

MONITORING REPORTS

DATE: 1989 - 1988

Mr. Thomas D. Clark Regional Project Officer U.S. Environmental Protection Agency 1445 Ross Avenue Dallas, TX 75202-2733

Reference: EPA Contract No. 68-01-7374; Work Assignment No. R26-06-02; Comprehensive Ground-Water Monitoring Evaluation; Phillips Petroleum-Artesia Natural Gas Plant; Artesia, New Mexico; EPA I.D. No. NMD060709667; CME Report

Dear Mr. Clark:

As you requested, we have enclosed one copy of the deliverable and one copy of the cover letter for the above-referenced project. We are sending the original report and two copies of the report to Julie Wanslow at the New Mexico Environmental Improvement Division.

Because of the unusual length of time required for analysis of samples by the EID laboratory and the fact that the current contract terminates on March 31, 1989, we will be unable to respond to any comments you may have concerning this report. However, we would like to offer you a copy of the report (excluding Appendices C, D, and E) on a floppy disk in "Word Perfect 5.0" format. This would allow you to make revisions to the report as you require.

As a result of this evaluation, we found several technical deficiencies which may constitute violations of 40 CFR Part 265 Subpart F and applicable sections of Part 270. Detailed lists of the deficiencies and potential regulatory violations are provided in our report. Mr. Thomas D. Clark March 27, 1989 Page Two

Feel free to contact me or Steve Muse, the Work Assignment Manager, at our new number (703) 548-4700, if you have any questions or desire a floppy disk.

Sincerely,

Arthur Glazer

Technical Director

Enclosure

- cc: J. Wanslow, EID (original and two copies)
 - J. Levin
 - D. Bean
 - A. Schaffer (w/o enclosure)
 - S. Muse
 - J. Middleton, HLA-DT

COMPREHENSIVE GROUND-WATER MONITORING EVALUATION

REPORT

Phillips Petroleum-Artesia Natural Gas Plant Artesia, New Mexico EPA I.D. Number NMD060709667

Prepared for:

U.S. Environmental Protection Agency Region VI 1445 Ross Avenue Dallas, Texas 75202-2733

Prepared by:

Kearney/Centaur A Division of A.T. Kearney, Inc. 225 Reinekers Lane Alexandria, VA 22313

EPA Contract No. 68-01-7374 Work Assignment No. R26-06-02

March 1989

TABLE OF CONTENTS

1.0	INTRO	DUCTION		1		
	1.1 1.2 1.3	Documen	ption, Objective and Scope nts and Other References Used ents of the Comprehensive Ground-Water Monitoring	1 1		
	1.4	Eval: Facili	uation	1 2		
	1.5		y of the Regulatory Status of the Phillips Petroleum tesia Natural Gas Plant	2		
		1.5.1	Status of the Permitting Process at the Artesia Refinery	2		
		1.5.2	Ground-Water Monitoring Status of the Artesia Refinery	4		
2.0	KEY F	INDINGS		5		
3.0			F THE OFFICE EVALUATION AND FIELD EVALUATION AT THE TURAL GAS PLANT	11		
4.0	ANALY	TICAL R	ESULTS	12		
5.0	SUMMARY AND CONCLUSIONS					
	5.1	Office	Evaluation	14		
		5.1.1	Adequacy of the Characterization of Subsurface Geology and Identification of Related Data Gaps	14		
		5.1.2	Adequacy of the Characterization of the Uppermost Aquifer and Related Data Gaps	15		
		5.1.3		16		
	5.2	Field	Evaluation	18		
		5.2.1	Adequacy of the Design and Construction of the Ground-Water Monitoring System	18		
		5.2.2	Adequacy of Sample Collection Procedures	20		
	·	5.2.3	Adequacy of Sample Preservation and Handling Procedures	21		
		5.2.4	Adequacy of Chain-of-Custody Procedures	22		
		5.2.5	Adequacy of Field Implementation of the Quality			
			Assurance/Quality Control Program	22		
		5.2.6	Integrity of Monitoring Wells at the Surface	23		
	5.3		sions Concerning the Adequacy of the Ground-water	22		
		non1	toring Program	23		

PAGE

Į.

TABLE OF CONTENTS (Cont.)

<u>Page</u>

Į.

1

6.0 REFERENCES	24
Appendix A - Office Evaluation Checklist	
Appendix B - Field Evaluation Checklist	
Appendix C - Field Log	
Appendix D - Photograph Log	
Appendix E - Analytical Results	

LIST OF EXHIBITS

Exhibit	1-1	-	Phillips Petroleum - Artesia Plant Monitoring Well Locations	3
Exhibit	5-1	•	Monitoring Well Construction Diagram	17

LIST OF TABLES

Table	2-1 -	Technical Deficiencies Which May Constitute Regulatory Violations	6
Table	4-1 -	Analytical Results Summary	13
Table	5-2-	Water Level Data Summary	19

1.0 INTRODUCTION

1.1 <u>Description</u>, <u>Objective and Scope</u>

A Comprehensive Ground-Water Monitoring Evaluation (CME) is a detailed evaluation of the design and operation of the ground-water monitoring systems at RCRA-regulated facilities. The objective of the CME is to determine if a facility has, in place, a ground-water monitoring system, which is adequately designed and operated to detect releases of hazardous constituents or to define the rate and extent of migration of hazardous constituents from a regulated land-based treatment, storage, or disposal unit. This is a requirement under 40 CFR 265, Subpart F.

The purpose of this CME report is to present the findings of the CME conducted at the Phillips Petroleum - Artesia Natural Gas Plant (Artesia) and to identify any regulations under 40 CFR Parts 265 and 270 which may have been violated.

1.2 Documents and Other References Used

The references used to prepare this report include the facility's RCRA Part A permit application; correspondence between the facility and EPA Region VI and the New Mexico Environmental Improvement Division (EID); previously conducted facility inspection reports; the facility's contractor reports; regional geologic and hydrogeologic reports; the facility's sampling and analysis plan; communications with EID and Phillips personnel; and an interview with Phillips personnel during the field evaluation.

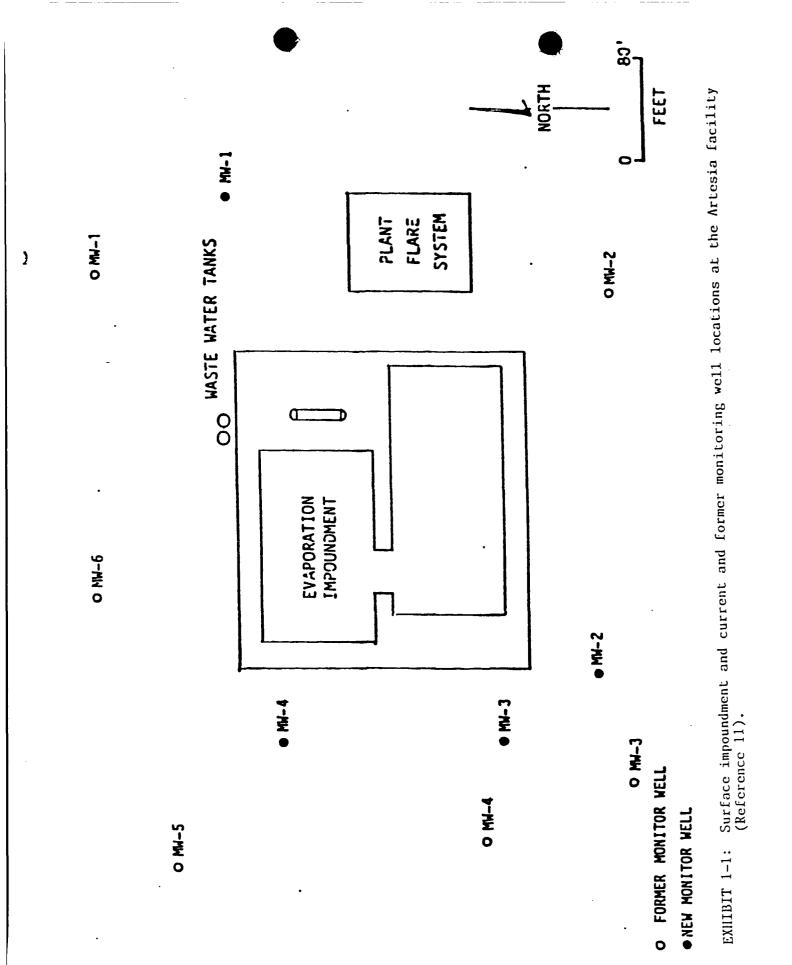
1.3 Components of the Comprehensive Ground-Water Monitoring Evaluation

A CME is a two-phased process comprised of both office and field evaluation components. The office evaluation is the first phase of the CME and is intended to determine the adequacy of the design of the facility's groundwater monitoring system (GWMS). The field evaluation is the second phase of

the process, and involves a field evaluation for the operation of the system, as well as verification (where possible) of the findings of the office evaluation.

To assist the reviewer in the CME process, office and field evaluation checklists (Appendices A and B, respectively) were developed using the RCRA Ground-Water Monitoring Technical Enforcement Guidance Document (TEGD) as a guide. These checklists are completed by the reviewer for each facility at which a CME is performed.

1.4 Facility Description and Operation


The Artesia facility (EPA ID No. NMD060709667) is located near Artesia, New Mexico in the southeastern part of the state (Section 7, T185, R28E). At the Artesia plant, raw natural gas is processed for recovery of liquid hydrocarbon and sulfur.

The facility operated a surface impoundment for the treatment of cooling tower blowdown water from 1962 to 1983. The water contained chromium which was used as a corrosion inhibitor. In September 1983, the facility discontinued using chromium and began using a non-hazardous phosphate treatment for corrosion control (8). In February 1986, the facility discontinued use of the surface impoundment and in March 1986 began closure activities. A map depicting the surface impoundment, the former GWMS and the new GWMS is included as Exhibit 1-1.

1.5 <u>History of the Regulatory Status of the Artesia Facility</u>

1.5.1 Status of the Permit Process for the Artesia Facility

The Artesia facility notified EPA of its hazardous waste management activities in August 1980, and on November 19, 1980 submitted a Part A permit application. In June 1982, the owner/operator notified EPA that after a review of the facility's process, it had been determined that the facility had

incorrectly notified and applied for a RCRA permit. The notification and Part A application were then withdrawn. EPA issued a Warning Letter to the Artesia facility in February 1983 for failure to submit an annual report for hazardous waste management operations during 1981. The facility filed an amended Part A application in March 1983. In September 1983, EPA issued a Compliance Order to the Artesia facility directing it to cease all hazardous waste activity, submit a closure plan/post-closure plan for the surface impoundment, or submit a Part B application for a RCRA operating permit. In August 1984, the facility submitted a closure/post-closure plan for closure of the surface impoundment. In September 1984, the facility applied to the New Mexico Oil Conservation Division (NMOCD) for an injection well permit in order to dispose of liquids resulting from closure of the surface impoundment. The facility submitted a report to demonstrate clean closure of the impoundment in February 1985. Closure certification approval by EID is pending. NMOCD approved Artesia's application for an injection well permit in July 1985.

In December 1987, Artesia submitted a revised post-closure plan to address ground-water monitoring requirements⁽⁶⁾.

1.5.2 Ground-Water Monitoring Status of the Artesia Facility

The Artesia facility operated a surface impoundment for the disposal/treatment of cooling tower blowdown water from 1962 to 1983. The facility constructed six interim status monitoring wells to monitor the uppermost aquifer beneath the surface impoundment from 1981 to 1984. These wells were judged by EID and EPA Region VI to be inadequately designed and were plugged and abandoned. EID directed the facility to install four new monitoring wells (MW-1 through MW-4) and, in April 1988, the facility constructed these wells at the surface impoundment. The facility began sampling the wells in May 1988 under first year interim status detection monitoring requirements. The facility will continue to monitor under interim status, pending approval or rejection of the surface impoundment closure certification by EID.

2.0 <u>KEY FINDINGS</u>

This section presents the findings of the CME in terms of the elements of ground-water performance standards which have not been met by the Artesia facility, the technical deficiencies which were discovered during the office and field evaluations, and the regulations under 40 CFR Parts 265 and 270 which may have been violated. Table 2-1 summarizes the findings. Subsequent sections provide the basis for these findings and present further details about the facility and its operations.

clements of ground water Performance Standard Requirements Which Were Not Met	Technical Deficiencies Which May Constitute Violations Under 40 CFR Parts 265 and 270	Regulatory Citations
Uppermost aquifer must be correctly identified; ground- water flow directions and rates must be properly defined; and	o Failure to adequately characterize site hygrogeology and to clearly define the extent of the uppermost aquifer in the area of the facility	\$265.90(a) \$265.91(a)(1) (a)(2) *\$270.14(c)(2)
geologic and hydrogeologic formations underlying the site must be fully characterized	o Failure to adequately consider aquifers which may be hydraulically interconnected to the uppermost aquifer	\$265.90(a) \$265.91(a)(1) (a)(2) *§270.14(c)(2)
	o Failure to collect date sufficient to establish ground-water flow directions and rate (relying too heavily on regional data)	\$265.90(a) \$265.91(a)(1) (a)(2) *§270.14(c)(2)
	o Failure to assess significance of vertical gradients when evaluating flow rates and directions	§265.90(a) §265.91(a)(1) (a)(2) §270.14(c)(2)
	o failure to prepare flow nets	
	o Failure to document the procedure for establishing the potentiometric surface	§265.90(a) §265.91(a)(1) (a)(2) §270.14(c)(2)
	o Failure to document the method(s) of obtaining samples during the 1984 boring program	§265.90(a) §265.91(a)(1)
	o failure to consider temporal and seasonal variations in water levels when establishing flow directions	§265.90(a) §265.91(a)(1) (a)(2) §270.14(c)(2)

* Indicates potential Class I regulatory violation.

Table 2-1

Uppermost aquifer must be correctly identified; ground- water flow directions and rates must be properly defined; and geologic and hydrogeologic formations underlying the site must be fully characterized (cont.) o Failure to document presence or layer o Failure to provide geologic and b concerning subsurface conditions o Failure to provide geologic and b concerning subsurface conditions o Failure to previde geologic and b concerning subsurface conditions		
site d (cont.)	o Failure to perform pump tests to determine hydraulic conductivity of uppermost aquifer and to prove a lack of interconnection between aquifers	§270.14(c)(2)
 o Failure to document pr layer o Failure to drill suffi program to establish a between boreholes o Failure to provide gec concerning subsurface o Failure to prepare fie 	Failure to collect sufficient hydrogeologic data to support selection of the geometric dimensions of the uppermost aquifer	\$265.90(a) \$265.91(a)(1) (a)(2) *\$270.14(c)(2)
 o Failure to drill suffi program to establish a between boreholes o Failure to provide get concerning subsurface o Failure to prepare fie 	o Failure to document presence or absence of confining layer	*§270.14(c)(2)
o Failure to provide geo concerning subsurface o Failure to prepare fie	o Failure to drill sufficient borings in the site investigative program to establish accurate correlation of geologic units between boreholes	§270.14(c)(2)
o Failure to prepare fie	o Failure to provide geologic and hydrogeologic cross-sections concerning subsurface conditions	§270.14(c)(2)
and the second sec	o Failure to prepare field notes and adequate boring logs	§270.24(c)(2)
ה בשורתו אין האור אין	o Failure to prepare geologic or soil maps	§270.14(c)(2)
o Failure to perform materia analyses on boring samples	o Failure to perform material tests and geochemical analyses on boring samples	§270.14(c)(2)
o Failure to prepare structure m formations and confining layer	o Failure to prepare structure maps of the water-bearing formations and confining layer	§270.14(c)(2)

ĺ

Table 2-1 (Cont.)

* Indicates potential Class I regulatory violation.

!

1

| ;

L

1

ļ.

|

Elements of Ground-Water Performance Standards Requirements Which Were Not Met	Technical Deficiencies Which May Constitute Violations Under 40 CFR Parts 265 and 270	Regulatory Citations
Uppermost aquifer must be correctly identified; ground-	o Failure to document qualifications of personnel supervising boring program in 1984	§270.14(c)(2)
water flow directions and rates must be properly defined; and geologic and hydrogeologic	o Overreliance on regional geologic and hydrogeologic data in site investigation	§270.14(c)(2)
formations underlying the site must be fully characterized (cont.)	o Failure to provide a topographic map prepared by a licensed surveyor	§270.14(c)(2)
	o Failure to prepare a contour map accurately depicting the potentiometric surface of the uppermost aquifer	§270.14(c)(2)
	o Failure to document methods or criteria used to correlate and analyze subsurface data	§270.14(c)(2)
	o Failure to provide documentation of criteria used to select boring locations	§270.14(c)(2)
	o Failure to have 1984 boring logs prepared by a qualified geologist	§270.14(c)(2)
Background monitoring wells must be constructed so as to yield samples that are representative of site ground-water quality and located so as to yield samples unaffected by the facility	o Failure to install a background well hydraulically upgradient from the surface impoundment	*§265.91(a)(1) *§265.91(a)(1)
Downgradient monitoring wells must be located so as to immediately detect any contamination migrating from the facility and constructed	o Failure to implement a ground water monitoring program capable of determining the facility's impact on the quality of ground water in the uppermost aquifer underlying the facility	*§265.90(a)
so as to yield samples representative of on-site ground-water quality	o Failure to properly develop monitoring wells after construction	*§265.91(a)

ľ

l

}

Table 2-1 (Cont.)

* Indicates potential Class I regulatory violation.

1

| | |

r T

	Table 2-1 (Cont.)	
Elements of Ground-Water Performance Standards Requirements Which Were Not Met	Technical Deficiencies Which May Constitute Violations Under 40 CFR Parts 265 and 270	Regulatory Citations
Samples from background and down- collected and analyzed		\$265.93(d)(4) \$270.14(c)(4)
	o failure to transfer samples directly to containers from bailer	\$265.90(a) \$265.92(a) \$265.93(d)(4) \$270.14(c)(4)
	o Failure to use trip blanks for each type of sample container	\$265.90(a) \$265.92(a) \$265.93(d)(4) \$270.14(c)(4)
	o Failure to document type of sample containers for for inorganics in the sampling and analysis plan	\$265.90(a) \$265.92(a) \$265.93(d)(4) \$270.14(c)(4)
	o Failure to use sampling methods which can detect immiscible layers	§265.90(a) §265.92(a) §265.93(d)(4) §270.14(c)(4)
	o Failure to obtain equipment blanks	§265.90(a) §265.92(a) §265.93(d)(4) §270.14(c)(4)
	o Improper handling of samples for volatiles analysis; samples agitated as placed in containers	§265.90(a) §265.92(a) §265.93(d)(4) §270.14(c)(4)
	o Chain-of-custody form does not request time or date of collection	§265.90(a) §265.92(a) §265.93(d)(4)

3.0 <u>DISCUSSION OF THE OFFICE EVALUATION AND FIELD EVALUATION AT PHILLIPS</u> <u>ARTESIA NATURAL GAS PLANT</u>

The office evaluation and field evaluation phases of a CME involve a review of the available file material concerning the facility's ground-water monitoring program and GWMS design, and a site visit for the purpose of evaluating the operation of the GWMS. Checklists for both the office and field evaluation have been developed to aid the technical reviewer in the evaluation. These checklists have been completed for this CME and are attached as Appendixes A and B. Findings and conclusions of the office and field evaluations are presented in Sections 5.1 and 5.2, respectively.

EPA Region VI and EID requested that the Kearney Team obtain splits of groundwater samples collected by Phillips during the field evaluation at the Artesia facility. Samples from MW-1 through MW-4 were to be analyzed for volatile organics, semi-volatile organics, turbidity and Priority Pollutant Metals. EID requested the Kearney Team to obtain analytical services for the volatile and semi-volatile samples, and that the metals and turbidity analyses be performed by the New Mexico Health and Environmental Department, Scientific Laboratory Division in Albuquerque. At the request of the laboratory division, samples submitted for metals analyses were preserved with nitric acid in the field. The Kearney Team provided sample containers and preservatives necessary for the split samples.

The field evaluation at the Artesia facility was conducted on October 26 and 27, 1988. The Kearney Team included Steve Muse and Marianne Smith. The team arrived at the facility at 10:50 a.m. (CST) on October 26, and met briefly with Mike Ford, the Environmental Technician for the Phillips Petroleum facilities in the area. The team explained to Mr. Ford that they would observe his techniques and procedures for well evacuation, sample collection and handling, and recordkeeping. Mr. Ford agreed to provide sample splits to the Kearney Team. Ambient air temperatures ranged from 65°F to 75°F, winds were from the south at 15 mph and skies were sunny to partly cloudy for the two days.

All samples were stored on ice in coolers from the time of collection (October 27) until they were delivered to the analytical laboratories by Federal Express on October 29, 1988. Samples were shipped to the laboratories on the morning of October 28 because the latest tme Federal Express would accept packages for delicery was 4:00 p.m. The Kearney Team could not deliver the coolers to Federal Express until after 4:00 p.m.

Artesia personnel collected samples for analysis of water quality, and indicator parameters, and parameters listed in Appendix III to Part 265, as well as benzene, toluene, ethylbenzene and xylene.

4.0 ANALYTICAL RESULTS

The samples collected by the Kearney Team for analysis of volatiles, semivolatiles, turbidity and inorganics were shipped on the day following the day of collection via overnight air service to the designated laboratories. The chain-of-custody and analytical request forms were completed and included with each shipment. A custody seal was affixed to each cooler prior to shipment. The laboratories were notified to expect delivery of the samples the following day.

The samples collected for analysis of organic parameters were submitted to the C-E Environmental, Inc., lab in Camarillo, CA. C-E Environmental analyzed for all CLP target compounds (Hazardous Substance List) (volatiles and semivolatiles) and turbidity. In addition to the CLP target list, the samples were analyzed for 2-butanone; 1-methyl-naphthalene; (o,m,p-)cresol; and 7,12dimethylanthracene. The lab provided the standard CLP data package summarizing the results of the analyses and related QC data. Concentrations of the organic constituents detected are presented in Table 4-1.

The samples collected for the analysis of inorganic parameters were shipped to the EID lab in Albuquerque. Prior to delivery to the lab, the field team had completed all necessary analytical forms as required by EID. The EID lab analyzed the samples for Total Metals and for turbidity, and provided a data package summarizing the results of the analyses. Concentrations of the inorganic constituents detected are presented in Table 4-1. The complete data packages are included as Appendix E to this report.

During the field evaluation, a strong organic odor was noted in the samples which were collected. However, the HNu vapor analyzer detected no organic vapors in the samples or at the well heads.

TABLE 4-1

ANALYTICAL RESULTS SUMMARY

WELL NUMBER/SAMPLE NUMBER

	<u>MW-1</u> 10/88	<u>MW-2</u> 10/88	<u>MW-3</u> 10/88	<u>MW-4</u> 10/88	<u>MW-5</u> 10/88	<u>MW-6</u> 10/88
<u>CONSTITUENT</u>						
Turbidity	8.4 ⁽¹⁾	16.0	37.0	15.0	0.35 ⁽³⁾	0.70 ⁽³⁾
Acetone ⁽⁴⁾	ND ⁽²⁾	ND	ND	ND	16	ND
Benzene	10	14	ND	ND	ND	ND
Ethylbenzene	ND	50	ND	ND	ND	ND
Aluminum ⁽⁵⁾	0.3	0.6	0.3	0.5	ND	ND
Arsenic	0.012	0.095	0.105	0.013	ND	ND
Barium	ND	0.8	ND	ND	ND	ND
Boron	0.4	0.6	0.3	0.5	ND	ND
Calcium	150.	280.	270.	320.	0.1	ND
Chromium	0.009	0.011	ND	ND	ND	ND
Nickel	ND	0.06	ND	ND	ND	ND
Iron	0.2	2.7	3.6	0.3	ND	ND
Magnesium	50.	120.	96.	100.	ND	ND
Manganese	0.11	2.4	4.1	0.1	ND	ND
Silicon	25.	35.	25.	28.	ND	ND
Strontium	2.3	4.7	3.7	4.6	ND	ND
Tin	0.2	0.3	0.3 ·	0.8	0.1	ND
Vanadium	0.1	ND	ND	0.1	ND	ND
Zinc	ND	ND	ND	0.1	ND	ND

⁽¹⁾ Expressed as Nephelometric Turbidity Units (NTU)

(2) ND = Not Detected

⁽³⁾ MW-5 was an Equipment Blank and MW-6 was a Field Blank

⁽⁴⁾ Organic results expressed in parts per billion

⁽⁵⁾ Metals results expressed in parts per million

5.0 <u>SUMMARY AND CONCLUSIONS</u>

5.1 Office Evaluation

The following sections present the findings from the CME office evaluation for Artesia: Section 5.1.1, the facility's evaluation of site subsurface geology; Section 5.1.2, the facility's site hydrogeologic assessment; and Section 5.1.3, the adequacy of the design and construction of the facility's GWMS.

5.1.1 <u>Adequacy of the Characterization of Subsurface Geology and Related Data</u> <u>Gaps</u>

Data from two subsurface investigations performed at the Artesia facility were reviewed. The first investigation was completed in 1984 and the second in 1988. Both investigations were conducted in order to determine appropriate locations for monitoring wells associated with the facility's former surface impoundment. While data collected during the investigations are useful and necessary, the depth of termination of the borings completed during the studies is not sufficient to adequately characterize site subsurface geology.

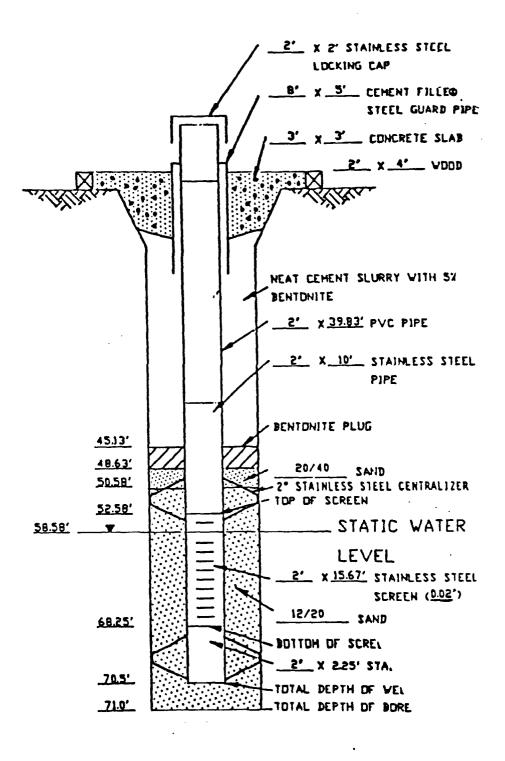
Several deficiencies and data gaps were noted during review of the facility's geologic information. The following is a description of the deficiencies which the facility should address:

- Criteria used to select spacing or depth of termination of borings
 was not provided;
- Methods of drilling and sample collection used during the 1984 study were not provided;
- Boring samples from the 1984 study were not logged by a qualified geological professional;

- Lithologic descriptions of the different strata encountered during the 1984 study were not complete or detailed enough;
- Lithologic logs from both studies (especially the 1984 work) were incomplete, lacking information such as sampling intervals, and depth and vertical extent of water-bearing units;
- No geochemical or petrographic analyses were performed on samples from either study;
- o No geologic cross-sections were prepared; and
- A site topographic map with contours intervals of two feet was not prepared.

5.1.2 Adequacy of the Characterization of the Uppermost Aquifer and Related Data Gaps

The hydrogeologic assessment conducted by Phillips at the Artesia facility is incomplete and identification of the uppermost aquifer has not been accomplished. The following deficiencies and data gaps identified during the office evaluation should be addressed by the facility:


- No materials tests (e.g., sieve analyses) were performed on borings samples;
- No piezometers were installed for use in determining the hydraulic gradient;
- o No pump tests or slug tests were performed;
- Values for hydraulic conductivity were obtained from a text on hydrogeology;

No hydrogeologic cross-sections were prepared;

- Presence or absence of the first confining layer beneath the uppermost aquifer has not been documented and lack of hydraulic communication between the uppermost aquifer and underlying aquifer has not been established;
- Narrative description and calculation of ground-water flow rate was not provided;
- The potentiometric surface map based on data collected in May 1988 does not include flow lines or static water level data, and the contour lines are not logical or accurate based on data presented;
- A vertical component of flow through unsaturated and saturated zones was not considered; and
- o Flow nets have not been prepared.

5.1.3 <u>Adequacy of the Ground-Water Monitoring Wells Design and Construction</u> <u>and Related Data Gaps</u>

The Artesia facility has closed the surface impoundment which the GWMS monitors and is awaiting approval of its closure certification by EPA and EID. The evaluation of the design and construction of the monitoring wells was based on requirements for detection monitoring under 40 CFR Parts 265.90 and 265.91. (Exhibit 5-1 is a diagram of the design of the wells.) The design and construction of the monitoring wells at the Artesia facility meets the performance standards for such systems as discussed in the RCRA TEGD. See Section 5.2.1 for further discussion of the GWMS at Artesia.

TYPICAL MONITOR WELL DESIGN

PHILLIPS ARTESIA GAS PLANT

(From Reference 11).

5.2 Field Evaluation

The field evaluation at the Artesia facility was conducted October 26 and 27, 1988 to verify the findings of the office evaluation and to collect groundwater samples. This section summarizes the findings of the field evaluation as follows: Section 5.2.1, ground-water monitoring system design and construction; Section 5.2.2, sample preservation and handling procedures; Section 5.2.4, chain-of-custody procedures; Section 5.2.5, implementation of quality assurance/quality control program; and Section 5.2.6, surficial well inspection.

5.2.1 Adequacy of the Design and Construction of the Ground-Water Monitoring System

As indicated in Section 5.1.3, the design of the monitoring wells at Artesia is consistent with recommendations in the TEGD. However, based on water level data and analytical results from both the facility's May 1988 sampling and this CME, the facility's upgradient well may actually be downgradient. (Table 5-2 is a summary of water level data collected during this CME.) In fact, it may be impossible to locate an upgradient or background well immediately adjacent to the surface impoundment, due to apparent ground-water mounding resulting from seepage from the impoundment. (During the field evaluation, it was noted that the impoundment contained standing water which had accumulated from rainfall.) It is recommended that a new background well be constructed as far away from the present location as property boundaries permit.

Because leakage from unlined ponds and impoundments tends to generate a radial flow pattern in the subsurface, it may be necessary to install additional downgradient wells adjacent to the impoundment in order to adequately monitor the saturated zone and to verify the presence/absence of a ground-water mound beneath the site. It is suggested that the additional downgradient wells be placed so as to completely encircle the impoundment.

TABLE 5-2

SUMMARY OF WATER LEVEL DATA

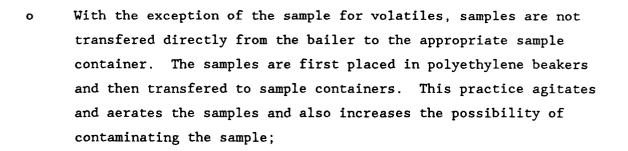
	<u>MW-1</u>	<u>MW-2</u>	<u>MW - 3</u>	<u>MW-4</u>
Elevation of Reference Point ¹	3611.47	3605.23	3603.38	3606.13
Depth of Static Water Level ²	61.04	54.76	52.91	55.84
Elevation of Static Water Level ³	3550.43	3550.47	3550.47	3550.29

³ Elevation of static water level on 10/26/88.

¹ Feet above mean sea level; data provided by facility.

² Feet below top of steel outer casing; as measured on 10/26/88.

In addition, the results of the turbidity analysis (Table 4-1 and Appendix E) indicate that the monitoring wells may not have been constructed properly or that the wells were not properly developed after construction. Turbidity levels in all four wells exceed the recommended maximum of 5 NTU. It may be necessary for the facility to redevelop the existing wells in order to obtain non-turbid samples.

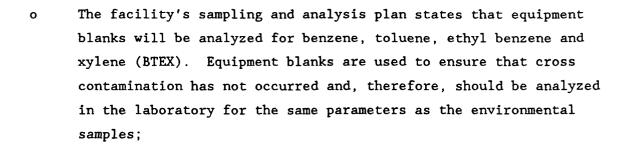

During the field evaluation, the following information presented in the facility's hydrogeologic assessment was verified:

- Numbers and locations of monitoring wells;
- A concrete pad measuring 3 feet by 3 feet and six inches thick was installed at the surface around the casing stick-up;
- A two-inch diameter steel casing inside a six-inch protective casing was visible at the surface;
- o All wells were structurally stable at the surface; and
- o All wells were fitted with locking caps.

5.2.2 Adequacy of Sample Collection Procedures

The following deficiencies in the facility's sample collection procedures were identified during the field evaluation:

o No consideration was given to the possibility that volatile organic constituents could be present in the ground water at the facility. The facility should monitor the head space in the wells for the presence of organic vapors prior to purging and sampling, and should also implement a procedure which allows for the detection of an immiscible layer(s) of organic constituents in the wells.



- The facility is careless in handling the sampling bailer,
 sometimes allowing it to come in contact with the ground or other
 points which have not been decontaminated;
- o No equipment blanks are collected at the time of equipment decontamination; and
- The facility uses propylene rope instead of fluorocarbon resincoated or single-strand stainless steel wire to lower and retrieve bailers.

5.2.3 Adequacy of Sample Preservation and Handling Procedures

The facility's sampling and analysis plan was reviewed prior to the field evaluation. During the field evaluation, the facility was observed while collecting, handling and preserving samples to ascertain if the procedures documented in the plan were followed. The following deficiencies in the plan or in the facility's implementation of the plan were identified:

o The facility's sampling and analysis plan states that equipment blanks will be collected only when equipment is decontaminated by steam cleaning. Equipment blanks should be collected <u>whenever</u> sampling equipment is decontaminated;

- o The facility's sampling and analysis plan states that trip blanks will be provided and analyzed only for BTEX. Trip blanks are used to verify the effectiveness of the laboratory's sample container decontamination and, therefore, should be analyzed for the same parameters as the environmental samples; and
- The facility's sampling and analysis plan includes procedures to be used by the analytical laboratory for cleansing sample containers for organics, but not for inorganics.

5.2.4 Adequacy of Chain-of-Custody Procedures

Chain-of-custody procedures documented in the facility's sampling and analysis plan are adequate and are implemented in the field. Only one comment is offered relative to this subject. The field logbook maintained by the facility is a looseleaf notebook. This may seem to be an innocuous item. However, some of the information entered in the logbook is required under 40 CFR 265.92 and 265.94 and, as such, should be recorded in a bound notebook with pre-numbered pages. This type of notebook is a better means for recording and documenting field data.

5.2.5 <u>Adequacy of Field Implementation of the Quality Assurance/Quality</u> <u>Control Program</u>

Most of the data generated through sampling and analysis of ground-water samples at the Artesia facility should be considered valid and reliable. However, the deficiencies noted in Section 5.2.2, 5.2.3 and 5.2.4 of this

report should be addressed by the facility immediately, to ensure that all data can be relied upon to determine what impact the facility's operation may have had on the quality of the ground-water.

5.2.6 Surficial Well Inspection and Field Observation

During the field evaluation, it was noted that the GWM at Artesia is adequately maintained and the wells are structurally stable at the surface.

5.3 <u>Conclusions Concerning the Adequacy of the Ground-Water Monitoring</u> <u>Program</u>

The Artesia facility is in the detection monitoring phase under 40 CFR Part 265 Subpart F. The program is not adequate due to deficiencies noted in this report.

The facility should address these deficiencies using the TEGD as a guide. The following major inadequacies and/or regulatory violations were noted during this CME:

- The facility's geologic and hydrogeologic investigations are inadequate;
- The facility has not adequately characterized the uppermost aquifer and first confining layer;
- The monitoring wells produce turbid samples and may require redevelopment;
- o The location of the upgradient or background well is suspect; and
- o There is not a sufficient number of downgradient wells.

6.0 <u>REFERENCES</u>

- 1. Closure and Post-Closure Plan for Waste Facility, Phillips Petroleum Artesia, New Mexico Plant, July 27, 1984.
- Consent Agreement and Final Order, U.S. EPA Region VI, Docket Number RCRA VI-314-14, August 1984.
- 3. Henderson, James, Report of Inspection at Phillips Petroleum Artesia Plant, October 2, 1986.
- 4. Compliance Order and Notice of Opportunity for Hearing, U.S. EPA Region VI, Docket Number RCRA VI-314-11, September 1983.
- 5. Correspondence from John Gould (NMEID) to B.F. Ballard (Phillips), October 13, 1987.
- 6. Post Closure Plan for Surface Impoundment, Phillip Petroleum Artesia New Mexico Plant, December 1987.
- 7. Correspondence from R.L. Stameto (New Mexico Oil Conservation Division) to E.E. Clark (Phillips), July 1, 1985.
- 8. Julie Wanslow, Report of the Compliance Evaluation Inspection at Phillips Petroleum Artesia Plant, September 1987.
- 9. Correspondence from E.E. Clark (Phillips) to Joe D. Romey (New Mexico Oil Conservation Division), September 6, 1984.
- 10. Assessment Plan Outline, Artesia Gas Plant, June 6, 1988.
- 11. Geoscience Consultants, LTD., Report on the Installation of a Ground-Water Monitoring System at the Phillips 66 Natural Gas Company Artesia Plant, June 6, 1988.
- 12. Geoscience Consultant, LTD., Sampling and Analysis Plan for Phillips 66 Natural Gas Company Artesia, Eunice, Lee and Lusk Plants, June 3, 1988.
- 13. Results of Sampling Performed at Phillips Artesia Plant on August 1986 by NMEID.
- 14. Phillips Petroleum Company, Response to EPA Comments on Artesia Plant Closure Plan, July 9, 1986.
- 15. Radian Corporation, Reports of Analyses of Ground-Water Samples from the Phillips Petroleum Artesia Plant, June 29, 1988.
- 16. Hendrickson, G.E. and R.S. Jones, Ground-Water Report 3, Geology and Ground-Water Resources of Eddy County, New Mexico, 1952.
- 17. Notice of Violation, at Phillips Petroleum facilities in Artesia, Eunice, Lee and Lusk, New Mexico, Issued by the NMEID, January 25, 1988.

- Phillips Petroleum Artesia Plant, Static Water Level Data and Driller's Logs from Former Ground-Water Monitoring System, May 1984 through September 3, 1987.
- 19. A.T. Kearney, Inc., PR/VSI Report for Phillips Petroleum Company, Artesia Natural Gas Plant, June 1988.
- 20. Part A Permit Application, Phillip Petroleum, Artesia Natural Gas Plant, November 19, 1980.
- 21. Amended Part A Permit Application, Phillips Petroleum, Artesia Natural Gas Plant, March 25, 1983.

APPENDIX A

OFFICE EVALUATION CHECKLIST

Facility Name: Phillips Petroleum-Artesia Natural Gas PlantRevision 1EPA I.D. Number: NMD000709667October 1988

APPENDIX A

Office Evaluation Checklist: Technical Evaluation of the Design of the Ground-Water Monitoring System

No	+-,	0	c	•
110	5	C	Э	•

- This checklist is adapted from OSWER Directive Number 9950.2, "Final RCRA Comprehensive Ground-Water Monitoring Evaluation (CME) Guidance Document."
- 2. One of these checklists must be completed for each CME office evaluation that is conducted; the completed checklist then must be included in the CME office evaluation report as well as the final CME report.
- 3. This checklist is a tool to be used by the technical reviewer to assure that all elements of a CME office evaluation are covered and to identify data gaps. Each line in the righthand column should be filled out using a "Y" (YES) or "N" (NO) for each corresponding question in the left-hand column. Where the file information is incomplete, use the designation "I" (Incomplete).

Information Provided (Y/N/I)

A. Review of relevant documents:

i T

1.	What	What documents were obtained for use in the Office						
	Evalu	uation:						
	a.	RCRA Part A permit application?	<u> </u>					
	Ъ.	RCRA Part B permit application?	<u> </u>					
	c.	Correspondence between the owner/operator						
		and appropriate agencies or citizens' groups?	<u> Y </u>					
	d.	Previously conducted facility inspection						
		reports?	Y					
	e.	Facility's contractor reports?	<u> Y </u>					
	f.	Regional hydrogeologic, geologic, or soil						
		reports?	Y					
	g٠	The facility's Sampling and Analysis Plan?	<u>Y</u>					
	h.	Ground-Water Quality Assessment Program Outline						
		(or Plan, if the facility is in assessment						
		monitoring)?	<u> Y </u>					
	i.	Other (specify) <u>First quarter analytical</u>						
		<u>results</u> .						

A-1

Information Provided (Y/N/I)

Β.	Evalua	tion o	f the Owner/Operator's Hydrogeologic Assessment:	
	1.	Did t	he owner/operator use the following direct	
		techn	iques in the hydrogeologic assessment:	
		a.	Logs of the soil borings/rock corings	
			(documented by a professional geologist,	
			soil scientist, or geotechnical engineer)?	<u> </u>
		b.	Materials tests (e.g., grain size analyses,	
			standard penetration tests)?	<u> N </u>
		c.	Piezometer installation for water level	
			measurements at different depths?	<u> N </u>
		d.	Slug tests?	N
		e.	Pump tests?	N
		f.	Geochemical analyses of soil samples?	<u> N </u>
		g.	Other (specify) (e.g., hydrochemical	N
			diagrams and wash analysis) <u>None</u>	

 Did the owner/operator use the following indirect techniques to supplement direct techniques data:

a.	Geophysical well logs?	<u> </u>
Ъ.	Tracer studies?	<u>N</u>
c.	Resistivity and/or electromagnetic conductance?	<u> N </u>
d.	Seismic survey?	<u> </u>
e.	Hydraulic conductivity measurements of cores?	<u>N</u>
f.	Aerial photography?	<u>N</u>

Only logs from wells constructed in 1988, not for logs from wells constructed in 1984.

Information Provided (Y/N/I)

g.	Ground penetrating radar?	<u>N</u>			
h.	Other (specify) <u>None</u>				
Di	Did the owner/operator document and present the raw				
da	ata from the site hydrogeologic assessment?	<u> </u>			
Di	Did the owner/operator document methods (criteria)				
us	sed to correlate and analyze the information?	<u> N </u>			
Di	d the owner/operator prepare the following:				
a.	Narrative description of geology?	<u> </u>			
Ъ.	Geologic cross-sections?	<u>N</u>			
c.	Geologic and soil maps?	N			
d.	Boring/coring logs?	<u> </u>			
e.	Structure contour maps of the differing water-				
	bearing zones and confining layer?	N*			
f.	Narrative description and calculation of				
	ground-water flows?	<u> </u>			
g	Water table/potentiometric map?	Y**			
h.	Hydrologic cross sections?	N			
Di	Did the owner/operator obtain a regional map of the				
aı	area and delineate the facility?				
II	If yes, does this map illustrate:				
a	Surficial geology features?	Y			

^{*} Owner/operator has not fully characterized uppermost aquifer and has not identified a confining layer.

^{**} Potentiometric surface map inadequate.

	b.	Streams, rivers, lakes, or wetlands near the	
		facility?	<u> </u>
	с.	Discharging or recharging wells near the	
		facility?	<u> N </u>
7.	Did	the owner/operator obtain a regional hydro-	
	geol	ogic map?	<u> N </u>
	If y	es, does this hydrogeologic map indicate:	
	a.	Major areas of recharge/discharge?	<u>N/A</u>
	Ъ.	Regional ground-water flow direction?	<u>N/A</u>
	c.	Potentiometric contours which are consistent	
		with observed water level elevations?	<u>N/A</u>
8.	Did	the owner/operator prepare a facility site map?	Y
		ves, does the site map show:	
	а.	Regulated units of the facility (e.g., landfill	
		areas, impoundments)?	Y
	Ъ.	Any seeps, springs, streams, ponds, or	
		wetlands?	N
	с.	Location of monitoring wells, soil borings, or	
		test pits?	Y
	d.	How many regulated land-based units does the	
		facility have (specify)?	
		If more than one regulated unit then,	one*
		• Does the waste management area encompass all	
		regulated units?	N/A
		OR	

Surface impoundment undergoing RCRA closure.

*

o Is a waste management area delineated for each regulated unit?

<u>N/A</u>

C. Characterization of Subsurface Geology of Site 1. Soil boring/test pit program: Were the soil borings/test pits performed under а. the supervision of a qualified professional? Y* Ъ. Did the owner/operator provide documentation for selecting the spacing for borings? N Were the borings drilled to the depth of the c. first confining unit below the uppermost zone of I** saturation or ten feet into bedrock? d. Were the following method(s) of drilling used: Auger (hollow or solid stem)? N*** ο Y Mud rotary? ο Reverse rotary? <u>N___</u> ο Cable tool? N n Ν Jetting? ο Other (specify) Air rotary and air-foam ο rotary (Ingersoll Rand TH-60 rig) Were continuous sample corings taken? е. N*** f. Were the samples obtained by the following methods: Split spoon? <u>N_</u> ο Shelby tube, or similar? <u>N</u> ο N Rock coring? ο N Ditch sampling? ο

* Only the borings completed in 1988, not the borings completed in 1984.

** Confining layer not identified.

*** The information for 1984 borings not provided.

į

	0	Other (specify) <u>Drill cuttings, coring</u>	
		was unsuccessful due to fine-grained	
		sediments	
g.	Were	the sample corings logged by a qualified	
	profe	essional in geology?	<u>Y*</u>
h.	Does	the field boring log include the following	
	info	rmation:	
	0	Hole name/number?	Y
	ο	Date started and finished?	Y*
	ο	Driller's name?	Y
	ο	Hole location (i.e., map and elevation)?	<u>Y*</u>
	ο	Drill rig type and bit/auger size?	Y*
	ο	Gross petrography (e.g., rock type) for each	
		geologic unit?	<u>Y</u>
	0	Gross mineralogy of each geologic unit?	<u>Y*</u>
	ο	Gross structural interpretation of each	
		geologic unit and structural features	
		(e.g., fractures, gouge material, solution	
		channels, buried streams or valleys, identifi-	
		cation of depositional material)?	<u>N</u>
	0	Development of soil zones and vertical	
		extent and description of soil type?	<u> N </u>
	ο	Depth of water-bearing unit(s) and vertical	
		extent of each?	<u>N</u>
	ο	Depth and reason for termination of	
		borehole?	Y**

* Only in 1988 logs, not in 1984 logs.

** Reason for termination not provided.

	ο	Depth and location of any contaminant	
		encountered in borehole?	<u> </u>
	ο	Sample location/number?	<u> </u>
	ο	Percent sample recovery?	<u>N</u>
	ο	Narrative descriptions of:	
		Geologic observations?	<u></u> Y**
		Drilling observations?	<u>N</u>
i.	Were	the following analytical tests performed	
	on t	he borehold samples:	
	ο	Mineralogy (e.g., microscopic tests and	
		x-ray diffraction)?	N
	0	Petrographic analysis:	
		- degree of crystallinity and cementation of	
		matrix?	<u> N </u>
		- degree of sorting, size fraction (i.e.,	
		sieving), textural variations?	<u> N </u>
		<pre>- rock type(s)?</pre>	<u> </u>
		- soil type?	<u> N </u>
		- approximate bulk geochemistry?	<u> </u>
		- existence of microstructures that affect	
		or indicate fluid flow?	<u>N</u>
	0	Falling head tests?	<u>N</u>
	0	Static head tests?	<u>N</u>
	0	Settling measurements?	<u> N </u>
	ο	Centrifuge tests?	<u>N</u>
	ο	Column drawings?	<u>N</u>
		· ·	

Possible hydrocarbon staining noted in MW-4 at 0-5' interval.

** Only in 1988 logs, not in 1984 logs.

İ.

D.	Verification of subsurface geological data			
	1.	Has the owner/operator used indirect geophysical		
		methods to supplement knowledge of geological		
		conditions between borehole locations?	<u>N</u>	
	2.	Do the number of borings and analytical data indicate		
		that the confining layer displays a low enough		
		permeability to impede the migration of contaminants		
		to any stratigraphically lower water-bearing units?	<u>I*</u>	
	3.	Is the confining layer laterally continuous across		
		the entire site?	<u>I*</u>	
	4.	Did the owner/operator consider the chemical		
		compatibility of the site-specific waste types and		
		the geologic materials of the confining layer?	<u>I*</u>	
	5.	Did the geologic assessment address or provide means		
		for resolution of any information gaps of geologic		
		data?	<u>N</u>	
	6.	Do the laboratory data corroborate the field data		
		for petrography?	<u>N**</u>	

* Confining layer not identified.

** No laboratory data generated.

_____N*____

7. Do the laboratory data corroborate the field data for mineralogy and subsurface geochemistry?

No laboratory data generated.

1

E. Presentation of geologic data

1.	Did the owner/operator present geologic cross-	
	sections of the site?	<u>N</u>
2.	Do cross-sections:	
	a. identify the types and characteristics of	
	the geologic materials present?	<u>N/A</u>
	b. define the contact zones between different	
	geologic materials?	<u>N/A</u>
	c. note the zones of high permeability or fracture?	<u>N/A</u>
	d. give detailed borehole information including:	
	o location of borehole?	<u>N/A</u>
	o depth of termination?	<u>N/A</u>
	o location of screen (if applicable)?	<u>N/A</u>
	<pre>o depth of zone(s) of saturation?</pre>	<u>N/A</u>
	o backfill procedure?	<u>N/A</u>
3.	Did the owner/operator provide a topographic map	
	which was constructed by a licensed surveyor?	<u>N</u>
4.	Does the topographic map provide:	
	a. contours at a maximum interval of two feet?	<u> N/A*</u>
	b. locations and illustrations of man-made	
	features (e.g., parking lots, factory	
	buildings, drainage ditches, storm drains,	
	pipelines)?	<u>N/A</u>

No topographic map provided.

5.

6.

*

Information Provided (Y/N/I)

c.	descriptions of nearby water bodies?	N/A
d.	descriptions of off-site wells?	<u> N/A</u>
e.	site boundaries?	<u>N/A</u>
f.	individual RCRA units?	<u>N/A</u>
g.	delineation of the waste management area(s)?	N/A
h.	well and boring locations?	<u>N/A</u>
	the owner/operator provide an aerial photograph ting the site and adjacent off-site features?	<u> N</u>
	the photograph clearly show surface water	
bodie	es, adjacent municipalities, and residences and	
are t	these clearly labelled?	<u>N/A</u>

No aerial photograph provided.

__Y

ficatio	on of the Uppermost Aquifer	
Ground	d-water flow direction:	
a.	Were the well casing heights measured by a licensed	
	surveyor to the nearest 0.01 feet?	Y
b.	Were the well water levels allowed to stabilize	
	after construction and development for a minimum	•
	of 24 hours prior to measurements?	Y
с.	Were the well water level measurements taken	
	to the nearest 0.01 feet?	Y
d.	Were the well water level measurements taken	
	from all wells within a 24-hour period?	Y
e.	Was the water level information obtained from	
	(check appropriate one):	
	o multiple piezometers placed in single	
	borehole?	N
	o vertically nested piezometers in closely	
	spaced separate boreholes?	N
·	o monitoring wells?	Y
f.	Did the owner/operator provide construction	
	details for the piezometers on wells?	<u>Y</u>
g.	How were the static water levels measured:	
	o Electric water sounder?	Y
	o Wetted tape?	Y
	o Air line?	N
	o Other (specify) <u>No</u>	
	· · · · · · · · · · · · · · · · ·	
	Ground a. b. c. d. e. f.	<pre>surveyor to the nearest 0.01 feet? b. Were the well water levels allowed to stabilize after construction and development for a minimum of 24 hours prior to measurements? c. Were the well water level measurements taken to the nearest 0.01 feet? d. Were the well water level measurements taken from all wells within a 24-hour period? e. Was the water level information obtained from (check appropriate one): o multiple piezometers placed in single borehole? o vertically nested piezometers in closely spaced separate boreholes? o monitoring wells? f. Did the owner/operator provide construction details for the piezometers on wells? g. How were the static water levels measured: o Electric water sounder? o Air line?</pre>

F.

h. Was the well water level measured in wells with equivalent screened intervals at an equivalent depth below the saturated zone?

	i.	Has the owner/operator provided a site water	
		table (potentiometric) contour map? If yes:	Y*
		o Do the potentiometric contours appear	
		logical and accurate based on topography	
		and presented data? (Consult water	
		level data.)	<u>N</u>
		o Are ground-water flow-lines indicated?	<u>N</u>
		o Are static water levels shown?	<u>N</u>
		o Can hydraulic gradients be estimated?	<u>N</u>
	j.	Did the owner/operator develop hydrologic cross-	
		sections of the vertical flow component across	
		the site using measurements from all wells?	<u>N</u>
	k.	Did the owner construct flow nets?	N
	1.	Do the owner/operator's flow nets include:	
		o piezometer locations?	<u>N/A</u>
		o depth of screening?	N/A_
		o width of screening?	<u>N/A</u>
		o measurements of water levels from all	
		wells and piezometers?	<u>N/A</u>
2.	Seaso	nal and temporal fluctuations in ground-water level	
	a.	Do fluctuations in static water levels occur?	Y
		o If yes, are the fluctuations caused by	
		any of the following:	
		Off-site well pumping?	I
		Tidal processes or other intermittent	
		natural variations (e.g., river	
		stage)?	<u>N</u>
		On-site well pumping?	<u>N</u>

Based on data from 5/88.

*

ì

ł

A-14

		Off-site, on-site construction or	
		changing land use patterns?	N
		Deep well injection?	I
		Seasonal variations?	Y
		Other (specify)I	
	b.	Has the owner/operator documented sources and	
		patterns that contribute to or affect the ground-	
		water patterns below the waste management units?	<u>N</u>
	с.	Do water level fluctuations alter the general	
		ground-water gradients and flow directions?	I
	d.	Based on water level data, do any head	
		differentials occur that may indicate a vertical	
		flow component in the saturated zone?	<u>I*</u>
	e.	Did the owner/operator implement means for	
		gauging long-term effects on water movement	
		that may result from on-site or off-site	
		construction or changes in land-use patterns?	<u>N</u>
3.	Hvdr	aulic conductivity	
- •	a.	How were hydraulic conductivities of the	
		subsurface materials determined?	
		Capperlace materials accommende.	
		o Single-well tests (slug tests)?	N
		<pre>o Multiple-well tests (pump tests)?</pre>	N
		o Other (specify) <u>Not determined;</u>	
		estimates submitted based on	
		values found in literature.	

Data not adequate to determine.

~

#

A-15

Information Provided ____(Y/N/I)___

Ъ.	If single-well tests were conducted, was it done by:	
	o Adding or removing a known volume of	
	water?	N/A
	o Pressurizing the well casing?	N/A*
c.	If single well tests were conducted in a highly	
	permeable formation, were pressure transducers and	
	high-speed recording equipment used to record	
	the rapidly changing water levels?	<u>N/A</u>
d.	Since single well tests only measure hydraulic	
	conductivity in a limited area, were enough	
	tests run to ensure a representative measure	
	of conductivity in each hydrogeologic unit?	<u>N/A</u>
e.	Is the owner/operator's slug test data (if	
	applicable) consistent with existing geologic	
	information (e.g., boring logs)?	<u>N/A</u>
f.	Were other hydraulic conductivity properties	
	determined?	<u>N</u>
g٠	If yes, provide any of the following data, if	
	available:	
	o Transmissivity	<u>N/A</u>
	o Storage coefficient	<u>N/A</u>
	o Leakage	<u>N/A</u>
	o Permeability	<u> N/A </u>
	o Porosity	<u>N/A</u>
	o Specific capacity	<u>_N/A</u>
	o Other (specify) <u>N/A</u>	

Data not adequate to determine.

4.	Iden	tification of the uppermost aquifer	
	a.	Has the extent of the uppermost saturated zone	
		(aquifer) in the facility area been defined?	
		If yes,	N
		o Are soil boring/test pit logs included?	<u>Y*</u>
		o Are geologic cross-sections included?	N
	Ъ.	Is there evidence of confining (component,	
	:	unfractured, continuous, and low permeability)	
		layers beneath the site?	<u> </u>
	с.	What is the hydraulic conductivity of the	
		confining unit (if present)? <u>Not determined</u> cm/sec	
		How was it determined? <u>Not determined</u>	
	d.	Does potential for other hydraulic	
		communication exist (e.g., lateral	
		incontinuity between geologic units, facies	
		changes, fracture zones, cross-cutting	
		structures, or chemical corrosion/alteration	
		of geologic units by leachate)?	<u> </u>

* Only lithologic logs from monitoring well boreholes from 70' to 175' deep.

** Confining layer not identified.

*** Hydrogeologic assessment incomplete; confining layer not identified.

If yes or no, what is the rationale?

<u>I***</u>

*** Hydrogeologic assessment incomplete; confining layer not indentified.

G.	Evalua	tion of	f the Facility's Ground-Water Monitoring Wells'	
	Design	and Co	onstruction	
	Note:	Thes	e questions should be answered for each	
		diff	erent well design present at the facility.	
	Note:	This	evaluation includes the four wells constructed in 19	88.
		All f	our wells have same design.	
	1.	Drill	ing methods	
		a.	What drilling method was used for the well:	
			o Hollow-stem auger?	<u> N </u>
			o Solid-stem auger?	<u>N</u>
			o Mud rotary?	<u>N</u>
		o	Air rotary?	Y
			o Reverse rotary?	N
			o Cable tool?	<u>N</u>
			o Jetting?	N
			o Air drill with casing hammer?	<u>N</u>
			o Other (specify) <u>Air-foam rotary</u>	
		b.	Were any cutting fluids (including water)	
			or additives used during drilling?	<u>Y</u>
			If yes, specify:	
			Type of drilling fluid <u>Foam</u>	
			Source of water used	I
			Foam	
			Polymers <u>No</u>	
			Other (specify) <u>No</u>	
		c.	Was the cutting fluid, or additive, identified?	<u>N</u>
		d.	Was the drilling equipment steam-cleaned prior to	
			drilling the well?	<u>Y</u>
			Other methods	

į

e.	Was	compressed air used during drilling?	Y
	ο	If yes, was the air filtered to remove oil?	Y
f.	Did	the owner/operator document procedure for	~~~~~~ ~
		ablishing the potentiometric surface?	N
	0	If yes, explain how the location was	
	Ū	established?	
g.	For	nation samples	
6.	0	Were formation samples collected initially	
	-	during drilling?	Y
	o	Were any continuous cores taken?	 N*
	0	If not, at what interval were samples taken?	5 ft*
	0	How were the samples obtained:	
	-	- Split spoon?	
		- Shelby tube?	
		- Core drill?	
		- Other (specify) <u>Drill cuttings</u>	
	o	Identify any physical and/or chemical tests	
	Ŭ	performed on the formation samples:	
		None_indicated	
		None indicated	
Moni	toring	g well construction materials	
a.	-	ntify construction materials (by number) and	
α,		meters (ID/OD).	**
	urar	$\mu \in \mathcal{L} \subset \mathcal{L} \cup \mathcal{L} \cup \mathcal{L} \cup \mathcal{L}$	~ ^

2.

^{*} No documentation was provided as to what type of sampling was performed during construction of former GWMS in 1984.

^{**} See Exhibit 5-1 in report text.

		<u>Material</u>	Diameter (ID/OD)
0	Primary casing	<u>Type 1, grade 1</u> 1120 PVC, Sched.	<u>2.067"/2.375"</u>
		40	
		<u>Type 304, stain-</u>	<u>2.067"/2.375"</u>
		<u>less steel,</u>	
		Schedule 40	
0	Secondary or	Steel to depth o:	<u>f 6"OD</u>
	<u>outside</u>	<u>five feet.</u>	
	casing (double)		
	construction)		
ο	Screen	Schedule 304	1.9"/2.375"
		<u>Stainless Steel</u>	
Hov	are the sections o	of casing and screen	
c	connected:		
0	Pipe sections the	readed?	Y
o	Couplings (frict:	ion) with adhesive or	
	solvent?		<u>N</u>
ο	Couplings (frict:	ion) with retainer sc	rews? <u>N</u>
о	Other (specify) _		
Wei	e the materials ste	eam-cleaned prior to	
ins	stallation?		<u> </u>
If	no, how were the ma	aterials cleaned?	
	N/A		

3.	Well intak	e design and well development	
	a. Was	a well intake screen installed?	<u>Y</u>
	o	What is the length of the screen for the well?	
	o	Is the screen manufactured?	<u> </u>

I

i

Information Provided ____(Y/N/I)____

Ъ.	Was	a filter pack installed?	<u> </u>
	ο	What kind of filter pack was employed?	
		(specify) <u>12/20 grade packaged silica</u>	
		sand	
	ο	Is the filter pack compatible with	
		formation materials?	Y
	ο	How was the filter pack installed?	
		Through a tremie pipe	
	ο	What are the dimensions of the filter pack?	
		<u>MW-1 = 19.4' x 6.5"; MW-2 thru MW-4 =</u>	
		<u>15' x 6.5"</u>	
	ο	Has a turbidity measurement of the well	
		water ever been made?	<u> </u>
	ο	Have the filter pack and screen been	
		designed for the <u>in-site</u> materials?	Y
c.	Was	the well developed?	<u> </u>
	ο	What technique was used for well development:	
		- Surge block?	
		- Bailer?	
		- Air surging?	·
		- Water pumping?	<u> </u>
		- Other (specify) <u>Pouring distilled and</u>	
		formation water into wells and pumping	
		with stainless steel, air-lift develop-	
		ment_pump.	

4. Annular space seals

 a. What is the annular space in the saturated zone directly above the filter pack filled with:

Į.

Two of three feet of 20/40 grade silica sand was placed over the filter pack, then bentonite seal. See Exhibit 5-1 in report text.

į.

Ĺ

-	Sodium bentonite? (specify type and grit)	
	Type and grit not indicated	
-	Cement? (specify neat or concrete) <u>No</u>	
-	Other (specify)	
ο	Was the seal installed by:	
	- Dropping material down the hole and	
	tamping?	<u>N</u>
	- Dropping material down the inside of a	
	hollow-stem auger?	<u> N </u>
	- Tremie pipe method?	<u>Y</u>
	- Other (specify) <u>No</u>	
Wa	as a different seal used in the unsaturated	
z	one?	<u> N </u>
I	f yes,	
0	Was this seal made with:	
	- Sodium bentonite? (specify type and grit)	
	N/A	
	- Cement? (specify neat or concrete) <u>N/A</u>	
	- Other (specify) <u>N/A</u>	
o	Was this seal installed by:	
	- Dropping material down the hole and	
	tamping?	<u>N/A</u>
	- Dropping material down the inside of	
	hollow stem auger?	<u>N/A</u>
	- Other (specify)N/A	
I	s the upper portion of the borehole sealed with a	
c	oncrete cap to prevent infiltration from	
t	he surface?	Y
I	s the well fitted with an above-ground protective	
d	evice and bumper guards?	<u>Y</u>
н	as the protective cover been installed with	

1

locks to prevent tampering?

<u>Y</u>

1.	Place	ement of downgradient detection monitoring wells	
	a.	Are the ground-water monitoring wells or clusters	
		located immediately adjacent to the waste	
		management area?	<u>Y</u>
	Ъ.	How far apart are the detection monitoring wells?	
		MW-2 is approximately 96' from MW-3 and	
		approximately 268' from MW-4. MW-3 is approximate-	
		ly 184' from MW-4 according to site map. See Figure	-
		1-1 in text of report.	
	с.	Does the owner/operator provide a rationale for	
		the location of each monitoring well or cluster?	Y*
	d.	Has the owner/operator identified the well screen	
		lengths of each monitoring well or clusters?	<u>Y</u>
	e.	Does the owner/operator provide an explanation	
		for the well screen lengths of each monitoring	
		well or cluster?	Y
	f.	Do the actual locations of monitoring wells	
		or clusters correspond to those identified	
		by the owner/operator?	<u>Y</u> *
2.	Place	ement of upgradient monitoring wells	
	a.	Has the owner/operator documented the location	
		of each upgradient or background monitoring	
		well or cluster?	<u>Y</u> *
	Ъ.	Does the owner/operator provide an explanation	
		for the location(s) of the upgradient or background	

* Location based on data from former GWMS.

** Confirmed during field evaluation.

	monitoring wells?	Y*
c.	What length screen has the owner/operator	
	employed in the background monitoring well(s)?	
	15.6'	<u></u>
d.	Does the owner/operator provide an explanation	
	for the screen length(s) chosen?	<u> </u>
e.	Does the actual location of each background	
	monitoring well or cluster correspond to that	
	identified by the owner/operator?	<u> </u>

*

Confirmed during field evaluation. The upgradient well may not be upgradient. See Section 5.2.1 of report text.

i.

Evalu	ation of the Facility's Assessment Monitoring Program	
1.	If the facility is in detection monitoring, has	
	the owner/operator prepared a ground water quality	
	assessment program outline?	<u>Y</u>
2.	Does the owner/operator maintain a copy of the	
	outline at the facility? (If so, try to obtain a	
	copy of the outline during the field evaluation)	<u> N</u>
3.	Does the outline meet the requirements orf 40 CFR	
	Part 265.93(a)?	<u> </u>
4.	If the facility is in assessment monitoring, does	
	the owner/operator have a ground-water quality	
	assessment program plan which has been approved	
	by EPA or the appropriate state agency?	<u>N</u>
5.	Does the owner/operator maintain a copy of the	
	plan at the facility? (If so, try to obtain a	
	copy of the plan during the field evaluation.)	<u> N</u>
6.	Does the assessment plan specify:	
	a. The number, location, and depth of wells?	N
	b. The rationale for their placement and identify	
	the basis that will be used to select subsequent	
	sampling locations and depths in later assessment	
	phases?	N
7.	Does the list of monitoring parameters include all	
	hazardous waste constituents from the facility?	<u>N</u>
	a. Does the water quality parameter list include	
	other important indicators not classified	

ī.

İ.

	as hazardous waste constituents?	<u>N/A</u>
	b. Does the owner/operator provide documentation	
	for the listed wastes which are not included?	<u>N/A</u>
8.	Does the owner/operator's assessment plan specify	
	the procedures to be used to determine the rate	
	of constituent migration in the ground water?	<u>N/A</u>
9.	Has the owner/operator specified a schedule of	
	implementation in the assessment plan?	<u>N/A</u>
10.	Have the assessment monitoring objectives been	
	clearly defined in the assessment plan?	<u>N/A</u>
	a. Does the plan include analyses and/or	
	re-evaluation to determine if significant	
	contamination has occurred in any of the	
	detection monitoring wells?	<u>N/A</u>
	b. Does the plan provide for a comprehensive	
	program of investigation to fully	
	characterize the rate and extent of	
	contaminant migration from the facility?	<u>N/A</u>
•	c. Does the plan call for determining the	
	concentrations of hazardous wastes and	
	hazardous waste constituents in the ground	
	water?	<u>N/A</u>

i

11.	Does	the assessment plan identify the		
	inves	tigatory methods that will be used in the		
	assessment phase?			
	a.	Is the role of each method in the evaluation		
		fully described?	<u>N/A</u>	
	Ъ.	Does the plan provide sufficient descriptions		
		of the direct methods to be used?	<u>N/A</u>	
	c.	Does the plan provide sufficient descriptions		
		of the indirect methods to be used?	<u>N/A</u>	
	d.	Will the method contribute to the further		
		characterization of the contaminant movement?	<u>N/A</u>	
12.	Are t	he investigatory techniques utilized in the		
	asses	sment program based on direct methods?	<u>N/A</u>	
	a.	Does the assessment approach incorporate		
		indirect methods to further support direct		
		methods?	<u>N/A</u>	
	b.	Will the planned methods called for in the		
		assessment approach ultimately meet performance		
		standards for assessment monitoring?	<u>N/A</u>	
	c.	Are the procedures well defined?	<u>N/A</u>	
	d.	Does the approach provide for monitoring wells		
		similar in design and construction to the detection		
		monitoring wells?	<u>N/A</u>	
	e.	Does the approach employ taking samples during		
		drilling or collecting core samples for further		
		analysis?	N/A	

Information Provided <u>(Y/N/I)</u>

13.	Are	the indirect methods to be used based on	
	reli	able and accepted geophysical techniques?	<u>N/A</u>
	a.	Are they capable of detecting subsurface	
		changes resulting from contaminant migration	
		at the site?	<u>N/A</u>
	b.	Is the measurement at an appropriate level	
		of sensitivity to detect ground-water quality	
		changes at the site?	<u>N/A</u>
	c.	Is the method appropriate considering the	
		nature of the subsurface materials?	<u>N/A</u>
	d.	Does the approach consider the limitations	
		of these methods?	<u>N/A</u>
	e.	Will the extent of contamination and constituent	
		concentration be based on direct methods and	
		sound engineering judgment? (using indirect	
		methods to further substantiate the findings)	<u> N/A </u>
14.	Does	the assessment approach incorporate any	
	math	ematical modeling to predict contaminant	
	move	ment?	<u>N/A</u>
	a.	Will site specific measurements be utilized	
		to accurately portray the subsurface?	<u>N/A</u>
	b.	Will the derived data be reliable?	<u>N/A</u>
	c.	Have the assumptions been identified?	<u>N/A</u>
	d.	Have the physical and chemical properties of	
		the site-specific wastes and hazardous waste	
		constituents been identified?	N/A

J. Conclusions

1.	Subsur	rface geology:	
	a.	Has sufficient data been collected to adequately	
		define petrography and petrographic variation?	N*
	b.	Has the subsurface geochemistry been adequately	
		defined?	<u>N*</u>
	c.	Was the boring/coring program adequate to	
		define subsurface geologic variation?	N*
	d.	Was the owner/operator's narrative description	
		complete and accurate in its interpretation of	
		the data?	<u>N*</u>
	e.	Does the geologic assessment address or provide	
		means to resolve any information gaps?	<u>N*</u>
2.	Ground	d-Water flowpaths:	
	a.	Did the owner/operator adequately establish the	
		horizontal and vertical components of ground-	
		water flow?	<u>N*</u>
	b.	Were appropriate methods used to establish	
		ground-water flowpaths?	N*
	c.	Did the owner/operator provide accurate	
		documentation?	<u>N*</u>
	d.	Are the potentiometric surface measurements	
		valid?	<u>Y</u>
	e.	Did the owner/operator adequately consider	
		the seasonal and temporal effects on the	
		ground water?	<u>N*</u>
	f.	Were sufficient hydraulic conductivity tests	
		performed to document lateral and vertical	

See Table 2-1 and Section 5.1.1 of this report.

Information Provided $(Y/N/I)_{-}$ variation in hydraulic conductivity in the entire hydrogeologic subsurface below the site? N* 3. Uppermost aquifer: a. Did the owner/operator adequately define the uppermost aquifer? <u>N</u>____ 4. Monitoring well construction and design: Do the design and construction of the owner/ а. operator's ground-water monitoring wells permit depth discrete ground-water samples to be taken? Y Ъ. Are the samples representative of ground-water quality? N c. Are the ground-water monitoring wells structurally stable? Y d. Does the ground-water monitoring well's design and construction permit an accurate assessment of aquifer characteristics? <u>Y * *</u> 5. Detection monitoring: Downgradient wells: а. Do the location and screen lengths of the ground-water monitoring wells or clusters in the detection monitoring system allow the immediate detection of a release of hazardous waste or constituents from the hazardous waste management area to the uppermost aquifer? ***

^{*} See Table 2-1 and Section 5.1.1 of this report.

^{**} Only for the upper portion of the aquifer.

^{***} See Section 5.2.1 of report text.

	Ъ.	Do the location and screen lengths of the	
		upgradient (background) ground-water monitoring	
		wells ensure the capability of collecting	
		ground-water samples representative of	
		upgradient (background) ground-water quality	
		including any ambient heterogeneous chemical	
		characteristics?	<u>N*</u>
6.	Asses	sment monitoring:	
	a.	Has the owner/operator adequately characterized	
		site hydrogeology to determine contaminant	
		migration?	N/A
	Ъ.	Is the detection monitoring system adequately	
		designed and constructed to immediately detect	
		any contaminant release?	<u>N**</u>
	c.	Are the procedures used to make a first	
		determination of contamination adequate?	<u>N/A</u>
	d.	Is the assessment plan adequate to detect,	
		characterize, and track contaminant migration?	<u>N/A</u>
	e.	Will the assessment monitoring wells, given	
		site hydrogeologic conditions, define the extent	
		and concentration of contamination in the	
		horizontal and vertical planes?	N/A
	f.	Are the assessment monitoring wells adequately	
		designed and constructed?	<u>N/A</u>
	g.	Are the sampling and analysis procedures	
		adequate to provide true measures of	
		contamination?	<u>N/A</u>

^{*} Upgradient well appears to be downgradient. See Section 5.2.1 of report text.

** See Section 5.2.1 of report text.

h.	Do the procedures used for evaluation of assessment monitoring data result in determinations					
	of the rate of migration, extent of migration, and					
	hazardous constituent composition of the contaminant					
	plume?	N/A_				
i.	Are the data collected at sufficient frequency					
	and duration to adequately determine the rate					
	of migration?	N/A_				
j.	Is the schedule of implementation adequate?	N/A				
k.	Is the owner/operator's assessment monitoring					
	plan adequate?	N/A_				
	o If the owner/operator had to implement his					
	assessment monitoring plan, was it implemented					
	satisfactorily?	N/A_				

APPENDIX B

FIELD EVALUATION CHECKLIST

Revision 1 July, 1988

APPENDIX B

Field Evaluation Checklist: Technical Evaluation of the Operation of the Ground-Water Monitoring System

Notes:

- This checklist is adapted from OSWER Directive Number 9950.2, "Final RCRA Comprehensive Ground-Water Monitoring Evaluation (CME) Guidance Document."
- 2. One of these checklists must be completed for each CME field evaluation that is conducted; the completed checklist then must be included in the CME report.
- 3. This checklist is a tool to be used by the technical reviewers to assure that all elements of a CME field evaluation are covered and to identify data gaps. Each line in the right-hand column should be filled out using a "Y" (YES) or "N" (NO) for each corresponding question in the left-hand column. Where the information is incomplete or unavailable at the time of the field evaluation, use the designation "U" (UNKNOWN). As appropriate, attempt to obtain the necessary information after the field evaluation, or indicate in the CME report that the information is unavailable. Specify in the report where missing information constitutes violations of 40 CFR Parts 265 or 270.

Information Provided ____(Y/N/U)

I. Check of Ground-Water Monitoring System

Note: Responses in this section apply to all wells in the system.

- A. Ground-water monitoring system design:
 Do the numbers, depths, and locations of monitoring wells correspond with those reported in the facility's hydrogeologic assessment?
- B. Monitoring well construction:
 - Identify construction materials and well diameters:

		<u>Material</u>	<u>Diameter (ID/OD)</u>
a.	Primary casing	*	*
b.	Secondary or outside		
	casing	<u>Steel</u>	<u>6" OD</u>

- 2. Is the upper portion of the borehole sealed with concrete to prevent infiltration from the surface?
- 3. Is the well fitted with an aboveground protective device? <u>Y</u>____

^{*} As-built drawings indicate a ten foot section of stainless steel casing between the screen and the bottom of the PVC and a two foot section of steel pipe at the top of the PVC. Two-inch steel casing was visible at the surface.

Y___

4. Is the protective cover fitted with locks to prevent tampering?

If a facility utilizes more than a single well design, answer the above questions on separate sheets for each well design.

Α.	Meas	surement of well depth elevations:	
	1.	Are measurements made of both depth to	
		standing water and depth to the bottom of the well?	
	2.	Are measurements taken to the nearest	
	۷.	0.01 feet?	_
	3.	What measuring device is used?	
		Electric sampler and steel tape	
	4.	Is there a reference point established by	
		a licensed surveyor?	-
	5.	Is the measuring equipment properly	
		cleaned between well locations to prevent cross-contamination?	
		ection of immiscible layers:	

I

T

	2.	Are procedures used which will detect dense-phase immiscible layers?	<u> N </u>
C.	Sampl	ing of immiscible layers:	
	1.	Are the immiscible layers sampled separately prior to well evacuation?	N/A
	2.	Do the procedures used minimize mixing with water-soluble phases?	<u>N/A</u>
D.	Well	evacuation:	
	1.	Are low-yielding wells evacuated to dryness?	<u>N/A</u>
	2.	Are high-yielding wells evacuated so that at least three casing volumes are removed?	Y
	3.	What device is used to evacuate the wells? Teflon bailer	
	4.	If any problems are encountered (e.g., equipment malfunction), are they noted in a field logbook?	<u> </u>

Ε. Sample withdrawal: 1. For low-yielding wells, are samples for volatile, pH, and oxidation/reduction potential drawn first after the well recovers? <u>N/A</u> 2. Are sampling devices either bottom valve bailers or positive gas displacement bladder pumps? _Y 3. If bailers are used, is fluorocarbon resin-coated wire, single-strand stainless steel wire, or monofilament used to raise and lower the bailer? <u>N*</u> If bladder pumps are used, are they 4. operated in a continuous manner to prevent aeration of the sample? <u>N/A</u> 5. If bailers are used, are they lowered slowly to prevent degassing of the water? Y

Retrieval line is braided propylene rope.

I

6.	If bailers are used, are the contents transferred to the sample container in a	
	way that minimizes agitation and aeration?	<u> N </u>
7.	Is care taken to avoid placing clean	
	sampling equipment on the ground or other	
	contaminated surfaces prior to insertion	
	into the well?	<u> </u>
8.	If dedicated sampling equipment is not	
	used, is equipment disassembled and	
	thoroughly cleaned between samples?	<u> </u>
9.	If samples are for inorganic analysis,	
	does the cleaning procedure for sampling	
	equipment include the following sequential	
	steps:	
	a. Nonphosphate detergent wash?	Y
	b. Dilute acid rinse (HNO ₃ or HC1)?	<u>N*</u>
	c. Tap water rinse?	<u>N**</u>
	d. Type II reagent-grade water?	<u> </u>

* Methanol

** Distilled water.

10.	If samples are for organic analysis,	
	does the cleaning procedure for sampling	
	equipment include the following	
	sequential steps:	
	a. Nonphosphate detergent wash?	Y
	b. Tap water rinse?	Y
	c. Distilled/deionized water rinse?	<u>N*</u>
	d. Acetone rinse?	<u>N**</u>
	e. Pesticide-grade hexane rinse?	<u>N**</u>
11.	Is sampling equipment thoroughly dry	
	before use?	Y
12.	Are equipment blanks taken to ensure	
	that sample cross-contamination has not	
	occurred?	N
13.	If volatile samples are taken with a	
	positive gas displacement bladder pump,	
	are pumping rates below 100 ml/min?	N/A
	••••	
In-si	tu or field analyses:	

1. Are the following labile (chemically unstable)

F.

^{*} Methanol.

^{**} Distilled water.

	parameters determined in the field:	
	a. pH?	<u>Y</u>
	b. Temperature?	<u>Y</u>
	c. Specific conductivity?	<u>Y</u>
	d. Redox potential?	<u> </u>
	e. Chlorine?	<u> N</u>
	f. Dissolved oxygen?	<u>N</u>
	g. Turbidity?	<u> </u>
	h. Other (specify) <u>None</u>	
2.	Are the in-situ determinations made after	
	well evacuation and sample removal?	Y
3.	If a sample is withdrawn from the well, are	
	parameters measured from a split portion?	<u>Y</u>
4.	Is monitoring equipment calibrated according	
	to manufacturers' specifications and	
	consistent with SW-846?	<u>Y</u>
5.	Is the date, procedure, and maintenance for	
	equipment calibration documented in the	
	owner/operator's field logbook?	Y

ļ

I

III. <u>Review of Sample Preservation and Handling Procedures</u>

A. Sample containers:

1.	Are samples transferred from the sampling device directly to their compatible containers?	<u> </u>
2.	Are sample containers for metals (inorganics) analyses polyethylene with polypropylene caps?	<u> </u>
3.	Are sample containers for organics analyses glass bottles with fluorocarbon resin-lined caps?	Y
4.	If glass bottles are used for metals samples, are the caps fluorocarbon resin-lined?	N/A
5.	Are the sample containers for metal analyses cleaned using these sequential steps: a. Nonphosphate detergent wash?	<u>I**</u>

c.	Tap water rinse?	<u> </u>

b. 1:1 nitric acid rinse?

^{*} Samples collected in clean polyethylene beakers and transferred to appropriate containers.

^{**} Procedures for decontamination of sample containers for metals analyses were not provided in the Sampling and Analysis Plan.

	d. 1:1 hydrochloric acid rinse?	I
	e. Tap water rinse?	I
	f. Distilled/deionized water rinse?	I
6.	Are the sample containers for organic analyse	es
	cleaned using these sequential steps:	
	a. Nonphosphate detergent/hot water wash?	<u> </u>
	b. Tap water rinse?	Y
	c. Distilled/deionized water rinse?	<u> </u>
	d. Acetone rinse?	Y
	e. Pesticide-grade hexane rinse?	Y
7.	Are trip blanks used for each sample contained	er
	type to verify cleanliness?	N*

VOA vials only.

*

Sampl	.e pre	servation procedures:	
1.	Are	samples for the following analyses cooled	
	to 4	°C:	
	a.	TOC?	<u>Y</u>
	b.	TOX?	<u> </u>
	c.	Chloride?	<u>Y</u>
	d.	Phenols?	<u>Y</u>
	e.	Sulfate?	<u> </u>
	f.	Nitrate?	<u> Y </u>
	g.	Coliform bacteria?	Y
	h.	Cyanide?	<u>N/A</u>
	i.	Oil and grease?	<u>N/A</u>
	j.	Hazardous constituents (Modified Appendix IX)?	<u>Y</u>
2.	Are	samples for the following analyses field	
	ació	lified to pH <2 with HNO_3 :	
	a.	Iron?	<u> </u>
	Ъ.	Manganese?	<u>Y</u>
	c.	Sodium?	<u> </u>
	d.	Total metals?	<u> </u>
	e.	Dissolved metals?	<u>Y</u>
	f.	Fluoride?	<u> </u>
	g.	Endrin?	<u>N*</u>
	h.	Lindane?	<u>N*</u>
	i.	Methoxychlor?	<u>N*</u>

Methoxychlor? i.

Stored at $4^{*\circ}C$ only.

*

1

ļ

i

i

B.

	j. Toxaphene?	<u>N</u>
	k. 2,4, D?	<u> </u>
	1. 2,4,5, TP Silvex?	<u>N</u>
	m. Radium?	<u> Y </u>
	n. Gross alpha?	<u>Y</u>
	o. Gross beta?	<u>Y</u>
3.	Are samples for the following analyses	
	field-acidified to pH <2 with H_2SO_4 :	
	a. Phenols?	<u> </u>
	b. Oil and grease?	N/A
	-	
4.	Is the sample for TOC analysis field-acidified	N*
	to pH <2 with HCl?	
	•	
5.	Is the sample for TOX analysis preserved with	
	1 ml of 1.1 M sodium sulfite?	N*
6.	Is the sample for cyanide analysis preserved with	
•••	NaOH to pH >12?	N/A
		<u></u>
Spoo	ial handling considerations:	
spec	tat handring constactons.	
,	And emerging and headled without filtering o	
1.	Are organic samples handled without filtering?	<u> Y </u>

Acidified to pH <2 with H_2SO_4 with no headspace or bubbles.

I

C.

B-12

2.	Are samples for volatile organics analyses transferred directly to the appropriate vials	
	to eliminate headspace over the sample?	<u>Y*</u>
3.	Are samples for metals analyses split into two portions?	<u> </u>
4.	Is the sample for dissolved metals filtered through a 0.45-micron filter?	Y
5.	Is the second portion analyzed for total metals without being filtered?	<u> </u>
6.	Is one equipment blank prepared each day of ground-water sampling?	<u>N**</u>

* Samples for volatiles are agitated too much during transfer from bailer to vials.

** No equipment blanks were prepared.

	Sample labels:	
	1. Are sample labels used?	
	2. Do labels contain the following information:	
	a. Sample identification number?	_
	b. Name of collector?	_
	c. Date and time of collection?	_
	d. Place of collection?	_
	e. Parameter(s) requested and	
	preservatives used?	_
	3. Do the labels remain legible even if wet?	_
В.	Sample seals:	
	1. Are sample seals placed on containers or coole	r
	to ensure that the samples are not altered?	-
C.	Field logbook:	

I

B-14

2.	Does	the logbook document the following:	
	a.	Purpose of sampling (e.g., detection or	
		assessment monitoring)?	<u>N</u>
	Ъ.	Location of well(s)?	Y
	c.	Total depth of each well?	Y
	d.	Static water level depth and measurement	
		technique?	<u>Y</u>
	e.	Presence of immiscible layers and detection	
		method?	<u>N</u>
	f.	Collection method for immiscible layers	
		and sample identification numbers?	<u>N</u>
	g.	Well evacuation procedures?	Y
	h.	Sample withdrawal procedure?	<u>Y</u>
	i.	Date and time of collection?	<u>Y</u>
	j.	Well sampling sequence?	<u>Y</u>
	k.	Types of sample containers and sample	
		identification number(s)?	<u>N*</u>
	1.	Preservative(s) used?	<u>Y</u>
	m.	Parameters requested?	Y
	n.	Field analysis data and method(s)?	Y
	٥.	Sample distribution and transporter?	<u> I </u>
	P۰	Field observations?	
		o Unusual well recharge rates?	<u> </u>
		<pre>o Equipment malfunction(s)?</pre>	N
		o Possible sample contamination?	<u> </u>
		o Sampling rate?	<u>N</u>

Only sample identification number.

D.	Chain-of-custody record:			
	1.	Is a chain-of-custody record included with		
		each sample?	<u> </u>	
	2.	Does it document the following:		
		a. Sample number?	<u> </u>	
		b. Signature of collector?	<u> </u>	
		c. Date and time of collection?	<u>N*</u>	
		d. Sample type?	<u> </u>	
		e. Station location?	<u> </u>	
		f. Number of containers?	<u> </u>	
		g. Parameters requested?	<u>Y</u>	
		h. Signatures of persons involved		
		in the chain-of-possession?	<u> </u>	
		i. Inclusive dates of possession?	<u> </u>	
Ε.	Samp	ole analysis request sheet:		
	1.	Does a sample analysis request sheet		
		accompany each sample?	<u> </u>	
	2.	Does the request sheet document the following:		
		a. Name of person receiving the sample?	<u> </u>	
		b. Date of sample receipt?	<u> </u>	

---- --

Form does not request date or time of collection.

· ···- ·

B-16

ļ

c.	Laboratory sample number (if different	
	than field number)?	<u> </u>
d.	Analyses to be performed?	<u>Y</u>

ν.	<u>Reviev</u>	v of Quality Assurance/Quality Control Program	
	Α.	Is the validity and reliability of the laboratory and field-generated data ensured by a Quality Assurance/Quality Control program?	<u> Y </u>
	В.	Does the Quality Assurance/Quality Control program include:	
		 Documentation of any deviations from approved procedures? 	<u> </u>
		2. Documentation of analytical results for: a. Blanks?	Y*
		 b. Standards? c. Duplicates? d. Spiked Samples? e. Detectable limits for each parameter being analyzed? 	Y Y Y
	C.	Are approved statistical methods used?	
	D.	Are QC samples used to correct data?	<u> N </u>
	Ē.	Are all data critically examined to ensure it	

See Section 5.2.3 of the report text.

	has been properly calculated and reported?	Y
'I. <u>Su</u>	ficial Well Inspection and Field Observations	
A.	Are the wells adequately maintained?	<u> </u>
B.	Are the monitoring wells protected and secure?	Y
C.	Do the wells have surveyed casing elevations?	Y
D.	Are the ground-water samples turbid?	Y*
Ε.	Have all physical characteristics of the site been noted in the inspector's field notes (i.e., surface waters, topography, surface features)?	Y
F.	Has a site sketch been prepared by the field inspector with a scale, north arrow, location(s) of buildings, location(s) of regulated units, location of monitoring wells, and a rough	
	depiction of the site drainage pattern?	N

Some samples were slightly turbid upon inspection and analytical results verify this.

APPENDIX C

FIELD LOG

Projects (continued) . . . well to p the photos taken during I heread to Maring I than setting up to light 1 t or an 1 Charry 50) ~ Natr Sm undet of 100 letureleum NGP - Anteria Non deping This Cure is Mar 1 surpraided 21 hercon 10:50 an / 5 fun -10/26/88 TSN 4 NA

「「「「「」」

ĩ

Y 1 And Ribind 100; 21.54 gray A Bigin purging 12:60 Water clear with organic dor-Plack # 4.12:25/ MW + 2; polyspaperc polyproportere traided rojec. Som Complete persping MM - (at 12120 That # 2 11: 38 Messering જારું કેટકે * • • • well depth of mu.1 Julianing the for the station 36 09.52 'MSL dog of Alexand the range = 36 05-23 inst ground floation 36 09.52 'MSL dog of Alexand the range = 36 05-23 inst Joind floation 36 09.52 'MSL dog of Alexand the range = 36 05-23 inst Till purpe 6 gallons punge . (0) () 54.76 is meintined from hap Jugu / 1 Khod # 5 1.55 Water stight Measured Static Little Stuf = 5 2.91" And from the of Attacking back Stander steel lising hap sturten = I round lievator = 36 00.55 'MSL Meadine Total depth from as -Complete purging Discriptioned un Well dept = Tatal depth = 65.5' a manura 10 64.91 ms4 Total digth front a birth drawing = 64.27' Treak for funch alani and turned will a may -1 MW-3 half drawing 19:572:91. 2 at 1:00 fronte Ŵ

4 Will purge 8 gallons Dear purging a 2:15 Water abar wird definite organic oder Water abar wird definite organic oder Measured State where have = 5-5.84 Photo # 6-2:00 Not #8-2:46) MW - 4. steel Lope Soul depth provepondy = (65.5-6427)= 1 hot 4 9+2:55 from top of Attacking coving lette water land with stands MW-3, Complete purging at MW-3 at 2:40. lots # 7- 2:20/ purging 5.3, Measuring - AND the deside of the station of the state of the state of the server of the server of the server of the server should be server or should be server or should be server or should be Rho to HF 10-3:08 purging MW-4 Hoy & Attain raut planter + Around eveloped = 67.5 menung Complete purging out in whit 5:00 Well depth at MW-4 Well depth dupth - 6 2.5. the por Maas \sim

6 Photo # 12-30 (8) Washing up non 1)holo# 14-3:54 1 the to # 13-3:51/ Photo Abervation of Dampline Squipman shopphet alingin Wearing later glove # 11 + 3:46/ Sound try phosphate detaland Rinse w/ Kins Kins Rins auto front an 3 3 Sarky Walnigs 10/ acr Washing up non -17,6+1/led Methan pistillet D, 571/42 WVF Descenting Frile wall wate wate Why + 2there 22 Photo # 21 4:14 Photo # 15 Photo # 23 Photo # 18 Liave facility at 4:30 Photo # 17 # 4:04 Photo # 16 Photo # 19 Methano Distilled Water = water renced in intertrantal. 4:15 4:15 : 3:56 4:13 ~ Reasternbling Bailer 4:05 336 Final Rinse of Distilled AR Anhydrond Re - wrapping Rinsing Bailer w/ heth Rinsing Bailer w/ Meth tap water bucket Baller Parts in plastic tinsing bailer Sleane lei. Methand 12 10 la la 2

Conductivity inter ward by 1 2h:8 - L C # 404 06:8 - de # about actity for field analyses \propto 1000 # 2 5- 8:15 "Hundy # 1250 moorles Multabled MW-5 blank fujorent blank at 10/27/82 Sangel hace - Collection mu to and ngo Moto # 2 marino complete Damplin Uzlun clear will otot A 6. 22°00 et S. 9:12 à ege of

Moto # \$0-12:52 /acidying Mr 15 allected field blank at Ma - 3 labuled MW - 4 blacted dysticat Mata # 29-11:06 Ecting Vor at Mul-3. londe durin !! huig = 300 merombero MW. lear with deposite organ 200 sampling 11-35 at mul-3 BNA Ta 1800 micondu 21°C + duplicate b, mult 3 (jem 24 Photo # 81 @ Water clear Complete down Looking Elect z 1:19 - 12:43 N 2

APPENDIX D PHOTO LOG

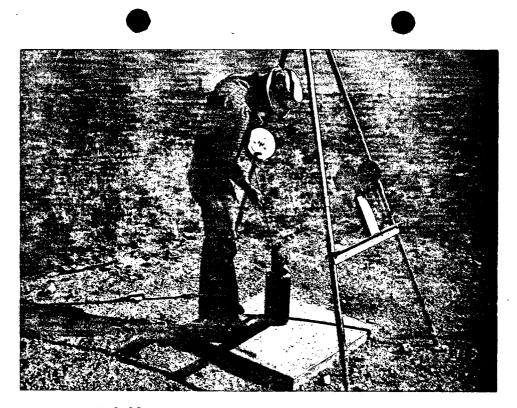


Photo 1: 11:31; 10/26/88; Measuring static water level at MW-1 using electronic sounder.

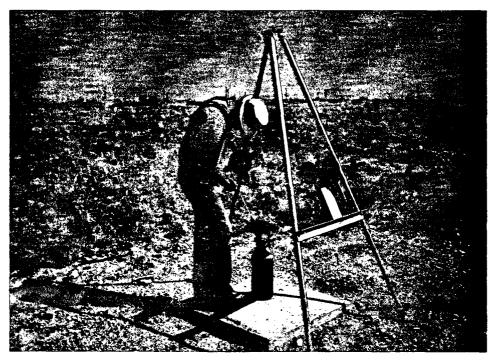


Photo 2: 11:38; 10/26/88 measuring total well depth at MW-1 using stainless steel tape.

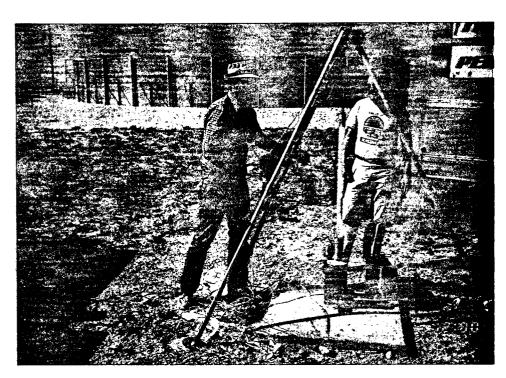


Photo 3: 12:00; 10/26/88; Evacuating MW-1 prior to sampling.

Photo 4: 12:25; 10/26/88; preparing to evacuate MW-2.

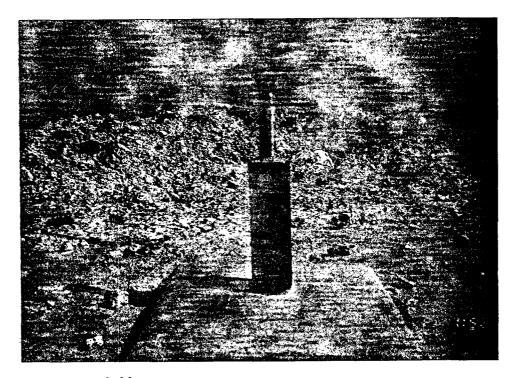


Photo 5:

1:55; 10/26/88; MW-3 prior to evacuating.



Photo 6: 2:06; 10/26/88; measuring static water level with stainless steel tape.

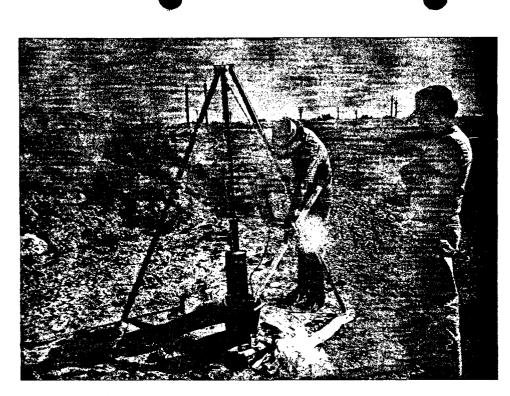


Photo 7: 2:20; 10/26/88; Evacuating MW-3; note Teflon bailer and propylene rope; surface impoundment berm is in left background.



Photo 8: 2:46; 10/26/88; MW-4 prior to evacuating; note refinery in background.

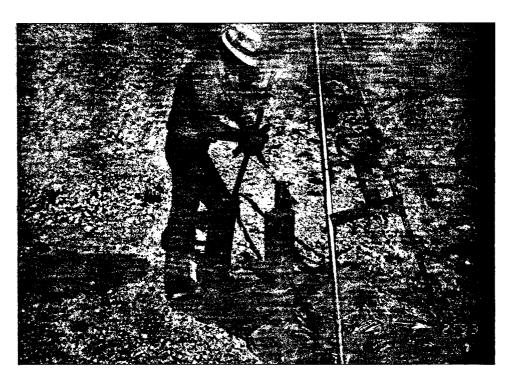


Photo 9: 2:53; 10/26/88; measuring well depth prior to evacuating.

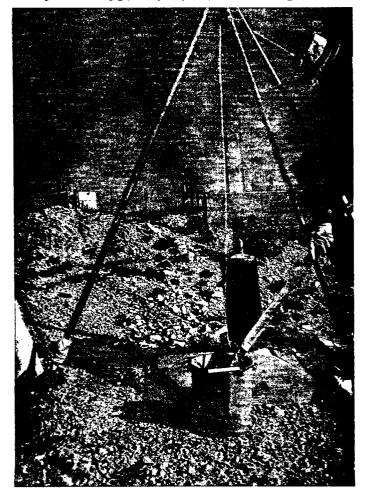


Photo 10: 3:08; 10/26/88; Evacuating MW-4.

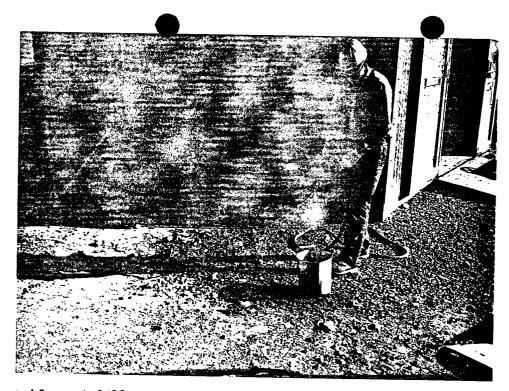


Photo 11: 3:48; 10/26/88; Decontamination of Teflon bailer; tap water rinse.



Photo 12: 3:49; 10/26/88; Decontamination of Teflon bailer; washing with non-phosphate detergent.

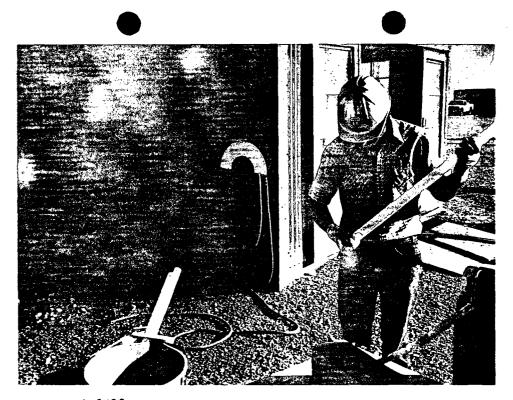


Photo 13: 3:51; 20/36/88; dissembling Teflon bailer prior to decontamination.

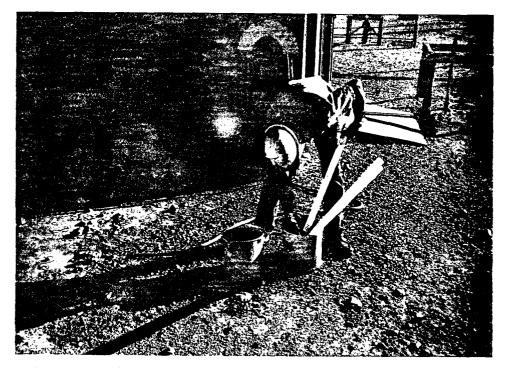


Photo 14: 3:54; 10/26/88; Washing bailer with non-phosphate detergent.

Photo 15: 3:56; 10/26/88; Tap water rinse of Teflon bailer.

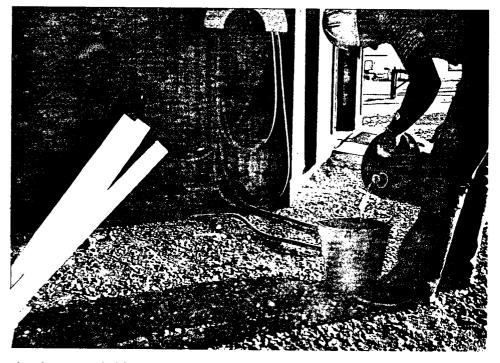


Photo 17: 4:04; 10/26/88; Pouring methanol into bucket. (Note: Photo 16 was over-exposed.)

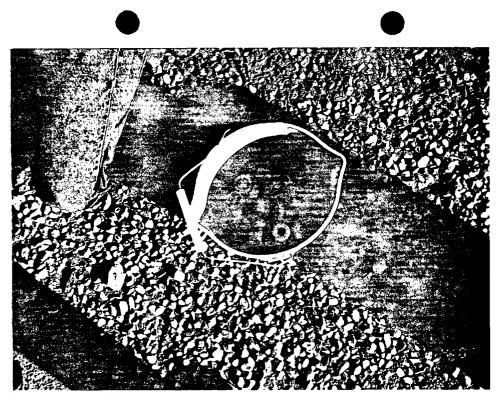


Photo 18: 4:05; 10/26/88; Bailer caps and check valves being rinsed in methanol.

Photo 19: 4:13; 10/26/88; Rinsing bailer with methanol.

Photo 20: 4:13; 10/26/88; Rinsing bailer with methanol.

Photo 21: 4:14; 10/26/88; reassembling bailer.

4:14; 10/26/88; Final distilled water rinse of bailer.



Photo 23: 4:15; 10/26/88; Wrapping decontaminated bailer in plastic cover.

Photo 25: 8:14; 10/27/88; Collecting distilled water rinseate of bailers for equipment blank.

Photo 26: 8:30; 10/27/88; Equipment blank sample. (Note: Photo 24 was overexposed.)

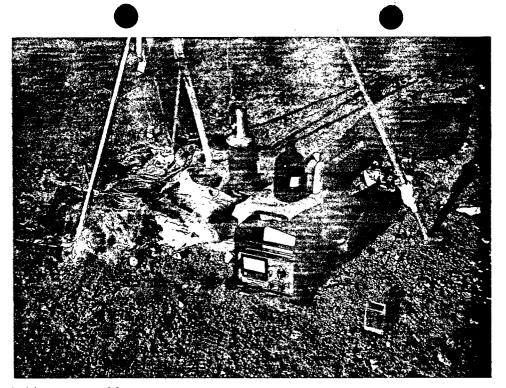
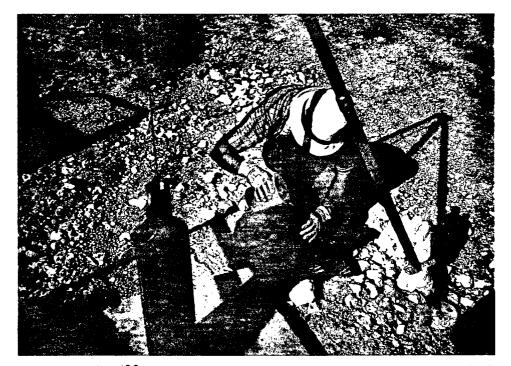



Photo 27: 8:44; 10/21/88; MW-1; pH and conductivity meters used by facility personnel for field analyses.

10:13; 10/27/88; Collecting samples at MW-2; note polyethylene beaker used to transfer samples from bailer to sample containers.



Photo 29: 11:06; 10/27/88; Collecting sample for volatile organics analyses at MW-3.

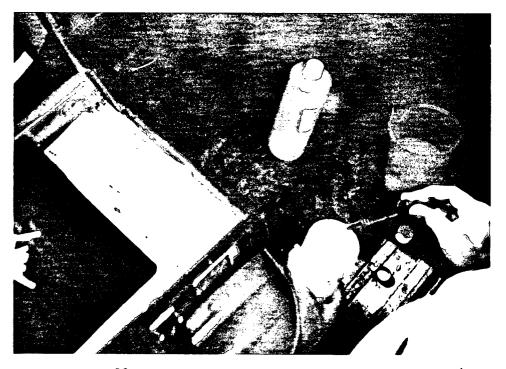


Photo 30: 12:52; 10/27/88; Acidifying radiochemistry sample at MW-4.

APPENDIX E

ANALYTICAL RESULTS

						-		•	
page 1	Dil Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ũ,	Date Analyzed	11/29/88	11/29/88	11/29/88	11/29/88	11/29/88	11/29/88	11/29/88	
	Units	NTU	NTU	NTU	UTU	NTU	NTU	NTU	
	Detection Limit (*)	.020	.020	020	.020	.020	.020	.020	
RVICES, INC. A.T. KEARNEY NT	Result	8.40	16.0	37.0	15.0	.350	.070	. 060	
ENVIRONMENTAL MONITORING AND SERVICES, INC. Analytical Results Summary for A.T. KEARNEY PHILLIPS - ARTESIS PLANT RFS: 80459	Analyte	TURBIDITY	TURBIDITY	TURBIDITY	TURBIDITY	TURBIDITY	TURBIDITY	TURBIDITY	
ENVIRONMI Analytica	Method								
	Rep	orig	Orig	Orig	Orig	orig	Orig	đng	
	Date Received	<u> </u>	10/31/88 Orig	10/31/88	10/31/88	10/31/88	10/31/88		
05-DEC-88	EMSI Number	CAT-880018	CAT-880019	CAT-880020 10/31/88 Orig	CAT-880021 10/31/88 Orig	CAT-880022 10/31/88 Orig	CAT-880023 10/31/88		
Printed on: 05-DEC-88	Client Sample I.D.	I	MW-2	MM 3	MW-4	MW-5	MW6		

- To obtain the true detection limit, multiply this value by the value under the "Dil Factor" column. *

ND - Not detected at the true detection limit.

VOLATILE	1A ORGANICS ANALYSIS	DATA SHEET	r	EPA SAN	IPLE NO
Lab Name: <u>EMSI</u>		Contract: (MW-1AF	RT
ab Code: EMSI	Case No.: ATK-1	SAS No.:	SDG	No.:	
Matrix: (soil/water)	WATER	La	ab Sample ID:		
Sample wt/vol:	<u>5.0</u> (g/mL) <u>ML</u>	La	ab File ID:	1103880	206
Level: (low/med)	LOW	Da	ate Received:	<u>10/31/8</u>	<u>38</u>
Moisture: not dec.		Da	ate Analyzed:	<u>11/03/8</u>	38
Column: (pack/cap)	CAP		ilution Facto	r: <u>1.00</u>	
CAS NO.	COMPOUND		RATION UNITS: r ug/Kg) <u>UG/L</u>	(2
$\begin{array}{c} 74-83-9\\ 75-01-4\\ 75-00-3\\ 75-09-2\\ 67-64-1\\ 75-15-0\\ 75-35-4\\ 75-35-4\\ 75-34-3\\ 75-34-3\\ 540-59-0\\ 67-66-3\\ 67-66-3\\ 107-06-2\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-87-5\\ 75-27-4\\ 75-27-4\\ 75-27-4\\ 78-87-5\\ 108-87-5\\ 108-88-3\\ 108-88-3\\ 108-88-3\\ 108-88-3\\ 108-88-3\\ 108-88-3\\ 108-90-7\\ 100-41-4\\ 100-42-5\end{array}$	Carbon Disulfid 1,1-Dichloroeth 1,2-Dichloroeth Chloroform 	ride		10 10 10 10 10 10 10 5 10 5 10 5 10 5 10 5 10 5 5 5 10 5 5 5 10 5 5 5 10 5 5 5 10 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

·

VOLATILE	1E ORGANICS ANALYSIS DATA SH	EET	EPA SAMPLE NO.
TENTAT	IVELY IDENTIFIED COMPOUNDS		MW-1ART
Lab Name: <u>EMSI</u>	Contract	: 0452 0459	MW-IART
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-1</u> SAS No.	: SDG	No.:
Matrix: (soil/water)	WATER	Lab Sample ID:	
Sample wt/vol:	<u>5.0</u> (g/mL) <u>ML</u>	Lab File ID:	<u>110388C06</u>
Level: (low/med)	LOW	Date Received:	10/31/88
<pre>% Moisture: not dec.</pre>		Date Analyzed:	11/03/88
Column (pack/cap)	CAP	Dilution Factor	: <u>1.00</u>

Number TICs found: __0

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
===================		========		

1 A EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET MW-2ART Lab Name: __EMSI Contract: 0452 0459 Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS No.: _____ SDG No.: _____ Matrix: (soil/water) WATER Lab Sample ID: Sample wt/vol: <u>5.0</u> (g/mL) <u>ML</u> Lab File ID: 110388C07 Level: (low/med) LOW Date Received: 10/31/88 % Moisture: not dec. _____ Date Analyzed: 11/03/88 Column: (pack/cap) CAP Dilution Factor: 1.00 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 74-87-3-----Chloromethane 10 U 74-83-9----Bromomethane 10 U 75-01-4----Vinyl Chloride_ 10 U 75-00-3-----Chloroethane 10 U 75-09-2-----Methylene Chloride U 5 67-64-1----Acetone 10 U 75-15-0-----Carbon Disulfide 5 U 75-35-4-----1,1-Dichloroethene 5 U 5 75-34-3-----1,1-Dichloroethane Ū 540-59-0-----1,2-Dichloroethene (total) 5 U 5 67-66-3----Chloroform U 107-06-2----1,2-Dichloroethane_ 5 U 78-93-3----2-Butanone U 10 71-55-6----1,1,1-Trichloroethane 5 U 56-23-5-----Carbon Tetrachloride 5 U 108-05-4----Vinyl Acetate 10 U 75-27-4----Bromodichloromethane U 5 U 78-87-5-----1, 2-Dichloropropane 5 10061-01-5----cis-1,3-Dichloropropene 5 U 79-01-6----Trichloroethene 5 U 5 124-48-1----Dibromochloromethane U 5 U 79-00-5-----1,1,2-Trichloroethane 71-43-2----Benzene 14 10061-02-6----Trans-1, 3-Dichloropropene 5 U 75-25-2----Bromoform 5 U 108-10-1-----4-Methyl-2-Pentanone 10 U 591-78-6----2-Hexanone 10 U 127-18-4----Tetrachloroethene 5 Ū 79-34-5-----1,1,2,2-Tetrachloroethane 5 U 5 U 108-88-3----Toluene U 108-90-7-----Chlorobenzene 5 100-41-4----Ethylbenzene 50 100-42-5----Styrene U 5 5 1330-20-7----Total Xylenes U

VOLATIE ODCAN	- 1E IOC NNIVOTO DIMI CUD	-	EPA SAMPLE NO.
	ICS ANALYSIS DATA SHE IDENTIFIED COMPOUNDS		MW-2ART
Lab Name: <u>EMSI</u>	Contract:	0452 0459	
Lab Code: <u>EMSI</u> Case N	o.: <u>ATK-1</u> SAS No.:	SDG	No.:
Matrix: (soil/water) WATER		Lab Sample ID:	
Sample wt/vol:5.0	(g/mL) <u>ML</u>	Lab File ID:	<u>110388C07</u>
Level: (low/med) LOW	_	Date Received:	10/31/88
<pre>% Moisture: not dec</pre>		Date Analyzed:	<u>11/03/88</u>
Column (pack/cap) <u>CAP</u>	_	Dilution Factor	: 1.00

Number TICs found: <u>4</u>

.

CAS NUMBER	COMPOUND NAME	RT =======	EST. CONC.	Q ======
1. 000-00-0	METHYLETHYL BENZENE ISOMER	32.37	35	J
2. 103-65-1 3. 000-00-0	BENZENE, PROPYL- TRIMETHYL BENZENE ISOMER	34.27 35.21	15 6.0	J
4. 611-14-3	ETHYL METHYL BENZENE ISOMER	35.94	8.0	J

EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET MW-3ART Lab Name: EMSI Contract: 0452 0459 Lab Code: EMSI Case No.: ATK-1 SAS No.: SDG No.: Matrix: (soil/water) WATER Lab Sample ID: Sample wt/vol: <u> 5.0</u> (g/mL) <u>ML </u> Lab File ID: 110388C08 Level: (low/med) LOW Date Received: 10/31/88 % Moisture: not dec. Date Analyzed: <u>11/03/88</u> Dilution Factor: 1.00 Column: (pack/cap) CAP CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q 74-87-3-----Chloromethane_____ 10 U 74-83-9----Bromomethane 10 U 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane 10 U 75-09-2-----Methylene Chloride 5 U 67-64-1----Acetone 10 U 75-15-0-----Carbon Disulfide 5 U 75-35-4-----1, 1-Dichloroethene 5 U 75-34-3-----1,1-Dichloroethane 5 U 540-59-0-----1,2-Dichloroethene (total) 5 U 67-66-3-----Chloroform 5 U 5 107-06-2----1,2-Dichloroethane U 78-93-3----2-Butanone 10 U 71-55-6-----1,1,1-Trichloroethane 5 U 56-23-5-----Carbon Tetrachloride 5 U 108-05-4-----Vinyl Acetate U 10 75-27-4-----Bromodichloromethane 5 U 78-87-5-----1,2-Dichloropropane 5 U 10061-01-5----cis-1,3-Dichloropropene 5 U 79-01-6----Trichloroethene 5 U 124-48-1----Dibromochloromethane 5 U 5 79-00-5-----1,1,2-Trichloroethane U 71-43-2----Benzene_ 5 U 5 10061-02-6----Trans-1, 3-Dichloropropene U 75-25-2----Bromoform 5 U 108-10-1-----4-Methyl-2-Pentanone 10 U U 591-78-6----2-Hexanone 10 127-18-4----Tetrachloroethene 5 U 79-34-5-----1,1,2,2-Tetrachloroethane____ 5 U 5 U 108-88-3----Toluene 108-90-7-----Chlorobenzene 5 U 100-41-4----Ethylbenzene 5 U 100-42-5----Styrene 5 U 1330-20-7----Total Xylenes 5 U

1/87 Rev.

VOLATILE ORGANICS ANALYSIS DATA S	EPA SAMPLE NO.
TENTATIVELY IDENTIFIED COMPOUND	
Lab Name: <u>EMSI</u> Contrac	ct: 0452 0459
Lab Code: EMSI Case No.: ATK-1 SAS No	o.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:
Sample wt/vol: (g/mL) ML	Lab File ID: <u>110388C08</u>
Level: (low/med) LOW	Date Received: <u>10/31/88</u>
% Moisture: not dec.	Date Analyzed: <u>11/03/88</u>
Column (pack/cap) <u>CAP</u>	Dilution Factor: <u>1.00</u>

Number TICs found: 2

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000-00-0	ALKYLBENZENE ISOMER	29.31	7.0	-
2. 000-00-0	ALKYLBENZENE ISOMER	35.44	5.0	

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>EMSI</u>		Contract: 0452		V-4ART
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-1</u>			
Matrix: (soil/water)	WATER	Lab Sa	mple ID:	
Sample wt/vol:	<u> 5.0</u> (g/mL) <u>ML</u>	Lab Fi	le ID: <u>110</u>	0388C12
Level: (low/med)	LOW	Date R	eceived: <u>10/</u>	/31/88
% Moisture: not dec.		Date A	nalyzed: <u>11</u> /	/03/88
Column: (pack/cap)	<u>CAP</u>	Diluti	on Factor: <u>1</u> .	.00
CAS NO.	COMPOUND	CONCENTRATIO (ug/L or ug/		Q
74-83-9 75-01-4 75-09-2 67-64-1 75-35-4 75-34-3 75-34-3 75-34-3 75-34-3 75-34-3 75-27-4 78-93-3 71-55-6 71-55-6 75-27-4 75-27-4 78-87-5 1061-01-5 79-01-6 79-01-6 79-01-6 79-01-6 71-43-2 108-10-1 591-78-6 108-88-3 108-88-3 108-90-7 100-41-4	Carbon Disulfi 1,1-Dichloroet 1,2-Dichloroet Chloroform 	ride de hene hene hene hane hane oethane oethane ropropene e tanone tanone hloroethane	10 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

	EPA SAMPLE NO.		
VOLATILE C TENTATIV			
Lab Name: <u>EMSI</u>	Contract	: 0452 0459	MW-4ART
Lab Code: <u>EMSI</u> Ca	ase No.: <u>ATK-1</u> SAS No.	: SDG 1	No.:
Matrix: (soil/water) <u>W</u>	NATER	Lab Sample ID:	
Sample wt/vol: _	<u>5.0</u> (g/mL) <u>ML</u>	Lab File ID:	110388C12
Level: (low/med) I	LOW	Date Received:	10/31/88
<pre>% Moisture: not dec</pre>		Date Analyzed:	11/03/88
Column (pack/cap) <u>C</u>	CAP	Dilution Factor	: 1.00

-- --

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======		=====
·····				· ·

VOLATILE ORGANICS ANALYSIS I	DATA SHEET	EPA SAMPLE NO.
Lab Name: EMSI Co	ontract: 0452 0459	MW-5ART
Lab Code: EMSI Case No.: ATK-1 S	SAS NO.: SDG N	Io.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	
Sample wt/vol: <u>5.0</u> (g/mL) <u>ML</u>	Lab File ID:	110388C10
Level: (low/med) LOW	Date Received:	10/31/88
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>11/03/88</u>
Column: (pack/cap) <u>CAP</u>	Dilution Factor:	1.00
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride 75-00-3Chloroethane 75-09-2Methylene Chlorid 67-64-1Acetone 75-15-0Carbon Disulfide 75-35-41, 1-Dichloroether 75-34-31, 1-Dichloroether 67-66-3Carbon Disulfide 75-34-3	inde	0 U 10 U 10

	EPA SAMPLE NO.		
VOLATILE TENTATI			
Lab Name: <u>EMSI</u>		act: 0452 0459	MW-5ART
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-1</u> SAS I	No.: SDG	No.:
Matrix: (soil/water)	WATER	Lab Sample ID:	
Sample wt/vol:	<u> 5.0</u> (g/mL) <u>ML</u>	Lab File ID:	110388C10
Level: (low/med)	LOW	Date Received:	<u>10/31/88</u>
<pre>% Moisture: not dec.</pre>		Date Analyzed:	11/03/88
Column (pack/cap)	CAP	Dilution Factor	: 1.00

Number TICs found: 2

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q ======
1. 110-54-3	HEXANE	6.40	9.0	1
2. 000-00-0	ALKENE	8.37	9.0	

VOLATILE ORGANICS ANALYSIS DATA SHEET

1

EPA SAMPLE NO.

	ORGANICS ANALISI	o baia onegi	,		
Lab Name: <u>EMSI</u>	-	Contract: 0452	0459	MW·	-6ART
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-1</u>	SAS No.:	SDG	No.:	
Matrix: (soil/water)	WATER	Lab Sa	mple ID:		
Sample wt/vol:	<u>5.0</u> (g/mL) <u>ML</u>	Lab Fi	le ID:	<u>110:</u>	388C11
Level: (low/med)	LOW	Date R	eceived:	<u>10/:</u>	31/88
% Moisture: not dec.		Date A	nalyzed:	11/0	03/88
Column: (pack/cap)	CAP	Diluti	on Factor	:: <u>1.(</u>	00
CAS NO.	COMPOUND	CONCENTRATIO (ug/L or ug/		-	Q
$\begin{array}{c} 74-83-9\\ 75-01-4\\ 75-00-3\\ 75-09-2\\ 67-64-1\\ 75-15-0\\ 75-35-4\\ 75-34-3\\ 75-34-3\\ 540-59-0\\ 67-66-3\\ 67-66-3\\ 67-66-3\\ 67-66-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 75-25-2\\ 108-10-1\\ 79-34-5\\ 108-88-3\\ 108-88-3\\ 108-88-3\\ 108-88-3\\ 108-90-7\\ 100-41-4\\ 100-42-5\end{array}$	Carbon Disulfi 	ride de hene hane hane hane oethane oethane ethane ethane ethane ethane ioropropene tanone ene hloroethane		10 10 10 23555555555555555555555555555555555555	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

1E VOLATILE ORGANICS ANAL	EPA SAMPLE NO.	
TENTATIVELY IDENTIFT	ED COMPOUNDS	MW-6ART
Lab Name:EMSI	Contract: 0452 0459	
Lab Code: EMSI Case No.: ATK-	<u>1</u> SAS No.: SI	DG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample II	D:
Sample wt/vol: (g/mL)	ML Lab File ID:	110388C11
Level: (low/med) LOW	Date Received	d: <u>10/31/88</u>
<pre>% Moisture: not dec</pre>	Date Analyzed	d: <u>11/03/88</u>
Column (pack/cap) <u>CAP</u>	Dilution Fact	tor: <u>1.00</u>

Number TICs found: <u>0</u>

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======		=====

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>EMSI</u>		Contract: 0452		W-4ARTMS
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-1</u>	SAS No.:	SDG No.	:
Matrix: (soil/water)	WATER	Lab Sa	mple ID:	
Sample wt/vol:	<u>5.0</u> (g/mL) <u>ML</u>	Lab Fi	le ID: <u>11</u>	0388C16
Level: (low/med)	LOW	Date R	eceived: <u>10</u>	/31/88
<pre>% Moisture: not dec.</pre>	<u></u>	Date A	nalyzed: <u>11</u>	/03/88
Column: (pack/cap)	CAP	Diluti	on Factor: <u>1</u>	.00
CAS NO.	COMPOUND	CONCENTRATIO (ug/L or ug/		Q
$\begin{array}{c} 74-83-9\\ 75-01-4\\ 75-09-2\\ 67-64-1\\ 75-15-0\\ 75-35-4\\ 75-34-3\\ 75-34-3\\ 75-34-3\\ 75-34-3\\ 67-66-3\\ 67-66-3\\ 67-66-3\\ 107-06-2\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-87-5\\ 75-27-4\\ 75-27-4\\ 75-27-4\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 10061-02-6\\ 75-25-2$	Carbon Disulfic 1,1-Dichloroeth 1,1-Dichloroeth 1,2-Dichloroeth Chloroform 1,2-Dichloroeth Carbon Tetrachl Vinyl Acetate Carbon Tetrachlorome 1,2-Dichlorome 1,2-Dichloropro cis-1,3-Dichlorome Trichloroethene Dibromochlorome 1,1,2-Trichloro Benzene Trans-1,3-Dichlorome 2-Hexanone 2-Hexanone 2-Hexanone 1,1,2,2-Tetrach Toluene Chlorobenzene Ethylbenzene	ride	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 5\\ 10\\ 5\\ 5\\ 5\\ 5\\ 10\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	

1/87 Rev.

VOLATILE ORGANICS ANALYSIS DATA SHEET

ĺ

EPA SAMPLE NO.

1

		-		MLT	
Lab Name: <u>EMSI</u>		Contract: 0452	0459		4ARTMSD
Lab Code: <u>EMSI</u> Ca	se No.: <u>ATK-1</u>	SAS No.:	SDG	No.:	
Matrix: (soil/water) <u>M</u>	ATER 0	Lab Sa	ample ID:		
Sample wt/vol: _	<u>5.0</u> (g/mL) <u>MI</u>	Lab Fi	ile ID:	<u>1103</u>	88C17
Level: (low/med) <u>I</u>	WOL	Date H	Received:	10/3	1/88
<pre>% Moisture: not dec</pre>		Date A	Analyzed:	11/0	3/88
Column: (pack/cap) (CAP	Diluti	ion Factor	:: <u>1.0</u>	0
CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/		-	Q
$\begin{array}{c} 74-83-9$	Vinyl Chloride Chloroethane Methylene Chlo Acetone Carbon Disulfi 1,1-Dichloroet 1,2-Dichloroet Chloroform 1,2-Dichloroet Chloroform 1,2-Dichloroet 2-Butanone 1,1,1-Trichlor Carbon Tetrach Vinyl Acetate Bromodichlorom 1,2-Dichloropt Cis-1,3-Dichlor Trichloroether Dibromochlorom 1,1,2-Trichlor -Benzene Trans-1,3-Dichlor -Benzene Trans-1,3-Dichlor -Bromoform 4-Methyl-2-Per 2-Hexanone Tetrachloroether Toluene Chlorobenzene Ethylbenzene	e oride thene thene than a than	10 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5		

1

	WATER	VOLATILE	MATRIX	SPIKE,	3A MATRIX	SPIKE	DUPLICAT	TE RECOVERY
Lab Name:	EMSI			(Contract	:: <u>0452</u>	0459	
Lab Code:	EMSI	Case	No.: <u>AT</u>	<u>K-1</u>	SAS No.	:	SI	OG No.:
Matrix Sp:	ike - El	PA Sample	No.: <u>M</u>	W-4ART				

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0	45.6	91	61-145
Trichloroethene	50.0	0	44.7	89	71-120
Benzene	50.0	0	43.5	87	76-127
Toluene	50.0	0	42.6	85	76-125
Chlorobenzene	50.0	0	47.7	95	75-130

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION ~(ug/L)	MSD % REC #	% RPD #	QC LI RPD	IMITS REC.
	=======================================	=======================================	=== = == 70		======	
1,1-Dichloroethene	50.0	39.2	78	15 *	14	61-145
Trichloroethene	50.0	39.7	79	12	14	71-120
Benzene	50.0	40.5	81	7	11	76-127
Toluene	50.0	40.7	81	5	13	76-125
Chlorobenzene	50.0	43.2	86	10	13	75-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: <u>1</u> out of <u>5</u> outside limits Spike Recovery: <u>0</u> out of <u>10</u> outside limits

COMMENTS: AT KEARNEY MW-4 #880021 5C TO 110C @ 6C/MIN ON FINN 4021

	4A VOLATILE METHOD BLA	ANK SUMMARY	
		•	
Lab Name: <u>EMSI</u>	Contrac	ct: 0452 0459	
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-1</u> SAS No	D.: SDG No.:	
Lab File ID: <u>11</u>	0388C04	Lab Sample ID:	-
Date Analyzed:	11/03/88	Time Analyzed: 0700	-
Matrix: (soil/water)	WATER	Level:(low/med) LOW	
Instrument ID:	4021		

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	*===========		=================	
01	MW-1ART		110388C06	0802
02	MW-2ART		110388C07	0827
03	MW-3ART		110388C08	0851
04	MW-4ART		110388C12	1114
05	MW-5ART	•	110388C10	1019
06	MW-6ART		110388C11	1045
07	MW-6LUS		110388C0 [°] 5	0740
80	MW-4ARTMS		110388C16	1256
09	MW-4ARTMSD		110388C17	1325

COMMENTS: VBLK02

.

5C TO 110C @ 6C/MIN ON FINN 4021

		2A	
WATER	VOLATILE	SURROGATE	RECOVERY

La	ab	Name:	EMSI		Contract:	0452	0459	
----	----	-------	------	--	-----------	------	------	--

Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS No.: _____ SDG No.: ____

* *****

	TOT
CE) #	OUT
====	====
95	0
84	0
91	0
92	0
90	0
95	0
91	0
91	0
95	0
84	0
88	0
93	0
86	0
89	0
92	0
91	0
	95 84 91 92 90 95 91 91 95 84 88 93 86 89 92 91

				QC	: LIMITS
S1	(TOL)	æ	Toluene-d8	(88-110)
S2	(BFB)	=	Bromofluorobenzene	(86-115)
S3	(DCE)	Ξ	1,2-Dichloroethane-d4	(76-114)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogates diluted out

4A VOLATILE METHOD BLANK SUMMARY

Lab Name: <u>EMSI</u>		Contract: <u>0452 0459</u>	
Lab Code: EMSI	Case No.: <u>ATK-1</u>	SAS No.: S	DG No.:
Lab File ID: <u>11</u>	0288C09	Lab Sample II):
Date Analyzed:	11/02/88	Time Analyzed	l: <u>1228</u>
Matrix: (soil/water)	WATER	Level:(low/me	ed) <u>LOW</u>
Instrument ID:	4021		

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

·	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED

01	MW-1LUS		110288C16	1628
02	MW-2LUS		110288C11	1335
03	MW-3LUS		110288C12	1409
04	MW-4LUS		110288C13	1436
05	MW-5LUS		110288C14	1504
				•

COMMENTS: VBLK01 5C AT 5MIN THEN 6C/MIN TO 100C ON FINN 4021

page 1 of 1

	U 1A		EPA SAMPLE NO.
1	VOLATILE ORGANICS ANALYSI	S DATA SHEET	
		<u>`</u>	VBLK01
	Lab Name: <u>EMSI</u>	Contract: <u>0452 0459</u>	
:	Lab Code: EMSI Case No.: ATK-1	SAS No.: SDG	No.:
1	Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	

Sample wt/vol		5.0	(g/mL)	ML		Lab File	e ID:	<u>110288C09</u>
Level: (lo	ow/med)	LOW				Date Rec	ceived:	
<pre>% Moisture: r</pre>	not dec.				i.	Date Ana	lyzed:	11/02/88
Column: (pac	ck/cap)	CAP			,	Dilutior	a Factor:	1.00
CAS NO	D.	COMPO	UND			TRATION or ug/Ko		Q

		r	
74-87-3Chlc	promethane	10	U
74-83-9Bron	omethane	10 -	U
75-01-4Viny	l Chloride	10	U
75-00-3Chlo	proethane	10	U
75-09-2Meth	ylene Chloride	1	J
67-64-1Acet	ione	1	J
75-15-0Cart	oon Disulfide	5	U
75-35-41,1-	Dichloroethene	5.	U
75-34-31,1-	Dichloroethane	5	U
540-59-01,2-	Dichloroethene (total)	5	U
67-66-3Chlo	proform	5	U
107-06-21,2-	Dichloroethane	5	U
78-93-32-Bu	tanone	10	Ū
71-55-61,1,	1-Trichloroethane	5	Ū
56-23-5Carb	oon Tetrachloride	5	Ū
108-05-4Viny	vl Acetate	10	Ū
75-27-4Bron		5	Ū
78-87-51,2-		5	Ū
	1,3-Dichloropropene	5	Ū
79-01-6Tric	chloroethene	5	U
124-48-1Dibi	comochloromethane	5	Ū
79-00-51.1.	2-Trichloroethane	5	υ
71-43-2Benz	ene	5	U
10061-02-6Tran	ns-1,3-Dichloropropene	5	U
75-25-2Bron	oform	5	U
	thyl-2-Pentanone	10	U
591-78-62-He	exanone	10	Ū
127-18-4Teta	achloroethene	5	U
	2,2-Tetrachloroethane	5	U
108-88-3Tolu		5	U
	probenzene	5	U
100-41-4Ethy	lbenzene	5	U
100-42-5Sty	rene	5	U
1330-20-7Tota		5	U
		J	

1/87 Rev.

	lE		EPA SAMPLE NO.
	ORGANICS ANALYSIS DATA SHI VELY IDENTIFIED COMPOUNDS	EET	······
Lab Name: <u>EMSI</u>		. 0452 0459	VBLK01
Lab Code: <u>EMSI</u> C	Case No.: <u>ATK-1</u> SAS No.:	: SDG 1	No.:
Matrix: (soil/water)	WATER	Lab Sample ID:	
Sample wt/vol:	<u>5.0</u> (g/mL) <u>ML</u>	Lab File ID:	<u>110288C09</u>
Level: (low/med)	LOW	Date Received:	
<pre>% Moisture: not dec.</pre>		Date Analyzed:	<u>11/02/88</u>
Column (pack/cap)	CAP	Dilution Factor:	: 1.00

Number TICs found: <u>0</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		========		=====
/				

VOLATILE	1A ORGANICS ANALYSIS	DATA SHEET	•	EPA	SAMPLE NO
Lab Name:EMSI	(Contract: <u>0452</u>	0459	VBI	LK02
Lab Code: EMSI	Case No.: <u>ATK-1</u>	SAS No.:	SDG	No.:	
Matrix: (soil/water)	WATER	Lab Sa	ample ID:		
Sample wt/vol:	<u> 5.0</u> (g/mL) <u>ML</u>	_ Lab Fi	lle ID:	<u>1103</u>	388C04
Level: (low/med)	LOW	Date F	Received:		
<pre>% Moisture: not dec.</pre>	·	Date A	nalyzed:	<u>11/0</u>)3/88
Column: (pack/cap)	CAP	Diluti	lon Factor	: <u>1.0</u>)0
CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/			Q
$\begin{array}{c} 74-83-9\\ 75-01-4\\ 75-09-2\\ 67-64-1\\ 75-15-0\\ 75-35-4\\ 75-34-3\\ 75-34-3\\ 75-34-3\\ 75-34-3\\ 67-66-3\\ 67-66-3\\ 107-06-2\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-93-3\\ 78-87-5\\ 75-27-4\\ 75-27-4\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-01-6\\ 79-00-5\\ 10061-02-6\\ 75-25-2\\ 108-10-1\\ 591-78-6\\ 127-18-4\\ 79-34-5\\ 108-88-3\\ 108-88-3\\ 108-90-7\\ 100-41-4\\ 100-42-5\end{array}$	Carbon Disulfide 1,1-Dichloroethe 1,2-Dichloroethe Chloroform 	ide ene ane ane ane ethane oride thane thane thane thane oropropene anone ne loroethane		10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	EPA SAMPLE NO.		
VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS			
Lab Name: <u>EMSI</u>	Contract	0452 0459	VBLK02
Lab Code: <u>EMSI</u> C	Case No.: <u>ATK-1</u> SAS No.:	: SDG	No.:
Matrix: (soil/water)	WATER_	Lab Sample ID:	
Sample wt/vol:	<u> 5.0 (g/mL) <u>ML </u></u>	Lab File ID:	<u>110388C04</u>
Level: (low/med)	LOW	Date Received:	
% Moisture: not dec.		Date Analyzed:	11/03/88
Column (pack/cap)	CAP	Dilution Factor	: 1.00

Number TICs found: <u>0</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
========================		======		=====
		_ <u></u>		

1B EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET MW-1ART Lab Name: EMSI Contract: 0452 0459 Lab Code: EMSI Case No.: ATK-1 SAS No.: _____ SDG No.: _____ Matrix: (soil/water) WATER Lab Sample ID: Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u> Lab File ID: <u>111588S10</u> Level: (low/med) LOW____ Date Received: <u>10/31/88</u> % Moisture: not dec. dec. Date Extracted: 11/02/88 Extraction: (SepF/Cont/Sonc) CONT Date Analyzed: 11/15/88 GPC Cleanup: (Y/N) N pH: ____ Dilution Factor: 1.0 CONCENTRATION UNITS:

CAS NO. COMPOUND

 $(ug/L \text{ or } ug/Kg) \underline{UG/L} Q$

108-95-2Phenol	10	U
111-44-4bis(2-Chloroethyl)Ether	10	U
95-57-82-Chlorophenol	10	U
541-73-11,3-Dichlorobenzene	10	Ū
106-46-71,4-Dichlorobenzene	10	U
100-51-6Benzyl Alcohol	10	U
95-50-11,2-Dichlorobenzene	10	Ū
95-48-72-Methylphenol	10	Ū
108-60-1bis(2-Chloroisopropyl)Ether	10	Ū
106-44-54-Methylphenol	10	U
621-64-7N-Nitroso-Di-n-Propylamine	10	U
67-72-1Hexachloroethane	10	U
98-95-3Nitrobenzene	10	U
78-59-1Isophorone	10	U
88-75-52-Nitrophenol	10	U
105-67-92,4-Dimethylphenol	10	U
65-85-0Benzoic Acid	8	J
111-91-1bis(2-Chloroethoxy)Methane	10	U
120-83-22,4-Dichlorophenol	10	U
120-82-11,2,4-Trichlorobenzene	10	U
91-20-3Naphthalene	10	U
106-47-84-Chloroaniline	10	U
87-68-3Hexachlorobutadiene	10	U
59-50-74-Chloro-3-Methylphenol	10	U
91-57-62-Methylnaphthalene	10	U
77-47-4Hexachlorocyclopentadiene	10	U
88-06-22,4,6-Trichlorophenol	10	U
95-95-42,4,5-Trichlorophenol	50	U
91-58-72-Chloronaphthalene	10	U
88-74-42-Nitroaniline	50	U
131-11-3Dimethyl Phthalate	10	U
208-96-8Acenaphthylene	10	U
606-20-22,6-Dinitrotoluene	10	U

1/87 Rev.

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

- 1

1

Lab Name: EMSI Cont	MW-1ART tract: 0452 0459
	S No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: <u>111588510</u>
Level: (low/med) <u>LOW</u>	Date Received: <u>10/31/88</u>
% Moisture: not dec dec	Date Extracted: <u>11/02/88</u>
Extraction: (SepF/Cont/Sonc) <u>CONT</u>	Date Analyzed: <u>11/15/88</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor: <u>1.0</u>
	CONCENTER MICH UNITER

CAS NO. COMPOUND

ĺ

ł

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

Q

99-09-23-Nitroaniline	50	U
83-32-9Acenaphthene 51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol	10	U
51-28-52,4-Dinitrophenol	50	U
100-02-74-Nitrophenol	50	U I
132-64-9Dibenzofuran	10	Ū
121-14-22,4-Dinitrotoluene	10	Ū
84-66-2Diethylphthalate	10	Ū I
7005-72-34-Chlorophenyl-phenylether	10	Ū
86-73-7Fluorene	10	U
100-01-64-Nitroaniline	50	Ū
534-52-14,6-Dinitro-2-Methylphenol	50	U
86-30-6N-Nitrosodiphenylamine (1)	10	Ū
101-55-34-Bromophenyl-phenylether	10	Ū
118-74-1Hexachlorobenzene	10	Ū
87-86-5Pentachlorophenol	50	Ū
87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	10	Ū
120-12-7Anthracene	10	Ū
84-74-2Di-n-Butylphthalate	10	Ū
206-44-0Fluoranthene	10	Ū
200-44-0Pyrene 129-00-0Pyrene 85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine 56-55-3Benzo(a)Anthracene 218-01-9Chrysene 117-81-7bis(2-Ethylhexyl)Phthalate	10	Ū
85-68-7Butylbenzylphthalate	10	U U
91-94-13.3'-Dichlorobenzidine	20	U
56-55-3Benzo(a) Anthracene	10	U
218-01-9Chrysene	10	Ū
117-81-7bis(2-Ethylhexyl)Phthalate	10	Ū
117-84-0Di-n-Octyl Phthalate	10	Ū
205-99-2Benzo(b)Fluoranthene	10	Ū
207-08-9Benzo(k) Fluoranthene	10	Ū
50-32-8Benzo(a) Pyrene	10	U
50-32-8Benzo(a) Pyrene 193-39-5Indeno(1,2,3-cd) Pyrene	10	Ū
i 53-70-3	10	Ū
191-24-2Benzo(g,h,i)Perylene 90-12-01-Methylnaphthalene	10	U
90-12-01-Methylnaphthalene	10	U
108-39-4meta-Cresol	10	U
(1) - Cappot be separated from Diphenylamine		,

(1) - Cannot be separated from Diphenylamine

10 |U

1/87 Rev.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: EMSI	Con	tract: <u>0452 0459</u>	MW-1ART
Lab Code: <u>EMSI</u> C	ase No.: <u>ATK-1</u> SA	S No.: SDG	No.:
Matrix: (soil/water)	WATER	Lab Sample ID:	
Sample wt/vol:	<u>1000 (g/mL) ML</u>	Lab File ID:	111588510
Level: (low/med)	LOW	Date Received:	10/31/88
% Moisture: not dec.	dec	Date Extracted:	11/02/88
Extraction: (SepF/C	ont/Sonc) <u>CONT</u>	Date Analyzed:	11/15/88
GPC Cleanup: (Y/N)	N pH:	Dilution Factor	r: 1.0

Number TICs found: 5

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000-00-0	2 PROPANOL ISOMER	9.00	24	
2. 000-00-0	UNKNOWN	11.87	16	J
3. 000-00-0	UNKNOWN	12.35	12	J
4. 000-00-0	UNKNOWN	15.82	10	J
5. 000-00-0	UNKNOWN SULFUR	19.25	16	J

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: EMSI C	ontract: 0452 0459
Lab Code: EMSI Case No.: ATK-1	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: <u>111688511</u>
Level: (low/med) LOW	Date Received: <u>10/31/88</u>
<pre>% Moisture: not dec dec</pre>	Date Extracted: <u>11/02/88</u>
Extraction: (SepF/Cont/Sonc) <u>CONT</u>	Date Analyzed: <u>11/17/88</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor: <u>1.0</u>
	CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

Q

108-95-2		10	U
	bis(2-Chloroethyl)Ether	10	Ū
95-57-8	2-Chlorophenol	10	Ū
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	U
100-51-6	Benzyl Alcohol	10	U
95-50-1	1,2-Dichlorobenzene	10	U
		10	U
108-60-1	2-Methylphenol bis(2-Chloroisopropyl)Ether	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-Di-n-Propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
65-85-0	Benzoic Acid	50	U
111-91-1	bis(2-Chloroethoxy)Methane	10	Ŭ
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	Ū
	4-Chloroaniline	10	U
	Hexachlorobutadiene	10	U
	4-Chloro-3-Methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,5-Trichlorophenol	50	Ū
91-58-7	2-Chloronaphthalene	10	Ū
88-74-4	2-Nitroaniline	50	U
	Dimethyl Phthalate	10	U
208-96-8	Acenaphthylene	10	U
606-20-2	2,6-Dinitrotoluene	10	U
	_,		

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

3

Lab Name: EMSI	_ Contract:	0452 0459	MW-2ART
Lab Code: EMSI Case No.: ATK-	SAS No.:	SDG 1	No.:
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	
Sample wt/vol: <u>1000</u> (g/mL)	ML	Lab File ID:	<u>111688S11</u>
Level: (low/med) LOW		Date Received:	10/31/88
<pre>% Moisture: not dec dec.</pre>		Date Extracted:	<u>11/02/88</u>
Extraction: (SepF/Cont/Sonc)	CONT	Date Analyzed:	<u>11/17/88</u>
GPC Cleanup: (Y/N) <u>N</u> pH:		Dilution Factor	: 1.0

CAS NO:

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

Q

99-09-23-Nitroaniline	50 10 50 50 10 10 10 50 50 10 10	U U U U U U U U U U U
83-32-9Acenaphthene 51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-Methylphenol 86-30-6Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Anthracene	50 50 10 10 10 10 50 50 10 10	U U U U U U U U U U U
51-28-52,4-Dinitrophenol	50 10 10 10 10 50 50 10 10	U U U U U U U U U U
132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-Methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Anthracene	10 10 10 10 50 50 10 10	U U U U U U U U
132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-Methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Anthracene	10 10 10 50 50 10 10	บ บ บ บ บ บ
121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-Methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	10 10 50 50 10 10	บ บ บ บ บ บ
84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-Methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	10 10 50 50 10 10	บ บ บ บ บ
7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-6Fluorene 534-52-14,6-Dinitro-2-Methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	10 50 50 10 10	บ บ บ บ
86-73-7Fluorene	10 50 50 10 10	U U U
100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-Methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	50 10 10	U U
\$34-52-14,6-Dinitro-2-Methylphenol\$6-30-6N-Nitrosodiphenylamine (1)101-55-3A-Bromophenyl-phenylether118-74-1Hexachlorobenzene\$7-86-5Pentachlorophenol\$5-01-8Phenanthrene120-12-7Anthracene	10 [°] 10	U
86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	10 [°] 10	
101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene		
118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene		U
87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	10	U
85-01-8Phenanthrene 120-12-7Anthracene	50	U
120-12-7Anthracene	10	U
	10	Ū
84-74-2Di-n-Butylphthalate	2	J
206-44-0Fluoranthene	10	U
129-00-0Pyrene 85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine	10	U
85-68-7Butylbenzylphthalate	10	Ū
91-94-13,3'-Dichlorobenzidine	20	U
56-55-3Benzo(a)Anthracene	10	U
218-01-9Chrysene	10	U
117-81-7bis(2-Ethylhexyl)Phthalate	10	U
117-84-0Di-n-Octyl Phthalate	10	U
205-99-2Benzo(b)Fluoranthene	10	U
207-08-9Benzo(k)Fluoranthene	10	U
50-32-8Benzo(a) Pyrene	10	U
193-39-5Indeno(1,2,3-cd) Pyrene	10	U
53-70-3Dibenz(a,h)Anthracene	10	U
191-24-2Benzo(g,h,i)Perylene	10	U
90-12-01-Methylnaphthalene	10	U
108-39-4meta-Cresol	10	U

57-97-6----7,12 jimethylbenzanthracene_

(1) - Cannot be separated from Diphenylamine

U

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET			EPA SAMPLE NO.		
	TENTATI	VELY IDENTI	FIED COMPOUNDS		MW-2ART
Lab Name: 1	EMSI		Contract	: 0452 0459	
Lab Code:	EMSI C	ase No.: <u>AT</u>	<u>K-1</u> SAS No.	: SDG	No.:
Matrix: (s	oil/water)	WATER		Lab Sample ID:	
Sample wt/	vol:	<u>1000</u> (g/m)	L) <u>ML</u>	Lab File ID:	<u>111688511</u>
Level:	(low/med)	LOW		Date Received:	10/31/88
<pre>% Moisture</pre>	: not dec.	dec	c	Date Extracted:	11/02/88
Extraction	: (SepF/G	Cont/Sonc)	CONT	Date Analyzed:	<u>11/17/88</u>
GPC Cleanu	p: (Y/N)	<u>N</u> pl	H:	Dilution Factor	: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000-00-0	PYRIDINE DERIVATIVE	7.23	10	J
2. 000-00-0	METHYL ETHYL BENZENE ISOMER	7.47	10	J
3. 000-00-0	2-PROPANOL ISOMER	8.92	10	J
4. 000-00-0	METHYL ETHYL BENZENE ISOMER	11.82	8.0	J
5. 000-00-0	UNKNOWN ALIPHATIC	13.49	22	J
6. 000-00-0	UNKNOWN AROMATIC -	16.17	12	J
7. 000-00-0	NAPHTHALENE ISOMER	16.59	12	J
8. 000-00-0	DICHLORO ETHYL BENZENE ISOME	17.12	14	J
9. 000-00-0	ISOCYANATO METHYL BENZENE IS	17.45	100	J
10. 000-00-0	UNKNOWN AROMATIC	17.95	16	J
11. 000-00-0	UNKNOWN AROMATIC	18.82	30	J
12. 000-00-0	UNKNOWN BRANCHED HYDROCARBON	20.29	48	J
13. 000-00-0	UNKNOWN	20.00	10	J
14. 000-00-0	UNKNOWN BRANCHED HYDROCARBON	23.22	68	J

Number TICs found: <u>14</u>

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET 2

EPA SAMPLE NO.

1

Lab Name: <u>EMSI</u>	Contract:	0452 0459	MW-3ART
Lab Code: <u>EMSI</u> Cas	se No.: <u>ATK-1</u> SAS No.:	SDG N	10.:
Matrix: (soil/water) WZ	ATER	Lab Sample ID:	
Sample wt/vol: <u>10</u>	000 (g/mL) <u>ML</u>	Lab File ID:	<u>111588S11</u>
Level: (low/med) <u>L(</u>	<u>OW</u>	Date Received:	<u>10/31/88</u>
<pre>% Moisture: not dec</pre>	dec	Date Extracted:	11/02/88
Extraction: (SepF/Con	nt/Sonc) <u>CONT</u>	Date Analyzed:	11/15/88
GPC Cleanup: (Y/N) <u>N</u>	pH:	Dilution Factor:	<u>1.0</u>
CAS NO.		TRATION UNITS: or ug/Kg) <u>UG/L</u>	Q

1.1			
	108-95-2Phenol	10	U
	111-44-4bis(2-Chloroethyl)Ether	10	U
	95-57-82-Chlorophenol	10	U
	541-73-11, 3-Dichlorobenzene	10	Ū
ļ	106-46-71,4-Dichlorobenzene	10	U
	100-51-6Benzyl Alcohol	10	U
	95-50-11,2-Dichlorobenzene	10	U
	95-48-72-Methylphenol	10	U
	108-60-1bis(2-Chloroisopropyl)Ether	10	U
1	106-44-54-Methylphenol	10	ប
	621-64-7N-Nitroso-Di-n-Propylamine	10	U
	67-72-1Hexachloroethane	10	U
	98-95-3Nitrobenzene	10	U
	78-59-1Isophorone	10	U
	88-75-52-Nitrophenol	10	U
	105-67-92,4-Dimethylphenol	10	U
	65-85-0Benzoic Acid	39	J
	111-91-1bis(2-Chloroethoxy)Methane	10	U
	120-83-22,4-Dichlorophenol	10	U
	120-82-11,2,4-Trichlorobenzene	10	U
	91-20-3Naphthalene	10	U
	106-47-84-Chloroaniline	10	U
	87-68-3Hexachlorobutadiene	10	U
	59-50-74-Chloro-3-Methylphenol	10	U
	91-57-62-Methylnaphthalene	10	U
	77-47-4Hexachlorocyclopentadiene	10	Ū
	88-06-22,4,6-Trichlorophenol	10	U
	95-95-42,4,5-Trichlorophenol	50	U
	91-58-72-Chloronaphthalene	10	U
	88-74-42-Nitroaniline	50	U
	131-11-3Dimethyl Phthalate	10	U
	208-96-8Acenaphthylene	10	U
	606-20-22,6-Dinitrotoluene	10	U

FORM I SV-1

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Teh Nemer ENGT		MW-3ART
Lab Name: EMSI	Contract: 0452 0459	
Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u>	SAS No.: SDG N	10.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	·
Sample wt/vol: <u>1000</u> (g/mL) <u>M</u>	IL Lab File ID:	111588511
Level: (low/med) LOW	Date Received:	<u>10/31/88</u>
<pre>% Moisture: not dec dec</pre>	Date Extracted:	11/02/88
Extraction: (SepF/Cont/Sonc) <u>C</u>	Date Analyzed:	<u>11/15/88</u>
GPC Cleanup: (Y/N) <u>N</u> pH: _	Dilution Factor:	1.0
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q

COMPOUND

(ug/L or ug/Kg) <u>UG/L</u>

Q

99-09-2	3-Nitroaniline	50	U
83-32-9	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	50	U
100-02-7	4-Nitrophenol	. 50	U
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	50	U
534-52-1	4,6-Dinitro-2-Methylphenol	50	Ū
86-30-6	N-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	50	Ū
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ū
84-74-2	Di-n-Butylphthalate	10	Ū
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine Benzo(a)Anthracene	10	Ū
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3.3'-Dichlorobenzidine	20	U
56-55-3	Benzo(a)Anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	bis(2-Ethylhexyl)Phthalate	2	Ĵ
117-84-0	Di-n-Octyl Phthalate	10	Ū
205-99-2	Benzo(b)Fluoranthene	10	U
207-08-9	Benzo(k)Fluoranthene	10	U
50-32-8	Benzo(a) Pyrene	10	U
193-39-5	Indeno(1,2,3-cd)Pyrene	10	U
53-70-3	Dibenz(a,h)Anthracene	10	Ū
191-24-2	Benzo(g,h,i)Pervlene	10	Ū
90-12-0	Benzo(g,h,i)Perylene	10	lù
108-39-4	meta-Cresol	10	U

57-97-6-----7,12-Dimethylbenzanthracene_

(1) - Cannot be separated from Diphenylamine

FORM I SV-3

S			ANALYSIS DATA		EPA SAMPLE NO.
Lab Name: <u>E</u>			FIED COMPOUNDS	: 0452 0459	MW-3ART
Lab Malle. <u>E.</u>	<u>M51</u>				
Lab Code: <u>E</u>	MSI C	ase No.: Al	<u>K-1</u> SAS No.	: SDG	No.:
Matrix: (so	il/water)	WATER		Lab Sample ID:	
Sample wt/v	ol:	<u>1000</u> (g/r	nL) <u>ML</u>	Lab File ID:	<u>111588511</u>
Level: (low/med)	LOW		Date Received:	10/31/88
<pre>% Moisture:</pre>	not dec.	de	ec	Date Extracted:	11/02/88
Extraction:	(SepF/C	cont/Sonc)	CONT	Date Analyzed:	11/15/88
GPC Cleanup	: (Y/N)	<u>N</u> I	oH:	Dilution Factor	: 1.0

Number TICs found: 10

•

٥

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000-00-0 2. 000-00-0 3. 000-00-0 4. 000-00-0 5. 000-00-0	TETRAMETHYL BENZENE UNKNOWN AROMATIC DIMETHYL NAPHTHALENE ISOMER UNKNOWN AROMATIC DIMETHYL NAPHTHALENE ISOMER	11.90 15.50 16.20 16.25 16.44	10 10 28 24 14	===== J J J J J
6. 000-00-0 7. 000-00-0 8. 000-00-0 9. 000-00-0 10. 000-00-0	DIMETHYL NAPHTHALENE ISOMER DIMETHYL NAPHTHALENE ISOMER UNKNOWN AROMATIC UNKNOWN AROMATIC UNKNOWN	16.49 16.67 17.39 17.52 22.54	12 10 10 10 10 14	2 7 7 7

.

1BEPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET MW-3ARTRE Lab Name: EMSI Contract: 0452 0459 Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS No.: _____ SDG No.: ____ Matrix: (soil/water) <u>WATER</u> Lab Sample ID: Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u> Lab File ID: 111688510 Level: (low/med) LOW Date Received: 10/31/88 % Moisture: not dec. ____ dec. ____ Date Extracted: 11/16/88 Extraction: (SepF/Cont/Sonc) CONT Date Analyzed: <u>11/17/88</u> GPC Cleanup: (Y/N) N pH: ____ Dilution Factor: 1.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q 108-95-2----Phenol 10 U 111-44-4-----bis(2-Chloroethyl)Ether 10 U 95-57-8----2-Chlorophenol U 10 541-73-1-----1,3-Dichlorobenzene 10 U 106-46-7-----1,4-Dichlorobenzene 10 U 100-51-6----Benzyl Alcohol 10 U 95-50-1-----1,2-Dichlorobenzene_____ 10 U 95-48-7----2-Methylphenol_ 10 U 108-60-1-----bis(2-Chloroisopropyl)Ether____ 10 U 106-44-5-----4-Methylphenol 10 U 621-64-7-----N-Nitroso-Di-n-Propylamine U 10 67-72-1-----Hexachloroethane_____ U 10 98-95-3-----Nitrobenzene____ 10 U 78-59-1----Isophorone 10 U 88-75-5----2-Nitrophenol 10 U 105-67-9----2,4-Dimethylphenol U 10 65-85-0----Benzoic Acid 50 U 111-91-1----bis(2-Chloroethoxy)Methane____ U 10 120-83-2----2,4-Dichlorophenol_ U 10 120-82-1-----1,2,4-Trichlorobenzene U 10 91-20-3-----Naphthalene 10 U 106-47-8-----4-Chloroaniline 10 U 87-68-3-----Hexachlorobutadiene 10 U 59-50-7-----4-Chloro-3-Methylphenol U 10 91-57-6----2-Methylnaphthalene 10 U 77-47-4-----Hexachlorocyclopentadiene U 10 U · * 88-06-2-----2,4,6-Trichlorophenol_ 10 95-95-4----2,4,5-Trichlorophenol_____ 50 U 91-58-7----2-Chloronaphthalene U 10 88-74-4----2-Nitroaniline 50 U 131-11-3-----Dimethyl Phthalate U 10 208-96-8-----Acenaphthylene U 10 606-20-2-----2,6-Dinitrotoluene U 10

1C

I

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANA	LYSIS DATA SHEET	1	
Lab Name: EMSI	Contract: 0.452 0.459	MW	-3ARTRE
Dab Name. MS1	contract. <u>0452</u> 0455	1	<u> </u>
Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u>	SAS No.: SI	OG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample II): 	<u> </u>
Sample wt/vol: <u>1000</u> (g/mL)	ML Lab File ID:	<u>111</u>	<u>688510</u>
Level: (low/med) LOW	Date Received	d: <u>10/</u>	31/88
<pre>% Moisture: not dec dec.</pre>	Date Extracte	ed: <u>11/</u>	16/88
Extraction: (SepF/Cont/Sonc)	CONT Date Analyzed	i: <u>11/</u>	17/88
GPC Cleanup: (Y/N) <u>N</u> pH:	Dilution Fact	tor: <u>1.</u>	0
CAS NO. COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) <u>UG</u>		Q
99-09-23-Nitroanili 83-32-9Acenaphthene		50 10	U U
51-28-52,4-Dinitrop	henol	50	U
100-02-74-Nitropheno 132-64-9Dibenzofuran		50	U
121-14-22,4-Dinitrot		10	UU
84-66-2Diethylphtha		10	U
7005-72-34-Chloropher	vl=nhenvlether	10	U
86-73-7Fluorene	·	10	U
100-01-64-Nitroanili	ne	50	U
534-52-14.6-Dinitro-	2-Methylphenol	50	Ū
86-30-6N-Nitrosodip	phenylamine (1)	10	U
101-55-34-Bromopheny	l-phenylether	10	U
118-74-1Hexachlorobe	enzene	10	U
87-86-5Pentachlorop	henol	50	U
85-01-8Phenanthrene		10	U
120-12-7Anthracene		10	U
84-74-2Di-n-Butylph	thalate	10	U
206-44-0Fluoranthene		10	U
129-00-0Pyrene		10	U
85-68-7Butylbenzylp	ontnalate	10	U
91-94-13,3 ¹ -Dichlor	ropenziaine	20	U
56-55-3Benzo(a)Anth	iracene	10	U
218-01-9Chrysene	ovul) Phthalato	10	U J
117-81-7bis(2-Ethylf 117-84-0Di-n-Octyl F	hthalate	4	U
205-99-2Benzo(b)Fluc	ranthene	10 10	U
207-08-9Benzo(k)Fluc	vranthene	10	U
50-32-8Benzo(a) Pyre		10	U
193-39-5Indeno(1,2,3	-cd) Pyrene	10	U
53-70-3Dibenz(a,h)	nthracene	10	U
191-24-2Benzo(g,h,i)	Pervlene	10	U
90-12-01-Methylnaph	thalene	10	U
108-39-4meta-Cresol		10	Ū

(1) - Cannot be separated from Diphenylamine FORM I SV-2

1/87 Rev.

10

U

	SEMIVOLATII	LE ORGANICS AND	ALYSIS DATA S	SHEET	EPA SAMPLE NO.
	TENTATI	VELY IDENTIFI	ED COMPOUNDS		MW-3ARTRE
Lab Name:	EMSI		_ Contract:	0452 0459	
Lab Code:	EMSI C	Case No.: <u>ATK-</u>	<u>1</u> SAS No.:	SDG 3	No.:
Matrix: (s	soil/water)	WATER		Lab Sample ID:	
Sample wt/	vol:	<u>1000</u> (g/mL)	ML	Lab File ID:	<u>111688S10</u>
Level:	(low/med)	LOW		Date Received:	10/31/88
<pre>% Moisture</pre>	e: not dec.	dec.		Date Extracted:	11/16/88
Extraction	n: (SepF/G	Cont/Sonc)	CONT	Date Analyzed:	11/17/88
GPC Clean	up: (Y/N)	<u>N</u> pH:		Dilution Factor	: 1.0

Number TICs found: <u>4</u>

1

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT ========	EST. CONC.	Q ======
1. 000-00-0 2. 000-00-0 3. 000-00-0 4. 000-00-0	CYCLOHEXANE ISOMER UNKNOWN ALCOHOL UNKNOWN AROMATIC UNKNOWN	7.98 8.59 16.17 22.45	22 32 10 10	ປ ບ ບ ບ ບ

1B SEMIVOLATILE ORGANICS ANALYSIS DA	TA SHEET
Lab Name: EMSI Contr	MW-4ART
Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS	No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: <u>111688507</u>
Level: (low/med) LOW	Date Received: <u>10/31/88</u>
<pre>% Moisture: not dec dec</pre>	Date Extracted: <u>11/02/88</u>
Extraction: (SepF/Cont/Sonc) CONT	Date Analyzed: <u>11/16/88</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor: <u>1.0</u>
	NCENTRATION UNITS: Ig/L or ug/Kg) <u>UG/L</u> Q
108-95-2Phenol 111-44-4bis (2-Chloroethyl)Et 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene 100-51-6Benzyl Alcohol 95-50-11,2-Dichlorobenzene 95-48-72-Methylphenol 108-60-1bis (2-Chloroisopropy) 106-44-54-Methylphenol 621-64-7Hexachloroethane 98-95-3Hexachloroethane 98-95-3	10 U 10 <td< td=""></td<>

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

___

} |

:

EPA SAMPLE NO.

1

	• • • •		MW-4ART
Lab Name: <u>EMSI</u>	Contract	0452 0459	
Lab Code: <u>EMSI</u> Case No.	: <u>ATK-1</u> SAS No.	SDG	No.:
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	
Sample wt/vol: 1000	(g/mL) <u>ML</u>	Lab File ID:	111688507
Level: (low/med) LOW		Date Received:	10/31/88
<pre>% Moisture: not dec</pre>	dec	Date Extracted:	11/02/88
Extraction: (SepF/Cont/Sor	nc) <u>CONT</u>	Date Analyzed:	11/16/88
GPC Cleanup: (Y/N) N	pH:	Dilution Factor	: 1.0
		NTRATION UNITS:	
CAS NO. COMPO	UND (ug/L	or ug/Kg) <u>UG/L</u>	Q Q
}		· .	

1			1
	99-09-23-Nitroaniline	50	U
	83-32-9Acenaphthene	10	U
	51-28-52,4-Dinitrophenol	50	U
	51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol	50	U
	132-64-9Dibenzofuran	10	U
	121-14-22,4-Dinitrotoluene	10	U
	84-66-2Diethylphthalate	10	U
	7005-72-34-Chlorophenyl-phenylether	10	U
	86-73-7Fluorene	10	U
	100-01-64-Nitroaniline	50	U
	534-52-14,6-Dinitro-2-Methylphenol	50	Ū
	86-30-6N-Nitrosodiphenylamine (1)	10	Ū
	101-55-34-Bromophenyl-phenylether	10	Ū
	118-74-1Hexachlorobenzene	10	υ
	87-86-5Pentachlorophenol	50	U
	85-01-8Phenanthrene	10	U
	120-12-7Anthracene	10	Ū
	84-74-2Di-n-Butylphthalate	10	Ū
	206-44-0Fluoranthene	10	Ū
	129-00-0Pyrene	10	Ū
	85-68-7Butylbenzylphthalate	10	U
	91-94-13,3'-Dichlorobenzidine	20	Ū
	56-55-3Benzo(a)Anthracene	10	Ū
	218-01-9Chrysene	10	Ū
	117-81-7bis(2-Ethylhexyl)Phthalate	3	J
	117-84-0Di-n-Octyl Phthalate	10	U
	205-99-2Benzo(b)Fluoranthene	10	Ū
	207-08-9Benzo(k)Fluoranthene		Ū
	50-32-8Benzo(a) Pyrene	10	U
	193-39-5Indeno(1,2,3-cd) Pyrene	10	Ū
	53-70-3Dibenz(a,h)Anthracene	10	U
	191-24-2Benzo(g,h,i)Perylene	10	Ū
	90-12-01-Methylnaphthalene	10	Ŭ
	108-39-4meta-Cresol	10	U
1			·

(1) - Cannot be separated from Diphenylamine FORM I SV-2 (1) - Cannot be separated from Diphenylamine

		1F LE ORGANICS ANAL		HEET	EPA SAMPLE NO.
Lab Name:		IVELY IDENTIFIE		0452 0459	MW-4ART
Lab Code:	EMSI (Case No.: <u>ATK-1</u>	_ SAS No.:	SDG N	10.:
Matrix: (s	soil/water)	WATER		Lab Sample ID:	
Sample wt,	/vol:	<u>1000</u> (g/mL)]	ML	Lab File ID:	<u>111688S07</u>
Level:	(low/med)	LOW		Date Received:	10/31/88
<pre>% Moisture</pre>	e: not dec.	dec.		Date Extracted:	11/02/88
Extraction	n: (SepF/0	Cont/Sonc)	CONT	Date Analyzed:	11/16/88
GPC Clean	up: (Y/N)	N pH:	·	Dilution Factor:	1.0

Number TICs found: <u>0</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		========		=====

1

1B SEMIVOLATILE ORGANICS ANALYSI	EPA SAMPLE NO.
Lab Name: EMSI C	MW-5ART
Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u>	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: <u>111688512</u>
Level: (low/med) LOW	Date Received: 10/31/88
<pre>% Moisture: not dec dec</pre>	Date Extracted: <u>11/02/88</u>
Extraction: (SepF/Cont/Sonc) CONT	Date Analyzed: <u>11/17/88</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor: <u>1.0</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-95-2Phenol 111-44-4bis (2-Chloroethy 95-57-82-Chlorophenol 541-73-11, 3-Dichlorobenz 106-46-71, 4-Dichlorobenz 100-51-6Benzyl Alcohol 95-50-11, 2-Dichlorobenz 95-48-72-Methylphenol 108-60-1bis (2-Chloroisof 106-44-54-Methylphenol 621-64-7Nitroso-Di-n-F 67-72-1Hexachloroethane 98-95-3Nitrobenzene 78-59-1	10 U zene 10 U zene 10 U 10 U 10 U zene 10 U 10 U zene 10 U 10 U zene 10 U 10 U propyl)Ether 10 U 10 U Propylamine 10 U 10 U 10 U 10 U 10 10 U 10 U 10 U 10 U 10

- ___

ļ

1C EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET MW-5ART Lab Name: EMSI Contract: 0452 0459 Lab Code: EMSI Case No.: ATK-1 SAS No.: SDG No.: Matrix: (soil/water) WATER Lab Sample ID: Sample wt/vol: 1000 (g/mL) ML Lab File ID: 111688S12 Level: (low/med) LOW Date Received: 10/31/88 % Moisture: not dec. dec. Date Extracted: 11/02/88 Extraction: (SepF/Cont/Sonc) CONT Date Analyzed: 11/17/88

GPC Cleanup: (Y/N) N pH: ____ Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

Q

	T	1
99-09-23-Nitroaniline	50	U
83-32-9Acenaphthene	10	U
51-28-52,4-Dinitrophenol	50	U
100-02-74-Nitrophenol	50	U
132-64-9Dibenzofuran	10	Ū
121-14-22.4-Dinitrotoluene	10	U
84-66-2Diethylphthalate	10	U
7005-72-34-Chlorophenyl-phenylether	10	Ū
86-73-7Fluorene	10	U
100-01-64-Nitroaniline	50	U
534-52-14,6-Dinitro-2-Methylphenol	50	U
86-30-6N-Nitrosodiphenylamine (1)	10	Ū
101-55-34-Bromophenyl-phenylether	10	Ū
118-74-1Hexachlorobenzene	10	U
87-86-5Pentachlorophenol	50	U
85-01-8Phenanthrene	10	U
120-12-7Anthracene	10	U
84-74-2 <u>Di</u> -n-Butylphthalate	20	Ŭ
206-44-0Fluoranthene	10	U
129-00-0Pyrene	10	U
85-68-7Butylbenzylphthalate	10	U
91-94-13,3'-Dichlorobenzidine	20	U
56-55-3Benzo(a)Anthracene	10	U
218-01-9Chrysene	10	U
117-81-7bis(2-Ethylhexyl)Phthalate		U
117-84-0Di-n-Octyl Phthalate	7	J
205-99-2Benzo(b)Fluoranthene	10	U
207-08-9Benzo(k)Fluoranthene	10	U
50-32-8Benzo(a) Pyrene	10	U
193-39-5Indeno(1,2,3-cd) Pyrene	10	Ŭ
53-70-3Dibenz(a,h)Anthracene	10	U
191-24-2Benzo(g,h,i)Perylene	10	U
90-12-01-Methylnaphthalene	10	U
108-39-4meta-Cresol	10	Ū
		1

(1) - Cannot be separated from Diphenylamine FORM I SV-2 (1) - Cannot be separated from Diphenylamine

Number TICs found: <u>0</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
================================	=======================================	========	================	=====

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET MW-6ART Lab Name: <u>EMSI</u> Contract: 0452 0459 Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS No.: _____ SDG No.: _____ Matrix: (soil/water) WATER Lab Sample ID: Sample wt/vol: 1000 (g/mL) ML Lab File ID: 111788503 Date Received: 10/31/88 Level: (low/med) LOW % Moisture: not dec. ____ dec. ____ Date Extracted: <u>11/02/88</u> Extraction: (SepF/Cont/Sonc) CONT Date Analyzed: 11/17/88 GPC Cleanup: (Y/N) N pH: ____ Dilution Factor: 1.0 ____ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 108-95-2----Phenol 10 U 111-44-4----bis(2-Chloroethyl)Ether 10 U 95-57-8----2-Chlorophenol U 10 541-73-1----1, 3-Dichlorobenzene 10 U 106-46-7----1,4-Dichlorobenzene U 10 100-51-6----Benzyl Alcohol_ 10 U 95-50-1-----1.2-Dichlorobenzene 10 U U U

1B

l	95-50-11,2-Dichlorobenzene	10	U
	95-48-72-Methylphenol	10	U
Į	108-60-1bis(2-Chloroisopropyl)Ether	10	U
	106-44-54-Methylphenol	10	U
	621-64-7N-Nitroso-Di-n-Propylamine	10	U
ļ	67-72-1Hexachloroethane	10	U
	98-95-3Nitrobenzene	10	υ
	78-59-1Isophorone	10	U
	88-75-52-Nitrophenol	10	U
	105-67-92,4-Dimethylphenol	10	U
	65-85-0Benzoic Acid	50	U
	111-91-1bis(2-Chloroethoxy)Methane	10	U
	120-83-22,4-Dichlorophenol	10	U
	120-82-11,2,4-Trichlorobenzene	10	U
	91-20-3Naphthalene	10	U
	106-47-84-Chloroaniline	10	U
	87-68-3Hexachlorobutadiene	10	U
	59-50-74-Chloro-3-Methylphenol	10	U
	91-57-62-Methylnaphthalene	10	U
	77-47-4Hexachlorocyclopentadiene	10	U
	88-06-22,4,6-Trichlorophenol	10	U
	95-95-42,4,5-Trichlorophenol	50	U
1	91-58-72-Chloronaphthalene	10	U
	88-74-42-Nitroaniline	50	U
	131-11-3Dimethyl Phthalate	10	U
	208-96-8Acenaphthylene	10	U
	606-20-22,6-Dinitrotoluene	10	U

EPA SAMPLE NO.

Name: EMSI Contra	MW-6	ART
Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS N		
ix: (soil/water) <u>WATER</u>	Lab Sample ID:	
le wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: <u>11178</u>	8503
l: (low/med) <u>LOW</u>	Date Received: 10/31	./88
isture: not dec dec	Date Extracted: <u>11/02</u>	/88
action: (SepF/Cont/Sonc) <u>CONT</u>	Date Analyzed: <u>11/17</u>	/88
Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor: <u>1.0</u>	
	ICENTRATION UNITS: J/L or ug/Kg) <u>UG/L</u>	Q
99-09-23-Nitroaniline	50 U	l
83-32-9Acenaphthene	10 U	
51-28-52,4-Dinitrophenol	50 U	
100-02-74-Nitrophenol 132-64-9Dibenzofuran	50 U	
121-14-22,4-Dinitrotoluene		
84-66-2Diethylphthalate		
7005-72-34-Chlorophenyl-phenyl		
86-73-7Fluorene	10 0	
100-01-64-Nitroaniline	50 U	
534-52-14,6-Dinitro-2-Methylp	phenol 50 U	ſ
86-30-6N-Nitrosodiphenylamir	ne (1) 10 U	
101-55-34-Bromophenyl-phenyle		
118-74-1Hexachlorobenzene	10 U	
87-86-5Pentachlorophenol 85-01-8Phenanthrene	50 0	
120-12-7Anthracene		
84-74-2Di-n-Butylphthalate	10 [U 10 [U	
206-44-0Fluoranthene		
129-00-0Pyrene		
85-68-7Butylbenzylphthalate		
91-94-13,3'-Dichlorobenzidir	ne 20 U	
56-55-3Benzo(a)Anthracene	10 t	
218-01-9Chrysene	10 U	
117-81-7bis(2-Ethylhexyl)Phth	alate 10 U	
117-84-0Di-n-Octyl Phthalate		
205-99-2Benzo(b)Fluoranthene		
207-08-9Benzo(k)Fluoranthene 50-32-8Benzo(a)Pyrene		
193-39-5Indeno(1,2,3-cd) Pyrene		
53-70-3Dibenz(a,h)Anthracene		
191-24-2Benzo(g,h,i)Perylene_		
90-12-01-Methylnaphthalene	10 U	
108-39-4meta-Cresol	10 1	

(1) - Cannot be separated from Diphenylamine

SEN		E ORGANIC VELY IDEN	S ANALY	SIS DATA SI	HEET	EPA :	SAMPLE NO.
Lab Name: <u>EMS</u>					0452 0459		6ART
Lab Code: EMS	<u>SI C</u>	ase No.:	ATK-1	SAS No.:	S	DG No.:	
Matrix: (soi)	l/water)	WATER		1	Lab Sample I	D:	
Sample wt/vol	1:	<u>1000</u> (g	/mL) <u>Ml</u>	<u> </u>	Lab File ID:	1117	88503
Level: (lo	ow/med)	LOW		1	Date Receive	ed: <u>10/3</u>	1/88
<pre>% Moisture: n</pre>	not dec.		dec	1	Date Extract	ed: <u>11/0</u>	2/88
Extraction:	(SepF/C	Cont/Sonc)	<u>co</u>	NT	Date Analyze	ed: <u>11/1</u>	7/88
GPC Cleanup:	(Y/N)	<u>N</u>	рН:	1	Dilution Fac	tor: <u>1.0</u>	······

Number TICs found: <u>0</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
========================		========		====

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET		EPA SAMPLE NO.
Lab Name: EMSI Contract: 0452	0459	MW-6LUSMS
Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS No.:	SDG N	0.:
Matrix: (soil/water) <u>WATER</u> Lab Sa	mple ID:	
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u> Lab Fi	le ID:	111188508
Level: (low/med) LOW Date F	Received:	10/27/88
% Moisture: not dec dec Date H	Extracted:	10/31/88
Extraction: (SepF/Cont/Sonc) <u>CONT</u> Date A	nalyzed:	11/11/88
GPC Cleanup: (Y/N) <u>N</u> pH: Diluti	on Factor:	1.0
CONCENTRATIC CAS NO. COMPOUND (ug/L or ug/		Q
108-95-2Phenol		.0 U .0 <td< td=""></td<>

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>EMSI</u> Contract: <u>045</u>	52 0459	MW-6LUSMS
Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS No.:	SDG	No.:
Matrix: (soil/water) <u>WATER</u> Lab	Sample ID:	
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u> Lab	File ID:	111188508
Level: (low/med) LOW Date	e Received:	10/27/88
<pre>% Moisture: not dec dec Date</pre>	Extracted:	10/31/88
Extraction: (SepF/Cont/Sonc) CONT Date	Analyzed:	11/11/88
GPC Cleanup: (Y/N) <u>N</u> pH: Dilu	ition Factor	: <u>1.0</u>
	TION UNITS: ng/Kg) <u>UG/L</u>	Q
99-09-2		50 U 10 U 50 U 50 U 50 U 10 U 50 U 10 U 10 <td< td=""></td<>

(1) - Cannot be separated from Diphenylamine FORM I SV-2

FORM I SV-3

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA SAMPLE NO.

.

Tab Namaa TNOT	MW-6LUSMSD
Lab Name: EMSI Co	ntract: 0452 0459
Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> S	AS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: <u>111188509</u>
Level: (low/med) LOW	Date Received: <u>10/27/88</u>
<pre>% Moisture: not dec dec</pre>	Date Extracted: <u>10/31/88</u>
Extraction: (SepF/Cont/Sonc) <u>CONT</u>	Date Analyzed: <u>11/11/88</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor: <u>1.0</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

(ug/L or ug/Kg) UG/L Q

108-95-2Phenol	10	U
111-44-4bis(2-Chloroethyl)Ether	10	U
95-57-82-Chlorophenol	10	U
541-73-11,3-Dichlorobenzene	10	υ
106-46-71,4-Dichlorobenzene	10	U
100-51-6Benzyl Alcohol	10	U
95-50-11,2-Dichlorobenzene	10	U
95-48-72-Methylphenol	10	U
108-60-1bis(2-Chloroisopropyl)Ether	10	U
106-44-54-Methylphenol	10	U
621-64-7N-Nitroso-Di-n-Propylamine	10	U
67-72-1Hexachloroethane	10	U
98-95-3Nitrobenzene	10	U
78-59-1Isophorone	10	U
88-75-52-Nitrophenol	10	U
105-67-92,4-Dimethylphenol	10	Ū
65-85-0Benzoic Acid	50	Ū
111-91-1bis(2-Chloroethoxy)Methane	10	U
120-83-22,4-Dichlorophenol	10	U
120-82-11,2,4-Trichlorobenzene	10	U
91-20-3Naphthalene	10	Ū
106-47-84-Chloroaniline	10	U
87-68-3Hexachlorobutadiene	10	Ū
59-50-74-Chloro-3-Methylphenol	10	Ū
91-57-62-Methylnaphthalene	10	Ū
77-47-4Hexachlorocyclopentadiene	10	Ū
88-06-22,4,6-Trichlorophenol	10	U
95-95-42,4,5-Trichlorophenol	50	U
91-58-72-Chloronaphthalene	10	U
88-74-42-Nitroaniline	50	Ū
131-11-3Dimethyl Phthalate	10	Ū
208-96-8Acenaphthylene	10	U
606-20-22,6-Dinitrotoluene	10	Ū

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

I

Lab Name: <u>EMSI</u>	Contract:	0452 0459	MW-6LUSMSD
Lab Code: <u>EMSI</u> C	ase No.: <u>ATK-1</u> SAS No.:	SDG 1	¥o.:
Matrix: (soil/water)	WATER	Lab Sample ID:	
Sample wt/vol:	<u>1000</u> (g/mL) <u>ML</u>	Lab File ID:	111188509
Level: (low/med)	LOW	Date Received:	<u>10/27/88</u>
<pre>% Moisture: not dec.</pre>	dec	Date Extracted:	<u>10/31/88</u>
Extraction: (SepF/C	ont/Sonc) <u>CONT</u>	Date Analyzed:	11/11/88
GPC Cleanup: (Y/N)	<u>N</u> pH:	Dilution Factor:	1.0
CAS NO.		TRATION UNITS: or ug/Kg) <u>UG/L</u>	Q

99-09-23-Nitroaniline	50	U
83-32-9Acenaphthene	10	U
51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol	50	U
100-02-74-Nitrophenol	50	U
l l·{Z=64=9+++++=016070filran	1 10	U
121-14-22,4-Dinitrotoluene	10	U
84-66-2Diethylphthalate	10	U
7005-72-34-Chlorophenyl-phenylether	10	U
86-73-7Fluorene	10	U
100-01-64-Nitroaniline	50	U
534-52-14,6-Dinitro-2-Methylphenol	50	U
86-30-6N-Nitrosodiphenylamine (1)	10	U
101-55-34-Bromophenyl-phenylether	10	U
118-74-1Hexachlorobenzene	10	U
87-86-5Pentachlorophenol	50	U
85-01-8Phenanthrene	10	U
120-12-7Anthracene	10	U
84-74-2Di-n-Butylphthalate	10	U
206-44-0Fluoranthene	10	U
129-00-0	10	U
85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine	10	U
91-94-13,3'-Dichlorobenzidine	20	U
56-55-3Benzo(a)Anthracene	10	U
218-01-9Chrysene	10	U
117-81-7bis(2-Ethylhexyl)Phthalate	10	U
117-84-0Di-n-Octvl Phthalate	10	U
205-99-2Benzo(b)Fluoranthene	10	U
207-08-9Benzo(k)Fluoranthene	10	U
50-32-8Benzo(a) Pyrene	10	U
193-39-5Indeno(1,2,3-cd) Pyrene	10	U
53-70-3Dibenz(a,h)Anthracene	10	U
191-24-2Benzo(q,h,i)Pervlene	10	U
90-12-01-Methylnaphthalene	10	U
108-39-4meta-Cresol	10	U

(1) - Cannot be separated from Diphenylamine FORM I SV-2 (1) - Cannot be separated from Diphenylamine

4B SEM OLATILE METHOD BLANK SUMMARY					
Lab Name: <u>EMSI</u>		Contract: 0452 0459			
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-1</u>	SAS No.:	SDG No.:		
Lab File ID: <u>11</u>	1088503	Lab Sample	ID:		
Date Extracted:	10/31/88	Extraction: (Sep	F/Cont/Sonc) <u>CONT</u>		
Date Analyzed:	11/10/88	Time Analyz	ed: <u>1648</u>		
Matrix: (soil/water)	WATER	Level:(low/	'med)		
nstrument ID:	4500B				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		======================	*************	
01	MW-1LUS		111188S03	11/11/88
02	MW-2LUS		111188504	11/11/88
03	MW-3LUS		111188505	11/11/88
04	MW-5LUS		111188507	11/11/88
05	MW-6LUS		111088504	11/10/88
06	MW-6LUSMS		111188508	11/11/88
07	MW-6LUSMSD	-	111188509	11/11/88
		l	İ	

COMMENTS: 51207-0452 AT KEARNEY METHOD BLANK 10/31/88 (H2O) 1.5 MIN @ 35C, THEN 10C/MIN TO 300C (FINN 4500B)

1B SEMIVOLATILE ORG <mark>AN</mark> ICS ANAI	LYSIS DATA SHEET	A SAMPLE NO
	SE	3LK01
b Name: EMSI	Contract: 0452 0459	
b Code: <u>EMSI</u> Case No.: <u>ATK-1</u>	SAS No.: SDG No.:	•
trix: (soil/water) <u>WATER</u>	Lab Sample ID:	
mple wt/vol: <u>1000</u> (g/mL) <u>1</u>	<u>IL</u> Lab File ID: <u>111</u>	1088503
vel: (low/med)	Date Received:	
Moisture: not dec dec.	Date Extracted: <u>10</u> /	/31/88
traction: (SepF/Cont/Sonc)	<u>CONT</u> Date Analyzed: <u>11</u> /	/10/88
C Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor: <u>1</u> .	. 0
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
108-95-2Phenol	10	U
108-95-2phenol 111-44-4bis(2-Chlorod	ethyl)Ether10	U
1 95-57-82-Chlorophen	10	U
		U
106-46-71,4-Dichlorol 100-51-6Benzyl Alcoh	penzene10	U
100-51-6Benzyl Alcon		U
95-50-11,2-Dichlorol 95-48-72-Methylphen	penzene10	U
108-60-1bis(2-Chloro	isopropyl)Ether 10	U U
106-44-54-Methylphen	bl 10	U
621-64-7N-Nitroso-Di	-n-Propylamine 10	U
67-72-1Hexachloroet	nane 10	Ŭ
98-95-3Nitrobenzene	10	U
78-59-1Isophorone	10	U
88-75-52-Nitropheno	110	U
105-67-92,4-Dimethyl		U
65-85-0Benzoic Acid	50	U
111-91-1bis(2-Chloro		U
120-83-22,4-Dichloro		U
120-82-11,2,4-Trichl		U
91-20-3Naphthalene 106-47-84-Chloroanil	10	บ บ
87-68-3Hexachlorobu		UUU
59-50-74-Chloro-3-M		υ
91-57-62-Methylnaph	thalene 10	U
77-47-4Hexachlorocy	clopentadiene 10	U
88-06-22,4,6-Trichl	prophenol 10	Ŭ
95-95-42,4,5-Trichl	prophenol 50	Ū
91-58-72-Chloronaph	thalene 10	U
88-74-42-Nitroanili		U
131-11-3Dimethyl Pht	halate 10	U
131-11-3Dimethyl Pht 208-96-8Acenaphthyle 606-20-22,6-Dinitrot	halate 10 ne 10	U U

1C SEMIVOLATILE ORGINICS ANALYSIS DAT	CA SHEET	EPA SAMPLE
ab Name: EMSI Contra	act: 0452 0459	SBLK01
ab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS N	No.: SDG	No.:
atrix: (soil/water) <u>WATER</u>	Lab Sample ID:	
ample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID:	<u>111088503</u>
evel: (low/med)	Date Received:	
Moisture: not dec dec	Date Extracted	: <u>10/31/88</u>
xtraction: (SepF/Cont/Sonc) <u>CONT</u>	Date Analyzed:	11/10/88
PC Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor	r: <u>1.0</u>
	NCENTRATION UNITS: J/L or ug/Kg) <u>UG/L</u>	Q
99-09-23-Nitroaniline_ 83-32-9Acenaphthene_ 51-28-5	Lether	50 U 10 U 50 U 50 U 10 U 10 <td< td=""></td<>

1/8/ Rev.

•

ĺ

57-97-67,1	L2-Dimethy	lbenzanthracene
	-	

(1) - Cannot be separated from Diphenylamine

1F SEMIVOLATILE ORGINICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS					EPA SAMPLE NO.
Lab Name:				0452 0459	SBLK01
Lab Code:	EMSI C	Case No.: <u>ATK-</u>	<u>1</u> SAS No.:	SDG	No.:
Matrix: (s	soil/water)	WATER		Lab Sample ID:	<u> </u>
Sample wt/	vol:	<u>1000</u> (g/mL)	ML	Lab File ID:	<u>111088503</u>
Level:	(low/med)			Date Received:	
<pre>% Moisture</pre>	e: not dec.	dec.		Date Extracted:	<u>10/31/88</u>
Extraction	n: (SepF/0	Cont/Sonc)	CONT	Date Analyzed:	<u>11/10/88</u>
GPC Cleanu	up: (Y/N)	<u>N</u> pH:		Dilution Factor	: 1.0

Number TICs found: <u>0</u>

ł

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	=======================================	=======		=====

1B SEMIVOLATILE ORGINICS ANALYSIS	DATA SHEET
Lab Name: EMSI Con	SBLK02
Lab Code: EMSI Case No.: ATK-1 SA	S No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: <u>111488803</u>
Level: (low/med) LOW	Date Received:
<pre>% Moisture: not dec dec</pre>	Date Extracted: <u>11/02/88</u>
Extraction: (SepF/Cont/Sonc) CONT	Date Analyzed: <u>11/14/88</u>
GPC Cleanup: (Y/N) N pH:	Dilution Factor: <u>1.0</u>
	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-95-2Phenol 111-44-4bis(2-Chloroethyl) 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzem 106-46-71,4-Dichlorobenzem 100-51-6Benzyl Alcohol 95-50-11,2-Dichlorobenzem 95-48-72-Methylphenol 108-60-1bis(2-Chloroisoprol 106-44-54-Methylphenol 621-64-7N-Nitroso-Di-n-Prod 67-72-1Hexachloroethane 98-95-3Nitrobenzene 78-59-1Nitrobenzene 78-59-1	10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne 10 U ne

1C SEMIVOLATILE ORGANICS ANALYSIS DATA	SHEET	EPA SAMPLE NO.
Lab Name: EMSI Contrac	et: 0452 0459	SBLK02
Lab Code: EMSI Case No.: ATK-1 SAS No	.: SDG	No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID:	111488503
Level: (low/med) LOW	Date Received:	
<pre>% Moisture: not dec dec</pre>	Date Extracted:	11/02/88
Extraction: (SepF/Cont/Sonc) CONT	Date Analyzed:	11/14/88
GPC Cleanup: (Y/N) <u>N</u> pH:	Dilution Factor	: 1.0
	CENTRATION UNITS: (L or ug/Kg) <u>UG/L</u>	Q
99-09-23-Nitroaniline 83-32-9Acenaphthene 51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenyle 86-73-7	ather behol behol	50 U 10 U 50 U 50 U 10 U 50 U 10 U 10 <td< td=""></td<>

		lF	י				EPA SAMPLE NO.
	SEMIVOLATII				HEET 🟉	, -	
	TENTAT	IVELY TODAT	SIFIED C	OMPOUNDS			CDT KOO
Tab Name.	EMSI			Contract:	0452 045	<u>.</u>	SBLK02
Lab Mame.		<u> </u>		concract.	0452 041	I-	
Lab Code:	EMSI (Case No.: <u>A</u>	TK-1	SAS No.:	<u> </u>	SDG 1	io.:
Matrix: (soil/water)	WATER		1	Lab Sampl	le ID:	
Sample wt,	/vol:	<u>1000</u> (g/	'mL) <u>ML</u>	_ :	Lab File	ID:	<u>111488S03</u>
Level:	(low/med)	LOW		1	Date Rece	eived:	
<pre>% Moisture</pre>	e: not dec.	c	lec	1	Date Exti	cacted:	11/02/88
Extraction	n: (SepF/	Cont/Sonc)	CON	T	Date Anal	Lyzed:	11/14/88
GPC Clean	up: (Y/N)	<u>N</u>	рН:	1	Dilution	Factor	<u>1.0</u>

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT ========	EST. CONC.	Q =====	
	·····				

÷.

Number TICs found: <u>0</u>

1B EPA SAMPLE NO. SEMIVOLATILE ORGENICS ANALYSIS DATA SHEET SBLK03 Lab Name: EMSI _____ Contract: 0452 0459 Lab Code: EMSI Case No.: ATK-1 SAS No.: SDG No.: Matrix: (soil/water) WATER Lab Sample ID: Sample wt/vol: <u>1000</u> (g/mL) ML Lab File ID: 111688508 Level: (low/med) LOW Date Received: % Moisture: not dec. ____ dec. ____ Date Extracted: 11/16/88 Extraction: (SepF/Cont/Sonc) CONT Date Analyzed: 11/16/88 GPC Cleanup: (Y/N) <u>N</u> pH: _____ Dilution Factor: 1.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q 108-95-2----Phenol U 10 111-44-4----bis(2-Chloroethyl)Ether 10 U • 95-57-8----2-Chlorophenol U 10 541-73-1-----1, 3-Dichlorobenzene 10 U 106-46-7-----1,4-Dichlorobenzene U 10 100-51-6----Benzyl Alcohol 10 U 95-50-1-----1, 2-Dichlorobenzene 10 U 95-48-7----2-Methylphenol 10 U 108-60-1-----bis(2-Chloroisopropyl)Ether 10 U U 106-44-5-----4-Methylphenol 10 621-64-7-----N-Nitroso-Di-n-Propylamine 10 U 67-72-1-----Hexachloroethane 10 U 98-95-3-----Nitrobenzene U 10 78-59-1----Isophorone U 10 88-75-5----2-Nitrophenol U 10 105-67-9----2,4-Dimethylphenol 10 U 65-85-0----Benzoic Acid 50 U 111-91-1----bis(2-Chloroethoxy)Methane U 10 120-83-2----2,4-Dichlorophenol U 10 120-82-1-----1,2,4-Trichlorobenzene U 10 91-20-3----Naphthalene 10 U 106-47-8-----4-Chloroaniline 10 U 87-68-3-----Hexachlorobutadiene U 10 59-50-7-----4-Chloro-3-Methylphenol 10 U 91-57-6----2-Methylnaphthalene 10 U 77-47-4-----Hexachlorocyclopentadiene U 10 88-06-2-----2,4,6-Trichlorophenol_ 10 U 95-95-4-----2,4,5-Trichlorophenol 50 U 91-58-7-----2-Chloronaphthalene 10 U 88-74-4----2-Nitroaniline 50 U 131-11-3-----Dimethyl Phthalate 10 U 208-96-8----Acenaphthylene U 10 606-20-2-----2,6-Dinitrotoluene U 10

FORM I SV-1

1C SEMIVOLATILE ORGETICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: EMSI Contract: 0452 0459	SBLK03
Lab Code: <u>EMSI</u> Case No.: <u>ATK-1</u> SAS No.: SDG	No.:
Matrix: (soil/water) WATER Lab Sample ID:	
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u> Lab File ID:	<u>111688508</u>
Level: (low/med) LOW Date Received:	
<pre>% Moisture: not dec dec Date Extracted:</pre>	11/16/88
Extraction: (SepF/Cont/Sonc) <u>CONT</u> Date Analyzed:	<u>11/16/88</u>
GPC Cleanup: (Y/N) N pH: Dilution Factor	
CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L	Q
	· · · · · ·
83-32-9Acenaphthene	50 U 10 U 50 U 50 U 50 U 10 U 50 U 50 U 50 U 10 U 10 <td< td=""></td<>
(1) - Cannot be separated from Diphenylamine FORM I SV-2	 1/87 Rev.

I I

Į.

i

57-97-67,1	2-Dimethylbenzanthracen	e	10 U
(1) - Cannot be separ	ed from Diphenylamine		······································

	1F DLATILE ORG ICS AN		HEET	EPA SAMPLE NO.
Lab Name: EMSI	ENTATIVELY SENTIFI		0452 0459	SBLK03
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-</u>	<u>-1</u> SAS No.:	SDG	No.:
Matrix: (soil/wa	ater) <u>WATER</u>		Lab Sample ID:	
Sample wt/vol:	<u>1000</u> (g/mL)	ML	Lab File ID:	111688508
Level: (low/	med) <u>LOW</u>		Date Received:	
<pre>% Moisture: not</pre>	dec dec.	,	Date Extracted:	11/16/88
Extraction: (SepF/Cont/Sonc)	CONT	Date Analyzed:	11/16/88
GPC Cleanup:	(Y/N) <u>N</u> pH:	:	Dilution Factor	: 1.0

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000-00-1	UNKNOWN OXYGENATED	7.33	8.0	J

2C

WATER SEMIVOLATILE SURROGATE RECENERY

:

Lab Name: EMSI

---- ---

Contract: 0452 0459

Lab Code: EMSI Case No.: ATK-1 SAS No.: SDG No.:

	EDA	61	<u>.</u>	62	64	S 5	S6	OTHER	TOT
	EPA	S1	S2	S3	S4			OINER	
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH) #	(PHL) #	(2FP)#	(TBP) #		OUT
		======		======	======	=====	======	======	===
01	MW-1ART	51	51	49	63	56	54		0
02	MW-1LUS	49	47	78	62	37	45		0
03	MW-2ART	37	48	35	23	25	12		0
04	MW-2LUS	54	61	51	22	16 *	16		1
05	MW-3ART	50	51	46	9 *	5 *	6 *		3
06	MW-3ARTRE	50	.87	100	D	7*	24		1
07	MW-3LUS	50	53	59	44	40	52		0
08	MW-4ART	37	44	64	44	52	19		0
09	MW-4LUS	66	75	93	22	38	48		0
10	MW-5ART	36	46	58	38	42	35		0
11	MW-5LUS	37	51	81	89	86	59		0
12	MW-6ART	55	47	57	46	57	46		0
13	MW-6LUS	52	44	74	79	71	60		0
14	MW-6LUSMS	42	53	81	77	90	69		Ō
15		46	58	83	68	77	67		l o l
16	SBLK01	70	52	78	62	74	41		ŏ
17	SBLK02	51	53	67 -	64	56	43		ŏ
18	SBLK02	42	64	97	49	86	64		0
TQ	20202	42	04	"	4.7	00	04		
	! <u></u>						I		

			-		C LIMITS
S1	(NBZ)	=	Nitrobenzene-d5	(35-114)
S2	(FBP)	=	2-Fluorobiphenyl	(43-116)
S3	(TPH)	=	Terphenyl	(33-141)
S4	(PHL)	=	Phenol-d5	(10-94)
S5	(2FP)	=	2-Fluorophenol	(21-100)
S6	(TBP)	=	2,4,6-Tribromophenol	(10-123)

Column to be used to flag recovery values
* Values outside of contract required QC limits D Surrogates diluted out

page 1 of 1

FORM II SV-1

1/87 Rev.

3C WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE MPLICATE RECOVERY

Lab Name: EMSI

Contract: 0452 0459

Lab Code: EMSI Case No.: ATK-1 SAS No.: SDG No.:

Matrix Spike - EPA Sample No.: <u>MW-6LUS</u>

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-prop.(1) 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene	200 200 100 100 200 100 200 100 200 100	0 0 0 0 0 0 0 0 0	139 141 63.2 66.4 62.2 149 66.8 108 64.2	70 71 63 66 62 75 67 54 64	12- 89 27-123 36 97 41 116 39 98 23 97 46-118 10- 80 24- 96
Pentachlorophenol	200	0	76.6	38 ·	9-103
Pyrene	100	0	75.4	75	26-127

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC #	% RPD #	QC L RPD	IMITS REC.
Phenol	200	122	61	14	42	12- 89
2-Chlorophenol	200	130	65	9.	40	27-123
1,4-Dichlorobenzene	100	63.8	64	-2	28	36 97
N-Nitroso-di-n-prop.(1)	100	72.2	72	-9	38	41 116
1,2,4-Trichlorobenzene	100	68.2	68	-9	28	39 98
4-Chloro-3-methylphenol	200	150	75	0	42	23 97
Acenaphthene	100	73.6	74	-10	31	46-118
4-Nitrophenol	200	97.8	49	10	50	10- 80
2,4-Dinitrotoluene	100	68.0	68	-6	38	24- 96
Pentachlorophenol	200	73.2	37	3	50	9-103
Pyrene	100	79.2	79	- 5	31	26-127
		l I				

(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: 0 out of 11 outside limits Spike Recovery: 0 out of 22 outside limits

COMMENTS: 51407-0452 AT KEARNEY 880017 (H2O) 1.5 MIN @ 35C, THEN 10C/MIN TO 300C (FINN 4500B)

FORM III SV-1

1/87 Rev.

	SELOLATILE	4B METHOD BLANK SUMM	
Lab Name: <u>EMSI</u>		Contract: 0452 0459	
Lab Code: <u>EMSI</u>	Case No.: <u>ATK-1</u>	SAS No.: SDG No).:
Lab File ID: <u>11</u>	1488503	Lab Sample ID:	
Date Extracted:	11/02/88	Extraction: (SepF/Cont/	Sonc) <u>CONT</u>
Date Analyzed:	11/14/88	Time Analyzed:	1118
Matrix: (soil/water)	WATER	Level:(low/med)	LOW
Instrument ID:	4500B		

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	MW-1ART		111588510	11/15/88
	MW-2ART		111688511	11/17/88
	MW-3ART		111588511	11/15/88
04	MW-4ART		111688507	11/16/88
05	MW-5ART		111688S12	11/17/88
06	MW-6ART		111788S03	11/17/88

COMMENTS: 51407-0459 AT KEARNEY METHOD BLANK 11/02/88 (H2O) 1.5 MIN @35C,THEN 10C/MIN TO 300C(FINN 4500B)

page 1 of 1

FORM IV SV

	SEMEVOLATILE	4B METHOD BLANK SUMMERY	
Lab Name: EMSI	—	Contract: 0452 0459	
Lab Code: EMSI	Case No.: <u>ATK-1</u>	SAS No.: SDG No.:	
Lab File ID:	<u>111688S08</u>	Lab Sample ID:	<u> </u>
Date Extracted:	11/16/88	Extraction: (SepF/Cont/Sonc)	CONT
Date Analyzed:	11/16/88	Time Analyzed: 231	5
Matrix: (soil/wate	er) <u>WATER</u>	Level: (low/med) LOW	

Instrument ID: 4500B

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
 MW-3ARTRE MW-4LUS	=============	111688S10 111688S09	11/17/88 11/17/88
	·		

COMMENTS: 51407-0452 METHOD BLANK 11/16/88 H2O) 1.5 MIN @ 35C, THEN 10C/MIN TO 300C (FINN 4500B)

page 1 of 1

Albi	uquerque, NM 871	06				Te	le phon	ne: (:	505)841-2	500
Date Received	1013188	Lab	AP- 535	User Code		59400 59300	•		53400 59500	53300
COLLECTION	DATE & T		yy mm d	d hh:			LLEC		and the second se	DESCRIPTIO
10-27-	-88		88 10 2	7 68	35	-	fill	ij	-liste	ista
COLLECTED I	10-7	An				m	W-1			
	June 1	Alusi	<u> </u>	<u></u>	.			• . • • • •		
ro: Jin	ashby	\sim				OW	NER:	p,	hillin	Ret:
-	WATER & XICO EID/		DOUS WAS	TE BUR	EAU				CION:	
	968 - RU		BUTLDIN	G		0	uncy	•	ddy	
		87504-		-		Towr	ship, R	lange,	Section, T	ract: (10N06E2434
ATTN: PHONE:	Juli	2.20	slow	ፍጥልሞፕ	ONI/ WI	ELL COD	E•1/1	<u> </u>	· 1/1 1	
-										<u> </u>
SAMPLING CO	ONDITIONS		LATITUDE	, LONG	ITUDE		<u> </u>			
Baile Dippe		ump ap	Water :	Level: 4'Bi	D	ischarg	e:		17.	le Type:
	Conducti				r Temp	p.(0001	0)			ity at 25°
6.90	1	250	umho	/ / 0	9°C	°c		(00	094)	umho
FIELD COMM	ENTS: 7/	ceri: l	int su	el	(
				•		<u> </u>				
SAMPLE FIE	LD TREATM	ENT		1	LAB	ANALYS	IS R	EOUI	STED:	
Check prop					Vicia	A /	-		-do m	of Lilta
WPN:			WPF: Wat			-ICAP				<i></i>
Areserved Non-Filte:	W/HNO3	Prese Filte	erved w/: ered	^{HNO} 3		ark box s requi		ττα	o metal	li AA
			ALYTIC		·					
ELEMENT	ICAP VAL		AA VAL			EMENT		AP V	VALUE	AA VALU
Aluminum	0.3		·····		Si	licon	2	5.		
Barium	<0.					lver			:01	XXOIQ
Beryllium	<0.1		X20.0	2		rontium	-			•
Boron	0.4				Ti		0.3			<u></u>
Cadmium	<0,	<u> </u>	$\Box \underline{X < o.}$	001		nadium	0,			
Calcium	150,				Zi				(0,)	-
Chromium	<0,1		$\Box X o, o$	09		senic				$\Box X c. or z$
Cobalt	<0.05					lenium			RECEIVED	
Copper	<0,1		XZO,C	<u>·></u>	Me.	rcury			RECEIVEL	'닏
Iron	0.2	Å.					·			_ L'
Lead Magnesium	<0,1	-	$\Box \leq 0, \sigma$	05			·		<u>B17</u> 19	89
Manganese	50.						•			
Molybdenum		Δ					H A	ZARDO	DUS WASTE	SECTION
Nickel	<0.1		$\chi < 0.0$	5			·			
LAB COMMEN	TS: <u>5.0</u> ~	R HNO3	add @	SLD. J	4				11/16/28	DIGESTED
Ringusked &	y Sting Mar	Anal	vst. ()	14	<u></u>	<u> </u>	Revi	ewe.	r: plu	A Merce
0/21/55 97				12/10/00	<u>_</u>				70	1.120
	Anal	ysis 1	Date:	12/12/88			Date	ke'	viewed	

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	UQUEIQUE, MINIOF					Tel	e phone	: (303)841-2	500
Date		Lab		User		59400		33400	53300
Received	16 31 88	No.7C	H-536	Code		59300		59500	
COLLECTION	1.	IME: Y	y mm dd	1 1 _		~	/ .	<u>^</u>	DESCRIPTION
10/21		ð	8 10 27	1095	5	PI	illip	- Usteria	MW-2
COLLECTED		M.							
	such	Truse		116		·•••			
<b>TO</b> .	- 0	1. 5.	Sin in				ER: 3	A to .	Dit
TO:	m usi	way.				UM1	ER: 7	Jullion	
0		O IN				\			
GROUND	WATER &	HAZARIX	US WASH	12BBR	ÂT	ST	TE TO	CATION:	
	XICO EID/					÷	inty:	Ca	dis
	968 - RU	INNELS B	BUILDING	Je.	Williers		···· 4 · 4		<u> </u>
	FE, NM	87504-0	968《八〇》	3	111 11	Town	ship, Ra	nge, Section, T	ract: (10N06E24342)
	0 10					1 1		+     +	1 + 1
ATTN:	Julie	4 pr	1900		I Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Starten Star				
PHONE:				STATIC	)N/ WE	LL CODE	2: <u>M                                   </u>	1-121	
-									
			TITUDE,	LONGI	TUDE:				┚┓╸└╹╹╹╹
SAMPLING C			TT T	1					
Bail	استسله	Pump Tap	Water L	evet:		scharge		Samp	le Type:
pH(00400)	Conducti		COTT	Wator		(00010		Conductiv	ity at 25°C
	Conducti			nater	. remp			(00094)	ILY AL 25 C
6-80	54	00	umho	2	Ð	°c		(000)4)	umho
FIELD COMM		00			<u> </u>		I		
									<u> </u>
SAMPLE FIE	LD TREAT	ENT			LAB	ANALYSI	IS RE	QUESTED:	
Check pro					10 aia	ilul.	in h	ila-do-	not filter
WPN:			PF: Wate			LICAP S	Scan		-
Preserved	w/HNO3	Preser	rved w/H	NO ₃				to metal	if AA
Non-Filte	red	Filter	red		is	requi:	red.	·····	
		ΔΝΔ	LYTICA		SHI TS	S (MG	/1)		
ELEMENT	ICAP VAL		AA VALU			MENT		P VALUE	AA VALUE
Aluminum	0.6		<u></u>			icon	35		
Barium	0.8			-		ver		<0.	X 20.001
Beryllium		<u> </u>	X < 0.02	_		ontium	4.7		
Boron	0.6	<u></u>		-	Tir	1	0.3		- <u>-</u>
Cadmium	<0,		X20,00	57	Var	nadium		<0./	
Calcium	2.80.			-	Zir	nc		<011	
Chromium	<0.1	[	× 0,01	T	Ars	senic			1 × 0.095
Cobalt	0.06				Sel	lenium			$\Box \times < 0.00'$
Copper	-<0.1		X (0.05	5	Mer	cury			
Iron	2.7	$\overline{\times}$							
Lead	$\leq 0.1$		× (0,00-	5					
Magnesium	120,								□
Manganese	2.4	X							<u> </u>
Molybdenum	<0.					·	·		<u> </u>
Nickel	0.1		× 0.0	16		<u> </u>			LJ
LAB COMMEN	TS: 5.0m	R HNO3	adda @	<u> </u>	MA			116/32	DIGESTED
	<u> </u>	K HAV3	adda c	<u> </u>	JFA			1101-201	
C: Relinginsk	ling		. 04	ıД		-		$\bigcirc$	Achly
C: Relinquisk	7/5 J ICAI	P Analys	st:		<u></u>	]	Revie	wer:	Jan J-
7:COPM		Incie P		12/12/	88	1	Date	Reviewed:	1/18/89
- · · - · •	Апа.	lysis Da	ale: <u>/  </u>	-1121	<u>0 0</u>			VEATEMED!	1/10/01

Date							500
	10.21.08	Lab	User	5940		3400	53300
Received	0131188		Code	<u> </u>		9500	
COLLECTION			ld hh mm 7 11 05	- C		n x	DESCRIPTION $M\omega - 3$
COLLECTED	BY: 1.	Maria			<i>p p s</i>		
	Actual	Muee					
то: У	m lis	hly		0	WNER:	helijo	Pet
		HAZARDOUS WAS	TE BUREAU		іте іосат		
	XICO EID/				ounty: <u>/</u>	Ally_	
		NNELS BUILDIN	ig keue	EIVED			. (
		87504-0968 ie Wauslow	FEB 2		vnship, Range,	Section, $Tr$	act: (10N06E24342
ATIN: PHONE:	yul	e Winstow		WRT.T. CO	DE: MW -	131 1	
FIGHE.			HAZARDOUS V	VASTE SECTION			
			2, LONGITU				
SAMPLING C	and the second second second second second second second second second second second second second second second		Level:	Dischar	70:	Samp	le Type:
aaid N	·		.91 BTac		<b>JCI</b>	Averna	1 Water
pH(00400)	Conducti	vity (Uncorr.)	Water I	[emp. (000		ductiv:	ity at 25°C
197	180		1 1/	°c	(00	094)	
FIELD COMM		umho umho	a	C	l	<u></u>	umho
Check pro WPN: Preserved Non-Filte	Water w/HNO,	<pre>WPF: Wat Preserved W/ Filtered</pre>	ier	<b>X</b> ICAP	x next to		C.
NOULLTE	i eu l					·····	
NON-FILCE	Leu	ANALYTIC	AL RESU	LTS (M	G/L)		
ELEMENT	ICAP VAI	ANALYTIC		ELEMENT	ICAP V	ALUE	AA VALUI
ELEMENT Aluminum	ICAP VAI	JE AA VAI		ELEMENT Silicon	$\frac{\text{ICAP V}}{2.5.}$		
ELEMENT Aluminum Barium	$\frac{\text{ICAP VAI}}{0.3} < 0,$			ELEMENT Silicon Silver	$\frac{1CAP V}{25}$	o./	
<u>ELEMENT</u> Aluminum Barium Beryllium	$\frac{1CAP VAI}{0.3}$	JE AA VAI		ELEMENT Silicon	$\frac{1 \text{CAP V}}{25.}$ ${3.7}$		
ELEMENT Aluminum Barium Beryllium Boron	$\frac{\text{ICAP VAI}}{0.3} < 0,$			ELEMENT Silicon Silver Strontiu			<u>AA VALUI</u> X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Calcium	$   \begin{array}{r} 1 \text{CAP VAI} \\             0.3 \\             < 0. \\             < 0. \\             0.3 \\             < 0. \\             2.70,   \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C2 02	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc	$ \begin{array}{c} \underline{\text{ICAP V}}\\ \underline{25.}\\ \underline{}\\ underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\underline{}\\\phantom{3.$	0.1	<u> </u>
ELEMENT Aluminum Barium Beryllium Boron Cadmium Calcium Chromium	$     \begin{array}{r} 1 CAP  VAI \\             0.3 \\             < 0. \\             < 0. \\             \hline             0.3 \\                                    $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C2 02	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic	$ \begin{array}{c}                                     $	0.1	X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Cadmium Chromium Cobalt	$     \begin{array}{r} 1 CAP  VAI \\             0.3 \\             < 0. \\             < 0. \\             \hline             0.3 \\                                    $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CDE C2 02 2C	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic Selenium	$ \begin{array}{c}                                     $	0.1	<u> </u>
ELEMENT Aluminum Barium Beryllium Boron Cadmium Cadmium Calcium Chromium Cobalt Copper	$     \begin{array}{r} 1 CAP  VAI \\             0.3 \\             < 0. \\             < 0. \\             \hline             0.3 \\             < 0. \\             \hline             2.70, \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\                                $		CDE C2 02 2C	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic	$ \begin{array}{c}                                     $	0.1	X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Cadmium Calcium Chromium Cobalt Copper Iron	$   \frac{\text{ICAP VAI}}{0.3} \\                                    $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LUTE C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic Selenium	$ \begin{array}{c}                                     $	0.1	X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead	$   \frac{\text{ICAP VAI}}{0.3} \\                                    $		LUTE C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic Selenium	$ \begin{array}{c}                                     $	0.1	X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	$     \begin{array}{r} 1 CAP  VAI \\             0.3 \\             < 0. \\             < 0. \\             0.3 \\             < 0. \\             2.70, \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LUTE C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic Selenium	$ \begin{array}{c}                                     $	0.1	X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum	$     \begin{array}{r} 1 CAP  VAI \\             0.3 \\             < 0. \\             < 0. \\             0.3 \\             < 0. \\             2.70. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. 0. \\             < 0. \\             < 0. \\             $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LUTE C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic Selenium	$ \begin{array}{c}                                     $	0.1	X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	$     \begin{array}{r} 1 CAP  VAI \\             0.3 \\             < 0. \\             < 0. \\             0.3 \\             < 0. \\             2.70, \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             < 0. \\             $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LUTE C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic Selenium	$ \begin{array}{c}                                     $	0.1	X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel LAB COMMEN	$   \begin{array}{c}     ICAP  VAI \\     0.3 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.05 \\         < 0.1 \\         < 0.05 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LUTE C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic Selenium	$ \begin{array}{c}                                     $	0.1	X <0.001
ELEMENT Aluminum Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel	$   \begin{array}{c}     ICAP \ VAI \\     0.3 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.1 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\         < 0.05 \\                                    $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LUTE C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ELEMENT Silicon Silver Strontiu Tin Vanadium Zinc Arsenic Selenium Mercury	$ \begin{array}{c}                                     $	0.1 0.1 0.1	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $

Albuque	erque, NM 87106		Telephone: (505)841-2500
Date ,		User 59	400 53400 🛛 53300
Received //	131 88 No. ICAP-538	Code II 59	300 59500
COLLECTION DA		d hh mm	COLLECTION SITE DESCRIPTION
1	0-27-88 88/10/2	7 12 15	Phillips Artesia MW-4
COLLECTED BY:		<u></u>	
Steve Muse	Kearney / Centaur	)	
TO: Jm A2	hay B41-2553		OWNER: phillips Petroleum
GROUND WA	ATER & HAZARDOUS WAS!	TE BUREAU	SITE LOCATION:
¹ NEW MEXIC	CO EID/HED		County: EDDV
PO BOX 96	58 - RUNNELS BUILDING	G	
SANTA FE,	NM 87504-0968		Township, Range, Section, Tract: (10N06E24342)
٥	1		
	lie Warslow		· · · · · · · · · · · · · · · · · · ·
PHONE:	827-2928	STATION/ WELL	$\mathbf{CODE:} [M] \cup [-] \cup [] \cup [] \cup []$
		, LONGITUDE:	
SAMPLING CONI		Dinch	
X Bailed		Level: Disch	arge: Sample Type:
	Tap 55, onductivity (Uncorr.)		0010)   Conductivity at 25°C
PR(00400) (CC	maneerviey (oneoer.)	Mater remp. (0	(00094)
1.35	2300 jumho	.21 °c	umho
FIELD COMMENT			
SAMPLE FIELD	TREATMENT	TAB ANA	LYSIS REQUESTED:
Check proper			
WPN: Wat		er 🕅 IC	AP Scan
	(HNO3 Preserved w/1		box next to metal if AA
Non-Filtered	1 ³ Filtered	3 is re	ouired.
		AL RESULTS (	
	CAP VALUE AA VAL		
	.5	Silico	
Barium	< 0.1	Silver	
Beryllium	<u>&lt;0.1</u> X<0.02		
	.5	Tin	0.8
Cadmium	$\underline{\langle 0.1}$ $\Box \underline{X \langle 0.00}$		
	20	Zinc	0.1
Chromium	$< 0.1$ $\Box \times < 0.00$	<u>j</u> Arseni	مرتب من من المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب الم
Cobalt	< 0.05	Seleni	
Copper	<u>20.1</u> <u>X</u>	5 Mercur	У
	<u>x</u>		
Lead	$<0.1$ $\forall < 0.00$	5	
	00,		
	.10 <u>X</u>		FEB 1 7 1989
Molybdenum	<u> &lt; 0.1</u>		[]
Nickel	<u>&lt;0.1</u> X<0.05		HAZAR <del>DOUS WASTE SEC</del> TION
LAB COMMENTS:			
Mariame Smit	L ICAP Analyst:	Ю	Reviewer: Hun L. Mein
11 - come Smil	A ICAP Analyst: M Analysis Date:		ACTENCI MUM X- MMARC
Maria DD Gi	M Analysis Date-	2/12/88	Date Reviewed: 2/9/39
1-00 00	III maral or backs		
10-27-00			
•			

Alb	uquerque, NM 87106	_		Telephone: (.	505)841-2500	
Date	Lab	Us Us	er 🛛 59	9400	53400	53300
Received	10131 188 No:	ICAP S39 co	de 🗍 59		59500	Ē .
	DATE & TIME:		h mm	COLLECTION	SITE DES	SCRIPTION
10-	- 27 - 88	88 10 27 0	825	Phillips -	Artesia	MW - 5
COLLECTED	BY:	/ 0		<u>.</u>		\
Steve Mus	i (Kerney	(centaur)		( EQUIP	ment Bian	kI
		TTO STATE		<u> </u>		
ro: jim	Ashby 84			OWNER:		
GROUND	WATER & HAZA	RDOUS WASTE E	UREAU	SITE LOCAT	TON:	
	XICO EID/HED		000	County:		
	968 - RUNNEL	S BUILDING	1303	<u>ــــــــــــــــــــــــــــــــــــ</u>		
		4-0968		Township, Range,	Section. Tract:	(10N06E24342
			MC The	+		- 1 1 1
ATTN:	Julie Wand	and the town				
PHONE:				CODE: A	MW	-151 1 1
FHORE.						
- SAMPT.TNG C	ONDITIONS:	LATITUDE, LC	NGITUDE:			-
□ Bail		Water Leve	1: Disc	narge:	Sample	Type:
aaid N						
	Conductivity	(IIncorr ) Wa	ter Temp. (		ductivity	· at 2500
	Conductivity		cer remb.(		094)	
		umho				umho
FIELD COMM						
CIELD COMM			DIANK	<del> </del>		
	( 200	IPMENT 1	BLANK			
			TIT IN	TVCTC DROUT		
	LD TREATMENT		LAB ANA	ALYSIS REQUE	STED:	
	per boxes:				<u> </u>	
WPN:		WPF: Water		CAP Scan		~
Preserved	W/HNO3   Pre	served w/HNO3		box next to	metal 1	E AA
Non-Filte	red Fil	tered J	<u>   15 r</u>	equired.		
	Α	NALYTICAL I	RESULTS	(MG/L)		
ELEMENT	ICAP VALUE	AA VALUE	ELEME		VALUE	AA VALUE
Aluminum	<0.1		Silic	and a second second second second second second second second second second second second second second second	:0.1	
Barium	<0.1		Silve		<0.1	X 20.001
Beryllium	<0.1	X LOIOZ	Stron		<0.1	
Boron		ALUIUL	Tin	The second second second second second second second second second second second second second second second s		
	<0.1		Vanad	0.1		
Cadmium	<0.1	$\Box X < 0,001$			<0.1	
Calcium	0.1	-	Zinc		20.1	
Chromium	<0.1	X (0.005	Arsen		· _	x < 0,00
Cobalt	< 0.05		Selen		L	<u>x.50,005</u>
Copper	< 0.1	X < 0.05	Mercu	ry	L	
Iron	<0.1 X					]
Lead	<0.1	X (0.005			C	]
Magnesium	<0.1					]
Manganese	<0.05 X					]
Molybdenum						1
Nickel	<0.1	X 2 0,05				1
		<u> </u>			La	·
LAB COMMEN	TS: 5.0 ml HNO	3 alla @ SLD #	TA			
C Relinguisk Marianie En 1-27.08 (m	di				$\cap$	1.0.
	ICAP Ana	lyst: 14A		Reviewe:	r: 1/2 4	stly
Harrani En	n la		400		7	I-N-
77.98 @	Analysis	Date: (/12/12	188	Date Re	viewed: /	/18/89
7:00 P	m.					

•••							· · ·
Date	131 188 Lab		User	594		53400	53300
			Code	<u> </u>		<u>□ 59500</u>	
COLLECTION D.	ATE & TIME:	99 mm dd 86 10 27			COLLEC	TION SITE	DESCRIPTION
10-27-88		26 0 27	12 00	ł		os Artesia	
COLLECTED BY		1 . 1	1			and the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the second design of the s	ink!
Steve Muse	(kearney	1 Centaur	<u> </u>	]	<u> </u>	S- PALENT -	SEAWX + (MS)
TO: Jim 1	Ashby 84	1-22 255	53		OWNER:	Phillips	Artes a
GROUND W	ATER & HAZA	RDOUS WAST	E BUREAU	J	SITE L	OCATION:	
	CO EID/HED				County	: EDDY	
	68 - RUNNEL	S BUILDING	ł		-	·····	
	, NM 8750			7	ownship, I	Range, Section, T	ract: (10N06E24342)
	· .					+     +	1+111
ATTN: h	ilie Wanald	·u~					
PHONE:	827-2928	···	STATION	/ WELL C	ODE: [/	1611	
		LATITUDE,	LONGIT		1 1 1		
SAMPLING CON							· · · · · · · · · · · · · · · · · · ·
Bailed		Water L	evel:	Discha	rge:	Samp	le Type:
X Dipped			Water f			Conduction	ity at 25°C
pH(00400) C	onductivity	(Uncorr.)	water :	remp.(00			ity at 25 C
				°c		(00094)	
TTTT D. CONCENT		umho					umho
FIELD COMMEN		PAF OF RE		157			
	(77)	LD BLANK	)				
SAMPLE FIELD				TAD ANAT	VOTO D	POURCERD.	···
				LAD ANAL	1512 R	EQUESTED:	
Check prope		WPF: Wate		M TCA	P Scan	· · · · · · · · · · · · · · · · · · ·	
X WPN: Wa Preserved w		served w/H				t to metal	ie 33
Non-Filtere		tered	щоз		uired.		
		Leieu		13 160	uii cu.	<u> </u>	
	A	NALYTICA	L RESU	ILTS (I	MG/L)		
ELEMENT I	CAP VALUE	AA VALU	IE	ELEMENT		AP VALUE	AA VALUE
Aluminum	< 0,			Silicon		<01	
Barium	< 01			Silver		<0,1	< < 0.001
Beryllium	<0.1	x < 0.02		Stronti	.um	<01	-
Boron	<01		-	Tin		<0.1	
Cadmium	<0.1	$\Box \propto < 0,00$	$\overline{1}$	Vanadiu	m	<0.1	
Calcium _	<0.1			Zinc		<0.1	
Chromium	<01	$\Box_{\rm Y} < 0.00$	3	Arsenic	;		$\Box < 4005$
Cobalt _	<0.05		-	Seleniu			$\frac{1}{1} < 0.005$
Copper	<01	x < 0.03	-	Mercury		,	
Iron _	<01 ×	1 1010-					F
Lead _	<0.1	$\Box \underline{\langle < 0.00.}$	ड ।			·····	H
Magnesium _	<0.1		-			······································	
Manganese _	<0.05 Y	- <u></u>	-				F
Molybdenum	<0.1		—	<u></u>			
Nickel		1 < 0.05	-	·	RECEIVEL	· · · · · · · · · · · · · · · · · · ·	L'
NICKET -	<0,1	1 < 0.03	-			·	ــــــــــــــــــــــــــــــــــــــ
LAB COMMENTS	: 5.0 ml HN	02 added Q	SLD. 14	FE FE	B 1 7 19	80	
LAB COMMENTS DE Relinguist Miniane G Miniane G 10-77-09 10-77-09	<u> </u>	<u> </u>					
no Relinguist	TCAP ADA	lyst:	A	HAZARDO	US WASTE		in Clehly
Il manne or			olin loo				al dahl
24 MW 999	<i>o</i> <b>MAnalysis</b>	Date: <u>//</u>	-11-100		Date	e Reviewed	
10-7-1-0.0	jot					$\checkmark$	« ( <b>1</b>
1 Lo 1.							
				•			

1

: ; ;

ļ

|

Albuquerque, N	M 87106 — (505) 841-2555		and NITHOGEN ANALYSIS
	AB WC 44 USER CODE 5930	0 🗆 59600 🕱 O	53300EID
Collection DATE	SITE INFORM-	ips - Artesia New Mexico	MW-1
Collected by - Person/Agency	Collection site descriptio		Processor
Steve Muse	A7. Kianiy		1
SEND FINAL REPORT 70 Santa Fe, NM 8750		\U IED	Station/ wellcode M(.) r/
SAMPLING CONDITIONS	· · · · · · · · · · · · · · · · · · ·		Owner Milligs Pittechour
Bailed Pump	Water level 61.94 BTOC	Discharge	Sample type
pH (00400) 6-90	Conductivity (Uncorrected)	Water Temp. (00010)	Conductivity a: 25°C (00094) VED µmho
Cield as ments		19-0	RECEVIL
	dient well	· · · · · · · · · · · · · · · · · · ·	NOV 21 13E3
	······································	· · · · · · · · · · · · · · · · · · ·	NOV 21
SAMPLE FIELD TREATMEN			WASTE WASTE
No. of samples submitted		i field with A: 2 embrane filter SR	mi H-SOERI addgd NUN BURE
NA: No acid added	Other-specify:		
ANALYTICAL RESULTS from	n SAMPLES Units Date analyze	HE NA	Units Date analyzed
	Onits Date analyze		
Conductivity (Corrected) 25°C (00095)	μmho	Calcium (00915)	mg/l
	·	Sodium (00930)	mg/l
Total non-filterable		Potassium (00935)	mg/l
residue (suspended) (00530)	mg/l [	<ul> <li>Bicarbonate (00440)</li> </ul>	RECEIVE9/1
Fother: Trunhidity	0.65 IIII	Chloride (00940)	mg/l
□ Other:		□ Sulfate (00945)	mg/l
□ Other:		Total filterable residue	
		- (dissolved) (70300)	mg/l
NF, A-H ₂ SO ₄		Other:	HAZARDOUS WAR
Nitrate-N+, Nitrate-N		F, A-H ₂ SO ₄	
total (00630)	mg/l	Nitrate-N +, Nitrate-I	
Ammonia-N total (00610)	mg/l	dissolved (00631)	mg/l
Total Kjeldahl-N	mg/l	Ammonia-N dissolve	
Chemical oxygen     demand (00340)	mg/l	— (00608) □ Total Kjeldahl-N	mg/l
Total organic carbon		- ( ) □ Other:	mg/l
( )	mg/l		
□ Other:		Analyst	Date Reported Reviewed by
	······································	-	11 14 58 6
Laboratory remarks	lorge immediately	after sha	Ring
Relinquis		a 101.27	185 @ Diasfor
	the many Met		

•

Reference         I/O         34         No         VSBE         association         second	Albuquerque, NM 87106 — (505) 841-2555	and NI HUGEN ANALYSIS					
Comparison         Sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by the sample common product of Life by	DATE RECEIVED 1031 88 NO LOC-Y USER CODE 59300	59600 0 0 0 1: 53360 EIN					
Seno         GROUND WATER & HAZARDOUS WASTE BUREAU         Seno	Collection DATE SITE INFORM-	lips-Antisits Mw-2-					
SEND FINAL PRIAL NM ENVIRONMENT IMPROVEMENT DIVISION/HED DODO 968 3 Santa Fe, NM 87204-0968 Attr:         Samta Fe, NM 87204-0968 Attr:         Samta Fe, NM 87204-0968 Attr:         Samta Fe, NM 87204-0968 Construction of the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta for the samta							
SAMPLING CONDITIONS         Description         Multipolicity (Multipolicity)           ∅ Bailed         □ Pump         ↓ JULL Opwidt         Mater         Discharge         Sampletype         JULL (0000)           ↓ (0000)         ↓ B3         Conductivity (Incorrected)         Water Temp. (00010)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)         ↓ (0000)	SEND FINAL FINAL FO Box 968 TO Santa Fe, NM 87504-0968	Station/ m / 1 2					
Image: Standing type       Sample type       Sample type       Sample type         Dipped       Tap       1 J LL D Porter Mate       Water Temp. (00010)       Sample type         PH (0040)       Conductivity (Incorrected)       Water Temp. (00010)       Conductivity a: 25*C (100094)         Field comments       Samples       Samples       Samples       Samples         SAMPLE FIELD TREATMENT - Check proper boxes       No V 2 1       Samples       Samples         Submitted       No 16 samples       F: Filtered in field with       A: 2 gridt 900/L astable       Samples         Submitted       No 16 samples       F: Filtered in field with       A: 2 gridt 900/L astable       Samples         Solutioned       Other:       Units Date analyzed       F. NA       Units Date analyzed         Solution Order       Solution (00915)       mg/l       Solution (00935)       mg/l         Conductivity (Corrected)       gridt       Solution (00935)       Solution (00935)       Solution (00935)       Solution (00935)         Conductivity (Corrected)       gridt       Solution (00935)       Solution (00935)       Solution (00935)       Solution (00935)         Conductivity (Corrected)       gridt       Solution (00935)       Solution (00935)       Solutin (00935)       Solution (00935) <td></td> <td>Owner O /</td>		Owner O /					
□ Dipped       □ Tap       1 ) 1 1 0 00001 0 000000000000000000000		Phillip / Mullin					
Field comments       NOV 21         SAMPLE FIELD TREATMENT - Check proper boxes         No of samples       NF: Whole sample         Submitted       NF: Whole sample         VI.NA: No acid added       Other-specify:         ANALYTICAL RESULTS from SAMPLES         NF. NA       Units Date analyzed         Conductivity (Corrected)       μmho         25°C (0095)       μmho         Conductivity (Corrected)       μmho         Soldum (00930)       Dtrocci μmg/l         Conductivity (Corrected)       μmho         Soldum (00930)       Dtrocci μmg/l         Conductivity (Corrected)       μmg/l         Conductivity (Corrected)       μmg/l         Soldum (00930)       Dtrocci μmg/l         Conductivity (Corrected)       μmg/l         Conductivity (Corrected)       μmg/l         Conductivity (Corrected)       μmg/l         Magnesium (00935)       mg/l         Conter:       Mutitate Netanalytic (00935)							
Field comments       NOV 21         SAMPLE FIELD TREATMENT - Check proper boxes         No of samples       NF: Whole sample         Submitted       NF: Whole sample         VI.NA: No acid added       Other-specify:         ANALYTICAL RESULTS from SAMPLES         NF. NA       Units Date analyzed         Conductivity (Corrected)       μmho         25°C (0095)       μmho         Conductivity (Corrected)       μmho         Soldum (00930)       Dtrocci μmg/l         Conductivity (Corrected)       μmho         Soldum (00930)       Dtrocci μmg/l         Conductivity (Corrected)       μmg/l         Conductivity (Corrected)       μmg/l         Soldum (00930)       Dtrocci μmg/l         Conductivity (Corrected)       μmg/l         Conductivity (Corrected)       μmg/l         Conductivity (Corrected)       μmg/l         Magnesium (00935)       mg/l         Conter:       Mutitate Netanalytic (00935)	pH (00400) Conductivity (Uncorrected) μmho	Water Temp. (00010) 20 PEG Conditionality as 25°C (00094) µmho					
NUV 2 -           SAMPLE FIELD TREATMENT - Check proper boxes           No. of samples         NF: Whole sample (Non-filtered)         F: Filtered in field with 0.45 µmembrane filter         A: 2 gtddtsol           NA: No acid added         Other-specify:           ANALYTICAL RESULTS from SAMPLES           NF. NA         Units Date analyzed           Conductivity (Corrected)	Field comments	ar 7					
SAMPLE FIELD TREATMENT - Check proper boxes           No. of samples         NF:         Whole sample         □         F:         Filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         A:         2 (filtered in field with 0.45 µmembrane filter         □         C (filtered in field with 0.00000)         □         0         D:         <		NILV 22					
ANALYTICAL RESULTS from SAMPLES         NF. NA       Units Date analyzed       F. NA       Units       Date analyzed         Conductivity (Corrected)		STL: 2 WASTE					
ANALYTICAL RESULTS from SAMPLES         NF. NA       Units Date analyzed       F. NA       Units       Date analyzed         Conductivity (Corrected)		- WINTER INN 71 ST JC					
ANALYTICAL RESULTS from SAMPLES         NF. NA       Units Date analyzed       F. NA       Units       Date analyzed         Conductivity (Corrected)		abrane filter					
ANALY ITCAL HESULTS from SAMPLES       Units Date analyzed       F. NA       Units       Date analyzed         NF. NA       Units Date analyzed       Calcium (00915)       mg/l	NA: No acid added  Other-specify:						
□       Conductivity (Corrected)      mmho        Calcium (00915)      mg/l         □       Total non-filterable							
25°C (00093)       µmho       □       Magnesium (00925)       mg/l         □ Total non-filterable residue (suspended) (00530)       mg/l       □       Sodium (00930)       □         ○ Other:       ////////////////////////////////////							
Total non-filterable       mg/l       Sodium (00930)       DECEL/mg/l         residue (suspended)       mg/l       mg/l       mg/l       mg/l         Other:       ////////////////////////////////////							
residue (suspended) (00530)       mg/l							
(00530)       mg/l       Bicarbonate (0040)       M(0V 2 mg/l)         Chore:       Chioride (00940)       M(0V 2 mg/l)       mg/l         Other:       Sulfate (00945)       mg/l       mg/l         Other:       Total filterable residue (dissolved) (70300)       HAZARDOUS W/.STribale       M(0V 2 mg/l)         NF, A-H ₂ SO ₄ Other:       HAZARDOUS W/.STribale       mg/l         Nitrate-N + , Nitrate-N total (00630)       mg/l       Nitrate-N + , Nitrate-N dissolved (00631)       mg/l         Ammonia-N total (00610)       mg/l       Nig/l       mg/l       mg/l         Other:       mg/l       Ammonia-N dissolved (00631)       mg/l       mg/l         Chemical oxygen demand (00340)       mg/l       Ammonia-N dissolved (00608)       mg/l       mg/l         Other:       mg/l       Other:       mg/l       Mg/l       Mg/l         Other:       mg/l       Other:       mg/l       Mg/l       Mg/l							
C Other:       /// 14       Sulfate (00945)       mg/l         Other:	(00530) / mg/l						
□ Other:       □ Total filterable residue (dissolved) (70300)       HAZARDOUS WASTribadic	C Other: / WW rate 5.7						
Other:							
NF, A-H ₂ SO ₄ F, A-H ₂ SO ₄ Nitrate-N +, Nitrate-N       mg/l         Ammonia-N total (00610)       mg/l         Total Kjeldahl-N       mg/l         ()       mg/l         Chemical oxygen       mg/l         demand (00340)       mg/l         Total organic carbon       mg/l         ()       mg/l         Other:       mg/l         Other:       Analyst	□ Other:	(dissolved) (70300)					
Initiale-N       mg/l       mg/l       Initiale-N       Initiale-N       mg/l       Initiale-N       Initiale-	NF, A-H ₂ SO ₄						
□ Ammonia-N total (00610)       mg/l       mg/l       mg/l         □ Total Kjeldahl-N       mg/l       □ Ammonia-N dissolved (00631)       mg/l         □ Chemical oxygen       mg/l       □ Total Kjeldahl-N       mg/l       □ Total Kjeldahl-N         □ Chemical oxygen       mg/l       □ Total Kjeldahl-N       mg/l       □ Total Kjeldahl-N         □ Total organic carbon       mg/l       □ Other:       mg/l       □ Other:         □ Other:       Analyst       Date Reported       Reviewed-by		F, A-H ₂ SO ₄					
□ Total Kjeldahl-N       mg/l       □ Ammonia-N dissolved       mg/l         □ Chemical oxygen       mg/l       □ Total Kjeldahl-N       mg/l							
( )      mg/l      mg/l      mg/l         □ Chemical oxygen demand (00340)      mg/l       □ Total Kjeldahl-N ()      mg/l         □ Total organic carbon ()      mg/l      mg/l      mg/l         □ Other:      mg/l        Analyst       Date Reported       Reviewed-by		□ Nitrate-N+, Nitrate-N					
□ Chemical oxygen demand (00340)       mg/l       □ Total Kjeldahl-N ( )       mg/l       mg/l         □ Total organic carbon ( )       mg/l       □ Other:       mg/l       mg/l         □ Other:       Analyst       Date Reported       Reviewed-by	Ammonia-N total (00610) mg/!	dissolved (00631) mg/l					
□ Total organic carbon ( )mg/l Other: □ Other: Analyst Date Reported Reviewed-by	Ammonia-N total (00610) mg/l      Total Kjeldahl-N	dissolved (00631) mg/l					
( )     mg/l       □ Other:	Ammonia-N total (00610) mg/l      Total Kjeldahl-N     ( ) mg/l      Chemical oxygen	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l					
Analyst Date Reported Reviewed by	Ammonia-N total (00610) mg/l      Total Kjeldahl-N     ( ) mg/l      Chemical oxygen     demand (00340) mg/l      Total organic carbon	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         ()       mg/l					
	□ Ammonia-N total (00610)       mg/l         □ Total Kjeldahl-N       mg/l         ( )       mg/l         □ Chemical oxygen       mg/l         demand (00340)       mg/l         □ Total organic carbon       mg/l         ( )       mg/l	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         Other:       mg/l					
	Ammonia-N total (00610)       mg/l         Total Kjeldahl-N       mg/l         Chemical oxygen       mg/l         demand (00340)       mg/l         Total organic carbon       mg/l         Other:       mg/l	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         Other:       mg/l         Analyst       Date Reported       Reviewed-by					
Laboratory remarks linalized immediately after shaking	Ammonia-N total (00610)       mg/l         Total Kjeldahl-N       mg/l         ( )       mg/l         Chemical oxygen       mg/l         demand (00340)       mg/l         Total organic carbon       mg/l         ( )       mg/l         Other:       mg/l         Other:       mg/l	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         ()       mg/l         Other:       mg/l         Analyst       Date Reported         11       14       55					
	Ammonia-N total (00610) mg/l      Total Kjeldahl-N     ( ) mg/l      Chemical oxygen     demand (00340) mg/l      Total organic carbon     ( ) mg/l      Other:     Other:	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         Other:       mg/l         Analyst       Date Reported         Reviewed-by       //         //       1/4					
	Ammonia-N total (00610) mg/l      Total Kjeldahl-N     ( ) mg/l      Chemical oxygen     demand (00340) mg/l      Total organic carbon	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         ()       mg/l					
Relinounder by the Muse 10/27/88 (a 7.00PA	Ammonia-N total (00610) mg/l      Total Kjeldahl-N     ( ) mg/l      Chemical oxygen     demand (00340) mg/l      Total organic carbon     ( ) mg/l      Other: mg/l      Laboratory remarks <i>Laboratory remarks Laboratory remarks</i>	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         Other:       mg/l         Analyst       Date Reported         1/1       1/4       5/5					

SLD 726 (8/85)

DISTRIBUTION: WHITE - EID, GW&HW Bureau

CANARY - WS System PINK - EID Local Office

GOLDENROD - SLC

700 Camino de Salud NE Albuquerque, NM 87106 — (505) 841-2555	and NITROGEN ANALYSIS
DATE RECEIVED   C 3188 NO NO USER CODE □ 59300 Cojection DATE 0 27 80 SITE INFORM- SITE	59600 Xon 33300 ETD
Collection TIME ATION Collection site description	Struct The Da
Collected by - Person Agency Mars At Keen 4	famile Star procession
SEND FINAL REPORT GROUND WATER & HAZARDOUS WASTE BUREAU NM ENVIRONMENT IMPROVEMENT DIVISION/HI PO Box 968 Santa Fe, NM 87504-0968 Attn:	
SAMPLING CONDITIONS	Pinelin Pittselum
Bailed Dump Water level	Discharge Sample type
pH (00400) 6.97 Conductivity (Uncorrected)	Water Temp. (00010) 2 °C °C Conductivity at 25°C (00094) µmho
Field comments	
SAMPLE FIELD TREATMENT — Check proper boxes	
submitted (Non-filtered) NA: No acid added Ο Other-specify:	
	NOV 21, 7363
ANALYTICAL RESULTS from SAMPLES Units Date analyzed Units Date analyzed	F, NA
Conductivity (Corrected)	Calcium (00915) GROUND WATER / 1494 35 JUnitey Agtopate analyzed
25°C (00095)μmho	mg/i mg/i
Total non-filterable	D Potassium (00935) mg/l
residue (suspended) (00530) mg/l	□ Bicarbonate (00440)KECEIV/FD mg/I
& Other: Workity24 _11/4_	□ Chloride (00940) mg/l
C Other:	□ Total filterable residue 1007 2 2 1988
Other:	(dissolved) (70300) mg/l
NE AH SO	
NF, A-H ₂ SO ₄	Other: HAZARDOUS WASTE SECTION
Nitrate-N + , Nitrate-N	F, A-H2 SO4
Nitrate-N + , Nitrate-N totał (00630) mg/l	F, A-H ² SO ₄
Nitrate-N + , Nitrate-N	F, A-H ₂ SO ₄
<ul> <li>Nitrate-N + , Nitrate-N total (00630) mg/l</li> <li>Ammonia-N total (00610) mg/l</li> <li>Total Kjeldahl-N mg/l</li> </ul>	F, A-H ² SO ₄
Nitrate-N + , Nitrate-N     totał (00630)     mg/l     Ammonia-N total (00610)     mg/l     Total Kjeldahl-N	F, A-H2 SO4         Image: Nitrate-N + , Nitrate-N dissolved (00631)         Image: Maissolved dissolved (00608)         Image: Notal Kjeldahl-N
□ Nitrate-N + , Nitrate-N total (00630)       mg/l         □ Ammonia-N total (00610)       mg/l         □ Total Kjeldahl-N (       mg/l         ( )       mg/l         □ Chemical oxygen demand (00340)       mg/l         □ Total organic carbon (       mg/l	F, A-H2 SO4         Image: Nitrate-N + , Nitrate-N dissolved (00631)         Image: Main A dissolved (00608)         Image: Main A dissolved (00608)
<ul> <li>Nitrate-N + , Nitrate-N total (00630) mg/l</li> <li>Ammonia-N total (00610) mg/l</li> <li>Total Kjeldahl-N (</li> <li>Chemical oxygen demand (00340) mg/l</li> <li>Total organic carbon</li> </ul>	F, A-H2 SO4         Nitrate-N + , Nitrate-N         dissolved (00631)         Ammonia-N dissolved         (00608)         Total Kjeldahl-N         (       )         Other:         Analyst    Date Reported          Reviewed by
Nitrate-N + , Nitrate-N       mg/l         total (00630)       mg/l         Ammonia-N total (00610)       mg/l         Total Kjeldahl-N       mg/l         ( )       mg/l         Chemical oxygen       mg/l         demand (00340)       mg/l         Total organic carbon       mg/l         ( )       mg/l         Other:       mg/l         Other:       mg/l	F, A-H2 SO4         Nitrate-N +, Nitrate-N         dissolved (00631)         Ammonia-N dissolved         (00608)         Total Kjeldahl-N         (       )         Other:         Analyst         Date Reported         Reviewed by         //         //
Nitrate-N + , Nitrate-N       mg/l         Ammonia-N total (00610)       mg/l         Total Kjeldahl-N       mg/l         Chemical oxygen       mg/l         demand (00340)       mg/l         Total organic carbon       mg/l         Other:       mg/l	F, A-H2 SO4         Image: Nitrate-N dissolved (00631)       mg/l         Image: Ammonia-N dissolved (00608)       mg/l         Image: Total Kjeldahl-N (       mg/l         Image: Other:       mg/l         Image: Analyst       Date Reported Reviewed by (1)         Image: Analyst       Image: Amage:

SLD 726 (8/85) DISTRIBUTION: WHITE - EID, GW&HW Bureau CANARY - WS System PINK - EID Local Office GOLDENROD - SLD

700 Carnino de Salud NE Albuquerque, NM 87106 — (505) 841-2555	and NITROGEN ANALYSIS
RECEIVED 10 3.188 NO. WC 44 CODE 59300	59600 X OT 53300 EID
Collection DATE SITE SITE INFORM-►	llips - Artisia Mu-4
2:15 Collection site description	Notica Man Phaneson
Collected by - Bergon/Agency ArTI Klarky	Bon Por
SEND FINAL REPORT GROUND WATER & HAZARDOUS WASTE BUREAL NM ENVIRONMENT IMPROVEMENT DIVISION/HE PO Box 968 Santa Fe, NM 875040968 Attn:	$\frac{2}{D} RECE VED \frac{2}{1215}$ $NOV 2 1 1013$
<i>v</i>	GROUND WATE?
SAMPLING CONDITIONS	BUREAU A hilling Potoneur
Bailed D Pump Water level	Discharge Sample type
Dipped Tap 55.84 Broc	Gtourf         Ucla           Water Temp. (00010)         Conductivity at 25 °C (00094)
PH (00400) 6-95 230) μmho	Water Temp. (00010) Conductivity aι 25°C (00094) μmho
Field comments	
SAMPLE FIELD TREATMENT — Check proper boxes	
No. of samples / Whole sample DF: Filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtered in filtere	ield with <b>A:</b> 2 ml H ₂ SO ₄ /L added
NA: No acid added	
ANALYTICAL RESULTS from SAMPLES	
NF, NA Units Date analyzed	F, NA Units Date analyzed
□ Conductivity (Corrected) 25°C (00095)µmho	□ Calcium (00915) mg/l □ Magnesium (00925) mg/l
	□ Magnesium (00925) mg/l □ Sodium (00930) mg/l
residue (suspended)	Potassium (00935)mg/l
(0053 <del>0)</del> mg/l	□ Bicarbonate (00440)mg/l
© Other: / Wordity 21 11/1-	□ Sulfate (00945)
□ Other:	$\Box$ Total filterable residue $IG8_{c}$
	(dissolved) (70300)ma/l
NF, A-H ₂ SO ₄	THOIL SECTION
□ Nitrate-N + , Nitrate-N total (00630) mg/l	F, A-H ₂ SO ₄
Ammonia-N total (00610) mg/l	□ Nitrate-N +, Nitrate-N dissolved (00631) mo(l
Total Kjeldahl-N	Nitrate-N + , Nitrate-N     dissolved (00631) mg/l     Ammonia-N dissolved
Total Kjeldani-N     ( ) mg/l	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l
Total Kjeldahl-N     ( ) mg/l      Chemical oxygen     demand (00340) mg/l	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l
Total Kjeldahl-N   (   )   Chemical oxygen   demand (00340)   Total organic carbon	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l
□ Total Kjeldah!-N       mg/l         ( )       mg/l         □ Chemical oxygen       mg/l         demand (00340)       mg/l         □ Total organic carbon       mg/l         ( )       mg/l         □ Other:       mg/l	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         Other:       mg/l
□ Total Kjeldah!-N       mg/l         ( )       mg/l         □ Chemical oxygen       mg/l         demand (00340)       mg/l         □ Total organic carbon       mg/l         ( )       mg/l	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         ()       mg/l
Total Kjeldahl-N     ( )mg/l      Chemical oxygen     demand (00340)mg/l      Total organic carbon     ( )mg/l      Other:     Other:	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         Other:       mg/l         Analyst       Date Reported         Reviewed by       11         11       14         445
Total Kjeldahl-N   ()   Chemical oxygen   demand (00340)   Total organic carbon   ()   ()   Other:   Other:    Laboratory remarks	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         ()       mg/l         Other:       mg/l         Analyst       Date Reported         III       14       445         Jump drived       afta         Jump drived       afta
Total Kjeldahl-N     ( )mg/l      Chemical oxygen     demand (00340)mg/l      Total organic carbon     ( )mg/l      Other:     Other:	dissolved (00631)       mg/l         Ammonia-N dissolved       mg/l         (00608)       mg/l         Total Kjeldahl-N       mg/l         ()       mg/l         Other:       mg/l         Analyst       Date Reported         II       14       445         Umme dicaded       ata Analysis

ł

•

Albuquerque, Ni	M 87106 (505) 841-2555				
DATE RECEIVED 10 318	AB WC-445 USER 593	00 🗆 59600 📈	THE 5330DELD		
Cellection DATE	ATION				
Collected by + Person/Agency					
Dela Chris Deca 108827/0825					
SEND GROUND WATER FINAL NM ENVIRONMEI REPORT PO Box 968	& HAZARDOUS WASTE BURE NT IMPROVEMENT DIVISION/	AU HED			
TO Santa Fe, NM 8750 Attn:	Jalei Man	slow			
·	0		Station/ well code MW 1 Collection site		
SAMPLING CONDITIONS		· · ·	mp hillins Pitroleun		
Bailed     Pump     Dipped     Tap	Water level	Discharge	Samplesype Equipment Blank		
рН (00400)	Conductivity (Uncorrected)		•C Conductivity a: 25 °C (00094) μmho		
Field comments		RECEIVED			
SAMPLE FIELD TREATMEN		NOV 21 1863			
No. of samples	and the second second second second second second second second second second second second second second second	n field with	mine // oddod		
submitted //		n field with			
PNA: No acid added	Other-specify:				
ANALYTICAL RESULTS from	n SAMPLES Units Date analyze	ed F. NA	Units Date analyzed		
Conductivity (Corrected)	Units Date analyz	Calcium (00915)			
25°C (00095)	µmho	- D Magnesium (00925)	mg/i mg/i		
Total non-filterable		<ul> <li>Sodium (00930)</li> <li>Potassium (00935)</li> </ul>	mg/l		
residue (suspended) (00530)		Bicarbonate (00440)	mg/l		
DOther: 112/rdth	C.23 mg/l	Chloride (00940)	mg/i		
D Other:		Sulfate (00945)     Total filterable residue	<u>RE</u> 0खVED		
Other:	· · · · · · · · · · · · · · · · · · ·	- (dissolved) (70300)	ma/)		
NF. A-H2SO4			<u>NOV 2 2 100</u>		
Nitrate-N + , Nitrate-N		F, A-H2 SO4			
total (00630)	mg/l mg/l	Nitrate-N+, Nitrate-	N		
Total Kjeldahl-N		dissolved (00631)	mg/i		
Chemical oxygen	mg/l	(00608)	mg/l		
demand (00340)	mg/l	- Total Kjeldahl-N ()	mg/l		
Total organic carbon ( )	mg/l	D Other:			
□ Other:		Analyst	Date Reported Reviewed by		
			11 14 55 CC		
Laboratory remarks					
- (hydu	me immediatele	Ata she	king		
Relinquiched	me immediatele	0/ta 1h	A Jos Pm		

1

SLD 726 (8/85) DISTRIBUTION: WHITE - EID, GW&HW Bureau CANARY - WS System PINK - EID Local Office GOLDENROD - SLE

ĺ

Albuquerque, NA	M 87106 — (505) 841-2555		and NITHUGEN ANALYSIS
DATE RECEIVED 10 31 88 N		300 🗆 59600 🖄 07	53500 ETN.
Callection DATE VX /OIZ(180) Collection TIME /Z:COD	SITE INFORM- ATION	hillings - Custisis	mw - 6 (field blonk)
Collected by - Person Agency	A.T. Kearny	Ratural Ste	s Processa
ſ.Ħ	. Chus Dan -		88/027 1200
SEND GROUND WATER FINAL NM ENVIRONMEI REPORT PO Box 968	& HAZARDOUS WASTE BURE NT IMPROVEMENT DIVISION/		
TO         Santa Fe, NM 8750           Attn:	Julie Ubus	but	
	n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l La companya de la comp	RECEIVED	Station/ well code (M) - 3 (Calleition inte)
SAMPLING CONDITIONS		1004-22	Phillip Petrolun
XBailed   Pump     Dipped   Tap	Water level N/A	Rielvinge:	Sample type filld blank
pH (00400) _	Conductivity (Uncorrected)	1 811 1 1011	ASTE Confductivity a: 25°C (00094)
Field comments	GROU	BUREAU	
		· · · · · · · · · · · · · · · · · · ·	
			······································
SAMPLE FIELD TREATMEN	T — Check proper boxes		
No. of samples submitted		in field with <b>A:</b> 2 nembrane filter	ml H₂SO₄/L added
	Other-specify:	·	
ANALYTICAL RESULTS from	n SAMPLES Units Date analy	zed F, NA	Units Date analyzed
	Onit's Date analy.	Calcium (00915)	mg/l
Conductivity (Corrected) 25°C (00095)	µmho	□ Magnesium (00925)	mg/i
		□ Sodium (00930)	mg/l
Total non-filterable		Potassium (00935)	
(00530)	mg/l	Bicarbonate (00440)	mg/l
¢ Other: / / / / / /	0.00 11110		mg/l
( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (			<u>NOV 2 2 1684</u>
Other: 170000 a and		🗋 Total filterable residue	
□ Other:		(dissolved) (70300)	
NF. A-H,SO4		Other: ·	HAZARDOUS WASTE SECTION
Nitrate-N + , Nitrate-N		F, A-H ₂ SO ₄	
total (00630)	mg/i		
	mg/i	Nitrate-N + , Nitrate-I discolved (00531)	
Total Kjeldahl-N	····y··	dissolved (00631)	mg/!
( )	mg/l	Ammonia-N dissolve (00608)	ea mg/i
Chemical oxygen		Total Kjeldahl-N	······································
demand (00340)	mg/l		mg/i
Total organic carbon	mg/l	D Other:	
()	mg//		
□ Other:		Analyst	Date Reported Reviewed by
			11 14 SS C
Laboratory remarks	ligge immediate	1. atten sha	King
	N 2	1 1 (1)	
Kellmannh 1	To flue Muse 1	0/27/85 at	7:00194
		· · ·	

-

SLD 726 (8/85) DISTRIBUTION: WHITE - EID, GW&HW Bureau CANARY - WS System PINK - EID Local Office GOLDENROD - SLC