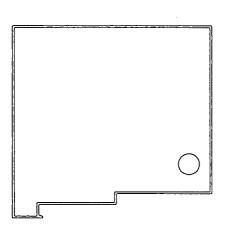


REPORTS


YEAR(S):

MARATHON OIL COMPANY MID-CONTINENT REGION

GROUNDWATER DISCHARGE PLAN GW-21

INDIAN BASIN GAS PLANT

EDDY COUNTY NEW MEXICO

NOV 1 1994

OIL CLASSING HON DIV. SANTA FE

MARATHON OIL COMPANY INDIAN BASIN GAS PLANT GROUNDWATER DISCHARGE PLAN

Submitted on behalf of the working interest owners to State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

October 31, 1994

TABLE OF CONTENTS

ŧ

TYPE OF OPERATION	1
OPERATOR/ LEGALLY RESPONSIBLE PARTY & LOCAL REPRESENTATIVE	1
LOCATION OF FACILITY	1
LANDOWNER	2
FACILITY DESCRIPTION	2
SOURCES AND QUANTITIES OF EFFLUENTS & WASTE SOLIDS Effluents	2 2 3
EFFLUENT AND SOLID WASTE QUALITY CHARACTERISTICS	4 4 4
TRANSFER AND STORAGE OF PROCESS FLUIDS AND EFFLUENTS Onsite Collection and Storage Systems Open Drain System Description of Integrity Test of Open Drain System Closed Drain System Water and Wastewater Flow Inventory of Tanks and Vessels Measures to Prevent Unintentional and Inadvertent Discharges Secondary Containment for Tanks Chemical and Drum Storage Area Containment New and Existing Sump Inspection Onground Tank Inspection Inderground Pipelines Proposed Modifications 1995 1996 1997	5555666777777888889
EFFLUENT DISPOSAL	9 9 9 9 9

11

1 1 1 1 1

Vadose Zone Monitoring, Sampling, and Notification	10
Off-Site Disposal	11
Injection Wells	
Municipal Landfill	
INSPECTION, MAINTENANCE, AND REPORTING	
Routine Inspection Procedures	11
Routine Maintenance Procedures	
Routine Reporting Procedures	12
Stormwater Runoff and Flood Protection	
SPILL/LEAK PREVENTION & REPORTING (CONTINGENCY PLANS)	13
SITE CHARACTERISTICS	13
Geologic Description of Discharge Site	13
Hydrologic Features	

TABLES

TABLE 1	EFFLUENTS AND ESTIMATED VOLUMES
TABLE 2	WASTE SOURCES, ESTIMATED VOLUMES, AND WASTE CLASSIFICATION
TABLE 3	INVENTORY OF TANKS
TABLE 4	INVENTORY OF PROCESS VESSELS
TABLE 5	UNDERGROUND PIPING
TABLE 6	LANDFARM CLEANUP STANDARDS

FIGURES

- FIGURE 1 TOPOGRAPHIC MAP OF PLANT AND SURROUNDING AREA
- FIGURE 2 FACILITY DIAGRAM OF THE PLANT
- FIGURE 3 OPEN DRAIN SYSTEM SCHEMATIC
- FIGURE 4 WATER AND WASTEWATER FLOW SCHEMATIC

APPENDICES

- APPENDIX A LABORATORY RESULTS OF COMMINGLED DISCHARGE FLUID
- APPENDIX B SPILL PREVENTION, CONTROL, AND COUNTERMEASURE PLAN (12-28-92)
- APPENDIX C STORMWATER POLLUTION PREVENTION PLAN (3-31-93)

. 1.

1111

1

:

i

i.

i

Į.

ļ

TYPE OF OPERATION

The major purpose of the facility is gas processing. Although the components of the plant have been updated since it first began operations in 1966, the basic function and purpose of the plant have not changed. The plant owners have invested in new technology and replacement of aging equipment as necessary.

OPERATOR/ LEGALLY RESPONSIBLE PARTY & LOCAL REPRESENTATIVE

The name of the operator is Marathon Oil Company. The mailing address for the Mid-Continent Region is P.O. Box 552, Midland, Texas 79702-0552. The telephone number for the Region office in Midland is (915) 682-1626.

The local Marathon Oil Company representative at the Indian Basin Gas Plant is Noel R. Garza, Plant Superintendent. The street address of the plant is 429 Marathon Road (Eddy County Road 401). The mailing address is P.O. Box 1324, Artesia, New Mexico 88210. The plant telephone number is (505) 457-2621.

LOCATION OF FACILITY

The Indian Basin Gas Plant (facility) is located in the Northeast 1/4 of Section 23, T21S, R23E, NMPM, Eddy County, New Mexico, approximately 20 miles northwest of Carlsbad and 28 miles southwest of Artesia. Figure 1 is the Martha Creek 7.5-minute topographic quadrangle showing the location of the gas plant.

The commingled effluent, which consists of exempt gas processing fluids and produced water, is discharged into two Marathon-operated Class II injection wells located on adjacent Bureau of Land Management (BLM) property. The principal injection well is the Marathon Indian Basin Gas Com Well No. 1, located in the Northwest 1/4 of Section 23, T21S, R23E. Marathon Federal SWD Well No. 1, located in Unit K in the Southwest 1/4 of Section 24, T21S, R23E, is maintained as a backup well. Waste effluent from various plant processes is collected and conveyed by the open drain piping system, the closed drain piping system, and several underground pipelines. The various effluents are commingled and injected into one of the two wells (Figure 1). Other minor discharges occur at the plant in the Southwest 1/4 of the Northeast 1/4 of Section 23, T21S, R23E (Figures 1 and 2):

1) Cooling tower effluent in the form of a spray or mist is discharged to the ground around the base of the cooling tower;

Marathon Oil Company Indian Basin Gas Plant

- 2) Exempt nonhazardous or nonexempt nonhazardous hydrocarbon-contaminated soils are treated in the plant landfarm;
- 3) Groundwater is added to landfarm soils with a sprinkler system to maintain the moisture content at optimum levels and thereby assist in the bioremediation process; and,
- 4) Solid sulfur is discharged onto the ground on the west side of the plant.

LANDOWNER

Marathon Oil Company is the landowner of record of a 160-acre site legally described as the Northeast 1/4 of Section 23, T21S, R23E, NMPM, Eddy County, New Mexico. The gas plant facility, which consists of approximately 60 acres, is located on the 160-acre property. Marathon's corporate headquarters address is P. O. Box 3128, Houston, Texas, 77253. Correspondence regarding the site should be directed to the Plant Superintendent, Noel R. Garza, at the plant address provided under the heading "OPERATOR/ LEGALLY RESPONSIBLE PARTY & LOCAL REPRESENTATIVE."

FACILITY DESCRIPTION

Figure 2 is a survey of the gas plant site showing the plant perimeter fence, stormwater berms, most of the tanks, cooling tower, landfarm, sulfur pit, landfill, locations of chemical and fuel storage facilities, processing facilities, and drum storage areas. The gas plant facility occupies approximately the Southwest 1/4 of the Northeast 1/4 of Section 23, T21S, R23E. Figure 1 shows the plant site, the boundary of the 160-acre property, and the adjacent property managed by the BLM.

SOURCES AND QUANTITIES OF EFFLUENTS & WASTE SOLIDS

Effluents

The principal plant effluent is the commingled effluent (Effluent No. 1) consisting of produced water and various other plant effluents. Current estimated volumes of eight effluents that compose the commingled effluent (Effluent Nos. 3, 4, 5, 6, 7, 8, 9, and 10) and two other plant effluents (Effluent Nos. 11 and 12) are identified in Table 1. Effluent source quantities at the plant are variable and depend upon plant and field operations. Commingled effluent is normally discharged into the two Marathon-operated, injection wells; however, water trucks occasionally transport commingled effluent to commercial off-site disposal wells (Effluent No. 2).

i.

Produced water (Effluent No. 3), cooling tower blowdown (Effluent No. 4), and boiler and condenser blowdowns (Effluent No. 5) consist of a combination of wastewater and chemical additives. The name and volume of additives in each effluent are listed on Table 1. These effluents, effluent from cleaning operations (Effluent No. 7), and miscellaneous plant process effluents (Effluent No. 8) are commingled via the open drain piping system which drains to the skimmer basin before being pumped to the steel saltwater tank.

Waste oil (Effluent No. 6) is mostly collected and conveyed by the open drain system and eventually becomes part of the commingled effluent. Vehicle motor oil is changed on the concrete containment on the west side of the plant (Figure 2) and the waste oil is poured into the 500-gallon, waste oil storage tank located within the containment. In addition, waste crankcase oil from the chemical injection pump is hand carried from the pump to the waste oil storage tank. The oil is stored in the tank for several months until enough oil accumulates to warrant transport of the oil-filled tank to a used oil recycling facility.

Softwater regeneration and reverse osmosis wastewater (Effluent No. 9), groundwater contaminated with condensate (Effluent No. 10), and Lower Queen groundwater (Effluent No. 11) are delivered directly to the commingled effluent disposal system by underground pipelines. Groundwater is delivered directly to the gas plant landfarm via underground pipeline (scheduled improvement for 1995).

Domestic sewage (Effluent No. 12) is not commingled with other plant effluent and therefore is regulated by the New Mexico Environment Department. Sewage is conveyed through an underground pipeline to an underground septic tank which is designed to drain the sewage leachate. The septic system was installed prior to December 1972.

Solid and Liquid Wastes

Solid and liquid wastes are generated at the plant that are not part of the commingled effluent or conveyed by underground piping. The quantities and estimated frequency that these wastes are accumulated are provided in Table 2. Table 2 also characterizes each waste as either exempt, nonexempt, or NORM waste. The appropriate waste disposal method and location of disposal are indicated. In addition, the storage location of the waste prior to disposal is furnished.

The Safety-Kleen parts cleaning unit containing hazardous solvent is located in the pumper shack. Some cleaning operations involve the use of the solvent which is stored in the 55-gallon cleaning unit, serviced and maintained by Safety-Kleen. Safety-Kleen recycles the solvent monthly. The Environmental Protection Agency (EPA) small quantity generator number for hazardous waste generated at the Indian Basin Gas Plant is NMO 982 760 183. The EPA hazardous waste site identification is NMO-1406.

ł.

ł

1

1

Ĵ.

i

ł

Laboratory wastes are a starch and iodine mix, silver nitrate, and water test reagents. These liquids are temporarily stored in a 5-gallon container in the laboratory and later hand carried to a 55-gallon drum in the drum storage area on the west side of the plant. Waste paint is stored in a 55-gallon drum in the drum storage area. Both streams are stored until enough waste has accumulated for disposal by Safety-Kleen.

EFFLUENT AND SOLID WASTE QUALITY CHARACTERISTICS

Commingled Effluent

On August 24, 1994, a grab sample of the commingled effluent was collected from a valve between the saltwater tank pump and the pipeline to the injection wells. Total dissolved solids (TDS), pH, general chemistry, chlorinated hydrocarbons (EPA Method 601 and EPA Method 504 for ethylenedibromide), aromatic hydrocarbons (EPA Method 602), and Resource Conservation and Recovery Act (RCRA) metals analysis of the effluent sample was conducted by Analytical Technologies, Inc. Laboratory results indicated that all commingled effluent constituents are below the WQCC 3-103 standards for groundwater except for benzene, toluene, and total xylenes, chloride, sulfate, and TDS. The concentrations of benzene, toluene, and total xylenes were 2800, 5600, and 2700 ug/l, respectively. The laboratory results are included in Appendix A.

Testing for polychlorinated biphenols (PCBs) was not necessary because PCB-contaminated transformers were removed from service at the gas plant before 1981. No other sources of PCB contamination have been identified to warrant testing for PCBs in the plant effluent.

Table 1 lists three plant effluents that contain one or more constituents as defined by WQCC Section 1-101.ZZ. These effluents are the produced water (Effluent No. 3), waste oil (Effluent No. 6) that drains into the open drain system, and groundwater contaminated with condensate (Effluent No. 10) which is transferred through an underground pipeline from the treatment compound to the fiberglass saltwater tank. One or more constituents as defined by WQCC Section 1-101.ZZ (benzene, toluene, ethylbenzene, M-, P-, and O-xylenes, and naphthalene) are contained in these effluents.

Solid Waste Quality Characteristics

Most solid wastes generated at the plant are not characterized by the definition in WQCC Section 1-101.ZZ. Table 2 classifies each waste as either exempt, nonexempt nonhazardous, or nonexempt potentially hazardous. All nonexempt wastes will be laboratory tested to determine the appropriate method of disposal. After the waste stream has been tested to determine the disposal method, the laboratory analysis will be kept on file at the gas plant. This analysis will

4

C

be used to characterize the waste stream for a one-year period. After the one-year period has expired, the waste stream will be retested to ensure that the disposal method is appropriate. Solid wastes will be stored and handled in accordance with all applicable federal and state laws.

TRANSFER AND STORAGE OF PROCESS FLUIDS AND EFFLUENTS

Onsite Collection and Storage Systems

The open drain and closed drain systems are used to manage some of the effluents at the plant. Table 1 indicates which effluents are conveyed in the open drain system. These include two of the boiler and condenser blowdowns (Effluent No. 5), several waste oils (Effluent No. 6), cleaning operation effluents (Effluent No. 7), and miscellaneous plant process effluents (Effluent No. 8). Figure 3 is a schematic of the plant open drain system and shows the location of the storage tanks where the commingled effluents are collected. The closed drain system is used to collect effluent from pressurized vessels.

Several other effluents, including produced water (Effluent No. 3), cooling tower blowdown (Effluent No. 4), certain boiler and condenser blowdowns (Effluent No. 5), softwater regeneration and reverse osmosis wastewater (Effluent No. 9), and groundwater contaminated with condensate (Effluent No. 10) are conveyed by underground piping. Table 5 lists the underground piping at the plant and the effluents contained within these pipelines.

Open Drain System

The open drain system collects plant effluent under atmospheric conditions. The underground part of this system includes: four double-walled fiberglass sumps; one single-walled fiberglass sump; two single-walled steel sumps (main boiler sump and LACT sump); steel collection pots; steel pipelines; and, polyethylene pipelines (Figure 3). The open drain system includes a total of nine underground sumps. The aboveground part of the system consists of concrete drainage and containment pads that collect and drain effluent into the underground part of the system for collection and disposal. Commingled effluent collected in the open drain system flows to the middle tank of the skimmer basin located in the southwest part of the plant. The skimmer basin consists of three, netted, open-top fiberglass tanks.

Description of Integrity Test of Open Drain System

Seven separate sections of underground piping are tested by filling the piping to volumetric capacity and visually observing any fluctuations in fluid levels at the sump and manway locations. The test is performed at atmospheric conditions for 5 hours. In order to reduce the effects of temperature fluctuations that occur during the heating and cooling part of the day, the test is

Marathon Oil Company Indian Basin Gas Plant

÷.

conducted in the early morning or late evening hours. All sources for active drainage are isolated to prevent accidental introduction of non-test fluids into the system. A successful test has been conducted when the initial fluid levels remain constant throughout the 5-hour test period. The double walled fiberglass sumps are integrity tested by filling the inner chamber to capacity and observing any leaking of fluid from the inner chamber to the outer chamber. A successful test of the double-walled sumps has occurred if fluid does not leak to the outer chamber from the inner chamber during the 5-hour test period.

A successful integrity test of two sections (i.e. main boiler sump and LACT sump) was conducted on May 24, 1994. Successful integrity tests of five other sections (i.e. generator, stabilizer compressor, air compressor, main, and glycol blowdown sumps) were conducted on September 8, 1994. On September 8, an integrity test of the inlet compressor sump demonstrated integrity at the normal operating effluent level, but failed to demonstrate integrity during high-level effluent conditions (i.e. during heavy rainfall events). A new double-walled, inlet compressor sump is being manufactured and is planned to be installed in November 1994 to ensure integrity of this section of the open drain system.

Closed Drain System

The closed drain was constructed in 1980 and modified in 1984 and is mainly aboveground. This system is used to collect effluent from pressurized vessels. The maximum operating pressure is 50 psig. The closed drain system is connected to 14 process vessels: filter separator, expander/compressor, amine contactor, glycol contactor, amine scrubber, glycol scrubber, amine flash tank, amine still, product contactor, new fuel gas scrubber, old fuel gas scrubber, regen scrubber, vertical inlet separator, and horizontal inlet separator. Steel piping leads from these process vessels to the fiberglass, closed blowdown drain tank located in the southwest part of the plant. Collected liquids in the tank are sent to the skimmer basin for recovery and then to the steel saltwater tank for disposal.

Water and Wastewater Flow

Figure 4 is a water and wastewater flow schematic showing individual treatment and process units.

Inventory of Tanks and Vessels

Tables 3 and 4 are lists of tanks and vessels, respectively, with a potential to discharge. Table 3 lists the 39 tanks at the plant. Most of the onground tanks are not constructed with impermeable secondary containment or leak detection. The sulfur tank is the only underground tank at the site. None of the onground tanks are constructed on gravel foundations (i.e. tank bottom leaks cannot be detected); therefore, these tanks are cleaned out and visually inspected

0

every five years. Table 3 indicates the scheduled inspection dates for each onground tank. Table 4 lists the separators, boilers, exchangers, condenser, scrubbers, and other vessels that are not constructed in impermeable secondary containment and would cause a discharge directly to the ground if the vessel leaked.

Measures to Prevent Unintentional and Inadvertent Discharges

Secondary Containment for Tanks

All storage tanks except those that contain uncontaminated freshwater are bermed to contain 133% of the volume of the largest tank. If two or more tanks are connected within the same containment, the berm contains 133% of the total volume of the interconnected tanks.

Chemical and Drum Storage Area Containment

All drum storage areas are concrete paved and curbed to prevent a potential discharge to the ground of leaking or spilled drum contents. The chemical storage area is scheduled for upgrading in 1995 to construct concrete paving and curbing to prevent leaks or spills from contacting the ground. The containment will be constructed to drain spilled or leaked fluids to a concrete sump built into the containment.

New and Existing Sump Inspection

Construction plans for installing new sumps will be submitted to the Oil Conservation Division (OCD) for approval prior to project commencement. All seven existing sumps are cleaned-out and visually inspected every year. The only below-grade tank at the plant is the sulfur underground storage tank.

Onground Tank Inspection

The lube oil storage, steel saltwater, glycol storage, 1200-barrel freshwater storage, and steel softwater tanks are on a concrete pad. Therefore, these tanks have leak detection. All other onground tanks are cleaned-out and inspected every five years. Table 3 indicates the clean-out and inspection schedule for the tanks.

Underground Pipelines

Table 5 lists 44 underground pipelines that convey either process or waste effluents within the plant. The name of the pipeline, where the fluids are transferred from and to, year of construction or modification, piping diameter, fabrication material, average throughput during use, operating pressure, and the date of the last or next scheduled integrity test of each pipeline

are indicated on Table 5. All pipelines that are 25 years of age or older are tested for mechanical integrity. The Marathon procedures for mechanical integrity testing are on file at the plant. The procedures are based upon the third edition (dated December 1993) of the American Petroleum Institute document RP 1110 entitled "Pressure Testing of Liquid Petroleum Pipelines."

Proposed Modifications

1**994**

1. Decommission the existing 90-barrel, steel softwater tank and replace it with a 280-barrel, fiberglass tank. Install a new water softener unit.

1995

- 1. Close the existing landfill pit located on the west side of the plant by burying the existing material in place. Existing material includes office trash (e.g. paper, wood, glass, miscellaneous) and filters (e.g. dried amine, glycol, fuel, and air). Future operations at the plant will not use an on-site landfill for disposal of office trash and exempt solid wastes. These wastes will be handled, stored, and disposed according to the waste inventory protocol identified in Table 2.
- 2. Installation of a reverse osmosis system complete with associated aboveground tankage.
- 3. Install a pipeline to convey groundwater to the landfarm. Install a water sprinkling system to maintain the moisture content at an optimum level in landfarm soils undergoing biologic treatment.

1996

- 1. Remove the three existing skimmer basin netted open-top tanks and install closed-top tanks with vapor recovery. The new tanks will be constructed inside concrete containment with concrete berms to contain 133% of the volume of the largest tank within the containment.
- 2. Construct a concrete containment pad with concrete berms to contain 133% of the combined volume for all the saddle tanks within the chemical and fuel storage area containment. Construct a separate concrete pad without containment for the methanol saddle storage tank.
- 3. Construct earthen secondary containment berms to contain 133% of the combined volume of the two interconnected overhead condensate storage bullet tanks.

1997

1. Construct earthen secondary containment berms to contain 133% of the combined volume of the two saltwater tanks and the softwater tanks.

EFFLUENT DISPOSAL

On-Site Operations

On-site Disposal

Surface impoundments or ponds, injection wells, leach fields, drying beds, or other pits do not exist on site. On-site disposal of liquid and solid waste effluents is limited to the solid waste landfill and two minor discharges. The latter are: 1) cooling tower effluent in the form of a spray or mist that is discharged to the ground around the base of the cooling tower; and, 2) solid sulfur is discharged onto the ground on the west side of the plant. Marathon no longer uses the solid waste landfill on site to dispose of exempt plant wastes and office trash. A scheduled improvement for 1995 is to close the landfill in place.

On-Site Treatment

On-site treatment is limited to treatment of hydrocarbon-contaminated (e.g oil, glycol, and amine) soil. Treatment is accomplished by either landfarming, commercial soil shredding, or commercial incineration. The latter two treatment options will be accomplished by an environmental service company in the landfarm area. Soil treated using these latter two methods will be treated to below the standards for soil to be reburied in Table 6. Vadose zone monitoring will not be performed if the soil is treated in aboveground equipment. The confirmation sampling frequency for the treated soils will be one sample per 50 yards of soil.

In the event commercial soil shredding or incineration treatment options prove to be technically effective and cost efficient, the landfarm may be closed. The staging area south of and adjacent to the landfarm would continue to be utilized for collection and storage of soil prior to commercial treatment.

Landfarm Construction, Operation, and Maintenance

Landfarming of exempt and nonexempt nonhazardous, hydrocarbon-contaminated soil occurs in an area on the west side of the plant (Figure 2). The landfarm area is approximately 100 by 300 feet square. A staging area for soil awaiting treatment borders the landfarm to the south and is approximately 100 by 100 feet square. The landfarm operates continuously throughout the year. The landfarm was originally constructed in

i

ł

1989 with a 4-mil plastic liner with approximately 12-inch-high earthen berms on four sides. Runon protection is afforded by the stormwater berm immediately adjacent to the west side of the landfarm containment. Runoff protection, leachate collection, or leak detection were not incorporated into the landfarm design; however, the application of water by a sprinkler system (1995 proposed improvement) is limited so that ponding does not occur within the landfarm except during significant rainfall events.

Soil to be placed in the landfarm will not contain polychlorinated biphenols (PCBs) or heavy metals in hazardous concentrations as defined by the Toxicity Characteristic Leaching Procedure (TCLP). Exempt soil will be directly loaded into the landfarm; however, nonexempt soil will be tested for RCRA metals by total digestion and PCBs prior to loading unless source knowledge can eliminate these tests.

Normal operations may include the addition of nutrients, biomass, and groundwater. Frequent tilling of soil is required to reduce contaminant levels to below the cleanup standards.

Landfarmed soil is sampled periodically to determine whether cleanup standards have been achieved. Soil cleanup standards for TRPH, total BTEX, and benzene are determined by the proposed use of the soil following treatment. Table 6 outlines the proposed standards.

Vadose Zone Monitoring, Sampling, and Notification

In order to ensure that discharges to groundwater from the vadose zone beneath the landfarm will comply with standards in WQCC Section 3-103 and Section 1.101.ZZ, a randomly located, grab sample from immediately below the landfarm area will be collected each time treated soil is removed from the landfarm. The sample will be collected from an interval between six inches and one foot below grade. The sample will be collected according to EPA protocols and transported to an appropriate laboratory for TRPH (EPA Method 418.1) and BTEX (EPA Method 8020) analyses.

If soil below the landfarm is found to contain TRPH or total BTEX concentrations above 100 mg/kg and 50 mg/kg, respectively, the OCD will be notified according to the notification requirements of WQCC Section 1-203. Marathon's seven-day written notification will contain a plan for the removal of soil from beneath the landfarm that exceeds these standards. If soil below the landfarm is not found to contain TRPH or total BTEX concentrations above 100 mg/kg and 50 mg/kg, respectively, then the landfarm will be reloaded and treatment of soil will continue. Laboratory analysis reports of the vadose zone sampling described above will be submitted to the OCD within 15 days of the transmittal date of the laboratory report.

1

į.

i

i

I

Ì.

i

Off-Site Disposal

Injection Wells

All exempt gas plant waste effluents are collected by the open drain system, closed drain system, or other underground piping, and commingled at either the fiberglass or steel saltwater tanks (Figure 2). The commingled effluent is conveyed by underground pipeline and discharged at two off-site locations. These are the two Marathon-operated Class II injection wells located on adjacent BLM property. The principal injection well is the Marathon Indian Basin Gas Com Well No. 1, located in the Northwest 1/4 of Section 23, T21S, R23E. Marathon Federal SWD Well No. 1, located in Unit K in the Southwest 1/4 of Section 24, T21S, R23E, is maintained as a backup well. The composition of the commingled effluent is identified on Table 1. Laboratory analysis of the commingled effluent is provided in Appendix A.

Municipal Landfill

All exempt and nonexempt nonhazardous solid wastes are placed in the dumpster on site and are disposed of in a municipal solid waste landfill. Potentially hazardous wastes (e.g., sludges, hydroblasting and sandblasting media, cooling tower cleaning waste solids, and nonexempt tank bottoms) are tested to determine the appropriate method of disposal. Nonexempt wastes determined to be hazardous by laboratory testing are handled and stored appropriately and disposed off site. Hazardous wastes may be temporarily stored on site for 270 days.

INSPECTION, MAINTENANCE, AND REPORTING

Marathon is actively involved in maintaining and improving spill and leak prevention procedures and good housekeeping practices. These goals are achieved by encouraging plant employees to be observant, to notify the appropriate persons of their observations, to correct problems quickly, and to prevent future spills and leaks by learning from problematic past practices.

Routine Inspection Procedures

Table 3 and 4 identify the aboveground storage tanks and process vessels (AST and APV; i.e., those in-air tanks and vessels that allow 360 degree visual inspection) that are routinely inspected. The closed drain system is also routinely inspected. Plant employees routinely inspect plant equipment (i.e. tanks, piping, pumps, fittings, valves, etc.) for leaks and spills during their daily work tasks. Four plant tours are conducted by plant personnel during each of three, eight-hour shifts. A primary objective of these tours is to detect equipment leaks and spills. The current Spill Prevention, Control, and Countermeasure (SPCC) plan dated December 28, 1992 is provided in Appendix B.

Marathon Oil Company Indian Basin Gas Plant

Routine Maintenance Procedures

Employees are encouraged to identify and report potential spill situations. All plant employees have completed an 8-hour hazardous waste operations and emergency response (HAZWOPER) training session. In addition, all employees participate in an annual refresher training course which includes instruction on spill prevention and control measures as required by the SPCC plan.

Routine Reporting Procedures

Small leaks or spills are reported and remediated immediately. A Marathon policy requires employees to complete a spill report upon discovery of a spill or leak. Spills or leaks are reported to the OCD according to the requirements of OCD Rule 116 and WQCC Regulations Section 1-203. BLM is notified if a spill or leak occurs on BLM land. The National Response Center is notified in accordance with 40 CFR 110.10. Spill reports are kept on file at the plant office.

Stormwater Runoff and Flood Protection

The potential for flooding of the plant is very low. Normally, flooding due to significant rainfall events is limited to the braided stream channels of Rocky Arroyo. The stream bed of Rocky Arroyo is approximately 10 feet lower than the elevation at the southern plant perimeter fence. The last time Rocky Arroyo overran its banks was in 1986, but the water did not reach the plant.

Perimeter diversion berms consisting of dirt, piled two- to three-feet high, are located on the west and north sides of the plant to prevent upgradient stormwater from running onto the plant site. These stormwater berms prevent stormwater from contacting hydrocarbons in containments or flooding the open drain system which is designed to manage normal process flow only.

The Indian Basin Gas Plant Stormwater Pollution Prevention Plan (SWPPP), dated March 31, 1993, is included in Appendix C. This document describes the potential pollutant sources, stormwater measures and controls, stormwater runoff management, inspection and preventative maintenance, spill prevention and response procedures, employee stormwater training, and recordkeeping and internal reporting procedures. Select employees participate in stormwater pollution prevention training on an annual frequency according to the requirements in the SWPPP.

SPILL/LEAK PREVENTION & REPORTING (CONTINGENCY PLANS)

A contingency plan for potential occurrence of leaks and spills at the Indian Basin Gas Plant is located in the SPCC plan which is included as Appendix B. The contingency plan describes the steps proposed to contain and remove spilled substances and mitigate the damage caused by the discharge including protection from future migration to groundwater. The OCD notification threshold levels for discharges at the plant as defined by WQCC Regulations Section 1-203 and significant leaks or spills as defined by OCD Rule 116.

SITE CHARACTERISTICS

Geologic Description of Discharge Site

The typical stratigraphic sequence beneath the gas plant is Queen Formation fractured sandstone, limestone, and dolomite bedrock at a depth of approximately 20 feet overlain by approximately 16 feet of silty, pebble to boulder gravel overlain by 4 feet of clayey silt and silt.

Hydrologic Features

Rocky Arroyo is a watercourse located approximately 600 feet south of the southern boundary of the site (Figure 1) that contains flowing water only during and for a period of time following heavy rainfall events. The main channel of Rocky Arroyo is 840 feet south of a fence at plant. South of the plant site, the stream channel of Rocky Arroyo trends southeast.

The first groundwater encountered below the plant site occurs within alluvium deposits. This shallow zone is perched above locally fractured, Permian sandstone, limestone, and dolomite of the Queen Formation. The presence of perched shallow groundwater is dependant on the amount of local rainfall. The flow direction of the perched shallow groundwater is generally southeast. A commercial supply well permitted by the State Engineer Office and completed in the shallow alluvial deposits is located approximately 2.5 miles east of the site boundary. The well is located where alluvial deposits are thick and downstream of the confluence of three major drainage channels in the southern Seven Rivers embayment. These are Rocky Arroyo, Martha Creek, and Dunnaway Draw.

A rancher well (Lee well) is located approximately 0.7 miles west of the western boundary of the 160-acre property and approximately 100 feet north of County Road 401 (Figure 1). This active well is permitted by the State Engineer Office as a stock supply well and is completed in the Lower Queen regional aquifer which is the next saturated zone below the shallow groundwater zone.

TABLES

S	
l Volume	
Estimated	
and	
. Effluents	
Table 1	

Al COCUNS TOWER BLOWDOWN Set and the set of the se	90 • (solid) Aquemeg Aquemeg	200 Buls/day none 2.1 gal/day none 5 Bbls/mo none 100 lbs/mo none 12 ppm none 3.6 gal/day none 3.6 gal/day none 3.6 gal/day none 3.8 gal/day none 3.8 gal/day none 3.8 gal/day none 1.0 gal/mo none 1.0 gal/mo none 5.5 gal/yr none 5.5 gal/yr none 2.50 gal/yr none
S aboveground piping to fiberglass saltwater tank S underground & aboveground steel pipeline to steel saltwater tank wdown underground & aboveground steel pipeline to steel saltwater tan wdown underground & aboveground steel pipeline to steel saltwater tan wdown glycol sump of open drain to steel saltwater tank Blowdown Open Drain System to skimmer basin Numpl open drain to skimmer basin hand carried to 500-gel waste oil drum numpel open drain to skimmer basin no pumpl open drain to skimmer basin nor oil open drain to skimmer basin open drain to skimmer basin NU MV nor oil open drain to skimmer basin open drain to skimmer basin Nu to Injection nor oil open drain to skimmer basin open drain to skimmer basin Open Drain to Skimmer basin nor oil open drain to skimmer basin open drain to Skimmer Basin to Saltwater Tank to Injection ns open drain to Skimmer Basin to Saltwater Tank to Injection	90 (solid) Aquamag Aquamag	is/day /day /day /day /day /day /day /day
S Munderground & aboveground steel pipeline to steel saltwater tan wdown Underground & aboveground steel pipeline to steel saltwater tan underground & aboveground steel pipeline to steel saltwater tan glycol sump of open drain to steel saltwater tan glycol sump of open drain to stimmer basin Deen Drein System to skimmer basin Deen Drein System to skimmer basin Deen drain to skimmer basin open drain to skimmer basin	90 Aquemeg Aquemeg Aquemeg	/day mo in in in in in in in in in in in in in
S underground & aboveground steel pipeline to steel seltwater tan wdown underground & aboveground steel pipeline to steel seltwater tan underground & aboveground steel pipeline to steel seltwater tan glycol sump of open drain to steel seltwater tank Deen Drain System to skimmer besin NW MW. Blowdown Open Drain System to skimmer besin Drain System to skimmer besin Drain to skimmer besin open drain to Skimmer Besin Andrein to Skimmer Besin Open Drain to Skimmer besin open drain to Skimmer Besin	fsolid) Aquemeg Aquemeg	me ime iday iday iday iday iday iday iday iday
S Munderground & aboveground steel pipeline to steel seltwater tan underground & aboveground steel pipeline to steel seltwater tan underground & aboveground steel pipeline to steel seltwater tan underground & aboveground steel pipeline to steel seltwater tan glycel ump of open drain to stimmer basin Wow Dpen Drain System to stimmer basin Blowdown Dpen Drain System to stimmer basin Doen Drain System to stimmer basin PU MA Blowdown Open Drain System to stimmer basin Doen Drain System to stimmer basin PU MA Incode Doen drain to stimmer basin Doen drain to stimmer basin PU MA Incode Dpen drain to stimmer basin Drain System to stimmer basin PU MA Drain System to stimmer basin PU MA Drain to stimmer basin Deen drain to stimmer basin Drain to stimmer basin Deen drain to stimmer basin Deen drain to stimmer basin Deen drain to stimmer basin Deen Drain to Skimmer Basin Deen drain to Skimmer Basin Deen Drain to Skimmer Basin to Saltwater Tank to Injection Deen Drain to Skimmer Basin to Saltwater Tank to Injection	teolid) Aquemeg Aquemeg	in in in in in in in in in in
S wdown wdown wdown wdown wdown wdown wdown open dreground & aboveground steel pipeline to steel seltwater tan wdown glycol aump of open drein to steel seltwater tank glycol aump of open drein to skimmer basin Dpen Drein System to skimmer basin Dpen Drein System to skimmer basin nor pumpel open drein to skimmer basin open drein to Skimmer Basin to Saltwater Tank to Injection n ngers Open Drein to Skimmer Basin to Saltwater Tank to Injection	Aquemeg Aquemeg Aduemeg	ia day mo pal/yr t/yr t/yr
Switch underground & aboveground steel pipeline to steel saitwater tan wdown wdown underground & aboveground steel pipeline to steel saitwater tan underground & aboveground steel pipeline to steel saitwater tan glycol sump of open drain to steel saitwater tank (poen Drain System to skimmer basin) Nitu River Dpen Drain System to skimmer basin non pumpl open drain to skimmer basin nor oll open drain to skimmer basin open drain to skimmer basin open drain to skimmer basin nor oll open drain to skimmer basin open drain to skimmer basin open drain to skimmer basin Shing Open Drain to Skimmer Basin Open Drain to Skimmer Basin Open Drain to Skimmer Basin	Aquemeg Aquemeg 30	n (day (day (day iday iday in pal/yr iv
S underground & aboveground steel pipeline to ateel aeltwater tan wdown underground & aboveground steel pipeline to ateel aeltwater tan underground & aboveground steel pipeline to ateel aeltwater tan glycol sump of open drain to steel aeltwater tank Blowdown Open Drain System to skimmer basin NW WW Den Drain System to skimmer basin Den Drain System to skimmer basin NW WW Den drain to skimmer basin open drain to skimmer basin	Aquemeg	/day /day /day /day /day
wdown underground & aboveground steel pipeline to steel seitwater tan vdown underground & aboveground steel pipeline to steel seitwater tan vdown glycol sump of open drain to steel seitwater tank Blowdown Open Drain System to skimmer basin NV NV NV NV hand carried to 500-gel waste oil drum pumpel open drain to skimmer basin no pumpel open drain to skimmer basin no pen drain to skimmer basin open drain to Skimmer Basin to Saltwater Tank to Injection nas	Aquemeg	/day /day /day /day mo mo gal/yr Yr //yr
vdown underground & aboveground steel pipeline to steel seltwater tank vdown glyool sump of open drain to steel seltwater tank Blowdown Open Drain System to skimmer besin Nump Open Drain System to skimmer besin Nump Den drain to skimmer besin Nump open drain to skimmer besin Numpressors open drain to skimmer besin Open drain to skimmer besin open drain to skimmer besin Open Drain to skimmer besin Open Drain to skimmer besin Open Drain to skimmer besin Open Drain to Skimmer Besin Open Drain to Skimmer Besin Open Drain to Skimmer Besin Open Drain to Skimmer Besin Open Drain to Skimmer Besin	Aquemag 30	(day (day mo mo gal/yr ľ/yr
vdown glycol sump of open drain to steel saltwater tank Blowdown Open Drain System to skimmer basin 가나 했나. 했나. Iowdown Open Drain System to skimmer basin 가나 했나. Iowdown Open drain to skimmer basin open drain to skimmer basin pumpes) open drain to skimmer basin open drain to skimmer basin	Aquamag	/day /day mo mo //yr //yr
Blowdown Open Drein System to ekimmer basin SVU RVU. Blowdown Open Drein System to ekimmer basin SVU RVU. No Open Drein System to ekimmer basin SVU RVU. non pumpel Open drain to skimmer basin to Saltwater Tank to Injection nem	uamag	day mo gal/yr //yr
Ilowdown Open Drein System to ekimmer besin) hend carried to 500-gel weste oil drum numpel bean drain to skimmer besin open drain to skimmer besin	uamag	mo mo gal/yr I/yr
on pump) hend carried to 500-gal waste oil drum hend carried to 500-gal waste oil drum pumpe) hend carried to 500-gal waste oil drum open drein to skimmer basin to saltwater Tank to Injection open drein to skimmer basin to Saltwater Tank to Injection open drein to skimmer basin to Saltwater Tank to Injection open drein open drein to Skimmer basin to Saltwater Tank to Injection open drein open drein to Saltwater Tank to Injection open drein open drein to Skimmer basin to Saltwater Tank to Injection open drein open drein open drein to Skimmer basin to Saltwater Tank to Injection open drein open drein to Skimmer basin to Saltwater Tank to Injection open drein open drein open drein to Skimmer basin to Saltwater Tank to Injection open drein open d		mo mo yr Vyr
on pump) hend carried to 500-gal weste oil drum pumpe) hend carried to 500-gal weste oil drum pumpe) open drein to skimmer beein open drein to skimmer beein open drein to skimmer beein open drein to skimmer beein open drein to skimmer beein open drein to skimmer beein open drein to skimmer beein open drein to skimmer beein open drein to skimmer beein open drein to skimmer besin open drein to skimmer besin open drein to Skimmer Besin open drein to Skimmer Besin open drein to Skimmer Besin Open Drein to Skimmer Besin open drein to Skimmer Besin Open Drein to Skimmer Besin	·	
on pump) hend carried to 500-gal weste oil drum pumpei) open drein to skimmer beein open drein to skimmer beein ior oil open drein to skimmer beein open Drein to Skimmer Beein to Saltwater Tank to Injection ns open Drein to Skimmer Beein to Saltwater Tank to Injection open Drein to Skimmer Beein to Saltwater Tank to Injection		
pumpe) open drain to skimmer besin open drain to skimmer besin open drain to skimmer besin or oil open drain to skimmer besin open drain to skimmer besin open drain to skimmer besin open drain to Skimmer Basin to Saltwater Tank to Injection bring na Open Drain to Skimmer Basin to Saltwater Tank to Injection open Drain to Skimmer Basin to Saltwater Tank to Injection		- <u></u>
In the second open drain to skimmer besin In the second drain to skimmer besin In the skimmer besin	15 9	
ompressors open drein to skimmer basin tor oil open drein to skimmer basin cidg recomprari open drein to skimmer basin open drein to skimmer basin open drein to skimmer basin open Drein to Skimmer Basin to Saltwater Tank to Injection ans ngere Open Drein to Skimmer Basin to Saltwater Tank to Injection		
or oil open drain to skimmer basin cldg recomprat open drain to skimmer basin open drain to skimmer basin open drain to skimmer basin open Drain to Skimmer Basin to Saltwater Tank to Injection shing na open Drain to Skimmer Basin to Saltwater Tank to Injection open Drain to Skimmer Basin to Saltwater Tank to Injection		
cldg recomprer) open drein to skimmer besin open drein to skimmer besin open drein to skimmer besin Open Drein to Skimmer Besin to Saltwater Tank to Injection shing na ogere Open Drein to Skimmer Besin to Saltwater Tank to Injection		
open drein to skimmer besin open drein to skimmer besin Open Drein to Skimmer Besin to Seltwater Tenk to Injection shing ne ngere Open Drein to Skimmer Besin to Seltwater Tenk to Injection		6000 gal/yr none
open drein to skimmer besin Open Drain to Skimmer Besin to Seltwater Tenk to Injection shing ns ngere Open Drein to Skimmer Besin to Seltwater Tenk to Injection	ISO 68	350 gal/yr none
Open Drain to Skimmer Basin to Saltwater Tank to Injection shing ns open Drain to Skimmer Basin to Saltwater Tank to Injection		3000 gal/yr none
shing ns ngers Open Drein to Skimmer Basin to Seltweter Tenk to Injection		200 Bbl/yr
weshing er fins changers Open Drein to Skimmer Basin to Saltwater Tank to Injection ind	<u> </u>	
er fins changers Open Drein to Skimmer Basin to Seltwater Tank to Injection ind		
changers Open Drain to Skimmer Basin to Saltwater Tank to Injection ind		
Open Drein to Skimmer Basin to Saltwater Tank to Injection		-
	25 8	75 Bbls/day
	(DEA)	none
glycol (TEG)		none
9/ SOFTWATER REGEN & REVERSE OSMOSIS WASTEWATER softwater building to saltwater tank via underground piping saltwater		75 + 310 Bbls/d none
Kjell Water Consultants Aquamag		3 ppm none
10/ GROUNDWATER CONTAMINATED W/ CONDENSATE** [freshwater gathering to seltwater tank via underground piping [freshwater	257	2575 Bbis/day none
Kjell Water Consultants Aquameg		3 ppm none
condensate (as TPH; EPA Mod; 8015)		

137 Bbls/day 3 ppm <100 ug/L 200 gal/wk freshwater Kjell Water Consultante Aquameg condensate none SW-1 to landfarm via underground pipeline pipeline and septic tank to leach field 11/ PLANT SUPPLY WELL (SW-1) GROUNDWATER 12/ DOMESTIC SEWAGE (not commingled)

GWDPTBL1,XLS

i T

none none TEX none

Table 2.
Waste Sources, Estimated Volumes,
Estimated V
Volumes, and
ies, and Waste Cla
Classification

		Waste	Treatment/ Disposel	Disposal	Pient Storage
WASTE	Volume	Classification	Method	Location	Location
1/ INLET AIR FILTERS (turbine, recompressors, generators) & COMPRESSED AIR FILTERS	610 filters/yr	nonexempt nonhazardous	dumpster	Carlsbad municipal landfill	west side plant
2/ NATURAL GAS FILTERS	100 filters/yr	exempt	dumpster	Cerlsbed municipal landfill	west side plant
3/ TURBINE LUBE OIL FILTERS	20 filters/yr	nonexempt nonhazardous	dry on drying rack; dumpster	Carlsbad municipal landfill	west side plant
4/ SPENT MOLECULAR SIEVE	approx. 4000 lbs/5 yrs	exempt	landfill	exempt weste facility	roll-off bin
5/ GLYCOL CERAMIC SADDLES	3 drums/ 2 yrs	exempt	landfill	exempt weste fecility	drum storage aree
6/ GLYCOL & AMINE FILTERS & FILTER MEDIA					
glycol sock filters	25 filters/yr	exempt	dry on drying rack; dumpster	Carisbad municipal landfill	west side plant
emine charcoal filters	70 filters/yr	exempt	dry on drying rack; dumpster	Carlsbad municipal landfill	west side plant
emine bag filters	60 filters/yr	exempt		Carlsbad municipal landfill	west side plant
7/ SULFUR RECOVERY UNIT USED CATALYST & SUPPORT BALLS	15 tons/ 5 yrs	exempt	landfill	exempt waste facility	NA
8/ SULFUR-CONTAMINATED SOIL	5 yds/yr	exempt	land discharge	west side of SRU , west of fence	NA
9/ SOIL CONTAINING HYDROCARBONS & SOIL ASSOCIATED W/ COMPRESSORS	1500 yds/yr	exempt & nonexempt	landfarming/ bioremediation	plent lendferm	lendfarm staging area
10/ OILY RAGS	30 boxes/yr	exempt & nonexempt	7	Cartsbad municipal landfill	west side plant
11/ WATER SOFTENING RESIN, CHARCOAL FILTER, ACTIVATED & NONACTIVATED CARBON	28 ft3/ yr	exempt	landfarming/ bioremediation	pient lendfarm	drum storage area
12/ USED VEHICLE TIRES	various	nonexempt nonhazardous	recycle	Forrest Tire, Artesie, NM	
13/ OFFICE AND PLANT TRASH	15 yds/ wk	nonexempt nonhazardous	dumpster	Carlsbad municipal landfill	west side plant
14/ STABILIZER COMPRESSOR/ AIR COMPRESSOR LUBE OIL FILTERS	16 filters/yr	nonexempt, potentially hazardous	dry on drying rack; dumpster	Carlsbed municipal landfill	west side plant
15/ HYDROBLASTING & SANDBLASTING MEDIA	500 lbs/ yr	nonexempt, potentially hazardous	as dictated by sampling	as dictated by sampling	NA
16/ NATURALLY OCCURRING RADIOACTIVE MATERIAL (NORM)	50 Bbls/ yr	NORM waste	unknown pending State Regulation	unknown	NORM storage area 1 & 2
17/ TANK, SEPARATOR, PROCESS VESSEL BOTTOMS & SUMP SLUDGE	200 Bbls/ yr	NORM waste	unknown pending State Regulation	unknown	NORM storage area 2
18/ COOLING TOWER CLEANING WASTE SOLIDS	80 Bbls/ 2 yrs	nonexempt, potentially hazardous	injection; off site Class II well	I&W Services, Artesia, NM	frac tank until testing complete
19/ USED BATTERIES (generator, backup lighting, and vehicle)	40 batteries/ yr	nonexempt, potentially hazardous	recycle	Mersh Pipe & Supply, Artesia, NM	drum storage area
20/ PAINT WASTE SOLIDS (cans, dried paints)	1 drum/ yr	nonexempt, potentially hazardous	incinerated; supplemental fuel	Safety-Kleen determines	drum storage area
21/ USED DRUMS	12 drums/ yr	nonexempt, potentially hazardous	recycle	NA	drum storage area
22/ SAFETY-KLEEN 105 SOLVENT-MS	1 Bbl/month	nonexempt hazardous	recycle	NA	pumper shack; 55-gallon drum
23/ LABORATORY WASTES (starch and iodine, silver nitrate, water test reagents)	10 gel/yr	nonexempt, potentially hazardous	incinerated	Safety-Kleen determines	drum storage area
24/ WASTE PAINT	1 Bbl/yr	nonexempt, potentially hazardous	incinerated	Safety-Kleen determines	drum storage area
NA = not applicable					

NA = not applicable

GWDPTBL2.XLS

Table 3. Inventory of Tanks

npUST = nonpressurized underground storage tank not required not required not required not required not required Scheduled Jun-1998 Jun-1998 Clean-out Jun-1997 Jun-1997 Jun-1997 Jun-1997 Jun-1997 ٨N ٩N ٩N ۸N AN ٨ AN ٩N ۸ ۸ ¥ ۸N ₹ ۸A ¥ ¥ ۸N ¥ ₹ ۲ ¥ ٩N impermeable containment to be constructed Ethylene Glycol antifreeze [impermeable containment to be constructed] mpermeable containment to be constructed impermeable containment to be constructed impermeable containment to be constructed impermeable containment to be constructed mpermeable containment to be constructed mpermeable containment to be constructed recompressor & expander surge tanks DEA to process; oil to Open Drain DEA to process; oil to Open Drain condensate tank (bullet) SE plant Open Drain main sump concrete containment boiler water treatment boiler water treatment boiler water treatment middle skimmer tank sweetening process sweetening process sulfur loading rack equalization tank saltwater tanks saltwater tanks saltwater tanks delivery hose containment containment Drained to 7 air stripper LACT unit rerun line rerun line rerun line ground ground ground Fluids ground ground ٩N Calgon Conquor 3470 used DEA; Meropa oil used DEA; Meropa oil Calgon Burolock 2220 Calgon Ultramine 120 cond. contam. water cond. contam. water softwater, Aquamag waste & slop oils wastewater vastewater liquid sulfur to injection to injection Meropa oil freshwater freshwater freshwater freshwater Contained new DEA Methanol Gasoline Kerosene new DEA Methanol Effluent diesel Varsol NGL TEG NGL NGL TEG ¥ ¥ ٨ ¥۷ ٩Z ¥۲ in air; NA concrete in air; NA concrete concrete concrete concrete Bottom Lined? ê ê 2 2 ê 2 2 2 npOST npOST npAST npOST npAST npOST npAST npAST npAST npOST npOST npAST npAST npAST npAST npAST pAST npOST npOST npOST npOST npOST npAST npAST pAST pAST npAST npOST Type **n**DUST npAST = nonpressurized aboveground storage tank (i.e. 360 degree inspection possible) 47,000 gal 3×100 Bbl 1700 Bbl 1000 gal 1000 gal 3000 gal 700 Bbl 1700 Bbl 1700 Bbl 1700 Bbl 1700 Bbl 1000 Bbl 100 gal 500 gal 1000 gal 4200 gal 2500 g 210 Bbl 437 Bbl 500 Bbl 11.9 Bbl 200 Bbl 210 Bbl 125 Bbl 280 Bbl 200 Bbl 70 Bbl 500 g 500 g Volume 10 Bbl 210 Bbl 750 g 650 g 400 g 500 g 52 Bbi 90 Bbl 90 Bbl 400 g Tank reverse osmosis freshwater tank/ SW plant 3 open-top skimmer tanks/ skimmer basin ube oil saddle tank/ stabilizer compressor saltwater tank (fiberglass)/ SW plant area reshwater fiberglass tank/ NE plant area condensate tank/ treatment compound equalization tank/ treatment compound Source/ "Figure 3" location tank (builet)/ SE plant (not in service) ube oil saddle tank/ inlet compressor saltwater tank (steel)/ SW plant area open-top skimmer tank/ skimmer pit reshwater steel tank/ NE plant area condensate tank (bullet)/ SE plant condensate tank (bullet)/ SE plant giycol steel tank/ SW plant area waste oil tank/ west plant area softwater tank/ SW plant area Meropa tank/ SW plant area Burolock 2220 Storage Tank Conquor 3470 Storage Tank Ultramine 120 Storage Tank diesel tank/ north plant area lube oil tank/ recompressor sulfur tank/ NW plant area Antifreeze Storage Tank Methanol Storage Tank DEA Storage Tank #8* Methanol Storage Tank Kerosene Storage Tank Large DEA Slop Tank* Small DEA Slop Tank* DEA Storage Tank #9* Gasoline Storage Tank tank (bullet)/ SE plant tank (bullet)/ SE plant tank (bullet)/ SE plant Varsol Storage Tank TEG Storage Tank TEG Storage Tank

* connected

pAST = pressurized aboveground storage tank

npOST = nonpressurized onground storage tank (i.e. bottom cannot be inspected w/o antry)

NA = not applicable

				20000	
	Volume	Vessel	Vessel Bottom Lined?/		Fluids
Source/ "Figure 3" location	(Bbis)	Type	Ground Underneath Paved?	Contents	Drained To 7
water exchanger/ gas inlet	28	APV	in air/ no	cooling tower water	abandoned OD
inlet gas separator #1/ gas inlet	90	APV	in air/ no	produced water	cp
inlet gas separator #2/ gas inlet	32	APV	in air/ yes, conc. foundation pad	produced water	cD
air receiver/ gas inlet	-	APV	in air/ yes, conc. foundation pad	atmospheric water	bucket
inlet separator/ inlet compressor	75	APV	in air/ no	produced water	OD
suction scrubber/ inlet compressor	58	APV	in air/ yes, conc. foundation pad	produced water	OD
air receiver/ inlet compressor	ę	APV	in air/ yes, conc. foundation pad	atmospheric water	bucket
amine contactor/ amine sweetening	324	APV	in air/ yes, conc. foundation pad	produced water, amine	CD
amine contactor overhead gas scrubber/ amine sweetening	œ	APV	in air/ yes, conc. foundation pad	produced water, amine	cD
rich amine flash tank/ amine sweetening	76	APV	in air/ no	produced water, amine	amine bag filter
amine bag filter/ amine sweetening	7	APV	in air/ yes	produced water, amine	OD & rich-lean amine exchanger
condensate stabilizer overhead condenser/ amine sweetening	7	APV	in air/ no	produced water	aerial cooler to stabilizer reflux dru
amine still condenser/ amine sweetening	ы	APV	in air/ no	produced water	aerial cooler to reflux accumulator
lean amine-water plate exchanger/ amine sweetening	7	APV	in air/ yes	produced water, amine	OD
rich-lean amine exchanger/ amine sweetening	22	APV	in air/ no	amine	amine still
amine still/ amine sweetening	300	APV	in air/ yes, conc. foundation pad	reflux water, amine	CD
amine reflux accumulator/ amine sweetening	ø	APV	in air/ yes, conc. foundation pad	reflux water, amine	CD
amine still reboiler/ amine sweetening	19	APV	in air/ no	reflux water, amine	steam condensate surge tank
steam condensate surge tank/ amine sweetening	20	APV	in air/ no	condensed steam water	CD
amine charcoal filter/ amine sweetening	9	APV	in air/ yes, conc. pad	amine	slop amine tank
glycol water exchanger/ glycol dehydration	ы	APV	in air/ no	produced water, glycol	
glycol contactor/ glycol dehydration	205	APV	in air/ yes, conc. foundation pad	produced water, glycol	CD
glycol contactor overhead scrubber/ glycol dehydration	ø	APV	in air/ yes, conc. foundation pad	produced water, glycol	cD
glycol regenerator/ glycol dehydration	73	APV	in air/ no	produced water, glycol	atmosphere
rich-lean glycol exchanger/ glycol dehydration	59	APV	in air/ no	giycol	glycol contactor
glycol surge tank/ glycol dehydration	16	APV	in air/ no	produced water, glycol	OD
water collection drum/ glycol dehydration	e S	APV	in air/ yes	steem, glycol	oD
APV = aboveground process vessel (i.e. 360 degree inspection possible)					OD = Open Drain

Table 4. Inventory of Process Vessels

00 = 0pen Drain CD = Closed Drain

i

	Volume	Vessel	Vessel Bottom Lined?/		Fluids
Source/ "Figure 3" location	(Bbls)	Type	Ground Underneath Paved?	Contents	Drained To ?
inlet water separator/ inlet condensate	291	APV	in air/ no	produced water, cond.	aband. OD
stabilizer feed tank/ inlet condensate	291	APV	in air/no	produced water, cond.	OD
regeneration gas scrubber/ regeneration gas	10	APV	in air/ yes, conc. foundation pad	produced water	CD
product contactor/ product treating	128	APV	in air/ yes, conc. foundation pad	amine, KOH	buckets
product solvent separator/ product treating	16	APV	in air/ yes	amine	rich amine flash tank
acid gas scrubber #1/ SRU	11	APV	in air/ no	reflux water	amine reflux accumulator
acid gas scrubber #2/ SRU	11	APV	in air/ no	reflux water	amine reflux accumulator
small condenser/ SRU	20	APV	in air/ no	cooling tower water	OD
large condenser/ SRU	65	APV	in air/ no	cooling tower water	CD
Line 1, 3-phase separator/inlet pit	20	APV	in air/ no	produced water, cond.	skimmer basin
Line 3, 3-phase separator/ inlet pit	4	APV	in air/ no	produced water, cond.	skimmer basin
Line 4, 3-phase separator/ inlet pit	36	APV	in air/ no	produced water, cond.	skimmer basin
cond. stabilizer feed-bottoms exchanger/ cond. stabilization	ß	APV	on ground/ no	condensate	cond. stabilizer tower or cooler
condensate stabilizer reboiler/ cond. stabilization	10	APV	in air/ no	cond., steam	OD
condensate stabilizer/ cond. stabilization	119	APV	on ground/ yes, concrete pad	condensate	OD
stabilizer reflux drum/ cond. stabilization	10	APV	on ground/ yes, concrete pad	cond, reflux water	OD
stabilizer bottoms cooler/ cond. stabilization		APV	in air/ no	cond	cond. storage tanks
steam waste heat boiler #1/ steam system	71.4	APV	in air/ no	softwater w/ additives	OD
steam waste heat boiler #2/ steam system	71.4	APV	in air/ no	softwater w/ additives	OD
steam waste heat boiler #3/ steam system	71.4	APV	in air/ no	softwater w/ additives	OD
blowdown drum/ steam system	11.9	APV		softwater w/ additives	OD
main boiler/ steam system	35.7	APV	in air/ no	softwater w/ additives	OD
utility flare drum/ plant flare system		APV	in air/ no	gas	flare
inlet gas flare drum/ plant flare system	61	APV	in air/ no	produced water, cond.	condensate inlet line
stabilizer compressor suction scrubber	7	APV	in air/ concrete pad	condensate	00
stabilizer compressor		comp	concrete pad with berm	water/ lube oil	OD
inlet compressor		comp	concrete pad with berm	water/ lube oil	OD
APV = aboveground process vessel (i.e. 360 degree inspection possible)					OD = Open Drain
					CD Clark Drift

Table 4 (continued). Inventory of Process Vessels

CD = Closed Drain

comp = compressor cond. = condensate Table 5. Underground Piping

		Year	Average		Piping		Lest/ Scheduled
		Constructed	Flow Rate	Pressure	Diameter	Piping	Integrity
Piping Name	Conveyed From ? To ?	or Modified	(Bbis/day)	(psig)	(in)	Type	Test
11/ open drain system	various plant units to middle, open-top tank of skimmer basin	1966, 1994	15	2	3	steel, PVC	Sep-1894
2/ softwater regeneration & reverse camosis wastewater piping	water softener in water treatment building to steel seltwater tank	before 1990	385	16	2	PVC	before Jan-2015
3/ untreated groundwater bypess piping	diversion valve at treatment compound to fiberglass saltwater tan	1881	2676	60	7	Poly	Jen-2016
4/ treated groundwater piping	air stripper at treatment compound to landfarm sprinkler system	1995			~	Poly	Jan-2020
5/ piping to Marathon Federal SWD Well No. 1 (Sec. 24)	fiberglass saltwater tank to injection well	1877	minimel	2000	3	steel	Jen-2002
6/ piping to Marathon Indian Basin Gas Com Well No. 1 (Sec. 23)	fiberglass saltwater tank to injection well	1991	3000	2000	ŋ	fibergiass	Jan-2016
[7] waste effluent transfer piping	skimmer pit to skimmer basin	1880	10	۸ 10	3 and 2	PVC	Jen-2015
8/ waste efficient transfer piping	main sump to skimmer basin	1986	80	20 V	4	steel	Jen-2011
8/ weste effluent transfer piping	skimmer basin to steel seltwater tank	1991	2000		m	poly	Jan-2016
10/ Condensate Delivery Sales	condensate builet storage tanks (2) to condensate loading area (LA	1883	300	20	4	poly	Mer-1993
11/ SRU weste heet boiler & large condenser blowdown discharge piping	waste heat boiler and large condenser to steel saltwater tank	1965/ 1992	10		2	steel	Jan-2017
12/ condensate make line	stabilizer to condensate build storage tanks	1989	300	< 20 < 20	7	steel	Jan-2014
13/ condensate rerun line	condensate builet storage tanks to overhead pipe rack	1989	10; 100 max	< 35	2	eteel	Jen-2014
14/ LACT sump pump to main boiler sump	LACT sump pump to main boiler sump	1966/ 1989	-	9 9 9	2	steel/poly	Jan-2014
15/ inlet condensate line	inlet valve pit to overhead pipe rack	1880	350	4	4	steel	Jen-2015
16/ divert line	inlet valve pit to condensate builet atorage tanks	1993	-	15	7	steel	Jan-2018
(17/ produced water line	inlet valve pit to skimmer basin	1993	1500	4	2	poly	Jan-2018
18/ product skimmer recovery line	skimmer basin to inlet condensate line	1986	20	40	7	steel	Jer-2011
18/ dump line	stebilizer feed tank & generator to skimmer basin	1992	60	30	m	poly	Jan-2017
20/ injection line	fibergless seltwater tank to pump suction header	1988	3000	10	4	steel	Jen-2013
21/ skimmer basin to fiberglass saltwater tank	skimmer basin to fiberglass saltwater tank	1989	60	80	2	eteel	Jer-2014
22/ SRU Steam Condensate Return		1984	6	40	2	steel	Jen-2009
23/ Cryo Closed Drein		1980	Q	100	4	steel	Jan-2006
24/ Amine System Closed Drain		1986	Ÿ	10	m	steel	Jen-2011
26/ Horizontal H.P. Inlet Scrubber Closed Drain		1965	~	<u>6</u>	N	steel	Dec-1994
26/ WHB Blowdown		1881	65	00 100	6	steel	Jan-2016
27/ Main Boiler Blowdown to Sump	main boiler to sump	1990	16	õ	2	steel	Jen-2015
28/ Boiler Sump Pump to Main Sump Pump Discharge	boiler sump pump to main sump pump discharge	1980	80	30	2	steel	Jan-2005
29/ Stabilizer Compressor Dump		1982	16	270	-	steel	Jer-2007
30/ Inlet Condensate Divert Line to the Transfer Tank	Inlet Condensate Divert Line to the Transfer Tank	1986	-	40	2	steel	Jer-2011
31/ Line 4 Metering Separator Inlet		1883	600	4	4	steel	Jan-2018
32/ Line 3 & 4 Metering Separator Oil Dump Line to Inlet Condensate Line	Line 3&4 Metering Separator Oil Dump Line to Inlet Cond. Line	1893	200	õ	m	steel	Jen-2018
33/ Inlet Compressor Suction Scrubber (H&V) Dump Lines to Inlet Metering Separat	Inlet Cmprsr Suctn Scrubbr (H&V) Dump Lines to Inlet Metering S	1988	e	160	~	steel	Jan-2014
34/ Recompressor & Expander Lube Oil Makeup Line		1980	v	م	-	steel	Jan-2005
35/ Amine Load Line to Storage Tanks	Amine Load Line to Storage Tanks	1965	-	6	~	steel	Dec-1994
Underground Amine Lines Tied to Valve "Octopus" From:							
36/ little slop		1988	-	ю	7	steel	Jan-2013
37/ flash tank		1988	-	80	2	steel	Jer-2013
38/ bag filters		1988	2	80	7	steel	Jer-2013
39/ charcoal filters		1988	v	80	7	steel	Jan-2013
40/ reflux pumps		1988	-	30	7	steel	Jan-2013
41/ Amine Storege Tank 8		1988	-	ю	7	steel	Jen-2013
4.2/ Amine Storage Tank 9		1988	-	ы	7	steel	Jan-2013
43/ Glycol Load Line to Storage Tank	Glycol Load Line to Storage Tank	1965	-	۵	2	steel	Dec-1994
44/ Inlet Gas Separators Dump Valves to Inlet Condensate Line	Inlet Gas Separators Dump Valves to Inlet Condensate Line	1965	9	\$	7	steel	Dec-1994

GWDPTBL6,XLS

ł

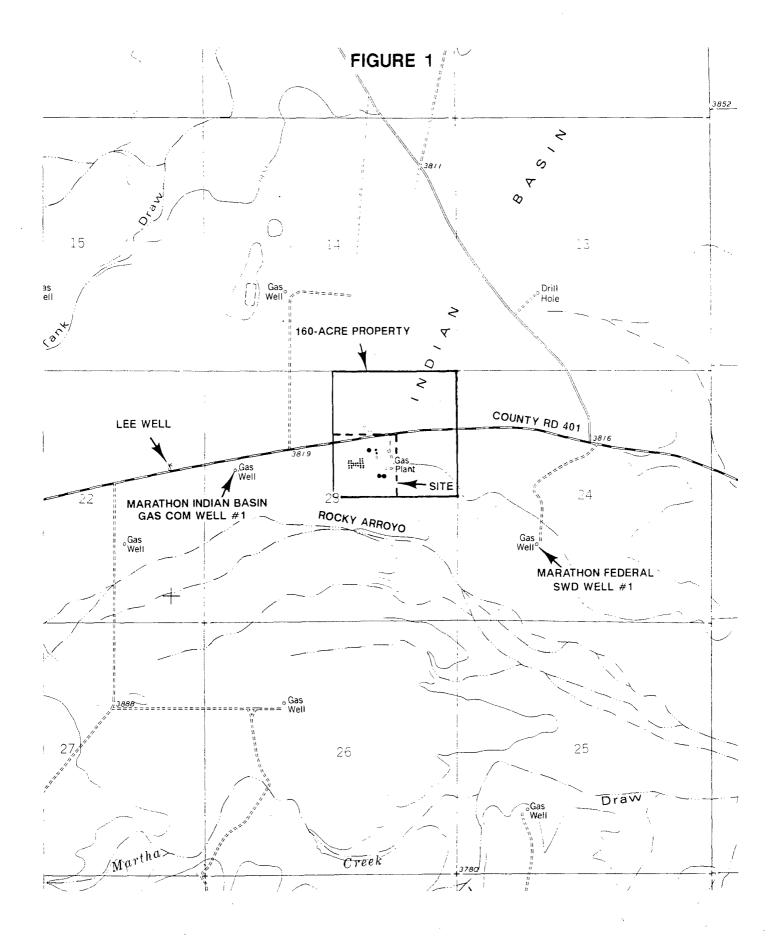
i.

Standards
Cleanup
Landfarm
9
Table

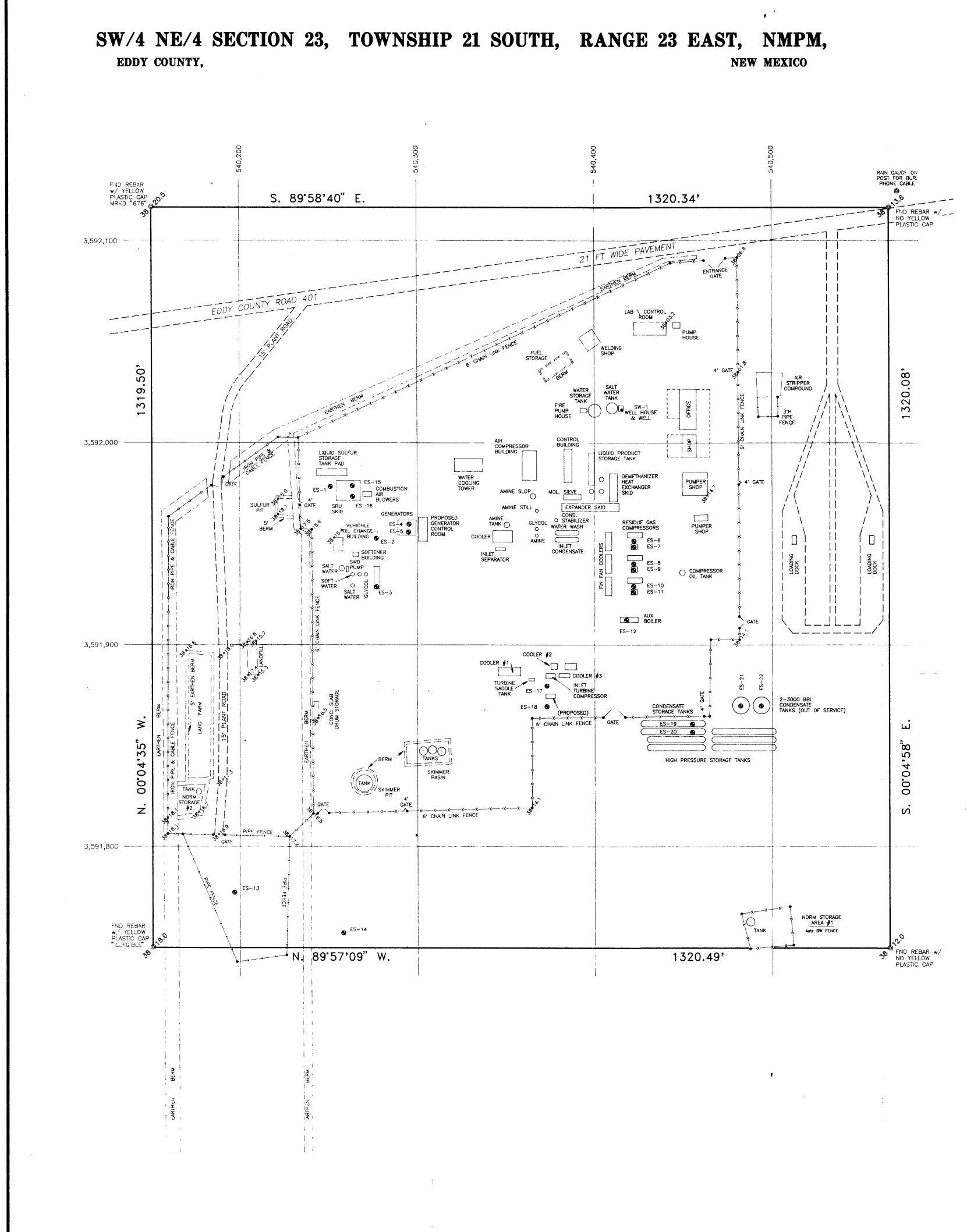
6 6

	Cleanup	Cleanup Standards (mg/kg)	
Use of Treated Soil	TRPH (EPA 418.1)	total BTEX	Benzene
Reburied	100	<u> 50 </u>	10
Stormwater control dikes	1000	20	10
Secondary containment berms in the gas plant	3000	50	10
Roadspread or patching lease roads	3000	20	10
Pad dirt on production locations	3000	50	10

GWDPTBL6.XLS


1

ī


ļ

ļ

FIGURES

.

EMISSION POINT

ES-1 ES-2 ES-3 ES-4 ES-5 ES-6 ES-7 ES-8 ES-9 ES-10 ES-11 ES-12 ES-13 ES-14 ES-15

ES-16

ES-17

ES-18

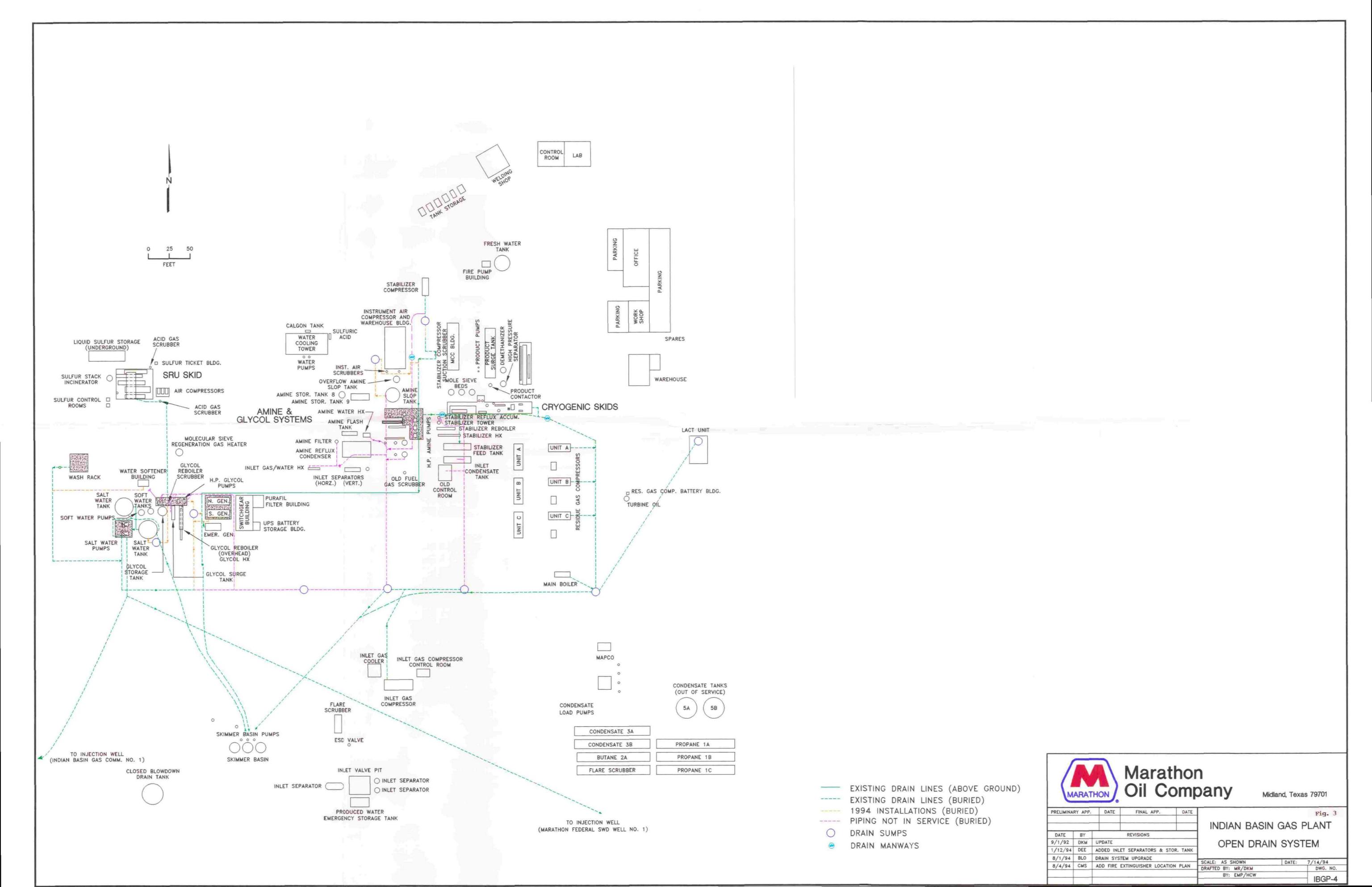
ES-19 ES-20 ES-21 ES-22

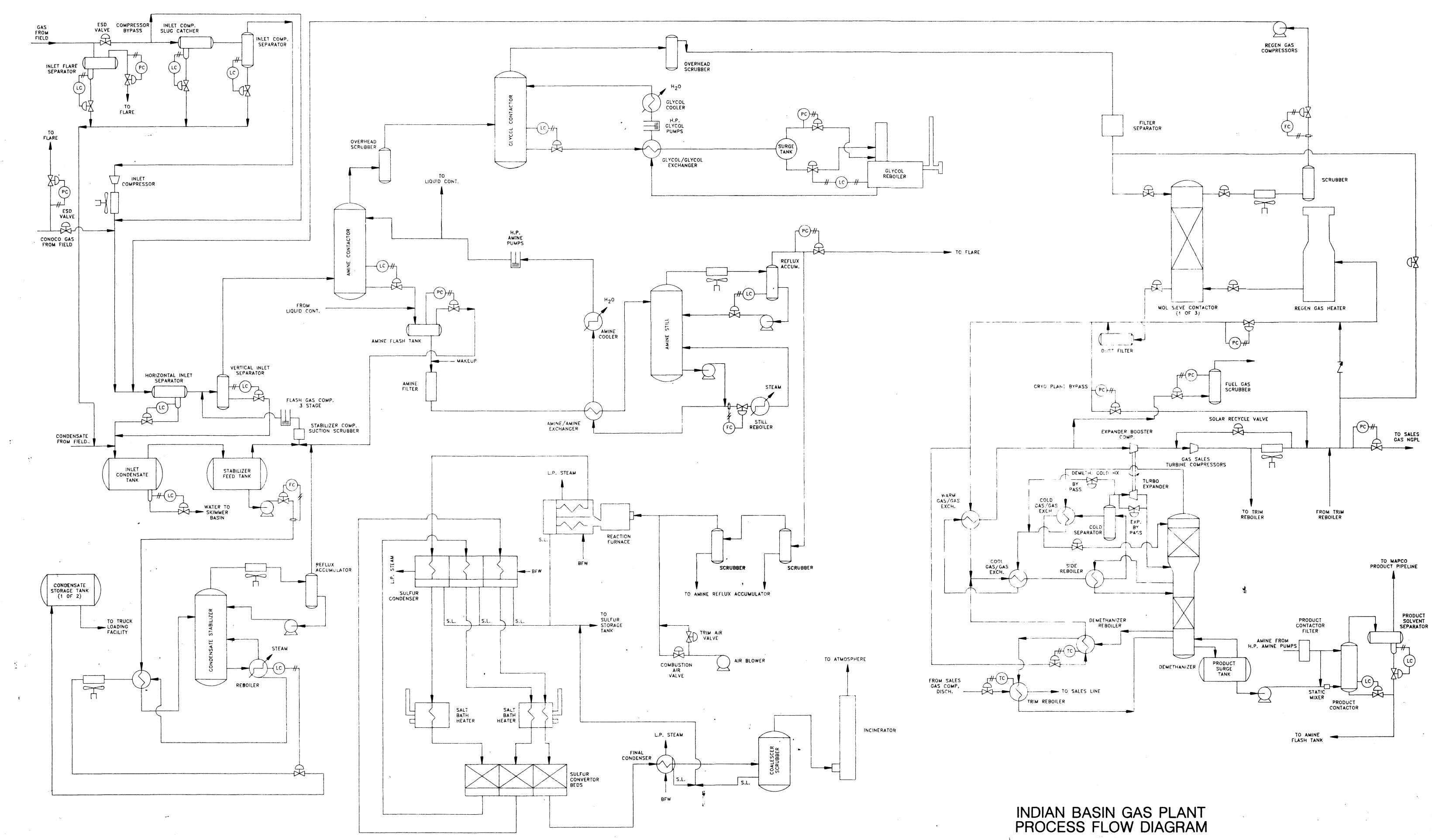
DESCRIPTION

COMPRESSOR STACK COMPRESSOR STACK COMPRESSOR STACK COMPRESSOR STACK
COMPRESSOR STACK
COMPRESSOR STACK
AUXILIARY BOILER
FLARE No. 2
FLARE No. 1
NORTH SRU SALT BATH
HEATER STACK
SOUTH SRU SALT BATH
HEATER STACK
INLET COMPRESSOR
PROPOSED INLET
COMPRESSOR STACK
CONDENSATE STORAGE
CONDENSATE STORAGE
CONDENSATE STORAGE
CONDENSATE STORAGE

•

LATITUDE	LONGITUDE	GROUND ELEV.	HEIGHT OF STACK	UTM_COORDINATES (IN_METERS) NORTHEAST	
			STACK	NONTH	EAST
32°27'57.5" 32°27'57.6" 32°27'55.8" 32°27'56.9" 32°27'56.6" 32°27'56.6" 32°27'56.2" 32°27'56.1" 32°27'55.9" 32°27'55.8" 32°27'55.3" 32°27'50.9" 32°27'50.2" 32°27'57.5"	104°34'18.1" 104°34'17.1" 104°34'17.1" 104°34'16.4" 104°34'11.5" 104°34'11.5" 104°34'11.5" 104°34'11.5" 104°34'11.5" 104°34'11.5" 104°34'11.7" 104°34'17.9" 104°34'17.9"	3810.7 3808.9 3808.9 3808.9 3806.7 3806.7 3806.7 3806.7 3806.7 3806.7 3806.7 3806.7 3806.4 3812.2 3810.8 3809.7	122 FT 77 FT 30 FT 18 FT 28 FT 28 FT 28 FT 28 FT 28 FT 28 FT 28 FT 28 FT 28 FT 19 FT 167 FT 67 FT 34 FT	3,591,978.6 3,591,951.0 3,591,926.3 3,591,960.6 3,591,957.6 3,591,957.6 3,591,939.2 3,591,939.2 3,591,936.2 3,591,930.0 3,591,926.9 3,591,926.9 3,591,975.1 3,591,775.1 3,591,753.8 3,591,978.6	540,250.8 540,277.1 240,277.1 540,295.4 540,423.2 540,423.2 540,423.3 540,257.0 540,263.9
32°27'57.3"	104°34'17.6"	3809.7	34 FT	7 501 072 5	540,263.9
	104 34 17.0	3609.7	34 FI	3,591,972.5	340,203.9
32°27'52.3"	104°34'13.5"	3807.0	20 FT	3,591,818.9	540,371.6
32°27'52.1"	104°34'13.5"	36807.0	20 FT	3,591,812.8	540,371.6
32°27'53.6" 32°27'53.5" 32°27'53.9" 32°27'53.9"	104°34'10.3" 104°34'10.3" 104°34'09.4" 104°34'09.0"	3806.0 3806.0 3805.3 3805.3	27 FT 27 FT 30 FT 30 FT	3,591,859.3 3,591,856.2 3,591,868.6 3,591,868.7	540,454.9 540,454.9 540,478.9 540,488.8


÷ .



.

	NOTE: LATITUDE, LONGITUDE, and UTM COORDINATES ARE BASED ON ZONE 13, CLARKE 1866 ELIPSOID, NAD 1927. ' ES-21 and ES-22 ARE OUT OF SERVICE
	100 0 100 200 300 Feet
	MARATHON OIL COMPANY
I HEREBY CERTIFY THAT THIS PLAT WAS PREPARED FROM FIELD NOTES OF AN ACTUAL SURVEY AND MEETS OR EXCEEDS ALL REQUIREMENTS FOR LAND SURVEYS AS SPECIFIED BY THIS STATE.	TOPO OF THE INDIAN BASIN GAS PLANT IN SECTION 23, TOWNSHIP 21 SOUTH, RANGE 23 EAST, NMPM, EDDY COUNTY, NEW MEXICO.
De Bring Lanne Con Star	Fig. 2
JOHN W. WEST, N.M. P.E. & P.S. No. 676 JEXAS P.L.S. No. 1138	JOHN WEST ENGINEERING CO. CONSULTING ENGINEERS & SURVEYORS - HOBBS, NEW MEXICO
RONALD J. EDSON N.M. P.S. AND J. EDSON N.M. P.S. No. 3239 No. 1883 GARY G. EIDSON, TEXAS R.P.L.S. No. 4735	Surveyed By: B. MahanDrawn By:J. HolmesLast Rev. Date: 9-19-94Drawing NumberDateBegin:8-24-94Date:9-21-94Disk:JH No. 73The second secon

.

, 4) y *

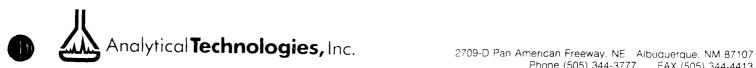

tim

Fig. 4

APPENDIX A

LABORATORY RESULTS OF COMMINGLED DISCHARGE FLUID

Phone (505) 344-3777 FAX (505) 344-4413

ATI I.D. 408399

September 14, 1994

Marathon Oil Co. P.O. Box 552 Midland, TX 79702-0552

Project Name/Number: INDIAN BASIN GAS PLANT GROUNDWATER DISCHARGE PLAN (IBGP GW DISCHARGE PLAN)

Attention: Bob Menzie

On 08/25/94, Analytical Technologies, Inc., (ADHS License No. AZ0015), received a request to analyze aqueous samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

The relative percent difference (RPD) for quality control duplicate analyses for arsenic meets ATI acceptance criteria; the results are <5X the reporting limit.

Due to matrix interferences, cadmium spike analysis was performed using the Method of Standard Additions (MSA). The spike result given is the correlation coefficient (CC), which is \geq 0.995.

EPA Method 8010/8020 and 504.1 analyses were performed by Analytical Technologies, Inc., Albuquergue, NM.

All other analyses were performed by Analytical Technologies, Inc., 9830 S. 51st Street, Suite B-113, Phoenix, AZ.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

Letitia Krakowski, Ph.D. Project Manager

H. Mitchell Rubenstein, Ph.D. Laboratory Manager

MR:jt

Enclosure

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

Analytical **Technologies**, Inc.

CLIENT	: MARATHON OIL CO.	DATE RECEIVED	:08/25/94
PROJECT #	: (NONE)		
PROJECT NAME	:IBGP GW DISCHARGE PLAN	REPORT DATE	:09/14/94

ATI ID: 408399

ATI #	CLIENT DESCRIPTION	MATRIX	DATE - COLLECTED
01	COMMINGLED FLUID TO INJ.	AQUEOUS	08/24/94
02	TRIP BLANK	AQUEOUS	08/23/94

---TOTALS---

MATRIX#SAMPLESAQUEOUS2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please pontact our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

ATI I.D. : 408399

CLIENT : MARATHON OIL (PROJECT # : (NONE) PROJECT NAME : IBGP GW DISCHA			DATE RECEIVED REPORT DATE	:	08/26/94
PARAMETER	UNITS	01			
CARBONATE (CACO3) BICARBONATE (CACO3) HYDROXIDE (CACO3) TOTAL ALKALINITY (AS CACO3) CHLORIDE (EPA 325.2) PH (EPA 150.1) SULFATE (EPA 375.2) T. DISSOLVED SOLIDS (160.1)	MG/L MG/L MG/L MG/L UNITS MG/L MG/L	<1 444 <1 444 5300 7.3 1400 9900			

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT	:	MARATHON OIL COMPANY
PROJECT #	:	(NONE)
PROJECT NAME	:	IBGP GW DISCHARGE PLAN

ATI I.D. : 408399

~~ <i>~~</i> ~~~~~~~~~~~~~~~~~~~~~~~								
			SAMPLE	DUP.		SPIKED	SPIKE	8
PARAMETER	UNITS	ATI I.D.	RESULT	RESULT	RPD	SAMPLE	CONC	REC
CARBONATE	MG/L	40803401	<1	<1	NA	NA	NA	NA
BICARBONATE	MG/L		205	203	1	NA	NA	NA
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	NA
TOTAL ALKALINITY	MG/L		205	203	1	NA	NA	NA
CHLORIDE	MG/L	40839802	12.7	12.6	0.8	23.2	10.0	105
PH	UNITS	40803404	7.6	7.6	0	NA	NA	NA
SULFATE	MG/L	40803401	200	190	5	400	200	100
TOTAL DISSOLVED SOLIDS	MG/L	40949902	8000	7900	1	NA	NA	NA

% Recovery = (Spike Sample Result - Sample Result). . Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) . Average Result

METALS RESULTS

ATI I.D. : 408399

CLIENT : MARATHON OIL C PROJECT # : (NONE) PROJECT NAME : IBGP GW DISCHA:			DATE RECEIVED	: 08/26/94 : 09/14/94
PARAMETER	UNITS	01		_
SILVER (EPA 200.7/6010) ARSENIC (EPA 206.2/7060) BARIUM (EPA 200.7/6010) CALCIUM (EPA 200.7/6010) CADMIUM (EPA 213.2/7131) CHROMIUM (EPA 200.7/6010) MERCURY (EPA 245.1/7470) POTASSIUM (EPA 200.7/6010) MAGNESIUM (EPA 200.7/6010) SODIUM (EPA 200.7/6010) LEAD (EPA 239.2/7421) SELENIUM (EPA 270.2/7740)	MG/L MG/L MG/L MG/L MG/L	0.008 0.130 643 <0.0005		

111.5

÷.,#

d: H

METALS - QUALITY CONTROL

CLIENT	:	MARATHON	OIL COMPA	ANY	
PROJECT #	:	(NONE)			
PROJECT NAME	:	IBGP GW	DISCHARGE	PLAN	ATI

ATI I.D. : 408399

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT RPD	SPIKED SPIKE SAMPLE CONC	% REC
SILVER ARSENIC BARIUM CALCIUM CADMIUM CHROMIUM MERCURY POTASSIUM MAGNESIUM SODIUM LEAD SELENIUM	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	40806311 40839901 40806311 40839901 40839901 40806311 40807004 40878603 40839901 40839901 40839901 40839901	0.008 0.063 643 <0.0005 <0.010 <0.0002 25.4 136 3440 <0.002	<pre><0.010 NA 0.010 22 0.063 0 638 0.8 <0.0005 NA <0.010 NA <0.0002 NA 25.0 2 135 0.7 3410 0.9 <0.002 NA <0.002 NA <0.005 NA</pre>	0.892 1.00 0.052 0.050 0.982 1.00 1640 1000 MSA CC= 0.866 1.00 0.0048 0.0050 74.9 50.0 637 500 4370 1000 0.041 0.050 0.029 0.050	89 88 92 100 .9957 87 96 99 100 93 82 58

% Recovery = (Spike Sample Result - Sample Result) . Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) . Average Result

GAS CHROMATOGRAPHY RESULTS

TEST	: ETHYLENN	E DIBROMI	DE (EPA M	ETHOD 504.	1)	
CLIENT	: MARATHON	I OIL CO.		ATI I.D.:	408399	
PROJECT #	: (NONE)					•
PROJECT NAME	: IBGP GW	DISCHARG	E PLAN			
SAMPLE ID. # CLIENT I.D.	-	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
01 COMMINGLED FLUID	TO INJ.	AQUEOUS	08/24/94	09/11/94	09/11/94	1
PARAMETER		UNITS		01		
ETHYLENE DIBROMIDE		UG/L		<0.01		

SURROGATE:

1,4-DICHLOROBENZENE (%)

Analytical **Technologies,** Inc.

GAS CHROMATOGRAPHY RESULTS

REAGENT BLANK

ETHYLENE DIBRO	DMIDE	UG/L	<0.01	
PARAMETER		UNITS	. <u></u>	
			DILUTION FACTOR	:
PROJECT NAME	: IBGP GW DISCHARGE	PLAN	DATE ANALYZED	: 09/11/94
PROJECT #	: (NONE)		DATE EXTRACTED	: 09/11/94
CLIENT	: MARATHON OIL CO.		MATRIX	: AQUEOUS
BLANK I.D.	: 091194		ATI I.D.	: 408399
TEST	: ETHYLENE DIBROMIDE	E (EPA METH	HOD 504.1)	

SURROGATE:

1,4-DICHLOROBENZENE (%)

1.11

GAS CHROMATOGRAPHY - QUALITY CONTROL

MSMSD

TEST	: ETHYLENE DI	BROMIDE	(EPA MEI	THOD 504.1)			*
MSMSD #	: 091194			ATI I.D.		:	408399	
CLIENT	: MARATHON OI	L CO.		DATE EXTR	RACTED	:	09/11/9	94
PROJECT #	: (NONE)		DATE ANAI	LYZED	: 09/11/94			
PROJECT NAME : IBGP GW DISCHARGE PLAN				SAMPLE MA	ATRIX	: AQUEOUS		
REF. I.D.	: 091194			UNITS		:	UG/L	
		SAMPLE	CONC	SPIKED	%	DUP	DUP	
PARAMETER		RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD
ETHYLENE DIB	ROMIDE	<0.01	0.25	0.20	80	0.22	88	10

i

(Spike Sample Result - Sample Result) % Recovery = X 100 Spike Concentration

GAS CHROMATOGRAPHY RESULTS

				AÕOTOOP	00/25/94	NA	09/01/94	L
TRIP BLANK				AOUEOUS	08/23/94	NA	09/01/94	1
COMMINGLED	FLUID	то	INJ.	AQUEOUS	08/24/94	NA	09/01/94	250
CLIENT I.D.	•			MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
Г # Г NAME	:	(NO)	VE)		PLAN	ATI I.D.:	408399	
	:	PUR	GEABI	LE HALOCARI	BONS/AROMA	TICS (EPA	8010/8020)	
	NAME	: # :	: MAR F # : (NOI S NAME : IBGI	: MARATHON F # : (NONE) F NAME : IBGP GW	: MARATHON OIL CO. : (NONE) : NAME : IBGP GW DISCHARGE	: MARATHON OIL CO. F # : (NONE) F NAME : IBGP GW DISCHARGE PLAN DATE	: MARATHON OIL CO. ATI I.D.: T # : (NONE) S NAME : IBGP GW DISCHARGE PLAN DATE DATE	T # : (NONE) T NAME : IBGP GW DISCHARGE PLAN DATE DATE

02	TRIP BLANK	AQUEOUS	08/23/94	NA	09/01/94	1
PARAM	ETER	•	UNITS	01	02	
BENZE	NE		UG/L	2800	<0.5	
BROMO	DICHLOROMETHANE		UG/L	<50	<0.2	
BROMO	FORM		UG/L	<130	<0.5	
BROMO	METHANE		UG/L	<250	<1.0	
CARBO	N TETRACHLORIDE		UG/L	<50	<0.2	
CHLOR	OBENZENE		UG/L	<130	<0.5	
CHLOR	OETHANE		UG/L	<130	<0.5	
CHLOR	OFORM		UG/L	<130	<0.5	
CHLOR	OMETHANE		UG/L	<250	<1.0	
DIBRO	MOCHLOROMETHANE		UG/L	<50	<0.2	
1,2-D	IBROMOETHANE (EDB)		UG/L	<50	<0.2	
1,2-D	ICHLOROBENZENE		UG/L	<130	<0.5	
1,3-D	ICHLOROBENZENE		UG/L	<130	<0.5	
— D	ICHLOROBENZENE		UG/L	<130	<0.5	
171-D	ICHLOROETHANE		UG/L	<50	<0.2	
1,2-D	ICHLOROETHANE (EDC)		UG/L	<130	<0.5	
1,1-D	ICHLOROETHENE		UG/L	<50	<0.2	
CIS-1	,2-DICHLOROETHENE		UG/L	<50	<0.2	
TRANS	-1,2-DICHLOROETHENE		UG/L	<250	<1.0	
1,2-D	ICHLOROPROPANE		UG/L	<50	<0.2	
CIS-1	,3-DICHLOROPROPENE		UG/L	<50	<0.2	
TRANS	-1,3-DICHLOROPROPENE		UG/L	<50	<0.2	
ETHYL	BENZENE		UG/L	160	<0.5	
METHY	LENE CHLORIDE		UG/L	<500	<2.0	
1,1,2	,2-TETRACHLOROETHANE		UG/L	<50	<0.2	
TETRA	CHLOROETHENE		UG/L	<130	<0.5	
TOLUE	NE		UG/L	5600	<0.5	
1,1,1	-TRICHLOROETHANE		UG/L	<250	<1.0	
1,1,2	-TRICHLOROETHANE		UG/L	<50	<0.2	
TRICH	LOROETHENE		UG/L	<50	<0.2	
TRICH	LOROFLUOROMETHANE		UG/L	<50	<0.2	
VINYL	CHLORIDE		UG/L	<130	<0.5	
TOTAL	XYLENES		UG/L	2700	<0.5	
	GATES:					
	CHLOROMETHANE (%)			97	97	
TRIFL	UOROTOLUENE (%)			98	97	

Ì I Ra

E.I.

GAS CHROMATOGRAPHY RESULTS - QUALITY CONTROL

REAGENT BLANK

PARAMETER UNITS BENZENE UG/L <0.5 BROMODICHLOROMETHANE UG/L <0.2 BROMOFORM UG/L <0.5 BROMOMETHANE UG/L <0.5 BROMOMETHANE UG/L <0.5 CHLOROBENZENE UG/L <0.5 CHLOROBENZENE UG/L <0.5 CHLOROFORM UG/L <0.5 CHLOROFORM UG/L <0.5 CHLOROFORM UG/L <0.5 CHLOROBENZENE UG/L <0.2 1, 2-DIBROMOETHANE UG/L <0.2 1, 2-DICHLOROBENZENE UG/L <0.5 1, 3-DICHLOROBENZENE UG/L <0.5 1, 4-DICHLOROBENZENE UG/L <0.2 1, 2-DICHLOROBENZENE UG/L <0.2 1, 2-DICHLOROBENZENE UG/L <0.2 1, 2-DICHLOROETHANE UG/L <0.2 1, 2-DICHLOROPTHANE UG/L <0.2 I, 2-DICHLOROPTHANE UG/L <0.2	TEST: EPA 8010/8020BLANK I.D.: 090194CLIENT: MARATHON OIL CPROJECT #: (NONE)PROJECT NAME: IBGP GW DISCHA			: 09/01/94
BROMODICHLOROMETHANE UG/L <0.2	PARAMETER	UNITS		
BROMODICHLOROMETHANE UG/L <0.2	BENZENE	UG/L	<0.5	·····
BROMOFORMUG/L<0.5BROMOFORMUG/L<1.0		-		
BROMOMETHANEUG/L<1.0CARBON TETRACHLORIDEUG/L<0.2				
CARBON TETRACHLORIDEUG/L<0.2CHLOROBENZENEUG/L<0.5				
CHLOROBENZENEUG/L<0.5CHLOROETHANEUG/L<0.5	CARBON TETRACHLORIDE	,		
CHLOROETHANEUG/L<0.5CHLOROFORMUG/L<0.5				
CHLOROFORMUG/L<0.5CHLOROMETHANEUG/L<1.0	CHLOROETHANE	,		
DIBROMOCHLOROMETHANEUG/L<0.21,2-DIBROMOETHANE (EDB)UG/L<0.2	CHLOROFORM		<0.5	
DIBROMOCHLOROMETHANEUG/L<0.21,2-DIBROMOETHANE (EDB)UG/L<0.2		•		
1,2-DIBROMOETHANE (EDB)UG/L<0.2,2-DICHLOROBENZENEUG/L<0.5	DIBROMOCHLOROMETHANE	•		
$\begin{array}{ccccc} 1, 2-DICHLOROBENZENE & UG/L & <0.5 \\ 1, 3-DICHLOROBENZENE & UG/L & <0.5 \\ 1, 4-DICHLOROBENZENE & UG/L & <0.5 \\ 1, 1-DICHLOROBENAENE & UG/L & <0.2 \\ 1, 2-DICHLOROETHANE (EDC) & UG/L & <0.2 \\ 1, 2-DICHLOROETHENE & UG/L & <0.2 \\ CIS-1, 2-DICHLOROETHENE & UG/L & <0.2 \\ TRANS-1, 2-DICHLOROETHENE & UG/L & <0.2 \\ CIS-1, 3-DICHLOROPROPANE & UG/L & <0.2 \\ CIS-1, 3-DICHLOROPROPENE & UG/L & <0.2 \\ TRANS-1, 3-DICHLOROPROPENE & UG/L & <0.2 \\ ETHYLBENZENE & UG/L & <0.2 \\ METHYLENE CHLORIDE & UG/L & <0.2 \\ TETRACHLOROETHENE & UG/L & <0.2 \\ TCTRACHLOROETHENE & UG/L & <0.2 \\ TRIRCHLOROPTHENE & UG/L & <0.2 \\ TRIRCHLOROPTHENE & UG/L & <0.2 \\ TRIRCHLOROPTHENE & UG/L & <0.2 \\ TRICHLOROPTHENE & UG/L & <0.2 \\ TRICHLOROETHENE & UG/L & <0.2 \\ TRICHLOROETHANE & UG/L & <0.2 \\ TRICHLOROETHENE & UG/L & <0.2 \\ TRICHLOROFLUOROMETHANE & UG/L & <0.5 \\ TRICHLOROFLUOROMETHANE & UG/L & <0.5 \\ TRICHLOROFLUOROMETHANE & UG/L & <0.5 \\ TRICHLOROFLUOROMETHANE$	1,2-DIBROMOETHANE (EDB)	UG/L	<0.2	
I, 3-DICHLOROBENZENEUG/L<0.51, 4-DICHLOROBENZENEUG/L<0.5	2-DICHLOROBENZENE			
1, 4-DICHLOROBENZENEUG/L<0.5 $1, 1$ -DICHLOROETHANEUG/L<0.2		UG/L	<0.5	
1,1-DICHLOROETHANE UG/L <0.2 1,2-DICHLOROETHANE (EDC) UG/L <0.2 1,1-DICHLOROETHENE UG/L <0.2 CIS-1,2-DICHLOROETHENE UG/L <0.2 TRANS-1,2-DICHLOROETHENE UG/L <0.2 CIS-1,3-DICHLOROPROPANE UG/L <0.2 CIS-1,3-DICHLOROPROPENE UG/L <0.2 TRANS-1,3-DICHLOROPROPENE UG/L <0.2 TRANS-1,3-DICHLOROPROPENE UG/L <0.2 TRANS-1,3-DICHLOROPROPENE UG/L <0.5 METHYLENE CHLORIDE UG/L <0.2 TETRACHLOROETHENE UG/L <0.5 TOLUENE UG/L <0.5 1,1,2-TRICHLOROETHANE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 TRICHLOROFTHENE UG/L <0.2 TRICHLOROFTHENE UG/L <0.2 VINYL CHLORIDE UG/L <0.2		UG/L	<0.5	
1,2-DICHLOROETHANE (EDC) UG/L <0.5 $1,1-DICHLOROETHENE$ UG/L <0.2 $CIS-1,2-DICHLOROETHENE$ UG/L <0.2 $TRANS-1,2-DICHLOROETHENE$ UG/L <0.2 $1,2-DICHLOROPROPANE$ UG/L <0.2 $CIS-1,3-DICHLOROPROPENE$ UG/L <0.2 $TRANS-1,3-DICHLOROPROPENE$ UG/L <0.2 $TRANS-1,3-DICHLOROPROPENE$ UG/L <0.2 $TRANS-1,3-DICHLOROPROPENE$ UG/L <0.2 $TTANS-1,3-DICHLOROPROPENE$ UG/L <0.2 $TTANS-1,3-DICHLOROPROPENE$ UG/L <0.5 $METHYLENE CHLORIDE$ UG/L <0.2 $1,1,2,2-TETRACHLOROETHANE$ UG/L <0.5 $TOLUENE$ UG/L <0.5 $1,1,1-TRICHLOROETHANE$ UG/L <0.2 $1,1,2-TRICHLOROETHANE$ UG/L <0.2 $TRICHLOROFTHENE$ UG/L <0.2 $TRICHLOROFTHENE$ UG/L <0.2 $VINYL$ $CHLORIDE$ UG/L <0.5		UG/L	<0.2	
CIS-1, 2-DICHLOROETHENE UG/L <0.2 TRANS-1, 2-DICHLOROETHENE UG/L <1.0 $1, 2-DICHLOROPROPANE$ UG/L <0.2 $CIS-1, 3-DICHLOROPROPENE$ UG/L <0.2 TRANS-1, 3-DICHLOROPROPENE UG/L <0.2 ETHYLBENZENE UG/L <0.5 METHYLENE CHLORIDE UG/L <0.2 TETRACHLOROETHANE UG/L <0.2 TETRACHLOROETHENE UG/L <0.5 TOLUENE UG/L <0.5 1,1,2-TRICHLOROETHANE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 VINYL CHLORIDE UG/L <0.2 VINYL CHLORIDE UG/L <0.5	1,2-DICHLOROETHANE (EDC)			
CIS-1, 2-DICHLOROETHENE UG/L <0.2 TRANS-1, 2-DICHLOROETHENE UG/L <1.0 $1, 2-DICHLOROPROPANE$ UG/L <0.2 $CIS-1, 3-DICHLOROPROPENE$ UG/L <0.2 TRANS-1, 3-DICHLOROPROPENE UG/L <0.2 ETHYLBENZENE UG/L <0.5 METHYLENE CHLORIDE UG/L <0.2 TETRACHLOROETHANE UG/L <0.2 TETRACHLOROETHENE UG/L <0.5 TOLUENE UG/L <0.5 1,1,2-TRICHLOROETHANE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 VINYL CHLORIDE UG/L <0.2 VINYL CHLORIDE UG/L <0.5	1,1-DICHLOROETHENE	UG/L	<0.2	
TRANS-1, 2-DICHLOROETHENEUG/L<1.01, 2-DICHLOROPROPANEUG/L<0.2	CIS-1,2-DICHLOROETHENE	UG/L	<0.2	
CIS-1,3-DICHLOROPROPENEUG/L<0.2TRANS-1,3-DICHLOROPROPENEUG/L<0.2	TRANS-1, 2-DICHLOROETHENE	UG/L	<1.0	
TRANS-1,3-DICHLOROPROPENEUG/L<0.2ETHYLBENZENEUG/L<0.5	1,2-DICHLOROPROPANE	UG/L	<0.2	
ETHYLBENZENEUG/L<0.5METHYLENE CHLORIDEUG/L<2.0	CIS-1,3-DICHLOROPROPENE	UG/L	<0.2	
METHYLENE CHLORIDEUG/L<2.01,1,2,2-TETRACHLOROETHANEUG/L<0.2	TRANS-1, 3-DICHLOROPROPENE	UG/L	<0.2	
1,1,2,2-TETRACHLOROETHANEUG/L<0.2TETRACHLOROETHENEUG/L<0.5	ETHYLBENZENE	UG/L	<0.5	
TETRACHLOROETHENEUG/L<0.5TOLUENEUG/L<0.5	METHYLENE CHLORIDE	UG/L	<2.0	
TOLUENEUG/L<0.51,1,1-TRICHLOROETHANEUG/L<1.0	1,1,2,2-TETRACHLOROETHANE	UG/L	<0.2	
1,1,1-TRICHLOROETHANEUG/L<1.01,1,2-TRICHLOROETHANEUG/L<0.2	TETRACHLOROETHENE	UG/L	<0.5	
1,1,2-TRICHLOROETHANEUG/L<0.2TRICHLOROETHENEUG/L<0.2	TOLUENE	UG/L	<0.5	
TRICHLOROETHENEUG/L<0.2TRICHLOROFLUOROMETHANEUG/L<0.2	1,1,1-TRICHLOROETHANE	UG/L	<1.0	
TRICHLOROFLUOROMETHANEUG/L<0.2VINYL CHLORIDEUG/L<0.5	1,1,2-TRICHLOROETHANE	UG/L	<0.2	
VINYL CHLORIDE UG/L <0.5	TRICHLOROETHENE	UG/L	<0.2	
	TRICHLOROFLUOROMETHANE	UG/L	<0.2	
TOTAL XYLENES UG/L <0.5	VINYL CHLORIDE	UG/L	<0.5	
	TOTAL XYLENES	UG/L	<0.5	
SURROGATES:	SURROGATES:			
BROMOCHLOROMETHANE (%) 95			95	

TRIFLUOROTOLUENE (%)

- 2

1.1

GAS CHROMATOGRAPHY - QUALITY CONTROL

MSMSD

TEST : P	VURGEABLE HA	ALOCARBO	NS/AROM	ATICS	(EPA	8010/	8020)		•	
MSMSD # : 4	0842808	ATI I	.D.		:	408399				
CLIENT : M	IARATHON OII	DATE	extra	CTED	:	NA				
PROJECT # : (NONE)		DATE .	ANALY	ZED	:	09/09/	94		
PROJECT NAME : I	LAN	SAMPL	е мат	RIX	:	AQUEOU	S			
REF. I.D. : 40842808					UNITS			: UG/L		
PARAMETER		SAMPLE RESULT	CONC SPIKE	SPIKI SAMPI		% REC	DUP SPIKE	DUP % REC	RPD	
BENZENE		<0.5	10	10		100	11	110	10	
CHLOROBENZENE		<0.5	10	9	.8	98	9.8	98	0	
1,1-DICHLOROETH	ENE	<0.2	10	7	. 2	72	7.2	72	0	
TOLUENE		<0.5	10	10		100	10	100	0	
TRICHLOROETHENE		<0.2	10	11		110	12	120	9	

% Recovery =

(Spike Sample Result - Sample Result) ----- X 100 Spike Concentration

IATOF
RIGIN
ATI • Pink - ORIGINATOF
∃ •E
:
, Canaŋ
White
BUTION: Wh
TRIBU
DISTRIE
1 (505) 344-3777 DISTRIBU
344-3
(505)
Albuquerque
H7 • I
584-04
Portland (503) 684-0447 •
rtland
l • Po
(904) 474-1001 • Po
04) 47
xola (9
ensac
35 • P
28-83
206) 2
eattle (
3 • 0
96-440
ix (602) 496-440
enix (6
• Pho
9141
3) 458-
0 (615
n Dieg
ns: Sai
ATI Lat

İ

ł i T

İ

i

1

<u> </u>	PROJECT MANAGER: Bob MENZIE	UALE. 2	DATE: DT 17 PAGE 1	OF / L	s request					
<u> </u>	COMPANY: Marathen Oil Company ADDRESS: P.O. Box 552 Marany Millout IX 70202-0557	2\8050)							×(70-7	
	587-8337 587-8337	(1.81) 108 OOM) E	d / S () 301/8010) 201/8010) 7 = 0'!	54/8540) 192 GC/W2 (snozna snozna - s	5 - Federal Federal		sian (WQC	(1
· · · · · · · · · · · · · · · · · · ·	Bob Menzle	IBTM/JX	051/203 2000 (805 2000 (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805 2000) (805) (805) (805)) (800	08/8080) 20) 88/8080)	/013) 200	• sbrebn Standard	- sbiebnet2		utant Met otal Diges	151) 910
	ADDRESS: 125 W. Missenri St	0\260 T8\ənil	qlocarl Hydroc ED	08 (60 15/813 1/Acid 1/Acid 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)T ýď s
	Midland, TX 79701	(S108 Q	у Y C rinated уН Уоlаr	iddes/P Meutra b/Neutra						steM A
	SAMPLE ID DATE TIME MATRIX LAB ID	OM) 29iU	Chio Chio	Pest Hert Base Vola						HOH
2	COMMINGLED FLUID TO INT. 8-24-54 12:154 W 01		V V V						7	
	TRIP BLANK 8-23 94 12:30P W 02	7								
1-1										_
1										
		SAMPLED &	SAMPLED & RELINQUISHED BY: 1.	RELINQUISHED BY:		0	RELIN	RELINQUISHED BÝ:	Ϋ́:	
	NO. CONTAINERS	Signature Dr.	J ^{time:} 4:30 Pm	Signature: Tir	Time:	ŝ	Signature:		Time:	
	P.O. NO. ISAP GW DISCHARP/GR RECENED NITACT	Printed Name.	Date: 5-24-94	Printed Name. Da	Date:	<u>a</u>	Printed Name:	me:	Date:	:
	SHIPPED VIA: Greyhound RECEIVED COLD V	Company: Mari Hon	Phone: 915-687-8312	Company:		<u>о</u>	Company:			
	PRIOR AUTHORIZATIONIS REQUIRED FOR RUSH PROJECTS (RUSH) 24hr 048hr 072hr 01 WEEK (NORMAL), 242 WEEK	RECEIVED BY Signature:	Y: 1. Time:	RECEIVED BY: Signature: Tir	Time:	2. Si	RECEIV Signature://	RECEIVED BY:(LAB)	(B) Time:	, 1
<u> </u>	X 8 RCPA metals plus Na, K, Ca, Mg	Printed Name:	Date:	ame:	Date:	<u> </u>			1	N N N
	** Anions (Cl, 504, HCO3, CO3)	Сотралу.		Company			Dia	IOMNE-LUCIER %	ZK	

1 11.

.							1	. 1		T . T				T	1	T		Q		-
					<u> </u>												~	D	136	
Ľ	0208/2108 0	OM) (BXT8/anilos	R/Diesel/Ga	IA								~								
ſ		BNAHTEM .	18 · 02, CO2	۷										Date		ł		Je V	and and and and and and and and and and	1
												Ы					3.	<u>7</u>	1/1	$r \leq \frac{1}{2}$
			slass Mulak	_		Ļ					_	₽.				- {	ž	1	-2	
			HAJA SSOF	B				_			_	RELINCUISHED BY:		i e			RECEIVED BY: (LAB)	ଥା	S.	
						ļ						윜	Ē	Nan	į	-	릺	180	TEN S	;,
·			CAL COLIF	I		ļ						E	Signature:	Printed Name	Company.		PECEI	YA	Printed Name	Company
		NBC	TAL COLIF			<u> </u>					_	-	<u>ъ</u> ,	ď		5	10	5U V	ā U	ŭ
			00				┨──┤	_+		+					3					
5			SOISEE	. .			┢─┤	-+		+			F		म्री					
REQUEST			JOI STOR			┨──	┼─┼	-+-	+	+		[Ξď	- Pro	Å,	.		e	Dale:	
				\rightarrow		†—	╞─┤	-+-		+		Ж	Γ	1	$g_{\frac{1}{2}}$		B	-		
ANALYSIS	(CC/W2 (624/8240	ilatile Organic	•^		<u> </u>	+	-+		++	-11	RELINCUISHED BY	~		E	ĥ	RECEIVED BY: (LAB)			
ןל		M) ISETMISTE				+	╞──┤			++	-	<u>UISI</u>	₽-q				E		£	
ž						†	$\left \right $	-+		++		S	ΞŦ	Man	ANNQ (enb			Nam	۲
		EHZ (III	40 UCLP 13	82								REL	Aignature	nnied Name	VIANAQ (UCTBA Analytical Technologias Ind	Albuquerque	RECE.		Printed Name	Company
-	Kidow(THOTLE	-JU 421	180	\triangleleft								<u> </u>	12		X VI	10	5	<u>-</u>	ပိ
	40'SOL	CONCOPH		2	\triangleleft											<u> </u>	<u>\</u>		$\frac{1}{1}$	
			0/8310			ļ	↓↓	_	_			11 10								
			9/619 MOD				┼─┤		_		_	SAMPLES SENT TO	00		N	QN ×		INT		
		 	00n 25972	53							-	APLE:	SAN DIEGO	HENTON	PENSACOLA	PORTLAND		FIBEROUANT		
		(SYRW) S					$\left\{ - \right\}$	_				Š	<u>3</u> 1t	1	핃	Z E	<u>-</u>	12		
						+	┼─┤	+			-1	_								
		a	AEL DINAD			1-		+			-11		7		\geq					
				01							-11					G				
		<u> </u>	X(01			<u>+</u> †	1			-11	EIPT	ERS			n D	7			¢ S
-	- <u></u>	······································		₽							-1	ECEI	IAINI	ES I			1001	6	3	2
					-							Ш	NOC	SEA			爿	Ø	2	
						1	+	-+				SAMPLE REC	0	VUO		20] ⊻	-	Y
				MATRIX	AØ							SA	IBER	SUSI		<u> </u>	-	-	7	
	1 1 1 1			Σ	7								NUN) Ы	1	VEU		1	Ę	
Σ	Z	$\langle \gamma \rangle$		ш	5								TOTAL NUMBER OF CONTAINERS	CHAIN OF CUSTODY SEALS	INTACT?	HE CEIVED GOOD CONULACUE I AD NIMBER $(1 \frown V \supseteq$		r Watt / Kar	2	5
SWC	vay.	\sum		TIME	SIG								Ĕ	3	≤ č	<u>≍ </u> -			-	-
3AK(eew .	ALI	٦ أ		-1	_	┞─┤				1		1						,	>
LETITIA KRAKOWSKI	Analytical Technologies, Inc. 2709-D Pan American Freeway, NE Albuquerque, NM 87107	LGCC - WATER QUAUTY CONTROL COMMISSION LO ATHULLO LIST	G,	щľ	24													1		
IIII	alog licar 871	WGCC - WATER GI CONTROL COMMIS Del Attubed LIST	-1/2	DATE	<u> </u>															*
Ш	hnc	L X Z	Ś	-		+	┼╌┤					Z	5	E		X				
	Fecl An e, N	4 9 V	-3									PROJECT INFORMATION	15	manlaham		BLANK			m?	Р
GER.	al 1 Par rqu	EL E	5-4	-	_	1						MNC	$ \propto$	A			H		۲ŀ	ᅴ
ANAC	ytic -D I lue	1 2 - j	NA -		4							INFO	C	R	≥	MSD	HUSHI	6		
IT M	709 709	J K F	W L	SAMPLEID	6							CT	P	$ \Sigma $	STD	¥	$\frac{1}{2}$	G	3GE	INT:
0	A NA	لا تې م		Å	à							O LE	BER:	ا نن ا	in l	- 0/5	HAN		HAF	Sou
31		しこと	1221	6	$-T_{\rm D}$	1				1	- 11	n œ	1 X	131	Λ	<u> </u>	211	1 .	. Q	õ
PROJE	÷ ä	J J		"]	· 4								Ę	I¥ I	ا يـــ	当:	€∥	1 1	5	ō
NETWORK PROJECT MANAGER:	COMPANY: ADDRESS:	KUGCC - WATER QUAUT CONTROL COMMISSION	CLIENT PROJECT MANAGER: Mitch & Juniter J.		08399-0							а.	PROJECT NUMBER: 1/D 2,399	PROJECT NAME:	OC LEVEL	OC REQUIBED.	SIANUAHU	DUF DATE	RUSH SURCHARGE	CLIENT DISCOUNT:

1.4 .1 .:

111

İ

i

j

i

i

APPENDIX B

- Î di

SPILL PREVENTION, CONTROL, AND COUNTERMEASURE PLAN (DECEMBER 28, 1992)

SPILL PREVENTION CONTROL & COUNTERMEASURE PLAN

PART I GENERAL INFORMATION

1. Name of facility	INDIAN BASIN GAS PLANT
2. Type of facility	Onshere Production Facility
3. Location of facility	Eddy County, New Mexico, approximately 20 miles
	W-NW of Carlsbad, New Mexico
I. Name and address of o	wner or operator :
Name	Marathon Oil Company
Address	P. O. Box 552
	Midland, Texas 79702
· · · · · · · · · · · · · · · · · · ·	N. R. Garza, Plant Superintendent
	reportable oil spill event during the twelve months prior to Jan. 10, 197 CFR. Part 112). (If YES, complete Attachment $\pm 1.$)
	MANAGEMENT APPROVAL
This S	SPCC Plan, with be implemented as herein described.
Signature	A Rouhl
Name	A. R. Kukla
Title	Mid-Continent Region Production Manager
	CERTIFICATION
I hereby certify that I have	e examined the facility, and being familiar with the provisions of 40

CFR. Part 112, attest that this SPCC Plan has been prepared in accordance with good engineering practices.

Paul J. Tauscher Printed Name of Registered Professional Engineer

Signature of Registered Professional Engineer

Registration No. 4581 State WY

(Part 1) Page 1 of 3

(Seal)

Date Dec 28, 1992

PART I GENERAL INFORMATION

7. Potential Spills - Prediction & Control:

Source	Major Type of Failure	Total Quantity (bbls)	Rate (bbls/hr)	Direction of Flow*	Secondary Containment
2 Condensate Storage ™anks	Leaks, Tank Rupture	3400		S	No *
! Lute Oil Storage Tank	Leaks, Tank Rupture	210		S	Yes
l Lube Oil Storage Tanx	Leaks, Tank Rupture	52		S	No
3 Open Top Skimmer Tanks	Leaks, Tank Rupture, Over fill	300 r-		S	Yes
l Open Top Skimmer Tank	Leaks, Tank Rupture, Ove fill	437 r-		S	Yes
2 Salt Yater Disposal Tanks	Leaks,Tank Rupture	1500		S	No **
l Lube Cil Storage Tank	Leaks, Tank Rupture	6		S	Yes
l Diesel Storage Tank	Leaks, Tank Rupture	10		S	Yes
Air Strinner Tank General Containme	Leaks, Runtur	e 420		S	^v es
Area Containing Storage Tanks of Various Sizes	= 11 0	20 - 106		S	Yes

- Currently in use are two horizontal vessels (old natural gasoline storage tanks) for condensate storage. These vessels <u>do not</u> have containment dikes, due to the fire hazard that would occur if an adjacent LPG tank failed and spilled its contents into the diked area.
- ** The water contained in these tanks has been treated to remove any free hydrocarbon. A number of process vessels are located throughout the plant and contain hydrocarbon liquids. Secondary containment is not provided at these vessels due to process and safety constraints. However, in the event of a release, flow would be south towards the plant berm. (See attached plot plan).

Name of facility _____ Indian Basin Gas Plant

Operator _____

Marathon Oil Company

(Part 1) Page 2 of 3

PART I GENERAL INFORMATION

[Response to statements should be: YES, NO, or NA (Not Applicable).]

- 8. Containment or diversionary structures or equipment to prevent oil from reaching navigable waters are practicable. (If NO, complete Attachment #2.) No
- 9. Inspections and Records
 - A. The required inspections follow written procedures.

Yes

B. The written procedures and a record of inspections, signed by the appropriate supervisor or inspector, are attached. Yes Discussion: Daily visual inspections are made and readings taken and recorded by operational personnel during normal rounds on each of the three daily shifts. During these rounds, operating personnel search for non-typical situations. If these situations are encountered, they are documented and promptly reported to supervisory personnel via the plant work order system which is reviewed and signed by the appropriate supervisor.

Spills are reported as soon as practical to supervisor via the Mid-Continent Spill Reporting Program. Semi-Annual inspection is conducted by plant supervision. Records of these inspections are available.

10. Personnel Training and Spill Prevention Procedures

A. Personnel are properly instructed in the following:

(1) operation and maintenance of equipment to prevent oil discharges, and <u>Yes</u>
 (2) applicable pollution control laws, rules, and regulations. <u>Yes</u>
 Describe procedures employed for instruction: <u>Instructions are narrative</u>. Environmental Control and Site Security are discussed at safety meetings, which are held on a monthly basis. Potential spill situations are reported to the foreman via the plant work order system and also reported by the safety committee on a monthly basis. Such situations are corrected.

B. Scheduled prevention briefings for the operating personnel are conducted frequently enough to assure adequate understanding of the SPCC Plan. Yes Describe briefing program: Operation Management frequently reviews environmental standards at safety meetings. Such reviews assure an adequate understanding of SPCC. Operating superintendents are periodically requested to update Contingency Plans. Superintendents thereby assess and revise procedures when necessary.

Name of facility_____

Indian Basin Gas Plant

Operator___

Marathon Oil Company

(Part I) Page \$ of \$

A. Facility Drainage

1. Drainage from diked storage areas is controlled as follows (include operating description of valves, pumps, ejectors, etc. (Note: Flapper-type valves should not be used):_____ None of the dived areas have installed drains.

Any spill that might occur would be removed with a vacuum truck, or transferred, via a portable pump, to the plant open drain system. Excess rain water is removed in this manner.

2. Drainage from undiked areas is controlled as follows (include description of ponds, lagoons, or catchment basins and methods of retaining and returning oil to facility): _____ plant operates under a Groundwater Discharge Plan approved by the New Mexico 011 Conservation Division of 10/30/89. The plant is in compliance with all phases of the plan. The Groundwater Discharge Plan is available for review onsite at the IBGP office and in the MCR office, Midland, Texas.

3. The procedure for supervising the drainage of rain water from secondary containment into a storm drain or an open watercourse is as follows (include description of (a) inspection for pollutants, and (b) method of valving security). (A record of inspection and drainage events is to be maintained on a form similar to Attachment #3): None of the diked areas have installed drains.

When necessary, rain water removal is accomplished by transferring the fluid to the plant open drain system via vacuum truck or via a portable transfer pump.

The plant open drain system processes the fluid for removal of free hydrocarbon and the waste water is commingled and injected with Indian Basin Field produced water.

Name of facility______Indian Basin Gas Plant_____

Operator ____

Marathon Oil Company

(Part II, Alternate A) Page 1 of 5

[Response to statements should be: YES, NO, or NA (Not Applicable).]

B. Bulk Storage Tanks

- 1. Describe tank design, materials of construction, fail-safe engineering features, and if needed, corrosion protection: <u>The condensate storage tanks are above ground</u> storage bullets operating at atmospheric conditions. All other tanks are above ground, atmospheric, bulk storage tanks. <u>All tanks are API</u> design/carbon steel.
- 2. Describe secondary containment design, construction materials, and volume: <u>All</u> secondary containments are earthen dikes with volumes sufficient to <u>hold the storage capacity of the largest tank contained there</u>.

3. Describe tank inspection methods, procedures, and record keeping: <u>Tanks are observed</u> in operation daily, at least once per shift, by operating personnel for signs of leakage or other deterioration. Such signs are reported and corrected via the plant work order system.

Where deemed appropriate, more rigorous inspection methods, such as ultra-sonic thickness testing, are conducted on a periodic basis.

Internal heating coil leakage is controlled by one or more of the following control factors:

 (a) Monitoring the steam return or exhaust lines for oil.
 N/A

Describe monitoring procedure:

*

- (b) Passing the steam return or exhaust lines through a settling tank, skimmer, or other separation system.
- (c) Installing external heating systems.
- 5. Disposal facilities for plant effluents discharged into navigable waters are observed frequently for indication of possible upsets which may cause an oil spill event.

Describe method and frequency of observations: <u>All Flant effluents, including</u> cooling tower and boiler blowdowns and wastes collected in the plant <u>sump systems</u>, are treated to remove free hydrocarbon. The waste water is commingled with the Indian Basin Field produced water and injected into an injection well (Indian Basin Gas Com. SWD No. 1 or Marathon Federal SWD No. 1).

Name of facility ______ Indian Basin Gas Plant

Operator _____ Marathon Oil Company

(Part II, Alternate A) Page 2 of 5

»/A

N/A

[Response to statements should be YES, NO. or NA (Not Applicable).]

C. Facility Transfer Operations, Pumping, and In-plant Proce	С.	Facility	Transfer	Operations,	Pumping.	and	In.plant	Process
--	----	----------	----------	-------------	----------	-----	----------	---------

- 1. Corrosion protection for buried nipelines:
 - (a) Pipelines are wrapped and coated to reduce corrosion.
 - (b) Cathodic protection is provided for pipelines if determined necessary by elec-Yes trolytic testing.
 - (c) When a pipeline section is exposed, it is examined and corrective action taken as necessary. Yes
- 2. Pipeline terminal connections are capped or blank-flanged and marked if the pipeline is not in service or on standby service for extended periods. N/A Describe criteria for determining when to cap or blank-flange: The plant is in continuous operation. Procedures for abandonment of pipelines will be developed when necessary.
- 3. Pipe supports are designed to minimize abrasion and corrosion and allow for Yes expansion and contraction. Describe pipe support design: _____Pipe supports are steel stanchion with wear plated protection at points of wear and contact. Where large temperature swings are anticipated, expansion loops are installed.
- 1. Describe procedures for regularly examining all above-ground valves and pipelines (including flange joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces): All equipment is observed in operation daily by plant operating personnel for signs of leakage or other deterioration. Such signs are reported and corrected via the plant work order system.

Where deemed appropriate, more rigorous inspection methods, such as ultra-sonic thickness testing or X-ray inspection, are conducted.

5. Describe procedures for warning vehicles entering the facility to avoid damaging above-ground piping: Signs and traffic barrier guards where needed.

Name of facility _____ Indian Basin Gas Plant

Operator ___

Marathon Oil Company

Yes

(Part II, Alternate A) Page 3 of 5

[Response to statements should be: YES, NO, or NA (Not Applicable).]

Ta	cility Tank ('ar & Tank Truck Loading/Unloading Rack nk car and tank truck loading/unloading occurs at the facility. (If YES, complete hrough 5 below.)	Yes
1.	Loading/unloading procedures meet the minimum requirements and regulations of the Department of Transportation.	Yes
2.	The unloading area has a quick drainage system.	No
3.	The containment system will hold the maximum capacity of any single compart- ment of a tank truck loaded/unloaded in the plant. Describe containment system design, construction materials, and volume: <u>N/A</u>	N/A
	* Only truck loading is encountered at the plant's condensate rack facility. There is no storage at or near the loading r Due to the light specific gravity of the condensate, a conta system at the loading rack facility is not practical because the potential for a fire hazard.	ack. inme
1.	An interlocked warning light, a physical barrier system, or warning signs are pro- vided in loading/unloading areas to prevent vehicular departure before disconnect	
1.		he ti
1.	<pre>vided in loading/unloading areas to prevent vehicular departure before disconnect of transfer lines. Describe methods, procedures, and/or equipment used to prevent premature departure: A ground wire system is in use, which will not allow t fer pump to operate unless the truck is attached both to the wire and to the loading rack via the transfer line. If this circuit is broken, the transfer pump will shut down. In addition, the loading rack is equipped with an automatic which activates when a preset volume passes through the LAC This will limit the volume of condensate that could be leaked premature truck departure would occur.</pre>	vehic he ti grou shutc T met
	<pre>vided in loading/unloading areas to prevent vehicular departure before disconnect of transfer lines. Describe methods. procedures. and/or equipment used to prevent premature departure: A ground wire system is in use, which will not allow t fer pump to operate unless the truck is attached both to the wire and to the loading rack via the transfer line. If this circuit is broken, the transfer pump will shut down. In addition, the loading rack is equipped with an automatic which activates when a preset volume passes through the LAC This will limit the volume of condensate that could be leaked premature truck departure would occur.</pre>	vehic he ti grou shutc T met
	<pre>vided in loading/unloading areas to prevent vehicular departure before disconnect of transfer lines. Describe methods, procedures, and/or equipment used to prevent premature departure: A ground wire system is in use, which will not allow t fer pump to operate unless the truck is attached both to the wire and to the loading rack via the transfer line. If this circuit is broken, the transfer pump will shut down. In addition, the loading rack is equipped with an automatic which activates when a preset volume passes through the LAC This will limit the volume of condensate that could be leake premature truck departure would occur.</pre>	vehic he ti grou shutc T met
5.	<pre>vided in loading/unloading areas to prevent vehicular departure before disconnect of transfer lines. Describe methods, procedures, and/or equipment used to prevent premature departure: A ground wire system is in use, which will not allow t fer pump to operate unless the truck is attached both to the wire and to the loading rack via the transfer line. If this circuit is broken, the transfer pump will shut down. In addition, the loading rack is equipped with an automatic which activates when a preset volume passes through the LAC This will limit the volume of condensate that could be leaked premature truck departure would occur. Drains and outlets on tank trucks and tank cars are checked for leakage before </pre>	vehic he tr grou shuto T met d if

[Response to statements should be: YES, NO. or NA (Not Applicable).]

E. Security

1.	Plants handling, processing, or storing oil are fenced.	<u>No</u> *
2.	Entrance gates are locked and/or guarded when the plant is unattended or not in production.	<u>N/A</u>
3.	Any values which permit direct outward flow of a tank's contents are locked closed when in non-operating or standby status.	Yes
1.	Starter controls on all oil pumps in non-operating or standby status are: (a) locked in the off position; (b) located at site accessible only to authorized personnel.	No** Yes
5,	Discussion of items 1 through 4 as appropriate: Gas plant is attended 24 hours per day each day of the year.	
	 The gas plant is fenced; the condensate storage tanks are o the fenced area. 	utside
	** The LACT unit addressed in Items D.4 has a key lock securit which requires an assigned key to allow loading trucks.	y system
6.	Discussion of the lighting around the facility: <u>Flood lighting and localiz</u> <u>lighting approved by Marathon Oil Company</u> .	
Na	ame of facility Indian Pasin Gas Plant	
Oŗ	Perator Narathon_Cil_Company	•

(Part II, Alternate A) Page 5 of 5

SPCC PLAN, ATTACHMENT =2 OIL SPILL CONTINGENCY PLANS AND WRITTEN COMMITMENT OF MANPOWER, EQUIPMENT, AND MATERIALS

Secondary containment or diversionary structures are impracticable for this facility for the following reasons (attach additional pages if necessary):

Secondary containment is not provided around the bases of selected storage tanks and process vessels since trapped volatile liquid hydrocarbons would create an extreme fire hazard in the plant area. However, in the event of a large liquid hydrocarbon release, flow would be toward the south and contained by the plant perimeter berm.

No secondary containment is provided for the lube oil storage tank , in part due to its remote location and relatively small volume. Again, in the event of a release, flow would be to the south and contained by the Plant perimeter berm.

	Yes
A strong oil spill contingency plan is attached.	Yes
A written commitment of manpower, equipment, and materials is attached.	Yes

 Name of facility
 Indian Basin Gas Plant

 Operator
 Marathon Oil Company

(Attachment #2, SPCC Plan)

ì

SPCC PLAN INSPECTION PROCEDURES

Eddy County, New Mexico -

- 1. As part of his normal routine, the pumper(s) will visually inspect the field's production facilities for accumulations, leaks of oil or other hazardous substances. The pumper must perform the inspection at least once a day.
- 2. The production facilities to be inspected will include but are not limited to wellheads, flowlines, valves, tanks, vessels, miscellaneous fittings (flanges, etc.), sumps and ditches.
- 3. In the event that an accumulation or leak is discovered, the pumper shall initiate the actions detailed in the current SPCC Plan.
- 4. The pumper shall record his daily inspection on a daily field report.
- 5. The field gangpusher shall record his monthly inspection on a monthly inspection report.

R. A. Biernbaum Operations Superintendent

OIL SPILL CONTINGENCY PLAN

In the case of an oil spill from a producing well, a testing vessel, a tank, flowline or any other related oil field equipment, the following action will be implemented to protect human life and regain control of the spill as rapidly as possible. All steps should be carefully considered to ensure control of the spill is effectively and efficiently regained.

- 1) Shut off the source contributing to the spill. Analyze the type of spill and determine the most appropriate immediate action to be taken to contain the spill.
- 2) If the spill contains hydrocarbons, collect lighters and matches from personnel working in the area.
- 3) Obtain labor and equipment to construct a containment barrier as rapidly as possible. (See the attached directory.)
- 4) As required have vacuum truck(s) pick up pooled or contained liquids.
- 5) As necessary, the use of absorbent material (straw, dirt, lost circulation material, commercial sorbents, etc.) should be utilized to remove standing volume which cannot be efficiently removed by a vacuum truck.
- 6) Restrict access to the affected area to only those persons involved in control, containment, and clean-up operations.
- 7) Notify the company representative in charge of the facility of the spill and action being taken, who will in turn notify his respective supervisor.
- 8) As required, the Plant Superintendent will notify the regulatory agency of the spill.
- 9) Keep livestock from affected area and if necessary, as appropriate notify the landowner and other surface users of the situation.
- 10) The person in charge of the spill response activities shall keep a daily log of response activities. The log book shall be bound, not loose leaf. Entries shall be dated, timed and signed.
- 11) The Duty Officer at the National Response Center (1-800-424-8802) must be notified immediately when a spill reaches "waters of the U.S.", or it appears likely that the spill will reach "water of the U.S."

"For additional information, refer to the Mid-Continent Region Contingency/ Response Plan".

P. O. Box 1324 Artesla, New Mexico 88210 Telephone (505) 457-2621

SPCC PLAN

COMMITMENT OF MANPOWER, EQUIPMENT AND MATERIALS

TO: OPERATIONS SUPERVISORS

THIS IS YOUR AUTHORITY TO EXPEDITIOUSLY COMMIT MANPOWER, EQUIPMENT AND MATERIALS NECESSARY TO ARREST AND CONTAIN AND INITIATE CLEANUP OF ANY HARMFUL QUANTITY OF OIL OR HAZARDOUS MATERIAL DISCHARGED FROM THIS FACILITY. THIS AUTHORITY MAY BE DELEGATED BY YOURSELVES TO THE PERSON IN CHARGE OF THE FACILITY TO ENSURE THAT NECESSARY ACTIVITIES ARE IMPLEMENTED AS QUICKLY AS POSSIBLE AFTER A SPILL IS NOTED.

A. R. Kukla Production Manager Mid-Continent Region

NRG/gh

9/3/92

LIST OF EMERGENCY EQUIPMENT AND SERVICES

Field Atoka Penn, Indian Basin, Revelation, North Shugart

SPILLS

Equipment and Services available to Contain and Clean-up Spills on Land, Rivers, Creeks, and/or Coastal Bays

<u>Available_</u> Equipment/Service	<u>Source or</u> Organization	<u>Location</u>	<u>Telephone No.</u>
Clean-up Service	Stevenson-Roach	Artesia, NM	(505)746-32 22
Earth Moving	Truck & Tractor Works	Artesia, NM	(505)748-1130
	M & M Excavating	Carlsbad, NM	(505)236-6600
	Franco Construction	Artesia, NM	(505)365-2408
Fire Control	Carlsbad Fire Dept.	Carlsbad, NM	(505)885-3124
	Artesia Fire Dept.	Artesia, NM	(505)746-2701
Oil Field Haulers	I & W, Inc.	Loco Hills, NM	(505)677-2111
	B & E, Inc.	Carlsbad, NM	(505)885-66 63
Portable Tanks	T & C Tank	Artesia, NM	(505)746-9788
Vacuum Trucks	I & W, Inc.	Loco Hills, NM	(505)677-2111
	B & E, Inc.	Carlsbad, NM	(505)885-66 63

l à

1:14

COMPANY PERSONNEL NOTIFICATION LIST

<u>Indian Basin Gas Plant</u>

(505) 457-2621 / (505) 457-2212

Employee	<u>Title</u>	<u>Home Telephone</u>
Garza, Noel R.	Plant Superintendent	(505) 887-3490
Schweser, C. Mike	Maintenance Foreman	(505) 885-0716
White, Rick R.	Process Engineer	(505) 746-2872
Barnett, Jimmy B.	Operator	(505) 746-2818
Bowen, Patrick N.	Operator Helper	(505) 748-3570
Case, Tony W.	Operator	(505) 748-1001
Davis, Larry D.	Operator	(505) 746-9096
Delgado, Lee M.	Operator	(505) 746-2455
Garrett, Kenny R.	Instrument Repairman	(505) 748-2932
Hamill, Bob B.	Electrician	(505) 887-7940
Harkness, Ginger J.	Records Processor	(505) 746-2311
Harrison, Jerry J.	Pumper	(505) 365-2962
Ivy, Jack L.	Pumper	(505) 748-2763
Kelsey, Ed B.	Pumper	(505) 748-3031
Klein, Timothy P.	Plant Gangpusher	(505) 484-3675
Manthei, Don W.	Welder	(505) 457-2213
Moreno, Manuel S.	Roustabout	(505) 748-2175
Rauch, Jack P.	Operator Helper	(505) 748-2636
Rouse, David B.	Operator	(505) 746-2619
Troublefield, Shaun	Operator Helper	(505) 748-3847
Waldrip, Bruce W.	Instrument Repairman	(505) 457-2252
Wilson, James E.	Tester	(505) 746-6481
Winters, Timothy L.	Field Gangpusher	(505) 746-4662

1613

-1 i ł

This form is to be completed for any spill (regardless of size) of any oilfield liquid onto the surface of the ground.

NOTE: Completion of this form does not eliminate the need to <u>verbally report all dis</u> <u>charges</u> to your supervisor as soon as practicable after the source has been stopped and containment/cleanup operations have been mobilized as appropriate.

	And and a subsection of the local data and t	يحيدان والمتكفلا فيرجعهما	and the second second second second second second second second second second second second second second second		
SPILL DATE	EST. SPILL	AH	ESTIMATED		VOLUHE
HO DA YR	TIME	PH	SPILL VOLUME	TYPE OF FLUID SPILLED	RECOVERED
1					
]]				

LOCATION OF SPILL (State, County, Field, Lease, Well or Rig):

CAUKE OF SPILL:

Did the spill occur on location within a company made containment or drainage catchment area? Yes No If you checked "Yes" to the proceeding question, provided such system adequately contained the spill, it is not necessary to complete the remainder of this form. Simply sign and date the report and forward to your supervisor.

DESCRIPTION OF SPILL AREA (Including proximity to watercourse):

ACTION TAKEN TO CONTAIN OR CLEANUP SPILL:

SURFACE: Sandy Sandy Loam Cultivated Grazing	ClayRockyWet VacantRuralResid	DrySnow ential
APPARENT DAMAGE TO ENVIRONMENT AND I	PROPERTY:	
PROPERTY OWNER NOTIFIED: Yes	No Date: By:	
Name of Property Owner:	-	
HOW WAS SPILL FIRST NOTED:		
Person Initiating Report/Date	Supervisor Review/Date	Supervisor Review/Date

The back of this form on be completed by Superintendent and/or Environmental Bent., as applicable.

	COF SPILL:					
NOT	IFICATION OF REGU	LATORY AGENCIE	S:			
۸.	Agency			Telephone No.		Time
	Date			Person Contact	ed	
	Comments					
В.	Agency			Telephone No.		Time
	Date			Person Contact	ed	
	Compents		<u> </u>			
c.	Agency		•	Telephone No.		Time
	Dini					
	Date			Person Contact	ed	
	Comments	CT WITH AGENCI				
	Comments	CT WITH AGENCI	ES:			
	Comments RSON MAKING CONTA STRIBUTION - ORIGINAL COPY: OTHER COPIES:	CT WITH AGENCI	ES:			
	Comments ISON MAKING CONTA STRIBUTION - ORIGINAL COPY: OTHER COPIES: (To Be Com- pleted by	CT WITH AGENCI Environmental	ES:	<u> </u>		
	Comments RSON MAKING CONTA STRIBUTION - ORIGINAL COPY: OTHER COPIES:	CT WITH AGENCI Environmental	ES:	<u> </u>		
DIS	Comments ISON MAKING CONTA STRIBUTION - ORIGINAL COPY: OTHER COPIES: (To Be Com- pleted by	CT WITH AGENCI	ES:			
DIS	Comments LSON MAKING CONTA STRIBUTION - ORIGINAL COPY: OTHER COPIES: (To Be Com- pleted by Supt.)	CT WITH AGENCI	ES:			

.

ł.

ł

Ì

i

į.

Ł

İ

FORM: MCR - 4/27/88

1 2 1

APPENDIX C

STORMWATER POLLUTION PREVENTION PLAN (MARCH 31, 1993)

INDIAN BASIN GAS PLANT

STORM WATER POLLUTION PREVENTION PLAN

Prepared for:

MARATHON OIL COMPANY

Prepared by:

CARTER :: BURGESS Consultants in Engineering, Architecture, Planning and the Environment 3880 Hulen Street Fort Worth, Texas 76107 (817) 735-6000

March 31, 1993

C&B No. 92137501F

I attest that this Storm Water Pollution Prevention Plan has been prepared in accordance with good engineering practices. I have examined the facility and am familiar with the provisions of the Texas NPDES General Permit for Storm Water Discharges associated with industrial activities (Permit No. T X R000000).

NAME:	Brian Burke, P.E.
DATE:	March 31, 1993
SIGNATURE:	BBC

SEAL:

STORM WATER POLLUTION PREVENTION PLAN REVISIONS

	DATE	REVISION
•		
•		

TABLE OF CONTENTS

P	a	ge

I.	INTRODUCTION 1
П.	SITE DESCRIPTION 1
III.	POLLUTION PREVENTION TEAM 2
IV.	POTENTIAL POLLUTANT SOURCES2A. Drainage Patterns2B. Inventory of Exposed Materials3C. Current and Historic Structural Controls and Management Practices4D. Current Storm Water Treatment Practices5E. Spills and Leaks5F. Sampling Data5G. Risk Identification and Summary of Potential Pollutant Sources6
V.	STORM WATER MEASURES AND CONTROLS6A. Downslope Containment Device7B. Increased Vegetation7
VI.	GOOD HOUSEKEEPING8A.Inspection and Preventive Maintenance8
VII.	SPILL PREVENTION AND RESPONSE PROCEDURES
VIII.	EMPLOYEE TRAINING 9
IX.	RECORDKEEPING AND INTERNAL REPORTING PROCEDURES 10
X.	NON-STORM WATER DISCHARGES 11
XI.	EROSION, SEDIMENT AND DUST CONTROL 12
XII.	RUNOFF MANAGEMENT 12
XIII.	COMPREHENSIVE SITE COMPLIANCE EVALUATION12A. Step 1 - Site Inspection12B. Step 2 - Revisions to the SWPPP13C. Step 3 - Inspection Report13
XIV.	CONSISTENCY WITH OTHER PLANS
XV.	EPCRA SECTION 313 REQUIREMENTS 13
XVI.	SAMPLING REQUIREMENTS 13

XVII. PROPER OPERATION AND MAINTENANCE	14
XVIII. CERTIFICATION	14

APPENDICES

- Storm Water Pollution Prevention Team 1.
- 2. Spills and Leaks Reported Since September 9, 1989
- Spill Prevention Control and Countermeasure Plan Comprehensive Site Evaluation Report Aerial Photo of Indian Basin Gas Plant 3.
- 4.
- 5.
- NPDES Permit for the IBGP 6.
- NPDES Nationwide General Permit 7.

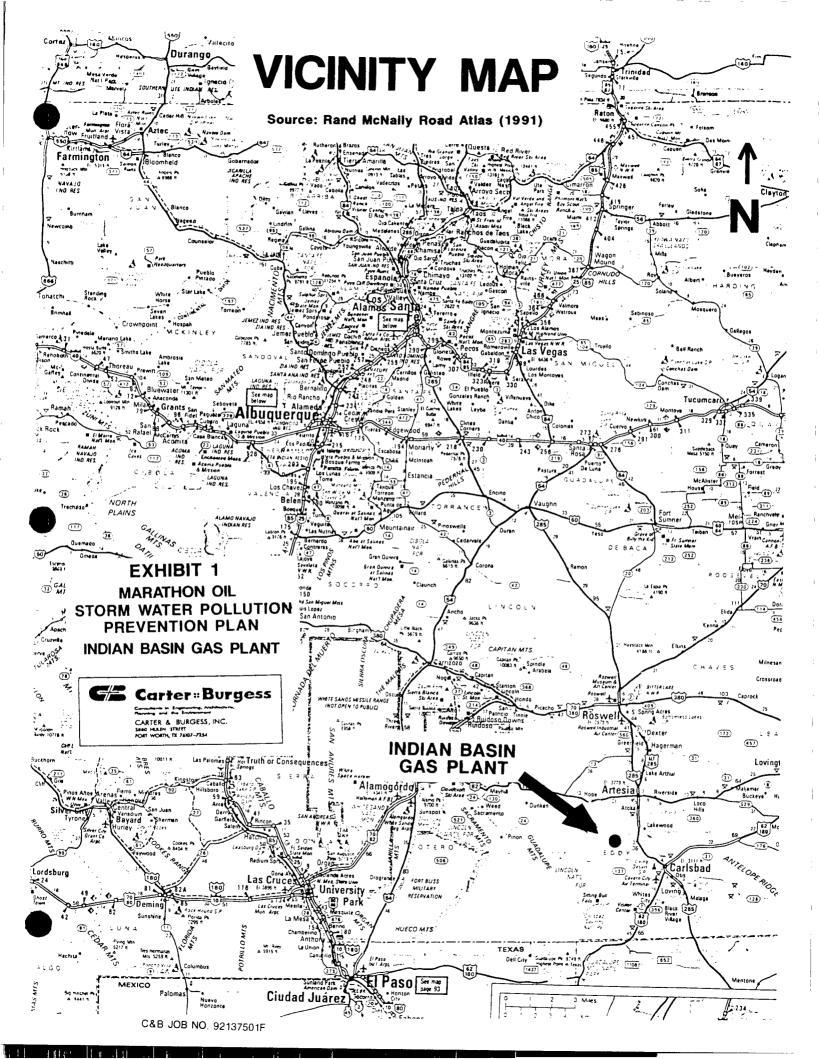
INDIAN BASIN GAS PLANT STORM WATER POLLUTION PREVENTION PLAN

I. INTRODUCTION

Implementation of a Storm Water Pollution Prevention Plan (SWPPP) is necessary for compliance with National Pollutant Discharge Elimination System (NPDES) regulations. The U.S. Environmental Protection Agency (EPA) administers the NPDES program in New Mexico and has assigned the state general permit N M R000000 for storm water discharges from industrial activities.

This SWPPP has been prepared for Marathon Oil Company of Midland, Texas as a requirement for coverage under the New Mexico state general permit. It applies to operational activities at their Indian Basin Gas Plant in west central Eddy county, New Mexico. The plant produces natural gas, demethanized hydrocarbon mix, stabilized condensate, and sulfur on a continuous 24 hour per day schedule. See Exhibit 1 (Vicinity Map) for the location of the Indian Basin Gas Plant.

The major purposes of this SWPPP are to:


- 1. Identify potential sources of storm water pollution,
- 2. Evaluate plant operating procedures as they relate to storm water pollution,
- 3. Suggest specific techniques for minimizing pollution of storm water,
- 4. Serve as a focal point and training tool for plant personnel,
- 5. Provide sample forms for SWPPP implementation, and
- 6. Establish an overall framework for the continuing effort of storm water pollution prevention at the plant.

Marathon Oil Company submitted a Notice of Intent to the EPA prior to October 1, 1992 and has been assigned permit number NMR00A170 for the Indian Basin Gas Plant.

II. SITE DESCRIPTION

The Indian Basin Gas Plant is approximately 35 acres in area. It serves a much larger producing gas field. Approximately one percent of the plant is paved. The

i

gas plant is located on Eddy County Road 401. There is a truck loading area on the east side of the plant. Offices, a warehouse, and parking areas are located near the central part of the plant. See Exhibit 2 (Plant Map) for locations of all plant buildings and tanks.

The plant is located in a relatively flat area surrounded by mountainous terrain. The soil is rock and sand with scrub brush and grass vegetation. The mean annual total precipitation is approximately 14 inches. Average annual Class A pan precipitation is approximately 100 inches, and average annual lake evaporation is approximately 65 inches in this area.

III. POLLUTION PREVENTION TEAM

At all times, there shall be Marathon Oil Company employees specifically assigned to the Storm Water Pollution Prevention Team (Team). Initially, the Team consists of Mike Schweser, the Plant Foreman.

Team organization may change at any time. Appendix 1 includes a list of Team tasks and member assignments.

IV. POTENTIAL POLLUTANT SOURCES

An inventory of potential pollutant sources at the plant includes natural and refined petroleum products, processing agents, and waste products. There are other potential pollutants, such as used process filters, batteries, and tires. There are no dry weather discharges (except for discharges to injection wells) anticipated at the plant. Refer to Exhibit 3 for the location of potential storm water pollutants.

A. Drainage Patterns

Exhibit 4 indicates surface drainage patterns at the plant. The property is quite flat but generally drains to the southeast. The only distinct outfall is from a small channel which begins near the west side of the office, flows south past the residue gas compressors, turns east and continues between the loading docks and the condensate tanks. This channel mainly conveys storm water from the office and workshop areas. Runoff from the remainder of the plant drains to the south as sheet flow.

All of the runoff eventually drains to the receiving watercourse, Rocky Arroyo. The arroyo is an intermittent stream that contains flowing water only after a significant rainfall.

B. Inventory of Exposed Materials

Materials handled, treated, stored or disposed at IBGP since September 9, 1989 have typically not been exposed to storm water. Materials are in pipes, vessels, trucks or other sealed containers. For example, liquids are sold as product or injected by well into the ground, but no liquids are discharged from the plant as surface flow. The only potential for surface discharge of a plant chemical is after a spill or leak.

Material Safety Data Sheets (MSDSs) are kept current at the plant at all times. The Team Leader has access to the MSDSs.

Plant materials handled and stored outside since September 9, 1989 are listed below:

- 1. <u>Materials of Significant Quantity</u>
 - a. Reclaimed sulfur is stored in a pit on the west side of the plant. The pit is surrounded by an earth berm to provide complete containment. The berm will be regraded to minimum 18 inch height above the stored sulfur. (Note: An 18 inch berm provides storage for the 100 year, 24 hour storm plus 12 inches.) As a consequence of the berm, there will be no runoff from the sulfur pit.
 - b. Solid waste is placed in a dumpster. The dumpster contents are collected and disposed by a commercial service. A shallow trench will be excavated around the dumpster to direct seepage into a nearby depression.

Solid wastes produced at the IBGP include used filters, spent molecular sieve, glycol filters, used amine filter media, oily debris (without free oil), downhole and equipment scale, office trash, spent sock and cartridge filters, office material and other miscellaneous wastes.

Consistent with state and federal regulations, wastes not disposed at the plant are taken to a disposal or recycling facility. Recycled wastes include Safety-Kleen solvent and used drums. The Safety-Kleen solvent is recycled by that company at regularly scheduled intervals. It is trucked from the plant to the recycling facility at Midland, Texas. Used drums are recycled periodically. Empty drums are shipped to the original vendor or to a recycler. Used batteries, tires and other vehicular expendables are generally exchanged at the garage that services the IBGP vehicles. c. The closed blowdown drain tank and the skimmer basin tanks have open tops and are thereby exposed to rainfall. However, there is no runoff from these tanks because they are surrounded by berms. The berms will be maintained to provide 133 percent of above ground tank capacity.

2. <u>Materials of Lesser Ouantity</u>

There are miscellaneous materials located around the plant of relatively small quantity. Some are items being stored temporarily and others result from small spills and leaks (i.e., less than a reportable quantity). Stored materials change with time, but can include such items as vehicle batteries and chemical drums. Most stored materials are surrounded by containment berms. Examples of spilled or leaked materials include sulfur and petroleum hydrocarbons. Marathon Oil has both a Spill Prevention Control Countermeasure Plan (SPCC) and a Groundwater Discharge Plan that define policies and procedures for responding to spills and leaks.

C. Current and Historic Structural Controls and Management Practices

Since October 30, 1989, Indian Basin Gas Plant has been operated under the conditions of a Groundwater Discharge Plan (GDP). That GDP was approved by the State of New Mexico and includes the following aspects that affect storm water runoff:

- 1. A large uphill diversion berm has been constructed around the north and west sides of the plant. It diverts surface runoff away from the plant and reduces the volume of water that can potentially contact polluting materials at the plant.
- 2. Containment devices have been constructed around most of the chemical storage areas. In most cases, the containment device is an earth berm. In other cases (such as the sulfuric acid tank at the water treatment unit), a steel pan with manual valve is used for secondary containment. Marathon Oil Company is attempting to reduce the use of drums at the IBGP and rely more on bulk chemical storage.
- 3. Product effluent from most plant equipment is drained through a closed system. In addition, an open collection system has been constructed around much of the plant process equipment. The system consists of concrete pads with curbs, concrete troughs covered with steel grates, drainage collection pipes, sumps and sump pumps. The purpose of this system is to capture material that originates from a leak or spill, convey it to the sump, and pump it into the skimmer basin. Material collected in this manner is ultimately reprocessed or

ł.

disposed in the injection well. (Refer to the "Plant Processes" section of the GDP, pages 5 and 6 for descriptions of an integrity test on the open collection system and closed drain system disposal procedures.)

- 4. Material handling practices include employee education as to proper procedures and spill/leak response, storing chemical containers in containment berms, and routine inspections.
- 5. Domestic sewage is treated with a septic system on the plant site. It does not contribute any flow to storm water runoff. There are three septic treatment systems, and a warning to avoid non-domestic sewage is posted on each one.
- 6. Plant equipment is periodically cleaned with detergents, solvents or steam. Consistent with the GDP, cleaning effluent is captured and recycled by Safety-Kleen. As a result, it does not contact storm water.
- 7. The SPCC for the IBGP has recently been revised, and plant spill response capabilities have been improved.
- 8. Underground Storage Tanks are not used at IBGP.
- 9. Spent process catalyst is not exposed to storm water.

D. Current Storm Water Treatment Practices

Storm water from approximately 4 acres of the site drains to the southeast corner and passes through a vegetated strip. Storm water from the remainder of the site drains as sheet flow to the south where it passes through approximately 800 feet of vegetation before it reaches Rocky Arroyo.

E. Spills and Leaks

Since September 9, 1989, there have been five spills or leaks of reportable quantity. They are identified on Exhibit 5 and summarized in Appendix 2. A copy of the SPCC plan is included in Appendix 3. The following information excerpted from pages 7-11 of the GDP "Plant Processes" section describes spill and leak techniques at the IBGP.

F. Sampling Data

There is no storm water quality data available for the IBGP.

i

ł.

1

ì

G. Risk Identification and Summary of Potential Pollutant Sources

The most significant risk for storm water pollution is a spill or leak of petroleum hydrocarbon, sulfur, glycol or other process chemicals. This risk is the reason Marathon Oil has been upgrading collection and containment capabilities since the late 1980's. Potential pollutant sources are summarized below. The purpose of this summary is to identify areas that need to be inspected and where storm water pollution prevention must be practiced.

- 1. Petroleum hydrocarbons spilled or leaked from pipelines, process vessels or process piping. Potential locations include all portions of the site with piping and process equipment. Runoff would flow as indicated on Exhibit 4.
- 2. Molten sulfur produced in the Sulfur Recovery Unit is loaded into trucks. A spill or leak during the handling process constitutes a potential storm water pollutant.
- 3. Solid wastes, if not controlled in the dumpster, could create a potential pollutant source.
- 4. Solid sulfur at the west storage pit is a potential pollutant source.
- 5. Particulate accumulation downwind from the flares and stacks could contain pollutants.
- 6. Drum and equipment storage areas could contain pollutants.
- 7. Dust produced by operations is not a significant problem at this plant.

V. STORM WATER MEASURES AND CONTROLS

Existing storm water controls consist of two primary techniques: reducing runoff and controlling pollutants. Runoff volume from the plant is reduced as a result of the berm along the north and west sides. It shields the site and keeps uphill sheet flow from entering the plant. This reduces the volume of storm water, and thereby reduces the magnitude of the storm water pollution control task.

Pollutant control is accomplished by maintaining materials in tanks, vessels and pipes. This is described in other parts of this SWPPP and in detail in the GDP. The GDP also specifies construction of other improvements that aid in storm water pollution prevention. The improvements were begun during 1989 and are still in progress. Improvements completed to date include:

ì

Ì

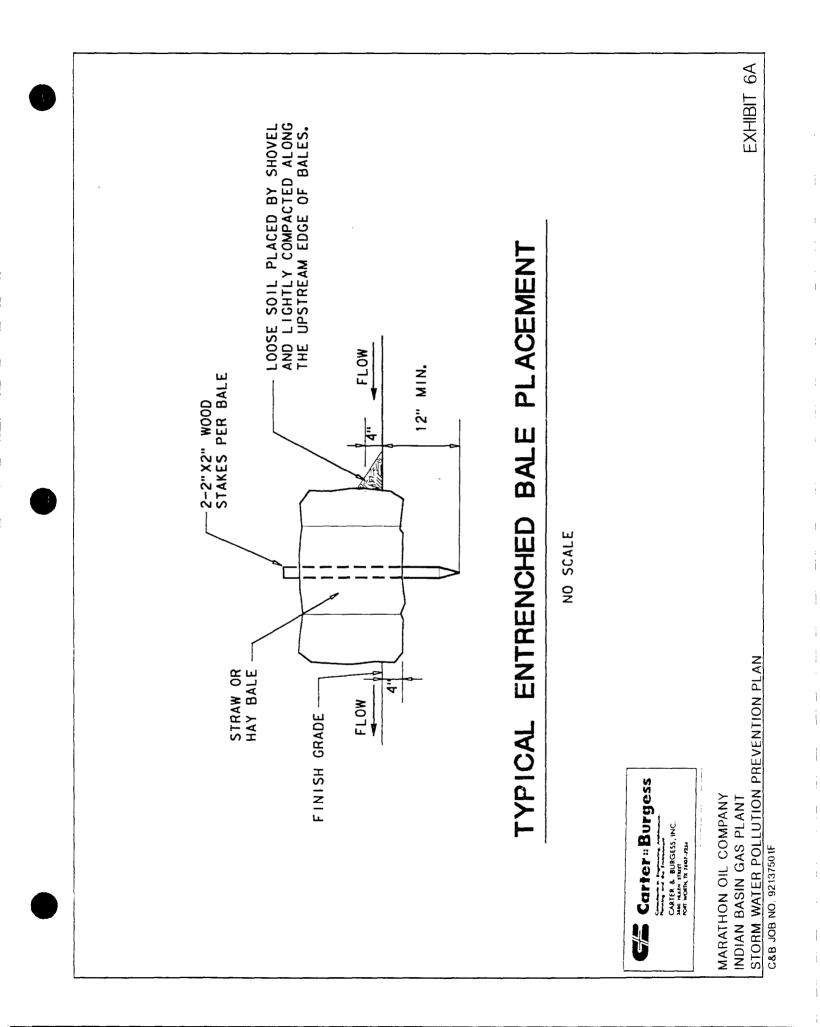
Ì

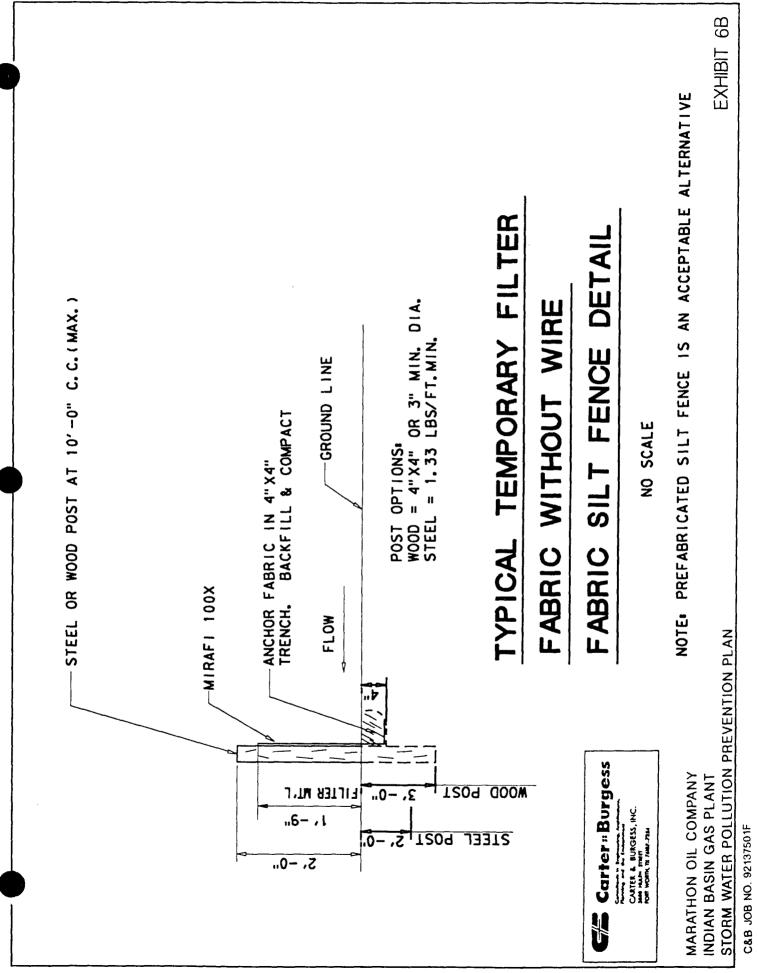
- 1. Construction of secondary containment around most above ground storage tanks,
- 2. Containment and/or elimination of small equipment leaks,
- 3. Construction of secondary containment for drum storage areas,
- 4. Clean up of areas of significant ground contamination,
- 5. The closed drain system tank (including the salt water tank) is tested twice each year, and
- 6. Continued use and maintenance of the bermed landfarm for treatment of contaminated soil.

Additionally existing berms will be supplemented in order to completely contain the landfarm/sulfur pit/dumpster area.

Experience with plant operations indicates that current controls and procedures provide protection against storm water pollution under normal circumstances. In addition, downslope vegetation provides filtering and treatment to surface flow before it reaches Rocky Arroyo. Procedures and safeguards implemented under the SPCC and GDP provide further protection against storm water pollution.

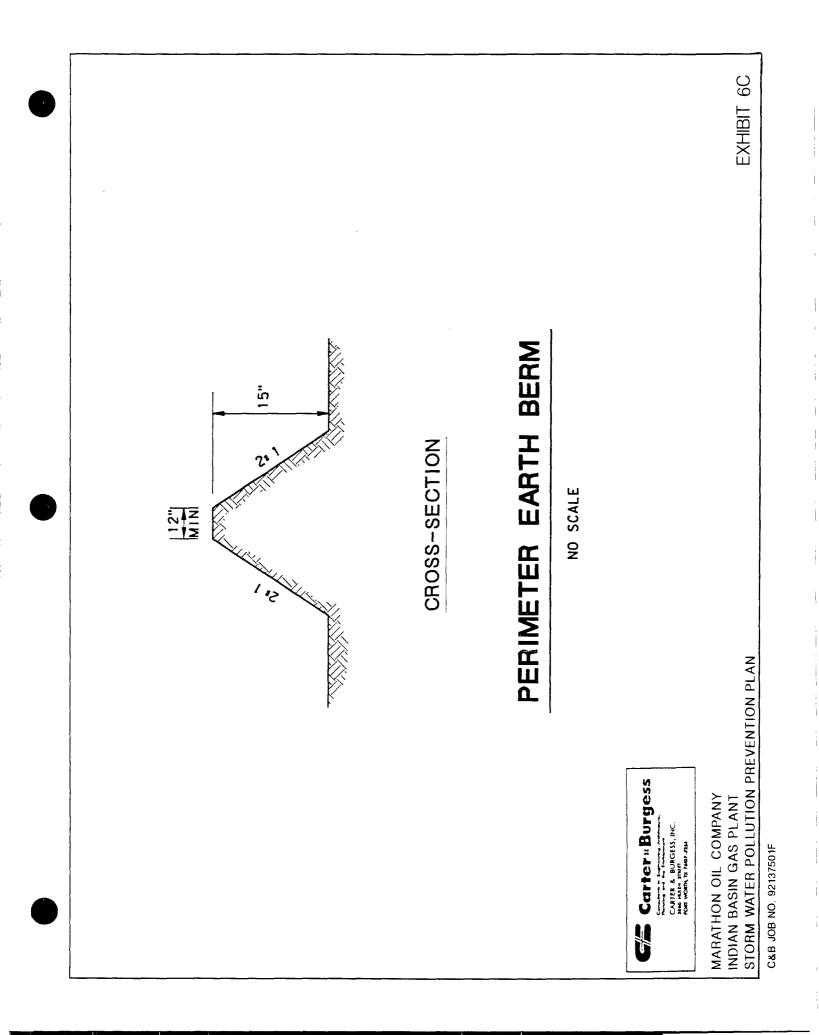
If future experience indicates that additional storm water pollution prevention techniques should be employed, the following two are suggested for this plant.


A. Downslope Containment Device


A surface water runoff containment device could be constructed downslope from the plant. The purpose is to capture and contain runoff from the entire plant and adjacent storage areas. It is expected the device would provide two significant benefits: backup spill containment and increased plant surface water runoff treatment by means of a vegetated buffer.

Sample devices are shown on Exhibits 6A, 6B and 6C. Any combination of these or similar low maintenance devices could be utilized. The suggested placement would be to create a continuous barrier around a ground contour.

B. Increased Vegetation


The suggested location is along the uphill side of a containment device. It will perform in conjunction with the downslope containment device described above. Native vegetation and/or improved grass can be utilized. The selection of vegetation would be based on experience at the plant.

ł

VI. GOOD HOUSEKEEPING

A very important aspect of storm water pollution prevention is "good housekeeping." The purpose is to minimize pollutant exposure to rainfall and runoff. It should become part of routine plant operation. The main components are: Awareness, Involvement and Alertness – Awareness that it is important to guard against potentially polluting circumstances; Involvement of each person at the plant to participate in storm water pollution prevention; and Alertness to improvements in practices or structural controls that could reduce pollution potential at the plant. A few specific examples of housekeeping considerations are listed below. The Team and others at the plant should identify additional considerations as experience suggests.

- 1. Drums should be sealed and stored inside containment berms,
- 2. Waste material (even personal items) should be disposed of in the approved manner,
- 3. To the maximum extent possible, equipment and building cleaning shall be done without detergents, and
- 4. Equipment and vehicles should be inspected routinely for leaks.

A. Inspection and Preventive Maintenance

- 1. Storm water controls shall be inspected on a regular schedule by the Team Leader who will assess effectiveness and integrity of the following items:
 - a. Containment Berms -- Inspect visually to make sure they have consistent height and thickness,
 - b. Materials Storage Practices -- Assess current practices for possible improvements and compare to the requirements of the GDP and this SWPPP,
 - c. Piping and Storage Vessels -- Perform visual inspections and pressure tests as experience indicates is appropriate,
 - d. Vehicle Operation and Service Areas -- Remove contaminated soil and place it in the landfarm,

ł

- e. Inspect the landfarm soil for signs of oil (such as a sheen or odor). If oil is detected, increase frequency of turning and watering the soil. Increase capacity of the landfarm if needed, and
- f. Housekeeping Practices -- Remain alert for practices and controls that could be altered to increase protection against pollution. Note ideas during inspections and discuss them with the Team Leader.
- 2. If additional controls are implemented, inspect such items as:
 - a. Downslope Containment Device(s) -- Check for uniformity and complete coverage, and
 - b. Vegetated Buffer -- Check for hardiness and coverage. Supplement with more and/or different vegetation in order to maximize the effectiveness of this treatment technique.

VII. SPILL PREVENTION AND RESPONSE PROCEDURES

All employees have responsibility for responding to spill situations without waiting for instructions from a supervisor or company officer. Marathon Oil Company has implemented specific spill response procedures. They are described in the Spill Prevention Control Countermeasure Plan and the Groundwater Discharge Plan. Current versions of both plans are included here by reference.

Possible spill materials are listed below in the anticipated order of potential magnitude:

- 1. Petroleum hydrocarbons,
- 2. Process chemicals,
- 3. Sulfur, and
- 4. Solid Waste.

VIII. EMPLOYEE TRAINING

All employees shall be trained to prevent storm water pollution. The Team Leader has ultimate responsibility for employee training. The Team Leader will initially train all employees regarding storm water pollution prevention at the plant, and thereafter initiate new employees to the procedures. Additional training will be scheduled at the same meetings when the SPCC is discussed.

- A. Employees will be informed of:
 - 1. The need for storm water pollution prevention,
 - 2. Goals of plant storm water pollution prevention efforts,
 - 3. Categories of materials that represent significant potential for storm water pollution and approved handling procedures,
 - 4. Operational practices that could minimize storm water pollution (Good Housekeeping),
 - 5. Techniques for avoiding storm water pollution,
 - 6. Spill response procedures,
 - 7. Team structure and communication channels regarding storm water pollution prevention, and
 - 8. Existence of fines and civil penalties for storm water pollution.
- B. The Team Leader will further encourage employees to present ideas that could improve plant storm water pollution prevention.

IX. RECORDKEEPING AND INTERNAL REPORTING PROCEDURES

The Team Leader shall inspect the entire plant site on a regular schedule and after each rainfall event that produces significant surface runoff. A STORM WATER INSPECTION REPORT form shall be completed for each inspection. Spills and leaks shall be corrected according to requirements of the GDP and the SPCC.

- A. The Team Leader shall keep the following records at the plant site:
 - 1. This original SWPPP and all revised versions,
 - 2. Minutes of employee training sessions,

- 3. Copies of all inspection and spill response reports,
- 4. Copies of exhibits utilized for storm water pollution planning and control, and
- 5. Copies of communications with the State of New Mexico, U.S. Environmental Protection Agency and all other parties concerning storm water pollution matters.

(Additional copies of the documents listed above can be kept at other locations, but the originals shall be kept at the plants.)

- B. Open communications shall be used for matters relating to storm water pollution. The following principles are guidelines for communications, but may be modified when direct action is needed to reduce storm water pollution.
 - 1. Each employee is empowered to take immediate action to prevent or reduce storm water pollution. All such actions shall be reported at the first available opportunity to the Team Leader.
 - 2. Any employee can ask questions, discuss ideas, make suggestions or any other matter regarding storm water.
 - 3. The Team Leader has responsibility and authority over daily plant operations as they relate to storm water pollution prevention.

X. NON-STORM WATER DISCHARGES

Marathon Oil Company certifies that discharges from the Indian Basin Gas Plant have been evaluated and that there are no non-storm water discharges present in runoff from the plant. (Note that the only necessary method of evaluation at the IBGP is visual inspection.) Potential non-storm water discharges are materials spilled or leaked from the plant, or storm water that has contacted any material not listed below. In that regard, the only permitted non-storm water discharges from the IBGP are:

- 1. Discharges from fire fighting activities,
- 2. Potable water sources,
- 3. Irrigation drainage,
- 4. Lawn watering,

- 5. Routine external building and equipment washdowns which do NOT include use of detergents,
- 6. Air conditioning condensate,
- 7. Springs, and
- 8. Uncontaminated groundwater.

XI. EROSION, SEDIMENT AND DUST CONTROL

Erosion and sediment do not appear to be significant contributors to storm water pollution at the IBGP. In spite of this, inspections should monitor soil erosion, sedimentation and dust caused by vehicle traffic as potential sources of storm water pollution. If they prove to be significant sources, controls will be necessary.

XII. RUNOFF MANAGEMENT

The techniques described previously for controlling storm water pollution are considered appropriate for initial use at the IBGP. Prevention and control of storm water pollution at the plant is a continuing process. Additional or modified techniques shall be tested and/or implemented as Team experience suggests. The process is evolving, but the goal will always be to develop the most effective techniques, procedures and controls for avoiding storm water pollution.

XIII. COMPREHENSIVE SITE COMPLIANCE EVALUATION

The Team Leader shall conduct annual Comprehensive Site Compliance Evaluations. The purpose is to determine whether the plant is in compliance with the SWPPP and, as an additional consideration, whether the current SWPPP is effective. The Comprehensive Site Compliance Evaluation shall include the following three steps.

A. Step 1 - Site Inspection

The site shall be thoroughly inspected. Areas that drain any plant operation shall be visually inspected for evidence of, or the potential for, pollutants entering the drainage paths. Measures and Controls described previously shall be evaluated to determine whether they are operating correctly, whether they are adequate, or whether additional and/or different Measures and Controls are needed. A visual inspection shall be made of equipment needed to implement and maintain the Measures and Controls (including spill response equipment).

B. Step 2 - Revisions to the SWPPP

The SWPPP shall be updated based on the results of the inspection. The goal of revising the SWPPP is to increase effectiveness of pollutant reduction Measures and Controls. Particular attention shall be paid to updating Part IV, POTENTIAL POLLUTANT SOURCES and Part V, STORM WATER MEASURES AND CONTROLS. Revisions to the SWPPP shall be made under the supervision of the Team Leader. Changes identified in the SWPPP revision shall be fully implemented within twelve weeks after the Comprehensive Site Evaluation.

C. Step 3 - Inspection Report

The Team Leader shall prepare, or supervise preparation of, the COMPREHENSIVE SITE EVALUATION SUMMARY REPORT. A blank copy is included in Appendix 4. It shall be signed by a responsible corporate officer or his duly authorized representative. (Refer to Part VII.G. of the NPDES nationwide general permit for additional information.)

XIV. CONSISTENCY WITH OTHER PLANS

If this SWPPP conflicts in any regard with other plans affecting storm water quality at the plant sites, the more stringent requirement shall be followed.

XV. EPCRA SECTION 313 REQUIREMENTS

Based on current information, IBGP is not a plant subject to EPCRA Section 313 water priority chemical regulations.

The Standard Industrial Classification Code (SIC Code) for the IBGP is 1311.

XVI. SAMPLING REQUIREMENTS

At present, there will not be storm water sampling and testing at IBGP. If, however, future circumstances require Marathon Oil Company to submit a Form R to the EPA for IBGP, or if Section 313 water priority chemicals are exposed to storm water, water quality monitoring will probably be required thereafter. L

XVII. PROPER OPERATION AND MAINTENANCE

IBGP shall at all times properly operate and maintain all Measures and Controls described in Part V (or added after the initial SWPPP), plus related appurtenances. Regarding supplemental protection, the NPDES General Permit states that, "Proper operation and maintenance requires the operation of backup or auxiliary facilities or similar systems, installed by a permittee only when necessary to achieve compliance with the conditions of the permit."

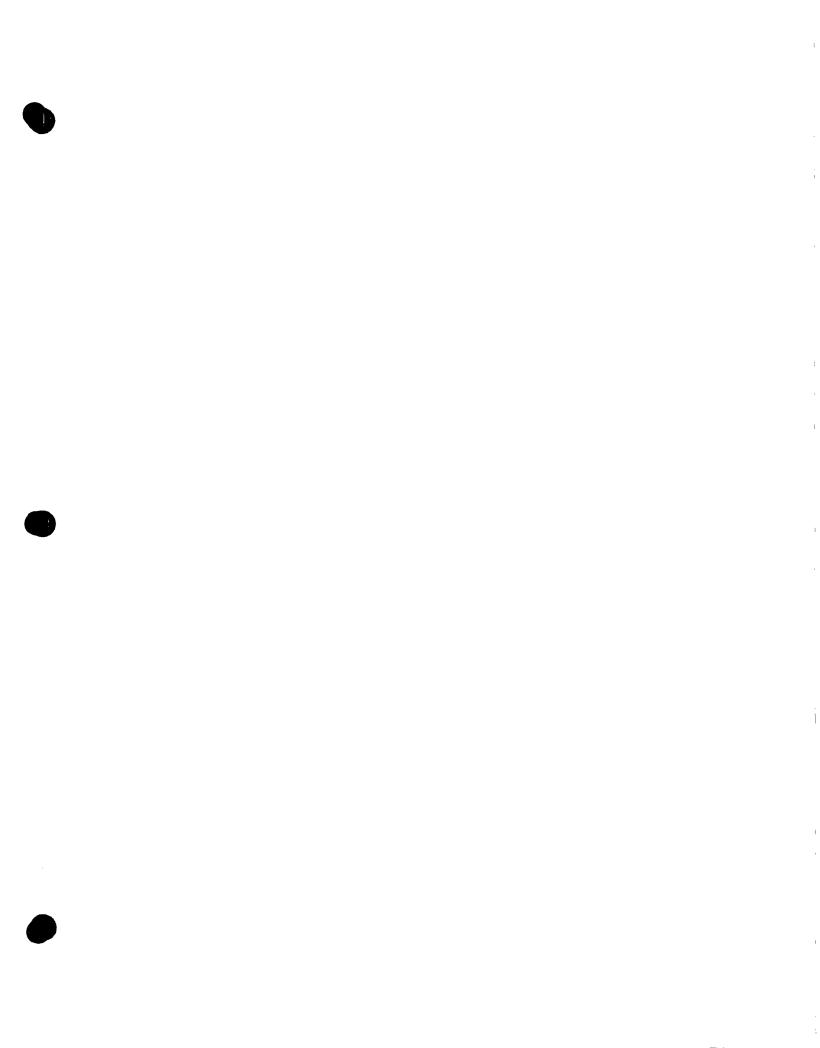
XVIII. CERTIFICATION

The following certification shall be signed by a responsible corporate officer of Marathon Oil Company or by a duly authorized representative of that person. (Refer to Part VII.G. of the General Permit for additional information.)

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Signature

A. R. Kukla


Name

Title

Production Manager Mid-Continent Region

6/27/94

Date

NAME	TITLE	OFFICE PHONE NUMBER	EMERGENGY PHONE NUMBER	RESPONSIBILITIES
MIKE SCHWESER	FOREMAN			Implement Initial SWPPP (1)
MIKE SCHWESER	FOREMAN			Train Employees about NPDES (2) and SWPPP
MIKE SCHWESER	FOREMAN			Maintain Pollution Prevention Controls
MIKE SCHWESER	FOREMAN			Perform Routine Inspections and Fill Out Report Forms
MIKE SCHWESER	FOREMAN			Assess Performance of Controls and Procedures
MIKE SCHWESER	FOREMAN			Decide When to Revise Controls and Procedures
MIKE SCHWESER	FOREMAN			Implement Revisions to Controls and Procedures
MIKE SCHWESER	FOREMAN			Revise SWPPP when Controls and/or Procedures Change

SWPPP - Storm Water Pollution Prevention Plan. NPDES - National Pollutant Discharge Elimination System Program, administered by the U.S. Environmental Protection Agency. £ £ l

1

ì

i

i

.

.

- ----

STORM WATER POLLUTION PREVENTION TEAM MARATHON OIL COMPANY

NAME	TITLE	OFFICE PHONE NUMBER	EMERGENGY PHONE NUMBER	RESPONSIBILITIES
MIKE SCHWESER	FOREMAN			Maintain File for SWPPP and Supporting NPDES Documents
MIKE SCHWESER	FOREMAN			Spill Prevention - Set up Emergency and Reporting Procedures to Isolate and Contain Section 313 Water Priority Chemicals
MIKE SCHWESER	FOREMAN			Evaluate and Report Spills
MIKE SCHWESER	FOREMAN			Conduct Comprehensive Spill Compliance Evaluation

2

T

1

i

Ì

i

ł

ł

	TEAM	Y
STORM WATER	POLLUTION PREVENTION TEAM	MARATHON OIL COMPANY

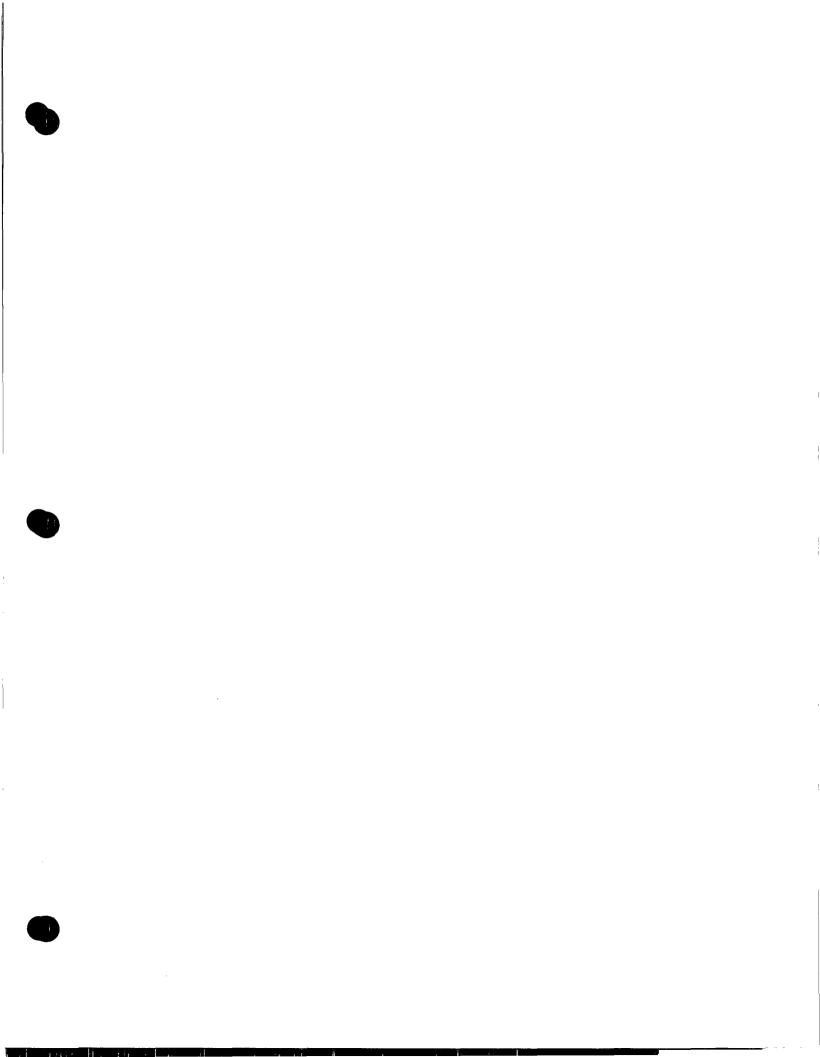
NAME	TITLE	OFFICE PHONE NUMBER	EMERGENGY PHONE NUMBER	RESPONSIBILITIES
				Implement Initial SWPPP (1)
				Train Employees about NPDES (2) and SWPPP
				Maintain Pollution Prevention Controls
				Perform Routine Inspections and Fill Out Report Forms
				Assess Performance of Controls and Procedures
				Decide When to Revise Controls and Procedures
				Implement Revisions to Controls and Procedures
				Revise SWPPP when Controls and/or Procedures Change

- SWPPP Storm Water Pollution Prevention Plan. NPDES National Pollutant Discharge Elimination System Program, administered by the U.S. Environmental Protection Agency. £ 6

ì.

i

ł


İ.

STORM WATER POLLUTION PREVENTION TEAM MARATHON OIL COMPANY

NAME	TITLE	OFFICE PHONE NUMBER	EMERGENGY PHONE NUMBER	RESPONSIBILITIES
				Maintain File for SWPPP and Supporting NPDES Documents
				Spill Prevention - Set up Emergency and Reporting Procedures to Isolate and Contain Section 313 Water Priority Chemicals
				Evaluate and Report Spills
				Conduct Comprehensive Spill Compliance Evaluation

								·	 	 	
		CAUSE	N/A	A leak occured within a suction line to out-of-service condensate tanks.	N/A	N/A	N/A				
ARY		QUANTITY RECOVERED	2 BBLS	250 BBLS	0 BBLS	S BBLS	0 BBLS				
SPILL SUN. ARY		SPILL QUANTITY	14 BBLS	258 BBLS	10 BBLS	15 BBLS	10 BBLS				
		SPILL TYPE	CONDENSATE	CONDENSATE	CONDENSATE	CONDENSATE/WATER	CONDENSATE				
		DATE	11-15-92	01-21-92	08-22-90	04-30-90	11-22-89				
	<u></u>	SPILL #	1306	385	960	962	906				

STORM WATER POLLUTION PREVENTION PLAN MONTHLY INSPECTION REPORT INDIAN BASIN GAS PLANT EDDY COUNTY, NEW MEXICO

Date:

Inspector (please print):

ITEM	IN CONFORMANCE	EFFECTIVE	VIOLATIONS, RECOMMENDATIONS, AND COMMENTS
Uphill diversion berm	YES/NO	YES/NO	
Equipment drip pads, collection and sump/pump system	YES/NO	YES/NO	
Secondary containment devices	YES/NO	YES/NO	
Solid waste collection	YES/NO	YES/NO	
Contaminated soil disposal	YES/NO	YES/NO	
Perimeter security fence	YES/NO	YES/NO	
Drum and chemical storage	YES/NO	YES/NO	
Housekeeping	YES/NO	YES/NO	
	YES/NO	YES/NO	

NOTE: These reports shall be kept on file as part of the storm water pollution prevention plan for at least one year from the date that the permit expires.

that qualified personnel property gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for CERTIFICATION STATEMENT: "I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Name: Marathon Oil Company Address: P.O. Box 522, Midland, Texas 79702-5233 Telephone: (915)682-1626

Inspector Signature:

1

STORM WATER POLLUTION PREVENTION PLAN COMPREHENSIVE SITE COMPLIANCE REPORT INDIAN BASIN GAS PLANT EDDY COUNTY, NEW MEXICO

Date:

110

Inspector (please print):____

ITEM	IN CONFORMANCE	EFFECTIVE	VIOLATIONS, RECOMMENDATIONS, AND COMMENTS
Uphill diversion berm	YES/NO	YES/NO	
Equipment drip pads, collection and sump/pump system	YES/NO	YES/NO	
Secondary containment devices	YES/NO	YES/NO	
Solid waste collection	YES/NO	YES/NO	
Contaminated soil disposal	YES/NO	YES/NO	
Pertmeter security fence	YES/NO	YES/NO	
Drum and chemical storage	YES/NO	YES/NO	
Housekeeping	YES/NO	YES/NO	
Spill response equipment	YES/NO	YES/NO	
	YES/NO	YES/NO	

۳.

ì

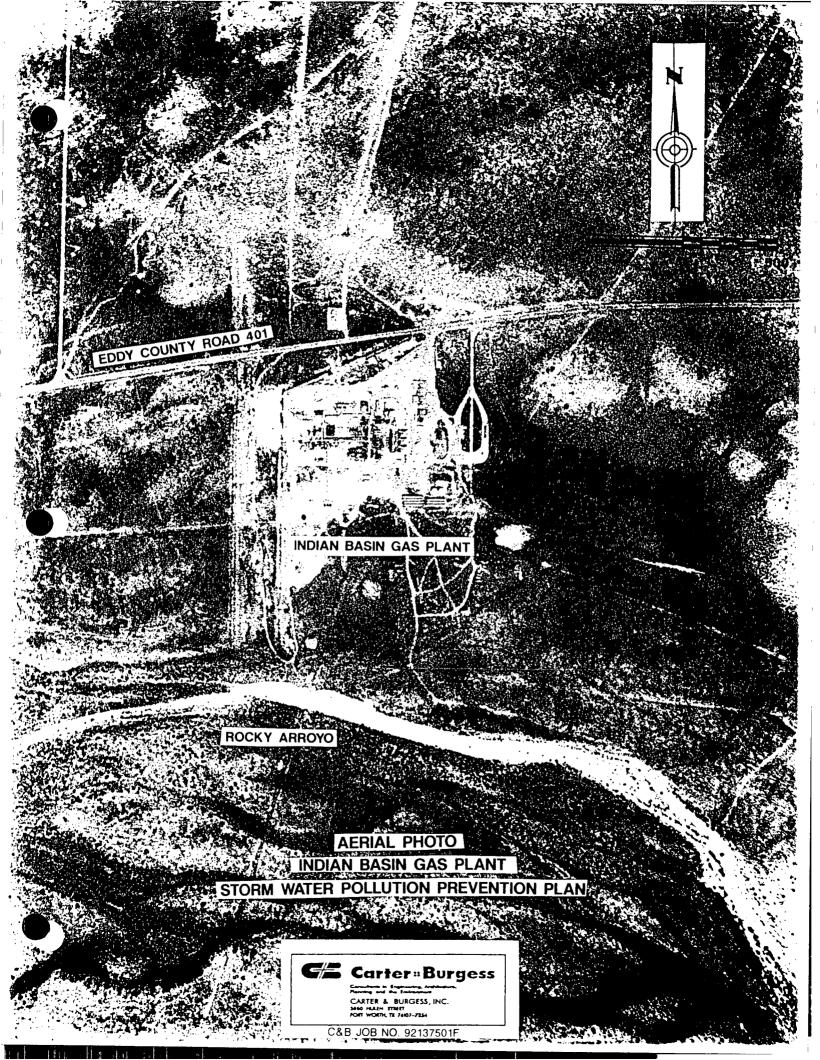
|

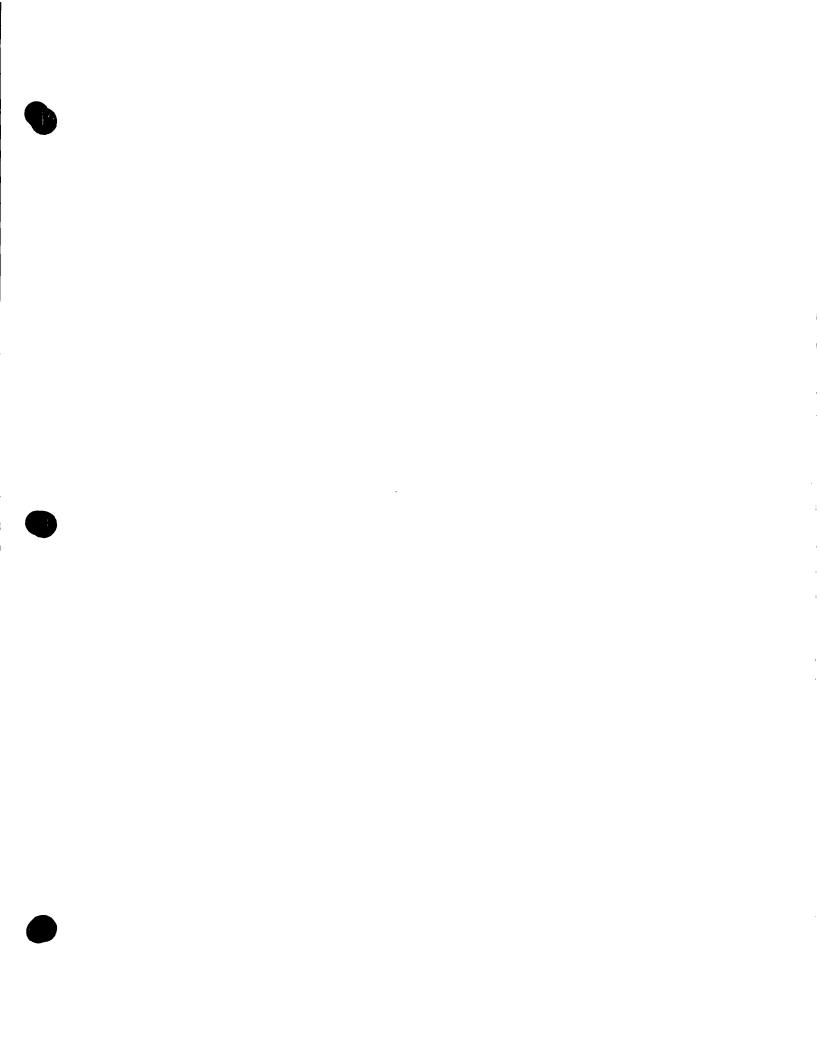
.....

į

NOTES:	These reports shall be kept on file as part of the storm water pollution prevention plan for at least one year from the date that the permit expires.
	If there are no incidents of non-compliance noted, signing this form indicates that the facility is in compliance with the Storm Water Pollution Prevention Plan and the general permit.
	The Storm Water Pollution Prevention Plan shall be revised within two weeks after the date of this inspection if changes are required, based on the results of the inspection. Revisions include changes to the description of potential pollutant sources and measures and controls.
	Any revisions made to the Storm Water Pollution Prevention Plan shall be implemented within twelve weeks after the date of this inspection.
CERTIFICATI In accordanc inquiry of the submitted is, information, ii	CERTIFICATION STATEMENT: "I certify under penalty of law that this document and all attachments were prepared under my direction or supervision In accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."
Name: Address: Telephone:	Marathon Oli Company P.O. Box 552, Midland, Texas 79702-5233 (915)682-1626

Inspector Signature:


2


ţ

-

. I

i .

TORM WATER National Pollutant Discharge Elimination System (NPDES) U.S. Environmental Protection Agency GENERAL PERMIT COVERAGE NOTIC

m

S

December 31, 1992

Dear Operator:

Protection Agency. This facility is authorized to discharge storm water associated with industrial or issued for use in the state of New Mexico. Your facility's NPDES storm water permit number is NMR00A170. construction activity under the terms and conditions imposed by EPA's NPLES storm water general permit Your Notice of Intent (NOI) for the facility noted below has been processed by the U.S. Environmental

conditions must be complied with to maintain coverage and avoid possible penalties. planning process. possible monitoring and reporting, and annual inspections. Among the conditions and requirements of this assistance. As a facility authorized to discharge under this storm water general permit, all terms and implementation of your FPP. The summary is organized according to the phases of the pollution prevention or construction site. Enclosed is a summary guidance document designed to assist you in the development and permit, you must prepare and implement a pollution prevention plan (PFP) that is tailored to your industrial EPA's storm water general permit requires certain storm water pollution prevention and control measures, A set of worksheets and an example of a pollution prevention plan are provided for your

FACILITY:

Marathon Dil Co 329 Marathon Rd Lakewood , NM 88254-322756, 1043414

.

OPERATOR:

Marathon Oil Company Fo Box 552 Midland, TX 79702-

If you have general questions concerning the rigra water program, or need to obtain ω copy of the permit, please call the St ater Hotline at (703) 821-4823.