GW -

MONITORING REPORTS

DATE:

Groundwater Technology, Inc.

2501 Yale Boulevard S.E., Suite 204, Albuquerque, NM 87106 USA

23 June 1994

Mr. Greg J. Lyssy Project Coordinator RCRA Technical Section - Enforcement Branch U.S. Environmental Protection Agency Region 6 1445 Ross Avenue, Suite 1200 Dallas, Texas 75202-2733

RE: Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico EPA ID# NM089416416 Administrative Order on Consent - Docket No. VI-303-H Results of the Phase III RFI - Well Installations/Groundwater Sampling (1st Event)

Dear Mr. Lyssy:

This letter provides the results of the Phase III RCRA Facility Investigation (RFI) conducted at the abovereferenced facility. Groundwater Technology, Inc. (GTI) supervised the installation of seven monitoring wells from 11 to 18 May 1994. Drilling for the Phase IV RFI (aquifer testing and pilot studies) was also completed during this time, but will be reported with the results of that phase of investigation. Layne Environmental Services, Inc., the subcontracted driller, used an AP 1000 percussion hammer drill rig. Figure 1 indicates the well locations, which are consistent with the revised RFI Work Plan dated 1 October 1993, approved by the USEPA in correspondence dated 4 November 1993. Appendix A provides well logs.

WORK SCOPE

Well Installations

The purpose of the Phase III investigation was to complete delineation of the dissolved-phase and separatephase hydrocarbon (SPH) plumes. Well MW-28 is in the northwestern portion of the facility, MW-29 is in the north-central portion of the facility, and wells MW-25, MW-26, MW-27, MW-30 and MW-31 are located along the southern end of the facility (Sullivan Road) including three on property owned by the Bureau of Land Management (BLM). BLM right-of-way permits were obtained for wells MW-25, MW-26 and MW-27.

The wells were installed to the top of the Nacimiento Formation, which appeared as a weathered limestone at each location. The surficial sediments consist of poorly graded silty sands to sands with occasional clay lenses and a cobble layer directly overlying the limestone.

Page 2 of 6 G. Lyssy 23 June 1994

Table 1 provides a summary of well construction specifications. Wells MW-25 and MW-26 are six-inches in diameter, in case SPH was detected. The remaining five wells are four-inches in diameter. All seven wells are constructed of fiberglass-reinforced epoxy (FRE) materials with 0.02-inch slot screen. Sand filter pack was installed in the annular space to two feet above the top of well screen, followed by a two-feet thick bentonite seal and cement/bentonite grout to the surface.

Well #	Date Installed	Diameter/Material	Total Depth	Screened Interval	Silt Leg Interval
MW-25	05/11/94	6" FRE	38 feet	22-36 feet	36-38 feet
MW-26	05/12/94	6" FRE	23 feet	7-21 feet	21-23 feet
MW-27	05/18/94	4" FRE	22 feet	5-20 feet	20-22 feet
MW-28	05/13/94	4" FRE	35 feet	18-33 feet	33-35 feet
MW-29	05/12/94	4" FRE	26 feet	10-24 feet	24-26 feet
MW-30	05/13/94	4" FRE	38 feet	21-36 feet	36-38 feet
MW-31	05/12/94	4" FRE	37 feet	21-35 feet	35-37 feet

TABLE 1 Well Construction Specifications

Soil cuttings were screened using a photo-ionization detector (PID) during drilling and the readings were recorded on the well logs (Appendix A). Readings over 100 ppm (relative to isobutylene gas calibration) were observed at all well locations except MW-26 and MW-29.

Wells were developed by purging following installation.

Groundwater Sampling

On 24 May 1994, all site wells were gauged using an Interface Probe for depth to water and the presence of SPH. Measurements are shown on Table 2: Liquid Level Gauging Chart. Liquid levels were used to construct a water table contour map (Figure 2) and SPH thicknesses were used to construct a SPH isopleth map (Figure 3). As shown on Figure 2, groundwater flows to the west of the site, toward Hammond Ditch. Figure 3 shows that SPH thicknesses in most of the active recovery wells were noted as a sheen. Well RW-2 and associated monitoring points contained measurable SPH during the gauging event. Two of the newly installed monitoring wells contained measurable SPH: 0.17 feet in MW-27 and 0.08 feet in MW-28.

.

Page 3 of 6 G. Lyssy 23 June 1994

Well#	Well Elevation	Depth to Water	Depth to Product	Product Thickness	Water Elevation	Product Elevation	Corrected Water Elevation
MW-1	5515.78	15.64			5500.14		
MW-3	5535.88	34.32			5501.56		
MW-4	5524.46	25.72	25.14	0.58	5498.74	5499.32	5499.18
MW-5	5545.13	43.36			5501.77		
MW-6	5551.20	dry					
MW-7	5524.25	25.21			5499.04		
MW-8	5531.17	29.80			5501.37		
MW-9	5519.77	20.88	20.87	0.01	5498.89	5498.90	5498.90
RW-1	5526.01	27.33			5498.68		
P-1	5524.4 9	26.00			5498.49		
RW-2	5523.61	25.21	24.51	0.80	5498.40	5499.10	5499.00
P-2	5523.86	25.02	24.70	0.32	5498.84	5499.16	5499.08
RW-3	5516.96	18.68			5498.28		
P-3	5507.31	9.21			5498.10		-
MW-11	5506.89	9.82			5497.07		
MW-12	5498.42	8.92			5489.50		
MW-13	5538.54	38.64			5499.90		
RW-14	5534.13	33.23	sheen		5500.90		
RW-15	5533.44	32.91	sheen		5500.53		
RW-16	5532.09	32.00	sheen		5500.09		
RW-17	5530.46	31.27	31.26	0.01	5499.19	5499.20	5499.20

TABLE 2 Liquid Level Gauging Chart

I

i.

Well#	Well Elevation	Depth to Water	Depth to Product	Product Thickness	Water Elevation	Product Elevation	Corrected Water Elevation
RW-18	5526.08	27.05	27.03	0.02	5499.03	5499.05	5499.05
RW-19	5527.27	27.80			5499.47	sheen	
MW-20	5516.46	17.48			5498.98		
MW-21	5518.62	19.30			5499.32		
RW-22	5521.05	22.31	sheen		5498.74		
RW-23	5517.74	19.28	sheen		5498.46		
MW-24	5508.23	dry					
MW-25	5530.45	31.03			5499.42		
MW-26	5514.54	15.95			5498.59		
MW-27	5515.26	17.69	17.52	0.17	5497.57	5497.74	5497.70
MW-28	5524.52	25.81	25.73	0.08	5498.71	5498.79	5498.77
MW-29	5521.55	21.01			5500.54		
MW-30	5533.42	31.97	sheen		5501.45		
MW-31	5532.17	32.37			5499.80		

MEASUREMENTS ARE IN FEET.

Wells which contained SPH were not sampled. All other monitoring and recovery wells were first purged of three volumes of water (discharged to the facility's wastewater treatment plant) and sampled using disposable polyethylene bailers. Newly installed wells were sampled for volatile organic compounds (VOCs; USEPA Method 8240), semi-volatile organic compounds (SVOCs; USEPA Method 8270), total petroleum hydrocarbons (TPH; USEPA Method 418.1) and metals (USEPA Method 6010/7000 series). All other wells were sampled for VOCs and SVOCs only. Sampling was conducted on 24 and 25 May 1994.

Two groundwater samples (MW-20 and RW-3) were also collected for analysis of water quality parameters including the following:

Page 5 of 6 G. Lyssy 23 June 1994

- pH (field determined)
- temperature (field determined)
- dissolved oxygen
- total dissolved solids (TDS)
- total organic carbon (TOC)
- alkalinity
- hardness
- specific cations (iron, manganese, magnesium, calcium, ammonium, sodium and potassium)

One trip blank, one equipment rinsate blank and one duplicate sample were submitted for each of the two days of sampling.

Analyses were performed by Inter-Mountain Laboratories, Inc. Table 3 provides a summary of the analytical results. Laboratory reports are provided in Appendix B.

Results of Groundwater Sampling

Groundwater samples were collected from 16 wells for laboratory analysis, including five of the newly installed wells. All other monitoring and recovery wells contained SPH.

Targeted VOCs were non-detectable in seven samples, including MW-1, MW-3, MW-5, MW-8, MW-12, MW-13 and MW-29. The only targeted VOCs detected were benzene, toluene, ethylbenzene, m,p-xylene and o-xylene (BTEX). Benzene was the only targeted VOC detected in MW-20 at a concentration of 5.5 ug/L. MW-21 contained both benzene and ethylbenzene at 1,400 ug/L and 260 ug/L, respectively. Wells MW-11, MW-25, MW-26, RW-1 and RW-3 contained benzene, ethylbenzene and m,p-xylene. Wells MW-30 and MW-31 contained concentrations of all BTEX compounds.

Non-targeted VOCs, consisting of unknown hydrocarbons and unknown aromatics, were detected in 12 of 16 wells, ranging from approximately 10 ug/L (in MW-1) to 14,000 ug/L (in MW-30).

No targeted or non-targeted VOCs were detected in the trip or equipment blank samples collected for either of the two days of sampling.

Targeted SVOCs were non-detectable in the same seven samples that VOCs were not detected. Bis(2ethylhexyl)phthalate was detected in one sample, RW-3, at a concentration of 16 ug/L. Chrysene was detected in one sample, RW-1, at a concentration of approximately 150 ug/L, below the method detection limit. Similarly, phenanthrene was detected in one sample, RW-1, at an approximate concentration of 130 ug/L. Two SVOCs, naphthalene and phenol, were found in MW-21, at concentrations of 17 ug/L and 13 ug/L, respectively. These compounds and one or more of the following SVOCs were found in wells MW-30, MW-31, MW-11, MW-25, MW-26, RW-1 and RW-3 at relatively low concentrations: 2,4-dimethylphenol, 2methylnaphthalene, 2-methylphenol, 3-methylphenol.

Page 6 of 6 G. Lyssy 23 June 1994

Non-targeted SVOCs, consisting of indene, 1-methylnaphthalene, and unknown hydrocarbons, aromatics, alcohols, halogenated, were detected in all of the groundwater samples ranging from approximately 10 ug/L (MW-8) to 8,500 ug/L (MW-30).

Only groundwater samples from the newly installed wells (total of six samples from five wells) were analyzed for TPH and metals. TPH was detected in three of the five wells, at 17 mg/L in MW-26, 18 mg/L in MW-30 and 11 mg/L in MW-31. Metals were detected in three of the five wells: MW-26, MW-29 and MW-30. Lead and zinc were the only metals found in MW-26 and MW-29, both at concentrations within background ranges. MW-30 contained low concentrations of arsenic, chromium, copper, lead and zinc, all within background ranges. Metals concentrations were below corresponding maximum contaminant levels (MCLs), indicating that metals are not constituents of concern at the Bloomfield Refining Company site.

Duplicate samples were collected from MW-21 and MW-26. Results of the two samples were very similar for each duplicate.

The groundwater sample analytical results indicate that BTEX are the primary constituents of concern for the site. Delineation of the horizontal extent of dissolved hydrocarbons is complete except to the southwest, further downgradient of MW-11 (which contained BTEX at 14,900 ug/L) and MW-27 (which contained SPH). The second round of groundwater sampling to complete the Phase III RFI is scheduled for the week of 25 July 1994. Additional wells to complete delineation will be proposed following the July event.

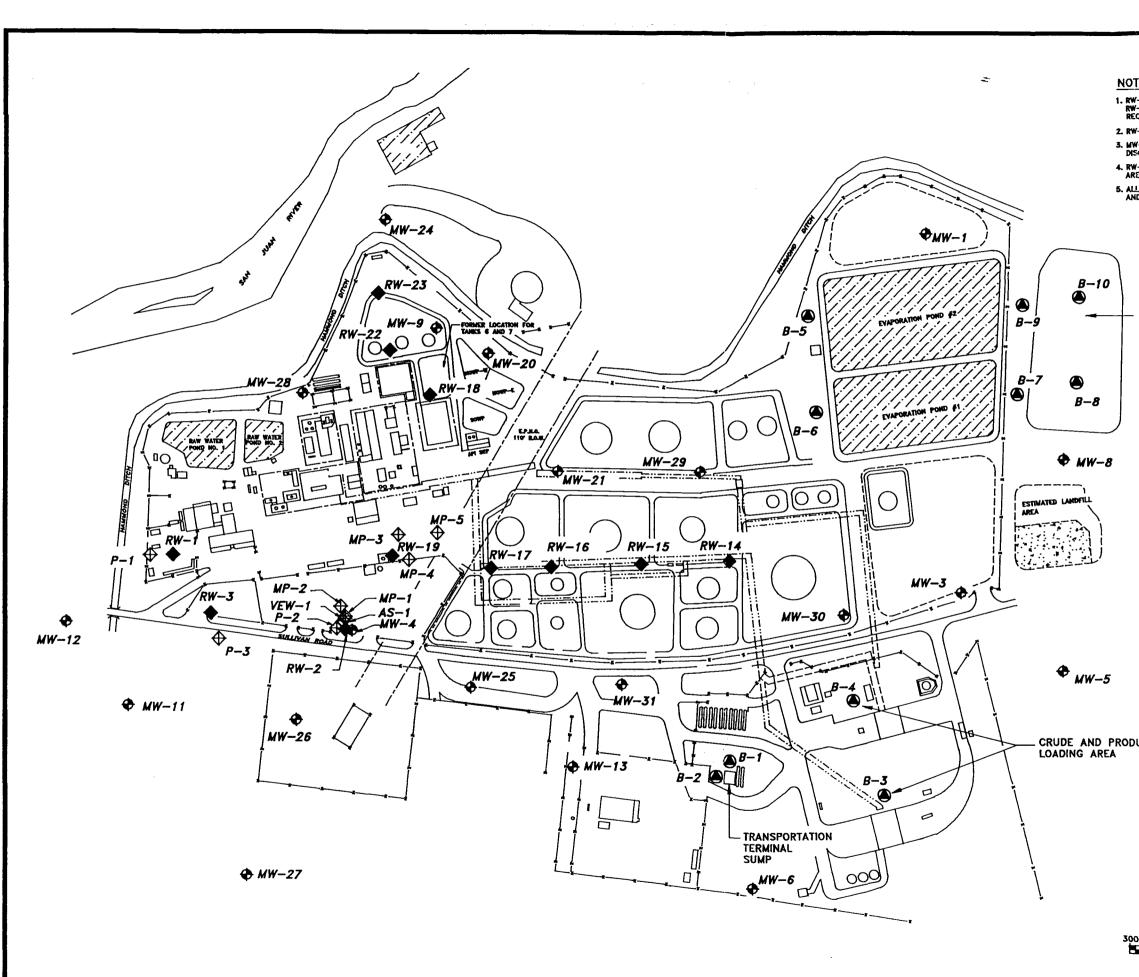
Other RFI Work

Phase IV of the RFI consisting of aquifer testing and soil vapor extraction/air sparging pilot testing is being conducted during June 1994. The results will be submitted upon completion of data analysis in late July. Phase V of the RFI (stream and sediment sampling) will also be scheduled in July. Should you have any questions concerning the report, please do not hesitate to contact me at (505) 242-3113.

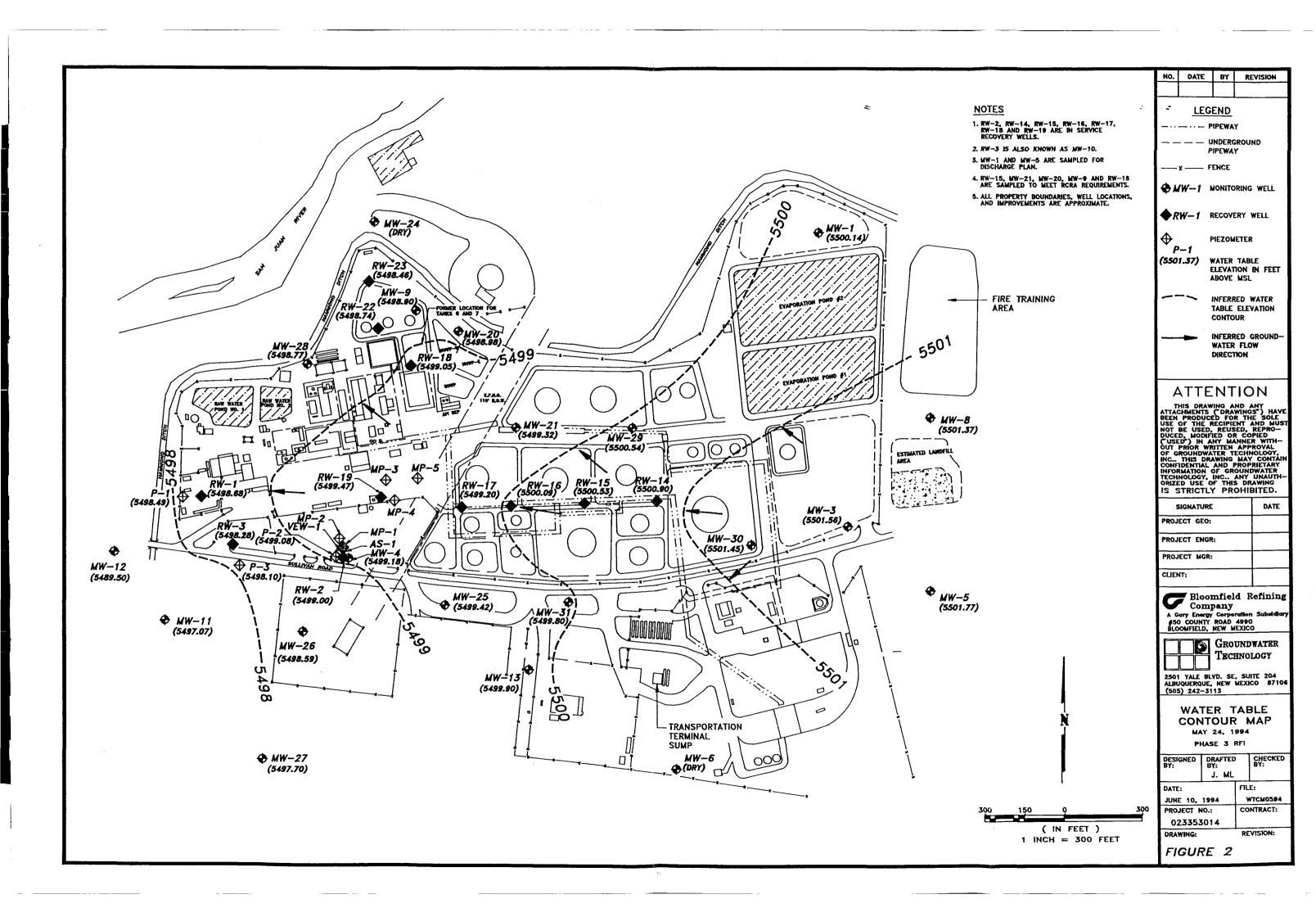
Sincerely, Groundwater Technology, Inc.

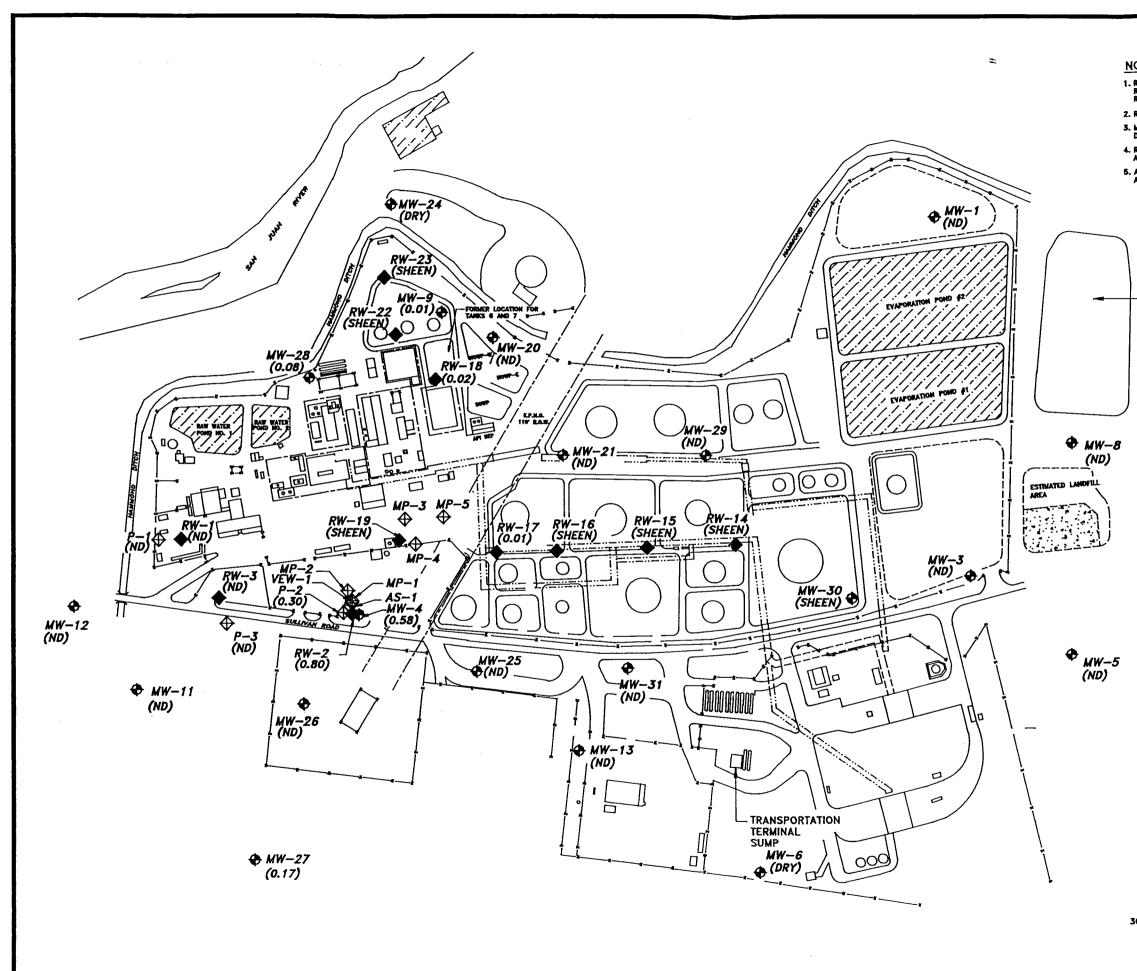
Cymantha Liakos

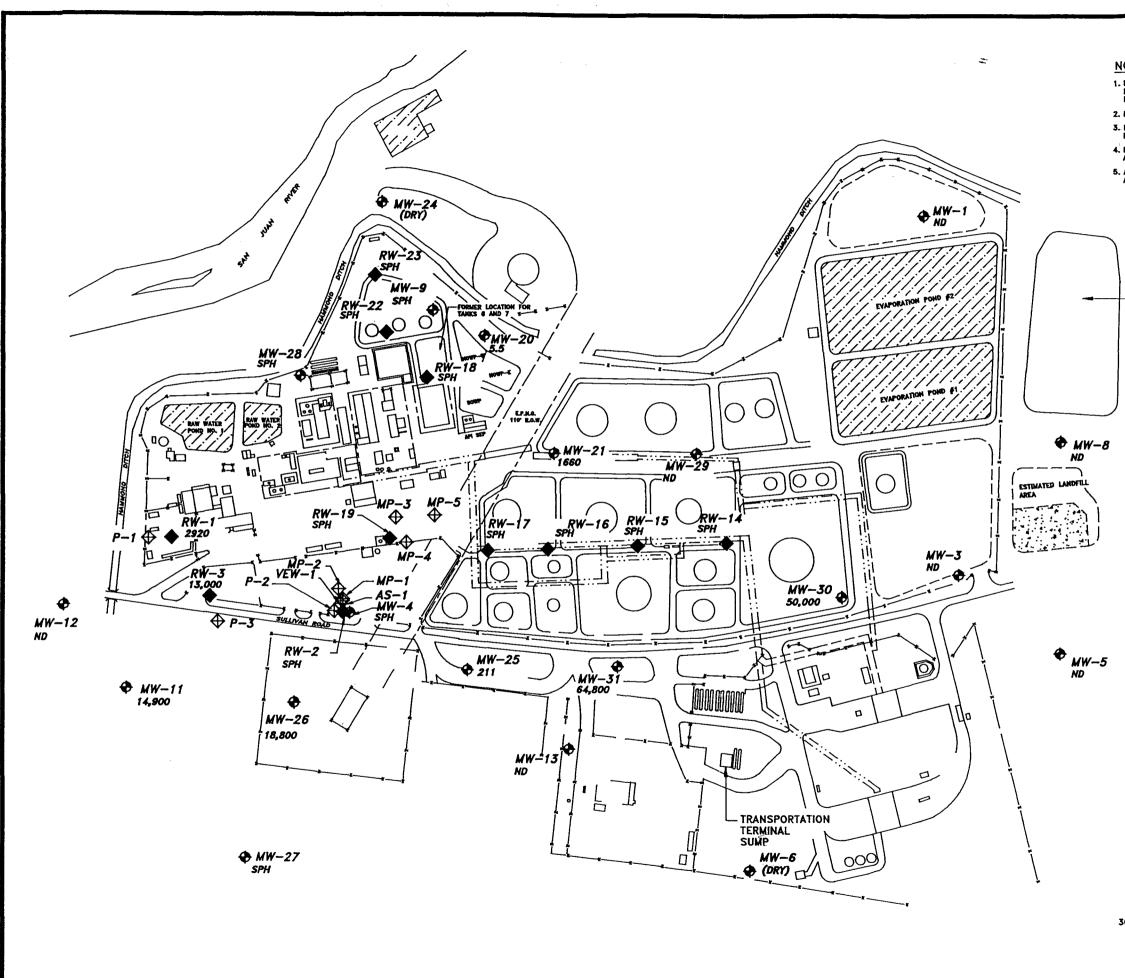
Cymantha Liakos Project Manager


ATTACHMENTS

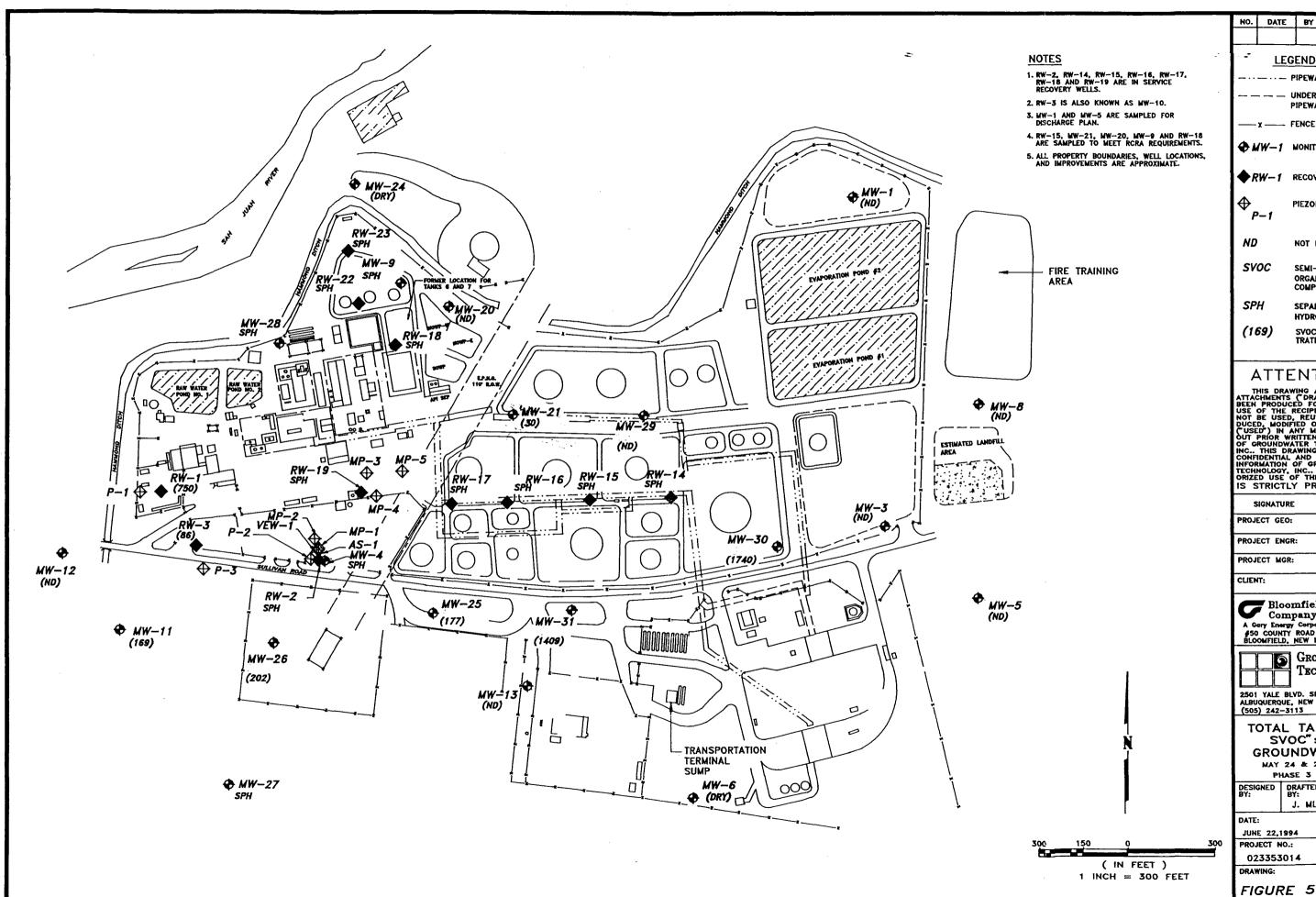
- FIGURE 1 Soil Boring/Monitoring Well Locations
- FIGURE 2 Water Table Contour Map (24 May 1994)
- FIGURE 3 Separate Phase Hydrocarbon Isopleth (24 May 1994)
- FIGURE 4 Total Targeted VOCs in Groundwater (24 and 25 May 1994)
- FIGURE 5 Total Targeted SVOCs in Groundwater (24 and 25 May 1994)
- TABLE 1 Well Construction Specifications
- TABLE 2 Liquid Level Gauging Chart
- TABLE 3 Groundwater Sample Analytical Results

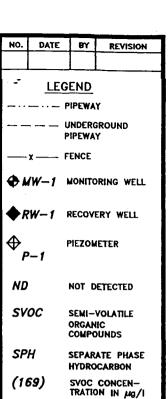

APPENDIX A Well Logs


- APPENDIX B Laboratory Reports of Groundwater Sample Analyses
- cc: Ed Horst NMED Hazardous Waste Bureau Roger Anderson - NM Oil Conservation Division Joe Warr - BRC Chris Hawley - BRC Dave Roderick - BRC



					the state of the s
	NO.	DATE	BY	R	EVISION
OTES			END	L	
RW-2, RW-14, RW-15, RW-16, RW-17, RW-18 AND RW-19 ARE IN SERVICE			PIPEWA	Y.	
RW-18 AND RW-19 ARE IN SERVICE Recovery Wells.			UNDER	•	IND
RW-3 IS ALSO KNOWN AS MW-10. MW-1 and MW-5 are sampled for	÷		PIPEWA		
DISCHARGE PLAN. RW—15, MW—21, MW—20, MW—9 AND RW—18	X FENCE				
ARE SAMPLED TO MEET RCRA REQUIREMENTS. ALL PROPERTY BOUNDARIES, WELL LOCATIONS,	\$ M	(W-1	MONITO	RING	G WELL
AND IMPROVEMENTS ARE APPROXIMATE.		W-1	RECOV	FDV	WELL
	•	n -1			WELL
	،	-1	soil i	BORIN	٩G
	⊕	-	PIEZON	IFTE	
		-1			``
- FIRE TRAINING					
AREA					
	4	TTE	TNT)N
		LE DAL			A A 174
	BEEN	PRODUC	ED FO	RTH	ANT ST) HAVE IE SOLE AND MUST REPRO-
	DUCE	D. MODIF	TED OI	R CO	R WITH-
	OF G	THIS DR	AWING	ECHI MAY	OLOGY.
	CONF INFOR TECHI	DENTIAL MATION NOLOGY,	AND I OF GR INC	OUNI	RIETARY DWATER UNAUTH- LAWING
	ORIZE		Y PR	S DR	AWING BITED.
	s	IGNATUR	5		DATE
	PROJI	ECT GEO:	:		
	PROJ	ECT ENG	ર :		
	PROJ	ECT MGR	:		
	CLIEN	IT:			
	C	Bloo	mfiel pany	d R	efining
	A G.	COUNTY	Corpo	ration 4990	Subeldiary
	BLO	OMFIELD.	NEW M	EXIC	0
ровост		_0			WATER LOGY
	2501	YALE BL			
	ALBU	QUERQUE	, NEW	MEXK	CO 87106
<u> </u>		SOIL			
N	мо	LOC			
1			SE 3 I		-
	DESIC BY:	NED D	RAFTED	·	CHECKED BY:
ſ			J. ML		
	DATE: JUNE	: : 10, 19:	94	FILE	E: IW-LOCA
000 150 0 3 00	PROJ	ECT NO.	:		NTRACT:
(IN FEET)		335301	4	RE	VISION:
1 INCH = 300 FEET		GURE	1		
	Ľ				





	NO.	DATE	BY	P	VISION
		<u>UNIC</u>		K	LVISION
NOTES		· · · ·		L	
NOTES		LEG	END		
1.RW-2, RW-14, RW-15, RW-16, RW-17, RW-18 and RW-19 are in Service Recovery Wells.		···	PIPEWA	Y	
Z. RW-3 IS ALSO KNOWN AS MW-10.			UNDERG PIPEWA		ND
3. MW-1 AND MW-5 ARE SAMPLED FOR DISCHARGE PLAN.			FENCE	•	
4. RW-15, MW-21, MW-20, MW-9 AND RW-18		x —— I			
ARE SAMPLED TO MEET RCRA REQUIREMENTS. 5. ALL PROPERTY BOUNDARIES, WELL LOCATIONS,	Ф M	W—1	MONITO	RING	WELL
AND IMPROVEMENTS ARE APPROXIMATE.	A -				
	$\mathbf{\Psi}^{R}$	W-1	RECOV	2.81	WELL
	Φ_{-}		PIEZOM	ETER	2
	Р	-1			
	(NL))=	NOT DI	ETEC	TED
	(0.	01)=	SPH T	acia	NFSS
			IN FEE		1.35
AREA					
)	A	TTE	ENT	IC	N N
	ATTA	HIS DRAN	CDRA	ND /	NY S) HAVE
	USE NOT	PRODUC OF THE BE USED	RECIPIE RECIPIE	R TH INT A	IE SOLE AND MUST REPRO
	CUSE	D, MODI	FIED OF	NNE	AND MUST REPRO- PIED R WITH- ROVAL
	INFOR	IDENTIAL MATION	AND I		CONTAIN RIETARY DWATER
	ORIZE	D USE	OF THE	S DR	UNAUTH-
	s	GNATUR	E		DATE
	PROJ	ECT GEO	:		
	PROJ	ECT ENG	R:		
	PROJ	ECT MGR			
	CLIEN	m.			
	G		mfiel pany	d F	efining
			y Corpo		Subsidiary
	BLO	OMFIELD.	NEW M	EXIC	o
					WATER
			TEC	HNO.	LOGY
	2501 ALBU	YALE BI	LVD. SE	, SU	TE 204 CO 87106
	(505) 242-3	113		
] N		EPAR HYDR			
N 1		H I DR (SPH)			
1			Y 24. 1ASE 3		
1	DESI	GNED D	RAFTED		CHECKED BY:
P	BY:		97: J. ML		
i i	DATE			ิศาม	
300 150 0 300		E 10, 19			SH-0594
		233530			
(IN FEET $)1 INCH = 300 FEET$	DRA	WING:		RE	VISION:
	FI	GURI	E 3		
	L			_	

	NO.	DATE	BY		EVISION
			<u> </u>	<u> </u>	L 4131011
NOTES	. =			L	
		LEG			.1
1. RW-2, RW-14, RW-15, RW-16, RW-17, RW-18 AND RW-19 ARE IN SERVICE RECOVERY WELLS.	PIPEWAY				
2. RW-3 IS ALSO KNOWN AS MW-10.			PIPEWA		ND
3. MW-1 AND MW-5 ARE SAMPLED FOR DISCHARGE PLAN.		x F	ENCE		
4. RW-15, MW-21, MW-20, MW-9 AND RW-18 ARE SAMPLED TO MEET RCRA REQUIREMENTS.	♦ MW-1 MONITORING WELL				
5. ALL PROPERTY BOUNDARIES, WELL LOCATIONS, AND IMPROVEMENTS ARE APPROXIMATE.	•	<i>w</i> -,			, well
	♦R	W-1	RECOV	ERY	WELL
)	\$₽	-1	PIEZON	ETE	R
	ND		NOT D	ETEC	TED
FIRE TRAINING AREA	VO	-	VOLITI COMPO		RGANIC IS
	SPI	•	SEPAR HYDRO		PHASE BON
	VO	CONCE	NTRATI	ONI	N μg/Ι
)	A	TTE	NT		DN
	ATTAC	IS DRAW	ING A	ND A	ANY IS') HAVE
	NOT	DE USED.	REUS	INT .	AND MUSI
	DUCE CUSE	D, MODIF	IED OI		PIED R WITH-
	OF GI	THIS DR	AWING	ECH!	OLOGY.
	INFOR	DENTIAL MATION NOLOGY.	OF GR	OUN	UNAUTH-
	IS S		r This	S DR OHI	AWING BITED.
	s	IGNATURE	:		DATE
	PROJ	ECT GEO:			
•	PROJ	ECT ENGR	:		
	PROJ	ECT MGR:			
	CLIEN	т:			
	G	Bloor		d R	efining
	A Ge		Согро	retion 4990	Subsidiary
		OMFIELD,			
1		0	-		WATER LOGY
	ALBU	YALE BLY QUERQUE,) 242-31	NEW	, sui Mexic	TE 204 20 87106
		DTAL	TAF		ETED
N.	G	VOC ROUI			ER
1		MAY 24	& 2 E 3 I		994
	DESIG		AFTED		CHECKED BY:
ſ		}	. ML		
	DATE:	22,199		FILE	: voco594
300 150 0 300		ECT NO .:			ITRACT:
(IN FEET)	02 DRAW	335301	4.	20	/1510N:
1 INCH = 300 FEET				RE	
	<i>r 1</i> 0	GURE	4	_	

ATTENTION

THIS DRAWING AND ANY ATTACHMENTS (DRAWINGS') HAVE BEEN PRODUCED FOR THE SOLE USE OF THE RECIPIENT AND MUST NOT BE USED, REUSED, REPRO-DUCED, MODIFIED OR COPIED (USED') IN ANY MANNER WITH-OUT PRIOR WRITTEN APPROVAL OF GROUNDWATER TECHNOLOGY, INC... THIS DRAWING MAY CONTAIN CONFIDENTIAL AND PROPRIETARY INFORMATION OF GROUNDWATER TECHNOLOGY, INC... ANY UNAUTH-ORIZED USE OF THIS DRAWING IS STRICTLY PROHIBITED. IS STRICTLY PROHIBITED. DATE SIGNATURE PROJECT GEO: PROJECT ENGR: PROJECT MGR: CLIENT: Bloomfield Refining Company A Gary Energy Corporation 3 #50 COUNTY ROAD 4990 BLOOMFIELD, NEW MEXICO GROUNDWATER TECHNOLOGY 2501 YALE BLVD. SE, SUITE 204 ALBUQUERQUE, NEW MEXICO 87106 (505) 242-3113 TOTAL TARGETED SVOC"s IN GROUNDWATER MAY 24 & 25, 1994 PHASE 3 RFI DESIGNED DRAFTED BY: BY: CHECKED BY: J. ML DATE: FILE: SV0C0594 JUNE 22,1994

CONTRACT:

REVISION:

023353014

Summary of Groundwater Sample Analytical Results (May 24, 1994) Bloomfield Refining Company Phase III RFI **TABLE 3**

6,000 (2) 4,000 (3) 17,000 13,000 2,500 26,000 Mu-31 6,300 650 110 100 280 210 DN Ð 11 Q 65 g 77 82 5,000 (2) 9,000 (3) 4,000 (3) 20,000 14,000 M-30 1,000 3,500 7,800 3,500 4,700 70 J 80 J 850 160 580 9 Ð £ Q 18 **M**W-29 100 £ g g £ ĝ ĝ Ð g ₽ ₽ g £ Ð Ð 20 ð Ð Ð Q MW-21 DUP (2) 320 (3) 1,300 120 260 ŝ 9 13 8 ٩v Ð g 9 Q Q g Ð 18 g g 12 (E) 0EE (3) M-21 1,400 180 260 Ð Q Q ĝ QN Ð Ð 17 13 g ₽ Ð 13 17 ٩ Ð 130 (3) 70 (2) MW-13 ę QN 9 ٨A Ð ð ĝ Q Q QN ND Ŷ Ð 밁 ĝ Q g g M-12 ₽ Q Q Ð Q ₽ ĝ Q ₽ 20 Ð Ð g Q ۲ Ð ₽ £ Q Ð 8-**1**1-8 £ Ð g g g g Q £ Ð £ Q Ð Q Ę 2 Q Q Ð g ¥ 40 (2) M-5 ĝ ₽ g QN g ¥ ₽ Ð Q Ð Q Q 9 Q Q ₽ QN Q Q 30 (2) MW-3 Ð ₽ ٩N Q Q Ð Q g £ g Ð Ð Q ₽ QN Q g Ð Ð E-W g 20 ទ g ₽ Q ٩v Ð QN ₽ Q ទ Ð Ð Ð ₽ g Q g ₽ Targeted Semi-Volatile Organic Compounds Total Petroleum Hydrocarbons (mg/L) Targeted Volatile Organic Compounds Unknown Hydrocarbon(s) Unknown Hydrocarbon(s) Unknown Aromatic(s) Unknown Halogenated l-Methylnaphthalene Unknown Aromatic(s) 2-Methylnaphthalene 2,4-Dimethylphenol Non-targeted SVOCs Non-targeted VOCs Unknown Alcohol 3-Methylphenol 2-Methylphenol **Ethylbenzene** Naphthalene m,p-Xylene o-Xylene Toluene Benzene Pheno1 Indene

CROUNDWATER TECHNOLOGY

Concentrations are shown in ug/L, except for TPH which is given in mg/L. - Not Detected NA - Not Analyzed J - Meets identification criteria, below detection limit

TABLE 3

Summary of Groundwater Sample Analytical Results (May 25, 1994) Bloomfield Refining Company Dhage III RFI

		ц Ц	Phase III HFI				
Targeted Volatile Organic Compounds	MW-11	M-20	MW-25	MJ-26	Mu-26 DUP	RW-1	RM3
Benzene	5,000	5.5	88	4,500	4,700	2,800	8,300
Ethylbenzene	500	Q	42	1,100	1,100	80	1,100
m.p-Xylene	9,400	QN	81	12,000	13,000	40 J	3,600
o-Xylene	Q	Q	Q	L 001	QN	QN	QN
Toluene	ND	QN	QN	QN	QN	QN	ND
Non-targeted VOCs							
Uņknown Hydrocarbon(s)	400	Q	QN	2,800 (2)	2,800 (2)	600 (2)	3,000 (2)
Unknown Aromatics(s)	3,900 (4)	54 (5)	770 (5)	4,000 (3)	2,900 (3)	1,100 (3)	1,600 (3)
Targeted Semi-Volatile Organic Compounds							
2,4-Dimethylphenol	59	QN	17	58	43	QN	QN
2-Methylnaphthalene	16	Q	63	41	21	300	8 J
Bis(2-ethylhexyl)phthalate	QN	QN	Q	QN	DN	QN	16
Chrysene	ND	QN	QN	QN	DN	150 J	DN
Naphthalene	62	Q	97	84	53	170 J	46
Phenanthrene	Q	Q	Q	Q	ÛN	130 J	QN
Phenol	32	QN	QN	19	10	QN	16
Non-targeted SVOCs							
Unknown Alcohol	QN	20	QN	Q	QN	QN	QN
1-Methylnaphthalene	QN	QN	59	39	19	460	QN
Unknown Aromatic(s)	3,800 (4)	QN	340 (3)	2,900 (4)	1,100 (2)	DN	3,200 (4)
Unknown Hydrocarbon(s)	006	DN	70	QN	1,500 (2)	7,000 (4)	600
Total Petroleum Hydrocarbons (mg/L)	NA	NA	Q	17	14	NA	NA

Concentrations are shown in ug/L, except for TPH which is given in mg/L. - Not Detected NA - Not Analyzed J - Mets identification criteria, below detection limit

GROUNDWATER TECHNOLOGY .

TABLE 3

Summary of Groundwater Sample Analytical Results (May 24 and 25, 1994) Bloomfield Refining Company Phase III RFI

Metals (mg/L)	MW25	MW26	MW-26 DUP	MW-29	MM -30	MW-31
Antimony	Ð	QN	Q	Q	Q	Q
Arsenic	QN	ND	QN	QN	0.011	Q
Beryllium	DN	ND	QN	QN	ND	QN
Cadmíum	QN	QN	QN	QN	QN	Q
Chromium	DN	ND	QN	DN	0.015	Q
Copper	QN	ND	QN	ŊŊ	0.034	QN
Lead	DN	0.0059	DN	0.0057	0.0087	DN
Mercury	DN	ND	DN	Ŋ	ND	Q
Nickel	DN	DN	QN	DN	DD	DN
Selenium	DN	ND	ND	DN	ND	QN
Silver	DN	ND	DN	Ŋ	ND	QN
Thallium	QN	ND	QN	ND	ND	QN
Zinc	QN	0.035	QN	0.037	0.039	QN

Concentrations are shown in mg/L. ND - Not Detected J - Meets identification criteria, below detection limit

TABLE 3

Summary of QA/QC Sample Analytical Results (May 24 and 25, 1994) Bloomfield Refining Company Phase III RFI

Targeted Volatile Organic Compounds	TB- 052494	EB- 052494	TB- 052594	EB- 052594
Benzene	DN	ND	QN	QN
Ethylbenzene	ND	QN	DN	QN
m.p-Xylene	QN	. QN	QN	QN
o-Xylene	QN	QN	DN	QN
Toluene	QN	QN	QN	QN
Non-targeted VOCs	QN	QN	QN	Q

Concentrations are shown in ug/L. ND - Not Detected

APPENDIX A

1

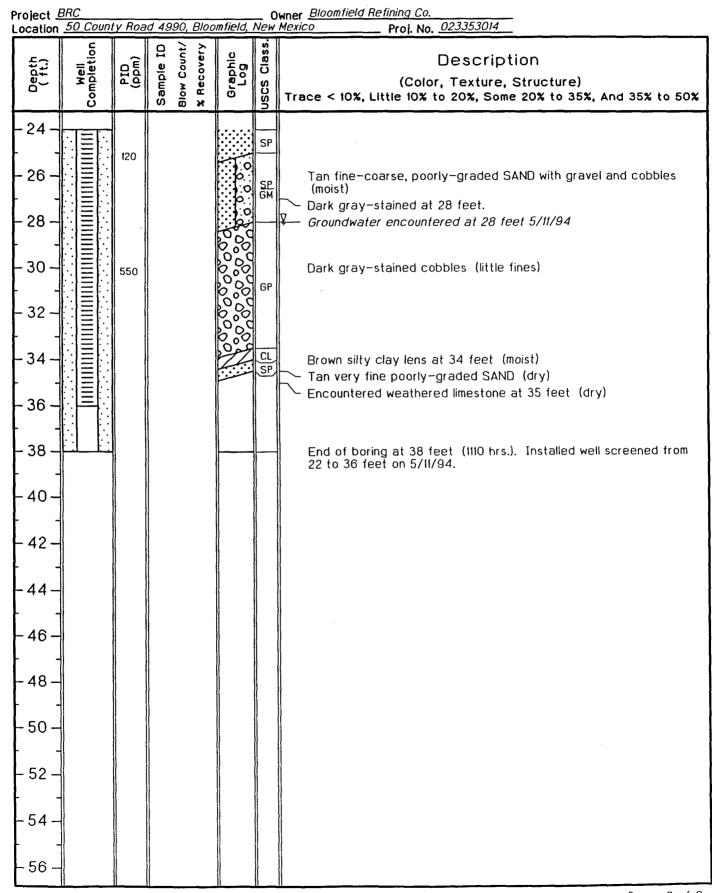
ł

ţ

Well Logs

į

Drilling Log


Monitoring Well MW-25

			wner <u>Bloomfield Refining Co.</u> Mexico Proj. No. <u>023353014</u>	See Site Map For Boring Location
Surface Elev	Total Hole Depti	th <u>38 ft</u> .	Diameter <u>11 in.</u>	COMMENTS:
Top of Casing	. Water Level Initi	ial <u>28 f</u> i	<u>t</u> Static	
Screen: Dia <u>6 in.</u>	Length <u>14 ft.</u>	·	Type/Size <u>FRE 0.020 in.</u>	Start @ 1000 hrs. 2 ft. silty leg installed from 36 feet to 38 feet.
Casing: Dia <u>6 in.</u>	_ Length <u>24/2 ft.</u>	<u></u>	Type <u>FRE</u>	
Fill Material <u>10/20 Co. S</u>		Ri	g/Core Drill Systems 180 ussion	
Driller Gabby Rodriguez	Method <u>A</u>	an <u>reic</u> Iav	Date Permit #	
Checked By	Lic	cense N		
Depth (ft.) Completion PID	Sample ID Blow Count/ * Recovery Graphic	Log USCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)
2-				
- 0		┯╫╴╢	Brown clayey SILT (dry-moist)	
		ML		
- 4 - < , <				
			Brown find poorly-graded ally false	iou SAND (moint)
		<u>//</u>	Brown fine poorly-graded silty/clay	EY JANU (IIIUISI)
		SM SC		
< , <				
- 10 - (<)		<i></i>		
			Tan fine poorly-graded SAND (mois	st)
- 12 - 4				
- 14 - <				
- 16				
		S₽		
- 18 - 5				
- 20 -				
- 24 - 🗐 🗐				

١

Drilling Log

		אוואר	WATER			Drilling Log	taring Woll MW-26
	1		DLOGY			MON	itoring Well MW-26
Project <u>4</u>	BRC		4 4000 04		c	Wher <u>Bloomfield Refining Co.</u>	See Site Map For Boring Location
Surface I	Elev		Total Hole	Depth .	<u>23 fi</u>	<u>Mexico</u> Proj. No. <u>023353014</u> t. Diameter <u>15 in.</u>	COMMENTS:
Top of C	asing		Water Leve	I Initial	<u>15 f</u>	<u>t.</u> Static Type/Size <u>FRE 0.020 in.</u>	
Casing: D	ia <u>6 in.</u>		Length 9/	<u>? ft.</u>		Type <u>FRE</u>	2l feet to 23 feet.
Drill Co. 🛓	.ayne		Metl	nod <u>Air</u>	Perc	cussion	
Driller <u>ba</u> Checked	<u>ву</u>	riguez	Log By <u>Jei</u>	<u>ry May</u> _ Lice	nse I	Date <u>05/12/94</u> Permit # No	
Depth (ft.)	Well Completion	PID (ppm)	Sample ID Blow Count/ X Recovery	Graphic Log	Class.	Descript	
<u>م</u>		٩٩	Sami Blow	Б Ч	nscs	(Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure) 20% to 35%, And 35% to 50%
2 -							
						Tan fine poorly-graded silty SAND	(moist)
- 2 -					SM		
	2 × 2						
- 4 -				للبلبل		Tan fine poorly-graded SAND (moi	c +)
- 6 -		22			SP	Tan me poorty graded and tho	
- 8 -				سبب		Tan fine-coarse SAND with a little	pea gravel and cobbles (dry)
- 10 -					SP		
		37		منصب ا	L	Cobbles with some fines (dry)	
- 12 -				000	GP		
				جم	SP	Tan fine-coarse poorly-graded SA	ND (dry)
- 14 -				1000		Gray-stained cobbles with some fin Groundwater encountered at 15 fee	
- 16 -				000		Dark gray-stained silty clay lens a	
 				000	GP		
- 18 -				000		Derth every state of all the start to the	+ 10 foot
- 20 -				000		Dark gray-stained silty clay lens a Encountered weathered limestone	
- 22 -						Dry at 22 feet	
- 24 -					 	End of boring at 23 feet (0820 hrs 7 to 21 feet on 5/12/94.	.). Installed well screened from

m

ļ

ł

B

ļ

ł

i

ł

Drilling Log

Monitoring Well MW-27

Project <u>BRC</u> Location <u>50 County Rot</u>	See Site Map For Boring Location		
Surface Elev Top of Casing Screen: Dia <u>4 in.</u> Casing: Dia <u>4 in.</u> Fill Material <u>10/20 Co. S</u> Drill Co. <u>Layne</u> Driller <u>Gabby Rodriguez</u>	COMMENTS: Start © 0810 hrs. Installed silt leg from 20 to 22 feet. Groundwater not encountered on 5/18/94.		
Completion (ft.) Completion (PID (PID	nple ID r Count/ scovery aphic Log	Descript	Structure)
		- Tan, fine-coarse, poorly-graded S	AND (dry)
		(Same as above, moist) (Trace of gravel at 7 feet)	
- 8 - - 10 - - 12 - 12 -		(Same as above with a trace of gra	avel)
- 14 - - 14 - - 16 - - 18 - - 18 -		(Gray-stained at 14 feet) Gray-stained, fine-coarse, poorly- gravel (moist) (Same with some cobbles at 16 fee Tan SILT (dry) Encountered weathered limestone	t)
- 20 - = = = = = = = = = = = = = = = = = =		End of boring at 22 feet (0835 hrs encountered. Installed well screen 5/18/94.	;). Groundwater not ed from 5 to 20 feet on

ł

(

Drilling Log

		Owner <u>Bloomfield Refining Co.</u>	See Site Map For Boring Location
Location <u>50 County Ro</u>			
Surface Elev.	Total Hole Depth $\frac{33}{2}$	ft. Diameter <u>10 in.</u>	- COMMENTS:
Top of Casing	_ Water Level Initial <u>2</u>	ft. Static	- Stort 6 1020 bra Jastollad allt log from
Screen: Ula <u>4 III.</u>	Length <u>10 /2 ft</u>	Type/Size <u>FRE 0.020 in.</u> Type <u>FRE</u>	Start @ 1020 hrs. Installed silt leg from 33 to 35 feet.
Fill Material 10/20 Co. S	Length <u>Leve A</u>	Rig/Core Drill Systems 180	-
Drill Co. Layne	Method Air Pe	cussion	
		Date Permit #	_]
Checked By	License	No	-
Depth (ft.) Completion PID (ppm)	Sample ID Blow Count/ * Recovery Graphic Log		Structure)
$ \begin{array}{c} & & & \\ & & & $		Tan fine poorly-graded silty SAN) (dry-moist) ded silty SAND (moist)) (moist)
- 20 - 333 - 22 - 24 - 2507		-	

:

Drilling Log

1

Project <u>L</u>	oject <u>BRC</u> Owner <u>Bloomfield Refining Co.</u> Ocation <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>							
Depth (ft.)	Well Completion	(mqq) DI q	Sample ID	Blow Count/	X Recovery	Graphic Log	uscs Class.	
- 24	ा≣ा	2507						(Dark gray-stained at 24 feet)
- 26 -		3226				0.00.0		♀ Groundwater encountered at 25 feet on 5/13/94
- 28 -						0000	SP GM	P M
- 30 -						0.00		
- 32 -		174						- Encountered weathered limestone
- 34 -		11.4						
- 36 -								End of boring at 35 feet (1100 hrs). Installed well screened from 18 to 33 feet on 5/13/94.
- 38 -								
- 40 -								
- 42 -								
-44-								
- 46 -								
- 48 -								
- 50 -								
- 52 -								
- 54 -								
- 56 -								

.

Drilling Log

Monitoring Well MW-29

Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. 023353014 Surface Elev.								- Start @ 1445 hrs. Installed silt leg 24 to 26 feet. -	
Depth (ft.)	Well Completion	PID (mqq)	Sample ID	Blow Count/	X Recovery	Graphic Log	s Cla	Descrip (Color, Texture, Trace < 10%, Little 10% to 20%, Som	Structure)
2 - - 0 - - 2 - - 4 - - 6 -		0					SM CL	Tan fine poorly-graded silty SANE Tan silty CLAY (moist) Tan fine poorly-graded SAND (mo	
- 8 - - 10 - - 12 - - 14 - - 16 -		9					SP GM	Tan fine-coarse poorly-graded S	AND with gravel and cobbles
- 18 - - 20 - - 22 - - 22 - - 24 -		38				000000000000000000000000000000000000000	GP	Groundwater encountered at 20 for Cobbles with some fines (wet) Encountered weathered limestone	

DE LOLUDO A BILLOS MOROS

B

ł

i

Drilling Log

Project <u>4</u> Location	Project <u>BRC</u> ocation <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>						
Depth (ft.)	Well Completion	PID (mqq)		Graphic Log		Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%	
- 24 -							
- 26 -						End of boring at 26 feet (1510 hrs). Installed well screened from 10 to 24 feet.	
- 28 -		7					
- 30 -							
- 32 -							
- 34 -							
- 36 -							
- 38 -							
- 40							
- 42 -							
- 44 -							
- 46							
- 48 -							
- 50 -							
- 52 -							
- 54 -							
- 56 -							

							Drilling Log	
			DWATEF DLOGY	१				toring Well MW-30
Projec	et <u>BRC</u>			100	mfield.	0 New	wner <u>Bloomfield Refining Co.</u> <u>Mexico</u> Proj. No. <u>023353014</u>	See Site Map For Boring Location
							Diameter <u>10 in.</u>	COMMENTS:
Top o	of Casing		. Water Le	vel	Initial	<u>31 f</u>	t Static	
Scree	en: Dia <u>4 in.</u>		. Length J	<u>15 f</u>	t		Type/Size FRE 0.020 in.	Start @ 0720 hrs. Installed silt leg from 36 to 38 feet.
Casing	g: Dia <u>4 in.</u>	00.0	.Length	23/	<u>2 ft.</u>		Type <u>FRE</u>	
	o, <u>Layne</u>						ig/Core Drill Systems 180	
							Date Permit #	
	(ed By					nse M	40	
Ę	etion	۵Ê	le ID tount/		ghic	Class.	Descripti	on
Depth	Completion	Гġ	Sample ID Blow Count/		Graphic Log	nscs	(Color, Texture, S) Trace < 10%, Little 10% to 20%, Some	Structure) 20% to 35%, And 35% to 50%
2						-		
F	-							
- 0					h		Tan fine poorly-graded silty SAND	(moist)
-	- < <				. : . :			
L 2								
-								
ſ	Fin Fi				. : . :			
F 4								
ł	- <	22					(Same as above)	
- 6					. · . ·			
ŀ	- < <							
- 8								
		1						
	4 14	1			. ` . `			
F 10		15					(Same as above)	
ł						SM		
- 12	< <							
ł	_<							
- 14								
							(Same as above)	
10	Ku ki	30						
- 16		1			· . · .	ĺ		
f						ļ		
- 18								
ł						ł		
- 20					<u> </u>].].].]	1		
					. ` . `			
1 00	, ∥:l≣l:							ND with non-groupland aphilon
- 22	· 7 = :				0.1		Tan fine-coarse poorly-graded SA	ind with hea diaver and condies
ł			1		i p	<u>SP</u> GM		
- 24	t - [- 1 = [-]	-			fi taŭ	∦		
4	11							

;

2

.

. .

1

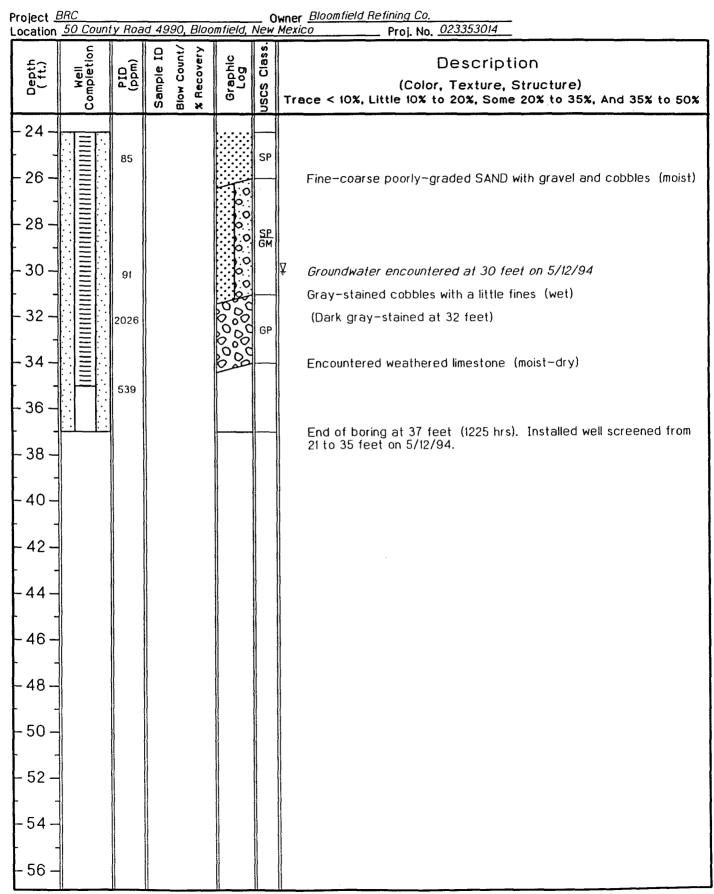
Drilling Log

Project <u>L</u>	roject <u>BRC</u> Owner <u>Bloomfield Refining Co.</u> ocation <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>							
Depth (ft.)	Well Completion	PID (mqq)	Sample ID	Blow Count/ * Becovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%	
-24 - 28 - 28 - 28 - 28 - 28 - 28 - 28 -		62 620 203	Sampl	BIOW C		SCSD GM	(Color, Texture, Structure) Trace < 10%, Little 10% to 20%. Some 20% to 35%, And 35% to 50% (Same as above) Dark gray-stained cobbles with some fines (moist-very moist) Assume groundwater encountered at 31 feet on 5/13/94 (Some clay and silt at 34 feet) Encountered weathered limestone (dry) End of boring at 38 feet (0800 hrs). Installed well screened from 21 to 36 feet.	
- 54 - - 56 -								

GROUNDWATER

ł

ł


Í

Drilling Log

		Wener <u>Bloomfield Refining Co.</u> Mexico Proj. No. <u>023353014</u>	See Site Map For Boring Location
Surface Elev	. Total Hole Depth <u>37 f</u>	COMMENTS:	
		ft. Static	
Screen: Dia <u>4 in.</u>	Length <u>14 ft.</u>	Type/Size <u>FRE 0.020 in.</u>	Start @ 1200 hrs.
Casing: Dia <u>4 in.</u>	. Length <u>2372 11.</u>	hig/Core <u>Drill Systems 180</u>	
Drill Co, <u>Layne</u>	Method Air Perd		
Driller Gabby Rodriguez	. Log By <u>Jerry May</u>	Date Permit #	
Checked By	License I	No	
Depth (ft.) Completion PID (ppm)	Sample ID Blow Count/ * Recovery Graphic Log USCS Class.	Descript (Color, Texture, Trace < 10%, Little 10% to 20%, Some	Structure)
$ \begin{array}{c} -2 \\ -0 \\ -2 \\ -2 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4$	SP	Tan fine poorly-graded silty SAND Tan fine poorly-graded SAND (mo	(moist)
- 24			

Drilling Log

APPENDIX B

ł

ł

:

i

Laboratory Reports of Groundwater Sample Analyses

T

CASE NARRATIVE

On May 26, 1994, twenty samples and two trip blanks were received for analysis at Inter-Mountain Laboratories, Bozeman, Montana. The chain of custody form requested analysis for volatile organic compounds by method 8240, semivolatile organic compounds by method 8270, metals by methods 6010/7000 and some general parameters. Client name/Project name was listed as Groundwater Technology / Bloomfield Refinery / Bloomfield, NM.

Detectable amounts of targeted compounds were present in some of the samples.

Limits of detection for each instrument/analysis are determined by sample matrix effects, instrument performance under standard conditions, and dilution requirements to maintain chromatography output within calibration ranges.

Wvnh Sudtelate

IML-Bozeman

0617GT

i

٦

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-12	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945066	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	05/31/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-12	Date Reported:	06/16/94
Laboratory ID:	B945066	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Parameter	Analytical Result	Detection Limit	Units
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client: GROUNDWATER TECHNOLOGY			
Sample ID:	MW-12	Date Reported:	06/16/94
Laboratory ID:	B945066	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

· ·	Tentative	Retention		
		Hotontion		1
	Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

Surrogate Recovery	%	Water QC Limits
1,2-Dichloroethane-d4	94	76 - 114
Toluene-d8	102	88 - 110
Bromofluorobenzene	98	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

l

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS **BASE/NEUTRAL/ACID EXTRACTABLES**

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-12	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945066	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/28/94
Preservation:	Cool	Date Analyzed:	06/01/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Unit
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol	** ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/l
Benzo(b)fluoranthene	ND	10	ug/l
Benzo(g,h,i)perylene	ND	10	ug/l
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-12	Date Reported:	06/16/94
Laboratory ID:	B945066	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-12	Date Reported:	06/16/94
Laboratory ID:	B945066	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

Tentative Identification	Retention Time (minutes)	Concentration	Units
Unknown hydrocarbon	8.52	20	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recoveries	%	OC Limits	
2-Fluorophenol	54	21 - 100	
Phenol-d6	55	10 - 94	
Nitrobenzene-d5	88	35 - 114	
2-Fluorobiphenyl	98	43 - 116	
2,4,6-Tribromophenol	94	10 - 123	
Terphenyl-d14	85	33 - 141	

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Reviewed

Analyst

1

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-5	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945067	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	05/31/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

i

. 1

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

GROUNDWATER TECHNOLOGY		
MW-5	Date Reported:	06/16/94
B945067	Date Sampled:	05/24/94
Water	Date Analyzed:	05/31/94
	MW-5 B945067	MW-5Date Reported:B945067Date Sampled:

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-5	Date Reported:	06/16/94
Laboratory ID:	B945067	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative Retention	
Identification Time (min) Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

Surrogate Recovery	%	Water QC Limits
1,2-Dichloroethane-d4	93	76 - 114
Toluene-d8	101	88 - 110
Bromofluorobenzene	99	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

ł

Г

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-5	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945067	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/28/94
Preservation:	Cool	Date Analyzed:	06/01/94
Condition:	Intact		

,	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalené	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol **	ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

GROUNDWATER TECHNOLOGY		
MW-5	Date Reported:	06/16/94
B945067	Date Sampled:	05/24/94
Water	Date Analyzed:	06/01/94
	MW-5 B945067	MW-5Date Reported:B945067Date Sampled:

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	NÐ	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-5	Date Reported:	06/16/94
Laboratory ID:	B945067	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

Tentative Identification	Retention Time (minutes)	Concentration	Units
Unknown hydrocarbon	15.80	10	ug/L
Unknown hydrocarbon	19.68	30	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
	75	01 100
2-Fluorophenol	75	21 - 100
Phenol-d6	81	10 - 94
Nitrobenzene-d5	91	35 - 114
2-Fluorobiphenyl	98	43 - 116
2,4,6-Tribromophenol	105	10 - 123
Terphenyl-d14	78	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-8	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945068	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	05/31/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1 1 1 T-i		F	
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	· ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-8	Date Reported:	06/16/94
Laboratory ID:	B945068	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Parameter	Analytical Result	Detection Limit	Units
rarameter	nesut		Onic
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-8	Date Reported:	06/16/94
Laboratory ID:	B945068	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	92	76 - 114
Toluene-d8	101	88 - 110
Bromofluorobenzene	100	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

ml/

Reviewed

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-8	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945068	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/28/94
Preservation:	Cool	Date Analyzed:	06/01/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol **	ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND ·	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-8	Date Reported:	06/16/94
Laboratory ID:	B945068	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

1	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

GROUNDWATER TECHNOLOGY		
MW-8	Date Reported:	06/16/94
B945068	Date Sampled:	05/24/94
Water	Date Analyzed:	06/01/94
	MW-8 B945068	MW-8Date Reported:B945068Date Sampled:

Tentative Identification	Retention Time (minutes)	Concentration	Units
Unknown hydrocarbon	19.64	10	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

	Water	
%	QC Limits	
70	21 100	
/2	21 - 100	
75	10 - 94	
91	35 - 114	
98	43 - 116	
107	10 - 123	
83	33 - 141	
	72 75 91 98 107	

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

éviewed

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	ТВ-052494	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945069	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	05/31/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	TB-052494	Date Reported:	06/16/94
Laboratory ID:	B945069	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Parameter	Analytical Result	Detection Limit	Units
			· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	TB-052494	Date Reported:	06/16/94
Laboratory ID:	B945069	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

Surrogate Recovery	%	Water QC Limits
1,2-Dichloroethane-d4	92	76 - 114
Toluene-d8 Bromofluorobenzene	101 99	88 - 110 86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

all Analyst

Lt Reviewed

i.

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-3	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945070	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	05/31/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

ł

i

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-3	Date Reported:	06/16/94
Laboratory ID:	B945070	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-3	Date Reported:	06/16/94
Laboratory ID:	B945070	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	94	76 - 114
Toluene-d8	100	88 - 110
Bromofluorobenzene	98	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

allalu Analyst

Reviewed

.

1 1

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS **BASE/NEUTRAL/ACID EXTRACTABLES**

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-3	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945070	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/28/94
Preservation:	Cool	Date Analyzed:	06/01/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol **		10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-3	Date Reported:	06/16/94
Laboratory ID:	B945070	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	. ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	NÐ	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-3	Date Reported:	06/16/94
Laboratory ID:	B945070	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

Tentative	Retention Time (minutes)	Concentration	Units
Identification			
Unknown hydrocarbon	15.80	10	ug/L
Unknown hydrocarbon	19.64	20	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	53	21 - 100
Phenol-d6	59	10 - 94
Nitrobenzene-d5	66	35 - 114
2-Fluorobiphenyl	82	43 - 116
2,4,6-Tribromophenol	98	10 - 123
Terphenyl-d14	72	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Reviewed

Analyst

11

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-1	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945071	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	05/31/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND	' 5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

ł

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-1	Date Reported:	06/16/94
Laboratory ID:	B945071	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Parameter	Analytical Result	Detection Limit	Units
9		с г	
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-1	Date Reported:	06/16/94
Laboratory ID:	B945071	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative Identification	Retention Time (min)	Concentration	Units
Unknown hydrocarbon	6.52	10	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

	Water	
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	93	76 - 114
Toluene-d8	101	88 - 110
Bromofluorobenzene	97	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

in 10 Analyst

Reviewed

ſ

٦

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-1	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945071	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/28/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol *		10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-1	Date Reported:	06/16/94
Laboratory ID:	B945071	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-1	Date Reported:	06/16/94
Laboratory ID:	B945071	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		11
Identification	Time (minutes)	Concentration	Units
Unknown hydrocarbon	19.67	20	ug/L
Unknown halagonated	25.21	10	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	62	21 - 100
Phenol-d6	71	10 - 94
Nitrobenzene-d5	81	35 - 114
2-Fluorobiphenyl	92	43 - 116
2,4,6-Tribromophenol	102	10 - 123
Terphenyl-d14	84	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Reviewed

Analyst

I

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	EB-052494	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945072	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCl	Date Analyzed:	06/01/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	EB-052494	Date Reported:	06/16/94
Laboratory ID:	B945072	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

ł

ł

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	EB-052494	Date Reported:	06/16/94
Laboratory ID:	B945072	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94
•		,	

				1
	Tentative	Retention		
	Identification	Time (min)	Concentration	Units
•	luentification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	88	76 - 114	
Toluene-d8	102	88 - 110	
Bromofluorobenzene	99	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst Analyst

Reviewed

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-29	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945073	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/01/94
Condition:	Intact		

	Analytical	Detection	11.14-
Parameter	Result	Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND.	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

ER TECHNOLOGY	
Date Reported:	06/16/94
Date Sampled:	05/24/94
Date Analyzed:	06/01/94
	Date Sampled:

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-29	Date Reported:	06/16/94
Laboratory ID:	B945073	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

Tentative Identification	Retention Time (min)	Concentration	Units
Unknown hydrocarbon	6.49	100	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	90	76 - 114	
Toluene-d8	102	88 - 110	
Bromofluorobenzene	100	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

Г

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-29	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945073	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/28/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol **	ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

Inter Mountain Laboratories, Inc.

1160 Research Drive Bozeman, Montana 59715

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-29	Date Reported:	06/16/94
Laboratory ID:	B945073	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-29	Date Reported:	06/16/94
Laboratory ID:	B945073	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative Identification	Retention Time (minutes)	Concentration	Units
Unknown hydrocarbon	19.66	20	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	55	21 - 100
Phenol-d6	63	10 - 94
Nitrobenzene-d5	69	35 - 114
2-Fluorobiphenyl	84	43 - 116
2,4,6-Tribromophenol	98	10 - 123
Terphenyl-d14	61	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

leviewed

Analyst

TOTAL METALS ANALYSIS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-29	Date Reported:	06/17/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945073	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/31/94
Preservation:	Cool; HNO3	Date Analyzed:	06/17/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Level	Units
Antimony	ND	0.06	mg/L
Arsenic	ND	0.01	mg/L
Beryllium	ND	0.005	mg/L
Cadmium	ND	0.005	mg/L
Chromium	ND	0.01	mg/L
Copper	ND	0.025	mg/L
Lead	0.0057	0.003	mg/L
Mercury	ND	0.0002	mg/L
Nickel	ND	0.04	mg/L
Selenium	ND	0.005	mg/L
Silver	ND	0.01	mg/L
Thallium	ND	0.01	mg/L
Zinc	0.037	0.02	mg/L

ND-Parameter not detected at stated detection level.

References:

Method 3010: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, September 1986.

Method 6010: Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, September 1986.

Method 7000: Atomic Absorption Spectroscopy SW-846, September 1986.

Method 7470: Mercury in Liquid Waste (Manual Cold-Vapor Technique), SW-846, September 1986.

DRZ

Analyst

Reviewed

i

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-29	Date Reported:	06/17/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945073	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	06/13/94
Preservation:	Cool	Date Analyzed:	06/14/94
Condition:	Intact		

Parameter	Analytical Result	Detection Level	Units
Total Recoverable Petroleum Hydrocarbons	ND	1	mg/L

ND-Parameter not detected at stated detection level.

References:

Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of Water and Waste, 1978.

Reviewed

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945074	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/03/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	50	ug/L
1,1,2,2-Tetrachloroethane	ND	50	ug/L
1,1,2-Trichloroethane	ND	50	ug/L
1,1-Dichloroethane	ND	50	ug/L
1,1-Dichloroethene	ND	50	ug/L
1,2-Dichloroethane	ND	50	ug/L
1,2-Dichloropropane	ND	50	ug/L
2-Butanone (MEK)	ND	200	ug/L
2-Hexanone	ND	50	ug/L
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L
Acetone	ND	200	ug/L
Benzene	1400	50	ug/L
Bromodichloromethane	ND	50	ug/L
Bromoform	ND	50	ug/L
Bromomethane	ND	50	ug/L
Carbon Disulfide	ND	50	ug/L
Carbon Tetrachloride	ND	50	ug/L
Chlorobenzene	ND	50	ug/L
Chloroethane	ND	50	ug/L
Chloroform	ND	50	ug/L
Chloromethane	ND	50	ug/L
cis-1,3-Dichloropropene	ND	50	ug/L
Dibromochloromethane	ND	50	ug/L
Ethylbenzene	260	50	ug/L
m,p-Xylene	ND	50	ug/L
Methylene chloride	ND	200	ug/L
o-Xylene	ND	50	ug/L
Styrene	ND	50	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

GROUNDWATER TECHNOLOGY		
MW-21	Date Reported:	06/16/94
B945074	Date Sampled:	05/24/94
Water	Date Analyzed:	06/03/94
	MW-21 B945074	MW-21Date Reported:B945074Date Sampled:

Parameter	Analytical Result	Detection Limit	Units
Farameter		Linit	0111(3
Tetrachloroethene (PCE)	ND	50	ug/L
Toluene	ND	50	ug/L
trans-1,2-Dichloroethene	ND	50	ug/L
trans-1,3-Dichloropropene	ND	50	ug/L
Trichloroethene (TCE)	ND	50	ug/L
Vinyl Chloride	ND	50	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21	Date Reported:	06/16/94
Laboratory ID:	B945074	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/03/94

Tentative Identification	Retention Time (min)	Concentration	Units
Unknown aromatic	21.03	70	ug/L
Unknown aromatic	21.54	200	ug/L
Unknown aromatic	22.02	60	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	94	76 - 114	
Toluene-d8	101	88 - 110	
Bromofluorobenzene	100	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

horan /

Reviewed

1

:

ſ

.

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945074	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	05/31/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol *	* ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	. 10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21	Date Reported:	06/16/94
Laboratory ID:	B945074	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	17	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	13	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

1

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21	Date Reported:	06/16/94
Laboratory ID:	B945074	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative	Retention		
Identification	Time (minutes)	Concentration	Units
Hydrocarbon envelope	10-32		
Indene	11.32	13	ug/L
1-Methylnaphthalene	16.39	17	ug/L
Unknown aromatic	10.22	40	ug/L
Unknown aromatic	11.11	90	ug/L
Unknown aromatic	11.52	50	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	68	21 - 100
Phenol-d6	66	10 - 94
Nitrobenzene-d5	75	35 - 114
2-Fluorobiphenyl	95	43 - 116
2,4,6-Tribromophenol	105	10 - 123
Terphenyl-d14	86	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

i.

T

ł

÷.

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21Dup	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945075	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCl	Date Analyzed:	06/03/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	50	ug/L
1,1,2,2-Tetrachloroethane	ND	50	ug/L
1,1,2-Trichloroethane	ND	50	ug/L
1,1-Dichloroethane	ND	50	ug/L
1,1-Dichloroethene	ND	50	ug/L
1,2-Dichloroethane	ND	50	ug/L
1,2-Dichloropropane	ND	50	ug/L
2-Butanone (MEK)	ND	200	ug/L
2-Hexanone	ND	50	ug/L
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L
Acetone	ND	200	ug/L
Benzene	1300	50	ug/L
Bromodichloromethane	ND	50	ug/L
Bromoform	ND	50	ug/L
Bromomethane	ND	50	ug/L
Carbon Disulfide	ND	50	ug/L
Carbon Tetrachloride	ND	50	ug/L
Chlorobenzene	ND	50	ug/L
Chloroethane	ND	50	ug/L
Chloroform	ND	50	ug/L
Chloromethane	ND	50	ug/L
cis-1,3-Dichloropropene	ND	50	ug/L
Dibromochloromethane	ND	50	ug/L
Ethylbenzene	260	50	ug/L
m,p-Xylene	ND	50	ug/L
Methylene chloride	ND	200	ug/L
o-Xylene	ND	50	ug/L
Styrene	ND	50	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21Dup	Date Reported:	06/16/94
Laboratory ID:	B945075	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/03/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Tetrachloroethene (PCE)	ND	50	ug/L
Toluene	ND	50	ug/L
trans-1,2-Dichloroethene	ND	50	ug/L
trans-1,3-Dichloropropene	ND	50	ug/L
Trichloroethene (TCE)	ND	50	ug/L
Vinyl Chloride	ND	50	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21Dup	Date Reported:	06/16/94
Laboratory ID:	B945075	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/03/94

Tentative Identification	Retention Time (min)	Concentration	Units
Unknown aromatic	21.03	70	ug/L
Unknown aromatic	21.55	200	ug/L
Unknown aromatic	22.02	50	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

	0/	Water QC Limits
Surrogate Recovery	%	
1,2-Dichloroethane-d4	95	76 - 114
Toluene-d8	102	88 - 110
Bromofluorobenzene	101	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

cc/w

w Reviewed

Analyst

ſ

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21Dup	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945075	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	05/31/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol **	ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

i

1

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21Dup	Date Reported:	06/16/94
Laboratory ID:	B945075	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	18	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	12	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-21Dup	Date Reported:	06/16/94
Laboratory ID:	B945075	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative	Retention Time (minutes)	Concentration	Units
Identification			
Hydrocarbon envelope	10-32		
Indene	11.32	13	ug/L
1-Methylnathalene	16.39	18	ug/L
Unknown aromatic	10.20	40	ug/L
Unknown aromatic	11.12	80	ug/L
Unknown hydrocarbon	11.52	50	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	64	21 - 100
Phenol-d6	65	10 - 94
Nitrobenzene-d5	73	35 - 114
2-Fluorobiphenyl	92	43 - 116
2,4,6-Tribromophenol	106	10 - 123
Terphenyl-d14	85	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Reviewed

Analyst

1

i

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-30	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945076	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCl	Date Analyzed:	06/01/94
Condition:	Intact	2nd Analysis:	06/15/94

Parameter	Analytical Result	Detection Limit	Unit
1,1,1-Trichloroethane	ND	1000	ug/L
1,1,2,2-Tetrachloroethane	ND	1000	ug/L
1,1,2-Trichloroethane	ND	1000	ug/L
1,1-Dichloroethane	ND	1000	ug/L
1,1-Dichloroethene	ND	1000	ug/L
1,2-Dichloroethane	ND	1000	ug/L
1,2-Dichloropropane	ND	1000	ug/L
2-Butanone (MEK)	ND	5000	ug/L
2-Hexanone	ND	1000	ug/L
4-Methyl-2-pentanone (MIBK)	ND	1000	ug/L
Acetone	ND	5000	ug/L
Benzene	7800	1000	ug/L
Bromodichloromethane	ND	1000	ug/L
Bromoform	ND	1000	ug/L
Bromomethane	ND	1000	ug/L
Carbon Disulfide	ND	1000	ug/L
Carbon Tetrachloride	ND	1000	ug/l
Chlorobenzene	ND	1000	ug/l
Chloroethane	ND	1000	ug/L
Chloroform	ND	1000	ug/l
Chloromethane	ND	1000	ug/l
cis-1,3-Dichloropropene	ND	1000	ug/l
Dibromochloromethane	ND	1000	ug/l
Ethylbenzene	3500	1000	ug/t
m,p-Xylene	14000	1000	ug/l
Methylene chloride	ND	5000	ug/l
o-Xylene	4700	1000	ug/l
Styrene	ND	1000	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-30	Date Reported:	06/16/94
Laboratory ID:	B945076	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	1000	ug/L
Toluene	20000	1000	ug/L
trans-1,2-Dichloroethene	ND	1000	ug/L
trans-1,3-Dichloropropene	ND	1000	ug/L
Trichloroethene (TCE)	ND	1000	ug/L
Vinyl Chloride	ND	1000	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-30	Date Reported:	06/16/94
Laboratory ID:	B945076	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/01/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units
Unknown hydrocarbon	15.00	3000	ug/L
Unknown hydrocarbon	18.72	4000	ug/L
Unknown aromatic	18.86	1000	ug/L
Unknown aromatic	19.44	4000	ug/L
Unknown hydrocarbon	25.45	2000	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

	Water		
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	92	76 - 114	
Toluene-d8	104	88 - 110	
Bromofluorobenzene	101	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

R

1

i

-

1

1

:

1 . . .

;

Г

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-30	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945076	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	100	ug/L
1,2-Dichlorobenzene	ND	100	ug/L
1,3-Dichlorobenzene	ND	100	ug/L
1,4-Dichlorobenzene	ND	100	ug/L
2,4,5-Trichlorophenol	ND	100	ug/L
2,4,6-Trichlorophenol	ND	100	ug/L
2,4-Dichlorophenol	ND	100	ug/L
2,4-Dimethylphenol	160	100	ug/L
2,4-Dinitrophenol	ND	500	ug/L
2,4-Dinitrotoluene	ND	100	ug/L
2,6-Dinitrotoluene	ND	100	ug/L
2-Chloronaphthalene	ND	100	ug/L
2-Chlorophenol	ND	100	ug/L
2-Methylnaphthalene	580	100	ug/L
2-Methylphenol	ND	100	ug/L
2-Nitroaniline	ND	500	ug/L
2-Nitrophenol	ND	100	ug/L
3,3'-Dichlorobenzidine	ND	200	ug/L
3-Methylphenol/4-Methylphenol	** 70 J	100	ug/L
3-Nitroaniline	ND	500	ug/L
4,6-Dinitro-2-methylphenol	ND	500	ug/L
4-Bromophenyl-phenylether	ND	100	ug/L
4-Chloro-3-methylphenol	ND	200	ug/L
4-Chloroaniline	ND	200	ug/L
4-Chlorophenyl-phenylether	. ND	100	ug/L
4-Nitroaniline	ND	200	ug/L
4-Nitrophenol	ND	500	ug/L
Acenaphthene	ND	100	ug/L
Acenaphthylene	ND	100	ug/L
Anthracene	ND	100	ug/L
Benzo(a)anthracene	ND	100	ug/L
Benzo(a)pyrene	ND	100	ug/L
Benzo(b)fluoranthene	ND	100	ug/L
Benzo(g,h,i)perylene	ND	100	ug/L
Benzo(k)fluoranthene	ND	100	ug/L
Benzoic Acid	ND	500	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-30	Date Reported:	06/16/94
Laboratory ID:	B945076	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

,	Analytical		Detection	
Parameter	Result		Limit	Units
Benzyl Alcohol	ND		200	ug/L
bis(2-Chloroethoxy)methane	ND		100	ug/L
bis(2-Chloroethyl)ether	ND		100	ug/L
bis(2-Chloroisopropyl)ether	ND		100	ug/L
bis(2-Ethylhexyl)phthalate	ND		500	ug/L
Butylbenzylphthalate	ND		100	ug/L
Chrysene	ND		100	ug/L
Di-n-Butylphthalate	ND		500	ug/L
Di-n-Octylphthalate	ND		100	ug/L
Dibenz(a,h)anthracene	ND		100	ug/L
Dibenzofuran	ND		100	ug/L
Diethylphthalate	ND		100	ug/L
Dimethylphthalate	ND		100	ug/L
Fluoranthene	ND		100	ug/L
Fluorene	ND		100	ug/L
Hexachlorobenzene	ND		100	ug/L
Hexachlorobutadiene	ND		200	ug/L
Hexachlorocyclopentadiene	ND		100	ug/L
Hexachloroethane	ND		200	ug/L
Indeno(1,2,3-cd)pyrene	ND		100	ug/L
Isophorone	ND		100	ug/L
N-Nitrosodi-n-propylamine	ND		100	ug/L
N-Nitrosodiphenylamine	ND		100	ug/L
Naphthalene	850		100	ug/L
Nitrobenzene	ND		100	ug/L
Pentachlorophenol	ND		500	ug/L
Phenanthrene	ND		100	ug/L
Phenol	80	J	100	ug/L
Pyrene	ND		100	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-30	Date Reported:	06/16/94
Laboratory ID:	B945076	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention Time (minutes)		Units
Identification		Concentration	
Hydrocarbon envelope	9-28		
Indene	11.28	1000	ug/L
1-Methylnaphthalene	16.36	3500	ug/L
Unknown aromatic	9.45	1000	ug/L
Unknown aromatic	9.63	1000	ug/L
Unknown aromatic	10.18	2000	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recoveries	%	QC Limits	
2-Fluorophenol	29	21 - 100	
Phenol-d6	82	10 - 94	
Nitrobenzene-d5	112	35 - 114	
2-Fluorobiphenyl	152 *	43 - 116	
2,4,6-Tribromophenol	127 *	10 - 123	
Terphenyl-d14	124	33 - 141	

* - Out of limits due to a matrix effect.

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

TOTAL METALS ANALYSIS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-30	Date Reported:	06/17/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945076	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/31/94
Preservation:	Cool; HNO3	Date Analyzed:	06/17/94
Condition:	Intact		

	Analytical Result	Detection	Units
Parameter		Level	
		0.00	4
Antimony	ND	0.06	mg/L
Arsenic	0.011	0.01	mg/L
Beryllium	ND	0.005	mg/L
Cadmium	ND	0.005	mg/L
Chromium	0.015	0.01	mg/L
Copper	0.034	0.025	mg/L
Lead	0.0087	0.003	mg/L
Mercury	ND	0.0002	mg/L
Nickel	ND	0.04	mg/L
Selenium	ND	0.005	mg/L
Silver	ND	0.01	mg/L
Thallium	ND	0.01	mg/L
Zinc	0.039	0.02	mg/L

ND-Parameter not detected at stated detection level.

References:

1

Method 3010: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, September 1986.

Method 6010: Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, September 1986.

Method 7000: Atomic Absorption Spectroscopy SW-846, September 1986.

Method 7470: Mercury in Liquid Waste (Manual Cold-Vapor Technique), SW-846, September 1986.

DRY

Analyst

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-30	Date Reported:	06/17/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945076	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	06/13/94
Preservation:	Cool	Date Analyzed:	06/14/94
Condition:	Intact		

Parameter	Analytical Result	Detection Level	Units
Total Recoverable	18	1	mg/L
l otal Recoverable Petroleum Hydrocarbons	18	1	

ND-Parameter not detected at stated detection level.

References:

Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of Water and Waste, 1978.

Reviewed

Ì

l

ł

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-13	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945077	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

D

i

į

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-13	Date Reported:	06/16/94
Laboratory ID:	B945077	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-13	Date Reported:	06/16/94
Laboratory ID:	B945077	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units
Internation		Concentration	Onits

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	93	76 - 114
Toluene-d8	101	88 - 110
Bromofluorobenzene	98	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

8

B

Г

٦

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS **BASE/NEUTRAL/ACID EXTRACTABLES**

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-13	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945077	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	05/31/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Unit
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/l
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/l
2-Chlorophenol	ND	10	ug/l
2-Methylnaphthalene	ND	10	ug/l
2-Methylphenol	ND	10	ug/l
2-Nitroaniline	ND	50	ug/l
2-Nitrophenol	ND	10	ug/l
3,3'-Dichlorobenzidine	ND	20	ug/l
3-Methylphenol/4-Methylphenol **	ND	10	ug/l
3-Nitroaniline	ND	50	ug/l
4,6-Dinitro-2-methylphenol	ND	50	ug/l
4-Bromophenyl-phenylether	ND	10	ug/l
4-Chloro-3-methylphenol	ND	20	ug/l
4-Chloroaniline	ND	20	ug/l
4-Chlorophenyl-phenylether	ND	10	ug/l
4-Nitroaniline	ND	20	ug/l
4-Nitrophenol	ND	50	ug/l
Acenaphthene	ND	10	ug/l
Acenaphthylene	ND	10	ug/l
Anthracene	ND	10	ug/l
Benzo(a)anthracene	ND	10	ug/l
Benzo(a)pyrene	ND	10	ug/l
Benzo(b)fluoranthene	ND	10	ug/l
Benzo(g,h,i)perylene	ND	10	ug/l
Benzo(k)fluoranthene	ND	10	ug/l
Benzoic Acid	ND	50	ug/l

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

GROUNDWATER TECHNOLOGY		
MW-13	Date Reported:	06/16/94
B945077	Date Sampled:	05/24/94
Water	Date Analyzed:	05/31/94
	MW-13 B945077	MW-13Date Reported:B945077Date Sampled:

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

1

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-13	Date Reported:	06/16/94
Laboratory ID:	B945077	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative	Retention		
Identification	Time (minutes)	Concentration	Units
Unknown alcohol	4.13	50	ug/L
Unknown hydrocarbon	4.60	20	ug/L
Unknown alcohol	5.50	30	ug/L
Unknown hydrocarbon	6.74	50	ug/L
Unknown alcohol	8.06	50	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recoveries	%	QC Limits	
2-Fluorophenol	57	21 - 100	
Phenol-d6	58	10 - 94	
Nitrobenzene-d5	78	35 - 114	
2-Fluorobiphenyl	94	43 - 116	
2,4,6-Tribromophenol	99	10 - 123	
Terphenyl-d14	97	33 - 141	

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

ľ

H

ſ

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-31	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945078	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	1000	ug/L
1,1,2,2-Tetrachloroethane	ND	1000	ug/L
1,1,2-Trichloroethane	ND	1000	ug/L
1,1-Dichloroethane	ND	1000	ug/L
1,1-Dichloroethene	ND	1000	ug/L
1,2-Dichloroethane	ND	1000	ug/L
1,2-Dichloropropane	ND	1000	ug/L
2-Butanone (MEK)	ND	5000	ug/L
2-Hexanone	ND	1000	ug/L
4-Methyl-2-pentanone (MIBK)	ND	1000	ug/L
Acetone	ND	5000	ug/L
Benzene	13000	1000	ug/L
Bromodichloromethane	ND	1000	ug/L
Bromoform	ND	1000	ug/L
Bromomethane	ND	1000	ug/L
Carbon Disulfide	ND	1000	ug/L
Carbon Tetrachloride	ND	1000	ug/L
Chlorobenzene	ND	1000	ug/L
Chloroethane	ND	1000	ug/L
Chloroform	ND	1000	ug/L
Chloromethane	ND	1000	ug/L
cis-1,3-Dichloropropene	ND	1000	ug/L
Dibromochloromethane	ND	1000	ug/L
Ethylbenzene	2500	1000	ug/L
m,p-Xylene	17000	1000	ug/L
Methylene chloride	ND	5000	ug/L
o-Xylene	6300	1000	ug/L
Styrene	ND	1000	ug/L

l

þ

H

1

.

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-31	Date Reported:	06/16/94
Laboratory ID:	B945078	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Parameter	Analytical Result	Detection Limit	Units
	nosuit	Linit	
Tetrachloroethene (PCE)	ND	1000	ug/L
Toluene	26000	1000	ug/L
trans-1,2-Dichloroethene	ND	1000	ug/L
trans-1,3-Dichloropropene	ND	1000	ug/L
Trichloroethene (TCE)	ND	1000	ug/L
Vinyl Chloride	ND	1000	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-31	Date Reported:	06/16/94
Laboratory ID:	B945078	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative Identification	Retention Time (min)	Concentration	Units
Unknown aromatic	20.63	2000	ug/L
Unknown aromatic	21.03	4000	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	92	76 - 114
Toluene-d8	100	88 - 110
Bromofluorobenzene	97	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

in Analyst

Reviewed

|

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-31	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945078	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	05/31/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	77	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	280	100	ug/L
2-Methylphenol	82	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol	** 210	100	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

i

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

GROUNDWATER TECHNOLOGY		
MW-31	Date Reported:	06/16/94
B945078	Date Sampled:	05/24/94
Water	Date Analyzed:	05/31/94
	MW-31 B945078	MW-31Date Reported:B945078Date Sampled:

,	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	650	100	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	110	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-31	Date Reported:	06/16/94
Laboratory ID:	B945078	Date Sampled:	05/24/94
Sample Matrix:	Water	Date Analyzed:	05/31/94

Tentative	Retention Time (minutes)		Units
Identification		Concentration	
Hydrocarbon envelope	5-23		
ndene	11.32	65	ug/L
l-Methylnaphthalene	16.42	100	ug/L
Jnknown aromatic	6.46	1000	ug/L
Jnknown aromatic	9.66	1000	ug/L
Jnknown aromatic	10.21	2000	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

			Water
· · ·	Surrogate Recoveries	%	QC Limits
	2-Fluorophenol	23	21 - 100
	Phenol-d6	37	10 - 94
	Nitrobenzene-d5	69	35 - 114
	2-Fluorobiphenyl	91	43 - 116
	2,4,6-Tribromophenol	107	10 - 123
	Terphenyl-d14	84	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

TOTAL METALS ANALYSIS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-31	Date Reported:	06/17/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945078	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/31/94
Preservation:	Cool; HNO3	Date Analyzed:	06/17/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Level	Units
Antimony	ND	0.06	mg/L
Antimony Arsenic	ND	0.00	mg/L
Beryllium	ND	0.005	mg/L
Cadmium	ND	0.005	mg/L
Chromium	ND	0.01	mg/L
Copper	ND	0.025	mg/L
Lead	ND	0.003	mg/L
Mercury	ND	0.0002	mg/L
Nickel	ND	0.04	mg/L
Selenium	ND	0.005	mg/L
Silver	ND	0.01	mg/L
Thallium	ND	0.01	mg/L
Zinc	ND	0.02	mg/L

ND-Parameter not detected at stated detection level.

References:

Method 3010: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, September 1986.

Method 6010: Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, September 1986.

Method 7000: Atomic Absorption Spectroscopy SW-846, September 1986.

Method 7470: Mercury in Liquid Waste (Manual Cold-Vapor Technique), SW-846, September 1986.

DRY

Analyst

Reviewed

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-31	Date Reported:	06/17/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945078	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	06/13/94
Preservation:	Cool	Date Analyzed:	06/14/94
Condition:	Intact		

Parameter	Analytical Result	Detection Level	Units
Total Recoverable	11	1	mg/L
Petroleum Hydrocarbons			

ND-Parameter not detected at stated detection level.

References:

Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of Water and Waste, 1978.

Reviewed

r

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945079	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/02/94
Condition:	Intact		

,	Analytical	Detection	
Parameter	Result	Limit	Units
1,1,1-Trichloroethane	ND	200	ug/L
1,1,2,2-Tetrachloroethane	ND	200	ug/L
1,1,2-Trichloroethane	ND	200	ug/L
1,1-Dichloroethane	ND	200	ug/L
1,1-Dichloroethene	ND	200	ug/L
1,2-Dichloroethane	ND	200	ug/L
1,2-Dichloropropane	ND	200	ug/L
2-Butanone (MEK)	ND	1000	ug/L
2-Hexanone	ND	200	ug/L
4-Methyl-2-pentanone (MIBK)	ND	200	ug/L
Acetone	ND	1000	ug/L
Benzene	4500	200	ug/L
Bromodichloromethane	ND	200	ug/L
Bromoform	ND	200	ug/L
Bromomethane	ND	200	ug/L
Carbon Disulfide	ND	200	ug/L
Carbon Tetrachloride	ND	200	ug/L
Chlorobenzene	ND	200	ug/L
Chloroethane	ND	200	ug/L
Chloroform	ND	200	ug/L
Chloromethane	ND	200	ug/L
cis-1,3-Dichloropropene	ND	200	ug/L
Dibromochloromethane	ND	200	ug/L
Ethylbenzene	1100	200	ug/L
m,p-Xylene	12000	200	ug/L
Methylene chloride	ND	1000	ug/L
o-Xylene	100 J	200	ug/L
Styrene	ND	200	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

GROUNDWATER TECHNOLOGY		
MW-26	Date Reported:	06/16/94
B945079	Date Sampled:	05/25/94
Water	Date Analyzed:	06/02/94
	MW-26 B945079	MW-26Date Reported:B945079Date Sampled:

	Analytical	Detection	
Parameter	Result	Limit	Units
Tetrachloroethene (PCE)	ND	200	ug/L
Toluene	ND	200	ug/L
trans-1,2-Dichloroethene	ND	200	ug/L
trans-1,3-Dichloropropene	ND	200	ug/L
Trichloroethene (TCE)	ND	200	ug/L
Vinyl Chloride	ND	200	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26	Date Reported:	06/16/94
Laboratory ID:	B945079	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative Identification	Retention Time (min)	Concentration	Units
Unknown hydrocarbon	11.38	800	ug/L
Unknown hydrocarbon	14.37	2000	ug/L
Unknown aromatic	20.62	1000	ug/L
Unknown aromatic	20.71	1000	ug/L
Unknown aromatic	21.03	2000	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	92	76 - 114
Toluene-d8	101	88 - 110
Bromofluorobenzene	97	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

Г

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945079	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/28/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	58	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	41	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol	** ND	10	ug/L
3-Nitroaniline	ND	50	'ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

LOGY	
Date Reported:	06/16/94
Date Sampled:	05/25/94
Date Analyzed:	06/02/94
	Date Reported: Date Sampled:

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	84	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	19	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26	Date Reported:	06/16/94
Laboratory ID:	B945079	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention	Concentration	Units
Identification	Time (minutes)		
Hydrocarbon envelope	4-24		
1-Methylnaphthalene	16.38	39	ug/L
Unknown aromatic	9.31	800	ug/L
Unknown aromatic	10.04	700	ug/L
Unknown aromatic	10.12	600	ug/L
Unknown aromatic	16.64	800	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	47	21 - 100
Phenol-d6	78	10 - 94
Nitrobenzene-d5	71	35 - 114
2-Fluorobiphenyl	80	43 - 116
2,4,6-Tribromophenol	69	10 - 123
Terphenyl-d14	67	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Keviewed

Analyst

TOTAL METALS ANALYSIS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26	Date Reported:	06/17/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945079	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/31/94
Preservation:	Cool; HNO3	Date Analyzed:	06/17/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Level	Units
Antimony	ND	0.06	mg/L
Arsenic	ND	0.00	mg/L
Beryllium	ND	0.005	mg/L
Cadmium	ND	0.005	mg/L
Chromium	ND	0.01	mg/L
Copper	ND	0.025	mg/L
Lead	0.0059	0.003	mg/L
Mercury	ND	0.0002	mg/L
Nickel	ND	0.04	mg/L
Selenium	ND	0.005	mg/L
Silver	ND	0.01	mg/L
Thallium	ND	0.01	mg/L
Zinc	0.035 ,	0.02	mg/L

ND-Parameter not detected at stated detection level.

References:

Method 3010: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, September 1986.

Method 6010: Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, September 1986.

Method 7000: Atomic Absorption Spectroscopy SW-846, September 1986.

Method 7470: Mercury in Liquid Waste (Manual Cold-Vapor Technique), SW-846, September 1986.

DRZ

Analyst

Reviewed

Inter Mountain Laboratories, Inc.

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26	Date Reported:	06/17/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/24/94
Laboratory ID:	B945079	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	06/13/94
Preservation:	Cool	Date Analyzed:	06/14/94
Condition:	Intact		

Parameter	Analytical Result	Detection Level	Units
Total Recoverable	17	1	mg/L

Petroleum Hydrocarbons

ND-Parameter not detected at stated detection level.

References:

Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of Water and Waste, 1978.

Reviewed

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26Dup	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945080	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1 1 1 Tricklessee	ND	200	ug/L
1,1,1-Trichloroethane	ND	200	ug/L
1,1,2,2-Tetrachloroethane	ND	200	ug/L ug/L
1,1,2-Trichloroethane	ND	200	
1,1-Dichloroethane	ND		ug/L
1,1-Dichloroethene	ND	200	ug/L
1,2-Dichloroethane	ND	200	ug/L
1,2-Dichloropropane	ND ·	200	ug/L
2-Butanone (MEK)	ND	1000	. ug/L
2-Hexanone	ND	200	ug/L
4-Methyl-2-pentanone (MIBK)	ND	200	ug/L
Acetone	ND	1000	ug/L
Benzene	4700	200	ug/L
Bromodichloromethane	ND	200	ug/L
Bromoform	ND	200	ug/L
Bromomethane	ND	200	ug/L
Carbon Disulfide	ND	200	ug/L
Carbon Tetrachloride	ND	200	ug/L
Chlorobenzene	ND	200	ug/L
Chloroethane	ND	200	ug/L
Chloroform	ND	200	ug/L
Chloromethane	ND	200	ug/L
cis-1,3-Dichloropropene	ND	200	ug/L
Dibromochloromethane	ND	200	ug/L
Ethylbenzene	1100	200	ug/L
m,p-Xylene	13000	200	ug/L
Methylene chloride	ND	1000	ug/L
o-Xylene	ND	200	ug/L
Styrene	ND	200	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

OUNDWATER TECHNOLOGY		
N-26Dup	Date Reported:	06/16/ <mark>9</mark> 4
45080	Date Sampled: 0	05/25/94
ater	Date Analyzed:	06/02/94
2	V-26Dup 45080	V-26Dup Date Reported: 0 45080 Date Sampled: 0

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	200	ug/L
Toluene	ND	200	ug/L
trans-1,2-Dichloroethene	ND	200	ug/L
trans-1,3-Dichloropropene	ND	200	ug/L
Trichloroethene (TCE)	ND	200	ug/L
Vinyl Chloride	ND	200	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

GROUNDWATER TECHNOLOGY		
MW-26Dup	Date Reported:	06/16/94
B945080	Date Sampled:	05/25/94
Water	Date Analyzed:	06/02/94
	MW-26Dup B945080	MW-26DupDate Reported:B945080Date Sampled:

Tentative	Retention		
Identification	Time (min)	Concentration	Units
Unknown hydrocarbon	11.79	2000	ug/L
Unknown hydrocarbon	14.98	800	ug/L
Unknown aromatic	18.73	1000	ug/L
Unknown aromatic	18.87	900	ug/L
Unknown aromatic	19.44	1000	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	93	76 - 114	
Toluene-d8	101	88 - 110	
Bromofluorobenzene	96	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst /

Reviewed

1

ť,

-

Г

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26Dup	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945080	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	43	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	21	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol	** ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/l
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/l
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26Dup	Date Reported:	06/16/94
Laboratory ID:	B945080	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

ŧ	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	53	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	10	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

i

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-26Dup	Date Reported:	06/16/94
Laboratory ID:	B945080	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		
Identification	Time (minutes)	Concentration	Units
Hydrocarbon envelope	4-22		
1-Methylnaphthalene	16.37	19	ug/L
Unknown aromatic	10.00	400	ug/L
Unknown hydrocarbon	15.60	700	ug/L
Unknown hydrocarbon	16.63	800	ug/L
Unknown aromatic	16.74	700	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	49	21 - 100
Phenol-d6	52	10 - 94
Nitrobenzene-d5	45	35 - 114
2-Fluorobiphenyl	38 *	43 - 116
2,4,6-Tribromophenol	44	10 - 123
Terphenyl-d14	44	33 - 141
* - Out of limits due to a matrix	effect.	

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

٦

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	EB-052594	Date Reported:	06/16/94
Laboratory ID:	B945083	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	91	76 - 114
Toluene-d8	100	88 - 110
Bromofluorobenzene	98	86 - 115

References:

٢

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

- - -

1

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-11	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945084	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/02/94
Condition:	Intact	2nd Analysis:	06/15/94

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	50	ug/L
1,1,2,2-Tetrachloroethane	ND	50	ug/L
1,1,2-Trichloroethane	ND	50	ug/L
1,1-Dichloroethane	ND	50	ug/L
1,1-Dichloroethene	ND	50	ug/L
1,2-Dichloroethane	ND	50	ug/L
1,2-Dichloropropane	ND	50	ug/L
2-Butanone (MEK)	ND	200	ug/L
2-Hexanone	ND	50	ug/L
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L
Acetone	ND	200	ug/L
Benzene	5000	200	ug/L
Bromodichloromethane	ND	50	ug/L
Bromoform	ND	50	ug/L
Bromomethane	ND	50	ug/L
Carbon Disulfide	ND	50	ug/L
Carbon Tetrachloride	ND	50	ug/L
Chlorobenzene	ND	50	ug/L
Chloroethane	ND	50	ug/L
Chloroform	ND	50	ug/L
Chloromethane	ND	50	ug/L
cis-1,3-Dichloropropene	ND	50	ug/L
Dibromochloromethane	ND	50	ug/L
Ethylbenzene "	500	50	ug/L
m,p-Xylene	9400	200	ug/L
Methylene chloride	ND	200	ug/L
o-Xylene	ND	50	ug/L
Styrene	ND	50	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-11	Date Reported:	06/16/94
Laboratory ID:	B945084	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	50	ug/L
Toluene	ND	50	ug/L
trans-1,2-Dichloroethene	ND	50	ug/L
trans-1,3-Dichloropropene	ND	50	ug/L
Trichloroethene (TCE)	ND	50	ug/L
Vinyl Chloride	ND	50	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

Inter Mountain Laboratories, Inc.

1

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-11	Date Reported:	06/16/94
Laboratory ID:	B945084	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		١	
Identification	Time (min)	Concentration	Units	
Unknown hydrocarbon	14.38	400	ug/L	
Unknown aromatic	20.62	800	ug/L	
Unknown aromatic	20.70	700	ug/L	
Unknown aromatic	21.03	2000	ug/L	
Unknown aromatic	21.38	400	ug/L	

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	92	76 - 114
Toluene-d8	101	88 - 110
Bromofluorobenzene	97	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

1

1

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-11	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945084	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	59	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methyinaphthalene	16	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol	** ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-11	Date Reported:	06/16/94
Laboratory ID:	B945084	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

i i i i i i i i i i i i i i i i i i i	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	62	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	32	• 10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-11	Date Reported:	06/16/94
Laboratory ID:	B945084	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		
Identification	Time (minutes)	Concentration	Units
Hydrocarbon envelope	10-28		
Unknown aromatic	9.49	400	ug/L
Unknown aromatic	10.04	700	ug/L
Unknown hydrocarbon	15.67	900	ug/L
Unknown aromatic	16.85	2000	ug/L
Unknown aromatic	18.14	700	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveriés	%	QC Limits
2-Fluorophenol	48	21 - 100
Phenol-d6	76	10 - 94
Nitrobenzene-d5	90	35 - 114
2-Fluorobiphenyl	120 *	43 - 116
2,4,6-Tribromophenol	123	10 - 123
Terphenyl-d14	110	33 - 141

* - Out of limits due to a matrix effect.

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Anatyst

Reviewed

ļ

i

|

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-20	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945085	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
2-Butanone (MEK)	ND	20	ug/L
2-Hexanone	ND	5	ug/L
4-Methyl-2-pentanone (MIBK)	ND	5	ug/L
Acetone	ND	20	ug/L
Benzene	5.5	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	5	ug/L
Carbon Disulfide	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chloroethane	ND	5	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	5	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
Methylene chloride	ND	20	ug/L
o-Xylene	ND	5	ug/L
Styrene	ND	5	ug/L

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

GROUNDWATER TECHNOLOGY		
MW-20	Date Reported:	06/16/94
B945085	Date Sampled:	05/25/94
Water	Date Analyzed:	06/02/94
	MW-20 B945085	MW-20Date Reported:B945085Date Sampled:

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	5	ug/L
Toluene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene (TCE)	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-20	Date Reported:	06/16/94
Laboratory ID:	B945085	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative Identification	Retention Time (min)	Concentration	Units
Unknown aromatic	21.55	20	ug/L
Unknown aromatic	22.03	10	ug/L
Unknown aromatic	22.72	9	ug/L
Unknown aromatic	23.17	10	ug/L
Unknown aromatic	24.50	5	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	92	76 - 114
Toluene-d8	99	88 - 110
Bromofluorobenzene	100	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

H

E

į

P

I

l

1

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-20	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945085	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol **	ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-20	Date Reported:	06/16/94
Laboratory ID:	B945085	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-20	Date Reported:	06/16/94
Laboratory ID:	B945085	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		
Identification	Time (minutes)	Concentration	Units
Low level hydrocarbon envelope	14-33		
Unknown alcohol	6.71	20	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	55	21 - 100
Phenol-d6	65	10 - 94
Nitrobenzene-d5	58	35 - 114
2-Fluorobiphenyl	75	43 - 116
2,4,6-Tribromophenol	83	10 - 123
Terphenyl-d14	64	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

eviewed

1160 Research Drive Bozeman, Montana 59715

GENERAL PARAMETERS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	MW-20	Date Reported:	06/17/94
Program ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945085	Date Received:	05/26/94
Sample Matrix:	Water		
Preservation:	Cool		
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
Alkalinity, Total	1060	5	mg/L
Ammonia as N	45	0.07	mg/L
Calcium	140	0.5	mg/L
Hardness, Total as CaCO3	600	1	mg/L
Iron	1.1	0.5	mg/L
Magnesium	57	0.5	mg/L
Manganese	5.7	0.5	mg/L
Oxygen, Dissolved	7.3	1	mg/L
Potassium	17	0.5	mg/L
Sodium	540	0.5	mg/L
Solids, Total Dissolved (TDS)	2200	10	mg/L
Total Organic Carbon (TOC)	19	0.5	mg/L

Reference:

U.S.E.P.A. 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes",1983. Standard Methods for Examination of Water and Wastewater, 18th Edition, 1992, SW-846, United States Environmental Protection Agency, Nov. 1986

Reviewed

ł

ł

٦

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-1	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945086	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCl	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result		Detection Limit	Units
1,1,1-Trichloroethane	ND		50	ug/L
1,1,2,2-Tetrachloroethane	ND		50	ug/L
1,1,2-Trichloroethane	ND		50	ug/L
1,1-Dichloroethane	ND		50	ug/L
1,1-Dichloroethene	ND		50	ug/L
1,2-Dichloroethane	ND		50	ug/L
1,2-Dichloropropane	ND		50	ug/L
2-Butanone (MEK)	ND		200	ug/L
2-Hexanone	ND		50	ug/L
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L
Acetone	ND		200	ug/L
Benzene	2800		200	ug/L
Bromodichloromethane	ND		50	ug/L
Bromoform	ND		50	ug/L
Bromomethane	ND		50	ug/L
Carbon Disulfide	ND		50	ug/L
Carbon Tetrachloride	ND		50	ug/L
Chlorobenzene	ND		50	ug/L
Chloroethane	ND		50	ug/L
Chloroform	ND		50	ug/L
Chloromethane	ND		50	ug/L
cis-1,3-Dichloropropene	ND		50	ug/L
Dibromochloromethane	ND		50	ug/L
Ethylbenzene	80		50	ug/L
m,p-Xylene	40	J	50	ug/L
Methylene chloride	ND		200	ug/L
o-Xylene	ND		50	ug/L
Styrene	ND		50	ug/L

į

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-1	Date Reported:	06/16/94
Laboratory ID:	B945086	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	50	ug/L
Toluene	ND	50	ug/L
trans-1,2-Dichloroethene	ND	50	ug/L
trans-1,3-Dichloropropene	ND	50	ug/L
Trichloroethene (TCE)	ND	50	ug/L
Vinyl Chloride	ND	50	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-1	Date Reported:	06/16/94
Laboratory ID:	B945086	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units
Unknown hydrocarbon	11.39	200	ug/L
Unknown hydrocarbon	14.38	400	ug/L
Unknown aromatic	20.70	200	ug/L
Unknown aromatic	21.03	600	ug/L
Unknown aromatic	21.38	300	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

	Water		
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	92	76 - 114	
Toluene-d8	102	88 - 110	
Bromofluorobenzene	100	86 - 115	

References:

1

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Japell Analyst

. . .

Reviewed

Г

i

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-1	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945086	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
1,2,4-Trichlorobenzene	ND	200	ug/L
1,2-Dichlorobenzene	ND	200	ug/L
1,3-Dichlorobenzene	ND	200	ug/L
1,4-Dichlorobenzene	ND	200	ug/L
2,4,5-Trichlorophenol	ND	200	ug/L
2,4,6-Trichlorophenol	ND	200	ug/L
2,4-Dichlorophenol	ND	200	ug/L
2,4-Dimethylphenol	ND	200	ug/L
2,4-Dinitrophenol	ND	1000	ug/L
2,4-Dinitrotoluene	ND	200	ug/L
2,6-Dinitrotoluene	ND	200	ug/L
2-Chloronaphthalene	ND	200	ug/L
2-Chlorophenol	ND	200	ug/L
2-Methylnaphthalene	300	200	ug/L
2-Methylphenol	ND	200	ug/L
2-Nitroaniline	ND	1000	ug/L
2-Nitrophenol	ND	200	ug/L
3,3'-Dichlorobenzidine	ND	400	ug/L
3-Methylphenol/4-Methylphenol		200	ug/L
3-Nitroaniline	ND	1000	ug/L
4,6-Dinitro-2-methylphenol	ND	1000	ug/L
4-Bromophenyl-phenylether	ND	200	ug/L
4-Chloro-3-methylphenol	ND	400	ug/L
4-Chloroaniline	ND	400	ug/L
4-Chlorophenyl-phenylether	ND	200	ug/L
4-Nitroaniline	ND	400	ug/L
4-Nitrophenol	ND	1000	ug/L
Acenaphthene	ND	200	ug/L
Acenaphthylene	ND	200	ug/L
Anthracene	ND	200	ug/L
Benzo(a)anthracene	ND	200	ug/L
Benzo(a)pyrene	ND	200	ug/L
Benzo(b)fluoranthene	ND	200	ug/L
Benzo(g,h,i)perylene	ND	200	ug/L
Benzo(k)fluoranthene	ND	200	ug/L
Benzoic Acid	ND	1000	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-1	Date Reported:	06/16/94
Laboratory ID:	B945086	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Parameter	Analytica Result	al	Detection Limit	Units
Benzyl Alcohol	ND		400	ug/L
bis(2-Chloroethoxy)methane	ND		200	ug/L
bis(2-Chloroethyl)ether	ND		200	ug/L
bis(2-Chloroisopropyl)ether	ND		200	ug/L
bis(2-Ethylhexyl)phthalate	ND		1000	ug/L
Butylbenzylphthalate	ND		200	ug/L
Chrysene	150	J	200	ug/L
Di-n-Butylphthalate	ND		1000	ug/L
Di-n-Octylphthalate	ND		200	ug/L
Dibenz(a,h)anthracene	ND		200	ug/L
Dibenzofuran	ND		200	ug/L
Diethylphthalate	ND		200	ug/L
Dimethylphthalate	ND		200	ug/L
Fluoranthene	ND		200	ug/L
Fluorene	ND		200	ug/L
Hexachlorobenzene	ND		200	ug/L
Hexachlorobutadiene	ND		400	ug/L
Hexachlorocyclopentadiene	ND		200	ug/L
Hexachloroethane	ND		400	ug/L
Indeno(1,2,3-cd)pyrene	ND		200	ug/L
Isophorone	ND		200	ug/L
N-Nitrosodi-n-propylamine	ND		200	ug/L
N-Nitrosodiphenylamine	ND		200	ug/L
Naphthalene	170	J	200	ug/L
Nitrobenzene	ND		200	ug/L
Pentachlorophenol	ND		1000	ug/L
Phenanthrene	130	J	200	ug/L
Phenol	ND		200	ug/L
Pyrene	ND		200	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-1	Date Reported:	06/16/94
Laboratory ID:	B945086	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		
Identification	Time (minutes)	Concentration	Units
Hydrocarbon envelope	8-38		
1-Methylnaphthalene	16.40	460	ug/L
Unknown hydrocarbon	14.41	1000	ug/L
Unknown hydrocarbon	15.45	2000	ug/L
Unknown hydrocarbon	18.48	2000	ug/L
Unknown hydrocarbon	21.94	2000	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	52	21 - 100
Phenol-d6	66	10 - 94
Nitrobenzene-d5	218 *	35 - 114
2-Fluorobiphenyl	88	43 - 116
2,4,6-Tribromophenol	78	10 - 123
Terphenyl-d14	78	33 - 141

* - Out of limits due to a matrix effect.

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

i.

L

÷.

1

i.

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-3	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945087	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	NA
Preservation:	Cool; HCI	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,1,1-Trichloroethane	ND	200	ug/L
1,1,2,2-Tetrachloroethane	ND	200	ug/L
1,1,2-Trichloroethane	ND	200	ug/L
1,1-Dichloroethane	ND	200	ug/L
1,1-Dichloroethene	ND	200	ug/L
1,2-Dichloroethane	ND	200	ug/L
1,2-Dichloropropane	ND	200	ug/L
2-Butanone (MEK)	ND	1000	ug/L
2-Hexanone	ND	200	ug/L
4-Methyl-2-pentanone (MIBK)	ND	200	ug/L
Acetone	ND	1000	ug/L
Benzene	8300	200	ug/L
Bromodichloromethane	ND	200	ug/L
Bromoform	ND	200	ug/L
Bromomethane	ND	200	ug/L
Carbon Disulfide	ND	200	ug/L
Carbon Tetrachloride	ND	200	ug/L
Chlorobenzene	ND	200	ug/L
Chloroethane	ND	200	ug/L
Chloroform	ND	200	ug/L
Chloromethane	ND	200	ug/L
cis-1,3-Dichloropropene	ND	200	ug/L
Dibromochloromethane	ND	200	ug/L
Ethylbenzene	1100	200	ug/L
m,p-Xylene	3600	200	ug/L
Methylene chloride	ND	1000	ug/L
o-Xylene	ND	200	ug/L
Styrene	ND	200	ug/L

I

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-3	Date Reported:	06/16/94
Laboratory ID:	B945087	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

ŕ	Analytical	Detection	
Parameter	Result	Limit	Units
Tetrachloroethene (PCE)	ND	200	ug/L
Toluene	ND	200	ug/L
trans-1,2-Dichloroethene	ND	200	ug/L
trans-1,3-Dichloropropene	ND	200	ug/L
Trichloroethene (TCE)	ND	200	ug/L
Vinyl Chloride	ND	200	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-3	Date Reported:	06/16/94
Laboratory ID:	B945087	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative Identification	Retention Time (min)	Concentration	Units
	· · · · · · · · · · · · · · · · · · ·	······································	
Unknown hydrocarbon	11.39	1000	ug/L
Unknown hydrocarbon	14.38	2000	ug/L
Unknown aromatic	20.70	300	ug/L
Unknown aromatic	21.03	1000	ug/L
Unknown aromatic	21.38	300	ug/L

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	90	76 - 114	
Toluene-d8	101	88 - 110	
Bromofluorobenzene	98	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Arralyst

Reviewed

i i

L

ł.

i

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-3	Date Reported:	06/16/94
Project ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945087	Date Received:	05/26/94
Sample Matrix:	Water	Date Extracted:	05/27/94
Preservation:	Cool	Date Analyzed:	06/02/94
Condition:	Intact		

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	8 J	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol	** ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L

EPA METHOD 8270 HSL SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-3	Date Reported:	06/16/94
Laboratory ID:	B945087	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

	Analytical	Detection	
Parameter	Result	Limit	Units
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	16	50	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Di-n-Butylphthalate	ND	50	ug/L
Di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	46	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	16	10	ug/L
Pyrene	ND	10	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

** - Compounds coelute by GCMS.

B - Compound detected in Method Blank.

EPA METHOD 8270 TENTATIVELY IDENTIFIED COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-3	Date Reported:	06/16/94
Laboratory ID:	B945087	Date Sampled:	05/25/94
Sample Matrix:	Water	Date Analyzed:	06/02/94

Tentative	Retention		
Identification	Time (minutes)	Concentration	Units
Hydrocarbon envelope	5-30		
Unknown aromatic	10.03	600	ug/L
Unknown aromatic	10.62	200	ug/L
Unknown hydrocarbon	15.61	600	ug/L
Unknown aromatic	16.75	2000	ug/L
Unknown aromatic	18.07	400	ug/L

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

Surrogate Recoveries	%	QC Limits
2-Fluorophenol	33	21 - 100
Phenol-d6	44	10 - 94
Nitrobenzene-d5	49	35 - 114
2-Fluorobiphenyl	64	43 - 116
2,4,6-Tribromophenol	65	10 - 123
Terphenyl-d14	62	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Reviewed

Analyst

ļ

GENERAL PARAMETERS

Client:	GROUNDWATER TECHNOLOGY		
Sample ID:	RW-3	Date Reported:	06/17/94
Program ID:	Bloomfield Refinery, New Mexico	Date Sampled:	05/25/94
Laboratory ID:	B945087	Date Received:	05/26/94
Sample Matrix:	Water		
Preservation:	Cool		
Condition:	Intact		

	Analytical	Detection	
Parameter	Result	Limit	Units
Alkalinity, Total	1900	5	mg/L
Ammonia as N	0.13	0.07	mg/L
Calcium	170	0.5	mg/L
Hardness, Total as CaCO3	640	1	mg/L
Iron	9.1	0.5	mg/L
Magnesium	50	0.5	mg/L
Manganese	3.8	0.5	mg/L
Oxygen, Dissolved	7.3	1	mg/L
Potassium	5.2	0.5	mg/L
Sodium	900	0.5	mg/L
Solids, Total Dissolved (TDS)	3200	10	mg/L
Total Organic Carbon (TOC)	58	0.5	mg/L

Reference:

U.S.E.P.A. 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes",1983. Standard Methods for Examination of Water and Wastewater, 18th Edition, 1992, SW-846, United States Environmental Protection Agency, Nov. 1986

us

Reviewed

1

H

1160 Research Drive Bozeman, Montana 59715

ì

1

÷

L

Ì.

ł

i

QUALITY ASSURANCE / QUALITY CONTROL

I

LAB QA/QC VOLATILE COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed: Laboratory ID: Sample Matrix: 05/31/94 3MB-151A Water

Davaged	Analytical	Detection	5 1
Parameter	Result	Limit	Units
Chloromethane	ND	5	ug/L
Bromomethane	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L
Chloroethane	ND	5	ug/L
Methylene Chloride	ND	20	ug/L
Acetone	ND	20	ug/L
Carbon Disulfide	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethene	ND	5	ug/L
Chloroform	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
2-Butanone	ND	20	ug/L
1,1,1-Trichloroethane	ND	5	ug/L
Cyclohexane	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
1,4-Dioxane	ND	500	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
Benzene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Bromoform	ND	5	ug/L
4-Methyl-2-pentanone	ND	5	ug/L
2-Hexanone	ND	5	ug/L
Tetrachloroethene	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L

Т

VOLATILE COMPOUNDS BY GC/MS

Date Analyzed:05/3Laboratory ID:3MBSample Matrix:Wat

05/31/94 3MB-151A Water

	Analytical	Detection	
Parameter	Result	Limit	Units
Toluene	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
Styrene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
o-Xylene	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

TENTATIVELY IDENTIFIED COMPOUNDS METHOD BLANK ANALYSIS

Date Analyzed: Laboratory ID: Sample Matrix: 05/31/94 3MB-151A Water

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

Surrogate Recovery	%	Water QC Limits
1,2-Dichloroethane-d4	93	76 - 114
Toluene-d8	102	88 - 110
Bromofluorobenzene	98	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

CC/W Analyst

LAB QA/QC VOLATILE COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed: Laboratory ID: Sample Matrix: **06/01/94** 3MB-152B Water

Parameter	Analytical Result	Detection Limit	Units
Chloromethane	ND	5	ug/L
Bromomethane	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L
Chloroethane	ND	5	ug/L
Methylene Chloride	ND	20	ug/L
Acetone	ND	20	ug/L
Carbon Disulfide	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethene	ND	5	ug/L
Chloroform	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
2-Butanone	ND	20	ug/L
1,1,1-Trichloroethane	ND	5	ug/L
Cyclohexane	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
1,4-Dioxane	ND	500	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
Benzene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Bromoform	ND	5	ug/L
4-Methyl-2-pentanone	ND	5	ug/L
2-Hexanone	ND	5	ug/L
Tetrachloroethene	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L

i

1

VOLATILE COMPOUNDS BY GC/MS

Date Analyzed: Laboratory ID: Sample Matrix: 06/01/94 3MB-152B Water

C^{*}	Analytical	Detection	
Parameter	Result	Limit	Units
Toluene	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
Styrene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
o-Xylene	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

TENTATIVELY IDENTIFIED COMPOUNDS METHOD BLANK ANALYSIS

Date Analyzed: Laboratory ID: Sample Matrix:

Г

06/01/94 3MB-152B Water

Tentative	7	Retention		
Identification		Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

	Water		
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	88	76 - 114	
Toluene-d8	102	88 - 110	
Bromofluorobenzene	98	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Carly Analyst

Reviewed

I

Ì

T

LAB QA/QC VOLATILE COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed: Laboratory ID: Sample Matrix: **06/02/94** 3MB-152A Water

<i>i</i>	Analytical	Detection	
Parameter	Result	Limit	Units
Chloromethane	ND	5	ug/L
Bromomethane	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L
Chloroethane	ND	5	ug/L
Methylene Chloride	ND	20	ug/L
Acetone	ND	20	ug/L
Carbon Disulfide	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethene	ND	5	ug/L
Chloroform	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
2-Butanone	ND	20	ug/L
1,1,1-Trichloroethane	ND	5	ug/L
Cyclohexane	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
1,4-Dioxane	ND	500	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
Benzene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Bromoform	ND	5	ug/L
4-Methyl-2-pentanone	ND	5	ug/L
2-Hexanone	ND	5	ug/L
Tetrachloroethene	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L

ł

VOLATILE COMPOUNDS BY GC/MS

Date Analyzed:06/Laboratory ID:3MSample Matrix:Wa

06/02/94 3MB-152A Water

-	Analytical	Detection	
Parameter	Result	Limit	Units
Toluene	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
Styrene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
o-Xylene	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

TENTATIVELY IDENTIFIED COMPOUNDS METHOD BLANK ANALYSIS

Date Analyzed: Laboratory ID: Sample Matrix: **06/02/94** 3MB-152A Water

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	92	76 - 114
Toluene-d8	100	88 - 110
Bromofluorobenzene	98	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

mM

Reviewed

i

1

LAB QA/QC VOLATILE COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed:
Laboratory ID:
Sample Matrix:

11

T

06/03/94 3MB-153A Water

	Analytical	Detection		
Parameter	Result	Limit	Units	
Chloromethane	ND	5	ug/L	
Bromomethane	ND	5	ug/L	
Vinyl Chloride	ND	5	ug/L	
Chloroethane	ND	5	ug/L	
Methylene Chloride	ND	20	ug/L	
Acetone	ND	20	ug/L	
Carbon Disulfide	ND	5	ug/L	
1,1-Dichloroethene	ND	5	ug/L	
1,1-Dichloroethane	ND	5	ug/L	
1,2-Dichloroethene	ND	5	ug/L	
Chloroform	ND	5	ug/L	
1,2-Dichloroethane	ND	5	ug/L	
2-Butanone	ND	20	ug/L	
1,1,1-Trichloroethane	ND	5	ug/L	
Cyclohexane	ND	5	ug/L	
Carbon Tetrachloride	ND	5	ug/L	
Bromodichloromethane	ND	5	ug/L	
1,2-Dichloropropane	ND	5	ug/L	
1,4-Dioxane	ND	500	ug/L	
cis-1,3-Dichloropropene	ND	5	ug/L	
Trichloroethene	ND	5	ug/L	
Dibromochloromethane	ND	5	ug/L	
1,1,2-Trichloroethane	ND	5	ug/L	
Benzene	ND	5	ug/L	
trans-1,3-Dichloropropene	ND	5	ug/L	
1,2-Dibromoethane	ND	5	ug/L	
Bromoform	ND	5	ug/L	
4-Methyl-2-pentanone	ND	5	ug/L	
2-Hexanone	ND	5	ug/L	
Tetrachloroethene	ND	5	ug/L	
1,1,2,2-Tetrachloroethane	ND	5	ug/L	

VOLATILE COMPOUNDS BY GC/MS

Date Analyzed: Laboratory ID: Sample Matrix: Water

06/03/94 3MB-153A

7	Analytical	Detection	
Parameter	Result	Limit	Units
Toluene	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
Styrene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
o-Xylene	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

TENTATIVELY IDENTIFIED COMPOUNDS METHOD BLANK ANALYSIS

Date Analyzed: Laboratory ID: Sample Matrix:

ſ

06/03/94 3MB-153A Water

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

Surrogate Recovery	%	Water QC Limits
1,2-Dichloroethane-d4	91	76 - 114
Toluene-d8	99	88 - 110
Bromofluorobenzene	98	86 - 115

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

i

LAB QA/QC SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed: Laboratory ID: Sample Matrix: Date Extracted:

05/31/94 MB - 147 Water 05/27/94

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
1-Methylnaphthalene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	. ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol *	ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
6-Methyl chrysene	ND	10	ug/L
7,12-Dimethylbenz(a)anthracene	ND	10	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzenethiol	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L

i.

ł

LAB QA/QC SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed: Laboratory ID: Sample Matrix: Date Extracted:

05/31/94 MB - 147 Water 05/27/94

Parameter	Analytical Result	Detection Limit	Units
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	_ ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	10	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
di-n-Butylphthalate	ND	10	ug/L
di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)acridine	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indene	ND	10	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L
Pyridine	ND	10	ug/L
Quinoline	ND	10	ug/L

ND - Compound not detected at stated Detection Limits.

* - Compounds Coelute by GC/MS.

LAB QA/QC SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS METHOD BLANK TENTATIVELY IDENTIFIED COMPOUNDS

Date Analyzed: Laboratory ID: Sample Matrix: Date Extracted:

05/31/94 MB - 147 Water 05/27/94

Tentitively	Retention		
Identification	Time (min.)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

Surrogate Recoveries	%	Water QC Limits
2-Fluorophenol	76	21 - 100
Phenol-d6	68	10 - 94
Nitrobenzene-d5	93	35 - 114
2-Fluorobiphenyl	103	43 - 116
2,4,6-Tribromophenol	100	10 - 123
Terphenyl-d14	102	33 - 141

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW846, USEPA, Third Edition, November 1986.

USEPA Contract Lab Program, Statement of Work for Organic Analysis, Multi-Media, Multi-Concentration, OLM01.0, December 1990.

Analyst

Reviewed

i

LAB QA/QC SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed: Laboratory ID: Sample Matrix: Date Extracted:

06/01/94 MB - 148 Water 05/28/94

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
1-Methylnaphthalene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
2-Nitrophenol	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	20	ug/L
3-Methylphenol/4-Methylphenol *	ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
4,6-Dinitro-2-methylphenol	ND	50	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
4-Nitroaniline	ND	20	ug/L
4-Nitrophenol	ND	50	ug/L
6-Methyl chrysene	ND	10	ug/L
7,12-Dimethylbenz(a)anthracene	ND	10	ug/L
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzenethiol	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L

i

LAB QA/QC SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed: Laboratory ID: Sample Matrix: Date Extracted: 06/01/94 MB - 148 Water 05/28/94

Parameter	Analytical Result	Detection Limit	Units
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-Ethylhexyl)phthalate	ND	10	ug/L
Butylbenzylphthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
di-n-Butylphthalate	ND	10	ug/L
di-n-Octylphthalate	ND	10	ug/L
Dibenz(a,h)acridine	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
Dimethylphthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	20	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	20	ug/L
Indene	ND	10	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
Naphthalene	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L
Pyridine	ND	10	ug/L
Quinoline	ND	10	ug/L

ND - Compound not detected at stated Detection Limits.

* - Compounds Coelute by GC/MS.

LAB QA/QC SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS METHOD BLANK TENTATIVELY IDENTIFIED COMPOUNDS

Date Analyzed:OLaboratory ID:MSample Matrix:MDate Extracted:O

06/01/94 MB - 148 Water 05/28/94

Tentitively	Retention		
Identification	Time (min.)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentration calculated assuming Relative Response Factor = 1.

QUALITY CONTROL:

%	Water QC Limits
79	21 - 100
84	10 - 94
95	35 - 114
100	43 - 116
107	10 - 123
93	33 - 141
	79 84 95 100 107

Reference:

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics, Test Methods for Evaluating Solid Wastes, SW846, USEPA, Third Edition, November 1986.

USEPA Contract Lab Program, Statement of Work for Organic Analysis, Multi-Media, Multi-Concentration, OLM01.0, December 1990.

Analyst

Reviewed

LAB QA/QC PURGEABLE ORGANIC COMPOUNDS MATRIX SPIKE / MATRIX SPIKE DUPLICATE SUMMARY

Date Analyzed:	06/
Laboratory ID:	3M
Sample Matrix:	Wa

<mark>06/03/94</mark> 3MSD5200 Water

	ORIGINAL SAMPLE PARAMETERS							
Parameter	Spike Added (ug/L)	Sample Conc. (ug/L)	MS Conc. (ug/L)	MS Recovery (%)	QC Limits (% Rec.)			
	· · · · · · · · · · · · · · · · · · ·				<u> </u>			
1,1-Dichloroethene	100	0	114	114	61-145			
Trichloroethene	100	0	110	110	71-120			
Benzene	100	0	114	114	76-127			
Toluene	100	0	116	116	71-127			
Chlorobenzene	100	0	115	115	75-130			

DUPLICATE SAMPLE PARAMETERS

	Spike Added	MSD Conc.	MSD Recovery	RPD	QC	Limits
Parameter	(ug/L)	(ug/L)	(%)	(%)	RPD	Rec.
1,1-Dichloroethene	100	113	113	1	14	61-145
Trichloroethene	100	110	110	0	14	71-120
Benzene	100	113	113	1	11.	76-127
Toluene	100	115	115	1	13	71-127
Chlorobenzene	100	115	115	0	13	75-130

Spike Recovery: RPD: 0 out of 10 outside QC limits. 0 out of 5 outside QC limits.

Anatyst

Reviewed

LAB QA/QC PURGEABLE ORGANIC COMPOUNDS MATRIX SPIKE / MATRIX SPIKE DUPLICATE SUMMARY

Date Analyzed:05Laboratory ID:3MSample Matrix:W

05/31/94 3MSD5102 Water

	Spike	Sample	MS	MS	00
Parameter	Added (ug/L)	Conc. (ug/L)	Conc. (ug/L)	Recovery (%)	Limits (% Rec.)
1,1-Dichloroethene	20	0	18	90	80-120
Trichloroethene	20	0	20	100	80-120
Benzene	20	0	21	105	80-120
Toluene	20	0	20	100	80-120
Chlorobenzene	20	0	20	100	80-120

	DUPLICATE	SAMPLE PAF	RAMETERS				
Spike MSD MSD Added Conc. Recovery RPD QC Limits							
Parameter	(ug/L)	(ug/L)	(%)	(%)	RPD	Rec.	
1,1-Dichloroethene	20	20	100	11	22	80-120	
Trichloroethene	20	19	95	5	24	80-120	
Benzene	20	21	105	0	21	80-120	
Toluene	20	19	95	5	21	80-120	
Chlorobenzene	20	19	95	5	21	80-120	

Spike Recovery: RPD:

0 out of 10 outside QC limits. 0 out of 5 outside QC limits.

Gaj Comptell Analyst

Reviewed

LAB QA/QC PURGEABLE ORGANIC COMPOUNDS MATRIX SPIKE / MATRIX SPIKE DUPLICATE SUMMARY

Date Analyzed: Laboratory ID: Sample Matrix: 05/31/94 3MSD5102 Water

	ORIGINAL SAMPLE PARAMETERS							
Parameter	Spike Added (ug/L)	Sample Conc. (ug/L)	MS Conc. (ug/L)	MS Recovery (%)	QC Limits (% Rec.)			
1,1-Dichloroethene	20	0	18	90	80-120			
Trichloroethene	20	0	20	100	80-120			
Benzene	20	0	21	105	80-120			
Toluene	20	0	20	100	80-120			
Chlorobenzene	20	0	20	100	80-120			

DUPLICATE SAMPLE PARAMETERS

	Spike Added	MSD Conc.	MSD Recovery	RPD	ac	Limits
Parameter	(ug/L)	(ug/L)	(%)	(%)	RPD	Rec.
1,1-Dichloroethene	20	20	100	11	22	80-120
Trichloroethene	20	19	95	5	24	80-120
Benzene	20	21	105	0	21	80-120
Toluene	20	19	95	5	21	80-120
Chlorobenzene	20	19	95	5	21	80-120

Spike Recovery: RPD: 0 out of 10 outside QC limits. 0 out of 5 outside QC limits.

Analys

Reviewed

LAB QA/QC PURGEABLE ORGANIC COMPOUNDS BY GC/MS MATRIX SPIKE SUMMARY

Date Analyzed: Laboratory ID: Sample Matrix:

06/02/94 3MS-5083 Water

	ORIGINAL	SAMPLE PARA	METERS		
Parameter	Spike Added (ug/L)	Sample Conc. (ug/L)	MS Conc. (ug/L)	MS Recovery (%)	QC Limits (% Rec.)
1,1-Dichloroethene	100	0	92	92	61-145
Trichloroethene	100	0	85	85	71-120
Benzene	100	0	99	99	76-127
Toluene	100	0	88	88	71-127
Chlorobenzene	100	0	89	89	75-130

Spike Recovery: 0 out of 5 outside QC limits.

QUALITY CONTROL:

Surrogate Recovery	%	Water QC Limits
1,2-Dichloroethane-d4	90	76 - 114
Toluene-d8	102	88 - 110
Bromofluorobenzene	97	86 - 115

Capter Ć Analys

Reviewed

ł

İ.

LAB QA/QC SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS **BLANK SPIKE**

Date Analyzed:	(
Laboratory ID:	E
Sample Matrix:	١
Date Extracted:	(

05/31/94	
BS - 147	
Water	
05/27/94	

	Spike Added	Sample Conc.	MS Conc.	MS Recovery		QC Limits
Parameter	(ug/L)	(ug/L)	(ug/L)	(%)		(% Rec.)
Phenol	200	0	129	65		12 - 89
2-Chlorophenol	200	0	140	70		27-123
1,4-Dichlorobenzene	100	0	72	72		36 - 97
n-Nitroso-di-n-propylamine	100	0	106	106		41-116
1,2,4-Trichlorobenzene	100	0	75	75		39 - 98
4-Chloro-3-methylphenol	200	0	139	70		23 -97
Acenaphthene	100	. 0	89	89		46 - 118
4-Nitrophenol	200	0	99	50		10 - 80
2,4-Dinitrotoluene	100	0	126	126	*	24 - 96
Pentachlorophenol	200	0	138	69		9 - 103
Pyrene	100	0	88	88		26 - 127

QUALITY CONTROL:

Surrogate Recoveries	%	Water QC Limits
2-Fluorophenol	87	21 - 100
Phenol-d5	73	10 - 94
Nitrobenzene-d5	95	35 - 114
2-Fluorobiphenyl	104	43 - 116
2,4,6-Tribromophenol	106	10 - 123
p-Terphenyl	99	33 - 141

Spike Recovery:

1 out of 11 outside QC limits.

Analyst

LAB QA/QC SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS MATRIX SPIKE / MATRIX SPIKE DUPLICATE SUMMARY

Date Analyzed:	06/02/94
Laboratory ID:	BSD-148
Sample Matrix:	Water
Date Extracted:	05/28/94

	ORIGINAL S	SAMPLE PARAN	NETERS			
Parameter	Spike Added (ug)	Sample Conc. (ug)	MS Conc. (ug)	MS Recovery (%)		QC Limits (% Rec.)
Phenol	200	0	120	60		12 - 89
2-Chlorophenol	200	0	144	72		27-123
1,4-Dichlorobenzene	100	0	82	82		36 - 97
n-Nitroso-di-n-propylamine	100	0	110	110		41-116
1,2,4-Trichlorobenzene	100	0	80	80		39 - 98
4-Chloro-3-methylphenol	200	0	140	70		23 -97
Acenaphthene	100	0	84	84		46 - 118
4-Nitrophenol	200	0	88	44		10 - 80
2,4-Dinitrotoluene	100	0	120	120	*	24 - 96
Pentachlorophenol	200	0	130	65		9 - 103
Pyrene	100	0	83	83		26 - 127

	Spike	MSD	MSD			
	Added	Conc.	Recovery	RPD	QC	Limits
Parameter	(ug)	(ug)	(%)	(%)	RPD	Rec.
Phenol	200	116	58	3	42	12 - 89
2-Chlorophenol	200	138	69	4	40	27-123
1,4-Dichlorobenzene	100	82	82	0	28	36 - 97
n-Nitroso-di-n-propylamine	100	98	98	12	38	41-116
1,2,4-Trichlorobenzene	100	82	82	2	28	39 - 98
4-Chloro-3-methylphenol	200	132	66	6	42	23 -97
Acenaphthene	100	80	80	5	31	46 - 118
4-Nitrophenol	200	73	37	19	50	10 - 80
2,4-Dinitrotoluene	100	110	* 110	9	38	24 - 96
Pentachlorophenol	200	118	59	10	50	9 - 103
Pyrene	100	81	81	2	31	26 - 127

Spike Recovery: RPD:

Analyst

2 out of 22 outside QC limits. 0 out of 11 outside QC limits.

Reviewed

LAB QA/QC **TOTAL METALS ANALYSIS MATRIX SPIKE**

Date Analyzed:	06/17/9
Laboratory ID:	B94507
Sample Matrix:	Water

4 '6-S

	Spike	Sample	MS	MS	QC	
Parameter	Added (mg/L)	Conc. (mg/L)	Conc. (mg/L)	Recovery (%)	Limits (% Rec.)	
Antimony	0.025	ND	0.021	86	80 - 120	
Arsenic	0.025	0.0055	0.027	86	80 - 120	
Beryllium	0.10	ND	0.1	97	80 - 120	
Cadmium	0.0025	ND	0.0027	108	80 - 120	
Chromium	0.50	0.015	0.48	93	80 - 120	
Copper	0.50	0.034	0.50	94	80 - 120	
Lead	0.025	0.0044	0.03	107	80 - 120	
Mercury	0.004	ND	0.0035	88	80 - 120	
Nickel	0.5	ND	0.46	91	80 - 120	
Selenium	0.01	ND	0.01	116	80 - 120	
Silver	0.01	ND	0.01	95	80 - 120	
Thallium	0.01	ND	0.01	110	80 - 120	
Zinc	0.50	0.039	0.47	86	80 - 120	

ND-Parameter not detected at stated detection level.

References:

Method 3010: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, September 1986.

Method 6010: Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, September 1986.

Method 7000: Atomic Absorption Spectroscopy SW-846, September 1986.

Method 7470: Mercury in Liquid Waste (Manual Cold-Vapor Technique), SW-846, September 1986.

DRZ

Analyst

LAB QA/QC TOTAL METALS ANALYSIS MATRIX SPIKE

Date Analyzed:	06/14/94
Laboratory ID:	B945087
Sample Matrix:	Water

Parameter	Spike	Sample	MS	MS	QC
	Added	Conc.	Conc.	Recovery	Limits
	(mg/L)	(mg/L)	(mg/L)	(%)	(% Rec.)
lron	5.0	9.1	13.6	90	80 - 120
Manganese	0.50	3.8	4.3	98	80 - 120

ND-Parameter not detected at stated detection level.

References:

Method 3010: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, September 1986.

Method 6010: Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, September 1986.

Analyst

Reviewed

LAB QA/QC TOTAL METALS ANALYSIS DUPLICATE ANALYSIS

Date Analyzed:	06/1
Laboratory ID:	B949
Sample Matrix:	Wate

06/17/94 B945073-D Water

	Analytical Result	Duplicate Result	Percent RSD	QC Limits
Parameter	(mg/L)	(mg/L)	(%)	(%)
Antimony	ND	ND		20
Arsenic	ND	ND		20
Beryllium	ND	ND		20
Cadmium	ND	ND		20
Chromium	ND	ND		20
Copper	ND	ND		20
Lead	0.0057	0.0054	5	20
Mercury	ND	ND		20
Nickel	ND	ND		20
Selenium	ND	ND		20
Silver	ND	ND		20
Thallium	ND	ND		20
Zinc	0.037	0.035	· 6	20

ND-Parameter not detected at stated detection level.

References:

Method 3010: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, September 1986.

Method 6010: Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, September 1986.

Method 7000: Atomic Absorption Spectroscopy SW-846, September 1986.

Method 7470: Mercury in Liquid Waste (Manual Cold-Vapor Technique), SW-846, September 1986.

Analyst

Reviewed

LAB QA/QC TOTAL METALS ANALYSIS DUPLICATE ANALYSIS

Date Analyzed:	06/14/94
Laboratory ID:	B945085
Sample Matrix:	Water

Parameter	Analytical	Duplicate	Percent	QC		
	Result	Result	RSD	Limits		
	(mg/L)	(mg/L)	(%)	(%)		
lron	1.1	1.3	17	20		
Manganese	5.7	5.7		20		

ND-Parameter not detected at stated detection level.

References:

Method 3010: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, September 1986.

Method 6010: Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, September 1986.

Anålyst

Reviewed

L 1633 Terra Avenue Sheridan, Wyoming 82801 Telephone (307) 672-8945	Relinquished by: (Signature)	Relinquished by: (Siggature)	Relinquished by: (Signature)		MW-13	Mw-30	MW-21 DUP	NW-21	MW-29	EB-052494	MW- 1	13	76-052494	NW-8	MW-5	MW-12_	Sample No./ Identification	Sampler: (Signature)		Client/Project Name	Inter-Mourtain Laboratories, Inc.
☐ 1714 Phillips Circle Gillette, Wyoming 82716 Telephone (307) 682-8945		•	I hay		1540	1420	oSE/	13.	1350	1205	0121	1140	. IAS	0 ///	1030	5/24/84-0945	Date TI	ay	BLOOMFIELD		
ASO6 Farm		Ľ			1520	8	6	1345	SO	20	10	2	2	0	30	<i>45</i>	Time Lab		REFINDA		-0
Inter-Mountain																	Lab Number	Chain of Custody Tape No.	my Bla	Projec	CHAIN OF C
ntain L	Date	Date	Date 5/14/94								11	11	11	1		WATER	2	tody Tape No	BLOOMHELD,	Project Location	
in Laboratories, 1168, Research Dr. Bozeman, Montana 59715 Telephone (406) 586-8450	Time R	Time R	Time R		= >	1	11	1	Z	i l		-		-	11	Br -	Matrix	•	NM		Copy USIOD
ŗ,	Received by laboratory: (Signature)	Received by: (Signatule)	Received by; (Signature)		nu	S	3	S	JACS	2	r v	3	1	3	3	W	No. of Contain	are			OY RECO
Inc.	oratory: (Sl	lgnatule)	ignature)	·	<	X	×	×	×	-	×	X	×		X	×	8240		\downarrow	/ /	CORD
TX 77845 776-8945	ignature)	•	\mathbb{N}		XX	×	\times	X	X		X	Х		X	X	\times	8270		ANALY		
College S					< <	X			x x								418.1		SES / P/		
College Station, TX 77845 Telephone (409) 774-4999			•			SHEEN									1	Weec		Remarks	ANALYSES / PARAMETERS		
	Date	Date	Date \$/24													7		rks			
21923	Time	Time	TIme																		

	ſ		r												T	T		- -			т	\frown						
								3	2 and												Time	N. M	Time	Time			21918	
				rke	(INS)	י ארי ארי	2000	SHOO	2400	SHOO			SADEN	1	SHERN	Super					Date	5/25	Date	Date				
			ANALYSES / PARAMETERS	Dome		10100	3						5		Ś	<	, 		_								ήνθ 	college Station, 17 // 645 Telephone (409) 774-4999
			ARAM	_	000	20'5	510	X	~							X	<u>د</u>	\rightarrow									3304 Longmire Drive	Station, 1
			ES / P	/	~	NLJU			くく	X																	3304 Lo 2304 Lo	Lelepho
			VALYS			1 '817		X	N V	~ _ _				×	7				-					ature)			7,01E	//840 5-8945
	\cap		A			062		× ×	́Х	X	×		ХX	X	X	∧ ×					re) ,	No.	ire)	ry: (Sign			S S S	anon, ı∧ (409) 77(
h	<u>Ö</u> RI		/		619	io. of ontaino		5	S	9	/	2	8	و	3	~ ~		-			Received by: (Signature)		y: (Signature)	Received by laboratory: (Signature)		Inc.	11183 SH 30	College Station, 17 / 745 Telephone (409) 776-8945
<u> </u>	REC					,0 0			•										-		ived by:	14		elved by				
202	Z					- - -															Rece		Receive	Rect		atorie	Dr. 502 50741	586-845
	DISI		UN	ċ			Matrix	je Gr	۲	3	٠Ĺ	ر ر	11		11	1					Time	1640	Time	Time	-	-aboratories,	1160 Research Dr.	Telephone (406) 586-8450
	OF CUSTODY RECORD	Project Location	BLOMPIELD	tody Tape N				water													Date	46/212	Date	. Date		untain L	4	
	CHAIN			Chain	₩.		Lab Number																			Inter-Iviountain I	2506 West Main Stree	галпіпдіол, мм 67401 Теlephone (505) 326-4737
		or thro	hoey		on trut.		Time	Q	2	<u>م</u>	3	5	1315	350	1235	1530				-							1	
		ton t	C Per		Leourpuetor		Ē	// //	1,00	1215	1220	1445	13	13	14	1-5-											s Circle	307) 682-
		KOULAND TOTAL CAUGAD	BEAMFILLI REPRICEY		y-Ceau		Date	5/25/24							\mathbb{N}	Y						ler,					1714 Phillips Circle Gilette Wroming B	Telephone (307) 682-8945
 :=	Laboratories, Inc.	Client/Project Name Ge	623353014 Qua	sampler: (Signature)	Juny (1/he	() / Sample No./	Identification	M-26	MW-26DUP	AW.25	TB-052594	EB-052594	11-11	Mu-rd	2w-1	RW-3					Relinguished by: (Signature)	Kun / /1	Senteristing by: (Signature)	Relinquished by: (Signature)				Telephone (307) 672-8945

l

1

Ì