GW -

REPORTS

YEAR(S):

Groundwater Discharge Plan GW-21 ^{for} Indian Basin Gas Plant

329 Marathon Road (Eddy County Road 401) Lakewood, New Mexico

Prepared For:

Marathon Oil Company Southern Business Unit P.O. Box 3487 Houston, Texas 77253-3487

Submitted to:

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

On behalf of:

Working Interest Owners

September 17, 2004

Groundwater Discharge Plan GW-21 for

Indian Basin Gas Plant

329 Marathon Road (Eddy County Road 401) Lakewood, New Mexico

Prepared For:

Marathon Oil Company Southern Business Unit P.O. Box 3487 Houston, Texas 77253-3487

Submitted to:

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

On behalf of:

Working Interest Owners

September 17, 2004

Groundwater Discharge Plan for Indian Basin Gas Plant

TABLE OF CONTENTS

<u>S</u>	<u>ecti</u>	on			Page
	1.0	TYF	E OF OPER	RATION	1
	2.0	OPE	RATOR/LE	EGALLY RESPONSIBLE PARTY & LOCAL REPRESENTAT	IVE .1
	3.0	LOC	ATION OF	F FACILITY	1
	4.0	LAN	DOWNER.		1
	5.0	FAC	ILITY DES	SCRIPTION	2
	6.0	MA	TERIALS ST	TORED/USED AT THE FACILITY	2
	7.0	SOL	RCES AND	D QUANTITIES OF EFFLUENTS & WASTE SOLIDS	2
		7.1	Effluents		2
		7.2	Solid and I	Liquid Wastes	3
		7.3	Effluent and	nd Solid Waste Quality Characteristics	3
			7.3.1 Com	nmingled Effluent	3
			7.3.2 Was	stewater and Treated Groundwater Quality Characteristics	4
			7.3.3 Solid	id Waste Quality Characteristics	4
	8.0	TRA	NSFER AN	ND STORAGE OF PROCESS FLUIDS AND EFFLUENTS	4
		8.1	Onsite Coll	lection and Storage Systems	4
			8.1.1 Oper	en Drain System	5
			8.1.2 Desc	cription of Integrity Test of Open Drain System	5
			8.1.3 Close	sed Drain System	5
		8.2		of Tanks and Vessels	

ļ

TABLE OF CONTENTS

1

(Continued)

<u>Section</u>	<u>n</u>			Page
	8.3	Meas	sures to Prevent Unintentional and Inadvertent Discharges	6
		8.3.1	Secondary Containment for Tanks	6
		8.3.2	Chemical and Drum Storage Area Containment	6
		8.3.3	New and Existing Sump Inspection	6
		8.3.4	Aboveground Tank Inspection	6
		8.3.5	Process Areas	6
		8.3.6	Housekeeping	6
	8.4	Unde	rground Pipelines	7
	8.5	Efflu	ent Disposal	7
		8.5.1	On-site Disposal	7
		8.5.2	On-site Treatment	7
			8.5.2.1 Treatment of Soils	7
			8.5.2.2 Vadose Zone Monitoring, Sampling, and Notification	8
		8.5.3	Off-site Disposal	8
			8.5.3.1 Injection Wells	8
			8.5.3.2 Commercial Disposal Facilities	8
9.0	PR	OPOSE	ED MODIFICATIONS	8
10.0	INS	SPECT	ION, MAINTENANCE, AND REPORTING	9
	10.1	Rout	tine Inspection Procedures	9
	10.2	Rout	tine Maintenance Procedures	9
	10.3	Rout	tine Reporting Procedures	9
	10.4	Stor	mwater Runoff and Flood Protection	9

TABLE OF CONTENTS

(Continued)

Section	Page
11.0 SPIL	L/LEAK PREVENTION & REPORTING (CONTINGENCY PLANS)10
12.0 SITE	CHARACTERISTICS
12.1 12.2	Geologic Description of Discharge Site
13.0 OTH	ER COMPLIANCE INFORMATION11
	TABLES
Table 1.	Effluents and Estimated Volumes.
Table 2.	Waste Sources, Waste Classification, and Waste Treatment/Disposal Methods.
Table 3.	Inventory of Tanks.
Table 4.	Inventory of Process Vessels.
Table 5.	Underground Piping.
Table 6.	Soil Treatment Cleanup Standards.
	FIGURES
Figure 1.	Topographic Map of Plant and Surrounding Area.
Figure 2.	Facility Diagram of the Plant.
Figure 3.	Process Flow Schematic.
	APPENDICES
Appendix A.	Laboratory Results of Commingled Discharge Fluid.
Appendix B.	Spill Prevention and Control Plan.
Appendix C.	Stormwater Pollution Prevention Plan.
	iii

ł

ī.

1

Marathon Oil Company Indian Basin Gas Plant

G roundwater Discharge Plan

for

Indian Basin Gas Plant

1.0 TYPE OF OPERATION

The major purpose of the facility is gas processing. Although the components of the plant have been updated since it first began operations in 1966, the basic function and purpose of the plant have not changed. The plant owners have invested in new technology and replacement of aging equipment as necessary.

2.0 OPERATOR/LEGALLY RESPONSIBLE PARTY & LOCAL REPRESENTATIVE

The name of the operator is Marathon Oil Company. The mailing address for the Southern Business Unit is P.O. Box 3487, Houston, Texas 77253-3487. The telephone number for the Region office in Houston is (713) 629-6600.

The local Marathon Oil Company representative at the Indian Basin Gas Plant is Tom Breninger, Plant Superintendent. The street address of the plant is 329 Marathon Road (Eddy County Road 401), Lakewood, New Mexico. The mailing address is P.O. Box 1324, Artesia, New Mexico 88211. The plant telephone number is (505) 457-2621.

3.0 LOCATION OF FACILITY

The Indian Basin Gas Plant (facility) is located in the Northeast 1/4 of Section 23, T21S, R23E, NMPM, Eddy County, New Mexico, approximately 20 miles west of Carlsbad and 28 miles southwest of Artesia. Figure 1 is excerpted from the U.S.G.S. 7.5-minute topographic quadrangle, titled "Martha Creek", showing the location of the facility.

4.0 LANDOWNER

Marathon Oil Company is the landowner of record of a 160-acre site legally described as the Northeast 1/4 of Section 23, T21S, R23E, NMPM, Eddy County, New Mexico. The gas plant facility, which consists of approximately 60 acres, is located on the 160-acre property. Marathon's corporate headquarters address is P.O. Box 3128, Houston, Texas, 77253. Correspondence regarding the site should be directed to Tom Breninger, Plant Superintendent, at the plant address provided in Section 2.0.

5.0 FACILITY DESCRIPTION

The gas plant facility approximately occupies the Southwest 1/4 of the Northeast 1/4 of Section 23, T21S, R23E. Figure 1 shows the plant site, the boundary of the 160-acre property, and the adjacent property managed by the BLM. Figure 2 is a facility diagram of the gas plant site showing the plant perimeter fence, stormwater berms, primary facility tanks, cooling tower, landfarm, treatment cell, groundwater remediation system, sulfur pit, closed landfill, locations of chemical and fuel storage facilities, processing facilities, and drum storage areas.

6.0 MATERIALS STORED/USED AT THE FACILITY

A list of materials stored and used at the facility is included in Tables 3 and 4. See section 8.0 for more information.

7.0 SOURCES AND QUANTITIES OF EFFLUENTS & WASTE SOLIDS

Wastes that are generated at the gas plant consist of commingled effluent (Section 7.1) and solid and liquid wastes (Section 7.2). The commingled effluent is gathered by the drain and sump system and the solid and liquid wastes are generated at the plant but are not part of the commingled effluent.

7.1 Effluents

The commingled effluent consists of produced water and various other plant effluents. The individual waste effluent streams in the commingled effluent are identified in Table 1. The waste effluent streams from the various plant processes are collected and conveyed by the open drain piping system, the closed drain piping system, and several underground pipelines. Effluent volumes at the plant are variable and depend upon plant and field operations. Commingled effluent is normally discharged into a Marathon-operated Class II injection well – identified as the AGI #2 well -- located on adjacent Bureau of Land Management (BLM) property. (Note: Another formerly-used injection well located southeast of the plant has been plugged and abandoned.) The commingled effluent is also occasionally trucked off-site to commercial disposal facilities during emergencies.

Produced water, cooling tower blowdown, and boiler and condenser blowdowns consist of a combination of wastewater and chemical additives. The name and volume of additives in each effluent are listed on Table 1. These effluents, effluents from cleaning operations, and miscellaneous plant process effluents are commingled via the open drain piping system, which drains to the skimmer basin before being pumped to the steel saltwater tank.

The new Selexol unit has added two additional effluents. These effluents are outlined in Table 1. The Selexol effluent is drained via the open drain system, and is then sent to a Marathonoperated Class II injection well. It is commingled with the plant disposal system only during an emergency.

2

Marathon Oil Company Indian Basin Gas Plant

Reverse osmosis (RO) wastewater is disposed with plant wastewater. There is no treated groundwater (since January 2003), and no water is injected into the Lower Queen infiltration wells IW-1 and IW-2. During an emergency the effluents are commingled with the plant disposal system and are therefore listed on Table 1.

Domestic sewage is not commingled with other plant effluent and is therefore regulated by the New Mexico Environment Department. Sewage is conveyed through an underground pipeline to one of two underground septic tanks, which are designed to drain the sewage leachate. One of the septic systems was installed prior to December 1972, the other in April 1997.

7.2 Solid and Liquid Wastes

Solid and liquid wastes are generated at the plant that are not part of the commingled effluent or conveyed by underground piping. The waste classification, treatment/disposal methods, treatment/disposal/recycle locations, and waste storage areas are provided in Table 2.

Waste oil is collected from various plant equipment (Table 2) and stored in a 500-gallon waste oil storage tank located on the west side of the plant (Figure 2). The oil is stored in the tank until enough oil accumulates to warrant transport of the oil to a used oil recycling facility. Vehicle motor oil no longer is changed at the plant; rather it is performed off-site.

There are two Safety-Kleen parts cleaning units located in the pumper shack. One of the cleaning units is an open-top spray basin containing naptha solvent and the other unit is a self-contained cleaning unit that contains an aqueous solvent. Safety-Kleen services both units and recycles the solvent whenever the spent solvent is replaced. The naptha solvent is hazardous and the aqueous solvent is non-hazardous. The Environmental Protection Agency (EPA) small quantity generator number for hazardous waste generated at the Indian Basin Gas Plant is NMD 982760183-1235. The EPA hazardous waste site identification is NMO-1406.

Laboratory wastes are a starch and iodine mix, silver nitrate, and water test reagents. These liquids are temporarily stored in a 5-gallon container in the laboratory and later hand carried to a 55-gallon drum in the drum storage area on the west side of the plant. Waste paint is stored in a 55-gallon drum in the drum storage area. Both streams are stored until enough waste has accumulated for disposal/recycle by Safety-Kleen.

7.3 Effluent and Solid Waste Quality Characteristics

7.3.1 Commingled Effluent

On November 8, 1999, a grab sample of the commingled effluent was collected from a valve between the saltwater tank pump and the pipeline to the injection well. Total dissolved solids (TDS), pH, general chemistry, chlorinated hydrocarbons, aromatic hydrocarbons, and Resource Conservation and Recovery Act (RCRA) metals analysis of the effluent sample was conducted by Severn Trent Laboratories (STL). Laboratory results indicated that all commingled effluent constituents are below the WQCC 3-103 standards for groundwater except for benzene, toluene, ethylbenzene, total xylenes, chloride, sulfate, and TDS. The concentrations of benzene, toluene, ethylbenzene, and total xylenes were 4,300, 13,000, 700, and 7,000 µg/l, respectively.

Marathon Oil Company Indian Basin Gas Plant

The laboratory results are included in Appendix A.

Testing for polychlorinated biphenols (PCBs) was not necessary because PCB-contaminated transformers were removed from service at the gas plant before 1981. No other sources of PCB contamination have been identified to warrant testing for PCBs in the plant effluent.

Table 1 lists two plant effluents that contain one or more constituents as defined by WQCC Section 1101.TT. These effluents are the produced water and groundwater contaminated with condensate. It should be noted that the groundwater contaminated with condensate is transferred through an underground pipeline from the treatment compound to the fiberglass saltwater tank only in emergency situations. Treated groundwater is not an effluent anymore. The hazardous constituents that are likely contained in these effluents are benzene, toluene, ethylbenzene, meta-, para-, and ortho-xylenes, and naphthalene.

7.3.2 Wastewater Quality Characteristics

Marathon has been sampling the commingled reverse osmosis (RO) wastewater and the treated groundwater on a monthly basis for benzene, toluene, ethylbenzene and xylenes (BTEX), and on a quarterly basis for major cations/anions and polyaromatic hydrocarbons (PAHs) analysis using EPA approved methods. As described in Section 7.1, reverse osmosis wastewater is commingled with plant waste water and disposed off into the injection well. Pump and treat system, which was used to treat condensate contaminated groundwater was shut-in January 2003 after receiving approval from the OCD. Hence, above referenced monthly sampling of RO wastewater and treated groundwater has been discontinued since.

7.3.3 Solid Waste Quality Characteristics

Most solid wastes generated at the plant are not characterized by the definition in WQCC Section 1101.TT. Table 2, which has been updated to reflect new and modified waste sources, classifies each waste as either exempt, non-exempt (non-hazardous or potentially hazardous), or naturally occurring radioactive material (NORM). All non-exempt wastes will be characterized according to 40 CFR 261 to determine the appropriate method of disposal. After the waste stream has been characterized, the data will be kept on file at the gas plant. Solid wastes will be stored and handled in accordance with all applicable federal and state laws.

8.0 TRANSFER AND STORAGE OF PROCESS FLUIDS AND EFFLUENTS

8.1 Onsite Collection and Storage Systems

The open drain and closed drain systems are used to manage some of the effluents at the plant. Table 1 indicates which effluents are conveyed in the open drain system. These include two of the boiler and condenser blowdowns, cleaning operation effluents, and miscellaneous plant process effluents. Open drain system is used to collect commingled effluents. The closed drain system is used to collect effluent from pressurized vessels.

4

8.1.1 Open Drain System

The open drain system collects plant effluent under atmospheric conditions. The underground part of this system includes: four double-walled fiberglass sumps; one single-walled fiberglass sump at the air compressor building; two single-walled steel sumps (open-drain collection sump and LACT sump); steel collection pots; steel pipelines; and, polyethylene pipelines. The open drain system includes a total of seven underground sumps. The aboveground part of the system consists of concrete drainage and containment pads that collect and drain effluent into the underground part of the system for collection and disposal. All open drain sump pumps send their effluent to the open-drain collection sump where they are commingled. Commingled effluent collected in the open-drain collection sump is pumped to the skimmer basin gunbarrel tank, located on the skimmer basin pad.

8.1.2 Description of Integrity Test of Open Drain System

Seven separate sections of underground piping are tested by filling the piping to volumetric capacity and visually observing any fluctuations in fluid levels at the sump and manway locations. The test is performed at atmospheric conditions for 5 hours. In order to reduce the effects of temperature fluctuations that occur during the day, the test is conducted in the early morning or late evening hours. All sources for active drainage are isolated to prevent accidental introduction of non-test fluids into the system. A successful test has been conducted when the initial fluid levels remain constant throughout the 5-hour test period. The double walled fiberglass sumps are integrity tested by filling the inner chamber to capacity and observing any leaking of fluid from the inner chamber to the outer chamber. A successful test of the double-walled sumps has occurred if fluid does not leak to the outer chamber from the inner chamber during the 5-hour test period. The Johur test period. The double fluid fluid fluid fluid fluid does not leak to the outer chamber from the inner chamber during the 5-hour test period. The double-

Successful integrity tests were conducted on the entire system during two testing periods. Initial testing was completed November 1999 on the majority of the system. Final integrity tests were completed February 2000. Records of all integrity tests are available at the Indian Basin Gas Plant office.

8.1.3 Closed Drain System

The closed drain was constructed in 1980 and modified in 1984 and 1996 and is mainly aboveground. This system is used to collect effluent from pressurized vessels. The maximum operating pressure is 200 psig. The closed drain system is connected to process vessels: inlet filter coalescer, four expander/compressors, three amine contactors, glycol contactor, Selexol contactor, three amine scrubbers, glycol overhead filter coalescer, Selexol scrubber, two amine flash tanks, amine still, Selexol still, glycol inlet filter coalescer, Selexol 3-phase separator, product contactor, new fuel gas scrubber, old fuel gas scrubber, two regen scrubbers, vertical inlet separator, cyclone separator and horizontal inlet separator. (See Figure 3 for a schematic of the process flow.) Steel piping leads from these process vessels to the closed drain scrubber, located near the generators. Collected liquids in the tank are sent to the skimmer basin gunbarrel for recovery and then to disposal via the wastewater injection system.

8.2 Inventory of Tanks and Vessels

Tables 3 and 4 are lists of tanks and vessels, respectively, with a potential to discharge. Table 3 lists the 55 tanks at the plant, and it has been updated to include 4 new storage tanks with liners that were put in service June 2003. Table 4 lists the separators, boilers, exchangers, condensers, scrubbers, and other vessels that are not constructed in impermeable secondary containment and would cause a discharge directly to the ground if the vessel leaked.

8.3 Measures to Prevent Unintentional and Inadvertent Discharges

8.3.1 Secondary Containment for Tanks

All storage tanks, except those that contain uncontaminated freshwater, are bermed to contain 133% of the volume of the largest tank. If two or more tanks are connected within the same containment, the berm contains 133% of the total volume of the interconnected tanks. New or existing tanks that undergo a major modification, as determined by the Division, will be placed within an impermeable enclosure.

8.3.2 Chemical and Drum Storage Area Containment

Drum storage areas are concrete paved and curbed to prevent a potential discharge to the ground of leaking or spilled drum contents. All tanks, drums, and containers will be clearly labeled to identify their contents and other emergency notification information.

8.3.3 New and Existing Sump Inspection

Construction plans for installing new sumps will be submitted to the Oil Conservation Division (OCD) for approval prior to project commencement. New sumps will incorporate secondary containment and leak-detection into the design prior to installation. The only below-grade tank at the plant is the sulfur underground storage tank.

8.3.4 Aboveground Tank Inspection

The glycol storage, 1200-barrel freshwater storage, and steel softwater tanks are on a concrete pad. Therefore, these tanks have leak detection. All other on-ground tanks are inspected every five years.

8.3.5 Process Areas

All process and maintenance areas which show evidence that leaks and spills are reaching the ground surface will be either paved and curbed or have some type of spill collection device incorporated into the design.

8.3.6 Housekeeping

All systems designed for spill collection/prevention will be inspected weekly and after each storm event to ensure proper operation and to prevent overtopping or system failure. A record of inspections will be retained on site for a period of five years.

6

8.4 Underground Pipelines

Table 5 lists underground pipelines that convey either process or waste effluents within the plant. The name of the pipeline, where the fluids are transferred from and to, year of construction or modification, piping diameter, fabrication material, average throughput during use, operating pressure, and the date of the last or next scheduled integrity test of each pipeline are indicated on Table 5. The Marathon procedures for mechanical integrity testing are on file at the plant. The procedures are based upon the third edition (dated December 1993) of the American Petroleum Institute document HP 1110 titled "Pressure Testing of Liquid Petroleum Pipelines."

8.5 Effluent Disposal

8.5.1 On-site Disposal

Surface impoundments or ponds, injection wells, leach fields (except for two septic tanks), drying beds, or other pits do not exist onsite. Onsite disposal of liquid and solid waste effluents is limited to the discharge of cooling tower effluent in the form of a mist onto the ground around the base of the cooling tower and solid sulfur that is discharged onto the ground on the west side of the plant. Marathon no longer uses the solid waste landfill onsite to dispose of exempt plant wastes and office trash. The landfill was closed in 1995.

8.5.2 Onsite Treatment

8.5.2.1 Treatment of Soils

Onsite treatment is limited to treatment of hydrocarbon-contaminated (e.g oil, glycol, and amine) soil. The treatment methods are landfarming, commercial soil shredding, or commercial incineration. The latter two treatment options will be performed by an environmental service company in the landfarm treatment cell. Soil will be treated to below the appropriate standards outlined in Table 6. Vadose zone monitoring will not be performed on the treatment cell if aboveground equipment is used for treatment. The confirmation sampling for the treated soils will be one sample per 50 yards of soil.

All soil is treated in an area on the west side of the plant (Figure 2). Soils from the plant are remediated in this landfarm area. Only soils from the plant presently are remediated in the landfarm area; however, other hydrocarbon-contaminated soils from nearby Marathon production sites may be remediated in this landfarm area. The landfarm area measures approximately 100 feet by 300 feet. The landfarm operates continuously throughout the year. The landfarm was originally constructed in 1989 with a 4-mil plastic liner with approximately 12-inch-high earthen berms on all four sides. Water needed for remediation of soils is trucked in periodically and applied to insure there is no runoff or standing water in the treatment area except during heavy rainfall events.

Soil to be placed in the landfarm will not contain polychlorinated biphenols (PCBs) or heavy metals in hazardous concentrations as defined by the Toxicity Characteristic Leaching Procedure (TCLP). Exempt soil will be directly loaded into the landfarm. Non-exempt soil will

be tested for RCRA metals and PCBs before loading into the landfarm unless process knowledge can be used to eliminate the need for testing.

Landfarmed soil is sampled periodically to determine whether cleanup standards have been achieved. Soil cleanup standards for TPH, total BTEX, and benzene are outlined in Table 6 in accordance with intended usage of the soils.

8.5.2.2 Vadose Zone Monitoring, Sampling, and Notification

In order to ensure that discharges to groundwater from the vadose zone beneath the landfarm will comply with standards in WQCC Section 3103 and Section 1101.TT, a randomly located grab sample will be collected each time treated soil is removed from the landfarm. The sample will be collected from six inches to one foot below grade.

If soil below the landfarm is found to contain TPH or total BTEX concentrations above 100 mg/kg and 50 mg/kg, respectively, the OCD will be notified according to the notification requirements of WQCC Section 1203. Marathon's seven-day written notification will contain **a** plan for the removal of soil from beneath the landfarm that exceeds these standards. If the soil below the landfarm is not found to contain TPH or total BTEX concentrations above the stated levels, then the landfarm will be reloaded and treatment of soil will continue. Laboratory analysis reports of the vadose zone sampling described above will be submitted to the OCD within 15 days of the transmittal date of the laboratory report.

8.5.3 Off-Site Disposal

8.5.3.1 Injection Wells

All exempt gas-plant waste effluents are collected by the open-drain system, closed-drain system, or other underground piping, and commingled at either the fiberglass or steel saltwater tanks (Figure 2). The commingled effluent is conveyed by underground pipeline and discharged at two off-site locations. This Marathon-operated Class II injection well is located on adjacent BLM property. The principal injection well is the Marathon Indian Basin Gas Well No. 1, located in the Northwest 1/4 of Section 23, T21S, R23E. Marathon Federal SWD Well No. 1, located in Unit K in the Southwest 1/4 of Section 24, T21S, R23E, is maintained as a backup well. The composition of the commingled effluent is identified in Table 1. Laboratory analysis of the commingled effluent is provided in Appendix A.

8.5.3.2 Commercial Disposal Facilities

Office refuse and other inert wastes are transported to the local municipal landfill for disposal. All other wastes are handled according to Table 2.

9.0 PROPOSED MODIFICATIONS

- 1. There are four new storage tanks in the southeast portion of the gas plant which were put in service last year. The new tanks are listed in Table 3.
- 2. Waste streams and different disposal facilities that are currently in use have been

updated. The changes are outlined in Table 2.

- 3. A Selexol process has been added to the plant to remove mercaptans from the gas stream. All of the tables have been updated accordingly to reflect the changes.
- 4. A new Glycol Inlet Filter Coalescer has been added to the plant to remove water and condensate from the gas stream. All of the tables have been updated accordingly to reflect the changes.

10.0 INSPECTION, MAINTENANCE, AND REPORTING

Marathon is actively involved in maintaining and improving spill and leak prevention procedures and good housekeeping practices. These goals are achieved by encouraging plant employees to be observant, to notify the appropriate persons of their observations, to correct problems quickly, and to prevent future spills and leaks by learning from problematic past practices.

10.1 Routine Inspection Procedures

Table 3 and 4 identify the aboveground storage tanks and process vessels (AST and APV; *i.e.*, those in-air tanks and vessels that allow 360 degree visual inspection) that are routinely inspected. The closed drain system is also routinely inspected. Plant employees routinely inspect plant equipment (*i.e.*, tanks, piping, pumps, fittings, valves, etc.) for leaks and spills during their daily work tasks. Four plant tours are conducted by plant personnel during each of two, twelve-hour shifts. A primary objective of these tours is to detect equipment leaks and spills. The current Best Management Plan for spills is provided in Appendix B.

10.2 Routine Maintenance Procedures

Employees are encouraged to identify and report potential spill situations. All plant employees have completed an 8-hour hazardous waste operations and emergency response (HAZWOPER) training session. In addition, all employees participate in an annual refresher training course which includes instruction on spill prevention and control measures as required by the Best Management Plan.

10.3 Routine Reporting Procedures

Small leaks or spills are reported and remediated immediately. A Marathon policy requires employees to complete a spill report upon discovery of a spill or leak. Spills or leaks are reported to the OCD according to the requirements of OCD Rule 116 and WQCC Regulations Section 1-203. BLM is notified if a spill or leak occurs on BLM land. The National Response Center is notified in accordance with 40 CFR 110.10. Spill reports are kept on file at the plant office.

10.4 Stormwater Runoff and Flood Protection

The potential for flooding of the plant is very low. Normally, flooding due to significant rainfall events is limited to the braided stream channels of Rocky Arroyo. The stream bed of Rocky Arroyo is approximately 10 feet lower than the elevation at the southern plant perimeter fence.

9

The last time Rocky Arroyo overran its banks was in 1986, but the water did not reach the plant.

Perimeter diversion berms consisting of dirt, piled two to three feet high, are located on the west and north sides of the plant to prevent upgradient stormwater from running onto the plant site. These stormwater berms prevent stormwater from contacting hydrocarbons or flooding the open-drain system which is designed to manage normal process flow only.

The Indian Basin Gas Plant Stormwater Pollution Prevention Plan (SWPPP), dated March 12, 1998, is included in Appendix C. This document describes the potential pollutant sources, stormwater measures and controls, stormwater runoff management, inspection and preventative maintenance, spill prevention and response procedures, employee stormwater training, and recordkeeping and internal reporting procedures. Select employees participate in stormwater pollution prevention training on an annual frequency according to the requirements in the SWPPP.

11.0 SPILL/LEAK PREVENTION & REPORTING (CONTINGENCY PLANS)

A contingency plan for potential occurrence of leaks and spills at the Indian Basin Gas Plant is located in the Best Management Plan which is included as Appendix B. The contingency plan describes the steps proposed to contain and remove spilled substances and mitigate the damage caused by the discharge, including protection from future migration to groundwater. The OCD notification threshold levels will be followed for discharges at the plant as defined by WQCC Regulations Section 1203 and significant leaks or spills as defined by OCD Rule 116.

12.0 SITE CHARACTERISTICS

12.1 Geologic Description of Discharge Site

The typical stratigraphic sequence beneath the gas plant is Queen Formation fractured sandstone, limestone, and dolomite bedrock at a depth of approximately 20 feet overlain by approximately 16 feet of silty, pebble to boulder gravel overlain by 4 feet of clayey silt and silt.

12.2 Hydrologic Features

Rocky Arroyo is a watercourse located approximately 600 feet south of the southern boundary of the site (Figure 1) that contains flowing water only during and for a period of time following heavy rainfall events. The main channel of Rocky Arroyo is 840 feet south of a fence at plant. South of the plant site, the stream channel of Rocky Arroyo trends southeast.

The first groundwater encountered below the plant site occurs within alluvium deposits. This shallow zone is perched above locally fractured, Permian sandstone, limestone, and dolomite of the Queen Formation. The presence of perched shallow groundwater is dependent on the amount of local rainfall. The flow direction of the perched shallow groundwater is generally southeast. A commercial supply well permitted by the State Engineer Office and completed in the shallow alluvial deposits is located approximately 2.5 miles east of the site boundary. The well is located where alluvial deposits are thick and downstream of the confluence of three

Marathon Oil Company Indian Basin Gas Plant

major drainage channels in the southern Seven Rivers embayment. These are Rocky Arroyo, Martha Creek, and Dunnaway Draw.

A rancher well (Lee well) is located approximately 0.7 miles west of the western boundary of the 160-acre property and approximately 100 feet north of County Road 401 (Figure 1). This active well is permitted by the State Engineer Office as a stock supply well and is completed in the Lower Queen regional aquifer which is the next saturated zone below the shallow groundwater zone.

13.0 OTHER COMPLIANCE INFORMATION

None to report.

Table 1. Effluents and Estimated Volumes

Efficient	Pethwork	Waste Effluent Constituents	Volume	(Section 1-101.2) 22 constituents)
PRODUCED WATER	Inlet separators to skimmer basin to saltwater tanks	Condensate, saltwater, Calgon pretest 32- 2 gal./day	2000 Bbis/day	anon
COOLING TOWER BLOWDOWN	Aboveground piping to fiberglass saltwater tank	Softwater make-up	200 Bbls/day	none
	-	Calgon conductor XLP-170	2.1 gaVday	none
		Van Waters Rogers sulfuric acid	5 Bbls/mo	none
		Calgon Tower Brom 960 (solid)	100 lbs/mo	none
		Calgon H75	3 gal/wk	none
BOILER AND CONDENSER BLOWDOWNS		Caustic Soda - Unichem	1.5 gal/day	none
SRU Waste Heat Boiler Blowdown	Underground & aboveground steel pipeline to steel saltwater tank	Softwater make-up	95 Bbis/day	none
SRU Large Condenser Blowdown	Underground & aboveground steel pipeline to steel saltwater tank	Calgon Ultra Amine 120	3.6 gaVday	none
SRU Small Condenser Blowdown	Glycol sump of open drain to steel saltwater tank	Calgon Burlook 2220	4.5 gal/day	none
Turbine Waste Heat Boliers (3) Blowdown	Open Drain System to skimmer basin	Calgon Conquer 3470	1.8 gal/day	none
Process (main) Steam Bolier Blowdown	Open Drain System to skimmer basin			
CLEANING OPERATIONS	Open Drain to Skimmer Basin to Saltwater Tank to Injection	Water	50 Bbls/day	none
Steam cleaning				
Truck, tank, and drum washing				
PLANT PROCESS EFFLUENTS	Open Drain to Skimmer Basin to Sattwater Tank to Injection		75 Bbls/day	
Products sweetening		Huntsman diglycolamine (DGA)		none
Giycol		Triethylene glycol (TEG)		none
Reflux Water	Pumped from selexol unit to gunbarrel	Water	50 gal/day	none
Selexol*	Selexol unit to open drain to injection	Dimethyl Ether of Polyethylene Glycol Mixture, Glycol Ethers	120 Bbls	none
SOFTWATER REGEN	Softwater building to saltwater tank via underground piping	Saltwater	75 Bbls/day	none
REVERSE OSMOSIS WASTEWATER*	Primary: Water treatment to infiltration system via underground piping		300 Bbis/day	none
	Secondary: Water treatment building to saltwater tank			
GROUNDWATER CONTAMINATED W/CONDENSATE*	Primary: Freshwater gathering to infil. Via underground piping	Freshwater	2375 Bbls/day	none
(Shut-in since January 2003)	Secondary: Freshwater gathering to saltwater tank	Condensate (as TPH; EPA Mod. 8015)	<3,200 ug/L	BTEX
			Ņ	

 Denotes effluent is only commingled into disposal system in case of emergency or mechanical failure Last Updated: 9/3/2004 i

I

i

ļ

1

ļ

ļ

D

į

1

D

Table 2. Waste Sources, Waste Classification, and Waste Treatment/Disposal Methods

Waste	Vaste Cassification	Treatment/Disposal	Disposal	Plant Storage
AEROSOL CANS (empty)	Non-exempt, Non-hazardous	Landfill	Southwest Disposal	Municipal waste stream
ANTIFREEZE (vehicle/glycol water bath)	Exempt & Non-exempt, Potentially hazardous	Disposal well	Safety Kleen	In original containers
BATTERIES, SPENT (generator, backup lighting, and	Non-exempt, Potentially hazardous	Recycle	Best-Buy	Drum storage area
CALCIUM SILICATE INSULATION	Non-exempt, Non-hazardous	Landfill	 Southwest Disposal Lea Land Control Recovery, Inc. 	Roll-off bin
CARBON, SPENT (Amine or Glycol System)	Exempt	 Exempt waste disposal facility Non-hazardous industrial landfill 	 Exempt waste disposal facility Control Recovery, Inc. Lea Land 	Roil-off bin when needed
CONCRETE, UNCONTAMINATED	Non-exempt, Non-hazardous	 Leave on site OR Municipal landfill 	 On site Municipal landfill 	NA
COOLING TOWER CLEANING WASTE SOLIDS	Non-exempt, Potentially hazardous	Injection; Off site Class II well	 Control Recovery, Inc. Lea Land 	Frac tank until testing complete
DEBRIS (Mercury Contaminated)		Recycle	Safety-Kleen	NA
DRUMS, SPENT	nazardous	Recycle	U.S. Filter	Drum storage area
EFFLUENTS (Spent DGA and TEG, washwater, boiler, condenser blowdown fluids, waste sattwater, Selexol)	Exempt, Non-hazardous	Injection	MOC SWD Well	Saltwater Tank
ELECTRICAL MATERIALS (Conduit, Panels, Etc.)	Non-exempt, Non-hazardous	Recycle	U.S. Filter	Scrap metal recycling bin
FILTERS - AIR	Non-exempt, Non-hazardous	Landfill	Southwest Disposal	Dumpster
		 Recycle by incineration Exempt waste disposal facility 	 Quell or U.S. Filter exempt waste disposal facility 	South east of plant
FILTERS - STABILIZER COMMPRESSOR/AIR COMPRESSOR LUBE OIL FILTERS	Non-exempt	Recycle by incineration	Quell or U.S. Filter	West side plant
FILTERS - TURBINE LUBE OIL FILTERS	Non-exempt	Recycle by incineration	Quelt or U.S. Fitter	South east of plant
LTERS & FILTER MEDIA al filters,	Exempt	 Recycle by incineration Exempt waste disposal facility 	 Quell or U.S. Filter Exempt waste disposal facility 	South east of plant
FLUORESCENT LAMPS (Used)	empt, Hazardous	Recycle	Safety Kleen	NA
GLYCOL CERAMIC SADDLES, SPENT	Exempt	 Exempt waste disposal facility Non-hazardous industrial landfill 	 Exempt waste disposal facility Control Recovery, inc. Lea Land 	Roil-off bin or drums when needed
	Π	As dictated by sampling	As dictated by sampling	NA
LABORATORY WASTES (starch and iodine, silver nitrate, water test reagents)	Non-exempt, Potentially hazardous	Incinerated	Safety-Kleen determines	Drum storage area
	Non-exempt, Potentially hazardous	NORM disposal	Newpark Environmental	NORM storage area
3AP (not NORM contaminated)	lous	Recycle	U.S. Filter	Scrap metal recycling bin
	empt, Hazardous	Recycle	Safety Kleen	Methanol storage area
MOLECULAR SIEVE, SPENT	Exempt	 Exempt waste disposal facility Non-hazardous industrial landfill 	 Exempt waste disposal facility Control Recovery, Inc. Lea Land 	West side plant

Page 1 of 2

ţ

ļ

i

Ì

i

ì

Ì

1 į

D

Table 2. Waste Sources, Waste Classification, and Waste Treatment/Disposal Methods

Waste	Waste Classification	Treatment/Disposel Method	Disposal	Plant Storage
NATURALLY OCCURRING RADIOACTIVE MATERIAL (NORM)	NORM waste	NORM disposal	Newpark Environmental	NORM storage area
OFFICE AND PLANT TRASH	Non-exempt, Non-hazardous	Dumpster	Southwest Disposal	West side plant
OIL (vehicle motor, crankcase (chemical injection pumps, high pressure pumps), regen compressor, instrument air compressor, lube oil, stabilizer vapors compressor oil, turbine/expander compressor oil, inlet compressors oil.)	Non-exempt, Potentially hazardous	Recycle	U.S. Filter	Oil recycle storage area
PAINT, WASTE (non-empty cans, dried paints, waste paint)	Non-exempt, Potentially hazardous	incinerated; Supplemental fuel	Safety-Kleen determines	Drum storage area
POLY-PIPE (Scrap Polyethylene)	Non-exempt, Non-hazardous	Landfill	Southwest Disposal	West Side of Plant
RAGS, OILY	Exempt & Non-exempt	Recycle by incineration	Quell or U.S. Filter	South east of plant
RAIN WATER, TANK BATTERY	n-exempt	Injection	MOC SWD Well	Bulk tank
RUBBER PRODUCTS (Belts, hoses, etc.)	Non-exempt, Non-hazardous	Landfill	Southwest Disposal	Roll-off bin
	Exempt	Landfarming/Bioremediation	Plant landfarm	Landfarm staging area
SOIL - AMINE CONTAMINATED, (virgin)	Non-exempt	Landfarming/Bioremediation	Plant landfarm	Landfarm staging area
SOIL - GLYCOL CONTAMINATED (spent)	Exempt	Landfarming/Bioremediation	Plant landfarm	Landfarm staging area
	Non-exempt	andfarming/Bioremediation	Plant landfarm	Landfarm staging area
pt)	Exempt	Landfarming/Bioremediation	Plant landfarm	Landfarm staging area
	Non-exempt	andfarming/Bioremediation	Plant landfarm	Landfarm staging area
TAMINATED (exempt)		Bioremediation	In place	NA
SOIL - SULFUR CONTAMINATED	Exempt	Land discharge	 Lea Land Control Recovery, Inc. 	West side of SRU, west of fence
SOLVENT, SPENT	Non-exempt, Potentially hazardous	Recycle	Safety Kleen	Naptha 105 - pumper shack; 55-gallon drum Aquaworks - NA
SULFUR RECOVERY UNIT USED CATALYST & SUPPORT BALLS	Exempt	 Exempt waste disposal facility Non-hazardous industrial landfill 	 Exempt waste disposal facility Control Recovery, Inc. Lea Land 	Roll-off bin when needed
SULFUR, OFF-SPEC	Exempt, Non-hazardous	1) Land discharge 2) Non-hazardous industrial landfill	 West side of SRU, west of fence Control Recovery, Inc. Lea Land 	Sulfur storage yard west of Sulfur Recovery Unit (SRU)
	Non-exempt, Hazardous	Neutralized and landfilled	Safety-Kleen	NA
TIRES, VEHICLE USED	Non-exempt, Non-hazardous	Recycle	The Tire Co Carlsbad, NM	NA

Page 2 of 2

n T

- ----

Table 3. Inventory of Tanks

Name	Tank Volume	Туре	Containment	Storage Contents
Condensate tank (bullet)/SE plant	1700 Bbl	npASST	Earthen dike	NA
Condensate tank (bullet)/SE plant	1700 Bbl	npASST	Earthen dike	NA
Tank (bullet)/SE plant (not in service)	1700 Bbl	npASST	Earthen dike	NA
Tank (bullet)/SE plant tank	1700 Bbl	npASST	Earthen dike	NGL
Tank (bullet)/SE plant tank	1700 Bbl	npASST	Earthen dike	NGL
Tank (bullet)/SE plant tank	1700 Bbl	npASST	Earthen dike	NGL
Gun Barrel Storage Tank	750 Bbl	npASST	Earthen dike	Condensate and Produced Water
Condensate Storage Tank	1000 Bbl	npASST	Earthen dike	Stabilized Condensate
Condensate Storage Tank	1000 Bbl	npASST	Earthen dike	Stabilized Condensate
Water Storage Tank	500 Bbl	npASST	Earthen dike	Water
Lube oil tank/recompressor	210 Bbl	npASST	Earthen dike	NA
Lube oil saddle tank/inlet compressor	52 Bbl	npASST	Concrete	NA
Open-top skimmer tank/skimmer pit	437 Bbl	npAST	Earthen dike	Wastewater
Saltwater tank (steel)/SW plant area(not in serv)	1000 Bbl	npASST	No	To injection
Saltwater tank (fiberglass)/SW plant area	500 Bbl	npAST	Concrete	To injection
Lube oil saddle tank/stablilizer compressor	11.9 Bbl	npASST	Steel	NA
Diesel tank/north plant area	10 Bbl	npASST	Concrete	Diesel
Meropa tank/SW plant area	100 gal	npASST	Steel	Meropa oil
Waste oil tank/west plant area	500 gal	npASST	Concrete	Waste & slop oils
Condensate tank/treatment compound	210 Bbl	npAST	Earthen dike	Cond. Contaminated Water
Condensate tank/treatment compound	210 Bbl	npAST	Earthen dike	Cond. Contaminated Water
Freshwater steel tank/NE plant area	1200 Bbl	npAST	No	Freshwater
Freshwater fiberglass tank/NE plant area	125 Bbl	npAST	No	Freshwater
Softwater tank/SW plant area	90 Bbl	npAST	Concrete	Freshwater
Reverse osmosis freshwater tank/SW plant	280	npAST	No	Freshwater
Glycol steel tank/SW plant area	90 Bbl	npAST	Concrete	Softwater
Sulfur tank/NW plant area	47,000 gal	npUST	No	Liquid sulfur
Large DGA Slop Tank*	200 Bbl	npASST	Earthen dike	Used DGA; Royal Purple oil
Small DGA Slop Tank*	70 Bbl	npASST	Earthen dike	Used DGA; Royal Purple oil
Burolock 2220 Storage Tank	1000 Bbl	npASST	Earthen dike	Calgon Burolock 2220
Ultramine 120 Storage Tank	1000 Bbl	npASST	Earthen dike	Calgon Ultramine 120
Conquor 3470 Storage Tank	1000 Bbl	npASST	Earthen dike	Calgon Conquor 3470
DEA Storage Tank #8	3000 gal	npASST	Earthen dike	New DEA
DEA Storage Tank #9*	4200 gal	npASST	Earthen dike	New DEA
TEG Storage Tank	750 g	npASST	Concrete	TEG
TEG Storage Tank	500 gal	npASST	Concrete	TEG
Methanol Storage Tank	500 gal	npASST	No	Methanol
Methanol Storage Tank	650 g	npASST	No	Methanol
Varsol Storage Tank	400 g	npASST	Concrete	Varsol
Kerosene Storage Tank	400 g	npASST	Concrete	Kerosene
Antifreeze Storage Tank	500 g	npASST	Concrete	Ethylene Glycol antifreeze
Selexol Storage Tank	210 Bbl	npAST	Concrete	Selexol
Caustic soda tank	500 gal	npASST	Steel	Caustic soda
Anti-foam tank	250 gal	npASST	Steel	Coastal Chem. 1017-F
Gun Barrel/treatment compound	500 bbl	npAST	Earthen dike	Cond. Contaminated water
Frac Tank	200 bbl	npAST	No	Fresh water
Frac Tank	200 bbl	npAST	No	Fresh water
Skimmer Oil tank	210 bbl	npAST	Concrete	Oil/water
Skimmer gun barrel	500 bbl	npAST	Concrete	Water/oil
Saltwater tank (east)	500 bbl	npAST	Concrete	Produced water/oil
Saltwater tank (middle)	500 bbl	npAST	Concrete	Produced water/oil
Saltwater tank (west)	500 bbl	npAST	Concrete	Produced water/oil
Calgon Pre-tect 32	500 gal	npASST	Steel	Calgon pretect 32
Gibraltar A-105 Tank (AGC)	500 gal		Steel	Oil
npASST = nonpressurized aboveground saddle storage tank (i.e. 3				

npASST = nonpressurized aboveground saddle storage tank (I.e. 360 degree inspection possible)

npAST = nonpressurized aboveground storage tank (i.e. 360 degree inspection possible)

npUST = nonpressurized underground storage tank

NA = not applicable

, i

Source location	Volume (Bbis)	Vessel	Vessel Bottom Uned Ground Underneath Paved	ter contents	Fuids. Drained to
Water exchanger/gas inlet	28	APV	In air/no	Cooling tower water	Abandoned OD
Inlet gas separator #1/gas inlet	6	APV	In air/no	Produced water	CD
Inlet gas separator #2/gas inlet	32	APV	In air/yes, conc.foundation pad	Produced water	CD
Air receiver/gas inlet	-	APV	In air/yes, conc. foundation pad	Atmospheric water	Bucket
Inlet separator/inlet compressor	75	APV	In air/no	Produced water	QO
Suction scrubber/inlet compressor	58	APV	In air/yes, conc. foundation pad	Produced water	00
Air receiver/inlet compressor	ო	APV	In air/yes, conc. foundation pad	Atmospheric water	Bucket
Amine contactor/amine sweetening	324	APV	In air/yes, conc. foundation pad	Produced water, amine	CD
Amine contactor overhead gas scrubber/amine sweetening	80	APV	In air/yes, conc. foundation pad	Produced water, amine	CD
Rich amine flash tank/amine sweetening	76	APV	In air/no	Produced water, amine	Amine bag filter
Amine bag filter/amine sweetening	2	APV	In air/yes	Produced water, amine	OD & rich-lean amine exchanger
Condensate stabilizer overhead condenser/amine sweetening	2	APV	In air/no	Produced water	Aerial cooler to stabilizer reflux dru
Amine still condenser/amine sweetening	2	APV	In air/no	Produced water	Aerial cooler to reflux accumulator
Lean amine-water plate exchanger/amine sweetening	2	APV	In air/yes	Produced water, amine	ao
Rich-lean amine exchanger/amine sweetening	ន	APV	In air/no	Amine	Amine still
Amine still/amine sweetening	300	APV	In air/yes conc. foundation pad	Reflux water, amine	9
Amine reflux accumulator/amine sweetening	æ	APV	In air/yes conc. foundation pad	Reflux water, amine	9
Amine still reboiler/amine sweetening	19	APV	In air/no	Reflux water, amine	Steam condensate surge tank
Steam condensate surge tank/amine sweetening	50	APV	In air/no	Condensed steam water	CD
Amine charcoal filter/amine sweetening	09	APV	In air/yes, conc. pad	Amine	Slp amine tank
Glycol water exchanger/glycol dehydration	2	AΡV	In air/no	Produced water, glycol	
Glycol contactor/glycol dehydration	205	APV	In air/yes, conc. foundation pad	Produced water, glycol	G
Glycol contactor overhead scrubber/glycol dehydration	œ	APV	In air/yes, conc. foundation pad	Produced water, glycol	G
Glycol regenerator/glycol dehydration	23	APV	In air/no	Produced water, glycol	Atmosphere
Rich-lean glycol exchanger/glycol dehydration	59	APV	In air/no	Giycol	Glycol contactor
Glycol surge tank/glycol dehydration	16	APV	In air/no	Produced water, glycol	QO
Water collection drum/glycol dehydration	ო	APV	In air/yes	Steam, glycol	QO
Inlet water separator/inlet condensate	291	APV	In air/no	Produced water, cond.	Abandoned OD
Stabilizer feed tank/inlet condensate	291	APV	In air/no	Produced water, cond.	QO
Regeneration gas scrubber/regeneration gas	9	APV	In air/yes, conc. foundation pad	Produced water, cond.	CD
Product contactor/product treating	128	APV	In air/yes, conc. foundation pad	Amine, KOH	Buckets
Product solvent separator/product treating	16	AΡV	In air/yes, conc. foundation pad	Amine, KOH	Rich amine flash tank
Acid gas scrubber #1/SRU	F	APV	In air/no	Reflux water	Amine reflux accumulator
Acid gas scrubber #2/SRU	ŧ	APV	In air/no	Reflux water	Amine reflux accumulator
Small condeser/SRU	20	APV	In air/no	Cooling tower water	g
Large condenser/SRU	59	APV	In air/no	Cooling tower water	G
Line 1, 3-phase separator/inlet pit	20	APV	in air/no	Produced water, cond.	Skimmer basin
Line 3, 3-phase separator/inlet pit	14	AΡV	In air/no	Produced water, cond.	Skimmer basin
Line 4, 3-phase separator/inlet pit	36	APV	In air/no	Produced water, cond.	Skimmer basin
Cond.stabilizer feed-bottoms exchanger/cond.stabilization	S	APV	On ground/no	Condensate	Cond.stabilizer tower or cooler
Condensate stabilizer reboiler/cond.stabilization	10	APV	In air/no	Condensate, steam	OD
Condensate stabilizer/cond.stabilization	119	APV	On ground/yes, concrete pad	Condensate	ao
Stabilizer reflux drum/cond. Stabilization	ç	APV	On ground/yes, concrete pad	Cond. Reflux water	ao
Stabilizer bottoms cooler/cond. Stabilization		APV	In air/no	Condensate	Condensate stabilizer tower or cooler

Table 4. Inventory of Process Vessels

GW Discharge Plan

I

Page 1 of 2

1 . 1

1

i

I.

Ì

Į

Plan
Discharge
QV

B

Table 4. Inventory of Process Vessels

Source location	Yolume (Bbis)	Vessel Type	Vessel Bottom Lined/-16 Ground Underneath Paved		Fluids
Steam waste heat boiler #1/steam system	71.4	APV	In air/no	Softwater w/ additives	OD
Steam waste heat boiler #2/steam system	71.4	APV	In air/no	Softwater w/ additives	00
Steam waste heat boiler #3/steam system	71.4	APV	In air/no	Softwater w/ additives	GO
Blowdown drum/steam system	11.9	APV		Softwater w/ additives	go
Main boiler/steam system	35.7	APV	In air/no	Softwater w/ additives	OO
Utility flare drum/plant flare system		APV	In air/no	Gas	Flare
Inlet gas flare drum/plant flare system	61	APV	In air/no	Produces water, cond.	Condensate
Stabilizer compressor suction scrubber	2	AΡV	In air/concrete pad	Condensate	QO
Stabilizer compressor suction scrubber		APV	Concrete pad with berm	Water/lube oil	ao
Inlet compressor		Comp	Concrete pad with berm	Water/lube oil	QO
A-2 Amine contactor	55	AΡV	In air/yes, conc. foundation pad	Produced water/Amine	CD
A-2 Amine contactor overhead scrubber	80	APV	In air/yes, conc. foundation pad	Produced water/Amine	G
A-2 Rich Amine Flash tank	35	APV	In air/yes, steel skid	Amine/Produced water	Bag filter
A-2 Amine Pre-bag filter	ო	APV	In air/yes, steel skid	Amine	Amine charcoal filter
A-2 Amine Charcoal Filter	4	APV	In air/yes, steel skid	Amine	Amine Post- bag filter
A-2 Amine Post-bag filter	ო	APV	In air/yes, steel skid	Amine	High pressure pumps
A-2 Rich/Lean Amine Exchanger	10	APV	In air/yes, steel skid	Amine	Amine still
A-2 Arnine Reboiler/Surge Tank	46	APV	In air/yes, steel skid	Reflux water/Amine	G
A-2 Lean Amine/water heat exchanger	80	APV	In air/yes, steel skid	Produced water/Amine	Pre-bag filter
A-2 Lean Amine cooler	~	APV	ln air / no	Amine	Lean Amine/ water exchanger
A-2 Amine condensor fans	2	APV	In air / no	Produced water	Aerial cooler to reflux accumulator
A-2 Amine Reflux Accumulator	თ	APV	In air/yes, conc. foundation pad	Reflux water/Amine	8
A-2 Amine Still	48	APV	In air/yes, conc. foundation pad	Reflux water/Amine	G
A-2 Rich Bag Filter	ю	APV	In air/yes, steel skid	Amine/Produced water	OD rich/ lean amine exchanger
Field Fuel Gas Scrubber South side	7	APV	In air/yes, conc. foundation pad	Fuel gas	Closed drain
Inlet Gas Filter Seperator South side	29	APV	In air/no	Produced water, cond.	Condensate system
Gas/water heat exchanger South side	35	APV	In air/no	Water/gas	Cooling tower
Selexol Contactor	27	APV	In air/yes, conc. foundation pad	In air/yes, conc. foundation pad	Selexol Flash Tank
Selexol Overhead Filter Coalescer	-	APV	In air/yes, conc. foundation pad	In air/yes, conc. foundation pad	Selexol Flash Tank
Selexol Flash Tank	23	APV	In air/yes, steel skid	R.O. Water/Selexol (95%)	Rich Selexol Filter
Selexol (Rich) Filter	ო	APV	In air/yes, steel skid	R.O. Water/Selexol (95%)	L/R HEX / OD
Selexol Lean/Rich Heat Exchanger	2	APV	In air/yes, conc. foundation pad	R.O. Water/Selexol (95%)	Selexol Still Column
Selexol Still Column	34	APV	In air/yes, conc. foundation pad	R.O. Water/Selexol (95%)	Selexol Surge Tank/Gun Barrel
Selexol Surge Tank	35	APV	In air/yes, steel skid	R.O. Water/Selexol (95%)	L/R HEX / OD
Selexol Cooler	ۍ	APV	In air/no	R.O. Water/Selexol (95%)	Charcoal Filter
Selexol Charcoal Filter	2	APV	In air/yes, steel skid	R.O. Water/Selexol (95%)	Lean Selexol Filter / OD
Selexol (Lean) Filter	6	APV	in air/yes, steel skid	R.O. Water/Selexol (95%)	00
Selexol Reflux Cooler		APV	In air/no	Process Water/ Selexol (<1%)	Reflux Accumulator / OD
Selexol Reflux Accumulator	2	APV	In air/yes, conc. foundation pad	Process Water/ Selexol (<1%)	Selexol Still Column / OD
Selexol Anti-Foam Pot	0.05	APV	In air/yes, steel skid	Silicone Based Anti-Foam	Selexol Contactor / Still / OD

APV = aboveground process vessel (I.e. 360 degree inspection possible) comp = compressor cond. = condensate

Page 2 of 2

I

OD=Open Drain CD=Closed Drain

0	Underground Piping
	Table 5.

the second se	benefities to provide a subscription of the su	Constructed or Modified	(Bbladay)	(010) (010)	(incr)	Piping Type	Integrity feat
Open drain system	Various plant units to open drain collection sump	2002	15	ę	3.2	IC Steel	Sept 2019
Softwater regeneration	Water softener in water treatment building to fiberglass SWD tank	Before 1990	385	15	2	PVC	Jan 2015
Reverse osmosis wastewater piping (Out of service due to permit)	RO unit in water treatment building to air stripper outlet to infiltration	1991	200	00	2	Poly	Jan 2016
Untreated groundwater bypass piping	Diversion valve at treatment compound to Skimmer Basin	1995	2676	20	2	Poly	Jan 2016
Treated groundwater piping	Air stripper at treatment compound to skimmer basin SWD tank	1995	125	8	0	Poly	Jan 2020
Piping to Marathon Federal SWD Well No.1 (Sec.24) (Not in service)	Fiberglass saltwater tank to injection well	1977	Minimal	2000	ლი (Steel	Jan 2002
Piping to A.G.I. #1 well	Saltwater tank to injection well	2000	3000	2000	vo.	Hiberglass	, .
Waste effluent transfer piping	Open drain collection sump to skimmer basin	1996	80		4	IC Steel	Jan 2011
Co-production line to skimmer basin gunbarrel	Co-production line outside plant to skimmer basin gunbarrel	1996	2000	<10	9	Fiberglass	Jan 2016
Condensate Delivery Sales	Condensate bullet storage tanks(1) to condensate loading area (LA)	1993	300	<10	4	Poly	Mar 2018
SRU waste heat boiler & large condenser blowdown discharge piping (OOS)	Waste heat boiler and large condenser to steel saltwater tank	1985/1992	9	70	2	Steel	Jan 2017
Condensate make line	Stabilizer to condensate bullet storage tanks	1989	300		2	Steel	Jan 2014
Condensate rerun line	Condensate bullet storage tanks to overhead pipe rack	1969	10;100 max	<20	2	Steel	Jan 2014
LACT sump pump to main boiler sump	LACT sump pump to main boiler sump	1966/1989	-	<35	2	Steel/Poly	Jan 2014
Intet condensate line	Inlet valve pit to overhead pipe rack	1990	350	99 90	4	Steel	Jan 2015
Divert line	Inlet valve pit to condensate bullet storage tanks	1993	-	40	2	Poly	Jan 2018
Produced water line	Inlet valve pit to skimmer basin gunbarrel	1996	1500	15	9	Poly	Jan 2018
Product skimmer recovery line	Skimmer basin oil transfer pump to inlet condensate line	1996	20	40	2	Steel	Jan 2011
Dump line	Stabilizer feed tank to skimmer basin	1996	20	40	4	Poly	Jan 2017
Injection line	Fiberglass sattwater tank to pump suction header	1996	3000	8	10	Steel	Jan 2013
Open top tank to skimmer basin gunbarref	Open top transfer pump to skimmer basin gunbarrel	1996	20	10	2	Steel	Jan 2021
Cooling tower blowdown to skimmer basin	Cooling tower blowdown to skimmer basin SWD tank	1999	200	×10	2	Poly	Jan 2024
Morrow gas separator dump line	Morrow gas separator to closed drain	1996	0	ŝ	N	Steel	Jan 2021
Closed drain scrubber dump line	Closed drain scrubber to skimmer basin gunbarrel	1996	ъ	40	2	Poly	Jan 2021
Inlet filter/separator dump line	Inlet filter/separator to inlet condensate line	1998	ଟ୍ସ	<10	2	Steel	Jan 2023
Inlet filter/separator closed drain connection	Inlet filter/separator to closed drain header	1998	0	40	2	Steel	Jan 2023
Blow down colection header	Open drain collection sump area to boiler blow down bottle	1996	8	40	8	Steel	Jan 2021
SRU Steam Condensate Return		2001	9	0	2	Stainless	Jan 2009
Horizontal H.P. Inlet Scrubber Closed Drain		1994	-	40	5	Steel	Dec 2019
WHB Blowdown	WHB's to open drain collection sump area	1991	65	9 <u>1</u>	N	Steel	Jan 2016
Main boiler blowdown to sump	Main boiler to blow down collection header	1996	15	100	N	Steel	Jan 2015
Open drain collection sump pump to skimmer basin gunbarrel	Open drain collection sump pump to skimmer basin gunbarrel	1980	8	100	4	IC Steel	Jan 2005
Stabilizer Compressor Dump		1982	15	õ	-	Steel	Jan 2007
Inlet Condensate Divert Line to the Transfer Tank (OOS)	Inlet Condensate Divert Line to the Transfer Tank	1986	-	270	0	Steel	Jan 2011
Line 3 & 4 Metering Separator Oil Dump Line to Inlet Condensate Line	Line 3 & 4 Metering Separator Oil Dump Line to Inlet Cond. Line	1996	200	9	ი ი	Steel	Jan 2018
Inlet Compressor Suction Scrubber (H&V) Dump Lines to Inlet Metering Separator	Inlet Compr. Suction Scrubber (H&V) Dump Lines to Inlet Metering System	1989 1080	7 ca	99 F	N -	Steel	Jan 2005
Hecompressor & Expander Lube Oli Makeup Line		000	,		·		
Underground Artifite Lines ried to Varive Occupies rivit.		1988	-	2	2	Steel	Jan 2013
Flash tank		1988	-	80	2	Steel	Jan 2013
Bag fitters		1988	7	80	N	Steel	Jan 2013
Charcoal filters		1988	2	80	2	Steel	Jan 2013
Reflux pumps		1988	-	20	N	Steel	Jan 2013
Amine Storage Tank 8		1988	+-	ŝ	2	Steel	Jan 2013
Amine Storage Tank 9		1988	-	5	~	Steel	Jan 2013
Glycol Storage Tank Discharge	Storage Tank transfer pump to glycol flash tank	1999	-	2	2	Poly	Dec 2019
Acid Gas Compressor Suction Line	SRU to Acid Gas Compressor	1996		ם מ	2 0	Steel	
Acid Gas Compressor Sweet Purge Gas		1990		8	v (Steel	
Acid Gas Compressor instrument air	Pipe rack at Giycol Unit to Acid Gas Compressor	1996 2003	 -	3 8	~ ~	Steel	Jan 2021
Selexal reflux water	oelexol unit to gundarrei Selevol storsoa taok to Selevol Linit	2002	As needed	3 8	2 0	Steel	None scheduled
		2000		Ę	, č	10010	
i Gilycori flash gas to Glosed Drain Drycone dymne to Cheed Drain	Curycon nasm tank to crosed orani scrubber Durcona to Closed drain scrubber	2002		1000	2"/3"	steel	

P

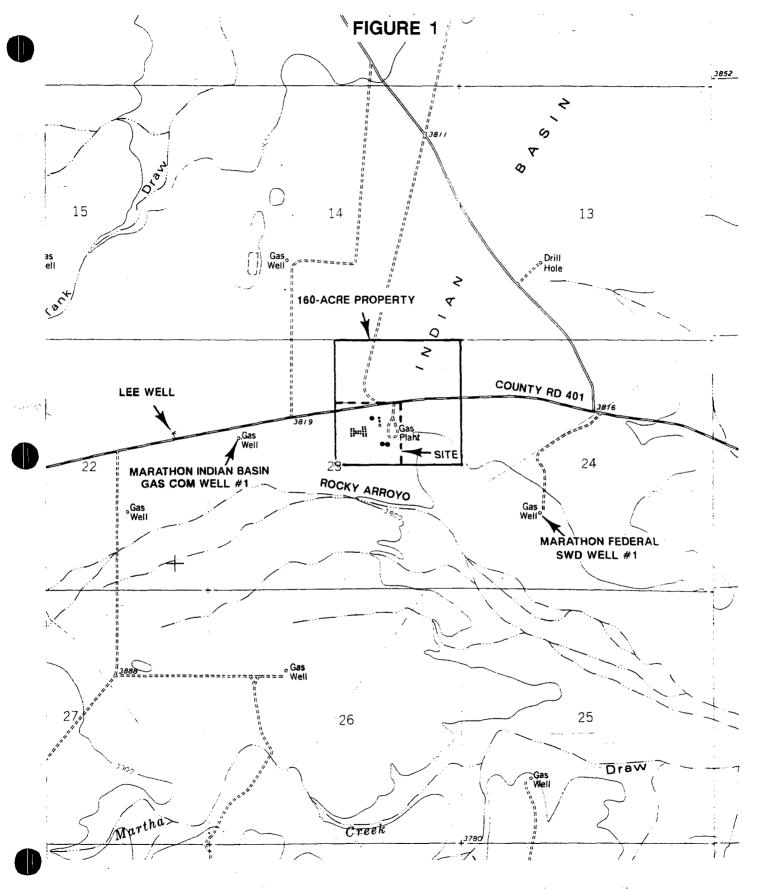
Table 6. Soil Treatment Cleanup Standards

D

Ð

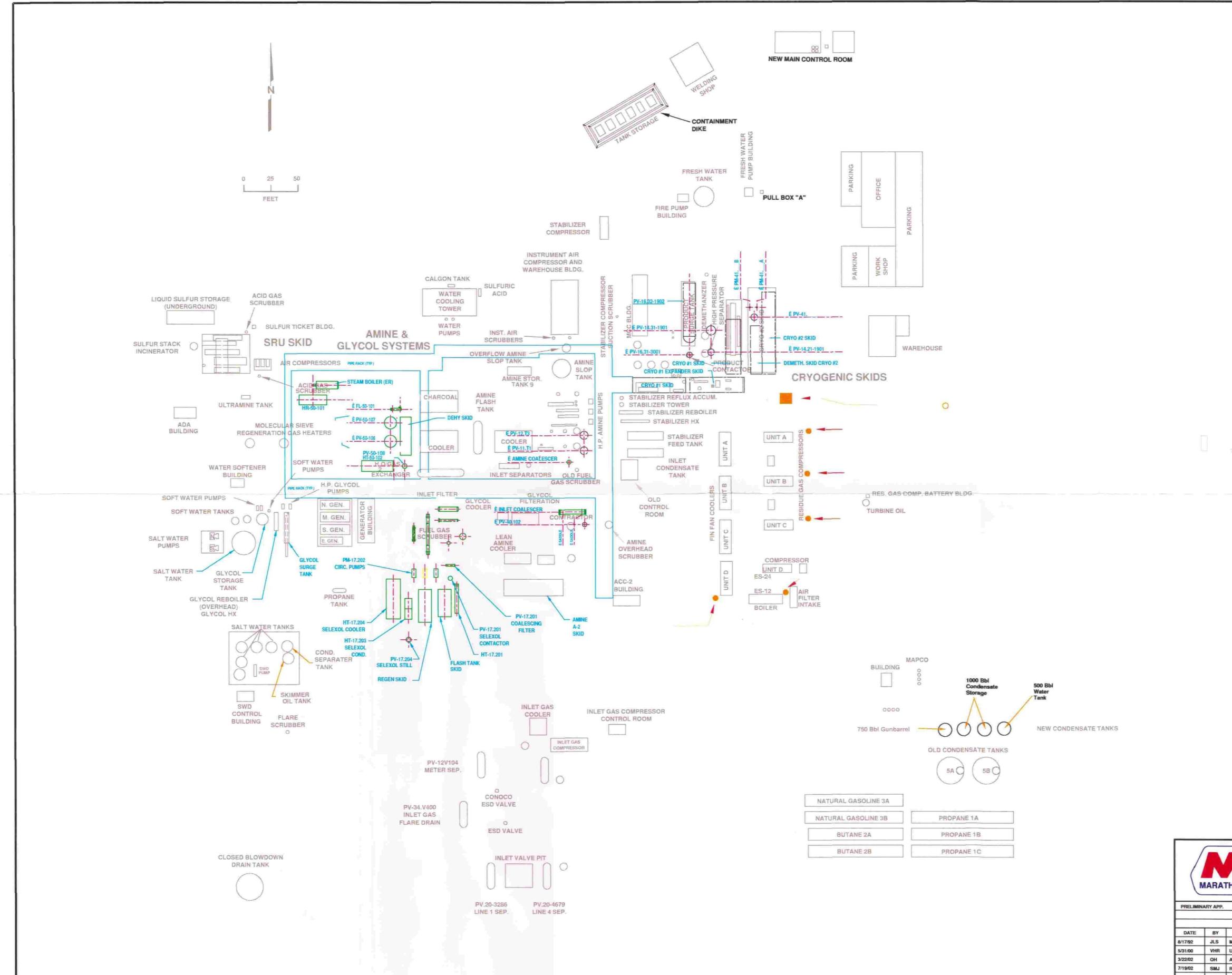
P

	decision	Statistics and a statistics	
Use of Treated Soil	E()X8(3/AVGIE)/HG/E	Total BTEX	Benzene
Reburied	100	50	₽
Stormwater control dikes	1000	50	10
Secondary containment berms in the gas plant	3000	50	10
Roadspread or patching lease roads	3000	50	10
Pad dirt on production locations	3000	50	10


ļ

. 1

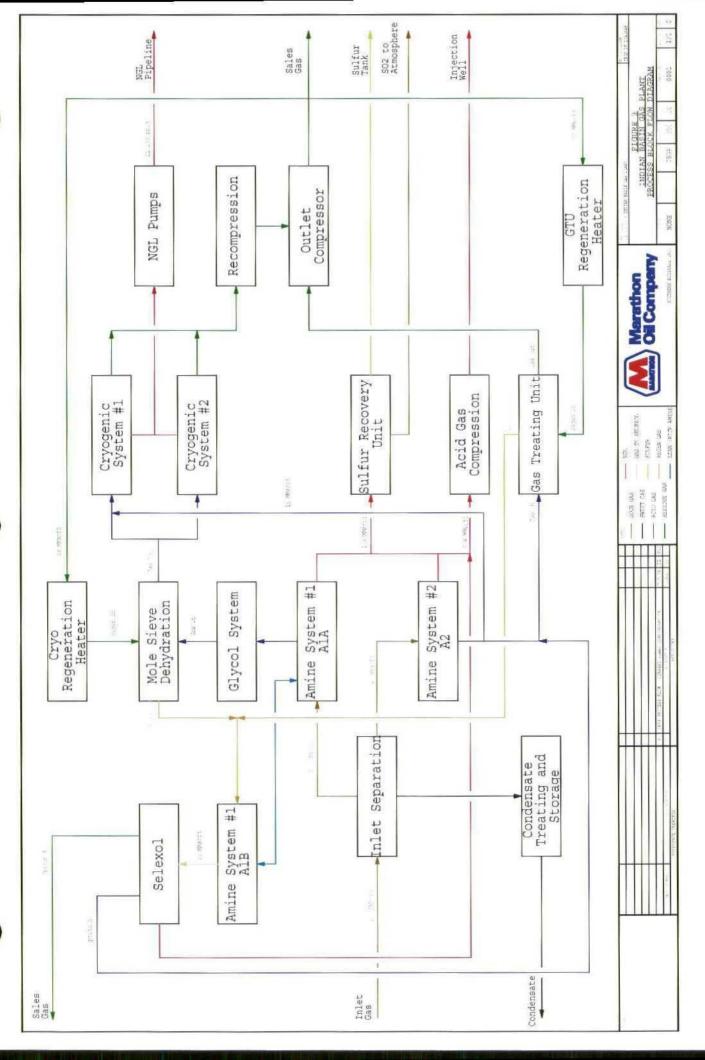
ī


İ

Ì

e de la companya de l La companya de la comp

.


7/19/02 SMJ RE 1/22/64 DGS REVISE

SCALE: 40'=1"

HON	al compton Ol unit & dehy "d"		any	Midland, Texas 79701	
DATE	FINAL APP.	DATE			
+ +			FIG	URE 2	
· · · · ·	REVISIONS		INDIAN BAS	IN GAS PLANT	
NOR REVISIO	ONS		DLO	TDLAN	
PDATED BY	L COMPTON		PLO	T PLAN	
DDED SELEX	OL UNIT & DEHY "D"				_
EVISED FOR	AUDIT	S	CALE: AS SHOWN	DATE: 3 - 26 - 92	_

SCALE: AS SHOWN	DATE:	3-25-92		
DRAFTED BY: MICHAEL REED	DWG. NO.			
BY: MANA RATANASAV	BY: MANA RATANASAVETAVADHANA			
INDIAN BASIN GAS FIE	IBGPPP			
	DRAFTED BY: MICHAEL REED BY: MANA RATANASAV	DRAFTED BY: MICHAEL REED		

APPENDIX A

B

LABORATORY RESULTS OF COMMINGLED DISCHARGE FLUID

\$ \$

1107 2 1 1999

Colora a

waanti a siye

ANALYTICAL REPORT JOB NUMBER: 912816 Prepared For: Marathon Oil Company 125 West Missouri Street P.O. Box 552 Midland, TX 79702-0552 Attention: Mr. Paul Peacock Date: 11/16/99

Jun Ol Signature

Name: Les Arnold

Title: Laboratory Manager

11/16/99 Date

Severn Trent Laboratories 2400 Cumberland Drive Valparaiso, IN 46383

PHONE: 219-464-2389 FAX..: 219-462-2953

*'

Attn.....: Mr. Paul Peacock

Customer Project ID....: INDIAN BASIN GAS PLT Project Description....: Marathon Oil Co., Midland, Tx

Т

i.

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
912816-1	COMINGLED GAS PLT WASTE EFFLUENT	Aqueous	11/08/1999	10 :0 0	11/09/1999	15:25

ſ

Job Number: 912816

 $\Delta = \mathbf{k}^{\dagger}$

LABORATORY TEST RESULTS

Date: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: INDIAN BASIN GAS PLT

Customer Sample ID: COMINGLED GAS PLT WASTE EFFLUENT Date Sampled.....: 11/08/1999 Time Sampled.....: 10:00 Sample Matrix....: Aqueous

Laboratory Sample ID: 912816-1 Date Received.....: 11/09/1999 Time Received.....: 15:25

ATTN: Mr. Paul Peacock

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE T
EPA 160.1	Solids, Total Dissolved (TDS)	21000	10	mg/L	11/10/99 1
EPA 300.0	Chloride	6600	1000	mg/L	11/10/99 ks
EPA 300.0	Fluoride (F)	<50	50	mg/L	11/10/99 ks
EPA 300.0	Nitrogen, Nitrate as N (NO3-N)	<1.0	1.0	mg/L	11/10/99 ks
EPA 300.0	Sulfate (SO4)	1460	100	mg/L	11/10/99 ks
EPA 420.2	Phenol, Total Recoverable	0.18	0.05	mg/L	11/11/99 dr
SM 4500 CN	Cyanide, Total	0.08	0.05	mg/L	11/15/99 jo
EPA 3010	Acid Digestion, Metals (ICP)	Complete			11/10/99 an
PA 7470	Mercury (Hg)	<0.001	0.001	mg/L	11/11/99 pa
EPA 3510	Separatory Funnel Liq/Liq Extraction	Complete			11/12/99 Бј
EPA 60108	Metals Analysis (ICAP) Aluminum (Al) Arsenic (As) Barium (Ba) Boron (B) Cadmium (Cd) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Selenium (Se) Silver (Ag) Zinc (Zn) Polynuclear Aromatic Hydrocarbons-HPLC Acenaphthene Acenaphthylene Anthracene Benzo(b)fluoranthene Benzo(a)anthracene Benzo(a)pyrene Benzo(ghi)perylene Chrysene	<0.1 <0.02 0.06 1.67 <0.005 0.01 <0.03 (0.02 6.83 <0.05 0.23 <0.05 0.03 <0.02 <0.01 0.21 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.1 0.02 0.01 0.05 0.005 0.01 0.03 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.02 0.01 0.01 5.0 5.0 1.0 0.10 0.10 0.10 0.	mg/L mg/L mg/L mg/L mgg/L l l mgg/L l l l l l l l l l l l l l l l l l l l	11/11/99 pe 11/10/99 ct 11/10/99 ct 11/16/99 ct 11/16/91 ct 11/16/191 ct 11/16/10

a part of

Severn Trent Services Inc.

I I

Job Number: 912816

 $\{ i,j \}$

ļ

LABORATORY TEST RESULTS

Date: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: INDIAN BASIN GAS PLT ATTN: Mr. Paul Peacock

Customer Sample ID: CONINGLED GAS PLT WASTE EFFLUENT Date Sampled.....: 11/08/1999 Time Sampled.....: 10:00 Sample Matrix....: Aqueous

Laboratory Sample ID: 912816-1 Date Received.....: 11/09/1999 Time Received.....: 15:25

EST METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
ST METHOD PARAMETER/TEST DESCRIPTION Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phemanthrene Pyrene Volatile Organic Compounds Vinyl chloride 1,1-Dichloroethene Methylene chloride Benzene Carbon tetrachloride Chloroform 1,2-Dibromoethane (EDB) 1,1-Dichloroethane 1,2-Dibromoethane Ethylbenzene 1,1,2,2-Tetrachloroethane Tetrachloroethane Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethane Xylenes (total) Xylenes (total)	SAMPLE RESULT ND ND S5.0 ND ND A300 ND ND ND ND ND ND ND ND ND ND ND ND ND	REPORTING LIMIT 0.10 1.0 0.10 5.0 1.0 1.0 200 200 200 200 200 200 200 2	UNITS Ug/L	DATE 11/16/99 11/16/99 11/16/99 11/16/99 11/16/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99 11/15/99	rm rm rm rm rm weh weh weh weh weh weh weh weh weh weh

1.1

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

Analyst...: kso

Test Code.: CHL

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Batch....: 49213

Units.....: mg/L

Test Method.....: EPA 300.0 Method Description.: Ion Chromatography Analysis Parameter.....: Chloride

Job Number .: 912816

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
ICV ICB	_	V199269C	9.197	<u>-, , ,</u>	10		92.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	85-115	11/10/1999	1149
CCV		v199269C	0.274 9.602		10		96.0	%	85-115	11/10/1999 11/10/1999	
CCB CCV		v199269C	0.277 9.760		10					11/10/1999	1306
CCB	01201/ 1		0.317		10		97.6	%	85-115	11/10/1999 11/10/1999	
	912816-1		6.777.269			6.645604	2.0	R	20	11/10/1999	1436
	912816-1	V199269B	17.954		10.00000	6.645604	113.1	%	75-125	11/10/1999	
CCV CCB		v199269c	9.837 0.320		10		98.4	%	85-115	11/10/1999 11/10/1999	1502

Test Method SM 4500 CN Ratch - 49/71 Applicate tak
Test Method SM 4500 CN Batch 49471 Analyst: jdb
Method Description : Cyanide
Method Description.: Lyanide Units
Parameter: Cyanide, Total

A h	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Valu	le	Calc. Result	*	Limits	Date	Time
	,		0.000461							····	11/15/1999	1857
TCV		V199237D	0.100252		0.1			100.3	%	85-115	11/15/1999	1857
MB			-0.000704								11/15/1999	1858
LCS		v199237c	0.081533		0.080000			101.9	%	80-120	11/15/1999	
MD	912698-4		0.006644			0.001	112	0.005532	A	0.005000	11/15/1999	
	912698-4	V199237C	0.217930		0.200000	0.001	112	108.4	%	75-125	11/15/1999	
CCV		v199237d	0.103436		0.1			103.4	%	85-115	11/15/1999	
ССВ			0.000040								11/15/1999	
CCV		v199237d	0.098843		0.1			98.8	%	85-115	11/15/1999	
CCB			0.001002								11/15/1999	
CCV		v199237d	0.096158		0.1			96.2	%	85-115	11/15/1999	
CCB			0.001337								11/15/1999	
CCV		v199237D	0.098777		0.1			98.8	%	85-115	11/15/1999	
CCB			0.001160								11/15/1999	

Test Method....: EPA 300.0 Batch....: 49213 Analyst...: kso Method Description.: Ion Chromatography Analysis Units..... mg/L Test Code.: FL Parameter.....: Fluoride (F) QC Lab ID Reagent QC Result QC Result True Value Orig. Value Calc. Result * Limits Date Time ICV V199269C 1.063 1 % 85-115 106.3 11/10/1999 1149 ICB 0.0000 11/10/1999 1202 CCV V199269C 1.071 1 11/10/1999 1253 107.1 % 85-115 CCB 0.000 11/10/1999 1306 MD 912816-1 0.00 0.00 0.00 A 0.50 11/10/1999 1332 MS 912816-1 V199269B 0.952 1.000000 0.00 95.2 % 75-125 11/10/1999 1345 CCV V199269C 0.965 1 96.5 % 85-115 11/10/1999 1358 CCB 0.000 11/10/1999 1411 CCV V199269C 0.973 1 97.3 % 85-115 11/10/1999 1502 CCB 0.000 11/10/1999 1515

Page 4 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

a part of
Severn Trent Services Inc

Job Number.: 912816

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

Analyst...: kso

Test Code.: NO3

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
ICV		V199269C	0.944		1		94.4	%	85-115	11/10/1999	
ICB			0.010							11/10/1999	1202
MD	912816-1		0.0158			0.000	0.0158	A 1	0.1000	11/10/1999	1228
MS	912816-1	V199269B	0.890		1.000000	0.000	89.0	%	75-125	11/10/1999	1241
CCV		V199269C	0.986		1		98.6	%	85-115	11/10/1999	1253
CCB			0.010							11/10/1999	
CCV		V199269C	1.007		1		100.7	%	85-115	11/10/1999	
CCV		V199269C	0.999		1		99.9	%	85-115	11/10/1999	
CCB			0.011		·					11/10/1999	

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. V	/alue	Calc. Result	*	Limits	Date	Time
Ā		V199270G	0.198905	<u> </u>	0.2000			99.5	%	85-115	11/11/1999	
LCS MB	·	v199268c	0.089323		0.100000			89.3	%	80-1 20	11/11/1999	1453
MS	912777-2 912777-2	V199268C	0.095418		0.100000		005935		% 8 A	75-125 0.005000	11/11/1999	1455
CCV CCB		V199270G	0.198366 -0.002379		0.2000			99.2	%	85-115	11/11/1999	1502
CCV CCB		V199270G	0.200532		0.2000			100.3	%	85-115	11/11/1999	1510
CCV CCB		V199270G	0.199045		0.2000			99.5	%	85-115	11/11/1999	1514

Me	thod Descri		160.1 ids, Total Diss ids, Total Diss	Batch 49210 Units mg/L				Analyst: lam Test Code.: TDS			
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
MB		v199269D	0.0 9503.0		10000		95.0	 %	80-120	11/10/1999	
MD MS	912804-1 912804-1	V199269D	1782.0 2326.0		500.000000	1774.0 1774.0	0.4 110.4	R 20 %	0 75-125	11/10/1999 11/10/1999	

Met	hod Descr	: EPA iption.: Ion : Sul	Chromatography	Analysis	Batch 49213 Units mg/L				Analyst: kso Test Code.: SO4				
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time		
ICV ICB		V199269C	20.217 0.506		20	·	101.1	%	85-115	11/10/1999			
		V199269C	20.660 0.506		20		103.3	%	85-115	11/10/1999 11/10/1999	1253		

Page 5 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

Job Number.: 912816

Committed To Your Success

1. ...

QUALITY CONTROL RESULTS

Report Date .: 11/16/99

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Test Method.....: EPA 300.0 Method Description.: Ion Chromatography Analysis Parameter.....: Sulfate (SO4)

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
MD MS CCV CCB		V199269B V199269C	14.51647 35.568 21.063 0.485		20.00000 20	14.61164 14.61164	0.7 104.8 105.3	R % %	20 75-125 85-115	11/10/1999 11/10/1999 11/10/1999 11/10/1999	1345 1358
CCV CCB		V199269C	21.054 0.503		20		105.3	%	85-115	11/10/1999	1502

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP)

Batch..... 49281 Units..... mg/L

Batch..... 49213

Units..... mg/L

Analyst...: pal Test Code.: AL

Analyst...: kso

Test Code.: SO4

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00630	<u> </u>	0.00					11/11/1999	1003
CAL		ICPCALSTD	2.17210		10.0					11/11/1999	
ICV		V211204A	2.03914 -0.01382		2.00		102.0	%	90-110	11/11/1999	1026
	1110-2	V211206A	488.59609 0.01572		500.0		97.7	%	80-120	11/11/1999 11/11/1999	1035
LCS	1110-2 912804-1	I CPSPK99B	1.02274		1.000		102.3	%	80-120	11/11/1999 11/11/1999	
	912804-1	ICPSPK99B	0.01623 1.16268		1.000	0.04165	0.02542	A (0.10000 75-125	11/11/1999	
SB		V211206A	473.41082		500.0	0104105	94.7	%	80-120	11/11/1999	
CCV CCB		V211204A	1.97128 -0.01565		2.00		98.6	%	90-110	11/11/1999	

Test Method..... EPA 6010B Batch..... 49229 Analyst...: amw Method Description.: Metals Analysis (ICAP) Units..... mg/L Test Code.: AS Parameter..... Arsenic (As)

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
ICV		V211205B	4.11327		4.00		102.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90-110	11/10/1999	2109
ICB			0.00220							11/10/1999	
PB	1103-3		0.00598							11/10/1999	2144
LCS	1103-3	ICPSPK99B	0.53014		0.5000		106.0	%	80-120	11/10/1999	
	912510-1		0.02004			0.03000	0.00996	A	0.02000	11/10/1999	
	912510-1	I CPSPK99B	0.58903		0.5000	0.03000	111.8	%	75-125	11/10/1999	2207
PB	1110-2		0.00174							11/10/1999	
LCS	1110-2	I CPSPK99B	0.51947		0.5000		103.9	%	80-120	11/10/1999	
CCV		V211205B	4.09142		4.00		102.3	%	90-110	11/10/1999	
ССВ			0.00120							11/10/1999	
	912804-1		0.02857			0.03230	0.00373	A	0.02000	11/10/1999	
MS	912804-1	I CPSPK99B	0.51995		0.5000	0.03230	97.5	%	75-125	11/10/1999	
PB	1108-1		0.00689							11/10/1999	
LCS	1108-1	v16008711	0.50299		0.516906		97.3	%	80-120	11/10/1999	
MS	912685-1	v16008208	1.72295		2.000000	0.00515	85.9	%	75-125	11/10/1999	
MSD	912685-1	V16008208	1.78756	1.72295	2.000000	0.00515	89.1	%	75-125	11/10/1999	
-							3.7		20		2342
Ň		V211205B	3.61105		4.00		90.3	%	90-110	11/11/1999	0006
			-0.00010							11/11/1999	
											0012

* %=% REC, R=RPD, A=ABS Diff., D=% Diff.

a part of

Severn Trent Services Inc.

···:

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Met	hod Descri	iption.: EPA	als Analysis (IC	AP)		49 mg			Analyst Test Co	: chh de.: BA	
ac	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Tim
CAL		ICPCALBLK	-0.00120		0.00		·			11/10/1999	1/.7
CAL		ICPCALSTD	0.99510		1.00					11/10/1999	
ICV		V211204A	2.07557		2.00		103.8	*	95-105	11/10/1999	
1 CB			0.00050						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11/10/1999	
I SB		V211204E	0.50175		0.50		100.3	%	80-120	11/10/1999	
CCV		V211204A	2.02930		2.00		101.5	*	95-105	11/10/1999	
CCB			0.00100							11/10/1999	
PB	1110-2		0.00100							11/10/1999	
LCS	1110-2	ICPSPK99B	0.50697		0.5000		101.4	*	80-120	11/10/1999	
	912804-1		0.45277			0.45106	0.4		20	11/10/1999	
	912804-1	ICPSPK99B	0.97761		0.5000	0.45106	105.3	x	75-125	11/10/1999	
CCV		V211204A	2.09976		2.00		105.0	*	95-105	11/10/1999	
CCB			0.00130							11/10/1999	
PB	1108-5		0.00010							11/10/1999	
LCS	1108-5	I CPSPK99B	0.52072		0.5000		104.1	2	80-120	11/10/1999	
CCV		V211204A	2.07467		2.00		103.7	*	95-105	11/10/1999	
CCB			0.00010							11/10/1999	
	i	V211204A	1.97571		2.00		98.8	%	95-105	11/10/1999	
			0.00115							11/10/1999	
TSB		V211204E	0.48981		0.50		98.0	ኤ	80-120	11/10/1999	
	912691-2		0,06832			0.06634	2.9	R		11/10/1999	
	912691-2	ICPSPK99B	0.54399		0.5000	0.06634	95.5	%	75-125	11/10/1999	
ISB		V211204E	0.48180		0.50		96.4	%	80-120	11/10/1999	
CCV		V211204A	1.96174		2.00		98.1	%	95-105	11/10/1999	
CCB			0.00097							11/10/1999	

Met	hod Descr	iption.: EPA	ils Analysis (10	AP)		49 mg			Analyst Test Co	: pal de.: B	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.01799		·		•			11/11/1999	1003
CAL		ICPCALSTD	1.17519		2.00					11/11/1999	
ICV		V211204A	1.90770		2.00		95.4	%	90-110	11/11/1999	
ICB			0.00034				,		20 110	11/11/1999	
PB	1110-2		0,00674							11/11/1999	
LCS	1110-2	I CPSPK99B	0.48306		0.5000		96.6	%	80-120	11/11/1999	
MD '	912804-1		0.34013			0.31991	6.1	R		11/11/1999	
MS	912804-1	I CPSPK99B	0.88627		0.5000	0.31991	113.3	%	75-125	11/11/1999	
CCV		V211204A	1.82682		2.00		91.3	x	90-110	11/11/1999	
CCB			-0.00276					~	20 110	11/11/1999	

Page 7 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

1 . 1

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

Analyst...: chh

Test Code.: CD

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Gil Co., Midland, Tx ATTN: Mr. Paul Peacock

Batch..... 49224 Units..... mg/L

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter..... Cadmium (Cd)

Job Number.: 912816

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00179		0.00					11/10/1999	1432
CAL		ICPCALSTD	3.98740		3.00					11/10/1999	
ICV		V211204A	2.04204		2.00		102.1	%	95-105	11/10/1999	
I CB			-0.00090							11/10/1999	
I SB		V211204E	0.89071		1.00		89.1	%	80-120	11/10/1999	
CCV		V211204A	1.99431		2.00		99.7	%	95-105	11/10/1999	
ССВ			0.00067						102	11/10/1999	
PB	1110-2		-0.00173							11/10/1999	
LCS	1110-2	ICPSPK99B	0.04821		0.05000		96.4	%	80-120	11/10/1999	
MD	912804-1		0.00075			-0.00233	0.00308		0.00500	11/10/1999	
MS	912804-1	ICPSPK99B	0.04670		0.05000	-0.00233	98.1	~ `	75-125	11/10/1999	
CCV		V211204A	2.02239		2.00	0100233	101.1	x	95-105	11/10/1999	
ССВ			0.00037					/0	221102	11/10/1999	
PB	1108-5		-0.00331							11/10/1999	
LCS	1108-5	I CPSPK99B	0.05024		0,05000		100.5	%	80-120	11/10/1999	
CCV		V211204A	2.00440		2.00		100.2	x %	95-105	11/10/1999	
CCB			-0.00007				10012	~	105	11/10/1999	
		V211204A	2.02085		2.00		101.0	%	95-105	11/10/1999	
	1		0.00349					~	J J J J J J J J J J	11/10/1999	
TSB		V211204E	0.90071		1.00		90.1	%	80-120	11/10/1999	
	912691-2		-0.00065			-0.00092	0.00027		0.00500	11/10/1999	
MS	912691-2	I CPSPK99B	0.05126		0.05000	-0.00092	104.4	~	75-125	11/10/1999	
ISB	-	V211204E	0.91419		1.00	0.00072	91.4	×	80-120		
CCV		V211204A	2.07255		2.00		103.6	%	95-105	11/10/1999	
CCB			0.00026		2.00		103.0	/0	7J-105	11/10/1999 11/10/1999	

Met	thod Descr	: EPA iption.: Meta : Chro	als Analysis (IC	AP)		: 49 mg			Analyst Test Cod		
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00069		0.00					11/10/1999	1/30
CAL		ICPCALSTD	0.48109		1.0					11/10/1999	
ICV		V211204A	1.98753		2.00		99.4	%	95-105	11/10/1999	
ICB			0.00228						10 100	11/10/1999	
I SB		V211204E	0.44476		0.50		89.0	%	80-120	11/10/1999	
CCV		V211204A	1.94411		2.00		97.2	%	95-105	11/10/1999	
CCB			0.00061							11/10/1999	
PB	1110-2		-0.00291							11/10/1999	
LCS	1110-2	I CPSPK99B	0.19136		0.2000		95.7	%	80-120	11/10/1999	
MD	912804-1		-0.00145			-0.00104	0.00041		0.01000	11/10/1999	
MS	912804-1	I CPSPK99B	0.18719		0.2000	-0.00104	94.1	%	75-125	11/10/1999	
CCV		V211204A	1.97649		2.00		98.8	%	95-105	11/10/1999	
CCB			0.00353						10,100	11/10/1999	
PB	1108-5		-0.00187							11/10/1999	
LCS	1108-5	I CPSPK99B	0.19530		0.2000		97.7	%	80-120	11/10/1999	
CCV		V211204A	1.94762		2.00		97.4	%	95-105	11/10/1999	
CCB			0.00291				2114	10	10 105	11/10/1999	
CCV		V211204A	1.97503		2.00		98.8	%	95-105	11/10/1999	
			0.00570				/010		101	11/10/1999	
	1	V211204E	0.45111		0.50		90.2	%	80-120	11/10/1999	
					Page 8	* %=% REC,	R=RPD, A=ABS Di	iff.	, D=% Dif	f.	

a part of Severn Trent Services Inc.

QUALITY CONTROL RESULTS Job Number.: 912816

4. 11

Committed To Your Success

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Me	thod Descri	: EPA ption.: Meta : Chro	ls Analysis (IC	AP)		: 49 mg			Analyst Test Cox	: chh de.: CR	
QC	Lab 1D	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
MD MS ISB CCV CCB	,	ICPSPK99B V211204E V211204A	0.09901 0.28722 0.44951 1.99441 0.00889		0.2000 0.50 2.00	0.09012 0.09012	9.4 98.5 89.9 99.7	R % %	20 75-125 80-120 95-105	11/10/199 11/10/199 11/10/199 11/10/199 11/10/199 11/10/199	9 2009 9 2022 9 2032

Test Method EPA 6			: 49224	lvst: chh
Method Description.: Metal		Units		t Code.: CO
Parameter Cobal				

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0,00009		0.00				·	11/10/1999	1432
CAL		ICPCALSTD	0.66299		1.00					11/10/1999	1439
ICV		V211204A	2.07074		2.00		103.5	%	9 5 - 105	11/10/1999	1501
ICB			-0.00150							11/10/1999	1506
		V211204E	0.43837		0.50		87.7	%	80-120	11/10/1999	1510
		V211204A	2.02262		2.00		101.1	%	95 - 105	11/10/1999	1602
CCB			0.00015							11/10/1999	1607
PB	1110-2		-0.00030							11/10/1999	1629
LCS	1110-2	I CPSPK99B	0.50339		0.5000		100.7	%	80-120	11/10/1999	1634
MD	912804-1		-0.00090			0.00045	0.00135	A	0.02000	11/10/1999	1642
MS	912804-1	I CPSPK998	0.49766		0.5000	0,00045	99.4	%	75-125	11/10/1999	
CCV		V211204A	2.05672		2.00		102.8	%	9 5-105	11/10/1999	1713
ССВ			0.00075							11/10/1999	
PB	1108-5		-0.00316							11/10/1999	
LCS	1108-5	I CPSPK99B	0.51802		0.5000		103.6	%	80-120	11/10/1999	1755
CCV		V211204A	2.03333		2.00		101.7	%	95-105	11/10/1999	1803
CCB			-0.00075							11/10/1999	1807
CCV		V211204A	1.97970		2.00		99.0	%	95 - 105	11/10/1999	1947
ССВ			-0.00080							11/10/1999	
158		V211204E	0.43766		0.50		87.5	%	80-120	11/10/1999	
MD	912691-2		0.00531			0.00211	0.00320	Α	0.02000	11/10/1999	
MS	912691-2	ICPSPK99B	0.50418		0.5000	0.00211	100.4	%	75-125	11/10/1999	
ISB		V211204E	0.43685		0.50		87.4	%	80-120	11/10/1999	
CCV		V211204A	2.01401		2.00		100.7	%	95-105	11/10/1999	
CCB			-0.00241							11/10/1999	

Test Method.....: EPA 60108 Method Description.: Metals Analysis (ICAP) Parameter.....: Copper (Cu) Batch..... 49224 Units..... mg/L Analyst...: chh Test Code.: CU

								Date	Time
CAL ICP	CALBLK	-0.00010	0.00					11/10/1999	1432
CAL ICF	CALSTD	0.23160	1.00					11/10/1999	1439
ICV V21	11204A	2.05607	2.00		102.8	%	95-105	11/10/1999	1501
ICB		0.00646						11/10/1999	1506
ISB V21	1204E	0.44436	0.50		88,9	%	80-120	11/10/1999	1510
912648-4		0.01120		0.00861	0.00259	A	0.01000	11/10/1999	1554
912648-4 V16	6008208	0.27411	0.250000	0.00861	106.2	%	75-125	11/10/1999	1558

a part of Severn Trent Services Inc.

5.00

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

CUSTOMER: Marathon Dil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

	s Analysis (IC er (Cu)	AP)	Units				Test Cod	: chh je.: CU	
Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
211204A	2.01206 0.00388		2.00		100.6	%	95-105	11/10/1999	160
CPSPK99B	0.24774		0.2500	0 00120	99.1	%	80-120	11/10/1999	163
CPSPK99B 211204A	0.24558		0.2500 2.00	0.00129	97.7	%	75-125	11/10/1999	164
	0.00474-0.00172							11/10/1999	171
CPSPK99B 211204A	0.25292 2.03578		0.2500 2.00		101.2 101.8	% %	80-120 95-105	11/10/1999	180
211204A	1.98334		2.00		99.2	%	95~105	11/10/1999	194
211204E	0.45043 0.06876		0.50	0,05000	90.1 0.01876	% A (80-120 0.01000		
CPSPK99B 211204E 211204A	0.29549 0.44395 1.97769		0.2500 0.50 2.00	0.05000	98.2 88.8 98.9	% % %	75-125 80-120 95-105	11/10/1999 11/10/1999	202 203
	: Coppe Reagent 211204A CPSPK99B CPSPK99B 211204A 211204A 211204A 211204E CPSPK99B 211204E CPSPK99B 211204E	Copper Cu Reagent QC Result 211204A 2.01206 0.00388 0.00129 CPSPK99B 0.24774 0.00086 0.00086 CPSPK99B 0.24558 211204A 2.05779 0.00474 -0.00172 CPSPK99B 0.25292 211204A 2.03578 -0.00000 211204A 211204A 1.98334 0.00400 211204E 0.45043 0.06876 CPSPK99B 0.29549 211204E 0.44395	Copper Cu) Reagent QC Result QC Result 211204A 2.01206 0.00388 0.00129 0.00086 CPSPK99B 0.24774 0.00086 0.00474 211204A 2.05779 0.00474 -0.00172 CPSPK99B 0.25292 211204A 2.03578 -0.00000 211204A 211204A 0.06876 CPSPK99B 0.22592 211204A 1.98334 0.00040 211204E 0.45043 0.06876 CPSPK99B 0.29549 211204E 0.44395 211204A 1.97769	Copper CCu Reagent QC Result QC Result True Value 211204A 2.01206 2.00 0.00388 0.00129 0.2500 0.00086 0.2500 0.00086 0.2500 0.00072 0.2500 0.00474 0.00474 -0.00172 0.2500 211204A 2.03578 2.00 -0.00000 211204A 2.03578 2.00 -0.00000 211204A 0.500 2.00 211204A 1.98334 0.50 0.50 0.06876 0.50 0.50 0.50 211204E 0.45043 0.50 0.50 211204E 0.45959 0.2500 0.50 211204E 0.44395 0.50 2.00	Copper Cu Reagent QC Result QC Result True Value Orig. Value 211204A 2.01206 2.00 0.00388 0.00129 CPSPK99B 0.24774 0.2500 0.00129 CPSPK99B 0.24558 0.2500 0.00129 CPSPK99B 0.24558 0.2500 0.00129 CPSPK99B 0.24558 0.2500 0.00129 CPSPK99B 0.24558 0.2500 0.00129 CPSPK99B 0.25292 0.2500 0.00129 C11204A 2.03578 2.00 0.000474 -0.00000 211204A 1.98334 2.00 0.05000 211204A 1.98334 2.00 0.05000 0.05000 211204E 0.45043 0.50 0.05000 0.05000 CPSPK99B 0.29549 0.25500 0.05000 0.05000 211204E 0.44395 0.50 0.05000 0.05000 211204A 1.97769 2.00 0.05000 0.05000	Image: Copper (Cu) Reagent QC Result QC Result True Value Orig. Value Calc. Result 211204A 2.01206 2.00 100.6 0.00388 0.00129 0.2500 99.1 CPSPK99B 0.24774 0.2500 0.00129 CPSPK99B 0.24558 0.2500 0.00129 CPSPK99B 0.24558 0.2500 0.00129 CPSPK99B 0.24558 0.2500 0.00129 CPSPK99B 0.24558 0.2500 102.9 0.00474 0.00474 0.00172 0.00172 CPSPK99B 0.25292 0.2500 101.2 211204A 2.03578 2.00 101.8 -0.00000 2 0.00040 99.2 211204A 1.98334 2.00 99.1 0.06876 0.50 90.1 0.06876 0.05000 0.01876 CPSPK99B 0.25500 0.05000 98.2 211204E 0.44395 0.50 88.8 211204A 1.97769 2.00 98.9	Acc Result QC Result True Value Orig. Value Calc. Result * 211204A 2.01206 2.00 100.6 % 0.00388 0.00129 0.2000 99.1 % 0.00086 0.24774 0.2500 99.1 % 0.00086 0.00129 0.00043 A CPSPK99B 0.24558 0.2500 0.00129 97.7 % 211204A 2.05779 2.00 102.9 % 0.000474 0.00074 0.2500 101.2 % 0.00000 211204A 1.98334 2.00 101.8 % 0.00040 0.00040 0.05000 0.01876 A 211204A 1.98334 2.00 90.1 % 0.00040 0.05000 0.01876 A 211204E 0.45043 0.50 90.1 % 0.05000 0.01876 0.05000 0.01876 A 0.05000 0.05000 98.2 % % 211204E 0.44395 0.50 88.8 %	Image: Constraint of the second sec	Image: Copper (Cu) QC Result QC Result True Value Orig. Value Calc. Result * Limits Date 211204A 2.01206 2.00 100.6 % 95-105 11/10/1999 0.00388 0.00129 11/10/1999 11/10/1999 11/10/1999 0.00129 0.00086 0.00129 99.1 % 80-120 11/10/1999 CPSPK99B 0.24774 0.2500 0.00129 97.7 % 75-125 11/10/1999 CPSPK99B 0.24558 0.2500 0.00129 97.7 % 75-125 11/10/1999 211204A 2.05779 2.00 102.9 % 95-105 11/10/1999 0.00474 11/10/1999 11/10/1999 11/10/1999 11/10/1999 11/10/1999 211204A 2.03578 2.00 101.2 % 80-120 11/10/1999 211204A 1.98334 2.00 99.2 % 95-105 11/10/1999 211204E 0.45043 0.50 90.1 % 80-120 11/10/1999 0.06876 0.2500

			sh	
Test Method				
Method Descrip			[S	
Parameter				

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00960		0.00					11/10/1999	1432
CAL		ICPCALSTD	83.38069		100.00					11/10/1999	1439
ICV		V211204A	2.06757		2.00		103.4	%	95-105	11/10/1999	1501
ICB			-0.00263							11/10/1999	1506
1SB		V211204E	184.46746		200.0		92.2	%	80-120	11/10/1999	1510
CCV		V211204A	2.03659		2.00		101.8	%	95-105	11/10/1999	1602
CCB			0.00647							11/10/1999	160
PB	1110-2		0.01391							11/10/1999	1629
LCS	1110-2	I CPSPK99B	0.50448		0.5000		100.9	%	80-120	11/10/1999	1634
	912804-1		0.03982			0.01907	0.02075	Α	0.05000	11/10/1999	164
MS	912804-1	I CPSPK99B	0.52440		0.5000	0.01907	101.1	%	75-125	11/10/1999	1646
CCV		V211204A	2.07416		2.00		103.7	%	95 - 105	11/10/1999	171
CCB			0.00035							11/10/1999	171
PB	1108-5		0.0000							11/10/1999	175
LCS	1108-5	I CPSPK99B	0.53003		0.5000		106.0	%	80-120	11/10/1999	175
CCV		V211204A	2.05836		2.00		102.9	%	95-105	11/10/1999	180
CCB			-0.00120							11/10/1999	2 180
CCV		V211204A	1.98853		2.00		99.4	%	95-105	11/10/1999	9 194
CCB			0.01584							11/10/1999	9 195
I SB		V211204E	180.25849		200.0		90.1	%	80-120	11/10/1999	7 195
MD	912691-2		0.41103			0.35765	13.9	R	20	11/10/1999	200
MS	912691-2	I CPSPK99B	0.85928		0.5000	0.35765	100.3	%	75-125	11/10/1999	200
ISB		V211204E	179.55508		200.0		89.8	%	80-120	11/10/1999	202
		V211204A	2.01156		2.00		100.6	%	95 - 105	11/10/1999	203
• B	5		0.01956							11/10/1999	203

Analyst...: chh Test Code.: FE

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company

Committed To Your Success

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Metho	od Descri	: EPA ption.: Meta : Leac	ls Analysis (1C	AP)		: 49 mg			Analyst Test Cod	: chh de.: PB	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	-0.02160		0.00		<u></u>			11/10/1999	1/32
CAL		ICPCALSTD	5.03679		10.0					11/10/1999	
ICV		V211204A	2.08801		2.00		104.4	%	95-105	11/10/1999	
I CB			0.04962					~	// ///	11/10/1999	
I SB		V211204E	1.06901		1.00		106.9	%	80-120	11/10/1999	
CCV		V211204A	2.01665		2.00		100.8		95-105	11/10/1999	
CCB			0.02570						// 105	11/10/1999	
PB	1110-2		0.04796							11/10/1999	
LCS	1110-2	ICPSPK99B	0.51828		0.5000		103.7	%	80-120	11/10/1999	
MD 91	12804-1		0,02968			0.00260	0.02708		.05000	11/10/1999	
MS 9	12804-1	ICPSPK99B	0.49773		0.5000	0.00260	99.0		75-125	11/10/1999	
V 22		V211204A	1.98915		2.00		99.5	%	95-105	11/10/1999	
ССВ			0.05239							11/10/1999	
PB	1108-5		0.03366							11/10/1999	
LCS	1108-5	I CPSPK99B	0.53097		0.5000		106.2	%	80-120	11/10/1999	
CCV		V211204A	2.01825		2.00		100.9	%	95-105	11/10/1999	
CCB			0.06504							11/10/1999	
		V211204A	2.02497		2.00		101.2	%	95-105	11/10/1999	
			0.01537							11/10/1999	
TSB		V211204E	0.95396		1.00		95.4	%	80-120	11/10/1999	
	12691-2		-0.00452			0.04172	0.04624	A 0.	05000	11/10/1999	
	12691-2	I CPSPK99B	0.50937		0.5000	0.04172	93.5	%	75-125	11/10/1999	
I SB		V211204E	0.94240		1.00		94.2	%	80-120	11/10/1999	
CCV		V211204A	2.03451		2.00		101.7		95-105	11/10/1999	
ССВ			-0.01311							11/10/1999	

Meth	est Method: EPA 6010B ethod Description.: Metals Analysis (ICAP) arameter: Manganese (Mn) Lab ID Reagent QC Result QC Result				Batch : 49224 Units mg/L				Analyst: chh Test Code.: MN				
C	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Tin		
AL		ICPCALBLK	0.01740	···· <u>···</u>	0.00					11/10/1999	147		
AL		ICPCALSTD	0.92269		2.00					11/10/1999			
CV		V211204A	2.03519		2.00		101.8	%	95-105	11/10/1999			
CB			-0.00132							11/10/1999			
SB		V211204E	0.44561		0.50		89.1	%	80-120	11/10/1999			
:cv		V211204A	1.99253		2.00		99.6	%	95-105	11/10/1999			
CB			0.00044							11/10/1999			
B	1110-2		-0.00088							11/10/1999			
.CS	1110-2	I CPSPK99B	0.48168		0.5000		96.3	%	80-120	11/10/1999			
	912804-1		-0.00131			-0.00153	0.00022	Α	0.01000	11/10/1999			
s 🤉	912804-1	I CPSPK99B	0.47856		0.5000	-0.00153	96.0	%	75-125	11/10/1999			
cv		V211204A	2.04535		2.00		102.3	%	95-105	11/10/1999			
СВ			-0.00220							11/10/1999			
в	1108-5		-0.00287							11/10/1999			
CS	1108-5	I CPSPK99B	0.49507		0.5000		99.0	%	80-120	11/10/1999			
CV		V211204A	2.03253		2.00		101.6	%	95-105	11/10/1999			
CB			-0.00309							11/10/1999			
č٨		V211204A	2.01995		2.00		101.0	%	95-105	11/10/1999			
			0.00137							11/10/1999			
V		V211204E	0.45609		0.50		91.2	%	80-120	11/10/1999			

Severn Trent Services Inc.

Committed To Your Success

'. **.**

QUALITY CONTROL RESULTS

Report Date .: 11/16/99

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Me	thod Descr	; EPA iption.: Meta : Mang	als Analysis (10	CAP)			••••••				Analyst Test Cod	: chh de.: MN	
QC	Lab ID	Reagent	QC Result	QC Result	True V	/alue	Orig. V	alue	Calc. Result	*	Limits	Date	Time
MD MS ISB CCV CCB		ICPSPK998 V211204E V211204A	0.00869 0.50038 0.45571 2.04127 0.00206		0	0.5000 0.50 2.00		00598 00598	0.00271 98.9 91.1 102.1	A % %	80-120	11/10/1999 11/10/1999 11/10/1999 11/10/1999 11/10/1999 11/10/1999	2009 2022 2032

Test Method......: EPA 7470 Method Description.: Mercury, Total Parameter......: Mercury (Mg)

Me	Test Method: EPA 7470 Method Description.: Mercury, Total Parameter Mercury (Hg) QC Lab ID Reagent QC Result QC Result				Batch Units		Analyst: pal Test Code.: HG				
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		HGCALBLK	26277		0.000	<u> </u>				11/11/1999	1520
CAL		V211205C	33050		0.000050					11/11/1999	
CAL		V211205C	48244		0.000200					11/11/1999	
		V211205C	131319		0.001000					11/11/1999	
đ٩)	V211205C	602098		0.005000					11/11/1999	
		V211205C	1094966		0.010000					11/11/1999	
ICV		V211205D	0.00547		0.005000		109.4	%	90-110	11/11/1999	
ICB			-0.000003							11/11/1999	
PB			-0.000131							11/11/1999	1544
LCS		V211205D	0.00543		0.005000		108.6	%	80-120	11/11/1999	1547
MD	912809-2		-0.000142			-0.000167	0.000025	A	0.001000	11/11/1999	1552
MS	912809-2	V211205D	0.00501		0.005000	-0.000167	103.5	%	75-125	11/11/1999	1555
CCV		V211205C	0.00471		0.005000		94.2	%	90-110	11/11/1999	1613
CCB		V2442050	-0.00008							11/11/1999	1616
CCV		V211205C	0.00490		0.005000		98.0	%	90-110	11/11/1999	1649
CCB		10111000	-0.000013							11/11/1999	1652
CCV		V211205C	0.00467		0.005000		93.4	%	90-110	11/11/1999	1724
CCB			-0.000032							11/11/1999	1727

Test Method EPA 6010B		: 49224		
			Analyst	
Method Description .: Metals Ana				
		: mg/L		
			Test Code	
Parameter Molybdenum				

Tin	Date	Limits	*	Calc. Result	Orig. Value	True Value	QC Result	QC Result	Reagent	Lab ID	QC
000 1/7	11/10/1999				<u></u>			0.00130	ICPCALBLK		CAL
	11/10/199					2.00		0.20409	ICPCALSTD		CAL
999 150	11/10/199	95-105	%	105.3		2.00		2.10563 0.04635	V211204A		ICV ICB
999 160	11/10/1999 11/10/1999	95-105	%	98.3		2.00		1.96660	V211204A		CCV
	11/10/1999							0.00098		1110-2	PB
999 163	11/10/199	80-120 .10000	% • •	96.8 0.02861	0.05818	0.5000		0.48404 0.02957	I CPSPK99B	1110-2 912804-1	LCS MD
	11/10/1999	75-125	%	95.8	0.05818	0.5000		0.53729	I CPSPK99B	912804-1	
999 171	11/10/199	95-105	%	100.6		2.00		2.01293 0.06804	V211204A		CCV CCB
999 180	11/10/199	95-105	%	101.2		2.00		2.02379 0.04832	V211204A		

Severn Trent Services Inc.

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

Analyst...: chh

Test Code.: NI

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Batch..... 49224

Units..... mg/L

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter............ Nickel (Ni)

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	-0.00160		0.00					11/10/1999	1/77
CAL		ICPCALSTD	0.64550		1.0					11/10/1999	
ICV		V211204A	2.03516		2.00		101.8	%	95-105	11/10/1999	
ICB			-0.00030				,0.10	/0	105	11/10/1999	
ISB		V211204E	0.83814		1.00		83.8	%	80-120	11/10/1999	
CCV		V211204A	1.97738		2.00		98.9	%	95-105	11/10/1999	
CCB			0.00139				,0.,	70	9J-10J		
PB	1110-2		-0.00448							11/10/1999	
LCS	1110-2	ICPSPK99B	0.47202		0.500		94.4	%	80-120	11/10/1999	
MD	912804-1		-0.00139		01500	-0.00680	0.00541			11/10/1999	
MS	912804-1	ICPSPK998	0.45625		0.500	-0.00680	92.6	~ ~	0.01000 75-125	11/10/1999	
CCV		V211204A	2.01105		2.00	0.00000	100.6	%	75-125 95-105	11/10/1999	
CCB			0.00324		2100		100.0	/0	93-105	11/10/1999	
PB	1108-5		-0.00231							11/10/1999	
LCS	1108-5	ICPSPK99B	0.47619		0.500		95.2	%	80 120	11/10/1999	
CCV		V211204A	1.99174		2.00		99.6	%	80-120	11/10/1999	
. asB			0.00834		2.00		99.0	~	95-105	11/10/1999	
	1	V211204A	1.98981		2.00		99.5	%	05 405	11/10/1999	
עב	·		0.00189		2.00		99.3	~	95 - 105	11/10/1999	
ISB		V211204E	0.86134		1.00		86.1	•/	00 400	11/10/1999	
MD	912691-2		0.05968		1.00	0.05142		%		11/10/1999	
MS	912691-2	I CPSPK99B	0.53017		0.500		14.9	R		11/10/1999	
1SB		V211204E	0.86280		1.00	0.05142	95.8	%	75-125	11/10/1999	
ccv		V211204A	2.02778		2.00		86.3	%	80-120	11/10/1999	
CCB		122044	0.00206		2.00		101.4	%	95-105	11/10/1999	
200			0.00200							11/10/1999	2036

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter - Selanium (Se) Batch..... 49229

Analyst...: amw

I

	escription.: Met Sel	cals Analysis (1(lenium (Se)	CAP)	Units	mg	1/L	Test Co	de.: SE	
QC Lab	ID Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits	, Date	Tim
ICV	V211205B	4.13607		4.00		103.4	% 90-110	11/10/1999	2100
I CB		0.00716					<i>x y y y y y y y y y y</i>	11/10/1999	
PB 1103	3-3	-0.00774						11/10/1999	
LCS 1103	S-3 ICPSPK99B	0.52583		0,5000		105.2	% 80-120	11/10/1999	
MD 91251(D-1	0.04239			0.05221	0.00982	A 0.02000	11/10/1999	
MS 912510	0-1 ICPSPK99B	0.60952		0.5000	0.05221	111.5	% 75-125	11/10/1999	
PB 1110)-2	0.00754						11/10/1999	
LCS 1110	0-2 ICPSPK99B	0.51176		0.5000		102.4	% 80-120	11/10/1999	
CCV	V211205B	4.11920		4.00		103.0	% 90-110	11/10/1999	
ССВ		-0.00049				,02.0	<i>№</i> 90-110	11/10/1999	
MD 912804	¥-1	0.06091			0.06711	0.00620	A 0.02000	11/10/1999	
MS 912804	-1 ICPSPK998	0.53834		0.5000	0.06711	94.2	% 75-125	11/10/1999	
PB 1108	3-1	-0.00048				74.6	10 TJ-12J	11/10/1999	
LCS 1108	B-1 V16008711	1.26703		1.389429		91.2	% 80-120		
MS 912685	5-1 V16008208	1.66516		2.000000	-0.00141	83.3	% 75-125	11/10/1999	
MSD 912685	5-1 V16008208	1.73536	1.66516	2.000000	-0.00141	86.8	% 75-125	11/10/1999 11/10/1999	
					0100141	4.1	R 20	11/10/1999	2346
ecv.	V211205B	3.61532		4.00		90.4	% 90-110	11/11/1000	0004
		0.00502				2014	<i>™</i> 70°110	11/11/1999	
								11/11/1999	0012

Page 13

* %=% REC, R=RPD, A=ABS Diff., D=% Diff.

14 J.

Job Number.: 912816

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Met	hod Descri	: EPA ption.: Meta : Silv	ls Analysis (IC	AP)	***************************************	: 49 mg			Analyst. Test Cod	: amw Je.: AG	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Tim
1SB		V21122A	1.01911		1.00		101.9	~	80-120	11/10/1999	205
ICV		V211205B	0.82532		0.80		103.2	%	90-110	11/10/1999	
1 CB			0.00639							11/10/1999	211
PB	1103-3		0.00602							11/10/1999	214
LCS	1103-3	ICPSPK99B	0.21922		0.2000		109.6	%	80-120	11/10/1999	215
MD	912510-1		-0.00134			0.00301	0.00435	Α	0.01000	11/10/1999	220
MS	912510-1	ICPSPK99B	0.23286		0.2000	0.00301	114.9	%	75-125	11/10/1999	220
PB	1110-2		0.00387							11/10/1999	222
LCS	1110-2	I CPSPK99B	0.20008		0.2000		100.0	%	80-120	11/10/1999	223
CCV		V211205B	0.81442		0.80		101.8	%	90-110	11/10/1999	224
CCB			0.00538							11/10/1999	224
MD	912804-1		-0.00299			0.00267	0.00566		0.01000	11/10/1999	
MS	912804-1	1 CPSPK99B	0.18444		0.2000	0.00267	90.9	%	75-125	11/10/1999	
PB	1108-1		0.00394							11/10/1999	
LCS	1108-1	v16008711	0.98418		1.039642		94.7	%	80-120	11/10/1999	
MS	912685-1	v16008208	0.42520		0.400000	0.09302	83.0	%	75-125	11/10/1999	233
Daw	912685-1	v16008208	0.44731	0.42520	0.400000	0.09302	88.6	%	75-125	11/10/1999	234
Ð	μ)						5.1		20		
	T	V21122A	0.92430		1.00		92.4	%	80-120	11/10/1999	
CCV		V211205B	0.72690		0.80		90.9	%	90-110	11/11/1999	
CCB			0.00329							11/11/1999	001

Met	hod Descri	: EPA ption.: Meta Zinc	ls Analysis (IC	AP)		49 mg			Analyst. Test Coo	************************************	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Tim
CAL		ICPCALBLK	0.00100		0.00					11/10/1999	143
CAL		ICPCALSTD	0.74320		3.00					11/10/1999	144
ICV		V211204A	2.05861		2.00		102.9	%	95-105	11/10/1999	150
ICB			0.00000							11/10/1999	150
ISB		V211204E	0.94520		1.00		94.5	%	80-120	11/10/1999	151
CCV		V211204A	2.01376		2.00		100.7	%	95-105	11/10/1999	160
CCB			-0.00241							11/10/1999	160
PB	1110-2		-0,00399							11/10/1999	162
LCS	1110-2	I CPSPK99B	0.49158		0.5000		98.3	%	80-120	11/10/1999	163
MD	912804-1		0.02308			0.01626	0.00682	Α	0.01000	11/10/1999	164
MS	912804-1	1 CPSPK99B	0.51147		0.5000	0.01626	99.0	%	75-125	11/10/1999	164
CCV		V211204A	2.06765		2.00		103.4	%	95-105	11/10/1999	171
CCB			-0.00283							11/10/1999	7 171
PB	1108-5		-0.00442							11/10/1999	7 175
LCS	1108-5	1 CPSPK99B	0.49473		0.5000		98.9	%	80-120	11/10/1999) 175
CCV		V211204A	2.04205		2.00		102.1	%	95-105	11/10/1999	7 180
CCB			-0.00407							11/10/1999	180
CCV		V211204A	2.04812		2.00		102.4	%	95-105	11/10/1999	7 194
CCB			-0.00179							11/10/1999	9 195
1 SB		V211204E	0.95902		1.00		95.9	%	80-120	11/10/1999	195
MD	912691-2		0.42511			0.40387	5.1	R	20	11/10/1999	
MS	912691-2	ICPSPK99B	0.92205		0.5000	0.40387	103.6	%	75-125	11/10/1999	200
	: 1	V211204E	0.96117		1.00		96.1	%	80-120	11/10/1999	9 202
1		V211204A	2.06797		2.00		103.4	%	95-105	11/10/1999	

Page 14 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

a part of

Severn Trent Services Inc.

5.

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Page 15 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

' 1**•**

17

ļ

QUALITY CONTROL RESULTS Job Number.: 912816 Report Date.: 11/16/99

1		PROJECT: Marathon Oil Co.	, Midland, Ix	ATTN: Mr. Paul Pea	cock	
QC Type	Description	Reag. Code	Lab ID	Dilution Factor	Date	Time

Analyst...: rm

Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
Acenaphthene	ND	-	· ······			
Acenaphthylene	ND					
Anthracene	ND					
Benzo(b)fluoranthene	ND					
Benzo(k)fluoranthene	ND					
Benzo(a)anthracene	ND					
Benzo(a)pyrene	ND					
Benzo(ghi)perylene	ND					
Chrysene	ND					
Dibenzo(a,h)anthracene	ND					
Fluoranthene	ND					
Fluorene	ND					
Indeno(1,2,3-cd)pyrene	ND					
Naphthalene	ND					
nthrene	ND					
le le	ND					

LCS Laboratory Control Samp	V1737258 11/16/1999 0						
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
Acenaphthene	651.7		1000.000000	0	65.2	· %	10-92
cenaphthylene	735.6		1000.00000	0	73.6	x	11-127
nthracene	632.7		1002.00000	D	63.1	%	13-110
enzo(b)fluoranthene	348.2		500.00000	Ď	69.6	×	57-102
enzo(k)fluoranthene	360.5		500.00000		72.1	%	59-102
enzo(a)anthracene	346.8		500.00000	0	69.4	%	61-109
enzo(a)pyrene	328.3		500.00000	-	65.7	%	42-131
enzo(ghi)perylene	427.2		500.00000	-	85.4	%	55-119
hrysene	364.7		500,000000	n n	72.9	×	59-103
ibenzo(a,h)anthracene	323.0		500.00000	-	64.6	%	63-108
luoranthene	350.5		500.00000	-	70.1	%	40-122
luorene	735.3		1000.00000	•	73.5	%	20-95
ndeno(1,2,3-cd)pyrene	358.8		500.00000	-	71.8	%	57-104
aphthalene	483.3		1000.000000	-	48.3	%	10-82
henanthrene	380.7		502.50000	-	75.8	%	37-102
yrenê	382.8		500.00000	-	76.6	%	59-111

Job Number.: 912816	QUALITY	CONTROI	. RESULI		Date.: 11/16/	99	
CUSTOMER: Marathon Oil Company	PROJI	ECT: Marathon O	il Co., Midlan	d, TX ATTN:	Mr. Paul Peaco	sk	
QC Type Descrip	tion	Reag. Cod	e Lab	ID Dilut	ion Factor	Date Time	
Test Method: EPA 8260B Method Description.: Volatile Orga		: 4		Analyst: weh			
MB Method Blank					1	1/15/1 9 99 1439	
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits	
<pre>inyl chloride ,1-Dichloroethene ethylene chloride enzene arbon tetrachloride hloroform ,2-Dibromoethane (EDB) ,1-Dichloroethane ,2-Dichloroethane thylbenzene ,1,2,2-Tetrachloroethane etrachloroethene oluene 1-Trichloroethane .iloroethene ylenes (total)</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND N						
LCS Laboratory Control Sa	mple	CLPVOAMS2			1	1/15/1999 151	
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits	
,1-Dichloroethene Benzene Toluene Trichloroethene	50.90 50.28 50.26 49.80		50 50 50 50 50		101.8 100.6 100.5 99.6	% 51-141 % 67-130 % 75-114 % 72-114	

MS Matrix Spike		CLPVOAMS2	913032-	1	11	/15/	1999 1611
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
1,1-Dichloroethene	50.80		50	ND	101.6		51-141
Benzene	50.91		50	1.12	99.6	%	67-130
Toluene	50.52		50	ND	101.0	%	75-114
Trichloroethene	49.66		50	ND	99.3	%	72-114

	CLPVOAMS2	913032-	1	11	/15/1999 1642
QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
51.40	50.80	50	ND	102.8	% 51-141 R 30
50.41	50.91	50	1.12	98.6 1.0	% 67-130 R 30
50.59	50.52	50	ND	101.2 0.1	% 75-114 R 30
48.32	49.66	50	ND	96.6 2.7	% 72-114 R 30
	51.40 50.41 50.59	QC Result QC Result 51.40 50.80 50.41 50.91 50.59 50.52	QC Result QC Result True Value 51.40 50.80 50 50.41 50.91 50 50.59 50.52 50	QC Result QC Result True Value Orig. Value 51.40 50.80 50 ND 50.41 50.91 50 1.12 50.59 50.52 50 ND	QC Result QC Result True Value Orig. Value Calc. Result 51.40 50.80 50 ND 102.8 50.41 50.91 50 1.12 98.6 50.59 50.52 50 ND 101.2 60.1 0.1 0.1 0.1 0.6

Severn Trent Services Inc.

•. . :

I.

SURROGATE RECOVERIES REPORT Job Number.: 912816

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Method.....: Volatile Organic Compounds Method Code.....: 826TCL

Batch..... 49489 Analyst..... weh

Surrogate	Units
1,2-Dichloroethane-d4 (surrogate)	ug/L

Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
		MB		51.26	50.00	102.5	76-120		11/15/1999	1/30
		LCS		50.76	50.00	101.5	76-120		11/15/1999	
913032-1				51.66	50.00	103.3	76-120		11/15/1999	
913032-1		MS		50.97	50.00	101.9	76-120		11/15/1999	
913032-1		MSD		50.92	50.00	101.8	76-120		11/15/1999	
913032-3				50.89	50.00	101.8	76-120		11/15/1999	
913032-2				51.00	50.00	102.0	76-120		11/15/1999	1743
912816-1			50	47.02	50.00	94.0	76-120		11/15/1999	2036
912767-15				52.17	50.00	104.3	76-120		11/15/1999	2107
912767-16				51.00	50.00	102.0	76-120		11/15/1999	2137

|--|

Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
913032-1		MB LCS		51.80 51.23 52.45	50.00 50.00 50.00	103.6 102.5 104.9	85-115 85-115 85-115	· <u> </u>	11/15/1999 11/15/1999 11/15/1999	1510
913032-1 913032-1 913032-3 913032-2 912816-1 912767-15 912767-16		ms MSD	50	53.36 52.32 52.36 52.46 48.12 50.96 50.19	50.00 50.00 50.00 50.00 50.00 50.00 50.00	106.7 104.6 104.7 104.9 96.2 101.9 100.4	85 - 115 85 - 115		11/15/1999 11/15/1999 11/15/1999 11/15/1999 11/15/1999 11/15/1999 11/15/1999 11/15/1999	1611 1642 1712 1743 2036 2107

Toluene-d8	ug/L
Surrogate	Units

Lab ID	Matrix	QC Туре	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
		MB LCS		50.11 49.94	50.00	100.2	85-112		11/15/1999	
913032-1				49.91	50.00 50.00	99.9 99.8	85-112 85-112		11/15/1999 11/15/1999	
913032-1 913032-1		MS MSD		50.52 51.24	50.00 50.00	101.0 102.5	85-112 85-112		11/15/1999	
913032-3 913032-2				51.57 50.89	50.00 50.00	103.1	85-112 85-112		11/15/1999	1712
912816-1			50	50.44	50.00	100.9	85-112		11/15/1999 11/15/1999	2036
767-16				51.31 54.32	50.00 50.00	102.6 108.6	85-112 85-112		11/15/1999 11/15/1999	

Page 18

a part of

Severn Trent Services Inc.

Committed To Your Success

SURROGATE RECOVERIES REPORT Job Number.: 912816 Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Method..... Polynuclear Aromatic Hydrocarbons-HPLC Method Code.....: 8310

Batch..... 49504 Analyst..... rm

Surrogate				Units				
1-Fluoronaphthalene			ι	ıg/L				
Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag
912816-1		MB LCS		371.7 555.3 720.4	1000 1000 1000	37.2 55.5 72.0	10-74 10-74 10-74	•
Surrogate				Units				
Terphenyl-	d14			Jg/L				

Lab 1D	Matrix QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
	MB		749.9 936.4	1000	75.0 93.6	56-122 56-122		11/16/1999	
912816-1	LCS		776.2	1000	77.6	56-122		11/16/1999	

Page 19

Date

11/16/1999 0111 11/16/1999 0154 11/16/1999 0236

Time

METHOD REFERENCES

Committed To Your Success

- EPA SW-846, Test Methods for Evaluating Solid Waste Update I, IIA, IIB, III 1.
- Standard Methods for the Examination of Water and Wastewater, 18th Edition EPA 600/4-79-020, Methods of Chemical Analysis for Waters and Wastes, March 1983 Federal Register, Friday, October 26, 1984 (40 CFR Part 136) 2.
- 3.
- 4
- American Society for Testing and Materials, Volumes 5.01, 5.02, 5.03, 11.01, 11.02, 11.03, 11.04 5.
- EPA Methods for Environmental Samples 6

COMMENTS

All methods of chemical analysis have a statistical uncertainty associated with the results. Unless otherwise indicated, the data in this report are within the limits of uncertainty as specified in the referenced method. Quality Control acceptance criteria are based either on actual laboratory performance or on limits specified in the referenced method. The date and time of analysis indicated on the QA report may not reflect the actual time of analysis for QC samples. All data are reported on an "as received" basis unless otherwise indicated. Data reported in the QA report may be lower than sample data due to dilution of samples into the calibration range of the analysis. Sample concentration for solid samples are calculated on an as received (wet) basis. Unless otherwise indicated, volatiles by gas chromatography (GC) are reported from a single column. Volatile analysis by GC on low level soil extractions are conducted at room temperature.

FLAGS, FOOTNOTES AND ABBREVIATIONS (as needed)

NA	=	Not Analyzed	ND	=	Not detected at a value greater than the reporting limit
N/A	=	Not applicable	NC	=	Not calculable due to values lower than the reporting limit
ug/L	=	Micrograms per liter	mg/L	=	Milligrams per liter
ug/Kg	=	Micrograms per kilogram	mg/kg	=	Milligrams per kilogram
ບັ	=	Undetected	•••		
J	=	Indicates value is > MDL, but < Re	porting Limit		
в	=	Analyte was detected in the metho	d blank analyzed	with this	sample.
D	=	Surrogate recoveries are not calcul	lated due to samp	ple dilutio	on.
х	=	Surrogate recovery is outside quali	ty control limits.		
Y	=	Spike or spike duplicate recovery is	s outside quality of	control lir	nits.
Z	=	Relative percent difference for a sp	ike and spike du	plicate is	outside quality control limits. The precision of the method was
		impacted by matrix.			•••
^	=	Indicates value is above QC accept	otance criteria.		

QC SAMPLE IDENTIFICATIONS

мв	=	Method Blank	SB	=	Storage Blank
RB	=	Reagent Blank	EB	=	Extraction Blank
PB	=	Preparation Blank	CALB	=	Calibration Blank
MD	=	Method Duplicate	RS	-	Reference Standard
LCS	=	Laboratory Control Sample	LCSD	=	Laboratory Control Sample Duplicate
MS	=	Matrix Spike	MSD	=	Matrix Spike Duplicate
ICB	=	Initial Calibration Blank	CCB	=	Continuing Calibration Blank
ICV	=	Initial Calibration Verification	ICB	=	Initial Calibration Blank
PDS	=	Post Digestion Spike	SS	=	Surrogate Spike
ISA	=	Interference Check standard "A"	ISB	-	Interference Check Standard "B"
ISCAB	=	Interference Check Sample AB	MSA	=	Method of Standard Additions
CAL	Ξ	Calibration standard	SD	=	Serial Dilution
MST	=	TCLP Matrix Spike	MSQ	#	TCLP Matrix Spike Duplicate
PST	=	TCLP Post Digestion Spike	LCT	=	TCLP Laboratory Control Sample

STL-Valparaiso 2400 Cumberland Dr Valparaiso, IN 46383

VPQ0140 Revision 001 Effective 10/15/99

Job Sample Rec	eipt Checklist Report 11/09/99	V2
Job Number: 912816 Location.: 57211 Customer Project Number.: 96000746 Project Description.: INDIAN Customer: Marathon Oil Company	Job ID: BASIN REMEDIATION STRIPPER Contact.: Mr. Paul Peacock	Job Check List Date.: 11/09/99 Project Manager: lpa
Questions ? (Y/N) C	omments	
Chain-of-Custody Present?Y		
Custody seal on shipping container?		
If "yes", custody seal intact?		
Custody seals on sample containers?		
If "yes", custody seal intact?	··.	
Samples chilled?Y		
Temperature of cooler acceptable? (4 deg C +/- 2). R	ECEIVED ON ICE	
Samples received intact (good condition)?		
velatile samples acceptable? (no headspace) Y		
Correct containers used?Y		
Adequate sample volume provided?Y		
Samples preserved correctly?Y		
Samples received within holding-time?		
Agreement between COC and sample labels?		
Additional		
Comments Sample Custodian Signature		

Į.

								everi	דרו Treו	nt Lab	Severn Trent Labora	SS
Committee			CHAIN	0 .		К – (1 1 1 1	l v s i s	/Method	No.	57211-10411
C U S 1	tomer Information	c	5 4 2	1 U U U U	- 0 I U I	3						
PO			PROJECT NAME	INDIAN BASIN	ASIN GAS PLT			_	\bigcirc		C.7 TARIE	303
MO			LAB NUMBER	912816	1 G BOTTLE	LE ORDER	96000813		\sim	20 NMAC 5.	ð	
COMPANY	Marathon Oil Company		BILL TO	Marathor	Marathon Oil Company			E 300.0	211			
SEND REPORT TO	Mr. Paul Peacock		INVOICE ATTN	Mr. Paul	Paul Peacock							
ADDRESS	Midland, Tx		ADDRESS	125 West	West Missouri St	Street		<u> </u>				
				P.O. Box	552							
	Bottles to: Mr. Jack Brown							Σ Z				<u></u>
CITY/STATE/ZIP	Lakewood, New Mexico		CITY/STATE/ZIP	Midland,	TX 79702-0552	552		:04				
PHONE			PHONE	915-687-8312	8312			0 e				
FAX			FAX	915-687-8305	8305			: S				
NO.	SAMPLE DESCRIPTION		PRES	SERV. F	SAMPLE MATRIX		SAMPLE DATE SAMP	SAMPLE TIME #CONTAINR		8 C D E F G H	H I J X L M N D P	1 D P & 8
×	MANNAN POLINIAN GAS PUT	r where	王 王	HNO3 N	J AQ	3/v1	W849 11	1000 41-	2/ [-12 Plas. X	×		
			2	HOK				5	I-IR Plas	×		
			#	HaSOA				-1 Z	I-IS GRSS	×		
			ž	NONE			_	-1 2	(-1 L Plas	XX		
			Ž	NONE				63	3-12615	×		
			H	HCI 4	1 4			84	4-40ml WA		*	
Þ												
Sampler:		Shipment Method:	ethod:			Airbill No.			ž	Required TurnAround:	round:	
1. Relinquished	1. Relinquished By: OBMIN	Date 99	2. Relinquished	l By:			Date	3. Relinquished By:	shed By:			Date
Company Name:			Company Name:		1		Time	Company Name:	e:			Time
1. Received By:	ßi	Date 11/9/99	2. Received By:				Date 3	3. Received	By:			Date
Company Name:	TR SIT		Company Name:				Time (Company Name:	:			Time
Severn Trent Laboratories	oratories 2400 Cumberland Drive		Valparaiso, IN 46	46383 21	219-464-2389	FAX 219-462-2953	2953					

SPILL PREVENTION, CONTROL AND COUNTERMEASURE PLAN

in and in the second

For

MARATHON OIL COMPANY INDIAN BASIN GAS PLANT

August 2001

Name of facility Operator

...

Indian Basin Gas Plant Marathon Oil Company

-1-

INDIAN BASIN GAS PLANT SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN CONTENTS

Page	1	Cover page
Page	2	Index
Page	3	Part I, Items 1 thru 6 General Information
Page	4	Part I, Item 7 General Information
Page	5	Part I, Items 8 thru 10 General Information
Page	6	Part II, Alt. A, Design and Operating Information, Section A
Page	7	Part II, Alt. A, Design and Operating Information, Section B
Page	8	Section B (continued)
Page	9	Part II, Alt. A, Design and Operating Information, Section C
Page	10	Part II, Alt. A, Design and Operating Information, Section D
Page	11	Part II, Alt. A, Design and Operating Information, Section E
Page	12	Attachments Index

Name of facilityIndian Basin Gas PlantOperatorMarathon Oil Company

- 2 -

SPILL PREVENTION CONTROL & COUNTERMEASURE PLAN PART I - GENERAL INFORMATION

- 1. Name of Facility Indian Basin Gas Plant
- 2. Type of Facility Onshore Production Facility

3. Location of Facility Eddy Count, New Mexico

Approximately 20 miles W/NW of Carlsbad, New Mexico

Unit Letter G, Section 23, Township 21S, Range 23E

4. Name and address of owner or operator:

Name:	Marathon Oil Company	_
Address:	P O Box 1324	
	Artesia, New Mexico 88210	

5. Designated person accountable for oil spill prevention at facility:

Name and title: Mike Schweser, Gas Plant Superintendent

 Facility experienced a reportable oil spill event during the twelve months prior to the issuance date of this Plan below. (If YES, complete attachment #1) No

D ₁	MANAGEMENT APPROVAL
Th	is SPCC Plan will be implemented as herein described.
Si	gnature
Na	me C.M. Schweser
Ti	tle Plant Superintendent

CERTIFICATION

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR, Part 112, attest that the SPCC Plan has been prepared in accordance with good engineering practices.

Roger D. Edelbrock
Printed Name of Registered Professional Engineer
Jogn D. Edelbrock
Signature of Registered Professional Engineer

Date 8/16/01

Registration No. ____20128 ____ State ____ LA

Name of facility

Operator

Indian Basin Gas Plant Marathon Oil Company

PART I GENERAL INFORMATION

7. Potential Spills -- Prediction and Control

ITEM	Source	Major Type of Failure	QUANTITY LARGEST TANK	Rate Bbls/Hr	DIRECTION OF FLOW	Secondary Containment
1	Generator Turbine Oil	Leaks, Tank Rupture	7 bbl	N/A*	SE	Yes
2	Open Top Transfer Tank	Leaks, Tank Rupture	500 bbl	N/A*	SE	Yes
3	Outlet Compressor Lube Oil	Leaks, Tank Rupture	24 bbl	N/A*	SE	Yes
4	Field Storage Area	Leaks, Tank Rupture	12 bbl	N/A*	SE	Yes
5	Stabilizer Compressor Lube Oil	Leaks, Tank Rupture	5 bbl	N/A*	SE	Yes
6	IBLEAP Stripper Tank Area	Leaks, Tank Rupture	500 bbl	.001 BO 112 BW	SE	Yes
7	Skimmer Basin	Leaks, Tank Rupture	500 bbl	8 BO 833 BW	SE	Yes
8	Recompressor Lube Oil	Leaks, Tank Rupture	210 bbl	N/A*	SE	Yes
9	SWD Pump Lube Oil	Leaks, Tank Rupture	7 bbl	N/A*	SĒ	Yes
10	Condensate Storage Tank 5B	Leaks, Tank Rupture	3000 bbl	12.5 BO	SE	Yes
11	1 Bullet - Flare Drum PV-34.2B	Leaks, Tank Rupture	1571 bbl	Approx .125 BO	SE	Yes
12	1 Bullet - Sales Condensate Knockout	Leaks, Tank Rupture	1571 bbl	12.5 BO	SE	Yes
13	3 Bullets - Sour NGL Surge Tanks	Leaks, Tank Rupture	1605 bbl	Note 2	SE	Yes
14	LACT Unit Loading Rack	Leaks, Truck Rupture, Premature Departure	180 bbl	12.5 BO Note 3	SE	Yes

* Not connected to an inflowing process.

Note 2 NGL stored during upset situations only. Tanks kept empty as is practicable during normal operations. NGL is 100% volatile at atmospheric conditions.

Note 3 Condensate sold at same rate its produced. Hauled by truck.

Name of facility Operator Indian Basin Gas Plant Marathon Oil Company

- 4 -

PART I GENERAL INFORMATION

(Response to statements should be: Yes, No, or NA)

- Containment or diversionary structures or equipment to prevent oil from reaching navigable waters are practicable. (If No, complete Attachment #2) No
- 9. Inspections and Records
 - A. The required inspections follow written procedures.
 - B. The written procedures and a record of inspections, signed by the appropriate supervisor or inspector, are attached Yes

Discussion: : Daily visual inspections are made and readings taken and recorded by operational personnel during normal rounds on both twelve hour shifts. During these rounds, operating personnel search for atypical situations. If these situations are encountered, they are documented and promptly reported to supervisory personnel via the plant work order system. Spills are reported as soon as practical to the supervisor on a Marathon Spill Reporting form. Semi-Annual inspections are conducted by plant supervision or their designee. Records of these inspections are on file at the Indian Basin Gas Plant.

- 10. Personnel Training and Spill Prevention Procedures
 - A. Personnel are properly instructed in the following:
 - 1. Operation and Maintenance of equipment to prevent oil discharge
 - 2. Applicable pollution control laws, rules, and regulations.

Yes

Yes

Yes

Describe procedures employed for instruction: All employees have received 8 hours of HAZWOPER training, and many are 24 hour HAZWOPER trained. Annual instruction is provided on SPCC and other environmental topics by the Southern Business Units HES department. Other instructions are narrative. Environmental Control and Site Security are discussed at safety meetings, which are held on a monthly basis. Potential spill situations are reported to the superintendent via the plant work order system and also reported by the safety committee on a monthly basis. Such situations are corrected

B. Scheduled prevention briefings for the operating personnel are conducted frequently enough to assure adequate understanding of the SPCC Plan

Yes

Describe Briefing program: Operation Management frequently reviews environmental standards at safety meetings. Such reviews assure an adequate understanding of SPCC. Operation superintendents are periodically requested to update Contingency Plans. Superintendents thereby assess and revise procedures when necessary.

Indian Basin Gas Plant Marathon Oil Company

- 5 -

(Prior to completing Part II Alternate A, Refer to regulations and instructions, pages 6-7)

- A. Facility Drainage
 - 1. Drainage from diked storage areas is controlled as follows (include operating description of valves, pumps, ejectors, etc. (Note: Flapper type valves should not be used):

None of the earthen diked areas have installed drains. Any spill that might occur would be removed with a vacuum truck, or transferred, via a portable pump, to the plant open drain system. Concrete pollution catchments are connected directly to the plant open drain system which processes the fluid for removal of free hydrocarbon. The waste is then commingled and injected with Indian Basin Field produced water. Rain water captured in containments is also removed in this manner.

 Drainage from undiked areas is controlled as follows (include description of ponds, lagoons, or catchment basins and methods of retaining and returning oil to facility):

The plant operates under a Storm Water Pollution Prevention Plan and a Groundwater Discharge Plan created for the New Mexico Oil Conservation Division. The plant is in compliance with all phases of these plans. The Groundwater Discharge Plan and the Storm Water Pollution Prevention Plan is available for review on site at the Indian Basin Gas Plant office and in the Southern Business Unit office, Midland, Texas.

3. The procedure for supervising the drainage of rain water from secondary containment in to a storm drain or an open watercourse is as follows (include description of (a) inspection for pollutants, and (b) method valving security). (A record of inspection and drainage events is to be maintained on a form similar to Attachment #3):

No secondary containment is drained into a storm drain or open watercourse.

(Response to statements should be: Yes, No, or NA)

B. Bulk Storage Tanks

1. Describe tank design, materials of construction, fail-safe engineering features, and if needed, corrosion protection:

Generator Turbine Oil - A vented, 7 barrel, welded, carbon steel, above ground lube oil storage tank. This tank is filled by vendor from a truck and is attended at all times during filling operations.

Open top transfer tank - A 500 barrel fiberglass open top tank used to transfer produced fluids hauled in by truck into the skimmer system. The tank is continuously monitored during loading operations to prevent overfilling.

Outlet compressor lube oil tank - A vented, 24 barrel, welded, carbon steel, above ground, lube oil storage tank. This tank is filled by vendor from a truck and is attended at all times during filling operations.

Field storage area - .

- One, vented, 12 barrel, welded , carbon steel, above ground, storage tank containing gasoline.
- One, vented, 7 barrel, welded, carbon steel, above ground, lube oil storage tank.

These tanks are filled by vendor from a truck and are attended at all times during filling operations

Stabilizer compressor lube oil - A vented, 5 barrel, welded, carbon steel, above ground, lube oil storage tank. This tank is filled by vendor from a truck and is attended at all times during filling operations.

IBLEAP stripper tanks:

- One, 500 barrel, fiberglass, gun barrel (separator)tank. Tank has a high level switch which shuts the inlet valve.
- Two, 210 barrel, welded, carbon steel, untreated, water tanks. These tanks have high level switches that shut the inlet valve.
- One, 34 barrel, horizontal, welded, carbon steel, condensate storage tank.

- One, 210 barrel, welded, carbon steel, oil tank. This tank has a level transmitter and high level alarm
- One, 500 barrel, fiber glass, gun barrel (separator) tank.
- Four, 500 barrel, fiber glass, produced water, storage tanks. These tanks are equipped with level transmitters and high level alarms. Signals from these instruments are transmitted to the plant control room which is manned 24 hours a day.

Skimmer Basin: All tanks are equipped with thief hatches for vacuum/vent protection.

(Response to statements should be: Yes, No, or NA)

- C. Facility Transfer Operations, Pumping, and In-plant Process.
 - 1. Corrosion protection for buried pipelines:
 - (a) Pipelines are wrapped and coated to reduce corrosion Yes Cathodic protection is provided for pipelines if determined necessary by electrolytic testing.
 - (b) Electrolytic testing is not performed.

When a pipeline section is exposed, it is examined and corrective (c) action taken as necessary. Yes

 Pipeline terminal connections are capped or blank-flanged and marked if the pipeline is not in service or on standby service for extended periods

Describe criteria for determining when to cap or blank-flange:

The plant is in continuous operation. Procedures for abandonment of pipelines will be developed when necessary.

3. Pipe supports are designed to minimize abrasion and corrosion and allow for expansion and contraction.

Describe pipe support design:

Pipe supports are steel stanchion with wear plated protection at points of wear and contact. Where large temperature swings are anticipated, expansion loops are installed.

4. Describe procedures for regularly examining all above-ground valves and pipelines (including flange joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces):

All equipment is observed in operation daily by plant operating personnel for signs of leakage or other deterioration. Such signs are reported and corrected via the plant work order system.

Where deemed appropriate, more rigorous inspection methods, such as ultra-sonic thickness testing or X-ray inspection, are conducted. (Records of these tests are on file at the Indian Basin Gas Plant.)

5. Describe procedures for warning vehicles entering the facility to avoid damaging above ground piping:

Signs and traffic barrier guards are installed where needed.

-9-

No

Yes

(Response to statements should be: Yes, No, or NA)

D. Facility Tank Car & Tank Truck Loading/Unloading Rack Tank car and tank truck loading/unloading occurs at the facility.

(If yes complete 1 through 5 below).

Yes

No

- Loading/unloading procedures meet the minimum requirements and regulations of the Department of Transportation.
- 2. The unloading area has a quick drainage system.
- 3. The containment system will hold the maximum capacity of any single compartment of a tank truck loaded/unloaded in the plant. Yes

Describe containment system design, construction materials, and volume:

The truck loading facility is enclosed by an earthen dike designed to contain 110% of the volume of one transport truck. See attached drawing and calculation sheets for more detail.

4. An interlocked warning light, a physical barrier system, or warning signs are provided in loading/unloading areas to prevent vehicular departure before disconnect of transfer lines. No

Describe methods, procedures, and/or equipment used to prevent premature vehicular departure:

A ground wire system is in use, which will not allow the transfer pump to operate unless the truck is attached to both the ground wire and to the loading rack via the transfer line. If this circuit is broken, the transfer pump will shut down. In addition, the loading rack is equipped with an automatic shutoff, which activates when a pre-set volume passes through the LACT meter. This will limit the volume of condensate that could be leaked if premature truck departure would occur.

5. Drains and outlets on tank trucks and tank cars are checked for leakage before loading/unloading or departure.

Yes

- 10 -

C

(Response to statements should be: Yes, No, or NA)

E. Security

1. Plants handling, processing or storing oil are fenced.	<u>No*</u>
Entrance gates are locked and/or guarded when the plant is unattended or not in production.	NA*
3. Any valves which permit direct outward flow of a tanks contents are locked closed when in non-operating or standby status.	Yes
4. Starter controls on all oil pumps in non-operating or standby status	are:
(a) Locked in the off position,	<u>No**</u>
(b) located at sites accessible only to authorized personnel.	Yes
5. Discussion of items 1 through 4 as appropriate:	
* The gas plant is attended 24 hours per day, each day of the year. The gas plant is fenced, the condensate storage tanks are outside the fenced area.	
** The LACT unit addressed in Item D. 4, has a key lock security system which requires an assigned key to allow loading trucks.	
6. Discussion of lighting around the facility:	
Flood lighting and localized area lighting provided by Marathon Oil Company.	

- 11 -

l

IGBP SPCC Plan Attachments Index

Section 1

Attachment 1	 Plan re-certification / modification record
Attachment 2	 API SPCC Plan Attachment #2
Attachment 3	 Commitment of Manpower, Equipment, and Materials
Attachment 4	 SBU Oil Spill Contingency Plan (5 pages)
Attachment 5	 SPCC Inspection procedure
Attachment 6	 SPCC Plan annual review form
Attachment 7A	 SPCC semi-annual facility inspection form, page 1
Attachment 7B	 SPCC semi-annual facility inspection form, page 2
Attachment 8	 Example of daily SPCC inspection documentation
Attachment 9	 Plant plot plan
Attachment 10	 Contact information. Marathon and contract
Attachment 11	 Marathon spill report form

Section 2

Worksheets	Secondary	containment	volume	worksheets	& drawings
					-

Section 3

Maps		Tonographic Mon
		Topographic Map
		Road map to plant
		Gathering system

Section 4

ļ

Documentation Inspection records

Name of facilityIndian Basin Gas PlantOperatorMarathon Oil Company

÷.

SPCC Plan Review Record.

This SPCC plan will be periodically reviewed for accuracy in a timely manner as specified by current SPCC regulations. Any amendment to the SPCC plan shall be certified by a PE (Professional Engineer) within six months after a change in the facility design, construction, operation, or maintenance occurs which materially affects the facility's potential for the discharge of oil into or upon the navigable water of the United States or adjoining shorelines. Amendments and PE certifications can be added to the plan as an Attachment, as long as it is consistent with the spill prevention goals of the rest of the plan. The PE is not required to re-certify the entire plan again under these circumstances.

Review Dates	Title	Signature
\		
	·	

SPCC PLAN, ATTACHMENT #2 OIL SPILL CONTINGENCY PLANS AND WRITTEN COMMITMENT OF MANPOWER, EQUIPMENT, AND MATERIALS

Secondary containment or diversionary structures are not practical for this facility for the following reasons (attach additional pages if necessary):

Secondary containment is not provided around the bases of selected storage tanks and process vessels since trapped volatile liquid will vaporize at atmospheric conditions and/or trapped hydrocarbons would create an extreme fire hazard in the plant area. All secondary containments in existence are capable of containing at least 110% the volume of the largest tank within.

A strong oil spill contingency plan is attached.

Yes

A written commitment of manpower, equipment, and materials is Yes attached.

To: OPERATIONS SUPERVISORS

This is your authority to expeditiously commit manpower, equipment and materials necessary to arrest and contain and initiate cleanup of any harmful quantity of oil or hazardous material discharged from this facility. This authority may be delegated by yourselves to the person in charge of the facility to ensure that necessary activities are implemented as quickly as possible after a spill is noted.

R. V. Coleman
Operations Superintendent
Southern Business Unit

OIL SPILL Page 1 of 5

ON LAND

All oil spills, regardless of the quantity shall be reported to the respective area Production Supervisor. The Production Supervisor and/or their designee shall in turn, use the flowcharts contained in the Reporting Section(s) of this is manual to determine if the spill is reportable.

If the spill is determined to be reportable the Production Supervisor will be responsible for notifying the proper federal/state and local authorities of the oil spill. They will also be esponsible for notifying the area's Production Superintendent and HES Department of the spill. If additional Marathon Oil Company (MOC) resources are needed to respond to the spill the Production Supervisor shall inform the Production Superintendent of this need. The Production Superintendent will be responsible for obtaining the additional MOC resources that are needed to respond to the spill (i.e. activating the Regions Incident Command System).

Gas leaks and gas line breaks shall be reported in the same manner as oil spills. <u>All gas leaks</u> (whether it is natural gas or casinghead gas) need to be reported to the appropriate state oil and gas regulatory agency. Venting of gas from tanks, pressure relief valves, etc. is not reportable under this section. However, these types of releases may be reportable under Federal regulations (CERCLA/SARA) or under the State Air Control Agency regulations. If the escaping gas or oil contains H₂S consult the applicable H₂S Contingency Plan for that facility for additional guidance.

In the case of an oil spill/gas leak from a producing well, a testing vessel, a tank, flow line or any other related oil field equipment, action should be designed to protect human life and control the spill as rapidly as possible. All steps should be considered carefully; however, timing of these steps should be altered to fit the individual circumstances.

- 1. Shut off source feeding the spill, analyze the type of spill and determine the best immediate action to be taken to contain the spill.
- 2. Obtain labor and equipment from the nearest source to construct a containment barrier as rapidly as possible.
- 3. If Item 2 is only a temporary measure and earth moving equipment is required, call out the necessary equipment from the source from which it is most readily available.
- 4. Employ the use of the most readily available absorbent material (straw, dirt, lost circulation material, etc.). When the location is a heavy clay soil, dirt will be ineffectual.

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

OIL SPILL Page 2 of 5

5. If practical, call for vacuum truck to pick up hydrocarbons.

- 6. Collect lighters and matches from personnel working in the area to assure an explosion or fire does not occur.
- 7. Restrict entrance to affected area by persons not involved in containment and cleanup operations.

8. Notify Production Superintendent of spill and action being taken. The Production Superintendent will notify the Region's upper management (Operations Superintendent, Region Production Manager, etc) of the spill.

- 9. Keep livestock from affected area and if practical, notify the farmer or rancher of the situation.
- 10. The Production Supervisor will notify the required regulatory agencies (National Response Center, TRRC, NMED, etc) of the spill.
- 11. Be aware of the presence of H₂S gas. Personal Protective Equipment (SCBA's) should be readily available if H₂S gas is known or suspected.
- 12. In the event the spill results in curtailing deliveries, the Production Superintendent will notify the crude oil purchaser.
- 13. The Duty Officer at the National Response Center must be notified immediately when a spill reaches "waters of the U.S.", or it appears a certainty that the spill will reach "waters of the U.S.".

ON INLAND WATER

All action should be designed to protect human life and control the spill as rapidly as possible. All steps listed should be considered; however, timing of these steps should be altered to the individual circumstances to best accomplish these objectives.

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

OIL SPILL Page 3 of 5

- 1. Any employee sighting a spill will immediately attempt to shut off the source feeding it.
- 2. The employee will notify his supervisor or the Production Supervisor who will in turn advise the Production Superintendent of the spill.
- 3. The Production Supervisor shall notify immediately the appropriate state and federal agencies (National Response Center, TRRC, NMED, etc).

4. The employee and/or Production Supervisor will furnish their best estimate of the following information concerning the spill.

- A. Location of the spill.
- B. Source and type of oil spilled.
- C. Is the source still feeding the spill?
- D. Area covered and volume.
- E. Direction of movement
- F. Speed of movement.
- G. Currents (if applicable).
- H. Estimate of the area likely to be affected.
- I. Other action taken.
- 5. The Incident Commander or his/her designated representative shall keep a daily log of response activities. The log book shall be bound, not loose leaf. Entries shall be dated, time and signed.

A. MINOR SPILLS

- 1. If the spill is minor (5 to 25 bbls) and a boom is not immediately available, sorbent material should be spread on the spill and collected afterwards.
- 2. Attempts should be made to cleanup the shoreline and recover as much oil as possible.

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

OIL SPILL Page 4 of 5

B. MAJOR SPILLS

In all probability, a major spill (greater than 25 bbls) will initially require two<u>basic</u> efforts: 1) stop the leak, and 2) contain the spill. Stopping the leak may require other outside services such as well control specialists, a drilling or workover rig, pipeline repair crew, etc. Requirements should be determined and action initiated as soon as possible.

- 1. To contain the spill, if a containment boom is readily available, order it out immediately and commence skimming operations as soon as possible.
- 2. If a contract or coop-containment service is to be employed, it should be mobilized without delay.
- 3. If weather and water conditions are such that the time required to implement containment will permit the spill to spread beyond possible containment; sorbent material should be spread on the spill.
- 4. Shoreline work sites for each facility shall be pre-selected, marked as such and made known to the employees who will be involved in spill control activities for the facility.
- 5. In shallow water, containment should be attempted by boom and the material handharvested.
- 6. If sorbent material has been employed, the local air control agency should be contacted for permission to burn the collected material.
- 8. When applicable, aircraft should be employed to discourage waterfowl from staying in the spill area.
- 9. A photographic record of the spill movement, containment and cleanup operations, damage to property, fish kills, efforts to disperse waterfowl, waterfowl kills, and other relevant actions should be kept.

Attachment 4

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

OIL SPILL Page 5 of 5

CERT REPORTING REQUIREMENTS

In certain cases a spill or release may trigger reporting requirements under Marathon's Corporate Emergency Response Plan. Refer to the section on CERT to make this determination.

REGULATORY AGENCIES TO BE NOTIFIED

The flowcharts contained in the State and Federal Reporting sections provide guidance for determining when a spill is reportable and which regulatory agencies need to be notified. Phone numbers for all of these agencies are listed in the section entitled, "Agency Information."

DEFINITION OF WATERCOURSE OR WATERS OF THE U.S.

The term watercourse is defined as any lakebed (playa), gully, draw, streambed, wash, arroyo, or natural or man-made channel through which water flows or <u>has flowed</u>. An arroyo, which is dry most of the time but flows after a heavy rainstorm is, considered a watercourse. A spill into the arroyo when it is dry is a reportable spill to the National Response Center. Two examples of a watercourse in this Region are Rocky Arroyo behind the Indian Basin Gas Plant and the arroyo's located in Discovery Canyon in the Yates Field. Both happen to drain into the Pecos River. If there is any doubt concerning whether or not a spill has entered a watercourse contact should be made with the Environmental and Safety Department for a final determination.

CERCLA/SARA REPORTING REQUIREMENTS

In some cases a spill may trigger reporting requirements under EPA's CERCLA/SARA regulations. Reference the Federal section of this manual to determine when a spill is covered by these reporting requirements.

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

IBGP SPCC PLAN INSPECTION PROCEDURES

Eddy County, New Mexico

- As part of his normal routine, the plant operator(s) will 1. visually inspect the plants production facilities for accumulations, leaks of oil or other hazardous substances. The operator must perform the inspection at least once per shift,
- 2 The production facilities to be inspected will include but are not limited to lines, vessels, valves, pumps, sumps, ditches, containments, and miscellaneous fittings.
- 3. In the event that an accumulation or leak is discovered, the operator shall initiate the actions detailed in the current SPCC Plan.
- 4. The operator shall record his daily inspection on the plant daily reading sheets.
- Annual SPCC plan and semi-annual SPCC facility inspections 5. will be performed by the plant superintendent, or their designee, using the attached inspection forms. Completed inspections forms will be filed with this plan.

C.M. Schweser Indian Basin Gas Plant Superintendent

R.V. Coleman Indian Basin Operations Superintendent

8/16/01 Date

8/16/01 Date

Indian Basin Gas Plant Annual SPCC Plan Review Record

Instructions:

Each inspection item listed below should be checked with the most appropriate answer (Y)es or (N)o. If the inspection item requires additional work to complete, note it in the comment section.

Note; the IBGP semiannual facility inspection should also be performed.

Work order(s) should be written for all corrective actions noted during review or inspections. Work orders should written to show requested by SPCC. Include work order numbers or copies of work orders in this report. The Inspector must initial each item inspected and print their name on each form. The Marathon Supervisor responsible for the facilities being inspected must sign all forms and ensure all necessary corrections are completed.

Plan Review	Y	N	Comments
*Has there been a change in any facility covered by the plan which materially affects its discharge potential to navigable waters?			(See note below)
Has the plan been PE certified within the last 3 years or documentation attached affirming that re-certification is not required?			Note: If the plan is still in effect a originally prepared, this may be documented on a signature page and attached.
Are there three years of inspection records on file?			
Are facility plot plans attached with drainage directions?	<u> </u>		
Has the spill history been reviewed for NRC reportable spill trends?			Note: all spills are investigated and actions to correct are tracked to completion.
Has any facility had 2 NRC reportable spill within 12 calendar months or an NRC spill greater than 1000 gallons of oil?			Note: If Yes, was the SPCC plan submitted to the EPA Regional Administrator?
Is an Emergency Contingency Plan available?			
Is a written commitment to manpower, equipment and material attached? Current?			
Is Substantial Harm self determination attached?			
Is drainage direction shown on plot plans?			
Is a topographic map of the area attached or on file?	1		
Does PART I, #7 of plan accurately describe spill potential and direction?			
Are all oil storage tanks compatible with material stored?			
Have there been any facility modifications which affect the dike size requirements?			
Are daily visual inspections being performed and documented by operators?			
Are oil tanks of adequate capacity to prevent overfilling?	T		
Is there adequate vacuum/pressure relief protection on oil tanks?			
Have all previously written SPCC related work orders been closed?			

Printed Name Inspector Signature

Date Inspected

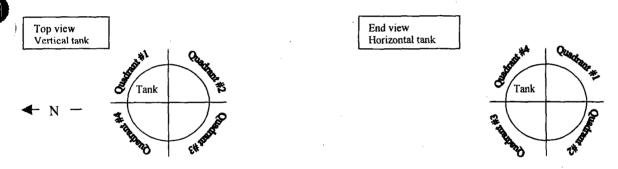
Printed Name Plant Superintendent

Signature

Date Accepted

Attachment 6

IBGP SPCC Facility Inspection

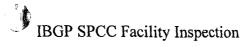

Page 1 of 2

		C	Comments Code:	
	Tanks	Tank foundations	Dikes	Piping / Valves
T1	Drip Marks	TF 1 Cracks	D1 Dike damaged.	P1 Droplets of stored material
T2	Discoloration	TF2 Discoloration	D2 Dike material not impervious	P2 Discoloration
T3	Puddles containing spilled or leaked material	TF3 Settling	D3 Dike not large enough to contain current potential oil volume.	P3 Corrosion
T4	Corrosion	TF4 Gaps between tank and foundation	D4 Vegetation growing in dike.	P4 Pipe supports OK?
T5	Cracks	TF5 Damage caused by vegetation roots	NOTE: There should be NO drainage valves from dikes.	P5 Bowing of pipe between supports
				P5 Evidence of stored material seepage from valves or seals
		· · · · ·		P6 Valve glands and bodies OK?

General inspection items to look for:

l			
G2. L	ube oil tanks/drums in secondary containment?	G6.	Netting in place & in good condition (if applicable)
G3. C	Chemical Tanks/Pumps in secondary containment?	G7.	Sumps empty?
G4. D	Drain valves plugged?	G8.	Localized dead vegetation

Tank inspection guide. For vertical tanks, wall inspections should be described by quadrant. Start quadrant #1 on the North side of tank. For horizontal tanks start description at the top, include direction of view (i.e. looking west). Number quadrants in a clockwise rotation.


Does Facility Drawing Represent Current Facility Layout & Direction of Drainage? Yes/No_

Inspector Name Printed Signature Date Complete

 Tank Description
 Comments

 Generator Turbine Oil
 Image: Comment of the second s

Created - 6/28/01 Revised -

Page 2 of 2

Outlet Compressor Lube Oil	
Field Storage Area	
Stabilizer Compressor Lube Oil	
IBLEAP Stripper Tank Area	
Skimmer Basin	
Recompressor Lube Oil	
SWD Pump Lube Oil	
Condensate tank 5B	
Flare Drum Bullet	
Sales Condensate Knockout Bullet	
Sour NGL Surge Bullets (3 ea)	
LACT: Grounding and Auto- shutoff	
General Area Piping and Equipment	

Superintendent Name Printed Signature

Date Accepted

Work orders shall be written for any item requiring correction. Work orders will be requested by **SPCC**. The IBGP work order system will serve to track action items to completion. Attach a copy of SPCC work orders generated by this inspection to this report. File with the SPCC plan.

Attachment 7B

INDIAN BASIN GAS PLANT DAILY LOG SHEET #5

Ìł

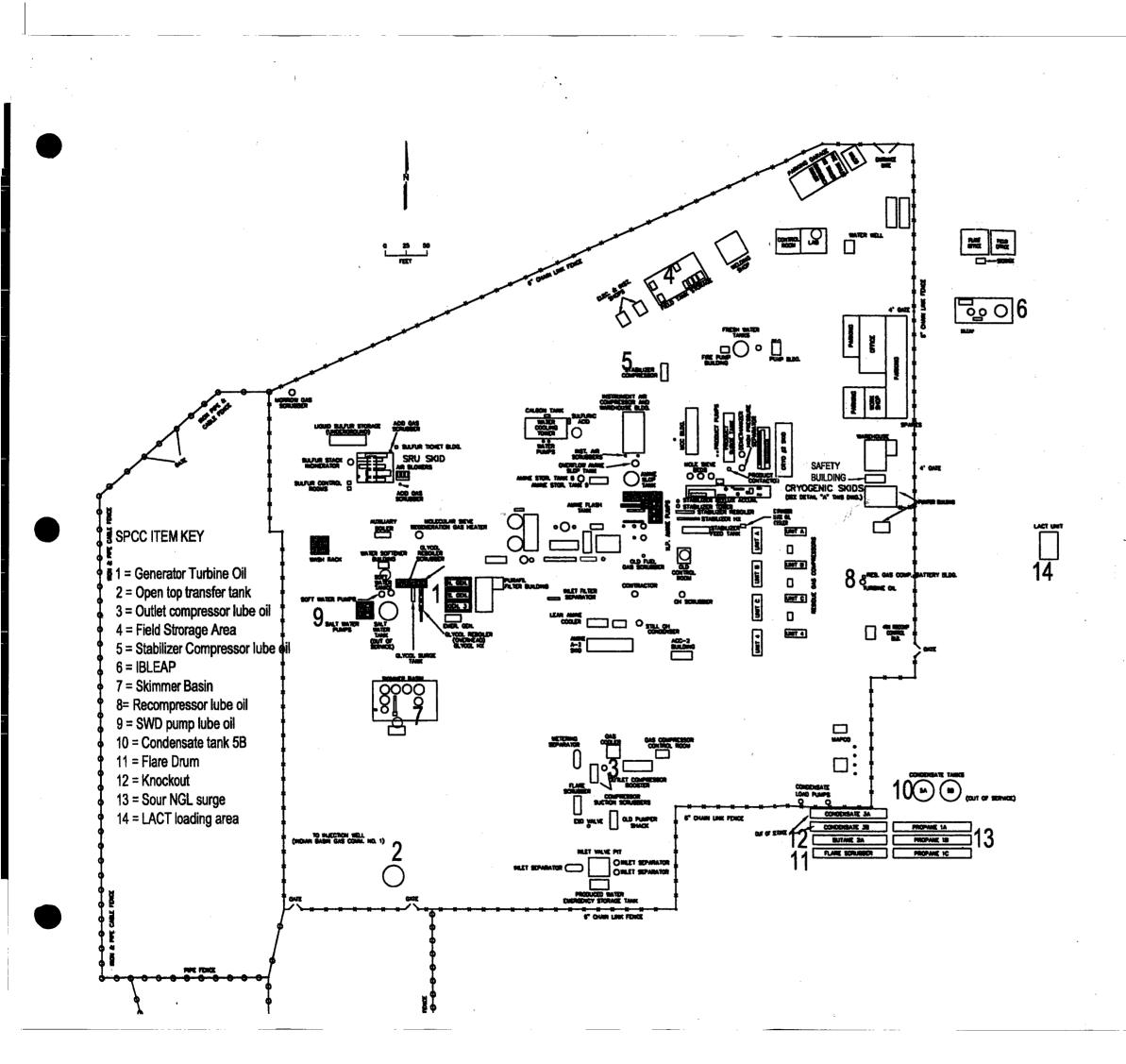
;

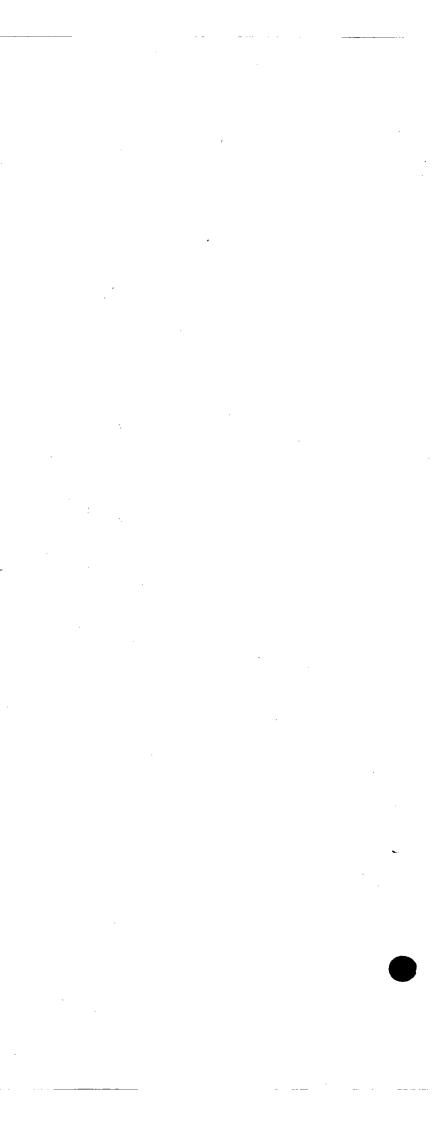
	Cryo Plant Readings				Date On:	·		Off:	·	
		Normal Operating Range	3 AM		9 AM	12 - N	3 PM	6 PM	9 PM	12 - M-
	ryo Temperatures	Carlos Anna Carlos Anna Anna Anna Anna Anna Anna Anna Ann	1	<u></u>		yaning siyan ya T	Frankriger Street	C. LANCE M. M.	Contraction of	ARC SOL
	Warm G/G Inlet Gas In	80 - 115 F	↓ ′	└─── ′	↓ '	 '	↓ /	↓ '	 '	I
l	Warm G/G Inlet Gas Out	65 - 80 F	↓]	└── ′	└── ′	↓ /	└── ┘	└── ′	↓!	L/
	Warm G/G Residue Gas Out	80 - 100 F	<u> </u>	└─── ┘	ا ۔۔۔۔۔'	↓ !	L/	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	<u> </u>	L
	Cool G/G Inlet Gas In	65 -80 F	<u> '</u>	L!	<u>ا</u>	<u>ا</u> '	<u> </u>	L'	<u> </u> !	Ĺ
	Cool G/G Residue Gas In	-505 F	<u> </u>	L!	└─── ′	<u> </u> !	<u> </u>	 '	<u> '</u>	īļ
	Cool G/G Residue Gas Out	50 - 80 F	[]	ļ!	Ļ'	<u>اا</u>	<u> </u>	<u>ا</u> ــــــا	['	ī
Ì	Side Reboiler Inlet Gas In	5 - 25 F	<u> </u>	<u> </u>	└─── '	<u> </u> '	<u> </u>	<u> </u>	['	Ē]
	Side Reboiler Inlet Gas Out	-10 - 15 F	└──── [!]	L!	<u> </u>	<u> </u> '	<u> </u>	<u>ا</u> '	[!	ī]
	Side Reboiler Draw	-6540 F	L!	L	L'	<u> </u>	لا	<u> </u>	[!	·
Î	Side Reboiler Return	0 - 25 F	L!	<u> </u>	<u> </u>	<u> </u> '	Ē	<u> </u>	[!	
	Cold G/G Inlet Gas In	-10 - 15 F	[]	Ī	<u>`</u> '	<u> </u>		<u> </u>	<u> </u>	·
	Cold G/G Inlet Gas Out	-11090 F	[]					I!		
ľ	Cold G/G Residue Gas In	-145120 F	[]		'	[]		<u> </u>	<u> </u>	
	Cold G/G Residue Gas Out	-3520 F			<u> </u>	<u> </u>		<u> </u>	[<u> </u>	
	Ratio Control Valve Out	-150135 F								
	Exp Compressor Discharge	125 - 140 F		[]	[]	<u> </u>			['	íl
	Expander Outlet	-10575 F	<u> </u>	Ē	Ē'	<u> </u>	Ē/	Ē'	[!	Ē
	Bottom Reboiler Draw	40 - 55 F	[!	[]	Ē'	<u>['</u>	[]	Ĺ'	[!	·
	Bottom Reboiler Out	65 - 90 F	[]	[]	['			<u> </u>	<u> </u>	·
	Trim Reboiler Return	70 - 105 F	[!		ſ'	<u> </u>		\Box	[!	·
	Product to MAPCO	70 - 105 F	[]		[]	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1
	Dehydration/Regener	ration System	n Readin	ıgs						
ł		Normal Operation	1			1	The second s	Tranking of the		
		Range	3 AM	6 A.M.	9 AM	12 - N	3 PM	6 PM	9 PM3	12 - M
ł	Filter Separator delta P	55 - 85 "H2O	└── ′	└─── /	Ļ'	↓ '	↓ '	 '	<u> '</u>	I
	Dehydrated Gas Dewpoint	-12080 F	!	L!	└ <u></u>	ا ــــــــــــــــــــــــــــــــــــ	↓ ′	! '	<u> </u> '	L
	Dust Filter delta P	55 - 85 "H2O	L!	L!	└─── ′	↓ '	<u>ا</u>	<u> </u>	<u> </u> !	L
	Dehydrated Gas Flowrate	120 - 180 mmscfd	<u>, </u>	<u> </u>	<u> </u>	<u> </u>	Ĺ	<u> </u>		L
	Regeneration Gas System:		I Press	l			The second second	T T	r and a start of the start of t	<u>///www.com</u>
	Regen Gas Flow	15 - 18 mmscfd	ļ!	↓ /	└─── '	↓ '	<u>↓</u>	 '	↓ '	<u> </u>
	Regen Bed	A, B or C	↓ ′	↓ '	└─── '	↓ ′	↓ '	↓ '	ļ'	
	Heating or Cooling	LH, HH or C	Ļ!	<u> </u>	 '	↓ ′	└─── ′	 '	 '	
Į	Regen Gas Temperature	80 - 580 F	<u> </u>	<u> </u> '	 '	<u> '</u>	<u> '</u>	 '	ļ'	
	Regen Cooler Outlet Temp	80 - 120 F	<u> </u>	<u> '</u>	L'	<u> '</u>	L'	<u> '</u>	[L
	Regen Scrubber Pressure		[!	[!	['	<u> </u>	['	['		
	Regen Compressor	Circle One	EorW	E or W-	EorW	E or W	EorW	E of W	E of W	EorW
	Oil Pressure	18 - 25 psig	ļ'	↓ ′	↓ ′	 '	↓ ′	 '	Ì	↓
	Oil Temperature	120 - 150 F	<u> </u> '	L'	<u> '</u>	<u> '</u>	L'	<u> </u> '		1
	Suction Pressure	850 - 875 psig	['	['	L′	<u> </u>	<u>['</u>	<u> </u> '	[ĺ
	<u> </u>	· ·	1 '	1	1 '	1 '	1	1	- ·-··	1

1 7

COMMENTS DAYS

Discharge Pressure 925 - 950 psig


I have inspected the equipment and find no leaks or other hazardous conditions


Operator Signature

COMMENTS NIGHTS

I have inspected the equipment and find no leaks or other hazardous conditions

Operator Signature

MCR EMERGEN

INDIAN BASIN PRODUCTION AREA ICS STRUCTURE

Incident Commander						
Bob Coleman	(505) 457-2621 (Ext 103)	866-499-7600	(505) 420-2028	(505) 628-0049	40	1
Operations Section						
Dwight Brodbeck* Field +	(505) 457-2621 (Ext 131)	866-499-7602	(505) 420-3509	(505) 887-9097	24	36
Mike Schweser*IGBP	(505) 457-2621 (Ext 104)	866-499-7601	(505) 420-2337	(505) 885-0716	24	2
Jerry Harrison	(505) 457-2621 (Ext 121)	866-499-7603	(505) 420-2200	(505) 746-6754	24	3
Timmy Klein	(505) 457-2621 (Ext 108)	866-499-7640	(505) 365-5518	(505) 484-3675	24	13
Tim Winters	(505) 457-2621 (Ext 120)	866-499-7604	(505) 365-7589	(505) 746-4662	24	4
Planning Section						
Rick Gaddis*	(505) 457-2621 (Ext 119)	866-499-7626	(505) 365-7791	(505) 885-7786	24	œ
David Ellwood	(505) 457-2621 (Ext 130)	866-499-7613	(505) 365-5405	N/A	24	22
Logistics Section						
James Faught*	(505) 457-2162	866-499-7636	(505) 365-8259	(505) 392-6575	24	32
Sharky Morgan	(505) 457-2621 (Ext 111)	866-499-7618	(505) 365-7618	(505) 745-3327	24	16
Bruce Waldrip*	(505) 457-2621 (Ext 107)	866-499-7641	(505) 365-5518	(505) 457-2252	24	13
Safety						
Pat Reynolds*	(505) 457-2621 (Ext 139)	866-499-7628	(505) 420-2463	(505) 748-1472	40	Handheld
Jim Wilson	(505) 457-2621 (Ext 106)	866-499-7638	(505) 365-5518	(505) 746-6481	40	Handheld
Jack Ivy	(505) 457-2621 (Ext 128)	866-499-7611	(505) 365-8442	(505) 748-2763	24	17
Public Affairs						
Pat Bowen	(505) 457-2621 (Ext 133)	866-499-7627	(505) 365-5517	(505) 748-2885	24	26
Jamey Standard	None	866-499-7615	(505) 365-4976	(505)887-1645	24	7

)

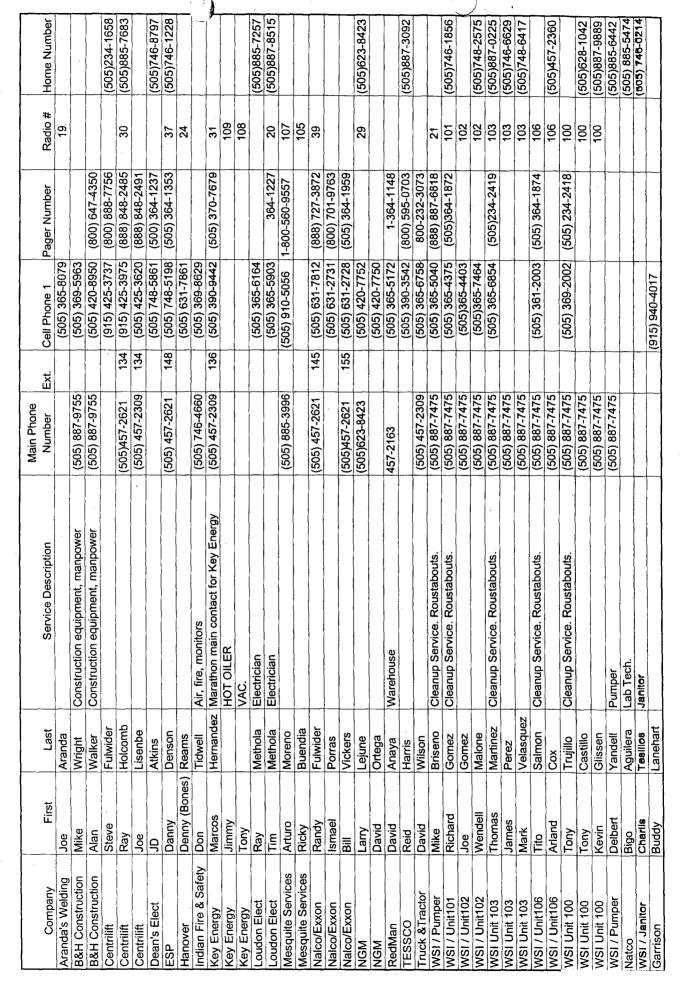
Denotes Command Staff/Section Chief "Lead" if applicable.

Denotes Alternate Incident Commanders

EMERGENCY RESPONSE PLAN N:\SAFETYandEnvEmergency Planning\Contact information\IB_ICS.doc Revised 64/01 **8-**23-9/ PJR i

*

				B	MARATHO	MPLOYEES	'EES				•
First	Last	Emplyee No. Extension	Extension	Cell Phone 1	Cell Phone 2	ager Number	Radio #	Home Number Home Address	ome Address 1) sety	Zip
Becky	Altemus		151)	(814)883-8980 50	(814)883-8980 505 W. Mermod Apt.1	Carlsbad	88220
Keith	Anderson	65755	156	(505) 365-7592		(888) 621-2938		(505) 628-1494 1218 MIEHLS	218 MIEHLS	Carlsbad	88220
Winston	Ballard	102194	128	(505) 420-2398		(888) 226-4697	18	(505) 885-5325 413 CORINNE	13 CORINNE PLACE	Carlsbad	88220
Jimmy	Barnett	71868	110			(888)621-2940	hand held	(505) 746-2818 P.O BOX 1173	O BOX 1173	Artesia	88210
Pat	Bowen	95085	133	(505) 748-5022		(888) 386-5241	26	(505) 748-2885 #3 NORTHGATE	NORTHGATE PLACE	Artesia	88210
Gerald	Brasfield	101886	110		746-7593	(888) 621-2941	hand held	(505) 365-2116 #16 SHEILA RD	16 SHEILA RD.	Artesia	88210
Dwight	Brodbeck	67903	131	(505) 420-3509		(888) 251-8204	36	(505) 887-9097 305 FARRELI	15 FARRELL	Carlsbad	88220
Robert (Bob)	Coleman	71684	103			(888) 226-4691	-	(505) 628-0049 61	(505) 628-0049 612 RIDGECREST DR.	Carlsbad	88220
Rick	Crawford		154	(915)2587726		(915) 488-3062					
Archie	Crossland	20766		(915) 528-1099		(915) 560-8804	5	(915) 337-2573 34	(915) 337-2573 341 E. HARRISBURGH		
Larry	Davis	76675	110			(888) 621-2942	hand held	(505) 748-9747 14	(505) 748-9747 1404 HERMOSA DRIVE	Artesia	88210
Dan	Dowhower	63809		(505) 365-8214			38	(505) 885-6834 20	(505) 885-6834 2014 E. PEPPERTREE	Carlsbad	88220
David	Ellwood	62918	130	(505) 420-2359		(888) 226-5089	22	30	308 E. ORCHARD LN #2	Carlsbad	8822n
James	Faught	70496	457-2162	(505) 365-8259			32	(505) 392-6575 30	308 E. ORCHARD LN #3	Carlsbad	88,
Rick	Gaddis	67708	119	(505) 420-2391		(888) 386-5240	80	(505) 885-7786 10	1002 N. SHORE	Carlsbad	882201
Kenny	Garrett	72212	114	(505) 365-5518		(888) 226-4699	15	(505) 748-2932 21	2104 W. BRISCOE	Artesia	88210
Jared	Hall	109031	140	(505) 365-7607		(888) 251-8205	34	(505) 628-8759 1009 N. PATE	09 N. PATE	Carlsbad	88220
Bradv	Hamilton			(505) 365-7614		(505) 364-1921		(505) 361-0991 92	(505) 361-0991 921 N. GUADALUPE	Carlsbad	88220
Jerry (Bubba)	Harrison	76325	121	(505) 420-2200			3	(505) 746-6754 34	505) 746-6754 34 W. BLEVINS ROAD		88210
Jack	<u>v</u>	95080	138			(888) 227-4277	17	(505) 748-2763 20	2007 W. RUNYAN		88210
Morris	Jones	75255		(505) 365-4350			33	(505) 746-0852 611 S. ROSELAWN	1 S. ROSELAWN		88210
Clint	Kirkes	101910	110			(888) 627-7711	hand held	(505) 885-2883 14 TOBYN ROAD	TOBYN ROAD	Carlsbad	88220
Timmy	Klein	75647	108	1		(888) 226-4699	13	(505) 484-3675 P.O BOX1463	O BOX1463	1	88250
Steve (Sharky)	Morgan	99715	111	(505) 365-7618		(888) 251-8195		(505) 745-3327 P.O BOX 283	O BOX 283	Carlsbad	88220
John	Norris	102979	127	(505) 365-6776		(888) 251-8201	10	(505) 887-3836 1814 SOLANA	14 SOLANA	Carlsbad	88220
Jack	Rauch	95090	110			(888) 627-7886 hand held	hand held	(505) 885-8440 2129 Haston RD	29 Haston RD.		88220
Pat	Reynolds	74936	139	(505) 420-2463		(888) 627-8299 hand held	hand held	(505) 748-4172 10	(505) 748-4172 1002 W. Clayton Ave.	Artesia	88210
David	Rouse	74162	110			(888) 627-7896 hand held	hand held	(505) 746-2619 2108 Center	08 Center		88210
Margie	Ruiz	114065	101				hand held	(505) 887-2025 2315 Washington	15 Washington	Carlsbad	88220
Mike	Schweser	71606	104			(888) 266-4693	2	(505) 885-0716 15	(505) 885-0716 1535 ARBOR COURT	1	88220
Jamey	Standard	113234		(505) 365-4976	361-1645	(888) 251-8207	7	(505) 887-1645 1608 W. URAL DR.	08 W. URAL DR.	Carlsbad	8823
Darlin	Stanfield	114064	102			-		(505) 628-0469 502 S. WALNUT	2 S. WALNUT	T	88220
Jim	Tomlinson		126	(505)420-2393			35			Carlsbad	88220
Mark	Treesh	102607	115	(505) 420-23		(888) 226-4695	12	(505) 887-8116 14	(505) 887-8116 1413 DESERT WILLOW	Carlsbad	88220
Joe	Trevino	101468	127	(505) 365-5899		(888) 251-8203	6	(505) 887-6225 P.O BOX 1372	0 BOX 1372	Carlsbad	88220
Shaun	Troublefield	100134	110			(888) 627-7897	hand held	(505) 748-1326 1813 Briscoe	13 Briscoe	Artesia	88210
Bruce	Turpin	74114	110				hand held	(505) 887-1961 1901 Boyd DR. #37	01 Boyd DR. #37	Carlsbad	88220
Dario	Velasquez	101303	110			(888) 627-8189	hand held	(505) 628-8782 4214 Harmon LN.	14 Harmon LN.		
Bruce	Waldrip	73482	107	(505) 365-5518		(888) 226-4699	13	(505) 457-2252 506 LAKE ROAD	6 LAKE ROAD	Artesia	88210
Charlie	Williams	113111		(505) 365-8441		(888) 577-2755	9	(505) 457-2393 5857 S. 7 RIVERS		Artesia	88210
Don	Williams	74998	117	(505) 365-55		(888) 226-5089	=	(505) 628-8038 16	T WILLOW	Artesia	
	Wilson	76453	106					(505) 746-6481 P.O BOX 351		Artesia	88210
Tim	Winters	74561	120	(505) 748-4979		(888) 251-4808	4	(505) 746-4662 2301 BULLOCK		Artesia	88210
										SDCC nor	


x = 1

Printed 6/28/2001

ATTA OLINACIT 10

SPCC plan Attachment 10

IB CONTRACTORS

Printed 6/28/2001

ATTACHMENT 10

Emergency Services

Service Provider	Description	Main Phone
General Emergency	Police, Fire, Ambulance	911
Carlsbad Police, Fire & Ambulance Service		(505) 885-2111
Artesia General Hospital	Medical Services	(505) 748-3333
Carslbad Fire Dept.	Fire Control	(500) 885-3124
Artesia Fire Dept.	Fire Control	(505) 746-2701
Happy Valley Fire Dept.	Fire Control	(505) 885-1982
NM State Police	Sub-District 3, Carlsbad	(505) 885-3138
NM State Police	District 3, Roswell	(505) 827-9312
Eddy County Sheriff	Law enforcement	(505) 887-7551

	Contact I	Name				
			-	Main Phone		Home Phone
Agency	First	Last	Division/Area	Number	Cell Phone 1	Number
NMOCD	Emergency Number		Distict 2	(505) 746-4302		
NMOCD	Field Rep On-Call		Distict 2	(505) 939-8622		
NMOCD	Tim	Gum	Distict 2	(505) 748-1283	(505) 365-7566	(505) 324-1387
NMOCD	Mike	Stubblefield	Distict 2	(505) 748-1283	(505) 365-8211	(505) 746-6422
NMOCD	Gary	Williams	Distict 2	(505) 748-1283	(505) 365-7562	(505) 748-2259
NMOCD	Gerry	Guye	Distict 2	(505) 748-1283	(505) 365-7563	(505) 887-3254
NMOCD	Phil	Hawkins	Distict 2	(505) 748-1283	(505) 365-7564	(505) 746-9272
NMOCD	Bryan	Arrant	Distict 2	(505) 748-1283	(505) 365-7565	(505) 748-2092
NMOCD	Lori	Wortenberhy	Santa Fe Division Offices	(505) 827-7131	(505) 476-3460	(505) 466-0134
NMOCD	Ed	Martin	Santa Fe Division Offices	(505) 827-7131	(505) 476-3492	(505) 685-4056
NMOCD	Roger	Anderson	Santa Fe Division Offices	(505) 827-7131	(505) 476-3490	(505) 471-2017
NM State Police			District 3, Roswell	(505) 827-9312		
NM State Police			Sub-District 3, Carlsbad	(505) 885-3138		
BLM			Carlsbad	(505) 887-6544		
US Coast Guard			National Response Center	(800) 424-8802		
NMED			Air Quality Bureau	(505) 827-1494		
	State Emergency Re	sponse Center		(505) 827-9126	. ,	
LEPC	Local Emerg Plannin	g Commission	Eddy County	(505) 885-2111		
NM OSHA	New Mexico OSHA (Office		(505) 827-2850		

ATTACHMENT 10

Other Services

Facility Name	Address	City	Phone Number	Services
Stevens Motel	1829 S. Canal	Carlsbad	(505) 887-2851	Lodging, Food, Laundry, Meeting Rooms
Comfort Inn & Suites	2429 W. Pierce	Carlsbad	(505) 887-1994	Lodging
Holiday Inn Express	2210 W. Main	Artesia	(505) 748-3904	Lodging
Best Western Pecos Inn	2209 W. Main	Artesia	(800) 676-7481	Lodging, Food, Meeting Rooms
Denny's Restaurant	810 W. Pierce	Carlsbad	(505) 885-5600	Food
Furr's Family Dinning	901 S Canal St	Carlsbad	(505) 885-0430	Food
K-Bob's Steakhouse	601 S 1st St	Artesia	(505) 748-2208	Food
LaFonda Restaurant	206 W. Main S	Artesia	(505) 746-9377	Food, Meeting Room
Catering- Granny's Chuckwagon	3204 W. Main	Artesia	(505) 746-3209	Food Catering
Domino's Pizza	302 S. 1st	Artesia	(505) 746-0030	
Carlsbad Civic Center	4012 Nationals Prk Hw	Carlsbad	(505) 887-9004	Meeting Rooms
Carlsbad Country Club	1700 Orchard Ln.	Carlsbad	(505)885-3926	Meeting Rooms
Artesia Country Club	2701 W. Richey	Artesia	(505)746-6732	Meeting Rooms

MARATHON OIL COMPANY NEV EXICO SPILL AND RELEASE REARCH

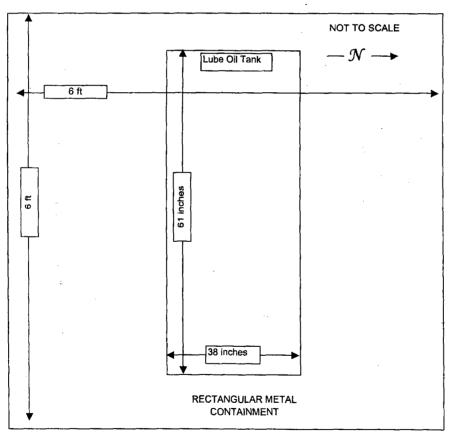
This form to be completed for any spill or release

iik.

T.	Release/Sp Mo Day		Estimated Tim of Release/Sp		Flu Tv	uid pe	Amou Releas		Volu Reco	1		
	/	1	am/r		Oi			Bbls		Bbls		
	Was Spill Con	itained?			Wat			Bbls		Bbls		
	☐ Yes □		Other (please list) -					Bbls		Bbls		
	Dike Pit	🗌 Basin			Tota	al	0	Bbls	0	Bbis		
	GAS RELE	EASE	M	SCF								
* Use ur	nit letter or footages,	both are n	ot required.	<u>.oc</u>	ATION		ELEAS	SE .				
Unit Let		Towns	· · · · · · · · · · · · · · · · · · ·	eet fro	om the	North/So	uth Line	Feet	from the	East/West L	ine	County
ļ												
Field			Lease No				·			·	Well:	
Facility	Name:	<u></u>			···	Fac	ility Typ	e:				<u> </u>
				CA	USE	OF REL	EASE					
) i	uipment Vhich eaked	-	pe of Failure ausing Leak		Lo	cation of Leak	F		Cause Failure			Probable Method of Repair
Tan He: Seq Val Stu Pro Oth Flowlin Bun Size:	nk ater Treater parator /KO lve offing Box ocess Piping her (specify)		reak racked ole ugged olit iriker Plate Missing verfill ther (specify) Flowline Steel Int. Coating Wrapped Poly/PVC Fiberglass		Asso Line Fire Gast	l pom nection pociated Pipi tube ket way zle (specify m	-		Joint Failur Internal Co External Co External Co Improper A Freezing High Temp Over Press Electrical F High Gas L Excessive Process SI Maintenan Instrument Vibration/In	e rrosion orrosion opplication erature sure ailure ine Pressure Volume nut Down ce ation Failure mpact or (specify)		Replaced Clamped Repaired Coated Other (specify) Return to Service
Descrip	tion of Spill Area	(proximity	to water course, su	rface	water, p	enetration	depth, c	direction	n of flow, d	imensions, e	tc.)	
											(incl	ude diagram)
Action	aken to contain &	begin cle	anup spill:									
g)					<u> </u>					······································		<u></u>
Action	taken to provent r											······································
Action	taken to prevent re	ecurrence									<u></u>	
Wasto	commendation to	prevent r	ecurrence entered in		Tracking		······································	Yes [1 No		- - AT	TACHMENT 1
was re		preventite		108	Tracking	y oystem?		IES L				

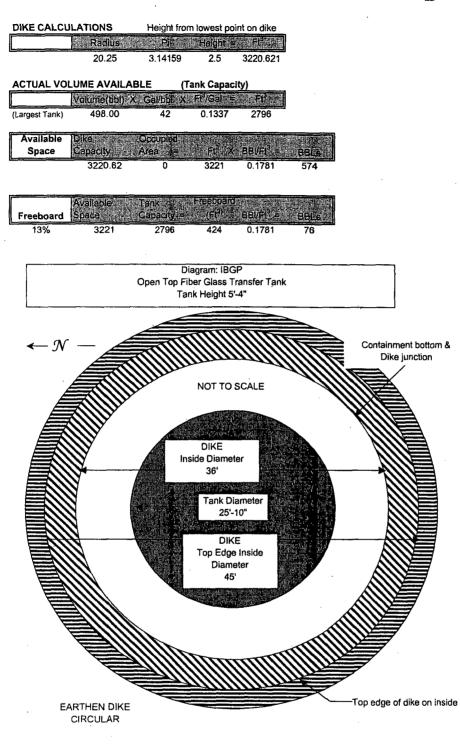
Surface (Sandy Rocky	Conditions	🗌 Clay	Weather C Raining	onditions	C Snow	🗋 Wind)D	nd Use Cultivated Grazing	□ Rural □ Vacant	Residential
D W & W	VHEN WAS SPIL	L/RELEASI	E DISCOVERED):			<u>:</u>	am/pm	DATE:	
Person Initia	ting Report / Date		Supervisor	Review / Da	te			S	upervisor Re	view / Date
Distributio	n - Original : Copy:		<i>mental and Safe</i> asin Asset Tean			lidland)				
	Copy.		fice Spill Report		• • • • • • • • • • • • • • • • • • • •	-				
Check if Notified		NOTIFICATI	ON OF REGUL				R PERTI	NENT PA	RTIES	am/pm
	•	tacted:			•	Report N	umber:			
	OCD Enviro Person Con Comments:		eau			Date: Report N	umber:	Time:		_am/pm
		tacted:	sbad 887-6544) (Fa			Date: Report I	Number:	Time: _		am/pm
	National Res Person Con Comments:		ter	· ·	24-8802		Number:	Time:		am/pm
	Corporate Er Person Con Comments:	tacted:	sponse Team		9-7118	Date: Report N	umber:	Time: _		_am/pm
	Environmen Fax report Person Conta		ty Dept	(915) 68	37-8305	Date:		Time:	· · · · · · · · · · · · · · · · · · ·	_am/pm
	Other: Fax report Person Cont	acted:				Date:		Time:		am/pm

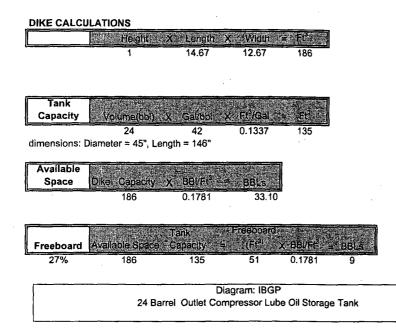
Immediate Verbal Notice Required When:

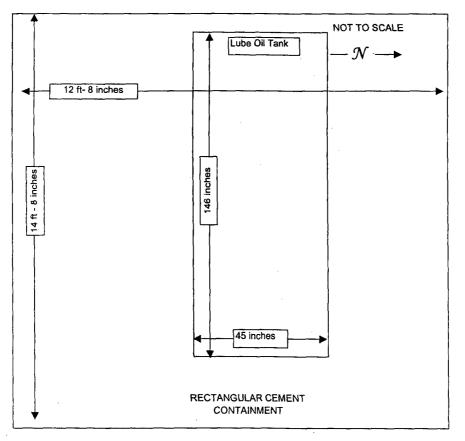

	Not in Wate	er course	In Wate	r course		Flare	Natural			Results
	Oil	Water	Oil	Water	Vent H2S	SO2	Gas	Blowout	Chemical ¹	in Fire
OCD (district office)	>25 E	Ibls	Any A	mount			>500 mcf	All	> RQ	YES
OCD (Env. Bureau)			Any A	mount	r					
BLM	>100 Bt	ols & ³	Any A	mount			>500 mcf	Yes		Note 2
NRC	Note	. 4	Any A	mount	Note 4	Note 4	N/A	Note 4	> RQ	Note 4
LEPC			an di ka		> 100 Lbs	N/A	N/A	N/A	> RQ	
CERT	> 500 Bbl	N/A	> 50 Bbl	N/A	> 300 Lbs	N/A	N/A	All	> 3 x RQ	

Note 1 - RQ = SARA Title III or CERCLA Reportable Quantities. Note 2 - YES if in a sensitive area or >100 Bbls or >500 mcf Revised 1/11/01

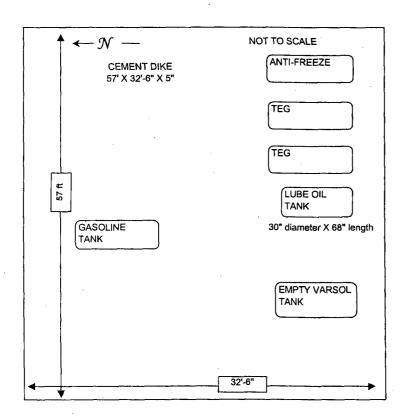
Note 3 - YES if not entirely contained in secondary containment. Note 4 - YES for any spill, release, or fire in a sensitive area.

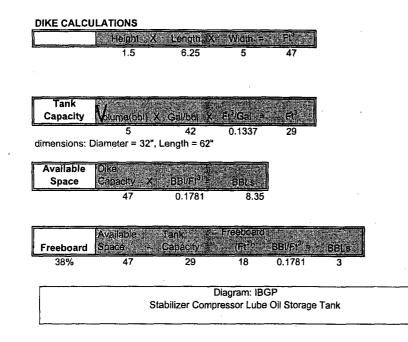

	Height X	Length X		Ft'	
	1.4	6	6	50	
Tank Capacity	Volume(6bi) X	outral X	EP/cal -	Frd	
Capacity	7.13	42	0.1337	40	
dimensions: E Available Space	Diameter = 38", Le	- 	BBbs		
Available		- 	8.98		
Available	Dike Capacity /	X BBVFt ^a = - 0.1781	8.98	BBVFt ³ :=	BBI
Available Space	Dike Capacity 50	X BBV/ft ³ = 0.1781 Tank	8.98	BBVFt ¹ = 0.1781	- BBI 2

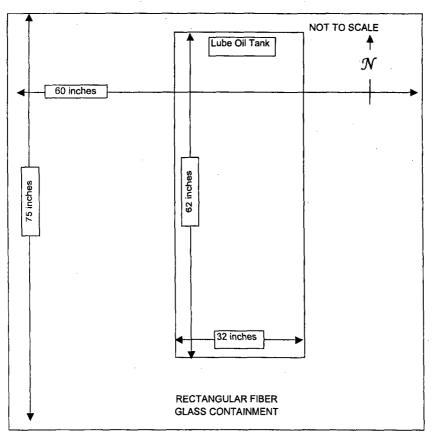

<u>.</u>



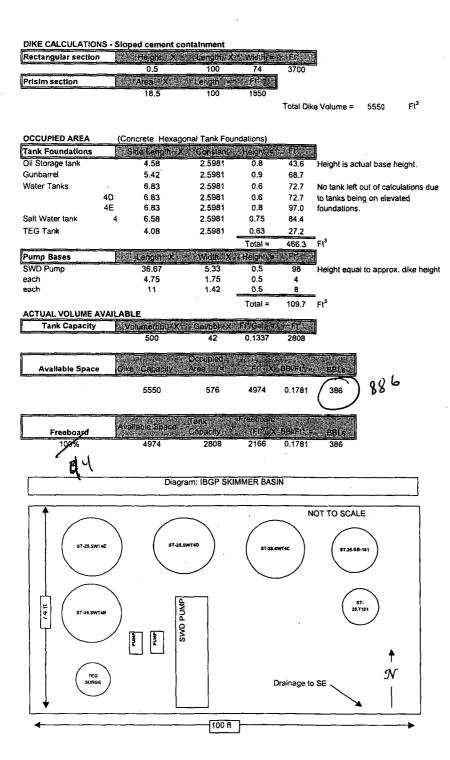
Located approximately one-half mile north west of Rocky Arroyo.

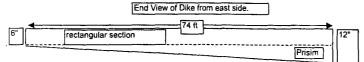




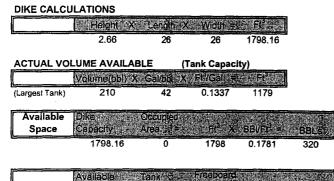


	Height X	Length	(Width =	- Ft'	
	0.416	57	32.5	770.64	
ACTUAL VO	LUME AVAILAE	BLE (Fank Capac	ty)	
	Volume(bbi) X	Gal/bbl X	Ft*/Gel×≑	Ft	
(Largest Tank)	4.95	42	0,1337	28	
Available	Dike	Occupied:		Jan	
Space	Capacity	Area = ;	FE X	BBI/FC =	BBLS
	770.64	0	771	0.1781	137
<u> </u>	Available	Tank	hreeboard		
Freeboard	Space .	Capacity =	(FC ⁹⁾)	88I/Ft ² = .	BBLS
96%	771	28	743	0.1781	132
	<u>. </u>	Diac	ram: IBGP		

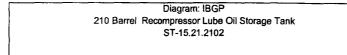


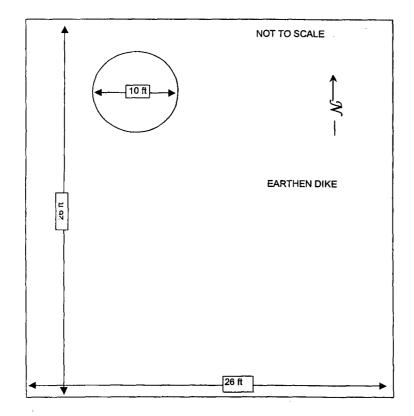


1

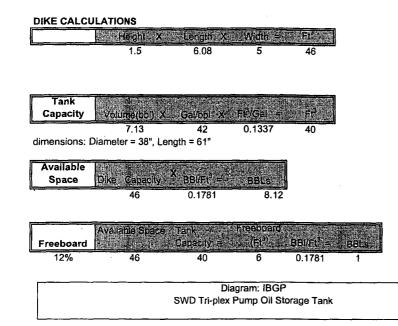

	Height X	Length	. Width =	F.		
	1.08	80	36	3110.4		
CCUPIED AREA	Number of	antes de la compañía	e dan service and			
anks	Tanks* X	PÌ X	Radius ² X	Height =	FI	
Untreated water Ea Untreated water We		3.14 3.14	5 5	1.08 1.08	85 85	
Uniferied water We	31 1	0.14	5	=	170 tota	
onot count single tank o				RANK NOT THE		
ir Strippers Ea	tength Xt	Widin X				
We		, es		19.44		
				38.88 (otal	
CTUAL VOLUME A			ank Capac			
	Volume(bbl) X					
argest Tank)	500	42	0.1337	2808		
Available Space		Occupied -		policy.	COLUMN ST	
Available Space	Capacity 3110.4	209	2902	0.1781	517	
	Available	Tank	in recoond			
Freeboard	Space -	Capacity =		• 881/Fr + ;	BBLs	
3%	2902	2808	94	0.1781	17	
	Diagram: IBl	EAD Domo	diction Brok		+ A rec	
				<u> </u>		
Condensa	te Storage Tank		O SCALE	EAR	THEN DIKE	
		·				1
						Ś
	Untreated		treated Vater	* 1. F	Shotgun	ר
	Water 210 bbl		10 bbl		500 bbl	1
	\frown			/	\frown	
36 ft	$\langle \rangle$				Ň	\backslash
390	(↓ 10 ft ↓)	(∢[10 ft	◀	- 15.5 ft	▶
T	$\langle \rangle$					/
					\checkmark	
			_			
	Air Stripper	Air Stripper]			
	Subber	Subher] <u>80 </u>	<u> </u>		
				п 🗆		

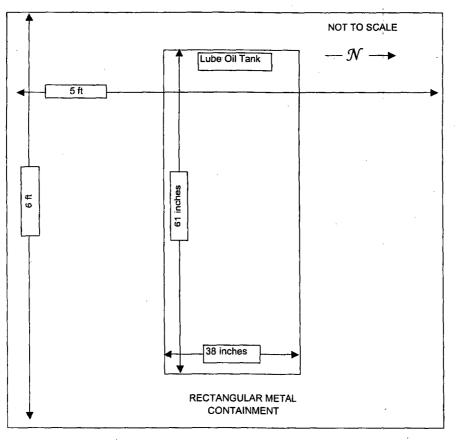
Located approximately one-half mile north west of Rocky Arroyo.

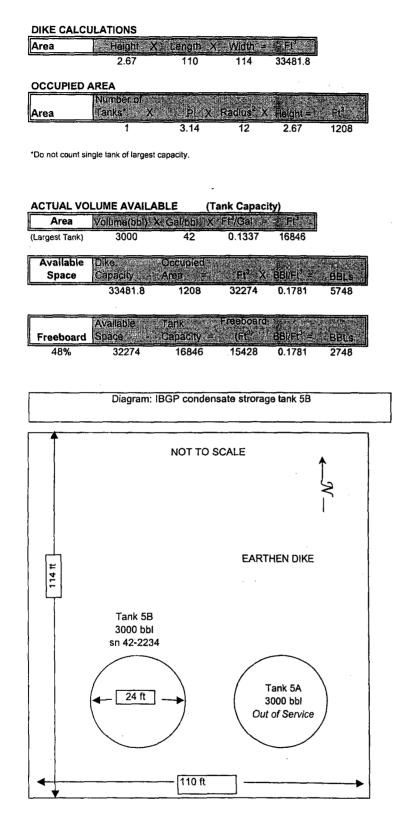


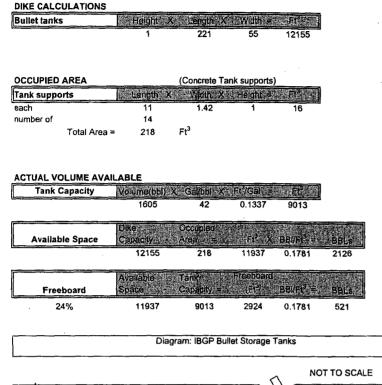


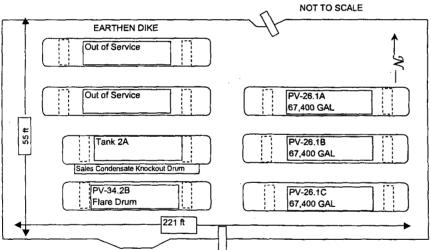
Prisim Area = .5 ft X 74 ft / 2 Prisim Volume = Area X Width

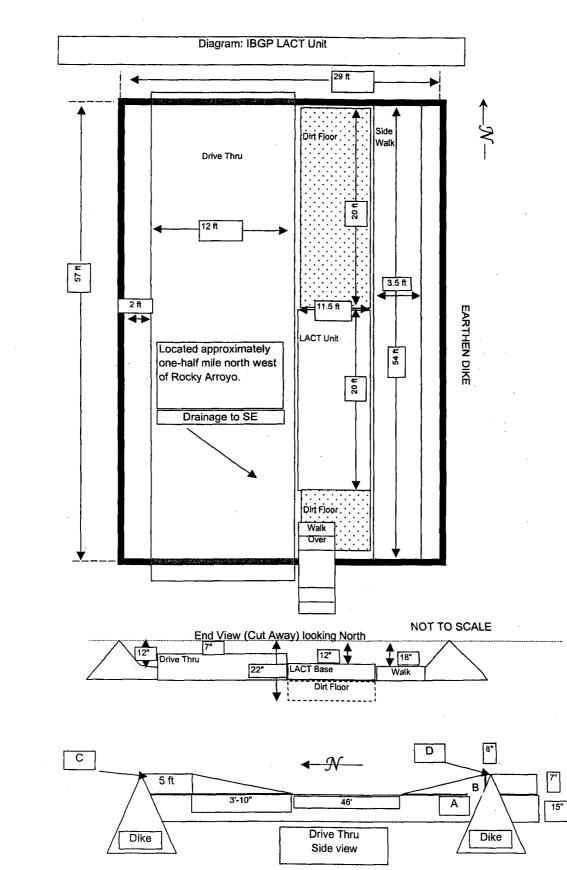



Freeboard	Space •	Capacity =	(Fi ³)	BBI/Fit =	BBLs
34%	1798	1179	619	0.1781	110







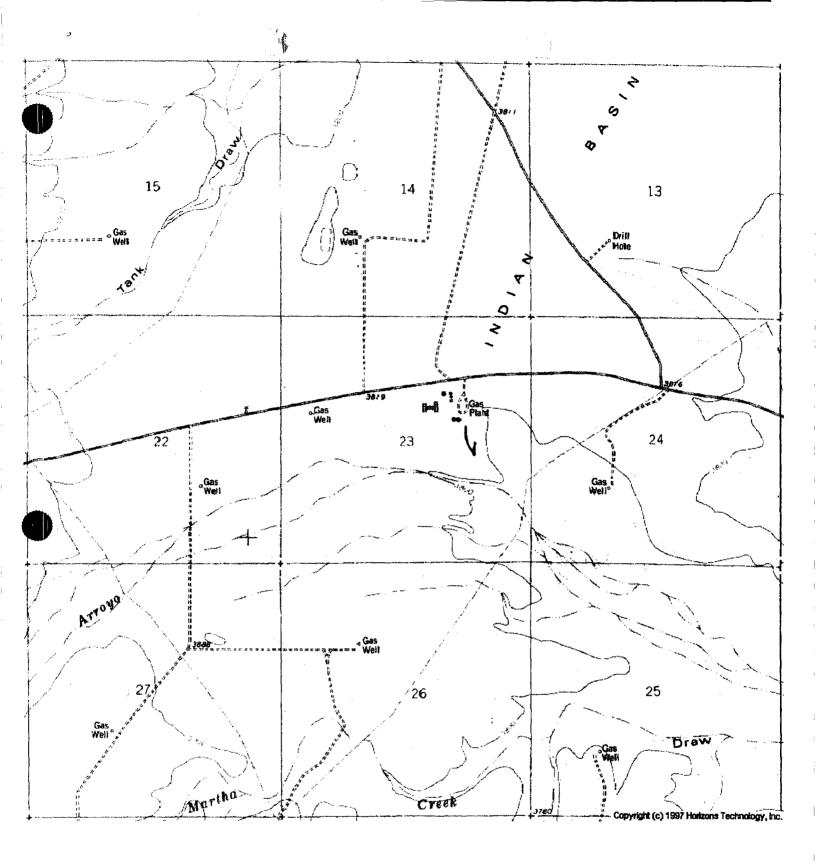

Drainage to SE

DIKE CALCU	LATIONS				
	Height 🔛	C Length X	Width =	Ft	
A	1.83	57	29	3025	
OCCUPED A	REA	(Concrete Sl	lab)		
Drive Thru	Tól	Area of A.B.	2,0.2 m (0,2	FL	
	·····			743	
LACT Base	Length 🕅	Width, X	Height =	FI	
	20	11.5	0.83	192	
Side Walk	Length	Width X	-Height =	Ft	
	54	3.5	0.33	63	
ACTUAL VO		Combined To	otal Area	998	
Truck			a and a surger		
Capacity	Volume(bbl);	X Gal/bbl X	Ft7/Gal =	FI ³	
	180	42	0.1337	1011	
	·				
Available	Dike	Occupied			
Space	Capacity			BBI/Ft ² ⇒	
	3025	998	2027	0.1781	36
	In second s		·		
	Available Space	Tank	Disodear≓ sign	the second state of the second state of the second state of the	AB
" Froopoard	L. The Difference of the second se		CONTRACTOR AND ADDRESS OF	AND DESCRIPTION OF THE PARTY OF	S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

 Available
 Tank
 Freeboard

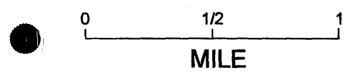
 Freeboard
 Space
 Capacity =
 (Ft³⁾
 BBI/Ft³ =
 BBI/st³ =
 <t

IBGP LACT UNIT


, A	Length	552 Area	1192320 c	u/in
	Width	144		
	Height	15		
В	Height	7 Area	23184 c	u/in
	Width	144		
	Length	46		
С	Length	60 Area	60480 c	u/in
	Width	144		
•	Height	· 7		
D	Length	8 Area	8064 c	u/in
	Width	144		
	Height	7		
Total displ	Height acement by c	· · · · · · · · · · · · · · · · · · ·	1284048 c	u/in
	acement by c	Irive thru	·····	
	acement by c Length	drive thru 240 Area	1284048 c 331200 c	
	acement by c	Irive thru	·····	
	acement by c Length	drive thru 240 Area	·····	
Total displ	acement by c Length Width Height	rive thru 240 Area 138	·····	u/in

4

Total cement structure displacement =


Height

1724112 cu/in

Indian Basin Eddy County, New Mexico

MARATHON OIL COMPANY STORM WATER POLLUTION PREVENTION PLAN (SWPPP) INDIAN BASIN GAS PLANT

March 12, 1998 Revised June 1, 1998

MARATHON OIL COMPANY P.O. BOX 1324 ARTESIA, NEW MEXICO 88211

Prepared by: Fluor Daniel GTI, Inc. 2501 Yale Boulevard, SE, Suite 204 Albuquerque, New Mexico 87106

1100 East University Drive, Suite 116 / Tempe, AZ 85281 USA (602) 966-0808

23

Contents

1.0	INTRODUCTION AND REGULATORY INFORMATION 1-	1
2.0	FACILITY DESCRIPTION AND GENERAL COMPLIANCE INFORMATION22.1Facility Description22.2Summary of Mapping Requirements22.3Summary of Spills and Leaks22.4Non-Storm Water Discharges and Certification22.5Description of Existing Storm Water Measures22.6Coordination with Existing Environmental Management Plans22.7Existing Sampling Data2-2.8EPCRA Section 313 Requirements2-	1 1 2 2 3 4
3.0	STORM WATER POLLUTION SOURCE INFORMATION 3- 3.1 Drainage Patterns 3- 3.2 Inventory of Exposed Materials 3- 3.3 SWPPP Risk Identification 3-	-1 -1
4.0	BEST MANAGEMENT PRACTICES (BMP)4-4.1Non-Structural BMP's4-4.2Structural BMPs4-	-1
5.0	COMPLIANCE EVALUATION AND MONITORING55.1Compliance Evaluation5.2Storm Water Monitoring	-1
6.0	SWPPP IMPLEMENTATION66.1Pollution Prevention Team6.2Implementation Activities, Priorities, and Schedule6.3Employee Training6.4Erosion and Sediment Control for Well Drilling6.5SWPPP Certification	5-1 5-1 5-1 5-2
7.0	SWPPP RECORDKEEPING AND AMENDMENTS77.1SWPPP Recordkeeping7.2SWPPP Revisions7	7-1

List of Tables

Table 2-1	Reportable Spill Summary	2-5
Table 2-2	Non-Storm Water Discharge Certification	
Table 5-1	Storm Water Pollution Prevention Plan Compliance	
	Evaluation Inspection Form	5-3
Table 5-2	Storm Water Pollution Prevention Plan Visual Monitoring Form	

1

1

ì

Storm Water Pollution Prevention Plan Marathon Oil Company, Indian Basin Gas Plant

ATTACHMENT 1

Notice of Intent for Multi Sector General Permit

ATTACHMENT 2

Figure 1 Figure 2

ATTACHMENT 3

Table A. Potential Source Identification and Risk AssessmentTable B. Storm Water Control Measures

ATTACHMENT 4

Storm Water Pollution Prevention Team Training Dates/Minutes of Employee Training Sessions

ATTACHMENT 5

Blank Forms

ü

1.0 INTRODUCTION AND REGULATORY INFORMATION

This Storm Water Pollution Prevention Plan (SWPPP) has been prepared to transfer the Indian Basin Gas Plant from prior coverage under EPA's Baseline General Permit to the modified Multi-Sector General Permit. This action was taken pursuant to EPA's Proposed Modification of National Pollutant Discharge Elimination System (NPDES) Storm Water Multi-Sector General Permit (MSGP) for Industrial Activities (Notice; Federal Register, Vol. 62, No. 133, Friday, July 11, 1997). The Indian Basin Gas Plant (SIC code 1311) had previously completed, a SWPPP prepared pursuant to EPA's Baseline General Permit for the Storm Water NPDES program. This prior SWPPP was prepared following the submittal of a Notice of Intent (NOI) to EPA prior to October 1, 1992. The facility has been assigned Permit No. NMR05A228.

This new SWPPP is based on the implementation experiences and information for the prior SWPPP that was prepared pursuant to the Baseline General Permit. A new Notice of Intent has been completed pursuant to the permit coverage transfer instruction in the EPA July 11, 1997 Federal Register Notice. A copy of this new NOI is attached to this plan (Attachment 1). The information contained in this SWPPP satisfies the content requirements of the 1995 MSGP, as described in Section I of the MSGP Notice (Federal Register Vol. 60, No. 189, Friday, September 29, 1995).

The primary objectives of this SWPPP are to:

- 1. Evaluate plant operating procedures as they relate to storm water pollution;
- 2. Identify potential sources of storm water pollution;
- 3. Suggest specific techniques for minimizing pollution of storm water,
- 4. Provide instructions, procedures, guidance, and sample forms for SWPPP implementation;
- 5. Serve as a focal point and training tool for plant personnel; and,
- 6. Establish an overall framework for the continuing effort of storm water pollution prevention at the plant.

1-1

2.0 FACILITY DESCRIPTION AND GENERAL COMPLIANCE INFORMATION

2.1 Facility Description

The Indian Basin Gas Plant is approximately 26 acres in area. It processes gas gathered from a much larger producing gas field. The plant produces natural gas, demethanized hydrocarbon mix, stabilized condensate, and sulfur on a continuous 24 hour per day schedule. The location of the Indian Basin Gas Plant is indicated in Figure 1 (Attachment 2). Approximately one percent of the plant is paved. The gas plant is located on Eddy County Road 401. There is a truck loading area on the east side of the plant. Offices, a warehouse, and parking areas are located near the eastern part of the plant (Figure 2, Attachment 2).

The plant is located in a relatively flat area surrounded by mountainous terrain. The soil is rock and sand with scrub brush and grassy vegetation. The mean annual total precipitation is approximately 14 inches. Average annual Class A pan evaporation is approximately 100 inches, and average annual lake evaporation is approximately 65 inches in this area.

2.2 Summary of Mapping Requirements

The following site-specific information is included in Figure 2:

- Storm water drainage patterns/outfalls (on-site);
- Surface water bodies to which site drainage is directed;
- Footprints of buildings, structures, paved areas, parking lots;
- Storm water pollution source areas (See Table A in Attachment 3); and
- Existing and currently planned storm water structural controls.

2.3 Summary of Spills and Leaks

Spills or leaks of a reportable quantity since 1994 are identified in Table 2-1. Table 2-1 indicates the nature of the release, the amount released and recovered, date, and cause of the release (where possible).

This facility implements a SPCC plan pursuant to EPA regulations and guidelines. Provisions have been developed and are implemented through the SPCC program, to address future spills and releases at this facility. The SPCC plan for this facility is referenced in this SWPPP as being a part of this facility's storm water pollution prevention program as well. This facility also has a Groundwater Discharge Plan (GDP) that defines policies and procedures that affect spill/release planning and response. A current list of spills and/or leaks is maintained in the SPCC/SWPPP file.

2.4 Non-Storm Water Discharges and Certification

Storm water outfalls at this facility were inspected to determine the presence or absence of non-storm water discharges. The procedure used is described below:

Visual Inspection - involves inspection of the storm water discharge points on several different dry-weather occasions in order to visually look for any flow in the storm drain. In the absence of precipitation, no water flow should be observed. If there is water flowing through the outfalls during dry weather, tests should be conducted to determine the source of the flow. An inspection should take place concurrently with an activity that is likely to cause such discharges.

No discharge of water was found on the days that this inspection was conducted. The following table includes this facility's certification regarding non-storm water discharges. Because of the nature of this facility's drainage system this visual inspection for non-storm water discharges can be conducted on a recurring basis.

Table 2-2. Non-Storm Water Discharge Certification

I certify that storm drain systems at the Indian Basin Gas Plant have been tested for non-storm discharges, and that the non-storm water testing described above was conducted and the results presented above are true and accurate.

Storm Water Coordinator

Signature

Date

2.5 Description of Existing Storm Water Measures

Since October 30, 1989, Indian Basin Gas Plant has been operated under the conditions of a Groundwater Discharge Plan (GDP). That GDP was approved by the State of New Mexico and includes the following aspects that affect storm water runoff:

- 1. A large uphill diversion berm has been constructed around the north and west sides of the plant. It diverts surface runoff away from the plant and reduces the volume of water that can potentially contact polluting materials at the plant.
- 2. Containment devices have been constructed around most of the chemical storage areas. In most cases, the containment device is an earth berm. In other cases (such as the sulfuric acid tank at the water treatment unit), a steel pan with manual valve is used for secondary containment. Marathon Oil Company is attempting to reduce the use of drums at the Indian Basin Gas Plant and rely more on bulk chemical storage.

- 3. Product effluent from most plant equipment is drained through a closed system. In addition, an open collection system has been constructed around much of the plant process equipment. The system consists of concrete pads with curbs, concrete troughs covered with steel grates, drainage collection pipes, sumps, and sump pumps. The purpose of this system is to capture material that originates from a leak or spill, convey it to the sump, and pump it into the skimmer basin. Material collected in this manner is ultimately reprocessed, or disposed in the injection well. (Refer to the "Plant Processes" section of the GDP, pages 5 and 6, for descriptions of an integrity test on the open collection system and closed drain system disposal procedures.)
- 4. Material handling practices include employee education as to proper procedures and spilMeak response, storing chemical containers in containment berms, and routine inspections.
- 5. Domestic sewage is treated with a septic system on the plant site. It does not contribute any flow to storm water runoff. There are three septic treatment systems, and a warning to avoid non-domestic sewage is posted on each one.
- 6. Plant equipment is periodically cleaned with detergents, solvents, or steam. Consistent with the GDP, cleaning effluent is captured by the open drain collection system and disposed of in the injection well (see part 3 above).
- 7. The SPCC for the Indian Basin Gas Plant has recently been revised (October 15, 1997) and plant spill response capabilities have been improved.
- 8. Underground storage tanks are not used at the Indian Basin Gas Plant.
- 9. Spent process catalyst is not exposed to storm water.

In addition to the measures listed above, storm water from approximately four acres of site drains to the southeast corner and passes through a vegetated strip. Storm water from the remainder of the site drains as sheet flow to the southeast where it passes through approximately 800 feet of vegetation before it reaches Rocky Arroyo.

2.6 Coordination with Existing Environmental Management Plans

Marathon has a number of existing regulatory compliance programs and/or plans in effect at the Indian Basin Gas Plant. These plans and/or programs were evaluated during the preparation of this SWPPP and appropriate information for these existing environmental management plans was used as necessary. In addition, existing Marathon standard operating procedures have been incorporated into the development of this SWPPP. The Indian Basin Gas Plant has the following spill prevention and response procedures that relate to, and/or are considered a part of this SWPPP:

- Daily Inspection Checklist
- SPCC Plan
- Hazardous Waste Contingency Plan
- Emergency Response Plan
- Groundwater Discharge Plan

2-3

Storm Water Pollution Prevention Plan Marathon Oil Company, Indian Basin Gas Plant

2.7 Existing Sampling Data

There are no storm water quality data available for the Indian Basin Gas Plant.

2.8 EPCRA Section 313 Requirements

Based on current information, the Indian Basin Gas Plant is not a plant subject to EPCRA Section 313 water priority chemical regulations.

			Table 2-1. Reportable Spill Summary	le Spill Summary	
Record #	Date	Spill Type	Spill Quantity	Quantity Recovered	Cause
1706	02-07-94	Condensate	0.48	o	Oil dump failed. Spilled out of vent of BP valve.
1714	02-15-94	30 percent DEA sol'n.	59	1.5	Amine pump plunger broke. Solution leaked around the seal.
1741	03-09-94	Condensate	-	t	Tank overflowed (High level switch failed).
1792	05-09-94	Condensate	5.5	Ś	Skimmer basin overflowed.
1794	05-12-94	Lube Oil	0.25	0.2	Heavy rain run-off caused sump to overflow.
1797	05-23-94	Lube Oil	0.4	0.3	Open drain sump did not start automatically.
1828	06-22-94	Lube Oil	0	0	Pin hole leak in píping.
1841	07-13-94	Condensate	125	-	Pinhole leak on dresser coupling (line 1)
1842	07-16-94	Condensate	£	2.5	SWD Tank ran over.
1858	08-01-94	Amine	1.2	0	Two-inch opened by mistake.

2-5

8

	Cause	Leak in line due to corrosion.	Unplugging sample line.	Tank 3A overfilled.	Spillover weir set to high.	Pulled plug during maintenance.	Unit 25 tank overfilled.	West skimmer tank discharge pump line leaked.	LACT failed to shut down.	Separator overflow.	Pump failure.	Separator overfilled.
e Spill Summary	Quantity Recovered	o	0	0	0.5	0.08	0.04	O	5	0	-	0
Table 2-1. Reportable Spill Summary	Spill Quantity	N	0.1	0.2	-	0.12	0.11	2	10	0.5	1.5	2.3
1.	Spill Type	Condensate	Condensate	Condensate	Condensate	Lube oil	Triethylene glycol	Condensate	Condensate	Condensate	Amine	Condensate
	Date	08-27-94	09-13-94	12-29-94	01-23-95	03-01-95	03-13-95	05-15-95	06-01-95	06-19-95	09-14-95	10-09-95
	Record #	1878	1880	1936	1963	1948	2000	2036	2021	2043	2118	2107

2-6

ļ

ì

1		
	K	
ς.	Vì.	

			Table 2-1. Reportabl	Reportable Spill Summary	
Record #	Date	Spill Type	Spill Quantity	Quantity Recovered	Cause
2200	02-01-96	Basic sediment	0.75	0	Tank overfill
2201	02-05-96	Basic sediment	3.5	2.5	Tank overfill. Bypass was not shut on SWD pump.
2151	02-07-96	Condensate	2	2	Tank overfill. Electrical or instrument failure.
2135	03-01-96	Gasoline	0.24	0	Valve came off of hose. Loose clamp.
2191	03-09-96	Condensate	ω	5	Tank overfill out top of tank. Freezing.
2214	04-27-96	Condensate	4	2	6-inch PVC gathering line west of valve pit leaked.
2239	05-30-96	Condensate	2	2	Separator relief valve not completely opened.
2238	05-30-96	Condensate	v	0	Loading condensate into truck. Driver let overfill, spill.
2279	08-01-96	Condensate	ω	2	Top of tank at hatch. Overfill exceeded process capacity.
2343	11-14-96	Condensate	3	2	Tank overflow at vent on tank. Human error.
2395	12-29-96	Condensate	ю	0	Tank. Plugged drain. Bottom. Human error.

2-7

B

1

	Cause				
spill Summary	Quantity Recovered				
Table 2-1. Reportable Spill Summary	Spill Quantity				
	Spill Type				
	Date				
	Record #				

2-8

3.0 STORM WATER POLLUTION SOURCE INFORMATION

3.1 Drainage Patterns

The property is quite flat, but generally drains to the southeast. The only distinct outfall is from a small channel which begins near the west side of the old office, flows south past the residue gas compressors, turns east, and continues between the loading docks and the out-of-service condensate tanks. This channel mainly conveys storm water from the office and workshop areas. Runoff from the remainder of the plant drains to the southeast as sheet flow. All of the runoff eventually drains to the receiving watercourse, Rocky Arroyo. The arroyo is an intermittent stream that contains flowing water only after a significant rainfall.

3.2 Inventory of Exposed Materials

This section contains a description of the Indian Basin Gas Plant's potential storm water pollution sources. Pursuant to EPA guidelines for preparing SWPPPs, this section identifies potential sources which could reasonably be expected to add "significant" amounts of pollutants to storm water discharges. The source areas were also limited to those identified in EPA regulations and guidance as source areas associated with industrial activity that needs to be addressed in an SWPPP.

In addition to identifying and mapping the source areas, this section also describes an inventory of the materials (e.g., chemicals) that are associated with each source area. A narrative description is provided (see Table A, Attachment 3) that lists the materials that are handled at the indicated source area which could be exposed to precipitation. Table A in Attachment 3 presents the necessary SWPPP source area information in a way that:

- is easily understood (i.e., each regulatory source area is listed in Table A and shown on the facility map (Figure 2, Attachment 2).
- meets multiple SWPPP needs in a single table.

3.3 SWPPP Risk Identification

Determining potential storm water runoff pollution "risks" associated with "industrial activity" involves the following steps:

- 1. Define the chemical use characteristics of the source area(s), by facility activity, using site inspection and an available data review. Evaluate the nature of each source area to determine:
 - a. The level, or extent, of chemical use or storage in each area.
 - b. The potential for the discharge of this chemical as storm water pollution from the area.

- 2. Review and evaluate the existing water quality standards for the receiving water bodies.
- 3. Based on a review of the factors in items 1 and 2 above, specify a relative "risk" ranking for each storm water pollution source area, identifying the potential for storm water runoff to cause a water quality impact.

The simple three-step approach described above results in the identification of not only the potential storm water runoff pollution "risk" from the identified source area(s), but also helps in prioritizing the sources area(s) by their relative "risk." This process then leads to the development of a responsive set of best management practice plans (BMPs) that are related to the priority of pollution risk for the source area, which helps in developing a prioritized schedule for their implementation. In order to implement the three-step risk identification approach described above for the Indian Basin Gas Plant source areas, the following specific procedure was used:

- 1. Evaluate each facility source area for the materials stored or used in the area and the nature of any existing storm water pollution management measures, or systems, currently in place for that activity.
- 2. Evaluate the nature of the existing storm water management systems, that do (or could) control storm water pollution from the source area and rank them as "adequate" versus "inadequate" using a common sense judgement approach. This ranking is based on the ability of the existing management system to protect the potential storm water pollution source area during rainfall events.
- 3. Evaluate readily available water quality information for the receiving water(s) for storm water discharges from the facility, including any existing water quality standards. In addition, identify any specific chemical compounds, or categories of compounds that are of concern to appropriate regulatory agencies for the receiving water(s) to which storm water discharge from this facility is directed.
- 4. Based on the types of chemicals used or stored in/at the source area, the existing level of runoff management for the source area, and the sensitivity of the receiving water(s) to those chemicals, identify a relative "risk" (i.e., high, medium, low) for potential storm water pollution to the receiving water(s).

The following list shows how the four factors outlined above determine the relative risk factors for storm water pollution source areas at the Indian Basin Gas Plant:

Chemical Use and Control Characteristics	No Specific Standards
Heavy Chemical Use, Adequate Controls	MEDIUM
Heavy Chemical Use, Inadequate Controls	HIGH
Moderate Chemical Use, Adequate Controls	LOW
Moderate Chemical Use, Inadequate Controls	MEDIUM
Light Chemical Use, Adequate Controls	LOW
Light Chemical Use, Inadequate Controls	MEDIUM

The High, Medium, and Low designations in the above listing are defined as follows:

- 1. HIGH source area has likely impact on receiving water quality, due to significant chemical use, or currently inadequate management controls, or because of identified receiving water sensitivities to a particular chemical being used at the source area. Management controls for this area should be given a high priority for implementation.
- 2. MEDIUM source area may have an impact on receiving waters, but specific water quality limits for the chemical(s) being used at the source area may not exist. In addition, a MEDIUM storm water pollution risk would exist for areas with current management controls that are deemed to be "adequate," but the extent of chemical use is high, such that management attention should continue to be focused on maintaining these management controls. Storm water pollution problems are difficult to reliably quantify for this risk category. Therefore, more information may be necessary concerning storm water pollution amounts, and receiving water conditions, before a more extensive (and/or costly) management control can or should be selected.
- 3. LOW source area is currently fully contained and controlled, or chemical use is low. Impacts on receiving water quality is not likely. Areas should be included in other management control programs, if applicable, but no prioritized storm water pollution management control is necessary for this source area.

Table A, in Attachment 3, contains the results of a risk evaluation for the Indian Basin Gas Plant storm water pollution source areas, conducted using the procedure outlined above.

4.0 BEST MANAGEMENT PRACTICES (BMP)

This section provides general descriptive information for the BMPs that have been identified (see Table B, Attachment 3) for the storm water pollution source areas at this facility (see Table A, Attachment 3). Table B lists the specific type of BMP, from those described in this section, that can be used to control storm water pollution from each of the specifically identified source areas listed in Table A. This section (4.0) provides background and descriptive information for how the particular BMP can be implemented for a source area.

BMP is a term which refers to measures for preventing or controlling storm water pollution from regulated "industrial activities". BMP's can include processes, procedures, schedules of activities, prohibitions on practices and other management practices to prevent or reduce storm water pollution. Despite the broad nature of BMP's, they can be characterized into two types: structural and non-structural. These two types of BMP's are described in greater detail below.

4.1 Non-Structural BMP's

Non-structural BMP's are primarily (simple and inexpensive) management program(s) that are applicable to a wide variety of regulated "industrial activities". The following six non-structural BMP's are identified in this SWPPP.

- Good Housekeeping
- Preventive Maintenance
- Visual Inspections
- Spill Prevention and Response
- Employee Training
- Recordkeeping and Reporting

Good Housekeeping

Good housekeeping involves developing and maintaining a clean and orderly work environment. Good housekeeping is already practiced at the Indian Basin Gas Plant as part of existing environmental management plans. A slight tailoring of existing good housekeeping practices will help prevent storm water pollution as a part of this SWPPP.

Examples of good housekeeping actions to be conducted pursuant to this SWPPP include:

- Implementing a routine clean-up program using hand shovels, hand brooms, vacuum machines, sweeping machines or other types of cleaning machines.
- Storing containers away from direct traffic paths and stack containers in accordance with manufacturer's instructions to avoid damage and spills.
- Labeling all containers showing contents.

i.

- Covering receptacles and drums when possible or protecting them from storm water exposure (e.g., using indoor storage).
- Prevent potential overflow of harmful chemicals by ensuring regular pick up and disposal of waste material.
- Using temporary covers and pallets for outside parts storage (e.g., tarps) whenever practical or store indoors.

Maintaining employee interest in good housekeeping is an important part of the overall storm water pollution control program at Marathon. Methods for maintaining good housekeeping goals include regular housekeeping inspections by supervisors, discussions of housekeeping at meetings and publicity through posters, suggestion boxes, bulletin boards, and employee publications are other tools that will be used to implement good housekeeping activities.

Preventive Maintenance

An effective Preventive Maintenance Program is a key to a successful pollution management effort. This includes a regular visual inspections of systems, equipment, or devices such as valves, dikes and oil/water separator.

The following are the basic elements of Marathon's SWPPP preventive maintenance program:

- Inventory and identify systems, equipment and areas that should be inspected/maintained.
- Conduct routine inspections and/or tests of the systems, equipment and areas.
- Assure that timely repair, adjustment, replacement, cleaning or other needed maintenance is performed. Use equipment manufacturers' recommended procedures as a guide.
- Maintain documentation on inspections, repairs, maintenance, and corrective actions taken.

Many aspects of this SWPPP preventive maintenance program are currently being implemented at the Indian Basin Gas Plant through existing operating procedures and environmental management plans.

Visual Inspections

A routine visual inspection program is a key element in preventing storm water pollution and is an intricate part of the compliance evaluation component of this SWPPP (see Section 5.0). The Indian Basin Gas Plant Storm Water Coordinator is responsible for performing, or specifically delegating, the necessary visual inspections. The inspections will be integrated with the existing Marathon Inspection Check List. The Compliance Evaluation Inspection Form (Table 5-1) will be used to document the annual compliance evaluations.

í.

Spill Prevention and Response

Spill prevention and control, as well as spill response, is an extremely important component of existing Marathon environmental management plans. Vacuum trucks are called to the site, when needed, to remove free liquid resulting from a spill. Other equipment required for spill response (e.g., shovels) is readily available at the facility.

Employee Training

Employee training programs serve to instill in personnel, at all levels of responsibility, an understanding of the storm water regulatory requirements, potential storm water pollution source areas and this SWPPP's BMP program. In addition, training may be used to instruct employees on proper practices for preventing storm water pollution and establishing proper procedures for responding to a release or spill. To the extent possible, SWPPP training will be coordinated with other existing environmental management plan training programs, as well as other Marathon training programs.

Open communications shall be used for matters relating to storm water pollution. The following principles are guidelines for communications, but may be modified when direct action is needed to reduce storm water pollution:

- 1. Each employee is empowered to take immediate action to prevent or reduce storm water pollution. Such actions shall be reported at the first available opportunity to the Storm Water Coordinator.
- Any employee may ask questions, discuss ideas, make suggestions regarding storm water.

Record Keeping and Internal Reporting

Relevant documents are maintained at the Indian Basin Gas Plant as part of Marathon's overall regulatory compliance program. These documents include:

- SWPPP(s);
- Inspection and Spill Records;
- Training Records; and
- Certifications;
- SPCC Plan;
- Groundwater Discharge Plan (GDP)

i ...

4.2 Structural BMPs

Structural BMP's serve three basic functions:

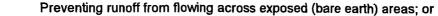
- 1. Reduce or eliminate the volume and pollution from storm water runoff or run-on;
- 2. Divert or direct storm water runoff/run-on; and
- 3. Reduce the velocity of the storm water runoff/run-on.

The objective in diverting storm water runoff (or run-on) falls into one of two categories:

- 1. Divert storm water away from, or around (instead of across or through) regulated "industrial activities".
- 2. Direct storm water runoff that may have come in contact with chemicals from regulated "industrial activities" to a storm water BMP.

Structural BMP's are considered an "advanced" approach for the reduction or elimination of storm water pollution. Several structural BMPs are in place at the Indian Basin Gas Plant. These structural BMPs are described in Parts 1, 2, and 3 of Section 2.5 of this SWPPP. Storm water runoff from regulated "industrial activities" that is not controlled through the existing and proposed structural BMPs for the facility will be controlled using non-structural BMPs presented in Section 4.1. The following is a general list of structural BMPs that may be applied to a facility.

- Sediment and Erosion Control
- Ballast Ground Cover
- Grassed Swales
- Curbs/Berms
- Grading and Paving
- Storm water Conveyances
- Roofing
- Dikes


Each of these structural BMP's is described in greater detail below with details applying to the Indian Basin Gas Plant added as appropriate.

Sediment and Erosion Control

Erosion prevention may be achieved by using one or more or the following techniques:

- Maintaining beneficial vegetation;
- Reducing runoff velocity;
- Minimizing the exposure of bare soil;
- Immediately stabilizing disturbed soil areas;
- Providing appropriate drainage path ways for runoff;

Filtering, settling, or removing sediment from runoff.

Preserving as much ground cover as possible will decrease the impact rainfall has on ground surfaces, which in turn prevents erosion. For example, a buffer zone is a naturally vegetated strip that is adjacent to a stream, ditch, or steep, unstable slope. The buffer zone decreases the velocity of storm water runoff and helps prevent erosion. The outfall from approximately four acres of the Indian Basin Gas Plant passes through a vegetated strip. Storm water from the remainder of the facility drains as sheet flow to the southeast where it passes through about 800 feet of vegetation before reaching Rocky Arroyo.

The following structural practices can be used to implement the techniques listed above:

- Straw Bale Dikes, Silt Fences, Earth Dikes
- Subsurface Drain, Pipe Slope Drain
- Storm Drain Inlet Protection, Rock Outlet Protection
- Sediment Traps, Temporary Sediment Basins
- Retention/Detention Basins

Ballast Ground Cover

Infiltration is a structural BMP that causes storm water to enter the ground surface into subsurface soils rather than runoff into surface water bodies. Ballast cover used for storm water infiltration should be installed with a depth and gradation that will promote infiltration and prevent erosion. Soil type and ground slope should also be considered. Potential ground water impacts must also be considered for this (and in fact any) infiltration type of BMP. When storm runoff from areas with known storm water pollution risk is directed to infiltration type systems an evaluation of groundwater pollution impacts must be performed.

Ballast sometimes requires cleaning and/or replacement due to sediment build up that can prevent proper drainage. Cleaning procedures should be conducted in a manner that avoids or minimizes the potential for storm water contamination.

Grassed Swales

Grassed swales are gentle sloping vegetated depressions constructed to promote infiltration, control runoff pollution by filtering sediments, and to channel runoff to a desirable location.

Curbs/Berms

Diversionary structures prevent the flow of storm water onto regulated "industrial activities". Often a diversion structure and a storm water conveyance are used together to achieve this goal. Conveyances carry the water away and prevent it from pooling at the curb or berm. For example, an employee parking lot is not a regulated area. If a parking lot drains across a regulated "industrial activity", curbing the perimeter of the lot may be an appropriate BMP. Such action would reduce the amount of storm water that would flow across the "industrial activity", and therefore reduce the potential for generating storm water pollution. Curbing, berms, and associated conveyances need regular inspection, repair, and cleaning to keep them functioning properly.

A large uphill diversion berm has been constructed around the north and west sides of the Indian Basin Gas Plant. It diverts surface runoff away from the plant and reduces the volume of water than can potentially contact polluting materials at the plant.

Grading and Paving

Finished grades at the Indian Basin Gas Plant are designed to facilitate the prevention of run on onto regulated "industrial activities". Therefore, this surface grading is a BMP, and is a part of this SWPPP that can reduce the exposure of storm water to potential pollutants. However, due to the constraints imposed by normal operations grading and paving may have to be combined with other BMP's (such as curbs or conveyances) to be effective.

Storm Water Conveyances

Storm water conveyances are channels, gutters, drains, and sewers which are used to collect storm water and direct its flow. They are part of a site's storm water collection system. A primary purpose of a storm water conveyance is to prevent storm water from being exposed to a storm water pollution source area.

Gutter systems, down spouts and storm sewers can be retrofitted to discharge runoff away from regulated "industrial activities". This will help minimize the volume of potentially polluted storm water generated at the site. Subsurface conveyance systems are already in place at the Indian Basin Gas Plant. Product effluent from most plant equipment is drained through a closed system. In addition, an open collection system has been constructed around much of the plant process equipment. The system consists of concrete pads with curbs, concrete troughs covered with steel grates, drainage collection pipes, sumps, sump pumps. The purpose of this system is to capture material that originates from a leak or spill, convey it to the sump, and pump it into the skimmer basin. Material collected in this manner is ultimately reprocessed or disposed in the injection well.

Roofing

The construction of a roof over a potential storm water pollution source area (e.g., drum storage) will eliminate the direct exposure of chemicals in that area to rainfall. However, simply covering potential storm water pollution source areas may not be sufficient to prevent contact with "run-on" and "run-through". Simply stated, these terms refer to storm water that does not fall onto potential source materials, but rather flows through a potential source area. Therefore, for roofing to be effective, combination with curbs/berms may be required.

<u>Dikes</u>

Earthen and concrete dikes are used around storage and break-out tankage as a means of collecting storm water and any potential spills. The storm water can than be inspected prior to being discharged into the surface water body. Earthen and concrete dikes are used extensively at the Indian Basin Gas Plant as part of the SPCC. A summary of the storage tanks and the volumes of the dikes are presented in the SPCC.

