GW - 1

REPORTS

YEAR(S):

Groundwater Technology, Inc.

2501 Yale Boulevard S.E., Suite 204, Albuquerque, NM 87106 USA

SOIL VAPOR EXTRACTION AND AIR SPARGE PILOT TEST REPORT BLOOMFIELD REFINING COMPANY #50 COUNTY ROAD 4990 BLOOMFIELD, NEW MEXICO JUNE 13 - 16, 1994

PROJECT NO. 023353014

August 23, 1994

Prepared for:

Mr. Chris Hawley Bloomfield Refining Company P.O. Box 159 Bloomfield, New Mexico 87413 (505) 632-8013

Groundwater Technology, Inc. Written/Submitted by

Tulsa Q. Bernett

Teresa J. Bennett Hydrogeologist

Groundwater Technology, Inc. Reviewed/Approved by Λ Sara Brothers

Hydrogeologist Operations Manager, New Mexico

TABLE OF CONTENTS

LIST O	f figuf	iesii
LIST O	F TABLE	isii
LIST O	F APPEI	NDICES
1.0	INTRO	DUCTION
	1.1 1.2 1.3	Purpose of Investigation 1 Background 1 Setting 1
2.0	SITE H	YDROGEOLOGY 2
3.0	INSTAL	LATION OF PILOT TESTS WELLS AND MONITOR POINTS
	3.1 3.2	Drilling and Well Completion Operations 3 Soil Sampling and Analytical Results 4
4.0	SOIL V	ENT/AIR SPARGE PILOT TESTS 5
	4.1 4.2 4.3	Soil Vent Test Equipment 6 Soil Vent Test Protocol 7 Soil Vent Pilot Test Results 8
		4.3.1 Pilot Test Results - VEW-1S 8 4.3.2 Pilot Test Results - VEW-1D 9
	4.4 4.5 4.6 4.7 4.8	Soil Vent Pilot Test Analysis10Air Sparge Test Equipment11Air Sparge Test Protocol11Air Sparge Test Results12Combination Air Sparge/Soil Vent Test Protocol13
	4.8 4.9 4.10 4.11	Combination Air Sparge/Soil Vent Test Results 13 Hydrocarbon Mass Extraction Rates 14 Pilot Testing Conclusions 14

BRC/Pilottest.rpt

ki.

i tri

i t

L II

11

OIL CONSERVE IN DIVISION RECEIVED

*94 AU: 31 AM 8 50

Groundwater Technology, Inc.

2501 Yale Boulevard, SE, Suite 204, Albuquerque, NM 87106 USA Tel: (505) 242-3113 Fax: (505) 242-1103

GROUNDWATER TECHNOLOGY ®

> Mr. Greg J. Lyssy Project Coordinator RCRA Technical Section - Enforcement Branch U.S. Environmental Protection Agency Region 6 1445 Ross Avenue, Suite 1200

RE: Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico 87413 EPA ID #NM089416416 Administrative Order On Consent - Docket No. VI-303-H Results of the Phase IV RFI - Soil Vapor Extraction and Air Sparge Pilot Test

Dear Mr. Lyssy:

August 24, 1994

Dallas, Texas 75202-2733

Enclosed is the report entitled "Soil Vapor Extraction and Air Sparge Pilot Test" for the above-referenced site. This report described the procedures and findings of the soil vent and air sparge pilot testing conducted as part of the Phase IV RCRA Facility Investigation (RFI) at the Bloomfield Refining Company (BRC) site during the third week of June 1994.

Should you have any questions concerning this report, please do not hesitate to contact me or Ms. Sara Brothers at (505) 242-3113.

Sincerely,

Groundwater Technology, Inc.

Teresa J. Bernett for

Cymantha Liakos Project Manager

Enclosure

cc: Chris Hawley - BRC Joe Warr - BRC Dave Roderick - BRC Roger-Anderson - NM-Oil-Conservation Division) Ed Horst - NMED Hazardous Waste Bureau

LIST OF FIGURES

- FIGURE 1 SITE MAP
- FIGURE 2 GENERALIZED GEOLOGIC CROSS-SECTION SHOWING LOCATIONS OF SCREENED INTERVALS AT SOIL VENT PILOT TEST WELLS
- FIGURE 3 SOIL VAPOR EXTRACTION/AIR SPARGE PILOT TEST STUDY AREA
- FIGURE 4 FIELD RESULTS FOR SOIL VENT PILOT TESTS ON WELL VEW-1
- FIGURE 5 LOG OF INDUCED VACUUM VS. DISTANCE FROM VAPOR EXTRACTION WELL VEW-1S, SHALLOW ZONE TEST
- FIGURE 6 APPLIED VACUUM VS. AIR FLOW RATE FOR VENT STEP-TESTS ON NESTED WELL VEW-1
- FIGURE 7 LOG OF INDUCED VACUUM VS. DISTANCE FROM VAPOR EXTRACTION WELL VEW-1D, DEEP ZONE TEST
- FIGURE 8 LOG OF INDUCED PRESSURE VS. DISTANCE FROM SPARGE WELL AS-1, 3 PSI
- FIGURE 9 LOG OF INDUCED PRESSURE VS. DISTANCE FROM SPARGE WELL AS-1, 5 PSI

LIST OF TABLES

- TABLE 1 MAXIMUM INDUCED VACUUM RESPONSE, SOIL VENT PILOT TEST ON VEW-1S (SHALLOW ZONE), BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 14, 1994
- TABLE 2 MAXIMUM INDUCED VACUUM RESPONSE, SOIL VENT PILOT TEST ON VEW-1D (DEEP ZONE), BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 14, 1994
- TABLE 3SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS, BLOOMFIELD REFINING
COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 14 AND 16, 1994
- TABLE 4 MAXIMUM INDUCED PRESSURE RESPONSE, AIR SPARGE PILOT TEST, BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 15, 1994
- TABLE 5 MAXIMUM CHANGE IN VOC CONCENTRATIONS, AIR SPARGE PILOT TEST, BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 15, 1994
- TABLE 6MAXIMUM INDUCED PRESSURE/VACUUM RESPONSE, COMBINED AIR
SPARGE/SOIL VENT PILOT TEST ON WELLS VEW-1D AND AS-1, BLOOMFIELD
REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 16, 1994

BRC/Pilottest.rot

I k d i h l

TABLE 7 SUMMARY OF HYDROCARBON MASS EXTRACTION RATES, AIR SPARGE/SOIL VENT PILOT TESTS, BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 14 AND 16, 1994

LIST OF APPENDICES

- APPENDIX A SUMMARY OF WELL COMPLETION INFORMATION AND MONITOR WELL INSTALLATION/LITHOLOGIC LOGS
- APPENDIX B SOIL SAMPLE CERTIFICATES OF ANALYSIS, CHAIN-OF-CUSTODY DOCUMENTATION, AND QA/QC DATA, MAY 16 17, 1994
- APPENDIX C SOIL VENT AND AIR SPARGE PILOT TEST FIELD DATA
- APPENDIX D AIR SAMPLE CERTIFICATES OF ANALYSIS, CHAIN-OF-CUSTODY DOCUMENTATION, AND QA/QC DATA, JUNE 13 16, 1994
- APPENDIX E "ESTIMATION OF EFFECTIVE CLEANUP RADIUS FOR SOIL-VAPOR EXTRACTION SYSTEMS", SCIENTIFIC PAPER FROM JOURNAL OF SOIL CONTAMINATION
- APPENDIX F COMPUTER-GENERATED OUTPUT FROM VENT-ROI 3.0
- APPENDIX G HYDROCARBON MASS EXTRACTION RATE CALCULATIONS

1.0 INTRODUCTION

1.1 Purpose of Investigation

This report summarizes the results of soil vapor extraction and air sparge pilot tests conducted as part of the Phase IV RCRA Facility Investigation (RFI) at the Bloomfield Refining Company (BRC) site located in Bloomfield, New Mexico. The objective of the pilot testing was to determine the feasibility of these technologies for application at the BRC site. The work scope for the investigation included the installation of pilot test wells and monitor points, and short-term soil vapor extraction, air sparge, and combined pilot tests conducted on the test wells.

1.2 Background

The BRC facility consists of 287 acres and is located at #50 County Road 4990 (Sullivan Road) in Bloomfield, San Juan County, New Mexico (Figure 1). The refinery is situated on a bluff approximately 100 feet above and immediately south of the San Juan River, which flows westerly. On the bluff and between the river and the process area of the facility is the Hammond Ditch. The ditch is an unlined man-made channel for irrigation water supply which borders all but the southern side of the process area of the facility.

1.3 Setting

The current facility layout is shown in Figure 1. The refinery offices, warehouse space, maintenance shops, drum storage area and raw water ponds are located in the western portion of the property and along Sullivan Road. Process areas are located east of the offices. The eastern most portion of the property contains the tank farm, the waste water treatment and evaporation ponds, and the fire training area.

2.0 SITE HYDROGEOLOGY

The site is underlain by Quaternary Jackson Lake Terrace deposits comprised of 10 to 15 feet of coarse-grained fluvioglacial outwash deposits blanketed by wind-blown loess. These coarse grained sediments (sands grading to cobbles) unconformably overlie the Nacimiento Formation which is a thick (570 feet) layer of black carbonaceous mudstone with interbedded white sandstones. Seeps have been observed along the contact between the consolidated Nacimiento and unconsolidated Jackson Lake deposits. Perched, shallow groundwater in the Quaternary deposits is encountered between 6 and 40 feet below ground surface, generally increasing in depth from west to east across the site. Groundwater flows to the northwest and west, toward Hammond Ditch and the San Juan River. The ditch is known to influence groundwater flow at the site; during the non-irrigation season, BRC dikes the ditch to maintain a mounding effect year-round which inhibits groundwater flow to the north (toward the seeps).

3.0 INSTALLATION OF PILOT TESTS WELLS AND MONITOR POINTS

3.1 Drilling and Well Completion Operations

On May 13 - 17, 1994, Groundwater Technology, Inc. (Groundwater Technology) supervised the installation of seven wells on the southwestern part of the BRC site for use in the aquifer testing and soil vent/air sparge pilot studies. Drilling was performed by Layne Environmental Services, Inc., the subcontracted driller, using a Drill Systems 180 air percussion drill rig. One nested vapor extraction well (VEW-1), one air sparge well (AS-1) and five monitor points (MP-1 through MP-5) were installed. Well locations are shown in Figure 1.

Soil samples were collected from select borings at 5-foot intervals for lithologic identification and field and laboratory analysis using a 2-foot long split-spoon sampler. Detailed geologic logs based on the samples were recorded by an experienced Groundwater Technology scientist during drilling and are presented in Appendix A. The soil samples were field-screened for relative concentrations of volatile organic compounds using a photoionization detector (PID) calibrated to 100 parts per million (ppm) isobutylene gas. Soil samples for field-screening were placed in 16-ounce glass jars, sealed with aluminum foil, agitated, and allowed to equilibrate for five to ten minutes prior to analysis. The PID results are included on the geologic logs in Appendix A. Select soil samples retained for laboratory analysis were placed in 250-ml glass jars with teflon septa, sealed, labeled, placed on ice in an insulated shipping cooler, and transported to Inter-Mountain Laboratories, Inc. in Bozeman, Montana via overnight courier. The samples were analyzed for volatile organic compounds in accordance with EPA method 8240. Laboratory Certificates of Analysis and Chain-of-Custody documentation are included in Appendix B.

Following completion of drilling, each soil boring was converted to a well. A summary of well construction specifications is included in Appendix A. Vapor extraction well VEW-1 was drilled to a total depth of 26 feet and completed as a nested well with two screened intervals to allow for separate vent testing of discreet stratigraphic zones. The screened intervals are 5 -13 feet (0.040-inch slot PVC screen) across the upper silt and clay interval; and 16 - 26 feet (0.040-inch slot PVC screen from 16 - 21 feet and 0.020-inch slot screen from 21 - 26 feet) across the lower sand and cobble zone. Each well nest was separated from one other in the borehole by a gravel pack and a 2-foot thick bentonite and grout seal.

Air sparge well AS-1 was drilled to a total depth of approximately 32 feet below the ground surface (top of bedrock) and screened approximately five feet below the water table from 29 to 31 feet, followed by blank casing to the surface. The well was completed with 2-inch diameter, 0.020-inch slotted PVC well screen and casing and the bottom of the well was fitted with a PVC well cap. The annular space was backfilled with 10-20 silica sand to 26.5 feet below the surface, followed by bentonite to 22.5 feet, and grout to the surface.

Monitor points MP-1 through MP-5 were drilled to total depths of 30 - 32 feet and completed with 20 to 25 feet of 2-inch diameter schedule 40 PVC screen (0.020-inch slotted) and 5 to 10 feet of blank casing. The bottom of each well was fitted with a PVC cap and the annular space was backfilled to one to two feet above the well screen with sand pack, followed by a one to 2-foot thick bentonite seal and grout to the surface.

3.2 Soil Sampling and Analytical Results

The wells (except VEW-1) were generally installed to the top of the Nacimiento Formation (30 to 32 feet below grade) which appeared as a weathered limestone at each location. The vadose zone consists of poorly graded silt and clay to approximately 18 to 20 feet beneath the surface. Below this upper fine-grained unit is a sand and cobble layer occurring from approximately 20 to 30 feet below grade and which directly overlies the limestone (Figure 2).

Soil samples from borings VEW-1 and MP-3 were field-screened with a Photovac Microtip PID during drilling for relative concentrations of volatile organic compounds. Headspace readings for soil samples collected from both borings ranged from 21 ppm to 2,415 ppm. Laboratory results for soil samples collected during drilling and analyzed per EPA method 8240 are provided in Appendix B. Identified hydrocarbon compounds included 0.5 mg/kg total xylenes in the soil sample obtained from VEW-1 from a depth of 24 feet, and 1.4 mg/kg total xylenes in the sample from MP-3 from 27 feet.

On June 13 - 16, 1994, Groundwater Technology conducted short-term air sparge and soil vapor extraction pilot tests at the BRC facility. The purpose of the pilot tests was to determine the following information:

- The effective radius of influence for a proposed air sparge/vapor extraction (ASVE) remediation system at the site;
- Engineering criteria and equipment specifications for use in designing a full-scale remediation system; and
- Hydrocarbon mass extraction rates for selection of air emissions treatment methodology.

Pilot testing consisted of three stages: a soil vapor extraction test, an air sparge test, and a combined air sparge/soil vent test. The tests consisted of actual field operation of a soil vacuum blower and air compressor temporarily connected to vapor extraction and air sparge wells. Induced response in the subsurface as a result of the tests was measured in surrounding monitor points. The sparge and vent tests were performed first to define the individual radii of influence and to determine the most effective operational conditions (pressure and vacuum settings) for these individual systems. The combined test documented actual field response to the optimum pressure and vacuum identified during the individual tests and allowed for balancing of the two systems.

Pilot tests at the BRC facility were performed using the newly installed air sparge (AS-1) and vapor extraction (VEW-1) wells as the test wells. Monitoring points were selected to provide multidirectional data at varying distances from the test wells, and to provide information concerning potential vertical differences in response both in the unsaturated and saturated zones. Figure 3 shows the layout of the pilot test monitoring array. The monitoring network utilized for the pilot tests consisted of five existing monitor or recovery wells (P-2, P-3, MW-4, RW-2, MW-25, and MW-26), newly installed monitor points MP-1, MP-2, and MP-4, and the soil vapor extraction nested well (VEW-1). Construction of all test wells and monitor points are detailed on the well logs included in Appendix A and a generalized geologic cross-section showing well screen intervals is provided in Figure 2.

4.1 Soil Vent Test Equipment

Soil vapor extraction pilot tests were performed by attaching a 1.5-horsepower (HP) regenerative vacuum blower with an explosion-proof motor to the pilot test well, VEW-1. The blower system included a particulate filter, vacuum gauges, and an ambient air intake valve to control flow/vacuum. The blower was powered by a portable generator. Blower exhaust was discharged directly to the atmosphere via a 10-foot high, 2-inch diameter PVC pipe effluent stack. One in-line air sampling port for collection of air samples and PID measurements was installed in the effluent stack.

Blower performance and vacuum were monitored using pre- and post-filter Ashcroft vacuum gauges with a range of 0 to 100 inches of water (in 1-inch increments). The vacuum gauges have an accuracy of \pm 1%. Air velocity measurements were obtained at a port installed in the 4-inch diameter PVC pipe at a point located approximately midway between the extraction wellhead and the blower. Measurements were obtained using a Dwyer Instruments thermal anemometer (Model 470). The thermal anemometer was calibrated following manufacturer's instruction prior to initiating each test.

Ambient air temperature and process flow temperature were measured using an Omega HH-70KF pocket thermometer, which has a range of -112 to 1,383 °F and an accuracy of \pm 1% for ambient air temperatures between 68°F to 86°F. Process air stream temperature was measured during the test at inlet ports installed in the piping prior to the blower (pre-blower temperature) and on the discharge side of the blower (post-blower temperature) to monitor blower performance and for use in hydrocarbon mass extraction calculations.

Organic vapor concentrations were monitored at the air sampling port located on the discharge side of the blower using a Microtip PID calibrated with 100 ppm isobutylene gas. The lower explosive limit (LEL) of the discharge vapors was also monitored using an Industrial Science Mx251 meter.

Induced vacuum at monitor wells surrounding the vapor extraction well were measured using a combination of Dwyer Instruments, Inc. magnehelic gauges (Model Nos. 2000-00, 2000-0C, 2002, and 2010). Gauges were attached to the pressure monitoring ports with 1- to 2-foot lengths of flexible rubber tubing.

4.2 Soil Vent Test Protocol

Following equipment set-up and calibration, Groundwater Technology conducted two short-term soil vent pilot tests on nested well VEW-1: one test was conducted on VEW-1S, screened across the vadose zone from 5 to 13 feet below the ground surface (corresponding to a silt and clay stratigraphic zone) and one test was conducted on VEW-1D, screened across both the vadose zone and into the saturated zone from 16 to 26 feet below the surface (corresponding to a sand and gravel stratigraphic zone). Each test was conducted at the maximum obtainable extraction vacuum for approximately three hours or until stabilization occurred in the monitoring parameters. A complete round of static vacuum, temperature, velocity, and organic vapor concentrations were collected prior to the start of each test. After each test was started, the following parameters were measured at approximate 5-minute intervals for the first elapsed 15 minutes, at approximate 15-minute intervals for the remainder of the first elapsed hour, and hourly thereafter:

- Pre- and post filter vacuum at the blower;
- Induced vacuum at surrounding monitor points;
- Applied vacuum at the vapor extraction wellhead;
- Pre- and post-blower air stream temperature;
- Process air stream velocity; and
- Air effluent organic vapor concentrations.

Air effluent samples were collected for laboratory analysis near the end of each test. The samples were collected in 1-liter Tedlar bags from the air sampling port located on the blower discharge stack. Following sample collection, the Tedlar bags were labeled and stored at ambient air temperature inside shipping coolers and shipped via overnight courier with full Chain-of-Custody documentation to Coast-to-Coast Analytical Services in Camarillo, California. The samples were analyzed for total non-methane hydrocarbons and volatile organic compounds per EPA method TO-14, and for fixed gases (carbon dioxide, oxygen, nitrogen, and carbon monoxide) and methane in accordance with method GC/TCD.

4.3 Soil Vent Pilot Test Results

The field data collected during the June 14, 1994 soil vent pilot tests is provided in Appendix C. Tables 1 and 2 summarize the applied vs. the induced vacuum response observed in surrounding monitoring points while venting on test wells VEW-1S and VEW-1D, respectively. A map depicting the pilot test results as observed in the field while venting on test well VEW-1 is provided in Figure 4.

4.3.1 Pilot Test Results - VEW-1S

The maximum vacuum obtained while venting on the shallow zone from VEW-1S during the pilot test ranged from 42 to 43 inches of water. The maximum process air velocity reading obtained was 1,600 feet per minute (fpm). Conversion to standard cubic feet per minute (scfm) yielded 115 scfm.

Maximum induced vacuum (0.15 to 0.19 inches of water) due to venting on VEW-1S was observed in wells MP-1 and RW-2, located 19 and 33 feet from the test well, respectively. An induced vacuum of 0.10 inches of water was detected in MW-4, the most distant monitor point (57 feet) from the test well in which a response was observed. A graph of the log of the induced vacuum vs. distance from extraction well VEW-1S for the pilot test is included in Figure 5.

While venting on VEW-1S, no organic vapor concentrations were detected in the air stream when measured with a PID. However, maximum LEL readings in the process air stream were on the order of 310% to 403%.

A summary of air sample analytical data obtained from well VEW-1S is provided in Table 3, and Laboratory Certificates of Analysis, Chain-of-Custody documentation, and QA/QC data are included in Appendix D. Air sample analytical data collected during the vent pilot test on June 14, 1994 from well VEW-1S indicates that effluent air concentrations were 2.2 milligrams per cubic meter (mg/m³) benzene, 0.4 mg/m³ toluene, 0.53 mg/m³ ethylbenzene, 3.2 mg/m³ total xylenes, and 460 mg/m³ total fuel (non-methane hydrocarbons). EDC and EDB were not detected in the air stream. Fixed gases and methane concentrations from well VEW-1S were 0.3% carbon dioxide, 18% oxygen, and 18% methane.

A step-test was also conducted on well VEW-1S. For each step, the applied vacuum was progressively lowered and the resulting air velocity was measured at the wellhead for the various applied vacuums. At applied vacuums of 42, 40, 28, and 16 inches of water, air velocities of 1,600,

BRC/Pilottest.rpt

8

1,300, 1,150, and 750 fpm, respectively, were measured in 4-inch diameter pipe. Conversion to scfm yielded air flow rates of 115, 94, 83, and 54 scfm for the four vacuum settings, respectively. A graph of air flow rate versus applied vacuum for the step test is provided in Figure 6.

4.3.2 Pilot Test Results - VEW-1D

The maximum vacuum obtained while venting on the deep zone from VEW-1D during the pilot test ranged from 20 to 21 inches of water. The maximum process air velocity reading was 1,750 fpm or 131 scfm.

At the maximum applied vacuum of 20 to 21 inches of water, maximum induced vacuum measured at the monitor points ranged from 0.08 inches of water in well MP-4 (located approximately 225 feet from VEW-1) to 4.0 inches of water at MP-1 (located approximately 19 feet from VEW-1). A graph of the log of the induced vacuum vs. distance from extraction well VEW-1D for the pilot test is shown in Figure 7.

Maximum organic vapor concentrations of the extracted vapors (based on PID readings) were 110 ppm. LEL readings in the process air stream ranged from 76 to 109% throughout the test.

Air sample analytical data collected during the vent pilot test on June 14, 1994 from well VEW-1D indicates that effluent air concentrations were 380 mg/m³ benzene, 16 mg/m³ toluene, 57 mg/m³ ethylbenzene, 280 mg/m³ total xylenes, and 11,000 mg/m³ total fuel. EDC and EDB were not detected in the air stream. Fixed gases and methane concentrations from well VEW-1D were 2.3% carbon dioxide, 4.3% oxygen, and 68% methane (Table 3, Appendix D).

A step-test was also conducted on well VEW-1D. For each step, the applied vacuum was progressively lowered and the resulting air velocity was measured at the wellhead for the various applied vacuums. At applied vacuums of 21, 18, 13, and 10 inches of water, air velocities of 1,750, 1,250, 900, and 650 fpm, respectively, were measured in 4-inch diameter pipe. Conversion to scfm yielded air flow rates of 131, 94, 67, and 48 scfm for the four vacuum settings, respectively. A graph of air flow rate versus applied vacuum for the step test is provided in Figure 6.

4.4 Soil Vent Pilot Test Analysis

The data collected from the soil vent pilot tests on VEW-1 were analyzed using Groundwater Technology's software program, VENT-ROI Version 3.0. VENT-ROI is based on a simple onedimensional analytical model that provides a rough estimate of the effective cleanup radius (defined as "the maximum distance from a vapor extraction point through which sufficient air is drawn to remove the required fraction of contamination in the desired time"). The effective radius (R_E) is based on site-specific conditions and SVES parameters, and is specific to the contaminant, cleanup goals, and cleanup time frame (Bass, 1993). A more detailed explanation of the model is included in the scientific paper provided in Appendix E.

Using VENT-ROI, data from the pilot tests was analyzed for each separate zone vented at the site: shallow (5 to 13 feet below grade); and deep (16 to 26 feet). Computer-generated output from the R_E calculations is provided in Appendix F. A summary of the calculated R_E values based on the optimum set of parameters is detailed below.

Assuming an approximate 24-foot thickness of vented soil interval for the shallow zone beneath the site (defined as the depth to top of groundwater), a soil gas temperature of 50°F, an air flow rate of 118 scfm per well, a cleanup time of 730 days, and 90% removal of xylene/ethylbenzene, the single well effective radius of influence (for volatilization plus biodegradation) for the shallow zone was approximately 36 feet, and the calculated interwell effective radius of influence was approximately 31 feet at an applied vacuum of 42 inches water column.

For the deep zone, keeping the input variables the same except for an 11-foot thick vented interval (defined as the thickness of the more permeable sand/cobble zone beneath the less permeable upper silt/clay zone) and an air flow rate of 105 scfm per well, the calculated single well R_e was 84 feet with an interwell effective radius of 18 feet at an applied vacuum of 21 inches water column.

For vapor extraction/bioventing to work, the contaminant of concern must be either volatile or biodegradable. Light-end products are treated primarily by volatilization, heavy-end products by biodegradation. Effective radius is most sensitive to the volatility of the contaminant; contaminants with high volatility are easier to remove than those with just high degradability. Taking this into consideration, the effective radii of influence for the shallow and deep zones were also calculated for removal of weathered gasoline/JP-4 and diesel/No. 2 fuel oil contaminant mixtures. Keeping all other input variables the same as above, the calculated single well R_E for the shallow zone for

removal of weathered gasoline/JP-4 was 34 feet and 2 feet for removal of diesel/No. 2 fuel oil. For the deep zone, the calculated R_{E} values were 78 feet for weathered gasoline and 3 feet for diesel.

4.5 Air Sparge Test Equipment

The air sparge pilot test was performed by connecting a compressed air line to the top of the air sparge well. The compressed air system consisted of a 90 pounds per square inch (psi) (105 cfm) air compressor, 3/4-inch diameter air hose, an in-line oil/water filter, and a pressure regulator to control flow/pressure.

Air velocity measurements were obtained using a combination of Dwyer air flowmeters (Model Nos. RMC and VFC) plumbed into the air line at the air sparge wellhead. Induced pressure at monitoring points surrounding the air sparge well was measured using a combination of Dwyer magnehelic gauges, (Model Nos. 2000-00, 2000-0C, 2002, and 2010). Organic vapor concentrations were measured at the surrounding monitor points using a properly calibrated Microtip PID. Depth-to-water and dissolved oxygen (DO) in surrounding monitor wells screened across the water table were measured using an ORS electronic interface probe (IP) and a YSI Model 51B Dissolved Oxygen Meter, respectively.

4.6 Air Sparge Test Protocol

The sparge test was performed at two different pressures, 3 psi and 5 psi (approximately 30% and 120% over the pressure needed for air to overcome the 5-foot water column above the screened interval of the sparge well). A complete round of static pressure, DO (in wells without separate-phase hydrocarbons (SPH)), fluid-level, and volatile organic compound (VOC) concentration measurements were collected from each monitor point prior to starting the sparge test.

The following parameters were collected during each pressure setting at periodic intervals. Field measurements are included in Appendix C:

- Applied air pressure at the sparge wellhead;
- Air flow rate of compressed air injected into the sparge well;
- Induced pressure at surrounding monitor points;
- VOC concentrations at the surrounding monitor points; and

DO and depth-to-water were recorded in the monitor wells at the end of each pressure setting (removal of the pressure caps during sparging would interfere with the pressure readings).

4.7 Air Sparge Test Results

At the maximum applied pressure of 5 psi, maximum induced pressure measured at the monitor wells ranged from 0.20 inches of water in well MP-4 (located approximately 230 feet from AS-1) to 2.90 inches of water at VEW-1D (located approximately 10 feet from AS-1) (Table 4). The maximum induced pressure versus distance for each of the injection pressures is plotted in Figures 8 and 9.

VOC concentrations recorded at each monitor point throughout the test are included in Appendix C and summarized in Table 5. The most significant increase in VOC concentrations was observed during the sparge test at 5 psi injection pressure and in those monitor points located closest to the sparge well. After approximately three hours of sparging, VOC concentrations increased from less than approximately 145 ppm (background) to greater than 2,500 ppm in wells VEW-1D and MP-1, located 10 and 14 feet from AS-1, respectively. Significant increases in VOC concentrations were also observed in wells RW-2 (from 193 to 855 ppm) and MP-4 (from 16 to 760 ppm), located 27 and 230 feet from AS-1, respectively.

Fluid levels and DO concentrations in water were measured in those wells screened across the water table prior to pilot testing at each sparge pressure. An increase in the DO concentration is indicative of aeration during the sparge test, which in turn indicates the transport of injected air through the aquifer. The data indicate a significant increase in the DO concentration in the sparge well (AS-1) after approximately three hours of sparging, from background concentrations of 0.2 ppm to maximum concentrations of approximately 4.2 ppm at the end of the test. Because SPH was present in all other monitoring points, DO measurements could not be obtained in these wells.

An increase in the groundwater elevation as a result of sparging (i.e., water-table mounding) was detected in wells RW-2, P-2, MW-4, and MP-4. The maximum difference (pre-test minus post-test values) in depth-to-water values (uncorrected for SPH) ranged from 0.05 feet in MP-4 (located 230 feet from AS-1) to 0.16 feet in MW-4 (located 47 feet from AS-1).

4.8 Combination Air Sparge/Soil Vent Test Protocol

The last phase of pilot testing consisted of a combined air sparge/soil vent test conducted on wells AS-1 and VEW-1D. The objective of the combination test was to ensure that a net vacuum could be established across the site under maximum operating conditions so that all sparge vapors were contained. The combination test was run at 5 psi pressure and 17 - 19 inches of water vacuum, which were the maximum sparging and venting levels recorded during the individual sparge and vent tests, respectively.

The same parameters measured above for the individual vent and sparge tests were collected periodically during the combination test. An effluent air sample was collected at the end (approximately 2.5 hours) of the combination test. The sample was collected in 1-liter Tedlar bags from the sampling port located on the vacuum blower discharge stack. The sample was shipped at ambient air temperature under full Chain-of-Custody to Coast-to-Coast Analytical Services, Inc. in Camarillo, California for analysis of total non-methane hydrocarbons and volatile organics in accordance with EPA method TO-14 and for fixed gases and methane per method GC/TCD.

4.9 Combination Air Sparge/Soil Vent Test Results

The final test involved simultaneous operation of both the vent and sparge pilot systems. Monitoring results for the combined test are included in Appendix C and induced pressure/vacuum responses are summarized in Table 6. Readings taken during the corresponding vent only and sparge only tests are also presented in Table 6 for comparison.

During the combined test at 18 inches of water vacuum and 5 psi, net negative (vacuum) readings were observed in all monitor points at the site, indicating that sparge vapors were being contained by the vent system (Table 6).

PID readings at the monitor points during the combined test were substantially reduced as compared to PID readings measured under sparging conditions alone, indicating that the vacuum system was collecting the sparged vapors. After approximately 125 minutes of the combined test, PID readings at the monitor points ranged from 0 to 240 ppm, as compared to 1.3 to greater than 2,500 ppm obtained during the sparge only test at 5 psi after 185 minutes (Appendix C).

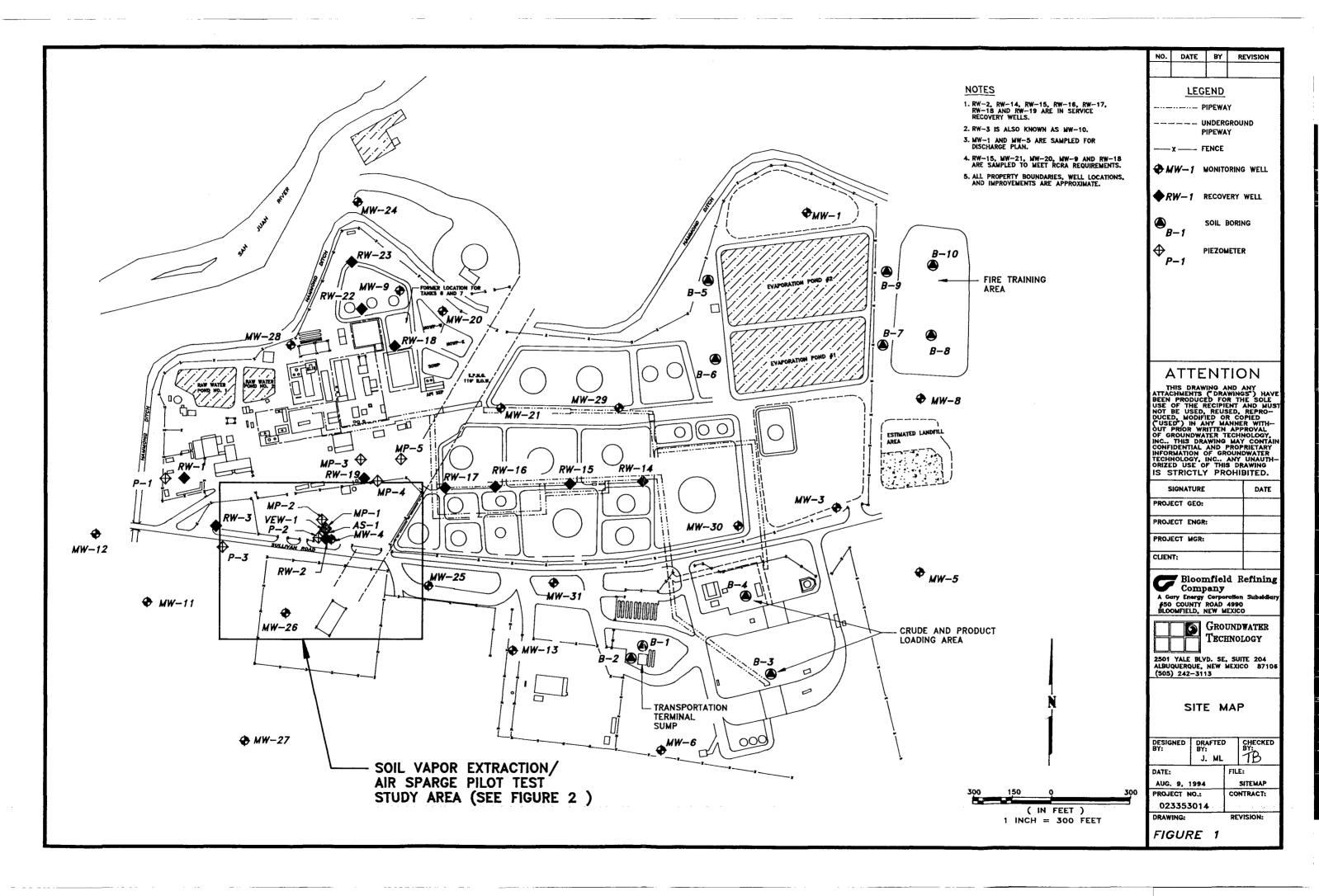
Air sample analytical data collected after 145 minutes of the combined test at 5 psi sparge pressure and 22 inches of water vacuum indicate that benzene concentrations were 460 mg/m³ in the air effluent, toluene concentrations were 170 mg/m³, 140 mg/m³ ethylbenzene, 1,100 mg/m³ xylenes, and total fuel concentrations were 13,000 mg/m³. A summary of air sample analytical data obtained during the combined test from well VEW-1D is provided in Table 3, and Laboratory Certificates of Analysis, Chain-of-Custody documentation, and QA/QC packages are included in Appendix D.

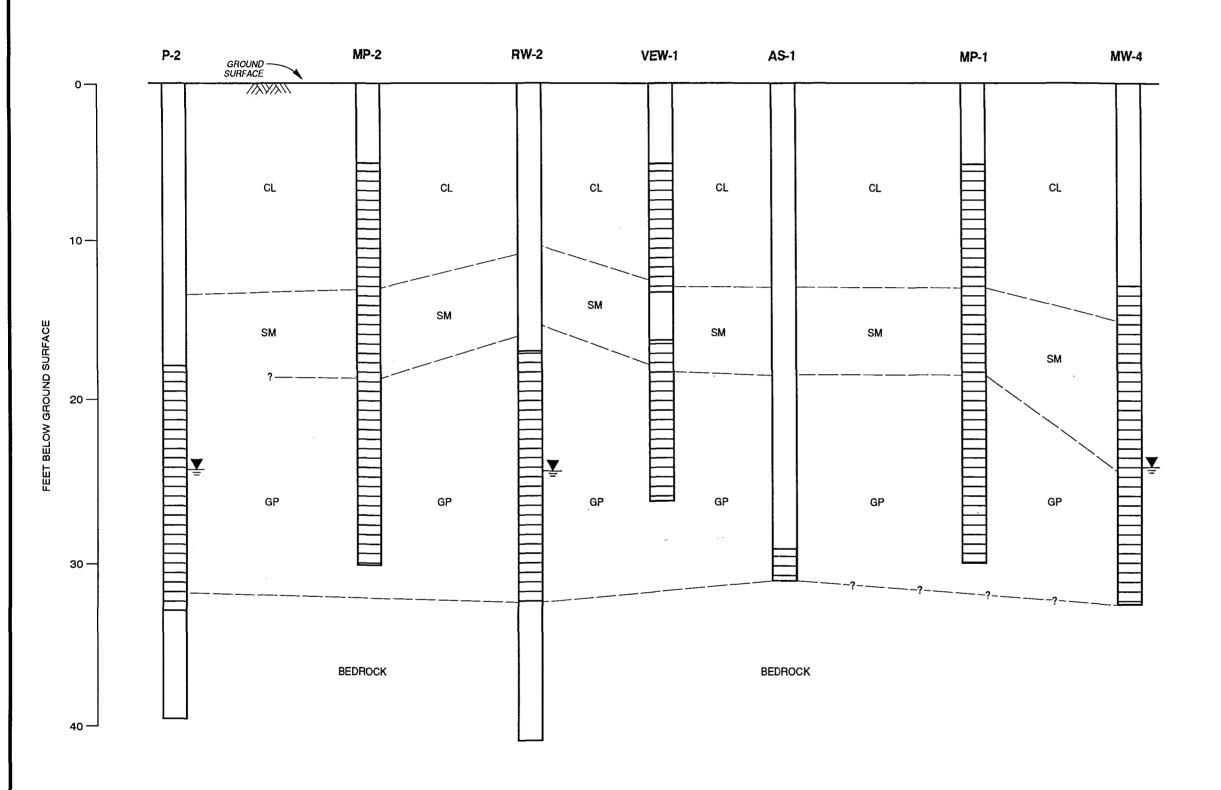
4.10 Hydrocarbon Mass Extraction Rates

Based on the air effluent analytical results from vent wells VEW-1S and VEW-1D, hydrocarbon mass extraction rates were calculated for BTEX and total fuel (non-methane hydrocarbons). Mass extraction rates while venting only on the shallow zone (5 to 13 feet below grade) at an air flow rate of 115 scfm were 9.5×10^{-4} pounds per hour (lb/hr) benzene, 1.72×10^{-4} lb/hr toluene, and 0.20 lb/hr total fuel. Mass extraction rates while venting only on the deep zone (16 to 26 feet below grade) at an air flow rate of 131 scfm were 0.19 lb/hr benzene, 0.008 lb/hr toluene, and 5.4 lb/hr total fuel. Mass extraction rates while venting from the deep zone at an air flow rate of 112 scfm and sparging at 5 psi were 0.19 lb/hr benzene, 0.07 lb/hr toluene, and 5.5 lb/hr total fuel. A summary of the hydrocarbon mass extraction rates is presented in Table 7 and mass extraction rate calculations are provided in Appendix G.

4.11 Pilot Testing Conclusions

Based on the results of the pilot tests, the following conclusions are made:

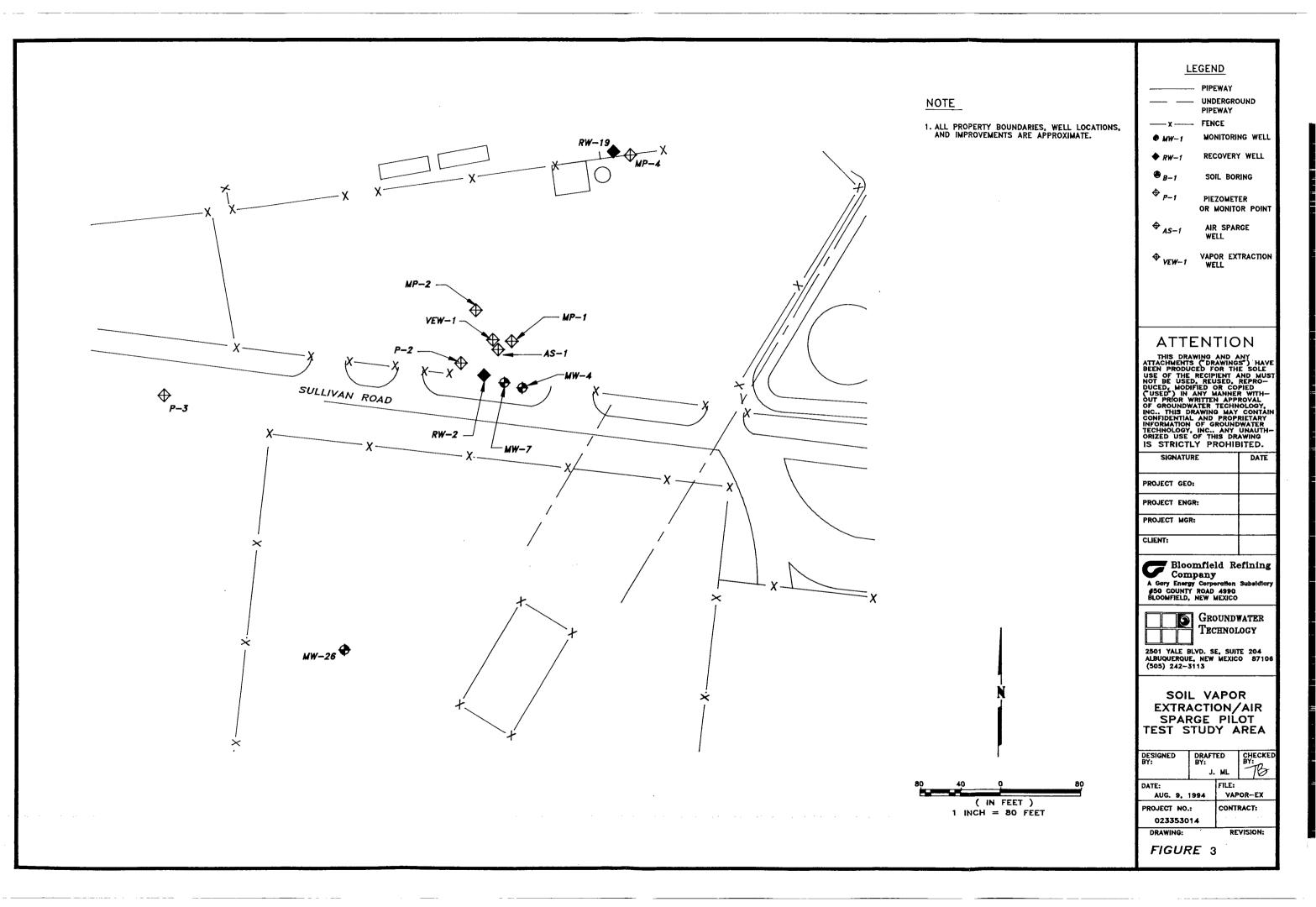

- Induced vacuum as a result of venting on the shallow zone (5 to 13 feet below grade) at the site was measured in wells up to 57 feet away from the vent well. At the maximum applied vacuum of 42 inches of water column, induced vacuum response was low (less than 0.19 inches water column), reflecting the low permeability sediments (clay) characteristic of this zone. Calculated *effective* radii of influence for the shallow zone ranged from 2 feet (for removal of diesel products) to 36 feet for removal of gasoline (xylene/ethylbenzene) products.
- Induced vacuum response measured while venting on the deep zone (16 to 26 feet below grade) at a maximum applied vacuum of 21 inches water column ranged from 1.9 to 4.0 inches of water at distances of 19 to 57 feet from the vent well.

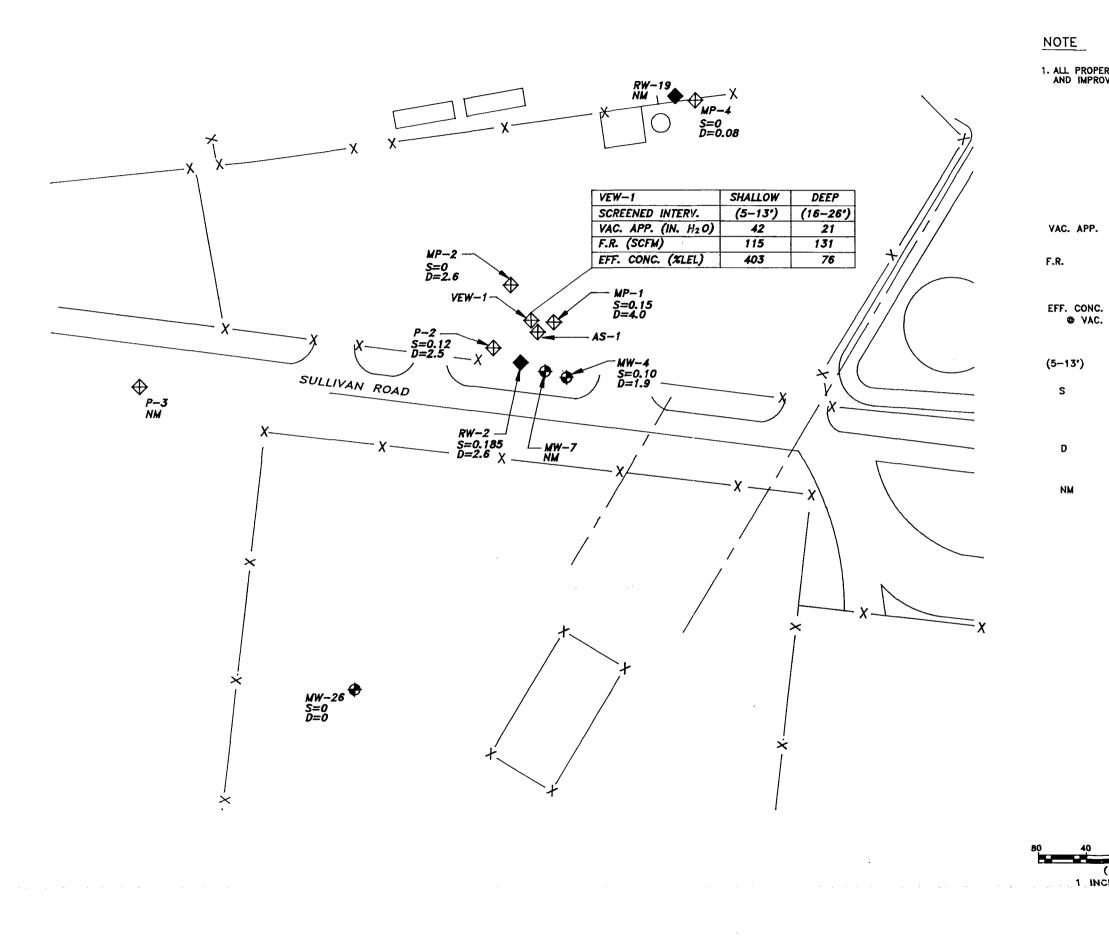

Extrapolation of the observed data indicate that significant response (greater than 1% of the applied vacuum) would occur as far away as 175 feet from the vent well. Greater response to venting in the deep zone is probably attributable to the high permeability sands and gravels occurring at this depth. Calculated *effective* radii of influence for the deep zone ranged from 3 feet (for diesel) to 84 feet for removal of gasoline components.

- Aquifer sparging effectiveness was evaluated based on observed induced pressure and VOC concentrations while sparging at applied pressures of 3 to 5 psi. A conservative value of 50 feet was selected as the effective radius of influence for the sparge test, based on the observed pressure responses.
- Based on the results of the combined pilot test, a net negative vacuum was observed in all monitor points while venting at near maximum vacuum (18 inches water column) and sparging at approximately 120% (5 psi) above breakthrough pressure. This indicates that any vapors generated as a result of sparging can be captured and contained by the vacuum system. For the combined test, vacuum measured in the monitor points was generally reduced by more than one-half (when compared to the vacuum measured in these same points while venting only) as a result of sparge pressure, further confirming the effectiveness of sparging at the site.
- Hydrocarbon mass removal rates ranged from 0.20 lb/hr total fuel for the shallow zone to 5.5 lb/hr total fuel while venting and sparging on the deep zone. Elevated concentrations of methane ranging from 18 to 68% were also detected in the vented effluent and oxygen levels ranged from 4.3 to 18%.

WEST

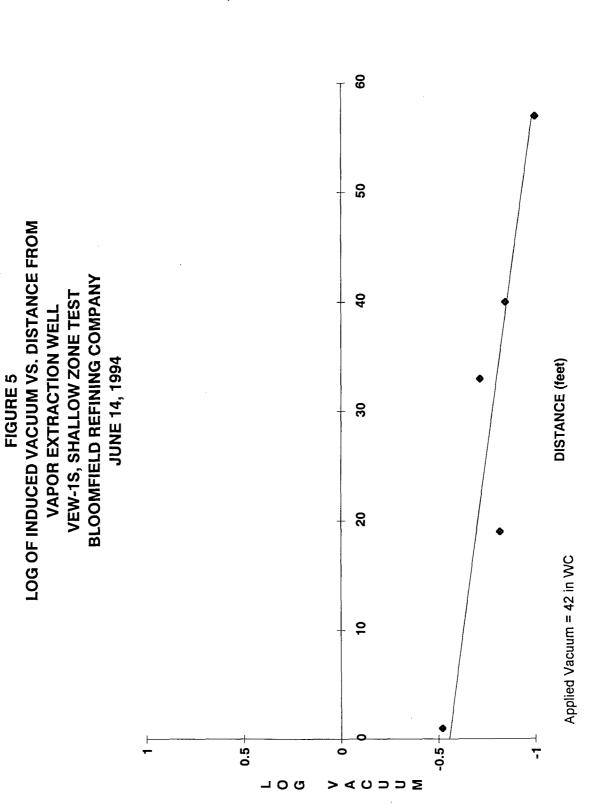
EAST

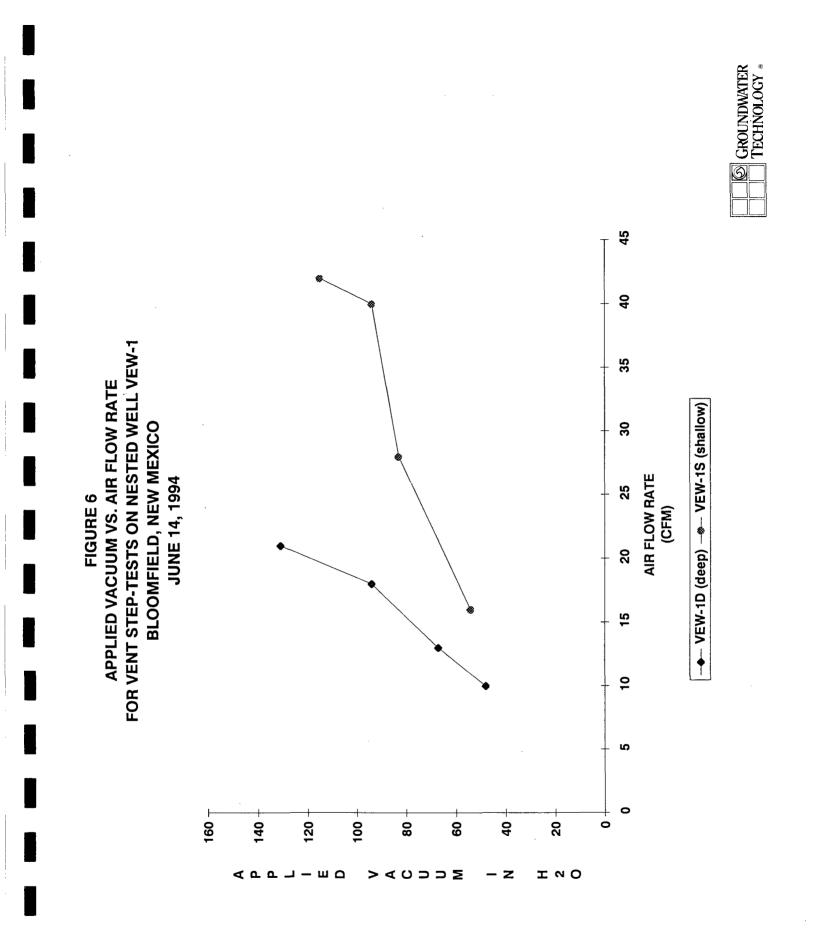

LEGEND


GENERALIZED GEOLOGIC CROSS-SECTION SHOWING							
NO. 50 COUNTY ROAD 4990 PROJECT NO.: 023353014 LOCATION: BLOOMFIELD, N.M.							
BLOOMFIELD REFINING COMPANY /							
NOTE: ALL WELLS PROJECTED INTO LINE OF SECTION.							
	HORIZONTAL SCALE: 1*~ 6'						
	VERTICAL SCALE: 1" = 60'						
BEDROCK	NACIMIENTO FORMATION (CARBONACEOUS MUDSTONE WITH INTERBEDDED SANDSTONE)						
GP	GRAVEL AND COBBLES WITH SOME FINES						
SM	FINE, POORLY-GRADED SILTY SAND						
CL	BROWN SILTY CLAY						
¥	DEPTH TO GROUNDWATER AUGUST 2, 1994						
	SCREENED INTERVAL OF MONITOR WELL						
MW-4	WELL ID						

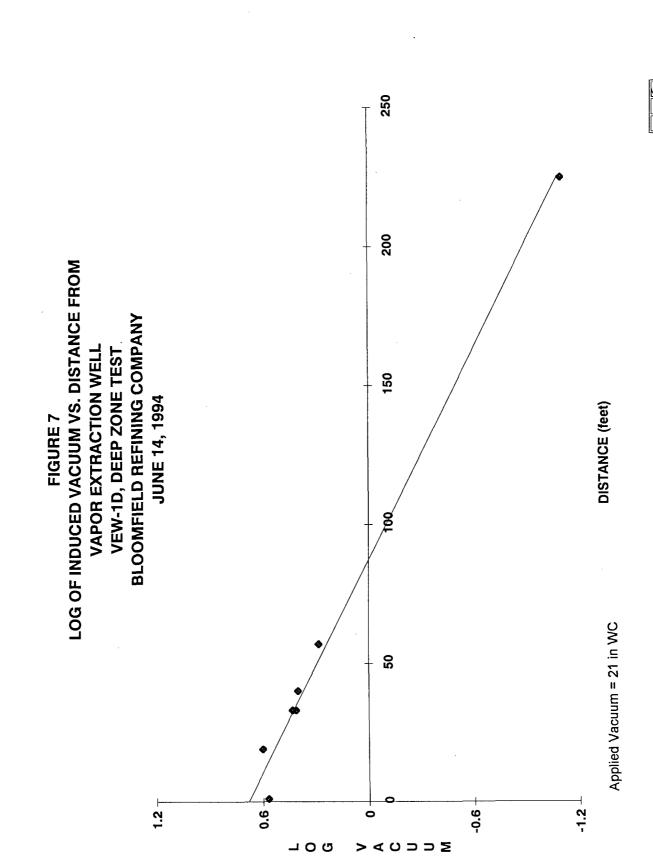
LOCATIONS OF SCREENED INTERVALS AT SOIL VENT PILOT TEST WELLS
 DRAWN BY:
 JU
 DATE: 8/10/94
 CHECKED BY:
 TB
 DATE: 5/11/94

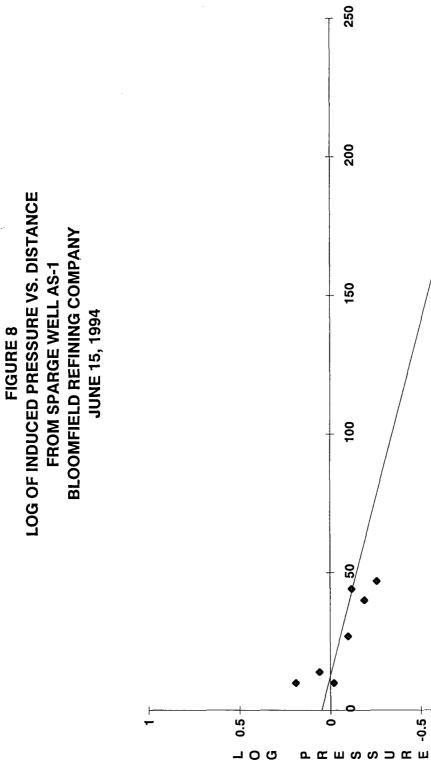
 FOLDER:
 CHV/Alamogordo FILE:
 APPROVED BY:
 DATE: 5/11/94
 GROUNDWATER FIGURE 2


TECHNOLOGY



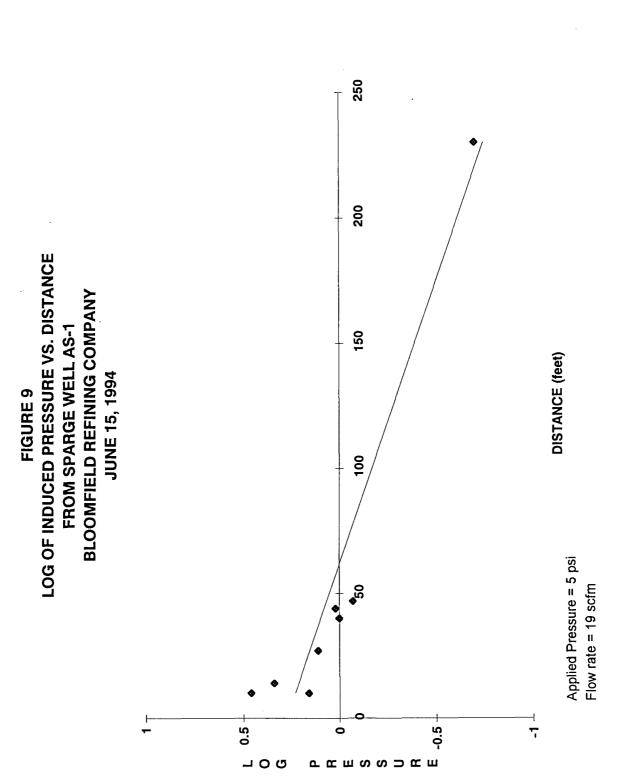
•


	<u>LEGEND</u>		
	PIPEWAY		
	UNDERGROUND PIPEWAY		
RTY BOUNDARIES, WELL LOCATIONS, VEMENTS ARE APPROXIMATE.	x FENCE		
	♦ MW-1 MONITORING WELL		
	● _{B-1} SOIL BORING		
VACUUM APPLIED (IN. H ₂ 0)			
AIR FLOW RATE AT INDICATED VACUUM (SCFM)	♦ VAPOR EXTRACTION WELL		
EFFLUENT VAPOR CONCENTRATION AT INDICATED VACUUM (% LEL) SCREENED INTERVAL OF WELL SHALLOW ZONE TEST MAXIMUM INDUCED VACUUM READING	ATTENTION THIS DRAWING AND ANY ATTACHMENTS (DRAWINGS') HAVE BEEN PRODUCED FOR THE SOLE USE OF THE RECIPIENT AND MUST NOT BE USED, RECIPIENT AND MUST DUCED, MODIFIED OR COPIED (USED') IN ANY MANNER WITH- OUT PRIOR WRITTEN APPROVAL OF GROUNDWATER TECHNOLOGY, INC THIS DRAWING MAY CONTAIN CONFIDENTIAL AND PROPRIETARY INFORMATION OF GROUNDWATER TECHNOLOGY, UNC. ANY UNAUTH-		
(IN H ₂ O) DEEP ZONE TEST MAXIMUM INDUCED VACUUM READING	INFORMATION OF GROUNDWATER TECHNOLOGY, INC ANY UNAUTH- ORIZED USE OF THIS DRAWING IS STRICTLY PROHIBITED. SIGNATURE DATE		
NOT MEASURED	PROJECT GEO:		
	PROJECT ENGR:		
	CLIENT:		
	Bloomfield Refining Company A Gary Energy Corporation Subsidiary #50 COUNTY ROAD 4990 BLOOMFIELD, NEW MEXICO		
	CROUNDWATER BCHNOLOGY 2501 YALE BLVD. SE, SUITE 204 ALBUQUERQUE, NEW MEXICO 87108 (505) 242-3113		
Ń I	FIELD RESULTS FOR SOIL VENT PILOT TESTS ON WELL VEW-1		
i 0 80	DESIGNED DRAFTED CHECKED BY: J. ML TB		
(IN FEET)	DATE: AUG. 9, 1994 VEW-1 PROJECT NO.: CONTRACT:		
CH = 80 FEET	023353014		
	DRAWING: REVISION: FIGURE 4		


GROUNDWATER

11 11 2 . 1

GROUNDWATER TECHNOLOGY



- 0 5

DISTANCE (feet) Applied Pressure = 3 psi Flow rate = 11 scfm

Ť

GROUNDWATER TECHNOLOGY .

GROUNDWATER

MAXIMUM INDUCED VACUUM RESPONSE SOIL VENT PILOT TEST ON VEW-1S (SHALLOW ZONE) BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 14, 1994

MONITOR	DISTANCE	APPLIED VACUUM (in. H₂O)			
POINT	FROM VEW-1S (FT.)	42	40	28	16
VEW-1D	0	0.30	0.20	0.15	0.05
MP-1	19	0.15	0.10	0.05	0.025
MP-2	33	0.0	0.0	+0.05(1)	+0.15
RW-2	33	0.19	0.13	0.09	0.015
P-2	40	0.14	0.10	0.075	0.0 ·
MW-4	57	0.10	0.05	0.025	0.0
MP-4	225	+0.10	NM ⁽²⁾	NM	NM
MW-26	400	0	NM	NM	NM

(Induced vacuum response reported in inches of water)

(1) (+) Indicates that a positive (pressure) reading was detected in well as opposed to a negative (vacuum) reading.

(2) NM = Not Measured.

0 GROUNDWATER TECHNOLOGY ®

MAXIMUM INDUCED VACUUM RESPONSE SOIL VENT PILOT TEST ON VEW-1D (DEEP ZONE) BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 14, 1994

MONITOR	DISTANCE	APPLIED VACUUM (in. H ₂ O)			
POINT	FROM VEW-1D (FT.)	21	18	13	10
VEW-1S	0	3.7	3.4	2.5	1.7
MP-1	19	4.0	3.4	2.6	1.9
MP-2	33	2.6	2.4	1.7	1.2
RW-2	33	2.7	2.4	1.8	1.2
P-2	40	2.5	2.1	1.6	1.1
MW-4	57	1.9	1.7	1.2	1.0
MP-4	225	0.08	0.05	0.05	0.035
MW-26	400	0.0	NM ⁽¹⁾	NM	NM
MW-25	450	0.0	NM	NM	NM

(Induced vacuum response reported in inches of water)

(1) NM = Not measured

GROUNDWATER TECHNOLOGY *

1 1 1 1 1 1 1 1

ł

TABLE 3 SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS⁽¹⁾ BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 14 AND 16, 1994

			,
METHANE (%)	18	68	28
OXYGEN (%)	18	4.3	14
CARBON DIOXIDE (%)	0.3	2.3	0.4
EDB (mg/m ³)	QN	QN	QN
EDC (mg/m ³)	ND ⁽³⁾	QN	QN
TOTAL FUEL (NON-METHANE HYDROCARBONS) (mg/m ³)	460	11,000	13,000
TOTAL XYLENES (mg/m³)	3.2	280	1,100
ETHYL- BENZENE (mg/m³)	0.53	57	140
TOLUENE (mg/m³)	0.4	16	170
BENZENE (mg/m³)	2.2	380	460
SAMPLE ID ^{/2}	VEW-1S Effluent	VEW-1D EFF	VEW-1D V/S

Air samples analyzed in accordance with methods EPA TO-14 and GC/TCD.

Sample VEW-1S Effluent collected during vent only pilot test on shallow zone (5-13'); sample VEW-1D EFF collected during vent only pilot test on deep zone (16-26'); and VEW-1D V/S collected during combined air sparge/soil vent pilot test. ର

(3) ND = Not detected at or above the practical quantification limit (PQL).

MAXIMUM INDUCED PRESSURE RESPONSE AIR SPARGE PILOT TEST BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 15, 1994

MONITOR	DISTANCE	APPLIED SPARGING PRESSURE		
POINT	FROM AS-1 (FT.)	3 PSI	5 PSI	
VEW-1S	10	0.95	1.45	
VEW-1D	10	1.55	2.90	
MP-1	14	1.15	2.20	
RW-2	27	0.80	1.30	
P-2	40	0.65	1.0	
MP-2	44	0.75	1.05	
MW-4	47	0.55	0.85	
MP-4	230	0.15	0.20	

(Induced pressure response reported in inches of water)

BRC/Pilottest.rpt

11 11 1.14

MAXIMUM CHANGE IN VOC CONCENTRATIONS⁽¹⁾ AIR SPARGE PILOT TEST BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 15, 1994

MONITOR	DISTANCE	APPLIED SPARGING PRESSURE		
POINT	FROM AS-1 (FT.)	3 PSI	5 PSI	
VEW-1S	10	1	1.4	
VEW-1D	10	1,476	>2,355	
MP-1	14	168	>2,443	
RW-2	27	157	662	
P-2	40	31	71	
MP-2	44	1.7	1.3	
MW-4	47	-50	-112	
MP-4	230	5	744	

(VOC concentrations reported in ppm)

(1)

Calculated by subtracting the background concentrations measured in each well before start-up from the maximum concentration observed in each well for each applied sparging pressure.

MAXIMUM INDUCED PRESSURE/VACUUM RESPONSE COMBINED AIR SPARGE/SOIL VENT PILOT TEST ON WELLS VEW-1D AND AS-1 BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

JUNE 16, 1994

MONITOR POINT	AVERAGE DISTANCE (FEET)	VACUUM ONLY (18" H ₂ O)	SPARGE ONLY (5 PSI)	COMBINED TEST (18" H ₂ O & 5 PSI)		
VEW-1S	10 (from AS-1)	-3.4	+1.45	-1.70		
VEW-1D	10 (from AS-1)	NA ⁽¹⁾	+2.90	NA		
MP-1	16	-3.4	+2.20	-1.20		
RW-2	30	-2.4	+1.30	-0.75		
P-2	40	-2.1	+1.0	-0.90		
MP-2	39	-2.4	+1.05	-1.25		
MW-4	52	-1.7	+0.85	-0.50		
MP-4	228	-0.05	+0.20	-0.05		

(Induced pressure/vacuum responses reported in inches of water)

(1) NA = Not applicable

GROUNDWATER TECHNOLOGY •

1.1.1

Ŷ,

11 1

TABLE 7

SUMMARY OF HYDROCARBON MASS EXTRACTION RATES⁽¹⁾ AIR SPARGE/SOIL VENT PILOT TESTS BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

SAMPLE ID	PILOT TEST	BENZENE (lb/hr)	TOLUENE (lb/hr)	ETHYL- BENZENE (lb/hr)	TOTAL XYLENES (lb/hr)	TOTAL FUEL (lb/hr)
VEW-1S Effluent	Soil vent only, shallow zone (5-13')	9.5 x 10 ⁻⁴	1.72 x 10 ⁻⁴	2.3 x 10 ⁻⁴	1.4 x 10 ⁻³	0.20
VEW-1D EFF	Soil vent only; deep zone (16-26')	0.19	0.008	0.03	0.14	5.4
VEW-1D V/S	Combined air sparge/soil vent	0.19	0.07	0.06	0.46	5.45

JUNE 14 AND 16, 1994

(1) Mass extraction rate calculations provided in Appendix G.

BRC/Pilottest.rpt

APPENDIX A

SUMMARY OF WELL COMPLETION INFORMATION AND MONITOR WELL INSTALLATION/LITHOLOGIC LOGS

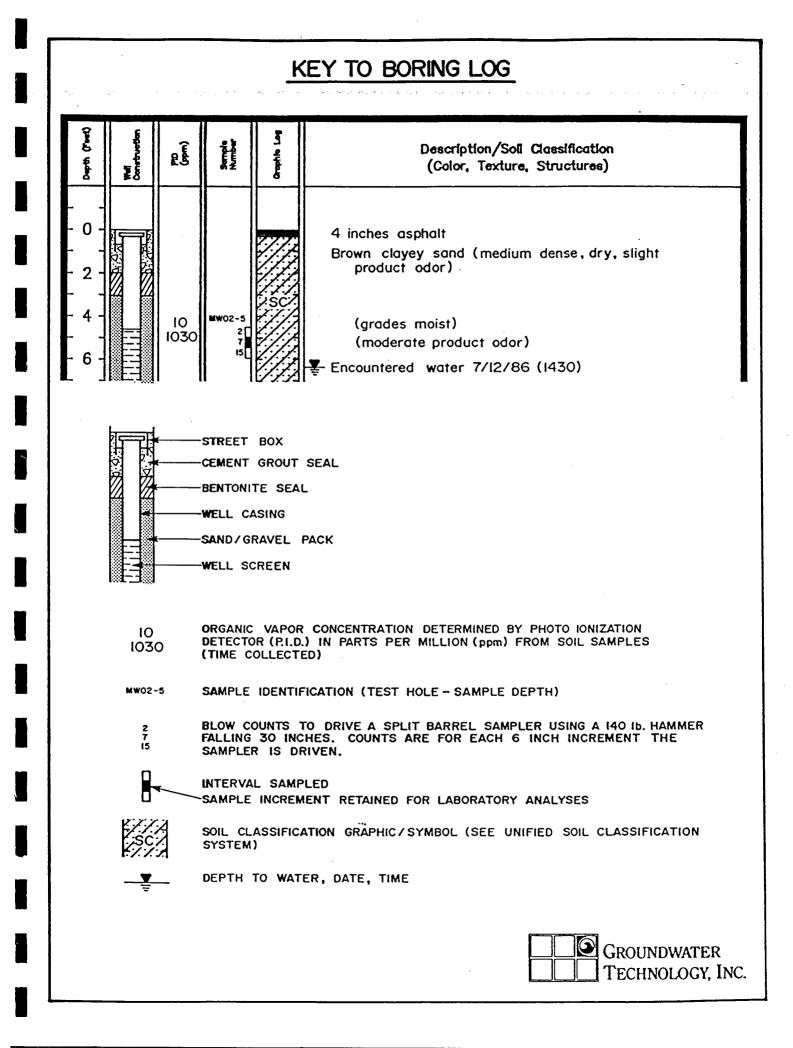
BRC/Pilottest.rpt

D.

IL a

ł

WELL CONSTRUCTION SPECIFICATIONS FOR PILOT TEST WELLS BLOOMFIELD REFINING COMPANY


Well #	Date Installed	Diameter/Material	Total Well Depth (Feet)	Screened Interval (Feet)
VEW-1	5/16/94	2" PVC (nested)	26	5-13 16-26
AS-1	5/16/94	2" PVC	31	29-31
MP-1	5/13/94	2" PVC	30	5-30
MP-2	5/16/94	2" PVC	30	5-30
MP-3	5/17/94	2" PVC	31	11-31
MP-4	5/17/94	2" PVC	32	12-32
MP-5	5/17/94	2" PVC	31	11-31

BRC/Pilottest.rpt

L

11

Drilling Log

Monitoring Point MP-1

		wner <u>Bloomfield Refining Co.</u>	See Site Map For Boring Location
		Mexico Proj. No. 023353014	
		Diameter <u>10 in.</u>	COMMENTS:
Top of Casing Wa			
Screen: Lia $2 \frac{11}{2}$	ength <u>25 /1.</u>	Type/Size <u>PVC 0.020 in.</u>	Start @ 1315 hrs.
Casing: Dia <u>2 in.</u> Le		ig/Core Drill Systems 180	
Drill Co. Layne	Nothed Air Perc	Ig/Core Drin Systems 160	
		Date _05/13/94 Permit #	
	License N		
Depth (ft.) (ft.) Completion (ppm)	Sample LU Blow Count/ X Recovery Graphic Log USCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)
		See drilling log VEW-1 for lithology	
- 6			
- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12			
- 14 -			
- 14 - 16 - 18 - 20			
- 18 -			
- 22 -			

08/16/1994 lithlog-mar93

 H

	GROUNDWATE
--	------------

l

!

į

1

Drilling Log

R. Monitoring Point MP-1

Project <u>4</u> Location	pject <u>BRC</u> Owner <u>Bloomfield Refining Co.</u> cation <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>							
Depth (ft.)	Well Completion	(mqq) DIq	Sample ID	Blow Count/	X Recovery	Graphic Log	S Class	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - - 26 -								Ψ Groundwater encountered at 25 feet on 5/13/94
- 28 -								End of boring at 30 feet (1335 hrs). Installed well screened from 5 to 30 feet on 5/13/94.
- 32								to 30 feet on 5/13/94.
- 34 - - 36 -								
- 38 - 40								
- 42 - - 44								
- 46 - - 48 -								
- 50 - 50 - 52								
- 54 - - 56 -								

1 11

08/16/1994 lithlog-mar93

101

11 1 1 1

GROUNDWATER Technology

0

. . . .

Drilling Log

Monitoring Point MP-2

Project <u>BRC</u>	(Dwner <u>Bloomfield Refining Company</u>	See Site Map For Boring Location	
		<u>Mexico</u> Proj. No. <u>023353014</u>		
		<u>ft.</u> Diameter <u>10 in.</u>	COMMENTS:	
		ft. Static		
		Type/Size <u>PVC .020 in.</u>	Start at 1615 hrs.	
	_ Length <u>5 ft.</u>	Type <u>PVC</u>		
	Method <u>Air Per</u>	Rig/Core Drill Systems 180		
		Date _05/16/94 Permit #		
Checked By	M License			
Depth (ft.) Completion PID (DPM)	Sample ID Blow Count/ X Recovery Graphic Log USCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)	
2				
		See well VEW-1 for lithology		
- 4 -				
- 6 -				
- 8 -				
- 10 -				
- 12 -				
- 14 -				
- 16 -				
- 18 -				
-14 - 18 - 18 - 20 - 22 - 22 - 22 - 22 - 22 - 22 - 2				
- 22 -				
- 24		¥		

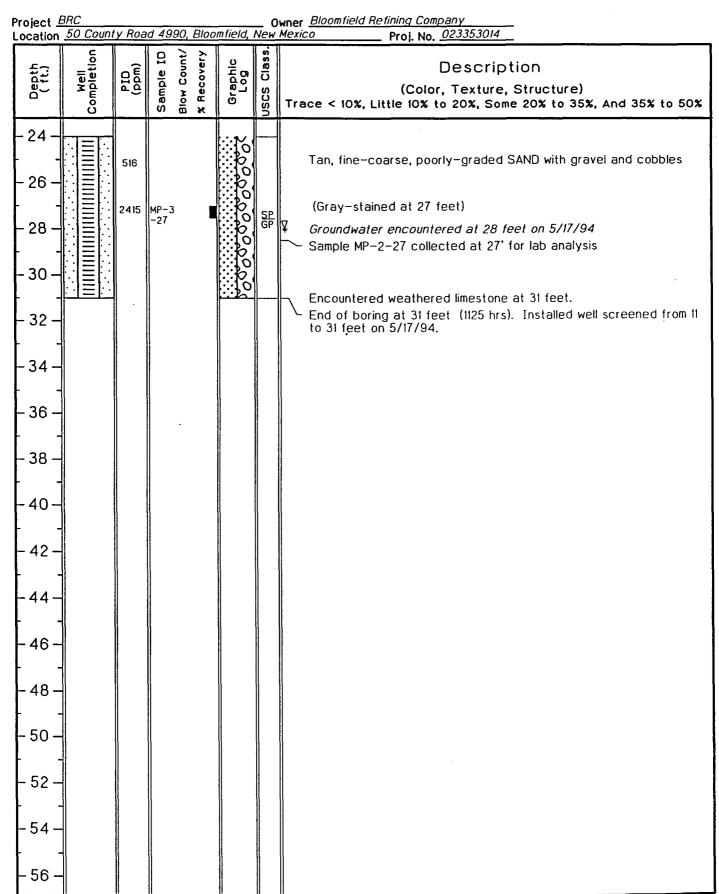
06/23/1994 lithlog-mar93

GROUNDWATER TECHNOLOGY	२
---------------------------	----------

Monitoring Point MP-2

Project 4	BRC Owner <u>Bloomfield Refining Company</u> n <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>							
Depth (ft.)	Well Completion	PID (ppm)			X Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24	N≣N							Ψ Groundwater encountered at 24 feet on 5/16/94
- 26								
- 28 -								
- 30 -								End of boring at 30 feet (1640 hrs). Installed well screened from 5 to 30 feet on 5/16/94.
- 32 -								
- 34								
- 36 -								
- 38 -								
- 40								
- 42 -								
- 44 -								
- 46								
- 48 -								
- 50 -								
- 52 -								
- 54 -								
- 56 -	-							

-		5					Drilling Log				
				WATER LOGY			Moni	toring Point MP-3			
1	Project <u>E</u>	BRC					wner <u>Bloomfield Refining Company</u>	See Site Map For Boring Location			
				<u>Mexico</u> Proj. No. <u>023353014</u> Diameter <u>10 in.</u>	· · · · · · · · · · · · · · · · · · ·						
	Top of Ca	asing		Water Level	t Static	COMMENTS:					
	Screen: [Dia <u>2 in.</u>		Length 20	ft.		Type/Size <u>PVC .020 in.</u>	Start at 0950 hrs.			
.		Casing: Dia <u>2 in.</u> Length <u>11 ft.</u> Type <u>PVC</u> Fill Material <u>10/20 Co. Silica</u> Rig/Core <u>Drill Systems 180</u>									
	Drill Co. 🛓	ayne		Meth	od <u>Air</u>	Perc	ussion	, ,			
	Driller <u>Gabby Rodriguez</u> Log By <u>Jerry May</u> Date <u>05/17/94</u> Permit # Checked ByTAM License No										
	€G	stion	∩Ê	Sample ID Blow Count/ X Recovery	ņ	Class.	Descript	ion			
	Depth (ft.)	Well Completior	OId DId	M Dia	Graphic Log		(Color, Texture, S	Structure)			
		ပိ		S B S	σ	n2C	(Color, Texture, S) Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%			
	2 -										
-	- 0 -				1.11		Tan, fine, poorly-graded silty SANE) (dry)			
_	- 2 -										
						SM					
	- 4 -					JM					
			62				(Same as above)				
	- 6 -										
	- 8 -										
	Γ° ٦										
-						SM	T				
	- 10 -		70			ŜĊ	Tan, fine, poorly-graded silty/clay	ey Sand (moist)			
	- 12 -	Ξ.									
1		.: ∃ :									
	- 14 -										
							Brown/gray~stained, silty CLAY(m	oist low-modium plasticity)			
	- 16 -	Ξ	238			CL	Diownygray-stanied, silty CLAT (M	oist, iow-meatum plasticity)			
	- 18										
· 💼 -											
	- 20 -		61				Tan, fine-coarse, poorly-graded S	AND (moist)			
_			01			SP	g, coo c				
	- 22 -						(Same with gravel and cobbles at 3	22 +/- feet)			
					6	SP GP					
	- 24 -				1::10						
	L	1	1		1						


hi li

1

- ii

Monitoring Point MP-3

GROUNDWATER TECHNOLOGY

ļ.

Drilling Log

Monitoring Point MP-4

		Owner Bloomfield Refining Company	See Site Map For Boring Location
		New Mexico Proj. No. 023353014	
		<u>32 ft.</u> Diameter <u>10 in.</u>	- COMMENTS:
Top of Casing	Water Level Initia	1 <u>28 ft.</u> Static	
		Type/Size <u>PVC 0.020 in.</u>	Start at 0845 hrs.
Casing: Dia <u>2 in.</u>	Length <u>12 ft.</u>	Type <u>PVC</u>	-
Fill Material <u>10/20 Co.</u>	Silica	Rig/Core <u>Drill Systems 180</u>	-
Drill Co. Layne			
		Y Date <u>.05/17/94</u> Permit #	
		ense No	<u> </u>
Depth (ft.) Kell Completion	(ppm) Sample ID Blow Count/ X Recovery Graphic	B B B B Color, Textur S Trace < 10%, Little 10% to 20%, St	e, Structure)
2-			
		See well MP-3 for lithology	
- 10 -			
- 12 - =			
- 14 -			
- 16 - 1			
- 18 - 1			
- 14 - - 16 - - 18 - - 20 - - 22 -			
- 22 -			
- 24	-		

Monitoring Point MP-4

Project 4	on <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>								
Depth (ft.)	Well Completion	PID (mqq)		Blow Count/ X Recovery	Graphic Log	is	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%		
- 24 -									
- 26 -									
- 28 -							♀ Groundwater encountered at 28 feet on 5/17/94		
- 30 -									
- 32 -		-		:			Encountered weathered limestone at 32 feet.		
- 34 –							End of boring at 32 feet (0910 hrs). Installed well screened from 12 to 32 feet on 5/17/94.		
 - 36									
- 38 -									
- 40 -									
- 42 -									
- 44									
- 46 -									
- 48 -									
- 50 -									
- 52 -									
-54-		- .	-						
- 56 -									

GROUNDWATER TECHNOLOGY

0

I

Drilling Log

Monitoring Point MP-5

Project <u>BRC</u>	ad 4000 Plantin	Ov	Mer <u>Bloomfield Refining Company</u>	See Site Map For Boring Location
			Mexico Proj. No. <u>023353014</u>	
			Diameter <u>10 in.</u> Static	COMMENTS:
			Static Type/Size <u>PVC 0.020 in.</u>	Start at 0720 hrs.
Casing: Dia <u>2 in.</u>				
Fill Material 10/20 Co. S	Silica	Rie	g/Core Drill Systems 180	
Drill Co. Layne				
Driller Gabby Rodriguez	Log By Jerry M	lay	Date <u>05/17/94</u> Permit #	
			0	
Depth (ft.) (ft.) Completion (DDM)		Log S Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)
2 -			· · · · · · · · · · · · · · · · · · ·	
			See well MP-3 for lithology	
			!	
- 8 -				
- 10 -				
- 16 -				
- 18 -				
-14 - 14 - 14 - 14 - 14 - 14 - 14 - 14				
- 22 -				
- 24 -	-			· .

06/23/1994 lithlog-mar93

1 1 . 11 1 . 4

Monitoring Point MP-5

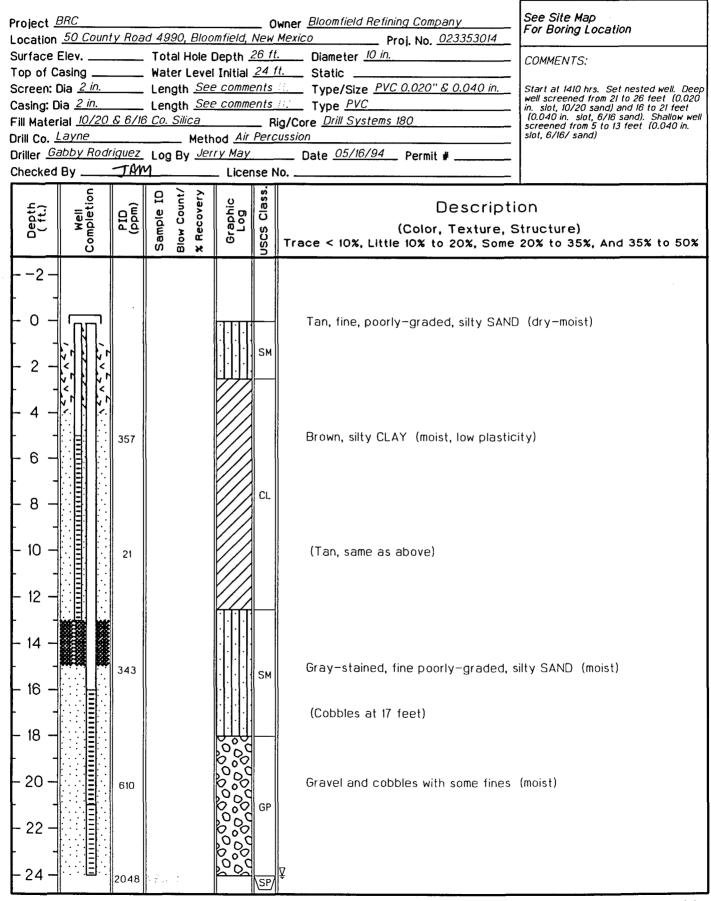
Project <u>E</u> Location	Project <u>BRC</u> Owner <u>Bloomfield Refining Company</u> Location <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>						
Depth (ft.)	Well Completion	PID (mqq)	Sample ID	Blow Count/ X Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
-24			LEBO	Blow - X Rec	Gra	nscs	
- 54 - - 56 -							-

	GROUNDWATER FECHNOLOGY
--	---------------------------

Air Sparge Well AS-1

Project <u>BRC</u>		_ 0	ner Bloomfield Refining Company	See Site Map For Boring Location
Location 50 County Roa	ad 4990, Bloomfield,	New M	Mexico Proj. No. <u>023353014</u>	
			Diameter <u>10 in.</u>	COMMENTS:
			Static	
Screen: Dia <u>2 in.</u>	. Length <u>2 ft.</u>		Type/Size <u>PVC .020 in.</u>	Start at 1200 hrs.
Casing: Dia <u>2 in.</u>	Length 29 ft.		Type <u>PVC</u>	. I
Fill Material <u>10/20 Co. S</u>	ilica	_ Ric	Type <u>PVC</u> g/Core <u>Drill Systems 180</u>	
Drill Co. Layne	Method <u>Air</u>	Percu	ussion	l
Driller Gabby Rodriguez				
Checked By	M Lice	nse N		
Depth (ft.) Completion PID (ppm)	Sample ID Blow Count/ X Recovery Graphic Log	USCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)
2 -				
		┡	(See well VEW-1 for lithology)	
- 6 - 4				
- 16 - 7				
- 18 - < < vr - < <				
- 22 - (*)				
- 24 -			Ţ	

Air Sparge Well AS-1


Project <u>L</u>	Project <u>BRC</u> Owner <u>Bloomfield Refining Company</u> Location <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>						
Depth (ft.)	Well Completion	PID (mqq)	Sample ID	Blow Count/ X Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - 26							⊊ Groundwater encountered at 24 feet on 5/16/94
- 28 - - 30 -							Encountered weathered limestone at 31 feet
- 32 - - 34 -							End of boring at 32 feet (1225 hrs). Installed well screened from 29 to 31 feet on 5/16/94.
- 36 - - 38 -							
- 40 - - 42 -							
- 44 - - 46 - - 48 -							
- 40 - - 50 - - 52 -							
- 54 -	-						

06/23/1994 lithlog-mar93

11

GROUNDWATER
TECHNOLOGY

Vapor Extraction Well VEW-1

GROUNDWATER TECHNOLOGY

Drilling Log

Vapor Extraction Well. VEW-1

	50 Count	OId (Indd)		~	Recovery		Class.	Mexico Proj. No. <u>023353014</u> Description
Depth (ft.)	well Completion	Id d	Sample ID	Blow Count	X Rec(Graphic Log	uscs ((Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - - 26 - - 28 - - 30 -		2048	VEW- -24	-1			SP GM	Gray-stained, fine-coarse, poorly-graded SAND with gravel and cobbles (moist-wet) Groundwater encountered at 24 feet on 5/16/94 Sample VEW-1-24 collected at 24' End of boring at 26 feet (1500 hrs). Installed nested wells screened from 5 to 13 feet and from 16 to 26 feet (see comments) on 5/16/94.
- 32 - - 34 -								
- 36 –								
- 38 -								
- 40 -								
- 42 -								
- 44								
- 46 -								
- 48 -								
- 50								
- 52 -								
- 54								
- 56 –								

06/23/1994 lithlog-mar93

11

ļ

l i ii

APPENDIX B

SOIL SAMPLE CERTIFICATES OF ANALYSIS CHAIN-OF-CUSTODY DOCUMENTATION AND QA/QC DATA, MAY 16 - 17, 1994

BRC/Pilottest.rpt

CASE NARRATIVE

On May 20, 1994, two samples were received for analysis at Inter-Mountain Laboratories, Bozeman, Montana. The chain of custody form requested analysis for volatile organic compounds by method 8240. Client name/Project name was listed as Groundwater Technology / Bloomfield Refinery.

Detectable amounts of targeted compounds were present in the samples.

Limits of detection for each instrument/analysis are determined by sample matrix effects, instrument performance under standard conditions, and dilution requirements to maintain chromatography output within calibration ranges.

Wynn Sudtelgte **IML-Bozeman**

0615gt

.

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	VEW-1-24	Date Reported:	06/14/94
Project ID:	Bloomfield Refinery	Date Sampled:	05/16/94
Laboratory ID:	B944823	Date Received:	05/20/94
Sample Matrix:	Soil	Date Extracted:	05/26/94
Preservation:	Cool	Date Analyzed:	05/27/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
······································			
1,1,1-Trichloroethane	ND	0.2	mg/kg
1,1,2,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ND	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
2-Butanone (MEK)	ND	1.5	mg/kg
2-Hexanone	ND	0.2	mg/kg
4-Methyl-2-pentanone (MIBK)	ND	0.2	mg/kg
Acetone	ND	1	mg/kg
Benzene	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg
Carbon Disulfide	ND	0.2	mg/kg
Carbon Tetrachloride	ND	0.2	mg/kg
Chlorobenzene	ND	0.2	mg/kg
Chloroethane	ND	0.2	mg/kg
Chloroform	ND	0.2	mg/kg
Chloromethane	ND	0.2	mg/kg
cis-1,3-Dichloropropene	ND	0.2	mg/kg
Dibromochloromethane	ND	0.2	mg/kg
Ethylbenzene	ND	0.2	mg/kg
m,p-Xylene	0.3	0.2	mg/kg
Methylene chloride	ND	1	mg/kg
o-Xylene	0.2 J	0.2	mg/kg
Styrene	ND	0.2	mg/kg

1.5

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	VEW-1-24	Date Reported:	06/14/94
Laboratory ID:	B944823	Date Sampled:	05/16/94
Sample Matrix:	Soil	Date Analyzed:	05/27/94

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	0.2	mg/kg
Toluene	ND	0.2	mg/kg
trans-1,2-Dichloroethene	ND	0.2	mg/kg
trans-1,3-Dichloropropene	ND	0.2	mg/kg
Trichloroethene (TCE)	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

7

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	VEW-1-24	Date Reported:	06/14/94
Laboratory ID:	8944823	Date Sampled:	05/16/94
Sample Matrix:	Soil	Date Analyzed:	05/27/94

Tentative Identification	Retention Time (min)	Concentration	Units
Unknown Hydrocarbon	18.94	20	mg/kg
Unknown Substituted Benzene	19.42	10	mg/kg
Unknown Hydrocarbon	19.82	10	mg/kg
Unknown Hydrocarbon	20.78	30	mg/kg
Unknown Hydrocarbon	22.44	10	mg/kg

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

5011
QC Limits
70 - 121
81 - 117
74 - 121

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

agly Analyst

Reviewed

0.....

Inter Mountain Laboratories, Inc.

la la

11

1

1160 Research Drive Bozeman, Montana 59715

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MP-3-27	Date Reported:	06/14/94
Project ID:	Bloomfield Refinery	Date Sampled:	05/17/94
Laboratory ID:	B944824	Date Received:	05/20/94
Sample Matrix:	Soil	Date Extracted:	05/26/94
Preservation:	Cool	Date Analyzed:	05/27/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	0.2	mg/kg
1,1,2,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ND	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
2-Butanone (MEK)	ND	1.5	mg/kg
2-Hexanone	ND	0.2	mg/kg
4-Methyl-2-pentanone (MIBK)	ND	0.2	mg/kg
Acetone	ND	1	mg/kg
Benzene	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg
Carbon Disulfide	ND	0.2	mg/kg
Carbon Tetrachloride	ND	0.2	mg/kg
Chlorobenzene	ND	0.2	mg/kg
Chloroethane	ND	0.2	mg/kg
Chloroform	ND	0.2	mg/kg
Chloromethane	ND	0.2	mg/kg
cis-1,3-Dichloropropene	ND	0.2	mg/kg
Dibromochloromethane	ND	0.2	mg/kg
Ethylbenzene	ND	0.2	mg/kg
m,p-Xylene	1.2	0.2	mg/kg
Methylene chloride	ND	1	mg/kg
o-Xylene	0.2 J	0.2	mg/kg
Styrene	ND	0.2	mg/kg

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MP-3-27	Date Reported:	06/14/94
Laboratory ID:	B944824	Date Sampled:	05/17/94
Sample Matrix:	Soil	Date Analyzed:	05/27/94

	Analytical Result	Detection Limit	Units
Parameter			
Tetrachloroethene (PCE)	ND	0.2	mg/kg
Foluene	ND	0.2	mg/kg
rans-1,2-Dichloroethene	ND	0.2	mg/kg
rans-1,3-Dichloropropene	ND	0.2	mg/kg
Frichloroethene (TCE)	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 **TENTATIVELY IDENTIFIED COMPOUNDS**

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MP-3-27	Date Reported:	06/14/94
Laboratory ID:	B944824	Date Sampled:	05/17/94
Sample Matrix:	Soil	Date Analyzed:	05/27/94

Tentative	Retention		Units
Identification	Time (min)	Concentration	
Unknown Hydrocarbon	18.94	20	mg/kg
Unknown Substituted Benzene	19.43	10	mg/kg
Unknown Hydrocarbon	19.80	10	mg/kg
Unknown Hydrocarbon	20.79	20	mg/kg
Unknown Hydrocarbon	22.45	10	mg/kg

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

	Soil
%	QC Limits
101	70 - 121
104	81 - 117
110	74 - 121
-	101 104

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Inter Mountain Laboratories, Inc.

.

1 . .

il A

1160 Research Drive Bozeman, Montana 59715

QUALITY ASSURANCE / QUALITY CONTROL

1160 Research Drive Bozeman, Montana 59715

11 3 33

Ξ.

LAB QA/QC VOLATILE COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed: Laboratory ID: Sample Matrix:

ł

i.

05/27/94 2MB-147A Water

Parameter	Analytical Result	Detection Limit	Units
			01113
Chloromethane	ND	5	ug/L
Bromomethane	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L
Chloroethane	ND	5	ug/L
Methylene Chloride	ND	20	ug/L
Acetone	ND	20	ug/L
Carbon Disulfide	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethene	ND	5	ug/L
Chloroform	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
2-Butanone	ND	20	ug/L
1,1,1-Trichloroethane	ND	5	ug/L
Cyclohexane	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
1,4-Dioxane	ND	500	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
Benzene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Bromoform	ND	5	ug/L
4-Methyl-2-pentanone	ND	5	ug/L
2-Hexanone	ND	5	ug/L
Tetrachloroethene	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L

il i

VOLATILE COMPOUNDS BY GC/MS

Date Analyzed: Laboratory ID: Sample Matrix:

05/27/94 2MB-147A Water

	Analytical Result	Detection Limit	Units
Parameter			
Toluene	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
Styrene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
o-Xylene	ND	5	ug/L

1.3

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

TENTATIVELY IDENTIFIED COMPOUNDS METHOD BLANK ANALYSIS

Date Analyzed: Laboratory ID: Sample Matrix: 05/27/94 2MB-147A Water

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	100	76 - 114	
Toluene-d8	103	88 - 110	
Bromofluorobenzene	99	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Apalyst

Reviewed

LAB QA/QC VOLATILE COMPOUNDS BY GC/MS EXTRACTION BLANK

Date Analyzed:	05/26/94
Laboratory ID:	2EB-146
Sample Matrix:	Soil
Date Extracted:	05/26/94

	Analytical	Detection	11.1
Parameter	Result	Limit	Units
Chloromethane	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg
Chloroethane	ND	0.2	mg/kg
Methylene Chloride	ND	1	mg/kg
Acetone	ND	1	mg/kg
Carbon Disulfide	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloroethene	ND	0.2	mg/kg
Chloroform	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
2-Butanone	ND	1.5	mg/kg
1,1,1-Trichloroethane	ND	0.2	mg/kg
Carbon Tetrachloride	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
cis-1,3-Dichloropropene	ND	0.2	mg/kg
Trichloroethene	ND	0.2	mg/kg
Dibromochloromethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ND	0.2	mg/kg
Benzene	ND	0.2	mg/kg
trans-1,3-Dichloropropene	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
4-Methyl-2-pentanone	ND	0.2	mg/kg
2-Hexanone	ND	0.2	mg/kg
Tetrachloroethene	ND	0.2	mg/kg
1,1,2,2-Tetrachloroethane	ND	0.2	mg/kç

1111

,

VOLATILE COMPOUNDS BY GC/MS

Date Analyzed:05/26/94Laboratory ID:2EB-146Sample Matrix:SoilDate Extracted:05/26/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Toluene	ND	0.2	mg/kg
Chlorobenzene	ND	0.2	mg/kg
Ethylbenzene	ND	0.2	mg/kg
Styrene	ND	0.2	mg/kg
m,p-Xylene	ND	0.2	mg/kg
o-Xylene	ND	0.2	mg/kg

i i

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

1160 Research Drive Bozeman, Montana 59715

TENTATIVELY IDENTIFIED COMPOUNDS EXTRACTION BLANK ANALYSIS

Date Analyzed: 05/26/94 Laboratory ID: 2EB-146 Sample Matrix: Date Extracted:

Soil 05/26/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Soil
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	101	70 - 121
Toluene-d8	103	81 - 117
Bromofluorobenzene	97	74 - 121

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

LAB QA/QC PURGEABLE ORGANIC COMPOUNDS BY GC/MS MATRIX SPIKE SUMMARY

Date Analyzed:	05/31/94
Laboratory ID:	3EMS4804
Sample Matrix:	Soil
Date Extracted:	5/26/94

ORIG	IINAL	SAMPL	_E PAR/	аметег	RS
 P.S.C		C mm		•••••••	BAC

	••••••				
	Added	Conc	Conc	Recovery	OC Limits
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(% Bec.)
1,1-Dichloroethene	2.0	0	1.7	81	59-172
Trichloroethene	2.0	0	1.7	85	62-137
Benzene	2.0	0	1.9	95	66-142
Toluene	2.0	0	2.0	96	59-139
Chlorobenzene	2.0	0	2.0	100	60-133

Spike Recovery: 0 out of 5 outside QC limits.

QUALITY CONTROL:

		501	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	104	70 - 121	
Toluene-d8	105	81 - 117	
Bromofluorobenzene	95	74 - 121	

Analyst

Reviewed

0 - 11

	<u></u>	<u>(</u>		<u>,</u>	-1		、 .				K					land				:.		ų,	ز د	7	
202	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ks Sh) hick		ť	Ments.	37.1	14 - S. 14		*/ e		è or	2			Date Time	5/19/11 6940	Date Time	Date Time	bill		21787	
	ANALYSES / PARAMETERS	Remarks			Your Y /		0 N	Corte				10	the second s	1 80112	NEW-1-		A							3304 Longmire Drive Callede Station, TX 77845	Telephone (409) 774-4999
	VLYSES / F		·	¥ (Ż							رم الأوام المراجع المراجع				- topic	A A A	Ng			1 1 1			
SD S	ANA	/	Qhz	-			1997 20	<u>-</u>			1.2					<u> </u>	** *	ature)	A.	ature)	X (Carried by Abboratory: (Signature)	Levy		H 30 Station, TX 778	Telephone (409) 776-8945
		6	lo: of Sontainer:		4 (\			9 2. 2.		544 -		:						Received by: (Signature)	orn d is	by:(S S	ss, Inc.		
F CUSTODY RECORD	A K K		and the second sec	Matrix		1. J. J.		y ie V	er Net Description	/. /					3		ور ۱۹۹۵ میلاد. میکولید. اورون	Time Rece	HON Zer	Time Rece	Rec 1	- k	aboratories,	1160 Research Dr. Bozeman, Montana 59715	e.(406) 586-8450
	Project Location	ody Tape No.		2 , ()	5						33-			<i>*</i>			4.00	Date .	SIGNI	ate /	Date	 !			
		Offiain of Custody		Lab Number +/ろ タイム/タッマ	1		4		÷														Inter-Mountain	2506 West Main Street Farmington, NM 87401	ione (505) 326-41
	EX-C			Time Lab	20 02 ·	and the second											t and a state	•	4 	•	r	*			
	DeJulu	-14		Date T		at he for the									×			, i	Ute		Kiet	\sim		1714 Phillips Circle Gillette, Wyoming 82716	ohone (307) 682
	me	ure)	د. ۲. ۲. این برین		- 27													(Signature)	v. Ku	gnature)	(elunation)	Carrier	i Ta		
Inter-Mourtain Laboratories	Client/Project Name	ampler. (Signature)	Sample No./		N 10-1)~- -			1 1 1 1 2						A STATE OF A			A plus	the the	a l	Relinquished by: (Signard)	EDEX (Terra Avenue Ban, Wyoming §2801	phone (307) 6724
	U S S S S S S S S S S S S S S S S S S S	Hes X			₹													Relinqui		Relin	Relin	4			

APPENDIX C

SOIL VENT AND AIR SPARGE PILOT TEST FIELD DATA

BRC/Pilottest.rpt

hit i i

1 1

SOIL VENTING PILOT TEST DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

SRIJUE Crack ઉ Ł Date: Measured by:

Extraction Well:

VEW-15

20	
elle)	

		8000000		4		-					r					L											_,									
		1	F.	212						0.0				0.025		0.075		0.0		0.05		01.0		0.0		0,10		0,10			20.0	0-025	0.0		ent.xis	
			/ # Sta	VEW-IP MW-4						000				0		NC		52.0		0.25	-	0.25		0.30	_	0.26	-	0.26		0-115	0.10	٥, ١5	0.05		BRC/Excel/Vent.xls	
			ų	P-3						44				١		١		1		1		١		1		1		1			١	1	١			7
	()		1) A	4W-26						0.00				20		1 C		2 X		rC		40		6,0		0.0		а о			~c	NC	5 2		Seventific MY 251	\$
	Vacuum at Observation Wells (ins H2O)	🚬 Distance from Extraction Welt	SOA 4	MW-25 MW-26						0.00				NC		25		Ś		<i>2</i> с,	-	Z		しく		NC	-+	ڊ کر			10	ろし	うい	_	50 Sc	
	n Wells	jiaW nc	hor 4	P-2 M						1005				0		0.05 1		20.0		005	_	0,115		0.14		0.14 1		0.12	_		0110	.¢75	0.0		1	
	ervation	xtractic	55A 4	W-2	S.					0 +				0.05		c, 10 0		ciju G	-	012 C	_	0.190	_			0,1800		0 < 91 . 0	-		2.125 0	0.09.0 075	0.0151 (2	
	at Obs	from E	Soft 3	AP-4 R	24122	<u> </u>				1 000		_		NC 0		NC C		200	-+	11		100		+ 0. 10 01.185		+0.10 0		02.01	-		NC J	NCO	NC 0			
	acuum	iistance	73 fi ≥	MP-2 MP-4 RW-2	150 Ct 74 Land					to. 15 1				+2.05		+0.05 A		+ 0.07	-	0.0	-	5		∀ 0.0		0,0+		0 1	Ì		V C.O					
	Λ		: u <i>l₁</i> /	MP-1 N	1000					t 0.01				0.05+		0.15 4		v. 15 +		0.15 5		0.15 0		0.15		0.15		0.15			01.0	0.05 4	19.7 0.025 40.15			
2		1 (/letejr	EL)*	100 10					+				115%	Y.	-		-†	-		¥	20.50			_	_					222/2016	19.3 6	19.7 0			
	.,	ion (Efi	LEL	(%rer) (%	3/									2/20	WARY	XNX		*5*		ANTO	12/34	53/5	,	3 02 800 8	500 1 200 a	310/ 2		403/19.4	`		322	3631				
	Vapor	Concentration (Eff)	DID	(vmqq)	UA940			20				oten)	Ň	0		0		0		Ð		ତ		0		Q		0			1.3	2.0	Q	38/24.25	د المحدسم	
	-	Pre/Post	Blower	Temp (oF)	Ż		1	124				HP R	,	197		83	1 1	133		186	_	80/i 0 6	,	1,04		8 2/105		901/			115	(103	114	23.0	Nc7	
	er						- Day	2 \$ 92			(15 A		82		105		4		68	_			82	` 	87		84/	` 		5.8	1851	12/2	11	NC)	
	Pre-Blowei	Anemom	Reading	(ft/min)	-5まっれ	* PV 74	- S/					02-1.	_	1600		1250		1250		1250		1600		1600		691		603	-		1300	21	256	SHUT DOWN		
	Pre/Post	Vacuum	at Blower	(ins. H2O)	PHOTIMPL	102	Veu -	NEW-		READINGS		BLONDZ	`	38/40		39/40		38/40		38/40		38/20	-	3 8/ 40	-	35/40		3 2 /40	•		55/39	25/30	15/22-	D AT 5		
	•••••	12	Test Well	(ins. H2O)			PIDTW	:		I.L RO		STANY		42		42		43		43		4>		43	6.0	42		42			ef	20	16	115 6 - 10	1 1	
		Elapsed	Time	(min.) ((4		DT	2		5847		0		S		0/	 	?		с С		45		60	-	120		180		1637	195	210	222	010/1		Ň
		Time			0280		0803	+080		0245		0972		6935		0440		0945		1000		1015	 	1030	1040	1130		1230		555	N.		1315	1320 DTUVI		-
	i		_						1			1		, ` .								,								i T	3/	14%	16%	۲.	220	

SOIL VENTING PILOT TEST DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

Sascar CHUCK 4 د Measured by: Date:

20%

11-m21

Extraction Well:

			A fi	Vew-15		40,20		2.40	2.70	3.10	3.50	3.60	3.60	\$70	3.70			34	2,5	117											Γ	Π		/emt.xis
		1	14 a s 7 h	mw 4		+0.10		000''/	1,40	1.50	1.80	1.80			6 1			1.1	1.2	1,0														BRC/Excel/Vent.xis
				P-3		XX		1	١	١		-	ł	1	١			1	-	١														
	(20)		111 53H 125H 53H 40H 454H 400H	P-2 MW-25 MW-26		0.0		NC	20	NC	20	どく	00	3NC	4 1			N.V.	50	2 C														
	Vacuum at Observation Wells (ins H2O)	<u>ال</u> بر	450A	MW-25		0.0		vc	υС	NC	νc	NC	0,0	2NC	10			2 C	21.	NC														
	ion Wel	Distance from Extraction Well	40 H			0.0		1.70	1.90	1	2.3	ト・モ	2.4	Z, S	2.5			1.2	1.6	1.1														
	bservat	n Extrac	55 A	RW-2		0.0		1,00	2		2.6	2.6	216	2.7	2.6			2.4	1. 3	1.1														
	JITI at O	nce fron	1122A	MP-2 MP-4		#2. 20 to. 25 to. 015		22	УV I		0.0	0,0	200	0.08	0.06	-		0.05	0.05	0.035														
	Vacut	Distar	1 55 f			0 40.25	1-46		1.80		2.40	2:5	2.5	2.6				2.4	1.7	21								 						
				MP-1		40.24		2.80		13.40		13.8	3.0		4.0			434		8 1.9							 							
o)	<i></i>	(Eff)	LEL Meter	(%LEL)Y				43/5.0	102/12.01	\sim	5-71-5	78 / 11.5	109/5.5	601/2	76, 12.5	~	-	H12:4	141/13.9	260//58	-													
		rati				_		03 4		18 10	28 20			76				11		_		-					-		-					u de teste
	Vapor	Conce		(vmqq)	DU DI			/	101		/	601	104	011	201			///	121	137	-													
		Pre/Post	Blower	Temp (oF)	23, Sb CON DAV		1	74195	3/96	<u></u>	1914	3/43	19	62/29	56/23			26/-	26/-	16/29	/													24.02
									510		0 104	_	2 63					2 62	62			48.42											_	Mx 251
	Pre-Blo	Anemom	Reading	(ft/min)	24,29	1 (2007	_	1750	1750	1750	1750	1750	1750	1750	0561			1250	900	650		20/24												
	Pre/Post Pre-Blower	Vacuum	at Blower	(ins. H2O)	23.87	2. P.J		125	45	22/22	22/02	Zohr	2425	125	52/12			18/25	121	02:/		23												industante solouce
				U)		CALB.		, a.C.	20/				i	21	12			/8	141	0/		= (p/a)	_				 			-	-			41215
		Vacuur	Test Well	(ins. H2O)	VEW-ID		2	202	all	20	20	2	20	202	2			81	(5)	10		270/j								ł				
		Elapsed Vacuum at		(min.)	270	Q,	57427	λ	0/	ر بر	30	45	60	(2:0	081		2mr	180	195	210	our 1820	(1)												BRU
		Time E			DTW/1	420		435	440	1445	Sev	515	530	630	130		STEP DU	145	800	1815 1	SHUT DO	- WEW-		 			 			╞	$\left \right $			いろ
						`	°. 14	``				1.	<u>د (</u>	2 16	1 272		<u> </u>	200	1			(02.6/)	<u> </u>	<u> </u>				1_						

Air Sparge Test Well:	Static DTW in AS-1:	Static DO in AS-1:
194	C. T.B.	
Date: 1 6/15	Measured by: 1.4	

5

1-24

....

0, 2 Bac 410 Supput 90 ps 1	
Static DO in AS 1: Compressor type/size:	0
point 27 ft	Z-W7
to monitoring	2-1
om sparge well	MW-4
Distance fr	
444	C-dM

N

3/4 "\$ AIR LINE

Pressure at MP (in H2O)		1	70,125	+0.20	t0.005	+0.15	40.10	Ø. Ø	40.10	10.05				+ i.c	tass	+0.10	+0.75	4.20	+040	+0.60	+ 0.55			
PID at MP (ppmv)				0.0	5 16	0,0	2145	111	0 193	7 202 9			1	59	5		0.0		334	317	146			
D10/ D1W in MP (ft)			25.78 24.24	29.56/2503	285,7/19.52	Dey	23.85/24.22	25.09/25.4	242924.70	24.63/24:77														
Dissolved Oxygen at MP (mg/l)			psh	Γ	7	hand /		/	ľ.	9	0.2													
Monitoring Point (MP)			1-04	zrow	A-9-4	VEW-15	VEN-1D	B-W-4	2-01X	2-2	1-54			104	NP-2	+-0W	jew-15	Vew-1D	A-200	Rw-2	r-d			
Air flow at Sparge Well (scfm)			,									3 PS4		101										
Pressure at Sparge Well (psi)												50,426 E		S										
Pressure at Regulator (psi)	Q											412 Set		Ņ										
Elapsed Time (min.)	ares. PIC	1 521	ବ									STANT		07										
Time		574-455	1500	X								1510		1530										

at Ji

BRC/Excel/Sparg.xls

AIR SPARGE PILOT TEST FIELD DATA	BLOOMFIELD REFINING COMPANY	BLOOMFIELD, NEW MEXICO
AIR SP	BLOC	B

Ņ

5/94	2 01B
6//9	4
Date:	Measured by:

_		_		
			1	
			: 1	
<u></u>			15	
D	***		\mathbf{N}	
2		**	S	
	\mathfrak{S}		Q	
9	\sim	3	X	
ĽĽ	. H			
'n	2	1	ō	
ŏ	F-	O	80	
5	0	D	e.	
Q	U	0	ä	
တ	1	Ŧ	E	
 	Sta	Stat	N.	
	101	UJ.	O	Ļ
				- 3

	Ħ	VEW-1S	
	ft	MP-4	
l point	ft	RW-2	
to monitoring	ft	P-2	
I sparge well	ft	MW-4	
Distance from	ft	VEW-1D	
	H H	MP-2	
	ft	MP-1	

Pressure at MP		+0.7	+0.15	t0.90	+ 1.50	+ 6.50	t 0. 75	+ 0.55	+ 1.151	T-0.75	+ 0.15	+ 0.95	+ 1.55	+ 0.55	+0,80	70,65		+ 1.75	+0.90	+0.15	41,20	+2.40	+0.75	+1.20	+ 0.90	
PID at MP	(Vmqq)	/	20	0	62.5	322	355	174	225	1.7	21	/	1621	312	550	233		245		16	0	1408	258	478	123	
DTW dMni	(11)																									
Dissolved Oxygen at MP	(1/601)																									
Monitoring Point	(MP)	2.04	MP-4	VERVIS	Vew-10	Mu-4	Rw Z	2-2	1-04	2-04	+-du	51-021	Vew-1D	Aw-4	とうろ	2-2		1-dur	2-04	\$-0W	New-15	12-man	M-4	Rw- 2	2-0	
Air flow at Sparge Well	(sc(m)								11									17.5								
Pressure at Sparge Well	(bsi)								м								150	5								
Pressure at Regulator	([<u>8</u>]) 2)							Ю								8	5								
Elapsed Time	(im)	-							60	-							250FOX	05								
Time									1610								1615	1030								

BRC/Excel/Sparg.xls

																																		BRC/Excel/Sparg.xls			
	Fest Well:	in AS-1: AS-1:	type/size:				Pressure	at MP (in H2O)	+2.20	+1.10	+0.20	+ 1.50	4 2.80	+ 0.90	+1.35	0.1+	+2.20	71.05	40.22	+ 0,45	12.80	50.0+	+1.30	+0.45	0 1 7	1.00		1 0. 20	+1.45	12.00	10,85	-	0.1 +:				
.≻;	Air Sparge Test Well	Static DTW in AS-1: Static DO in AS-1	Compressor type/size:				Q	at MP (ppmv)	1785	2.8	630	0.8	22500	285		260	72500	3.0	13/	12	22500		6251	02.70		225 8	╈	760	-+	> 2500	2.50	8.95	213				
G COMPAN MEXICO			;		H H	VEW-1S	DTW	in MP (ft)																							_						
BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO					ft	MP-4	Dissolved	at MP (mg/l)																													
				ring point	ft	RW-2	Monitoring	Point (MP)	1-04	2-04	MP-4	12-2020	VEW-ID	AW-A	Rw-2	P2	1-04	2-04	MP-4	1000-15	New-10	p-wh	x-mx	P~ Z		1-dui	NPr	MP-4	VOU-15	VEW-ID	mw-4	RWIT	2-2				
			Nature of the second se	Vamic 10	to monitoring	t t	P-2	Air flow at Sparge	Well (scfm)	19								19.5																			
	4	070			3	2		Distance from sparge well to monito	Ħ	MW-4	Pressure at	Sparge Well (psi)	19								19.5								1	a)							
	6/15/94	1/4m C			Distance fron	ft	VEW-1D	Pressure at	Regulator (psi)	V								2									~										
					ft f	MP-2	Elapsed	Time (min)	21.000								21 8th	(.								185											
	Date:	Measured by:			<u> </u>	MP-1	Time		1715								145									5181											

11

3

I

ł

AIR SPARGE PILOT TEST FIELD DATA

AIR SPARGE PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

6/15/94	Vign CIB
Date:	Measured by:

Air Sparge Test Well:	Static DTW in AS-1:	Static DO in AS-1:	Compressor type/size:	

7

21.14 21.90

202121				
3				
		Ħ	VEW-1S	
		ft	MP-4	
	point	ft	RW-2	
	o monitoring	tt 🔰	P-2	
	n sparge well t	ft 1	MW-4	
	Distance fron	ft	VEW-1D	
		H H	MP-2	
		ų	MP-1	

BRC/Excel/Sparg.xls

Monitor Points: MP-1	20.3	
	PID Pressure at MP at MP (bbm) (n H20)	_
34 '\$ AIN HOSE Well AS-1 VEW-1D	Monitoring Dissolved PTTP Point at MP Point at MP Point at MP Point at MP MP MP MP MP MP MP MP MP MP MP MP MP M	7
LD DATA Air Sparge Test Vem Test Well:	PrevPost Vapor Con at Blower Blower (eff) PID (bjmm) b 3/g 5 35	-
Soll venting pilot test field data somfield refining company bloomfield, new mexico	Pre-Plower Vacuum at Blower (in, H2O) (in, H2O	
AIR SPARGE/SOIL VENTIN BLOOMFIELD REF BLOOMFIELD	At flow at Vacuum at Sparge at Vern Wal Nall (fn. H20) v No T w back v No T v back v v v v v v v v v v	7
6/16/94	Pressure at Pressure Regulator Spargo V (pai) (pai) PPRCS (pai) PPRCS (pai) PPRC AIR SPAR	
Datte: Measured by:	Time Elapsed P Time Flapsed P Time Flaps (min) Odris 57497 Odris 57497 Odris 57497 Odris 57497 Odris 5447 Odris 5447 Odris 5447 Odris 220	141/02

ļ

LE1/02 IND - 7NOUSI. MSA -

	Monitor Points: MP-1 MP-2	PID Presente $400 \text{ MP} - 4$ at MP at MP at MP at MP at MP at MP (neuvoir	(1.02/2 <u>2011</u>		┼┼┼┼┥	731 0.00 0.0 1.70 0.00 0.70 0.70 0.70	43 1.15 15/0.9 120 425 0.05 3 0.45 3 0.45	0 0:50 0 0:55 0 1:15 1.15 1.25 0 0:50 0 0:50 0 0:50 0 0:50 0 0:50 0 0:50 0 0:50 0 0:50 0 0:50 0 0:55 0
	Air Sparge Test Well: AS-1 Vent Fest Well: VEW-1D	Pre/Poet Varbor Con. Dissolved Pre/Poet at Blower Monitoring Oxygen Blower (eff) PID Point in MP Temp (oF) (ppmv) (MP) (ft)	314 mp-1 mp-2	12-4 12-4 12-4 12-4 12-4 12-4 12-4 12-4	64/90 342 AP-2	2-2 2-2 2-2	190 337 Mo-1 7.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	
BLOOMFIELD, NEW MEXICO		Vacnum Pre/Post Pre-Blower at Vent Vacnum Anemom Weil at Blower Reading (in: H2O) (in: H2O) (ft/min)	1200		19 20/27 1200 104		13 w21 C2/02 61	18 20/27 1200 64
	Date: $\frac{b_{\text{interm}}}{\sqrt{4m}}\frac{b_{\text{interm}}}{c_{1,B}}$	Time Elapsed Pressure at Pressure at Sparge Time Regulator Sparge Well Well (min) (psi) (psi) (sofm)	1030 35 5 - 21		12 - 5 05 5401		1/2 - 2 - 2	12 31 2 31

• • • • • •

.

AIR SPARGE/SOIL VENTING PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BI COMFIEL D NEW MEXICO

i.

1

2

DATA		
EST FIELD	MPANY	00
IG PILOT T	FINING CO	, NEW MEX
AIR SPARGE/SOIL VENTING PILOT TEST FIELD DATA	BLOOMFIELD REFINING COMPANY	BLOOMFIELD, NEW MEXICO
PARGE/SC	BLOON	BL(
AIR S		

++++++++++++++++++++++++++++++++++++++	2463/24/14 2463/25.00 25.643/24/46 25.623/2445 2453/2445 2453/2445 2467/2477 240 3/24.77 240 3/24.77 240 5/25/445 244.8/1445 244.8/124.77	MP 1 MP 1 MP - 4 MP - 4 MP - 4 MP - 1 MP - 1						20100	110 110		A In S
			~ ~		_			4000		16	SAUT PINU ALR
	1		Ň					2	52/02	1	KLUD
	,							11	32		Server
						_			Surs		SHUT DOWN :
				0 /95	1500	22	DILUZIM -	090	47	<u> ĝ</u>	AIR SAMPLE
							0%	2	DILUTION	à	SHUT SUES DI
0.05	<u>,</u> 0	7 2 2								-	
0.45		AW-4				_					
1.15	ຄ	51-000		_		-		-		_	
0.05	240	4 mp-4								\square	
52.1	0	2-04	4							$\left \right $	
		-	172					12	١		
Pressure at MP (in H2O)	DTW PID DTW PID In MP at MP (tt.) (ppmv)	Monitoring Dissolved Monitoring Oxygen Point at MP (MP) (rng/l)	Vapor Con. at Blower (eff) PID (ppmv)	ower om Pre/Post ing Blower in) Temp (oF)	0st Pre-Blower um Anemom wer Reading 20) (ft/min)	m Pre/Post It Vacuum at Blower (in,H20)	at Vacuum e at Vent Well (in H20)	Air flow at at Sparge eli Well (sctm)	Pressure at Sparge Well (psl)	Pre Spe	Pressure at Pre Regulator Spe (pai)
Montor Poin N		AS-1 VEW-1D	ge lest well: A	Vent Test Well:					04		un la la
N		S.1	Air Snarne Test Wall AS-1	Air Snan		Γ				144-	-th/ 1/19

olints: MP-1 MP-2 MP-2 VEW-1S NW-4 P-2 RW-2 RW-25 MW-25 MW-25 P-3

.

BRC/Excel/Spaven.xis

APPENDIX D

AIR SAMPLE CERTIFICATES OF ANALYSIS, CHAIN-OF-CUSTODY DOCUMENTATION, AND QA/QC DATA, JUNE 14 AND 16, 1994

BRC/Pilottest.rpt

ı i

i li a i • A

IN ANALYSIS SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012 (805) 389-1353 FAX (805) 389-1438

	Lab Number : CK-2892-1
CLIENT: Terry Bennett	Project : BRC/023353014.32
Groundwater Technology	
2501 Yale Boulevard SE, Suite 204	Analyzed : 06/15/94
Albuquerque, NM 87106	Analyzed by: EJ
	Method : EPA TO-14

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED	BY	SAMPLED	RECEIVED
VEW-1S Effluent	Air	Jerry A	. May	06/14/94 123	0 06/15/94
CONSTITUENT		*PQL ppbv	RESULT ppbv	RESULT µg/cu M	NOTE
FUEL FINGERPRINT in AIR		, 			1
Benzene		20.	690.	2200.	
Toluene		20.	110.	400.	
Ethylbenzene		20.	120.	530.	
Xylenes		20.	740.	3200.	
Ethylene Dichloride		20.	ND	ND	
Ethylene Dibromide		10.	ND	ND	
Total Fuel (non-methane hydroc	arbons)	1000.	130000.	460000	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V04E GD/geepr(dw)/y1 MS2*A Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

Nai Ofestatt

Gesheng Dai, Ph.D. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012 (805) 389-1353 FAX (805) 389-1438

	Lab Number : CK-2892-1
CLIENT: Terry Bennett	Project : BRC/023353014.32
Groundwater Technology	
2501 Yale Boulevard SE, Suite 204	Analyzed : 06/15/94
Albuquerque, NM 87106	Analyzed by: EJ
	Method : GC/TCD

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY		SAMPLED	RECEIVED	
VEW-1S Effluent	Air	Jerry A. Ma	y 06,	/14/94 1230	06/15/94	
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	NOTE	
FIXED GASES AND METHANE						
Carbon Dioxide		(124389)	0.1	0.3		
Oxygen		(7782447)	0.01	18.		
Nitrogen		(7727379)	0.02	64.		
Methane		(74828)	0.005	18.		
Carbon Monoxide		(630080)	0.1	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/27/94 TCD/06159411 GD/geepr(dw)/y1 KF15TA Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

Dai with Gesheng Dai, Ph.D

Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

EXCELLENCE IN ANALYSIS SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: Terry BennettQC Batch ID: MS2*A CK-2892-1Groundwater TechnologyProject : BRC/023353014.322501 Yale Boulevard SE, Suite 204Analyzed : 06/15/94Albuquerque, NM 87106Analyzed by: EJMethod : EPA TO-14

QC DUPLICATE REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAM	MPLED BY	SAMPLED DATE RECEIVED			
VEW-1S Effluent	Air	Jerry A. May		06/1	06/15/94		
CONSTITUENT		*PQL ppbv	RESULT ppbv	RESULT µg/cu M	*DIFI	7 NOTE	
FUEL FINGERPRINT in AIR						1	
Benzene		20.	780.	2500.	13.		
Toluene		20.	130.	480.	18.		
Ethylbenzene		20.	140.	600.	12.		
Xylenes		20.	900.	3900.	20.		
Ethylene Dichloride		20.	ND	ND			
Ethylene Dibromide		10.	ND	ND			
Total Fuel (non-methane hydrocarbons)		1000.	140000.	490000	6.3		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V05E GD/geepr(dw)/yl CK2892-1 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

out Dai

Gesheng Dai, Pa. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/15/94 Analyzed by: EJ Method : EPA TO-14

QC SPIKE REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	E DESCRIPTION MATRIX SAMPLED BY			SAMPLED DATE RECEIVED				
QC SPIKE	Air							
CONSTITUENT		*PQL µg/cu M	SPIKE AMOUNT	RESULT µg/cu M	*REC	NOTE		
FUEL FINGERPRINT in AIR						1,2		
Benzene		50.	7100.	7200.	101.			
Toluene		100.	28000.	23000.	82.			
Ethylbenzene		100.	3200.	2600.	81.			
Xylenes		100.	19000.	15000.	79.			
Ethylene Dichloride		100.	5500.	5400.	98.			
Ethylene Dibromide		100.	4100.	3600.	88.			
Total Fuel (non-methane hydrocarbons)		4000.	230000	190000	83.			

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

(1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

(2) Zero Air spiked with premium unleaded gasoline.

06/17/94 MS2/2V06E GD/gegcc(dw)/yl CK9406-15 Respectfully submitted, COAST-TO-OOAST ANALYTICAL SERVICES, INC.

ai Gesheng Dai, Ph.D.

Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

EXCELLENCE IN ANALYSIS

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/15/94 Analyzed by: EJ Method : EPA TO-14

INSTRUMENT BLANK REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVED			
INSTRUMENT BLANK	Air		<u> </u>			
CONSTITUENT		(CAS RN)	*PQL μg/cu M	RESULT µg/cu M	NOTE	
FUEL FINGERPRINT in AIR	a an				1	
Benzene		(71432)	50.	ND		
Toluene		(108883)	100.	ND		
Ethylbenzene		(100411)	100.	ND		
Xylenes			100.	ND		
Ethylene Dichloride		(107062)	100.	ND		
Ethylene Dibromide		(106934)	100.	ND		
Total Fuel (non-methane hydrocark	ons)		4000.	ND		

Lab Certifications: CAELAP #1598; UIELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.CO.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V03E GD/gegcc(dw)/yl CK9406-15 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

MAA -1) Ci i

Gesheng Dai, Ph.A Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

EXCELLENCE IN ANALYSIS		(805) 389-1353 FAX (805)389-1438							
CLIENT: Coast-to-	Coast Analytical Services, Inc.	QC Bato	sh ID: KF	15TA					
Analyzed : 06/15/94 Analyzed by: EJ Method : GC/TCD QC SPIKE REPORT OF ANALYTICAL RESULTS Page 1 of 1									
SAMPLE DESCRIPTIO	SAMPLE DESCRIPTION MATRIX SAMPLED BY					IVED			
QC SPIKE	Air								
CONSTITUENT		*PQL PERCENT	SPIKE AMOUNT	RESULT PERCENT	*REC	NOTE			
FIXED GASES AND M	ETHANE	****							
Carbon Dioxide		0.1	15.	15.	100.				
Oxygen		0.01	7.1	7.0	99.				
Nitrogen		0.02	66.	66.	100.				
Methane		0.005	4.6	4.6	100.				
Carbon Monoxide		0.1	7.1	7.2	101.				

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/27/94 TCD/06159413 GD/geepr(dw)/yl CK2891-1 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

tota DQI no

Gesheng Dai, Ph. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

	/S [FXX 632-39//	Zip	R TERN BUNGH	Cymdin Mu Liakos	Auth. Init.	Remarks Lab ID #	CKZZQUII		<u> </u>			Received By		• Matrix: DW - Dinking Water		IM - Impinger FI - Filter AC - Air/Gas SL - Sludge/Soil/Soild 01 - Other	.
	Phone # 632 - 80/3	In In	Project MGR	Albrand and	Copies To:	HIRY	5 (601 TU-14)	(0,20)				Date/Time		See Remarks) Sealed Intact	(<u>д</u> ,	
FAX (805) 343-2685 FAX (805) 967-4386 FAX (707) 747-2765 FAX (219) 462-2953 FAX (219) 462-2953 FAX (805) 389-1438 FAX (207) 775-4029	Haw Nert	State N		5. SUIR 204	Circle for RUSH*	* Subject to Availability Analysis	UN NY (MENTENDER)	XS) and	11 11			Relinquished By		Condition ([1=0 =1	
(805) 543-2553 (805) 964-7838 (707) 747-2757 (219) 464-2389 (805) 389-1353 (207) 874-2400	Contact C_{hcl} S	rela		Into Bluck SE	/ Due Date	Filt. y/n	EPA RONATION	hydrocarbo	1					Date/Time	10-501	Leva	
San Lurs Obispo, CA 93401 Goleta, CA 93117 Benicia, CA 94510 Valparaiso, Indiana 46383 Camarillo, CA 93012 Westbrook, ME 04092	1.1	Plesin 1	14.32	Address 250/ 1	Frand Pilling	# of Containers Pres.			7			Received By		Received By	FIL-		
751 S. Kellogg, Suite A 56 751 S. Kellogg, Suite A 6006 Egret Ct. 2400 Cumberland Dr. V 7765 Calle Quetzal 340 County Road No. 5 6	$O(O_{10} = O(0)O(0)$	1841 499	12335301	water Tell who	d. krau	Date/Time Coll'd *Matrix	- Total - Art		11 1 1 2 2 0 1 1 C			Date/Time	6/4/4/2		32337061		
	Thin Fip La Coli	SO Printer	Number BRC	rount	t and sign) <i>(Eliment</i>	Sample Description	IV VENTEFF	-un	-15 LIF.			Relinquished By	2 Ch May	Shipping Method Shipping #	85	RKS	
CCAST TA CUAST ANALYTICAL SERVICES	10	Address	Project Name/Number	Bill (If different than above)	Sampler (Print and sign)	S	NEW		VEN				Jena.			OR LAB U)-1

96 HEVISION DATE 12/92 Phet #137204 FXEM 10/93 Format #158 *: Federal Express Use Declared Value Charge N LUDPEPEE26 ŝ Base Charges Total Charges © 1992-93 #EDE PRINTED IN U.S.A. 198 Other 2 Other DECLARED VALUE Are a grown prior y neutro nu le di Battiral al oux unor legar per abartato jo taali ny feriora Bater Dalar en er y minut vel feriora nonger a severat danagi too yoor basana za 18 Bat ment to the service conditions very. Feddral Etthress will at your this shipment without Indemnity and hold a resulting therefrom. overy cannot ired Value for 「「「「「「「「「「「」」」」」 Print FEDEX Address Here Di Buller SENDER'S COPY Ę Š 1.00 マズ ture and a true and a Inter Corton and ICE CONDITIONS PACKAGE TRACKING NUMBER request and with some limits beid. See Service Guide for (SERVICE COND AIRBIL Street all Sender authorizes F obtaining a delive harmless Federal f Release Signature the eve CH RULI ~ Ch Ch YOUR DECLARED Starto Busi Sint i DIM SHIPMENT (Chargeable Weight) ខណ្ឌិ ខេត្តទីខេត្ត ខេត្ត ខេត្តស្វាកម្មវិន N.Sql s 🗆 Station of a list of the Act T 4 🗆 8.S.C. 3 Drop Box × VENTAL U.S.A., ALASKA AND HAWATI 5 TO PUERTO RICO AND ALL NON U.S. LOCATIONS WEIGHT Ŕ TERMS AND COMPLETE 1.040 3 NO 181 2 A MARY AS AS A WARK TO A WAR SAVE AS A PARTY A MARKET A COMPANY AS A SAVE A SAVE A SAVE A SAVE A SAVE A SAVE A Department/Floor No. ghielek" imber (Very Important) 10.10 C Regular Stop Ê 1.0.00 On-Call Stop ø lotal -IR INTERNAL BILLING REFERENCE INFORMATION (optional) (First 24, characters will appear on Involos, :D DELIVERY AND SPECIAL HANDLING C Did NICHAR SHI OLL FREE ribus F. not required - kg. 904. m NELVER WEEKOAY DANGEROUS GOODS (Exma change 2901 YALE BLVD SE STE 204 12 HOLIDAY DELIVERY (It offered) server leaver Special Handing UCTINS ARABIL FOR SHIPMENTS WITHIN THE CL. LUST THE INTERNATIONAL AIR WARBIL FOR SHIPMEL. QUESTIONS? CALL 800-238-5355 7 GROUNDWATER TECHNOLDGY INC A BUOV ERON REPORT AND A PROVIDENT OF A PROVIDENT REALING AND A PROVIDENT AND A PROVID A PROVIDENT AND A PROVIDENT A PROVIDENT AND the second of the second o 6 DRY ICE Dangerous Goods Shipper's Deci - DESCRIPTION **BS3337061** 4,00,000,000,000,000,00 (3,00) 00 54 Tredex TUBE, 3 AV 3 9 AV CK-UK And want of the 🗌 FEDEX LETTER - 56 🔲 FEDEX LETTER 3. 24 40 VANI, SA Dyba & UN 1965 HOLD AT HUT & D. REENICES 2 to vitidal new Kirne 7. Government Overnight (nemicied for authorized upers only) "Dectared Value Limit \$500. "Call for delivery schedule... SENDER'S FEDERAL EXPRESS ACCOUNT MUNBER IN PACKAGING 51 DIVER 80 THO-DAY 41 COVT (Check only one box) 10,213 reight Service HOOCE CONOTTY TWO-DBY ther Rate not available Ed Herr 14 FEDEX TUBE ECONOMY 1 fort AYMENT Y 2 EF YOUR PACKAGE AND SAVE DROP OFF

IN ANALYSIS

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

	Lab Number : CK-2970-1
CLIENT: Terry Bennett	Project : BRC/023353014132
Groundwater Technology	
2501 Yale Boulevard SE, Suite 204	Analyzed : 06/16/94
Albuquerque, NM 87106	Analyzed by: EJ
	Method : EPA TO-14

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED	BY	SAMPLED	RECEIVED
VEW-ID EFF	Air	Jerry A	. May	06/14/94 173	0 06/16/94
CONSTITUENT		*PQL ppmv	RESULT ppmv	RESULT mg/cu M	
FUEL FINGERPRINT in AIR					1
Benzene		0.1	120.	380.	
Toluene		0.1	4.3	16.	
Ethylbenzene		0.1	13.	57.	
Xylenes		0.1	65.	280.	
Ethylene Dichloride		0.1	ND	ND	
Ethylene Dibromide		0.05	ND	ND	
Total Fuel (non-methane hydroca	arbons)	5.	3100.	11000	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V10E GD/gegcc(dw)/yl MS2*A CC: Chris Hawley Bloomfield Refining Company #50 Country Road 4990

Bloomfield, NM 87413

Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

l Fili im T

91 1/201

Gesheng Dai, Ph D. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

S SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

			Lab Number :	CK-2970-1
CLIENT:	Terry Bennett		Project :	BRC/023353014132
	Groundwater Technology			
	2501 Yale Boulevard SE,	Suite 204	Analyzed :	06/16/94
	Albuquerque, NM 87106		Analyzed by:	GD
			Method :	GC/TCD

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY		SAMPLED	RECEIVED	
VEW-1D EFF	Air	Jerry A. Ma	y 06	/14/94 1730	06/16/94	
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	NOTE	
FIXED GASES AND METHANE					··· ····	
Carbon Dioxide		(124389)	0.1	2.3		
Oxygen		(7782447)	0.01	4.3		
Nitrogen		(7727379)	0.02	25.		
Methane		(74828)	0.005	68.		
Carbon Monoxide		(630080)	0.1	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/17/94 TCD/06169403 GD/gegcc(dw) KF16TA CC: Chris Hawley Bloomfield Refining Company #50 Country Road 4990 Bloomfield, NM 87413

Respectfully submitted, COAST-TO_COAST ANALYTICAL SERVICES, INC.

visning ()91

Gesheng Dai, Ph.D. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

			QC Batch ID:	MS2*A CK-2970-1
CLIENT:	Terry Bennett		Project :	BRC/023353014132
	Groundwater Technology			
	2501 Yale Boulevard SE, Su	ite 204	Analyzed :	06/16/94
	Albuquerque, NM 87106		Analyzed by:	EJ
			Method :	EPA TO-14
		OC DUDI TOME		

QC DUPLICATE REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAM	IPLED BY	SAMPLE	ED DATE RECEIVED		
VEW-ID EFF	Air	Jerry A. May		06/1	.4/94 C	06/16/94	
CONSTITUENT		*PQL ppmv	RESULT ppmv	RESULT mg/cu M	%DIFF	NOTE	
FUEL FINGERPRINT in AIR				· · · · · · · · · · · · · · · · · · ·		1	
Benzene		0.1	110.	350.	8.2		
Toluene		0.1	4.	15.	6.5		
Ethylbenzene		0.1	12.	52.	9.2		
Xylenes		0.1	62.	270.	3.6		
Ethylene Dichloride		0.1	ND	ND			
Ethylene Dibromide		0.05	ND	ND			
Total Fuel (non-methane hydrocarbons)		5.	2800.	10000	9.5		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V11E GD/gegcc(dw)/yl CK2970-1 Respectfully submitted, COAST-TO/COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

EXCELLENCE IN ANALYSIS

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed	:	06/16/94
Analyzed	by:	EJ
Method	:	EPA TO-14

INSTRUMENT BLANK REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAM	IPLED DATE RI	RECEIVED	
INSTRUMENT BLANK	Air					
CONSTITUENT		(CAS RN)	*PQL μg/cu M	RESULT µg/cu M	NOTE	
FUEL FINGERPRINT in AIR		1			1	
Benzene		(71432)	50.	ND		
Toluene		(108883)	100.	ND		
Ethylbenzene		(100411)	100.	ND		
Xylenes			100.	ND		
Ethylene Dichloride		(107062)	100.	ND		
Ethylene Dibromide		(106934)	100.	ND		
Total Fuel (non-methane hydrocark	xons)		4000.	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V08E GD/gegcc(dw)/yl CK9406-16 Respectfully submitted, COAST-TO-QOAST ANALYTICAL SERVICES, INC.

KAA Dai CA)

Gesheng Dai, Ph. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

REPORT OF	QC SPIKE 7 ANALYTICAL RE	Method	d by: E	PA TO-14	e 1 of	1
SAMPLE DESCRIPTION	MATRIX	SAMPLED BY		SAMPLED DA	TE RECE	IVED
QC SPIKE	Air					
CONSTITUENT		*PQL µg/cu M	SPIKE AMOUNT	RESULT µg/cu M	*REC	NOTE
FUEL FINGERPRINT in AIR Benzene Toluene Ethylbenzene Xylenes Ethylene Dichloride Ethylene Dibromide Total Fuel (non-methane hydrocarbons)		50. 100. 100. 100. 100. 100. 4000.	7100. 28000. 3200. 19000. 5500. 4100. 230000	24000. 4100. 22000. 5400.	115. 86. 128. 116. 98. 93. 126.	1,2

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

(2) Zero Air spiked with premium unleaded gasoline.

06/17/94 MS2/2V12E GD/gegcc(dw)/yl CK9406-16 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

()qi VVA Gesheng Dai, Ph

Gesheng Dai, Ph. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

				QC Batch ID	KF16TA CK-2970-1
CLIENT:	Terry Bennett			Project	BRC/023353014132
	Groundwater Technology				
	2501 Yale Boulevard SE,	Suite	204	Analyzed	06/16/94
	Albuquerque, NM 87106			Analyzed by	GD
				Method	GC/TCD
			OC DUPLICATE		

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMP	LED BY	SAMPLET	DATE	RECEIVED	
VEW-ID EFF	Air	Jerr	Jerry A. May		/94	06/16/94	
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	&DIFF	NOTE	
FIXED GASES AND METHANE							
Carbon Dioxide		(124389)	0.1	2.2	4.4		
Oxygen		(7782447)	0.01	5.1	17.		
Nitrogen		(7727379)	0.02	28.	11.		
Methane		(74828)	0.005	65.	4.5		
Carbon Monoxide		(630080)	0.1	ND			

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/17/94 TCD/06169404 GD/gegcc(dw) CK2970-1 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

Dai respected

Gesheng Dai, Ph.D Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

XCELLENCE SoCal Division (Camarillo Laboratory) IN ANALYSIS (805) 389-1353 4765 Calle Quetzal, Camarillo, California 93012 FAX (805) 389-1438 QC Batch ID: KF16TA CLIENT: Coast-to-Coast Analytical Services, Inc. Analyzed : 06/16/94 Analyzed by: GD Method : GC/TCD OC SPIKE REPORT OF ANALYTICAL RESULTS Page 1 of 1 SAMPLE DESCRIPTION MATRIX SAMPLED BY SAMPLED DATE RECEIVED QC SPIKE Air CONSTITUENT *POL SPIKE RESULT %REC NOTE PERCENT AMOUNT PERCENT

0.1	15.	15.	100.
0.01	7.1	7.1	100.
0.02	66.	66.	100.
0.005	4.6	4.7	102.
0.1	7.1	7.1	100.
	0.02 0.005	0.01 7.1 0.02 66. 0.005 4.6	0.01 7.1 7.1 0.02 66. 66. 0.005 4.6 4.7

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/17/94 TCD/06169405 GD/gegcc(dw) CK2970-1 Respectfully submitted, COAST-TO-OOAST ANALYTICAL SERVICES, INC.

ijasmottet. () q_1

Gesheng Dai, Ph.D. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

	5 12 -									:									,		
hain of Clistodv	()	 FAX # 		- And and a set and		Auth. Init.	Remarks Lab ID #	ck a Te-i	7	*	4	*		, e	Received By		E	WW - Wastewalbr GW - Groundwalbr SW - Surtace Water	IM - Impinger FI - Filter A/G - Air/Gas	I SL Sludge/Soll/Solid OT - Other	
		Phone #		Project MGR		Copies To:	lity								Date/Time						
	FAX (805) 543-2685 FAX (805) 967-4386 FAX (707) 747-2765 FAX (701) 462-2953 FAX (805) 389-1438 FAX (207) 775-4029	11.16 EV	/State		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		* Subject to Availability Analysis	and the second of the second secon							Relinquished By		Condition (Tella Noc		
	 (805) 543-2553 (805) 964-7838 (707) 747-2757 (719) 464-2389 (805) 389-1353 (805) 389-1353 (207) 874-2400 	Contact			ور از مراجع می از مراجع می مراجع می از مراجع می از مراج		1/ 1										 Date/Time	(5/10/94)	न् एल्ट्रेने		
	San Luis Obispo, CA 93401 Goleta, CA 93117 Benicia, CA 94510 Valparaiso, Indiana 46383 Camarillo, CA 93012 Westbrook, ME 04092		City		Address	1 Barn PAE	#of Containers Pres.	~							Received By		Received By		- ferran		
	141 Suburban RoadSan751 S. Kellogg, Suite A*6006 Egret Ct.*2400 Cumberland Dr.*4765 Calle Quetzal*340 County Road No. 5*	and the Canada	1 8 17 3	357 301 4 · 32		cor d Bran	/ Date/Time / Coll'd *Matrix	11111111111111111111111111111111111111					,		Date/Time	0521		236712 20			
				umber	han above)	and sign)	Sample Description	1-1D FFF							Relinquished By	1 Mars	Shipping Method Shipping #	x 1985	IKS		
COAST . TO .	COAST ANALYTICAL SERVICES		· · · · · ·	Project Name/Number	Bill (If different than above)	Sampler (Print and sign)	Sai	115 6							Å.				LAB U REMARKS	EOB	

ļ

tment/Floor No. Declared Value Charge Federal Express Use ŘEVISION DATE 6/91 PART #137201 FXEM 1/92 FORMAT #099 1965288712 Recipient's Phone Number (Very Impo Base Charges Total Charges © 1990-91 FEDEX PRINTED IN U.S.A. 660 Other 2 Other ZIP Require. ZIP Required Date/Time Express to deliver this shipment without re and shall indemnity and hold harmless claims resulting therefrom crited to the left. Recovery cannot exceed cimum Declared Value for FedEx Letter and to the service conditions in our very. Federal Express will at your request and with transportation charves paid. See Service Guide thons found in the cu to recover from Fe te peckage, loss of a limited to the orea SENDER'S COPY SERVICE CONDITIONS, DECLARED VALUE AND LIMIT OF LIABILITY IF HOLD FOR PICK-UP, Print FEDEX Address Here Street Address Exact Street Address (We Cannot Deliver to P.O. Boues or P.O. Zip Codes.) State State AIRBILL PACKAGE TRACKING NUMBER (Recipient's Name) Please Print Signatur FedEx Emp. No. Release ₹ ŝ 5 🗋 Slation USE THIS ARBULFOR SUPPLIETS WITHIN THE CONTINETIL U.S. ALSEA AND MANNI. USE THE MITTONA ALM WANNILL TO AS INTERVENTS TO PRETO ADD ALLI MON U.S. LOCATIONS. QUESTITONS? CALL BOD-238-5355 TOLL FREE. 4 [] 8 S C TOUR DECL Drop Box DIM SHIPMENT (Chargeable Weight) Company ota ŝ Your Phone Number (Very Important) 4 🗌 Bill Credit Card d de Berger Department/Floor No. 605-242-3113 WEIGHT C Regular Stop 2 COn-Call Stop a 11 3 Total Ð C our internal billing reference information (optional) (first 24 characters will appear on invoice.) 5 DELIVERY AND SPECIAL HANDLING COMMENS (Check services required) Total \square 1 2 8 47/MENT 1 🕎 Bill Sender 2 🔲 Bill Recipient's FedEx Acct. No. 3 🗍 Bill 3rd Party FedEx Acct. No. ZIP Required <u>ک</u> DELIVER WEEKDAY 1 HOLD FOR PICK-UP (Fain Box H) 3 DELIVER SATURDAN Ertra charge) ğ DANGEROUS GOODS (Extra charge 12 HOLIDAY DELIVERY (IN Othered GREUNDWATER TECHNOLOGY INC DTHER SPECIAL SERVICE 2501 YALE BLVD SE STE 204 1985288712 9 SATURDAY PICK-UP State Date たズ DRY ICE N ... [] = ē 5 φ Government Overnight Standard Overnight (Devery by next business afternoon FEDEX LETTER ENDER'S FEDERAL EXPRESS ACCOUNT NUMBER 51 D POUR FEDEX PAK FEDEX TUBE .~; FEDEX BOX *Declared Value Limit \$100 *Call for delivery schedule. 80 TWD-DAY 41 DECKAGE Acot /Credit Card No 1210-0385-6 ALSUQUE RQUE SERVICES (Check only one box) From (Your Name) Please Print S 29 52 2 EXPR Priority Overnight רנונג ובוונא Economy Two-Day POUR POUR 20224 FEDEX PAK * FEDEX TUBE FEDEX BOX 30 D ECONOMY 1 FE Street Address Cash/ Company -(e.). Detwary comman be later in some r .∾ DROP OFF YOUR PACKAGE AND SAVE

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

1 1 1

	Lab Number :	CK-3124-1
	Project :	(CK2992) Bloomfield NM,
		#023353014.32
Suite 204	Analyzed :	06/17/94
	Analyzed by:	ZS
	Method :	EPA TO-14
REPORT OF ANALYTICAL RESU	LTS	Page 1 of 3
	Suite 204 REPORT OF ANALYTICAL RESU	Project :

SAMPLE DESCRIPTION	MATRIX	SAMPLED I	BY	SAMPLED	RECEIVED
VEW-1D V/S (CK2992-1)	Air	Jerry A.	May	06/16/94 1220	06/17/94
CONSTITUENT		*PQL ppmv	RESULT ppmv	RESULT mg/cu M	NOTE
VOLATILE ORGANICS BY EPA TO-14					1
Acetone		1.	ND	ND	
Benzene		0.2	140.	460.	
Bromodichloromethane		0.1	ND	ND	
Bromomethane (Methyl Bromide)		0.2	ND	ND	
Bromoform		0.1	ND	ND	
1,3-Butadiene		0.5	ND	ND	
2-Butanone (MEK)		0.2	ND	ND	
Carbon Disulfide		2.	ND	ND	
Carbon Tetrachloride		0.2	ND	ND	
Chlorobenzene		0.1	ND	ND	
Chloroethane (Ethyl Chloride)		0.2	ND	ND	
2-Chloroethyl Vinyl Ether		1.	ND	ND	
Chloroform		0.5	ND	ND	
Chloromethane (Methyl Chloride)		0.2	ND	ND	
Dibromochloromethane		0.1	ND	ND	
1,2-Dibromoethane (EDB)		0.2	ND	ND	
1,2-Dichlorobenzene		0.2	ND	ND	
1,3-Dichlorobenzene		0.2	ND	ND	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/29/94 MS1/1M97L GD/geepr(dw)/yl KF17M1

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

		Lab Number :	CK-3124-1
CLIENT: T. Bennett / C. Liakos Groundwater Technology		Project :	(CK2992) Bloomfield NM, #023353014.32
2501 Yale Boulevard SE, Albuquerque, NM 87106	Suite 204	Analyzed : Analyzed by:	06/17/94 ZS
		Method :	EPA TO-14
	REPORT OF ANALYTICAL RESU	LTS	Page 2 of 3

SAMPLE DESCRIPTION MATRIX SAMPLED BY SAMPLED RECEIVED VEW-1D V/S (CK2992-1) Air Jerry A. May 06/16/94 1220 06/17/94 CONSTITUENT *PQL RESULT RESULT NOTE ppmv ppmv mg/cu M 1,4-Dichlorobenzene 0.2 ND ND 1,1-Dichloroethane 0.1 ND ND 1,2-Dichloroethane (EDC) 0.2 ND ND 1,1-Dichloroethene 0.2 \mathbb{ND} ND cis-1,2-Dichloroethene 0.2 \mathbb{ND} ND trans-1,2-Dichloroethene 0.2 ND ND Dichloromethane 1. ND ND 1,2-Dichloropropane 0.1 ND ND cis-1,3-Dichloropropene 0.1 ND ND trans-1,3-Dichloropropene 0.1 ND ND Ethylbenzene 0.2 32. 140. 2-Hexanone $\mathbb{N} \mathbb{D}$ 0.1 ND 4-Methyl-2-Pentanone (MIBK) 0.1 ND ND Styrene 0.2 ND ND 1,1,2,2-Tetrachloroethane 0.1 ND ND Tetrachloroethene (PCE) 0.1 ND ND Toluene 0.2 45. 170. 1,1,1-Trichloroethane (TCA) 0.2 ND ND 1,1,2-Trichloroethane 0.2 ND ND Trichloroethene (TCE) ND 0.1 ND

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/29/94 MS1/1M97L GD/geepr(dw)/yl KF17M1

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

EXCELLENCE IN ANALYSIS

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: T. Bennett / C. Liakos Groundwater Technology 2501 Yale Boulevard SE, Albuquerque, NM 87106	Suite 204	Project	#023353014 : 06/17/94 by: ZS	-
	REPORT OF ANALYTICA	L RESULTS	Pa	age 3 of 3
SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLEI	O RECEIVED
VEW-1D V/S (CK2992-1)	Air	Jerry A. May	06/16/94 1	1220 06/17/94
CONSTITUENT		~~~	SULT RESULT mv mg/cu M	NOTE
Trichlorofluoromethane (F-11)		0.2 ND) ND	
Trichlorotrifluoroethane (F-11	3)	0.2 NE	ND ND	
Vinyl Acetate		0.5 NE) ND	
Vinyl Chloride		0.2 NE) ND	

Xylenes 0.2 250. 1100. Percent Surrogate Recovery Total Fuel (non-methane hydrocarbons) 50. 3700. 13000

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/29/94 MS1/1M97L GD/geepr(dw)/yl KF17M1

Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

109.

Nortan **Ogi**

Gesheng Dai, D. ₽h Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

IN ANALYSIS

COAST-TO-COAST ANALYTICAL SERVICES, INC.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012 (805) 389-1353 FAX (805) 389-1438

Lab Numb	er :	CK-2992-1
CLIENT: T. Bennett / C. Liakos Project	:	Bloomfield NM,
Groundwater Technology		#023353014.32
2501 Yale Boulevard SE, Suite 204 Analyzed	l :	06/17/94
Albuquerque, NM 87106 Analyzed	l by:	ZS
Method	:	EPA TO-14

R E V I S E D REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED	ВҮ	SAMPLED	RECEIVED	
VEW-1D V/S	Air	Jerry A.	Мау	06/16/94 1220	06/17/94	
CONSTITUENT		*PQL ppmv	RESULT ppmv	RESULT mg/cu M	NOTE	
BTEX & Total Fuel In Air					1	
Benzene		0.2	140.	460.		
Toluene		0.2	45.	170.		
Ethylbenzene		0.2	32.	140.		
Xylenes		0.2	250.	1100.		
Total Fuel (non-methane hydrocarbons)		50.	3700.	13000		
1,2-Dichloroethane (EDC)		0.2	ND	ND		
1,2-Dibromoethane (EDB)		0.1	ND	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/29/94 MS1/1M97L GD/gegcc(dw)/yl MS1*A Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D.

Gesheng Dai, Ph. Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

EXCELLENCE IN ANALYSIS

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

	Lab Number	: CK-2992-1
CLIENT: T. Bennett / C. Liakos	Project	: Bloomfield NM,
Groundwater Technology		#023353014.32
2501 Yale Boulevard SE, Suite 204	Analyzed	: 06/17/94
Albuquerque, NM 87106	Analyzed by	: GD
	Method	: GC/TCD

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY		SAMPLED	RECEIVED	
VEW-1D V/S	Air	Jerry A. Ma	Y 06,	/16/94 1220) 06/17/94	
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	NOIE	
FIXED GASES AND METHANE					 _+ <u>+</u>	
Carbon Dioxide		(124389)	0.1	0.4		
Oxygen		(7782447)	0.01	14.		
Nitrogen		(7727379)	0.02	58.		
Methane		(74828)	0.005	28.		
Carbon Monoxide		(630080)	0.1	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/20/94 TCD/06179403 GD/gegcc(dw)/yl KF17TA Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

WERK ()qi

Gesheng Dai, Ph.I Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

	Analyzed : 06/17/94 Analyzed by: ZS Method : EPA TO-14				
REPORT	INSTRUMENT BLAN F OF ANALYTICAL R			Page 1 c	of 2
SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAM	IPLED DATE RE	CEIVED
INSTRUMENT BLANK	Air				
CONSTITUENT		(CAS RN)	*PQL μg/cu M	RESULT µg/cu M	NOTE
VOLATILE ORGANICS BY EPA TO-14					1
Acetone		(67641)	3.	ND	
Benzene		(71432)	0.5	ND	
Bromodichloromethane		(75274)	1.	ND	
Bromomethane (Methyl Bromide)		(74839)	1.	ND	
Bromoform		(75252)	1.	ND	
1,3-Butadiene		(106990)	1.	ND	
2-Butanone (MEK)		(78933)	1.	ND	
Carbon Disulfide		(75150)	5.	ND	
Carbon Tetrachloride		(56235)	1.	ND	
Chlorobenzene		(108907)	0.5	ND	
Chloroethane (Ethyl Chloride)		(75003)	0.5	ND	
2-Chloroethyl Vinyl Ether		(110758)	5.	ND	
Chloroform		(67663)	3.	ND	
Chloromethane (Methyl Chloride)		(74873)	0.5	ND	
Dibromochloromethane		(124381)	1.	ND	
1,2-Dibromoethane (EDB)		(106934)	2.	ND	
1,2-Dichlorobenzene		(95501)	1.	ND	
1,3-Dichlorobenzene		(541731)	1.	ND	
1,4-Dichlorobenzene		(106467)	1.	ND	
1,1-Dichlorœthane		(75343)	0.5	ND	
1,2-Dichloroethane (EDC)		(107062)	1.	ND	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/20/94 MS1/1M87L CD/gegcc(dw)/yl CK9406-17

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

זר	Analyzed : 06/17/94 Analyzed by: ZS Method : EPA TO-14 INSTRUMENT BLANK				
SAMPLE DESCRIPTION	EPORT OF ANALYTICAL R MATRIX	SAMPLED BY	SAM	Page 2 c	
INSTRUMENT BLANK	Air	<u></u>			<u></u>
CONSTITUENT	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	(CAS RN)	*PQL µg/cu M	RESULT µg/cu M	NOIE
1,1-Dichloroethene		(75354)	1.	ND	
cis-1,2-Dichloroethene		(156694)	1.0	ND	
trans-1,2-Dichloroethene		(156605)	1.	ND	
Dichloromethane		(75092)	5.	ND	
1,2-Dichloropropane		(78875)	0.5	ND	
cis-1,3-Dichloropropene		(10061015)	0.5	ND	
trans-1,3-Dichloropropene		(10061026)	0.5	ND	
Ethylbenzene		(100411)	1.	ND	
2-Hexanone		(591786)	0.5	ND	
4-Methyl-2-Pentanone (MIBK)		(108101)	0.5	ND	
Styrene		(100425)	1.	ND	
1,1,2,2-Tetrachloroethane		(79345)	1.	ND	
Tetrachloroethene (PCE)		(127184)	1.	ND	
Toluene		(108883)	1	ND	
1,1,1-Trichloroethane (TCA)		(71556)	1.	ND	
1,1,2-Trichloroethane		(79005)	1.	ND	
Trichloroethene (TCE)		(79016)	0.5	ND	
Trichlorofluoromethane (F-11)		(75694)	1.	ND	
Trichlorotrifluoroethane (F-11)	3)	(76131)	2.	ND	
Vinyl Acetate		(108054)	2.	ND	
Vinyl Chloride		(75104)	0.5	ND	
Xylenes		(1330207)	1.	ND	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/20/94 MS1/1M87L GD/gegcc(dw)/yl CK9406-17

Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

- Dai Nontett

Gesheng Dai, Ph.D Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

IN ANALYSIS

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

	OC SPIKE	Analyz	Analyzed : 06/17/94 Analyzed by: EJ Method : EPA TO-14			
REPOR	T OF ANALYTICAL RE	SULTS		Pag	e 1 of	2
SAMPLE DESCRIPTION	MATRIX	SAMPLED B	Y	SAMPLED DA	TE RECE	IVED
QC SPIKE	Air				<u></u>	
CONSTITUENT		*PQL µg∕cu M	SPIKE AMOUNT	RESULT µg/cu M	%REC	NOTE
VOLATILE ORGANICS BY EPA TO-14						1,2
Acetone		3.		NS		
Benzene		0.5	16.	17.	106.	
Bromodichloromethane	÷	1.		NS		
Bromomethane (Methyl Bromide)		1.	21.	15.	71.	
Bromoform		1.		NS		
1,3-Butadiene		1.	10.	8.8	88.	
2-Butanone (MEK)		1.		NS		
Carbon Disulfide		5.		NS		
Carbon Tetrachloride		1.	31.	35.	113.	
Chlorobenzene		0.5	23.	24.	104.	
Chloroethane (Ethyl Chloride)		0.5		NS		
2-Chloroethyl Vinyl Ether		5.		NS		
Chloroform		3.	25.	27.	108.	
Chloromethane (Methyl Chloride)		0.5		NS		
Dibromochloromethane		1.		NS		
1,2-Dibromoethane (EDB)		2.	10.	8.6	86.	
1,2-Dichlorobenzene		1.		NS		
1,3-Dichlorobenzene		1.		NS		
1,4-Dichlorobenzene 1,1-Dichloroethane		1. 0.5		NS NS		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187

* RESULTS listed as 'NS' were not spiked. PQL = Practical Quantitation Limit

(1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

(2) Zero Air spiked with NIST SRM 1804, Cylinder # ALM-000881.

06/20/94 MS1/1M99L GD/gegcc(dw)/yl CK9406-17

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

REPORT	QC SPIKE C OF ANALYTICAL R	ed by: EJ	: 06/17/94 by: EJ : EPA TO-14 Page 2 of 2			
SAMPLE DESCRIPTION	MATRIX	SAMPLED B	Y.	SAMPLED DA		
QC SPIKE	Air					
CONSTITUENT		*PQL μg/cu M	SPIKE AMOUNT	RESULT µg/cu M	%REC	NOTE
1,2-Dichloroethane (EDC)		1.	20.	22.	110.	
1,1-Dichloroethene		1.		NS		
cis-1,2-Dichloroethene		1.0		NS		
trans-1,2-Dichloroethene		1.		NS		
Dichloromethane	*	5.	17.	21.	124.	
1,2-Dichloropropane		0.5	23.	23.	100.	
cis-1,3-Dichloropropene		0.5		NS		
trans-1,3-Dichloropropene		0.5		NS		
Ethylbenzene		1.	15.	15.	100.	
2-Hexanone		0.5		NS		
4-Methyl-2-Pentanone (MIBK)		0.5		NS		
Styrene		1.		NS		
1,1,2,2-Tetrachloroethane		1.		NS		
Tetrachloroethene (PCE)		1.	34.	38.	112.	
Toluene		1	18.	19.	106.	
1,1,1-Trichloroethane (TCA)		1.	28.	29.	104.	
1,1,2-Trichloroethane		1.		NS		
Trichloroethene (TCE)		0.5	27.	30.	111.	
Trichlorofluoromethane (F-11)		1.	29.	24.	83.	
Trichlorotrifluoroethane (F-113)		2.		NS		
Vinyl Acetate		2.		NS		
Vinyl Chloride		0.5	14.	13.	93.	
Xylenes		1.	15.	15.	100.	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 * RESULTS listed as 'NS' were not spiked. PQL = Practical Quantitation Limit

06/20/94 MS1/1M99L GD/gegcc(dw)/yl CK9406-17 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

29 Vot vit ()ai Gesheng Dai, Ph.D.

Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

COAST-TO-COAST ANALYTICAL SERVICES, INC.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012 (805) 389-1353 FAX (805)389-1438

	QC Batch ID: KF17TA CK-2992-1
CLIENT: T. Bennett / C. Liakos	Project : Bloomfield NM,
Groundwater Technology	#023353014.32
2501 Yale Boulevard SE, Suite 204	Analyzed : 06/17/94
Albuquerque, NM 87106	Analyzed by: GD
	Method : GC/TCD
QC DUPLICATE	

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMP	LED BY	SAMPLED	DATE	RECEIVED	
VEW-1D V/S	Air	Jerry A. May		06/16/94		06/17/94	
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	&DIFF	NOTE	
FIXED GASES AND METHANE							
Carbon Dioxide		(124389)	0.1	0.4	0.		
Oxygen		(7782447)	0.01	14.	0.		
Nitrogen		(7727379)	0.02	58.	0.		
Methane		(74828)	0.005	27.	3.6	;	
Carbon Monoxide		(630080)	0.1	ND			

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/20/94 TCD/06179404 GD/gegcc(dw)/yl CK2992-1 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

Dai Joshell

Gesheng Dai, Ph D Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

Air, Water & Hazardous Waste Sampling, Analysis & Consultation • Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories

COAST-TO-COAST ANALYTICAL SERVICES, INC.

EXCELLENCE IN ANALYSIS SoCal Division (Camarillo Laboratory) (805) 389-1353 4765 Calle Quetzal, Camarillo, California 93012 FAX (805) 389-1438 QC Batch ID: KF17TA CLIENT: Coast-to-Coast Analytical Services, Inc. Analyzed : 06/17/94 Analyzed by: YL Method : GC/TCD QC SPIKE REPORT OF ANALYTICAL RESULTS Page 1 of 1 SAMPLE DESCRIPTION MATRIX SAMPLED DATE RECEIVED SAMPLED BY QC SPIKE Air CONSTITUENT *PQL %REC NOTE SPIKE RESULT PERCENT AMOUNT PERCENT FIXED GASES AND METHANE Carbon Dioxide 0.1 15. 15. 100. 99. Oxygen 0.01 7.1 7.0 Nitrogen 0.02 66. 66. 100. Methane 0.005 4.6 4.6 100. Carbon Monoxide 7.1 7.0 0.1 99.

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/20/94 TCD/06179405 GD/gegcc(dw)/yl CK2992-1 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

nai U CA Gesheng Dai Ph D

Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

Air, Water & Hazardous Waste Sampling, Analysis & Consultation • Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories

C-0427-700-		Techacoly FAX#: 505 242 1103 [0] 0	CLUD SE # 2.04 Sile Location: BLOOMFLEUD, N.M. RED D. a. N.M. F. 7.06 D. a. N.M. F. 7.06	Client Project ID: (#) 023530(4.32		Matrix Method Sampling Secret	Соглозичу С Соглозичу С Соглозичи С Соглозичи С Соглозичи С Соглозичи С Соглозичи С Соглозичи С Соглози С С Соглози С С Соглози С С Соглози С С С С С С С С С С С С С С	13 Z X C C C C				secial Line and the special DETECTION LIMITS I REMARKS. (24. 8.2.2.3.2.4.2.4.2.		D.# Storage Location SPECIAL REPORTING REQUIREMENTS Lab Use Only Lot #: Storage Location	QA/QC Level Fax□ D Other □	Relinquiched by Sampler: A Mound C//6/941 1500 Received by:	Relinguishe	
	Company Name:	ý	Company Address: 2-501 year Clark	Manager, Aur	dur field			VEW-ID V/S					$\begin{array}{c c} & AI \\ y & (24 hr) \\ \text{inted} & (48 hr) \\ \text{intess Days} \end{array} = \begin{array}{c c} GTEL Cc \\ \text{Outel/Cc} \\ \text{continues} \end{array}$		Blue CLP Other Other	Relinqu		Relinqui

SENDER'S COPY	
DROP. OFFF YOUR PACKAGE AND SAVE	EIBILL EIPICES ACCOUNT I RID - 0.389-6
P Required appear on in a appear on in a appear on in a appear on in appear on appear on in appear on appear on in appear on appear on appear on appear on a appear on a ppear on a ppear on a ppear on a appear on a ppear on a ppear on a ppear on a ppear on a appear on a ppear on a p	Is AREAL FOR SHIMHENS WITHIN THE CONTINENT ENTERNATIONAL HAVENTS WITHIN THE CONTINENT ENTERNATION OF CONTINUES OF CONTINUES ENTERNATION OF CONTINUES OF CONTINUES OF CONTINUES ENTERNATION OF CONTINUES OF CONTINUES OF CONTINUES OF CONTINUES ENTERNATION OF CONTINUES OF CONTINUES OF CONTINUES OF CONTINUES OF CONTINUES OF CONTINUES OF CONTINUES ENTERNATION OF CONTINUES OF CONTINUES ENTERNATION OF CONTINUES OF CO
Image: Street Address (Weight) Exact Street Address (Weight) Image: Bill Coefficient Clard City Image: Bill Coefficient Cla	TRAC Scipient's Name) Please
DEX LOCATION, Print FEDEX Address of P.O. Zijo Codes.)	AIRBILL PACKAGE TRACKING NUMBER TRACKING NUMBER SENDER'S COPY Macioants Prove Number (Very Integration)
epartment/Fioor N	Recipients Proce Number (Very Important)

i.

L

APPENDIX E

"ESTIMATION OF EFFECTIVE CLEANUP RADIUS FOR SOIL-VAPOR EXTRACTION SYSTEMS", SCIENTIFIC PAPER FROM JOURNAL OF SOIL CONTAMINATION

Estimation of Effective Cleanup Radius for Soil-Vapor Extraction Systems

David H. Bass, Sc.D., CHMM

Groundwater Technology, Inc., 3 Edgewater Drive, Norwood, MA 02062

ABSTRACT: Soil-vapor extraction (SVE) is a standard and effective *in situ* treatment for the removal of volatile contaminants from vadose-zone soil. The duration of SVE operation required to reach site closure is quite variable, however, ranging up to several years or more. An understanding of the contaminant recovery rate as a function of distance from each vapor-extraction well allows SVE systems to be designed so that cleanup goals can be achieved within a specified time frame.

A simple one-dimensional model has been developed that provides a rough estimate of the effective cleanup radius (defined as "the maximum distance from a vapor extraction point through which sufficient air is drawn to remove the required fraction of contamination in the desired time") for SVE systems. Because the model uses analytical rather than numerical methods, it has advantages over more sophisticated, multidimensional models, including simplicity, speed, versatility, and robustness.

The contaminant removal rate at a given distance from the vapor-extraction point is assumed to be a function of the local rate of soil-gas flow, the contaminant soil concentration, and the contaminant volatility. Soil-gas flow rate as a function of distance from the vapor-extraction point is estimated from pilot test data by assuming that the infiltration of atmospheric air through the soil surface is related to the vacuum in the soil. Although widely applicable, the model should be used with some caution when the vadose zone is highly stratified or when venting contaminated soil greater than 30 ft below grade. Since 1992, Groundwater Technology, Inc. has been using this model routinely as a design tool for SVE systems.

KEY WORDS: soil-vapor extraction, modeling, design tool, effective radius.

I. BACKGROUND

Soil-vapor extraction (SVE) is a widely used *in situ* remediation technique for treatment of contaminated vadose-zone soil. SVE removes volatile organic compounds (VOCs) from vadose-zone soils by inducing air flow through contaminated

1058-8337/93/\$.50 © 1993 by AEHS

areas. SVE is typically performed by applying a vacuum to vertical vapor-extraction wells screened through the level of soil contamination, using a vacuum blower. The resulting pressure gradient causes the soil gas to migrate through the soil pores toward the vapor-extraction wells. VOCs are volatilized and transported out of the subsurface by the migrating soil gas. In addition, SVE increases oxygen flow to contaminated areas, thus stimulating natural biodegradation of aerobically degradable contaminants.

The performance of SVE systems improves as the air permeability of the vadose-zone soil increases. SVE is applicable to any compound with a vapor pressure greater than about 1 mmHg. This includes a wide variety of common contaminants such as benzene, toluene, ethylbenzene, xylene, gasoline hydrocarbons, mineral spirits, methyl *t*-butyl ether, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, methanol, acetone, and butanone. Because vapor pressure increases with temperature, SVE also can be applied to semivolatile compounds by heating the vadose zone with steam or hot air.

The efficacy of a SVE system is determined by its ability to draw sufficient air through the contaminated portion of the vadose zone. The number and spacing of vapor-extraction wells and the soil-gas extraction rate are the critical parameters determining air flow through the subsurface. In addition, several modifications to SVE systems are sometimes used in an effort to enhance the flow of air through the contamination zone. These include air injection (forcing air or allowing air to be drawn through wells screened at the level of the vadose-zone contamination) and surface sealing (paving a surface or covering an unpaved surface with a layer of polyethylene film to prevent infiltration of air and water from the surface).

Vapor-extraction well spacing is typically determined by performing a field pilot test to determine the radius-of-influence (ROI) at the site under specified SVE conditions. Historically, pilot test data were interpreted by assessing the distance from the vapor-extraction well where an arbitrary vacuum level (usually 0.01 to 1 in of water column) could be measured in the soil. Although such "rules of thumb" often result in adequate SVE system design, they do not yield any information on the quantity of air moving through the vadose zone. This approach, therefore, cannot provide any assessment of remediation time, nor can it provide design information specific to the contaminant (a system designed to remove benzene will be less effective on the less volatile xylene, for example).

Several alternative approaches to interpretation of SVE pilot test data have recently been developed based on multidimensional modeling of vacuum and soilgas flow fields in the vadose zone. Johnson *et al.* (1990a, 1990b) derived equations describing air flow in the vadose zone beneath a sealed surface and applied these equations to the SVE remediation of gasoline contaminated soil. Baehr *et al.* (1989) and Marley *et al.* (1990) and others have used numerical solutions for systems with unsealed or partially sealed surfaces, and Lingineni and Dhir (1992) superimposed variable temperature on this approach. Joss and Baehr (1993) have recently adapted MODFLOW, a groundwater numerical modeling program, to SVE applications.

II. MOTIVATION AND OBJECTIVES

The modeling efforts discussed in the previous section represent important advances in the understanding of SVE and provide a basis for more effective design of SVE systems. However, they are not universally applicable. The data available at many small sites where SVE is considered, such as retail gasoline stations and dry cleaning facilities, are often sparse, and budgets rarely exist for gathering the more extensive data required for sophisticated models. Most of these sites have been repeatedly excavated and refilled, creating subsurface anisotropies that confound the limited data. Furthermore, many of the models assume that the surface is sealed, a condition not commonly encountered (and sometimes not even feasible) at such retail sites. Finally, multidimensional models typically require substantial time to input variables and to run, making the design process tedious.

Therefore, the need exists for a model that can provide rapid order-of-magnitude assessments of potential SVE performance based on very limited data. For this application, a simpler one-dimensional model is adequate; the data quality is ordinarily too poor and the subsurface too laden with unidentified anisotropies to warrant a more sophisticated, multidimensional approach. To be most useful, such a model must exhibit the following characteristics:

- Simplicity: cumbersome computer models are intimidating and tend not to be used; a really useful model must be readily accessible by the most junior of engineers.
- Speed: instantaneously, solutions enable an engineer to apply many "what if" scenarios in a short period of time, and hence rapidly converge on an optimum design.
- Versatility: depending on the specific project requirements, the model may be called on to specify SVE well spacing, soil-gas extraction rate, cleanup level, or cleanup time at sites with sealed or unsealed surfaces.
- Robustness: the model must provide reasonable estimates of SVE performance over wide ranges of soil permeability, soil-gas extraction rate, soil temperature, and contaminant volatility.

III. MODEL DERIVATION

The goal of the model is to determine the maximum distance from the vaporextraction well through which sufficient air is drawn to remove the required

fraction of contamination in the desired time. This is the effective radius, R_E , and it differs from the ROI, which is the distance from the vapor-extraction well that vacuum can be detected. The effective radius is based on site-specific conditions and SVE system parameters, and it is specific to the contaminant, cleanup goals, and cleanup time frame.

This derivation is applicable to sites with unsealed surfaces and single-well SVE systems or multiple-well systems in which each well is operated individually, rather than simultaneously (as if often done when surface infiltration of air is insufficient to achieve adequate remediation between vapor-extraction wells). This approach has also been extended to simultaneously operated multiple-well systems and to sites at which an engineered surface seal is to be applied, and these will be the subject of future publications.

Figure 1 illustrates the general air-flow patterns through soil during SVE. Because this derivation is for a single-well SVE system, it is assumed that the effective radius will extend to the edge of the contaminant plume. At the outer edge of the plume, all air entering the contamination zone is initially uncontaminated. As the air flows through the soil, contaminants rapidly equilibrate between soil and air phases (the rapid approach to equilibrium was demonstrated by Johnson *et al.*, 1990a). This equilibration is determined by contaminant-soil concentration, vapor pressure, and water solubility, and by the moisture and organic content of the soil. Of these parameters, only the contaminant soil concentration changes dramatically during the course of the vapor extraction, and so for a given site and contaminant, the equilibrium-gas concentration can be expressed generally as a function of soil concentration:

$$C_{g} = f(C_{s}) \tag{1}$$

The rate at which contaminant mass is lost from soil must equal the rate at which the soil gas flowing through the soil carries the contamination away:

$$\frac{dM_s}{dt} = \frac{d(V_sC_s)}{dt} = C_gq = f(C_s)q$$
(2)

or

$$\frac{dC_s}{f(C_s)} = \frac{q}{V_s} dt$$
(3)

where $M_s = mass$ rate of contaminant removal from soil, t = time, $V_s = volume$ of soil (control volume), q = flow rate of gas through control volume.

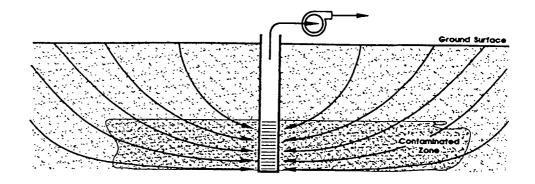
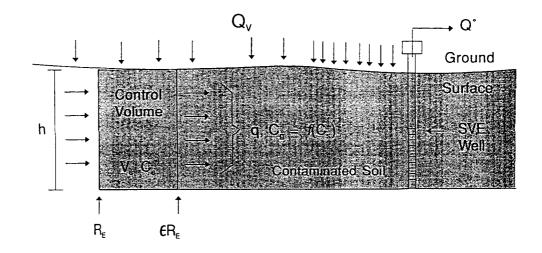



FIGURE 1. Generalized air flow paths in a soil-vapor extraction system.

FIGURE 2. Conceptualization of the model. The system is to be designed so that the effective radius, R_E, corresponds to the extent of contamination. Clean air enters the contaminated zone by horizontal movement through the soil and by vertical infiltration through the ground surface. The overall cleanup time is dominated the remediation rate for the contaminated soil between ϵR_E and R_E ("control volume"), which is determined by the air flow rate, q, through this portion of the contaminated zone.

The contaminated zone is represented as a uniform cylinder of radius R_E and height h, as indicated in Figure 2. Remediation will occur from the outside of the plume inward (due to lateral introduction of uncontaminated air into the contamination zone) and from the top down (due to vertical infiltration of air). Although the outermost portion of the contamination zone will be treated first, the rate of treatment at this location will be the slowest because the air flux decreases rapidly with distance from the vapor-extraction well. The control volume is therefore taken

·홍승 · 영상 수 있는 것은 것은 것은 것은 것은 것은 가 바다는 것을 가 불렀다.

as a fraction of the contamination zone furthest from the vapor-extraction well, that is, an annulus of outer radius R_E and inner radius ϵR_E , where $O < \epsilon < 1.*$ The control volume is then

$$V_{s} = \pi \left(R_{E}^{2} - \left(\epsilon R_{E} \right)^{2} \right) h = \left(1 - \epsilon^{2} \right) \pi R_{E}^{2} h$$
(4)

The gas flow through the control volume, q, is calculated by assuming that, at a distance r from the vapor-extraction well, any infiltration of atmospheric air through the soil surface is related to the vacuum in the soil and the area of the ground surface:

$$dQ_{v} = k_{v} \left(P_{a}^{2} - P_{r}^{2} \right) dA = k_{v} \left(P_{a}^{2} - P_{r}^{2} \right) 2\pi r \, dr$$
(5)

where Q_v = vertical infiltration of atmospheric air, r = distance from the vapor extraction well, P_a = absolute atmospheric pressure, P_r = absolute pressure at distance r from the vapor-extraction well, k_v = constant, A = area of ground surface. The term $k_v(P_a^2 - P_r^2)$ comes from Darcy's Law for flow of a compressible fluid. The constant k_v is related to the permeability of the soil to vertical gas infiltration, as well as to the gas viscosity, density, and travel distance.

Because all the air collected at the vapor-extraction well must come ultimately from the atmosphere through the ground surface, the integral of Equation 5 from the well radius to the radius of influence yields the rate of total soil-gas recovery, Q° :

$$\int_{r_{w}}^{R_{I}} dQ_{v} = 2\pi k_{v} \int_{r_{w}}^{R_{I}} \left(P_{a}^{2} - P_{r}^{2} \right) r dr = Q^{o}$$
(6)

where $r_w = radius$ of vapor-extraction well, $R_1 = radius$ of influence.

Substituting Equation 6 into Equation 5 and integrating again, this time from the well radius to the inner edge of the control volume, yields

$$\frac{Q_{v}}{Q^{o}} = \frac{\int_{r_{w}}^{e_{R_{E}}} (P_{a}^{2} - P_{r}^{2}) r \, dr}{\int_{r_{w}}^{R_{1}} (P_{a}^{2} - P_{r}^{2}) r \, dr}$$
(7)

The value of the parameter ε is selected so that vertical infiltration at distances less than εR_E from the vapor-extraction well provides a rate of remediation at least comparable with the remediation rate within the control volume due to lateral and vertical introduction of clean air. In other words, by the time the control volume is clean, the rest of the contaminated zone will have been remediated as well. For most sites where SVE is considered, ε ranges from 0.7 to 0.9. Within this range, the precise value of ε selected is not crucial, because values of R_{ε} computed from the design equation derived later are not particularly sensitive to changes in ε , varying typically by 10% or less.

The gas passing through the control volume is the total gas flow collected less the vertical infiltration that occurs closer to the SVE well

$$q = Q_{v}^{o} - Q_{v} = Q_{v}^{o} \frac{\int_{r_{w}}^{R_{I}} (P_{a}^{2} - P_{r}^{2})r \, dr - \int_{r_{w}}^{\epsilon R_{E}} (P_{a}^{2} - P_{r}^{2})r \, dr}{\int_{r_{w}}^{R_{I}} (P_{a}^{2} - P_{r}^{2})r \, dr}$$
(8)

Combining Equations 3, 4, and 8 and integrating yields

$$\int_{C_{s}}^{C_{s}^{o}} \frac{dC_{s}}{f(C_{s})} = \frac{\int_{r_{w}}^{R_{1}} (P_{a}^{2} - P_{r}^{2})r \, dr - \int_{r_{w}}^{\epsilon R_{E}} (P_{a}^{2} - P_{r}^{2})r \, dr}{(1 - \epsilon^{2})\pi R_{E}^{2} \int_{r_{w}}^{R_{1}} (P_{a}^{2} - P_{r}^{2})r \, dr} \frac{Q^{o}t}{h}$$
(9)

where C_s^o = initial contaminant concentration in the soil.

Whenever dC_s/f(C_s) and P_r² dr are analytically integrable, Equation 9 provides a vehicle for relating the effective radius (R_E) to soil concentration in the control volume (C_s), soil-gas recovery rate (Q°), and remediation time (t) without the use of cumbersome numerical methods. Depending on site-specific conditions, any of a number of expressions for P_r and f(C_s) are appropriate.

For example, Johnson *et al.* (1990a) derived the following expression for P_r , which is applicable when the ground surface is sealed:

$$P_{r}^{2} = P_{w}^{2} + \left(P_{a}^{2} - P_{w}^{2}\right) \frac{\ln(r/r_{w})}{\ln(R_{I}/r_{w})}$$
(10)

where P_w = absolute pressure in the vapor extraction well.

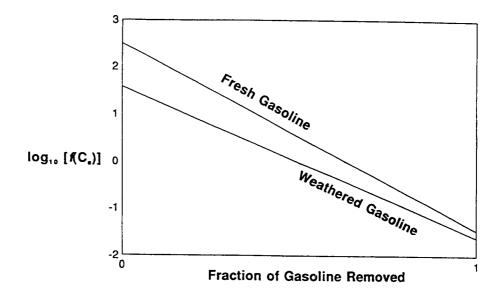
When the ground surface is not sealed, P_r can be approximated by the following simple exponential relationship over a substantial range of distances from the vapor-extraction well (i.e., when r is greater than a few feet) (Mohr, personal communication, 1992):

$$\ln(\mathbf{P}_{r}) = \mathbf{c}_{1}\mathbf{r} + \mathbf{c}_{2} \tag{11}$$

where c_1 and c_2 are fitted constants.

At lower soil concentrations, it is proper to assume ideal partitioning between soil and gas ($f(C_s) = K_{gs}C_s$), whereas above a compound-specific threshold soil concentration, vapor concentration becomes independent of soil concentration

(Lyman *et al.*, 1990); under such conditions, $f(C_s)$ is simply the contaminant saturated-vapor density and is constant. More complex representations of $f(C_s)$ are required for soil contaminated with a diverse mixture of compounds, such as gasoline. As SVE proceeds, the more volatile species are preferentially removed and the remaining contamination becomes less volatile. Therefore, $f(C_s)$ must decrease as C_s decreases, and this effect is demonstrated in Figure 3 for fresh and weathered gasoline. As is evident from the figure, the decrease in $f(C_s)$ with decreasing C_s is roughly exponential.


IV. MODEL IMPLEMENTATION AND LIMITATIONS

Equation 9 contains the following parameters:

- gas-soil equilibrium relationship $(f(C_s))$, which is a function of soil-gas temperature and contaminant volatility
- pressure as a function of distance from the vapor-extraction well (P_r), which is a function of vapor-extraction well pressure (P_w) if Equation 10 is used the fitted constants c₁ and c₂ if Equation 11 is used
- depth of vented interval $(h)^{\dagger}$
- soil-gas recovery rate (Q°)
- treatment time (t)
- effective radius (R_E)
- vapor-extraction well radius (r_w)
- radius of influence (R_I) and
- extent of remediation $(1 C_{\gamma}/C_{\gamma}^{2})$.

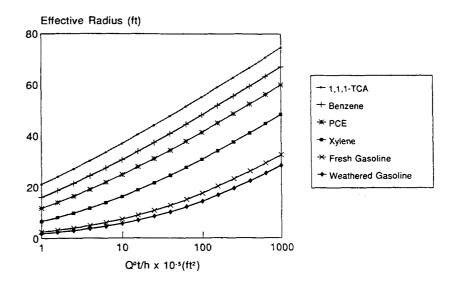
Equation 9 can be evaluated to solve for any of these variables, provided all others are specified. The model has been implemented in a computer program written in Basic that prompts the user to choose which variable to solve for (effective radius, cleanup time, extent of remediation, or soil-gas recovery rate). The user then

The vented interval is the portion of the vadose zone through which air movement is induced during SVE. If the vadose zone is fairly homogeneous, air movement will be induced throughout, and it is appropriate to consider the vented interval to be the depth to the bottom of the vapor-extraction well. When the vadose zone is stratified, each contaminated stratum is vented separately. If a contaminated low permeability stratum underlying a clean higher permeability stratum is being vented, the vented interval should be considered to be the thickness of the low permeability stratum. This approach is not applicable, however, for a higher permeability stratum underlying a substantial, continuous lower permeability stratum.

FIGURE 3. $f(C_s)$ for fresh and weathered gasoline. This figure is derived from constituent data in Johnson *et al.* (1990a).

specifies the contaminant, choosing from a list of common volatile soil contaminants or entering a new contaminant with its vapor pressure and vaporization enthalpy. Values for all other parameters are then entered, and the value of the dependent variable is displayed virtually instantaneously.

Of course, the simplifying assumptions that provide this ease of calculation also contribute to the uncertainty in the result. Significant subsurface anisotropies (sewers, foundations, etc.) can upset the assumed radial symmetry of the air flow, and extreme stratification can make the assumption of uniform air flow across the vented stratum inappropriate. However, site data are often inadequate to characterize the anisotropies in any event, and it is rare that horizontal and vertical permeabilities differ by more than an order of magnitude within a vented stratum. Equation 9 can therefore provide reasonable rough estimates of SVE system performance over a wide range of site conditions.

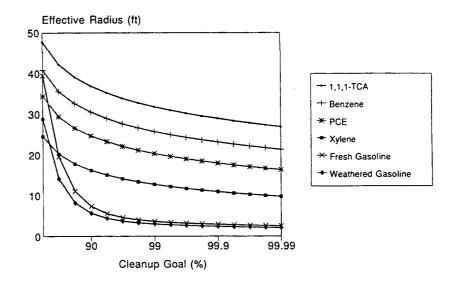

However, because the model assumes the vadose-zone conditions to be uniform with depth, caution should be exercised when applying this model to SVE systems venting strata greater than about 30 ft below grade. In addition, Equation 9 is not appropriate when vertical infiltration of air through the ground surface is virtually nonexistent. Such a situation would arise during venting of a high permeability stratum underlying an extensive, substantial, and continuous stratum of much lower permeability. Fortunately, such situations occur only rarely, and they can be modeled effectively using the sealed surface approach taken by Johnson *et al.* (1990a, 1990b).

V. EXAMPLES

Equation 9 indicates that for a fixed cleanup level, changes in vapor extraction rate (Q°) , cleanup time (t), and depth of the vented interval (h) will not effect the effective radius so long as $Q^{\circ}t/h$ remains constant. In other words, the same system performance can be obtained in half the time by doubling the vapor-extraction rate or halving the depth of the vented interval.

Figure 4 shows an example of how effective radius varies with Q°t/h for a variety of common volatile soil contaminants (where cleanup is defined as 90% removal, ideal soil-vapor partitioning and an unsealed surface are assumed). The conditions in this example are typical for SVE systems, and the resulting effective radius varies from a few feet to as much as 70 ft. Effective radius is most sensitive to the volatility of the contaminant; the effective radius for weathered gasoline is 3 to 10 times less than for 1,1,1-trichloroethane under the same conditions. Large changes in Q°t/h are required to substantially affect effective radius, especially for the more volatile contaminants; doubling the effective radius generally requires increasing Q°t/h by a factor of 10 to 50.

This relationship between effective radius and $Q^{\circ}t/h$ has profound implications regarding SVE system design. Decreasing the spacing between vapor-extraction wells increases the number of wells required, but also decreases the effective radius required. This greatly reduces remediation time and/or soil-gas recovery rate requirements. For example, a reduction in effective radius from 40 ft to 30 ft would


FIGURE 4. Effective radius at a typical SVE site as a function of Q°t/h for several volatile contaminants (90% cleanup, ideal soil-vapor partitioning, and unsealed surface assumed).

200

nearly double the number of vapor-extraction wells but would also reduce remediation time by nearly an order of magnitude. The lower soil-gas recovery rates required when effective radius is reduced in many cases results in lower costs associated with less powerful blowers that more than make up for the costs associated with additional vapor-extraction wells.

Effective radius also varies with desired cleanup level, as shown in Figure 5 for a typical unsealed system where Q° is 30 scfm per vapor extraction well, h is 10 ft, and t is 1 year. Contaminant volatility has a large impact on effective radius, but increasing cleanup level from 90% to 99.99% only decreases the effective radius for single component systems by 35 to 50%. For contaminant mixtures such as gasoline, however, changing cleanup level can have a more dramatic effect. This is because the volatility of the mixture decreases over the course of the SVE process, because the most volatile components are removed first. The volatility of contaminant mixtures is thus a function of cleanup level, and so effective radius is strongly affected by changes in cleanup level.

This model can also be used to assess the effect of soil temperature on effective radius, cleanup level, or remediation time. The effectiveness of SVE can be significantly enhanced by injecting hot air, steam, or radio frequency to heat vadose-zone soil, because $f(C_s)$ increases rapidly with increasing temperature. Evaluating Equation 9 at various temperatures gives an indication of the magnitude of SVE enhancement. For example, 90% removal of fresh gasoline from a 10-ft depth of medium sand, 20 ft from a vapor-extraction well pulling 30 cfm is

FIGURE 5. Effective radius at a typical SVE site as a function of cleanup goal $(Q^{et}/h = 1.6 \times 10^6 \text{ ft}^2; \text{ ideal soil-vapor partitioning and unsealed surface assumed}).$

estimated to require almost 5 years of SVE operation at 50°F, but 16 months at 100°F, 6 months at 150°F, and 10 weeks at 200°F.

VI. CONCLUSIONS

A simple one-dimensional model has been developed that can provide rapid orderof-magnitude assessments of potential SVE performance based on very limited data. Because the model uses analytical rather than numerical methods, it has advantages over more sophisticated, multidimensional models, including simplicity, speed, versatility, and robustness. Although accuracy and resolution are somewhat reduced, the use of this model instead of more complicated approaches is generally justified, given the limited site characterization data ordinarily available and the subsurface anisotropies commonly encountered at most small SVE sites. Since 1992, Groundwater Technology, Inc. has been using this model routinely as a design tool for SVE systems.

REFERENCES

- Baehr, A. L., Hoag, G. E., and Marley, M. C., 1989. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport. J. Contam. Hydrol. 4:1.
- Johnson, P. C., Kemblowski, M. W., and Colthart, J. D., 1990a. Quantitative analysis for the cleanup of hydrocarbon-contaminated soils by in-situ soil venting. *Groundwater* **28–3**:413.
- Johnson, P. C., Stanley, C. C., Kemblowski, M. W., Byers, D. L., and Colthart, J. D., 1990b. A practical approach to the design, operation, and monitoring of in situ soil-venting systems. *Ground Water Monitoring Review*, Spring.

Joss, C. J. and Baehr, A. L., 1993. AIRFLOW — an adaptation of the groundwater flow code MODFLOW to simulate three dimensional air flow in the unsaturated zone. (To be published as a U.S. Geological Survey open file report).

- Lingineni, S. and Dhir, V. K., 1992. Modeling of soil venting processes to remediate unsaturated soils. J. Environ. Eng. 118-1:135.
- Lyman, W. J., Feehl, W. F., and Rosenblatt, D. H., 1990. *Handbook of Chemical Property Estimation Methods*. Washington, DC, American Chemical Society.
- Marley, M. C., Richter, S. D., Cody, R. J., and Cliff, B. L., Modeling for *in-situ* evaluation of soil properties and engineered vapor extraction system design. *Presented at the NWWA/API Conference, Houston, TX* (November 1990).

Mohr, D., 1992. Chevron Research & Technology Co., Richmond, CA, personal communication.

APPENDIX F

COMPUTER-GENERATED OUTPUT FROM VENT-ROI 3.0

.BRC/Pilottest.rpt

GROUNDWATER

4

VEW-1S ANALYSIS

BRC/Pilottest.rpt

Į.

1

11 8

ANALYSIS OF VACUUM DISSIPATION DATA FROM PILOT TEST

42 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	.15	824
* MP2	33	0	
rw2	33	.185	733
p2	40	.12	921
mw4	57	.1	-1

Slope	=031 per foot
Intercept	= 2.585 inches of water column
R squared	= .682

40 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	.1	-1
* MP2	33	0	
rw2	33	.13	886
p2	40	.1	-1
mw4	57	.05	-1.301

Slope	=	035	per foo	ot		
Intercept	=	2.387	inches	of	water	column
R squared	=	.714				

28 INCHES APPLIED VACUUM:

ļ

Monitoring Well MP1 * MP2 rw2 p2 mw4		Measured Vacuum (inches w.c.) .05 0 .09 .08 .03	log10(Vac) -1.301 -1.046 -1.097 -1.523				
<pre>* = outlier, not considered in analysis Additional data point based on applied vacuum: 5.6 inches of water column at 0 feet from SVE well</pre>							
Slope Intercept R squared	=035 per f = 1.533 inche = .67	oot s of water column					
16 INCHES APPLIED VACU Monitoring Well MP1 * MP2 rw2	Distance from	Measured Vacuum (inches w.c.) .03 0 .015	log10(Vac) -1.523 -1.824				
* p2 * mw4	40 57	0	10001				
 * = outlier, not considered in analysis Additional data point based on applied vacuum: 3.2 inches of water column at 0 feet from SVE well 							
Slope Intercept R squared	=073 per f = 2.053 inche = .903	oot s of water column	l				

Average slope from tests at 4 applied vacuums = -.043 per foot.

Marning! Calculated ratio of horizontal to vertical permeability is .73 which hay indicate either a short circuit during the pilot test (caused perhaps by a poor well seal or the proximity of a past excavation) or a failure to reach steady state subsurface vacuum during the test. The pilot test results are therefore suspect, and the site may be unsuitable for SVE. Kh/Kv will be adjusted to 1.0 for the remainder of the analysis.

(Press any key to continue)

2. 3. 4. OBSERVED AND PREDICTED FLOW RESPONSE TO APPLIED VACUUM

Applied Vacuum	Observed Flow Response	Predicted Flow Response	Relative Percent			
(inches w.c.)	(scfm)	(scfm)	Difference			
4.0		110.00				
42	115	118.22	2.8 %			
40	94	112.88	18.3 %			
28	83	80.24	-3.4 %			
16	54	46.55	-14.8 %			
Mean Value of Relat	ive Percent Diffe	erence:	.7 %			
Mean Absolute Value	e of Relative Pero	cent Difference:	9.8 %			
Standard Deviation of Prediction:						
Soil Permeability in Horizontal Direction (sq cm): 1.87E-						
Standard Deviation of Soil Permeability Estimation (sq cm):						
Ratio of Horizontal to Vertical Permeability: 1						

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

RC site in BLOOMFIELD, NM

Xylene/Ethylbenzene (single component, volatile and biodegradable)
Molecular Weight= 106Vapor Pressure= 3.48 mm HgTemperature Constant= 1904 deg KLiquid Density= .87 g/ccZero Order Bioremediation Rate Constant= 5 ppm/dayInitial Total Soil Contaminant Concentration= 7750 ppmResidual (Non-degradable) Soil Concentration= 1 ppm

Vertical wells in 10 inch boreholes, not extending to groundwater, screened from 5 to 13 feet

Thickness of Vented Soil Interval	= 23.6 feet
Slope of log10(P) vs Distance from Pilot Test	= .043 per ft
Soil Gas Temperature	= 50 deg F
Applied Vacuum	= 42 in. water column
Air Flow Rate per Vapor Extraction Well	= 118.2 scfm
Desired Time to Cleanup	= 730 days
Cleanup Goal	= 90 % removal
DLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = 3	30.93 FEET
INTERWELL EFFECTIVE RADIUS = 2	24.6 FEET

BIODEGRADATION:SINGLE WELL RADIUS OF INFLUENCE = 36.01 FEET
INTERWELL RADIUS OF INFLUENCE = 30.6 FEETYOL. PLUS BIO.:SINGLE WELL EFFECTIVE RADIUS = 36.01 FEET
INTERWELL EFFECTIVE RADIUS = 30.6 FEET
= 30.6 FEET

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Weathered Gasoline/JP-4 (contaminant mixture, volatile and biodegradable) log10(MW P*) = 1.34 - 3.19 Ŏm Temperature Constant = 1904 deg K Liquid Density = .7 g/cc Zero Order Bioremediation Rate Constant = 5 ppm/day Initial Total Soil Contaminant Concentration = 7750 ppm Residual (Non-degradable) Soil Concentration = 1 ppm

Vertical wells in 10 inch boreholes, not extending to groundwater, screened from 5 to 13 feet

Thickness of Vented Soil Interval	= 23.6 feet
Slope of log10(P) vs Distance from Pilot Test	= .043 per ft
Soil Gas Temperature	= 50 deg F
Applied Vacuum	= 42 in. water column
Air Flow Rate per Vapor Extraction Well	= 118.2 scfm
Desired Time to Cleanup	= 730 days
Cleanup Goal	= 90 % removal
-	

VOLATILIZATION:	SINGLE WELL EFFECTIVE RADIUS INTERWELL EFFECTIVE RADIUS	16.17 FEET 3.93 FEET
BIODEGRADATION:	SINGLE WELL RADIUS OF INFLUENCE INTERWELL RADIUS OF INFLUENCE	
VOL. PLUS BIO.:	SINGLE WELL EFFECTIVE RADIUS INTERWELL EFFECTIVE RADIUS	34.42 FEET 28.74 FEET

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Diesel/No. 2 Fuel Oil (contaminant mixture, volatile and biodegradable) loq10(MW P*) =-.05 - 6.03 Õm Temperature Constant = 1904 deg KLiquid Density = .8 g/ccZero Order Bioremediation Rate Constant = 5 ppm/dayInitial Total Soil Contaminant Concentration = 7750 ppm Residual (Non-degradable) Soil Concentration = 1 ppm Vertical wells in 10 inch boreholes, not extending to groundwater, screened from 5 to 13 feet Thickness of Vented Soil Interval = 23.6 feet Slope of log10(P) vs Distance from Pilot Test = .043 per ft Soil Gas Temperature = 50 deg FApplied Vacuum = 42 in. water column = 118.2 scfmAir Flow Rate per Vapor Extraction Well Desired Time to Cleanup = 730 days= 90 % removal Cleanup Goal OLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = .22 FEET INSUFFICIENT SURFACE INFILTRATION FOR MULTIPLE WELL SYSTEM SINGLE WELL RADIUS OF INFLUENCE = 36.01 FEET IODEGRADATION:

INTERWELL RADIUS OF INFLUENCE = 30.6 FEET

VOL. PLUS BIO.:SINGLE WELL EFFECTIVE RADIUS= 2.37 FEETINTERWELL EFFECTIVE RADIUS= .1 FEET

VEW-1D ANALYSIS

10 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	1.9	.279
MP2	33	1.2	.079
MP4	225	.035	-1.456
RW2	33	1.2	.079
P2	40	1.1	.041
MW4	57	1	0

Additional data point based on applied vacuum: 2 inches of water column at 0 feet from SVE well

Slope	=	008	per foo	ot		
Intercept	=	2.348	inches	of	water	column
R squared	=	.992				

21 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	4	.602
MP2	33	2.6	.415
MP4	225	.08	-1.097
RW2	33	2.6	.415
P2	40	2.5	.398
MW4	57	1.9	.279

Additional data point based on applied vacuum: 4.2 inches of water column at 0 feet from SVE well

Slope	=008 per foot
Intercept	= 4.928 inches of water column
R squared	= .995

Average slope from tests at 4 applied vacuums = -.008 per foot.

ANALYSIS OF VACUUM DISSIPATION DATA FROM PILOT TEST

18 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	•
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	3.4	.531
MP2	33	2.4	.38
MP4	225	.05	-1.301
RW2	33	2.4	.38
P2	40	2.1	.322
MW4	57	1.7	.23

Additional data point based on applied vacuum: 3.6 inches of water column at 0 feet from SVE well

Slope	=	009	per foot
Intercept	=	4.542	inches of water column
R squared		.994	

13 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	2.6	.415
MP2	33	1.7	.23
MP4	225	.05	-1.301
RW2	33	1.8	.255
P2	40	1.6	.204
MW4	57	1.2	.079

Additional data point based on applied vacuum: 2.6 inches of water column at 0 feet from SVE well

Slope	=	008	per foo	ot		
Intercept	=	3.202	inches	of	water	column
R squared	=	.994				

OBSERVED AND PREDICTED FLOW RESPONSE TO APPLIED VACUUM

1.

2. 3. 4.

11

Vacuum		Predicted Flow Response	Relative Percent		
(inches w.c.)	(scfm)	(scfm)	Difference		
18	94	93.77	2 %		
13	67	72.73	8.2 %		
10	48	58.28	19.3 %		
21	131	104.57	-22.4 %		
Mean Value of Rela	tive Percent Diff	erence:	1.2 %		
Mean Absolute Valu	e of Relative Per	cent Difference:	12.6 %		
Standard Deviation	16.7 scfm				
Soil Permeability	in Horizontal Dir	ection (sq cm):	6.59E-07		
Standard Deviation of Soil Permeability Estimation (sq cm): 1.21E-07					
Ratio of Horizontal to Vertical Permeability: 6.6					

3 i

F F - 3

U

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Weathered Gasoline/JP-4 (contaminant mixture, volatile and biodegradable) log10(MW P*) = 1.34 - 3.19 Õm Temperature Constant = 1904 deg KLiquid Density = .7 q/ccZero Order Bioremediation Rate Constant = 5 ppm/dayInitial Total Soil Contaminant Concentration = 7750 ppm Residual (Non-degradable) Soil Concentration = 1 ppm Vertical wells in 10 inch boreholes, extending to groundwater, screened from 16 to 23.6 feet Thickness of Vented Soil Interval = 11.1 feetSlope of log10(P) vs Distance from Pilot Test = .008 per ft Soil Gas Temperature = 50 deg F= 21 in. water column Applied Vacuum = 104.6 scfm Air Flow Rate per Vapor Extraction Well Desired Time to Cleanup = 730 daysCleanup Goal = 90 % removal = 27.01 FEET OLATILIZATION: SINGLE WELL EFFECTIVE RADIUS INSUFFICIENT SURFACE INFILTRATION FOR MULTIPLE WELL SYSTEM SINGLE WELL RADIUS OF INFLUENCE = 84.22 FEET BIODEGRADATION: INTERWELL RADIUS OF INFLUENCE = 17.78 FEET

VOL. PLUS BIO.:SINGLE WELL EFFECTIVE RADIUS= 78.5 FEETINTERWELL EFFECTIVE RADIUS= 7.44 FEET

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

RC site in BLOOMFIELD, NM

Xylene/Ethylbenzene (single component, volatile and biodegradable) Molecular Weight = 106 Vapor Pressure = 3.48 mm Hg Temperature Constant = 1904 deg KLiquid Density = .87 g/ccZero Order Bioremediation Rate Constant = 5 ppm/dayInitial Total Soil Contaminant Concentration = 7750 ppm Residual (Non-degradable) Soil Concentration = 1 ppm Vertical wells in 10 inch boreholes, extending to groundwater, screened from 16 to 23.6 feet Thickness of Vented Soil Interval = 11.1 feet

Slope of log10(P) vs Distance from Pilot Test= .008 per ftSoil Gas Temperature= 50 deg FApplied Vacuum= 21 in. water columnAir Flow Rate per Vapor Extraction Well= 104.6 scfmDesired Time to Cleanup= 730 daysCleanup Goal= 90 % removal

YOLATILIZATION:SINGLE WELL EFFECTIVE RADIUS= 66.91 FEET
INSUFFICIENT SURFACE INFILTRATION FOR MULTIPLE WELL SYSTEMSIODEGRADATION:SINGLE WELL RADIUS OF INFLUENCE = 84.22 FEET
INTERWELL RADIUS OF INFLUENCE = 17.78 FEET

OL. PLUS BIO.: SINGLE WELL EFFECTIVE RADIUS = 84.22 FEET INTERWELL EFFECTIVE RADIUS = 17.78 FEET

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

RC site in BLOOMFIELD, NM

Diesel/No. 2 Fuel Oil (contaminant mixture, volatile and biodegradable) log10(MW P*) =-.05 - 6.03 Õm Temperature Constant = 1904 deg KLiquid Density = .8 g/ccZero Order Bioremediation Rate Constant = 5 ppm/day Initial Total Soil Contaminant Concentration = 7750 ppm Residual (Non-degradable) Soil Concentration = 1 ppm Vertical wells in 10 inch boreholes, extending to groundwater, screened from 16 to 23.6 feet Thickness of Vented Soil Interval = 11.1 feet Slope of log10(P) vs Distance from Pilot Test = .008 per ft Soil Gas Temperature = 50 deg F Applied Vacuum = 21 in. water column Air Flow Rate per Vapor Extraction Well = 104.6 scfmDesired Time to Cleanup = 730 days= 90 % removal Cleanup Goal OLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = .3 FEET INSUFFICIENT SURFACE INFILTRATION FOR MULTIPLE WELL SYSTEM SINGLE WELL RADIUS OF INFLUENCE = 84.22 FEET IODEGRADATION: INTERWELL RADIUS OF INFLUENCE = 17.78 FEET

VOL. PLUS BIO.:	SINGLE WELL EFFECTIVE RADIUS	= 3.24 FEET
	INTERWELL EFFECTIVE RADIUS	= .1 FEET

APPENDIX G

HYDROCARBON MASS EXTRACTION RATE CALCULATIONS

BRC/Pilottest.rpt

Air sample effluent analytical data were used to calculate maximum extraction rates for the soil vent pilot tests on well VEW-1.

$$ER = Q \times C \times \frac{28.32l}{ft^3} \times \frac{lb}{454 \times 10^6 ug} \times \frac{60 \text{min}}{hr}$$

Where:

ER = Extraction rate (lb/hr)

Q = Air velocity under standard temperature and pressure conditions (scfm)

C = Soil vapor concentration (ug/l) (1 mg/m³ = 1 ug/l)

and final three terms are conversion factors

$$SCFM = cfm \times \frac{P_{field}}{P_{lab}} \times \frac{(T_{lab} + 460^{\circ} R)}{(T_{field} + 460^{\circ} R)}$$

Where:

cfm	=	Air velocity in cubic feet per minute (fpm x π x r ²)
Plab	=	Standard Pressure (29.92 inches Hg at sea level)
P _{field}	=	25 inches Hg (average for Albuquerque, NM; National Weather Service)
T _{field}	=	Average Temperature in field (°F)
T _{lab}	=	Standard Temperature (60°F, standard laboratory temperature)
°R	#	Temperature in Rankin

GROUNDWATER TECHNOLOGY ®

I. SVES Extraction Rate Calculations - Well VEW-1 Shallow and Deep Zone Pilot Tests

- Air sample VEW-1S collected 180 minutes after start of shallow zone soil vent test at 42 inches of water applied vacuum, 115 scfm.
 - Air sample VEW-1D collected 180 minutes after start of deep zone soil vent test at 21 inches of water applied vacuum, 131 scfm.

Extraction rates in pounds per hour (lb/hr) were calculated in the following manner:

A. <u>Benzene Calculations</u>

1. Sample VEW-1S Effluent

(115scfm) x (2.2ug/l) x 3.74 x
$$10^{-6} \frac{I-Ib-min}{ft^3-ug-hr}$$

= 9.5 x 10^4 lb/hr Benzene

2. Sample VEW-1D EFF

(131*scfm*) x (380*ug*/*l*) x 3.74 x
$$10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.19 lb/hr Benzene

B. <u>Toluene Calculations</u>

1. Sample VEW-1S Effluent

 $(115 scfm) \times (0.4 ug/l) \times 3.74 \times 10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$

= 1.72 x 10⁻⁴ lb/hr Toluene

(131 scfm) x (16 ug/l) x 3.74 x 10⁻⁶
$$\frac{l-lb-min}{ft^3-ug-hr}$$

= 0.008 lb/hr Toluene

C. Ethylbenzene Calculations

(115*scfm*) x (0.53*ug*/*l*) x 3.74 x 10⁻⁶
$$\frac{1-lb-min}{ft^3-ug-hr}$$

= 2.3×10^{-4} lb/hr Ethylbenzene

2. Sample VEW-1D EFF

(131*scfm*) x (57*ug*/) x 3.74 x 10⁻⁶
$$\frac{I-Ib-min}{ft^3-ug-hr}$$

= 0.03 lb/hr Ethylbenzene

GROUNDWATER TECHNOLOGY *

D. <u>Total Xylenes Calculations</u>

1. Sample VEW-1S Effluent

(115*scfm*) x (3.2*ug*/*l*) x 3.74 x 10⁻⁶ $\frac{l-lb-min}{ft^3-ug-hr}$

= 1.4 x 10⁻³ lb/hr Total Xylenes

2. Sample VEW-1D EFF

(131*scfm*) x (280*ug*/*l*) x 3.74 x 10⁻⁶ $\frac{l-lb-min}{ft^3-ug-hr}$

= 0.14 lb/hr Total Xylenes

E. <u>Total Fuel (non-methane hydrocarbons) Calculations</u>

1. Sample VEW-1S Effluent

(115*scfm*) x (460*ug*/*l*) x 3.74 x
$$10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.20 lb/hr Total Fuel

2. Sample VEW-1D EFF

(131*scfm*) x (11,000*ug*/*l*) x 3.74 x 10^{-e}
$$\frac{1-lb-min}{ft^3-ug-hr}$$

= 5.4 lb/hr Total Fuel

GROUNDWATER TECHNOLOGY *

- II. SVES Extraction Rate Calculations Well VEW-1D and AS-1 Combined Air Sparge/Soil Vent Test
 - Air sample VEW-1D V/S collected 145 minutes after start of combined air sparge/soil vent test at 22 inches of water applied vacuum and 5 psi.

Extraction rates in pounds per hour (lb/hr) were calculated in the following manner:

- A. Benzene Calculations
 - 1. Sample VEW-1D V/S

(112scfm) x (460ug/l) x 3.74 x
$$10^{-6} \frac{I-Ib-min}{ft^3-ug-hr}$$

= 0.19 lb/hr Benzene

B. <u>Toluene Calculations</u>

1. Sample VEW-1D V/S

(112scfm) x (170ug/l) x 3.74 x
$$10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.07 lb/hr Toluene

C. <u>Ethylbenzene Calculations</u>

1. Sample VEW-1D V/S

(112scfm) x (140ug/l) x 3.74 x
$$10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.06 lb/hr Ethylbenzene

GROUNDWATER TECHNOLOGY *

D. <u>Total Xylenes Calculations</u>

1. Sample VEW-1D V/S

(112scfm) x (1,100ug/l) x 3.74 x $10^{-6} \frac{I-Ib-min}{ft^3-ug-hr}$

= 0.46 lb/hr Total Xylenes

E. Total Fuel (non-methane hydrocarbons) Calculations

1. Sample VEW-1D V/S

(112*scfm*) x (13,000*ug*/*l*) x 3.74 x 10⁻⁶ $\frac{I-Ib-min}{ft^3-ug-hr}$

= 5.45 lb/hr Total Fuel

GROUNDWATER TECHNOLOGY *