

REPORTS

YEAR(S):

Groundwater Discharge Plan GW-21 for

Indian Basin Gas Plant

329 Marathon Road (Eddy County Road 401) Lakewood, New Mexico

Prepared For:

Marathon Oil Company Southern Business Unit P.O. Box 3487 Houston, Texas 77253-3487

Submitted to:

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

On behalf of:

Working Interest Owners

September 17, 2004 (Amended December 2, 2004)

Groundwater Discharge Plan GW-21 for

Indian Basin Gas Plant

329 Marathon Road (Eddy County Road 401) Lakewood, New Mexico

Prepared For:

Marathon Oil Company Southern Business Unit P.O. Box 3487 Houston, Texas 77253-3487

Submitted to:

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

On behalf of:

Working Interest Owners

September 17, 2004 (Amended December 2, 2004)

Groundwater Discharge Plan for Indian Basin Gas Plant

TABLE OF CONTENTS

<u>Sections</u>	on	<u>P</u>	<u>age</u>
1.0	TYP	E OF OPERATION	1
2.0	OPE	RATOR/LEGALLY RESPONSIBLE PARTY & LOCAL REPRESENTATIVE	.1
3.0	LOC	ATION OF FACILITY	1
4.0	LAN	DOWNER	1
5.0	FAC	ILITY DESCRIPTION	2
6.0	MA	TERIALS STORED/USED AT THE FACILITY	2
7.0	SOU	RCES AND QUANTITIES OF EFFLUENTS & WASTE SOLIDS	2
	7.1	Effluents	2
	7.2	Solid and Liquid Wastes	3
	7.3	Effluent and Solid Waste Quality Characteristics	3
		7.3.1 Commingled Effluent	3
	•	7.3.2 Wastewater and Treated Groundwater Quality Characteristics	4
		7.3.3 Solid Waste Quality Characteristics	4
8.0	TRA	NSFER AND STORAGE OF PROCESS FLUIDS AND EFFLUENTS	4
	8.1	Onsite Collection and Storage Systems	4
		8.1.1 Open Drain System	5
		8.1.2 Description of Integrity Test of Open Drain System	5
		8.1.3 Closed Drain System	5
	8.2	Inventory of Tanks and Vessels	6

TABLE OF CONTENTS

(Continued)

IN

<u>Sectio</u>	<u>n</u>		P	age
	8.3	Meas	sures to Prevent Unintentional and Inadvertent Discharges	6
		8.3.1	Secondary Containment for Tanks	6
		8.3.2	Chemical and Drum Storage Area Containment	6
		8.3.3	New and Existing Sump Inspection	6
		8.3.4	Aboveground Tank Inspection	6
		8.3.5	Process Areas	6
		8.3.6	Housekeeping	6
	8.4	Unde	erground Pipelines	.7
	8.5	Efflu	ent Disposal	.7
		8.5.1	On-site Disposal	.7
		8.5.2	On-site Treatment	.7
			8.5.2.1 Treatment of Soils	.7
		8.5.3	Off-site Disposal	.8
			8.5.3.1 Injection Wells	.8
			8.5.3.2 Commercial Disposal Facilities	.8
9.0	PR	OPOSI	ED MODIFICATIONS	.8
10.0	INS	SPECT	ION, MAINTENANCE, AND REPORTING	.9
	10.1	Rout	tine Inspection Procedures	.9
	10.2	Rout	tine Maintenance Procedures	.9
	10.3	Rout	tine Reporting Procedures	.9
	10.4	Stor	mwater Runoff and Flood Protection	.9

1 1

1

TABLE OF CONTENTS

(Continued)

Section	Page
11.0 SPIL	L/LEAK PREVENTION & REPORTING (CONTINGENCY PLANS)10
12.0 SITE	CHARACTERISTICS
12.1 12.2	Geologic Description of Discharge Site
13.0 OTH	IER COMPLIANCE INFORMATION11
	TABLES
Table 1.	Effluents and Estimated Volumes.
Table 2.	Waste Sources, Waste Classification, and Waste Treatment/Disposal Methods.
Table 3.	Inventory of Tanks.
Table 4.	Inventory of Process Vessels.
Table 5.	Underground Piping.
Table 6.	Soil Treatment Cleanup Standards.
	FIGURES
Figure 1.	Topographic Map of Plant and Surrounding Area.
Figure 2.	Facility Diagram of the Plant.
Figure 3.	Process Flow Schematic.
	APPENDICES
Appendix A.	Laboratory Results of Commingled Discharge Fluid.
Appendix B.	Spill Prevention and Control Plan.
Appendix C.	Stormwater Pollution Prevention Plan.
Apperdit 1) - GW REMEDIATION

İ

Groundwater Discharge Plan

for

Indian Basin Gas Plant

1.0 TYPE OF OPERATION

The major purpose of the facility is gas processing. Although the components of the plant have been updated since it first began operations in 1966, the basic function and purpose of the plant have not changed. The plant owners have invested in new technology and replacement of aging equipment as necessary.

2.0 OPERATOR/LEGALLY RESPONSIBLE PARTY & LOCAL REPRESENTATIVE

The name of the operator is Marathon Oil Company. The mailing address for the Southern Business Unit is P.O. Box 3487, Houston, Texas 77253-3487. The telephone number for the Region office in Houston is (713) 629-6600.

The local Marathon Oil Company representative at the Indian Basin Gas Plant is Tom Breninger, Plant Superintendent. The street address of the plant is 329 Marathon Road (Eddy County Road 401), Lakewood, New Mexico. The mailing address is P.O. Box 1324, Artesia, New Mexico 88211. The plant telephone number is (505) 457-2621.

3.0 LOCATION OF FACILITY

The Indian Basin Gas Plant (facility) is located in the Northeast 1/4 of Section 23, T21S, R23E, NMPM, Eddy County, New Mexico, approximately 20 miles west of Carlsbad and 28 miles southwest of Artesia. Figure 1 is excerpted from the U.S.G.S. 7.5-minute topographic quadrangle, titled "Martha Creek", showing the location of the facility.

4.0 LANDOWNER

Marathon Oil Company is the landowner of record of a 160-acre site legally described as the Northeast 1/4 of Section 23, T21S, R23E, NMPM, Eddy County, New Mexico. The gas plant facility, which consists of approximately 60 acres, is located on the 160-acre property. Marathon's corporate headquarters address is P.O. Box 3128, Houston, Texas, 77253. Correspondence regarding the site should be directed to Tom Breninger, Plant Superintendent, at the plant address provided in Section 2.0.

5.0 FACILITY DESCRIPTION

The gas plant facility approximately occupies the Southwest 1/4 of the Northeast 1/4 of Section 23, T21S, R23E. Figure 1 shows the plant site, the boundary of the 160-acre property, and the adjacent property managed by the BLM. The plant waste water is now disposed at the OCD permitted injection well AGI#1 SWD well (API# 30-015-31294). The two previously used waste water injection wells Marathon Federal SWD Well #1 and Marathon IB Gas Com Well #1 are also shown on Figure 1, these wells are not being used for waste water injection anymore. Figure 2 shows current plot plan of the plant.

6.0 MATERIALS STORED/USED AT THE FACILITY

A list of materials stored and used at the facility is included in Tables 3 and 4. See section 8.0 for more information.

7.0 SOURCES AND QUANTITIES OF EFFLUENTS & WASTE SOLIDS

Wastes that are generated at the gas plant consist of commingled effluent (Section 7.1) and solid and liquid wastes (Section 7.2). The commingled effluent is gathered by the drain and sump system and the solid and liquid wastes are generated at the plant but are not part of the commingled effluent.

7.1 Effluents

The commingled effluent consists of produced water and various other plant effluents. The individual waste effluent streams in the commingled effluent are identified in Table 1. The waste effluent streams from the various plant processes are collected and conveyed by the open drain piping system, the closed drain piping system, and several underground pipelines. Effluent volumes at the plant are variable and depend upon plant and field operations. Commingled effluent is normally discharged into a Marathon-operated Class II injection well – identified as the AGI #1 well -- located on adjacent Bureau of Land Management (BLM) property. (Note: Another formerly-used injection well located southeast of the plant has been plugged and abandoned.) The commingled effluent is also occasionally trucked off-site to commercial disposal facilities during emergencies.

Produced water, cooling tower blowdown, and boiler and condenser blowdowns consist of a combination of wastewater and chemical additives. The name and volume of additives in each effluent are listed on Table 1. These effluents, effluents from cleaning operations, and miscellaneous plant process effluents are commingled via the open drain piping system, which drains to the skimmer basin before being pumped to the steel saltwater tank.

The new Selexol unit has added two additional effluents. These effluents are outlined in Table 1. The Selexol effluent is drained via the open drain system, and is then sent to a Marathonoperated Class II injection well. It is commingled with the plant disposal system only during an emergency.

Reverse osmosis (RO) wastewater is disposed with plant wastewater. Groundwater remediation is now performed through vapor extraction in place of pump & treat system. Remediation system does not produce any effluents. Hence infiltration wells IW-1 and IW-2 have been shut-in. During an emergency the remediation system effluents can be commingled with the plant waste water for disposal into the OCD permitted injection well, therefore remediation effluents are listed on Table 1.

Domestic sewage is not commingled with other plant effluent and is therefore regulated by the New Mexico Environment Department. Sewage is conveyed through an underground pipeline to one of two underground septic tanks, which are designed to drain the sewage leachate. One of the septic systems was installed prior to December 1972, the other in April 1997.

7.2 Solid and Liquid Wastes

Solid and liquid wastes are generated at the plant that are not part of the commingled effluent or conveyed by underground piping. The waste classification, treatment/disposal methods, treatment/disposal/recycle locations, and waste storage areas are provided in Table 2.

Waste oil is collected from various plant equipment (Table 2) and stored in a 500-gallon waste oil storage tank located on the west side of the plant. The oil is stored in the tank until enough oil accumulates to warrant transport of the oil to a used oil recycling facility. Vehicle motor oil no longer is changed at the plant; rather it is performed off-site.

There are two Safety-Kleen parts cleaning units located in the pumper shack. One of the cleaning units is an open-top spray basin containing naptha solvent and the other unit is a self-contained cleaning unit that contains an aqueous solvent. Safety-Kleen services both units and recycles the solvent whenever the spent solvent is replaced. The naptha solvent is hazardous and the aqueous solvent is non-hazardous. The Environmental Protection Agency (EPA) small quantity generator number for hazardous waste generated at the Indian Basin Gas Plant is NMD 982760183-1235. The EPA hazardous waste site identification is NMO-1406.

Laboratory wastes are a starch and iodine mix, silver nitrate, and water test reagents. These liquids are temporarily stored in a 5-gallon container in the laboratory and later hand carried to a 55-gallon drum in the drum storage area on the west side of the plant. Waste paint is stored in a 55-gallon drum in the drum storage area. Both streams are stored until enough waste has accumulated for disposal/recycle by Safety-Kleen.

7.3 Effluent and Solid Waste Quality Characteristics

7.3.1 Commingled Effluent

On November 8, 1999, a grab sample of the commingled effluent was collected from a valve between the saltwater tank pump and the pipeline to the injection well. Total dissolved solids (TDS), pH, general chemistry, chlorinated hydrocarbons, aromatic hydrocarbons, and Resource Conservation and Recovery Act (RCRA) metals analysis of the effluent sample was conducted by Severn Trent Laboratories (STL). Laboratory results indicated that all commingled effluent

Marathon Oil Company Indian Basin Gas Plant

constituents are below the WQCC 3-103 standards for groundwater except for benzene, toluene, ethylbenzene, total xylenes, chloride, sulfate, and TDS. The concentrations of benzene, toluene, ethylbenzene, and total xylenes were 4,300, 13,000, 700, and 7,000 μ g/l, respectively. The laboratory results are included in Appendix A.

Testing for polychlorinated biphenols (PCBs) was not necessary because PCB-contaminated transformers were removed from service at the gas plant before 1981. No other sources of PCB contamination have been identified to warrant testing for PCBs in the plant effluent.

Table 1 lists two plant effluents that contain one or more constituents as defined by WQCC Section 1101.TT. These effluents are the produced water and groundwater contaminated with condensate. It should be noted that the groundwater contaminated with condensate is transferred through an underground pipeline from the treatment compound to the fiberglass saltwater tank only in emergency situations. Treated groundwater is not an effluent anymore. The hazardous constituents that are likely contained in these effluents are benzene, toluene, ethylbenzene, meta-, para-, and ortho-xylenes, and naphthalene.

7.3.2 Wastewater Quality Characteristics

Marathon has been sampling the commingled reverse osmosis (RO) wastewater and the treated groundwater on a monthly basis for benzene, toluene, ethylbenzene and xylenes (BTEX), and on a quarterly basis for major cations/anions and polyaromatic hydrocarbons (PAHs) analysis using EPA approved methods. As described in Section 7.1, reverse osmosis wastewater is commingled with plant waste water and disposed off into the injection well. Pump and treat system, which was used to treat condensate contaminated groundwater was shut-in January 2003 after receiving approval from the OCD. Hence, above referenced monthly sampling of RO wastewater and treated groundwater has been discontinued since.

7.3.3 Solid Waste Quality Characteristics

Most solid wastes generated at the plant are not characterized by the definition in WQCC Section 1101.TT. Table 2, which has been updated to reflect new and modified waste sources, classifies each waste as either exempt, non-exempt (non-hazardous or potentially hazardous), or naturally occurring radioactive material (NORM). All non-exempt wastes will be characterized according to 40 CFR 261 to determine the appropriate method of disposal. After the waste stream has been characterized, the data will be kept on file at the gas plant. Solid wastes will be stored and handled in accordance with all applicable federal and state laws.

8.0 TRANSFER AND STORAGE OF PROCESS FLUIDS AND EFFLUENTS

8.1 Onsite Collection and Storage Systems

The open drain and closed drain systems are used to manage some of the effluents at the plant. Table 1 indicates which effluents are conveyed in the open drain system. These include two of the boiler and condenser blowdowns, cleaning operation effluents, and miscellaneous plant process effluents. Open drain system is used to collect commingled effluents. The closed drain system is used to collect effluent from pressurized vessels.

8.1.1 Open Drain System

The open drain system collects plant effluent under atmospheric conditions. The underground part of this system includes: four double-walled fiberglass sumps; one single-walled fiberglass sump at the air compressor building; two single-walled steel sumps (open-drain collection sump and LACT sump); steel collection pots; steel pipelines; and, polyethylene pipelines. The open drain system includes a total of seven underground sumps. The aboveground part of the system consists of concrete drainage and containment pads that collect and drain effluent into the underground part of the system for collection and disposal. All open drain sump pumps send their effluent to the open-drain collection sump where they are commingled. Commingled effluent collected in the open-drain collection sump is pumped to the skimmer basin gunbarrel tank, located on the skimmer basin pad.

8.1.2 Description of Integrity Test of Open Drain System

Seven separate sections of underground piping are tested by filling the piping to volumetric capacity and visually observing any fluctuations in fluid levels at the sump and manway locations. The test is performed at atmospheric conditions for 5 hours. In order to reduce the effects of temperature fluctuations that occur during the day, the test is conducted in the early morning or late evening hours. All sources for active drainage are isolated to prevent accidental introduction of non-test fluids into the system. A successful test has been conducted when the initial fluid levels remain constant throughout the 5-hour test period. The double walled fiberglass sumps are integrity tested by filling the inner chamber to capacity and observing any leaking of fluid from the inner chamber to the outer chamber. A successful test of the double-walled sumps has occurred if fluid does not leak to the outer chamber from the inner chamber during the 5-hour test period. The double form the inner chamber to the outer chamber from the inner chamber during the 5-hour test period at least 72 hours prior to all testing.

Successful integrity tests were conducted on the entire system during two testing periods. Initial testing was completed November 1999 on the majority of the system. Final integrity tests were completed February 2000. Records of all integrity tests are available at the Indian Basin Gas Plant office.

8.1.3 Closed Drain System

The closed drain was constructed in 1980 and modified in 1984 and 1996 and is mainly aboveground. This system is used to collect effluent from pressurized vessels. The maximum operating pressure is 200 psig. The closed drain system is connected to process vessels: inlet filter coalescer, four expander/compressors, three amine contactors, glycol contactor, Selexol contactor, three amine scrubbers, glycol overhead filter coalescer, Selexol scrubber, two amine flash tanks, amine still, Selexol still, glycol inlet filter coalescer, Selexol 3-phase separator, product contactor, new fuel gas scrubber, old fuel gas scrubber, two regen scrubbers, vertical inlet separator, cyclone separator and horizontal inlet separator. (See Figure 3 for a schematic of the process flow.) Steel piping leads from these process vessels to the closed drain scrubber, located near the generators. Collected liquids in the tank are sent to the skimmer basin gunbarrel for recovery and then to disposal via the wastewater injection system.

8.2 Inventory of Tanks and Vessels

Tables 3 and 4 are lists of tanks and vessels, respectively, with a potential to discharge. Table 3 lists the 55 tanks at the plant, and it has been updated to include 4 new storage tanks with liners that were put in service June 2003. Table 4 lists all process vessels such as separators, boilers, exchangers, condensers and scrubbers.

8.3 Measures to Prevent Unintentional and Inadvertent Discharges

8.3.1 Secondary Containment for Tanks

All storage tanks, except those that contain uncontaminated freshwater, are bermed to contain 133% of the volume of the largest tank. If two or more tanks are connected within the same containment, the berm contains 133% of the total volume of the interconnected tanks. New or existing tanks that undergo a major modification, as determined by the Division, will be placed within an impermeable enclosure.

8.3.2 Chemical and Drum Storage Area Containment

Drum storage areas are concrete paved and curbed to prevent a potential discharge to the ground of leaking or spilled drum contents. All tanks, drums, and containers will be clearly labeled to identify their contents and other emergency notification information.

8.3.3 New and Existing Sump Inspection

Construction plans for installing new sumps will be submitted to the Oil Conservation Division (OCD) for approval prior to project commencement. New sumps will incorporate secondary containment and leak-detection into the design prior to installation. The only below-grade tank at the plant is the sulfur underground storage tank.

8.3.4 Aboveground Tank Inspection

The glycol storage, 1200-barrel freshwater storage, and steel softwater tanks are on a concrete pad. Therefore, these tanks have leak detection. All other on-ground tanks are inspected every five years.

8.3.5 Process Areas

All process and maintenance areas which show evidence that leaks and spills are reaching the ground surface will be either paved and curbed or have some type of spill collection device incorporated into the design.

8.3.6 Housekeeping

All systems designed for spill collection/prevention will be inspected weekly and after each storm event to ensure proper operation and to prevent overtopping or system failure. A record of inspections will be retained on site for a period of five years.

8.4 Underground Pipelines

Table 5 lists underground pipelines that convey either process or waste effluents within the plant. The name of the pipeline, where the fluids are transferred from and to, year of construction or modification, piping diameter, fabrication material, average throughput during use, operating pressure, and the date of the last or next scheduled integrity test of each pipeline are indicated on Table *5.* The Marathon procedures for mechanical integrity testing are on file at the plant. The procedures are based upon the third edition (dated December 1993) of the American Petroleum Institute document HP 1110 titled "Pressure Testing of Liquid Petroleum Pipelines."

8.5 Effluent Disposal

8.5.1 On-site Disposal

Surface impoundments or ponds, injection wells, leach fields (except for two septic tanks), drying beds, or other pits do not exist onsite. Onsite disposal of liquid and solid waste effluents is limited to the discharge of cooling tower effluent in the form of a mist onto the ground around the base of the cooling tower and solid-sulfur that is discharged onto the ground on the west side of the plant. Marathon no longer uses the solid waste landfill onsite to dispose of exempt plant wastes and office trash. The landfill was closed in 1995.

8.5.2 Onsite Treatment

8.5.2.1 Treatment of Soils

Marathon will no longer treat soils onsite landfarm. All waste soils generated at the plant will be collected in a waste bin (roll-off box) supplied by a commercial landfill. Once the waste bin is full the container will be shipped off to an OCD approved landfill for disposal. Waste manifest and other documents related to offsite disposal will be kept onsite.

The existing landfarm will be evaluated for closure. Confirmation samples will be collected as per condition #17 of previously approved permit. If samples do not meet levels on condition #17 of the discharge permit, then soils will be disposed off at an OCD approved landfill. The confirmation sampling for the treated soils will be one sample per 50 yards of soil. The existing landfarm area measures approximately 100 feet by 300 feet. The landfarm was originally constructed in 1989 with a 4-mil plastic liner with approximately 12-inch-high earthen berms on all four sides.

8.5.3 Off-Site Disposal

8.5.3.1 Injection Wells

All exempt gas-plant waste effluents are collected by the open-drain system, closed-drain system, or other underground piping, and commingled at either the fiberglass or steel saltwater tanks (Figure 2). The commingled effluent is conveyed by underground pipeline and discharged at OCD permitted off-site injection well AGI #1 (API# 30-015-31294). This Marathon operated

Marathon Oil Company Indian Basin Gas Plant

Class II injection well is located on adjacent BLM property. 2138 feet from the North line and 1060 feet from the West line (Unit E) of Section 23, Township 21S, Range 23E. The composition of the commingled effluent is identified in Table 1. Laboratory analysis of the commingled effluent is provided in Appendix A.

8.5.3.2 Commercial Disposal Facilities

All waste soils generated from the plant will be transported to offsite OCD approved landfills as described in Section 8.5.2.1. All waste streams are evaluated and classified before transported offsite. Office refuse and other inert wastes are transported to the local municipal landfill for disposal. All other wastes are handled according to Table 2.

9.0 PROPOSED MODIFICATIONS

- 1. There are four new storage tanks in the southeast portion of the gas plant which were put in service last year. These tanks were constructed with impermeable secondary containment as per Condition #5 of the discharge permit. The new tanks are listed in Table 3.
- 2. Waste streams and different disposal facilities that are currently in use have been updated. The changes are outlined in Table 2.
- 3. A Selexol process has been added to the plant to remove mercaptans from the gas stream. All of the tables have been updated accordingly to reflect the changes.
- 4. A new Glycol Inlet Filter Coalescer has been added to the plant to remove water and condensate from the gas stream. All of the tables have been updated accordingly to reflect the changes.
- 5. The use of existing landfarm will be discontinued. The landfarm will be closed as per OCD requirements.

10.0 INSPECTION, MAINTENANCE, AND REPORTING

Marathon is actively involved in maintaining and improving spill and leak prevention procedures and good housekeeping practices. These goals are achieved by encouraging plant employees to be observant, to notify the appropriate persons of their observations, to correct problems quickly, and to prevent future spills and leaks by learning from problematic past practices.

10.1 Routine Inspection Procedures

Table 3 and 4 identify the aboveground storage tanks and process vessels (AST and APV; *i.e.*, those in-air tanks and vessels that allow 360 degree visual inspection) that are routinely inspected. The closed drain system is also routinely inspected. Plant employees routinely inspect plant equipment (*i.e.*, tanks, piping, pumps, fittings, valves, etc.) for leaks and spills during their daily work tasks. Four plant tours are conducted by plant personnel during each of two, twelve-hour shifts. A primary objective of these tours is to detect equipment leaks and spills. The current Best Management Plan for spills is provided in Appendix B.

10.2 Routine Maintenance Procedures

Employees are encouraged to identify and report potential spill situations. All plant employees have completed an 8-hour hazardous waste operations and emergency response (HAZWOPER) training session. In addition, all employees participate in an annual refresher training course which includes instruction on spill prevention and control measures as required by the Best Management Plan.

10.3 Routine Reporting Procedures

Small leaks or spills are reported and remediated immediately. A Marathon policy requires employees to complete a spill report upon discovery of a spill or leak. Spills or leaks are reported to the OCD according to the requirements of OCD Rule 116 and WQCC Regulations Section 1-203. BLM is notified if a spill or leak occurs on BLM land. The National Response Center is notified in accordance with 40 CFR 110.10. Spill reports are kept on file at the plant office.

10.4 Stormwater Runoff and Flood Protection

The potential for flooding of the plant is very low. Normally, flooding due to significant rainfall events is limited to the braided stream channels of Rocky Arroyo. The stream bed of Rocky Arroyo is approximately 10 feet lower than the elevation at the southern plant perimeter fence. The last time Rocky Arroyo overran its banks was in 1986, but the water did not reach the plant.

Perimeter diversion berms consisting of dirt, piled two to three feet high, are located on the west and north sides of the plant to prevent upgradient stormwater from running onto the plant site. These stormwater berms prevent stormwater from contacting hydrocarbons or flooding the open-drain system which is designed to manage normal process flow only.

The Indian Basin Gas Plant Stormwater Pollution Prevention Plan (SWPPP), dated March 12, 1998, is included in Appendix C. This document describes the potential pollutant sources, stormwater measures and controls, stormwater runoff management, inspection and preventative maintenance, spill prevention and response procedures, employee stormwater training, and recordkeeping and internal reporting procedures. Select employees participate in stormwater pollution prevention training on an annual frequency according to the requirements in the SWPPP.

11.0 SPILL/LEAK PREVENTION & REPORTING (CONTINGENCY PLANS)

A contingency plan for potential occurrence of leaks and spills at the Indian Basin Gas Plant is located in the Best Management Plan which is included as Appendix B. The contingency plan describes the steps proposed to contain and remove spilled substances and mitigate the damage caused by the discharge, including protection from future migration to groundwater. The OCD notification threshold levels will be followed for discharges at the plant as defined by WQCC Regulations Section 1203 and significant leaks or spills as defined by OCD Rule 116.

12.0 SITE CHARACTERISTICS

12.1 Geologic Description of Discharge Site

The typical stratigraphic sequence beneath the gas plant is Queen Formation fractured sandstone, limestone, and dolomite bedrock at a depth of approximately 20 feet overlain by approximately 16 feet of silty, pebble to boulder gravel overlain by 4 feet of clayey silt and silt.

12.2 Hydrologic Features

Rocky Arroyo is a watercourse located approximately 600 feet south of the southern boundary of the site (Figure 1) that contains flowing water only during and for a period of time following heavy rainfall events. The main channel of Rocky Arroyo is 840 feet south of a fence at plant. South of the plant site, the stream channel of Rocky Arroyo trends southeast.

The first groundwater encountered below the plant site occurs within alluvium deposits. This shallow zone is perched above locally fractured, Permian sandstone, limestone, and dolomite of the Queen Formation. The presence of perched shallow groundwater is dependant on the amount of local rainfall. The flow direction of the perched shallow groundwater is generally southeast. A commercial supply well permitted by the State Engineer Office and completed in the shallow alluvial deposits is located approximately 2.5 miles east of the site boundary. The well is located where alluvial deposits are thick and downstream of the confluence of three major drainage channels in the southern Seven Rivers embayment. These are Rocky Arroyo, Martha Creek, and Dunnaway Draw.

A rancher well (Lee well) is located approximately 0.7 miles west of the western boundary of the 160-acre property and approximately 100 feet north of County Road 401 (Figure 1). This active well is permitted by the State Engineer Office as a stock supply well and is completed in the Lower Queen regional aquifer which is the next saturated zone below the shallow groundwater zone.

13.0 OTHER COMPLIANCE INFORMATION

Summary of groundwater remediation activities are provided in Appendix D. Marathon has been submitting annual Groundwater Monitoring Reports to OCD March/April of every year. The 2003 annual report was submitted to the OCD on March 31, 2004. This annual monitoring report consists of detailed descriptions of remediation activities performed since the start of the project. Also included in the annual report are plot plans, groundwater gradient and BTEX/TPH distribution maps, analytical results copies, tables summarizing data.

Table 1. Effluents and Estimated Volumes

Effluent	e Pathway	Waste Effluent Constituents	Volume	(Section 1-101.Z ZZ constituents)
PRODUCED WATER	Inlet separators to skimmer basin to saltwater tanks	Condensate, saltwater, Calgon pretest 32- 2 gal./day	2000 Bbls/day	none
COOLING TOWER BLOWDOWN	Aboveground piping to fiberglass sattwater tank	Softwater make-up	200 Bbls/day	none
		Calgon conductor XLP-170	2.1 gal/day	none
		Van Waters Rogers sulfuric acid	5 Bbls/mo	none
		Calgon Tower Brom 960 (solid)	100 lbs/mo	none
		Calgon H75	3 gal/wk	none
BOILER AND CONDENSER BLOWDOWNS		Caustic Soda - Unichem	1.5 gal/day	none
SRU Waste Heat Boiler Blowdown	Underground & aboveground steel pipeline to steel saltwater tank	Softwater make-up	95 Bbls/day	none
SRU Large Condenser Blowdown	Underground & aboveground steel pipeline to steel saltwater tank	Calgon Ultra Amine 120	3.6 gal/day	none
SRU Small Condenser Blowdown	Glycol sump of open drain to steel saltwater tank	Calgon Burlook 2220	4.5 gal/day	none
Turbine Waste Heat Boliers (3) Blowdown	Open Drain System to skimmer basin	Calgon Conquer 3470	1.8 gal/day	none
Process (main) Steam Bolier Blowdown	Open Drain System to skimmer basin			
CLEANING OPERATIONS	Open Drain to Skimmer Basin to Saltwater Tank to Injection	Water	50 Bbls/day	none
Steam-cleaning				
Truck, tank, and drum washing				
PLANI PHOCESS EFFLUENIS	Upen Drain to Skimmer Basin to Saltwater Tank to Injection		75 Bbls/day	
Products sweetening		Huntsman diglycolamine (DGA)		none
Glycol		Triethylene glycol (TEG)		none
Reflux Water	Pumped from selexol unit to gunbarrel	Water	50 gaVday	none
Selexol*	Selexol unit to open drain to injection	Dimethyl Ether of Polyethylene Glycol Mixture, Glycol Ethers	120 Bbls	none
SOFTWATER REGEN	Softwater building to saltwater tank via underground piping	Saltwater	75 Bbls/day	none
REVERSE OSMOSIS WASTEWATER*	Primary: Water treatment to infiltration system via underground piping Secondary: Water treatment building to selfwater tank		300 Bbls/day	none
	cooligation and a contract containing to contract the			
GROUNDWATER CONTAMINATED W/CONDENSATE*	Primary: Freshwater gathering to infil. Via underground piping	Freshwater	2375 Bbls/day	none
(Shut-in since January 2003)	Secondary: Freshwater gathering to saltwater tank	Condensate (as TPH; EPA Mod. 8015)	<3,200 ug/L	BTEX

 Denotes effluent is only commingled into disposal system in case of emergency or mechanical failure Last Updated: 9/3/2004

1

Table 2. Waste Sources, Waste Classification, and Waste Treatment/Disposal Methods

Waste	Waste Classification	Treatment/Disposal	Disposal Location	Plant Storage
AEROSOL CANS (empty)	<i>"</i>	Landfill	Southwest Disposal	Municipal waste stream
ANTIFREEZE (vehicle/glycol water bath)	Exempt & Non-exempt, Potentially hazardous	Disposal well	Safety Kleen	In original containers
BATTERIES, SPENT (generator, backup lighting, and	Non-exempt, Potentially hazardous	Recycle	Best-Buy	Drum storage area
CALCIUM SILICATE INSULATION	Non-exempt, Non-hazardous	Landfill	 Southwest Disposal Lea Land Control Recovery, Inc. 	Roll-off bin
CARBON, SPENT (Amine or Glycol System)	Exempt	 Exempt waste disposal facility Non-hazardous industrial landfill 	 Exempt waste disposal facility Control Recovery, Inc. Lea Land 	Roll-off bin when needed
CONCRETE, UNCONTAMINATED	Non-exempt, Non-hazardous	 Leave on site OR Municipal landfill 	 On site Municipal landfill 	NA
COOLING TOWER CLEANING WASTE SOLIDS	Non-exempt, Potentially hazardous	Injection; Off site Class II well	 Control Recovery, Inc. Lea Land 	Frac tank until testing complete
DEBRIS (Mercury Contaminated)	Non-exempt, Hazardous	Recycle	Safety-Kleen	NA
DRUMS, SPENT	Non-exempt, Potentially hazardous	Recycle	U.S. Filter	Drum storage area
EFFLUENTS (Spent DGA and TEG, washwater, boiler, condenser blowdown fluids, waste saltwater, Selexol)	Exempt, Non-hazardous	Injection	MOC SWD Well	Saltwater Tank
ELECTRICAL MATERIALS (Conduit, Panels, Etc.)	Non-exempt, Non-hazardous	Recycle	U.S. Fitter	Scrap metal recycling bin
FILTERS - AIR	Non-exempt, Non-hazardous	Landfill	Southwest Disposal	Dumpster
		 Recycle by incineration Exempt waste disposal facility 	 Quell or U.S. Filter exempt waste disposal facility 	South east of plant
FILTERS - STABILIZER COMMPRESSOR/AIR COMPRESSOR LUBE OIL FILTERS	Non-exempt	Recycle by incineration	Quell or U.S. Filter	West side plant
FILTERS • TURBINE LUBE OIL FILTERS	Non-exempt	Recycle by incineration	Quell or U.S. Filter	South east of plant
LTERS & FILTER MEDIA bal filters,	Exempt	 Recycle by incineration Exempt waste disposal facility 	 Quell or U.S. Filter Exempt waste disposal facility 	South east of plant
FLUORESCENT LAMPS (Used)	Non-exempt, Hazardous	Recycle	Safety Kleen	NA
GLYCOL CERAMIC SADDLES, SPENT	Exempt	 Exempt waste disposal facility Non-hazardous industrial landfill 	 Exempt waste disposal facility Control Recovery, Inc. Lea Land 	Roll-off bin or drums when needed
HYDROBLASTING & SANDBLASTING MEDIA	Non-exempt, Potentially hazardous	As dictated by sampling	As dictated by sampling	NA
e, silver nitrate,	Non-exempt, Potentially hazardous	Incinerated	Safety-Kleen determines	Drum storage area
METAL, SCRAP (NORM contaminated)	rdous	NORM disposal	Newpark Environmental	NORM storage area
METAL, SCRAP (not NORM contaminated)		Recycle	U.S. Filter	Scrap metal recycling bin
METHANOL	empt, Hazardous	Recycle	Safety Kleen	Methanol storage area
MOLECULAR SIEVE, SPENT	Exempt	 Exempt waste disposal facility Non-hazardous industrial landfill 	 Exempt waste disposal facility Control Recovery, Inc. Lea Land 	West side plant

Page 1 of 2

0

Table 2. Waste Sources, Waste Classification, and Waste Treatment/Disposal Methods

Teach

Constant States

	Waste	Treatment/Disposal	Disposal	Plant Storage
Waste and the second	Section in the Classification and section	in the second second we have a second se	supervision and the second	a subscription and a second
NATURALLY OCCURRING RADIOACTIVE MATERIAL (NORM)	NORM waste	NORM disposal	Newpark Environmental	NORM storage area
OFFICE AND PLANT TRASH	Non-exempt, Non-hazardous	Dumpster	Southwest Disposal	West side plant
OIL (vehicle motor, crankcase (chemical injection pumps, high pressure pumps), regen compressor, instrument air compressor, lube oil, stabilizer vapors compressor oil, turbine/expander compressor oil, inlet compressors oil.)	Non-exempt, Potentially hazardous	Recycle	U.S. Filter	Oil recycle storage area
PAINT, WASTE (non-empty cans, dried paints, waste paint)	Non-exempt, Potentially hazardous	Incinerated; Supplemental fuel	Safety-Kleen determines	Drum storage area
POLY-PIPE (Scrap Polyethylene)	Non-exempt, Non-hazardous	Landfill	Southwest Disposal	West Side of Plant
RAGS, OILY	Exempt & Non-exempt	Recycle by incineration	Quell or U.S. Filter	South east of plant
RAIN WATER, TANK BATTERY	Exempt (contaminated) & Non-exempt (clean), Non-hazardous	Injection	MOC SWD Well	Bulk tank
RUBBER PRODUCTS (Belts, hoses, etc.)	Non-exempt, Non-hazardous	Landfill	Southwest Disposal	Roll-off bin
SOIL - AMINE CONTAMINATED, (spent)	Exempt	Landfill	Offsite Landfill	Roll-off bin
SOIL - AMINE CONTAMINATED, (virgin)	Non-exempt	Landfill	Offsite Landfill	Roll-off bin
SOIL - GLYCOL CONTAMINATED (spent)	Exempt	Landfill	Offsite Landfill	Roll-off bin
SOIL - GLYCOL CONTAMINATED (virgin)	Non-exempt	Landfill	Offsite Landfill	Roll-off bin
SOIL - HYDROCARBON CONTAMINATED (exempt)	Exempt	Landfill	Offsite Landfill	Roll-off bin
	Non-exempt	Landfill	Offsite Landfill	Roll-off bin
TAMINATED (exempt)	Exempt	Bioremediation	In place	NA
SOIL - SULFUR CONTAMINATED	Exempt	Land discharge	 Lea Land Control Recovery, Inc. 	West side of SRU, west of fence
SOLVENT, SPENT	Non-exempt, Potentially hazardous	Recycle	Safety Kleen	Naptha 105 - pumper shack; 55-gallon drum Aquaworks - NA
SULFUR RECOVERY UNIT USED CATALYST & SUPPORT BALLS	Exempt	 Exempt waste disposal facility Non-hazardous industrial landfill 		Roll-off bin when needed
SULFUR, OFF-SPEC	Exempt, Non-hazardous	 Land discharge Non-hazardous industrial landfill 	 West side of SRU, west of fence Control Recovery, Inc. Lea Land 	Sulfur storage yard west of Sulfur Recovery Unit (SRU)
SULFURIC ACID	Non-exempt, Hazardous	Neutralized and landfilled	Safety-Kleen	NA
TIRES, VEHICLE USED	Non-exempt, Non-hazardous	Recycle	The Tire Co Carlsbad, NM	NA

Table 3. Inventory of Tanks

Name	Tank Volume	Туре	Containment	Storage Contents
Condensate tank (bullet)/SE plant	1700 Bbl	npASST	Earthen dike	NA
Condensate tank (bullet)/SE plant	1700 Bbl	npASST	Earthen dike	NA
Tank (bullet)/SE plant (not in service)	1700 Bbl	npASST	Earthen dike	NA
Tank (bullet)/SE plant tank	1700 Bbl	npASST	Earthen dike	NGL
Tank (bullet)/SE plant tank	1700 Bbl	npASST	Earthen dike	NGL
Tank (bullet)/SE plant tank	1700 Bbl	npASST	Earthen dike	NGL
Gun Barrel Storage Tank	750 Bbl	npASST	Earthen dike	Condensate and Produced Water
Condensate Storage Tank	1000 Bbl	npASST	Earthen dike	Stabilized Condensate
Condensate Storage Tank	1000 Bbl	npASST	Earthen dike	Stabilized Condensate
Water Storage Tank	500 Bbl	npASST	Earthen dike	Water
Lube oil tank/recompressor	210 Bbl	npASST	Earthen dike	NA
Lube oil saddle tank/inlet compressor	52 Bbl	npASST	Concrete	NA
Open-top skimmer tank/skimmer pit	437 Bbl	npAST	Earthen dike	Wastewater
Saltwater tank (steel)/SW plant area(not in serv)	1000 Bbl	npASST	No	To injection
Saltwater tank (fiberglass)/SW plant area	500 Bbl	npAST	Concrete	To injection
Lube oil saddle tank/stabililizer compressor	11.9 Bbl	npASST	Steel	NA
Diesel tank/north plant area	10 Bbl	npASST	Concrete	Diesel
Meropa tank/SW plant area	100 gal	npASST	Steel	Meropa oit
Waste oil tank/west plant area	500 gal	npASST	Concrete	Waste & slop oils
Condensate tank/treatment compound	210 Bbl	npAST	Earthen dike	Cond. Contaminated Water
Condensate tank/treatment compound	210 Bbl	npAST	Earthen dike	Cond. Contaminated Water
Freshwater steel tank/NE plant area	1200 Bbl	npAST	No	Freshwater
Freshwater fiberglass tank/NE plant area	125 Bbl	npAST	No	Freshwater
Softwater tank/SW plant area	90 Bbl	npAST	Concrete	Freshwater
Reverse osmosis freshwater tank/SW plant	280	npAST	No	Freshwater
Glycol steel tank/SW plant area	90 Bbl	npAST	Concrete	Softwater
Sulfur tank/NW plant area	47,000 gal	npUST	No	Liquid sulfur
arge DGA Slop Tank*	200 Bbl	npASST	Earthen dike	Used DGA; Royal Purple oil
Small DGA Slop Tank*	70 Bbl	npASST	Earthen dike	Used DGA; Royal Purple oil
Burolock 2220 Storage Tank	1000 Bbl	npASST	Earthen dike	Calgon Burolock 2220
Ultramine 120 Storage Tank	1000 Bbl	npASST	Earthen dike	Calgon Ultramine 120
Conquor 3470 Storage Tank	1000 Bbl	npASST	Earthen dike	Calgon Conquor 3470
DEA Storage Tank #8	3000 gal	npASST	Earthen dike	New DEA
DEA Storage Tank #9*	4200 gal	npASST	Earthen dike	New DEA
TEG Storage Tank	750 g	npASST	Concrete	TEG
TEG Storage Tank	500 gal	npASST	Concrete	TEG
Methanol Storage Tank	500 gal	npASST	No	Methanol
Methanol Storage Tank	650 g	npASST	No	Methanol
Varsol Storage Tank	400 g	npASST	Concrete	Varsol
Kerosene Storage Tank	400 g	npASST	Concrete	Kerosene
Antifreeze Storage Tank	500 g	npASST	Concrete	Ethylene Glycol antifreeze
Selexol Storage Tank	210 Bbl	npAST	Concrete	Selexol
Caustic soda tank	500 gal	npASST	Steel	Caustic soda
Anti-foam tank	250 gal	npASST	Steel	Coastal Chem, 1017-F
Gun Barrel/treatment compound	500 bbl	npASST	Earthen dike	Cond. Contaminated water
	200 bbl	npAST		
Frac Tank		•	No	Fresh water
Frac Tank	200 bbl 210 bbl	npAST	No	Fresh water
Skimmer Oil tank		npAST	Concrete	Oil/water
Skimmer gun barrel	500 bbl	npAST	Concrete	Water/oil
Saltwater tank (east)	500 bbl	npAST	Concrete	Produced water/oil
Saltwater tank (middle)	500 bbl	npAST	Concrete	Produced water/oil
Saltwater tank (west)	500 bbl	npAST	Concrete	Produced water/oil
Calgon Pre-tect 32	500 gal	npASST	Steel	Calgon pretect 32
Gibraltar A-105 Tank (AGC)	500 gal		Steel	Oil

npASST = nonpressurized aboveground saddle storage tank (I.e. 360 degree inspection possible)

npAST = nonpressurized aboveground storage tank (I.e. 360 degree inspection possible)

npUST = nonpressurized underground storage tank

	W Discharge Plan
	δ

İ

(

Table 4. Inventory of Process Vessels

Water exchange/gas inter inter exchange/gas inter inter exchange/gas inter inter exervation inter sector static of the arrendow inter exercised inter exervation inter sector static and arrendow inter exercised inter exervation inter arrendow inter exercised inter exervation inter arrendow inter exercised inter exervation inter arrendow inter arrendow inter exercised inter exervation inter arrendow in	Cooling tower water Produced water Produced water
90 75 75 75 75 76 88 324 88 324 88 88 88 88 88 88 88 88 88 8	Produced water Produced water
1 32 АРИ 32 АРИ 32 32 АРИ 33 33 АРИ 300 33 АРИ 300 33 АРИ 300 33 АРИ 300 34 АРИ 300 35 АРИ 300 36 АРИ 300 37 АРИ 300 38 АРИ 300 39 АРИ 300 31 АРИ 300 32 АРИ 300 33 АРИ 300 34 АРИ 300 35 </td <td>Produced water</td>	Produced water
1 APU 75 58 58 58 324 APU 8 324 8 324 8 APU 8 APU 10 2 205 APU 10 205 11 4PU 128 APU 110 APU 111 APU 110 APU 111 APU 110 APU 111 APU 110 APU 110 APU 110 APU	
75 58 324 324 324 324 324 327 3324 3324 3324	ation pad Atmospheric water Bucket
Ig 58 58 324 324 4PV 8 324 4PV 76 4PV 2 73 4PV 2 74 4PV 2 70 4PV 4PV	Produced water
р 324 Рр 324 АРV 325 АРV 326 АРV 327 АРV 328 АРV 3300 АРV 340 АРV	Produced water
19 324 8 324 8 76 8 76 8 300 2 2 300 300 22 300 300 300	Atmospheric water B
Ig 76 76 76 76 77 78 78 78 78 79 79 73 73 73 73 73 73 73 73 73 73	
etenting 2 APV 2 APV 2 APV 2 APV 300 APV 2 APV 300 APV 22 APV 300 APV 205 APV 50 APV 300 APV 50 APV 16 APV 205 APV 291 APV 291 APV 11 16 APV 291 APV 291 APV 291 APV 291 11 APV 291 APV 291 APV 11 APV 20 APV 20 APV 11 APV 36 APV 20 APV 11 APV 36 APV 36 APV 11 APV 36 APV 36 APV 10 APV 36 APV 36 APV	Produced water, arrinte Produced water amine
etening 2 APV 22 APV 300 APV 22 APV 300 APV 22 APV 300 APV 300 APV 50 APV 300 APV 50 APV 50 APV 50 APV 205 APV 205 APV 205 APV 205 APV 205 APV 205 APV 205 APV 205 APV 205 APV 291 APV 201 APV 291 APV 201 APV 291 APV 20 APV 20 APV 119 APV 36 APV 10 APV 36 APV 10 APV 4PV 4PV	OD & ric
2 APV 22 APV 22 APV 300 APV 50 APV 50 APV 59 APV 59 APV 59 APV 11 APV 59 APV 59 APV 50 APV 50 APV 50 APV 50 APV 50 APV 50 APV 51 APV 50 APV 51 APV 50 APV 51 APV 50 APV 51 APV 51 APV 52 APV 53 APV 54 APV 55 APV 56 APV 57 APV 57 APV 58 APV 59 APV 50 APV 50 APV 50 APV 50 APV 50 APV 51 APV 52 APV 53 APV 54 APV 55 APV 56 APV 57 APV 57 APV 57 APV 58 APV 59 APV 50	_
2 APV 22 APV 300 50 APV 505 APV 505 APV 505 APV 505 APV 505 APV 505 APV 110 AP	
22 APV 300 APV 50 AP	ine
300 8 300 50 APV 50 APV 50 APV 50 APV 50 APV 10 APV 11 11 11 APV 11 APV 11 APV 11 APV 11 APV 11 APV 11 APV 11 APV 11 APV 11 APV 12 APV 12 APV 13 APV 14 APV 14 APV 15 APV 16 APV 17 APV 17 APV 17 APV 18 APV 17 APV 18 APV 18 APV 19 APV 10 APV	Amine Amine Amine Still
8 50 50 50 50 50 50 50 50 50 50 50 50 50	tition pad Reflux water, amine CD
19 50 50 50 50 50 50 50 50 50 50 50 50 50	
50 50 60 50 50 50 50 50 50 50 50 50 5	
60 APV 205 APV 59 APV 59 APV 10 APV 11 APV 291 APV 11 APV 20 APV 20 APV 20 APV 20 APV 20 APV 21 APV 20 APV 21 APV 21 APV 20 APV 21 APV 20 APV 20 APV 20 APV 21 APV 21 APV 21 APV 21 APV 22 APV 23 APV 24 APV 26 APV 27 APV 28 APV 28 APV 28 APV 29 APV 20 APV	er
2 APV 205 APV 59 APV 16 APV 10 APV 11 APV 291 APV 11 APV 20 APV 20 APV 20 APV 20 APV 20 APV 20 APV 20 APV 20 APV 21 APV 20 APV 20 APV 21 APV 20 APV 2	Dad Amine Slp amine tank
205 8 59 16 16 17 17 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 16 17 16 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	Produced water, glycol
8 59 16 291 16 291 17 10 291 17 10 291 17 291 17 20 20 20 20 20 20 20 20 20 20 20 20 20	Produced water, glycol
73 APV 59 APV 3 APV 291 APV 10 APV 11 APV 11 APV 20 APV 20 APV 11 APV 11 APV 11 APV 11 APV 11 APV 11 APV 11 APV 11 APV 12 APV 12 APV 13 APV 14 APV 14 APV 14 APV 17 APV 17 APV 17 APV 18 APV 17 APV 18 APV 18 APV 18 APV 19 APV 19 APV 10 APV 10 APV 10 APV 10 APV 10 APV 10 APV 10 APV 11 APV 10	ation pad Produced water, glycol CD
59 16 291 16 291 10 291 10 20 11 11 20 20 20 20 20 20 20 20 20 20 20 20 20	r, glycol
АР АР АР АР АР АР АР АР АР АР АР АР АР А	Glycol
АР АР АР АР АР АР АР АР АР АР АР АР АР	lycol
АР АР АР АР АР АР АР АР АР АР АР АР	
291 291 10 291 128 APV 116 APV 111 APV 20 APV 20 APV 20 APV 119 APV 119 APV 119 APV 119 APV 1 APV 1 APV 1 APV 1 APV	Abane
10 128 11 11 11 11 11 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11	Produced water, cond.
128 APV 16 APV 11 APV 20 APV 59 APV 16 APV 16 APV 10 APV 110 APV 10 APV 10 APV 10 APV 110 APV	Produced water, cond.
16 APV 11 APV 59 APV 20 APV 11 APV 10 APV 10 APV 10 APV 10 APV 10 APV 10 APV 10 APV	
11 APV 20 APV 20 APV 36 APV 10 APV 10 APV 10 APV 4PV APV	Amine, KOH
11 APV 59 APV 20 APV 36 APV 5 APV 10 APV 10 APV 10 APV 4PV	
20 APV 59 APV 20 APV 36 APV 10 APV 10 APV 40 APV 40 APV 40 APV	Amine reflu
59 20 APV 36 APV 5 APV 10 APV 10 APV 10 APV 4PV	
20 APV 14 APV 5 APV 10 APV 10 APV 10 APV 4PV	
14 APV 5 APV 10 APV 119 APV 10 APV 4PV APV	
36 APV 5 APV 10 APV 119 APV 10 APV 10 APV	Produced water, cond. Skimmer basin
5 APV 10 APV 119 APV 10 APV 1 APV	Produced water, cond.
APV APV APV	Condensate Cond.stabiliz
APV APV	Condensate, steam OD
APV	Condensate
	Cond. Reflux water
-	Condensate Condensate stabilizer tower or cooler

Page 1 of 2

GW Discharge Plan
G

P

P

ł

.....

Ì

Fluids Drained to	OD	OD	QO	QO	QO	Flare	Condensate	QO	OD	OD	CD	CD	Bag filter	Amine charcoal filter	Amine Post- bag filter	High pressure pumps	Amine still	CD	Pre-bag filter	Lean Amine/ water exchanger	Aerial cooler to reflux accumulator	CD	CD	OD rich/ lean amine exchanger	Closed drain	Condensate system	Cooling tower	Selexol Flash Tank	Selexol Flash Tank	Rich Selexol Filter	L/R HEX / OD	Selexol Still Column	Selexol Surge Tank/Gun Barrel	L/R HEX / OD	Charcoal Filter	Lean Selexol Filter / OD	OD	Reflux Accumulator / OD	Selexol Still Column / OD	Selexol Contactor / Still / OD
Contents	Softwater w/ additives	Softwater w/ additives	Softwater w/ additives	Softwater w/ additives	Softwater w/ additives	Gas	Produces water, cond.	Condensate	Water/lube oil	Water/Jube oil	Produced water/Amine	Produced water/Amine	Amine/Produced water	Amine	Amine	Amine	Amine	Reflux water/Amine	Produced water/Amine	Amine	Produced water	Reflux water/Amine	Reflux water/Amine	Amine/Produced water	Fuel gas	Produced water, cond.	Water/gas	In air/yes, conc. foundation pad	In air/yes, conc. foundation pad	R.O. Water/Selexol (95%)	R.O. Water/Selexol (95%)	R.O. Water/Selexol (95%)	R.O. Water/Selexol (95%)	R.O. Water/Selexol (95%)	R.O. Water/Selexol (95%)	R.O. Water/Selexol (95%)	R.O. Water/Selexol (95%)	Process Water/ Selexol (<1%)	Process Water/ Selexol (<1%)	Silicone Based Anti-Foam
Vessel Bottom Lined/ Ground Underneath Paved	In air/no	In air/no	In air/no		In air/no	In air/no	In air/no	In air/concrete pad	Concrete pad with berm	Concrete pad with berm	In air/yes, conc. foundation pad	In air/yes, conc. foundation pad	In air/yes, steel skid	In air/yes, steel skid	In air/yes, steel skid	In air/yes, steel skid	In air/yes, steel skid	In air/yes, steel skid	In air/yes, steel skid	In air / no	In air / no	In air/yes, conc. foundation pad	In air/yes, conc. foundation pad	In air/yes, steel skid	In air/yes, conc. foundation pad	In air/no	In air/no	In air/yes, conc. foundation pad	In air/yes, conc. foundation pad	In air/yes, steel skid	In air/yes, steel skid	In air/yes, conc. foundation pad	In air/yes, conc. foundation pad	In air/yes, steel skid	In air/no	In air/yes, steel skid	In air/yes, steel skid	In air/no	In air/yes, conc. foundation pad	In air/yes, steel skid
Vessel Type	APV	APV	APV	APV	APV	APV	APV	APV	APV	Comp	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV	APV
Volume (Bbis)	71.4	71.4	71.4	11.9	35.7		61	2			55	80	35	ო	12	ო	9	46	80	2	2	6	48	ഹ	7	29	35	27	-	22	ო	94	34	35	S	N	ო	-	2	0.05
Source focation	Steam waste heat boiler #1/steam system	Steam waste heat boiler #2/steam system	Steam waste heat boiler #3/steam system	Blowdown drum/steam system	Main boiler/steam system	Utility flare drum/plant flare system	Inlet gas flare drum/plant flare system	Stabilizer compressor suction scrubber	Stabilizer compressor suction scrubber	Inlet compressor	A-2 Amine contactor	A-2 Amine contactor overhead scrubber	A-2 Rich Amine Flash tank	A-2 Amine Pre-bag filter	A-2 Amine Charcoal Filter	A-2 Amine Post-bag filter	A-2 Rich/Lean Amine Exchanger	A-2 Amine Reboiler/Surge Tank	A-2 Lean Amine/water heat exchanger	A-2 Lean Amine cooler	A-2 Amine condensor fans	A-2 Amine Reflux Accumulator	A-2 Amine Still	A-2 Rich Bag Filter	Field Fuel Gas Scrubber South side	Inlet Gas Filter Seperator South side	Gas/water heat exchanger South side	Selexol Contactor	Selexol Overhead Filter Coalescer	Selexol Flash Tank	Selexol (Rich) Filter	Selexol Lean/Rich Heat Exchanger	Selexol Still Column	Selexol Surge Tank	Selexol Cooler	Selexol Charcoal Filter	Selexol (Lean) Filter	Selexol Reflux Cooler	Selexol Reflux Accumulator	Selexol Anti-Foam Pot

Table 4. Inventory of Process Vessels

 $\label{eq:APV} APV = aboveground process vessel (i.e. 360 degree inspection possible) \\ comp = compresor \\ cond. = condensate \\ \end{cases}$

Page 2 of 2

OD=Open Drain CD=Closed Drain

Table 5. Underground Piping

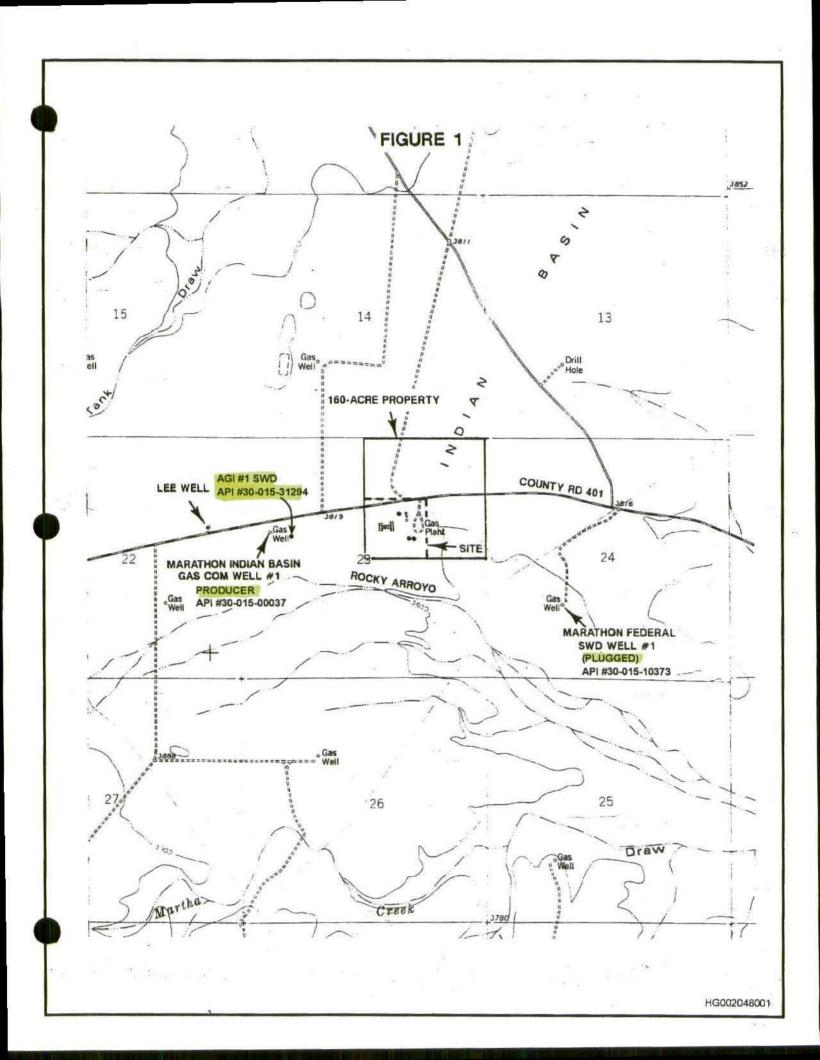
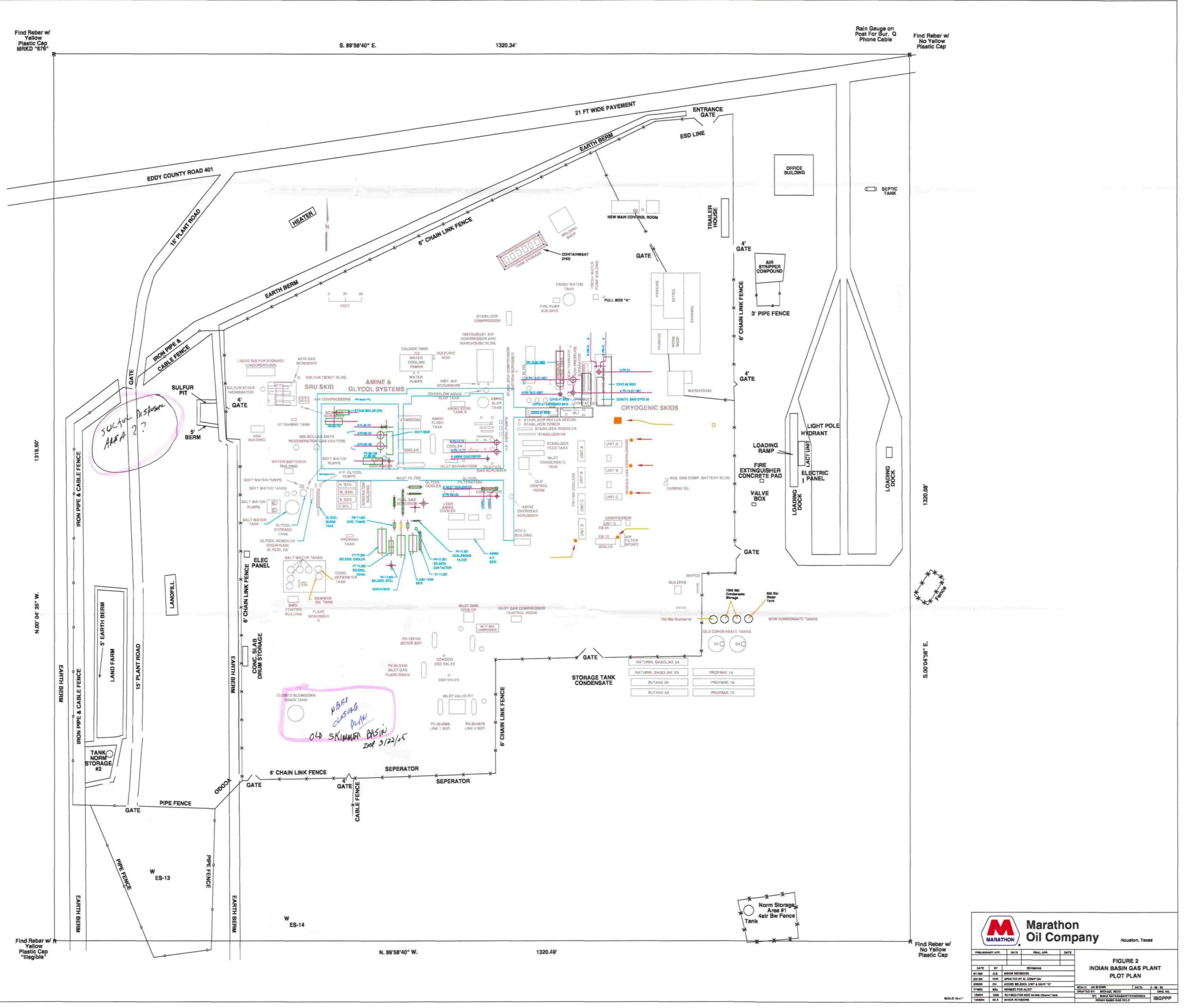
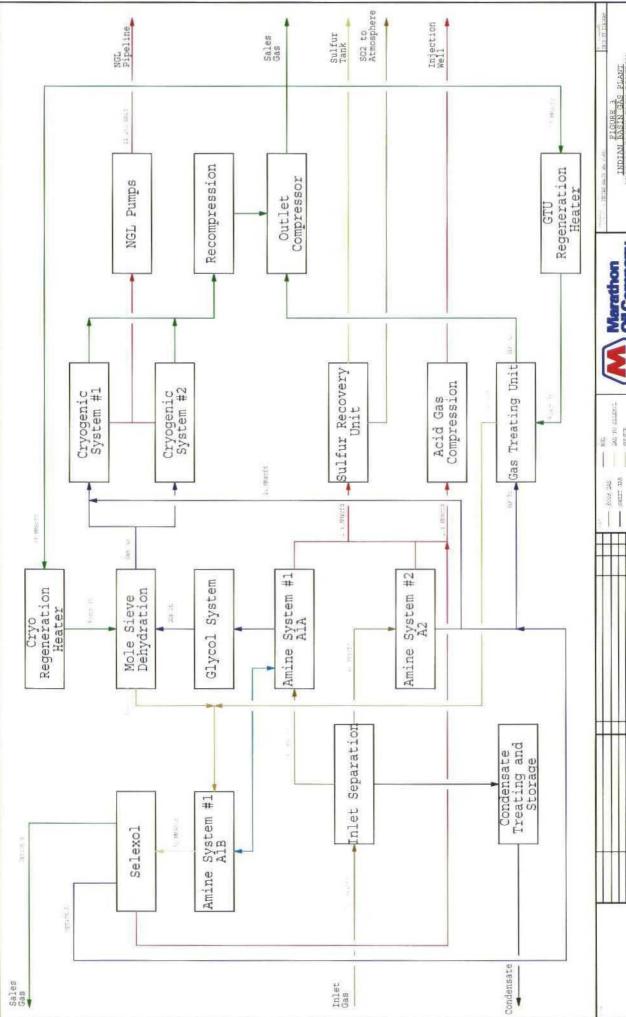

Piping Name	Pathway	or Modified	(Bbls/day)	(psiq)	(inch)	Piping Type Integrity Test	Integrity Test
Open drain system	Various plant units to open drain collection sump	2002	15	ou	3.2	IC Steel	Sent 2019
Softwater regeneration	Water softener in water treatment building to fiberglass SWD tank	Before 1990	385	15	N	PVC	Jan 2015
Reverse osmosis wastewater piping (Out of service due to permit)	RO unit in water treatment building to air stripper outlet to infiltration	1991	200	09	N	Poly	Jan 2016
Untreated groundwater bypass piping	Diversion valve at treatment compound to Skimmer Basin	1995	2676	50	2	Poly	Jan 2016
Treated groundwater piping	Air stripper at treatment compound to skimmer basin SWD tank	1995	125	20	9	Poly	Jan 2020
Piping to A.G.I. #1 well	Sattwater tank to injection well	2000	3000	2000	9	Fiberglass	Jan 2020
Waste effluent transfer piping	Open drain collection sump to skimmer basin	1996	80		4	IC Steel	Jan 2011
Co-production line to skimmer basin gunbarrel	Co-production line outside plant to skimmer basin gunbarrel	1996	2000	<10	9	Fiberglass	Jan 2016
Condensate Delivery Sales	Condensate bullet storage tanks(1) to condensate toading area (LA)	1993	300	<10	4	Poly	Mar 2018
SHU waste heat boiler & large condenser blowdown discharge piping (OOS)	Waste heat boiler and large condenser to steel saltwater tank	1985/1992	10	70	0	Steel	Jan 2017
	Stabilizer to condensate bullet storage tanks	1989	300		2	Steel	Jan 2014
	Condensate bullet storage tanks to overhead pipe rack	1989	10;100 max	<20	2	Steel	Jan 2014
LAUT Sump pump to main poller sump	LACT sump pump to main boiler sump	1966/1989	1	<35	2	Steel/Poly	Jan 2014
Inter condensate mile	Inlet valve pit to overhead pipe rack	1990	350	<30	4	Steel	Jan 2015
	Inlet valve pit to condensate bullet storage tanks	1993	+	40	N	Poly	Jan 2018
Product skimmer receiver fies	Inlet valve pit to skimmer basin gunbarrel	1996	1500	15	9	Poły	Jan 2018
r rouget source recovery and Dumo lino	Skimmer basin oil transfer pump to inlet condensate line	1996	20	40	N	Steel	Jan 2011
	Stabilizer feed tank to skimmer basin	1996	50	40	4	Poly	Jan 2017
Anon too too too too too too too too too	Priberglass saltwater tank to pump suction header	1996	3000	8	10	Steel	Jan 2013
Open top tank to skining basin gunbarre	Open top transfer pump to skimmer basin gunbarrel	1996	20	10	N	Steel	Jan 2021
	Cooling tower blowdown to skimmer basin SWD tank	1999	200	<10	2	Poly	Jan 2024
Proced device occurring little	Morrow gas separator to closed drain	1996	0	ŝ	2	Steel	Jan 2021
Diosed viairi suluvuel vullip lite Italet filter/ennarator diuma fina	Closed drain scrubber to skimmer basin gunbarrel	1996	വ	40	N	Poly	Jan 2021
linet liter/separator closed drain commercia	Inter/separator to inter condensate line	1998	20	<10 <	N	Steel	Jan 2023
Rick meerseparator crosed drain commection Blow rown colarction header		1998	0	40	N	Steel	Jan 2023
SRI Steam Conteneste Betrim	Upen drain collection sump area to poller blow down bottle	1996	80	40	2	Steel	Jan 2021
Horizontal H.D. Inter Scriptor Closed Desin		2001	10	0	2	Stainless	Jan 2009
MHR Rowdown		1994	,	40	N	Steel	Dec 2019
	WITES TO OPEN DRAIN COllection sump area	1991	65	100	N	Steel	Jan 2016
Moon drain collection sume to skimmer basis curberred		1996	15	100	~	Steel	Jan 2015
Stabilizer Compressor Dump	Upen grain collection sump pump to skimmer basin gunbarrel	1980	80	100	4	IC Steel	Jan 2005
Inlat Condensate Divert Line to the Transfer Tank (OOC)	Inited Pandaanata Divisid Line to the Towned to the	1982	15	30	+-	Steel	Jan 2007
line 3.8.4 Metering Separator Oil Durne Line to Inter Landon Action 2.9.4 Metering Separator Oil Durne Line to Inter Condensate Line		1986	-	270	2	Steel	Jan 2011
Inter Compressor Stortion Scrubber (H2V) Dum Lines to Inter Materine Scorector	Luite 3 & 4 Meterring Separator UII Dump Line to Inlet Cond. Line	1996	200	40	n	Steel	Jan 2018 -
Recompressor & Expander Lube Oil Makeup Line	mer compi. Suction Schubber (H&V) Dump Lines to Inlet Metering System	1989 1980	rn <u>Γ</u>	30 150	N +	Steel Steel	Jan 2014
Underground Amine Lines Tied to Valve "Octopus" From:						222	
Little slop		1988	-	S	2	Steel	Jan 2013
Flash tank		1988	-	80	2	Steel	Jan 2013
		1988	2	80	2	Steel	Jan 2013
		1988	7	80	N	Steel	Jan 2013
Amino Storner Toole B		1988	4 ~	20	N	Steel	Jan 2013
Amine Storage Tark o		1988		9	N	Steel	Jan 2013
Glocol Storage Tank Discharge	Storeare Tank transfor numa to alwad floch tank	1988	- ,	5	2	Steel	Jan 2013
Acid Gas Compressor Suction Line	Contage taum manager pump to grycon mash taum.	1999		2 (N :	Voly	Dec 2019
Acid Gas Compressor Sweet Purce Gas	Dina rack at Clurch Linit to Acid Cas Commence	1000		<u>،</u> م	10	Steel	Jan 2021
Acid Gas Compressor instrument air	Pine rack at Glycol Unit to Acid Gas Controlessor	1996		22	01 0	Steel	Jan 2021
Selexol reflux water	Selexal unit to numberret	2002	Ŧ	2 G	NC	Steel	Jan 2021
Selexol underground pipeline	Selexol storage tank to Selexol Unit	2002	As needed	25	2	Steel	None scheduled
Glycol flash gas to Closed Drain	Giycol flash tank to closed drain scrubber	2003	1 MMSCF/d	100	2"	steet	-
Cylcone dump to Closed Drain	Cylcone to Closed drain scrubber	2003		1000	2"/3"	steel	

Table 6. Soil Treatment Cleanup Standards


Ø

Use of Treated Soil	Cleanu TRPH (EPA 418.1)	p Standards (mg/k	g) Benzene
Reburied	100	50	10
Stormwater control dikes	1000	50	10
Secondary containment berms in the gas plant	3000	50	10
Roadspread or patching lease roads	3000	50	10
Pad dirt on production locations	3000	50	10

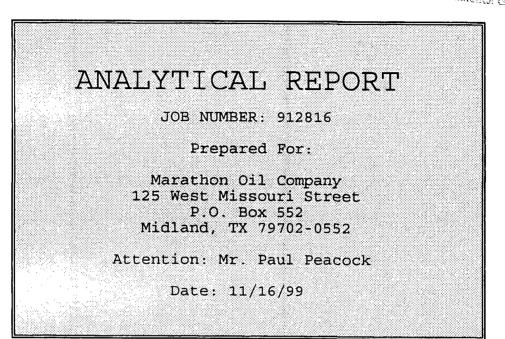
- - - -- --



1200 INDIAN BASIN GAS FLANT PROCESS BLOCK FLOW DIAGRAM NCNE Marathon Oli Company aller and aller COLOR DALE DALE COLOR DALE C 22

1/2

APPENDIX A


A

1

LABORATORY RESULTS OF COMMINGLED DISCHARGE FLUID

 $k = \mathbf{x}^{\dagger}$

11. Ol Signat

519.140410

Name: Les Arnold

Title: Laboratory Manager

11/16/99 Date

Severn Trent Laboratories 2400 Cumberland Drive Valparaiso, IN 46383

PHONE: 219-464-2389 FAX..: 219-462-2953

 $\mathbf{x}^{\mathbf{i}}$

ļ

Attn.....: Mr. Paul Peacock

Customer Project ID....: INDIAN BASIN GAS PLT Project Description....: Marathon Oil Co., Midland, Tx

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
912816-1	COMINGLED GAS PLT WASTE EFFLUENT	Aqueous	11/08/1999	10:00	11/09/1999	15:25
		ļ				
		Page 1				

Page 1

Job Number: 912816

 $\{\cdot, \mathbf{x}\}$

LABORATORY TEST RESULTS

PROJECT: INDIAN BASIN GAS PLT

Date: 11/16/99

CUSTOMER: Marathon Oil Company

Customer Sample ID: COMINGLED GAS PLT WASTE EFFLUENT Date Sampled.....: 11/08/1999 Time Sampled.....: 10:00 Sample Matrix....: Aqueous

11

Laboratory Sample ID: 912816-1 Date Received.....: 11/09/1999 Time Received.....: 15:25

ATTN: Mr. Paul Peacock

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
EPA 160.1	Solids, Total Dissolved (TDS)	21000	10	mg/L	11/10/99	lam
EPA 300.0	Chloride	6600	1000	mgy/L	11/10/99	kso
EPA 300.0	Fluoride (F)	<50	50	mg/L	11/10/99	kso
EPA 300.0	Nitrogen, Nitrate as N (NO3-N)	<1.0	1.0	mg/L	11/10/99	kso
EPA 300.0	Sulfate (SO4)	1460	100	mg/L	11/10/99	kso
EPA 420.2	Phenoi, Total Recoverable	0.18	0.05	mg/L	11/11/99	dmw
SM 4500 CN	Cyanide, Total	0.08	0.05	mg/L	11/15/99	jdb
EPA 3010	Acid Digestion, Metals (ICP)	Complete			11/10/99	amw
PA 7470	Mercury (Hg)	<0.001	0.001	mg/L	11/11/99	pal
EPA 3510	Separatory Funnel Liq/Liq Extraction	Complete			11/12/99	bjl
	Metals Analysis (ICAP) Aluminum (Al) Arsenic (As) Barium (Ba) Boron (B) Cadmium (Cd) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Selenium (Se) Silver (Ag) Zinc (Zn)	<0.1 <0.02 0.06 1.67 <0.005 0.01 <0.03 0.02 6.83 <0.05 0.23 <0.05 0.03 <0.02 <0.01 0.21	0.1 0.02 0.01 0.05 0.005 0.01 0.03 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.02 0.01 0.01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	11/11/99 11/10/99 11/10/99 11/11/99 11/10/99 11/10/99 11/10/99 11/10/99 11/10/99 11/10/99 11/10/99 11/10/99 11/10/99 11/10/99	amw chh pal chh chh chh chh chh chh chh chh chh amw amw
EPA 8310	Polynuclear Aromatic Hydrocarbons-HPLC Acenaphthene Acenaphthylene Anthracene Benzo(b)fluoranthene Benzo(a)anthracene Benzo(a)apyrene Benzo(a)pyrene Benzo(ghi)perylene Chrysene	ND ND ND ND ND ND ND ND ND	5.0 5.0 1.0 0.10 0.10 0.10 0.10 0.10 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	11/16/99 11/16/99 11/16/99 11/16/99 11/16/99 11/16/99 11/16/99 11/16/99	rm rm rm rm rm rm rm

a part of

Severn Trent Services Inc.

Job Number: 912816

 $i = \frac{1}{2} \cdot \frac{1}{2}$

RESULTS LABORATORY TEST

Date: 11/16/99

CUSTOMER: Marathon Oil Company PROJECT: INDIAN BASIN GAS PLT ATTN: Mr. Paul Peacock

Customer Sample ID: COMINGLED GAS PLT WASTE EFFLUENT Date Sampled.....: 11/08/1999 Time Sampled.....: 10:00 Sample Matrix....: Aqueous

Laboratory Sample ID: 912816-1 Date Received.....: 11/09/1999 Time Received.....: 15:25

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TEC
	Dibenzo(a,h)anthracene Fluoranthene	ND	0.10	ug/L	11/16/99	rm
	Fluorene	ND ND	1.0	ug/L	11/16/99	
	Indeno(1,2,3-cd)pyrene	ND	1.0	ug/L	11/16/99	
	Naphthalene	<5.0	0.10	ug/L	11/16/99	
	Phenanthrene	ND	5.0	ug/L	11/16/99	
	Pyrene		1.0	ug/L	11/16/99	rm
	ryrene	ND	1.0	ug/L	11/16/99	rm
EPA 8260B	Volatile Organic Compounds					
	Vinyl chloride	ND	500	ug/L	11/15/99	weh
	1,1-Dichloroethene	ND	200	ug/L	11/15/99	
	Methylene chloride	ND	200	ug/L	11/15/99	
	Benzene	4300	200	ug/L	11/15/99	
	Carbon tetrachloride	ND	200	ug/L	11/15/99	
•	Chloroform	ND	200	ug/L	11/15/99	
	1,2-Dibromoethane (EDB)	ND	200	ug/L	11/15/99	
	1,1-Dichloroethane	ND	200	ug/L	11/15/99	
	1,2-Dichloroethane	ND	200	ug/L	11/15/99	
	Ethylbenzene	700	200	ug/L	11/15/99	
	1,1,2,2-Tetrachloroethane	ND	200	ug/L	11/15/99	
	Tetrachloroethene	ND	200	ug/L	11/15/99	
	Toluene	13000	200			
	1,1,1-Trichloroethane	ND	200	ug/L	11/15/99	
	1,1,2-Trichloroethane	ND	200	ug/L	11/15/99	
	Trichloroethene	ND	200	ug/L	11/15/99	
	Xylenes (total)	7000	500	ug/L	11/15/99	
		7000	500	ug/L	11/15/99	Weh
			1			
					1	
						}
						1
						1

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

Analyst...: kso

Test Code.: CHL

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Batch..... 49213

Units..... mg/L

Test Method.....: EPA 300.0 Method Description.: Ion Chromatography Analysis Parameter.....: Chloride

Job Number.: 912816

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
1CV		V199269C	9.197		10		92.0		85-115	11/10/1999	11/0
ICB			0.274							11/10/1999	
ccv		V199269C	9.602		10		96.0	%	85-115	11/10/1999	
ссв			0.277						05 115		
CCV		V199269C	9,760		10		97.6	•/	95 445	11/10/1999	
ССВ			0.317		10		77.0	%	85-115	11/10/1999	
-	912816-1		6.777.269			1 11510		_		11/10/1999	
	912816-1	V4003/00				6.645604		R	20	11/10/1999	1436
	912010-1	V199269B	17.954		10.00000	6.645604	113.1	%	75-125	11/10/1999	1440
CCV		v199269C	9.837		10		98.4	%	85-115	11/10/1999	
ССВ			0.320						115	11/10/1999	

	jdb CNT	
Parameter: Cyanide, Total		

	Lab 1D	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
			0.000461							11/15/1999	1857
ICV MB		v199237D	0.100252 -0.000704		0.1		100.3	%	85-115	11/15/1999	1857
LCS		V199237C	0.081533		0.080000		101.9	%	80-120	11/15/1999	
	912698-4 912698-4	v199237c	0.006644			0.001112			0.005000	11/15/1999	
CCV	712090-4	V199237D	0.217930 0.103436		0.200000	0.001112		%	75-125	11/15/1999	1901
ССВ		V1992370	0.000040		0.1		103.4	%	85-115	11/15/1999 11/15/1999	
CCV CCB		v199237d	0.098843 0.001002		0.1		98.8	%	85-115	11/15/1999	
CCV		V199237D	0.096158							11/15/1999	1917
CCB		V199251U	0.001337		0.1		96.2	%	85-115	11/15/1999	
CCV		V199237D								11/15/1999	1929
CCB		V199237D	0.098777 0.001160		0.1		98.8	%	85-115	11/15/1999	
										11/15/1999	1932

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
ICV		V199269C	1.063		1		106.3	~	85-115	11/10/1999	1149
I CB CCV		V199269C	0.0000 1.071		4		407.4	•		11/10/1999	1202
CCB		V177207C	0.000		1		107.1	%	85-115	11/10/1999	
MD	912816-1		0.00			0.00	0.00	A	0.50	11/10/1999 11/10/1999	
	912816-1	V199269B	0.952		1.000000	0.00	95.2	%	75-125	11/10/1999	
CCV CCB		V199269C	0.965		1		96.5	%	85-115	11/10/1999	1358
CCV		V199269C	0.973		1		97.3	%	85-115	11/10/1999	
CCB			0,000							11/10/1999	

Page 4 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

Job Number.: 912816

 $A_{\mu}=\Phi(\mu)$

QUALITY CONTROL RESULTS

Report Date .: 11/16/99

Analyst...: kso

Test Code.: NO3

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Test Method.....: EPA 300.0 Method Description.: Ion Chromatography Analysis Parameter.....: Nitrogen, Nitrate as N (NO3-N)

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
ICV		V199269C	0.944		1		94.4	~	85-115	11/10/1999	1149
ICB			0.010							11/10/1999	
MD	912816-1		0.0158			0.000	0.0158	A	0.1000	11/10/1999	
MS	912816-1	V199269B	0.890		1.000000	0.000	89.0	%	75-125	11/10/1999	1241
CCV		V199269C	0.986		1		98.6	%	85-115	11/10/1999	1253
CCB			0.010							11/10/1999	1306
CCV		V199269C	1.007		1		100.7	%	85-115	11/10/1999	1358
CCV		V199269C	0.999		1		99.9	%	85-115	11/10/1999	1502
CCB			0.011							11/10/1999	1515

Batch..... 49213

Units..... mg/L

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
Ð	1	V199270G	0.198905		0.2000		99.5	~	85-115	11/11/1999	
LCS MB		v199268C	0.089323 -0.003807		0.100000		89.3	%	80-120	11/11/1999	1453
MS MD	912777-2 912777-2	V199268C	0.095418 -0.004557		0.100000	-0.005935 -0.005935		% A	75-125 0.005000	11/11/1999	1455
CCV CCB		V199270G	0.198366 -0.002379		0.2000		99.2	%	85-115	11/11/1999	1502
CCV CCB		V199270G	0.200532 -0.003195		0.2000		100.3	%	85-115	11/11/1999	1510
CCV CCB		V199270G	0.199045 -0.003235		0.2000		99.5	%	85-115	11/11/1999	1514

Met	thod Descr		160.1 ids, Total Diss ids, Total Diss		17.9000000000000000000000000000000000000				Analyst Test Cod	asta nonananananan 1999-1996	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
MB		V199269D	0.0 9503.0		10000		95.0	~	80-120	11/10/1999 11/10/1999	9 1420
	912804-1 912804-1	V199269D	1782.0 2326.0		500.000000	1774.0 1774.0	0.4 110.4	R 2 %	0 75-125	11/10/1999	

Met	hod Descr	: EPA iption.: Ion : Sul	Chromatography	' Analysis						: kso de.: SO4	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Valu	e Calc. Result	*	Limits	Date	Time
ICV ICB		V199269C	20.217 0.506	· · · · · · · · · · · · · · · · · · ·	20	•	101.1	%	85-115	11/10/1999	
O		V199269C	20.660 0.506		20		103.3	%	85-115	11/10/1999 11/10/1999	9 1253

Page 5 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

a part of

Severn Trent Services Inc.

Job Number.: 912816

QUALITY CONTROL RESULTS

Report Date .: 11/16/99

CUSTOMER: Marathon Oil Company

Committed To Your Success

1. ...

ł

100000

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Ne	912816-1 14.51647 912816-1 V199269B 35.568			Analysis	Batch 49213 Units mg/L				Analyst: kso Test Code.: SO4			
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time	
MD MS CCV CCB		V199269B V199269C			20.000000 20	14.61164 14.61164	0.7 104.8 105.3	R % %	20 75-125 85-115	11/10/199 11/10/199 11/10/199 11/10/199 11/10/199	9 1345 9 1358	
CCV CCB		V199269C	21.054 0.503		20		105.3	%	85-115	11/10/199	9 1502	

Test Met	chod	.: EPA 60	108
Method D	escription	n.: Metals	Analysis (ICAP)
Paramete		.: Alumin	

Batch..... 49281 Units..... mg/L

Analyst...: pal Test Code.: AL

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00630		0.00		•			11/11/1999	1003
CAL		ICPCALSTD	2.17210		10.0					11/11/1999	
ICV.		V211204A	2.03914 -0.01382		2.00		102.0	%	90-110	11/11/1999	1026
PB	1110-2	V211206A	488,59609		500.0		97.7	%	80-120	11/11/1999	1035
LCS	1110-2	I CPSPK99B	1.02274		1.000		102.3	%	80-120	11/11/1999 11/11/1999	
MD '	912804-1		0.01623			0.04165	0.02542	Α	0.10000	11/11/1999	1100
MS 1	912804-1	I CPSPK99B	1.16268		1.000	0.04165	112.1	%	75-125	11/11/1999	1104
ISB		V211206A	473.41082		500.0		94.7	%	80-120	11/11/1999	
CCV CCB		V211204A	1.97128 -0.01565		2.00		98.6	%	90-110	11/11/1999	1143

Test Method EPA 6010B	Batch 49229 Analyst and
	Batch 49229 Analyst: amw
Method Description.: Metals Analysis (ICAP	
) Units mg/L Test Code.: AS
Parameter Arsenic (As)	

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
ICV		V211205B	4.11327		4.00		102.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90-110	11/10/1999	2109
ICB			0.00220							11/10/1999	
PB	1103-3		0.00598							11/10/1999	
LCS	1103-3	I CPSPK99B	0.53014		0.5000		106.0	%	80-120	11/10/1999	
MD	912510-1		0.02004			0.03000	0.00996		0.02000	11/10/1999	
MS	912510-1	I CPSPK99B	0.58903		0.5000	0.03000	111.8	%	75-125	11/10/1999	
PB	1110-2		0.00174							11/10/1999	
LCS	1110-2	I CPSPK99B	0.51947		0.5000		103.9	%	80-120	11/10/1999	
CCV		V211205B	4.09142		4.00		102.3	%	90-110	11/10/1999	
CCB			0.00120						20 110	11/10/1999	
MD	912804-1		0,02857			0.03230	0.00373	A	0.02000	11/10/1999	
MS	912804-1	I CPSPK99B	0.51995		0.5000	0.03230	97.5	%	75-125	11/10/1999	
PB	1108-1		0.00689						15 125	11/10/1999	
LCS	1108-1	v16008711	0.50299		0.516906		97.3	%	80-120	11/10/1999	
MS	912685-1	V16008208	1.72295		2.000000	0.00515	85.9	%	75-125	11/10/1999	
MSD	912685-1	V16008208	1.78756	1.72295	2.000000	0.00515	89.1	%	75-125	11/10/1999	
							3.7		20	11/10/1777	2342
		V2112058	3.61105		4.00		90.3	%	90-110	11/11/1999	0004
			-0.00010				,,,,	~	20 110	11/11/1999	
										11/11/1779	0012

a part of

Severn Trent Services Inc.

Job Number.: 912816

5.0

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Met	hod Descri	iption.: EPA	ils Analysis (IC	AP)	Batch 49224 Units mg/L				Analyst: chh Test Code.: BA			
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Tim	
CAL		ICPCALBLK	-0.00120		0.00					11/10/1999	1/3	
CAL		ICPCALSTD	0.99510		1.00					11/10/1999		
ICV		V211204A	2.07557		2.00		103.8	%	95-105	11/10/1999		
I CB			0.00050							11/10/1999		
I SB		V211204E	0.50175	,	0.50		100.3	%	80-120	11/10/1999		
CCV		V211204A	2.02930		2.00		101.5	%	95-105	11/10/1999		
ССВ			0,00100						<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11/10/1999		
PB	1110-2		0.00100							11/10/1999		
LCS	1110-2	ICPSPK99B	0.50697		0.5000		101.4	%	80-120	11/10/1999		
MD	912804-1		0.45277			0.45106	0.4		20	11/10/1999		
MS	912804-1	ICPSPK99B	0.97761		0.5000	0.45106	105.3	%	75-125	11/10/1999		
CCV		V211204A	2.09976		2.00		105.0	x %	95-105	11/10/1999		
CCB			0.00130							11/10/1999		
PB	1108-5		0.00010							11/10/1999		
LCS	1108-5	ICPSPK99B	0.52072		0.5000		104.1	%	80-120	11/10/1999		
CCV		V211204A	2.07467		2.00		103.7	%	95-105	11/10/1999		
CCB			0.00010					~	<i>y</i> 105	11/10/1999		
	Ĩ	V211204A	1.97571		2.00		98.8	%	95-105	11/10/1999	. – +	
			0.00115				/010		// 105	11/10/1999		
ÎŚB		V211204E	0.48981		0.50		98.0	%	80-120	11/10/1999		
MD ·	912691-2		0.06832			0.06634	2.9		20	11/10/1999		
MS	912691-2	I CPSPK99B	0.54399		0.5000	0.06634	95.5	%	75-125	11/10/1999		
I SB		V211204E	0.48180		0.50		96.4	×	80-120	11/10/1999		
CCV		V211204A	1.96174		2.00		98.1	%	95-105	11/10/1999		
ССВ			0.00097		,		/0.1	/4		11/10/1999		

Net	IC IC<				Batch 49281 Units mg/L				Analyst: pal Test Code.: B			
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time	
CAL		ICPCALBLK	0.01799						· · · · · · · · · · · · · · · · · · ·	11/11/1999	1007	
CAL		ICPCALSTD	1.17519		2.00					11/11/1999		
ICV		V211204A	1.90770		2.00		95.4	%	90-110	11/11/1999		
ICB			0.00034						20 110	11/11/1999		
PB	1110-2		0.00674							11/11/1999		
LCS	1110-2	I CPSPK99B	0,48306		0.5000		96.6	%	80-120	11/11/1999		
MD	912804-1		0.34013			0.31991	6.1		20	11/11/1999		
MS	912804-1	I CPSPK99B	0.88627		0.5000	0.31991	113.3	%	75-125	11/11/1999		
CCV		V211204A	1.82682		2.00		91.3	%	90-110	11/11/1999		
CCB			-0.00276						20 110	11/11/1999		

Page 7 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

Job Number.: 912816

Committed To Your Success

5.00

QUALITY CONTROL RESULTS

Batch..... 49224 Units..... mg/L

Report Date.: 11/16/99

Analyst...: chh

Test Code.: CD

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter.....: Cadmium (Cd)

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00179		0.00			-		11/10/1999	1432
CAL		ICPCALSTD	3.98740		3.00					11/10/1999	
ICV		V211204A	2.04204		2.00		102.1	%	95-105	11/10/1999	
I CB			-0.00090						10 100	11/10/1999	
I SB		V211204E	0.89071		1.00		89.1	%	80-120	11/10/1999	
CCV		V211204A	1.99431		2.00		99.7	%		11/10/1999	
CCB			0.00067						10 105	11/10/1999	
PB	1110-2		-0.00173							11/10/1999	
LCS	1110-2	ICPSPK99B	0.04821		0.05000		96.4	%	80-120	11/10/1999	
MD	912804-1		0.00075			-0.00233	0.00308		0.00500	11/10/1999	
MS	912804 - 1	ICPSPK99B	0.04670		0.05000	-0.00233	98.1	%		11/10/1999	
CCV		V211204A	2.02239		2.00		101.1	%		11/10/1999	
CCB			0.00037					~	/5 (05	11/10/1999	
PB	1108-5		-0.00331							11/10/1999	
LCS	1108-5	ICPSPK99B	0.05024		0.05000		100.5	%	80-120	11/10/1999	
CCV		V211204A	2.00440		2.00		100.2	%		11/10/1999	
CCB			-0.00007						/5 (05	11/10/1999	
		V211204A	2.02085		2.00		101.0	%	95 - 105	11/10/1999	
	1		0.00349						105	11/10/1999	
TSB		V211204E	0.90071		1.00		90.1	%	80-120	11/10/1999	
MD	912691-2		-0.00065			-0.00092	0.00027		0.00500	11/10/1999	
MS	912691-2	I CPSPK99B	0.05126		0.05000	-0.00092	104.4	%		11/10/1999	
I SB		V211204E	0.91419		1.00		91.4	%		11/10/1999	
CCV		V211204A	2.07255		2.00		103.6	%		11/10/1999	
CCB			0.00026				,0010	/0	101	11/10/1999	

Test Method		atch	
			Analyst: chh
Method Description.:			
		nits	Test Code.: CR
Parameter			

90	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00069		0.00		······			11/10/1999	1432
CAL		ICPCALSTD	0.48109		1.0					11/10/1999	
ICV		V211204A	1.98753		2.00		99.4	%	95-105	11/10/1999	
I CB			0.00228							11/10/1999	
I SB		V211204E	0.44476		0.50		89.0	%	80-120	11/10/1999	
CCV		V211204A	1.94411		2.00		97.2	%	95-105	11/10/1999	
CCB			0.00061						10 100	11/10/1999	
PB	1110-2		-0.00291							11/10/1999	
LCS	1110-2	I CPSPK99B	0.19136		0.2000		95.7	%	80-120	11/10/1999	
MD	912804-1		-0.00145			-0.00104	0.00041		0.01000	11/10/1999	
MS	912804-1	I CPSPK99B	0.18719		0.2000	-0.00104	94.1	%	75-125	11/10/1999	
CCV		V211204A	1.97649		2.00	0100104	98.8	×	95-105	11/10/1999	
CCB			0.00353				7010	~	75 105	11/10/1999	
PB	1108-5		-0.00187							11/10/1999	
LCS	1108-5	I CPSPK99B	0.19530		0.2000		97.7	%	80-120	11/10/1999	
CCV		V211204A	1.94762		2.00		97.4	×	95-105		
ССВ			0.00291				77.4	70	9J-10J	11/10/1999	
ÇÇV		V211204A	1.97503		2.00		98.8	%	95-105	11/10/1999	
			0.00570		2.00		90.0	/6	95-105	11/10/1999	
		V211204E	0.45111		0.50		00.2	•/	80 430	11/10/1999	
			0170111		0.00		90.2	%	80-120	11/10/1999	1956

QUALITY CONTROL RESULTS

Report Date .: 11/16/99

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter....: Chromium (Cr)

Job Number.: 912816

Committed To Your Success

÷, •,

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
MD	912691-2		0.09901	······	• • • • • • • • • • • • • • • • • • • •	0.09012	9.4	R	20	11/10/199	2005
MS	912691-2	I CPSPK99B	0.28722		0.2000	0.09012	98.5	%	75-125	11/10/199	
I SB		V211204E	0.44951		0.50		89.9	%	80-120	11/10/199	9 2022
CCV		V211204A	1.99441		2.00		99.7	%	95-105	11/10/199	
CCB			0.00889							11/10/199	

: EPA 6010	
iption.: Metals A	
Cobalt ()	

Batch..... 49224 Units..... mg/L

Batch..... 49224

Units..... mg/L

Analyst...: chh Test Code.: CO

Analyst...: chh

Test Code.: CR

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00009		0.00					11/10/1999	1432
CAL		ICPCALSTD	0.66299		1.00					11/10/1999	1439
ICV		V211204A	2.07074		2.00		103.5	%	95-105	11/10/1999	1501
LCB			-0.00150							11/10/1999	1506
		V211204E	0.43837		0.50		87.7	%	80-120	11/10/1999	1510
		V211204A	2.02262		2.00		101.1	%	95-105	11/10/1999	1602
ССВ			0.00015							11/10/1999	1607
PB	1110-2		-0.00030							11/10/1999	1629
LCS	1110-2	I CPSPK99B	0.50339		0.5000		100.7	%	80-120	11/10/1999	1634
	12804-1		-0.00090			0.00045	0.00135	A (0.02000	11/10/1999	1642
	12804-1	I CPSPK99B	0.49766		0.5000	0.00045	99.4	%	75-125	11/10/1999	1646
CCV		V211204A	2.05672		2.00		102.8	%	95-105	11/10/1999	1713
CCB			0.00075							11/10/1999	1717
P8	1108-5		-0.00316							11/10/1999	1750
LCS	1108-5	I CPSPK99B	0.51802		0.5000		103.6	%	80-120	11/10/1999	1755
CCV		V211204A	2.03333		2.00		101.7	%	95-105	11/10/1999	1803
CCB			-0.00075							11/10/1999	1807
CCV		V211204A	1.97970		2.00		99.0	%	95-105	11/10/1999	1947
CCB			-0.00080							11/10/1999	1953
I SB		V211204E	0.43766		0.50		87.5	%	80-120	11/10/1999	, 1956
	912691-2		0.00531			0.00211	0.00320	A (0.02000	11/10/1999	2005
	912691-2	I CPSPK99B	0.50418		0.5000	0.00211	100.4	%	75-125	11/10/1999	2009
I SB		V211204E	0.43685		0.50		87.4	%	80-120	11/10/1999	2022
CCV		V211204A	2.01401		2.00		100.7	%	95-105	11/10/1999	2032
CCB			-0.00241							11/10/1999	

Test Method....: EPA 60108 Method Description.: Metals Analysis (ICAP) Parameter....: Copper (Cu)

Batch....: 49224 Units..... mg/L

Analyst...: chh Test Code.: CU

QC Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL	ICPCALBLK	-0.00010		0.00		• • ••••• ••	-		11/10/1999	1432
CAL	ICPCALSTD	0.23160		1.00					11/10/1999	
1 C V	V211204A	2.05607		2.00		102.8	%	95-105	11/10/1999	
I CB		0.00646							11/10/1999	
LSB	V211204E	0.44436		0.50		88.9	%	80-120	11/10/1999	1510
912648-4		0.01120			0.00861	0.00259	A	0.01000	11/10/1999	1554
912648-4	V16008208	0.27411		0.250000	0.00861	106.2	%	75-125	11/10/1999	1558
				D 0	* * * * * *					

* %=% REC, R=RPD, A=ABS Diff., D=% Diff. Page 9

Severn Trent Services Inc.

Job Number.: 912816

 $A_{i} \bullet A_{i}$

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

· ... -

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Test Method: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter: Copper (Cu)			Batch 49224 Units mg/L				Analyst: chh Test Code.: CU				
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Tim
CCV CCB PB	1110-2	V211204A	2.01206 0.00388 0.00129		2.00		100.6	%	95-105	11/10/1999	
LCS MD	1110-2 912804-1	ICPSPK99B	0.24774		0.2500	0.00129	99.1 0.00043	%	80-120 0.01000	11/10/1999	1634
MS	912804-1	ICPSPK99B	0.24558		0.2500	0.00129	97.7	2	75-125	11/10/1999 11/10/1999	
CCV CCB PB	1108-5	V211204A	2.05779 0.00474 -0.00172		2.00		102.9	%	95-105	11/10/1999 11/10/1999	171 171
LCS CCV CCB	1108-5	1CPSPK99B V211204A	0.25292 2.03578 -0.00000		0.2500 2.00		101.2 101.8	% %	80-120 95-105	11/10/1999 11/10/1999 11/10/1999	175 180
CCV CCB		V211204A	1.98334 0.00040		2.00		99.2	%	95-105	11/10/1999 11/10/1999 11/10/1999	194
ISB MD	912691-2	V211204E	0.45043 0.06876		0.50	0.05000	90.1 0.01876	% ^	80-120 0.01000	11/10/1999	195
ССВ	912691-2	ICPSPK99B V211204E V211204A	0.29549 0.44395 1.97769 -0.00000		0.2500 0.50 2.00	0.05000	98.2 88.8 98.9	~ % %	75-125 80-120 95-105	11/10/1999 11/10/1999 11/10/1999 11/10/1999 11/10/1999	200 202 203

Test Meth	od	: EPA	5010B	
		n.: Meta	s Analys	sis (ICAP)
Parameter		: Iron		

Batch..... 49224 Units..... mg/L

Analyst...: chh Test Code.: FE

90	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00960		0.00					11/10/1999	1/77
CAL		ICPCALSTD	83.38069		100.00					11/10/1999	
ICV		V211204A	2.06757		2.00		103.4	%	95-105	11/10/1999	
ICB			-0.00263						10,00	11/10/1999	
I SB		V211204E	184.46746		200.0		92.2	%	80-120	11/10/1999	
CCV		V211204A	2.03659		2.00		101.8	x	95-105	11/10/1999	
CCB			0.00647						10,00	11/10/1999	
PB	1110-2		0.01391							11/10/1999	
LCS	1110-2	I CPSPK99B	0.50448		0.5000		100.9	%	80-120	11/10/1999	
	712804 - 1		0.03982			0.01907	0.02075		0.05000	11/10/1999	
MS S	912804-1	I CPSPK99B	0.52440		0.5000	0.01907	101.1	%	75-125	11/10/1999	
ccv		V211204A	2.07416		2.00		103.7	x	95-105	11/10/1999	
ССВ			0.00035					~	105	11/10/1999	
PB	1108-5		0.00000							11/10/1999	
LCS	1108-5	I CPSPK99B	0.53003		0,5000		106.0	%	80-120	11/10/1999	
CCV		V211204A	2.05836		2.00		102.9	ĩ	95-105	11/10/1999	
CCB			-0.00120				10217	10	J J 10J	11/10/1999	
CCV		V211204A	1.98853		2.00		99.4	%	95-105	11/10/1999	
CCB			0.01584					70	105	11/10/1999	
I SB		V211204E	180.25849		200.0		90.1	%	80-120	11/10/1999	
MD 9	12691-2		0.41103			0.35765	13.9		20		
MS 9	12691-2	I CPSPK99B	0.85928		0.5000	0.35765	100.3	%	75-125	11/10/1999	
ISB		V211204E	179.55508		200.0	0100700	89.8	% %	80-120	11/10/1999	
		V211204A	2.01156		2.00		100.6	%	95-105	11/10/1999	
			0.01956				100.0	/1	7J-103	11/10/1999 11/10/1999	

Page 10 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

Job Number.: 912816

QUALITY CONTROL RESULTS

Batch..... 49224 Units..... mg/L

Report Date .: 11/16/99

Analyst...: chh Test Code.: PB

CUSTOMER: Marathon Oil Company

Committed To Your Success

ι.

PROJECT: Marathon Oil Co., Nidland, Tx ATIN: Mr. Paul Peacock

Test Method..... EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter.....: Lead (Pb)

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	-0.02160	<u></u>	0.00		_			11/10/1999	1432
CAL		ICPCALSTD	5.03679		10.0					11/10/1999	
ICV		V211204A	2.08801		2.00		104.4	%	95-105	11/10/1999	
I CB			0.04962							11/10/1999	
I SB		V211204E	1.06901		1.00		106.9	%	80-120	11/10/1999	
CCV		V211204A	2.01665		2.00		100.8	%	95-105	11/10/1999	
CCB			0.02570						100	11/10/1999	
PB	1110-2		0.04796							11/10/1999	
LCS	1110-2	I CPSPK99B	0.51828		0.5000		103.7	%	80-120	11/10/1999	
	912804-1		0.02968			0.00260	0.02708		0.05000	11/10/1999	
	912804-1	I CPSPK998	0.49773		0,5000	0.00260	99.0	%	75-125	11/10/1999	
ccv		V211204A	1,98915		2.00	0.00200	99.5	×	95-105	11/10/1999	
ССВ			0.05239				,,,,,,	~			
PB	1108-5		0.03366							11/10/1999	
LCS	1108-5	ICPSPK99B	0,53097		0.5000		106.2	%	80-120	11/10/1999	
CCV		V211204A	2.01825		2.00		100.9	×		11/10/1999	
CCB			0.06504		2100		100.9	/8	90-100	11/10/1999	
		V211204A	2.02497		2.00		101.2	%	95-105	11/10/1999	
	•		0.01537		2.00		101.2	/0	90-105	11/10/1999	
ТŚВ		V211204E	0.95396		1.00		95.4	%	80-120	11/10/1999	
	912691-2		-0.00452			0.04172	0.04624		0.05000	11/10/1999	
	912691-2	I CPSPK99B	0.50937		0.5000	0.04172	93.5	×		11/10/1999	
ISB		V211204E	0.94240		1.00	0.04172	94.2			11/10/1999	
ccv		V211204A	2.03451		2.00		101.7	% %	80-120	11/10/1999	
CCB		TELLEVIN	-0.01311		2.00		101.7	/6	95 - 105	11/10/1999 11/10/1999	

the second second second second second second second second second second second second second second second s		
 The management of the second se		
Test Method: EPA	6010B Batch	• /027/
		.: 49224 Analyst: chh
Method Description.: Meta	le Anglycie (ICAD)	• ma/1 * • • • • • • • • • •
The first best i peron.	uls Analysis (ICAP) Units	.: mg/L Test Code.: MN
Parameter Mang	ISABED (MA)	
	diese (any	

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.01740		0.00					11/10/1999	1432
CAL		ICPCALSTD	0.92269		2.00					11/10/1999	
ICV		V211204A	2.03519		2.00		101.8	%	95-105	11/10/1999	
ICB			-0.00132							11/10/1999	
ISB		V211204E	0.44561		0.50		89.1	%	80-120	11/10/1999	
CCV		V211204A	1.99253		2.00		99.6	%	95-105	11/10/1999	
ССВ			0.00044							11/10/1999	
PB	1110-2		-0.00088							11/10/1999	
LCS	1110-2	I CPSPK99B	0.48168		0.5000		96.3	%	80-120	11/10/1999	
MD	912804-1		-0.00131			-0.00153	0.00022	A	0.01000	11/10/1999	
MS	912804-1	ICPSPK99B	0.47856		0.5000	-0.00153	96.0	%	75-125	11/10/1999	
CCV		V211204A	2.04535		2.00		102.3	%	95-105	11/10/1999	
CCB			-0.00220							11/10/1999	
PB	1108-5		-0.00287							11/10/1999	
LCS	1108-5	ICPSPK99B	0.49507		0.5000		99.0	%	80-120	11/10/1999	
CCV		V211204A	2.03253		2.00		101.6	%	95-105	11/10/1999	
CCB			-0.00309							11/10/1999	
CCV		V211204A	2.01995		2.00		101.0	%	95-105	11/10/1999	
			0.00137							11/10/1999	
		V211204E	0.45609		0.50		91.2	%	80-120	11/10/1999	

Severn Trent Services Inc.

1e • 1

QUALITY CONTROL RESULTS

Report Date .: 11/16/99

Analyst...: chh

Analyst...: pal

Test Code .: HG

Test Code.: MN

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Batch..... 49224

Batch....: 49327

Units..... mg/L

Units..... mg/L

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter.....: Manganese (Mn)

Job Number.: 912816

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
MD MS ISB CCV CCB		ICPSPK99B V211204E V211204A	0.00869 0.50038 0.45571 2.04127 0.00206		0.5000 0.50 2.00	0.00598 0.00598	0.00271 98.9 91.1 102.1	A (% % %	0.01000 75-125 80-120 95-105	11/10/1999 11/10/1999 11/10/1999 11/10/1999 11/10/1999	9 2009 9 2022 9 2032

Test Method.....: EPA 7470 Method Description.: Mercury, Total Parameter...... Mercury (Hg)

QC QC Result Lab ID Reagent QC Result True Value Orig. Value Calc. Result Limits Date Time CAL HGCALBLK 26277 0.000 11/11/1999 1520 V211205C CAL 33050 0.000050 11/11/1999 1523 CAL V211205C 48244 0.000200 11/11/1999 1526 V211205C 131319 0.001000 11/11/1999 1529 V211205C 602098 0.005000 11/11/1999 1532 v211205c 1094966 0.010000 11/11/1999 1535 ICV V211205D 0.00547 0.005000 109.4 % 90-110 11/11/1999 1538 -0.000003 ICB 11/11/1999 1541 PB -0.000131 11/11/1999 1544 LCS V211205D 0.00543 0.005000 108.6 % 80-120 11/11/1999 1547 912809-2 -0.000142 MD -0.000167 0.000025 A 0.001000 11/11/1999 1552 912809-2 MS V211205D 0.00501 0.005000 -0.000167 103.5 % 75-125 11/11/1999 1555 ccv v211205c 0.00471 0.005000 94.2 % 90-110 11/11/1999 1613 CCB -0.000008 11/11/1999 1616 CCV v211205c 0.00490 0.005000 98.0 90-110 % 11/11/1999 1649 CCB -0.000013 11/11/1999 1652 CCV v211205c 0.00467 0.005000 93.4 90-110 % 11/11/1999 1724 CCB -0.000032 11/11/1999 1727

Test Method						
			h		lyst: chh	
Method Description .:			S		t Code.: MO	
Parameter:						

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	ĩime
CAL		ICPCALBLK	0.00130				•			11/10/1999	1432
CAL		ICPCALSTD	0.20409		2.00					11/10/1999	
ICV ICB		V211204A	2.10563 0.04635		2.00		105.3	%	95~105	11/10/1999	1501
CCV CCB		V211204A	1.96660 0.07593		2.00		98.3	%	95 - 105	11/10/1999	1602
PB LCS	1110-2 1110-2	I CPSPK99B	0.00098 0.48404		0 5000		0 / 0			11/10/1999	
MD	912804-1	ICF SFR99D	0.02957		0.5000	0.05818	96.8 0.02861	% A	80-120 0.10000	11/10/1999	
MS '	912804-1	I CPSPK99B	0.53729		0.5000	0.05818	95.8	%		11/10/1999	
CCV CCB		V211204A	2.01293 0.06804		2.00		100.6	%		11/10/1999	1713
		V211204A	2.02379 0.04832		2.00		101.2	%	95-105	11/10/1999	1803

Page 12 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

QUALITY CONTROL RESULTS

Report Date .: 11/16/99

Analyst...: chh

Test Code.: NI

CUSTOMER: Marathon Oil Company

1

ļ

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Batch....: 49224

Units..... mg/L

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter.....: Nickel (Ni)

Job Number.: 912816

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	-0.00160		0.00				····	11/10/1999	1432
CAL		ICPCALSTD	0.64550		1.0					11/10/1999	
ICV		V211204A	2.03516		2.00		101.8	%	95-105	11/10/1999	
ICB			-0.00030						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11/10/1999	
ISB		V211204E	0.83814		1.00		83.8	%	80-120	11/10/1999	
CCV		V211204A	1.97738		2.00		98.9	%	95-105	11/10/1999	
CCB			0.00139							11/10/1999	
PB	1110-2		-0.00448							11/10/1999	
LCS	1110-2	I CPSPK99B	0.47202		0.500		94.4	%	80-120	11/10/1999	
MD	912804-1		-0.00139			-0.00680	0.00541		0.01000	11/10/1999	
MS	912804-1	ICPSPK99B	0.45625		0,500	-0.00680	92.6	%	75-125	11/10/1999	
CCV		V211204A	2.01105		2.00		100.6	%	95-105	11/10/1999	
CCB			0.00324					~	/2 105	11/10/1999	
PB	1108-5		-0.00231							11/10/1999	
LCS	1108-5	I CPSPK99B	0.47619		0.500		95.2	%	80-120	11/10/1999	
CCV		V211204A	1.99174		2.00		99.6	%	95-105	11/10/1999	
-ASB			0.00834							11/10/1999	
	1	V211204A	1.98981		2.00		99.5	%	95-105	11/10/1999	
			0.00189							11/10/1999	
ISB		V211204E	0.86134		1.00		86.1	%	80-120	11/10/1999	
MD	912691-2		0.05968			0.05142	14.9		20	11/10/1999	
MS	912691-2	I CPSPK99B	0.53017		0.500	0.05142	95.8	%	75-125	11/10/1999	
ISB		V211204E	0.86280		1.00	· · · · · · · · · · · · · · · · · · ·	86.3	%	80-120	11/10/1999	
CCV		V211204A	2.02778		2.00		101.4	%	95-105	11/10/1999	
ССВ			0.00206							11/10/1999	

Met	hod Descr	: EPA iption.: Meta : Sele	ls Analysis (1C	AP)		: 49 mg			Analyst Test Coo		
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
ICV ICB		V211205B	4.13607 0.00716		4.00		103.4	~~	90-110	11/10/1999 11/10/1999	
PB LCS	1103-3 1103-3	I CPSPK99B	-0.00774 0.52583		0,5000		105.2	%	80-120	11/10/1999	2144
	912510-1		0.04239		0.5000	0.05221	0.00982).02000	11/10/1999 11/10/1999	
MS	912510-1	I CPSPK99B	0.60952		0.5000	0.05221	111.5	%	75-125	11/10/1999	
PB	1110-2		0.00754							11/10/1999	
LCS	1110-2	I CPSPK99B	0.51176		0.5000		102.4	%	80-120	11/10/1999	
CCV CCB		V211205B	4.11920 -0.00049		4.00		103.0	%	90-110	11/10/1999	2240
	912804-1		0.06091			0.06711	0.00620	A C	0.02000	11/10/1999	
MS PB	912804-1 1108-1	I CPSPK99B	0.53834 -0.00048		0.5000	0.06711	94.2	%	75-125	11/10/1999	2303
LCS	1108-1	v16008711	1.26703		1.389429		91.2	%	80-120	11/10/1999	
MS	912685-1	V16008208	1.66516		2.000000	-0.00141	83.3	%	75-125	11/10/1999	
MSD	912685-1	v16008208	1.73536	1.66516	2.000000	-0.00141	86.8 4.1	% R 2	75-125	11/10/1999	
Î		V211205B	3.61532 0.00502		4.00		90.4	%	90-110	11/11/1999 11/11/1999	

Page 13 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

'. ·

QUALITY CONTROL RESULTS

Report Date.: 11/16/99

Analyst...: amw

Test Code.: AG

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, TX ATTN: Mr. Paul Peacock

Batch....: 49229

Units..... mg/L

Test Method.....: EPA 6010B Method Description.: Metals Analysis (ICAP) Parameter.....: Silver (Ag)

Job Number.: 912816

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
ISB		V21122A	1.01911	-	1.00		101.9	~~~	80-120	11/10/1999	2050
ICV		V211205B	0.82532		0.80		103.2	%	90-110	11/10/1999	
I CB			0.00639					~	20-110		
PB	1103-3		0.00602							11/10/1999	
LCS	1103-3	ICPSPK99B	0.21922		0,2000		109.6	9/	80.400	11/10/1999	
	912510-1		-0.00134		0.2000	0.00301		%	80-120	11/10/1999	
	912510-1	I CPSPK99B			0 2000		0.00435		0.01000	11/10/1999	
PB	1110-2	10-2-4220	0.23286		0.2000	0.00301	114.9	%	75-125	11/10/1999	2207
-			0.00387							11/10/1999	2228
LCS	1110-2	ICPSPK99B	0.20008		0.2000		100.0	%	80-120	11/10/1999	2234
CCV		V211205B	0.81442		0.80		101.8	%	90-110	11/10/1999	2240
CCB			0.00538							11/10/1999	
MD	912804-1		-0.00299			0.00267	0.00566	A	0.01000	11/10/1999	
MS	912804-1	I CPSPK99B	0.18444		0.2000	0.00267	90.9	%	75-125	11/10/1999	
PB	1108-1		0.00394					~	10 125	11/10/1999	
LCS	1108-1	v16008711	0.98418		1.039642		94.7	%	80- 120		
	912685-1	V16008208	0.42520		0.400000		83.0			11/10/1999	
	912685-1	v16008208	0.44731	0.42520	0.400000	· · · · ·		%	75-125	11/10/1999	
	3	VICCODECC	0.447.31	0.42320	0.40000	0.09302	88.6	%	75-125	11/10/1999	2342
₽	11	1011004	0.00/70				5.1		20		
_		V21122A	0.92430		1.00		92.4	%	80-120	11/10/1999	2356
CCV		V211205B	0.72690		0.80		90.9	%	90-110	11/11/1999	0006
ССВ			0.00329							11/11/1999	

Met	hod Descri	iption.: EPA	ils Analysis (IC	AP)					Analyst Test Co	: chh de.: ZN	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits	Date	Time
CAL		ICPCALBLK	0.00100		0.00					11/10/199	9 1432
CAL ICV		ICPCALSTD V211204A	0.74320 2.05861		3.00		102 0		05 105	11/10/199	

ICV ICB	V211204A	2.05861 0.00000	2.00		102.9	% 95-	105	11/10/1999 1501
ISB	V211204E	0.94520	1.00		94.5	% 80-	120	11/10/1999 1506
CCV	V211204A	2.01376	2.00		100.7		105	11/10/1999 1510 11/10/1999 1602
CCB		-0.00241						11/10/1999 1607
PB 1110-2		-0.00399						11/10/1999 1629
LCS 1110-2 MD 912804-1	ICPSPK998	0.49158	0.5000		98.3		120	11/10/1999 1634
MS 912804-1	ICPSPK99B	0.02308	0 5000	0.01626	0.00682	A 0.010		11/10/1999 1642
CCV	V211204A	0.51147 2.06765	0.5000	0.01626	99.0		125	11/10/1999 1646
CCB	VENILOAR	-0.00283	2.00		103.4	% 95-	105	11/10/1999 1713
PB 1108-5		-0.00442						11/10/1999 1717
LCS 1108-5	I CPSPK99B	0.49473	0,5000		98.9	% 80-	120	11/10/1999 1750 11/10/1999 1755
CCV	V211204A	2.04205	2.00		102.1		105	11/10/1999 1803
CCB		-0.00407						11/10/1999 1807
CCV	V211204A	2.04812	2.00		102.4	% 95-	105	11/10/1999 1947
CCB	W24420/F	-0.00179						11/10/1999 1953
ISB	V211204E	0.95902	1.00		95.9		120	11/10/1999 1956
MD 912691-2	I CDODKOOD	0.42511		0.40387	5.1	R 20		11/10/1999 2005
912091-2	ICPSPK99B	0.92205	0.5000	0.40387	103.6	-	·125	11/10/1999 2009
	V211204E	0.96117	1.00		96.1		120	11/10/1999 2022
	V211204A	2.06797	2.00		103.4	% 95-	105	11/10/1999 2032

Page 14

* %=% REC, R=RPD, A=ABS Diff., D=% Diff.

1. Y

ł

QUALITY CONTROL RESULTS

Job Number.: 912816

- Fi

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Met	hod D	escr	: EPA iption.: Meta	als Analysis (I	CAP)		2010-1011-1011-1212-121-121-121-121-121-	·····					Analyst. Test Cod	: chh de.: ZN	
QC	Lab	ID	Reagent	QC Result	QC	Result	True Value	Orig.	Value	Calc.	Result	*	Limits	Date	Time
CCB				-0.00401						·				11/10/199	0 207/

Page 15 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

i the second sec
Committed To Your Success

į

Job	Number.: 912816	QUALITY	CONTRO	L RESUL	τs	Report	Date.: 11/1	6/99	
CUSTOMER: Maratho	n Gil Company	PROJ	ECT: Marathon C	il Co., Midlar	d, Tx	ATTN:	Mr. Paul Pea	cock	
QC Type	Description	n	Reag. Coc	le Lab	D	Dilut	ion Factor	Date	Time
Test Method Method Descriptio	: EPA 8310 n.: Polynuclear Arom	atic Hydrocarbons		: 4 : u			Analys	t: rı	m
MB Meth	od Blank							11/16/	1999 0111
Parameter/	Test Description	QC Result	QC Result	True Value	Orig.	Value	Calc. Resu	ilt *	Limits
icenaphthene icenaphthylene inthracene ienzo(b)fluoranthen ienzo(a)anthracene ienzo(a)anthracene ienzo(ghi)perylene ihrysene ibenzo(a,h)anthrac	e	ND ND ND ND ND ND ND ND ND ND							
luoranthene luorene ndeno(1,2,3-cd)pyr nhthalene nthrene	rene	ND ND ND ND ND ND							

LCS Laboratory Control Sample	•	V1737258			11	/16/	1999 0154
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
Acenaphthene	651.7	<u> </u>	1000.00000	0	65.2		10-92
Acenaphthylene	735.6		1000.00000	10	73.6	%	11-127
Anthracene	632.7		1002.00000	10	63.1	%	13-110
Benzo(b)fluoranthene	348.2		500.00000	0	69.6	%	57-102
Benzo(k)fluoranthene	360.5		500.00000	00	72.1	%	59-107
Benzo(a)anthracene	346.8		500.00000	0	69.4	%	61- 1 09
Benzo(a)pyrene	328.3		500.00000	00	65.7	%	42- 13 1
Benzo(ghi)perylene	427.2		500.00000	00	85.4	%	55-119
Chrysene	364.7		500.00000	00	72.9	%	59-103
Dibenzo(a,h)anthracene	323.0		500.00000	00	64.6	%	63-108
Fluoranthene	350.5		500.00000	00	70.1	%	40-122
Fluorene	735.3		1000.00000)0	73.5	%	20- 9 5
Indeno(1,2,3-cd)pyrene	358.8		500.0000	00	71.8	%	57-104
Naphthalene	483.3		1000,00000	00	48.3	%	10-82
Phenanthrene	380.7		502.50000	00	75.8	%	37-102
Pyrene	382.8		500.00000	00	76.6	%	59-111

1.

i I

Page 16 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

1

dol	Number.: 912816	QUALITY	CONTROL	TS	Report Date.: 11/16/99					
CUSTOMER: Maratho	on Oil Company	PROJE	ECT: Marathon Oi	l Co., Midlan	d, Tx	ATTN:	Mr. Paul Pea	œck.		
QC Type	Descriptio	n	Reag. Code	Lab	ID	Dilut	ion Factor	Date	Time	
Test Method Method Descriptio	: EPA 8260B on.: Volatile Organic	Compounds	Batch: 49489 mpounds Unitsug/L				Analyst: weh			
MB Met)	nod Blank							11/15/	1999 1439	
Parameter	/Test Description	QC Result	QC Result	True Value	Orig.	Value	Calc. Resu	lt *	Limits	
/inyl chloride	· _ · · · · · · · · · · · · · · ·	ND		·····			-			
,1-Dichloroethene		ND								
ethylene chloride		ND								
lenz ene		ND								
Carbon tetrachlori	de	ND								
chloroform		ND								
,2-Dibromoethane		ND								
1,1-Dichloroethane		ND ND								
1,2-Dichloroethane Ethylbenzene		ND								
1,1,2,2-Tetrachlor	oethane	ND								
Tetrachloroethene	ve chutte	ND								
foluene		ND								
hn 1-Trichloroeth	ane	ND								
-Trichloroeth		ND								
		ND								
Xylenes (total)		ND								

LCS Laboratory Control Sample	e	CLPVOAMS2			11,	/15/	1999 15'
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
,1-Dichloroethene	50.90		50		101.8	~	51-141
enzene	50.28		50		100.6	%	67-130
oluene	50.26		50		100.5	%	75-114
richloroethene	49.80		50		99.6	%	72-114

MS Matrix Spike		CLPVOAMS2	913032-	1	11	/15/	1999 1611
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
1,1-Dichloroethene	50.80		50	ND	101.6		51-141
Benzene	50.91		50	1.12	99.6	%	67-130
Toluene	50.52		50	ND	101.0	%	75-114
Trichloroethene	49.66		50	ND	99.3	%	72-114

	CLPVOAMS2	913032-	1	11,	/15/1999 164
QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
51.40	50.80	50	ND	102.8	% 51-141 R 30
50.41	50.91	50	1.12	98.6 1.0	% 67-130 R 30
50.59	50.52	50	ND	101.2	% 75-114 R 30
48.32	49.66	50	ND	96.6 2.7	% 72-114 R 30
	51.40 50.41 50.59	QC Result QC Result 51.40 50.80 50.41 50.91 50.59 50.52	QC Result QC Result True Value 51.40 50.80 50 50.41 50.91 50 50.59 50.52 50	QC Result QC Result True Value Orig. Value 51.40 50.80 50 ND 50.41 50.91 50 1.12 50.59 50.52 50 ND	QC Result QC Result True Value Orig. Value Calc. Result 51.40 50.80 50 ND 102.8 50.41 50.91 50 1.12 98.6 50.59 50.52 50 ND 101.2 48.32 49.66 50 ND 96.6

SURROGATE RECOVERIES REPORT Job Number.: 912816

Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Method.....: Volatile Organic Compounds Method Code.....: 826TCL

Batch....: 49489 Analyst..... weh

1,2-Dichloroethane-d4	 ug/L
Sauce	Units

Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
		MB		51.26	50.00	102.5	76-120		11/15/1999	1/30
		LCS		50.76	50.00	101.5	76-120		11/15/1999	
913032-1				51.66	50.00	103.3	76-120		11/15/1999	
913032-1		MS		50.97	50.00	101.9	76-120		11/15/1999	
913032-1		MSD		50.92	50.00	101.8	76-120		11/15/1999	
913032-3				50.89	50.00	101.8	76-120		11/15/1999	
913032-2				51.00	50.00	102.0	76-120		11/15/1999	
912816-1			50	47.02	50.00	94.0	76-120		11/15/1999	
912767-15				52.17	50.00	104.3	76-120		11/15/1999	
912767-16				51.00	50.00	102.0	76-120		11/15/1999	

Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
913032-1 913032-1 913032-1 913032-3 913032-2 912816-1		MB LCS MS MSD	50	51.80 51.23 52.45 53.36 52.32 52.36 52.36 52.46 48.12	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	103.6 102.5 104.9 106.7 104.6 104.7 104.9 96.2	85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115		11/15/1999 11/15/1999 11/15/1999 11/15/1999 11/15/1999 11/15/1999 11/15/1999	1439 1510 1540 1611 1642 1712 1743
912767-15 912767-16			50	50.96 50.19	50.00 50.00	101.9 100.4	85-115 85-115 85-115		11/15/1999 11/15/1999 11/15/1999	2107

Toluene-d8	ug/L	
Surrogate		

Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
		MB		50.11	50.00	100.2	85-112		11/15/1999	1439
		LCS		49.94	50.00	99.9	85-112		11/15/1999	
913032-1				49.91	50.00	99.8	85-112		11/15/1999	
913032-1		MS		50.52	50.00	101.0	85-112		11/15/1999	
913032-1		MSD		51.24	50.00	102.5	85-112		11/15/1999	
913032-3				51.57	50.00	103.1	85-112		11/15/1999	
913032-2				50.89	50.00	101.8	85-112		11/15/1999	
012816-1			50	50.44	50.00	100.9	85-112		11/15/1999	
767-15				51.31	50.00	102.6	85-112		11/15/1999	
767-16				54.32	50.00	108.6	85-112		11/15/1999	

Page 18

Severn Trent Services Inc.

SURROGATE RECOVERIES REPORT Job Number.: 912816 Report Date.: 11/16/99

CUSTOMER: Marathon Oil Company

PROJECT: Marathon Oil Co., Midland, Tx ATTN: Mr. Paul Peacock

Method..... Polynuclear Aromatic Hydrocarbons-HPLC Method Code.....: 8310 Batch..... 49504 Analyst..... rm

Surrogate				Units						
1-Fluorona	phthalene			ug/L						
Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
912816-1		MB LCS		371.7 555.3 720.4	1000 1000 1000	37.2 55.5 72.0	10-74 10-74 10-74	·	11/16/1999 11/16/1999 11/16/1999	0154
Surrogate				Units						
Terphenyl-	d14			ug/L						
Lab ID	Matrix	QC Туре	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
	······			7/0 0	1000	75.0	E4. 172		44 /4/ /4000	0444

749.9 1000 75.0 56-122 11/16/1999 0111 MB 936.4 93.6 77.6 1000 56-122 11/16/1999 0154 LCS 912816-1 776.2 1000 56-122 11/16/1999 0236

QUALITY ASSURANCE FOOTER

METHOD REFERENCES

Succes

- 1. EPA SW-846, Test Methods for Evaluating Solid Waste Update I, IIA, IIB, III
- 2. Standard Methods for the Examination of Water and Wastewater, 18th Edition
- 3. EPA 600/4-79-020, Methods of Chemical Analysis for Waters and Wastes, March 1983
- Federal Register, Friday, October 26, 1984 (40 CFR Part 136)
 American Society for Testing and Materials, Volumes 5.01, 5.02, 5.03, 11.01,11.02,11.03,11.04
- EPA Methods for Environmental Samples

COMMENTS

Committed To You

All methods of chemical analysis have a statistical uncertainty associated with the results. Unless otherwise indicated, the data in this report are within the limits of uncertainty as specified in the referenced method. Quality Control acceptance criteria are based either on actual laboratory performance or on limits specified in the referenced method. The date and time of analysis indicated on the QA report may not reflect the actual time of analysis for QC samples. All data are reported on an "as received" basis unless otherwise indicated. Data reported in the QA report may be lower than sample data due to dilution of samples into the calibration range of the analysis. Sample concentration for solid samples are calculated on an as received (wet) basis. Unless otherwise indicated, volatiles by gas chromatography (GC) are reported from a single column. Volatile analysis by GC on low level soil extractions are conducted at room temperature.

FLAGS, FOOTNOTES AND ABBREVIATIONS (as needed)

NA	=	Not Analyzed	ND	=	Not detected at a value greater than the reporting limit
		•		_	
N/A	=	Not applicable	NC	=	Not calculable due to values lower than the reporting limit
ug/L	=	Micrograms per liter	mg/L	=	Milligrams per liter
ug/Kg	=	Micrograms per kilogram	mg/kg	=	Milligrams per kilogram
υŤ	=	Undetected			,
J	=	Indicates value is > MDL, but < Re	porting Limit		
в	=	Analyte was detected in the metho	d blank analyzed	with this	sample.
D	=	Surrogate recoveries are not calcu	lated due to sam	ple dilutio	on.
х	=	Surrogate recovery is outside qual	ity control limits.		
Y	=	Spike or spike duplicate recovery i	s outside quality of	control lia	mits.
Z	=				outside quality control limits. The precision of the method was
		to Produce the term of the			

Indicates value is above QC acceptance criteria.

QC SAMPLE IDENTIFICATIONS

MB	=	Method Blank	SB	=	Storage Blank
RB	×	Reagent Blank	EB	=	Extraction Blank
PB	=	Preparation Blank	CALB	=	Calibration Blank
MD	=	Method Duplicate	RS	=	Reference Standard
LCS	=	Laboratory Control Sample	LCSD	=	Laboratory Control Sample Duplicate
MS	-	Matrix Spike	MSD	=	Matrix Spike Duplicate
ICB	=	Initial Calibration Blank	CCB	=	Continuing Calibration Blank
ICV	=	Initial Calibration Verification	ICB	=	Initial Calibration Blank
PDS	=	Post Digestion Spike	SS	=	Surrogate Spike
ISA	=	Interference Check standard "A"	ISB	=	Interference Check Standard "B"
ISCAB	=	Interference Check Sample AB	MSA	=	Method of Standard Additions
CAL	=	Calibration standard	SD	=	Serial Dilution
MST	=	TCLP Matrix Spike	MSQ	=	TCLP Matrix Spike Duplicate
PST	=	TCLP Post Digestion Spike	LCT	=	TCLP Laboratory Control Sample

STL-Valparaiso 2400 Cumberland Dr Valparaiso, IN 46383 VPQ0140 Revision 001 Effective 10/15/99

cki		pt Checklist Report 11/09/99			V2
Job Number: 912816 Location.: Project Number.: 96000746 Project Des Customer: Marathon Oil Company		ob ID: ASIN REMEDIATION STRIPF Contact.: Mr. Paul Pe		Job Check List Date.: Project Manager:	
Questions ?	(Y/N) Com	ments			
Chain-of-Custody Present?	Y				
Custody seal on shipping container?	Υ				
If "yes", custody seal intact?	Y				
Custody seals on sample containers?					
If "yes", custody seal intact?			··		
Samples chilled?	Υ				
Temperature of cooler acceptable? (4 d	eg C +/- 2). REC	EIVED ON ICE			
Samples received intact (good condition	n)?Y				
Volatile samples acceptable? (no heads	pace)Y				
Correct containers used?	Υ				
Adequate sample volume provided?	Y				
Samples preserved correctly?	Y				
Samples received within holding-time?.	Υ				
Agreement between COC and sample labels	s?Y				
Additional					
Comments Sample Custodian Signature			·		

Page 1

				V	æ						Ų		
								everi	ר Tre	Severn Trent Labora Jules	orac	ories	
Committed	Committed to Your Success		CHAIN	0 F C	USTODY	RECOF	RD						
C U S t	Customer Information	U O	ъ в.	oject	Infarm	ation		Ana	lys†	s / M e t h	od No.	57211-10411	10411
PO			PROJECT NAME	INDIAN BAS	INDIAN BASIN GAS PLT				\sim		ر ب ا		とらた
MO			LAB NUMBER	912816	6 BOTTLE	ORDER	96000813	C 7470 C		ZO NMAC)
COMPANY	Marathon Oil Company		BILL TO	Marathon O	Marathon Oil Company						!		
SEND REPORT TO	Mr. Paul Peacock		INVOICE ATTN	Mr. Paul Peacock	eacock			G 8310 H 8260V1		,			
ADDRESS	Midland, Tx		ADDRESS	125 West M	West Missouri Street	et			~				
			1	P.O. Box 5	552								
	Bottles to: Mr. Jack Brown							ΣZ					
CITY/STATE/ZIP	Lakewood, New Mexico		CITY/STATE/ZI	P Midland,	TX 79702-0552	2		:04					
PHONE			PHONE	915-687-8312	112								
FAX			FAX	915-687-8305	05			ś					
P NO.	SAMPLE DESCRIPTION		PRE	PRESERV. F	SAMPLE MATRIX	IX SAMPLE	SAMPLE DATE SAMPLE TIME #CONTAINR	E TIME #C		A B C D E F C	GHIJK	d o b N o b	9 9 8 8
×	MINHER GAS	Pur WASTE	H H	NO3 N	AQ	W8/99		1000 41-	(-12 Plas, X	×			
	1		~	Hoel				2 [-1	1-12 Plas	×			
			H	H2SO4				5 1-1	1-12 GASS	*			
			2	NONE				2 1-1	1-1 R Plas	×			
			Z	NONE				63	3-12612	~	×		
			4	HCI 👲				84	4-40ml 40A		*		
₽													
Sampler:		Shipment Method:	Method:		A	Airbill No.:			~	Required TurnAround:	Around:		
1. Relinquished	1. Relinquished BY: CORNIN	Date 99	2. Relinquished By:	d By:		Date	te 3.	Relinquished By:	shed By:			_	Date
Company Name:	COMPANY NAME MARATAVON	Time (1:30	Company Name:			Time		Company Name:	e:				Time
1. Received By:	I Ri	Date Date	2. Received By:			Date	те 3.	Received By:	By:				Date
Company Name:	PS SI	Time /#20	Company Name:			Time		Company Name	 e			-	Time
Severn Trent Laboratories	oratories 2400 Cumberland Drive		Valparaiso, IN 46	46383 219-1	219-464-2389 FAX	FAX 219-462-2953	5 3						

SPILL PREVENTION, CONTROL AND COUNTERMEASURE PLAN

For

MARATHON OIL COMPANY INDIAN BASIN GAS PLANT

August 2001

Name of facility Operator Indian Basin Gas Plant Marathon Oil Company

- 1 -

INDIAN BASIN GAS PLANT SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN CONTENTS

Page	1	Cover page
Page	2	Index
Page	3	Part I, Items 1 thru 6 General Information
Page	4	Part I, Item 7 General Information
Page	5	Part I, Items 8 thru 10 General Information
Page	6	Part II, Alt. A, Design and Operating Information, Section A
Page	7	Part II, Alt. A, Design and Operating Information, Section B
Page	8	Section B (continued)
Page	9	Part II, Alt. A, Design and Operating Information, Section C
Page	10	Part II, Alt. A, Design and Operating Information, Section D
Page	11	Part II, Alt. A, Design and Operating Information, Section E
Page	12	Attachments Index

D

- 2 -

SPILL PREVENTION CONTROL & COUNTERMEASURE PLAN PART I - GENERAL INFORMATION

- 1. Name of Facility Indian Basin Gas Plant
- 2. Type of Facility Onshore Production Facility

3. Location of Facility Eddy Count, New Mexico

Approximately 20 miles W/NW of Carlsbad, New Mexico

Unit Letter G, Section 23, Township 21S, Range 23E

4. Name and address of owner or operator:

Name: Marathon Oil Company Address: P O Box 1324 Artesia, New Mexico 88210

5. Designated person accountable for oil spill prevention at facility:

Name and title: Mike Schweser, Gas Plant Superintendent

 Facility experienced a reportable oil spill event during the twelve months prior to the issuance date of this Plan below. (If YES, complete attachment #1)
 No

MANAGEMENT APPROVAL

This SPCC Plan will be implemented as herein described.

Signature

Name C.M. Schweser

Title

Plant Superintendent

CERTIFICATION

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR, Part 112, attest that the SPCC Plan has been prepared in accordance with good engineering practices.

Roger D. Edelbrock Printed Name of Registered Professional Engineer

ture of Registered Professional Engineer

Date 8/16/0/

Registration No. 20128 State LA

Name of facility Operator Indian Basin Gas Plant Marathon Oil Company

- 3 -

PART I GENERAL INFORMATION

7. Potential Spills -- Prediction and Control

ITEM	Source	Major Type of Failure	QUANTITY LARGEST TANK	RATE Bbls/Hr	DIRECTION OF FLOW	Secondary Containment
1	Generator Turbine Oil	Leaks, Tank Rupture	7 bbl	N/A*	SE	Yes
2	Open Top Transfer Tank	Leaks, Tank Rupture	500 bbl	N/A*	SE	Yes
3	Outlet Compressor Lube Oil	Leaks, Tank Rupture	24 bbl	N/A*	SE	Yes
4	Field Storage Area	Leaks, Tank Rupture	12 bbl	N/A*	SE	Yes
5	Stabilizer Compressor Lube Oil	Leaks, Tank Rupture	5 bbl	N/A*	SE	Yes
6	IBLEAP Stripper Tank Area	Leaks, Tank Rupture	500 bbl	.001 BO 112 BW	SE	Yes
7	Skimmer Basin	Leaks, Tank Rupture	500 bbl	8 BO 833 BW	SE	Yes
8	Recompressor Lube Oil	Leaks, Tank Rupture	210 bbl	N/A*	SE	Yes
9	SWD Pump Lube Oil	Leaks, Tank Rupture	7 bbl	N/A*	SE	Yes
10	Condensate Storage Tank 5B	Leaks, Tank Rupture	3000 bbl	12.5 BO	SE	Yes
11	1 Bullet - Flare Drum PV-34.2B	Leaks, Tank Rupture	1571 bbl	Approx .125 BO	SE	Yes
12	1 Bullet - Sales Condensate Knockout	Leaks, Tank Rupture	1571 bbl	12.5 BO	SE	Yes
13	3 Bullets - Sour NGL Surge Tanks	Leaks, Tank Rupture	1605 bbl	Note 2	SE	Yes
14	LACT Unit Loading Rack	Leaks, Truck Rupture, Premature Departure	180 bbl	12.5 BO Note 3	SE	Yes

* Not connected to an inflowing process.

Note 2 NGL stored during upset situations only. Tanks kept empty as is practicable during normal operations. NGL is 100% volatile at atmospheric conditions.

Note 3 Condensate sold at same rate its produced. Hauled by truck.

Name of facilityIndian Basin Gas PlantOperatorMarathon Oil Company

- 4 -

PART I GENERAL INFORMATION

(Response to statements should be: Yes, No, or NA)

- 8. Containment or diversionary structures or equipment to prevent oil from reaching navigable waters are practicable. (If No, complete Attachment #2) No
- 9. Inspections and Records
 - A. The required inspections follow written procedures. Yes
 - B. The written procedures and a record of inspections, signed by the appropriate supervisor or inspector, are attached Yes

Discussion: : Daily visual inspections are made and readings taken and recorded by operational personnel during normal rounds on both twelve hour shifts. During these rounds, operating personnel search for atypical situations. If these situations are encountered, they are documented and promptly reported to supervisory personnel via the plant work order system. Spills are reported as soon as practical to the supervisor on a Marathon Spill Reporting form. Semi-Annual inspections are conducted by plant supervision or their designee. Records of these inspections are on file at the Indian Basin Gas Plant.

- 10. Personnel Training and Spill Prevention Procedures
 - A. Personnel are properly instructed in the following:
 - 1. Operation and Maintenance of equipment to prevent oil discharge
 - 2. Applicable pollution control laws, rules, and regulations.

Yes

Yes

Describe procedures employed for instruction: All employees have received 8 hours of HAZWOPER training, and many are 24 hour HAZWOPER trained. Annual instruction is provided on SPCC and other environmental topics by the Southern Business Units HES department. Other instructions are narrative. Environmental Control and Site Security are discussed at safety meetings, which are held on a monthly basis. Potential spill situations are reported to the superintendent via the plant work order system and also reported by the safety committee on a monthly basis. Such situations are corrected

B. Scheduled prevention briefings for the operating personnel are conducted frequently enough to assure adequate understanding of the SPCC Plan

Yes

Describe Briefing program: Operation Management frequently reviews environmental standards at safety meetings. Such reviews assure an adequate understanding of SPCC. Operation superintendents are periodically requested to update Contingency Plans. Superintendents thereby assess and revise procedures when necessary.

Name of facilityIndian Basin Gas PlantOperatorMarathon Oil Company

- 5 -

(Prior to completing Part II Alternate A, Refer to regulations and instructions, pages 6-7)

- A. Facility Drainage
 - 1. Drainage from diked storage areas is controlled as follows (include operating description of valves, pumps, ejectors, etc. (Note: Flapper type valves should not be used):

None of the earthen diked areas have installed drains. Any spill that might occur would be removed with a vacuum truck, or transferred, via a portable pump, to the plant open drain system. Concrete pollution catchments are connected directly to the plant open drain system which processes the fluid for removal of free hydrocarbon. The waste is then commingled and injected with Indian Basin Field produced water. Rain water captured in containments is also removed in this manner.

 Drainage from undiked areas is controlled as follows (include description of ponds, lagoons, or catchment basins and methods of retaining and returning oil to facility):

The plant operates under a Storm Water Pollution Prevention Plan and a Groundwater Discharge Plan created for the New Mexico Oil Conservation Division. The plant is in compliance with all phases of these plans. The Groundwater Discharge Plan and the Storm Water Pollution Prevention Plan is available for review on site at the Indian Basin Gas Plant office and in the Southern Business Unit office, Midland, Texas.

3. The procedure for supervising the drainage of rain water from secondary containment in to a storm drain or an open watercourse is as follows (include description of (a) inspection for pollutants, and (b) method valving security). (A record of inspection and drainage events is to be maintained on a form similar to Attachment #3):

No secondary containment is drained into a storm drain or open watercourse.

Name of facility In Operator M

Indian Basin Gas Plant Marathon Oil Company

- 6 -

(Response to statements should be: Yes, No, or NA)

B. Bulk Storage Tanks

1. Describe tank design, materials of construction, fail-safe engineering features, and if needed, corrosion protection:

Generator Turbine Oil - A vented, 7 barrel, welded, carbon steel, above ground lube oil storage tank. This tank is filled by vendor from a truck and is attended at all times during filling operations.

Open top transfer tank - A 500 barrel fiberglass open top tank used to transfer produced fluids hauled in by truck into the skimmer system. The tank is continuously monitored during loading operations to prevent overfilling.

Outlet compressor lube oil tank - A vented, 24 barrel, welded, carbon steel, above ground, lube oil storage tank. This tank is filled by vendor from a truck and is attended at all times during filling operations.

Field storage area - .

- One, vented, 12 barrel, welded , carbon steel, above ground, storage tank containing gasoline.
- One, vented, 7 barrel, welded, carbon steel, above ground, lube oil storage tank.

These tanks are filled by vendor from a truck and are attended at all times during filling operations

Stabilizer compressor lube oil - A vented, 5 barrel, welded, carbon steel, above ground, lube oil storage tank. This tank is filled by vendor from a truck and is attended at all times during filling operations.

IBLEAP stripper tanks:

- 500 barrel, fiberglass, gun barrel (separator)tank. Tank has a One, high level switch which shuts the inlet valve.
- Two, 210 barrel, welded, carbon steel, untreated, water tanks. These tanks have high level switches that shut the inlet valve.
- One, 34 barrel, horizontal, welded, carbon steel, condensate storage tank.

- One, 210 barrel, welded, carbon steel, oil tank. This tank has a level transmitter and high level alarm
- One, 500 barrel, fiber glass, gun barrel (separator) tank.
- Four, 500 barrel, fiber glass, produced water, storage tanks. These tanks are equipped with level transmitters and high level alarms. Signals from these instruments are transmitted to the plant control room which is manned 24 hours a day.

Name of facility Indian Basin Gas Plant Operator Marathon Oil Company

- 7 -

Skimmer Basin: All tanks are equipped with thief hatches for vacuum/vent protection.

(Response to statements should be: Yes, No, or NA)

- C. Facility Transfer Operations, Pumping, and In-plant Process.
 - 1. Corrosion protection for buried pipelines:
 - (a) Pipelines are wrapped and coated to reduce corrosion Yes Cathodic protection is provided for pipelines if determined necessary by electrolytic testing.
 - (b) Electrolytic testing is not performed.

When a pipeline section is exposed, it is examined and corrective (c) action taken as necessary. Yes

2. Pipeline terminal connections are capped or blank-flanged and marked if the pipeline is not in service or on standby service for extended periods NA

Describe criteria for determining when to cap or blank-flange:

The plant is in continuous operation. Procedures for abandonment of pipelines will be developed when necessary.

3. Pipe supports are designed to minimize abrasion and corrosion and allow for expansion and contraction.

Describe pipe support design:

Pipe supports are steel stanchion with wear plated protection at points of wear and contact. Where large temperature swings are anticipated, expansion loops are installed.

4. Describe procedures for regularly examining all above-ground valves and pipelines (including flange joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces):

All equipment is observed in operation daily by plant operating personnel for signs of leakage or other deterioration. Such signs are reported and corrected via the plant work order system.

Where deemed appropriate, more rigorous inspection methods, such as ultra-sonic thickness testing or X-ray inspection, are conducted. (Records of these tests are on file at the Indian Basin Gas Plant.)

5. Describe procedures for warning vehicles entering the facility to avoid damaging above ground piping:

Signs and traffic barrier guards are installed where needed.

Name of facility Operator

Indian Basin Gas Plant Marathon Oil Company

Yes

No

(Response to statements should be: Yes, No, or NA)

D. Facility Tank Car & Tank Truck Loading/Unloading Rack Tank car and tank truck loading/unloading occurs at the facility.

(If yes complete 1 through 5 below).

Yes

No

- 1. Loading/unloading procedures meet the minimum requirements and regulations of the Department of Transportation. Yes
- 2. The unloading area has a quick drainage system.
- 3. The containment system will hold the maximum capacity of any single compartment of a tank truck loaded/unloaded in the plant. Yes

Describe containment system design, construction materials, and volume:

The truck loading facility is enclosed by an earthen dike designed to contain 110% of the volume of one transport truck. See attached drawing and calculation sheets for more detail.

 An interlocked warning light, a physical barrier system, or warning signs are provided in loading/unloading areas to prevent vehicular departure before disconnect of transfer lines.

No

Describe methods, procedures, and/or equipment used to prevent premature vehicular departure:

A ground wire system is in use, which will not allow the transfer pump to operate unless the truck is attached to both the ground wire and to the loading rack via the transfer line. If this circuit is broken, the transfer pump will shut down. In addition, the loading rack is equipped with an automatic shutoff, which activates when a pre-set volume passes through the LACT meter. This will limit the volume of condensate that could be leaked if premature truck departure would occur.

5. Drains and outlets on tank trucks and tank cars are checked for leakage before loading/unloading or departure.

Yes

Name of facility Operator

- 10 -

(Response to statements should be: Yes, No, or NA)

E. Security

1. Plants handling, processing or storing oil are fenced.	<u>No*</u>
 Entrance gates are locked and/or guarded when the plant is unattended or not in production. 	<u>NA*</u>
 Any valves which permit direct outward flow of a tanks contents are locked closed when in non-operating or standby status. 	Yes
4. Starter controls on all oil pumps in non-operating or standby status	are:
(a) Locked in the off position,	<u>No**</u>
(b) located at sites accessible only to authorized personnel.	Yes
5. Discussion of items 1 through 4 as appropriate:	
* The gas plant is attended 24 hours per day, each day of the year. The gas plant is fenced, the condensate storage tanks are outside the fenced area.	
** The LACT unit addressed in Item D. 4, has a key lock security system which requires an assigned key to allow loading trucks.	1
6. Discussion of lighting around the facility:	

Flood lighting and localized area lighting provided by Marathon Oil Company.

IGBP SPCC Plan Attachments Index

Section 1

A.u. 1 . 1	
Attachment 1	 Plan re-certification / modification record
Attachment 2	 API SPCC Plan Attachment #2
Attachment 3	 Commitment of Manpower, Equipment, and Materials
Attachment 4	SBU Oil Spill Contingency Plan (5 pages)
Attachment 5	SPCC Inspection procedure
Attachment 6	 SPCC Plan annual review form
Attachment 7A	 SPCC semi-annual facility inspection form, page 1
Attachment 7B	 SPCC semi-annual facility inspection form, page 2
Attachment 8	 Example of daily SPCC inspection documentation
Attachment 9	 Plant plot plan
Attachment 10	 Contact information. Marathon and contract
Attachment 11	 Marathon spill report form
. 7	
<u> </u>	

Section 2

Worksheets S	Secondary containment volume worksheets & drawings
--------------	--

Section 3

Maps	 Topographic Map
	 Road map to plant
	 Gathering system
	 Gundring system

Section 4

Documentation

Inspection records

SPCC Plan Review Record.

This SPCC plan will be periodically reviewed for accuracy in a timely manner as specified by current SPCC regulations. Any amendment to the SPCC plan shall be certified by a PE (Professional Engineer) within six months after a change in the facility design, construction, operation, or maintenance occurs which materially affects the facility's potential for the discharge of oil into or upon the navigable water of the United States or adjoining shorelines. Amendments and PE certifications can be added to the plan as an Attachment, as long as it is consistent with the spill prevention goals of the rest of the plan. The PE is not required to re-certify the entire plan again under these circumstances.

Review Dates	Title	Signature
	······································	
	······································	<u> </u>
		· · · · · · · · · · · · · · · · · · ·
		<u> </u>

SPCC PLAN, ATTACHMENT #2 OIL SPILL CONTINGENCY PLANS AND WRITTEN COMMITMENT OF MANPOWER, EQUIPMENT, AND MATERIALS

Secondary containment or diversionary structures are not practical for this facility for the following reasons (attach additional pages if necessary):

Secondary containment is not provided around the bases of selected storage tanks and process vessels since trapped volatile liquid will vaporize at atmospheric conditions and/or trapped hydrocarbons would create an extreme fire hazard in the plant area. All secondary containments in existence are capable of containing at least 110% the volume of the largest tank within.

A strong oil spill contingency plan is attached.

Yes

A written commitment of manpower, equipment, and materials is Yes attached.

SPCC PLAN COMMITMENT OF MANPOWER, EQUIPMENT AND MATERIALS

To: OPERATIONS SUPERVISORS

This is your authority to expeditiously commit manpower, equipment and materials necessary to arrest and contain and initiate cleanup of any harmful quantity of oil or hazardous material discharged from this facility. This authority may be delegated by yourselves to the person in charge of the facility to ensure that necessary activities are implemented as quickly as possible after a spill is noted.

R. V. Coleman Operations Superintendent Southern Business Unit

OIL SPILL

Page 1 of 5

ON LAND

All oil spills, regardless of the quantity shall be reported to the respective area Production Supervisor. The Production Supervisor and/or their designee shall in turn, use the flowcharts contained in the Reporting Section(s) of this is manual to determine if the spill is reportable.

If the spill is determined to be reportable the Production Supervisor will be responsible for notifying the proper federal/state and local authorities of the oil spill. They will also be esponsible for notifying the area's Production Superintendent and HES Department of the spill. If additional Marathon Oil Company (MOC) resources are needed to respond to the spill the Production Supervisor shall inform the Production Superintendent of this need. The Production Superintendent will be responsible for obtaining the additional MOC resources that are needed to respond to the spill (i.e. activating the Regions Incident Command System).

Gas leaks and gas line breaks shall be reported in the same manner as oil spills. <u>All</u> gas leaks (whether it is natural gas or casinghead gas) need to be reported to the appropriate state oil and gas regulatory agency. Venting of gas from tanks, pressure relief valves, etc. is not reportable under this section. However, these types of releases may be reportable under Federal regulations (CERCLA/SARA) or under the State Air Control Agency regulations. If the escaping gas or oil contains H_2S consult the applicable H_2S Contingency Plan for that facility for additional guidance.

In the case of an oil spill/gas leak from a producing well, a testing vessel, a tank, flow line or any other related oil field equipment, action should be designed to protect human life and control the spill as rapidly as possible. All steps should be considered carefully; however, timing of these steps should be altered to fit the individual circumstances.

- 1. Shut off source feeding the spill, analyze the type of spill and determine the best immediate action to be taken to contain the spill.
- 2. Obtain labor and equipment from the nearest source to construct a containment barrier as rapidly as possible.
- 3. If Item 2 is only a temporary measure and earth moving equipment is required, call out the necessary equipment from the source from which it is most readily available.
- 4. Employ the use of the most readily available absorbent material (straw, dirt, lost circulation material, etc.). When the location is a heavy clay soil, dirt will be ineffectual.

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

OIL SPILL Page 2 of 5

- 5. If practical, call for vacuum truck to pick up hydrocarbons.
- 6. Collect lighters and matches from personnel working in the area to assure an explosion or fire does not occur.
- 7. Restrict entrance to affected area by persons not involved in containment and cleanup operations.
- 8. Notify Production Superintendent of spill and action being taken. The Production Superintendent will notify the Region's upper management (Operations Superintendent, Region Production Manager, etc) of the spill.
- 9. Keep livestock from affected area and if practical, notify the farmer or rancher of the situation.
- 10. The Production Supervisor will notify the required regulatory agencies (National Response Center, TRRC, NMED, etc) of the spill.
- 11. Be aware of the presence of H₂S gas. Personal Protective Equipment (SCBA's) should be readily available if H₂S gas is known or suspected.
- 12. In the event the spill results in curtailing deliveries, the Production Superintendent will notify the crude oil purchaser.
- 13. The Duty Officer at the National Response Center must be notified immediately when a spill reaches "waters of the U.S.", or it appears a certainty that the spill will reach "waters of the U.S.".

ON INLAND WATER

All action should be designed to protect human life and control the spill as rapidly as possible. All steps listed should be considered; however, timing of these steps should be altered to the individual circumstances to best accomplish these objectives.

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

OIL SPILL Page 3 of 5

- 1. Any employee sighting a spill will immediately attempt to shut off the source feeding it.
- 2. The employee will notify his supervisor or the Production Supervisor who will in turn advise the Production Superintendent of the spill.
- 3. The Production Supervisor shall notify immediately the appropriate state and federal agencies (National Response Center, TRRC, NMED, etc).

4. The employee and/or Production Supervisor will furnish their best estimate of the following information concerning the spill.

- A. Location of the spill.
- B. Source and type of oil spilled.
- C. Is the source still feeding the spill?
- D. Area covered and volume.
- E. Direction of movement
- F. Speed of movement.
- G. Currents (if applicable).
- H. Estimate of the area likely to be affected.
- I. Other action taken.
- 5. The Incident Commander or his/her designated representative shall keep a daily log of response activities. The log book shall be bound, not loose leaf. Entries shall be dated, time and signed.

A. MINOR SPILLS

- 1. If the spill is minor (5 to 25 bbls) and a boom is not immediately available, sorbent material should be spread on the spill and collected afterwards.
- 2. Attempts should be made to cleanup the shoreline and recover as much oil as possible

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

OIL SPILL Page 4 of 5

B. MAJOR SPILLS

In all probability, a major spill (greater than 25 bbls) will initially require two<u>basic</u> efforts: 1) stop the leak, and 2) contain the spill. Stopping the leak may require other outside services such as well control specialists, a drilling or workover rig, pipeline repair crew, etc. Requirements should be determined and action initiated as soon as possible.

- 1. To contain the spill, if a containment boom is readily available, order it out immediately and commence skimming operations as soon as possible.
- 2. If a contract or coop-containment service is to be employed, it should be mobilized without delay.
- 3. If weather and water conditions are such that the time required to implement containment will permit the spill to spread beyond possible containment; sorbent material should be spread on the spill.
- 4. Shoreline work sites for each facility shall be pre-selected, marked as such and made known to the employees who will be involved in spill control activities for the facility.
- 5. In shallow water, containment should be attempted by boom and the material handharvested.
- 6. If sorbent material has been employed, the local air control agency should be contacted for permission to burn the collected material.
- 8. When applicable, aircraft should be employed to discourage waterfowl from staying in the spill area.
- 9. A photographic record of the spill movement, containment and cleanup operations, damage to property, fish kills, efforts to disperse waterfowl, waterfowl kills, and other relevant actions should be kept.

Attachment 4

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

OIL SPILL Page 5 of 5

CERT REPORTING REQUIREMENTS

In certain cases a spill or release may trigger reporting requirements under Marathon's Corporate Emergency Response Plan. Refer to the section on CERT to make this determination.

REGULATORY AGENCIES TO BE NOTIFIED

The flowcharts contained in the State and Federal Reporting sections provide guidance for determining when a spill is reportable and which regulatory agencies need to be notified. Phone numbers for all of these agencies are listed in the section entitled, "Agency Information."

DEFINITION OF WATERCOURSE OR WATERS OF THE U.S.

The term watercourse is defined as any lakebed (playa), gully, draw, streambed, wash, arroyo, or natural or man-made channel through which water flows or <u>has flowed</u>. An arroyo, which is dry most of the time but flows after a heavy rainstorm is, considered a watercourse. A spill into the arroyo when it is dry is a reportable spill to the National Response Center. Two examples of a watercourse in this Region are Rocky Arroyo behind the Indian Basin Gas Plant and the arroyo's located in Discovery Canyon in the Yates Field. Both happen to drain into the Pecos River. If there is any doubt concerning whether or not a spill has entered a watercourse contact should be made with the Environmental and Safety Department for a final determination.

CERCLA/SARA REPORTING REQUIREMENTS

In some cases a spill may trigger reporting requirements under EPA's CERCLA/SARA regulations. Reference the Federal section of this manual to determine when a spill is covered by these reporting requirements.

EMERGENCY RESPONSE PLAN SBU oil spill response plan.doc REVISED 3/8/99 JWS/FDS

IBGP SPCC PLAN INSPECTION PROCEDURES

Eddy County, New Mexico

- As part of his normal routine, the plant operator(s) will visually inspect the plants production facilities for accumulations, leaks of oil or other hazardous substances. The operator must perform the inspection at least once per shift.
- 2 The production facilities to be inspected will include but are not limited to lines, vessels, valves, pumps, sumps, ditches, containments, and miscellaneous fittings.
- 3. In the event that an accumulation or leak is discovered, the operator shall initiate the actions detailed in the current SPCC Plan.
- 4. The operator shall record his daily inspection on the plant daily reading sheets.
- 5. Annual SPCC plan and semi-annual SPCC facility inspections will be performed by the plant superintendent, or their designee, using the attached inspection forms. Completed inspections forms will be filed with this plan.

C.M. Schweser Indian Basin Gas Plant Superintendent

R.V. Coleman Indian Basin Operations Superintendent

8/16/01

Attachment 5

Indian Basin Gas Plant Annual SPCC Plan Review Record

Instructions:

Each inspection item listed below should be checked with the most appropriate answer (Y)es or (N)o. If the inspection item requires additional work to complete, note it in the comment section.

Note; the IBGP semiannual facility inspection should also be performed.

Work order(s) should be written for all corrective actions noted during review or inspections. Work orders should written to show requested by SPCC. Include work order numbers or copies of work orders in this report. The Inspector must initial each item inspected and print their name on each form. The Marathon Supervisor responsible for the facilities being inspected must sign all forms and ensure all necessary corrections are completed.

Plan Review	Y	N	Comments
*Has there been a change in any facility covered by the plan which materially affects its discharge potential to navigable waters?			(See note below)
Has the plan been PE certified within the last 3 years or documentation attached affirming that re-certification is not required?			Note: If the plan is still in effect a originally prepared, this may be documented on a signature page and attached.
Are there three years of inspection records on file?			
Are facility plot plans attached with drainage directions?			
Has the spill history been reviewed for NRC reportable spill trends?			Note: all spills are investigated and actions to correct are tracked to completion.
Has any facility had 2 NRC reportable spill within 12 calendar months or an NRC spill greater than 1000 gallons of oil?			Note: If Yes, was the SPCC plan submitted to the EPA Regional Administrator?
Is an Emergency Contingency Plan available?			
Is a written commitment to manpower, equipment and material attached? Current?			
Is Substantial Harm self determination attached?			
Is drainage direction shown on plot plans?			
Is a topographic map of the area attached or on file?			
Does PART I, #7 of plan accurately describe spill potential and direction?			
Are all oil storage tanks compatible with material stored?			
Have there been any facility modifications which affect the dike size requirements?			
Are daily visual inspections being performed and documented by operators?			
Are oil tanks of adequate capacity to prevent overfilling?			
Is there adequate vacuum/pressure relief protection on oil tanks?			
Have all previously written SPCC related work orders been closed?			

Printed Name

Signature

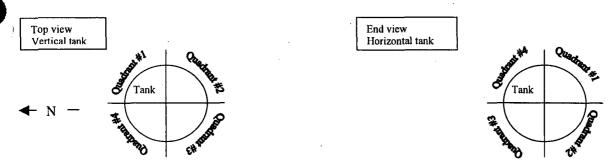
Inspector

Date Inspected

Printed Name Plant Superintendent Signature

Date Accepted

IBGP SPCC Facility Inspection


Page 1 of 2

		C	Comments Code:	
	Tanks	Tank foundations	Dikes	Piping / Valves
T1	Drip Marks	TF 1 Cracks	D1 Dike damaged.	P1 Droplets of stored material
T2	Discoloration	TF2 Discoloration	D2 Dike material not impervious	P2 Discoloration
Т3	Puddles containing spilled or leaked material	TF3 Settling	D3 Dike not large enough to contain current potential oil volume.	P3 Corrosion
T4	Corrosion	TF4 Gaps between tank and foundation	D4 Vegetation growing in dike.	P4 Pipe supports OK?
T5	Cracks	TF5 Damage caused by vegetation roots	NOTE: There should be NO drainage valves from dikes.	P5 Bowing of pipe between supports
				P5 Evidence of stored material seepage from valves or seals
				P6 Valve glands and bodies OK?

General inspection items to look for:

citer ar map			
G1.	Drip pans empty ?	G5.	Drainage ditches empty?
G2.	Lube oil tanks/drums in secondary containment?	G6.	Netting in place & in good condition (if applicable)
G3.	Chemical Tanks/Pumps in secondary containment?	G7.	Sumps empty?
G4.	Drain valves plugged?	G8.	Localized dead vegetation

Tank inspection guide. For vertical tanks, wall inspections should be described by quadrant. Start quadrant #1 on the North side of tank. For horizontal tanks start description at the top, include direction of view (i.e. looking west). Number quadrants in a clockwise rotation.

Does Facility Drawing Represent Current Facility Layout & Direction of Drainage? Yes/No_

Inspector Name Printed Signature Date Complete

 Tank Description
 Comments

 Generator Turbine Oil
 Transfer Tank

 Attachment 7A

Created - 6/28/01 Revised -

IBGP SPCC Facility Inspection

Outlet Compressor Lube Oil		 					<u></u>
Field Storage Area		 	· <u> </u>		·	<u> </u>	· · · · · · ·
Stabilizer Compressor Lube Oil		 					
IBLEAP Stripper Tank Area		 	<u></u>			:	
Skimmer Basin	· · · · · · · · · · · · · · · · · · ·	 					
Recompressor Lube Oil		 					
SWD Pump Lube Oil	·····						<u>.</u>
Condensate tank 5B		 		<u> </u>			
Flare Drum Bullet		 <u> </u>					
Sales Condensate Knockout Bullet	<u></u>	 					
Sour NGL Surge Bullets (3 ea)	· · · · · · · · · · · · ·	 ····· -					<u></u>
LACT: Grounding and Auto- shutoff		 			<u></u>		
General Area Piping and Equipment		 					
				· · ·			
		 				<u> </u>	
		 					_*

Superintendent Name Printed Signature

Date Accepted

Work orders shall be written for any item requiring correction. Work orders will be requested by **SPCC**. The IBGP work order system will serve to track action items to completion. Attach a copy of SPCC work orders generated by this inspection to this report. File with the SPCC plan.

Attachment 7B

INDIAN BASIN GAS PLANT DAILY LOG SHEET #5

) r

Cryo Plant Readings				Date On:			Off:		
ryo-Temperatures.	Normal Operating Range	3 AM.	6 AM	9 AM	12 - N	3 PM	6 PM	9 PM	125 M
Warm G/G Inlet Gas In	80 - 115 F								
Warm G/G Inlet Gas Out	65 - 80 F								
Warm G/G Residue Gas Out	80 - 100 F								
Cool G/G Inlet Gas In	65 -80 F								
Cool G/G Residue Gas In	-505 F								
Cool G/G Residue Gas Out	50 - 80 F								
Side Reboiler Inlet Gas In	5 - 25 F								
Side Reboiler Inlet Gas Out	-10 - 15 F								
Side Reboiler Draw	-6540 F								
Side Reboiler Return	0 - 25 F								
Cold G/G Inlet Gas In	-10 - 15 F								
Cold G/G Inlet Gas Out	-11090 F								
Cold G/G Residue Gas In	-145120 F								
Cold G/G Residue Gas Out	-3520 F								
Ratio Control Valve Out	-150135 F								
Exp Compressor Discharge	125 - 140 F								
Expander Outlet	-10575 F								
Bottom Reboiler Draw	40 - 55 F								
Bottom Reboiler Out	65 - 90 F								
Trim Reboiler Return	70 - 105 F								
Product to MAPCO	70 - 105 F								

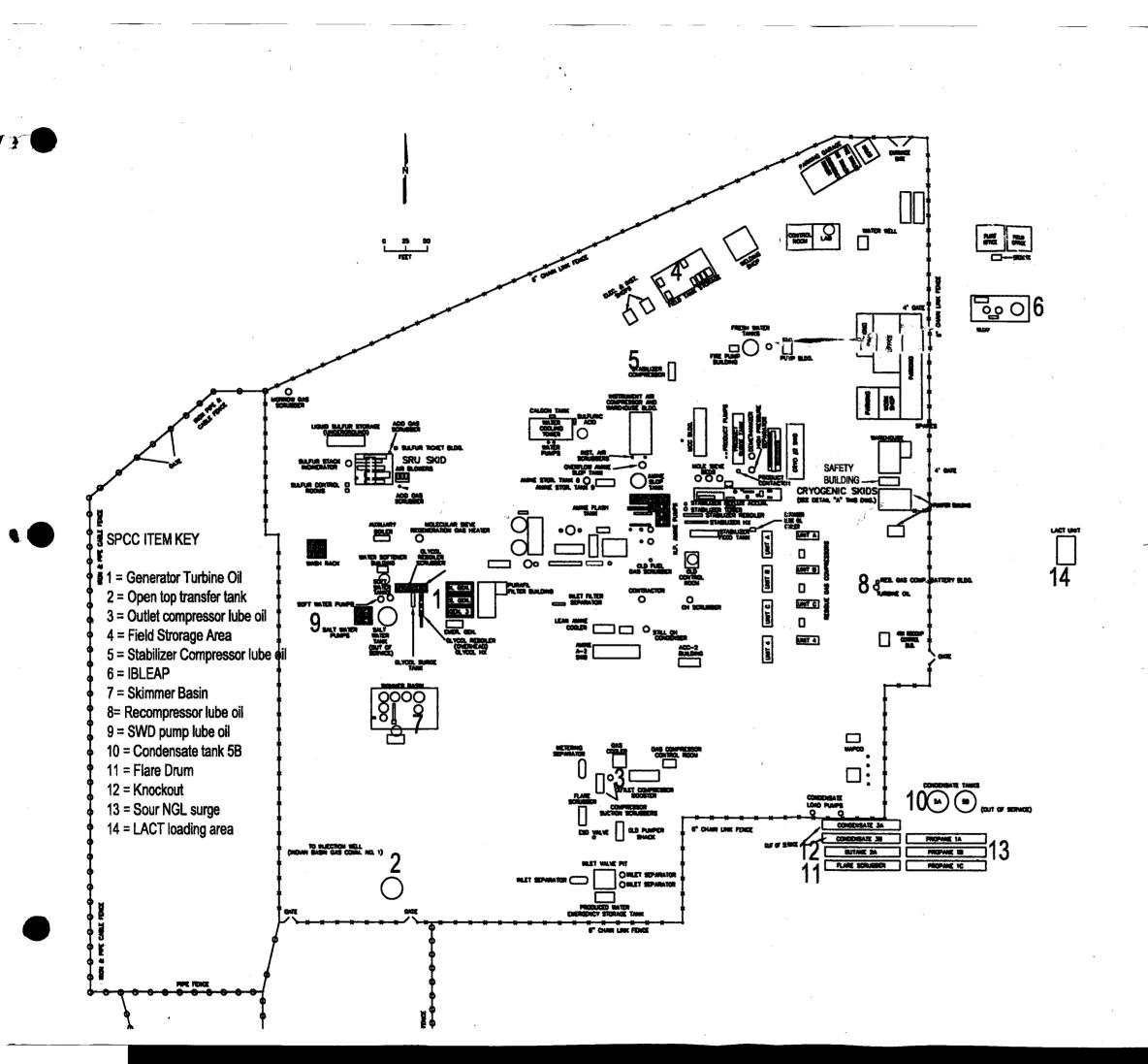
Ţ.

Dehydration/Regeneration System Readings

	Normal Operating							and the low plants of the second	
	Range	3 AM	6 AM	9.AM	12+N	- 3 PM	56 PM -	9 PM	12 - M
Filter Separator delta P	55 - 85 "H2O								
Dehydrated Gas Dewpoint	-12080 F								
Dust Filter delta P	55 - 85 "H2O								
Dehydrated Gas Flowrate	120 - 180 mmscfd								
Regeneration Gas System			-1. NA -1	Contraction of the second	de la com		and a state of	-4.1 State	1
Regen Gas Flow	15 - 18 mmscfd								
Regen Bed	A, B or C								
Heating or Cooling	LH, HH or C								
Regen Gas Temperature	80 - 580 F								
Regen Cooler Outlet Temp	80 - 120 F								
Regen Scrubber Pressure	850 - 875 psig								
Regen Compressor	Circle One	E or W	EorW	EorW	E or W	EprW	E or W	E or W.	Ebrw
Oil Pressure	18 - 25 psig								
Oil Temperature	120 - 150 F								
Suction Pressure	850 - 875 psig							1	
Discharge Pressure	925 - 950 psig							1	

COMMENTS DAYS

I have inspected the equipment and find no leaks or other hazardous conditions


Operator Signature

Operator Signature

COMMENTS NIGHTS

11

I have inspected the equipment and find no leaks or other hazardous conditions

MCR EMERGEN RESPONSE PLAN

1

INDIAN BASIN PRODUCTION AREA ICS STRUCTURE

Position	Office	Pager or	Mcbile/	Bone	<u> </u>	Redio
	LAIDOIG	(Celteler (2))	Celuist]712QIG	19 RZWODEF	Number
Incident Commander						
Bob Coleman	(505) 457-2621 (Ext 103)	(505) 361-0898		(505) 628-0049	40	1
Operations Section						
Dwight Brodbeck * Field •	(505) 457-2621 (Ext 131)	(505) 365-7253		(505) 887-9097	24	36
Tom Breninger*IGBP	(505) 457-2621 (Ext 104)	(505) 361-7331		(505) 885-5172		2
Jerry Harrison	(505) 457-2621 (Ext 121)	(505) 365-5864	(505) 365-5863	(505) 746-6754	24	e
Timmy Klein	(505) 457-2621 (Ext 108)	(505) 361-5606	(505) 365-5518	(505) 484-3675	24	13
Tim Winters	(505) 457-2621 (Ext 120)	(505) 364-1910	(505) 365-7589	(505) 746-4662	24	4
Planning Section						
Richard Aves	(505) 457-2621 (Ext 105)	(505) 361-8258	(505) 365-8258	(505) 885-1990		
Monty Corbett	(505) 457-2621 (Ext 140)	(505) 365-7607	(505) 361-7607	(505) 628-3298		34
Logistics Section						
James Faught*	(505) 457-2162 (Ext 151)	(505) 361-8260	(505) 365-8259	(505) 392-6575	24	32
Sharky Morgan	(505) 457-2621 (Ext 111)	877-210-6841	(505) 365-7618	(505) 745-3327	24	16
Bruce Waldrip*	(505) 457-2621 (Ext 107)	(866) 499-7641		(505) 457-2252	24	13
Safety						- Anno
Pat Reynolds*	(505) 457-2621 (Ext 139)	(505) 365-4871	(505) 365-7514	(505) 748-1472	40	Handheld
Jim Wilson	(505) 457-2621 (Ext 106)	(505) 365-4257		(505) 746-6481	40	Handheld
Jack Ivy	(505) 457-2621 (Ext 138)	(505) 365-4859	(505) 365-8442	(505) 748-2763	24	17
Public Affairs						
Pat Bowen	(505) 457-2621 (Ext 133)	(505) 365-8422	(505) 365-8411	(505) 748-2885	24	26

* Denotes Command Staff/Section Chief "Lead" if applicable.

Denotes Alternate Incident Commanders

EMERGENCY RESPONSE PLAN – Note! This document is maintained electronically. The current document can be viewed at; N:/PERMIAN-AT\Shared Access\Indian Basin Contacts\IB_ICS.doc Revised 11/9/04 PJR

IB MARATHON EMPLOYEES

PRINTED 12/6/2004

|--|

A

ł

Г

First	Last	Spouse	Extension		Cell Phone 2	Pager Numbe
Keith	Anderson	Jo	156	· · · · · · · · · · · · · · · · · · ·	(505) 361-7592	
Shawna	Austin	Lee	102			
Richard	Aves	Katie	105			
Winston	Ballard	Jan	128	<u>``</u>	(505) 361-8000	866-499-7610
Jimmy	Barnett	Linda	110			866-499-7623
Javier	Berdoza	Jessica			(505)365-4531	
Pat	Bowen	Terri	133		(505) 365-8422	
Gerald	Brasfield	Lauri	110		(505) 746-7593	866-499-5220
Tom	Breninger	Pat	104	<u> </u>		
Dwight	Brodbeck	Brenda	131			
Robert (Bob)	Coleman	Kim	103			
Monty	Corbett	Barb	140		(505) 361-7607	
Archie	Crossland	Lisa			(505) 361-9241	
Larry	Davis	Vickie	110		(505) 703-2323	866-499-7619
Dan	Dowhower	Melinda			(505) 365-4459	
James	Faught	Norma	151			
Kenny	Garrett	Debbra	114			
Dolores	Gonzales				(505) 365-4459	
Brady	Hamilton		142	<u> </u>	`	
Jerry (Bubba)	Harrison	Lynn	121		(505) 365-5864	
Jack	lvy	Gayla	138		(505) 365-4859	
Morris	Jones	Rhonda		(505) 365-4350		866-499-7639
Clint	Kirkes	Stephanie	110			866-499-7620
Timmy	Klein	Tammy	108		(505) 365-5606	
Al	Leyva	Corina			(505) 365-4471	
Wendell	Malone		110			
Steve (Sharky)	Morgan	Judy	111			877-210-6841
John	Norris	Becky	146			866-499-7612
Pat	Reynolds	Cyndi	139		(505) 365-4871	none
David	Rouse	Karen	110			866-499-7624
Margie	Ruiz		101			
Tito	Salmon	Jessica		(505) 365-7623	(505)365-4471	
Donna	Suter	Todd	130			
Joe	Trevino	Terry	127			866-499-7629
Reggie	Turner	Lanette	110			
Bruce	Turpin	Debora	110	······		866-499-7638
Dario	Velasquez	Delma	110			866-499-762
Bruce	Waldrip	Jan	107			866-499-764
Charlie	Williams	Beth	142		(505) 365-4864	
Don	Williams	Paula	117		(505) 361-5586	
Jim	Wilson	Dorothy	106			
Tim	Winters	Rita	120			364-1910
Dominic	Zelnik	Jess	115	(505) 365-7652	(505) 361-8216	
	e) 1-866-662-237					
Field Radio Fre	quency (repeater	r) 451.650 MHz rec	eive, 456.650 MHz t	ransmit, tone 127.	3 Hz	
Plant Radio Ero	quency 462 525	MHz (receive and t	ransmit) tone 127.3	Hz		

inted 1 2004	pdated 3/19/03	
Printe	Upda	

Note: Number in bold is emergecy/after hours number

									Address
		i		Main Phone	Secondary			Home Phone	
First	Last	Title	Division/Area	Number	Number	Cell Phone 1	Fax No.	Number	
				-					400 North Pennsylvania
Robin	Smith		Roswell	(505) 622-6001			(505) 622-0943		Avenue, Roswell NM
Emergency Number			District 2	(505) 746-4302					
Field Rep On-Call			District 2	(505) 939-8622 Pager number	ager number				
	Gum	District Supervisor	District 2	(505) 748-1283 ext 102	ext 102	(505) 626-0824		(505) 324-1387	
Bryan	Arrant	Geologist	District 2	(505) 748-1283 ext 103		(505) 626-0830			
	Barton	resentative I	District 2	(505) 748-1283 ext 109		(505) 626-0812		(505) 748-2259	
Gerry	Guye	Field Representative	District 2	(505) 748-1283 ext 105		(505) 626-0843		(505) 887-3254	
Phil	Hawkins	Field Representative	District 2	(505) 748-1283 ext 106	ext 106	(505) 626-0836		(505) 746-9272	
Mike	Bratcher	Compliance Officer	District 2	(505) 748-1283 ext 108	ext 108	(505) 626-0857			
			Santa Fe Division Offices,						
Main Office	İ		District 4	(505) 476-3440				(505) 466-0134	
Ed	Martin		Santa Fe Division Offices	(505) 476-3492				(505) 685-4056	
									1220 Saint Francis,
Roger	Anderson		Santa Fe Division Offices	(505) 476-3490				(505) 471-2017	(505) 471-2017 Santa Fe, NM 87505
			District 3, Roswell	(505) 827-9312					
			Sub-District 3, Roswell	(505) 622-7200		call this number	call this number for dispatch to our area)	ur area)	
			Carlsbad	(505) 887-6544		(505) 369-2814			620 E. Green, Carlsbad,
			National Response Center	(800) 424-8802					
			Air Quality Bureau	(505) 827-1494					
									NM DPS Emergency
									<u>Management</u>
Noto: in NM the CED/	to the State Del			(EOE) 077 0476					
	LIS INE STATE POI	lice		9716-128 (cnc)					
Joel	Arnwine		Eddy County	(505) 885-2111	(505) 887-9511	(505) 369-3404	(505) 887-9511 (505) 369-3404 (505) 887-1039 (505) 885-8009	(505) 885-8009	
New Mexico OSHA Office	ffice			(505) 827-2850					

To view the most current information go to; O:/Permanent/Indian Basin Contacts/All IB contact Info List.xls

ļ

A

Service Provider	Description	Main Phone	Contact Person	
General Emergency	Police, Fire, Ambulance	911		
	To reach 911 operator in			
Carlsbad Police, Fire & Ambulance Service	Carlsbad	(505) 885-2111 +0		
Artesia General Hospital	Medical Services	(505) 748-3333		
Artesia Police Dept.	Law enforcement	(505) 746-5001		
Carslbad Fire Dept.	Fire Control	(500) 885-3124	Mike Reynolds (Chief)	
Artesia Fire Dept.	Fire Control	(505) 746-2701		
Happy Valley Fire Dept.	Fire Control	(505) 885-1982		
NM State Police	Sub-District 3, Carlsbad			
NM State Police	District 3, Roswell	(505) 622-7200		Dispatcher for our area
Eddy County Sheriff	Law enforcement	(505) 887-7551	······	manned 24/7
Eddy County Sheriff	Law enforcement	(800) 658-9942		

To view the most current information go to; O:/Permanent/Indian Basin Contacts/All IB contact Info List.xls

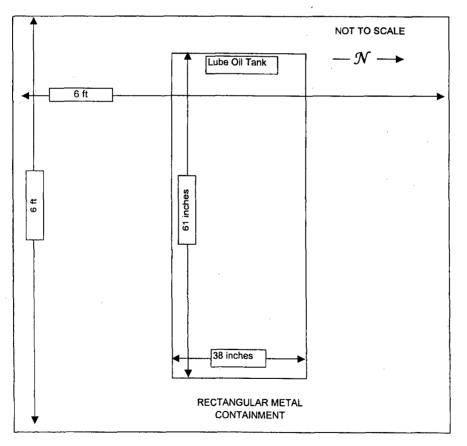
11 1

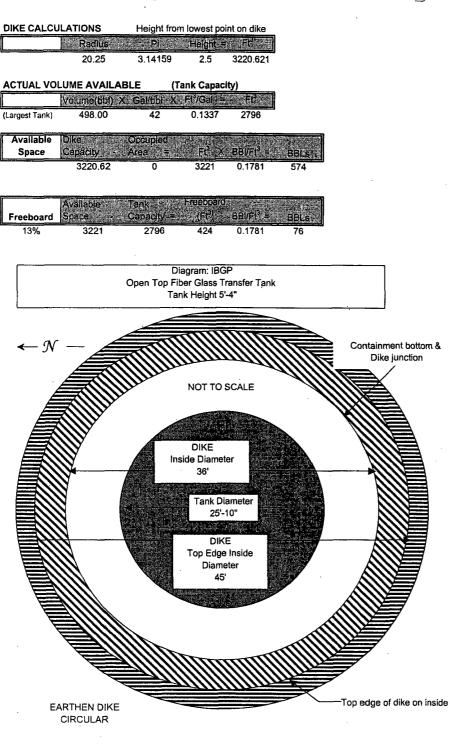
Other Services

Facility Name	Address	City		Phone Number	Services
Stevens Motel	1829 S. Canal	Carlsbac	1	(505) 887-2851	Lodging, Food, Laundry, Meeting Rooms
Comfort Inn & Suites	2429 W. Pierce	Carlsbad		(505) 887-1994	Lodging
Holiday Inn Express	2210 W. Main	Artesia		(505) 748-3904	Lodging
Best Western Pecos Inn	2209 W. Main	Artesia		(800) 676-7481	Lodging, Food, Meeting Rooms
Denny's Restaurant	810 W. Pierce	Carlsbad	Ī	(505) 885-5600	Food
Furr's Family Dinning	901 S Canal St	Carlsbad	1	(505) 885-0430	Food
K-Bob's Steakhouse	601 S 1st St	Artesia		(505) 748-2208	Food
LaFonda Restaurant	206 W. Main S .	Artesia		(505) 746-9377	Food, Meeting Room
,					· · · · ·
Catering- Granny's Chuckwagon	3204 W. Main	Artesia		(505) 746-3209	Food Catering
Domino's Pizza	302 S. 1st	Artesia	Î	(505) 746-0030	
			-		
Carlsbad Civic Center	4012 Nationals Prk Hw	Carlsbac	1	(505) 887-9004	Meeting Rooms
Carlsbad Country Club	1700 Orchard Ln.	Carlsbac	1	(505)885-3926	Meeting Rooms
Artesia Country Club	2701 W. Richey	Artesia		(505)746-6732	Meeting Rooms

MARATHON OIL COMPANY NEV EXICO SPILL AND RELEASE RELAT

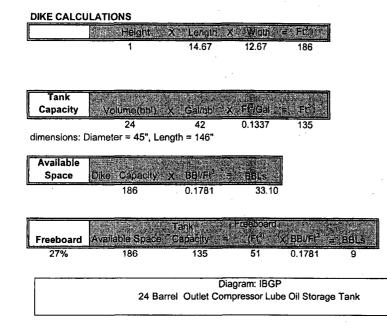
This form to be completed for any spill or release

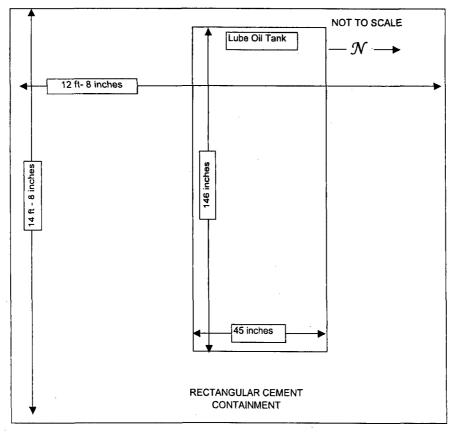

Ð		elease/Spill Date Estimated Time Mo Day Yr of Release/Spi										
		1	am/p		Oi		110104	Bbl	+	Bbls		
	, Was Spill Con	tained?			Wat			Bbl		Bbls		
	Yes D		Other (please list) —					Bbl	+	Bbis		
		Basin		2.4	Tota	al	0	Bbl		Bbls		
	GAS RELE		M	SCF			L		1			
			······································							·		
	hit letter or footages,						RELEAS		for any the s		<u> </u>	
Unit Le	tter Section	Towns	hip Range F	eet ir	om the	Nortr	h/South Line	ree	t from the	East/West Lir	ne	County
Field		1	Lease No.			L				V	Vell:	······································
	Name:					F				·	-	
1 aciiity												
			<u> </u>	C	AUSE	DF R	ELEASE					
i v	uipment Which .eaked		pe of Failure ausing Leak		Lo	catior Leak			Caus Failure			Probable Method of Repair
			reak		Shel				Joint Failur			Replaced
🗌 не	ater Treater		racked		Botte	m			Internal Co	rrosion		Clamped
	parator		ole			nection			External C			Repaired
	/KO		lugged plit		Asso	ociated	Piping		Improper A Freezing	plication		Coated Other (specify)
_	uffing Box		triker Plate Missing			tube			High Temp	erature		Other (specify)
	cess Piping	1	verfill		Gas	ket			Over Press			····
Otł	ner (specify)		ther (specify)		🗋 Man				Electrical F	ailure		Return to Service
					Noz:	zie (spe	ecify)		-	ine Pressure		
Flowlin			Flowline		Sear		· · · · · · · · · · · · · · · · · · ·		Excessive Process Si			
L	ried				Wel				Maintenan			
	rface	Ľ	Int. Coating				•		•	ation Failure		
Size:			Wrapped		•				Vibration/I		L	
-		C	_				· · · ·		Human Er	or (specify)		
		C	Fiberglass						Other (spe	cify)		
Cause	of Spill or Release	e (Detaileo	Description)					-				
								<u>k</u>				<u> </u>
Descrip	otion of Spill Area ((proximity	to water course, su	rface	e water, p	enetra	tion depth, d	directio	n of flow, c	limensions, et	c.)	
·	·	<u> </u>					<u> </u>					
	·····										(inclu	ude diagram)
Action	taken to contain &	begin cle	anup spill:								•	
												<u> </u>
Action	taken to prevent re	ecurrence	:									
							······································				שי ∧ידי	
Was re	commendation to	prevent r	ecurrence entered in	n to a	a Tracking	g Syste	em?	Yes [] No	_	= A1	TACHMENT 1
											-	

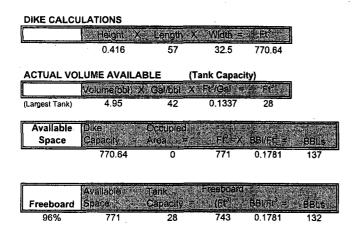

] Sandy	Conditions	Clay	Weather C Raining	ondition:	s	🗍 Wind)a	nd Use Cultivated Grazing	Rural Vacant	🗌 Residential
10W & W	HEN WAS SPI	LL/RELEAS	E DISCOVEREI);	<u></u> .			f.		
\						<u> </u>	:	am/pm	DATE:	
erson Initial	ting Report / Date		Supervisor	Review / Da	ate			s	Supervisor Re	view / Date
)istributio	n - Original :	Environ	mental and Safe	ty Depart	ment (in N	(idland)				
	Copy:		Basin Asset Tear				_			
		Field Of	fice Spill Report	File			_			
		HES Te	chnician							
Check if Notified			ION OF REGUL				R PERTI			am/pm
	Person Cor Comments:	tacted:	(Anesia 746-126		-	Report N	lumber:			
	OCD Enviro Person Con Comments:	tacted:	reau		76 - 3490	Date: Report N	lumber:	Time:_		_am/pm
		tacted:	isbad 887-6544) (Fa			Date: Report	Number:	Time: _		am/pm
	National Re Person Cor Comments	tacted:	ter	(800) 4	424-8802		Number:	Time:		am/pm
	•	tacted:	esponse Team		29-7118	Date: Report N	lumber:	Time:	······	_am/pm
	Environmer Fax report Person Cont		ety Dept	(915) 6	87-8305	Date:		Time:		am/pm
	Other:					Date:		Time:		am/pm

		Not in Water course		In Water course		Flare	Natural			Results	
		Oil	Water	Oil	Water	Vent H2S	S SO2	Gas	Blowout	Chemical ¹	in Fire
001	D (district office)	>25 E	Bbls	Any A	mount			>500 mcf	All	> RQ	YES
OCD	(Env. Bureau)			Any A	mount						
	BLM	>100 Bt	ols & ³	Any A	mount			>500 mcf	Yes		Note 2
	NRC	Note	9 4	Any A	mount	Note 4	Note 4	N/A	Note 4	> RQ	Note 4
	LEPC					> 100 Lbs	N/A	N/A	N/A	> RQ	
	CERT	> 500 Bbl	N/A	> 50 Bbl	N/A	> 300 Lbs	N/A	N/A	All	> 3 x RQ	

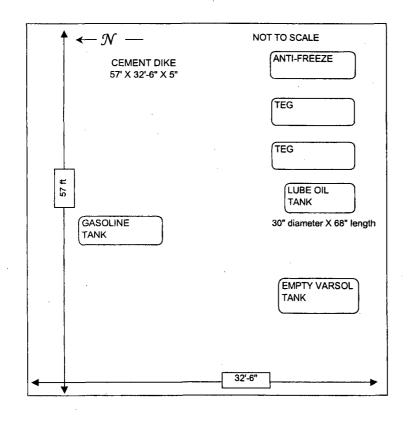
Note 1 - RQ = SARA Title III or CERCLA Reportable Quantities. Note 2 - YES if in a sensitive area or >100 Bbls or >500 mcf Revised 1/11/01 Note 3 - YES if not entirely contained in secondary containment. Note 4 - YES for any spill, release, or fire in a sensitive area.

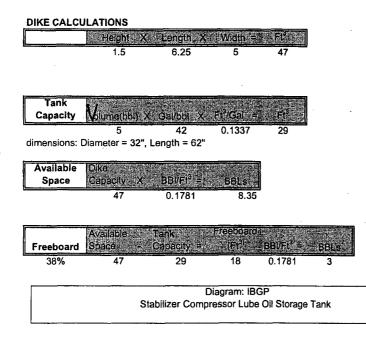

	Height X	Length X	t:Width: ÷	EP Dia	
	1.4	6	6	50	
Tank	1 Tin Sec.				
Capacity	Volume(66) X	Gal/bbl X	- Ft7/Gal =	e, Ft'-	
	7.13	42	0.1337	40	
	Diameter = 38", Le				
Available Space	Dike Capacity	X BBI/Ft ^a =			
Available		<u>.</u>	BBL 5 8.98		
Available	Dike Capacity	× 881/Ft ³ ≍ 0.1781 Tank	8.98	BBV/FV [*] = ¹ B	Bils
Available Space	Dike Capacity 50	× 881/Ft ³ ≍ 0.1781 Tank	8.98	BBI/Ft ² = 2 B 0.1781	B1 2




Transfer Tank

Located approximately one-half mile north west of Rocky Arroyo.





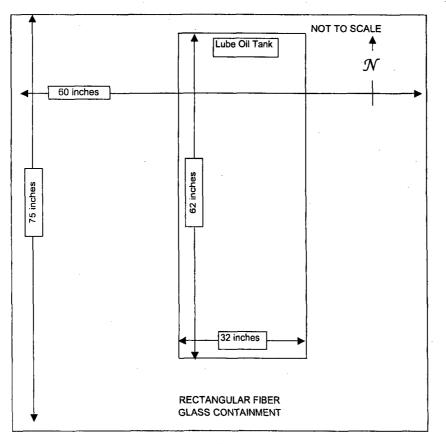
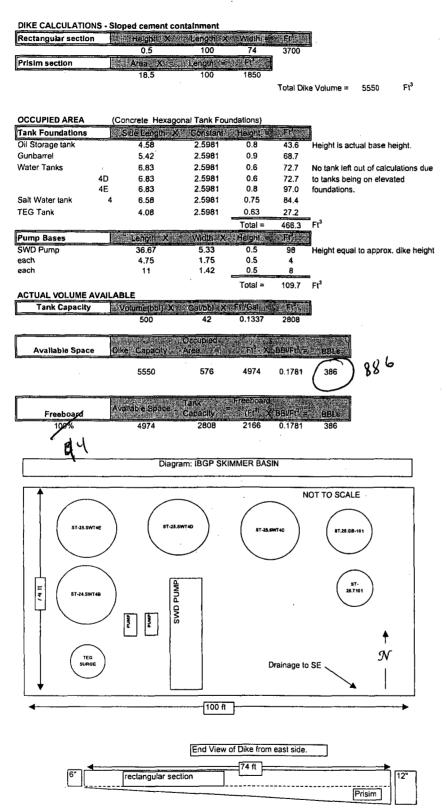
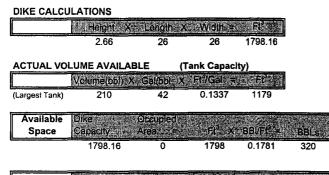
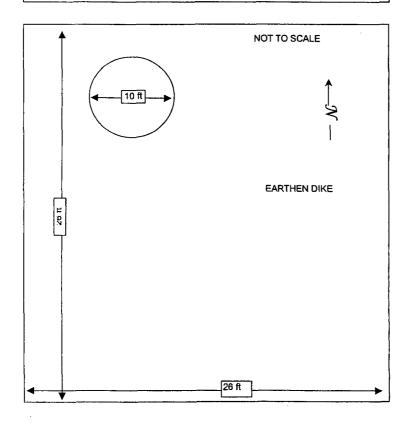


	Diagram: IBGP	
•	FIELD STORAGE AREA	

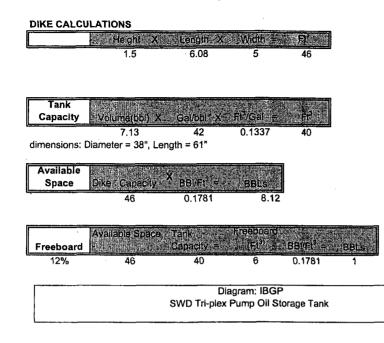


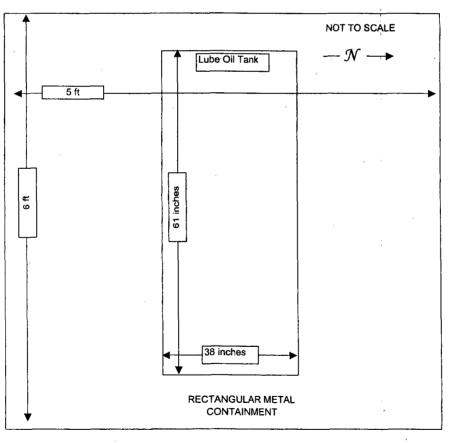

	Helphi X	Length	Width =	< Floren		
	1.08	80	36	3110.4		
	Number of		2 .			
Canks Untreated water East	Tanks* X	91 X 3.14	Kedius") 5	Height = 1.08	85	
Untreated water West		3.14	5	1.08	85	
De pol equat cincle tools of l				•	170 to	al
Do not count single tank of la Air Strippers	Length X	Width X	Height =	FR-		
East	6	3	1.08	19.44		
West	6	.3	1.08	<u> </u>	total	
					ioidi j	
ACTUAL VOLUME AV			ank Capac	ity) Ft ³		
Largest Tank)	Volume(bbl) X 500	42	0.1337	2808		
Available Space	Dike Capacity	Occupied Area	= Fr [‡] x	BBI/Ft ³	- BBI's	
	3110.4	209	2902	0.1781	517	
<u> </u>		Tank			a and the second	
Freeboard 3%	Space - 2902	Capacity = 2808		•BBI/FI* =-	BBLs	
3%	2902	2000	94	0.1/01	17	
	Diagram: IB	LEAP Reme	diation Proj	ect Treatme	nt Area	
				,		
A				·		
Condensate	Storage Tank) SCALE	EAR	THEN DIKE	
	·····					
	Untreated	1154	reated	. <u>.</u> .		
· · · ·	Water		Vater		Shotgun	
· .	210 bbl	21	0 bbl		500 bbl	
r-L-1	\frown	- /	\frown	/		\backslash
36 ft	$^{\prime}$	((
	< <u>10 ft</u> →	└ (◀[]	10 ft →		- 15.5 ft	-
						/
					\checkmark	•
			1			
	Air Stripper	Air Stripper				
15	Sunpper I		4			

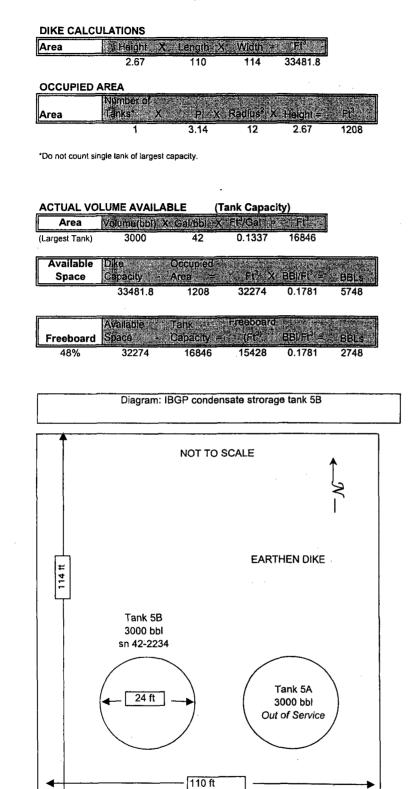
Drainage to SE

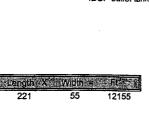


Prisim Area = .5 ft X 74 ft / 2 Prisim Volume = Area X Width


Freeboard	Available Space	Tank Capacity =	Freeboard (Ft ³)	BBI/Fil	BBLs
34%	1798	1179	619	0.1781	110


Diagram: IBGP 210 Barrel Recompressor Lube Oil Storage Tank ST-15.21.2102

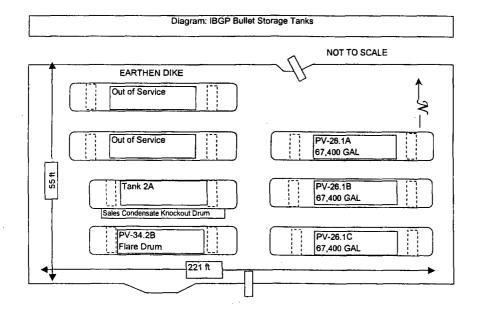



Located approximately one-half mile north west of Rocky Arroyo.

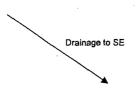
OCCUPIED AREA			(Concrete Ta	ank supports)	
Tank supports		Length	X Width X	Height +	FI 1
each		11	1.42	1	16
number of		14			
То	tal Area =	218	Ft ³		

221

Height X

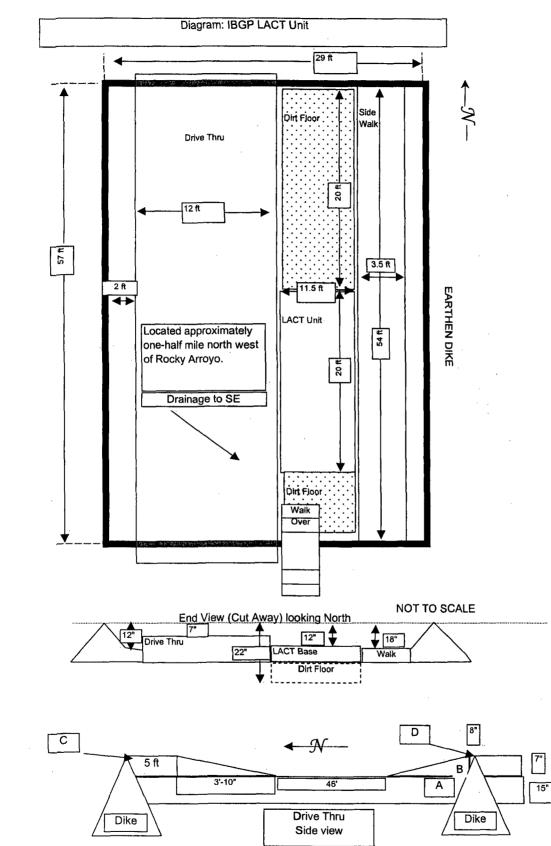

1

ACTUAL VOLUME AVAILABLE

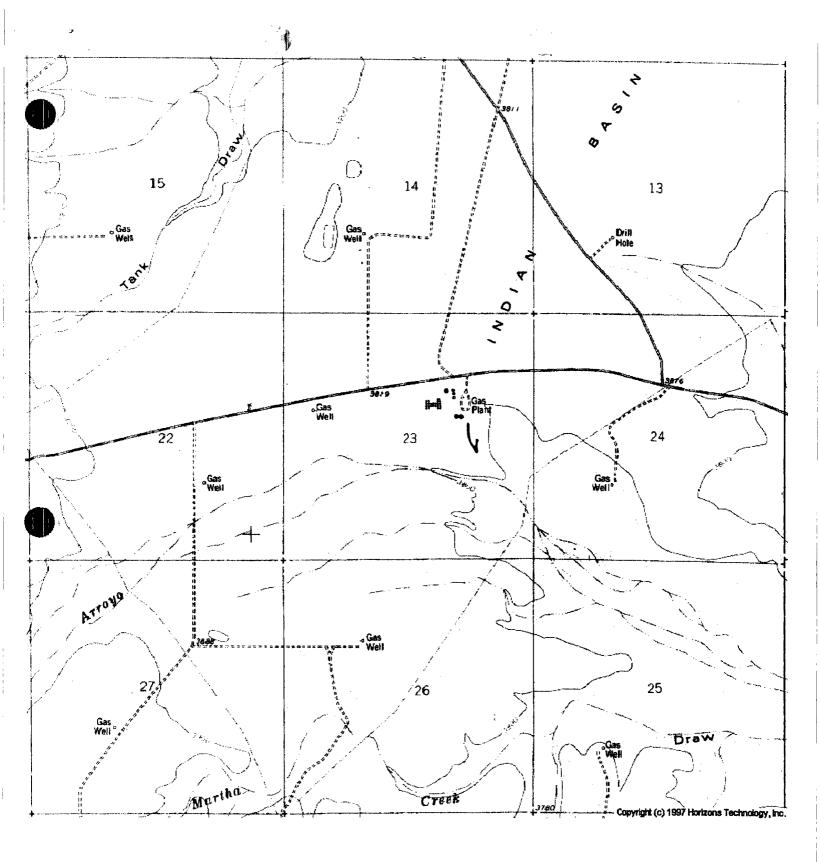

DIKE CALCULATIONS Bullet tanks

Tank Capacity	Volume(bbl) X	Gal/bbl X	∽ Ft ¹ /Gal , ∋	EL I	
	1605	42	0.1337	9013	
Available Space	Dike Capacity 2	Occupied Area =	Ft ² X	- 88I/R E -=	BBLs
	12155	218	11937	0.1 781	2126
		1 on the second	Freeboard		1 1
Freeboard	Space -	Capacity	ener (et ser	BE∏Ft ² = 3	BBLS,

24% 11937 9013 2924 0.1781 521

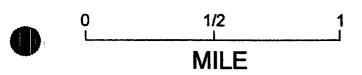

Located approximately one-half mile north west of Rocky Arroyo.

DIKE CALCU	JLATIONS				
	Height X	Length X	• Width =	Ft ^a	
<u> </u>	1.83	57	29	3025	
OCCUPED A	REA	(Concrete SI	ab)		
Drive Thru		Area of A.B.C		FR	
				743	
LACT Base	Length X	Width X	Height =	- F(² + 5)	
U	20	11.5	0.83	192	
Side Walk	Length X	Width X	Height =	Ft ⁴	
	54	3.5	0.33	63	
		Combined To	otal Area	998	
			otal Area	998	
Truck	1 B.	ABLE			
	Volume(bbl)	ABLE X Gal/bbl X	Ft ³ /Gal =	Ft ² ,	
Truck	1 B.	ABLE			
Truck	Volume(bbl)	ABLE X Gal/bbl X	Ft ² /Gal/ = 0.1337	Ft ² 1011	
Truck Capacity	Volume(bbl) 180	ABLE X Gal/bbl X 42	Ft ² /Gal/ = 0.1337	Ft ² ,	BBLs
Truck Capacity Available	Volume(bbl) 180 Dike	ABLE X Gal/bbl X 42 Occupied	Ft ² /Gal/ = 0.1337	Ft ² 1011	BBLs 361
Truck Capacity Available	Volume(bbl) 180 Dike Capacity	ABLE X Gal/bbl X 42 Occupied: Area == ¹⁸	Ft/Gal = 0.1337 Ft ³ X 2027	Fr 1011 BBI/Ft ² F	
Truck Capacity Available	Volume(bbl) 180 Dike Capacity 3025 Available	ABLE X Gal/bbl X 42 Occupied Area = 1 998 Tank	Ft ³ /Gal) = 0.1337 Ft ³ × 2027 Freeboard	Ft 1011 BBI/Ft ² F 0.1781	361
Truck Capacity Available	Volume(bbl) 180 Dike Capacity 3025	ABLE X Gal/bol X 42 Occupied Area = 1 998	Ft ³ /Gal) = 0.1337 Ft ³ × 2027 Freeboard	Fr 1011 BBI/Ft ² F	


D

A	Length	552 Area	1192320 cu/in
1	Width	144	
	Height	15	
В	Height	7 Area	23184 cu/in
	Width	144	
	Length	46	
С	Length	60 Area	60480 cu/in
	Width	144	
	Height	· 7	
D	Length	8 Area	8064 cu/in
	Width	144	
1	Height	7	
Total displ	acement by	drive thru	1284048 cu/in
LACT Pad	Length	240 Area	331200 cu/in
	Width	138	
	Height	10	
Side Walk	Length	648 Area	108864 cu/in
	Width	42	
	Height	42	
1	rieignt		

đ


Total cement structure displacement =

1724112 cu/in

Marathon Oil Company Southern Business Unit

Indian Basin Eddy County, New Mexico

·

MARATHON OIL COMPANY STORM WATER POLLUTION PREVENTION PLAN (SWPPP) INDIAN BASIN GAS PLANT

March 12, 1998 Revised June 1, 1998

MARATHON OIL COMPANY P.O. BOX 1324 ARTESIA, NEW MEXICO 88211

Prepared by: Fluor Daniel GTI, Inc. 2501 Yale Boulevard, SE, Suite 204 Albuquerque, New Mexico 87106

1100 East University Drive, Suite 116 / Tempe, AZ 85281 USA (602) 966-0808

2

Contents

1.0		1-1
2.0	FACILITY DESCRIPTION AND GENERAL COMPLIANCE INFORMATION 2.1 Facility Description 2.2 Summary of Mapping Requirements 2.3 Summary of Spills and Leaks 2.4 Non-Storm Water Discharges and Certification 2.5 Description of Existing Storm Water Measures 2.6 Coordination with Existing Environmental Management Plans 2.7 Existing Sampling Data 2.8 EPCRA Section 313 Requirements	2-1 2-1 2-2 2-2 2-2 2-3 2-4
3.0	STORM WATER POLLUTION SOURCE INFORMATION 3.1 Drainage Patterns 3.2 Inventory of Exposed Materials 3.3 SWPPP Risk Identification	. 3-1 . 3-1
4.0	BEST MANAGEMENT PRACTICES (BMP) 4.1 Non-Structural BMP's 4.2 Structural BMPs	. 4-1
5.0	COMPLIANCE EVALUATION AND MONITORING 5.1 Compliance Evaluation 5.2 Storm Water Monitoring	. 5-1
6.0	SWPPP IMPLEMENTATION . 6.1 Pollution Prevention Team . 6.2 Implementation Activities, Priorities, and Schedule . 6.3 Employee Training . 6.4 Erosion and Sediment Control for Well Drilling . 6.5 SWPPP Certification .	. 6-1 . 6-1 . 6-1 . 6-2
7.0	SWPPP RECORDKEEPING AND AMENDMENTS 7.1 SWPPP Recordkeeping 7.2 SWPPP Revisions	7-1

List of Tables

Table 2-1	Reportable Spill Summary	. 2-5
Table 2-2	Non-Storm Water Discharge Certification	
Table 5-1	Storm Water Pollution Prevention Plan Compliance	
	Evaluation Inspection Form	. 5-3
Table 5-2	Storm Water Pollution Prevention Plan Visual Monitoring Form	

1 i 1

i

ATTACHMENT 1

Notice of Intent for Multi Sector General Permit

ATTACHMENT 2

Figure 1 Figure 2

ATTACHMENT 3

Table A. Potential Source Identification and Risk AssessmentTable B. Storm Water Control Measures

ATTACHMENT 4

Storm Water Pollution Prevention Team Training Dates/Minutes of Employee Training Sessions

ATTACHMENT 5

Blank Forms

1.0 INTRODUCTION AND REGULATORY INFORMATION

This Storm Water Pollution Prevention Plan (SWPPP) has been prepared to transfer the Indian Basin Gas Plant from prior coverage under EPA's Baseline General Permit to the modified Multi-Sector General Permit. This action was taken pursuant to EPA's Proposed Modification of National Pollutant Discharge Elimination System (NPDES) Storm Water Multi-Sector General Permit (MSGP) for Industrial Activities (Notice; Federal Register, Vol. 62, No. 133, Friday, July 11, 1997). The Indian Basin Gas Plant (SIC code 1311) had previously completed, a SWPPP prepared pursuant to EPA's Baseline General Permit for the Storm Water NPDES program. This prior SWPPP was prepared following the submittal of a Notice of Intent (NOI) to EPA prior to October 1, 1992. The facility has been assigned Permit No. NMR05A228.

This new SWPPP is based on the implementation experiences and information for the prior SWPPP that was prepared pursuant to the Baseline General Permit. A new Notice of Intent has been completed pursuant to the permit coverage transfer instruction in the EPA July 11, 1997 Federal Register Notice. A copy of this new NOI is attached to this plan (Attachment 1). The information contained in this SWPPP satisfies the content requirements of the 1995 MSGP, as described in Section I of the MSGP Notice (Federal Register Vol. 60, No. 189, Friday, September 29, 1995).

The primary objectives of this SWPPP are to:

- 1. Evaluate plant operating procedures as they relate to storm water pollution;
- 2. Identify potential sources of storm water pollution;
- 3. Suggest specific techniques for minimizing pollution of storm water,
- 4. Provide instructions, procedures, guidance, and sample forms for SWPPP implementation;
- 5. Serve as a focal point and training tool for plant personnel; and,
- 6. Establish an overall framework for the continuing effort of storm water pollution prevention at the plant.

1-1

2.0 FACILITY DESCRIPTION AND GENERAL COMPLIANCE INFORMATION

2.1 Facility Description

The Indian Basin Gas Plant is approximately 26 acres in area. It processes gas gathered from a much larger producing gas field. The plant produces natural gas, demethanized hydrocarbon mix, stabilized condensate, and sulfur on a continuous 24 hour per day schedule. The location of the Indian Basin Gas Plant is indicated in Figure 1 (Attachment 2). Approximately one percent of the plant is paved. The gas plant is located on Eddy County Road 401. There is a truck loading area on the east side of the plant. Offices, a warehouse, and parking areas are located near the eastern part of the plant (Figure 2, Attachment 2).

The plant is located in a relatively flat area surrounded by mountainous terrain. The soil is rock and sand with scrub brush and grassy vegetation. The mean annual total precipitation is approximately 14 inches. Average annual Class A pan evaporation is approximately 100 inches, and average annual lake evaporation is approximately 65 inches in this area.

2.2 Summary of Mapping Requirements

The following site-specific information is included in Figure 2:

- Storm water drainage patterns/outfalls (on-site);
- Surface water bodies to which site drainage is directed;
- Footprints of buildings, structures, paved areas, parking lots;
- Storm water pollution source areas (See Table A in Attachment 3); and
- Existing and currently planned storm water structural controls.

2.3 Summary of Spills and Leaks

Spills or leaks of a reportable quantity since 1994 are identified in Table 2-1. Table 2-1 indicates the nature of the release, the amount released and recovered, date, and cause of the release (where possible).

This facility implements a SPCC plan pursuant to EPA regulations and guidelines. Provisions have been developed and are implemented through the SPCC program, to address future spills and releases at this facility. The SPCC plan for this facility is referenced in this SWPPP as being a part of this facility's storm water pollution prevention program as well. This facility also has a Groundwater Discharge Plan (GDP) that defines policies and procedures that affect spill/release planning and response. A current list of spills and/or leaks is maintained in the SPCC/SWPPP file.

2.4 Non-Storm Water Discharges and Certification

Storm water outfalls at this facility were inspected to determine the presence or absence of non-storm water discharges. The procedure used is described below:

Visual Inspection - involves inspection of the storm water discharge points on several different dry-weather occasions in order to visually look for any flow in the storm drain. In the absence of precipitation, no water flow should be observed. If there is water flowing through the outfalls during dry weather, tests should be conducted to determine the source of the flow. An inspection should take place concurrently with an activity that is likely to cause such discharges.

No discharge of water was found on the days that this inspection was conducted. The following table includes this facility's certification regarding non-storm water discharges. Because of the nature of this facility's drainage system this visual inspection for non-storm water discharges can be conducted on a recurring basis.

Table 2-2. Non-Storm Water Discharge Certification

I certify that storm drain systems at the Indian Basin Gas Plant have been tested for non-storm discharges, and that the non-storm water testing described above was conducted and the results presented above are true and accurate.

Storm Water Coordinator

Signature

Date

2.5 Description of Existing Storm Water Measures

Since October 30, 1989, Indian Basin Gas Plant has been operated under the conditions of a Groundwater Discharge Plan (GDP). That GDP was approved by the State of New Mexico and includes the following aspects that affect storm water runoff:

- 1. A large uphill diversion berm has been constructed around the north and west sides of the plant. It diverts surface runoff away from the plant and reduces the volume of water that can potentially contact polluting materials at the plant.
- 2. Containment devices have been constructed around most of the chemical storage areas. In most cases, the containment device is an earth berm. In other cases (such as the sulfuric acid tank at the water treatment unit), a steel pan with manual valve is used for secondary containment. Marathon Oil Company is attempting to reduce the use of drums at the Indian Basin Gas Plant and rely more on bulk chemical storage.

- 3. Product effluent from most plant equipment is drained through a closed system. In addition, an open collection system has been constructed around much of the plant process equipment. The system consists of concrete pads with curbs, concrete troughs covered with steel grates, drainage collection pipes, sumps, and sump pumps. The purpose of this system is to capture material that originates from a leak or spill, convey it to the sump, and pump it into the skimmer basin. Material collected in this manner is ultimately reprocessed, or disposed in the injection well. (Refer to the "Plant Processes" section of the GDP, pages 5 and 6, for descriptions of an integrity test on the open collection system and closed drain system disposal procedures.)
- 4. Material handling practices include employee education as to proper procedures and spill/leak response, storing chemical containers in containment berms, and routine inspections.
- 5. Domestic sewage is treated with a septic system on the plant site. It does not contribute any flow to storm water runoff. There are three septic treatment systems, and a warning to avoid non-domestic sewage is posted on each one.
- 6. Plant equipment is periodically cleaned with detergents, solvents, or steam. Consistent with the GDP, cleaning effluent is captured by the open drain collection system and disposed of in the injection well (see part 3 above).
- 7. The SPCC for the Indian Basin Gas Plant has recently been revised (October 15, 1997) and plant spill response capabilities have been improved.
- 8. Underground storage tanks are not used at the Indian Basin Gas Plant.
- 9. Spent process catalyst is not exposed to storm water.

In addition to the measures listed above, storm water from approximately four acres of site drains to the southeast corner and passes through a vegetated strip. Storm water from the remainder of the site drains as sheet flow to the southeast where it passes through approximately 800 feet of vegetation before it reaches Rocky Arroyo.

2.6 Coordination with Existing Environmental Management Plans

Marathon has a number of existing regulatory compliance programs and/or plans in effect at the Indian Basin Gas Plant. These plans and/or programs were evaluated during the preparation of this SWPPP and appropriate information for these existing environmental management plans was used as necessary. In addition, existing Marathon standard operating procedures have been incorporated into the development of this SWPPP. The Indian Basin Gas Plant has the following spill prevention and response procedures that relate to, and/or are considered a part of this SWPPP:

- Daily Inspection Checklist
- SPCC Plan
- Hazardous Waste Contingency Plan
- Emergency Response Plan
- Groundwater Discharge Plan

2-3

Storm Water Pollution Prevention Plan Marathon Oil Company, Indian Basin Gas Plant

2.7 Existing Sampling Data

There are no storm water quality data available for the Indian Basin Gas Plant.

2.8 EPCRA Section 313 Requirements

Based on current information, the Indian Basin Gas Plant is not a plant subject to EPCRA Section 313 water priority chemical regulations.

P

a

		L	Table 2-1. Reportable Spill Summary	e Spill Summary	
Record #	Date	Spill Type	Spill Quantity	Quantity Recovered	Cause
1706	02-07-94	Condensate	0.48	0	Oil dump failed. Spilled out of vent of BP valve.
1714	02-15-94	30 percent DEA sol'n.	20	1.5	Amine pump plunger broke. Solution leaked around the seal.
1741	03-09-94	Condensate	-	-	Tank overflowed (High level switch failed).
1792	05-09-94	Condensate	5.5	2J	Skimmer basin overflowed.
1794	05-12-94	Lube Oil	0.25	0.2	Heavy rain run-off caused sump to overflow.
1797	05-23-94	Lube Oil	0.4	0.3	Open drain sump did not start automatically.
1828	06-22-94	Lube Oil	ο.	0	Pin hole leak in piping.
1841	07-13-94	Condensate	125	t	Pinhole leak on dresser coupling (line 1)
1842	07-16-94	Condensate	m	2.5	SWD Tank ran over.
1858	08-01-94	Amine	1.2	0	Two-inch opened by mistake.

2-5

1	R

T

1

		Ľ	Table 2-1. Reportable Spill Summary	e Spill Summary	
Record #	Date	Spill Type	Spill Quantity	Quantity Recovered	Cause
1878	08-27-94	Condensate	2	0	Leak in line due to corrosion.
1880	09-13-94	Condensate	0.1	0	Unplugging sample line.
1936	12-29-94	Condensate	0.2	0	Tank 3A overfilled.
1963	01-23-95	Condensate	F	0.5	Spillover weir set to high.
1948	03-01-95	Lube oil	0.12	0.08	Pulled plug during maintenance.
2000	03-13-95	Triethylene glycol	0.11	0.04	Unit 25 tank overfilled.
2036	05-15-95	Condensate	2	0	West skimmer tank discharge pump line leaked.
2021	06-01-95	Condensate	10	S	LACT failed to shut down.
2043	06-19-95	Condensate	0.5	0	Separator overflow.
2118	09-14-95	Amine	1.5	-	Pump failure.
2107	10-09-95	Condensate	2.3	0	Separator overfilled.

2-6

ř.	

Record # 2200 2201 2201 2151 2151 2191	Date 02-01-96 02-05-96 02-07-96 03-01-96 03-09-96	Spill Type Spill Type Basic sediment Basic sediment Condensate Casoline Condensate	Table 2-1. Reportabl Spill Quantity 0.75 3.5 3.5 0.24 0.24	Reportable Spill SummaryuantityQuantity757575022.522485	Cause Tank overfill Tank overfill Bypass was not shut on SWD pump. Tank overfill. Dump. Tank overfill. Valve came off of hose. Loose clamp. Tank overfill out top of tank.
2214 2239	04-27-96 05-30-96	Condensate Condensate	4 0	2 2	6-inch PVC gathering line west of valve pit leaked. Separator relief valve not completely opened.
2238 2279	05-30-96 08-01-96	Condensate Condensate	ഗയ	0	Loading condensate into truck. Driver let overfill, spill. Top of tank at hatch. Overfill exceeded
2343	11-14-96	Condensate	ر	0	Tank overflow at vent on tank. Human error.
2395	12-29-96	Condensate	ε	Ð	lank. Plugged drain. Bowwin. munan end.

2-7

٦B

	Cause				
e Spill Summary	Quantity Recovered				
Table 2-1. Reportable Spill Summary	Spill Quantity				
	Spill Type				
	Date				
	Record #				

2-8

3.0 STORM WATER POLLUTION SOURCE INFORMATION

3.1 Drainage Patterns

The property is quite flat, but generally drains to the southeast. The only distinct outfall is from a small channel which begins near the west side of the old office, flows south past the residue gas compressors, turns east, and continues between the loading docks and the out-of-service condensate tanks. This channel mainly conveys storm water from the office and workshop areas. Runoff from the remainder of the plant drains to the southeast as sheet flow. All of the runoff eventually drains to the receiving watercourse, Rocky Arroyo. The arroyo is an intermittent stream that contains flowing water only after a significant rainfall.

3.2 Inventory of Exposed Materials

This section contains a description of the Indian Basin Gas Plant's potential storm water pollution sources. Pursuant to EPA guidelines for preparing SWPPPs, this section identifies potential sources which could reasonably be expected to add "significant" amounts of pollutants to storm water discharges. The source areas were also limited to those identified in EPA regulations and guidance as source areas associated with industrial activity that needs to be addressed in an SWPPP.

In addition to identifying and mapping the source areas, this section also describes an inventory of the materials (e.g., chemicals) that are associated with each source area. A narrative description is provided (see Table A, Attachment 3) that lists the materials that are handled at the indicated source area which could be exposed to precipitation. Table A in Attachment 3 presents the necessary SWPPP source area information in a way that:

- is easily understood (i.e., each regulatory source area is listed in Table A and shown on the facility map (Figure 2, Attachment 2).
- meets multiple SWPPP needs in a single table.

3.3 SWPPP Risk Identification

Determining potential storm water runoff pollution "risks" associated with "industrial activity" involves the following steps:

- 1. Define the chemical use characteristics of the source area(s), by facility activity, using site inspection and an available data review. Evaluate the nature of each source area to determine:
 - a. The level, or extent, of chemical use or storage in each area.
 - b. The potential for the discharge of this chemical as storm water pollution from the area.

- 2. Review and evaluate the existing water quality standards for the receiving water bodies.
- 3. Based on a review of the factors in items 1 and 2 above, specify a relative "risk" ranking for each storm water pollution source area, identifying the potential for storm water runoff to cause a water quality impact.

The simple three-step approach described above results in the identification of not only the potential storm water runoff pollution "risk" from the identified source area(s), but also helps in prioritizing the sources area(s) by their relative "risk." This process then leads to the development of a responsive set of best management practice plans (BMPs) that are related to the priority of pollution risk for the source area, which helps in developing a prioritized schedule for their implementation. In order to implement the three-step risk identification approach described above for the Indian Basin Gas Plant source areas, the following specific procedure was used:

- 1. Evaluate each facility source area for the materials stored or used in the area and the nature of any existing storm water pollution management measures, or systems, currently in place for that activity.
- 2. Evaluate the nature of the existing storm water management systems, that do (or could) control storm water pollution from the source area and rank them as "adequate" versus "inadequate" using a common sense judgement approach. This ranking is based on the ability of the existing management system to protect the potential storm water pollution source area during rainfall events.
- 3. Evaluate readily available water quality information for the receiving water(s) for storm water discharges from the facility, including any existing water quality standards. In addition, identify any specific chemical compounds, or categories of compounds that are of concern to appropriate regulatory agencies for the receiving water(s) to which storm water discharge from this facility is directed.
- 4. Based on the types of chemicals used or stored in/at the source area, the existing level of runoff management for the source area, and the sensitivity of the receiving water(s) to those chemicals, identify a relative "risk" (i.e., high, medium, low) for potential storm water pollution to the receiving water(s).

The following list shows how the four factors outlined above determine the relative risk factors for storm water pollution source areas at the Indian Basin Gas Plant:

Chemical Use and Control Characteristics	No Specific Standards
Heavy Chemical Use, Adequate Controls	MEDIUM
Heavy Chemical Use, Inadequate Controls	HIGH
Moderate Chemical Use, Adequate Controls	LOW
Moderate Chemical Use, Inadequate Controls	MEDIUM
Light Chemical Use, Adequate Controls	LOW
Light Chemical Use, Inadequate Controls	MEDIUM

FLUOR DANIEL GTI

The High, Medium, and Low designations in the above listing are defined as follows:

- 1. HIGH source area has likely impact on receiving water quality, due to significant chemical use, or currently inadequate management controls, or because of identified receiving water sensitivities to a particular chemical being used at the source area. Management controls for this area should be given a high priority for implementation.
- 2. MEDIUM source area may have an impact on receiving waters, but specific water quality limits for the chemical(s) being used at the source area may not exist. In addition, a MEDIUM storm water pollution risk would exist for areas with current management controls that are deemed to be "adequate," but the extent of chemical use is high, such that management attention should continue to be focused on maintaining these management controls. Storm water pollution problems are difficult to reliably quantify for this risk category. Therefore, more information may be necessary concerning storm water pollution amounts, and receiving water conditions, before a more extensive (and/or costly) management control can or should be selected.
- 3. LOW source area is currently fully contained and controlled, or chemical use is low. Impacts on receiving water quality is not likely. Areas should be included in other management control programs, if applicable, but no prioritized storm water pollution management control is necessary for this source area.

Table A, in Attachment 3, contains the results of a risk evaluation for the Indian Basin Gas Plant storm water pollution source areas, conducted using the procedure outlined above.

4.0 BEST MANAGEMENT PRACTICES (BMP)

This section provides general descriptive information for the BMPs that have been identified (see Table B, Attachment 3) for the storm water pollution source areas at this facility (see Table A, Attachment 3). Table B lists the specific type of BMP, from those described in this section, that can be used to control storm water pollution from each of the specifically identified source areas listed in Table A. This section (4.0) provides background and descriptive information for how the particular BMP can be implemented for a source area.

BMP is a term which refers to measures for preventing or controlling storm water pollution from regulated "industrial activities". BMP's can include processes, procedures, schedules of activities, prohibitions on practices and other management practices to prevent or reduce storm water pollution. Despite the broad nature of BMP's, they can be characterized into two types: structural and non-structural. These two types of BMP's are described in greater detail below.

4.1 Non-Structural BMP's

Non-structural BMP's are primarily (simple and inexpensive) management program(s) that are applicable to a wide variety of regulated "industrial activities". The following six non-structural BMP's are identified in this SWPPP.

- Good Housekeeping
- Preventive Maintenance
- Visual Inspections
- Spill Prevention and Response
- Employee Training
- Recordkeeping and Reporting

Good Housekeeping

Good housekeeping involves developing and maintaining a clean and orderly work environment. Good housekeeping is already practiced at the Indian Basin Gas Plant as part of existing environmental management plans. A slight tailoring of existing good housekeeping practices will help prevent storm water pollution as a part of this SWPPP.

Examples of good housekeeping actions to be conducted pursuant to this SWPPP include:

- Implementing a routine clean-up program using hand shovels, hand brooms, vacuum machines, sweeping machines or other types of cleaning machines.
- Storing containers away from direct traffic paths and stack containers in accordance with manufacturer's instructions to avoid damage and spills.
- Labeling all containers showing contents.

- Covering receptacles and drums when possible or protecting them from storm water exposure (e.g., using indoor storage).
- Prevent potential overflow of harmful chemicals by ensuring regular pick up and disposal of waste material.
- Using temporary covers and pallets for outside parts storage (e.g., tarps) whenever practical or store indoors.

Maintaining employee interest in good housekeeping is an important part of the overall storm water pollution control program at Marathon. Methods for maintaining good housekeeping goals include regular housekeeping inspections by supervisors, discussions of housekeeping at meetings and publicity through posters, suggestion boxes, bulletin boards, and employee publications are other tools that will be used to implement good housekeeping activities.

Preventive Maintenance

An effective Preventive Maintenance Program is a key to a successful pollution management effort. This includes a regular visual inspections of systems, equipment, or devices such as valves, dikes and oil/water separator.

The following are the basic elements of Marathon's SWPPP preventive maintenance program:

- Inventory and identify systems, equipment and areas that should be inspected/maintained.
- Conduct routine inspections and/or tests of the systems, equipment and areas.
- Assure that timely repair, adjustment, replacement, cleaning or other needed maintenance is performed. Use equipment manufacturers' recommended procedures as a guide.
- Maintain documentation on inspections, repairs, maintenance, and corrective actions taken.

Many aspects of this SWPPP preventive maintenance program are currently being implemented at the Indian Basin Gas Plant through existing operating procedures and environmental management plans.

Visual Inspections

A routine visual inspection program is a key element in preventing storm water pollution and is an intricate part of the compliance evaluation component of this SWPPP (see Section 5.0). The Indian Basin Gas Plant Storm Water Coordinator is responsible for performing, or specifically delegating, the necessary visual inspections. The inspections will be integrated with the existing Marathon Inspection Check List. The Compliance Evaluation Inspection Form (Table 5-1) will be used to document the annual compliance evaluations.

Spill Prevention and Response

Spill prevention and control, as well as spill response, is an extremely important component of existing Marathon environmental management plans. Vacuum trucks are called to the site, when needed, to remove free liquid resulting from a spill. Other equipment required for spill response (e.g., shovels) is readily available at the facility.

Employee Training

Employee training programs serve to instill in personnel, at all levels of responsibility, an understanding of the storm water regulatory requirements, potential storm water pollution source areas and this SWPPP's BMP program. In addition, training may be used to instruct employees on proper practices for preventing storm water pollution and establishing proper procedures for responding to a release or spill. To the extent possible, SWPPP training will be coordinated with other existing environmental management plan training programs, as well as other Marathon training programs.

Open communications shall be used for matters relating to storm water pollution. The following principles are guidelines for communications, but may be modified when direct action is needed to reduce storm water pollution:

- 1. Each employee is empowered to take immediate action to prevent or reduce storm water pollution. Such actions shall be reported at the first available opportunity to the Storm Water Coordinator.
- 2. Any employee may ask questions, discuss ideas, make suggestions regarding storm water.

Record Keeping and Internal Reporting

Relevant documents are maintained at the Indian Basin Gas Plant as part of Marathon's overall regulatory compliance program. These documents include:

- SWPPP(s);
- Inspection and Spill Records;
- Training Records; and
- Certifications;
- SPCC Plan;
- Groundwater Discharge Plan (GDP)

4.2 Structural BMPs

Structural BMP's serve three basic functions:

- 1. Reduce or eliminate the volume and pollution from storm water runoff or run-on:
- 2. Divert or direct storm water runoff/run-on; and
- 3. Reduce the velocity of the storm water runoff/run-on.

The objective in diverting storm water runoff (or run-on) falls into one of two categories:

- 1. Divert storm water away from, or around (instead of across or through) regulated "industrial activities".
- 2. Direct storm water runoff that may have come in contact with chemicals from regulated "industrial activities" to a storm water BMP.

Structural BMP's are considered an "advanced" approach for the reduction or elimination of storm water pollution. Several structural BMPs are in place at the Indian Basin Gas Plant. These structural BMPs are described in Parts 1, 2, and 3 of Section 2.5 of this SWPPP. Storm water runoff from regulated "industrial activities" that is not controlled through the existing and proposed structural BMPs for the facility will be controlled using non-structural BMPs presented in Section 4.1. The following is a general list of structural BMPs that may be applied to a facility.

- Sediment and Erosion Control
- Ballast Ground Cover
- Grassed Swales
- Curbs/Berms
- Grading and Paving
- Storm water Conveyances
- Roofing
- Dikes

Each of these structural BMP's is described in greater detail below with details applying to the Indian Basin Gas Plant added as appropriate.

Sediment and Erosion Control

Erosion prevention may be achieved by using one or more or the following techniques:

- Maintaining beneficial vegetation;
- Reducing runoff velocity;
- Minimizing the exposure of bare soil;
- Immediately stabilizing disturbed soil areas;
- Providing appropriate drainage path ways for runoff;

4-4

- Preventing runoff from flowing across exposed (bare earth) areas; or
- Filtering, settling, or removing sediment from runoff.

Preserving as much ground cover as possible will decrease the impact rainfall has on ground surfaces, which in turn prevents erosion. For example, a buffer zone is a naturally vegetated strip that is adjacent to a stream, ditch, or steep, unstable slope. The buffer zone decreases the velocity of storm water runoff and helps prevent erosion. The outfall from approximately four acres of the Indian Basin Gas Plant passes through a vegetated strip. Storm water from the remainder of the facility drains as sheet flow to the southeast where it passes through about 800 feet of vegetation before reaching Rocky Arroyo.

The following structural practices can be used to implement the techniques listed above:

- Straw Bale Dikes, Silt Fences, Earth Dikes
- Subsurface Drain, Pipe Slope Drain
- Storm Drain Inlet Protection, Rock Outlet Protection
- Sediment Traps, Temporary Sediment Basins
- Retention/Detention Basins

Ballast Ground Cover

Infiltration is a structural BMP that causes storm water to enter the ground surface into subsurface soils rather than runoff into surface water bodies. Ballast cover used for storm water infiltration should be installed with a depth and gradation that will promote infiltration and prevent erosion. Soil type and ground slope should also be considered. Potential ground water impacts must also be considered for this (and in fact any) infiltration type of BMP. When storm runoff from areas with known storm water pollution risk is directed to infiltration type systems an evaluation of groundwater pollution impacts must be performed.

Ballast sometimes requires cleaning and/or replacement due to sediment build up that can prevent proper drainage. Cleaning procedures should be conducted in a manner that avoids or minimizes the potential for storm water contamination.

Grassed Swales

Grassed swales are gentle sloping vegetated depressions constructed to promote infiltration, control runoff pollution by filtering sediments, and to channel runoff to a desirable location.

Curbs/Berms

Diversionary structures prevent the flow of storm water onto regulated "industrial activities". Often a diversion structure and a storm water conveyance are used together to achieve this goal. Conveyances carry the water away and prevent it from pooling at the curb or berm. For example, an employee parking lot is not a regulated area. If a parking lot drains across a regulated "industrial activity", curbing the perimeter of the lot may be an appropriate BMP. Such action would reduce the amount of storm water that would flow across the "industrial activity", and therefore reduce the potential for generating storm water pollution. Curbing, berms, and associated conveyances need regular inspection, repair, and cleaning to keep them functioning properly.

A large uphill diversion berm has been constructed around the north and west sides of the Indian Basin Gas Plant. It diverts surface runoff away from the plant and reduces the volume of water than can potentially contact polluting materials at the plant.

Grading and Paving

Finished grades at the Indian Basin Gas Plant are designed to facilitate the prevention of run on onto regulated "industrial activities". Therefore, this surface grading is a BMP, and is a part of this SWPPP that can reduce the exposure of storm water to potential pollutants. However, due to the constraints imposed by normal operations grading and paving may have to be combined with other BMP's (such as curbs or conveyances) to be effective.

Storm Water Conveyances

Storm water conveyances are channels, gutters, drains, and sewers which are used to collect storm water and direct its flow. They are part of a site's storm water collection system. A primary purpose of a storm water conveyance is to prevent storm water from being exposed to a storm water pollution source area.

Gutter systems, down spouts and storm sewers can be retrofitted to discharge runoff away from regulated "industrial activities". This will help minimize the volume of potentially polluted storm water generated at the site. Subsurface conveyance systems are already in place at the Indian Basin Gas Plant. Product effluent from most plant equipment is drained through a closed system. In addition, an open collection system has been constructed around much of the plant process equipment. The system consists of concrete pads with curbs, concrete troughs covered with steel grates, drainage collection pipes, sumps, sump pumps. The purpose of this system is to capture material that originates from a leak or spill, convey it to the sump, and pump it into the skimmer basin. Material collected in this manner is ultimately reprocessed or disposed in the injection well.

FLUOR DANIEL GTI

Roofing

The construction of a roof over a potential storm water pollution source area (e.g., drum storage) will eliminate the direct exposure of chemicals in that area to rainfall. However, simply covering potential storm water pollution source areas may not be sufficient to prevent contact with "run-on" and "run-through". Simply stated, these terms refer to storm water that does not fall onto potential source materials, but rather flows through a potential source area. Therefore, for roofing to be effective, combination with curbs/berms may be required.

<u>Dikes</u>

Earthen and concrete dikes are used around storage and break-out tankage as a means of collecting storm water and any potential spills. The storm water can than be inspected prior to being discharged into the surface water body. Earthen and concrete dikes are used extensively at the Indian Basin Gas Plant as part of the SPCC. A summary of the storage tanks and the volumes of the dikes are presented in the SPCC.

Executive Summary

The Indian Basin Gas Plant (site) is located approximately 20 miles northwest of Carlsbad in Eddy County, New Mexico. Cleanup efforts at the site, collectively known as the Indian Basin Remediation Project (IBRP), were initiated in April 1991 to recover free-phase petroleum hydrocarbons related to the release of a liquid by-product of natural gas production known as "condensate". The subsurface at the site includes two distinct geologic zones referred to as the "Shallow Zone" and the "Lower Queen". Both of these zones contain saturated and unsaturated strata. Through February 2003, there were a total of 150 wells present at the site related to the IBRP. However, with New Mexico Oil Conservation District approval, thirty-nine Shallow Zone wells were plugged and abandoned in March 2003, reducing the well total to 111 wells. The remaining wells are used for a combination of groundwater monitoring, groundwater and condensate recovery, treated groundwater infiltration and condensate vapor extraction.

In order to determine and evaluate the groundwater flow conditions and separate-phase condensate occurrences, site-wide well gauging events were performed in April and October 2003. The liquid-level measurements obtained from each well and the surveyed well elevations were used to calculate groundwater elevations, with density corrections where condensate was present. The resulting elevation data were used to generate groundwater piezometric contour maps. Review of these maps and the elevation data indicate Shallow Zone and Lower Queen groundwater flow were consistent with patterns observed in previous years. Flow in the Shallow Zone is to the southeast at an approximate gradient of 0.014 feet/ft, and flow in the Lower Queen is generally in a northerly direction at an approximate gradient of 0.0005 feet/ft.

During each of the gauging events, groundwater samples were also collected from selected wells to evaluate groundwater quality at the site. In April 2003, the analytical suite primarily included benzene, toluene, ethylbenzene and xylene (BTEX). In October 2003, groundwater samples were analyzed for BTEX and total dissolved solids (TDS) and chlorides. The analytical results indicate that total BTEX concentrations in both water-bearing units remained consistent or declined slightly in most wells.

Remediation efforts completed at the site in 2003 included continued groundwater extraction and treatment (including dual pump recovery) in the Lower Queen for the first month and a half in 2003 and vapor extraction in the Shallow Zone and Lower Queen throughout the 2003 calendar year. The groundwater extraction and treatment remedy was operated to both recover and control potential migration of condensate in both the liquid and dissolved phase. Recovered groundwater was treated and then infiltrated in upgradient wells. NMOCD conditional acceptance of a Marathon plan to use vapor extraction system (VES) to control condensate in groundwater extraction system wells was successfully implemented from March to the end of 2003.

During the calendar year, the VES used one blower per well to extract vapor. This operation allowed enhanced removal of condensate from the subsurface via both recovery in the vapor phase and aerobic biodegradation of condensate.

During 2003, approximately 1,620 barrels of condensate were recovered at the site, as follows:

• The equivalent of approximately 0.06 barrels of condensate was removed in the vapor phase by VES wells in the Shallow Zone;

- The equivalent of approximately 416 barrels of condensate was removed in the vapor phase by VES wells in the Lower Queen;
- The equivalent of approximately 1,204 barrels of condensate was removed by aerobic biodegradation enhanced by the use of vapor extraction within the Shallow Zone and Lower Queen; and
- No condensate was removed in the liquid phase through pump and treat efforts in the Lower Queen.

Cumulatively, from the initiation of remedial efforts in April 1991 through December 2003, a total of approximately 19,248 barrels of condensate has been removed.

Through the operation of the VES and groundwater recovery systems, Marathon has maintained hydraulic control of the condensate and separate-phase hydrocarbons in groundwater at the site. The operations of the groundwater extraction system between April 2000 and December 2002 have resulted in an asymptotic mass removal trend indicating an ineffective method of removing condensate from the site. In fact, no condensate was recovered by the groundwater extraction system during the calendar year 2002. However, the operations of the VES during the same time period have proven to be an effective and viable technology to enhance condensate mass removal. Remediation efforts in the year 2003 and beyond have oR will include the following:

- Compliance monitoring and reporting, regular groundwater monitoring; and
- Continued operation of the VES, while continuing to evaluate and modify the wells that will be used for vapor extraction to maximize condensate removal.

As stated in a response by the OCD to the "Petition to Discontinue Groundwater Extraction Operations, Indian Basin Remediation Project" and the "Annual Groundwater Monitoring Report, January-December 2001", Marathon Oil Company discontinued the groundwater extraction system and abandoned 39 Shallow Zone monitoring wells that were approved by the OCD for abandonment. The OCD deferred comment on dismantling the groundwater extraction system until the OCD has the opportunity to evaluate the future performance of groundwater remediation activities.

The wells selected for abandonment in the Shallow Zone were based on historical gauging results and relative locations of these wells. Using the following criteria:

- Wells had been dry for at least three years;
- Wells had been determined to be redundant because of proximity of other wells;
- Wells did not monitor known groundwater areas of concern; and
- Wells did not provide pertinent information for defining the groundwater flow direction.

In addition to the abandonment of wells in the Shallow Zone, monitoring well MW-126, also completed in the Shallow Zone, was modified. The goal of this monitoring well modification was to enhance the ability of the well to remove hydrocarbons via vapor extraction in the future.

No changes to the current Groundwater Monitoring Plan are proposed for calendar year 2004. However, there are proposed changes Marathon would like to implement beginning in 2005.

The proposed changes in calendar year 2005 involve reducing semi-annual sampling at the site to a single annual sampling event to be conducted in April of each calendar year. Based on historical sampling data collected through 2003, it is apparent that BTEX concentrations are significantly reduced in most of the wells in the sampling program, with most of the wells showing very low or no BTEX above OCD regulatory limits. In addition, where BTEX is detected in monitored wells, there appears to be no seasonal variation in the concentrations. The single April sampling event work plan will include sampling the same constituent list as approved in the original OCD approved monitoring plan. Table A provides a list of wells scheduled for sampling and a constituent list for the proposed annual sampling program.

Marathon proposes to continue collecting semi-annual liquid level measurements from all existing site wells as approved in the original groundwater monitoring plan. This will also facilitate documentation of water level fluctuations and provide an early warning system for unexpected separate phase condensate movement. During each gauging event, liquid level measurements (depth to water and condensate thickness) will be collected from each accessible monitoring well.

Indian Basin Remediation Project Eddy County, New Mexico

Following is an excerpt of 2003 Annual Groundwater Monitoring Report which was submitted to the OCD in April 2004.

Groundwater Sampling and Analysis

ARCADIS personnel conducted two groundwater sampling events at the site in 2003. The sampling events were performed according to the modified Groundwater Monitoring Plan, as approved by the OCD in March 1999. The sampling involved the following:

- In April 2003, groundwater samples were collected from 14 Shallow Zone wells and 25 Lower Queen wells. These samples were analyzed for BTEX analysis, total dissolved solids (TDS) and chlorides and
- In October 2003, groundwater samples were collected from 12 Shallow Zone and 25 Lower Queen wells. These samples were analyzed for laboratory analysis and analyzed for BTEX, total dissolved solids (TDS) and chloride.

A total of 40 locations, consisting of 38 monitoring wells and 2 recovery sumps, completed in the Shallow Zone were gauged during both gauging events in 2003. A total of 70 locations completed in the Lower Queen, consisting of 67 monitoring wells, 2 plant water supply wells and 1 infiltration well, were gauged during both gauging events in 2003.

The Lower Queen tends to be generally in a northerly direction at an approximate gradient of 0.0005 feet/ft. This flow direction and gradient are consistent with patterns observed in previous years. During one or more of the gauging events in 2003, condensate was observed in Lower Queen wells MW-68, MW-72, MW-75, MW-82, MW-112, MW-113, MW-120, MW-121, MW-125, MW-129, MW-130, VE-16 and VE-19. Observed condensate thicknesses in these wells ranged from 0.01 feet in Well MW-120 in October 2003 to 3.31 feet in Well MW-129 in April 2003.

Remediation System Operation and Maintenance

Remediation efforts completed at the site as part of the IBRP from April 1991 through December 2003 have included emergency excavation work; pumping in Rocky Arroyo sumps, open excavations, and Shallow Zone wells; condensate recovery from Shallow Zone Well MW-69; groundwater and condensate recovery (and treatment) including dual pump recovery from the Lower Queen; and vapor extraction in both the Shallow Zone and Lower Queen. The following sections discuss remedial activities conducted at the site during 2003.

Groundwater Recovery and Infiltration

Groundwater and total fluids (condensate and groundwater) recovery wells that operated at the site from January 1, 2003 to February 13, 2003 included Lower Queen wells MW-58, MW-65A, MW-72, MW-75, MW-81, MW-83, MW-84, MW-85, MW-86 and MW-110. Recovered groundwater was treated and then

infiltrated in upgradient wells IW-1 and IW-2 in the Lower Queen. During the 2003 calendar year, there was no active groundwater recovery from the Shallow Zone.

From February 14, 2003 through the end of the year 2003, the groundwater extraction system was inactive. However, vapor extraction remediation of selected wells that are a part of the groundwater extraction system was conducted as part of a plan proposed by Marathon to the NMOCD.

During the period of groundwater and total fluids recovery in the early portion of 2003 (January to mid-February, approximately 188,224 barrels of total fluids were recovered from the Lower Queen and treated, with no measurable recovery of condensate in the liquid phase. Subsequently, approximately 117,802 barrels of treated water were infiltrated in Lower Queen Infiltration Wells IW-1 and IW-2, and 70,422 barrels of untreated water were sent to the gas plant for disposal in the Class II injection wells.

Groundwater Treatment

Historically, recovered groundwater at the site was treated by two air-strippers, designated "east" and "west". During the operation of the groundwater treatment system in the early portion of 2003, recovered groundwater at the site was treated only by the east air stripper. Marathon personnel collected monthly water samples from the influent and effluent of the east air stripper. The west air stripper was not operational during the 2003 calendar year. Therefore, no monthly water samples were collected for the west air stripper. The monthly sampling events were performed according to the Groundwater Discharge Plan GW-21. The monthly samples were submitted for BTEX analysis using USEPA Method 8260B.

Vapor Extraction

The following sections provide information regarding the initial startup of the vapor extraction system (VES), field testing and expansion of the VES, and the mass removal results of the VES during 2003.

The VES was first started at the site in March 1992, using Shallow Zone wells MW-19, MW-20, MW-21, MW-35 and MW-56. The Shallow Zone VES operated from 1992 through 1994, removing the equivalent of 135 barrels of condensate in the vapor phase, as calculated from effluent vapor concentrations and vapor extraction flow rates. Vapor extraction in the Shallow Zone recommenced in August 1997, using wells MW-11, MW-19, MW-26 and MW-41.

VES was initiated in the Lower Queen in January 1997, using wells VE-1 through VE-5 and MW-61A. The system operated through June 1997, removing the equivalent of approximately 13 barrels of condensate in the vapor phase. Based on the low mass removal rates generated by this system, it was decided to discontinue VES operation in this location. Five new vapor extraction wells (VE-16 through VE-20) were installed in 1997, and the system was then relocated to these new wells in June 1997 and operated through the end of 1998.

Based upon the results of the vapor testing completed in 1999 and 2000, 6 blowers (VES-600, VES-700, VES-800, VES-900, VES-1000 and VES-1100) were added to the VES in 2001. Two of the existing blowers, VES-400 and VES-500, were equipped with thermal oxidizers; however, VOC control was no longer needed so these blowers were removed from the Site. Blowers VES-600 and VES-700 were added to the system in July 2001, and blowers VES-800, VES-900, VES-1000 and VES-1100 were added to the

system in September 2001. The VES was configured so each blower was extracting vapor from only one well. This configuration allows for operation of a maximum of 9 blowers extracting from up to 9 wells at any one time. The operation of the nine blowers (VES-100, VES-200, VES-300, VES-600, VES-700, VES-800, VES-900, VES-1000 and VES-1100) continued at the site through 2003.

Shallow Zone Vapor Extraction

Vapor extraction in the Shallow Zone was conducted on Well MW-126 from April 3 to July 30, 2003. For the year, the total equivalent of approximately 0.06 barrels of condensate was removed from the Shallow Zone in the vapor phase.

Lower Queen Vapor Extraction

During 2003, vapor extraction in the Lower Queen primarily included wells MW-65A, MW-68, MW-72, MW-74, MW-85, MW-110, MW-112, MW-113, MW-120, MW-121, MW-123, MW-124, MW-125, MW-129 and MW-130. The combined vapor extraction in 2003 ranged from the equivalent of 0 barrels of condensate in MW-110 to the equivalent of 68.16 barrels of condensate in MW-113. For the year, a total equivalent of approximately 416.24 barrels of condensate was removed from the Lower Queen in the vapor phase.

Aerobic Biodegradation

There has been evidence that a significant amount of aerobic biodegradation of condensate is occurring in the site subsurface. In fact, data suggests that the mass destruction due to aerobic biodegradation may be limited by a lack of sufficient oxygen in the subsurface to support the aerobic respiration. These data indicate that more extensive use of vapor extraction at the site would not only increase vapor-phase mass recovery, but would also increase aerobic biodegradation by adding oxygen to the subsurface.

Summary and Action Plan

Condensate Mass Removal

During 2003, a total of approximately 1,620 barrels of condensate were removed at the site. Of the total recovery, approximately 416 barrels of condensate were removed in the vapor phase by VES efforts in the Shallow Zone and Lower Queen. In addition to the vapor phase recovery, it is estimated that an additional 1203 barrels of condensate were removed via enhanced aerobic degradation in the subsurface. There was no significant amount of condensate removed in the liquid phase through pump and treat efforts from January 1 to February 13, 2003 at the site.

The 2003 vapor phase condensate recovery of 416 barrels is 26% greater than the 330 barrels of vapor phase condensate recovered in 2002. Overall, the total condensate removed at the site in 2003 represents a slight decrease of 7% (123 barrels), as compared to that achieved in 2002. This overall decrease is a result of the lower calculated aerobic degradation in 2003 versus that calculated in 2002 (1203 barrels in 2003; 1410 barrels in 2002; a difference of 14.6% less in 2003).

The 2003 removal results indicate a substantial trend in greater recovery of hydrocarbons compared to the condensate removed in 1997 and 1998. There has been a significant increase of condensate removed both via vapor phase extraction and enhanced aerobic degradation since the vapor extraction system installation.

The significant increase in condensate removal from the VES can be attributed to the following three items:

- Focusing vapor extraction in discrete zones from the well modifications;
- Increasing the scale of the VES through the addition of six blowers in 2001 for a total of nine blowers; and
- Operating one blower per extraction well, thus increasing the maximum attainable flow rate.

Cumulatively, from the initiation of remedial efforts in April 1991 through December 2003, a total of approximately 19,248 barrels of condensate have been recovered. Of the 19,248 barrels of condensate recovered to date, approximately 3,006 barrels have been removed in the liquid phase from recovery wells and sumps, and the equivalent of approximately 16,242 barrels has been removed or degraded in the vapor phase by VES operation.

Planned Activities

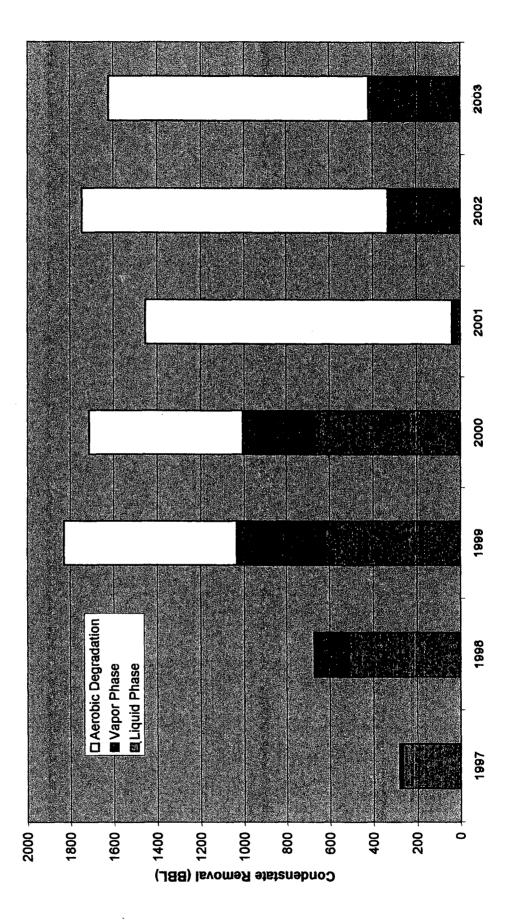
The operation of the VES and groundwater recovery systems suggests lines of evidence that Marathon has provided hydraulic control of condensate and separate-phase hydrocarbons in groundwater at the site (as demonstrated by continual gauging and sampling data). In addition, the total recovery of all hydrocarbons, i.e. vapor phase hydrocarbons and aerobic degradation of hydrocarbons in 2003, is less than that observed in the remediation results of 2002. The rigorous application of the VES technology during 2003 resulted in an increase of annual condensate recovered in the vapor phase versus that recovered in 2002. However, the decrease in the aerobic degradation was greater than the vapor phase increase resulting in an overall decrease in condensate removal. This may be significant because a concerted effort was made during 2003 to maximize recoveries using the VES including the GWES wells in the VES program. If this trend of reducing hydrocarbon recovery continues in future years, it may indicate that potential closure of the site will be warranted in the foreseeable future.

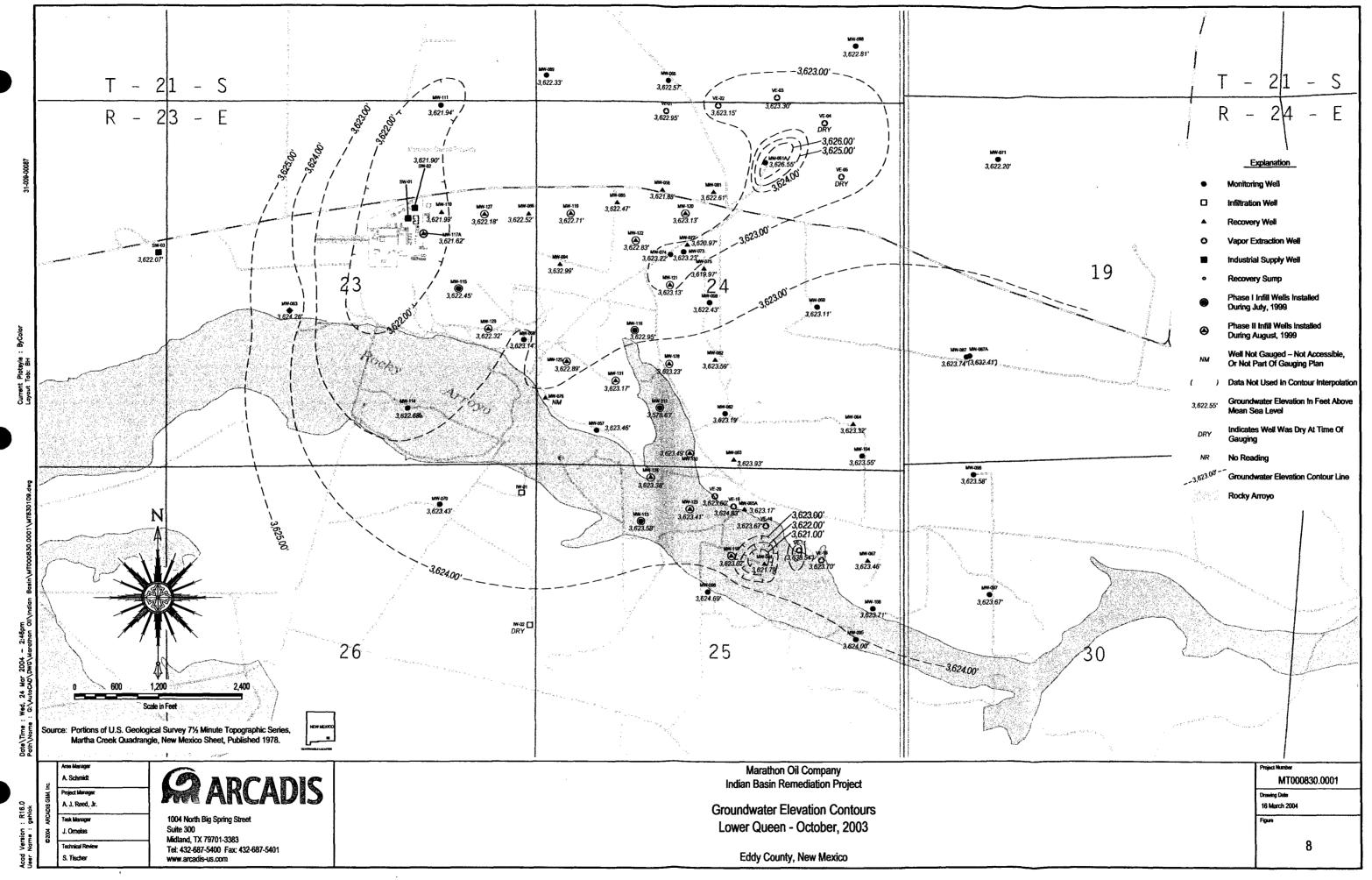
The ongoing remediation efforts in the year 2004 and beyond will include the following:

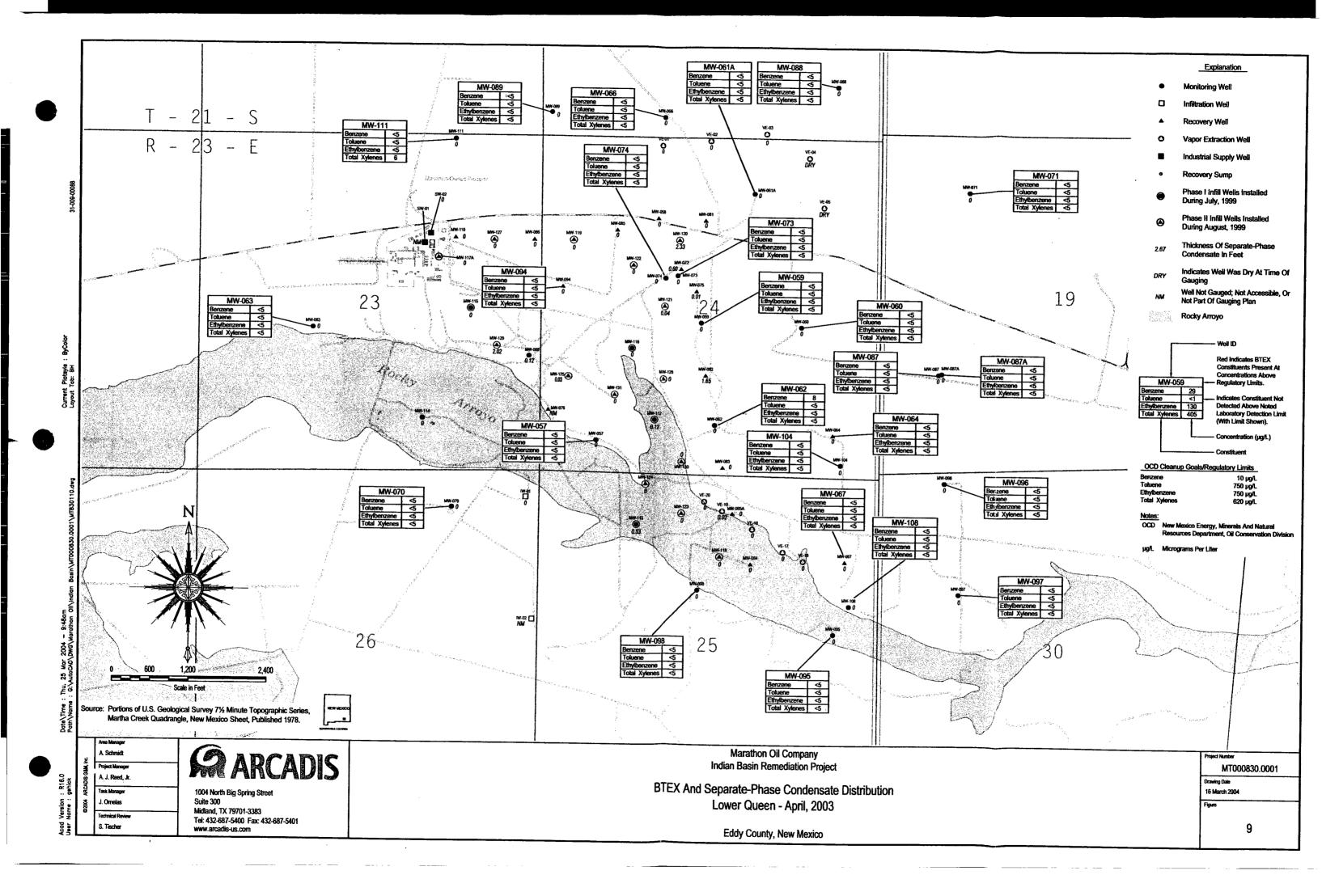
- Semi-annual groundwater monitoring;
- Compliance monitoring and reporting; and
- Continued operation of the VES while continuing to evaluate the wells that will be used for vapor extraction. The current system has the capacity for nine blowers and nine wells and allows for the flexibility to change which wells are used for vapor extraction.
- The GWES will remain idled but the program of evaluating separate-phase conductor in GWES wells and the use of VES for recovery of these hydrocarbons in selected wells will continue.

Groundwater Monitoring Plan

The current groundwater monitoring plan was approved by the OCD (with conditions) in correspondence with Marathon dated March 4, 1999. OCD approved Marathon's request to reduce semi-annual sampling at the site to a single annual sampling event to be conducted in April of each calendar year. Based on historical sampling data collected through 2003, it is apparent that BTEX concentrations are significantly reduced in most of the wells in the sampling program, with most of the wells showing very low or no BTEX above OCD regulatory limits. In addition, where BTEX is detected in monitored wells, there appears to be no seasonal variation in the concentrations. The plan will include sampling the same constituent list as approved in the original OCD approved monitoring plan. Table A provides a list of wells scheduled for sampling and a constituent list for the annual sampling program. The purging and sampling techniques will be conducted using low-flow procedures.


Marathon proposes to continue collecting semi-annual liquid level measurements from all existing site wells as approved in the original groundwater monitoring plan. During each gauging event, liquid level measurements (depth to water and condensate thickness) will be collected from each accessible monitoring well.


Proposed Site Closure Plan


Based on a review of the data collected through 2003, Marathon proposes the following plan to ultimately achieve site closure:

- The groundwater monitoring program will continue as specified above;
- The VES remediation program will continue to be implemented in a manner that will optimize removal of condensate and enhance natural biological degradation. The optimization will include bubbling compressed air into wells containing condensate to enhance the removal of condensate as necessary. In addition, the VES remediation program will be operated in a manner to ensure compliance with the approved plan to shut down the GWES system;
- When it can be determined through monitoring that a portion of the site no longer has evidence of condensate or dissolved BTEX constituents exceeding OCD regulatory limits, that portion of the site will be monitored for two years. If at the end of the two-year period, no condensate occurs, and samples collected from the wells in the area do not show dissolved BTEX above OCD regulatory limits, Marathon would petition the OCD to remove the wells in that portion of the site from the monitoring program. In this manner, Marathon intends to begin closing portions of the site showing no further impacts and focusing remediation and monitoring efforts on those portions of the site that still contain hydrocarbon impacts.

Figure 11 - Estimated Yearly Condensate Removal (1997 - 2003) Marathon Oil Company Indian Basin Remediation Project Eddy County, New Mexico

