.)	61	-	*	02/11/1998
2-Fluorobiphenyl (Surr.)	73	-	*	02/11/1998
Terphenyl-d14 (Surr.)	92	-	*	02/11/1998
ACID COMPOUNDS - TCLP				
TCLP-o-Cresol	ND	5	ug/L	02/11/1998
TCLP-m&p-Cresol	ND	5	ug/L	02/11/1998
TCLP-2,4,6-Trichlorophenol	ND	5	ug/L	02/11/1998
TCLP-2,4,5-Trichlorophenol	ND	5	ug/L	02/11/1998

AEN - Albuquerque 2709-D Pan American Fwy NE Albuquerque, NM 87107

Date: 02/17/1998

Job Number: 98.00249

Contact: Kim McNeill Project: 802321 / NM Oil Cons. Division

Location: Penroc

	Blank	Report	:	Date
Analyte	Analysis	Limit	Units	Analyzed
TCLP-Pentachlorophenol	ND	10	ug/L	02/11/1998
Phenol-d5 (Surr.)	19	-	*	02/11/1998
2-Fluorophenol (Surr.)	44	-	ŧ	02/11/1998
2,4,6-Tribromophenol (Surr.)	68	-	*	02/11/1998

QUALITY CONTROL REPORT DUPLICATES

AEN - Albuquerque 2709-D Pan American Fwy NE

Date: 02/17/1998

Albuquerque, NM 87107

Job Number: 98.00249

Contact:

Kim McNeill
802321 / NM Oil Cons. Division Project:

Original Duplicate

Date

Analyte

Analysis Analysis Units RPD

Analyzed

Flag

Corrosivity (pH)

units 0.0

02/09/1998

NOTE: Duplicates may not be samples from this job.

RPD - Relative Percent Difference

FLAG GLOSSARY

- A This sample does not have a typical gasoline pattern.
- B1 This sample does not have a typical diesel pattern.
- B Analyte found in the associated blank as well as the sample.
- C The sample contains a lighter hydrocarbon than gasoline.
- CN See case narrative
- CS Outside control limits or unusual matrix; see case narrative.
- D The sample extends to a heavier hydrocarbon range than gasoline.
- d Results on a dry weight basis
- DIL Result was calculated from dilution.
- E The sample extends to a lighter hydrocarbon range than diesel.
- F The sample extends to a heavier hydrocarbon range than diesel.
- G The positive result for gasoline is due to single component comtamination.
- I The oil pattern for this sample is not typical.
- J The result for this compound is an estimated concentration.
- L The LCS recovery exceeded control limits. See the LCS page of this report.
- LM The LCS recovery exceeded control limits; the MS/MSD were in control validating the batch.
- M MS and/or MSD percent recovery exceeds control limits.
- MD Unable to calculate MS/MSD recovery due to high amount of analyte; greater than 4 times spike level.
- MR The MS/MSD RPD is greater than method critera. The sample was re-extracted and re-analyzed with similar results indica a non-homogeneous sample.
- MM The Matrix Spike exceeded control limits; LCS/LCS-D were in control validating the batch.
- MI Outside control limits due to matrix interference.
- N Manual integration performed on sample for quantification.
- N/A Not Applicable.
- NC Not calcuable.
- NO Not Analyzed.
- P A post digestion spike was analyzed, and recoveries were within control limits.
- Q Detection limits elevated due to sample matrix.
- Q1 Detection limits elevated due to high levels of non-target compounds. Sample(s) run at a dilution.
- R The duplicate RPD was greater than 20%. The sample was re-extracted and re-analyzed with similar results. This indicates a matrix interference in the sample, likely a non-homogeneity of the sample.
- RD RPD not applicable for results less than five times the reporting limit.
- RP MS/MSD RPD is greater than 20%
- SR Surrogate recovery outside control limits. See the surrogate page of the report.
- SD Unable to quantitate surrogate due to sample dilution.
- SC Sample not provided to laboratory in proper sampling container.
- V Volatile analysis was requested, sample container received with headspace.
- X1 The duplicate RPD was greater than 20%. Due to insufficient sample, re-analysis was not possible.
- X Sample was analyzed outside recommended holding times.
- Y The result for this parameter was greater than the TCLP regulatory limit.
- The pattern seen for the parameter being analyzed is not typical.

PLEASE FILL THIS FORM IN COMPLETELY. American Environmental Network (NM), Inc. PROJECT MANAGER: PHONE: FAX: **ADDRESS** COMPANY BILL TO: ADDRESS: COMPANY James アイング 44198 1330

REA

P.O. NO.: SHIPPED VIA: PROJ. NAME: PAROS PROJ. NO.: PRIOR AUTHORIZATIONIS RECOURED FOR MUSH PROJECTS COMMENTS: METHANOL PRESERVATION [] CERTIFICATION REQUIRED: (RUSH) ∐24hr FIXED FEE ☐ 48hr Maste UNISION Maring Star A stanfort to Man and general □ 72hr □ N M X WEEK SDWA Petroleum Hydrocarbons (418.1) TRPH (MOD.8015) Diesel/Direct Inject (M8015) Gas/Purge & Trap 8021 (BTEX)/8015 (Gasoline) OTHER 8021 (BTEX) ☐ MTBE ☐ TMB ☐ PCE 8021 (TCL). (NORMAL) 8021 (EDX) 8021 (HALO) H TH 8021 (CUST) 504.1 EDB □ / DBCP □ Company: Printed Name: FLASH PONT + LOVERS 8260 (TCL) Volatile Organics 8260 (Full) Volatile Organics 8260 (CUST) Volatile Organics 8260 (Landfill) Volatile Organics Date: Pesticides /PCB (608/8081) Herbicides (615/8151) Base/Neutral/Acid Compounds GC/MS (625/8270) Polynuclear Aromatics (610/8310) General Chemistry: Printed Name: P-roA 8260 SVOA 827 F. 1. 1. 1. 1. Priority Pollutant Metals (13) Target Analyte List Metals (23) RCRA Metals (8) Date RCRA Metals by TCLP (Method 1311) Metals: 60/0 + H

DISTRIBUTION: White - AEN, Canary - Originator

15/98 AEN Inc.: American Environmental Network (NM), Inc. • 2709-D Pan American Freeway, NE • Albuquerque, New Mexico 87107 • (505) 344-3777 • Fax (505) 344-4413

American Environmental Network
Albuquerque, New Mexico

Interlab Chain of Custody

DATE 2/5/28 PAGE 1. OF

STICIAL CENTRICATION THEORITED I IYES I INO	INISII BII/ICIAPROE	INJE 11AIE 2/12/98		IAI SIANDAID (INISIH)	CK: PECHINEU) MS MSD BLANK	DESTRUCTION IN	FINITECTHAME NMOCO	PROJECTIMADEN 80232/	PROJECT INFORMATION	COMPANY: American Environmental ADDRESS: 2709-D Pan American Freeway, NE Albuquerque, NM 87107 CLIFTH PROJECT MANAGER. Kim McNeill SAMPLE ID DATE THE N 802321-01 VHKS 1330 N	NETWORK PROJECT MANAGER: KIMBERLY D. McNEILL
	7'	.		L AB H	HECE	WIIACT?	CHAIN	101AL		TIME TIME	D. McNI
	Jeer	100		LAB NUMBER	VED GOOD	3	CHAIN OF CUSTODY SEALS	NUMBER O	SAMS		31.1
	week kush))			NECEIVED GOOD COND./COLD		OY SEALS	TOTAL NUMBER OF CONTAINERS	SAMPLE RECEIPT	Network ATRIX LABID	
	V	3						ns	PT		ŀ
	4	-							ŀ	Metals - PP List	
		E								Metals - RCRA	٠ اد -
				PHQENIX	POR	PENSACO	Pa	SAN	IMAS		ŧ.
				ENIX	PORTLAND	PENSACOLA	Paragon	SAN DIEGO	SAMPLES SENT TO:	L> Sec Attached Page	-
						5	101		SEHI	TOX For Metals.	-
		<u> </u>	_	<u> </u>		1	<u> </u>		ē	TOC Gen Chemistry	
					X					X Flash Point, Corrosivity	
Com			Sign	B	Albud	6		Signalu	2	111111111111111111111111111111111111111	
Company:			iure:	RECEIVED BY:	Albuquerque	Onla	Printed Hami	A PER SE	RELINQUISHED BY:	Oil and Grease	ANALYSIS REQUEST
2		W	3	VED	ĕ	6		1	SINC	SOD	17
2		4	•	BY:		de			IEU		818
		4	Ilme:			re/		in d	BY:	Herbicades (615/8150)	HEC
	1/6	P						13.		Sase/Neutral Acid Compounds GC/MS (625/8270)	JUE
	83/1	06 50	i			1/2		<u>;</u> ;		Voiatile Organics GC/MS (624/8240)	18
	\	10	ן ע	-		148	14	8.			
Ç	P	2	Sign	2	Š	1	3	Sig	2	1	
Company:	Pibled Name:		Signature	CEN	Company		Printed Hame	Signature	1		
••	M		-	(ED (_		a a		SIUC	11111XTCLP 8260	
	•	1		RECEIVED BY: (LAB)					RELINQUISHED DY:	TO-14	
	9		lbrus:	AØ)				lime	DY:		
	•						~	3			:
				~					7	HUMBER OF CONTAINERS	
	<u> </u>	ı	!			1	- 1		'	I I I I I I I I TOWNER OF CONTAMES	

Laba. San INago (819) 458 8141 • Pinoenia (602) 498 4400 • Seattle (208) 228 8335 • Pensecola (804) 474-1001 • Portland (503) 584-0447 • Albuquibique (505) 344-3777

Recharked by:

BUTE INTERIOR AT A MARKET BUTE A PROPERTY AND THE APPLICATION FOR A PROPERTY NEE AND THE AND THE AND THE ARCHITECTURE AND THE AND THE ARCHITECTURE AND THE A	REGENTADINIACI.	HD containties:	SAMBUE RECEIP	SHIPPED VIA:	P.O. NO.:	PROJ. NAME: PALOC	PROJ. NO.:	PROJECT INFORMATION									C	NE Maliamar Pit 44	COMPANY: NM 01 Conse ADDRESS: 2040 S. 7. PHONE: Sa. JZ F2, N PHONE: (505) 827- FAX: (505) 827- BILL TO: Same COMPANY: ADDRESS: DATE
(MIA) Inc. 9700 T		·		COMMENTS: F	METHANOL PRESERVATION	CERTIFICATION REQUIRED:	(RUSH) □ 24hr [PRIOR AUTH						-				198 1330 1	2/54 8/77
Ton American Front		•		FIXED FEE	RVATION []	QUIRED: NM	□ 48hr □ 72hr	PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS						Section 1				Maste -01	U.VISION
NC NC		•				□SDWA	X WEEK	EQUI		43							松香		Petroleum Hydrocarbons (418.1) TRPH
<u> </u>						Ä	Ę.	BEI							_				(MOD.8015) Diesel/Direct Inject
				ļ) FC				_							(M8015) Gas/Purge & Trap
				ĺ		OTHER		RH					\perp		_				8021 (BTEX)/8015 (Gasoline)
				Ì		層		NS.	-				_	_		_			8021 (BTEX) ☐ MTBE ☐ TMB ☐ PCE
							æ	H P				_	-	_		,			8021 (TCL)
5 9							(NORMAL)	10	\vdash						_				8021 (EDX) 8021 (HALO)
2							2	ECI	\vdash				+						8021 (CUST)
r l			•					S				\dashv	-+						504.1 EDB □ / DBCP □
	Prin	Sign		δ	\mathcal{G}	P	A STATE OF THE STA	200					-					\times	• •
Company:	Printed Name	Signature:	SHEGHU	Company:	=	E L		BETINONISHED BY THE							ı	1			8260 (TCL) Volatile Organics
	ame				Obon			Ē										X	8260 (Full) Volatile Organics
ĝ		\		SMOCD M	جو ا	8	~	E											8260 (CUST) Volatile Organics
	ا و	<u> </u>		\tilde{c}		_ (Z												8260 (Landfill) Volatile Organics
Company:	Date:	Time:		0	X	ře:	me								_				Pesticides /PCB (608/8081)
١,				٠,	17		7						_	\dashv	\downarrow	\downarrow			8260 (TCL) Volatile Organics 8260 (Full) Volatile Organics 8260 (CUST) Volatile Organics 8260 (Landfill) Volatile Organics 8260 (Landfill) Volatile Organics Pesticides /PCB (608/8081) Herbicides (615/8151) Base/Neutral/Acid Compounds GC/MS (625/8270)
					88	3	Y,	4	\mathbb{H}		\dashv	\dashv	-	\dashv	\dashv	\dashv		X	
	TAX 1	To vision in		_					\vdash			\dashv	\dashv	\dashv	_	_	\dashv	\dashv	Polynuclear Aromatics (610/8310) General Chemistry:
	質別			Company:		Printed Name	Signature	圖		-	-+		\dashv		\dashv				TCLP-rof (8260)
				any:		d Na	ture	2	H		\dashv		-+	\dashv	\dashv	\dashv		$\stackrel{\times}{\leftarrow}$	TC(D-SVOA(8270)
Allehear Lamons						ne:		至	H		\dashv	\dashv	\dashv	+	\dashv	\dashv			Priority Pollutant Metals (13)
								RELINQUISHED BY			\dashv	\dashv	\dashv	\dashv		\dashv	\neg		Target Analyte List Metals (23)
		1				Date	Time												RCRA Metals (8)
?		1				^{.0}	ē.				\Box	\Box	\Box	$ \bot $	\Box	\Box		N ₂	RCRA Metals by TCLP (Method 1311)
											\dashv		\dashv	_	_	_		X	Metals: 6010 + Hs, So by AA
	RS							2	- Liveria			LAG CAN II	1996000 10	TO DE LA COLONIA	215-21-02 5		V 45501	즤	REACTUITY END

American Environmental Network (NM), Inc. CHAIN OF CUSTODY