HIP - 4

GENERAL CORRESPONDENCE

Santa (50	South Pacheco Fe, NM 87505 (5) 827-7133 (505) 827-8177	
(PLEASE D	ELIVER THIS FAX)	
To: <u>Steve Nelson</u>	(505) 327-(333	2
From: Martyne 1	(ieling (505) 827715	-3
Date: 7-30-99		
Number of Pages (1	Includes Cover Sheet)	10F3
	ine (o. Hydrostertic test	
		î

II.

1

al factors

.iii .

July 29, 1999

CERTIFIED MAIL RETURN RECEIPT NO. P-326-936-565

Mr. Ken Klagett Mid-America Pipeline Co. 135 E. 9th St. Suite A Durango, CO 81301

Re: Hydrostatic Test Water Discharge Permit Mid-America Pipeline Company NW/4 of Section 13, Township 28 North, Range 11 West, NMPM, San Juan County, New Mexico

Dear Mr. Klagett:

The New Mexico Oil Conservation Division (OCD) has received the Mid-America Pipeline Company (MAPL) request dated July 27, 1999 and supplemental information provided by phone on July 29, 1998 for authorization to discharge approximately 1,500,000 gallons of waste water from the hydrostatic test of approximately 28 miles of 16 inch new pipeline at the above referenced locations.

Based on the information provided in the request, the hydrostatic test water discharge is hereby approved subject to the following conditions:

- 1. The test water (1,500,000 gallons) will be discharged into the unlined earthen pit located at Williams Kutz Station, Bloomfield NM in NW/4 of Section 13, Township 28 North, Range 11 West, NMPM, San Juan County, New Mexico and allowed to evaporate.
- 2. Only San Juan River water shall be used in the hydrostatic test. Approval to use San Juan River water must be obtained from the appropriate agency prior to testing.
- 4. At the time of pit closure any solids that accumulate in the pit as a result of the discharge will be subject to full hazardous waste characterization testing to determine the proper means of disposal
- 5. At the time of pit closure the analytical results will be made available to the OCD along with a request for disposal of the accumulated solids.

Mr. Ken Klagett July 29, 1999 Page 2

Pursuant to WQCC Regulation 3-106.B, this approval will allow MAPL to discharge without an approved discharge plan for a period not to exceed 120 days. If the site is to be used for more than one test discharge, formal reapplication must be made. If the discharge exceeds 120 days, a formal discharge plan must be submitted for review.

Please be advised that this approval does not relieve MAPL of liability should their operation result in pollution of surface water, ground water, or the environment. In addition, OCD approval does not relieve MAPL of responsibility for compliance with other federal, state or local laws and/or regulations.

If there are any questions, please call Martyne Kieling at (505) 827-7153.

Sincerely,

Kage 6

Roger C. Anderson Environmental Bureau Chief

RCA/mjk

xc: OCD Aztec OfficeMr. Steve Nelson, Nelson Consulting Inc., 600 Reilly Ave., Farmington, NM 87402

STATE OF NEW MEXICO OIL CONSERVATION DIVISION MEMO	RANDUM OF MEETING	G OR CONVERSATION	
Telephone Personal	Time /O:30	Date	7-29-99
Originating Part	<u>Y</u>	<u>0t</u>	ther Parties
Murtgine Kielin	<u>}</u>	Steve 1	Velson
<u>Subject</u> Mid America Pipelin	ne test of	1,500;000 g	- a
Discussion Length of Pipe Diameter of Pipe	2 28 miles	147, 690.8	
Ze Depth to Gw +			
-			

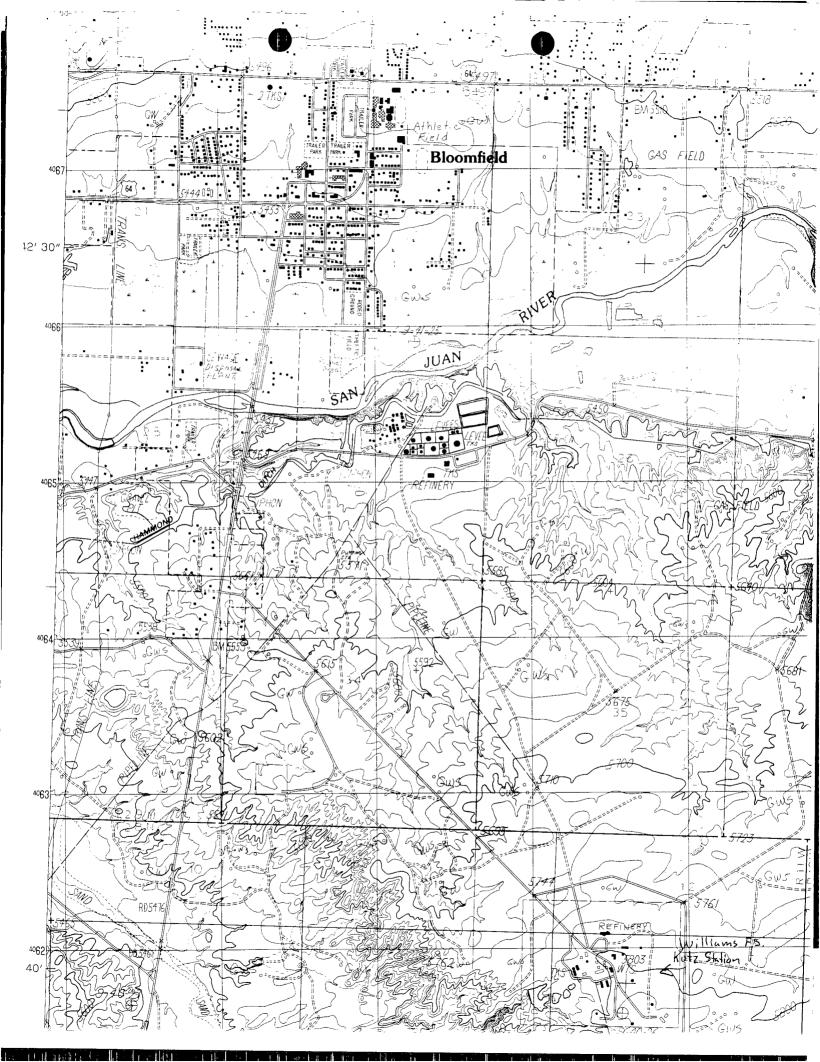
_

_

_

_

Conclusions or Agreements


I CAR AND A CAR AND A CARACTER AND A

<u>Distribution</u>

.

.

Signed

WID-AMERICA PIPELINE COMPANY

August 31, 1998

SEP 0 3 1998

City of Bloomfield P.O. Box 1839 Bloomfield, New Mexico 87413

Attn: Merle Dennis, City Manager

RE: Mid-America Pipeline Company – Rocky Mountain Loop Project Request to Purchase Water from the City of Bloomfield

Dear Mr. Dennis,

As discussed in your telephone conversation with Charlie Allaben of ENSR, Mid-America Pipeline Company (Mid-America) wishes to lease water from the City of Bloomfield, New Mexico. Mid-America would use this water for hydrostatic testing of a new natural gas pipeline. Following are the agreed upon terms of the lease as understood by Mid-America based on your telephone conversation with Mr. Allaben:

- Mid-America would notify the City of Bloomfield prior to withdrawal of water from the San Juan River;
- Mid-America would be responsible for securing access to the San Juan River;
- Mid-America would withdraw water directly from the San Juan River at the pipeline crossing location;
- Mid-America would meter all water withdrawn from the San Juan River;
- Mid-America would pay the City of Bloomfield \$0.25 per 1,000 gallons of water withdrawn after completion of the withdrawals;
- Mid-America expects that less than 5 acre-feet of water will be required for hydrostatic testing and would notify the City of Bloomfield prior to withdrawal if it is determined that more water is needed;
- Mid-America would not withdraw water from the San Juan River after January 31, 1999, under this agreement.

If you concur with the proposed method of proceeding with this transaction, please sign this letter and the attached duplicate in the space provided and return them to our office at:

> Mid-America Pipeline Company Rocky Mountain Loop Project Office 135 East 9th Street, Suite A Durango, Colorado 81301

135 East Ninth, Suite A • Durango, Colorado 81301 • 970-382-8535 • 868-565-0008

Merle Dennis August 31, 1998 Page 2 of 2

If you have any questions regarding this correspondence, please contact Charlie Allaben of ENSR at (970) 493-8878 or me at (970) 383-8535.

Sincerely,

Mid America Pipeline Company

elellaple Gary Harkey Project Manager

Cc: Steve Nelson/Nelson Consulting Charlie Allaben/ENSR Ronald L. Hobbs, MAPCO

AGREEMENT

I concur with the terms stated herein for the sale of water by the City of Bloomfield to Mid-America Pipeline Company:

City of Bloo	mfield
Signature:	Sulmas I Meastan
Printed Nam	e Siddey 6 Maestas
Title:	Mayor
Date:	Sept. 8, 1998
Mid-Americ	a Pipeline Company
Signature:	1 malliflall
Printed Nan	ne: Kourd L. Hobbs
Title:	ADMINISTERTOR Real ESTATE SERVICES
Date:	11/18/98
	1 '

Nelson Consulting, Inc.

600 Reilly Ave. Farmington, NM 87402

Phone 505-327-6331 Fax 505-327-6332

(505) 320 0011

July 27, 1999

Ms. Martyne Kieling New Mexico Energy, Minerals& Natural Resources Department Oil Conservation Division 2040 South Pacheco St. Santa Fe, NM 87505

RE: MAPCO Rocky Mountain Expansion Project / Hydrostatic Discharge

Ms. Kieling,

Williams Companies/ Mid America Pipeline Co. are requesting a discharge permit for the new 16" pipeline project being constructed in New Mexico. I have attached a copy of the Guidelines for Hydrostatic Test Dewatering and the answers to those points.

I you have any questions dealing with this request please contact me at 505-327-6331. Thank you.

Sincerely yours,

Steve L Nelson Lead BLM Compliance

Cc:

1.1.1.4

Hill

NMOCD District III, Aztec Ingrad Deklau Williams Gary Harkey Williams West Hickham Williams Spence George Williams

「読 はおお願し・

1.1

111

Mid America Pipeline Company

7-27-99

General:

- 1. Water to be put into an unlined earthen pit at Williams Kutz Station, Bloomfield, NM
- 2. Preliminary Test results attached.
- 3. Attached

New Pipelines:

- 1. a) Water volume 1,500,000 gallons
 - b) Water taken from the San Juan River, San County, NM.
 - c) Water will not re-enter the area waterways.
 - d) Ground water is more than 10 feet from the surface. ≈ 100 ft.

e) Water will not impact BLM ground adjacent to the private property of Williams Kutz Station.

f) Discharge does not affect fresh water supplies.

g) This is a one-time disposal.

- 1) NW ¼, NW ¼, of Section 13, Township 28N, Range 11W
- 2) Date of test 7-30-99
- 3) 1,500,000 gallons
- San Juan River, Test results attached, The Company is adding anti corrosion chemicals of 120 parts per million of <u>Bactron K-95 and Corton RU-206.</u>

Preface:

This document shall be used as a guide for the preparation of plans and specifications for the discharge of water used for hydrostatic testing of new or existing pipelines that have or will transport hydrocarbon products under the jurisdiction of the Oil Conservation Division (OCD). These include crude oil pipelines and all natural gas pipelines. Hydrostatic testing of these pipelines may lead to the production of water which is contaminated with organic compounds which, if not discharged properly, may contaminate fresh water supplies.

General:

- 1. No water used in the hydrostatic testing of a petroleum pipeline shall be discharged in unauthorized pits, in any watercourse or in any other place or manner which may constitute a hazard to fresh water supplies.
- 2. In order for hydrostatic test wastewater to be discharged in an area where it may reach fresh water supplies, it must be demonstrated that the wastewater discharges will meet or be better than the quality of the receiving waters and/or not cause the ground water to exceed standards as set forth in Section 3103 A, B, and C of the New Mexico Water Quality Control Commission Regulations.
- 3. All analyzes of samples will include, but are not limited to, major anions and cations (Ca, Mg, Na, K, HCO3, CO3, Cl, SO4), heavy metals (As, Ba, Cd, Pb, Hg, Se, Fe, Zn), aromatic and halogenated hydrocarbons screens, TDS, Fe, Mn, ph and conductivity. Analyzes for selected other heavy metals may be required depending on the source of the water used and the discharge location. PAH (Polynuclear Aromatic Hydrocarbons) analyzes for used pipelines may be needed.

New Pipelines:

- 1. Hydrostatic tests of less than 100,000 gallons per test do not require individual permit applications. A renewable five (5) year, discharge permit may be issued, upon application, when the following conditions are applicable:
 - a) The volume per test does not exceed 100,000 gallons.
 - b) Fresh water from a water supply system or other potable source is used for the test.

1-----

- c) The discharge does not enter any lake, perennial stream, river or their respective tributaries that may be seasonal.
- d) Ground water is not less than 10 feet from the surface at the point of discharge.
- e) The discharge does not impact adjacent property.
- f) The discharge does not cause any fresh water supplies to be degraded or to exceed standards as set forth in Section 3103A, B, and C of the New Mexico Water Quality Control Commission Regulations.
- g) A monthly report, summarizing all tests of new pipe with less than 100,000 gallons each, will be submitted to the OCD and shall contain the following information.
 - 1) Location of test-Section, Township and Range.
 - 2) Date of test.
 - 3) Volume of discharge.
 - 4) Source and quality of test water.
- 2. A hydrostatic test of new pipe of less than 100,000 gallons that does not meet the conditions of 2 above, or of more than 100,000 gallons will require a discharge permit approved by the OCD prior to commencement. Items to be included in the permit application include:
 - a) Map showing location of the pipelines to be tested;
 - b) Description of the test;
 - c) Source and analysis of test water;
 - d) Point of discharge of the test water;
 - e) Method and location for collection and retention of fluids and solids;
 - f) Depth of ground water at discharge and collection/retention site;
 - g) Proposed method of disposal of fluids and solids after test completion including closure of any pits;
 - h) Identification of land owners at and adjacent to the discharge and

2-----

BACTRON K-95

Biocide

P. O. Box 450499

Houston, Texas 77245

(713) 431-2561

- PHOSPHONIUM QUATERNARY SULFATE.
- EFFECTIVE AGAINST BOTH AEROBIC AND ANAEROBIC FORMS OF BACTERIA.
- HAS SURFACE ACTIVE PROPERTIES FOR PENETRATION OF PROTECTIVE DEPOSITS AND SLIMES.
- EFFECTIVE UNDER ACID, NEUTRAL AND ALKALINE CONDITIONS.
- SUITABLE FOR BOTH SLUG AND CONTINUOUS INJECTION APPLICATIONS.
- SOLUBLE IN FRESH WATER, SEA WATER AND LOW TO MEDIUM BRINES.

Typical Applications

In Water Handling Systems, Pipelines And Packer Fluids.

Treatment Guidelines

- Water Handling Systems and Pipelines Initially: Slug treat with 100-350 ppm for 2-6 hours as needed.
- Subsequently: Slug treat with 15-100 ppm for 2-6 hours as needed or continuously at 15-75 ppm.
- Packer Fluids
- 500-1500 ppm depending on the severity of contamination.

Transfer & Injection Equipment

 Because of the low pH value, all equipment should be of corrosion resistant materials.

TYPICAL PROPERTIES*					
Specific Gravity @ 60°F	1.369+/-0.01				
Density, Ibs/gal @ 60°F	11.4				
Flash Point, (PMCC) °F	NONE				
Viscosity, cps @ 75°F	30 - 40				
Pour Point, °F					
рН	3.3 - 4.4				

*Data might not be current. See latest MSD sheet.

Precautions & Other

Incompatible with strong oxidizers and strong bases.

Handling & Storage

- Store in cool, dry area away from direct sunlight.
- Handle with care. Protect eyes and skin with goggles, face shield and protective clothing.
- For more information see Material Safety Data Sheet.

For further information and specific recommendations please contact your local Champion representative.

RP-05/98

Champion Technologies, Inc. believes the information in this data sheet to be correct, but disclaims any liability with respect to any recommendations or applications made in connection therewith. No warranties whatsoever are made with respect to the information or the product to which it refers.

CORTRON RU-206

Inorganic Oxygen Scavenger

P. O. Box 450499

Houston, Texas 77245

(713) 431-2561

- CATALYZED BISULFITE SOLUTION.
- PREVENTS CORROSION CAUSED BY DISSOLVED OXYGEN.
- PREVENTS PRECIPITATION OF IRON OXIDE AND RESULTANT PLUGGING OF INJECTION WELLS.
- HELPS CONTROL AEROBIC BACTERIA.

Typical Applications

- Continuous Injection into Water Handling Systems,
- Treatment of any Water (Packer Fluids, Waters for Steam Generators, "Moth-Balling" solutions for Shut-In Wells and Pipelines, etc.) in Which Oxygen Corrosion is a Potential Problem.

Treatment Guidelines

- Theoretically, 12 ppm will scavenge 1 ppm oxygen.
- On a practical basis, continuous injection of 14-15 ppm might be needed for quick removal of 1 ppm oxygen.
- A slight excess (residual) should be maintained to assure complete oxygen removal.
- For static environments, 0.38 gallons will remove 1 ppm oxygen from 1000 bbls of water.

Dispersibility

 Completely soluble in fresh water and most produced brines. See Precautions.

Handling & Storage

Observe normal precautions for industrial chemicals. Keep away from heat, sparks and open flames. For more information see Material Safety Data Sheet.

TYPICAL PROPERT	TIES*
Specific Gravity @ 75°F	1.35
Density, Ibs/gal @ 75°F	11.1
Flash Point, (PMCC) °F	>200
Viscosity, cps @ 75°F	10 - 20
Pour Point, °F	-30
рН	4.7 - 5.2

*Date might not be current. See latest MSD sheet,

Precautions & Other

- Incompatible with high calcium brines.
 Specially formulated oxygen scavengers are available for use in such water.
- Incompatible with many blocides. If both oxygen scavenger and blocide must be used, the scavenger should be injected well upstream in the system so that it is reacted out before the blocide is injected.
- Reaction rate is much slower at low temperatures. A special catalyst is available to increase the reaction rate in cold water.

Transfer & Injection Equipment

Because of the low pH value, all equipment should be of corrosion resistant materials.

For further information and specific recommendations	
please contact your local Champion representative.	

08/92 RDS-07/99

Champion Technologies, Inc. believes the information in this data sheet to be correct, but disclaims any liability with respect to any recommendations or applications made in connection therewith. No warranties whatsoever are made with respect to the information or the product to which it refers.

. . 07/27/1999 16:10 5053276332

.

MATERIAL SAFETY DATA SHEET

white site is the second

łł

1.

BACTRON K-95

SECTION 1 - IDENTIFICATION	IBM 7	0059
Champion Technologies, Inc. 3130 FM 521 Fresno, TX 77545 20. BOX 450499 Houston, TX 77245		
Trade Name: BACTRON K-95 Chemical Family: TETRAKISHYDROXYN CAS No.: 55566-30-8 Current as		E
SECTION 2 - HAZARDOUS INGREDIENTS		
	CAS NO. WL.& OS 55566-30-8 75 NE	HA (PEL)
<pre># Denotes a chemical subject to t section 313 of 1986 and 40 CFR SARA Title III Hazard Catagories:</pre>		Title II
The components of this product a	re listed on the EPA/TSCA Inventor	У
SECTION 3 - PHYSICAL & CHEMICAL CH	HARACTERISTICS	
Boiling Point, F: >200 Vapor Pressure (mm Hg): ND	Evaporation Rate: ND	
Vapor Density (Air=1): ND pH: 3.2 Solubility in Water: MISCIBLE Appearance and Odor: CLEAR, CO		
SECTION 4 - FIRE & EXPLOSION DATA		
Flash Point, f' & Method NONE PMCC Bas	Flammable Limits: L sed on: THPS U	
in the vicinity, these will dictat	wever, if other combustible materi te the necessary actions. Effects rritant vapor; therefore, the use	of heat
on this product can generate an is a self-contained breathing apparat	tus is essential in fire situation	S.

A submit of the description of the formation of the state of the state

۵7/27/1999 16:10 5053276<u>3</u>32

Page 2 of 3

BACTRON K-95

SECTION 5 - PHYSICAL HAZARDS (REACTIVITY DATA) Chemical Stability: STABLE Conditions To Avoid: Temperatures above 160 C Incompatibility (materials to avoid): Reacts vigorously with oxidizing agents and alkali Hazardous Decomposition/Byproducts: Formaldehyde, phosphine, sulfur/phosphorus oxides Hazardous Polymerization: WILL NOT OCCUR HEALTH: 2 FIRE: 0 REACTIVITY: Hazard Rating Scale: (4=severe, 3=serious, 2=moderate, 1=slight, 0=minimal) SECTION 6 - HEALTH HAZARDS

PRIMARY ROUTES OF ENTRY

Inhalation: X Absorption: X Ingestion: X Injection: NA

HEALTH HAZARDS:

Eye and Skin: Severe irritant to the eyes or mucous membranes; absorbed through intact skin; liver toxicity may occur; skin sensitization may occur Allergic contact dermatitis may result following skin sensitization. Inhalation: Inhalation of mists or fumes may result in respiratory irritation.

Target organ warning: Contains material which causes irritation of the eyes skin or mucous membranes and may cause liver toxicity. California Warning: This product may contain a chemical known to cause cancer, or birth defects or other reproductive harm. Contains <0.1% formaldehyde.

EMERGENCY & FIRST AID PROCEDURES:

IF INHALED: Remove to fresh air. If breathing has stopped, give artificial respiration, preferably mouth-to-mouth. If breathing is difficult, give oxygen. Call a physician. IN CASE OF CONTACT: Immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Call a physician. Wash clothing before re-use. IF INGESTED: Call physician or poison control center. Drink 1 or 2 glasses of water if conscious. NOTE TO PHYSICIAN: Precautions for shock, respiratory depression and

convulsions may be needed.

IF CONDITIONS PERSIST, SEEK MEDICAL ATTENTION.

Carcinogenicity? NO NTP? NO IARC Monograph? NO OSHA Regulated? NO

07/27/1999	16:10 !	5053276332	NELSON CONSULT	TING IN	PAGE 09
·		V			Page 3 of
			BACTRON	№ К-95	
SECTION 7	- SPECIA	L PRECAUTIONS	AND SPILL/LEAK PROC	CEDURES	
ENVIRONMEN Regulation waterway. SPILL: Abs dispose of WASTE MANA	TAL IMPA s require Report sp orb on d at an ap GEMENT: 1	CT: Report sp. e immediate r pill to Nation latomaceous e ppropriate wa Neutralize wi	IAL IS RELEASED OR S ills as required to eporting of spills t nal Response Center arth or inert materi ste disposal facilit th soda ash and show propriate waste disp	appropriate chat could re - 800 424 88 ial. Shovel w Cy. vel solid int	each any 302. up and to a sealable
WASTE DISP Contact an			d Disposal Facility.		
SECTION 8	- SPECIA	L PROTECTION	INFORMATION/CONTROL	MEASURES	
~	potentia	al for airbor	Type): r NIOSH-approved res ne exposure. (Recomm	spiratory equ nend exposure	ipment when imit to be
Ventilatio	n: Loca	l Exhaust: R	econmended Gener	cal Exhaust:	Recommended
Special:	Organic	and particul	ate respirator		
Protective	Gloves:	Nitrile	or neoprene gloves		
Eye Protec	tion:	Chemical	Safety Goggles / Sa	afety Glasses	5
Other Prot	ective C	lothing or Eq	uipment: Coveralls Eye Wash,	s, Splash Apr and Safety	rons, Shower
Work/Hygen	(Clean up Spil	ls Promptly, Wash Co		
SECTION 9		NG DATA			
Hazard Cla Labels Req		ion: NOT-	REGULATED DOI		D.: NONE
Duenen Shi		me/Descriptio	n:		
NOT REGULA BACTRON K-					

1.1

a i

1 16

1 ï

ХĐ

07/27/1999 16:10

5053276332

PAGE 10

MATERIAL SAFETY DATA SHEET

CORTRON RU-206

SECTION 1 - IDENTIFICATION	IBM	11069
Champion Technologies, Inc. 3130 FM 521 Fresno, TX 77545 PO. BOX 450499 Houston, TX 77245	EMERGENCY TELEPHONE 1-281-431-2561	
Irade Name: CORTRON RU-206 Chemical Family: AMMONIUM BISULFITH CAS No.: PROPRIETARY Current as c	of: 1/24/98 By: R. CORRY	
SECTION 2 - HAZARDOUS INGREDIENTS/II		
Hazardous Components AMMONIUM BISULFITE		OSHA (PEL) ND
# Denotes a chemical subject to the section 313 of 1986 and 40 CFR pa SARA Title III Hazard Catagories:	art 372.	RA Title IJ
The components of this product are	l listed on the EPA/TSCA Invent	ory
The components of this product are SECTION 3 - PHYSICAL & CHEMICAL CHAN	listed on the EPA/TSCA Invent RACTERISTICS	ory
The components of this product are SECTION 3 - PHYSICAL & CHEMICAL CHAN Boiling Point, F: ND	listed on the EPA/TSCA Invent RACTERISTICS Specific Gravity (H2O=1):	1.35 ND
The components of this product are SECTION 3 - PHYSICAL & CHEMICAL CHAN Boiling Point, F: ND Vapor Pressure (nm Hg): ND Vapor Density (Air=1): ND pH: 4.7-5.2	listed on the EPA/TSCA Invent RACTERISTICS Specific Gravity (H2O=1): Evaporation Rate: (butyl acetate=1) Viscosity:	1.35 ND 10-20 CPS
The components of this product are SECTION 3 - PHYSICAL & CHEMICAL CHAN Boiling Point, F: ND Vapor Pressure (nm Hg): ND Vapor Density (Air=1): ND pH: 4.7-5.2 Solubility in Water: SOLUBLE Appearance and Odor: CLEAR LIGHT SECTION 4 - FIRE & EXPLOSION DATA	listed on the EPA/TSCA Invent RACTERISTICS Specific Gravity (H2O=1): Evaporation Rate: (butyl acetate=1) Viscosity: T PINK LIQUID	1.35 ND 10-20 CPS
The components of this product are SECTION 3 - PHYSICAL & CHEMICAL CHAP Boiling Point, F: ND	listed on the EPA/TSCA Invent RACTERISTICS Specific Gravity (H2O=1): Evaporation Rate: (butyl acetate=1) Viscosity: I PINK LIQUID Flammable Limits:	1.35 ND 10-20 CPS
The components of this product are SECTION 3 - PHYSICAL & CHEMICAL CHAN Boiling Point, F: ND Vapor Pressure (nm Hg): ND Vapor Density (Air=1): ND pH: 4.7-5.2 Solubility in Water: SOLUBLE Appearance and Odor: CLEAR LIGHT SECTION 4 - FIRE & EXPLOSION DATA	listed on the EPA/TSCA Invent RACTERISTICS Specific Gravity (H2O=1): Evaporation Rate: (butyl acetate=1) Viscosity: T PINK LIQUID Flammable Limits: d on: NA	1.35 ND 10-20 CPS LEL, % ND
The components of this product are SECTION 3 - PHYSICAL & CHEMICAL CHAN Boiling Point, F: ND Vapor Pressure (nm Hg): ND Vapor Density (Air=1): ND pH: 4.7-5.2 Solubility in Water: SOLUBLE Appearance and Odor: CLEAR LIGHT SECTION 4 - FIRE & EXPLOSION DATA Flash Point, F & Method >200 PMCC Based FIRE HAZARDS:	listed on the EPA/TSCA Invent RACTERISTICS Specific Gravity (H2O=1): Evaporation Rate: (butyl acetate=1) Viscosity: T PINK LIQUID Flammable Limits: d on: NA	1.35 ND 10-20 CPS LEL,% ND

Dry chemical, CO2, water spray or regular foam. Move container from fire area if you can do it without risk. Apply cooling water to sides of containers that are exposed to flames until well after fire is out. Stay away from ends of containers.

Abbreviations: NA=not applicable, ND=not determined, NE=not established

Page 2 of 3

CORTRON RU-206

SECTION 5 - PHYSICAL HAZARDS (REACTIVITY DATA) -----Chemical Stability: STABLE Conditions To Avoid: OPEN FLAMES, SPARKS Incompatibility (materials to avoid): STRONG OXIDIZERS Hazardous Decomposition/Byproducts: OXIDES OF CARBON AND NITROGEN Hazardous Polymerization: WILL NOT OCCUR Hazard Rating Scale: HEALTH: 2 FIRE: 0 REACTIVITY: O (4=severe, 3=serious, 2=moderate, 1=slight, 0=minimal) _____ SECTION 6 - HEALTH HAZARDS PRIMARY ROUTES OF ENTRY Inhalation: X Absorption: X Ingestion: X Injection: NA

HEALTH HAZARDS:

May be hazardous if inhaled, ingested or absorbed through the skin. Corrosive to tissue. Direct contact with eyes and skin may cause severe damage and burns. Vapors or mists may cause irritation of mucous membranes.

EMERGENCY & FIRST AID PROCEDURES:

In case of EYE contact, immediately flush eyes with running water and continue washing for at least 15 minutes. In case of INGESTION, give 2 glasses of water and induce vomiting. Obtain medical attention without delay. In case of SKIN contact, remove contaminated clothing and wash skin with soap and water. Obtain medical attention if irritation persists. Wash clothing before rewearing. In case of INHALATION, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, oxygen may be given by qualified personnel.

IF CONDITIONS PERSIST, SEEK MEDICAL ATTENTION.

Carcinogenicity? NO NTP? ND IARC Monograph? ND OSHA Regulated? NO

07/27/1999 16:10 5053276332

	16:10	505327633	32	NELSON CONSULTIN	G IN	PAGE 12
						Page 3 of 3
				CORTRON H	RU-206	
SECTION 7			AUTIONS AND SPII	L/LEAK PROCEI	DURES	
Neutralize due to rel	e with a ease of	lkali. G SO2 and	E MATERIAL IS RE Good ventilation d possibly NH3. red disposal fac	LEASED OR SPI is required Neutralize wa	ILLED: during neu	tralization
	EPA or		Approved Disposa	-		1944 Blad daa aan ay
			ECTION INFORMATI	ON/CONTROL ME	LASURES	
SECTION 8	- SPECI	AL PROTE	CTION INFORMATI	ON/CONTROL ME	LASURES	L IS EXCEEDED
SECTION 8 Respìrator	- SPECI y Prote	AL PROTE ction (S	CTION INFORMATI	ON/CONTROL ME	CASURES	
SECTION 8 Respirator Ventilatic	- SPECI	AL PROTE	CTION INFORMATI Specify Type): USE NIOSH AP	ON/CONTROL ME	CASURES	L IS EXCEEDED
SECTION 8 Respirator Ventilatic Special:	- SPECI Ty Prote on: Loc USE SC	AL PROTE ction (S al Exhau BA WHEN	ECTION INFORMATI Specify Type): USE NIOSH AP ast: Recommende	ON/CONTROL ME PROVED RESPIF d General	ATOR IF PEL Exhaust: 1	L IS EXCEEDED
SECTION 8 Respirator Ventilatic Special:	- SPECI y Prote on: Loc USE SC Gloves	AL PROTE ction (S al Exhau BA WHEN : : Ch	ECTION INFORMATI Specify Type): USE NIOSH AP ast: Recommende ENTERING TANKS	ON/CONTROL ME PROVED RESPIF d General ant / Non-Sli	ATOR IF PE EXhaust: H	L IS EXCEEDED
SECTION 8 Respirator Ventilatic Special: Protective Eye Protec	- SPECI y Prote on: Loc USE SC Gloves	AL PROTE ction (S al Exhau BA WHEN : : Ch Ch	ECTION INFORMATI Specify Type): USE NIOSH AP ast: Recommende ENTERING TANKS memically Resist	ON/CONTROL ME PROVED RESPIF d General ant / Non-Sli oggles / Safe Coveralls,	EASURES RATOR IF PEI E Exhaust: H P ety Glasses Splash Apro	L IS EXCEEDED Recommended
SECTION 8 Respirator Ventilatic Special: Protective Eye Protec Other Prot	- SPECI Ty Prote on: Loc USE SC Gloves tion:	AL PROTE ction (S al Exhau BA WHEN : Ch Clothing tices:	ECTION INFORMATI Specify Type): USE NIOSH AP ast: Recommende ENTERING TANKS memically Resist	ON/CONTROL ME PROVED RESPIF d General ant / Non-Sli oggles / Safe Coveralls, Eye Wash, a	EASURES RATOR IF PEI E Exhaust: H P ety Glasses Splash Apro and Safety S	L IS EXCEEDED Recommended ons, Shower
SECTION 8 Respirator Ventilatic Special: Protective Eye Protec Other Protec	- SPECI Ty Prote on: Loc USE SC Control Contro	AL PROTE ction (S) al Exhau BA WHEN : Ch Clothing tices: Clean up	ECTION INFORMATI Specify Type): USE NIOSH AP ast: Recommende ENTERING TANKS memically Resist memical Safety G or Equipment: ap Spills Prompt	ON/CONTROL ME PROVED RESPIF d General ant / Non-Sli oggles / Safe Coveralls, Eye Wash, a ly, Wash Cont	EASURES RATOR IF PEI E Exhaust: H P ety Glasses Splash Apro and Safety S	L IS EXCEEDED Recommended ons, Shower
SECTION 8 Respirator Ventilatic Special: Protective Eye Protec Other Protec Other Prot Work/Hygen SECTION 9 Hazard Cla	- SPECI Ty Prote on: Loc USE SC Control Contro	AL PROTE ction (S al Exhau BA WHEN : Ch Ch Clothing tices: Clean uy ING DATA	ECTION INFORMATI Specify Type): USE NIOSH AP ast: Recommende ENTERING TANKS hemically Resist hemical Safety G or Equipment: ap Spills Prompt	ON/CONTROL ME PROVED RESPIF d General ant / Non-Sli oggles / Safe Coveralls, Eye Wash, a ly, Wash Cont	ATOR IF PE ATOR IF PE EXhaust: I P ty Glasses Splash Apro and Safety S caminated C CR Guide No.	L IS EXCEEDED Recommended ons, Shower lothing.
SECTION 8 Respirator Ventilatic Special: Protective Eye Protec Other Protec Other Protec Work/Hygen SECTION 9 Hazard Cla Labels Req Proper Shi	- SPECI y Prote on: Loc USE SC cloves tion: ective dic Prac - SHIPP 	AL PROTE ction (S al Exhau BA WHEN : Ch Ch Clothing tices: Clean up tices: clean up tices: clean up tices: clean up tices: clean up	ECTION INFORMATI Specify Type): USE NIOSH AP USE NIOSH AP USE NIOSH AP USE NIOSH AP USE NIOSH AP ENTERING TANKS Demically Resist Demically Resist Demical Safety G or Equipment: A B SPROSIVE	ON/CONTROL ME PROVED RESPIF d General ant / Non-Sli oggles / Safe Coveralls, Eye Wash, a ly, Wash Cont DOT E	ATOR IF PE ATOR IF PE EXhaust: I P ty Glasses Splash Apro and Safety S caminated C CR Guide No.	L IS EXCEEDED Recommended ons, Shower lothing. .: 154

.

to be accurate, but no warranty, express or implied is made.

ili i

4 1.36 1.

43

2060 SOUTH 150 VERNAL, UTAH 8	DO EAST		er Ai	nalysis Report	Telephone	9 (801) 789-4327
Customer : Wi	lliams Fie	eld Services		Field :	Farmington	
Address :				Lease :	Farmington	
City :					San Juan Ri	ver
State :	Po	stal Code :		Sample Point :	river	
Attention :				Date Sampled :	20-May-99	
cc1 :				Date Received :	25-May-99	
cc2 :				Date Reported :	27-May-99	
cc3 :				Salesman :	Clay Bingha	m
Comments :				Analyst :	Karen Hawki	ins Allen
*********	CATIO	<u>NS</u>	*********	<u>AN</u>	IONS	
Calcium :	224	mg/ł		Chloride :	1,800	mg/l
Magnesium :	156	mg/l		Carbonate :	0	mg/l
Barium :	0	mg/l		Bicarbonate :	122	mg/l
Strontium :	0	mg/t		Sulfate :	108	mg/l
fron :	1.0	mg/l				
Sodium :	713	mg/l				
pH (field) :	7.90			Specific Gravity :	1.0050	grams/ml
Temperature :	70	degrees F		Total Dissolved Solids :	3,124	ppm
onic Strength :	0.06			CO2 in Water :	1	mg/i
				CO2 in Gas :	0.03	mole %
Resistivity :		ohm/meten	\$	H2S in Water :	0.0	mg/l
Ammonia :		ppm		Dissolved Oxygen :	8,000	ppm
		SI calculation	is based	on Tomson-Oddo parameters		
Calcite (C	aCO3) SI	l:	0.51	Calcite PTB :	27	9
Calcite (CaCO3) 8			0.82	Calcite PTB @ 100 F :	39.	
Calcite (CaCO3) 8 Calcite (CaCO3) 9			1.03 1.24	Calcite PTB @ 120 F : Calcite PTB @ 140 F :	45. 50.	
Calcite (CaCO3) S			1.24	Calcite PTB @ 140 F : Calcite PTB @ 160 F :	50. 54.	

Page 2 of 4

Barite PTB :

Celestite PTB :

N/A

N/A

A Holes a de la Hellieu

N/A

N/A

Har the second second

Barite (BaSO4) SI :

Celestite (SrSO4) SI :

The

Le il asimi i de llife de palitar

1.1 ;

Table 1. Coupon appearance following treatment with oxygen scavenger and biocide.

Treatment	24 nonce	4 Deys
Animas Control#	Covered with brown procipitate, sponed coupon	coverent with brown precipitate, black patches on coupons
Animas: 120ppm RU - 206 and 240 ppm K - 103	Clear solution, slight blackness on edges of coupon	Few brown precipitate, black
Animas: 120 ppm RU 206, and 123 ppm K 95	Clear solution, Clean coupon	clear solution, clean coupon
McPhee controis	covered with brown precipitate, spotted coupon	covered with brown precipitate many black patches on coupon
McPhee: 120 ppm RU - 206, and 240 ppm K - 103	Brown precipitate, alean coupon	Brown and black precipitate, spotted coupon
McPhec: 120 ppm RU - 206, and 125 ppm K - 95	clear solution, clean coupon	Clear solution, clean coupon few black precipitate
Florida controls	covered with brown precipitate, spotted coupon	covered with brown precipitate small black patches on coupon
Florida: 120 ppm RU - 206, and 240 ppm K - 103	clear solution, few black spots on coupon	clear solution, black coupon
Florida: 120 ppm RU - 206, and 125 ppm K - 95	clear solution, cloan coupon	clear solution, clean coupon

Table 2. Bacterial growth following treatment with oxygen scavenger and biocide.

Treatment		24 hours			4 Days		
1	Log of Inctarial colli/ml						
	AAP	ARAT			ANAP	SAR	
Animas controls	3	2		4	3	1	
Алімяя: 120ppm RU - 206 and 240 ppm K - 103	2	1	0	2	j	0	
Animas: 120 ppm RU-206, and 125 ppm K-95	1	1	0	1	1	0	
McPhee controls	3	2	0	4	3	Q	
McPhee: 120 ppm RU-206, and 240 ppm K - 103	2	1	0	2	T	0	
McPhee: 120 ppm RU - 206, and 125 ppm K - 95	1	1	0	1	1	0	
Florida controls	3	3	0	6	6	1	
Flarida: 120 ppm RU - 206, and 240 ppm K - 103	1	1	Q	2	1	c	
Morida: 120 ppin RU - 206, and 125 ppm K - 95	1	0	C	1	1	0	

Note

D WELL T. MELLER MAL

- N. J

. 5 1

- 1 1 1 Jan 1

1

31 H.

AAP = Aerobic acid producing bacteria ANAP = Anacrobic acid producing bacteria SRB = Sulfate reducing bacteria

21134

i la l

i. h

d ar

4.1011

. F i

11

1 i

 ŀ

ACZ Laboratories, Inc. 30400 Downbill Driva Steamboat Springs, CO 80487

•

•		[Page 1 of 2			
SAMPLE RECEIPT FORM						
CLIENT: Champion	ከለተፍ	5/29	159			
CLIENT: <u>Changion</u> PROJECT #: <u>L2377</u>	DAIE					
1) Does this project require special bandling procedures such as CLP protocol?	NA	YES	NO			
2) Are the custody seals on the cooler intact?	MA >	YES	NO			
3) Are the custody seals on the sample containers intact?	NA	YES	NO			
4) Is there a Chain of Custody (COC), or other directive shipping papers present?		(ES)	NO			
5) Is the COC complete?		(YES)	NO			
Relinquished? Yes No Requested Analysis? Yes	No					
6) Is the COC in agreement with the samples received?		YES	NO			
# of Samples: Yes No Sample ID: Yes	No					
Matrix: Yes <u>No</u> # of Containers: Yes	No					
7) Is there enough sample for all requested analysis?		TES	NO			
8) Are all samples within holding times for requested analysis?	VES	NO				
9) Were all sample containers received intact?	YES)	NO				
10) Are samples requiring no headspace, headspace free?	YES	NO				
11) Do the samples require a Foriegn Soils Permit Label or quarantine?	<u> </u>	YES	(NO			
12) Do samples require special disposal/hold considerations?						
Non-Hazardous; Yes No Hazardous: Yes No	Hold:	moi	nths			
Describe "NO" items (except #1, 11, & 12);						
		····-				
Was the client contacted? Yes No						
If yes: Date: Name of person contacted:						
Actions taken or client instructions:						
	<u></u>					
Signature:						

FRMQA011.01.97,04

1 1 .

ii lis 🦾

			~ • •		~~~~~				P	age 2
			SAN	IPLE RE	CEIPTI	FORM				
CLIENT:	(ha. (233)	No	1				DATE	5/2	\$/ <i>Ę</i> Ę	
PROJECT #:	L233	72					ANALYST:	RT-		
			alandariyi fad 3 / HL 15 ML 1 (
		TEMPE	ERATURE	VERIFICA	TION SA	MPLE C	HECK (°C	C)		
				CONTAINER	TEMP (°C)	RAD				
				D	2° to 6°	µR/hr				
				(lients		12	If containe	r radioactiv	ity is	
							-1	r then each :	-	
				* wm.1			must be se	reened.	-	
	P	RESERV	ATION C	HECK (pH) & RADI	OACTIV	ATY SCR	EEN		
SAMPLE	R	G	Y	YG	B	BG	0	т	Р	R
SHIVITLE	<2	<2	-1 < 2	< 2	<u>ل</u> < 2	< 2	< 2	> 12	> 12	лл ДЛ
/ 1	~ [*****	(-		I	T	1			T
2	\sim		k	, , ,						
3			X							
4	r		x							
2	A		r	A. (10)						
6			r							
7	×-	* ····	×	W-11-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1						

						"		<u> </u>		
					ļ					
				lank bottle	or next to s		container			
Temperature of co	ntainer tak									
Temperature of co INTERNAL COM						Z.				
				wed &		2.	<u></u>			

Π.

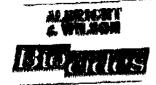
ilia

¥.

š

1.1

FRMQA011.01.97.04


A ALMANDER AND A DEPART AND

855

Page 1 of 6

HELIMICAL DUNMIN SUV

TOLCIDE" PS

Results of current studies on the toxicity of Tetrakishydroxymathyl phosphonium sulphate (THPS)

The active ingredient, THPS, manufectured by Albright & Wilson Limited, forms the besis of the TOLCIDE PS range of biocide concentrates and formulations. Albright & Wilson Ltd has a total commitment to follow quality principles in the supply of its biocide products, with manufacture conforming to 855750 part II, ISO 9002-1987, EN29002-1987.

it is the policy of Albright & Wilson Ltd to support the activities of our customers in the correct handling and use of our products. In those countries where registristions or approvals are required we will provide, where possible, appropriate toxicological data on our blocide products to allow compliance with local regulations for both active ingredient and and use formulations.

We make every endeavour to ensure that our technical, toxicological and environmental data is to current standards, follows recognized protocols such as those issued by the EPA, FDA, and OECD and conforms to the principles of Good Leboratory Practice. The following summary of toxicological dats has been established using the active ingredient THPS at a 75% concentration in equeous solution.

We will be pleased to offer further advice on any aspect of our products and to give assistance in ensuring their safe use. Our Regulatory Affairs department can also offer assistance in compliance with registration or approval procedures for formulated products basad on our active ingredient supportive data.

Fur further information or advice on the toxicological profile of THPS, please contact the Albright & Wilson Blocides Group Technical Sales Staff.

Technical Bulletin 300 Page 2 of 6

Toxicological Profile Tetrakishydroxymethyl phosphonium sulphate (THPS)

Acute Studies

11.1

i il. 4

Oral LD_{sp} - Rats

Dermai LD_{ag} - Rats

Dermal Irritation - Rabbit

Eye Irritation - Rabbit

- 575 mg/kg bodyweight.

> Z000 mg/kg bodywalght.

- No dermal irritation.

 Positive response in one animal, according to FIFRA criteria.
 Ocular lesions produced.

- No toxicological significance.

Inhalation - flat (six hour exposure on four consecutive days)


Inhalation LC_{so} - Rats (4 hr)

Sensitisation (M&K) - Guines Pig

- 5.55 mg/l
- Positive sensitiser

MUBI A H. Ge

Technical Bulletin 300 Page 3 of 6

Texicological Profile Tetrakishydroxymethyl phosphonium sulphate (THPS)

Sub Acute Studies

13 week oral gavage - Rat

28 dey dermal - Rat

Oral Teratology (Gavage) - Rabbit

Oral Teratology (Gavage) - Flat

- . . .
- · ·

iles a

- Treatment for 13 weeks at dose ievels of 1, 5 or 10 mg/kg/day. There were no clinical signs that could be associated with treatment. The only treatment related effects observed during this study were microscopic changes of the liver enzymes (ALT & AST). These responses were considered to be due to a direct toxic effect. The no observed effect level (NOEL) for this study was 1 mg/kg/day.
- Application corrosive hence no longer term dermel study on Bat,
- Treatment at 60 mg/kg/day has elicited marked maternal toxicity.
 This has not adversely affected growth or survival of the embryo/foetus but a high incidence of foetuses showed characteristic eye and limb malformations. There was no indication of an effect of treatment, meternal or foetel, at 6 or 18 mg/kg/day.
- Treatment at 50 mg/kg/day elicited maternal toxicity in three animals.
 Since two foetuses in the group showed eye maiformations and there was a significant increase in the incidence of foetuses with supernumerary ribs, an effect on development of the foetus could not be discounted.

There was no indication of an effect of treatment, material or foetal at 15 mg/kg/day.

1855

Page 5 of 6

LC₃₀ (µg/l)

179

154

> 320

TUCHINCAI DUCIENTE JUN

PAGE 22 PAGE B

Toxicological Profile

Tetrakiahydroxymethyl phosphonium sulphate (THPS)

Ecotoxicology - Freshwater

96 Hr LC = Rainbow trout - 119 mg/l 96 Hr LC to - Bluegill sunfish - 93 mg/t <22.7 mg/l - NDEC

- 19.4 mg/t

- age (days)

4 - 7

14 21

32 µg/l - NOEC

- 652 µg/l - ErC 204 µg/l - EbC

48 Hr EC - Daphnia magna

21 day Juvenile reproduction test under semistatic conditions - Daphnia magna

EC, algas - S. capricornutum

Ecotaxicology - Birds

LD _{to} - Mailard Duck	-	311 mg/kg bodyweight
Dietary LC ₅₀ - Mailard Duck	*	1313 ppm
Distary LC _{so} - Bobwhite Quail	٠	2414 ppm

Technical Bulletin 300

Page 6 of 6

NELSON CONSULTING IN ID: 717 11655

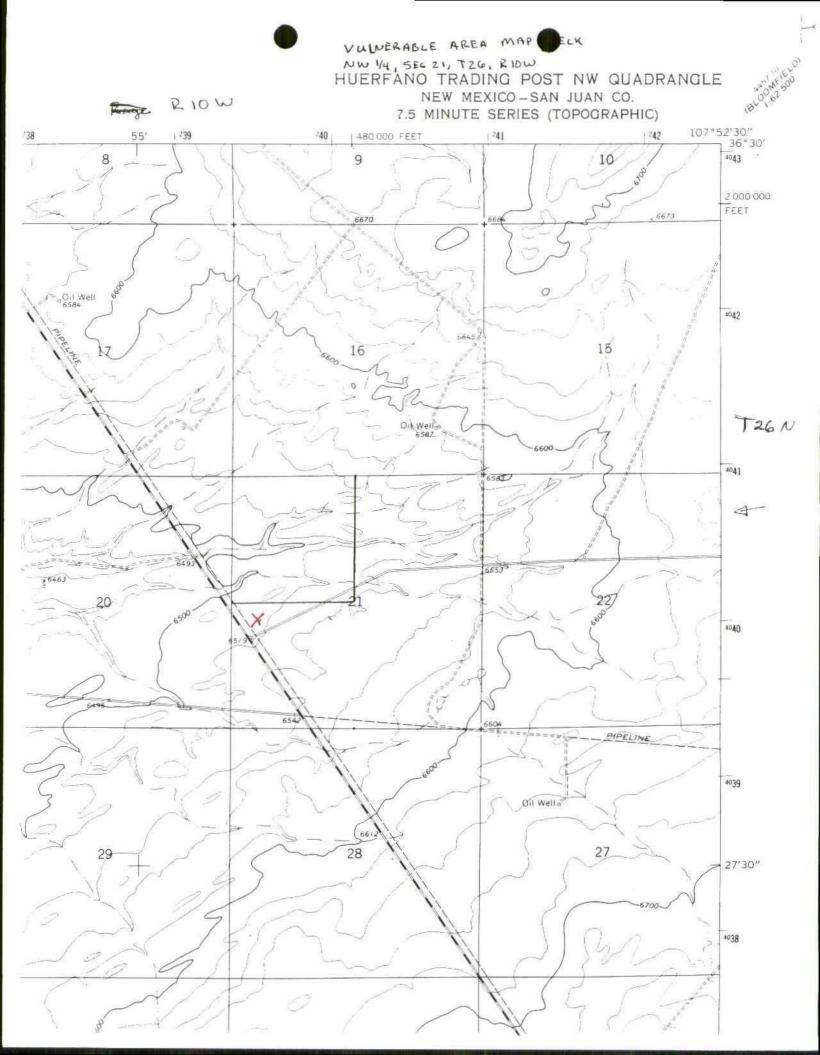
Toxicological Profile Tetrakishydroxymethyl phosphonium sulphate (THPS)

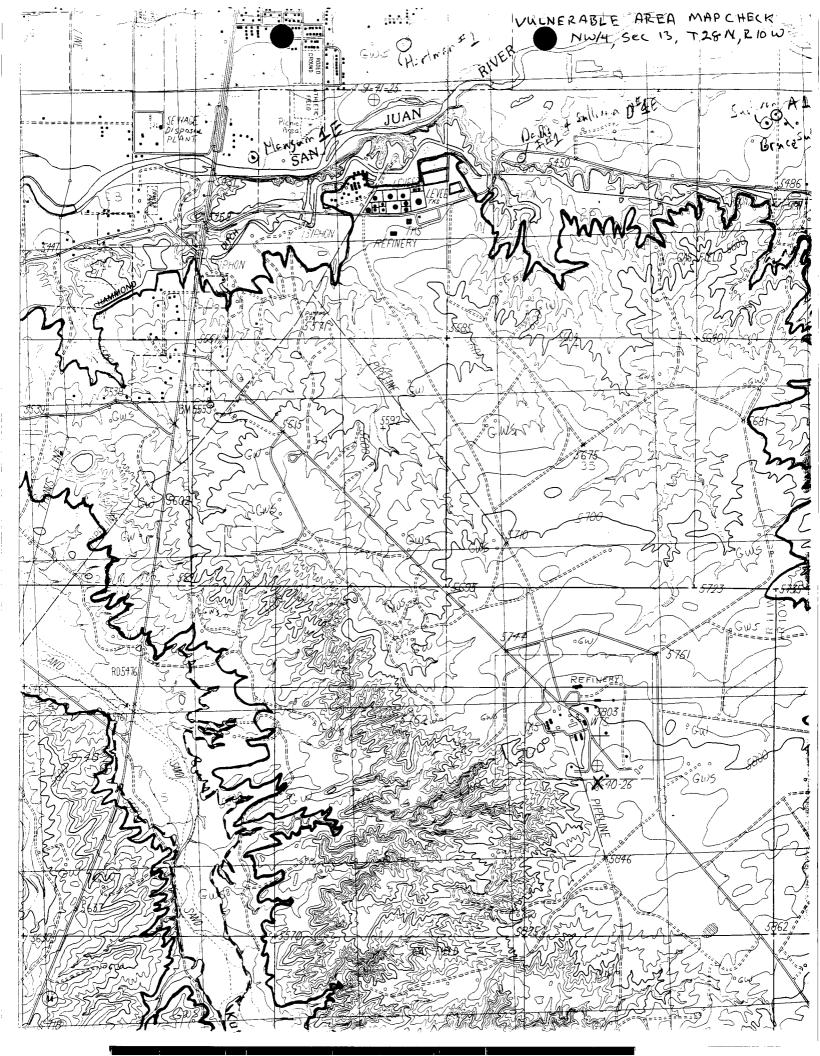
Ecotoxicology - Marine

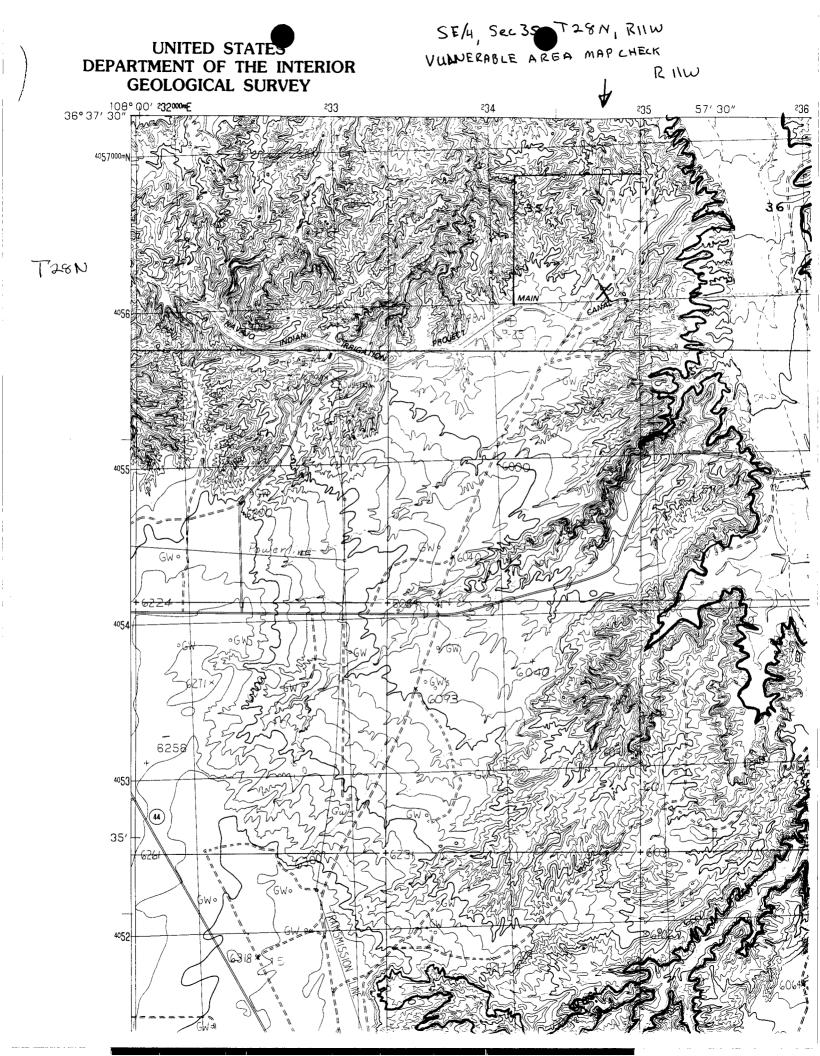
96 Hr LC _{so} - Juvenile Plaice	**	86 mg/l	
96 Hr LC _{so} - Brown Shrimp	•	340 mg/l	
96 Hr LC _{se} - Mysid Shrimp	-	3.3 mg/l 1.3 mg/l NOE	с
86 Hr LC + Sheepshead Minnow	س .	74.3 mg/l 36 mg/l NOE(2
EC _{so} - Oyster shell deposition		Age (days)	EC _{so} (mg/l)
		4	0.91
		10	0.81

The information contration in the spontable is in the peet of Abright 5. When is increasing and hold contrast converse on prime increases any prime in the spontable increase in the peet of Abright 5. When is increasing and hold contrast converse on prime increases any prime increases any prime into the local sector of the prime of the prime

Contennes are elep anninded for fore may be unre or application for the product orfact are protected by Abright & Million's or find perform point applies and making perform why be endeduced at all distantly as andoundermost to use or many the product in orderwandous of math rights.




Albeitght & Willway Uit Limbud Water Minutgemath Chemicals 210-222 Higdey Road West Oktoury, Wester West Mithoras Bill Divi Telephyne 0121-420 5388 Telephyne 0121-420 5320


Aronnom Marine Avoimouth Oriel 0511 077 Telescasso Fer: 01178-82443 STATE OF NEW MEXICO OIL CONSERVATION DIVISION

MEMORANDUM OF MEETING OR CONVERSATION

Time Date Telephone Personal 7-2-98 10:20 Originating Party Other Parties Martyne Kicling Steve Nelson (505) 327-6331 Nelson Consulting MID Americal Ripeline Co HydroStatic test Discharge Subject Discussion Volume of water: 622,000 gal Type of Pipe New Pipe Surface owner : BLM Water Douvre : Nape Irragation Well water ~ 400 Above River Bottom San Juan River Conclusions or Agreements I Need to check Unerable Area Ste No Liner Required if Gw is at Pepth and Not Vunereible Area. Signed **Distribution** Martyn g Thily-

Nelson Consulting, Inc.

Ph. 505-327-6331 fax 505-327-6332

June 15, 1998

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

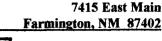
Re: Mid-America Pipeline Company's Request for Authorization to Discharge Hydrostatic Test Water on the Surface. San Juan Co.

New Pipe ... 622,000 BLIM Land

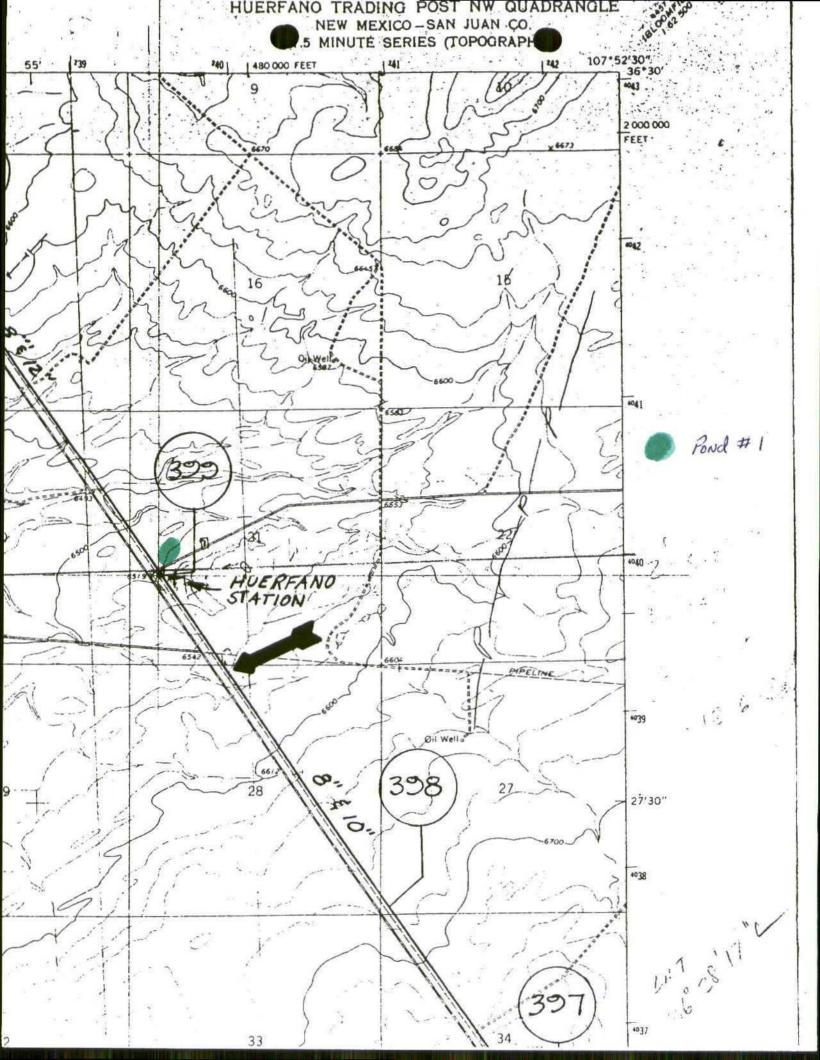
Dear Mr. Anderson:

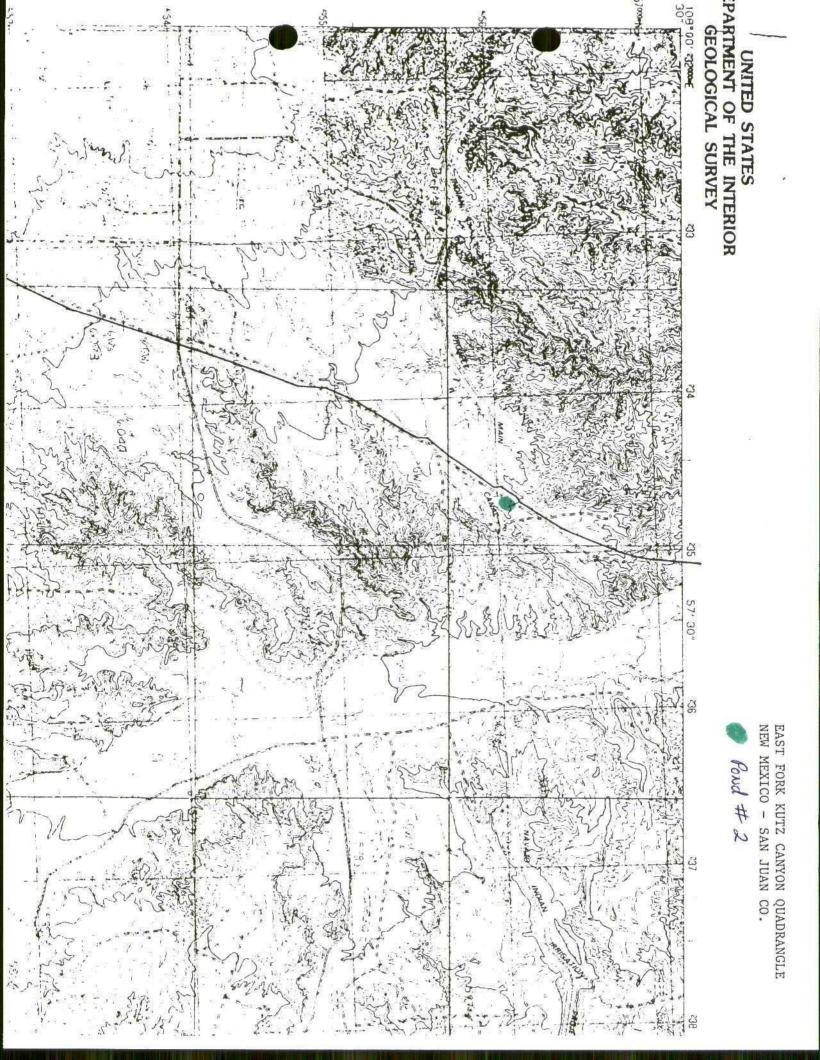
This letter is the Mid-America Company's (MAPL) request for authorization to discharge hydrostatic test water onto the surface into three impoundment ponds. The MAPL's proposed 16-inch pipeline would begin at Huerfano Station located in the NW1/4 of Section 21, T26N, R10W and would end at Kutz Station located in the NW1/4 of Section 13, T28N, R11W. We are also proposing to install a 12-inch pipeline which would begin in the SE1/4 of Section 36, T26N, R11W and would end at Kutz Station in the NW1/4 of Section 13, T28N, RIOW. Z

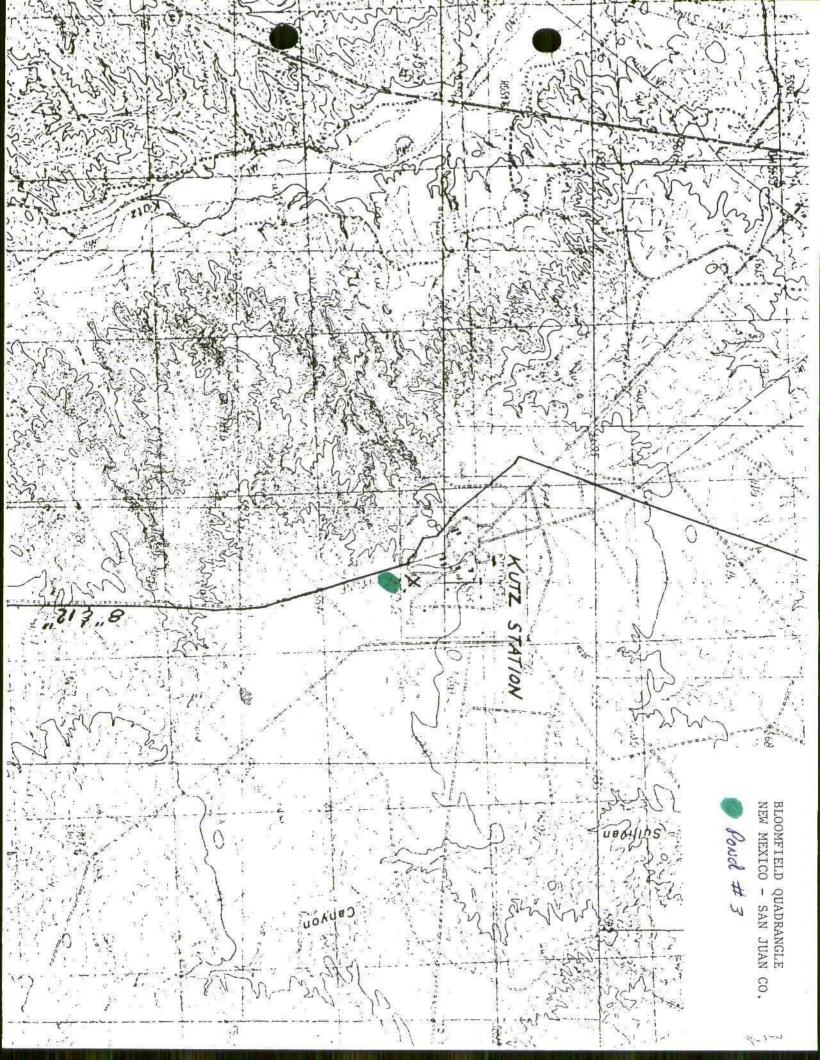
We are proposing to construct three impoundment ponds to discharge the test water upon completion of the testing. The first impoundment pond dimensions would be 400 x 400-feet adjacent to Huerfano Station located in the NW1/4 of Section 21, T26N, R10W. The second impoundment pond dimensions would be 100 x 100-feet adjacent to the proposed pipeline right-of-way located in the SE1/4 of Section 35, T28N, R11W. The third impoundment pond dimensions would be 150 x 150-feet adjacent to Kutz Station located in the NW1/4 of Section 13, T28N. R10W (see attached maps for site locations).

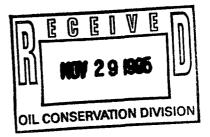

? 7110

MAPL submitted a draft Environmental Assessment to the Farmington District Office, Bureau of Land Management for review on June 2, 1998. This Environmental Assessment is still under review at the present time. The Environmental Assessment addresses all issues inclusive of constructing a pipeline, including; Threatened and Endangered Species, Cultural Resources, and Noxious Weeds. The proposed target date to begin the construction of this pipeline is July 6, 1998, but is contingent upon receiving all required permits.


Thank you for your time and consideration in this matter. If you need further information, please contact me at (505) 327-6331.


Sincerely


Steve Nelson



November 28, 1995

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Subject: Application for individual permit to discharge over 100,000 gallons of hydrostatic test water in Sandoval County, New Mexico.

Dear Mr. Anderson:

Mid-America Pipeline Company is constructing and hydrostatic testing its new 12-inch pipeline loop approximately 400 miles in length adjacent to its existing pipeline system, from a point near Hobbs, New Mexico in Gaines County, Texas to a point approximately 15 miles south of Farmington in San Juan County, New Mexico. A 10-inch lateral approximately 12 miles in length is also being constructed in San Juan County.

Mid-America Pipeline Company respectfully requests a permit for discharge of water used to test segments of its 12-inch and 10-inch pipelines approximately 46 miles in length from a point 3 miles southeast of Lybrook to a point approximately 15 miles south of Farmington, New Mexico. The discharge volume will be up to 1,500,000 gallons of water. Items included in this permit application are as follows:

a) Map showing location of the pipeline to be tested.

See attached Exhibit A.

b) <u>Description of the test.</u>

The test is an 8-hour hydrostatic test of new 10-inch and 12-inch steel line pipe required to qualify the pipelines for their design operating pressures. The segments to be tested include approximately 46 miles of buried pipe including 12 miles of 10-inch pipe and 34 miles of 12-inch pipe. The pipe to be tested begins at a point approximately 3 miles southeast of Lybrook in Sandoval County and ends at El Paso Natural Gas Company's Chaco Plant in San Juan County, New Mexico approximately 15 miles south of Farmington. The test water will be transported through the pipeline as construction and testing progresses. When testing is complete, the water will be discharged as described herein.

c) <u>Source and analysis of test water.</u>

The water will be pumped from holding ponds containing noncontact water from wells at El Paso Natural Gas Company's Chaco Plant in the SW 1/4 of Section 16 and the SE 1/4 of Section 17, T26N, R12W, San Juan County, New Mexico.

Analysis of test water- See attached Exhibit B. Note that the water sample analysis indicated a Total Dissolved Solids content of 1100 MG/L.

d) Point of discharge of the test water.

SE 1/4, S26, T23N, R7W, Sandoval County, New Mexico Point of discharge is shown on Exhibit A.

e) Method and location for collection and retention of fluids and solids.

The test water will be collected and retained in an existing drainage holding pond at the point of discharge. The pond will be improved and enlarged prior to use. The water will be discharged into a hay bale filtration structure before entering the pond.

f) Depth of ground water at discharge site.

890 feet

g) Proposed method of disposal of fluids and solids after test completion including closure of any pits.

The test water will be mixed in the pond with test water from the previous discharge of approximately 1.5 million gallons having a TDS of 240 MG/L. In this manner, the TDS will be diluted to approximately 670 MG/L. The resultant TDS is calculated as follows:

1.5 million gallons x240 MG/L x3.7854 L/gallon=1362 million MG+1.5 million gallons x1100 MG/L x3.7854 L/gallon= 6246 million MG= 3 million gallons or11.36 million Liters7608 million MG

7608 million MG/11.36 million L = 670 MG/L resultant TDS

The water table is approximately 890 feet below the surface of the ground according to records available at the State Engineer's Office. It is proposed that the surface water will not contact the ground water without first being highly modified by the soil media through which it must pass.

No significant solid materials are anticipated. The water will be retained in the holding pond until it is dissipated by absorption into the ground and by evaporation.

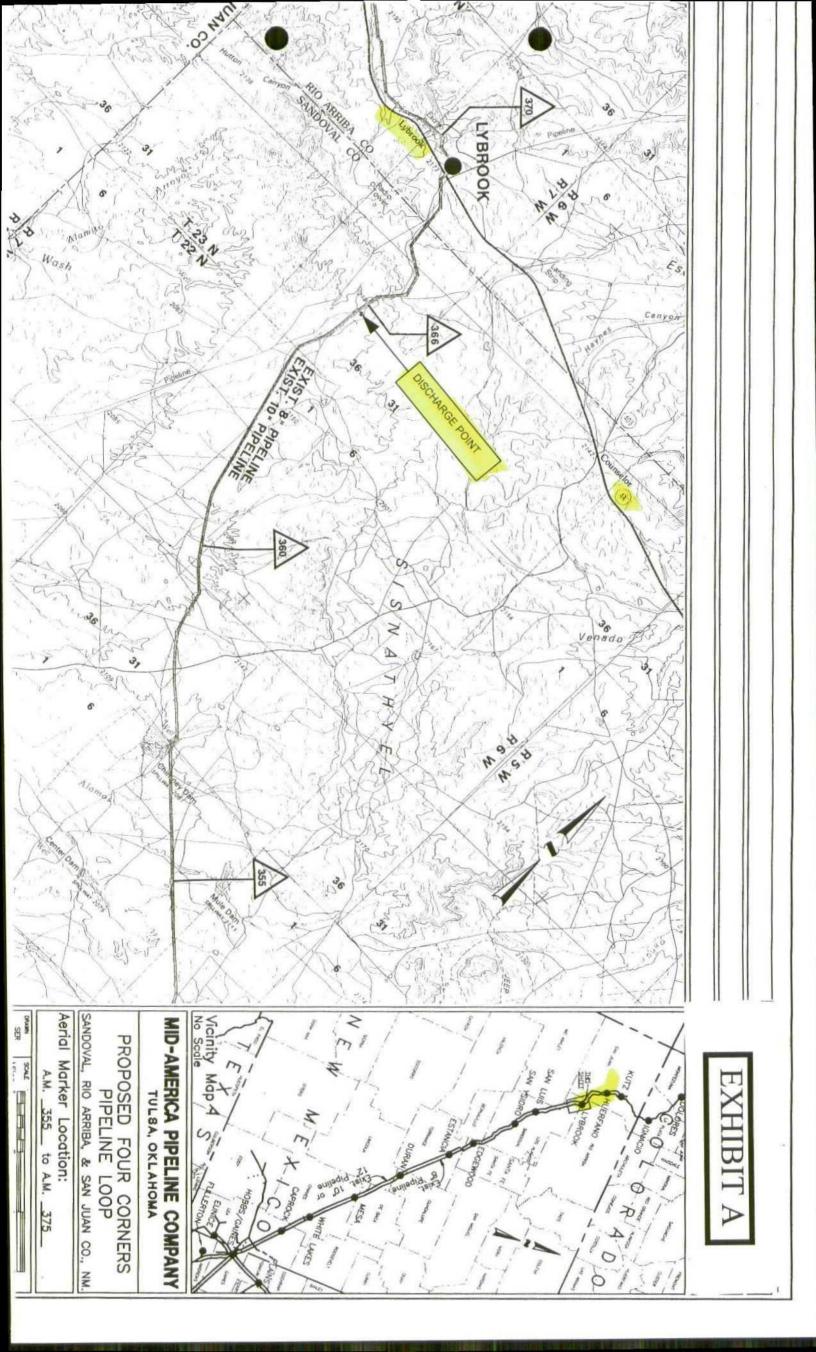
h) Identification of land owners at and adjacent to the discharge site.

Land owner at the discharge site is: U. S. A. Bureau of Land Management (BLM)

Land owners adjacent to the discharge site are as follows: North boundary- Larry H. Reiger and Sandra G. Salazar South boundary- U. S. A. in trust for the Navajo Tribe West and East boundaries- U. S. A. (BLM) East (southeast) boundary- State of New Mexico

I) Written permission from the land owner of the collection/retention site.

See attached Exhibit C.


I trust that sufficient information has been provided to allow you to issue the requested permit. Should you have any questions or desire any additional information, please do not hesitate to call me or Jim Brooking at (505) 823-9443.

Very truly yours,

Garv Harkev

Project Manager

attachments

01

02

CLIENT	:MID AMERICA PIPELINE CO.	DATE RECEIVED: 11/14/95
PROJECT #	: EPNG CHACO PLANT	
PROJECT NAME	: FOUR CORNERS	REPORT DATE :11/21/95

511333

ATI ID:

DESCRIPTION

TRIP BLANK

EPNG HOLDING POND

ATI PENSACOLA CLIENT

ID #

511333-01

÷,

PAGES

DATE

COLLECTED

11/13/95

09/08/95

EX

MATRIX

AQUEOUS

AQUEOUS

TOTALS-	

MATRIX#SAMPLESAQUEOUS2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

• • 1...

a Agagas

"FINAL REPORT FORMAT - SINGLE"

· - - *

Sample Date/Time: 13-NOV-95 1030 Received Date: 15-NOV-95

Received Date:

511332 Accession: Client: ANALYTICAL TECHNOLO Project Number: 511333 Project Name: FOUR CORNERS-MAPCO Project Location: N/S Test: Group of Single Wet ANALYTICAL TECHNOLOGIES, INC. 511333 Group of Single Wetchem WATER Matrix: QC Level: ΙI

Lab ID: 001 Client Sample Id: 511333-01

Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
ALKALINITY (2320B) CHLORIDE (325.3) CONDUCTIVITY (120.1) PH (150.1) SULFATE (375.4)	MG/L MG/L UMH/CM UNITS MG/L	89 24 1300 7.3 470	1 1 1 NA 250	+	ASW059 CIW048 CDW061 PHW240 SEW103	AB ED RB SG SG
TOTAL DISSOLVED SOLIDS (160.1)	MG/L	1100	5		TDW081	ED

Comments:

TOTAL METALS

Lab Name: Analytical Technologies, Inc.

Client Name: ATI - NM

Client Project ID: Four Corners-Mapco

Lab Sample ID: 95-11-108-01

Sample Matrix: Aqueous

Sample ID

EPNG Holding Pond

Date Collected: 11/13/95

Prep Date: 11/15/95

Date Analyzed: 11/15/95

A	Modified	Concentration	Detection Limit
Analyte	Method	mg/L	mg/L
Arsenic	6010	ND	0.01
Barium	6010	0.2	0.1
Cadmium	6010	ND	0.005
Calcium	6010	160	1
Iron	6010	2.1	0.1
Lead	6010	ND	0.003
Magnesium	6010	33	1
Manganese	6010	0.16	0.01
Mercury	7470	ND	0.0002
Potassium	6010	19	1
Selenium	6010	ND	0.005
Sodium · *	6010	120	5
Zinc	6010	0.41	0.02

ND = Not Detected

* Detection limit raised. Dilution required due to analyte concentration.

and the

GAS CHROMATOGRAPHY RESULTS

аларанан сайта. Таралан сайта

DIL.

TEST : PURGEABLE HALOCARBONS/AROMATICS (EPA 8010/8020) : MID AMERICA PIPELINE CO. ATI I.D.: 511333 CLIENT : EPNG CHACO PLANT PROJECT # PROJECT NAME : FOUR CORNERS SAMPLE DATE DATE DATE MATRIX ID. # CLIENT I.D. EXTRACTED ANALYZED SAMPLED

		DATE	DATE	DATE	DTT.
ID. # CLIENT I.D.	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
D1 EPNG HOLDING POND	AQUEOUS	11/13/95	NA	11/14/95	1
02 TRIP BLANK	AQUEOUS	09/08/95	NA	11/14/95	1
PARAMETER		UNITS	01	02	
BENZENE		UG/L	<0.5	<0.5	
BROMODICHLOROMETHANE		UG/L	<0.2	<0.2	
BROMOFORM		UG/L	<0.5	<0.5	
BROMOMETHANE		UG/L	<1.0	<1.0	
CARBON TETRACHLORIDE		UG/L	<0.2	<0.2	
CHLOROBENZENE		UG/L	<0.5	<0.5	
CHLOROETHANE		UG/L	<0.5	<0.5	
CHLOROFORM		UG/L	<0.5	<0.5	
CHLOROMETHANE		UG/L	<1.0	<1.0	
DIBROMOCHLOROMETHANE		UG/L	<0.2	<0.2	
1,2-DIBROMOETHANE (EDB)		UG/L	<0.2	<0.2	
1,2-DICHLOROBENZENE		UG/L	<0.5	<0.5	
1,3-DICHLOROBENZENE		UG/L	<0.5	<0.5	
1,4-DICHLOROBENZENE		UG/L	<0.5	<0.5	
1,1-DICHLOROETHANE		UG/L	<0.3	<0.3	
1,2-DICHLOROETHANE (EDC)		UG/L	<0.5	<0.5	
1,1-DICHLOROETHENE		UG/L	<0.2	<0.2	
CIS-1,2-DICHLOROETHENE		UG/L	<0.2	<0.2	
IRANS-1,2-DICHLOROETHENE		UG/L	<1.0	<1.0	
1,2-DICHLOROPROPANE		UG/L	<0.2	<0.2	
CIS-1,3-DICHLOROPROPENE		UG/L	<0.2	<0.2	
TRANS-1, 3-DICHLOROPROPENE		UG/L	<0.2	<0.2	
ETHYLBENZENE		UG/L	<0.5	<0.5	
METHYL-t-BUTYL ETHER		UG/L	<2.5	<2.5	
METHYLENE CHLORIDE		UG/L	<2.0	<2.0	
1,1,2,2-TETRACHLOROETHANE		UG/L	<0.2 D(1)	<0.2	
TETRACHLOROETHENE		UG/L	<0.5		
TOLUENE		UG/L	<0.5	<0.5	
1,1,1-TRICHLOROETHANE		UG/L	<1.0	<1.0	
1,1,2-TRICHLOROETHANE		UG/L	<0.2	<0.2	
TRICHLOROETHENE		UG/L	<0.3	<0.3	
TRICHLOROFLUOROMETHANE		UG/L	<0.2		
VINYL CHLORIDE		UG/L	<0.5		
TOTAL XYLENES		UG/L	<0.5		
SURROGATES:					
BROMOCHLOROMETHANE (%)			107	93	

D(1)=DILUTED 1X, ANALYZED 11/15/95

066 P01

Nelson Consulting, Inc. P.O. Box 5556 Farmington, NM 87499

11-15-95

Jim Brooking Mid-America Pipeline Co. Albuquerque, NM

RE: Four Corners Pipeline Project Hydro Static Water Disposal Pond Sec. 26,T23N,R7W SE,SE,NE Station 6969+00 Sandoval County, NM

Dear Jim,

I spoke to Alyse Gold and Jerry Crockford at the BLM Farmington District office on November 13, 1995. In regards to accessing a section of land to act as a holding pond for the water from the hydrostatic test done on the 12", 10" pipeline project, they have no problem with the disposal pond as long as the disposal is permitted by the state of New Mexico and all stipulations are followed. Once the water is tested and proved to be acceptable, then the water can be unloaded into a straw bale straining dam where it will filter out onto the ground. The pond will be constructed in an existing drainage pond that is adjacent to the pipeline right of way. The pond will remain so that it may provide water for wildlife and livestock in the area. The area was Arched by O.C.A. on 11-16-95 an no sensitive areas were discovered. An O.C.A. Arch monitor will be present during excavation of the pond. I will get written authorization from the BLM after they finish there extended vacation.

BLM Compliance Officer MAPCO Four Corners Project Steve Nelson 505-320-0011

cc: Jerry Crockford BLM Joe Jaramillo BLM

December 4, 1995

Mr. Chris Eustice New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Subject: Application for individual permit to discharge over 100,000 gallons of hydrostatic test water in San Juan County, New Mexico.

Dear Mr. Eustice:

Mid-America Pipeline Company is constructing and hydrostatic testing its new 12-inch pipeline loop approximately 400 miles in length adjacent to its existing pipeline system, from a point near Hobbs, New Mexico in Gaines County, Texas to a point approximately 15 miles south of Farmington in San Juan County, New Mexico. A 10-inch lateral approximately 12 miles in length is also being constructed in San Juan County.

Mid-America Pipeline Company respectfully requests a permit for discharge of water used to test its 10-inch lateral approximately 12 miles in length from our Huerfano Pump Station west to the El Paso Chaco Plant. The El Paso Chaco Plant is approximately 15 miles south of Farmington, New Mexico. The Huerfano Pump Station is located just east of State Highway 44 approximately 5 miles northwest of Huerfano Trading Post. The discharge volume will be approximately 276,000 gallons of water. Items included in this permit application are as follows:

a) Map showing location of the pipeline to be tested.

See attached Exhibit A.

b) Description of the test.

The test is an 8-hour hydrostatic test of new 10-inch steel line pipe required to qualify the pipeline for its design operating pressure. The segment to be tested is approximately 12 miles of 10-inch buried pipe in San Juan County, New Mexico, located as described

Jim Brookings called 12-5-95 @ 1045 Am to tell me BLM would not allow. He instructed me to ignore this request

above. When testing is complete, the water will be discharged near the Huerfano Pump Station as described herein.

c) <u>Source and analysis of test water.</u>

The water will be pumped from holding ponds containing noncontact water from wells at El Paso Natural Gas Company's Chaco Plant in the SW 1/4 of Section 16 and the SE 1/4 of Section 17, T26N, R12W, San Juan County, New Mexico.

Analysis of test water- See attached Exhibit B.

d) Point of discharge of the test water.

SW 1/4, S21, T26N, R10 W, San Juan County, New Mexico Point of discharge is shown on Exhibit A.

e) Method and location for collection and retention of fluids and solids.

The test water will be disbursed as irrigation water in a rural area. The water will be discharged into a hay bale filtration structure to dissipate the energy of the flow and mitigate surface erosion.

f) Depth of ground water at discharge site.

The State Engineer's Office in Aztec has records of a well at Huerfano Trading Post whose depth to ground water is 516 feet. This is likely the closest well to the dewatering site.

g) <u>Proposed method of disposal of fluids and solids after test</u> completion including closure of any pits.

> No significant solid materials are anticipated and no pits will be used. The test water will be disbursed as irrigation water in a rural area covered with native vegetation. The amount of water to be discharged is quite small in comparison to the ground surface area available for absorption.

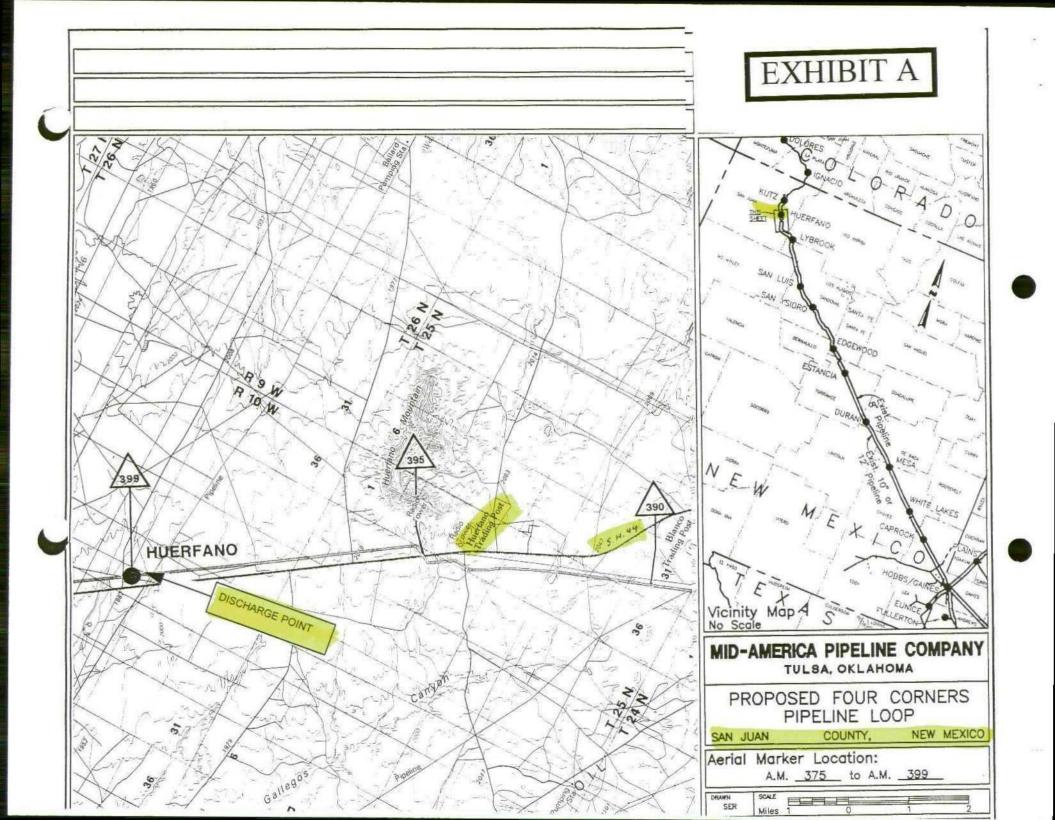
> The water table is approximately 500 feet below the surface of the ground according to records available at the State Engineer's Office. It is proposed that the surface water will not contact the ground water before being absorbed by soil particles and/or evaporated.

h) Identification of land owners at and adjacent to the discharge site.

Land owner at the discharge site is: U. S. A. Bureau of Land Management (BLM)

Land owners adjacent to the discharge site: North boundary- BLM South boundary- BLM West boundary- State Highway 44 East boundary- Unknown, but 2000 feet away from dewatering site. Land slopes away from property.

I) Written permission from the land owner of the collection/retention site.


Permission currently being obtained from the BLM by our Compliance Officer, Mr. Steve Nelson.

I trust that sufficient information has been provided to allow you to issue the requested permit. Should you have any questions or desire any additional information, please do not hesitate to call me or Jim Brooking at (505) 823-9443.

Very truly yours, Gary Harkey

Project Manager

attachments

01

02

CLIENT	:MID AMERICA PIPELINE CO.	DATE RECEIVED: 11/14/95
PROJECT #	: EPNG CHACO PLANT	
PROJECT NAME	: FOUR CORNERS	REPORT DATE :11/21/95

DESCRIPTION

TRIP BLANK

511333

ATI ID:

ATI PENSACOLA CLIENT

ID #

511333-01

 \sim

HIBIT

4 PAGES

R

DATE

COLLECTED

11/13/95

09/08/95

ΕX

MATRIX

AQUEOUS

AQUEOUS

EPNG HOLDING POND

---TOTALS---

<u>MATRIX</u> AQUEOUS <u>#SAMPLES</u> 2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

"FINAL REPORT FORMAT - SINGLE"

· - - *

Sample Date/Time: 13-NOV-95 1030 Received Date: 15-NOV-95

Accession:511332Client:ANALYTICAL TECHNOLOGIES, INC.Project Number:511333Project Name:FOUR CORNERS-MAPCOProject Location:N/STest:Group of Single WetchemMatrix:WATERQC Level:II

Lab ID: 001 Client Sample Id: 511333-01

critic campet						
Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
ALKALINITY (2320B) CHLORIDE (325.3) CONDUCTIVITY (120.1) PH (150.1) SULFATE (375.4)	MG/L MG/L UMH/CM UNITS MG/L	89 24 1300 7.3 470	1 1 1 NA 250	÷	ASW059 CIW048 CDW061 PHW240 SEW103	AB ED RB SG SG
TOTAL DISSOLVED SOLIDS (160.1)	MG/L	1100	5		TDW081	ED

Comments:

TOTAL METALS

Lab Name: Analytical Technologies, Inc.

Client Name: ATI - NM

Client Project ID: Four Corners-Mapco

Lab Sample ID: 95-11-108-01

Sample Matrix: Aqueous

Sample ID

EPNG Holding Pond

Date Collected: 11/13/95

Prep Date: 11/15/95

Date Analyzed: 11/15/95

	Modified	Concentration	Detection Limit
Analyte	Method	mg/L	mg/L
Arsenic	6010	ND	0.01
Barium	6010	0.2	0.1
Cadmium	6010	ND	0.005
Calcium	6010	160	1
Iron	6010	2.1	0.1
Lead	6010	ND	0.003
Magnesium	6010	33	1
Manganese	6010	0.16	0.01
Mercury	7470	ND	0.0002
Potassium	6010	19	1
Selenium	6010	ND	0.005
Sodium *	6010	120	5
Zinc	6010	0.41	0.02

ND = Not Detected

* Detection limit raised. Dilution required due to analyte concentration.

GAS CHROMATOGRAPHY RESULTS

.

TEST: PURGEABLE HALOCARBONS/AROMATICS (EPA 8010/8020)CLIENT: MID AMERICA PIPELINE CO. ATI I.D.: 511333PROJECT #: EPNG CHACO PLANTPROJECT NAME: FOUR CORNERS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLE		DATE	DATE	DATE	DIL.
02TRIP BLANKAQUEOUS09/03/95NA11/14/951PARMETERUNITS0102BENZENEUG/L<0.5	ID. # CLIENT I.D.	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
PARAMETER UNITS 01 02 BENZENE UG/L <0.5	01 EPNG HOLDING POND	AQUEOUS	11/13/95	NA	11/14/95	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02 TRIP BLANK	AQUEOUS	09/08/95	NA	11/14/95	1
BROMODICHLOROMETHANE UG/L <0.2	PARAMETER		UNITS	01	02	
BROMOFORM UG/L <0.5 <0.5 BROMOMETHANE UG/L <1.0 <1.0 CARBON TETRACHLORIDE UG/L <0.2 <0.2 CHLOROBENZENE UG/L <0.5 <0.5 CHLOROFTHANE UG/L <0.5 <0.5 CHLOROFTHANE UG/L <0.5 <0.5 CHLOROFTHANE UG/L <0.5 <0.5 CHLOROFTHANE UG/L <0.2 <0.2 1,2-DICHLOROBENZENE UG/L <0.5 <0.5 1,2-DICHLOROBENZENE UG/L <0.5 <0.5 1,3-DICHLOROBENZENE UG/L <0.5 <0.5 1,1-DICHLOROETHANE (EDC) UG/L <0.3 <0.3 1,2-DICHLOROETHANE UG/L <0.2 <0.2 CTS-1,2-DICHLOROETHENE UG/L <0.2 <0.2 I,1-DICHLOROETHANE UG/L <0.2 <0.2 CTS-1,2-DICHLOROPETHENE UG/L <0.2 <0.2 CTS-1,2-DICHLOROPETHENE UG/L <0.2 <0.2 TRANS-1,2-DICHLOROPETHENE UG/	BENZENE		UG/L	<0.5	<0.5	
BROMOMETHANE UG/L <1.0	BROMODICHLOROMETHANE		UG/L	<0.2	<0.2	
CARBON TETRACHLORIDE UG/L <0.2	BROMOFORM		UG/L	<0.5	<0.5	
CHLOROBENZENE UG/L <0.5 <0.5 CHLOROETHANE UG/L <0.5 <0.5 CHLOROFORM UG/L <0.5 <0.5 CHLOROMETHANE UG/L <1.0 <1.0 DIBROMOCHLOROMETHANE UG/L <0.2 <0.2 1,2-DICHLOROBENZENE UG/L <0.5 <0.5 1,3-DICHLOROBENZENE UG/L <0.5 <0.5 1,4-DICHLOROBENZENE UG/L <0.5 <0.5 1,4-DICHLOROBENZENE UG/L <0.5 <0.5 1,1-DICHLOROBETHANE (EDC) UG/L <0.5 <0.5 1,1-DICHLOROETHANE UG/L <0.2 <0.2 TRANS-1,2-DICHLOROETHENE UG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENE UG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENE UG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENE UG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENE UG/L <0.2 <0.2 <td< td=""><td>BROMOMETHANE</td><td></td><td>UG/L</td><td></td><td></td><td></td></td<>	BROMOMETHANE		UG/L			
CHLOROETHANEUG/L<0.5<0.5CHLOROFORMUG/L<1.0	CARBON TETRACHLORIDE		UG/L	<0.2	<0.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHLOROBENZENE		UG/L	<0.5	<0.5	
CHLOROMETHANEUG/L<1.0<1.0DIBROMOCHLOROMETHANEUG/L<0.2	CHLOROETHANE		UG/L	<0.5	<0.5	
DIBROMOCHLOROMETHANEUG/L<0.2<0.21,2-DIBROMOETHANE (EDB)UG/L<0.2	CHLOROFORM		UG/L	<0.5	<0.5	
1,2-DIBROMOETHANE (EDB)UG/L <0.2 <0.2 1,2-DICHLOROBENZENEUG/L <0.5 <0.5 1,3-DICHLOROBENZENEUG/L <0.5 <0.5 1,4-DICHLOROBENZENEUG/L <0.5 <0.5 1,1-DICHLOROBETHANEUG/L <0.3 <0.3 1,2-DICHLOROETHANEUG/L <0.5 <0.5 1,1-DICHLOROETHANE (EDC)UG/L <0.2 <0.2 CIS-1,2-DICHLOROETHENEUG/L <0.2 <0.2 CIS-1,2-DICHLOROETHENEUG/L <1.0 <1.0 1,2-DICHLOROPROPANEUG/L <0.2 <0.2 CTS-1,3-DICHLOROPROPENEUG/L <0.2 <0.2 CTRANS-1,3-DICHLOROPROPENEUG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENEUG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENEUG/L <0.5 <0.5 METHYL-t-BUTYL ETHERUG/L <0.5 <0.5 METHYLENE CHLORIDEUG/L <0.2 <0.2 TETRACHLOROETHANEUG/L <0.2 <0.2 ITETRACHLOROETHANEUG/L <0.5 <0.5 TOLUENEUG/L <0.5 <0.5 1,1,1-TRICHLOROETHANEUG/L <0.2 <0.2 TRICHLOROFTHENEUG/L <0.2 <0.2 TRICHLOROETHANEUG/L <0.2 <0.2 TOTUENEUG/L <0.5 <0.5 1,1,2-TRICHLOROETHANEUG/L <0.2 <0.2 TRICHLOROETHANEUG/L <0.5 <0.5 TOTAL XYLENESUG/L<	CHLOROMETHANE		UG/L	<1.0	<1.0	
1,2-DICHLOROBENZENEUG/L <0.5 <0.5 1,3-DICHLOROBENZENEUG/L <0.5 <0.5 1,4-DICHLOROBENZENEUG/L <0.5 <0.5 1,1-DICHLOROETHANEUG/L <0.3 <0.3 1,2-DICHLOROETHANEUG/L <0.5 <0.5 1,1-DICHLOROETHANEUG/L <0.2 <0.2 CIS-1,2-DICHLOROETHENEUG/L <0.2 <0.2 CIS-1,2-DICHLOROETHENEUG/L <0.2 <0.2 TRANS-1,2-DICHLOROPENEUG/L <0.2 <0.2 CIS-1,3-DICHLOROPOPENEUG/L <0.2 <0.2 TRANS-1,3-DICHLOROPOPENEUG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENEUG/L <0.2 <0.2 ETHYLENECHOROPROPENEUG/L <0.2 <0.2 ETHYLENECHLORIDEUG/L <0.2 <0.2 TETRACHLOROETHANEUG/L <0.2 <0.2 TETRACHLOROETHANEUG/L <0.2 <0.2 TETRACHLOROETHANEUG/L <0.2 <0.2 TETRACHLOROETHANEUG/L <0.2 <0.2 TRICHLOROETHANEUG/L <0.5 <0.5 TOLUENEUG/L <0.2 <0.2 TRICHLOROETHENEUG/L <0.2 <0.2 TRICHLOROETHANEUG/L <0.2 <0.2 TETRACHLOROETHANEUG/L <0.5 <0.5 TOLUENEUG/L <0.5 <0.5 TRICHLOROETHENEUG/L <0.5 <0.5 TRICHLOROETHENEUG/L <0.5	DIBROMOCHLOROMETHANE		UG/L	<0.2	<0.2	
1,3-DICHLOROBENZENEUG/L<0.5<0.51,4-DICHLOROBENZENEUG/L<0.5	1,2-DIBROMOETHANE (EDB)		UG/L	<0.2	<0.2	
1,4-DICHLOROBENZENEUG/L<0.5<0.51,1-DICHLOROETHANEUG/L<0.3	1,2-DICHLOROBENZENE		UG/L	<0.5	<0.5	
1,1-DICHLOROETHANEUG/L<0.3<0.31,2-DICHLOROETHANE (EDC)UG/L<0.5	1,3-DICHLOROBENZENE		UG/L	<0.5	<0.5	
1,2-DICHLOROETHANE (EDC)UG/L <0.5 <0.5 1,1-DICHLOROETHENEUG/L <0.2 <0.2 CIS-1,2-DICHLOROETHENEUG/L <0.2 <0.2 TRANS-1,2-DICHLOROETHENEUG/L <1.0 <1.0 1,2-DICHLOROPOPANEUG/L <0.2 <0.2 CIS-1,3-DICHLOROPROPENEUG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENEUG/L <0.2 <0.2 ETHYLBENZENEUG/L <0.2 <0.2 ETHYLENECHLOROPROPENEUG/L <0.5 METHYL-t-BUTYL ETHERUG/L <2.5 <2.5 METHYLENECHLOROETHANEUG/L <2.0 1,2,2-TETRACHLOROETHANEUG/L <0.2 <0.5 1,1,2,2-TETRACHLOROETHANEUG/L <0.5 <0.5 1,1,1-TRICHLOROETHANEUG/L <0.5 <0.5 1,1,2-TRICHLOROETHANEUG/L <0.3 <0.3 TRICHLOROETHENEUG/L <0.3 <0.3 TRICHLOROFLOROMETHANEUG/L <0.5 <0.5 VINYL CHLORIDEUG/L <0.5 <0.5 SURROGATES:UG/L <0.5 <0.5 BROMOCHLOROMETHANE <107 93	1,4-DICHLOROBENZENE		UG/L	<0.5	<0.5	
1,1-DICHLOROETHENE UG/L <0.2			UG/L	<0.3	<0.3	
CIS-1,2-DICHLOROETHENEUG/L <0.2 <0.2 TRANS-1,2-DICHLOROETHENEUG/L <1.0 <1.0 1,2-DICHLOROPROPANEUG/L <0.2 <0.2 CIS-1,3-DICHLOROPROPENEUG/L <0.2 <0.2 TRANS-1,3-DICHLOROPROPENEUG/L <0.5 <0.5 METHYL-T-BUTYL ETHERUG/L <0.5 <0.5 METHYLENE CHLORIDEUG/L <2.0 <2.0 1,1,2,2-TETRACHLOROETHANEUG/L <0.2 <0.2 TETRACHLOROETHENEUG/L <0.5 <0.5 1,1,1-TRICHLOROETHANEUG/L <0.5 <0.5 1,1,2-TRICHLOROETHANEUG/L <0.3 <0.3 TRICHLOROFLUOROMETHANEUG/L <0.2 <0.2 VINYL CHLORIDEUG/L <0.5 <0.5 TOTAL XYLENESUG/L <0.5 <0.5 SURROGATES:BROMOCHLOROMETHANE (%) 107 93	1,2-DICHLOROETHANE (EDC)		UG/L	<0.5	<0.5	
TRANS-1,2-DICHLOROETHENEUG/L<1.0<1.01,2-DICHLOROPROPANEUG/L<0.2	1,1-DICHLOROETHENE		UG/L	<0.2	<0.2	
1,2-DICHLOROPROPANE UG/L <0.2 <0.2 $CIS-1,3-DICHLOROPROPENE$ UG/L <0.2 <0.2 $TRANS-1,3-DICHLOROPROPENE$ UG/L <0.2 <0.2 $ETHYLBENZENE$ UG/L <0.5 <0.5 METHYL-t-BUTYL ETHER UG/L <2.5 <2.5 METHYLENE CHLORIDE UG/L <2.0 <2.0 $1,1,2,2-TETRACHLOROETHANE$ UG/L <0.2 <0.2 TETRACHLOROETHENE UG/L <0.5 <0.5 TOLUENE UG/L <0.5 <0.5 $1,1,2-TRICHLOROETHANE$ UG/L <0.2 <0.2 TRICHLOROETHENE UG/L <0.3 <0.3 TRICHLOROETHANE UG/L <0.2 <0.2 TRICHLOROETHANE UG/L <0.3 <0.3 TRICHLOROFLUOROMETHANE UG/L <0.5 <0.5 SURROGATES: UG/L <0.5 <0.5 BROMOCHLOROMETHANE $(%)$ 107 93	CIS-1,2-DICHLOROETHENE		UG/L	<0.2	<0.2	
CIS-1,3-DICHLOROPROPENEUG/L $\langle 0.2 \rangle$ $\langle 0.2 \rangle$ TRANS-1,3-DICHLOROPROPENEUG/L $\langle 0.2 \rangle$ $\langle 0.2 \rangle$ ETHYLBENZENEUG/L $\langle 0.5 \rangle$ $\langle 0.5 \rangle$ METHYL-t-BUTYL ETHERUG/L $\langle 2.5 \rangle$ $\langle 2.5 \rangle$ METHYLENE CHLORIDEUG/L $\langle 2.0 \rangle$ $\langle 2.0 \rangle$ 1,1,2,2-TETRACHLOROETHANEUG/L $\langle 0.2 \rangle$ $\langle 0.2 \rangle$ TETRACHLOROETHENEUG/L $\langle 0.2 \rangle$ $\langle 0.2 \rangle$ TOLUENEUG/L $\langle 0.5 \rangle$ $\langle 0.5 \rangle$ 1,1,2-TRICHLOROETHANEUG/L $\langle 0.2 \rangle$ $\langle 0.2 \rangle$ TRICHLOROETHENEUG/L $\langle 0.3 \rangle$ $\langle 0.3 \rangle$ TRICHLOROETHENEUG/L $\langle 0.2 \rangle$ $\langle 0.2 \rangle$ VINYL CHLORIDEUG/L $\langle 0.5 \rangle$ $\langle 0.5 \rangle$ SURROGATES:UG/L $\langle 0.5 \rangle$ $\langle 0.5 \rangle$ BROMOCHLOROMETHANE (%)10793	TRANS-1, 2-DICHLOROETHENE		UG/L	<1.0	<1.0	
TRANS-1,3-DICHLOROPROPENE UG/L <0.2	1,2-DICHLOROPROPANE		UG/L	<0.2	<0.2	
ETHYLBENZENE UG/L <0.5	CIS-1,3-DICHLOROPROPENE		UG/L	<0.2	<0.2	
METHYL-t-BUTYL ETHER UG/L <2.5 <2.5 METHYLENE CHLORIDE UG/L <2.0	TRANS-1, 3-DICHLOROPROPENE		UG/L	<0.2	<0.2	
METHYLENE CHLORIDE UG/L <2.0 <2.0 1,1,2,2-TETRACHLOROETHANE UG/L <0.2 D(1)	ETHYLBENZENE		UG/L	<0.5	<0.5	
1,1,2,2-TETRACHLOROETHANE UG/L <0.2 D(1)	METHYL-t-BUTYL ETHER		UG/L	<2.5	<2.5	
TETRACHLOROETHENE UG/L <0.5	METHYLENE CHLORIDE		UG/L	<2.0	<2.0	
TOLUENE UG/L <0.5 <0.5 1,1,1-TRICHLOROETHANE UG/L <1.0	1,1,2,2-TETRACHLOROETHANE		UG/L	<0.2 D(1)	<0.2	
1,1,1-TRICHLOROETHANEUG/L<1.0<1.01,1,2-TRICHLOROETHANEUG/L<0.2	TETRACHLOROETHENE		UG/L	<0.5	<0.5	
1,1,2-TRICHLOROETHANEUG/L<0.2<0.2TRICHLOROETHENEUG/L<0.3	TOLUENE		UG/L	<0.5	<0.5	
TRICHLOROETHENEUG/L<0.3<0.3TRICHLOROFLUOROMETHANEUG/L<0.2	1,1,1-TRICHLOROETHANE		UG/L	<1.0	<1.0	
TRICHLOROETHENEUG/L<0.3<0.3TRICHLOROFLUOROMETHANEUG/L<0.2	1,1,2-TRICHLOROETHANE		UG/L	<0.2	<0.2	
VINYL CHLORIDEUG/L<0.5<0.5TOTAL XYLENESUG/L<0.5			UG/L	<0.3	<0.3	
TOTAL XYLENESUG/L<0.5<0.5SURROGATES: BROMOCHLOROMETHANE (%)10793	TRICHLOROFLUOROMETHANE		UG/L	<0.2	<0.2	
SURROGATES: BROMOCHLOROMETHANE (%) 107 93	VINYL CHLORIDE		UG/L	<0.5	<0.5	
BROMOCHLOROMETHANE (%) 107 93	TOTAL XYLENES			<0.5	<0.5	
BROMOCHLOROMETHANE (%) 107 93	SURROGATES:					
				107	93	
	• •					

D(1)=DILUTED 1X, ANALYZED 11/15/95

MID-AMERICA PIPELINE COMPANY

FOUR CORNERS PIPELINE LOOP A SUBSIDIARY OF MAPCO NATURAL GAS LIQUIDS INC.

November 16, 1995

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Subject: Application for individual permit to discharge over 100,000 gallons of hydrostatic test water in Sandoval County, New Mexico.

Dear Mr. Anderson:

Mid-America Pipeline Company is hydrostatic testing its new 12-inch pipeline loop approximately 400 miles in length adjacent to its existing pipeline system, from a point near Hobbs, New Mexico in Gaines County, Texas to a point approximately 15 miles south of Farmington in San Juan County, New Mexico.

Mid-America Pipeline Company respectfully requests a permit for discharge of water used to test a segment of its pipeline approximately 86 miles in length from a point 3 miles north of Bernalillo near the Rio Grande River to a point approximately 3 miles southeast of Lybrook, New Mexico. The discharge volume will be up to 2,000,000 gallons of water. Items included in this permit application are as follows:

a) <u>Map showing location of the pipeline to be tested.</u>

See attached Exhibit A.

b) <u>Description of the test.</u>

The test is an 8-hour hydrostatic test of new 12-inch steel line pipe required to qualify the pipeline for its design operating pressure. The segment to be tested is buried pipe approximately 86 miles in length beginning north of the town of Bernalillo in Santa Fe County, New Mexico and ending at the discharge point approximately 3 miles southeast of the village of Lybrook in Sandoval County, New Mexico. The test water source is the Bernalillo Drain located just north of the town of Bernalillo. The test water will be transported Mr. Roger Anderson Page 2

through the pipeline as construction and testing progresses. When testing is complete, the water will be discharged as described herein.

c) <u>Source and analysis of test water.</u>

Source of the test water is the Bernalillo Drain located in the NE1/4, S 16, T13N, R4E, Sandoval County, New Mexico.

Analysis of test water- See attached Exhibit B

d) <u>Point of discharge of the test water.</u>

SE 1/4, S26, T23N, R7W, Sandoval County, New Mexico Point of discharge is shown on Exhibit A.

e) Method and location for collection and retention of fluids and solids.

The test water will be collected and retained in an existing drainage holding pond at the point of discharge. The pond will be improved and enlarged prior to use. The water will be discharged into a hay bale filtration structure before entering the pond.

f) Depth of ground water at discharge site.

890 feet

g) <u>Proposed method of disposal of fluids and solids after test</u> completion including closure of any pits.

> No significant solid materials are anticipated. The water will be retained in the holding pond until it is dissipated by absorption into the ground and by evaporation.

h) Identification of land owners at and adjacent to the discharge site.

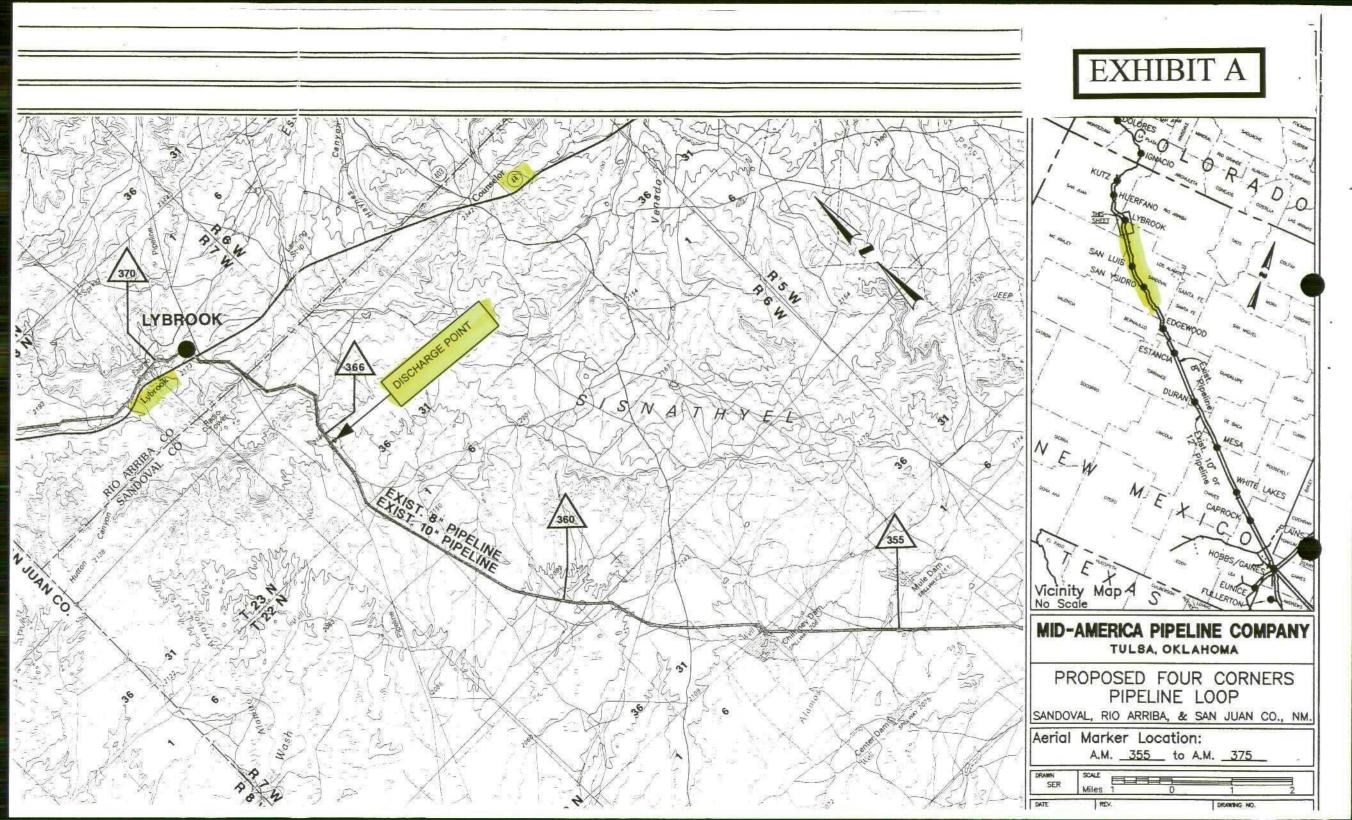
Land owner at the discharge site is: U. S. A. Bureau of Land Management (BLM)

Land owners adjacent to the discharge site are as follows:

North boundary- Larry H. Reiger and Sandra G. Salazar South boundary- U. S. A. in trust for the Navajo Tribe West and East boundaries- U. S. A. (BLM) East (southeast) boundary- State of New Mexico

I) Written permission from the land owner of the collection/retention site.

The BLM representative on site from whom permission was granted has been furloughed due to the government shutdown and is not available to prepare a written permission statement. The Mid-America Pipeline Company representative, Mr. Steve Nelson, BLM Compliance Officer, has submitted a letter stating the particulars of the agreement. See attached Exhibit C.


I trust that sufficient information has been provided to allow you to issue the requested permit. Should you have any questions or desire any additional information, please do not hesitate to call me or Jim Brooking at (505) 823-9443.

Very truly/γours,

GaryHarkey

Project Manager

attachments

• ,

CLIENT	: MID-AMERICA	PIPELINE	DATE RECEIVED	:08/11/95
PROJECT #	: (NONE)			
PROJECT NAME	: HYDROSTATIC	PIPE TESTING	REPORT DATE	:09/06/95

ATI	ID:	50	8373

 $\underbrace{\text{EXHIBIT B}}_{4 \text{ pages}} B$

	ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
-	01	BERNALILLO (779849,779902,779869,384820,887886)	AQUEOUS	08/10/95
	02	CABEZON ARTISION (N.772969,N.773054,N.772849,	AQUEOUS	08/10/95
	03	E887906,L.384821) TRIP BLANK	AQUEOUS	08/09/95

---TOTALS---

MATRIX #SAMPLES AQUEOUS 3

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

ATI I.D. : 508745

CLIENT : ANALYTICAL TE PROJECT # : 508373 PROJECT NAME : MAPCO	CHNOLOGII	ES, INC	C-NM	DATE RECEIVED : 08/15, REPORT DATE : 09/06,	
PARAMETER	UNITS	01	102		
CARBONATE (CACO3) BICARBONATE (CACO3) HYDROXIDE (CACO3) TOTAL ALKALINITY (AS CACO3) CHLORIDE (EPA 325.2) CONDUCTIVITY, (UMHOS/CM) PH (EPA 150.1) SULFATE (EPA 375.2) T. DISSOLVED SOLIDS (160.1)	MG/L MG/L MG/L MG/L MG/L MG/L MG/L	<1 114 <1 114 7.4 363 8.1 69 240	35 209 1 244 4,0 553 9.1 50 330		

TOTAL METALS

Lab Name: Analytical Technologies, Inc.

Client Name: ATI - NM

Client Project ID: HTD -- 508373

Lab Sample ID: 95-08-118-01

Sample Matrix: Water

BERNALILLO

Date Collected: 08/10/95

Prep Date: 08/18/95

Date Analyzed: 08/18,21/95

	Modified	Concentration	Detection Limit		
Analyte	Method	mg/L	mg/L		
Arsenic	6010	ND	0.01		
Barium	6010	ND	0.1		
Cadmium	6010	ND	0.005		
Calcium	6010	44	1		
Iron	6010	0.3	0.1		
Lead	6010	ND	0.003		
Magnesium	6010	8	1		
Manganese	6010	0.10	0.01		
Mercury	7470	ND	0.0002		
Potassium	6010	4	1		
Selenium	6010	ND	0.005		
Sodium *	6010	24	1		
Zinc	6010	ND	0.02		

ND = Not Detected

* Serial dilution results suggest possible physical or chemical interference(s).

		T # : (NONE) T NAME : HYDROSTAT		ESTING	ATI I.D.:		
	SAMPLE ID. #	CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
-	$-\frac{10}{9}$	BERNALILLO	AQUEOUS		NA	08/18/95	1
	02	CABEZON ARTISION	AQUEOUS	• •	NA	08/18/95	1
	02	TRIP BLANK	AQUEOUS	08/09/95	NA	08/18/95	1
			AQUE003	UNITS	01	/\02	03
	PARAME						
	BENZEN			UG/L	<0.5	\$0.5	<0.
		ICHLOROMETHANE		UG/L	<0.2	40.2	<0./2
	BROMOF			UG/L	<0.5	<0.5	<0/.5
	BROMOM			UG/L	<1.0	<1.0	<1/.(
		TETRACHLORIDE		UG/L	<0.2	<0.2	<0.2
		BENZENE		UG/L	<0.5	<0.5	₹0. 5
	CHLORO			UG/L	<0.5	<0\5 <0\5	×0.5 <0.5
	CHLORO			UG/L	<0.5 <1.0	<0.5	<1.0
		METHANE OCHLOROMETHANE		UG/L UG/L	<0.2	<0.2	<0.2
		BROMOETHANE (EDB)		UG/L	<0.2	<0.2	<0.2
	•	CHLOROBENZENE		UG/L	<0.2	<0.5	<0.9
		CHLOROBENZENE		UG/L	<0.5	<0.5	<0.9
	•	CHLOROBENZENE		UG/L	<0.5	<0.5	\/ <0.9
	•	CHLOROETHANE		UG/L	<0.2	<0.2	
	•	CHLOROETHANE (EDC)		UG/L	<0.2	<0.5	∧ <0.9
	-	CHLOROETHENE		UG/L	<0.2	<0.2	/ \ <0.:
	•	2-DICHLOROETHENE		UG/L	<0.2	<0.2	/ \ <0.:
		1,2-DICHLOROETHENE		UG/L	<1.0	<1.0	<1.0
		CHLOROPROPANE		UG/L	<0.2	<0.2	\<0.2
	•	3-DICHLOROPROPENE		UG/L	<0.2	<0.2	ko.:
	•	1,3-DICHLOROPROPENE		UG/L	<0.2	<0.2	<0.
• .:		ENZENE		UG/L	<0.5	<0.5	40.
		-t-BUTYL ETHER		UG/L	<2.5	<2.5	<þ.
		ENE CHLORIDE		UG/L	<2.0	<2.0	<2.
	1,1,2,	2-TETRACHLOROETHANE		UG/L	<0.2	<0.2	<0.
	TETRAC	HLOROETHENE		UG/L	<0.5	<0.5	<01
	TOLUEN			UG/L	<0.5	<0.5	<0
		TRICHLOROETHANE		UG/L	<1.0	<1.0	<1.
		TRICHLOROETHANE		UG/L	<0.2	<0.2	<0.
		OROETHENE		UG/L	<0.2	<0.2	<0.
		OROFLUOROMETHANE		UG/L	<0.2	<0.2	<0.2
		CHLORIDE		UG/L	<0.5	<0/.5	<0.9
	TOTAL	XYLENES		UG/L	<0.5	<0.5	<0.
	SURROG	ATES:					
	BROMOC	HLOROMETHANE (%)			104	104	115
	TRIFLU	OROTOLUENE (%)			98	1/01	95

•

.,

EXHIBIT C

07:13

066 P01

Nelson Consulting, Inc. P.O. Box 5556 Farmington, NM 87499

11-15-95

Jim Brooking Mid-America Pipeline Co. Albuquerque, NM

RE: Four Corners Pipeline Project Hydro Static Water Disposal Pond Sec. 26,T23N,R7W SE,SE,NE Station 6969+00 Sandoval County, NM

Dear Jim, ---

I spoke to Alyse Gold and Jerry Crockford at the BLM Farmington District office on November 13, 1995. In regards to accessing a section of land to act as a holding pond for the water from the hydrostatic test done on the 12", 10" pipeline project, they have no problem with the disposal pond as long as the disposal is permitted by the state of New Mexico and all stipulations are followed. Once the water is tested and proved to be acceptable, then the water can be unloaded into a straw bale straining dam where it will filter out onto the ground. The pond will be constructed in an existing drainage pond that is adjacent to the pipeline right of way. The pond will remain so that it may provide water for wildlife and livestock in the area. The area was Arched by O.C.A. on 11-16-95 an no sensitive areas were discovered. An O.C.A. Arch monitor will be present during excavation of the pond. I will get written authorization from the BLM after they finish there extended vacation.

BLM Compliance Officer MAPCO Four Corners Project Steve Nelson 505-320-0011

cc: Jerry Crockford BLM Joe Jaramillo BLM

MEMORANDUM OF CONVERSATION

TIME 220pm DATE 11-21-95 TELEPHONE V PERSONAL ORIGINATTING PARTY CHRIS EUSTICE FILE **OTHER PARTIES** DISCUSSION Mid America pipeline wants to discharge 2,000,000 gallons of test water from the hydro testing of a section of new 12" pipe hey propose to discharge to a dry pond rection 26, TZTH, R3W Sandoval Co he source water has a TDS concentration 240 MS coording to the USGS Water analysis 1980) 2 miles away, local ground water has 770 mg/2 TDS We CONCLUSIONS ischarge should not deglade oda _+'~ CHRIS EUSTIC

Well Reco	rd Information							
			Well	Depth				Location
		Date	depth	to water	Date			number (show
Location	Owner	Drilled	(ft)	(ft)	measured	Use	Aquifer	on figure 6)
23.7.10.4331	Lybrook Water User's Assn.	1/9/71	1704	900	12/4/81	public supply	Ojo Alamo Ss	1
23.7.13.3221	Berry, Homer	n/a	n/a	n/a	n/a	stk	Ojo Alamo Ss	2
23.7.14.1	Lybrook Inn	n/a	1700	180	1956	abandoned (?)	Ojo Alamo Ss	
23.7.14.1232	Sunterra Gas Plant	n/a	1650	816	10/16/57	abandoned	Ojo Alamo Ss	3
23.7.14.1232	Sunterra Gas Plant	n/a	1700	899	7/24/75	dom/ind	Ojo Alamo Ss	4
23.7.15.	El Paso Station	n/a	n/a	200	8/56	n/a	Nacimiento Fm	

The only available Total Dissolved Solid information comes from "Hydrogeology and Water Resources of San Juan Basin, New Mexico", by W.J. Stone, et. al., NMIMT 1983. According to this reference, a well located at Township 23 North, Range 7 West in Section 14 was analyzed on October 24, 1974. Total Dissolved Solids for this well measure 695 mg/l. The specific conductance for water at this well is 1130 μ mhos/cm. No other sampling of groundwater quality in the area appears to have been conducted since that time.

The Aquifer Sensitivity Map for Rio Arriba County, New Mexico, which was compiled by Lee Wilson and Associates, Inc. for the New Mexico Environment Department in 1989, locates the facility within a moderately sensitive aquifer sensitivity zone. This zone is defined as a location in which the depth to ground water is between 100 and 300 feet and the ground water contains 10,000 mg/l or less Total Dissolved Solids.

No information is currently available regarding the direction of flow of groundwater in the area. However, it is suspected that the general flow direction of the groundwater would be to the north/northeast following the flow of the Escrito wash.

Geologic Description of Discharge Site

According to the "Draft Soil Survey of Rio Arriba County, New Mexico" (currently in its pre-publication stage), by the United States Department of Agriculture, Soil Conservation Service, there are two soil types in the facility area. A copy of the draft soil survey for the Lybrook facility area is included in appendix 6. Soils along U.S. highway 44 along the southern portion of the facility are part of the Pinavetes-Florita complex, and soils along the northern portion of the facility are part of the Vessilla-Menefee-Orlie complex. Pinavetes-Florita soils are deep and well drained to excessively drained, while

Hydrologic Features

The facility is located near the southwest end of Crow Mesa, a north-south drainage divide. The plant is situated in a gentle eastward-dipping slope in the Escrito Canyon drainage. The arroyo in the Escrito Canyon drains to the north-northeast and is located approximately two miles east of the plant. Three branches of the Escrito wash are located near the plant; one branch is approximately 1200 feet north of the plant, another branch is approximately 300 feet south of the plant, and the third branch is approximately 100 feet east. The branches are normally dry. Other than the watercourses mentioned above, there are no other perennial streams or permanent bodies of water located within a 1 mile radius of the Lybrook facility, aside from the evaporation ponds located on the plant property.

The USGS 7.5 minute map shows three ephemeral ponds located within a mile of the Lybrook plant (see figure 6). One pond located approximately 2500 feet southwest of the plant is about 0.3 acres in area, a second pond located approximately 3500 feet northeast of the plant is approximately 0.5 acres in area. The third pond is approximately 2200 feet southeast of the plant, and is approximately 0.2 acres in area.

A branch of the Escrito wash which passes the evaporation ponds on the eastern side of the facility, also passes through the ephemeral pond located northeast of the plant. If the berms of the evaporation ponds at the facility were eroded and breached during a storm event, it is possible that impact to the wash, and subsequently to the ephemeral pond, could result. However, since berms around the evaporation ponds rise approximately 6 to 8 feet above the wash, and a third evaporation pond has been constructed for emergency overflow, it is unlikely that the ephemeral pond and wash would be affected.

Ground water discharges from Escrito Spring, located approximately 1 mile west of the plant, on the west side of the drainage divide. Discharge is probably from perched bodies of ground water in the San Jose Formation, which is recharged by precipitation on the mesa top.

As discussed in the facility's 1988 discharge plan, several water wells are present in the vicinity of the plant, in addition to a number of oil wells. The locations of nearby water wells are plotted on figure 6. Water well information was obtained from State Engineer's records, "Hydrogeology and Water Resources of San Juan Basin, New Mexico", by W.J. Stone, et. al. (NMIMT 1983), Lybrook gas plant records, and the Lybrook Water User's Association. This information is summarized below:

 一日前マム「PUN 親邦VISION 「ここ」デロー

- 3 7街 3 52

November 2, 1995

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Subject: Application for individual permit to discharge over 100,000 gallons of hydrostatic test water in Lea County, New Mexico. Alternate Discharge Site

Dear Mr. Anderson:

Mid-America Pipeline Company is constructing and hydrostatic testing its new 12-inch pipeline loop approximately 400 miles in length adjacent to its existing pipeline system, from a point near Hobbs, New Mexico in Gaines County, Texas to a point approximately 15 miles south of Farmington in San Juan County, New Mexico.

Mid-America Pipeline Company respectfully requests a permit for an alternate site for discharge of water used to test a segment of its pipeline approximately 254 miles in length from a point north of Edgewood to a point east of Hobbs, New Mexico. The test will require approximately 1,800,000 gallons of water. Items included in this permit application are as follows:

a) <u>Map showing location of the pipeline to be tested.</u>

See attached Exhibit A.

b) <u>Description of the test.</u>

The test is an 8-hour hydrostatic test of new 12-inch steel line pipe required to qualify the new pipeline loop for its design operating pressure. The segment to be tested is buried pipe approximately 254 miles in length beginning at the SW corner of S29, T11N, R7E, Santa Fe County, New Mexico and ending at Mid-America Pipeline Company's "Hobbs Station" in the NW 1/4, S 24, Block AX, Gaines County, Texas. The test water will be transported through the pipeline from north to south as construction and testing progresses. When testing is complete, the water will be discharged as described herein.

c) <u>Source and analysis of test water.</u>

Source of test water is a potable water service pipeline owned and operated by the Entranosa Water and Wastewater Cooperative, Edgewood, New Mexico. The water hydrant is located at the SW corner of S29, T11N, R7E, Santa Fe County, New Mexico.

Analysis of test water- See attached Exhibit B.

d) Point of discharge of the test water.

NE 1/4, S 21, T 14 S, R 35 E, Lea County, New Mexico Point of discharge is shown on Exhibit A.

e) Method and location for collection and retention of fluids and solids.

The test water will be disbursed as irrigation water in rural areas. The water will be discharged into a hay bale filtration structure to dissipate the energy of the flow and mitigate surface erosion.

f) Depth of ground water at discharge site.

80 feet.

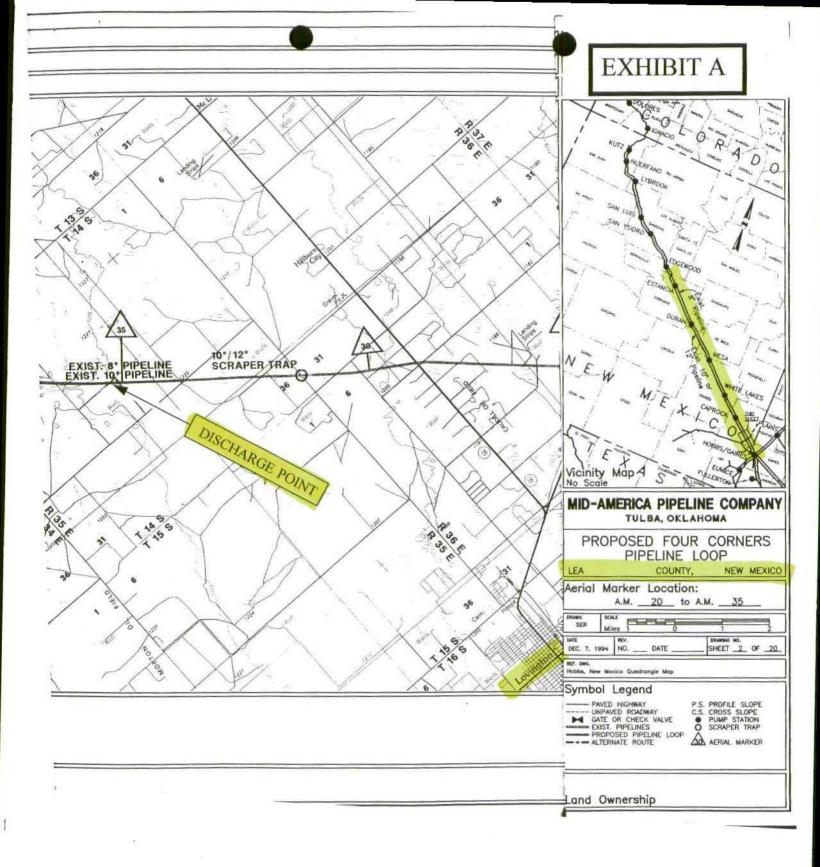
g) Proposed method of disposal of fluids and solids after test completion including closure of any pits.

The test water will be disbursed as irrigation water in rural areas. No significant solid materials are anticipated and no pits will be used.

h) Identification of land owners at and adjacent to the discharge site.

Land owner at the discharge site is: John Richard Anderson

Land owners adjacent to the discharge site are as follows: State of New Mexico (north boundary) Robert Edsel Ford (east Boundary) Kinsolving and Kinsolving (west boundary) John Richard Anderson (south boundary) I) <u>Written permission from the land owner of the collection/retention</u> <u>site.</u>


See attached Exhibit C.

I trust that sufficient information has been provided to allow you to issue the requested permit. Should you have any questions or desire any additional information, please do not hesitate to call me or Jim Brooking at (505) 823-9443.

Very truly yours,

Gary Harkey Project Manager

attachments

	_		
			BIT B
Analytical Technologie	s,Inc. "Method Report Summary"		
Accession Number: Client: Project Number: Project Name: Project Location: Test:	509548 ANALYTICAL TECHNOLOGIES, INC. 509357 MAPCO FOUR-CORNERS PIPELINE Group of Single Wetchem		
Client Sample Id:	Parameter:	Unit:	Result:
509357-01	ALKALINITY (2320B) CHLORIDE (325.2) CONDUCTIVITY (120.1) PH (150.1) SULFATE (375.4) TOTAL DISSOLVED SOLIDS (160.1)	MG/L MG/L UMH/CM UNITS MG/L MG/L	530 28 1100 6.7 28 570

• :

TOTAL METALS

Lab Name: Analytical Technologies, Inc.

Client Name: ATI-NM

Client Project ID: 4-Corners Pipeline

Lab Sample ID: 95-09-212-01

Sample Matrix: Aqueous

Sample ID	
Test Water	

Date Collected: 09/19/95

Prep Date: 09/25, 27/95

Date Analyzed: 09/28/95

	Modified	Concentration	Detection Limit
Analyte	Method	mg/L	mg/L
		-	
Arsenic	•6010	ND	0.01
Barium	6010	.0.2	0.1
Cadmium	6010	ND	0.005
Calcium	6010	170	1
Iron	6010	ND	0.1
Lead	6010	ND	0.003
Magnesium	6010	30	1
Manganese	6010	··ND	0.01
Mercury	7470	ND	0.0002
Potassium	6010	3	1
Selenium	6010	ND	0.005
Sodium	6010	28	
Zinc	6010	0.04	0.02

ND = Not Detected

GAS CHROMATOGRAPHY RESULTS

TEST CLIENT PROJECT # PROJECT NAME	: PURGEABLE HALOCARBONS : MID-AMERICA PIPELINE : (NONE) : 4-CORNERS PIPE TEST		(EPA 801 I.D.: 5	
SAMPLE		DATE	DATE	DATE

SAMPLE ID. # CLIENT	I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOF
01 TEST W	······	AQUEOUS		NA	09/20/95	1
02 TRIP B		AQUEOUS	• •	NA	09/20/95	1
PARAMETER			UNITS	01	02	
BENZENE	<u></u>		UG/L	<0.5	<0.5	
BROMODICHLORO	METHANE		UG/L	<0.2	<0.2	
BROMOFORM			UG/L	0.6	<0.5	
BROMOMETHANE			UG/L	<1.0	<1.0	
CARBON TETRAC	HLORIDE		UG/L	<0.2	<0.2	
CHLOROBENZENE			UG/L	<0.5	<0.5	
CHLOROETHANE			UG/L	<0.5	<0.5	
CHLOROFORM		•	UG/L	<0.5	<0.5	
CHLOROMETHANE		•	UG/L	<1.0	<1.0	
DIBROMOCHLORO	METHANE		UG/L	<0.2	<0.2	
1,2-DIBROMOET	HANE (EDB)		UG/L	<0.2	<0.2	•
1,2-DICHLOROB	ENZENE	•	UG/L	<0.5	<0.5	
1,3-DICHLOROB	ENZENE		UG/L	<0.5	<0.5	••
1,4-DICHLORÔB	ENZENE		UG/L	<0.5	<0.5	
1,1-DICHLOROE	THANE		UG/L	<0.2	<0.2	
1,2-DICHLOROE	THANE (EDC)		UG/L	<0.5	<0.5	
1,1-DICHLOROE	THENE		UG/L	<0.2	<0.2	
CIS-1,2-DICHL	OROETHENE		UG/L	<0.2	<0.2	
TRANS-1,2-DIC	HLOROETHENE		UG/L	<1.0	<1.0	
1,2-DICHLOROP	ROPANE		UG/L	<0.2	<0.2	
CIS-1,3-DICHL	OROPROPENE		UG/L	<0.2	<0.2	
TRANS-1,3-DIC	HLOROPROPENE		UG/L	<0.2	<0.2	
ETHYLBENZENE			UG/L	<0.5	<0.5	
METHYL-t-BUTY	L ETHER		UG/L	<2.5	<2.5	
METHYLENE CHL	ORIDE		UG/L	<2.0	<2.0	
1,1,2,2-TETRA	CHLOROETHANE		UG/L	<0.2	<0.2	
TETRACHLOROET	HENE		UG/L	<0.5	<0.5	
TOLUENE			UG/L	<0.5	<0.5	
1,1,1-TRICHLO	ROETHANE		UG/L	<1.0	<1.0	
1,1,2-TRICHLO	ROETHANE		UG/L	<0.2	<0.2	
TRICHLOROETHE	NE		UG/L	<0.2	<0.2	
TRICHLOROFLUO	ROMETHANE		UG/L	<0.2	<0.2	
VINYL CHLORID	E		UG/L	<0.5	<0.5	
TOTAL XYLENES			UG/L	<0.5	<0.5	
SURROGATES:						
BROMOCHLOROME	THANE (%)			100	105	
TRIFLUOROTOLU				112	105	

......

September 13, 1995

John Richard Anderson P.O. Box 136 Gail, TX 79738

RE: Mid-America Pipeline Company Hydrostatic Tests/480-NM-LEA-45

Dear Mr. Anderson:

Mid-America Pipeline Company is constructing and will soon be hydrostatic testing its new 12inch pipeline in your area. Hydrostatic testing involves filling the pipeline with water and pressurizing to check for and eliminate any leaks. The pipe that is being tested is new steel pipe, having no oil or hydrocarbon content.

After a hydrostatic test, the test water will be discharged onto the ground at various locations. The test water will be potable water and will be analyzed before and after the hydrostatic test. Copies of the test results will be available upon request. If the water discharge is over 5,000 gallons, the water will be discharged into a hay bale filtration structure to dissipate the energy of the flow and mitigate surface erosion. Smaller discharges will be discharged into the trench or on the ground just outside of the right-of-way.

Mid-America Pipeline Company requests your written permission to discharge the test water onto your property. Thank you for your time and consideration in this matter. Should you have any questions or desire any additional information, please do not hesitate to call.

Sincerely;

Roddy M. Curry Right-of-Way Supervisor

I hereby agree to allow Mid-America Pipeline Company to discharge test water onto my property.

John Richard Anderson

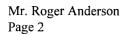
November 2, 1995

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Subject: Application for individual permit to discharge over 100,000 gallons of hydrostatic test water in Lea County, New Mexico.

Dear Mr. Anderson:

Mid-America Pipeline Company is constructing and hydrostatic testing its new 12-inch pipeline loop approximately 400 miles in length adjacent to its existing pipeline system, from a point near Hobbs, New Mexico in Gaines County, Texas to a point approximately 15 miles south of Farmington in San Juan County, New Mexico.


Mid-America Pipeline Company respectfully requests a permit for an individual discharge of over 100,000 gallons of water used to test a segment of its pipeline approximately 254 miles in length from a point north of Edgewood to a point east of Hobbs, New Mexico. The test will require approximately 1,800,000 gallons of water. Items included in this permit application are as follows:

a) Map showing location of the pipeline to be tested.

See attached Exhibit A.

b) <u>Description of the test.</u>

The test is an 8-hour hydrostatic test of new 12-inch steel line pipe required to qualify the new pipeline loop for its design operating pressure. The segment to be tested is buried pipe approximately 254 miles in length beginning at the SW corner of S29, T11N, R7E, Santa Fe County, New Mexico and ending at Mid-America Pipeline Company's "Hobbs Station" in the NW 1/4, S 24, Block AX, Gaines County, Texas. The test water will be transported through the pipeline from north to south as construction and testing progresses.

When testing is complete, the water will be discharged as described herein.

c) <u>Source and analysis of test water.</u>

Source of test water is a potable water service pipeline owned and operated by the Entranosa Water and Wastewater Cooperative, Edgewood, New Mexico. The water hydrant is located at the SW corner of S29, T11N, R7E, Santa Fe County, New Mexico.

Analysis of test water- See attached Exhibit B.

d) Point of discharge of the test water.

NW 1/4, S 7, T 16 S, R 38 E, Lea County, New Mexico Point of discharge is shown on Exhibit A.

e) Method and location for collection and retention of fluids and solids.

The test water will be disbursed as irrigation water in rural areas. The water will be discharged into a hay bale filtration structure to dissipate the energy of the flow and mitigate surface erosion.

f) Depth of ground water at discharge site.

80 feet.

g) <u>Proposed method of disposal of fluids and solids after test</u> completion including closure of any pits.

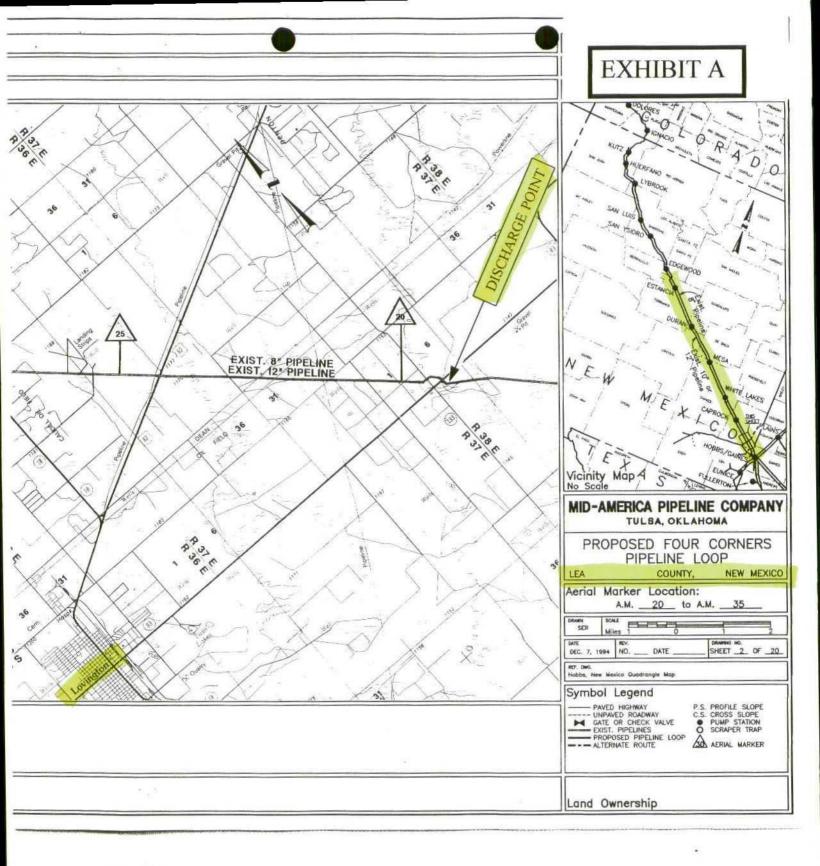
> The test water will be disbursed as irrigation water in rural areas. No significant solid materials are anticipated and no pits will be used.

h) Identification of land owners at and adjacent to the discharge site.

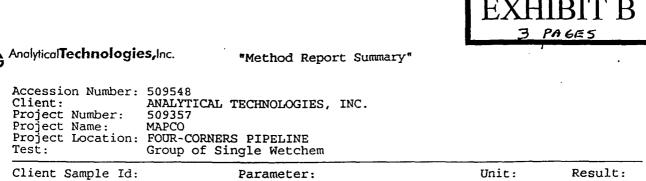
Land owner at the discharge site is: Emma G. Lawrence

Land owners adjacent to the discharge site are as follows:

State of New Mexico (north and east boundary) Emma G. Lawrence and Walter V. Lawrence (south boundary) Pearl Yadon (west boundary) Frank and Francis Prather (west boundary) I) <u>Written permission from the land owner of the collection/retention</u> <u>site.</u>


See attached Exhibit C.

I trust that sufficient information has been provided to allow you to issue the requested permit. Should you have any questions or desire any additional information, please do not hesitate to call me or Jim Brooking at (505) 823-9443.


Very traly yours, Gary Harkey

Project Manager

attachments

and the second second second states and second s

509357-01

2

.

CHLORIDE (325.2) MG/L 28 CONDUCTIVITY (120.1) UMH/CM 1100 PH (150.1) UNITS 6.7 SULFATE (375.4) MG/L 28	ralametel:	UNIC:	Kesu.
	ALKALINITY (2320B) CHLORIDE (325.2) CONDUCTIVITY (120.1) PH (150.1) SULFATE (375.4) TOTAL DISSOLVED SOLIDS (160.1)	MG/L UMH/CM UNITS MG/L	28 1100 6.7 28

TOTAL METALS

Lab Name: Analytical Technologies, Inc.

Client Name: ATI-NM

Client Project ID: 4-Corners Pipeline

Lab Sample ID: 95-09-212-01

Sample Matrix: Aqueous

Sample ID

Test Water

Date Collected: 09/19/95

Prep Date: 09/25, 27/95

Date Analyzed: 09/28/95

[Modified	Concentration	Detection Limit
Analyte	Method	mg/L	mg/L
•		•	
Arsenic	.6010	, ND	0.01
Barium	6010	0.2	0.1
Cadmium	6010	ND	0.005
Calcium	6010	170	1
Iron	6010	ND	0.1
Lead	6010	ND	0.003
Magnesium	6010	30	1
Manganese	6010	··ND	0.01
Mercury	7470	ND	0.0002
Potassium	6010	3	I
Selenium	6010	ND	0.005
Sodium	6010	28	1 ·
Zinc	6010	0.04	0.02

ND = Not Detected

GAS CHROMATOGRAPHY RESULTS

ن من به منع من

TEST: PURGEABLE HALOCARBONS/AROMATICS (EPA 8010/8020)CLIENT: MID-AMERICA PIPELINEATI I.D.: 509357PROJECT #: (NONE)PROJECT NAME: 4-CORNERS PIPE TESTSAMPLEDATEDATE

SAMPLE ID. #	CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOP
01	TEST WATER	AQUEOUS		NA	09/20/95	1
02	TRIP BLANK	AQUEOUS	• •	NA	09/20/95	1
PARAME			UNITS	01	02	
BENZEN	E		UG/L	<0.5	<0.5	
	ICHLOROMETHANE		UG/L	<0.2	<0.2	
BROMOF			UG/L	0.6	<0.5	
BROMOM	ETHANE		UG/L	<1.0	<1.0	
	TETRACHLORIDE		UG/L	<0.2	<0.2	
	BENZENE		UG/L	<0.5	<0.5	
CHLORO	ETHANE		UG/L	<0.5	<0.5	
CHLORO	FORM		UG/L	<0.5	:<0.5	
	METHANE		UG/L	<1.0	<1.0	
DIBROM	OCHLOROMETHANE		UG/L	<0.2	<0.2	
1,2-DI	BROMOETHANE (EDB)		UG/L	<0.2	<0.2	
1,2-DI	CHLOROBENZENE		UG/L	<0.5	<0.5	•
1,3-DI	CHLOROBENZENE		UG/L	<0.5	<0.5	
1,4-DI	CHLOROBENZENE		UG/L	<0.5	<0.5	
1,1-DI	CHLOROETHANE		UG/L	<0.2	<0.2	
1,2-DI	CHLOROETHANE (EDC)		UG/L	<0.5	<0.5	
1,1-DI	CHLOROETHENE		UG/L	<0.2	<0.2	
CIS-1,	2-DICHLOROETHENE		UG/L	<0.2	<0.2	
TRANS-	1,2-DICHLOROETHENE		UG/L	<1.0	<1.0	
1,2-DI	CHLOROPROPANE		UG/L	<0.2	<0.2	
CIS-1,	3-DICHLOROPROPENE		UG/L	<0.2	<0.2	
TRANS-	1,3-DICHLOROPROPENE		UG/L	<0.2	<0.2	
ETHYLB	ENZENE		UG/L	<0.5	<0.5	
METHYL	-t-BUTYL ETHER		UG/L	<2.5	<2.5	
METHYL	ENE CHLORIDE		UG/L	<2.0	<2.0	
1,1,2,	2-TETRACHLOROETHANE		UG/L	<0.2	<0.2	
TETRAC	HLOROETHENE		UG/L	<0.5	<0.5	
TOLUEN	E		UG/L	<0.5	<0.5	
1,1,1-	TRICHLOROETHANE		UG/L	<1.0	<1.0	
1,1,2-	TRICHLOROETHANE		UG/L	<0.2	<0.2	
TRICHL	OROETHENE		UG/L	<0.2	<0.2	
TRICHL	OROFLUOROMETHANE		UG/L	<0.2	<0.2	
VINYL	CHLORIDE		UG/L	<0.5	<0.5	
TOTAL	XYLENES		UG/L	<0.5	<0.5	
SURROG	ATES:					
BROMOC	HLOROMETHANE (%)			100	105	
	OROTOLUENE (%)			112	105	

EXHIBIT C

September 21, 1995

Emma G. Lawrence, Trustee P.O. Box 2309 Hobbs, NM 88240

RE: <u>Mid-America Pipeline Company Hydrostatic Tests/480-NM-LEA-13</u>

Dear Mrs. Lawrence:

Mid-America Pipeline Company is constructing and will soon be hydrostatic testing its new 12inch pipeline in your area. Hydrostatic testing involves filling the pipeline with water and pressurizing to check for and eliminate any leaks. The pipe that is being tested is new steel pipe, having no oil or hydrocarbon content.

After a hydrostatic test, the test water will be discharged onto the ground at various locations. The test water will be potable water and will be analyzed before and after the hydrostatic test. Copies of the test results will be available upon request. If the water discharge is over 5,000 gallons, the water will be discharged into a hay bale filtration structure to dissipate the energy of the flow and mitigate surface erosion. Smaller discharges will be discharged into the trench or on the ground just outside of the right-of-way.

Mid-America Pipeline Company requests your written permission to discharge the test water onto your property. Thank you for your time and consideration in this matter. Should you have any questions or desire any additional information, please do not hesitate to call.

Sincerely;

Roddy M. Curry Right-of-Way Supervisor

I hereby agree to allow Mid-America Pipeline Company to discharge test water onto my property.

H. Lain

Emma G. Lawrence, Trustee

TERNSERVE ON DIVISION RECEIVED

October 16, 1995

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Subject: Application for individual permit to discharge over 100,000 gallons of hydrostatic test water in Sandoval County, New Mexico.

Dear Mr. Anderson:

Mid-America Pipeline Company is constructing and hydrostatic testing its new 12-inch pipeline loop approximately 400 miles in length adjacent to its existing pipeline system, from a point near Hobbs, New Mexico in Gaines County, Texas to a point approximately 15 miles south of Farmington in San Juan County, New Mexico.

Mid-America Pipeline Company respectfully requests a permit for an individual discharge of over 100,000 gallons of water used to test a segment of its pipeline approximately 26 miles in length from a point north of Edgewood to a point north of Bernalillo, New Mexico. The test will require approximately 850,000 gallons of water. Items included in this permit application are as follows:

a) <u>Map showing location of the pipeline to be tested.</u>

See attached Exhibit A.

b) <u>Description of the test.</u>

The test is an 8-hour hydrostatic test of new 12-inch steel line pipe as required to qualify the new pipeline loop for its design operating pressure. The segment to be tested is buried pipe approximately 26 miles in length beginning at the SW corner of S29, T11N, R7E, Santa Fe County, New Mexico and ending in the SW 1/4, S 15, T 13 N, R 4 E, Sandoval County, New Mexico. c) <u>Source and analysis of test water.</u>

Source of test water is a potable water service pipeline owned and operated by the Entranosa Water and Wastewater Cooperative, Edgewood, New Mexico. The water hydrant is located at the SW corner of S29, T11N, R7E, Santa Fe County, New Mexico.

Analysis of test water- See attached Exhibit B.

d) Point of discharge of the test water.

SW 1/4, S 15, T 13 N, R 4 E, Sandoval County, New Mexico Point of discharge is shown on Exhibit A.

e) Method and location for collection and retention of fluids and solids.

The test water will be disbursed as irrigation water in rural areas. The water will be discharged into a hay bale filtration structure to dissipate the energy of the flow and mitigate surface erosion.

f) <u>Depth of ground water at discharge site.</u>

154 feet.

g) Proposed method of disposal of fluids and solids after test completion including closure of any pits.

The test water will be disbursed as irrigation water in rural areas. No significant solid materials are anticipated and no pits will be used.

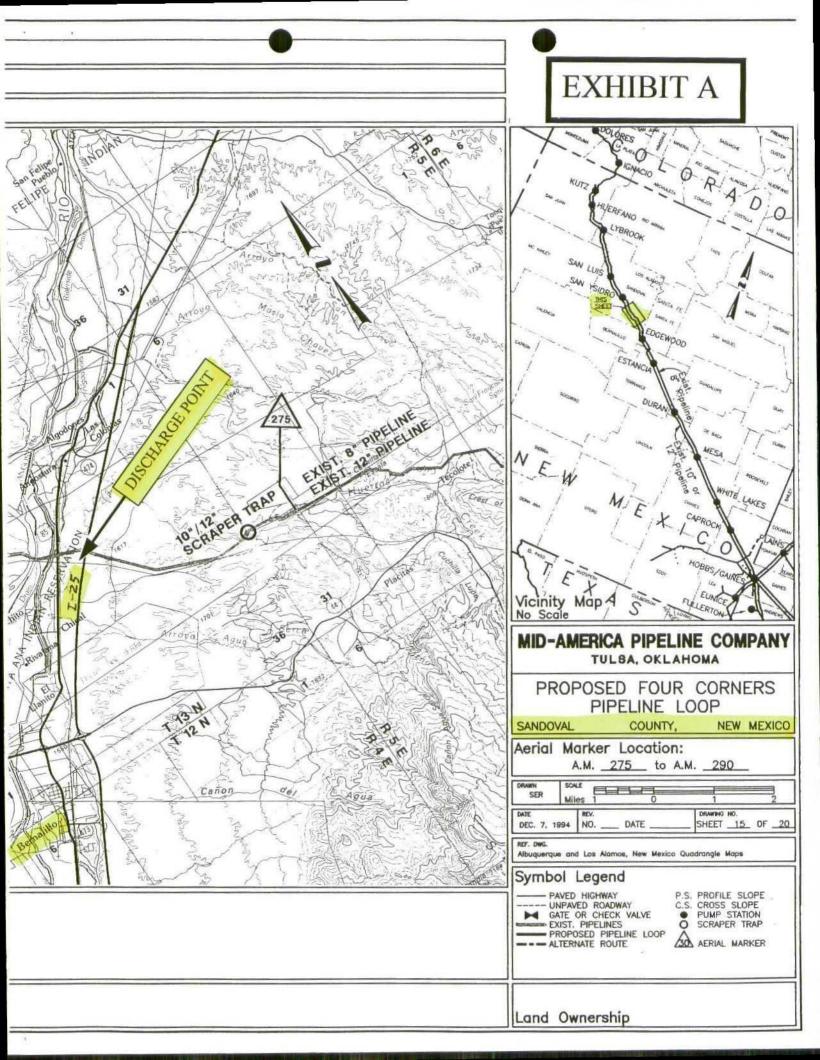
h) Identification of land owners at and adjacent to the discharge site.

Land owner at the discharge site is: U. S. A. in trust for the Pueblo of Santa Ana.

Land owners adjacent to the discharge site are as follows: A. T. & S. F. Railroad (west boundary) Interstate Highway I-25 (east boundary)

I) <u>Written permission from the land owner of the collection/retention</u> <u>site.</u>

See attached Exhibit C.


I trust that sufficient information has been provided to allow you to issue the requested permit. Should you have any questions or desire any additional information, please do not hesitate to call me or Jim Brooking at (505) 823-9443.

Very truly yours,

Gary Harkey

Project Manager

attachments

"Method Report Summary"

Accession Number:	509548
Client:	ANALYTICAL TECHNOLOGIES, INC.
Project Number:	509357
Project Name:	MAPCO FOUR-CORNERS PIPELINE
Project Location:	FOUR-CORNERS PIPELINE
Test:	Group of Single Wetchem

Client Sample Id:

509357-01

Parameter:	Unit:	Result:
ALKALINITY (2320B)	MG/L	530
CHLORIDE (325.2)	MG/L	28
CONDUCTIVITY (120.1)	UMH/CM	1100
PH (150.1)	UNITS	6.7
SULFATE (375.4)	MG/L	28
TOTAL DISSOLVED SOLIDS (160.1)	MG/L	570

EXHIBIT B 3 PAGES

TOTAL METALS

Lab Name: Analytical Technologies, Inc.

Client Name: ATI-NM

Client Project ID: 4-Corners Pipeline

Lab Sample ID: 95-09-212-01

Sample Matrix: Aqueous

Sample ID

Test Water

Date Collected: 09/19/95

Prep Date: 09/25, 27/95

Date Analyzed: 09/28/95

	Modified	Concentration	Detection Limit
Analyte	Method	mg/L	mg/L
Arsenic	·6010	ND	0.01
Barium	6010	0.2	0.1
Cadmium	6010	ND	0.005
Calcium	6010	170	1
Iron	6010	ND	0.1
Lead	6010	ND	0.003
Magnesium	6010	30	1
Manganese	6010	··ND	0.01
Mercury	7470	ND	0.0002
Potassium	6010	3	1
Selenium	6010	ND	0.005
Sodium	6010	28	1
Zinc	6010	0.04	0.02

ND = Not Detected

公

Analytical Technologies, Inc. GAS CHROMATOGRAPHY RESULTS

112

105

: PURGEABLE HALOCARBONS/AROMATICS (EPA 8010/8020) TEST CLIENT : MID-AMERICA PIPELINE ATI I.D.: 509357 PROJECT # : (NONE) PROJECT NAME : 4-CORNERS PIPE TEST

SAMPLE ID. #		MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
01	TEST WATER	AQUEOUS		NA	09/20/95	1
02	TRIP BLANK	AQUEOUS	08/28/95	NA	09/20/95	1
PARAME			UNITS	01	02	<u> </u>
BENZEN	IE		UG/L	<0.5	<0.5	
	ICHLOROMETHANE		UG/L	<0.2	<0.2	
BROMOR	ORM		UG/L	0.6	<0.5	
	IETHANE		UG/L	<1.0	<1.0	
	TETRACHLORIDE		UG/L	<0.2	<0.2	
	BENZENE		UG/L	<0.5	<0.5	
	DETHANE		UG/L	<0.5	<0.5	
CHLORC			UG/L	<0.5	<0.5	
	METHANE		UG/L	<1.0	<1.0	
	OCHLOROMETHANE		UG/L	<0.2	<0.2	
1,2-DI	BROMOETHANE (EDB)		UG/L	<0.2	<0.2	
	CHLOROBENZENE		UG/L	<0.5	<0.5	
•	CHLOROBENZENE		UG/L	<0.5	<0.5	
•	CHLOROBENZENE		UG/L	<0.5	<0.5	
•	CHLOROETHANE		UG/L	<0.2	<0.2	
•	CHLOROETHANE (EDC)		UG/L	<0.5	<0.5	
1,1-DI	CHLOROETHENE		UG/L	<0.2	<0.2	
CIS-1,	2-DICHLOROETHENE		UG/L	<0.2	<0.2	
-	-1,2-DICHLOROETHENE		UG/L	<1.0	<1.0	
	CHLOROPROPANE		UG/L	<0.2	<0.2	
	3-DICHLOROPROPENE		UG/L	<0.2	<0.2	
	-1,3-DICHLOROPROPENE		UG/L	<0.2	<0.2	
	BENZENE		UG/L	<0.5	<0.5	
METHYI	L-t-BUTYL ETHER		UG/L	<2.5	<2.5	
METHYI	LENE CHLORIDE		UG/L	<2.0	<2.0	
1,1,2,	2-TETRACHLOROETHANE		UG/L	<0.2	<0.2	
TETRAC	CHLOROETHENE		UG/L	<0.5	<0.5	
TOLUEN	IE		UG/L	<0.5	<0.5	
1,1,1-	TRICHLOROETHANE		UG/L	<1.0	<1.0	
	TRICHLOROETHANE		UG/L	<0.2	<0.2	
• •	LOROETHENE		UG/L	<0.2	<0.2	
TRICHI	LOROFLUOROMETHANE		UG/L	<0.2	<0.2	
	CHLORIDE		UG/L	<0.5	<0.5	
	XYLENES		UG/L	<0.5	<0.5	
SURROO	SATES:					
	CHLOROMETHANE (%)			100	105	

TRIFLUOROTOLUENE (%)

EXHIBIT C

October 11, 1995

Mr. Roy Montoya Tribal Administrator Santa Ana Pueblo 02 Dove Road Bernalillo, New Mexico 87004

Re: Mid America Pipeline Company Hydrostatic Tests/Santa Ana Pueblo Tribal Lands

Dear Mr. Montoya:

Mid America Pipeline Company is constructing and will soon be hydrostatic testing its new 12-inch pipeline within the Reservation. Hydrostatic testing involves filling the pipeline with water and pressurizing to check for and eliminate any leaks. The pipe that is being tested is new steel pipe, having no oil or hydrocarbon content.

After a hydrostatic test, the test water will be discharged onto the ground at various locations. The test water will be potable and will be analyzed before and after the hydrostatic test. Copies of the test results can be provided to you upon request. If the water discharge is over 5,000 gallons, the water will be discharged into a hay bale filtration structure to dissipate the energy of the flow and mitigate surface erosion. Smaller discharges will be discharged into the trench or on the ground just outside the right-of-way.

Mid-America Pipeline requests your written permission to discharge the test water onto the lands of the Santa Ana Pueblo. Thank you for your time and consideration in this matter. Should you have any questions or desire any additional information, please do not hesitate to call.

Sincerely Edwin R. Peck Jr.

Permission is hereby granted to discharge onto the lands of the Santa Ana Pueblo.

Roy Montoya, Tribal Administrator, Santa Ana Pueblo

August 25, 1994

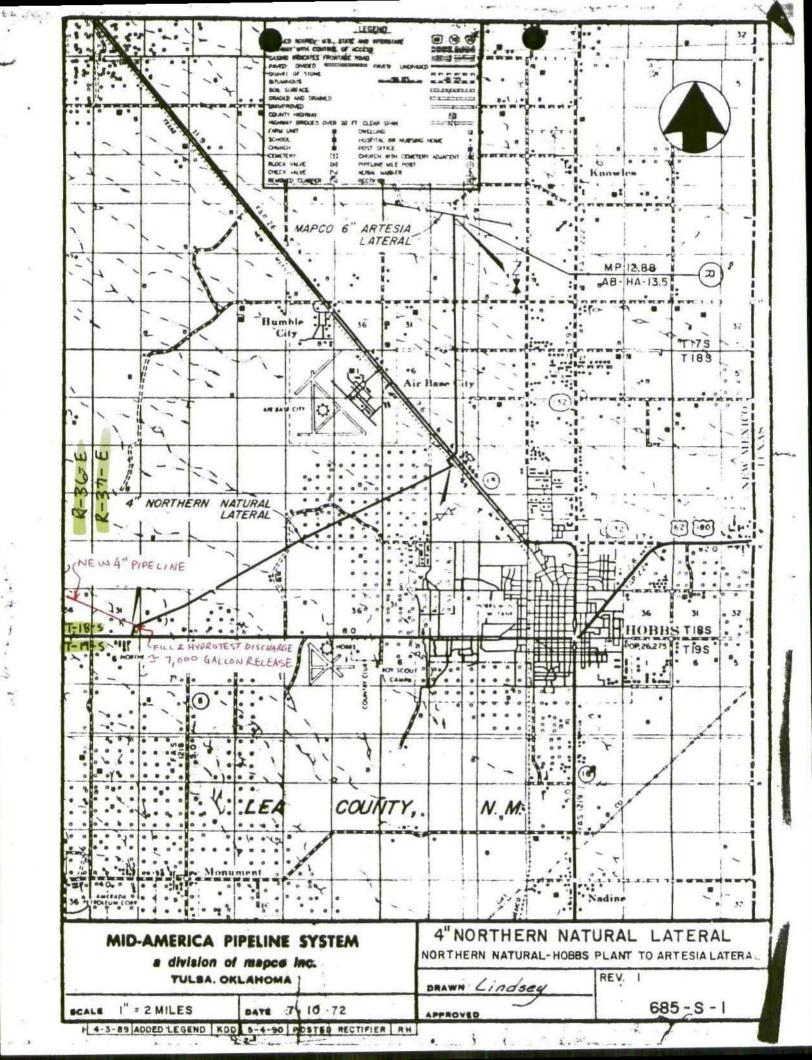
Mr. Chris Eustice Environmental Geologist Oil Conservation Division 310 Old Santa Fe Trail Santa Fe, New Mexico 87501

RE: Notice of Intent to Discharge Hydrostatic Test Water Lea County, New Mexico

Dear Mr. Eustice:

Mid-America Pipeline Company is planning a hydrostatic test of approximately 1.5 miles of 4 1/2" O.D. pipeline starting on September 28, 1994. The planned location for discharge of hydrostatic test waters is in Section 31, Township 18, South Range 37 East, as shown on the enclosed map. The pipeline will be new and clean. Permission will be obtained from all landowners before discharging water on their properties. The water will be obtained from the Hobbs city water supply. After the hydrostatic test is complete, approximately 7,000 gallons will be discharged on the ground at a rate of approximately 100 gpm. Representative samples will be taken at the beginning, middle, and end of the discharge and analyzed for contaminants. The discharge point will be at the East end of the line as shown on the enclosed map. The water will be filtered through hay bales when discharged to prevent erosion and encourage re-aeration. No chemicals will be added to the hydrostatic test waters, and no water with a visible oil sheen will be discharged. It is estimated that contaminants from this test will be negligible. The ground water was 45 feet deep in 1991, but much pumping down of these areas recently may have reduced them to 55 feet according to the State Engineer's Office. The subsurface is Ogallala Formation.

Please advise if any further measures need to be taken.


If you have any questions, please contact me at (918) 599-6010 or by fax at (918) 560-9199.

Sincerely, ANI CAA

Joseph L. Cheek **Project Engineer**

JLC:pb Enclosure

cc: Ray Penderson Ron Ledingham Ronnie Hobbs Kevin Bodenhamer Jerry Barnett Howard Patterson Larry Davied Larry Smith AFE PPL-40312

October 5, 1994

Mr. Tom Trujillo El Paso Natural Gas Company 100 North Stanton El Paso, Texas 79901

RE: Approval for Discharge of Hydrostatic Test Water Lea County, New Mexico

Dear Mr. Trujillo:

Mid-America Pipeline Company is planning a hydrostatic test of approximately 1.5 miles of 4 1/2" O.D. pipeline starting on or about October 10, 1994. The planned location for discharge of hydrostatic test waters is in Section 36 Township 18 South Range 36 East, as shown on the enclosed map. The pipeline will be new and clean, and the water will be obtained from the Hobbs city water supply. The tenant, Mr. Larry Squires, will be contacted prior to any discharged on the ground at a rate of approximately 100 gpm. The water will be filtered through hay bales when discharged to reduce chances of erosion and encourage re-aeration. If any erosion does occur due to the discharge is complete. No chemicals will be added to the hydrostatic test waters, and no water with a visible oil sheen will be discharged. It is estimated that contaminants from this test will be negligible.

Please show your acceptance by signing at the right below and returning this letter to me. If you have any questions, please contact me at (918) 599-6010 or by fax at (918) 560-9199.

Sincerely,

1/11

Joseph L. Check Project Engineer

JLC:pb Enclosure

cc: Ray Penderson Ron Ledingham Howard Patterson Kevin Bodenhamer Wiley Lorett AFE PPL-40312 Larry Smith Ronnie Hobbs

Agreed to and Accepted by: EL PASO NATURAL GAS COMPANY

Thomas D. Hutchins

1800 SOUTH RAI TIMORE AVENUE MOST OFFICE BOX 645 TULSA, UKLAHOMA 74101 8645 (918) 581-1800

RECEIVED

AUG 2 5 1994

OIL CLASSENVATION DIV.

Mr. Roger Anderson Oil Conservation Commission 310 Old Santa Fe Trail Santa Fe, New Mexico 87501

RE: Notice of Intent to Discharge Hydrostatic Test Water Lea County, New Mexico

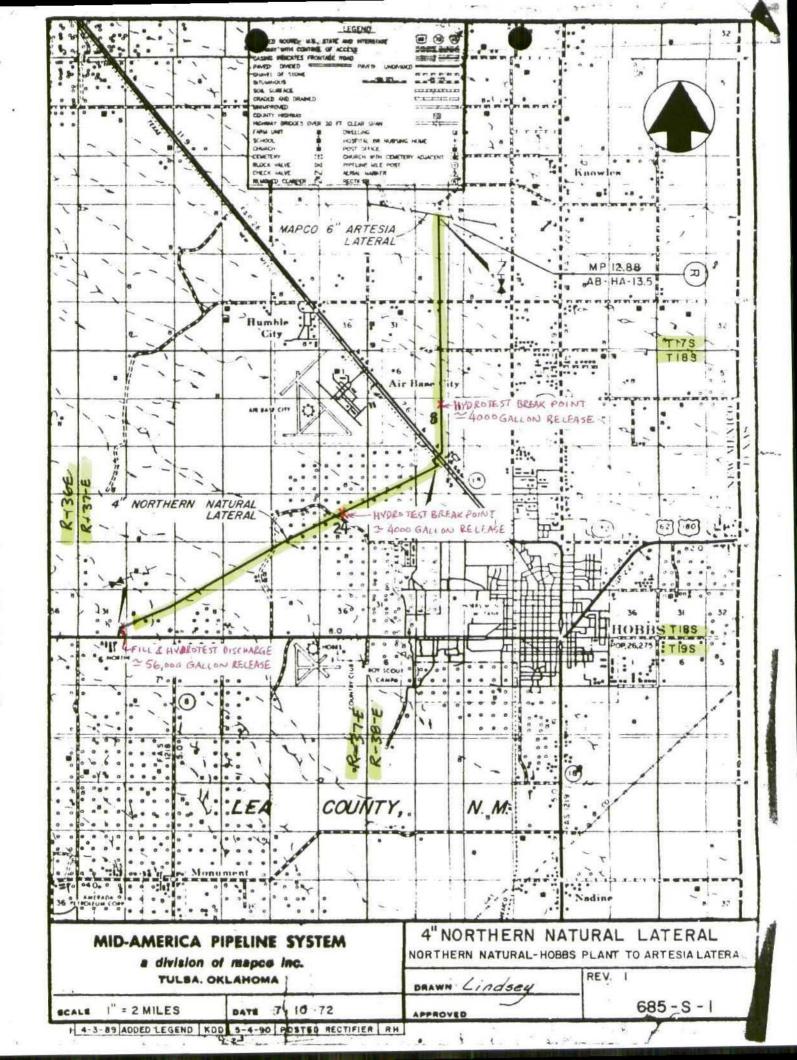
Dear Mr. Anderson:

August 22, 1994

Mid-America Pipeline Company is planning a hydrostatic test of approximately 13 miles of 4 1/2" O.D. pipeline starting on September 1, 1994. Enclosed is a map showing the planned location for discharge of hydrostatic test waters. The pipeline was in Natural Gas Liquids service. Several years ago the line was removed from service, cleaned by emptying with a series of pigs, and laid down in low pressure nitrogen. Due to the age of the pipeline, it is possible that leaks will be found. Permission will be obtained from all landowners before testing the pipeline or discharging water on their properties. The water will be obtained from a clean water supply source. Analysis of test water will be forwarded as soon as available. Prior to filling the line for testing, the pipeline will be flushed. Approximately 50 barrels of water will be put into the pipeline to flush out any possible residual contaminants. This rinse water will be contained and removed for proper disposal. Prior to disposal, representative samples will be taken at the beginning, middle, and end of the discharge and analyzed for contaminants - ei. major anions and cations, heavy metals, aromatic and halogenated hydrocarbons, ph, and conductivity. Following a satisfactory flushing of the line, the hydrostatic test will begin. The line will be filled and then cut into three test sections. At each of the two break points, approximately 4,000 gallons of water will be released. Locations of the points where the line is divided are shown on the enclosed map. After the hydrostatic test is complete, the line fill of test water, approximately 56,000 gallons, will be discharged on the ground at a rate of approximately 100 gpm. The discharge point will be at the south end of the line as shown on the enclosed map. The water will be filtered through hay bales when discharged to prevent erosion and encourage re-aeration. Samples will be taken at the beginning, middle and end of the discharge and analyzed for contaminants. No chemicals will be added to the hydrostatic test Mr. Roger Anderson August 22, 1994 Page 2

waters, and no water with a visible oil sheen will be discharged. Water examined from a similar line tested recently was analyzed for contaminants. Samples contained no measurable benzene, and oil and grease was less than one milligram per liter. It is estimated that contaminants from this test will also be negligible. The ground water was 45 feet deep in 1991, but much pumping down of these areas recently may have reduced them to 55 feet according to the State Engineer's Office. The subsurface is Ogallala Formation.

Please advise if any further measures need to be taken. If you have any questions, please call me at (918) 599-6010 or by fax at (918) 560-9199.


Sincerely,

t MM

Joseph L. Cheek Project Engineer

JLC:pb Enclosure

cc: Kevin Bodenhamer Larry Davied Ron Ledingham Jerry Barnett Ray Penderson Larry Smith Ronnie Hobbs Vanessa Lee Howard Patterson AFE PPL-40312

August 25, 1994

Mr. Chris Eustice Environmental Geologist Oil Conservation Division 310 Old Santa Fe Trail Santa Fe, New Mexico 87501

RE: Notice of Hydrostatic Test on Existing NGL Pipeline Lea County, New Mexico

Dear Mr. Eustice:

Per our conversation this morning, we are approved to commence hydrostatic testing based on the following revision to the plan in the letter to Roger Anderson dated August 22, 1994.

Mid-America Pipeline Company is planning a hydrostatic test of approximately 13 miles of 4 1/2" O.D. pipeline starting on September 1, 1994. The pipeline was in Natural Gas Liquids service. Several years ago, the line was removed from service, cleaned by emptying with a series of pigs, and laid down in low pressure nitrogen. Due to the age of the pipeline, it is possible that leaks will be found. All landowners have been notified of the upcoming test, and permission will be obtained from landowners where there are planned discharges. The water will be obtained from the Hobbs city water supply. Prior to filling the line for the test, the pipeline will be flushed. Approximately 50 barrels of water will be flushed through the pipeline to get rid of any possible residual contaminants. This rinse water will be contained and removed for disposal at an OCD approved facility. Prior to disposal, representative samples will be taken from the beginning, middle, and end of the discharge and analyzed for contaminants. The entire line will be filled with water and then cut into three test sections. At each of the two break points, approximately 4,000 gallons will be discharged. This water, as well as water discharged at any leak sites, will be recovered as much as practical into a vacuum truck and disposed of at an OCD approved facility. After the hydrostatic test is complete, the line fill of water will be discharged into frac tanks and hauled off for disposal at an OCD approved facility. Representative samples will be taken at the beginning, middle, and end of the discharge and analyzed for contaminants. No chemicals will be added to the hydrostatic test waters. It is

Mr. Chris Eustice August 25, 1994 Page 2

estimated that contaminants from this test will be negligible. The ground water was 45 feet deep in 1991, but much pumping down of these areas recently may have reduced them to 55 feet according to the State Engineer's Office. The subsurface is Ogallala Formation.

Please advise if any further measures need to be taken.

If you have any questions, please contact me at (918) 599-6010 or by fax at (918) 560-9199.

Sincerely,

1 CM

Joseph L. Cheek Project Engineer

JLC:pb

cc: Ray Penderson Kevin Bodenhamer Larry Davied Ron Ledingham Jerry Barnett Larry Smith Ronnie Hobbs Howard Patterson AFE PPL-40312

September 21, 1994

Mr. Chris Eustice Environmental Geologist Oil Conservation Division 310 Old Santa Fe Trail Santa Fe, New Mexico 87501

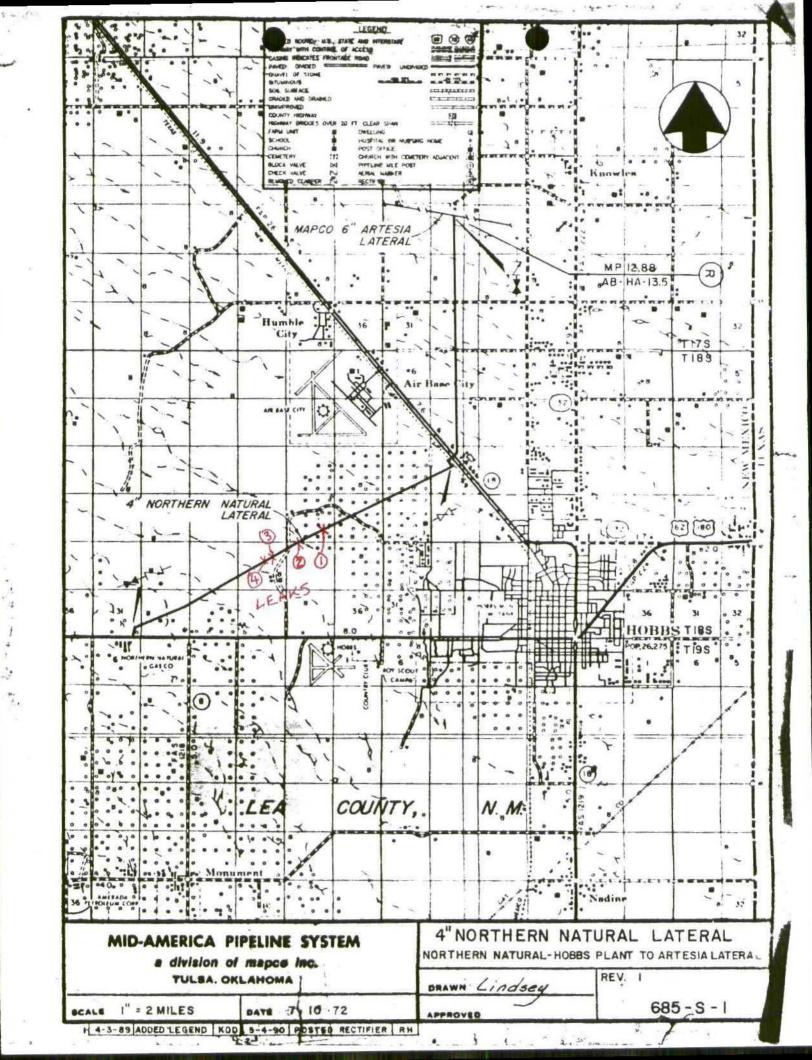
.VID NOITAVABRUON DIV. DECENTED

RE: Spill Report Hydrostatic Test on Existing NGL Pipeline Lea County, New Mexico

Dear Mr. Eustice:

During the subject hydrostatic test, four leaks occurred with a loss of approximately four barrels of water at the first leak and less than one barrel at each of the other leaks. As much of the water as practical was recovered by a vacuum truck. Test samples of the water have been sent to a lab for analysis, and the results will be forwarded to you as soon as they are available. The approximate location of the leaks is shown on the attached map. The test results will also be sent to Per Abo for their approval. If approval is received from Per Abo, their approval will be forwarded to you. The water is being stored in frac tanks until approval to discharge is received from your office.

If you have need of any further information, please call me at (918) 599-6010.


Sincerely,

A 1 am

Joseph L. Cheek Project Engineer

JLC:pb Enclosures

cc: Ray Penderson Ron Ledingham Larry Smith AFE PPL-40312 Kevin Bodenhamer Jerry Barnett Howard Patterson

NEW MEXICO ENVIRONMENT DEPARTMENT MEMORANDUM OF COMPLAINT

FIELD OFFICE: Farmington	
COMPLAINANT'S NAME: Anonymous	TELEPHONE:
ADDRESS:	CITY:
SOURCE/RESPONSIBLE PARTY: Enertek	TELEPHONE:
ADDRESS: 4901 E. Main	CITY: Farmington
Circle Appro Circle Appro Air Quality, Food, Vector, Hazardo Radiation, Solid Waste, Swimming Pool,	Waster Pollution, Water Supply
NATURE OF COMPLAINT: Enertek is dumping 1	iquids (gil, glycol, parafins, etc)
nto Farmington storm drain which goes to th	e Animas River, Storm drain located
t Steams Lab with possible evidence at Rig	Out (south of Steams Lab)Glycol
contamination flowing into irrigation ditch	They have open top tanks located
in a pit on dirt bottom. The tank is leani open to birds and other animals. COMPLAINT TAKEN BY: Tom Welts	
	ng, has a single wall bottom and is-
open to birds and other animals. COMPLAINT TAKEN BY: Tom Welts	ng, has a single wall bottom and is-
open to birds and other animals. COMPLAINT TAKEN BY: Tom Welts	ng, has a single wall bottom and is-
ODEN to birds and other animals. COMPLAINT TAKEN BY: Tom Welts INVESTIGATION REPORT:	ng, has a single wall bottom and te DATE: 8/22/94
BY:	ng, has a single wall bottom and te DATE: 8/22/94 DECENVED AUG 2 3 1994
ODEN to birds and other animals. COMPLAINT TAKEN BY: Tom Welts INVESTIGATION REPORT:	ng, has a single wall bottom and te DATE: 8/22/94 DECENVED AUG 2 3 1994
ODEN EO HIRds and other animals. COMPLAINT TAKEN BY: INVESTIGATION REPORT: BY: ACTION TAKEN:	ng, has a single wall bottom and te DATE: 8/22/94 DECENVED AUG 2 3 1994
BY:	ng, has a single wall bottom and te- DATE: 8/22/94 DECENVED AUG 2 3 1994 DATE:

THEIR PROGRAMS.