

GENERAL CORRESPONDENCE

YEAR(S):

Martyne Kielmg

Conoco Inc. San Juan Gas Plant P.O. Box 217 Bloomfield, NM 87413 (505) 632-4900

March 11, 1998

Mr. Denny Foust Oil Conservation District Aztec Division Aztec, NM

Dear Mr. Foust,

As per our conversation earlier this month, Conoco has completed a norm survey on the Sulfa-Clean Material that we are wanting to dispose of at the San Juan County Landfill.

The following test was performed by John Cabot, Conoco Rocky Mountain District Safety Coordinator:

The survey equipment used was a Lud-Lum Model 3 Survey Meter. The Backround Check showed a level of 4 microrem/hour and the Sulfa Clean material itself showed a level of 8 microrem/hour.

I am faxing this letter along with a Waste Generators Profile Sheet and the Analytical Data from Quanterra Labs.

If you have any questions or need to contact me please call (505)632-4905.

Thank you for your assistance.

David S. Friess

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE AZTEC HM 57410 (505) 334-5170 FAX: (505) 334-5170 (505) 334-5170 FAX: (505) 334-5170

GARY E. JOHNSON

Jennifer A. Salisbury CABINET SECRETARY

Certified Receipt #P 471 215 209

March 12, 1998

Conoco Inc San Juan Gas Plant Attn David Friess PO Box 217 Bloomfield NM 87413

RE: Used Sulfa-Clean Material Generated at Arrowhead Pump Station

Dear Mr. Friess:

Based on your letter of March 11, 1998 stating your NORM testing showed a reading of 8 microrem/hour, the MSDS sheet and analytical data from Quanterra labs, the used Sulfa-Clean product may be disposed of at a public landfill without objection from the Oil Conservation Division. OCD approval does not relieve Conoco Inc. of responsibility for compliance with any other state, federal and local laws and/or regulations for disposing of waste at a public landfill.

Please feel free to contact me if you have questions.

Yours truly. Henry Denny G. Foust

Environmental Geologist

DGF/sh

xc: DGF File Santa Fe-Environmental Bureau

Intermountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

March 30, 2001

Don Lostak Conoco Inc. P.O. Box 217 Bloomfield, NM 87413

Mr. Lostak:

Enclosed please find the reports for the sample received by our laboratory for analysis on March 9, 2001.

If you have any questions about the results of these analyses, please don't hesitate to call at your convenience.

Thank you for choosing IML for your analytical needs!

Sincerely Diana haton Williams

Organics Lab Supervisor

Enclosure

xc: File

Phone (505) 326-4737 Fax (505) 325-4182

Inter Touriain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

CONOCO, INC.

Case Narrative

On March 9, 2001, one sample was submitted to Inter-Mountain Laboratories - Farmington for analysis. The sample was analyzed for the parameters indicated on the accompanying Chain of Custody form.

Analysis for TCLP Volatiles were performed by Method 8260, Gas Chromatography/Mass Spectrometry for Volatile Organics: "<u>Test Methods for Evaluating</u> <u>Solid Waste</u>", SW-846, U.S.E.P.A., September 1994.

TCLP Metals were performed by: "<u>Toxicity Characteristic Leaching Procedure</u>", Method 1311, SW-846, Rev.0, July 1992. Trace metals were performed on the sample by "<u>Test</u> <u>Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>", SW-846, U.S.E.P.A., November 1986.

It is the policy of this laboratory to employ, whenever possible, preparatory and analytical methods which have been approved by regulatory agencies.

Quality control reports appear at the end of the analytical package and may be identified by title. If there are any questions regarding the information presented in this package, please feel free to call me at your convenience.

Dianes

Shaton Williams Organics Lab Supervisor

Client:	Conoco	Date Reported:	03/28/01
Project ID:	Conoco	Date Sampled:	03/09/01
Sample ID:	Arrowhead Pump	Date Received:	03/12/01
Laboratory ID:	0301W01186	Date Extracted:	03/20/01
Sample Matrix:	Soil	Date Analyzed:	03/27/01

Parameter	Analytical Result	Detection Limit	Regulatory Level	Units
Benzene	ND	0.025	0.5	mg/L
Carbon Tetrachloride	ND	0.025	0.5	mg/L
Chlorobenzene	ND	0.025	100	mg/L
Chloroform	ND	0.025	6.0	mg/L
1,2-Dichloroethane	ND	0.025	0.5	mg/L
1,1-Dichloroethylene	ND	0.025	0.7	mg/L
Methyl Ethyl Ketone (2-Butanone)	ND	0.100	200	mg/L
Tetrachloroethylene	ND	0.025	0.7	mg/L
Trichloroethylene	ND	0.025	0.5	mg/L
Vinyl Chloride	ND	0.025	0.2	mg/L

ND - Compound not detected at stated Detection Limit.

		QC
Surrogate Recovery	%	Limits
Dibromofluoromethane	87	86 - 118
1,2-Dichloroethane-d4	90	80 - 120
Toluene-d8	93	88 - 110
4-Bromofluorobenzene	86	86 - 116

Reference: Test Methods for Evaluating Water, Wastewater and Solid Waste, SW-846,U.S.E.P.A., Volume IB, Revision 2, December 1996.

UL Reveiwed By:

ſ

Analyst: 14 lup du

Inter Mountain Laboratories, Inc.

2506 West Main Street Farmington, NM 87401

 Date Reported:
 03/22/01

 Date Sampled:
 03/09/01

 Date Received:
 03/09/01

Date Analyzed: 03/21/01

Client:	Conoco, Inc. Bloomfield
Project:	Arrowhead Pump Station
Sample ID:	1
Lab ID:	0301W01185
Matrix:	Soil
Condition:	Cool/Intact

	Analytical			
Parameter	Result	PQL	MCL	Units
TCLP METALS - EPA METHOD 1311		·········	· · · · · ·	
Arsenic	<0.1	0.1	5.0	mg/L
Barium	0.8	0.5	100	mg/L
Cadmium	<0.01	0.01	1.0	mg/L
Chromium	<0.02	0.02	5.0	mg/L
_ead	<0.1	0.1	5.0	mg/L
Mercury	<0.01	0.01	0.2	mg/L
Selenium	<0.1	0.1	1.0	mg/L
Silver	<0.05	0.05	5.0	mg/L

Reference: SW-846 - "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", United States Environmental Protection Agency, November, 1986.

Reviewed By: William Lipps

QUALITY CONTROL / QUALITY ASSURANCE

Quality Control / Quality Assurance

Spike Analysis / Blank Analysis TOXICITY CHARACTERISTIC LEACHING PROCEDURE

Client: Project: Sample Matrix: Conoco, Inc. Conoco Extract Date Reported:03/30/01Date Analyzed:03/20/01Date Received:03/09/01

	Spike	Sample	Spike	
Parameter	Result (mg/L)	Result (mg/L)	Added (mg/L)	Percent Recovery
Arsenic	0.92	<0.1	1.00	92%
Barium	0.86	<0.5	1.00	86%
Cadmium	1.00	<0.01	1.00	100%
Chromium	0.97	<0.02	1.00	97%
Lead	0.91	<0.1	1.00	91%
Mercury	0.002	<0.01	0.002	93%
Selenium	0.96	<0.1	1.00	96%
Silver	0.10	<0.05	0.10	95%

Method Blank Analysis

-		Detection	
Parameter	Result	Limit	Units
Arsenic	ND	0.1	mg/L
Barium	ND	0.5	mg/L
Cadmium	ND	0.01	mg/L
Chromium	ND	0.02	mg/L
Lead	ND	0.1	mg/L
Mercury	ND	0.01	mg/L
Selenium	ND	0.1	mg/L
Silver	ND	0.05	mg/L

References:

Method 1311: Toxicity Characteristic Leaching Procedure, SW-846, Rev. 0, July 1992.

Method 3010A: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, Rev. 1, July 1992.

Comments: Reported by_

Reviewed by

Quality Control / Quality Assurance

Known Analysis

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

Client: Project: Sample Matrix: Conoco, Inc. Conoco Extract Date Reported:03/30/01Date Analyzed:03/20/01Date Received:03/09/01

	۲	(nown Analysi	S	
Parameter	Found Result	Known Result	Percent Recovery	Units
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	1.90 1.82 1.84 1.84 1.82 0.002 1.90 0.23	2.00 2.00 2.00 2.00 0.003 2.00 0.25	95% 91% 92% 91% 96% 95% 92%	mg/L mg/L mg/L mg/L mg/L mg/L mg/L

References:

Method 1311: Toxicity Characteristic Leaching Procedure, SW-846, Rev. 0, July 1992.

Method 3010A: Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, Rev. 1, July 1992.

Comments:

Reported by

Reviewed by

TCLP Method Blank Analysis

Sample ID:	TCLP Method Blank	Date Reported:	03/28/01
Laboratory ID:	TMB01-079	Date Extracted:	03/20/01
Sample Matrix:	Extraction Fluid	Date Analyzed:	03/27/01

Parameter	Analytical Result	Detection Limit	Regulatory Level	Units
Ponzono		0.025	0.5	mo/l
Carbon Tetrachloride		0.025	0.5	mg/L
Chlorobenzene	ND	0.025	100	mg/L
Chloroform	ND	0.025	6.0	mg/L
1,2-Dichloroethane	ND	0.025	0.5	mg/L
1,1-Dichloroethylene	ND	0.025	0.7	mg/L
Methyl Ethyl Ketone (2-Butanone)	ND	0.100	200	mg/L
Tetrachloroethylene	ND	0.025	0.7	mg/L
Trichloroethylene	ND	0.025	0.5	mg/L
Vinyl Chloride	ND	0.025	0.2	mg/L

ND - Compound not detected at stated Detection Limit.

		QC
Surrogate Recovery	%	Limits
Dibromofluoromethane	88	86 - 118
1,2-Dichloroethane-d4	90	80 - 120
Toluene-d8	93	88 - 110
4-Bromofluorobenzene	85*	86 - 116

* - Out of Limits

Reference: Test Methods for Evaluating Water, Wastewater and Solid Waste, SW-846,U.S.E.P.A., Volume IB, Revision 2, December 1996.

1. they Reveiwed By:

Analyst AP lug ou

Method Blank Analysis

Sample ID:Method BlankLaboratory ID:V3MB01-086Sample Matrix:Water

Date Reported:03/28/01Date Extracted:NADate Analyzed:03/27/01

Parameter	Analytical Result	Detection Limit	Regulatory Level	Units
Benzene	ND	0.005	0.5	ma/l
Carbon Tetrachloride	ND	0.005	0.5	mg/L
Chlorobenzene	ND	0.005	100	mg/L
Chloroform	ND	0.005	6.0	mg/L
1,2-Dichloroethane	ND	0.005	0.5	mg/L
1,1-Dichloroethylene	ND	0.005	0.7	mg/L
Methyl Ethyl Ketone (2-Butanone)	ND	0.020	200	mg/L
Tetrachloroethylene	ND	0.005	0.7	mg/L
Trichloroethylene	ND	0.005	0.5	mg/L
Vinyl Chloride	ND	0.005	0.2	mg/L

ND - Compound not detected at stated Detection Limit.

Surrogate Recovery	%	QC Limits
Dibromofluoromethane	89	86 - 118
1,2-Dichloroethane-d4	88	80 - 120
Toluene-d8	92	88 - 110
4-Bromofluorobenzene	87	86 - 116

Reference: Test Methods for Evaluating Water, Wastewater and Solid Waste, SW-846,U.S.E.P.A., Volume IB, Revision 2, December 1996.

Reveiwed By:

Analyst. M. Ley M

Blank Spike Duplicate Analysis

Sample ID:	Blank Spike Duplicate	Date Reported:	03/28/01
Laboratory ID:		Date Extracted:	NA
Sample Matrix:	Water	Date Analyzed:	03/27/01

	Analytical	Spike	Spike	Spike	Duplicate	Duplicate	Relative
	Result	Added	Results	Recovery	Results	Recovery	Difference
Parameter	mg/L	mg/L	mg/L	%	mg/L	%	%RSD
Benzene	ND	0.05	0.046	93	0.047	94	1
Carbon Tetrachloride	ND	0.05	0.033	65	0.037	75	13
Chlorobenzene	ND	0.05	0.040	81	0.043	86	6
Chloroform	ND	0.05	0.042	84	0.040	81	4
1,2-Dichloroethane	ND	0.05	0.040	80	0.039	79	2
1,1-Dichloroethylene	ND	0.05	0.035	70	0.039	79	12
Tetrachloroethylene	ND	0.05	0.026	51	0.037	74	36
Trichloroethylene	ND	0.05	0.032	64	0.037	75	16
Vinyl Chloride	ND	0.05	0.039	78	0.039	78	0

ND - Compound not detected at stated Detection Limit.

		Duplicate	QC	
Surrogate Recoveries	%	%%	Limits	
Dibromofluoromethane	91	88	86 - 118	
1,2-Dichloroethane-d4	93	91	80 - 120	
Toluene-d8	88	94	88 - 110	
4-Bromofluorobenzene	85*	87	86 - 116	

* - Out of Limits

Reference: Test Methods for Evaluating Water, Wastewater and Solid Waste, SW-846, U.S.E.P.A., Volume IB, Revision 2, December 1996.

illen Reveiwed By:

Analyst: Why autom

555 Absaraka Sheridan, Wyoming 8280 Telephone (307) 674-750		Relinquished by: (Signature)		Relinquished by: (Signature)		Trelinquished by: (Signature)										1~		Sample No./ Identification		Sampler: (Sinnahura)	Client/Project Name	Inter-Mountain Laboratories, Inc.
1 1633 Te 6 Telepho			1	:										 '		1	5	Date				
arra Avenue In, Wyomin Ine (307) 6	T,															10000		Time				
9 g 82801 72-8945	nter-Mo													1		11-57	185	Lab Nur		24-2		ç
Gillette, V Telephon	ountair	/											 . /			1		nber		1.22.22	Project	IAIN
Illips Circle Wyoming 8 (307) 68	n Labo	Date		Date	27.43	Date							1			51.1 5	all be		buy rape n	1012	Location	OF CI
2718 2-8945	oratorie	Time		Time	5:342	Time										1.	i. r	Matrix	ē		e e e e e e e e e e e e e e e e e e e	USTO
2506 Wes Farmingto Telephone	es, Inc.	Received		Received	v	Rèceived														10 le a		dy re
t Main Stre n, NM 874 (505) 326	-	by labora		by: (Signa		by: (Signa						, ,				ź		No. of Contain	ers	+		COL
et 01 5-4737		ory: (Sign		ture)		ture)											•	TEL: The				Õ
11183 S College Telephor		ature)			,													102 100 100				
tate Hwy. (Station, T) ne (979) 7		(γ)														 						
30 K 77845 76-8945											-								Re		METE	
		Date		Date		Date		Ì	~										marks		ñ	
an an c An an c Carana An an c		Time		Time		Time	/															

Phone (505) 326-4737 Fax (505) 325-4182

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

CONOCO, INC.

Case Narrative

On April 27, 2001, one sample was submitted to Inter-Mountain Laboratories - Farmington for analysis. Analysis for Benzene-Toluene-Ethylbenzene-Xylenes (BTEX); Total Petroleum Hydrocarbons (TPH), was performed on the sample as per the accompanying Chain of Custody document.

BTEX analysis on the sample was performed by EPA Method 5030, Purge and Trap, and EPA Method 8021B, Aromatic Volatile Hydrocarbons, using an Tekmar LSC 2000 Purge and Trap and a Hewlett-Packard 5890 Gas Chromatograph, equipped with a photoionization detector.

The TPH sample was extracted by Method 3510, "Separatory Funnel Liquid - Liquid Extraction", with 1,1,2-trichloro 1,2,2-trifluoroethane (Freon) as the extraction solvent. Analysis was by Method 418.1, "Total Recoverable Petroleum Hydrocarbons", using a Buck Scientific Infrared Spectrophotometer.

It is the policy of this laboratory to employ, whenever possible, preparatory and analytical methods which have been approved by regulatory agencies. The methods used in the analysis of the sample reported herein are found in "<u>Test Methods for Evaluation of Solid Waste</u>", SW-846, USEPA, 1986 and "<u>Methods for Chemical Analysis of Water and Wastes</u>", EPA-600/4-79-020, USEPA, 1983.

If there are questions regarding the information presented in this package, please feel free to contact me at your convenience.

Sincerel Sharon Williams

Organic Analyst/IML-Farmington

Inter Mountain Laboratories, Inc.

2506 West Main Street Farmington, NM 87401

Client:	Conoco, Inc.		
Project:	Arrow Receiving Pump Station	Date Reported:	05/03/01
Sample ID:	Sample 1 Spent Chemical	Date Sampled:	04/21/01
Lab ID;	0301G02045	Date Received:	04/27/01
Matrix:	Solid	Date Extracted:	N/A
Condition:	Cool/Intact		

	Analytical		
Parameter	Result	PQL	Units
BTEX - Method 8021B			
Benzene	<50	50	ug/Kg
Toluene	<50	50	ug/Kg
Ethylbenzene	<50	50	ug/Kg
Xylenes (total)	<150	150	ug/Kg
Quality Control - Surrogate Recovery	%	QC Li	mits
4-Bromofluorobenzene(SUR-8021B)	108	70 - 1	130
a.a.a-Trifluorotoluene(SUR-8021B)	103	70 - ²	130

Reference: Method 8021b, Volatile Organic Compounds, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, United States Environmental Protection.Agency, SW-846, Volume IB.

Reviewed By: William Lipps

Analyst:

Inter Mount	ain Laboratories, Inc.			
			2506	6 West Main Street
			Farn	nington, NM 87401
Client:	Conoco, Inc.			
Project:	Arrow Receiving Pump Station		Date Reporte	d: 05/03/01
Sample ID:	Sample 1 Spent Chemical		Date Sample	d : 04/21/01
Lab ID:	0301G02045		Date Receive	d : 04/27/01
Matrix:	Solid		Date Extracte	d: N/A
Condition:	Cool/Intact		Date Analyze	d : 05/02/01
		Analytical		
Para		Result	PQL	Units
TPH - Method	1 418.1			
Total Petroleui	m Hydrocarbons 418.1	76	20	mg/Kg

Reference: Method 8021b, Volatile Organic Compounds, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, United States Environmental Protection Agency, SW-846, Volume IB.

2 Reviewed By: William Lipps

.

Analyst:

•					 				 										<u> </u>		
											١				Time		. Time		Time		
		irks								/	le sa	\mathcal{O}	/	, and a	Date		Date		Date		
	ARAMETERS	Rema					*					200							6.2	•	иу. 30 1, TX 77845 9) 776-8945
	ALYSES / P								2	ć						: : :		~	ure .	2	Telephone (97)
Q	AN	, v., , , , ,		~ /:											iture)	T F	iture)	•	lory: (Signa		eet 401 5-4737
COR		ers -	No. of No. of No. of	#**\~a:				 ,							l by: (Signa		f by: (Signa	6	Hoy Taboral	2	st Main Str nn, NM 874 e (505) 32(
JY RE	(,	Received		Received	``\ 	Received	s, Inc	2506 Wes Farmingto Telephone
JSTOL	int S	ď	Matrix	Second Co			:			2				. •	Time		Time	SN.W	Jime	oratorie	2718 12-8945
OF C(ct Location	stody Tape N				1				-					Date	ドイ	Date	1.27	Date	ain Labo	Phillips Circle e, Wyoming 8 none (307) 68
HAIN	Proje	lain of Cus	umber	5500																Jounta	Gillette
0		さ	Lab N	E.	 															Inter-N	ue iing 82801 672-8945
			Time	St. 32-25-3	· · ·												1				l3 Terra Aven sridan, Wyorr sphone (307)
			Date	12110													Ĺ				01 She
Linter-Mountain Laboratories, Inc.	Client/Project Name	Sampler: (Signature)	Sample No./ Identification												Relinquished by: (Signature)		Relinquished by: (Signature)	Nole Mos	Relinquished by: (Signature)		555 Absaraka Sheridan, Wyoming 828 Telephone (307) 674-75

	,		
GEN	ERATOR'S WASTE PROI	TILE SHEET	
Service Agreement on File? TYES		Profile Number: \	MI CD 1349
Hazardous Non-Hazardous		Renewal Date:	10191200
A. Waste Generator Information			
1. Generator Name:	Sad Tay & Cots Plant 2	. SIC Code:	
3. Facility Street Address:	<u>CR 4900 4</u>	Phone: (505) 63	2-4900
5. Facility City: <u>7 Zin/Postal Code</u> : <u>8 7/4/3</u>	<u></u>	. State/Province: Generator USEPA/Federa	IID #:
9. County: SAN JAUN	10	D. State/Province ID #:	
11. Customer Name:CorrocO	12	2. Customer Phone: ()
13. Customer Contact:	ostak 14	4. Customer Pax:	Same as above
B. Waste Stream Information			
1. Description	a de l		
b. Process Generating Waste:	GAS SUDDADIN	·a	
	CAS GUJEEIEMIA	/	
C Color d Strong odg	e Physical state @	70°F f Lavers	a Free liquid range
		uid Single Layer	to%
None		lge Multi-layer	
	Other		h. pH: Range
 Liquid Flash Point: []<!--3°F</li--> j. Chemical Composition (List all correpresentation) 	U73-99°F U100-139°F istituents (including halogenated organics, tive analysis):	[140-199°F [≥ 200°F debris, and UHC's] present in any con	UNOT Applicable centration and submit
Constituents	Concentration Range	nstituents	Concentration Range
тот	AL COMPOSITION MUST EQU	AL OR EXCEED 100%	
k. Oxidizer OPy Carcinogen OInfo I. Does the waste represented by t	rophoric	ve	e ctive
notification? (list in Section B.1.j)	his profile contain dioxins? (list i	n Section B 1 i)	
n. Does the waste represented by t	his profile contain asbestos?		
If yes		friable non-	friable
 Does the waste represented by the second seco	his profile contain benzene?	200 A	
is the waste subject to the benze	ne waste operations NESHAP?.	ALA CONTRACTOR	
p. Is the waste subject to RCRA Sul	opart CC controls?	12 WAY 200	
If yes, volatile organic concentrat	on pp		
 q. Does the waste contain any Class r. Does the waste contain debris? (I 	is For Class II ozone-depleting st list in Section B.1.i).	IDSIGNCES	
		₹ ``	
Estimated Annual Volume 2.	5 Mitons	Yards TDrums TOther (St	
Shinning information	W		/ ** <u></u>
a. Packaging:			
Bulk Solid: Type/Size:		Bulk Liquid; Type/Size:	
Drum; Type; Size:		Other:	
D. Shipping Frequency: Units	<u> </u>	h Quarter XYear One	
c. Is this a U.S. Department of Trans	portation (USDOT) Hazardous N	haterial? (If no, skip d, e, and	

٠

.*

GENERATOR'S WASTE PROFILE SHEET

. .

	d Renortable Quantity (lbs : kos):	
	f. USDOT Shipping Name:	
	g. Personal Protective Equipment Requirements: Cotton Gloves SAPort Glasses	
	n. Transporter/Transfer Station: <u>Kiley Industrial (C)Aiste managemen</u>	14
C. (Generator's Certification (Please check appropriate responses, sign, and date below.)	
1.	Is this a USEPA hazardous waste (40 CFR Part 261)? If the answer is no, skip to 2 a. If yes, identify ALL USEPA listed and characteristic waste code numbers (D, F, K, P, U)	
	b. If a characteristic hazardous waste, do underlying hazardous constituents	
	(UHCs) apply? (if yes, list in Section B.1.j)	
	Composition - B.1.)	
2	le this a state hazardous waste?	
4 0 ·	Identify ALL state hazardous waste codes	Lines Min
3.	Is the waste from a CERCLA (40 CFR 300, Appendix B) or state mandated clean-up? If yes, attach Record of Decision (ROD), 104/106 or 122 order or court order that governs site clean-up activity. For state mandated clean-up, provide relevant documentation.	
4.	Does the waste represented by this waste profile sheet contain radioactive material, or is disposal regulated by the Nuclear Regulatory Commission?	
5.	Does the waste represented by this waste profile sheet contain concentrations of Polychlorinated Biphenyls (PCBs) regulated by 40 CFR 761? (if yes, list in Chemical Composition - B.1.j) a. If yes, were the PCBs imported into the U.S.?	TYES KNO
5.	Do the waste profile sheet and all attachments contain true and accurate descriptions of the waste material, and has all relevant information within the possession of the Generator regarding known or suspected hazards pertaining to the waste been disclosed to the Contractor?	YES DNO
•	Will all changes which occur in the character of the waste be identified by the Generator and disclosed to the Contractor prior to providing the waste to the Contractor?	TYES DNO
רער Che	ck here if a Certificate of Destruction or Disposal is required.	/
iny sa ample gent o iforma cense:	mple submitted is representative as defined in 40 CFR 261 - Appendix I or by using an equivalent method. I authorize WM from any waste shipment for purposes of recertification. If this certification is made by a broker, the undersigned signs as f the generator and has confirmed the information contained in this Profile Sheet from information provided by the generator tion as it has determined to be reasonably necessary. If approved for management, Contractor has all the necessary permits of the waste that has been characterized and identified by this approved profile.	I to obtain a authorized r and additional its and
ame	(Type or Print): Thur En Company Name: Ontoco- Da Check if additional information is attached. Indicate the number of attached pag	te: es
WM	Il Management's Decision FOR WM	USE ONLY
	Management Method Landfill Non-hazardous Solidification Bioremediation Incineratio	n
	Proposed Ultimate Management Facility:	
	Precautions, Special Handling Procedures, or Limitation on Approval:	
	Masta Form E Source E Sustam Tune	

4. Waste Form	5.	Source	6.	System Type	
Special Waste Decision					Disapproved
Salesperson's Signature:				Date:	
Division Approval Signature (Optional):				Date:	
Special Waste Approvals Person Signature:				Date:	

TRADE NAME: SulfaClean ™ - HC HMIS Haz MANUFACTURER'S NAME & ADDRESS: F: 0 The SulfaTreat Company. F: 0 17998 Chesterfield Airport Rd. Suite 215 P: 0 Chesterfield, MO. 63005 F: 0 EMERGENCY PHONE: 1-800-726-7687 or 1-314-532-2189 FAX: 1-314 II. HAZARDOUS INGREDIENTS	ard Ratings 4-532-2764
MANUFACTURER'S NAME & ADDRESS: H: 0 The SulfaTreat Company. F: 0 17998 Chesterfield Airport Rd. Suite 215 P: Chesterfield, MO. 63005 P: EMERGENCY PHONE: 1-800-726-7687 or 1-314-532-2189 FAX: 1-31- II. HAZARDOUS INGREDIENTS H: 0	4-532-2764
MANUFACTURER'S NAME & ADDRESS: F: 0 The SulfaTreat Company. R: 0 17998 Chesterfield Airport Rd. Suite 215 P: 0 Chesterfield, MO. 63005 P: 0 EMERGENCY PHONE: 1-800-726-7687 or 1-314-532-2189 FAX: 1-314 II. HAZARDOUS INGREDIENTS III. HAZARDOUS INGREDIENTS	4-532-2764
The SulfaTreat Company. R: 0 17998 Chesterfield Airport Rd. Suite 215 P: Chesterfield, MO. 63005 P: EMERGENCY PHONE: 1-800-726-7687 or 1-314-532-2189 FAX: 1-314 II. HAZARDOUS INGREDIENTS III. HAZARDOUS INGREDIENTS	4-532-2764
17998 Chesterfield Airport Rd. Suite 215 P: Chesterfield, MO. 63005 EMERGENCY PHONE: 1-800-726-7687 or 1-314-532-2189 FAX: 1-314 II. HAZARDOUS INGREDIENTS	4-532-2764
Chesterfield, MO. 63005 EMERGENCY PHONE: 1-800-726-7687 or 1-314-532-2189 FAX: 1-31- II. HAZARDOUS INGREDIENTS	4-532-2764
EMERGENCY PHONE: 1-800-726-7687 or 1-314-532-2189 FAX: 1-314	4-532-2764
EMERGENCY PHONE: 1-800-726-7687 or 1-314-532-2189 FAX: 1-31-	4-532-2764
II. HAZARDOUS INGREDIENTS	
•	فخاصيها ومراجع والمرجع الفاصي والم
Chemical Names CAS Numbers % Exposure Limits in Air (Units)	ŧ
None N/A N/A N/A	
Surractean contains no hazardous materials as listed by ACGIH (America Conference of Gove Hygenists). Less than 1% of the product is a hazardous substance and less than 0.1% is carci defined by Title 8 California Code of Regulations Section 5194.	ernmemai nogenic as
III. CHEMICAL & PHYSICAL PROPERTIES	
Vapor Density (Air = 1) N/A Melting Point or Range °F	N/A
Specific Gravity 1.1 Boiling Point or Range °F	N/A
Solubility in Water 0 Evaporation Rate (BuAcetate=1)	N/A
Vapor Pressure, mmHg @20 °C 0 VOC (EPA Method 24)	0
PH N/A	
Appearance & Odor Black, Granular, Odoriess Solid	
IV. SHIPPING REGULATIONS	
DOT Proper Shipping Name: N/A	
DOT Hazard Class: N/A	
DOT I.D. Number. N/A	
DOT Hazardous Substance: N/A	
V. FLAMMABILITY & EXPLOSIVE PROPERTIES	
Flash Point °F: N/A Auto ignition Temperature °F: N/A	
Fianmability limits in Air, Volume %: LEL (Lower); N/A UEL (Upper): N/A	15 10 17 18 TA
File Extinguishing Materials; N/A Shacial File Britting Procedures: None	AND A G
Unusual Fire & Explosion Hazards: None	MAY and
Hazardous Products formed by Fire: None	E REC 2001
VI. HEALTH HAZARD INFORMATION	
SYMPTOMS OF OVEREXPOSURE (for each potential route of exposure)	10
	A Commercial
Inhalation: Overexposure to dust may imitate the nasal passage,	ALEURA
Eyes: May cause eye imitation similar to dust.	
Skin: Contact with skin has no effect.	
Absorded inrough skin: None Swallowed; None	

HEALTH EFFECTS OR RISKS FROM EXPOSURE:

Acute:

No acute effects to health are known. Not toxic. LD50 greater than 3990 mg.kg (Highest practical test level).

Chronic: No chronic effects to health known.

FIRST AID: EMERGENCY PROCEDURES

Eye Contact: Flush with water Skin Contact: None Ingestion: None

Inhalation: None

SUSPECTED CANCER AGENT:

NO - This product's ingredients are not found in the lists below.

OSHA, NTP or IARC.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE:

None Known.

TOXIC SUBSTANCES CONTROL ACT (TSCA):

All ingredients are not required to be listed on the TSCA inventory.

VII. REACTIVITY DATA Stability: Stable: X Unstable: Conditions to Avoid: N/A Incompatibility (Materials to avoid): N/A Hazardous decomposition products (Including combustion products): None Hazardous polymerization: Will not occur.

VIII. SPILL, LEAK & DISPOSAL PROCEDURES

Spill Response Procedures (Include employee protection measures): No special procedures required. Preparing Waste for Disposal (container types, neutralization, etc.) No special procedures required. Recommended Methods of Disposal: Dispose of all wastes in accordance with Federal, State & Local regulations.

IX. SPECIAL HANDLING INFORMATION

Ventilation & Engineering Controls:	No Special Requirements.	
Respiratory Protection (type):	NIOSH/MSHA approved dust m	ask (TC-21C-132).
Eye Protection: None required.	Gloves (specify material):	None required.
Other Clothing & Equipment:	No special requirements.	
Work Practices, Hygienic Practices:	No special requirements.	
Other Handling & Storage Requirement	ts: No special requirements	

Protective measures during maintenance of contaminated equipment: N/A

X. PREPARATION INFORMATION

Revision Date: May 20, 1997

Certificate of Analysis Quanterra Incorporated 5307 Industrial Oaks Boulevard, Suite 160 Austin, Texas 78735

512 892-6684 Direct 512 892-6652 Fax

p.

SEP 0 9 1996

Environmented Sureau Oil Conservation Division

ANALYTICAL REPORT

San Juan Gas Plant Lot#: I6G120107

Chris Hansen Room #HU 3006

Conoco Inc.

QUANTERRA INCORPORATED Chris J. Schepcoff

Project Manager

July 24, 1996 [•]

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

EXECUTIVE SUMMARY - Detection Highlights

. .

t

I6G120107

		REPORTING		
PARAMETER	RESULT	LIMIT	UNIT	METHOD
SAN JUAN AMINE WASHER WATER 07/08/96	00:00			
Chromium	2.2	0.10	mg/L	SW846 6010A
Flashpoint	>150	>150	deg F	SW846 1010
pH (liquid)	4.1	0.10	No Units	MCAWW 150.1
Total Solids (Residue)	75000	10	mg/L	MCAWW 160.3

ANALYTICAL METHODS SUMMARY

I6G120107

PARAMETER	METHOD		
pH (Electrometric) -	MCAWW	150.1	
Inductively Coupled	SW846	6010A	
Plasma (ICP) Metals			
Mercury in Liquid Waste	SW846	7470	
(Manual Cold-Vapor)			
Pensky-Martens Method for	SW846	1010	
Determining Ignitability			
Reactive Cyanide	SW846	7.3.3	
Reactive Sulfide	SW846	7.3.4	
Total Residue (TS)	MCAWW	160.3	
Volatile Organics	SW846	8240A	
by GC/MS			

References:

î.

. .

MCAWW	"Methods	for	Chemi	cal Ar	nalysi	s of	Water	and	Wastes"	,
	EPA-600/4	l-79-	-020,	March	1983	and	subseq	lent	revisio	ns.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

I6G120107

ANALYI	ICAL			
METHOD		ANALYST	<u>ID #</u>	
MCAWW	150.1	Jay Harris	060505	
MCAWW	160.3	Jay Harris	060505	
SW846	1010	Jay Harris	060505	
SW846	6010A	Scott Butler	010399	
SW846	7.3.3	Jay Harris	060505	
SW846	7.3.4	Jay Harris	060505	
SW846	7470	Todd Marion	026009	
SW846	8240A	Sam Bivone	011612	

References:

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

QC DATA ASSOCIATION SUMMARY

.

Sample Preparation and Analysis Control Numbers

			Pgm	Leach	QC Batch	MS Run
Lot#-Sample#	<u>Matrix</u>	Method	<u>Code</u>	Batch#	Number	Number
I6G110105-001	WATER	MCAWW 245.1	03		6197166	6197035
	WATER	SW846 1010	01		6200111	6200005
	WATER	MCAWW 150.1	01		6197132	6197016
	WATER	MCAWW 160.3	01		6198195	6198056
	WATER	SW846 6010A	01		6197182	6197048
	WATER	SW846 7470	01		6197166	6197035
	WATER	SW846 8240A	01		6200138	6205027
	WATER	SW846 7.3.3	01		6198108	6198002
	WATER	SW846 7.3.4	01		6198110	6198004
I6G120161-003	WATER	MCAWW 200.7	01		6197182	6197048
	WATER	MCAWW 239.2	01		6197182	6197048
	WATER	SW846 6010A	01		6197182	6197048
I6G160116-001	WATER	SW846 8240B	01		6200138	6205027

SAMPLE SUMMARY

The analytical results of the samples listed below are presented on the following pages.

WO #	LOT-SAMPLE #	SAMPLE IDENTIFICATION	DATE/TIME	SAMPLED

C4R4P I6G120107-001 SAN JUAN AMINE WASHER WATER

This report must not be reproduced except in full, without the written approval of the laboratory.

07/08/96 00:00

CONOCO INC.

Client Sample ID: SAN JUAN AMINE WASHER WATER

GC/MS Volatiles

Lot-Sample #.:	I6G120107 - 001	Work Order #.:	C4R4P107		Matrix:	WATER
Date Sampled.:	07/08/96 00:00	Date Received:	07/10/96	09:18		
Prep Date:	07/17/96	Analysis Date:	07/22/96			
Prep Batch #.:	6200138 .	MS Run #:	6205027			
Dilution Fact:	1					
Percent Moist:						

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	0.050	mg/L	SW846 8240A
Carbon tetrachloride	ND	0.050	mg/L	SW846 8240A
Chlorobenzene	ND	0.050	mg/L	SW846 8240A
Chloroform	ND	0.050	mg/L	SW846 8240A
1,2-Dichloroethane	ND	0.050	mg/L	SW846 8240A
1,1-Dichloroethylene	ND	0.050	mg/L	SW846 8240A
Methyl ethyl ketone	ND	0.20	mg/L	SW846 8240A
Tetrachloroethylene	ND	0.050	mg/L	SW846 8240A
Trichloroethylene	ND	0.050	mg/L	SW846 8240A
Vinyl chloride	ND	0.10	mg/L	SW846 8240A
	PERCENT	RECOVE	RY	
SURROGATE	RECOVERY	LIMIT	S	
4-Bromofluorobenzene	97	(86 - 1	15)	
1,2-Dichloroethane-d4	100	(76 - 1	14)	

(88 - 110)

97

NOTE (S) :

Toluene-d8

ND Parameter was not detected at or above the stated reporting limit.

CONOCO INC.

Client Sample ID: SAN JUAN AMINE WASHER WATER

General Chemistry

Lot-Sample #.: I6G12010 Date Sampled.: 07/08/90 Percent Moist.	1 Work On Date Re	Work Order #.: C4R4P Date Received: 07/10/96 09:18			Matrix:	WATER	
PARAMETER	RESULT		UNITS	METHOI	0	PREPARATION- ANALYSIS DATE	PREP BATCH #
Flashpoint	>150	>150 DIL Factor: MS Run #:	deg F 1 6200005	SW846	1010	07/17/96	6200111
pH (liquid)	4.1	0.10 DIL Factor: MS Run #:	No Units 1 6197016	MCAWW	150.1	07/12/96	6197132
Total Solids (Residue)	75000	10 DIL Factor: MS Run #:	mg/L 1 6198056	MCAWW	160.3	07/15/96	6198195
Reactive Cyanide	ND	200 DIL Factor: MS Run #:	mg/L 1 6198002	SW846	7.3.3	07/16/96	6198108
Reactive Sulfide	ND	200 DIL Factor: MS Run #:	mg/L 1 6198004	SW846	7.3.4	07/16/96	6198110

NOTE (S) :

••••

4

RL Reporting Limit

ND Parameter was not detected at or above the stated reporting limit.

Environmental Services

Client Sample ID: SAN JUAN AMINE WASHER WATER

CONOCO INC.

TOTAL Metals

Lot-Sample #.: I6G120107 - 001	Work Order #.: C4R4P	Matrix: WATER
Date Sampled.: 07/08/96 00:00	Date Received: 07/10/96 09:18	
Percent Moist:		

		REPORTING			PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Mercury	ND	0.00020	mg/L	SW846 7470	07/15/96	6197166
		Dilution Fact:	1			
		MS Run #:	6197035			
Barium	ND	2.0	mg/L	SW846 6010A	07/15-07/19/96	6197182
		Dilution Fact:	10			
		MS Run #:	6197048			
Cadmium	ND	0.050	mg/L	SW846 6010A	07/15-07/19/96	6197182
		Dilution Fact:	10			
		MS Run #:	6197048			
Chromium	2.2	0.10	mg/L	SW846 6010A	07/15-07/19/96	6197182
		Dilution Fact:	10			
		MS Run #:	6197048			
Silver	ND	0.10	mg/L	SW846 6010A	07/15-07/19/96	6197182
		Dilution Fact:	10			
		MS Run #:	6197048			
Arsenic	ND	3.0	mg/L	SW846 6010A	07/15-07/19/96	6197182
		Dilution Fact:	10			
		MS Run #:	6197048			
Lead	ND	1.0	mg/L	SW846 6010A	07/15-07/19/96	6197182
		Dilution Fact:	10			
		MS Run #:	6197048			
Selenium	ND	2.5	mg/L	SW846 6010A	07/15-07/19/96	6197182
		Dilution Fact:	10			
		MS Run #:	6197048			

NOTE(S):

`.

Calculations are performed before rounding to avoid round-off errors in calculated results. ND Parameter was not detected at or above the stated reporting limit.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #: I6G120107 Percent Moist: 100		MS Sample: I6G110105-001			Matrix: WATER		
PARAMETER	PERCENT <u>RECOVERY</u>	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	BATCH #
Mercury	115 106 D: M:	(75-125) (75-125) ilution Facto S Run #:	7.5 r: 1 619	(0-20) 7035	MCAWW 245.1 MCAWW 245.1	07/15/96 07/15/96	6197166 6197166

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

i.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

. .

Client Lot #: I6G120107 Percent Moist: 100		MS Sample: I6G120161-003				Matrix: W	Matrix: WATER		
	PERCENT	RECOVERY		RPD			PREPARATION-		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD)	ANALYSIS DATE	BATCH #	
Corner	9.4	(90,120)			MCAWW	200 7	07/15-07/19/96	6197187	
Copper	84	(80-120)	4 3	(0-20)	MCAWW	200.7	07/15-07/19/96	6197182	
	22	Dilution Facto	$r \cdot 1$	(0 20)	1101100	2001/	01/15 01/15/50	019/102	
		MS Run #:	619	7048					
Cadmium	91	(80 - 120)		(0.00)	MCAWW	200.7	07/15-07/19/96	6197182	
	93	(80-120)	1.9	(0-20)	MCAWW	200.7	0//15-0//19/96	6197182	
		Dilution Facto	r: L	2010					
		MS RUN #:	619	/048					
Lead	115	(80-120)			MCAWW	239.2	07/15-07/16/96	6197182	
	120	(80-120)	3.5	(0-20)	MCAWW	239.2	07/15-07/16/96	6197182	
		Dilution Facto	r: 1						
		MS Run #:	619	7048					
Nickel	100	(80-120)			MCAWW	200.7	07/15-07/19/96	6197182	
	88	(80-120)	11	(0-20)	MCAWW	200.7	07/15-07/19/96	6197182	
		Dilution Facto	r: 1						
		MS Run #:	619	7048					
Silver	88	(80-120)			MCAWW	200.7	07/15-07/19/96	6197182	
	90	(80-120)	2.8	(0-20)	MCAWW	200.7	07/15-07/19/96	6197182	
		Dilution Facto	r: 1						
		MS Run #:	619	7048					
Zinc	95	(80-120)			MCAWW	200.7	07/15-07/19/96	6197182	
	97	(80-120)	1.9	(0-20)	MCAWW	200.7	07/15-07/19/96	6197182	
		Dilution Facto	or: 1	• •					
		MS Run #:	619	7048					
Chromium	92	(80-120)			MCAWW	200 7	07/15-07/19/96	6197182	
0112 0112 0111	93	(80 - 120)	1.2	(0-20)	MCAWW	200.7	07/15-07/19/96	6197182	
		Dilution Facto	r: 1	(0 20)		2001/	•,, 20 •,, 20, 50	019/202	
		MS Run #:	619	7048					
Argenic	93	(80-120)			SW846	60100	07/15-07/19/96	6107192	
112 0 0 112 0	95	(80 - 120)	2.1	(0-20)	SW846	6010A	07/15-07/19/96	6197182	
		Dilution Facto	r: 1	(0 10)	0	001011	07,10 07,10,00	019/102	
		MS Run #:	619	7048					
Salanium	90	(80-120)			CWOAR	60107	07/15 07/10/00	6107100	
Jerentall	93	(80-120)	2 4	(0-20)	SW846	6010A	07/15-07/19/90	6197182	
		Dilution Facto	<u>د</u>	(0-20)	040-20	OUTOR	07/15-07/19/96	0191102	
		MS Run #:	+ 619	7048					
			(Cont	inued or	next p	page)			

i.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #: I6G120107		M	S Sample	: I6G120161-003	Matrix: WATER		
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD <u>LIMITS</u>	METHOD	PREPARATION- ANALYSIS DATE	BATCH #
Barium	87	(80-120)			SW846 6010A	07/15-07/19/96	6197182
	89	(80-120)	2.0	(0-20)	SW846 6010A	07/15-07/19/96	6197182
Dilution Facto				r: 1			
	M	S Run #:	619	7048			

NOTE(S):

.

.

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #: MS Lot #:	I6G12010 I6G160116	7 5-001	Work Or	der #:	C4T6K112-) C4T6K113-	ms m a MSD	atrix:	WATER
Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	07/08/96 07/17/96 6200138 1	11:00 Da An MS Pe	ate Received alysis Date Run #: ercent Moist	: 07/09 : 07/22 62050 : 100	9/96 08:54 2/96 027			
		PERCENT	RECOVERY		RPD			
PARAMETER		RECOVERY	LIMITS	RPD	LIMITS	METHOD		
Vinyl chloride		76 76	(1.0-251) (1.0-251)	0.11	(0-30)	SW846 SW846	8240B 8240B	
1,1-Dichloroethy	lene	107	(59-155)		(0, 20)	SW846	8240B	
Chloroform		106 102 104	(59-155) (51-136) (51-136)	1.8	(0-30)	SW846 SW846	8240B 8240B 8240B	
1,2-Dichloroetha	ne	111 110	(49-155) (49-155)	0.90	(0-30)	SW846 SW846	8240B 8240B	
Methyl ethyl ket	one	134 140	(25-250) (25-250)	4.2	(0-30)	SW846 SW846	8240B 8240B	
Carbon tetrachlo	ride	104 108	(71-240) (71-240)	4.2	(0-30)	SW846 SW846	8240B 8240B	
Trichloroethylen	e	105 108	(71-157)	2.7	(0-30)	SW846 SW846	8240B 8240B	
Benzene		107 110	(37-151) (37-151)	3.0	(0-30)	SW846 SW846	8240B 8240B	
Tetrachloroethyl	ene	105 108	(46-157) (46-157)	3.0	(0-30)	SW846 SW846	8240B 8240B	
Chlorobenzene		110 112	(37-160) (37-160)	2.0	(0-30)	SW846 SW846	8240B 8240B	
1,4-Dichlorobenz	ene	108 109	(75-137) (75-137)	0.49	(0-30)	SW846 SW846	8240B 8240B	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
4-Bromofluorobenzene	100	(86-115)
	99	(86-115)
1,2-Dichloroethane-d4	· 99	(76-114)
	95	(76-114)
Toluene-d8	98	(88-110)
	98	(88-110)

NOTE(S):

•••

.

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #: I6G120107 Percent Moist: 100 Matrix: WATER

	PERCENT	RECOVERY	-	RPD		PREPARATION-	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD	ANALYSIS DAT	E BATCH #
Reactive Cya	anide	C	4R4P1(J-MS/C4	R4P10K-MSD	MS Lot/Sample #: I	6G120107-001
	2.5	(1.0-64)			SW846 7.3.3	07/16/96	6198108
	0.58 N	(1.0-64)	105	(0-213)	SW846 7.3.3	07/16/96	6198108
	D	ilution Facto	r: 1				
	м	S Run #:	6198	3002			

NOTE(S):

•

Calculations are performed before rounding to avoid round-off errors in calculated results.

N Spiked analyte recovery is outside stated control limits.

- --

LABORATORY CONTROL SAMPLE EVALUATION REPORT

Metals

Clien	it Lot #: I60	G120107					Matrix: WA	TER
	PERCENT	RECOVERY		RPD			PREPARATION-	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD		ANALYSIS DATE	BATCH #
Cadmium	103	(80-120)			MCAWW	200.7	07/15-07/19/96	6197182
	104	(80 - 120)	1.5	(0-20)	MCAWW	200.7	07/15-07/19/96	6197182
	Di	lution Factor	r: 1					
Lead	108	(82-127)			MCAWW	239.2	07/15-07/16/96	6197182
	106	(82-127)	1.7	(0-19)	MCAWW	239.2	07/15-07/16/96	6197182
	Di	lution Factor	r: 1				, , , , , , , , , , , , , , , , , , ,	
Silver	101	(80-120)			MCAWW	200.7	07/15-07/19/96	6197182
	101	(80-120)	0.03	8 (0-20)	MCAWW	200.7	07/15-07/19/96	6197182
	Di	ilution Facto	r: 1					
Chromium	101	(80-120)			MCAWW	200.7	07/15-07/19/96	6197182
	103	(80-120)	1.3	(0-20)	MCAWW	200.7	07/15-07/19/96	6197182
	מ	ilution Facto:	r: 1					
Barium	99	(80-120)			SW846	6010A	07/15-07/19/96	6197182
	100	(80-120)	1.4	(0-20)	SW846	6010A	07/15-07/19/96	6197182
	Di	ilution Facto:	r: 1					
Arsenic	103	(80-120)			SW846	6010A	07/15-07/19/96	6197182
	105	(80-120)	1.2	(0-20)	SW846	6010A	07/15-07/19/96	6197182
	D	ilution Facto:	r: 1					
Selenium	104	(80-120)			SW846	6010A	07/15-07/19/96	6197182
	105	(80-120)	0.92	2 (0-20)	SW846	6010A	07/15-07/19/96	6197182
	D:	ilution Facto	r: 1					
Mercury	87	(81-120)			MCAWW	245.1	07/15/96	6197166
	87	(81-120)	0.04	4 (0-21)	MCAWW	245.1	07/15/96	6197166
	D:	ilution Facto	r: 1					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

I.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client	Lot #: 16G	120107					Matrix: W	ATER
	PERCENT	RECOVERY		RPD			PREPARATION-	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD		ANALYSIS DATE	BATCH #
pH (liquid)		C4	RTH10	1-MS/C41	RTH102-1	ISD		
	98	(90-110)			MCAWW	150.1	07/12/96	6197132
	98	(90-110)	0.56	(0-20)	MCAWW	150.1	07/12/96	6197132
	Dil	ution Factor	: 1					
Total Solids	(Residue)	C4	TA610	2-MS/C47	rA6103-N	MSD		
	101	(87-113)			MCAWW	160.3	07/15/96	6198195
	102	(87-113)	1.4	(0-20)	MCAWW	160.3	07/15/96	6198195
	Dil	ution Factor	: 1					
Reactive Cya	nide	C4	T3910	2-MS/C4	r39103-N	MSD		
	8.4	(1.0-64)			SW846	7.3.3	07/16/96	6198108
	4.5	(1.0-64)	60	(0-213)	SW846	7.3.3	07/16/96	6198108
	Dil	ution Factor	:: 1					

NOTE(S):

۰.

Calculations are performed before rounding to avoid round-off errors in calculated results.

ļ.

CONOCO INC.

Sample Duplicate Evaluation Report

General Chemistry

Lot-Sample #.: I6G120107 - 001	Work Order #.:	C4R4P-SMP	Matrix: WATER
		C4R4P-DUP	
Date Sampled.: 07/08/96	Date Received:	07/10/96	
Percent Moist:			

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOI	0	PREPARATION- ANALYSIS DATE	PREP BATCH #
Reactive Sulf	fide							
ND	ND	mg/L Dilution Fa MS Run #	0 act: 1 : 619	(0-20) 8004	SW846	7.3.4	07/16/96	6198110
Flashpoint								
>150	>150	deg F Dilution F MS Run #	0.0 act: 1 : 620	(0-20) 00005	SW846	1010	07/17/96	6200111
pH (liquid)								
4.1	4.1	No Units Dilution F MS Run #	0.73 act: 1 : 619	(0-20) 7016	MCAWW	150.1	07/12/96	6197132
Total Solids	(Residue)							
75000	75000	mg/L Dilution F MS Run #	0.40 act: 1 : 619	(0-0.0) 8056	MCAWW	160.3	07/15/96	6198195

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

Metals

Client Lot #: I6G120107

Matrix: WATER

Work Order #	: C4T12	Prep Date:	07	/15/96	Prep	Batch #:	6197166	
		REPORTING				ANALYSIS		DIL
PARAMETER	RESULT	LIMIT	UNITS	METHOD)	DATE		FACT
Mercury	ND	0.00020	mg/L	SW846	7470	07/15/96		1
Work Order #	: C4T1J	Prep Date:	07	/15/96	Prep	Batch #:	6197182	
		REPORTING				ANALYSIS		DIL
PARAMETER	RESULT	LIMIT	UNITS	METHOD)	DATE		FACT
Arsenic	ND	0.30	mg/L	SW846	6010A	07/19/96		1
Barium	ND	0.20	mg/L	SW846	6010A	07/19/96		1
Cadmium	ND	0.0050	mg/L	SW846	6010A	07/19/96		1
Chromium	ND	0.010	mg/L	SW846	6010A	07/19/96		1
Lead	ND	0.10	mg/L	SW846	6010A	07/19/96		1
Selenium	ND	0.25	mg/L	SW846	6010A	07/19/96		1
Silver	ND	0.010	mg/L	SW846	6010A	07/19/96		1

NOTE(S):

T

ſ

Calculations are performed before rounding to avoid round-off errors in calculated results.

ND Parameter was not detected at or above the stated reporting limit.

METHOD BLANK REPORT

General Chemistry

Client Lot #: I6G120107

Matrix: WATER

Work Order #:	C4T39	Prep Da	ate:	07/16/96	Prep Bat	:ch #:	6198108
Analysis Date:	07/16/96						
Dilution Factor:	1						
					REPORTING	3	
PARAMETER			RESULT		LIMIT	UNITS	METHOD
Reactive Cyanide			ND		200	mg/L	SW846 7.3.3
Work Order #:	C4T3E	Prep D	ate:	07/16/96	Prep Bat	ch #:	6198110
Analysis Date:	07/16/96						
Dilution Factor:	1						
					REPORTING	3	
PARAMETER			RESULT		LIMIT	UNITS	METHOD
Reactive Sulfide			ND		200	mg/L	SW846 7.3.4
Work Order #:	C4TA6	Prep D	ate:	07/15/96	Prep Bat	cch #:	6198195
Analysis Date:	07/15/96						
Dilution Factor:	1						
					REPORTING	3	
PARAMETER			RESULT		LIMIT	UNITS	METHOD
Total Solids (Re	sidue)		ND		10	mg/L	MCAWW 160.3

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results. ND Parameter was not detected at or above the stated reporting limit.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #:	I6G120107	Work Order #:	C4V4H101	Matrix:	WATER
Prep Date:	07/17/96	Analysis Date:	07/22/96		
Dilution Factor:	1	Prep Batch #:	6200138		

		REPORTII	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHO	D
Benzene	ND	0.050	mg/L	SW846	8240A
Carbon tetrachloride	ND	0.050	mg/L	SW846	8240A
Chlorobenzene	ND	0.050	mg/L	SW846	8240A
Chloroform	ND	0.050	mg/L	SW846	8240A
1,2-Dichloroethane	ND	0.050	mg/L	SW846	8240A
1,1-Dichloroethylene	ND	0.050	mg/L	SW846	8240A
Methyl ethyl ketone	ND	0.20	mg/L	SW846	8240A
Tetrachloroethylene	ND	0.050	mg/L	SW846	8240A
Trichloroethylene	ND	0.050	mg/L	SW846	8240A
Vinyl chloride	ND	0.10	mg/L	SW846	8240A
	PERC	ENT	RECOVER	Y	
SURROGATE	RECO	VERY	LIMITS	_	
4-Bromofluorobenzene	9	7	(86-115)	
1,2-Dichloroethane-d4	9	5	(76-114)	
Toluene-d8	9	7	(88-110)	

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

ND Parameter was not detected at or above the stated reporting limit.

				. /		ر		nterr	IJ
				.,	, , , , , , , , , , , , , , , , , , ,		ł	Environmen Services	tal
	Project Manager				6	ate 1	2	Chain Of Custo	Number
	CHRIS H	ANSEN	av Number			ah Number		L H	100
	713-293	-1174 PAX	713-293-	1714		C6-06-04	-	Page	of
Tip Code	Site Contact		-14 815	1 4 4 7				Analysis	v7
77252	DAVID B	OTTONS					R 7		
	Carrier/Waybill N	lumber							
	Y DEV								
	PACK IN	WET LUE/SH.	7 TO1 V	UANTERKA AUSI			* 1		
Date / Tin	ie Sample Type	Total Volume	Container Type	<u>'S</u> No. Preservativ	e Condition o	n Receipt	S V R		
24/2/1-	WATER	40NL	GLASS	2 4 C	600 2 4		X		
210 1	WATBR	200NL	PLAST	1 HNO3	1- c J	×6. a.			
	WATER	11.	PLAST	1 4 C			74		
4	WATER	125NL	PLAST	1 4 C	4		X		
				-					
					_				
WATER=\$ SOLI	D/DRY WT								
			Sample Dis	sposal]]		
ritant Pois	on B Un	known	- Retu	rn To Client	Disposal	By Lab	Archive F	or 1	Months
		<i>II.</i>	Project Spe	scific (Specify)					
	Date	Time	1. Receive	d By (~~			Date	Time
	76-25-7	12:451)	4	A R	5	(7.10.9	5170
	Date	Time	2. Receive	d Ву ́				Date	Time
	Date	Time	3. Receive	d By				Date	Time
- Returned to Client	with Report; PINK - F	ield Copy							
	- Returned to Client 1	The color of the content of the content of the content with Report; PINK - F	-Returned to Client with Report, Project, Manager (RR IS HANSK CRR Is HANSK CRR Is HANSK Telephone Number (Area Code)/F Total 113-293-1124 PAX PACK IN VET ICE/SHI NUMBER PACK IN VET ICE/SHI PACK IN VET ICE/SHI Volume V	-Returned to Client with Report, PINK- Field Copy - Returned to Client with Report, PINK- Field Copy - Returned to Client with Report, PINK- Field Copy - Returned to Client with Report, PINK- Field Copy - Ret Solution and state and stat	Image: CRELS #ANSP: CRELS #ANSP: CRELS #ANSP: CRELS #ANSP: Telephone Number (Area Code)/Fax Number (Triag Cod	Image: Interpret Manager Image: Interpret Manager Image: Interpret Manager Image: Interpret Manager Inc. CIRLS_FAMSER Image: Interpret Manager Ima	Image: Image is a constrained by the constrained by the image is a constrained by the image is a constrained by the constrained by the constrained by the image is a constrained by the constrain	Image: Construction of Records and the second of	Image: Subject with space from the space by the space

Conoco Inc. Rocky Mountain District P.O. Box 217 Bloomfield, NM 87413

January 26, 1994

Denny Foust OCD 1000 Rio Brazos Road Aztec, NM 87410

Denny,

The remediation project at the Conoco San Juan Gas Plant has been completed. This letter and attachments serve to document the scope and procedures that were utilized for the successful completion of the remediation project.

The Conoco-retained engineering firms of Steffen Robertson and Kirsten (SRK) and Envirotech, Inc., along with El Paso Natural Gas (EPNG) have provided the necessary documentation required for final submission of the remediation report. Copies of their final reports are included and comprise the bulk of our final remediation report.

The SRK report presents a comprehensive documentation of the entire project whereas the EPNG and Envirotech reports contain detailed analytical results. Envirotech sampled the contaminant at the point of initial discovery and EPNG provided comprehensive analysis during the actual remediation process. The aforementioned reports contain the following major subsections:

SRK Report:

1.0	Introduction					
2.0	Remediation Process 2.1 Contractor's Equipment 2.2 Excavation/Backfill Chronology 2.3 Ultimate Configuration of Excavation/Backfill Area		.			
3.0	Sampling and Analytical Testing (By Others)				* ., *	
4.0	State Approval of Remediation			-		
5.0	Summary	•		·	;] -

.

Denny Foust OCD January 26, 1994 Page 2

Envirotech Report

Section 1	Summary
Section 2	Site Assessment
Section 3	Test Results

EPNG Report

Section 1	Summary of TPH and BETX results with Map of Sample Locations
Section 2	TPH Results - Samples C-1 to C-9
Section 3	TPH Results - Samples #1 to #13 BETX Results - Sample #1, #2, #3, #7, #10, #11, #12
Section 4	TPH Results - Sample #14 to #22, Sample W1 to W12, Sample B1 to B17
Section 5	Modified 8015 TPH Analysis on Sample #18 and W7 BETX Results - Samples B2, B5, B7, B8, B9, B11, B12, B13, B14, B15, B17
Section 6	Groundwater Analysis Results of Sample taken on March 15, 1993

Denny, Conoco, and especially myself, wish to express its sincerest gratitude to you and the OCD staff for its invaluable guidance and assistance that was afforded to Conoco during all aspects of this remediation project.

If I can be of any further assistance, please call me at (505) 632-4900.

Sincerely,

Administrative Coordinator Rocky Mountain Operating Center

JIB/dlg

Att.

CONOCO SAN JUAN GAS PLANT EVAPORATION POND AREA REMEDIATION EXCAVATION SUMMARY

Prepared For:

Conoco, Inc. San Juan Gas Plant 61 Road 4900 P.O. Box 217 Bloomfield, N.M. 87413

Prepared by:

Steffen Robertson and Kirsten (U.S.), Inc. 3232 South Vance Street Lakewood, Colorado 80227

October 1993

SRK Project No. 58201.1

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 REMEDIATION PROCESS 1
2.1 Contractor's Equipment
2.2 Excavation/Backfill Chronology 2
2.3 Ultimate Configuration of Excavation/Backfill Area
3.0 SAMPLING AND ANALYTICAL TESTING (BY OTHERS) 3
4.0 STATE APPROVAL OF REMEDIATION
5.0 SUMMARY 4

(

1.0 INTRODUCTION

Steffen Robertson and Kirsten (U.S.), Inc. (SRK) was contracted by Conoco to design and provide quality assurance (QA) services for the construction of two evaporation ponds at its San Juan Gas Plant, in Bloomfield, New Mexico. The property is owned by El Paso Natural Gas Company and leased to Conoco. CDK Contracting Company (CDK) was contracted by Conoco to perform the earthwork associated with the construction of the two ponds. SRK provided a Senior Engineering Field Technician, Mr. Glenn Guyer, to monitor the construction. Mr. Guyer arrived on site February 4, 1993 for the start of pond construction

The two ponds are situated adjacent to one another south of the plant, with Pond #1 located to the west of Pond #2. The ponds are approximately the same size and roughly square, having a bottom dimension of approximately 180 feet and a depth of 8 feet. The ponds each have different bottom elevations; Pond #1 was designed with a bottom elevation of 89.35 feet and Pond #2 at 101.90 feet. Earthwork for Pond #2 was done first, followed by the earthwork for Pond #1.

The earthwork for Pond #2 was completed on February 23, 1993. Very minor levels of soil contamination were encountered in the extreme northwest corner of Pond #2 during its construction. However, on February 24, during the excavation of the bottom of Pond #1, and area of oil- soaked soil was uncovered. Work in this area was temporarily halted, and the owner was notified. At this point, under the direction of Conoco's Mr. Mike Luchetti, all work was stopped. The following day the contractor arrived on site and, under the direction of the owner, excavated materials around the areas of previously discovered contaminated soils, in an attempt to locate the extents of contamination. At this point, Mr. Denny Foust with the Oil Conservation Division of New Mexico Energy, Minerals, and Natural Resources Department (OCD) and Ms. Anu Pundari of El Paso Natural Gas Company (EPNG) were on site to observe the investigation work. Remediation procedures to remove the contaminated soils and finish the pond construction were discussed with Mr. Foust at this time.

2.0 **REMEDIATION PROCESS**

The site remediation action plan is documented in a letter from Conoco's Jon Bowerbank, to Mr. Denny Foust, dated March 5, 1993. The plan was cooperatively developed by representatives from the State OCD, Conoco, EPNG, SRK, and CDK. The plan states that "REMEDIATION will consist of excavation of contaminated materials to the appropriate OCD determined depth

below the initial water interface. However, on-site inspection by OCD personnel will make the final determination as to the depth of the require excavation." "The contaminated soils will be transported by CDK from the Conoco leases site to Envirotech for El Paso's account." "Fill dirt will be hauled back from Envirotech to replace the excavated material." Actual remediation work began on March 8, 1993.

2.1 Contractor's Equipment

The contractor, CDK, used the following equipment during the remediation process: a Cat 225 Trackhoe, John Deere Front End Loader (JD 644-B), and six (6) bottom dump semi-tractor trailer rigs with lined beds.

2.2 Excavation/Backfill Chronology

On March 8, 1993, upon acceptance of the site remediation plan, the remediation process began. At this time, contaminated soils were excavated from the pond and hauled to Envirotech, with some intermittent stockpiling on site. Trailers then returned from Envirotech with a load of uncontaminated soil which was stockpiled in a separate area on site.

The approximate weekly material balance for the excavation and backfill process, based on truck count, is shown below:

Week Ending	Excavation	Backfill Material	Balance
March 12	2,820 cu. yds	2,610 cu. yds	-210 cu. yds
March 19	525 cu. yds	465 cu. yds	-270 cu. yds
March 26	975 cu. yds	930 cu. yds	-315 cu. yds
April 2	330 cu. yds	210 cu. yds	-435 cu. yds
April 9	950 cu. yds	2183 cu. yds	+798 cu. yds
April 16	0 cu. yds	1092 cu. yds	+1890 cu. yds

Excavation of contaminated soil and importing of clean backfill ceased on April 14, 1993. A total of 5,600 cubic yards of contaminated soil was removed for the site, while 7, 490 cubic yards of clean soil were returned to the site to restore the original ground surface.

2.3 Ultimate Configuration of Excavation/Backfill Area

Because the extents of the contamination were not known beforehand, the contaminated soil was removed as it was encountered. Excavation continued until all of the soil considered to be "contaminated" by the State inspector was removed. The final configuration of the excavated are is shown in Figure 1. The figure shows the excavation within the framework of the ultimate pond construction, in both plan and cross section. Figures 2 and 3 show three dimensional perspective views of the excavation within the ultimate pond configuration.

The overall extent of contamination covered most of the pond bottom area and extended from the northeast corner of Pond #1 to the west and southwest. The deepest area of excavation was located on the western side of the pond continued down to an elevation of approximately 74 feet (17 feet below ground surface). The contaminated area in the northern part of the pond extended down to a sandstone shelf located at an elevation of approximately 86 feet (5 feet below the ground surface). The contamination extended below a perched ground water surface, which required seepage control measures during much of the excavation process.

3.0 SAMPLING AND ANALYTICAL TESTING (BY OTHERS)

On March 15, 1993, a representative from EPNG was present during the excavation of contaminated materials, set up a grid, and took water and soil samples for water quality testing. The results of the water quality testing were compiled by EPNG and later forwarded to Conoco.

A total of 52 samples of seepage or contaminated soil was retrieved by EPNG for laboratory testing. Samples were analyzed for fuel hydrocarbons (TPH) using either modified EPA Method 418.1 or 8015. Selected samples were also analyzed for benzene, toluene, ethyl benzene and total xylenes (BTEX) using EPA Method 8020. Recorded sampling depths went as deep as approximately 20 ft below ground surface.

4.0 STATE APPROVAL OF REMEDIATION

Upon the discovery of the oil-soaked soils in the bottom of Pond #1, the State OCD was notified. Mr. Denny G. Foust, Deputy Oil and Gas Inspector, visited the site during the exploration for the extents of the contamination, and was a part of the group that formulated the site remediation action plan. Mr. Foust then visited the site during the remediation to inspect

October, 1993

SRK Project No. 58201.1

progress and to verbally approve final extents of excavation as they were reached throughout the bottom of the pond.

According to EPNG test results and on-site feedback from the State, the final limits of excavation were acceptable.

5.0 SUMMARY

On February 24, 1993, during excavation in the bottom of Pond #1, an area of oil-soaked soil was discovered. Upon further exploration, additional quantities of contaminated soil were found in the Pond #1 area. After consulting the owner of the property and the appropriate State agencies, it was decided that the best approach to remedy the situation would be to excavate all of the contaminated soil and backfill the excavation with clean soil borrowed from off-site.

A total of 5,600 cubic yards of material was then removed from the pond bottom. Using six bottom dump semi-tractor trailer rigs, all of this material was hauled to the Envirotech facility for remediation.

A total of 7,490 cubic yards of clean soil was brought back on site for the backfilling procedure. This soil was placed and compacted in the areas of excavation to bring the ground surface back up to the original level prior to excavation.

Periodic visits by the State Inspector and sampling and testing by EPNG ensured the proper completion of the remediation work.

The remediation work took a total of 28 working days to complete. Normal pond construction procedures were then resumed to complete the construction and lining of both ponds.

October, 1993

SRK Project No. 58201.1

ENGINEER	REFERENCE			
		No.		DESCR
	SNO	Â		
	REVISI		· · · · · · · · · · · · · · · · · · ·	

SITE REMEDIATION

Plate 1- Sampling/Testing

Plate 2 - Excavation

(.

SITE REMEDIATION (cont'd)

Plate 3 - Backfill Process

Plate 4 - Backfill Process

SITE REMEDIATION (cont'd)

Plate 5 - Backfill Process

()

Plate 6 - Backfill Process

ENVIROTECH INC.

UNDERGROUND TANK TESTING • SITE ASSESSMENT • SITE REMEDIATION

796 U.S. HIGHWAY 64 - 3014 FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615

March 1, 1993

Mr. Mike Luchetti Plant Engineer Conoco Inc. P.O. Box 217 Bloomfield, New Mexico 87413

RE: Evaporation Pit Test Results San Juan Gas Plant Bloomfield, New Mexico Project No: 93115

Dear Mr. Luchetti:

This letter summarizes and documents the field testing performed at the subject evaporation basin excavation on February 26, 1993. Please find attached a field assessment form, site plan with test hole locations, and laboratory analysis results for total petroleum hydrocarbons as performed in the field.

Ms. Vicki Wood, of Conoco Environmental Support Services in Houston contacted Envirotech Inc. to provide environmental field sampling and testing. Ms. Wood indicated that soil hydrocarbon contamination was encountered during construction of the new evaporation basins at the Conoco plant. She requested Envirotech perform soil sampling to assist Conoco in evaluating the situation.

Under the direction of Mr. Jonathon Bowerbank of Conoco, three test holes were dug with a track excavator and grab soil samples were taken for analysis of hydrocarbon contamination. The attached site diagram shows the locations of these test holes.

Field screening for total aromatic hydrocarbon content was done using an Organic Vapor Meter (OVM) of the photoionization type (PID) manufactured by Thermo Environmental Instruments Inc. Field Headspace Analysis was performed per New Mexico Oil Conservation Division (NMOCD) guidelines (February 1993). Total petroleum hydrocarbon content (TPH) was also tested for by use of a General Analysis Corporation (GAC) TPH-PLUS Petroleum Hydrocarbon Analyzer. This instrument performs a field modified EPA Method 418.1 analysis.

Table 1 is a summary of field test results.

Conoco Soil Sampling Results Envirotech Inc. March 1, 1993

LOCATION	OVM (ppm)	TPH (ppm)
T1 - ELEV. = 86.5'	2256	2260
T2 - ELEV. = 91.0	1926	250
T3A - ELEV. = 91.0'	810	3230
T3B - ELEV. = 85.0'	767	3520

TABLE 1 - FIELD TEST RESULTS

Split samples were collected for each sample location and sent to the Conoco lab at Ponca City, Oklahoma as per instructions by Tracy Goodman and Vicki Wood. The samples were collected in clean 4 oz. glass laboratory jars, labeled, cooled on ice, and shipped by Federal Express for overnight delivery (Saturday A.M. delivery).

As we discussed on Friday, Envirotech operates a New Mexico Oil Conservation Division (NMOCD) approved landfarm facility for disposal and remediation of hydrocarbon contaminated soils. Conoco Inc. has audited and approved this facility for acceptance of Conoco generated soils.

We appreciate the opportunity to serve you. If you have any additional questions or require additional services, please contact us.

Thanks again.

Respectfully submitted, ENVIROTECH INC.

Robert E. O'nell

Robert E. O'Neill Environmental Engineer Project Field Engineer Reviewed by:

Michael K. Lane, P.E. Principal Engineer

Attachments: Field Assessment Report Site Diagram Field Lab Analysis Reports (4)

cc: Vicki Wood - Conoco Houston Environmental

REO/reo

93115.LET

ENVIROTECH Inc. 5796 US HWY. 64, FARMINGTON, NM 87401 (505) 632-0615	
FIELD REPORT: SITE ASSESSMENT	JOB No: 07 PAGE No: 07
PROJECT: <u>PIT ASSESSMENTS & CLOSURE</u> CLIENT: <u>CONOCO SAN TUAN GAS PUNT</u> CONTRACTOR: <u>ENVIROTECH. INC.</u> EQUIPMENT USED: <u>TRACK HOE</u> OUM # 38491 - # 37454 TI+2 T3	DATE STARTED: 2-26-93 DATE FINISHED: 2-26-93 ENVIRO. SPCLT: <u>REO</u> OPERATOR: ASSISTANT: <u>SN</u>
LOCATION: LSE: WELL: QD:	
SEC: TWP: RNG: PM: CNTY: SJ ST: MM P	TT: EVAP. POND
SURFACE CONDITIONS: AREA OF FRESH EX CAUATION - UNEVEN GR	CON 2 HER CLOOP SILE
FIELD NOTES & REMARKS: TI - APPROX. 2-3' MEDIUM BROWN WELL GRADED OF MOIST -> SATURATED DARK GRAY -> BLACK S DARK GRAY SAMDSTOME BOTTOM.	SAND OU BRLYWG 2-3' SILTY SAND, DEFINITE OPOR
T2 - APPROX 2' OF MEDIUM BROWN, WELL GANED S MOIST, DARK GRAY FINE SAMD. MEDIUM BROSMPLINVENTORY: ID:SMPLLABORATORY TYPE: ANULYSIS:T1SOIL 2260 PPMT2SOIL 250 PPMT3ASOIL 3230 PPMT3BSOIL 3520 PPMCONTINUES TO BOODN OF APPROX. IS HERE	HAD OUTERLY WE I' OF WN SAND STONE BOTTOM. UY WE APPROX. I' OF MEDIUM GANY SAND OLE, DEFINITE ODOR.
PIELO TPH RESURCE TEST HOLE LOU LAB SAMPLES COLLECTED TH#: TH#: Z TH#: AT EACH LO CATTON SOIL SOI	GS: SMPL COM SDIL SMPL OVM/ TYPE: TPH TYPE: TPH RFA CE MGD, SGR, BLACK A SNL 810 -
O FEET SITE DIAGRAM SITE DIAGRAM SM GARY SM GARY SM GARY	MEDIKM
SEE POND - 86 - SAMDSTONE	L 8 767 -
FOR TEST HOLE - 82- LOCATIONS + RELATIVE - 70T ELEVATIONS 80- 	AC Depth -
	, H - Peeda Creding: P - Peeru, V - Wed

5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

FIELD MODIFIED EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:Conoco San Juan Gas PlantProject #:93115Sample ID:Test Hole #1, 87'Date Analyzed:02-26-93Laboratory Number:FTPA0226Date Reported:03-01-93Sample Matrix:SoilSoilSoil

		Detection
Parameter	Result, mg/kg	Limit, mg/kg

2,260

Petroleum Hydrocarbons

25

D = **4** = = = **4**

Method: Modified Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No.4551, 1978

ND = Parameter not detected at the stated detection limit.

Comments: Samples from Evaporation Pond

Cellein Analvst

ENVIROTECH LABS

5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

FIELD MODIFIED EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Conoco San Juan Gas Plant Project #: 93115 Client: Test Hole #2, 91' Sample ID: Date Analyzed: 02-26-93 Laboratory Number: FTPB0226 Date Reported: 03-01-93 Sample Matrix: Soil

		Detection
Parameter	Result, mg/kg	Limit, mg/kg

250

Petroleum Hydrocarbons

5

Method: Modified Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No.4551, 1978

ND = Parameter not detected at the stated detection limit.

Comments: Samples from Evaporation Pond

15 M 20

eila feltman Analyst

5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

FIELD MODIFIED EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:Conoco San Juan Gas PlantProject #:93115Sample ID:Test Hole #3(A), 91'Date Analyzed:02-26-93Laboratory Number:FTPC0226Date Reported:03-01-93Sample Matrix:SoilSoilSoil

		Detection
Parameter	Result, mg/kg	Limit, mg/kg

Petroleum Hydrocarbons

3,230

50

Method: Modified Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No.4551, 1978

ND = Parameter not detected at the stated detection limit.

Comments: Samples from Evaporation Pond

. Fel Luca Analyst

5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

FIELD MODIFIED EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:Conoco San Juan Gas PlantProject #:93115Sample ID:Test Hole #3(B), 85'Date Analyzed:02-26-93Laboratory Number:FTPD0226Date Reported:03-01-93Sample Matrix:SoilSoilSoil

		Detection
Parameter	Result, mg/kg	Limit, mg/kg

Petroleum Hydrocarbons

3,520

50

Method:

hod: Modified Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No.4551, 1978

ND = Parameter not detected at the stated detection limit.

Comments: Samples from Evaporation Pond

Felluia Analyst

P. O. BOX 4990 FARMINGTON, NEW MEXICO 87499

August 13, 1993

AUG 1 3 1993

Mr. Jon Bowerbank Conoco P.O. Box 217 Bloomfield, N.M. 87413

Subject : Analysis Results from Conoco Evaporation Pit Excavation Project

Dear Mr. Bowerbank:

El Paso Natural Gas Company (EPNG) obtained verification samples from the excavated area in March 1993 and April 1993. Attached is a summary of the TPH and BETX results with a diagram of the sample locations. Please note that the sample locations are approximate since EPNG did not survey the sample points but only obtained rough measurements relative to Testpoint #9.

Tab 1 : Summary of TPH and BETX results with Map of Sample Locations.

- Tab 2 : TPH Results Samples C-1 to C-9 BETX was Not Run.
- Tab 3 : TPH Results Samples #1 to #13 BETX Results - Sample #1, #2, #3, #7, #10, #11, #12 BETX was run on a randomly selected number of samples.
- Tab 4 : TPH Results Sample #14 to #22 , Sample W1 to W12, Sample B1 to B17BETX was Not Run on Sample #14 to #22BETX was Not Run on Sample W1 to W12
- Tab 5 : Modified 8015 TPH Analysis on Sample #18 and W7
 BETX Results Samples B2, B5, B7, B8, B9, B11, B12, B13, B14, B15, B17
 BETX was run only on samples in the area of ponding water.

Page 2 - Analysis Results from Conoco Evaporation Pit Excavation Project

Tab 6 : Groundwater Analysis Results of Sample taken on March 15, 1993

If you have any questions, or if you need additional information, please call me at 599-2176.

ann Pundaii

Anu Pundari Sr. Compliance Engineer

cc: Mr. David Hall (w attachment) Mr. Lyle Tinker (w/o attachment) (with attachment) cc: S.Miller/K.Sinclair/File 5200 - Conoco Excavation

×	< 0.125	< 0.125	< 0.125	RN	RN	R	< 0.125	a	R	< 0.125	< 0.125	< 0.125	R	RN	
u	< 0.125	< 0.125	< 0.125	RN	RN	RN	< 0.125	a	R	<0.125	< 0.125	< 0.125	R	R	
F	< 0.125	< 0.125	< 0.125	RR	RN	RN	< 0.125	a.	RN	< 0.125	< 0.125	< 0.125	RN	R	
B	< 0.125	< 0.125	< 0.125	RN	RN	RN	< 0.125	aN	R	< 0.125	< 0.125	< 0.125	NR	RN	
IR TPH Mod. 418.1 (MG/KG)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Data	 03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	
<u>e</u>	 1430	1431	1432	1433	1434	1445	1446	1447	1448	1449	1450	1451	1452	1455	
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
Sample Copth Freet	5.89	6.59	15.64	6.59	7.04	14.29	14.94	5.04	10.09	14.29	16.19	14.49	9.49		
Sample	South Wall Top Point #1	South Wall Bottom Point #2	South Wall Bottom Point #3	South Wall Top Point #4	South Wall Top Point #5	South Wall Bottom Point #6	South Wall Bottom Point #7	South Wall Top Point #8	South Wall Top Point #9	West Wall Top Point #10	West Wall Bottom Point #11	West Wall Bottom Point #12	West Wall Top Point #13	Backfill Soil Check Sample	
and the second	N30352	N30353	N30354	N30355	N30356	N30357	N30358	N30359	N30360	N30361	N30362	N30363	N30364	N30365	

Notes: The result followed by a "D" is the data qualifier indicating that the sample result exceeded the calibration curve limit for this test. NA = Not Applicable NR = Test Not Run Sample Depth - Relative to Benchmark at Corner of Conoco Fence Line

aso Natural Gas Company od Services Laboratory **CONOCO/EPNG Excavation** EPA 8020 - BTEX

Sample	Sampla	S				R HT	M				
Number	Location	Deptit (Faat)	Metrix	Time	Date	Mod. 418.1 Marker	Mod. 8015 (MGWG)	đ	F	LU	×
N30384	#14	6.94	Soil	855	04/01/93	<10/<10	RN	RN	R	R	R
N30385	#15	10.49	Soil	857	04/01/93	<10	NR	NR	NR	NR	NR
N30386	#16	10.74	Soil	859	04/01/93	30	NR	NR	NR	R	NR
N30387	#17	14.94	Soil	006	04/01/93	<10	RN	R	NR	NR	NR
N30388	#18	13.34	Soil	901	04/01/93	304	47	RN	NR	NR	NR
N30389	#19	7.94	Soil	902	04/01/93	<10	RN	R	RN	NR	RN
N30390	#20	5.14	Soil	905	04/01/93	<10	RN	RN	RR	R	RN
N30391	#21	11.64	Soil	903	04/01/93	<10	NR	NR	NR	NR	RN
N30392	#22	9.94	Soil	904	04/01/93	<10	NR	NR	NR	NR	NR
N30393	١M	N/A (Surface Sample)	Soil	935	04/01/93	<10	RN	R	RN	NR	NR
N30394	W2	N/A (Surface Sample)	Soil	937	04/01/93	<10/<10	NR	RN	NR	NR	NR
N30395	W3	N/A (Surface Sample)	Soil	938	04/01/93	<10	RN	R	NR	NR	NR
N30396	W4	N/A (Surface Sample)	Soil	940	04/01/93	12	NR	NR	NR	NR	NR
N30397	W5	N/A (Surface Sample)	Soil	941	04/01/93	<10	NR	NR	NR	NR	NR
N30398	W6	N/A (Surface Sample)	Soil	947	04/01/93	<10	RN	RR	NR	NR	NR
N30399	W7	N/A (Surface Sample)	Soil	943	04/01/93	586	240	NR	NR	NR	NR
N30400	W8	N/A (Surface Sample)	Soil	945	04/01/93	27	NR	NR	NR	NR	RN
N30401	W9	N/A (Surface Sample)	Soil	946	04/01/93	<10	NR	NR	NR	NR	NR

The result followed by a "D" is the data qualifier indicating that the sample result exceeded the calibration curve limit for this test.

NA = Not Applicable NR = Test Not Run or Not Requested

/ indicates duplicate run on this sample with the associated result shown Sample Depth - Relative to Benchmark at Corner of Conoco Fence Line (Surface Sample) - Approximately 1 to 2 feet of clean overburden was removed prior to obtaining the surface sample. Hydrocarbon contaminated soil was found near W7 . The contaminated soil was removed. On 3/31/93 the PID reading in the area near W7 was 682 ppm. On 4/1/93, the PID reading was 6 ppm.

ipany		vation
s Com	ratory	Exco
ral Ga	s Labo	NG PH
Natu	IVICE	SO/EP
Paso	Š	SNO

	*	R	RN	RN	R	<0.025	RR	RN	<0.025	RN	<0.025	<0.025	0.07	RR	<0.025	0.16	<0.025	< 0.025	<0.025	R	<0.025	
EPA 8020 - BTEX (MG/KG)	3	NR	NR	RN	RN	< 0.025	RN	RN	< 0.025	RN	< 0.025	< 0.025	< 0.025	RN	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	RN	<0.025	
	F	R	RN	RR	R	<0.025	R	RN	< 0.025	R	<0.025	< 0.025	<0.025	RR	<0.025	<0.025	<0.025	<0.025	<0.025	RR	< 0.025	
	۵	R	NR	RR	RR	<0.025	NR	R	<0.025	RN	< 0.025	<0.025	< 0.025	NR	< 0.025	< 0.025	<0.025	< 0.025	<0.025	NR	< 0.025	
	TPH Mod. 8015 (MG/KG)	NR	RN	RN	R	RN	NR	NR	NR	RN	RN	RN	NR	NR	NR	RN	RN	RN	RN	RN	NR	
	IR TPH Mod. 418.1 (MG/KG)	<10	16	84	<10/<10	<10	<10	<10	<10	<10	57	82	<10	< 10	<10/<10	14	80	<10	<10	15	<10	
	Cas	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	
	Time	948	943	942	1143	1145	1147	1148	1150	1151	1156	1424	1425	1427	1429	1430	1432	1434	1435	1436	1437	
	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
	Barryde Dap th Freet)	N/A (Surface Sample)	N/A (Surface Sample)	N/A (Surface Sample)	8,51	9.49	9.5	10.39	9.84	9.14	8.54	19.21	19.21	16.31	17.61	18.12	18.21	16.61	17.16	15.11	17.16	
	Sample Location	W10	W11	W12	<u>B1</u>	82	83	84	85	BG	87	88	88	810	811	812	813	814	815	B16	<u>B17</u>	Notes:
	Sense Multiple	N30402	N30403	N30404	N30405	N30406	N30407	N30408	N30409	N30410	N30411	N30412	N30413	N30414	N30415	N30416	N30417	N30418	N30419	N30420	N30421	_

The result followed by a "D" is the data qualifier indicating that the sample result exceeded the calibration curve limit for this test. NA = Not Applicable NR = Test Not Run or Not Requested Sample Depth - Relative to Benchmark at Corner of Conoco Fence Line (Surface Sample) - Approximately 1 to 2 feet of clean overburden was removed prior to obtaining the surface sample.

El Paso Natural Gas Company **Field Services Laboratory** Method 418.1 TPH Analytical Results **CONOCO/EPNG Pit Investigation**

Date Extracted: March 16, 1993 Date Analyzed: March 16, 1993 Holding Time Status: Acceptable!							
Sample Number	Sample Location	Time	Data Qualifier	IR TPH Mod. 418:1 (MG/KG)			
N30313	Conoco C-1 Grid Point, Sludge Pit	1330		27			
N30314	Conoco C-2 Grid Point, Sludge Pit	1340		937			
N30315	Conoco C-3 Grid Point, Sludge Pit	1344		<10			
N30316	Conoco C-4 Grid Point, Sludge Pit	1347		288			
N30317	Conoco C-5 Grid Point, Sludge Pit	1338		2,513			
N30318	Conoco C-6 Grid Point, Sludge Pit	1332		< 10			
N30319	Conoco C-7 Grid Point, Sludge Pit	1334		<10			
N30320	Conoco C-8 Grid Point, Sludge Pit	1336		352			
N30321	Conoco C-9 Grid Point, Sludge Pit	1350		193			
		ł					

NOTES: The "D" qualifier indicates that the sample result exceeded the limit of the calibration curve.

Approved By: John July 19/97 Date

QUALITY CONTROL REPORT TPH by Modified 418.1 by Infrared Samples N30313 to N30321

LABORATORY CONTROL SAMPLES: CALIBRATION CHECKS

AL CALIBRATION VERIF.	HORIBA	TRUE VALUE (PPM) 200.0	FOUND (MG/KG) 215.8	%R 107.9	ACCEPTABLE RANGE 75-125 %R YES NO X		
-----------------------	--------	---------------------------------	---------------------------	--------------------	--	--	--

LABORATORY AND FIELD DUPLICATES:

SAMPLE NUMBER	туре	SAMPLE RESULT (S)MQ/KQ	DUPLICATE RESULT (DJMG/KG	RPD	ACCEPTABLE RANGE + /- 35% YES NO
N30317/N30317D	2nd Extract	2513	2851	13	X

LABORATORY SPIKES:

N30317/N303175	SAMPLE NUMBER
3350	SPIKE ADDED (SA)MG/KG
2513	SAMPLE RESULT (S)MG/KG
5238	SPIKE SAMPLE RESULT (SR)MG/KG
81	%я
X	ACCEPTABLE RANGE 75-125 %R YES NO

REFERENCE SOIL (Laboratory Control Sample):

SAMPLE. ID	SOURCE	KNOWN VALUE (MG/KG)	SAMPLE RESULT FOUND (MG/KG)	RPD	ACCEPI RANGE YES	rable + / - 35% NO
ERA TPH STANDARD #1 LOT # 91016	ENVIRONMENTA RESOURCE ASS.	2350	2381	1.3	×	
ERA TPH STANDARD #2 w/int LOT # 91016	ENVIRONMENTA RESOURCE ASS.	1450	1843	23.9	x	

LABORATORY REAGENT BLANK:

SAMPLE ID	SOURCE	TPH LEVEL (MG/KG)	STATUS
Freon Solvent	HORIBA	<10.0	ACCEPTABLE
Reagent Blank	EPNG Lab	<10.0	ACCEPTABLE

Approved By: Jan Laly 3/18/97 Date

o Natural Gas Company	Jervices Laboratory	NG Pit Excernation	
El Paso N	Field 8er	cono	

×		< 0.125	< 0.125	< 0.125	RN	RN	R	< 0.125	R	RN	< 0.125	< 0.125	< 0.125	R	R
w		< 0.125	<0.125	< 0.125	R	R	RN	< 0.125	R	RN	< 0.125	< 0.125	< 0.125	NR	RN
		< 0.125	< 0.125	< 0.125	NR	RN	NR	< 0.125	R	NR	<0.125	< 0.125	< 0.125	NR	RN
d		< 0.125	< 0.125	< 0.125	NR	NR	NR	< 0.125	NR	RN	< 0.125	< 0.125	< 0.125	NR	R
TPH Mod. 418.1 (MG/KQ)		<10	<10	< 10	< 10	< 10	< 10	< 10	< 10	<10	< 10	<10	< 10	< 10	<10
ą		03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93	03/29/93
<u> </u>		1430	1431	1432	1433	1434	1445	1446	1447	1448	1449	1450	1451	1452	1455
Ţ	_	Soil	Soil	Sol	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soll	Soil
j 12		5.89	6.59	15.64	0.59	7.04	14.29	14.94	5.04	10.01	14.29	16.19	14.49	9.49	
ijţ		South Wall Top Point #1	South Wall Bottom Point #2	South Wall Bottom Point #3	South Wall Top Point #4	South Wall Top Point #5	South Wall Bottom Point #6	South Wall Bottom Point #7	South Wall Top Point #8	South Wall Top Point #9	West Wall Top Point #10	West Well Bottom Point #11	West Wall Bottom Point #12	West Well Top Point #13	Beckfill Soil Check Semple
Semple Number		N30352	N30353	N30354	N30355	N30356	N30357	N30358	N30359	N30360	N30361	N30362	N30383	N30364	N30365

Notes: The result followed by a "D" is the data qualifier indicating that the sample result exceeded the calibration curve limit for this test. NA = Not Applicable NR = Test Not Run Sample Depth - Relative to Benchmark at Corner of Conoco Fence Line

|

|

ļ

TPH by Modified 418.1 by Infrared Samples N30352 to N30365 run on 3/30/93

LABORATORY CONTROL SAMPLES: CALIBRATION CHECKS

B B	BOURCE	TRUE VALUE (PPM)	FOUND (MG/KG)	96 8	ACCEPTABLE RANGE75-125.568# YES NOB
INITIAL CALIBRATION VERIF. "B" Heavy Oil (Lot MOR9480)	HORIBA	200.0	216.6	108.3	x

LABORATORY AND FIELD DUPLICATES:

SAMPLE. NUMBER:	TYPE	SAMPLE RESULT (SIMG/KG	DUPLICATE: RESULT (DJMG/KG	RPD	ACCEPTABLE RANGE + / - 35% YES NOT
N30352/N30352D	2nd Extract	< 10	<10	0	×

Narrative : Acceptable.

LABORATORY SPIKES:

SAMPLE. NUMBER	SPIKE ADDED (SA)MG/KG	SAMPLE RESULT (S)MG/KG	SPIKE SAMPLE RESULT (SRIMG/KG	X R	ACCEPTABLE RANGE 75-125 %R YES NO
0352/N30352S	3350	o	. 3614	108	× .

REFERENCE SOIL (Laboratory Control Sample):

SAMPLE. ID	SOURCE	KNOWN VALUE (MG/KG)	SAMPLE RESULT FOUND (MG/KG)	RPD	ACCEPTA RANGE:+ YES	uele / - 35% NO
ERA TPH STANDARD #1 LOT # 91016	ENVIRONMENTA RESOURCE ASS.	2350	2414	2.7	×	
ERA TPH STANDARD #2 w/int LOT # 91016	ENVIRONMENTA RESOURCE ASS.	1450	1356	6.7	x	

LABORATORY REAGENT BLANK:

SAMPLEID	SOURCE	TPH = LEVEL (MG/KG)	STATUS
Freon Solvent	HORIBA	<10.0	ACCEPTABLE
Reagent Blank	EPNG Lab	< 10.0	ACCEPTABLE

Approved By: John Juli 1/2/93 Date

QUALITY CONTROL REPORT EPA METHOD 8020 - BETX Samples: N30352 to N30365

FORY DUPLICATES: LA

SAMPLE	TYPE	SAMPLE NEXA.T (S) (PPS)	DUPLICATE: REBULT (D) (PPB)	140	ACCEPTABLE RANGE > y = 35X (ES NO.
Benzene	2ndi Run	<5	<5	0.0	x
Toluene	2nd Run	<5	<5	0. 0	x
Ethylbenzene	2nd Run	<5	<5	0.0	X .
Total Xylenes	2nd Run	<5	<5	0.0	×

Narrative: Acceptable#

LABORATORY CONTROL, CALIBRATION CHECK:

SAMPLE Kunder	THE	KIICHII: FI RETRA.T.	CLAND RESULT	58 .5	ACCEPTABLE
100 PPB Standard		(246)	(PPB)		TES
Rearano	Standard	100.0	78.8	78.8	X
Denizerie					
Toluene	Standard	100.0	81.7	81.7	×
Toluene Ethylbenzene	Standard Standard	100.0 100.0	81.7 81.1	81.7 81.1	x x
Toluene Ethylbenzene Total Xylenes	Standard Standard Standard	100.0 100.0 200.0	81.7 81.1 171.3	81.7 81.1 85.7	X X X

LABORATORY SPIKES:

Sapple : Il Julier	SPIKE ADDED (SA) PPS	SAURLE RESULT (3) (PPE)	SPIKE SANPLE RESALT (SR) (PPE)	3	ACCEPTABLE Kange AS+135-20 Tes M2:
Benzene	60.0	0.0	0.0	0	
Toluene	60.0	0.0	0.0	0	
Ethylbenzene	60.0	0.0	0.0	0	
Total Xylenes	120.0	0.0	0.0	0	

Narrative: None With This Set.

LABORATORY AND TRIP BLANKS:

Suple 15	SURCE	Component (PPS)	STATUE
Benzene	EPNG Water	<5	ACCEPTABLE
Toluene	EPNG Water	<5	ACCEPTABLE
Ethylbenzene	EPNG Water	<5 ·	ACCEPTABLE
Total Xylenes	EPNG Water	<	ACCEPTABLE

Narras : Acceptable!

Approved By: Jol Lardi 4/2/97

El Paso Maturel Gas Company Md Services Laboratory DNOCO/EPNG Ptt Excavation

		ΓT									-			2			g		.0			5	İ
	× ·		R	NR	RN	RN	< 0.025	ВN	RN	< 0.025	RN	< 0.025	< 0.025	0.0	RN	< 0.025	0.1	< 0.02	< 0.02!	< 0.02	RN	< 0.02	
ITEX	W		R	NR	NR	NR	< 0.025	RR	RN	<0.025	NR	<0.025	< 0.025	< 0.025	NR	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	NR	< 0.025	
PA 8020 - E IMG/KG)	-		RN	RN	NR	NR	< 0.025	RN	NR	< 0.025	NR	< 0.025	< 0.025	< 0.025	NR	< 0.025	< 0.025	<0.025	< 0.025	<0.025	NR	< 0.025	
	ß		R	NR	RN	RN	<0.025	NR	NR	< 0.025	RR	< 0.025	<0.025	< 0.025	NR	<0.025	<0.025	<0.025	< 0.025	<0.025	NR	<0.025	
	TPH Mod. 8015 (Mo/Ka)		R	NR	RN	R	RN	NR	R	NR	NR	NR	NR	NR									
	IR Mod. 418.1 MojKoj		<10	16	84	<10/<10	<10	<10	<10	<10	<10	57	82	<10	<10	<10/<10	14	80	<10	<10	15	<10	
	B		04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	
	<u>,</u>		948	943	942	1143	1145	1147	1148	1150	1151	1156	1424	1425	1427	1429	1430	1432	1434	1435	1436	1437	
	Mathia		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Solf	
	Bampio Depth Freed		N/A (Surface Sample)	N/A (Surface Sample)	N/A (Surface Sample)	8.51	9.49	9.5	10.39	9.84	9.14	8.54	19.21	19.21	16.31	17.61	18.12	18.21	16.61	17.16	15.11	17.16	
	Sample Location		W10	١١	W12	81	82	83	84	85	88	87	68	69	810	811	812	813	814	B15	B16	817	
	11		N30402	N30403	N30404	N30405	N30406	N30407	N30408	N30409	N30410	N30411	N30412	N30413	N30414	N30415	N30416	N30417	N30418	N30419	N30420	N30421	

Notes: The result followed by a "D" is the data qualifier indicating that the sample result exceeded the calibration curve limit for this test. NA = Not Applicable NR = Test Not Run or Not Requested Sample Depth - Relative to Benchmark at Corner of Conoco Fence Line (Surface Sample) - Approximately 1 to 2 feet of clean overburden was removed prior to obtaining the surface sample.

I

(,

					_					_			_	_	-		_		_
	×		RN	NR	R	R	NR	R	RN	RN	RN	RN							
BTEX		ġ	S.	NR	NR	RN	RN	AR	NR	NR	NR	NR	R	AR	NR	NR	NR	RN	NR
PA 8020 - 1 (MG/KG	F		E E	NR	RN	R	RN	NR	NR	NR	RN	RN	R	NR	NR	NR	RN	RN	NR
	A	9	S S	Æ	R	RN	RR	NR	NR	NR	NR	NR	RN	NR	RN	RN	R	RN	NR
	TPH Mod. 8015 (MGKG)	2	UN N	RN	RN	47	RN	RN	RN	RN	RN	RN	RN	RN	RN	RN	240	RN	NR
	IR TPH Mod. 418.1 MIGKG)	0127012	<10	30	<10	304	<10	<10	<10	<10	<10	<10/<10	<10	12	<10	<10	586	27	<10
	Date		04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93	04/01/93
	an 1	U U U	857	859	006	901	902	905	903	904	935	937	938	940	941	947	943	945	946
	Martin		is s	Soil	Soll	Soil													
	Bernde Deeth Freet	8 94	10.49	10.74	14.94	13.34	7.94	5.14	11.64	9.94	N/A (Surface Sample)	N/A (Surface Sample)							
	Sample Location		#15	#16	212	#18	#19	#20	#21	#22	W1	W2	W3	W4	W5	W6	W7	W8	6M
	Remain Number	N30384	N30385	N30386	N30387	N30388	N30389	N30390	N30391	N30392	N30393	N30394	N30395	N30396	N30397	N30398	N30399	N30400	N30401

The result followed by a "D" is the data qualifier indicating that the sample result exceeded the calibration curve limit for this test. NA = Not Applicable NR = Test Not Run or Not Requested Notes:

/ indicates duplicate run on this sample with the associated result shown

Sample Depth - Relative to Benchmark at Corner of Conoco Fence Line

(Surface Sample) - Approximately 1 to 2 feet of clean overburden was removed prior to obtaining the surface sample. Hydrocarbon contaminated soil was found near W7 . The contaminated soil was removed. On 3/31/93 the PID reading in the area near W7 was 682 ppm. On 4/1/93, the PID reading was 8 ppm.

Paso Natural Gas Company Ald Sarvices Laboratory CONOCO/EPNG Excevation

2709-D Pan American Freeway, NE Albuquerque, NM 87107 Phone (505) 344-3777 FAX (505) 344-4413

213 14 15

ATI I.D. 304318

April 16, 1993

El Paso Natural Gas Co. P.O. Box 4990 Farmington, NM 87499

Project Name/Number: CONOCO PIT

Attention: John Lambdin

On 04/06/93, Analytical Technologies, Inc. received a request to analyze non-aqueous samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

Letitia Krakowski Assistant Project Manager

EP:td Enclosure

adela M Cantu-

Elizabeth Proffitt Laboratory Manager

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

CLIENT EL PASO NATURAL GAS CO. : PROJECT # : (NONE) PROJECT NAME: CONOCO PIT

DATE RECEIVED: 04/06/93

REPORT DATE : 04/16/93

ATI I.D.: 304318

ATI	# CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	N30399 -W子	 NON-AQ	04/01/93
02	N30406 - B2	NON-AQ	04/01/93
03	N30409 - R5	NON-AQ	04/01/93
04	N30411 B7	NON-AQ	04/01/93
05	N30412-88	NON-AQ	04/01/93
06	N30413-B9	NON-AQ	04/01/93
07	N30415-BII	NON-AQ	04/01/93
08	N30416 B12	NON-AQ	04/01/93
09	N30417-BI3	NON-AO	04/01/93
10	N30418 - B14	NON-AO	04/01/93
. 11	N30419 B)5	NON-AO	04/01/93
12	N30421-BI7	NON-AQ	04/01/93

----TOTALS----

MATRIX **#** SAMPLES NON-AQ

ATI STANDARD DISPOSAL PRACTICE

12

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

TEST CLIENT PROJECT PROJECT	: ; # : NAME:	EPA 801 EL PASO (NONE) CONOCO	5 MODIFIED NATURAL GAS PIT	со.	ATI	I.D.: 304	4318
SAMPLE I.D. #	CLIENT	5 I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
01	N30399)	NON-AQ	04/01/93	04/08/93	04/09/93	1
PARAMETI	ER			UNITS	01		
FUEL HYI HYDROCAI HYDROCAI	DROCARBO RBON RAN RBONS QU)NS IGE JANTITATI	ED USING	MG/KG	240 C14-C32 DIESEL		
0-TERPHI	ENYL (%)				92		

GAS CHROMATOGRAPHY - RESULTS BLANK

TEST BLANK I.D. CLIENT PROJECT # PROJECT NAME	: E : 0 : E : (: C	PA 801 40893 L PASO NONE) ONOCO	5 MODIFIEN NATURAL (PIT	D GAS	co.		ATI I.D. DATE EXTRA DATE ANALY DILUTION F	ACTED ZED ACTOR	•	304318 04/08/93 04/09/93 1	
PARAMETER					UNITS						
FUEL HYDROCA HYDROCARBON I HYDROCARBONS	RBON RANG QUA	S E NTITAT	ED USING		MG/KG	<5 - -					-
O-TERPHENYL	(%)					96					

Acception Strate

GAS CHROMATOGRAPHY - QUALITY CONTROL

TEST MSMSD # CLIENT PROJECT # PROJECT NAME	:	EPA 801 040893 EL PASO (NONE) CONOCO	5 MC NAT PIT	DDIFIED	со.		ATI I. DATE E DATE A SAMPLE REF. I UNITS	D. EXTRACTED NALYZED MATRIX .D.	:	30431 04/08 04/09 NON-A 04089 MG/KC	8 /93 /93 Q 3	
PARAMETERS				SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	%	DUP REC	RPD	-
FUEL HYDROCA	RB0	NS		<5	100	98	98	100		 100	2	-

Aciello Mu.

(Spike Sample Result - Sample Result) % Recovery = ----- X 100 Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = ------- X 100 Average Result

.....

TEST: BTEX (EPA 8020)CLIENT: EL PASO NATURAL GAS CO.PROJECT #: (NONE)PROJECT NAME:CONOCO PIT									
SAMPLE I.D. #	CLIENT	· I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR		
02 03 04 05	N30406 N30409 N30411 N30412		NON-AQ NON-AQ NON-AQ NON-AQ NON-AQ	04/01/93 04/01/93 04/01/93 04/01/93	04/07/93 04/07/93 04/07/93 04/07/93	04/09/93 04/09/93 04/09/93 04/09/93	1 1 1 1		
PARAMET	ER		UNITS	02	03	04	05		
BENZENE TOLUENE ETHYLBE TOTAL X	NZENE YLENES		MG/KG MG/KG MG/KG MG/KG	<0.025 <0.025 <0.025 <0.025 <0.025	<0.025 <0.025 <0.025 <0.025 <0.025	<0.025 <0.025 <0.025 <0.025 <0.025	<0.025 <0.025 <0.025 <0.025 <0.025		
BOOFL	UOROBENZ	ENE (%)		76	74	77	73		

Å

TEST CLIENT PROJECT PROJECT	: : # : NAME:	BTEX (EP) EL PASO I (NONE) CONOCO PI	A 8020) Natural gas c It	0.	ATI	I.D.: 30433	18
SAMPLE I.D. #	CLIENI	'I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
06 07 08 09	N30413 N30415 N30416 N30417		NON-AQ NON-AQ NON-AQ NON-AQ	04/01/93 04/01/93 04/01/93 04/01/93	04/07/93 04/07/93 04/07/93 04/07/93	04/09/93 04/09/93 04/08/93 04/09/93	1 1 1 1
PARAMET	ER		UNITS	06	07	08	09
BENZENE TOLUENE ETHYLBEI TOTAL X	NZENE YLENES		MG/KG MG/KG MG/KG MG/KG	<0.025 <0.025 <0.025 0.025 0.07	<0.025 <0.025 <0.025 <0.025 <0.025	<0.025 <0.025 <0.025 <0.025 0.16	<0.025 <0.025 <0.025 <0.025 <0.025
BIOFLI	UOROBENZ	ENE (%)		74	81	71	81

TEST CLIENT PROJECT PROJECT	: BTEX (EPA 8 : EL PASO NAT # : (NONE) NAME: CONOCO PIT	3020) FURAL GAS C	20.	ATI	I.D.: 3043	18
SAMPLE I.D. #	CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
10 11 12	N30418 N30419 N30421	NON-AQ NON-AQ NON-AQ	04/01/93 04/01/93 04/01/93	04/07/93 04/07/93 04/08/93	04/09/93 04/08/93 04/09/93	1 1 1
PARAMET	ER	UNITS	10	11	12	``````````````````````````````````````
BENZENE TOLUENE ETHYLBEI TOTAL XY	NZENE YLENES	MG/KG MG/KG MG/KG MG/KG	<0.025 <0.025 <0.025 <0.025 <0.025	<0.025 <0.025 <0.025 <0.025 <0.025	<0.025 <0.025 <0.025 <0.025 <0.025	
BROMOFLU	JOROBENZENE (%)		80	72	78	

GAS CHROMATOGRAPHY - REAGENT BLANK

TEST : BLANK I.D. : CLIENT : PROJECT # : PROJECT NAME:	BTEX (EPA 8020) 040793 EL PASO NATURAI (NONE) CONOCO PIT	GAS CO.		ATI I.D. DATE EXTRACTED DATE ANALYZED DILUTION FACTOR		304318 04/07/93 04/08/93 1
PARAMETER		UNITS		-	_	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		MG/KG MG/KG MG/KG MG/KG	<0.025 <0.025 <0.025 <0.025 <0.025			
BROMOFLUOROBE	NZENE (%)		75			

person Sullation

GAS CHROMATOGRAPHY - REAGENT BLANK

TEST : BLANK I.D. : CLIENT : PROJECT # : PROJECT NAME:	BTEX (EPA 8020) 040893 EL PASO NATURAL GAS C (NONE) CONOCO PIT	0.	ATI I.D. : DATE EXTRACTED : DATE ANALYZED : DILUTION FACTOR:	304318 04/08/93 04/09/93 1
PARAMETER	UNITS			
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	MG/KG MG/KG MG/KG MG/KG	<0.025 <0.025 <0.025 <0.025 <0.025		

BROMOFLUOROBENZENE (%)

88

Acceptoble

GAS CHROMATOGRAPHY - QUALITY CONTROL

TEST MSMSD # CLIENT PROJECT # PROJECT NAME	•	BTEX (ER 30431813 EL PASO (NONE) CONOCO F	PA 8020) L NATURAL GAS PIT	; co.	A D D S R U	TI I.D ATE EXT ATE AND AMPLE 1 EF. I.I ŅITS	. : TRACTED: ALYZED : MATRIX : D. :	304318 04/07/9 04/08/9 NON-AQ 304318 MG/KG	93 93 11
PARAMETERS			SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD
BENZENE TOLUENE ETHYL BENZEN TOTAL XYLENE	ES		<0.025 <0.025 <0.025 <0.025 <0.025	1.0 1.0 1.0 3.0	0.76 0.78 0.80 2.4	76 78 80 80	0.78 0.80 0.82 2.5	78 80 82 83	3 3 2 4

Accretable 4/19/63

(Spike Sample Result - Sample Result)
% Recovery = ----- X 100
Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = ------ X 100 Average Result

GAS CHROMATOGRAPHY - QUALITY CONTROL

TEST MSMSD # CLIENT PROJECT # PROJECT NAME	: BTEX (E : 3043190 : EL PASO : (NONE) : CONOCO	PA 8020) 5 NATURAL GAS PIT	; co.	A D S R U	TI I.D ATE EX ATE AN AMPLE I EF. I.I NITS	. : FRACTED: ALYZED : MATRIX : D. :	304318 04/08/9 04/10/9 NON-AQ 3043190 MG/KG	93 93 05
PARAMETERS		SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD
BENZENE TOLUENE ETHYL BENZENI TOTAL XYLENE	E 5	0.045 0.055 <0.025 0.044	1.0 1.0 1.0 3.0	0.78 0.80 0.78 2.4	74 74 78 79	0.76 0.78 0.78 2.4	72 72 78 79	3 3 0 0

vicerstable willala

(Spike Sample Result - Sample Result) % Recovery = ------ X 100 Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = ------ X 100 Average Result

COLTECHNOLOGIES, Inc., Albuquerque, NM UN CUSIUUY AILLABI.D. Phoenix - Seattle - Pensacola - FL. Collins - Portland - Albuquerque DATE: OH-05-09-AGE / OF-20 Phoenix - Seattle - Pensacola - FL. Collins - Portland - Albuquerque DATE: OH-05-09-AGE / OF-20	MANAGER: JCHN LAMIBUN	 MUMBER OF CONTRINERS MARX <	1399 http://www.digiter.com/all/14/11/14/14/14/14/14/14/14/14/14/14/14/	40C 04.01-02 50/11 CF 03 X X X X X X X X X X X X X X X X X X	0409 0401-93 11-50 5011 33 X X X	0411 by:-0-99 1156 Fruct on x x	0 412 (412) (412) 1424 501- 05 X X X X X X X X X X X X X X X X X X	0413 04-0-07 14255 SOIL 06 X X 1 1 1 1 1 1 1	0.415 C44.43 1429 Sole- 07 X X 1 1	3416 64-61-931430 501 L 68 X X X X X X X X X X X X X X X X X X	0417 CHAR 1432 Solution 1 X 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OJECT INFORMATION SAMPLE RECEIPT SAMPLED & RELINQUISHED BY: 1. RELINQUISHED BY: 2. RELINQUISHED BY: 3.	NO. CONTAINERS Signadure/ Dr. Signadure: Time: Signature: Time: Signature: Time: Time:	COLOCA 11-1 CUSTODY SEALS (YLN INA Printed Name) Date: C4-05-03 Printed Name: Date: Printed Name: Date: Date: Date:	RECEIVED COLD Y Company: Phone: Company: Compa	OR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS RECEIVED BY: 1. RECEIVED BY: 2. RECEIVED BY: (LAB) 3.	4tr 🗆 48hr 🛙 72hr 🗖 1 WEEK (NORMAL) 🛛 2 WEEK Signature: Time: Signature: Signature: Time: Signature: Signature: Time: Signa	Printed Name: Date: Date: Date: Date: Vame: Date: Vame: Date: V/	TITODA // AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Andlytical Techno San Diego - Phoenix - Seattle -	PROJ. MANAGER: J	COMPANY: PO ADDRESS: FAI PHONE: 505- FAX: 505- BILL TO: 505- COMPANY: 505- ADDRESS: ADDRESS:	N30399	N30466	N30409	N30411	N30 412	N20413	N30415	N30 416	N30417	PROJECT INFORMAT	PROJ. NO.:	PROJ. NAME: CUTIO CO	SHIPPED VIA:	PRIOR AUTHORIZATIO	(RUSH) 24hr 14hr 17h Comments:	·	-HAT WOUL

						ભં		e Liter		Æ
	RCRA Metals by TCLP (1311)								u de	MIC
1.20	RCRA Metals by Total Digestion		ë	ite:		(RIGI
	The 13 Priority Pollutant Metals	BV:	≓	Ő		AB		-	Sec.	y.
$\mathbf{\Sigma}$						J): λε	- Č		Ĩ	id •
				.e		ΕD			уr:	IV-
Í	Secondary Standard - Federal		:en	1 Nai	any:	CEIV	5-6		W	anary
Q	SDWA Primary Standards - Federal	H	ignat	rinter	dmo	H				ite, C
C /	Brosina - sbrabnait 2 yrabnood AWG2		S	-	0		\mathfrak{O}	q		₩.
	Brosha - sbisbristi Zynsmirfi AWGZ	~				2				0L
9	<u>5</u>									RIBU
AB		_1		ä						DIS
	C (0+20/-20) C// 00 20/ 82/ 0 0//8/04		<u>i</u>	Dat		•	Ĕ	Dat		2
A.						÷				4-377
				iej i		:0 B		ë		15) 34
			ire:	Nan	Śu	EIVE	e l	Nan	È	19 (S(
			gnatt	inted	ompa	REC	du	inted	educ	nerqı
<u>o</u>			ŝ	<u>a</u>	<u>ت</u>		3	2	3	Atbuq
5 N	Pine 2.202 (1.202/1.202) estitistical and a seguration of the seguration of the seguration of the second se			5				ł		47 •
D. Ho	Aromatic Hydrocarbons (602/8020)	- 6	22	3				ł		24 04
	Chlorinsted Hydrocarbons (601/8010)		2	उँ	:: 16:	•	.			8 9 9
H C		- ia	ے ا	Date N	Phor			Date		nd (5
ۍ <u>_</u>		E LIN	1691	N						Portta
NIN Delt		8 1		P.B		BY				- 10
	Diese(/@asoline/BTXE/MTBE (MOD 8015/8020)		ie ie	Nam 72	λ.	IVE	ë	Nam	≽	74-10
B	lesei(D/ss5) (2s2)(D/WOD 8012)	AMF	Cell		тра	ECE	natu	petu	mpar	04) 4
	Petroieum Hydrocarbons (418.1)		Si C	22	రి	ie i	ธิ	E	<u>8</u>	ola (9
enbu M				¥			Ш			ensac
Z en bi			6	Z						5 e P
que Albu		EP	ΞĽ	∄[∕	\mathbf{M}	CIS C	₹			55
uer Iner		REC	5	-1 0		BLO	₹		2	e) 22(
lbuc orta		ш. Б	INER	SEAL	S	H P H	B		2	e (20
A 4		SAM	NIN		Ē	เราะ	٤		1	Seatt
Olitins C. J			×.	CEIV CEIV	S	КO			j,	°,
تى ك			2 N	히별	Ē	EDF			1	4
eS a						UIR I	Ξ.		Q	2) 49
						REC	<u> </u>		ଧା	ix (60
		Z		H		S N N			4	hoen
		ATIC	Ĺ	~					Ū,	
Ch Beat		ORIN		0		ZE	-		c,	8-91
Š. s		INF		100		Ë	§		ğ	9) 45
		ECT		Ē.		A A	<u>_</u>		51	io (61
ŬÉ		ß		ان	Ϋ́		154 174		4	Dieg
ار ار			Ň	NAN O	ED <	ا الخ ^ي	J L		Ś	s: San
9			ğ	P N N	HIPP				-	Ael I
				<u>a a</u>	ι ν Ι		=0			۲۱ ۱۲
\prec	MPLETELY. SHADED AREAS ARE FOR LAB USE ONLY.	и со	IMA	OT S	SIHT	רר	E FI	ISAE	ЫЦ	
~~~										

i

. . . . . .



2709-D Pan American Freeway, NE Albuquerque, NM 87107 Phone (505) 344-3777 FAX (505) 344-4413

ATI I.D. 304372

April 22, 1993

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: CONOCO-EPNG PIT

Attention: John Lambdin

On 04/15/93, Analytical Technologies, Inc. received a request to analyze a non-aqueous sample. The sample was analyzed with EPA methodology or equivalent methods. The results of this analysis and the quality control data, which follow each set of analyses, are enclosed.

EPA 8015, Modified analysis was performed by ATI, Phoenix.

Sample N30388 was received at ATI past EPA holding time for Method 8015, Modified.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

Letitia Krakowski Assistant Project Manager

EP:td Enclosure



Elizabeth Proffitt Laboratory Manager

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141



•

LIENT		:	EL PASO	NATURAL	GAS	CO.		DATE	RECEIVED	:	04/15/93
ROJECT	#	:	(NONE)		-						
PROJECT	NAME	:	CONOCÓ					REPOF	RT DATE	:	04/22/93
				TA .	I I.I	). :	304372				

ATI #	CLIENT	DESCRIPTION	MATRIX	DATE COLLECTED
01	N30388	Sample Bint	#18 SOIL	04/01/93



====

----- TOTALS -----

MATRIX # SAMPLES -----SOIL 1

___________

### ATI STANDARD DISPOSAL PRACTICE

#### 

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact or sample control department before the scheduled disposal date.



## GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 30437201

## TEST : FUEL HYDROCARBONS (MOD. EPA 8015, BLS-191)

CLIENT : EL PASO NATURAL GAS CO. PROJECT # : (NONE) PROJECT NAME : CONOCO CLIENT I.D. : N30388 SAMPLE MATRIX : SOIL	DATE SAMPLED : 04/01/93 DATE RECEIVED : 04/15/93 DATE EXTRACTED : 04/15/93 DATE ANALYZED : 04/16/93 UNITS : MG/KG DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS, C6-C10 FUEL HYDROCARBONS, C10-C22(BLS-191) FUEL HYDROCARBONS, C22-C36 FUEL HYDROCARBONS (CALCULATED SUM)	<5 20 27 47
SURROGATE PERCENT RECOVERIES	

O-TERPHENYL (%)

99



## GAS CHROMATOGRAPHY - RESULTS

## REAGENT BLANK

TEST : FUEL HYDROCARBONS (MOD. EPA 8015, BLS-19 CLIENT : EL PASO NATURAL GAS CO. PROJECT # : (NONE) PROJECT NAME : CONOCO : CLIENT I.D. : REAGENT BLANK	ATI I.D. : 304372 DATE EXTRACTED : 04/15/93 DATE ANALYZED : 04/16/93 UNITS : MG/KG DILUTION FACTOR : N/A
COMPOUNDS	RESULTS
FUEL HYDROCARBONS, C6-C10 FUEL HYDROCARBONS, C10-C22(BLS-191) FUEL HYDROCARBONS, C22-C36 FUEL HYDROCARBONS (CALCULATED SUM)	<5 <5 <5 <5
SURROGATE PERCENT RECOVERIES	

O-TERPHENYL (%)

81

Acceptablu F 4/27/63



QUALITY	ATT T.D.	•	304372		
TEST : FUEL HYDROCARBONS (MOD. EPA	8015,	BLS-191	)	•	504572
CLIENT : EL PASO NATURAL GAS PROJECT # : (NONE) PROJECT NAME : CONOCO REF I.D. : 30437201	со.		DATE ANALYZED SAMPLE MATRIX UNITS	:	04/17/93 SOIL MG/KG
COMPOUNDS	SAMPLE RESULT	CONC. SPIKED	DUP. SPIKED % SPIK SAMPLE REC.SAMP	ED LE	DUP. % REC. RPD
FUEL HYDROCARBONS (C10-C22)	20	51	83 124 76		110 9

Acceptathe \$1/27/47

% Recovery = (Spike Sample Result - Sample Result) ------ X 100 Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result ------ X 100 Average of Spiked Sample







			соитаниенся	7	-								ಲ್				ei	N	2.5		]
÷			(1161) 9JOT vd alaiem AROR															16			NATOR
	'		RCRA Metals by Total Digestion											і.	ale:			3D		5	
~		$\sum_{i=1}^{n}$	The 13 Priority Pollutant Metals			ļ							JΒY	=	0		LAB	S			
	M					ļ							SHEC				BY:(			al Te	a e
$\sim$	7					<b> </b>							lino		:eme:		VED			No.	. N
			Erederal standard AWDS										ELIN	ture:	N N	Jany.	CEI		d Ne	<u>ع</u>	- unit
N	)		Instant of Bolimo (Bolicoco Arres			_							æ	Signe	Printe	E S	В	A.	jų.	4 <b>6</b>	4
(V	)		BIOSIN - SUBDIEDE (BIIIIT ANGE				-									<u> </u>					Ň
													2								<b>DE</b>
		EST		<b> </b>																	TRIR
۹ ۲		ß	Polyndear Aromatics (610/8310)											:eu	ie:			je	ë		S
	1. T. S. S.	H	Volatile Organics GC/MS (624/8240)	$\vdash$				_					BΥ:	Ē	Da			4	Dai		F
<b>∢</b> ⊗	44. 	SIS	Base/Neutral/Acid Compounds GC/MS (625/8270)				┝╼╍╁						HED				3Y:				14.37
		ALY	Hethiades (615/8150)										SING		Ше:		ED E		Ë		0513-
<u>~</u> ~	4	AN.	Pesticides/PCB (608/8080)	-+								$\neg$	ILING	ture:	d Na	any:	CEIV	Iure:	N P	Š	(5 1
3	E I												BH	ignat	rinte	Qmo	ΒE	ignat	rinter	duo	auera
2	Ĭ																-	<del>,</del>	<u></u>	5	Abu
2			SDVVA Volaties (502.1/502.1), 502.2 Reg. & Unreg.										Υ:	<u> </u>	6	44					147
2	AGE		Arornatic Hydrocarbons (602/8020)										:D 8	23	<u> </u>	12				1	684.0
L			Chlorinated Hydrocarbons (601/8010)										ISH		ie 7	ië 🖓		igi l	ë		503
5	13					<u> </u>				$\square$			NOL	ĒĴ	Da	đζ		<b>ب</b>	Da		tand
2								$\neg$					REL	1	117	5	۲:	ł			• Por
Ī		/	BIXE/WIBE (8050)				_	-					:D &	Ţ	те: Йù	2 2	<b>B</b> 0		Ë	ł	10
H	ATE:												VPLE	Inte	d Na	N C N	EIVE	ture:	d Na	Suny	474
3	õ		Регоlеит Нуdrocarbons (418.1)	$\hat{}$						-			SAI	ST.	Printe [210	Com Com Com	REC	Signa	Printe	Comp	<b>la</b> (904)
M/	enbrer		7:/												V NV			VEEK			Pensacc
Je,	hudu			<u>_</u>	. Y K. 						<u> </u>		рТ	4	<u>ED</u>	ħ	S		0	2	88
erqu	I V		22 G	1									ECE	<u></u>		9793 dr. 42	ЭЩ,	3	ž	7	22-6
ոեո	lland			いい									E E E	E E	ACT ALS	9	0 2 2	¥)	s'	a	206)
Alb	Рол							$\uparrow$		-+			MPI	N	Z S S	X Q	HSI	2	S)	۱.	) otta
	ins -			2					1				S	8	8	ENE.	R R		1	J	\$ •
ŭ	S S	Ÿ.	ZOT C A	<u>.</u>										2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	REC	6.0		là	- /1	8
S	Ē	5.1		. 4.											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		H	<u>۳</u>	5	4	1496
Jie	8 8	Ľ,		귀											늰		Ĕ	¥	ā	न्द्री	(602
ŏ	ensa	_											z	·			S I		3	T	denb
0L	ă	3											<b>4</b> 110		NC NC		ģ	ž	1	ŧ	ta • -
ļŲ	attle	ア											RM/	Ň	Ì		IZA		9	71	-9141
ec.	S S	E		X									INFC		10		Ŷ	출 	1		) 458
	Gui	MAC		35									ECT		ğ		<b>P</b>		59	र्षे	o (615
		¥	SS: :: :: SS: SS: SS: SS: SS: SS: SS: S	30									RQ		<u>.</u>		o E		52	눼	Dieg
١٧	66		MPA DNE C: DRE DRE	2							Ì		α.	 N	NAM Signature	N Q	α.		ر <b>۔</b> (ک	Jh	r San
NDC -		ğ	ADI BIL ADI ADI											Ъ.	o ∑ S	HIPPI		HUSH Inno	30/	Ĺ	(a)
<b>▼</b> (	κί Γ	<u>4</u>														ŝ					۲۷ ۱۷
	¥		YINO BOU BAL ROF BRA SABP	₹¥ (	ED	٩A	HS	.Y.	13.	LET	MPI	100	N	MA	S FO	SIHT	רר	E El	SA3	ЪГ	



2709-D Pan American Freeway, NE Albuquerque, NM 87107 Phone (505) 344-3777 FAX (505) 344-4413

ATI I.D. 303372

April 7, 1993

El Paso Natural Gas Co. P.O. Box 4990 Farmington, NM 87499

Project Name/Number: CONOCO/EPNG PIT

Attention: John Lambdin

On 03/17/93, Analytical Technologies, Inc. received a request to analyze soil and aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

PCB's, PNA's, Metals, and General Chemistry analyses were performed by ATI, Phoenix.

By Method 8015, Modified, low surrogate recovery for sample N30320 was confirmed by re-extraction and re-analysis.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

La Kialcousta

Letitia Krakowski Assistant Project Manager

EP:td Enclosure



Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

ligbeth
CLIENT: EL PASO NATURAL GAS COMPANYDATE RECEIVED: 03/17/93PROJECT #: (NONE)PROJECT NAME:CONOCO/EPNG PITREPORT DATE: 04/07/93

#### ATI I.D.: 303372

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	N30313	SOIL	03/15/93
02	N30314	SOIL	03/15/93
03	N30315	SOIL	03/15/93
04	N30316	SOIL	03/15/93
05	N30317	SOIL	03/15/93
06	N30318	SOIL	03/15/93
07	N30319	SOIL	03/15/93
08	N30320	SOIL	03/15/93
09	N30321	SOIL	03/15/93
10	N30322	SOIL	03/15/93
11	N30324	AQUEOUS	03/15/93



----TOTALS-----

MATRIX # SAMPLES SOIL 10 AQUEOUS 1

#### ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.



### GENERAL CHEMISTRY RESULTS

ATI I.D. : 303372

CLIENT : EL PASO NATUR PROJECT # : (NONE) PROJECT NAME : CONOCO/EPNG PI	AL GAS CO IT	D.	DATE RECEIVED REPORT DATE	:	03/17/93 04/07/93
PARAMETER	UNITS	11			
CARBONATE (CACO3) BICARBONATE (CACO3) HYDROXIDE (CACO3) TOTAL ALKALINITY (AS CACO3) CHLORIDE (EPA 325.2) CONDUCTIVITY, (UMHOS/CM) PH (EPA 150.1) SULFATE (EPA 375.2) T. DISSOLVED SOLIDS (160.1)	MG/L MG/L MG/L MG/L MG/L UNITS MG/L MG/L	<1 546 <1 546 34 3800 7.4 2300 3700			

:



### GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : EL PASO NATURAL GAS CO. PROJECT # : (NONE) PROJECT NAME : CONOCO/EPNG PIT

ATI I.D. : 303372

			SAMPLE	DUP.		SPIKED	SPIKE	 *
PARAMETER	UNITS	ATI I.D.	RESULT	RESULT:	RPD	SAMPLE	CONC	REC
CARBONATE	MG/L	30336401	<1	<1	NA	NA	NA	NA
BICARBONATE	MG/L		229	229	0	NA	NA	NA
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	NA
TOTAL ALKALINITY	MG/L		229	229	0	NA	NA	NA
CHLORIDE	MG/L	30336201	16	16	0	36	20	100
CONDUCTIVITY (UMHOS/CM)		30337211	3800	3870	2	NA	NA	NA
PH	UNITS	30336401	8.0	7.8	3	NA	NA	NA
SULFATE	MG/L ·	30336203	65	65	0	130	65	100
TOTAL DISSOLVED SOLIDS	MG/L	30336401	<b>97</b> 0	970	0	NA	NA	NA

Ariepteble

% Recovery = (Spike Sample Result - Sample Result) ______ X 100 Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) ______ X 100 Average Result



#### METALS RESULTS

: EL PASO NATURAL GAS CO. DATE RECEIVED : 03/17/93 CLIENT PROJECT # : (NONE) PROJECT NAME : CONOCO/EPNG PIT **REPORT DATE : 04/07/93** ______ PARAMETER UNITS 11 _____ _____ ----SILVER (EPA 200.7/6010) MG/L <0.010 ARSENIC (EPA 206.2/7060) MG/L <0.005 0.053 BARIUM (EPA 200.7/6010) MG/L CALCIUM (EPA 200.7/6010) MG/L 564 CADMIUM (EPA 213.2/7131) CHROMIUM (EPA 200.7/6010) MG/L <0.0005 MG/L <0.010 MERCURY (EPA 245.1/7470) . MG/L <0.0002 POTASSIUM (EPA 200.7/6010) MG/L <1.0 MAGNESIUM (EPA 200.7/6010) MG/L 54.0 SODIUM (EPA 200.7/6010) MG/L 439 LEAD (EPA 239.2/7421) MG/L <0.002 SELENIUM (EPA 270.2/7740) MG/L <0.005

ATI I.D. : 303372

1



### METALS RESULTS

ATI I.D. : 303372

CLIENT : EL PASO NATURA PROJECT # : (NONE) PROJECT NAME : CONOCO/EPNG PI	AL GAS CO T		DATE RECEIVED REPORT DATE	:	03/17/93 04/07/93
PARAMETER	UNITS	10			
SILVER (TCLP 1311/6010) ARSENIC (TCLP 1311/6010) BARIUM (TCLP 1311/6010) CADMIUM (TCLP 1311/6010) CHROMIUM (TCLP 1311/6010) MERCURY (TCLP 1311/7470) LEAD (TCLP 1311/6010) SELENIUM (TCLP 1311/6010)	MG/L MG/L MG/L MG/L MG/L MG/L MG/L	<0.010 <0.1 0.229 <0.005 <0.010 <0.0002 <0.10 <0.1			



#### METALS - QUALITY CONTROL

CLIENT : EL PASO NATURAL GAS CO. PROJECT # : (NONE) PROJECT NAME : CONOCO/EPNG PIT

ATI I.D. : 303372

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT R	SPIKED PD SAMPLE	SPIKE CONC	۹ REC
SILVER	MG/L	30337501	<0.010	<0.010	NA 0.087	0.100	87
SILVER (IN TCLP)	MG/L	30337903	<0.010	<0.010	NA 0.910	1.00	91
ARSENIC	MG/L	30378301	<0.005	<0.005 1	NA 0.050	0.050	100
ARSENIC (IN TCLP)	MG/L	30337903	<0.1	<0.1 1	NA 1.0	1.0	100
BARIUM	MG/L	30337501	0.026	0.024	8 0.112	0.100	86
BARIUM (IN TCLP)	MG/L	30337903	0.668	0.686	3 1.63	1.00	96
CALCIUM	MG/L	30336401	159	158 0.	.6 245	100	86
CADMIUM	MG/L	30337401	<0.0025	<0.0025 M	NA MSA	CC=	.999
CADMIUM (IN TCLP)	MG/L	30337903	<0.005	<0.005 1	NA 0.922	1.00	92
CHROMIUM	MG/L	30379205	<0.010	<0.010 N	NA 0.900	1.00	90
CHROMIUM (IN TCLP)	MG/L	30337903	<0.010	<0.010 N	NA 0.879	1.00	88
MERCURY	MG/L	30374502	<0.0002	<0.0002 N	NA 0.0051	0.0050	102
MERCURY (IN TCLP)	MG/L	30336004	0.0002	<0.0002 N	NA 0.0050	0.0050	96
POTASSIUM	MG/L	30336401	4.4	4.4	0 52.5	50.0	96
MAGNESIUM	MG/L	30336401	47.0	46.5	1 90.4	50.0	87
SODIUM	MG/L	30336401	90.3	91.3	1 136	50.0	91
LEAD	MG/L	30374512	<0.002	<0.002 N	IA 0.030	0.050	60
LEAD (IN TCLP)	MG/L	30337903	<0.10	<0.10 N	IA 0.90	1.00	90
SELENÌUM	MG/L	30337401	<0.005	<0.005 N	NA 0.047	0.050	94
SELENIUM (IN TCLP)	MG/L	30337903	<0.1	<0.1 N	IA 1.1	1.0	110



% Recovery = (Spike Sample Result - Sample Result)
______ X 100
Spike Concentration
RPD (Relative Percent Difference) = (Sample Result - Duplicate Result)
______ X 100
Average Result



### GAS CHROMATOGRAPHY - RESULTS

FEST CLIENT PROJECT PROJECT	: AROMATIC HYN : EL PASO NATU # : (NONE) NAME: CONOCO/EPNG	DROCARBONS ( JRAL GAS COM PIT	EPA 602) Pany	ATI I.D.:	303372	
SAMPLE I.D. #	CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
11	N30324	AQUEOUS	03/15/93	NA	03/19/93	10
PARAMETI	ER	UNITS	11			
BENZENE TOLUENE CHLOROBI 1,2-DICH 1,3-DICH 1,4-DICH ETELBEN TOTAL XY	ENZENE HLOROBENZENE HLOROBENZENE HLOROBENZENE VZENE VLENES	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	35 68 <5 <5 <5 5 15 89			
BROMOFLU	JOROBENZENE (%)		102			



#### GAS CHROMATOGRAPHY - REAGENT BLANK

IEST: AROMATBLANK I.D.: 031893CLIENT: EL PASPROJECT #: (NONE)PROJECT NAME:CONOCO	IC HYDROCARBONS (H O NATURAL GAS COMM /EPNG PIT	EPA 602) Pany	ATI I.D. : DATE EXTRACTED : DATE ANALYZED : DILUTION FACTOR:	303372 NA 03/18/93 1
PARAMETER	UNITS			
BENZENE TOLUENE CHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE ETHYLBENZENE TOTAL XYLENES	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		
BROMOFLUOROBENZENE (%)		105		

Hacistable Girlas

#### GAS CHROMATOGRAPHY - QUALITY CONTROL

PEST MSMSD # CLIENT PROJECT # PROJECT NAME	AROMATIC H 031893 EL PASO NA (NONE) CONOCO/EPN	YDROCARBON TURAL GAS G PIT	NS (EPA ( COMPANY	602)	ATI I.D. DATE EXT DATE ANA SAMPLE M REF. I.D UNITS	: RACTED: LYZED : ATRIX : . : :	303372 NA 03/18/9 AQUEOUS 031893 MG/KG	3
PARAMETERS		SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	) % REC	DUP SPIKE	DUP % REC	RPD
BENZENE FOLUENE ETHYL BENZENI FOTAL XYLENES	5	<0.5 <0.5 <0.5 <0.5 <0.5	10 10 10 30	11 11 11 32	110 110 110 107	11 11 11 33	110 110 110 110	0 0 0 3

Hecklahr. X y/12/43

(Spike Sample Result - Sample Result) % Recovery = ---- X 100 _____ -----Spike Concentration

RPD (Relative Percent Difference = (Sample Result - Duplicate Result) Average Result

#### GAS THROMATOGRAPHY - RESULTS

#### ATI I.D. : 30337211

## TEST : POLYNUCLEAR AROMATICS (EPA METHOD 8310)

CLIENT : EL PASO NATURAL GAS CO. PROJECT # : (NONE) PROJECT NAME : CONOCO/EPNG PIT CLIENT I.D. : N30324 SAMPLE MATRIX : AQUEOUS	DATE SAMPLED : 03/15/93 DATE RECEIVED : 03/17/93 DATE EXTRACTED : 03/18/93 DATE ANALYZED : 03/25/93 UNITS : UG/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE ENZO(B)FLUORANTHENE BENZO(A)PYRENE DIBENZO(a,h)ANTHRACENE BENZO(a,h)ANTHRACENE BENZO(a,h)PRENE DIBENZO(a,h)PRENE INDENO(1,2,3-CD)PYRENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	<pre>&lt;5 D &lt;10 D &lt;5 D 0.42 1.0 D &lt;0.05 1.2 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10</pre>

#### SURROGATE PERCENT RECOVERIES

## 2-CHLOROANTHRACENE (%)

69

D indicates the compound was analyzed at a greater dilution.

### GAS CHROMATOGRAPHY - RESULTS

#### REAGENT BLANK

TEST : POLYNUCLEAR AROMATICS (EPA METHOD 8310)

CLIENT : EL PASO NATURAL GAS CO. PROJECT # : (NONE) PROJECT NAME : CONOCO/EPNG PIT CLIENT I.D. : REAGENT BLANK	ATT 1.D. : 303372 DATE EXTRACTED : 03/18/93 DATE ANALYZED : 03/24/93 UNITS : UG/L DILUTION FACTOR : N/A
COMPOUNDS	RESULTS
NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO(A)ANTHRACENE CHRYSENE BENZO(B)FLUORANTHENE BENZO(A)PYRENE IBENZO(a,h)ANTHRACENE BENZO(a,h)ANTHRACENE SENZO(g,h,i)PERYLENE INDENO(1,2,3-CD)PYRENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	<pre>&lt;0.50 &lt;1.0 &lt;0.50 &lt;0.10 &lt;0.05 &lt;0.05 &lt;0.05 &lt;0.10 &lt;0.20 &lt;0.10 &lt;0.30 &lt;0.30 &lt;0.30</pre>

#### SURROGATE PERCENT RECOVERIES

2-CHLOROANTHRACENE (%)

84





1 1941-1-

STEFFEN ROBERTSON AND KIRSTEN Consulting Engineers and Scientists

RECEIVED

December 22, 1993 SRK Project No. 58201

1.1 201 (153-1

DEC 27 1993

OIL CONSERVATION DIV. SANTA FE

State of New Mexico Oil Conservation Division P.O. Box 2088 Land Office Building Santa Fe, New Mexico 87504-2088

Attention: Mr. Roger Anderson

# **RE:** CONOCO SAN JUAN PLANT, EVAPORATION POND CONSTRUCTION -FINAL DOCUMENTATION

Dear Mr. Anderson:

This transmittal accompanies one copy of the final report entitled, "Conoco San Juan Gas Plant, Evaporation Ponds 1 and 2 Design and Construction." Included in the document are the as-built construction drawings. Please do not hesitate to call if you have any questions.

Sincerely,

STEFFEN ROBERTSON AND KIRSTEN (U.S.), INC.

Rick Frechette Department Head, Engineering Services

/rf

The report "Conoco San Juan Gas Plant, Evaporation Ponds 1 and 2, Design and Construction", and associated drawings have been prepared by Steffen Robertson and Kirsten (U.S.), Inc. (SRK), under the direct supervision of Richard J. Frechette, New Mexico Registered P.E. No. 11961. The associated construction work has been reviewed by same and found to be in compliance with the design drawings and specifications.





# **CONOCO SAN JUAN GAS PLANT EVAPORATION PONDS 1 AND 2 DESIGN AND CONSTRUCTION**

Prepared For:

Conoco, Inc. San Juan Gas Plant 61 Road 4900 P.O. Box 217 Bloomfield, N.M. 87413

Prepared by:

Steffen Robertson and Kirsten (U.S.), Inc. 3232 South Vance Street Lakewood, Colorado 80227 and a state of the second s

. . . . December 1993 SRK Project No. 58201

Conoco San Juan Gas Plant

Design and Construction Report

### 1.0 INTRODUCTION

This report summarizes the design and construction activities performed related to the earthwork construction and liner installation for two evaporation ponds for Conoco Inc. The installation site is located in San Juan County, approximately one mile north of Bloomfield, New Mexico.

The design work was completed in January, 1993 and involved the development of construction specifications for the pond embankments, liner and leak detection system, and spray circulation system. The earthwork was planned to limit the maximum embankment height to less than 10 ft while maintaining a site material balance, i.e., no import of fill materials. The liner and leak detection system was designed to satisfy State criteria for containment, leak detection response, and collection and removal capabilities. Beneath the secondary liner, a venting medium was provided to allow an outlet for potential subsurface vapors that could otherwise pressurize the liner system.

Construction commenced on February 4, 1993 and was completed on May 14, 1993. The construction activities consisted of:

- stripping the topsoil and vegetation;
- excavation of two adjacent pond areas;
- fill placement in the construction of pond berms where specified;
- placement and seaming of 12-oz./yd² non-woven geotextile material within each pond for vapor transmission;
- deployment and seaming of a 30-mil Polyvinyl Chloride (PVC) secondary liner;
- placement of a leak detection system consisting of geosynthetic drain net between the primary and secondary liners to route potential leakage to a collection sump in the bottom of each pond;
- placement and seaming of a 36-mil Chlorosulfonated Polyethylene (CSPE) primary liner (Hypalon); and

**Design and Construction Report** 

completed subsequently in order to quantify the anticipated solution losses over time and under and various seasonal extreme climate conditions.

Prior to completion of pond construction, Conoco disposed of its wastewater off-site via an independent party. Through the use of the new ponds, the quantities required for off-site disposal will be reduced. Therefore, the apparent inability of the new ponds to maintain a site solution balance is not only an anticipated scenario, but it is not critical in terms of the containment requirement. Excess solution disposal will continue to be carried out at an off-site facility as necessary. Operation of the ponds will be maintained with sufficient freeboard to achieve complete containment during adverse weather conditions. In this manner, a minimum of 1.5 ft of operational freeboard is anticipated throughout the life of the ponds.

For the purposes of internal projections, a series of solution balance calculations has been completed to assess the rate of solution loss and possible time frame for filling the ponds to the freeboard limits. Based on various operating and climatic assumptions, the ponds will accumulate solution at a rate somewhere between one and three million gallons per year. At an allowable combined storage capacity of approximately 3.5 million gallons, the ponds will require supplemental disposal measures within approximately 14 months to 3.5 years. Some of the calculations and climatology data are included in Appendix A.

### 2.3 System Component Design

### 2.3.1 General

The design of the specific components involved in the pond construction is illustrated in the as-built construction drawings and described in the technical specifications, each of which is attached to this report. However, a brief summary of the system components is provided in this Section to give a concise overview of the project.

#### 2.3.2 Pond Subgrade and Venting Medium

After excavation of the ponds and construction of the berms, the design specifications require the finished subgrade to be compact, smooth and free from particles in excess of  $\frac{3}{4}$  inch. The venting medium installed thereupon is specified as a non-woven, 12 oz/sq yd needle-punched polypropylene geotextile. This fabric has the capability to transmit vapors which might originate beneath the pond to the ground surface and through the liners at the pond crest. A series of liner penetrations, spaced

SRK Project No. 58201

Design and Construction Report

at approximately 25 ft intervals, is provided near the inside crest of the ponds above the freeboard level to allow transmission of vapors to the atmosphere.

#### 2.3.3 Liner and Leak Detection Systems

The liner design includes a 40 mil PVC secondary liner and a 36 mil Hypalon liner. The PVC liner is installed directly over the venting geotextile in factory seamed panels. A minimal amount of field seaming is required. The Hypalon liner is installed after the leak detection system is deployed over the PVC liner. Similar to the PVC liner, the Hypalon liner requires minimal field seaming.

The leak detection system consists of a polyethylene strand geonet which covers the entire pond surface between the liners. The geonet follows the pond floor gradient to the sump area in the lowest pond corner. At the sump, several layers of geonet are placed to fill the sump area, a one ft deep basin between the pond liners. A monitor pipe is installed into the sump and runs along the pond slope to the crest where it protrudes from the liners. The monitor pipe provides the means to detect primary liner leakage and facilitates the removal of accumulated leakage via a submersible pump which can be lowered into the monitor pipe to the bottom of the sump.

#### 2.3.4 Solution Circulating System

Within the ponds, a circulation system is installed to allow the solution to be sprayed within the lined area to facilitate enhanced evaporation losses. The system consists of a grid of HDPE pipes fitted with spray nozzles and supported by floats to allow the system flexibility and mobility. The system is driven by a stainless steel submersible pump located in a pump well above the leak detection sump. The pumps, one in each pond, are sized to circulate over 100 gpm on a continuous basis through the spray system in each pond. They may also be used to transfer solution from one pond to the other. The floating spray systems are mobile, thus allowing the flexibility to move within the pond to avoid solution drift due to unfavorable winds. By adjusting the locations of the spray grid and the speed of the pump, Conoco can maximize the usefulness of the system during changing wind and pond storage level conditions.

A control panel allows the pre-setting of desired pumping rates at either pond or the interfacing of anemometer controlled pumping rates based on wind speeds and drifting potential. Use of the spray system will be governed largely by experimental data obtained during ongoing facility operation.



Conoco San Juan Gas Plant

Design and Construction Report

# 3.0 CONSTRUCTION ACTIVITIES

#### 3.1 General

In addition to completing the design, SRK was contracted to provide construction quality assurance services. The pond construction was completed under Discharge Plan GW-35 submitted to the State Oil Conservation Division by Conoco. Pond construction details are shown on the Drawings found within Appendix B of this report.

Periodic site inspections were performed by the Design Engineer. Site inspections were normally one day in duration, with site inspection observations and recommendations noted in the field inspection reports submitted to Conoco's project representative.

In addition to the periodic site inspections, SRK's onsite representative prepared Daily Construction Activity Reports. A total of 73 daily and 14 weekly reports were submitted directly to Conoco with copies of the weekly reports sent to the Design Engineer. These reports documented construction activities by the contractors.

# **3.1.1 Site Preparation**

On February 4,1993, the earthwork contractor began site preparation work. After clearing and grubbing were completed, excavation of contaminated foundation soils was performed using a John Deere Motor Grader 770 B-H, a Caterpillar (Cat) D-8 Dozer, a Cat 225 Trackhoe, an I.H. Front End Loader and a John Deere Backhoe. Prior to construction of the ponds, the pre-excavation site contours were re-established by placing imported backfill material. The pond area excavation and remediation are documented in a separate report contained in Appendix C.

### 3.1.2 Embankment Construction

During the excavation and backfill process, CDK placed, moisture conditioned and compacted imported fill material in one foot lifts to replace the contaminated soils removed from the site. The following procedure was employed to construct the pond embankments above the reconstructed ground surface:

• Rock and oversized materials were removed prior to the placement of one foot lifts.



December, 1993

Design and Construction Report

- Fill material was spread uniformly in 12 inch layers over the lift section and moisture conditioned to within plus or minus 2% of optimum moisture by either the use of a water truck, or mixing with the motor grader to allow natural air dry-back.
- A Sakai Vibrating Sheepsfoot Compactor was used to compact the fill material by making 4 to 6 passes over the entire lift, prior to testing by nuclear density method, to meet a minimum of 95 percent of the standard proctor maximum dry density (ASTM D-698) value specified (Appendix D).

### 3.1.3 Subgrade Preparation

Once finish grade elevations were met at the embankment and bottom of the pond, the following procedures were employed to facilitated liner installation:

- After final grading and compaction a smooth drum vibratory compactor was used to produce a smooth surface.
- Final embankment slope grading to 2:1 (H:V) inside and 3:1 outside was performed using a motor grader.
- Laborers hand picked the finished surface, removing small rock and organics, prior to the deployment of the geotextile vapor transmission material.

Laboratory analysis and nuclear density compaction tests were performed by SRK. All test results are presented in Appendix E. Prior to the placement of liner, the soil material surface was inspected by SRK and Palco, and accepted as documented in Appendix F. Final as-built sketches were made from measurements done by SRK's field representative.

#### 3.2 Synthetic Liner

On April 29,1993, Palco mobilized to the job site to commence synthetic liner installation operations. Quality Control reports were submitted by Palco for each roll and pallet of liner material delivered, to document that material met the job specifications. Reports received are included as Appendix G.

A trench, a minimum of 2-ft deep, was excavated at the crest of the pond embankment for anchoring the liner system.

December, 1993

Conoco San Juan Gas Plant

**Design and Construction Report** 

### 3.2.1 Synthetic Material Installation Activities

The installation of the geotextile material consisted of deploying the material north to south across the surface of the ponds, from anchor trench to anchor trench, and securing the end of the material with sandbags. Adjacent panels were seamed together either by heat seaming with a Lyster heater (Pond No. 2) or sewing the panels with thread (Pond No. 1), thus forming one continuous geotextile vapor transmission layer.

The installation of the PVC secondary liner consisted of deploying the material from north to south across the surface of the underlying geotextile. Adjacent liner panels were bonded together, thus forming one continuous liner layer. The glued seams were tested by the air lance method according to specification. After each panel was deployed, sandbags were placed for temporary ballast over the liner in the anchor trench, and at each seam until seam closure was completed.

The installation of the leak detection system geonet consisted of deploying the material, generally from north to south, across the surface of the underlying PVC liner. Adjacent geonet panels were joined by the use of snap ties on two foot centers after allowing adequate overlap of the preceding panel. After each panel was deployed, sandbags were used for ballast on the geonet at the anchor trenches.

The installation of the Hypalon primary liner consisted of deploying the factory seamed panels from north to south across the surface of the underlying geonet. Liner panels were cleaned and glued to the adjacent panel, thus forming one continuous liner layer. The glued and cured seams were tested for leaks by the use of the air lance method according to specification. Any leaks detected were patched and retested until air tight. After each panel was deployed sandbags were placed on the liner for temporary ballast at the anchor trench, and at each seam until seam closure was completed.

Destructive samples of both PVC and Hypalon liner were taken for approximately every 500 linear feet of field seam. The laboratory results of the destructive seam testing are included in Appendix H.

The Quantities of primary and secondary liners were calculated after field measurements were taken. The calculations for each panel area are included in Appendix I. The cumulative measured surface area for both ponds was approximately 94,000 sq. ft. The final as-built panel diagrams are included in the construction drawings in Appendix B. **Design and Construction Report** 

# 3.2.2 Quality Assurance/ Quality Control (QC/QA)

Quality Control (QC) activities performed during installation by Palco personnel consisted of:

- inspecting the liner panel after deployment;
- identifying and marking each panel with the defect found;
- the removal and delivery of destructive samples to SRK's field representative; and
- the air lance testing of each seam and patch.

Quality Assurance (QA) activities performed during installation by SRK personnel consisted of:

- inspecting the liner panel after deployment;
- identifying and marking each panel for defects;
- marking of destructive sample locations;
- receipt, shipment and testing of the destructive samples;
- observation of the seaming procedures;
- observation of the testing for watertight integrity;
- observation of repairs and retests;
- rough field as-built sketches;
- measurement of the final accepted in-place panels; and
- all final calculations and as-built drawings.

A series of photographs which summarize the synthetics installation activities is included as Appendix J.

#### 3.2.3 Final Inspection

Upon completion of secondary and primary liner installation in each pond including seaming and repair work, a final visual inspection of each panel, all seams, and all repair work was performed by SRK's field representative.

Palco's certificates of completion of liner installation are contained in Appendix K.



# **APPENDIX A.1**

Geotechnical

APPENDIX A

Design Data



C	<b>)</b>	T     	EST PIT 1	TES PIT 2	т т	EST PIT 3					TEST PIT 8	TEST PIT * 9	TEST PIT 10	TEST PIT 11	TEST PIT 12	TEST PIT 13	•••• - 0
12	2			<u>, 19 14 19 15 14</u>		<u>٩: ٦: ٩: ٩: ٩: ٩: ٩: ٩: ٩: ٩: ٩: ٩: ٩: ٩: ٩:</u>				ه. <u>ج. اخ. ام. م.</u>							– 12
24	4 — ·		6:10:10:10:10						F <u>G</u> 10 10 10 10	: :							24
SE SHON	6 - · 8 - ·			10.10.10.10.10.10.10.10.10.10.10.10.10.1			vc		· · · · <b>· · · ·</b> · · · · · · · · · · ·					· · · · <b>· · · · · · ·</b> · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		···· — 36 ···· — 48
DEPTH -	0 ·	• • • •	aanaa ahaanaa :	<u> 19 15 19 15 19 19</u>		el <u>19 7 9</u>		••••••••••••••••••••••••••••••••••••••						• • • • • • • • •		· • • • • • • • • • •	
7:	2						• • • • • • • •		· · • • • • • • • •					• • • • • • • •	••••	•••••	72
84	4 ·																84
90	6 - I .													PROJECT 5820 DATE	NO. PRE	PARED BY:	

# <u>KEY:</u>



POORLY GRADED SAND (SP)/ HIGHLY WEATHERED SANDSTONE, TAN, FIRM, MOIST WITH COLORED LENSES



SILTY, CLAYEY SAND (SC-SM), OCCASIONAL GRAVEL, TAN, GREY AND MEDIUM BROWN, FIRM GENERALLY SOFTER WITH DEPTH, MOIST (WHITE/SPECKLED IN TP-7)



SILTY, CLAYEY SAND (SC-SM) LIGHT BROWN, TAN AND GREY, SOME COBBLES, OCCASIONAL BOULDERS (SUB-ANGULAR), FIRM, MOIST



FREQUENCY OF COBBLES INCREASES; BOULDERS PRESENT



**RSTEN (U.S.)** Scientists

# FIELD EXPLORATION TEST PIT LOGS

PROJECT: CONOCO - SAN JUAN SRK #58201 LAB NO.: L461.0

SUMMARY OF LABORATOR	AY TESTING RESULTS				
SAMPLE	% PASSING #4 SIEVE	% PASSING #200 SIEVE	MAX. DRY DENSITY (PCF)	<b>OPTIMUM MOISTURE CONTENT (%)</b>	VISUAL DESCRIPTION
TP-1 (3'-4')	80.7	12.8			SILTY, CLAYEY SAND (SC-SM)
TP-1 (5'-6')	100.0	28.1			SILTY, CLAYEY SAND (SC-SM)
TP-1 (6 [°] .7')	100.0	1.3			POORLY GRADED SAND (SP)
TP-2 (COMPOSITE)	86.4	19.2	118.5	11.5	SILTY, CLAYEY SAND (SC-SM)
TP-3 (0'-3.5')	83.0	18.4			SILTY, CLAYEY SAND (SC-SM)
TP-3 (3.5'-6')	86.3	17.1			SILTY, CLAYEY SAND (SC-SM)

SILTY, CLAYEY SAND (SC-SM)

****** 116.4

> 18.2 26.9

**94**.3

TP-4,5,6 (COMPOSITE)

TP-7,8,9 (COMPOSITE)

**80.8** 

11.8

SILTY, CLAYEY SAND (SC-SM)

-----

17.0

100.0 100.0

TP-10,11,12 (COMPOSITE)

TP-7 (4'-6')

TP-7-12 (COMPOSITE)

36.0

SILTY, CLAYEY SAND (SC-SM)

SILTY, CLAYEY SAND (SC-SM)

SILTY, CLAYEY SAND (SC-SM)

11.6

117.3



_____
























CONOCO SAN JUAN GAS PLANT EVAPORATION POND LEAK DETECTION SYSTEM PERFORMANCE COMPARISON

# GEOMETRI A) GEONET

PERMEABILITY	1E-05	m/sec
THICKNES	12	in.
B) SAND BLANKET		
TRANSMISSIVITY	6E-04	sq m/sec
THICKNESS	0.25	in.

# RESPONSE TIME

I. LEAK IN CENTER C	F POND(BE	TWEEN PIPES FO	OR SAND ALT)
I. LOW WATER LEVE	L (1 FT DEE	P)	
A) GEONET			
TRAVEL DISTANCE	100	ft	
GRADIENT	0.01		
TRAVEL, TO SUMP	2.7	hrs	
B) SAND/PIPE (PIPE	@ 20' SPAC	(ING)	
TRAVEL DISTANCE	<b>G -</b> • • • • •		
a) SAND	11	ŧ	
b) PIPE	100	*	
GRADIENT	100	n.	
A) SAND	0.00		
b) PIPE	0.00		
TRAVEL I TO PIPE	1024.5	hre	
TRAVEL + TO SUMP	0.0	hre	
t TOTAL	1024.5	hre	
	1024.0	ING	
I. LEAK IN CENTER O	F POND(BE	TWEEN PIPES FO	R SAND ALT)
II. HIGH WATER LEV	el (8 FT dei	EP)	
A) GEONET			
TRAVEL DISTANCE	100	ft	
GRADIENT	0.08		
TRAVEL, t TO SUMP	0.3	hrs	
B) SAND/PIPE (PIPE	@ 20' SPAC	ING)	
TRAVEL DISTANCE			
a) SAND	11	ft	
b) PIPE	100	ħ	
GRADIENT			
a) SAND	0.73		
b) PIPE	0.01		
TRAVEL TO PIPE	128.1	hra	
TRAVELt TO SUMP	0.0	hrs	
t TOTAL	128.1	hrs	
MUISTURE RETENTIC	74	١	
SHORT TERM			{
In GEORET	60	94	}
INT STORAGE	00	70 m. #/no. *	ł
TOTAL POND	0.01000/		1
TOTALFOND	3,430	Acto	
B) SAND			1
POROSITY	40	%	1
UNIT STORAGE	0.4	cu ft/sq ft	1
TOTAL/POND	130,332	gals	
LONG TEPH			
A) GEONET	MIL		
A GEONET	ITIL.		
B) SAND			1
POROSITY	40	%	ł

23,497 gais

5 % BY WEIGHT

------

HOLDING CAPACITY TOTAL/POND

# APPENDIX A.2

Hydrological

	Record Mntly. Pan Evap Santa Fe	Cak. Santa Fe % Annual	Pan Evap Farmington	Calc Lake Evap - Site
Jan	1.49	2.2	1.53*	1.12
Feb	2.13	3.2	2.22*	1.62
Mar	3.91	5.8	4.03*	2.94
Apr	6.39	9.5	7.33	5.35
May	8.98	13.4	8.37	6.11
Jun	10.75	16.0	10.42	7.61
Jul	9.52	14.2	10.01	7.31
Aug	8.09	12.1	8.89	6.49
Sept	6.97	10.4	6.62	4.83
Oct	4.89	7.3	5.07*	3.70
Nov	2.51	3.7	2.57*	1.88
Dec	1.39	2.1	1.46*	1.07
Annual	67.02	100%	68.52	50.03

# **REGIONAL PAN EVAPORATION & LAKE EVAPORATION ESTIMATE**

Note

•

*

For Santa Fe, lake evaporation @ 74% of pan = 49.6"

Assuming approx. 50" for annual lake evaporation and a pan coeff. of 72% yields 69.44" pan evap. for Santa Fe. Therefore, for the months indicated use the % annual distribution of Santa Fe and 69.44" to estimate monthly pan evap. for Farmington.

# CLIMATOLOGICAL SUMMARY

BLOOMFIELD, NM (# 291063)

1951-80

36° 40' N 107° 58' W

5794 FT.

	r				HPE	PAT _R	E.	Ε,							·····		2	REC	IPITA	TION	. то	TALS	INCHES				
		MEANS		٤	<b>۲</b> ۹	E™ES			٣ε	12 N	MBEA		DEGREE	ZAYS									SNOW		MEAN	יצר י	1957
	. e		*		•				<u>~</u> 3		<u> </u>	N	. •	*	•	ļ					ļ				Ŧ	Ŧ	
	MAX I MUM	DALL Y MINIMUM	HUNTHL T HECOHO	YE AH	DAT	HECORD LOWEST	YE AH	DAY	90 AND ABOVE	JZ ANU BELOH	32 ANU BELOW	0 ANU BELUM	HEALING BASE US	CODI ING BASE 65	MEAN	10110300	MONTHLY	YEAR	GREATEST DALLY	YEAR	DAY	MEAN	MAX I MUM MON I HL. Y	YÉ AR	10 UR MU	50 UR MOI	1 00 0r more
JAN	40	7 17 8	29 31 63	+1 56	12	-20	63	13	0	5	30	2	1107	0	5	2	.07	79	. 4	5 54	20	4 3	18.0	79	21	0	
-53	48	1 23 O	35 61 63	+ 58	21	-8+	151	2	0	1	26	0	823	0	44	1	50	75	. 5	78	1 1 1	2.1	9.5	75	2	5	0
MAR	56	3  28 4	42 4. 19	+1 71	26	5+	1 71	3	0	0	22	0	701	0	66	2	97	79	90	57	01	1.7	6.5	73	2	0	0
700	66	6: 35 5	5' ' 87	+ 62	19	16	80	1	0	0	10	0	417	0	55	ij 1	81	75	1.2	3 75	12	5	4 0	73	2	o	0
MAY	77	0 44 5	60 8 96	+) 51	1 27	22	67	2	1	0	1	0	164	34	41	1	.43	79	. 5	3 78	02	0	0	1	- i	0	0
LUN	88	5 53 5	71 0 104	+ 57	28	34+	79	1	15	0	jo	0	11	191	28	1 T	03	65	9	66	29	0	0	i	11	oj	0
JUL	92.	7 60 '	76.4 103	+ 71	13	48+	79	4	25	0	0	0	0	353	93	n) a	. 74	65	1.3	0 69	25	0	0	ì	Э	0	0
AUG	89	3 58.3	73.8 103	+ 58	Э	44+	68	24	16	0	0	0	0	273	1.27	/ 3	. 01	59	2.1	3 69	23	0	0	!	зį	- 1	0
SEP	82	3 50 6	66 5 97	+ 55	6	30	78	21	4	0	0	0	39	64	e:	a a	. 55	69	1.7	6 69	20	0	0	l	2	0	o
acr	70 (	0 39 3	54 6 88	+ 63	2	20+	70	28	a	0	5	0	326	0	1 16	4	.63	72	1.1	7 60	15	0	0	;	3	1	0
NOV	53	8 27 5	40 7 74	+ 77	4	-5+	76	28	0	,	23	0	729	0	.64	2	. 48	78	1.3	7 79	07	10	6.0	64	2	ol	0
DEC	42.	7 19 8	30.8 67	- 90	٩	-18	51	12	0	4	29	1	1060	0	61	1	. 86	66	7	5 66	07	46	13 5	78	2)	0ì	0
TEAR	. 7		53 01 104		۔۔۔ امر ا		JAN					1 -						100		AUG				JAN			

1951-80

# BOSQUE DEL APACHE, NM (# 291138)

						MPE	RATUR	E_U	Ē								f	REC	IPITAL	ION	. 10	TALS 1	INCHES	1			
		MEANS		İ	ε	XTR	EMES			ME	AN NU	MBER		CEGREE	DAYS	*	*						SNOH				19EP
	*	-	*						Ì	<u>MA</u>	x	<u>– – – r</u>	N	*	*	Ì						_			3¥	ЭНЕ	
	≻ <b>₽</b>	Ϋ́	- -	- GE	r		5 I S	æ		Ωw	23	23	93	NG 65	es NG	z	ES]		r ESI	æ	. }	z	Ξž	æ	Ĩ	Ĩ	୍ଞ
	A P	ALL	1 IZ	CO.	E A	A	0 H	E AI	DAY	80 A	ELC P	EL A	L A	SE AI	к Г	E A	I A I	EAL	AIL	E AI	Å	E AI	H H	ΕA	2	5	ŏ₽
	d M	Ξ	0 L	Ξ.Ξ	-		22			γ «	6.6	5,6	00	H H H	0 Y		89	1	89	^		2	A N D	~	2	20	- 8
JAN	54 4	20 7	37.6	76+	69	8	-19+	62	11	0	0	28	0	849	0	. 25	. 84	70	. 66	78	31	1.3	8.4	78	1	0	0
FE9	60.4	24 2	42 3	79+	63	1	-4	51	1	0	0	23	0	636	0	. 28	93	2 68	. 80	64	03	1.1	8.0	64	l ij	0	0
MAR	674	30.3	48 9	90+	71	28	4	65	4	0	0	19	0	499	0	. 34	1.78	9 58	. 85	68	10	. 4	3.9	58	1	0	0
APR	76 6	37 4	57 0	96+	65	22	17+	80	1	1	0	8	0	251	11	. 28	1 41	53	.90	58	16	. 0	.0	1	1	0	0
MAY	85 1	45 5	653	102+	51	27	21	67	2	9	0	1	0	69	78	. 46	184	58	1.73	58	16	.0	.0		וי	0	0
JUN	94 1	54 2	74 2	106+	73	30	31+	71	2	24	0	0	0	0	276	65	4.05	5 67	1.65	67	18	.0	.0		1	0	0
ししし	95 2	61.3	78 3	107+	57	3	43+	73	24	27	0	0	0	0	412	1.31	3.48	9 62	1.66	66	07	. 0	.0		3	1	0
AUG	92 4	59 3	75 9	105+	72	1	43+	68	24	24	0	0	0	0	338	1 63	4.30	61	1.63	61	12	.0	0	1	4	1	0
se¤	86 8	i 50 9	68 9	1 101+	52	4	34+	53	29	11	0	0	0	17	134	1.32	3.95	5 65	1.90	72	03	. 0	.0	1	3	1	0
001	775	39.1	58 3	94+	53	10	19+	80	29	1	0	6	0	216	8	. 99	5.41	72	1.60	72	13	. 1	4.0	76	2	1	0
NOV	64 3	27 1	45.7	83+	73	14	-10+	76	29	٥	٥	23	0	579	0	. 32	1.84	1 78	.60	78	01	. 6	5.9	76	1	0	0
DEC	54 2	21 0	37 6	78+	58	4	-2+	53	24	0	0	29	0	849	0	. 45	2.05	5 65	1.14	62	01	2.3	19.6	60	. '	0	0
					JUL			JAN,										OCT		SEP				DEC			
	75 7	393	57 5	107	57	3	-19	62	11	97	0	137	0	3965	1257	8.28	5.41	72	1.90	72	03	58	19.6	60	20	4	0

## CARLSBAD (FAA AP), NM (# 291475)

1951-80

32° 20' N 104° 16' W

33° 46' N 106° 54' W

3232 FT.

4520 FT.

	;			<b>.</b>	ĨE	MPE	RATUR	E I	EL.									REC	IPLIA	ION	ťΩ	TALS ()	NCHES	<u>،</u>			
	1—————	MEANS			E	XTR	EMES			٣E	AN NU	HBER		DEGREE	DAYS	<b>.</b>	=	1				ę	NOH		MEAN	NU!	19ER
	æ	*	•	1		Γ				MA	×	н	N	*		]									쏉	쏉	
	DAILY MAXIMUM	DALLY MINIMUM	HON FHE Y	RE CORD HIGHESI	YEAR	DAY	RECORD LOWEST	YEAR	DAY	90 AND ABOVE	32 AND BELOW	32 AND BELOW	0 AND BELOH	HEATING BASE 65	COOL ING BASE 65	MEAN	GREATEST MONTHLY	YEAR	GREATEST DALLY	YEAR	DAY	MEAN	MAX I MUM MON I HL Y	YEAR	10 OR MOI	50 0H M0	1 00 OR MORE
AN	57 1	29 2	43 2	84+	74	17	-18	62	11	0	1	20	0	676	0	. 34	1.6	58	. 93	68	21	1.1	6.0	62	1	0	0
FE9	61.9	32.8	47 4	84+	80	28	-4	51	1	0	0	14	0	493	0	. 35	1.7	73	. 69	56	02	1.8	15,2	: 56	1	0	0
MAR	694	391	1 54 3	3 95+	71	26	11+	71	Э	0	0	8	0	346	15	1.33	1,3	51	. 88	51	28	. 7	4,5	5 77	1	0	0
100	791	48 2	637	101+	65	21	22+	73	9	4	0	1	0	118	79	.40	2.1	77	1.91	77	14	. 1	3.0	9 60	1	0	0
MAY	874	57 0	72.2	2 105+	58	30	34+	70	1	14	0	0	0	8	231	. 93	3.4	5 59	1.59	59	07	. 0	. 0	1	2	1	0
Νنار	95 5	65 6	80.6	110+	78	23	45	70	2	25	0	0	0	0	468	. 71	2.3	78	1.26	72	12	. 0		1	2	0	0
JUL	95 6	693	82.5	5 111	58	14	53	55	17	27	0	0	0	0	543	1.70	5.0	60	2.85	68	04	. 0	. 0		3	1	0
AUG	93.6	67.6	80 G	107+	69	17	56+	70	29	24	0	0	0	0	484	1.88	8.0	2 66	2.57	66	23	.0	. 0	ונ	3	11	a
SEP	86.9	60.9	73.9	102+	77	29	40+	71	20	14	0	0	0	8	275	2.16	9.2	3 74	3.27	78	25	. 0	. 0	뇌	3	• •	1
0C 7 1	77 5	48.8	63 2	99+	79	7	26+	90	29	3	0	1	0	116	60	1.16	3.9	69	2.20	69	20	.0	1.0	76	, 2		0
NOV	64 8	367	50.8	69	52	1	-1	76	29	o	0	9	0	426	0	. 44	3.4	2 78	1.52	78	04	1.0	8.3	3 76	1	21	) ol
DEC	58 3	30 3	44.3	83+	70	8	-2+	53	24	0	1	21	) 0	642	0	.26	1.5	9 60	.67	60	09	. 8	6.9	3 60	4 1i	01	0
					JUL			JAN							·	·		SEP		SEP				FEB			
TEAR	77 3	48 8	63.1	1111	58	14	-18	62	11	111	2	74	o	2833	2155	10.66	9.2	3 74	3.27	78	25	5.5	15.2	2 56	21	5	
#FROM	1951-		MAIS						-				IMATE	1	BASED	0N	•					<u></u> Δι		FAG		241	F S

FROM 1951-80 NORMALS

# ESTIMATED VALUE BASED ON DATA FROM SUPPOUNDING STATIONS

+ ALSO ON EARLIER DATES

# SURFACE WATER CONTROL-WATER BALANCE

BELOW, NOMOGRAPH used in estimating spray losses at known climatic and operating conditions. Average daytime conditions for the coerating period should be used. Night operation losses can be disregarded unless wind velocities are high. Example shown by the dotted line gives the losses for 10% relative humidity and  $90^{\circ}F$  air temperature, resulting in vapor pressure deficit of 0.73 psi. Line drawn from 0.73 psi to the nozzle size 12/64* determines point A on line 4. Line drawn from the wind velocity 5 m.p.h. to the nozzle pressure of 40 psi determines point 8 on line 8. A line drawn from A to 8 intersects line 6 at the percent spray loss.



BAR GRAPH for estimating total losses when conditions are estimated. This graph is useful to learn both spray losses and losses occurring after the spray reaches the soil surface. Total loss sprinkling on bare soil at high wind velocities, in hot weather and using a medium spray, is shown by the broken line at about 10%.

BAR GRAPH



# FIGURE 12.5

EVAPORATION LOSSES FROM SPRAY SYSTEMS

K.R. Frost and H.C. Schwalen (1955). Sprinkler evaporation losses. Agricultural Engineering 36 (8) pp. 526-528.



# CASE 1: USING DAILY AVERAGE RELATIVE HUMIDITY

SPRAY LOSS (%)	0.65%	0.75%	0.85%	0.95%	1.10%	1.30%	1.30%	1.10%	1.00%	0.85%	0.85%	0.60%
WIND VELOCITY (MPH)	8.0	8.8	10.2	11.0	10.5	10.0	9.1	8.2	8.6	8.3	7.8	7.7
Rh (\$)	60.0%	60.0%	55.0%	55.0%	55.0%	50.0%	50.0%	50.0%	50.0%	55.0%	60.0%	60.0%
AVG DAILY TEMP (deg F)	29.3	35.6	42.4	51.1	60.8	71.0	76.4	73.8	66.5	54.6	40.7	30.8
HTNOM	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC

•

i

-----

K #58201)
JUAN (SH
CO-SAN

CONOCO - SAN JUAN (SHK #58.201) EVAPONATION PONDS - WATEN BALANCE 20083

L DATA FOR BLOOM	FIELD, NEW MEXICO
PERATURE	52.8 DEG. FAHRENHEIT
e,	8.37 INCHES
D EVAP	50.0 INCHES

					FOUN	ă			
					<b>STORAGE VOL.</b>	(gals)	307,410	079.410	0.00 010
					OSSES	POND EVAP (gals)	55,112	127,342	144 840
	F1~2	GPM	GPM		SYSTEM	SPRAY EVAP (gels)	37,944	41,040	40 \$UA
	62,805	15	100	1.30%	IFLOWS	WASTEWATER (gala)	446,400	432,000	446 400
	A (AI CHESI)	TER FLOW	E (EACH POND)	UP COEFF	SYSTEMIN	PRECIP (gata)	34,066	26,366	21,162
	MAXIMUM PUNU ANE	MAXIMUM WASTEWAT	MAXIMUM SPRAY RAT	MAXIMUM SPRAY EVA	SPRAY OPERATION	(X)	\$0.0%	50.0%	50.0%
_					 SPRAY RATE	(mqg)	8	<u>8</u>	ŝ
		DEG. FAHRENHEIT	INCHES	INCHES	SPRAY EVAP	COEFFICIENT (%)	0.05%	0.95%	1.10%
	MILIELLO, NC	52.8	8.37	20.0		(Inches)	2.94	5.35	6.11

(holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes) (holes	) COEFFICIENT (%) 0.65% 0.85% 1.10% 1.10% 1.30% 1.30% 1.30%	(mdg) 8 8 8 8	(X) 80.05		WASTEWATER (ania)				
00 2.94 55 5.35 41 6.11 28 7.31 28 7.31	0.85% 0.85% 1.10% 1.30%	<u>8 8 8 8</u>	\$0.0\$ \$0.0\$			SPRAY EVAP (onis)	POND EVAP (aals)	(cats)	DEPTH (FT)
5.35 6.11 9.11 7.31 7.31	0.95%	<u>8</u> 88	20.02	34,066	446,400	37,044	55,112	307.410	0.73
41 6.11 03 7.31 7.31	1.30%	§ §		26,366	432,000	41.040	127.342	679.416	8
28 7.81	1.30%	ş	50.0%	21,162	446.400	40.104	166.840	920 034	1 20
16.7 69	1.30%		\$0.0%	14,452	648,000	56,160	236.470	1.296.656	2.46
		8	50.0%	48,002	669,600	58.032	262.911	1 005 516	3.21
St 0.49	<b>201.1</b>	õ	50.0%	05,551	666,600	40,104	267.230	2.114.325	8
63 4.63	1.00%	ē	50.0%	42,841	648,000	43.200	225,103	2 536 773	9
.16 3.70	0.05%	õ	50.0%	59,074	223,200	37,944	191.060	2 500 242	8
04 1.08	0.05%	ğ	50.0%	33,034	216.000	36.720	00 045	2 703 011	5 13
61 1.07	0.60%	ŝ	50.0%	31,465	223,200	26.764	57.742	2.874.070	1
50 1.12	0.65%	ē	50.0%	30,453	223.200	20.016	62 935	3 (25) 172	574
44 1.62	0.75%	ŝ	50.0%	22,711	403,200	30,240	24.707	3.336.735	6.31
37 50.0				432,010	5,248,800	405,286	1.848.795		
61 1.07   56 1.12   44 1.62   37 50.0	0.05%	<u>8 8 8</u>	50.0% 50.0% 50.0%		31,485 30,453 22,711 432,019	31,465 223,200 30,453 223,200 22,711 403,200 432,019 5,246,800	31,455 223,300 28,744   30,453 223,300 26,016   22,711 403,200 30,240   432,019 5,246,800 465,285	31,455 223,200 28,742 57,742   30,453 223,200 29,016 52,655   32,711 403,200 30,240 64,707   432,019 5,246,800 465,260 1,546,765	31,465 223,200 29,164 57,742 2,87,600   30,453 223,200 29,016 62,635 3,036,772   30,453 223,200 29,016 62,635 3,036,775   22,711 403,200 30,240 64,707 3,336,735   432,019 5,246,800 465,260 1,346,765 3,336,735



CONOCO - SAN JUAN (SRK #58201) DETERMINATION OF SPRAY EVAPORATION LOSSES 2/11/93

# CASE 2: USING DAYTIME AVERAGE RELATIVE HUMIDITY

	+											
SPRAY LOSS (%)	0.758	0.85%	1.00%	1.30%	1.60%	1.90%	1,958	1.75%	1.50%	1.05%	0.85%	0.70%
(HPH)	; ; ; ; ; ;											
VELOCITY	8.0	8.8	10.2	11.0	10.5	10.0	9.1	8.2	8.6	8.3	7.8	7.7
DNIM	,         											
Rh (\$)	46.9%	46.9\$	44.48	44.48	44.48	41.98	41.9%	41.9%	41.9%	44.48	46.9%	46.9%
MAX DAILY TEMP (deg F)	40.7	48.1	56.3	66.6	77.0	88,5	92.7	89.3	82.3	70.0	53.8	42.7
MONTH	JAN	FEB	MAR	APR	МАУ	NUL	JUL .	AUG	SEP	OCT	NON	DEC



ļ

_				
FIELD, NEW MEXICO	52.8 DEG. FAHRENHEIT	<b>B.37 INCHES</b>	50.0 INCHES	
CUMATOLOGICAL DATA FOR BLOOM	AVG ANNUAL TEMPERATURE	AVG ANNUAL PRECIP	AVG ANNUAL POND EVAP	

	15 GPM	100 GPM	1.65%
MAXIMIN POND ABEA (A) CRESTA	MAXIMUM WASTEWATER FLOW	MAXIMUM SPRAY RATE (EACH POND)	MAXIMUM SPRAY EVAP COEFF

	PRECIP	POND EVAP	SPRAY EVAD	SPRAY RATE	SPRAY OPERATION	SYSTEMIK	IFLOWS	SYSTEML	OSSES	STORAGE VOL.	LEQUIVALENT POND
MONTH	(inches)	(inches)	COEFFICIENT (%)	(mdg)	×	PRECIP (gais)	WASTEWATER (gale)	SPRAY EVAP (gals)	POND EVAP (gals)	(gals)	DEPTH (FT)
MARCH	0.66	2.94	1.00%	<u>5</u>	50.0%	34,066	446,400	44,640	56,112	300,714	0.72
APRIL	0.55	5.35	1.30%	ş	50.0%	28,386	432,000	56,160	126,673	656,069	8
MAY	0.41	6.11	1.60%	<u>6</u>	50.0%	21,162	446,400	71,424	107,132	867,076	8.
JUNE	0.25	7.61	1.90%	81	50.0%	14,452	046,000	82,080	232,286	1,235,100	2.34
JULY	0.03	7.31	1.05%	<u>8</u>	50.0%	48,002	009,999	87,048	256,812	1,606,902	3.04
AUGUST	1.27	6.40	1.75%	ş	50.0%	65,551	669,600	78,120	259,875	2,006,059	3.80
SEPTEMBER	0.63	4.63	1.50%	8	50.0%	42,041	646,000	64,800	216,343	2,413,756	4.57
OCT OBER	1.16	3.70	1.05%	<u>8</u>	50.0%	50,874	223,200	46,672	105,096	2,464,250	4.00
NOVEMBER	0.64	1.66	0.65%	ŝ	50.0%	33,034	216,000	36,720	05,542	2,561,030	4.86
DECEMBER	0.61	1.07	0.70%	ş	50.0%	31,465	223,200	31,248	56,020	2,748,448	5.20
JANUARY	0.50	1.12	0.75%	<u>8</u>	50.0%	30,453	223,200	33,400	61,083	2,007,525	000
FEBRUARY	0.45	1.62	0.65%	100	\$0.0¥	22,711	403,200	34,272	01,905	3,207,181	6.07
ANNUAL TOTAL	8.37	50.0				432,019	5,248,800	666,564	1,806,774		

.

I

CONOCO - SAN JUAN (SRK #58201) DETERMINATION OF SPRAY EVAPORATION LOSSES 2/11/93 CASE 3: USING LOWEST DAYTIME RELATIVE HUMIDITY

	L											
SPRAY LOSS (%)	0.75%	0.85%	1.10%	1.35%	1.65%	2.00%	2.30%	1.85%	1.70%	1.20%	0.85%	0.70%
WIND VELOCITY (MPH)	8.0	8.8	10.2	11.0	10.5	10.0	9.1	8.2	8.6	8.3	7.8	7.7
Rh (\$)	50.0%	50.0%	40.0\$	40.0%	40.0%	30.0%	30.0%	30.0%	30.0%	40.0%	50.0%	50.0%
MAX DAILY TEMP (deg F)	40.7	48.1	56.3	. 66.6	77.0	88.5	92.7	89.3	82.3	70.0	53.8	42.7
HTNOM	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ocT	NOV	DEC



İ

ECONOCO - SAN JUAN (SHK #58201) EVAPORATION PONDS - WATER BALANCE 2/9/93

STOHAGE V (gala) 376,250	OND EVAP (gala) 55,112	FT ^ 2 GPM GPM GPM SYSTEML SPRAY EVAP (gale) 40,104	82,805 15 16 13 100 2.30% 2.30% 2.30% 2.30% 2.30% A.3000 A.3000 A.3000	A (AT CHEST) ER FLOW FE (EACH POND) P COEFF SYSTEM IN PRECIP (gala) A 1000 A 3000	AXXIMUM POND ARE MAXIMUM MASTEWA MAXIMUM SPRAY EV MAXIMUM SPRAY EV MAXIMUM SPRAY EV MAXIMUM SPRAY EV MAXIMUM SPRAY EV MAXIMUM SPRAY EV SO OK	SPHAY HATE (9Pm) 100	V MEXICO DEG. FAHRENHEIT NICHES NICHES SPRAY EVAP COEFICIENT (%) 1.10%	00MFRELD, NE 52.5 5.37 6.37 6.37 8.00 (Inchee) 2.94 5.35	C DATA FOR BL DEFAATORE C C C P ND EVAP PRECIP (Inches) 0.66	AUT ANNUAL TE AUT ANNUAL TE AUT ANNUAL TE AUT ANNUAL PO AUTH MARCH APRIL
3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
AK1 748	TON MOL	54.320	432 000	20,368	50.0%	5	1.36%	5.35	0.55	APRIL
376.250	55,112	49,104	448,400	34,066	\$0.05	ğ	1.10%	5	<b>8</b> 8.0	MARCH
(gals)	POND EVAP (gale)	SPRAY EVAP (gala)	WASTEWATER (gals)	PHECIP (gale)	£	(mdg)	CULTURENT (3)	(Incres)		
					i			(notes)	(actor)	MONTH
STORAGE V	OSSES	SYSTEMIC	UPLOWS	SYSTEM IN	SPRAY OPERATION	I SPRAY RATE	SPHAY EVAP		FHECIL	
			2.30%	P COEFF	MAXIMUM SPRAY EVA		INCHES	20.0	NU EVAP	NA TANNAT NA
		E	<b>2</b> .							AVG ANNUAL DOG
		GPM	100	E (EACH POND)	MAXIMUM SPRAY RAT		INCHES	6.37	CIP	AVG ANNUAL PRE
		GPM	15	FER FLOW	MAXIMUM WASTEWAT		UEG. FAHRENHEIT	97.0	MENALURE	
		-	00'm							
		Frage 1	808.68	A (AT CHEST)	<b>MAXIMUM POND ARE</b>		V MEXICO	COMFIELD, NEV	L DATA FOR BL	ULIMAT OLOGICAL
									The second second second second second second second second second second second second second second second s	THE REPORT
							_			

	PRECIP	POND EVAP	SPRAY EVAP	SPRAY RATE	SPRAY OPERATION 1	SYSTEMIN	FLOWS	SYSTEMT	OSSES	STORAGE VO	FOUND FAIT POWE
MONTH	(inches)	(inches)	COEFFICIENT (%)	(mgb)	2	PRECIP (gata)	WASTEWATER (pals)	SPRAY FVAP (nale)	POWD EVAP (nele)	(aele)	DEDTU (ET)
MARCH	80.0	2.94	1.10%	8	10.05	2	444 400			/ampli	
1001							2014-17A-4		711/20	10,016	5.0
אנור	6.5	0.30	*8.	<u>8</u>	50.0%	28,388	432,000	56,320	126,560	051.750	1,23
MAY	0.41	6.1	1.05%	<u>8</u>	50.0%	21.162	446,400	73 656	100 627	A70.03A	5
JUNE	8.0	7.61	2.00%	8	20.02	14.452	648 000	NO ADD	TAA HEG		3.5
JULY	0.93	1.31	2.30%	<u>8</u>	50.0%	48.002	000 000	102 672	265 ZOB		
AUGUST	1.27	0.49	1.05%	8	20.05	05.551		A NAM	267,858	1,00,200,1	
SEPTEMBER	0.63	¥.63	1,70%	8	603	TAR CA		70 440		101,118,1	
OCTOBER	1.10	3.70	1 20%	8		40 m74		13,440	700'017	000'075'7	
NOVEMBED				3			N2'57	990°'FC	163,004	2,424,007	4.50
	5	8	Kc9.0	2	20:02	A50,55	216,000	36,720	94,554	2,541,858	4.81
DECEMBER	0.61	1.07	0.70%	ŝ	20:0%	31,485	223,200	31,248	55.471	2.709.824	5.13
JANUARY	0.59	1.12	0.75%	ş	50.0%	30,453	223,200	33.460	60.526	2 869 471	5 43
FEBRUARY	0.44	1.62	0.65%	ŝ	20.02	22,711	403,200	34.272	01170	3 100 011	
ANNUAL TOTAL	8.37	50.0				432,019	5,246,800	715.404	1 795.423	120102	2

I



_____











CONOCO – SAN JUAN (SRK #58201) POND DEPTH vs TIME









CONOCO – SAN JUAN (SRK #58201) POND DEPTH vs TIME



# APPENDIX B

**As-Built Drawings** 



•

.

ENGINEER	REFERENCE			
	REVISIONS	No.		DESCRIPT AS-BUIL

ON POND 2	2:1	21				
2:1						
			لا	N		
3:1						
	, ve a s				30 60 E IN FEET	
	DESIGNED G	G	6/93	PREPARED FOR:	PREPARED BY:	
	DRAWN JI	м	6/93			
		F	6/93 6/93	CONOCO'S SAN JUAN GAS PLANT		
	APPROVED				STEFFEN ROBERTSON & KIRST Consulting Engineers & Scier	<b>'EN (U.S.)</b>
TION T		BY RF	DATE 6/93	TITLE	SCALE	REVISION
					DRAWING No.	
		<u>}</u>		GENERAL FACILITIES ARRANGEMENT	58201-100	
		<b> </b>				
	·	<u> </u>			L	-L

---

· · ·





RF 6/93 WASTEWATE CR	ER EVAPORATION PONDS OSS SECTIONS AND DETAILS (AS BUILT) DRAWING No. 58201-102
ENT REVIEW RF 2/93	SCALE AS SHOWN REVISION
TION BY DATE	
APPROVED	STEFFEN ROBERTSON & KIRSTEN (U.S.)
APPROVED RF 2/93	SAN JUAN GAS PLANI
CHECKED RF 2/93	
DRAWN DB 2/93	
DESIGNED SH 2/93 PREPARED FOR:	PREPARED BY:

	POND		120	
POND 2			110	
			10	EET
			100	1
.EV. 101.9' (NOMINAL)		EXISTING		LEV.
		SURFACE	90	ш
			80	
	200		300	

•



![](_page_169_Figure_0.jpeg)

- . __--- -

· ------

	No.	DESCRIP
		AS BUI
SN	$\wedge$	
	$\wedge$	
NIS I		
RE		

![](_page_170_Figure_0.jpeg)

![](_page_170_Figure_7.jpeg)

APPENDIX C

Pond Area Excavation and Remediation Summary

# CONOCO SAN JUAN GAS PLANT EVAPORATION POND AREA REMEDIATION EXCAVATION SUMMARY

Prepared For:

Conoco, Inc. San Juan Gas Plant 61 Road 4900 P.O. Box 217 Bloomfield, N.M. 87413

Prepared by:

Steffen Robertson and Kirsten (U.S.), Inc. 3232 South Vance Street Lakewood, Colorado 80227

October 1993

SRK Project No. 58201.1

# TABLE OF CONTENTS

<b>1.0 INTRODUCTION</b>	1
2.0 REMEDIATION PROCESS	1
2.1 Contractor's Equipment	2
2.2 Excavation/Backfill Chronology	2
2.3 Ultimate Configuration of Excavation/Backfill Area	3
3.0 SAMPLING AND ANALYTICAL TESTING (BY OTHERS)	3
4.0 STATE APPROVAL OF REMEDIATION	3
5.0 SUMMARY	4

Evaporation Pond Area Remediation - Excavation Summary

Conoco San Juan Gas Plan

# **1.0 INTRODUCTION**

Steffen Robertson and Kirsten (U.S.), Inc. (SRK) was contracted by Conoco to design and provide quality assurance (QA) services for the construction of two evaporation ponds at its San Juan Gas Plant, in Bloomfield, New Mexico. The property is owned by El Paso Natural Gas Company and leased to Conoco. CDK Contracting Company (CDK) was contracted by Conoco to perform the earthwork associated with the construction of the two ponds. SRK provided a Senior Engineering Field Technician, Mr. Glenn Guyer, to monitor the construction. Mr. Guyer arrived on site February 4, 1993 for the start of pond construction

The two ponds are situated adjacent to one another south of the plant, with Pond #1 located to the west of Pond #2. The ponds are approximately the same size and roughly square, having a bottom dimension of approximately 180 feet and a depth of 8 feet. The ponds each have different bottom elevations; Pond #1 was designed with a bottom elevation of 89.35 feet and Pond #2 at 101.90 feet. Earthwork for Pond #2 was done first, followed by the earthwork for Pond #1.

The earthwork for Pond #2 was completed on February 23, 1993. Very minor levels of soil contamination were encountered in the extreme northwest corner of Pond #2 during its construction. However, on February 24, during the excavation of the bottom of Pond #1, and area of oil- soaked soil was uncovered. Work in this area was temporarily halted, and the owner was notified. At this point, under the direction of Conoco's Mr. Mike Luchetti, all work was stopped. The following day the contractor arrived on site and, under the direction of the owner, excavated materials around the areas of previously discovered contaminated soils, in an attempt to locate the extents of contamination. At this point, Mr. Denny Foust with the Oil Conservation Division of New Mexico Energy, Minerals, and Natural Resources Department (OCD) and Ms. Anu Pundari of El Paso Natural Gas Company (EPNG) were on site to observe the investigation work. Remediation procedures to remove the contaminated soils and finish the pond construction were discussed with Mr. Foust at this time.

# 2.0 **REMEDIATION PROCESS**

The site remediation action plan is documented in a letter from Conoco's Jon Bowerbank, to Mr. Denny Foust, dated March 5, 1993. The plan was cooperatively developed by representatives from the State OCD, Conoco, EPNG, SRK, and CDK. The plan states that "REMEDIATION will consist of excavation of contaminated materials to the appropriate OCD determined depth

October, 1993

Conoco San Juan Gas Plan

below the initial water interface. However, on-site inspection by OCD personnel will make the final determination as to the depth of the require excavation." "The contaminated soils will be transported by CDK from the Conoco leases site to Envirotech for El Paso's account." "Fill dirt will be hauled back from Envirotech to replace the excavated material." Actual remediation work began on March 8, 1993.

# 2.1 Contractor's Equipment

The contractor, CDK, used the following equipment during the remediation process: a Cat 225 Trackhoe, John Deere Front End Loader (JD 644-B), and six (6) bottom dump semi-tractor trailer rigs with lined beds.

# 2.2 Excavation/Backfill Chronology

On March 8, 1993, upon acceptance of the site remediation plan, the remediation process began. At this time, contaminated soils were excavated from the pond and hauled to Envirotech, with some intermittent stockpiling on site. Trailers then returned from Envirotech with a load of uncontaminated soil which was stockpiled in a separate area on site.

The approximate weekly material balance for the excavation and backfill process, based on truck count, is shown below:

Week Ending	Excavation	<b>Backfill Material</b>	Balance
March 12	2,820 cu. yds	2,610 cu. yds	-210 cu. yds
March 19	525 cu. yds	465 cu. yds	-270 cu. yds
March 26	975 cu. yds	930 cu. yds	-315 cu. yds
April 2	330 cu. yds	210 cu. yds	-435 cu. yds
April 9	950 cu. yds	2183 cu. yds	+798 cu. yds
April 16	0 cu. yds	1092 cu. yds	+1890 cu. yds

Excavation of contaminated soil and importing of clean backfill ceased on April 14, 1993. A total of 5,600 cubic yards of contaminated soil was removed for the site, while 7, 490 cubic yards of clean soil were returned to the site to restore the original ground surface.

Conoco San Juan Gas Plan

# 2.3 Ultimate Configuration of Excavation/Backfill Area

Because the extents of the contamination were not known beforehand, the contaminated soil was removed as it was encountered. Excavation continued until all of the soil considered to be "contaminated" by the State inspector was removed. The final configuration of the excavated are is shown in Figure 1. The figure shows the excavation within the framework of the ultimate pond construction, in both plan and cross section. Figures 2 and 3 show three dimensional perspective views of the excavation within the ultimate pond configuration.

The overall extent of contamination covered most of the pond bottom area and extended from the northeast corner of Pond #1 to the west and southwest. The deepest area of excavation was located on the western side of the pond continued down to an elevation of approximately 74 feet (17 feet below ground surface). The contaminated area in the northern part of the pond extended down to a sandstone shelf located at an elevation of approximately 86 feet (5 feet below the ground surface). The contamination extended below a perched ground water surface, which required seepage control measures during much of the excavation process.

# **3.0 SAMPLING AND ANALYTICAL TESTING (BY OTHERS)**

On March 15, 1993, a representative from EPNG was present during the excavation of contaminated materials, set up a grid, and took water and soil samples for water quality testing. The results of the water quality testing were compiled by EPNG and later forwarded to Conoco.

A total of 52 samples of seepage or contaminated soil was retrieved by EPNG for laboratory testing. Samples were analyzed for fuel hydrocarbons (TPH) using either modified EPA Method 418.1 or 8015. Selected samples were also analyzed for benzene, toluene, ethyl benzene and total xylenes (BTEX) using EPA Method 8020. Recorded sampling depths went as deep as approximately 20 ft below ground surface.

# 4.0 STATE APPROVAL OF REMEDIATION

Upon the discovery of the oil-soaked soils in the bottom of Pond #1, the State OCD was notified. Mr. Denny G. Foust, Deputy Oil and Gas Inspector, visited the site during the exploration for the extents of the contamination, and was a part of the group that formulated the site remediation action plan. Mr. Foust then visited the site during the remediation to inspect

![](_page_177_Figure_0.jpeg)

![](_page_178_Figure_0.jpeg)

![](_page_179_Picture_0.jpeg)
## SITE REMEDIATION



Plate 1- Sampling/Testing



Plate 2 - Excavation

# SITE REMEDIATION (cont'd)



Plate 3 - Backfill Process



Plate 4 - Backfill Process

# SITE REMEDIATION (cont'd)



Plate 5 - Backfill Process



Plate 6 - Backfill Process

## APPENDIX D

**Technical Specifications** 

en contration

## **APPENDIX D.1**

Earthwork Construction

# CONOCO SAN JUAN GAS PLANT EVAPORATION PONDS 1 AND 2 TECHNICAL SPECIFICATIONS for EARTHWORK

Prepared for: Conoco, Inc. San Juan Gas Plant 61 Road 4900 P.O. Box 217 Bloomfield, N.M. 87413

Prepared by: Steffen Robertson and Kirsten (U.S.), Inc. 3232 South Vance Street Lakewood, Colorado 80227

> February 1993 SRK Project No. 58201

## TABLE OF CONTENTS

1.0	INTI	<b>RODUCTION</b>
	1.1	General
	1.2	Scope of Work
	1.3	Definitions
	1.4	Applicable Codes and Regulations 3
2.0	CON	TRACTOR'S RESPONSIBILITY 3
3.0	INSI	PECTION OF WORK 4
	3.1	General
	3.2	Access
	3.3	Examination
	3.4	Samples and Tests
	3.5	Alteration to Drawings and Specifications
4.0	ENV	VIRONMENTAL REQUIREMENTS       6
	4.1	Control of Sediment
	4.2	Control of Fugitive Dust
	4.3	Limits of Work
	4.4	Surface Water Control
5.0	EXC	AVATION
	5.1	General
	5.2	Handling of Material
	5.3	Lines and Grades
	5.4	Cuts and Slopes 8
	5.5	Excess Excavation
	5.6	Disposal of Excavated Materials
6.0	SITE	<b>E PREPARATION</b>

# TABLE OF CONTENTS (Continued)

		/
6.2	Stripping	9
6.3	Access Roads	)
6.4	Borrow Areas 10	)
FILL	PLACEMENT	)
7.1	General	)
7.2	Lines and Grades 11	l
7.3	Foundation Preparation	l
7.4	Placement	l
7.5	Moisture Control	2
7.6	Compaction	2
7.7	Special Compaction Equipment 13	3
7.8	Sequence of Fill Operations 13	3
7.9	Contamination	ł
7.10	Conduct of Work 14	Ļ
7.11	Access Roads	ł
7.12	Type 1 - Interior Embankment Fill	ŀ
7.13	Type 2 - Exterior Embankment Fill 15	5
	<ul> <li>6.2</li> <li>6.3</li> <li>6.4</li> <li>FILL</li> <li>7.1</li> <li>7.2</li> <li>7.3</li> <li>7.4</li> <li>7.5</li> <li>7.6</li> <li>7.7</li> <li>7.8</li> <li>7.9</li> <li>7.10</li> <li>7.11</li> <li>7.12</li> <li>7.13</li> </ul>	6.2       Stripping       9         6.3       Access Roads       10         6.4       Borrow Areas       10         FILL PLACEMENT       10         7.1       General       10         7.2       Lines and Grades       11         7.3       Foundation Preparation       11         7.4       Placement       11         7.5       Moisture Control       12         7.6       Compaction Equipment       12         7.7       Special Compaction Equipment       12         7.8       Sequence of Fill Operations       12         7.9       Contamination       14         7.10       Conduct of Work       14         7.11       Access Roads       14         7.12       Type 1 - Interior Embankment Fill       14

## **1.0 INTRODUCTION**

## 1.1 General

The Specifications presented in these Technical Specifications are for the construction of two new evaporation ponds at Conoco's San Juan Gas Plant in Bloomfield, New Mexico.

## 1.2 Scope of Work

The scope of work for these Technical Specifications shall include all earthwork required for the construction of the two evaporation ponds for Conoco. Specific work items include, but are not limited to the following:

- Mobilization of all equipment and material required for the work;
- Installation of temporary and permanent surface water control;
- Stripping in required areas;
- Excavation in required areas;
- Development of borrow areas within the pond areas;
- Foundation preparation for fill placement;
- Pond embankment fill placement and compaction;
- Furnish and installing all material and constructing all items appurtenant and incidental to the above;
- Demobilizing, which includes removal of temporary structures and shaping, contouring, and grading final surfaces.

The Contractor shall familiarize himself with the relevant regional and site specific conditions which may have an impact upon the work. Data relevant to the overall project are contained

in reports in the possession of the Owner, which are available for Contractor review. Of particular relevance to the work is the field investigation data collected by SRK to evaluate foundation conditions and construction materials. Drawings to be read in conjunction with these Specifications are included with this document as Attachment A and are in a series numbered 58201/01 through 58201/03.

In the case of discrepancy or ambiguity in the Specifications, Drawings, codes, standards, or regulations, it is the intent of these Specifications that the most restrictive interpretation shall apply unless interpreted otherwise by the Design Engineer.

### **1.3 Definitions**

The following definitions apply to these Specifications.

- a. "Owner" is defined as an authorized representative of Conoco Inc.;
- b. "Construction Manager" is defined as an authorized representative of the Owner responsible for coordinating the activities of the Contractor;
- c. "Quality Assurance Engineer" is defined as a qualified representative appointed and authorized by the Owner to monitor the quality of the completed construction product;
- d. "Design Engineer" is defined as an authorized representative of the Owner who has designed the facilities to be constructed and prepared the plans and specifications;
- e. "Contractor" is defined as the party or parties which have a contract agreement with the Owner or Construction Manager and perform the actual construction activities;
- f. "Specifications" is defined as this document of technical specifications prepared by Steffen Robertson and Kirsten (U.S.), Inc. for Conoco's San Juan Gas Plant dated February 1993;
- g. "Drawings" is defined as the drawings in conjunction with these Specifications and are in a series numbered 58201/01 through 58201/03;

- h. "In-place material" is defined as soil or rock material obtained from within the construction area of a particular facility;
- i. "Over-size Rock" is defined as rock obtained from the borrow area that is not suitable for placement within the earthen fills and applies to rock larger than 6 inches nominal size;
- j. "Off-site material" is defined as material obtained from sources other than on-site;
- k. All slopes are described in terms of horizontal distance: vertical distance; and
- 1. All sieve sizes refer to U.S. Standard sieve sizes.

## **1.4** Applicable Codes and Regulations

The work shall conform to applicable Federal, State, County, and local regulations. Test procedures shall conform to applicable ASTM standards, as documented in the edition of the standards in force at the start of work.

#### 2.0 CONTRACTOR'S RESPONSIBILITY

The Contractor shall carefully examine all of the Technical Specifications and Drawings, and the site of the work. He shall fully inform himself as to the character of all conditions at the site, local and otherwise, affecting the execution of the work, including those conditions to which Federal, State, and local safety and/or health laws and regulations may be applicable. Failure to comply with the requirements of this section shall not relieve the Contractor of responsibility for complete performance of the work.

It shall be the sole responsibility of the Contractor to familiarize himself, by such means as he considers appropriate, with all matters pertaining to this work including, but not limited to:

- The location and nature of work;
- Climatic conditions;

- The nature and conditions of the terrain;
- Geologic conditions at the site;
- Transportation and communication facilities;
- Location and nature of construction materials available for use in the work;
- Other construction at the project site that may be underway simultaneously with the construction work for the two new evaporation ponds; and
- All other factors that may affect the cost, duration, and execution of the work.

Before accepting the work, the Contractor shall acknowledge in writing that he has inspected the site and determined the characteristics of the work and the conditions indicated above.

#### **3.0 INSPECTION OF WORK**

## 3.1 General

Unless otherwise specified, full-time inspection of all construction activities defined by the Specification will be provided by the Owner. Owner's inspection of all work shall be performed under the supervision and control of the Quality Assurance Engineer or his designated representative while such work is in progress. Said inspections are for the convenience, satisfaction, and benefit of the Owner in determining that the work is performed in strict accordance with the Specifications. It shall be the Contractor's sole responsibility to provide all required materials (both natural and manufactured) and to perform all work in conformance with the Specifications. The Quality Assurance Engineer will inspect, test and report all findings to the Construction Manager. The Construction Manager shall be responsible for enforcing the specifications or initiating variances or design changes through the Design Engineer. Owner's inspections shall not relieve the Contractor of responsibility for the acceptability of the finished work or portions thereof.

### 3.2 Access

The Quality Assurance Engineer and his representatives shall at all times have access to the work whenever it is in preparation or progress provided that they report their presence to the Construction Manager who is responsible for all activities onsite. The Contractor shall fully cooperate with the Quality Assurance Engineer, shall provide proper facilities for access, and shall furnish labor and equipment reasonably needed for safe and convenient inspection, including the excavation of test pits. The Contractor shall give the Quality Assurance Engineer ample notice of readiness of the work for inspection, and the Quality Assurance Engineer shall perform said inspection in such a manner as not to unnecessarily delay the work.

#### 3.3 Examination

If any work should be covered up without prior approval or consent of the Quality Assurance Engineer, it must, if required by the Quality Assurance Engineer, be uncovered for examination at the Contractor's cost.

## 3.4 Samples and Tests

It is the intent of these Specifications that materials shall be inspected and tested by the Quality Assurance Engineer before final acceptance of the work. Any item of the work which is found not to meet or exceed the Specifications or which is improperly located or constructed shall be removed and replaced. The Quality Assurance Engineer's inspections and tests shall not relieve the Contractor from full responsibility to furnish and install materials in conformance with these Specifications.

## **3.5** Alteration to Drawings and Specifications

All alterations made to either the Specifications or Drawings shall be subject to the Design Engineer's approval and, where applicable, to the approval of regulatory government agencies. All alterations shall be issued under a covering work order signed by the Design Engineer.

#### 4.0 ENVIRONMENTAL REQUIREMENTS

#### 4.1 Control of Sediment

The Contractor shall design, furnish, install, maintain and operate such equipment and structures as are necessary to contain and precipitate suspended solids (sediment) appearing in surface water immediately downstream of each work area, irrespective of the source of said suspended solids. Surface water released form the Contractor's sediment control facilities shall have turbidities which are less than or equal to the maximum values permitted by State or Federal law.

The Contractor shall be fully responsible for sediment control and the attainment of effluent quality conforming to State and Federal laws.

### 4.2 Control of Fugitive Dust

During the performance of the work defined by these Specifications or any operations appurtenant thereto, whether on right-of-way privided by the Owner or elsewhere, the Contractor shall furnish all labor, equipment, materials, and means required, and shall perform proper and efficient measures wherever and as required to reduce the dust nuisance, and to prevent dust which has originated from the Contractor's operations from damaging land, vegetation, and dwellings, or causing a nuisance to persons. Dust shall be controlled to a degree acceptable to the appropriate State and Federal agencies, and acceptable to the Construction Manager.

### 4.3 Limits of Work

The Contractor shall confine his apparatus, the storage of materials, and the operation of workmen to limits indicated by law, ordinances, permits or selected by the Construction Manager, and shall not unreasonably encumber the premises with his materials. Extreme caution shall be exercised at all times to avoid blocking plant or other roads or in any other way interfering with the Owner's operations or presenting a hazard to the Owner's personnel and equipment, or to the public.

## 4.4 Surface Water Control

Prior to beginning construction, the Contractor shall submit for approval a plan showing his proposed methods for collection and disposition of surface waters that may affect the execution and completion of work. The plan may be placed in operation upon review and comment by the Construction Manager and Quality Assurance Engineer, but nothing in this section shall relieve the Contractor from full responsibility for the adequacy of the system.

Surface water control shall be accomplished in a manner that will result in all construction operations being performed free of excess moisture.

## 5.0 EXCAVATION

#### 5.1 General

The excavations to be performed include, but are not limited to site preparation, removal of unsuitable materials located within the proposed construction limits, shaping, and excavation in pond areas, foundation areas and project borrow areas.

There shall be no classification of soil and rock excavations for these Specifications as to type, hardness, moisture condition or other characteristics for classification and payment purposes.

The Contractor shall be solely responsible for determing the excavatability of soil and rock materials, water table conditions and other pertinent subsurface information. The Contractor shall satisfy himself with additional subsurface information, if he so desires and at his own expense, for bidding purposes.

#### 5.2 Handling of Material

Insofar as is practicable in the permanent construction, the Contractor shall use materials obtained from required excavations which meet applicable specifications. Such materials may be placed in the designated final locations direct from the excavation, or may be placed in temporary stockpiles and later placed in the final location as approved by the Construction Manager. The Contractor shall schedule excavation operations so as to avoid or minimize stockpiling and rehandling of excavated material.

#### 5.3 Lines and Grades

All open-cut excavations shall be performed in accordance with the Specifications to the lines, grades, and dimensions shown on the Drawings or as established by the Design Engineer. Assumed excavation lines for the work are shown on the Drawings, but the final excavation may vary from the lines shown as approved by the Quality Assurance Engineer. The assumed final lines for excavation, shown on the Drawings, shall not be strictly interpreted as accurately indicating the final or actual lines of excavation. When unfavorable conditions are discovered, they shall be corrected by excavation to lines, depths, and dimensions prescribed by the Design Engineer.

Unless noted otherwise or specifically prescribed by the Design Engineer, the maximum permissible deviation from specified lines and grades shall be plus or minus 0.1 feet.

## 5.4 Cuts and Slopes

The Contractor shall inspect all temporary and permanent open-cut excavations on a regular basis for signs of instability. Should signs of instability be noted, the Contractor shall undertake remedial measures immediately and shall notify the Construction Manager as soon as possible. It will be the Contractor's responsibility to remove all loose material from the excavation slopes and to maintain the slopes in a safe and stable condition at all times during the progress of the work.

#### 5.5 Excess Excavation

All necessary precautions shall be taken to preserve the material below and beyond the lines of excavation in the soundest possible condition. Where excess excavation has been performed to complete the work, such areas shall be refilled with materials furnished and placed to the satisfaction of the Quality Assurance Engineer at the Contractor's expense. Over-excavation required by the Quality Assurance Engineer due to unsuitable materials and subsequent backfilling shall be payable by the Owner on the basis of the Contractor's unit rates which will form a part of the contract.

#### **5.6** Disposal of Excavated Materials

The design has been refined to a cut to fill balance. Excess material is not anticipated, however materials that are unsuitable for, or are in excess of, permanent construction requirements shall be wasted. Waste piles shall be located outside the limits of construction or as approved by the Construction Manager, where they will not interfere with the natural flow of streams, with the operation of the Owner's facilities and other structures, and where they will neither detract from the appearance of the completed project nor interfere with the accessibility of the various parts of the work. Waste piles shall be graded and trimmed to reasonably regular lines and stable slopes.

#### 6.0 SITE PREPARATION

#### 6.1 General

The Contractor shall strip from the foundation areas of the ponds or pond embankments, waste stockpile areas, borrow areas, and related structures, all material unsuitable for use as a foundation, as determined by the Quality Assurance Engineer.

### 6.2 Stripping

Stripping of the site has for the most part been performed and is not anticipated. If however some areas require stripping, the work shall follow this specification.

Stripping of the upper 6 inches (maximum) of soil shall be done within the stripping limits where required. Stripping shall not be done below 6 inches from the original ground surface unless otherwise directed by the Quality Assurance Engineer.

The stripped materials shall be removed from the stripped area and placed in a designated stockpile area. Placement of stripped soils outside of designated areas shall not be done unless otherwise directed by the Construction Manager.

Unsuitable materials to be removed by stripping shall include debris, topsoil, excessively wet or soft soil, and vegetation including roots. Other perishable and objectionable materials that are unsuitable for use in permanent construction and which might interfere with the proper

bonding of fill with the foundations, or the proper compaction of the materials in embankments and other fill areas, or which are otherwise unsuitable as determined by the Quality Assurance Engineer, shall be removed.

## 6.3 Access Roads

Contractor's access roads shall be planned such that construction of said roads shall coincide as much as practicable with the construction of the permanent roads associated with the project and other required excavation. Prior to development of access roads, the Contractor shall submit a plan showing their location and size for the Construction Manager to issue for the Owner's and Design Engineer's approval.

#### 6.4 Borrow Areas

The specified design provides for a material balance with regard to excavation and fill quantities. However, earthen materials required for the work defined by these Specifications which are not obtainable from required excavations shall be obtained from approved borrow areas designated by the Construction Manager. Materials not available from said borrow areas shall be furnished by the Contractor from a source proposed by the Contractor and approved by the Design Engineer.

The Contractor may select and use any borrow area approved by the Design Engineer for construction materials, provided the materials meet the specification requirements for the intended use.

## 7.0 FILL PLACEMENT

#### 7.1 General

The work covered by this section of the Specifications shall include, but is not limited to, fill placement for the pond embankments and access roads, reworking in-place foundation materials in the pond areas and earthwork incident thereto. The embankments, pond areas, and other pertinent structures shall have fill materials categorized as follows:

• Type 1: Interior embankment fill;

• Type 2: Exterior embankment fill;

#### 7.2 Lines and Grades

Earthwork shall be constructed to the lines, grades, and cross sections shown on the Drawings or as specified herein.

## 7.3 Foundation Preparation

Upon completion of the required foundation stripping/excavation operations and removal of unsuitable foundation material, the entire excavated surface which is to be constructed upon, and the proposed pond area shall be scarified to a minimum depth of six inches, moisture conditioned to near optimum moisture content, and recompacted to at least 95 percent of maximum density (ASTM D-698). No new fill shall be placed in the foundation areas until the foundation has been inspected and approved by the Quality Assurance Engineer.

#### 7.4 Placement

The procedures for the construction of required fills shall be described to and approved by the Quality Assurance Engineer prior to fill placement.

No brush, roots, sod, frozen soil, ice or other deleterious or unsuitable materials shall be placed in the engineered fills. The suitability of all fill materials intended for use in the construction work shall be subject to approval by the Quality Assurance Engineer. Fill placement shall be temporarily stopped, due to unsuitable weather conditions, at the discretion of the Quality Assurance Engineer. Under marginal weather conditions, the Contractor may place fill provided the fill, when tested, meets Specifications.

The distribution of materials shall be such that the fill is free from lenses, pockets, streaks, or layers of material differing substantially in texture or gradation from the surrounding material. The combined borrow excavation and fill placement operation shall be such that the materials, when compacted in the fill, shall be blended sufficiently to secure the best practicable distribution of the material, subject to the approval of the Quality Assurance Engineer. Fill placement shall be in approximately horizontal lifts of the maximum thickness specified for that

material type, leveled as needed in preparation for compaction.

If, in the opinion of the Quality Assurance Engineer, the surface of the prepared foundation or the surface of any layer of the fill is too dry or too smooth to bond properly with the layer of material to be placed thereon, it shall be moistened and/or worked with harrow, scarifier, or other equipment to provide a satisfactory bonding surface before the next layer of fill material is placed. If, in the opinion of the Quality Assurance Engineer, the surface of the prepared foundation or the rolled surface of any layer of the fill in place is too wet for proper compaction of the layer of fill material to be placed thereon, it shall be removed and allowed to dry or shall be worked with harrow, scarifier, or other equipment to reduce the moisture content to the required amount, and then compacted before the next layer of fill material is placed.

### 7.5 Moisture Control

During compaction operations, the borrow, prepared foundation, and in-place fill materials shall be maintained or conditioned within the moisture content range required to permit proper compaction to the specified density. The moisture content of the fill material prior to and during compaction shall be uniform throughout the material.

When material is too dry for proper compaction, the Contractor shall spray water on the fill and work the moisture into the fill by harrowing or other approved means until a uniform distribution of moisture is obtained. Material that is too wet for proper compaction shall be removed from the fill or the material may be spread and permitted to dry, assisted by disking and harrowing, if necessary, until the moisture content is reduced to an amount suitable for obtaining the specified degree of compaction.

## 7.6 Compaction

Wherever necessary, after fill material has been placed and spread, or reworked in-place and moisture conditioned as specified, the layer shall be compacted by passing compaction equipment over the entire surface of the layer a sufficient number of times to obtain the required density, as determined by the Quality Assurance Engineer on the basis of field density tests and his observations of the fill operations.

The frequency of field density tests performed on each type of material shall be as determined

in the field by the Quality Assurance Engineer.

The Quality Assurance Engineer will continuously evaluate the Contractor's equipment and methods. If such equipment or methods are found unsatisfactory for the intended use, the Contractor shall be required to replace the unsatisfactory equipment with other types or adjust methods until proper compaction is achieved.

Compaction shall be based on ASTM D-698 or compactive effort as approved by the Quality Assurance Engineer. In-place fill densities may be determined by the Sand Cone or Nuclear Gauge Methods. The Contractor shall construct test fills, as determined by the Quality Assurance Engineer, for fills outside the testing limits of ASTM D-698, for establishing compactive effort procedures.

## 7.7 Special Compaction Equipment

Only hand-guided mechanical tampers or hand-guided vibratory rollers shall be used for compaction of the backfill material adjacent to concrete or other appurtenant structures, or in areas where access restrictions require. In such areas, care shall be exercised to prevent damage to existing facilities.

## 7.8 Sequence of Fill Operations

The Contractor shall construct the fill areas such that the fill is approximately level at all times during construction. The fill surfaces shall be graded to prevent ponding of rainwater.

The Contractor shall leave the surface of compacted fill, at the end of each shift or day, in such a manner as to prevent an excessive increase in moisture content arising from precipitation. The Quality Assurance Engineer may require that the top layer be removed at the recommencement of fill placement if it has become too wet or is softened as a result of precipitation.

In areas of geotextile or geosynthetic liner placement, following such placement, no vehicular traffic and minimal installation labor traffic shall be permitted on the surface. Special access across installed liner, if required, shall be approved by the Quality Assurance Engineer and may require protective measures to be taken at the Contractor's expense.

## 7.9 Contamination

The Contractor shall route equipment and take all actions necessary to prevent material of one type from being deposited inadvertently, either by dumping or through travel of equipment, in or on material of another type. Such improperly deposited material shall be removed from the fill areas as required by the Quality Assurance Engineer. Said removed material shall be wasted in locations designated by the Construction Manager.

All stones of such dimensions that interfere with compaction in the layer thicknesses specified, as determined by the Quality Assurance Engineer, shall be removed prior to compaction.

#### 7.10 Conduct of Work

The Contractor shall maintain and protect fills in a condition satisfactory to the Quality Assurance Engineer at all times until the final completion and acceptance of the work. Any approved fill material which becomes unsuitable for any reason whatsoever, after being placed in the fill and before final acceptance of the work, shall be removed and replaced by the Contractor in a manner satisfactory to the Quality Assurance Engineer.

#### 7.11 Access Roads

Permanent access roads shall be constructed as approved by the Owner. Foundation preparation and fill placement for access roads within required fill areas shall be as specified for the fill areas. Fill placement for access roads outside of the required fill areas shall be as approved by the Owner.

Temporary access roads may be required by the Contractor to complete the specified work. The Contractor shall submit a plan showing the location and size of temporary access road fills for the Construction Manager to submit to the Owner for approval.

#### 7.12 Type 1 - Interior Embankment Fill

Interior embankment fill shall be used in the construction of the evaporation ponds, as shown on the Drawings. Type 1 material shall consist of fine grained material, with a maximum particle size of 3/4 inch. It is intended that Type 1 material shall be entirely obtained from the required excavations within the pond area. The fill shall be moisture conditioned to near optimum moisture content (within plus or minus two percent of optimum), placed in 8-inch maximum loose lifts and compacted to a minimum of 95 percent of maximum density as determined by ASTM D-698. The final as-built, in-place thickness of Type 1 material, whether borrowed as fill or prepared in-place, shall be not less than 12 inches.

In areas where native materials exist at grade meeting this Specification, these in-place materials shall be ripped to a depth of 12 inches and reworked with harrow or scarifier to produce a uniform material free of blocks or clumps in excess of six inches in size. The material shall be moisture conditioned to within plus or minus two percent of optimum moisture content and compacted to a minimum of 95 percent of maximum density as determined by ASTM D-698.

Embankment fill on the interior face of the evaporation ponds shall be placed in horizontal lifts wide enough to accommodate placement and compaction with conventional construction equipment to meet Specifications.

Interior embankment fill shall conform to the following material specifications:

U.S. Standard Sieve	Percentage Passing		
or Screen Opening	by Weight		
3/4 inch	100		
No. 4	75-100		
No. 40	20-100		
No. 200	0-40		

#### 7.13 Type 2 - Exterior Embankment Fill

Exterior embankment fill shall be placed on the outer slopes of the pond embankments. The material shall consist of well-graded soil and rock mixtures with a maximum 6-inch rock size, and shall be moisture conditioned as necessary to facilitate proper placement and compaction. Exterior embankment fill shall be placed in 12-inch maximum loose lifts and compacted to a minimum of 95 percent of maximum proctor density as determined by ASTM D-698 where materials are suitable for this test method. For materials meeting the requirements for this test,

a plus or minus two percent of optimum moisture content requirement shall be observed.

For coarse fill which does not meet the criteria for ASTM D-698 testing, a method specification will be employed. The method specification will be based upon a specified number of coverages with a particular piece of equipment as approved by the Engineer. Definition of the method specification may be developed based upon the construction of test fills by the Contractor at the Contractor's own expense.

Exterior embankment fill shall conform to the following material specifications:

U.S. Standard Sieve	Percentage Passing	
or Screen Opening	by Weight	
6 inch	100	
3 inch	70-100	
3/4 inch	40-100	
No. 4	50-100	
No. 40	10-80	
No. 200	0-30	

## APPENDIX D.2

**Geosynthetic Installation** 

# CONOCO SAN JUAN GAS PLANT EVAPORATION PONDS 1 AND 2 TECHNICAL SPECIFICATIONS for GEOSYNTHETICS

Prepared for: Conoco, Inc. San Juan Gas Plant 61 Road 4900 P.O. Box 217 Bloomfield, N.M. 87413

Prepared by: Steffen Robertson and Kirsten (U.S.), Inc. 3232 South Vance Street Lakewood, Colorado 80227

> February 1993 SRK Project No. 58201

## TABLE OF CONTENTS

1.0	INTE	<b>RODUCTION</b>
	1.1	General
	1.2	Scope of Work
	1.3	Definitions
	1.4	Applicable Codes and Regulations 2
2.0	CON	TRACTOR'S RESPONSIBILITY 3
3.0	INSP	PECTION OF WORK 4
	3.1	General
	3.2	Access
	3.3	Examination
	3.4	Samples and Tests
	3.5	Alteration to Drawings and Specifications
4.0	ENV	IRONMENTAL REQUIREMENTS 5
	4.1	Control of Fugitive Dust
	4.2	Limits of Work
5.0	GEO	SYNTHETIC MATERIAL 6
	5.1	General
	5.2	Geotextile
		5.2.1 General
		5.2.2 Physical Properties
		5.2.3 Shipping, Handling and Storage 8
		5.2.4 Acceptance of Foundation
		5.2.5 Pre-Installation Inspection
		5.2.6 Installation
		5.2.7 Seaming 9

## TABLE OF CONTENTS (Continued)

	5.2.8	Repairs
	5.2.9	Contractor's Quality Control 10
	5.2.10	Acceptance
5.3	Second	ary Liner
	5.3.1	General
	5.3.2	Physical Properties 11
	5.3.3	Fabrication
	5.3.4	Shipping, Handling and Storage 13
	5.3.5	Installation
	5.3.6	Field Seaming 14
	5.3.7	Non-Destructive Testing 15
	5.3.8	Destructive Testing
	5.3.9	Repairs
	5.3.10	Contractor's Quality Control
	5.3.11	Acceptance
5.4	Leak D	Detection System
	5.4.1	General
	5.4.2	Physical Properties
	5.4.3	Shipping, Handling and Storage
	5.4.4	Installation
	5.4.5	Acceptance
5.5	Primar	y Liner
	5.5.1	General
	5.5.2	Physical Properties
	5.5.3	Fabrication
	5.5.4	Shipping, Handling and Storage 22
	5.5.5	Installation

## TABLE OF CONTENTS (Continued)

5.5.6	Field Seaming 23
5.5.7	Non-Destructive Testing 24
5.5.8	Destructive Testing 24
5.5.9	Repairs
5.5.10	Contractor's Quality Control
5.5.11	Special Compaction Equipment
5.5.12	Acceptance
5.6	Gas Venting
5.6.1	Installation
FINAL ACCI	EPTANCE
6.1	Walkthrough Inspection
6.2	Water Test

6.0

## **1.0 INTRODUCTION**

#### 1.1 General

The Specifications presented in these Technical Specifications are for the installation of geosynthetic materials within two new evaporation ponds at Conoco's San Juan Gas Plant in Bloomfield, New Mexico.

### 1.2 Scope of Work

The scope of work for these Technical Specifications shall include the installation of a geotextile vapor transmission layer and double synthetic liner with intervening leak detection system for the two new evaporation ponds located at Conoco's San Juan Gas Plant. Specific work items include, but are not limited to the following:

- Mobilization of all equipment and material required for the work;
- Placement of synthetic materials for vapor transmission, liner and leak detection systems on prepared surfaces;
- Furnishing and installing all material and constructing all items appurtenant and incidental to the above;
- Testing of completed facilities; and
- Demobilizing, which includes removal of temporary structures.

The Contractor shall familiarize himself with the relevant regional and site specific conditions which may have an impact upon the work. Data relevant to the overall project are contained in reports in the possession of the Owner, which are available for Contractor review. Of particular relevance to the work is the field investigation data collected by SRK to evaluate foundation conditions and construction materials. Drawings to be read in conjunction with these Specifications are included with this document as Attachment A and are in a series numbered 58201/01 through 58201/03.

In case of discrepancy or ambiguity in the Specifications, Drawings, codes, standards, or regulations, it is the intent of these Specifications that the most restrictive interpretation shall apply unless interpreted otherwise by the Design Engineer.

#### 1.3 Definitions

The following definitions apply to these Specifications.

- a. "Owner" is defined as an authorized representative of Conoco Inc.;
- b. "Construction Manager" is defined as an authorized representative of the Owner responsible for coordinating the activities of the Contractor;
- c. "Quality Assurance Engineer" is defined as a qualified representative appointed and authorized by the Owner to monitor the quality of the completed construction product;
- d. "Design Engineer" is defined as an authorized representative of the Owner who has designed the facilities to be constructed and prepared the plans and specifications;
- e. "Contractor" is defined as the party or parties which have a contract agreement with the Owner or Construction Manager and perform the actual construction activities;
- f. "Specifications" is defined as this document of technical specifications prepared by Steffen Robertson and Kirsten (U.S.), Inc. for Conoco's San Juan Gas Plant Project dated February 1993;
- g. "Drawings" is defined as the drawings in conjunction with these Specifications and are in a series numbered 58201/01 through 58201/03.

#### **1.4** Applicable Codes and Regulations

The work shall conform to applicable Federal, State, County, and local regulations. Test procedures shall conform to applicable ASTM standards, as documented in the edition of the standards in force at the start of work. Liner material and installation shall, where not specifically covered in these Specifications, be to a minimum of that specified in National

specifically covered in these Specifications, be to a minimum of that specified in National Sanitation Foundation Publication No. 54 (NSF54).

## 2.0 CONTRACTOR'S RESPONSIBILITY

The Contractor shall carefully examine all of the Technical Specifications and Drawings, and the site of the work. He shall fully inform himself as to the character of all conditions at the site, local and otherwise, affecting the execution of the work, including those conditions to which Federal, State, and local safety and/or health laws and regulations may be applicable. Failure to comply with the requirements of this section shall not relieve the Contractor of responsibility for complete performance of the work.

It shall be the sole responsibility of the Contractor to familiarize himself, by such means as he considers appropriate, with all matters pertaining to this work including, but not limited to:

- The location and nature of work;
- Climatic conditions;
- The nature and conditions of the terrain;
- Geologic conditions at the site;
- Transportation and communication facilities;
- Other construction at the project site that may be underway simultaneously with the construction work for the two new evaporation ponds; and
- All other factors that may affect the cost, duration, and execution of the work.

Before accepting the work, the Contractor shall acknowledge in writing that he has inspected the site and determined the characteristics of the work and the conditions indicated above.

#### **3.0 INSPECTION OF WORK**

#### 3.1 General

Unless otherwise specified, full-time inspection of all construction activities defined by the Specification will be provided by the Owner. Owner's inspection of all work shall be performed under the supervision and control of the Quality Assurance Engineer or his designated representative while such work is in progress. Said inspections are for the convenience, satisfaction, and benefit of the Owner in determining that the work is performed in strict accordance with the Specifications. It shall be the Contractor's sole responsibility to provide all required materials (both natural and manufactured) and to perform all work in conformance with the Specifications. The Quality Assurance Engineer will inspect, test and report all findings to the Construction Manager. The Construction Manager shall be responsible for enforcing the specifications or initiating variances or design changes through the Design Engineer. Owner's inspections shall not relieve the Contractor of responsibility for the acceptability of the finished work or portions thereof.

### 3.2 Access

The Quality Assurance Engineer and his representatives shall at all times have access to the work whenever it is in preparation or progress provided that they report their presence to the Construction Manager who is responsible for all activities onsite. The Contractor shall fully cooperate with the Quality Assurance Engineer, shall provide proper facilities for access, and shall furnish labor and equipment reasonably needed for safe and convenient inspection, including the excavation of test pits. The Contractor shall give the Quality Assurance Engineer ample notice of readiness of the work for inspection, and the Quality Assurance Engineer shall perform said inspection in such a manner as not to unnecessarily delay the work.

## 3.3 Examination

If any work should be covered up without prior approval or consent of the Quality Assurance Engineer, it must, if required by the Quality Assurance Engineer, be uncovered for examination at the Contractor's cost.



## 3.4 Samples and Tests

It is the intent of these Specifications that materials shall be inspected and tested by the Quality Assurance Engineer before final acceptance of the work. Any item of the work which is found not to meet or exceed the Specifications or which is improperly located or constructed shall be removed and replaced at the Contractor's cost. The Quality Assurance Engineer's inspections and tests shall not relieve the Contractor from full responsibility to furnish and install materials in conformance with these Specifications.

#### **3.5** Alteration to Drawings and Specifications

All alterations made to either the Specifications or Drawings shall be subject to the Design Engineer's approval and, where applicable, to the approval of regulatory government agencies. All alterations shall be issued under a covering work order signed by the Design Engineer.

## 4.0 ENVIRONMENTAL REQUIREMENTS

#### 4.1 Control of Fugitive Dust

During the performance of the work defined by these Specifications or any operations appurtenant thereto, whether on right-of-way provided by the Owner or elsewhere, the Contractor shall furnish all labor, equipment, materials, and means required, and shall perform proper and efficient measures wherever and as required to reduce the dust nuisance, and to prevent dust which has originated from the Contractor's operations from damaging land, vegetation, and dwellings, or causing a nuisance to persons. Dust shall be controlled to a degree acceptable to the appropriate State and Federal agencies, and acceptable to the Construction Manager.

#### 4.2 Limits of Work

The Contractor shall confine his apparatus, the storage of materials, and the operation of workmen to limits indicated by law, ordinances, permits or selected by the Construction Manager, and shall not unreasonably encumber the premises with his materials. Extreme caution shall be exercised at all times to avoid blocking plant or other roads or in any other way

interfering with the Owner's operations or presenting a hazard to the Owner's personnel and equipment, or to the public.

## 5.0 GEOSYNTHETIC MATERIAL

#### 5.1 General

The Contractor shall furnish and install geosynthetic materials including geotextile for vapor transmission, PVC, Hypalon, leak detection system materials and miscellaneous materials incidental thereto in accordance with the manufacturer's recommendations. Installation also includes backfilling of liner anchor trenches, as shown on the Drawings. Alignments, lengths, and areas are shown on or derived from the Drawings. Exact locations and lengths may be varied to suit conditions encountered in the field, as approved by the Quality Assurance Engineer.

Geosynthetic materials to be installed at the two new Evaporation Ponds shall consist of a 36-mil Chlorosulfonated Polyethylene (CSPE) primary liner (Hypalon) and a 30-mil Polyvinyl Chloride (PVC) secondary liner, separated by an intervening leak detection system and all overlying a single layer of 12-oz/yd² nonwoven geotextile. The leak detection system shall consist of geosynthetic drain media placed throughout the area between the primary and secondary liners to create drainage to a fugitive solution collection sump on the pond bottom. The solution collection sump shall be filled with layers of synthetic drain net and fitted with a riser pipe for monitoring and solution removal.

Prior to commencing installation of the flexible membrane linings the Contractor shall submit shop drawings to the Design Engineer for approval. The shop drawings shall show the proposed panel layout, direction of factory seams and panel sizes consistent with the material quantity requirements to cover the lined area as shown on the Drawings. Details shall be included to show the termination of the panels at the perimeter of lined areas and the methods of sealing around penetrations.



## 5.2 Geotextile

#### 5.2.1 General

The Contractor shall furnish and install 12-oz/yd² geotextile to protect the PVC liner and to act as a natural gas vapor transmission system. The geotextile shall be placed directly upon the prepared earthen interior surface of the ponds and extend into the anchor trenches as shown on the Drawings. Protecting the secondary liner against damage by pieces of drain net or by the coarse drain material in the leak detection sump shall also be done using the 12-oz/yd² geotextile. Geotextile shall be suitable and durable for the intended application and shall be 100 percent polyester, nonwoven, needle-punched materials.

#### 5.2.2 Physical Properties

TABLE 1				
Physical Property	Test Method	Unit	Value	
Mass Per Unit Area (nominal)	ASTM D-5199	oz/yd²	12	
Wide Strip Tensile	ASTM D-4595	lb/in	120	
Trapezoidal Tear	ASTM D-4533	lbs	95	
Puncture Resistance	ASTM D-4833	lbs	130	
Permittivity	ASTM D-4491	sec ⁻¹	1.0	
Mullen Burst Strength	ASTM D-3786	psi	425	
Grab Tensile	ASTM D-4632	lbs	250	
ASTM - American Society for Testing and Materials				

Geotextile shall meet or exceed the following minimum roll values:
## 5.2.3 Shipping, Handling and Storage

The Contractor shall be completely responsible for shipping, handling and storage of all geotextile. Geotextile shall be shipped and stored in opaque and water resistant protective coverings. The Contractor shall notify the Quality Assurance Engineer at least 24 hours prior to scheduled delivery and no material shall be unloaded without the presence of the Quality Assurance Engineer. Geotextile delivered to the site shall be inspected for damage and unloaded and stored with minimal handling. Contractor shall assist the Quality Assurance Engineer in conducting inventory, handling and sampling (if required) of geotextile upon delivery to the site.

No hooks, tongs or other sharp tools or instruments shall be used for handling geotextile. The Contractor shall use slings or a pole which extends 1 foot minimum beyond each end to unload or handle geotextile unless otherwise approved by the Quality Assurance Engineer.

Geotextiles shall be protected from ultraviolet light exposure, precipitation or other inundation, soil, mud, dirt, debris, puncture, cutting or other damaging or deleterious conditions. Geotextiles shall not be stored directly on the ground.

### 5.2.4 Acceptance of Foundation

The Quality Assurance Engineer will conduct a walkthrough of the prepared interior earthen surface of the ponds at which time the Contractor shall verify in writing that the earthen surface is acceptable for installation of geotextiles. Also at that time the Contractor shall be responsible for maintenance of the earthen surface to the accepted condition until completion of the project.

#### 5.2.5 Pre-Installation Inspection

No geotextile shall be installed until the supporting earthen surface has been inspected and approved for geotextile installation by the Quality Assurance Engineer. The Contractor shall correct all deficiencies in the earthen surface that have appeared since acceptance of the earthen surface at no additional cost.



#### 5.2.6 Installation

Geotextiles shall be installed as shown on the Drawings and in accordance with these Specifications. No geotextile roll shall be installed without the approval of the Quality Assurance Engineer. All geotextile panels shall be of such lengths and widths and shall be placed in such a manner as to minimize field sewing.

The Contractor shall exercise extreme care during geotextile installation to prevent damage to the prepared earthen surface. The Contractor shall exercise care to prevent the entrapment of rocks, clods of earth or other matter which could damage the geotextile or the subsequent geosynthetic liner, clog the geotextile or hamper sewing. Any geotextile surface showing injury due to penetration by foreign objects or distress shall be replaced or repaired. All geotextile panels shall be adequately ballasted to prevent damage or loss of the geotextile due to wind.

No foot traffic shall be allowed on the geotextile except with approved footwear. No vehicular traffic shall be allowed on the geotextile nor shall the Contractor use the geotextile as a work area or storage area for tools and supplies.

#### 5.2.7 Seaming

All geotextile seams shall be formed by mating the edges of the geotextile panels and sewing together with continuous stitches (locked-stitch) located a minimum of 3 inches from the mated edges. All seaming shall be accomplished by the use of hand operated sewing machines capable of producing a continuous locked-stitch. Sewing procedures shall conform to the latest procedures recommended by the geotextile manufacturer. Spot sewing shall not be allowed. The Contractor shall avoid, wherever possible, placement of horizontal seams on all slopes.

#### 5.2.8 Repairs

Geotextile repairs shall be made with patches (unless otherwise approved by the Quality Assurance Engineer) of the same geotextile material, using approved sewing systems, equipment and techniques. The patch size shall be 24 inches larger in all directions than the area to be repaired. All corners shall be rounded. All stitches shall be located no closer than one inch from the edge of the patch.

9

#### 5.2.9 Contractor's Quality Control

The Contractor shall institute and follow a quality control plan as recommended by the geotextile manufacturer throughout the duration of the project to ensure compliance with the Drawings and these Specifications. As geotextile panels are installed the Contractor shall identify each panel with the manufacturer's roll identification number and date panel was installed. Markings should be made with a waterproof marker which can be easily located and done legibly. All unused portions of geotextile rolls shall also be immediately marked with the roll identification number.

The Contractor shall also maintain as-built drawings which show geotextile panel layout with the identification numbers and date installed. The as-built drawings shall be submitted to the Quality Assurance Engineer on a regular basis throughout the installation process.

## 5.2.10 Acceptance

The Contractor shall retain ownership and responsibility for the geotextile until acceptance by the Owner. The Owner shall accept the geotextile installation when the installation is finished and the adequacy of field seams and repairs have been verified, and testing is complete. Also required are certifications, as-built drawings, and a final inspection carried out by the Quality Assurance Engineer. Any and all work required to facilitate the final inspection, such as cleaning of the geotextile shall be the responsibility of the Contractor. All findings and corrective actions, if required, shall be documented. In certain cases and with the Quality Assurance Engineer's approval, a section of installation may be released for inspection. No geosynthetic liner or other materials shall be installed over the geotextile prior to final acceptance by the Quality Assurance Engineer.

#### 5.3 Secondary Liner

#### 5.3.1 General

The Contractor shall furnish and install 30-mil Polyvinyl Chloride (PVC) flexible membrane liner over the 12-oz/yd² geotextile layer within the pond area as shown on the Drawings. The liner shall be installed in a relaxed condition and shall be free of tension or stress upon completion of the installation. Stretching of the liner to fit will not be allowed. The PVC liner shall be compounded from first quality virgin materials with no regrind or reprocessed materials



added. The liner compound shall be specifically designed for hydraulic structure application and shall have been satisfactorily demonstrated by prior use to be suitable and durable for such purposes. The liner material shall be uniform in color, thickness and surface texture.

# 5.3.2 Physical Properties

Flexible Polyvinyl Chloride (PVC) membrane liner shall meet or exceed the following minimum average values:

	TABLE 2		
Physical Property	Test Method	Unit	Value
Thickness	ASTM D-1593 Para 8.1.3	mils	28.5
Specific Gravity	ASTM D-792 Method A		1.20
Tensile Properties 1. Breaking Factor	ASTM D-882 Method A or B (1 inch wide)	lbs/inch width	69
2. Elongation at Break	ASTM D-882 Method A or B	%	300
3. Modulus at 100% Elongation	ASTM D-882 Method A or B	lbs/inch width	27
Tear Resistance	ASTM D-1004 Die C	lbs	8
Dimensional Stability (each direction)	ASTM D-1204 212 o F, 15 min.	max. % change	5
Water Extraction	ASTM D-3083 *	max. % loss	- 0.35
Volatile Loss	ASTM D-1203 Method A	max. % loss	0.7



Hydrostatic Resistance	ASTM D-751 Method A	lbs/in²	82
Resistance to Soil Burial 1. Breaking Factor	ASTM D-3083 *	max. % change in original value	5
2. Elongation at Break	ASTM D-3083 *	max. % change in original value	20
3. Modulus at 100% Elongation	ASTM D-3083 *	max. % change in original value	20
ASTM - American Society for * As modified by NSF - Natio	Testing and Materials nal Sanitation Foundat	ion - Standard No. 5	4

#### 5.3.3 Fabrication

The individual widths of calendared PVC shall be factory fabricated into large sheets custom designed for this project so as to minimize field seaming. All factory seams shall provide a bond between the sheets sufficiently strong to meet the test requirements of these specifications. The seaming shall be accomplished by the use of dielectric fusion welding. The dielectric weld shall be a nominal one-inch wide (1/2 inch minimum) continuous bond.

The fabricator shall perform 100% continuous visual inspection of each lineal foot of seam as it is produced. Should defects be discovered, the Fabricator shall stop production of panels to be used on this project and rectify the situation prior to continuing production. As evidence that the Fabricator has complied with the inspection requirement, a mark which identifies the Inspector by name or number shall be hand stamped with indelible ink no less frequently than five feet on center along each factory seam. A 48 inch sample shall be taken from each factory seam welding unit used in this work at the beginning of every work shift and every four hours of production thereafter. Samples shall be cut at quarter points from each 48 inch seam sample (a total of three places) and tested for factory seam strength and peel adhesion as specified in the Table below. A log shall be maintained showing the date, time, panel number and test results. This log shall be submitted to the Design Engineer for review prior to the installation of the PVC panels on the project. In addition to the log, the Fabricator shall submit written

certification reports that indicate the material meets all of the requirements for the project as specified in these Specifications to the Design Engineer.

The Fabricator's dielectric fusion welded seams shall meet or exceed the following minimum average values:

	TABLE 3		
Physical Property	Test Method	Unit	Value
1. Bonded Seam Strength (Shear)	ASTM D-3083 *	lbs/in width	55.2
2. Peel Adhesion	ASTM D-413 *	lbs/in	10
Resistance to Soil Burial 1. Bonded Seam Strength (Shear)	ASTM D-3083 *	max. % change in original value	- 20
2. Peel Adhesion		max. % change in original value	- 20
ASTM - American Society for Testi * As modified by NSE - National Sa	ng and Materials	Standard No. 54	

## 5.3.4 Shipping, Handling and Storage

Factory fabricated PVC panels shall be accordion-folded onto a sturdy wooden pallet designed to be moved by a forklift or similar equipment. Each factory fabricated panel shall be prominently and indelibly marked with the panel size. Panels shall be fully enclosed in heavy, water resistant cardboard and protected to prevent damage to the panel during shipment and storage on site. The outside of each container shall also be prominently marked with the panel size.

Panels which have been delivered to the project site shall be stored in their original, unopened containers in a dry area and protected from the direct heat of the sun where possible, especially when stored for a long period of time. Pallets shall not be stacked.

The Contractor shall be completely responsible for shipping, handling and storage of all PVC liner material. The Contractor shall notify the Quality Assurance Engineer at least 24 hours prior to scheduled delivery and no material shall be unloaded without the presence of the Quality Assurance Engineer. Upon delivery to the project the PVC liner material shall be inspected for possible damage, unloaded and stored with minimal handling.

#### 5.3.5 Installation

The PVC liner panels shall be installed as shown on the Drawings and in accordance with these Specifications. No PVC panels shall be installed without the approval of the Quality Assurance Engineer. The PVC panels shall be placed over the previously installed 12-oz/yd² geotextile in such a manner as to assure minimum handling of the PVC panels and to prevent damage to the geotextile. All panels shall be of such lengths and widths and shall be placed in such a manner as to minimize field seaming. Horizontal field seams on the slopes shall be kept to a minimum. Only those panels of liner material which can be anchored and sealed together that same day shall be unpackaged and placed in position.

The liner shall be secured at all times with an approved means of ballasting to protect against possible loss or damage to the material by winds. The Contractor shall exercise care to prevent the entrapment of rocks, clods of earth or other matter which could damage the liner or hamper seaming. Foot traffic shall be kept to a minimum and all parties walking or working upon the liner material shall have approved footwear.

The liner shall be installed in a relaxed condition and shall be free of tension or stress upon completion of the installation. Stretching of the liner to fit will not be allowed.

## 5.3.6 Field Seaming

All field seams shall be Bodied Solvent Bonded Seams as defined by ASTM D-4437. All seaming solvents, caulking and mastics shall be of a type or types recommended by the Manufacturer or Fabricator of the PVC panels and shall be delivered to the project in original containers each with an indelible label bearing the brand name and complete directions as to proper storage and use.

Field seaming shall be discontinued when ambient or sheet temperatures exceed the manufacturer's recommended range for installation. Field lap joints shall be formed by lapping the edges of panels a minimum of six (6) inches. The contact surfaces of panels to be seamed shall be wiped clean to remove all dirt, dust, moisture or other foreign materials which would impair the quality of the completed seam. Sufficient liner to liner bonding solvent shall be applied to the joint area so as to form a continuous solvent weld approximately 2 to 3 inches in width. In applying bonding solvent, care must be taken to tie-in to the end of the previously completed seamed area so that leak paths or weak points in the seam do not occur. The surfaces should be pressed together immediately and a roller or flat wooden paddle used to squeeze the adhesive toward the leading edge of the panel. Any wrinkles shall be smoothed out. A small amount of adhesive should extrude and appear at the edge of the seam to indicate that sufficient bonding solvent has been applied. Excess bonding solvent should be wiped off with a clean rag. Seams shall be inspected after the initial seal and any loose edges shall be resealed, using the same procedure, to eliminate all free edges.

Extreme care shall be taken to avoid fishmouths in the field seams. Where fishmouths do occur, they shall be slit out far enough from the seam to dissipate them, lapped, seamed together in the lapped area and patched. Any portion of the lining damaged during installation, by any cause, shall be removed or repaired by using an additional piece of PVC liner material as specified hereinafter.

#### 5.3.7 Non-Destructive Testing

Upon completion of the liner installation, the Contractor shall fully test all solvent bonded seams and penetration seals using an air lance tester or other method approved by the Quality Assurance Engineer. Any doubtful areas shall be tested with a vacuum box tester or other device as directed by the Quality Assurance Engineer. All non-destructive testing shall be in accordance with ASTM D-4437 and shall be observed by the Quality Assurance Engineer. Once air lance and/or vacuum box testing of the seams and penetration seals is complete the Contractor and Quality Assurance Engineer shall together visually inspect the lining surface for possible damage due to scuffing, penetration by foreign objects, distress, or other conditions which may be detrimental to the intended performance of the lining system. Should any detrimental conditions be discovered the Contractor shall remedy such damage as directed by the Quality Assurance Engineer.

#### 5.3.8 Destructive Testing

Destructive tests shall be performed in accordance with ASTM D-4437 to evaluate seam strength and to estimate long-term performance. Destructive seam testing shall be performed at selected intervals, at least one test per 500 lineal feet of field seam. Individual samples may be taken at greater or lesser intervals. If the number of failed destructive samples exceeds five percent of the tested samples, the testing frequency may be increased at the direction of the Quality Assurance Engineer. Test locations shall be determined at the Quality Assurance Engineer's discretion and specimens shall be removed by the Contractor while being observed by the Quality Assurance Engineer.

Destructive samples shall measure two feet along and parallel to the seam and shall be wide enough to accommodate peel and shear testing. Should results of either the shear or peel tests fall below the minimum requirements, additional destructive samples will be obtained and tested. The additional destructive samples shall be obtained 10 feet each direction along the field seam from the failing sample location. This procedure will be repeated until the limits of the poor quality seam has been determined. The Contractor may, however, elect to cap strip the entire length of seam at any time during the re-sampling and testing process to avoid further construction delays. Should destructive re-sampling be required the Contractor will repair the test sample locations by a single cap strip cut sufficient in length to extend a minimum of 12 inches beyond the outer sampled locations.

#### 5.3.9 Repairs

Any repairs to the installed lining system shall be by patching. Patches shall consist of the same material type as that requiring repair. The patch shall have rounded corners and shall be of sufficient size in order that it extends a minimum of four inches in each direction from the limits of the damaged area. All patches shall be mated to the lining in the same manner used to construct the field seams. Non-destructive testing of the patch shall be accomplished in the same manner as that described above.

## 5.3.10 Contractor's Quality Control

The Contractor shall institute and follow a quality control plan as recommended by the PVC manufacturer throughout the duration of the project to ensure compliance with the Drawings and

these Specifications. As PVC lining panels are installed the Contractor shall identify each panel with the manufacturer's identification number and date panel was installed. Markings should be made with a waterproof marker which can be easily located and done legibly.

The Contractor shall also maintain as-built drawings which show installed panel layouts with the identification numbers and date installed. The as-built drawings shall be submitted to the Quality Assurance Engineer on a regular basis throughout the installation process.

## 5.3.11 Acceptance

The Contractor shall retain ownership and responsibility for the PVC lining until acceptance by the Owner. The Owner shall accept the PVC installation when the installation is finished and the adequacy of field seams and repairs have been verified, and testing is complete. Also required are certifications, as-built drawings and a final inspection carried out by the Quality Assurance Engineer. Any and all work required to facilitate the final inspection, such as cleaning of the installed lining shall be the responsibility of the Contractor. All findings and corrective actions, if required, shall be documented. In certain cases and with the Quality Assurance Engineer's approval, a section of installation may be released for inspection. Installation of drain net or other materials over the PVC lining prior to final acceptance by the Quality Assurance Engineer shall be at the sole risk of the Contractor. Removal and replacement of such material in the event of a reported failure of a destructive test result on the PVC will be at the Contractor's expense.

#### 5.4 Leak Detection System

#### 5.4.1 General

The Contractor shall furnish and install drain net material and a 6-inch diameter PVC schedule 80 pipe at each of the two evaporation ponds as shown on the Drawings and as specified in these Specifications. Drain net material shall be installed within the ponds between the 30-mil Polyvinyl Chloride (PVC) secondary liner and the subsequent 36-mil Chlorosulfonated Polyethylene (CSPE) primary liner. The drain net shall be installed so as to transport collected fugitive solution to the leak detection sump in the bottom of each pond as shown on the Drawings. The PVC pipe shall be perforated along the portion within the leak detection sump and will penetrate the subsequent 36-mil (CSPE) primary liner as the pipe extends upward to the



crest of the pond. Individual layers of the drain net material shall be cut to fit the configuration of the sump as they are stacked upon each other for the full depth of the sump as shown in the Drawings.

Drain net shall be made from medium density polyethylene and shall have a rhomboidal mesh configuration consisting of two sets of parallel strands. The intersecting strands shall form two overlaid sets of continuous deep channels which provide high flow capacity.

## 5.4.2 Physical Properties

	TABLE 4		
Physical Property	Test Method	Unit	Value
Thickness	ASTM D-1777 (10 kPa loading)	mm	5.2
Crush Strength	ASTM D-1621	lb/in²	89
Transmissivity	ASTM D-4716 (10 kPa)	m²/s	.0046
ASTM - American Socie	ty for Testing and Material	S	

Drain net material shall meet or exceed the following values:

## 5.4.3 Shipping, Handling and Storage

The Contractor shall be completely responsible for shipping, handling and storage of all drain net material. The Contractor shall notify the Quality Assurance Engineer at least 24 hours prior to scheduled delivery and no material shall be unloaded without the presence of the Quality Assurance Engineer. Upon delivery to the project the drain net material shall be inspected for possible damage, unloaded and stored with minimal handling.

#### 5.4.4 Installation

During installation of the drain net material the Contractor shall exercise care to prevent the entrapment of rocks or other matter which could damage the liner materials or hamper the performance of its intended use in the leak detection system. The drain net material shall be stretched by hand to minimize wrinkle formation but shall be free of stress or tension upon completion of installation. Adequate ballasting to protect against possible wind damage during the installation process shall be maintained by the Contractor. Drain nets shall be overlapped by at least four inches and connected with approved plastic fasteners. Connections shall be a maximum of five feet on center along the sides and a maximum of two feet on center along the sides and a maximum of two feet on center along the taken to keep the net as clean as possible and to minimize foot traffic.

#### 5.4.5 Acceptance

A visual inspection of the drain net will be conducted by the Quality Assurance Engineer upon completion of the installation of the drain net material. The Quality Assurance Engineer shall verify the Contractor's installation of the drain net has been completed as per the Drawings and Specifications.

#### 5.5 **Primary Liner**

#### 5.5.1 General

The Contractor shall furnish and install 36-mil reinforced Chlorosulfonated Polyethylene (CSPE) flexible membrane liner over the drain net layer within the pond area as shown on the Drawings and as specified in these Specifications. The liner shall be installed in a relaxed condition and shall be free of tension or stress upon completion of the installation. Stretching of the liner to fit will not be allowed. The CSPE liner shall be compounded from first quality virgin materials with no regrind or reprocessed materials added. The lining material shall consist of two calendared plies of synthetic membrane laminated over one ply of polyester reinforcing fabric. The reinforcing fabric shall be a 10 x 10-1000 denier woven polyester. The liner compound shall be specifically designed for hydraulic structure application and shall have been satisfactorily demonstrated by prior use to be suitable and durable for such purposes. The finished lining shall be a sunlight and weather resistant membrane that is flexible, durable, watertight and free from



pinholes, blisters, and contaminants. The membrane shall be manufactured by the calendaring process and shall be uniform in color, thickness and surface texture.

## 5.5.2 Physical Properties

Flexible Chlorosulfonated Polyethylene (CSPE) membrane liner shall meet or exceed the following minimum values:

	TABLE 5		
Physical Property	Test Method	Unit	Value
Reinforcing Plies			l
Thickness 1. Overall	ASTM D-751	mils	34
2. Over Scrim	NSF Optical Method	mils	11
Breaking Strength -Fabric	ASTM D-751 Method A	lbs	200
Tear Strength 1. Initial	ASTM D-751 *	lbs	80
2. After Aging	ASTM D-751 * 30 days @ 212°F	lbs	35
Low Temperature	ASTM D-2136 1/8 in. mandrel, 4 hrs., Pass	°F	- 40
Dimensional Stability (each direction)	ASTM D-1204 212°F, 1 hr.	max. % change	2
Hydrostatic Resistance	ASTM D-751 Method A, Proc. 1	lbs/in²	250





Ply Adhesion (each direction)	ASTM D-413 Machine Method Type A	lbs/in. width	8
ASTM - American Society f	or Testing and Materi	als	· · ·
* As modified by NSF - Na	tional Sanitation Found	dation - Standard 54	

#### 5.5.3 Fabrication

The individual widths of calendared CSPE shall be factory fabricated into large sheets custom designed for this project so as to minimize field seaming. All factory seams shall provide a bond between the sheets sufficiently strong to meet the test requirements of these specifications. The seaming shall be accomplished by the use of dielectric fusion welding. The dielectric weld shall be a nominal one-inch wide (1/2 inch minimum) continuous bond.

The fabricator shall perform 100% continuous visual inspection of each lineal foot of seam as it is produced. Should defects be discovered, the Fabricator shall stop production of panels to be used on this project and rectify the situation prior to continuing production. As evidence that the Fabricator has complied with the inspection requirement, a mark which identifies the Inspector by name or number shall be hand stamped with indelible ink no less frequently than five feet on center along each factory seam. A 48 inch sample shall be taken from each factory seam welding unit used in this work at the beginning of every work shift and every four hours of production thereafter. Samples shall be nondestructive, i.e., they will not require patching of fabricated panels. Test specimens shall be cut at quarter points from each 48 inch seam sample (a total of three places) and tested for factory seam strength and peel adhesion as specified in the Table below. A log shall be maintained showing the date, time, panel number and test results. This log shall be submitted to the Design Engineer for review prior to the installation of the CSPE panels on the project. In addition to the log, the Fabricator shall submit written certification reports that indicate the material meets all of the requirements for the project as specified in these Specifications to the Design Engineer.

The Fabricator's dielectric fusion welded seams shall meet or exceed the following minimum average values:



	TABLE 6		
Physical Property	Test Method	Unit	Value
Bonded Seam Strength (Shear)	ASTM D-751 *	lbs	160
Peel Adhesion	ASTM D-413 *	lbs/in	Ply separation in plane of scrim or 10 lb
ASTM - American Society for T * As modified by NSF - Nation:	esting and Material al Sanitation Found:	ls ation - Star	ndard 54

#### 5.5.4 Shipping, Handling and Storage

Factory fabricated CSPE panels shall be accordion-folded onto a sturdy wooden pallet designed to be moved by a forklift or similar equipment. Each factory fabricated panel shall be prominently and indelibly marked with the panel size. Panels shall be fully enclosed in heavy, water resistant cardboard and protected to prevent damage to the panel during shipment and storage on site. The outside of each container shall also be prominently marked with the panel size.

Panels which have been delivered to the project site shall be stored in their original, unopened containers in a dry area and protected from the direct heat of the sun where possible, especially when stored for a long period of time. Pallets shall not be stacked.

The Contractor shall be completely responsible for shipping, handling and storage of all CSPE liner material. The Contractor shall notify the Quality Assurance Engineer at least 24 hours prior to scheduled delivery and no material shall be unloaded without the presence of the Quality Assurance Engineer. Upon delivery to the project the CSPE liner material shall be inspected for possible damage, unloaded and stored with minimal handling.

#### 5.5.5 Installation

The CSPE liner panels shall be installed as shown on the Drawings and in accordance with these Specifications. No CSPE panels shall be installed without the approval of the Quality Assurance



Engineer. The CSPE panels shall be placed over the previously installed drain net material in such a manner as to assure minimum handling of the CSPE panels and to prevent damage to the geosynthetic materials. All panels shall be of such lengths and widths and shall be placed in such a manner as to minimize field seaming. Horizontal field seams on the slopes shall be kept to a minimum. Only those panels of liner material which can be anchored and sealed together that same day shall be unpackaged and placed in position.

The liner shall be secured at all times with an approved means of ballasting to protect against possible loss or damage to the material by winds. The Contractor shall exercise care to prevent the entrapment of rocks, clods of earth or other matter which could damage the liner or hamper seaming. Foot traffic shall be kept to a minimum and all parties walking or working upon the liner material shall have approved footwear.

Lining sheets shall be closely fit and sealed around inlets, outlets and other projections through the lining. All piping, structures and other projections through the lining shall be sealed with approved sealing methods.

The liner shall be installed in a relaxed condition and shall be free of tension or stress upon completion of the installation. Stretching of the liner to fit will not be allowed.

#### 5.5.6 Field Seaming

All seaming adhesives, mastics and sealants shall be of a type or types recommended by the manufacturer or fabricator of the CSPE panels and shall be delivered to the project in original containers each with an indelible label bearing the brand name and complete directions as to proper storage and use.

Field seaming shall be discontinued when ambient or sheet temperatures exceed the manufacturer's recommended range for installation. Field lap joints shall be formed by lapping the edges of panels a minimum of six (6) inches. The contact surfaces of panels to be seamed shall be wiped clean to remove all dirt, dust, moisture or other foreign materials which would impair the quality of the completed seam. A pre-wipe solution of a type recommended by the manufacturer or fabricator shall be used to remove the surface cure on the contact surfaces. Scrubbing of the membrane with the pre-wipe solution shall be completed not more than ten minutes prior to application of the sealing adhesive.

Sufficient liner to liner bonding adhesive shall be applied to the joint area so as to form a continuous weld. A minimum 3-inch width of reinforced fabric overlap shall be fully bonded. In applying adhesive, care must be taken to tie-in to the end of the previously completed seamed area so that leak paths or weak points in the seam do not occur. The surfaces should be pressed together immediately and a roller or flat wooden paddle used to squeeze the adhesive toward the leading edge of the panel. Any wrinkles shall be smoothed out. A small amount of adhesive should extrude and appear at the edge of the seam to indicate that sufficient bonding solvent has been applied. Excess adhesive should be wiped off with a clean rag. Seams shall be inspected after the initial seal and any loose edges shall be resealed, using the same procedure, to eliminate all free edges. Exposed scrim along all edges shall be caulked or flood coated with seaming adhesive.

Extreme care shall be taken to avoid fishmouths in the field seams. Where fishmouths do occur, they shall be slit out far enough from the seam to dissipate them, lapped, seamed together in the lapped area and patched. Any portion of the lining damaged during installation, by any cause, shall be removed or repaired by using an additional piece of CSPE liner material as specified hereinafter.

### 5.5.7 Non-Destructive Testing

Upon completion of the liner installation, the Contractor shall fully test all solvent bonded seams and penetration seals using an air lance tester or other method approved by the Quality Assurance Engineer. Any doubtful areas shall be tested with a vacuum box tester or other device as directed by the Quality Assurance Engineer. All non-destructive testing shall be in accordance with ASTM D-4437 and shall be observed by the Quality Assurance Engineer. Once air lance and/or vacuum box testing of the seams and penetration seals is complete the Contractor and Quality Assurance Engineer shall together visually inspect the lining surface for possible damage due to scuffing, penetration by foreign objects, distress, or other conditions which may be detrimental to the intended performance of the lining system. Should any detrimental conditions be discovered the Contractor shall remedy such damage as directed by the Quality Assurance Engineer.

#### 5.5.8 Destructive Testing

Destructive tests shall be performed in accordance with ASTM D-4437 to evaluate seam strength

and to estimate long-term performance. Destructive seam testing shall be performed at selected intervals, at least one test per 500 lineal feet of field seam. Individual samples may be taken at greater or lesser intervals. If the number of failed destructive samples exceeds five percent of the tested samples, the testing frequency may be increased at the direction of the Quality Assurance Engineer. Test locations shall be determined at the Quality Assurance Engineer's

discretion and specimens shall be removed by the Contractor while being observed by the Quality Assurance Engineer.

Destructive samples shall measure two feet along and parallel to the seam and shall be wide enough to accommodate peel and shear testing. Should results of either the shear or peel tests fall below the minimum requirements, additional destructive samples will be obtained and tested. The additional destructive samples shall be obtained 10 feet each direction along the field seam from the failing sample location. This procedure will be repeated until the limits of the poor quality seam has been determined. The Contractor may, however, elect to cap strip the entire length of seam at any time during the re-sampling and testing process to avoid further construction delays. Should destructive re-sampling be required the Contractor will repair the test sample locations by a single cap strip cut sufficient in length to extend a minimum of 12 inches beyond the outer sampled locations.

## 5.5.9 Repairs

Any repairs to the installed lining system shall be by patching. Patches shall consist of the same material type as that requiring repair. The patch shall have rounded corners and shall be of sufficient size in order that it extends a minimum of four inches in each direction from the limits of the damaged area. All patches shall be mated to the lining in the same manner used to construct the field seams. Exposed scrim at patch edges shall be caulked or flood coated with seaming adhesive. Non-destructive testing of the patch shall be accomplished in the same manner as that described above.

#### 5.5.10 Contractor's Quality Control

The Contractor shall institute and follow a quality control plan as recommended by the CSPE manufacturer throughout the duration of the project to ensure compliance with the Drawings and these Specifications. As CSPE lining panels are installed the Contractor shall identify each panel



25

with the manufacturer's identification number and date panel was installed. Markings should be made with a waterproof marker which can be easily located and done legibly.

The Contractor shall also maintain as-built drawings which show installed panel layouts with the identification numbers and date installed. The as-built drawings shall be submitted to the Quality Assurance Engineer on a regular basis throughout the installation process.

#### 5.5.11 Special Compaction Equipment

Only hand-guided mechanical tampers, hand-guided vibratory rollers, or a suitable smooth tired vehicle shall be used for compaction of the backfill material comprising the initial lift in the anchor trenches. Wheel rolling may be done on the final lift of anchor trench backfill material provided the rubber-tired equipment used is of sufficient size so as to obtain suitable compaction.

#### 5.5.12 Acceptance

The Contractor shall retain ownership and responsibility for the CSPE lining until acceptance by the Owner. The Owner shall accept the CSPE installation when the installation is finished and the adequacy of field seams and repairs have been verified, and testing is complete. Also required are certifications, as-built drawings and a final inspection carried out by the Quality Assurance Engineer. Any and all work required to facilitate the final inspection, such as cleaning of the installed lining shall be the responsibility of the Contractor. All findings and corrective actions, if required, shall be documented. In certain cases and with the Quality Assurance Engineer's approval, a section of installation may be released for inspection. No other materials shall be installed over the CSPE lining prior to final acceptance by the Quality Assurance Engineer.

## 5.6 Gas Venting

#### 5.6.1 Installation

The Contractor shall install natural gas vents near the crest of each pond as shown on the drawings. Installation of the vents shall not commence until backfilling of the anchor trench has been completed and approved by the Quality Assurance Engineer.



## 6.0 FINAL ACCEPTANCE

## 6.1 Walkthrough Inspection

The Contractor shall retain ownership and responsibility for the installed geosynthetics until acceptance by the Owner. The Owner shall accept the geosynthetics installation when the installation is finished and the adequacy of field seams and repairs has been verified, and physical testing of the liner is complete. Also required are certifications, as-built drawings, and a final inspection carried out by the Quality Assurance Engineer. Any and all work required to facilitate the final inspection, such as cleaning of the liner shall be the responsibility of the Contractor. The construction area shall be cleaned of remnant pieces of liner, debris, and garbage before acceptance. The inspection procedures shall be as follows:

- The Quality Assurance Engineer shall be informed of readiness for final inspection when installation is finished;
- In certain cases and with the Quality Assurance Engineer's approval, a section of installation may be released for inspection;
- Seams, panel surfaces, and repairs shall be visually inspected during the inspection;
- Defects, suspicious looking welds, permanent wrinkles, and bridging shall be distinctively marked for repair;
- Findings and corrective actions shall be documented;
- Arrangements for subsequent final inspection shall be made after corrective actions have been completed; and
- The results of final inspection shall be documented.

## 6.2 Water Test

Upon completion of the pond installations and final inspection, a full capacity water test will be



performed. The water test will be performed during the installer's warranty period covering workmanship. The pond will be filled by the Owner and Owner's equipment and the test shall be monitored and documented.

#### Test Procedure

The following items will be performed to conduct the water test:

- Any water which may have entered the sump, or accumulated between the liners due to rain or runoff, will be removed with a submersible pump;
- The volume of the sump will be calculated to indicate volume versus depth of water in the sump;
- A monitoring rod will be calibrated with the slope angle to indicate depth of water in the sump;
- Water level marks at 1-ft intervals will be painted on the slope of the pond;
- During the filling of the pond, monitoring of the sump will be performed. Owner will document the time of all readings, water level in the pond, and in the sump;
- The results will be plotted, and a report will be prepared by or for submission to the Design Engineer; and
- If any leak is detected in the system, the pond shall be pumped out by the Owner, the leak shall be located and repaired by the Contractor, and another water test shall be performed until no leaks are detected.

In the event that areas of the installation are accepted following the inspection, the Contractor shall have no access to or right-of-way through the accepted area. In any and all instances in which the Contractor, the Contractor's personnel, or Contractor's Subcontractors enter an accepted area, the said area will be subject to cancellation of acceptance and any subsequent inspection repair, and acceptance procedures shall be the responsibility of the Contractor.



APPENDIX E

Laboratory and Field Test Summary for Earthwork Construction

# POND EARTHWORK CONSTRUCTION



Plate 1 - Pond 1 Construction



Plate 2 - Pond I Slope Grading

# POND EARTHWORK CONSTRUCTION (Cont'd)



Plate 3 - Pond 1



Plate 4 - Compaction

# POND EARTHWORK CONSTRUCTION (Cont'd)



Plate 5 - Pond 2 Construction



Plate 6 - Pond 2 Grading

	STEFFEN ROBERTS	ON & KI	RSTEN	JOB.: 58201	DA	ILY SUMM.	ARY OF FI Date: /	IELD MOIS 2/5/93 THRU	TURE / 2/11/93	DENSITY T PAG	ESTING PAGE 1
	Consulting Enginee	rs & Scie	entists	SUBJECT: FEATURE:	: CONOCO { : EVAPORAT	SAN JUAN G	AS PLANT				
		DEPTH		ELD TEST RE	SULTS	LAB RE	SULTS	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	ğ	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	ğ	SPEC.	RCD.
0 N	-	ELEV.	(PCF)	(PCF)	%	DEN.PCF	*	* Nor S	FAIL	%	*
	WEST BERM	(FT.)									
-		N.G.	109.4	98.0	11.6	116.4	11.9	z	FAIL	95	84
46 77	WEST BERM				(	(			l	L	
<u>-</u>		5.N	118.2	0.001	B.11	116.4	6.11	z	FAIL	ક	6
1-B	WESI BERM	N.G.	124.8	111.0	12.4	116.4	11.9	z	PASS	95	95
	SOUTH BERM										
2		N.G.	130.0	114.8	13.2	116.4	11.9	z	PASS	95	66
	WEST BERM										
e		+	123.6	112.1	10.3	116.4	11.9	z	PASS	95	96
	EAST BERM										
4		Ŋ.G.	126.6	112.0	13.0	117.3	11.6	Z	PASS	95	96
	WEST BERM										
2		+1.5	126.7	111.5	13.6	117.3	11.6	z	PASS	95	95
G	SOUTH BERM	+.8	127.6	114.4	11.5	117.3	11.6	z	PASS	<u>95</u>	98
~	SOUTH BERM	+1.5	131.4	116.7	12.6	117.3	11.6	z	PASS	95 25	66
	NORTH BERM	+ 1- 1-	106.4	87.9	21.1	117.3	11 F	z	FAIL	0Y	76
g	= Total number of tests			)   					AVER	AGE -	
REM	ARKS: TEST 1 AND RETE	ST 1-A FAI	LED. CONTR	ACTOR WAS	NOTIFIED.						
RETES	<b>I 1-B PASSED AFTER MOF</b>	RE COMPA	CTIVE EFFO	зт.	TEST NUMBI	ER 8 FAILED.	CONTRAC	RACTOR WA	S NOTIFI	ED.	ARE WAS
WAS RI	PPED TO A DEPTH OF API	PROXIMAT	ELY ONE FO	OT AND ALL	OWED TO DF	IY BACK.		SEE RETESI	- 8-A.		
Z ∥ ×	uclear, S = Sand cone										

ļ

					DA	ILY SUMM.	ARY OF F	IELD MOIS	TURE /	DENSITY 1	ESTING
	STEFFEN ROBERTS	ON & KI	RSTEN	JOB.: 58201	_		DATE: /	2/11/93 THR	2	2-12-93	PAGE 2
	Consulting Enginee	rs & Scii	entists	SUBJECT:	: CONOCO (	SAN JUAN G	<b>AS PLANT</b>				
				FEATURE:	: EVAPORAT	ION POND 2					
		DEPTH	FI	ELD TEST RE	SULTS	LAB RE	SULTS	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	or	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	٩	SPEC.	RCD.
ÖN	-	ELEV.	(PCF)	(PCF)	%	DEN.PCF	%	* N or S	FAIL	%	*
8-A	NORTH BERM	(FT.) N.G.	128.6	112.6	14.2	117.3	11.6	z	PASS	<b>3</b> 6	8
σ	WEST BERM	+2.3	121.5	107.7	12.8	117.3	11.6	Z	FAIL	<u> 56</u>	92
<b>A</b> -9	WEST BERM	+2.3	129.1	115.0	12.3	117.3	11.6	z	PASS	<u> 35</u>	86
10	EAST BERM	+0.8	124.3	107.4	12.3	117.3	11.6	Z	FAIL	<u> 56</u>	92
10A	EAST BERM	+ 0.8	129.7	116.0	1.8	117.3	11.6	z	PASS	95	66
11	SOUTH BERM	+2.5	129.3	114.9	12.5	117.3	11.6	z	PASS	95	86
12	WEST BERM	+4.0	123.8	111.0	11.6	117.3	11.6	z	PASS	95	95
13	WEST BERM	+5.0	128.9	112.2	14.9	117.3	11.6	z	PASS	95	96
14	WEST BERM	+6.0	128.4	112.3	14.3	117.3	11.6	z	PASS	95	96
15	NORTH BERM	+ 0.8	129.6	114.8	12.9	117.3	11.6	z	PASS	95	86
10	= Total number of tests								AVER	AGE =	
REM	<b>ARKS: ALL FAILING TEST</b>	IS WERE F	REPORTED IN	<b>IEDIATELY T</b> (	O THE CONTI	RACTOR.		THE CONTR	ACTOR	CORRECTIVI	
ACTION	AFTER WHICH RETESTS	WERE TA	KEN UNTIL T	HE AREA OR	E ORIGINAL	TESTED ARE	A PASSED	SED THE SP	ECIFICA	TION.	<u></u>
14 ×	indone S - Sand cone										
	UCIERI, O = Odilu vulte										

					DAI	ILY SUMM	ARY OF FI	ELD MOIS	TURE / I	DENSITY T	ESTING
STEFFE	EN ROBERTSON AND	<b>KIRSTI</b>	N	JOB.: 58201			DATE: /	2/12/93	THRU	2/13	PAGE 3
Consult	ting Engineers and So	cientists		SUBJECT:	: CONOCO S	AN JUAN GA	<b>NS PLANT</b>				
				FEATURE:	: EVAPORAT	ION POND 2					
		DEPTH	FIE	ELD TEST RE	SULTS	LAB RE	SULTS	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	o	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	or	SPEC.	RCD.
NO.		ELEV.	(PCF)	(PCF)	*	DEN.PCF	%	* NorS	FAIL	%	8
15	NORTH BERM	(FT.) +0.8	129.6	114.8	12.9	117.3	11.6	z	PASS	95	86
16	SOUTH BERM	+2.5	124.9	111.3	12.2	117.3	11.6	z	PASS	95	95
17	WEST BERM	+6.5	127.5	112.5	13.3	117.3	11.6	z	PASS	95	96
18	WEST BERM	+ 7.0	130.3	115.7	12.6	117.3	11.6	z	PASS	<u> 65</u>	66
19	SOUTH BERM	+3.5	127.1	111.2	14.3	117.3	11.6	z	PASS	<u> 65</u>	95
20	WEST BERM	+7.5	124.4	113.1	9.9	117.3	11.6	z	PASS	95	<i>9</i> 6
21	NORTH BERM	+1.8	127.8	112.1	14.0	117.3	11.6	z	PASS	95	96
22	SOUTH BERM	+4.2	129.2	113.6	13.7	117.3	11.6	z	PASS	95	67
23	SOUTH BERM	+5.0	126.1	111.8	14.3	117.3	11.6	z	PASS	95	95
24	NORTH BERM	+3.0	128.2	112.6	13.8	117.3	11.6	z	PASS	95	8
10	= Total number of tests								AVER	AGE =	
REM	<b>ARKS: ALL FAILING TEST</b>	'S WERE F	REPORTED IN	<b>IEDIATELY TC</b>	D THE CONT	ACTOR.		THE CONTR	ACTOR	CORRECTIVE	
ACTION	<b>V AFTER WHICH RETESTS</b>	WERE TA	Ken until Ti	HE AREA OR	E ORIGINAL	TESTED ARE	A PASSED	SED THE SP	ECIFICAT	lion.	
N = N *	uclear, S = Sand cone										

L

ł

					DA	ILY SUMM.	ARY OF F	<b>ELD MOIS</b>	TURE /	DENSITY T	ESTING
STEFFI	EN ROBERTSON ANI	<b>XIRSTE</b>	Z	JOB.: 58201			DATE;	2/13/93	THRU	2/24/93	PAGE 4
Consul	ting Engineers and S	cientists		SUBJECT:	: CONOCO S	SAN JUAN G	AS PLANT				
				FEATURE:	: EVAPORAT	ION POND 2	1 AND 2				
		DEPTH	FIELD TEST			<b>PROCTOR V</b>	ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	õ	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	Q	SPEC.	RCD.
o N		ELEV.	(PCF)	(PCF)	%	DEN.PCF	%	* NorS	FAIL	*	*
	NORTH BERM	(FT.)									
26	POND TWO	+4.0	126.7	113.2	11.9	117.3	11.6	z	PASS	95	97
	WEST BERM	FINISH									
27	OWT DNO9	GRADE	128.4	113.1	13.5	117.3	11.6	z	PASS	95	96
	NORTH BERM										
28	POND TWO	+5.0	127.9	110.2	16.1	117.3	11.6	z	FAIL	95	94
	NORTH BERM										
28-A	POND TWO	+5.0	128.4	111.0	15.7	117.3	11.6	z	PASS	95	95
	SOUTH BERM										
29	POND TWO	+ 7.0	130.1	115.3	12.9	117.3	11.6	z	PASS	95	<del>8</del> 6
	NORTH BERM										
30	POND TWO	+6.0	130.3	114.7	13.7	117.3	11.6	z	PASS	95	<b>8</b> 6
	SOUTH BERM										
31	POND TWO	+7.5	129.0	113.5	13.6	117.3	11.6	z	PASS	95	97
	SOUTH BERM										
32	POND TWO	+8.0	130.0	114.4	13.6	117.3	11.6	Z	PASS	95	98
	NORTH BERM	!									
33	POND TWO	+7.0	127.5	111.3	14.6	117.3	11.6	Z	PASS	95	95
	SOUTH BERM		1								
34	POND ONE	N.G.	122.3	112.0	9.2	117.3	11.6	z	PASS	95	96
10	= Total number of tests								AVER	AGE =	
REM	<b>ARKS: ALL FAILING TEST</b>	IS WERE R	EPORTED IM	EDIATELY TO	D THE CONTR	ACTOR.		THE CONTR	ACTOR	CORRECTIVE	
ACTION	<b>NAFTER WHICH RETESTS</b>	WERE TAI	KEN UNTIL TI	HE AREA OR	E ORIGINAL	TESTED ARE	A PASSED	SED THE SP	ECIFICAT	rion.	
N ≡ N *	luclear, S = Sand cone										

L

i.

Į

STEFFE	<b>IN ROBERTSON ANE</b>	) KIRSTE	Z	JOB.: 58201	ΡΠ	ILY SUMM	ahy up hi date:	16LD MUIS 2/24/93	THRU	DENSILY I	ESTING page 5
Consult	ting Engineers and Se	cientists		SUBJECT:	: CONOCO 5	SAN JUAN G	AS PLANT	-			2
				FEATURE:	: EVAPORAT	ION POND 2	1 AND 2				
		DEPTH	FIELD TEST			PROCTOR V	'ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	ō	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	o	SPEC.	RCD.
NO.		ELEV.	(PCF)	(PCF)	*	DEN.PCF	*	* NorS	FAIL	%	*
35	WEST BERM POND ONE	(FT.) GRADF	127.0	113.9	115	117.3	116	z	PASS	95	۵7
36	EAST BERM					2		•		8	5
	POND ONE	N.G.	129.9	115.3	12.6	117.3	11.6	z	PASS	95	
37	SOUTH RAMP										
	POND 1 & 2	N.G.	131.4	116.6	12.7	117.3	11.6	z	PASS	95	66
	EAST BERM										
38	POND ONE	+0.8	126.4	112.0	12.9	117.3	11.6	z	PASS	95	95
	SOUTH BERM										
39	POND TWO	N.G.	130.6	115.9	12.7	117.3	11.6	z	PASS	95	66
	= Total number of tests								AVER	AGE =	
REM	<b>ARKS: ALL FAILING TEST</b>	<b>TS WERE R</b>	EPORTED IN	<b>IEDIATELY T(</b>	<b>THE CONT</b>	RACTOR.		THE CONTR	ACTOR	CORRECTIVI	
ACTION	<b>VAFTER WHICH RETESTS</b>	WERE TA		HE AREA OR	E ORIGINAL	TESTED ARE	EA PASSED	SED THE SP	ECIFICA	TION.	
	S - Sand cone										

					DA	ILY SUMM	ARY OF F	IELD MOIS	TURE /	<b>DENSITY T</b>	ESTING
STEFFE	IN ROBERTSON AND	<b>KIRSTI</b>	N	JOB.: 58201			DATE;	3/18/93	THRU	3/19/93	PAGE 6
Consult	ing Engineers and So	cientists		SUBJECT:	: CONOCO E	SAN JUAN G	<b>AS PLANT</b>				
				FEATURE:	POND ONE	AREA CON	AMINATIO	N REMEDIATI	NO		
		ELEV.	FIELD TEST			PROCTOR V	ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	FROM	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	o	SPEC.	RCD.
NO	-	ROCK	(PCF)	(PCF)	%	DEN.PCF	%	* Nor S	FAIL	%	*
40	POND ONE AREA N/E BACKFILL	(FT.) 1.5	121.2	109.8	10.4	118.8	10.5	z	PASS	85	92
41	•	2.0	120.5	109.5	10.0	118.8	10.5	z	PASS	82	92
42	-	2.5	120.7	10.1	9.6	118.8	10.5	z	PASS	35	63
43	-	3.0	120.0	108.7	10.3	118.8	10.5	z	PASS	92	92
44	•	3.5	121.6	109.5	11.0	118.8	10.5	z	PASS	92	92
45	•	4.0	123.6	111.0	11.3	118.8	10.5	z	PASS	92	63
46	•	4.5	119.9	109.4	9.6	118.8	10.5	z	PASS	92	92
47	•	5.0	121.9	109.7	11.1	118.8	10.5	z	PASS	62	92
48	•	5.5	120.5	109.0	10.6	118.8	10.5	Z	PASS	92	92
49	•	6.0	120.9	110.2	9.7	118.8	10.5	z	PASS	92	<b>3</b> 3
	= Total number of tests				3				AVER	AGE =	
REM	<b>ARKS: ALL FAILING TEST</b>	S WERE F	REPORTED IM	<b>IEDIATELY T</b>	O THE CONTI	RACTOR.		THE CONTR	ACTOR	CORRECTIVE	
ACTION	I AFTER WHICH RETESTS	WERE TA	KEN UNTIL TI	HE AREA OR	E ORIGINAL	<b>TESTED ARE</b>	EA PASSED	SED THE SP	ECIFICA	TION.	
4	indone S – Sand cono										

					DA	ILY SUMM/	ARY OF F	ELD MOIS	TURE /	<b>DENSITY T</b>	ESTING
STEFFE	EN ROBERTSON AND	<b>KIRSTI</b>	N	JOB.: 58201			DATE;	3/19/93	THRU	4/5/93	PAGE 7
Consult	ting Engineers and So	cientists		SUBJECT:	: CONOCO S	SAN JUAN GA	<b>VS PLANT</b>				
				FEATURE:	POND ONE	AREA CON	AMINATION	<b>NEMEDIATI</b>	NO		
		ELEV.	FIELD TEST			PROCTOR V	ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	FROM	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	ğ	SPEC.	RCD.
Ö		ROCK	(PCF)	(PCF)	%	DEN.PCF	%	* NorS	FAIL	%	*
20	POND ONE AREA N/F BACKFILI	(FT.) 6.5	1192	109 G	87	418 8 81	10 F	Z	DACC	6	8
51				0.00	5	0.0	2.2	N	2	35	35
	1	~	120.2	109.3	10.9	118.8	10.5	z	PASS	32	92
52	•	∞	123.8	110.1	12.5	118.8	10.5	z	PASS	65	63
53	-	თ	124.1	113.9	8.9	118.8	10.5	z	PASS	6	s y
54	•	10	121.0	110.9	9.1	118.8	10.5	z	PASS	65	63
55	-	:	123.7	110.2	12.2	118.8	10.5	z	PASS	92	63
56	-	12	111.8	109.7	7.4	118.8	10.5	z	PASS	92	6
57	-	AT 93.5	121.8	112.4	8.4	118.8	10.5	z	PASS	92	95
58	NITH CENTRAL & CENTRAL BKFL	e	121.1	111.0	9.1	118.8	10.5	z	PASS	92	63
59	-	4	125.8	114.8	9.6	118.8	10.5	z	PASS	92	97
REM ACTION	ARKS: ALL FAILING TEST I AFTER WHICH RETESTS	s were f Were tai	ieported im Ken until t	IEDIATELY TI UNTIL THE	D THE CONTFORIGINALL	MCTOR. LY TESTED	AREA P	THE CONTR ASSED THE	ACTOR	CORRECTIVE CATION.	
N    N *	uclear, S = Sand cone										

į.

t

STEFFE	IN ROBERTSON AND	KIRSTE	Z	JOB.: 58201	N	ILY SUMM	ary of Fi date:	ELD MOIS 4/5/93	TURE /	DENSITY T 4/7/93	ESTING PAGE 8
Consult	ing Engineers and So	sientists		SUBJECT:	: CONOCO S	SAN JUAN GA	AS PLANT				
				FEATURE:	POND ONE	AREA CON	AMINATION	I REMEDIATI	NO		
		ELEV.	FIELD TEST			PROCTOR V	ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	FROM	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	ъ	SPEC.	RCD.
NO.		ROCK	(PCF)	(PCF)	%	DEN.PCF	%	* NorS	FAIL	%	%
60	Nth CENTRAL & CENTRAL BKFL	(FT.) 5	124.2	113.9	0	118.8	10.5	z	PASS	6	y
61									2	30	8
		٥	122.5	114.4	7.2	118.8	10.5	z	PASS	92	96
62	•	2	125.0	113.0	10.7	118.8	10.5	z	PASS	32	62
63	•	ω	121.0	109.3	10.7	118.8	10.5	z	PASS	92	6
64	-	თ	121.2	110.1	10.1	118.8	10.5	z	PASS	62	63
65	-	10	117.4	108.9	7.8	118.8	10.5	z	PASS	92	6
66	•	11	121.0	110.7	9.3	118.8	10.5	z	PASS	92	63
67	-	12	115.9	109.2	6.1	118.8	10.5	z	PASS	92	6
68	•	13	116.8	109.3	6.8	118.8	10.5	z	PASS	92	92
69	-	4	125.8	114.8	9.6	118.8	10.5	z	PASS	32	97
REM ACTION	ARKS: ALL FAILING TEST I AFTER WHICH RETESTS	s were r Were tai	REPORTED IN KEN UNTIL T	AEDIATELY TA UNTIL THE	D THE CONTR ORIGINALL	ACTOR. LY TESTED	AREA P	FOLLOWED ASSED THE	BY SPECIFIC	CORRECTIVE CATION.	
Z             	uclear, S = Sand cone										

į.

ì.

ŀ

					DA	ILY SUMM	ARY OF FI	IELD MOIS	TURE /	DENSITY T	ESTING
	IN HUBERISON AND	) KIRSTE	2	JOB.: 58201			DATE:	4/14/93	THRU	4/15/93	PAGE10
Consult	ing Engineers and S	cientists		SUBJECT:	: CONOCO 5	SAN JUAN GA	<b>NS PLANT</b>				
				FEATURE:	EVAPORATI	ON POND	0.ONE				
		ELEV.	FIELD TEST			PROCTOR V.	ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	FROM	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	ğ	SPEC.	RCD.
0 V		N.G.	(PCF)	(PCF)	*	DEN.PCF	%	* NorS	FAIL	8	*
70	NORTH BERM	(FT.) N.G.	122.7	113.3	8.2	118.8	10.5	z	PASS	<u>8</u>	95
71	-		121.7	112.6	8.0	118.8	10.5	z	PASS	95 95	95
72	-	2	122.3	112.3	8.9	118.8	10.5	z	PASS	95 95	95
73	-	2.5	123.4	112.8	9.4	118.8	10.5	z	PASS	95 95	6
74	SOUTH BERM	N.G.	120.3	113.1	6.4	117.3	11.6	z	PASS	95 95	96
75	NORTH BERM	ო	124.7	114.1	9.3	118.8	10.5	z	PASS	95	96
76	SOUTH BERM	-	124.0	113.1	9.6	118.8	10.5	z	PASS	95	95
17	SOUTH BERM	2	123.5	113.1	9.2	118.8	10.5	z	PASS	95	95
78	NORTH BERM	AT GRADE	123.1	112.9	9.2	118.8	10.5	z	PASS	ß	95
62	NORTH BERM	4	123.6	113.4	9.1	118.8	10.5	z	PASS	95	95
REM	<b>ARKS: ALL FAILING TEST</b>	<b>IS WERE R</b>	EPORTED IM	EDIATELY T(	D THE CONTI	ACTOR.		FOLLOWED	ВΥ	CORRECTIVE	
ACTION	AFTER WHICH RETESTS	WERE TA	KEN UNTIL T	UNTIL THE	ORIGINALL	LY TESTED	AREA P	ASSED THE	SPECIFIC	CATION.	
REMED	ATION WAS COMPLETEL	0 UN 4/8/90	m.								
	uclear, 5 = Sand cone										

STEFE	N BOBEBTSON AND	KIDCTE			DA	ILY SUMM	ARY OF FI	ELD MOIS	TURE /	DENSITY T	ESTING
			Z	JOB.: 58201			DATE:	4/16/93	THRU	4/16/93	PAGE 11
Consul	ting Engineers and So	cientists		SUBJECT:	: CONOCO	SAN JUAN G	AS PLANT				
				FEATURE:	EVAPORATI	ON POND	0.ONE				
		ELEV.	FIELD TEST			<b>PROCTOR V</b>	ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	FROM	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	Q	SPEC.	RCD.
ÖN		N.G.	(PCF)	(PCF)	%	DEN.PCF	*	* Nor S	FAIL	%	×
80		(FT.)									
	SOUTH BERM	ო	123.8	116.0	6.8	118.8	10.5	Z	PASS	95	97
81											
	WEST BERM		125.0	114.8	8.9	118.8	10.5	z	PASS	95	97
82	WEST BERM	2	123.4	113.6	8.6	118.8	10.5	z	PASS	95	96
83	WEST BERM	<i>с</i> о	124.5	114.3	9.0	118.8	10.5	z	PASS	95	96
84	WEST BERM	4	124.0	114.3	8.5	118.8	10.5	z	PASS	95	96
85	SOUTH BER.M	4	123.6	115.5	7.1	118.8	10.5	z	PASS	95	67
86	SOUTH BERM	ۍ	120.9	113.5	6.4	118.8	10.5	z	PASS	95	95
87	NORTH BERM	4	123.2	112.1	9.6	118.8	10.5	z	PASS	95	62
88	NORTH BERM	2	123.6	113.6	8.8	118.8	10.5	z	PASS	95	96
89	NORTH BERM	Q	123.9	113.2	9.5	118.8	10.5	z	PASS	95	95
REM	<b>ARKS: ALL FAILING TEST</b>	S WERE R	EPORTED IM	<b>IEDIATELY T</b>	D THE CONTI	ACTOR.		FOLLOWED	ВҮ	CORRECTIVE	
ACTION	<b>VAFTER WHICH RETESTS</b>	WERE TA!	<b>KEN UNTIL T</b>	UNTIL THE	ORIGINALL	LY TESTED	AREA P	ASSED THE	SPECIFIC	CATION.	
REMEC	INTION WAS COMPLETED	ON 4/8/90	œ.								<u> </u>
N = N *	uclear, S = Sand cone										

STEFFE	EN ROBERTSON AND	) KIRSTE	Z	JOB.: 58201	DA	ILY SUMM.	ARY OF F Date:	IELD MOIS 4/19/93	TURE / Thru	DENSITY 7 4/20/93	ESTING
Consult	ting Engineers and So	cientists		SUBJECT:	: CONOCO S	SAN JUAN G	AS PLANT				1
				FEATURE:	EVAPORATI	SON PONDS	ONE AND	MO			
		ELEV.	FIELD TEST			PROCTOR V	ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	FROM	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	ğ	SPEC.	RCD.
Ň	-	N.G.	(PCF)	(PCF)	%	DEN.PCF	%	* Nor S	FAIL	%	*
06	POND ONE	(FT.)									
	WEST BERM	5	121.4	112.3	8.1	118.8	10.5	z	PASS	95	95
91	POND ONE										
	SOUTH BERM	Q	123.2	112.5	9.5	118.8	10.5	z	PASS	95	95
92	POND ONE										
	NORTH BERM	7	121.1	113.0	7.1	118.8	10.5	z	PASS	95	95
63	POND ONE										
	WEST BERM	9	124.4	112.6	10.4	118.8	10.5	z	PASS	95	95
94	POND ONE										
	WEST BERM	2	126.1	113.2	11.4	118.8	10.5	z	PASS	95	95
95	POND TWO BOTTOM	AT									
	S/E CORNER	GRADE	131.8	117.9	11.8	117.3	11.6	z	PASS	95	100
96	POND TWO BOTTOM	AT									
	S/W CORNER	GRADE	130.5	115.5	13.0	117.3	11.6	z	PASS	95	98
97	POND TWO BOTTOM	AT									
	N/W CORNER	GRADE	134.1	120.2	11.6	117.3	11.6	z	PASS	95	90
98	POND TWO BOTTOM	AT									
	CENTER	GRADE	133.4	118.2	12.9	117.3	11.6	z	PASS	95	100
66	POND TO BOTTOM	AT									
	N/E CORNER	GRADE	133.5	118.8	12.3	117.3	11.6	N	PASS	95	100
REM	<b>ARKS: ALL FAILING TEST</b>	S WERE RI	EPORTED IN	<b>IEDIATELY T</b>	<b>D THE CONTF</b>	ACTOR.		FOLLOWED	ВΥ	CORRECTIV	ш
ACTION	I AFTER WHICH RETESTS	WERE TAK	(EN UNTIL T	UNTIL THE	ORIGINALL	LY TESTED	AREA P	ASSED THE	SPECIFIC	CATION.	
Z ∥ ∥ Z ★	uclear, S = Sand cone										

i

-

I.

|
					DA	ILY SUMM	ARY OF F	IELD MOIS	TURE /	DENSITY 1	ESTING
STEFFI	EN ROBERTSON AND	<b>KIRSTE</b>	Z	JOB.: 58201			DATE:	4/29/93	THRU	4/29/93	page 13
Consul	ting Engineers and S	cientists		SUBJECT:	: CONOCO	SAN JUAN G	<b>AS PLANT</b>				
				FEATURE:	EVAPORATI	ON PONDS	ONE AND	IWO			
		ELEV.	FIELD TEST			<b>PROCTOR V</b>	'ALUES	TYPE OF	PASS	COMPACTION	COMPACTION
TEST	LOCATION	FROM	WET DEN.	DRY DEN.	MOISTURE	MAX. DRY	O.M.C.	TEST	ğ	SPEC.	RCD.
ON	-	N.G.	(PCF)	(PCF)	%	DEN.PCF	*	* Nor S	FAIL	8	*
100	POND ONE S/E	(FT.)									
	QUADRANT BOTTOM	GRADE	131.9	121.3	8.8	118.8	10.5	z	PASS	95	100
101	POND ONE S/W										
	QUADRANT BOTTOM	GRADE	128.0	119.9	6.8	118.8	10.5	z	PASS	95	100
102	POND ONE										
	CENTER BOTTOM	GRADE	117.8	111.5	5.6	117.3	11.6	z	PASS	95	95
103	POND ONE N/W										
	QUADRANT BOTTOM	GRADE	125.3	117.9	6.3	118.8	10.5	z	PASS	95	66
104	POND ONE N/E										
	QUADRANT BOTTOM	GRADE	124.8	117.1	6.6	118.8	10.5	z	PASS	95	66
REMARK											
Z          	luclear, S = Sand cone										

I



_____





605 E. 7th Avenue Durango, Colorado 81308 (303) 259-6192 (303) 259-5672

Sundale Associates, Inc.

706 W. Apache Famulington, N. M. 87401 (505) 325-0769

**ENGINEERING AND TESTING** 



A WLC Associates, Inc. Company

# Sundale Associates

ENGINEERING AND TESTING

(COMPACINON TEST)

1	Project Conoco - SRK	Die			Lo	lı	Suble	11
   	Lob, No. 13146 Doler. 2- Max. Dry Dene. 18.8 0	<u>1-92  </u> plimum	Tesled Molal,•	1 by <u>0</u>	1 <u>)</u>	Mei Ipec, Oro	vilyi	<u>98a.</u>
5	Test No.	50m1	100ml	150ml	Zoomi			
to a	Wel Soll + Tore (a)	13.25	13.41	13.37	13.25			
Ē	Hold Tore (b)	9.03	9.03	9.03	1.03			
Det D	Wel WI. (c) = 0-b	4.22	4.38	<u>4.34</u>	4,22			
Ł	Remarks	,0333	10333	0333	10333			
Ē	Wel Dens. (d) = extoclor	126.7	131.5	150.3	Fler			
ب د	[Dry Dens, [e] * d/([ + 7/100]	116.1	110,0	110.3	111.2			
, in	Pan Ito.	2221	2720	22111				
Ē	Div Soll WI + Tore (1)	201.7	3009	<u>224.1</u> 792 7.	<u>222,9</u> 797 8			
	Container Tare (h)	2010.1	200,1		5100			
ţ	Dry Soll Welling-h	•						
Ę.	Water W1. ( ) ) = 1-9	<u>76.4</u>	32.1	35.9	40.6			
Ř.	1 % Molelure (k) = (1/1 1x100	8.6	10.7	12.0	13.9	*****		
2						THIT		mm

Molsture - % el Dry Weight

.

Figure 2

# APPENDIX F

Subgrade Acceptance

STEFFE: Con:	ROBERTSON sulting Engineer	& KIRSTEN (U.S.) rs & Scientists	PROJECT <u>Lor</u> PROJECT NO DATE	
	ACCEPTANCE	OF SUBGRADE F	OR SYNTHETIC LI	NER INSTALLATION
LOCATION	and sq. FT	PANEL No. V	Thru No.	Approximately:S
Pond 1	JO, ONE	*		
				<u>`</u>
Comments	(S.R.K. FI	ELD REP.):	od surface condit	rions.
<u></u>			· · · · · · · · · · · · · · · · · · ·	
				۱ ۱
				······
INER IN	STALLATION	COMPANY:	PALCO LINING I	NC.
INER IN	STALLATION STALLATION	COMPANY : COMPANY REPRE	PALCO LINING I BENTATIVE:	NC. Vitan
INER IN LINER IN COMMENTS	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES R'S REP.):	PALCO LINING I BENTATIVE:	NC. V. Han
INER IN LINER IN COMMENTS	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES R'S REP.):	PALCO LINING I BENTATIVE:	NC. Kitz
INER IN LINER IN COMMENTS	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES R'S REP.):	PALCO LINING I BENTATIVE:	NC. V. Han
INER IN COMMENTS	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES	PALCO LINING I SENTATIVE:	NC. V.A.
INER IN LINER IN COMMENTS	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES R'S REP.):	PALCO LINING I SENTATIVE:	NC. V.A.
INER IN COMMENTS	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES R'S REP.):	PALCO LINING I BENTATIVE:	NC. Vitan
INER IN COMMENTS	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES R'S REP.):	PALCO LINING I BENTATIVE:	NC. Kitz
	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES R'S REP.):	PALCO LINING I SENTATIVE:	NC. Kitan
	STALLATION STALLATION (INSTALLE)	COMPANY : COMPANY REPRES R'S REP.) :	PALCO LINING I BENTATIVE:	NC. V.A.
	STALLATION STALLATION (INSTALLE)	COMPANY : COMPANY REPRES R'S REP.) :	PALCO LINING I	NC. Kitz
	STALLATION STALLATION (INSTALLE)	COMPANY: COMPANY REPRES R'S REP.):	PALCO LINING I BENTATIVE:	NC. V.A.

I I

SRK FORM L-2

			PROJ	ECT Lona	o sanju	IAN GAS A	Ant
STEFF1 Co	EN ROBERTSON ( Insulting Engineers	& KIRSTEN (U.S. 8 & Scientista	.) DATE	  باعد/ ر	55 <u>-</u> C' 73		
	ACCEPTANCE	OF SUBGRADE	FOR SYNTHE	TIC LINE	R INSTA	LLATION	
OCATION	AND SQ. FT.	PANEL NO.	2. <u>Thru</u>	0. A	<u>pproxim</u>	ately:	<u>500 s</u>
mments	(S.R.K. FIE	LD REP.):	ture placed	un subyru	te was	1202. Gert	ertil <u>e</u>
NER I	NSTALLATION	COMPANY :	PALCO LIN	ings inc		1	
NER I INER I OMMENT	NSTALLATION NSTALLATION S (INSTALLER	COMPANY : COMPANY REPI	PALCO LIN RESENTATIVE	ings, inc	nu D	+1 cen	······
NER I INER I OMMENT	NSTALLATION NSTALLATION S (INSTALLER	COMPANY : COMPANY REPI	PALCO LIN RESENTATIVE		î w D	+1 cen	······
NER I INER I OMMENT	NSTALLATION NSTALLATION S (INSTALLER	COMPANY : COMPANY REPI	PALCO LIN RESENTATIVE		nu D	+1 cem	
NER I INER I COMMENT	NSTALLATION NSTALLATION S (INSTALLER	COMPANY : COMPANY REPI	PALCO LIN RESENTATIVE		÷ wD	+1 com	
NER I	NSTALLATION NSTALLATION S (INSTALLER	COMPANY 8 COMPANY REPI	PALCO LIN RESENTATIVE		î w D	÷Í cein	
NER I	NSTALLATION NSTALLATION S (INSTALLER	COMPANY 8 COMPANY REPI	PALCO LIN RESENTATIVE		in D	, ticen	
NER I	NSTALLATION NSTALLATION S (INSTALLER	COMPANY : COMPANY REPI	PALCO LIN RESENTATIVE		in D	, tícum	
NER I	NSTALLATION NSTALLATION S (INSTALLER	COMPANY : COMPANY REPI	PALCO LIN RESENTATIVE		in D	ý cen	

-----

(

## APPENDIX G

Palco Quality Control Documents



ACBIMILE TRANSMISSION

## PALCO WEST FAX NUMBER (714) 891-4937

DATE: 4 27/93 TO: RICK FEIZECHETTE CCMPANY: FAX NO: 1-303-985-9947 REF: CONOCO (SRK) FROM: TIM PURCE / NO. OF PAGES TO FOLLOW: 20 MESSAGE: PEQUESTED BY GLENN GYER 1.)FActony Logs 2) MAT'L CERTS

7571 Santa Rita Circle • RO. Box 919 ~ Stanton, CA 90680 • (714) 898-0867 • FAX #(714) 891-4937 2624 Hamilton Blvd. • P.C. Box 526 • South Plainfield, NJ 07080 • (201) 753-6262 • FAX #(201) 753-5737 • --

.....

QUALITY CONTROL UNWIND LY ----

-----

i

Ì

------

<b></b>	JOB NUT	MBER	CUS	TOI- A NAME		MA	TERLAL		DAT	E
0	730	42	Con	10 00		36-H	yP-IG	- 7650	2-12	2-93
	ROLL NUM	lot Num	WEIGHT	LISTED Length	LIN. FEET UNWOUND	WASTE	T H 1 START	CKNES MIDDLE	S END	WIDTH
1	540	1+18	1313	300	893	2	38	36	35	7400
2	548	1418	1401	300	750	. 4	38	3.2	37	75 2
3	547	1418	1384	300	899	2_	36	36	3,6	753
4	333	1418	1391)	300	912	2	35	38	37	7577
5	552	1418	1344	333	897	4	35	35	34	753
6	842	2909	1288	300	882	8	34	36	36	25/2
7	188	2909	1330	300	890	10	35	34	34	76.00
8	110	2901	13 41	300	891	12	35	37	36	75/2
9	175	29139	1322	30 3	869	38	35	34	34	75
10	174	2909	1308	122	899	10	34	34	34	753
11	141	27)?	1326	300	875	4	35	35	35	7.6
12	161	29.19	1320	300	812	6	34	34	34	7:3-
13	157	2909	13-1×	300	901	2	34	36	36	75/4
14	171	2909	1335	300	903	4	34	35	34	75/-
15	192	29)9	1329	: 27	897	8	35	3.5	34	7:5/
16	172	۽رڊ2	1322	<u>())</u>	8 89	12	34	3:	35	75/2
17	113		1333	د دی	899	4	36	36	3%	73
18	829	2907	1,12	300	881	12	33	36	36	73 2
19										
20	Lonis	1806	+	slic e	107'0	6 Rect		: مر د , ן	-	
21					· · · · · · · · · · · · · · · · · · ·	·				
22	r me	16:5	1				ļ			
23		-					ļ	ļ		
24										

Job No. 921106 November 4, 1992

## TABLE 1. <u>PALCO WEST QUALITY CONTROL REPORT</u> <u>SUPPORTED ROLL GOODS</u>

<u>36</u> Mil(No <u>1436</u> Palco P	m.) 3 O	I. G. HYP/ Material N/A Shipment I.D. #	ALON	<u>10x1</u> Scrim 7 <u>141</u> Lot # 0 Mfg. D	10 Гуре 8 ог ate	<u>301</u> Roi Dai To	5540 Il # te Sent Lab		Manufac Manufac Ju Name of Sending	PS turer yan Person Sample	Da In Sc	<u>9-24-92</u> its Rec'd. inventor; <u>76.50</u> rim Widt	y
				SPE	CIMEN	S					MEAN	SD	STD
	1	2	3_		5	6	77	8	9_	10			
Roll #3	015540 La	<u>ot #1418 / (</u>	<u>: #3260</u>	<b>5</b> .									
Thickne	ss (mils)	, <u> </u>		-									
	36.7	36.8	36.5	37.0	36.9	36.5	36.6	36.5	36.7	36.5	36.7	0.2	34
Breakin	g Strengt	h (lbs)											
MD1	255	259	255	274	264						261	8	200
TD ²	260	265	256	271	263						263	6	200
Tear Su	rength- To	ongue Metho	od (lbs)										
MD	89	96	93	106	93						<b>95</b> ·	6	60
TD	70	65	76	72	70						71	4	60
Dimens ( 100°C,	io <b>nal Stab</b> , 1 hour )	ollity (perce	nt chan	ge)									
MD	-0.9	-0.7	-0.5	-0.4							-0.6	0.2	+/-2
TD	0.4	0.4	0.2	0.2							0.3	0.1	+/-2
Ply Adh	esion (pp	ei)											
MD	10.0	10.1	⁽ 8.1	, J							9.4	) 1.1	7
TD	10.5	9.9	9.1	· ,							9.8	0.7	7
Low Ter ( -40°C	nperature , 4 hours	: Brittleness )	(perce	nt passed	)						60%		50
Mass Po	er Unit Ar	rea (lbs/ ft ²	)										
	0.239	0.238	0.233								0.237	0.003	
										1			

- MACHINE DIRECTION

_

TTE DIVE TO THE TERM

2- TRANSVERSE DIRECTION

203 985 1333 986 251 1993 8:509M #474 P.03

:01



Job No. 920908 September 29, 1992 i.

### TABLE 1. PALCO WEST OUALITY CONTROL REPORT SUPPORTED ROLL GOODS

fli mmelri le-ut-ti

<u> </u>	5 0m.)	<u>HYPAL</u> Material	ON_IG	10x1 Scrim T	0 Ype	Rol	015689 1 #	•	I Manufac	PS turer	Da	9-21-92 ate Rec'd. inventory	 ,
<u>143</u> Palco I	<u>63</u> PO	<u>N/A</u> Shipment I.D. #		148 Lot # c Mig. D	2 or ate	Dat To	e Sent Lab		Name of Sending	lan Person Sample		<u>76.50</u> rim Widtl	1
				SPE	CIMEN	<u>s</u>					MEAN	SD	STD
	1	22	3_	4	5	6	7	8_	9_	10			
Roll #	<u>3015689 La</u>	o <u>t #1482 /</u>	<u>C #3190</u>	<b>p</b> i									
Thicks	iess (mils)	)										·	
	36.7	35.8	37.8	37.5	36.8	36.5	38.0	37.7	35.2	35.3	36.7	1.0	34
Breaki	ing Strengt	h (lbs)											
MD ¹ TD ²	280 280	301 297	294 286	285 313	300 296						292 294	9 13	200 200
Tear S	trength- To	ongue Meti	had ( <b>ibs)</b>	!									
MD TD	98 90	101 84	104 85	100 83	104 84						101 - 85	3 3	60 60
Dimen ( 100%	sional Stat C, 1 hour )	oility (perc	ent chan	<b>ge)</b> i									
MD TD	0.5 0.6	0.0 0.6	0.3 0.7	-0.1 0.5							0.2 0.6	- 0.3 0.1	+/-2 +/-2
Ply Ad	hesion (pp	oi)		1									
MD TD	10.8 11.0	9.6 10.6	10.1 10.6								10.2 -10.7	0.6 0.2	7 7
Low Te ( -40%	emperature C, 4 hours	e Brittlenes )	is (perce	nt passed	)						100%		50
Mass l	Per Unit Al	rea (lbs/ f	<b>t</b> ² )										
	0.232	0.233	0.234								0.233	0.001	

- MACHINE DIRECTION

2- TRANSVERSE DIRECTION

:01

FROM: PALCO LINING

Precision Laboratories ENTRONMENTAL · GEOSYNTHETIC TESTING

				PALC	O WEST SUPP	TAE LOUALI PORTED	LE J. TY CON ROLL (	TROL GOODS	REPORT	ſ		Job No February	, 930059 17, 1993
3 Mil(N 	6 (om.) 72	I.G. Hy Materia	<u>palon</u> l	<u> </u>	10 Type	Ro	4034160 11 #		Manufa	IPS cturer		<u>2-12-93</u> ate Rec'd i inventor <u>76.50</u>	3 7
1 (1140		I.D. #	nç	Míg. D	or Date	Da To	le Sent Lab		Name of Sending	f Person Sample	S	erim Widi	th
				SP	ECIMEN	IS					MEAN	SD	STD
	<b>1</b>	2	3	44	5_	6	7_	8	9	10			
<u>Roll</u> #	4034160 L	ol #2909	<u>/ C #3343</u>	1									
Thick	ness (mile)	)											
	36.8	36.9	35,9	36.3	36.7	37,1	37.9	37.2	37.3	37.8	37.0	0.6	34
Break	ng Strengt	b (lbs)											
MD1	273	316	300	312	308						302	17	200
) ID-	285 America (18	304	293	253	297						292	9	200
lear 3	rengro- 1	ongue Mei	inod (ide)										
MD TD	100 84	99 84	10 <b>8</b> 91	105 93	102 89						103 58	4	60 60
Dimen ( 100°C	ional Stat 2, 1 hour )	dity (per	cent chang	ge)									
MD	-0.40	•0.30	-0.30	-0.20							-0.30	0.08	+/-2
	V,40	U.JU	V.40	0,10							0.35	0.06	+/-2
rty Au	ICPLOID (101		J										
MD TD	<b>8.0</b> 1 <b>2.5</b>	9.0 9.6	8.0 9.8								8.3 10.6	0.6 1.6	7 7
Low Te ( -40°C	mpernture , 4 hours )	Brittlene: )	ss (percer	t passed)	)						100%		50
Mass P	er Unit Ar	ea (lbs/f	t ² )										
	0.227	0.235	0.237								0.233	0.005	
	,									ł			

ا به به داد د از د به د استند د. د

- MACHINE DIRECTION

2. TRANSVERSE DIRECTION

EROM: PALCO LINING

				PALC	<u>o west</u> Supp	TABI OUALI ORTED	LE 3. LY CON ROLL (	trol i ioods	REPORT			l'ebruary 1	7, 1993
<u>36</u> Mil(No <u>1437</u>	2 2	I.G. Hyp Material	alon_	10_x Scrim 7	10 Гуре	Rol	1 #		J Manufac	PS turer	De	2-12-93 Ate Rec'd. Inventory 	 , 
Palco P	0	Shipmen: I.D. #	t	Lot # ( Mfg, D	or ale	Dat To 1	e Sent Lab		Name of Sending	Person Sample	Sc	rim Width	l
				SPE	CIMEN	S				]	MEAN	SD	STD
	1	2	33	4	5	6	7		9	10			
Roll #4	1034188 L	ot #2909 /	<u>C #3343</u>	3								ĸ	
Thickne	ess (mlis)	)											
	38.0	37.3	37.7	37.4	37. <b>3</b>	37.1	36.8	37.2	38.1	37.4	37.4	0.4	34
Breakin	i <b>g Streng</b> i	ih (i <b>bs</b> )											
MD ¹ D ²	301 2 <b>83</b>	292 275	301 267	278 281	<b>296</b> 311						294 283	10 17	200 200
Tear St	rength- T	ongue Met	hod (lbs)										
MD TD	101 91	99 88	108 92	112 90	112 96						106 91	6 3	60 60
Dimens ( 100°C	ionni Stai , 1 hour )	bility (perc	cent chan	te)									
MD TD	-0.10 0.40	-0.20 0.30	-0.20 0.40	-0.20 0.60						, I	-0.18 0.42	0.05 0.12	+/-2 +/-2
Pły Adh	esion (1b	e/in-width)	)										
MD TD	7.9 8.8	8.1 8.2	7.0 9.0								.7.7 8.7	0,6 0,4	7 7
Low Ter ( -40°C	nperature , 4 hours	e Brittiones )	s (perce	at passed	)						100%		50
Maas P	er Unit A	rea (lbs/fi	t ² )							Ì			
	0.239	0.242	0,242	,							0.241	0.002	

Job No. 9300.59

1

ς.

MACHINE DIRECTION

2- TRANSVERSE DIRECTION

Fes. 10 33 Landon - www. " The Landon - Character

				PALC	<u>o west</u> Supp	TAB OUALI ORTED	LE 3. FX CON ROLL C	TROL	REPORT			Job No. Pebruary 1	9 <b>30059</b> 17, 1993
<u>36</u> Mil(No	om.)	<u>I.G. Hyp</u> Material	alon	<u>10 x</u> Scrim ⁷	10 Гурс	Rol	1 <u>32842</u> 1 <i>#</i>		Manufac	198 Aurer	D. Ia	2-12-93 nte Rec'fl inventor	<u> </u>
Palco F	20	Shipmen I.D. #	L	Lot # Míg. D	or ate	Dat To	e Sent Lab		Name of Sending	Person Sample	So	rim Widt	h
				SP	CIMEN	<u>s</u>					MEAN	<u>SD</u>	STD
		2	3		5	6	7	8_	9	10			
Roll #	5032842 L	ot #2909 /	C #3343	9									
Thickn	ers (mils)	)											
	37.2	37.3	37,2	37.1	37.5	36.5	37.0	36.2	36.6	36.8	36.9	- 0.4	34
Breakl	ng Strengt	th (lbs)											,
MD1	272	288	296	291	253						250	- 18	200
TD ²	301	267	275	270	263						275	15	200
Tear St	rength- T	ongue Met	hod (lbs)										
MD	83	92 77	<b>91</b>	108	87 87						92	1.0	60
TD	85	78	90	81	83						83	3	00
Dimens ( 100°C	ionai Stai 3, 1 hour )	bility (perc	cent chan	1 <b>6)</b> ;									
MD	-0.20	-0.30	-0.10	-0.20							-0.20	0.08	+/-2
TD	0.30	0.20	0.30	0.30							0.28	0.05	+/-2
Ply Adb	ission (lb	s/in-width	)										
MD	7.8	8.0	7.1								7.6	0.5	7
ТD	10,0	9.8	10.0								9.9	0.1	7
Low Ter ( -40°C	mperature !, 4 hours	: Brittienes )	is (percei	nt passed	)						100%		50
Mass P	er Unit As	rea (lbs/ fi	t ² )										
	0.232	0.237	0.234								0.234	0.003	

ina in the second second second second second second second second second second second second second second s

MACHINE DIRECTION 2- TRANSVERSE DIRECTION

Feb. 17 193 12:20 - ----

ł.

I.

i. I

Job No. 920908 September 29, 1992

#### <u>TABLE 3.</u> <u>PALCO WEST QUALITY CONTROL REPORT</u> <u>SUPPORTED ROLL GOODS</u>

ALE MYRT DI ERELDATI

36 Mil(N 	Nom.) 1363 9 PO	IND.H Material <u>N/A</u> Shipmen I.D. #	<u>YP</u>	<u>10x</u> Scrim <u>148</u> Lot # Mfg. D	10 Type 2 or Pate	Ro Da To	5016079 II # te Sent Lab		Manufad J Name of Sending	turer uan Person Sample	Di In Sc	9-21-92 ate Rec'd. Inventor 76.50 rim Widt	у Ь
	• · · · • • • • • • • • • • • • • • • •			SPI	ECIMEN	<u>s</u>	*··*				MEAN	SD	STD
	1_	2	3	4_		6_				10			
Roll 1	<u>#5016079 L</u>	<u>ot #1482 /</u>	C #31902										
Thick	mess (mils)	)											54
	36.0	35.8	36.0	35.0	36.2	35.5	34.0	34.6	34.5	35.4	35.4	0.8	
Break	ding Strengt	th (lbs)	٠										
MD ¹ TD ²	294 299	29 <b>2</b> 283	269 287	278 271	2 <b>73</b> 273						281 283	11 11	200 200
Tear	Strength- T	ongue Metl	hod (lbs)										
MD TD	120 102	116 112	135 104	116 114	118 108						121 108	8 5	60 60
Dimer ( 100°	asional Stal C, 1 hour)	bility (perc	ent chang	e)									
MD TD	-0.1 0.1	-0.1 0.1	0.0 0.1	-0.1 0.3							-0.1 0.2	0.1 0.1	+/-2 +/-2
Ply Ad	lhesioa (pp	pi)											
MD TD	8.8 9.4	8.8 10.6	7.9 9.9								8 <b>.5</b> _10.0	0.5 0.6	7 <b>7</b>
Low To ( -40%	emperature C, 4 hours	Brittlenes: )	s (perceņ	t passed)	)						80%		50
Mass I	Per Unit Ar	ea (lbs/ft	² )										
	0.233	0.228	0.232								0.231	0.003	

1- MACHINE DIRECTION

2- TRANSVERSE DIRECTION

Precision Laboratories ENVIRONMENTAL + GEOSYNTHETIC TESTING

FROM: PALCO LINING

Job No. 920908 September 29, 1992

### TABLE 2 PALCO WEST QUALITY CONTROL REPORT SUPPORTED ROLL GOODS

<u>36</u> Mil(No 1430	6 <u>3</u>	<u>HYPAL</u> Material	<u>ON 1</u> G	<u>10x1</u> Scrim T	10 Гуре 2	Rol	1018485   #		J Manufac	PS turer	De in	9-21-92 ite Rec'd. inventory 76.50	/
Palco F	°O	Shipment I.D. #		Lot # o Mfg. D	ate	Dat To	e Sent Lab		Name of Sending	Person Sample	Sc	rum Widtl	
				SPE	CIMEN	<u>s</u>					MEAN	SD	STD
	1_	2	3	4	55	6	7	8	9	10			
Roll #	<u>4018485 Lo</u>	ot #1482 /	<u>C #31901</u>	Ļ									
Thickn	ess (mils)												
	35.8	35.6	35.2	35.6	35.1	35.8	35.0	34.8	35.7	35.4	35.4	0.4	34
Breaki	ng Strengtl	h (lbs)						۰ ۱					
MD ¹	292	272	292	271	2 <b>91</b>						284	- 11	200
TD ²	309	300	294	273	300						295	14	200
Tear S	treagth- To	ague Met	had (lbs)										
MD	104	103	<b>96</b>	95	1 <b>06</b>						101	- 5	60
TD	72	76	94	8 <b>6</b>	77						81	9	60
Dimens ( 100°C	sional Stab C, 1 bour)	ility (perc	ent chang	Ş¢)									
MD	-0.1	-0.1	0.0	-0.2							-0.1	0.1	+/-2
TD	0.2	0.4	0.7	0.5							0.5	0.2	+/-2
Ply Adl	hesion (pp	H)								1			
MD	9.0	8.7	10.0								9.2	0.7	7
TD	10.9	11.3	10.4								· 10.9	0.5	7
Low Te ( -40°C	mperature C, 4 hours	: Brittiene: )	s (percei	nt passed	i)						60%		50
Mass P	Per Unit Ar	ea (lbs/ f	<b>L</b> ² )										
	0.223	0.224	0.225								0.224	0.001	

- MACHINE DIRECTION

2- TRANSVERSE DIRECTION

:01

Precision Laboratories ENVIRONMENTAL . GEOSYNTHETIC TESTING

eda IIXen di Pe-ut-ti

## TABLE 1.

. .

## SAMPLE #_________ PALCO LININGS FACTORY SEAM TEST SUPPORTED MATERIAL

Precision Reference: Job No. 930062 Material Control No. 33440

Feb. 16 193 17110 Monda Preciator Concernation

Machine:	<b>i</b>	
Operator:	MT	
Inspector:	GG	
Heat Time:	1-1/4	
Cool Time:	1/2	
Amps:	<u> </u>	
Ber Tamp		

 Date:
 2/15/93
 Time: 9:00

 Job No:
 W93042

 Job Name:
 CONOCO (SRK)

 Pase #:
 6

 Panel #:
 2.5

 Material:
 HYP L(3.

 Thickness:
 36

February 16, 1993

#### SEAM PEEL ADHESION ASTM D413 (As modified by NSF-54, 1991)

LOAD (ibs/in-width)		BREAK Type	
1	33.0	FTB	
2	27.5	FTB.	
3	28.0	FTB	
4	31.5	FTB	
٢	. 27.2	FTB	
AVG:	29.4	FIB	
SD:	2.6		

STEC. 10 min. in plane od sonin 1016./in.

BONDED SEAM STRENGTH ASTM D751 (As modified by NSF-\$4, 1991)

LOAD BREAK (ibe) TYPE 308 FTB 1 317 ETB 288 FTB ~ 259 ETB 273 FTB 5., AVG: 289 / **FTB** SD: 24

303 985 1333 APR 27, 1993 8:52AM #474 P.10

min. 160 163.

TABLE 1.

## SAMPLE # ________ PALCO LININGS FACTORY SEAM TEST SUPPORTED MATERIAL

Precision Reference: Job No. 930064 Material Control No. 33450

Machine:	1	
Operator:	MT	
Inspector:	GG.	
Heat Time:	1-1/4	
Cool Time:	1/2	
Amps:	<u> </u>	
Bar Temp:		

Date: 2/16/93	Time: <u>10:30</u>
Job No:	W93042
Job Name:	CONOCO (SRK)
Pass #:	9
Panel #:	6.7
Material:	HYP LG.
Thickness:	36
Lot all	

## SEAM PEEL ADHESION ASTM D413 (As modified by NSF-54, 1991)

LOAD (ibs/in-width)		BREAK Type	
1,	33.8	PTB	
2	29.2	FTB	
3	26.0	FTB	
4	25.8	PEEL	
5	28.0	PTB	
AVG:	28.6	F7B(4)	
SD:	3.3	PEEL(1)	
mi	1016.1.in.		

:01

## BONDED SEAM STRENGTH ASTM D751 (As modified by NSF-54, 1991)

	LOAD (Ibs)	BREAK
1	312	FTB
2	292	FT8
	310	FTB
4	327	FTB
5	316	FTB
AVG:	311	FTB
SD:	13	
	1:50 lbs	

February 17, 1993

## TABLE 2.

## SAMPLE # PALCO LININGS FACTORY SEAM TEST SUPPORTED MATERIAL

## Precision Reference: Job No. 930062 Material Control No. 33441

Machine: _____1 Operator: _____MT Inspector:_____GG Coul Time: _____1/2 Amps:______5 Bar Temp:

## BONDED SEAM STRENGTH ASTM D751

(As modified by NSF-54, 1991)

	LOAD (ibs)	BREAK Type
1	308	FTB
2		FTB
3	284	FTB
4	254	FTB
5	290 -	F7B
AVG: SD:	289 _ 22	FTB

February 16, 1993

. . . .



## SEAM PEEL ADHESION ASTM D413 (As modified by NSE-54, 1991)

()	LOAD be/in-wi	dth)	BREAK Type
1	31,0	_	FTB
2	27.8	-	FTB
3	28.5	~	РТВ
4	30.5	-	FTB
5	31.0	-	ETB.
AVG; SD [.]	29,8	-	FTB
	7.2	l	

0 1. 14

min, 100 55.

:01

## TABLE 2.

## SAMPLE #___ PALCO LININGS FACTORY SEAM TEST SUPPORTED MATERIAL

Precision Reference: Job No. 930064 Material Control No. 33451

Machine:	1
Operator:	MT
Inspector:	GG
Heat Time:	1-1/4
Cool Time:	1/2
Amps:	5;
Bar Temp:	·

February 17, 1993

ł

Date: 02/16/93	Time: <u>1:00</u>
Job No:	W93042
Job Name:	CONOCO (SRK)
Pass #:	6
Panel #:	8.9
Material:	HYP I.G.
Thickness:	36
Lot #:	

### SEAM PEEL ADHESION ASTM D413 (As modified by NSF-54, 1991)

LOAD (ibe/in-width)		kh)	BREAK Type	
1	25,1	-	FT8	
2	25.0	-	FTB	
3	24.0	-	FTB	
4	24.0	-	PTB	
5	24.0	-	FTB	
AVG:	24.4	-	FTB	
ວມ:	V. <b>O</b>			

nin 19ibs/in.

BONDED SEAM STRENGTH ASTM D751

(As modified by NSF-54, 1991)

	LQAD (ibs)	BREAK Type
1	321	FTB
2	326	PTB
3	325 +	FTB
4	311	PTB.
5,	_303	FTB
AVQ:	317	FTB
ŞD:	10	
mi	4. 16C ibs.	

QUALITY	CONTROL	UNWIND	LIST
---------	---------	--------	------

E	JOB NU	MBER	CUS	TOML . NAME		M	ATERINI		DAT	B
	1930	42	C	ONOC	0	30 Pu	16~8	500	2-1	1-93
	ROLL	LOT NUM	WEIGHT	LISTED Length	LIN. FEE UNWOUND	WASTE	T H I START	C K N E S	S S	WIDTH
	8	94L	1310		984	5	28	28	28	85.25
	218	94L	1300		982	2	28	28	28	85.25
	29	942	1292		980	4	28	28	28	85/4
	4	942	1300		972	13	28	28	28	85.15
	5 16	994	1310		984	2	28	28	28	<i>851</i> /4
Ŀ	531	94L	1284		982	2	28	28	28	85.118
	7	94L	1308		982	2	28	28	28	85.14
	24	94L	1304		980	2	28	28	28	85/4
	14	946	1310	······	956	32	28	28	28	85.00
10	23	942	1304	· · · · · · · · · · · · · · · · · · ·	978	5	28	28	28	8500
1	33	94L	1296		980	2	28	28	28	8500
	28	942	1290		979	2	28	28	28	25.1/4
T.	15	94L	1312		780	2	28	28	28	85.00
14	9	94L	13/4	an an an an an an an an an an an an an a	984	2	28	28	28	85.00
C	Lade	/303	+	slice	108	OF	Roll s	TOCK j	w hal	
16	19	94	1306		981	2	28	28	28	85/4
17	· <b> </b>				L					
16										
19	·				ļ			ļ		
20								· ·		
21										
22										
23							<b></b>	ļ		
24										

tia XMAILI IA-LI-TI

# NAN YA PLASTICS CORPORATION, AMERICA

TEST REPORT SPEC: 30 GA CUSTOMER: ROCHEUX CA 02 DESCRIPTION: .762M/M X 85" ORDER: F2A0063-1 PVC SHEET FOR POND LINER P.O. #: W12494L

era diser in legitern

DATE: 10-21-92

PROPERTY	TEST METHOD	REQUIRED		Resui Roll Nu	lts Mbers	
8	A 9774 D 702	1 20 & 110	1	10	<b>#20</b> 1,24	<b>#30</b>
Thickness	ASTM D1592	28.5 & Up	28.8 -	29.0 -	30.1 -	- 29.5 -
100X MOD LB/IN	ASTM D882 (Method B)	30 & Up MI	40.89 38.44	42.36 39.71	41.54 39.12	42.78 40.01 -
Tensile Strength LB/IN	ASTM D882 (Method B)	69 & Up Mi CI	90.61 ). 83.64	92.54 86.72	92.81 87.49	95.33 85.28
Elongation Z	ASTM D882 (Method A)	325 & Up MI	479.2 500.1	460.7 512.5	449.3 506.9	464.5 498.2
Graves Tear LB	ASTM D1004	עם איז איז איז איז איז איז איז איז איז איז	10.00 9.753	10.33 9.441	10.21 10.07	10.55 9.882
Water Extract %	ASTM D3083	-0.25 & Down	-0.19	-0.22	-0.21	-0,21
Volatility X	ASTM D1203	0.7 & Down	-0.64	-0.69	-0.67	-0.68
Cold Crack °C	ASTM D1790	-29 & Dowa	PASS	PASS	PASS	PASS
Shrinkage Z	ASTM D1204	-j i Down	-2.8	-2.62	-2.54	-2.60
Resistance to Soil Burial	ASTM D3082		)Formula )Previou	tion Used		
Alkali Resistance	CRD-C872-74		)Satisfa	ctorily		

APPROVED BY Sunny Liao

303 985 1333 APR 27, 1993 8:54AM #474 P.15

:01

EROM: PALCO LINING

I.

## TABLE 1 PALCO EAST OUALITY CONTROL REPORT UNSUPPORTED ROLL GOODS

PDE 10480-10 EE-20-50

<u>МЦ (N</u>	30 Iominal)		<u>P</u> Materia	<u>VC</u> 1		<u> </u>	lanya lacturer		Roll	#	D In	10/19/9 ate Rec'o	2 1. 1y	
143 Palco I	<u>67</u> PO	<u>N/A</u> Shipmen I.D. #	t	<u>W124</u> Lot # Mfg. D	94L or Pate	Da To	te Sent Lab		Name of Sending	f Person Sample	R	85.00 oll Width		
<u> </u>				SP	ECIMEN	18					MEAN	<u>SD</u>	STI	2
	1	2	3	4_	5	6_	7	8	9_	10				
Roll #	1 Lot #W	12494L / C	#32512											
Thicks	ess (mlls	)												
	28.9	29.0	28.6	23.4	28.7	28.5	28.3	28.6	28.8	29.1	28.7	0.3	28.5	
Tensile	Propertie													
Breaki	ng Streng	th (ppi)		·										
MD ¹	88.7 85 1	95.1 79.4	85.5	89.2	81.0						87.9	5.2	69	min.
	00.1	/ <b>7.4</b>	00.0	04.y	83.0					ł	83.9	2.5	69	
Lionga	uon at isp	eak (perce	nt)											
MD TD	497 526	554 535	500 565	529 540	451 577						506 549	39 21	300 300	-
Modulu	15 @ 10 <b>0</b> 9	6 Elougatio	<b>n</b> (p <b>pi)</b>											
MD	38.1	40.1	37.9	37.1	38.7						38.4	1.1	27	-
TD	35.2	34.6	34.4	36.2	35.6						35.2	0.7	27	
Tear Re	sistance	( <b>lbs</b> )												
MD	9. <b>3</b> 9.1	10.4	9.0	9.7	9.3	9.2	10.2	9.2	9.6	9.2	9.5	0.5	8	
10	9.1 1	0.4	<b>9,4</b>	, ,	Y.3	9.3	8.8	9.0	8.7	8.4	9.0	0.4	8	
Dimens	ional Stat	ouity (perc	¢D()								•			
MD TD	-0.6 0.8	-0.6 0.5	-0.1 0.5	-0.2 0.5							-0.4 0.6	0.3 0.2	+/-5 +/-5	Mas
Low Ter (10 spe	nperature cimens for	e Brittlenes r 15 min. @	s (percen } •29°C )	it passed	)						80%		50	
Mass P	er Unit Ar	rea (lbs/ft	か											
	0.187	0.187	0.1 <b>86</b>								0.187	0.001		
I- MACH	INE DIREC	TION								·				
2- TRAN	SVERSE DI	RECTION						- 7		Preci	iainn I ai	honet	oriae	

303 382 1333 BK 52, 1993 B:54AM #474 P.16

:01

ENVIRONMENTAL . GEOSYNTHETIC TESTING

FROM: PALCO LINING

## TABLE 2 PALCO EAST OUALITY CONTROL REPORT UNSUPPORTED ROLL GOODS

Mil (N	<u>30</u> ominal)	-	<u>P</u> Materia	<u>vc</u>		<u> </u>	anya	<b></b>	Roll	<u>10</u> #	D	10/19/9/ ato Rec'd	<b></b>
<u> </u>	<u>67</u> PO	<u>N/A</u> Shipment I.D. #	<u></u>		194L or Dato	Da To	te Sent Lab		Jame of Sending	Person Sample	- <del>R</del>	all Width	y 
<u>-</u>	<u></u>			SP	ECIMEN	19					MEAN	<u>SD</u>	STD
	1	2	3	4	5	<u> </u>	1	8	9	10			
Roil #	10 Lot #Y	<u> V12494L / (</u>	<u> #32513</u>										
Thicka	ess (mils	)											
	28.3	28.6	28.3	28.5	28.7	28.6	29.0	28.9	28.8	28.6	28.6	0.2	28.5 -
Tensile	Propertie	<u>15</u> :											
Breaki	ng Strengt	th (ppi)											
MD ¹ TD ²	89.5 82.7	90.3 86.2	89.4 91.0	89.8 78.5	83.7 77.7						<b>88.5</b> 83.2	2.7 5.5	نسبہ 69 69
Elonga	tion at Br	tak (perces	nt)										
MD TD	471 535	497 558	523 588	524 463	447 527						492 534	33 46	300 - 300
Modulu	ıs @ 100%	Elongation	1 (ppi)										
MD TD	40.7 34.2	40.9 33.8	39.2 35.5	36.6 37.1	39.2 34.7						39.3 35.1	1.7 1.3	27 - 27
Tear Re	sistance	(lbs)											
MD TD	9.0 9.8	8.4 8.7	8.9 9.8	9.0 9.4	9.0 8.6	9.2 9.0	8.3 10.3	9.2 8.8	9.9 10.2	8.9 9.3	9.0 9.4	0.4 0.6	8 8
Dimens	ional Stab	ility (perce	ent)								•		
MD TD	-0.4 0.2	-0.2 0.2	-0.5 0.1	-0.5 0.2							-0.4 0.2	0.2 0.1	+/-5 +/-5
Low Ten (10 spec	nperature cimens for	Brittleness 15 min. @	·29ºC)	it passed	)						90%		50
Mass Pe	er Unit Ar	ea (lbs/ft ²	•										
	0.188	0.1 <b>87</b>	0.186								0.187	0.001	
I- MACH 2- TRANS	INE DIREC	TION RECTION									· • -		

__18 __XME 01 88-27-71



:01

## TABLE 3 PALCO EAST OUALITY CONTROL REPORT UNSUPPORTED ROLL GOODS

Mil (N	<u>30</u> (ominal)	_	<u>P</u> Materia	<u>YC</u>		N Manuf	acturer		Roll	<u>20</u>		10/19/9/ ate Rec'd	2
143	67	N/A		. W124	194L				ťı	199	Ir	Inventor	ry .
Palco	PO	Shipment I.D. #		Lot # Mfg. I	or Date	Dal To	te Sent Lab	<u>.</u>	Name of Sending	Person Sample	R	oll Width	
<u> </u>				SP	ECIMEN	15					MEAN	SD	STD
	1	2	3_	4	5_	<u>6</u>	7		9_	10			
Roll#	20 Lot #V	<u> 12494L / C</u>	: #32514										
Thicks	ess (mils	)											
	29.4	29.1	28.9	29.1	29.3	29.2	29.0	29.0	29.0	29.2	29.1	0.2	28.5 -
Tensile	Propertie	<u>es:</u>											
Breaki	ng Strengt	th (ppi)											
MD ¹ TD ²	86.1 73.7	82.3 83.0	84.6 81.6	80.7 85.3	75.2 78.0						81.8 80.3	4.2 4.6	69 - 69
Elonga	tion at Br	eak (percen	it)										
MD	537 573	541 594	548 613	533 597	471 516						526	31	300
Modulı	us @ 1009	k Elongation	(npd)		<b>J10</b>						379	38	300
MD TD	35.3 26.8	32.5 30.8	33.1 31.3	32.7 31.9	33.3 33.0						33.4 30.8	1. <b>1</b> 2.4	27 - 27
Tear Re	sistance	(lbs)											
MD TD	8.6 8.0	8.4 7.6	8.5 9.2	8.4 8.6	8.4 7.7	8.3 7.7	8.7 8.1	8,4 8.3	8.7 8.1	8.0 7.9	8.4 8.1	0.2 0.5	8 - 8
Dimens	ional Stab	ollity (perce	at)										
MD	-0.4	-0.1	-0.2	-0.6							-0.3	0.2	+/•5
TD	0.2	0.2	0.4	0.1							0.2	0.1	+/-5
Low Ter (10 spec	nperature cimens for	e Britticaess r 15 min. @	(percen -29ºC )	t passed	)						90%		50
Mass Pe	er Unit Ar	rea (lbs/ ft ² )	)										
	0.186	0.190	0.189					•			0.188	0.002	
1- MACH 2- TRANS	THE DIREC	TION		<b>*</b>						,			

ела минат сторанциянт

I

35

:01

FROM: PALCO LINING

Precision Laboratories ENVIRONMENTAL · GEOSYNTHETIC TESTING

ł

Į.

i.

i.

## TABLE 4 PALCO EAST QUALITY CONTROL REPORT UNSUPPORTED ROLL GOODS

Mil (No <u>1430</u> Palco P	<u>30</u> ominal) 67 20	N/_ Shipme	<u> </u>	VC  Lot #		N Manuf Dat	adya acturer		Roll	30 #	D Is	10/19/9 ate Rec'o Inventor 85.00	2 1. 17
		I.D. #		Mfg. E	)atc	To	Lab		Sending	Sample	N		1
				SP	ECIMEN	8					MEAN	SD	STD
	1	2	3_	4_	5	66	1_	8	9	10			
Roll #3	30 Lot #Y	<u> V12494L /</u>	<u>C #32515</u>										
Thickne	ess (mils	)											
	29.0	28.8	28.8	28.9	29.0	29.1	29.0	28.9	28.8	29.0	28.9	0.1	28.5 -
Tensile	Propertie	191 1										·	
Breakin	ig Strengt	h (ppi)											
MD ¹ TD ²	86.5 77.2	82.6 73.2	<b>88.1</b> 79.9	83.8 80.6	75.0 79.3						<b>83.2</b> 78.0	5.1 3.0	69 - 69
Elongat	lon at Br	eak (perc	ent)										
MD TD	552 586	521 542	554 576	499 588	456 568						516 572	41 19	300 - 300
Modulu	s @ 1009	e Elongati	on (ppi)										
MD TD	33.6 29.1	34.4 29.3	36.1 32.2	35.5 30.7	33.3 31.5						34.6 30.6	1.2 1.4	27 - 27
Tear Re	sistance	(lbs)											
MD TD	8.0 9.0	8.1 8.1	<b>8.9</b> 9.1	8.1 8.2	8.5 8.8	8.0 9.0	8.2 8.5	<b>8.6</b> 8.4	7.7 8.4	8.1 9.1	<b>8.2</b> 8.7	0.3 0.4	8 - 8
Dimensi	onal Stab	ility (per	cent)										
MD TD	-0.4 0.2	-0.3 0.3	-0.2 0.4	-0.3 0.1							-0.3 0.3	0.1 0.1	+/- <b>5</b> +/-5
Low Tem (10 spec	i <b>perature</b> imens for	Brittleae 15 min. @	ss (percen 2)-29°C)	(passed)	)						90%		50
Mass Pe	r Unit Ar	ea (lbs/f	り										
	0.1 <b>87</b>	0.1 <b>89</b>	0.187								0.188	0.001	
E I- MACIII I- TRANS	NE DIREC VERSE DI	TION RECTION	<u></u>		-					Preci	sion Lal	oorati	ories

ì

e al avector dell'ett

:01

## TABLE 1.

ويحتان والأوام والمراجع

#### SAMPLE #_ 1 PALCO LININGS FACTORY SEAM TEST UNSUPPORTED MATERIAL

Precision Reference: Job No. 930060 Material Control No. 33440

Machine: 1 Operator: ______MT_ Inspector: _____ GG Heat Time: _____ 3/4 Cool Time: ______ 1/4___ Amps: 5. Bar Tomp:

> BONDED SEAM STRENGTH ASTM D3083 (As modified by NSF-54, 1991)

Spic.	LOAD (ibe/in-width) Vale 55. 2	BREAK Type
1	58	FTB
2	52	
3	57	FTB
4	56	FTB
5	56 -	FTB
AVG: SD:	56 - 2	FTB

February 16, 1993

Date: 02/12/93	Time: <u>9:00</u>
Job No:	W93042
Job Name:	CONOCO (SRK)
Pass #:	9
Panel #:	1.2.3
Material:	PVC
Thickness:	
Lot #:	

## SEAM PEEL ADHESION ASTM D413 (As modified by NSF-54, 1991)

LOAD (Ibs/in-width)	Break Type
value 10	1
1	ETB
235.0	FTB
333.5	PTa
436.0	FTB
534.1	FTB
AVQ: 35.0 -	FTB
SD: 1.3	

# APPENDIX H

Destructive Sample Test Results

				MUS	MARY OF DESTRUC	CTIVE TEST R	ESULTS	
STEFFEN F	<b>ROBERTSON AND KIR</b>	ISTEN		JOB.: 5820	-		DATE:	5/7/93
Consulting	J Engineers and Scient	tists		SUBJECT:	CONOCO'S SAN JI	UAN GAS PLA	NT	
				Feature: P	OND ONE AREA SC EVAPORATION	DIL CONTAMI PONDS ONF	NATION REME	DIATION
					PEEL		SHEAR	
LAB.	DESTRUCTIVE	MATERIAL	MIL	AVG.	PARALLEL WELD	SPECIFIED	AVG.	SPECIFIED
SAMPLE	SAMPLE	ТҮРЕ	THICKNESS	LBS./INCH	AVG. LBS./INCH	LBS./INCH	LBS./INCH	LBS./INCH
Ö N	NO			BREAK	BREAK	BREAK	BREAK	BREAK
	P1-1/2	PVC	29.0	25.4	NA	10.0	52.5	55.2
2	P2-1/2	PVC	29.0	24.4	NA	10.0	57.8	55.2
ო	H1-1/2	HYPALON	34.0	22.3	ŇA	10.0	195.0	160.0
4	H2-1/2	HYPALON	37.0	21.4	NA	10.0	260.6	160.0
REMARKS:	ALL SAMPLES TESTE	BROKE AT	FILM TEAR	BOND.				
	ł							

ł

		Project:	CONOCO				· · · · · ·	
STEFFEN I		Job No.:	SB20)					
Consuiting	) Engineers & Scientiste	Material	Type: PV	C				
	DES	TRUCTIVE	TEGT RES	IULTS				-
	التجاريبي ويلينا الانبخش يخصص فيتعدد البريب						······································	
Date Installed:	:	De	etruotive G	imple No.	: POND A	0.2		
Date lested:	5-3-93	Jamp	le NO.1		P2-1/2	2		
Tested Oy.	274	<b>-</b>						
		1	2	3	4	5		80
Thickness:	nin.						_	
Top (ω)	0.0285	0.029	0.029	0.029	0.029	0.029	0.029	
Bottom (IN)		0.029	0.028	0.029	0.029	0.029	0.029	
Bonded Geam	Gtrength: min.							
Load (ppi)	55.2	56.2	647	55.0	54.9	58.5	57.8	
Break Type		BRK	Bek	BRK	BRK	BRK		
		FTB	FTB	FTB	FTB	FTB		
Seem Peel Ad	hesion: min							
Load (ppi)	10	24.B	22.3	25.2	19.8	30.0	24.4	
Break type	A	D.BRK	AD	5E	AD-BRK	AD-BRK		
		FTE	NON-FTB	FTB	FTB	57B		
Date Installed:	:	De	structive 36	imple No.:	:			
Date Tested:				·				
Tested By:								
		1	2	3	4	5		
Thickness:								
Тор								
Boltom								
Bonded Seam	Strength:							
Load (ppi)								
Break Type								
Geam Peel Ad	hesion:							
Load (ppi)								
Break Type								

23.4 216 11-

MAY 4 '93 10:51

i

STEFFEN ROBERTSON & KIRSTEN Consulting Engineers & Scientists	Project: COUOCO Job No.: 5820   Material Type: HVP-A-LON								
DEGT	RUCTIVE T	EST REG	ULTS			<u> </u>			
Date Installed: $5/3/93$ Date Tested: $5/5/93$ Tested By: STELE HERSEY	Destructive Bample No.: $H_2 - 1/2$ SAMPLE LO.2								
Thiokness: Top min.34 mil Bottom	1 0,037 0.035	2	3 0.037 0.038	4 0.037	5 0.037 0.036	MEAN	SD		
Bonded Beam Strength: (SAMPLE WIDTH Load (ppl) min. 160 15s, Break Type	1 = 2") 276.1 FT8	281.9 FTB	273.7 FTB	223.8 FTD	247.7 FTB	260.	<u>e</u> 24		
Seam Peel Adhesion: Load (ppi) <u>ruin</u> (O. 65/in. Break Type	18-1 18-1	18.2 Ad Nou-FTB	25.4 AD NON-PTB	)9,1 &D NDU-FT8	26 , 1 AD NON - FM3	21.4	<u>4.0</u>		
Date Installed: Date Tested: Tested By:	Destr	uctive Ge	m <b>ple No.</b> :						
Thickness: Top Bottom	1	2	3	4	5				
Bonded Seam Strength: Load (ppi) Break Type									
Geam Peel Adhesion; Load (ppi) Break Type									

i T

i

|

	Project:	CONOCO						
STEFFEN ROBERTSON & KIRSTEN	N JOB NO.: 58201							
Consulting Engineers & Salentists	Material Type: PVC							
	TALICTIVE	TERT REA						
					<u></u>			
Date Installed: 5/3/93	Destructive Gample No.: PI -1/2							
Date Tested: 5/7/93	SAMPLE NO.3							
Tested By: Smele NERSEY								
	1	2	3	4	5	MEAN	80	
Thickness:		-	-	·	•			
Top 0.0285	9 50.0	0.029	0.029	0.029	Ø.ozg	PC0.0		
Bottom	0.029	0.029	0.029	0.029	002.0	<u> </u>		
			•••••	0.02 1		0.0-1	-	
Bonded Seam Strength: min.								
Loed (ppi) 55.2	50.2	53.1	51.2	52.1	55.7	52.5	2.1	
Break Type	FTB	FTB	ETA	-				
			F ( 1.2	FTB	FTB			
Seam Peel Adhesion:								
Lond (ppi)	23.2	24 -	310					
Break Type	D-BEK	44.0	24.3 10-000	25.7	27.5	25.4	1.8	
	FTB	PTB	TETR	AD-BCK	40-8RH	6		
					PT0			
Date Installed:	De	structive G	emple No.	•				
Date Tested:			·					
Tested By:								
	_	_	_		_			
Thickness	٢	2	Э	4	5			
Too								
Bottom								
Bonded Seam Strength:								
Load (ppi)								
Break Type								
Seam Peel Adhesion								
Break Type								

i

	Project:	Courco		يد علاقون مشرور الت	ند کمی اور کار انداز اور اور اور اور اور اور اور اور اور اور		
STEFFEN ROBERTSON & KIRSTEN	FEN ROBERTSON & KIRSTEN Job No.: 58201 Julling Engineers & Scientists Material Type: HYP-A-Lond						
Consulling Engineers & Scientists							
			• • -				l l
DEST	RUCTIVE	TEGT RE	SULTB				
Date installed: 5/7/93	De	structive 8	ample No.:	HI- 1/-	1		
Date Tested: 5/12/93		5/	IMPLE	NO.4			
Tested By: ≤JH							
	1	2	3	4	5	MEAN	6D
Thickness: min.	• 4		•			01344	- (
<b>Top</b> 0.034	0.034	0.034	0,034	0.035	0.035	0.0311	
Bottom	0.034	0.034	0.034	0.034	<i></i> 034	0.034	
Bonded Beam Strength: SAMPLE 2in wi	-	12in/min					
Lord (ppi) min 160 (bs	221.6	141.7	194.5	186.6	175.7	195.0	2 17
Break Type	FTB	ETA	~~~		<b>C-D</b>		- +
	•	FIQ	r' 0	FID	P D		- (
Geem Peel Adhesion:							- {
Lord (ppi) min. 10 lbs/in.	23.0	24.5	201	141	24.0	<b>a a a a</b>	
Break Type	AD-BRK	AD-BRK	AD-SRK	AD-ECK	AD-BRK	22.5	2.6
	FTB	ft <b>g</b>	TTB	FTB	FTB		
<b>.</b>	_						
Dete Installed:	Destructive Gample No.:						
Tested Du							
Tested by:							
	r	2	3	4	5		
Thickness:							
Тор							
Bottom							1
Bonded Seam Strength:							1
Load (ppi)							1
Break Type							
Seam Peel Adhesion:							
Load (ppi)							
Break Type							
#### APPENDIX I

**Geomembrane Quantities** 

STEFF	EN ROBERTSC	ON & KIRSTI	Z	JOB NO.	58201	GEOTEXTILE QU	ANTITY RECEIV	ED PAGE 1 OF 1
S	Itting Engineer	s & Scientis	S	SUBJECT: DATE RECEN	CONOCO'S S VED:	AN JUAN GAS PLANT 2/22/93	r & 4/1/93	
					GEOTEXTIL	Ш.		
	·				Manufactur	er:	Quline	
	LOT OR	ROLL	LENGTH	WIDTH	SQUARE	DATE Q.C.	DATE Q.A.	DATE Q.A. RESULTS
	0		300.0	(reel) 20.0	102000.0	NA NA	SAMPLE SENI NA	NA
	0	0	300.0	20.0	6000.0			
 	666		Total Squar	e Footage	=108000			

						Gundit		
STEFFI	EN ROBERTSC Iting Engineers	DN & KIRSTE s & Scientist	Zø	JOB NO. SUBJECT: DATE RECEIV	58201 CONOCO'S S, /ED:	GEONET ['] RECEIVED AN JUAN GAS PLANT 2/22/93		PAGE 1 OF 1
					TENSAR GE Manufactur Weight (oz/	EONET er: (sq yd):	PALCO LINGS II NA	Ç.
NO. OF ROLLS	LOT OR BATCH NO.	ROLL WEIGHT	LENGTH (METERS)	WIDTH (METERS)	SQUARE METERS	DATE Q.C. DOC. RECEIVED	DATE Q.A. SAMPLE SENT	DATE Q.A. RESULTS RECEIVED
161	NS140590	AN	19.0	7.0	9321.9	NA	AN	NA
					100332.0 SQ. FT.			
Checked By:	GGG	·	Total Square	e Footage	:100332			

.

!

					)		Ő	ceived
STEFFI Consu	EN ROBERTSC Iting Engineers	DN & KIRSTI s & Scientist	Zs	JOB NO. SUBJECT: DATE RECEIV	58201 CONOCO'S /ED:	GEOMEMBRANE SAN JUAN GAS 2/22/93	E QUANTITIES A PLANT	CCEPTED PAGE 1 OF 1
PVC GEOMEMI	BRANE							
ROLL	LOT OR	ROLL	LENGTH	WIDTH	SQUARE	DATE Q.C.	DATE Q.A.	DATE Q.A. RESULTS
NUMBER	BATCH NO.	WEIGHT	(FEET)	(FEET)	FEET	DOC. RECEIVED	SAMPLE SENT	RECEIVED
	A	AN N	200.0	0.77	15400.0	04/29/93	NA	AN
P 1-2	NA	NA	225.0	70.0	15750.0			
P 1-3	AN	NA	230.0	77.0	17710.0	04/28/93		
						04/28/93		
P 2-1	AA	AN	214.0	73.5	15729.0			
						04/20/33		
4 2 2 7	N	A	214.0	70.0	14980.0	04/28/93		
P 2-3	AN	AA	218.0	70.0	15260.0			
						04/28/93		
Checked By:	000		Total Squar	e Footage	= 94829			

ł

ł

								Received
STEFF Consu	EN ROBERTSO Ilting Engineers	N & KIRSTE & Scientist	Zω	JOB NO. SUBJECT: DATE RECEIV	58201 58201 CONOCO'	Geomembrane San Juan Gas 2/22/93	E QUANTITIES D PLANT	EPLOYED PAGE 1 OF 1
HYPALON GEC	MEMBRANE							
ROLL NUMBER	LOT OR BATCH NO.	ROLL WEIGHT	LENGTH (FEET)	width (feet)	SQUARE FEET	DATE Q.C. DOC. RECEIVED	DATE Q.A. SAMPLE SENT	DATE Q.A. RESULTS RECEIVED
H 1-1	93042	NA	198.0	56.1	11101.9	C0/96/100	ŅA	ŅĄ
H 1-2	93042	NA	224.0	56.1	12559.7	00/02/0		
H 1-3	93042	NA	224.0	56.1	12559.7	04/28/93 04/28/93		
H 1-4	93042	AN	227.0	56.1	12727.9	04/28/93		
H 2-1	93042	NA	213.0	56.1	11942.9	04/28/93		
H 2-2	93042	NA	213.0	53.0	11280.5	04/28/93		
H 2-3	93042	AA	213.0	49.8	10615.9	04/28/93		
H 2-4	93042	AN	216.0	56.1	12111.1	04/28/93		
H 3-1	93042	AN	76.0	21.8	1657.6	04/28/93		
Checked By:	999		Total Squar	re Footage	=96557			

PAGE 1 OF 1																						
JANTITIES				REMARKS																		
ACCEPTANCE QI JUAN GAS PLANT	NTHETIC		TOTAL LENGTH	OF SEAMS (FT.)			420			426				604				637		2087	03015	94005
GEOMEMBRANE , 58201 CONOCO'S SAN ,	HYPALON GEOSY	Thickness : 36 Mil	CUMULATIVE	SQ.FT.	15071.0	30961.0	49166.4	14441.4	29457.9	43879.0	8689.9	21172.1	33721.7	47012.5	11076.0	22982.7	34619.8	45548.1	1444.2			HYPALON=
JOB NO. SUBJECT:			TOTAL	SQ. FT.	15071.0	15890.0	18205.4	14441.4	15016.5	14421.1	8689.9	12482.2	12549.6	13290.8	11076.0	11906.7	11637.1	10928.3	1444.2		e Enntane	
7			WIDTH	(FEET)	78.7	70.0	80.2	67.8	70.5	67.7	56.1	55.6	55.9	59.6	52.0	55.9	55.1	51.5	20.9		Total Corrar	
۸ & KIRSTEN & Scientists			LENGTH	(FEET)	191.5	227.0	227.0	213.0	213.0	213.0	154.9	224.5	224.5	223.0	213.0	213.0	211.2	212.2	69.1			
N ROBERTSON	RANE	: 30 mil	DATE	DEPLOYED	05/05/93	05/05/93	05/05/93	04/30/93	04/30/93	04/30/93	05/06/93	05/06/93	05/06/93	05/08/93	05/01/93	05/01/93	05/11/93	05/11/93	56/01/G0		566	5
STEFFE Consult	PVC GEOMEMB	Thickness	PANEL	NUMBER	P1-1	P1-2	P1-3	P2-1	P2-2	P2-3	H1-1	H1-2	H1-3	H1-4	H2-1	H2-2	H2-3	H2-4	UVEHFLUW	TOTAL	Checked By:	oncored by.

------

# APPENDIX J

Pond Geosynthetics Installation (Photographs)

#### SUBGRADE GEOTEXTILE/VENTING MEDIUM



Plate 1 - Pond 2 Installation



Plate 2 - Pond 1 Installation

# SECONDARY LINER (PVC) INSTALLATION



Plate 1 - Panel 1 Deployment



Plate 2 - Opening and Spreading Panel 2

#### LEAK DETECTION NETTING



Plate 1 - Net Deployment



Plate 2 - Net Installation

#### LEAK DETECTION NETTING (Cont'd)



Plate 3 - Leak Detection Sump



Plate 4 - Leak Detection Sump

# PRIMARY LINER (HYPALON) INSTALLATION



Plate 1 - Pond 1 (Secondary Lining of Overflow)



Plate 2 - Pond 1 (Primary Lining of Overflow)

#### MISCELLANEOUS PHOTOS



Plate 1 - Stitching Subgrade Geotextile



Plate 2 - Pond Liner Seaming

# MISCELLANEOUS PHOTOS (Cont'd)



Plate 4 - Well Riser and Submersible Pump

# MISCELLANEOUS PHOTOS (Cont'd)





# MISCELLANEOUS PHOTOS (Cont'd)



Plate 6 - Wastewater Stub End

#### APPENDIX K

Palco Certificate of Completion



Score No. <u>W93042</u>	Report Date 5-14-93	Page <u>1</u> of <u>2</u>
Service Material Used: <u> </u> Seaming Method: <u>Quiesure</u> Equipment Used: <u>Heat go</u> n	s and scaming paddles	
Seam No. $\frac{HZ-1}{HZ-2}$ Length (ft) $\frac{200+}{5-1 \text{ god } 5-3}$	Seam No. $\frac{H2 \cdot 2}{H2 - 3}$ Length (ft) $\frac{200 + 1}{5 \cdot (1 - 93)}$ Date Seamed $\frac{5 \cdot (1 - 93)}{5 \cdot (1 - 93)}$	Seam No. <u>HZ-3/HZ-4</u> Length (ft) <u>zoo+</u> Date Seamed <u>5-11-93</u>
Seaming Conditions:		
Ambiant Temp. <u>60 +0</u> 78 Surface Temp. <u>76 %</u> 114 Wind (mph) <u>0 to 15</u>	Ambiant Temp. <u>52[°]+0</u> 81 [°] Surface Temp. <u>68[°]†0145</u> [°] Wind (mph)	Ambiant Temp. <u>52° ro &amp;</u> Surface Temp. <u>68 to 145</u> ° Wind (mph)
Testing / Observation:		
Lance/Visual/Vacuum Date <u>5-12 /5-13</u>	Lance/Visual/Vacuum Date_ <u>5-12/5-13</u>	Lance/Visual/Vacuum Date <u>5-12/5-13</u> 13
Patch Location: distance	from top of seam (ft)	(
Remarks: fond #1 primary 1	liver is complete.	
Date of Einal Walk-Down By: <u>falco-fau D. Hauia SRK-</u>	(Approval): <u>5-14-93</u>	Nechal
FM92002		



Score No. 1093042	Report Date <u>5-1-93</u>	Page of
Service Material Used: Seaming Method: <u>Odhesu</u> Equipment Used: <u>Seamu</u>	PVC ng faddles	
Length (ft) $200 +$ Date Seamed	Length (ft) $200 \pm$ Date Seamed	Length (ft)
Seaming Conditions:		
Ambiant Temp. <u>56 to 7</u> 3° Surface Temp. <u>17 to 9</u> 6 Wind (mph) <u>10 to 20</u>	Ambiant Temp. <u>56 to 7</u> 3° Surface Temp. <u>72 to 9</u> 6° Wind (mph) <u>10 to 20</u>	Ambiant Temp Surface Temp Wind (mph)
Testing / Observation:		
Lance/Visual/Vacuum Date <u>4-30 and 5-1</u>	Lance/Visual/Vacuum Date <u>4-30 and 5-1</u>	Lance/Visual/Vacuum Date
Patch Location: distance	from top of seam (ft)	
Remarks: <u>fond # 2 seco</u>	ndarg liner is complete.	
Date of Final Walk-Down By: <u>Paleo - Pau D. Hanie</u>	(Approval): <u>5-1-93</u> <u>SRK- Glu Guy</u> (1	noco gaBentas
FM92002 9/30/92	-	Ĵ

7571 Santa Rita Circle • P.O. Box 919 • Stanton, CA 90680 • (714) 898-0867 • FAX #(714) 891-4937 2624 Hamilton Blvd. • P.O. Box 526 • South Plainfield, NJ 07080 • (908) 753-6262 • FAX# (908) 753-5737



Score No. <u>W93042</u>	Report Date <u>5-10-9</u> 3	Page <u>2</u> of <u>2</u>
Service Material Used: <u>H</u> Seaming Method: <u>Ahesu</u> Equipment Used: <u>Hrat</u>	hypalon ve was and scaming paddles	
Seam No. $HI-I/HI-2$ Length (ft) 200 + Date Seamed 5-6-93	Seam No. $\frac{H(-2/H)-3}{Length}$ (ft) $\frac{200+}{5-6-93}$	Seam No. $\frac{\frac{1}{113}}{\frac{1}{114}}$ Length (ft) $\frac{200+}{5-8/5-10}$ Date Seamed $\frac{5-8}{5-10}$
Seaming Conditions:		
Ambiant Temp. <u>41-70</u> Surface Temp. <u>50-96</u> Wind (mph) <u>0-70</u>	Ambiant Temp. <u>41–70</u> Surface Temp. <u>50–96</u> Wind (mph) <u>0–20</u>	Ambiant Temp. <u>41-87</u> Surface Temp. <u>50-130</u> Wind (mph) <u>0-5</u>
Testing / Observation:		
Lance/Visual/Vacuum Date <u>5-7-93</u>	Lance/Visual/Vacuum Date <u>6-7-93</u>	Lance/Visual/Vacuum Date <u>5-10-93</u>
Patch Location: distance	e from top of seam (ft)	
Remarks: fond # 1 prima	al liner is complete.	
Date of Final Walk-Down By: <u>falco-fau A. Haun SRK</u>	(Approval): <u>5-10-93</u>	Jo Bouch
FM92002 9/30/92	-	1



Score No. <u>1093042</u>	Report Date <u>5-5-93</u>	Page <u> </u>
Service Material Used: Seaming Method: <u>Qdhes</u> Equipment Used: <u>Seam</u>	PVC ng_paddles	
Seam No. $f_{1-1}/f_{1-2}$ Length (ft) 200 + Date Seamed 5-5-93	Seam No. $\frac{\rho_{1-2}/\rho_{1-3}}{200+}$ Date Seamed <u>5-5-93</u>	Seam No Length (ft) Date Seamed
Seaming Conditions:		
Ambiant Temp. <u>44[°]+0</u> 78 [°] Surface Temp. <u>60[°]+0</u> /20 [°] Wind (mph)	Ambiant Temp. <u>44° to 78</u> ° Surface Temp. <u>60° to 120</u> ° Wind (mph)	Ambiant Temp Surface Temp Wind (mph)
Testing / Observation:		
Lance/Visual/Vacuum Date <u>5-5-93</u>	Lance/Visual/Vacuum Date <u>5-5-93</u>	Lance/Visual/Vacuum Date
Patch Location: distance	from top of seam (ft)	
Remarks: Pond #1 5000	ndary complete	
Date of Final Walk-Down By: <u>falso faw D. Harm</u> r	(Approval): 5-5-93 $5RK - 19 (4.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.$	onaco-JaBon li
FM92002 9/30/92	-	Ţ

7571 Santa Rita Circle • P.O. Box 919 • Stanton, CA 90680 • (714) 898-0867 • FAX #(714) 891-4937 2624 Hamilton Blvd. • P.O. Box 526 • South Plainfield, NJ 07080 • (908) 753-6262 • FAX# (908) 753-5737