

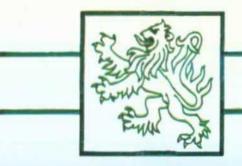
FINAL INVESTIGATION REPORT

Texaco Exploration and Production, Inc. Eunice #2 (North) Gas Plant

Lea County, New Mexico

May 1997

Prepared for


RECEIVED

OCD

File Copy

MAY 3 0 1997

Environmental Bureau Oil Conservation Division

Prepared by

Highlander Environmental Corp.

Texaco Exploration and Production Inc

500 North Loraine Midland TX 79701 P O Box 3109 Midland TX 79702

May 27, 1997

Mr. P. W. Sanchez Petroleum Engineer - Environmental Bureau State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 2040 S. Pacheco Santa Fe, New Mexico 87505

MAY 3 0 1997

Environmental Sureau Oil Conservation Division

RE: TEXACO EUNICE NO. 2 (NORTH) GAS PLANT LEA COUNTY, NEW MEXICO

Dear Pat,

As requested, please find attached a copy of the results of the comprehensive investigation of soils and groundwater at Texaco Exploration and Production, Inc.'s Eunice No. 2 (North) Gas Plant located in Eunice, Lea County, New Mexico. This workplan was prepared by Highlander Environmental Corp. at the request of Texaco.

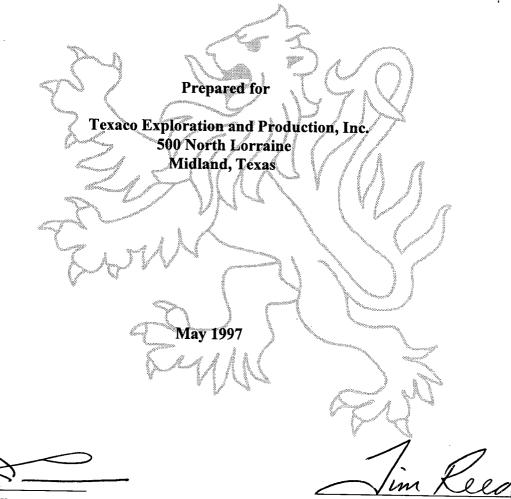
Please be advised that Texaco and Highlander would like to meet with you in person to review the results of this investigation as well as to discuss any proposed future activities concerning remedial activities at the North Plant. It is suggested that this meeting be scheduled for the end of June or the first half of July.

Texaco reserves all rights it may have available to it in this matter, particularly as it may regard potential adverse environmental impacts at its site from third parties. As usual, Texaco appreciates your cooperation and assistance in these matters. Please contact me at (915) 688-4804 should you have questions or comments concerning this submittal. Otherwise, you may contact Mr. Tim Reed or Mark Larson with Highlander Environmental Corp. at (915) 682-4559.

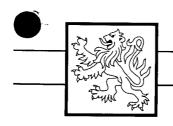
Sincerely,

Kalet W

Robert W. Browning (Environmental Coordinator Texaco Exploration & Production, Inc.

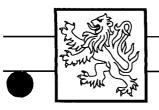

cc: Mr. Wayne Price NMOCD District I - Hobbs, NM

MAY 3 0 1997


Environmental Bureau Oil Conservation Division

FINAL INVESTIGATION REPORT TEXACO EXPLORATION AND PRODUCTION, INC. EUNICE #2 (NORTH) GAS PLANT LEA COUNTY, NEW MEXICO

Mark J. Larson Project Manager/Sr. Hydrogeologist


Timothy M. Reed, REM Vice President

(H:\oil-gas\787\cfi.rep)

Highlander Environmental Corp.

Midland, Texas

Highlander Environmental Corp.

Midland, Texas

Table of Contents

1.0	INTE	RODUCTION		
	1.1 Background and Location			
	1.2	Previous Investigations		
		1.2.1 Compressor Building Investigation	2	
		1.2.2 Groundwater Discharge Plan Investigation	6	
	1.3	Site Setting	8	
		1.3.1 Topography	8	
		1.3.2 Soils	8	
		1.3.3 Geology	9	
		1.3.4 Groundwater	9	
2.0	2.0 COMPREHENSIVE FACILITY INVESTIGATION ACTIVITIES			
	2.1	Hand Auger Soil Borings	10	
	2.2	Rotary Drilled Soil Borings	11	
	2.3	Soil Headspace Gas Survey	12	
	2.4	Soil Sampling and Analysis	13	
	2.5	Monitor Well Installations	13	
	2.6	Groundwater Sampling and Analysis		
	2.7	Hydraulic Conductivity (Slug) Testing	16	
	2.8	Phase Separated Hydrocarbon (PSH) Assessment	16	
	2.9	Water Well Survey	17	
3.0	COMPREHENSIVE FACILITY INVESTIGATION RESULTS			
	3.1	Soil Headspace Gas Results	17	
	3.2	Soil Sample Results	18	

.

Table of Contents

	3.3	Groundwater Sample Results	19
		3.3.1 Volatile Organic Compounds	19
		3.3.2 Semi-volatile Organic Compounds	21
		3.3.3 Metals, Chloride, and TDS Results	22
	3.4	Hydraulic Conductivity (Slug) Test Results	24
	3.5	Phase Separated Hydrocarbon Assessment Results	24
	3.6	Water Well Survey	25
4.0	CONCLUSIONS		
5.0	RECOMMENDATIONS		31

List of Tables

<u>Table</u>

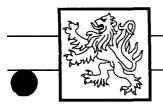
1.	Summary of Soil Boring and Monitor Well Drilling and Completion Details
2.	Summary of OVM Soil Headspace Gas Readings on Soil Samples
3.	Summary of Total Metals and TCLP (Chromium) Analysis of Soil Samples
4.	Summary of Volatile Organic Analysis of Groundwater Samples
5.	Summary of Semi-Volatile Organic Analysis of Groundwater Samples
6.	Summary of Metals and General Chemistry Analysis of Groundwater Samples
7.	Summary of Horizontal Hydraulic Conductivity Measurements from Monitor Wells
8.	Summary of Water Wells Within 1-Mile Radius

Summary of Water Wells Within 1-Mile Radius

Highlander Environmental Corp.

iii

List of Figures


<u>Figure</u>

- 1. Topographic Map
- 2. Site Map
- 3. Compressor Building Detail
- 4. Depth-to-Groundwater
- 5. Groundwater Potentiometric Surface
- 6. Water Wells Within 1-Mile
- 7. Isopleth Map of Chloride Concentration in Groundwater

List of Appendices

<u>Appendix</u>

Α.	Regulatory Correspondence
В.	Lithological Soil Sample Logs
С.	Analytical Laboratory Reports
D.	Monitor Well Installation Records
E.	Hydraulic Conductivity (Slug) Tests
F.	Water Well Records

Highlander Environmental Corp.

Midland, Texas

FINAL SITE INVESTIGATION REPORT TEXACO EXPLORATION AND PRODUCTION, INC. EUNICE #2 (NORTH) GAS PLANT LEA COUNTY, NEW MEXICO

1.0 INTRODUCTION

Texaco Exploration and Production, Inc. (Texaco) has retained Highlander Environmental Corp. (Highlander) to conduct a comprehensive facility investigation (CFI) for its Eunice #2 (North) Gas Plant (Site). The CFI was conducted in accordance with the Comprehensive Facility Investigation Work Plan, prepared by Highlander (February 10, 1997), and approved by the State of New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division (OCD) on February 27, 1997. Appendix A presents correspondence from OCD to Texaco. The CFI was required by the OCD, in accordance with Title 20 of the New Mexico Administrative Code (NMAC), 6.2.3109.E. The purpose of the CFI is to delineate and characterize the lateral and vertical extent of groundwater contamination identified at the Site, based on the results of a previous subsurface environmental investigation Work Plan was prepared in accordance with the State of New Mexico Ground and Surface Water Quality Protection Regulations for Stage 1 Abatement Plan (20 NMAC 6.2.4106 C).

1.1 Background and Location

The Site was constructed in the 1940's, subsequently modified and currently operates as a turbo expander type natural gas processing plant for extraction of NGLC natural gas liquids. The Site is located approximately 0.25 miles north of Eunice, New Mexico, in the southeast quarter (SE/4), of the northeast quarter (NE/4), and the NE/4 of the SE/4, Section 21, Township 21 South, Range 37 East. Figure 1 presents a Site location and topographic map. Figure 2 presents a drawing for the Site.

1.2 Previous Investigations

1.2.1 Compressor Building Investigation

During October 1995, Texaco requested Highlander to conduct a subsurface investigation in the vicinity of the compressor building at the Site. The subsurface investigation was conducted to determine if impacts to the shallow soil were present as a result of leaks from the compressor engines. The subsurface investigation consisted of installing thirteen (13) shallow hand auger borings (AH-1 through AH-13), which were spaced approximately fifty (50) feet apart along the north and south sides of the compressor building. The soil borings were advanced to a maximum depth of approximately fifteen (15) feet below ground. Soil samples were collected at approximately one and two foot increments from each boring for visual examination and field screening. The soil samples were field screened for petroleum hydrocarbons using a photoionization detector (Thermo Environmental Instruments, Model 580 B Organic Vapor Meter (OVM)). The soil sample field screening results indicated that detectable levels of petroleum hydrocarbons were present in soil samples from borings AH-4, AH-5, AH-6, AH-7, AH-9, AH-10, and AH-11. Ten (10) additional soil borings were installed to determine the horizontal extent of the hydrocarbon affected soils at these locations.

Based on the field screening results, soil samples were selected from each boring for laboratory testing. The soil samples were submitted to Trace Analysis, Inc., Lubbock, Texas, and analyzed for total petroleum hydrocarbons (TPH) by EPA Method 418.1. Soil samples from borings AH-4, AH-5, AH-6, AH-7 and AH-10 were analyzed for benzene, toluene, ethylbenzene, xylene (collectively referred to as BTEX) by EPA Method SW-846-8020. Samples from borings AH-6, AH-7, AH-10, and AH-11 were analyzed for polychlorinated biphenyl (PCB). Soil samples from borings AH-4, AH-5, AH-6, AH-7, AH-10, and AH-11 were analyzed for polychlorinated biphenyl (PCB). Soil samples from borings AH-4, AH-5, AH-6, AH-7, AH-10, and AH-11 were analyzed for benzene, and Silver) by EPA Method SW-846-6010.

The laboratory reported that TPH was present in samples from all borings, except AH-5. The highest TPH measurement reported was 142,000 milligrams per kilogram (mg/kg) in sample AH-4, from a depth of approximately 4.0 to 4.5 feet below ground surface (BGS). The laboratory test results revealed that the TPH level in soil at location AH-4 decreased to 226 mg/kg at a depth of approximately 10 to 10.5 feet below ground. Assuming a TPH cleanup level of 1000 mg/kg for soil, based on the OCD's Recommended Remediation Action Levels (RRAL), as presented in "Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993", the TPH levels reported in soil samples from borings AH-4, AH-6, AH-7, AH-8, AH-9, AH-11, and AH-12, exceeded the RRAL. The vertical extent of the TPH impact to soil was defined at locations AH-1, AH-2, AH-3, AH-4, AH-5, AH-9, AH-10, and AH-12. The analysis also indicated that the horizontal extent of the TPH impact to soil at locations AH-4, AH-6 and AH-7, extended about 7 to 10 feet from the compressor building.

The BTEX analysis of soil samples from borings AH-4 through AH-7, and AH-10 did not report benzene, toluene, and ethylbenzene above test method detection limit concentrations. Xylene was reported in soil samples from borings AH-5 and AH-7 at 0.555 mg/kg and 0.211 mg/kg, respectively. The highest total BTEX level reported in the soil samples, 0.555 mg/kg from boring AH-5, was below the OCD's RRAL of 50 mg/kg. No PCB compounds were reported in the soil samples from borings AH-6, AH-7, AH-10, and AH-11. The total metal analysis of soil samples from borings AH-4 through AH-7, AH-10, and AH-11 only reported detectable levels of barium, cadmium, chromium, lead and mercury. Barium was reported at concentrations ranging from 25.8 mg/kg in sample AH-4 (0 to 0.5 feet) to 1900 mg/kg in sample AH-5 (0 to 0.5 feet). Chromium ranged in concentration from 20.7 mg/kg (AH-11, 0 to 0.5 feet) to 1580 mg/kg (AH-5, 0 to 0.5 feet). Cadmium (2.7 mg/kg) and lead (64.4 mg/kg) were only reported in soil sample AH-5 (0 to 0.5 feet). Mercury (0.34 mg/kg) was only reported in soil sample AH-6 (3.2 to 3.9 feet) in the soil sample from boring AH-5 (0.2 to 3.9 feet) were elevated in comparison to the levels of these

constituents reported in the remaining soil samples. However, no Site-specific background concentrations were available to compare to these data.

On March 28, 1996, Highlander installed four (4) additional hand auger soil borings (AH-6-2, AH-7-2, AH-8-2, and AH-11-2) in the vicinity of borings AH-6, AH-7, AH-8 and AH-11. The purpose of the soil borings was to delineate the vertical extent of the TPH impact to soil at these locations. The soil borings were drilled to depths ranging from approximately 5.5 feet (AH-11-2) to approximately 14 feet (AH-7-2). Soil samples were collected from each boring for field screening, and possible laboratory testing. Based on the field screening results, soil samples were selected for testing, and analyzed for TPH by EPA Method 418.1. Soil samples from borings AH-6-2 and AH-7-2 were also analyzed for gasoline range petroleum hydrocarbons using EPA Method 8015 modified. The laboratory reported that TPH (EPA Method 418.1) was present in the soil samples at concentrations of 1420 mg/kg (AH-6-2, 12.5 to 13.0 feet), and 58, 300 mg/kg (AH-7-2, 13.5 to 14.0 feet). These results indicate that the TPH impact in soil at locations AH-6-2 and AH-7-2 extends to depths greater than 13.0 and 14.0 feet, respectively. The laboratory analysis for gasoline range petroleum hydrocarbons, by EPA Method 8015 Modified, reported concentrations of less than the test method detection limit of 10,000 micrograms per kilogram (ug/kg) or 10 mg/kg in sample AH-6-2, 12.5 to 13.0 feet, and 35,100 ug/kg or 35.1 mg/kg in sample AH-7-2, 13.5 to 14.0 feet. These results suggest that the TPH impact to soil at locations AH-6-2 and AH-7-2 is likely from oil leaks and spills from compressor engines, rather than gasoline associated hydrocarbons. Boring AH-7-2 was terminated on a dense layer of caliche, which prevented further drilling.

Soil samples from borings AH-8-2 and AH-11-2 were analyzed for TPH (EPA Method 418.1), and reported 18 mg/kg and <10 mg/kg, respectively. The laboratory tests indicate that the vertical extent of TPH impact to soil at these locations was defined. The results of the preliminary subsurface investigation were presented to Texaco in the report titled, "Subsurface Investigation of the Compressor Building at Texaco North Eunice Gas Plant, November 1995", and included as Appendix A in the report titled, "Subsurface Environmental Assessment, Texaco Exploration and

Production, Inc., Eunice # 2 (North) Gas Plant, Lea County, New Mexico, September 1996", which was submitted to the OCD.

Due to dense caliche encountered at locations AH-7-2, and AH-6-2, Highlander was unable to define the vertical extent of TPH impact to soil at these locations. The locations of subsurface piping and overhead structures in the vicinity of these locations also prevented use of a conventional drilling rig for exploration. The OCD, therefore, requested that Texaco install one (1) groundwater monitor well hydraulically down gradient (southeast) of the compressor building, and soil boring locations AH-6-2 and AH-7-2, to determine if groundwater had been affected from the TPH impacts identified in soil. The monitor well, MW-1, was installed in accordance with a work plan prepared by Highlander titled, "Monitor Well Work Plan, Texaco Exploration and Production, Inc., North Eunice Gas Plant, Lea County, New Mexico". The Work Plan was submitted to the OCD on April 18, 1996, and approved on June 27, 1996.

The monitor well was drilled on July 22, 1996, by Scarborough Drilling, Inc., Lamesa, Texas, under the direct supervision of a geologist from Highlander. The monitor well was drilled to a depth of approximately 57 feet BGS using a truck-mounted rotary drilling rig. Mud additive was used during drilling to prevent caving of the unconsolidated sand formation, which underlies the Site. Soil samples were collected during drilling and screened for petroleum hydrocarbons using the OVM. Based on the screening results, soil samples from depths of 25 to 27 feet and 55 to 57 feet were submitted to Trace Analysis, Inc., and analyzed for BTEX and TPH.

The laboratory tests did not report BTEX above the test method detection limits in the soil sample from 25 to 27 feet. Also, benzene was not reported above the test method detection limit in the soil sample from 55 to 57 feet. Toluene, ethylbenzene, and xylene were reported in the soil sample from 55 to 57 feet at concentrations of 243 ug/kg, 1130 ug/kg and 3443 ug/kg, respectively. The total BTEX concentration in the soil sample from 55 to 57 feet was 4,816 ug/kg or 4.816 mg/kg, and was below the OCD's RRAL of 50 mg/kg. The TPH concentrations reported in these soil

samples were 17.6 mg/kg (25 to 27 feet) and 90.2 mg/kg (55 to 57 feet). Based on the OCD's RRALs for BTEX and TPH, the levels of these constituents detected in the soil samples would not normally require remediation.

1.2.2 Groundwater Discharge Plan Investigation

During the period from August 5-15, 1996, Highlander conducted a subsurface investigation to determine if environmental impacts to soil and groundwater had occurred as a result of subsurface releases of petroleum hydrocarbons from Site process area sumps, and waste management areas (i.e., waste oil, water storage area and trash pit). The subsurface investigation was conducted in response to the OCD's review of the document, titled, "Groundwater Discharge Plan, Texaco Exploration and Production Eunice North Gas Processing Plant, Lea County, New Mexico", which was prepared by Texaco. The OCD required that the subsurface investigation be conducted prior to approval of the Groundwater Discharge Plan. The surface investigation consisted of installing three (3) hand augured and ten (10) machine drilled soil borings. Soil samples were collected from the soil borings for field and laboratory testing. Groundwater samples were also obtained from monitor well MW-1, installed during the previous investigation, and from an active water well (WW-1), to assess the quality of groundwater beneath the Site. Figure 2 presents the locations of the environmental investigation areas, soil borings, and monitor wells.

The investigation results indicated that surface spills from petroleum hydrocarbons had occurred in the vicinity of the waste oil and water storage area, however, the levels of benzene and total BTEX detected in soil samples from borings were below the RRAL established by the OCD. The investigation results further revealed that no impact to soil was evidenced at the north and south engine rooms sumps, concluding that no release(s) of petroleum hydrocarbons had occurred. No volatile or semi-volatile organic constituents were reported in soil samples from the trash pit area. Only arsenic (10.4 mg/kg) and barium (163.0 mg/kg) were detected in soil samples from the trash pit area.

environmental impact has occurred, however, these levels appear to be consistent with regional background concentrations.

Soil samples were collected from depths of 10 to 12 feet and 50 to 52 feet from soil borings BH-1 and BH-2, installed near the North Sumps (Northeast of Facility), and were analyzed for BTEX. The benzene and total BTEX levels reported in the 10 to 12 feet interval soil samples from borings BH-1 and BH-2 were below the OCD's RRAL of 10 mg/kg and 50 mg/kg, respectively. The benzene levels reported in the 50 to 52 feet interval soil samples were also below the RRAL of 10 mg/kg. The total BTEX levels reported in the 50 to 52 feet interval soil samples from borings BH-1 (101,000 ug/kg) and BH-2 (76,960 ug/kg) exceeded the OCD's RRAL of 50 parts per million (ppm). However, the laboratory test results and field observations suggest that the elevated BTEX levels in the soil samples may be from hydrocarbons in groundwater, which have been incorporated into the unsaturated zone soil due to fluctuations of the groundwater surface. The investigation results also suggest that phase-separated hydrocarbons may be present on the groundwater in the vicinity of the North Sumps.

Chromium, nitrate, fluoride and chloride were detected in groundwater from water well WW-1, at concentrations above the New Mexico Water Quality Control Commission (WQCC) standards. No purgeable aromatic or volatile organic hydrocarbons, other than dichlorodifluoromethane (113 ug/L), were detected in groundwater samples from the water well. Dichlorodifluoromethane is a widely used degreasing compound, for which no drinking water standard is available. The water well is located on the north (up gradient) side of the Site. Detectable levels of BTEX were reported in the groundwater sample from monitor well MW-1, however, the BTEX levels were below the New Mexico WQCC standards for groundwater of less than 10,000 mg/l TDS. The TPH level reported in the groundwater samples from monitor well MW-1 was 582 ug/L, however, there is no New Mexico WQCC standard for TPH in groundwater. The results of the investigation were presented in the report titled, "Subsurface Environmental Assessment, Texaco Exploration and Production, Inc., Eunice #2 (North) Gas Plant, Lea County, New Mexico, September 1996".

1.3 <u>Site Setting</u>

1.3.1 Topography

The topography of the Site gently slopes from west to east. The elevation of the Site ranges from about 3430 feet above mean sea level (AMSL) along the west side to about 3420 feet AMSL along the east side. Storm water runoff generally follows the topography of the Site. The nearest surface water body to the Site is greater than two miles east. There is one water well at the Site (Water Well WW-1) which is used for industrial purposes (i.e. cooling towers, etc.).

1.3.2 Soils

The Site is underlain by soils of the Pyote Series and Berino Series (Turner, et.al., 1974). The Pyote Series is represented by the Pyote and Maljamar fine sands (0 to 3 percent slopes) soil. The Berino Series is represented by the Berino-Cacique loamy fine sands association (0 to 3 percent) soil.

The Pyote and Maljamar fine sands (PU) is the predominant soil type at the Site and consists of a surface layer of fine grained brown sand, approximately 30 inches thick. The surface layer is underlain by several subsoil strata consisting of fine sandy loam, varying from strong brown to light brown in color and approximately 30 inches thick. The Pyote and Maljamar fine sands soil has moderately rapid permeability and low corrosivity potential to uncoated steel. The principal uses of Pyote and Maljamar fine sands soil are range, wildlife habitat and recreational areas. The Pyote and Maljamar fine sand soil occupies the central part of the Site.

The Berino-Cacique loamy fine sands association (BE) is present along the north and south boundaries of the Site. The Berino-Cacique loamy fine sands soil consists of a thin surface layer, approximately 6 inches thick of reddish-brown loamy fine sand. The surface layer is underlain

by several substrata consisting of sandy clay loam, varying in color from red to light brown and approximately 54 inches thick. The Berino-Cacique loamy fine sands soil has a moderate permeability and moderate corrosivity potential to uncoated steel. Uses of Berino-Cacique loamy fine sands soil include rangeland, recreational areas and wildlife habitat.

1.3.3 Geology

The area in vicinity of the Site is underlain by deposits of Recent-age windblown sand ranging in thickness from about a few feet to as much as 40 feet. The windblown sand deposits consist of unconsolidated fine to medium grained sand. The windblown sand is underlain by the Pliocene-age Ogallala Formation. The Ogallala Formation consists of semiconsolidated deposits of fine grained calcareous sand, capped by a layer of caliche. The Ogallala Formation also contains minor amounts of clay, silt and gravel (Nicholson and Clebsch, 1961 and Brown, 1976). The Ogallala Formation ranges in thickness from a few inches to about 300 feet.

1.3.4 Groundwater

Groundwater occurs in the Pliocene-age Ogallala Formation. The Ogallala Formation, commonly referred to as the High Plains Aquifer, occurs under unconfined conditions. The regional direction of groundwater flow in the vicinity of the Site is from west-northwest to south-southeast. Recharge to the Ogallala Formation occurs through infiltration of precipitation from rainfall and snow melt. Discharge from the Ogallala Formation occurs principally through pumping from wells.

Based on Site-specific data, groundwater beneath the Site on April 22-23, 1997, ranged from 48.24 feet BGS at well MW-4, to 66.46 feet BGS at water well WW-1. Figure 4 presents a depth-to-groundwater map for the Site on April 22-23, 1997. Referring to Figure 4, the depth-to-groundwater at the Site on April 22-23, 1997 was generally influenced by pumping from water well WW-1. Pumping from well WW-1 has also influenced the groundwater potentiometric

surface. Figure 5 presents a drawing of the groundwater potentiometric surface on April 22-23, 1997. Referring to Figure 5, the elevation of the groundwater surface on April 22-23, 1997 ranged from 3376.69 feet above mean sea level (AMSL) at well MW-4, located near the southeast corner of the Site, to 3362.32 at well WW-1. Groundwater flow beneath the Site is generally controlled by well WW-1 during pumping. The influence of well WW-1 from pumping has created a cone of depression which extends radially away from the well and causes groundwater to flow towards well WW-1. The cone of depression caused from pumping well WW-1 would generally prevent contaminants which may enter the groundwater from migrating off the Site.

2.0 COMPREHENSIVE FACILITY INVESTIGATION ACTIVITIES

From March 31, 1997 through May 12, 1997, Highlander conducted a Comprehensive Facility Investigation for the purpose of delineating and characterizing the lateral and vertical extent of impacts detected in soil and groundwater, based on the results of the previous Site investigations. The CFI was conducted in accordance with 20 NMAC, 6.4102.C, and consisted of installation of hand auger and rotary soil borings, collection of soil samples for field and laboratory analysis, installation of monitor wells, collection of groundwater samples for laboratory analysis, aquifer slug testing, phase-separated hydrocarbon product evaluation, and a water well inventory. A summary of the CFI activities is presented below.

2.1 Hand Auger Soil Borings

In accordance with CFI Work Plan, five (5) hand auger soil borings were installed near boring location AH-5, located on the north side of the compressor building. The soil borings were installed to delineate the lateral and vertical extent of chromium and barium detected in soil at boring location AH-5 during the previous investigation. The borings (AH-5-1 through AH-5-5) were installed using a three inch diameter stainless-steel bucket-type hand auger, and drilled to depths varying from approximately 0.5 feet BGS (AH-5-2) to approximately 3.3 feet BGS (AH-5-3).

Boring AH-5-1 was placed adjacent to the previously drilled hole, AH-5. The hand auger soil borings were terminated on a competent caliche layer, which prevented further drilling. Figure 2 presents the location of soil boring AH-5, installed near the north side of the compressor building. Figure 6 presents a detailed drawing showing the locations of borings AH-5-1 through AH-5-5.

Soil samples were collected at various depth intervals from each hand auger soil boring for laboratory testing. The soil samples were collected and preserved according to EPA protocols, and analyzed within appropriate holding times. Table 1 presents a summary of drilling details for the hand augered soil borings. Section 2.4 presents a discussion of the soil sampling activities.

The auger bucket was thoroughly washed between each borehole location and sampling event using potable water and laboratory grade detergent, followed by rinsing with deionized water. Soil cuttings were placed on plastic, covered and retained onsite until proper disposal was arranged. The hand augered boreholes were plugged to ground surface after completions of field activities using a cement and bentonite grout.

2.2 Rotary Drilled Soil Borings

Highlander supervised drilling of five (5) rotary drilled boreholes at the Site. The rotary drilled boreholes were placed at locations identified in the CFI Work Plan. Soil boring MW-2 was installed near the northwest corner of the Site for the purpose of determining "background"soil and groundwater conditions for the Site. Soil borings MW-3 and MW-4 were installed near the southeast corner and east side of the Site, respectively, to determine down gradient groundwater conditions. Soil borings MW-5 and MW-6 near installed adjacent to the north sump for the purpose of evaluating groundwater quality and the presence of phase-separated hydrocarbons (PSH). Figure 2 presents a drawing showing the locations of the rotary drilled boreholes. All borings were completed as groundwater monitoring wells following drilling. Section 2.5 presents a discussion of the monitor well installation details.

The borings were drilled by Scarborough Drilling, Inc., Lamesa, Texas using a truckmounted rotary drilling rig. Mud additive was used during rotary drilling to prevent caving of the unconsolidated sand formation, which underlies the Site. At location MW-2 (background), soil samples were collected at depths from 10-11 feet, 20-22 feet, 30-32 feet, 40-42 feet, and 50-52 feet BGS using a 2-foot long split spoon sampler. The soil samples were collected for laboratory testing and headspace gas screening. Table 1 presents a summary of soil boring drilling details. Appendix B presents the lithological sample logs.

The drilling rig and all down-hole equipment (i.e., drill rods, bits, etc.) were thoroughly washed between boreholes using a high pressure hot water washer. The drill cuttings were placed on plastic in a secured area onsite and covered until proper disposal was arranged.

2.3 Soil Headspace Gas Survey

The soil headspace gas survey is a measurement of the relative concentration of volatile organic constituents in soil. The Ambient Temperature Headspace (ATH) method was used at the Site for the soil headspace gas survey. The ATH method consists of collecting discrete or composite soil samples from a drilled borehole and placing the sample in a clean plastic sample bag, leaving a vacant headspace in the top of the bag. The bag is sealed and after approximately fifteen minutes at ambient temperature storage the concentration of organic vapors in the sample bag headspace is measured using a photo ionization detector.

Soil samples collected during rotary drilling at location MW-2 were collected using a split spoon sampler. The spilt spoon sampler was thoroughly decontaminated between sample intervals using a laboratory grade detergent wash, followed by rinsing with deionized water. Soil sample were collected from depths of 10-11 feet, 20-22 feet, 30-32 feet, 40-42 feet and 50-52 feet BGS. A portion of the soil sample from each sampling interval was placed in a plastic bag and field screen for organic vapors. The soil samples were field screened using a Thermo Environmental Equipment

Model 580B, Organic Vapor Meter (OVM). The OVM was calibrated to a 100 parts per million (ppm) isobutylene gas standard and has a detection limit of 0.1 ppm. Table 2 presents a summary of soil headspace gas readings of soil samples. The soil headspace gas readings are also presented on the lithological sample logs presented in Appendix B.

2.4 Soil Sampling and Analysis

Soil samples were collected at various depth intervals from hand auger borings AH-5-1 through AH-5-5, and from intervals of 10-11 feet, 20-22 feet, 30-32 feet, 40-42 feet, and 50-52 feet from rotary drilled boring MW-2. Soil samples from rotary drilled boring MW-2 were analyzed for total metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by EPA methods SW-846-3051, 6010, and 7471. These soil samples were collected and analyzed to determine "background" concentrations for these constituents. Soil samples from hand auger drilled borings AH-5-1 through AH-5-5 were analyzed for total chromium and total barium to determine the lateral and vertical extent of these constituents in soil in the vicinity of the compressor building. The soil samples were analyzed by EPA method SW- 846-3051 and 6010. The soil sample from borings AH-5-1 through AH-5-5 exhibiting the highest total chromium level was also tested for chromium by the Toxicity Characteristic Leaching Procedure (TCLP) to determine if the soil was hazardous by its toxicity characteristic. All analysis were performed by Trace Analysis, Inc., Lubbock, Texas. Table 3 presents a summary of the total metals and TCLP analysis of soil samples. Appendix C presents the analytical laboratory reports, chain of custody forms, and Quality Assurance/Quality Control (QA/QC) documentation.

2.5 Monitor Well Installations

In accordance with the CFI Work Plan, five (5) monitor wells were installed during the investigation to determine the extent of impact to the unconfined groundwater system, and to assess the presence of phase-separated hydrocarbons (PSH) on groundwater. Previously (July 22, 1996),

monitor well MW-1 was installed near the central area of the Site. Monitor well MW-2 was installed hydraulically up gradient near the northwest corner of the Site. Monitor wells MW-3 and MW-4 were installed hydraulically down gradient near the southeast corner and east side of the Site, respectively. These monitor wells were installed to determine the quality of groundwater hydraulically up gradient and down gradient of the Site. Monitor wells MW-5 and MW-6 were installed on the east and west side of the north sump, respectively, for the purpose of determining groundwater quality conditions, and to evaluate the presence of PSH on the groundwater in this area of the Site.

Monitor wells MW-2 through MW-6 were drilled from March 31, 1997 to April 2, 1997 by Scarborough Drilling, Inc., Lamesa, Texas. The monitor wells were installed in the rotary drilled borings, which ranged in depth from approximately 66.5 feet BGS (MW-4) to approximately 68 feet BGS (MW-2, MW-3, MW-5, and MW-6). The monitor wells were completed with 4 inch diameter, screw threaded, schedule 40 PVC casing, and 0.020 inch factory slotted screen. The well screen, approximately twenty (20) feet in length, was installed across the groundwater surface to evaluate the presence of PSH on the groundwater. The well screen was surrounded by a graded (20-40) silica sand, which was placed to a depth approximately two (2) feet above the screen. A bentonite pellet seal, approximately 2 feet thick was placed over the sand, and the remainder of the boring was filled with cement-bentonite grout. The surface of each well, except well MW-3, is secured with a locking cap, and at-grade well cover. Well MW-3 is secured with a locking cap, and above-grade well cover. The well drilling and completion details. Appendix D presents the monitor well completion records.

Following installation, the monitor wells were developed by Scarborough Drilling, Inc. using the drilling rig and a three (3) inch diameter well bailer. The well bailer was thoroughly decontaminated between wells by washing with a high pressure hot water washer, and rinsed. The purged groundwater was stored in 55-gallon drums, and transferred to the waste oil and water storage

tanks via the north sump.

2.6 Groundwater Sampling and Analysis

On April 22-23, 1997, Highlander collected samples of groundwater from the Site water well, WW-1, and monitor wells MW-1 through MW-6. Prior to purging and sampling, each well was measured for depth-to-groundwater, total well depth, and inspected for the presence of PSH. The monitor wells were then purged to remove stagnant water from the well casing. The monitor wells were purged by pumping with an electric submersible pump. A minimum of three (3) casing volumes of groundwater was removed from each well. The purged groundwater was measured for pH, specific conductance, and temperature to determine if these parameters had stabilized. The purged groundwater was contained in a 200-gallon portable tank and transferred to the waste oil and water storage area via the north sump. Water well WW-1 contained a shaft-driven turbine pump, and was pumping at the time of sample collection.

Following purging, groundwater samples were collected from monitor wells MW-1 through MW-6 using dedicated disposable PVC bailers and line. Groundwater samples were collected from water well WW-1 from a sample port installed at the well head. The groundwater samples were carefully transferred to appropriately labeled and preserved sample containers provided by the analytical laboratory (Trace Analysis, Inc., Lubbock, Texas). The groundwater samples were analyzed for volatile and semi-volatile (PAH) organic compounds by EPA methods SW-846-8240 and 8270, respectively, filtered (dissolved) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver), chloride, and total dissolved solids (TDS). Table 4 presents a summary of the volatile organic analysis. Table 5 presents a summary of the semi-volatile (PAH) organic analysis. Appendix C presents the analytical laboratory reports, chain of custody control forms, and QA/QC documentation.

2.7 <u>Hydraulic Conductivity (Slug) Testing</u>

In accordance with the CFI Work Plan, three (3) monitor wells (MW-2, MW-3, and MW-4) were selected for hydraulic conductivity (slug) testing. Due to process water demand (i.e., cooling water, etc.), water well WW-1 could not be used for conducting a pumping test, and pumping from well WW-1 would have created interference during a pumping test. The slug (falling head and rising head) tests were conducted by inserting (falling head) and removing (rising head) a slug, consisting of a PVC tube, measuring approximately 2 inches in diameter by 60 inches in length. The slug was filled with inert silica sand, and capped at both ends to overcome buoyancy and prevent leakage into the slug. The changes in water level, by inserting and removing the slug, were measured in the well with an In-situ, Inc., Model 1000C data logger, and 30 psi pressure transducer. The resulting field data was evaluated and the hydraulic conductivity was calculated using the Bouwer and Rice (1976) method. Table 7 presents a summary of the falling head and rising head slug test results for monitor wells MW-2, MW-3, and MW-4. Appendix E presents the field data, calculations, and graphical plots.

2.8 Phase Separated Hydrocarbon (PSH) Assessment

Monitor wells MW-5 and MW-6, located adjacent to the north sumps, were installed to evaluate the presence of PSH on groundwater. Monitor well MW-5 was installed on the east side of the sump, and monitor well MW-6 was installed on the west side of the sump. The monitor wells were periodically inspected for the presence of PSH. On May 12, 1997, PSH was observed on the groundwater in wells MW-5 and MW-6. The thickness of the PSH was determined with an electronic oil and water interface probe, which detected 0.02 feet (approximately 0.25 inches) in MW-5, and 0.15 feet (1.5 inches) in MW-6. The thickness of PSH on the groundwater in well MW-5 was not sufficient for sample collection, however, a sample of the PSH from well MW-6 was collected for laboratory testing. The sample was submitted to Trace Analysis, Inc., Lubbock, Texas,

16 of 31

for "fingerprint" analysis using gas chromatography (GC) and flame ionization detection (FID). The thickness of PSH on the groundwater in wells MW-5 and MW-6 was insufficient to conduct bailout testing to determine the actual formation thickness. Appendix C presents the GC fingerprint analysis.

2.9 <u>Water Well Survey</u>

A survey was conducted to determine the locations of water wells within a one (1) mile radius of the Site. The water well survey was conducted by visual observations from public roadways, and a review of records of the State of New Mexico, Office of the State Engineer, Roswell, New Mexico. The water well survey identified records for twelve (12) water wells. Table 8 presents a summary of available records for water wells within a 1-mile radius of the Site. Figure 6 presents a location map for the water wells.

3.0 COMPREHENSIVE FACILITY INVESTIGATION RESULTS

3.1 Background Soil Headspace Gas Results

Soil samples from boring MW-2 (background) were field screened to determine if impacts to soil at the background location had occurred from petroleum hydrocarbons. Table 2 presents a summary of the soil headspace gas survey results. Referring to Table 2, the highest OVM reading measured in the soil samples from boring MW-2 was 1 ppm, from a depth of 50 to 52 feet. The OVM readings in the remaining soil samples were below the level detectable by the instrument. The OVM reading from 50 to 52 feet is also below the general background air concentration for the Site, and does not indicate that an environmental impact has occurred.

3.2 Soil Sample Results

Soil samples were collected during drilling at rotary drilled boring MW-2 (background), and analyzed for total metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). The soil samples were obtained from depths of 10-11 feet, 20-22 feet, 30-32 feet, 40-42 feet, and 50-52 feet. Table 3 presents a summary of the laboratory test results.

Referring to Table 3, arsenic; cadmium, lead, mercury, selenium, and silver were not detected above the test method detection limits in samples from boring MW-2. Total barium was detected at levels ranging from non-detectable (<10 mg/kg) in samples from 40-42 feet and 50-52 feet, to 270 mg/kg in the sample from 20-22 feet. Chromium was detected at levels ranging from non-detectable (<5.0 mg/kg) in samples from 10-11 feet, 20-22 feet, and 40-42 feet, to 62 mg/kg in the sample from 50-52 feet. Based on the background sample data, the levels of cadmium (2.7 mg/kg) and lead (64.4 mg/kg) reported in the soil samples from 0-0.5 feet at boring AH-5 (October 17, 1995) are slightly elevated above the background levels for the Site, but are within the range expected for the region. The levels of barium and chromium reported in the background soil samples are generally lower in concentration than levels reported in soil samples from borings AH-5, and AH-5-1 through AH-5-5.

Soil samples were collected from various depth intervals from borings AH-5, and AH-5-1 through AH-5-5, installed on the north side of the compressor building. The depths of the borings ranged from approximately 0.5 feet BGS (AH-5 and AH-5-2) to 3.3 feet BGS (AH-5-3). Soil samples from the borings were analyzed for total chromium and total barium. Referring to Table 3, the chromium levels reported in the soil samples from the borings ranged in concentration from 6.2 mg/kg (AH-5-1, 1.5-2.0 feet) to 4400 mg/kg (AH-5-2, 0-0.5 feet). Levels of total chromium in soil samples from the borings generally decreased below background below depths of 1 foot. The highest total chromium levels were reported in the 0-0.5 foot depth interval samples, and ranged in

concentration from 390 mg/kg (AH-5-4) to 4400 mg/kg (AH-5-3). Based on the laboratory tests, the vertical extent of elevated total chromium was determined. However, the area of elevated chromium in soil extends west of boring AH-5, AH-5-1, and AH-5-2 at least ten (10) feet, and west of boring AH-5. The soil affected by the elevated total chromium extend north of the compressor building approximately 5 feet. The area of soil affected by the elevated chromium is estimated to be approximately 125 square feet or approximately 5 cubic yards of soil.

The soil sample from boring AH-5-2, 0-0.5 feet, which exhibited the highest total chromium reading (4400 mg/kg) was tested by the TCLP method for toxicity. The TCLP level for chromium in the sample was less than the test method detection limit of 0.05 mg/l, concluding that the soil does not exhibit a hazardous characteristic.

3.3 Groundwater Sample Results

Groundwater samples were collected from monitor wells MW-1 through MW-6, and water well WW-1 on April 22-23, 1997. The groundwater samples were analyzed for volatile organic compounds, semi-volatile organic compounds, filtered metals, chloride and TDS. Table 4 presents a summary of the volatile organic laboratory test results. Table 5 presents a summary of the semi-volatile organic test results, and Table 6 presents a summary of the metals, chloride, and TDS analysis.

3.3.1 Volatile Organic Compounds

Referring to Table 4, six (6) volatile organic compounds were detected in groundwater at varying levels above the EPA method 8240 detection limits. The six (6) volatile organic compounds were BTEX, dichlorodifluoromethane, and tetrachloroethene. The New Mexico WQCC has established Human Health Standards (20 NMAC, 6.2.3103.A) for all of these compounds, except dichlorodifluoromethane, and tetrachloroethene. The Human Health Standards for the BTEX

compounds are 10 ug/L (benzene), 750 ug/L (toluene and ethylbenzene), and 620 ug/L (xylenes). BTEX was only detected in groundwater from monitor wells MW-1, MW-5, and MW-6. The benzene levels in groundwater from these wells ranged from 11 ug/L (MW-1) to 540 ug/l (MW-5). Previously (August 8, 1996), benzene was reported in groundwater from well MW-1 at 9 ug/L. Toluene was reported in groundwater from these wells at concentrations ranging from 33 ug/L (MW-1) to 310 ug/L (MW-5). Ethylbenzene was reported at concentrations ranging from 75 ug/L (MW-1) to 110 ug/L (MW-6). Xylenes were reported at concentrations ranging from 49 ug/L (MW-1) to 330 ug/L (MW-6). The concentrations of toluene, ethylbenzene, and xylenes in groundwater from wells MW-1, MW-5, and MW-6 were below the WQCC standards. The toluene, ethylbenzene, and xylenes concentrations reported in groundwater from well MW-1 on August 1, 1996. However, the levels for these constituents reported from well MW-1 on August 1, 1996. However, the levels reported on August 1, 1996 were also below the WQCC standards. Groundwater samples from the up gradient monitor well, MW-2, and down gradient monitor wells, MW-3 and MW-4 did not report BTEX levels above the test method detection limits, concluding that the BTEX impacts to groundwater are localized and confined to the Site.

Dichlorodifluoromethane was reported in groundwater samples from all wells, except the up gradient well, MW-2. The concentrations of dichlorodifluoromethane reported in the groundwater samples ranged from 6 ug/L (MW-3), to 98 ug/L (MW-1). Previously, dichlorodifluoromethane was reported in groundwater from water well WW-1 at 113 ug/L (June 14, 1996). The level of dichlorodifluoromethane reported in groundwater from this well on April 23, 1997 was 66 ug/L. Tetrachloroethene was only detected at 1 ug/L (test method detection limit) in groundwater from water well WW-1. The WQCC does not have Human Health Standards for dichlorodifluoromethane and tetrachloroethene. However, dichlorodifluoromethane and tetrachloroethene are listed as toxic pollutants, in accordance with the WQCC definition (20 NMAC 6.2.1101.TT). In accordance with 20 NMAC 6.2.1101.TT, dichlorodifluoromethane and tetrachloroethene are in the environment at concentrations, shown by publicly available scientific information, to have the potential for causing

injuries to health upon exposure, ingestion, or assimilation. Highlander evaluated the U.S. EPA, Region III, Risk-Based Concentration Table, and the Office of Water, Drinking Water Regulations and Health Advisories (EPA 822-B-96-002), to obtain information on human health exposure data for these compounds. Based on the review, the Lifetime Drinking Water Health Advisory (HA) for dichlorodifluoromethane, for an adult (70-kg), is 1 mg/L (1,000 ug/L). The Lifetime HA is defined as the concentration of a chemical in drinking water that is not expected to cause any adverse noncarcinogenic effects over a lifetime of exposure, with a margin of safety. No Lifetime HA was available for tetrachloroethene. However, the Drinking Water Equivalent Level (DWEL) for tetrachloroethene is 0.5 mg/L, or 500 ug/L. The DWEL is defined as a lifetime exposure concentration protective of adverse, non-cancer health effects, that exposure to a contaminant is from a drinking water source. Based on the information reviewed, the levels of dichlorodifluoromethane and tetrachloroethene reported in the groundwater samples do not pose a risk to human health.

3.3.2 Semi-volatile Organic Compounds

Referring to Table 5, seven (7) semi-volatile organic compounds were reported at varying concentrations in groundwater above the EPA method 8270 detection limits. The seven (7) semi-volatile organic compounds were acetophenone, naphthalene, 2-methylnaphthalene, 2-methylphenol, 4-methylphenol/3-methylphenol, fluorene, and anthracene. The only compound for which there is a WQCC Human Health Standard is total naphthalene, plus monometylnaphthalenes (0.03 mg/L). Naphthalene was only detected above the test method detection limit in groundwater from monitor wells MW-5 and MW-6. The concentration of total naphthalene plus mononaphthalenes detected in the groundwater samples from wells MW-5 and MW-6 was 0.120 mg/L and 0.016 mg/L, respectively. However, naphthalene was not detected in down gradient well MW-4, therefore, the extent of naphthalene impact to groundwater appears to be localized, and contained to the Site.

Acetophenone (0.005 mg/L) was only detected in groundwater from well MW-1. The compounds 2-methylphenol (0.004 mg/L), and 4-methylphenol/3-methylphenol (0.002 mg/L) were

only detected in groundwater from well MW-6. There are no WQCC standards, or EPA Drinking Water Health Advisories for acetophenone, 2-methylphenol or 4-methylphenol/3-methylphenol in groundwater, nor are these compounds listed as toxic pollutants, in accordance with 20 NMAC 6.2.1101.TT.

The compound 2-methylnaphthalene was detected in the groundwater samples from monitor wells MW-5 and MW-6, at concentrations of 0.022 mg/L and 0.026 mg/L, respectively. Fluorene (0.002 mg/L) was only detected in the groundwater sample from well MW-5. Anthracene was detected in the groundwater samples from well MW-6 (0.002 mg/L), and water well WW-1 (0.002 mg/L). There are no WQCC standards for these compounds in groundwater, however, these compounds are considered toxic pollutants, in accordance with 20 NMAC 6.2.1101.TT. Highlander evaluated the U.S. EPA, Region III, Risk-Based Concentration Table, and the Office of Water, Drinking Water Regulations and Health Advisories (EPA 822-B-96-002), to obtain information on human health exposure data for these compounds. Based on the review, the risk based standard for anthracene in tap water is 2200 ug/L, or 2.20 mg/L, and 1500 ug/L, or 1.5 mg/ for fluorene. There is no risk based standard or HA for 2-methylnaphthalene. Based on the information reviewed, the levels of anthracene and fluorene reported in the groundwater samples do not pose a risk to human health.

3.3.3 Metals, Chloride, and TDS Results

Groundwater samples from monitor wells MW-1 through MW-6, and water well WW-1 were tested for filtered metals (arsenic, barium, cadmium. chromium, lead, mercury, selenium, and silver), chloride, and TDS. Referring to Table 6, only barium, chromium, and lead were detected in the groundwater samples above the EPA methods 3015, 6010, and 7470 detection limits. Barium (0.3 mg/L) was only detected in groundwater from monitor well MW-6. The barium level reported in the groundwater sample from well MW-6 was below the WQCC standard of 1.0 mg/L. Chromium was reported in groundwater at concentrations of 0.36 mg/L (MW-3), 0.08 mg/L (MW-4), and 0.52

mg/L (WW-1). The concentrations of chromium in groundwater from these wells exceeded the WQCC standard of 0.05 mg/L. However, the EPA drinking water Maximum Contaminant Level (MCL) for chromium is 0.1 mg/l. The chromium level reported in groundwater from well WW-1 on April 23, 1997 (0.52 mg/L) is lower than the concentration reported from this well on August 1, 1996 (0.82 mg/L). Lead was reported in groundwater at concentrations of 0.1 mg/L from monitor wells MW-1, MW-4, and MW-6. The lead levels reported in groundwater samples from these wells exceeded the WQCC standard of 0.05 mg/L.

Chloride concentrations in groundwater samples from monitor wells MW-1 through MW-6, and water well WW-1 on April 22-23, 1997 ranged from 200 mg/L (MW-1) to 1500 mg/L (MW-6). Figure 7 presents a isopleth map showing the distribution of chloride in groundwater at the Site. Referring to Figure 7, the chloride levels are generally highest in groundwater in the vicinity of the north sump, and at water well WW-1. The chloride levels in samples from these wells ranged from 800 mg/L (MW-5 and WW-1) to 1500 mg/L (MW-6). The chloride levels reported in groundwater from well MW-6 indicates that an impact has occurred in this area. The pumping from well WW-1 appears to have captured the chloride impact at wells MW-5 and MW-6, since groundwater sample analysis from monitor well MW-4 (290 mg/L) is below the background level reported in the sample from well MW-2 (350 mg/L). Contribution of chloride from off site sources may also be a factor to the elevated chloride level in well WW-1, due to the cone of depression, which appears to extend north (up gradient) of the Site. The chloride levels reported in groundwater samples from all wells, excluding well MW-1, located near the central area of the Site, exceeded the WQCC standard of 250 mg/L for domestic water supply (20 NMAC 6.2.3103.B).

The TDS levels reported in groundwater from wells MW-1 through MW-6, and water well WW-1 ranged from 1200 mg/L (MW-2) to 3200 mg/L (MW-6). The TDS levels are consistent for water quality at the Site, and vicinity. However, the TDS levels reported in groundwater from the wells at the Site, including the background monitor well (MW-2), exceeded the WQCC standard of 1000 mg/L for domestic water supply (20 NMAC 6.2.3103.B).

3.4 <u>Hydraulic Conductivity (Slug) Test Results</u>

In situ hydraulic conductivity (slug) tests were conducted in monitor wells MW-2, MW-3, and MW-4. The slug test results are summarized in Table 7. Referring to Table 7, the results of falling head slug tests from wells MW-2 through MW-4 reported horizontal hydraulic conductivity values ranging from 4.47 x 10^{-5} feet per second (Ft./Sec.), or 3.8643 feet per day (Ft./Day) at well MW-4, to 7.02 x 10^{-5} Ft./Sec., or 6.0642 Ft./Day at well MW-3. The average horizontal hydraulic conductivity measured from the falling head slug tests was 5.51 x 10^{-5} Ft./Sec., or 4.7604 Ft./Day. The results of rising head slug tests from wells MW-2 through MW-4 reported horizontal hydraulic conductivity values ranging from 5.35 x 10^{-5} feet per second (Ft./Sec.), or 4.6251 feet per day (Ft./Day) at well MW-1, to 9.56 x 10^{-5} Ft./Sec., or 8.2592 Ft./Day at well MW-4. The average horizontal hydraulic conductivity measured from the rising head slug tests was 7.73 x 10^{-5} Ft./Sec., or 6.6847 Ft./Day. The overall average horizontal hydraulic conductivity of the unconfined aquifer, based on the falling head and rising head slug tests was 6.62 x 10^{-5} Ft./Sec., or 5.7225 Ft./Day.

3.5 Phase Separated Hydrocarbon Assessment Results

Phase separated hydrocarbons were only observed on the groundwater in monitor wells MW-5 and MW-6. The thickness of the PSH was measured at 0.25 inches (MW-5), and 1.50 inches (MW-6). A sample of the PSH was obtained from well MW-6 and analyzed for GC fingerprint by GC-FID method. Appendix C presents the laboratory test results. Based on the GC fingerprint analysis, the PSH collected from well MW-6 exhibited peaks in the C-10 to C-12 carbon range, and was consistent with diesel fuel. These analysis are also consistent with the semi-volatile organic compounds reported in the groundwater samples from wells MW-5 and MW-6. The GC fingerprint scan also reported lesser amounts of lighter chain hydrocarbons in the C-6 to C-10 range, consistent with natural gas condensate or gasoline.

3.6 <u>Water Well Survey</u>

A search for water wells within a one (1) mile radius of the Site was conducted through a search of the State of New Mexico, Office of the State Engineer's files, and visual observations. Based on the water well survey, records for twelve (12) water wells were identified. Figure 6 presents a map showing the locations for the wells. Table 8 presents a summary of water well drilling and completion details. Appendix F presents the water well records.

Referring to Figure 1, the nearest water well hydraulically down gradient of the Site is well number 7, located approximately 500 feet southeast of the Site. The legal description for this well is the NW/4, NW/4, SW/4, Section 27, Township 21 South, Range 37 East, Lea County, New Mexico. According to State of New Mexico, Office of the State Engineer's records, this well was drilled on March 7, 1963, to an approximate depth of 93 feet BGS. There is no data available to determine the current status of this well (i.e., active, inactive, or plugged), or its use. The next closest well down gradient to the Site is located in the S/2, NE/4, SE/4, Section 28, Township 21 South, Range 37 East, Lea County, New Mexico. This well is located approximately 1,625 feet south of the Site. According to the State Engineer's records, this well was drilled on July 26-27, 1988, to an approximate depth of 105 feet BGS. This well is screened from 86 to 101 feet BGS, and the static water level was approximately 80 feet BGS. It is unlikely that groundwater at this well location has been affected by operations at the Site.

4.0 Conclusions

1. Based on Site-specific data, groundwater beneath the Site on April 22-23, 1997, ranged from 48.24 feet BGS at well MW-4, to 66.46 feet BGS at water well WW-1.

The depth-to-groundwater was generally influenced by pumping from water well WW-1. Pumping from well WW-1 has also influenced the groundwater potentiometric surface. The elevation of the groundwater surface on April 22-23, 1997 ranged from 3376.69 feet above mean sea level (AMSL) at well MW-4, located near the southeast corner of the Site, to 3362.32 at well WW-1. Groundwater flow beneath the Site is generally controlled by well WW-1 during pumping. The influence of well WW-1 from pumping has created a cone of depression which extends radially away from the well and causes groundwater to flow towards well WW-1. The cone of depression caused from pumping well WW-1 would generally prevent contaminants which may enter the groundwater from migrating off the Site.

- 2. Soil samples from boring MW-2 (background) were field screened for the presence of petroleum hydrocarbons using the OVM. The highest OVM reading measured in the soil samples from boring MW-2 was 1 ppm, from a depth of 50 to 52 feet. The OVM readings in the remaining soil samples were below the level detectable by the instrument. The OVM reading from 50 to 52 feet is also below the general background air concentration for the Site, and does not indicate that an environmental impact has occurred.
- 3. Soil samples were collected from boring MW-2 (background), and analyzed for total metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). The soil samples were obtained from depths of 10-11 feet, 20-22 feet, 30-32 feet, 40-42 feet, and 50-52 feet. Arsenic, cadmium, lead, mercury, selenium, and silver were not detected above the test method detection limits in samples from boring MW-2. Total barium was detected at levels ranging from non-detectable (<10 mg/kg) in samples from 40-42 feet and 50-52 feet, to 270 mg/kg in the sample from 20-22 feet.</p>

26 of 31

Chromium was detected at levels ranging from non-detectable (<5.0 mg/kg) in samples from 10-11 feet, 20-22 feet, and 40-42 feet, to 62 mg/kg in the sample from 50-52 feet.

Based on the background sample data, the levels of cadmium (2.7 mg/kg) and lead (64.4 mg/kg) reported in the soil samples from 0-0.5 feet at boring AH-5 (October 17, 1995) are slightly elevated above the background levels for the Site, but are within the range expected for the region. The levels of barium and chromium reported in the background soil samples are generally lower in concentration than levels reported in soil samples from borings AH-5, and AH-5-1 through AH-5-5.

4. Soil samples were collected from borings AH-5, and AH-5-1 through AH-5-5, installed on the north side of the compressor building. The depths of the borings ranged from approximately 0.5 feet BGS (AH-5 and AH-5-2) to 3.3 feet BGS (AH-5-Soil samples from the borings were analyzed for total chromium and total 3). barium. The total chromium levels reported in the soil samples ranged from 6.2 mg/kg (AH-5-1, 1.5-2.0 feet) to 4400 mg/kg (AH-5-2, 0-0.5 feet). Levels of total chromium in the soil samples generally decreased below background below depths of 1 foot. The highest total chromium levels were reported in the 0-0.5 foot depth interval samples, and ranged in concentration from 390 mg/kg (AH-5-4) to 4400 mg/kg (AH-5-3). Based on the laboratory tests, the vertical extent of elevated total chromium was determined. However, the area of elevated chromium in soil extends west of boring AH-5, AH-5-1, and AH-5-2 at least ten (10) feet, and west of boring AH-5-5. The soil affected by the elevated total chromium extend north of the compressor building approximately 5 feet. The area of soil affected by the elevated chromium is estimated to be approximately 125 square feet or approximately 5 cubic yards of soil.

The soil sample from 0-0.5 feet (AH-5-2), which exhibited a chromium reading of 4400 mg/kg was tested by the TCLP method for toxicity. The TCLP level for chromium in the sample was less than the test method detection limit of 0.05 mg/l, concluding that the soil does not exhibit a hazardous characteristic.

- 5. Six (6) volatile organic compounds (BTEX, dichlorodifluoromethane, and tetrachloroethene) were detected above the EPA method 8240 detection limits in the groundwater. BTEX was only detected in groundwater from monitor wells MW-1, MW-5, and MW-6. Benzene ranged in concentration from 11 ug/L (MW-1) to 540 ug/l (MW-5), and exceeded the WQCC standard of 10 ug/L. The toluene, ethylbenzene, and xylenes reported in groundwater samples from wells MW-1, MW-5, and MW-6 were below the WQCC standards. The groundwater samples from wells MW-1, MW-5, and MW-6 were below the WQCC standards. The groundwater samples from wells MW-3 and MW-4 (down gradient) did not report BTEX levels above the test method detection limits, concluding that the BTEX impacts to groundwater are localized and confined to the Site.
- 6. Dichlorodifluoromethane was reported in groundwater samples from all wells, except MW-2 (up gradient), at concentrations ranging from 6 ug/L (MW-3), to 98 ug/L (MW-1). Tetrachloroethene was only detected at 1 ug/L (test method detection limit) in groundwater from water well WW-1. Dichlorodifluoromethane and tetrachloroethene are listed as toxic pollutants, in accordance with the WQCC definition (20 NMAC 6.2.1101.TT). Highlander evaluated the U.S. EPA, Region III, Risk-Based Concentration Table, and the Office of Water, Drinking Water Regulations and Health Advisories (EPA 822-B-96-002), to obtain information on human health exposure data for these compounds. Based on the review, the levels of dichlorodifluoromethane and tetrachloroethene reported in the groundwater samples do not pose a risk to human health.

- 7. Seven (7) semi-volatile organic compounds (acetophenome, naphthalene, 2methylnaphthalene, 2-methylphenol, 4-methylphenol/3-methylphenol, fluorene, and anthracene) were reported in groundwater at varying concentrations. Naphthalene was only detected in groundwater from monitor wells MW-5 (0.120 mg/L), and MW-6 (0.016 mg/L). The concentration of naphthalene in groundwater from monitor well MW-5 exceeded the WQCC standard of 0.03 mg/L. However, naphthalene was not detected in down gradient well MW-3, and, therefore, appears to be localized, and contained to the Site. Acetophenone (0.005 mg/L) was only detected in groundwater from well MW-1, and 2-methylphenol (0.004 mg/L), and 4-methylphenol/3methylphenol (0.002 mg/L) were only detected in groundwater from well MW-6. No WQCC standards exist for these compounds. The compound 2-methylnaphthalene was detected in the groundwater samples from monitor wells MW-5 and MW-6, at concentrations of 0.022 mg/L and 0.026 mg/L, respectively. Fluorene (0.002 mg/L) was only detected in the groundwater sample from well MW-5. Anthracene was detected in the groundwater samples from well MW-6 (0.002 mg/L), and water well WW-1 (0.002 mg/L). These compounds are considered toxic pollutants, in accordance with 20 NMAC 6.2.1101.TT. Highlander evaluated the U.S. EPA, Region III, Risk-Based Concentration Table, and the Office of Water, Drinking Water Regulations and Health Advisories (EPA 822-B-96-002), to obtain information on human health exposure data for these compounds. Based on the information reviewed, the levels of anthracene and fluorene reported in the groundwater samples do not pose a risk to human health. There is no risk based standard or HA for 2methylnaphthalene.
- 8. Barium (0.3 mg/L), chromium (0.08 mg/L to 0.52 mg/L), and lead (0.01 mg/L) were the only metals detected in groundwater samples above the EPA methods detection limits. Barium in groundwater from well MW-6 (0.3 mg/L), was below the WQCC standard of 1.0 mg/L. Chromium in groundwater from well MW-3 (0.36 mg/L),

29 of 31

MW-4 (0.08 mg/L), and WW-1 (0.52 mg/L) exceeded the WQCC standard of 0.05 mg/L. However, the EPA drinking water MCL for chromium is 0.1 mg/L. Lead in groundwater from wells MW-1, MW-4, and MW-6, exceeded the WQCC standard of 0.05 mg/L.

- 9. Chloride in groundwater ranged in concentration from 200 mg/L (MW-1) to 1500 mg/L (MW-6), and exceeded the WQCC standard of 250 mg/L for domestic water supply in all wells, with the exception of well MW-1, located near the central area of the Site. Elevated chloride was detected in groundwater from wells MW-5 and MW-6, and appears to be contained to the Site, as a result of pumping from water well WW-1. Pumping from WW-1 has created a cone of depression, which may also be capturing chloride from potential sources offsite and up gradient.
- 10. Levels of TDS in groundwater ranged from 1200 mg/L (MW-2) to 3200 mg/L (MW-6), and exceeded the WQCC standard of 1000 mg/L for domestic water supply. However, the TDS levels reported in groundwater from background well MW-2 (1200 mg/L) may be indicative of regional groundwater quality.
- The overall average horizontal hydraulic conductivity of the unconfined aquifer, based on falling head and rising head slug tests conducted in wells MW-2, MW-3, and MW-4 was calculated to be approximately 6.62 x 10⁻⁵ Ft./Sec., or 5.7225 Ft./Day.
- 12. The GC fingerprint analysis of PSH collected from well MW-6 exhibited peaks in the C-10 to C-12 carbon range, consistent with diesel fuel. Lesser amounts of lighter chain hydrocarbons, consistent with natural gas condensate or gasoline, were also reported.

30 of 31

13. Based on a review of the State of New Mexico, Office of the State Engineer's records, the nearest water well hydraulically down gradient of the Site, is located approximately 500 feet southeast of the Site. The well is located in the MW/4, NW/4, SW/4, Section 27, Township 21 South, Range 37 East, Lea County, New Mexico., and was drilled on March 7, 1963. This well is approximately 93 feet deep. There was no data available to determine the current status of this well (i.e., active, inactive, or plugged), or its use.

5.0 **RECOMMENDATIONS**

Based on the results of laboratory tests for filtered metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) in groundwater from wells MW-3 and MW-4 on April 22-23, 1997, Texaco will resample these wells and test the samples for filtered metals to confirm the earlier results. Following receipt of the analytical data from the laboratory, Texaco will submit the sample results to the OCD.

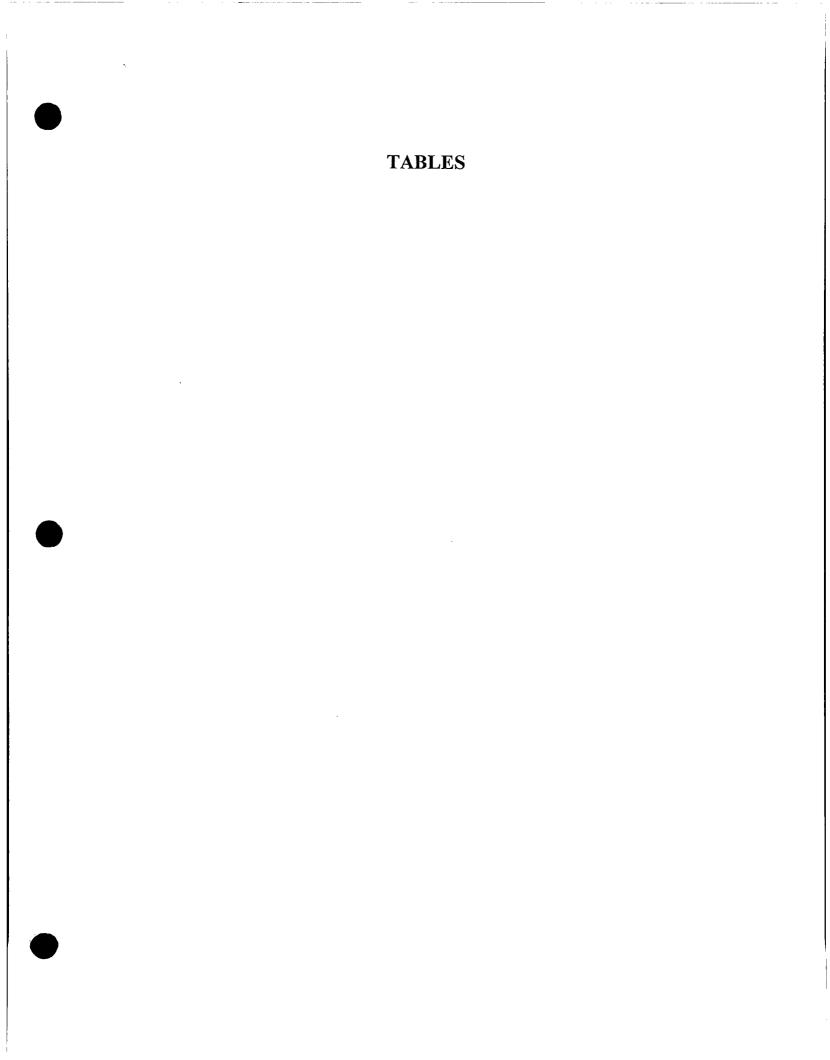


Table 1: Summary of Soil Boring, and Monitor Well Drilling and Completion DetailsTexaco Exploration and Production Inc., Eunice #2 (North) Gas PlantLea County, New Mexico

|

i

į

I

ł

Compressor MW-1 07/22/96 Water Well WW-1 Worth Sump BH-1 07/29/96 North Sump BH-2 07/29/96 North Sump BH-2 07/29/96 North Sump BH-1 07/29/96 North Sump BH-2 07/29/96 Nutration MW-5 04/02/97 N. Sump E.R. AH-1 08/09/96 S. Sump E.R. AH-1 08/09/96	68 100 52					BGL, 04/22-23/97
WW-1 BH-1 BH-2 BH-2 MW-5 MW-6 MW-6 AH-1 AH-1		3428.78	3428.59	4	48-68	52.34
BH-1 BH-2 MW-5 MW-6 MW-6 AH-1 AH-1		3428.78	3429.98	9	1	66.46
BH-2 BH-2 MW-5 MW-6 AH-1 AH-1		3424.85	ł	1	1	
MW-5 MW-6 MW-6 AH-1 AH-1	52	3425.03	ł	I	1	1
MW-6 AH-1 AH-1 AH-1	68	3425.06	3424.76	4	48-68	49.30
AH-1 AH-1 AH-1	68	3425.06	3424.25	4	48-68	49.26
AH-1	6.8	3428.09	1	1	1	1
AH-1	8.4	3427.72				
	4.7	3426.92		1	I	;
Upgradient MW-2 03/31/97	68	3432.49	3432.18	4	48-68	55.95
Downgradient MW-3 04/01/97	68	3426.48	3428.27	4	48-68	49.79
MW-4 04/01/97	66.5	3423.70	3423.38	4	46.5-66.5	48.24

Notes: 1. AMSL: Denotes elevation in feet above mean sea level 2. BGL: Denotes depth in feet below ground surface !

l ,

-

.

Investigation Area	Date	Soil Boring No.	Soil Sample No.	Sample Depth (ft)	OVM Reading (ppm)	Comments
Waste Oil and Water						
Storage Area	7/23/96	BH-1	1	5-7	1	
- 0			2	10-12	2	
			3	15-17	2	
			4	20-22	3	
			5	25-27	2	
			6	30-32	2	
			Ū	50 52	2	
	7/24/96	BH-2	1	5-7	1	
			2	10-12	2	
			3	15-17	2	
			4	20-22	2 4	
			5	25-27	2	
			5		<i>۲</i>	
	7/24/96	BH-3	1	5-7	1	
			2	10-12	2	
			3	15-17	2	
			4	20-22	1	
			5	25-27	1	
			~	12 24	*	
	7/24/96	BH-4	1	5-7	5	
			2	10-12	28	
			3	15-17	58	
			4	20-22	69	
			5	25-27	154	
			6	30-32	39	
			7	35-37	8	
	7/24/96	BH-5	1	5-7	588	
			2	10-12	500	
			3	15-17	353	
			4	19-20	143	
			5	25-27	7	
			6	30-32	12	
			7	35-37	3	
	7/24/96	рц .4	1	5-7	478	
	1/24/90	BH-6	1			
			2	10-12	• 496	
			3	15-17	418	
			4	20-22	487	
			5	25-27	35	
			6	30-32	33	
			7	35-37	13	
			8	40-42	6	

Table 2: Summary of OVM Headspace Gas Readings on Soil SamplesTexaco Exploration and Production, Inc., Eunice #2 (North) Gas PlantLea County, New Mexico

Note: OVM soil headspace gas readings are in parts per million (ppm) of total ionizable hydrocarbon.

Investigation Area	Date	Soil Boring No.	Soil Sample No.	Sample Depth (ft)	OVM Reading (ppm)	Comments
Waste Oil and Water						
Storage Area	7/25/96	BH-7	1	0.5-1	489	
5101-8-1-1-0			2	5-7	415	
			3	10-12	450	
			4	15-17	153	
			5	20-22	26	
			6	25-27	19	
			7	30-32	7	
			8	35-37	6	
			0	55-51	Ū	
	7/25/96	BH-8	1	0.5-1	99	
			2	5-7	435	
			3	10-12	5	
			4	15-17	18	
			5	20-22	43	
			6	25-27	2	
North Sump	7/20/06		1	57	207	
	7/29/96	BH-1	1	5-7	206	
			2	10-12	233	
			3	15-17	28	
			4	20-22	239	
			5	25-27	207	
			6	30-32	122	
			7	35-37	159	
			8	40-42	69	
			9	45-47	255	
			10	50-52	421	
	7/29/96	BH-2	1	5-7	415	
			2	10-12	448	
			3	15-17	177	
			4	20-22	497	
			5	25 - 22	384	
			6	30-32	440	
			7 8 9 10	35-37 40-42 45-47 50-52	127 29 327	

Table 2: (continued)Summary of OVM Headspace Gas Readings on Soil SamplesTexaco Exploration and Production, Inc., Eunice #2 (North) Gas PlantLea County, New Mexico

Note: OVM soil headspace gas readings are in parts per million (ppm) of total ionizable hydrocarbon.

Table 2: (continued)Summary of OVM Headspace Gas Readings on Soil SamplesTexaco Exploration and Production, Inc., Eunice #2 (North) Gas PlantLea County, New Mexico

Investigation Area	Date	Soil Boring No.	Soil Sample No.	Sample Depth (ft)	OVM Reading (ppm)	Comments
Compressor Building	7/23/96	MW-1 (BH-	1	0-5	6	
		1)	2	10-12	2	
			3	15-17	3	
			4	20-22	2	
			5	25-27	4	
			6	30-32	7	
			7	35-37	1	
			8	40-42	2	
			9	45-47	2	
			10	50-52	2	
			11	55-57	414	
Sump						
South of Engine Room	8/09/96	AH-1	1	2-2.5	0	
č			2	4-4.5	0	
			3	6-6.3	0	
			4	6.3-6.8	1	
-						
Sump North of Engine Room	8/09/96	AH-1	1	2-2.5	0.00	
0			2	4-4.5		
			3	6-6.5		
			4	8.2-8.4		
Trash Pit	8/09/96	AH-1	1	2-2.5	0	
			2	4.5-4.7	0	
Upgradient	3/31/97	MW-2		0-10		
			1	10 - 12	0	
			2	20-22	0	
			3	30-32	0	
			4	40-42	0	
			5	50-52	1	
				60-68		

Note: OVM soil headspace gas readings are in parts per million (ppm) of total ionizable hydrocarbon.

Table 3: Summary of Total Metals and TCLP (Chromium) Analysis of Soil Samples, Texaco Exploration and Production, Inc., Eunice #2 (North) Gas Plant Lea County, New Mexico

Investigation Area	Soil Boring Number	Sample Depth (ft)	Sample Date	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	TCLP- Chromium (mg/L)
Compressor Building	AH-5	0-0.5	10/17/95	<20	1900	2.7	1580	64.4	<0.25	<20	<0.5	
	AH-5-1	0-0.5	04/03/97		320		3800	×	•	•		
	AH-5-1	0.5-1.0	04/03/97		250		360		•	×		
	AH-5-1	1.5-2.0	04/03/97		26		6.2	a.				
	AH-5-2	0-0.5	04/03/97	÷	290	•	4400					<0.05
	AH-5-3	0-0.5	04/03/97		92		430					
	AH-5-3	1.5-2.0	04/03/97		21		6.6			×		÷
	AH-5-3	2.7-3.3	04/03/97		<20	•	7.3	Æ				
	AH-5-4	0-0.5	04/03/97		150	•	390				4	
	AH-5-4	0.5-1.0	04/03/97		230		1500					
	AH-5-4	2.0-2.5	04/03/97		<20		63	а				1
	AH-5-5	0-0.5	04/03/97	×	330		2900	•	×			
	AH-5-5	1.5-2.0	04/03/97		<20	Ř	9.6	•)				
Background	MW-2	11-01	03/31/97	<10	61	<5.0	<5.0	<10	<0.25	<10	<5.0	
		20-22	03/31/97	<10	270	<5.0	<5.0	<10	<0.25	<10	<5.0	
		30-32	03/31/97	<10	170	<5.0	37	<10	<0.25	<10	<5.0	
		40-42	03/31/97	<10	<20	<5.0	<5.0	<10	<0.25	<10	<5.0	
		50-52	03/31/97	<10	<20	<5.0	62	<10	<0.25	<10	<5.0	

Notes: All analysis performed by Trace Analysis, Inc., Lubbock, Texas 1. ft.: Denotes sample depth interval in feet below ground surface

2. mg/kg: Denotes analyte concentration in milligrams per kilogram

3. --: No data available

4. TCLP: Analysis by Toxicity Characterristic Leaching Procedure

5. mg/L: Denotes analyte concentration in milligrams per liter

Table 4: Summary of Volatile Organic Analysis of Groundwater Samples from Monitor Wells and Water Wells Texaco Exploration and Production, Inc., Eunice #2 (North) Gas Plant Lea County, New Mexico

Well Number	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	Dichlorodifluoromethane (µg/L)	Tetrachloroethene (µg/L)
MW-1	08/01/96	6	69	82	169		r
	04/23/97	11	33	75	49	98	
MW-2	04/22/97		<1	<1	<1	<1	<1
MW-3	04/22/97	₽	<1	<1	<1	6	<1
MW-4	04/23/97	4	<1	4	<1	8	<1
MW-5	04/22/97	540	310	93	245	37	<1
MW-6	04/22/97	340	280	110	330	50	<1
1-WW	06/14/96			<1	<1	113	<1
	04/23/97	1	<1	<1	<1	66	1

All analysis performed by Trace Analysis, Inc., Lubbock, Texas Notes:

1. µg/L: Denotes analytic concentration in micrograms per liter

2. <: Denotes analytic concentration below the analytical test method detection limit
 3. -: No data available

Table 5: Summary of Semi-Volatile Organic Analysis of Groundwater Samples from Monitor Wells and Water Wells Texaco Exploration and Production, Inc., Eunice #2 (North) Gas Plant Lea County, New Mexico

Well Number	Sample Date	Acetophenome (mg/L)	Naphthalene (mg/L)	2-methylnaphthalene (mg/L)	2-methylphenol (mg/L)	4-methylphenol/ 3-methylphenol (mg/L)	Fluorene (mg/L)	Anthracene (mg/L)
I-WM	04/23/97	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-2	04/22/97	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-3	04/22/97	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-4	04/23/97	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-5	04/22/97	<0.050	0.120	0.022	<0.010	<0.010	<0.010	<0.010
9-WW	04/22/97	<0.005	0.016	0.026	0.004	0.002	0.002	0.002
WW-1	04/23/97	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	0.002

Notes: All analysis performed by Trace Analysis, Inc., Lubbock, Texas 1. mg/L: Denotes analytic concentration in milligrams per liter

2. <: Denotes analytic concentration below the test method detection limit

Table 6: Summary of Metals and General Chemistry Analysis of Groundwater Samples from Monitor Wells and Water Wells Texaco Exploration and Production, Inc., Eunice #2 (North) Gas Plant Lea County, New Mexico

			_					-	_
TDS (mg/L)	2000	1200	2000	1600	2800	3200	•	*	2600
Nitrate (mg/L)	•	×		•			10.4	•	×
Alkalinity (mg/L)	•	5	v			4	340		
Sulfate (mg/L)			×				913		
Fluoride (mg/L)			*			28.0	2.6		
Chloride (mg/L)	200	350	430	290	800	1500	782	•	800
Sodium (mg/L)							393		
Calcium (mg/L)							268		
Magnesium (mg/L)		*	*			÷	142		-
Potassium (mg/L)							12.4		
Silver (mg/L)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01
Selenium (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.1		<0.10
Mercury (mg/L)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001
Lead (mg/L)	0.1	<0.10	<0.10	0.1	<0.10	0.1	<0.10		<0.10
Chromium (mg/L)	<0.05	<0.05	0.36	0.08	<0.05	<0.05	0.66	0.82	0.52
Cadmium (mg/L)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	ÿ	<0.02
Baruim (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20	6.3	<0.20		<0.20
Arsenic (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	9	<0.10
Sample Date	04/23/97	04/22/97	04/22/97	04/23/97	04/22/97	04/22/97	06/14/96	08/01/96	04/23/97
Well No.	I-WM	MW-2	MW-3	MW-4	MW-5	9-WW	I-WW		

Note:

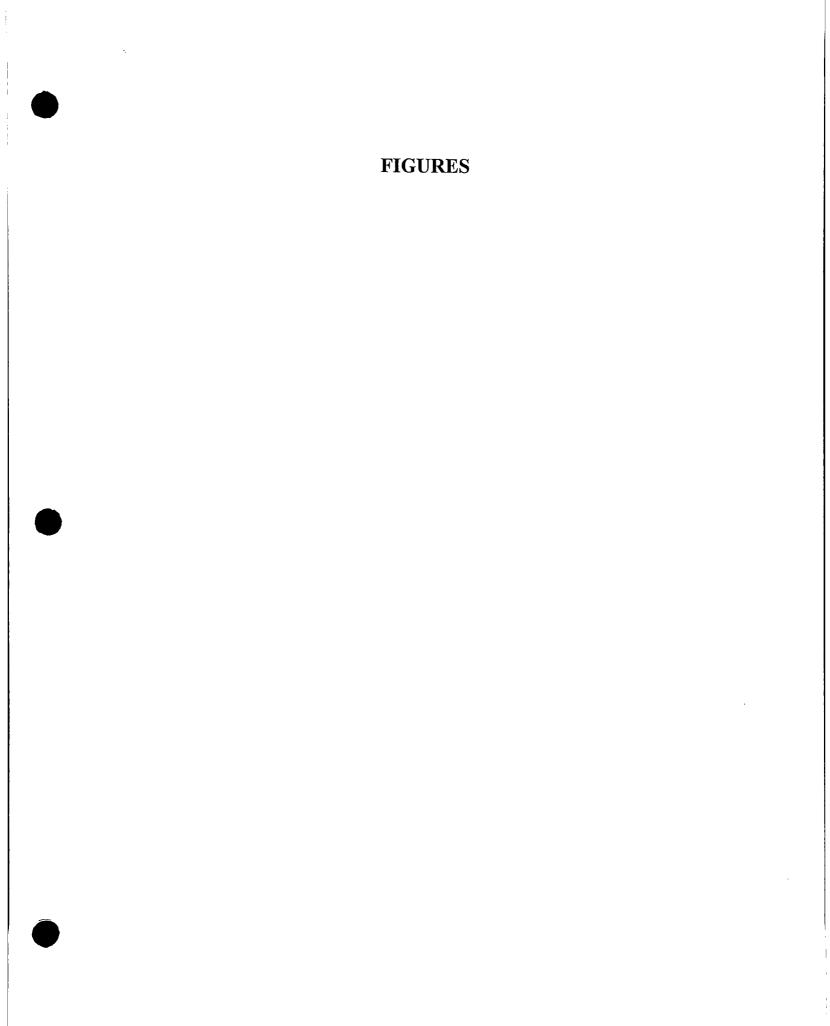
All analysis performed by Trace Analysis, Inc., Lubbock, Texas. 1. mg/L: Denotes analyte concentration in milligrams per liter

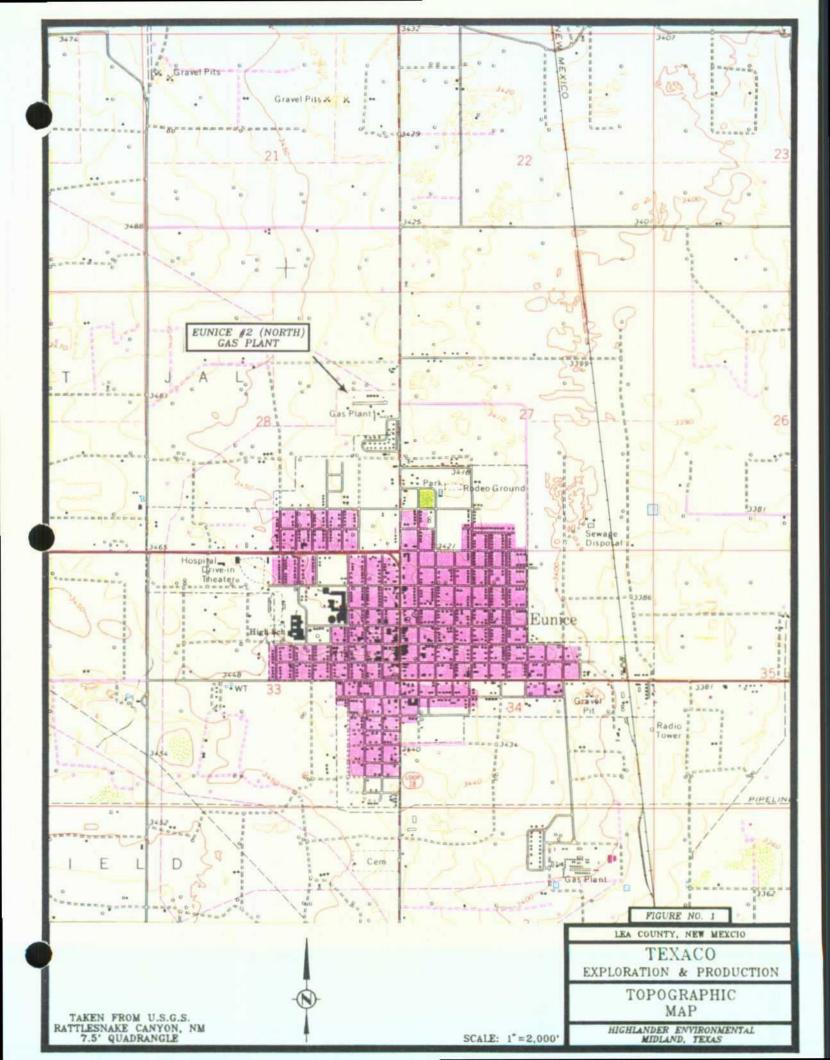
2. <: Denotes analyte concentration below test method detection limit
 3. -; No Data Available

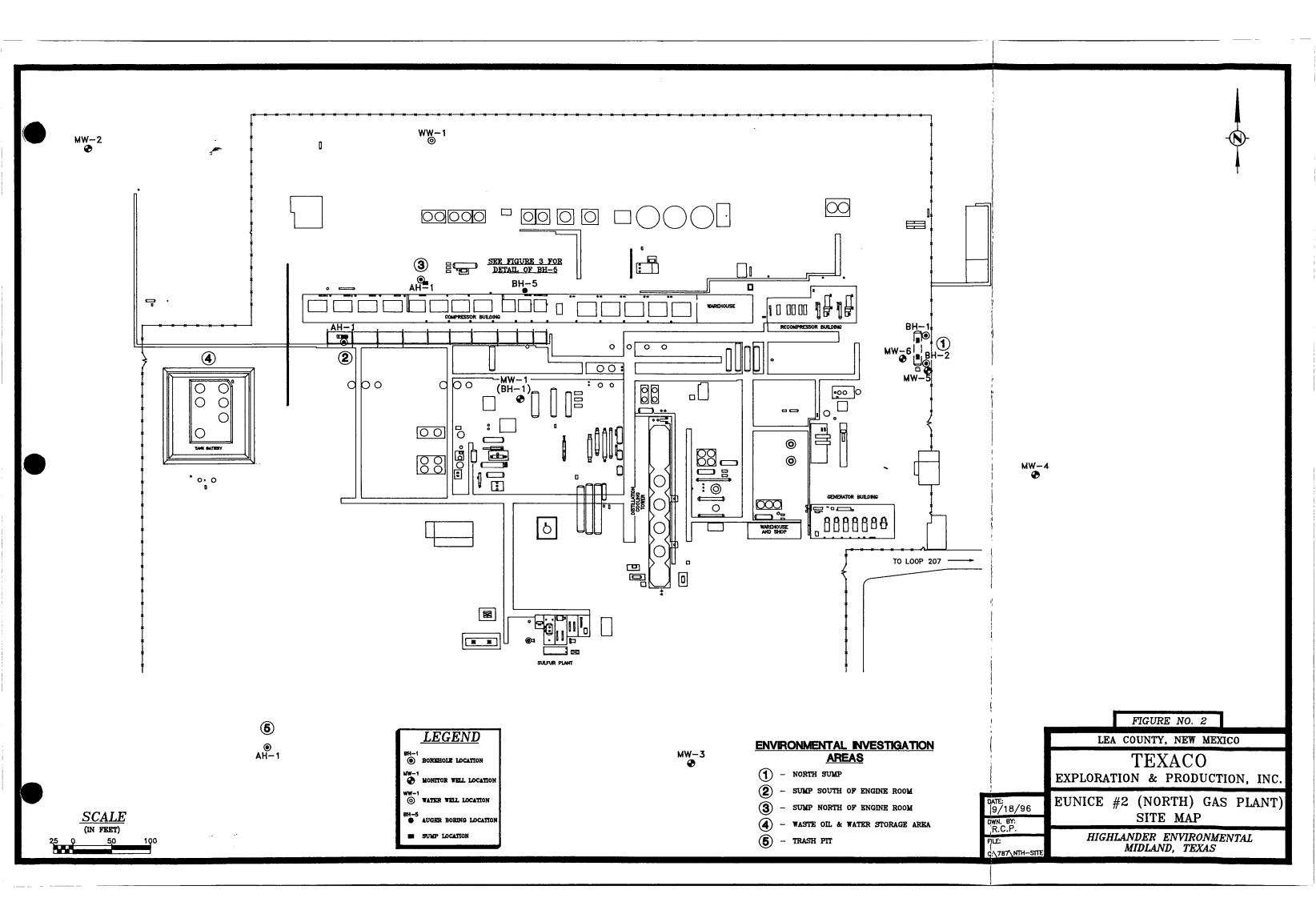
 Table 7:
 Summary of Horizontal Hydraulic Conductivity Measurements from Monitor Wells by Slug Test Method
 Texaco Exploration and Production, Inc., Eunice #2 (North) Gas Plant Lea County, New Mexico

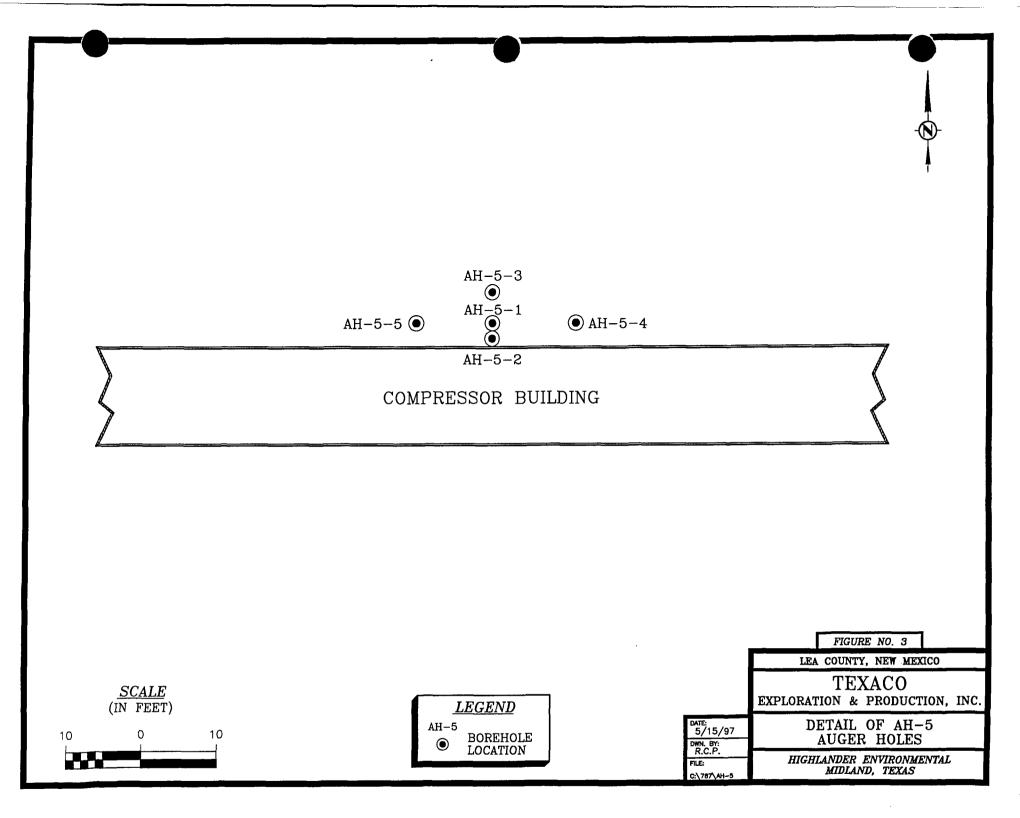
	<u> </u>	<u> </u>			I
Rising Head Test Ft./Day	4.6251	7.1699	8.2592	6.6847	
Rising Pt/Sec.	5.35 x 10 ⁻⁵	8.30 x 10 ⁻⁵	9.56 x 10 ⁻⁵	7.73 x 10 ⁻⁵	
Falling Head Test Ft./Day	4.3527	6.0642	3.8643	4.7604	
Falling Ft/Sec.	5.04 x 10 ⁻⁵	7.02 x 10 ⁻⁵	4.47 x 10 ⁻⁵	5.51 x 10 ⁻⁵	6.62 x 10 ⁻⁵ Feet/Sec. 5.7225 Feet/Day
Test Date	04/11/97	04/11/97	04/11/97		
Monitor Well	MW-2	MW-3	MW-4	Average:	Overall Average:

All data evaluated by Bouwer and Rice method for unconfined aquifers. 1. Ft/Sec: Denotes horizontal hydraulic conductivity in feet per second 2. Ft/Day: Deontes horizontal hydraulic conductivity in feet per day Notes:

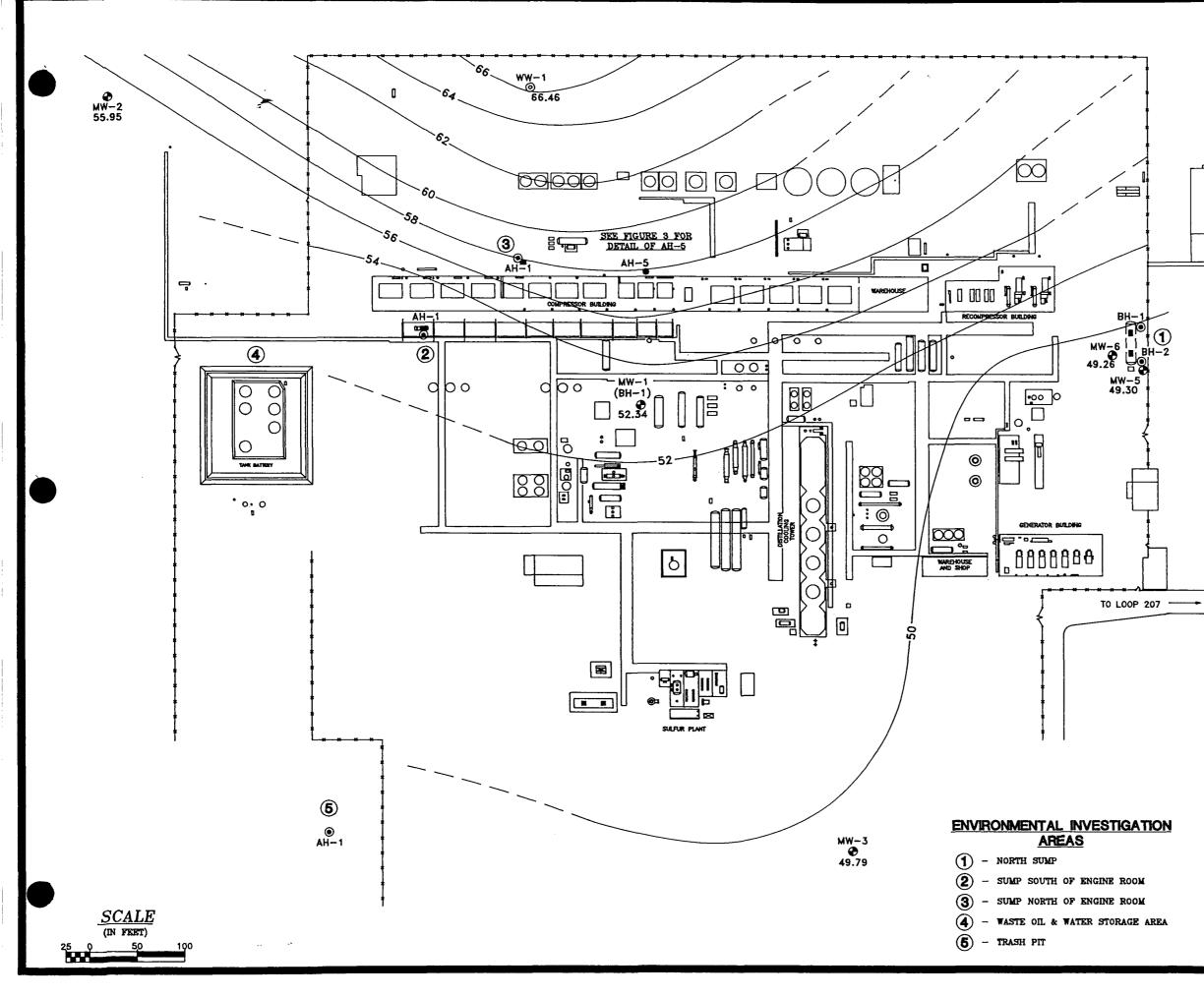

,

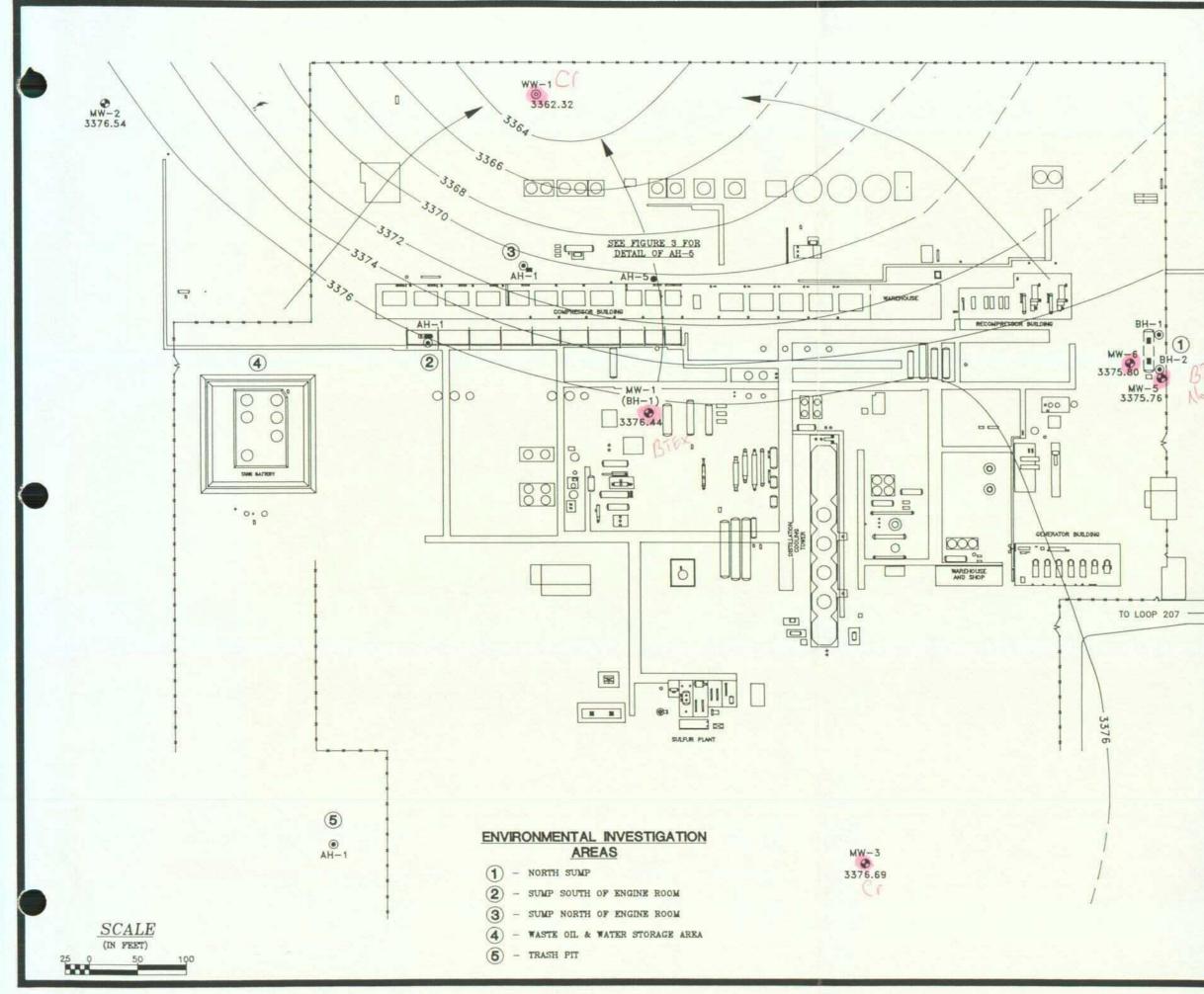

Table 8: Summary of Water Wells Within 1-Mile RadiusTexaco Exploration and Production, Inc., Eunice #2 (North) Gas Plant Lea County, New Mexico


Well No.	Well Permit No.	Well Owner	Legal Location	Date Drilled	Drilled Depth Ft., BGL	Screen Interval Ft., BGL	Depth-to Ground Water Ft./BGL	Status
1	CP-735	Charles Jennings	S/2 NE/4 SE/4 Sec. 28, T-21-S, R-37-E	7/26-27/97	105	86-101	80	V. weak water
2	CP-322	Millard Peck	SW/4 Sec. 28, T-21-S, R-37-E	6/8-10/66	138	70-138	73	
ŝ	CP-749	D.M. Criswell	NE/4 SE/4 SW/4 Sec. 28, T-21-S, R-37-E	6/15-22/90	123	113-123	75	Salty
4	CP-513	Gulf Oil Corp.	SE/4 NW/4 SW/4 Sec. 28, T-21-S, R-37-E	11/5-21/92	5000	4374-4888	4374	
S	•	Skelly Gas Plant #2	SW/4 SE/4 NE/4 Sec. 28, T-21-S, R-37-E	12/02/64	112	I	ı	Industrial Well
9	CP-711	Loyd Black	SE/4 NE/4 NE/4 Sec. 28, T-21-S-R-37-E	10/1-2/87	65	80-95	65	
7	-	R.L. McLean	NW/4 NW/4 SW/4 Sec. 27, T-21-S, R-37-E	3/07/63	93	ı	1	
8	1	Skelly Gas Plant #2	SE/4 SW/4 NE/4 Sec. 27, T-21-S, R-37-E	5/02/62	120	-	1	
6	ı	Gulf Oil Corp.	NW/4 SE/4 NE/4 Sec. 27, T-21-S, R-37-E	•	180	150-180	1	
10	I	Gulf Oil Corp.	NE/4 SW/4 NE/4 Sec. 27, T-21-S, R-37-E	1948	66	66-69	ı	
11	CP-736	Ronnie Worden	SW/4 NW/4 Sec. 27, T-21-S, R-37-E	9/10/88	120	77-97	76	
12	CP-733	Shell Western E&P, Inc.	S/2 SW/4 SW/4 Sec. 22, T-21-S, R-37-E	6/3-21/88	7864	4073-4960	1	


Notes: All records from file of New Mexico State Engineer Office 1. BGL: Denotes depth in feet below ground surface 2. -: No data available

•

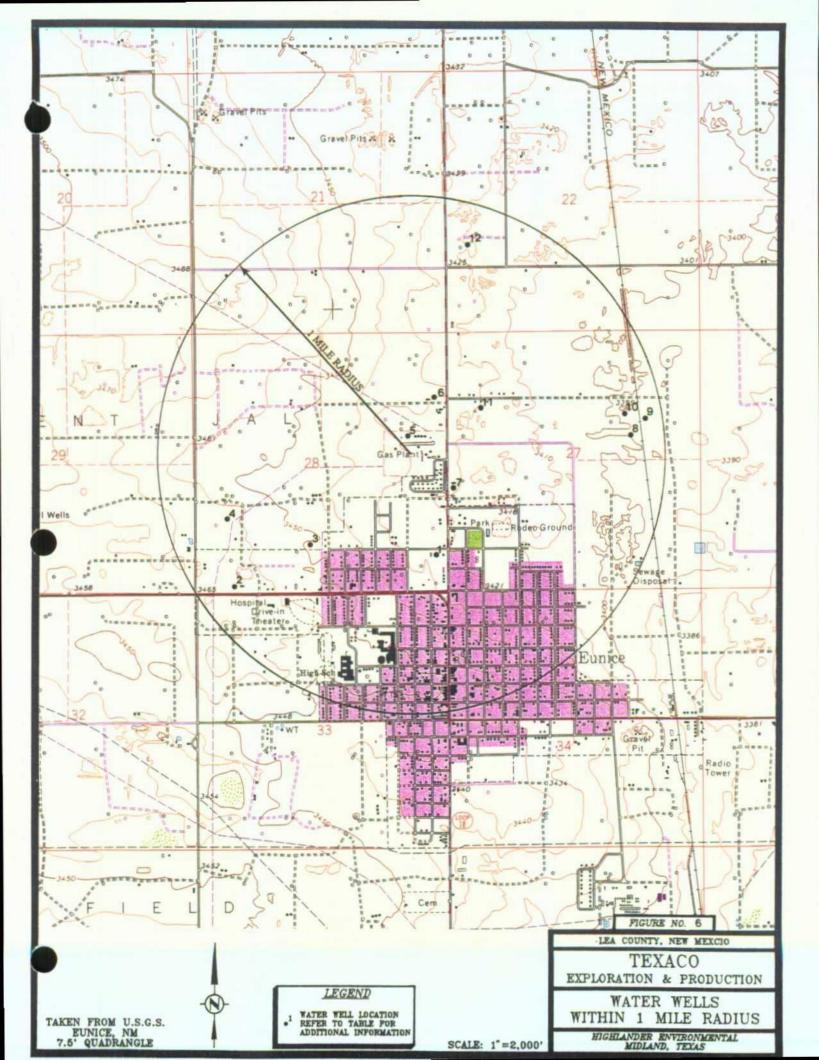


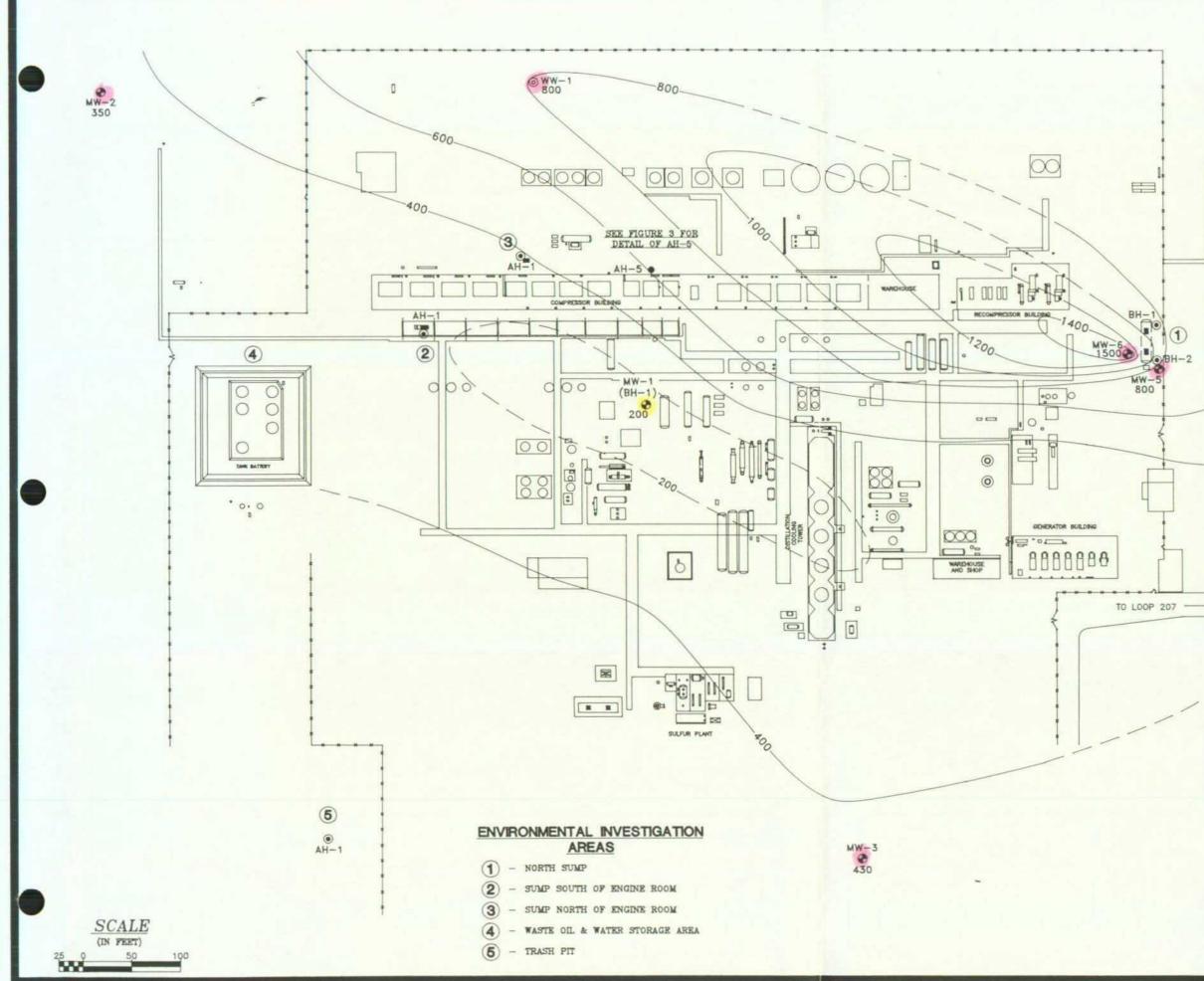


	<u>LEGEND</u>
NW-1 52,34	MONITOR WELL LOCATION AND DEPTH TO GROUNDWATER FEET BGL, 4/22-23/97
₩₩-1 © 66.46	WATER WELL LOCATION AND DEPTH TO GROUNDWATER FEET BGL, 4/22-23/87
50	CONTOUR OF DEPTH TO GROUNDWATER FRET BGL, 4/22-23/97
BH-1	BOREHOLE LOCATION
AH5	AUGER BORING LOCATION
	SUMP LOCATION

₩₩-4 € 48.24

	MONITOR WELL	DATA		
MONITOR WE NUMBER	LL GROUND ELEVATION FEET AMSL	TOP OF CASING ELEVATION, FEET AMSL		
MW-1	3428.78	3428.59		
MW-2	3432.49	3432.18		
MW-3	3426.48	3428.27		
MW-4	3423.70	3423.38		
MW5	3425.06	3424.76		
MW-6	3425.06	3425.25		
	WATER WELL I	DATA		
WATER WEL NUMBER	L GROUND ELEVATION FEET AMSL	TOP OF CASING ELEVATION, FEET AMSL		
WW-1	3428.78	3429.98		
	FIGURE NO. 4 LEA COUNTY, NEW MEXICO			
Ī	TEXACO EXPLORATION & PRODUCTION, INC.			
F	EUNICE #2 (NORTH) GAS PLA			
	DEPTH TO GROUNDWATER MAP 4/22-23/97			
ате: 9/18/96 уул. ву:	MAP 4/	22-23/91		




and the second se	
	LEGEND
	W-1 NONTOR THE LOCATION AND
	WW-1 MONITOR WELL LOCATION AND GROUNDWATER POTENTIONETERIC SUBFACE 3378.44 ELEVATION, FEST ANEL, 4/22-23/97 WW-1 WATER WELL LOCATION AND © GROUNDWATER POTENTIONETERIC SUBFACE
EX	WW-1 MONITOR WELL LOCATION AND GROUNDWATER POTENTIONETERIC SUBFACE 3378.44 ELEVATION, FEET ANSL, 4/22-23/97 WW-1 WATER WELL LOCATION AND GROUNDWATER POTENTIONETERIC SUBFACE 3376.69 ELEVATION, FEET ANSL, 4/22-23/97
EXpelieus	WW-1 MONITOR WELL LOCATION AND GROUNDWATER POTENTIONETERIC SUBFACE 3378.44 ELEVATION, FEST ANEL, 4/22-23/97 WW-1 WATER WELL LOCATION AND © GROUNDWATER POTENTIONETERIC SUBFACE
Fhelews	WW-1 MONITOR WELL LOCATION AND GROUNDWATER POTENTIONETERIC SUBFACE 3378.44 ELEVATION, FEET ANSL, 4/22-23/97 WW-1 WATER WELL LOCATION AND GROUNDWATER POTENTIONETERIC SUBFACE 3376.69 ELEVATION, FEET ANSL, 4/22-23/97
Finelews	MW-1 MONITOR WELL LOCATION AND GROUNDWATER POTENTIONETRIC SUBFACE SJ378.44 WW-1 SROUNDWATER POTENTIONETRIC SUBFACE GROUNDWATER POTENTIONETRIC SUBFACE SJ376.69 ELEVATION, FEST ANEL, 4/22-23/97 CONTOUR OF GROUNDWATER POTENTIONETRIC SUBFACE, ELEVATION, FEST ANEL, 4/22-23/97 GROUNDWATER FLOW DIRECTION BH-1
Fhelews	MW-1 MONITOR WELL LOCATION AND GROUNDWATER POTENTIONETERC SUPPACE SIJ78.44 WW-1 WATER WELL LOCATION AND GROUNDWATER POTENTIONETERC SUPPACE SIJ76.69 SJ376.69 WW-1 O GROUNDWATER POTENTIONETERC SUPPACE SIJ76.69 SJ376.69 CONTOUR OF GROUNDWATER POTENTIONETERC POTENTIONETERC SUPPACE FLAVATION, FEST ANSEL 4/22-23/07 SJ64 CONTOUR OF GROUNDWATER POTENTIONETER SUPPACE FLAVATION, FEST ANSEL 4/22-23/07 M GROUNDWATER FLOW DISECTION BH-1 BOREHOLE LOCATION BH-5 BOREHOLE LOCATION
FX pthelews Cr	MW-1 MONITOR WELL LOCATION AND GROUNDWATER POTENTIONETERC SUBFACE SIJ78.44 WW-1 WATER WELL LOCATION AND GROUNDWATER POTENTIONETERC SUBFACE SIJ78.69 WW-1 WATER WELL LOCATION AND GROUNDWATER POTENTIONETERC SUBFACE SIJ78.69 SJ378.44 WATER WELL LOCATION AND GROUNDWATER POTENTIONETERC SUBFACE SIJ78.69 SJ378.44 WATER WELL LOCATION AND GROUNDWATER POTENTIONETERC SUBFACE ELEVATION, FEST ANEL, 4/22-23/97 SIGEOUNDWATER FLOW DIRECTION BH-1 OREBOLE LOCATION BH-5 AUGER BORING LOCATION
	MW-1 MONITOR WELL LOCATION AND GROUNDWATER POTENTIONETERC SUPPACE SIJ78.44 WW-1 WATER WELL LOCATION AND GROUNDWATER POTENTIONETERC SUPPACE SIJ76.69 SJ376.69 WW-1 O GROUNDWATER POTENTIONETERC SUPPACE SIJ76.69 SJ376.69 CONTOUR OF GROUNDWATER POTENTIONETERC POTENTIONETERC SUPPACE FLAVATION, FEST ANSEL 4/22-23/07 SJ64 CONTOUR OF GROUNDWATER POTENTIONETER SUPPACE FLAVATION, FEST ANSEL 4/22-23/07 M GROUNDWATER FLOW DISECTION BH-1 BOREHOLE LOCATION BH-5 BOREHOLE LOCATION

NUMBER	GROUND ELEVATION	TOP OF CASING ELEVATION, FEET AMSI
MW-1	3428.78	3428.59
MW-2	3432.49	3432.18
MW-3	3426.48	3428.27
MW-4	3423.70	3423.38
MW-5	3425.06	3424.76
MW-6	3425.06	3425.25
	WATER WELL	DATA
WATER WELL	GROUND ELEVATION	TOP OF CASING

WATER WELL	GROUND ELEVATION	TOP OF CASING
NUMBER	FEET AMSL	ELEVATION, FEET AMSU
WW-1	3428.78	3429.98

	FIGURE NO. 5		
1.0	LEA COUNTY, NEW MEXICO		
	TEXACO EXPLORATION & PRODUCTION, INC.		
DATE: 5/15/97	EUNICE #2 (NORTH) GAS PLANT GROUNDWATER POTENTIOMETRIC SURFACE MAP 4/22-23/97		
	HIGHLANDER ENVIRONMENTAL MIDLAND, TEXAS		

		-00-
		f
1.1		
	_	LEGEND
		LEGEND
	₩₩-1 200	LEGEND MONITOR WEL LOCATION AND CHLORDE CONCENTRATION IN GROUNDWATER, mg/L, 4/82-83/97
	₩₩-1 200 ₩₩-1 3376.69	
	200 ww-1 3376.69	WONITOR WELL LOCATION AND CHLORDE CONCENTRATION IN GROUNDWATER, mg/L, 4/22-23/97 WATER WELL LOCATION AND CHLORDE CONCENTRATION IN GROUNDWATER, mg/L, 4/22-23/97
	200 WW-1 3376.69 -3564- BH-1	WONITOR WELL LOCATION AND CHLORIDE CONCENTRATION IN GROUNDWATER, mg/l, 4/22-23/97 WAIER WELL LOCATION AND CHLORIDE CONCENTRATION IN
	200 WW-1 33376.69	MONITOR WELL LOCATION AND CHLORDE CONCENTRATION IN GROUNDWATER, mg/L, 4/22-23/97 WATER WELL LOCATION AND CHLORDE CONCENTRATION IN GROUNDWATER, mg/L, 4/22-23/97 - CONTOUR OF CHLORDE CONCENTRATION IN GROUNDWATER, mg/L, 4/22-23/97

		MONITOR WELL	DATA
MONITOR NUMBE		GROUND ELEVATION FEET AMSL	TOP OF CASING ELEVATION, FEET AMSL
MW-1	1	3428.78	3428.59
MW-2	2	3432.49	3432.18
MW-3	3	3426.48	3428.27
MW-4	ŧ.	3423.70	3423.38
MW-5	5	3425.06	3424.76
MW-6	3	3425.06	3425.25
		WATER WELL	DATA
WATER W	Contraction of the second	GROUND ELEVATION FEET AMSL	TOP OF CASING ELEVATION, FEET AMSL
WW-	1	3428.78	3429.98
		And in case of the local division in which the local division in t	RE NO. 7 Y, NEW MEXICO
	EX		KACO PRODUCTION, IN
ATE: 5/14/97 WN. BY:	EUNICE #2 (NORTH) GAS PLAN ISOPLETH MAP OF CHLORIDE CONCENTRATION 4/22-23/97		
		the second	the second se

APPENDICES

APPENDIX A

Regulatory Correspondence

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

February 27, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-288-258-776

Mr. Robert W. Browning Texaco Exploration and Production, Inc. P.O. Box 3109 Midland, Texas 79702

RE: GROUND WATER DELINEATION EUNICE NORTH GAS PLANT DISCHARGE PLAN GW-004 LEA COUNTY, NEW MEXICO

Dear Mr. Browning:

The New Mexico Oil Conservation Division (OCD) has received the Texaco Exploration and Production, Inc. (TEPI) "Comprehensive Facility Investigation Work Plan" dated February 10, 1997. The work plan was required by the OCD on November 12, 1996 pursuant to 20 NMAC 6.2.3109.E. The purpose of the work plan is to delineate and characterize the lateral and vertical extent of the groundwater contamination at the facility in a manner consistent with 20 NMAC 6.2.4106.

Based on the site assessment work committed to in the "Comprehensive Facility Investigation Work Plan, **the work plan is hereby approved** subject to the following conditions:

1. TEPI will complete the work by April 28, 1997 and will submit a "Final site Investigation Report" by May 28, 1997 to the Santa Fe OCD Office for approval. The report will contain all the data gathered during the site investigation.

Note: All groundwater and soil analysis submitted to the OCD will be originals and include the appropriate QA/QC documentation. All analytical methods will be EPA approved methods, such as those referenced in 20 NMAC 6.2.3107.B.

2. TEPI will notify the Santa Fe Office 72 hours in advance of any field activity at (505)-827-7156, and Mr. Wayne Price of the OCD Hobbs Office at (505)-393-6161. MAR 10 '97 04:37PM TEXACO LITIG/REG.AFF.

Mr. Robert W. Browning TEPI-GW-004 DELINEATION "STAGE 1" APPROVAL February 27, 1997 Page 2

3. The "Final Site Investigation Report" will be submitted in duplicate to the OCD Santa Fe Office and a copy to the OCD Hobbs District Office.

All OCD rules, regulations, and guidelines are available on the Internet at the following website address: www.emmrd.state.nm.us/ocd/

If you have any questions, please contact Pat Sanchez of my staff at (505) 827-7156.

Sincerely,

Roger C. Anderson Environmental Bureau Chief

RCA/pws

c:

Mr. Jerry Sexton, OCD Hobbs - District Supervisor Mr. Wayne Price, OCD Hobbs - Environmental Engineer

APPENDIX B

Lithological Soil Sample Logs

Boring/Well: Site Location: Location: Total Depth: Date Installed: MW-2 Texaco E & P Eunice (North) Gas Plant Eunice, New Mexico 68 feet 3/31/97

DEPTH (Ft)	OVM	SAMPLE DESCRIPTION
0-10	-	Tan, fine grain sand and reddish clay, some white caliche, dense
10-12	0	Tan, fine grain sand, with trace of red clay and caliche
20-22	0	Tan, fine grain sand and white caliche
30-32	0	Tan, fine grain sand, some dense layers of caliche and cemented sandstone
40-42	0	Tan, fine grain sand, 1.0 thick of cemented sandstone from 46'-47'
50-52	1	Brown, fine grain sand, and some layers of cemented sandstone
60-68	-	Brown, fine grain sand, well sorted, and loose
		TD-68'
1		

Boring/Well: Site Location: Location: Total Depth: Date Installed: MW-3 Texaco E & P Eunice (North) Gas Plant Eunice, New Mexico 68 feet 4/1/97

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Tan, fine grain sand and reddish clay matrix, some caliche layer dense
10-20	Tan, fine grain sand and white caliche
20-30	Tan, fine grain sand, traces of white caliche
	Tan, fine grain sand, dense layers of cemented sandstone at 38'-40'
40-50	Tan, fine grain sand, dense layer 1.0 thick of cemented sandstone at 46'-47'
50-60	Brown, fine grain sand, some layer of sandstone, dense
60-68	Brown, fine grain sand, well sorted, and loose
	TD-68'
 	
ļ	

Boring/Well: Site Location: Location: Total Depth: Date Installed: MW-4 Texaco E & P Eunice (North) Gas Plant Eunice, New Mexico 66.5 feet 4/1/97

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Tan, fine grain sand and reddish sand and clay matrix, some traces of caliche, dense
10-20	Tan, fine grain sand and white caliche from 15-'20'
20-30	Tan, fine grain sand, traces of white caliche
30-40	Tan, fine grain sand, loose
40-50	Tan, fine grain sand, loose
50-60	Brown, fine grain sand, some layer of sandstone, dense
60-68	Brown, fine grain sand, well sorted, and loose
	TD-66.5'

i.

ļ

Boring/Well: Site Location: Location: Total Depth: Date Installed: MW-5 Texaco E & P Eunice (North) Gas Plant Eunice, New Mexico 68 feet 4/2/97

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Grayish staining, fine grain sand, some traces of dense caliche at 7'-10'
10-20	Fine grain sand, dense caliche and sandstone layers, grayish staining
20-30	Tan, fine grain sand, traces of white caliche
30-40	Tan, fine grain sand, loose, dense layer of cemented sandstone at 38'-40'
40-50	Tan, fine grain sand, loose
50-60	Brown, fine grain sand, some layer of sandstone, dense
60-68	Brown, fine grain sand, well sorted, and loose
	TD-68'

Boring/Well: Site Location: Location: Total Depth: Date Installed: MW-6 Texaco E & P Eunice (North) Gas Plant Eunice, New Mexico 68 feet 4/2/97

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Grayish staining, fine grain sand, some traces of dense caliche at 7'-10'
10-20	Fine grain sand, dense caliche and sandstone layers, grayish staining
20-30	Tan, fine grain sand, traces of white caliche
30-40	Tan, fine grain sand, loose, dense layer of cemented sandstone at 38'-40'
40-50	Tan, fine grain sand, loose
50-60	Brown, fine grain sand, some layer of sandstone, dense
60-68	Brown, fine grain sand, well sorted, and loose
	TD-68'
<u> </u>	

APPENDIX C

Analytical Laboratory Reports

6701 Aberdeen Avenue Lubbo ANALYTIC HIGHLAN	ANALYTIC ANALYTIC HIGHLANE Attention	Lubbock, Texas 79424 ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez	24 80 TS FOR CES	806 • 794 • 1296	FA	FAX 806•794•1298	1298	k, Texas 79424 806•794•1296 FAX 806•794•1298 AL RESULTS FOR ER SERVICES
April 23, 1997 Receiving Date: 04/14/97 Sample Type: Soil Project No: 787 Project Location: New Mexico	1910 N. Bi Midland, T)	TX 79705	-	TOTAL METALS (mailes)		Prep Da Analysis Samplin Sample Sample Client/Pr	Prep Date: 04/16/97 Analysis Date: 04/16/97 Sampling Date: 03/31/97 Sample Condition: 1 & C Sample Received by: JH Client/Project: Texaco E Texaco North	Prep Date: 04/16/97 Analysis Date: 04/16/97 Sampling Date: 03/31/97 Sample Condition: I & C Sample Received by: JH Client/Project: Texaco E & P/ Texaco North Gas Plant,
TA# Field Code	As	Se	Cq	່ ວັ	Pb	Ag	Ba co	Hg
T71368 MW-2 (10-11')	<10	<10	<5.0	<5.0	<10	<5.0	61	<0.25
MW-2	<10	<10	<5.0	<5.0	<10	<5.0	270	<0.25
MW-2	<10	<10	<5.0	37	<10	<5.0	170	<0.25
T71371 MW-2 (40-42')	<10	<10	<5.0	<5.0	<10	<5.0	<20	<0.25
T71372 MVV-2 (50-52')	<10	<10	<5.0	62	<10	<5.0	<20	<0.25
QC Quality Control	4.8	4.9	4.9	4.9	5.0	0.96	5.0	0.0051
Reporting Limit	10	10	5.0	5.0	10	5.0	20	0.25
RPD	14	12	13	14	14	2	15	2
% Extraction Accuracy	95	81	95	92	94	114	6 6	104
% Instrument Accuracy	67	98	66	98	66	96	100	104
CHEMIST: As, Se, Cd, Cr, Pb, Ag, Ba: RR Hg: CB METHODS: EPA SW 846-3051, 6010, 7471. TOTAL METALS SPIKE: 150 mg/kg As, Se, Cd, Cr, Pb, Ba; 100 mg/kg Ag; 2.5 mg/kg Hg TOTAL METALS QC: 5.0 mg/L As, Se, Cd, Cr, Pb, Ba; 1.0 mg/L Ag; 0.005 mg/L Hg.	Ba: RR Hg: CB 10, 7471. 3 As, Se, Cd, Cr, Pb, Ba; 1 Se, Cd, Cr, Pb, Ba; 1.0 mç	r; 100 mg/kg Ag; 2.5 mg/k mg/L Ag; 0.005 mg/L Hg	g; 2.5 mg/k(н В Ч	23-5	ç		
1				•	•			

· ----

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 TAX 806 • 794 • 1298	ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL CORP. Attention: Ike Tavarez		
April 23, 1997 Receiving Date: 04/14/97 Sample Type: Soil Project No: 787 Project Location: New Mexico	1910 N. Big Spring St. Midland, TX 79705	Prep Date: 04/16/97 Analysis Date: 04/17/97 Sampling Date: 04/03,09 Sample Condition: Intact Sample Received by: JH Client/Project: Texaco E Texaco North Gas F Lea County, New M	& Cool I & P/ Plant,
TA#	FIELD CODE	TOTAL Cr (mg/kg)	TOTAL Ba (mg/kg)
 T71356	AH-5-1 (0-0.5')	3,800	320
T71357	AH-5-1 (0.5-1.0')	360	250
T71358	AH-5-1 (1.5-2.0)	6.2	26
T71359	AH-5-2 (0-0.5')	4,400	290
T71360	AH-5-3 (0-0.5')	430	92
T71361	AH-5-3 (1.5-2.0')	6.6	21
T71362	AH-5-3 (2.7-3.3')	7.3	<20
T71363	AH-5-4 (0-0.5')	390	150
T71364	AH-5-4 (0.5-1.0')	1,500	230
T71365	AH-5-4 (2.0-2.5')	63	<20
T71366	AH-6-5 (0-0.5')	2,900	330
T71367	AH-6-5 (1.5-2.0')	9.6	<20

Reporting Limit

ł

RPD % Extraction Accuracy % Instrument Accuracy

METHODS: EPA SW 846-3051, 6010. CHEMIST: RR TOTAL Ba SPIKE: 200 mg/kg TOTAL Ba. TOTAL Ba QC: 5.0 mg/L TOTAL Ba. TOTAL Cr SPIKE: 200 mg/kg TOTAL Cr. TOTAL Cr QC: 5.0 mg/L TOTAL Cr.

Director, Dr. Blair Leftwich

4-23-51 DATE

5.0

6

80

97

20

2

83

99

1

A Laboratory for Advanced Environmental Research and Analysis

794•1296 306•794•1298 May 09, 1997 Receiving Date: 04/14/97 Sample Type: Soil Project No: 787 Project Location: New Mexico	ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705	Prep Date: 05/06/97 Analysis Date: 05/06/97 Sampling Date: 04/03,09/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P/ Texaco North Gas Plant,
TA#	FIELD CODE	Lea County, New Mexico TCLP Cr (mg/L)
T71359 QC	EPA LIMIT = AH-5-2 (0-0.5') Quality Control	5.0 <0.05 0.102
Reporting Limit		0.05
RPD % Extraction Accuracy % Instrument Accuracy		5 120 102

TCLP Cr SPIKE: 0.025 mg/L TCLP Cr. TCLP Cr QC: 0.100 mg/L TCLP Cr.

Director, Dr. Blair Leftwich

5-9-97 DATE

1

į.

i.

UMATRACEANALYSIS,	INCAULAULUUU
A Laboratory for Advanced Environmental Deces	rah and Analysia

- X		Analysis Request and Chain of Custody Record	Person Esp / Jerne North Cas Part les Courty new	Date and Time Comp	·) 7(3564/3/97 ,	1.0) 57 4/3/57 v 1 1 tetel beiven, fet l'éprenne.	2.0') 58 4/5/97 V	$59 \frac{1}{4/3} 97 \frac{1}{2}$	1 (00) 4/3/42 K	o) (0 (1/2/2) x	V V V V V V		Relinquished by: (Signature) 2 for the main of the mai	Date: 4/11/97 Recieved by ALANALO	Date: Data Results To: Time: 1, /// 6 / a. or C	Delivered To: Col. 2. M. C.	REMARKS:	- Deliverer retains White copy for file - Lab retains Yellow copy & Return Pink copy to Highlander Services Corp. at above address
71 SEC- 1- Stran was service as marked and a second as a secon	and the second sec	An	1	Field - Sample No./ Identification	14-5-1 (0-0.5')	AH.5-1 (0.5-1.0)		AH-5.2 (0-0.5)	14-5.3 (0-05)	AH-5-3 (15-20)	A.H. Sout 5-3 (2.7-3.3')		Samplers: (Print) Relinquished (Signature)	1/1/ and the Relinquished (Signature)	Relinquishea (Signature)		Rush Charges Authorized REMARKS: Yes No	Please Fiil out all copies - Deliverer retains

Le 320 · Midland, TX 79701 · (915)682-4558 and Chain of Custody Record Page 2 of 3	Le Courty Newion. Preser- ANALYSIS REQUESTED	Halberium Halchronnum Halberium Halchronnum Halberium Halchronnum	totel boying totel aromin- totel borien, tote chemining.	Image: 4/1/1/47 Recieved by: M. M
	Nor-16 Cars Plant B E Type(Liquid C O Sludge, Ect.)	Sur Saul	Jos J	Date: 4/1/9 Recie Time: 3:15 PM (Sign Date: 4/1/97 (Sign Time: 0:30 PM (Sign Time: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
ilysis Rec	E: 7 Texaco No Date and Time	71363 4/9/87 19/9/47 105 4/9/97	66 4/9/07 67 4/9/67	Le hell
	Client/Broject	(0-05') (0.5-1.0') (2.6'-2.5')	(0-0.5') (15-2.0')	Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Delivered To: Nonized REMARKS: Copies – Deliverer retains White
	Project No. 787	24-5-4 A4-5-4 AH-5-4	AH-6-5	Samplers: (Print) [WL] Lawar Results by: Results by: Rush Charges Authorized Yes No Please Fill out all copies

l

İ

and the second s	с	1g	Serv	s Corp.		241
	Analysis R	Request and	Chair	n of Custo	Custody Record	Page 2 of 3
Project No. Cliept/Project		aco NOrdh GAS	SAS Hand	t Lea	Conty, New	1
Field Sample No./ Identification	/	Date and Grab Grab	. Sample Type(Liquid Sludge,Ect.)	Preser- vative	ANALYSIS REC	REQUESTED
			-			A Hol
MW-2 (10-11')	71368	3/31/97 ×	Soul	'S \	total petals.	•
('ce-0[) 2 -WM	601	3/197 ~	Sol	Ú)	total netals.	•
1111-2 (30-32')	0L	\$/31/57 X	Soul	(e).	that nedds	•
(12- (40-42')	١L	8/31/574	Int	10	till netok.	, p
MW-2 (50-52')	Ê	× 2/2/2	Sal	5	teld netels.	
Samplers: (Print) Relinc (Sign	Relinquished by: (Signature) Rhut h. M	Purel Time:	411-197	Recieved by: (Signature)	delan ahurtan	Date: 1/11/17
114 lowars Reline (Sign	Relinquished by: (Signature)	Multin Time:	4/11/97 (6:30PM	Recieved by: (Signature)	OCHANOLO	Date:4/14197 Time: 10:454
Relin. (Sign	Relinquished by:' (Signature)	Dute: Time:		Data Results	laver.	
	ered to: / vac.	les.			\mathbf{X}	
Rush Charges Authorized REM. Yes No	REMARKS:					
e Fill out all copies -	Deliverer retains White copy for	file - Lab retains	Yellow copy & Retu	Return Pink cop	copy to Highlander Services Corp.	. at above address
			<u> </u>	N N	H ALCA - H	Stu Lini

· ----

l

I

ł

6701 Aberdeen Avenue

Lubbock, Texas 79424

206●794●1296 FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVIC Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

PAGE 1 of 2

May 05, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Prep Date: 04/29/97 Analysis Date: 04/29/97 Sampling Date: 04/23/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

FIELD CODE: MW-1

Dichlorodifluoromethane981ChloromethaneND1Vinyl chlorideND1BromomethaneND5ChloroethaneND1TrichlorofluoromethaneND11,1-DichloroetheneND1IodomethaneND5Carbon disulfideND5Carbon disulfideND1Methylene chlorideND11,1-DichloroetheneND11,1-DichloroetheneND11,1-DichloroetheneND11,1-DichloroetheneND11,1-DichloroetheneND11,1-DichloroetheneND11,1-TirchloroethaneND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloropropaneND1TrichloroethaneND1BromodichloromethaneND1BromodichloromethaneND11,2-DichloropropeneND11,3-DichloropropeneND11,3-DichloropropeneND11,1,2-TrichloroethaneND11,1,2-TrichloroethaneND11,1,2-TrichloroethaneND11,1,2-TrichloroethaneND <td< th=""><th>TA #: T72311</th><th></th><th></th></td<>	TA #: T72311		
ChloromethaneND1Vinyl chlorideND1BromomethaneND5ChloroethaneND1TrichlorofluoromethaneND11,1-DichloroetheneND1lodomethaneND5Carbon disulfideND1Methylene chlorideND1trans-1,2-DichloroetheneND11,1-DichloroetheneND11,1-DichloroetheneND1Vinyl acetateND12-ButanoneND1Carbon TetrachlorideND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroptopaneND1TrichloroethaneND11,2-DichloroptopeneND14-Methyl-2-pentanoneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	8240 Compounds		
Vinyl chlorideND1BromomethaneND5ChloroethaneND1TrichlorofluoromethaneND11,1-DichloroetheneND1lodomethaneND5Carbon disulfideND1Methylene chlorideND1In-DichloroetheneND11,1-DichloroetheneND1Methylene chlorideND11,1-DichloroetheneND11,1-DichloroethaneND11,1-DichloroethaneND12-ButanoneND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloropropaneND1TrichloroethaneND1BromodichloromethaneND11,3-DichloropropeneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	Dichlorodifluoromethane	98	1
Bromomethane ND 5 Chloroethane ND 1 Trichlorofluoromethane ND 1 1,1-Dichloroethene ND 1 lodomethane ND 1 carbon disulfide ND 5 Carbon disulfide ND 1 Methylene chloride ND 1 trans-1,2-Dichloroethene ND 1 1,1-Dichloroethane ND 1 Vinyl acetate ND 1 2-Butanone ND 1 Chloroform ND 1 1,1-Trichloroethane ND 1 1,2-Dichloroethane ND 1 1,2-Dichloroethane ND 1 1,2-Dichloroethane ND 1 1,2-Dichloroptonpane ND 1 1,2-Dichloroptonpene ND 1 1,2-Dichloropropene ND 1 1,2-Dichloropropene ND 1 1,2-Dichloropropene ND 1	Chloromethane	ND	1
ChloroethaneND1TrichlorofluoromethaneND11,1-DichloroetheneND1lodomethaneND5Carbon disulfideND1Methylene chlorideND1trans-1,2-DichloroetheneND11,1-DichloroethaneND11,1-DichloroethaneND11,1-DichloroethaneND12-ButanoneND12-ButanoneND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloropropaneND1TrichloroethaneND14-Methyl-2-pentanoneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	Vinyl chloride	ND	1
TrichlorofluoromethaneND11,1-DichloroetheneND1lodomethaneND5Carbon disulfideND1Methylene chlorideND1Methylene chlorodeND11,1-DichloroetheneND11,1-DichloroethaneND1Vinyl acetateND12-ButanoneND12-ButanoneND11,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloropropaneND1TrichloroethaneND1BromodichloromethaneND14-Methyl-2-pentanoneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	Bromomethane	ND	5
1,1-DichloroetheneND1lodomethaneND5Carbon disulfideND1Methylene chlorideND5trans-1,2-DichloroetheneND11,1-DichloroethaneND1Vinyl acetateND12-ButanoneND12-ButanoneND11,1-TrichloroethaneND11,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloropropaneND1TrichloroethaneND1ScriptionethaneND11,2-DichloropropaneND1TrichloroetheneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	Chloroethane	ND	1
IodomethaneND5Carbon disulfideND1Methylene chlorideND5trans-1,2-DichloroetheneND11,1-DichloroethaneND1Vinyl acetateND12-ButanoneND12-ButanoneND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,3-DichloropthaneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	Trichlorofluoromethane	ND	1
Carbon disulfideND1Methylene chlorideND5trans-1,2-DichloroetheneND11,1-DichloroethaneND1Vinyl acetateND12-ButanoneND50ChloroformND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroptopaneND11,2-DichloroptopaneND11,2-DichloroptopeneND11,3-DichloroptopeneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	1,1-Dichloroethene	ND	1
Methylene chlorideND5trans-1,2-DichloroetheneND11,1-DichloroethaneND1Vinyl acetateND12-ButanoneND50ChloroformND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroptopaneND11,2-DichloroptopaneND11,2-DichloroptopaneND11,3-DichloroptopeneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	lodomethane	ND	5
trans-1,2-DichloroetheneND11,1-DichloroethaneND1Vinyl acetateND12-ButanoneND50ChloroformND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND1Benzene111Carbon TetrachlorideND11,2-DichloropropaneND1TrichloroethaneND1BromodichloromethaneND1StronethaneND1TrichloroetheneND1TrichloroptopeneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	Carbon disulfide	ND	1
1,1-DichloroethaneND1Vinyl acetateND12-ButanoneND50ChloroformND11,1,1-TrichloroethaneND11,2-DichloroethaneND11,2-DichloroethaneND1Benzene111Carbon TetrachlorideND11,2-DichloropropaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropropaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,2-DichloropthaneND11,3-DichloropthaneND11,3-DichloropthaneND11,3-DichloropthaneND11,3-DichloropthaneND11,1,2-Trichloroethane3311,1,2-TrichloroethaneND1	Methylene chloride	ND	5
Vinyl acetateND12-ButanoneND50ChloroformND11,1,1-TrichloroethaneND11,2-DichloroethaneND1Benzene111Carbon TetrachlorideND11,2-DichloropropaneND1TrichloroethaneND1BromodichloromethaneND11,3-DichloropropeneND1TrichloroethaneND1TrichloroethaneND1TrichloroethaneND1TrichloropropeneND14-Methyl-2-pentanoneND1Toluene3311,1,2-TrichloroethaneND1	trans-1,2-Dichloroethene	ND	1
2-ButanoneND50ChloroformND11,1,1-TrichloroethaneND11,2-DichloroethaneND1Benzene111Carbon TetrachlorideND11,2-DichloropropaneND1TrichloroethaneND1BromodichloromethaneND1StrinkloropropaneND1TrichloroetheneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	1,1-Dichloroethane	ND	1
ChloroformND11,1,1-TrichloroethaneND11,2-DichloroethaneND1Benzene111Carbon TetrachlorideND11,2-DichloropropaneND11,2-DichloropropaneND1TrichloroethaneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	Vinyl acetate	ND	1
1,1,1-TrichloroethaneND11,2-DichloroethaneND1Benzene111Carbon TetrachlorideND11,2-DichloropropaneND11,2-DichloropropaneND1TrichloroetheneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	2-Butanone	ND	50
1,2-DichloroethaneND1Benzene111Carbon TetrachlorideND11,2-DichloropropaneND11,2-DichloropropaneND1TrichloroetheneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	Chloroform	ND	1
Benzene111Carbon TetrachlorideND11,2-DichloropropaneND11,2-DichloropropaneND1TrichloroetheneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	1,1,1-Trichloroethane	ND	1
Carbon TetrachlorideND11,2-DichloropropaneND11,2-DichloropropaneND1TrichloroetheneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	1,2-Dichloroethane	ND	1
1,2-DichloropropaneND1TrichloroetheneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	Benzene	11	1
TrichloroetheneND1BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	Carbon Tetrachloride	ND	1
BromodichloromethaneND1cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	1,2-Dichloropropane	ND	1
cis-1,3-DichloropropeneND14-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	Trichloroethene	ND	1
4-Methyl-2-pentanoneND50trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	Bromodichloromethane	ND	1
trans-1,3-DichloropropeneND1Toluene3311,1,2-TrichloroethaneND1	cis-1,3-Dichloropropene	ND	1
Toluene3311,1,2-TrichloroethaneND1	4-Methyl-2-pentanone	ND	50
1,1,2-Trichloroethane ND 1	trans-1,3-Dichloropropene	ND	1
	Toluene	33	1
2-Hexanone ND 50	1,1,2-Trichloroethane	ND	1
	2-Hexanone	ND	50

A Laboratory for Advanced Environmental Research and Analysis

RA(

PAGE 2 of 2

HIGHLANDER ENVIRONMENTAL SERVICES Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc. FIELD CODE: MW-1 TA #: T72311

8240 Compounds		Concentration (ug/L)	Reporting Limit
Dibromochloromethane		ND	1
Tetrachloroethene		ND	1
Chlorobenzene		ND	1
Ethylbenzene		75	1
m & p-Xylene		27	1
Bromoform		ND	1
Styrene		ND	1
o-Xylene		22	1
1,1,2,2-Tetrachloroethane		ND	1
trans 1,4-Dichloro-2-butene		ND	5
cis 1,4-Dichloro-2-butene		ND	5
1,4-Dichlorobenzene		ND	2
1,3-Dichlorobenzene		ND	2
1,2-Dichlorobenzene		ND	2
Tentatively Identified Compounds and Es	stimated conc	entrations (ug/L)	
	RT	CONC.	
(1) methyl-cyclopentane	10.49	8	
(2) Cyclohexane	11.53	17	
(3) methyl-cyclohexane	13.20	29	
(4) cis-1,3-dimethyl-cyclohexane	14.64	9	
(5) trans-1,2-dimethyl-cyclohexane	15.23	8	
(6) Unidentified hydrocarbon	16.19	7	
(7) propyl-benzene	19.31	9	
(8) 1,2,4-trimethyl-benzene	19.57	10	
(9) 1-ethyl-2-methyl-benzene	20.01	12	
(10) 1,3,5-trimethyl-benzene	20.30	18	

SURROGATES	% RECOVERY
Dibromofluoromethane	96
Toluene-d8	101
4-Bromofluorobenzene	98

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

5-5-97

Director, Dr. Blair Leftwich

Date

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 FAX 806•794•1298

6701 Aberdeen Avenue

Lubbock, Texas 79424

806 • 794 • 1296 AX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVIC Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

PAGE 1 of 2

May 05, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Prep Date: 04/29/97 Analysis Date: 04/29/97 Sampling Date: 04/22/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

FIELD CODE: MW-2 TA #: T72312

TA #: T72312		
8240 Compounds	Concentration (ug/L)	Reporting Limit
Dichlorodifluoromethane	ND	1
Chloromethane	ND	1
Vinyl chloride	ND	1
Bromomethane	ND	5
Chloroethane	ND	1
Trichlorofluoromethane	ND	1
1,1-Dichloroethene	ND	1
lodomethane	ND	5
Carbon disulfide	ND	1
Methylene chloride	ND	5
trans-1,2-Dichloroethene	ND	1
1,1-Dichloroethane	ND	1
Vinyl acetate	ND	1
2-Butanone	ND	50
Chloroform	ND	1
1,1,1-Trichloroethane	ND	1
1,2-Dichloroethane	ND	1
Benzene	ND	1
Carbon Tetrachloride	ND	1
1,2-Dichloropropane	ND	1
Trichloroethene	ND	1
Bromodichloromethane	ND	1
cis-1,3-Dichloropropene	ND	1
4-Methyl-2-pentanone	ND	50
trans-1,3-Dichloropropene	ND	1
Toluene	ND	1
1,1,2-Trichloroethane	ND	1
2-Hexanone	ND	50

A Laboratory for Advanced Environmental Research and Analysis

RACEA

PAGE 2 of 2

HIGHLANDER ENVIRONMENTAL SERVICES Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc. FIELD CODE: MW-2 TA #: T72312

8240 Compounds	Concentration (ug/L)	Reporting Limit
Dibromochloromethane	ND	1
Tetrachloroethene	ND	1
Chlorobenzene	ND	1
Ethylbenzene	ND	1
m & p-Xylene	ND	1
Bromoform	ND	1
Styrene	ND	1
o-Xylene	ND	1
1,1,2,2-Tetrachloroethane	ND	1
trans 1,4-Dichloro-2-butene	ND	5
cis 1,4-Dichloro-2-butene	ND	5
1,4-Dichlorobenzene	ND	2
1,3-Dichlorobenzene	ND	2
1,2-Dichlorobenzene	ND	2

SURROGATES	% RECOVERY
Dibromofluoromethane	96
Toluene-d8	102
4-Bromofluorobenzene	95

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

5-5-97

Date

Director, Dr. Blair Leftwich

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 FAX 806•794•1298

6701 Aberdeen Avenue

Lubbock, Texas 79424

806 • 794 • 1296 AX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVIC Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

PAGE 1 of 2

May 05, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Prep Date: 04/29/97 Analysis Date: 04/29/97 Sampling Date: 04/22/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

FIELD CODE: MW-3 TA #: T72313

3240 Compounds	Concentration (ug/L)	Reporting Limit
Dichlorodifluoromethane	6	1
Chloromethane	ND	1
Vinyl chloride	ND	1
Bromomethane	ND	5
Chioroethane	ND	1
Trichlorofluoromethane	ND	1
1,1-Dichloroethene	ND	1
lodomethane	ND	5
Carbon disulfide	ND	1
Methylene chloride	ND	5
trans-1,2-Dichloroethene	ND	1
1,1-Dichloroethane	ND	1
Vinyl acetate	ND	1
2-Butanone	ND	50
Chloroform	ND	1
1,1,1-Trichloroethane	ND	1
1,2-Dichloroethane	ND	1
Benzene	ND	1
Carbon Tetrachloride	ND	1
1,2-Dichloropropane	ND	1
Trichloroethene	ND	1
Bromodichloromethane	ND	1
cis-1,3-Dichloropropene	ND	1
4-Methyl-2-pentanone	ND	50
trans-1,3-Dichloropropene	ND	1
Toluene	ND	1
1,1,2-Trichloroethane	ND	1
2-Hexanone	ND	50

HIGHLANDER ENVIRONMENTAL SERVICES Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc. FIELD CODE: MW-3 TA #: T72313

8240 Compounds	Concentration (ug/L)	Reporting Limit
Dibromochloromethane	ND	1
Tetrachloroethene	ND	1
Chlorobenzene	ND	1
Ethylbenzene	ND	1
m & p-Xylene	ND	1
Bromoform	ND	1
Styrene	ND	1
o-Xylene	ND	1
1,1,2,2-Tetrachloroethane	ND	1
trans 1,4-Dichloro-2-butene	ND	5
cis 1,4-Dichloro-2-butene	ND	5
1,4-Dichlorobenzene	ND	2
1,3-Dichlorobenzene	ND	2
1,2-Dichlorobenzene	ND	2

SURROGATES	% RECOVERY
Dibromofluoromethane	96
Toluene-d8	102
4-Bromofluorobenzene	96

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

5-5-97

Date

Director, Dr. Blair Leftwich

PAGE 2 of 2

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 FAX 806 • 794 • 1298

Ì.

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 AX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVIC Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

PAGE 1 of 2

May 05, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Prep Date: 04/29/97 Analysis Date: 04/29/97 Sampling Date: 04/23/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

FIELD CODE: MW-4 TA #: T72314

	Concentration	Reporting	
8240 Compounds	(ug/L)	Limit	
Dichlorodifluoromethane	8	1	
Chloromethane	ND	1	
Vinyl chloride	ND	1	
Bromomethane	ND	5	
Chloroethane	ND	1	
Trichlorofluoromethane	ND	1	
1,1-Dichloroethene	ND	1	
Iodomethane	ND	5	
Carbon disulfide	ND	1	
Methylene chloride	ND	5	
trans-1,2-Dichloroethene	ND	1	
1,1-Dichloroethane	ND	1	
Vinyl acetate	ND	1	
2-Butanone	ND	50	
Chloroform	ND	1	
1,1,1-Trichloroethane	ND	1	
1,2-Dichloroethane	ND	1	
Benzene	ND	1	
Carbon Tetrachloride	ND	1	
1,2-Dichloropropane	ND	1	
Trichloroethene	ND	1	
Bromodichloromethane	ND	1	
cis-1,3-Dichloropropene	ND	1	
4-Methyl-2-pentanone	ND	50	
trans-1,3-Dichloropropene	ND	[·] 1	
Toluene	ND	1	
1,1,2-Trichloroethane	ND	1	
2-Hexanone	ND	50	

A Laboratory for Advanced Environmental Research and Analysis

TRACEANALYSIS, INC.

PAGE 2 of 2

HIGHLANDER ENVIRONMENTAL SERVICES Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc. FIELD CODE: MW-4 TA #: T72314

8240 Compounds	Concentration (ug/L)	Reporting Limit	
Dibromochloromethane	ND	1	
Tetrachloroethene	ND	1	
Chlorobenzene	ND	1	
Ethylbenzene	ND	1	
m & p-Xylene	ND	1	
Bromoform	ND	1	
Styrene	ND	1	
o-Xylene	ND	1	
1,1,2,2-Tetrachloroethane	ND	1	
trans 1,4-Dichloro-2-butene	ND	5	
cis 1,4-Dichloro-2-butene	ND	5	
1,4-Dichlorobenzene	ND	2	
1,3-Dichlorobenzene	ND	2	
1,2-Dichlorobenzene	ND	2	

SURROGATES	% RECOVERY
Dibromofluoromethane	93
Toluene-d8	102
4-Bromofluorobenzene	97

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

-5-91

Date

Director, Dr. Blair Leftwich

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 FAX 806•794•1298

l

1

1

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 AX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVIC Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

PAGE 1 of 2

May 05, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Prep Date: 04/29/97 Analysis Date: 04/29/97 Sampling Date: 04/22/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

FIELD CODE: MW-5 TA #: T72315

8240 Compounds	Concentration (ug/L)	Reporting Limit	
Dichlorodifluoromethane	37	10	
Chloromethane	ND	10	
Vinyl chloride	ND	10	
Bromomethane	ND	50	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	10	
1,1-Dichloroethene	ND	10	
lodomethane	ND	50	
Carbon disulfide	ND	10	
Methylene chloride	ND	50	
trans-1,2-Dichloroethene	ND	10	
1,1-Dichloroethane	ND	10	
Vinyl acetate	ND	10	
2-Butanone	ND	500	
Chloroform	ND	10	
1,1,1-Trichloroethane	ND	10	
1,2-Dichloroethane	ND	10	
Benzene	540	10	
Carbon Tetrachloride	ND	10	
1,2-Dichloropropane	ND	10	
Trichloroethene	ND	10	
Bromodichloromethane	ND	10	
cis-1,3-Dichloropropene	ND	10	
4-Methyl-2-pentanone	ND	500	
trans-1,3-Dichloropropene	ND	10	
Toluene	310	10	
1,1,2-Trichloroethane	ND	10	
2-Hexanone	ND	500	

A Laboratory for Advanced Environmental Research and Analysis

TRACEANALYSIS, INC.

HIGHLANDER ENVIRONMENTAL SERVICES Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc. FIELD CODE: MW-5 TA #: T72315

-

8240 Compounds		Concentration (ug/L)	Reporting Limit
Dibromochloromethane		ND	10
Tetrachloroethene		ND	10
Chlorobenzene		ND	10
Ethylbenzene		93	10
m & p-Xylene		230	10
Bromoform		ND	10
Styrene		ND	10
o-Xylene		15	10
1,1,2,2-Tetrachloroethane		ND	10
trans 1,4-Dichloro-2-butene		ND	50
cis 1,4-Dichloro-2-butene		ND	50
1,4-Dichlorobenzene		ND	20
1,3-Dichlorobenzene		ND	20
1,2-Dichlorobenzene		ND	20
Tentatively Identified Compounds and	I Estimated conce		
	RT	CONC.	
(1) Hexane	9.45	54	
(2) Cyclohexane	10.48	183	
(3) methyl-cyclopentane	11.51	340	
(4) cis-1,2-dimethyl-cyclopentane	12.15	62	
(5) methyl-cyclohexane	13.19	220	
(6) 1-ethyl-2-methyl-benzene	19.42	99	
(7) 1,3,5-trimethyl-benzene	20.28	140	
SURROGATES	% RECOVER	Y	
Dibromofluoromethane	96		
Toluene-d8	101		

96

ND = Not Detected

4-Bromofluorobenzene

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

5-97 < -

Date

Director, Dr. Blair Leftwich

6701 Aberdeen Avenue Lubbock, Texas 79424

206●794●1296 TAX 806●794●1298

ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVIC Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

PAGE 1 of 2

May 05, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Prep Date: 04/29/97 Analysis Date: 04/29/97 Sampling Date: 04/22/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

FIELD CODE: MW-6 TA #: T72316

8240 Compounds	Concentration (ug/L)	Reporting Limit	
Dichlorodifluoromethane	50	10	
Chloromethane	ND	10	
Vinyl chloride	ND	10	
Bromomethane	ND	50	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	10	

	Vinyl chloride	ND	10
	Bromomethane	ND	50
	Chloroethane	ND	10
	Trichlorofluoromethane	ND	10
ł	1,1-Dichloroethene	ND	10
	Iodomethane	ND	50
	Carbon disulfide	ND	10
	Methylene chloride	ND	50
	trans-1,2-Dichloroethene	ND	10
	1,1-Dichloroethane	ND	10
	Vinyl acetate	ND	10
	2-Butanone	ND	500
	Chloroform	ND	10
	1,1,1-Trichloroethane	ND	10
	1,2-Dichloroethane	ND	10
	Benzene	340	10
	Carbon Tetrachloride	ND	10
	1,2-Dichloropropane	ND	10
	Trichloroethene	ND	10
	Bromodichloromethane	ND	10
	cis-1,3-Dichloropropene	ND	10
	4-Methyl-2-pentanone	ND	500
	trans-1,3-Dichloropropene	ND	10
	Toluene	280	10
	1,1,2-Trichloroethane	ND	10
	2-Hexanone	ND	500

A Laboratory for Advanced Environmental Research and Analysis

TRACEANALYSIS, INC.

HIGHLANDER ENVIRONMENTAL SERVICES Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc. FIELD CODE: MW-6 TA #: T72316

8240 Compounds		Concentration (ug/L)	Reporting Limit
Dibromochloromethane		ND	10
Tetrachloroethene		ND	10
Chlorobenzene		ND	10
Ethylbenzene		110	10
m & p-Xylene		210	10
Bromoform		ND	10
Styrene		ND	10
o-Xylene		120	10
1,1,2,2-Tetrachloroethane		ND	10
trans 1,4-Dichloro-2-butene		ND	50
cis 1,4-Dichloro-2-butene		ND	50
1,4-Dichlorobenzene		ND	20
1,3-Dichlorobenzene		ND	20
1,2-Dichlorobenzene		ND	20
Tentatively Identified Compounds and	I Estimated conce	ntrations (ug/L)	
	RT	CONC.	
(1) methyl-cyclopentane	10.47	190	
(2) Cyclohexane	11.50	310	
(3) methyl-cyclohexane	13.18	150	
(4) 1-ethyl-4-methyl-benzene	19.41	66	
(5) 1,3,5-trimethyl-benzene	20.28	120	

SURROGATES

% RECOVERY

Dibromofluoromethane	93
Toluene-d8	101
4-Bromofluorobenzene	97

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

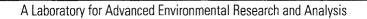
Director, Dr. Blair Leftwich

5-5-57

Date

6701 Aberdeen Avenue Lubbock, Texas 79424

206 • 794 • 1296 • AX 806 • 794 • 1298


ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVIC Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

PAGE 1 of 2

May 05, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Prep Date: 04/29/97 Analysis Date: 04/29/97 Sampling Date: 04/23/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

FIELD CODE: WW-1 (Water Well) TA #: T72317

8240 Compounds	Concentration (ug/L)	Reporting Limit
Dichlorodifluoromethane	66	1
Chloromethane	ND	1
Vinyl chloride	ND	1
Bromomethane	ND	5
Chloroethane	ND	1
Trichlorofluoromethane	ND	1
1,1-Dichloroethene	ND	1
lodomethane	ND	5
Carbon disulfide	ND	1
Methylene chloride	ND	5
trans-1,2-Dichloroethene	ND	1
1,1-Dichloroethane	ND	1
Vinyl acetate	ND	1
2-Butanone	ND	50
Chloroform	ND	1
1,1,1-Trichloroethane	ND	1
1,2-Dichloroethane	ND	1
Benzene	ND	1
Carbon Tetrachloride	ND	1
1,2-Dichloropropane	ND	1
Trichloroethene	ND	1
Bromodichloromethane	ND	1
cis-1,3-Dichloropropene	ND	1
4-Methyl-2-pentanone	ND	50
trans-1,3-Dichloropropene	ND	1
Toluene	ND	1
1,1,2-Trichloroethane	ND	1
2-Hexanone	ND	50

FRACEANALYSIS, INC.

PAGE 2 of 2

HIGHLANDER ENVIRONMENTAL SERVICES Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc. FIELD CODE: WW-1 (Water Well) TA #: T72317

8240 Compounds	Concentration (ug/L)	Reporting Limit
Dibromochloromethane	ND	1
Tetrachloroethene	1	1
Chlorobenzene	ND	1
Ethylbenzene	ND	1
m & p-Xylene	ND	1
Bromoform	ND	1
Styrene	ND	1
o-Xylene	ND	1
1,1,2,2-Tetrachloroethane	ND	1
trans 1,4-Dichloro-2-butene	ND	5
cis 1,4-Dichloro-2-butene	ND	5
1,4-Dichlorobenzene	ND	2
1,3-Dichlorobenzene	ND	2
1,2-Dichlorobenzene	ND	2

SURROGATES	% RECOVERY
Dibromofluoromethane	92
Toluene-d8	94
4-Bromofluorobenzene	96

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

5-97 Date

Director, Dr. Blair Leftwich

6701 Aberdeen Avenue

Lubbock, Texas 79424

£06●794●1296

AX 806 • 794 • 1298

TA #T72311 Field Code: MW-1

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

April 30, 1997 Receiving Date: 04/25/97 Sample Type: Water Sampling Date: 04/23/97 Sample Condition: 1 & C Sample Received by: JH Client/Project: Texaco E & P, Inc. Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Extraction Date: 04/29/97

Project No: 787

Field Code: MW-1	Reporting	Concentration	Extraction Date: 04/29/97 Analysis Date: 04/29/97					
EPA 8270 - BNA's (mg/L)	Limit	(mg/L)	QC	RPD	%EA	%IA		
N-Nitrosodimethylamine	0.001	ND						
2-Picoline	0.001	ND						
Methyl methanesulfonate	0.001	ND						
Ethyl methanesulfonate	0.001	ND						
Phenol	0.001	ND	77	17	20	96		
Aniline	0.005	ND						
bis(2-Chloroethyl)ether	0.005	ND						
-Chlorophenol	0.005	ND		19	43			
,3-Dichlorobenzene	0.001	ND						
,4-Dichlorobenzene	0.001	ND	85	20	44	106		
Senzyl alcohol	0.005	ND						
,2-Dichlorobenzene	0.001	ND						
Methylphenol	0.001	ND						
is(2-chloroisopropyl)ether	0.005	ND						
-Methylphenol/3-Methylphenol	0.001	ND						
Acetophenone	0.005	0.005						
n-Nitrosodi-n-propylamine	0.001	ND		17	48			
Iexachloroethane	0.001	ND						
vitrobenzene	0.001	ND						
N-Nitrosopiperidine	0.005	ND						
sophorone	0.005	ND						
2-Nitrophenol	0.005	ND	80			100		
2,4-Dimethylphenol	0.005	ND						
ois(2-Chloroethoxy)methane	0.001	ND						
Benzoic acid	0.01	ND						
2,4-Dichlorophenol	0.005	ND	78			98		
,2,4-Trichlorobenzene	0.001	ND		12	51			
a,a-Dimethylphenethylamine	0.01	ND						
Naphthalene	0.001	ND						
	TRAC	CEANALY	SIS, I	NCMU				

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

Concentration Reporting (mg/L)QC RPD %EA EPA 8270 - BNA's Limit %IA ND 4-Chloroaniline 0.005 ND 2,6-Dichlorophenol 0.005 0.001 ND 81 101 Hexachlorobutadiene N-Nitroso-di-n-butylamine 0.005 ND 8 ND 75 66 94 4-Chloro-3-methylphenol 0.005 ND 2-Methylnaphthalene 0.001 ND 1,2,4,5-Tetrachlorobenzene 0.001 ND Hexachlorocyclopentadiene 0.005 ND 80 100 2,4,6-Trichlorophenol 0.005 0.005 ND 2,4,5-Trichlorophenol ND 2-Chloronaphthalene 0.001 1-Chloronaphthalene 0.001 ND 2-Nitroaniline ND 0.005 ND Dimethylphthalate 0.001 ND 0.001 Acenaphthylene ND 2,6-Dinitrotoluene 0.001 ND 0.005 litroaniline ND 81 9 73 101 aphthene 0.001 ND 2,4-Dinitrophenol 0.025 ND Dibenzofuran 0.005 ND Pentachlorobenzene 0.001 9 ND 44 0.005 4-Nitrophenol ND 0.005 1-Napthylamine 0.001 ND 0 110 2,4-Dinitrotoluene ND 2-Napthylamine 0.005 ND 0.005 2,3,4,6-Tetrachlorophenol ND 0.001 Fluorene ND Diethylphthalate 0.001 4-Chlorophenyl-phenylether 0.001 ND ND 0.005 4-Nitroaniline ND 0.005 4,6-Dinitro-2-methylphenol ND 79 99 n-Nitrosodiphenylamine & Diphenylamine 0.001 ND Diphenylhydrazine 0.005

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 . FAX 806•794•1298

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

· · · · · - -

T72311

FIELD CODE: MW-1

	Reporting	Concentration		-		
EPA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%lA
4-Bromophenyl-phenylether	0.001	ND				
Phenacetin	0.005	ND				
Hexachlorobenzene	0.001	ND				
4-Aminobiphenyl	0.005	ND	_,,			
Pentachlorophenol	0.005	ND	82	2	96	103
Pentachloronitrobenzene	0.005	ND				
Pronamide	0.001	ND		- <u></u>		
Phenanthrene	0.001	ND				
Anthracene	0.001	ND				
Di-n-butylphthalate	0.001	ND				
Fluoranthene	0.001	ND	80			100
Benzidine	0.01	ND				
Pyrene	0.001	ND		9	106	
imethylaminoazobenzene	0.001	ND				
Butylbenzylphthalate	0.001	ND				
Benzo[a]anthracene	0.001	ND				
3,3-Dichlorobenzidine	0.001	ND				
Chrysene	0.001	ND				
bis(2-Ethylhexyl)phthalate	0.005	ND				
Di-n-octlphthalate	0.001	ND	78			98
Benzo{b]fluoranthene	0.001	ND				
7,12-Dimethylbenz(a)anthracene	0.001	ND				
Benzo[k]fluoranthene	0.001	ND				
Benzo{a]pyrene	0.001	ND	81			101
3-Methylcholanthrene	0.001	ND				
Dibenzo(a,j)acridine	0.001	ND				
Indeno[1,2,3-cd]pyrene	0.001	ND		 		
Dibenz[a,h]anthracene	0.001	ND				
Benzo[g,h,i]perylene	0.001	ND				

Page 3 of 4

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 FAX 806•794•1298

Project No: 787

Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Client/Project: Texaco E & P, Inc.

TA# 72311

FIELD CODE: MW-1

TENTATIVELY IDENTIFIED COMPOUNDS AND ESTIMATED CONCENTRATIONS (mg/L)

	EST. CONC.	RT
(1) 2-methylbunzoic acid	0.021	6.91
(2) 1,2-dimethylbenzene	0.014	4.12
(3) 1,2,3-trimethylbenzene	0.005	4.93
(4) 1,2,4-trimethylbenzene	0.008	5.17
(5) alpha-methylbenzene methanol	0.008	5.45
(6) Unidentified compound	0.010	6.02
(7) 2-fluoro-6-nitrophenol	0.005	6.16
(8) 2,6-dimethylbenzoic acíd	0.003	7.47
(9) Unidentified Compound	0.006	7.69
(10) 1-isocyanato-3-methylbenzene	0.005	9.49

ND = NOT DETECTED

SURROGATES	* RECOVERY
2-Fluorophenol SURR	25
Phenol-d§ SURR	19
Nitrobenzene-d5 SURR	50
2-Fluorobiphenyl SURR	50
2,4,6-Tribromophenol SURR	72
erphenyl-d14 SURR	91

METHOD: EPA SW 846-8270, 3510. CHEMIST: HC/CC

Director, Dr. Blair Leftwich

58-97

Date

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 FAX 806 • 794 • 1298

.

6701 Aberdeen Avenue

Lubbock, Texas 79424

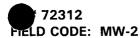
806•794•1296

AX 806•794•1298

Field Code: MW-2

TA #T72312

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705


April 30, 1997 Receiving Date: 04/25/97 Sample Type: Water Sampling Date: 04/22/97 Sample Condition: I & C Sample Received by: JH Client/Project: Texaco E & P, Inc. Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Extraction Date: 04/29/97

		- · ·			Extraction Date: 04	
	Reporting	Concentration		TT	Analysis Date: 04	· · · · · · · · · · · · · · · · · · ·
EPA 8270 - BNA's (mg/L)	Limit	(mg/L)	QC	RPD	%EA	%IA
-Nítrosodimethylamine	0.001	ND				
Picoline	0.001	ND				
lethyl methanesulfonate	0.001	ND				
thyl methanesulfonate	0.001	ND				
henol	0.001	ND	77	17	20	96
niline	0.005	ND				
is(2-Chloroethyl)ether	0.005	ND				
Chlorophenol	0.005	ND		19	43	
3-Dichlorobenzene	0.001	ND				
,4-Dichlorobenzene	0.001	ND	85	20	44	106
enzyl alcohol	0.005	ND				
2-Dichlorobenzene	0.001	ND				
Methylphenol	0.001	ND				
is(2-chloroisopropyl)ether	0.005	ND				
-Methylphenol/3-Methylphenol	0.001	ND				
cetophenone	0.005	ND				
-Nitrosodi-n-propylamine	0.001	ND		17	48	
lexachloroethane	0.001	ND				
itrobenzene	0.001	ND				
-Nitrosopiperidine	0.005	ND				
sophorone	0.005	ND				
-Nitrophenol	0.005	ND	80			100
,4-Dimethylphenol	0.005	ND				
is(2-Chloroethoxy)methane	0.001	ND				
Benzoic acid	0.01	ND				
,4-Dichlorophenol	0.005	ND	78			98
,2,4-Trichlorobenzene	0.001	ND		12	51	
.,a-Dimethylphenethylamine	0.01	ND				
Naphthalene	0.001	ND			L. 1	

Project No: 787

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

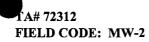
Reporting

QC RPD %EA %IA EPA 8270 - BNA's (mg/L)Limit 4-Chloroaniline 0.005 ND 0.005 ND 2,6-Dichlorophenol ND 81 101 0.001 Hexachlorobutadiene 0.005 ND N-Nitroso-di-n-butylamine 8 ND 75 66 94 4-Chloro-3-methylphenol 0.005 ND 0.001 2-Methylnaphthalene ND 1,2,4,5-Tetrachlorobenzene 0.001 ND Hexachlorocyclopentadiene 0.005 100 ND 80 0.005 2,4,6-Trichlorophenol ND 2,4,5-Trichlorophenol 0.005 ND 0.001 2-Chloronaphthalene ND 0.001 1-Chloronaphthalene ND 2-Nitroaniline 0.005 Dimethylphthalate 0.001 ND 0.001 ND Acenaphthylene ND 2,6-Dinitrotoluene 0.001 ND <u>Ni</u>troaniline 0.005 ND 81 9 73 aphthene 0.001 101 2,4-Dinitrophenol 0.025 ND ND Dibenzofuran 0.005 Pentachlorobenzene 0.001 ND 9 44 4-Nitrophenol 0.005 ND ND 1-Napthylamine 0.005 0 110 ND 2,4-Dinitrotoluene 0.001 ND 2-Napthylamine 0.005 ND 2,3,4,6-Tetrachlorophenol 0.005 Fluorene 0.001 ND ND Diethylphthalate 0.001 ND 0.001 4-Chlorophenyl-phenylether ND 4-Nitroaniline 0.005 4,6-Dinitro-2-methylphenol 0.005 ND 0.001 ND 79 99 n-Nitrosodiphenylamine & Diphenylamine 0.005 ND Diphenylhydrazine

Concentration

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

T72312


FIELD CODE: MW-2

	Reporting	Concentration		·		
EPA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%IA
4-Bromophenyl-phenylether	0.001	ND				
Phenacetin	0.005	ND				
Hexachlorobenzene	0.001	ND				
4-Aminobiphenyl	0.005	ND				
Pentachlorophenol	0.005	ND	82	2	96	103
Pentachloronitrobenzene	0.005	ND				- <u> </u>
Pronamide	0.001	ND				
Phenanthrene	0.001	ND				
Anthracene	0.001	ND				
Di-n-butylphthalate	0.001	ND				,
Fluoranthene	0.001	ND	80			100
Benzidine	0.01	ND				
Pyrene	0.001	ND		9	106	
methylaminoazobenzene	0.001	ND				
Butylbenzylphthalate	0.001	ND				
Benzo[a]anthracene	0.001	ND				
3,3-Dichlorobenzidine	0.001	ND				
Chrysene	0.001	ND				
bis(2-Ethylhexyl)phthalate	0.005	ND				
Di-n-octlphthalate	0.001	ND	78			98
Benzo[b]fluoranthene	0.001	ND				
7,12-Dimethylbenz(a)anthracene	0.001	ND				
Benzo[k]fluoranthene	0.001	ND				
Benzo[a]pyrene	0.001	ND	81			101
3-Methylcholanthrene	0.001	ND				
Dibenzo(a,j)acridine	0.001	ND				
Indeno[1,2,3-cd]pyrene	0.001	ND				
Dibenz[a,h]anthracene	0.001	ND				
Benzo[g,h,i]perylene	0.001	ND				

Page 3 of 4

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Client/Project: Texaco E & P, Inc.

ND = NOT DETECTED

SURROGATES	% RECOVERY
2-Fluorophenol SURR	34
Phenol-d6 SURR	25
Nitrobenzene-d5 SURR	62
2-Fluorobiphenyl SURR	69
2,4,6-Tribromophenol SURR	72
Terphenyl-d14 SURR	107

ETHOD: EPA SW 846-8270, 3510. CHEMIST: HC/CC

Director, Dr. Blair Leftwich

5-8-97 Date

6701 Aberdeen Avenue

- - ---- -

Lubbock, Texas 79424

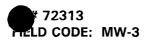
806•794•1296

-

FAX 806 • 794 • 1298

TA #T72313

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705


April 30, 1997 Receiving Date: 04/25/97 Sample Type: Water Sampling Date: 04/22/97 Sample Condition: I & C Sample Received by: JH Client/Project: Texaco E & P, Inc. Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Extraction Date: 04/29/97

Project No: 787

Field Code: MW-3						a County, NM		
Telu Coue: IVI VV-5	Reporting	Concentration			Extraction Date: 04/29/97 Analysis Date: 04/29/97			
CPA 8270 - BNA's (mg/L)	Limit	(mg/L)	QC	RPD	%EA	%IA		
l-Nitrosodimethylamine	0.001	ND						
-Picoline	0.001	ND						
1ethyl methanesulfonate	0.001	ND						
Cthyl methanesulfonate	0.001	ND						
henol	0.001	ND	77	17	20	96		
miline	0.005	ND						
is(2-Chloroethyl)ether	0.005	ND						
-Chlorophenol	0.005	ND		19	43	······································		
,3-Dichlorobenzene	0.001	ND						
,4-Dichlorobenzene	0.001	ND	85	20	44	106		
enzyl alcohol	0.005	ND						
,2-Dichlorobenzene	0.001	ND						
Methylphenol	0.001	ND						
is(2-chloroisopropyl)ether	0.005	ND				·		
-Methylphenol/3-Methylphenol	0.001	ND						
scetophenone	0.005	ND						
-Nitrosodi-n-propylamine	0.001	ND		17	48			
Iexachioroethane	0.001	ND						
litrobenzene	0.001	ND						
N-Nitrosopiperidine	0.005	ND						
sophorone	0.005	ND						
-Nitrophenol	0.005	ND	80			100		
2,4-Dimethylphenol	0.005	ND						
bis(2-Chloroethoxy)methane	0.001	ND						
Benzoic acid	0.01	ND						
2,4-Dichlorophenol	0.005	ND	78			98		
,2,4-Trichlorobenzene	0.001	ND		12	51			
a,a-Dimethylphenethylamine	0.01	ND						
Naphthalene	0.001	ND						

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

EPA 8270 - BNA's 4-Chloroaniline 2,6-Dichlorophenol Hexachlorobutadiene N-Nitroso-di-n-butylamine	Limit 0.005 0.005 0.001	(mg/L) ND ND	QC	RPD	%EA	%IA
2,6-Dichlorophenol Hexachlorobutadiene	0.005					
Hexachlorobutadiene		ND				
	0.001					
N-Nitroso-di-n-butylamine		ND	81			101
	0.005	ND				
4-Chloro-3-methylphenol	0.005	ND	75	8	66	94
2-Methylnaphthalene	0.001	ND				
1,2,4,5-Tetrachlorobenzene	0.001	ND				
Hexachlorocyclopentadiene	0.005	ND				
2,4,6-Trichlorophenol	0.005	ND	80			100
2,4,5-Trichlorophenol	0.005	ND				
2-Chloronaphthalene	0.001	ND				
1-Chloronaphthalene	0.001	ND				
2-Nitroaniline	0.005	ND				
Dimethylphthalate	0.001	ND				
Acenaphthylene	0.001	ND				
2,6-Dinitrotoluene	0.001	ND				
3-Nitroaniline	0.005	ND				
aphthene	0.001	ND	81	9	73	101
2,4-Dinitrophenol	0.025	ND				
Dibenzofuran	0.005	ND				· · · · · · · · · · · · · · · · · · ·
Pentachlorobenzene	0.001	ND				
4-Nitrophenol	0.005	ND		9	44	
l 1-Napthylamine	0.005	ND				
2,4-Dinitrotoluene	0.001	ND		0	110	
2-Napthylamine	0.005	ND				
2,3,4,6-Tetrachlorophenol	0.005	ND				<u> </u>
Fluorene	0.001	ND				
Diethylphthalate	0.001	ND				
4-Chlorophenyl-phenylether	0.001	ND				
4-Nitroaniline	0.005	ND				
4,6-Dinitro-2-methylphenol	0.005	ND				
n-Nitrosodiphenylamine & Diphenylamine	0.001	ND	79			99
Diphenylhydrazine	0.005	ND	· · · · · · · · · · · · · · · · · · ·			······································

HIGHLANDER SERVICES CORP. Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

T72313

FIELD CODE: MW-3

	Reporting	Concentration		·		
EPA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%IA
4-Bromophenyl-phenylether	0.001	ND				
Phenacetin	0.005	ND				
Hexachlorobenzene	0.001	ND				
4-Aminobiphenyl	0.005	ND				
Pentachlorophenol	0.005	ND	82	2	96	103
Pentachloronitrobenzene	0.005	ND				
Pronamide	0.001	ND				
Phenanthrene	0.001	ND				
Anthracene	0.001	ND				
Di-n-butylphthalate	0.001	ND				
Fluoranthene	0.001	ND	80			100
Benzidine	0.01	ND				
Pyrene	0.001	ND		9	106	
methylaminoazobenzene	0.001	ND				
Butylbenzylphthalate	0.001	ND				
Benzo[a]anthracene	0.001	ND				
3,3-Dichlorobenzidine	0.001	ND				
Chrysene	0.001	ND				
bis(2-Ethylhexyl)phthalate	0.005	ND				
Di-n-octlphthalate	0.001	ND	78			98
Benzo{b]fluoranthene	0.001	ND				
7,12-Dimethylbenz(a)anthracene	0.001	ND				
Benzo[k]fluoranthene	0.001	ND				
Benzo[a]pyrene	0.001	ND	81			101
3-Methylcholanthrene	0.001	ND				
Dibenzo(a,j)acridine	0.001	ND				
Indeno[1,2,3-cd]pyrene	0.001	ND				
Dibenz[a,h]anthracene	0.001	ND				
Benzo[g,h,i]perylene	0.001	ND				

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Client/Project: Texaco E & P, Inc.

TA# 72313 FIELD CODE: MW-3

_

ND = NOT DETECTED

SURROGATES	% RECOVERY
2-Fluorophenol SURR	30
Phenol-d6 SURR	22
Nitrobenzene-d5 SURR	55
2-Fluorobiphenyl SURR	61
2,4,6-Tribromophenol SURR	67
Terphenyl-d14 SURR	110

IETHOD: EPA SW 846-8270, 3510. CHEMIST: HC/CC

Director, Dr. Blair Leftwich

5-8-97

Date

1

6701 Aberdeen Avenue

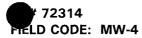
Lubbock, Texas 79424

806 ● 794 ● 1296 +AX 806 ● 794 ● 1298

TA #T72314

Field Code: MW-4

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705


April 30, 1997 Receiving Date: 04/25/97 Sample Type: Water Sampling Date: 04/23/97 Sample Condition: I & C Sample Received by: JH Client/Project: Texaco E & P, Inc. Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Extraction Date: 04/29/97

Reporting Concentration Analysis Date: 04/29/97 EPA 8270 - BNA's (mg/L) QC RPD %EA Limit (mg/L) %IA 0.001 ND N-Nitrosodimethylamine ND 2-Picoline 0.001 ND Methyl methanesulfonate 0.001 Ethyl methanesulfonate ND 0.001 Phenol ND 77 96 0.001 17 20 ND 0.005 Aniline ND bis(2-Chloroethyl)ether 0.005 19 ND 43 2-Chlorophenol 0.005 ND 1,3-Dichlorobenzene 0.001 ND 85 20 44 106 1,4-Dichlorobenzene 0.001 ND Benzyl alcohol 0.005 ND 1,2-Dichlorobenzene 0.001 ND Methylphenol 0.001 ND bis(2-chloroisopropyl)ether 0.005 ND 4-Methylphenol/3-Methylphenol 0.001 0.005 ND Acetophenone n-Nitrosodi-n-propylamine 0.001 ND 17 48 ND Hexachloroethane 0.001 ND 0.001 Nitrobenzene N-Nitrosopiperidine 0.005 ND 0.005 ND Isophorone 0.005 ND 80 100 2-Nitrophenol 2,4-Dimethylphenol 0.005 ND ND bis(2-Chloroethoxy)methane 0.001 ND 0.01 **Benzoic** acid ND 78 98 0.005 2,4-Dichlorophenol ND 12 51 0.001 1,2,4-Trichlorobenzene ND 0.01 a,a-Dimethylphenethylamine ND 0.001 Naphthalene MATRACEANALYSIS, INC.

Project No: 787

A Laboratory for Advanced Environmental Research and Analysis

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

	Reporting	Concentration				
EPA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%IA
4-Chloroaniline	0.005	ND				
2,6-Dichlorophenol	0.005	ND				
Hexachlorobutadiene	0.001	ND	81			101
N-Nitroso-di-n-butylamine	0.005	ND				
4-Chloro-3-methylphenol	0.005	ND	75	8	66	94
2-Methylnaphthalene	0.001	ND				
1,2,4,5-Tetrachlorobenzene	0.001	ND				
Hexachlorocyclopentadiene	0.005	ND				
2,4,6-Trichlorophenol	0.005	ND	80			100
2,4,5-Trichlorophenol	0.005	ND				
2-Chloronaphthalene	0.001	ND				
1-Chloronaphthalene	0.001	ND				
2-Nitroaniline	0.005	ND				
Dimethylphthalate	0.001	ND				
Acenaphthylene	0.001	ND				
2,6-Dinitrotoluene	0.001	ND				
3-Nitroaniline	0.005	ND				
aphthene	0.001	ND	81	9	73	101
2,4-Dinitrophenol	0.025	ND				
Dibenzofuran	0.005	ND				
Pentachlorobenzene	0.001	ND				
4-Nitrophenol	0.005	ND		9	44	
1-Napthylamine	0.005	ND				
2,4-Dinitrotoluene	0.001	ND		0	110	
2-Napthylamine	0.005	ND				
2,3,4,6-Tetrachlorophenol	0.005	ND				
Fluorene	0.001	ND				
Diethylphthalate	0.001	ND				
4-Chlorophenyl-phenylether	0.001	ND				
4-Nitroaniline	0.005	ND				
4,6-Dinitro-2-methylphenol	0.005	ND				
n-Nitrosodiphenylamine & Diphenylamine	0.001	ND	79			99
Diphenylhydrazine	0.005	ND				·····

ł

Page 2 of 4

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

T72314

FIELD CODE: MW-4

	Reporting	Concentration				
EPA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%IA
4-Bromophenyl-phenylether	0.001	ND				
Phenacetin	0.005	ND				
Hexachlorobenzene	0.001	ND				
4-Aminobiphenyl	0.005	ND				
Pentachlorophenol	0.005	ND	82	2	96	103
Pentachloronitrobenzene	0.005	ND				
Pronamide	0.001	ND				
Phenanthrene	0.001	ND				
Anthracene	0.001	ND				
Di-n-butylphthalate	0.001	ND				
Fluoranthene	0.001	ND	80			100
Benzidine	0.01	ND				
Pyrene	0.001	ND		9	106	
methylaminoazobenzene	0.001	ND				
Butylbenzylphthalate	0.001	ND				
Benzo[a]anthracene	0.001	ND				
3,3-Dichlorobenzidine	0.001	ND				
Chrysene	0.001	ND				
bis(2-Ethylhexyl)phthalate	0.005	ND				
Di-n-octlphthalate	0.001	ND	78			98
Benzo[b]fluoranthene	0.001	ND				
7,12-Dimethylbenz(a)anthracene	0.001	ND				
Benzo[k]fluoranthene	0.001	ND				
Benzo[a]pyrene	0.001	ND	81			101
3-Methylcholanthrene	0.001	ND				
Dibenzo(a,j)acridine	0.001	ND				
Indeno[1,2,3-cd]pyrene	0.001	ND				
Dibenz[a,h]anthracene	0.001	ND				
Benzo[g,h,i]perylene	0.001	ND				

Page 3 of 4

L

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Client/Project: Texaco E & P, Inc.

TA# 72314 FIELD CODE: MW-4

ND = NOT DETECTED

SURROGATES	% RECOVERY
2-Fluorophenol SURR	32
Phenol-d6 SURR	23
Nitrobenzene-d5 SURR	57
2-Fluorobiphenyl SURR	61
2,4,6-Tribromophenol SURR	73
Terphenyl-d14 SURR	109

ETHOD: EPA SW 846-8270, 3510. CHEMIST: HC/CC

Director, Dr. Blair Leftwich

5-8--9) Date

6701 Aberdeen Avenue

-

Lubbock, Texas 79424

806 • 794 • 1296 FAX 806 • 794 • 1298

TA #T72315

Field Code: MW-5

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

Project No: 787

April 30, 1997 Receiving Date: 04/25/97 Sample Type: Water Sampling Date: 04/22/97 Sample Condition: I & C Sample Received by: JH Client/Project: Texaco E & P, Inc. Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Extraction Date: 04/29/97 Analysis Date: 04/29/97

	Reporting	Concentration			Analysis Date: 04/29/97			
EPA 8270 - BNA's (mg/L)	Limit*	(mg/L)	QC	RPD	%EA	%IA		
N-Nitrosodimethylamine	0.01	ND		-				
-Picoline	0.01	ND						
Aethyl methanesulfonate	0.01	ND						
Ethyl methanesulfonate	0.01	ND						
Phenol	0.01	ND	77	17	20	96		
niline	0.05	ND						
is(2-Chloroethyl)ether	0.05	ND						
-Chlorophenol	0.05	ND		19	43			
,3-Dichlorobenzene	0.01	ND						
,4-Dichlorobenzene	0.01	ND	85	20	44	106		
lenzyl alcohol	0.05	ND						
,2-Dichlorobenzene	0.01	ND						
Methylphenol	0.01	ND						
is(2-chloroisopropyl)ether	0.05	ND						
-Methylphenol/3-Methylphenol	0.01	ND						
Acetophenone	0.05	ND						
-Nitrosodi-n-propylamine	0.01	ND		17	48			
Iexachloroethane	0.01	ND						
litrobenzene	0.01	ND						
l-Nitrosopiperidine	0.05	ND						
sophorone	0.05	ND						
-Nitrophenol	0.05	ND	80			100		
,4-Dimethylphenol	0.05	ND						
bis(2-Chloroethoxy)methane	0.01	ND						
Benzoic acid	0.1	ND						
2,4-Dichlorophenol	0.05	ND	78			98		
1,2,4-Trichlorobenzene	0.01	ND		12	51			
a,a-Dimethylphenethylamine	0.1	ND						
Naphthalene	0.01	0.12						
		CEANALY	SIS, I	NCALL				

A Laboratory for Advanced Environmental Research and Analysis

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

72315

FIELD CODE: MW-5

	Reporting	Concentration				
EPA 8270 - BNA's	Limit*	(mg/L)	QC	RPD	%EA	%IA
4-Chloroaniline	0.05	ND				
2,6-Dichlorophenol	0.05	ND	T			
Hexachlorobutadiene	0.01	ND	81			101
N-Nitroso-di-n-butylamine	0.05	ND				
4-Chloro-3-methylphenol	0.05	ND	75	8	66	94
2-Methylnaphthalene	0.01	0.022				
,2,4,5-Tetrachlorobenzene	0.01	ND				
Hexachlorocyclopentadiene	0.05	ND				
2,4,6-Trichlorophenol	0.05	ND	80			100
2,4,5-Trichlorophenol	0.05	ND				
2-Chloronaphthalene	0.01	ND				
1-Chloronaphthalene	0.01	ND				
2-Nitroaniline	0.05	ND				
Dimethylphthalate	0.01	ND				
Acenaphthylene	0.01	ND				
2,6-Dinitrotoluene	0.01	ND				
3 <u>-Ni</u> troaniline	0.05	ND				
aphthene	0.01	ND	81	9	73	101
2,4-Dinitrophenol	0.25	ND				
Dibenzofuran	0.05	ND				·····
Pentachlorobenzene	0.01	ND	_			
4-Nitrophenol	0.05	ND		9	44	
1-Napthylamine	0.05	ND				
2,4-Dinitrotoluene	0.01	ND		0	110	
2-Napthylamine	0.05	ND				
2,3,4,6-Tetrachlorophenol	0.05	ND				· · · · · · · · · · · · · · · · · · ·
Fluorene	0.01	ND				
Diethylphthalate	0.01	ND				
4-Chlorophenyl-phenylether	0.01	ND				
4-Nitroaniline	0.05	ND		-		
4,6-Dinitro-2-methylphenol	0.05	ND				
			79			99
n-Nitrosodiphenylamine & Diphenylamine Diphenylhydrazine	0.01	ND ND	79	-		

Page 2 of 4

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

T72315

4

FIELD CODE: MW-5

	Reporting	Concentration				
EPA 8270 - BNA's	Limit*	(mg/L)	QC	RPD	%EA	%IA
l-Bromophenyl-phenylether	0.01	ND				
Phenacetin	0.05	ND				
Hexachlorobenzene	0.01	ND				· · · · · · · · · · · · · · · · · · ·
4-Aminobiphenyl	0.05	ND				
Pentachlorophenol	0.05	ND	82	2	96	103
Pentachloronitrobenzene	0.05	ND				
Pronamide	0.01	ND				
Phenanthrene	0.01	ND				
Anthracene	0.01	ND				
Di-n-butylphthalate	0.01	ND				
Fluoranthene	0.01	ND	80			100
Benzidine	0.1	ND				
Pyrene	0.01	ND		9	106	
methylaminoazobenzene	0.01	ND				
Butylbenzylphthalate	0.01	ND				
Benzo[a]anthracene	0.01	ND				
3,3-Dichlorobenzidine	0.01	ND			· ·····	
Chrysene	0.01	ND				
bis(2-Ethylhexyl)phthalate	0.05	ND				
Di-n-octlphthalate	0.01	ND	78			98
Benzo{b]fluoranthene	0.01	ND				
7,12-Dimethylbenz(a)anthracene	0.01	ND				
Benzo[k]fluoranthene	0.01	ND				
Benzo[a]pyrene	0.01	ND	81			101
3-Methylcholanthrene	0.01	ND				
Dibenzo(a,j)acridine	0.01	ND				
Indeno[1,2,3-cd]pyrene	0.01	ND				
Dibenz[a,h]anthracene	0.01	ND				
Benzo[g,h,i]perylene	0.01	ND				

Page 3 of 4

Project No: 787

Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Client/Project: Texaco E & P, Inc.

A# 72315

FIELD CODE: MW-5

TENTATIVELY IDENTIFIED COMPOUNDS AND ESTIMATED CONCENTRATIONS (mg/L)

		EST. CONC.	RT
(1)	Toluene	0.090	2.94
(2)	p-Xylene	0.065	3.90
(3)	1,2-dimethylbenzene	0.089	4.11
(4)	1-ethyl-3-methylbenzene	0.034	4.68
(5)	1,2,3-trimethylbenzene	0.072	4.93
(6)	1,2,4-trimethylbenzene	0.065	5.17
(7)	1-methylnaphthalene	0.025	7.56
(8)	Dodecane	0.012	8.09
(9)	1-(3-methylphenyl)ethanone	0.013	6.32
(10) 2,7-dimethylnaphthalene	0.013	8.53

ND = NOT DETECTED

SURROGATES	% RECOVERY
2-Fluorophenol SURR	78
Phenol-d6 SURR	88
Nitrobenzene-d5 SURR	82
2-Fluorobiphenyl SURR	42
2,4,6-Tribromophenol SURR	94
erphenyl-d14 SURR	104

*NOTE: Elevated reporting limits due to sample matrix interference.

METHOD: EPA SW 846-8270, 3510. CHEMIST: HC/CC

Director, Dr. Blair Leftwich

5-8-97

Date

6701 Aberdeen Avenue

Lubbock, Texas 79424

806●794●1296

FAX 806 • 794 • 1298

Field Code: MW-6

TA #T72316

i.

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

Project No: 787

April 30, 1997 Receiving Date: 04/25/97 Sample Type: Water Sampling Date: 04/22/97 Sample Condition: I & C Sample Received by: JH Client/Project: Texaco E & P, Inc. Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Extraction Date: 04/29/97 Analysis Date: 04/29/97

nit (mg/L 101 ND 101 ND 101 ND 101 ND 101 ND		RPD	%EA	%IA
001 ND 001 ND 001 ND 001 ND				
001 ND 001 ND 001 ND				
001 ND 001 ND				
001 ND				
	77	17	20	96
005 ND				
005 ND				
005 ND		19	43	
001 ND				
001 ND	85	20	44	106
005 ND				
001 ND				
0.00	4			
005 ND				
0.00	2			
005 ND				
001 ND		17	48	
001 ND				
001 ND				
005 ND				
005 ND				
005 ND	80			100
005 ND	,			
001 ND				
01 ND				
005 ND	78			98
001 ND		12	51	
.01 ND	,			
0.01 0.01	6			
	D01 ND D01 ND D05 ND D05 ND D01 0.00 D01 0.00 D01 0.00 D05 ND D01 0.00 D05 ND D01 0.00 D05 ND D01 ND D01 ND D01 ND D01 ND D05 ND D01 ND	ND ND 001 ND 85 005 ND 00 001 ND 00 001 ND 00 001 0.004 00 005 ND 00 001 0.002 00 005 ND 00 001 ND 00 005 ND 80 005 ND 80 005 ND 80 005 ND 78 001 ND 78 001 ND 01 001 ND 01	ND ND 85 20 001 ND 85 20 005 ND	ND ND 85 20 44 001 ND 85 20 44 005 ND

A Laboratory for Advanced Environmental Research and Analysis

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

72316 FIELD CODE: MW-6

	Reporting	Concentration				
EPA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%IA
4-Chloroaniline	0.005	ND				
2,6-Dichlorophenol	0.005	ND				
Hexachlorobutadiene	0.001	ND	81			101
N-Nitroso-di-n-butylamine	0.005	ND				
1-Chloro-3-methylphenol	0.005	ND	75	8	66	94
2-Methylnaphthalene	0.001	0.026				
,2,4,5-Tetrachlorobenzene	0.001	ND				
Hexachlorocyclopentadiene	0.005	ND				
2,4,6-Trichlorophenol	0.005	ND	80			100
2,4,5-Trichlorophenol	0.005	ND				
2-Chloronaphthalene	0.001	ND				
1-Chloronaphthalene	0.001	ND				
2-Nitroaniline	0.005	ND				
Dimethylphthalate	0.001	ND				
Acenaphthylene	0.001	ND				
2,6-Dinitrotoluene	0.001	ND				
- Ditroaniline	0.005	ND				
Ashaphthene	0.001	ND	81	9	73	101
2,4-Dinitrophenol	0.025	ND				
Dibenzofuran	0.005	ND				
Pentachlorobenzene	0.001	ND				
4-Nitrophenol	0.005	ND		9	44	
1-Napthylamine	0.005	ND				
2,4-Dinitrotoluene	0.001	ND		0	110	
2-Napthylamine	0.005	ND				
2,3,4,6-Tetrachlorophenol	0.005	ND				
Fluorene	0.001	0.002		-		
Diethylphthalate	0.001	ND				
4-Chlorophenyl-phenylether	0.001	ND				
4-Nitroaniline	0.005	ND				
4,6-Dinitro-2-methylphenol	0.005	ND				
n-Nitrosodiphenylamine & Diphenylamine	0.003	ND ND	79			99
Diphenylhydrazine	0.005	ND				

Page 2 of 4

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

T72316

FIELD CODE: MW-6

	Reporting	Concentration				
PA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%IA
-Bromophenyl-phenylether	0.001	ND				
henacetin	0.005	ND		·		
Iexachlorobenzene	0.001	ND				
-Aminobiphenył	0.005	ND				
rentachlorophenol	0.005	ND	82	2	96	103
entachloronitrobenzene	0.005	ND				
ronamide	0.001	ND				
Phenanthrene	0.001	ND				
Anthracene	0.001	0.002				
Di-n-butylphthalate	0.001	ND				
Fluoranthene	0.001	ND	80			100
Benzidine	0.01	ND				
Pyrene	0.001	ND		9	106	
methylaminoazobenzene	0.001	ND				
Butylbenzylphthalate	0.001	ND				
Benzo[a]anthracene	0.001	ND				
3,3-Dichlorobenzidine	0.001	ND				
Chrysene	0.001	ND				
bis(2-Ethylhexyl)phthalate	0.005	ND				
Di-n-octlphthalate	0.001	ND	78			98
Benzo[b]fluoranthene	0.001	ND				
7,12-Dimethylbenz(a)anthracene	0.001	ND				
Benzo[k]fluoranthene	0.001	ND				
Benzo[a]pyrene	0.001	ND	81			101
3-Methylcholanthrene	0.001	ND				
Dibenzo(a,j)acridine	0.001	ND				
Indeno[1,2,3-cd]pyrene	0.001	ND				
Dibenz[a,h]anthracene	0.001	ND				
Benzo[g,h,i]perylene	0.001	ND				

Project No: 787

Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Client/Project: Texaco E & P, Inc.

TA# 72316 FIELD CODE: MW-6

T.

TENTATIVELY IDENTIFIED COMPOUNDS AND ESTIMATED CONCENTRATIC	NS (mg/L)	
	EST. CONC.	RT
(1) Toluene	0.083	2.95
(2) 1,3-dimethylbenzene	0.078	4.11
(3) 1-ethyl-4-methylbenzene	0.036	4.67
(4) p-Xylene	0.068	3.91
(5) 1-ethyl-2-methylbenzene	0.038	4.83
(6) 1,3,5-trimethylbenzene	0.025	4.73
(7) 1,2,3-trimethylbenzene	0.051	4.94
(8) 1,2,4-trimethylbenzene	0.037	5.17
(9) 1-methylnaphthalene	0.017	7.56
(10) 1,2-dimethylnaphthalene	0.043	8.53

ND = NOT DETECTED	
SURROGATES	% RECOVERY
2-Fluorophenol SURR	28
Phenol-d6 SURR	22
Nitrobenzene-d5 SURR	57
2-Fluorobiphenyl SURR	61
2,4,6-Tribromophenol SURR	95
erphenyl-d14 SURR	107

METHOD: EPA SW 846-8270, 3510. CHEMIST: HC/CC

Director, Dr. Blair Leftwich

2

Date

6701 Aberdeen Avenue

Lubbock, Texas 79424

206●794●1296

FAX 806 • 794 • 1298

TA #T72317

Field Code: WW-1 (Water Well)

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

Project No: 787

April 30, 1997 Receiving Date: 04/25/97 Sample Type: Water Sampling Date: 04/23/97 Sample Condition: 1 & C Sample Received by: JH Client/Project: Texaco E & P, Inc. Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Extraction Date: 04/29/97 Analysis Date: 04/29/97

	Reporting	Concentration			Analysis Date: 04	1/29/97
EPA 8270 - BNA's (mg/L)	Limit	(mg/L)	QC	RPD	%EA	%IA
-Nitrosodimethylamine	0.001	ND				
Picoline	0.001	ND				
lethyl methanesulfonate	0.001	ND				
thyl methanesulfonate	0.001	ND				
henol	0.001	ND	77	17	20	96
niline	0.005	ND				
is(2-Chloroethyl)ether	0.005	ND				
Chlorophenol	0.005	ND		19	43	
3-Dichlorobenzene	0.001	ND				
4-Dichlorobenzene	0.001	ND	85	20	44	106
enzyl alcohol	0.005	ND				
2-Dichlorobenzene	0.001	ND				
Methylphenol	0.001	ND				
is(2-chloroisopropyl)ether	0.005	ND				_
Methylphenol/3-Methylphenol	0.001	ND				
cetophenone	0.005	ND				
Nitrosodi-n-propylamine	0.001	ND		17	48	
exachloroethane	0.001	ND				
itrobenzene	0.001	ND				
-Nitrosopiperidine	0.005	ND				
sophorone	0.005	ND				
Nitrophenol	0.005	ND	80			100
4-Dimethylphenol	0.005	ND				
is(2-Chloroethoxy)methane	0.001	ND				
enzoic acid	0.01	ND				
,4-Dichlorophenol	0.005	ND	78			98
,2,4-Trichlorobenzene	0.001	ND		12	51	
a-Dimethylphenethylamine	0.01	ND				
laphthalene	0.001	ND			······································	

A Laboratory for Advanced Environmental Research and Analysis

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM Client/Project: Texaco E & P, Inc.

72317 FIELD CODE: WW-1 (Water Well)

i I

	Reporting	Concentration				
EPA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%IA
4-Chloroaniline	0.005	ND				
2,6-Dichlorophenol	0.005	ND				
Hexachlorobutadiene	0.001	ND	81			101
N-Nitroso-di-n-butylamine	0.005	ND				
4-Chloro-3-methylphenol	0.005	ND	75	8	66	94
2-Methylnaphthalene	0.001	ND				
1,2,4,5-Tetrachlorobenzene	0.001	ND				
Hexachlorocyclopentadiene	0.005	ND				
2,4,6-Trichlorophenol	0.005	ND	80			100
2,4,5-Trichlorophenol	0.005	ND				
2-Chloronaphthalene	0.001	ND				
1-Chloronaphthalene	0.001	ND				
2-Nitroaniline	0.005	ND				
Dimethylphthalate	0.001	ND				
Acenaphthylene	0.001	ND				
2,6-Dinitrotoluene	0.001	ND				
3 Nitroaniline	0.005	ND				
aphthene	0.001	ND	81	9	73	101
2,4-Dinitrophenol	0.025	ND				
Dibenzofuran	0.005	ND				
Pentachlorobenzene	0.001	ND				<u> </u>
4-Nitrophenol	0.005	ND		9	44	
1-Napthylamine	0.005	ND				
2,4-Dinitrotoluene	0.001	ND		0	110	
2-Napthylamine	0.005	ND				
2,3,4,6-Tetrachlorophenol	0.005	ND				
Fluorene	0.001	ND				
Diethylphthalate	0.001	ND				
4-Chlorophenyl-phenylether	0.001	ND				
4-Nitroaniline	0.005	ND				
4,6-Dinitro-2-methylphenol	0.005	ND				
n-Nitrosodiphenylamine & Diphenylamine	0.001	ND	79			99
Diphenylhydrazine	0.005	ND				

Page 2 of 4

Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Client/Project: Texaco E & P, Inc.

T72317

FIELD CODE: WW-1 (Water Well)

	Reporting	Concentration	·····			
EPA 8270 - BNA's	Limit	(mg/L)	QC	RPD	%EA	%IA
4-Bromophenyl-phenylether	0.001	ND				
Phenacetin	0.005	ND				
Hexachlorobenzene	0.001	ND				
4-Aminobiphenyl	0.005	ND				
Pentachlorophenol	0.005	ND	82	2	96	103
Pentachloronitrobenzene	0.005	ND				
Pronamide	0.001	ND				·····
Phenanthrene	0.001	ND				
Anthracene	0.001	0.002				
Di-n-butylphthalate	0.001	ND				
Fluoranthene	0.001	ND	80			100
Benzidine	0.01	ND				
Pyrene	0.001	ND		9	106	
imethylaminoazobenzene	0.001	ND				
Butyibenzyiphthalate	0.001	ND				· · · · · · · · · · · · · · · · · · ·
Benzo{a]anthracene	0.001	ND				
3,3-Dichlorobenzidine	0.001	ND				
Chrysene	0.001	ND				
bis(2-Ethylhexyl)phthalate	0.005	ND				
Di-n-octlphthalate	0.001	ND	78			98
Benzo[b]fluoranthene	0.001	ND				
7,12-Dimethylbenz(a)anthracene	0.001	ND				
Benzo[k]fluoranthene	0.001	ND				
Benzo[a]pyrene	0.001	ND	81			101
3-Methylcholanthrene	0.001	ND				
Dibenzo(a,j)acridine	0.001	ND				
Indeno[1,2,3-cd]pyrene	0.001	ND				
Dibenz[a,h]anthracene	0.001	ND				
Benzo[g,h,i]perylene	0.001	ND				

.

.

Page 3 of 4

Project No: 787

Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Client/Project: Texaco E & P, Inc.

1A# 72317

T.

FIELD CODE: WW-1 (Water Well)

TENTATIVELY IDENTIFIED COMPOUNDS AND ESTIMATED CONCENTRATIONS (mg/L)

		EST. CONC.	RT
(1)	1-isocyanato-3-methylbenzene	0.006	9.51
(2)	bromacil	0.004	13.43
(3)	6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine	0.002	11.46
(4)	2,4,6-trimethylbenzoic acid	0.001	8.38
(5)	Unidentified Compound	0.001	6.02
(6)	Unidentified Compound	0.002	7.60
(7)	Unidentified Compound	0.002	6.75
(8)	Unidentified Compound	0.002	8.95

ND = NOT DETECTED	
SURROGATES	% RECOVERY
2-Fluorophenol SURR	30
Phenol-d6 SURR	23
Nitrobenzene-d5 SURR	57
2-Fluorobiphenyl SURR	62
2,4,6-Tribromophenol SURR	80
erphenyl-d14 SURR	108

METHOD: EPA SW 846-8270, 3510. CHEMIST: HC/CC

Director, Dr. Blair Leftwich

5-8-87

Date

	6701 Aberdeen Avenue Lub		ENVIRO	806•794•1296 S FOR DNMENTAL S	296 L SERVIC	FAX 806	FAX 806 • 794 • 1298		
May 07, 1997 Receiving Date: 04/2 Sample Type: Water Project No: 787 Project Location: Te> Lea Cou	Attel May 07, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM	Attention: Ike Lavarez 1910 N. Big Spring St. Midland, TX 79705 àas Plant,	Lavarez oring St. 9705			Extractio Analysis Sample (Sample (Project N	Extraction Date: 05/01/97 Analysis Date: 05/01/97 Sampling Date: 04/22-23/97 Sample Condition: 1 & C Sample Received by: JH Project Name: Texaco E & P,	1810/cc 5/01/97 4/22-23/ 4/22-23/ by: JH by: JH sxaco E 8	97 P, Inc.
				TOTAL	. METAL	TOTAL METALS (mg/L)	•		
TA#	Field Code	As	s Se	S	ວັ	Pb	Ag	Ba	Нg
T72311	MW-1	<0.10			<0.05	0.1	<0.01	<0.20	<0.001
T72312	MW-2	<0.10	-		<0.05	<0.10	<0.01	<0.20	<0.001
T72313	MW-3	<0.10			0.36	<0.10	<0.01	<0.20	<0.001
T72314	MW-4	<0.10	-		0.08	0.1	<0.01	<0.20	<0.001
T72315	MW-5	0 V			<0.05	~0.10	<pre>< 0.01</pre>	<0.20	<0.001
1/2310 T72317	MW-1 (Water Well)	<0.10 <0.10	10 <0.10		<0.02 0.52	<0.10 <0.10	0.0%	<0.20	<0.001
OC OC	Quality Control	5.4			5.0	4.9	0.98	5.0	0.0045
Reporting Limit	nit	0.10	10 0.10	0.02	0.05	0.10	0.01	0.20	0.001
RPD		4			0	7	2	4	5
% Extraction Accuracy	Accuracy	93	3 94	85	92	81	115	85	86
% Instrument Accuracy	t Accuracy	109			100	97	<u> 8</u> 6	100	06

TOTAL METALS SPIKE: 2.0 mg/L As, Se, Cd, Pb, Ba; 1.5 mg/L Cr; 0.1 mg/L Ag; 0.005 mg/L Hg. TOTAL METALS QC: 5.0 mg/L As, Se, Cd, Cr, Pb, Ba; 1.0 mg/L Ag; 0.005 mg/L Hg.

5-1-57

Date

Director, Dr. Blair Leftwich

|

I

6701 Aberdeen Avenue

Lubbock, Texas 79424

206 • 794 • 1296 FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVICES Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

May 07, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Prep Date: 05/06/97 Analysis Date: 05/06/97 Sampling Date: 04/22-23/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

TA#	FIELD CODE	CHLORIDE (mg/L)	
 T72311	MW-1	200	
T72312	MW-2	350	
T72313	MW-3	430	
T72314	MVV-4	290	
T72315	MW-5	800	
T72316	MW-6	1,500	
T72317	MW-1 (Water Well)	800	
QC	Quality Control	24	
REPORTING LIMIT		10	
RPD		0	
% Extraction Accuracy		96	
% Instrument Accuracy		96	
METHODS: EPA 300.0. CHEMIST: MS CHLORIDE SPIKE: 25 m CHLORIDE QC: 24 mg/L			
	BZ	5-7-97	
Director, Dr. Blair L	.eftwich	DATE	
	ACEANALYSIS,	INCALLALIA	
	aceAnalysis,	DATE	

A Laboratory for Advanced Environmental Research and Analysis

6701 Aberdeen Avenue

Lubbock, Texas 79424

206 • 794 • 1296 +AX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENTAL SERVICES Attention: Ike Tavarez 1910 N. Big Spring Midland, TX 79705

May 05, 1997 Receiving Date: 04/25/97 Sample Type: Water Project No: 787 Project Location: Texaco Eunice (North) Gas Plant, Lea County, NM

Prep Date: 04/27/97 Analysis Date: 04/27/97 Sampling Date: 04/22-23/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco E & P, Inc.

тре

	TA#	FIELD CODE	(mg/L)	
<u> </u>	T72311	MW-1	2,000	
	T72312	MW-2	1,200	
	T72313	MW-3	2,000	
	T72314	MW-4	1,600	
	T72315	MW-5	2,800	
	T72316	MW-6	3,200	
	T72317	MW-1 (Water Well)	2,600	

RPD

0

METHODS: EPA 160.1. CHEMIST: MS

Director, Dr. Blair Leftwich

5-5-97 DATE

YSIS A Laboratory for Advanced Environmental Research and Analysis

T

·

-

Highlander Services Corp. 306 W. Wall • Suite 320 • Midland, TX 79701 • (915)682-4559	Request and Chain of Custody Record Page Z of	2 1 Torneo Eunice (No/4h) GAS Plant, Lealand		97 1 Later palu Valat	White Tet instal	10 CULVICO - TDS.		10:5m in Seni-Ub(etube (2) 2) BNA	Hudic Total netals	ià. Clínide + TĎS.	Time: 2:25 (Signature) MULL MULL Date: 4/2/1	Harf 1977 Recieved by: AMANALL P	Date: Data Results for the land of			1210-1089-8109-8109 COPY & RETURN PINK COPY to Highlander Services COPP. at above address
	Analysis	Project No. Client/Project 24P L	Field Sample No./ Identification	MW-3 72313			MW-4 72314				Samplers: (Print) Relinquished by: (Signature)	1/4 /avarre Relinquished by: 000	No. Verk . (Signature)	Results by	Rush Charges Authorized REMARKS:	 Please Fill out all copies - Deliverer retains white copy for file

Highlander Services Corp.	Request and Chain of Custody Record	/ Texnes Ennie (Nortu) Gas Hont, Leal anty MM		71 x	6:20pm (or 68) I held - John - Ubled & (87 20) BMA	Hindle Totel netels -	iù Chlinile + TÒS	Waster & Let Actio Watle Organic 6240)	 Madi Total netals	10 Otheristo + TDS	Time: 2:25 (Signature) W. U. M. M. H. Time: 2:25 PM	Whether Time: 4 00 PM (Signature) A 1 00 C Time: 10104	Data Resulta To: Conarco)	Le 3 2.		0	1 126-689-868-812 2000 per-HS 115AU
	nalysis	Project No. Client/Project F 7	Field Sample No./ Identification	SIRCL S-MW				ALECT 2-2M			Samplers: (Print) Relinquished/by (Signature)	INE lauarez Relinquished by: NUL	VIGN KUVKI (Signature)	Results by: Delivered Toil Foce	Rush Charges Authorized REMARKS: YesNo	Fill out all co	White shripen

<i>ces Corp.</i> 9701 • (915)682-4559	and Chain of Custody Record $P_{\text{of}} \neq \mathcal{A}$	(with) CAS Hant lea lout, NW.	id Preser- ANALYSIS REQUESTED	10/10 . 1/0/1. 6 Drcane (0240)	S	1	10 Ollide - TDS.			•	Nelin Shelton	(Signature) (Signature) (Signature)	Data Results St.	2. C/T		- Lab retains Yellow copy & Return Pink copy to Highlander Services Corp. at above address b - 681-868-8 6 2000 2000 2000 - 75 11540
Highlander Services Corp. 308 W. Wall • Suite 320 • Midland, TX 79701 • (915)682-4559	Request and Chain	1 Tartes Euricol	Date Bate Bate Bate Bate Bate and B E Type(Liquid Time C C Sludge,Ect.)	× (1225	WILLEN Date: 4/24/97	Date: Time:	les.		1. 10
	Analysis R	Project No. Client/Project E. P. Inc.	Field Sample No./ Identification	FIEL (100, 121) 1-11/								WE Keiner (Signature) WWW	/1 in Kurhe (Signature)		Rush Charges Authorized REMARKS: Yes No	Please Fill out all copies - Deliverer retains White copyrfor file

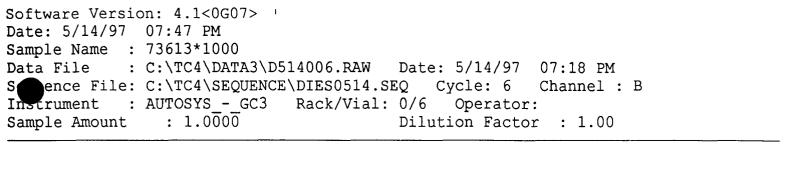
6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 AX 806 • 794 • 1298

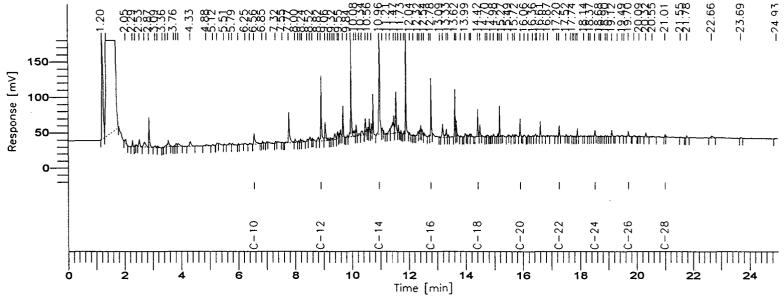
ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Mark Larson 1910 N. Big Spring St. Midland, TX 79705

May 15, 1997 Receiving Date: 05/14/97 Sample Type: Water/Free Product Project No: 787 Project Location: NA Prep Date: 05/14/97 Analysis Date: 05/14/97 Sampling Date: 05/12/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco -Evaluation North Plant

T73613 - MW-5 - Fingerprint

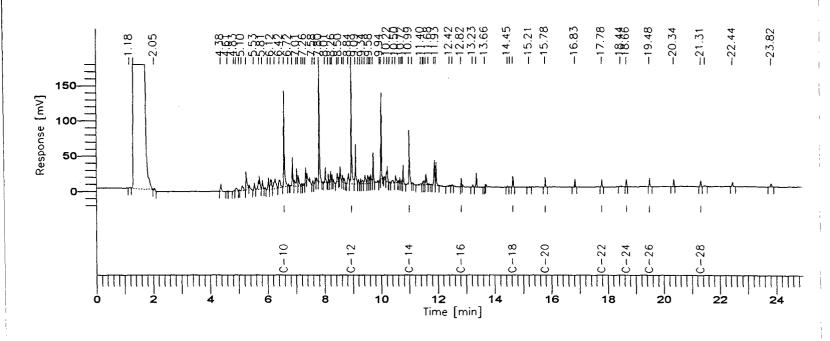
Fingerprint exhibited significant hydrocarbon peaks in the C10-C28 range consistent with Diesel Fuel. Lighter Hydrocarbons also present at lesser amount in the C6-C10 range consistent with condensate or gasoline.


CHEMIST: DH


Director, Dr. Blair Leftwich

5-15-97

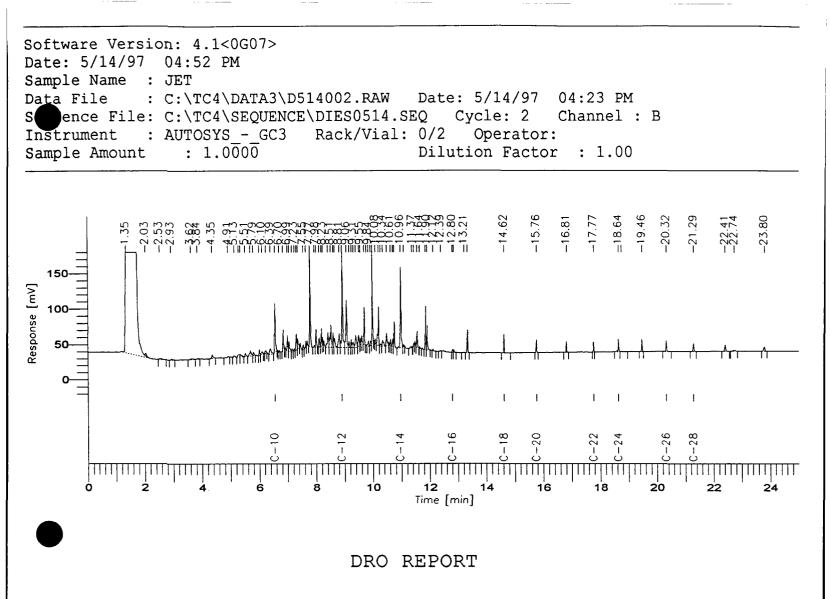
DATE



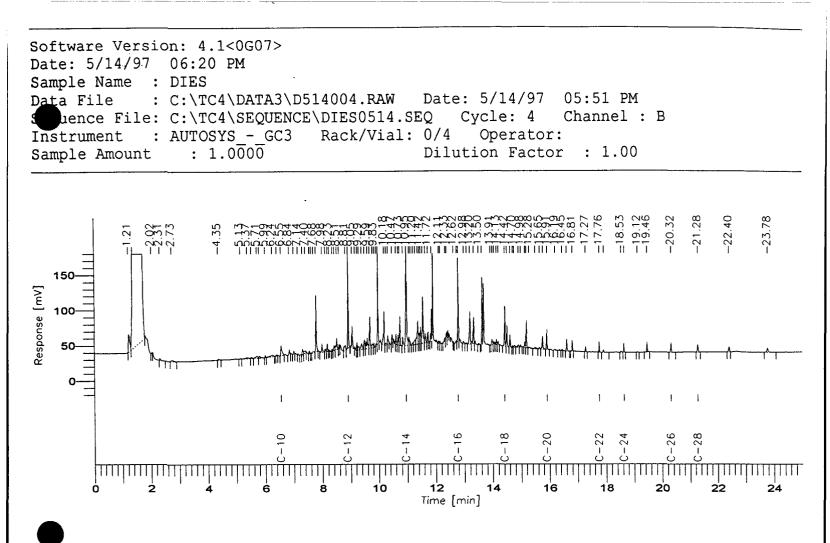
DRO REPORT

Time	Component	Adjusted	Raw	Area	Height
[min]	Name	Amount	Amount	[uV*sec]	[µV]
12.75 DI		193.6	193.6	2871712.5	1677403.6
19.70 C-		1.1	1.1	15571.9	7729.4
21.01 C-		0.6	0.6	7411.8	4086.9

Time [min]	Component Name	Adjusted Amount	Raw Amount	Area [uV*sec]	Height [µV]	
6.56 C-1	10	2.7	2.7	49314.4	15086.1	
6.85		5.7e-03	5.7e-03	5667.5	3038.6	
7.00		4.3e-03	4.3e-03	4333.0	2147.2	
-2^{2}_{-55}		4.8e-03	4.8e-03	4823.8	2407.6	
7.55		2.0e-03	2.0e-03	2030.5	1238.6	
7.77		0.1	0.1	107372.6	52585.6	
8.00		0.0	0.0	14943.3	5467.1	

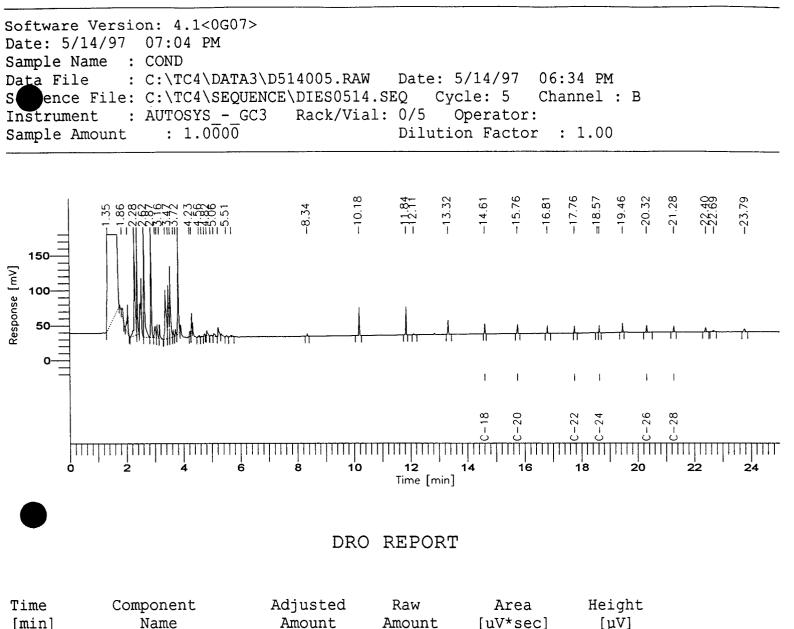

Software Versio	on: 4.1<0G07>
Date: 5/14/97	04:05 PM
Sample Name :	KER
Data File :	C:\TC4\DATA3\D514001.RAW
guence File:	C:\TC4\SEQUENCE\DIES0514.SEQ Cycle: 1 Channel : B
strument :	AUTOSYS - GC3 Rack/Vial: 0/1 Operator:
Sample Amount	: $1.0\overline{0}0\overline{0}$ Dilution Factor : 1.00

DRO REPORT

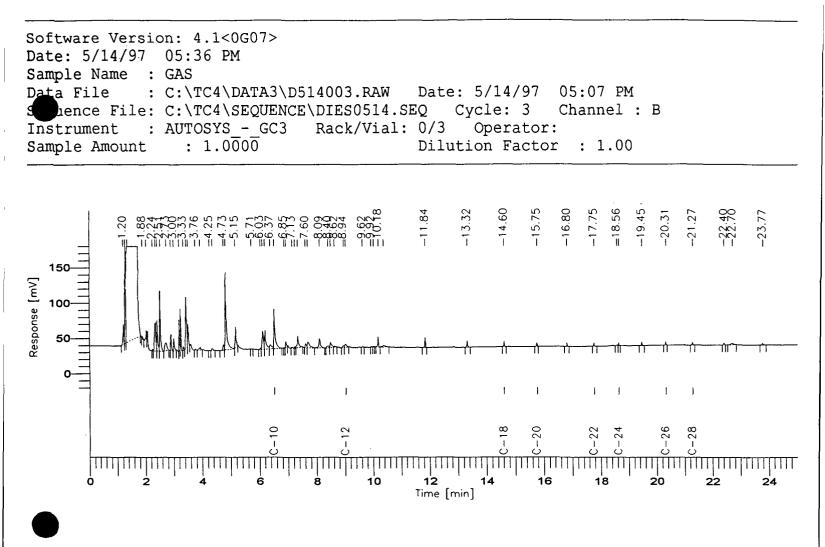

Time [min]	Compone: Name		Adjusted Amount	Raw Amount	Area [uV*sec]	Height [µV]	
12.75 DIES 19.48 C-26 21.31 C-28	5	ORGANIC	169.0 1.3 1.4	169.0 1.3 1.4	2507184.6 18139.9 17462.3	11990.4	

Time [min]	Component Name	Adjusted Amount	Raw Amount	Area [uV*sec]	Height [µV]
6.57 C-	-10	13.6	13.6	246537.4	159565.4
6.72		5.3e-03	5.3e-03	5320.2	3291.0
6.86		0.1	0.1	66501.1	40945.3
01		0.1	0.1	73447.7	26769.6
.07		0.0	0.0	37320.5	15298.5
7.19		9.0e-03	9.0e-03	8982.1	3848.9
7.26		7.4e-03	7.4e-03	7431.1	3063.1

Time	Component	Adjusted	Raw	Area	Height	
[min]	Name	Amount	Amount	[uV*sec]	[µV]	
12.75 DIESE 20.32 C-26 21.29 C-28	L RANGE ORGAN	IC 203.0 2.0 2.1	203.0 2.0 2.1	3010930.5 28083.4 25716.2	14929.9	


Time	Component	Adjusted	Raw	Area	Height	
[min]	Name	Amount	Amount	[uV*sec]	[µV]	
6.54 C-10 6.70 6.83 99 7.04 7.15 7.23	0	7.1 4.4e-03 0.0 0.0 0.0 0.0 8.7e-03	7.1 4.4e-03 0.0 0.0 0.0 0.0 8.7e-03	128887.7 4410.0 49626.2 38035.3 35673.3 10794.6 8653.3	84073.7 2834.3 34830.4 21377.2 14232.5 5218.1 3853.9	

DRO REPORT


Time	Component	Adjusted	Raw	Area	Height	
[min]	Name	Amount	Amount	[uV*sec]	[µV]	
12.75 DIES 20.32 C-26 21.28 C-28		213.8 1.7 1.8	213.8 1.7 1.8	3171308.6 24059.3 22171.8	14316.9	

Time	Component	Adjusted	Raw	Area	Height	
[min]	Name	Amount	Amount	[uV*sec]	[µV]	
6.55 C-10 6.84 6.99 14 7.30 7.40 7.54	0	2.5 0.0 8.8e-03 3.6e-03 0.0 0.0 8.9e-03	2.5 0.0 8.8e-03 3.6e-03 0.0 0.0 8.9e-03	45094.7 12876.4 8810.1 3573.8 17798.3 14350.6 8912.1	15975.1 7385.5 4739.5 2337.4 8954.5 3352.1 4328.3	

[min]	Name	Amount	Amount	[uV*sec]	[µV]
12.75 DIESEI 20.32 C-26 21.28 C-28	L RANGE ORGANIC	17.2 1.4 1.5	17.2 1.4 1.5	255399.0 20235.4 18895.3	176935.0 11004.5 9679.3

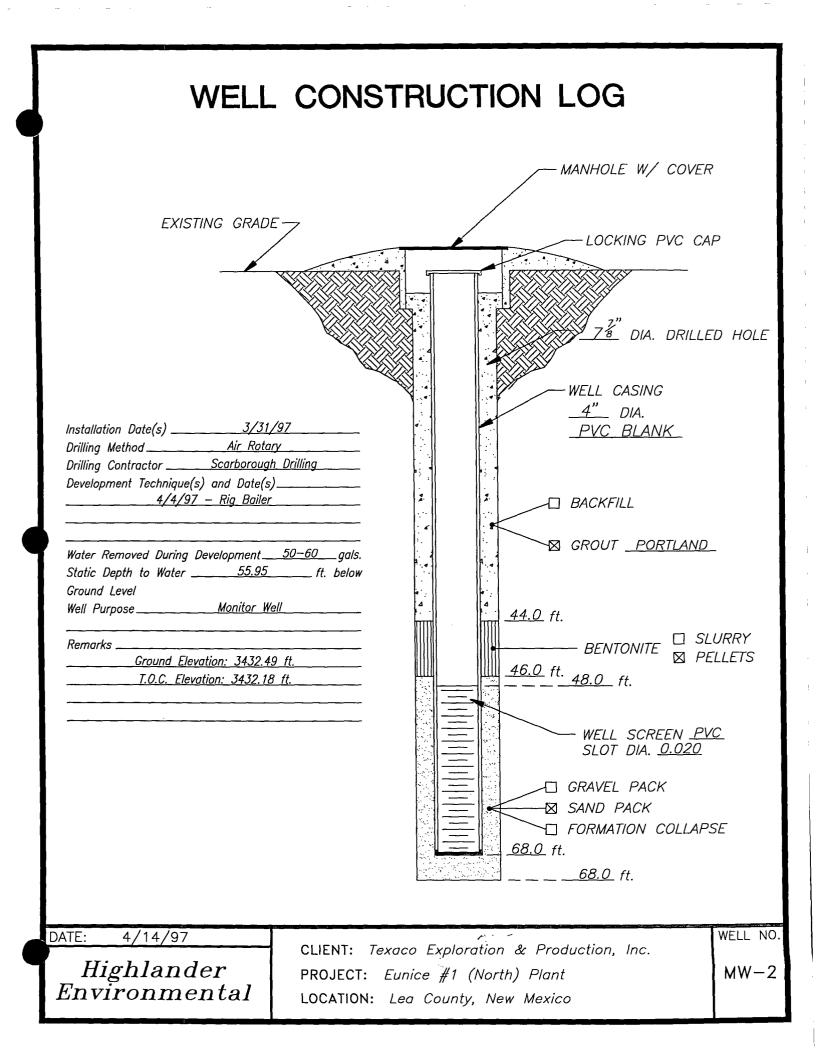
Time [min]	Component Name	Adjusted Amount	Raw Amount	Area [uV*sec]	Height [µV]	
8.34		6.4e-03	6.4e-03	6414.7	4548.5	
10.18		0.1	0.1	59023.3	40827.3	
11_84		0.1	0.1	55215.8	40122.3	
1 1 1 13.32		4.2e-03	4.2e-03	4225.4	2064.1	
13.32		0.0	0.0	32861.1	22668.8	
14.61 C-3	18	1.3	1.3	23995.2	17355.9	
15.76 C-2	20	1.1	1.1	19430.5	13748.1	

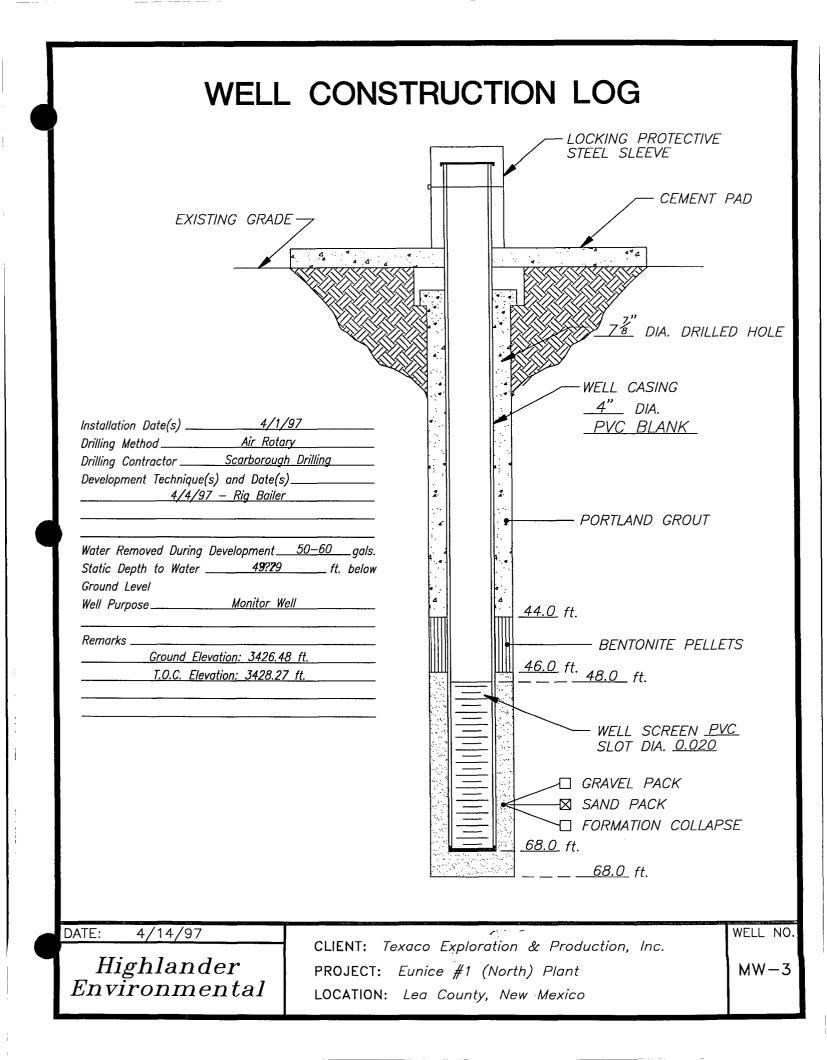
DRO REPORT

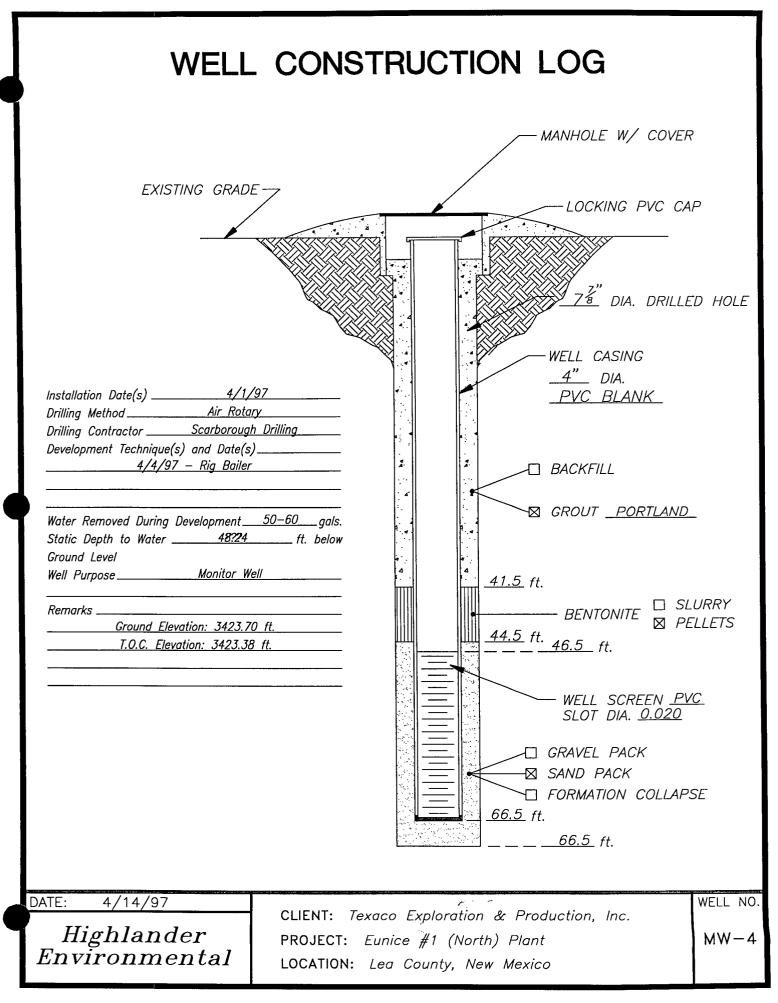
Time	Component	Adjusted	Raw	Area	Height
[min]	Name	Amount	Amount	[uV*sec]	[µV]
6.50 C	IESEL RANGE ORGANIC	8.9	8.9	162348.7	58885.7
12.75 D		28.1	28.1	416574.9	153713.1
20.31 C		0.6	0.6	8456.0	4868.4
21.27 C		0.7	0.7	8365.5	3863.6

Time	Component	Adjusted	Raw	Area	Height				
[min]	Name	Amount	Amount	[uV*sec]	[µV]				
6.85 6.91 13 7.23 7.33 7.60		1.8e-03 0.0 5.1e-03 3.5e-03 0.1 0.0	1.8e-03 0.0 5.1e-03 3.5e-03 0.1 0.0	1790.4 18018.9 5085.7 3538.3 55982.0 18136.1	1189.1 8734.8 1613.1 2297.6 16551.5 5591.3				

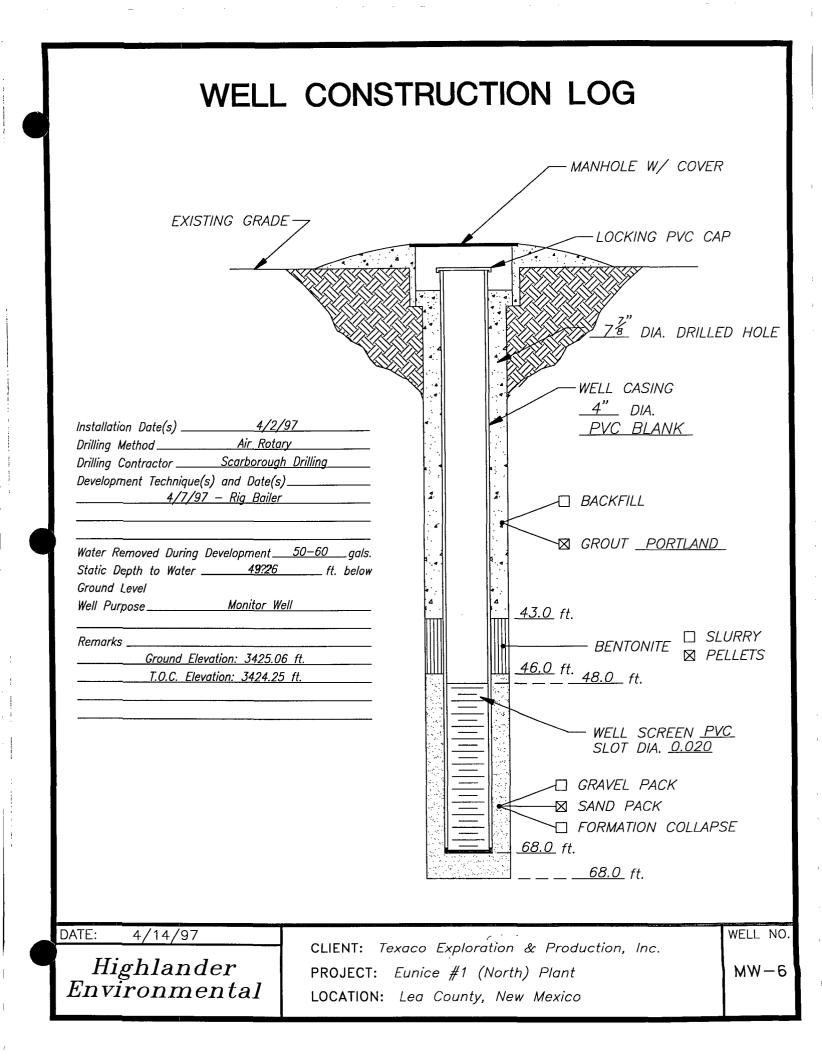
	20				s requested	print 73613	ayer and			Ľ	5-15-97		Date: S/IS Time: C: U	Date: 5 -14 -	Dranch Q			s corp. at above address
		Corp.	915)662-4559 Custody Record		Preser- vative ANALYSIS	G. P. Fingerprint	product 1						(Signature)	(Signature) (Mhndll)	Mark Larson		<i>₀0/₀0/₀</i> 0	Pink copy to Highlander Services
		Highlander Services Corp.	wall Suite 320 · Midland, TX 79701 · (9 Uest and Chain of	Plant	te b b Sample d b E Type(Liquid ne c O Sludge,Ect.)	12/97 Water fire grad.						-1-6-	Date: 5/13/97	Nate: (Sign		<u>م</u>	later Thurs.	Lab retains Yellow copy & Return Pink
. :		IH	Analvsis Reque	Toxars - No		ch2								(Signature)	keunquisned by: (Signature)	Delivered To: Trace Analogia	REMARKS: Trued this no	Deliverer retains White copy for file – I
•	13 LA	and the second sec		Project No. Client/Project	Field Sample No./ Identification	MW.S			-					(Signal (Signal)	(Sig		Rush Charges Authorized REN Yes X No 7	Please Fill out all copies - Deliver


. .


APPENDIX D


Monitor Well Installation Records

r


i

APPENDIX E

Hydraulic Conductivity (Slug) Tests

1 . -

Hydraulic Co Using Bouwe			ons for Unconfined Aquifers
Monitor		MW-2	Date: 04/11/97
L =	13.02	feet	Length of the screen (if greater than H, take $L = H$)
rw =	0.3281		Well radius or radius of casing plus thickness of gravel envelope
rc =	0.2275	feet	Well casing radius
D =	50	feet	Saturated thickness of the aquifer at the well
H =	13.02	feet	Height of the static water column in the well
L/rw =	39.68	-	
In[(D-H)/rw]	4.72	_ (If In[(D-H)/r	w] exceeds 6 use the maximum value of 6)
From Figure I A = B =	relating co 2.8 0.5	_	

 $(1/t) \ln(Yo/Yt) = 0.0109 \text{ 1/sec}$ $\ln(\text{Re/rw}) = [1.1/\ln(\text{H/rw}) + (\text{A} + \text{B} \ln[(\text{D}-\text{H})/\text{rw}])/(\text{L/rw})]^{-1}$

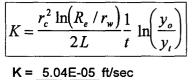
0.96 feet

0.50 feet @ t =

)/(L/rw)]^-1 for D>H for D=H

= $[1.1/\ln(H/rw) + C/(L/rw)]^{-1}$ = 2.3314

Where Re = Effective radius and A, B, and C are derived from Bouwer & Rice curves.


60 sec

(Initial drawdown)

Falling head slug test

From Y v/s t graph Yt =

Yo =

4.3527 ft/day

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

1. -

540 <u>MW-2</u> 480 420 360 Texaco - Eunice North Gas Plant MW-2 Falling Head Slug Test 1 1 300 Time in sec. 240 180 120 80 10 6 0.1 0.01 teet ni Y .

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

ø		. ~			
Enviror	SE1000 nmenta /14 08	l L	og	ge	r
Unit# (02098	Те	st	1	
Setups: Type Mode I.D.		INP Leve TOC 050	el	(
Reference Linearity Scale fac Offset Delay mSH		5 1 - 5	Ο.	11 06 32	0 0 0
Step 0 (04/11	12:	36	:3	9
Elapsed 5	Time	INP	UT 		1
0.0000 0.003 0.006 0.013 0.016 0.023 0.026 0.023 0.026 0.033 0.026 0.033 0.026 0.033 0.036 0.040 0.043 0.046 0.043 0.046 0.050 0.053 0.056 0	0 3 6 0 3 0 3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		767772232092344556	5473277273427666160

ï

Ą. -

n -

Mw-2.fal

0.2700 0.2733 0.2766 0.2800 0.2833 0.2866 0.2900 0.2933 0.2966 0.3000 0.3033 0.3066 0.3100 0.3133 0.3166 0.3200 0.3233 0.3266 0.3300 0.3233 0.3266 0.3333 0.3500 0.3666 0.3833 0.4000 0.4166 0.4333 0.4500 0.4666 0.4833 0.5500	54.851 54.856 54.856 54.861 54.861 54.861 54.866 54.860 54.870 54.870 54.870 54.870 54.875 54.904 54.904 54.923 54.937 54.947 54.956 54.971 54.975 54.975
0.4500 0.4666 0.4833 0.5000 0.5166 0.5333 0.5500 0.5666 0.5833 0.6000	54.937 54.947 54.961 54.971 54.975 54.985 55.080 54.932 55.009
0.6000 0.6166 0.6333 0.6500 0.6666 0.6833 0.7000 0.7166 0.7333 0.7500 0.7666 0.7833	55.009 55.014 55.023 55.028 55.037 55.042 55.047 55.057 55.061 55.066 55.076
0.8000 0.8166 0.8333 0.8500 0.8666	55.080 55.090 55.090 55.100 55.104

11 -

ł

0.8833 0.9000 0.9166 0.9333 0.9500 0.9666 0.9833 1.0000 1.2000 1.2000 1.4000 1.6000 2.0000 2.2000 2.2000 2.2000 2.4000 2.6000 2.6000 3.0000 3.0000 3.2000 3.4000 3.6000 3.8000 4.0000 4.2000 4.4000 4.6000 4.8000 5.0000 5.2000 5.4000 5.8000 6.0000 6.0000 6.6000	55.109 55.114 55.123 55.123 55.128 55.133 55.138 55.138 55.138 55.147 55.219 55.271 55.310 55.353 55.410 55.434 55.434 55.436 55.472 55.520 55.520 55.520 55.520 55.520 55.520 55.520 55.520 55.520 55.553 55.553 55.5577 55.5577 55.577 55.577 55.577 55.577 55.577 55.577 55.577 55.577 55.587 55.591 55.591
3.0000 3.2000	55.486
3.4000	55.510
3.6000	55.520
3.8000	55.529
4.0000	55.539
4.2000	55.544
4.4000	55.553
4.6000	55.558
4.8000	55.567
5.2000	55.567
5.2000	55.577
5.4000	55.577
5.6000	55.572
5.8000	55.582
6.0000	55.587
6.2000	55.587
6.4000	55.591
6.6000	55.591
6.8000 7.0000	55.596
7.2000	55.596
7.4000	55.596
7.6000	55.601
7.8000	55.601
8.0000	55.606
8.2000	55.596
8.4000	55.601
8.6000	55.606
8.8000	55.606
9.0000	55.606
9.2000	55.610
9.4000	55.606
9.6000	55.615
9.8000	55.610

1

-

Mw-2.fal

ł

10.0000	55.615
12.0000	55.615
14.0000	55.620
16.0000	55.625
18.0000	55.625
20.0000	55.696

-- --

~ ~

A: -

Page 5

••••

Texaco - Eunice North Gas Plant, NM. Eunice, NM.					
Hydraulic Conductivity Calculations					
-			I for Unconfined Aquifers		
Monitor	well:	<u>MW-2</u>	Date: <u>04/11/97</u>		
L≃	13.02	feet	Length of the screen (if greater than H, take $L = H$)		
rw =	0.3281	-	Well radius or radius of casing plus thickness of gravel envelope		
rc =	0.2275	feet	Well casing radius		
D =	50	feet	Saturated thickness of the aquifer at the well		
H =	13.02	feet	Height of the static water column in the well		
L/rw =	39.68	-			
In[(D-H)/rw] = 4.72 (If (D-H)/rw exceeds 6 use the maximum value of 6)					
		-			

From Figure relating coefficients A, B, C to L/rw

A = 2.8B = 0.5 C = NA Used only if D = H

From Y v/s t graph

 Yt =
 0.50 feet @ t =
 60 sec

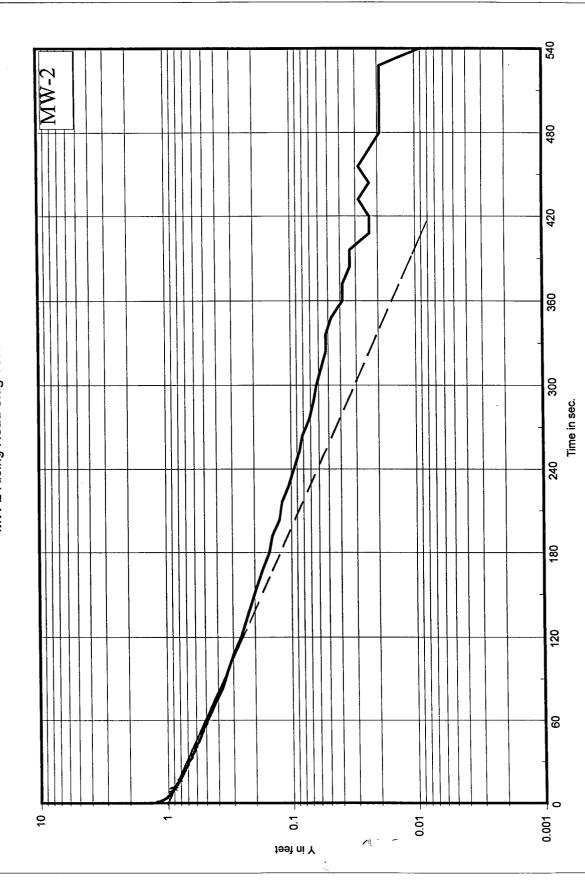
 Yo =
 1.00 feet
 (Initial drawdown)

 (1/t) ln(Yo/Yt) = 0.0116
 1/sec

 $ln(Re/rw) = [1.1/ln(H/rw) + (A + B ln[(D-H)/rw])/(L/rw)]^{-1}$ for D>H = [1.1/ln(H/rw) + C/(L/rw)]^{-1} for D=H = 2.3314

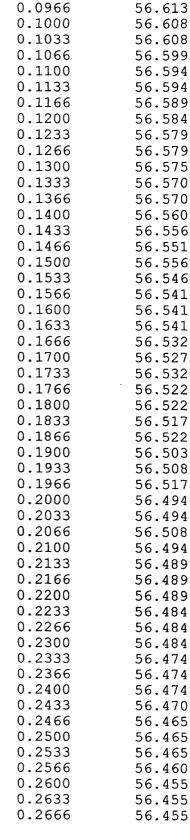
Where Re = Effective radius and A, B, and C are derived from Bouwer & Rice curves.

Rising head slug test


$$K = \frac{r_c^2 \ln(R_e / r_w)}{2L} \frac{1}{t} \ln\left(\frac{y_o}{y_t}\right)$$

K = <u>5.35E-05</u> ft/sec <u>4.6251</u> ft/day

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.


Texaco - Eunice North Gas Plant MW-2 Rising Head Slug Test

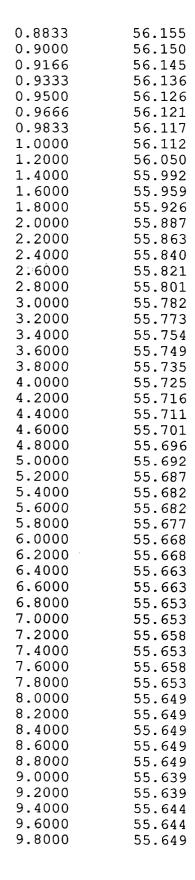
Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

Enviro	SE1000 nmenta /14 08	l Logger
Unit#	02098	Test 1
Setups: Type Mode I.D.		INPUT 1 Level (F) TOC 05029
Reference Linearit Scale fa Offset Delay mS	ctor	55.630 0.110 15.060 -0.320 50.000
Step 1	04/11	12:56:57
		INPUT 1
0.000 0.003 0.006 0.010 0.013 0.023 0.026 0.023 0.026 0.030 0.033 0.036 0.040 0.040 0.046 0.050 0.053 0.056 0.053 0.056 0.066 0.070 0.073 0.076 0.083 0.086 0.090 0.093	0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 3 6 0 0 3 6 0 0 3 6 0 0 3 6 0 0 0 3 6 0 0 0 3 6 0 0 0 0	56.952 56.923 56.894 56.861 56.842 56.842 56.813 56.780 56.775 56.766 56.747 56.727 56.727 56.718 56.708 56.699 56.680 56.689 56.665 56.665 56.665 56.651 56.651 56.642 56.627 56.627 56.622 56.618

1 -

N - -

Mw-2.ris



0.2700 0.2733 0.2766 0.2800 0.2833 0.2866 0.2900 0.2933 0.2966 0.3000 0.3033 0.3066 0.3100 0.3133 0.3166 0.3200 0.3233 0.3266 0.3300 0.3666 0.3833 0.4000 0.4666 0.4833 0.5000 0.5166 0.5333 0.5500 0.5666 0.5833 0.6000 0.5666 0.5833 0.6000 0.5666 0.5833 0.6000 0.5666 0.5833 0.6000 0.5666 0.5833 0.6000 0.5666 0.5833 0.6000 0.5666 0.6833 0.7000 0.7166 0.7833 0.7500 0.7666 0.7833 0.8000 0.8166 0.8333 0.8500 0.8666	56.451 56.436 56.436 56.436 56.436 56.432 56.432 56.427 56.422 56.422 56.422 56.417 56.412 56.412 56.412 56.408 56.393 56.384 56.360 56.327 56.322 56.317 56.322 56.327 56.327 56.293 56.279 56.279 56.279 56.279 56.274 56.264 56.226 56.245 56.241 56.226 56.245 56.241 56.226 56.241 56.264 56.279 56.274 56.264 56.226 56.245 56.241 56.226 56.221 56.221 56.217 56.207 56.198 56.193 56.164 56.159
--	--

Mw-2.ris

.

n: -

n: -

Mw-2.ris

10.0000	55.639
12.0000	55.644
14.0000	55.639
16.0000	55.634

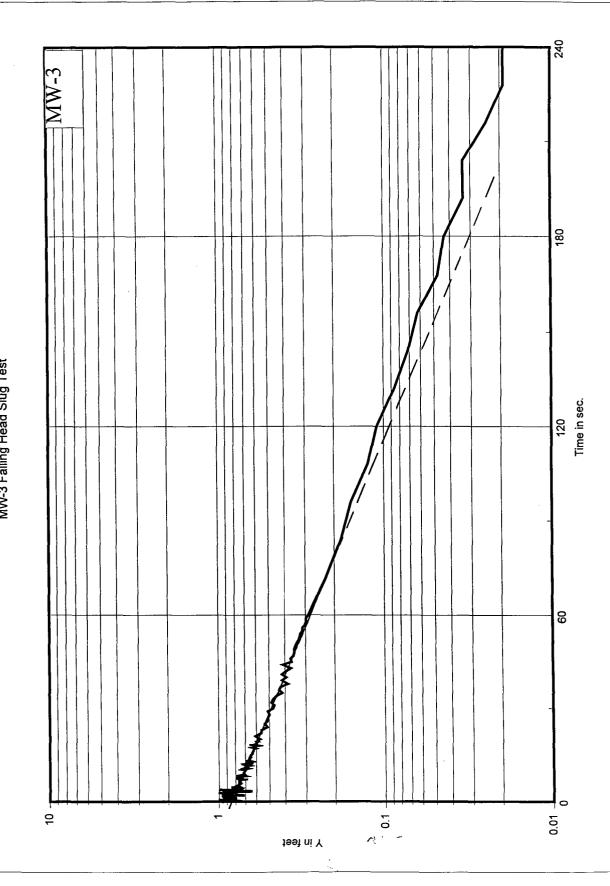
1

Texaco - Eunice North Gas Plant, NM. 1 Eunice, NM. **Hydraulic Conductivity Calculations** Using Bouwer and Rice Method for Unconfined Aquifers Monitor well: MW-3 Date: 04/11/97 Length of the screen (if greater than H, take L = H) L = 19.07 feet 0.3281 feet Well radius or radius of casing plus thickness of gravel envelope rw = 0.2275 feet Well casing radius rc = 50 feet Saturated thickness of the aquifer at the well D = Height of the static water column in the well H = 19.13 feet L/rw = 58.12 4.54 (If In[(D-H)/rw] exceeds 6 use the maximum value of 6) ln[(D-H)/rw] =From Figure relating coefficients A, B, C to L/rw 2.8 A = в= 0.5 C = NA Used only if D = H From Y v/s t graph Yt = 0.28 feet @ t = 60 sec Yo = 0.85 feet (Initial drawdown) $(1/t) \ln(Yo/Yt) =$ 0.0185 1/sec for D>H

 $ln(Re/rw) = [1.1/ln(H/rw) + (A + B ln[(D-H)/rw])/(L/rw)]^{-1}$ for D>H = [1.1/ln(H/rw) + C/(L/rw)]^{-1} for D=H = 2.7947

Where Re = Effective radius and A, B, and C are derived from Bouwer & Rice curves.

Falling head slug test


$$K = \frac{r_c^2 \ln(R_e / r_w)}{2L} \frac{1}{t} \ln\left(\frac{y_o}{y_t}\right)$$

K = <u>7.02E-05</u> ft/sec <u>6.0642</u> ft/day

. -

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

Texaco - Eunice North Gas Plant MW-3 Falling Head Slug Test

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

L

Enviror	5E1000 nmenta /14 08	l Logo	jer
Unit# (02098	Test	2
Setups:		INPUT	1
Type Mode I.D.		Level TOC 05029	(F)
Reference Linearity Scale fac Offset Delay mSI	y ctor	48.2 0.2 15.0 -0.3 50.0	110 060 320
Step 0	04/11	13:44	:12
Elapsed 0.000 0.003 0.006 0.010 0.013 0.016 0.020 0.023 0.026 0.030 0.033 0.036 0.040 0.040 0.043 0.046 0.040 0.043 0.046 0.050 0.053 0.055 0.055 0.055 0.055 0.066 0.060 0.063 0.066 0.070 0.063 0.066 0.070 0.073 0.066 0.070 0.073 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.070 0.063 0.066 0.060 0.060 0.060 0.060 0.060 0.050 0.055 0.066 0.060 0.080 0.080 0.080 0.080 0.090 0.090 0.093	0360360360360360360360360360360360360	INPUT 46.9 47.4	956 453 4296 3301 32439 4188 408 2219 4338 23109 4338 4109 4338 4109 4558 4558 4553 463 348 4434 420

Page 1

1

0.150047.4820.153347.4820.156647.4870.160047.4910.163347.4910.166647.496	$\begin{array}{cccccc} 0.1500 & 47.482 \\ 0.1533 & 47.482 \\ 0.1566 & 47.487 \\ 0.1600 & 47.491 \\ 0.1633 & 47.491 \\ 0.1666 & 47.496 \\ 0.1700 & 47.501 \\ 0.1733 & 47.477 \\ 0.1766 & 47.520 \\ 0.1800 & 47.491 \\ 0.1833 & 47.510 \\ 0.1866 & 47.496 \\ 0.1900 & 47.501 \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0966 0.1000 0.1033 0.1066 0.1100 0.1133 0.1166 0.1200 0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466	47.429 47.434 47.439 47.448 47.439 47.439 47.458 47.491 47.424 47.467 47.467 47.467 47.467 47.496 47.496 47.496 47.453 47.487
	0.173347:4770.176647.5200.180047.4910.183347.5100.186647.4960.190047.501	0.173347:4770.176647.5200.180047.4910.183347.5100.186647.4960.190047.5010.193347.5390.196647.5060.200047.5250.203347.5060.206647.5530.210047.506	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.1500 0.1533 0.1566 0.1600 0.1633 0.1666	47.482 47.482 47.487 47.491 47.491 47.491

.

1. -

Page 2

Mw-3.fal

0.2700	47.568
0.2733	47.573
0.2766	47.573
0.2800	47.577
0.2833	47.582
0.2866	47.592
0.2900	47.563
0.2933	47.582
0.2966	47.592
0.3000	47.611
0.3033	47.573
0.3066	47.601
0.3100	47.596
0.3133	47.601
0.3166	47.601
0.3200	47.596
0.3233	47.611
0.3266	47.606
0.3300	47.606
0.3333	47.625
0.3500	47.592
0.3666	47.635
0.3833	47.639
0.4000	47.682
0.4166	47.663
0.4333	47.687
0.4500	47.687
0.4666	47.697
0.4833	47.687
0.5000	47.721
0.5166	47.730
0.5333	47.711
0.5500	47.721
0.5666	47.744
0.5833	47.778
0.6000	47.759
0.6166	47.768
0.6333	47.811
0.6500	47.778
0.6666	47.802
0.6833 0.7000 0.7166	47.778 47.802
0.7333 0.7500	47.826 47.783 47.830
0.7666	47.826
0.7833	47.840
0.8000	47.845
0.8166	47.845
0.8333	47.850
0.8500	47.854
0.8666	47.864

n: -

L

0.8833 0.9000 0.9166 0.9333 0.9500 0.9666 0.9833 1.0000 1.2000 1.2000 1.4000 1.8000 2.0000 2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000 4.0000 4.2000 4.4000 4.6000 4.2000 5.6000 5.2000 5.4000 5.6000 5.2000 5.4000 5.6000 5.8000 6.0000 6.0000 6.8000 7.0000 7.4000 7.6000 7.8000 8.0000 8.2000	47.869 47.873 47.883 47.883 47.883 47.892 47.897 47.897 47.907 47.907 47.969 48.012 48.036 48.069 48.033 48.107 48.122 48.131 48.146 48.160 48.160 48.160 48.160 48.160 48.174 48.174 48.174 48.179 48.184 48.179 48.189 48.189 48.189 48.189 48.193 48.1
8.0000 8.2000	48.193 48.193 48.193

Mw-3.fal

10.0000	48.193
12.0000	48.198
14.0000	48.193
16.0000	48.193
18.0000	48.193

Page 5

n'

Texaco - Eunice North Gas Plant, NM. Eunice, NM. Hydraulic Conductivity Calculations

Using Bouwer and Rice Method for Unconfined Aquifers Monitor well: MW-3 Date: 04/11/97

L =	13.02 fe	eet	Length of the screen (if greater than H, take $L = H$)
rw =	0.3281 fe	eet	Well radius or radius of casing plus thickness of gravel envelope
rc =	0.2275 fe	eet	Well casing radius
D =	50 fe	eet	Saturated thickness of the aquifer at the well
H =	13.02 fe	eet	Height of the static water column in the well
L/rw =	39.68		
In[(D-H)/r	4.72 (1	lf (D-H)/rw	exceeds 6 use the maximum value of 6)

From Figure relating coefficients A, B, C to L/rw

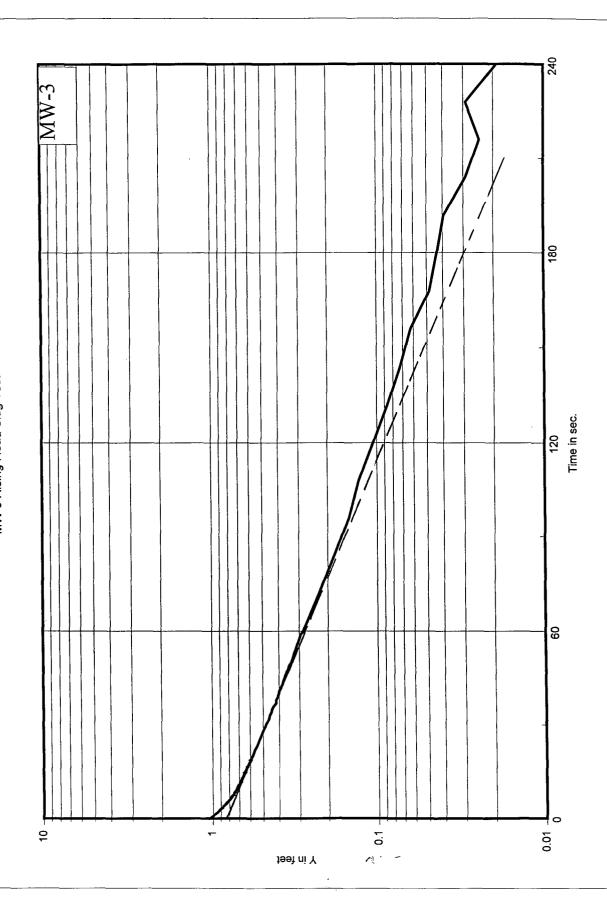
A = 2.8 B = 0.5C = NA Used only if D = H

From Y v/s t graph

 $Yt = \underbrace{0.28 \text{ feet } @ t = \underbrace{60 \text{ sec}}_{\text{(Initial drawdown)}}$ $(1/t) \ln(Yo/Yt) = \underbrace{0.0179}_{\text{(Initial drawdown)}} 1/\text{sec}$

ln(Re/rw) = [1.1/ln(H/rw) + (A + B ln[(D-H)/rw])/(L/rw)]^-1	for D>H
= [1.1/in(H/rw) + C/(L/rw)]^-1	for D=H
= 2.3314	

Where Re = Effective radius and A, B, and C are derived from Bouwer & Rice curves.


Rising head slug test

$$K = \frac{r_c^2 \ln(R_e / r_w)}{2L} \frac{1}{t} \ln\left(\frac{y_o}{y_t}\right)$$

K = <u>8.30E-05</u> ft/sec <u>7.1699</u> ft/day

1

Texaco - Eunice North Gas Plant MW-3 Rising Head Slug Test

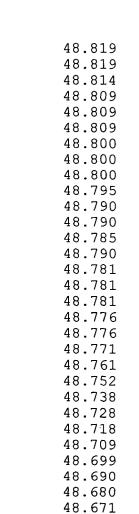
Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

	Er	ıv	i	ro	nı	ne	000 nt <i>a</i> 08	1	Lc 4	g	g	er	
	Ur	ni	t	#	0	20	98	т	es	st		2	
Se 				:			_	IN 	PU	лт 		1	-
Ту Мо І.	de	3						Le TO 05	С			(F)
Re Li Sc Of De	ne al	e e se	r t	it fa	с У	to	r		0 15 -0). ;.).	1 0 3	90 10 60 20 00	
St	eŗ)	1		0	4/	11	14	:0)4	:	09	
E1							e -						
		()	000000000000000000000000000000000000000	000111222333444555666677788899	60360360360360						100000000000000000000000000000000000000	321098765432110987665488444 321098723849505665488444 322100987665488444 322100	

1. -

l

1


i

0.0966	48.995
0.1000	48.986
0.1033	48.981
0.1066	48.976
0.1100	48.971
0.1133	48.962
0.1166	48.967
0.1200	48.962
0.1233	48.967
0.1266	48.962
0.1300	48.943
0.1333	48.938
0.1366	48.938
0.1400	48.929
0.1433	48.929
0.1466	48.929
0.1500	48.929
0.1533	48.929
0.1566	48.929
0.1500	48.929
0.1533	48.929
0.1566	48.929
0.1600	48.905
0.1533	48.905
0.1666	48.905
0.1700	48.905
0.1733	48.895
0.1666	48.890
0.1700	48.881
0.1733	48.881
0.1666	48.871
0.1700	48.871
0.1733	48.866
0.1666	48.862
0.1900	48.862
0.1833	48.862
0.1866	48.862
0.2000	48.862
0.2033	48.862
0.2066	48.862
0.2000	48.862
0.2133	48.862
0.2266	48.862
0.2200	48.862
0.2233	48.862
0.2266	48.862
0.2200	48.862
0.2333	48.862
0.2266	48.862
0.2300	48.862
0.2333	48.862
0.2266	48.862
0.2300	48.862
0.2333	48.862
0.2266	48.862
0.2300	48.862
0.2333	48.862
0.2266	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.862
0.2466	48.862
0.2400	48.862
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2433	48.833
0.2466	48.833
0.2400	48.833
0.2430	48.833
0.24	48.8
0.2366	48.843
0.2400	48.838
0.2433	48.833

n: -

I.

I.

48.661

48.652

48.647

48.637

48.633

48.623

48.609

48.609

48.599

48.594

48.590

48.580

48.570

48.566

48.561

48.556

48.551

48.542

48.537

48.528

48.523

48.518

0.2700

0.2733

0.2766

0.2800

0.2866

0.2933

0.2966

0.3000

0.3033

0.3066

0.3100 0.3133

0.3166

0.3200

0.3233

0.3266

0.3300

0.3333

0.3500

0.3666

0.3833

0.4000

0.4166 0.4333

0.4500

0.4666

0.4833

0.5000

0.5166

0.5333

0.5500

0.5666

0.5833

0.6000

0.6166

0.6333

0.6500

0.6666

0.6833

0.7000

0.7166

0.7333

0.7500

0.7666

0.7833

0.8000

0.8166

0.8333

0.8500

0.8666

Mw-3.ris

2	•	-
---	---	---

i

ŀ

48.513

48.508 48.504 48.499 48.494

0.8833

0.000 0.9000 0.9166 0.9333 0.9500

İ

0.9833 48.485 1.0000 48.475 1.2000 48.418 1.4000 48.375 1.6000 48.375 1.6000 48.341 1.8000 48.322 2.0000 48.298 2.2000 48.298 2.2000 48.298 2.2000 48.298 2.2000 48.298 2.2000 48.279 2.4000 48.265 2.6000 48.255 2.8000 48.241 3.0000 48.232 3.4000 48.222 3.6000 48.217 4.000 48.212 4.000 48.208 4.6000 48.203 5.0000 48.198 5.2000 48.198 5.4000 48.198 5.4000 48.193 6.6000 48.193 6.6000 48.193 7.0000 48.193 7.0000 48.193 7.4000 48.193 7.6000 48.193 7.6000 48.193 7.8000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 </th <th>0.9500</th> <th>$48.494 \\ 48.489$</th>	0.9500	$48.494 \\ 48.489$
1.2000 48.418 1.4000 48.375 1.6000 48.341 1.8000 48.341 1.8000 48.322 2.0000 48.298 2.2000 48.298 2.2000 48.298 2.2000 48.279 2.4000 48.255 2.6000 48.255 2.6000 48.255 2.8000 48.217 3.0000 48.222 3.4000 48.212 4.000 48.212 4.000 48.217 4.4000 48.208 4.6000 48.208 4.6000 48.208 4.8000 48.208 4.8000 48.198 5.2000 48.198 5.2000 48.198 5.4000 48.198 5.4000 48.193 6.0000 48.193 6.0000 48.193 6.0000 48.193 7.0000 48.193 7.0000 48.193 7.0000 48.193 7.6000 48.193 8.000 48.193 8.000 48.193 8.000 48.193 8.000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.4000 48.193 9.4000 48.193 9.4000 48.193 9.6000 48.193	0.9833	48.485
1.4000 48.375 1.6000 48.341 1.8000 48.322 2.0000 48.298 2.2000 48.298 2.2000 48.298 2.2000 48.298 2.2000 48.298 2.2000 48.279 2.4000 48.265 2.6000 48.255 2.8000 48.241 3.0000 48.236 3.2000 48.232 3.4000 48.222 3.6000 48.217 3.8000 48.212 4.0000 48.208 4.6000 48.208 4.6000 48.208 4.6000 48.203 5.0000 48.198 5.2000 48.198 5.4000 48.198 5.4000 48.193 6.0000 48.193 6.0000 48.193 6.0000 48.193 7.0000 48.193 7.0000 48.193 7.0000 48.193 7.6000 48.193 7.8000 48.193 8.000 48.193 8.000 48.193 8.000 48.193 8.000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 <td></td> <td></td>		
1.6000 48.341 1.8000 48.322 2.0000 48.298 2.2000 48.298 2.2000 48.279 2.4000 48.265 2.6000 48.255 2.8000 48.241 3.0000 48.232 3.4000 48.232 3.4000 48.222 3.6000 48.217 3.8000 48.212 4.0000 48.212 4.0000 48.208 4.6000 48.203 5.0000 48.198 5.2000 48.198 5.4000 48.198 5.4000 48.198 6.0000 48.193 6.4000 48.193 6.4000 48.193 7.0000 48.193 7.0000 48.193 7.0000 48.193 7.0000 48.193 7.6000 48.193 7.8000 48.193 8.000 48.193 8.000 48.193 8.000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 <td></td> <td></td>		
1.8000 48.322 2.0000 48.298 2.2000 48.279 2.4000 48.265 2.6000 48.255 2.8000 48.241 3.0000 48.236 3.2000 48.232 3.4000 48.222 3.6000 48.217 3.8000 48.212 4.0000 48.212 4.0000 48.208 4.6000 48.208 4.6000 48.203 5.0000 48.198 5.2000 48.198 5.4000 48.198 5.6000 48.193 6.0000 48.193 6.0000 48.193 6.0000 48.193 6.0000 48.193 6.0000 48.193 6.0000 48.193 7.0000 48.193 7.0000 48.193 7.6000 48.193 7.8000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 8.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000 48.193 9.0000		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.8000	48.322
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.0000	48.298
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.2000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.6000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.8000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.0000	48.236
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.2000	48.232
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.6000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.8000	48.222
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		48.212
4.6000 48.208 4.8000 48.203 5.0000 48.198 5.2000 48.198 5.2000 48.198 5.4000 48.198 5.6000 48.198 5.6000 48.193 6.0000 48.193 6.2000 48.193 6.4000 48.193 6.4000 48.193 6.6000 48.193 7.0000 48.189 7.0000 48.193 7.6000 48.193 7.6000 48.193 8.2000 48.193 8.4000 48.193 8.4000 48.193 8.6000 48.193 8.000 48.193 9.0000 48.193 9.0000 48.193 9.4000 48.193 9.6000 48.193		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 8000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.0000	48.198
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.2000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.4000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.8000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6.0000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
7.000048.1897.200048.1987.400048.1937.600048.1937.800048.1898.000048.1938.200048.1938.400048.1938.600048.1939.000048.1939.000048.1939.000048.1939.200048.1899.400048.1939.600048.193		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
7.600048.1937.800048.1898.000048.1938.200048.1938.400048.1938.600048.1938.800048.1939.000048.1939.200048.1899.400048.1939.600048.193	7.2000	48.198
7.800048.1898.000048.1938.200048.1938.400048.1938.600048.1939.000048.1939.200048.1899.400048.1939.600048.193		
8.000048.1938.200048.1938.400048.1938.600048.1938.800048.1939.000048.1939.200048.1899.400048.1939.600048.193		
8.200048.1938.400048.1938.600048.1938.800048.1939.000048.1939.200048.1899.400048.1939.600048.193		
8.600048.1938.800048.1939.000048.1939.200048.1899.400048.1939.600048.193	8.2000	48.193
8.800048.1939.000048.1939.200048.1899.400048.1939.600048.193		
9.000048.1939.200048.1899.400048.1939.600048.193		
9.200048.1899.400048.1939.600048.193		
9.6000 48.193	9.2000	48.189
	2.0000	10.107

1. -

I

10.0000 48.193

八

Texaco - Eunice North Gas Plant, NM. Eunice, NM. Hydraulic Conductivity Calculations

-	Using Bouwer and Rice Method for Unconfined Aquifers					
_	Monitor well:	MW-4	Date: 04/11/97			
L=	18.86	feet	Length of the screen (if greater than H, take $L = H$)			
rw =	0.3281	feet	Well radius or radius of casing plus thickness of gravel envelope			
rc =	0.2275	feet	Well casing radius			
D≃	50	feet	Saturated thickness of the aquifer at the well			
H=	18.86	feet	Height of the static water column in the well			
L/rw =	57.48	-				
In[(D-l	H)/rw] = 4.55	_ (If ln[(D-H)	/rw]exceeds 6 use the maximum value of 6)			

From Figure relating coefficients A, B, C to L/rw

A = 2.8 B = 0.5C = NA Used only if D = H

From Y v/s t graph

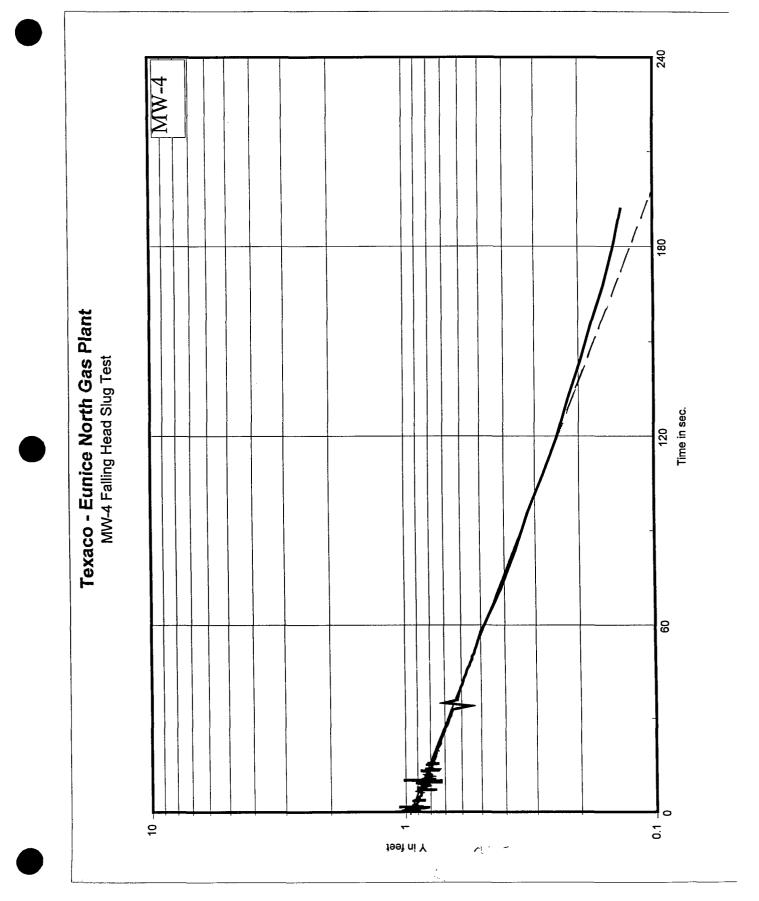
 Yt =
 0.47 feet @ t =
 60 sec

 Yo =
 0.95 feet
 (Initial drawdown)

 (1/t) ln(Yo/Yt) = 0.0117 1/sec

 $ln(Re/rw) = [1.1/ln(H/rw) + (A + B ln[(D-H)/rw])/(L/rw)]^{-1} for D>H$ $= [1.1/ln(H/rw) + C/(L/rw)]^{-1} for D=H$ = 2.7792

Where Re = Effective radius and A, B, and C are derived from Bouwer & Rice curves.


Falling head slug test

$$K = \frac{r_c^2 \ln(R_e / r_w)}{2L} \frac{1}{t} \ln\left(\frac{y_o}{y_t}\right)$$

K = <u>4.47E-05</u> ft/sec <u>3.8643</u> ft/day

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

1. -

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

!

SE1000C Environmental Logger 04/14 08:27	
Unit# 02098	Test 3
Setups:	INPUT 1
Type Mode I.D.	Level (F) TOC 05029
Reference Linearity Scale factor Offset Delay mSEC	47.850 0.110 15.060 -0.320 50.000
Step 0 04/11	14:31:58
Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733 0.0666 0.0700 0.0733 0.0766 0.0800 0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066	INPUT 1 46.894 47.138 46.985 46.780 47.042 47.009 47.138 47.014 46.980 47.128 47.076 47.057 47.057 47.095 47.085 47.085 47.104 47.100 47.104 47.109 47.109 47.114 47.109 47.119 47.128 47.128 47.128 47.128 47.128 47.100 47.114 47.109 47.128 47.128 47.128 47.128 47.128 47.128 47.128 47.128 47.100 46.899 47.099 46.765 46.861 46.866 47.052

Ą. -

Mw-4.fal

0.1100 0.1133 0.1166 0.1200 0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1666 0.1700 0.1733 0.1666 0.2000 0.1933 0.1966 0.2000 0.2333 0.2066 0.2100 0.2133 0.2166 0.2200 0.2233 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2400 0.2433 0.2566 0.2600 0.2633 0.2660 0.2733 0.2766	$\begin{array}{c} 48.284\\ 47.730\\ 46.603\\ 47.038\\ 47.358\\ 47.286\\ 46.995\\ 47.272\\ 47.214\\ 47.157\\ 47.186\\ 47.233\\ 47.181\\ 47.210\\ 47.214\\ 47.210\\ 47.214\\ 47.224\\ 47.224\\ 47.224\\ 47.2233\\ 47.233\\ 47.233\\ 47.233\\ 47.238\\ 47.233\\ 47.238\\ 47.248\\ 47.257\\ 47.257\\ 47.257\\ 47.257\\ 47.257\\ 47.257\\ 47.262\\ 47.257\\ 47.272\\ 47.272\\ 47.272\\ 47.272\\ 47.272\\ 47.286\\ 47.286\\ 47.281\\ 47.286\\ 47.291\\ 47.291\\ 47.300\\ 47.300\\ 47.305\\ 47.310\\ 47.310\end{array}$
0.2866	47.305
0.2700	47.305
0.2733	47.310

n: -

Page 2

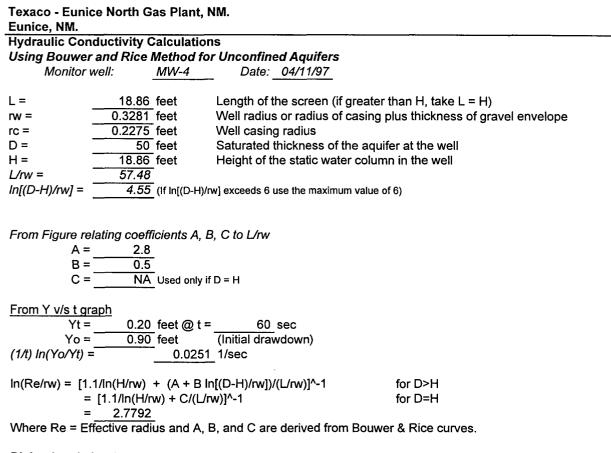
÷....

i

:

í

Mw-4.fal

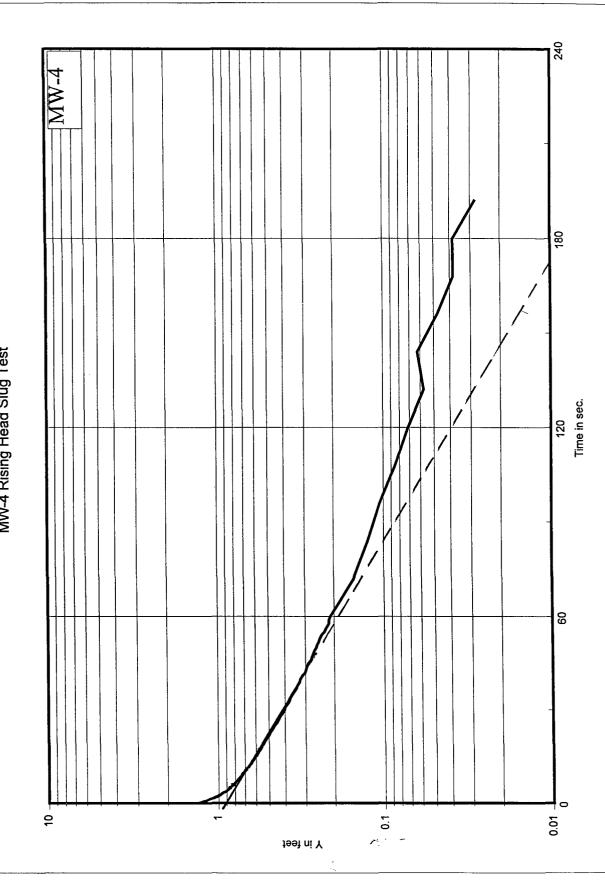

Page 3

N: -

Mw-4.fal

1. -

Rising head slug test


V	$r_c^2 \ln(R_e / r_v)$,)1	$\left(\frac{y_{o}}{y_{o}} \right)$
N =	2L	\overline{t}	$\left[\frac{1}{y_t}\right]$

K = <u>9.56E-05</u> ft/sec <u>8.2592</u> ft/day

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

1. -

Texaco - Eunice North Gas Plant MW-4 Rising Head Slug Test

Highlander Environmental Corp., 1910 N. Big Spring St., Midland, TX - 79705.

SE1000 Environmenta 04/14 08	al Logger
Unit# 02098	Test 3
Setups:	INPUT 1
Type Mode I.D.	Level (F) TOC 05029
Reference Linearity Scale factor Offset Delay mSEC	47.850 0.110 15.060 -0.320 50.000
Step 1 04/11	14:45:48
Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633 0.0566 0.0600 0.0633 0.0666 0.0700 0.0733 0.0766 0.0800 0.0833 0.0766 0.0800 0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066	

1. -

• • .

0.1100 0.1133 0.1200 0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1460 0.1500 0.1533 0.1566 0.1500 0.1533 0.1666 0.1700 0.1733 0.1666 0.1700 0.1733 0.1666 0.1700 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2200 0.2333 0.2266 0.2400 0.2433 0.2466 0.2500 0.2533 0.2566 0.2600 0.2633 0.2666 0.2700 0.2700	48.642 48.637 48.633 48.633 48.618 48.618 48.604 48.594 48.594 48.590 48.590 48.590 48.590 48.590 48.556 48.556 48.556 48.556 48.556 48.552 48.552 48.523 48.485 48.499 48.485 48.480 48.485 48.4
0.2566	48.442
0.2600	48.442
0.2633	48.437
0.2666	48.437

Mw-4.ris

Page 2

1: -

Mw-4.ris

- ----

0.2966 0.3000 0.3033 0.3066 0.3100 0.3133 0.3166 0.3200 0.3233 0.3266 0.3300 0.3333 0.3500 0.3666 0.3833 0.4000 0.4166 0.4833 0.4500 0.5166 0.5333 0.5500 0.5666 0.5833 0.6000 0.6166 0.6333 0.6500 0.6666 0.6833 0.7000 0.7166 0.7333 0.7500 0.7666 0.7833 0.8000 0.8166 0.8333 0.8500 0.8166 0.8333 0.8500 0.8166 0.8333 0.9000 0.9166 0.9333	48.408 48.403 48.403 48.399 48.399 48.399 48.399 48.389 48.389 48.380 48.380 48.380 48.375 48.360 48.375 48.322 48.322 48.308 48.294 48.294 48.221 48.222 48.222 48.222 48.222 48.2217 48.222 48.2217 48.2208 48.198 48.189 48.189 48.189 48.169 48.160 48.160 48.150 48.122 48.122 48.122 48.122 48.1217 48.103 48.098 48.093 48.079 48.074
0.8333 0.8500 0.8666 0.8833 0.9000 0.9166	48.107 48.103 48.098 48.093 48.088

Page 3

.

1. -

17.897 17.888 17.888 17.878 17.878 17.878 17.878 17.878 17.878 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.869 17.859
17.859

-- -----

1. -

Page 4

APPENDIX F

Water Well Records

1.

Revised	June	1972
---------	------	------

STATE ENGINEER OFFICE WELL RECORD

 14 L.	L.	n	5	\sim	กเ	•

Street or	Post Office A	CHARLES ddress BOX (333		1405	AVE S	Owner's	; Well No	
		EUNI				<u> </u>	<u></u>		
Well was drilled	under Permit	t No	35		aı	nd is located	in the:		
a	<u> % <u>S</u>¹/₂ !</u>	4 <u>NE</u> 4 _	SE_ ¼ of S	ection	28	Township	21-S Range	<u> </u>	N.M.I
							·····		
c. Lot N	19	of Block No.	2	- L.H.'A	of the	NORTH	EUNICE ADD.		
Subur	131011, 1000140	a m <u></u> .							
		feet, Y=		fe			ystem		
(B) Drilling C	ontractor	9 T. VI	NOY				_ License No	-208	
Address									
							CABLE		6
Elevation of lan	d surface or _			i	at well is.	<u> </u>	_ ft. Total depth of		
Completed well	is 🛣 s	hallow 🗖	artesian.		Dep	pth to water	pon completion of	f well 80)
·····		·····	ction 2. PRIN	ICIPAL W	ATER-B	EARING ST	RATA		
Depth i From	n Feet To	Thicknes in Feet	s	Descriptic	on of Wat	er-Bearing Fo	ormation	Estimated (gallons per r	ninute)
100	105	5		RED B	BED			VERY WEAK	WATE
趢									-
									<u> </u>
1		1	Enetic	on 3. REC		CASINC	1	· · · · · ·	
Diameter	Pounds	Threads		in Feet		Length	Type of Shoe	Perfor	ations
(inches)	per foot	per in.	Тор	Botto	om	(feet)		From	То
5 <u>1</u>	STEEL	PIPE	0	105		105	none	86	101
4		Sect	ion 4. RECO	RD OF M	סאופסט	AND CEME		1	•
Depth i		Hole	Sac	ks	Cubic	Feet		of Placement	
From	То	Diameter	of M	ud	of Ce	ment			
		ļ							
[1	1				·		
			_I,		l	<u>.</u>			••
	·····				GGING F	RECORD			
				on 5. PLU					
						_ 	Denth in Fa	et o	hia East
Address Plugging Metho	1					No.	Depth in Fe Top B		bic Feet Cement
Plugging Contra Address Plugging Methoo Date Well Plugg Plugging approv	1 2 d					– – No. – 1			
Address Plugging Metho Date Well Plugg	1 2 d				<u>م</u> ر	No. 1 2 3			
Address Plugging Metho	1 2 d					No.			
Address Plugging Metho Date Well Plugg Plugging approv	i ed ed by: 	State Eng	gineer Repreș	entative		No. 1 2 3	Top B		
Address Plugging Metho Date Well Plugg	i ed ed by: 		gineer Repreș	ventative OF STAT	۲E ENGI	No. 1 2 4 NEER ONLY	Top B	ottom of	Cement

			Section 6. LOG OF HOLE		
Dep From	th in Feet To	Thickness in Feet	Color and Type of Material Encountered		
0	5	5	TOP SOIL		
5	45	40	CALICHE		
45	80	35	BROWN SAND		
80	100	20	WATER SAND		
100	105	5	red bed very weak water		
······					
			· · · · · · · · · · · · · · · · · · ·		
	•				
		,			
		Caratian 7			

Section 7. REMARKS AND ADDITIONAL INFORMATION

1. -

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

17 M/2. De Driller

INSTRUCTIONS: This for of the State Engineer. All Id be executed in triplicate, preferably typewritten, and submitted ons, except Section 5, shall be answered as completely and accurat

appropriate district office

STATE ENGINEER OFFICE

Form WR-23 FIELD ENGR. LOG

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1	(A) Owner of well Millard week	
	Street and Number Box 409 City Eunice Well was drilled under Permit No. CF-322 Sha 14 Ya Ya	State New Mexico
	(B) Drilling Contractor <u>1.1.1.1.Nov</u> Street and Number <u>P. 1.1.20x 74</u>	
	CityOil Genter, Drilling was commencedUne 3, Drilling was completedUne 10,	
(Dist of 640 serves)		لي. ني LV

(Plat of 640 acres)

Section 2

PRINCIPAL WATER-BEARING STRATA

No.	Depth	in Feet	Thickness in	Description of Water-Bearing Formation
NO.	From	То	Feet	• • • • • •
1	100	130	30	Very fine water sond.
2				•
3				
4				, ,
5	1		1	

Section 3	3			RECOR	D OF CAS	ING			
Dia Pounds		Threads	D	epth	Feet	Type Shoe	Perforations		
in.	ft.	in	Top	Bottom	reel	Type Suce -	From	То	
5 "	Wel	ded	0	138	138	none	70	138	

Sect	ion	4	

RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Diameter	Tons		No. Sacks of	Methods Used
From	То	Hole in in.	Clay	Cement	menlous usea	
					· · · · · · · · · · · · · · · · · · ·	
{		† •†				

Section 5	PLUGGING	g recc	RD		
Name of Plugging Contractor				L	icense No
Street and Number	C	;ity		St	ate
Tons of Clay used	f Roughage used	l		Type of r	oughage
Plugging method used		· · ·	Dat	e Plugged	
Plugging approved by:			Cemen	t Plugs were	placed as follows:
Basin	Supervisor	No.	Depth From	of Plug To	No. of Sacks Used
FOR USE OF STATE ENGINEER	ONLY	~			
C MARSHER 13	\$0I				. 343 3,
File No CP- 322	Hee Ar	m	Ţ	ocation No. c	21.37.28.300

Section 6

106	VA/CI I	

Depth in Feet From To		Thickness in Feet	Color	Type of Material Encountered			
		+					
0	- 5		÷	- op oil			
		- 25	tirey				
-30	65	35	Grey	Linna work			
-65	- 100	35	Grey	ivy song			
100	130	30	rey	Very fine water sand			
190	138	8	lied	Red bed.			
		1					
	1						
		+	<u> </u>				
		+					
				L S Elev Depth to KTrc			
				Depth to KTrc			
		1		Elev of KTre			
		+					
				Loc. No			
			· · · · · · · · · · · · · · · · · · ·	Hydro. SurveyField Check			
				SOURCE OF ALTITUDE GIVEN			
				Interpolated from Topo. Sheet			
		1		Determined by Inst. Leveling 34/34			
				Other			
		ļ					
		{ł					

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

W. L. Vanellhorpher

Revised June 1972

STATE ENGINEER OFFICE

WELL RECORD

			Section	I. GENERAL II	NFORMATIO	N .			
(A) Owner (of well		CRISWE	LL		Ow	ner's Well No.		
Street o City and	r Post Office A I State	ddress <u>PO BO</u> EUNIC	E, NM	38231		····			
		No. CP-74	0			• · • • •			
							ייד ליכ		
aN	E ¼ <u>SE</u> ;	4 <u>SW</u> 4	¼ of Se	ection 28	Township _	<u>21-5</u> R	ange <u>J7-E</u>		_N.M.P
b. Tract	No	of Map No		of the					
c. Lot M	No. 5	of Block No	2	of the	Herman A	ddition			_
Subd	ivision, recorde	d in	Lea	C	ounty.				
d. X= _		feet, Y=	<u></u>	feet, N.	M. Coordinate	System			
(B) Drilling	Contractor	W. L.	Van No	у		License No	WD-208	<u></u>	
Address PO	Box 7, Oil	Center, NM	88266						
						Cable			10"
		-							
Elevation of la	nd surface or -	· · · · · · · · · · · · · · · · · · ·		at wel	l is	ft. Total dep	th of well	1	23
Completed we	ll is XX s	hallow 🗆 ar	tesian.		Depth to wate	upon completio	on of well		75
•									
Depth	in Feet	Thickness	1	CIPAL WATEF			Estir	nated Y	ield
From	То	in Feet		Description of V	Vater-Bearing I	Formation	(gallon	s per m	inute)
75	100	25	Wa	ter bearin	g sand				
100	120	20	1	d Bed		<u> </u>			
			WATTER	TO SALTY	TOUSE				
					10 001				
	<u> </u>		1						
			Sectio	n 3. RECORD	OF CASING				
Diameter	Pounds			oth in Feet Length Type of Sho		noe	Perfora		
(inches)	per foot	per in.	Тор	Bottom	(feet)		Fr	om	To
<u>5" P</u>	<u>rc</u>		0	123			1	13	123
	L	<u>i</u> [l	I		
Deoth	in Feet	Section Hole	1 4. RECO Sacl		NG AND CEM	ENTING			
From	То	Diameter	of M		Cement	Met	hod of Placen	nent	
	1								
	<u> </u>								
	<u> </u>	}							
,			Sectio	n 5. PLUGGIN	GRECORD				
Plugging Contr	actor								
Addrèss	<u>``</u>					Depth i	n Feet		ic Feet
						Тор	Bottom	of (ement
Plugging appro		_	_	. A: -	2				
		State Engin	eer Repres	entative	- 3			<u> </u>	
			FOR HEE	OF STATE EN	······	v	······································	<u> </u>	
Date Received	July 3, 1	L990	FOR USE						
				Quad.		FWL	<u> </u>	FSL_	
File No	CP749			Use DOM	ESTIC	Location No.	21.37.28.	34214	

 $\overline{}$

. 7

.

			Section 6. LOG OF HOLE					
Depth in Fect		Thickness						
From	To	in Feet	Color and Type of Material Encountered					
0	10	10	Top Soil					
10	50	40	Caliche					
50	75	25	Water Bearing sand					
75	100	25	Sand Rock and sand					
100	120	20	Red Bed					
120	123	3	RED Bed					
		t.t.	Datty to Mse -					
	-WELL	TO-SALTY	D-U SE- WATER					
			· · · · · · · · · · · · · · · · · · ·					
	· · · · ·							

Section 7. REMARKS AND ADDITIONAL INFORMATION

. ,

STATE ROSVELL	
:. ⁷	చ
÷ .	3
CLER C	ငာ
100E 101E	21

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

12

Nei J Man Jol

INSTRUCTIONS: This fe of the State Engineer. A

build be executed in triplicate, preferably typewritten, and submitted ons, except Section 5, shall be answered as completely and accurat

appropriate district office

STATE ENGINEER OFFICE

Revised June 1972

FIELD ENGR. LOG

ection 1	GENERAL	INFOR	MATION

	of wellGu	1f 0i1 Co	rporation			NFURMATI	Owner'	s Wel	II No	
Street o	r Post Office Ac	dress	Box 670 Hobbs, New							
	d under Permit		513			_ and is loca	ted in the:			
							21 S Rang	e	37E	N M P M
-						•	·			
	ivision, recorde									
d. X=		_ feet, Y=		fe	et, N.	M. Coordina	te System			Zone in
										Grant.
B) Drilling	Contractor	Moranco			. <u></u>	· · · · · ·	License No	WI)-449	
ddress		Box 191	9, Hobbs,	<u>New</u> Me	xic	0	·····			
rilling Began	Nov. 5/19	72 Com	pleted <u>Nov</u>	<u>, 21/1</u>	<u>.972</u>	_ Type tools		Si	ze of hole $\frac{9}{2}$	5/8_in.
levation of la	nd surface or _			a	it wel	1 is <u>3463</u>	ft. Total depth o	f wel	15	<u>000</u> ft.
ompleted we							ter upon completion o			
ompieteu we	11 IS L SI					-		I WCI		11.
Depth	in Feet	Thicknes	s						Estimated Y	'ield
From	То	in Feet	I	Descriptio	n of V	Water-Bearin	g Formation	(g	allons per m	inute)
4000	5000	1000	Dolon	nite						
	·									
			Section	n 3. RECC	ORD	OF CASING				
Diameter (inches)	Pounds per foot	Threads	Depth			Length (feet)	Type of Shoe		Perfor	· · · · · ·
		per in.	Top	Botto		· · · · ·		-	From	<u>To</u>
13_3/8	48	8	0	1241		1241	Guide	-		
9 5/8	32.3 & 36	8	0	4999		4999	Guide	-+	4374	4888
	i- Frat		ion 4. RECOR	·····			MENTING			·····
Depth From	in Feet To	Hole Diameter	Sack of Mu			bic Feet Cement	Method	of Pi	lacement	
0	1241	17 ¹ 2			1	1012	Pump and Plug	;		
2148	4999	12 ¹ / ₄		.			Dump c = 1 D1		· · · <u>- · - ·</u>	
						770	Pump and Plug			

Section 5. PLUGGING RECORD

Plugging Method Date Weil Plugged	No.	Tom		
Data Wall Bluesed		Тор	Bottem	of Cement
Date wen Plugged	1		1	
Plugging approved by:	2]	1	
	3			
State Engineer Repr	ntative 4			

Quad ____

Ello No CP-513

Hee SRO

FWL _____ FSL____ FSL_____ FSL_____ FSL_____ FSL_____ FSL____ FSL___
	in Feet	Thickness	Color and Type of Material Encountered
From	To	in Feet	
0	1188	1188	Red bed and sand
1188	1365	177	Anhy.
1365	2429	1064	Salt
2429	2565	136	Anhy, salt and dolomite
2565	3620	1055	Sandstone, anhy and dolomite
3620	4000	380	Dolomite and sandstone
4000	5000	1000	Dolomite
	1 		
			-

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

1. -

K. D. McPeters Driller

INSTRUCTIONS: This form in of the State Engineer. All .

and be executed in triplicate, preferably typewritten, and submitted to ns, except Section 5, shall be answered as completely and accurately

Form WR-23

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and rately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging d, only Section 1A and Section 5 need be completed.

Section 1	(A) Owner of well Skelly Plant #2 Well #16
	Street and Number
	City State
2055 M	Well was drilled under Permit Noand is located in th
205	<u>SW 14 SE 14 NE 14 of Section 28 Twp 215 Rge 37E</u>
	(B) Drilling Contractor Grady Roberts License No.
800 FE.	Street and Number
	City Eunice StateN.M.
	Drilling was commenced
	Drilling was completed December 2, 196
(Dist of 640 scree)	

(Plat of 640 acres)

Elevation at top of casing in feet above sea level 3428.1 Total depth of well 112' State whether well is shallow or artesian_____ Depth to water upon completion_____

Section	2		PRINCIPAL	WATER-BEARING STRATA
	Depth i	n Feet	Thickness in	Description of Water-Bearing Formation
	From	То	Feet	
1				
2	·			
3				
4				
5				

pn :	3			RECOR	D OF CAS	SING			
Dia	Pounds	Threads	Depth		Feet	Type Shoe	Perforations		
in.	ft.	in	Top	Bottom	reet	Type Silve	From	То	
					:				
								······································	
<u></u>									
		<u></u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	÷.				
Section 4	1		RECO	RD OF MUD	DING AN	ID CEMENTING	`		

Depth i	Depth in Feet		Tons	No. Sacks of	Methods Used		
From	То	Hole in in.	Clay	Cement	Methous Useu		
			-				
r I					N3		

Section 5	PLUGGIN	IG RECO	RD		
Name of Plugging Contractor				I	icense No
Street and Number	(City		S	tate
Tons of Clay used	Tons of Roughage used	d		Type of a	roughage
Plugging method used			Date	e Plugged	19
Plugging approved by:			Cement	Plugs wer	e placed as follows:
		No.	Depth	of Plug	No. of Sacks Used
	Basin Supervisor	N.	From	То	No. of Sacks Used
FOR USE OF STATE E	NGINEER ONLY				1:-
Date Received				·	
· · · ·					······

.....Use.

'ile No	
---------	--

Location	No	21.	37.	.28	.243	22	1 -

Skelly Plant #2Well #16Drilled:December 2, 1964Driller:Grady Roberts, Eunice, N.M.Location:21.37.28.243Elevation:3428.1

Depth in Feet		Thickness	a -	Two of Material Francisca 3		
From	To	in Feet	Color	Type of Material Encountered		
0	4			Soil		
4	24			Caliche		
24	70			Sand and caliche		
70	75		·	Sand		
75	87			Water sand		
87	106	· .	· .	Shalesandgravel		
06	112		·····	Red shale		
· · · ·				<u>SElev</u> Depth to K <u>Irc</u> <u>106</u> Elev of K <u>Irc</u> <u>3322</u>		
				LOC. NO. 21. 37. 28. 243221		
			<u> </u>	Hydro. Survey X Field Check		
				SOURCE OF ALTITUDE GIVEN		
				Interpolated from Topo. Sheet		
				Determined by Inst. Leveling X		
				Other		
			- 1.00			
 -	·····		····			

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Well Driller

1. -

STATE ENGINEER OFFICE

WELL RECORD

			DIACK			-			
) Owner of	well	HOID G.	x 863			0w		II NO	
Street or	Post Office A	ddress <u>BO</u>	EUNTC	E. NM 882	31				
-									
ll was deille	under Permi	IND CF	-711		and is located	in the			
in was office	under Fernin	. NO			and is located	di the.			
. 5/6	1/2	14 NF 14	N/E 4 of Se	ection 28	Township	21S F	ange	37E	N M P N
•									
h. Tract-	No	of Map No.		of th	e				
•• •••••		•							
c. Lot N	ő. `	of Block No.			e				
Subdi	vision, recorde	d in	LE.	A	County.				
	:								
d. X=	<u></u>	feet, Y=		feet, N	.M. Coordinate	System			Zone i
the	·						<u> </u>		Grant
	-	LF T YAN M	ov				чъ	208	
) Drilling (Contractor	N. D. AND IN				License No		200	
				NM 8826	6				
ldress		BOX 7, OI		, 111 0020	<u> </u>	- ·			
	40.4	97	41	1_2_87	0	RLE			10
illing Began	10-1-	07 Comp	oleted	5-2-07	_ Type tools C		S	ize of hole	<u>10</u> in
								100	
evation of la	nd surface or .		······	at we	ll is	ft. Total dep	th of we	11	ft
	Ver							. 6	5
mpleted wel	is AX s	shallow 🗔 a	rtesian.		Depth to water	upon completi	on of we	ill C	ע ft
		Sec	tion 2. PRIN	CIPAL WATE	R-BEARING ST	RATA			
Depth	in Feet	Thickness		D	Watar Darsian E	· · · · · · · · · · · · · · · · · · ·		Estimated Y	
From	То	in Feet		Description of	Water-Bearing F	ormation	6	gallons per m	inute)
65	100	35	Wa	ater sand					
-									
100			r	ed bed					
		_I							
			Sectio	n 3. RECORD	OFCASING				
	<u> </u>				1			Deufen	
Diameter (inches)	Pounds per foot	Threads		in Feet	Length (feet)	Type of S	hoe	Perfor	
(menes)		per in.	Тор	Bottom	(1001)			From	To
5"	•	PVC	0	100				80	95
				+				├	
					·				
ĺ				l		ļ			
		1 1.		L	<u> </u>	L			
		Section	on 4. RECO	RD OF MUDD	ING AND CEM	ENTING			
Depth	n Feet	Hole	1						•
From	То	Diameter	Sack of M		ubic Feet	Met	hod of l	Placement	
rion		2 Juniotor							· · · · ··
		+							
		l							
		 				·····			
					1				
		1							

Section 5. PLUGGING RECORD

Address		No.	Depth	in Feet	Cubic Feet	
Plugging Method.				Тор	Bottom	of Cement
Date Well Plugged					1	
Plugging approved	d by:	N				
			3			
	State Engineer Represent	tative	4			
		F STATE ENGIN	EER ONLY	·		
Date Received	October 28, 1987					
		Quad		FWI	·	FSL
File No	CP-711	Use D	OMESTIC,		21.37.28.2	2441

From	in Feet To	Thickness in Feet	Color and Type of Material Encountered
1100	10	+	
0	8	8	TOP SOIL
8	65	57	CALICHE & BROWN SKND
65	100	35	ERGNNXSINEXWATER SAND
100			RED BED
100			
		1.	
	<u> </u>	<u>↓ </u>	
		<u>}</u>	
	<u> </u>		
		[
		<u> </u>	
·			
			······································
_	l	<u>·</u>	
78' HA 10	>	Section 7. F	EMARKS AND ADDITIONAL INFORMATION
	Ē 4		
3	i N		
Oct 28 8 23 AU '9			

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

M . -

ill 1 Ć an Driller

INSTRUCT'ONS: This for of the State Engine-

Id be executed in triplicate, preferably typewritten, and submitterins, except Section 5, shall be answered as completely and accurate

e appropriate district office

Form WR-23

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1	(A) Owner of well R. L. McLean (at residence) Well #2
	Street and Number
	City State
	Well was drilled under Permit Noand is located in the
	SW1 NW 1/4 NW 1/4 SW 1/4 of Section 27 Twp. 21S Rge.37E (B) Drilling Contractor Grady Roberts License No.
	Street and Number
	City Eunice State N.M.
	Drilling was commenced 19
	Drilling was completed March 7 19 63
(Plat of 640 acres)	-

Elevation at top of casing in feet above sea level <u>3419.5</u> Total depth of well <u>93'</u> State whether well is shallow or artesian Depth to water upon completion

Section 2 PRINCIPAL WATER-BEARING STRATA					
No.	Depth i	n Feet	Thickness in	Description of Water-Bearing Formation	
140.	From	То	Feet	• • • •	
1					
2					
3					
4					
5					

Section 3	RECORD OF C	ASING
	and the second second second second second second second second second second second second second second second	

Dia	Pounds	Threads	De	pth	Feet	Type Shoe	Perfora	ations
in.	ft.	in	Тор	Bottom	1000		From	To
	· · · · · ·			1		· · · · · · · · · · · · · · · · · · ·		
						·		·····
						-		
				1	· · · · · · · · · · · · · · · · · · ·	<u> </u>	11	

Section 4 RECORD OF MUDDING AND CEMENTING	

Depth	in Feet	Diameter	Tons	No. Sacks of	Methods Used
From	To	Hole in in.	Clay	Cement	
				·	### 4
			- <u>-</u>		
			<u> </u>		<u> </u>
	1				•

Section 5

PLUGGING RECORD

Name of Plugging Contractor		License	No
Street and Number	City	State	
Tons of Clay used	ughage used	_Type of roughag	ge
Plugging method used	Date	Plugged	19

Plugging approved by:

Cement Plugs were placed as follows:

	Basin Supervisor		No.	Depth From	r of Plug To	No. of Sacks Used
FOR USE OF STATE EN	JINEER ONLY	1	1			
Date Received	• ••	_				
File No.	Use			L	ocation No.	21.37.27.3113 <u>27</u>

R. L. McLean (at residence) Well #2 Drilled: March 7, 1963 Driller: Grady Roberts, Eunice, N.M. Location: 21.37.27.3113 Elevation: 3419.5

Section 6		LOG OF WELL			
	in Feet	Thickness	Color	Type of Material Encountered	
From	То	in Feet			
0	5			Soil	
5	23	<u> </u>]		Caliche	
23	34	ļ		Sand and caliche	
34	60			Sanddry	
60	62			Sandwater	
62	73	· ·	•	Sand	
73	80		<u></u>	Coarse sand	
80	85			Sand, gravel, red shale	
85	90			Sand and gravel	
90	93			Red shale	
				3420	
				Depth to k Trc 90	
				1 S Elev 3420 Depth to KTrc_90 1000000000000000000000000000000000000	
				······································	
				LOC. NO. 21.37, 27. 21.37 2	
				Hydro. Survey Field Check X	
				SOURCE OF ALTITUDE GIVEN	
				Interpolated from Topo. Sheet	
				Determined by Inst. Leveling	
				Other	
1	_1			<u> </u>	

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

1. -

Well Driller

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the n arest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1	(A) Owner of wellSkelly Plant #2	Well #11
	Street and Number	
	City	
	Well was drilled under Permit No NELSE 14 SW 14 of Section 27	Twp. 21S Rge. 37E
	(B) Drilling Contractor Grady Robert Street and Number	
	City Eunice	
	Drilling was commenced	
	Drilling was completed	May 2, 1962 19

(Plat of 640 acres)

Section 2

Elevation at top of casing in feet above sea level <u>3397.2</u> Total depth of well <u>120'</u> State whether well is shallow or artesian _____ Depth to water upon completion _____

PRINCIPAL WATER-BEARING STRATA

No.	Depth i	n Feet To	Thickness in Feet	Description of Water-Bearing Formation
1		_ _		
2				
3				· ·
4				
5				

Section 3	3			RECOR	D OF CAS	SING		
Dia	Pounds	Threads	Depth		Feet		Perforations	
in.	ft.	in	Top	Bottom	reet	Type Shoe	From	То
						ł		

Section 4	RECORD OF MUDDING AND CEMENTING
Dechon I	

Depth	in Feet	Diameter	Tons	No. Sacks of	Methods Used
From	То	Hole in in.	Clay	Cement	MELIOUS USED
	} 1				4

~		-
- 20	ctior	ה ו

PLUGGING RECORD

Name of Plugging Contrac	tor			т	icense No	
	C					
Tons of Clay used		l	Type of roughage			
Plugging method used		Date Plugged1				
Plugging approved by:			Cemen	t Plugs were	e placed as follows:	
		No.	Depth	of Plug	No. of Sacks Used	
_	Basin Supervisor		From	То	NO. OF SACKS Used	
FOR USE OF STAT	TE ENGINEER ONLY	· -				

Date Received		
File No	Use	Location No. 21.37.27.2342 243/3:

Skelly Plant #2 Well #11

Drilled: May 2, 1962 Driller: Grady Roberts, Eunice, N.M. Location: 21.37.27.2342 Elevation: 3397.2

Secti	on 6
-------	------

log of well

Depth in Feet		Thickness	Color	Turne of Material Procurtored
From	То	in Feet	Color	Type of Material Encountered
0	4			Sand
4	28			Caliche
28	40	_		Sand and caliche
40	45			Sanddry
45	60			Water sand
60	70	·		Red shale and sand
70	88			Coarse sand
88	117			Sand and gravel
117	120	en an anna an tar anna an anna 2005 a		Red shale
				3397
		1		1 S Elev 3397 Depth to KTrc_177
		1		Elev of K
		<u>├</u> }		
		<u>++</u>		9137 27 121
		+		Luc. No. 21. 37. 27, 213
		┨────┤		Hydro. SurvayField Check
		<u> </u>		· · · · · · · · · · · · · · · · · · ·
	···			SOURCE OF ALTITUDE GIVEN
		┫━━━━━┫	· · · · · · · · · · · · · · · · · · ·	Interpolated from Tope. Sheet
		<u> </u>		Determined by Inst. Leveling X
				Riber
		[]·		
[<u>├</u>		
		┟		
	·	-		
	·····	┟────┤─		
	•	{ .		

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

11

Well Driller

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed. Gulf Eunice Gasoline Plant Well #4

	Street and Number	
	City	State
	Well was drilled under Permit No <u>NW 14 SE 14 NE 14 of Section</u> 27	
175-2014	(B) Drilling Contractor Street and Number	
	City	State
	Drilling was commenced	
(Plat of 640 acres)	Drilling was completed	

25

180 Elevation at top of casing in feet above sea level <u>3397.1</u> Total depth of well.

State whether well is shallow or artesian.....

Section	1 2		PRINCIPAL	WATER-BEARING STRATA
No.	Depth	in Feet	Thickness in	Description of Water-Bearing Formation
110.	From	То	- Feet	
1				
2				
3				
4				
5				

Section 3 RECORD OF CASING									
Pounds ft.		Threads Depth		Feet	Type Shoe	Perforations From To			
				107		30' perf. a	bottom		
-	Pounds ft.		rounus Inicaus	Pounds Threads Depth	PoundsThreadsDepthft.inTopBottom	Pounds Threads Depth ft. in Top Bottom	Pounds ft.Threads inDepth TopFeetType ShoePerformFrom		

Section 4 RECORD OF MUDDING AND CEMENTING							
Depth in Feet		Diameter	Tons	No. Sacks of	Methods Used		
From	То	Hole in in.	Clay	Cement	Methods Used		
				1			
•		<u> </u>		· · · · · · · · · · · · · · · · · · ·	······································		

Section 5 PLUGE	ORD					
Name of Plugging Contractor		License No.				
Street and Number	City	ty State				
Tons of Clay used	used		Type of 1	roughage		
Plugging method used						
Plugging approved by:		Cement Plugs were placed as follows:				
	No	Dept	h of Plug	No. of Godie Wood		
Basin Supervisor		From	То	No. of Sacks Used		
FOR USE OF STATE ENGINEER ONLY	 					
te Received Copied from USGS Well						
Schedule of Oct. 2, 1953-A.Nicholson			++			
		_!	<u> </u>			
	om-Ind	т	ocation No.	343		

Form WR-23

ction 6		GF WELL				
Depth in		Thickness in Feet	Color	Type of Material Encountered		
From	То	in reet				
0	49			no log		
49	89			sand		
89	100			sandy shale		
100	180			red shale		
				LSFLSV 3397 Deptine K		
		·····				
				Loc. No. 21. 37. 27. 24143		
			/	Hydro. Survey Field Check X		
				State in Although Given		
				International sector structures and sector s		
				Determined by first Leveling X		
				Likhar		
				·		

İ

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Well Driller

13

Form WR-23

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed. Gulf Eunice Gasoline Plant Well Section 1

[(A) Owner of well Gulf Oil Corp.	<u> </u>
	Street and Number	
	City State	
	Well was drilled under Permit Noand is located	in the
	<u>NE 14 SW 14 NE 14 of Section 27 Twp. 21 Rge. 3</u>	7
	(B) Drilling Contractor License No	
	Street and Number	
	City State	
	Drilling was commenced 19	
	Drilling was completed	48

(Plat of 640 acres) کنگر

Elevation at top of casing in feet above sea level 3399.5 Total depth of well 99 State whether well is shallow or artesian Depth to water upon completion.

Section	2		PRINCIPAL	WATER-BEARING STRATA
No.	Depth i	n Feet	Thickness in	Description of Water-Bearing Formation
NO.	From	To	Feet	
1				
2				
3				
4				
5				

Section 3	3			RECOR	D OF CAS	SING			
Dia Pounds		Threads	s Depth		Feet	Tuno Shaa	Perforations		
in.	ft.	in	Top	Bottom	reet	Type Shoe	From	То	
7							30' at bott	om	

Section 4		RECORD	RECORD OF MUDDING AND CEMENTING				
Depth in Feet	Diameter	Tons	No. Sacks of		Mathada Maa		
	TT . 1		A A A A A A A A A A	1	Methods Used		

From	То	Hole in in.	Clay	Cement	Methods Used

Section	5
Section	J

PLUGGING RECORD

Name of Plugging Contractor.]	License No	
Street and Number	Cit	y	S	State	
Tons of Clay used			Type of	roughage	
Plugging method used			Date Plugged.		
Plugging approved by:			Cement Plugs wer	e placed as follows:	
	Basin Supervisor	No.	Depth of Plug From To	No. of Sacks Used	7
FOR USE OF STATE F	NCINEED ON Y				7

		-				
FOR USE	OF STATE ENGINEER ONLY					
Date Received	Copied from USGS Well					
Schedule of	Oct. 2, 1953-A.Nicholson					
	Dom- 1	Ind	. &	Obs.		21.37.27.232
File No	Use			L	ocation No.	21.31.21.234

#14

	m 6 LOG OF WELL						
Depth in	1 Feet	Thickness	Color	Type of Material Encountered			
From	To	in Feet	Color				
0	55			no log			
55	70			sand			
70	82			sand and gravel			
82	90		·	gravel			
90	99			red bed			
				21/2-2			
				IS Elev 901			
				1 S Elev 3400 Depth to K 90 1 Elev of K 11c 3310			
				Loc No. 21.37.27.232321			
				Nydro Survey Field Check X			
				SOURCE OF ALLIGODE GIVEN			
				Interpretation tops, Sheat			
				Octériment py fan Leveling 📈			
				Quie:			
			······				
		<u> </u>					

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

11: -

Well Driller

STATE ENGINEER OFFICE WELL RECORD

			Section	1. GENERAL	INFORMATION	4			
	well <u>Re</u> Post Office Ac	ldressE	en unice, N	M		Owner's '	Well No		
Well was drilled	under Permit	No	CF 736	5	and is located	l in the:			
						Range	375	ммрм	
					-	-			
b. Tract l	No	of Map No		of th	e				
c. Lot No Subdiv	ision, recorde	of Block No d in		of th	e County.	<u> </u>	<u></u>		
		feet, Y=				System		Zone in Grant.	
(B) Drilling C	ontractor	La	ry's Dri	lling & Pu	ump Co.	License No	D882		
Address	,	211	6 W. Ben	der, Hobbs	s, NM 88240			<u> </u>	
Drilling Began _	9-10-88	Comj	oleted	9-10-88	Type tools	7 7/8 Button 1	size of hole 7	in.	
Elevation of lan	d surface or _			at we	ll is	ft. Total depth of v	well <u>120</u>	ft.	
Completed well	is 🖾 sl	nallow 🗆 a	rtesian.		Depth to water	upon completion of	well <u>76</u>	ft.	
				ICIPAL WATE	R-BEARING ST	RATA		· · · · · · · · · · · · · · · · · · ·	
Depth i From	n Feet To	Thickness in Feet		Description of	Water-Bearing F	ormation	on (gallons per minute)		
64	108	44	sa	und & sands	stone	· · · · · · · · · · · · · · · · · · ·	30		
							····		
		[Sectio	on 3. RECORD	OF CASING	<u></u>			
Diameter	Pounds	Threads		in Feet	Length	Type of Shoe		ations	
(inches) 5 1/2	per foot 160PVC	per in.	<u>Top</u> 3	Bottom 97	(feet) 94		From 77	<u> </u>	
			T		ING AND CEM	ENTING			
Depth i From	n Feet To	Hole Diameter	Sacl of M		ubic Feet f Cement	Method o	f Placement		
						18-18 - JU M. H. M. M. M. M. M. M. M. M. M. M. M. M. M.			
							<u> </u>		

Section 5. PLUGGING RECORD

Address	· · · · · · · · · · · · · · · · · · ·	- No	Depth in Feet		Cubic Feet
Plugging Method		NO. [Тор	Bottom	of Cement
Date Well Plugged		_ 1			
Plugging approved by					
		3			
	State Engineer Representative	4			
	FOR USE OF STATE ENG	INEER ONLY	-		
Date Received Se	eptember 22, 1988				
	Quad		FW	L	FSL

Use

DOMESTIC

-	 neeenea	0

File No. CP-736

_ Location No. _____21.37.27.1310

J

. et ant i e t

. .

16.21

. :

Depth in Feet Thickness Color and Type of Material Encountered in Feet From То 0 7 7 top soil blow sand 7 20 13 clay & sand 20 34 14 calachie 34 60 26 sand 60 80 20 sand & red clay 80 108 28 red clay & gravel 108 7 115 red clay 115 120 5 red bed

Section 6. LOG OF HOLE

Section 7. REMARKS AND ADDITIONAL INFORMATION

60 10 10 1 The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above Y

Gry 0 k Driller 14

INSTRUCTIONS: This for of the State Engineer, A¹

described hole.

d be executed in triplicate, preferably typewritten, and submitte s, except Section 5, shall be answered as completely and accu. he appropriate district office is nossible when any well is

SEP ZZ

C: 10.59

STATE ENGINEER OFFICE WELL RECORD

.

Contina	1	CENEDAL	INFORMATION	
Section	1.	GENERAL	INFORMATION	

			Section 1	. GENERAL II	TORMATION			
(A) Owner	Owner of well SHELL WESTERN E&P INC. Ow Street or Post Office Address P.Q. BOX 576 Ow						s Well No. NEDU	9195
Street of	or Post Office Ad	dress	<u>P.0. BOX</u>	576	0576			
City an	d State	<u></u>	HOUSTON		-05/6			
Well was drill	ed under Permit	No	<u>CP-733</u>		_ and is located	in the:		
a	¼ <u>S/2</u> _ X	SW ¼	SW ¼ of Sc	ction <u>22</u>	Township	21S Rang	e <u>37E</u>	N.M.P.M
b. Trac	:t No	of Map N	0	of the	·			
	No division, recorded							
		_ fcet, Y=		feet, N.	M. Coordinate S	ystem		Zone ir
								Grant
WORKOVE	R	Y_PEDT 1	WELL SEDVI	CINC		_ License No		
Address		P.O. BO	<u>x 1918; HO</u>	<u>BBS, NM 8</u>	8241			
							ton csa	10 0/0
OXIMNIN Begai	n <u> </u>	<u>8</u> Cor	npleted	6-21-88	_ Type tools	PULLING UNIT	Size of Kolke	13 - 3/8 in
Flowetier of I	land surface or			ot wal	1 in 3427	_ ft. Total depth o	1 well 7864	4 fr
cievation of i	and surface of			at we	1 15	PBTD ·@ 50	56'	<u> </u>
Completed w	ellis 🖾 si	1allow 🗖	artesian.		Depth to water	upon completion c	of well	ft
<u></u>		1		CIPAL WATEI	R-BEARING ST	RATA	· · · · · · · · · · · · · · · · · · ·	
<u> </u>	h in Feet	Thickne in Feel	··· 1	Description of V	Water-Bearing F	ormation	Estimated (gallons per n	
From	<u>To</u>	In Feel					(ganons per n	
4010	4900	890		SAN AN	IDRES		400	
1							<u> </u>	
		ļ						
				····	<u> </u>			
			Sectio	n 3. RECORD	OF CASING			
Diameter	Pounds	Threads	Depth	in Fect	Length	Type of Shoe	Perfor	ations
(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of Silde	From	То
13-3/8	48	8R	0	208 -	208			
8-5/8	32	8R	0 .	2926	2926	BAKER		
5-1/2" 1.1	VR 15.5, 17	8R .	_2730	7785	5055	LARKIN	4073	4960
J-J/C LI	<u>1110.0.1/</u>	1OK	<u>_ ~/ JU</u>	<u>1 //00</u>	1.0000		<u> 1 407.3 </u>	4200

Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Sacks of Mud Cubic Feet of Cement Hole Method of Placement Diameter То 208 17-1/4" 198 PUMP & PLUG

Section 5. PLUGGING RECORD

3102

1280

PUMP & PLUG

PUMP & PLUG

___ FWL _____ FSL___

_____ Location No. 21.37.22.33 CTR S LETTE

Address		No.	Depth in Feet		Cubic Feet
Plugging Method		. INO.	Тор	Bottom	of Cement
Date Well Plugged		1			
Plugging approved by:		2			
	· · · · · · · · · · · · · · · · · · ·	. 3			
	State Engineer Representative	4			

November	3,	1988

CP-733

2926

7785

11"

7-7/8"

From

208

2926

Date Received

File No.___

0

FOR USE OF STATE ENGINEER ONLY Quad ____

_ Use ____NOI

Danih	- 10 12 4	a u 1.1	Section 6. LOG OF HOLE	
From	in Feet To	Thickness in Feet	Color and Type of Material Encountered	
0	6500	6500	NO SAMPLES TAKEN	_
6500	7373	873	DOLOMITE, LIME, SHALE)
7373	7615	242	SHALE, SAND, LIME	_
7615	7715	100	LIME	
	7850	135	DOLOMITE	·
7850	7864	14	GRANITE WASH	
			· · · · · · · · · · · · · · · · · · ·	-
		ļ		-
<u> </u>				-
<u></u>				~
. <u></u>				_
				_
		· · · · ·		_
				-
				_
				_
				_
				_
				_
				-
]	 		· ·	_
		Section 7	REMARKS AND ADDITIONAL INFORMATION	
				· · · ·
			83. H. 63	: جو: بر
			63	

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

1

~

A. J. FORE xXXXXXxxx SUPV. REG. & PERMITTING ppropriate district office J. FORE

INSTRUCTIONS: This form of the State Engineer. All s defliped and and an dealers of

'd be executed in triplicate, preferably typewritten, and submitted te , except Section 5, shall be answered as completely and accurate, •

opropriate district office ossible when any well is