

REPORTS

SECTION I

GENERAL INFORMATION

DISCHARGE PLAN

MONUMENT PLANT

SECTION I - GENERAL INFORMATION

INTRODUCTION

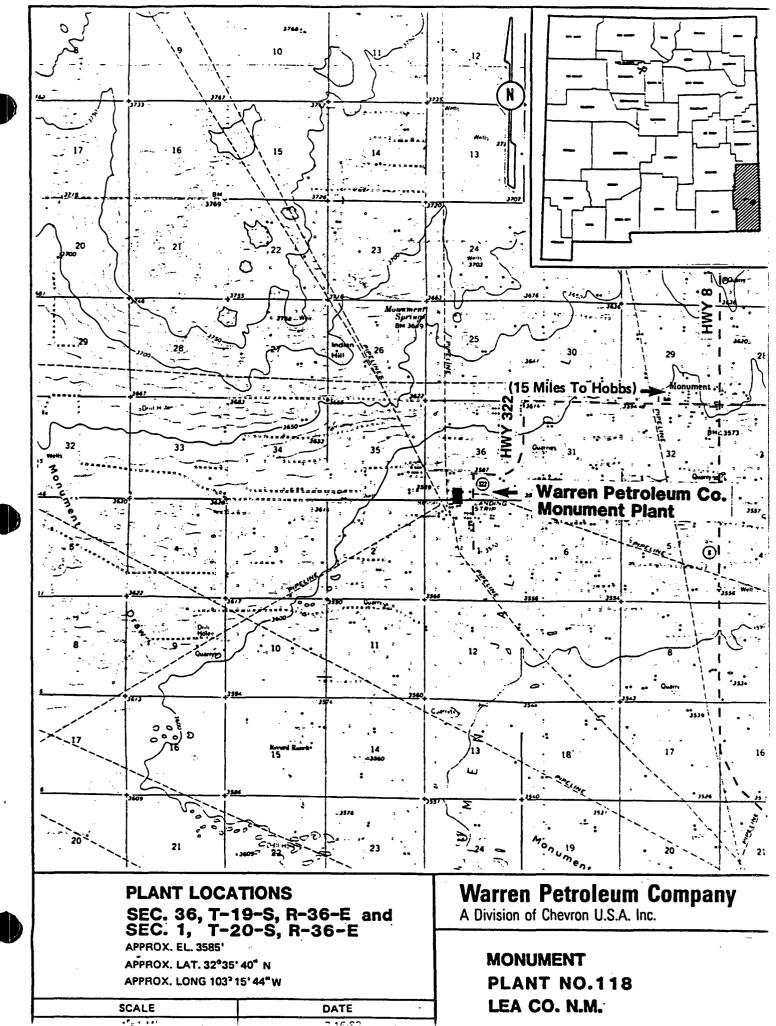
The Following is presented as the Monument Plant Discharge Plan and is in accordance with part 3-100 of the State of New Mexico Water Quality Control Commission Regulations.

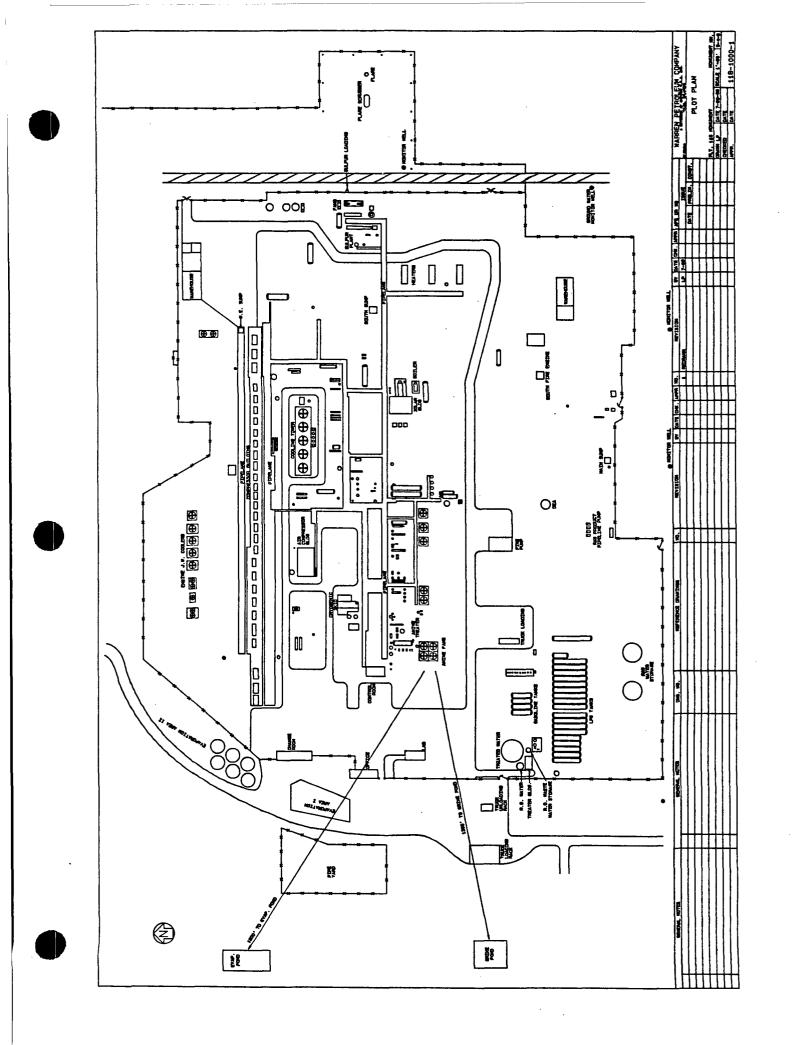
This Plan provides information regarding any potential discharges onto or below the surface of the ground.

SECTION I GENERAL INFORMATION (Continued)

SUMMARY OF WASTEWATER DISPOSAL METHODS

MONUMENT GAS PROCESSING PLANT


Location


36-T19S, R36E and 1-T20S, R36E Lea County, NM

Wastewater Disposal Methods*

- (1) Evaporation Pond (Approved 9/13/77 by the New Mexico Oil Conservation Commission)
- (2) Rice Engineering Injection
 Well (By Continuing ConTract)**
- (3) Brine Pond (Approved by NMOCD-Final Construction Modification Specifications of 9/2/83)
- (4) Evaporation Area for Reverse Osmosis Reject Water. (1989 Project)
- (5) Monument SWD Well -Admin. Order SWD-561***
- *Section XIII of this Plan further describes the disposal of waste materials generated at the Monument Plant.
- **In the event of any shutdown of the Rice Engineering injection well, the evaporation pond would be used. The evaporation pond is lined and has a reserve time of approximately thirty days. Nearing the end of the thirtyday period, should the Rice well still be shut down, the effluent would be hauled to another approved disposal well. The location of an alternate well will take place in advance of the actual need for the disposal site. All information involved in a shutdown for the Rice well will be used to determine an alternate disposal site.

***Upon completion of this SWD primary disposal will be accomplished through the Monument SWD with Rice serving as a backup.

SECTION II

ORIGINAL DISCHARGE PLAN FOR MONUMENT GAS PROCESSING PLANT

JULY 28, 1981

Warren Petroleum Company

MANUFACTURING DEPARTMENT July 28, 1981

P. 0. Box 1589 Tulas, Oklahoma 74102

State of New Mexico Energy and Minerals Department Oil Conservation Division P. O. Box 2088 State Land Office Building Santa Fe, New Mexico 87501

Attention: Mr. Joe D. Ramey, Division Director

> Re: Discharge Plans Monument Plant

Dear Mr. Ramey:

Warren Petroleum Company, a division of Gulf Oil Corporation, is submitting the following formal waste water discharge plan for the Monument Gas Processing Plant, located in Section 1, Township 20S, Range 31E and Section 36, Township 19S, Range 36E, in Lea County, New Mexico.

The liquid waste from the plant includes general plant run-off, cooling tower blowdown, brine from the zeolite softener, boiler blowdown, inlet scrubber water, compressor (interstage scrubbers) condensate water, and water from the H_2S scrubber are disposed of by using a lined evaporation pond, located in the Northwest Corner of the plant.

The evaporation pond was previously approved by the New Mexico Oil Conservation Commission on September 13, 1977 with the condition that it comply with the NMOCC "Specifications for the Design and Construction of lined Evaporation Pits" with the following exceptions:

- 1. There would be less than 600 square feet of evaporative surface per barrel per day of water placed in the pit.
- 2. The excavation would be more than six inches deep in some places.

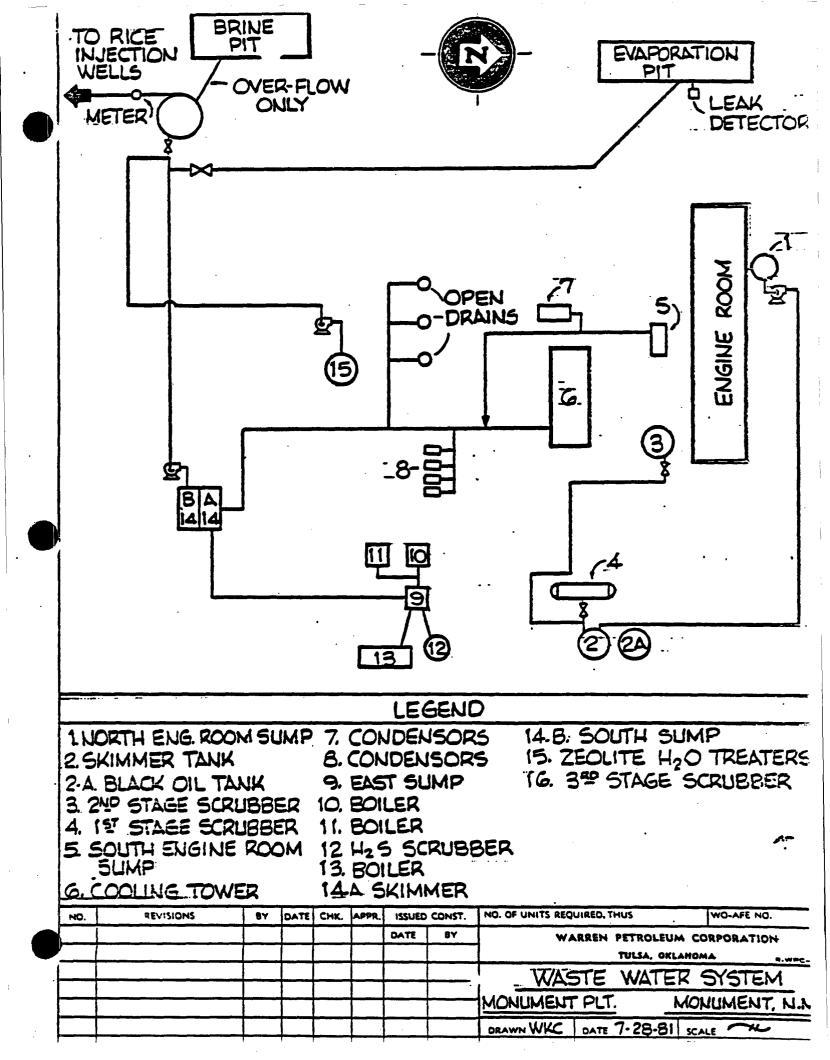
The evaporation pond has a leak detection drainage system which is spaced such that no point in the pond would be more than 20 ft. from the drainage grid.

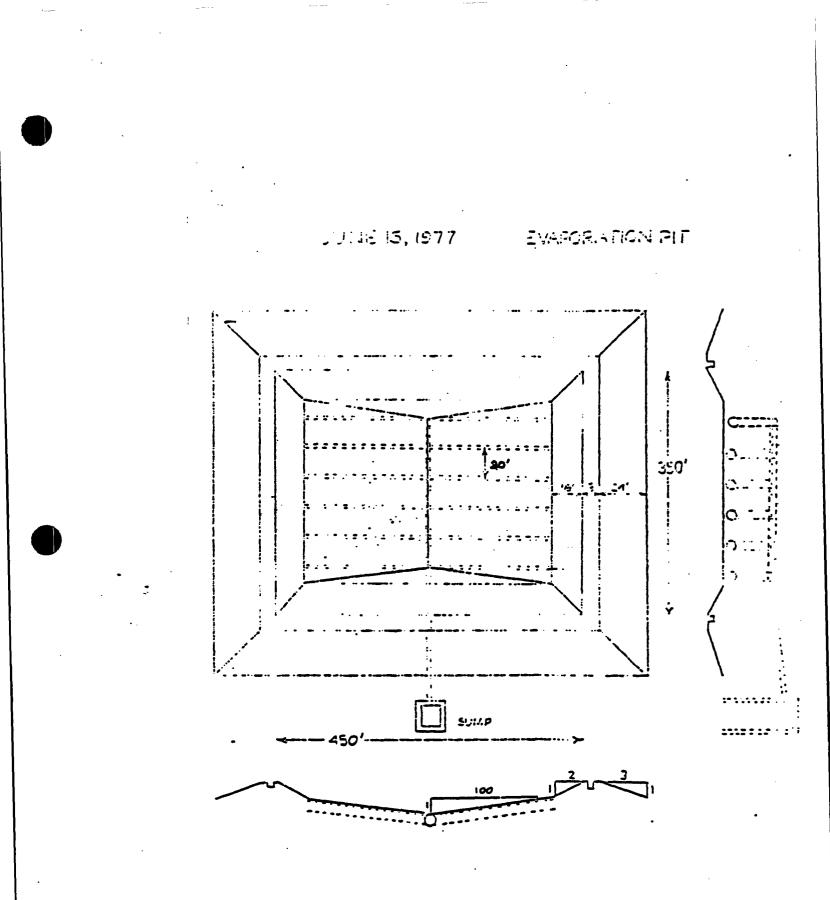
The amount of waste water generated at the plant is approximately 30,000 barrels per month. Due to the lack of the evaporative surface needed to dispose of this quantity of water, we maintain a disposal contract with an injection well firm to get rid of all excess waste water. The injection well, designated Rice EMEI 1, is located in Section 1, Township 205, Range 36E in Lea County, New Mexico.

Page 2

NM Energy and Minerals Department

July 28, 1981


Attached is a map of the waste water system and one of the evaporation pond construction. Should you have any questions or need additional information, please call either Lynn Reed or me at (918) 560-4117.


Very truly yours,

Debra J. Johnson

L.J. E. Moody, Manager Environmental and Services

JEM:DFJ:de Attachments

SECTION III

UPDATE OF ORIGINAL DISCHARGE PLAN FOR MONUMENT GAS PROCESSING PLANT

SEPTEMBER 30, 1984

Warren Petroleum Company

MANUFACTURING DEPARTMENT

P. O. Box 1589 Tuise, Okianome 74102

September 30, 1984

State of New Mexico Energy and Minerals Department Oil Conservation Division Box 2088 Santa Fe, New Mexico 87501

Attn: Joe D. Ramey

Re: Update to Discharge Plans for Monument, Saunders, and Vada Gas Processing Plants

Dear Mr. Ramey:

The subject material is presented according to your request of February 23 and 24, 1984. As you will recall, your subsequent correspondence of June 7, 1984 provided a September 30, 1984 submittal date for this information.

If you have any questions or need further information, please contact Linda Johnson or me at (918) 560-4119.

Very truly yours,

L. T. Reed, Director Environmental Affairs

LTR/LLJ:cm

Attachments

WARREN PETROLEUM COMPANY A DIVISION OF CHEVRON U.S.A. INC. UPDATE OF ORIGINAL WASTE WATER DISCHARGE PLAN MONUMENT GAS PROCESSING PLANT SEPTEMBER 30, 1984

PLANT LOCATION

Section 1, Township 20 South, Range 36 East, and Section 36, Township 19 South, Range 36 East, Lea County, New Mexico.

LIOUID WASTE

The liquid waste from the facility includes general plant runoff, dehydration water, cooling tower blowdown, engine washwater, brine from the zeolite softener, boiler blowdown, inlet scrubber water, compressor (interstage scrubbers) condensate water, and water from the H2S scrubber. These sources are disposed of by way of the plant sump system and from there to the Rice Engineering disposal well. The amount of waste water generated is approximately 30,000 barrels per month.

EVAPORATION POND

The pond is no longer used as an evaporation pond, as described in our original discharge plan submitted to the New Mexico Oil Conservation Division (NMOCD) on July 28, 1981.

BRINE POND

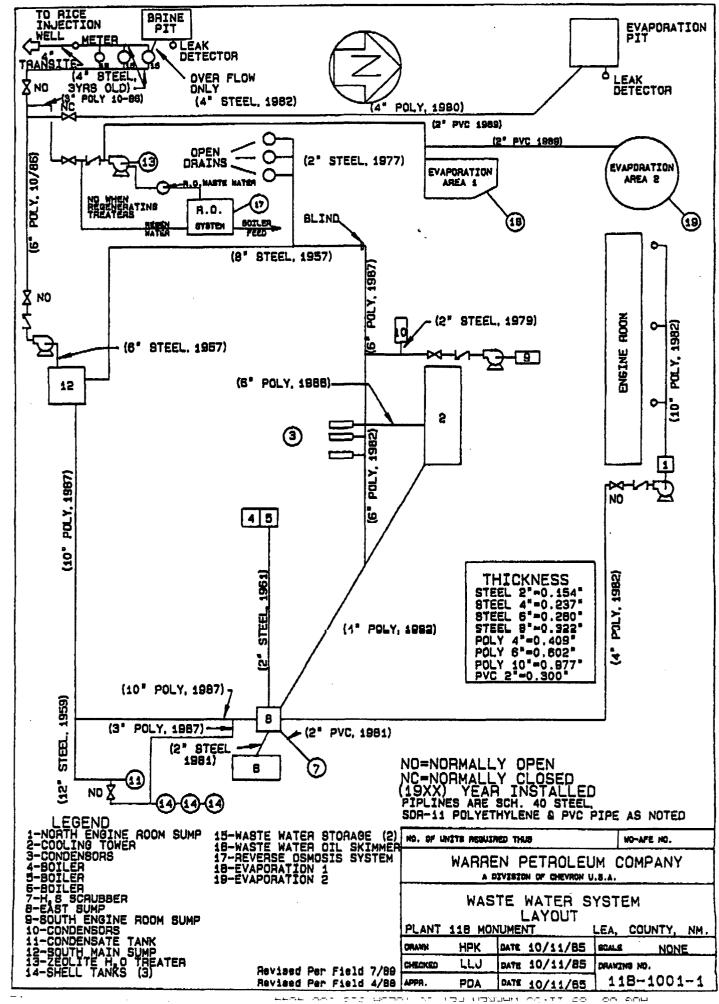
The Brine Pond was upgraded in 1983, in accordance with the NMOCD letter of August 6, 1982. The pond stores brine from the storage well. Warren's initial correspondence describing plans and specifications for the storage of approximately 2,000,000 gallons* of ten pound brine was submitted to the NMOCD on August 16, 1982. These specifications were updated, with a copy sent to the NMOCD on March 30, 1983. The sieve analysis for the sand and gravel to be used was submitted on May 3, 1983. A letter describing the final modification specifications was sent to the NMOCD on September 2, 1983. Each Stage of the construction was inspected and approved by the NMOCD. Copies of Warren's correspondence appears as Section VII of this plan.

*Final capacity is 2,283,000 gallons.

SECTION III - UPDATE OF ORIGINAL DISCHARGE PLAN (Continued)

UPDATE OF WASTEWATER DISCHARGE PLAN OF SEPTEMBER 30, 1984 SEPTEMBER 20, 1989

Liquid Waste


In addition to the aforementioned sources, Reverse Osmosis Reject Water is to be disposed to an agricultural evaporation area.

Brine Pond

The brine pond was upgraded again in 1989 with a polyethylene liner, replacing the fiberglass liner which had deteriorated beyond use.

Proposed Agricultural Evaporation Area

A Reverse Osmosis Unit was installed in 1989, from which waste water is evaptranspirated from two evaporation areas planted with Bermuda grass. The design of the area has been done with help from an agronomist with the Agricultural Science Center of New Mexico State University of Artesia.

челе ост ртр шеток от каш наушен сонтт со

SECTION IV

TOPOGRAPHIC MAP

SECTION V

GENERAL DESCRIPTION -

GAS PROCESSING INDUSTRY AND SPECIFIC REFERENCES

FOR

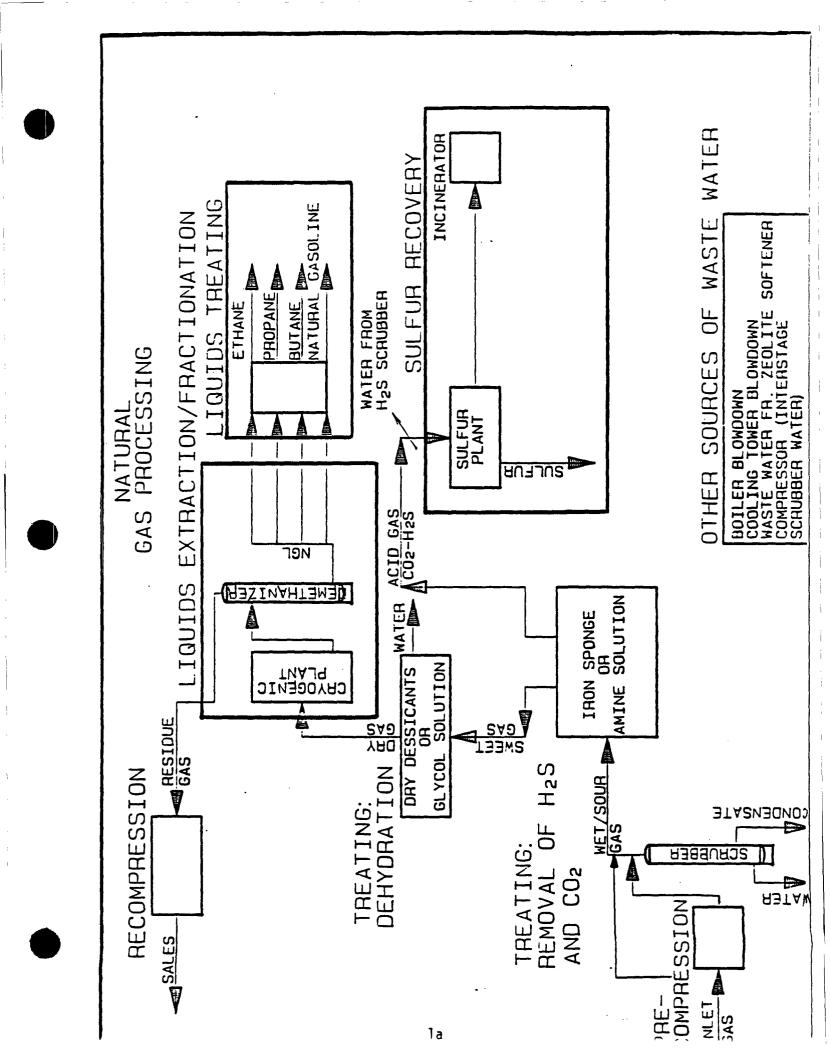
MONUMENT PLANT

SECTION V

GENERAL DESCRIPTION

GAS PROCESSING INDUSTRY

Natural Gas Processing Plants extract liquid hydrocarbons from ray natural gas. Please refer to the block flow diagram which directly follows.


The liquid hydrocarbon components of natural gas are ethane (C2), propane (C3), butane (C4), and natural gasoline (C5+). The remaining gas, from which the liquids are extracted, is almost entirely methane (C1).

Treating for the Removal of Hydrogen Sulfide and Carbon Dioxide

The raw Natural gas, termed inlet gas, may contain varying amounts of impurities. The most common contaminates are water (H2O), hydrogen sulfide (H2S), and carbon dioxide (CO2). The gas is compressed and then enters the first phase of natural gas processing, which is treatment to remove the impurities.

The term acid gas refers to the presence of H2S and CO2 in the raw natural gas. Sour gas has a high concentration of sulfur components. Sweet gas has small quantities of sulfur compounds, usually less than 0.25 grain of H2S per 100 standard cubic feet of gas, and as such, bypasses iron sponge or amine treating.

The acid gas may be removed from the inlet gas stream by and absorption process where the incoming stream contacts a liquid that selectively reacts with and removes the acid gas. This liquid mono- or diethanolamine is regenerated by heat, thereby driving off the gases. The resultant amine liquid then reacts with more acid gas in a continuing cycle of reaction, then regeneration. The gases released from the amine may then be combusted to SO2 in a flare stack, or incinerator. If the acid gas exists in a large concentration, it will not be combusted, but will enter a sulfur recovery plant, which removes elemental sulfur from the stream. Any unoxidized H2S, which occurs in small amounts, is oxidized to SO2 by the sulfur plant incinerator.

SECTION V - GENERAL DESCRIPTION GAS PROCESSING INDUSTRY (Continued)

Treating for the Removal of Hydrogen Sulfide and Carbon Dioxide

This incinerator is located after the last sulfur plant catalytic bed. Also note than an H2S scrubber may exist prior to the entry of the gas stream into the sulfur plant. This scrubber removes water from the gas.

Treating for the Removal of Water

The inlet gas, now minus the acid gas components, enters the next phase of gas processing. This is the removal of water from the gas.

The water may be removed by an absorption, or an absorption process. Both processes may be used in tandem.

Triethylene glycol removes water from the gas by absorption. The glycol is then reconcentrated by removal of the water with heat. This is a continuous cycle. Either alone, or in conjunction with the glycol system, a molecular sieve dehydration system may exist. The molecular sieve is a desiccant which absorbs water from the gas is regenerated by heat to restore its absorptive capability.

Whether removed by glycol or molecular sieve, the water driven off during regeneration exists in the steam phase, then condenses through exchangers and leaves the process as a liquid.

Natural Gas Processing - Removal of Gas Liquids

The extraction of the gas liquids from the gas stream, which is now sweet and dry, is accomplished in several ways. Warren's New Mexico plants use the cryogenic method. Basically, the gas stream is cooled and the non-methane hydrocarbons are then condensed and recovered. In some instances, the liquids are also treated to remove water and or acid gas components.

SECTION V - GENERAL DESCRIPTION GAS PROCESSING INDUSTRY (Continued)

Natural Gas Processing - Fractionation of Natural Gas Liquids

The natural gas liquids that have been separated out of the inlet stream are fractionated into their individual components. Many of Warren's plants do not fractionate the liquids. These plants remove the gas liquids by pipeline.

Separation of the hydrocarbon components is possible because of the difference in their physical properties, specifically, their boiling points. The distinct gas liquids, along with the purified natural gas, are sold commercially.

The following document, <u>"The Gas Processing Industry: Its</u> Function and Role in Energy Supplies", published by the Gas Processors Association, will provide further details about the industry. The Gas Processing Industry:

Its Function and Role in Energy Supplies

Gas Processors Association 1812 First Place Tulsa, OK 74103

INTRODUCTION

The gas processing industry is a major segment of the oil and gas industry, distinct from either crude oil or natural gas production. separate from oil refining or gas distribution, yet indispensable to all. As a separate and identifiable function. it is probably the least known and least understood part of the petroleum industry.

In simple terms, the gas processing industry refines raw natural gas from the earth into saleable, useful energy forms for use in a wide variety of applications. Through the gas processing industry's plants flows approximately 60% of the nation's petroleum energy production, which emerges in the form of merchantable natural gas, liquefied petroleum gases, motor fuel components, and raw materials for a myriad of basic petrochemicals.

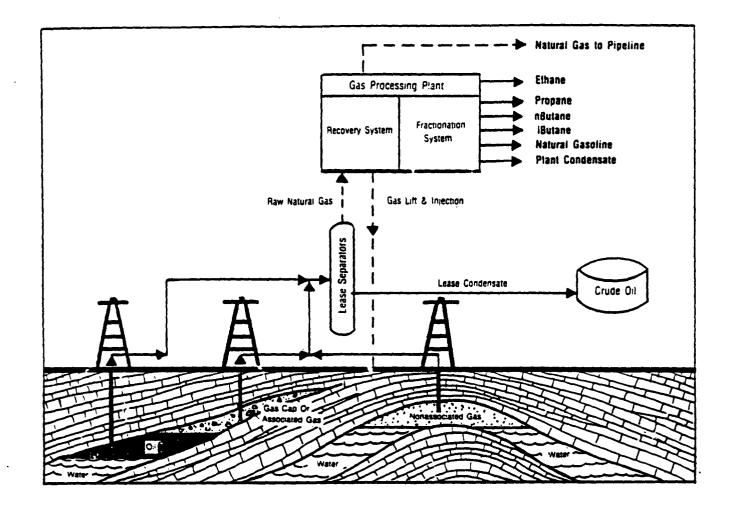
Natural gas occurs deep below the surface of the earth in two principal forms: associated gas and non-associated gas.

Associated gas is found in crude oil reservoirs, either dissolved in the crude oil, or in conjunction with crude oil deposits. It is produced from oil wells along with the crude. It separates, or is separated from, the oil at the casinghead of the well, which leads to the synonymous term "casinghead gas." It may also be called "oilwell gas" or "dissolved gas." In the industry's beginning, virtually all processed gas was from oil wells.

Non-associated gas occurs in reservoirs separate from crude oil. Its production is not incidental to the production of crude oil. It is commonly called "gas-well gas" or "dry gas." Today about 75% of all natural gas produced is non-associated gas.

In addition, the reservoirs of many oil fields found since 1935 produce neither true gases nor true liquids. The material might properly be called a "two-phase fluid." It is neither a gas because of its high density, nor a liquid because no surface boundary exists between gas and liquid. These reservoirs, called "gas condensate" reservoirs, are usually deeper with higher pressures, which pose special problems in production and processing.

From whatever reservoir, natural gas as produced from the earth has widely varying composition. depending on the field, the formation, or the reservoir from which it is produced. The principal constituents of natural gas are methane and ethane, but most gases contain varying amounts of heavier components, such as propane, butane, pentane, and heavier hydrocarbons that may be removed by any of a number of processing methods.


The removal of individual hydrocarbons by processing is possible because of the differences in physical properties. Each component has a distinctive weight, boiling point, and other physical characteristics, making its separation from other components a relatively simple physical operation.

Gas processors describe gas as "rich" (wet), or "lean" (dry) depending on its content of heavy components. These are relative terms, but as used in the industry, a rich gas may contain five or six gallons or more of recoverable hydrocarbons per thousand cubic feet; a lean gas usually contains less than one gallon of recoverable liquids per thousand cubic feet.

Natural gas may also contain water, hydrogen sulfide, carbon dioxide, nitrogen, helium, or other components that may be diluents and/or contaminants. In any case, natural gas as produced rarely is suitable for pipe line transportation or commercial use. Natural gas in commercial distribution systems is composed almost entirely of methane and ethane, with moisture and other contaminants removed to very low concentrations.

Therefore, all natural gas is processed in some manner to remove unwanted

4

water vapor, solids and/or other contaminants that would interfere with pipe line transportation or marketing of the gas. In addition, and equally important, most natural gas is processed to separate from the gas those hydrocarbon liquids that have higher value as separate products.

These natural gas liquids (NGL's) are part of a family of saturated hydrocarbons called paraffins. Each compound has a chemical formula C_nH_{2n-2} . The principal natural gas liquids include:

Ethane: Exists as a liquid only under very high pressures (800 psi) or at extremely low temperatures (-135° F). It is recovered and transported in either the liquid or gaseous state principally for use as feedstock for ethylene, the most important basic petrochemical produced today.

Propane: Recovered and handled as a liquid at pressures over 200 pounds, or at temperatures below -44° F. Its principal uses are as feedstock for production of ethylene and propylene, and as LP-gas for heating fuel, engine fuel, and industrial fuel.

Butane: Recovered and handled as a liquid under moderate pressure. Its principal uses are to provide needed volatility to gasoline motor fuel; as domestic LP-gas fuel, either alone or in mixtures with propane; and as a feedstock for the manufacture of butadiene, a key ingredient of synthetic rubber.

Iso-butane: The chemical isomer of butane, it is fractionated and produced as a separate product principally for the manufacture of alkylate, a vital ingredient of high-octane motor gasoline.

Natural Gasoline: A mixture of pentanes and heavier hydrocarbons, with small amounts of butane and iso-butane. Industry specifications define its physical

5

properties in terms of vapor pressure at 100° F (10 to 34 psi), and percentage evaporated at 140° F (25 to 85%). It is recovered as a liquid, principally for use as a motor fuel component.

If the gas contains hydrogen sulfide, a poisonous gas, it is removed and further processed for recovery of elemental sulfur. Most carbon dioxide is removed to prevent destructive corrosion and to inject into crude oil reservoirs for enhanced oil recovery (EOR). Some helium is extracted for its unique properties as an inert gas.

In addition, gas processing performs vital functions, both economically and technically, in the recovery of crude oil through reservoir pressure maintenance, miscible floods, and other secondary recovery methods. Many of these projects would not be economically possible except for the revenues generated by extraction and sale of natural gas liquids.

PROCESSING AND MANUFACTURE

Natural gas processing involves two basic operations: (1) extraction of the natural gas liquids from the gas stream: and (2) fractionation of the natural gas liquids into their separate components. Additional processing is usually required to treat and condition both the natural gas and the gas liquids.

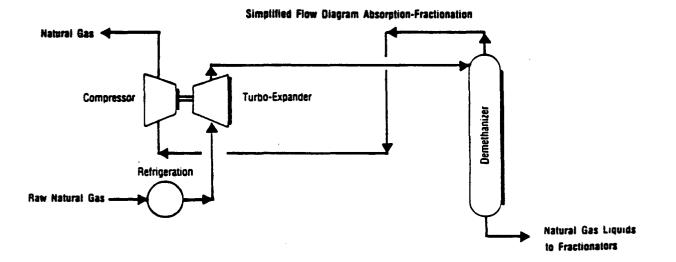
Natural gas processing may be as simple as drying the gas by passing it through a fixed bed of a desiccant material, or it may be as complex as complete liquetaction of the total gas stream by cooling to extremely low temperatures. Extraction of heavier gas liquids (pentane and heavier) can be achieved by simple compression and moderate cooling of the natural gas stream.

However, the modern gas processing industry uses a variety of sophisticated processes to treat natural gas and extract natural gas liquids from the gas stream. The two most important extraction processes are the absorption and cryogenic expander processes. Together, these processes account for an estimated 90% of total natural gas liquids production.

ABSORPTION PROCESS

The basic step in the absorption process is removal of NGL components from the natural gas by contact with an absorbing oil. Liquid recovery is enhanced by refrigerating the absorption oil. Recovery levels may also be increased by lowering the molecular weight of the absorption oil. Depending on operating conditions. approximately 85% of the propane and essentially all of the heavier natural gas liquids are absorbed in the oil. The lighter fractions – methane, ethane, and some of the propane – are not recovered in the absorbing oil and pass through the absorber tower as merchantable pipeline quality natural gas.

The bottoms effluent from the absorption tower consists of rich absorption oil mixed with absorbed propane, butanes, pentanes, and other heavier natural gas liquids. This stream is then fed to lean oil stills where the absorbed liquids are distilled from the absorber oil by heating the mixture to a temperature above the boiling point of the natural gas liquids, but below that of the absorber oil. The stripped absorber oil is then recirculated to the absorption tower, and the mixed stream of natural gas liquids is piped to the fractionation system for further separation into individual NGL components.


The fractionation system may be an integral part of the gas processing plant, or it may be a "central fractionator" many miles from the primary production. A central fractionator may receive mixed streams of natural gas liquids from many plants.

TURBO EXPANDER PROCESS

In recent years, ethane has become increasingly desirable as a petrochemical feedstock. This has resulted in the construction of many plants that recover ethane and heavier hydrocarbons from natural gas at temperatures ranging down to minus 150°F.

Combinations of external refrigeration and liquid flash-expansion refrigeration with gas turbo expansion cycles are employed to attain the low temperatures desired for high ethane recovery.

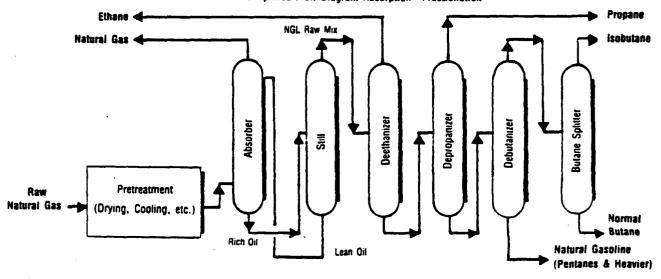
In the turbo-expander process, the absorber and still facilities are replaced by an expansion turbine, which accomplishes the separation of gas liquids from the natural gas stream by auto-refrigeration to extremely low temperatures.

Recoveries of 90-95% ethane and all of the heavier hydrocarbons have been achieved with the expander process. The mixed liquid product from the expander plant is then fractionated or may be delivered by pipeline to a central fractionation facility for fractionation into separate NGL components.

FRACTIONATION

Fractionation of a mixed NGL stream into separate components is accomplished by controlling the temperature of the stream in a fractionator to take advantage of the difference in boiling points of separate products. Fractionators are usually named for the overhead or top product. Therefore, a deethanizer implies that the top product is ethane; a depropanizer indicates that the top product is propane, etc. Natural gas liquids are normally fractionated by boiling the lighter products from the heavier products in the following order:

Deethanizer: The first step in the fractionating sequence is to separate the ethane and propane, with the ethane going overhead and the propane and heavier components passing from the bottom of the fractionator.


Depropanizer: The next step in the processing sequence is to separate the propane and the isobutane, with the propane going overhead and the isobutane and heavier components passing from the bottom of the depropanizer.

Debutanizer: The next fractionation step is separation of the butanes from the pentanes plus stream. The butanes (both iso and normal) pass overhead and the pentanes plus pass from the bottom of the fractionator.

Butane Splitter or Deisobutanizer: When it is desirable to do so, the butanes which pass overhead from the debutanizer may be separated into iso and normal butanes. The isobutane goes overhead and the normal butane is drawn from the bottom of the tower.

OTHER ROUTINE GAS PROCESSING

As noted earlier, both natural gas and natural gas liquids may require additional treating or processing, either before or after extraction of liquids.

Simplified Flow Diagram Absorption—Fractionation

8

The most common treatment of natural gas is removal of excess water vapor, which is necessary to prevent formation of hydrates and freezing in pipeline transmission systems. Techniques for dehydrating natural gas include:

-Absorption using liquid desiccants, usually a glycol compound

-Adsorption, using solid desiccants such as silica gel, activated alumina. or molecular sieves

-Dew point depression by injection of anti-freeze compounds such as glycols or alcohols

-Expansion refrigeration which cools the gas stream below the dew point of entrained water vapor.

Removal of excess moisture from some natural gas liquids. principally propane. is also necessary and is accomplished most often with solid desiccants or molecular sieves.

Additional treatment of both natural gas and natural gas liquids is usually required to remove hydrogen sulfide and carbon dioxide. This process in the industry is called "sweetening." Many process methods are used, most of which rely on either chemical reactions, physical solution, or adsorption. Each process has unique advantages, depending on the concentration of hydrogen sulfide, carbon dioxide, and other conditions.

The most common chemical processes are based on contact with amine solutions. These solutions react with unwanted acid gas constituents to form other compounds which can then be removed.

Physical solvent processes include a number of patented chemicals and processing schemes which function much the same as the oil absorption process for removal of liquids from gas.

Adsorption processes involve the removal of unwanted components by passing the gas or liquid through a bed of solid material that has been designed or treated to selectively extract carbon dioxide. hydrogen sulfide, or other contaminants.

SULFUR RECOVERY

The sour gas effluent from a sweetening unit must be further treated, either for disposal or for recovery of sulfur contained in the gas. At plants where hydrogen sulfide concentrations are very low, it is not economical to install sulfur recovery facilities. In these cases, the sour gas is disposed of by incineration.

At higher concentrations, the sour gas is usually processed in a sulfur recovery facility to recover elemental sulfur. The Claus process is the most widely used process for converting hydrogen sulfide into elemental sulfur. The process utilizes thermal and catalytic reactions to achieve conversion of up to 97% of hydrogen sulfide to elemental sulfur. "Tail gas clean up" processes reduce sulfur emissions significantly and boost overall efficiency of sulfur recovery to 98+%.

OTHER SPECIALIZED GAS PROCESSING

Depending on gas composition and other factors, the gas processing function may also include additional processing such as:

- Carbon dioxide removal and transport for enhanced oil recovery

- Helium recovery for commercial sale
- Nitrogen removal to increase heating value of the gas
- Liquefaction of the total gas stream to produce liquefied natural gas.

All of these process functions require specialized processes and additional investment.

PROFILE OF THE U.S. GAS PROCESSING INDUSTRY

PROCESSING PLANTS

There are approximately 859 gas processing plants in the United States, most of which are located in five states: Texas, Louisiana, Oklahoma, Kansas, and New Mexico. These five states account for about 86'i of total U.S. gas processing capacity, gas processed, and natural gas liquids production.

Plant sizes range from less than 1 million cubic feet per day up to more than 2.5 billion cubic feet per day. The 200 smallest plants (about 25% of total) are less than 10 million cubic feet per day capacity, and account for only about 1% of total industry capacity.

The 200 largest plants $(25)^{\circ}$ of total) have capacities greater than 80 million cubic feet per day and account for nearly 80° of total industry capacity. Approximately 92° of total gas capacity is in 375 plants (44% of total) with capacities greater than 35 million cubic feet per day. Production of natural gas liquids averages less than 2.000 barrels per day per plant, with maximum production ranging up to 25.000 barrels per day in the largest plants.

Approximately 100 of the 859 U.S. gas processing plants include sulfur recovery facilities, with a total capacity of about 4.500 tons per day of elemental sulfur. Sulfur production from gas plants accounts for about 13% of total U.S. sulfur production.

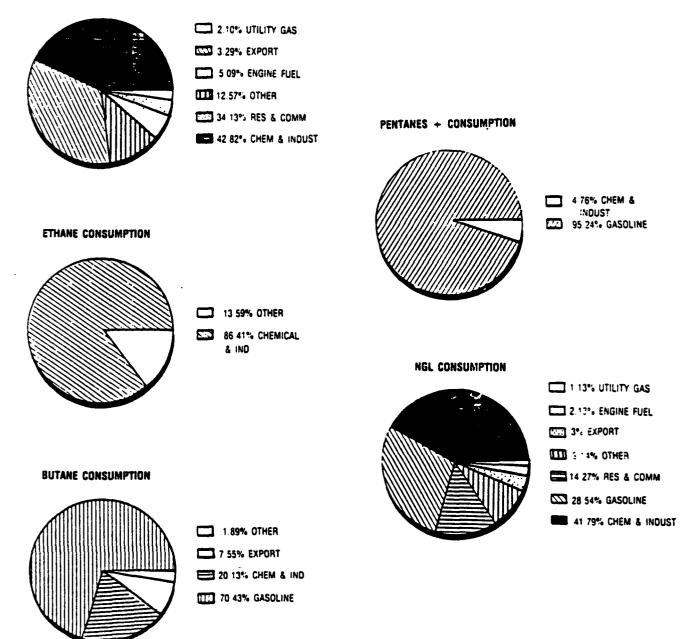
In addition, there are approximately 20 central fractionating plants operating in the United States. These fractionators may handle the mixed natural gas liquids production of a single separation facility, or may process mixed streams from many plants, some of which may be located hundreds of miles away. These fractionators separate these raw mixed NGL streams from recovery facilities into saleable products such as ethane, propane, butane, or specified mixtures, according to the user's needs.

COMPANIES

The U.S. gas processing industry is composed of an estimated 300 companies. ranging in size from the largest integrated oil companies to the single plant owneroperator.

The 20 largest gas processing companies produce about 70% of total U.S. production of natural gas liquids.

U.S. GAS PROCESSING PLANTS


State	No. Plants	Gas Capacity, mmcfd	Gas throughput, mmcfd	NGL Products, m B/D
Texas	411	25.090	13.380	618
Louisiana	100	22.601	14.070	333
Oklahoma	103	4.765	3.110	145
Kansas	23	4.894	2.648	45
New Mexico	41	3.626	2.211	96
	678	60.976	35,419	1,237
Other	181	9.508	5.738	218
U.S. Total	859	70.484	41.157	1,435

NATURAL GAS LIQUIDS SUPPLY/DEMAND

U.S. gas plant production of natural gas liquids totals some 570 million barrels per year, or approximately 1.5 million barrels per day. The distribution of this production during 1984 is as follows:

Ethane	28.712
Propane	34.2%
Normal and Iso-Butane	19.6%
Pentanes plus, including plant condensate	17.5%

PROPANE CONSUMPTION

PHYSICAL PROPERTIES OF NATURAL GAS LIQUIDS COMPONENTS

Component	Vapor Pressure psia @ 100 F.	Boiling Point @ 14.7 psia	Specific Gravity 60 F./60 F.
Methane	(5,000)	-259	0.3
Ethane	(800)	-127	0.356
Propane	190	-43.7	0.508
n-Butane	51.6	31.1	0.584
i-Butane	72.2	10.9	0.536
n-Pentane	15.6	96.9	0.631
i-Pentane	20.4	82.1	0.625
Hexane	5.0	155.7	0.664
Heptane	1.6	209.2	0.688

In addition, field facilities handling natural gas prior to delivery into a gas processing plant produce an estimated 350 thousand barrels per day of lease condensate, which is usually transported to refineries along with crude oil.

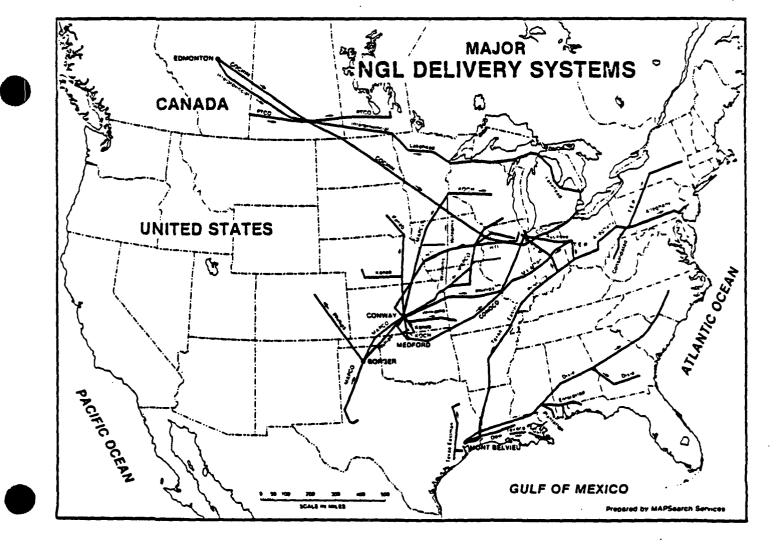
Total U.S. supply of natural gas liquids is augmented by refinery production and imports.

Refineries produce and market about 120 million barrels per year, or about 325 thousand barrels per day, of natural gas liquids, mainly propane. Refinery yields of natural gas liquids amount to 2.3% of total crude oil charged to the refinery.

Total imports of natural gas liquids are approximately 70 million barrels per year, or roughly 200 thousand barrels per day. About 80% of these imports are trom Canada.

Approximately $\delta 0$ is of total U.S. natural gas liquids production is consumed in three major uses: petrochemical feedstocks: motor gasoline manufacture: and residential and commercial heating fuels. The remainder is used in a wide variety of applications. including engine fuels, industrial fuels, utility peak shaving, crop drying, and other agricultural and process fuel applications.

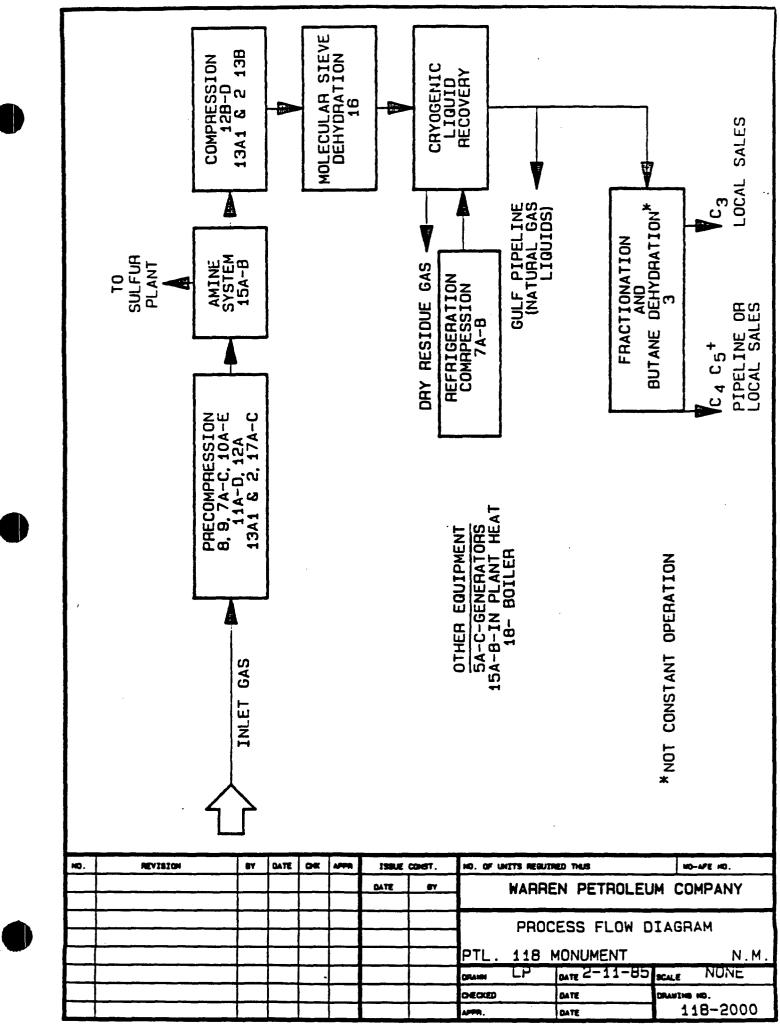
TRANSPORTATION AND STORAGE


A national network of some 70 thousand miles of high pressure pipelines transport unfractionated NGL streams from production areas to fractionating centers and then transport finished products to major markets.

Four major pipelines extend from the West Texas-New Mexico fields to the major terminal and fractionation center of the U.S. – Mont Belvieu. Texas, located near the petrochemical and refining center of the nation. Other pipeline systems deliver West Texas-New Mexico natural gas liquids to a second major terminal, storage, and fractionation point in central Kansas.

From Mont Belvieu, two major pipeline systems deliver LP-gas fuels to the northeastern and southeastern United States.

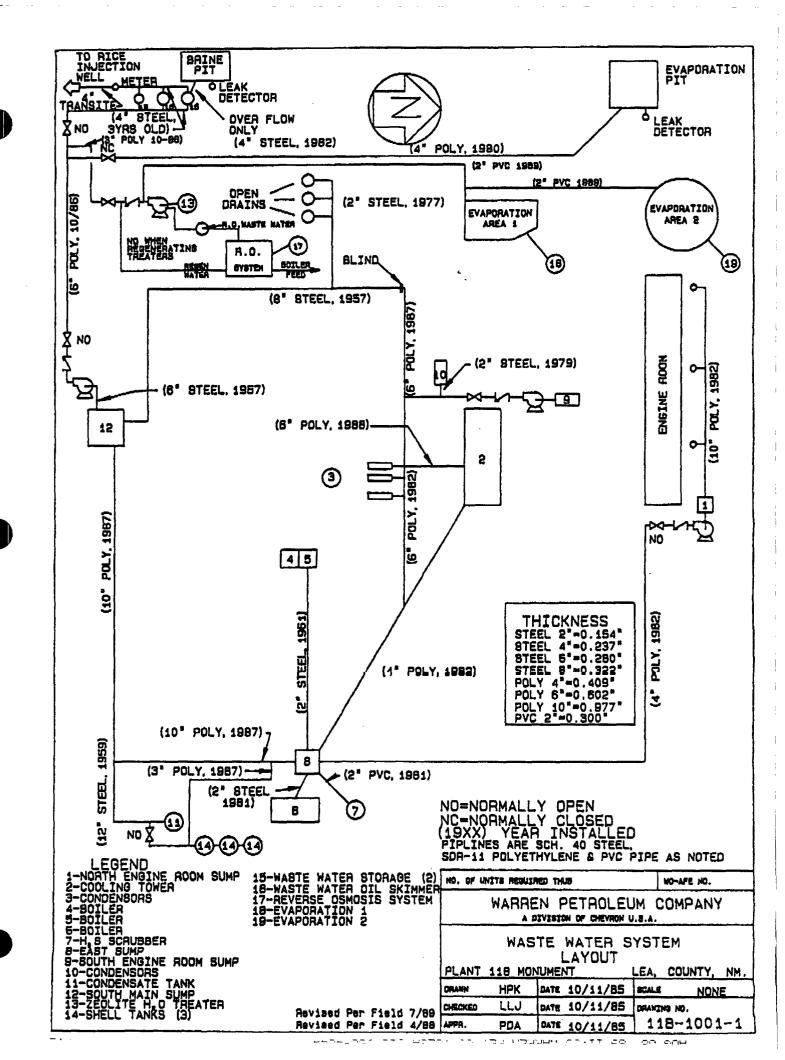
Several pipeline systems extend from central Kansas storage and fractionating facilities into west and upper midwest markets.


Total natural gas liquids production is relatively constant throughout the year. However, depending on weather and other factors, demand may vary considerably. Therefore the industry has installed and operates underground storage facilities totaling nearly half a billion barrels capacity. The bulk of this capacity is located near the refining and petrochemical complexes of the Texas and Louisiana Gulf Coasts, with a second major installation in the midcontinent hub of central Kansas.

SECTION V - GENERAL DESCRIPTION GAS PROCESSING INDUSTRY (Continued)

NATURAL GAS PROCESSING FOR THE MONUMENT PLANT

The following diagram outlines gas processing for the Monument Plant. The numbers present for each process represent Warren identifiable unit number for individual compressors or heaters needed to complete each phase of the process.


?

SECTION V - GENERAL DESCRIPTION GAS PROCESSING INDUSTRY (Continued)

NATURAL GAS PROCESSING FOR THE MONUMENT PLANT

The generalized block flow diagram presented at the beginning of this section lists sources of wastewater that are in association with gas processing. These discharges, along with inlet gas scrubber (process) water, are the major sources for disposal for gas processing plants.

The Wastewater System Disposal diagram for the Monument Plant directly follows. This diagram also shows the final disposition of the water. This is reiterated on the summary pages presented at the end of this section.

SECTION V - GENERAL DESCRIPTION GAS PROCESSING INDUSTRY (Continued)

SUMP / PUMP INFORMATION FOR THE MONUMENT PLANT

The capacity of each sump is as follows:

North Engine Room Sump 7,200 gallons. South Engine Room Sump 10,200 gallons. East Sump 13,400 gallons. Main Sump 11,300 gallons.

The capacity of the sump into which all effluent flows is 21,840 gallons stored in three tanks. Any overflow would go to the brine pit. The effluent in the tanks is then sent to the Rice Engineering well by gravity feed. There is no pump on the discharge line to Rice Engineering. the sump capacities upstream of the three tanks are listed above. We do not have pump curves for the two pumps that deliver effluent to the three tanks.

SECTION V - GENERAL DESCRIPTION GAS PROCESSING INDUSTRY (Continued)

SUMMARY OF WASTE WATER DISCHARGE

MONUMENT PLANT

Inlet Scrubber Water	>	<	Interstage Scrubber Water First,Second and Third
Wash Water-Engine Room	>	<	H2S Scrubber Water
Dehydration Water	>	<	Boiler Blowdown Water
General Plant Runoff	>		
Cooling Tower Blowdown	>		Brine Water from Zeolite Softener
		>	Evaporation Pit/Brine Pond Emergency Use Only

RICE INJECTION WELL (Monument SWD-561 upon comp.)

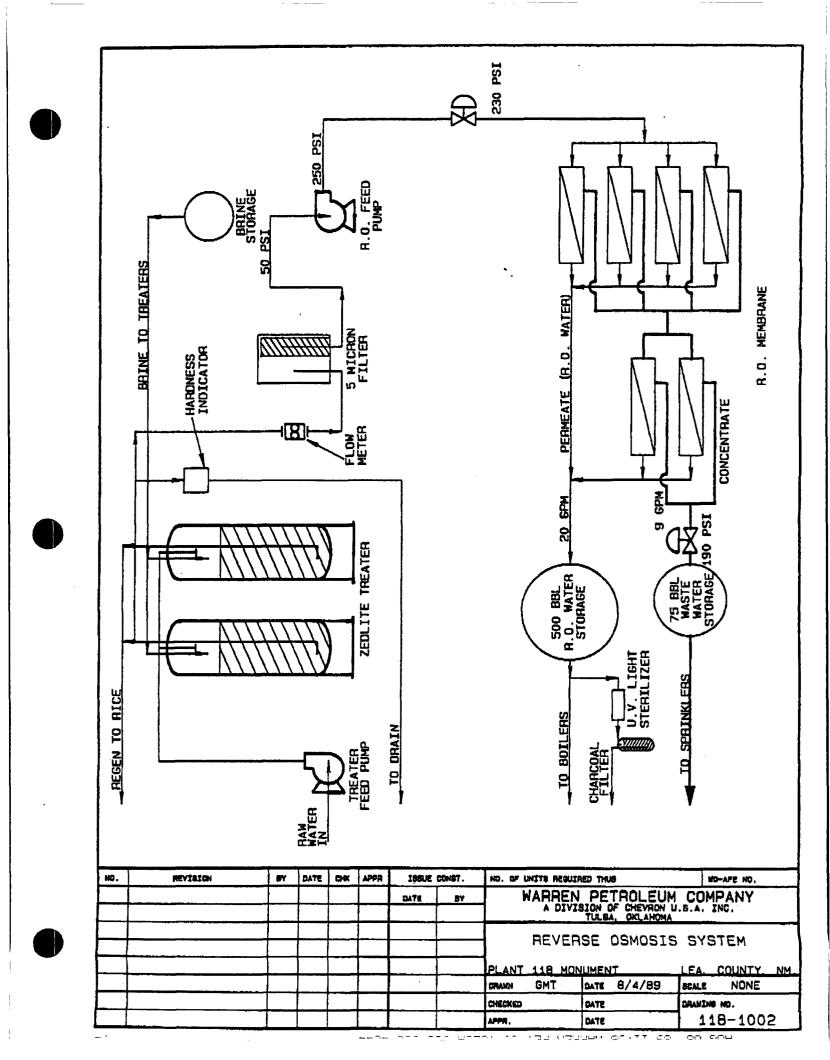
Note:

In the event of any emergency shutdown of the Rice Injection Well, waste water would be sent to the evaporation pond for the 30 days. If Rice Engineering did not resume injection, the water would be hauled from the plant by vacuum truck and delivered to an alternate, state approved well.

Reverse Osmosis reject water -----> Agricultural Evaporation Area

Accidental Spill: Procedures in the Spill Control and Countermeasure Plan would take effect.

SECTION VI


GENERAL DESCRIPTION

REVERSE OSMOSIS WATER TREATMENT

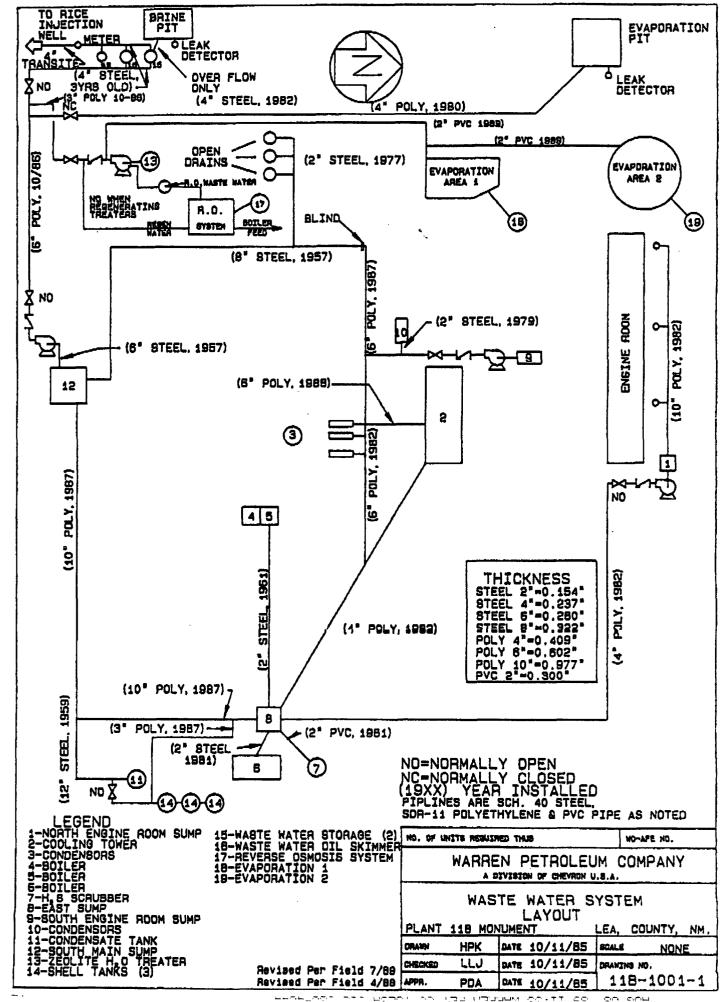
SECTION VI

REVERSE OSMOSIS WATER TREATMENT

The Reverse Osmosis Unit and the Zeolite treaters are located south of the office. This unit was designed for boiler feed water. Following is a one line diagram of the flow through the treaters. Each outlet is labeled with a designated destination. The regeneration water will continue to be delivered to Rice, whereas the waste water from the Reverse Osmosis unit will be evapotranspirated from the evaporation areas.

SECTION VI - REVERSE OSMOSIS WATER TREATMENT (Continued)

The monument Plant has two Zeolite treaters. One is always in raw water service and one in regeneration/standby service. They are both rated at 50 GPM, with a softening capacity of 600,000 grains.


A Calgon water hardness indicator samples the treater water discharge once every 10 minutes. The window will appear green when the water has less than 3 ppm hardness and red when above. Red indicates that the treating bed has become saturated with Ca+ and Mg+ cations and allowing some of them to pass through. It is time to switch beds and regenerate the existing saturated bed.

A flow meter measures the gallons of water treated by one bed. The meter will trigger a bed switch at the set gallonage or can be manually triggered.

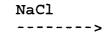
The regeneration cycle consists of a backwash, which fluffs the resin, making more surface area available for the Na+ cation exchange. The fluff cycle lasts 10 minutes. A long period is allowed, usually 45 minutes plus, for salt solution to pass through the bed. The salt/brine solution is aspirated by education from the lack tank into the bed. The Na+ replaces the Ca+ and Mg+ on the surface of the Zeolite and the Ca+, Mg+ solution is flushed down the Rice Engineering disposal line.

After the timer cuts the salt flow, the bed goes through a slow wash to rid "non-bedded" salt from the beds and to settle the resin. Then a "hard" wash takes place to give a final clean. Both wash cycles go to Rice disposal.

The bed is then placed in a standby mode until required.

COLINELISM CONTRACTOR

SECTION VI


REVERSE OSMOSIS WATER TREATMENT

HOW A ZEOLITE TREATER WORKS:

ZEOLITE: is a polystyrene resin material with a strong ability to split salts into positively charged ions called "cations" and negatively charged ions called "anions".

The purpose of the Ziolite treater is to exchange the scale forming cations, such as calcium and magnesium, with the more desirable cation sodium. This process is referred to as "ion exchange".

The sodium cation Na+ comes by passing a salt solution, or brine NaCl over the Zeolite resin. The molecule of salt is split into cation Na+ and anion Cl-.

Zeolite

Cycle

Regeneration

119+

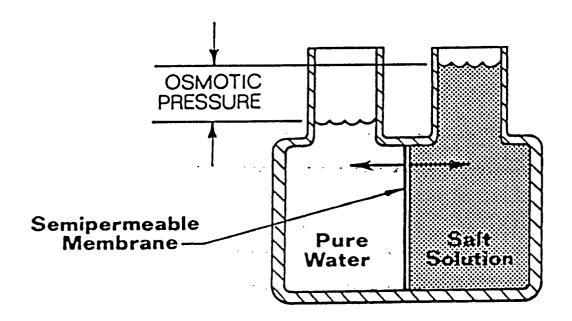
Na Enriched C_{3}^{+} Na Enriched G_{4}^{+} Treated M_{4}^{+} Water G_{4}^{-}

Zeolite Treating Cycle

Once the Na+ and Cl- saturation of the Zeolite resin bed is accomplished, raw water is passed over the resin. The Na+ is released in the water and carried to the Reverse Osmosis membranes.

INTRODUCTION

Reverse Osmosis is a pressure driven membrane separation process that is capable of separating dissolved solutes from a solvent, usually water. The solute may be organic or inorganic in nature and range in size from 1-10 Angstroms or less. The ability of reverse osmosis membranes to reject organic substances depends upon the molecular weight, geometry of the solute, and other factors. A well designed reverse osmosis system is capable of removing 90-99% of most dissolved organic and inorganic compounds.

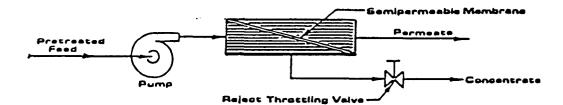

Desal's reverse osmosis membranes are constructed from cellulose acetate, polyamides, or other polymers. The present generation of high rejection - high flow TFM^m membranes are manufactured by depositing thin films of rejecting materials over bases selected for their superior support and flow characteristics.

Most current reverse osmosis applications are related to water treatment for commercial, industrial, municipal, agricultural, and military facilities. However, reverse osmosis technology is expanding into wastewater treatment/reclamation, metal recovery, and custom industrial separations due to energysaving operation versus competitive processes such as distillation. Please consult the Desal Reverse Osmosis Product Summary and Technical Bulletins for details.

REVERSE OSMOSIS THEORY

When a salt solution is separated from demineralized water by a semipermeable membrane, the higher osmotic pressure of the salt solution causes demineralized water to flow into the salt solution compartment. (See figure below). Water will continue to flow and rise in the salt solution compartment until the increase in water height equals the osmotic pressure of the salt solution. If pressure is exerted on the salt solution compartment, water can be made to flow in the reverse direction. This is the process of reverse osmosis.

OSMOTIC EQUILIBRIUM


Osmotic pressure of a solution is expressed by the following equation:

$$\prod = \phi \sum \text{Mirt}$$

where,

- Π = osmotic pressure, atm
- ϕ = osmotic pressure coefficient (about 0.93 for most dilute salt solutions)
- ∑Mi = sum of the ions present expressed as moles/kg of solution (approximately equal to moles/liter for most dilute solutions)
 - R = gas constant, 0.082 liter-atm/°K-mole
 - $T = temperature, ^{\circ}K$

A simplified flow diagram of a typical RO system shows how the RO process operates. Pressure is applied to the feed stream by a pump, producing permeate and concentrate which are continuously withdrawn. Concentrate contains a high level of dissolved solids while the permeate contains a low level.

Water and salt flux across a reverse osmosis membrane are defined by the following equations:

 $Q_W = A (\Delta P - \Delta TT)$ $Q_S = B (\Delta C)$

where,

 $Q_w = \text{permeate flow, gm (water)/cm}^2-\text{sec}$ $Q_s = \text{salt flow, gm (salt)/cm}^2-\text{sec}$ $A = \text{water permeability constant, gm(water)/cm}^2-\text{sec-atm}$ B = salt permeability constant, cm/sec P = pressure differential across the membrane, atm $\Delta \Pi = \text{osmotic pressure differential across the membrane, atm}$ $\Delta C = \text{concentration gradient across the membrane, gm(salt)/cm}^3$

Permeate flow, Q_w , is proportional to the driving pressure minus the differential osmotic pressure.

Salt flow is independent of pressure and is a function of the difference in dissolved solids concentration across the membrane.

Qualitative changes in flux rate and salt passage quotient (product water TDS/average feed water TDS) caused by independent increases in RO system operating parameters and feed water concentration are tabulated below.

VARIABLES AFFECTING FLUX RATE AND SALT PASSAGE

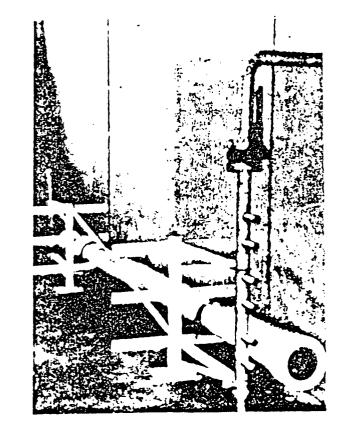
Increasing Variable	Flux	Salt Passage Quotient
Net driving pressure	Increases	Decreases .
Temperature	Increases	No change
Recovery	Decreases	Increases
Feed-brine velocity	Increases	Decreases
Feed TDS	Decreases	Increases
Feed Foulants	Decreases	Increases

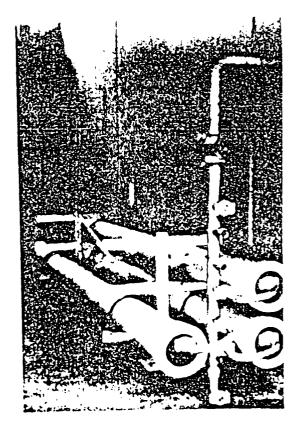
As indicated by the permeate flow equation, an increase in net driving pressure results in an increased flux rate. Salt

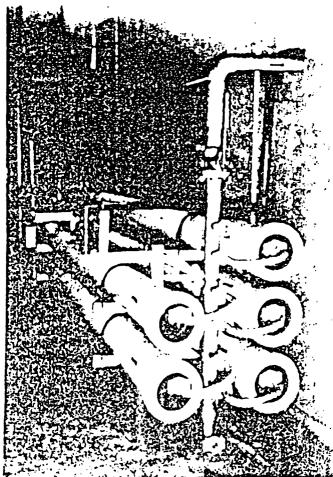
SECTION 2-3

flow, Q_S , does not change with pressure, so that increased permeation rates result in a dilution of the permeate stream and a lowering of the salt passage quotient.

Coefficients of permeate and salt passage (A and B) show about the same increase with temperature. For this reason, no change in the salt passage quotient is seen with temperature increases.

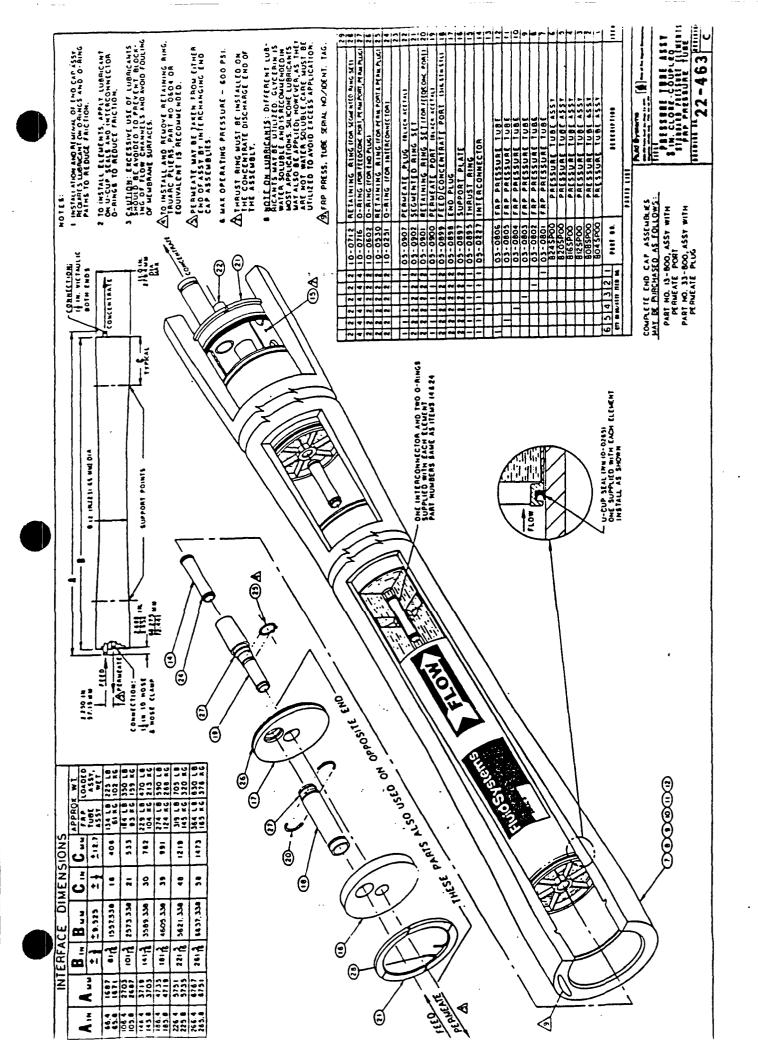

Increased product recovery will increase the average feedbrine osmotic pressure. The result is higher salt passage due to the increased feed-brine TDS concentration and a lower net driving pressure.


Concentration polarization refers to a local salt concentration increase at the membrane surface. The salt left at the membrane surface as a result of permeate passage cannot diffuse away from the membrane fast enough to prevent a local salt concentration increase. Feed-brine velocity is a significant factor in reducing the thickness of this stagnant boundary layer. Reduction of the boundary layer thickness decreases salt passage.


At constant feed pressure, increased feedwater TDS decreases the net driving force across the membrane by increasing osmotic pressure. Salt passage increases due to a higher $\triangle C$ term in the salt passage equation.

Foulants present in the feedwater deposit on membrane surfaces and increase the thickness of the laminar boundary layer. The results are increased resistance to permeation and concentration polarization.

SECTION 2-4



DESAL-3LP PERFORMANCE DATA

Specific ion rejections for Desal-3LP operating on Escondido Tap Water are tabulated below. In general, Desal-3LP Performance will be related to the feedwater composition and RO design and operating parameters. Some of the factors that influence performance will be discussed in Section 6.

Ion	Concentration, mg/l	% Rejection
Na ⁺	70.0	98.0
Ca+2	57.0	99.5
Mg ⁺²	20.0	99.5
HCO ₃ -	168.0	98.1
so4 ⁻²	131.0	99.5
CL-	49.0	98.8
SiO2	12.4	98.0
TDS	518.0	98.7

*Determined at 200 psi and 25% recovery. Specific ion rejection = 1 - <u>Concentration of ion in permeate</u> Concentration of ion in feed

DESAL-3LP GENERAL SYSTEM DESIGN GUIDELINES

- 1. The minimum concentrate flow is determined by the crossflow velocity in the last element in a given vessel. For design purposes, the following criteria may be used to approximate minimum concentrate flow:
 - a. Minimum CONCENTRATE to PERMEATE flow ratio in last element of the last stage: 6:1
 - b. Minimum CONCENTRATE to PERMEATE flow ratio in last element of all other stages: 5:1
- 2. Recommended Vessel Arrays:

2-stage systems . . . 4:2 3-stage systems . . . 4:2:1

3. Recovery/Number of Stages:

50% recovery	•	•	•	•	l stage
75% recovery	•	•	•	•	2 stages
90% recovery	•	•	•	•	3 stages

- 4. Number of Elements Per Vessel: 1-6
- 5. Maximum Permeate Flow Per-Element See flux rates at standard conditions in Section 4.
- 6. Maximum Pressure Drop Per Element: 12 psi (0.8 Bar)
- 7. Maximum Pressure Drop Per Vessel: 50 psi (3.4 Bar)

8.	Element <u>Diameter</u>	Maximum <u>GPM</u>	Feed Flow M ³ /Hr
	4 inch	20	4.54
	8 inch	80	18.17

SECTION 5-2

WATER MANAGEMENT DIVISION CALGON CORPORATION BOX 1346 PITTSBURGH, PA 15230 (412) 777-8000

SUBSIDIARY OF MERCH & CO., INC

WATER ANALYSIS REPORT

CUSTOMER NAME: WARREN PETROLEUM COMPANY SPONSOR: STAFFORD LOCATION: MONUMENT PLANT MAIL DROP: CARLSBAD, N. M. MONUMENT, N. M. COPIES: ---SAMPLE NUMBER: 228563 DESCRIPTION: REVERSE OSMOSIS REJECT WATER SAMPLE POINT: R. O. UNIT DATE SAMPLED: 5/8/89 TIME SAMPLED: 14:00 8.0 --- ML N/30 H2SO4 (--- MG/L CaCO3) 32.4 ML N/30 H2SO4 (541. MG/L CaCO3) PH @ 25C A READING A READING32.4ML N/30 H2SO4 (541. MG/L CaCO3)B READING---ML N/30 H2SO4 (--- MG/L CaCO3)CONDUCTIVITY1900UN-NEUTRALIZED, umhos/cmSUSPENDED SOLIDSEST <5</td>MG/L -MG/L-HYDROXIDE (OH) - - -CARBONATE (CO3) - - -BICARBONATE (HCO3) 659 SILICA (SiO2) 110 CHLORIDE (C1) 150 SULFATE (SO4) 160 ORTHO PHOSPHATE(PO4) 0.05 NITRATE (NO3/NO2) 35 TOTAL (MG/L) DISSOLVED (MG/L) CALCIUM (Ca) 0.5 0.5 MAGNESIUM (Mg) <0.1 <0.1 440 SODIUM (Na) 440 3.0 0.7 POTASSIUM (K) 3.0 IRON (Fe) <0.05 COPPER (Cu) <0.05 <0.05 MANGANESE (Mn) <0.05 <0.05 ALUMINUM (A1) <0.1 <0.1 ZINC (Zn) <0.05 <0.05 NICKEL (Ni) <0.05 <0.05 CHROMIUM (CrO4) <0.05 <0.05 COMMENTS : PH IS <8.2 BUT ON ADDITION OF NEUTRAL BARIUM CHLORIDE

A HEAVY WHITE PRECIPITATE WAS FORMED.

CALGON ANALYTICAL LABORATORIES, APPROVED BY: RJF REPORTED: 05/26/89 RECEIVED: 05/15/89

CALGON WATER MANAGEMENT DIVISION CALGON CORPORATION BOX 1346 PITTSBURGH, PA 15230 (412) 777-8000

----- .

SUBSIDIARY OF MERCK & CO., INC.

..

CUSTOMER NAME: WARRE LOCATION: MONUM MONUM COPIES:			SPONSOR: STAFFORD MAIL DROP: CARLSBAD,	N. M.
GAMPLE NUMBER: 22856 DESCRIPTION: REVER SAMPLE POINT: R. O. DATE SAMPLED: 5/8/8	UNIT		Boiler Seckwate	
PH @ 25C A READING 1.0. READING CONDUCTIVITY SUSPENDED SOLIDS	0.4 16.4	ML N/30 H2SO4 UN-NEUTRALIZE	(MG/L CaCO3) (6. MG/L CaCO3) D, umhos/cm	
AYDROXIDE (OH) CARBONATE (CO3) BICARBONATE (HCO3) BILICA (SiO2) CHLORIDE (C1) SULFATE (SO4) ORTHO PHOSPHATE(PO4) POLYPHOSPHATE(PO4) HITRATE (NO3/NO2) TOTAL ORGANIC CARBON	<5 <0.05 <0.1 <0.5			-
CALCIUM (Ca)	AL (MG/L) 0.3 <0.1 2.8 <0.5 0.1 <0.05 <0.05 <0.1 <0.05 <0.05 <0.05 <0.05	DISSOLVED (0.2 <0.1 2.6 <0.5 <0.05 <0.05 <0.05 <0.1 <0.05 <0.05 <0.05 <0.05	MG/L)	

· · •

1

i

:

-

SECTION VII

1

I

BRINE POND

SECTION VII

BRINE POND

The south brine pond is located in the SE/4 of the SW/4 of Sec. 1 of T-20-S; R-36-E, in Lea County, New Mexico on property owned by Warren Petroleum Company, a division of Chevron U.S.A Inc. The pond measures 216' x 216' across the top and has a maximum useable depth of 14'-7''. The water capacity of this pond is 45,500 bbls. The pond will be used primarily for brine storage and for handling excess water from the plant to Rice Engineering. Any overflow held in the brine pond is pumped to the Rice Engineering injection well. Warren Petroleum Company

MANUFACTURING DEPARTMENT

August 16, 1982

P. Q. Box 67 Monument, New Mexico 88265

State of New Mexico Energy and Minerals Department Oil Conservation Division P. O. Box 2088 State Land Office Building Santa Fe, New Mexico 87501

Attention: Mr. Oscar Simpson

Re: BRINE STORAGE POND AT THE MONUMENT PLANT

Dear Mr. Simpson,

This letter is to inform you that Warren Petroleum Company intends to comply with Rule 703 of the Rules and Regulations of the New Mexico Oil Conservation Division and Section 3-104 of the Water Quality Control Commission Regulations. Thus, as per your letter dated August 6, 1982, plans and specifications for re-lining the brine pit are enclosed.

If you have any questions, comments, or recommendations, feel free to call me_at (505) 393-2823.

Sincerely,

Mr. Anich

GWF/jr

cc: R. H. Brotherton J. E. Moody

The following is a proposed Scope of Work for the upgrade of the brine pit at the Warren Petroleum Company, Monument Plant. Storage will be rpovided for approximately 2,000,000 Gal. of 10 lb. brine. Please refer to the attached drawings when reviewing this Scope of Work.

1. LOCATION

A. The brine pit is not near any water course, lake-beds, sink-holes, or other depressions, thus the existing pit will be upgraded.

2. DESIGN AND CONSTRUCTION

- A. The pit is approximately 245' X 245' X 7'. The levees are over 4' above ground level. The upper pit liner will be approximately 6' below the ground level.
- B. The levees will be compacted with caliche to make the surface smooth and uniform.
- C. The top of the levees will be flat and level and at least 10' wide. A 4" thick caliche pad will be constructed over the top of the levee and around the entire perimeter of the pit.
- D. The pit will be double lined and in the following sequence: liner, leakage detection system, liner. The bottom liner will extend a minimum of 3' up the side of the levees.
- E. The existing liner will be repaired and used for the bottom liner. The top liner will be fiberglass 75 mil average thickness. Both liners are resistant to hydrocarbons, salt and aqueous acids and alkalis. They are also sun, rot, and fungus resistant.
- F. The bed of the pit and the inside grades of the levee will be smooth and compacted, and free of holes, rocks, stumps, clods, or any other debris which might rupture the liner.
- G. A trench will be dug on the top of the levee the entire perimeter of the pit for the purpose of anchoring the top liner. This trench will be located a minimum of 18" from the slope break and will be a minimum of 18" deep.

3. LEAKAGE DETECTION SYSTEM

A. The leakage detection system will be built on top of the first liner and will be inspected and approved by the <u>Oil Conservation</u> <u>Commission</u> prior to installation of the final liner. The 4" 3. LEAK DETECTION SYSTEM (Cont'd)

perforated pipe will be 40' on center, so that no point is more than 20' from a drainage canal.

B. The leakage detection system will consist of perforated pipe sloped 1':100' (minimum) connected into a common header located at the outer perimeter of the pit. The header will connect into steel sump located on the outside perimeter of the levees. The perforated pipe will be 4" PVC and the insdie dimensions of the sump are 3' diameter X 18' tall. The header will be 6" PVC pipe.

4. INSTALLATION OF FLEXIBLE MEMBRANE LINERS

- A. The liner will be put in place only after the pit-bed leakage detection system, and levee walls have been inspected and approved by an <u>Oil</u> <u>Conservation Commission Representative</u>.
- B. The pit liner shall be installed and joints sealed according to the manufacturer's specifications and with the approval of the <u>Oil</u> <u>Conservation Commission Representative</u>.
- C. The liner shall be laid as evenly and wrinkle-free as possible and shall rest smoothly on the pit-bed and the inner face of the levees, and shall be of sufficient size to extend down to the bottom of the anchor trench.
- D. The fiberglass top liner will anchor past the asphalt liner.

5. FENCES AND SIGNS

- A. The existing fence will be repaired where necessary.
- B. A sign not less than 12" X 24" with lettering of not less than two inches shall be posted in a conspicuous place on the fence surrounding the brine pit installation. The sign will be maintained in legible condition and will identify the operator (WARREN PETROLEUM CO.) of the brine pit, the location of the system by quarter-quarter section, township and range, and the permit number of the permit authorizing the installation.

W IRREN PETROLEUM COM	PANY		JOS NO	
MANUFACTURING - ENGINEERIN	G		AFE	•
TI JA, OKLAHOMA			BY	CHECK
a <u>Aut 15</u> .19 5	JOB:	TOP VIEW	OF REILE	PIT
		N		
	: :			
	1. 4	194	a'	
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	3			
	R R	Aci		
	U U	0.0		
	04 04	λ o		
			1	
				SUMP
	_ ā			A 03'X10
			HEAL	
		1	· ×	• G" PVC
· · · · · · · · · · · · · · · · · · ·		PERFORATED LATERAL	<u> </u>	
·····			â.	
· · · · · · · · · · · · · · · · · · ·				• • •
· · · ·] ·	TYRICIA	PE NO LESS THANK		
· · · · · · · · · · · · · · · · · · ·			6 155	
	•{	╺──┟╼╸┉╸╸╴╺╴╍╍┢╸╶╏╍╸╸╸		
				FENCE
······································				
		P		
		and and the second s		
		•	· · · · · · · · · · · · · · · · · · ·	
				en e antes en e terres antes antes en el en el en el en el en el el en el en el el en el e
				санарански в во сър. в
		Ī		•••••••
			· · · · · · · · · · · · · · · · · · ·	
			• • • • • • • • • • • • • • • • •	
	• • • • • •		• • • • • • • •	· · · ·
· · · · · ·	· · · · · ·	• ••••••••••••••••••••••••••••••••••	•••	· · · ·
	· · · · · ·		· · ·	· · ·
· · · · · · · · · · · · · · · · · · ·			in an	
1 ¹		1 E E E	· · ·	•

.

-

RREN PETR										
							4 BOL			
ANUFACTURING	- ENGINEE	RING		ов: <u>ЕЛ</u>			AFE _	1 m Z		<u></u>
IA, OKLAHOMA							8Y	HINT T	СНЕСК	
* 1	17	<u>82</u>	AL N	De:	VIEL) OF	JEVE	Ξ		
·····			·		· · · ·					
· · · · · · · · · · · · · · · · · · ·						1 			<u>.</u>	
· · · · · · · · · · ·	·								· · · · · · · · · · · · · · · · · · ·	
			•	; , +					- ·	······································
·····				······································				· · ·	· · ·	
					1					
	··· ••• • •••				· • • • • • • • •		i :	· · · · · · · · · · · · · · · · · · ·		
··· · • • ••					<u> </u>		· · ·	·		<u> </u>
• • • •		· · · · · · · · · · · · · · · · · · ·				.		· · · · · · · · · · · ·	· •••• ••••	
·· ·· ·· ·· ··	••••••••••••••••••••••••••••••••••••••	• • • • •				• •	ļ -	· • • • • • • • • •	· • · · · · ·	•
	- :			· · · · · · · · · · · · · · · · · · ·			•••••••••••		• • • • •	•••;
• • • • • • • • • • • • • • • • • • •				•			i : i	•		•
							· · · · · · ·	· · · · · · · · · · ·	· · · · · · · ·	
		······································	/	4' CALICI	16 PAP			i		
· · · · · · · · · · · · · · · · · · ·				\sim			¦	·····		
		· · · ·		•					· · ·	• •
	<u> </u>	·· · · · · · · · · · · · · · · · · · ·						<u> </u>		
	· · - · · ·	· · · · ·								
	· · • · •	1.11	··· +·							· · · ·
		19 2		. //	Z	2/			• • • • • • • • • • • • • • • • • • •	:
	· · · · · · · · · · · · · · · · · · ·	<u>19 C</u>			Z	Z/		}		
		<u>19 2</u>		· //>		<u> </u>				
	· · · · · · · ·	<u>19</u> C <u></u>	- *	· //>		Z /				·
		<u>19</u> C <u></u>	- *			? /			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		<u>19</u> C	- 			2/			· · · · · ·	· · · · · · · · · · · · · · · · · · ·
		<u>19</u> <u>-</u>				2/ 				· · · · · · · · · · · · · · · · · · ·
		<u>19</u> <u>-</u>				2/ 				
		<u>19</u> <u> </u>								
					· · · j - i					
		· · · · · · · · · · · · · · · · · · ·			· · · j - i					
	1				· · · j - i					
	······				· · · j - i					
	······									
	· · · · · · · ·									

I

Warren Petroleum Company

MANUFACTURING DEPARTMENT

P. Q. Box 67 Monument, New Mexico 88265

November 11, 1982

State of New Mexico Energy and Minerals Department Post Office Box 2088 State Land Office Building Santa Fe, New Mexico 87501

ATTENTION: Mr. Oscar Simpson

Re: Brine Storage Pond at the Monument Plant

Dear Mr. Simpson,

Attached are the revised plans and specifications for the construction of a new brine pond at the Warren Petroleum Company, Monument Plant. Specifications for the fiberglass and PVC liners and the Soil support media are also enclosed.

If you have any questions, comments, or recommendations please contact me.

Sincerely,

1. Encly

George W. Finch

GWF/jr Attachments cc: J. E. Moody, Tulsa~

1. LOCATION

A. The Brine Pit is not near any water course, lake-beds, sink holes, or other depressions, thus the existing pit will be upgraded.

2. DESIGN AND CONSTRUCTION

- A. The existing pit is 255' X 255' X 8'. The levees are 4' 6" above ground level. The pit will be drained by pumping all the brine water to Rice Engineering Company, rinsed with fresh water and again drained by pumping the water to Rice Engineering Company. The liner will then be removed and disposed of in an environmentally acceptable manner.
- B. The pond will be excavated to 9'6" below ground level as depicted in the drawings. The levees will be upgraded and 95% compacted with the excavated material to make the surface smooth and uniform. The existing slopes (1:3 inside and outside) of the levees will be retained. The top of the liners will be 95% compacted with crushed caliche after the liners have been installed.
- C. The pit will be double lined and in the following sequence, 36 mil PVC liner, leakage detection system, 4" sand pad, and 75 mil fiberglass liner. All liners will be anchored in a suitable anchor ditch to be described later. A Mirafi 140N soil support will be used to prevent sand from filtering into the leak system ditches.

3. LEAKAGE DETECTION SYSTEM

- A. The leakage detection system will consist of 4" SCH 40 PVC pipe located in a gravel filled ditch sloping 1':100' (minimum) connected to 6" SCH.40 PVC pipe located in the center of the pit sloping 1':100' (Minimum) to a sump outside of the pit.
- B. The 4" SCH.40 PVC pipe will be perforated with 5/8" 0.D. holes 5" on center at a 120° angle. The pipe will be set in the bottom of the ditch so that the holes are facing downward. The ditch will then be backfilled with ¹/₂"-1" washed gravel.

- C. The 6" SCH.40 PVC pipe will not be perforated. The ditch for the 6" Sch. 40 PVC pipe will be backfilled with the excavated material. Both the 4" and 6" SCH.40 PVC pipe will be joined with solvent welded couplings.
- D. The 6" SCH.40 PVC pipe will connect to a steel sump located outside of the pit. The sump will consist of 36" O.D. ERW pipe (.250"W) with a ±" steel cap welded on the bottom. A 6" steel nipple will be welded to the side for connection to the 6" SCH.40 PVC pipe. A 6" changeover coupling will be used to join the PVC and steel pipe. The watertight cover will be constructed of ±" steel plate. The entire outside surface of the sump will be coated with pipe dope to prevent corrision.
- E. After the leakage detection system is constructed, a 4" sand pad will be spread over the bottom of the pit. A Mirafi 140N soil support will be placed between the gravel and sand to prevent sand from filtering into the ditches. The support will extend a minimum of 2' from the edge of the ditch.

4. POND LINERS

- A. An EPA approved 36 mil minimum thickness PVC liner will be used for the bottom liner. This liner is not oil or sun resistant but will not be exposed to either medium.
- B. An EPA approved 75 mil thickness fiberglass top liner will be used. This liner is sun and oil resistant.
- C. The joints of both liners will be sealed according to the attached drawings.
- D. The liners will be laid as evenly and wrinkle-free as possible and shall rest smoothly on the pit-bed and the inner face of the levees,
- E. Both liners will anchor into the anchor ditch. The anchor ditch will be 2' from inside edge of the pit and will be 18" deep X 9" wide. The liners will extend to the bottom of the anchor ditch and 6" beyond. The ditch will be backfilled with excavated material.

MIRAFI TYPICAL PROPERTY VALUES*

ļ

. . . .

I

· · · · · ·

NE LGHT THICKNESS GRAB STRENGTH	unu oz/sy mils 1b	TEST NETHOD ASTM D-3776-79 ASTM D-1682-64 ASTM D-1682-64	140N 4.5 60 120
GRAB ELONGATION MODULUS (102 ELONGATION) TRAPE210D TEAR STRENGTH MULLEN BRUST STRENGTH	* = = <u>-</u>	ASTH D-1682-64 ASTM D-1682-64 ASTM D-1117-80 ASTM D-3786-80 ¹	55 N/A 50 210
PUNCTURE STRENGTH Abrasion Resistance Coef. Of Permeability,k	lb lb cm/sec	ASTM D-3787-80 ² ASTM D-3884-80 ³ & D-1682-64 CFMC-6ET-2	70 n/a 0.2
WATER FLOH RATE Air Flow Rate Equivalent Opening Size(EOS) Open Area	gal/min/sf cf/min/sf US Std. Sieve K	CFNC-GET-2 ASTM D-737 COE CM 02215-77 COE Method	225 225 100+ N/A
RETENTION EFFICIENCY (Suspended Solids) SLURRY FLOM RATE	∑ gal/min/sf	Virginia DOT VTM-51 Virginia DOT VTM-51	N/A N/A
GRADIENT RATIO ULTRAVIOLET RADIATION STABILLITY		COE CM 02215-77 ASTM G-26/ D-1682-64 4	e 0
ASPHALT RETENTION	02/5f	·Texas DOT Item 3099	V/N
SHRIMKAGE FROM ASPIIALT	*	Texas D0T Item 3099	N/A

¹ Diaphragm Bursting Tester

² Tension Testiny Machine with ring clamp; steel ball replaced with a 5/16" diameter solid steel cylinder(with hemispherical tip) centered within the ring clamp.

.

- - - -

- - - - - - ----

ļ

i

| .

1

ļ

³ ASIM D-1602 as above after abrasion as required by ASIM D-3004 Rotary Platform, Double Head Method; rubber-base abrasive wheels equal to C5-17 "Calibrase" by Taber Instrument Co.;lkg load per wheel; 1,000 revolutions.

⁴ ASTM D-1602 as above after 250 cycles in Xenon-arc weathermneter (Type BH or Type C apparatus as described in ASIM G-26). One cycle consists of 102 minutes of light only followed by i8 minutes of light with water spray.

* The product specifications are average values. For minimum certified values contact your local Mirafi representative or the Mirafi Technical Department at 1-800-438-1855.

:

713 - 485-7545 9225 Katy Freeway Suite 325 Houston, Texas 77024 915 - 583-0576 12101 East Highway 80 P.O. Box 4595 Odessa, Texas 79780

TYPICAL LAMINATE PHYSICAL PROPERTIES

"KEM-LIN' FRP LINING

PRGPERTY	UNITS	VALUE
Tensile Strength	PSI	21,000
Tensile Modulus	PSI X 10 ⁵	17
Elongation	*	5
Flexural Strength	PSI	28,000
Flexural Modulus	PSI X 10 ⁵	10
Heat Distortion Temperature	°F	210 ⁰
Barcol Hardness	-	35
Normal Temperature Range	۰ _F	-20 ⁰ /220 ⁰

713 - 465-7545 9225 Katy Freeway Suite 325 Houston, Texas 77024 915 - 563-0576 12101 East Highway 80 P.O. Box 4595 Odessa, Texas 79760

Page #1

"FIBRE-LINE" FRP pond liners are fabricated with a low viscosity resilient Isophthalic Polyester resin containing Styrene Monomer. Kote-Flex resin is this coopic and promoted for pond liner sheets where touchness, chemical resistance and flexability are required.

STANDARDS FOR SANITARY LANDFILL LINERS

- (a) Fermeability The "FRP" liner is suitable for use as an impermeable barrier with a value of permeability of 1 X 10^{-7} cm/sec. or less.
- Note: The Polyester resins are used for the manufacture of fiberglass tanks and lining of steel tanks and vessels.
- (b) Resistance to Leachate The manufacturers warranty states that the membrane is capable of preventing leachate from reaching the soil - under the membrane.
- (c)

TYPICAL LAMINATE PHYSICAL PROPERTIES OF

"FIBRE-LINE" FRP LINING

PROPERTY	UNIT	VALUE
Specific Gravity (Resin)	-	1.1
Factory & Field Seam Strength	-	Exceeds that of parent material
Thickness	Mil - Minimum Mil - Average	65 75
Glass Content	e 7	31
Tensile Strength ASTM - D-638	PSI	14,200
Compressive Strength ASTM - D-695	PSI	25,000
Flexural Strength ASTM - D-790	PSI	25,000
Flexural Modulus	PSI X 10 ⁶	. 1.0

	713 - 465-7545 915 - 563-0576	9225 Katy Freeway 12101 East Highway 80	Suite 325 D P.O. Box 4595	Houston, Texas 77024 Odessa, Texas 79760
		PAGE #2		
(c) Con't)	TYPI	CAL LAMINATE PHYSIC	AL PROPERTIES OF	
	88	FIBRE-LINE" FRP LIN	ING	
PROPERTY		UNIT		VALUE
Izod Inpact ASTM - D-2	56	(Ft1) Notch Unnot		13.7 16.6
Earcol Harnes ASTM - D-7		· -		45-50
Vater Absorpt	ion	24 hr	.,25°C,%	.17
Elongation ASTM - D-6	38			4.0
Normal Temper	ature Usage Rang	ge ⁰ F		-20 ⁰ /180 ⁰
Heat Distorti	on Point	°C/°F		88 ⁰ /192 ⁰
Ultraviolet E By Mathermet ASTM - D-1		ng Outdoo i Year	or Exposure r	Yellowing & Caulking
Oxygenated So	lvents	"FIBR "KEM-I	E-LINE" LINE"	Poor Good
Aromatic Solv	nts (100% Leve	I) "FIBRI "KEM-I	E-LINE" LINE"	Poor Good
Aromatic Solv	ents (50% or le	ss) "FIBR	E-LINE"	Good
Halegenate So	lvents	"FIER "Kem-I	E-LINE" .INE"	Poo r Geod
Petroleum Sol	vents .	"Fisr "Kem-l	E-LINE"· INE" _	ଦେର ଦେର ପ
Methane Gas		"F1BR! "KEM-I	E-LINE" .1%E"	Good Good
Note: Use	d in Waste and S	Sewage plants.		
Seneral		(exce:	E-LINE" Acids of for concentrat and HNO ₃)	Good
		"KEM-I	· J	Good

713 465 75459225 Katy FreewaySuite 325Houston, Texas 77024915 563 057612101 East Highway 80P.O. Box 4595Odessa, Texas 79760Page #3TYPICAL LAMINATE PHYSICAL PROPERTIES OF

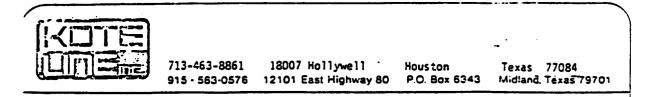
"FIBRE-LINE" FRP LINING

PROPE	RTY
	_

UNIT VALUE

Buria]

"FISRE-LINE" Good "KEM-LINE Good


Note: Many uses. Buried Gas Tanks, Fiberglass pipe, Fiberglass Vessels.

I certify the above information to be true and correct to the best of my knowledge.

Hal K. Jarrell Staident

PULID	פתוביה הבהביעומב
. 939-	1-032
containing styrene monomer. Thi	esilient isophthalic polyester resin as resin is thexotropic and promoted mers where toughness, chemical resis- ed.
TYPICAL PROPERTIES OF LIQUID RES	IN
Frookfield Viscosity, 25°C., cps #3 Spindle @ 60 rpm Thixotropic Index, Minimum Color Stability, uncatalyzed in dark @ 25°C., Minimum, Months	300-500 2 Clear 3
TYPICAL CURING PROPERTIES 25°C.	. 1% MEKP into 100 Gram Mass
Gel Time, Minutes Total Time to Peak, Minutes Feak Exotherm, ^O C.	. 10 17 177
PROPERTIES OF 1/8" UNFILLED CAST	INC
Flexural Strength, psi. Flexural Modulus, psi. Tensile Strength, psi. Rarcol Mardness Reat Distortion Temp. ^O C. Water Absorption, 24 hrs., 25 ^o C. Elongation, %	16,000 41 x 10 ⁶ 9,500 40-45 88 .7 3.6
PROPERTIES OF 1/8" LAMINATE (3 P	lies 1½ oz. Mat 30% glass)
Flexural Strength, psi. Flexural Modulus, psi. TAnsile Strength, psi. Izod Impact, Unnotched Earcol Hardness Mater Absorption 24 hrs., 25°C., Flongation, Z	24.800 .95 X 106 13,000 16.6 45-50 717 4.0
remination of the suitability of	cannot be guaranteed and final de- of any information or material for her of use is the sole responsibility

NOOK PAINT AND VARNISH COMPANY

STANDARD SPECIFICATIONS

POLYVINYL CHLORIDE PLASTIC LININGS

I. GENERAL REQUIREMENTS

The work covered by these specifications consists of installing polyvinyl chloride (PVC) plastic linings in the water containment structures.

- II. PVC MATERIALS
 - A. General. The materials supplied under these specifications shall be first quality products designed and manufactured specifically for the purpose of this work, and which have been satisfactorily demonstrated by prior use to be suitable and durable for such purposes.
 - 8. <u>Description of PVC Materials</u>. PVC (polyvinyl chloride) plastic lining shall consist of widths of calendered PVC sheeting fabricated into large sections by means of solvent-bonded factory seams into a single piece, or into the minimum number of large pieces required to fit the facility.

1.	Physical Characteristics.	The	PVC materials	shall	have	the physical	
	characteristics.						

CRD-572-61

PROPERTY	SPECIFICATION LIMIT	TEST METHOD
Thickness	Specified <u>+</u> 10%	
Specific Gravity	1.24 - 1.30	
Tensile Strength, psi, min.	2200	ASTA DES2-B
Elongation, 2 min.	3007	ASTM CS32-B
100% Modulus, psi	1000 - 1600	ASTM COO2-B
Elmendorfer Tear, gms/mil, min.	160	ASTM 629
Graves Tear, Ibs/in. min.	270	ASTM D1004
Water extraction, I max.	0.35	ASTM D1239
	0.7	ASTM D1203
Volatility, 2 max. Impact Cold Cract, ^O F	-20	ASTM 1790
Dimensional Stability, max. 2		
(100°C-15 minutes)	5	
Outdoor Exposure, sun hours	1500	
Solvent Bonded Seam Strength,	30%	
Z of Tensile, min.		
Resistance to Surial		Formulation shall have passed
		USBR Test (specially formulated
		for resistance to micro-
Alkali Resistances		biological attack)
VILEII VESISCHES		Passes Corps. of Eng.

Color - Gray (Std.) Factory Seals - 3/4" solvent bonded

STANGARD SPECIFICATIONS Page 2

POLYVINYL CHLORIDE PLASTIC LININGS

 <u>PVC Polyvinyl Chloride Materials</u> shall be manufactured from domestic virgin polyvinyl chloride resin and specifically compounded for use in hydraulic facilities. Reprocessed material shall not be used.

III. FACTORY FABRICATION

Individual widths of PVC materials shall be fabricated into large sections by solvent bonding into a single piece, or into the minimum number of pieces, up to 100 feet wide, as required to fit the facility. Lap joints with a minimum joint width of 3/4 inch shall be used. After fabrication, the lining shall be accordion folded in both directions and packaged for minimum handling in the field.

IV. PLACING OF PVC LINING

- <u>General</u>. The PVC lining shall be placed over the prepared surfaces to be lined in such a manner as to assure minimum handling. It shall be sealed to all
 concrete structures and other openings through the lining in accordance with details shown on drawings. The lining shall be closely fitted and sealed arcund inlets, outlets, and other projections through the lining. Any portion of lining damaged during installation by any cause shall be removed or repaired by using an additional piece of lining as specified hereinafter.
 - Field Joints. Lap joints of the same kind as used in the factory shall be used to seal factory-fabricated pieces of PVC together in the field. Lap joints shall be formed by lapping the edges of pieces a minimum of two inches. The contact surfaces of the pieces shall be wiped clean to remove all dirt, dust, moisture, or other foreign materials. Sufficient vinyl-to-vinyl bonding solvent shall be applied to both contact surfaces in the joint area and the two surfaces pressed together immediately. Any wrinkles shall be smoothed out.
 - Joints to Structures. All curing compounds and coatings shall be completely removed from the joint area. Joining of PVC to concrete shall be made with vinyl-to-concrete adhesive. The minimum width of concrete shelf provided for the cemented joint shall be eight inches, and batten strips shall be used to reinforce the adhesive bond.
 - 3. <u>Repairs to PVC</u>. Any necessary repairs to the PVC shall be patched with the lining material itself and vinyl-to-vinyl bonding solvent.
 - 4. <u>Quality of Workmanship</u>. All joints, on completion of the work, shall be tightly bonded. Any lining surface showing injury due to scuffing, penetration by foreign objects, or distress from rough subgrade shall be replaced or covered and sealed with an additional layer of PVC of the proper size.

Warren Petroleum Company

MANUFACTURING DEPARTMENT

MARCH 30, 1983

P. O. Boz 67 Monument, New Mexico 88265

STATE OF NEW MEXICO ENERGY AND MINERALS DEPT. P. O. BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87501

Attention: Mr. Oscar Simpson

Ref: Brine Pond at the Monument Plant #118

Dear Mr. Simpson,

Please find enclosed the revised plans and Scope of Work for the proposed modifications to the brine pond at the Warren Petroleum Company, Monument Plant. Also enclosed are liner samples and specifications. The sieve analysis of gravel and sand will be forwarded at a later date.

If you have any questions, please advise.

G. W. Finch

GWF/jr Attachments cc: J. E. Moody - Tulsa

1. LOCATION

A. The Brine Pit is not near any water course, lake beds, sink holes, or other depressions, thus the existing pit will be upgraded.

2. DESIGN AND CONSTRUCTION

- A. The existing pit is 225' X 225' X 8'. The levees are 4'6" above ground level. The pit will be drained by pumping all the brine water to Rice Engineering Company, rinsed with fresh water and again drained by pumping the water to Rice Engineering Company. The liner will then be removed and disposed of by burying near the site of the brine pit. If large amounts of salt and debris exist they will be disposed of in an approved sanitary landfill.
- B. The pond will be excavated to 9'6" below ground level as depicted in the drawings. The levees will be graded and 95% compacted with the excavated material to make the surface smooth and uniform. The existing slopes (1:3 inside and outside) of the levees will be retained. The top of the liners will be 95% compacted with crushed caliche after the liners have been installed.
- C. The pit will be double lined and in the following sequence, 36 mil PVC liner, leakage detection system, 4" (min.) sand pad, and 75 mil fiberglass liner. All liners will be anchored in a suitable anchor ditch to be described later. A Mirafi 140N soil support will be used to prevent sand from filtering into the leak system ditch.

3. LEAKAGE DETECTION SYSTEM

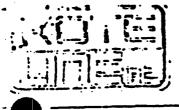
- A. The leakage detection system will consist of 6" SCH 40 PVC pipe located in a gravel filled ditch sloping 1':100' (minimum). The ditch will be located down the center of the pit and will drain into a sump outside of the pit.
- B. The 6" SCH 40 PVC pipe will be preforated with 5/8" O.D. holes 5" on center at a 120° angle. The pipe will be set in the bottom

of the ditch so that the holes are facing downward. The ditch will then be backfilled with $\frac{1}{2}$ " - 1" washed gravel.

- C. The 6" SCH 40 PVC pipe will connect to a steel sump located outside of the pit. The sump will consist of 36" OD ERW pipe (.250"W) with a $\frac{1}{2}$ " steel cap welded on the bottom. A 6" steel nipple will be welded to the side for connection to the 6" SCH 40 PVC pipe. A 6" changeover coupling will be used to join the PVC and steel pipe. The watertight cover will be constructed of $\frac{1}{2}$ " steel plate. The entire outside surface of the sump will be coated with pipe dope to prevent corrision.
- D. After the leakage detection system is constructed, one 4" sand pad will be spread over the bottom of the pit. A Mirafi 140N soil support will be placed between the gravel and sand to prevent sand from filtering into the ditches. The support will extend up the sides of the pond and anchor into the ditch.

4. POND LINERS

- A. An EPA approved 36 mil minimum thickness PVC liner will be used for the bottom liner. This liner is not oil or sun resistant but will not be exposed to either medium.
- B. An EPA approved 75 mil thickness fibergalss top liner will be used. This liner is sun and oil resistant.
- C. The joints of both liners will be sealed according to the attached drawings.
- D. The liners will be laid as evenly and wrinkle-free as possible and shall rest smoothly on the pit-bed and the inner face of the levees.
- E. Both liners will anchor into the anchor ditch. The anchor ditch will be 2' from inside edge of the pit and will be 18" deep X 9" wide. The liners will extend to the bottom of the anchor ditch and 6" beyond. The ditch will be backfilled with excavated material.


 713 - 465-7545
 9225 Katy Freeway
 Suite 325
 Houston, Texas 77024

 915 - 563-0576
 12101 East Highway 80
 P.O. Box 4595
 Odessa, Texas 79750

TYPICAL LAMINATE PHYSICAL PROPERTIES

"KEM-LINL" FRP LINING

PROFERTY	UNITS	VALUE
Tensile Strength	· PSI	21,000
Tensile Modulus	PSI X 10 ⁵	17
Elongation	×	5
Flexural Strength	PSI	28,000
Flexural Modulus	PSI X 10 ⁵	10
Heat Distortion Temperature	°F	210 ⁰
Barcol Hardness	•	35
Normal Temperature Range	. ° _F	-20 ⁰ /220 ⁰

713 - 465-7545 9225 Ka 915 - 563-0576 12101 E

Page #1

"FIBRE-LINE" FRP pond liners are fabricated with a low viscosity resilient Isophthalic Polyester resin containing Styrene Monomer. Kote-Flex resin is Intropic and produced for pond liner sheets where toughness, chemical resistance and flexability are required.

STANDARDS FOR SANITARY LANDFILL LINERS

- (a) Permeability The "FRP" liner is suitable for use as an impermeable barrier with a value of permeability of 1 \times 10⁻⁷ cm/sec. or less.
- Note: The Polyester resins are used for the manufacture of fiberglass tanks and lining of steel tanks and vessels.
- (b) Resistance to Leachate The manufacturers warranty states that the membrane is capable of preventing leachate from reaching the soil under the membrane.
- (c)

TYPICAL LAMINATE PHYSICAL PROPERTIES OF

"FIBRE-LINE" FRP LINING

PROPERTY	UNIT .	VALUE
Specific Gravity (Resin)	•	1.1
Factory & Field Seam Strength	-	Exceeds that of parent material
Thickness	Mil - Minimum Mil - Average	65 75
Glass Content	*	31
Tensile Strength ASTM - D-638	PSI	14,800
Compressive Strength ASTM - D-695	PSI	25,000
Flexural Strength ASTM - D-790	PSI	25,000
Flexural Modulus	PSI X 10 ⁶	1.0

	•			
	713 - 465-7545 915 - 563-0576	9225 Katy Freeway 12101 East Highway 80	Suite 325 P.O. Box 4595	Houston, Texas 77024 Odessa, Texas 79760
		PAGE #2		
(c) Con't)	TYPI	CAL LAMINATE PHYSICAL	PROPERTIES OF	
		FIBRE-LINE" FRP LINING	3	
PROPERTY		UNIT		VALUE
Izod Impact ASTM - D-25	. <u>.</u> 56	(Ft1bs. Notched Unnotche	•	13.7 16.6
Barcol Harness ASTM - D-78		• •		45-50
Water Absorpti	ion	24 hr.,2	25 ⁰ C,#	.17
Elongation ASTM - D-63	38	1		4.0
Normal Tempera	ature Usage Ran	ige ^o F		-20 ⁰ /180 ⁰
Heat Distortio	on Point	· °C/°F	•	88 ⁰ /192 ⁰
Ultraviolet Ef By Weathermete ASTM - D-14		ng Outdoor l Year	Exposure	Yellowing & Caulking
Oxygenated Sol	lvents	- "FIBRE-L "KEM-LIN		Poor Good
Aromatic Solv	ents (100% Leve	1) "FIBRE-L "KEM-LIN		Poor Good
Aromatic Solve	ents '50% or le	ess) "FIBRE-L	.INE"	Good
Halogenate Sol	lvents	"FIBRE-L "KEM-LIN		Poor Good
Petroleum Solv	vents .	"FIBRE-L "KEM-LIN	INE"	Good Good
Methane Gas	•	"FIBRE-L "KEM-LIN	-	Good Good
Note: Used	d in Waste and	Sewage plants.		
General		(except	INE" Acids for concentrat nd HNO ₃)	Good e
		"KEM-LIN	.	Good

713 - 465-7545 9225 Katy Freeway Suite 325 Houston, Texas 77024 915 - 563-0576 12101 East Highway 80 P.O. Box 4595 Odessa, Texas 79760

Page #3

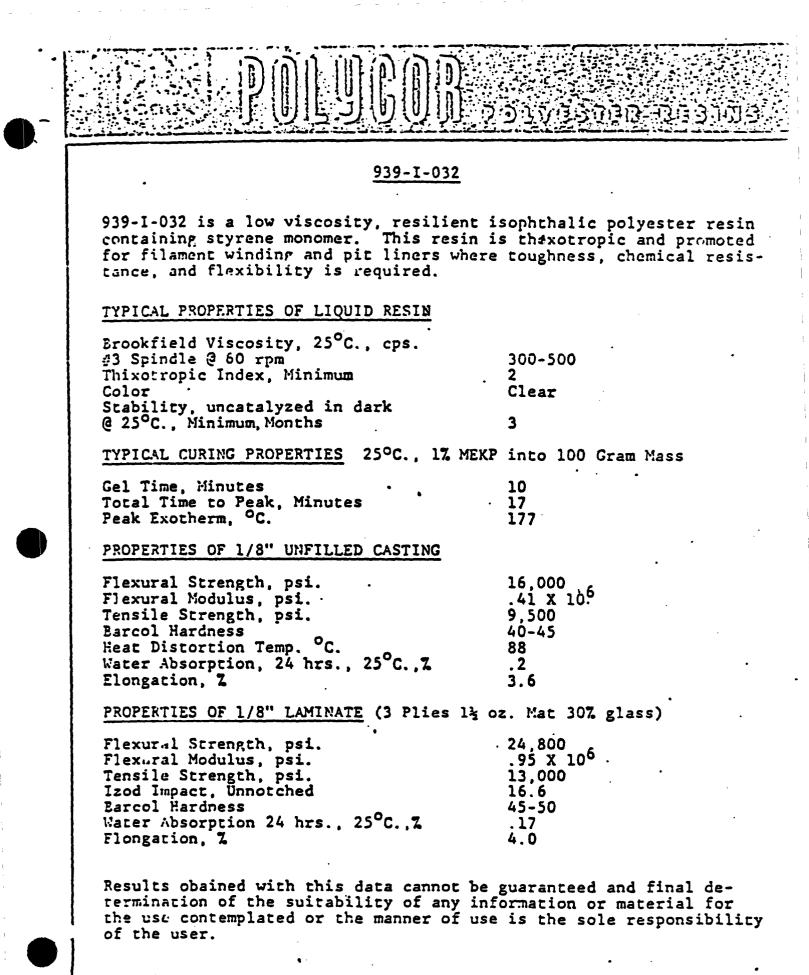
(c) Con't TYPICAL LAMINATE PHYSICAL PROPERTIES OF

"FIBRE-LINE" FRP LINING

Ρ	RO	PE	R	٢Y	

UNIT	VALUE

Burial


"FIBRE-LINE" "KEM-LINE

Good Good

Note: Many uses. Buried Gas Tanks, Fiberglass pipe, Fiberglass Vessels.

I certify the above information to be true and correct to the best of my knowledge.

JJC. Hal K. ell

Page 1 of 1

		MIRAFI TYPICAL PROPERTY VALUES*	ALUES"
PROPERTY	Tiku	TEST ACTION	140N
HEIGHT	02/SY	ASTH D-3776-79	4.5
THICKNESS	mils	ASTH D-1777-64	60
GRAB STRENGTH	l b	ASTH D-1682-64	120
GRAU ELONGATION	м	ASTM D-1682-64	55
HODULUS (10% ELONGATION)	16	ASTM D-1682-64	N/A
TRAPE2100 TEAR STRENGTH	16	ASTM D-1117-80	50
HULLEN DRUST STRENGTH	ps i	ASTM D-3786-80 ¹	210
PUNCTURE STRENGTH	٩(ASTM D-3787-80 ²	02
ABRASION RESISTANCE	110	ASTM D-3884-80 ³	N/A
COEF. OF PERMEABILITY,K	cm/sec	6 U-1086-04 CFMC-GET-2	0.2
HATER FLOH RATE	gal/min/sf	CFNC-GET-2	225
AIR FLOH RATE	cf/win/sf	ASTM D-737	225
EQUIVALENT OPENING SIZE(EOS)	US Std. Sieve	COE CN 02215-77	100+
OPEN AREA	и	COE Method	N/A
RETENTION EFFICIENCY (Suspended Solids)	н	Virginia DOT VIM-51	N/A
SLURRY FLOM RATE	gal/min/sf	Virginia DOT VT?I-51	N/A
GRADIENT RATIO	t 5	COE CN 02215-77	e
UL FRAVIOLET RADIATION STABILITY	м	ASTH G-26/ D-1682-64	0
ASPIIALT RETENTION	02/Sf	Texas DOT I tem 3099	N/N
SIIRINKAGE FROM ASPIIALT	14	Texas DNT I Lem 3099	N/A
Ojavhram Burstinu Tester			

.

2 Tension Testing Archine with riny clamp; steel hall replaced with a 5/16" unmeter solid steel cylinder(with Acmispheric, tip) contered within the ring clamp.

ł

[

i.

ļ

³ ASTH D-1682 as above after abrasion as required by ASTM D-3884 Rotary Platform. Double Head Method; rubber-base abrasive wheels equal to CS-17 "Calibrase" by Taber Instrument Co.;lkg load per wheel; 1,000 revolutions.

•

÷.

1

i

· · · ASTM D-1682 as above after 250 cycles in Xenon-arc weathermoeter (Type BH or Type C apparatus.as described in ASTM G-26). One cycle consists of 102 minutes of light only followed by 18 minutes of light with water spray.

* The product specifications are <u>everage</u> values. For <u>minimum certified values</u> contact your local Mirafi representative or the Mirafi Technical Department at 1-800-438-1855.

. | | .

.

713-463-8861 18007 Hollywell Houston Texas 77084 915 - 563-0576 12101 East Highway 80 P.O. Box 6343 Midland, Texas 79701

STANDARD SPECIFICATIONS

POLYVINYL CHLORIDE PLASTIC LININGS

I. GENERAL REQUIREMENTS

The work covered by these specifications consists of installing polyvinyl chloride (PVC) plastic linings in the water containment structures.

II. PVC MATERIALS

- A. <u>General</u>. The materials supplied under these specifications shall be first quality products designed and manufactured specifically for the purpose of this work, and which have been satisfactorily demonstrated by prior use to be suitable and durable for such purposes.
- B. <u>Description of PVC Materials</u>. PVC (polyvinyl chloride) plastic lining shall consist of widths of calendered PVC sheeting fabricated into large sections by means of solvent-bonded factory seams into a single piece, or into the minimum number of large pieces required to fit the facility.

1.	Physical Characteristics.	The PVC materials shall have the physical
	characteristics.	

PROPERTY	SPECIFICATION	TEST METHOD	
Thickness	Specified + 10%	· · ·	
Specific Gravity	1.24 - 1.30		
Tensile Strength, psi, min.	2200	ASTM D882-B	
Elongation, 🕱 min.	300%	ASTM D882-B	
100% Modulus, psi	1000 - 1600	ASTM D882-B	
Elmendorfer Tear, gms/mil, min.	160	ASTM 689	
Graves Tear, Ibs/in. min.	270	ASTM D1004	
Water extraction, 🕱 max.	0.35	ASTM D1239	
Volatility, 2 max. Impact Cold Cract, ^o F	0.7	ASTM D1203	
Impact Cold Cract, F	-20	ASTM 1790	
Dimensional Stability, max. %			
(100°C-15 minutes)	5		
Outdoor Exposure, sun hours	1500		
Solvent Bonded Seam Strength,	80%		
🕱 of Tensile, min.			
Resistance to Burial		Formulation shall have passe USBR Test (specially formula	
		for resistance to micro- biological attack)	

Passes Corps. of Eng.

CRD-572-61

Alkali Resistances

Color - Gray (Std.) Factory Seals - 3/4" solvent bonded

STANDARD SPECIFICATIONS Page '2

2. <u>PVC Polyvinyl Chloride Materials</u> shall be manufactured from domestic virgin polyvinyl chloride resin and specifically compounded for use in hydraulic facilities. Reprocessed material shall not be used.

III. FACTORY FABRICATION

Individual widths of PVC materials shall be fabricated into large sections by solvent bonding into a single piece, or into the minimum number of pieces, up to 100 feet wide, as required to fit the facility. Lap joints with a minimum joint width of 3/4 inch shall be used. After fabrication, the lining shall be accordion folded in both directions and packaged for minimum handling in the field.

IV. PLACING OF PVC LINING

- <u>General</u>. The PVC lining shall be placed over the prepared surfaces to be lined in such a manner as to assure minimum handling. It shall be sealed to all concrete structures and other openings through the lining in accordance with details shown on drawings. The lining shall be closely fitted and sealed arcund inlets, outlets, and other projections through the lining. Any portion of lining damaged during installation by any cause shall be removed or repaired by using an additional piece of lining as specified hereinafter.
 - 1. <u>Field Joints</u>. Lap joints of the same kind as used in the factory shall be used to seal factory-fabricated pieces of PVC together in the field. Lap joints shall be formed by lapping the edges of pieces a minimum of two inches The contact surfaces of the pieces shall be wiped clean to remove all dirt, dust, moisture, or other foreign materials. Sufficient vinyl-to-vinyl bonding solvent shall be applied to both contact surfaces in the joint area and the two surfaces pressed together immediately. Any wrinkles shall be smoothed out.
 - Joints to Structures. All curing compounds and coatings shall be completely removed from the joint area. Joining of PVC to concrete shall be made with vinyl-to-concrete adhesive. The minimum width of concrete shelf provided for the cemented joint shall be eight inches, and batten strips shall be used to reinforce the adhesive bond.
 - 3. <u>Repairs to PVC</u>. Any necessary repairs to the PVC shall be patched with the lining material itself and vinyl-to-vinyl bonding solvent.
 - 4. <u>Quality of Workmanship</u>. All joints, on completion of the work, shall be tightly bonded. Any lining surface showing injury due to scuffing, penetrati by foreign objects, or distress from rough subgrade shall be replaced or covered and sealed with an additional layer of PVC of the proper size.

Warren Petroleum Company

MANUFACTURING DEPARTMENT

P. O. Box 67 Monument, New Mexico 88265

May 3rd, 1983

State Of New Mexico Energy And Minerals Department P.O. Box 2088 State Land Office Building Santa Fe, New Mexico 87501

Attention: Mr. Oscar Simpson

Dear Mr. Simpson:

Please find attached the sieve analysis for the sand and gravel to be used in the construction of a brine pond at the Monument Plant.

If you have any questions please advise.

Sincerely,

Enge it: Finch

G. W. Finch Plant Manager, Monument Plant #118

GWF/th

Attachment

cc: J. E. Moody - Tulsa

ENGINEEI'.ING SERVICES

Albuquerque Testing Laboratory, Inc. 532 Jefferson N.E. (87108) P. O. Box 4101 (87106) Albuquerque, New Mexico (505) 268-4537

Caprock Sand and Gravel P.O. Box 151 Hobbs, New Mexico 88240

Attention: Mr. Bill J. Woolley

ATL Lab No. 5426

Report Date: December 16, 19

TEST RESULTS

PROJECT: Plant Use

Source of Material: One (1) sample of sand and one (1) sample of aggregate submitted to our laboratory on December 10, 1981.

SIEVE ANALYSIS TEST: (ASTM C-117 & C-136 - Cumulative & Passing)

Sieve Size	Aggregate	ASTM C-33* Specifications	Sand	ASTR C-33 Specifications
1**	100	95-100		
3/4"	· 70	••		
1/2"	19 *	25-60		
3/8"	3		100	100
No. 4	1	0-10	94*	95-100
No. 8	1	· 0-5	76	80-100
No. 16			63	50-85
No. 30	•		46	25-60
No. 50			20	10-30
No. 100			5	2-10
No. 200		•	2.5	
Material Finer than No.				
200 Sieve by Washing			2.3	
SAND EQUIVALENT TEST:	(ASTM C-2418))		

	66.7 67.2
	<u> 67.9</u>
lverage	67.4

Average

752, maximum

Respectfully Submitted, ATL ENGINEERING SERVICES

*Size 57

Derken

Dale S. Decker, P.E.

Warren Petroleum Company

MANUFACTURING DEPARTMENT

P. Q. Boz 67 Monument, New Mexico 88265

September 02, 1983

State of New Mexico Energy and Minerals Department P.O. Box 2088 State Land Office Building Santa Fe, New Mexico 87501

ATTENTION: Mr. Joe Ramey

Dear Sir:

The following are modifications to the construction of a brine pond at the Monument Plant No. 118, Lea County, New Mexico.

- The bottom of the pond will slope l'/100' to the center of the pit into a leak detection ditch also sloping l'/100'. In the original proposal the bottom of the pond also sloped l'/100' toward the outside of the pond.
- 2. The 6" PVC pipe will be perforated with 3/8" holes in lieu of 5/8".
- 3. The leak detection sump will be 18' long instead of 16'4", and the base will be set in concrete.
- 4. The Mirafi 140N material will cover only the leak detection ditch and will be 5' wide.
- 5. The 4" sand pad will extend up the sides.
- 6. The PVC liner will be 30 mil in lieu of 36 mil.
- 7. The anchor ditch will be 2'6" deep.

A drawing with these revisions will be forwarded to you as soon as it is available. I understand that these modifications have already been approved by you in a phone conversation on September 1 between you and John Fulgenzi.

If you have any questions, please contact John at 393-2823.

Sincerely,

Jenal

BRT/vh

cc: J. E. Moody

SECTION VII

BRINE POND DESCRIPTION

<u>Location</u>

The brine pond is located in the SE/4 of the SW/4 of Sec. 1 of T-20-S; R-36-E in Lea County, New Mexico, on property owned by Warren Petroleum Company, a division of Chevron U.S.A Inc.

The brine pond is not near any water course, lake beds, sink-holes, or other depressions.

Design

The storage pond measures 216' x 216' across the top, with a maximum useable depth of 14'-7''. The levees surrounding the pond are over 4'-6'' above grade elevation. The upper pit liner is approximately 10'-1'' below grade elevation at maximum depth.

The levees are constructed of compacted caliche and a sand/gravel mixture, to make the surface smooth and uniform.

The top of the levee is relatively flat and level and approximately 10' wide.

The pit is double lined in the following sequence:

- * 30 mil thickness polyvinyl chloride (PVC) liner, sand pad with leak detector, and 100 mil thickness polyethylene liner, as approved by the New Mexico Oil and Conservation Division.
- * The bottom and top liners extend over the levee and are anchored in a ditch a minimum of 2' below the top of the levee.

- * A minimum of 2" of sand/gravel mixture separates the top and bottom liners along the tops and sides of the pond. A minimum 6" sand pad separates the top and bottom liner at the bottom of the pond. The sand/gravel mixture is smooth and uniform throughout the pond, as described. Clumps, rocks, and debris were removed during construction.
- * A 6' tall chain-link fence, topped with three strands of barbed wire, surrounds the perimeter of the levee. A 10' wide service road, constructed of medium size washed gravel, was built between the top of the liner and the fence. The fence has one drive-through and three walkthrough gates, which are locked for security reasons. The key for these locks is in the Control Room at the plant, which is staffed 24-hours each day. A sign is located next to the east walk-in gate describing the storage pond, its relative location and phone numbers to contact in an emergency.
- * A leak detection system exists, which consists of a network of 4" perforated PVC pipe on 40' centers. No point of the pond bottom is more than 20' from a drainage canal. The pipe is sloped 1' per 100' minimum and connected to a common drain header of 6" PVC pipe, which is located at the outer perimeter of the pond bottom. The header drains into a 3' diameter x 18' deep steel sump, located at the outer perimeter, on the east side of the storage pond. The sump is inspected periodically to determine if a leak in the top liner is indicated. The leak detection system was approved by the New Mexico Oil Conservation Division.

STANDARD SPECIFICATIONS POLYVINYL CHLORIDE PLASTIC LININGS

I. <u>General Requirements</u> The work covered by these specifications consists of installing polyvinyl chloride (PVC) plastic linings in the water containment structures.

II. PVC Materials

- A. <u>General</u> The materials supplied under these specifications shall be first quality products, designed and manufactured specifically for the purpose of this work and which have been satisfactorily demonstrated by prior use to be suitable and durable for such purposes.
- B. <u>Description of PVC Materials</u> PVC (Polyvinyl Chloride) plastic lining shall consist of widths of calendared PVC sheeting, fabricated into large sections by means of solvent-bonding factory seams into a single piece, or into the minimum number of large pieces required to fit the facility.
 - 1. **Physical Characteristics** The PVC materials shall have the physical characteristics.

	SPECIFICATION	TEST	
PROPERTY	LIMIT	METHO	D
Thickness	Specified \pm 10%		
Specific Gravity	1.24 - 1.30		
Tensile Strength, psi, min.	2200	ASTM	D882-B
Elongation, % min.	300%	ASTM	D882-B
100% Modulus, psi	1000-1600	ASTM	D882-B
Elmendorfer Tear, gms/mil, mi	n 160 ·	ASTM	689
Graves Tear, lbs/in. min	270	ASTM	D1004
Water extraction, % max.	0.35	ASTM	D1239
Volatility, % max.	0.7	ASTM	D1203
Dimensional Stability, max.*			
(100°C - 15 minutes)	5		
Outdoor Exposure, sun hours	1500		
Solvent Bonded Seam Strength,	80%		
% of Tensile, min.			
Impact Cold Cract, °F	-20	ASTM	1790

II. **<u>PVC MATERIALS</u>** (Continued)

	Specification	Test
Property	Limit	Method
Resistance to Burial	Formulat:	ion shall have
	passed US	SBR Test
	(specially	y formulated
	for resis	stance to
	microbio	logical
	attack)	
Alkali Resistance	Passes Co	orps of
	Engineers	3
Color - Gray (Std.)	CRD-572-0	51
Factory Seals - 3/4" solve	ent bonded	

2. **PVC POLYVINYL CHLORIDE MATERIALS** Shall be manufactured from domestic virgin polyvinyl chloride resin and speci-fically compounded for use in hydraulic facilities. Reprocessed material shall not be used.

III. Factory Fabrication

Individual widths of PVC materials shall be fabricated into large sections by solvent bonding into a single piece, or into the minimum number of pieces, up to 100 feet wide, as required to fit the facility. Lap joints with a minimum joint width of 3/4", shall be used. After fabrication, the lining shall be accordion folded in both directions and packaged for minimum handling in the field.

IV. Placing of PVC Lining

A. **General** The PVC lining shall be placed over the prepared surfaces to be lined in such a manner as to assure minimum handling. It shall be sealed to all concrete structures and other openings through the lining, in accordance with details shown on drawings. The lining shall be closely fitted and sealed around inlets, outlets, and other projections through the lining. Any portion of lining damaged during installation, by any cause, shall be removed or repaired by using and additional piece, as specified hereinafter.

- 1. Field Joints Lap joints, of the same kind as used in the factory, shall be used to seal factory-fabricated pieces of PVC together in the field. Lap joints shall be formed by lapping the edges of pieces a minimum of two inches. The contact surfaces of the pieces shall be wiped clean, to remove dirt, dust, moisture, or other foreign materials Sufficient vinyl-to -vinyl bonding solvent shall be applied to both contact surfaces in the joint area and the two surfaces pressed together immediately. Any wrinkles shall be smoothed out.
- 2. Joints to Structures All curing compounds and coatings shall be completely removed from the joint area. Joining of PVC to concrete shall be made with vinyl-to-concrete adhesive. The minimum width of concrete shelf provided for the cemented joint shall be eight inches, and batten strips shall be used to reinforce the adhesive bond.
- 3. **Repairs to PVC** Any necessary repairs to the PVC shall be patched with the lining material itself and vinyl-to-vinyl bonding solvent.
- 4. **Quality of Workmanship** All joints, on completion of the work, shall be tightly bonded. Any lining surface showing injury due to scuffing, penetration by foreign objects, or distress from rough subgrade, shall be replaced or covered and sealed with an additional layer of PVC of the proper size.

SCHLEGEL LINING TECHNOLOGY, INC.

PHYSICAL PROPERTIES OF SLT SHEET TYPE "HDPE FORTIFLEX"

PROPERTY	TEST METHOD	VALUE	UNIT
Density ^l (Natural)	ASTM D-792	0.938 <u>+</u> 0.002	gm/cm ³
Melt Index ¹	ASTM D-1238 "E"	0.25 <u>+</u> 0.05	gm/10 min
Mositure Content ¹	Moisture Balance	≤0.1	ક
Oxidative Induction Time ¹ / ²	ASTM D-3895 @200 ⁰ C	100	Minutes
Thickness ²	ASTM-D-1593	<u>+</u> 10	ş
Environmental Stress	ASTM-D1693 "C"	>5000	hours
Crack Resistance ²	ASTM D-1693 "B"	>2000	hours
Dimensional Stability ²	ASTM D-1204 120 ⁰ C @ 1 Hr.	<u>+</u> 2.0	ૠ
Tensile Properties ²			
(1) Yield Strength	ASTM D-638 Type IV	2800	lb/in ²
(2) Break Strength	ASTM D-638 Type IV	4000	lb/in ²
(3) Yield Elongation	ASTM D-638 Type IV	15	ક્ષ
(4) Break Elongation	ASTM D-638 Type IV	750	8

Resin Property Requiring Routine Testing
 Liner Property Requiring Routine Testing

All Testing Frequencies per SLT Quality Assurance Manual

•

SCHLEGEL LINING TECHNOLOGY, INC.

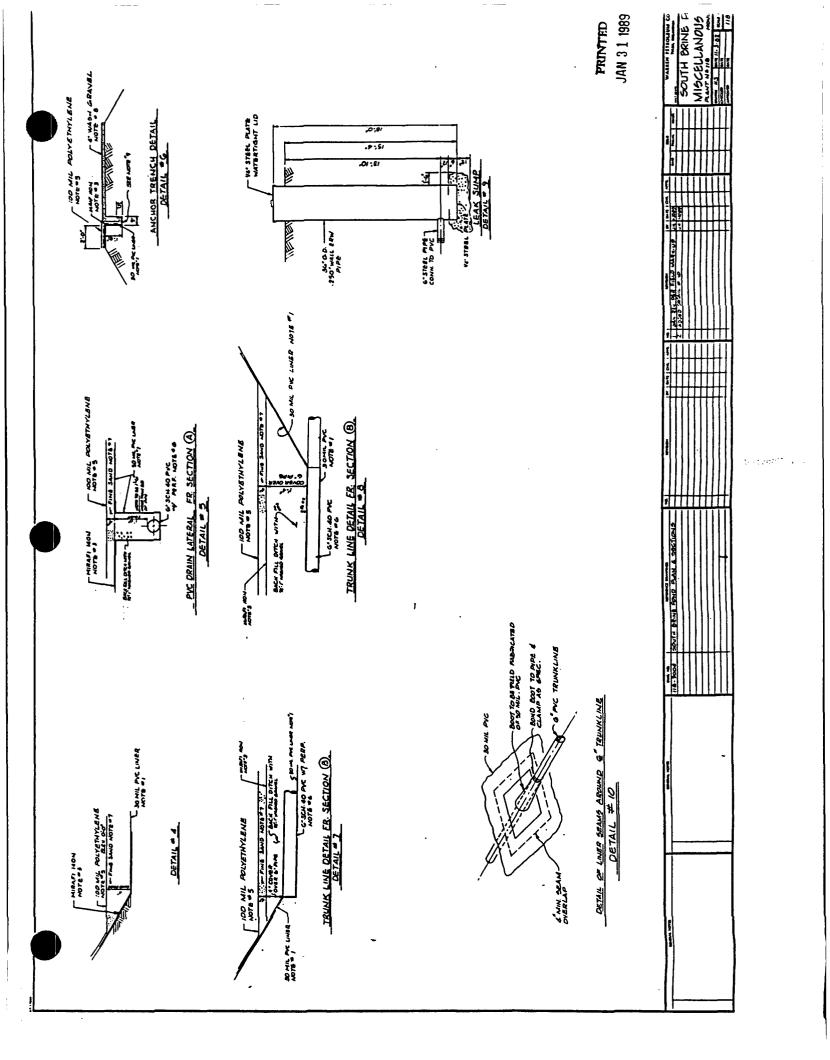
PHYSICAL PROPERTIES OF SLT SHEET TYPE "HDPE FORTIFLEX"

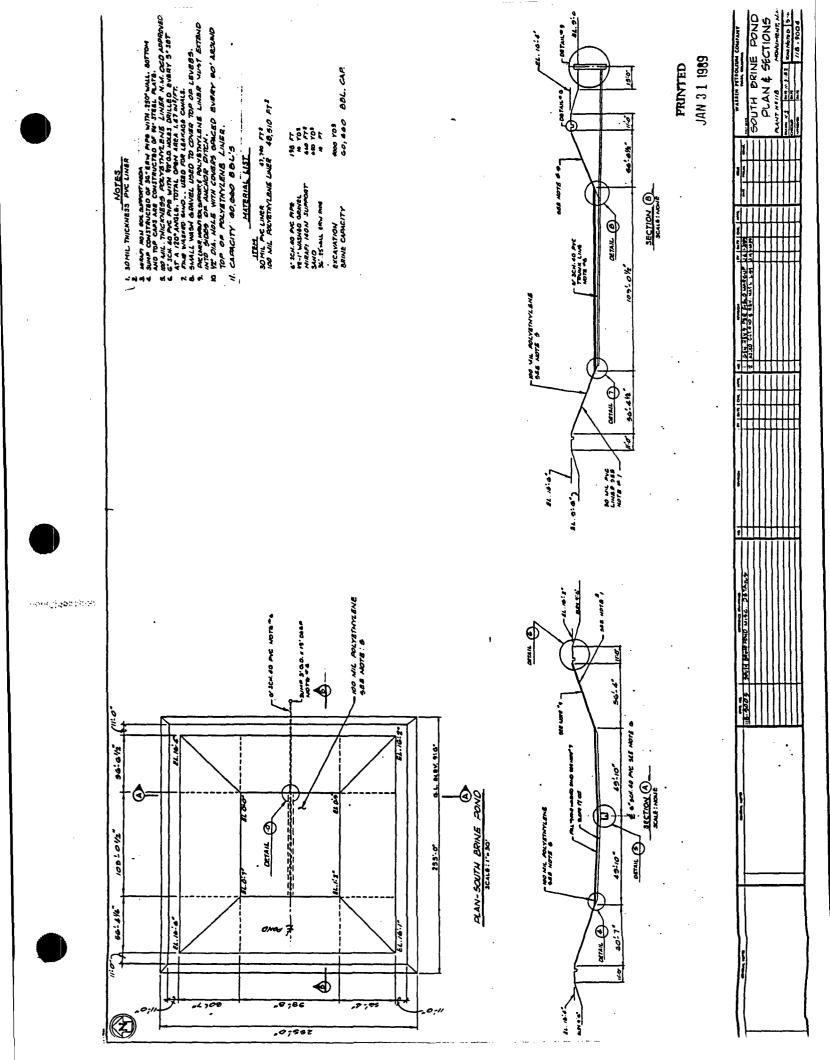
PROPERTY	TEST METHOD	VALUE	UNIT
Elasticity			hours
Flexural Modulus	ASTM D-790	115,000	lb/in ²
Tensile Modulus ²	ASTM D-638	100,000	lb/in ²
Resistance to Soil	ASTM D-3083 ASTM D-638 Type IV		
(l) Tensile Strength at Break		<u>+</u> 10	% change
(2) Elongation at Break		<u>+</u> 10	% change
Volatile Loss	ASTM D-1203 "A"	<0.1	ş
Water Absorbtion	ASTM D-570	0.0079	₽¢
Water Vapor Transmission	ASTM E-96 "B"	0.0009	9m/m ² 24 hrs.
Puncture Resistance ²	FTMS 101-C Method 2065	108 (for 1.5mm) 128 (for 2.0mm) 166 (for 2.5mm)	lbs
Tear Resistance ²	ASTM D-1004	50 (for 1.5mm) 70 (for 2.0mm) 85 (for 2.5mm)	lb _f

Resin Property Requiring Routine Testing
 Liner Property Requiring Routine Testing

All Testing Frequencies per SLT Quality Assurance Manual

SCHLEGEL LINING TECHNOLOGY, INC.




PHYSICAL PROPERTIES OF SLT SHEET TYPE "HDPE FORTIFLEX"

PROPERTY	TEST METHOD	VALUE	UNIT
Abrasion Resistance (Tabor Wear Index)	ASTM D-3389	0.406 (for 1.5mm 0.377 (for 2.0mm 0.272 (for 2.5mm	ı) -
Tensile Impact ²	ASTM D-1822	400	m ^J /mm ²
Low Temp Brittleness	ASTM D-746-"B"	<-103	° _F
Surface hardness	ASTM-D-2240	65	Shore D
Coefficient of Liner Thermal Expansion	ASTM D-696	1.2×10^{-4}	.c ⁻¹
Carbon Black Content ²	ASTM D-1603	2.0-3.0	8
Carbon Black Dispersion ²	ASTM D-3015	A	Rating
Fungus Resistance	ASTM G-21-80	0	Growth
Bacterial Resistance	ASTM G-22-76	0	Growth
Ozone Resistance	ASTM D-1149 (7 days, 100pphm,104 ⁰ F)	No Cracks	7x

1 - Resin Property Requiring Routine Testing
2 - Liner Property Requiring Routine Testing

All Testing Frequencies per SLT Quality Assurance Manual

SECTION VII

EVAPORATION PIT

SECTION VII

EVAPORATION PIT

The evaporation pit would be used in the event of an emergency.

The lining materials use for the evaporation pit are 36 mil chlorinated polyethylene (CPE) laminate and 30 mil CPE. The pit has a leak detection system.

The evaporation pit is located 1200 feet to the northwest of the amine coolers. The freeboard for the evaporation pit is at least two feet beneath the top of the level. The pit has a reserve time of approximately thirty days.

JUNE 15, 1977 EVAPORATION PIT

yurren Petroleum Company

MANUFACTURING DEPARTMENT

P. O. Bos 67 Monument, New Mexico 88265

September 22, 1977

Oil Conservation Commission State of New Mexico P. O. Box 2088 Santa Fe, New Mexico 87501

Attention: Mr. Joe D. Ramey

Dear Mr. Ramey:

We do appreciate your letter of September 13, 1977, and your clarification of exceptions to requirements for our lined evaporation pit installation.

We will install the drainage system such that no point in the pit will be more than 20 feet from the drainage grid.

A standby water disposal agreement will be kept effective and active. Our present and continuing contract with Rice Engineering and Operating, Inc., presently assures the plant sufficient standby water disposal. With this standby system, a freeboard of at least two feet beneath the top of the levee will be maintained at all times.

Again, we thank you for your prompt attention.

Sincerely, J. A. Mussa

Plant Manager

JFM/DDH: kb

OIL CONSERVATION COMMISSION

STATE OF NEW MEXICO P. O. BOX 2088 - SANTA FE 87501

LAND COMMISSIONER PHIL R. LUCERO September 13, 1977

STATE GEOLOGIST EMERY C. ARNOLD

Warren Petroleum Company P. O. Box 67 Monument, New Mexico 88265

, (

Attention: Mr. J. F. Mussa

Gentlemen:

DIRECTOR

JOE D. RAMEY

Reference is made to your letter dated August 26, 1977, addressed to our Hobbs office and concerning your proposed lined evaporation pit at the Monument plant.

It is our understanding that this pit will comply with the New Mexico Oil Conservation Commission "Specifications for the Design and Construction of Lined Evaporation Pits" with the following exceptions:

- Your proposed leakage detection drainage system would be so spaced that points under the liner could be as much as 40 feet from the drainage system.
- 2. There would be less than 600 square feet of evaporative surface per barrel per day of water placed in the pit.
- 3. The excavation would be more than six inches deep in some places.

_ge 2 Letter to Warren Petroleum Company September 13, 1977

As discussed with you on the phone, the Commission cannot without a hearing consider the deviation from the required drainage grid distances, and it is our understanding that you now plan to install a drainage system such that no point in the pit would be more than 20 feet from the drainage grid.

As to the excavation being more than six inches deep, the Commission recognizes that in a pit as large as you propose, it is necessary to excavate more than six inches in order to keep the drainage system close to the surface of the pit bed and yet maintain the required drainage slope of at least six inches per fifty feet. You are therefore hereby authorized to excavate to a maximum depth of 2.5 feet below mean ground level.

As o the lack of 600 square feet of evaporative surface per barrel of water disposed of on a daily average basis, we understand that this is an auxiliary disposal system and that you will maintain a disposal contract to get rid of such water as cannot be handled in the pit. Upon receipt of written commitment from Warren that a standby water disposal agreement will be kept in force, and that a freeboard of at least two feet beneath the top of the levee and the surface of the water will be maintained at all times, the Commission will authorize disposal of more than 263 barrels per day into the pit (the maximum under our Pit Specifications).

Yours very truly. OE D. RAMÉY Director

JDR/DSN/fd

cc: OCC Hobbs

C

Wurren Perreleum Company

MANUFACTURING DEPARTMENT

P. O. Pox G7 Servicial New Mexico (P. 15

August 26, 1977

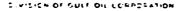
Hr. Jerry Sexton
Hew Mexico Oil Conservation Commission
P. O. Box 2045
Hobbs, NM 88240

Dear Mr. Sexion:

This is a request for permission to construct a water disposal pit (see the attachment for specific details). This will be a lined evaporation pit constructed in accordance to local, state, and Federal regulations with the following exceptions submitted for your approval:

- 1. It has been recommended to us by the construction people and the pit liner manufacturer that because of the ground conditions, it should not be necessary to construct a drainage system with no point less than 20 ft. from a drainage channel. Instead, we request to have drainage ditches under the liner at 80 ft. apart. We are advised that any leakage will flow along the liner underside and into a drainage ditch and will thus indicate leakage in any case.
- 2. There will not be 600 sq. ft. of surface area per barrel of water to be evaporated due to limited space available and due to the fact that we have an alternate means of disposing of the water via pumps and pipeline to an angineering firm.
 - 3. Excavation will be more than 6" in some places.

We hope that these exceptions will meet with your approval and we can begin construction of the pit at the earliest possible date. Thank you very much.


Sincerely,

Plant Manager

Attachment

JFM: kb

SECTION IX

EVAPORATION AREAS

SECTION IX EVAPORATION AREAS

DISCHARGE PLAN FOR WASTE WATER FROM THE REVERSE OSMOSIS TREATER

There will be three evaporation areas for the discharge of the waste water from the reverse osmosis unit. This will be the only water discharged on both of the evaporation areas. Evaporation Area 1, located south of the parking lot, has 9,000 square feet of area planted in Bermuda grass. Evaporation Area 2, located north of the parking lot, has 25,800 square feet of area planted in Bermuda grass. Evaporation area 3, located east of the sulfur plant at the flare, has 68,800 square feet of area planted in Bermuda grass. The total square footage of all three evaporation areas is 103,600 square feet, which is 2.38 acres.

The maximum amount of water that will be discharged is 300 barrels of water per day (12,600 gallons). All calculations used for calculating how much area was needed were based on the 300 barrels per day figure. One point to be considered is that the reverse osmosis unit is not treating water every day and water will be discharged on the evaporation areas only when the unit is treating water for boiler make-up.

Mr. Carl Barnes, an agronomist with the New Mexico State University Agriculture Science Center at Artesia, New Mexico, was contacted and he recommended planting Bermuda grass because it is more drought tolerant than fescue and it spreads whereas fescue does not spread. He stated that Bermuda grass, on a normal summer day, had an evapotraspiration (ET) rate of 0.30 acre inches per day, with the rate possibly going as high as 0.50 acre inches per day, when temperatures were unusually high, humidity was low, and wind speed above average. During winter months, when the Bermuda grass was in the dormant stage, the evapotraspiration (ET) rate would be about 0.05. The amount of area (.8 acre) in the evaporation areas would take care of about .175 acre inches per day, which is almost half the rate Bermuda grass normally transpires during and average summer

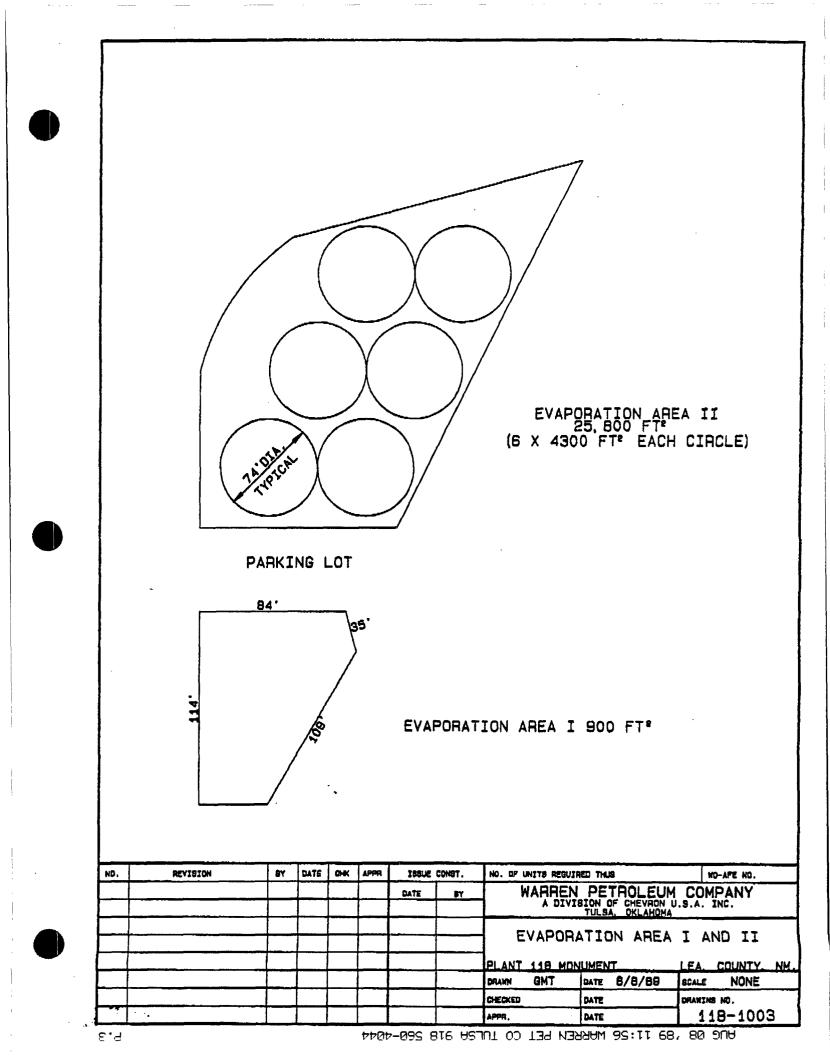
Evaporation Areas (Continued)

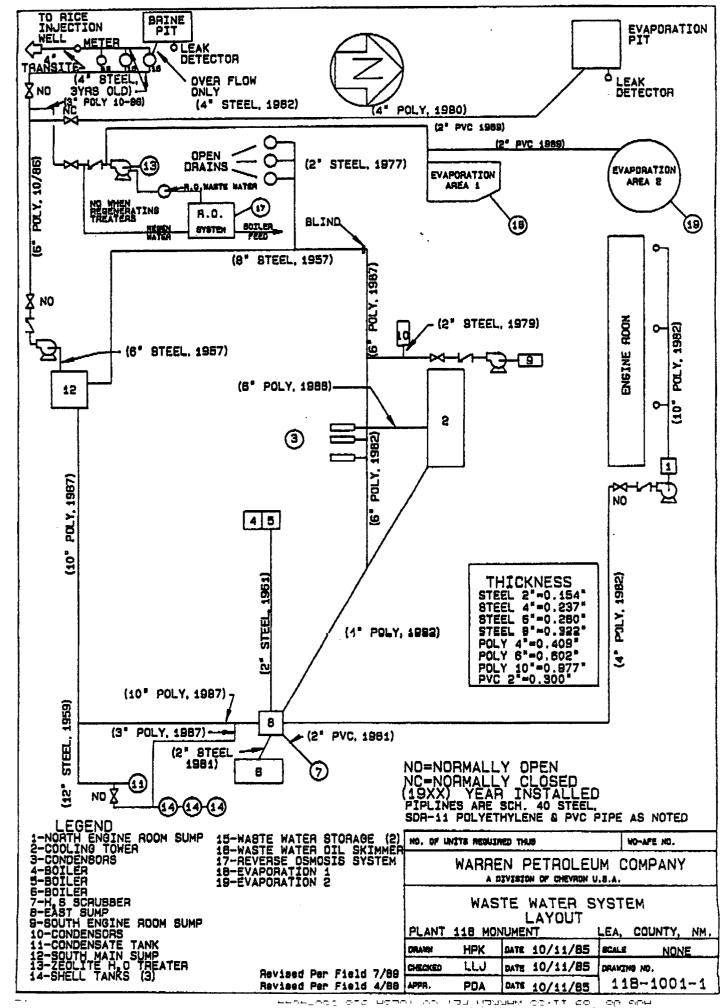
day. During the months when Bermuda grass is not in the dormant stage (April thru September) the root zone would be depleted of any excess water. During the months when it is in the dormant and semi-dormant stage, the root zone would have some excess water, which would be depleted when the grass became active again. The root zone of Bermuda grass is normally about 6 feet, unless there is some type of rock or other hard layered impediment. The above figures do not include annual precipitation, wind and heat evaporation, or 6 trees each about 3 inches in diameter. Both evaporation areas are in an open area where the evaporation from the sun, wind, and ambient temperature will enhance the evaporation and evapotranspiration process.

SPRINKLER SYSTEM

Evaporation Area #1 has ground level pop-up half-circle sprinklers that put out 2.8 gallons per minute at 25 pounds of water pressure, with the highest point of stream 6 feet above the nozzle. Evaporation Area #2 was 2.5 gpm full circle sprinklers, mounted on pipe 3 feet above the ground, with the highest point of stream 100 feet above the ground. Having the sprinklers 3 feet above the ground will disperse any organic and speed up the evaporation process. Evaporation Area #3 has 2.5 gpm full-circle sprinklers, mounted on pipe 3 feet above the ground, with the highest point of stream 10 feet above ground.

SPECIAL CIRCUMSTANCES


In the event of high rainfall, or mechanical problems with the sprinkler system the waste water from the reverse osmosis treater can be diverted to Rice Engineering for disposal, or to our evaporation pit.


Evaporation Areas (Continued)

300 BARRELS PER DAY MAXIMUM 12,600 GALLONS PER DAY 0.463 ACRE INCHES PER DAY AVG. (ET)/DAY SUMMER .30 ACRE INCHES/DAY 8158 GALS/DAY ACRES SUPPORTED (SQ. FT.) 1.54 67,000 SQ.FT.

AVG. (ET)/DAY WINTER 4.60 200,000 SQ.FT. .10 ACRE INCHES DAY 2720 GALS/DAY

The above figures do not include natural evaporation from air temperature and wind.

ор тткор мнинет со

SECTION X

HYDROLOGIC & GEOLOGIC DATA

SECTION X

HYDROLOGIC & GEOLOGIC DATA

Wastewater is removed from the Monument Plant as described throughout this document. Warren does not operate, but is permitted to complete an injection well for removal of waste water from this plant. Hydrologic and geologic data is available in the application for this well, Administrative Order SWD - 561.

The September 20, 1989 update to the Monument Discharge Plan describes the evapotranspiration of Reverse Osmosis Reject Water within an agricultural evaporation area.

Further hydrologic and/or geologic data will be researched at the request of the Oil Conservation Division.

SECTION XI

CHEMICAL ANALYSES

SECTION XI CHEMICAL ANALYSES

The information provided herein describes the sources and disposition of wastewater from the Monument Plant which has a disposal system whereby no effluent is allowed to reach the ground or to enter a navigable waterway.

Contingency measures would be taken by the plant for wastewater disposal should normally used removal methods ever be rendered inoperable. These procedures have been carefully formulated and would take effect in the event that an emergency would necessitate their implementation.

Section XII, which follows contains a current copy of the Spill Prevention Control and Countermeasure (SPCC) Plan for the facility. The SPCC Plan is maintained on site and would be implemented in the event of a spill.

Wastewater sample analyses are attached. To obtain highly consistent analyses of the effluent would be difficult due to the several sources throughout each plant which combine to provide the whole.

Also included is a Water Analysis Report for the Reverse Osmosis Reject Water.

INDUSTRIAL DIVISION

RT. 4 BOX 100 F.O. BOX 1499 P.O. BOX 572 P.O. BOX 755 BOBBY LANE 77705 HOBBS, NM 88240 BORGER, TX 79007 CASPER, WY 82601 BEAUMONT, TX 409-724-6535 505-393-7751 806-273-6531 307-235-5906

WATER ANALYSIS

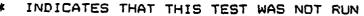
ALL RESULTS EXPRESSED IN PPM UNLESS OTHERWISE NOTED

CLIENT NAME: FACILITY:	WARREN	PETROLEUM	COMPANY	DATE: Sample Date:	01/30/85
LOCATION: SOUTHEASTERN, N.M.			DATE ANALYZED:		
SAMPLE IDENTIF	ICATION	1	SAUNDERS PLANT WASTE WATER	VADA PLANT WASTE WATER	MONUMENT FLANT WASTE WATER
рH			8.03	10.30	8.10
FHEND ALKALINI	TY	(CaCO3)	NIL	7000	NIL
TOTAL ALKALINI	TY	(CaCO3)	256	8700	160
BICARBONATE		(HCO3)	312.3	NIL	195.2
CARBONATE		(CO3)	NIL	3820.0	NIL
HYDROXIDE		(OH)	NIL	1802.0	NIL
TOTAL HARDNESS	3	(CaCO3)	1368	124	360
CALCIUM		(Ca)	416.0	27.2	113.6
CALCIUM		(CaCO3)	1040	68	284
MAGNESIUM		(Mg)	78.7	13.4	18.2
MAGNESIUM		(CaCO3)	328	56	75
CHLORIDE		(C1)	364	200	172
CHROMATE		(Cr04)	***	***	* * *
SULFATE		(\$04)	1927	2410	1497
TOTAL PHOSPHAT	Έ	(204)	13.3	NIL	7.8
ORTHO PHOSE	HATE	(P04)	11.9	NIL	7.8
FOLY PHOSPH	ATE	(P04)	1.4	NIL	NIL
SILICA		(SiO2)	112.4	27.7	93.5
SILICA		(CaCO3)	187.7	46.3	156.1
SPECIFIC CONDL	ICTANCE	(umhas)	1705	1240	845
IRON		(Fe)	1.10	1.30	2.50
COPPER		(Cu)	0.08	NIL	NIL
CALCULATED :					22 4 1
TOTAL DISSOLVE	D SOLIDS		3881	14894	2840
SODIUM		(Na)	657	6594	742

ANALYZED BY: (HOBBS'LAB) INDICATES THAT THIS TEST WAS NOT RUN ***

APPROVED BY: Tel Acklos

INDUSTRIAL DIVISION


RT. 4 BOX 100 BOBBY LANE P.O. BOX 572 P.O. BOX 755 P.O. BOX 1499 CASPER, WY 82601 BEAUMONT. TX 77705 BORGER, TX 79007 HOBBS, NM 88240 307-235-5906 409-724-6535 505-393-7751 806-273-6531

WATER ANALYSIS

ALL RESULTS EXPRESSED IN PPM UNLESS OTHERWISE NOTED

CLIENT NAME: FACILITY:	WARREN PETROLEUM	COMPANY	DATE: SAMPLE DATE:	01/30/85
LOCATION:	SOUTHEASTERN, N. M.		DATE ANALYZED	01/08/85): 01/30/85
SAMPLE IDENTIF	ICATION :	SAUNDERS PLANT WASTE WATER	VADA PLANT WASTE WATER	MONUMENT PLANT WASTE WATER
ZINC LEAD CHROMIUM BARIUM COBALT		NIL .04 0.3 .05 NIL	0.08 NIL 0.02 NIL NIL	0.05 NIL 0.1 0.1 NIL

NOTE: Sampling and analytical procedures used in these analyses conform with those outlined in <u>Standard Methods</u> for the Examination of Water and Wastewater (APHA) and/or Methods for Chemical Analysis of Water and Waste (EPA).

PO BOX 2552 784

JUL 2 1985

JORDAN LABORATORIES, INC. CHEMISTS AND ENGINEERS CORPUS CHRISTI, TEXAS JUNE 27, 1985

WARREN PETROLEUM COMPANY P.O. BOX 1589 TULSA, OKLAHOMA 74102

REPORT OF ANALYSIS

IDENTIFICATION: W.P.C. MONUMENT 2:00 PM 6-6-85

MG/L

PHENOLS	0.08
BENZENE	0.12
TOLUENE	0.33
ORTHOXYLENE AND PARAXYLENE	0.60
METAXYLENE	0.66
ALUMINUM	0.50
ARSENIC	0.018
BORON	0.56
CADMIUM	<0.0001
MOLYBDENUM	0.01
NICKEL	<0.01

LAB. NO. M23-3539

RESPECTFULLY SUBMITTED,

allow now

CARL F. CROWNOVER

WATER MANAGEMENT DIVISION CALGON CORPORATION BOX 1346 PITTSBURGH, PA 15230 (412) 777-8000

WATER ANALYSIS REPORT

SUBSIDIARY OF MERCK & CO., INC.

CALGON

SPONSOR: STAFFORD CUSTOMER NAME: WARREN PETROLEUM COMPANY MAIL DROP: CARLSBAD, N. M. LOCATION: MONUMENT PLANT MONUMENT, N. M. COPIES: ---SAMPLE NUMBER: 228563 DESCRIPTION: REVERSE OSMOSIS REJECT WATER SAMPLE POINT: R. O. UNIT DATE SAMPLED: 5/8/89 TIME SAMPLED: 14:00 ML N/30 H2SO4 (--- MG/L CaCO3) 32.4 ML-N/30 H2SO4 (541. MG/L CaCO3) B READING --- ML N/30 H2SO4 (541. MG/L CaCO3) CONDUCTIVITY 1900 UN-NEUTRALIZED. UMbos (55 SUSPENDED SOLIDS EST <5 MC/L ML N/30 H2SO4 (--- MG/L CaCO3) -MG/L-HYDROXIDE (OH) ---CARBONATE (CO3) - - -BICARBONATE (HCO3) 659 SILICA (SiO2) 110 CHLORIDE (C1) 150 SULFATE (SO4) 160 ORTHO PHOSPHATE(PO4) 0.05 NITRATE (NO3/NO2) 35 TOTAL (MG/L) DISSOLVED (MG/L) CALCIUM (Ca) 0.5 0.5 MAGNESIUM (Mg) **<0.1** <0.1 SODIUM (Na) 440 440 POTASSIUM (K) 3.0 3.0 0.7 IRON (Fe) <0.05 COPPER (Cu) <0.05 <0.05 MANGANESE (Mn) <0.05 <0.05 ALUMINUM (A1) <0.1 <0.1 ZINC (Zn) <0.05 <0.05 NICKEL (Ni) <0.05 <0.05

COMMENTS : PH IS <8.2 BUT ON ADDITION OF NEUTRAL BARIUM CHLORIDE A HEAVY WHITE PRECIPITATE WAS FORMED.

<0.05

CALGON ANALYTICAL LABORATORIES, APPROVED BY: RJF REPORTED: 05/26/89 RECEIVED: 05/15/89

<0.05

CHROMIUM (CrO4)

MONUMENT PLANT SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN PART I GENERAL INFORMATION

QUICK REFERENCE DOCUMENT SPILL CONTAINMENT AND NOTIFICATION PROCEDURES

If a spill occurs, the flow should be stopped and help acquired, if necessary. Contact Plant Manager or alternates if he is not available. Contain the spill using procedures in this plan. Refer to reporting requirements after spill cleanup. These procedures directly follow.

CONTACTS

F. C.	Noah	((505)3	93-2823	or
				392-253	-
A. S.	Robinson	((918)5	60-4060	or
			(918)	298-642	2
D.E. 7	Todd	((918)5	60-4052	or
			(918)	494-877	9
L. T.	Reed	((918)5	60-4119	or
			(918)	663-339	7

DIRECTED CONTACTS

National Response Center
Eighth Coast Guard District Duty Officer (504) 589-6225
EPA Region VI
Emergency Response (EPA Region VI)
New Mexico Oil Conservation Division
Santa Fe Office
Hobbs District Office
New Mexico Environmental Department
Santa Fe Office
Hobbs District Office
New Mexico State corporation Commission
Pipeline Division/Santa Fe
Local Emergency Planning committee
Lea County

MISCELLANEOUS CONTACTS

Fire Department	(505)393-4339
	(Monument)
	911 (Hobbs)
Ambulance	. 911 (Hobbs)
Hospital	(505)392-6581
Sheriff Department	
Equipment/Disposal Services	(505)392-2577
(A A Oilfield Inc.)	

MONUMENT PLANT

SPILL NOTIFICATION PROCEDURES

Federal, state and local water pollution control agencies require that certain discharges be reported. Discharges exhibiting any of the characteristics described below must be reported to the appropriate government agencies, as indicated.

OIL/HAZARDOUS SUBSTANCES Reportable spills

- 1. Any discharge of oil in or adjacent to navigable waters, or
- 2. Any release of a reportable quantity of a hazardous substance to the environment (water, air, or land).

<u>Report 3</u> Immediate, by telephone.

Agencies

State of New Mexico Environmental Department, Santa Fe -505/984-0200, Hobbs, - 505/393-4302, and U. S. Environmental Protection Agency - Emergency Response, Dallas Regional Office - 214/767-2666; and National Response Center -800/424-8802; and State of New Mexico Oil Conservation Division, Santa Fe - 505/827-5800, or Hobbs - 505/393-6161.

MAJOR BREAKS, SPILLS, OR LEAKS Reportable Spills

1. Discharge of 25, or more, barrels of crude oil, or condensate, or 100 barrels, or more, of salt water - none of which reaches a body of water, and/or,

MAJOR BREAKS, SPILLS, OR LEAKS Reportable Spills (Continued)

2. Discharge of one, or more, barrels of crude oil, or condensate, or 25 barrels, or more, of salt water into a body of water, and/or,

3. Endanger health or damage property.

<u>Report 3</u>

As soon as possible, by telephone. Written report within 10 days of incident to District Office.

Agencies

State of New Mexico Oil Conservation Division, Santa Fe - 505/827-5800, and Hobbs - 505/393-6161.

MINOR BREAKS, SPILLS, OR LEAKS Reportable Spills

Discharges between 5 to 25 barrels of crude oil, or condensate, or between 25 to 100 barrels of salt water - none of which reaches a body of water.

<u>Report 3</u>

Written report within 10 days of incident to District Office.

Agencies

State of New Mexico Oil Conservation Division - Hobbs District Office: 505/393-6161.

PIPELINE LEAK

Reportable Spills

1. Caused a death, or caused a personal injury requiring hospitalization, and/or

2.2 Required taking a segment of pipeline out of service, and/or

- 3.2 Resulted in gas igniting, and/or
- 4. Caused and estimated property damage of \$5,000, or more, or
- 5. Was significant, although not part of No 1. through. 4., above.

<u>Report 3</u>

Immediate, by telephone. Written report within 10 days of incident.

Agencies

U. S. Department of Transportation, through the National Response Center, 800/424-8802; and New Mexico State Corporation Commission, Santa Fe - 505/827-4497.

1Reportable quantities of hazardous substances are listed at the end of this plan.

2Notice is not required if No. 2. and No. e. occurred solely as a result of, or in connection with, a planned or routine maintenance or construction.

3Contents of Telephone Report

- a. Name, title, and telephone number of reporter.
- b. Name of facility.
- c. Name of Owner or Operator.
- d. Location of facility.
- e. Time and type of incident (e.g., fire, explosion, etc.).
- f. Location of spill or discharge, including name of waters involved.
- g. Type and quantity of material spilled.
- h. Other information that may be required.
- I. Request the name of the person to whom you reported.

Additional information to be included in the written report.

- a. Initial start-up date of facility.
- b. Maximum storage or handling capacity, daily average throughout.
- c. Description of facility, including process flows, plot plan, and topographic map.
- d. Copy of SPCC Plan.
- e. Cause of the spill(s).
- f. Corrective action(s) taken.
- h. Extent of any physical damage and/or personal injuries.

All reported information should be logged and documented for record keeping purposes.

RULE 116

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT - OIL CONSERVATION DIVISION RULES AND REGULATIONS (3-1-82)

RULE 116 NOTIFICATION OF FIRE, BREAKS, LEAKS, SPILLS, AND BLOWOUTS

The Division shall be notified of any fire, break, leak, spill or blowout occurring at any injection or disposal facility or at any oil or gas drilling, producing, transporting, or processing facility in the State of New Mexico by the person operating or controlling such facility.

"Facility" for the purpose of this rule, shall include any oil or gas well; any pipeline through which crude oil, condensate, casinghead or natural gas, or injection or disposal fluid (gaseous or liquid) is gathered, piped, or transported (including field flow-lines and leadlines, but not including natural gas distribution systems); any receiving tank, holding tank, or storage tank, or receiving and storing receptacle into which crude oil, condensate, injection or disposal fluid, or casinghead or natural gas is produced, received, or stored; any injection or disposal pumping or compression station including related equipment; any processing or refining plant in which crude oil, condensate, or casinghead or natural gas is processed or refined; and any tank or drilling pit or slush pit associated with oil or gas well or injection or disposal well drilling operations or any tank, storage pit or pond associated with oil or gas production or processing operations or with injection or disposal operations and containing hydrocarbons or hydrocarbon waste or residue, salt water, strong caustics or strong acids, or other deleterious chemicals or harmful contaminants.

Notification of such fire, break, leak, sill or blowout shall be in accordance with the provisions set forth below:

1. Well Blowouts. Notification of well blowouts and/or fires shall be "immediate notification" described below. ("well blowout" is defined as being loss of control over and subsequent eruption of any drilling or workover well, or the rupture of the casing, casinghead, or wellhead of any oil or gas well or injection or disposal well, whether active or inactive, accompanied by the sudden emission of fluids, gaseous or liquid, from the well).

2. "Major" Breaks, Spills, or Leaks. Notification of breaks, spills, or leaks of 25 or more barrels of crude oil or condensate, or 100 barrels or more of salt water, none of which reaches a watercourse or enters a stream or lake; breaks, spills, or leaks in which one or more barrels of crude oil or condensate or 25 barrels or more of salt water does reach a watercourse or enters a stream or lake; and breaks, spills, or leaks of hydrocarbons or hydrocarbon waste or residue, salt water strong caustics or strong acids, gases, or other deleterious chemicals or harmful contaminates of any magnitude which may with reasonable probability endanger human health or result in substantial damage to property, shall be "immediate notification" described below.

3. <u>"Minor" Breaks. Spills. or Leaks.</u> Notification of breaks, spills, or leaks of 5 barrels, or more but less than 25 barrels of crude oil or condensate, or 25 barrels, or more, but less than 100 barrels of salt water, none of which reaches a watercourse or enters a stream or lake, shall be "subsequent notification" described below.

4. Gas Leaks and Gas Line Breaks. Notification of gas leaks from any source or of gas pipeline breaks in which natural or casinghead gas of any quantity has escaped or is escaping which may with reasonable probability endanger human health or result in substantial damage to property shall be "immediate notification" described below. Notification of gas pipeline breaks or leaks in which the loss is estimated to be 1000 or more MCF of natural or casinghead gas but in which there is no longer to human health nor of substantial damage to property shall be "subsequent notification" described below.

5. **Tank Fires.** Notification of fires in tanks or other receptacles caused by lightening or any other cause, if the loss is , or it appears that the loss will be, 25 or more barrels of crude oil or condensate, or fires which may reasonably probability endanger human health or result in substantial damage to property, shall be "immediate notification" as described below. If the loss is, or it appears that the loss will be at least 5 barrels, but less than 25 barrels, notification shall be "subsequent notification" described below.

6. Drilling Pits, Slush Pits, and Storage Pits and Ponds. Notification of breaks and spills from any drilling pit, slush pit, or storage pit or pond in which any hydrocarbon or hydrocarbon waste or residue strong harmful contaminant endangers human health or does sub-stantial surface damage, or reaches a watercourse or enters a stream or lake in such quantity as may with reasonable probability endanger human health or result in substantial damage to such watercourse, stream, or lake, or the contents thereof, shall be "subsequent notification" described below, provided however, no notification shall be required where there is no threat of any damage resulting from the break or spill.

IMMEDIATE NOTIFICATION. "Immediate Notification" shall be as soon as possible after discovery and shall be either in person or by tele-phone to the district office of the Division district in which the incident occurs, or if the incident occurs after normal business hours, to the District Supervisor, the Oil and Gas Inspector, or the Deputy Oil and Gas Inspector. A complete written report ("Subsequent Notification") of the incident shall also be submitted in duplicate to the appropriate district office o the Division within ten days after discovery of the incident.

SUBSEQUENT NOTIFICATION. "Subsequent Notification" shall be a complete written report of the incident and shall be submitted in duplicate to the district office of the Division district in which the incident occurred within ten days after discovery of the incident.

CONTENT OF NOTIFICATION. All reports of fires, breaks, leaks, spills, or blowouts, whether verbal or written, shall identify the location of the incident by quarter-quarter, section, township and range, and by distance and direction from the nearest town or prominent landmark so that the exact site of the incident can be readily located on the ground. The report shall specify the nature and quantity of the loss and also the general conditions prevailing in the area, including precipitation, temperature, and soil conditions. The report shall also detail the measures that have been taken and are being taken to remedy the situation reported.

WATERCOURSE. For the purpose of this rule, is defined as any lakebed or gully, draw, stream bed, wash, arroyo, or natural or man-made channel through which water flows or has flowed.

DISTRICT OFFICE - DISTRICT I

1000 West Broadway P.O. Box 1980 Telephone: (505) 393-6161

J. T. Sexton, Supervisor and Deputy Oil and Gas Inspector P. F. Kautz Geologist and Deputy Oil and Gas Inspector

DEPUTY OIL AND GAS INSPECTORS:

J. R. Griffin Charlie Perrin B. Hill Gary Wink Lyle Turnacliff

Report any discharge from any facility of oil or other water contaminant whose quantity may, with reasonable probability, injure or be detrimental to human health, animal or plant life, or property, or unreasonably interfere with the public welfare or the use of property, as soon as possible after learning of such a discharge, but in no event more than 24 hours thereafter to:

New Mexico Health and Environment Department, Santa Fe **Environmental Improvement Division**

Ground Water Bureau

(8 to 5)	(505) 827-2915
	(505) 827-0188
(24-hour)	(505) 827-9329 (Alternate)

Notes:

- 1. Verbal reports shall include the following items:
 - a. The name, address, and telephone number of the person or persons in charge of the facility, as well as of the owner and/ or operator of the facility.
 - b. The name and address of the facility.
 - c. The date, time, location, and duration of the discharge.
 - d. The source and cause of discharge.
 - e. A description of the discharge, including its chemical composition.
 - f. The estimated volume of the discharge.
 - g. Any actions taken to mitigate immediate damage from the discharge.
- 2. Within one week after the discharger has learned of the discharge. the facility owner and/or operator shall send written notification verifying the prior oral notification as to each of the items in Note 1, providing any appropriate additions or corrections to:

New Mexico Health and Environment Department

Environmental Improvement Division Chief, Ground Water Bureau Harold Runnels Building 1100 St. Francis Drive Santa Fe, NM 87503

Report any fire, break, leak, spill, or blowout at any injection or disposal facility or at any oil and gas drilling, producing, transporting, or processing facility to:

New Mexico Energy, Minerals and Natural Resources Department, Santa Fe **Oil Conservation Division**

(8 to 5) (505) 827-5800

In addition, make "immediate" and/or "subsequent" notifications for any fire, break, leak, spill, or blowout to the appropriate district office (refer to notes for details and map for nearest district offices):

NM-1

N

E

W

E X

С

Ο

SPILL REPORTING PROCEDURES GUIDE

Oil:

District	City	Numbers	Home
1	Hobbs	(505) 393-6161	(505) 393-6161
ŧ	Artesia	(505) 748-1283	(505) 746-4126
111	Aztec	(505) 334-6178	(505) 334-2709
IV	Santa Fe	(505) 827-5810	(505) 471-1068

Notes:

- "Immediate notification" shall be as soon as possible after discovery in person or by telephone to the appropriate district office or, if after business hours, to the district supervisor. Immediate notification to be followed by subsequent notification.
- "Subsequent notification" shall be a complete written report of the incident in duplicate to the appropriate district office within 10 days after discovery of the incident.
- 3. Verbal or written reports shall include:
 - a. Location of the incident by quarter-quarter, section, township, and range.
 - b. Location by distance and direction from the nearest town or prominent landmark so that the exact site of the incident can be readily located on the ground.
 - c. Nature and quantity of the loss.
 - d. General conditions prevailing in the area to include precipitation, temperature, and soil conditions.
 - e. Measures that have been taken and are being taken to remedy the situation.
- 4. Notifications shall be in accordance with the following:
 - a. Well blowout-immediate notification.
 - b. Major and minor breaks, spills or leaks; gas leaks and line breaks; tank fires; drilling pits, slush pits, storage pits and ponds:

<u>Material</u>	Quantity (bbls unless otherwise noted)	Water- course ¹	Notification
Crude Oil or Condensate	≥25	No	Immediate
	5<25	No	Subsequent
	≥1	Yes	Immediate
(Tank Fires)	≥25		Immediate
(Tank Fires)	5<25		Subsequent
(Endanger Life or Property)	Any Quantity		Immediate
Salt Water	≥100	No	Immediate
	≥25	Yes	Immediate
	25<100	No	Subsequent
(Endanger Life or Property)	Any Quantity		Immediate

NM-2

SPILL REPORTING PROCEDURES GUIDE

Material	Quantity (bbls unless otherwise noted)	Water- course ¹	Notification	
Gas (Forderson Life or Departure)			Immediate	
(Endanger Life or Property)	Any Quantity	حتنيته		
(No Danger)	≥1000 MCF		Subsequent	
Related Materials ²				
(Endanger Life or Property) —Drilling pits, slush pits, storage pits and ponds (Endanger Life or Prop-	Any Quantity	-	Immediate	
erty)	Any Quantity		Immediate	
(No Danger)	Any Quantity		Subsequent	

¹Water course is defined as any lake bed or gully, draw, stream bed, wash, arroyo, or natural or man-made channel through which water flows or has flowed.

- Related materials include hydrocarbons, hydrocarbon waste or residue, strong caustics, strong acids or other deleterious chemicals or harmful contaminants.
- The following notification form shall be submitted in duplicate to the appropriate district office within 10 days after discovery of the incident. This applies to both Immediate and Subsequent Notifications. Refer to the map for addresses.
- 6. If the discharge of oil or other water contaminant is in such quantity so that it may injure or be detrimental to humans, animal, or plant life, or property, or interfere with public welfare or property, any person in charge of the discharging facility shall immediately take appropriate and necessary steps to contain and remove or mitigate the damage caused by the discharge.

Report leaks from natural gas and other gas pipelines within 2 hours of discovery to:

New Mexico State Corporation Commission, Santa Fe Pipeline Division

Office Numbers (8 to 5)

(505) 827-4176 or 4497 (505) 827-4521 (Alternate) (505) 827-4009 (Alternate) (505) 827-4494 (Alternate)

Home Numbers

(505) 983-1810 (Rey S. Medina) (505) 473-1923 (Albino O. Zuniga) (505) 473-0717 (Ray Elliott) (505) 892-2274 (Joe Johnson)

Hazardous Substances:

٩,

Same as Oil.

NM-3

SPILL REPORTING PROCEDURES GUIDE

/astes:					
	New Mexico Health and Environment Department, Santa Fe				
	Environmental Improvement Division Hazardous Waste Bureau				
	(8 to 5) (505) 827-2929				
	(24-hour) (505) 827-9329				
iazardous faterials:	Same as Oil.				
Excess Air Emissions:	Report excess emissions within 24 hours or no later than the next work- ing day to:				
	New Mexico Health and Environment Department, Santa Fe				
	Environmental Improvement Division Air Quality Bureau				
	(8 to 5) (505) 827-0062				
	(24-hour) (505) 827-9329				
Wastewater Excursions:	Same as Oil.				
Jnderground Fank Leaks:	Report any known or suspected release from a UST system, any spill,				
	or any other emergency situation within 24 hours to:				
	or any other emergency situation within 24 hours to:				
	New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division				
	New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau				
	New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division				
	New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau (8 to 5) (505) 827-2894				
	New Mexico Health and Environment Department, Santa FeEnvironmental Improvement DivisionHazardous Waste Bureau(8 to 5)(505) 827-2894(24-hour)(800) 827-9329 (Alternate)				
	New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau (8 to 5) (505) 827-2894 (24-hour) (800) 827-9329 (Alternate) Notes:				
	New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau (8 to 5) (505) 827-2894 (24-hour) (800) 827-9329 (Alternate) Notes: 1. Verbal report shall include: a. The name, address, and telephone number of the agent in charge of the site at which the UST system is located, as well as of the				
	 New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau (8 to 5) (505) 827-2894 (24-hour) (800) 827-9329 (Alternate) Notes: Verbal report shall include: The name, address, and telephone number of the agent in charge of the site at which the UST system is located, as well as of the owner and the operator of the system. The name and address of the site at which the UST system is 				
	 New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau (8 to 5) (505) 827-2894 (24-hour) (800) 827-9329 (Alternate) Notes: Verbal report shall include: The name, address, and telephone number of the agent in charge of the site at which the UST system is located, as well as of the owner and the operator of the system. The name and address of the site at which the UST system is located and the location of the UST system on that site. The date, time, location, and duration of the spill, release, or 				
	 New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau (8 to 5) (505) 827-2894 (24-hour) (800) 827-9329 (Alternate) Notes: Verbal report shall include: The name, address, and telephone number of the agent in charge of the site at which the UST system is located, as well as of the owner and the operator of the system. The name and address of the site at which the UST system is located and the location of the UST system on that site. The date, time, location, and duration of the spill, release, or suspected release. 				
	 New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau (8 to 5) (505) 827-2894 (24-hour) (800) 827-9329 (Alternate) Notes: 1. Verbal report shall include: a. The name, address, and telephone number of the agent in charge of the site at which the UST system is located, as well as of the owner and the operator of the system. b. The name and address of the site at which the UST system is located and the location of the UST system on that site. c. The date, time, location, and duration of the spill, release, or suspected release. d. The source and cause of the spill, release, or suspected release. e. A description of the spill, release, or suspected release, including 				
	 New Mexico Health and Environment Department, Santa Fe Environmental Improvement Division Hazardous Waste Bureau (8 to 5) (505) 827-2894 (24-hour) (800) 827-9329 (Alternate) Notes: Verbal report shall include: The name, address, and telephone number of the agent in charge of the site at which the UST system is located, as well as of the owner and the operator of the system. The name and address of the site at which the UST system is located and the location of the UST system on that site. The date, time, location, and duration of the spill, release, or suspected release. A description of the spill, release, or suspected release. A description of the spill, release, or suspected release, including its chemical composition. 				

()

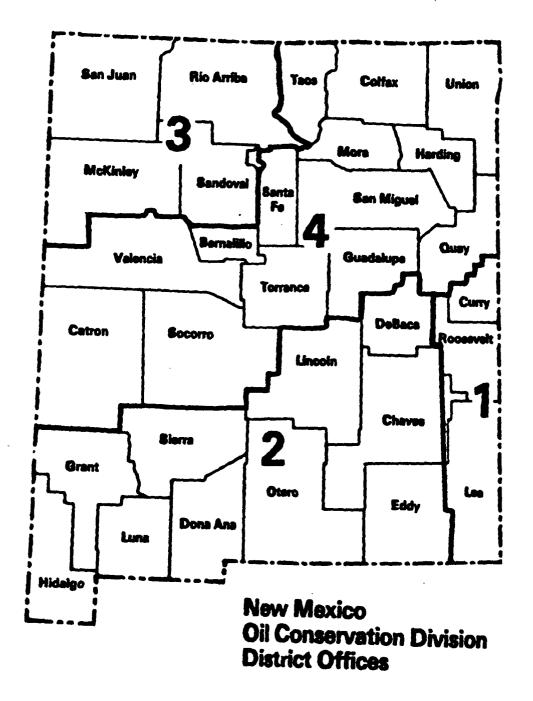
(

SPILL REPORTING PROCEDURES GUIDE -

2. Written notice describing the spill, release, or suspected release and any investigation or follow-up action taken or to be taken must be mailed or delivered within seven (7) days of the incident. The written notice shall verify the prior oral notification as to each of the items of information listed above and provide any appropriate additions or corrections to the information contained in the prior oral notification. The written notice must be submitted to:

Carl Souder, Manager, Underground Storage Tank Program New Mexico Environmental Improvement Division Runnels Building 1190 St. Francis Drive Santa Fe, NM 87583

SARA Title III:


Report releases and submit written follow-up emergency notice(s) to:

New Mexico Emergency Response Commission Attention: Sam Larcomb Department of Public Safety

Title III Bureau P.O. Box 1628 Santa Fe, NM 87504-1628 (505) 827-9222

NM-5

SPILL REPORTING PROCEDURES GUIDE -

.

District	City	Numbers	Addresses
1	Hobbs	(505) 393-6161	1000 W. Broadway, 88240
2	Artesia	(505) 748-1283	324 W. Main, 88210
3	Aztec	(505) 334-6178	1000 Rio Brazo, 87410
4	Santa Fe	(505) 827-5810	P.O. Box 2088, 87504

NM-6

OIL CONSERVATION DIVISION P.O. Box 2088 Santa Fe, New Mexico 87504

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

Name of Operato	r					Ad	dress						
Report of	Fire	Brea	ak –	s	pill		Leak		Blowd	Biowout		Other	
Type of Facility	Drig Well	Prod	Well	Tani	Btty	Pip	e Line	Gas	Pint	Oil	Rfy	tfy Other*	
Name of Facility	1	L	<u>-</u>		·	1		L		L		1	
ocation of Facili	ity (Quarter/Q	uarter	Sectio	on or F	ootage	Des	ription)		Sec.	17	wp.	Rge.	County
Distance and Dir	ection From N	learest	Town	or Pro	minent	Lan	dmark		·			<u> </u>	
Date and Hour of	Occurrence					Da	te and H	our of	Discov	ery			
Was Immediate Notice Given? Yes No Not Require							es, To W	hom					
By Whom		<u>اا</u>	ł			Da	te and H	our			<u></u>		
Type of Fluid Lost Quantity of Loss							•		8 8		Volume Recove	olume	
Did Any Fluids R	leach a Water	ourse	? Ye	s No	Qua	<u>)</u> Intity				1			
Describe Cause	of Problem an	d Rem	edial /	Action	Taken*	•				•	<u></u>		
Describe Area A		_											
Description of A	rea Farmir	g	G	razing		Ur	ban	0	ther*				
	ons Sandy	S	andy L	.oam	Clay		Rocky	W	et		Dry		
Surface Conditio						1		1				1	Snow
Describe Genera	al Conditions	Prevaili	•		ature, Pi	•	-	•		ly Kı	nowledg	e and B	
Surface Condition	al Conditions	Prevaili	•		ature, Pi	•	-	•		ly Kı	nowledg	e and B	

OIL CONSERVATION DIVISION P.O. Box 2088 Santa Fe, New Mexico 87504

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

Name of Operato	Address											
Report of	Fire	Break	·	Spill	L	Leak		Blowd	Blowout		Other*	
Type of Facility	Drig Well	Prod W	lell Ta	nk Btty	Pip	e Line	Gas	io Pint	Oil	Rfy	Oth	er
Name of Facility	I				I		L		I			
Location of Facili	ty (Quarter/Q	uarter S	ection or	Footage	Des	cription)		Sec.	T	wp.	Rge.	County
Distance and Dire	ection From N	earest To	own or P	rominent	Lan	dmark		<u></u>				
Date and Hour of	Date and Hour of Discovery											
Was Immediate N	mmediate Notice Given? Yes No Not Required If Yes, To Whom											
By Whom		4d			Da	te and H	our					
Type of Fluid Los	it			Quantity BO Volume of Loss BW Recovered						BO BW		
Did Any Fluids R	each a Water	ourse?	Yes I	No Qua	Intity				1			
Describe Cause	•	-							•			
Describe Area A		-			-T							
Description of A			Grazir	-		ban		ther*				12
Surface Conditio			ndy Loan			Rocky		/e t		Dry		Snow
Describe Genera	I Conditions	Prevailin	g (Tempi	erature, P	recip	itation, E	Etc.)**					
I Hereby Certify	That the Info	mation	Above is	True and	Con	nplete to	the B	lest of N	ly Ki	nowled	lge and	Belief
Signed			Ti	lle				Da	ite			

OIL CONSERVATION DIVISION P.O. Box 2088 Santa Fe, New Mexico 87504

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

Name of Operato	Address											
Report of	Fire Break Spill		Spill		Leak		Blow	Blowout		Other*		
Type of Facility	Drig Well	Prod W	Vell Ta	nk Btty	Pip	Line	Gas) Pint	Oil	Rfy Other		• · · ·
Name of Facility	1		d,		1		L	<u></u>	1			
Location of Facil	ity (Quarter/Q	uarter S	ection or	Footage	Desc	ription)		Sec.	T	wp.	Rge.	County
Distance and Dir	ection From N	earest T	own or P	rominent	Land	Imark	ł.	a.a.				_1
Date and Hour of	f Occurrence	<u>_,</u>			Dat	e and H	our of	Discov	ery			
Was Immediate N	ate Notice Given? Yes No Not Required If Yes, To Whom											
By Whom	<u></u>	L			Dat	e and H	OUr					
Type of Fluid Los	st					antity			- 1	Volume		BO
					OTL	.0 s s		B		Recove	Den	BW
Did Any Fluids R	each a Watero	ourse?	Yes I	No Qua	ntity							
Describe Cause					•							
Description of A			Grazir		111	Dan		her*				-
		-										
Surface Condition	ons Sandy	Sai	ndy Loan	Clay		Rocky	W	et		Dry	8	inow .
Describe Genera									h, Ke			
Thereby Certify		mauon	ndove is		Com	hiere (O	ure 6 4	751 ot i v	у КП	uwieag	e ang Be	nei
Signed			Tit					Da	te			
Specify			*Attach	Additiona	I Cho	nte if No	~~~~	n /				

j

OIL CONSERVATION DIVISION P.O. Box 2088 Santa Fe, New Mexico 87504

NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

Name of Operator							Address								
Report of	Fire	Bre	ak	1	Spili	<u> </u>	Leak		Biowo	out	Oth	er*			
Type of Facility	Drig Well	Prod	Well	Tan	k Btty	Pip	e Line	Gas	io Pint	Oil F	tfy Other*		· · · ·		
Name of Facility		L		_ <u>_</u>		!		I		L					
Location of Facili	ty (Quarter/Q	uarter	Section	on or I	ootage	Desc	cription)		Sec.	Tw	p.	Rge. ·	County		
Distance and Din	ection From N	learest	Town	or Pr	ominent	Lan	dmark								
Date and Hour of	Date and Hour of Discovery														
Was Immediate Notice Given? Yes No Not Required If Yes, To Whom															
By Whom		L.,	L			Da	te and H	our							
Type of Fluid Los	it	<u> </u>					antity Loss		B B		olume		BO BW		
Did Any Fluids R	anah a Matara		? Y e	s N	1000										
Dia Any Fialas A	each a water	ourse				ntity									
Describe Cause						•				-					
		ourop													
Description of A	rea Farmin	9	G	razing)	Ur	Urban Ot		ther*	her*					
Surface Conditio	ons Sandy	S	andy i	Loam	Clay		Rocky	M	<i>l</i> et	1	Dry	S	now .		
Describe Genera	I Conditions I	Prevail	ing (Ti	emper	ature, Pi	recip	itation, E	itc.)**		4		i			
I Hereby Certify	That the Infor	matio	n Abo	ve is T	rue and	Corr	plete to	the B	lest of M	ly Kno	wledg	e and Be	lief		
Signed				Title)				Da	te					
Specify			"Att			She	ets if Ne	CRSS							

NM-7

MONUMENT PLANT

SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN

PART I

GENERAL INFORMATION

PART I

GENERAL INFORMATION

SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN

- 1. Facility Name: Monument Plant
- 2. Facility Type: Gas Processing
- 3. Facility Location: SW4, Sec 36, R36E, T19S, NW4, Sec. 1, R36E, T20S
- 4. Owner or Operator: Warren Petroleum Company A Division of Chevron U.S.A. Inc.

Name and Address: 1350 South Boulder Tulsa, OK 74119, or

> P.O. Box 1589 Tulsa, OK 74102

- 5. Name and title of SPCC contact: K. A. Peterson, Plant Manager
- Did facility experience a reportable oil spill event during the twelve 6. months prior to 1-10-74 (effective date of 40 CFR, Part 112)? No. (If yes, complete Attachment 1).

Management Approval

This SPCC Plan will be implemented as herein described: ngram, Manager - Western Area Signature:

Certification

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR, Part 112, attest that this SPCC Plan has been prepared in accordance with good engineering practices.

Registration No. <u>14256</u> State: <u>OK</u>

Registered Professional Engineer:

L.T. Reed	
(Print)	
Hand	
(Signature)	

(Seal)

Last Certification:

Date: 12/28/89

06/05/86

1639/12289/LLJ/MONUMT DISG PLN

PART I GENERAL INFORMATION SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN

1.	Facility Name:	Monument Plant
2.	Facility Type:	Gas Processing
3.	Facility Location:	SW1/4, Sec 36, R36E, T19S, NW1/4, Sec.1, R36E,T20S
4.	Owner or Operator:	Warren Petroleum Company a Division of Chevron U.S.A. Inc.
	Name and Address:	1350 South Boulder Tulsa, OK 74119, or P.O. Box 1589 Tulsa, OK 74102
5.	Name and title of SPCC contact:	F. C. Noah, Plant Manager

 Did facility experience a reportable oil spill event during the twelve months prior to 1-10-74 (effective date of 40 CFR, Part 112)? No. (If yes, complete Attachment 1).

Management Approval

This SPCC Plan will be implemented as herein described:

Signature:

<u>Certification</u>

I hereby certify that I have examined the facility, and being familiar with the provisions of 40 CFR, Part 112, attest that this SPCC Plan has been prepared in accordance with good engineering practices.

Registered Professional Engineer:

(Print)

(Seal)

(Signature)

Date:_____ Registration No._____ State:____

Last Certification: 12,

12/28/89

PART I - GENERAL INFORMATION (Continued)

7. Potential spills - prediction and control:

1	<u>SOURCE</u> Slop Oil Tank (Shell Pipeline)	<u>TYPE</u> Welded Flat Bottom	MAJOR TYPE OF FAILURE Rupture	QUANTITY (BBLS) 500	RATE (<u>BBLS/HR)</u> 500	FLOW <u>DIRECTION</u> S	SECONDARY CONTAINMENT Earthen Dike
2	Slop Oil Tank (Shell Pipeline)	Welded Flat Bottom, Vert.	Rupture	500	500	S	Earthen Dike
3	Dietheno- lamine (DEA) Storage	Bolted Flat Bottom Vert.	Rupture	210	210	NW	Earthen Berm
4	Hot Oil Storage	Welded Horizontal	Rupture	210	210	W	Earthen Berm
5	Water Treat- ing Chemical	Steel, Horizontal	Rupture	250	250	S	Earthen Berm
6	Water Treat- ing Chemical	Fiberglass, Horizontal	Rupture	24	24	S	Earthen Berm
7	Sulfuric Acid Storage	Welded Horizontal	Rupture	35	35	W	Concrete Dike
8	Lube Oil Storage	Bolted Horizontal	Rupture	200	200	w	Concrete
9	Lube Oil Storage	Bolted Horizontal	Rupture	200	200	w	Concrete
10	Diesel Storage	Welded Horizontal	Rupture	13	13	w	Concrete
11	Gas	Welded Steel	Rupture	13	13		Concrete
12	Varsol Solvent	Welded Horizontal	Rupture	13	13	w	Concrete
13	Methanol	Steel	Rupture	1500	1500		Concrete
14	Waste Water Storage	Welded Horizontal	Rupture	210	210		Concrete
15	Antifreeze	Fiberglass	Rupture	500	500		Concrete

16	Waste water Storage	Welded Horizontal	Rupture	210	210	E	None
17	Waste Water Oil Skimmer	Welded Horizontal	Rupture	100	100	E	None
18	Slop Oil Tank Shell P/L	Welded Flat bottom	Rupture	500	500	S	Earthen Dike
19	Slop Oil Tank Shell P/L	Welded Flat Bottom	Rupture	500	500	S	Earth W/ Poly liner
20	Slop Oil Tank Shell P/L	Welded Flat Bottom	Rupture	500	500	S	Earth W/ Poly liner

 Are containment, diversionary structures, or equipment to prevent oil from reaching navigable waters practicable? (If, NO, complete Attachment 2.) Yes.

9. Inspections and Records:

A. Do the required instructions follow written procedures, as contained in this plan? No.

Describe briefing program: In addition to written communication, there is verbal communication concerning pollution prevention and control. All employees at this location are aware of our Company's commitment in the area of pollution control.

MONUMENT PLANT

SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN

PART II

ALTERNATE A

DESIGN AND OPERATING INFORMATION

ONSHORE FACILITY (EXCLUDING PRODUCTION)

PART II, ALTERNATE A DESIGN AND OPERATING INFORMATION <u>ONSHORE FACILITY (EXCLUDING PRODUCTION)</u>

A. Facility Drainage

 Drainage from diked storage areas is controlled as follows: (Include operating description of valves, pumps, ejectors, etc.). (Note: Flapper-type valves should not be used).

Diked areas are drained by use of a vacuum truck.

2. Drainage from undiked areas is controlled as follows. (Include description of ponds, lagoons, or catchment basins and methods of retaining and returning oil to facility).

All liquids (water and small amounts of oil) enter a closed drain system, then enter an oil reclamation system where the oil is separated and is returned to the Shell Oil tanks. The water is injected into a disposal well. Please refer to Part V of this Spill Plan for a diagram of the waste water system for the plant.

3. The procedure for supervising the drainage of rainwater from secondary containment into a storm drain or an open watercourse is as follows: (Include description of inspection for pollutants and method of valving security. A record of inspection and drainage events is to be maintained on a form similar to Attachment 3).

All diked areas are completely closed. When pure rainwater has accumulated, so as to require the drainage from other areas

PART II - ALTERNATE A (Continued)

A. Facility Drainage (Continued)

within the plant, the water is visually inspected for the presence of oil. If no evidence of oil is present, the areas are drained. No drainage water enters a watercourse or storm drain.

B. Bulk Storage Tanks

 Describe take design, materials of construction, failsafe engineering, features, and if needed, corrosion protection:

Refer to Part I, Item 7.

- 2. Describe secondary containment design, construction materials, and volume: Slop oil tanks have a common 1,500 barrel dike.
- 3. Describe tank inspection methods, procedures, and recordkeeping: Tanks are externally inspected for rust, corrosion and leaks.
- 4. Internal heating coil leakage is controlled by one, or more, of the following control factors:
 - a. Monitoring the steam return or exhaust lines for oil. Describe monitoring procedure: Not applicable.
 - b. Passing the steam return or exhaust through a settling tank, skimmer, or other separation system. Not applicable.
 - c. Installing external heating systems. Not applicable.
- 5. Disposal facilities for plant effluents discharged into navigable waters are observed frequently for indication of possible upsets which may cause an oil spill event. Not applicable.

Note: No effluents are discharged into navigable waters.

PART II - ALTERNATE A (Continued)

- C. Facility Transfer Operations, Pumping and Inplant Process
 - 1. Corrosion protection for buried pipelines:
 - a. Are pipelines wrapped and coated to reduce corrosion? Yes.
 - b. Is cathodic protection provided for pipelines. if determined necessary by electrolytic testing. Yes.
 - c. When a pipeline section is exposed is it examined necessary by electrolytic testing? Yes.
 - Area pipeline terminal connections capped or blankflanged and marked, if the pipeline is not in service or on standby service, for extended periods? Yes.
 Describe criteria for determining when to cap or blank-flange:

All open lines are capped or blind flanged.

3. Are pipe supports designed to minimize abrasion and corrosion and allow for expansion and contraction? Yes.

Describe pipe support design:

Piping on support have been equipped with a slip-shoe between the pipe and support.

4. Describe procedures for regularly examining all above ground valves and pipelines, including flange joints, valve glands and bodies, catch pans, pipelines supports, locking of valves, and metal surfaces:

Aboveground valves and pipelines are observed on a frequent basis, both within the plant and the field system.

<u>PART II - ALTERNATE A</u> (Continued)

C. Facility Transfer Operations, Pumping and Inplant Process (Continued)

5. Describe procedures for warning vehicles entering the facility to avoid damaging aboveground piping.

Non-company vehicles are allowed within the plant yard signing log book and being informed of the Emergency and Disaster Plan for the Monument Plan.

D. Facility Tank Car and Tank Truck Loading/Unloading Rack

Does tank car and tank truck loading/unloading occur at the facility? If "Yes", complete No. 1 through No. 5 below. Yes.

- 1. Do loading/unloading procedures meet the minimum requirement and regulations of the Department of Transportation? Yes.
- Does the unloading area have a quick drainage system? Not applicable.
- 3. Will the containment system hold the maximum capacity of any single compartment of a tank truck loaded/unloaded in the plant Not applicable.

Describe containment system design, construction materials and volume: The products loaded and unloaded at this facility are gaseous at atmospheric conditions.

4. Is an interlocked warning light, a physical barrier system or warning signs provided in the loading/ unloading areas to prevent vehicular departure before disconnect of transfer lines? Yes

Describe methods, procedures, and/or equipment used to prevent premature vehicular departure: Wheel chock blocks and ground line are in place before loading begins. They are removed upon completion of the loading operation.

<u>PART II - ALTERNATE A</u> (Continued)

- D. Facility Tank Car and Tank Truck Loading/Unloading Rack (Continued)
 - 5. Area drains and outlets on tank trucks and tank cars checked for leakage before loading/unloading or departure? Yes.

E. Security

- 1. Are plants fenced that are handling, processing, or storing oil? Yes.
- 2. Are entrance gates locked and/or guarded when the plant is unattended or not in production? Yes.
- 3. Are any valves which permit direct outward flow of a tank's contents locked closed when in non-operating or standby status? No.
- 4. Starter controls on all oil pumps in non-operating or standby status are:
 - a. Locked in the "Off" position. Not applicable.
 - b. Located at site accessible only to authorized personnel. Not applicable.
- 5. Discussion of Items 1 through 4, as appropriate:

a. Plant is never unattended.

b. No oil pumps in service.

6. Discussion of lighting around the facility:

Lighting is adequate enough for the plant personnel observe anyone who arrives at the facility and to detect any problems or spills within the plant.

MONUMENT PLANT SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN PART II ALTERNATE B DESIGN AND OPERATING INFORMATION ONSHORE OIL PRODUCTION FACILITY

PART II, ALTERNATE B

DESIGN AND OPERATING INFORMATION ONSHORE OIL PRODUCTION FACILITY

A. Facility Drainage

- Drainage form diked storage areas is controlled as follows: (Include operating description of valves, pumps, ejectors, etc). Not applicable.
- The Procedure for supervising the drainage of rainwater from secondary containment into a storm drain or an open watercourse is as follows: (Include description of inspection for pollutants and method of valving security. A record of inspection and drainage events is to be maintained on a form similar to attachment 3). Not applicable.
- Field drainage ditches, road ditches and oil traps, sumps or skimmers, if such exist, are inspected at regularly scheduled intervals for accumulation of oil. Yes.

Describe inspection procedures, intervals, and methods employed to remove oil. A vacuum truck goes out daily to collect oil and water.

B. Bulk Storage Tanks

- 1. Describe tank design, materials of construction, failsafe engineering features: Not applicable.
- 2. Describe secondary containment design, construction materials and volume: Not applicable.

PART II - ALTERNATE B DESIGN AND OPERATING INFORMATION ONSHORE OIL PRODUCTION FACILITY (Continued)

B. Bulk Storage Tanks (Continued)

3. Describe tank inspection methods, procedures, and recordkeeping: Not applicable.

C. Facility Transfer Operations

 Describe scheduled basis for examinations of above ground valves and pipelines and salt water disposal facilities.

Aboveground equipment is observed for leaks on a routine basis by the Field Operator. All leaks, or equipment problems, are reported and repaired immediately.

2. Describe flowline maintenance program to prevent spills:

Lines are checked for leaks on a routine basis.

D. Oil Drilling and Workover Facilities

- A blowout preventer (BOP) assembly and well control system is installed before drilling below any casing string and, as required, during workover operations. Not applicable.
- 2. The BOP assembly is capable of controlling any expected wellhead pressure. Not applicable.
- 3. Casing and BOP installations conform to state regulations. Not applicable.

MONUMENT PLANT SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN PART III SPILL HISTORY

PART III SPILL HISTORY

There have been no spills at the Monument Plant. It is very unlikely that a spill would occur which would leave the property, thereby entering a navigable waterway. However, Form S/WPC-SPCC-1 (an example of which follows) will be used to record information, should a spill occur.

Date:

S/WPC-SPCC-1

1. Location

- a. Unit or Plant:
- b. Field:
- c. Facility Involved:

2. Environment

- a. Wind velocity (mph):
- b. Wind direction:
- c. Wave height (feet):
- d. Current direction:

3. Spill

- a. Type of oil:
- b. Estimated Volume* (barrels):
- c. Cause:
- d. Action taken**:
- e. Time spill started:
- f. Shutoff:
- g. Movement direction and present location:

4. Land Areas Endangered

5. <u>Cleanup Procedure</u>

- a. Equipment Used:
- b. Dispersant Used (name type):
- c. Volume (gallons):
- d. Use authorized by (agency/person):
- e. Effectiveness of cleanup (Include time required to disperse slick, naturally or with chemicals):
- f. Completed Cleanup Date:

6. Agencies and Persons Notified/Time and Date

- *Describe on the back of this page how the volume was calculated.
- **If cause was mechanical, list suggested modifications to prevent future spills on the back of this page.

Signature: Position:

FORICIO

Date:

Note: Copies of this form are completed and kept as Part III of this plan.

S/WPC-SPCC-1

Date:

1. Location

- a. Unit or Plant:
- b. Field:
- c. Facility Involved:

2. Environment

- a. Wind velocity (mph):
- b. Wind direction:
- c. Wave height (feet):
- d. Current direction:

3. <u>Spill</u>

- a. Type of oil:
- b. Estimated Volume* (barrels):
- c. Cause:
- d. Action taken**:
- e. Time spill started:
- f. Shutoff:
- g. Movement direction and present location:

4. Land Areas Endangered

5. <u>Cleanup Procedure</u>

- a. Equipment Used:
- b. Dispersant Used (name type):
- c. Volume (gallons):
- d. Use authorized by (agency/person):
- e. Effectiveness of cleanup (Include time required to disperse slick, naturally or with chemicals):
- f. Completed Cleanup Date:

6. Agencies and Persons Notified/Time and Date

*Describe on the back of this page how the volume was calculated.

**If cause was mechanical, list suggested modifications to prevent future spills on the back of this page.

Signature: Position: Date:

Note: Copies of this form are completed and kept as Part III of this plan.

S/WPC-SPCC-1

Date:

1. Location

- a. Unit or Plant:
- b. Field:
- c. Facility Involved:

2. Environment

- a. Wind velocity (mph):
- b. Wind direction:
- c. Wave height (feet):
- d. Current direction:

3. **Spill**

- a. Type of oil:
- b. Estimated Volume* (barrels):
- c. Cause:
- d. Action taken**:
- e. Time spill started:
- f. Shutoff:
- g. Movement direction and present location:

4. Land Areas Endangered

5. <u>Cleanup Procedure</u>

- a. Equipment Used:
- b. Dispersant Used (name type):
- c. Volume (gallons):
- d. Use authorized by (agency/person):
- e. Effectiveness of cleanup (Include time required to disperse slick, naturally or with chemicals):
- f. Completed Cleanup Date:

6. Agencies and Persons Notified/Time and Date

*Describe on the back of this page how the volume was calculated.

**If cause was mechanical, list suggested modifications to prevent future spills on the back of this page.

Signature: Position: Date: Note: Copies of this form are completed and kept as Part III of this plan.

S/WPC-SPCC-1

Date:

1. Location

- a. Unit or Plant:
- b. Field:
- c. Facility Involved:

2. Environment

- a. Wind velocity (mph):
- b. Wind direction:
- c. Wave height (feet):
- d. Current direction:

3. Spill

- a. Type of oil:
- b. Estimated Volume* (barrels):
- c. Cause:
- d. Action taken**:
- e. Time spill started:
- f. Shutoff:
- g. Movement direction and present location:

4. Land Areas Endangered

5. Cleanup Procedure

- a. Equipment Used:
- b. Dispersant Used (name type):
- c. Volume (gallons):
- d. Use authorized by (agency/person):
- e. Effectiveness of cleanup (Include time required to disperse slick, naturally or with chemicals):
- f. Completed Cleanup Date:

6. Agencies and Persons Notified/Time and Date

- *Describe on the back of this page how the volume was calculated.
- **If cause was mechanical, list suggested modifications to prevent future spills on the back of this page.

Signature:

Position:

Date:

Note: Copies of this form are completed and kept as Part III of this plan.

Date:

S/WPC-SPCC-1

- 1. <u>Location</u> a. Unit or Plant:

 - b. Field:
 - c. Facility Involved:

2. Environment

- a. Wind velocity (mph):
- b. Wind direction:
- c. Wave height (feet):
- d. Current direction:

3. <u>Spill</u>

- a. Type of oil:
- b. Estimated Volume* (barrels):
- c. Cause:
- d. Action taken**:
- e. Time spill started:
- f. Shutoff:
- g. Movement direction and present location:

4. Land Areas Endangered

5. <u>Cleanup Procedure</u>

- a. Equipment Used:
- b. Dispersant Used (name type):
- c. Volume (gallons):
- d. Use authorized by (agency/person):
- e. Effectiveness of cleanup (Include time required to disperse slick, naturally or with chemicals):
- f. Completed Cleanup Date:

6. Agencies and Persons Notified/Time and Date

- *Describe on the back of this page how the volume was calculated.
- **If cause was mechanical, list suggested modifications to prevent future spills on the back of this page.

Signature: Position:

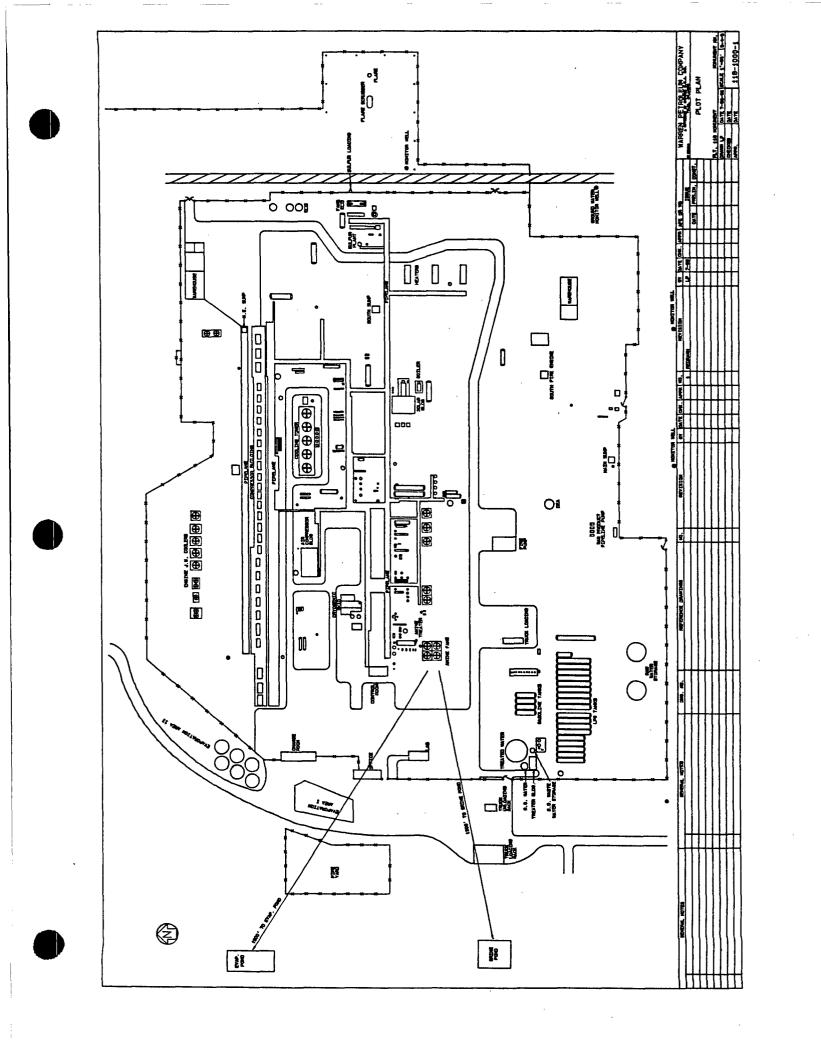
Date:

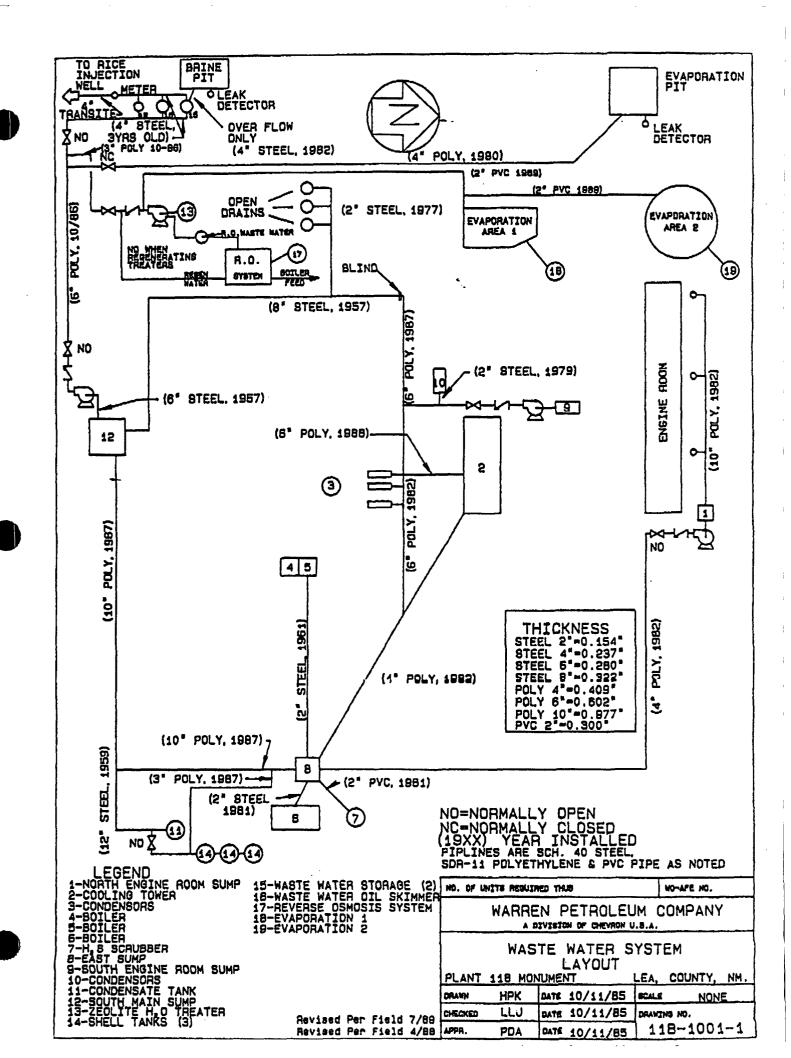
Note: Copies of this form are completed and kept as Part III of this plan.

MONUMENT PLANT SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN

PART IV ONSHORE FACILITY BULK STORAGE TANKS DRAINAGE SYSTEM (ATTACHMENT #3)

PART IV


ONSHORE FACILITY BULK STORAGE TANKS - DRAINAGE SYSTEM


Inspection Procedure: Diked areas are drained by use of a vacuum truck.

Record of drainage, bypassing inspection, and oil removal from secondary containment: Not applicable.

Date Drainage Drainage Bypassing Inspection Oil Installed Location Date Open closed Date Removal Signature Seal #

Only areas where there has been accumulated, uncontaminated rainfall are drained. Diked areas containing rainwater with accumulated oil are cleared by use of a vacuum truck. MONUMENT PLANT SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN PART V LOCATION MAPS/PLANS

	5	ONSOLIDATED LIST OF CHEMICALS	هي هي و خان ه					Nael	e segue	MC2)	P	AGE			!
CAS <u>NO.</u> NGAA NO.	RTECS NO.	<u>CHENICAL NAME</u>		DOT <u>NO.</u>	CDAST GUARD	IMIS CODE	CODE	NOLECULAR I	<u> </u>	•	TP91_	TP02	313	RCRA	N R E
	YS7100000	(2-CHLOROPHENYL) THIOUREA						C7-H7-C1-N	12-5	******	190				
3037-72-7	ED4200000	(4-AMINOBUTYL) DIETHOXYMETH							12-Si	••	1000	• • •	• •	-	-
	NV2450000	1,1 DIMETHYLHYDRAZINE		1163	DHH	0940		C2-H8-N2		• •		• • •		-	-
	K15775000	1,1'-OXYDIS-ETHANE		1155	-	1210		4906210 C4-H10-U					 -	1	Ü -
	KJ2975000	1,1,1 TRICHLOROETHANE				1720							• •	X -	U -
1629 030-20-6	K18450000	1,1,1.2-TETRACHOROETHANE			TEC			4941176 C2-H2-C14		1000				¥ -	6
79-00-5	KJ3150000	1.1.2 TRICHLÖRDETHANE		2831	-	2495		С2-Н3-С13					• •	X -	93 -
		1.1.2.2. TETRACHLOROETHENE			-			C2-C14	• •	• •			. X	1 -	U: -
4591		(PERCHLOROETHYLENE)			-			4940355					. X	ĭ. -	U -
					-					1			. X	X	1) -
3148		I,I-DICHLOROETHANE	• • •		-				1	1000				χ -	(j -
78-99-9 9525	TX9450000	1.1-DICHLOROPROPANE		1279	OPB			-	<u> </u>	1000			-	-	-
95-50-1 6211	CZ4500000	1.2 DICHLOROBENZENE		1591	DBQ	0867		C6-H4-C12 4941127		100			X	X	ü
78-87-5 4358	TX9625000	1.2 DICHLOROPROPANE			ŪPX	2190	2-3-0	C3-H4-C12 4909269	X	1000			· -	r	IJ
75-94-3	DE9450000	1.2.4.5-TETRACHLOROBENZENE			-	T345	1-1-0	C6-H2-C14	 X	5000			-	- <u>)</u>	-
120-92-1	DC2100000	1.2.4-TRICHLORDBENZENE			TCB	2481	 2-1-0	C4-H3-E13	 X	 100			 У	-	•
95-63-6 5162	DC3325000	1,2,4-TRIMETHYL BENZENE		1993	.			C9-H12 4913161					~- v	-	-
	60700000	1,2-BENZPHENANTHRENE						C19-H12		'			`-	-	-
	EK3675000	1.2-BUTYLENE OXIDE		3022	BTO	E225	 2-3-2	C4-H8-0					•	X -	00
	TX8750000	1,2-DIBROND-3-CHLOROPROPANE		2872		0935		C3-H5-8r2-	 CI				¥	-	-
		1.2-DIBRGNOETHANE			EDB					1			X	X -	UK -
	KI0525000	1.2-DICHLOROETHANE		1184	EDC	0874	• •		÷ •				X	<u>1</u> -	100 -
3410 540-59-0	KV9360000	L.2-DICHLOROETHYLENE			DEL .	0870	 2-3-2	4909166 C2-H2-C12		5000			X	\$ -	61 -

		NSOLIDATED LIST OF CHEMICALS HAD	LARDOUS				Nage se			PAGE			
CAS NO.	RTEES NO.	CHENICAL NAME				NFPA CODE		LER-				RCRA	¥ .
IDAA NO.				*****			<u>STC 302</u> (<u>CLA</u>	<u> </u>	<u>TP01 / T</u>	<u>PQ2 31</u>	<u>3 LST</u>	
140-87-1 4987	KK4200000	1.2-DICHLOROETHANOL ACETATE					C4-H6-C12-G2 X		:	1000			
123-33-1 8806	UR5750000	1.2-DIHYDRO-3,6-PYRIDAZINEDIONE					C4-H4-N2-02	X	5000			X	ł
56-49-5	FZ6750000	1.2-DIHYDRO-3-METHYL-BENZEJJACEAN- THRYLENE			H136	• •	C21-H15	x	 1		•••··	x	ł
540-73-8 3272	NV2625000	1,2-DIMETHYLHYDRAZINE	2382				C2-H8-N2	x	 !			 x	i
122-66-7	MW2625000	1,2-DIPHENYLHYDRAZINE					C12-H12-N2	- ·			· X	 X	Į
111-54-6		1,2-ETHANEDIYLBISCARDAMODITHIOIC ACID	••••••				• • • • •	- ·	5900			 X	- 1
94-56-6	DA6125000	L,2-METHYLENEDIOXY-4-PROPYL-BENZEN	E .				C10-H12-02	- ·				 X	-
120-58-1	DA5950000	1.2-METHYLENEDIOXY-4-PROPENYL- BENZENE					C10-H10-02	 1	1		• •	 X	Ü
156-60-5	KV9400000	1.2-TRANS-DICHLORDETHYLENE		• •		2-3-2	C2-H2-C12	 X	1000		• • •	 1	1
189-55-9	DI5775000	1.2:7,8-DIBENZOPYRENE	·				C24-H14	 X	·		• • •	 X	-
99-35-4 8046	DC3850000	1,3,5-TRINITROBENZENE	1354				C6-H3-N3-05 4917140	 x	10		• • •	 X	-
108-46-3 4409	V67625000	1,3-BENZENEDIOL	2876	RSC	2221		C6-H8-N2 4940367	 x	5000		• • •	 X	ł
541-73-1 9514	CZ4499000	1,3-DICHLOROBENZENE	1591	BCM	D149		C6-H4-C12	X	100		. . . X	 1	
142-29-9 8526	TX9660000	1,3-DICHLOROPROPANE	1279	DPC		* *		× -	. <u>-</u> . 1000		• • •	• -	-
542-75-à	UC8310000	1,3-DICHLOROPROPYLENE		OPS		2-3-0		 X	100		· - ·	 1	
764-41-0	EN4900000	1,4-DICHLORO-2-BUTENE		DCB		3-3-2		 X	 _!		• - •	 X	•
5212		1,4-DICHLORDBENZENE	1592	DCH	0868		~ ~ ~ ~ ~			•	· x	 X	-
123-91-1 617		1,4-DIETHYLENE DIOXIDE	1165	• •	1010				• • •			 1	-
123-31-9 3626	HX3500000	1,4-DIOXANE	2662	HDB	1490	2-1-0	E6-H6-02			500/100			-
130-15-4	QL7175000	1.4-NAPHTHALENEDIONE		• -	•••		C10-H6-ū2		· 5000			 X	- {
100-14-1 4877	X59093000	I- (CHLOROMETHYL) -4-NITRO-BENZENE				~ -	C7-H5-C1-N-02		• • •	500/100	• - •	• •	•
 27_12_1		1-AMINO-4-METHOXY-ANTHRAQUINONE					C15-H11-N-D3				• • •	• •	•

	<u></u>	INSOLIDATED LIST OF CHENICALS HA					(Name sec	Juenc	:e)	FAGE		2
CAS NO. NGAA NO.	RTECS NO.	CHEMICAL NAME	NO.	<u>SUARI</u>	INIS	CODE		ER-	20	<u>TP91 / TP92</u>	RCR	A E T T
101-55-3	وي خد هي خراج به	1-BROND-4-PHENOXY-BENZENE					C12-H9-Br-0					<u> </u>
	•	I GUGIN I LUCIONI DENCENE						X	100		X	£
504-50-9 7482	RZ2464000	L-NETHYLBUTADIENE	1993	• -	P207		C5-H8 4907227	 x	100		 I	- U
107-10-8	UH9100000	1-PROPANANINE	1277	-	P137		C3-H9-N 4908269	 1	5000		 (- U
50-36-6 5119	SP6800000	10,10'-OXYDIPHENOXARSINE		-			C24-H16-As2-03		· - 1		• •	-
	KL9550000	2,2'-(NITROSOININO) BIS ETHANOL		-	0907			 x	- 1		·	- U
418-66-0 5116	6P3325000	2,2'-THIOBIS (4-CHLORO-6-METHYL-					C14-H12-C12-02	-5	-			-
		2,2'-THIOBIS(4,6-DICHLOROPHENOL)						 S	-			-
	UF0690000	2.2-DICHLOROPROPIONIC ACID	1760	DCN					-			-
	SH9275000	2,3,4,6-TETRACHLOROPHENOL		-	2355		C5-H2-C14-8	 X	10			-
950-66-0		2,3,4-TRICHLOROPHENOL		-			C6-H3-C13-0		-			U: -
933-78-8		2,3,5-TRICHLOROPHENOL		-	* -		C6-H3-C13-0		10			-
933-75-5	SN1300000	2,3,6-TRICHLOROPHENOL		-			C6-H3-C13-D	X 	10 -			-
78-88-6 8528	UC8400000	2.3-DICHLOROPROPENE	2047	DPF		3-3-0	CJ-H4-C12	1 X	10 			-
471-62-5	N09470000	2.4 DIISOCYANATONETHYLBENZENE	2078	-			C9-H6-N2-02 4921575	 X	100		 1	-
93-76-5 9136	AJ8400000	2.4,5-T	2765	TCA	2324		C8-H5-C13-03 4941185	 1				-
317-72-8 8028		2,4,5-T ANINES	2765	TCA	2324		C8-H5-C13-03	 x :	-	• • • • •		-
008-46-0 8028		2,4,5-T ANINES	2765	TCA	2324		CB-H5-C13-03	x .			- · -	-
813-14-7 8028		2,4,5-T AMENES	2765	TEA	2324		C8-H5-C13-03			• • • • •		-
369-96-6 3028		2,4,5-T AMINES	2765	TCA	2324		CB-H5-C13-03		5000	• • • • •		-
369-97-7 8028		2,4,5-7 ANINES	2765	TEA	2324		C8-H5-C13-03			•		-
93-79-8 5028	AJ8405000	2,4,5-T ESTERS	2765	TPE	2324	~ -	C12-H13-C13-D3 4962390			• • • • •		-
28-47-8 8028		2,4.5-T ESTERS	2765	TPE	2324		C12-H13-C13-03					-

......

I

	<u>[[</u>	DNSOLIDATED LIST OF CHENICALS		******				ane sequen		! 	AGE		-
CAS NO.	RTECS NO.	CHEMICAL NAME	DOT <u>NO.</u>	CGAST <u>Guard</u>		NFPA CODE	MOLECULA	<u>r Formula</u> Cer-				i	RCI
NOAA NO.				سورو جو و			<u>STC</u>	<u>302 CLA</u>	<u>60</u>	TPQ1	/ TPQ2	313	
2545-59-7 8028		2,4,5-T ESTERS	2765	TFE	2324		C14-H17	-013-04	1000				
25168-15-4		2,4,5-T ESTERS	2765	TPE	2324		C14-H17	-013-04					
51792-07-2 2028		2,4,5-T ESTERS	2765	TPE	2324		C14-H17	-C13-04					•
	AJ6650000	2,4,5-T SALTS	2765	TAS	2324		C8-H4-C	13-03 .Na	1000		• •		
32534-95-5		2,4,5-TP ACID ESTERS	2765	TPE	2324		49621						
	SN1400000	2,4,5-TRICHLOROPHENOL		TPH			C6-H3-C	13-0	100				
	SN1575000	2,4,6 TRICHLOROPHENOL			• -		С6-н3-с	13-0				_ X_	
	BZ0700000	2.4.6-TRIMETHYLANILINE			-		C9-H13-		10 			<u> </u>	
4864 	A66825000	2,4-0	2765	DCA	0846		C8-H6-C1		1	500			•
8523		2.4-0 ESTERS	2765	DES	8728			26 1 -C12-03	100				
547		2.4-D ESTERS	2765	DES	 8728				100			• -	-
		2.4-0 ESTERS			•			1	100			• -	-
1320-18-9		2.4-D ESTERS		DES	-		C12-H14-	1	100			• -	
		2.4-D ESTERS	2765		-		C12-H14-	1	100	•		-	
		• • • • • • • • • • •			-			¥	100			-	
					5178 			L12-US 1				-	
		2.4-D ESTERS	*					1 -	100	•		-	-
					o <u>r</u> ia			12-03 X				-	-
		2,4-D ESTERS						X	100			_	-
		1,1-9 ESIEKS	2/63	UES .	8278		C16-H22-	C12-03				-	-
		2.4-DIAMINDANISOLE										x_	-
		2,4-DIAMINOANISOLE SULFATE							1- 5		-	X_	-
		2,4-DIAMINOTOLUENE		-								-	-

i

ļ

l

	ينينين هذه هايند البرية الجهد بين 	DINSOLIDATED LIST OF CHEMICALS HA	ZARDOUS						ועפטו			PAGE			5
AS NO.	RTECS NO.	CHENICAL NAME	DOT NO.	COAST GUARD	INIS CODE	<u>CODE</u>	MOLECULAR F		ER-				i	RCRA	15
IGAA NO.					*		<u>STC 3</u>	02 [LA	<u>90</u>	1091	/ TPQ:	2 313	LST	
120-83-2 8522	SK8575000	2.4-DICHLOROPHENOL	2020	OCP	0895		C6-H4-C12-		X	100			ź	Ĺ	į
105-67-9	255600000	2,4-DIMETHYLPHENOL		• •			C8-H10-0	-	x -	 100			 1	- 1	i
51-28-5 9574	SL2800000	2,4-0INITROPHENOL	0076	DNP			C6-H4-N2-0	5	 X	 10			 X	- X	ł
329-71-5 3575	5L2700000	2,5-DINITROPHENOL	. 1599	DNE			C6-H4-N2-0	5	 X	• • 10				-	•
37-65-0	SK8750000	2,6-DICHLOROPHENOL .		DCP			E6-H4-C12-		 X	100				r	
573-56-8 6576	5L2975000	2.6-DINITROPHENOL	1599	DNH			C5-H4-N2-0	5	 1	· - 10				-	-
	171925000	2.6-DINITROTOLUENE	2038	• -		• -	C7-H6-N2-0		 X	1000			 X	- X	۔ ا
37-62-7	ZE9275000	2.6-XYLIDINE		• -			C8-H11-N	-		-			 X	-	•
93-72-1 8029	UF8225000	2-(2,4,5-TRICHLOROPHENOLY)- PROPIONIC ACID	2765	• •	5125		C9-H7-C13-6 4941179		 X	100				- X	-
121-14-2 8578	XT1575000	2-4 DINTROTOLUENE	1600		0990	••	C7-H6-N2-04		 X	-			 X	- 1	-
53-96-3	A57450000	2-ACETYLANINOFLUORENE		•	0065		C15-H13-N-()	 X	- 1			 1	x	ť
117-79-3	CB5120000	2-AMINDANTHRAQUINDNE					C14-H9-H-02	2		-			 X	-	-
338-23-4 3933	EL9470000	2-BUTANONE PEROXIDE	2550		1750			•	 x	- 10		• •		- L	U
532-27-4 2972	AM6300000	2-CHLORDACETOPHENONE	1697		0618		C8-H7-C1-0 4925220			-			 X	-	-
522-32 -8		2-CHLOROETHANESULFONYL CHLORIDE					C2-H4-C12-C	2-5 1		-	 500			-	-
110-75-8	KN6300000	2-CHLOROETHYL VINYL ETHER				2-3-2	C4-H7-C1-0	-	 K	-				- X	- บ
95-57-8	SK2625000	2-CHLOROPHENOL					C6-H5-C1-0			-				- X	-
110-80-5	KK8050000	2-ETHOXYETHANOL	1171			 2-2-()	C4-H10-02 4913116			- 1			 X	-	•
98-01-1 3522		2-FURANCARBOXYLALDEHYDE	1199		1325	•••	C5-H4-02 4913146		 ()	5000				x	- U
109-86-4 3415	KL5775000	2-METHOXYETHANOL	1198				С3-нө-02 4913162	-		•		• •	 3	-	-
77-55-9	108225000	2-METHYL-S-NITRO-BENZENAMINE	_				C7-H8-N2-02	- ·						x	- IJ
40-76-1 5154	UT2975000	2-METHYL-5-VINYL-PYRIDINE					CB-H9-N	- •		-	500			-	-

	201	NSOLIDATED LIST OF CHEMICALS				*****	(Nase seque	20061	PAGE			
CAS NO. NOAA NO.	RTECS NO.	CHEMICAL NAME	DOT <u>NO.</u>	CDAST <u>Guard</u>	CODE	<u>CODE</u>	MOLECULAR FORMULA Lef STC 302 CLA	-	<u>TF01 / TP(</u>	<u>12 313</u>	RCRA	
	SH2100000	2-NITROPHENOL	1663	NTP			Cá-H5-N-03 1	100		ï.		
	725250000	2-NITROPROPANE	2605	NPH	1941	2-3-1	C3-H7-N-02 X			 X	X	- บ
	DV5775000	2-PHENYLPHENOL			P227		C12-H10-0			 X	-	-
109-06-8 8859	TJ4900000	2-PICOLINE	2313			2-2-0	C6-H7-N X	5000			, - X	- U
	000525000	3.3'-DICHLOROBENZIDINE			0869		C12-H10-C12-N2			×	- X	- IJ
119-90-4	DD0875000	3,3'-DIMETHOXYBENZIDINE			0873		C14-H16-N2-02			 X	- x	- U
119-93-7	DD1225000	3,3'-DIMETHYLBENZIDINE			2450		C14-H16-N X			 X	- 1	- IJ
78-71-7		3,3-BIS (CHLOROMETHYL) OXETANE					C5-H8-C12-0 X		500		-	-
509-19-8	SN1620000	3,4,5-TRICHLOROPHENOL					C6-H3-C13-0 X	10			-	-
225-51-4	CU2975000	3,4-BENZICIACRIDINE					C17-H11-N X	 1			- X	- U
102-36-3 5032	N88760000	3.4-DICHLOROPHENYL ISOCYANATE	~ ~ ~		'		C7-H3-C12-N-O		500/1000		•	-
610-39-9 8579	XT2100000	3,4-DINITROTOLUENE	2038	DNU			C7-H6-N2-84 X				-	-
3750-58-5	CV3460000	3,5-DICHLORO-N-(1,1-DIMETHYL-2 PROPYNYL) BENZAMIDE			K208		C12-H11-C12-N-0	 5000			- x	- U
		3-(1-METHYLETHYL)-PHENOL, METHYL CARBAMATE	-				C11-H15-N-02 X	 i	500/1000		-	-
98-16-9 4705	XU9180000	3-(TRIFLUOROMETHYL)-BENZENAMINE					C7-H6-F3-N		500		-	-
542-76-7 5156	US1400000	3-CHLOROPROPIONITRILE	•				C3-H4-C1-N X X	• -	* *		- X	- Fi
	WS2800000	3-CHLOROPROPYL OCTYLSULFOXIDE									-	-
70-69-9		4'-AMINOPROPIOPHENONE					C7-H11-N-O X				-	-
101-61-1	875250000	4,4' METHYLENE BIS(N,N-DIMETHYL) BENZENEAMINE					C17-H22-N2			 X	-	-
101-80-4	BY7900000	4.4 -DIAMINDDIPHENYL ETHER	•	- -	1977		C12-H12-N2-D			 X	-	-
80-05-7 6331	SF7200000	4.4 - ISOPROPYLIDENEDIPHENOL			0372		C15-H16-02		* * • •	 1	-	-
101-77-9	BY5425000	4,4'-METHYLENE DIANILINE	2651		1732		C13-H14-N2		• • • •	 Y	-	-

ļ

} :

i.

	<u></u>								FAGE	****	
	RTECS NO.	CHENICAL NAME	DOT NO.	CDAST GUARD	INIS NFPA CODE CODE	NOLECULA	LER	-		80	RA i
NDAA NO.								<u> </u>	TFQ1 / TPO	<u>2 313 L</u>	<u>.51</u>
101-14-4	CY1050000	4.4 - METHYLENEBIS (2-CHLORDANILINE)			2650	C13-H12-	-C12-NZ X	Ļ		Ĺ	X
139-65-1	879625000	4.4'-THIODIANILINE				C12-H12-	-N2-3			x	•
3615-21-2	007350000	4,5-DICHLOROBENZIMIDAZOLE 2-(TRIFLUOROMETHYL)-	• • •				×		500/1000	 0	
131-99-5	SK6650000	4,6-DINITRO-O-CYCLOHEXYPHENOL	9026			C12-H14-		100			T i
534-52-1	509625000	4.6-DINITRO-O-CRESDL	1598	DNC	0975	C7-H6-N2	-05		10/10000	·	 1 -
106-49-0 9128	XU3150000	4-AMINO-1-METHYL BENZENE	1708			C7-H9-N					
	US1750000	4-AMINO-PYRIDINE	2671			C5-H6-N2		1000		·	 X #
	BY8225000	4-AMINOAZOBENZENE			A508	C12-H11-		• •			
72-67-1	DUB925000	4-AMINOBIPHENYL		(0162	C12-H11-	N			·	
59-50-7 2885	607100000	4-CHLORD-M-CRESOL	2667			C7-H7-C1		 5000	•••••		 X i
	BX0700000	4-CHLOROBENZENAMINE	2018		:138	C6-H6-C1	 -#	1000			2 2 X 6
1005-72-3		4-CHLOROPHENYL PHENYL ETHER	· • •			C12-H9-C	1-0	5009			
60-11-7	817350000	4-DIMETHYLANINGAZOBENZENE		(929	C14-H15-				 X :	 K L
254-63-5 5134		4-METHYLTHIOPHENYL DINETHYL PHOSPHATE		• • •		C9-H13-0	4-Ρ-5 χ	·	 590		
.124-33-0 5166		4-NITRO-, 1-DXIDE-PYRIDINE		•		C5-H4-N2	 -03 X	• • • ·			• •
100-01-6 7342	BY7000000	4-NITRO-BENZENAMINE	1661		865	C6-H6-N2 492146	-02 7 X	5000	• • • •		 K P
92-93-3	JV5600000	4-NITROBIPHENYL	• • •	1	875	C12-H7-H					• •
100-02-7 8901	SH2275000	4-NITROPHENOL	1663	NPH N	607	C6-H5-N-	D2 1			 x)	 ג נו
51-43-4		4-CI-HYDROXY-2-(METHYLANINO)ETHYLI- 1.2-BENZENEDIOL	• -			C9-H13-N					 (P
99-59-2	827175000	5-NITRO-O-ANISIDINE	• • •			C7-H8-N2	-03				• -
66-75-1	Y88925000	5-(BIS(2-CHLOROETHYL)AMIND) URACIL				C8-H11-C	12-N3-02 X			 Y	 (U
		7.12-DIMETHYL-1.2-BENZIAJANTHRACENE				C20-H16					• •

		ONSOLIDATED LIST OF CHEMICALS		COAS	ST INIS	2 NEDT					/				
	RTEES NO.	CHEMICAL NAME	NO.	GUARI	<u>o cade</u>	e <u>code</u>	NOLECULAR		EEH-	, DN	7581 /	1501	* 517	RCRA	A F
NOAA NO.		و چې چې نو و و و و و و و و و و و و و و و و و و							<u></u>	<u></u>	TPQ1 /	ITUL	<u>. 310</u>		<u> </u>
33-32-9		ACENAPHTHENE					C12-H10		X	100					
208-96-8	AB1254000	ACENAPHTHYLENE	•				C12-H9							-	-
75-07-0	AB1925000	ACETALDENYDE	1084	/ AAD	0010	2-4-5	2 C2-H4-0		X	5000		•		-	-
2269							4907210		X .	1000			. X.	X	U -
60-35-5	AB4025000	ACETANIDE		-	A625	_	C2-H5-N-0	3		-			X	_	
64-19-7 9215	AF1300000	ACETIC ACID	2789	AAC	0020		1 C2-H4-O2 4931401		 1	5000		~ -	• •	-	-
	AH5425000	ACETIC ACID. ETHYL ESTER	1177	ETA	1040		0 C4-HB-02							-	-
665	 115750000	ACETIC ACID. LEAD SALT					4909160 C4-H6-Q4		X 	5000				X -	9 -
301-04-2	HIJ1JUUU	HUEIIL HUIV, CENV ancı	1010	in.			4966640		X -	5000		-		X -	U)
563-68-9	AJ5425000	ACETIC ACID, THALIUM(I) SALT					C2-H3-O2		X	100	-			Ę	Ū.
	AK1925000	ACETIC ANHYDRIDE	1715	ACA	0030	2-2-1				• • •			· -	-	-
2276 67-64-1	AL3150000	ACETONE	1090	ACT	0040	1-3-0	4931304) C3-H6-0	· · ·	1				• •	-	-
8							4908105		X -	5000		••••	X	X	ü(
75-86-5 2278	009275000	ACETONE CYANOHYDRIN	1541		-	4-1-2	2 C4-H7-N-O 4921401		X	10	1000		-	X	P
1752-30-3	AL7350000	ACETONE THIOSEMICARBAZIDE		-			C4-H9-N3-	-s X	• •		1000/1	10000	-	-	-
		ACETONITRILE	1648	ACN	0060	2-3-0	C2-H3-N	• • •						-	-
11 79-96-2		ACETOPHENONE	1993	ACP	A169	1-2-0	4907405 CB-H8-0		1	5000				<u>х</u> -	Цк. -
7421							4915273	3)		5000		- -		<u>x</u>	64 -
700-93-8	WH6620000	ACETDIYTRIPHENYLSTANNANE	- -	-	_	_	CZO-H18-0			1	500/1	10000			
2283		ACETYL BRONIDE	1716	ABM			C2-H3-Br-H 4931705	-0		•	• • •		-	•	-
75-36-5		ACETYL CHLORIDE	1717	33A	A179		C2-H3-C1-	-0			• • •		•	•	-
2284 107-02-8		ACROLEIN	1072	ARL	0110	 3-3-2	4907601 C3-H4-0		1 ; 	5000			• -	X -	9K -
2300							4906410	0 X X	1 -	1 .	500			X	51 -
2302			1773	AAn	0113		C3-H5-N-0 4913187		X _	5000	1000/1	.0000	X_	X	Ū.
			2218	ACR	0117	- 3-2-2	C3-H4-02 4931405	-	r.	5000	-	-	x	-	•
	AT5250000	ACRYLONITRILE	1093	ACN	0120								- ¥	- 1	-
	AT7350000	ACRYLYL CHLORIDE		• • •			47V0420 C3-H3-C1-(100	10000		· -	ж —	с -

•

]

l L

ļ

	<u>(1</u>	NSOLIDATED LIST OF CHENICALS					****	(Name seguence)			PAGE			ş 	9 	
<u>CAS ND.</u> NOAA NO.	<u>PTECS_NO.</u>	CHENICAL NAME		DOT NO.	COAST GUARD	INIS CODE	CODE	MOLECULAR FO	- EER	- RQ	TPDI	1992	212 b	icra LST	Ē	
	AUB400000	ADIPIC ACID		9077	ada	A155		C6-H10-04 4966110		****						
	AV2625000	ADIPONITRILE	·	2205	ADN	4509	 4-2-j	Có-#8-N2				• •		-		
	UE2275000	ALDICARB			PAD	0123		C7-H14-N2-0				10000	• •	Ĭ	•	
309-00-2 4853	102150000	ALDRIN		2761	ALD	0125		C12-H8-C16 4921403	 K X		500/	10000	 X	- X	ļ	
107-18-6 2357		ALLYL ALCOHOL		1098	ALA	0130	 3-3-0	C3-H6-0 4907425	 (X		1000		• -	- X		
107-05-1 2360	UC7350000	ALLYL CHLORIDE			ALC	0140	 3-3-1	C3-H5-C1 4907412	 X	1000			 х	-		
107-11-9 2358	BA5425000	ALLYLANINE				-	 3-3-1	C3-H7-N	 (500		• •	-	•	
<u></u>	EV3500000	ALPHA - BHC	 .					Cá-Há-Clá	 X	!			• -	-	•	
122-09-8	SH4025000	ALPHA, ALPHA-DINETHYLPH	HENETHYLAN	INE		-			 X				• -	- X	ļ	
959-98-8		ALPHA-ENDOSULFAN				-		C9-H6-C16-03		 ł			• . •	- .		
134-32-7 4006	810200000	ALPHA-NAPHTHYLANINE		2077		1815	2-1-0	C10-H7-N	 X		•		 X	- X	•	
7429-90-5	8D0330000	ALUNINUN (FUNE OR DUST	n	1309	(0160		A1	• •				- '- X	•		
1344-28-1	BD1200000	ALUMINUM OXIDE			(0150		A12-03	• •				х – Х	-	•	
0859-73-8 59	BD1400000	ALUMINUM PHOSPHIDE		1397				Al-P 4916305	 : X	 100	 500		-	- 1		
043-01-3 2394	BD1700000	ALUMINUN SULFATE		1760	ALN			012-53 .2A1 4944165	• -				-	-	•	
54-62-6 4857	MA1050000	AMINOPTERIN						C19-H20-NB-C	15		 500/	 00001	-	-	-	
	TF0525000	ANITON						C10-H24-N-03	-				•	-	-	
	TF1400000	AMITON OXALATE						C10-H24-N-03		 .C2-H2			-	-	-	
	XZ3820000	AMITROLE						C2-H4-N4	 ¥	1			-	- V		
7664-41-7 5360	800875000	ANNONIA	-	1005	AMA C)170 3	 3-1-0	H3-N 4904210 X			 500		 X	<u>1</u>		
	AF3675000	AMMONIUM ACETATE		9079	AAT			C2-H4-D2 .H- 496670B	04-5				a =	-	•	
	DG3378000	AMMONIUN BENZDATE		9080	abz -			C7-H6-02 .H3	-N				-	-	•	

i

	CONSOLIDATED LIST OF CHENICALS						************	F	PAGE		
	RTECS NO.	CHENICAL NAME	007 <u>ND.</u>	COAST GUARD	INIS I CODE I	NFPA CODE	HOLECULAR FORMULA			RCF	RA 5
NOAA NO.			وہ کر سے بید پید				<u>5TC 302 CLA 5</u>	<u>1941 5</u>	<u>/ TPQ2</u>	<u>313 1</u>	<u>II</u>
1066-33-7 2415	808600000	AMMONIUM BICARBONATE	908	1 ABC			C-93 .2H4-N 4966308 X 50	00			_
2425	HX7650000	ANNONIUM BICHRONATE	143	i and	0686		Cr2-H8-N2-07 4918330 X 10	 00			
1341-49-7 2431	897200000	ANNONIUN BIFLOURIDE	281	7 ABF			F2-H5-N 4932307 X 1	00			• •
0192-30-0 2419	WT3595000	AMMONIUM BISULFITE	269	s asu			H3-N .H2-03-5 4932348 X 50	• • • 00		• - •	
1111-78-0	EY8575000	AMMONIUM CARBAMATE	908	s ach			C-H3-N-02 .H3-N 4941145 X 50	 0ú			
506-87-6 2421	BP1925000	ANNONIUM CARBONATE	908	ACB		• •	C-H2-D3 .2H3-N 4941149 X 50	00			
	BP4550000	AMMONIUM CHLORIDE	908	5 ACC	0175		H4-N .Cl 4966316 X 50	 00			• -
	682860000	ANMONIUN CHRONATE	908	5 ACH	0686	• •	Cr-H2-04 .2H3-H 4963302 X 10			•••	• •
	6E7573000	AMMONIUM CITRATE, DIBASIC	908	ACI			C6-H8-07 .2H3-N 4966320 % 50				• •
	586300000	ANNONIUN FLOURIDE	250	5 AFR		• •	H4-N .F		• • •		-
3826-83-0	BB5100000	ANNONIUM FLUDBORATE	908	AFB		• •	4944105 X 1 B-F-H4-N				• -
	597625000	AMMONIUM HYDROXIDE	2672	ANH		• -					-
2434 6484-52-2 5397	BR9050000	AMMONIUM NITRATE (SOLUTION)	2420	AMN	A613	• •	X 10 H-N-03 .H3-N 4918744	00 ·		 ,	-
5972-73-6 2449		ANNONIUM OXALATE	2449	AOX		• -	62-H8-N2-04	·		^	-
		ANNONJUM OXALATE	2445	AOX		• •	X 50 C2-H8-M2-04 X 50				• -
4258-49-2		ANNONIUM OXALATE	2449	AOX		-	C2-H8-N2-G4		•		-
2449 131-74-8 5403	BS3855000	ANNONIUN PICRATE				• •	1 50 C6-H3-N3-07 .H3-N 4901507 1			 Y	- -
	GB9450000	ANNONIUM SILICOFLOURIDE		ASL		-	4901507 1 F6-Si .2H4-N 4944135 X 10		•		-
		ANNONIUN SULFANATE	9085	ASN	0185				• - •		• -
		ANNONIUN SULFATE (SOLUTION)	2506	ANS				• • • •	• • •	 Y	· -
2135-76-1 2458	854720000	ANNONIUN SULFIDE	2683	ASF		• •	HB-N2-5 4909303 X 1	 20		X	-
0195-04-0 2459	WT3505000	AMMONIUM SULFITE					H3-N .1/2H2-03-5 4966332 X 50				-

	*****		1							****		******		-	•
CAS NO.	RTECS NO.	CHEMICAL NAME	DOT NO.	COAST GUARD		CODE		<u> </u>	ĒŔ-				ſ	RCRA	A
NDAA NO.							STC	<u>302</u> (LA	<u>90</u>	TPQI	<u>i tpg2</u>	<u>313</u>	LST	1
3164-29-2 2460	WW8050000	ANNONIUM TARTKATE	9091	ATR			C4-H6-D6 4966336			5000					
		AMMONIUM TARTRATE	9091	ATR			C4-H6-86	. XH3-	- · ·N X	5000		• • •		-	
1762-95-4 2461	XK7875000	ANNONIUM THIOCYANATE	9092	ANT			C- N- S .H4 4966738		x	5000		,	• -	-	
7783-16-8 2462	IN6465000	AMMONIUM THIOSULFATE	909 3.	ATF			H3-N .1/2 4966750			5000		,	• •	-	
7803-55-5 2435	YW0875000	AMMONIUM VANADATE	2859				03-V .H4-		r Y	1000			• •	X	
300-62-9 486 2	SH9450000	AMPHETAMINE	* = = + =	,			C7-H13-N	х —	- •	· - 1	1000			-	
628-63-7 2465	AJ 1925000	ANYL ACETATE	1104	ANL	0190	1-3-0	C7-H14-02 4909111		 X	 5000	• • •		• •	-	
62 -5 3-3 24 85	BW6620000	ANILINE	1547	ANL	0220	3-2-0	C6-H7-N 4921410	• • 1	 X	 5000	 100 0		 X	- 1	
120-12-7 9283	CA9350000	ANTHRACENE		ATH	0227	0-1	C14-H10	-	 1	5000	•		. <u>-</u> Х	-	
440-36-0 2500	CC4025000	ANTINONY	2871		0230		5b	-		5000			 Х	-	
2494		ANTIHONY COMPOUNDS			-		• • • •	-	 1	· - ·			 х	-	
647-18-9 5464	CC5075000	ANTINONY PENTACHLORIDE	1730	APC	0230		C15-Sb 4932310	-	 (1900				-	
783-70-2	CC5800000	ANTIMONY PENTAFLOURIDE	1732	APF	0230		F5-Pb 4932005	 X		 1			-	-	
1300-74-5 2499		ANTIMONY POTASSIUN TARTRATE		APT	0230			56 . K		· - ·			-	-	
		ANTIMONY TRIBROMIDE					Br3-Sb				• • •		-	-	
• • •		ANTINONY TRICHLORIDE					4932317 C13-Sb 4932318				•		-	-	
793-54-4	CE5150000	ANTIMONY TRIFLOURIDE	1549		0230		F3-Sb 4932335				,		-	-	
	CC5650000	ANTIMONY TRIOXIDE			0230				• •				-	-	
		ANTINYCIN A	•				C28-H40-N2	2-09	-		10007		-	-	
	YT9275000		1651		0235			2-6			500/:		-	-	:
674-11-2	791351000	AROCLOR 1016	2315					 X	-	10			-	-	
		AROCLOR 1221	2315						-				-	-	,

NOAA NO.		CHENICAL NAME	DOT	LUASI	1515	8668										
1141-16-5	TQ1354000		NU.	GUARD	CODE	CODE	MOLECULAR STC		LER CLA	-	TPQ	21 /	TPO2	313	RCRA	R
3469-21-9		ARBELOR 1232	 2315	PCB	C108											
	TE1356000	ARAFI AR 1242	 2314	PCB	0630				¥ _)		-		-	-
			 						X)	• •	-		-	-
2672-29-6	101358000	AROCLOR 1248	 2315	PCB	C225				X	1(,		-		_	_
1097-69-1	T01360000	AROCLOR 1254	 2315	PCB	0631				X	1()		-		-	-
1096-82-5	TB1362000	AROCLOR 1260	 2315	PCB	C107				-			• •	-		-	-
7440-38-2	C60525000	ARSENIC	 1558	-	0260		As		-			• =	-		-	-
171		ARSENIC ACID	 1554	ASA	0260		492320 As-H3-04		1 -			• •	-	- ¹ -	-	-
			 	-					X -	!		• -	-		X	P
7778-39-4 160	CE0700000	ARSENIC ACID	 1554	-ASA	0260		As-H3-04 492310		X	!			_		I	5
5502		ARSENIC AND COMPOUNDS							X			-	-	 ג	-	-
1303-32-6		ARSENIC DISULFIDE	 1557	ARD	0260		As4-54		- X	5000		-	-		-	-
	C52275000	ARSENIC PENTOXIDE	 1559	APO	0260		As2-05		-			-	-		-	-
2528	C62638000	ARSENIC TRISULFIDE	 1557	ART	0260		492311	2 %	X -	5000 		00/1 -	0000	• •) -	FV -
2531			 	. .			492322	2 -	ĭ -	5000		-	-		-	-
2530		ARSENGUS OXIDE	1261				A52-03 492311	5 X	¥ -	5000	1	00/1	0000		X	P
2529		ARSENOUS TRICHLORIDE					As-C13 4923204		X	5000	5(00	-		-	-
	C56475000	ARSINE	 2188	-		• -	As-H3		-			- ^^	-		-	-
178 1332-21-4	CI6475000	ASBESTOS	 2590		9020		492013		-			00 	-		-	•
115-02-6	VT9625000	AZASERINE	 				CS-H7-N3-	-04	X -	1		-	-	 -	-	-
		AZINPHOS-ETHYL	 	 A7M								-	-		X -	90 -
4873			 	нип	 8012		C12-H16-M	13-03 X 			1(00/1	0000		-	-
5528	TE1925000	AZINPHOS-NETHYL	2783	AZH	03 0 0		C10-H12-N 4921528	13-03 5 X	i-F-5 X	2 !	1	19/1	0000			
440-39-3	COB370000	BARIUM	 1400	- •					-			-	- ·	• - Y	-	-
		BARIUN COMPOUNDS	 		• -				-			-	- •	• -	-	-
2554 542-62-1 2555	598785000	BARIUN CYANIDE	 1545	ECY	0310		C2-Ba-N2		-			-		× -	-	-

.

ļ

ł

:

•

	<u>20</u>	NSOLIDATED LIST OF CHENICALS					*****	Ha n	18 5f)duer	nce:	PA	IEE		13	
<u>13 NO.</u> NDAA NO.	<u>RTECS NO.</u>	CHENICAL NAME		DOT <u>NG.</u>	COAST SUARD	T INIS D <u>CODE</u>	CODE	<u>Nolecular</u> <u>Ste</u>		LEN-	•	<u>TPQ1 /</u>	TP02	<u>313</u>	CRA LST	ارز که
	075075000	BENZAL CHLORIDE		1986				C7-H6-C12			 500ú	********		. .		. ت د برد
	CU8700000	BENZAMIDE	· 		• •			C7-H7-N-O		-				 X	-	-
71-43-2 2577	CY1400000	BENZENE		1114			2-3-0	Cá-Hé 4908110						 X	X	- 90
 79-05-5 4878	CY3150000	BENZENEARSONIC ACID			-			C5-H7-As-		-		10/	 10000	• •	-	-
2582	DB8750000	BENZENESULFONYL CHLORIDE		2225	· -							10000			- X	- 10
72-97-5 223	009625000	BENZIDINE		1885	-	0330		C12-H12-N 4921503		- X				. – Х	X	- Sia
65-85-0 2585	060875000	BENZOIC ACID	,	7074	BZA	6409	2-1		-	_				• •	-	-
:00-47-0 :590	D12450000	BENZONITRILE		2224	BZN			C7 -H 5-N 4913134		X	 5000			• •	-	-
98-07-7 2592	x19275000	BENZOTRICHLORIDE	· • •	2226	BCL	B408	3-1-0	C7-H5-C13	- i	- ·				 х	- X	-
98-88-4 2594	DH5600000	BENZOYL CHLORIDE				8507	3-2-1	C7-H5-C1-6 4931725		- ·				× -	-	- .
94- <u>36-</u> 0 233	DN8578000	BENZOYL PEROXIDE				0335		C14-H10-04 4919113		-				× -	-	-
50-32-8	DJ3675000	BENZOLAJPYRENE				0725		C20-H12	-	× ·				•	-	- 900
205-99-2	EU1400000	BENZOLBJFLUORANTHENE			-			C20-H12	-	 X	 1			-	-	-
91-24-2	DI6200500	BENZOLGHIJPERYLENE			-			C22-H12	-	 X	5000			-	-	-
296-44-0	LL4025000	BENZQCJKIFLOURENE						C16-HI0	-	• •				-	- ·	-
207-08-9	DF6350000	BENZOCKJFLUORANTHENE			-			C20-H12	-					-	-	-
00 -44- 7 2602		BENZYL CHLORIDE				0340	2-2-1					_		- 1	- ·	-
		BENZYL CYANIDE		2470	-									•	-	-
56-55-3	CV9275000	BENZEAJANTHRACENE				0350		C18-H12	-					-	- ·	- 001
40-41-7 8324	DS1750000	BERYLLIUM		1567	BEN	0360		на н	-					- X	-	•
	DS2625000	BERYLLIUM CHLORIDE		1566	336	0360		Be-C12 4923305						-		-
		GERYLLIUM COMPOUNDS			-				-				• -	-		-

-

A

. . 1

_____ - ____ -

	<u></u>	INSOLIDATED LIST OF CHENICALS					(Na)			P/	102		14	! •=•
	RTEES NO.	CHEMICAL NAME	NG.	GUAR	I IMIS	CODE	MOLECULAR STC	FORMULA CER 302 CLA		TERI	1007	117	RCRA	
NOAA NG.						*****	Be-F2		<u></u>		1792	<u> </u>	51	. ±
7787-49-7	052800000	BERYLLIUM FLUORIDE	1566	527			492331) (5000		-		-	-
7787-55-5 2613		BERYLLIUM NITRATE	2464	BEN	0360		5e-N2-06	ĩ	5000					
3597-99-4 2613	DS3675000	BERYLLIUN NITRATE	2464	BEN	0360		Be-N2-06 4918755	 1 X	5000		-		-	-
	6V4375000	BETA - BHC	• ·				C6-H6-C1	 5 1			-		-	-
91-58-7	832275000	BETA-CHLORONAPHTHALENE					C10-H7-C1		= =		-		-	~
3213-65-9		BETA-ENDOSULFAN					C9-H6-C16	-03-5	5000		-		ž -	-
 91-59-8	€M2100000	BETA-NAPHTHYLANINE	1650		1820		C10-H9-N		1		-		-	-
4007 57-57-8	 207350000	BETA-FROPIOLACTONE	1007	 	2163			ι <u>ι</u>			-	. X	X -	ü -
9 020							4913110	X	!	500	-	X	-	-
5271-41-7 4883	R57700000	BICYCLOC2.2.1 JHEPTANE-2-CARBONI- TRILE. S-CHLORD-5-(((IMETHYLA	-	_			C10-H12-C	1-N3-02 X	1	5007	10000		_	-
72-52-4 5603	DUB050000	BIPHENYL	1993	-	1011	2-1-0	C12-H10 4913108					 X	-	-
108-60-1	KN1750000	BIS (2-CHLORO-1-METHYLETHYL) ETH	HER 2490	• -			C6-H12-C1					 X	- X	-
111-44-4 3150	KN0875000	BIS (2-CHLORDETHYL) ETHER	1916	DEE	0880		C4-H8-C12 4921550	-0				• •		-
	PA3675000	BIS (2-CHLOROETHOXY) METHANE		-			C5-H10-C1	2-02		10000		· -	-	-
103-23-1 2580	AU9700000	BIS (2-ETHYLHEXYL) ADIPATE		• -	D107		C22-H42-D		1000			 1	<u>x</u>	년) -
542-68-1 3146	KN1575000	BIS (CHLOROMETHYL) ETHER	2249	-	2630		C2-#4-C12					• •	- v	- c.
137-26-8	J01400000	BIS (DIMETHYLTHIOCARBAMOYL) DISULFIDE	2771	• -			C6-H12-N2 4941187	-54					1 - 1	-
		BIS(CHLOROMETHYL) KATONE	2649	-			C3-H4-C12				 10000	• •	-	-
		BITOSCANATE		-			CB-H4-N2-	52		500/		• •	-	-
	ED1925000	BORON TRICHLORIDE	1741	BRT	~ ~							• •	-	-
		BORON TRIFLOURIDE / METHYL ETHER	2965	BRT	0382	3-2-1		8-F3	••••••				-	-
	ED2275000	GORON TRIFLOURIDE	1008	•	0382	 3-2-1	8-F3 4904110	• •					-	-
	 ENAGRATON	BRONADIOLONE		-			C30-H23-B						-	•

!

ļ

Į

i L

-

NOAA NO. 7726-95-6 EF9 257 598-31-2 UCO 2648 75-25-2 PB5 2656 74-83-9 PA4 1091 357-57-3 EH8 2664 106-99-0 EI9	9100000 0525000 5600000 4700000 8925000	BROMOACETONE BROMOFORM BROMOMETHANE BRUCINE	<u>ND.</u> 1744 1567 2515 1062	BUARI BRX 	0370 0400 1680	<u>CODE</u>	Br 2 4936110 1 C3-H5-Br-0	<u>FD</u> 1 1000 190	<u>TPQ1 /</u> 500	<u>TP92</u>	RC 313 L	
7726-95-6 EF9 257 598-31-2 UC0 2648 75-25-2 PB5 2656 74-83-9 PA4 1091 357-57-3 EN8 2664 106-99-0 EI9	0525000 5600000 4700000 8725000	BROMOACETONE BROMOFORM BROMOMETHANE BRUCINE	1567 2515 1062	 - NTB	0400 1680		Br 2 4936110 X C3-H5-Br-0 4920101 X C-H-Br 3 X C-H3-Br	1000 190	500		Ĭ	 X F X U
578-31-2 UC0 2648 75-25-2 PB5 2656 74-83-7 PA4 1091 357-57-3 EN8 2664 106-99-0 EI9	5600000 4700000 8925000	BROMOFORM BROMOMETHANE SRUCINE	2515		1680 		C3-H5-Br-0 4920101 X C-H-Br3 X C-H3-Br	1000			 Х	X F X U
75-25-2 PB5 2656 74-83-9 PA4 1091 357-57-3 EH8 2664 106-99-0 EI9	4900000 8925000	BROMONETHANE	1062	NTB	1680 		С-H-Br3 х С-H3-Br	190			 	і Х Ш
74-83-9 PA4 1091 357-57-3 EH8 2664 106-99-0 EI9	8925000	BRUCINE				3-1-0	C-H3-Br				· -	
357-57-3 EHB 2664 106-99-0 EI9			1570	BRU			TILLTTV A A	1000	1000		x	X 9
••••	9275000	BUTADIENE			0405		C23-H26-N2-04 4921411 X				-	 1 P
4891			1010	9DI	0410		C4-H6		 10000		 X	
123-66-4 AF7 2672	7350000	BUTYL ACETATE	1123	ECN	0440	1-3-0	C6-H12-02 4909128 1	 5000			-	
141-32-2 UD3 2674	3150000	BUTYL ACRYLATE	2348	578	0450	2-2-2	C7-H12-02 4912215				 x	
85-60-7 TH9 8354	9990000	BUTYL BENZYL PHTHALATE		BPH		1-1-0	C19-H20-O4				х –	
109-73-9 E02 2677	2975000	BUTYLAMINE	1125	BAN	0470	2-3-0	C4-H11-N 4908120 X				-	
123-72-8 ES2 291	2275000	BUTYRALDEHYDE	1129	BTR	8707	2-3-0	C4-H8-0 4708119				- ·	• •
107-92-6 ESS 2749	5425000	BUTYRIC ACID	2820	BRA	8709	2-2-0	C4-H8-02 4931414 X	5000			-	• •
2650-18-2 804	4550000	C.I. ACID BLUE 9, DIANMONIUM SALT		• •			C37-H36-N2-09-53	. 2N-H3			i.	• •
3844-45-9 694	4725000	C.I. ACID BLUE 9, DISODIUM SALT		_			C37-H36-N2-09-53				 X	• •
4680-78-8 804	\$375000	C.I. ACID GREEN 3					C37-H36-H2-06-52				- · X	• •
569-64-2 801	1180000	C.I. BASIC GREEN 4		-			C23-H25-N2 .C1				x	• -
989-38-8 DHO		C.I. BASIC RED 1					C28-H30-N2-03 .C1				x	• •
1937-37-7 036	5160000	C.I. DIRECT BLACK 38		-	1012		C34-H25-N9-07-52				r	• -
6071-86-6 6L7				_	D137		C31-H20-N6-09-S .	Eu IN	1			
		C.I. DISPERSE YELLOW 3		-			C15-H15-N3-02					
31-68-7 8F36	5675000	C.I. FOGD RED 15			V848		U28-H31-N2-U3 .L1			• •	X	-
		C.I. FOOD RED 5		-			C18-H14-N2-07-52		-		X_	- •

Į

} |

- -

	STERE NO	CHENICAL NAME	DOT	COAST	IMIS	NFPA	NOLECULAR_FO	GMIII A					
<u>cas no.</u> Noaa no.	KIECS NO.			001110			<u>STE 30</u>	LER	- <u>RQ</u>	TP91 /	TP02	R 313	ł
	QL5850000	C.I. SOLVENT ORANGE 7			*		C18-H16-N2-						•
97-56-3	XUB800000	C.I. SOLVENT YELLOW 3					C14-H15-N3						
492-80-8	873200000	C.I. SOLVENT YELLOW 34 (A)	URAMINE)		A609		C17-H21-N3	 Y	 10 00			· ^_	
542-07-9	BL4900000	C.I. SOLVENT YELLOW 14			5106		C16-H12-N2-					^_ Х	
128-66-5	H07030000	C.I. VAT YELLOW 4					C24-H12-D2					 Х	
75-60-5 2754	СН7525000	CACODYLIC ACID	1572	CDA			C2-H7-As-U2	 1	 1			-	
7440-43-9	EU9800000	CADMIUM	2570		0490		Cd	í.	!			- ۲	
543-90-8 2755	EU9810000	CADNIUN ACETATE	2570	CAT			C2-H4-02 .1/ 4962303	20d 1		• • •	• •	•	
7789-42-6	EU9935000	CADMIUM BRONIDE	2570	CNB	-		Br 2-Cd 4962305	1	190			-	
10108-64-2 2757	EV0175000	CADMIUM CHLORIDE	2570	202		• •	Cd-C12 4962505	X	100			-	
2758		CADMIUM COMPOUNDS						X				X	
1306-19-0 4895	EV1925000	CADMIUN OXIDE	2570	COX	0491	* •	Cd-0 X	• -	 1		 0000	-	
2223-93-0 4896	R61050000	CADMIUM STEARATE		•	-		C36-H72-04 .				 0000	-	
		CALCIUM ARSENATE		CCA	0500								
52740-16-6		CALCIUN ARSENITE			-		As2-06 .3Ca 4923219		1000			-	
75-20-7	EV9400000	CALCIUM CARBIDE					C2-Ca 4916408	ĺ.	10		•••	•	
13765-19-0 2773	582750000	CALCIUM CHRONATE	9096		0686 		Cr-04 .Ca 4963307					-	
156-62-7 303	65600000	CALCIUN CYANANIDE			- .		C-N2 .Ca 4945516	- .				X	
2775		CALCIUM CYANIDE			. .		C2-Ca-N2 4923223	X	10			-	
2777		CALCIUM DODECYLBENZENE SUL					C36-H60-O6-S 4953309	2 .Ca 1				-	
2783			1748				4918715	X -	10			-	
56-25-7 4899 	RN8575000	CANTHARIDIN		_			C10-H12-04 K		1	100/1	0000		

_ -

********		NSOLIDATED LIST OF CHENICALS		COAST			، چہ چک کہ بات کے عب نیے یہ وقی کے شہری			***
CAS NO.	RTECS NO.	CHENICAL NAME	NO.	EUARD	CODE	CODE	MOLECULAR FORMULA		R	CRA
NOAA NO.							STC 302 CLA RO	TPQ1 / TPQ2	<u>313 (</u>	<u>.ST</u>
133-06-2 2803	615075000	CAPTAN	9099	CPT	ύ 52 9		C9-HB-C13-N-02-S 4961167 X	0	X	
51-83-2 4900	640875000	CARBACHOL CHLORIDE					C6-H15-N2-G2 .CL X	1 500/10000	-	-
	FC1050000	CARBANIC ACID, HETHYL-, O-(((2 DIMETHYL-1, 3-DITHIGLAN-2-Y	 !,4-				CB-H14-N2-02-52	1 100/10000	-	-
530-10-4	YU1820000	CARBAMINIDOSELENOIC ACID					C-H4-N2-Se X 100	• •	-	- x
53-25-2 2808	FC5950000	CARBARYL	2757	CBY	0525		C12-H11-N-02 4941121 X 10		- X	•
	F89450000	CARBOFURAN	2757	CBF	0526		C12-H15-N-03 4921525 X 1 1		•	-
	FF6650000	CARBON DISULFIDE	1131	CBB	0540	 2-3-0	C-52	0 10000	- Y	- 7
	F66125000	CARBON OXYFLOURIDE	2417		C105				-	-
	F64900000	CARBON TETRACHLORIDE	1846	CBT	0570				- ,	-
463-58-1	F66400000	CARBONYL SULFIDE	2204	• • •	• -	3-4-1	. C-0-S		۰_ ۱	-
	105250000	CARBOPHENOTHION			C605		4920169 C11-H16-C1-02-P-53		-	-
	UX1050000	CATECKGL		стс -	0571		Cá-H6-02	1 500	-	-
9407 133-90-4	061925000	CHLORANBEN			A623		C7-H5-C12-N-02		X	-
205-03-3	ES7525000	CHLORAMBUCIL			-		C14-H19-C12-N-02		X	-
					. <u>-</u>			i 	-	X
3/-/4-4 4906	P8460000	CHLORDANE					C10-H6-C18 X 1	1 1000	X	X
470-90-6 4907	TB8750000	CHLORFENVINFOS					C12-H14-C13-04-P X	1 500	•	-
		CHLORINATED BENZENES					· · · · · · · ·		-	•
		CHLORINATED ETHANES			• •				-	-
76-13-1	KJ4000000	CHLORINATED FLUDROCARBON (313 - FREDN 113 ONLY)					C2-C13-F3	• • • • •	- ·	-
		CHLORINATED NAPHTHALENE			-				•	•
		CHLORINATED PHENOLS	~		-		<u>-</u>		- ·	-
	F02100000	CHLDRINE	1017		0640				^-	-

	<u></u>	INSOLIDATED LIST OF CHENICALS	HAZAKUUU	5 6816	KLALS		(Na	e segue	nce:	P1	16E		18
	RTECS NO.	CHENICAL NAME	DOT NO.	COAS Guar	T INIS D <u>CODE</u>	CODE	HOLECULAR	LER		7861	1000		CRA
NOAA NO.			***	وممومه	*****		STC	302 CLA	<u>WR</u>	<u>; FV1 /</u>	1792	313	<u></u>
506-77-4 8479	672275000	CHLORINE CYANIDE	158	9			C-C1-N	X	10				_
0049-04-4	F03000000	CHLORINE DIOXIDE	919	1	0614		C1-02				-	 X	r
4934-91-6	TD5170000	CHLORMEPHOS					C5-H12-C			500	• •		•
999-81-5 4910	BP5250000	CHLORNEQUAT CHLORIDE					C5-H13-C	I-N.CI X		100/	10000		-
494-03-1	9N2450000	CHLORNAPHAZINE				•••	C14-H15-	C12-N X			• •		x
107-20-0 2867	A82450000	CHLOROACETALDEHYDE	2233	2	0617		C2-H3-C1		1000	10000			- X
79-11-8 4912	AF8575000	CHLORDACETIC ACID	175	d nea	N145	3-1-0		-02 4 X		100/	- 10000	 X	-
		CHLOROALKYL ETHERS			* -			 X					-
108-90-7 2877	CZ0175000	CHLOROBENZENE	1134	CRB	0620	2-3-0		- - 3 1				 X	- 1
	002275000	CHLOROBENZILATE			1113		C16-H14-(- "- Y	- Y
124-48-1	PA6360000	CHLORODIBROHOMETHANE					C-H-Br2-						-
75-00-3	KH7525000	CHLOROETHANE	1037	ECL	1110	2-4-0	C2-H5-C1 4908162	 2 X				 Y	-
107-07-3	KK0875000	CHLOROETHANOL	113	5 ECH	1120		C2-H5-C1- 4921420	 -0) X	1			• •	-
	LQ5950000	CHLOROETHYL CHLOROFORMATE					C3-H4-C12	2-02				• •	-
67 -66- 3 2893			1886	CRF	0570		C-H-C13 4940311	• • •				 X	- X
	PA6300000	CHLOROMETHANE		NTC		2-4-0						. – . X	-
107-30-2		CHLOROMETHYL METHYL ETHER		CHE	2640		C2-H5-C1- 4907430	-0				 X	- ·
4918	NK5335000	CHLOROPHACINONE			R109		C23-H15-C	1-03				• •	-
391	E19625000	CHLOROPRENE			0680		C4-H5-C1					· - ·	-
7790-94-5 5911		CHLOROSULFONIC ACID	1754	CSA		. -	C1-H-D3-5 4930204	5				• -	-
1997-45-6	NT2600000	CHLOROTHALINOL					C8-C14-N2					· - χ	-
1982-47-4 4919	YS6125000	CHLDROXURON					C15-H15-C			500/		• •	-

.

ļ .

T

ł

i

: {

	22	DISOLIDATED LIST OF CHEMICALS	HAZARDOUS	MATERIALS	-	(Name sequence)	PAGE	19
		CHEMICAL NAME					*****	
CAS NO.	RTECS NO.	<u>CHENICAL NAME</u>	NO.	GUARD CUD	E COOL	MULECULAR FORMULA CER-		SCRA
NDAA NO.						STC 302 CLA RB	TPOL / TPO2	<u>313 LST</u>
2921-88-2 2937	TF5300000	CHLORPYRIFOS	2783	DUR 068	1	C9-H11-C13-N-03-P-S 4941123 X 1		
1923-23-9	TF1590000	CHLORTHIOPHOS				C11-H15-C12-03-P-S2 X i	500	
1066-30-4	A62975000	CHRONIC ACETATE	9101	CRT 069	0	C6-H9-06 .Cr 4963312 1 1000		
1115-74-5 2940		CHROMIC ACID SOLUTION	1755	CNA 068	 6	1 1000 x		
	6B2450000	CHROMIC ACID, SOLID	1463	CNA 068	5			
	GB5425000	CHROMIC CHLORIDE	9102			C13-Cr		
0101-53-8	687200000	CHROMIC SULFATE	9100	CHS		012-53.2Cr	1/10000	
2944 7440-47-3	5B4200000	CHROMIUN		0685	 i	4963314 I 1000 Cr		
		CHROMIUM COMPOUNDS				¥ 1		X
049-05-5	685250000	CHROMOUS CHLORIDE	9102			<u> </u>		X
2949						4963322 X 1000		
4922	6F8750000			0072			10000	X
0210-68-1 4923	660300000	COBALT CARBONYL				C8-Co2-U2 X L	10/10000	
		COBALT COMPOUNDS						 X
		COBALT, ((2.2'-(1,2-ETHANEDIYLB) (NITRILONETHYLIDYNE)) BIS (6	is			C16-H12-Co-F2-N2-C2 X 1	100/10000	
			9103	C09				
	L97450000	COBALTOUS FORMATE	9104	CFN		C2-H2-04 .Co 4963327 X 1000		
	N05766570	COBALTOUS SULFAMATE	9105	CBS		H6-N2-06-52 .Co		
	GH0346000	COKE OVEN ENISSIONS		0725	2-4-0	4963329 X 1000		
64-96-8 4925	6H0700000	COLCHICINE	•			C22-H25-N-06		
	GL5325000	COPPER	• • • •	0730		Cu	10/10000	
		COPPER COMPOUNDS				X 5000		1
	6L7150000	COPPER CYANIDE		CCY		X C-Cu-N		X
455			· •			4923418 10		

		NSOLIDATED LIST OF CHENICALS		BRIGALR	.y 	Nase Secu				20
CAS ND.	RTECS NO.	CHEMICAL NAME	DOT ND.	COAST IN GUARD CO	<u>DE</u> <u>CDDE</u>	MOLECULAR FORMUL	-		RC	RA
NOAA NO.						<u>STC 302 CL</u>	<u> </u>	<u>TPQ1 / TPQ2</u>	<u>313 L</u>	ST
2006	ene200000	COUMAPHOS	2783	COU 07	36	C14-H16-C1-05-P 4921505 X X		100/10000		
5836-29-3 4928	6N7630000	COUNATETRALYL				C19-H16-D3 X	1	500/10000	• •	•
1319-77-3 5071	605950000	CREOSOLS (MIXED ISOMERS)	2076	07	60	C7-HB-0 4931417 X			. – . Х	ĩ
2001-58-9 3011	6F8615000	CREOSOTE	2761	וס דסס	29 2-2-0	I		* • • • •	• • •	- X
	UV8050000	CRIMIDINE				C7-H10-C1-N3	 1	100/10000	• •	-
	679499000	CROTONALDEHYDE	1143	CTA 07	70 3-3-2				• • •	- X
	6P9625000	CROTDNALDEHYDE, (E)-	1143	CTA 07	70				• - •	- 1
	6R8575000	CUMENE	1918			C9-H12 4913160 X			. <u>-</u> -	-
	MX2450000	CUMENE HYDROPEROXIDE	2116	C6	16	C7-H12-02	10		. <mark>-</mark> -	-
	NC4725000	CUPFERRON				C4-H6-N2-02 .H4-			~ x	-
142-71-2 8445	A63480000	CUPRIC ACETATE		CST		C4-H6-O4 . Cu 4962310 X	 100		» – –	•
7447-39-4 2988	• • • •	CUPRIC CHLORIDE		CPC		Cl-Cu 4944173 X				-
5251-23-9 3023	207400000	CUPRIC NITRATE	1479	CNI		N2-06 .Cu 4916744 X	100			-
1893-66-3 3024		CUPRIC OXALATE				C2-Cu-04				-
758-98-7	6L3800000	CUPRIC SULFATE	9109	CSF		04-5 .ũu				•
		CUPRIC SULFATE, ANNONIATED	7110	138		LUTR12-R4 .H2-U	.09-5			-
915-82-7 3027		CUPRIC TARTRATE	9111	CTT		C4-H6-06 .Cu				•
		CYANIDE (SOLUABLE SALTS)	1935	PTC 075	ю					-
		CYANIDE COMPOUNDS (CN- GNLY)		· · ·	•	4923230 X	••	• • • • •		-
460-19-5 490			1026				·		^	-
		CYANOGEN BROMIDE	1989	CBR		C-Br-N 4923229 X X			• •	ι - (
		CYANGGEN IGDIDE				C-I-N				-

.

ł

ł

*******	وریش ودارد خانیه کنان وروی بی		DOT	COAST	I INIS	NFPA						
<u>cas no.</u> Noaa no.	ATECS NO.	CHEMICAL NAME	<u>NO.</u>	GUARD	<u>i Code</u>		MOLECULAR FORMULA CEN- STC 302 CLA	<u>R9</u>	<u>tpq1 /</u>	TP02	R/ 3 <u>13</u>	ICRA LST
	TF7600000	CYANOPHOS		******			C4-H7-C12-D4-P					
4934							X	1	1000			-
675-14-9 4935	121750000	CYANURIC FLOURIDE					C3-F3-N3 X	!	100			-
110-82-7 3043	909200000	CYCLOHEXANE	1145	CHX	0810		C6-H12 4908132 1	1000	-	<u> </u>	X	X
108-94-1 3044	6W1050000	CYCLOHEXANONE	1915	CCH	0830	1-2-0) C6-H10-O 4913179 X	5000	• • -	• -	, -	- x
56-81-9 4936	NA4375000	CYCLOHEXINIDE	,	, .			C15-H23-N-04 X	· - ·		 10000	, -	-
	620700000	CYCLOHEXYLAMINE	2357	CHA	0842	2-3-0					-	-
	RF5950000	CYCLOPHOSPHAMIDE			A617		C7-H15-C12-N2-02-P				-	- ·
0820-81-2	H97875000	DAUNOMYCIN	, . <u>.</u>	• • •	A617		C27-H29-N-010	· • ·				
	K10700000	DOD	2761	. בַּ	D119		C14-H10-C14	·				<u> </u>
8491 72-55-9	KV7450000	DDE	· • • • •	· • •	D906		C14-H8-C14	_1 .		• •	-	X
	KJ3325000	0DT	2761	DOT	0847		C14-H9-C15		• • •		-	••••
3067		DDT CONGENERS					4941129 X	_! -	, 		-	X 1
7702-41-9	HD1400000	DECABORANE (14)	1868	DBR	0853	3-2-1	Х В10-ні4 4916610 Х	 1	500/10		- .	
.163-19-5	KN3525000	DECABROMODIPHENYL OXIDE					C12-Br 10-0				• • •	
319-86-8	674550000	DELTA - BHC					C6-H6-C16				<u>ہ</u> .	
306 5-48- 3 4940	TF3150000						C8-H19-03-P-S2 .C8-					
	T61750000	DEMETON-S-HETHYL					X C6-H15-03-P-52 X					
		DI (2-ETHYLHEXYL) PHTHLATATE			1015		C24-H38-04				 Y	 * :
)311-84-9 4942	TD5165000	DIALIFOS					X C14-H17-C1-N-04-P-5 X	52				
	E78225000						C10-H17-C12-N-0-5	•				 2 ;
496-72-0	159820000	DIAMINOTOLUENE					C7-H10-N2				4	
		DIAMINOTOLUENE		• •			C7-H10-N2	- ⁻ -	• • •		•	- (

_

ļ

		INSOLIDATED LIST OF CHEMICALS			هه هه هې		(Name seque)			AGE			2
<u>CAS_NO.</u> NDAA_NO.	RTECS NO.	CHEMICAL NAME	DOT NO.	GUARI		<u>CODE</u>	HOLECULAR FORMULA CEN- STC 302 CLA		TP91	/ TP02	313	CRA	1
	199445000	DIAMINOTOLUENE	1709				C7-H10-N2		استینی دورونه				
1612				• -			4940356 X	!				ž -	
334-88-3	PA7000000	DIAZAMETHANE			0861		C-H2-N2				X		
5333-41-5 3082	TF3325000	DIAZINON	2783	DZN	2720		C12-H21-N2-03-P-5 4941141 X			• • •	,	-	•
53-70-3	HN2625000	DIBENZ (A, H) ANTHRACENE		-	D156		С22-Н14 х				• -	- x	
132-64-9		DIBENZOFURAN		• •	D639		C12-H8-0				· -	-	
9287-45-7 4943	HQ9275000	DIBORANE	-1911	-	0862		B2-H6 4905420 X				~	-	
84-74-2 5717	T10875000	DIBUTYL PHTHALATE	9095	-	0864	0-1-v	C16-H22-D4 4962110 X				. – Х	-	
1918-00-9 3119	067525000	DICAMBA	2769	DIC	B345		C8-H6-C12-03 4963334 X				•	-	
1194-55-6 3122	D13200000	DICHLOBENIL	2769	018			C7-H3-C12-N 4963809 X	100			-	-	
	QL7525000	DICHLONE	2761	DCL			C10-H4-C12-B2 4960617 X				-	-	
	CZ4430000	DICHLOROBENZENE (MIXED)	1591	DBM	0867		C6-H4-C12				- y	-	
75-27-4	PA5310000	DICHLOROBROMOMETHANE		-			C-H-Br-Cl2	5000			^ 1	-	
75-71-9 3138	PA8200000	DICHLORODIFLUOROMETHAWE	1028	DCF	0871		C-C12-F2 4904516 I				` -	- x	I
75-09-2	PAB050000	DICHLORDNETHANE (METHYLENE CHLORIDE)	1593	DCM	1730						- 7	-	
	VV3530000	DICHLOROMETHYLPHENYLSILANE	2437	-			C7-H8-C12-Si	• -			•	-	
		DICHLOROPROPANE / DICHLOROPROPEN		npp			C3-H6-E12 .C3-H4-				-	-	
550			- 4471		_	_	4907640 X						
6638-19-7	TX9350000	DICHLOROPROPANE	1279	OPP				1000			-	-	•
5952-23-8 3163		DICHLOROPROPENE	2047	OPU			X C3-H4-C12 X				-	-	
		DICHLORVOS	2783	DCV	0850		C4-H7-C12-04-P 4921534 X X		 1000		- Y	-	
115-32-2 9395	DCB400000	DICOFOL	2761	-	D126		C14-H9-C15-0 4966930 1				й- Х	•	
4949		DICROTOPHOS			0902		CB-H16-N-05-P		 100		-	•	
50-57-1 3187		DIELDRIN	2761	DED	0905		012-H8-016-0				-	-	

ł

ł

	<u></u>	NSOLIDATED LIST OF CHEMICALS		-	T INIS		(Nage st			****				
	RTECS NO.	CHENICAL NAME	NO.	SUAR	D CODE	CODE	MOLECULAR FURM STC 302		- 60	TP01 /	TP07	; 713	RCRA	A 7
NOAA NO.		وهم هي بي بي من موجول من موجول موجو موجو موجو موجو م					وجد جد جذ جو جوه جد	<u></u>						
1464-53-5 4950	EJ8225000	DIEPOXYBUTANE		- -			C4-H6-02	X	!	500		X	ĭ	
111-42-2 8532	KL2975000	DIETHANOLANINE		DEA		1-1-0	C4-H11-N-02		_			X		
814-49-3	TD1400000	DIETHYL CHLOROPHOSPHATE					C4-H10-C1-03- X	-P		500	-		-	
84-66-2 8534	TI1050000	DIETHYL PHTHALATE		DHP	0933	0-1-0	C12-H14-04	- X				 x	- 1	;
	WS7875000	DIETHYL SULFATE					C4-H10-04-5 4933320	-				•	-	
	TC2275000	DIETHYL-P-NITROPHENYL PHOSPHAT	 E				C10-H14-N-D6-					- ^-	-	
	HZ8750000	DIETHYLAMINE				 2-3-0	C4-H11-N	-	- 100				-	
3193 672-42-2		DIETHYLARSINE		• •			4907815	1 -					-	
 1642-54-2 4953	TL1225000	DIETHYLCARBANAZINE CITRATE					C10-H21-N3-0						<u>1</u> -	
	WJ5600000	DIETHYLSTILBESTROL					C18-H20-82	-					- r	
71-63-6 4954	IH2275000	DIGITOXIN				'	C41-H64-D13 X	-				• -	-	•
238-07-5 4955	KN2350000	DIGLYCIDYL ETHER			0923				_	1000		• •	-	
	1H6125000	DIGOXIN		• •			C41-H64-014	-	• -	107		• •	-	•
	TD4025000			• •			C4-H12-F-N2-D	- -P				• -	-	
	TE1750000	DIMETHOATE			D617		X C5-H12-N-03-P	-52				-	-	•
	TD1830000	DIMETHYL PHOSPHOCHLORIDOTHIOAT						-5				-	-	•
131-11-3		DIMETHYL PHTHALATE			0950	0-1-0	C10-H10-04	-	5000	10000			- x	•
	¥58225000	DINETHYL SULFATE	1575	DSF	0960	4-2-ú						-	-	- i
	PV5075000	DINETHYL SULFIDE	1164	DSL	D650	2-4-0		-				-	-	•
	ST0874000	OIMETHYL-P-PHENYLENEDIAMINE					C8-H12-N2					-	-	•
	1F8750000	DIMETHYLAMINE. ANHYDROUS	1032	DMA	0928	3-4-0		1	1000			-	- X	
	F04200000	DINETHYLCARBANDYL CHLORIDE	2262				C3-H6-C1-N-0						- 1	•

.

ļ

		DNSOLIDATED LIST OF CHENICALS	HAZARDOUS		T INIS		د همیش شواند و بی وی موافق شده د ا		**********		-
	RTECS NO.	CHENICAL NAME	NŨ.	SUARD	CODE	CODE	HOLECULAR FORMULA	-		RCR	ia f
NDAA NO.							STC 302 CLA	<u>60</u>	<u>TP01 / TP02</u>	<u>313 LS</u>	<u>I</u> [
75-78-5 583	VV3150000	DIMETHYLDICHLOROSILANE	1162	DND		3-3-1	1 C2-H6-C12-Si 4907610 · X	1	500		
	E79084000	DIMETILAN					CLO-H16-N4-03 X		500/10000		-
	CZ7340000	DINITROBENZENE (MIXED ISOMERS)	1597	DNB	0970		C6-H4-N2-04 4921422. X				-
	SL2627000	DINITROPHENOL SOLUTION	1599	DNH	D657		Có-H4-N2-05 4921425 X				-
	XT1300000	DINITROTOLUENE. LIQUID	1600	TTO	0990						-
	SJ9800000	DINOSEB		. .	D118		C10-H12-N2-05			 Y	-
1420-07-1	SK0100000	DINOTERB					C10-H12-N2-D5				-
	TI 1925000	DIOCTYL PHTHALATE		DOP	1000	0-1-0				• •	-
	TE3350000	DIOXATHION			2740		1 C12-H26-06-P2-54		10000	X X	0 -
4971 1746-91-6	HP3500000	DIQXINE			2325		X C12-H4-C14-Q2	1	500		-
	NK5600000	DIPHACINONE			D726		C23-H16-03	!			-
	JN5690000	DIQUAT	2781	010	2681		C12-H12-N2 .29r		10/10000		-
3319 2764-72-9		DIQUAT	2781	 DIQ	2681		4963342 X	1000			-
5319 2602-46-2	936400000	DIRECT BLUE 6			D136		X C32-H20-N6-014-34	1000 .4Na			-
			2783				C8-H19-02-P-53			X	-
3327		OITHIAZANINE IODIDE	• • • •		600-		4921511 X X	1	500		Fr T
4976		• • • • • • • • • • •						1	500/10000		-
4977		DITHIOBIURET		• •				100	100/10000	Ĭ	F(-
3334	YS6725000	. 					C7-H10-C12-N2-0 4962620 X	100			-
2329		DODECYLBENZENESULFONIC ACID		DSA			C1B-H30-03-5 4931426 X				-
4978		EMETINE, DIHYDROCHLORIDE		- -			C29-H40-N2-04 .201	l-H l	1/10000		-
115-29-7 3350	RB9275000	ENDOSULFAN	2761	ESF	2425		C7-H6-C16-03-S		10/10000	X	ē,

.

i

-

	<u>0</u> 2	NSOLIDATED LIST OF CHENIC	CALS					(Nage	seauen	(5)	PAGE	*****	25	,
<u>CAS ND.</u> NOAA NO.	<u>rtees no.</u>	CHEMICAL NAME		DOT NO.	COAS Guari	INIS CODE	NFPA <u>CDDE</u>	MOLECULAR FO	12R-	<u>89</u>	<u>tp01 / tp0</u>	R 2 <u>313</u>	CRA L <u>ST</u>	
1031-07-8		ENDOSULFAN SULFATE		1 #0 #0 64 64 8# 6						·		*****	***	/ - ,
145-73-3	RN7875000	ENDOTHALL						C8-H10-05	 x	1			- X	- F:
2778-04-3 4980	TF8225000	ENDOTHION						C9-H13-06-P			500/1000		-	-
	101575000	ENDRIN		2761	EDR	1017		C12-H8-C16- 4921521		 1	500/1000		- 1	- P(
7421-93-4		ENDRIN ALDEHYDE						~ ~					-	-
		ENDRIN CONGENERS							·				- 1	-
106-89-8 3354	TX4900000	EPICHLOROHYDRIN		2023	EPC	0645	 3-2-2	C3-H5-C1-Q 4907420	 1 X		1000	 X	2 7	- 50-
	181925000							C14-H14-N-0	 4-f-5		100/1000		-	-
	KE1050000	ERGOCALCIFEROL	• •					C28-H44-0		• •	1000/10000		-	-
379-79-3 4985	KE8225000	ERGOTANINE TARTRATE		•••				C66-H70-N10					-	-
	TE4550000	ETHION		2783	ETO	2750		C9-H22-04-P 4921565		10	1000		-	-
3194-48-4 4989	TE4025000	ETHOPROPHOS	-	• • •		N195		C8-H19-02-P	-52				-	-
140-88-5 566	AT0710000	•				1050	2-3-2	C5-H8-02 4909167	·	1000		 X	- ×	-
3393	L96125000	ETHYL CHLOROFORMATE						4907617				 X	-	-
3434	024550000	ETHYL METHACRYLATE		2277	ETH	E115	2-3-0	Cé-H10-02 4907232		1000			- 1	-
<u>52-50-0</u>	P92100000	ETHYL METHANESULFONATE						C3-H8-03-5		·			- x	-
4990	XK9900000	ETHYL THIOCYANATE						C3-H5-N-S	 1		10000		-	-
100-41-4 6424	DA0700000	ETHYLBENZENE		1175	ETB							 x	-	•
538-07-8 4991		ETHYLBIS (2-CHLOROETHYL)						C6-H13-C12-	N				~	-
4992		ETHYLENE FLUOROHYDRIN						C2-H5-F-0	 X	· 1	10		-	-
107-21-1 8660	KW2975000	ETHYLENE GLYCOL			EGL	1911	 [-[-i]					 ĭ	-	-
75-21-8 594	KX2450000	ETHYLENE DXIDE		1040	EOX	1191	 2-4-3	62-H4-9					-	-

. .-

Ŋ

í

1

	<u></u>	INSOLIDATED LIST OF LHEATCALS			*****	*****		9 58GU	ence:	÷	A6E		ە2
CAS NO.	RTECS NO.	CHEMICAL NAME	DOT <u>NO.</u>	CDAS' Guari	T INIS D CODE	CODE	MOLECULAR F	GRMUL Ce	A R-			ŧ	RCRA
NDAA NO.				*****			<u>STC</u> 3	<u>02 CL</u>	<u>A RQ</u>	TPQL	<u>/ TPQ2</u>	<u>313</u>	LST
74-85-1 3404	KU5340000	ETHYLENE, LIQUID	1962	ETL	1115	1-4-2	C2-H4 4905734					ĭ	
50-00-4 3408	AH4025000	ETHYLENEDIAMINE TETRAACETIC (EDTA)	ACID 7117	EDT			C10-H16-N2 4966710		5000		~ ~		-
107-15-3 3407	KH8575000	ETHYLENEDIAMINE	1604	EDA	1130	3-2-9	C2-H8-N2 4935628	x x	5000	10000	-		-
151-56-4 4995	KX1576000	ETHYLENEIMINE (AZIRIDINE)	1185	ETI	1175		C2-H5-N 4906220	x x		500		 X	x
96-45-7	NI9625000	ETHYLENETHIOUREA			1159	• •	C3-H6-N2-S	 X				 X	- X
52-85-7	TF7650000	FAMPHUR					C10-H16-N-		52 1000	•••			x
2224-92-6	TB3675000	FENAMIPHOS					C13-H22-N-		-				-
	760350000	FENITROTHION	. .	• •			C9-H12-N-0			500	• •		-
	TF3850000	FENSULFOTHION			1251		C11-H17-04	і -Р-52 Х					-
	6E7540000	FERRIC ANNONIUN CITRATE	9118	FAC			C6-H8-07 .: 4963349				• -		-
2944-67-4 3463		FERRIC ANNONIUM OXALATE	9119	FAO				1/3Fe					-
5468-87-4		FERRIC ANNONIUN OXALATE	9119	FAO	• •		C2-H2-04 .:	:Fe .	kH3-N		• • •	• -	-
		FERRIC CHLORIDE	2582	FCL	1265		Cl3-Fe		!000		• • •		-
3467- 7004-66-4		FERRIC DEXTRAN					4932342				• •		-
		FERRIC FLUORIDE	9120	FFX							• • •		<u>X</u> -
	808915000	FERRIC NITRATE	1466	FNT			4962626 Fe-N3-D9				• • •	• •	-
	NGB505000	FERRIC SULFATE	9121	FSF									-
	#55850000	FERROUS AMMONIUM SULFATE	9122	FAS			4963827 Fe .2H3-N	.2H2 (]4-5		· - ·	• -	-
	N05400000	FERROUS CHLORIDE									• • •	• •	-
	N08500000	FERROUS SULFATE	9125				4941131 04-5 .Fe				• - -	• -	-
3478 782-63-0		FERROUS SULFATE					4963832 04-5 .Fe		1000		• • •		-
3478				• =					1900		·		-
5000									:	100/	10000		

.....

ļ

ļ

	22 ** ** ** **	NSOLIDATED LIST OF CHENICALS				INIS		{Nage seque	******					•
	RTECS NO.	CHENICAL NAME		<u>NO.</u>	SUARD	CODE	<u>CODE</u>	HOLECULAR FORMULA				R(RA	
NGAA NO.								<u>STC 302 CLA</u>	<u>80</u>	1991 /	1782	<u>313</u>	<u>.ST</u>	Ĺ
2154-17-2	YT1575000	FLUGMETURON						C10-H11-F3-N2-D				7		
a6-73-7	LL5670000	FLUORENE			• •	F106		С13-Н10				• •	-	-
	LN6475000	FLUORINE		1045	FXX	1270		FZ				• •	-	-
764	AC1225000	FLUORDACETAMIDE			-			4904030 X X C2-H4-F-N-0		500			1 -	P.
5002					• -				- 100	100/1	0000	• •	1 i -	9
3502	AH3930000	FLUORDACETIC ACID			-			C2-H3-F-02		10/1	0000	· -	-	-
359-06-8 50 04	A06825000	FLUORDACETYL CHLORIDE		_		_		C2-H2-C1-F- 0 X	ĩ	10				
51-21-8 5005	YR0350000	FLUOROURACIL		~ •	-			C4-H3-F-N2-Q 2 X	1	500/1	.0000	-	- .	•
944-22-9 5006	TA5750000	FONOFOS			-	2685		C10-H15-0-P-92		 500	• •	-		-
50-00-0	LP8925000	FORMALDEHYDE		2209	FNS	1290	 2-4-0	С-н2-0	• •	*		-	- •	•
769 107-16-4	AM0350000	FORMALDEHYDE CYANOHYDRIN			-			4940341 (X C2-H3-N-0	1000	500		X	1 (Ц -
5008		FORMETANATE HYDROCHLORIDE			-			I C11-H15-N3-U2 .C1		1000		-		-
5009					. .	- -				500/1	0000	•	. .	-
64-18-6 3513	L24900000	FORMIC ACID		1779	FNA	1310	3-2-0	C-H2-92 4931320 X	5000			_	χi	U
540-82-1 5010	TE1050000	FORMOTHION						Cá-H12-N-04-P-52 X	1	100		-	• -	•
702-57-7	F39880000	FORMPARANATE				• •		C12-H17-N3-02	·		 6000	-	• •	•
	NJ6490000	FOSTHIETAN				• •		X Cé-H12-N-03-P-52				-		-
5012 878-19-1		FUBERIDAZOLE				• -		C11-H8-N2-0		500		•	• •	-
5013 528-86-4	984055000	FULMINIC ACID, MERCURY(II)						X CZ-Ha-N2-02	!	100/10	0000	- ·	• •	-
								×					(=	-
3517		FUHARIC ACID						C4-H4-04 4966352 X	5000			. .		-
110-00-9 785	LT8524000	FURAN		2389			1-4-1	C4-H4-0 4909175 X X	100	500	_		1	<u>.</u>
450-90-3 5015	LW9100000	GALIUM TRICHLORIDE	-	-		-		C13-6a X					• •	•
765-34-4 3535	MB3150000	GLYCIDYLADEHYDE		2522				C3-H4-O2				• •	 (::	•
		GLYCOL ETHERS				• -								-

1

T

57-72-1 K14025000 HEXACHLORDETHAME 9037 1372 C2-C14 933 1335-07-1 QJ7350000 HEXACHLORDMAPHTHALENE 1373 C10-H2-C14 5017 1 1 10000 X 70-30-4 SM0700000 HEXACHLORDPHEME 2875 C13-H5-C16-D2 Na 33540 X 1000 X 100 X 1898-71-7 UD0175000 HEXACHLOROPROPENE C3-C14 X 100 1898-71-7 UD0175000 HEXACHLOROPROPENE 2783 C12-H30-013-P4 4921423 X 100 1903-1-7 TUD180000 HYDRJEPHOSPHORANIDE 1370 3-3-2 H4-N2 H2 H4-N2 H2 H4-N2 H2 H4-N2 H2 H4-N2 H2 H4-N2 H2 H4 H2 H2 H4		<u></u>	ONSOLIDATED LIST OF CHENICALS				NEEA	(Name sec				AGE		29
X X 76-44-8 PC0700000 METTACHLOR 2761 NIC 1369 440630 1 1 76-44-8 PC0700000 METTACHLOR 2761 NIC 1369 440630 1 1 1024-57-5 PS9450000 MEPTACHLOR COMBENERS 1 1 1 1 1024-57-5 PS9450000 METACHLOR COMBENERS 2279 2-1-1 C4-CL6 1 1 116-74-1 BA2775000 HEIACHLOROFLIJS-BUTADIENE 2279 2-1-1 C4-CL6 1		RTECS NO.	CHEMICAL NAME	NO.	GUAR) <u>CODE</u>	CODE	MOLECULAR FORMU	15K-	RQ	TPQI	/ TPQ'	2 313	RCR/
T T T 76-44-9 PCD700000 HEPTACHLOR 2761 NTC 1369 1 1 3352 HEPTACHLOR COMERERS 1 1 1 1 1024-57-3 P99450000 HEPTACHLOR EPDILDE C10-HS-C17-0 1 1 87-68-3 E10700000 HEIACHLOROLIGBEN 1.3-BUTADIENE 22779 2-1-1 C4-C16 1 1 87-74-5 F1225000 HEIACHLOROEVLLOROEVLLOROEVLABRENE 2646 HCC 1374 C5-C16 1		1 - 4 - 	HALOETHERS	الاختان البائل کام منظر ہوئی		1			x				1 da 60 an da	
3352 4460633 I I I HEFTACHLOR COMBENERS I I I I 1024-57-3 P9450000 HEFTACHLOR CONSENERS I I I 1024-57-3 P9450000 HETACHLORO-I, 3-BUTADIENE 2277 2-L-L C4-CL6 I I I 1187-64-1 DA2975000 HETACHLORO-I, 3-BUTADIENE 2729 1376 Ca-CL6 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			HALONETHANES						 Y	-				-
HEP YACHLOR CONGENERS X 1024-57-5 P89450000 HEP YACHLOR CONGENERS 2279 Z-1-1 C4-CL6 3555 III-74-4 PA2975000 HEXACHLOROBENZENE 2729 1376 Ca-CL6 X 3555 III-74-7 GY1225000 HEXACHLOROBENZENE 2646 HCC 1374 C5-CL6 3555 III-74-7 GY1225000 HEXACHLOROBENTABLENE 2644 HCC 1374 C5-CL6 3550 III-74-7 GY1225000 HEXACHLOROBENTABLENE 2647 IIII-74 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			HEPTACHLOR	2761	нтс	1369			х — — У	- 1			 Y	- 7
1 1 87-68-3 EJ0700000 HEXACHLORD-1,3-BUTADIENE 2279 2-1-1 C4-C16 X 3557 J18-74-1 DA2975000 HEXACHLORDENZENE 2729 1376 C6-C16 X 3558 Y7-47-4 GY1225000 HEXACHLORDETHAME 2640 HCC 1377 C2-C16 X 3559 X14025000 HEXACHLORDETHAME 9037 1372 C2-C14 4935015 X 1 160 X 3550 X14025000 HEXACHLORDETHAME 9037 1372 C10-H2-C14 1 100 X 3550 X14025000 HEXACHLORDENENE 2875 C13-H5-C14-02 Na X 1000 X 3550 X1575000 HEXACHLORDEPRENE 2875 C13-H5-C14-02 Na X 1000 X 3560 X1575000 HEXACHLORDEPRENE 2783 C12-H5-C14-02 Na X 1000 X 3561 X1575000 HEXACHLORDEPRENE 2783 C12-H5-C14-02 Na X 1000 X 302-01-2 NUTIB	ـــــــــــــــــــــــــــــــــــــ	- * * *	HEPTACHLOR CONGENERS						• v	-	/	• •	- ^-	-
87-68-3 EJ0700000 HEXACHLORO-1,3-BUTADIENE 2279 2-1-1 C4-C16 X 118-74-1 DA2975000 HEXACHLOROBENTENE 2729 1376 C6-C16 I I X 3555 1 DA2975000 HEXACHLOROBENTENE 2729 1376 C6-C16 I I X 3556 1 1 1 1 I X I I I X 3557 1 2544 HCC 1374 C5-C16 I I X I I X I I X I I I X I I I X I I I X I I I X I I I I X I	1024-57-3	P99450000	HEPTACHLOR EPOXIDE						k 	-				-
118-74-1 BA29775000 HEXACHLOROBENTEME 2729 1376 Ca-C16 1 1 X 3556 4753015 X 1 100 X 100 X 3558 691225000 HEXACHLOROCYCLOPENTADIENE 2646 HCC 1374 C5-C16 X 1 100 X 3558 1372 C2-C16 4941225 X 1 X X 1335-67-1 0J7350000 HEXACHLOROPANAPHTHALENE 1373 C10-H2-C16 X <t< td=""><td></td><td>EJ0700000</td><td>HEXACHLORO-1, 3-BUTADIENE</td><td>2279</td><td></td><td></td><td>2-1-1</td><td></td><td>1 </td><td>-</td><td></td><td></td><td>- -</td><td>-</td></t<>		EJ0700000	HEXACHLORO-1, 3-BUTADIENE	2279			2-1-1		1 	-			- -	-
77-47-4 GY1225000 NEXACHLOROCYCLOPENTADIENE 2646 HCC 1374 C5-C14 4953015 X 1 100 X 557 33 4735015 X 1 100 X 4941225 X 1 100 X 5017 1375 0000 HEXACHLOROMAPHTHALENE 1373 C10-H2-C14 1 10000 X 5017 1001 HEXACHLOROMAPHTHALENE 1373 C10-H2-C14 1 10000 X 5017 100175000 HEXACHLOROMAPHTHALENE 2875 C13-H5-C16-02 Na X 100 1898-71-7 UD0175000 HEXACHLOROPROPENE 2703 C12-H50-013-P4 4921423 100 X 100 1898-71-7 TD0075000 HEXACHLOROPROPENE 2703 C12-H50-013-P4 4921423 100 X 1000 X 1000 <t< td=""><td>118-74-1</td><td>DA2975000</td><td>HEXACHLORGBENZENE</td><td>2729</td><td></td><td>1376</td><td></td><td>Có-C16</td><td>•••</td><td>-</td><td></td><td></td><td></td><td><u>x</u> -</td></t<>	118-74-1	DA2975000	HEXACHLORGBENZENE	2729		1376		Có-C16	•••	-				<u>x</u> -
\$7-72-1 X14025000 HEXACHLORDETHAME 9037 1372 C2-C16 4941225 X 1 X 1335-07-1 QJ7350000 HEXACHLORDETHAME 1373 C10-H2-C16 1 10000 X 5017 X 10000 HEXACHLORDPHEME 2875 C13-H5-C16-D2 Na X 100 1898-71-7 UD0175000 HEXACHLORDPROPENE C3-C16 X 100 X 1898-71-7 UD0175000 HEXACHLORDPROPENE C3-C16 X 100 X 1898-71-7 UD0175000 HEXACHLORDPROPENE C3-C16 X 1000 X 1898-71-7 UD0175000 HEXACHLORDPROPENE 2793 C12-H30-013-P4 X 1000 1904-72 NU7180000 HEXACHLORDPROPENE 2793 C13-H5-C16-H2 N X 100 X 1004-72 RU7180000 HEXACHLORDPROPENE 2793 C12-H30-013-P4 4906225 X X 1 1000 X 1004-72 RU7180000 HYDRJEINE 1050 HDC 1390 3-3-2 H4-H2	77-47-4	671225000	HEXACHLOROCYCLOPENTADIENE	2646	нсс	1374			X 	-1			- ^X -	X -
1335-67-1 037350000 HEXACHLORDNAPHTHALENE 1373 C10-H2-C14 1 10000 1335-67-1 SN0700000 HEXACHLORDPHENE 2875 C13-H5-C14-62 Na 3540 X 100 X 100 X 100 1898-71-7 UD0175000 HEXACHLOROPHENE 2783 C12-H50-013-P4 4921423 X 100 157-58-4 XF1575000 HEXACHLOROPOPENE C3-C16 X 1000 X 837 490421423 X 100 X 1000 X 1000 590-31-7 TD0875000 HEXAMETHYL TETRAPHOSPHATE 2783 C12-H30-013-P4 4921423 X 1000 500-31-7 TD0875000 HEXAMETHYL PHOSPHORANIDE H129 C4-H18-H3-G-P X 302-01-2 MU71800000 HYDROJEN CHLORIDE 1050 HDC 1430 4-H2 K4-M2 K12-G4-S 10034-73-2 MV404250000 HYDROJEEN CHLORIDE 1050 HDC 1430 4-4-2 C1-H 4704270 X 1 5000 X 7647-01-0 MH40255000 <t< td=""><td>67-72-1</td><td>KI4025000</td><td>HEXACHLORGETHANE</td><td>9037</td><td></td><td>1372</td><td></td><td>C2-C16</td><td>1</td><td>_1</td><td></td><td>• -</td><td>- ^-</td><td>X -</td></t<>	67-72-1	KI4025000	HEXACHLORGETHANE	9037		1372		C2-C16	1	_1		• -	- ^-	X -
70-30-4 SN0700000 HEXACHLOROPHENE 2875 C13-H5-C16-02 .Na X 100 1888-71-7 UD0175000 HEXACHLOROPROPENE C3-C14 1000 77-38-4 1F1575000 HEXACHLOROPROPENE C3-C14 1000 757-58-4 1F1575000 HEXACHLOROPROPENE 2783 C12-H30-013-P4 837 4921423 X 100 290-31-7 T00875000 HEXAMETHYL TETRAPHOSPHATE 2783 C12-H30-013-P4 837 4921423 X 100 290-31-7 564 H129 C6-H18-N3-0-P K 302-01-2 MU7180000 HYDRAZINE 2029 HDZ 1390 3-3-2 H4-N2 964 4904225 X X 1 1000 X 10034-93-2 MU70825000 HYDRAZINE SULFATE H4-N2 H4-N2 K2-04-5 7647-01-0 MN4025000 HYDRDEN CHLORIDE 1050 HDC 1430 4-4-2 C1-H K404270 X 1 500 X 74-90-8 MM6825000 HYDRDGEN CHLORIDE 1613 HCN	1335-87-1	QJ7350000	HEXACHLORONAPHTHALENE			1373			1 	-1		• •	- ^X -	X -
1898-71-7 UD0175000 HEXACHLORDPROPENE C3-C16 1000 757-58-4 XF1575000 HEXAETHYL TETRAPHOSPHATE 2783 C12-H30-013-P4 837 4921423 X 100 580-31-7 TD0875000 HEXAMETHYLPHOSPHORANIDE H127 C4-H18-N3-C-P X 302-01-2 MU7180000 HYDRAZINE 2029 HDZ 1390 3-3-2 H4-N2 X 1 1000 X 10034-93-2 MV9625000 HYDRAZINE 2029 HDZ 1390 3-3-2 H4-N2 X 1 1000 X 10034-93-2 MV9625000 HYDRAZINE SULFATE H4-N2 X2-04-5 X X 1 1000 X 7647-01-0 MW4025000 HYDROBEN CHLORIDE 1050 HDC 1430 4-4-2 C1-H X 1 500 X 7647-01-0 MW4025000 HYDROBEN CHLORIDE 1050 HDC 1430 4-4-2 C1-H X 1 500 X 7647-01-0 MW6825000 HYDROBEN CHLORIDE 1613 HCN	70-30-4	SH0700000	HEXACHLOROPHENE	2875				C13-H5-C16-02	.Na	_ <u>1</u>	19909	• -	- ¹ -	-
1000 757-58-4 XF1575000 HEXAETHYL TETRAPHOSPHATE 2783 C12-H30-D13-P4 837 4921423 X 100 580-31-7 TD0875000 HEXAMETHYLPHOSPHORAMIDE H127 C6-H18-N3-Q-P 302-01-2 MU7180000 HYDRAZINE 2029 HDZ 1390 3-3-2 H4-N2 564 4796225 X 1 1000 K 10034-93-2 NV9625000 HYDRAZINE SULFATE H4-N2 H2-Q4-S K 7647-01-0 HW4025000 HYDROBEN CHLORIDE 1050 HDC 1430 4-4-2 C1-H 6743 4904220 X 1 500 X 74-90-B RW6825000 HYDROBEN CHLORIDE 1613 HCN 1440 4-4-2 C1-H 3614 4904270 X 1 500 X 722-84-1 HX0900000 HYDROGEN FLOURIDE 1052 HFX 1460 F-H 3022 2023 HYDROGEN PEROLIDE 2015 HP0 1470 H2-02 4918335 1 1000 <t< td=""><td></td><td>UD0175000</td><td>HEXACHLOROPROPENE</td><td></td><td></td><td></td><td></td><td></td><td>K </td><td>100</td><td></td><td>· -</td><td></td><td>1 -</td></t<>		UD0175000	HEXACHLOROPROPENE						K 	100		· -		1 -
580-31-7 TD0875000 HEXAMETHYLPHOSPHORANIDE H127 C4-H18-N3-0-P 302-01-2 MU7180000 HYDRAZINE 2029 HDZ 1390 3-3-2 H4-N2 564 4906225 X 1 1000 X 10034-93-2 HV9625000 HYDRAZINE SULFATE H4-N2 H2-04-5 X 7647-01-0 HW4025000 HYDROBEN CHLORIDE 1050 HDC 1430 4-4-2 C1-H 6743 H04025000 HYDROBEN CHLORIDE 1050 HDC 1430 4-4-2 C1-H 6743 H04025000 HYDROBEN CHLORIDE 1613 HCN 1440 4-4-2 C1-H 6743 HW7890000 HYDROBEN CYANIDE 1613 HCN 1440 4-4-2 C-H-N 3614 1052 HFX 1460 F-H 4921417 X 10 100 X 7664-39-3 HW7890000 HYDROBEN FLOURIDE 1052 HFX 1460 F-H 4930024 X 100 100 X 7722-84-1 HX0900000 HYDROBEN SELENIDE		XF1575000	HEXAETHYL TETRAPHOSPHATE	2783		• •				.000	·	• -		X
302-01-2 HU7180000 HYDRAZINE 2029 HDZ 1390 3-3-2 H4-N2 4906225 X X 1000 X 10034-93-2 NV9625000 HYDRAZINE SULFATE H4-N2 H2-04-5 X 1000 X 7647-01-0 HW4025000 HYDROBEN CHLORIDE 1050 HDC 1430 4-4-2 C1-H 4904270 X 1 500 X 74-90-8 RW6825000 HYDROBEN CHARIDE 1613 HCN 1440 4-4-2 C-H-N 3614 74-90-8 RW6825000 HYDROBEN CYANIBE 1613 HCN 1440 4-4-2 C-H-N 3614 7647-37-3 HW7890000 HYDROBEN FLOURIDE 1052 HFX 1460 F-H 4930024 X 100 100 X 7722-64-1 MX0900000 HYDROBEN FEROILDE 2015 HP0 1470 H2-02 4918335 1 1000 7783-07-5 MX1050090 HYDROBEN SELENIDE 2202 1475 H2-Se 4905415 1 10		T00875000				HL29			ł 	100		-		1 -
564 4906225 X X I 1000 I 10034-93-2 MV9625000 HYDRAZINE SULFATE H4-N2 .H2-04-5 7647-01-0 HN4025000 HYDROBEN CHLORIDE 1050 HDC 1430 4-4-2 Cl-H 6743 4904270 X I 1 500 X 74-90-8 HN6825000 HYDROBEN CHLORIDE 1613 HCN 1440 4-4-2 C-H-N 3614 4921417 X I 10 100 X 7647-97-8 HN7890000 HYDROBEN FLOURIDE 1052 HFX 1460 F-H 5022 4930024 X I 100 100 I 7722-84-1 MX090000 HYDROBEN PERQIIDE 2015 HFD 1470 H2-02 5023 4918335 X I 1000 7783-07-5 MX1050090 HYDROBEN SELENIDE 2202 1475 H2-Se 694 105 105			HYDRAZINE	2029	HDZ	1390	 3-3-2	H4-N2				-		-
6743 4704270 X X 1 500 X 74-90-B NW6825000 HYDRUGEN CYANIDE 1613 HCN 1440 4-4-2 C-H-N 3614 4921417 X 10 100 X 7664-39-3 NW7890000 HYDRUGEN FLOURIDE 1052 HFX 1460 F-H 5022 4930024 X 1 100 100 I 7722-84-1 MX0900000 HYDRUGEN PERUXIDE 2015 HPU 1470 H2-02 5023 4918335 X 1 1000 7783-07-5 MX1050000 HYDRUGEN SELENIDE 2202 1475 H2-Se 694 10	-				• -			. 4906225 X X		_! .	1000	-	- <u>1</u> -	X -
74-90-B NW6825000 HYDRUGEN CYANIDE 1613 HCN 1440 4-4-2 C-H-N 3614 4921417 X X 10 100 X 7664-39-3 HW7890000 HYDRUGEN FLOURIDE 1052 HFX 1460 F-H 5022 4930024 X X 100 100 1 7722-84-1 MX0900000 HYDRUGEN PERQXIDE 2015 HPQ 1470 H2-Q2 5023 4918335 X 1 1000 7783-07-5 MX1050000 HYDRUGEN SELENIDE 2202 1475 H2-Se 694 4905415 X 1 10	7647-01-0	MW4025000	HYDROGEN CHLORIDE	1050		1430	 4-4-2	с <u>1-н</u>		•		•	- ×-	-
7664-39-3 HW7890000 HYDROGEN FLOURIDE 1052 HFX 1460 F-H 4930024 X X 100 100 1 5022 1052 HFX 1460 F-H 4930024 X X 100 100 1 7722-84-1 HX0900000 HYDROGEN PERGXIDE 2015 HP0 1470 H2-02 4918335 X 1 1000 7783-07-5 MX1050000 HYDROGEN SELENIDE 2202 1475 H2-Se 4905415 X 1 10	74-90-8	RW6825000						C-H-N						-
7722-84-1 MX0900000 HYDROGEN PEROXIDE 2015 HPO 1470 H2-O2 5023 4918335 X 1 1000 7783-07-5 MX1050000 HYDROBEN SELENIDE 2202 1475 H2-Se 694 4905415 X 1 10				1052		1460		F-H					-	-
7783-07-5 MX1050000 HYDROBEN SELENIDE 2202 1475 H2-Se 694 4905415 X 1 10	5022 7722-84-1	MX0700000						4930024 X X						X
			HYDROBEN SELENIDE	2202	• •	1475				<u>-</u> ! .	1000	,		-
7783-06-4 MX1225000 HYDROGEN SULFIDE 1053 HDS 1480 3-4-0 H2-5										<u>-</u> ¹ .	10	- 1		-

i

1

ł

1

.

.

*****		NSOLIDATED LIST OF CHENICALS HA			71470	NEDA	****							-
	RTECS NO.	CHEMICAL NAME	NO.	COAST Guard	CODE	CODE	MOLECULAR	LER	-		**		CRA	
NOAA NO.							<u>STC</u>	<u>302 CLA</u>	RQ	<u> 1901 /</u>	1902	<u>513</u>	51	
193-39-5	NK9300000	INDEND(1,2,3-CD) PYRENE					C22-H12	X	!				X	
3463-40-6 36 5 5	N04900000	IRON, PENTACARBONYL-	1994		1521		C5-Fe-05	x		100		-	-	
123-92-2 8743	NS7600000	ISO-ANYL ACETATE	1104	ANL	1530	1-3-0	C7-H14-02	 1	5000			-	-	
110-19-0 3662	AI4025000	ISD-BUTYL ACETATE	1213		1534		C6-H12-02 4909207		 5000			•	-	
78-81-9	NP9900000	ISO-BUTYLAMINE	1214		N319		C4-H11-N 4908186	 1				-	-	
	NQ4375000	ISO-BUTYRIC ACID	2529		-		C4-H8-02 4731438	 1				-	-	•
	PC1225000	ISOBENZAN		•	-		C9-H4-C18				 6666	-	-	•
	NP9525000	ISOBUTYL ALCOHOL	1212	IAL	1536	1-3-0	C4-H10-Ū 4909131					-	- I	•
	NQ4025000	ISOBUTYRALDEHYDE	2045	BAD	-	 2-3-1	C4-H8-0 4908185	• •				- ¥	•	
	124900000	ISOBUTYRONITRILE	2284	IBN	K206	 3-3-0	C4-H7-N	 v				¥	-	
465-73-6	101925000	ISODRIN			-		4909208 C12-H8-C14	5	• •			-	-	
5033 55-91-4 5034	TE5075000	ISOFLUORPHATE			-		C6-H14-F-(100	100/1	0000	-	X - X	•
	GW7700000	ISOPHORONE	1993	IPH	- 1538		C9-H14-0 4915278	• •				-	-	•
		ISOPHORONE DIISOCYANATE	2290				C12-H19-N2	2-02				-	-	
		ISOPRENE				7-4-7	C5 -HB 4907230					•	-	•
		ISOPROPANOLAMINE DODECYLBENZENE SULFONATE	9127				C18-H30-03	5-S .C3-	-H9-N-Q	•		•	-	•
	NT8050000	ISOPROPYL ALCOHOL (313 - MANUFA TURE ONLY BY STRONG ACID PROCESS)	C- 1219	IPA								- X	-	•
	L96475000	ISOPROPYL CHLOROFORMATE	2407		-		C4-H7-C1-C	2	1			-	-	•
525- 55-8 3710	L98750000	ISOPROPYL FORMATE	2408			2-3-0	C4-H8-02			500	. 	-	-	•
		ISOPROPYLMETHYLPYRAZOLYL DINETHYL Carbanate			-		C10-H17-N3	5-02				-	-	•
143-50-0 3721	PC3575000	KEPONE			- K215		E10-E110-0 4960140	}				-	- ĭ	•
78-97-7		LACTONITRILE		•		4-2-!	CJ-H5-N-0					-	-	

.

	<u> </u>	DNSOLIDATED LIST OF	CHEMICALS	HAZARDOUS	MATERIALS		(Name sequence)	PAGE		30
<u>CAS NO.</u> MOAA NO.	RTECS NO.	CHENICAL NAME		DOT NO.	COAST INIS GUARD CODE	<u>CODE</u> <u>H</u> C	<u>DLÉCULAR FORMULA</u> CER- <u>302 CLA</u> R <u>0</u>	<u>TPG1 / TPG2</u>	RCI 313 L4	RA : <u>ST</u> :
	0E7875000	LASIOCARPINE			*****	(21-H33-N-07	*****	*****	
7439-92-1	0F7525000	LEAD		2291						• ·
7645-25-2 3733	C61000000	LEAD ARSENATE		1617		 Ĥ	X 1 Ns-H3-04 .xPb X 5000		*	• •
		LEAD ARSENATE		1617			As-H-04 .Pb X 5000			• •
		LEAD ARSENATE		1617	Lar	P				• -
7758-95-4 3735	0F9450000	LEAD CHLORIDE		2291		C				• •
3736		LEAD COMPOUNDS			• -				 х	• -
13814-96-5 3739	ED2700000	LEAD FLUOBORATE		2291			2-FB .Fb 4944133 X 100	• • • • • •		• -
7783-46-2 3740	061225000	LEAD FLUORIDE	• • • •	2811	LFR		2-Pb 4944140 X 100			• •
0101-63-0 3741	061515000	LEAD IDDIDE		2811	LID		2-Pb 4966950 X 100			• •
0099-74-8 3742	062100000	LEAD NITRATE		1469	LNT	 N	12-06.Pb X 100	* * •		• -
7446-27-7	063675000	LEAD PHOSPHATE			• • • •	0	8-P2.3Pb X 1	~ ~ ~ ~ ~	 x	 (U
1072-35-1 3746							18-H36-02 .1/2Pb X 5000			• -
7428-48-0 3746		LEAD STEARATE		2811	LSA	 C	36-H70-04 .Pb 4966960 X 5000			· -
52652-59-2 3746		LEAD STEARATE								• •
6189-09-4 3746		LEAD STEARATE			LSA	 C	36-H70-06-Pb2 X 5000			• ••
		LEAD SUBACETATE			• • • •		4-H10-08-Pb3 X 1		 X	· -
7446-14-2 6895	064375000	LEAD SULFATE		2291	LSF		4-5.Pb 4966650 1 100			• -
5739-60-7 5895		LEAD SULFATE		1794	LSF		2-04-5 .xPb X 100			-
1314-87-0 3748	064550000	LEAD SULFIDE		2011	LSU	P	5-5 4966987 x 5000			• -
592-67-0 3750		LEAD THIOCYANATE				0		• • • • •		• -
1609-90-5	TB1720000	LEPTOPHOS			P128	0	13-H10-Cr-C12-02-P-5			• -

	<u> </u>	DNSOLIDATED LIST OF CHENICALS	HAZARDOU	5 NATER	IALS		(Name seguenc	e) 	PAGE	3:
	RTECS NO.	CHEMICAL NAME	DOT NO.	CDAST SUARD	INIS CODE	NFPA <u>CODE</u>	NOLECULAR FORMULA CER-	20	7501 . 7507 71	ACR
NDAA NO.					*****			<u></u>	TFQ1 / TFQ2 31	<u>. 131</u>
541-25-3 5041	CH2975000		195:	, 			C2-H2-As-Cl3 4920517 X	<u>!</u>	10	
58-69-9 9399	574700000	LINDANE	276	BHC	1595		Cá-H6-C15 X X	1	1000/10000 1	X
4307-35-8 3766	682915000	LITHIUM CHRONATE	9134	LCR			Cr-H2-04 .2Li 4963720 X	1000		
7580-67-8 996	036300000	LITHIUM HYDRIDE	280:	5 LHD	1503		H-Li 4916425 X		100	
108-39-4 8468	606125000	N-CRESOL	2076			3-1-0) С7-нв-о х	 1000	χ	 X
79-65-0 8572	CI7350000	N-DINTROBENZENE	1597	·	0970		C6-H4-N2-94	 100	• • • • •	
554-84-7 9903	SH1925000	M-NITROPHENOL	1663				Cå-H5-N-D3	100		
99-08-1 9907	172975000	M-NITROTOLUENE	1664		1945	2-1-4	С7 -H7-N- 02 Х 1			
	ZE2275000	M-XYLENE	1307				CB-H10	 000	·	
121-75-5	WN8400000	MALATHION	2783	NLT	1616		C10-H19-06-P-52		^.	• -
110-16-7	0H9625000	MALEIC ACID	2215	HLI			C4-H4-O4 4941155 X 5			• -
108-31-6 3806	GN3675000	MALEIC ANHYDRIDE	2215		1618		C4-H2-03	000		. <u>-</u> х
109-77-3 3809	003150000	MALDNONITRILE	2647		• •	- -	C3-H2-N2 X X 1		^-	• -
	0P0700000	MANEB	2968		H177		C4-H7-N2-S4 .Mn			-
	009275000	MANGANESE			1620	• -				-
		MANGANESE COMPOUNDS	• • • •		• •					-
108-78-1	050700000	MELANINE			• -		C3-H6-N6		^X	-
148-82-3	AY3675000	MELPHALAN			• •		C13-H18-C12-N2-02			-
950-10-7 5047	JP1050000	MEPHOSFOLAN	• • • •		• -		CB-H16-N-03-P-52	 !		<u> </u>
	AI8575000	MERCURIC ACETATE	1629	MAT	• • •		X C4-H6-O4 .Hg 4923241 X			-
7487-94-7 3828	000001940	MERCURIC CHLORIDE	1624	MRC	• - •		C12-Hg 4923245 X			-
592-04-1 3829	OW1515000	MERCURIC CYANIDE	1636	HCN			C2-Hg-N2 4923246 #			-

	<u>00</u>	INSOLIDATED LIST OF CHEMICALS	HAZA					(Nage seque	nce)	PA6)E		32
CAS NO. Noaa NO.	RTECS NO.	CHENICAL NAME		DOT <u>NO.</u>	CDAS' <u>Guar</u> i	i inis) <u>code</u>	NFPA CODE	MOLECULAR FORMULA LER STC 302 CLA	- 80	TPQ1 /	7207	RI 313-1	CRA
		MERCURIC NITRATE	*****	1625	MNT	يون جو خان		N2-06 .Hq					
3830 	GR8223000							4918769 X	10			-	-
21908-53-2 5050	Q W8750000	MERCURIC DXIDE		1641	NOX			Hg-0 4923251 X	1	500/1	0000		
7763-35-9	010500000	MERCURIC SULFATE		1645	MRS			04-5 2Hg 4923257 X	 10			-	-
592-85-8 10 46	IL1550000	MERCURIC THIOCYANATE		1646	HRT			C-N-S .1/2Hg 492325B %	 10			-	-
7782-86-7 3837		MERCUROUS NITRATE		1627	HRN			Hg2-N2-06 1	 10			-	-
10415-75-5	000000BWD	MERCUROUS NITRATE		1627	MRN			N-03 .Hg 4718752 X				-	-
	074550000	MERCURY				1631		Hg 4944325 X				- 1	- · X ·
1052		MERCURY COMPOUNDS			-							<u>`</u>	-
	UC7800000	NETHACROLEIN DIACETATE			-			C8-H12-O4				- -	-
760-93-0 50 5 3	025700000	METHACRYLIC ANNYDRIDE			-			С8-н10-03	• • •	1000		-	
	UD1400000	METHACRYLONITRILE			-	1654	2-3-2	C4-H5-N		• • •		-	•••••
	*	METHACRYLOYL CHLORIDE			-			C4-H5-C1-0		500		-	X
0674-80-7 5056	074950000	METHACRYLOYLOXYETHYL ISOCYANATE			-			C7-H9-N-03 X		100		-	
	TB4970000	METHAMIDOPHOS			•	M308	• •	62-H8-N-02-P-5		•		-	
	PB2975000	METHANESULFONYL FLOURIDE			-			С-H3-F-02-5				-	
		METHANOL		1230	MAL	1660		E-H4-0		1000		- ·	 v :
	UT1400000	NETHAPYRILENE			-			4909230 1 C14-H19-N3-S				X	
950-37-8 5059	TE2100000	NETHIDATHION			-	Ħ105		C6-H11-N2-04-P-53		•		-	X U
	FC5775000	METHIOCARB		2757	HCD			C11-H15-N-02-5				-	
6752-77-5 5061	AK2975000	NETHONYL				1644		4962145 X X C5-H10-N2-02-S	• • •				
	KJ3675000	METHOXYCHLOR		2761		1546							
		METHOXYETHYLMERCURIC ACETATE						4960646 X C5-H10-Ha-03				X 	ιi

			157	*****		NPRI	•								
<u>CAS NO.</u> NGAA NO.	RTECS NO.	CHENICAL NAME	NO.	GUARD	CODE	CODE	NOLECULAR I		LER-		<u>TPQ1 /</u>	TPG2		RCRA	
					~~~~		C4-H5-C1-								-
80-53-7	A56380000	METHYL 2-CHLORBACRYLATE						ية -	-	1	500			•	
76-33-3 107 <b>8</b>	AT2800000	METHYL ACRYLATE	1919	nan 	1653	2-3-2	C4-H6-02 4907245	-	-					-	
79-22-1 1096	F83675000	NETHYL CHLOROFORMATE	123B	HHC			C2-H3-C1-( 4907429		X	1000	500			X	
524-92-0 3268	J01927500	NETHYL DISULFIDE	2381		D651		C2-H6-S2	ž	-		100		-	-	
78-93-3 1105	EL5475000	METHYL ETHYL KETONE	1193		0430	[-3-0	C4-H9-0 4909243	-	- ĭ	5000		• •	X	x	
74-68-4	PA9450000	METHYL IODIOE	2644		1772		С-H3-I	-	- X				. – Х	- x	
108-10-1	SA9275000	METHYL ISOBUTYL KETONE	1245	HIK	1385		C5-H12-G 4909245	-	-	 5000			- <b>-</b>	-	
-24-93-9	N97450000	METHYL ISOCYANATE	2460		1773	 2-3-3	C2-H3-N-0	-	-		· · ·		* _	-	
1112 556-61-6	PA9625000	METHYL ISOTHIOCYANATE	2477		H345		4907448 C2-H3-N-S	<u>1</u>	1 -	1			x	<u>x</u> -	
3947 74-93-1	PB4375000	NETHYL MERCAPTAN	1064	NHC	1643		C-H4-S	Х -	•		500		-	-	
3950 80-62-6	075075000	METHYL METHACRYLATE	1247		1774	2-3-2	4905520 65-88-82	X -	X -	100	500		-	<u>x</u>	
7075		NETHYL PHENKAPTON		• •			4907250 C9-H11-C12	-		1000		• •	۲_ ۲_	X -	
5070				• •				ľ		·	500		-	-	
1126			9206				C-H3-C12-0 4936020	.X	<b>-</b> .		100			-	
1634-04-4 7091		METHYL TERT-BUTYL ETHER			B146		C5-H12-0 4908224		_				X	_	
556-64-9 5072		METHYL THIOCYANATE			H346		C2-H3-N-S	X	-	1	10000		-	-	
79-94-4 3976	EN9800000	METHYL VINYL KETONE	1251	HVK		 3-3-2	C4-H5-D 4907260						-	-	
101-58-8 8568		METHYLENE BIS (PHENYLISDCYANATE	2489	• • •	1073		C15-H10-N2	-02		·			- X	-	
74-95-3 3093		METHYLENE BRONIDE					C2-H5-8r	-	 X	· 1000	• • •		Т. У	- 1	
		METHYLHYDRAZINE	1244					- 7		·	F	÷ -	- ,	-	
	9W1750900	NETHYLNERCURIC DICYANAMIDE		• <del>•</del> •			4906230 C3-H6-Hg-N	4 14					r -	χ -	
		METHYLTHIOURACIL		· - ·			C5-H6-N2-0	- <u>-</u>			500/1		-	-	
 75-79-6	VV4450000	METHYLTRICHLOROSILANE	1250	NTS	• •	 3-3-2	C-H3-C13-S	- li	¥ 	!			-	X -	



-----

	<u>00</u>	INSOLIDATED LIST OF CHEMICALS HA				(Name s	equenc	:e)	74 	6E		34	4 
AS NO.	RTECS NO.	CHENICAL NAME	DOT <u>NO.</u>	COAST IN BUARD CO	IS NFPA De code	MOLECULAR FOR	CER-				9	RCRA	A
IDAA NO.						<u>51C 302</u>	<u>CLA</u>	<u>RQ</u>	<u>TPQ1 /</u>	TPOZ	<u>313</u>	<u>191</u>	!
129-41-5 5077	FC9050000	METOLCARB				C9-H11-N-O2		!	1007	10000	_		
786-34-7 3977	685250000	NEVINPHOS	2783	PHD 20	65	C7-H13-06-P 4921531	. <u>.</u>	 10		-	• -	-	
315-18-4 3978	FC0700000	MEXACARBATE	2757	ZEC 21	28	C12-H18-N2-0 4921541		 10 <b>0</b> 0			• •	-	
	DJ0250000	MICHLER'S KETONE		72	06	C17-H20-N2-0	, <b></b>	, .			• - Y	-	
50-07-7 5080	CN0700000	NITONYCIN C		 A6	17	C15-H18-N4-0		· _		 tóbàù	• •	- 1	
313-27-5	8A4725000	MOLYBDENUM TRIOXIDE		NTO		Ha-03		-			 v	-	
	TC4375000	MONOCROTOPHOS			90	C7-H14-N-05-		• -			• -	-	
	KH2150000	MONOETHYLANINE	1036	EAN 10	 70	52-H7-N		• -				-	
	PF6300000	NONOMETHYLANINE	1061	MTA 16								-	
8850 2763-96-4	NY3325000	nuscinol		• • •		4905530 C4-H6-N2-02	ľ 	100			• -	-	
5082 505-60-2	WE0900000	MUSTARD GAS	1955			X 0 C5-H8	<u> </u>	1000	10000			ľ -	
5083		N'-NITROSODIMETHYLANINE				4908234 X		_1	500		. X	-	
5093							1 	_1	1000		. X_	ĩ	
5018		N,N'-DIBUTYLHEXAMETHYLENEDIAMINE				UI4-H32-NZ X		_1	500			-	
.615-80-1	HV2275000	N.N'-DIETHYLHYDRAZINE				C4-H12-N2	X	_!				K.	
121-69-7 3247	BX4725000	N,N-DIMETHYLANILINE	2253	09	31	C8-H11-N					X	-	
62-44-2	A#4375000	N-(4-ETHOXYPHENYL)-ACETAMIDE	- <b>-</b> •		•	C10-H13-N-02		-			-	- . X	
591-08-2	YR7700000	N-(AMINOTHIOXOMETHYL) ACETAMIDE				C3-H6-N2-0-S		- 1000				- X	
71-36-3 277	ED1400000	N-BUTYL ALCOHOL			60 1-3-	0 C4-H10-D 4909117	 X	- 5000			 χ	-	
759-73-9	YT3150000	N-NITROSO-N-ETHYLUREA				C3-H7-N3-02	 X	-			 Х	•	
	MF4200000	N-NITROSO-N-METHYL-N'-NITRO- GUANIDINE	1325			C2-H5-N5-03 4916723	 1	- 1				÷ X	
		N-NITROSO-N-METHYLURETHANE	<b></b>			C4-H8-N2-03	 X	- 1			• -	2 X	
		N-NITROSD-N-METHYLUREA				C2-H5-N3-02		-			• -	-	

____

	<u></u>	NSOLIDATED LIST OF CHENICALS					(Na				ودو بندی بده		Dagarana		35	
CAS NO.	RTECS NO.	CHEMICAL NAME		CDAST GUARD		CODE	MOLECULAR		EK-					P	CRA	Ē
NDAA NO.							<u> 312</u>	<u> </u>	LA	<u>90</u>	TPQL		PQ2	<u>313</u>	<u>LST</u>	
724-16-3	EJ4025000	N-NITROSODI-N-BUTYLAMINE			1944		C8-H18-N	12-0	X	:				X	X	į
521-64-7	JL9700000	N-NITROSODI-N-PROPYLAMINE			1948		C6-H14-N	12-0	 x	· -		•		 X	- 1	
55-18-5	1A3500000	N-NITROSODIETHYLAMINE		• • •	1947		C4-H10-N	2-0	 Y	· _ ·		-		· •	•	
86-30-6	JJ9800000	N-NITROSODIPHENYLAMINE			N109		C12-H10-	 N2-0	• 	·		-	<b></b>	· -	-	
4549-40-0	YZ0875000	N-NITROSOMETHYLVINYLAMINE			• -		C3-H6-N2	-0	X 	100		-			-	-
59-89-2	QE7525000	N-NITROSOMORPHOLINE			1943		C4-H8-N2	-02	X 	-		-		ι -	<u>х</u> -	-
543-55-8	956550000	N-NITROSONORNICOTINE	4	• • •	-		C9-H11-N	3-0		-		-		X -	-	-
		N-NITROSOPIPERIDINE			1949		C5-H10-N			-		-		X	-	-
					•		• • •		1 -	-!		-		X	X	6 -
		N-NITROSOPYRROLIDINE			_		C4-H9-N2 		K	-1		-		-	X	{
300-76-5 3999	TB9450000	NALED	2783	NLD	0932	• •	C4-H7-Br 496165		04-P K	10		-		-	-	
91-20-3 8873	QJ0525000	NAPHTHALENE	1334	NTN	1810	2-2-0	C10-Ha 494036	0	¢	100				X	X	ij
1338-24-5 7164	<u>9K8750000</u>	NAPHTHENIC ACID	9137	NTI	-		496235	6	 (	-		-		-	-	-
7440-02-0 5084	er5950000	NICKEL		NKA	1842		Ni -	• • •	 (	-	 1000(	- · 0		- X	-	-
	WS6050000	NICKEL ANMONIUM SULFATE	9138	NAS	-		H3-N .H2 496636	-04-5		- Ni		-		-	-	-
		NICKEL CARBONYL	1259	NKC					• •	-				-	-	-
7718-54-7	QR6475000	NICKEL CHLORIDE	9139	NCL								- ·		-	1 -	-
		NICKEL CHLORIDE	9139	NCL	-		4966364 C12-Ni	<b>(</b> ) 		5000		<b>-</b> ·		-	-	-
4026		NICKEL COMPOUNDS			-					5000		-		-	-	-
557-19-7	QR6495000	NICKEL CYANIDE	1653	NCN -	-		- : . C2-N2-Ni			-		-		x_	-	
4027		NICKEL HYDROXIDE					492327	5 /	( • -	_1		•		-	X -	9 -
4028							H2-N1-02 4963863	3		1000		-		-	-	-
4216-75-2 4029		NICKEL NITRATE	2725				N2-N1-04	·	( ⁻ -	5000		-		-	-	_
786-81-4 4031	<u>8</u> R9400000	NICKEL SULFATE	9141	NKS			04-9 .Ni 4966361									

. . .....

_. _ -

	است الدعادانية بريواني ور													
CAS NO.	RTEES NO.	CHEMICAL NAME		00T <u>NO.</u>	COAST Guard		<u>CODE</u>	MOLECULAR F	LER				ĩ	RCR
NDAA NO.								<u>51C 31</u>	<u>02 CLA</u>	<u>80</u>	<u>TPQ1 /</u>	7F02	<u>313</u>	72.
54-11-5 4032	955250000	NICOTINE		1655	NIC	1855	4-1-0	C10-H14-N2		199	100			ĩ
25-30-5 5087	857625000	NICDTINE SULFATE	•	1658	NCS			C20-H26-N4 4921451			100/	10000		-
7198	QU5775000	NITRIC ACID	-	2031	NAC	1860		H-N-03 4918528	т. х	1000	1000		 X	-
0102-43-9 1192	QX0525000	NITRIC OXIDE	-	1560	NTX	1890		N-0 4920330	 x x		100		• •	- 1
8893	AJ0175000	NITRILOTRIACETIC ACID	-	• • •				C7-H6-W-09	~ -				 X	•
98-95-3 4053	DA6475000	NITROBENZENE	-	1662	TB	1970	3-2-0	C6-H5-N-02 4921455	x x	1000	1000		 X	Ī
1122-60-7 5091	eref00000	NITRGCYCLOHEXANE	•	* • •			2-2-3	C6-H11-N-0	2 X	1	 500		• •	-
1936-75-5	KN8400000	NITROFEN	-					C12-H7-C12	-N-03				, <b>-</b> K	-
)102-44-0 4072	QN9800000	NITROGEN DIOXIDE	-	1067	NOX	1903		N-02 4920340	 1 1				, .	- X
)544-72-6 4072	9X1575000	NITROGEN DIOXIDE	-	1067	NOX	1903		N2-04 4920360		· 10			· ••	- X
51-75-2 5046	IA1750000	NITROGEN MUSTARD	-		• •			C5-H11-C12-		·	 10		 1	-
	QX2600000	NITROGLYCERIN	-	1204	•••	1912	2-2-4	C3-H5-N3-D4 4910311		· ·			· "	- ү
· <b>-</b>	SH1920000	NITROPHENOL (MIXED ISOMERS)	-	1663	NIP			C6-H5-N-03 4963394		- 1 ⁻ . 100			-	-
	SH1920000	NITROPHENOLS		1992	NIP	N607		Cà-H5-N-03	 X				-	•
		NITROSANINES			• - •				- 1 ·				-	•
321-12-6 4090	112972000	NITROTOLUENE		1664	NTR	1945	 2-1-4	C7-H7-N-02 4963155		 1000			-	-
991-42-4 5094	R88750000	NORBORNIDE				-		C33-H25-N3-	-03		100/1		-	-
		0,0-DIETHYL-S-METHYL-DITHIO- PHOSPHATE				• -		C5-H13-02-F					-	- 1
597-90-8	TF9450000	0.0-DIMETHYLPHOSPHOROTHIOIC AC	ID			-	<b>-</b> -		·		500		-	•
545-30-7 5133		0-(4-NITROPHENYL) 0-PHENYL MET PHOSPHONOTHIOIC ACID EST	HYL-			• -		C13-H12-N-0		 i			-	-
70-04-0	825410000	Q-ANISIDINE		2431		0225		C7-H9-N-G					-	-
134-29-2	 B76500000	0-ANISIDINE HYDROCHLORIDE				-		 C7-H9-N-D .	 0 - 4		• • •		-	-

+ <b></b>	<u></u>	NSOLIDATED LIST OF CHENICALS HAD					(N888 52042			*	37
	RTECS NO.	CHENICAL NAME	DOT ND.	CDAST <u>Guard</u>	INIS CODE	CODE	MOLECULAR FORMULA	-	7521 - 7505	RC	RA R
NOAA NO.				*****			<u>5TC 302 CLA</u>	<u></u>	<u>1991 / 1992</u>	<u>313 L</u>	51 (
95 <b>-48-</b> 7 3014	506300000	O-CRESOL	2076	CRO	0760	3-2-0	C7-H8-0 X (	1000	1000/10000	ĭ	7. 11
529-29-0 8570	CI7450000	0-DINTIROBENZENE	1597	DNO	0970		CE-H4-N2-04 X	100			_
2703-13-1	TB1160000	D-ETHYL D-(4-(METHYLTHID)ETHYL)PHE METHYL-FHOSPHONDTHIDIC ACID	N	• •			C10-H15-02-P-52		500		
98-72-2 8906	XT3150000	O-NITROTOLUENE	1664	NIE	1945	2-1-4	C7-H7-N-02 X	1000			~ ~
95-53-4 9129	XU2975000	O-TOLUIDINE	1708	TLI	2475	3-2-0	C7-H9-N 4913175	1		τ	
536-21-5	XU7350000	O-TOLUIDINE HYDROCKLORIDE					C7-H9-N C1-H X		~ ~ ~ ~ .	 χ	 ม ย
5155-93-3 397	XU5250000	O-TOLUIDINE HYDROCHLORIDE	1579				C7-H8-C1-N .C1-H 4921412 1				 X (j
95-47-6 9182	ZE2450000	Ũ-XYLENE	1307				C8-H10 X			 х	 %
	<u>9K0250000</u>	OCTACHLORONAPHTHALENE			1955		C10-C18			 Х	
152-16-9 4974	UX5950000	OCTAMETHYLDIPHOSPHORANIDE					CB-H24-N4-03-P2 X X				 X F
 50 <b>9</b> 5	• • • •	ORGANORHODIUM COMPLEX	2787			• •	4910547 X		10/10000	• -	
	RN1140000	OSMIUM TETROXIDE	2471	• -	1960		04-05		10006	 х	 X P
	RN3675000	QUABAIN		-			C29-H44-012			• •	
135-22-0	RP2300000				2585		C7-H13-N3-03-9	÷ •	100/10000	• •	
		OXYDISULFOTON		• -			C8-H19-03-P-93			• -	
029-15-6	R58225000	OZONE					03 V			• -	• -
5102 104-94-9	BZ5450000	P-ANISIDINE	2431		0225		х с7 <del>-н9-N-</del> 0			·	
120-71-8	826720000	P-CRESIDINE					CB-H11-N-0			· - ·	
106-44-5 8467		P-CRESOL					С7-нө-о х			х. Х	 ( 8/
	CZ7525000	P-DINITROBENZENE					Cà-H4-N2-04	• •	• • • • •	• •	
		P-NITROSODIFHENYLANINE	• • •	• • •			C12-H10-N2-0			. <u>-</u> . Х	
99-99-0 8908		P-NITROTOLUENE	1554	NTT	1945	3-1-0	C7-H7-N-D2 1			• •	

-----

ļ

į

- --

	22	ONSOLIDATED LIST OF CHEMICALS						(Name sequence)	PAGE		29
<u>CAS NO.</u> NDAA NO.	RTECS NO.	DHEMICAL NAME	D	iot ( 10.	COAST Suard	T INIS	CODE	MOLECULAR FORMULA STC 302 CLA R9	<u>TPQ1 / TPQ2</u>	RCR 313 LS	RA R.C. <u>17 01</u>
	SS8050000	P-PHENYLENEDIAMINE	}	1673		2042		C&-H8-N2	/&#<i>\$</i>@\$2557\$\$<b>\$</b>\$</td><td>y</td><td></td></tr><tr><td>106-42-3 7181</td><td>ZE2625000</td><td></td><td> 1</td><td></td><td></td><td></td><td></td><td>CS-H10 4909351 1 1000</td><td></td><td> X</td><td>-</td></tr><tr><td></td><td>RV0540000</td><td>PARAFORMALDEHYDE</td><td>2</td><td></td><td></td><td></td><td></td><td>) (C-H2-Q)n 4941143 X 1000</td><td></td><td></td><td>-</td></tr><tr><td>123-63-7 1278</td><td>YK0525000</td><td>PARALDEHYDE</td><td> i</td><td>264</td><td>PDH</td><td></td><td>2-3-1</td><td>I C6-H12-03 4909260 X 1000</td><td></td><td></td><td>-</td></tr><tr><td>5103</td><td></td><td>PARAQUAT</td><td></td><td></td><td></td><td></td><td></td><td><u>X</u></td><td>10/10000</td><td>-</td><td>-</td></tr><tr><td>5104</td><td></td><td>PARAQUAT METHOSULFATE</td><td></td><td>2588</td><td></td><td></td><td></td><td>X 1</td><td></td><td>-</td><td></td></tr><tr><td>1281</td><td></td><td>PARATHION</td><td></td><td></td><td></td><td></td><td></td><td>4921469 X X 1</td><td>100</td><td>x x</td><td>P()</td></tr><tr><td>3956</td><td></td><td>PARATHION-METHYL</td><td></td><td></td><td></td><td></td><td></td><td>4921443 X X 100</td><td>100/10000</td><td>X</td><td>Pộ -</td></tr><tr><td>2981</td><td></td><td>PARIS GREEN</td><td>1: </td><td>1585 ·</td><td>CAA </td><td></td><td></td><td>C4-H6-As6-Cu4-D16 4923220 X X 100</td><td>500/10000</td><td>-</td><td>•</td></tr><tr><td>7624-22-7 1285</td><td>RY8925000</td><td>PENTABORANE</td><td></td><td></td><td></td><td>1986</td><td></td><td>2 85-H9 4906060 X 1</td><td>500</td><td>-</td><td>•</td></tr><tr><td></td><td></td><td>PENTACHLOROBENZENE</td><td></td><td></td><td></td><td></td><td></td><td>C6-H-C15 X 10</td><td></td><td>X</td><td>-</td></tr><tr><td>76-01-7 4165</td><td>K16200000</td><td>PENTACHLOROETHANE</td><td></td><td></td><td></td><td></td><td></td><td>C2-H-C15 X 1</td><td>10000</td><td>X</td><td>UL</td></tr><tr><td>4156</td><td></td><td>PENTACHLOROPHENOL</td><td>2(</td><td>020 </td><td>PCP </td><td></td><td></td><td>C4-H-C15-0 4961380 X 10</td><td></td><td>XX</td><td>U2 -</td></tr><tr><td>5111</td><td></td><td>PENTADECYLANINE</td><td></td><td></td><td>-</td><td></td><td></td><td>C15-H33-N X 1</td><td>100/10000</td><td>-</td><td>-</td></tr><tr><td>5112</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C2-H4-O3 X L</td><td>500</td><td>X</td><td>-</td></tr><tr><td>594-42-3 1295</td><td>PB0370000</td><td>PERCHLOROMETHYL MERCAPTAN</td><td>16</td><td></td><td></td><td>2030</td><td>• •</td><td>C-C14-S 4921473 X X 100</td><td>500</td><td>- X</td><td>- P1</td></tr><tr><td></td><td></td><td>PHENANTHRENE</td><td></td><td></td><td></td><td></td><td></td><td>C14-H10 X 5000</td><td></td><td>-</td><td>•</td></tr><tr><td>1310</td><td></td><td>PHENOL</td><td></td><td></td><td></td><td><b>.</b></td><td></td><td>X X 1000</td><td>500/10000</td><td>XX</td><td>UI</td></tr><tr><td>5119</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C6-H5-As-C12 4921474 X X 1</td><td></td><td></td><td>-</td></tr><tr><td>5120</td><td></td><td>PHENYLHYDRAZINE HYDROCHLORIDE</td><td></td><td></td><td></td><td></td><td></td><td>Cá-H8-N2 .C1-H X 1</td><td></td><td></td><td>_</td></tr><tr><td>5121</td><td></td><td>PHENYLMERCURY ACETATE</td><td></td><td>574</td><td>-</td><td></td><td></td><td></td><td>500/10000</td><td>X</td><td>P(</td></tr><tr><td>1097-19-0 5122</td><td>YJ7050000</td><td>PHENYLSILATRANE</td><td></td><td></td><td></td><td></td><td></td><td>C12-H17-N-03-Si</td><td>100/10000</td><td></td><td></td></tr></tbody></table>		

ļ

	<u></u>	NSOLIDATED LIST OF CHEMICALS		EDAST			Name sequence				-
CAS NO.	RTECS NO.	CHENICAL NAME	NO.	GUARD	CODE	CODE	NOLECULAR FORMULA			RCRA	i f
DAA NO.							<u>STC 302 CLA</u>	<u>RQ</u>	<u>TP91 / TP92</u>	313 LST	
103-85-5 5123	YU1400000	PHENYLTHIOUREA					C7-H8-N2-S X X	100	100/10000	Į	i
298-02-2 5124	TD9450000	PHORATE		• •	20 <b>64</b>	~ *	C7-H17-D2-P-53 X X	10	10	X	
104-14-7	TB4725000	PHOSACETIN					C14-H13-C12-N2-02-P X	-	100/10000	•	-
•	NJ6475000	PHOSFOLAN		• • •			C7-#14-N-03-P-92		100/10000		
	SY5600000	PHOSGENE	1076	PHE	2070		C-C12-0 4920540 % X			 x x	
	TE2275000	PHOSNET			2075		C11-H12-N-04-P-52		10/10000	• • •	
171-21-6	TC2600000	PHOSPHANIDON					C10-H19-C1-N-05-P			•	•
	SY7525000	PHOSPHINE	2199		2080		H3-P			• <b>-</b> -	•
	TB1090000	PHOSPHONOTHIOIC ACID, METHYL-, S	 )-	• •			4920160 X X C11-H26-N-02-S			·	
	TB6300000	(2-(BIS(1-METHYLETHYL) ANINO PHOSPHORIC ACID	1605	PAC	2085		X H3-04-P		100		
4231 025-97-3	TH4897000	PHOSPHORUS OXYCHLORIDE	1810	PPO	2094		4930248 1 5 C13-0-P	000		X	•
4241	TH3945000	PHOSPHORUS PENTOXIDE	1807		P103		4932352 X X 19	000	500		•
4233 314-80-3	TH4375000	PHOSPHORUS PENTASULFIDE	1340	PPP	2092		4932324 X P2-55		19		•
7444		PHOSPHORUS PENTACHLORIDE		. <b>.</b> .			4916320 1	100			i -
4243		PHOSPHORUS TRICHLORIDE					4932323 X	- ¹ -	500		•
4249							4932359 X X 10	)00 	1000		-
1337							4916140 X X	_ ¹ _	100	X	•
		PHTHALATE ESTERS			• • ·		X				•
4254		PHTHALIC ANNYDRIDE		PAN	2110 :	2-1-0	CB-H4-03 4934223 X			X X	Ü
5141		PHYSOSTIGNINE					C15-H21-N3-O2 X	!	100/10000	• -	
57-64-7 5142		PHYSOSTIGMINE, SALICYLATE (1:1)					C15-H21-N3-02 .C7-H6	-03	100/10000		
88-87-1 4260	TJ7875000	PICRIC ACID			2120	_	Ca-H3-N3-07			X X	-
24-87-8 422	7J9100000	FICROTOXIN					C13-H18-07 .C15-H16- 4921418 x		500/10000		-

ļ

1

į

Ì

i

	*****		DOT	C0401	71170	NEDA					,				-
CAS NO.	RTEES NO.	CHENICAL NAME	<u>NO.</u>	GUARI	) <u>COPE</u>	<u> 2005</u>	MOLECULAR		TER-					RCR/	A
NOAA NO.			*****				<u>STC</u>	<u> 302</u>	CLA	<u>H9</u>	<u>1991 /</u>	<u>TP02</u>	<u>313</u>		1
10-69-4 4268	TM3500000	FIPERIDINE	2401			2-3-3	C5-H11-N			1	1000				
5281-13-0	DF4911000	PIFROTAL		• •			C24-H40-I	 De X	•	 1		10000		-	
505-41-1 5146	TF1610000	PIRINIFOS-ETHYL		• •			C13-H24-H	 N3-03	- 5-P-S					-	
	LK5060000	POLYBROMINATED BIPHENYLS (PBB'S)		• -					-			•••	 r	-	
 1336-36-3 4266	TB1350000	POLYCHLORINATED BIPHENYLS (PCBS)	2315	PCB	A622		4961666		 X	 19			- ^- -	-	
		POLYNUCLEAR AROMATIC HYDROCARBONS		-				• •	- 				- ^-	-	
794-41-0 4291	C61100000	POTASSIUM ARSENATE	1677	PAS			As-H2-04 4923277		1	 1000				-	
124-50-2 4292	C63800000	POTASSIUM ARSENITE	1678	POA			As-H3-03 4923278		 X	 1000		 10000	• •	-	
778-50-9	HX7680000	POTASSIUM BICHROMATE	1479	PTD	0686		Cr2-K2-07 4941160		1	 1000			• -	-	
789-00-6 4300	6B2940000	POTASSIUM CHROMATE	9142	PCH	0696		Cr-04 2K 4963364		 X	1000			• -	-	
151-50-8 4303	TS8750000	POTASSIUN CYANIDE	1680	PTC	0790	• •	C-N .K 4923225	 i X	1	 10	100		• •	ĭ	
310-58-3 9013	TT2100000	POTASSIUM HYDROXIDE	1813	PTH	2140		H-K-0 4935225	;	 1	1000			, .	-	
722-64-7 4324	SB6475000	POTASSIUN PERMANGANATE	1490	PTP			Mn-04 .K 4918740	, -	 X	100			,	-	
506-61-6 5151	TT5775000	POTASSIUN SILVER CYANIDE		-			C2-Aq-N2	.K .K	x		500		,	- t	
631-37-0 5152		PROMECARB		•		••	C12-H17-N	1 <b>-</b> 02						-	
	RP5425000	PROPANE SULTONE					C3-H6-03-	5			_			ľ	
		PROPARGITE	2765	PRG			C19-H26-0 4961165	4-5					-	-	
107-19-7 1379	UK5075000	PROPARGYL ALCOHOL	1986			3-3-3	C3-H4-D 4907440						-	ï	
106-96-7 2661	UK4375000	PROPARGYL BRONIDE	2345			4-3-4	C3-H3-Br				-		•	-	
	UE0320000	PROPIONALDEHYDE	1275	PAD	P129	2-3-1							X	-	
7 <b>9-09-4</b> 7573	UE5970000	FROPIONIC ACID	1848	PNA	2158	2-2-9	C3-H6-02 4731448						· -	-	
	UF9100000	PROPIONIC ANHYDRIDE	2496	Pah			Cé-H10-03 4931449		3	- · ·		- •	-	-	

____



i



-----

	<u></u> 	INSOLIDATED LIST OF CHENICALS						****			PA				
CAS NO.	RTECS NO.	CHEMICAL NAME	DOT NO.	COAST Guard	IMIS CODE	NFPA <u>Code</u>	MOLECULAR		LA EH-				5	.cp.	. ;
NDAA NO.							STC	<u>302</u> Č		<u> 98</u>	<u>tpal /</u>	TP92	313	LST	
107-12-0 4346	UF9525000	PROPIONITRILE	2404			4-3-1	C3-H5-N	X	i	10	500	****		τ.	
114-26-1	FC3150000	FROPOXUR			0318		CL1-H15-N		-			- ·	 X	-	
109-61-5 5157	F89820000	PROPYL CHLOROFORMATE	2740				C4-H7-C3-	-02 X	-	 !		- •		-	
115-07-1 4355	UC6740000	PROPYLENE (PROPENE)	1077	PPL	••	1-4-1	С3-н6	••	-				۰- ۲	-	•
75-56-9 5159	112975000	PROPYLENE OXIDE	1280	POX	2215	2-4-2	C3-H6-0 4906620	) X	ĭ -	100	10000		X	-	
75-55-8 1396	CMB050000	PROPYLENEIMINE	1921	P11	2213		C3-H7-N 4907040	X	X	1	19900		X	X	
2275-18-5 5161	TD6225000	PROTHOATE					C9-H20-N-			1	100/1	0000		-	
127-00-0 5163	UR2450000	PYRENE			2217		C16-#10	X.	X	5000	1000/1	0000		-	•
121-21-1 9035	671725000	PYRETHRINS	9184	PRR	2216		С21-Н28-0	3	X					-	•
121-29-9 9035	620700000	PYRETHRINS	9184	PRR	2216		C22-H2B-0	15	ž				• -	-	
3003-34-7 9035	UR4200000	PYRETHRINS	9184	PRR	2216	-	4963872		- · 1				• •	-	
110-96-1 1403	UR8400000	PYRIDINE	1282	PRD	2220	2-3-0	CS-HS-N 4909277		Ĭ	1000			 Х	۰ ۲	ļ
5558-25-1 5167	YT9690000	PYRIMINIL					C13-H12-N		- '		100/1	.0000	• •	-	•
91-22-5 4380	VA9275000	SUINOLINE		8NL	-		C9-H7-N 4963367			5000			· -	*	
106-51-4 2591	DK2625000	GUINONE		•	2222		C6-H4-02		- · (	10	• • •		 х	- X	•
82-68-8	DA6650000	GUINTOZENE			P126		C6-C15-N-		- · (				 χ	- 1	•
50-55-5	260350000	RESERPINE			• -		C33-H40-N		 (	5000			• -	- X	•
81-07-2	DE4200000	SACCHARIN AND SALTS (313 - MANUFACTURE DNLY)	-		5226		C7-H5-N-0				• • •		x	- ĩ	(
94-59-7	CY2800000		· · · · ·		-		C10-H10-0		(				X	ĭ	ļ
		SALCOMENE			-		C16-H14-C		32	!	500/1	0000	•••	•	•
5170		SARIN			_		C4-H10-F-	<u></u>	•	!	10		•••	-	•
626-38-0 5271	AJ2100000	SEC-ANYL ACETATE	1104	AAS	0191	1-3-0	C7-H14-02		-	5000		- •		-	

----

-



ļ

********									(Nar							47	
	RTECS NO.	CHENICAL NAME			DOT NO.	COAST <u>GUARD</u>	INIS	<u>CODE</u>		Ū.E	<u>-</u>	-	<b>-</b> - ,			RCRA	Ā
NGAA NO.									STC		<u>A (()</u>	191	<u>il /</u>	TF02	313	LST	-
934é	AF7380000	SEC-BUTYL ACETATE			1124	8ta	0441	[-3-1)	Cé-H12-G2		500	0					
 78-92-2 8353	EB1750000	SEC-BUTYL ALCOHOL			1121	BAS	0461	1-3-0	C4-H10-0			• - •		-	 X	-	
513-49-5 8359		SEC-BUTYLAMINE				BTL		3-3	C4-H11-N	 1		· - ·				-	-
3952-84-6	E03325000	SEC-BUTYLANINE				BTL	• •	2-2	C4-H11-N				• -		• •	-	•
	VS8310000	SELENIUM			265B		2230		 Se	·						-	
4427		SELENIUN COMPOUNDS				,	· -			X	10	0			. X	-	
446-08-4	VS8575000	SELENIUN DIOXIDE				SLD	• •		02-5e	×			• •		<b>X</b> 	-	
9042										X		⁰	• •			Ĭ	(
4425		SELENIUM DISULFIDE			2657				52-5e	_ <u>1</u>		1				X -	ļ
791-23-3	VS7000000	SELENIUN OXYCHLORII	Е 		2879				C12-0-Se 4923345	ĭ		1 5	00	<b>.</b> .		-	
783-00-8 5172	VS7175000	SELENOUS ACID		-	1905	SSE		-	H2-03-Se	XX	1	0 10	0071	10000	• •	X	1
563-41-7 5173	VT3500000	SENICARBAZIDE HYDRO	ICHLORIDE			,		-,-	C-H5-N3-0	.С1-н х		 1 10			• •	-	•
440-22-4	VW3675000	SILVER		• •		• • •	2240	÷ -	 Ag	 X			· -		, _ Y	-	•
		SILVER COMPOUNDS				•	• -				• •		• -		· -	-	•
	VW3850000	SILVER CYANIDE			1684		• -		C-Ag-N				-		, _	-	•
1453 761-88-8	VW4725000	SILVER NITRATE			1493	SYN	, -		4923473 N-03 .Ag				• •		· -	1 -	1
4443	VY0686000	SUDITION			1428				4918742	X		!	• ••	÷ .	• •	-	•
7794		<b></b>					• •		4916456			)	-		, _	-	
4457		SODIUM ARSENATE			1685				As-Na3-04 4923290		100	0 10	00/1	0000		-	
784-46-5 1473	VY7705000	SODIUM ARSENITE			2027	SAR	-		As-02 .Na 4923291		1000	0 5	00/1	10000		-	
628-22-8 1474	VY8050000	SODIUM AZIDE (NA(N3	3) 	_	1687	SAZ	2243		N3-Na 4923465	XX	1006	) 5	00		-	ĩ	1
4482	HX7700000	SODIUM BICHROMATE	••		1479	SCR	0687	•	Cr2-07 .21 4941170		1000	 )	-		-	-	-
333-83-1 4462	NB0350010	SODIUM BIFLUORIDE		• • •	2439	SBF	-		F2-H-Na 4932356	 X		 )	-			-	•
	VZ2000000	SODIUM BISULFITE		• •	2693	SBS	5050					·	• •		• •	-	

•

I

	<u>00</u>	NSOLIDATED LIST OF CHEMICALS	HAZARDOUS	MATER	IALS		(Nase seque	nce)	PAGE		43
<u>cas nd.</u> Ngaa ng.	<u>RTECS NO.</u>	CHENICAL NAME		COAST Guard			MOLECULAR FORMULA CER STC 302 CLA		TPQ1 / TPQ2	RCI 313 L	RA F St C
	CH7700000	SODIUN CACODYLATE	1688	SCD			C2-H6-As-02 .Na	******	100/10000		
	682955000	SDDIUM CHROMATE	9145	SCH	0686		Cr-04 .2Na 4963369 X			<b>-</b> -	
	VZ7530000	SODIUM CYANIDE (NA(CN))	1689	SCN	0790		C-H-Na 4723277 X X				 X P
25155-30-0	066825000	SODIUM DODECYLBENZENE SULFONAT	E 9146	• •			C18-H29-03-S .Na 4963374 X				
	AH9100000	SODIUM FLUORACETATE	2629		2250		C2-H2-F-O2 .Na		10/10000		 X P(
• • • •	NB0350000	SODIUM FLUORIDE	1690	SDF							
	WE1900000	SODIUM HYDROSULFIDE	2318	SHR			H-Na-5 4916738 X				• •
	WB4900000	SODIUM HYDROXIDE (SOLUTION)	1823	SHD	2250		H-Na-0 4935235 X			 х	• •
	NH3486300	SODIUM HYPOCHLORITE	1791	SHC	2260		Cl-H-O .Na 4944143 X			•	• -
		SOBIUM HYPOCHLORITE	1791	SHE	2260					•	• -
124-41-4	PC3570000	SOBIUM NETHYLATE, DRY	1431	SKL			C-H3-O .Na 4916461 X				• •
7632-00-0	RA1225000	SODIUM NITRITE	1500	SNT	S236						-
131-52-2 4513	SH6490000	SDDIUM PENTACHLOROPHENATE	2567		2261		C6-C15-Q .Na 4941177 X	• •			-
7558-79-4	WE4500000	SODIUM PHOSPHATE, DIBASIC	9147	SFP	2252	• •				÷ -	-
7601 <b>-54-</b> 9 4521	101410000	SODIUM PHOSPHATE, TRIBASIC	7170	arr	44DZ		04-P .3Na				-
	TC9490000	SODIUM PHOSPHATE, TRIBASIC	7148	SPP	2262		04-P .3Nz				-
7785-84-4	074025000	SODIUM PHOSPHATE, TRIBASIC	9148	SPP	2262				• • • • •		-
10039-32-4	TC5725000	SODIUM PHOSPHATE, DIBASIC	9147	SPP	2262		H-04-P .2Na .12H2	-0	• •		•
0101-89-0 4521	TC9575000 ·	SODIUN PHOSPHATE, TRIBASIC	9148	SPP	2262	••	04-P .3Na				-
0124-5 <del>6-8</del> 4521	043922099	SODIUM PHOSPHATE, TRIBASIC	7148	SPP	2252		04-P .3Na		• • • • •		-
0140-65-5 4520		SODIUM PHOSPHATE, DIBASIC	9147	SPP	2252				• • • • •		-
0361-89-4	:	SODIUM PHOSPHATE, TRIBASIC	9148	SPP	2262		1 04-P . 3Na 4966383 X				-



	<u>C0</u>	NSOLIDATED LIST OF	CHENICALS	HAZARDOUS	MATER	IALS		(Na	198 56	quer	nce)	PA	6E		44
CAS NO.	RTECS NO.	CHENICAL NAME		DDT NG.	COAST Guard	INIS CODE	<u>CODE</u>	HOLECULAR	<u>e form</u>	IULA CER-	-			ŗ	RCR
NOAA NO.								<u>976</u>	<u>302</u>	<u>CLA</u>	RQ	TPQ1 /	TP92	<u>313</u>	<u>LS</u> 1
3410-01-0 4525		SODIUM SELENATE		2630				04-Se .2				1007	10000		_
7782-82-3 4526		SODIUM SELENITE		2630	SSE			Na2-03-9		X	100				
		SODIUN SELENITE		2630	SSE				Na			100/1	0000	-	-
7757-82-6	WE1650000	SODIUN SULFATE (SO	LUTION		• •			04-5 .2N	ia	-				 Х	-
0102-20-2 5185	WY2450000	SODIUM TELLURITE						03-Te .2	Na X	-		500/1		-	-
8883-66-4	LI5775000	STREPTOZOTOCIN			• •	A617		C8-H15-N		- X	· 1		• •	-	Ť
7789-06-2 4547	683240000	STRONTIUM CHROMATE		9149	SCM	0686			r			•		-	•
		STRONTIUN SULFIDE			• •			3-5r		-	• • •	•		-	- X
57-24-9 5186	WL2275000	STRYCHNINE	<b></b> -	1692	STR	2275			N2-02	_	- <u>100</u> 			-	-
60-41-3	WL2550000	STRYCHNINE, SULFATI	 E	1692	STR			C21-H22-	N2-92	.17	- 2H2-04-	·		-	-
	WL3675000	STYRENE (MONOMER)				2280		C8-H8		-		100/1		-	-
4553 96-09-3	CZ9625000	STYRENE OXIDE				E230	2-2-0	490726 C9-H9-0						<b>-</b>	•
1572		SULFOTEP						C8-H20-0 492148			 100	500		¥ _	- 1
7446-09-5	NS4550000	SULFUR DIOXIDE		1079	SFD	2290		02-5 490929	 0 X	-	 !	500		-	-
2771-08-3		SULFUR MONOCHLORIDE			SFN	2320					 1000			-	-
	#T4800000	SULFUR TETRAFLOURID		2418		2322						100		-	-
	WT4830000	SULFUR TRIOXIDE		1829				03- <del>5</del> 493005						-	-
1664-93-9	W55600000	SULFURIC ACID		1830	SFA	2310		H2-04-5 4730040						- 1	-
		SULFURIC ACID							.03-5					-	-
5194	TB4550000	TABUN						C5-H11-N	 2-02-F	, .				-	-
494-80-7 5195		TELLURIUN						Te				500/1	 0000	-	-
	WY2800000	TELLURIUM HEXAFLOUR	IDE	2195		2332			• •					-	-



		INSOLIDATED LIST OF CHE	TICHL3	HAZARDOUS				, , , , , , , , , , , , , , , , , , ,						و جو دو برو در	4	, 1988-1
CAS NO.	RTECS NO.	CHEMICAL NAME		DOT NO.	COAST <u>Guard</u>	IMIS CODE	CDDE	MOLECULAR		LER-				F	CRA	<b>}</b>
NOAA NO.								STC	<u>302</u>	CLA	RB	<u>TP91 /</u>	<u>1992</u>	<u>313</u>	LST	
107-49-3 4598	UX7051000	TEPP		2764	TEP	2334		C8-H20-0			10	190			X	
3071-79-9 5198	TD7200000	TERBUFOS				2333		C9-H21-0	 2-f-9 X			100		• •	-	
	WZ0875000	TEREPHTHALIC ACID						C8-H6-04		-				 X	-	
525-16-1 8273		TERT-ANYL ACETATE		1104	AYA			C7-H14-D	2 -	- X	 5000				-	
540-88-5 8347	AF7400000	TERT-BUTYL ACETATE		1123	EYA	0442		C6-H12-0		Ĭ	 5000			• •	-	
75-65-0 8351	E01925000	TERT-BUTYL ALCOHOL		1120	BAT	0462	1-3-0	C4-H10-D 490913(		-				 X	•	
75-64-7 3358	E03320000	TERT-BUTYLANINE		1125	BUA		2-4-0	C4-H11-N 4909134		- X	1000			• •	•	
7ò1-11-5	TB9100000	TETRACHLORVINPHOS				2234		C10-H9-C1	4-04	-F				 х	-	
78-00-2 4595	TP4550000	TETRAETHYLLEAD		1649	TEL	2360	 3-2-3	C8-H2-0-F		- x	 10			· -	- 1	
597-64-8 5200	NHB625000	TETRAETHYLTIN			• • •			C8-H20-Sn	• ••	-				-	-	
109-99-9	LU5950000	TETRAHYDROFURAN		2056	THF	2390	 2-3-1	C4-H8-0 4708290	• -	-	1000			-	- X	
75-74-1 4613	TP4725000	TETRAMETHYLLEAD		1649	THL	2370	 3-3-3	C4-H12-Pb	- x	•				-	-	
509-14-8 1587	PB4025000	TETRANITROMETHANE		1510	• - •	2395		C-N4-08 4918180	x	•	• •			-	- 1	
1314-32-5	152975000	THALLIC OXIDE	•		•. • •	-		03-T12	-	-				-	-	
		THALLIUM		1707		2420					1000			- Y	-	
4621		THALLIUM COMPOUNDS		• • • •	• • •	• -			-					^	-	•
)031-59-1 9120	166600000	THALLIUM SULFATE				-		04-5 .XT1 4923297	-	_	·			^_	- X	
	x65950000	THALLIUN(I) NITRATE				-		N-03 .T1	-		• • •			-	÷ x	•
		THALLIUM(1) SELENIDE				• •		Se-Tl	-					-	î X	•
5764		THALLOUS CARBONATE				-		C-03 2T1	-			100/1	 0000	-	-	•
5205	164200000	THALLOUS CHLORIDE		2573								19071		-	-	
757-19-8 5206		THALLOUS MALONATE						C3-H2-04	.271		• •			-	-	•

l

ĺ

	<u><u>co</u></u>	NSOLIDATED LIST OF CHEMICALS	HAZARI	0005	HATER	IALS		(Name sec	uence)	FAGE		46
	RTECS NO.	CHEMICAL NAME	l	10T 10.	COAST <u>Guard</u>	INIS CODE	NFPA CODE		ER-	<u>TPQ1 7 TPQ2</u>		CRA :
NOAA NO.					TSU					<u></u>		<u></u> :
7446-18-6	166800000	THALLOUS SULFATE			• 50 • • •			04-5.2T1 X	X 100	100/10000		<u>r</u>
62-55-5	AC8925000	THIDACETAMIDE						C2-H5-N-S	X		X	X L
2231-57-4	FF2975000	THIOCARBAZIDE						C-H6-N4-5		1000/10000		
39196-18-4 5210	EL8200000	THIOFANOX			• - •			C9-H18-N2-02-S		100/10000		x F
	TF5775000	THIONAZIN					<b></b>	C8-H13-H2-03-P	 -3 X 100	500		 1 F
	0C0525000	THIOPHENOL				• •		Cá-H6-S 4921413 X				 X =
	VT4200000	THIOSENICARBAZIDE						C-H5-N3-5	 1 100			 1 P
52-56-6	YU2600000	THIOUREA		2877		- T109		C-H4-N2-S			 ,	· ·
	YU2975000	THIDUREA, (2-METHYLPHENYL)-			• • •			CB-H10-N2-S	X 1		- ·-	1 U 
5216 1314-20-1	X05750000	THORIUM DIOXIDE				• •		02-Th		500/10000	• •	
7550-45-0	XR1925000	TITANIUM TETRACHLORIDE		838	π.	• •		C14-Ti			- <u>x</u>	
1610	155250000			294		246û		4932385 X	1	100	. ×	
4654		• • • • • • • • • • • • • • • • • • •						4909305	1 1000		X	X 83
584-84-9	CZ6300000	TOLUENE 2,4-DIISOCYANATE	2	2078	TDI	2470		C9-H6-N2-02 X	X 100	500	X	
71-0 <b>9-7</b> 5219	626310000	TOLUENE 2,6-DIISOCYANATE				T177		C7-H6-N2-O2 X	X 100	100	X	
3001-35-2 4662	XW5250000					0612		C10-H10-C18 4941188 X	 X 1	500/10000	 х	 7 F
110-57-6 5220	EN4903000	TRANS- 1,4-DICHLOROBUTENE				• •		C4-H6-C12		500	• •	
	TA1400000	TRIAMIPHOS				• -		X C12-H19-N6-0-P			• -	
	DK7175000	TRIAZIQUONE				• •		C12-H13-N3-D2		500/10000		
4017-47-8 5222	TF5635000	TRIAZOFOS						C12-H16-N3-D3-		500	- <u>-</u>	
	0P1450000	TRICARBONYL METHYLCYCLOPENTADII MANGANESE						C9-H7-Hn-03 X		100	• -	
		TRICHLORO (CHLOROMETHYL) SILAN	 E		• • •	-		C-H2-C14-Si		100	• •	• . =
	VV3540000	TRICHLORO (DICHLOROPHENYL) SALIN	E 1	 766		-		C6-H3-E15-S1 4934225 X			• •	

ł

	<u>00</u>	DNSOLIDATED LIST OF CHENICALS	HAZARDOUS	MATERIALS		(Nage sequence)	<b>PAGE 4</b> 7
	RTECS NO.	CHENICAL NAME		COAST INIS BUARD CODE	NFPA	E MOLECULAR FORMULA	RCRA TP01 / TP07 313 137
10AA NO.		TRICHLOROACETALDEHYDE	2075			<u>STC 302 CLA RD</u> C2-H-C13-0	<u>1741 / 1742 515 63:</u>
2952	FA/8/0000					4935515	
76-02-8 4676	A07140000	TRICHLOROACETYL CHLORIDE	2442		_	C2-C14-0 X E	500
77-01-6 4680	KX4550000	TRICHLORGETHYLENE	1710	TCE 2490	 ,	C2-H-C13 4941171 X 1000	, x x
	VV4200000	TRICHLOROETHYLSILANE	1196	ETS		C2-H5-C13-Si	500
	TA0700000	TRICHLOROFON	2783	T116	 ;	C4-HB-C13-04-P 4940375 X 100	
75-69-4	PB6125000	TRICHLOROMONOFLUOROMETHANE	1078	1285	 i	C-C13-F	
	TB0700000	TRICHLORONATE				1 3000 C10-H12-C13-D2-P-S	
5227 167-82-2	SN1290000	TRICKLOROPHENOL	2020	TPH 2484			
4682			1804			4940325 X 10 C6-H5-C13-Si	
4223		TRIETHANOLANINE DODECYLBENZENE				4934275 X 1	
4690		SULFONATE	E 7344	58U 		4963379 X 1000	
5230		TRIETHOXYSILANE				C6-H16-03-Si X i	590
121-44-8 4691	YE0175000	TRIETHYLANINE	1296	TEN 2480		C6-H15-N 4907877 X 5000	
582-09-8 9151	XU9275000	TRIFLURALIN	1609	TFR T338		C13-H16-F3-N3-04	· · · · · · · · · · · · · · · · · · ·
75-50-3 9153		TRIMETHYLAMINE. ANHYDROUS				C3 <del>-H9-N</del> <b>470554</b> 0 X 100	
75-77-4	VV2710000	TRIMETHYLCHLOROSILANE	1298	THC		C3-H9-C1-Sí 4907680 X 1	
1649 824-11-3		TRINETHYLOLPROPANE PHOSPHITE				C6-H11-J3-P	
	WH6850000	TRIMETHYLTIN CHLORIDE		, <b></b>		X 1 C3-H9-C1-Sn	
		TRIPHENYLTIN CHLORIDE				X 1 C18-H15-C1-Sn	
	YE2625000	TRIS (2-CHLOROETHYL) AMINE				C6-H12-C13-N	500/10000
5235 126-72-7	UB0320000	TRIS(2,3-DIBRONOPROPYL) PHOSPH	HATE	· <b></b> -		X L C9-H15-Br6-ú4-P	100
72-57-1	QJ6475000	TRYPAN BLUE				X 1 C34-H28-N6-014-94 .4Na	
541-09-3	YR3675000	URANYL ACETATE	9180			C4-H6-D6-U	



1

ļ

ļ

ł

- -

	<u></u>	NSOLIDATED LIST OF CHENICALS	HAZARDOUS	MATE	RIALS		(Name segue	nce)	PAGE		48
<u>cas no.</u> Noaa no.	<u>RTECS NO.</u>	CHEMICAL NAME	DOT <u>NG.</u>				MOLECULAR FORMULA CER STC 302 CLA	- <u>RQ</u>	<u>TP91 / TP92</u>	R 313	CRA F
	YR3805000	URANYL NITRATE	9177	UAN	*****		N2-08-U				
36478-76-9	YR3807000	URANYL NITRATE	9177	UAN			N2-08-U	100  100		-	<b>-</b> -
51-79-6	FA8400000	URETHANE (ETHYL CARBAMATE)					C3-H7-N-02	1		- 1	 x
2001-95-8 5236	YV9468000	VALINOMYCIN					C54-H90-N6-018			-	
7440-62-2	YW1355000	VANADIUM (FUNE OR DUST)			¥125		¥ .			- X	
1314-62-1 4757	YW2460000	VANADIUM PENTOXIDE	2862	VOX	2570		05-V2 4963385 % X	1000	100/10000	-	x P
27774-13-6 4761	YW1925000	VANADYL SULFATE	9152	VSF			05-5-V 4963384 X			-	• •
108-05-4 4764	AK0875000	VINYL ACETATE MONOMER	1301	VAN	2572	2-3-2	C4-H6-02 4907720 X X	5000	1000	- X	
573-60-2 4765	KUB400000	VINYL BROMIDE	1085		2577	2-0-1	C2-H3-Br			x	
75-01-4 1692	KU9625000	VINYL CHLORIDE	1086	VCN	2580		C2-H3-C1 4905792 X	10		x	x U
75-35-4 4772	KV9275000	VINYLIDENE CHLORIDE	1303	VCI	2583	2-4-2	C2-H2-C12 4907280 X	5000		x	x u
61-61-2 5240	6N4550000		3027				C19-H16-G4 X X	100	500/10000	-	X F
129-06-6 5241	5N4725000	WARFARIN SODIUN		• •			C19-H15-04 .Na	!	199/10000	-	
1330-20-7 8151		XYLENE (NIXED ISOMERS)			2590		CB-H10 4909350 X	1000		x	λ 2 0.
1300-71-5		XYLENOL	2261	XYL	X101		CE-H10-0 4941193 (			-	
9347-13-9 5242		XYLYLENE DICHLORIDE		-			CB-H8-C12 X	1	100/10000	-	
	Z68600000	ZINC (FUNE OR DUST)	1436		Z100			1000		X	
4794		ZINC ACETATE		-			C4-H6-O4 . Zn 4963387 X			-	
4795				_			X	1000		-	
4795		ZINC ANNONIUM CHLORIDE	9154	ZAC			1	1000		-	
4795		ZINC ANNONIUM CHLORIDE		-			H3-N .C1-In 4966386 (			-	
1332-07-6 9159 	ED6040000	ZINC BORATE					4963389 (	1900		-	

		DNSOLIDATED LIST OF CHEMICALS			the state of the s									6E			-
CAS NO.	RTEES NO.	CHENICAL NAME	L N	<u>ND.</u>	CDAST GUARD	CODE	1.11012	71111 2 1.111 1011	FOR	HULA LER-	•					rcri	A
NDAA NO.								STC	<u>302</u>	CLA	<u>70</u>	TPC	1 /	TP02	313	<u>[]</u>	Ţ
76 <b>99-45-8</b> 4803	ZH1150000	ZINC BRONIDE	9	7156	ZBR	2101		8r2-In 4966780	)	X	1000		_	_		_	
3486-35-9 4804	F63375000	ZINC CARBONATE		9157	ZCB			C-03 .2n 4963890		X	1000		-	-		-	
7646-85-7 4807	ZH1404000	ZINC CHLORIDE, ANHYDROUS		840	ZCL	2611		C12-In 4932393		- X	1000		-	- •		•	
	<u> </u>	ZINC COMPOUNDS				• •			• -	- X	• •		-		 х	-	
557-21-1 4808	ZH1575000	ZINC CYANIDE	1	713	ZCN			C2-N2-In 4923495	-	-	 10		-		• •	- X	
	ZH3500000	ZINC FLUORIDE	9	158	ZFX	• -		F2-Zn 4963195	-	-	• •		-		• •	-	
	LR0550000	ZINC FORMATE	9	159	ZFM	• •		C2-H2-04 4963392	.Zn	-			-		• -	-	
	JP2105000	ZINC HYDROSULFITE	1	931	ZHS	-			. Zn	-			•		• -	-	
7779-98-6 4815	ZH4772000	ZINC NITRATE	1	514	ZNT	• ••		N2-06 . Zn 4918790	-	-			-		• -	-	
127-92-2 4818	D97120000	ZINC PHENOLSULFONATE	9	160	ZPS	-			- 8-52	- .In			-		-	-	
1314-84-7 4819	ZH4900000	ZINC PHOSPHIDE	1	714	ZPP	-		P2-In3 4923496	- X	x		5(	-		-	- X	
5871-71-9 8179	VV8754000	ZINC SILICOFLUORIDE	2	855	ZSL	-			-	-			-		-	-	
7733-02-0 4826	2H5260000	ZINC SULFATE		r	25F			04-5 .In 4963786	-	- ·	1000	• -	-		-	-	
8270-08-9		ZINC. DICHLORD(4.4-DIMETHYL-5(() HETHYLYLAMINO) CARBONYL)OXY)I						C9-H15-C1	- 2-N3	-02-	 Zn	 10	- )0/1	 0000	•	-	
2122-67-7	ZH3325000	ZINEB	• •			-		C4-H6-N2-!					-	• •	- Y	-	
3746-89-9 4834	ZH8750000	ZIRCONIUM NITRATE						N4-012 .Zr 4918791		- ·	 5000		-		•	-	
4836		ZIRCONIUM POTASSIUM FLUGRIDE	91	162	ZPF		• -	F6-Ir .2K 4966395	-				-		-	-	
4644-61-2 4837		ZIRCONIUM SULFATE	91	163				08-52 .Zr 4944185	-				-		-	-	
0025-11-6 4838	ZH7175000	ZIRCONIUM TETRACHLORIDE						C14-Zr 4932395	-		·	• -	-		•	-	

:

I

ł



-

SECTION XIII WASTE MANAGEMENT PLAN

# SECTION XIII WASTE MANAGEMENT PLAN

This Waste Management Plan has been developed to meet Corporate and Governmental requirements concerning disposal of various operating materials at the end of its useful life.

At the present time, the Monument Plant does not generate any RCRA hazardous wastes. If, or when, it should be determined a hazardous waste exists, it will be disposed of according to RCRA standards, with documentation and proper manifests to an approved hazardous waste disposal site. Formal contracts will be negotiated and disposal sites will be selected, per Chevron's current approved hazardous waste site list.

# SECTION III - WASTE MANAGEMENT PLAN (Continued)

1. The following list shows the typed, expected amounts, and the source of wastes which are generated at the Monument facility: DISPOSAL

<u>ITEM</u> Filter	<b>TYPE</b> Amine, Dust Oil, Product Charcoal, Air,	EXPECTED AMOUNT 800 Cartridges/yr	<u>SOURCE</u> Amine, Oil,gas filter Cases, air intake cases	DISPOSAL <u>METHOD</u> Waste Control of New Mexico
Cooling Tower Blowdown	Water	700 Bbls/Day	Cooling Tower	Rice Disposal Pipeline
Boiler Blowdown Water	Water	20 Bbls/Day	Waste Heat, Waste Reclaimer Holman Boilers	Rice Disposal Pipeline
Plant Trash	Paper, Wood cardboard, household items, small concrete, etc.	9 yds/wk	Office, Shop etc	Waste Control of New Mexico
Cooling Tower Basin Sludge	Sludge, slurry mix	2 yards/year	Cooling Tower	Tilled into plant landfill
Oil/Scrub- er tank Bottoms	Oil sludge, sand, dirt, scrubber bottoms	Infrequent, varied amounts	Scrubbers, oil tanks	Pollution Control Inc.
Solvent	Varsol	200 gals/yr	Parts washing bin	Oil Recovery Tank
Steel Drums	Lube oil, antifreeze, chemicals, LPG odorizer	60 drums/year 12 disposed of locally	Outside vendors	Emptied and returned to vendor or crushed & deli- vered to Waste Control of NM
Concrete		Infrequent, varied amounts	Various in-plant	Plant landfill & Waste Control of New Mexico
Molecular Sieve activated alumina, sulfur plant catalyst, ion exchange, resin, etc.	solid particles	Infrequent varied amounts	Dehydrators, sulfur plant water treaters	Plant landfill
Amine	DEA	Infrequent negligible amounts	Amine System drips	Rice Disposal Pipeline



<b>ITEM</b> Hydrogen Sulfide	TYPE	EXPECTED AMOUNT 500 MSCFD	SOURCE Amine System	DISPOSAL <u>METHOD</u> Sulfur Conversion inceration
Wash water	Water	50 Bbls/Day Plant area	Engine room	Rice Disposal P/L
Produced Water from Compression	Water	100 Bbls/Day	Scrubbers	Rice Disposal P/L
Brine Water	Brine	300 Bbls/Month	Water Treaters	Rice Disposal P/L
Hydrostatic Test Water	Water	Infrequent, Varied amounts	Pipeline, Vessel tests	Rice Disposal P/L
Sump or Pit Sludge	Sand, Dirt, Waste/Wash water, sediment	2 yards/year	Waste water pits	Pollution Control, Inc.
Scrap Iron		20 tons/year	Old piping etc.	Scrap retail dealers
Oil contami- nated dirt	Dirt	Infrequent, varied amounts	Spills	Tilled into plant landfill, dirt
Used Oil *	Motor Oil	15 Bbls/year	Engines Eqpt	Oil Recovery Tanks
Scrubber oil/ condensate	Oil	250 Bbls/Month	Scrubbers	Oil Recovery Tanks
Asbestos Insulation		Infrequent varied amounts	Oil insulated liner	Outside contracts
RO Waste Water	water	90 Bbls/Day	R.O. Treater	Evaporation Area

#### SECTION XIII - WASTE MANAGEMENT PLAN (Continued)

* Oil and water collected in scrubbers in separated with the oil being treated to remove water and sold to Shell Pipeline Company. The water is combined with the plant discharge and sent to the Rice Engineering injection well.

#### SECTION XIII - WASTE MANAGEMENT PLAN (Continued)

- 1.a. The Monument Plant transformers have been tested and found not to have any PCB's.
- 2. For the listed wasted, operating procedures are followed to minimize the amounts generated, such as:

Steel drums - exchanged with vendors Molecular sieve - sent in for regeneration, if practical

Hydrostatic test water - air is used for pressure testing to eliminate water disposal problems Filters - changed based on differential indicators, set time intervals Blowdowns - Controlled, based upon water tests

Amine - Recovered and reused, where practical Engine Oil - Changed only when contamination is indicated

- 3. All wastes listed in No. 1 have been properly classified as hazardous or non-hazardous. If a waste cannot be positively identified as hazardous or nonhazardous, then the Warren Petroleum Environmental Affairs Department is contacted to recommend an outside company to do testing and analysis.
- 4. The necessary safety precautions for handling each waste listed in No. 1 above is taken to avoid adverse health affects. The Safety Department and Environmental Department are contacted when specific precautions are needed. Reference to the Material Safety Data Sheets (MSDS) is made concerning proper handling of all products.
- 5. Potential for waste recycling is considered when the use of wastes is feasible in alternative processes, such as re-injecting water into producing formation for enhanced oil recovery.

# LIST OF WASTE STREAMS

ACTIVATED ALUMINA	1
AMINE	4
AMINE RECLAIMER BOTTOMS	7
BOILER WATER BLOWDOWN 10	)
BRINE WATER	3
CAUSTIC	3
CHARCOAL	9
COOLING TOWER BLOWDOWN 22	2
COOLING TOWER SLUDGE	5
DEBRIS, UNCONTAMINATED	3
DRUMS	1
FILTERS, AIR	5
FILTERS, SOCK	7
FILTERS, USED OIL	כ
GLYCOL	1
HYDROSTATIC TEST WATER 47	7
IRON SPONGE	D
MOLECULAR SIEVE	3
OILY RAGS	3
PLANT TRASH	9
PROCESS WASTEWATER	2
SCRAP METAL	5
SILICA GEL	7
SOIL CONTAMINATED WITH CRUDE OIL	0
SOIL CONTAMINATED WITH LUBE OIL	3

# LIST OF WASTE STREAMS - continued

SOLVENT, HAZARDOUS	76
SOLVENT, NONHAZARDOUS	79
SORBENT PADS	82
SUMP SLUDGE	85
TANK BOTTOMS	88
USED OIL	91
WASH WATER	94

# ACTIVATED ALUMINA

# WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

# WASTE MINIMIZATION:

None at this time.

#### **TESTING:**

Disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

#### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Drain and collect fluids. Allow alumina to dry. Collect and incorporate fluids into wastewater disposal system. Store alumina in a property labeled container prior to disposal.

FOR SHIPPING OFFSITE, no shipping requirements.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

Always keep copies of Bill of Lading, run ticket, or other billing information that includes generator, transporter, waste volume and type, disposal site, and analytical results (if required).

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options: ED-permitted landfill.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the

1

Facility Discharge Plan filed with the District Office of the OCD.

# AMINE - includes spent monoethanolamine and diethanolamine.

# WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 254453-25454) **when used in gas sweetening processes**. Disposal of this waste by subsurface injection is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C). Disposal of this waste under a National Pollutant Discharge Elimination System (NPDES) permit is under the jurisdiction of the United States Environmental Protection Agency (EPA) Region VI.

## WASTE MINIMIZATION:

None at this time.

#### **TESTING:**

FOR DISPOSAL BY CLASS II DISPOSAL WELL, no testing is required.

FOR NPDES DISCHARGE, meet testing requirements specified in the permit.

#### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Collect in storage vessel such as sump, storage tank or evaporation pit prior to disposal.

FOR SHIPPING OFFSITE, For Monoethanolamine only the shipping description is Ethanolamine Solutions, 8 UN2491, III. Shipping papers are required, the placard is Corrosive. For Diethanolamine only the shipping description is RQ, Environmentally Hazardous Substance, liquid, N.O.S. (contains Diethanolamine), 9, UN3082, III. Shipping papers are required, the placard is Class 9.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL, maintain records per Class II permit or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of volume and type of waste, generator, transporter and disposal facility by retaining Bill of Lading, run ticket, or other billing information.

# **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal options include: OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the Facility Discharge Plan.

# AMINE RECLAIMER BOTTOMS

# WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA)(40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED) Appendix C).

## WASTE MINIMIZATION:

None at this time.

### **TESTING:**

FOR RECLAIMING OR DISPOSAL VIA CLASS II DISPOSAL WELL, no testing is required. Landfill facilities must characterize each waste prior to acceptance and may require a sample for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

# MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Removal of bottoms from vessels should be done in such a manner as to minimize spillage. Use drip pans or catchment vessels. Mix solids with wastewaters for disposal via Class II disposal well.

For storage onsite prior to disposal place in drums, tanks, or other closed/covered containers, or remove from site immediately upon removal of bottoms from vessels.

FOR SHIPPING OFFSITE, For Monoethanolamine only shipping description is Ethanolamine Solutions, 8, UN2491, III. Shipping papers are required, the placard is Corrosive. For Diethanolamine only the shipping description is RQ, Environmentally Hazardous Substance, liquid, N.O.S. (contains Diethanolamine), 9, UN3082, III. Shipping papers are required, the placard is Class 9.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

# **DISPOSAL OPTIONS:**

TF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: Reclamation or Class II disposal well (on-site or off-site) permitted by the OCD.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan** filed with the OCD.

# BOILER WATER BLOWDOWN

# WASTE CATEGORY:

Non-exempt solid waste under the waste under the Resource Conservation and Recovery Act (RCRA) (53 FR 25453-25454, July 6, 1988). The New Mexico Oil Conservation Division (OCD) has jurisdiction over the disposal of this waste when it is **nonhazardous** and disposed by injection via Class II disposal well or evaporation pond (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Department (ED) Appendix C). The ED has jurisdiction when the waste is **hazardous** and is disposed via Class I Hazardous well. Disposal of this waste under a National Pollutant Discharge Elimination System (NPDES) permit is under the jurisdiction of the United States Environmental Protection Agency (EPA) Region VI.

# WASTE MINIMIZATION:

None at this time.

# **TESTING:**

FOR DISPOSAL WELL OR EVAPORATION POND, the waste must be tested first. Test for Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, ignitability, reactivity, and corrosivity to characterize the waste. If the generator can prove by knowledge of process that this waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of he waste as well as the process from which it was derived.

FOR NPDES DISCHARGE, comply with testing requirements specified in the permit.

## MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Collect in storage vessel such as sump, storage tank or evaporation pit prior to disposal.

FOR SHIPPING OFFSITE, if **nonhazardous** no shipping requirements. If it is **hazardous**, will need to review the shipping requirements and possibly test. Contact Wayne McDowell, HE&LP in Tulsa for specific instructions.

#### RECORDKEEPING/REPORTING REQUIREMENTS:

IF THIS IS A NEW WASTE STREAM not previously identified on the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL, maintain records per Class II or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of the type and volume of waste, generator, transporter and disposal facility by retaining Bill of Lading, run tickets or other billing information.

# **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, notify the OCD for approval of disposal. Disposal options include: OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the Facility Discharge Plan.

# **BRINE WATER**

# WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 254453-25454). Disposal of this waste by subsurface injection is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C). Disposal of this waste under a National Pollutant Discharge Elimination System (NPDES) permit is under the jurisdiction of the United States Environmental Protection Agency (EPA) Region VI.

## WASTE MINIMIZATION:

None at this time.

#### **TESTING:**

FOR DISPOSAL BY CLASS II DISPOSAL WELL, no testing is required.

FOR NPDES DISCHARGE, meet testing requirements specified in the permit.

#### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Collect oil, condensate, water. Store water in holding vessels such as sumps, storage tanks or evaporation pits prior to disposal. Tanks and pits should be flagged, netted or covered in some manner to protect wildlife. Avoid contact with soil as much as possible. Collect hydrocarbons in storage vessel for sale.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL, maintain records per Class II permit or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of volume and type of waste, generator, transporter and disposal facility by retaining Bill of Lading, run ticket, or other billing information.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal options include: OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan**.

NMRev. 1 - 11/09/92

# CAUSTIC - spent.

## WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988) if this waste was derived from scrubbers or other processed to remove hydrogen sulfide ( $H_2S$ ) from natural gas. Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Department (ED)).

#### WASTE MINIMIZATION:

None at this time.

# **TESTING:**

FOR DISPOSAL BY CLASS II DISPOSAL WELL, no testing is required.

FOR NPDES DISCHARGE, meet testing requirements specified in the permit.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Collect in storage vessel such as sump, storage tank, or evaporation pit prior to disposal. Tanks and pits that might contain oil should be flagged, netted or otherwise covered to protect wildlife.

FOR SHIPPING OFFSITE, the shipping description is **Sodium Hydroxide**, **Solution**, **8**, **UN1824**, **II**. Shipping papers are **required**, the placard is **Corrosive**. If the shipment contains 1,000 lbs or more, the letter **"RQ"** must preceed the shipping description.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL, maintain records per Class II permit or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of volume and type of waste, generator, transporter and disposal facility by retaining Bill of Lading, run ticket, or other billing information.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal options include: OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan**.

-----

# CHARCOAL

# WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

# WASTE MINIMIZATION:

None at this time.

#### **TESTING:**

Disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

# MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Drain and collect fluids. Allow charcoal to dry. Collect and incorporate fluids into wastewater disposal system. Store charcoal in a properly labeled container prior to disposal. Store charcoal in properly labeled and sealed container prior to disposal. Dust can be explosive.

FOR SHIPPING OFFSITE, the shipping description is Charcoal, 4.2, NA1361, III. Shipping papers are required, the placard is Spontaneously Combustible.

## **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal option: ED-permitted landfill.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the Facility Discharge Plan filed with the District Office of the OCD.

20

# COOLING TOWER BLOWDOWN

# WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 254453-25454). Disposal of this waste by subsurface injection is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C). Disposal of this waste under a National Pollutant Discharge Elimination System (NPDES) permit is under the jurisdiction of the United States Environmental Protection Agency (EPA) Region VI.

# WASTE MINIMIZATION:

Use corrosion inhibitors that do not contain chromium. Operate cooling towers efficiently to minimize generation of blowdown.

# **TESTING:**

FOR DISPOSAL BY CLASS II DISPOSAL WELL, no testing is required.

FOR NPDES DISCHARGE, meet testing requirements specified in the permit.

## MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Collect in wastewater storage vessel such as sump, storage tank or evaporation pit prior to disposal.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL, maintain records per Class II permit or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of volume and type of waste, generator, transporter and disposal facility by retaining Bill of Lading, run ticket, or other billing information.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal

options include: OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the Facility Discharge Plan.

# COOLING TOWER SLUDGE

# WASTE CATEGORY:

Non-exempt solid waste under the Resource Conservation and Recovery Act (RCRA) (53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) if it is **nonhazardous** (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED), Appendix C). If this waste is **hazardous** then disposal of this waste is under the jurisdiction of the ED Hazardous Waste Bureau.

# WASTE MINIMIZATION:

Use corrosion inhibitors that do not contain chromium if possible.

# **TESTING:**

Test for Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, ignitability, and reactivity to determine if characteristically hazardous. Use the Paint Filter Liquids test to determine if free liquids are present. Of free liquids are present test for corrosivity. If the operator can prove by knowledge of process that the waste is not hazardous, then no testing is required. The operator must provide documentation describing the products used, a description of the waste and of the process from which the waste was generated.

## MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

(1) Remove all free liquids and incorporate into wastewater disposal system. (2) Store in drums, tanks, or other closeable containers.

FOR SHIPPING OFFSITE, if **nonhazardous** no shipping requirements. If it is **hazardous**, will need to review the shipping requirements and possibly test. Contact Wayne McDowell, HE&LP in Tulsa for specific instructions.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the Facility Discharge Plan, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the -Facility Discharge Plan filed with the District Office of the OCD.

Disposal at an ED-permitted facility.

# DEBRIS, UNCONTAMINATED - includes wood, glass, concrete.

# WASTE CATEGORY:

Non-hazardous solid waste under the Resource Conservation and Recovery Act (RCRA). the New Mexico Oil Conservation Division (OCD) has jurisdiction over the disposal of this waste (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED), Appendix C).

# WASTE MINIMIZATION:

None at this time.

## **TESTING:**

None required if uncontaminated.

#### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Store in labeled bins. Do not mix with material that is contaminated or may be hazardous.

FOR SHIPPING OFFSITE, no shipping requirements if uncontaminated.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the Facility Discharge Plan, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of debris disposed.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal option: ED-permitted municipal landfill.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan** filed with the District Office of the OCD.

# DRUMS - Empty plastic or metal.

#### WASTE CATEGORY:

Non-exempt solid waste. Check Material Safety Data Sheet (MSDS) and Hazardous Waste Booklet (Appendix D) to confirm whether drum contained a pure product that is listed as acutely hazardous. If the product is acutely hazardous consult with HE&LP in Tulsa for specific cleaning instructions.

# WASTE MINIMIZATION:

Contract with vendors who will exchange empty drums for full drums when a new order is delivered.

# **TESTING:**

None required if empty.

#### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Do not allow empty drums to accumulate onsite. All drums must be empty: All materials or wastes have been removed using practices employed to handle drums such as pouring, pumping, or aspirating. No more than 2.5 centimeters (one inch) of residue remains on the bottom of the drum or inner liner. No more than 3% by weight of the total capacity of the container remains in the container or inner liner if the container is less than or equal to 110 gallons in size; no more than 0.3% by weight of the total capacity of the container or inner liner if the container is greater than 110 gallons in size. Mark the drums as "Empty" and use on of the following methods prior to disposal. 1) Replace the lid or bungs tightly on empty drums to prevent the accumulation of rainwater or other materials. Rainwater or other materials that accumulate in empty drums may have to be handled and disposed as hazardous waste; 2) Cut the ends out of the drum so it cannont be used as a container.

FOR SHIPPING OFFSITE, remove or paint over all DOT markings and labels.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Track the empty drums using the Warren Petroleum Company Waste Drum/Container Log in Section III-B. Keep Bill of Lading, run ticket, or other information that documents the generator, transporter, disposal site and volume of drums disposed.

# **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal options include: Recycle drums by the following methods:Make arrangements with vendor to return on a deposit basis. Sell to drum recycler. Recycle as scrap metal.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the Facility Discharge Plan.

NMRev. 1 - 11/09/92

# FILTERS, AIR

#### WASTE CATEGORY:

Non-hazardous solid waste under the Resource Conservation and Recovery Act (RCRA). the New Mexico Oil Conservation Division (OCD) has jurisdiction over the disposal of this waste (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED), Appendix C).

# WASTE MINIMIZATION:

None at this time.

### **TESTING:**

None required if uncontaminated.

# MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Store separately from oil, sock, glycol or other filters to avoid contamination, testing and permitting requirements.

FOR SHIPPING OFFSITE, no shipping requirements.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the Facility Discharge Plan, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of filters disposed.

# **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal option: ED-permitted municipal landfill.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan** filed with the District Office of the OCD.

35

# FILTERS, SOCK includes sock filters used as glycol, and amine filters.

# WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

#### WASTE MINIMIZATION:

None at this time.

# **TESTING:**

Disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

#### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Drain and collect liquids. Allow filters to dry. Store in bin for process filters. Incorporate liquids into wastewater disposal system.

FOR SHIPPING OFFSITE, no shipping requirements.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the Facility Discharge Plan, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal option: ED-permitted landfill.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan** filed with the District Office of the OCD.

# FILTERS, USED OIL - non-terne plated; terne is an alloy of tin and lead which is used to plate oil filters.

## WASTE CATEGORY:

Non-exempt solid waste under the Resource Conservation and Recovery Act (RCRA) (53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico
 Oil Conservation Division (OCD) if it is **nonhazardous** (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED), Appendix C). If this waste is **hazardous** then disposal of this waste is under the jurisdiction of the ED Hazardous Waste Bureau.

## WASTE MINIMIZATION:

None at this time.

# **TESTING:**

FOR RECYCLING, no testing is required.

FOR DISPOSAL, the filters must be characterized. Test for Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, ignitability, and reactivity. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

## MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Drain more than 24 hours to remove all used oil by one of the following hot-draining methods: 1) Puncturing the filter anti-drain back valve or the filter dome end and hot-drain; <u>OR</u> 2) Hot-drain and crush; <u>OR</u> 3) Dismantle and hot-drain; <u>OR</u> 4) Flush the filter; <u>OR</u> 5) Any other equivalent method which will remove the free flowing oil (57 FR 21532). After draining, allow filters to dry.

FOR SHIPPING OFFSITE, if **nonhazardous**, no shipping requirements. If **hazardous**, contact Compliance Engineering in Tulsa for specific shipping requirements.

## **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of filters disposed.

# DISPOSAL OPTIONS:

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal option: ED-permitted landfill.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan** filed with the District Office of the OCD.

# GLYCOL - spent ethylene glycol, triethylene glycol, and diethylene glycol.

### WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 254453-25454) **when used in dehydration process**. Disposal of this waste by subsurface injection is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C). Disposal of this waste under a National Pollutant Discharge Elimination System (NPDES) permit is under the jurisdiction of the United States Environmental Protection Agency (EPA) Region VI.

### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

FOR DISPOSAL BY CLASS II DISPOSAL WELL, no testing is required.

FOR NPDES DISCHARGE, meet testing requirements specified in the permit.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Collect in storage vessel such as sump or tank prior to disposal.

FOR SHIPPING OFFSITE, for Ethylene Glycol only, the shipping description is RQ, Environmentally Hazardous Substance, liquid, N.O.S. (contains Ethylene Glycol), 9, UN3082, III. Shipping papers are required, the placard is Class 9.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL, maintain records per Class II permit or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of volume and type of waste, generator, transporter and disposal facility by retaining Bill of Lading, run ticket, or other billing information.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal options include: OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the Facility Discharge Plan.

### HYDROSTATIC TEST WATER

### WASTE CATEGORY:

Hydrostatic test water is exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b) when it is derived from the testing of gathering pipelines or pipelines used to transport raw or unrefined products. Hydrostatic test water is a non-exempt solid waste under RCRA when derived from the testing of transmission pipelines or pipelines used to transport refined products. Disposal of this waste by subsurface injection is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C) if it is exempt or nonhazardous. The ED has jurisdiction over this waste if it is hazardous. Disposal of this waste under a National Pollutant Discharge Elimination System (NPDES) permit is under the jurisdiction of the United States Environmental Protection Agency (EPA) Region VI.

### WASTE MINIMIZATION:

None at this time.

### TESTING:

FOR DISPOSAL BY CLASS II DISPOSAL WELL, if exempt no testing is required. If nonexempt, test for Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, ignitability, corrosivity, and reactivity.

FOR NPDES DISCHARGE, meet testing requirements specified in the permit.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Store water in holding vessels such as sumps, storage tanks, or evaporation pits prior to disposal. Tanks and pits that might contain oil should be flagged, netted, or otherwise covered to protect wildlife.

FOR SHIPPING OFFSITE, if **nonhazardous**, no shipping requirements. If **hazardous**, need to review shipping requirements and possibly test. Contact Compliance Engineering in Tulsa for specific shipping instructions.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL, maintain records per Class II permit or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of volume and type of waste, generator, transporter and disposal facility by retaining Bill of Lading, run ticket, or other billing information.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal options include: If exempt or nonhazardous, OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge. If hazardous ED-permitted disposal facility.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the Facility Discharge Plan.

NMRev. 1 - 11/09/92

### **IRON SPONGE**

### WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

Disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Wash thoroughly with a soda ash and water solution by circulating it through the bed for several hours to prevent auto-ignition. Can also be regenerated using this method. Incorporate soda ash solution into water disposal system.

FOR SHIPPING OFFSITE, no shipping requirements.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal option: ED-permitted landfill facility.

NMRev. 1 - 11/09/92

### MOLECULAR SIEVE

### WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

### WASTE MINIMIZATION:

Regenerate if possible.

### **TESTING:**

Disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Drain all liquids and incorporate them into the water disposal system. Allow molecular sieve to cool in a nonhydrocarbon inert atmosphere. Hydrate in ambient air for 24 hours.

FOR SHIPPING OFFSITE, no shipping requirements.

### RECORDKEEPING/REPORTING REQUIREMENTS: +

IF THIS IS A NEW WASTE STREAM not previously identified in the Facility Discharge Plan, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal option: Regenerate for reuse or ED-permitted landfill facility.

### OILY RAGS - contaminated with lubricating oil.

### WASTE CATEGORY:

Non-exempt solid waste under the Resource Conservation and Recovery Act (RCRA) (53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) if it is **nonhazardous** (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED), Appendix C). If this waste is **hazardous** then disposal of this waste is under the jurisdiction of the ED Hazardous Waste Bureau.

#### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

FOR DISPOSAL, determine if characteristically hazardous test for Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, ignitability, and reactivity. Recycling facilities may have additional testing requirements. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Store in containers marked for oily rags only. Keep cover secure when not transferring material. Do not mix with material that may be hazardous.

FOR SHIPPING OFFSITE, if **nonhazardous**, no shipping requirements. If **hazardous**, need to review shipping requirements and possibly test. Contact Compliance Engineering in Tulsa for specific shipping requirements.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of rags disposed.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: Contract with a company to recycle used rags.

# PLANT TRASH - includes paper, cardboard, plastic containers, glass. Does not include aerosol cans, paint cans, pesticides, batteries, or flammables.

### WASTE CATEGORY:

Non-hazardous solid waste under the Resource Conservation and Recovery Act (RCRA). the New Mexico Oil Conservation Division (OCD) has jurisdiction over the disposal of this waste (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED), Appendix C).

### WASTE MINIMIZATION:

None at this time.

#### **TESTING:**

None required if uncontaminated.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Store in labeled bins. Do not mix with material that is contaminated or may be hazardous.

FOR SHIPPING OFFSITE, no shipping requirements.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of debris disposed.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: Recycle paper, household items. ED-permitted landfill.

### PROCESS WASTEWATER

### WASTE CATEGORY:

Non-exempt solid waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 254453-25454). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C) if it is **nonhazardous**. The ED has jurisdiction over this waste if it is **hazardous**. Disposal of this waste under a National Pollutant Discharge Elimination System (NPDES) permit is under the jurisdiction of the United States Environmental Protection Agency (EPA) Region VI.

### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

FOR DISPOSAL BY CLASS II DISPOSAL WELL, the waste must be characterized. Test for ignitability, corrosivity, reactivity, and Toxicity Characteristic Leaching Procedure (TCLP) metals and organics. If the generator can prove by knowledge of process that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was generated.

FOR NPDES DISCHARGE, meet testing requirements specified in the permit.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Store water in holding vessels such as sumps, storage tanks, or evaporation pits prior to disposal. Tanks and pits that might contain oil should be flagged, netted, or otherwise covered to protect wildlife.

FOR SHIPPING OFFSITE, if **nonhazardous**, no shipping requirements. If **hazardous**, need to review shipping requirements and possibly test. Contact Compliance Engineering in Tulsa for specific shipping instructions.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.



FOR ONSITE DISPOSAL, maintain records per Class II permit or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of volume and type of waste, generator, transporter and disposal facility by retaining Bill of Lading, run ticket, or other billing information.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal options include: If **nonhazardous**, OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge. If **hazardous**, ED-permitted disposal facility; <u>OR</u>, if specified in the permit, NPDES discharge.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan**.

### SCRAP METAL - uncontaminated

### WASTE CATEGORY:

Non-hazardous solid waste under the Resource Conservation and Recovery Act (RCRA). the New Mexico Oil Conservation Division (OCD) has jurisdiction over the disposal of this waste (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED), Appendix C).

### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

Testing is not required unless contamination or scale is present. Review the Warren Petroleum Company policy on naturally occurring radioactive material (NORM).

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Store in areas designated for scrap metal. Do not mix with contaminated or hazardous material.

FOR SHIPPING OFFSITE, if the material is radioactive, contact Wayne McDowell, HE&LP in Tulsa for specific shipping instructions.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of debris disposed.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: Recycle. ED-permitted disposal facility.

NMRev. 1 - 11/09/92

### SILICA GEL

### WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

Disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Drain all liquids and allow to dry for 48 hours. Incorporate fluids into wastewater disposal system.

FOR SHIPPING OFFSITE, no shipping requirements.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options: ED-permitted landfill facility.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the

Facility Discharge Plan filed with the District Office of the OCD.

### SOIL CONTAMINATED WITH CRUDE OIL

### WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

### WASTE MINIMIZATION:

Check equipment on a regular basis for leaks, spills. Repair or replace leaking equipment immediately.

### **TESTING:**

WHEN LANDFARMING SOIL and need to confirm that it is no longer "contaminated", Total Petroleum Hydrocarbons (TPH) by Method 418.1, and benzene, toluene, ethylbenzene, and xylene (BTEX) by Method 8020.

FOR DISPOSAL AT A LANDFILL, disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

IF THIS IS A NEW WASTE STREAM not previously identified in the Facility Discharge Plan, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2. The OCD has no specific requirements for soil clean up and sites are evaluated on a case-by-case basis.

FOR SHIPPING OFFSITE, contact Compliance Engineering in Tulsa for specific requirements.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

For landfarming onsite, obtain approval from the OCD district office to operate a "Centralized Landfill".

For landfarming at commercial facility no permit is required. Keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of soil to be treated or disposed.

### **DISPOSAL OPTIONS:**



Landfarm onsite or at an OCD-permitted landfarm/treatment facility. Disposal at an OCD-permitted facility. Disposal at ED-permitted facility.

### SOIL CONTAMINATED WITH LUBE OIL

### WASTE CATEGORY:

Non-exempt solid waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

### WASTE MINIMIZATION:

Check equipment on a regular basis for leaks, spills. Repair or replace leaking equipment immediately.

### TESTING:

WHEN LANDFARMING SOIL and need to confirm that it is no longer "contaminated", Total Petroleum Hydrocarbons (TPH) by Method 418.1, and benzene, toluene, ethylbenzene, and xylene (BTEX) by Method 8020.

FOR DISPOSAL AT A LANDFILL, disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2. The OCD has no specific requirements for soil clean up and sites are evaluated on a case-by-case basis.

FOR SHIPPING OFFSITE, contact Compliance Engineering in Tulsa for specific requirements.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

For landfarming onsite, obtain approval from the OCD district office to operate a "Centralized Landfill".

For landfarming at commercial facility no permit is required. Keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of soil to be treated or disposed.

### **DISPOSAL OPTIONS:**

Landfarm onsite or at an OCD-permitted landfarm/treatment facility. Disposal at an OCD-permitted facility. Disposal at ED-permitted facility. NMRev. 1 - 11/09/92

#### SMART #3510-H

### SOLVENT, HAZARDOUS - this material is either a listed hazardous waste according to 40 CFR 261.31 or is characteristically hazardous (40 CFR 261.21-24). The characteristics of the solvent are on the Material Safety Data Sheets (MSDS).

### WASTE CATEGORY:

Non-exempt hazardous waste under the Resource Conservation and Recovery Act (RCRA) (53 FR 25453-25454, July 6, 1988). The New Mexico Department of the Environment (ED) has jurisdiction over disposal of this waste when it is hazardous (1989 Memorandum of Understanding between the New Mexico Oil Conservation Division (OCD) and ED).

### WASTE MINIMIZATION:

Use water-based solvents or detergents.

### **TESTING:**

If the waste is a listed hazardous waste as listed in 40 CFR 261.31 then no testing is required to confirm that it is hazardous. If the waste could be characteristically hazardous (review the MSDS) test for ignitability, Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, corrosivity, and reactivity. If the generator can prove by knowledge of process that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was generated.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Do not mix with materials are not hazardous. Nonhazardous waste mixed with a listed hazardous waste is automatically hazardous and increases the volume of hazardous waste that must be treated and disposed.

Store in containers for "Used Solvent" only. Keep cover secure when not transferring material. Containers should be stored on an impervious surface and/or in a covered area. For conditionally exempt small quantity generators (generators producing less than 220 lbs per calendar month) do not accumulate more than 2200 lbs (1000 kilograms) onsite at any time. If the generator accumulates more than 2200 lbs onsite at any time, then the generator must meet the requirements of a small or large quantity generator depending on the volume of waste onsite. Solvents must be disposed at a disposal facility authorized to accept waste solvents.

FOR SHIPPING OFFSITE, the hazardous nature of the solvent will determine which DOT requirements to follow. Contact Wayne McDowell for specific instructions.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Conditionally exempt small quantity generators (CESQG) are not required to manifest shipments of hazardous waste. Waste must be sent to a facility authorized to accept hazardous waste. Although not required by ED, CESQGs will have to obtain an EPA identification number prior to shipping hazardous waste; hazardous waste facilities in New Mexico will not accept shipments from generators without an identification number. Keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of solvent disposed.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: Recycler or disposal facility authorized to accept waste solvent.

NMRev. 1 - 11/09/92

#### SMART #3510

### SOLVENT, NONHAZARDOUS - this material does not contain listed hazardous wastes (40 CFR 261.31) and is not characteristically hazardous (40 CFR 261.21-24). The characteristics of the solvent are on the Material Safety Data Sheets (MSDS).

### WASTE CATEGORY:

Non-exempt solid waste under the Resource Conservation and Recovery Act (RCRA) (53 FR 25453-25454, July 6, 1988). The New Mexico Oil Conservation Division (OCD) has jurisdiction over disposal of this waste when it is **nonhazardous** (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Department (ED)). The ED Bureau of Hazardous Waste has jurisdiction over this waste if it is hazardous (See SOLVENT, HAZARDOUS for handling instructions).

### WASTE MINIMIZATION:

None at this time.

### TESTING:

If the generator can prove, by knowledge of process and the content of the solvent, that the waste is not hazardous and has not been combined with a listed hazardous waste, no testing is required. If the waste could be characteristically hazardous test for Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, corrosivity, reactivity, and ignitability.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Do not mix with material that may be hazardous. Store in containers for used solvent only. Keep cover secure when not transferring material. Containers should be stored on an impervious surface and/or in a covered area.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

When disposed at a commercial recycler, keep copies of analytical results and any certification forms required by recycler. When combined with slop oil, condensate, or scrubber oil keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of solvent disposed.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: Combine with scrubber oil, slop oil or condensate for sale. Recycler.

### SORBENT PADS - contaminated with crude oil.

### WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED), Appendix C).

### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

Disposal facilities must characterize each waste prior to acceptance and will require a sample of the waste for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

#### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Remove all free oil and return to oil storage tanks. Store pads in containers marked for sorbent pads only. Keep cover of container secure when not transferring material. Do not mix with material that may be hazardous.

FOR SHIPPING OFFSITE, no shipping requirements.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal option: ED-permitted disposal facility.

### SUMP SLUDGE - from all sumps onsite.

### WASTE CATEGORY:

Non-exempt solid waste under the Resource Conservation and Recovery Act (RCRA) and must be characterized to determine if hazardous. The new Mexico Oil Conservation Division (OCD) has jurisdiction over the disposal of this waste if it is **nonhazardous** (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Department (ED)). The ED has jurisdiction over this waste if it is **hazardous**.

### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

Test for Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, reactivity, and ignitability. Use the Paint Filter Liquids test to determine if free liquids are present. If free liquids are present test for corrosivity. Disposal facilities must characterize each waste prior to acceptance and may require additional testing before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Removal of sludge from sumps should be done in such a manner ad to minimized spillage. Use drip pans or catchment basins. Remove all free liquids and reclaim all free oil. If nonhazardous, mix solids with wastewaters for disposal via Class II disposal well. For storage onsite prior to disposal place in drums, tanks, or other closed/covered containers or dispose immediately upon removal of sludge from sumps.

FOR SHIPPING OFFSITE, if **nonhazardous**, no shipping requirements. If **hazardous**, will need to review and possibly test. Contact Wayne McDowell, HE&LP in Tulsa for specific instructions.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office in Hobbs, and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL WELL, maintain records per Class II disposal well permit. FOR DISPOSAL AT A COMMERCIAL FACILITY, keep Bill of Lading, run ticket, or other billing information that documents the origin, transporter, disposal site, and volume of debris disposed.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: OCD-permitted Class II well. OCD-permitted disposal facility. ED-permitted landfill.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the **Facility Discharge Plan**.

### TANK BOTTOMS - from crude oil tanks.

### WASTE CATEGORY:

Exempt from regulation as a hazardous waste under the Resource Conservation and Recovery Act (RCRA)(40 CFR 261.4(b); 53 FR 25453-25454, July 6, 1988). Disposal of this waste is under the jurisdiction of the New Mexico Oil Conservation Division (OCD) (1989 Memorandum of Understanding between the OCD and the New Mexico Environment Division (ED)).

#### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

FOR RECLAIMING OR DISPOSAL VIA CLASS II DISPOSAL WELL, no testing is required. Landfill facilities must characterize each waste prior to acceptance and may require a sample for analysis before disposal is allowed. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Removal of bottoms from tanks should be done in such a manner ad to minimized spillage. Use drip pans or catchment basins. Remove and reclaim all free oil. Mix solids with wastewaters for disposal via Class II disposal well. For storage onsite prior to disposal place in drums, tanks, or other closed/covered containers or dispose immediately upon removal of bottoms from tanks.

FOR SHIPPING OFFSITE, contact Compliance Engineering for specific shipping requirements.

### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified in the Facility Discharge Plan, notify the OCD District Office and the Main Office in Santa Fe for approval of waste disposal. A list of districts and phone numbers is in Appendix B-2.

Always keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of waste disposed.

#### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: OCD-permitted reclaimer. OCD-permitted Class II well. OCD-permitted disposal

facility. ED-permitted landfill.

USED OIL - any oil that has been refined from crude oil or any synthetic oil that has been used and as a result if such use if contaminated by physical or chemical impurities (40 CFR 279.1; 57 FR 41613).

### WASTE CATEGORY:

Non-exempt solid waste under the Resource Conservation and Recovery Act (RCRA) (53 FR 25453-25454, July 6, 1988).

### WASTE MINIMIZATION:

Inspect tanks or containers on a regular basis for leaks or spills and to confirm that storage units are in good condition.

### **TESTING:**

RECYCLE, Each recycler may have specific testing requirements (such as total halogen) prior to accepting used oil. No testing is required when combined with scrubber oil or condensate for sale.

DISPOSAL, test to determine if characteristically hazardous; Toxicity Characteristic Leaching Procedure (TCLP) metals and organics, corrosivity, reactivity, and ignitability. If the generator can prove by knowledge of process that the oil is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the oil and the process for which it was used.

#### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Store in tanks or containers marked "Used Oil". Tanks and containers must be in good condition (Generators storing used oil onsite must comply with applicable requirements of 40 CFR 112, Spill Control and Countermeasures plan for used oil storage units). Keep cover secure when not transferring material. Leaks and spills must be contained and repaired immediately; releases to the environment must be cleaned up.

Shipments of used oil of 55 gallons or less may be transported by the generator in their own vehicles and without obtaining an EPA identification number. An EPA registered transporter must be used for shipments of more than 55 gallons of used oil. Generators transporting more than 55 gallons must obtain an EPA identification number and comply with all the requirements of 40 CFR 279 Subpart E.

Do not mix with material that may be hazardous.

FOR SHIPPING OFFSITE, if nonhazardous, no shipping requirements. If hazardous, need to

review shipping requirements and possibly test. Contact Compliance Engineering for specific instructions.

### RECORDKEEPING/REPORTING REQUIREMENTS:

DISPOSAL AT A RECYCLER: keep copies of Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of oil disposed as well as any analytical results and certification forms required by recycler.

IF THIS IS A NEW WASTE STREAM not previously identified in the **Facility Discharge Plan**, notify the OCD District Office and the Main Office In Santa Fe for approval of waste disposal. A list of districts and telephone numbers is in Appendix B-2.

WHEN COMBINED WITH SCRUBBER OIL OR CONDENSATE: keep Bill of Lading, run ticket, or other billing information that documents the generator, transporter, disposal site, and volume of oil sold.

### **DISPOSAL OPTIONS:**

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of disposal. Disposal options include: Recycler or Combine with scrubber, slop oil or condensate for sale.

NMRev. 1 - 11/09/92

### WASH WATER

### WASTE CATEGORY:

Non-exempt solid waste under the Resource conservation and Recovery Act (RCRA)(53 FR 25453-25454, July 6, 1988). The New Mexico Oil Conservation Division has jurisdiction over the disposal of this waste when it is **nonhazardous** (1989 Memorandum of Understanding between the OCD and the New Mexico Environmental Division (ED)). The ED has jurisdiction over the disposal of this waste if it is **hazardous**. Disposal of this waste under a National Pollutant Discharge Elimination System (NPDES) permit is under the jurisdiction of the United States Environmental Protection Agency (EPA).

### WASTE MINIMIZATION:

None at this time.

### **TESTING:**

FOR DISPOSAL WELL, test for Toxicity Characteristic Leaching Procedure (TCLP) metals and organic compounds, corrosivity, reactivity, and ignitability to characterize the waste. If the generator can prove that the waste is not hazardous, then no testing is required. The generator must provide information on the chemical composition of the waste and the process from which it was produced.

FOR NPDES DISCHARGE, comply with testing requirements specified in the permit.

### MANAGEMENT, STORAGE AND TRANSPORTATION INSTRUCTIONS:

Collect in storage vessel such as sump, storage tank or evaporation pit prior to disposal.

FOR SHIPPING OFFSITE, if **nonhazardous** no shipping requirements. If **hazardous**, need to review the shipping requirements and possibly test. Contact Wayne McDowell, HE&LP in Tulsa for specific shipping requirements.

#### **RECORDKEEPING/REPORTING REQUIREMENTS:**

IF THIS IS A NEW WASTE STREAM not previously identified on the Facility Discharge Plan, notify the OCD District Office in Hobbs and the Main Office in Santa Fe for approval of waste disposal. A list of OCD districts and phone numbers is in Appendix B-2.

FOR ONSITE DISPOSAL, maintain records per Class II disposal well or NPDES permit.

FOR DISPOSAL AT COMMERCIAL FACILITIES, maintain records of the type and volume of waste, generator, transporter, and disposal facility by retaining run tickets or other billing

information.

### DISPOSAL OPTIONS:

IF THIS IS A NEW WASTE STREAM, contact the OCD for approval of waste disposal. Disposal options include: If **nonhazardous**, OCD-permitted Class II disposal well (onsite or offsite); <u>OR</u>, if specified in the permit, NPDES discharge. If **hazardous**, ED-permitted facility; <u>OR</u>, if specified in the permit, NPDES discharge.

IF THIS IS AN EXISTING WASTE STREAM, follow disposal procedures designated in the Facility Discharge Plan.

## SECTION XIV

### RICE INJECTION WELL PERMIT

.

	•			•		
NEV	MEXICO OI		RVATION CO	-	<b>V</b> 11	rm G-110 d 7/1/55
(File the orig		•				
		pres with	the appropri			37
	FICATE OF ( O TRANSPO					
Company or Operator	Rice Engir	eering &	Operatin	g,Inq _{ea}		e-Monument t SWD
Well NoU	nit Letter I	<u>s 1</u> T	203 R 36E	_Pool	Monumer	nt
CountyLea	Kin	d of Lease	(State, Fed	l. or Pat	ented) St	ate
f well produces oil of	condensate,	give loca	tion of tanks	:Unit	T	R
Authorized Transport	er of Oil or C	Condensate		·····		
Address						
(Give add	ress to which				to be sent)	
Authorized Transport	er of Gas					
Address				Date (	Connected	
Give add) Gas is not being sol	ress to which	approved	copy of this	form is	to be sent	D
f Gas is not being sol	u, give reasc	ons and all	so explain it	a hieren	Cafeboarrio	n: _
					1950	
				nic. Sill	INEETING & OPERA Hodes N. N.	
leasons for Filing:(Pl	ease check p	roper box	New W	ell	Holdes at me	• ( )
Change in Transporter	-				ad ( ) Con	densate ( )
Thango in Ownership		<b>(Y</b> )				
Change in Ownership_ Lemarks:		(X)		Give ex	planation b	
This well had tate "D" No. 3, a stends to make a s D System in the la the New Mexico Oil the undersigned certific hission have been con	marginal we alt water d ower San An Conservati fies that the H oplied with.	ll in th isposal dres For on Commi Rules and	<b>well for for for for for for for for for for</b>	<b>zone.</b> the Euni this has der No.	Rice Engi lce-Monume been app R-1717.	incering ant-Eumont roved by
executed this the 21.	_day of	ury	19 00			00.11
			Вy	W.	y. M	bott
3111	- e - 10 <i>0</i> 0					
pproved .1(1)	99 1969	19	Title	DIVI	sion Manag	er.
OIL CONSERVAT	ION COMMI	SSION	Compan	y RICE E	NGINEERIN	IG & OPER.
· riestic 2	7 Jenno	تىپ نىر بر بر	Address	Box 1	42	
	Oil & Gas	····			New Mexi	
itle	<b></b>	173-11		- RUDDS	New Mexi	LGO

<u>.</u>

									• <b></b>	· · · · · · · · ·	
ŗ			NEW MEXIC						ON OFFICE OC	<b>C</b> .	FORM C-103 (Rev 3-55)
		(5)	ubmit to appropr								
Name of Com	pany					Add	ress				
Rice E	ngineeri	ng &	Operating	Vell I	Inc.	P	D. BO r Section	X 1142	, Hobbs, N	lew I	Mex1CO
-	-M-E SWD				-1	I	1	1 Constant	20-5	.ан <u>в</u> с	36-E
Date Work Pe 7-29-		1	Pool Monu	mei	nt -	Abo		County	Lea		
				_			k appropria	te block)			ch from
Beginni	ng Drilling Op 8	erations		-	Test and 1 Work	Cement J	Monum	ient-ad	o to Monum Disposal)	uanr	-San Andres
1. Se 2. Lo 3. Pe 46 4. Te 5. Ac re 6. Pu Ca	t drilla aded cas rforated 70', 473 sted sal idized w gular ac illed dri sing.	ble ing 55° t 5° t id, 11 p	with wates casing for o 4785', 4 ter inject 16,000 gal Maximum do ipe and to	br: com t82 tion t10 cil ast	idgin nd te 4300 0' to n @ 1 ns of 1 pip ed in	g plu sted ' to 4830 6 bph 15% e pre jecti	esults obtain S S 505 Casing 4350', ', and natura regular ssure con at 8 con at 8	AUG	dumped 5 psi for 3 to 4550' to 4935' ravity. and 2500 psi @ 10 by 972VI 3 1960 HING & OPERATING, RRS. M. M.	sac 30 m 465 BPM by d	ons 30% injection. own
<u>L.</u>	B. Goodt	leart	FILL IN BEL	.ow		MEDIAL				<u> </u>	perating,Ir
					_	AL WELL					
D F Elev. 3577		TD	7625*		PBTD	7580*		P#440- 7465-	7515	Comp	-19-49
Tubing Diam	eter 🔴		Tubing Depth			Oil S	tring Diamet	S" OD	Oil String	Depth 76	25'
Perforated In		)' -	7440', 74	651	- 75	15'					
Open Hole In							icing Forma MOI	tion(s)	Abo		
				R	ESULTS	S OF WO	RKOVER				
Test	Date of Test		Oil Production BPD			oduction F P D		roduction PD	GOR Cubic feet/Bbl		Sas Well Potential MCFPD
Before Workover	M	arbi	al Produc	er	by Sk	elly	011 Cor	mpany			
After Workover	7-29-0		Recomple 860 BPH.	ted	as 9	Salt'W	ater D.	lisposal	Well wit	h te	st of
		ERVAT	ION COMMISSION	í	<u> </u>	to	the best of r			above i	s true and complete
roved by	[[[	r Z	Male	2		Nan	"	Wy C	about	<b>w.</b> (	G. Abbott
Title		/ 2	· · · · · · · · · · · · · · · · · · ·			Pos	ition	Divisio	on Manager	•	
Date	/			٢.	¹ fat 1	Con	ipany	nineer	Inn R. Mnor		na. The.

**.** .

i.

1

i .

i

į. į

1

i.

199 A.C.O.

### NEW MEXICO OIL CONSERVATION COMMISSION

Santa Fe, New Mexico

# **MISCELLANEOUS NOTICES**

District of the District Office, Oil Conservation Commission, before the work specified is to begin. A copy will be returned to the sender on which will be given the approval, with any modifications considered advisable, or the rejection by the Commission or agent, of the plan submitted. The plan as approved should be followed, and work should not begin until approval is obtained. See additional instructions in the Rules and Regulations of the Commission.

### Indicate Nature of Notice by Checking Below

Notice of Intention to Change Plans		Notice of Intention to Temporarily Abandon Well	Notice of Intention to Drill Deeper	
Notice of Intention to Plug Well		NOTICE OF INTENTION TO PLUG BACK	 Notice of Intention to Set Liner	
Notice of Intention to Squeeze		NOTICE OF INTENTION TO ACIDIZE	 Notice of Intention to Shoot (Nitro)	
Notice of Intention to Gun Perforate	X	Notice of Intention (Other)	Notice of Intention (Other)	

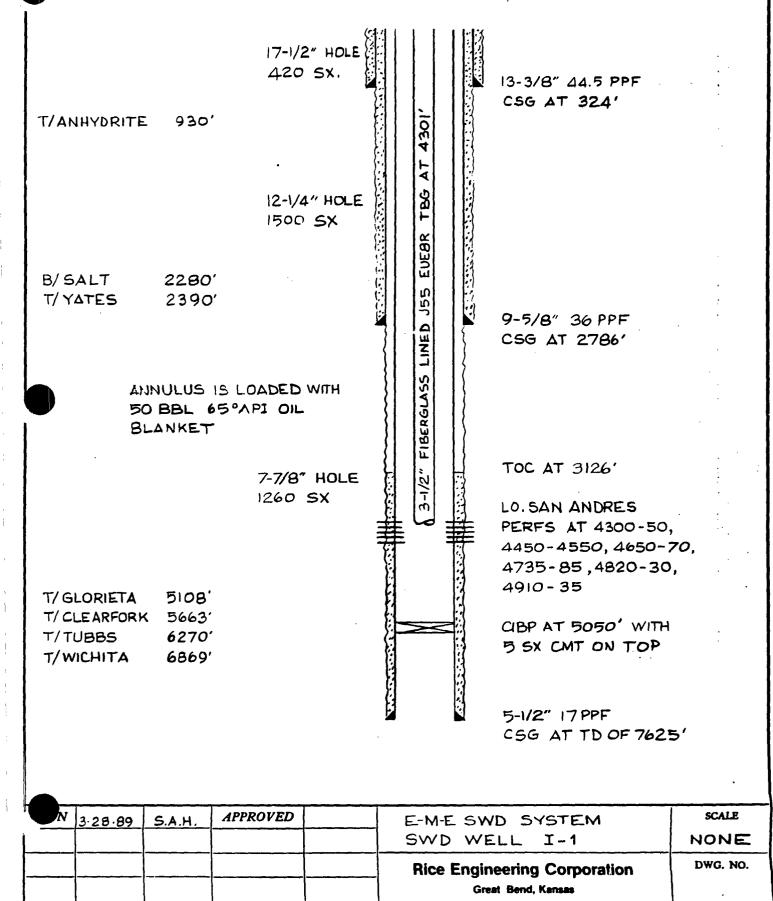
OIL CONSERVATION COMMISSION SANTA FE, NEW MEXICO

E. L. Bcx 1142, Hobbs, Hisidex, July 21, 1960

Gentlemen:

Following is a Notice of Intention to do certain work as described below at the Rice Engineering ... Operating Inc.

E-M-E SWD	****	Well No.	
(Company or Op		Lesse	(Unit)
(40-acre Subdivision)	, T,		Lonu hentPooi


#### 

### FULL DETAILS OF PROPOSED PLAN OF WORK (FOLLOW INSTRUCTIONS IN THE RULES AND REGULATIONS)

3. Test casing at 2000 psi for 30 m	4550', 4650 to 4670', 4735' to 4785', well.
7. Run 4½" O.D. Hydril tubing.	
<ol> <li>Load annular space with sweet oi</li> <li>Test injection rate of disposal</li> </ol>	RECEIVED
	JUL 25 1960 -
JUL 2?	RICE ENGINEERING & OPERATING, INC. HUBBS, N. M. RICE ENGINEERING & OPERATING INC.
	By U.G. abort
CONSERVATION COMMISSION	Position
By Tieslie C. Concerte	Name RICE ENGINEERING & OPERATING, INC.
Tille	Addres P. O. Box 1142, Hobbs, New Mexico
the start three to the	

2310'FSL & 660' FEL, SEC. 1, T205, R36E, LEA CO., NEW MEXICO

DF : 3577'



## STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT



**OIL CONSERVATION DIVISION** 

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

## ADMINISTRATIVE ORDER SWD-561

## APPLICATION OF WARREN PETROLEUM COMPANY FOR SALT WATER DISPOSAL, LEA COUNTY, NEW MEXICO.

## ADMINISTRATIVE ORDER OF THE OIL CONSERVATION DIVISION

Under the provisions of Rule 701(B), Warren Petroleum Company made application to the New Mexico Oil Conservation Division on November 23, 1993, for permission to complete for salt water disposal its Graham State (NCT-F) Well No. 7 located 330 feet from the South line and 1650 feet from the East line (Unit O) of Section 36, Township 19 South, Range 36 East, NMPM, Lea County, New Mexico.



## THE DIVISION DIRECTOR FINDS THAT:

(1) The application has been duly filed under the provisions of Rule 701(B) of the Division Rules and Regulations;

(2) Satisfactory information has been provided that all offset operators and surface owners have been duly notified;

(3) The applicant has presented satisfactory evidence that all requirements prescribed in Rule 701 will be met; and

(4) No objections have been received within the waiting period prescribed by said rule.

### **IT IS THEREFORE ORDERED THAT:**

The applicant herein, Warren Petroleum Company is hereby authorized to complete its Graham State (NCT-F) Well No. 7 located 330 feet from the South line and 1650 feet from the East line (Unit O) of Section 36, Township 19 South, Range 36 East, NMPM, Lea County, New Mexico, in such manner as to permit the injection of salt water for disposal purposes into the San Andres formation at approximately 4550 feet to 5000 through 2 3/8 or 2 7/8-inch plastic-lined tubing set in a packer located at approximately 4500 feet.

Administrative Order SWD-561 Warren Petroleum Company June 16, 1994 Page 2

## IT IS FURTHER ORDERED THAT:

The operator shall take all steps necessary to ensure that the injected water enters only the proposed injection interval and is not permitted to escape to other formations or onto the surface.

Prior to commencing injection operations into the well, the casing shall be pressure tested from the surface to the packer setting depth to assure the integrity of said casing.

The casing-tubing annulus shall be loaded with an inert fluid and equipped with a pressure gauge at the surface or left open to the atmosphere to facilitate detection of leakage in the casing, tubing, or packer.

The injection well or system shall be equipped with a pressure limiting device which will limit the wellhead pressure on the injection well to no more than 890 psi.

The Director of the Division may authorize an increase in injection pressure upon a proper showing by the operator of said well that such higher pressure will not result in migration of the injected fluid from the San Andres formation. Such proper showing shall consist of a valid step-rate test run in accordance with and acceptable to this office.

The operator shall notify the supervisor of the Hobbs district office of the Division of the date and time of the installation of disposal equipment and of the mechanical integrity test so that the same may be inspected and witnessed.

The operator shall immediately notify the supervisor of the Hobbs district office of the Division of the failure of the tubing, casing, or packer in said well and shall take such steps as may be timely and necessary to correct such failure or leakage.

<u>PROVIDED FURTHER THAT</u>, jurisdiction of this cause is hereby retained by the Division for the entry of such further order or orders as may be deemed necessary or convenient for the prevention of waste and/or protection of correlative rights; upon failure of the operator to conduct operations in a manner which will ensure the protection of fresh water or in a manner inconsistent with the requirements set forth in this order, the Division may, after notice and hearing, terminate the injection authority granted herein.

The operator shall submit monthly reports of the disposal operations in accordance with Rule Nos. 706 and 1120 of the Division Rules and Regulations.

Administrative Order SWD-561 Warren Petroleum Company June 16, 1994 Page 3

The injection authority granted herein shall terminate one year after the effective date of this order if the operator has not commenced injection operations into the subject well, provided however, the Division, upon written request by the operator, may grant an extension thereof for good cause shown.

Approved at Santa Fe, New Mexico, on this 16th day of June, 1994.

WILLIAM J. LEMAY, Director

WJL/BES/amg

xc: Oil Conservation Division - Hobbs

P.O. BOX 636 HOBBS, NEW MEXICO 88240 OFFICE (505) 392-1915





May 17, 1994

Dear Sir:

Please find enclosed Warren Petroleum Company application to convert the Graham State (NCT - F) No. 7 well, located in section 36 - T19S - R36E, Lea County New Mexico, for use as a salt water disposal well.

Should you have any questions about this application, please direct them to Michael Pierce at PEAK CONSULTING SERVICES at the above listed address. Thank you for your time and consideration.

Sincene

Michael L. Pierce PEAK CONSULTING SERVICES

STATE OF NEW MEXICO OIL CONSERVATION DIVISION ENERGY AND MINERALS DEPARTMENT ROST OFFICE BOX 2009

Z

.

ł

1

.........

.

_

FORM C-108 Revised 7-1-81 1

Ι.	Purpose: Secondary Recovery Pressure Maintenance (V) Disposal Storage Application qualifies for administrative approval? Wyes no
11.	Operator: <u>WARREN PETROLEUM COMPANY</u>
	Address: 8201 S. H.Y 322 MONUMENT, N1 38265 P.O. BOX 636 HOBBS, NM 88241
	Contact party: M. L. PIERCE (AGENT) Phone: <u>392-1915</u>
111.	Well data: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project?
۷.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review whic penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	<ol> <li>Proposed average and maximum daily rate and volume of fluids to be injected;</li> <li>Whether the system is open or closed;</li> <li>Proposed average and maximum injection pressure;</li> <li>Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and</li> <li>If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).</li> </ol>
111.	Attach appropriate geological data on the injection zone including appropriate lithologi detail, geological name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such source known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
Χ.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division they need not be resubmitted.)
XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground source of drinking water.
	Applicants must complete the "Proof of Notice" section on the reverse side of this form
(1V.	Certification
	I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	Name: MICHAEL L. PIERCE D Title AGENT
	Signature:

#### III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
  - (1) Lease name; Well No.: location by Section, Township, and Range; and footage location within the section.
  - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
  - (3) A description of the tubing to be used including its size, lining material, and setting depth.
  - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
  - (1) The name of the injection formation and, if applicable, the field or pool name.
  - (2) The injection interval and whether it is perforated or open-hole.
  - (3) State if the well was drilled for injection or, if not, the original purpose of the well
  - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
  - (5) Give the depth to and name of the next higher and next lower oil or gas zone in the area of the well, if any.
- XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) the intended purpose of the injection well; with the exact location of single wells or the section, township, and range location of multiple wells;
- (3) the formation name and depth with expected maximum injection rates and pressures; and
- (4) a notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, P. O. Box 2088, Santa Fe, New Mexico 87501 within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.



Shaji 132 134 109- A-1118 5.1	31 2 Teraco - 5 4 Winn, Moor - 5 R.G. Opel Barton Tr. 11Mm. Geo. Werk. Trui	113 St. 910 15 16 Barr State State	4' [4:000] 13 Tetoca (a) 15 Johann (s) 19 002 0 (a) 10	H.T. Mathem &
Amereca Texaco i Southwest OE.G : 733 : 735 : 0136 (137 : 136 : 137 : 136 : 137 : 136 : 137 : 136 : 137 : 137	10 10 10 10 10 10 10 10 10 10	Tesaco amorono Chevron di di do 2 T/A TA 00 2 T/A TA 00 David- 5 6 3 4 3 4 5 6 3 4 3 4 5 6 3 4 5 6 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	Canoco 3 AC \$5:5: (25): (7/4) 7: Senoco 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 6 7 7 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Chevron 1
Sibert Sibert Office Provided Frances Description Excluded frammer Cit Serv	Conocol Wm Werr erol 1 (5.53) 4.26 Werethon ChevroniAmeradia 5.4.26 Werethon B 10 alterity. L. Burl: War erol (250) to 4150 Amerada with	Weiner         B:2287           Angeness         25           Cilerron         Cilerron           Yish         B:2007           Angeness         Yish           Yish         B:2007           Transform         Solor           Transform         Solor           Transform         Solor           Transform         Solor           Transform         Solor	NORTH MONUMEN	29 34 29 34 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Amas Persons 150 Chevron 152 provides 152 provides 152 provides 152 provides 153 provides 153 provides 153 provides 155	Artercac Grux Chevron	DD XH IS VOT 16 Chraimes Store	Amerada T/A	Amerodo Amerodo essa 4 3 delas ano 2 1 5 6 7 5 6 5 3 (cm * Cont-
Sowest SFG 165 Amerodol 1.54	(3) Dec Erg. 5 6 7 6 Chevron 57 7/4 703350		5 7 4 5 5 7 4 5 6 00 (5mil) 6 0	
Shell David Arrington	Amerada Moveely 32 01 0 33 (Pres (Sinctain): Mercety (Sinctain): B Shell	Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Chevron Che	Aros Phillips" <u>SJ</u> 6	Tersco 2 3 330 11 10 work 3 5 73 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LYNX - 42 Mei 2 3 4 3	TA	Stole The merodo a stole of the		Chevron Berthing Barber All L did 17 L 31 as at a free day Chevron May
PET. (OPER) - Aroa etal - Lynu Pet, etal 30578 30578 REED-	America America Systems A America America Systems A A 5 (10, Merica 1, 3) A 6 5 (10, Merica 1, 3) A 7 3 5 (10, Merica 1, 3) A 7 5 5 (10, Merica 1, 3)	502 () Tradition	monte de la 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	174 Meridian Longshen Children Childre
1MOERSON UNIT	Amerada Amerada Amerada Amerada Amerada Amerada Amerada Amerada Amerada Amerada Amerada Amerada Amerada	(DE7) Americado Tenaco (DE7) Americado (DE7) Americado (DE7) (DE7) (DE7) (DE7) (DE7) (DE7) (DE7) (DE7) (DE7) (DE7	North Start Control Start	2 Justicharingen prisingen in Say
E H Kleinis),	(00) will A.R.Ca 03074	TD 10025	Britist (G.P. Sims S) ber	A Stars (199) MAR Stars Such as a such asuch as a such as a such as a such as a such a
Luna Luna Zic 644 Pet 21 Pet 21 Ener, Inc 560 Conocc		65874 65 5 Compg2 10 1 1000 10 1 1000 10 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1	Hormon Cass	Americada VA HALLER
Fing Of.C Isree Crowners E.H. Klein (5) Per Crowners Consto 89815 Consto 89815 Con	Byro 660 Concentrate DD A III4 864 85 966 667 Wi Sancerson U.S.	Byre Byrd Gas Aleste- Cooper Cooper Cooper Cooper Cooper Cooper Cooper Cooper Cooper Cooper Cooper Cooper Cooper	Antropy MKAOII	Rod man (State) (Millard
Consce.etal HBP 1191 B 1015 Sonadison	TI EH Klein Fet (S)	TA JOLO BOB	Persent A Brink Prod.	Pe,P Prod. #2 #4 #4 Millard Deck.
36 (Consee, DJR) Penroc Oil 36 Record	2007 1 876 077 2007 1 876 000 2007 1 876 000	Gorffer (COPFER 12 Mail Meredian 2 Mail Meredian Charles States Charles S	John H. Hundrur Corp. 7/4 5 8-9 95 1 5 1-9 51 174 161 161 161 161 161 161 161 161 161 16	Store Change of Angerson

## WARREN PETROLEUM COMPANY

GRAHAM STATE NCT-F NO. 7 SEC 36 - T195 - R36E LEA COUNTY, NEW MEXICO FORM C - 108 cont.

Part III. A

- 1.) Graham State (NCT- F) No. 7 330' FSL and 1650' FEL Sec. 36 - T195 - R36E Unit O Lea County, New Mexico
- 2.) See attached wellbore schematic.
- 3.) Propose to run approximately 4500' of 2 7/8" plastic lined tubing.
- .4.) Propose to use a tension Packer as a seal, and set at approximately 100' above the top perforation. The casing annulus will be loaded with packer fluid.

Part III. B

- 1.) The injection interval will be in the lower San Andres. and there is no San Andres production from this interval in the immediate area.
- 2.) The injection interval will be approximately 4550' to 5000' and will be selectively perforated.
- 3.) This well was originally drilled as an oil and gas well.

4.) See wellbore schematic

5.) There is production from above and below the San Andres in this area. The Eumont(Yates - Seven Rivers - Queen) at approximately 2700' to 3500'. the Eunice - Monument (Gravburg - San Andres) at 3500' to 3900'. The Monument Paddock at 5100'. Monument Blinebry at 5600'. Monument Abo at 7100', Monument McKee - Ellenburger at 9500'.

Part VII.

- Proposed average daily injection will be 3500 bbls/ day. Maximum will be 5000 bbls./ day.
- 2.) The system will be closed.
- 3.) The average injection pressure will be O(Vacuum). The maximum will not exceed the limits set forth by the DCD.

- 4.) The source of the water will be from the Warren Petroleum Company Gas Plant, located immediately west of this well.
- 5.) The San Andres is productive within one mile of the Graham State (NCT F) No. 7 well.

### Part VIII

The injection interval is the lower San Andres. and is composed of primarily limestone and porous dolomite with occasional anhydrite and thin shale stringers, and is approximately 800' thick. The top of the San Andres is at approximately 4300'. The base of the San Andres is at approximately 5080'. This entire area is overlain by Quaternary Alluvium. This alluvium is the major source of fresh water in this area. at a depth of 20' to 50'deep. The Ogalalla is not present at this location.

### Part IX

The disposal interval will be treated with a breakdown acid job.

### Part X

The logs have been previously submitted by Gulf Oil Corporation.

### Part XI

There are active fresh water wells within one mile of the Graham State (NCT - F) NO. 7 location. The analysis for these wells are attached.

Part XII

We have examined all available geologic and engineering data, and find no evidence of open faults or any other hydrologic connection between the disposal interval and any underground source of drinking water. Part XIV

A copy of this application has been sent to: CHEVRON USA INC. P.O. BOX 1150, MIDLAND. TEXAS 79702 TEXACO EXPLORATION AND PRODUCTION 205 E. BENDER. HOBBS. NEW MEXICO 88240 AMERADA HESS CORPORATION DRAWER D. MONUMENT. NEW MEXICO 88265

Warren Petroleum Company is the surface owner of unit O. Sec 36 - T195 - R36E. Lea County, New Mexico.

ł

.

. .....

## LIST OF WELLS IN AREA OF REVIEW

# LIST OF WELLS THAT PENETRATE INJECTION INTERVAL

COMPANY	WELL	UNIT	ТD
SEC 36 - T195 - R36E			
AMERADA HESS CORPORATION """ CHEVRON USA INC. CHEVRON USA INC.	NMGSAU BLK 14 # 32 STATE F # 5 GRAHAM STATE NCT-F # 6 GRAHAM STATE NCT-F # 7	-	9822' 10225' 5724' 7700'
SEC 1 - T205 - R37E			
AMERADA HESS CORPORATION	J. R. PHILLIPS # 5 J. R. PHILLIPS # 6 J. R. PHILLIPS # 7 J. R. PHILLIPS # 8 J. R. PHILLIPS # 9 STATE D # 5 STATE D # 6	A B H G A C F	9941' 5207' 10004' 5760' 5720' 5730' 7877'
SEC 6 - T205 - R37E			
TEXACO EXPLORATION & PROD.	J. R. PHILLIPS # 5 J. R. PHILLIPS #11	ם C	7750' 9814'
SEC 31 - T195 - R36E			
ARCO AMERADA HESS CORPORATION	J. R. PHILLIPS # 8 NMGSAU BLK 15 # 13	M M	9899 ' 5720 '



## LIST OF WELLS IN AREA OF REVIEW

WELLS THAT DO NOT PENETRATE INJECTION INTERVAL

COMPANY	WELL	UNIT	αT
SEC 36 - T195 - R36E			
AMERADA HESS CORPORATION	NMGSAU       BLK       14 #       9         NMGSAU       BLK       14 #       10         NMGSAU       BLK       14 #       11         NMGSAU       BLK       14 #       14         NMGSAU       BLK       14 #       14         NMGSAU       BLK       14 #       16         STATE       V       #       3         GRAHAM       STATE       #       3         GRAHAM       STATE       #       4	I J N P H J O	3908' 3950' 3905' 4024' 3915' 3921' 3921'
SEC 1 - T205 - R36E			
AMERADA HESS CORPORATION """" """" """"" """"" """"""	NMGSAU BLK 19 # 3 NMGSAU BLK 19 # 4 NMGSAU BLK 19 # 6 J. R. PHILLIPS # 1 J. R. PHILLIPS # 2 J. R. PHILLIPS # 3 J. R. PHILLIPS # 4	C D F A H G B	3700' 3754' 3710' 3700' 3870' 3872' 3872' 3700'
SEC 6 - T205 - R37E			
TEXACO EXPLORATION & PROD.	J. R. PHILLIPS # 1	D	3908'
SEC 31 - T195 - R37E			
AMERADA HESS CORPORATION	NMGSAU BLK 15 # 29	м	3899 '

DATE PERATOR AMERADA HESS CORPORATION 5-16-94 LOCATION LEASE WELL NO. 660 FSL + 660 FEL NMGSAU BIK14 uni+ 32 Sec 36-7195-236E Active well GKBG-SA  $13\frac{1}{8}$ " casing set at  $302^{\prime}$  with 300 sx of _____ ceme Total Depth 302 ' Hole size 171/2 " CINCULATED perfs 3721 - 3885 CIBP @ 4500 + 35 5x cmt. 95/8 " casing set at 2787 ' with 1300 sx of _____ cement Hole size 121/4 " Toc by TS @ 1205" perf 7" @ 4574 w/ 4 5HOTS, cmt w/ 365 5x5. Toc by TS @ 2880' perf 5710 - 5745 5920 w/ 50 5x perf 7160 - 7277 sqza w/ 100 sx perf 7590 - 7670 sqza w/ ? sx CSG LEAK @ 6308 - 6808 5920 w/ 186 5x 100 100' plug @ 6801-6901 100' plug @ 5065-5165 <u>7</u> " casing set at <u>9785</u>' with <u>500</u> sx of _____ cemen Total Depth <u>9822</u> Hole size <u>858</u> " Toc by TS Q 4630 CIBP @ 9475 + 35 5x cmt. perf 9501-31 perf 9752-54 0H 9785 - 9822'

AMERADA H	ess Corporation			DATE 5-16-94
EASE STATE	C	WELL Na 5		785'FSL + 1980'FWL
Sec 36-719	S-R36E 1	Active	well M	Nonument ABO
سطا المس	7			
	133/8" csg s	set @	یں '87 ا	ith 200 SX Circulated
	TO 187'	hole	size 17/2	2 CINCULATED
				1 70
	perf 4460 59	52 w/	400 5×	TUC 2544' By TS
	pert 3579 - 3.	156	5q20 ~/	100 5×
	1			
		set at	Toc by	n <u>/300</u> sx of cen 75 @ /226'
	(Sq LOAK @	- 1447 -	1478 Sq	20 w/ 100 5x
	port 5620- =	5712	yn vege	150 5X 150 5X 125 5X
			-	
	perf 6910 - 7:			
	CIBP @ 7170'	+ 35'	cmt ( Dr	illed out
	pert 7562-7		5.2	
	CIBP @ 7800' perf 9834 - 6		~~	
	perf 9834 - (	04 >		
	perf 9834 - ( perf 9890 - ) perf 9907 -	م ا	5920 ~/	100 SX
	perf 9915 - 2			
	1			
4	5/2 casing set	t at _9	<u>978</u> ' with	Boo sx of c
1	Total Depth <u>/0</u> 22	2 <u>5</u> ' Ho	the size $-7$	3/4 " TOC by TS@
KA				

CHEURON U	SA INC			DATE 5 -16-	94
GRAHAM STAT	te NCT-F		MIT P	330'FSL +	660' FEL
Sec 36-71	195-12368	Active	well	Monument	Blinebry
	-				
	, ,				
	133/8" (SG 5	e + Q = 26	,9' w/	375 SX	
	13 3/8" CSG 5 Hole size	18'	Circu	lated	
	<u> </u>	g set at <i>2</i> 89	9 <b>' with</b>	2050 sx of	ce
	Hole size 12/4		معينه	Circulateo	
				••••••	
	r.		_		
	pert 561	02 - 26	36		
	perf 54	54-572	. 1		
	<u> </u>	-+ -+ <72U	tudeb (	UTC or of	
	Total Depth <u>S7</u>				
			· 🖌 /		· ·

ł

I

ļ

LEASE J. R.		WELL NO		660'FNL + 660	
Sec 1	- 7205 - 12 36E	Activ	E Monumen;	+ M ^r Kee-Ellev	1 bunger
7720011	<b>1728/77</b>				
		•		<u>300</u> sx of	cement
	Hole size _	24 "	CIRCULATED		
	<u>// ¾</u> casin	g set at <u>24/</u>	<u>} with 205</u>	<u>D</u> sx of	cement
	11			" CIRULATE	
			- <u></u>		
	<u> </u>	casing set at	<u>5/2/</u> ' with	<u>/250</u> sx of	cement
	Hole size _	105/8 "	TOC by	75 @ Zo	48 '
	pert 518	30-5200	- 563 m/ 1	50 57	
	perg 52	95-5000 J	547 20/	50 5X	
	perf 56	00 - 5610	- 567 ~ ~/ 1 567 ~ ~/ 567 ~ ~/		
	pry SZ	15 5 6 60	6 '		
	part Sol	-5715		98 SX	
	pert 7	110-7164	592 y 592 y	125 SX	
	r gra	190- 7230	2 6 1		
· ·	pert	1645 - 7690	5 56- 1 3 56- 1		
	Dert 96	10- 9870			
			aul 1 with 15	00_ sx of	Cemer
		$GG_{L/I} = U_{L}$	$\frac{77}{7}$ with $\frac{73}{7}$	× " 700 4	Calc
	iotal Depti			4313 w/ 50	2 Efficien

.

Ļ

AMERADA Hess Corporation DATE 5-16-94 OPERATOR LOCATION LEASE J. R. Phillips Mit H 1980'FNL + 760'FEL Sec 1- T205 - R36E TA'S B-7-92 Mourment ABO 13%" set @ 997' w/ 750 sx 171/2" hole size Circulated 85/8 " casing set at 5234' with 1520 sx of _____ cement Hole size // " TOC 64 TS @ 1940' (SG Leak @ 5147- 5266 - 592 w/ 50 5× perf 5138 - 5143 5820 w/ 100 5x perf 5165 - 5210 5820 w/ 50 5x perf 5160 - 5210 5820 w/ 50 5x CIBP @ 6843' perf 6881 - 7095 pert 7490 - 7530 pert 7490 - 7525 pert 7525 - 30 6881 7530 5/2 " casing set at /0004' with /200 sx of _____ cement Total Depth 10004 ' Hole size 73/4 " Toc by CAR @ 5502 50% efficiency

i

į.

----

---

DATE 5-16-94 OPERATOR America Hess Corporation LOCATION 660' FNL + 360' FEL T. R. Phillips Sec 1- T205 - R36E TAD EINICE Monument 12-13-91 <u>/3%</u> casing set at <u>293</u>' with <u>230</u> sx of _____ ceme Total Depth 293 ' Hole size 17/2" Circulateo CIBP @ 3605' 95/8 " casing set at 2325" with 1400 sx of _____ cement Circulateo Hole size /2/4 " 562 3694-3704 w/ 75 sx port 3674-3704 3674 perf 3732-3784 5/2 w 25 5x 3784 CIBP @ 3900' + 10 5K TOC @ 3865' 5170 - 5200 serf CIBP @ 5250 7 " casing set at <u>5685</u>' with <u>500</u> sx of Total Depth <u>5720</u> Hole size <u>8³/4</u> " Toc by 75 2000 ' (w 04 5685 - 5720

America Hess Corporation 5-16-94 LOCATION Mit C 766 FNL + 1874 FWL Δ 5 Active Monument Blinebery Sec 1 - T205 - 136E <u>/3%</u> casing set at <u>/90</u> with <u>200</u> sx of _____ cemen Circulaten Hole size _ /7 1/2 " 878 " casing set at 2796 ' with 1550 sx of _____ cement Circulated Hole size _// • part 5150-60 Z 5gz w/ 2 5x 592 TOL @ 5156 w/ 60 5x TOL 5/56 5/2 " casing set at 52/5 ' with 500 sx of _____ cemen Total Depth <u>5215</u> Hole size <u>73/4</u> " Toc by TS @ 1508' 4 " casing set at <u>5680</u>' with <u>40</u> sx of _____ cemer Total Depth 5730 ' Hole size  $4^{3}/4$  " Sgz TOL w/ 60 Sx OH 5680 - 5730

$$\frac{1074.0164}{14.4.4} \frac{14ess}{16.5} \frac{10700777}{16.4} \frac{102400}{16.4} \frac{102400}{16.4} \frac{102400}{16.4} \frac{1017}{16.4} \frac{102400}{16.4} \frac{1017}{16.4} \frac{102400}{16.4} \frac{101}{16.4} \frac{101}{16.$$

.

.

$$\frac{1}{162} \frac{1}{162} \frac{1}$$

Ì

:

.

l ,

l --

i .

ι . Ι

0ate 5-16-94 Texaco Explantion + Provouction IELL NO. wit D LEASE J. R. Phillips 736 FNL + 739 FWL Sec 6-7205-R37E Active Monument Mikee Ellesburg a <u>/3%</u> casing set at <u>/050</u> with <u>/010</u> sx of _____ ceme Total Depth 1050 ' Hole size 17/2 " Circulated 95/8" casing set at 5064" with 4000 sx of the size  $\frac{12}{4}$ " Dr @ 3640' both 5these Circulated Hole size _ 12/4 " perf 9490 - 9800 perf 9532 - 9738 5/2 " casing set at <u>9814</u>' with <u>1400</u> sx of _____ Total Depth <u>9814</u> Hole size <u>718</u> NV @ 7490' 1st Stage 750 5x Circ 2Nd Stage 650 sx Toc by 75 @ 4590

5-16-94 Anco B UNIT M 660'FSL + 942'FNL J. L. Phillips Sec 31-T195-1237E PtA 8-26-71 Monument MERce-Ellenburg. 137/8 set @ 981' w/ 900 SK 17/2" hole size Circulated <u>956</u> " casing set at <u>2950</u> ' with <u>1500</u> sx of _____ cement Hole size _/2 /4 " Circulateo CSG Lerk @ 5778-6/11 592 w/ 750 5x Nespe of 50 5x 35 5× plug @ 5742- 6/10 35 5× plug @ 7652-8020 CIBP @ 9475 + 25' cm + ,9528 par 9528 - 9614 9614 <u>512</u>" casing set at <u>9999</u>' with <u>972</u> sx of _____ cement Total Depth <u>9899</u> Hole size <u> $8^{3}/4$ </u> " NV @ 5808Filed perf  $5^{1/2} @ 2^{N4} 570 5x Toc 6280'$  $<math>15^{1} + 72 5x Toc 370'$ DU tool failed perf 51/2@ 9818-20 5gz w/ 500 sx TUC 6280'

PPERATOR HMLADA HE	ss Corporation			DATE 5-16-94	
LEASE NMGSAU		WELL NO. 13	LOCATION MitM	330'FSL + 330' FA	IL
Sec 31-7	-195-R37E		Active	6x6g - 5A	
	Total Depth 230	' Ho	le size	<u>300</u> sx of Circulate	-0
				TS @ 1240'	
3628	norf 3628 norf 3774-	. 378	*B		
3788	Ney 3773- CIBP @ 5655 Ney 5695-5	3867 = 4 4	szz u	/ 300 5x TOC 5616'	
	perf 5695-5	714			
	$\frac{3}{2}$ casing set	at <u>5</u>	<u>7/4</u> with	325 sx of	
	Total Depth <u>5720</u>	' Ho	le size <u>6</u>	14 " TUC by C ? 707' 50% et	Alc

.

l I

,

, , ,



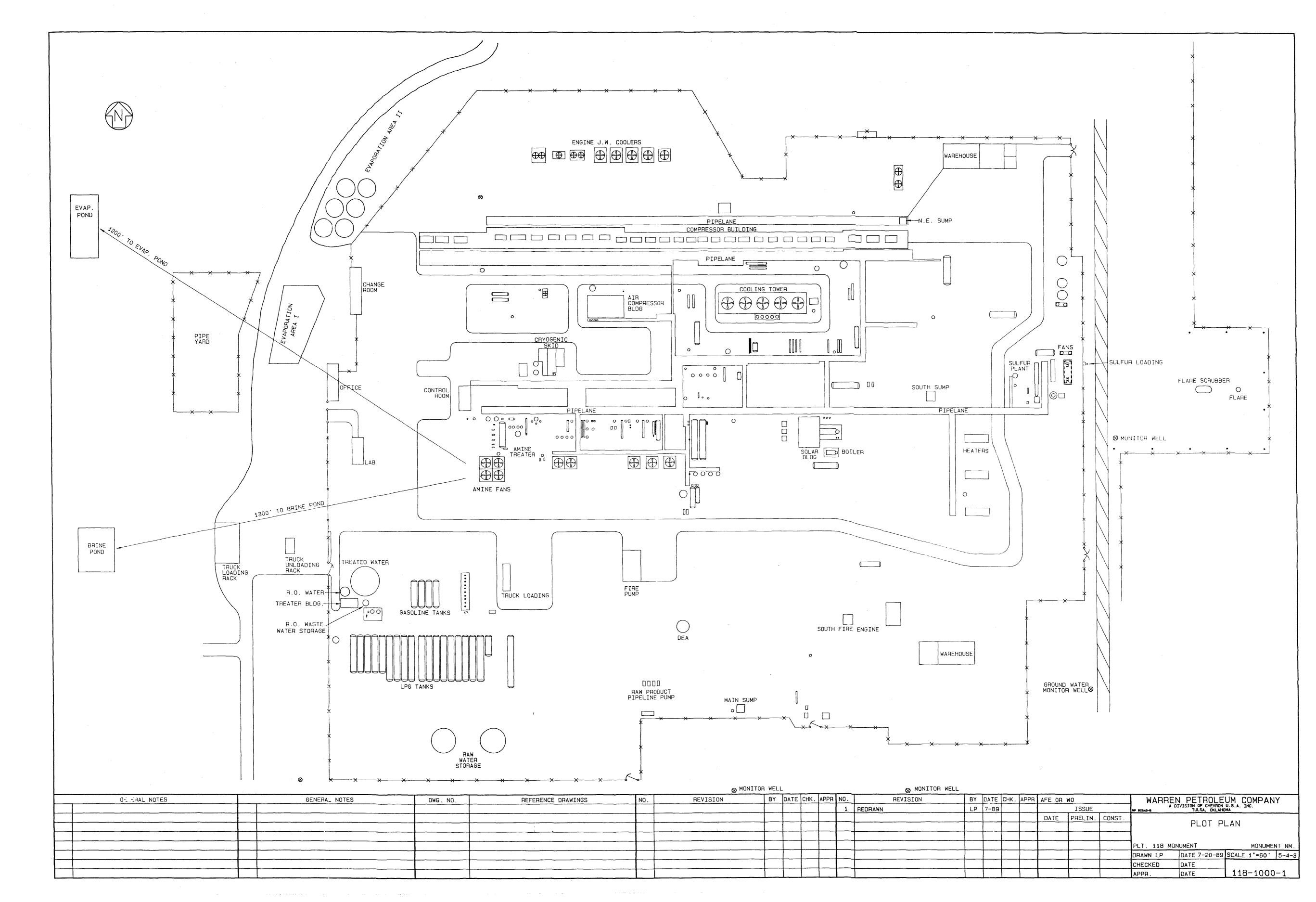
PHONE (915) 673-7001 • 2111 BEECHWOOD • ABILENE, TEXAS 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NEW MEXICO 88240

### CHEMICAL ANALYSIS OF WATER

Company :	Warren Petroleum	Date :	4/22/94
City, St.:	P.O. Box 67, Monument, NM 88261	Lab #:	H1625
Proj.Name:	SWD Conversion		
Location :	Monument, NM		
Sample 1 :	Jimmy Cooper Residence		

PARAMETER		RESULT (mg/L) SAMPLE
	1	
pH	6.97	
Spec. Gravity @ 4 ⁰ C	1.0013	
Bicarbonate	200	
Total Hardness	212	
Calcium as CaCO ₃	168	
Magnesium as CaCO ₃	44	
Sulfate	44.11	
Chloride	22	
Iron	0.05	
Total Solids	390	
Hydrogen Sulfide	0.0	ì
Nitrate	1.28	
Conductivity (uS/cm)	535.7	


Q.

Michael R. Fowler

4-22-94

Date



