

<UCD File Copy>

SUBSURFACE ENVIRONMENTAL ASSESSMENT

Texaco Exploration and Production, Inc. Eunice #2 (North) Gas Plant

Lea County, New Mexico

September 1996

Prepared for

RECEVED

OCT 2 1996

Environmental Bureau Oil Conservation Division

Prepared by

Highlander Environmental Corp.

OCT 2 1996

Environmental Bureau Oil Conservation Division

SUBSURFACE ENVIRONMENTAL ASSESSMENT

September 1996

TEXACO EXPLORATION AND PRODUCTION, INC.

Prepared for:

Mark Larson Project Manager

Ike Tavarez

Geologist

Highlander Environmental Corp.

Midland, Texas

TABLE OF CONTENT

1.1 Purpose and Scope 1.2 Regulatory Agency Correspondence	1 1
1.2 Regulatory Agency Correspondence	1 2
1.3 Previous Investigations	
2.0 SITE SETTING	
2.1 Topography	
2.2 Soils	6
2.2 Geology	6
2.3 Groundwater	7
3.0 ENVIRONMENTAL INVESTIGATION AREAS	7
3.1 North Sumps	7
3.2 North Sump of Engine Room	8
3.3 South Sump of Engine Room	8
3.4 Waste Oil and Water Storage Area	
3.5 Trash Pit	<i>9</i>
 4.0 ENVIRONMENTAL INVESTIGATION ACTIVITIES	9 9
1.2 Roll Headspace Gas Survey	••••••••••••••••••••••••••••••••••••••
4.5 Soil Sompling and Analysis	•••••1
4.5 Groundwater Sampling and Analysis	12
5.0 ENVIRONMENTAL INVESTIGATION RESULTS	1?
5 1 Soil analysis	11 11
5.1.1 Waste oil and Water Storage Area	11 12
5.1.2 Sump (North of Engine Room)	۰۰۰۰۱ ۱4
5.1.2 Sump (North of Engine Room)	· · · · · 1. 1/
5.1.4 North Sump (Northeast of Facility)	· · · · · 10
5.1.4 Process $(Process of Pacific as the process of Pacific as the p$	10
5.2 Groundwater Sample Results	••••••••••••••••••••••••••••••••••••••
	.

LIST OF TABLES

<u>Table</u>

- 1. Summary of BTEX and TPH analysis of Soil Samples
- 2. Summary of Soil Boring and Monitor Well Drilling and Completion Details
- 3. Summary of OVM Headspace Gas Readings on Soil Samples
- 4. Summary of Volatile and Semi-volatile Organic Parameters Detected in Soil Samples
- 5. Summary of Metals Analysis of Soil Samples
- 6. Summary of Volatile and Polynuclear and TPH Analysis of Groundwater Samples
- 7. Summary of Metals and General Chemistry Analysis of Groundwater Samples

LIST OF FIGURES

<u>Figure</u>

- 1. Site Location and Topographic Map
- 2. Site Layout
- 3. Waste Oil and Water Storage Area Detail

LIST OF APPENDICES

Appendix

A. Highlander Environmental Corp. Report, November 1995

B. Analytical Laboratory Reports

C. Soil Boring Sample Logs

D. Monitor Well construction Logs

E. Field Photographs

SUBSURFACE ENVIRONMENTAL ASSESSMENT TEXACO EXPLORATION AND PRODUCTION, INC. EUNICE #2 (NORTH) GAS PLANT LEA COUNTY, NEW MEXICO

1.0 INTRODUCTION

Texaco Exploration and Production, Inc. (Texaco) has retained Highlander Environmental Corp. (Highlander) to conduct a Subsurface Environmental Assessment (Assessment) at the Texaco Eunice #2 (North) Gas Plant (Site), located approximately .25 mile north of Eunice, New Mexico. The Site is situated in the southeast quarter (SE/4) of the northeast quarter (NE/4), and the NE/4 of the SE/4 of Section 28, Township 21 South, Range 37 East, Lea County, New Mexico. Figure 1 presents a Site location and topographic map. Figure 2 presents a Site drawing.

The Assessment was required by the State of New Mexico, Oil Conservation Division (OCD) after its review of Texaco's Groundwater Discharge Plan (Plan Number GW-004) for the Site. The Assessment was conducted between August 5-15, 1996.

1.1 Purpose and Scope

The purpose of the Assessment was to determine if subsurface releases of petroleum hydrocarbons to soil and groundwater have occurred from operations at the Site. The Assessment consisted of installing hand auger and machine rotary drilled soil borings at various Site operation areas and collection of soil samples for field and laboratory testing. One monitor well (MW-1) was also installed as part of a ongoing investigation to evaluate soil and groundwater conditions in the vicinity of the compressor building.

1.2 Regulatory Agency Correspondence

On February 14, 1996, Texaco submitted the document titled, "Groundwater Discharge Plan, Texaco Exploration & Production Eunice North Gas Processing Plant, Lea County, New Mexico" (Plan) to the New Mexico OCD. Prior to approval of the Plan the OCD, conducted an inspection of the Site

and required Texaco to conduct a subsurface evaluation of the Site to determine if process area sumps and waste management areas had impacted soil and groundwater at the Site. Highlander prepared a work plan titled, "Work Plan Attachment to Discharge Plan GO-004, Discharge Plan Requirements, Texaco Exploration and Production, Inc., Eunice #2 (North) Gas Plant", incorporated here by reference. The Work Plan was implemented on August 5, 1996.

1.3 Previous Investigations

During October 1995, Texaco requested Highlander to conduct a subsurface investigation in the vicinity of the compressor building at the Site. The subsurface investigation was conducted to determine if impacts to the shallow soil were present as a result of leaks from the compressor engines.

The subsurface investigation consisted of installing thirteen shallow hand auger borings (AH-1 through AH-13), which were spaced approximately fifty feet apart along the north and south sides of the compressor building. The soil borings were advanced to a maximum depth of approximately fifteen feet below ground. Soil samples were collected at one and two foot increments from each boring for visual examination and field screening. The soil samples were field screened for petroleum hydrocarbons using a Thermo Environmental Instruments, Model 580 B Organic Vapor Meter (OVM). The soil sample field screening results indicated that soil was impacted by hydrocarbons at locations AH-4, AH-6, AH-7, AH-9, AH-10, AND AH-11. Twelve additional soil borings were installed to define the horizontal extent of the hydrocarbon impacts at these locations. Soil samples were submitted to Trace Analysis, Inc., Lubbock, Texas and analyzed for Total Petroleum Hydrocarbons (TPH) by EPA method SW-846-8080, and benzene, toluene, ethyl benzene and xylene (collectively referred to as BTEX) by EPA method SW-846-8020.

Page 3 of 22

The results of the laboratory analysis for TPH reported impacts to soil at depths ranging from approximately 1.0 to 15 feet below ground surface. The highest TPH reading reported was 142,000 milligrams per kilogram (mg/kg) from 4.0 feet below ground at location AH-4. The TPH level in soil at location AH-4 decreased to 226 mg/kg at a depth of approximately 10 feet below ground. Assuming a TPH target cleanup level of 1000 mg/kg in soil based on guidelines published by the New Mexico OCD, the vertical extent of TPH impact in soil was not defined at locations AH-6 and AH-8. The horizontal extent of TPH was defined in soil at locations AH-4, AH-6 and AH-7 and indicated that the TPH impact extended horizontally about 7 to 10 feet from the compressor building.

The BTEX analysis reported that benzene, toluene, and ethylbenzene were not present in the soil samples above the test method detection limits. Xylene was reported in soil samples from borings AH-5 and AH-7 at 0.555 mg/kg and 0.211 mg/kg, respectively. The results of PCB analysis of soil samples from borings AH-6 and AH-7 did not report PCB above the test method detection limits. The results of total metals analysis of the soil samples reported chromium at 64.9 mg/kg in soil from location AH-7, 1.0 to 1.5 feet.

A total chromium level of 1580 mg/kg was reported in the soil sample from boring AH-5 from 0.0 to 0.5 feet. The chromium level was elevated above concentrations typically found in soil for the Site and region. The preliminary results of the subsurface investigation were presented to Texaco in the report titled, "Subsurface Investigation of the Compressor Building at Texaco North Eunice Gas Plant, November 1995", which is presented in Appendix A.

On March 28, 1996 Highlander installed four additional hand auger soil borings in the vicinity of borings AH-6, AH-7, AH-8 and AH-11 and collected soil samples to delineate the vertical and horizontal extent of hydrocarbons in soil. Soil borings, AH-6-2, AH-7-2, AH-8-2, and AH-11-2 were extended to depths ranging from approximately 5.5 feet below ground (AH-11-2) to approximately 14 feet below ground (AH-7-2). Soil samples were collected from each boring and

analyzed for TPH by EPA method 418.1. The soil samples from borings AH-6-2 and AH-7-2 were also analyzed for gasoline range petroleum hydrocarbons using EPA method 8015 modified. Table 1 presents a summary of the laboratory analysis. Appendix B presents the analytical laboratory report.

Referring to Table 1, the analysis of soil samples from borings AH-6-2 (12.5 to 13.0 feet) and AH-7-2 (13.5 to 14.0 feet) reported TPH at 1420 mg/kg and 58,300 mg/kg, respectively. These results indicated that the vertical extent of petroleum hydrocarbons in soil at these locations was not defined. The laboratory analysis of soil samples from borings AH-6-2 (12.5 to 13.0 feet) and AH-7-2 (13.5 to 14.0 feet) for gasoline range petroleum hydrocarbons reported sample AH-6-2, 12.5 to 13.0 feet at <10,000 micrograms per kilogram (ug/kg) or less than 10 mg/kg and 35,100 ug/kg or 35.1 mg/kg in sample AH-7-2, 13.5 to 14.0 feet. These results suggest that the impacts to soil at locations AH-6-2 and AH-7-2 are likely the result of leaks and spills of oil from the compressor engines, rather than gasoline related hydrocarbons. The auger boring installed at location AH-7-2 was terminated on a dense layer of caliche, which would likely impede vertical movement of the hydrocarbons.

Soil samples from hand auger borings AH-8-2 and AH-11-2 were analyzed for TPH and reported 18 mg/kg and <10 mg/kg, respectively. These laboratory results indicate that the vertical extent of petroleum hydrocarbons in the soil at these locations was defined.

Texaco requested Highlander to install one monitor well to determine if hydrocarbons found in soil adjacent to the compressor building had impacted groundwater. The monitor well was installed in accordance with a Work Plan that was prepared by Highlander titled, "Monitor Well Work Plan, Texaco Exploration and Production, Inc., North Eunice Gas Plant, Lea County, New Mexico". The Work Plan was submitted to the OCD on April 18, 1996 and was approved on June 27, 1996.

Monitor well MW-1 was drilled on July 22, 1996 by Scarborough Drilling, Inc., Lamesa, Texas.

Page 5 of 22

The monitor well was drilled to a depth of approximately 57 feet below ground using a truck mounted rotary drilling rig. Mud additive was used during drilling due to caving of unconsolidated sand underlying the Site. Soil samples were collected during drilling for field screening and laboratory analysis. The soil samples were field screened for petroleum hydrocarbons using the OVM. Based on the field screening results soil samples from depth intervals of 25 to 27 feet and 55 to 57 feet were submitted to the laboratory and analyzed for BTEX and TPH. The analysis were performed by Trace Analysis, Inc., Lubbock, Texas. Table 1 presents a summary of the laboratory soils analysis. Table 2 presents a summary of soil boring drilling and monitor well completion details. Table 3 presents the OVM field screening results. Appendix B presents the laboratory sample reports. Appendix C presents the soil boring sample logs. Appendix D presents the monitor well completion form.

Referring to Table 1, BTEX was not reported above the test method detection limit of 50 ug/kg in the soil sample from 25 to 27 feet below ground from monitor well MW-1. The soil sample from 55 to 57 feet below ground did not report benzene above the test method detection limit of 50 ug/kg. Toluene, ethylbenzene, and xylene were reported in the soil sample from 55 to 57 feet at concentrations of 243 ug/kg, 1130 ug/kg and 3443 ug/kg, respectively. The total BTEX concentration in the soil sample from 55 to 57 feet was 4816 ug/kg. The TPH levels reported in the soil samples were 17.6 mg/kg (25 to 27 feet) and 90.2 mg/kg (55 to 57 feet). Based on guidance published by the New Mexico OCD (Guidelines for Remediation of Leaks, Spills, and Releases, August 13, 1993), the BTEX and TPH levels in soil samples from monitor well MW-1 would not normally require remediation.

2.0 SITE SETTING

2.1 <u>Topography</u>

The topography of the Site gently slopes from west to east. The elevation of the Site ranges from about 1330 feet above mean sea level (AMSL) along the west side to about 1325 feet AMSL along the east side. Storm water runoff generally follows the topography of the Site. The nearest

surface water body to the Site is greater than two miles east. There is one water well at the Site (Water Well #1) which is used for industrial purposes (i.e. cooling towers, etc.).

2.2 <u>Soils</u>

The Site is underlain by soils of the Pyote Series and Berino Series (Turner, et.al., 1974). The Pyote Series is represented by the Pyote and Maljamar fine sands (0 to 3 percent slopes) soil. The Berino Series is represented by the Berino-Cacique loamy fine sands association (0 to 3 percent) soil.

The Pyote and Maljamar fine sands (PU) is the predominant soil type at the Site and consists of a surface layer of fine grained brown sand, approximately 30 inches thick. The surface layer is underlain by several subsoil strata consisting of fine sandy loam, varying from strong brown to light brown in color and approximately 30 inches thick. The Pyote and Maljamar fine sands soil has moderately rapid permeability and low corrosivity potential to uncoated steel. The principal uses of Pyote and Maljamar fine sands soil are range, wildlife habitat and recreational areas. The Pyote and Maljamar fine sand soil occupies the central part of the Site.

The Berino-Cacique loamy fine sands association (BE) is present along the north and south boundaries of the Site. The Berino-Cacique loamy fine sands soil consists of a thin surface layer, approximately 6 inches thick of reddish-brown loamy fine sand. The surface layer is underlain by several substrata consisting of sandy clay loam, varying in color from red to light brown and approximately 54 inches thick. The Berino-Cacique loamy fine sands soil has a moderate permeability and moderate corrosivity potential to uncoated steel. Uses of Berino-Cacique loamy fine sands soil include rangeland, recreational areas and wildlife habitat.

2.2 Geology

The Site is underlain by deposits of Recent-age windblown sand ranging in thickness from about a few feet to as much as 40 feet. The windblown sand deposits consist of unconsolidated fine to medium grained sand. The windblown sand is underlain by the Pliocene-age Ogallala Formation.

The Ogallala Formation consists of semiconsolidated deposits of fine grained calcareous sand, capped by a layer of caliche. The Ogallala Formation also contains minor amounts of clay, silt and gravel (Nicholson and Clebsch, 1961 and Brown, 1976). The Ogallala Formation ranges in thickness from a few inches to about 300 feet.

2.3 Groundwater

Groundwater occurs in the Pliocene-age Ogallala Formation. The Ogallala Formation, commonly referred to as the High Plains Aquifer, occurs under unconfined conditions. The regional direction of groundwater flow in the vicinity of the Site is from west-northwest to south-southeast. Recharge to the Ogallala Formation occurs through infiltration of precipitation from rainfall and snow melt. Discharge from the Ogallala Formation occurs principally through pumping from wells.

Based on Site-specific data, depth-to-groundwater beneath the Site is approximately fifty-three feet below ground surface.

3.0 ENVIRONMENTAL INVESTIGATION AREAS

3.1 North Sumps

The north sumps are located near the northeast corner of the Site, adjacent to the east fence. There are two sumps at this location. The sumps are constructed of concrete and metal, and the area measures approximately 10×50 feet. The north sumps contain oil and water from compressor engines, salt water from water treaters, and blowdown water that contains phosphates and sulfides from boilers, and condensates. Liquids are collected in the sumps and pumped through a single line to the waste oil and water storage area, located on the west side of the Site. Section 3.4 discusses the waste oil and water storage area. Figure 2 presents a Site drawing showing the location of the north sumps.

3.2 North Sump of Engine Room

This sump is located north of the engine room of the compressor building, located on the north side of the Site. The sump is constructed of metal and measures approximately 2.5 feet in diameter (top opening) and approximately 5.0 feet deep.

The sump contains water and water treatment chemicals, (i.e., sodium nitrate and sodium molybdate) from the compressor engines cooling systems. The water is dumped into the sump when a compressor engine is blown down. The fluids are returned to the engine cooling system. Figure 2 presents a Site drawing showing the location of the north sump of engine room.

3.3 South Sump of Engine Room

The sump is located south of the engine room of the compressor building. The sump is constructed of metal and measures approximately 1.5 feet in diameter (top opening) and approximately 6.0 feet deep.

The sump contains oil from leaks from the compressor engines and water from washing engines and leakage from cooling water lines. Figure 2 presents a Site drawing showing the location of the south sump of engine room.

3.4 Waste Oil and Water Storage Area

The waste oil and water storage area is located on the west side of the Site, and consists of a aboveground storage tank (AST), used for storage of oil from inlet scrubbers, fluids (i.e., oil, water and condensate) from the south sump of the engine room, and fluids from the north sumps. The AST is located within a diked area measuring approximately 105 x 115 feet..

The oil and water is separated at the waste oil and water storage area, after which, the oil is sold and the water is pumped to a disposal well off site. Figure 2 presents a Site drawing showing the location of the waste oil and water storage area.

3.5 <u>Trash Pit</u>

The trash pit is located near the southwest corner of the Site in an area used for equipment salvage and storage. The trash pit measures approximately 40×40 feet, and is approximately 3 to 4 feet deep. The trash pit has been used for disposal of trash and construction debris. Figure 2 presents a Site drawing showing the location of the trash pit.

4.0 ENVIRONMENTAL INVESTIGATION ACTIVITIES

4.1 Hand Auger Soil Borings

Two hand auger soil borings were installed using a three inch diameter stainless-steel bucket-type hand auger. The hand auger soil borings were installed near the north sump of the engine room (AH-1) and near the south sump of the engine room (AH-1). Figure 2 presents the locations of the hand auger soil borings.

Soil samples were collected at various depth intervals from each hand auger soil boring for potential laboratory testing and headspace gas screening. All samples collected for potential laboratory analysis were collected and preserved according to EPA protocols, and analyzed within appropriate holding times. A portion of each soil sample was collected for headspace gas screening using an OVM to provide supporting data and determine which samples would be selected for laboratory analysis. A lithological sample log for each boring was prepared from descriptions of soil samples and are presented in Appendix C. Table 2 presents a summary of drilling details for the hand augered soil borings.

The auger bucket was thoroughly washed between each borehole location and sampling event using potable water and laboratory grade detergent, followed by rinsing with deionized water. Soil cuttings were placed on plastic, covered and retained onsite until proper disposal was arranged. The hand augered boreholes were plugged to ground surface after completions of field activities using a cement and bentonite grout.

4.2 Rotary Drilled Soil Borings

Highlander supervised drilling of ten rotary drilled boreholes at the Site. Two rotary drilled boreholes (BH-1 and BH-2) were located near the north sump. Eight rotary drilled boreholes (BH-1 through BH-8) were drilled adjacent to the containment berm surrounding the AST at the waste oil and water storage area. Boreholes BH-1 through BH-4 were drilled along the outside edge of the containment dike, and boreholes BH-5 through BH-8 were drilled inside of the containment dike. Figure 2 presents a Site drawing showing the locations of the rotary drilled boreholes.

The boreholes were drilled by Scarborough Drilling, Inc., Lamesa, Texas using a truck-mounted rotary drilling rig. Air was used during rotary drilling and soil samples were collected using a 2-foot long split spoon sampler. Soil samples were collected for potential laboratory testing and headspace gas screening. All soil samples collected for potential laboratory analysis were collected and preserved according to EPA protocols and analyzed within appropriate holding times. A portion of each soil sample was collected for headspace gas screening using the OVM to provide supporting data and determine which samples would be selected for laboratory analysis. Lithological sample logs were prepared for the rotary drilled boreholes from descriptions of soil samples. Appendix C presents the lithological sample logs. Table 2 presents a summary of soil boring drilling details.

The split spoon sampler was thoroughly washed between each borehole and sampling event using potable water and laboratory grade detergent, followed by rinsing with deionized water. The drilling rig and all down-hole equipment (i.e., drill rods, bits, etc.) were thoroughly washed between boreholes using a high pressure hot water washer. The drill cuttings were placed on plastic in a secured area onsite and covered until proper disposal was arranged. Following completion of field activities the boreholes were plugged to ground surface with cement and bentonite grout.

4.3 Soil Headspace Gas Survey

The soil headspace gas survey is a measurement of the relative concentration of volatile organic constituents in soil. The Ambient Temperature Headspace (ATH) method was used at the Site for the soil headspace gas survey. The ATH method consists of collecting discrete or composite soil samples from a drilled borehole and placing the sample in a clean plastic sample bag, leaving a vacant headspace in the top of the bag. The bag is sealed and after approximately fifteen minutes at ambient temperature storage the concentration of organic vapors in the sample bag headspace is measured using a photo ionization detector (PID).

Soil samples collected during the investigation were collected during rotary drilling using a split spoon sampler or from bucket auger samples during hand auger drilling. Soil sample were collected from different depth intervals and a portion of the soil samples from each sampling interval was placed in a plastic bag and field screen for organic vapors. The soil samples were field screened using a Thermo Environmental Equipment Model 580B, Organic Vapor Meter (OVM). The OVM was calibrated to a 100 parts per million (ppm) isobutylene gas standard and has a detection limit of .1 ppm. Table 3 presents a summary of soil headspace gas readings of soil samples. The soil headspace gas readings are also presented on the lithological sample logs presented in Appendix C.

4.4 Soil Sampling and Analysis

Soil samples were collected at various depth intervals from each borehole during hand auger and rotary drilling. A portion of each soil sample was field screened for organic vapors using the OVM (Section 4.3). Based on the OVM headspace measurements, approximately one to three soil samples were selected from each boring for laboratory testing. Generally, the soil sample exhibiting the highest OVM headspace reading from the upper, middle and lower portion of the soil column was selected for laboratory analysis.

The soil samples from borings drilled in the vicinity of the north sump, waste oil and water storage area, engine room sumps and trash pit were analyzed for volatile organic compounds (EPA method

SW-846-8240), semi-volatile organic compounds (EPA method SW-846-8270), and total metal (EPA methods SW -846-3051, 6010, and 7471). Soil samples collected during drilling of the monitor well (MW-1) were analyzed for BTEX by EPA method SW- 846-8020, and total petroleum hydrocarbons (TPH) by EPA method 418.1. Soil samples collected from boreholes BH-5, BH-6, BH-7, and BH-8, installed in the vicinity of the waste oil and water area were also analyzed for BTEX.

A soil sample from borehole BH-2 (50 to 52 feet) near the north sump was analyzed by Gas Chromatography (GC) capillary column GC-FID method to determine the source of hydrocarbons in the soil sample. Appendix B presents the analytical laboratory reports, chain of custody forms, and Quality Assurance/Quality Control (QA/QC) documentation. Table 1 presents a summary of the BTEX and TPH analysis of soil samples. Table 4 presents a summary of volatile organic and semi-volatile organic parameters detected in soil samples. Table 5 presents the results of metals analysis of soil samples.

4.5 Groundwater Sampling and Analysis

On June 14, 1996 and August 1, 1996, Highlander collected samples of groundwater from a Site water supply well (water well #1) and monitor well MW-1, respectively. Figure 2 presents a Site drawing showing the locations of the wells.

Prior to purging and sampling, the surface of the groundwater was inspected in each well for the presence of petroleum hydrocarbon product. A clean disposable PVC bailer was lowered into each well and a groundwater sample was retrieved from the top of the water column. No petroleum hydrocarbon product was observed on the groundwater in monitor well MW-1 and water well #1.

Following hydrocarbon product inspection, monitor well MW-1 was developed by bailing. A minimum of 3 casing volumes of groundwater was removed from the well. Groundwater removed from the monitor well was contained in 55-gallon steel drums and retained onsite until disposal was

Midland, Texas

arranged. Water well #1 contained a submergible pump and was allowed to pump for approximately 30 to 45 minutes prior to sampling.

Groundwater samples were collected from monitor well MW-1 using a clean dedicated disposable PVC bailer and nylon line. The groundwater samples from water well #1 were collected from a sample port installed at the well head. Groundwater was carefully transferred to appropriately labeled and preserved containers provided by the analytical laboratory (Trace Analysis, Inc., Lubbock, Texas). The groundwater samples from water well #1 were analyzed for volatile and polynuclear aromatic (PAH) organic compounds by EPA methods SW-846-8240 and 8200, respectively. A groundwater sample from Water Well #1 was also field filtered and analyzed for metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver) and major jons (potassium, magnesium, calcium, sodium, chloride, fluoride, sulfate, alkalinity, and nitrate) by EPA methods SW- 846-3051, 6010, and 7471. A groundwater sample was collected from water well #1 and field filtered for chromium analysis by EPA method SW-846-3051. Groundwater from monitor well MW-1 was analyzed for BTEX and TPH by EPA methods 8020 and 418.1, respectively. Appendix B presents the analytical laboratory reports, chain of custody control forms, and QA/QC documentation. Table 6 presents a summary of volatile and PAH organic compounds detected in the groundwater samples. Table 7 presents a summary of metals and ion analysis of groundwater samples.

5.0 ENVIRONMENTAL INVESTIGATION RESULTS

5.1 Soil analysis

5.1.1 Waste oil and Water Storage Area

Eight rotary drilled boreholes (BH-1 through BH-8) were drilled in the vicinity of the waste oil and water storage area. Boreholes BH-1 through BH-4 were drilled adjacent to the outside edge of the berm surrounding the AST. Boreholes BH-5 through BH-8 were drilled on the inside of the bermed area. Figure 2 presents a Site drawing showing the waste oil and water storage area. Figure 3 presents a detailed drawing of the waste oil and water storage area and the locations of boreholes BH-1 through BH-8.

The boreholes installed outside the diked area (BH-1 through BH-4) did not show visual impact to the subsurface soil. The OVM headspace readings of soil samples from boreholes BH-1, BH-2, and BH-3 only showed traces of hydrocarbon impact. The OVM headspace readings ranged from 1 ppm to 4 ppm throughout the depth of the boreholes. The OVM headspace readings of soil samples from borehole BH-4 showed the OVM readings increased from 28 ppm at a depth of 10 feet to a high of 154 ppm at a depth of 25 to 27 feet. Below a depth of 27 feet the OVM readings decreased below 39 ppm, and 8 ppm at 35 to 37 feet.. Soil samples from boreholes BH-1 through BH-4 were not submitted for laboratory testing since OVM headspace readings decreased below 100 ppm.

The boreholes installed inside the diked area (BH-5 through BH-8) showed visual impact from petroleum hydrocarbons from ground surface to a depth of approximately 3 to 5 feet below ground surface. The most heavily impacted soils were located in the southeast corner of the diked area. Visual observations in this area suggested that the hydrocarbon staining was likely the result of ponding of fluids. Headspace gas readings of soil samples from boreholes BH-5, BH-6, and BH-7 ranged from 353 ppm to 588 ppm from ground surface to approximately 15 to 20 feet below ground surface. The OVM headspace readings decreased to below 50 ppm or less below depths from 20 to 27 feet in boreholes BH-5 through BH-7. The OVM headspace gas results from boreholes BH-5 through BH-7 suggest that hydrocarbons were spilled at the surface and migrated vertically until contacting less permeable layers of caliche or clay. Borehole BH-8 showed elevated OVM readings from ground surface to approximately 7 feet below ground. The OVM readings decreased to less than 50 ppm to 2 ppm at a depth of 10 feet below ground.

Soil samples were selected for BTEX analysis from boreholes BH-5 (5 to 7 feet and 35 to 37 feet), BH-6 (40 to 42 feet), BH-7 (35 to 37 feet), and BH-8 (25 to 27 feet). Table 1 presents a summary of the analysis. Referring to Table 1, BTEX was not reported above the test method detection limits in the soil samples, except sample BH-5, 5 to 7 feet. Benzene was reported below the test method detection limit in sample BH-5, 5 to 7 feet. Toluene, ethylbenzene, and xylene was reported at 663

ug/kg, 12,500 ug/kg, and 25,343 ug/kg, respectively.

Soil samples from boreholes BH-5 (5 to 7 feet), BH-6 (5 to 7 feet), and BH-8 (5 to 7 feet) were analyzed for volatile and semi-volatile organic compounds and total metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver). The volatile and semi-volatile analysis are summarized in Table 4. Table 5 presents a summary of the metals analysis.

Referring to Table 4, no semi-volatile organic constituents were detected in the soil samples above test method detection limits. Volatile organic compounds detected included benzene in the soil samples from borings BH-6 (1310 ug/kg) and BH-8 (384 ug/kg). Toluene was detected in the sample from borehole BH-5 (663 ug/kg), and ethylbenzene was detected in samples from boreholes BH- 5 (12,500 ug/kg), BH-6 (30,700 ug/kg), and BH-8 (1460 ug/kg). Xylene was reported in soil samples from boreholes BH-5 (12,180 ug/kg), BH-6 (14,700 ug/kg), and BH-8 (1448 ug/kg).

Based on the New Mexico OCD guidance document titled, "Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)", the levels of benzene and total BTEX in soil samples from borings drilled in the vicinity of the waste oil and water storage area were below the recommended remediation action levels and would therefore, not require remediation. The field and laboratory analysis suggest that the hydrocarbon impacts to soil are the result of surface spills, rather than a subsurface release of hydrocarbons.

The results of total metals analysis of soil samples from boreholes BH-5, BH-6 and BH-8 only detected barium (170 mg/kg to 210 mg/kg) and chromium (11.0 mg/kg). The metals analysis were consistent with regional concentrations and do not indicate an environmental impact.

5.1.2 Sump (North of Engine Room)

One hand auger boring was installed next to the sump to evaluate the environmental conditions of subsurface soil. The auger hole (AH-1) was installed to a depth of approximately 8.4 feet below

Page 16 of 22

ground surface. Soil samples were collected and showed no visual impact from petroleum hydrocarbons. The results of OVM headspace readings from soil samples revealed background levels (<1.0 ppm) throughout the depth of the auger hole. One soil sample (8.2 to 8.4 feet) was collected and analyzed for volatile and semi-volatile organic compounds. Table 4 presents a summary of the analysis, which reported no levels of volatile and semi-volatile organic constituents above test method detection limits.

The results of field and laboratory tests does not indicate that a release from the sump has occurred.

5.1.3 Sump (South of Engine Room)

One hand auger boring (AH-1) was advanced to a depth of approximately 6.8 feet below ground adjacent to the sump. A dense layer of caliche was encountered at the bottom of the boring. Soil samples were collected and reveled no visual impact to soil from petroleum hydrocarbons. The OVM headspace readings of soil samples recorded background levels (<1.0 ppm) throughout the borehole. One soil sample from approximately 6.4 to 6.8 feet below ground was analyzed for volatile and semi-volatile organic compounds. Table 4 presents a summary of the laboratory analysis, which reported no volatile and semi-volatile organic compounds above test method detection limits. The results of field and laboratory tests do not indicate that a release from the sump has occurred.

5.1.4 North Sumps (Northeast of Facility)

Two boreholes (BH-1 and BH-2) were drilled adjacent to the north sumps. The boreholes were installed approximately 10 feet east of the sumps. The location of the sumps and boreholes are shown in Figure 2.

The results of OVM headspace readings of soil samples from boreholes BH-1 reported levels from 28 ppm (15 to 17 feet) to 421 ppm (50 to 52 feet). The OVM headspace readings from borehole BH-2 reported levels from 29 ppm (40 to 42 feet) to 497 ppm (20 to 22 feet). The OVM readings

indicated that impacts to soil from petroleum hydrocarbons have resulted from surface spills and subsurface releases since levels are elevated from ground surface to depths of approximately 52 feet (top of groundwater).

Two soil samples from each borehole (10 to 12 feet and 50 to 52 feet) were selected for laboratory analysis. The soil samples were analyzed for volatile and semi-volatile organic compounds and total metals. Table 4 presents a summary of the volatile and semi-volatile organic analysis. Table 5 presents a summary of the total metals analysis.

Referring to Table 4, benzene was below the test method detection limit of 250 ug/kg in the 10 to 12 feet depth interval soil samples from borings BH-1 and BH-2. Benzene was reported at 4500 ug/kg and 5680 ug/kg in the 50 to 52 feet depth interval samples from borings BH-1 and BH-2, respectively. Toluene levels were reported at 33,400 ug/kg (BH-1, 50 to 52 feet), 2090 ug/kg (BH-2, 10 to 12 feet) and 27,400 ug/kg (BH-2, 50 to 52 feet). Ethylbenzene levels in the soil samples ranged from 1380 ug/kg (BH-1, 10 to 12) to 20,200 ug/kg (BH-1, 50 to 52 feet). Xylene ranged from 1130 ug/kg (BH-1, 10 to 12 feet) to 43,000 ug/kg (BH-1, 50 to 52 feet). No other volatile organic compounds were detected in the soil samples.

Semi-volatile organic compounds detected in the soil samples were naphthalene, 2-methyl naphthalene, and anthracene. Naphthalene was reported at 9.46 mg/kg in the 10 to 12 feet depth interval sample only. The levels of 2-methyl naphthalene in the soil samples ranged from 4.37 mg/kg (BH-2, 10 to 12 feet) to 37.54 mg/kg (BH-1, 10 to 12 feet). Anthracene (7.02 mg/kg) was only detected in the soil sample from 10 to 12 feet in borehole BH-1. The presence of these constituents suggests impact to soil has occurred from diesel range hydrocarbons. The soil sample from borehole BH-2, 50 to 52 feet was analyzed by capillary column GC-FID method and reported a hydrocarbon pattern consistent with diesel range hydrocarbons.

The benzene and total BTEX levels in the 10 to 12 feet depth interval samples from boreholes BH-1 and BH-2 are below the OCD recommended remediation action levels of 10 mg/kg and 50 mg/kg, respectively. The benzene levels in soil samples from the 50 to 52 feet depth intervals from locations BH-1 and BH-2 are also below the OCD recommended remediation action level. However, the total BTEX levels in the 50 to 52 feet depth interval samples from boreholes BH-1 (101,100 ug/kg) and BH-2 (76,960 ug/kg) exceed the OCD recommended remediation action level of 50 mg/kg. The results of analysis of soil samples from the 50 to 52 feet depth intervals may suggest that the elevated BTEX levels are the result of capillary movement of hydrocarbons in soil from vertical fluctuation of the groundwater surface. The field observations also indicated that petroleum hydrocarbon product may be present in soil at the groundwater interface. The results of field and laboratory analysis of soil samples from borings BH-1 and BH-2 indicates that the hydrocarbon impacts to soil have occurred from surface spills and subsurface releases from the sumps.

The results of metals analysis of soil samples from borings BH-1 and BH-2 reported barium (91.5 mg/kg to 121.0 mg/kg) and chromium (5.4 mg/kg) above test method detection limits. The barium and chromium levels detected in the soil samples were consistent with regional levels and do not indicate an environmental impact.

5.1.5 Trash Pit

One hand auger boring (AH-1) was placed near the center of the trash pit to investigate the environmental condition of subsurface soil. Hand auger boring AH-1 was installed to a depth of approximately 4.7 feet below ground surface. Two soil samples from depths of 2.0 to 2.5 feet below ground and 4.5 to 4.7 feet below ground were collected and field screened for organic vapors with the OVM. The OVM headspace readings from the soil samples were consistent with background readings (<1 ppm). One soil sample from a depth of 4.5 to 4.7 feet below ground was selected for analysis of volatile and semi-volatile organic, and total metals. Table 4 presents a summary of the volatile analysis.

Referring to Table 4, no levels of volatile and semi-volatile organic compounds were detected in the soil sample above test method detection limits. The results of total metals analysis detected arsenic (10.4 mg/kg) and barium (163.0 mg/kg) above the test method detection limits. The results of volatile and semi-volatile organic and metals analysis of soil from the trash pit does indicate that an environmental impact has occurred. The metals concentrations were consistent with the regional and Site levels for arsenic and barium.

5.2 Groundwater Sample Results

Groundwater samples were collected from the Site water well (water well #1) and monitor well MW-1. The groundwater samples from monitor well MW-1 and water well #1 were analyzed for volatile and PAH organic compounds. Groundwater samples were also collected from water well #1 and field filtered for metals analysis. A groundwater sample from monitor well MW-1 was collected for BTEX and TPH. Table 6 presents a summary of the volatile and PAH organic compounds. Table 7 present a summary of the metals analysis.

Referring to Table 6, no PAH organic compounds were reported in the groundwater samples from water well #1. Dichlorodifluoromethane (113 ug/L) was the only volatile organic compound detected in the groundwater sample from water well #1. There is no drinking water quality standard for dichlorofluoromethane. Benzene, toluene, ethylbenzene, and xylene were detected in the groundwater sample from monitor well MW-1 at concentrations of 9ug/L, 69 ug/L, 169 ug/l and 329 ug/L, respectively. The State of New Mexico Water Quality Regulations for BTEX in groundwater of 10,000 mg/L TDS concentration or less are 0.01 mg/L (benzene), 0.75 mg/L (toluene), 0.75 mg/L (ethylbenzene) and 0.62 mg/L (xylene). The BTEX levels reported in the groundwater sample from monitor well MW-1 are well below the groundwater standards. The TPH level reported in the groundwater sample from well MW-1 was 582 ug/L. There is no drinking water quality standard for TPH in groundwater.

Referring to Table 7, chromium was reported in the groundwater samples from water well #1 at 0.66

Note: The additive effects of these Takk Pollation's Connert execced a concer incidence vate 0f 1×10-61 See Hol. TT

Is honever a 1101.TT Toxic pollutent. BTER is A TORIC Pollutant PCM 1101.TT

Page 20 of 22

mg/L and 0.82 mg/L. The chromium levels exceeded the water quality standard for chromium in groundwater of 0.05 mg/L for groundwater with a TDS concentration of 10,000 mg/L, or less. The levels of fluoride (2.6 mg/L), nitrate (10.4 mg/L), and chloride (782 mg/L) also exceeded the water quality standards of 1.6 mg/L (fluoride), 10.0 mg/L (nitrate), and 250 mg/L (chloride).

what is the A Depth between. nater and -1,100 mg/ky level. it A Depth 250' than 100 mg/kg applies.

Con it be Shenron that the callche is not fractured? Caliche is not ' a good barrier! (Fracturing)

6.0 CONCLUSIONS

- The horizontal extent of TPH was defined in soil at auger hole locations AH-4, AH-6 and AH-7. The TPH impact appears to extend approximately 7 to 10 feet from the compressor building. Vertical extent of TPH impact was not defined at auger hole locations AH-6 and AH-8 during this investigation. Target cleanup level of 1,000 mg/kg for TPH was used for delineation purposes.
- Impacts to soil at auger hole locations AH-6-2 and AH-7-2 are likely from the leaks and spills of oil from the compressor engines. A dense layer of caliche encountered during the installation of AH-7-2 would likely impede vertical migration of hydrocarbons.
- 3. Based on the New Mexico OCD August 13, 1993 guidance document, the BTEX and TPH levels in soil samples from monitor well MW-1 would not normally require remediation.
- 4. The primary source of fresh groundwater in the vicinity of the study area is the Ogallala Formation. Groundwater occurs under unconfined conditions, with a hydraulic gradient direction towards the south-southeast.
- 5. The field and laboratory analysis suggest that hydrocarbon impacts to soil are the result of surface spills, rather than a subsurface release of hydrocarbons at the Waste Oil and Water Storage Area. The metals analysis on the samples from this area does not suggest that a subsurface release from the AST has occurred.
- 6. Investigation performed at the Sump (North of Engine Room) revealed that no semi-volatile organic constituents were present in soil samples above test method detection levels. The results of field and laboratory tests does not indicate that a release from this sump has occurred.
- 7. Investigation performed at the Sump (South of Engine Room) revealed that no semi-volatile organic constituents were present in soil samples above test method detection levels. The results of field and laboratory tests does not indicate that a release from this sump has occurred.
- 8. The North Sump (Northeast of Facility) vicinity appears to be impacted from surface spills or leaks. Analysis of a soil sample from 50-52 feet for GC-FID and semi-volatiles indicated

diesel range hydrocarbons.

- 9. At the North Sump area, the benzene and BTEX levels at 10-12 feet depth intervals from boreholes BH-1 and BH-2 are below OCD recommended action levels. However, at 50-52 feet depth intervals for BH-1 and BH-2 exceed the OCD recommended action level of 50 mg/kg for BTEX.. Elevated BTEX levels at 50-52 feet BGS may be due to the capillary movement of hydrocarbons in soil from vertical fluctuation of the groundwater surface. The results of field and laboratory analysis of soil samples from borings BH-1 and BH-2 indicated that the hydrocarbon impacts to soil have occurred from surface spills and subsurface releases from the sumps.
- 10. Trash pit subsurface soil samples results of volatile and semi-volatile organic and metal analysis does not indicate that an environmental impact has occurred.
- Dichlorodifluoromethane (113 μg/L) was the only volatile organic compound detected in the groundwater sample from water well #1. There is no drinking water quality standard available for dichlorodifluoromethane.
- 12. The BTEX levels reported in the groundwater sample from monitor well MW-1 are well below the groundwater standards. The TPH level reported in the groundwater sample from well MW-1 was 582 ug/L. There is no drinking water quality standard TPH in groundwater.
- 13. The chromium levels exceeded the water quality standard for chromium in groundwater of 0.005 mg/L for groundwater with TDS of 10,000 mg/L or less. The levels of fluoride (2.6 mg/L), nitrate (10.4 mg/L), and chloride (782 mg/L) also exceeded the water quality standards of 1.6 mg/L (fluoride), 10.0 mg/L (nitrate), and 250 mg/L (chloride).

REFERENCES

- Alexander Nicholson, Jr., and Alfred Clebsch, Jr., 1961, Geology and Ground-Water Conditions in Southern Lea County, New Mexico: State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology, Ground-Water Report 6, 123p.
- New Mexico Water Quality Control Commission, 1995, State of New Mexico Ground and Surface Water Quality Regulations (20 NMAC 6.2) and Utility Operator Certification Regulations (20 NMAC 7.4): Santa Fe, New Mexico
- Shacklette, H.T. and Boerngen, J.G., 1984, Element Concentrations in Soil and Other Surficial Materials of the Conterminous United States: U.S. Geological Survey Professional Paper 1270, 105p.
- Turner, M.T., Cox, D.N., Mickelson, B.C., Roath, A.J., and Wilson, C.D., 1974, Soil Survey of Lea County, New Mexico: U.S. Department of Agriculture Soil Conservation Service, 89p.
- University of Texas at Austin, 1976, Geologic Atlas of Texas, Hobbs Sheet, Scale 1:250,000: Bureau of Economic Geology (includes pamphlet)

۲

Investigation Area	Soil Baring No.	Sample Denth (Ft.)	Sample Date	Benzene (ug/kg)	Toluene (ug/kg)	Ethylbenzene (ug/kg)	Xylene (ug/kg)	Total BTEX (ug/kg)	TRPHC (mg/kg)	TRPHC Gasoline Range (ug/kg)
and the second design and	4									
ompressor Building	AH-6-2	12.5-13.0	3/28/96	ı	1	1	:	:	1420	<10,000
	AH-7-2	13.5-14.0	3/28/96	1	r	1	1	1	58,300	35,100
	AH-8-2	8.0-8.5	3/28/96	1	1	1	1	1	18	:
	AH-11-2	5.0-5.5	3/28/96	1	1	1	:	1	<10	1
	I-WM	25-27	7/22/96	<50	<50	<50	<50	<50	17.6	ł
	I-WM	55-57	7/22/96	<50	243	1,130	3,443	4,816	90.2	1
Vaste Oil and	BH-5	5-7	7/24/96	<500	663	12,500	12,180	25,343	1	:
Vater Storage Area	BH-5	35-37	7/24/96	<50	<50	<50	<50	<50		1
	BH-6	40-42	7/24/96	<50	<50	<50	<50	<50	I	
	BH-7	35-37	7/24/96	<50	<50	<50	<50	<50		
	BH-8	25-27	7/24/96	<50	<50	<50	<50	<50	:	ı

Notes: All analysis performed by Trace Analysis, Inc., Lubbock, Texas

1. Ft: Denotes sample depth interval in feet below ground surface

2. ug/kg: Denotes analytic concentration in micrograms per kilogram

3.--: No data available

Table 2: Summary of Soil Boring and Mettor Well Drilling and Completion DetailsTexaco Exploration and Production Inc., Eunice #2 (North) Gas PlantLea County, New Mexico

-

| |

T

Drilling	Soil Boring/	Date	Drilled Depth	Ground Elev.	Top of Csg. Elev.	Well Diameter	Well Screen	Depth-to Ground
Area	Monitor Well No.	Drilled	Feet, BGL	Feet, MSL	Feet, @ MSL	Inches	Interval Ft., BGL	Water Feet, BGL
Compressor	MW-1	7/22/96	68'	3428.78	3428.59	4"	48'-68'	52.65
Plant Water Well	WW-1	ł	100'	3428.78	1	6"	ł	53.43
North Sump	BH-1	7/29/96	52'	3424.85	1	3		1
	BH-2	7/29/96	52'	3425.03	***	-	1	1
N. Sump E.R.	AH-1	8/09/96	6.8	3428.09			1	1
S. Sump E.R.	AH-1	8/09/96	8.4	3427.72				
Trash Pit	AH-1	8/09/96	4.7	3426.92		•	-	-

Table 3:

SUMMARY OF OVM HEADSPACE GAS READINGS ON SOIL SAMPLES, TEXACO EXPLORATION & PRODUCTION,INC., EUNICE #2 (NORTH) GAS PLANT, LEA COUNTY, EUNICE, NEW MEXICO

Investigation Area	Soil Boring No.	Soil Sample No.	Sample Depth (ft)	OVM Reading (ppm)	Comment
Waste Oil and Water Storage Area					
0	BH-1	1	5-7	1	
		2	10-12	2	
		3	15-17	2	
		4	20-22	3	
		5	25-27	2	
		6	30-32	2	
	BH-2	1	5-7	1	
		2	10-12	2	
		3	15-17	2	
		4	20-22	4	
		5	25-27	2	
	BH-3	1	5-7	1	
		2	10-12	2	
		3	15-17	2	
		4	20-22	1	
		5	25-27	1	
	BH-4	1	5-7	5	
		2	10-12	28	
		3	15-17	58	
		4	20-22	69	
		5	25-27	154	
		6	30-32	39	
		7	35-37	8	
	BH-5	1	5-7	588	
		2	10-12	500	
		3	15-17	353	
		4	19-20	143	
		5	25-27	7	
		6	30-32	12	
		7	35-37	3	
	BH-6	1	5-7	478	
		2	10-12	496	
		3	15-17	418	
		4	20-22	487	
		5	25-27	35	
		6	30-32	33	
		7	35-37	13	
		8	40-42	6	

Note: OVM soil headspace gas readings are in parts per million (ppm) of total ionizable hydrocarbon.

Table 3: Continue

SUMMARY OF OVM HEADSPACE GAS READINGS ON SOIL SAMPLES, TEXACO EXPLORATION & PRODUCTION, INC., EUNICE #2 (NORTH) GAS PLANT, LEA COUNTY, EUNICE, NEW MEXICO

Investigation Area	Soil Boring No.	Soil Sample No.	Sample Depth (Ft)	OVM Reading, (ppm)	Commen
Waste Oil and Water Storage Area					
U	BH-7	1	0.5-1	489	
		2	5-7	415	
		3	10-12	450	
		4	15-17	153	
		5	20-22	26	
		6	25-27	19	
		7	30-32	7	
		8	35-37	6	
	BH-8	1	0.5-1	99	
	D11-0	2	5_7	A35	
		2	J-7 10 12	455	
		3	10-12	19	
		5	13-17	18	
		6	20-22 25-27	43 2	
North Sump					
	BH-1	1	5-7	206	
		2	10-12	233	
		3	15-17	28	
		4	20-22	239	
		5	25-27	207	
		6	30-32	122	
		7	35-37	159	
		8	40-42	69	
		9	45-47	255	
		10	50-52	421	
	BH-2	1	5-7	415	
		2	10-12	448	
		3	15-17	177	
		4	20-22	497	
		5	25-27	384	
		6	30-32	440	
		7	35-37	127	
		8	40-42	29	
		9	45-47	327	
		10	50-52	-	

Note: OVM soil headspace gas readings are in parts per million (ppm) of total ionizable hydrocarbon.
Table 3: Continue

SUMMARY OF OVM HEADSPACE GAS READINGS ON SOIL SAMPLES, TEXACO EXPLORATION & PRODUCTION, INC., EUNICE #2 (NORTH) GAS PLANT, LEA COUNTY, EUNICE, NEW MEXICO

Investigation	Soil Boring	Soil	Sample	OVM	Comments
Area	No.	Sample No.	Depth (Ft)	Reading, ppm	
Manitor Wall (MW 1)					
Monitor well (MW-1)		1	0.5	6	
	MW-1 (DR-1)	1	10.12	0	
		2	10-12	2	
		3	15-17	3	
		4	20-22	2	
		5	25-27	4	
		6	30-32	7	
		7	35-37	1	
		8	40-42	2	
		9	45-47	2	
		10	50-52	2	
		11	55-57	414	
Sump					
South of Engine Room					
	AH-1	1	2-2.5	0	
		2	4-4 5	0	
		3	6-63	õ	
		4	63-68	1	
		7	0.5-0.0	1	
Sumo					
North of Engine Boom	AU 1	1	225	0	
North of Engine Room	An-1	1	2-2.5	0	
		2	4-4.5	0	
		3	0-0.0	0	
		4	8.2-8.4	0	
Trash Pit					
	AH-1	1	2-2.5	0	
		2	4.5-4.7	0	

Note: OVM soil headspace gas readings are in parts per million (ppm) of total ionizable hydrocarbon.

Notes: All analysis performed by Trace Analysis, Inc., Lubbock, Texas 2. ug/kg: Denotes analytic concentration in micrograms per kilogram 1. Feet: Denotes sample depth interval in feet below ground surface

<0.25

<0.25

<0.25

23

52

52

25

8/09/96

4.5-4.7

I-HA

Trash Pit

2.5

2.5

2.5

12,180

12,500

663

<500 1310

7/24/96

2-2

BH-5

Waste Oil and

7/24/96 7/25/96

2-1

BH-6

Water Storage Area

5-7

BH-8

22

2.5

30 2.5

14,700

30,700

<100

1148

1460

<100

384

2.5

2.5

3. mg/kg: Denotes analytic concentration in milligrams per kilogram

4. <: Denotes analytic concentration below test method detection limit

--: No data available Ś

Table 5: Sum of Metals Analysis of Soil Samples Texaco Exploration and Production Inc. Eunice #2 (North) Gas Plant Lea County, New Mexico

Investigation Area	Soil Boring No.	Sample Depth (Ft.)	Sample Date	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
North Sump	BH-1	10-12	7/29/96	<10.0	91.5	<2.0	5.4	<10.0	<0.25	<10.0	<0.50
	BH-I	50-52	7/29/96	<10.0	<20.0	2.0	<5.0	<10.0	<0.25	<10.0	<0.50
	BH-2	10-12	1/29/96	<10.0	121.0	20	<5.0	<10.0	<0.25	<10.0	<0.50
	BH-2	50-52	7/29/96	<20.0	<20.0	2.0	<5.0	<10.0	<0.25	<10.0	<0.50
North Sump of E.R.	AH-1	8.2-8.4	8/09/96	17.4	93.1	2.0	12.2	<10.0	<0.25	<10.0	<0.50
South Sump of E.R.	AH-1	6.4-6.8	8/09/96	<10.0	213.0	<2.0	20.3	<10.0	<0.25	<10.0	<0.50
Waste Oil and	BH-5	5-7	7/24/96	<20.0	170.0	<2.0	<5.0	<10.0	<0.25	<10.0	<0.50
Water Storage Area	BH-6	5-7	7/24/96	<10.0	170.0	2.0	<5.0	<10.0	<0.25	<10.0	<0.50
	BH-8	5-7	7/25/96	<20.0	210.0	2.0	11.0	<10.0	<0.25	<10.0	<0.50
Trash Pit	AH-1	4.5-4.7	8/09/96	10.4	163.0	2.0	<5.0	<10.0	<0.25	<10.0	<0.5

Notes: All analysis performed by Trace Analysis, Inc., Lubbock, Texas mg/kg: Denotes analytic concentration in milligrams per kilogram
<: Denotes analytic concentration below test method detection limit 1. Feet: Denotes sample depth interval in feet below ground surface

Well Number	Sample Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylene (ug/L)	Total BTEX (ug/L)	TRPHC (ug/L)	PAH (mg/L)	Dichlorodi- Fluoromethane (ug/L)
Water Well #1	6/14/96	1	1	1	1		1	<0.001	113
I-WM	8/01/96	6	69	82	169	329	582	ł	1

Notes: All analysis performed by Trace Analysis, Inc., Lubbock, Texas

1. ug/L: Denotes analytic concentration in micrograms per liter

2. <: Denotes analytic concentration below the analytical test method detection limit

3. --: No data available

Table 7: Summary of Metals and General Charles Stry Analysis of Ground Water Samples Texaco Exploration and Production Inc. Eunice #2 (North) Gas Plant Lea County, New Mexico

Well Number	Sample Date	Arsenic (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Mercury (mg/L)	Selenium (mg/L)	Silver (mg/L)	Barium (mg/L)
Water Well #1	6/14/96	<0.1	<0.02	0.66	<0.1	<0.001	<0.1	<0.01	<0.2
Water Well #1	8/01/96	1	ł	0.82	1	ł	I	1	ł

Well Number	Sample Date	Potassium (mg/L)	Magnesium (mg/L)	Calcium (mg/L)	Sodium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)	Nitrate (mg/L)
Water Well #1	6/14/96	12.4	142	268	393	782	2.6	913	340	10.4
I-WM	8/01/96	1	1	1	88	1	1	1		3

Notes: All analysis performed by Trace Analysis, Inc., Lubbock, Texas

1. mg/L.: Denotes analytic concentration in milligrams per liter

2. <: Denotes analytic concentration below the test method detection limit

3. --: No data available

Highlander Environmental Corp.

Midland, Texas

SUBSURFACE INVESTIGATION OF **COMPRESSOR BUILDING** AT **TEXACO NORTH EUNICE GAS PROCESSING PLANT** EDDY COUNTY, NEW MEXICO

Performed for TEXACO EXPLORATION AND PRODUCTION INC.

I. **INTRODUCTION**

Highlander Environmental was retained by Texaco Exploration and Production Inc. to perform a Phase II Environmental Assessment at the Texaco North Eunice Gas Plant is located north of Eunice, New Mexico. The purpose of the investigation was to assess the extent of the hydrocarbon impacted soil next to a compressor building at the plant. The vertical and horizontal extents of soil impact were assessed by installing shallow hand borings, referred to in this report as "auger holes".

II. SOIL ASSESSMENT

Α. Auger Holes

From October 17 to 20, 1995, Highlander Environmental personnel installed shallow auger holes on the north and south sides of the compressor building. The locations are shown on Figure 1. Auger holes were installed due to the overhead, surface, and underground piping located around the compressor building which limited access to any type of drilling rig. The shallow auger holes that were installed next to the compressor building were located in a hand dug trench approximately 1.0 to 2.0 feet deep under the surface piping. Based on field observations, Highlander installed a total of 13 holes next to the compressor building to define the vertical extent of the hydrocarbon impact and 12 out from the compressor building to define horizontal extent. The auger holes were installed approximately every 50 feet along the south and north sides of the compressor building. A total of 8 were placed along the north side for vertical extent and 6 for horizonal extent. Five auger holes were installed on the south side to establish vertical extent and 6 to establish horizonal extent.

These auger holes were placed using a three-inch stainless steel bucket-type hand auger. Soil samples were collected at 1.0 or 2.0 foot intervals. The soil samples collected were immediately sealed in a clean, glass sample jar with zero head space and placed in a cooler and chilled. All samples collected for potential laboratory analysis were preserved according to EPA standards, and analyzed within the appropriate holding times. A portion of the sample was field screened with an Organic Vapor Meter (OVM) for organic vapors to provide supporting data and to determine which samples would be selected for analysis.

Between sampling intervals, the auger bucket was decontaminated using water and laboratory grade detergent. The decon wash water and soil cuttings were placed into separate drums onsite until proper disposal is arranged. Additional soil cuttings were placed on plastic and covered. Soil descriptions were noted in the field sampling logs. The auger holes were cemented to surface after the completion of the activities.

The samples were shipped to Trace Analysis Inc. in Lubbock, Texas for analysis of Total Petroleum Hydrocarbons (TPH) by method EPA 418.1, total metals by method SW 846-6010, polychlorinated biphenyls (PCB) by method SW 846-8080 and Benzene, Toluene Ethyl-benzene and Xylene (BTEX) by method EPA SW 846-8020. The laboratory reports, methodology, and chain of custody for the analyses are found in Appendix A. Depending on sample locations, some or all of the above analyses were run on selected samples.

The soil samples selected for total metals and PCB analysis were collected from what appeared to be the most impacted areas. The soil samples collected from these areas were not selected for TPH evaluation due to the evident hydrocarbon staining in the soil. Soil samples were selected for BTEX analysis based upon OVM readings.

III. SOIL SAMPLE RESULTS

A. NORTH SIDE COMPRESSOR BUILDING

A total of eight auger holes (AH-1, AH-2, AH-3, AH-4, AH-5, AH-6, AH-7, and AH-8) were installed on the north side of the compressor building to define the vertical extent of hydrocarbon impact. Visual inspection of the soil indicated the black impacted subsurface soil

thickness varied at each auger hole location. Auger hole AH-8 did not show any visual evident of impact and AH-1, AH-2, and AH-3 showed trace amounts of impact on the surface. Auger holes AH-4, AH-5, AH-7 appeared to have visual impact extending from the surface to 1.5 to 2.0 feet below surface. Auger hole AH-6 showed the black stained soil extending from surface to approximately 5.5 feet below surface.

The soil samples selected for TPH analysis to define the vertical extent show impact extending from 1.0 up to 15.0 feet below surface. Auger holes AH-1, AH-2, and AH-3 indicate shallow impact below 100 mg/kg at 1.0 foot below surface and AH-5 shows non-detectable levels below 2.0 feet. Auger holes AH-4 and AH-7 indicate deeper impact to the subsurface soil in these areas. Auger hole AH-4 had a TPH level of 142,000 mg/kg at 4.0 feet which decreased to 226 mg/kg at a depth of 10.0 feet below surface. Auger hole AH-7 showed a TPH level of 37,000 mg/kg at 5.0 feet which decreased to 420 mg/kg at a depth of 15.0 feet below surface. Auger hole AH-6 showed a slight decrease in TPH from 1,450 mg/kg at 6.3 feet to 1,210 mg/kg at 8.0 feet below surface. Auger hole AH-8 indicated an increasing TPH level from 859 mg/kg at 1.0 foot to 2,770 mg/kg at 3.0 feet below surface.

Soil samples were selected for BTEX analysis from the samples with elevated OVM readings. The samples did not show any detectable levels of BTEX, except for a trace of xylene at 0.555 mg/kg and 0.211 mg/kg found in AH-5 and AH-7. The PCB analysis for AH-6 and AH-7 did not show any detectable levels. The total metal analysis showed detectable levels of barium, chromium, lead, and mercury in auger holes AH-4, AH-5, AH-6, and AH-7. The barium levels ranged from 41.3 mg/kg to 1,900 mg/kg and the chromium ranged from 24.8 mg/kg to 1,580 mg/kg. Total lead of 64.4 mg/kg was detected in AH-5, and 0.34 mg/kg mercury was detected in AH-6.

Auger holes AH-4B, AH-6B, and AH-7B were installed to define the horizonal extent of the impact. Auger holes AH-4B and AH-6B were placed 8.0 feet away and AH-7B was placed 10.0 feet from the compressor building. The analysis for AH-6B and AH-7B showed non-detectable levels of TPH in the subsurface soil at a depth of 3.0 feet. The analysis in AH-4B at 3.7 feet below surface indicated a TPH of 173 mg/kg. The impact appears to taper north from the compressor building. The horizonal extent of the impact appears to extend approximately 7.0 to 9.0 feet from the building in the area of AH-4, AH-6, and AH-7.

B. <u>SOUTH SIDE COMPRESSOR BUILDING</u>

A total of five auger holes (AH-9, AH-10, AH-11, AH-12, and AH-13) were installed to define the vertical extent on the south side of the compressor building. In the area of AH-9, AH-10, and AH-11, the impacted black soil measured approximately 0.5 to 1.0 thick from the surface. Auger holes AH-12 and AH-13 showed a trace amounts of staining on the surface.

Some of the soil samples collected for delineation showed a decreasing TPH levels with depth. The deeper soil samples collected below the black impacted soil did not show any staining in the subsurface soil. Soil samples from AH-9, AH-10, AH-12, and AH-13 indicated a shallow impact below 1,000 mg/kg of TPH at 1.5 to 2.5 feet below surface. The area of AH-11 showed an increasing TPH level with depth ranging from 296 mg/kg at 2.0 feet to 2,390 mg/kg at 3.5 feet below surface.

One sample at 4.0-4.5 feet below surface from AH-10 was selected for BTEX analysis due to the OVM reading of 16 ppm. The analysis did not showed any detectable levels of BTEX in the soil. Two soil samples for total metals and PCB's analysis were collected at a depth of 0-0.5 feet from what appeared to be most stained areas found in AH-10 and AH-11. The total metal analysis detected levels of barium and chromium in the soil. Samples from AH-10 and AH-11 showed barium level of 46.4 mg/kg and 38.7 mg/kg, respectively. Auger hole AH-10 had a chromium level of 32.6 mg/kg, and AH-11 showed a chromium level of 20.7 mg/kg. The PCB analysis did not show any detectable levels in the soil.

Auger holes AH-9A, AH-10B, and AH-11A were installed to define the horizonal extent of the hydrocarbon impact. The impact found near the compressor building appear to taper out from the building. The impact around AH-10 and AH-11 appears to extend approximately 12 to 15 feet south from the compressor building. The impact surrounding AH-9 appears to extend approximately 5 feet from the compressor building.

IV. CONCLUSIONS

A. <u>NORTH SIDE COMPRESSOR</u>

1. Auger holes AH-1, AH-2, and AH-3 installed north of the compressor building showed traces of shallow hydrocarbon impact at 1.0 feet below surface. Auger hole AH-5 showed non-detectable levels of TPH at 2.0 feet below surface.

- 2. The areas of AH-4 and AH-7 show the impact decreasing below 1,000 mg/kg TPH at 10.0 feet and 15.0 feet, respectively.
- 3. Auger holes AH-6 and AH-8 indicated TPH levels above 1,000 mg/kg at 8.0 feet and 3.0 feet below surface. These areas have not been vertically delineated.
- 4. The horizonal extent of the impact appears to extend approximately 7.0 to 10.0 feet from the building in the area of AH-4, AH-6, and AH-7.
- 5. No PCB's were detected in any sample.
- 6. No BTEX were detected in any of the samples, except for traces of xylene at 0.211 mg/kg and 0.555 mg/kg found in AH-5 and AH-7, respectively.
- 7. Visual inspection of the soil indicated the black impacted subsurface soil thickness varied at each auger hole location. Auger hole AH-8 did not show any visual evident of impact and AH-1, AH-2, and AH-3 showed traces amounts of impact on the surface. Auger holes AH-4, AH-5, AH-7 appeared to have visual impact extending from the surface to 1.5 to 2.0 feet below surface. Auger hole AH-6 exhibited black stained soil extending from surface to approximately 5.5 feet below surface.
- 8. The sample from auger hole AH-5, (0-0.5') had elevated levels of barium, chromium, lead, and a trace of cadmium.
- 9. The sample collected from AH-6 at 3.2-3.9 feet below surface had a trace of mercury at 0.34 mg/kg.
- 10. The sample collected from AH-7 at 1.0-1.5 feet below surface had an elevated chromium level of 64.9 mg/kg.

B. <u>SOUTH SIDE COMPRESSOR</u>

- The areas around auger holes AH-9, AH-10, AH-12, and AH-13 installed on the south side of the compressor building appear to have a shallow impact at 1.5 to 2.5 below surface. The TPH levels in these areas were found to be below 1,000 mg/kg.
- 2. The area around auger hole AH-11 had a TPH level of 2,390 mg/kg at 3.5 feet below surface, and the hydrocarbon impact is not vertically defined in this area.
- 3. The horizonal extent of the impact appears to extend approximately 12 to 15 feet south from the compressor building in the areas of AH-10 and AH-11. The area surrounding AH-9 appeared to have TPH impact extending approximately 5 feet from the compressor building.
- 4. There were no detectable levels of BTEX or PCB in the samples from the south side of the compressor building area.
- 5. In the areas of AH-9, AH-10, and AH-11, the impacted black soil measured approximately 0.5 to 1.0 feet thick from the surface. Auger holes AH-12 and AH-13 showed trace amounts of staining on the surface.
- 6. The total metal analysis did not detect levels metals which would appear to be of regulatory concern.

Highlander Environmental Corp.

Soil Sample Analysis for TPH, BTEX, and PCB's (concentration in mg/kg)

Sample I.D.	Depth	OVM	TPH	В	Т	E	X	РСВ
AH-1	*1.0-1.4	0	76	-	-	_	-	-
	2.0-2.4	0	-	-	-	-	-	-
AH-2	*1.0-1.4	0	60	-	-	-	_	-
	2.0-2.4	0	-	-	-	_	-	-
	4.0-4.5	0	-	-	-	-	-	-
AH-3	0-0.5	6	-	-	-	-	-	-
	*1.0-1.4	0	95	-	-	-	-	-
	2.0-2.5	0	-	-	-	-	-	-
	2.5-3.0	0	-	-	-	-	-	-
	4.0-4.5	0	-	-	-	-	-	-
AH-4	0-0.5	15	-	-	-		_	-
	3.5-4.0	91	-	-	-	-	-	-
	*4.0-4.5	167	142,000	< 0.05	< 0.05	< 0.05	< 0.05	-
	6.0-6.5	59	7,210	-	-	-	-	-
	8.0-8.5	16	1,300	-	-	-	-	-
	9.0-9.5	6	-	-	-	-	-	-
	*10-10.5	8	226	< 0.05	<0.05	<0.05	< 0.05	-
	11.0-11.5	7	-	-	-	-	-	-
	*12.0-12.5	6	261	-	-	-	-	-
AH-5	*0.5-1.0	63	-	< 0.05	< 0.05	< 0.05	0.555	-
	*2.0-2.5	1	<5	< 0.05	< 0.05	< 0.05	< 0.05	-
	*4.0-4.5	0	<5	-	-	-	-	-
	5.0-5.5	0	-	-	-	-	-	-

* Samples Selected for analysis

Soil Sample Analysis for TPH, BTEX, and PCB's (concentration in mg/kg)

Sample ID	Depth	OVM	ТРН	В	Т	Е	x	РСВ
AH-6	1.6-2.4	6	-	-	_	-	_	_
	*3.2-3.9	31	-	<0.05	< 0.05	< 0.05	< 0.05	<0.25
,	*6.3-6.8	1	1,450	< 0.05	<0.05	< 0.05	< 0.05	-
	*8.0-8.5	1	1,210	-	-	-	-	_
AH-7	1.0-1.5	13	-	-	-	-	-	< 0.25
	3.0-3.5	45	-	-		-	-	-
	*5.0-5.5	112	37,000	< 0.05	< 0.05	< 0.05	< 0.05	-
	7.0-7.5	39	-	-	-	-	-	-
	8.0-8.5	8	-	-	-	-	-	-
	*10.0-10.5	14	13,900	-	-	-	-	-
	*12.0-12.5	49	-	< 0.05	< 0.05	< 0.05	0.211	-
	*13.0-13.5	50	4,670	-	-	-	_	-
	*15.0-15.5	315/334	420	< 0.05	< 0.05	< 0.05	< 0.05	-
AH-8	*1.0-1.5	0	859	-	-	-	-	_
	*3.0-3.5	0	2,770	-	-	-	_	-
АН-9	*0-0.5	15	56,910	-	-	-	_	-
	*2.0-2.5	0	9	-	-	-		-
AH-10	0-0.5	14	-	-	-	-	-	< 0.25
	1.0-1.5	3	-	-	-	-	-	-
	*2.0-2.5	6	469	_	-	-	-	-
	2.5-3.0	6	-	-	_		~	-
	*4.0-4.5	16	589	< 0.05	< 0.05	< 0.05	< 0.05	-
	5.5-6.0	3	-	-	-	-	_	-
	*8.0-8.5	6	<4.81	-	-	-	-	-

* Samples Selected for analysis

Soil Sample Analysis for TPH, BTEX, and PCB's (concentration in mg/kg)

Sample ID	Depth	оум	ТРН	В	Т	Е	Х	РСВ
AH-11	0-0.5	13	-	-	-	-	-	< 0.25
	1.0-1.5	3	-	-	-	_	-	-
	*2.0-2.5	0	296	_	-	-	-	-
	3.0-3.5	1	-	-	-	-	-	-
	*3.5-4.0	0	2,390	-	-	_	-	-
AH-12	*0.5-1.0	0	2,540	-	-	-	-	-
	*1.5-2.0	0	77.	-	-	_	-	-
AH-13	*0.5-1.0	0	90	-	-	-	-	-
	*2.5-3.0	0	146	-	-	-	-	-
AH-4A	3.0-3.5	61	-	-	-	-	-	-
AH-4B	*3.7-4.2	0	173	-	-	-	-	-
AH-6A	3.0-3.5	11	-	-	-	-	-	-
AH-6B	*3.0-3.5	0	<5	-	-	-	-	-
AH-7A	-	-	-	-	_	-	-	-
AH-7B	*3.0-3.5	0	<5	-	-	-	_	-
AH-9A	*3.0-3.5	0	8	-	-	-	-	-
AH-10A	-	_	-	-	-	-		-
AH-10B	*3.0-3.3	0	13		-	-	-	-
AH-11A	*2.0-2.5	0	<5	-	-	-	-	

* Samples Selected for analysis

Highlander Environmental Corp.

Soil Sample Analysis for Total Metals (concentrations in mg/kg)

Sample I.D.	Depth	As	Ba	Cd	Cr	Pb	Se	Ag	Hg
AH-4	0-0.5	<20	25.8	<2	24.1	<10	<20	<5	<0.25
AH-5	0-0.5	<20	1,900	2.7	1,580	64.4	<20	<5	< 0.25
AH-6	3.2-3.9	<20	41.3	<2	24.8	<10	<20	<5	0.34
AH-7	1.0-1.5	<20	98.9	<2	64.9	<10	<20	<5	<0.25
AH-10	0-0.5	<20	46.4	<2	32.6	<10	<20	<5	<0.25
AH-11	0-0.5	<20	38.7	<2	20.7	<10	<20	<5	< 0.25

1

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 FAX 806 • 794 • 1298 ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701 Extraction Date: 04/02/96 Analysis Date: 04/03/96 April 3, 1996 Sampling Date: 03/28/96 Receiving Date: 03/30/96 Sample Condition: Intact & Cool Sample Type: Soil Sample Received by: McD Project No: 707 Project Name: Compressor Project Location: Texaco North Eunice Gas Plant Investigation TRPHC TA# FIELD CODE (mg/kg)12.5-13.0' 1,420 T50410 AH-6-2 13.5-14.0' 58,300 T50411 AH-7-2 18 T50413 AH-8-2 8.0-8.5' T50414 <10 AH-11-2 5.0-5.5' 104 QC Quality Control Reporting Limit 10

RI	PD	3
8	Extraction Accuracy	98
¥	Instrument Accuracy	104

METHODS: EPA SW 846-3550 High Level; EPA 418.1. TRPHC SPIKE: 250 mg/kg TRPHC. TRPHC QC: 100 mg/L TRPHC.

4-5-96 Director, Dr. Blair Leftwich DATE Director, Dr. Bruce McDonell A Laboratory for Advanced Environmental Research and Analysis

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

April 8, 1996 Receiving Date: 03/30/96 Sample Type: Soil Project No: 707 Project Location: Texaco North Eunice Gas Plant Extraction Date: 04/05/96 Analysis Date: 04/05/96 Sampling Date: 03/28/96 Sample Condition: Intact & Cool Sample Received by: McD Project Name: Compressor Investigation TRPHC

		Gasoline Range	
TA#	FIELD CODE	(ug/kg)	
T50410	AH-6-2 12.5-13.0'	<10,000	
T50411	AH-7-2 13.5-14.0'	35,100	
QC	Quality Control	986	

Reporting Limit

10,000

RI		14
8	Extraction Accuracy	92
8	Instrument Accuracy	99

METHODS: EPA SW 846-5030; 8015 Modified. TRPHC SPIKE: 50,000 ug/kg TRPHC. TRPHC QC: 1,000 ug/L TRPHC.

4/8/96 DATE Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

Analysis Request and Chain of Custody Record	Lient/Project / Janno Klorsh Evric Cas Hant, Compresser Inversish from Andresser Inversish from and per preser Andresser Andresser Andresser Andresser and pie No./ Time of Siludge. Ect.) Andresser Andr	04 10-10.5' 3/28/96 × Sol 1e Hold 09 12.0-12.5' 3/28/96 × Sol 1e Kald 10 10-12.5' 3/28/96 × Sol 1e Kald	11 13.5 - 14.0' 328/96 2 Soil 10 114 (4/15.1) Barre "	13 8.0-8.5' 3/38/96 × 20 10 10 10 (418.1) 14 5.0-5.5' 3/38/36 × Doil 10. 7PH (418.1)	Relinquished by: Relinquished by: Date: 3/29/94 Signature) No Date: 3/29/94 Signature) No No <th>Delivered To: / r AC e MS zed REMARKS: $H(ghTPHS, XC)(3 \mu)$ 90 h 90 h</th>	Delivered To: / r AC e MS zed REMARKS: $H(ghTPHS, XC)(3 \mu)$ 90 h 90 h
	Project No. <u>Client/Project</u> 207 / <u>(</u> <i>A/ACO</i> / Sample No./ Identification	-0.01 80\$05 C-9-140	14-7-2 11 13.5	14-11-2 14 5.0.	Amplers: (Print) Relinquist (Signature (Signature (Signature (Signature (Signature (Signature	esults by: Delivered Rush Charges Authorized REMARK Yes No

	ANALYTICAL RE HIGHLANDER SE Attention: Ik	SSULTS FOR RVICES COF Ge Tavarez	ъ.	·			
	306 W. Wall, Midland, TX	Suite 320 79701					
August 5, 1996			<u>н</u> , к,	rep Date: nalysis Da	07/30/96 te: 07/30,	/96	
Receiving Date: 07 Sample Type: Soil	/29/96		01 01 0	ampling Da ample Cond	ite: 07/22/9 lition: Inta i2 h	96 act & Cool	
Project Location:	NA		.0	umpre vece 11ient/Proj	ect: Texad	Eunice (North Bas Plant
		TRPHC	BENZENE	TOLUENE	ETHYL- BENZENE	M, P, O XYLENE	TOTAL BTEX
TA#	Field Code	(by/bn)	(by/bn)	(ng/kg)	(bą/bn)	(ng/kg)	(ng/kg)
T56291	MW-1 (25'-27')	17,600	<50	<50	<50	<50	<50
T56292	MW-1 (55°-57°)	90,200	<50	243	1,130	3,443	4,816
QC	Quality Control	99,740	101	66	66	295	
Reporting Limit		10,000	50	50	50	50	
RPD		ო	ų	ũ	ო	n	
<pre>% Extraction Accur % Tastancet Accur</pre>	, i	111	94	.06	88	87	
<pre>% Instrument Accur METHODS: EPA SW 8</pre>	асу 6-8020, 5030, 3550 НІСН LEVEL	100 1, EPA 418.	101	6 6	66	80	
CHEMIST: TRPHC: À BTEX SPIKE: 2,500	; BTEX: RW ug/kg BTEX. BTEX QC:	: 100 ng/I	BTEX.				
TRPHC SPIKE: 250, TRPHC OC: 100,000	00 ug/kg TRPHC. uc/1. TRPHC.						
				¢	•		

1

i

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

i i

Date

Print)

		RACEANALYS	IS. INC				
	6701 Aberdeen Avenue	Lubbock, Texas 79424	806 • 794 • 1296	FAX 806	•794•1298		
August 13, 1996		ANALYTICAL RESULTS HIGHLANDER SERVICE Attention: Ike Te	S FOR IS CORP. AVArez	Q, 43	rep Date: nalvsis De	08/09/96 te: 08/09/96	
Receiving Date: Sample Type: So	07/29/95 il	306 W. Wall, Suite Midland, TX 79701	a 320	ς ω ω	ampling Da ample Cond	ate: 07/24-25/96 Mition: Intact & Cool	
Project No: 787 Project Location	: N. Eunice Gas Plant, NM			Ω Ψ	ample Rece roject Nan	sived by: SH ne: Texaco	
		BENZENE	IOLUENE	ETHYL- Benzene	M, P, O XYLENE	TOTAL BTEX	
TA#	Field Code	(ng/kg)	(ng/kg)	(ng/kg)	(bą/ɓn)	(bn) (br)	
T56273	BH-5 (35-37.), SOA	<5(0 <50	<50	<50	<50	
T56281	BH-6 (40-42°), SOA	<50) <50	<50	<50	<50	
T56287	BH-7 (35-37'), SOA		<pre>< 20</pre>	450	<20 1 2 0	<50 10 10	
T56290 OC	BH-8 (25-27'), SOA Ouality Control	<51 104) <50 105	<50 105	317	<50	
A)) 			
Reporting Limit		50	50	50	50		
RPD			5	Υ	7		
% Extraction Acc	uracy	96	5 94	95	94		
% Instrument Acc	uracy	104	1 105	105	106		
METHODS: EPA SW	846-8020, 5030.						
CHEMIST: RW BTEX SPIKE: 5,000	0 ug/kg BTEX.	BTEX QC: 100 ug/L	BTEX.				
	() A A		5-6	6-9			
Directo	r, Dr. Blair Leftwich r. Dr. Bruce McDonell	2.	, Date				

ļ

1

Director, Dr. Bruce McDonell

J

-

· - - · · ·

6701 Aberdeen Avenue

Lubbock, Texas 79424

806 • 794 • 1296 FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

August 12, 1996Prep Date: 08/06/96Receiving Date: 08/02/96Analysis Date: 08/06/96Sample Type: SoilSampling Date: 07/29/96Project No: 787Sample Condition: Intact & CoolProject Location: N. Eunice Gas Plant, NMSample Received by: MLProject Name: Texaco

TA #T56559

Field Code: BH-1 10-12', (NS)

Concentration Reporting Limit EPA 8240 Compounds (ug/kg)250 Dichlorodifluoromethane ND 250 ND Chloromethane 250 ND Vinyl chloride ND 1,250 Bromomethane 250 hloroethane ND 250 rrichlorofluoromethane ND 250 ND 1,1-Dichloroethene 1,250 Iodomethane ND Carbon disulfide 250 ND 1,250 Methylene chloride ND trans-1,2-Dichloroethene ND 250 ND 250 1,1-Dichloroethane Vinyl acetate ND 250 12,500 2-Butanone ND 250 Chloroform ND 250 1,1,1-Trichloroethane ND 250 1,2-Dichloroethane ND Benzene ND 250 ND 250 Carbon Tetrachloride 1,2-Dichloropropane ND 250 ND 250 Trichloroethene 250 ND Bromodichloromethane cis-1,3-Dichloropropene ND 250 ND 12,500 4-Methyl-2-pentanone trans-1,3-Dichloropropene ND 250 250 ND Toluene 250 ND 1,1,2-Trichloroethane 12,500 2-Hexanone ND

HIGHLANDER SERVICES CORP. Project No: 787 Project: Texaco/Texaco North Eunice Gas Plant, NM PAGE 2 of 2

TA #T56559 Field Code: BH-1 10-12', (NS)

	Concentration	Reporting
EPA 8240 Compounds	(ug/kg)	Limit
Dibromochloromethane	ND	250
Tetrachloroethene	ND	250
Chlorobenzene	ND	250
Ethylbenzene	1,380	250
m & p-Xylene	1,130	250
Bromoform	ND	250
Styrene	ND	250
o-Xylene	ND	250
1,1,2,2-Tetrachloroethane	ND	250
trans 1,4-Dichloro-2-butene	ND	1,250
cis 1,4-Dichloro-2-butene	ND	1,250
1,4-Dichlorobenzene	ND	500
1,3-Dichlorobenzene	ND	500
1,2-Dichlorobenzene	ND	500
Tentatively Identified Compounds and Estimated	d Concentrations	(ug/kg)
	RT	CONC.
(1) Decane	19.52	10,700
(2) 1,3,5-trimethyl benzene	19.72	5,270
(3) 1,2,4-trimethyl benzene	20.46	6,830
(4) 1-methyl-3-propyl benzene	21.65	4,120
(6) Undecane	21.77	7,120
(7) 1-ethyl-2,4-dimethyl benzene	24.84	6,370
(8) Unidentified Hydrocarbons	16.50	4,080
(9) Unidentified Hydrocarbons	19.64	4,100
(10) Unidentified Hydrocarbons	20.88	4,960
(11) Unidentified Hydrocarbons	24.25	4,660
SURROGATES & RECOVER	Υ.	
Dibromofluoromethane 97		
Toluene-d8 98		
4-Bromofluorobenzene 101		

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-12-96

Date

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

August 12, 1996Prep Date: 08/06/96Receiving Date: 08/02/96Analysis Date: 08/06/96Sample Type: SoilSampling Date: 07/29/96Project No: 787Sample Condition: Intact & CoolProject Location: N. Eunice Gas Plant, NMSample Received by: MLProject Name: Texaco

TA #T56567

Field Code: BH-1 50-52', (NS)

Reporting Concentration Limit EPA 8240 Compounds (ug/kg) Dichlorodifluoromethane ND 1,000 1,000 Chloromethane ND 1,000 ND Vinyl chloride ND 5,000 Bromomethane 1,000 Chloroethane ND Trichlorofluoromethane ND 1,000 1,000 1,1-Dichloroethene ND ND 5,000 Iodomethane ND 1,000 Carbon disulfide 5,000 Methylene chloride ND 1,000 trans-1,2-Dichloroethene ND 1,1-Dichloroethane ND 1,000 Vinyl acetate ND 1,000 50,000 2-Butanone ND ND 1,000 Chloroform 1,1,1-Trichloroethane ND 1,000 1,2-Dichloroethane 1,000 ND Benzene 4,500 1,000 1,000 Carbon Tetrachloride ND 1,2-Dichloropropane ND 1,000 ND 1,000 Trichloroethene 1,000 ND Bromodichloromethane cis-1,3-Dichloropropene ND 1,000 ND 50,000 4-Methyl-2-pentanone 1,000 ND trans-1,3-Dichloropropene 33,400 1,000 Toluene 1,000 1,1,2-Trichloroethane ND 50,000 2-Hexanone ND

HIGHLANDER SERVICES CORP. Project No: 787 Project: Texaco/Texaco North Eunice Gas Plant, NM PAGE 2 of 2

TA #T56567 Field Code: BH-1 50-52', (NS)

	Concentration	Reporting
EPA 8240 Compounds	(ug/kg)	Limit
Dibromochloromethane	ND	1,000
Tetrachloroethene	ND	1,000
Chlorobenzene	ND	1,000
Ethylbenzene	20,200	1,000
m & p-Xylene	30,800	1,000
Bromoform	ND	1,000
Styrene	ND	1,000
o-Xylene	12,200	1,000
1,1,2,2-Tetrachloroethane	ND	1,000
trans 1,4-Dichloro-2-butene	ND	5,000
cis 1,4-Dichloro-2-butene	ND	5,000
1,4-Dichlorobenzene	ND	2,000
1,3-Dichlorobenzene	ND	2,000
1,2-Dichlorobenzene	ND	2,000
Tentatively Identified Compounds and Estimated	Concentrations	(ug/kg)
	RT	CONC.
(1) Methyl cyclohexane	13.33	58,600
(2) cis-1,3-dimethyl cyclohexane	14.76	19,600
(3) ethyl-cyclohexane	16.25	22,800
(4) Decane	19.52	21,400
(5) 1,3,5-trimethyl benzene	20.45	20,600
(6) Unidentified Hydrocarbons	11.69	61,800
(7) Unidentified Hydrocarbons	12.30	64,800
(8) Unidentified Hydrocarbons	14.04	30,800
(9) Unidentified Hydrocarbons	14.28	21,200

SURROGATES	% RECOVERY
Dibromofluoromethane	100
Toluene-d8	. 100
4-Bromofluorobenzene	101

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. Chemist: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-12-96

Date

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

Sample Condition: Intact & Cool

Prep Date: 08/06/96

Analysis Date: 08/06/96

Sample Received by: ML Project Name: Texaco

Sampling Date: 07/29/96

August 12, 1996 Receiving Date: 08/02/96 Sample Type: Soil Project No: 787 Project Location: N. Eunice Gas Plant, NM

TA #T56569

Field Code: BH-2 10-12', (NS)

Concentration Reporting Limit EPA 8240 Compounds (ug/kg)Dichlorodifluoromethane ND 250 250 ND Chloromethane ND 250 Vinyl chloride Bromomethane ND 1,250 hloroethane ND 250 250 **Trichlorofluoromethane** ND 250 1,1-Dichloroethene ND 1,250 Iodomethane ND Carbon disulfide ND 250 1,250 Methylene chloride ND 250 trans-1,2-Dichloroethene ND 250 1,1-Dichloroethane ND Vinyl acetate ND 250 12,500 2-Butanone ND 250 Chloroform ND 250 1,1,1-Trichloroethane ND 250 1,2-Dichloroethane ND 250 ND Benzene Carbon Tetrachloride ND 250 250 1,2-Dichloropropane ND 250 Trichloroethene ND 250 Bromodichloromethane ND 250 cis-1,3-Dichloropropene ND 4-Methyl-2-pentanone ND 12,500 ND 250 trans-1,3-Dichloropropene 2,090 250 Toluene 1,1,2-Trichloroethane ND 250 2-Hexanone ND 12,500

HIGHLANDER SERVICES CORP. Project No: 787 Project: Texaco/Texaco North Eunice Gas Plant, NM PAGE 2 of 2

TA #T56569 Field Code: BH-2 10-12', (NS)

		Concentration	1	Reporting
EPA 8240 Compound	ds	(ug/kg)		Limit
Dibromochloromet	hane	ND		250
Tetrachloroethen	e	ND		250
Chlorobenzene		ND		250
Ethylbenzene		6,200		250
m & p-Xylene		8,770		250
Bromoform		ND		250
Styrene		ND		250
o-Xylene		2,560		250
1,1,2,2-Tetrachl	oroethane	ND		250
trans 1,4-Dichlo	ro-2-butene	ND		1,250
cis 1,4-Dichloro	-2-butene	ND		1,250
1,4-Dichlorobenz	ene	ND		500
1,3-Dichlorobenz	ene	ND		500
1,2-Dichlorobenz	ene	ND		500
Tentatively Iden	tified Compounds and Estimated	Concentrations	(ug/kg)	
		RT	CONC.	
(1)	3-methyl Hexane	11.69	7,630	
(2)	Methyl cyclohexane	13.34	17,800	
(3)	cis-1,3-dimethyl cyclohexane	14.77	11,900	
(4)	ethyl-cyclohexane	16.26	12,900	
(5)	2-methyl Octane	16.50	12,300	
(6)	Decane	19.52	12,800	
(7)	Unidentified Hydrocarbons	12.30	16,200	
(8)	Unidentified Hydrocarbons	14.05	17,000	
(9)	Unidentified Hydrocarbons	14.28	12,600	
(10)	Unidentified Hydrocarbons	16.70	10,500	
SURROGATES	& RECOVERY	7		
Dibromofluoromet	hane 102			
Toluene-d8	98			
4-Bromofluoroben	zene 103			

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-12-96

Date

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Mid 0

PAGE 1 of 2

August 12, 1996 Receiving Date: 08/02/96 Sample Type: Soil Project No: 787 Project Location: N. Eunice Gas Plant, NM

TA #T56577

Field Code: BH-2 50-52', (NS)

Prep Date: 08/06/96 Analysis Date: 08/06/96 Sampling Date: 07/29/96 Sample Condition: Intact & Cool Sample Received by: ML Project Name: Texaco

	Concentration	Reporting	
EPA 8240 Compounds	(ug/kg)	Limit	
Dichlorodifluoromethane	ND	1,000	·.
Chloromethane	ND	1,000	
Vinyl chloride	ND	1,000	
Bromomethane	ND	5,000	
Chloroethane	ND	1,000	į
Trichlorofluoromethane	ND	1,000	
1,1-Dichloroethene	ND	1,000	
Iodomethane	ND	5,000	
Carbon disulfide	ND	1,000	.~
Methylene chloride	ND	5,000	
trans-1,2-Dichloroethene	ND	1,000	2
1,1-Dichloroethane	ND	1,000	
Vinyl acetate	ND	1,000	
2-Butanone	ND	50,000	
Chloroform	ND	1,000	
1,1,1-Trichloroethane	ND	1,000	
1,2-Dichloroethane	ND	1,000	
Benzene	5,680	1,000	
Carbon Tetrachloride	ND	1,000	: '
1,2-Dichloropropane	ND	1,000	
Trichloroethene	ND	1,000	• • •
Bromodichloromethane	ND	1,000	
cis-1,3-Dichloropropene	ND	1,000	
4-Methy1-2-pentanone	ND	50,000	
trans-1,3-Dichloropropene	ND	1,000	
Toluene	27,400	1,000	
1,1,2-Trichloroethane	ND	1,000	
2-Hexanone	ND	50,000	

HIGHLANDER SERVICES CORP. Project No: 787 Project: Texaco/Texaco North Eunice Gas Plant, NM

PAGE 2 of 2

TA #T56577

Field Code: BH-2 50-52', (NS)

EPA 8240 Com	poun	ds				Concentration (ug/kg)		Reporting Limit	J .
Dibromochlor	omet	hane				ND		1,000	
Tetrachloroe	then	е				ND		1,000	
Chlorobenzen	e					ND		1,000	
Ethylbenzene	•					14,400		1,000	
m & p-Xylene	•					21,500		1,000	
Bromoform						ND		1,000	
Styrene						ND		1,000	
o-Xylene						7,980		1,000	
1,1,2,2-Tetr	achl	oroetha	ane			ND		1,000	
trans 1,4-Di	chlo	ro-2-b	utene			ND		5,000	
cis 1,4-Dich	loro	-2-but	ene			ND		5,000	
1,4-Dichloro	benz	ene				ND		2,000	
1,3-Dichlord	benz	ene				ND		2,000	
1,2-Dichloro	benz	ene				ND		2,000	
Tentatively	Iden	tified	Compour	nds and	Estimated	Concentrations	(ug/kg))	
						RT	CONC.		
	(1)	Methyl	-cyclop	entane		10.62	19,700)	
	(2)	Methyl	. cycloh	exane		13.34	41,800)	
	(3)	ethyl-	cyclohe	xane		16.25	15,400)	
	(4)	Decane	2			19.51	18,700)	
	(5)	Unider	ntified	Hydroca	arbons	11.68	52,700)	
	(6)	Unider	ntified	Hydroca	arbons	12.30	49,200)	
	(7)	Unider	ntified	Hydroca	arbons	14.04	21,400)	
	(8)	Unider	ntified	Hydroca	arbons	16.49	12,900)	÷
	(9)	Unider	ntified	Hydroca	arbons	18.73	13,300)	

SURROGATES	<pre>% RECOVERY</pre>
Dibromofluoromethane	100
Toluene-d8	 101
4-Bromofluorobenzene	101

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

C

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-12-96

Date

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

August 26, 1996 Receiving Date: 08/15/96 Sample Type: Soil Project No: 787 Project Location: Texaco North Eunice Gas Plant, NM TA #: T57221 Field Code: #1 N. Sump./E.R. 8.2-8.4' Prep Date: 08/22/96 Analysis Date: 08/22/96 Sampling Date: 08/09/96 Sample Condition: Intact & Cool Sample Received by: SH Project Name: Texaco

Concentration Reporting Limit EPA 8240 Compounds (ug/kg) Dichlorodifluoromethane 25 ND 25 Chloromethane ND ND 25 Vinyl chloride Bromomethane ND 125 25 Chloroethane ND Trichlorofluoromethane ND 25 25 1,1-Dichloroethene ND Iodomethane ND 125 Carbon disulfide ND 25 125 Methylene chloride ND trans-1,2-Dichloroethene ND 25 1,1-Dichloroethane ND 25 25 Vinyl acetate ND 2-Butanone 1,250 ND Chloroform 25 ND 1,1,1-Trichloroethane ND 25 1,2-Dichloroethane 25 ND 25 Benzene ND 25 Carbon Tetrachloride ND 25 1,2-Dichloropropane ND 25 Trichloroethene ND Bromodichloromethane 25 ND 25 cis-1,3-Dichloropropene ND 4-Methyl-2-pentanone ND 1,250 trans-1,3-Dichloropropene ND 25 25 Toluene ND 1,1,2-Trichloroethane ND 25 1,250 2-Hexanone ND

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

TA #T57221 Field Code: #1 N. Sump./E.R. 8.2-8.4'

	Concentration	Reporting
EPA 8240 Compounds	(ug/kg)	Limit
Dibromochloromethane	ND	25
Tetrachloroethene	ND	25
Chlorobenzene	ND	25
Ethylbenzene	ND	25
m & p-Xylene	ND	25
Bromoform	ND	25
Styrene	ND	25
o-Xylene	ND	25
1,1,2,2-Tetrachloroethane	ND	25
trans 1,4-Dichloro-2-butene	ND	125
cis 1,4-Dichloro-2-butene	ND	125
1,4-Dichlorobenzene	ND	50
1,3-Dichlorobenzene	ND	50
1,2-Dichlorobenzene	ND	50

SURROGATES

% RECOVERY

Dibromofluoromethane	99
Toluene-d8	104
4-Bromofluorobenzene	107

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. Chemist: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-26-96

ť.

Date

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

August 26, 1996 Receiving Date: 08/15/96 Sample Type: Soil Project No: 787 Project Location: Texaco North Eunice Gas Plant, NM TA #: T57222 Field Code: #2 S. Sump./E.R. 6.4-6.8' Prep Date: 08/22/96 Analysis Date: 08/22/96 Sampling Date: 08/09/96 Sample Condition: Intact & Cool Sample Received by: SH Project Name: Texaco

EPA 8240 Compounds	Concentration (ug/kg)	Reporting Limit
Dichlorodifluoromethane	ND	25
Chloromethane	ND	25
Vinyl chloride	ND	25
Bromomethane	ND	125
Chloroethane	ND	25
Trichlorofluoromethane	ND	25
1,1-Dichloroethene	ND	25
Iodomethane	ND	125
Carbon disulfide	ND	25
Methylene chloride	ND	125
trans-1,2-Dichloroethene	ND	25
1,1-Dichloroethane	ND	25
Vinyl acetate	ND	25
2-Butanone	ND	1,250
Chloroform	ND	25
1,1,1-Trichloroethane	ND	25
1,2-Dichloroethane	ND	25
Benzene	ND	25
Carbon Tetrachloride	ND	25
1,2-Dichloropropane	ND	25
Trichloroethene	ND	25
Bromodichloromethane	ND	25
cis-1,3-Dichloropropene	ND	25
4-Methy1-2-pentanone	ND	1,250
trans-1,3-Dichloropropene	ND	25
Toluene	ND	25
1,1,2-Trichloroethane	ND	25
2-Hexanone	ND	1,250
PAGE 2 of 2

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

TA #T57222 Field Code: #2 S. Sump./E.R. 6.4-6.8'

		Concentration	Reporting
EPA 8240 Compounds		(ug/kg)	Limit
Dibromochloromethane	·	ND	25
Tetrachloroethene		ND	25
Chlorobenzene		ND	25
Ethylbenzene		ND	25
m & p-Xylene		ND	25
Bromoform		ND	25
Styrene		ND	25
o-Xylene		ND	25
1,1,2,2-Tetrachloroethane		ND	25
trans 1,4-Dichloro-2-butene		ND	125
cis 1,4-Dichloro-2-butene		ND	125
1,4-Dichlorobenzene		ND	50
1,3-Dichlorobenzene		ND	50
1,2-Dichlorobenzene		ND	50
Tentatively Identified Compounds a	and Estimated	Concentrations	(ug/kg)
	RT	CONC.	
(1) cis-bicyclo[4.3.0]-3-nonene	6.02	49	
(2) Unidentified Hydrocarbons	19.92	33	:
(3) Unidentified Hydrocarbons	21.40	29	
(4) Unidentified Hydrocarbons	21.60	96	
(5) Unidentified Hydrocarbons	22.20	30	
(6) Unidentified Hydrocarbons	22.42	36	
(7) Unidentified. Hydrocarbons	22.68	52	A
(8) Unidentified Hydrocarbons	23.18	34	Ť
(9) Unidentified Hydrocarbons	23.36	28	<i>y</i>
SURROGATES	¥ RECOVERY		•
Dibromofluoromethane	99		
Toluene-d8	99		
4-Bromofluorobenzene	104		
ND = Not Detected			
METHODS: EPA SW 846-5030; EPA 82	60.		

CHEMIST: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-26-96

Date

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

August 26, 1996 Receiving Date: 08/15/96 Sample Type: Soil Project No: 787 Project Location: Texaco North Eunice Gas Plant, NM TA #: T57223 Field Code: Trash Pit Area 4.5-4.7' Prep Date: 08/22/96 Analysis Date: 08/22/96 Sampling Date: 08/09/96 Sample Condition: Intact & Cool Sample Received by: SH Project Name: Texaco

EPA 8240 Compounds	Concentration (ug/kg)	Reporting Limit
Dichlorodifluoromethane	ND	25
Chloromethane	ND	25
Vinyl chloride	ND	25
Bromomethane	ND	125
Chloroethane	ND	25
Trichlorofluoromethane	ND	25
1,1-Dichloroethene	ND	25
Iodomethane	ND	125
Carbon disulfide	ND	25
Methylene chloride	ND	125
trans-1,2-Dichloroethene	ND	· 25
1,1-Dichloroethane	ND	25
Vinyl acetate	ND	.25
2-Butanone	ND	1,250
Chloroform	ND	25
1,1,1-Trichloroethane	ND	25
1,2-Dichloroethane	ND	25
Benzene	ND	25
Carbon Tetrachloride	ND	25
1,2-Dichloropropane	ND	25
Trichloroethene	ND	25
Bromodichloromethane	ND	25
cis-1,3-Dichloropropene	ND	25
4-Methyl-2-pentanone	ND	1,250
trans-1,3-Dichloropropene	ND	25
Toluene	ND	25
1,1,2-Trichloroethane	ND	25
2-Hexanone	ND	1,250

A Laboratory for Advanced Environmental Research and Analysis

FRACE

NALYSIS, INC.

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

TA #T57223

Field Code: Trash Pit Area 4.5-4.7'

	Concentration	Reporting
EPA 8240 Compounds	(ug/kg)	Limit
Dibromochloromethane	ND	25
Tetrachloroethene	ND	25
Chlorobenzene	ND	25
Ethylbenzene	ND	25
m & p-Xylene	ND	25
Bromoform	ND	25
Styrene	ND	25
o-Xylene	ND	25
1,1,2,2-Tetrachloroethane	ND	25
trans 1,4-Dichloro-2-butene	ND	125
cis 1,4-Dichloro-2-butene	ND	125
1,4-Dichlorobenzene	ND	50
1,3-Dichlorobenzene	ND	50
1,2-Dichlorobenzene	ND	50

Tentatively	Identified	Compounds	and	Estimated	Concentrations	(ug/kg)
-------------	------------	-----------	-----	-----------	----------------	---------

		RT	CONC.
(1)	Dimethyl sulfoxide	6.19	42
(2)	Unidentified Hydrocarbons	5.93	46

0 1000 1210
88
99
103

ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. Chemist: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-26-96 Date

PAGE 2 of 2

SURROGATES

% RECOVERY

SW	846-5030;	EPA	8260.	

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

August 6, 1996 Receiving Date: 07/29/96 Sample Type: Soil Project No: 787 Project Location: N. Eunice Gas Plant, NM

TA #T56268

Field Code: BH-5 (5-7'), SOA

Prep Date: 08/02/96 Analysis Date: 08/02/96 Sampling Date: 07/24/96 Sample Condition: Intact & Cool Sample Received by: SH Project Name: Texaco

	Concentration	Reporting
EPA 8240 Compounds	(ug/kg)	Limit
Dichlorodifluoromethane	ND	500
Chloromethane	ND	500
Vinyl chloride	ND	500
Bromomethane	ND	2,500
Chloroethane	ND	500
Trichlorofluoromethane	ND	500
1,1-Dichloroethene	ND	500
Iodomethane	ND	2,500
Carbon disulfide	ND	500
Methylene chloride	ND	2,500
trans-1,2-Dichloroethene	ND	500
1,1-Dichloroethane	ND	500
Vinyl acetate	ND	500
2-Butanone	ND	25,000
Chloroform	ND	500
1,1,1-Trichloroethane	ND	500
1,2-Dichloroethane	ND	500
Benzene	ND	500
Carbon Tetrachloride	ND	500
1,2-Dichloropropane	ND	500
Trichloroethene	ND	500 *
Bromodichloromethane	ND	500
cis-1,3-Dichloropropene	ND	500
4-Methy1-2-pentanone	ND	25,000
trans-1,3-Dichloropropene	ND	500
Toluene	663	500
1,1,2-Trichloroethane	ND	500
2-Hexanone	ND	25,000

A Laboratory for Advanced Environmental Research and Analysis

RACEA

NALYSIS, INC.

HIGHLANDER SERVICES CORP. Project No: 787 Project: Texaco/Texaco North Eunice Gas Plant, NM

PAGE 2 of 2

TA #T56268

Field Code: BH-5 (5-7'), SOA

		Concentration	Reporting
EPA 8240 Compounds		(ug/kg)	Limit
Dibromochloromethane		ND	500
Tetrachloroethene		ND	500
Chlorobenzene		ND	500
Ethylbenzene		12,500	500
m & p-Xylene		9,780	500
Bromoform		ND	500
Styrene		ND	500
o-Xylene		2,400	500
1,1,2,2-Tetrachloroethane		ND	500
trans 1,4-Dichloro-2-butene		ND	2,500
cis 1,4-Dichloro-2-butene		ND	2,500
1,4-Dichlorobenzene		ND	1,000
1,3-Dichlorobenzene		ND	1,000
1,2-Dichlorobenzene		ND	1,000
Tentatively Identified Compounds		CONC	RT
methyl-cyclohexane		20,700	13.33
Octane		52,900	14.91
ethyl-cyclohexane		35,500	16.26
3-methyl Nonane		30,700	18.13
Decane		58,900	19.51
Unidentified Hydrocarbons		24,200	14.04
Unidentified Hydrocarbons		45,700	16.49
Unidentified Hydrocarbons		42,300	16.70
Unidentified Hydrocarbons		27,000	18.71
Unidentified Hydrocarbons		25,900	19.64
SURROGATES	% RECOVERY		
Dibromofluoromethane	99		
Toluene-d8	98		
4-Bromofluorobenzene	101		

*ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-6-96

Date

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 FAX 806•794•1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

August 6, 1996 Receiving Date: 07/29/96 Sample Type: Soil Project No: 787 Project Location: N. Eunice Gas Plant, NM

TA #T56275 Field Code: BH-6 (5-7'), SOA Prep Date: 08/02/96 Analysis Date: 08/02/96 Sampling Date: 07/24/96 Sample Condition: Intact & Cool Sample Received by: SH Project Name: Texaco

İ

1

	Concentration	Reporting	
EPA 8240 Compounds	(ug/kg)	Limit	
Dichlorodifluoromethane	ND	100	
Chloromethane	ND	100	
Vinyl chloride	ND	100	
Bromomethane	ND	500	
Chloroethane	ND	100	
Trichlorofluoromethane	ND	100	
1,1-Dichloroethene	ND	100	
Iodomethane	ND	500	
Carbon disulfide	ND	100	
Methylene chloride	ND	500	
trans-1,2-Dichloroethene	ND	100	
1,1-Dichloroethane	ND	100	
Vinyl acetate	ND	100	
2-Butanone	ND	5,000	
Chloroform	ND	100	
1,1,1-Trichloroethane	ND	100	
1,2-Dichloroethane	ND	100	
Benzene	1,310	100	
Carbon Tetrachloride	ND	100	
1,2-Dichloropropane	ND	100	
Trichloroethene	ND	100	
Bromodichloromethane	ND	100	
cis-1,3-Dichloropropene	ND	100	
4-Methy1-2-pentanone	ND	5,000	
trans-1,3-Dichloropropene	ND	100	
Toluene	ND	100	
1,1,2-Trichloroethane	ND	100	
2-Hexanone	ND	5,000	

A Laboratory for Advanced Environmental Research and Analysis

FRACEANALYSIS, INC.

HIGHLANDER SERVICES CORP. Project No: 787 Project: Texaco/Texaco North Eunice Gas Plant, NM

TA #T56275

Field Code: BH-6 (5-7'), SOA

		Concentration	Reporting
EPA 8240 Compounds		(ug/kg)	Limit
Dibromochloromethane		ND	100
Tetrachloroethene		ND	100
Chlorobenzene		ND	100
Ethylbenzene		30,700*	100
m & p-Xylene		14,700	100
Bromoform		ND	100
Styrene		ND	100
o-Xylene		ND	100
1,1,2,2-Tetrachloroethane		ND	100
trans 1,4-Dichloro-2-butene		ND	500
cis 1,4-Dichloro-2-butene		ND	500
1,4-Dichlorobenzene		ND	200
1,3-Dichlorobenzene		ND	200
1,2-Dichlorobenzene		ND	200
Tentatively Identified Compounds		CONC	RT
Cyclohexane		43,900	11.66
1,2-dimethyl-cyclopentane		17,900	12.30
1,2,4-trimethyl cyclopentane		15,700	13.64
1,2,3-trimethyl cyclopentane		18,500	13.86
cis-1,3-dimethyl cyclohexane		73,800	14.77
ethyl-cyclohexane		33,200	16.26
Unidentified Hydrocarbons		20,100	13.25
Unidentified Hydrocarbons		25,200	14.04
Unidentified Hydrocarbons		22,700	16.50
Unidentified Hydrocarbons		16,600	16.70
SURROGATES	* RECOVERY		
Dibromofluoromethane	93		
Toluene-d8	109		

111

*ND = Not Detected

4-Bromofluorobenzene

*Estimated Concentration. Response over standard range.

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-6-96

PAGE 2 of 2

Date

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 FAX 806•794•1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

August 6, 1996 Receiving Date: 07/29/96 Sample Type: Soil Project No: 787 Project Location: N. Eunice Gas Plant, NM

TA #T56288

Field Code: BH-8 (5-7'), SOA

Prep Date: 08/02/96 Analysis Date: 08/02/96 Sampling Date: 07/25/96 Sample Condition: Intact & Cool Sample Received by: SH Project Name: Texaco

	Concentration	Reporting
EPA 8240 Compounds	(ug/kg)	Limit
Dichlorodifluoromethane	ND	100
Chloromethane	ND	100
Vinyl chloride	ND	100
Bromomethane	ND	500
Chloroethane	ND	100
Trichlorofluoromethane	ND	100
1,1-Dichloroethene	ND	100
Iodomethane	ND	500
Carbon disulfide	ND	100
Methylene chloride	ND	500
trans-1,2-Dichloroethene	ND	100
1,1-Dichloroethane	ND	100
Vinyl acetate	ND	100
2-Butanone	ND	5,000
Chloroform	ND	100
1,1,1-Trichloroethane	ND	100
1,2-Dichloroethane	ND	100
Benzene	384	100
Carbon Tetrachloride	ND	100
1,2-Dichloropropane	ND	100
Trichloroethene	ND	100
Bromodichloromethane	ND	100
cis-1,3-Dichloropropene	ND	100
4-Methy1-2-pentanone	ND	5,000
trans-1,3-Dichloropropene	ND	100
Toluene	ND	100
1,1,2-Trichloroethane	ND	100
2-Hexanone	ND	5,000

A Laboratory for Advanced Environmental Research and Analysis

FRACEA

NALYSIS, INC.

HIGHLANDER SERVICES CORP. Project No: 787 Project: Texaco/Texaco North Eunice Gas Plant, NM

PAGE 2 of 2

I.

TA #T56288

Field Code: BH-8 (5-7'), SOA

		Concentration	Reporting
EPA 8240 Compounds		(ug/kg)	Limit
Dibromochloromethane		ND	100
Tetrachloroethene		ND	100
Chlorobenzene		ND	100
Ethylbenzene		1,460	100
m & p-Xylene		941	100
Bromoform		ND	100
Styrene		ND	100
o-Xylene		207	100
1,1,2,2-Tetrachloroethane		ND	100
trans 1,4-Dichloro-2-butene		ND	500
cis 1,4-Dichloro-2-butene		ND	500
1,4-Dichlorobenzene		ND	200
1,3-Dichlorobenzene		ND	200
1,2-Dichlorobenzene		ND	200
Tentatively Identified Compounds		CONC	RT
methyl-cyclopentane		5,860	10.62
2-methyl-heptane		3,840	14.04
cis-1,3-dimethyl-cyclohexane		6,080	14.76
ethyl-cyclohexane		5,770	16.25
Decane		5,280	19.51
Undecane		3,850	21.76
Unidentified Hydrocarbons		20,200	11.68
Unidentified Hydrocarbons		7,820	12.30
Unidentified Hydrocarbons		3,930	13.24
Unidentified Hydrocarbons		4,390	14.28
SURROGATES	% RECOVERY		
Dibromofluoromethane	96		
Toluene-d8	96		
4-Bromofluorobenzene	103		

*ND = Not Detected

METHODS: EPA SW 846-5030; EPA 8260. CHEMIST: RP

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-6-96

Date

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 FAX 806 • 794 • 1298

> ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

August 16, 1996 Receiving Date: 08/02/96 Sample Type: Soil Project No: 787 Project Location: Texaco North Eunice Gas Plant, NM Prep Date: 08/07/96 Analysis Date: 08/07/96 Sampling Date: 07/29/96 Sample Condition: I & C Sample Received by: ML Project Name: Texaco

TA #T56577 Field Code: BH-2 50-52'

Sample 56577, when analyzed by capillary column GC-FID eluted peaks in a time frame and pattern consistent with diesel.

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

16-96

DATE

• Illehall Market Market Sis, Inc. MARKELLAND

A Laboratory for Advanced Environmental Research and Analysis

Peak	Component	Time	Area	Height	Area	Raw	Adjusted	
#	Name	[min]	[uV*sec]	[uV]	[%]	Amount	Amount	
103	DIESEL O-Terphenyl-Surr	13.850 18.750	12834251.97 32527.86	5.01e+06 9549.20	99.75 0.25	1000.5640 0.2569	10005.6399 2.5691	

12866779.83 5.02e+06 100.00 1000.8209 10008.2090

Software Versi Date: 8/15/96 Sample Name : Data File : Auence File: Instrument : Sample Amount	on: 4.1<0G07> 04:14 PM DIES QC C:\TC4\DATA3\D815009.RAW Date: 8/15/96 03:50 PM C:\TC4\SEQUENCE\DIES0815.SEQ Cycle: 9 Channel : A AUTOSYSGC3 Rack/Vial: 0/9 Operator: : 1.0000 Dilution Factor : 1.00
Response move 150 150 100 100 100 100 100 100	
	$ \begin{array}{c} $
	DIESEL REPORT

Peak	Component	Time	Area	Height	Area	Raw	Adjusted
#	Name	[min]	[uV*sec]	[uV]	[%]	Amount	Amount
90	DIESEL	13.850	2813256.83	1.03e+06	99.77	219.3228	219.3228
	O-Terphenyl-Surr	18.889	6441.73	1599.91	0.23	0.0509	0.0509
			2819698.56	1.03e+06	100.00	219.3736	219.3736

I

ļ

ļ

Chromatogram

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Midland, TX 79701

August 16, 1996 Receiving Date: 08/02/96 Sample Type: Soil Sampling Date: 07/29/96 Sample Condition: I & C Sample Received by: ML Project No: 787 Project Location: N. Eunice Gas Plant, NM **Project Name: Texaco** Extraction Date: 08/05/96

Analysis Date: 08/09/96 Concentration Reporting QC RPD %EA 8270 Compounds %IA Limit (mg/kg) N-Nitrosodimethylamine 5.0 ND ND 5.0 2-Picoline ND Methyl methanesulfonate 5.0 Ethyl methanesulfonate 5.0 ND ND 107 12 53 107 Phenol 5.0 ND 25.0 Aniline ND bis(2-Chloroethyl)ether 25.0 25.0 ND 5 45 2-Chlorophenol 5.0 ND 1.3-Dichlorobenzene 1,4-Dichlorobenzene 5.0 ND 99 3 49 99 ND **Benzyl** alcohol 25.0 ND 1,2-Dichlorobenzene 5.0 ND 2-Methylphenol 5.0 ND bis(2-chloroisopropyl)ether 25.0 ND 5.0 4-Methylphenol/3-Methylphenol ND 25.0 Acetophenone ND 49 5.0 2 n-Nitrosodi-n-propylamine 5.0 ND Hexachloroethane 5.0 ND Nitrobenzene 25.0 ND **N-Nitrosopiperidine** Isophorone 25.0 ND 2-Nitrophenol 25.0 ND 98 98 ND 2,4-Dimethylphenol 25.0 ND bis(2-Chloroethoxy)methane 5.0 ND **Benzoic acid** 50.0 ND 108 25.0 108 2,4-Dichlorophenol ND 3 58 1,2,4-Trichlorobenzene 5.0 ND a,a-Dimethylphenethylamine 50.0 Naphthalene 9.46 5.0 RACEANALYSIS, INC.

A Laboratory for Advanced Environmental Research and Analysis

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296

FAX 806 • 794 • 1298

TA#: T56559

FIELD CODE: BH-1 10-12', (NS)

Attention: Ike Tavarez 306 W. Wall, Suite 320

HIGHLANDER SERVICES CORP. Project No: 787

Project Name: Texaco

FIELD CODE: BH-1 10-12', (NS)

TA#: T56559

· · · · · · · · · · · · · · · · · · ·	Reporting	Concentration	_			
8270 Compounds	Limit	(mg/kg)	QC	RPD	€EA	*IA
4-Chloroaniline	25.0	ND				
2,6-Dichlorophenol	25.0	ND				
Hexachlorobutadiene	5.0	ND	118			118
N-Nitroso-di-n-butylamine	25.0	ND				
4-Chloro-3-methylphenol	25.0	ND	101	1	55	101
2-Methylnaphthalene	5.0	37.54				
1,2,4,5-Tetrachlorobenzene	5.0	ND				
Hexachlorocyclopentadiene	5.0	ND				
2,4,6-Trichlorophenol	25.0	ND	96			96
2,4,5-Trichlorophenol	25.0	ND				
2-Chloronaphthalene	5.0	ND				
1-Chloronaphthalene	5.0	ND				
2-Nitroaniline	25.0	ND				
Dimethylphthalate	5.0	ND				
Acenaphthylene	5.0	ND				
z,6-Dinitrotoluene	5.0	ND				
3-Nitroaniline	25.0	ND				
Acenaphthene	5.0	ND	107	1	66	107
2,4-Dinitrophenol	25.0	ND				
Dibenzofuran	25.0	ND			· ·	
Pentachlorobenzene	5.0	ND				
4-Nitrophenol	25.0	ND		2	66	
1-Napthylamine	25.0	ND				
2,4-Dinitrotoluene	5.0	ND		11	55	
2-Napthylamine	25.0	ND				
2,3,4,6-Tetrachlorophenol	25.0	ND				
Fluorene	5.0	ND				,
Diethylphthalate	5.0	ND				
4-Chlorophenyl-phenylether	5.0	ND				· · · · · · · · · · · · · · · · · · ·
4-Nitroaniline	25.0	ND				
4,6-Dinitro-2-methylphenol	5.0	DM				
-Nitrosodiphenylamine & Diphenylam	5.0	ND	119			119
Diphenylhydrazine	25.0	ND				

ł

Į.

ł

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

TIELD CODE: BH-1 10-12', (NS) TA#: T56559

 •	 	 ~	
			•

	Reporting	Concentration				
8270 Compounds	Limit	(mg/kg)	QC	RPD	\$EA	%IA
4-Bromophenyl-phenylether	5.0	ND				
Phenacetin	25.0	ND				
Hexachlorobenzene	5.0	ND				
4-Aminobiphenyl	25.0	ND	•			
Pentachlorophenol	25.0	ND	107	4	65	107
Pentachloronitrobenzene	25.0	ND				
Pronamide	5.0	ND				
Phenanthrene	5.0	ND				
Anthracene	5.0	7.02				· · ·
Di-n-butylphthalate	5.0	סא				
Fluoranthene	5.0	ND	115			115
Benzidine	50.0	ND				
Pyrene	5.0	ND		5	. 114	
Dimethylaminoazobenzene	5.0	סא				
Butylbenzylphthalate	5.0	ND				· · · · · ·
Benzo[a]anthracene	5.0	ND				
3,3-Dichlorobenzidine	5.0	ND				
Chrysene	5.0	ND				
bis(2-Ethylhexyl)phthalate	5.0	ND			·	
Di-n-octlphthalate	5.0	ND				
Benzo(b)fluoranthene	5.0	ND			·	
7,12-Dimethylbenz(a)anthracene	5.0	ND				
Benzo[k]fluoranthene	5.0	ND		, L		
Benzo[a]pyrene	5.0	ND	117	 		117
3-Methylcholanthrene	5.0	ND				L
Dibenzo(a,j)acridine	5.0	ND				
Indeno[1,2,3-cd]pyrene	5.0	ND				
Dibenz[a,h]anthracene	5.0	ND				
Benzo[g,h,i]perylene	5.0	ND				<u></u>

1

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco Field Code: BH-1 10-12', (NS)

TA#: T56559

		Reporting	Concentration				
8080	Compounds	Limit	(mg/kg)	QC	RPD	\$EA	8IA
a-BHC		0.0125	ND		11	76	96
b-BHC	:	0.0125	D		15	78	100
g-BHC	1	0.0125	ND		6	70	100
d-BHC		0.0125	ND		12	98	96
Hepta	chlor	0.0125	ND		32	86	100
Aldri	n	0.0125	ND		11	76	100
Hepta	chlor epoxide	0.0125	ND		5	86	104
Endos	sulfan-1	0.0125	DM		5	74	100
Endos	sulfan-2	0.025	ND		0	72	104
- יץ, ע	DDE	0.025	ND		8	73	94
Dielo	lrin	0.025	ND		3	75	105
Endri	.n	0.025	ND		0	66	106
₽,₽'-	סמס	0.025	ND		7	81	104
Endri	n Aldehyde	0.025	ND				108
Endos	sulfan Sulfate/P,P'-DDT	0.025	ND		15	86	114
Endri	in Ketone	0.025	ND		5	84	112
Metho	xychlor	0.125	ND		1	71	112
a-Chl	lordane	0.0125	ND		0	76	102
g-Chl	lordane	0.0125	ND		6	70	96
Тоха	bhene	1.25	ND		1	67	103
PCB':	3	2.5	ND	0.53	0	102	106
	TENTATIVELY IDENTIFIED	COMPOUNDS AND 1 BT	ESTIMATED CONCENTRA	TIONS (mg	/kg)	2017	CONC
(1)	Decane	5 33	98.3	(13) Octa	lecane	12 31	168
2)	Dodecane	6.87	126	(14) 2.6.3	L0-	12.40	93.5
(3)	Unknown	7 28	36.6	tri	 methyl-dodecar		
(4)	Tridecane	7.71	165	(15) Nonad	lecane	13.20	177
(5)	2.6.10-trimethyl-	8.37	68.5	(16) Eico	sane	4.04	10
(0)		0.01		(17) Here		1.01	10
				(17) Hene.	LCOSane	14.60	81.0
(6)	Tetradecane	8.59	313	(18) Doca:	sane	15.65	62.2
(7)	2,3-dimethyl-	9.06	69.9				
	naphthalene	0.10	70.0				
(8)	5-propyidecane	9.10	79.3				
(9)	Pentadecane	9.51	260				
(10)	Hexadecane	10.45	213				
(11)	5,8-diethyldodecane	10.90	75.6				
(12)	Heptadecane	11.40	233				
ND =	NOT DETECTED						
		* RECOVERY					
2-F1	orophenol SURR	91					
Phene	ol-d6 SURR	68			-		,
Nitr	benzene-d5 SIPP	115					
2-81	uorobiphenvl SURR	113					
2,4,0	-Tribromophenol SURR	100					
Terpl	nenyl-d14 SURR	129	\sim				
METH CHEM	DD: EPA SW 846-8270, 3550, 8 IST: RD/CC/MB/RCD	080.	Jes -			5-16-	96

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

Date

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland TX 79701

Concentration

August 16, 1996 Receiving Date: 08/02/96 Sample Type: Soll Sampling Date: 07/29/96 Sample Condition: I & C Sample Received by: ML Project No: 787 Project Location: N. Eunice Gas Plant, NM Project Name: Texaco Extraction Date: 08/05/96

9424 306 W. Wall, Suite 320 Midland, TX 79701

Reporting

FIELD CODE: BH-1 50-52', (NS) TA# : T56567

Extraction Date: 08/05/96 Analysis Date: 08/09/96

8270 Compounds	Limit	(mg/kg)	QC	RPD	%EA	%IA
N-Nitrosodimethylamine	5.0	ND				
2-Picoline	5.0	ND				
Methyl methanesulfonate	5.0	ND				
Ethyl methanesulfonate	5.0	ND				
Phenol	5.0	ND	107	12	53	107
Aniline	25.0	ND				
bis(2-Chloroethyl)ether	25.0	ND				
2-Chlorophenol	25.0	ND		5	45	
1,3-Dichlorobenzene	5.0	ND				
1,4-Dichlorobenzene	5.0	ND	99	3	49	99
Benzyl alcohol	25.0	ND				
1,2-Dichlorobenzene	5.0	ND	 		····	
2-Methylphenol	5.0	ND				
bis(2-chloroisopropyl)ether	25.0	ND				
4-Methylphenol/3-Methylphenol	5.0	ND				
Acetophenone	25.0	ND			·	
n-Nitrosodi-n-propylamine	5.0	ND		2	49	
Hexachloroethane	5.0	ND				
Nitrobenzene	5.0	ND				
N-Nitrosopiperidine	25.0	ND				
Isophorone	25.0	ND				
2-Nitrophenol	25.0	ND	98			98
2,4-Dimethylphenol	25.0	ND				
bis(2-Chloroethoxy)methane	5.0	ND				
Benzoic acid	50.0	ND				
2,4-Dichlorophenol	25.0	ND	108		4	108
1,2,4-Trichlorobenzene	5.0	ND		3	58	
a,a-Dimethylphenethylamine	50.0	ND				
Naphthalene	5.0	ND				
	MTRA	CEANALY	ISIS, J	NCll		

A Laboratory for Advanced Environmental Research and Analysis

6701 Aberdeen Avenue

Lubbock, Texas 79424

806•794•1296

FAX 806 • 794 • 1298

HIGHLANDER SERVICES CORP.

Project No: 787

Project Name: Texaco

FIELD CODE: BH-1 50-52', (NS)

TA#: T56567

l

	Reporting	Concentration	· · · · ·			
8270 Compounds	Limit	(mg/kg)	QC	RPD	*EA	\$IA
4-Chloroaniline	25.0	ND				
2,6-Dichlorophenol	25.0	ND				
Hexachlorobutadiene	5.0	ND	118			118
N-Nitroso-di-n-butylamine	25.0	ND		······································		,
4-Chloro-3-methylphenol	25.0	ND	101	1	55	101
2-Methylnaphthalene	5.0	10.8				L
1,2,4,5-Tetrachlorobenzene	5.0	סא				
Hexachlorocyclopentadiene	5.0	ND				
2,4,6-Trichlorophenol	25.0	ND	96			96
2,4,5-Trichlorophenol	25.0	ND				
2-Chloronaphthalene	5.0	ND				
1-Chloronaphthalene	5.0	סא				· · · · · · · · · · · · · · · · · · ·
2-Nitroaniline	25.0	ND				;
Dimethylphthalate	5.0	ND		•		
Acenaphthylene	5.0	DM		•		·
i-Dinitrotoluene	5.0	ND				
3-Nitroaniline	25.0	ND				
Acenaphthene	5.0	ND	107	1	66	107
2,4-Dinitrophenol	25.0	ND		; 		
Dibenzofuran	25.0	ND				<u> </u>
Pentachlorobenzene	. 5.0	ND				
4-Nitrophenol	25.0	ND		2	66	·
1-Napthylamine	25.0	ND				· .
2,4-Dinitrotoluene	5.0	ND		11	55	:
2-Napthylamine	25.0	סא				
2,3,4,6-Tetrachlorophenol	25.0	ND				
Fluorene	5.0	ND				
Diethylphthalate	5.0	ND				
4-Chlorophenyl-phenylether	5.0	סא		·		
4-Nitroaniline	25.0	ND				
4,6-Dinitro-2-methylphenol	5.0	ND	· · · · · · · · · · · · · · · · · · ·			
Nitrosodiphenylamine & Diphenylam	5.0	ND	119			119
Diphenylhydrazine	25.0	ND				

Page 2 of 4

i

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

FIELD CODE: BH-1 50-52', (NS) TA#: T56567

	Reporting	Concentration				
8270 Compounds	Limit	(mg/kg)	QC	RPD	\$EA	\$IA
4-Bromophenyl-phenylether	5.0	סא				
Phenacetin	25.0	ND				
Hexachlorobenzene	5.0	ND				
4-Aminobiphenyl	25.0	ND				
Pentachlorophenol	25.0	ND	107	4	65	107
Pentachloronitrobenzene	25.0	ND				
Pronamide	5.0	ND				
Phenanthrene	5.0	ND				
Anthracene	5.0	ND				
Di-n-butylphthalate	5.0	ND		 		·
Fluoranthene	5.0	ND	115			115
Benzidine	50.0	ND				
vrene	5.0	ND		5	114	·
p-Dimethylaminoazobenzene	5.0	ND				
Butylbenzylphthalate	5.0	ND			····	
Benzo[a]anthracene	5.0	ND				·
3,3-Dichlorobenzidine	5.0	ND		· · · · · · · · · · · · · · · · · · ·		
Chrysene	5.0	ND				<u> </u>
bis(2-Ethylhexyl)phthalate	5.0	ND			,	
Di-n-octlphthalate	5.0	ND				
Benzo[b]fluoranthene	5.0	ND				·
7,12-Dimethylbenz(a)anthracene	5.0	ND				
Benzo[k]fluoranthene	5.0	ND				· ·
Benzo[a]pyrene	5.0	ND	117			117
3-Methylcholanthrene	5.0	ND			****	
Dibenzo(a,j)acridine	5.0	ND				
Indeno[1,2,3-cd]pyrene	5.0	ND				
Dibenz[a,h]anthracene	5.0	ND				
Benzo[g,h,i]perylene	5.0	ND				

Page 3 of 4

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco Field Code: BH-1 50-52', (NS)

TA#: T56567

Į.

L

	Reporting	Concentration				
8080 Compounds	Limit	(mg/kg)	QC	RPD	₹EA	8IA
a-BNC	0.0125	ND		11	76	96
D-BHC	0.0125	ND		15	78	100
g-BHC	0.0125	ND		6	70	100
d-BHC	0.0125	ND		12	98	96
Heptachlor	0.0125	ND		32	86	100
Aldrin	0.0125	ND		11	76	100
Heptachlor epoxide	0.0125	ND		5	86	104
Endosulfan-1	0.0125	ND		5	74	100
Endosulfan-2	0.025	ND		0	72	104
P, P'-DDE	0.025	ND		8	73	94
Dieldrin	0.025	ND		3	75	105
Endrin	0.025	ND		0	66	106
P, P'-DDD	0.025	ND		7	81	104
Endrin Aldehyde	0.025	ND				108
Endosulfan Sulfate/P,P'-DDT	0.025	ND		15	86	114
Endrin Ketone	0.025	ND		5	84	112
Methoxychlor	0.125	ND		1	71	112
a-Chlordane	0.0125	ND		0	76	102
g-Chlordane	0.0125	ND		6	70	96
Toxaphene	1.25	ND		1	67	103
PCB's	0.25	ND	0.53	0	102	106
TENTATIVELY IDENTIFIED	COMPOUNDS AND F	STIMATED CONCENTR	ATIONS (mg	/kg)	BT	CONC
(1) Decane	5 34	74.8	(12) Octa	decane	12.29	73.9
2) Undecane	6.10	68.6	(13) Nonad	decane	13.18	82.3
	¢.10 ¢ 07	78.0	(14) Fico	620 0	14.03	50 5
(4) Tridecane	7 70	158	(15) Hene:	icosane	14.05	45.0
(5) linknown	8 17	47 0	(10) 101.0.	- CODAILC	14.00	43.0
	0.17	41.0				
(6) 2,6,10-trimetny1-	8.38	41.3				
dodecane						
(7) Tetradecane	8.59	216				
(8) 2,6,11-trimethyl- dodecane	9.15	52.0				
(9) Pentadecane	9.50	151				
(10) Hexadecane	10.44	97.4				
(11) Heptadecane	11.38	119				
ND = NOT DETECTED	\$ RECOVERY					
2-Fluorophenol SURR	84					
Phenol-d6 SURR	64					
Nitrobenzene-d5 SURR	107					
2-Fluorobiphenyl SURR	113					
2,4,6-Tribromophenol SURR	91					
Terphenyl-d14 SURR	122					
METHOD: EPA SW 846-8270, 3550, 8 CHEMIST: RD/CC/MB/RCD	1080.	PS-			8-16-9	76

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell Date

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320

August 16, 1996 Receiving Date: 08/02/96 Sample Type: Soil Sampling Date: 07/29/96 Sample Condition: I & C Sample Received by: ML Project No: 787 Project Location: N. Eunice Gas Plant, NM Project Name: Texaco Extraction Date: 08/05/96

TA# : T56569			Extraction Date: 08/05/96				
8270 Compounds	Reporting	<u>Concentration</u>	00	PDD	Analysis Date:	08/09/96	
		(mg/kg)		KrD	70LA	<u>%1A</u>	
N-Nitrosodimethylamine	2.5	ND					
2-Picoline	2.5	<u>ND</u>					
Methyl methanesulfonate	2.5	ND					
Ethyl methanesulfonate	2.5	ND		ļ			
Phenol	2.5	ND	107	12	53	107	
Aniline	12.5	ND					
bis(2-Chloroethyl)ether	12.5	ND		·		·	
2-Chlorophenol	12.5	ND		5	45	· · · · ·	
1,3-Dichlorobenzene	2.5	ND					
1,4-Dichlorobenzene	2.5	ND	99	3	49	99	
Benzyl alcohol	12.5	ND			·····	·	
1,2-Dichlorobenzene	2.5	ND					
2-Methylphenol	2.5	ND					
bis(2-chloroisopropyl)ether	12.5	ND				· ·	
4-Methylphenol/3-Methylphenol	2.5	ND			·		
Acetophenone	12.5	ND					
n-Nitrosodi-n-propylamine	2.5	ND		2	49		
Hexachloroethane	2.5	ND					
Nitrobenzene	2.5	ND					
N-Nitrosopiperidine	12.5	ND					
Isophorone	12.5	ND					
2-Nitrophenol	12.5	ND	98			98	
2,4-Dimethylphenol	12.5	ND					
bis(2-Chloroethoxy)methane	2.5	ND		_			
Benzoic acid	25.0	ND		·			
2,4-Dichlorophenol	12.5	ND	108			108	
1,2,4-Trichlorobenzene	2.5	ND		3	58		
a,a-Dimethylphenethylamine	25.0	ND					
Naphthalene	2.5	ND	<u> </u>		L	l	
	MTRA	CEANALY	(SIS,]				

A Laboratory for Advanced Environmental Research and Analysis

6701 Aberdeen Avenue

Lubbock, Texas 79424

806 • 794 • 1296

FAX 806 • 794 • 1298

FIELD CODE: BH-2 10-12', (NS)

Midland, TX 79701

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

FIELD CODE: BH-2 10-12', (NS)

_TA#: T56569

	Reporting	Concentration	·	<u></u>		
8270 Compounds	Limit	(mg/kg)	QC	RPD	\$EA	\$IA
4-Chloroaniline	12.5	ND				
2,6-Dichlorophenol	12.5	ND			L	
Hexachlorobutadiene	2.5	ND	118			118
N-Nitroso-di-n-butylamine	12.5	ND				
4-Chloro-3-methylphenol	12.5	ND	101	1	55	101
2-Methylnaphthalene	2.5	4.37				
1,2,4,5-Tetrachlorobenzene	2.5	ND				
Hexachlorocyclopentadiene	2.5	ND			 	
2,4,6-Trichlorophenol	12.5	ND	96			96
2,4,5-Trichlorophenol	12.5	ND	·			
2-Chloronaphthalene	2.5	ND				
1-Chloronaphthalene	2.5	ND				
2-Nitroaniline	12.5	ND				
Dimethylphthalate	2.5	ND				
Acenaphthylene	2.5	סא				
6-Dinitrotoluene	2.5	ND				
3-Nitroaniline	12.5	ND .				
Acenaphthene	2.5	ND	107	1	66	107
2,4-Dinitrophenol	12.5	סא			·	
Dibenzofuran	12.5	ND				
Pentachlorobenzene	2.5	ND				
4-Nitrophenol	12.5	ND		2	66	
1-Napthylamine	12.5	ND				-
2,4-Dinitrotoluene	2.5	ND		11	55	
2-Napthylamine	12.5	ND				
2,3,4,6-Tetrachlorophenol	12.5	DM				
Fluorene	2.5	ND				
Diethylphthalate	2.5	סא				
4-Chlorophenyl-phenylether	2.5	ND				
4-Nitroaniline	12.5	ND				
4,6-Dinitro-2-methylphenol	2.5	ND		<u> </u>		
Nitrosodiphenylamine & Diphenylam	2.5	ND	119			119
Diphenylhydrazine	12.5	ND				

ł

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

FIELD CODE: BH-2 10-12', (NS) TA#: T56569

	Reporting	Concentration	Г		······	
8270 Compounds	Limit	(mg/kg)	QC	RPD	\$EA	%IA
4-Bromophenyl-phenylether	2.5	ND				
Phenacetin	12.5	ND				
Hexachlorobenzene	2.5	ND				
4-Aminobiphenyl	12.5	ND				
Pentachlorophenol	12.5	ND	107	4	65	107
Pentachloronitrobenzene	12.5	ND				
Pronamide	2.5	ND				
Phenanthrene	2.5	ND				
Anthracene	2.5	ND				
Di-n-butylphthalate	2.5	ND				
Fluoranthene	2.5	ND	115			115
Benzidine	25.0	ND				
vrene	2.5	ND		5	114	
p-Dimethylaminoazobenzene	2.5	ND				
Butylbenzylphthalate	2.5	ND				
Benzo[a]anthracene	2.5	ND				
3,3-Dichlorobenzidine	2.5	ND				
Chrysene	2.5	סא				
bis(2-Ethylhexyl)phthalate	2.5	ND				
Di-n-octlphthalate	2.5	ND				
Benzo[b]fluoranthene	2.5	ND				· .
7,12-Dimethylbenz(a)anthracene	2.5	ND				
Benzo[k]fluoranthene	2.5	ND				
Benzo[a]pyrene	2.5	ND	117			117
3-Methylcholanthrene	2.5	ND				
Dibenzo(a,j)acridine	2.5	ND				
Indeno[1,2,3-cd]pyrene	2.5	ND				
Dibenz[a,h]anthracene	2.5	ND				
Benzo[g,h,i]perylene	2.5	ND				

Page 3 of 4

I.

i

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco Field Code: BH-2 10-12', (NS)

8080 Compounds

a-BHC

ь-внс

g-BHC d-BHC

Reporting	Concentration				
Limit	(mg/kg)	QC	RPD	₹EA	\$IA
0.0125	ND		11	76	96
0.0125	ND		15	78	100
0.0125	ND		6	70	100
0.0125	ND		12	98	96
0.0125	ND		32	86	100

Heptachlor	0.0125	ND		32	86	100
Aldrin	0.0125	ND		11	76	100
Heptachlor epoxide	0.0125	ND		5	86	104
Endosulfan-1	0.0125	ND		5	74	100
Endosulfan-2	0.025	ND		0	72	104
P, P'-DDE	0.025	ND		8	73	94
Dieldrin	0.025	ND		3	75	105
Endrin	0.025	ND		0	66	106
P,P'-DDD	0.025	ND		7	81	104
Endrin Aldehyde	0.025	ND				108
Endosulfan Sulfate/P,P'-DDT	0.025	ND		15	86	114
Endrin Ketone	0.025	ND		5	84	112
Methoxychlor	0.125	ND		1	71	112
a-Chlordane	0.0125	ND		0	76	102
g-Chlordane	0.0125	ND		6	70	96
Toxaphene	1.25	ND		1	67	103
PCB's	0.25	ND	0.53	0	102	106
TENTATIVELY IDENTIFIED	COMPOUNDS AND	ESTIMATED CONCENTRA	ATIONS (mg	/kg)		
	RT.	CONC.			RT	CONC
(1) Decane	5.33	20.1	(12) Octa	decane	12.28	27.7
2) Dodecane	6.87	20.5	(13) Nona	decane	13.18	26.2
(3) Tridecane	7.69	50.4	(14) Eico	sane	14.03	23.2
(4) 2,6,10-trimethyl-	8.37	16.6	(15) Hene	icosane	14.85	21.6
dodecane			(16) Doca	sane	15.63	18.6

abaccane			(10)	Docubane	10.05	10.0
Tetradecane	8.57	75.3	(17)	Tricosane	16.38	18.1
2,3-dimethyl-	9.06	12.6	(18)	Tetracosane	17.11	16.5
naphthalene			(19)	Hexatriacontane	17.81	16.9
4-methyltetradecane	9.15	22.2	(20)	Hexacosane	18.48	15.4
Pentadecane	9.50	48.9				
Hexadecane	10.43	31.7				
Heptadecane	11.36	31.0				
	Tetradecane 2,3-dimethyl- naphthalene 4-methyltetradecane Pentadecane Hexadecane Heptadecane	Tetradecane 8.57 2,3-dimethyl- 9.06 naphthalene 9.15 Pentadecane 9.50 Hexadecane 10.43 Heptadecane 11.36	Tetradecane 8.57 75.3 2,3-dimethyl- 9.06 12.6 naphthalene 22.2 Pentadecane 9.50 48.9 Hexadecane 10.43 31.7 Heptadecane 11.36 31.0	Tetradecane 8.57 75.3 (17) 2,3-dimethyl- 9.06 12.6 (18) naphthalene (19) 4-methyltetradecane 9.15 22.2 (20) Pentadecane 9.50 48.9 10.43 31.7 Heptadecane 11.36 31.0 10	Tetradecane8.5775.3(17)Tricosane2,3-dimethyl-9.0612.6(18)Tetracosanenaphthalene(19)Hexatriacontane4-methyltetradecane9.1522.2(20)HexacosanePentadecane10.4331.7Heptadecane11.3631.0	Tetradecane 8.57 75.3 (17) Tricosane 16.38 2,3-dimethyl- 9.06 12.6 (18) Tetracosane 17.11 naphthalene (19) Hexatriacontane 17.81 4-methyltetradecane 9.15 22.2 (20) Hexacosane 18.48 Pentadecane 9.50 48.9 18.48 18.48 Heptadecane 10.43 31.7 1.0 1.36

14.0

ND = NOT DETECTED		
	* RECOVERY	
2-Fluorophenol SURR	78	
Phenol-d6 SURR	90	
Nitrobenzene-d5 SURR	115	
2-Fluorobiphenyl SURR	114	
2,4,6-Tribromophenol SURR	86	
Terphenyl-d14 SURR	118	
METHOD: EPA SW 846-8270, 3550, 8080	b	

CHEMIST: RD/CC/MB/RCD

(11) 2-methyldecane

8-16-96

Date

Page 4 of 4

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

11.42

6701 Aberdeen Avenue

Lubbock, Texas 79424

806•794•1296

FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

August 16, 1996 Receiving Date: 08/02/96 Sample Type: Soll Sampling Date: 07/29/96 Sample Condition: I & C Sample Received by: ML Project No: 787 Project Location: N. Eunice Gas Plant, NM Project Name: Texaco Extraction Date: 08/05/96 Analysis Date: 08/09/96

· · · · · · · · · · · · · · · · · · ·	Reporting	Concentration			Analysis Date:	08/09/96
8270 Compounds	Limit	(mg/kg)	QC	RPD	<u>%EA</u>	%IA
N-Nitrosodimethylamine	2.5	ND				
2-Picoline	2.5	ND		ļ		
Methyl methanesulfonate	2.5	ND				
Ethyl methanesulfonate	2.5	ND				
Phenol	2.5	ND	107	12	53	107
Aniline	12.5	ND				
bis(2-Chloroethyl)ether	12.5	ND				
2-Chlorophenol	12.5	ND		5	45	
1,3-Dichlorobenzene	2.5	ND				
1,4-Dichlorobenzene	2.5	NĎ	99	3	49	99
Benzyl alcohol	12.5	ND				
1,2-Dichlorobenzene	2.5	ND				
2-Methylphenol	2.5	ND				
bis(2-chloroisopropyl)ether	12.5	ND				
4-Methylphenol/3-Methylphenol	2.5	ND				
Acetophenone	12.5	ND				
n-Nitrosodi-n-propylamine	2.5	ND		2	49	
Hexachloroethane	2.5	ND			<u> </u>	
Nitrobenzene	2.5	ND				
N-Nitrosopiperidine	12.5	ND				
Isophorone	12.5	ND				
2-Nitrophenol	12.5	ND	98			98
2,4-Dimethylphenol	12.5	ND				
bis(2-Chloroethoxy)methane	2.5	ND				
Benzoic acid	25.0	ND				
2,4-Dichlorophenol	12.5	ND	108			108
1,2,4-Trichlorobenzene	2.5	ND		3	58	
a,a-Dimethylphenethylamine	25.0	ND				
Naphthalene	2.5	ND				
		CEANALY	SIS, I	NC		

FIELD CODE: BH-2 50-52', (NS) TA# : T56577

A Laboratory for Advanced Environmental Research and Analysis

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

FIELD CODE: BH-2 50-52', (NS)

TA#: T56577

	Reporting	Concentration				<u> </u>
8270 Compounds	Limit	(mg/kg)	QC	RPD	₹EA	&IA
4-Chloroaniline	12.5	ND				
2,6-Dichlorophenol	12.5	ND				
Hexachlorobutadiene	2.5	ND	118			118
N-Nitroso-di-n-butylamine	12.5	ND				· · · · ·
4-Chloro-3-methylphenol	12.5	ND	101	1	55	101
2-Methylnaphthalene	2.5	9.26				
1,2,4,5-Tetrachlorobenzene	2.5	ND			-	
Hexachlorocyclopentadiene	2.5	ND				
2,4,6-Trichlorophenol	12.5	ND	96			96
2,4,5-Trichlorophenol	12.5	ND				
2-Chloronaphthalene	2.5	ND				
1-Chloronaphthalene	2.5	ND				
2-Nitroaniline	12.5	ND				
Dimethylphthalate	2.5	ND				
Acenaphthylene	2.5	ND				
,6-Dinitrotoluene	2.5	ND				
3-Nitroaniline	12.5	ND				
Acenaphthene	2.5	ND	107	1	66	107
2,4-Dinitrophenol	12.5	סא				
Dibenzofuran	12.5	ND ·				
Pentachlorobenzene	2.5	D				
4-Nitrophenol	12.5	ND		2	66	
1-Napthylamine	12.5	ND				
2,4-Dinitrotoluene	2.5	ND		11	55	
2-Napthylamine	12.5	ND				
2,3,4,6-Tetrachlorophenol	12.5	ND				
Fluorene	2.5	ND				
Diethylphthalate	2.5	סא				
4-Chlorophenyl-phenylether	2.5	ND				
4-Nitroaniline	12.5	ND				
4,6-Dinitro-2-methylphenol	2.5	ND		L		
-Nitrosodiphenylamine & Diphenylam	2.5	ND	119			119
Diphenylhydrazine	12.5	ND				

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco

TIELD CODE: BH-2 50-52', (NS) TA#: T56577

·	Reporting	Concentration		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
8270 Compounds	Limit	(mg/kg)	QC	RPD	*EA	\$IA
4-Bromophenyl-phenylether	2.5	ND				
Phenacetin	12.5	ND				
Hexachlorobenzene	2.5	ND				
4-Aminobiphenyl	12.5	ND				
Pentachlorophenol	12.5	ND	107	4	65	107
Pentachloronitrobenzene	12.5	ND				
Pronamide	2.5	ND				
Phenanthrene	2.5	ND				
Anthracene	2.5	ND				
Di-n-butylphthalate	2.5	D D				
Fluoranthene	2.5	ND	115			115
Benzidine	25.0	סא				
Tyrene	2.5	ND		5	114	
p-Dimethylaminoazobenzene	2.5	ND				
Butylbenzylphthalate	2.5	ND				
Benzo[a]anthracene	2.5	ND			· ·	
3,3-Dichlorobenzidine	2.5	ND	·			
Chrysene	2.5	ND				
bis(2-Ethylhexyl)phthalate	2.5	ND				
Di-n-octlphthalate	2.5	ND				
Benzo[b]fluoranthene	2.5	ND				
7,12-Dimethylbenz(a)anthracene	2.5	ND				
Benzo[k]fluoranthene	2.5	ND				
Benzo[a]pyrene	2.5	ND	117			117
3-Methylcholanthrene	2.5	ND				
Dibenzo(a,j)acridine	2.5	ND				
Indeno[1,2,3-cd]pyrene	2.5	ND				
Dibenz[a,h]anthracene	2.5	ND				
Benzo[g,h,i]perylene	2.5	ND	L			

Page 3 of 4

HIGHLANDER SERVICES CORP. Project No: 787 Project Name: Texaco Field Code: BH-2 50-52', (NS) TA#: T56577

	Reporting	Concentration				-
8080 Compounds	Limit	(mg/kg)	QC	RPD	₹EA	%IA
a-BHC	0.0125	ND		11	76	96
D-BHC	0.0125	ND		15	78	100
g-BHC	0.0125	ND		6	70	100
d-BHC	0.0125	ND		12	98	96
Heptachlor	0.0125	ND		32	86	100
Aldrin	0.0125	ND		11	76	100
Heptachlor epoxide	0.0125	ND		5	86	104
Endosulfan-1	0.0125	ND		5	74	100
Endosulfan-2	0.025	ND		0	72	104
P, P'-DDE	0.025	ND		8	73	94
Dieldrin	0.025	ND		3	75	105
Endrin	0.025	ND		0	66	106
P, P'-DDD	0.025	ND		7	81	104
Endrin Aldehyde	0.025	ND				108
Endosulfan Sulfate/P,P'-DDT	0.025	ND		15	86	114
Endrin Ketone	0.025	ND		5	84	112
Methoxychlor	0.125	ND		1	71	112
a-Chlordane	0.0125	ND		0	76	102
g-Chlordane	0.0125	ND		6	70	96
Toxaphene	1.25	ND		1	67	103
PCB's	2.5	ND	0.53	0	102	106
TENTATIVELY IDENTIFIED	COMPOUNDS AND I	ESTIMATED CONCENTRA	TIONS (mg	/kg)	7.0	2012
	RT.	CONC.			RI 10.00	CONC.
(1) Decane	5.34	37.1	(9) Occadi	ecane	12.28	23.7
2) Undecane	6.10	35.8	(10) Nona	lecane	13.17	23.3
(3) Dodecane	6.87	37.6				
(4) Tridecane	7.70	75.8				
(5) 2,6,10-trimethyl-	8.37	26.9				
dodecane						
(6) Tetradecane	8.59	109				
(5) 2,6,11-trimethyl-	9.15	34.0				
dodecane (6) Pentadecane	9.51	70.5				
	10 44	38 1				
	11 27	35.1				
(o) nepradecane	11.3/	33.0				

ND = NOT DETECTED % RECOVERY 2-Fluorophenol SURR 90 Phenol-d6 SURR 68 Nitrobenzene-d5 SURR 110 2-Fluorobiphenyl SURR 114 2,4,6-Tribromophenol SURR 100 Terphenyl-d14 SURR 107 METHOD: EPA SW 846-8270, 3550, 8080.

CHEMIST: RD/CC/MB/RCD

BS

8-16-96

Date

Page 4 of 4

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell 6701 Aberdeen Avenue

Lubbock, Texas 79424

806•794•1296

FAX 806 • 794 • 1298

TA# : T56268

FIELD CODE: BH-5 (5-7'), SOA

ANALYTICAL RESULTS FOR **HIGHLANDER SERVICES CORP.** Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

August 12, 1996 Receiving Date: 07/29/96 Sample Type: Soil Sampling Date: 07/24/96 Sample Condition: I & C Sample Received by: SH Project Name: Texaco Project Location: N. Eunice Gas Plant, NM

Extraction Date: 07/30/96 Analysis Date: 08/04/96

·	Reporting	Concentration	_		Analysis Date: 0	8/04/96
8270 Compounds	Limit	(mg/kg)	QC	RPD	%EA	%IA
N-Nitrosodimethylamine	2.5	ND				-
2-Picoline	2.5	ND				
Methyl methanesulfonate	2.5	ND				
Ethyl methanesulfonate	2.5	ND				
Phenol	2.5	ND	100	2	53	100
Aniline	12.5	ND				
bis(2-Chloroethyl)ether	12.5	ND	<u> </u>			
2-Chlorophenol	12.5	ND		5	48	<u> </u>
1,3-Dichlorobenzene	2.5	ND			· · · · · · · · · · · · · · · · · · ·	
1,4-Dichlorobenzene	2.5	ND	95	2	47	95
Benzyl alcohol	12.5	ND				
1,2-Dichlorobenzene	2.5	ND				
2-Methylphenol	2.5	ND				·
bis(2-chloroisopropyl)ether	12.5	ND				·
4-Methylphenol/3-Methylphenol	2.5	ND			,	
Acetophenone	12.5	ND				
n-Nitrosodi-n-propylamine	2.5	ND		0	47	
Hexachloroethane	2.5	ND				
Nitrobenzene	2.5	ND	Ī			
N-Nitrosopiperidine	12.5	ND				
Isophorone	12.5	ND				
2-Nitrophenol	12.5	ND	97			97
2,4-Dimethylphenol	12.5	ND				
bis(2-Chloroethoxy)methane	2.5	ND				
Benzoic acid	25.0	ND			<u>ta - La -</u>	
2,4-Dichlorophenol	12.5	ND	101			101
1,2,4-Trichlorobenzene	2.5	ND		3	56	
a,a-Dimethylphenethylamine	25.0	ND				
Naphthalene	2.5	ND	1			
		CEANALY	'SIS I			

A Laboratory for Advanced Environmental Research and Analysis

HIGHLANDER SERVICES CORP.

Reporting Concentration

Project Location: N. Eunice Gas Plant, NM Project Name: Texaco

FIELD CODE: BH-5 (5-7'), SOA

#: T56268

8270 Compounds	Limit	(mg/kg)	õc	RPD	\$EA	\$IA
4-Chloroaniline	12.5	ND				
2,6-Dichlorophenol	12.5	ND				
Hexachlorobutadiene	2.5	ND	104	s.		104
N-Nitroso-di-n-butylamine	12.5	ND				
4-Chloro-3-methylphenol	12.5	סא	98	0	48	98
2-Methylnaphthalene	2.5	DK				
1,2,4,5-Tetrachlorobenzene	2.5	ND				
Hexachlorocyclopentadiene	2.5	DIN				
2,4,6-Trichlorophenol	12.5	ND	94			94
2,4,5-Trichlorophenol	12.5	ND				
2-Chloronaphthalene	2.5	ND				
1-Chloronaphthalene	2.5	ND				
2-Nitroaniline	12.5	סא			-	
Dimethylphthalate	2.5	ND				
cenaphthylene	2.5	ND				
2,6-Dinitrotoluene	2.5	סא				
3-Nitroaniline	12.5	ND				
Acenaphthene	2.5	ND	104	3	61	104 -
2,4-Dinitrophenol	12.5	ND				
Dibenzofuran	12.5	ND				
Pentachlorobenzene	2.5	DM				
4-Nitrophenol	12.5	ND		5	42	
1-Napthylamine	12.5	DN				
2,4-Dinitrotoluene	2.5	ND		11	52	
2-Napthylamine	12.5	· ND				
2,3,4,6-Tetrachlorophenol	12.5	ND				·
Fluorene	2.5	ND				
Diethylphthalate	2.5	ND				
4-Chlorophenyl-phenylether	2.5	ND				
4-Nitroaniline	12.5	ND				
4,6-Dinitro-2-methylphenol	2.5	ND				
Nitrosodiphenylamine & Diphenylam	2.5	ND	106			106
Diphenylhydrazine	12.5	ND				

HIGHLANDER SERVICES CORP. Project Location: N. Eunice Gas Plant, NM Project Name: Texaco

Page 3 of 4

i.

I

I.

FIELD CODE: BH-5 (5-7'), SOA TA#: T56268

- · · · · · · · · · · · · · · · · · · ·	Reporting	Concentration				
8270 Compounds	Limit	(mg/kg)	QC	RPD	*ea	\$IA
4-Bromophenyl-phenylether	2.5	ND				
Phenacetin	12.5	DM				
Hexachlorobenzene	2.5	ND				
4-Aminobiphenyl	12.5	ND				
Pentachlorophenol	12.5	ND	110	6	61	110
Pentachloronitrobenzene	12.5	סא				
Pronamide	2.5	ND				
Phenanthrene	2.5	ND				
Anthracene	2.5	ND				
Di-n-butylphthalate	2.5	סא				
Fluoranthene	2.5	ND	107			107
Benzidine	25.0	ND				
rene	. 2.5	ND				· · ·
p-Dimethylaminoazobenzene	2.5	סא				
Butylbenzylphthalate	2.5	סא				
Benzo[a]anthracene	2.5	סא				-
3,3-Dichlorobenzidine	2.5	ND				
Chrysene	2.5	ND				
bis(2-Ethylhexyl)phthalate	2.5	ND				
Di-n-octlphthalate	2.5	ND		- -		
Benzo[b]fluoranthene	2.5	ND				
7,12-Dimethylbenz(a)anthracene	2.5	ND				
Benzo[k]fluoranthene	2.5	ND				- · · ·
Benzo[a]pyrene	2.5	ND	102			102
3-Methylcholanthrene	2.5	ND				
Dibenzo(a,j)acridine	2.5	סא				
Indeno[1,2,3-cd]pyrene	2.5	ND				
Dibenz[a,h]anthracene	2.5	ND				
Benzo[g,h,i]perylene	2.5	ND				

HIGHLANDER SERVICES CORP. Project Location: N. Eunice Gas Plant, NM Project Name: Texaco

Field Code: BH-5 (5-7'), SOA

TA#: T56268

	Reporting	Concentration				
3080 Compounds	Limit	(mg/kg)	QC	RPD	₹EA	\$IA
a-BHC	0.0125	ND		6	70	96
b-BHC	0.0125	ND		6	66	112
g-BHC	0.0125	ND		1	61	100
d-BHC	0.0125	ND		4	90	108
Heptachlor	0.0125	ND		12	132	100
Aldrin	0.0125	ND		5	74	108
Heptachlor epoxide	0.0125	ND		5	82	112
Endosulfan-1	0.0125	ND		0	76	100
Endosulfan-2	0.025	ND		0	84	118
p,p'-DDE	0.025	ND		3	67	104
Dieldrin	0.025	ND		2	88	106
Endrin	0.025	ND		1	41	104
P, P'-DDD	0.025	ND		5	'66	106
Endrin Aldehyde	0.025	ND				112
Endosulfan Sulfate/P,P'-DDT	0.025	ND		14	107	115
Endrin Ketone	0.025	ND		1	118	118
Methoxychlor	0.125	ND		1	67	111
a-Chlordane	0.0125	ND		1	67	112
g-Chlordane	0.0125	ND		6	68	104
Toxaphene	1.25	ND		4	136	102
PCB's	2.5	ND	0.525	2	86	105
TENTATIVELY IDENTIFIE	D COMPOUNDS AN	D ESTIMATED CONCENT	TRATIONS (mg/kg)		
			RT.		CONC.	

		RT.	CONC.
(1)	Nonane	4.59	23.9
2)	Unknown	4.88	14.3
(3)	Unknown	4.94	7.5
(4)	Unknown	5.12	15.2
(5)	1-ethyl-4-methylbenzene	5.18	9.8
(6)	Decane	5.40	45.7
(7)	1,2,4-trimethylbebzebe	5.68	8.6
(8)	2-methyldecane	5.89	5.9
(9)	Undecane	6.16	19.8
(10)	Dodecane	6.94	11.6
(11)	Tridecane	7.77	7.8
	<pre>% RECOVERY</pre>		

2-Fluorophenol SURR	78
Phenol-d6 SURR	52
Nitrobenzene-d5 SURR	78
2-Fluorobiphenyl SURR	92
2,4,6-Tribromophenol SURR	78
Terphenyl-d14 SURR	120
METHOD: EPA SW 846-8270, 3550, 8	3080.
CHEMIST: RD/CC/MB	

ND = NOT DETECTED

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-18-95

Date

6701 Aberdeen Avenue

Lubbock, Texas 79424

806•794•1296

FAX 806•794•1298

TA# : T56275

FIELD CODE: BH-6 (5-7'), SOA

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

August 12, 1996 Receiving Date: 07/29/96 Sample Type: Soil Sampling Date: 07/24/96 Sample Condition: I & C Sample Received by: SH Project Name: Texaco Project Location: N. Eunice Gas Plant, NM

Extraction Date: 07/30/96

	Reporting	Concentration	Analysis Date: 08/			8/04/90
270 Compounds	Limit	(mg/kg)	QC .	RPD	%EA	%IA
Nitrosodimethylamine	2.5	ND				
Picoline	2.5	ND			·	
ethyl methanesulfonate	2.5	ND				
thyl methanesulfonate	2.5	ND				
henol	2.5	ND	100	2	53	100
niline	12.5	ND			· ,	
s(2-Chloroethyl)ether	12.5	ND				
Chlorophenol	12.5	ND		5	48	
3-Dichlorobenzene	2.5	ND				
4-Dichlorobenzene	2.5	ND	95	2	47	95
enzyl alcohol	12.5	ND				
2-Dichlorobenzene	2.5	ND				
Methylphenol	2.5	ND				
s(2-chloroisopropyl)ether	12.5	ND				
Methylphenol/3-Methylphenol	2.5	ND				·
cetophenone	12.5	ND				
Nitrosodi-n-propylamine	2.5	ND		0	47	
exachloroethane	2.5	ND				
itrobenzene	2.5	ND				
-Nitrosopiperidine	12.5	ND				
ophorone	12.5	ND				
Nitrophenol	12.5	ND	97			97
4-Dimethylphenol	12.5	ND				
is(2-Chloroethoxy)methane	2.5	ND				-
enzoic acid	25.0	ND				
4-Dichlorophenol	12.5	ND	101			101
,2,4-Trichlorobenzene	2.5	ND		3	56	
a-Dimethylphenethylamine	25.0	ND				
aphthalene	2.5	ND				

A Laboratory for Advanced Environmental Research and Analysis

HIGHLANDER SERVICES CORP.

Page 2 of 4

_

Project Location: N. Bunice Gas Plant, NM Project Name: Texaco

FIELD CODE: BH-6 (5-7'), SOA

TA#: T56275

Ì

	Reporting	Concentration				
8270 Compounds	Limit	(mg/kg)	õc	RPD	€EA	*IA
4-Chloroaniline	12.5	ND				
2,6-Dichlorophenol	12.5	ND				
Hexachlorobutadiene	2.5	ND	104			104
N-Nitroso-di-n-butylamine	12.5	ND				
4-Chloro-3-methylphenol	12.5	ND	98	0	48	98
2-Methylnaphthalene	2.5	ND				
1,2,4,5-Tetrachlorobenzene	2.5	סא		·		
Hexachlorocyclopentadiene	2.5	ND				
2,4,6-Trichlorophenol	12.5	סא	94			94
2,4,5-Trichlorophenol	12.5	ND				
2-Chloronaphthalene	2.5	ND				
1-Chloronaphthalene	2.5	ND				
2-Nitroaniline	12.5	ND				
Dimethylphthalate	2.5	ND				
cenaphthylene	2.5	ND				· · ·
2,6-Dinitrotoluene	2.5	ND				
3-Nitroaniline	12.5	ND				
Acenaphthene	2.5	ND	104	3	61	104
2,4-Dinitrophenol	12.5	ND				
Dibenzofuran	12.5	ND				
Pentachlorobenzene	2.5	ND				
4-Nitrophenol	12.5	ND		5	42	
1-Napthylamine	12.5	ND				
2,4-Dinitrotoluene	2.5	ND		11	52	
2-Napthylamine	12.5	ND				_
2,3,4,6-Tetrachlorophenol	12.5	ND				
Fluorene	2.5	ND				
Diethylphthalate	2.5	ND				
4-Chlorophenyl-phenylether	2.5	ND				
4-Nitroaniline	12.5	ND				
4,6-Dinitro-2-methylphenol	2.5	ND				
-Nitrosodiphenylamine & Diphenylam	2.5	ND	106			106
Diphenylhydrazine	12.5	ND				

HIGHLANDER SERVICES CORP.

Page 3 of 4

Project Location: N. Eunice Gas Plant, NM Project Name: Texaco

FIELD CODE: BH-6 (5-7'), SOA TA#: T56275

	Reporting	Concentration				
8270 Compounds	Limit	(mg/kg)	QC	RPD	\$EA	AI\$
4-Bromophenyl-phenylether	2.5	ND				
Phenacetin	12.5	ND				
Bexachlorobenzene	2.5	ND				
4-Aminobiphenyl	12.5	ND				
Pentachlorophenol	12.5	ND	110	6	61	110
Pentachloronitrobenzene	12.5	ND		·		
Pronamide	2.5	ND				
Phenanthrene	2.5	ND				
Anthracene	2.5	ND				
D1-n-butylphthalate	2.5	סא				
Fluoranthene	2.5	ND	107			107
Benzidine	25.0	ND				·
ene	2.5	ND				
p-Dimethylaminoazobenzene	2.5	ND		<u></u>		
Butylbenzylphthalate	2.5	סא				
Benzo[a]anthracene	2.5	ND .				
3,3-Dichlorobenzidine	2.5	ND	· ···			
Chrysene	2.5	ND				
bis(2-Rthylhexyl)phthalate	2.5	ND				
Di-n-octlphthalate	2.5	ND				
Benzo[b]fluoranthene	2.5	ND				
7,12-Dimethylbenz(a)anthracene	2.5	ND				
Benzo[k]fluoranthene	2.5	ND				
Benzo [a] pyrene	2.5	סא	102		· · · ·	102
3-Methylcholanthrene	2.5	ND				
Dibenzo(a,j)acridine	2.5	ND				
Indeno[1,2,3-cd]pyrene	2.5	ND				
Dibenz[a,h]anthracene	2.5	ND				
Renzo[g,h,i]perylene	2.5	ND	<u> </u>			
HIGHLANDER SERVICES CORP. Project Location: N. Eunice Gas Plant, NM Project Name: Texaco

Field Code: BH-6 (5-7'), SOA

TA#: T56275

	Reporting	Concentration				
8080 Compounds	Limit	(mg/kg)	QC	RPD	₹EA	%IA
a-BHC	0.0125	ND		6	70	96
р-внс	0.0125	ND		6	66	112
g-BHC	0.0125	ND		, 1	61	100
d-BHC	0.0125	ND		4	90	108
Heptachlor	0.0125	ND		12	132	100
Aldrin	0.0125	ND		5	74	108
Heptachlor epoxide	0.0125	ND		5	82	112
Endosulfan-1	0.0125	ND		0	76	100
Endosulfan-2	0.025	ND		0	84	118
P, P'-DDE	0.025	ND		3	67	104
Dieldrin	0.025	ND		2	88	106
Endrin	0.025	ND		1	41	104
P, P'-DDD	0.025	ND		5	66	106
Endrin Aldehyde	0.025	ND				112
Endosulfan Sulfate/P,P'-DDT	0.025	ND		14	107	115
Endrin Ketone	0.025	ND		1	118	118
Methoxychlor	0.125	ND		1	67	111
a-Chlordane	0.0125	ND		1	67	112
g-Chlordane	0.0125	ND		6	68	104
Toxaphene	1.25	ND		4	136	102
PCB's	2.5	ND	0.525	2	86	105

TENTATIVELY IDENTIFIED COMPOUNDS AND ESTIMATED CONCENTRATIONS (mg/kg)

		RT.	CONC.
(1)	Nonane	4.58	9.4
(2)	2,6-dimethyloctane	4.88	10.3
(3)	Unknown	5.12	9.1
(4)	Decane	5.40	25.2
(5)	Undecane	6.16	11.2
(6)	2,6,10,14-tetramethyl~pentadecane	9.23	7.3
(7)	2,6,11,15-tetramethylhexadecane	11.52	6.8
(8)	2,6,10,14-tetramethylhexadecane	12.47	6.8

ND = NOT DETECTED

* RECOVERY

2-Fluorophenol SURR	72
Phenol-d6 SURR	70
Nitrobenzene-d5 SURR	80
2-Fluorobiphenyl SURR	84
2,4,6-Tribromophenol SURR	68
Terphenyl-d14 SURR	106
METHOD: EPA SW 846-8270, 3550, 80	80.
CHEMIST: RD/CC/MB	

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-18-96

Date

6701 Aberdeen Avenue

Lubbock, Texas 79424

806 • 794 • 1296

FAX 806 • 794 • 1298

TA# : T56288

FIELD CODE: BH-8 (5-7'), SOA

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

August 12, 1996 Receiving Date: 07/29/96 Sample Type: Soil Sampling Date: 07/25/96 Sample Condition: I & C Sample Received by: SH Project Name: Texaco Project Location: N. Eunice Gas Plant, NM

Extraction Date: 07/30/96 Analysis Date: 08/04/96

	Reporting	Concentration			Analysis Date: 08	3/04/96
8270 Compounds	Limit	(mg/kg)	QC	RPD	%EA	%IA
N-Nitrosodimethylamine	2.5	ND				
2-Picoline	2.5	ND				
Methyl methanesulfonate	2.5	ND				
Ethyl methanesulfonate	2.5	ND				
Phenol	2.5	ND	100	2	53	100
Aniline	12.5	ND				
bis(2-Chloroethyl)ether	12.5	ND				
2-Chlorophenol	12.5	ND		5	48	
1,3-Dichlorobenzene	2.5	ND				
1,4-Dichlorobenzene	2.5	ND	95	2	47	95
Benzyl alcohol	12.5	ND	· · · · · · · · · · · · · · · · · · ·			
1,2-Dichlorobenzene	2.5	ND				
2-Methylphenol	2.5	ND				-
bis(2-chloroisopropyl)ether	12.5	ND				
4-Methylphenol/3-Methylphenol	2.5	ND				
Acetophenone	12.5	ND				
n-Nitrosodi-n-propylamine	2.5	ND		0	47	
Hexachloroethane	2.5	ND				
Nitrobenzene	2.5	ND				
N-Nitrosopiperidine	12.5	ND	,			
Isophorone	12.5	ND				
2-Nitrophenol	12.5	ND	97			97
2,4-Dimethylphenol	12.5	ND				- · ·
bis(2-Chloroethoxy)methane	2.5	ND				
Benzoic acid	25.0	ND				
2,4-Dichlorophenol	12.5	ND	101			101
1,2,4-Trichlorobenzene	2.5	ND		3	56	
a,a-Dimethylphenethylamine	25.0	ND				
Naphthalene	2.5	ND				
	TRAC	CEANALY	SIS. I	NC		

A Laboratory for Advanced Environmental Research and Analysis

Project Location: N. Eunice Gas Plant, NM Project Name: Texaco

FIELD CODE: BH-8 (5-7'), SOA

:	T56288	

	Reporting	Concentration				
8270 Compounds	Limit	(mg/kg)	<u>oc</u>	RPD	*EA	AIS
4-Chloroaniline	12.5	ND				
2,6-Dichlorophenol	12.5	DI	·			
Hexachlorobutadiene	2.5	ND	104			104
N-Nitroso-di-n-butylamine	12.5	ND				
4-Chloro-3-methylphenol	12.5	ND	98	0	48	98
2-Methylnaphthalene	2.5	DM				
1,2,4,5-Tetrachlorobenzene	2.5	שא				
Hexachlorocyclopentadiene	2.5	סא				
2,4,6-Trichlorophenol	12.5		94			94
2,4,5-Trichlorophenol	12.5	ND .				
2-Chloronaphthalene	2.5	ND				
1-Chloronaphthalene	2.5	ND				
2-Nitroaniline	12.5	ND				:
Dimethylphthalate	2.5	סא				
enaphthylene	2.5	סא				
2,6-Dinitrotoluene	2.5	ND				
3-Nitroaniline	12.5	ND				
Acenaphthene	2.5	ND	104	3	61	104
2,4-Dinitrophenol	12.5	ND				
Dibenzofuran	12.5	ND				
Pentachlorobenzene	2.5	ND				
4-Nitrophenol	12.5	ND		5	42	
1-Napthylamine	12.5	ND				
2,4-Dinitrotoluene	2.5	סא		11	52	· · · · · · · · · · · · · · · · · · ·
2-Napthylamine	12.5	סא				
2,3,4,6-Tetrachlorophenol	12.5	סא				·
Fluorene	2.5	ND				
Diethylphthalate	2.5	סא				
4-Chloropheny1-phenylether	2.5	ND				
4-Nitroaniline	12.5	ND				
4,6-Dinitro-2-methylphenol	2.5	סא				
Nitrosodiphenylamine & Diphenylam	2.5	סא	106			106
Diphenylhydrazine	12.5	ND				

HIGHLANDER SERVICES CORP. Project Location: N. Eunice Gas Plant, NM Project Name: Texaco

FIELD CODE: BH-8 (5-7'), SOA TA#: T56288

m	Reporting	Concentration			·····	r — — — — — — — — — — — — — — — — — — —
8270 Compounds	Limit	(mg/kg)	<u>0</u> C	RPD	\$EA	&I&
4-Bromophenyl-phenylether	2.5	סא				
Phenacetin	12.5	ND				
Rexachlorobenzene	2.5	ND				
4-Aminobiphenyl	12.5	ND				· · · ·
Pentachlorophenol	12.5	סא	110	6	61	110
Pentachloronitrobenzene	12.5	ND.				
Pronamide	2.5	DM				
Phenanthrene	2.5	ND				
Anthracene	2.5	ND				
Di-n-butylphthalate	2.5	ND				
Fluoranthene	2.5	ND	107			107
Benzidine	25.0	ND				
rene	2.5	סא				
p-Dimethylaminoazobenzene	2.5	ַסא				
Butylbenzylphthalate	2.5	ND				
Benzo[a]anthracene	2.5	ND				
3,3-Dichlorobenzidine	2.5	ND				
Chrysene	2.5	ND	 			
bis(2-Ethylhexyl)phthalate	2.5	ND				
Di-n-octlphthalate	2.5	ND				
Benzo[b]fluoranthene	2.5	ND				
7,12-Dimethylbenz(a) anthracene	2.5	ND				
Benzo[k]fluoranthene	2.5	ND				
Benzo [a] pyrene	2.5	ND	102			102
3-Methylcholanthrene	2.5	ND				
Dibenzo(a,j)acridine	2.5	ND				
Indeno[1 2 3-cd]nurene	. 2 5) JTL				1
Dibenz(a blanthracene	2.5 0 E					1
	2,5		<u> </u>		+	1
anno (A'n'T)herAreue	2.5		I	I	1	1

i.

HIGHLANDER SERVICES CORP. Project Location: N. Eunice Gas Plant, NM Project Name: Texaco

Field Code: BH-8 (5-7'), SOA

i

	Reportin	Concentration			
8080 Compounds	Limit	(mg/kg)	QC RPD	*EA	\$IA
a-BHC	0.0125	ND	6	70	96
D-BHC	0.0125	ND	6	66	112
g-BHC	0.0125	ND	1	61	100
d-BHC	0.0125	ND	4	90	108
Heptachlor	0.0125	ND	12	132	100
Aldrin	0.0125	ND	5	74	108
Heptachlor epoxide	0.0125	ND	5	82	112
Endosulfan-1	0.0125	ND	0	76	100
Endosulfan-2	0.025	ND	O	84	118
P, P'-DDE	0.025	ND	3	67	104
Dieldrin	0.025	ND	2	88	106
Endrin	0.025	ND	1	41	104
P, P'-DDD	0.025	ND	5	66	106
Endrin Aldehyde	0.025	ND			112
Endosulfan Sulfate/P,P'-DDT	0.025	ND	14	107	115
Endrin Ketone	0.025	ND	1	118	118
Methoxychlor	0.125	ND	1	67	111
a-Chlordane	0.0125	ND	1	67	112
g-Chlordane	0.0125	ND	6	68	104
Toxaphene PCB ! s	2.5		0.525 2	86	102
(1) Decane	RT. 5.41	CONC. 10.9	(14) eicosane	RT 14.13	CONC. 19
(I) Decane	5.41	10.9	(14) ercosarie	14.13	17 2
(3) Tridecape	7 78	25 4	(16) Bentatriacontane	17 92	17.0
(4) Tetradecane	8 66	30.7	(17) Docosane	15 74	18.4
(5) 4-methylpentadecane	9 24	18.9	(18) Tricosane	16.49	16.9
(6) pentadecane	9.59	32.5	(19) Tetracosane	17.23	15.9
(7) hexadecane	10.54	27.4			
(?) hostadogano	11.47	27.3			
(9) 2,6,10,4-tetramethyl- pentadecane	11.53	13.8			
(10) Octadecane	12.39	22.3		•	
(11) 2,6-dimethyloctadecane	12.48	14.9			
(12) Nonadecane	13.28	22.3			
(13) hexacosane	18.60	13.8			
ND = NOT DETECTED					
	RECOVERS	2			
2-Fluorophenol SURR	48				
Phenol-d6 SURR	54				
Nitrobenzene-d5 SURR	62				
2-Fluorobiphenyl SURR	66				

2-Fluorobiphenyl SURR 2,4,6-Tribromophenol SURR Terphenyl-d14 SURR

METHOD: EPA SW 846-8270, 3550, 8080. CHEMIST: RD/CC/MB

8-18-96

Date

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

50

80

Page 4 of 4

6701 Aberdeen Avenue

Lubbock, Texas 79424

806•794•1296

FAX 806 • 794 • 1298

TA #T57221 FIELD CODE: #1 N. Sump./E.R. 8.2-8.4'

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

August 26, 1996 Receiving Date: 08/15/96 Sample Type: Soil Sampling Date: 08/09/96 Sample Condition: I & C Sample Received by: SH Project Name: Texaco Project Location: Texaco North Eunice Project No: 787 Gas Plant, NM Extraction Date: 08/15/96

	Reporting	Concentration			Analysis Date: 00	8/19/90	
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA	
N-Nitrosodimethylamine	0.25	ND			······································		
2-Picoline	0.25	ND					
Methyl methanesulfonate	0.25	ND					
Ethyl methanesulfonate	0.25	ND	 				
Phenol	0.25	ND	108	23	42	108	
Aniline	1.25	ND					
bis(2-Chloroethyl)ether	1.25 <u>.</u>	ND			······		
2-Chlorophenol	1.25	ND		22	40		
1,3-Dichlorobenzene	0.25	ND					
1,4-Dichlorobenzene	0.25	ND	112	24	39	112	
Benzyl alcohol	1.25	ND			<u> </u>		
1,2-Dichlorobenzene	0.25	ND					
2-Methylphenol	0.25	ND				· .	
bis(2-chloroisopropyl)ether	1.25	ND		_			
4-Methylphenol/3-Methylphenol	0.25	ND	ļ				
Acetophenone	1.25	ND			4-3-1-1-1-1-1-1-1-1-1		
n-Nitrosodi-n-propylamine	0.25	ND		19	56		
Hexachloroethane	0.25	ND					
Nitrobenzene	0.25	ND					
N-Nitrosopiperidine	1.25	ND	ļ				
Isophorone	1.25	ND					
2-Nitrophenol	1.25	ND	100			100	
2,4-Dimethylphenol	1.25	ND			•	-	
bis(2-Chloroethoxy)methane	0.25	ND					
Benzoic acid	2.5	ND					
2,4-Dichlorophenol	1.25	ND	99			99	
1,2,4-Trichlorobenzene	0.25	ND		18	47		
a,a-Dimethylphenethylamine	0.25	ND					
Naphthalene	0.25	ND					
MULLIUM TRACEANALYSIS. INC.							

A Laboratory for Advanced Environmental Research and Analysis

Project Name: Texaco

TA #T57221

T.

Field Code: #1 N. Sump./E.R. 8.2-8.4'

	Reporting	Concentration	rr			
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
4-Chloroaniline	1.25	NÐ				
2,6-Dichlorophenol	1.25	ND				
Hexachlorobutadiene	0.25	ND	117			117
N-Nitroso-di-n-butylamine	1.25	ND				
4-Chloro-3-methylphenol	1.25	ND	105	5	47	105
2-Methylnaphthalene	0.25	ND				
1,2,4,5-Tetrachlorobenzene	0.25	ND				
Hexachlorocyclopentadiene	0.25	ND				
2,4,6-Trichlorophenol	1.25	ND	112			112
2,4,5-Trichlorophenol	1.25	ND				
2-Chloronaphthalene	0.25	ND				
1-Chloronaphthalene	0.25	ND		-		
2-Nitroaniline	1.25	ND				÷
Dimethylphthalate	0.25	ND				
Acenaphthylene	0.25	ND				
	0.25	ND				
3-Nitroaniline	1.25	ND				,
Acenaphthene	0.25	ND	112	6	46	112
2,4-Dinitrophenol	1.25	ND				
Dibenzofuran	1.25	ND				
Pentachlorobenzene	0.25	ND				
4-Nitrophenol	1.25	ND		19	61	
1-Napthylamine	1.25	ND				
2,4-Dinitrotoluene	0.25	ND		10	57	
2-Napthylamine	1.25	ND				
2,3,4,6-Tetrachlorophenol	1.25	ND				
Fluorene	0.25	ND				
Diethylphthalate	0.25	ND				
4-Chlorophenyl-phenylether	0.25	ND				
4-Nitroaniline	1.25	ND				
4,6-Dinitro-2-methylphenol	0.25	ND				
Nitrosodiphenylamine & Diphenylamine	0.25	ND	116			116
Diphenylhydrazine	1.25	ND				

-

Project Name: Texaco

Page 3 of 4

A #57221 eld Code: #1 N. Sump./E.R. 8.2-8.4'

	Reporting	Concentration				
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
4-Bromophenyl-phenylether	0.25	ND				
Phenacetin	1.25	ND				
Hexachlorobenzene	0.25	ND				
4-Aminobiphenyl	1.25	ND				
Pentachlorophenol	1.25	ND	108	1	18	108
Pentachloronitrobenzene	1.25	ND				
Pronamide	0.25	ND				
Phenanthrene	0.25	ND				
Anthracene	0.25	ND				
Di-n-butylphthalate	0.25	ND				
Fluoranthene	0.25	ND	115			115
Benzidine	2.5	ND				
Pyrene	0.25	ND		7	107	
p-Dimethylaminoazobenzene	0.25	ND				
Butylbenzylphthalate	0.25	ND				
Benzo[a]anthracene	0.25	ND	<u> </u>			· · · · · · · · · · · · · · · · · · ·
o,3-Dichlorobenzidine	0.25	ND				
Chrysene	0.25	ND				-
bis(2-Ethylhexyl)phthalate	0.25	ND				
Di-n-octlphthalate	0.25	ND	-			
Benzo[b]fluoranthene	0.25	ND				
7,12-Dimethylbenz(a)anthracene	0.25	ND				
Benzo[k]fluoranthene	0.25	ND				
Benzo[a]pyrene	0.25	ND	117			117
3-Methylcholanthrene	0.25	ND		•		
Dibenzo(a,j)acridine	0.25	ND				
Indeno[1,2,3-cd]pyrene	0.25	ND				
Dibenz[a,h]anthracene	0.25	ND			-	
Benzo[g,h,i]perylene	0.25	ND				

Tentatively Identified Compounds and Estimated concentration (mg/kg)

	RT	CONC
Unknown Compound	17.03	3.08

Project Name: Texaco

TA #57221

Tield Code: #1 N. Sump./E.R. 8.2-8.4'

	Reporting	Concentration				
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
a-BHC	0.00125	ND		4	90	100
b-BHC	0.00125	ND		9	92	108
g-BHC	0.00125	ND		4	90	100
d-BHC	0.0125	ND		7	112	102
Heptachlor	0.00125	ND		17	118	108
Aldrin	0.00125	ND		2	101	112
Heptachlor epoxide	0.00125	ND		6	132	118
Endosulfan-1	0.00125	ND		4	98	112
Endosulfan-2	0.0025	ND		3	101	124
P,P'-DDE	0.0025	ND		4	98	116
Dieldrin	0.0025	ND		2	103	122
Endrin	0.0025	ND		4	93	128
P,P'-DDD	0.0025	ND		2	111	121
Endrin Aldehyde	0.0025	ND				118
Endosulfan Sulfate/P,P'-DDT	0.0025	ND		17	105	126
Endrin Ketone	0.0025	ND		2	117	130
Methoxychlor	0.0125	ND		5	88	140
a-Chlordane	0.00125	ND		0	96	116
g-Chlordane	0.00125	ND		0	96	112
Toxaphene	0.125	ND		20	88	110
PCB's	0.25	ND	0.48	2	84	96

	% RECOVERY
2-Fluorophenol SURR	27
Phenol-d6 SURR	33
Nitrobenzene-d5 SURR	32
2-Fluorobiphenyl SURR	35
2,4,6-Tribromophenol SURR	48
Terphenyl-d14 SURR	82
METHOD: EPA SW 846-8270, 3550, 8080.	P
CHEMIST: RD/CC/MB	A.
	•

Director, Dr. Blair Leftwich

Director, Dr. Bruce McDonell

8-26-96

Date

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 FAX 806 • 794 • 1298

TA #T57222

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

August 26, 1996 Receiving Date: 08/15/96 Sample Type: Soil Sampling Date: 08/09/96 Sample Condition: I & C Sample Received by: SH Project Name: Texaco Project Name: Texaco Project Location: Texaco North Eunice Project No: 787 Gas Plant, NM Extraction Date: 08/15/96 Analysis Date: 08/21/96

FIELD	CODE:	#2 S.	Sump./E.R.	6+4-6.8'

	Reporting	Concentration			Analysis Date: 08	\$/21/96
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
N-Nitrosodimethylamine	2.5	ND				
2-Picoline	2.5	ND				
Methyl methanesulfonate	2.5	ND				
Ethyl methanesulfonate	2.5	ND				·
Phenol	2.5	ND	95	17	39	95
Aniline	12.5	ND				i
bis(2-Chloroethyl)ether	12.5	ND				
2-Chlorophenol	12.5	ND		18	34	
1,3-Dichlorobenzene	2.5	ND				
1,4-Dichlorobenzene	2.5	ND	113	17	37	113
Benzyl alcohol	12.5	ND				
1,2-Dichlorobenzene	2.5	ND				
2-Methylphenol	2.5	ND ·				
bis(2-chloroisopropyl)ether	12.5	ND				
4-Methylphenol/3-Methylphenol	2.5	ND				
Acetophenone	12.5	ND				
n-Nitrosodi-n-propylamine	2.5	ND		13	47	
Hexachloroethane	2.5	ND				
Nitrobenzene	2.5	ND				
N-Nitrosopiperidine	12.5	ND				
Isophorone	12.5	ND				
2-Nitrophenol	12.5	ND	96		· ·	96
2,4-Dimethylphenol	12.5	ND				
bis(2-Chloroethoxy)methane	2.5	ND				
Benzoic acid	25.0	ND				
2,4-Dichlorophenol	12.5	ND	95			95
1,2,4-Trichlorobenzene	2.5	ND		19	46	
a,a-Dimethylphenethylamine	25.0	ND				
Naphthalene	2.5	ND				
		CEANALY	SIS. I	NC		

A Laboratory for Advanced Environmental Research and Analysis

HIGHLANDER SERVICES CORP. Project Name: Texaco

Field Code: #2 S. Sump./E.R. 6.4-6.8'

	Reporting	Concentration			<u></u>	
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
4-Chloroaniline	12.5	ND			- <u></u>	
2,6-Dichlorophenol	12.5	ND				
Hexachlorobutadiene	2.5	ND	113			113
N-Nitroso-di-n-butylamine	12.5	ND				
4-Chloro-3-methylphenol	12.5	ND	102	12	54	102
2-Methylnaphthalene	2.5	ND				
1,2,4,5-Tetrachlorobenzene	2.5	ND		·····		
Hexachlorocyclopentadiene	2.5	ND				
2,4,6-Trichlorophenol	12.5	ND	105			105
2,4,5-Trichlorophenol	12.5	ND	·			
2-Chloronaphthalene	2.5	ND				
1-Chloronaphthalene	2.5	ND				
2-Nitroaniline	12.5	ND				
Dimethylphthalate	2.5	ND				
Acenaphthylene	2.5	ND				
90-Dinitrotoluene	2.5	ND				
3-Nitroaniline	12.5	ND				·
Acenaphthene	2.5	ND	111	8	48	111
2,4-Dinitrophenol	12.5	ND		<u> </u>		
Dibenzofuran	12.5	ND				
Pentachlorobenzene	2.5	ND				
4-Nitrophenol	12.5	ND		12	75	
1-Napthylamine	12.5	ND				
2,4_Dinitrotoluene	2.5	ND		6	57	
2-Napthylamine	12.5	ND				
2,3,4,6-Tetrachlorophenol	12.5	ND .				
Fluorene	2.5	ND				
Diethylphthalate	2.5	ND				
4-Chlorophenyl-phenylether	2.5	ND				
4-Nitroaniline	12.5	ND				
4,6-Dinitro-2-methylphenol	2.5	ND				
Nitrosodiphenylamine & Diphenylamine	2.5	ND	118			118
Diphenyihydrazine	12.5	ND				

i

HIGHLANDER SERVICES CORP. Project Name: Texaco

TA #57222 eld Code: #2 S. Sump./E.R. 6.4-6.8'

	Reporting	Concentration				
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
4-Bromophenyl-phenylether	2.5	ND				
Phenacetin	12.5	ND				
Hexachlorobenzene	2.5	ND			·	
4-Aminobiphenyi	12.5	ND				
Pentachlorophenol	12.5	ND	102	3	11	102
Pentachloronitrobenzene	12.5	ND				
Pronamide	2.5	ND				
Phenanthrene	2.5	ND				
Anthracene	2.5	ND				
Di-n-butylphthalate	2.5	ND				
Fluoranthene	2.5	ND	116			116
Benzidine	25.0	ND				
Pyrene	2.5	ND		9	114	:
p-Dimethylaminoazobenzene	2.5	ND				
Butylbenzylphthalate	2.5	ND				
Benzo[a]anthracene	2.5	ND				
-Dichlorobenzidine	2.5	ND				
Chrysene	2.5	ND				
bis(2-Ethylhexyl)phthalate	2.5	ND				
Di-n-octlphthalate	2.5	ND				
Benzo[b]fluoranthene	2.5	ND				
7,12-Dimethylbenz(a)anthracene	2.5	ND				
Benzo[k]Auoranthene	2.5	ND				
Benzo[a]pyrene	2.5	ND	118			118
3-Methylcholanthrene	2.5	ND				
Dibenzo(a,j)acridine	2.5	ND				
Indeno[1,2,3-cd]pyrene	2.5	ND				
Dibenz[a,h]anthracene	2.5	ND		<u> </u>		
Benzo[g,h,i]perylene	2.5	ND				1

Page 3 of 4

Project Name: Texaco

TA #57222

Field Code: #2 S. Sump./E.R. 6.4-6.8'

Reporting Concentration QC RPD %EA EPA 8270 %IA Limit (mg/kg) 4 90 100 a-BHC 0.00125 ND **b-BHC** 0.00125 ND 9 92 108 90 100 g-BHC 0.00125 ND 4 d-BHC 0.0125 ND 7 112 102 Heptachlor 0.00125 ND 17 118 108 ND 2 101 112 Aldrin 0.00125 0.00125 ND 6 132 118 Heptachlor epoxide ND 4 98 Endosulfan-1 0.00125 112 Endosulfan-2 0.0025 ND 3 101 124 P,P'-DDE ND 4 98 0.0025 116 Dieldrin ND 0.0025 2 103 122 ND 93 Endrin 0.0025 4 128 NÐ P.P'-DDD 0.0025 2 111 121 Endrin Aldehyde 0.0025 ND 118 --------Endosulfan Sulfate/P,P'-DDT 0.0025 ND 17 105 126 ndrin Ketone 0.0025 ND 2 117 130 Methoxychlor 0.0125 ND 5 88 140 a-Chlordane 0.00125 ND 0 96 116 g-Chlordane 0.00125 ND 0 96 112 Toxaphene 0.125 NÐ 20 88 110 PCB's 0.25 ND 0.48 2 84 96

	% RECOVERY	
2-Fluorophenol SURR	72	
Phenol-d6 SURR	76	
Nitrobenzene-d5 SURR	118	
2-Fluorobiphenyl SURR	102	
2,4,6-Tribromophenol SURR	64	
Terphenyl-d14 SURR	136	
METHOD: EPA SW 846-8270, 3550, 8080.	U	1
CHEMIST: RD/CC/MB	PS	

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell 8-28-96

Date

6701 Aberdeen Avenue

Lubbock, Texas 79424

806•794•1296

FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

August 26, 1996 Receiving Date: 08/15/96 Sample Type: Soil Sampling Date: 08/09/96 Sample Condition: I & C Sample Received by: SH Project Name: Texaco Project Name: Texaco North Eunice Project No: 787 Gas Plant, NM Extraction Date: 08/15/96 Analysis Date: 08/19/96

TA #T57223	
FIELD CODE:	Trash Pit Area 4.5-4.7

· · · · · · · · · · · · · · · · · · ·	Reporting	Concentration			Harysis Duce.	0/1///0
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
N-Nitrosodimethylamine	0.25	ND			a.a.	
2-Picoline	0.25	ND				
Methyl methanesulfonate	0.25	ND				
Ethyl methanesulfonate	0.25	ND				
Phenol	0.25	ND	108	23	42	108
Aniline	1.25	ND				
bis(2-Chloroethyl)ether	1.25	ND				
2-Chlorophenol	1.25	ND		22	40	
1,3-Dichlorobenzene	0.25	ND				
1,4-Dichlorobenzene	0.25	ND	112	24	39	112
Benzyi alcohol	1.25	ND				
1,2-Dichlorobenzene	0.25	ND				
2-Methylphenol	0.25	ND				
bis(2-chloroisopropyl)ether	1.25	ND	-			
4-Methylphenol/3-Methylphenol	0.25	ND				
Acetophenone	1.25	ND				
n-Nitrosodi-n-propylamine	0.25	ND		19	56	
Hexachloroethane	0.25	ND				
Nítrobenzene	0.25	ND				
N-Nitrosopiperidine	1.25	ND				
Isophorone	1.25	ND				
2-Nitrophenol	1.25	ND	100			100
2,4-Dimethylphenol	1.25	ND				
bis(2-Chloroethoxy)methane	0.25	ND				
Benzoic acid	2.5	ND				
2,4-Dichlorophenol	1.25	ND	99			99
1,2,4-Trichlorobenzene	0.25	ND		18	47	
a,a-Dimethylphenethylamine	0.25	ND				
Naphthalene	0.25	ND				
	TRAC	CEANALY	sis, I	NC		

A Laboratory for Advanced Environmental Research and Analysis

HIGHLANDER SERVICES CORP. Project Name: Texaco

TA #T57223

1

Field Code: Trash Pit Area 4.5-4.7'

	Reporting	Concentration				·
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
4-Chloroaniline	1.25	ND				
2,6-Dichlorophenol	1.25	ND				
Hexachlorobutadiene	0.25	ND	117			117
N-Nitroso-di-n-butylamine	1.25	ND				
4-Chloro-3-methylphenol	1.25	ND	105	5	47	105
2-Methylnaphthalene	0.25	ND				
1,2,4,5-Tetrachlorobenzene	0.25	ND				
Hexachlorocyclopentadiene	0.25	ND				
2,4,6-Trichlorophenol	1.25	ND	112			112
2,4,5-Trichlorophenol	1.25	ND				
2-Chloronaphthalene	0.25	ND				
1-Chloronaphthalene	0.25	ND				
2-Nitroaniline	1.25	ND				
Dimethylphthalate	0.25	ND				
Acenaphthylene	0.25	ND				
2,6-Dinitrotoluene	0.25	ND				
3-Nitroaniline	1.25	ND				
Acenaphthene	0.25	ND	112	6	46	112
2,4-Dinitrophenol	1.25	ND				
Dibenzofuran	1.25	ND				
Pentachlorobenzene	0.25	ND .				
4-Nitrophenol	1.25	ND		19	61	
1-Napthylamine	1.25	ND				
2,4-Dinitrotoluene	0.25	ND		10	57	
2-Napthylamine	1.25	ND				
2,3,4,6-Tetrachlorophenol	1.25	ND				
Fluorene	0.25	ND				
Diethylphthalate	0.25	ND				
4-Chlorophenyl-phenylether	0.25	ND				
4-Nitroaniline	1.25	ND				
4,6-Dinitro-2-methylphenol	0.25	ND				
-Nitrosodiphenylamine & Diphenylamine	0.25	ND	116			116
Diphenylhydrazine	1.25	ND				

Project Name: Texaco

Page 3 of 4

TA #57223 eld Code: Trash Pit Area 4.5-4.7'

	Reporting	Concentration				
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
4-Bromophenyl-phenylether	0.25	ND				
Phenacetin	1.25	ND				
Hexachlorobenzene	0.25	ND				
4-Aminobiphenyi	1.25	ND				
Pentachlorophenol	1.25	ND	108	1	18	108
Pentachloronitrobenzene	1.25	ND				
Pronamide	0.25	ND				
Phenanthrene	0.25	ND				
Anthracene	0.25	ND				
Di-n-butylphthalate	0.25	ND				
Fluoranthene	0.25	ND	115			115
Benzidine	2.5	ND				
Pyrene	0.25	ND		7	107	, K
p-Dimethylaminoazobenzene	0.25	ND				
Butylbenzylphthalate	0.25	ND				
Benzo[a]anthracene	0.25	ND				
Dichlorobenzidine	0.25	ND				
Chrysene	0.25	ND				
bis(2-Ethylhexyl)phthalate	0.25	ND				
Di-n-octlphthalate	0.25	ND				
Benzo[b]fluoranthene	0.25	ND	· · ·			
7,12-Dimethylbenz(a)anthracene	0.25	ND				
Benzo[k]fluoranthene	0.25	ND				
Benzo[a]pyrene	0.25	ND	117			117
3-Methylcholanthrene	0.25	ND				
Dibenzo(a,j)acridine	0.25	ND				
Indeno[1,2,3-cd]pyrene	0.25	ND				
Dibenz[a,h]anthracene	0.25	ND				
Benzo[g,h,i]perylene	0.25	ND				

Tentatively Identified Compounds and Estimated concentration (mg/kg)

	RT	CONC
(2)-9-octadecenamide	17.02	3.06

Project Name: Texaco

TA #57223

Field Code: Trash Pit Area 4.5-4.7'

	Reporting	Concentration	<u></u>			
EPA 8270	Limit	(mg/kg)	QC	RPD	%EA	%IA
a-BHC	0.00125	ND		4	90	100
ь-внс	0.00125	ND		9	92	108
g-BHC	0.00125	ND		4	90	100
d-BHC	0.0125	ND		7	112	102
Heptachlor	0.00125	ND		17	118	108
Aldrin	0.00125	ND		2	101	112
Heptachlor epoxide	0.00125	ND		6	132	118
Endosulfan-1	0.00125	ND		4	98	112
Endosulfan-2	0.0025	ND		3	101	124
P,P'-DDE	0.0025	ND		4	98	116
Dieldrin	0.0025	ND		2	103	122
Endrin	0.0025	ND		4	93	128
P,P'-DDD	0.0025	ND		2	111	121
Endrin Aldehyde	0.0025	ND				118
Endosulfan Sulfate/P,P'-DDT	0.0025	ND		17	105	126
ndrin Ketone	0.0025	ND	<u> </u>	2	117	130
Methoxychlor	0.0125	ND		5	88	140
a-Chlordane	0.00125	ND		0	96	116
g-Chlordane	0.00125	ND		0	96	112
Toxaphene	0.125	ND	l	20	88	110
PCB's	0.25	ND	0.48	2	84	96

	% RECOVERY
2-Fluorophenol SURR	28
Phenol-d6 SURR	34
Nitrobenzene-d5 SURR	36
2-Fluorobiphenyl SURR	32
2,4,6-Tribromophenol SURR	71
Terphenyl-d14 SURR	109
METHOD: EPA SW 846-8270, 3550, 8080.	
CHEMIST: RD/CC/MB	1

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

8-26-96

Date

ILLINLLINULULULULULULULULULULULULULULULU	INTRA Tue Lubb	CEAN ock, Texas 79/	ALYSI 24 B	S, INC	C. MULVIN	806-794-12	NULL NULL		Ni
August 12, 1996 Receiving Date: 08/02/96 Sample Type: Soil Project No: 787 Project Location: N. Eunice Gas Plant,	ANALYTICAI HIGHLANDEH Attention: 306 W. Wal 306 W. Wal Midland, '	L RESULTS R SERVICES I Ike Tav Il, Suite rx 79701 rx	FOR 5 CORP. 320 320			Extracti Analysis Sampling Sample C Sample R Project 1	on Date: Date: 08 Date: 07 Ondition: eceived h Name: Te	08/05/96 3/05/96 7/29/96 : Intact & Cool by: ML	
		TOTAL MET	'ALS (mg	/kg)					
TA# Field Code	As	Se	Cđ	Сr	ЪЪ	Ag	Ba	Н	
T56559 BH-1 10-12', (NS)	<10.0	<10.0	<2.0	5.4	<10.0	<0.5	91.5	<0.25	1
T56567 BH-1 50-52', (NS)	<10.0	<10.0	<2.0	<5.0	<10.0	<0.5	<20.0	<0.25	
QC Quality Control	5.36	4.95	0.12	0.49	1.18	0.13	4.76	2.42	
Reporting Limit	10.0	10.0	2.0	5.0	10.0	0.5	20.0	0.25	
RPD	1	0	٥	4	6	4	7	0	
<pre>% Extraction Accuracy</pre>	98	81	<i>LL</i>	81	125	77	06	96	
<pre>% Instrument Accuracy</pre>	107	66	100	97	95	95	95	97	
METHODS: EPA SW 846-3051, 6010, 7471. TOTAL METALS SPIKE: 800.0 mg/kg As, Se, TOTAL METALS QC: 5.0 mg/L As, Se, Ba; C	, Ba; 20.0 0.13 mg/L C	mg/kg Cd, d; 0.5 mg	Ag; 80.C /L Cr; 1.) mg/kg Cı 25 mg/L I	:; 200.0 2b; 0.13	mg/kg Pb; mg/L Ag;	; 2.50 mg 2.50 mg/	J/kg Hg. 'L Hg.	
<i>W</i>				1	12-50				
Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell				Date					

i

I

ELINE STORE STOLEN AND STOLEN AVEN	ILLITRA Ine Lubb	CEAN ock. Texas 794	ALYSI 24 BI	S, IN(56-794-1296	Called	806-794-12		
August 12, 1996 Receiving Date: 08/02/96 Sample Type: Soil Project No: 787 Project Location: N. Eunice Gas Plant,	ANALYTICA HIGHLANDE Attention 306 W. Wa Midland, '	L RESULTS R SERVICES : Ike Tav Il, Suite IX 79701 IX 79701	FOR 5 CORP. Varez 320			Extractic Analysis Sampling Sample Cc Sample Re Project N	on Date: Date: 08 Date: 07 ondition: eceived b Mame: Te	08/03/96 \$/05/96 1/29/96 Intact & Cool by: ML
		TOTAL MET	rals (mg,	/kg)				
TA# Field Code	As	Se	Cd	Cr	qa	Ag	Ba	Нд
T56569 BH-2 10-12', (NS) T56577 BH-2 50-52', (NS)	<10.0 <20.0	<10.0 <10.0	<2.0 <2.0	<5.0 <5.0	<10.0 <10.0	<0.50 <0.50	121.0 <20.0	<0.25 <0.25
QC Quality Control	4.86	5.09	0.13	0.51	1.39	0.13	5.13	2.42
Reporting Limit	10.0	10.0	2.0	5.0	10.0	0.50	20.0	0.25
RPD	m	9	ы	6	7	Q	ъ	N
<pre>% Extraction Accuracy % Instrument Accuracy</pre>	76 97	78 102	82 104	82 103	91 111	86 104	86 103	96 97
METHODS: EPA SW 846-3051, 6010, 7471. TOTAL METALS SPIKE: 800.0 mg/kg As, Se, TOTAL METALS QC: 5.0 mg/L As, Se, Ba; C	, Ba; 20.0 0.13 mg/L C	mg/kg Cd, d; 0.5 mg	Ag; 80.C /L Cr; 1.	0 mg/kg C: 25 mg/L 1	r; 200.0 Pb; 0.13	mg/kg Pb; mg/L Ag;	; 2.50 mg 2.50 mg/	/kg Hg. L Hg.
Director, Dr. Blair Leftwich				Date	5-21-			
Director, Dr. Bruce McDonell								

I

ſ

.

ļ

ļ

ALALANALA ALALANALANALANALANALANALANALAN	ACEA	NALY	SIS, I	NC	Muller	AULIAN AND AND AND AND AND AND AND AND AND A	LULAILM		
6701 Aberdeen Avenue	Lubbock, Texas	s 79424	806•794•	1296	FAX 806•79	4●1298			
	ANALYTICA HIGHLANDE	L RESULT	S FOR ES CORP.					. .	
	Attention	I: Ike T	avarez			·			
	306 W. Wa Midland,	II, Suit TX 7970	e 320 1						
	•				Extracti	on Date:	08/15/9	9	
August 26, 1996 Receiving Date: 08/15/96					Analysis Samplinc) Date: 08 Date: 08	1/15/96 1/09/96		
Sample Type: Soil					Sample C	ondition:	Intact	ƙ Cool	
Project No: 787 Project Location: Texaco			1		Sample F Project	teceived k Name: Te	y: SH xaco		
North Eunice Gas Plant, NM	•	aw temon		1001					
		AM TRADE		(FX /					
TA# Field Code	Ag	As	Ba	Cđ	Cr	qđ	Se	Нд	
T57221 #1 N. Sump./E.R. 8.2-8.4'	<0.50	17.4	*93.1	<2.0	12.2	<10.0	<10.0	<0.25	
T57222 #2 S. Sump./E.R. 6.4-6.8'	<0.50	<10.0	*213.0	<2.0	20.3	<10.0	<10.0	<0.25	
T57223 Trash Pit Area 4.5-4.7'	<0.50	10.4	*163.0	<2.0	<5.0	<10.0	<10.0	<0.25	
QC Quality Control	0.12	5.32	5.64	0.12	0.49	1.38	4.94	2.53	
Reporting Limit	0.50	10.0	20.0	2.0	5.0	10.0	10.0	0.25	
RPD	1	ы	, H	m	Ч	2	m	4	
**% Extraction Accuracy	95	63	26	73	79	94	82	104	
% Instrument Accuracy	95	107	113	94	68	111	66	101	
*NOTE: Estimated concentration; calibrat	ion check	out of c	control li	mits.					
**NOTE: Matrix effects.									
METHODS: EPA SW 846-3051, 6010, 7471.									١
CHEMIST: As, Se, Cr, Cd, Pb, Ag, Ba: RR momil vemile corve: on 0 modificate co	Hg: Hg:	: RC	15 me/12	00 .24	- 2-1/ 2m 0		- 40 - 21/ -		
IUTAN MEIANS STINE: SUCCEMPTAGE SEC. 19		inn fru/fur	Sy/Sin ct	• no 154 1	hy/fun o	III 007 1 10	ing Fy/F		
TOTAL METALS QC: 5.0 mg/L As, Se, Ba; 0.1	13 mg/L Co	d, Ag; O.	5 mg/L Cr	; 1.25 m	ida I/b	2.50 mg/L	. Hg		
N/X				1	8-98				
Director, Dr. Blair Leftwich				Date					
Director, Dr. Bruce McDonell									

---- -

i i

	CULLINUL ULLULULULULULULULULULULULULULULULULU	LUBDOC ALLENTICAL ALLENTICAL ALLENTION:	EANA k, Texas 7942 results services tke tav	MLYSIS 1 806 For corp.	5, INC	FAXB	06 • 794 • 129		A HANDLIN HULLAL	
August Receivi Sample Project Project	16, 1996 ng Date: 07/29/96 Type: Soil No: 787 Location: N. Eunice Gas Plant, 1	Midland, T	L, Suite K 79701	0 0 0 0			Extractic Analysis Sampling Sample Cc Sample Re Sample Re Project N	n Date: Date: 07 Date: 07 ndition: ceived b fame: Te	07/26/96 /31/96 /24-25/96 Intact & Cool Y: SH xaco	
		F	COTAL MET	ALS (mg/	kg)					
TA#	Field Code	As	Se	Cđ	Gr	qa	Ag	Ba	Hg	
T56268	BH-5 (5-7'), SOA	<20.0	<10.0	<2.0	<5.0	<10.0	<0.50	170.0	<0.25	1
T56275	BH-6 (5-7'), SOA	<10.0	<10.0	<2.0	<5.0	<10.0	<0.50	170.0	<0.25	
T56288	BH-8 (5-7'), SOA	<20.0	<10.0	<2.0	11.0	<10.0	<0.50	210.0	<0.25	
о Ф	Quality Control	4.86	5.12	0.13	0.5	1.33	0.12	5.09	2.54	
Reporti	ng Limit	10.0	10.0	2.0	5.0	10.0	0.50	20.0	0.25	
RPD		m	0	7	m	4	0	ч	4	
% Extra	ction Accuracy	76	81	91	84	85	77	85	97	
% Instr	ument Accuracy	97	102	106	100	106	8	102	101	
METHODS TOTAL M	: EPA SW 846-3051, 6010, 7471. STALS SPIKE: 800.0 mg/kg As, Se,	Ba; 20.0 m	g/kg Cd,	Ag; 80.0	mg/kg Cr	200.0 I	ng/kg Pb;	2.50 mg	/kg Hg.	
							, р. ч. ч. р. Р. с.	/burne.z	. Бч	

1

ļ

I

i

1

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell ٢

Date

| | |

.

1

ļ

ļ

Highlander Services Highlander Services Project No. Project No. Client/Project Analysis Request and Chain of the transmit of the	Corp. 1919,000 - 4559 1919,000 - 4559 1919,000 - 4559 Custody Record Page _ or Z ANALYSIS REQUESTED ANALYSIS REQUESTED
Rush Charges Authorized REMARKS: 2. Yes No	PDV Briter
Please Fill out all copies - Deliverer retains White copy for file - Lab retains Yellow copy & Return Why by a build the build be a stand of 15 pre 10	Pink copy to Highlander Services Corp. at above address

ļ.

Ces Corp. 7701 · (915)682-4559	of Custody Record Page 2 of 2	as Plant NM	d Preser- vative	(ii (Uold) read	/ Woladier, semi voladiles, total) Hold R						A rea with	V Volatiles somi voladiles, tote	Recieved by: NI D. M. A. O. T. Bate: 8/1/96	Recieved by: Martine (Signature) Martine (Signature) (Signature)	Data Results to: CT TA IVANE F 2	2.	HUL .	Return Pink copy to Highlander Services Corp. at above address /0 2.0 Mrst/Co.4 - H.S.
Tighlander Servic Wall - Suite 320 - Midland, 12 79-	uest and Chain	K Eurice Gr	Date Date Completed and Date Date Date Date Type(Liquid	1/05 X 2011									V V V	and Date: 8/1/96	HAN Time: 8 1, 194	Date: Time:	148		- Lab retains Yellow copy & R
K 306 W	Analysis Req	roject / Texa co Nong	North Plant Sump +	(2) 565 63	(NS) 69	(ws) TO	It (sm)	2t (sm)	(<i>w</i>) 73	HE (SW)	st (ms)	(vs) 76	77 (xs) 77	Relinquished by: (Signature)	(Signature) ALC LM	Relinquished ¹ by: (Signature)	Delivered To: T.P.A.C.	REMARKS:	sliverer retains white copy for file
		Project My Client/Pi	Field Sample No./ Identification	BH-2 5-1'	BH-2 10-12'	RH-2 15-17'	BH-2 20-22	76-25 2-HE	84-2 30-32'	BH-2 35-37	RH-2 40-42	BH-2 45-47	BH-2 50-52	Samplers. (Print)	TIM REED		Results by:	Rush Charges Authorized	Please Fill out all copies - De

l

57 F						
and the second sec		Highlander	r Services	Corp		
冷重	Analysis Rec	quest and	Chain of	Cus	tody Record	Page 2 of 5
Project No. Client/Proje	ENACO / TENTO	North Euric	i GAS Ram	t	X/W].	
Field Sample No. / L Identification	wask wither (Sol)	Comp Grab Time Comp	Sample Type(Liquid Sludge,Ect.)	Preser- votive	ANALYSIS RE	QUESTED
BH-1 (5-7') S	Pd Pd	* 74kqL	Jus	Ľ,	(blold)	56251
BH-1 (10-121) S	Pro Ha	7)25 pc v				Sي
BH-1 (15-17') S	64	125/5C 4				53
2. ('ce oc) 1-HE	Sed has	h3/96 V	<u>.</u>			54
BH-1 (25-27')	Sold	2 29/2 dr				÷ 55
3. (125-08) 1-48	Sout	7/23/96 v				56
BH-Z (5-1)	So.A	1 24/4C k				57
BH-2 (15-17)	S4	2 29/2cl				58
(12-2C) 2-HB	Sut	x 20/20/1				54
BH-3 (5-7'),	Sort	> 20/2/n	>`	~	Þ	0y
Somplers: (Print) Reli (Sig	inquished by:	P A Time:	7/36/96 Recie ASTIPUS (Sign	aved by: ature)	HI Sul	Date: 7/20 / PC Time: 4. 201222
IKI lower Reli Sig	inquished by Allen	ULTA Date: Time:	127196 Recie	eved by: ature)	UTR	Date: 7.27-96 Time: 10:004
Reli (Sig	inquished by: gnature)	Date: Time:	Data 1.	Results	Jainee	8240
Results by: Deli	ivered ID (usb.		2.			futury
Yes No	MAKKS:	· · ·	•			Ì
Please Fill out all copies - Deliver	rer retains White copy for file	e – Lab retains Yell	ow copy & Return	Pink cop	y to Highlander Services Col	rp. at above address
×			•		`` (

ł

311 AC

		5				
24 K						
and the second sec		Highlande	r Services	. Corp.		
	306	8 W. Wall • Suite 320 •	Midland, TX 79701	• (915)682-4559		
X .	Analysis Re	quest and	Chain o	f Custody	Record	Page 3 of 5
Project No. Client,	/Project Junico /	1 Tenno	NUNTA	EUNIN GA	s Net.	NW
Field Sample N Identificati	10. Wast beter + Slop	Comp Grab Time Time	Sample Type(Liquid Sludge,Ect.)	Preser- vative	ANALYSIS REG	QUESTED
BH-3 (15-17)	Saf	11/24/96 X	Coil	lee / H	ald)	56261
BH-3 (25-27') sur)	2	_	69
BU-4 (10-12')	, 50A	X				63
R.H.4 (15-17)	48.	<i>y</i>				6 Y
15-50) N.H.B) sud	۲ ا ا ا				65
BH-4 (35-37'	,) Sold	K				<i>(6</i>
BH-5 (0'S-1"	0), 544	×		4		× + + + = 67
BH-5 (5-1')	204	5		Volokilo	organics, Se	mi volatile organie ne tala
BH 5 (10-12')	. 504	~	-	1 (Hale		67 69
BH-5 15-17'	50.4	×		V I Hole	Ú	06
Samplers: (Print)	(Signature)	10 Date: Time:	1/2 00/ 45/2	scieved by: Ignature)	1 A	Date: 7/21/56 Time: 4/72/201
12 Tower	Signature) dl 000	L TAN Date:	7/27/94 R	scieved by: ignature)		Date: 7/29/96
	Relinquished by: (Signature)	Date: Time:	De 1.	to Results Io: //KL / Guare -		
Results by:	Deliveret To-		5			
Rush Charges Authorized	REMARKS:		-			
Yes No						
Please fill out all copies -	Deliverer retains White copy for fi	ile – Lab retains Ye	llow copy & Retu	rn Pink copy to Highl	ander Services Corj	p. at above address

L

r <i>ices Corp.</i> 77701 - (915)682-4559 in of Custody Record Page 4 of 5	Eurici Cars Dlant, NM. Die Preser- ANALYSIS REQUESTED	1 10 (Hold) 56271	EE X319	Halatile Alance Cini talati	Resuice Total (récermente 75 1/ Nold) 57 76	St.	bt a	16 Recieved by: Con (Signature) 10 Recieved by: 11 Recieved by: 12 Recieved by: 12 Recieved by: 12 Recieved by: 13 Recieved by: 13 Recieved by: 13 Recieved by: 14 Recieved by: 15 Rec	Data Results <u>Io</u> : 1. // <i>LE Caucerr</i> 2. * & Return Pink copy to Highlander Services Corp. at above address
Highlander Serv 308 W Wall - Suite 320 - Midland, 17 ysis Request and Chai	1500 Date of North Supor Date of Sam and of Sam	nhylec & Sa	λ λ 	x	× ×	× ×		Lin Led Date: 7/26/9 Lin Led Time: 4:59	Time: Time: AS
Anal	7 7 87 Field / Watucter, Sample No./ Watucter, Identification	-5 25.27' Soft	5 35-37 , 504	6 0.5-1,0° Som	0 10-12 , Sot	405, CC-0C) 405, 7C-5C)	6 35-37 564	s: (Print) Relfnquished by: (Signature) (Signature) (V:	by: by: Charges Authorized No Fill out all copies – Deliverer retains Wh

f

; ; ;

Highlander Services Corp.	Analysis Request and Chain of Custody Record Page 5 of 5	it/Project Tames / Tame North Eurice Cas Hart, HM.	a <i>Uaste Late</i> Date B Sample Preser- ANALYSIS REQUESTED No. (<i>Maste Late</i>) Time B Sample Value Value , ANALYSIS REQUESTED	421) Sol 201 100 100 100 100 56281	1,0') Syd 7/5/46 Y 82	7') . Sud	3y 3y	7) Sout	86 Y	-37') 364 + 1 + 10 = 100 + 100 = 1	7') Sur. 2mi voladile 80	12') 'Sout : 4 1 0 (Hald) 'Hald 89	-27') Sot V V V V (100) BTEV 30	Relipiquished by: Date: 7/26/96 Recieved by: (Signature) (Signatur	Relinquished by: (Signature) O() UN O() Time: 7/20/00 (Signature)	Relinquished ^{by} : Date: Data Results Ta.	Delivered To: Mee CMS	REMARKS:		- Deliverer retains White copy for file - Lab retains Yellow copy & Return Pink copy to Highlander Services Corp. 47 above address
		Project No. Client	Field Sample Identifico	BH-6 (40 "	BH-7 (0.5-	BH 7 15-7	BH-7 90-12	BH7 (15-17	E-1-12	ZH-7 (35'-	BH-8 (S-7	2H-8 (10-1	-se) 8-H2	Samplers: (Print)	1KE WORZ	2	Results by:	Rush Charges Authorized	Yes No	Please Fill out all copies -

i

| • |

ł

ļ

. p.	Istody Record Page 1 of 1	rt, NW.	- ANALYSIS REQUESTED	104. Emi-104 53221	Hate Marches Void Ener-Up 4 23	4Th Retels. 101 Schurber 33	4 tel Motols.	V. D. Lev Mr. 17 M. Time: 11:47 DM	5: 11 Date: 0-15/-96 3: 401 Date: 0-15/-96 3: 401 Date: 0-15/10	F-2-4	copy to Highlander Services Corp. at above address ACA-HS 227AD
COI 701 · (915)682	of Cu	s pla	d Preser	5	(c)	Ś		Recieved b (Signature)	Recieved b (Signature) Data Result		seturn Pink o
r Servic Midland, TX 79	Chain	41ep 64	Sample Type(Liquic Sludge,Ect.	Soul	Soui	Sul		45/13	8/13/9/6 9:30 PM		law copy & F
landei	and	th Eu	Comp Grab	X	<u> </u>	<u> </u>		Date:	Date: Time: Date: Time:		etains Yel
High!	quest	NON 0	Date and Time	6/9/96	8/9/96	8/2/20	*	\	litte		le I Lab
308	Analysis Re	Ject Name / Tain	/	8.2-8.4'	6.4 - 6. 8	, L', -2, h		elinquíshed by:	elinquished by: Signature) VILLA C elinquished by: Signature)	elivered To:	verer retains White copy for fi
		Project No. Client/Pro 787	Field Sample No./ Identification	#1 N Sunp. 1E.R.	7. 7 / om 2. 2 Ct	Trash Pil ArcA		Samplers: (Print) (S	Kit Partent Rich	Results by: Rush Charges Authorized R	Please Fill out all copies - Deli

l

	6701 Aberdeen Avenu	Lut Lut	ACEAN boock, Texas 794	ALYSI 424 80	S, INC.		94 • 1298	
August 7, 19 Receiving Da Sample Type: Project No: Project Loca	96 te: 08/02/96 Water 707 tion: N. Eunice Gas Plant,	W H H H M	ANALYTICAL HIGHLANDER Attention: 306 W. Wall fidland, TX	RESULTS F SERVICES Ike Tava L, Suite 3 K 79701	OR CORP. rez 20	<u></u> д д о о о д	rep Date: nalysis Da ampling Da ample Conc ample Rece roject Nan	08/05/96 tte: 08/05/96 tte: 08/01/96 lition: Intact & Coo ived by: ML
ТА#	Field Code	TRPHC (ug/L)	MTBE (12)	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYL- BENZENE (ug/L)	M,P,O XYLENE (ug/L)	TOTAL BTEX (ug/L)
T56579 QC	MW - 1 Quality Control	582 104,000	41 95	α 0	69	92	169 304	329
Reporting Li	mit	200	г	н	H	H .	н	
RPD % Extraction % Instrument	Accuracy Accuracy	3 107 105	95 96	90 91 90	4 95 90	6 92 92	1 99 101	
CHEMIST: TR METHODS: EP MTBE/BTEX SP TRPHC SPIKE: TRPHC QC: 1	PHC: AG MTBE/BTEX: A SW 846-8020, 5030; EPA 41 IKE AND QC: 100 ug/L MTBE/ 8,500 ug/L TRPHC. 00,000 ug/L TRPHC. 00,000 ug/L TRPHC. Director, Dr. Blair Leftwi Director, Dr. Blair Leftwi	RW 8.1. BTEX. BTEX.	[1	Dat	2 / 3 8 / 3 8	N	

6701 Aberdeen Avenue		
Lubbock, Texas 79424		
806•794•1296		
(806●794●1298		
	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701	
$\mathbf{h}_{\mathbf{h}} = \mathbf{h}_{\mathbf{h}} + \mathbf{h}_{\mathbf{h}} + \mathbf{h}_{\mathbf{h}} = \mathbf{h}_{\mathbf{h}} + $		Extraction Date: 08/03/96
Receiving Date: 08/02/96 Sample Type: Water Project No: 707		Sampling Date: 08/01/96 Sample Condition: Intact & Cool Sample Received by: ML
Project Location: N. Eunic	e Gas Plant, NM	Project Name: Texaco
		TOTAL Cr
TA#	FIELD CODE	(mg/L)
T56580	Water Well #1	0.82
QC	Quality Control	0.46
Reporting Limit		0.05
		· · ·
RPD		1
% Extraction Accuracy		101
<pre>% Instrument Accuracy</pre>		93

METHODS: EPA SW 846-3015, 6010. CHEMIST: RR TOTAL Cr SPIKE: 0.8 mg/L TOTAL Cr. TOTAL Cr QC: 0.5 mg/L TOTAL Cr.

8-14-96 Director, Dr. Blair Leftwich DATE Director, Dr. Bruce McDonell RACEA A Laboratory for Advanced Environmental Research and Analysis

ces Corp. 9701 · (915)682-4559 of Custody Record	Gas Mart, NM Preser- ANALYSIS REQUESTED	ic TPH BTEX ic Total Chromium		Recieved by: NULL ALL HAN Date: 8/1/96 (Signature) NULL ALL Time: 5:00 PM Recieved by: (Signature) M Cope Date: 8.2-96 Data Results To:	2. 2. Return Pink copy to Highlander Services Corp. at above address 5 AMMARA - HS
Highlander Servic Multi Suite 320 - Midland, TX 79 Mulest and Chain	Date B R Type(Liqui Time C Sludge Ect	8/1/96 Water 8/1/96 Water		Levent Stores 8/1/96 Levent Time: 5:0 Pry Levent Time: 8'14 PM Date: Time:	- Lab retains Yellow copy & F
Analysis Rec	Project	, 56579 1 80		Relinquished by: (Signature) J. M. C. M. Relinquished by: (Signature) N. M. A. Relinquished by: (Signature) (Signature)	Delivered To: REMARKS: Deliverer retains White copy for file
	Project Nd Client/F TD 7 Sample No. Identificatio	MW - 1 Water Welf #		Samplers: (Print) LYNN WARD	Results by: Rush Charges Authorized YesNo Please Fill out all copies - D

. 1

Ì

	WULULULULULULULULULULULULULULULULULULUL	L Ibb	CEA ock, Texas	NALX 79424	⁷ SIS, ⁸⁰⁶⁻⁷⁹	INC ~	FAX 8	06€794€			
July 5, Receivir Sample 1 Project Project	1996 Ig Date: 06/15/96 Yppe: Water No: 786 Location: Texaco North Eunice	Ar At 30 Mi Mi Plant	NALYTICA IGHLANDF tentior 16 W. Wa 1dland,	ML RESUI ER SERVI 1: Ike 11, Sui TX 797	JIS FOR CEES CORI Tavarez te 320 01	a.		Extrac Analys Sampli Sample Sample Projec	tion Date is Date: ng Date: Conditio Received t Name:	:: 06/18/96 06/18/96 06/14/96 nn: I & C I by: MCD Texaco E & P, Inc.	
				•	TOTAL ME	TALS					
TA#	Field Code	Ав	Se	Cr	cq	ЪЪ	Ba	Ag	ВH		
T54146 QC	Water Well #1 Quality Control	:0.1 1.82	<0.1 4.85	0.66 0.05	<0.02 0.12	<0.1 1.25	<0.2 4.36	<0.01 1.05	<0.001 0.00505	•	
Reportin	ig Limit	0.1	0.1	0.05	0.02	0.1	0.2	0.01	0.001	,	
RPD % Extrac % Instru	tion Accuracy ment Accuracy	2 93 96	0 93 97	0 87 100	2 74 96	0 100 100	0 89 87	0 99 105	4 102 101		
METHODS: TOTAL ME TOTAL ME CHEMIST:	EPA SW 846-3015, 6010, 7470. TALS SPIKE: 8.0 mg/L As, Se, I TALS QC: 5.0 mg/L As, Se, Ba; RR/RC/CB	a; 0.8 0.5 mg	/L Cr;	r; 0.2 0.125 m	mg/L cd, g/L cd;	Ag; 2. 1.25 mg	, та/г тори	Pb; 0. 1.0 mg	005 mg/L /L Ag; 0.	Hg. .005 mg/L Hg.	
	Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell				·	7 - 7 Date	6- 20	λ.			

		ANALYTICAL RESULTS FOR			•
July 5, 1996 Receiving Date: 06/15/90		HIGHLANDER SERVICES COI Attention: Ike Tavare 306 W. Wall, Suite 320	kP.	Prep Date: Analysis Dat Sampling Dat	06/16/96 ce: 06/18/96 ce: 06/14/96
sample Type: water Project No: 786 Project Location: Texaco) North Eunice P	Midland, TX 79701 lant		sample cond. Sample Rece. Project Name	LTION: INTACT & COOL Lved by: McD 3: Texaco E & P, Inc.
TA# Field Code		POTASSIUM (mg/L)	MAGNESIUM (mg/L)	CALCIUM (mg/L)	(T/ɓw) WnIdos
T54146 Water Well #1		12.4	142	268	393
QC Quality Contr	ol	4.92	5.1	5.09	5.06
Reporting Limit		•	10.0	0.01	0.4
RPD		m	Ч	o	2
<pre>% Extraction Accuracy % Instrument Accuracy</pre>		104 98	81 102	102 102	89 101

SPIKE: 100.0 mg/L POTASSIUM, SODIUM, MAGNESIUM, CALCIUM. CHEMIST: RR

In

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

Date

ł

-

:

. I

7-8-96

WULLILLIUL WULLINUL WULLINUT RAC	CEANALY	ISIS, INC.	MUUUUUU	JULLIMUL	NLALIMUL	MULLUL
6701 Aberdeen Avenue Lubbo	ick, Texas 79424 ANALYTICAL RE: HIGHLANDER SEI	806•794•1296 sults for rvices corp.	FAX 806•	794•1298		
16	Attention: I	ke Tavarez		Prep Date:	06/20/96	
ate: 06/15/96	306 W. Wall, 8	suite 320		Analysis Dat	e: 06/20	96/0
: Water	Midland, TX	79701		Sampling Dat	e: 06/14/	,96
786				Sample Condi	tion: Int wed by 1	cact & Cool
cation: Texaco North Eunice Flant				Project Name	: Texaco	E & P, Inc
		·		ALKAL	LILL	
	CHLORIDE	FLUORIDE	SULFATE	(mg/L as	CaCo3)	NO3-N
FIELD CODE	(mg/L)	(mg/L)	(mg/L)	HC03	C03	(mg/L)
Water Well #1	782	2.6	913	340	0	10.4
Quality Control	490	0.94	11.8		1 1 1	1.45
· · ·	-	~	и	и		-
	- L	۳ <mark>۲</mark>	301	ר ו ו	,	115
n Accuracy	C 4					
it Accuracy	98	94	104	-	5	106
LIMIT	0.5	0.1	Ţ	10	10	0.1
EPA 375.4, 310.1, 340.2, 353.3; 4500 Chloride: JT Fluoride: MB/MS 0 mg/L CHLORIDE; 1.0 mg/L FLUORIDE; g/L CHLORIDE; 1.0 mg/L FLUORIDE; 10	Cl-B. Sulfate: MS 5,000 mg/L SUJ mg/L SULFATE;	Alkalinit LFATE; 19.995 n 1.333 mg/L as	:y: RCD ng/L as N (N (Nitrate	NO3-N: MS Nitrate). !).		
L				7. 9.	25-	
Director, Dr. Blair Left Director, Dr. Bruce McDc	wich bnell			Da	te	
•						

İ

-

|

6701 Aberdeen Avenue Lubbock, Texas 79424 806•794•1296 FAX 806•794•1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

PAGE 1 of 2

July 5, 1996 Receiving Date: 06/15/96 Sample Type: Water Project No: 786 Project Location: Texaco North Eunice Plant Prep Date: 06/19/96 Analysis Date: 06/19/96 Sampling Date: 06/14/96 Sample Condition: Intact & Cool Sample Received by: cD Project Name: Texaco E & P, Inc.

TA #: T54146 FIELD CODE: Water Well #1

8240 Compounds (ug/L)

Concentration

Reporting Limit

Dichlorodifluoromethane	113	1
Chloromethane	ND	. 1
Vinyl chloride	ND	1
Bromomethane	ND	5
Chloroethane	ND	1
Trichlorofluoromethane	ND	1
1,1-Dichloroethene	ND	1
Iodomethane	ND	5
Carbon disulfide	ND	1
Methylene chloride	ND	5
trans-1,2-Dichloroethene	ND	1
1,1-Dichloroethane	ND	1
Vinyl acetate	ND	1
2-Butanone	ND	50
Chloroform	ND	1
1,1,1-Trichloroethane	ND	1
1,2-Dichloroethane	ND	1
Benzene	ND	1
Carbon Tetrachloride	ND	1
1,2-Dichloropropane	ND	1
Trichloroethene	ND	1
Bromodichloromethane	ND	1
cis-1,3-Dichloropropene	ND	1
4-Methyl-2-pentanone	ND	50
trans-1,3-Dichloropropene	ND	1
Toluene	ND	1
1,1,2-Trichloroethane	ND	1
2-Hexanone	ND	50
LILLING TRACE	Analysis, Inc.	

A Laboratory for Advanced Environmental Research and Analysis

HIGHLANDER SERVICE CORP. Project No: 786 Project Name/Location: Texaco North Eunice Plant

FIELD CODE: Water Well #1 TA #: T54146

		Concentration	Reporting
8240 compounds		(ug/r)	LIMIC
Dibromochloromethane		ND	1
Tetrachloroethene		ND	1
Chlorobenzene		ND	1
Ethylbenzene		ND	1
m & p-Xylene	·	ND	1
Bromoform		ND	1
Styrene		ND	1
o-Xylene		ND	1
1,1,2,2-Tetrachloroethane		ND	1
trans 1,4-Dichloro-2-butene		ND	5
cis 1,4-Dichloro-2-butene		ND	5
1,4-Dichlorobenzene		ND	2
1,3-Dichlorobenzene		ND	2
1,2-Dichlorobenzene		ND	2
Tentatively Identified Compounds	RT	CONC	
Methyl-cyclopentane	8.94	1	
Cyclohexane	9.89	4	
Methyl-cyclohexane	11.51	2	
tetrahydro-2,5-dimethylthiophene	16.00	3	
tetrahydro-2-methyl-2H-thiopyran	16.10	4	
tetrahydro-3-methyl-2H-thiopyran	17.17	3	
2-ethyltetrahydro-thiophene	17.65	2	
	Unidentified	l Hydrocarbons	
	12.49	1	
	18.22	3	
	18.31	3	
SURROGATES	% RECOVERY		
Dibromofluoromethane	101		
Toluene-d8	102		
4-Bromofluorobenzene	90		•
ND = Not Detected			
METHODS: EPA SW 846-5030; EPA 826 CHEMIST: RP	0.		
B	• .		961
		1	-0-78

Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell

1-2

Date
6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 306 W. Wall, Suite 320 Midland, TX 79701

July 5, 1996 Receiving Date: 06/15/96 Sample Type: Water Proj. Locat.: Texaco North Eunice Plant Sampling Date: 06/14/96 Sample Condition: I & C Sample Received by: McD Project No: 786 Project Name: Texaco E & P Inc.

Extraction Date: 06/17/96

Analysis Date: 06/18/96

PAH	Reporting	T54146			Analysi	s Date: 06/18/96
8700 Compounds (mg/L)	Limit	WW #1	QC	RPD	€EA	%IA
Naphthalene	0.001	ND	102	10	87	102
Acenaphthylene	0.001	ND	99	9	85	99
Acenaphthene	0.001	ND	97	9	87	97
Fluorene	0.001	ND	97	11	81	97
Phenanthrene	0.001	ND	94	8	85	94
Anthracene	0.001	ND	99	11	80	99
Fluoranthene	0.001	ND	95	9	82	95
Pyrene*	0.001	ND	103	5	100	103
Benzo[a]anthracene*	0.001	ND	104	7	92	104
Chrysene*	0.001	ND	109	7	100	109
Benzo[b]fluoranthene*	0.001	ND	109	12	121	109
Benzo[k]fluoranthene*	0.001	ND	94	0	145	94
Benzo[a]pyrene*	0.001	ND	109	7	140	109
Indeno[1,2,3-cd]pyrene*	0.001	ND	100	8	128	100
Dibenz[a,h]anthracene*	0.001	ND	97	11	110	97
Benzo[g,h,i]perylene*	0.001	ND	97	7	128	97

*ND = Not Detected

Nitrobenzene-d5 SURR 2-Fluorobiphenyl SURR Terphenyl-d14 SURR CHEMIST: RD/CC METHODS: EPA SW 846-8270, 3510.

% RECOVERY

77 70

88

7-8-96

Director, Dr. Blair Leftwich

Director, Dr. Bruce McDonell

DATE

A Laboratory for Advanced Environmental Research and Analysis

XSIS. J

Boring/Well:BH-1Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Sump (NS), east of facilityTotal Depth:52'Date Installed:7/29/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
5-7	206	Gray-tan, caliche, some clay, staining and odor
10-12	233	*Tan, fine grain sand and caliche
15-17	28	Tan, fine grain sand and caliche
20-22	239	Tan, fine grain sand, odor
25-27	207	Tan, fine grain sand, odor
20-32	İ22	Brown, fine grain sand
35-37	159	Brown, fine grain sand
40-42	69	Brown, fine grain sand, some pink sand
45-47	255	Brown, fine grain sand
50-52	421	*Tan/pink fine grain sand, ground water
·		TD- 52'

NOTE:

* Selected for analysis

Boring/Well:BH-2Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Sump (NS), east of facilityTotal Depth:52'Date Installed:7/29/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
5-7	415	Black and gray, clay and caliche, stained soil
10-12	448	*Tan-gray, caliche, soft
15-17	177	Tan, fine grain sandstone and caliche
20-22	497	Tan, fine grain sandstone and caliche
25-27	384	Brown, fine grain sand and caliche
30-32	440	Brown, fine grain sand
35-37	127	Brown, fine grain sand
40-42	29	Brown, fine grain sand
45-47	372	Brown, fine grain sand
50-52	-	*Tan, fine grain sand, ground water
		TD- 52'

NOTE:

* Selected for analysis

Boring/Well:MW-1 (BH-1)Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Monitor Well (south of compressor)Total Depth:57'Date Installed:7/22/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0-5	6	Reddish fine grain sand and clay, no odor or staining
6-10	-	White and tan caliche layer, friable layer, trace fine grain sand
10-12	2	Brown, fine grain sand, clean, loose, well sorted
15-17	3	Brown, fine grain sand, clean, loose, encountered layers of dense caliche and sandstone
20-22	2	White, caliche, dense layer, some sandstone (lost 95% of splitspoon sample)
25-27	4	*Tan, fine grain sand, trace of white caliche
30-32	7	Tan, fine grain sand, trace of white caliche, no staining
35-37	1	Tan, fine grain sand, trace of white caliche, no staining, damp
40-42	2	Tan, fine grain sand, trace of white caliche, no staining, damp
45-47	2	Tan, fine grain sand, trace of white caliche, no staining, damp
50-52	2	Tan, fine grain sand, trace of white caliche, no staining, damp
55-57	414	*Tan, fine grain sand, loose, trace grayish staining, encountered ground water
		TD- 57'
	<u> </u>	``````````````````````````````````````

NOTE:

* Selected for analysis

Boring/Well:AH-1Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:South Sump of Engine RoomTotal Depth:6.8'Date Installed:8/9/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0-2	-	Surfacial staining, oily soil on surface, tan, fine grain sand
2-2.5	0	Tan, fine grain sand, loose, some caliche rock
4-4.5	0	White caliche and fine grain sand, no staining or odor
6-6.3	0	White caliche and fine grain sand, no staining or odor, 6.3 feet dense layer of tan caliche
6.3-6.8	1	*Tan and white caliche, some cemented sandstone, no staining or odor
		TD- 6.8'

NOTE:

* Selected for analysis

AH - Auger Hole (hand auger sampling)

Boring/Well:AH-1Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:North Sump of Engine RoomTotal Depth:8.4'Date Installed:8/9/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0-2	-	Tan, fine grain sand, no staining or odor
2-2.5	0	Reddish clay and fine grain sand, no staining
4-4.5	0	Tan, fine grain sand and white caliche, friable caliche
6-6.5	0	White, caliche, friable, clean, no staining, some caliche rock, trace fine grain sand
8.2-8.4	0	*White, caliche, clean, no staining or odor, auger refusal @ 8.4 feet
		TD- 8.4'
		·
		· · · · · · · · · · · · · · · · · · ·

NOTE:

* Selected for analysis

AH - Auger Hole (hand auger sampling)

Boring/Well:BH-1Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Waste Oil and Water Storage Area (SOA)Total Depth:32'Date Installed:7/23/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0-2	-	Reddish clay, some fine grain sand, clean
5-7	1	Reddish clay, some fine grain sand, clean
10-12	2	Brown, fine grain sand, some reddish clay, clean
15-17	2	Tan, fine grain sand, some white caliche, dense, noted 6" grayish staining, no odor
20-22	3	Tan, fine grain sand, trace of caliche, white dense layers
25-27	2	Tan, fine grain sand, loose, well sorted, clean
30-32	2	Tan, fine grain sand, loose, well sorted, clean
		TD- 32'

NOTE:

Boring/Well:BH-2Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Waste Oil and Water Storage Area (SOA)Total Depth:27'Date Installed:7/24/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0-3	-	Reddish clay, some fine grain sand, clean
5-7	1	Tan, fine grain sand and white caliche, no odor or staining
10-12	2	Tan, fine grain sand and white caliche, no odor or staining
15-17	2	Tan, fine grain sand and white caliche, no odor or staining
20-22	4	White caliche layer, dense, trace odor, some layers loose
25-27	2	White caliche layer, dense, trace odor, some layers loose
		TD- 27'

NOTE:

Boring/Well:BH-3Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Waste Oil and Water Storage Area (SOA)Total Depth:27'Date Installed:7/24/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0-3	-	Reddish clay, some fine grain sand, clean
5-7	1	White, caliche, some reddish clay, clear
10-12	2	Brown, fine grain sand and white caliche, clean, no staining
15-17	2	White caliche, dense layer, lost 90% of splitspoon sample
20-22	1	Tan, fine grain sand, some caliche layers
25-27	1	Tan, fine grain sand, loose, well sorted, some sandstone
		TD- 27'

NOTE:

Boring/Well:BH-4Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Waste Oil and Water Storage Area (SOA)Total Depth:37'Date Installed:7/24/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0-2	-	Reddish clay, some fine grain sand, no staining
5-7	5	White caliche and reddish clay, caliche layers, no staining
10-12	28	Brown, fine grain sand, trace of white caliche, some trace of odor, no staining
15-17	58	Tan, fine grain sand and some friable white caliche, trace odor, no staining
20-22	69	Tan, fine grain sand and some friable white caliche, trace odor, no staining
25-27	154	Tan, fine grain sand, loose, some layers of dense sandstone, trace odor
30-32	39	Tan, fine grain sand, loose, clean, trace odor
35-37	8	Tan, fine grain sand, loose, clean, trace odor
		TD- 37'

NOTE:

BH - Borehole (rig-splitspoon sampling)

Midland, Texas

Boring/Well:BH-5Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Waste Oil and Water Storage Area (SOA)Total Depth:37'Date Installed:7/24/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0.5-1	588	Black staining, clay and fine grain sand, some grayish staining
5-7	500	*White, caliche, trace fine grain sand, strong odor, trace gray staining
10-12	353	White, caliche, trace fine grain sand, strong odor, trace gray staining
15-17	232	Tan, fine grain sand, well sorted, some trace grayish staining, some caliche, dense
19-20	143	Tan, fine grain sand, and white caliche, some dense, trace of black staining
25-27	7	Tan, fine grain sand, loose, clean, well sorted, some caliche, no staining
30-32	12	Tan, fine grain sand, loose, clean, well sorted, some caliche, no staining
35-37	3	*Tan, fine grain sand, loose, clean, well sorted, some caliche, no staining
		TD- 37'
		·

NOTE:

* Selected for analysis

BH - Borehole (rig-splitspoon sampling)

Midland, Texas

Boring/Well:BH-6Site Location:TexacSample Location:WasteTotal Depth:42'Date Installed:7/24/9

Texaco E & P Eunice #1 (North) Gas Plant Waste Oil and Water Storage Area (SOA) 42' 7/24/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0.5-1	478	Black staining, fine grain sand, some clay matrix, odor strong
5-7	496	*Grayish staining, fine grain sand and caliche
10-12	418	Tan, fine grain sand and white caliche, some black staining
15-17	327	White and tan, caliche and sandstone, layer dense, lost sample
20-22	487	White caliche, dense layer, some fine grain sand and sandstone layers
25-27	35	Tan, fine grain sand, loose, well sorted, clean
30-32	33	Tan, fine grain sand, loose, well sorted, clean, damp
35-37	13	Tan, fine grain sand, loose, well sorted, clean, damp
40-42	6	Tan, fine grain sand, loose, well sorted, clean, damp
		TD- 42'

NOTE:

* Selected for analysis

Boring/Well:BH-7Site Location:TexacoSample Location:Waste CTotal Depth:37'Date Installed:7/25/96

Texaco E & P Eunice #1 (North) Gas Plant Waste Oil and Water Storage Area (SOA) 37' 7/25/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0.5-1	489	Black and gray staining, fine grain sand, strong odor
1-3	-	Black and gray staining, fine grain sand, strong odor
5-7	415	Caliche layer, grayish staining, trace fine grain sand
10-12	450	Tan, fine grain sand, trace caliche, trace gray staining
15-17	153	Tan, fine grain sand, layer dense white caliche, no staining
19		Dense caliche layer
20-22	26	White caliche layer, some layers of fine grain sand, trace odor
25-27	19	Tan, fine grain sand, well sorted, clean, loose
30-32	7	Tan, fine grain sand, well sorted, clean, loose, some layers of sandstone, damp
35-37	6	Tan, fine grain sand, well sorted, clean, loose, some layers of sandstone, damp
		TD- 37'

NOTE:

Boring/Well:BH-8Site Location:Texaco E & P Eunice #1 (North) Gas PlantSample Location:Waste Oil and Water Storage Area (SOA)Total Depth:27'Date Installed:7/25/96

Depth (Ft)	OVM	SAMPLE DESCRIPTION
0.5-1	99	Black and gray staining, fine grain sand, some clay matrix
5-7	435	*White, caliche, trace fine grain sand, no staining
10-12	5	Tan, fine grain sand, trace caliche, no staining or odor
15-17	18	Lost sample (cuttings), white caliche dense layer
20-22	43	Tan, fine grain sand, trace black staining, trace odor, some caliche
25-27	8	*Tan, fine grain sand, some dense sandstone layers, no staining or order
		TD- 27'

NOTE:

* Selected for analysis

1. Monitor well (MW-1) installation.

2. Monitor well (MW-1) installation.

3. Monitor well (MW-1) installation.

4. Monitor well (MW-1) surface completion.

5. Waste oil and water storage area

Borehole (BH-5) installation at the waste oil and water storage area.

7. Borehole (BH-6) location at the waste oil and water storage area.

9. Area of boreholes BH-7 and BH-8 located west of waste oil and water storage area.

10. Area of boreholes BH-3 and BH-4 located on the west of waste oil and water storage area.

11. North sump located northeast of facility.

12. North view of north sump.

13. Southeast view of north sump.

14. South view, north sump, borehole locations BH-1 and BH-2.

15. Sump, north of engine room.

16. Sump, north of engine room, augerhole (AH-1) installation.

17. Sump, south of engine room, augerhole (AH-1) location.

19. Plant water well (WW-1)

