GW - 32

PERMITS, RENEWALS, & MODS Application NOVEMBER 1985

DISCHARGE PLAN APPLICATION FOR GIANT REFINING COMPANY CINIZA REFINERY GALLUP, NEW MEXICO

November 21, 1985

Prepared for:

Giant Industries, Inc. 7227 North 16th Street Phoenix, Arizona 85020

Prepared by:

Geoscience Consultants, Ltd. 500 Copper Avenue, N.W., Suite 325 Albuquerque, New Mexico 87102

TABLE OF CONTENTS

1.0 E	XECUTIVE SUMMARY
2.0 L 2 2 2	OCATION, PHYSIOGRAPHY AND CLIMATE31LOCATION AND MAILING ADDRESS32PHYSIOGRAPHY33CLIMATE3
3.0 B	RIEF HISTORY OF OPERATION
4.0 D 4 4 4	ESCRIPTION OF PHYSICAL ENVIRONMENT AT SITE 7 1 LOCAL GEOLOGY 7 2 GEOMORPHOLOGY AND SOILS 13 3 HYDROLOGY 14 4.3.1 Regional Geohydrology 14 4.3.2 Local Geohydrology 16 4.3.3 Uppermost Water-Bearing Zone 18 4.3.4 Hydrogeologic Properties Of Uppermost Ground Water Zones 22 .4 GROUND WATER USERS IN THE CINIZA AREA 24
5.0 PR 5 5	OCESS DESCRIPTION AND WASTEWATER CHARACTERISTICS 32 0.1 OVERVIEW 32 0.2 MAIN PROCESS UNIT DESCRIPTIONS AND WASTEWATER
	CHARACTERISTICS 35 5.2.1 Crude Oil Fractionation (C) 35 5.2.2 Catalytic Cracking (C) 36 5.2.3 Alkylation (C) 36 5.2.4 Platforming 37 5.2.5 Merox Treating (C) 37 5.2.6 Naphtha Hydrotreating (C) 38
5	WATER CHARACTERISTICS 38 5.3.1 Boilers (NC) 38 5.3.2 Cooling Towers (NC) 41 5.3.3 Storage Tanks (C) 41 5.3.4 Water Softening Units (NC) 41 5.3.5 Desalters (C) 41 5.3.6 Additive Mixing Facility 42 5.3.7 Oil/Water Separation System (C) 42 5.3.8 Blowdown/Relief Flare System 44 5.3.9 Air Compressors (NC) 44
5	.4 NON-PROCESS WASTE STREAMS

	5.4.7 Asphalt Plant (C)	47
	5.4.8 Domestic Sewage (NC)	47
6.0	WASTE MANAGEMENT SYSTEM	48
	6.1 WASTEWATER PATHS AND DISPOSITION	49
	6.1.1 Evaporation Ponds	52
	6.1.2 Water Balance For Evaporation Ponds	52
	6.1.3 Proposed Aerated Lagoon	53
7.0	MONITORING AND REPORTING PLAN	54
	7.1 MONITORING	54
	7.2 REPORTING AND RECORD KEEPING	55
8.0	CONTINGENCY PLANS	56
٥ ٥	CUMMADY OF DISCHADEE DIAN DEOUTDEMENTS	67
5.0	SUMMARY OF DISCHARGE FLAN REQUIREMENTS	57
10.0	BASIS FOR APPROVAL	58
11.0	REFERENCES CITED	59

J

- -

.

1

I L

LIST OF FIGURES AND PLATES

- ------

FIGURE		ſ	PAGE
2-1	General Location Map, Ciniza Refinery Area		4
4-1	Geologic Map of Refinery Area		8
4-2	Geologic Cross-Section, Ciniza Area		9
4-3	Stratigraphic Column, Ciniza Area		10
4 - 4	Photographs of Cores from Borehole SMW-1 Showing Ciniza Sand (60' - 65')		11
4-5	Photograph of Sonsela Outcrops on Ridge South of Refinery (US 40 In Foreground)		12
4-6	Structure Contours, Datum is Sonsela Sand		17
4-7	Artesian Head in Sonsela Sandstone Bed		19
4-8	Soil Moisture Profiles From Borehole SMX-1		21
4-9	Locations of Wells Within 1 Mile of Refinery Site		25
4-10	100-Year Flood Plain Map		26
6-1	Wastewater Disposition In Evaporation Ponds		50
PLATE			
1	Isopach Map, Ciniza Sand	In	Pocket
2	Structure Contours, Datum Top Ciniza Sand	In	Pocket
3	Water-Level Elevations, Ciniza Sand	In	Pocket
4	Process Waste-Stream Schematic	In	Pocket
5	Non-Process Waste Stream Schematic	In	Pocket

LIST OF TABLES

TABLE		PAGE
4-1	Hydrologic Factors, Erodibility Classification, and Erosion Hazard	15
4-2	Summary of Aquifer-Test Results: Sonsela and Overlying Chinle Formation	23
4-3	Peak Discharge and Runoff Calculation Sheets #1, 2, 3 and 4	27
5-1	Process Units and Wastewater Treatment/Disposal Units	34
5-2	Chemical Analyses of Selected Waste Streams at Giant Ciniza Refinery (Values in MG/L)	39
5-3	Analyses of Comingled Wastes, Sewage and Miscellaneous Wastes	43
6-1	Water Balance For Evaporation Ponds	50

APPENDICES

Appendix

- A Logs of Borings and Soil-Moisture Analyses
- **B** Soil Properties
- C Aquifer-Test Data and Analyses

REGULATORY INDEX

ł

WQCC REGULATION	SECTION OF DISCHARGE PLAN
1-202.B	TO BE SUBMITTED
3-106.A	THIS DOCUMENT
3-106.C	
1. 2. 3. 4. 5. 6. 7. 8.	5.0, 6.0 2.0, 4.0 1.0, 4.0 4.5 7.0 4.0 4.0, 5.0, 6.0, 8.0, 9.0 Not Applicable
3-107.A 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	5.0, 6.0, 7.0 4.0, 7.0 7.0, 4.3.3 7.2 7.2 7.0, 8.0 7.0, 8.0 7.0, 8.0 7.0, 8.0 7.0, 8.0 7.0, 8.0 7.2

1.0 EXECUTIVE SUMMARY

Giant Refining Company (Giant) operates an 18,000 BBL/day petroleum refinery at Ciniza, New Mexico, approximately 17 miles east of the city of Gallup in McKinley County, New Mexico in Sections 28 and 33 of Township 15N, Range 15W. This refinery has been in operation under various owners since 1957, and has been owned and operated by Giant since 1982. The refinery discharges approximately 160,000 gallons per day of process and non-process wastewater, with an average total dissolved solids content ranging from 2000 to 3000 mg/l.

Wastewater from process units which contacts feedstocks or products is routed to an twin-cell API separator, from which it flows to a series of evaporation ponds with natural clay liners. Other wastewater which does not contact hydrocarbons (boiler blowdown, water-softener backwash) flows through a neutralization tank prior to discharge directly to the evaporation ponds.

The uppermost aquifer beneath the Refinery is the Sonsela Sandstone Bed, which lies at a depth of 70 to 140 feet and contains ground water with an average total dissolved solids (TDS) content of 950 mg/l. Ground water in the Sonsela is under considerable artesian pressure. An additional zone of ground water exists in a thin, discontinuous lens of sand (Ciniza sand) which is interbedded with the shales of the Chinle Formation, 40 feet above the Sonsela. This ground water is also under artesian conditions and has an average TDS of 2240 mg/l. Neither the Sonsela nor the Ciniza sand ground-water zones are likely to be affected by refinery discharges, because:

- o The shales and clays of the Chinle Formation have permeabilities $(10^{-8} to 10^{-9} ft/sec)$ which are <u>less</u> than those specified for engineered clay liners under RCRA interim standards $(10^{-7} ft/sec)$
- Boreholes drilled within 20 feet of the perimeters of evaporation ponds, which have been in use for 13 years, show no evidence of pond leakage

o Artesian pressure prevents downward movement of contaminants by advection

Giant currently maintains a network of 10 ground-water monitoring wells at Ciniza, and regularly samples these wells according to a schedule required by RCRA and NMHWM regulations. Previous sampling has shown no evidence of ground water contamination due to refinery activities, and subsequent sampling and analysis will serve to immediately detect any migration of contaminants into the Ciniza sand or the Sonsela.

In order to further reduce the waste burden of its effluents, Giant is planning to install an aerated, biological-treatment lagoon to treat the discharge from the API separator. This treatment lagoon is anticipated to reduce the biological oxygen demand of the final effluent by 60%, and also to reduce the levels of organic constituents.

2.0 LOCATION, PHYSIOGRAPHY AND CLIMATE

2.1 LOCATION AND MAILING ADDRESS

The Giant Refining Company's Ciniza Refinery facilities and wastewatermanagement system are located approximately 17 miles east of the city of Gallup, in McKinley County, New Mexico. The refinery location and local topography are shown in Figure 2-1. The refinery plant is sited in Sections 28 and 33 of T. 15 N., R 15 W. (New Mexico Prime Meridian). Access to the site is provided by Interstate 40 (Ciniza exit) and old Route 66 (Figure 2-1). All correspondence regarding this Discharge Plan should be sent to:

> o Mr. Carl D. Shook Refinery Manager Ciniza Refinery Route 3, Box 7 Gallup, New Mexico 87301

Copies of all correspondence should be forwarded to:

o Mr. Carlos Guerra, Esq. General Counsel Giant Industries, Inc. 7227 N. 16th Street Phoenix, Arizona 85020 o Geoscience Consultants, Ltd 500 Copper Avenue, N.W. Suite 325 Albuquerque, New Mexico 87102

2.2 PHYSIOGRAPHY

The Ciniza site lies on the southeastern margin of the San Juan Basin on the northern flank of the Zuni Mountains. The site slopes gently (approximately 100 feet per mile) to the northeast and the area is drained by the intermittent South Fork of the Puerco River. The Ciniza refinery is located on the southern margin of the topographic valley of the Puerco River, which joins the Little Colorado River near Holbrook, Arizona.

2.3 CLIMATE

The region is semiarid, with an average rainfall of about 10 to 12 inches per year. Yearly (lake) evaporation is on the order of 50 to 55 inches per year (United States Soil Conservation Service, 1972). Temperatures range from maximum of over 100^{0} F in the summer months to minimum of 0^{0} F or less in the winter. The mean annual temperature is 48^{0} F. Precipitation is highly seasonal, with most of the volume occurring as rainfall during the months of July

 $\left[\right]$

through September. Rainfall is typically in the form of brief, intense thundershowers which are fed by moist air derived from the Gulf of Mexico. Precipitation is initiated by orographic cooling of moist air-masses as they rise on the slopes of the Zuni Mountains to the south, or Mount Taylor to the east.

3.0 BRIEF HISTORY OF OPERATION

The Ciniza Refinery was constructed by El Paso Natural Gas Company, at essentially its present capacity of 18,000 BBLS per day, in 1957. El Paso operated the refinery until 1964, when it was sold to Shell Oil Company.

Shell operated the Ciniza Refinery from 1964 through 1982, with no major changes in capacity or process. In 1982, the refinery was purchased by its present owner, Giant Industries, Inc. and operated by Giant Refining Company a division of Giant Industries, Inc.

The refinery currently produces regular, unleaded and unleaded premium gasoline, JP4 and JetA aircraft fuels, diesel, kerosine, naptha and minor amounts of other petroleum products.

The majority of feedstock crude arrives by pipeline from the San Juan Basin oil and gas fields. Products are primarily shipped by tank trucks, which are either common carriers, trucks owned or leased by Giant, or trucks operated by the product customers. Some diesel product is shipped via rail.

4.0 DESCRIPTION OF PHYSICAL ENVIRONMENT AT SITE

4.1 LOCAL GEOLOGY

The Ciniza Refinery site lies on the southeastern margin of the San Juan Basin, on the northern flank of Zuni Uplift (Figure 4-1). Bedrock (Chinle Formation) strikes approximately N. 40 E., and structure is expressed as a gentle, homoclinal northwesterly dip of 1.5 to 2.5 degrees. No significant faults are observed or inferred on or near the refinery site. Figure 4-2 is a cross-section showing the structure and stratigraphy of the bedrock deposits beneath the refinery area. Figure 4-3 is a generalized stratigraphic column for the Ciniza area. Logs of boreholes from monitor wells and exploratory holes are includes in Appendix A.

The refinery is underlain by outcrops of the upper part of the Petrified Forest Member of the Chinle Formation. The Petrified Forest is composed of volcanigenic siltstones, claystones and shales with localized and discontinuous sand bodies, deposited in a low-energy fluvial and floodplain environment. Shales and claystones of the Petrified Forest comprise the overlying confining bed (aquitard) for the artesian Sonsela aquifer and for the confined ground water in the "Ciniza sand". These variegated blue, gray, brown, red and purple mudrocks weather into very fine clays, which swell slightly and become extremely plastic and slippery when water-saturated. Figure 4-4 includes photographs of drill cores from the Refinery site, illustrating the lithologies typically present in this area.

The upper and lower parts of the Petrified Forest Member are separated by the Sonsela Sandstone Bed. This sandstone is typically light yellow to greenish, fine to medium grained, cross-bedded and contains local interbeds of conglomerate and shale (Figure 4-5). Regionally, this unit varies in thickness from 40 to nearly 300 feet, but is about 60 to 100 feet thick in the Ciniza area. The Sonsela is recognized as the uppermost aquifer in this area.

Figure 4-4 PHOTOGRAPHS OF CORES FROM BOREHOLE SMW-1 SHOWING CINIZA SAND (60'-65')

Figure 4-5 PHOTOGRAPH OF SONSELA OUTCROPS ON RIDGE SOUTH OF REFINERY (US 40 IN FOREGROUND) Exploratory drilling and field investigations have revealed the presence of a thin (0-10 feet), lenticular sandstone body (the "Ciniza sand") in the upper Petrified Forest Member, approximately 40 feet above the Sonsela. This sand body is further described in Section 4.3.2

The lower part of the Petrified Forest Member is lithologically very similar to the upper part, and is also composed of siltstones and mudrocks with some local sandstone lenses (O'Sullivan, 1977).

Underlying the Chinle Formation are the San Andres and Glorieta formations (Permian), which contain the drinking water aquifer in this region. Approximately 600 feet of Chinle shales separate the San Andres from the Sonsela. The San Andres is composed of carbonates with interbedded clastic rocks, and the Glorieta is primarily a sandstone.

4.2 GEOMORPHOLOGY AND SOILS

The Ciniza Refinery is sited on soil-mantled (Montoya Series) bedrock outcrops of the upper Petrified Forest Member. Logs of numerous borings (Appendix A) indicate that <u>none</u> of the site is underlain by the alluvial deposits of the nearby Puerco River. No significant natural drainages cross the Refinery plant site, which is located on a slight (30 to 50 foot) topographic rise. The area's geomorphology is dominated by the 1 to 2 degree northwesterly dip-slopes of the Chinle outcrops and the effects of arid weathering on montmorillonite-rich shales and other mudrocks. Topographic relief is primarily the result of differential weathering and erosion of soft shales and resistant sandstones and Hills, buttes and mesas are capped by the resistant conglomerates. sandstones and conglomerates, whereas slopes and valleys develope in areas of shale and mudstone outcrops. Valleys formed in the Chinle are generally filled with very-fine-grained alluvial detritus from the weathering of mudstones and shales.

Soils derived from deep weathering of the shales and siltstones of the Chinle Formation are typically classified as Ustolic Camborthids

(USSCS, 1972). Soil types and physical properties are summarized in Table 4-1 and detailed in Appendix B. Soils are predominantly of the Montoya series. These clay-rich soils have very low permeabilities and high moisture retention capacities.

4.3 HYDROLOGY

4.3.1 Regional Geohydrology

The geohydrology of the southern San Juan Basin is controlled by geologic structure and by the vertical hetrogeneity of the hydraulic properties of the layered sedimentary bedrock. Beds dip into the basin at 1 to 5 degrees from the northern flanks of the Zuni Mountains. Interbedded permeable (sandstone and carbonate) and impermeable (shale and siltstone) units form numerous local and regional artesian aquifers in the Permian, Triassic, Jurassic and Cretaceous systems (see Figures 4-1, 4-2). The major aquifer in this region is the San Andres/Glorieta formation.

The San Andres/Glorieta aquifers are the most prolific and commonlyused local sources of ground water. These confined, artesian aquifer systems support wells (many of which are freely flowing) with capacities of over 300 gallons per minute (GPM). Although the Sonsela is an aquifer, its productivity is approximately one order of magnitude less than an equivalent-diameter San Andres well. Sonsela wells produce up to 30 GPM, but 5 to 20 GPM is more typical (Cooper and John, 1968). Wells in some areas can be completed in isolated sandstone lenses in the Petrified Forest Member, but these wells are of low capacity (\leq 1 GPM), have not been developed and are not considered reliable sources of ground water.

Recharge of the San Andres/Glorieta aquifers occurs primarily in the areas of the upper Zuni Mountains, where permeable beds crop out. Ground water moves down dip through the permeable beds of porous limestone and sandstone (aquifers) and is restricted in its vertical movement by relatively impermeable beds of shales and mudrocks (aquitards). Discharge is through wells and springs, and by leakage in the deeper, central parts of the basin.

Table 4-1

Hydrologic factors, erodibility classification, and erosion hazard

	Erosion hazard •	Moderate.	Low. High.	High.	Moderate.	Moderate.	Moderate.	Moderate. Low.	Low.	High.	High. Moderate.	Hish	Moderate.	High. High.	High.		Moderate.	Moderate.	High.	High.	High.	Moderate.	High.	High.	Moderate.	.118111		High.
shed lines indicate that no rating was assigned]	Erodibility 1	Moderate	Moderate	Moderate	Moderate	Moderate	High	Moderate	High	High	High.	Uiah	Moderate	Moderate	Moderate.		Moderate	High	High	High	High	Moderate	High	High	High			High
	Hydro- logic group •	v	V	:06	20			00	U	v	с м	c		C m	mc	1	В	A	в	A	þ	υ	66	20	OF	۹ ۱		D
	Runoff potential (water yield) ¹	Medium	Low	High	Low	Low	Low	Medium	Low.	Medium	High	Hinh	Medium.	High. Medium	Medium		Medium	Medium	Low.	High	Low	Low	Medium	High.	Medium			Medium
	Space for water storage ?	Low	Low	Medium	Medium	High	High	Medium	Low to	Low	Low Medium to	low.	Low .	Low	Low High		High	Low	Medium	Low	Medium	Low to medium	Low	Low	High			Low
	Permeability ¹ of least pervious layer	Slow.	Moderate Moderate	Slow	Slow	Slow	Slow	Slow to very	slow.	Slow	Slow	Madamata	Moderate	Moderate	Moderate	· · · · · · · · · · · · · · · · · · ·	Moderate	Moderate to	Moderate to	Moderate to	Slow to very	Moderate	Slow	Slow	Slow to very	slow.		Moderate to slow.
	Infiltration ¹	Moderate	Rapid Rapid	Rapid	Moderate	Moderate	Rapid	Moderate	Rapid	Rapid	Moderate Moderately	rapid.	Moderate	Moderate	Moderate.		Rapid.	Rapid.	Rapid	Rapid	Moderate	Moderate	Slow	Rapid	Moderate.			Moderate
nu]	Soil	Andrews gravelly loam, 5 to 20 percent slopes	Bandera gravelly loam, 5 to 15 percent slopes Bandera gravelly loam, 15 to 35 percent slopes.	Bond sandy loam, 5 to 15 percent slopes-	Clayev alluvial land (0 to 2 percent slopes)	Concho clay loam, 1 to 3 percent slopes	Fortwingate loam, 2 to 8 percent slopes.	Friana silt loam (1 to 3 percent slopes) Gem stony loam, 2 to 7 percent slopes	Jekley silt loam, 3 to 7 percent slopes	Jekley stony loam, 10 to 30 percent slopes	Jekley rocky complex, 30 to 40 percent slopes Kettner loam, 3 to 10 percent slopes	Wattanentonn loom 1040 00 nonont elonos	Kiln rocky complex, 3 to 20 percent slopes	Kiln rocky complex, 20 to 40 percent slopes Laporte stony loam. 3 to 10 percent slopes	Laporte stony loam, 20 to 40 percent slopes	Lava flows	Lava rock land	Mirabal stony loam, 5 to 15 percent slopes	Mirabal stony loam, 15 to 45 percent slopes	Mirabal stony loam, low rainfall, 5 to 20 percent slones.	Montoya clay (0 to 3 percent slopes)	Nathrop loam, 0 to 5 percent slopes	Ordnance loam (5 to 15 percent slopes)	Osoridge rocky complex, 2 to 20 percent slopes.	Polich Ioam (0 to 2 percent slopes)		Rock land (5 to 50 percent slopes)Rock outcrop, gently sloping	Rock outcrop, cliffs
	Map symbol	an e A C	5 D C	300	p a	പ്പ	 ວິເຂີເ	r G	Je	٦ الا	÷γ ₽	7	ξŸ	× "	197		٣ć	ΨP	٤ ۲	ĸ	Mo	Na	Po	5ŏ	<u>م</u> م	-	ጟጜ	Sa

15

SOIL SURVEY

Sonsela outcrops are observed at lower elevations on the northern side of the Zuni Mountains, and in the area immediately to the south of Interstate 40 near the Refinery. All observed Sonsela outcrops are above the Refinery facilities topographically, and are also hydraulically upgradient from the site.

4.3.2 Local Geohydrology

Three water-bearing units are present beneath the Ciniza Refinery site (see Figure 4-2):

- o The San Andres and Glorieta Formations (Uppermost Drinking Water Aquifer)
- o The Sonsela Sandstone Bed of the Chinle Formation (Uppermost Aquifer)
- A local sand lens (Ciniza sand) in the Chinle Formation (Uppermost Water-Bearing Zone)

The San Andres and Glorieta Formations (Permian) are principally composed of limestone with local clastic interbeds. The San Andres lies approximately 800 feet beneath the refinery, and produces ground water from 3 on-site wells for refinery process and local domestic uses. The San Andres-Glorieta aquifer contains water under considerable artesian pressure, and is recognized as the principal deep aquifer in the Grants/ Bluewater basin (Stone, et.al., 1983). The depth of this aquifer, its artesian pressure, and the extremely low permeability of the units between it and the surface act together to prevent downward movement of any refinery products or effluents into the San Andres aquifer.

The Sonsela Sandstone Bed, the uppermost geohydrologic unit which is recognized as a aquifer, is also a confined, artesian unit. This sandstone bed lies 70 to 140 feet beneath the refinery site (Figure 4-6). Ground water in the Sonsela is under 20 to 100 feet of artesian head

(Figure 4-7). The potentiometric surface of this aquifer slopes northwest at about 0.01. Like the San Andres, artesian conditions insure that the Sonsela will be protected from contamination by any refinery products or effluents discharged at the surface. Ground water in the Sonsela is confined by the essentially impermeable shales of the Petrified Forest Member of the Chinle Formation (Triassic), of which the Sonsela is a part. Appendix D contains analyses from Sonsela Wells.

4.3.3 Uppermost Water-Bearing Zone

The uppermost water-bearing unit at the Refinery site is a local, lenticular sand body contained in the shales and clays of the Petrified Forest Member overlying the Sonsela. This sand unit has been given the informal field name "Ciniza sand". The lateral extent of this sand is shown on a map based on continous coring on a portion of the refinery site (Plate 1). Ground water in the Ciniza sand is confined by the surrounding clays and shales and is under 10 to 30 feet of artesian head. The potentiometric surface of this ground water zone slopes northwest at a gradient of .008.

The Ciniza sand is approximately 5 feet in thickness (ranging from 0 to 10 feet), and is only observed in the area north and west of the Refinery site (Plate 1). Approximately 40 feet of Petrified Forest shales and siltstones separate the Ciniza sand from the Sonsela. <u>Difficult or impossible to recognize in outcrop</u>, this sand body was discovered by continuous-core drilling while installing additional RCRA monitoring wells for the refinery's land treatment area. The Ciniza sand lies from 0 to 65 feet below the land surface in the area north and west of the refinery site, and strikes N.35 E. with a northwesterly dip of 2.4 degrees (Plate 2). The sand is a relatively continuous unit under the land treatment area, but pinches out near the eastern, western and southern boundaries of that area.

The Ciniza sand is typically a fine to very-fine-grained, moderately-topoorly-sorted quartzose sand with a clay and silt content which varies from 5% to over 35%. Sharp contacts are observed with the overlying

and underlying clays, and preserved sedimentary structures indicate a fluvial origin.

Giant has recently installed a total of 6 RCRA monitoring wells in the Ciniza sand in the vicinity of the land treatment area; all of these wells are hydrologically downgradient from the NMOCD regulated waste management units. As further discussed in Section 7.1, regular analyses of water samples from these wells will indicate the presence and movement of any potential contaminants in the ground water in the Ciniza sand. Samples have been collected from all 6 wells in the Ciniza sand, and complete RCRA analyses are pending.

The ground water in the Ciniza sand is typically under 10 to 30 feet of artesian head (Plate 3), and is confined by the highly impermeable clays and shales of the Petrified Forest Member. The potentiometric surface dips N.85 W. at a gradient of 0.008. Examination of numerous cores shows that these clays and shales are essentially unsaturated, and commonly dry, within less than 2 feet of their contact with the saturated sand. This observation is confirmed by moisture-content analyses from boreholes (Appendix A) which show that the clays are unsaturated within a few feet of the water-bearing sand (Figure 4-8). Thin beds of sand (0.5 to 2.0 feet) were commonly observed to lie within 5 to 15 feet of the Ciniza sand; these other sands were invariably dry in all borings.

Several of the exploratory boreholes (e.g., SMX-7, 8; see Plate 1) did not encounter the Ciniza sand at its expected depth, but were advanced to depths of 10 to 20 feet below the expected target-depth. These boreholes were allowed to remain open for up to 6 weeks; during that period <u>no</u> water was observed to accumulate in these boreholes. This shows that there is little or no ground water in the strata above the Ciniza sand, and no ground water in the shales and clays adjacent to the stratigraphic "zero edge" of that sand. Other exploratory piezometers, completed in the Petrified Forest shales above the Ciniza sand have remained totally dry for a period of several months. This demonstrates

that there is effectively <u>no consistent zone of saturation in the Chinle</u> <u>shales</u>.

No known water wells (other than Giant's SMW-series monitor wells) are completed in the Ciniza sand. The discontinuous nature, small saturated thickness, extremely low transmissivity, and highly variable waterquality of this unit indicate that it has no potential as a present or future source of ground water.

4.3.4 Hydrogeologic Properties Of Uppermost Ground Water Zones In conjunction with its RCRA Part B Application, Giant Refining Company has performed several tests to determine the hydrologic properties of the Sonsela aquifer and the Chinle shale aquitard which overlies the Sonsela and contains the Ciniza Sand. The results of these tests are summarized in Table 4-2. Further information on these tests is contained in Appendix C.

In addition to planned tests, field observations of hydrogeologic properties of the Chinle Formation were made during the installation of numerous boreholes and wells on the Refinery site. Several of these borings were located within a few tens of feet from the edges of evaporation ponds, but in no case was free water or saturation of soils observed in any zones above the Ciniza sand. This observation, coupled with the presence of unsaturated clay in beds located within a few feet above or below the pressurized, confined-water Ciniza sand, indicates that the hydraulic conductivity of the Pertified Forest shales is at least several orders of magnitude less than the values indicated by the pump tests.

-

The pump test of the Chinle Shale zone was conducted <u>before</u> the discovery of the Ciniza sand, and was performed in a well which may be interconnected with that sand. Therefore, the hydraulic conductivity calculated from that pump-test represents a maximum possible value for the shales and a minimum value for the Ciniza sand.

TEST	UNIT	Т	К
Slug	Sonsela	1.3 x 10 ⁻⁴	3.9 x 10 ⁻⁶
Slug	Chinle Shale	5.2 x 10 ⁻⁷	1.3 x 10 ⁻⁸
Pump	Chinle Shale	1.7 x 10 ⁻⁷	8.3 x 10 ⁻⁹

T in ft²/sec K in ft/sec

Table 4-2 SUMMARY OF AQUIFER-TEST RESULTS SONSELA AND OVERLYING CHINLE FORMATION The Sonsela aquifer has a maximum hydraulic conductivity of 3.94×10^{-6} ft/sec (0.35 ft/day). Tests of the shale aquitard show conductivities of 1.3 $\times 10^{-8}$ to 8.3 $\times 10^{-9}$ ft/sec (.001 to .0007 ft/day). These values are for <u>horizontal</u> conductivity, and vertical conductivities for shales are typically <u>one or more orders of magnitude less</u>. The measured conductivities (.001 to .0007 ft/day) are equal to or exceed the New Mexico Water Quality Control Commission standards for clay-pond liners, which are 0.0013 ft/day.

4.4 GROUND WATER USERS IN THE CINIZA AREA

The Ciniza Refinery, and all known users of ground water within a 1 mile radius of the Refinery are shown in Figure 4-9. The Ciniza Refinery withdrew an average of 175,000 gallons per day of ground water from the San Andres aquifer during the period of review, making it the largest user of ground water in the area. The only other adjacent users of drinking water from the San Andres are the rest area and the service station. These wells are upgradient of the Refinery. The "Stock Well" is completed in the Sonsela, and is not used for human consumption.

4.5 FLOODING POTENTIAL

Figure 4-10, from Giant's Part B Application, shows the anticipated pathways of a 100 year flood. Table 4-3 presents the results of the calculations used to determine these flood paths. With the exception of evaporation pond #9, no plant or waste-management units are likely to be affected by a 100-year flood event.

Giant is aware of this potential threat to pond #9, and is currently taking several steps to mitigate this problem:

- o The area in question has been surveyed, and options for additional flood-control measures such as dikes, ditches and channel re-direction are being evaluated
- Giant is proceeding with plans to construct a truck stop at the Ciniza exit; flood and drainage control plans for this construction may be modified to divert runoff (from south of I-40) to pathways which do not endanger any of the evaporation ponds

TABLE 4-3

PEAK DISCHARGE AND RUNOFF CALCULATION SHEET #1

Referrence: Chapter 2 - Engineering Field Manual for Conservation Practices; U.S.D.A., Soil Conservation Service _____ Location: Area NW, Fourmile Canyon, Ciniza, New Mexico Soil and Cover: Subarea I, B/C soil, 75 percent cover, good condition, ponderosa pine Date: December 15, 1983 Purpose: 100-year floodplain at Ciniza Refinery A = 5,071 ac Drainage Area: Length: L = 20,000 ft Elevation Differences: H 900 ft = 58 Runoff Curve Number: CN =Time of Concentration 8.84 hr T = Rainfall, 24-hr at 100 year: 2.8 in $P_{24} =$ Direct Runoff: 0 Ø.3 in = Distribution Curve No: 7Ø DC = Runoff Rate: = 0.84 cfs/ac-inR = 1,280 cfs Peak Discharge, $q = A \times Q \times R$ Runoff Volume, $v = A \times Q/12$ 127 ac-ft = Delta H Engineering, Ltd., P.O. Box 2023, Santa Fe, NM 87501

TABLE 4-3 (Con't.)

PEAK DISCHARGE AND RUNOFF CALCULA	FION	SH.	eet # 2							
Reference: Chapter 2 - Engineer Field Manual for Conservation Practices; U.S.D.A., Soil Conservation Service										
Location: Area NW, Fourmile Canyon, Ciniza, New Mexico										
Soil and Cover: Subarea II, B/C soil, mountain brush and juniper grass, 50 percent cover										
Date: December 15, 1983										
Purpose: 100-year floodplain at Ciniza Refinery										
Drainage Area:	A	=	1,894	ac						
Length:	L	=	17,000	ft						
Elevation Difference:	H	=	200	ft						
Runoff Curve Number:	CN	=	65							
Time of Concentration:	Тс	=	1.3	hr						
Rainfall, 24-hr at 100 yr:	P24		2.8	in						
Direct Runoff:	Q	=	0.4	in						
Distribution Curve No.	DC	H	70							
Runoff Rate:	R	=	Ø.55	cfs/ac-in						
Peak Discharge, $q = A \times Q \times R$		=	1,895	cfs						
Runoff Volume, $v = A \times Q/12$		=	3,175	ac-ft						

Delta H Engineering, Ltd., P.O. Box 2023, Santa Fe, NM 87501

Ţ

({
TABLE 4-3 (Con't.)

PEAK DISCHARGE AND RUNOFF CALCULATION SHEET #3

________ Reference: Chapter 2 - Engineering Field Manual for Conservation Practices; U.S.D.A., Soil Conservation Service Location: Area NW, Fourmile Canyon, Ciniza, New Mexico Soil and Cover: Subarea III; B/C soil, 50 percent cover, herbaceous and mountain brush Date: December 15, 1983 Purpose: 100-year floodplain at Ciniza Refinery Drainage Area: A = 1,028 acLength: $L = 14,000 \, \text{ft}$ Elevation Difference: H 2,500 ft Ħ Runoff Curve Number: CN = 70 Time of Concentration: $T_{C} =$ Ø.95 hr Rainfall, 24-hr at 100 yr: $P_{24} =$ 2.8 in Direct Runoff (Figure 2-4): 0.60 in Q = Distribution Curve No: DC = 7Ø Runoff Rate (Figure 2-5): 0.70 cfs/ac-in R = Peak Discharge, $q = A \times Q \times R$ 432 cfs = Runoff Volume, $v = A \times Q/12$ = 51.4 ac-ft

Delta H Engineering, Ltd., P.O. Box 2023, Santa Fe, NM 87501

TABLE 4-3 (Con't.)

PEAK DISCHARGE AND RUNOFF CALCULATION SHEET #4

_____ Reference: Chapter 2 - Engineering Field Manual for Conservation Practices; U.S.D.A., Soil Conservation Service _____ Area SW, immediately west of Fourmile Canyon, Location: Ciniza, New Mexico Soil and Cover: B/C soil, 60 percent ponderosa pine, 40 percent mountain brush Date: December 15, 1983 Purpose: 100-year floodplain at Ciniza Refinery Drainage Area: A = 2,572 ac Length: L = 22,000ft Elevation Difference: 690 H ft Ħ Runoff Curve Number: CN E 64 Time of Concentration: T 1.0 hr = Rainfall, 24-hr at 100 yr: P₂₄ = 2.8 in Direct Runoff: in Q 0.4 Distribution Curve No: 70 DC Runoff Rate: 0.68 cfs/ac-in R = Peak Discharge, $q = A \times Q \times R$ 700 cfs = Runoff Volume, $v = A \times Q/12^{\circ}$ = 86 ac-ft Delta H Engineering, Ltd., P.O. Box 2023, Santa Fe, NM 87501

Following the completion of surveys and engineering analysis, Giant will select options for dealing with the potential threat to Pond #9. These may include:

- o Diversion of natural channels, at US 40 and/or between the highway and the pond
- Construction of a berm, or increasing the height of the berms around Pond #9

Giant will notify NMOCD when an option is selected, and will provide design and as-built specifications in a timely manner.

5.0 PROCESS DESCRIPTION AND WASTEWATER CHARACTERISTICS

5.1 OVERVIEW

A petroleum refinery is a complex combination of interdependent operations engaged in crude separating, molecular cracking, molecular rebuilding and finishing to produce petroleum-derived products. There are a number of distinct processes utilized by the industry for refining crude petroleum and its fractionation products. An EPA survey of the petroleum refining industry, conducted during 1977, identified over 150 separate processes being used and specified many more process combinations that may be employed at any individual refinery. The specific processes currently in use at the Ciniza Refinery are described and discussed in the following sections. The origin, paths and fate of the individual waste streams are shown in Plate 4.

A significant distinction is made between contact (containing or likely to contain hydrocarbons due to direct contact during process operations) and non-contact (unlikely to contain hydrocarbons) waste streams. In the following sections, contact waste streams are identified by (C) and non-contact streams are labeled (NC).

Each process is itself a series of unit operations which cause chemical and/or physical changes in the feedstock or product. In the commercial synthesis of a single product from a single feedstock there are sections of the process associated with the preparation of the feedstock, the chemical reaction, the separation of reaction products, and the final purification of the desired product.

Major sources of process wastewater and the subsections in which these are discussed are:

	WASTEWATER SOURCE	SUBSECTION
0	Crude Oil Fractionation	5.2.1
0	Fluidized Catalytic cracking	5.2.2
0	Alkylation	5.2.3

⁰ Platforming	3	5.2.4
⁰ Merox Treat	ting	5.2.5
o Naphtha Hyd	drotreating	5.2.6

The following processes are associated with several auxiliary activities which do not directly result in conversion of crude oil to product nor result in complex chemical changes in the product. Instead these auxiliary processes separate impurities from the feedstocks and products, or are required for other aspects of the operation and maintenance of a refinery. These auxiliary units are:

WA	STEWATER SOURCE	SUBSECTION
0	Boilers	5.3.1
0	Cooling Towers	5.3.2
0	Storage Tanks	5.3.3
0	Water Softening Units	5.3.4
0	Desalting Units	5.3.5
0	Additive-Mixing Facility	5.3.6
0	Oil/Water Separation System	5.3.7
0	Blowdown/Relief Flare System	5.3.8
0	Air Compressors	5.3.9

Plates 4 and 5 show the location of these process and auxiliary units at the refinery. Each process or auxiliary unit operation has different water usages associated with it. The nature and quantity of wastewater produced by the units varies according to the process involved. The final aqueous waste effluent of the Ciniza Refinery is a blend of eight major process and auxiliary waste streams (Table 5-1) and several intermittent flows from such minor sources as seal leakage from water-cooled pumps. During the period of review, the relative flow volumes from the different units were:

Treatment/ Disposal <u>System</u>	Flow (gpm)
To API Separator	4
To API Separator	1
To API Separator	26*
To API Separator	10
To API Separator	0.02
To API Separator	1 gpm*
To API Separator	5
To API Separator	1
To Limestone Contact Chamber for pH Adjustment	30*
To API Separator	<u>45*</u> 123 gpm
	Treatment/ Disposal System To API Separator To Limestone Contact Chamber for pH Adjustment To API Separator

TABLE 5-1 PROCESS UNITS AND WASTEWATER TREATMENT/DISPOSAL UNITS

Maximum flow, based on water input Blowdown and backwash & warraw are an an an area of Blowdown * **

Cooling Towers	37%
Boiler Blowdown	24%
Process and Remaining Auxiliary Units	39%

Based upon weir measurements taken over the course of several days, the maximum effluent discharge is approximately 0.25 cfs or about 161,000 gallons per day at a maximum production of 18,000 BBLS/calendar day.

The total flow from Table 5-1 is 123 GPM, or 177,000 GPD. This figure represents a <u>maximum</u> value based on <u>input</u> to the boilers and cooling towers. Evaporative and other minor losses account for the 16,000 GPD difference.

Additional wastewater is produced by stormwater runoff, drainage from wash pads and cleanup areas, drainage from truck and railroad loading racks and from domestic sewage. The nature and fate of these discharges are discussed in Section 5.4.

5.2 MAIN PROCESS UNIT DESCRIPTIONS AND WASTEWATER CHARACTERISTICS 5.2.1 Crude Oil Fractionation (C)

Fractionation serves as the basic refining process for the separation of petroleum crude into intermediate fractions of specific boiling-point ranges. Increasing temperatures and decreasing pressure evaporate progressively heavier constituents yielding straight run gasoline, naptha, kerosene, diesel, atmospheric gas oil and reduced crude. Naphtha is further fractionated and fed into the NHT platformer for reforming.

Waste streams are generated from two areas: condensation on overhead piping or accumulators and water sinking to the bottom of process units and being drawn off as an emulsion. Wastewater produced from these units contains ammonia, sulfides, chlorides, oil, and phenols. The process flow sheet (Plate 4) shows the location of all wastewater collection pipes for this and other units. Table 5-1 summarizes the type and volume of effluent produced and the treatment units to which the streams are discharged.

5.2.2 Catalytic Cracking (C)

Fluidized catalytic cracking is employed at Ciniza. Catalytic cracking involves four major types of reactions:

- o Thermal decomposition
- o Primary catalytic reactions at the catalyst surface
- Secondary catalytic reactions between the primary products
- Removal of products which may be polymerized from further reactions by adsorption onto the surface of a fluidized bed of catalyst such as coke

This last reaction is the key to catalytic cracking because it permits decomposition reactions to move closer to completion than is possible in simple thermal cracking. The catalysts are in the form of beads or pellets in the thermal unit and powder for the fluidized unit. The catalyst is usually heated and lifted into the reactor area by the incoming oil feed which, in turn, is vaporized upon contact. Vapors from the reactors pass upward through a cyclone separator which removes most of the entrained catalyst. These vapors then enter the fractionator, where the desired products are removed and heavier fractions recycled to the reactor.

The major wastewater constituents resulting from catalytic cracking operations are oil, sulfides, phenols, cyanides and ammonia. High BOD₅ (5-day culture) and COD levels are also found in the alkaline wastewater. The wastestreams from the catalytic cracking process are routed through the API separator to the evaporation ponds.

5.2.3 Alkylation (C)

Alkylation is the reaction of an isoparaffin (usually isobutane) and an olefin (propylene butylenes, amylenes) in the presence of an acid catalyst at carefully controlled temperatures and pressures. Hydrofluoric

acid is currently used as the catalyst at the Ciniza Refinery. These reactions produce propane, butane and a high-octane alkylate used in gasoline blending. The reaction products are separated in a catalyst recovery unit, from which the catalyst is recycled. The hydrocarbon stream is passed through a caustic-soda and water wash after passing through the fractionation section.

The wastewater from the alkylation unit is an acidic solution containing some suspended solids, oils, dissolved solids, fluoride and phenols. The waste stream is discharged to the API separator.

5.2.4 Platforming

Platforming converts low octane naphtha, heavy gasoline and naphthenerich stocks to high-octane gasoline blending stock, aromatics for petrochemical use, and isobutane. Feed stocks are usually hydrotreated for the removal of sulfur and nitrogen compounds prior to charging to the platformer (see Section 5.2.6), because the extremely expensive platinum catalysts used in the units are readily contaminated and ruined by sulfur and nitrogen species. The predominant reaction during platforming is the dehydrogenation of naphthenes. Important secondary reactions are the isomerization and dehydrocyclization of parafins. All reactions result in high octane products. At Ciniza the platformers do not produce a waste stream.

5.2.5 Merox Treating (C)

A proprietary procedure, Merox treating, converts mercaptans to alkyl disulfides in a catalytic process known commonly as sweetening. This is a single-stage process which reduces odors in the final product. There are two Merox treating units utilized at the Ciniza Refinery, one for straight-run gasoline and the other for kerosine. The straight-run gasoline process uses caustic soda to reduce the mercaptan levels to an acceptable level prior to contact with the catalyst. Following catalytic contact, a waste stream containing caustic soda and Merox catalyst is

produced. The kerosine Merox treating unit requires no caustic pretreatment and therefore generates no aqueous wastes. Alkaline wastewater containing small amounts of commercial Merox catalysts is discharged to the API separator. An analysis of the wastewater stream is presented in Table 5-2.

5.2.6 Naphtha Hydrotreating (C)

Hydrotreating is used to saturate olefins and control such parameters as sulfur compounds, nitrogen compounds, odor, color and gum-forming elements. This process mixes the feedstock with hydrogen, raises the temperature and then sends it to the catalytic reactor. The catalytic reactor is used to remove sulfur and saturate naphtha for the reforming unit. The reactor products are cooled and three constituents are separated out: high grade products, hydrogen and impurities. Increasing the hydrogen content or decreasing the temperature decreases the level of impurities in the product.

Hydrotreating typically reduces the sulfur and nitrogen content of the treated material by 90 percent and 85 percent, respectively. The primary constituents of the wastestream are ammonia, sulfides and phenols if the temperature is at the high end of the range. Table 5-2 contains a representative analysis of the waste stream. Wastes are routed to the API separator.

5.3 AUXILIARY PROCESS UNIT DESCRIPTIONS AND WASTEWATER CHARACTERISTICS 5.3.1 Boilers (NC)

Steam is consumed throughout the refining process and is generated in boilers located on the facility. To assure proper operation of the boilers, a certain amount of condensate must be discharged (blowdown) and well water added as make-up. Boiler feed water is made of softened well water with an oxygen scavenger additive (hydrazine derivitive) and a patented boiler-treatment additive, purchased from Nalco Chemical Company located at 4435 Civic Center Plaza, Suite # 11, Scottsdale, Arizona. Boiler blowdown is routed to the evaporation ponds. Analyses are given in Table 5-2. Wastes are routed to the neutralization tank.

TABLE 5-2 CHEMICAL ANALYSES OF SELECTED WASTE STREAMS AT GIANT CINIZA REFINERY (VALUES IN MG/L)

WQCC	CRUDE UNIT	NHT	HYDROTREATOR	KEROSINE	FCC	COOLING
3-103	PROCESS	STRIPPER	SEPARATOR	WATER	UNIT	UNIT
PARAMETERS	S		DRUM	WASH		BLOWDOWN
	(#2.1)	(#2.6b)	(#2.6A)	(#2.5)	(#2.2)	(#2)
As	<0.05	<0.05	<0.05	<0.05	<0.05	
Ba	<1.0	<1.0	<1.0	<1.0	<1.0	
Be	<0.001	<0.001	<0.001	<0.001	0.2	
Ca						<1200.0
Cd	<0.01	<0.01	<0.01	<0.01	<0.01	
Cr	<0.05	<0.05	<0.05	<0.05	<0.05	17.81
CN						
F						1.98
К						17.0
Pb	<0.001	<0.001	<0.001	<0.001	<0.001	
Hg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
NO3						300
Se	<0.01	<0.01	<0.01	<0.01	<0.25	
Ag	<0.05	<0.05	<0.05	<0.05	0.05	
U						
C1						384.0
Cu	<0.002	<0.002	<0.002	<0.002	<0.002	
Fe						0.79
Mg						85.0
Mn	~					
50 ⁴						2500.0
TDS						6580.0
Zn	<0.004	<0.004	<0.004	<0.004	0.070	

рН	9.0	7.4	6.4	6.0		6.1
Silica		·				37.51
Мо						
Na						1948.0
Ni	<0.01	<0.01	<0.01	<0.01	0.4	
Phenols	15.8	0.06	9.0	10.6	986.0	
Phosphate						0.20
TSS						<4.0
Cond.						8070
COD	454.0	198.0	191.0	127.0	599.0	277.0
NH4						0.1
Sb	<0.002	<0.002	<0.002	<0.002	1.8	
COD	149.3	89.8	89.8	120.0	500.0	9
Oil & Grease	8.1	8.5	5.3	20.0	50.0	25.0
тос						767.1
Hardness						3346.4

5.3.2 Cooling Towers (NC)

Water used for cooling process-streams is produced by cooling towers and comprises most of the water usage at the facility. A significant amount of water is lost by evaporation in the cooling towers resulting in an increased concentration of dissolved solids in the cooling water over time. To prevent excessive concentrations of dissolved solids, a certain portion is discharged and an equal amount of well water is added. To prevent scaling, corrosion and biological growth in the towers, Analyses of cooling tower chromate is added to the cooling water. blowdown is given in Table 5-2. Cooling tower wastewater, containing small amounts of chromate, is routed to the API separator. In the reducing and organic-rich environment of the separator, chromate forms insoluble complexes with organic constituents. These complexes precipitate and settle to the bottom of the API separator. The chromate-bearing sludges are periodically removed by a vacuum truck and transported to the Land Treatment Area, which is regulated under RCRA and the NMHWMA.

5.3.3 Storage Tanks (C)

Storage of crude typically allows some gravity-separation of any water or suspended solids entrained in the fluid. These wastes, removed from the tank bottoms, contain emulsified oil, phenols, iron, sulfide and other constituents which depend upon the nature of the material stored in a particular tank. This liquid is either decanted off or removed by vacuum trucks to the API separator. The volume of effluent from this unnumbered source is relatively small. Solid wastes (tank-bottom sludges) are regulated under RCRA and NMHWM regulations. These wastes are transported to the Refinery's Land Treatment Area. A full description of these wastes and the waste management and monitoring system is contained in the Ciniza Refinery's Part B application on file with NMEID's hazardous waste bureau.

5.3.4 Water Softening Units (NC)

To prevent scaling, softened water must be supplied to the boiler units as well as several of the process systems. The softening process basically contacts the water with a zeolite ion-exchange medium, at a controlled pH, to precipitate out the calcium and magnesium salts which would produce scale in the boiler. With use, the softening units build up high concentrations of calcium and magnesium-rich solids which hinder further operation. Waste water from backwashing operations is sent to the neutralization tank and then to the evaporation ponds.

5.3.5 Desalters (C)

All produced crude contains some formation (connate) water. Although northwestern New Mexico crude is generally found in marine formations, this connate water is not highly saline. Desalters remove the existing saline fluid from the crude by passing crude (with some added water) through an electrostatic field which acts to agglomerate dispersed brine droplets. Desalters are considered an integral part of the crude oil fractionation unit at the Ciniza Refinery.

The wastewater can contain high levels of dissolved solids, some phenols and (depending upon crude type) ammonia and sulfides. This contact wastewater is discharged to the API separator. A characterization of desalter effluent is shown in Table 5-2.

5.3.6 Additive Mixing Facility

The additive facility simply provides a containment area for mixing and addition of lead or other additives. There is no waste stream produced.

5.3.7 Oil/Water Separation System (C)

All waste streams which contain or may contain free feedstocks or products are directed to an twin-celled oil-water separation system (API separator) before discharge to the evaporation ponds. This separator is a series of settling tanks which physically separates and collects lighter fractions (crude oil and products) at the top as the wastewater flows from the bottom. Heating of the inflow by steam improves the separation by reducing viscosity. An analysis of the API separator wastestream is presented in Table 5-3.

EFFLUENT SOURCE

1

	API SEPARATOR	NEUTRALIZATION TANK	SEWAGE	ASPHALT PIT	RAILROAD LAGOOI
TSS	52.0	<1.0	28.0	·	
TDS	2490.0	2324.0	1124.0	184	620
0il & Grease	75.4	<0.1	48.2		
Phenols	52.6	<0.01	<0.01	<0.01	0.07
Benzene	9.9	<0.001	<0.001	1	•
BOD	567.4	2.8	9.6		
COD	1206.4	64.9	245.9		
Na	1275.0	1296.0	636.0		
×	9.0	4.0	7.0		
Ca	89.0	0.09	19.0		
Cr	1.44	<0.050	<0.050	<.050	<0.050
Mg	10.0	14.0	8.0		
P Total	<0.01	0.03	0.35		
cI	588.0	710.0	61.0	30	10
S04	1812.0	600.0	489.0	<0.01	138
S Total	7045.0	278.0	241.0		2
HC0 ₃	512.0	232.0	308.0		
Fe	0.5	0.10	0.12	0.34	0.35
Cu	<0.03	<0.03	<0.03		•
Mn	0.2	0.03	0.2		
Zn	<0.01	<0.01	<0.01		
Mo	<0.01	<0.01	<0.01		
AI	<0.01	<0.01	<0.01		
8	<0.01	<0.01	<0.01		
NO3 as N	<0.01	<0.01	<0.01	0.1	<0.01
NH4	477.0	<0.01	0.2		
TKN	479.0	1.8	2.8	3.9	4.9
CN	6.0	<0.01	<0.01		

TABLE 5-3 ANALYSES OF COMINGLED WASTES, SEWAGE AND MISCELLANEOUS WASTES (all values in mg/l)

÷

;

.

.

.

5.3.8 Blowdown/Relief Flare System

Liquid or gaseous hydrocarbons discharged from pressure-relief valves are directed to a blowdown system. The blowdown system is a series of condensers intended to recover as much product as possible for recycling. Those gaseous cuts which cannot be condensed and recycled are fed to the relief flare system. The Ciniza Refinery utilizes a flare system fueled by refinery gas or purchased gas. Live steam is continuously passed through the flare-stack chimney to reduce particulates and to prevent clogging. No aqueous or solid-waste streams are produced from this auxiliary unit process.

5.3.9 Air Compressors (NC)

The air compressors provide pneumatic-instrument air for flow and termperature control devices and utility air for cleaning purposes and equipment (i.e., impact wrenches). The only waste produced by these units is a small quantity of condensed water, which is periodically drained from the compressor tanks. This water is routed to the shop drains (see Section 5.4.5), from which it flows through the API separator to the evaporation ponds.

5.4 NON-PROCESS WASTE STREAMS

In addition to the waste streams generated by Refinery processes and associated operations, several other wastewater streams are produced by:

- o Storm-water runoff from the refinery area
- o Runoff from an equipment and vehicle-cleaning wash pad
- o Runoff from the tank-truck loading rack
- o Runoff from the railroad-car loading rack
- o Drains from shops and warehouses on the Refinery site
- o Condensed steam from heating jackets on pipes and tanks
- o Condensed steam from the asphalt plant
- o Domestic sewage from the refinery and from employee housing

With the exception of storm water, these waste streams comprise only a small fraction of the total aqueous wastes produced by the Refinery. The origin, paths and disposition of these non-process waste streams are shown in Plate 5. Available analyses of these waste streams are given in Table 5-3.

5.4.1 Storm Water Runoff (NC)

Storm water which falls onto or flows into the Refinery area is collected by a system of storm sewers and surface ditches. The effluent is transported by underground pipes and/or open ditches to either the main API separator, or to a secondary separator ("Oil Skimmer" in Plate 5), before being discharged to the evaporation. Due to the intermittent and unpredictable nature of precipitation at Ciniza, no samples of this waste stream are currently available for analysis.

5.4.2 Wash-Pad Runoff (NC)

Refinery tools, equipment and vehicles are cleaned with high-pressure water, detergents and by steam. Clean-up operations are performed on a concrete wash-pad. Waste water is collected by drains, and flows through the storm-sewer system to the API separator, from which it is discharged to the evaporation ponds.

5.4.3 Truck Loading-Rack Drains (NC)

Giant ships the majority of its refinery products by tank truck. These trucks are loaded at an overhead-filling rack. The rack area is paved with concrete, and runoff is controlled by steel grates over a drain. The fluids which drain from this area include stormwater, water from truck washdown (in the event of minor loading spills) and small quantities of product due to minor spills. From the drains, these fluids are directed by a storm sewer to the API separator. The aqueous fraction is then discharged to the evaporation ponds. No analyses of this intermittent waste stream are available.

5.4.4 Railroad Loading Rack (NC)

Giant ships some of its refinery products by rail, and tank cars are loaded by an overhead rack located on a spur of the Santa Fe Railroad's tracks which enters the east side of the Refinery plant (Figure 5-2). Like the truck-loading area, the railroad rack is paved with concrete and drained by underground sewers. Effluents consist of stormwater, washdown from tank cars and minor amounts of product due to occasional, small spills. Fluids are directed through an underground pipe to an evaporation pond (Plate 5). The evaporation pond is currently equipped with an underdrain which allows pond water to discharge to grade before the fluid level exceeds the 2-foot minimum freeboard. Analyses of the railroad evaporation-pond fluids are given in Table 5-3.

5.4.5 Shop Drains (NC)

The Ciniza Refinery operates in-house facilities for pipefitting, welding, carpentry and general machine work. Shops housing these service facilities are equipped with floor drains which connect with the API sewer network (Plate 5). Effluents contain water, detergents, minor amounts of oil and grease, and miscellaneous particulates. These wastestreams flow to the API separator, where the insoluble organic fractions are removed. The remaining wastewater is the discharged to the evaporation ponds.

5.4.6 Condensed Steam (NC)

In order to maintain the correct product viscosity for flow, pipelines and tanks are heated by steam jackets or parallel steam pipes. As the steam heats the lines or tanks it condenses, and this condensed water is then drained or blown down from the lines. Small volumes of this water are discharged at numerous locations throughout the Refinery. The condensed water is similar in chemistry to the boiler blowdown, but may also contain small amounts of hydrocarbons. Following discharge, these small quantities of water flow into the storm sewer system, through the API separator and into the evaporation ponds.

5.4.7 Asphalt Plant (C)

The fractionation and refining of petroleum results in the accumulation of heavy, non-volatile liquids and semi-solids which are collectively known as asphalt. This material has many uses as a paving, roofing and sealing material, and as a raw material for the manufacture of paints and floor coverings. The Ciniza asphalt plant has been inactive since 1979. The old asphalt plant is now retained as a steam-heated tank farm (Plate 5). Wastewater is produced from steam condensation. This wastewater is directed to a small evaporation pond ("Asphalt Pit" in Plate 5). The pond has a thick natural liner of asphalt. Occasional overflows from this pond are discharged to grade.? Analyses of this wastewater are given in Table 5-3.

5.4.8 Domestic Sewage (NC)

Sewage is produced from the Refinery plant and offices, and from a small (7 dwellings housing 28-30 persons) employee-housing area. As shown in Plate 5, the sewage follows several paths. Refinery work-area sewage flows to an aerobic treatment/evaporation lagoon, labeled "Plant Sewage" on Plate 5. Sewage from the office building flows into the "Office Sewage" lagoon, and one remote building is served by the "Railroad Office" lagoon. Sewage from the residential area flows into an underground septic tank, from which it is discharged to an aerobic treatment/ evaporation pond. At this time, no domestic sewage is comingled with any refinery process effluent or stormwater.

It is anticipated that, as part of a pilot-scale study of biological treatment, some domestic sewage may be diverted to the API pond (Pond 1). Aerators will be installed, and nutrients in the sewage will allow bacteria to degrade organic wastes in the API effluent. This system is discussed in further detail in sections 6.2 and 6.3.9.

6.0 WASTE MANAGEMENT SYSTEM

As discussed in the preceeding sections, Giant maintains a comprehensive system of waste management for:

- o Refinery process wastes
- o Non-process refinery wastes and stormwater
- o Domestic sewage
- o Wastes classified as hazardous under RCRA and NMHWMA

The aqueous process and non-process wastes are ultimately discharged, following oil-water separation (API separator) and/or neutralization (neutralization tank), to the evaporation ponds located to the west and north of the refinery plant. Minor occasional waste streams from the railroad rack and the disused asphalt plant area are diverted to small, individual evaporation ponds. Domestic sewage is treated in septic tanks and aerobic lagoons; these lagoons also serve as evaporation ponds for the sewage.

Under the provisions of the Federal Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Management Act, Giant has segregated the wastes characterized as hazardous from the general refinery waste streams. These wastes include:

- o API separator sludges
- o Heat-exchanger bundle cleaning sludges
- o Leaded and unleaded tank bottoms
- o Spent solvents

With the exception of spent solvents, which are commercially recycled, Giant disposes of these wastes in a Land Treatment Area, located to the north of the plant site. This Land Treatment Area is regulated and monitored by the New Mexico Environmental Improvement Division (NMEID) and the United States Environmental Protection Agency (USEPA). Giant has filed a Part B application, and is currently managing their hazardous wastes under interim status. Complete information concerning the

nature, treatment, storage and disposal of these wastes is contained in the Part B documents, which are on file with NMEID and USEPA Region VI.

6.1 WASTEWATER PATHS AND DISPOSITION

Giant diverts its wastewater into different evaporation ponds, depending on the waste source. Figure 6-1 shows the locations and configurations of these ponds. Figure 6-1 also includes the flow paths connecting the ponds, by which wastewater is moved to and among the ponds. Table 6-1 is a water balance for the ponds.

As described in Section 5.0, there are many discrete and chemically distinct waste streams generated by the refinery. Some of these streams are comingled, either in the drains, sewers and ditches, in the API separator, and in the ponds. Tables 5-2 and 5-3 present analyses of the effluents, sewage-lagoon waters and samples of pond waters.

The main division of waste streams is based on the distinction between contact and non-contact waste streams. Contact waste streams are those which involve water contact with product, wastes and/or feedstocks. These waste streams typically contain some hydrocarbons as a free phase. Streams containing (or likely to contain) free hydrocarbons are routed through the API separator. Following oil-water separation these wastes flow into Pond 1, where some additional separation of oil and water may occur. An underdrain allows the aqueous phase to flow into Pond 2. Pond 2 discharges through a weir, from which the flow is normally diverted to Ponds 12, 11, 7 and 8 (Figure 6-1).

Non-contact wastewater normally passes through the neutralization tank, where contact with limestone chips neutralizes any residual acids. From the tank the wastewater flows into Pond 3 via a short conveyence ditch which feeds a buried pipeline. Wastewater then may pass into Ponds 4, 5, 6A and 6B. If these ponds approach their capacity (defined by the minimum of 2 feet of freeboard) the wastewater may be diverted by underground pipes to Pond 9, or to Ponds 7 and 8.

TABLE 6-1

WATER BALANCE FOR EVAPORATION PONDS

MONTH	PRECIP.	(IN.)	PAN EVAP.	(IN.)	DIFFERENCE	(IN.)
Jan	.56		.38		+.18	
Feb	.50		. 50		0.00	
Mar	.61		.84		23	
Apr	.43		2.05		-1.62	
May	.43		3.82		-3.39	
June	.52		5.81		-5.29	
July	1.83		7.11		-5.28	
Aug	1.65		5.92		-4.27	
Sep	.99		3.89		-2.90	
0ct	1.17		2.03		86	
Nov	.62		.70		08	
Dec	.68		.39		+.29	
	9.99		33.44	<u> </u>	-23.45	

Average discharge = 161,000 gallons/day

Yearly Discharge = 365 days x 161,000 gallons/day = 58,765,000 gallons/year 58,765,000 gallons/year x 1 Acre-Foot/325,742 gallons = 180.4 AF/year Net Pond Evaporation = 23.45 in/year = 1.954 ft/year Pond Evaporative Capacity = 117 Acres x 1.954 ft/year = 228.6 AF/year Relative Capacity = <u>228.6 AF/year</u> = 127% <u>180.4 AF/year</u>

Stormwater which is not captured by the storm sewer system (which passes through the API separator) is collected into a ditch (Figure 6-1) which flows into the oil skimmer. This skimmer is a smaller, unheated version of the API separator which serves to remove any oily phases from stormwater. From the oil skimmer, the wastewater the flows by conveyence channel to Pond 6A. To prevent overtopping of either the ponds or the skimmer, some of the skimmer effluent can be diverted to grade, adjacent to Pond 8.

6.1.1 Evaporation Ponds

The Ciniza Refinery currently maintains 16 evaporation ponds, with a total available area of approximately 117 acres. These ponds were constructed at various times in the history of the refinery, but the last ponds were built in 1972. These ponds are constructed with natural liners and berms made from the clays and shales of the Chinle Formation, which have an extremely low natural permeability $(10^{-7} \text{ to } 10^{-9} \text{ ft/sec})$.

A minimum of 2 feet of freeboard is maintained at all times by daily inspection, which also serves to immediately identify any erosion or structural problems. As discussed in Section 6.1, Giant maintains a comprehensive system of flow control, which allows plant personnel to divert the wastewater from pond to pond in order to maximize the area available for evaporation and to prevent overfilling of any pond.

As described in Section 4.3.4, boreholes advanced to depths of over 50 feet, and located within 20 feet of the pond berms, were observed to be completely devoid of free water. Soil-moisture analyses (Appendix A) show that there is no soil saturation at any level above the Ciniza sand. This demonstrates that even after over 13 years of service, these ponds retain an excellent degree of hydraulic integrity.

6.1.2 Water Balance For Evaporation Ponds

Giant's evaporation pond system has a total area of approximately 117 acres, and recieves a water input of approximately 160,000 gallons of water per day. As outlined in Table 6-1, the local evaporation rates indicate that the Refinery's ponds have an evaporative capacity of 130% in excess of the present wastewater load. Giant has considerable area available on site for the construction of additional ponds if necessary. This calculation is based on <u>pan</u> evaporation, and as such is quite conservative. Using a <u>lake</u> evaporation of 50 in/year, the ponds have a capacity of 216% of load.

In the unlikely event that 2.0 feet of freeboard cannot be maintained in the ponds for 2 consecutive quarters, or if overtopping was likely, Giant would take the steps (Contingency Plans) that are further discussed in Section 8.0.

6.1.3 Proposed Aerated Lagoon

In order to reduce the levels of certain waste parameters in the wastewater from the API separator, Giant is currently examining the feasibility of constructing an aerated lagoon for secondary biological treatment of the API separator effluent. This secondary treatment is based on the principal of biological degradation of hydrocarbon and other waste constituents by coliform and other natural bacteria. Both the bacteria and their necessary nutrients will either be supplied or supplemented by domestic sewage. The sewage will be diverted to the existing API-separator lagoon, which is located adjacent to the API separator. Aerators will be installed to facilitate aerobic degradation of wastes. The aerated lagoon design is based upon a minimum 60% BOD reduction. Further information on this proposed lagoon will be provided with the Plans and Specifications.

7.0 MONITORING AND REPORTING PLAN

7.1 MONITORING

In conjunction with NMEID and RCRA regulations, the Ciniza Refinery has developed and maintained comprehensive plans for sampling and analysis of wastes and wastewater. A ground water monitoring network consisting of 10 monitoring wells is in place, and 4 of these wells (1 up-gradient, 3 down-gradient) in the uppermost aquifer (Sonsela) have been regularly sampled since 1982 (See Plates 3,4). The original 4 monitoring wells (MW Series) are completed in the Sonsela. Six new RCRA wells, completed in the Ciniza sand (SMW Series), were installed in October, 1985. These wells have been sampled, and analysis for all first-quarter RCRA parameters is in progress. Based on a review of the 4 years of RCRA analysis of samples from the monitoring wells in the Sonsela (MW Series), there is no evidence for any ground-water contamination due to refinery activities. Giant will continue to perform sampling and analysis of ground water from these wells, according to the schedule and parameters described in the Part B application.

Giant will monitor the quantities and quality of their discharges on a regular basis. This monitoring will include:

- o Weir measurements on a quarterly basis to determine the quantity of wastewater discharged to the evaporation ponds
- o Sampling and analysis of input to the proposed aerated lagoon on a quarterly basis, analysing for TDS, TOC, BOD, COD
- o Sampling and analysis (for the parameters above) of the final effluent to the ponds, on an quarterly basis
- o Inspection of all evaporation ponds for fluid levels and freeboard on a monthly basis, and following any major storms
- Sampling and analysis of ground water samples from the monitoring wells, according to the schedule outlined in Giant's Part B application, and transmittal of the results of these analyses to NMOCD annually

Giant has installed and attempted to sample several pressure-vacuum lysimeters near the Land Treatment Area. To date, these devices have produced no useful quantities of soil-pore water. Due to the extremely high soil-suction of the Chinle shales, it does not appear that any lysimeters will function in these soils. No further vadose-zone monitoring is planned at this time.

7.2 REPORTING AND RECORD KEEPING

Giant will report the results of its monitoring program to the Director on a yearly basis. If Giant elects to modify its facilities and/or processes in a manner which would result in a significant change in the quantity or chemical quality of the wastes discharged, the Director will be notified of these changes within 90 days.

Unplanned discharges, such as spills, leaks or process upsets, will be reported to the Director within 15 days. As outlined in the Contingency Plan (Section 8.0 of this document), Giant will take immediate steps to contain, control and mitigate the effects of any unplanned release of products or wastes.

Records of all monitoring and emergency-response activities will be retained at the refinery for 5 years. These records will be made available to the Director or his authorized representative upon request. Authorized representatives of the Director may, upon request, inspect and copy discharge plan records, inspect the plant's waste management and monitoring systems, sample effluents and collect samples from monitoring devices installed pursuant to NMOCD discharge plan requirements.

Under RCRA and NMHWMR, Giant will continue ground-water monitoring for a period of 30 years after closure of the Land Treatment Area. NMOCD will be provided with yearly reports of the results of this monitoring.

8.0 CONTINGENCY PLANS

Giant has developed a comprehensive Contingency Plan (included in the Part B Application filed with USEPA and NMEID) for dealing with any unplanned release of any substances which might pose a threat to human health or the environment. This contingency plan does not, however, address the evaporation ponds with respect to inspection, structural integrity, fluid levels or flooding potential.

Giant will inspect all active evaporation ponds on a monthly basis, or following any major storm. Erosion or other damage will be repaired in a timely manner, so that the structural integrity of the dikes is maintained. During monthly inspection, freeboard levels will be observed. If the 2-foot freeboard requirement is not met for 2 consecutive quarters, Giant will report this finding to NMOCD, and take one or more of the following steps:

- o Construct additional ponds to contain and evaporate the additional wastewater
- o Take steps to reduce the quantity of wastewater discharged
- o Install devices (e.g., sprinklers) to enhance evaporation
- o Evaluate other methods to restore the water balance

The hydrology of the site (confined ground water overlain by highly impermeable shales and clays) indicates that there is little or no chance that ground water would be affected by any spills of products, feedstocks or wastes. Spills will be handled under the Part B contingency plan, and all spills and the response to them are reported to NMEID within 15 days.

9.0 SUMMARY OF DISCHARGE PLAN REQUIREMENTS

This Discharge Plan Application summarizes the location, site characteristics, hydrogeology, processes, waste management systems, monitoring systems and reporting and contingency plans for the Ciniza Refinery. Under the New Mexico Water Quality Control Commission regulations as administered by the New Mexico Oil Conservation Division (NMOCD), Giant will:

- o Submit plans and specifications of the present process and wastewater systems and any subsequent modifications to NMOCD
- Sample and analyze ground water from the existing network of monitoring wells, according to the schedules and parameters specified by the RCRA and NMHWMR regulations
- o Inspect all evaporation ponds on a monthly basis
- o Analyse all effluents on a quarterly basis
- Notify NMOCD within 15 days of any significant spill or release
- Take steps to modify pond volume and/or wastewater volumes if minimum freeboard requirements are not met for 2 consecutive quarters
- Notify NMOCD when an option for dealing with the flooding potential of pond #9 is selected, and provide NMOCD with as-built plans and specifications for the option selected

10.0 BASIS FOR APPROVAL

The hydrogeologic conditions at the Ciniza site, and Giant's comprehensive system of waste management and control act together to insure that there is no feasible danger of ground water contamination due to discharges to the present waste-management units. No present or foreseeable future users of ground water in the Ciniza area can be affected for the following reasons:

- o Pump and slug tests indicate that the clay shales underlying the evaporation ponds have permeabilities of 10^{-8} to 10^{-9} ft/sec; this is <u>less</u> than the 10^{-7} ft/sec requirement for engineered clay liners specified by RCRA interim standards
- o The clays and shales which overlie the Sonsela are highly impermeable, as evidenced by dry boreholes located within 20 feet of the pond perimeters
- o The Ciniza sand (uppermost ground-water zone) is a thin, localized unit which does not appear to extend beyond the refinery boundary
- o The uppermost aquifer, the Sonsela Sandstone Bed, is under considerable artesian pressure which prevents any downward migration of contaminants by advection
- Giant maintains an extensive network of ground-water monitor wells in the Sonsela and overlying Ciniza sand; regular sampling and analysis of ground water would immediately identify any migration of wastes to ground water
- o The evaporative capacity of the evaporation ponds is 130% of the present waste input, and space exists to construct additional ponds if necessary
- o Giant is planning to construct an aerated lagoon for wastewater treatment, which will further reduce the levels of many parameters of concern in the final effluent to pond
- There is no significant potential for wastewater release due to flooding by the 100 yr storm; Giant is currently evaluating options to eliminate the potential of flood damage to pond #9 from the 100 year storm

11.0 REFERENCES CITED

Stone, W.P., Lyford, F.P., Frenzel, P.F., Migell, N.H. and Padgett, E.T., 1983: <u>Hydrology and Water Resources of San Juan</u> <u>Basin, New Mexico</u>. New Mexico Bureau of Mines and Mineral Resources Hydrologic Report 6, Socorro New Mexico

United States Soil Conservation Service, 1972: <u>Soil Survey of</u> <u>Zuni Mountain Area</u>; United States Department of Agriculture, Washington, D.C.

APPENDIX A LOGS OF BORINGS AND SOIL-MOISTURE ANALYSES

						Now Nambered SMW-1
Ge	eoscience					WEEL LOGGING FORM PageOf
C0113			lien	t <u>6</u>	ANT KE	HNERY Well. Number SHW-6
				<u>کر</u>		½ ST RState
		C C	ount	у	10 1 01	Contractor <u>Fox Drilling Company</u>
		S S	pud	Dat	e. <u>10-4-85</u>	Completion Date
			ogs	Run		Logged By <u>SELKE</u>
			leva	tio	n_ 698/.8	83 <i>zol</i> Spud In (Fm.)
Dopth	í tl	U U U U U U U U	emar	KS		
Depch	<u> </u>			<u>, </u>	l.le	
· ·	0]	HRU	flue	14.	500 df	
		11	0	5	1000/ 00.	0-0.5'- SOIL
	~		5	10	1005/ 1.5	a.S-on MAY
	10 -		1	10	1016/12.5	
-	15 -	13	10	13	1017/15.0	9.0-10.0 SAND; buff colored, for-med g
	20	14	15	20	1027/20.0	10.0-15.0 SILTY OF SANDY CLAY
	-	H5	20	25	1058/22.5	15.0-18.0 CLAY
	25 -		hr	20	105/ 27.5	(wet)
-	30 -	10	42	120	1053/30.0	↓ 18.0-19.0 SMTY CLAY
	35 -	17	30	35	1111/ 35.0	+ 19.0-31.0 CLAYEY SAND (DRY)
		8	35	40	1124/37.5	+ 1 21.0-21.5 CANTY CLAY (DAMP) ? comelons
III	40 -	1	10	10	1144/125	Finge Company Company Finge
	45 -	H7	10	72	1145/45.0	TD 2915-27,0 SAND (300) (PAMP) St
•	50-		<u> </u>			27.0-28.0 SANDY CLAY (THE) DAMP!
	-				10'	28.0-38.0 SAND; DEN, EN-MED GE.
-]				1	
	-					30.0-43.0 CLAY
_	-					
	4					
1	1					· · · · · · · · · · · · · · · · · · ·
	-					
		ľ				
			1			
	-		+			<u> </u>
	-	1				
_						
	1		╂╼╼┨			
-	-		╏──┤			

Geosci	ionce					WELL LOGGING FORM = 54W - 1
	nts, L		ient	GIA	NT REFINING	COMPANY Well Number
			*		\$\$	_2 ST_ <u>15 N</u> R <u>15 W</u> State <u>New Mexico</u>
			incy.		gly, lac	Contractor <u>F0X</u>
		Los	ng D	un L	ith from Co	res Logged Byd. C. Hunter
		Ele	vat	ion_	6882.83	Spud In (Fm.) Chinle
Densk	1 tho	> O Rem	ark	s Dr	illed w/Hol	low Stem Auger & Continuous Sampler. Collected
Depth		r sam		۴ ۷.	5 and 5.0	Incervals for 2H20. comp. as 33 monitor well
· ·	1	RUN	Fr		Sample#/Ft	Lith/Remarks
■ - -				- 		SE course of ATA Times should be
TTR 150 0 -					850925	<u>13 xx</u> , not 14 xx
- 1 _		ø	σ	15	1415/4.0	0-1.5 5016
- د ر -		z	5	10	= = = = = = = = = = = = = = = = = = =	
		4	10	11	1476 14	
15 -	╏──┤	$\frac{2}{1}$	1/0	1/3	- 120/1 <u>3</u> 20	1.3 - 4.0 CLAY
 	┨───┤	17	15	20	1432 /20'	
- 25 -	┇}	5	20	<u> </u>	1438/25'	4.0-19.0 SANDYCLAY
		6	25	30	14 46 / 20.0	Ø
-		7	30	35	1452/32.5	10 - 24 SAMA: an ad ISRY/); mad an
		4	25	40	1458/37.5	
40 -			~~		1439/40.0	pour set, gty t lok an trax
-						24-25 CLAY
						25-28 SAND, as above
						28-32 CLANEY SAND & CLAN
						AC 32 CATEL STREET & CARY
		}}	†			
		ł			న '	32-38 SAND (WET) moded from (10R4/0)
						med gen, med set, gty, and
						38-40 CLAY
				T		
					9/2	185 H2 0 Jevel 29'2" 9:40
-					7	N120° h, SMW2
						pt 7.1 #8509261445

Geoscience	.1		ŀ	VELL LOGGING FORM Pageof					
Consultants, Lt	d Cli	ent <u>GI</u>	NT REFINING	COMPANY Well Number <u>Server</u> Sew-3					
		_ *	<u>kk</u>	よ ST <u>15 N</u> R <u>15 W</u> State <u>New Mexico</u>					
	Cou	nty <u>Mc</u> l	(inley	Contractor <u>Fox</u>					
-	Spu	d Date.	10/1/85	Completion Date					
	Log	s Run <u>l</u>	ith from Con	res Logged By J.C. Hunter					
- 0	A Elev	vation_	6803.2	5Spud In (Fm.)_ <u>Chinle</u>					
Depth J	e samp	arks Dr les @ 2.	illed w/Hol 5 and 5.0'	low Stem Auger & Continuous Sampler. Collected intervals for %H_O. Comp. as SS monitor Well					
	RUN	From To	Sample#/Ft	Lith/Remarks					
	[
		<u> </u>		Uperadicat well so side of 17A					
1× 153, 0	<u> </u>	<u> </u>	821001:	Mean front for a figure of 24.					
	/	0 5	0825 4.0'	0-3 5016 gry vol (10 R 1/2) cly loom, roots					
	z	5 10	08.12 / 10.0						
	3	10/15	0852/15.0						
15 -			4.5.50/20.0	3-11 0144 dk rd bru (102 14) plaster					
20	9	12 20	0824/20.0	<u><u> </u></u>					
- ÷-	5	20 25	0906/25.0	11-17 SANDY CHAY ANY XC (SPY) 10-20%					
	6	25 30	0914/30.0	uta sand & silt					
	7	30 35	0921 /55.0	wet sold 33 BATCA					
	8	IC MD	0935/40.0						
ر. <i>ب</i>	G	~		1/- 25 SAND: ary rd (= R1/2); VC - UIA					
45	\vdash			por sort, suland, QIF 1 ly					
20-	10			25-27 Shay; de rd bra (1023/1); = 2% site					
				·					
				27-30 SAND : pale rd byn. uta subject hims					
		1	1	$\Theta + F + L_{\mu}$					
				- the second - 41 plant - 44					
				- the definition of the transmission					
				TD @ HZ					
				Pipe in hole = 431/2 being ight					
				Carrie (2.5' sterup)					
				Bottom Acreen @ WI					
				30-33 CEAN al al al 100 6/1) + 112% -1-					
		-1-1-	ц'	31.5					
Geoscience	1		۴	VELL LOGGING FORM Page					
-------------------	---------------	---	----------------------------	---	--	--	--	--	--
Consultants, Ltd.	Clie	nt_GI	ANT REFINING	COMPANY Well Number STATK -1					
	•	<u> </u>	<u>_</u> {}	え ST <u>15 N R 15 W</u> State <u>New Mexico</u>					
	Coun	ty <u>Mci</u>	Kinley	Contractor_Fox					
	Spud	Date.	4/25/85	Completion Date /25/25					
	Logs	Run_	Lith from Co	res Logged By J.C. Hunter					
	Elev	ation_	6878,84	Spud In (Fm.)_Chinle					
Depth J	Rema sampl	Remarks Drilled w/Hollow Stem Auger & Continuous Sampler. Collected samples @ 2.5 and 5.0' intervals for %H_O. Comp. as SS monitor Well							
	RUN	From To	o Sample#/Ft	Lith/Remarks					
				Helwoon MWI- & MW-2 Depths trip					
0		· 	850925:0	of augoc, a 1.5' A.G.L (typical)					
TTROB30 5	/	05	0840/40	0-1.5' (1.5') Soll; gry rd (lof 1/2); silty cly					
10	Z .	5 10	0547 110.5	W/ minor sd; routs dorg metter					
	3	10 15	0352 /15	1.5-9.0 (7.5') CLAY; Gry rd(SR4/2)- derd					
	4	15 20	0859 /20'	han (IDR 3/4). dense abstic 1-5% silt					
	5 2	کتر م	50 0906 251	9,0-15-0(6.0') SANDY CLAY - GMYT (10R46)					
	6 2	25 30	0913/27.5 .4	- debu nd (5R3/4). chy w/ 15-20% med					
3./	2 3	135	0917/32502						
35			0920/350 ch 0927/375 ch	Civ Balles 30') gr - cr gr 3d, local t gru, poor soct					
40		S 70	0936/425 CL						
45	7 4	10 175	0837/45.0 CL	2110 Cuting - 6:45'					
50	10 4.	5 50	07511 50.3 CLY	15.0-23.0 (7.0) CLAY: gry rd (SP4/2)					
	1 5	0 55	0954/97.5 50	los sandy sands					
1000- 55	3 5	560	835 1201215/57	23 0-24 OLASAND, note of how (100 5/4)- wil					
More 1020	a il	. 145	1241/62.5	ill (and) and (
a the		- 0	1242/65.0	at t K-APON					
Kinder (4,5) -	17 E	5 69	1259, 19.0						
100 -				24.0-33.0 (9.0) SILTY CLAY; modrd (SR 5/4)					
				cly w/ 10-20% sit loc by sound					
				3.3.0-550 (22) CLAN: mod rd bra (102%)					
				loc sity - soundy					
			Ĩ	57.5 - 59.5 69 - 61 (2') 5 ((a) +) and have					
				Ke lapthi to and sout					

							WELL LOGGING FORM SMW-4
Geoscii Consultar	Geoscience Consultants, Ltd					NT REFININ	Pageof
- 10 10 10 10 10 10 10 10 10 10 10 10 10	de la com			ent_ L		L L	Well Number And Montan
				- 4. htv	McK	∡∡ inlev	_ 2 SI_IS N R IS W State <u>New mexico</u>
			Spuc	i Da	ite	4/25/85	Completion Date 1/45/85
			Loge	$\mathbf{x} = \mathbf{R} \mathbf{r}$	in I	ith from C	Cores Loggod Bud C Hunter
			Elev	vati	on	6878.A	4 Spud In (Fm.) Chinle
	ho h	70	Rema	irks	Dr	illed w/Ho	llow Stem Auger & Continuous Sampler Collected
Depth	Lit	rec	samp	les	e 2.	5 and 5.0'	intervals for %H ₂ O. Comp. as SS monitor Well
			RUN	Fro	m To	Sample#/F	Ft Lith/Remarks
					T		
-					<u> </u>		Betwoon MWI-& MW-2 Dipthe time tip
					+		of augor, ~ 1.5' HE-L (typical)
TTRORTO			1	0	5	0840/4	a) 0-1.5' (1.5') SOIL. Gry rd (10F 1/2); silty cly
		Τ	z	ۍ	10	0847 10	al minime sole parts a ora metter
-			2	10	15	CASZ 115	(15-9,7 (75) CIAV: can ad(584/2) - db rd
/5 -		\uparrow	4	15	20	0559 /20	1 (agg/) by date (if it
20-		\uparrow	6	20	15	50	brn (10K-79.); dense, plastic, 1-1 le sult
25-		f		~	~	0913/27.5	4,0-16-0(6.0) SANDY CLAY; Gry Ta (10K4/2)
3.)			6.	25	30	0914/30.0 5m	J - dsky rd (5R3/4); cly w/ 15-20% med
- 25-		Ľ	2	30	ડડ	0920135 CC	(ay Brilse 30) gr - cn gr sd, local f grul, poor sort
		8	3 _	3.5	40	0728/ 37.5 CL 0528/ 40:0 ch	
		•	9 4	₄₀ .	15	0936/425 CL	
		\Box			- 1	950/4755A	
50		ť	- 4	15	30 0	1951/ 50.2 Cuy	15.0-23.0 (7.0) CLAY; gry rd (SP4/2),
TO 1000- 55-		11	<u></u>	<u>so 4</u>	55	scol story	loc. sandy, 5-10% sd
		1:	3 5	55	(C.) ²	504201215/56 1216/60.20	23.2-24.01105AND; pale rd brn (102 5/4)-mil
More 1020		1.	46	0 1	15	1241/62.5	rd bru (10 R 4/4) . f. g. mod sut, loose
Partice -		13	5 6	5.	G	258 1 61-5	qty + K-spen
				1			24.0-33.0 (Sa) SUTY CLAY, modrd (SRS/1)
		·					Church and share the state of t
				<u> </u>			59 26 July 10-2010 SIF, loc 29 Sound
						························	3.5.0-350 (202) CLAY; Modra Ora LIOR (6)
							57.5 - 59.5 loc 5/4x - soudy
		<u></u>		1			59-61 (2' Sand (wet) included bin
							the (10RH/a); ty mid sort
						al.e.	61-69 Selly Soundstore Clay Date and COUR 6/2] -

-

: I

						5 1111 - 5
Geoscie	ence	.1				VELL LOGGING FORM Pageof
Consultan	its, Lt		ient.	GIA	NT REFINING	COMPANY Well Number Statute
			½		**	上 ST <u>15 N</u> R_ <u>15 W</u> State <u>New Mexico</u>
		Cou	inty_	McK	inley	Contractor_Fox
-		Spu	id Da	ate_	9/25/85	Completion Date <u>4/2,5/85</u>
		Log	s Ri	տ <u>_</u>	ith from Co	res Logged By J.C. Hunter
-	og	Ele	vati	ion_	6876.70	Spud In (Fm.)_ <u>Chinle</u>
Depth	L H	Sam	arke Dles	³ Dr @ 2.	illed w/Hol 5 and 5.0'	low Stem Auger & Continuous Sampler. Collected intervals for %H_0. Comp. as SS monitor Well
		DUN			Come Te A (EA	
-		KUN	Irre		R 50925:	
				<u> </u>		
		1	0	5	1050 / 9.0	0-3.0 5012
-		2	5	10	laschia	
					1 1000 / 100	
-		3	10	· / <u>s</u>	1102/15	3-0-11.0 SILTY CLAY
		4	15	20	106/20	· · · · · · · · · · · · · · · · · · ·
		5	20	25	1114 /25	10.0-17.5 SAND
I -		6	23	30	1176 1 2	
		7		20	1141/325	
		<i>⊢′</i> −	30	رد	1642/35.0	12-5-14 CLAY
		8	35	40	1236/40	
		9	45	45	1254 12.5	14-15 SAND
■ -{		10	45	50	1310 47.5	
				50	1320/52.5	st
			30	- 22	1521/ 5.5.0	13-24 JANDY CLAY
-						
						24-25 SAND
			I			25-27 544000
		┠───┤				ns-22 Standy CLAY
-						
_ 1						32-45 CLAY
-						·
_]						46.55 5000000
						C DNMU CLAY
		-+				
		ł	,			

<u>.</u>					
_ Geoscie	suce	1		v	VELL LOGGING FORM
Consultan	ts, Ltd	Cli	ent_GIA	NT REFINING	COMPANY Well Number 5/11 V- 2 = 5 MW4
			_ *;	z	2 ST_15 N R_15 W State New Mexico
		Cou	nty_McK	inley	Contractor Fox
		Spu	d Date_	10/3/eg	Completion Date
		Log	s Run <u>L</u> i	<u>ith from Co</u>	res Logged By J.C. Hunter
	0 0	Ele	vation_	6879.4	<u>S</u> _Spud In (Fm.)_ <u>Chinle</u>
Depth	Lith	Rema samp	arks Dri les @ 2.9	illed w/Hol 5 and 5.0'	low Stem Auger & Continuous Sampler. Collected intervals for %H_O. Comp. as SS monitor Well
		RUN	From To	Sample#/Ft	Completed ds Smu-s Lith/Remarks
		<i>i</i>	¢ .5.	1.21.5/4	0-3' JOIL . Ary rd (SRY/2) cly loom, Book
		ス	5 10	Ed Zelic	3-10' SKAY; dk ud brn (10R \$/4), ±5% 5:11
		3	10 15	6825/15	10-14 JANDY CLAY; Guy rd (10R 4/2); cly 10/ 10-20%
		4	15 ze	0830/20	utg sd & silt
		5	10 XS	0935/25'	14-15 SAND; pale rd (10 R %) - guy rd (10 R 1/2);
■		Ŀ	25 50	25.k/30	fg-mg mod sout, subrad Q+F+Lu
		7	30 35	0 945 /35'	15-28 SANDY CLAY; pry rd (102 4/2), cly w/ 10-15%
		8	35 40	1015/40	utig sol & silt. inveg low lodg 0-20/cure
		9	40 45	1025 / 45	28-36 SAND; gry rd (10RY/2) - mod rd fin 60RY)
		10	45 50	1030/50	utg-fg, mod sout, subrad, Q+F+Le, bead
			50 55	1035 / Sg	this cly intelede
		12	55 60	1045/60	
-		13	60 65	1101/62.5	Wetsond C62.s
		14	65 Zo	No Sangle	36-61 CLAY: de rd ben (10R 3/4). 5% vlg
- -					sdæsilt.
■			<u> </u>		61-63 SAND, WET 'tq utq poor nort, 215% chy
					matrix, some last recovery, free HaO, clayer
• -					· @ hace
					3-70 clayer SANDSFORG. 9TH 3+4 (SGY 4/1)-
					Try of CIOR 1/2), xfg sd e silt, day
	-	·			interhede (lamina), day, reduction
					spota
					completed w/ 23' screen e tran @ lasting 1

WELL LOGGING FORM Geoscience Page____of___ Client_GIANT REFINING COMPANY_____Well Number_5A1x - 1 Consultants, Ltd. ____ え___ え __ え S____ T<u>15 N</u> R <u>15 W</u> State <u>New Mexico</u> County_McKinley_____Contractor_Fox___ Spud Date <u>1/24/85</u> Completion Date <u>7/24/85</u> Logs Run_Lith from Cores_____ Logged By J.C. Hunter Elevation______Spud In (Fm.)__Chinle_ tho Remarks Drilled w/Hollow Stem Auger & Continuous Sampler. Collected samples @ 2.5 and 5.0' intervals for %H_0. Comp. as SS monitor Well Depth From To Sample#/Ft RUN Lith/Remarks Ċ e. c. 4. c (t.) SULL; gry rd (SR 1/2) cly & sit 8509251: 3 1125/4.0' 15.4 + orgenic matter, lesse r day . در 1130/10.0 10.5 - 2.0 (5.0') Stary CLAY - dk rd lunn (10 R 5/4) 130/10.0 10.5 - 25% sill, plastic city w/ miner ructs ス 5 IJ 10 1135/15.0 9.0-23.2 (19.0) SANDY CLAY- gry rd (102 1/-) 3 1/5 10 15 15 20 142/200' 12.0 clay t 10-25% mg ws sod 4 20 28.0-26 (3.0) -SAND Med rd brn (10R 4/6); fg s 20 25 1149/25.0' 4.0 SANDY WS at sd, lause, dry 26.0-32.0 CLAY, ASHbore 25 25 30 1155 / 20' 9422-0-4X.0 CANY. 115 ABUR 30 1203/ 32.5 16.5 30 35 7 " clay halls" in cutture (34" 1204135.0 35 1210 / 37.5 43 1211 / 310.0 12220 - 590 Sandy CLAH, AS Abrie 1211 / 40.0 12127.5 B66 2 6819 8 35 40 40 1225 145.0 459.0-64.0 SAND; med rd bra (0x 1/0); m 9 40 45 45 1235 147.5 17.9 WS gly 6d; weter sut, sharp up & kined 45,50 10 1236 / 50.0 18.0 50 1248/ 52.5' 18.9 1249/55.0' 24 0-75.0 SITNAY CLAY, ASILON, whit & green ved 11 *র*র Sport 1259 160' 12 Free the is sanda 60' 60 18.9 Sat Said 312 189' 1315/65' 13 Ticse 11, U Sunde 61 m clay - Sut cly @ 6.5 23.4 Sat Clay & BK 05 14 1328 170' 9.6 70 sarry ch @ 15 Nov in cuttings 75' unsat chit shitte unsat chay 15 1247 175' 15 16 1400 180' 11.8 21400 80 75.0-78.0 SANA: med rd bra (ine 4/1). m-cg, ws gh sd, wat set; shap approver contact where 78.0-80.0 (TD) clay; its Above green relat NW Corner LTA

Geoscience Consultants, Itd Client_GIANT REFINING COMPANY Well Number_ $3mk-2$ $\frac{1}{2}$ $\frac{1}{2}$ $$
Chent und Ref Hills Corpani Well Number $SMK - \lambda$ $= \frac{1}{2} - \frac$
$\frac{-2}{2} \frac{-2}{2} \frac$
$\frac{1}{1} = \frac{1}{1} = \frac{1}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Depth Remarks Drilled w/Hollow Stem Auger & Continuous Sampler. Collected samples @ 2.5 and 5.0' intervals for χ_{H_20} . Comp. as SS monitor Well RUN From To Sample#/Ft Lith/Remarks RUN From To Sample#/Ft Lith/Remarks RUN From To Sample#/Ft Lith/Remarks χ_{S092b} χ_{S002b} χ_{S
RUN From To Sample#/Ft Lith/Remarks 0 RUN From To Sample#/Ft Lith/Remarks 0 81' NbdE FRom MW-44 0 5 1015/2.5 0-2.5' Sort lickt - hull some 1 0 5 1015/2.5 0-2.5' Sort lickt - hull some 2 5 10 1018/7.5 caluptation 'noort's arts sitty clay 10 3 10 15 1031/2.5 2.5' - 9.0' clay test shightly work they cohesu 3 10 15 1031/2.5 2.5' - 9.0' clay test shightly work they cohesu 4 15 20 650/17.5 9.0' - 9.1 sand huff five - nood qu numbly 1 25 20 25 100 1051/20.3 10 1 20 25 10051/20.3 9.0' - 9.1 sand huff five - nood qu numbly 1 23' 25 30 35 10051/20.3 9.0' - 9.1 sand huff five - nood qu numbly 1 23' 25 30 35 100550 9.0' - 9.1 sand huff five - nood qu numbly 1 25 30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{1}{10} = \frac{1}{10} $
$\frac{2}{10} = \frac{2}{10} \frac{5}{10} \frac{1018}{1019} \frac{7.5}{10.0} \frac{1018}{1019} \frac{7.5}{10.00} \frac{1019}{10.0} \frac{1000}{10.00} \frac{1000}{10.$
$\frac{3}{10} \frac{15}{1031/2.5} \frac{2.5-9.0}{100} \frac{100}{1000} \frac{1000}{1000} $
4 15 20 050/17.5 9.0'-9.1 sand buff fire - mod qu unumbly 1. 23 25 A 5 20 25 1059/102.5 My 1059/1025.0 9.1 - 117.0 CLAY: Red, slighty moist, plas 100/25.0 9.1 - 117.0 CLAY: Red, slighty moist, plas 100/25.0 9.1 - 117.0 SAND (WET) fr- Med gn 100/25.0 1113/30.0 117.0.123.0 SAND (WET) fr- Med gn
25 D 25 10591025 My 25 D 5 20 25 10591025 My 100/25.0 9.1 - ~17.0 CLAY; Red, slighty moist, plas 16 25 30 1472/27.5 10 120/20.0 ~17.0. ~223.0 SAND (WET) fr- Mel gr
30 6 25 30 1113/30.0 -17.0-23.0 SAND (WET) fr- 44 gr
3- 30 CLATING plainte france
WATER LEVEL 15'-7' . 1150

	,	u.						,	17 · m.		
	Coordi	2200	1					WELL LOGG	ING FORM	5	
/ 🗖	Consultan	its, Lt	d	C1 6	ont	GIA	NT REFININ	G COMPANY		Pageo	f
		i an		0110	enț		1 1		Well	Number <u>SPL</u>	<u>v-3</u>
_					_ ~	Mek	₹₹ ÷=]	_* S	T_15_N R_15_h	LState <u>New Me</u> ;	
				Cour	nty_	MCK		Contr	actor <u>fox</u>	· · · · · · · · · · · · · · · · · · ·	
-	7777-			Spuc	d Da	ite_	7-26-0:	2 Comp]	etion Date_		
				Loge	s Ru	in_L	ith from Co	ores	Logge	d By <u>J.C. Hunte</u>	er
		0	>	Elev	vati	on_		Spud	In (Fm.)	inle	
		t p	00	Rema	irks	Dr	illed w/Hol	llow Stem A	uger & Continu	ous Sampler. Co	llected
D	epth	<u> </u>	4	samp	les	e z.	5 and 5.0'	intervals ·	for %H ₂ O. Comp	. as SS monitor	Well
	-			RUN	Fro	m To	Sample#/F	t	Lith/Rema	rks	
	-		ſ			1	8509210			<u></u>	
-	0-	ł	╉			 	1214 0.0	0-45	Sarti bru	, clance, sand	soil
	5 -			1	0	5	1216/5.0)
				a	5	10	1218/7.5	4.5-250	RED CLAY :	e dry to sha	ett.
	10 -		F	7	<i>(</i>)		1271/ 12.5		moist, loca	preduction n	odules
	ıs-		-	5		15	1222/15.0				
	70			4	15	ac	17.5 20.0	28.0-30+	RED SILTY CL	AV, as above	but the dry
	~]		F	5	201	25	1234/225			,	
_	25 -		┢	- 1			1025/25.0				
	30-		L	6	15	30	30,0	<u> </u>			
	+		ľ			ł					
	1		F		!						<u> </u>
	+		┝								
	5				, 1						
	-		Γ								
	4		┢								
]										
	-										
]				Τ						
	-										······································
-											
					1						
	1										
					-1-						
	· -										
]				1					·	
	-							·····			
	1].									
	-					1					
	1										
	-	-									······································
	. –										

WELL LOGGING FORM Geoscience Page____of__ Consultants, Ltd. Client_GIANT REFINING COMPANY_____Well Number_<u>SMy-4</u>____ _____¹<u>4</u>___¹<u>4</u><u>5</u><u>5</u><u>7_15</u><u>N</u>R_<u>15</u><u>W</u>State<u>New Mexico</u> County_McKinley_____ Contractor_Fox___ Spud Date <u>9-26-85</u> Completion Date Logs Run_Lith from Cores_____ Logged By J.C. Hunter____ Elevation_____Spud In (Fm.)_Chinle___ tho Remarks Drilled w/Hollow Stem Auger & Continuous Sampler. Collected samples @ 2.5 and 5.0' intervals for %H_O. Comp. as SS monitor Well Ч Depth RUN From To Sample#/Ft Lith/Remarks 850926 0 132510.0 6-10 shale/ day red slightly wint cohesure 132612.5 5 Γ 0 5 5 10 1330/7.5 2 0.01/10.D sand enconteres at 10 dry course - fur or 10 1335/12.5 · · · · ; 3 15 1336/15.0 6-15 101 1960 15 ∇ 15 20 13451,17.5 haterlevel 15'5" 4 1346/20.0 20 25 1354/22.5 18-20 clayer sond (saturated) for, for-med gr 1355/25.0 W adurlant clay 20 5 1402/27.5 W.L. 26-10 # 8509201410 1403/30.0 25 7 6 25 30 22.24 sond; bu, Ingr w/v. minor clay 24-85 sonly clay; br w/ silt 4 for sand 30. 25-27,5 sand; frimed gr (soturated) N. minor clay 27.5-27 sandy clay (moist) silt & fu soud 29-30+ silty clay; (dry) reddish bru w/ a greenish reduction volules pt 7.4 Conductore 4850

	-			- ·							
Geosci	ience	1		¥	VELL LOGGING FORM						
Consulta	nts, Lt	d _{Cli}	ent_GIA	NT REFINING	COMPANY Well Number SHY- 5						
			2 2 2 S TIENRIEU State New Mexico								
		Cou	County McKinley Contractor Fox								
	2,4	Spue	Spud Date 9-24-85 Completion Date								
	n an tao an an An	Log	s Run L	ith from Co	res Logged By J C. Hunter						
		Eley	vation		Spud In (Fm) Chinle						
	P P		arke o								
Depth		samp	amples @ 2.5 and 5.0' intervals for %H_0. Comp. as \$\$ monitor Well								
		0.00	F T	C							
-		KUN	From 10	Sample#/Ft	Lith/ Kemarks						
					<u> </u>						
			0'5	A44/ 0.0	0-0.5 Sand; let bru, for-med go w/ numor						
5-			CIO	14 53/ 7.5	0.5-20.01 clay; reddick orn, stightly morest						
I 0 -		2	510	1459/10.0	plastic day up minor anounts of						
		3	10 115	1501 15.0	w/denth						
_		4	15 120	1510/17.5							
90-				1811/00.0							
35-											
			•	. •							
		┠╼╼╾┼			· · · · · · · · · · · · · · · · · · ·						
_ 1											
					· · · · · · · · · · · · · · · · · · ·						
- 1											
					······································						
_ 1											
-											
			+								
	-				·						
			1 1								
_	_										

i

:

. i

G Con		ence nts, Lt	d Cl	Somplex lakeled $SMW-5 \rightarrow SMW-5 = SMX-6$ WELL LOGGING FORM PageOf Client <u>GIANT REFINING COMPANY</u> Well Number <u>SMM-4-6</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$ <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$ <u>$\frac{1}{2}$</u> <u>$\frac{1}{2}$</u> <u>$\frac{1}{$</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>						
Depth		Lit	sam	ples	e 2.	5 and 5.0'	intervals for %H ₂ O. Comp. as SS monitor Well			
	-	$\left\{ \right\}$	RUN	Fr	om lo	Sample#/Ft	Lith/Remarks			
	-			+	· 	851001:	Renumbered SMX-6; open bouchole, not completed			
- 7/\$ // 0₫	0 		/	0	15	1110/ 4.0	0-4.0: 2011; gryre UOR 4/2); clayey loan w/			
			2	5	1,0	1114/ 10.0	4.0 - 12.5' GLAY: dk rd brn (10R/34); v sof			
	۲ ا د		3	10	15	1120/ 15.0	t plastic; \$ 5% 5:14			
	۔ _ د ہ		4	15	20	1124/ 20.0	12.5-20.0 SANDY CLAY, Ary ro (SR 4/2); clay			
	-		ک	20	25	1.128 /25,0	w/ 12-25 1/2 1 g sand: jaint wayy discorri			
	3.0-		6	25	30	1135 / 30.0	lember 0=3°/code			
			7	30	35	1140 / 5.5.0	20-22.0 SAND , any of (10 R#/2), ca-fs pier			
-			8	34	40	1148 /40.5	Sort, que + Vile RF. + K-Sper = play; subrund			
L	40-		9	40	45	1159/45.0	22-33 SANDY CLAY; pale + d ben (10K =/4);			
- 12.50	50-		10	45	٥٦	1255 /520	cly w/ 15-25% fg: same faint wany			
	-		11	20	55	1306/55.0	to discont lambood of 3" / care			
	- -		12	ۍ که	60	1325 60.0	33-36 SAND. gry rd (10R4/2) - pake rd brin			
. .	-		13	60	65	1345 65,0	(IOR 5/4) fg-sta poor sort, subance			
Ref And C68	er f		1-1	6.5	66	\$59 68.0	is subrad; ate + fettspars			
1495							36-57 CLAY; dk rd brn (10R 3/4); = 2%			
· 	1						silt; no reduction sports			
							57-66 SANDY CLAY: BIY ro (5R 4/2) - dsky ro)			
, .	4						(5R=14), locally modern (54R 4/4); 10-			
							20% UF5 50			
							66-63 SANDSTONE; pale dive (10×6/2)-14grn			
	1	L					- Gry (SGY 8/1). Is a "1:14" -1.			

{

I I

Geoscience	WELL LOGGING FORM Page of
Consultants, Ltd.	Client_GiantWell Number_SMX-7
	Spud Date Completion Date
	Logs Kun Logged By
o h o	Remarks Sampley labeled SMW-6: RO'W of 5P-2
Depth II	
	0-4.0 Soil; gry and (10x 1/2), cly loan
	4.0-9.0 CLAY: Ik id hun (10R \$14), plastic of = 10% silt
	9.0-13.0 SAND: gay ad (SR 4/2); mg-fg, mod-poorsont,
	ulang, Q = F, Lo
	13.0 - 20.0 CLAY; de nd bru (IDR 44), plantic, 10-15% silt
	20.0-23.0 SAND: pale rd bru (IOR 5/4); fg suboug, und sort,
	Q, ± Lu, F
	23.0-26.0 CLAY: de rd brn (10 R 3/4), ~5 % silt
	26.0-27.0 SAND: pole rd bru (10K = /4) - gry rd (5K 4/2),
	vtg-fg, mod sort, suband,
	27-28 CLAY de re bru (10R3/4)
	28-29 SAND; as allow
	29-31 CLAY: as above, moist
	31-35 SAND: WET; pale rd bru (10x 5/4) fq-vfg
	mod sort, Q+F+h.
	35-40 CLAY: Ik rd bru (1023/4) = 10% silt
	40-45 CLAY: as above, dry
	45-47 SAND: pake rd bru (10 R 1/4), vfg, dry
	47-49 PEBBLE CONGLOMERATE: Hgrn gry (564 B/1) in
	day matrix, pale in lorn (10 R = 1/4); chert and ss
	pebbles 1/4"-11/2" in day mating reduction spoti
	19-60 Re CLAY; as above
	0-67 CLAYEY SIGTSTONE: pak no ben (10 R 5/4)
	7-20 SILTY SANDSTONE: gry vd (10/1/2) & pale

TO: GeoScience Consultants 500 Copper N.W. Suite 325 Albuquerque, NM 87102

ANALYTE: % Moisture

SAMPLE ID

85-09-25 1415	SMW-3 4.0'	8.3
85-09-25 1320	SMW-2 52.5'	18.1
85-09-25 1426	SMW-3 15.0'	13.5
=85-09-25 1321	SMW-1 55.0'	15.0
85-09-25 1458	SMW-3 37.5'	17.3
85-09-25 1445	SMW-3 27.5'	8.6
85-09-25 1438	SMW-3 25.0'	9.6
85-09-25 1446	SMW-3 30.0'	5.3
85-09-25 1459	SMW-3 40.0'	14.5
85-09-25 1311	SMW-3 50.0'	14.9
85-09-25 1452	SMW-3 32.5'	20.7
85-09-25 1453	SMW-3 35.0'	15.3
85-09-25 1056	SMW-2 10.0'	8.4
85-09-25 1235	SMW-2 37.5'	13.3
85-09-25 1236	SMW-2 40.0'	16.2
85-09-25 1420	SMW-3 10.0'	7.4
85-09-25 0927	SMW-1 37.5'	12.6
85-09-25 1050	SMW-2 4.0'	16.9
85-09-25 0928	SMW-1 40.0'	17.9
85-09-25 1141	SMW-2 32.5'	16.9
85-09-25 1126	SMW-2 30.0'	8.1
85-09-25 1310	SMW-2 47.5'	18.0
85-09-25 1142	SMW-2 35.0'	16.3
85-09-25 0913	SMW-1 27.5'	10.8
85-09-25 1432	SMW-3 20.0'	3.6
85-09-25 0920	SMW-1 35.0'	15.0
85-09-25 1114	SMW-2 25.0'	4.5
85-09-25 1254	SMW-2 42.5'	18,5
85-09-25 0914	SMW-1 30.0'	7.1
85-09-25 0919	SMW-1 32.5'	13.0
85-09-25 1255	SMW-2 45.0'	3.6
85-09-25 0959	SMW-1 52.5'	15.0
85-09-25 1102	SMW-2 15.0'	7.2
85-09-25 0859	SMW-1 20.0'	8.4
85-09-25 0847	SMW-1 10.0'	5.4
85-09-25 0906	SMX-1 25.0'	4.3
85-09-25 0936	SMW-1 42.5'	20.0
85-09-25 0937	SMW-1 45.0'	14.3
85-09-25 0951	SMW-1 50.0'	13.3
85-09-25 0840	SMW-1 4.0'	11.9

DATE: 9 October 1985 1402 Page 1 of 2

Diant 950

ANALYTICAL RESULTS

8.3 18.1 13.5 15.0 17.3 8.6 9.6 5.3 14.5 14.9 20.7 15.3 8.4 13.3 16.2 7.4

16.9 17.9 16.9 8.1 18.Ó 16.3 10.8 3.6 15.0 4.5 18.5 7.1 13.0 3.6 15.0 7.2 8.4 5.4 4.3 20.0 14.3 13.3 11.9

(505) 345-8964 7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 •

TO:	GeoScience	Consi	ultants	5
	500 Copper	N.W.	Suite	325
	Albuquerque	e,NM	87102	

DATE: 9 October 1985 1402 Page 2 of 3

ANALYTE: & Moisture

SAMPLE ID

ANALYTICAL RESULTS

85-09-25 0950	SMW-1 47.5'	5.8
85-09-25 0852	SMX-1 15.0'	11.0
85-09-25 1106	SMW-2 20.0'	7.0
85-09-25 1000	SMW-1 55.0'	20.0
85-09-26 1112	SMX-2 27.5'	24.1
85-09-26 1215	SMX-3 2.5'	5.6
85-09-26 1446	SMX-5 5.0'	15.5
85-09-26 1250	SMX-3 27.5'	14.8
85-09-26 1251	SMX-3 30.0'	11.5
85-09-26 1336	SMX-4 15.0'	2.7
85-09-26 1100	SMX-2 25.0'	21.4
85-09-26 1327	SMX-4 5.0'	20.5
85-09-26 1501	SMX-5 15.0'	17.8
85-09-26 1500	SMX-5 12.5'	13.0
85-09-26 1234	SMX-3 22.5'	14.2
85-09-26 1214	SMX-3 0.0	7.9
85-09-26 1445	SMX-5 2.5'	15.3
85-09-26 1216	SMX-3 5.0'	14.3
85-09-26 1403	SMX-4 30.0'	17.5
85-09-26 1444	SMX-5 0.0	6.8
85-09-26 1354	SMX-4 22.5'	20.8
85-09-26 1335	SMX-4 12.5'	4.2
85-09-26 1510	SMX-5 17.5'	16.8
85-09-26 1511	SMX-5 20.0'	16.3
85-09-26 1355	SMX-4 25.0'	11.0
85-09-26 1345	SMX-4 17.5'	20.8
85-09-26 1219	SMX-3 10.0'	14.7
85-09-25 1218	SMX-3 7.5'	14.8
85-09-26 1453	SMX-5 7.5'	15.4
85-09-26 1454	SMX-5 10.0'	19.4
85-09-26 1331	SMX-4 10.0'	16.2
85-09-26 1402	SMX-4 27.5'	20,8
85:09-26 1346	SMX-4 20.0'	24.4
85-09-26 1051	SMX-2 20.0'	17.5
85-09-26 1113	SMX-2 30.0'	18.4
85-09-26 1050	SMX-2 17.5'	18.1
85-09-26 1222	SMX-3 15.0'	17.3
85-09-26 1221	SMX-3 12.5'	16.0
85-09-26 1325	SMX-4 0.0'	26.8
85-09-26 1059	SMX-2 22.5'	23.1
85-09-26 1235	SMX-3 25.0'	13.8
85-09-26 1330	SMX-4 7.5'	20.7
85-09-26 1326	SMX-4 2.5	18.6

TO: GeoScience Consultants

1402 Page 3 of 3

ANALYTICAL RESULTS

ANALYTE: & Moisture

SAMPLE ID

SMX-2 1015 SMX-2 1018 SMX-2 1019 SMX-2 1023 SMX-2 1024 SMX-3 20' SMX-3 17.5'

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

14.6

19.5

11.3

21.2

21.5

15.6

18.3

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

V. Smith

Jennifer V. Smith, Ph.D. Laboratory Director TO: GeoScience Consultants

1402			•
Page	3.0	of	3

ANALYTE: % Moisture

SAMPLE ID

SMX-2 1015 2.5' SMX-2 1018 7.5' SMX-2 1019 10:0' SMX-2 1023 12:5' SMX-2 1024 15:0' SMX-3 20' SMX-3 17.5'

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

ANALYTICAL RESULTS

14.6

19.5

11.3

21.2

21.5

15.6

18.3

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

m Jennifer V. Smith, Ph.D.

Laboratory Director

TO: GeoScience Consultants 500 Copper N.W. Suite 325 Albuquerque,NM 87102

DATE: 9 October 1985 1463

ANALYTE: % Moisture

SAMPLE ID

ANALYTICAL RESULTS

SMW-6	85-10-04	1002	5'	11.5
SMW-6	85-10-04	1017	15'	15.3
SMW-6	85-10-04	1039	25'	17.6
SMW-6	85-10-04	1111	35'	16.5
SMW-6	85-10-04	1145	45'	13.9
SM₩-2	1016 5'			17.7
SMW-1	85-09-27	1301	65'	19.5
SMW-3	85-09-27	0841	45'	14.5

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

Jennifer V. Smith, Ph.D. Laboratory Director

APPENDIX B SOIL PROPERTIES

Typical profile of Mirabal stony loam, in a steep, southfacing area under ponderosa pine, grass, and forbs; SW1/4 sec. 21, T. 11 N., R. 12 W., Valencia County:

01&02-1/2 inch to 0, loose mat of pine needles and grass, in various stages of decomposition.

- A1-0 to 5 inches, gravish-brown (10YR 5/2) stony loam, very dark gravish brown (10YR 3/2) when moist; weak to moderate, fine, granular structure; soft when dry, very friable when moist, nonsticky and nonplastic when wet; noncalcareous; pH 6.0; 25 to 30 percent stones; clear, smooth boundary.
- AC-5 to 12 inches, pale-brown (10YR 6/3) stony sandy loam, brown (10YR 4/3) when moist; weak, fine, subangular blocky structure breaking to fine, granular structure; slightly hard when dry, friable when moist, nonsticky and nonplastic when wet; noncalcareous; pH 6.4; 45 to 55 percent gravel, cobblestones, and stones; clear, slightly wavy boundary.
- C-12 to 18 inches, pale-brown (10YR 6/3) gravelly sandy loam, brown (10YR 4/3) when moist; weak, fine, subangular blocky structure, or massive; slightly hard when dry, friable when moist, nonsticky and nonplastic when wet; noncalcareous; pH 6.4; about 10 percent anore gravel and cobblestones than in the AC horizon; gradual boundary.
- R-18 inches +, hard, somewhat shattered and fractured granite; some soil material in fractures.

The depth to bedrock ranges from 15 to 22 inches. The texture of the surface layer may be stony loam, gravelly sandy loam, or stony sandy loam.

Supervisor Series

The Supervisor series consists of shallow to moderately deep, well-drained soils on steep, north-facing slopes. These soils occur at elevations of 8,600 to 9,200 feet, where the annual precipitation is 20 to 25 inches and the average annual temperature is about 42° F. The slope range is 20 to 45 percent, and slopes of more than 30 percent are common. The parent material weathered from granite and granitic gneiss. The vegetation is mainly Douglasfir, limber pine, ponderosa pine, and grass.

Although Supervisor soils are classified as Lithosols, they have some characteristics of Brown Forest soils.

The Supervisor soils are associated with the Mirabal soils. Generally, they are darker colored, less stony, and deeper than those soils. They have a thicker layer of litter and more organic matter in their surface layer.

Typical profile of Supervisor stony loam, on a northfacing slope, under a cover of Douglas-fir, limber pine, and ponderosa pine; SW¹/₄ sec. 21, T. 11 N., R. 12 W., Valencia County:

- O1-2 inches to 0, loose mat of fir and pine needles, in various stages of decomposition; pH 6.2.
- A11—0 to 0 inches, dark grayish-brown (10YR 4/2) stony loam, very dark brown (10YR 2/2) when moist; weak to moderate, fine, granular structure; soft when dry, very friable when moist, slightly sticky and slightly plastic when wet; noncalcareous; pH 6.3; 20 percent stones; clear, smooth boundary.
- A12-4 to 10 inches, grayish-brown (10YR 5/2) stony gravelly loam, dark brown (10YR 3/3) when moist; moderate, fine, granular structure; soft when dry, very friable when moist, slightly sticky and slightly plastic when wet; noncalcareous; pH 6.4; 25 to 30 percent angular gravel and stones; clear, wavy boundary.
- AC-10 to 16 inches, brown (10YR 5/3) gravelly loam, dark brown (10YR 4/3) when moist; weak, fine, granular structure; slightly hard when dry, friable when moist, slightly sticky and slightly plastic when wet; noncalcareous; pH 5.8; 30 to 40 percent gravel and stones; gradual boundary.

- C--16 to 22 inches, yellowish-brown (10YR 5/4) stony and gravelly sandy loam, dark yellowish brown (10YR 4/4) when moist; massive; slightly hard when dry, friable when moist, nonsticky and nonplastic when wet; noncalcareous; pH 5.9; 45 to 55 percent gravel and stones; gradual boundary.
- R-22 inches +, hard, somewhat shattered granitic rock; some soil material in fractures.

The texture of the surface layer may be sandy loam, gravelly sandy loam, stony loam, or gravelly loam. The depth to shattered and fissured granite is 18 to 22 inches in most places, but it may be as little as 12 or as much as 30 inches. The deeper soils occur in pockets on benches.

REGOSOLS

Regosols consist of deep, unconsolidated material in which few or no clearly expressed soil characteristics have developed. The Regosol great soil group is represented in the Zuni Mountain Area by the Montoya, Thurloni, and Valentine soils. The Montoya and Thurloni soils formed in material weathered from red, clayey shale. The Valentine soils developed in wind-deposited sandy material. The Montoya and Thurloni soils have better horizon expression than the Valentine soils.

Montoya Series

The Montoya series consists of deep, well-drained, level or nearly level soils on flood plains and alluvial fans and in swales. These soils occur at elevations of 6,800 to 7,200 feet, where the annual precipitation is 15 to 18 inches and the average annual temperature is about 47° F. They formed in alluvium washed from shale of the Chinle formation. Grass and shrubs make up most of the vegetation, but at the higher elevations Gambel oak and pinyon pine grow also.

These soils are characterized by a granular A horizon, a prismatic to blocky B2 horizon, and a thick C horizon.

The Montoya soils are associated with McGaffey, Trail, and Concho soils. They are finer textured than the Mc-Gaffey and Trail soils, and they have slower permeability. They are redder than the Concho soils.

Typical profile of Montoya clay, in a grassy area; SW1/4NE1/4 sec. 19, T. 12 N., R. 15 W., Valencia County:

- A1-0 to 9 inches, weak-red (2.5YR 4/2) light clay, dusky red (2.5YR 3/2) when moist; strong, fine and medium, granular structure; uppermost 3 inches has strong, very fine, granular structure; hard when dry, firm when moist, sticky and plastic when wet; abundant fine roots; calcareous; pH 8.2; gradual boundary.
 B2-9 to 27 inches, weak-red (2.5YR 4/2) clay, dusky red
- B2-9 to 27 inches, weak-red (2.5YR 4/2) clay, dusky red (2.5YR 3/2) when moist; weak, medium, prismatic structure breaking to strong, medium, angular blocky; very hard when dry, very firm when moist, very sticky and very plastic when wet; strongly calcareous; pH 8.2; gradual, wavy boundary.
- C-27 to 52 inches +, weak-red (2.5YR 4/2) clay, dusky red (2.5YR 3/2) when moist; extremely hard when dry, very firm when moist, very sticky and very plastic when wet; some slickensides; strongly calcareous; pH 8.2.

The colors of these soils range from 5YR to 10R in hue. In most places the profile is calcareous throughout, but in some places the surface layer is noncalcareous. In places also, the B and C horizons contain fine gravel, and in some the texture of the B horizon is silty clay.

•	

ZUNI MOUNTAIN AREA,

TABLE 11.—Engineeringinterpretations

76

SOIL SURVEY

	Suitability	for use as-	s	uitability as a source	of—			Suitabil	ity for
Soil series and map symb	Ŏ				5	Stock tanks a	nd reservoirs	Terraces and	Water
	Subgrade	Subbase	T obsoir	for subgrade	TOCK	Embankment	Reservoir area	diversions	
Andrews (Ag)	Fair	Poor	Poor; gravelly	Unsuitable	Good for limestone	Fair to poor	Poor; too shallow Unsuitable	Poor; too shallow Unsuitable	Unsuita Unsuita
Badland (Ba) Bandera (Bd, Bg)	Unsultable Fair	Poor	Poor.	Poor; good source	Poor.	Unsuitable	Unsuitable	Unsuitable	Unsuita
Bond (Bo)	Fair	Fair to poor	Poor	Unsuitable	Good for sandstone	Fair	Poor; shallow and rocky.	Poor	Unsuita
Cabezon (Ca)	Fair	P001-	Good	Unsuitable	Good for basalt	Feir	Poor; too shallow	Fair, but soil is shallow.	Poor; to
Clayey alluvial land (Cb)-	Poor	Poor	Good	Unsuitable	Unsuitable	Fair	Good.	Good	Good
Concho (Cc. Co)	Fair to poor Fair	Poor Fair to poor	Good	Unsuitable Unsuitable	Unsuitable Fair for sandstone	Good; compacts	GoodGood	Good	Good
Friana (Fr)	Fair	Poor	Good	Unsuitable	Unsuitable	Fair	Good	Good	Good
Gem (Gm)	Fair	Poor	Good	Unsuitable	Fair for basalt	Feir	Good	Good	Good; g
Jekley (Je, Jk, Jr)	Good to fair	Fair to poor	Good (Je); poor (Jk, Jr).	Unsuitable	Fair for fine-grained sandstone.	Fair to poor; not much soil material.	Fair to poor (Je, Jk); unsuitable (Jr); shallow.	Good, but poor on steep slopes.	Fair (Je suital shallo
Kettner (Ke, Kn)	Good	Fair	Poor	Unsuitable	Fair to good for schist.	Fair to good; com- pacts well.	Poor; too shallow; rapidly permeable.	Good	Fair
Kiln (Kr, Kx)	Poor to fair	Poor	Poor; too rocky	Unsuitable	Good for limestone	Poor; not much soil material.	Unsuitable; too shal- low to limestone.	Unsuitable	Unsuita
Laporte (La, Lp)	Good to fair	Fair to poor	Poor; too stony	Unsuitable	Good for limestone	Pcor; not much soil material.	Poor; shallow; lime- stone is fissured.	Poor; too stony	Unsuita
Larry (Lr)	Poor	Poor	Good	Unsuitable	Unsuitable	Peor; too clayey	Good	Good	Good, b
Lava flows (Ls) Lava rock land (Lv) McGaffey (Ma)	Poor Unsuitable Fair	Unsuitable Unsuitable Poor	Unsuitable Unsuitable Good	Unsuitable Unsuitable Unsuitable	Good for basalt Good for basalt Unsuitable	Unsuitable Unsuitable Good	Unsuitable Unsuitable Good, but stratified _	Unsuitable Unsuitable Good	Unsuita Good
Mirabal (Mb, Mm, Mn, Zr	n)- Good	Fair to poor	Fair (Mb. Mm. Mn); poor (Zm).	Unsuitable	Good for granit:	Fair (Zm); poor, must be com- pacted (Mb, Mm, Ma)	Poor because too shallow (Zm); un- suitable (Mb, Mm Mn)	Fair to poor; shal- low and steep.	Fair (Zr able (Mn).
** Montoya (Mo)	Poor	Poor	Poor	Unsuitable	Unsuitable	Pcor; hard to com- pact.	Good; slow permea- bility.	Good	Good
Nathrop (Na)	Fair	Fair to poor	Fair	Unsuitable	Good for limestone	Fair to good	Poor; shallow	Fair to good	Fair to
Ordnance (Od)	Fair to poor	Poor	Poor	Unsuitable	Poor	Poor; material dis- persed.	Fair; shallow	Poor; unstable	Poor; di
Osoridge (Or, Ox)	Fair	Poor	Poor	Unsuitable	Good for sandstone	Poor; too shallow and rocky.	low and rocky.	Unsuitable	Cond
Polich (Po)	Fair	Poor	Good	Unsuitable	Unsuitable	Good.	Good.	Good	Cood
Prewitt (Pr)	Fair to poor	Poor	Fair to poor	Unsuitable	Unsuitable	pact.	bility.		Uoou
Rock land (Rk) Rock outcrop, gently slopi	ng Poor	Unsuitable Unsuitable	Unsuitable Unsuitable	Unsuitable Unsuitable	Good for sandstone	Unsuitable	UnsuitableUnsuitable	Unsuitable	Unsuital Unsuital
(Ro). Rock outerop, cliffs [.] (Rp)_	Poor	Unsuitable	Unsuitable	Unsuitable	Good for sandstone	Unsuitable	Unsuitable	Unsuitable	Unsuital
Sanchez (Sa)	Good to fair	Fair to poor	Poor	Unsuitable	Fair	Poor	Poor; too shallow	Poor; too shallow	Unsuital easily
Savoia (Sb, Sf)	Good to fair	Fair	Good	Fair	Unsuitable	Good	Good to fair	Good.	Good
Showlow (Sh, Sm)	Fair to poor	Poor	Fair	Unsuitable	Poor; shale	Poor; dispenses; may pipe and	Good to fair	Poor; unstable	Poor; er
Supervisor (Su)	Good	Fair	Good	Unsuitable	Good; granite	Good, but should be compacted.	Unsuitable	Fair; shallow; steep.	Unsuitat
Tabiona (Ta)	Good to fair	Fair to poor	Fair	Unsuitable	Unsuitable	Good	Good[Good	Good

٠

	ble	odes easily	ble; erodes	ble	ble ble	ble	sperad		n); unsuit- Mb. i/1 m.	ble	ble ut subsoil is v permeable.	ble	, Jk); un- ble (Jr);	entle slopes		bo stony	ble	ble	r sprchding	 TEW CELEVIC
	Unsuitable	Good Fair, but unstable	Unsuitable	Unsuitable	Good, but slow per- meability. Unsuitable Unsuitable	Unsuitable	Fair, but unstable	Good, but slow per- meability.	Fair (Zm); unsuit- able (Mb, Mm, Mn).	Unsuitable Unsuitable Good	Unsuitable	Uneuitable	Poor (Je, Jk); un- suitable (Jr); too shallow.	Good	Good	Poor; too rocky for equipment to be used.	Unsuitable	Unsuitable Unsuitable Unsuitable	Range pitting and chiseling	J
	Unsuitable. Fair.	Good, but should be vegetated. Poor; erodes casily.	Unsuitable.	Unsuitable.	vegetated. Good, but crodes easily. Unsuitable. Unsuitable.	Unsuitable.	rai, our cours easily. Poor; crodes easily.	Good, but erodes	Fair (Zm); unsuit- able (Mb, Mm, Mn).	Unsuitable. Unsuitable. Good, but will headcut.	Fair to unsuitable, depending on slope. Good.	against erosion needed. Unsuitable.	low. Fair to unsuitable. Fair: protection	Good, but protection against erosion needed. Good; erosion hazard	Good. Good. Good.	Poor.	Unsuitable.	Poor. Unsuitable. Unsuitable.	Waterways	77
: 																				

·. ·																			
See fo	Sa	Rp	Ro	Rk	Pr	Po	oo	Q	Na	Mo	M n	M B B	Ma	Ļ	۲	۲	Map symbol	;	72
- potnotes at end of table. ,	Sanchez stony complex, 10 to 20 percent slopes.	Rock outcrop, cliffs.	Rock outcrop, gently sloping.	Rock land.	Prewitt clay loam (0 to 5 percent slopes).	Polich loam (0 to 2 percent slopes).	Osoridge rocky complex, 5 to 20 percent slopes. Osoridge rocky complex, 20 to 40 percent slopes.	Ordnance loam (5 to 15 percent slopes).	Nathrop loam, 0 to 5 percent slopes-	Montoya clay (0 to 3 percent slopes).	Mirabal stony loam, low rainfall, 5 to 20 percent slopes.	Mirabal stony loam, 5 to 15 percent slopes. Mirabal stony loam, 15 to 45 percent slopes.	McGaffey loam (1 to 3 percent slopes).	Lava rock land.	Lava flows.	Larry silty clay loam (2 to 5 percent slopes).	Son na me	6	SOIL
	Mixture of shallow stony sandy loams, stony clay loams, and sandstone outcrop; bedrock at a depth of 1 to 2 feet.	Rock outcrop on escarpments and steep walls of can- yons. No estimates of properties given, because nature of area precludes proper appraisal.	Bare rook. No estimates of properties given, because nature of area precludes proper appraisal.	Mixture of rock outcrop and shallow to deep soils; bed- rock generally at a depth of less than 1 foot. No estimates of properties given, because nature of area precludes proper appraisal.	Stratified clay loam over silty clay loam underlain by clay; bedrock at a depth of more than 5 fect; on al- luvial fans and flats.	Loam over silt loam to sandy clay loam underlain by clay; bedrock at a depth of more than 5 feet; on bottom lands; acasonal water table.	Shallow stony sandy loam over clay; sandstone at a depth of 1 to 2 feet; much outcropping rock.	Loam and gravelly loam over clay underlain by mixture of clay, sandstone, and shale; bedrock at a depth of 2 to 4 feet.	Loam over clay loam; underlain by limestone at a depth of 16 inches or more.	Clay, silty clay, and gravelly clay on flood plains and in basins; bedrock at a depth of 5 feet or more.	Stony loam and stony sandy loam underlain by gran- ite and gneiss at a depth of 1 to 2 feet.	Stony loam and stony sandy loam; underlain by gran- ite and gneiss at a depth of 1 to 2 feet; Mb on ridge- tops and very shallow.	Loam over silt loam that grades to sandy clay loam to clay; bedrock at a depth of more than 10 feet; on alluvial fans and flood plains.	Mixture of lava flows and pockets and hasins of soil. No estimates of properties given, hecause nature of area precludes proper appraisal.	Recent lava flows; rough broken surface. No estimates of properties given, because nature of area precludes proper appraisal.	Silty clay loam over heavy clay that grades to silty clay underlain by gravelly clay loam; on meadow lands.		Description	SURVEY TABLE 10.—Brief descriptions of the soils
	0 to 2 2 to 17				0 to 4 9 to 9 13 to 33 33 to 50+	0 to 6 6 to 18 51 to 56	950 555 18	30 to 30 30 to 30 30 to 30	0 to 5 5 to 10	0 to 3 3 to 40 40 to 62	0 to 5 5 to 18	0 to 5 5 to 18	0 to 6 6 to 18 51 to 56		<u> </u>	<i>Inches</i> 0 to 6 6 to 19 19 to 23 23 to 44+	surface	Depth	's and their
	Stony sandy loam				Clay loam Silty clay loam Silty clay loam Silty clay Clay	Loam Silt loam Sandy clay loam Clay	Stony sandy loamStony light clay Stony clay	Loam and gravelly loam Sandy clay loam Clay Shaly clay	LoamClay loam	Clay Clay Silty clay	Stony loam and stony sandy loam	Stony loam and stony saudy loam	Lvam Silt loam Sandy clay loam Clay			Silty clay loam Clay Silty clay Gravelly clay loam	USDA texture	Classificati	estimated physical and chemical proj
	SC-CL	2			CL-ML CL-CH CH CH	ML SC CL	SC. ML CH	ML CL-CH CL-CH	ML-CL	CH CH	SM	SM	ML SC CL			CL-ML	Unified ¹	on	zUNI M nerties—Cont
	- A-6 or A-7				A-6 or A-7 A-6 or A-7 A-7 A-7	A-4 A-4 or A-6 A-6 A-7	A-4 A-6 A-7	A-6	A-6	A-7 A-7 A-7	A-4	A-4	- A-4 - A-4 or A-6 - A-6			A-6 or A-7 A-7 A-7 A-7	AASHO 2		inued
	2. 5 to 7. 5 0. 5 to 2. 5				0.05 to 0.5 0.05 to 0.5 0.05 to 0.5 0.05 0.05	0.5 to 2.5 0.5 to 2.5 0.05 to 0.5 0.05	2.5 to 7.5 0.5 to 2.5 0.05	0.5 to 2.5 0.05 to 0.5 0.05 0.05	0.5 to 2.5 0.05 to 0.5	0.05 0.05	2.5 to 7.5 2.5 to 7.5	2.5 to 7.5 2.5 to 7.5	0. 5 to 2. 5 0. 5 to 2. 5 0. 5 to 2. 5 0. 5 to 2. 5	5 1 2 2 3		Inches per Aour 0. 05 to 0. 5 0. 05 to 0. 5 0. 05 to 0. 5		Permeability	NEW MEAK
	6. 2 to 7. 0 6. 6 to 7. 4)) 			7.7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.	7.2 to 7.8 7.6 to 8.4 7.6 to 8.4 6 to 8.6	6.0 to 6. 5.8 to 6.4 5.6 to 6.4	6.2 to 6.6 6.2 to 6.8 7.8 to 8.2 8 to 8	7.4 to 8.2 7.4 to 8.6	7.8 to 8.8 7.8 to 8.8 7.8 to 8.8	5.8 to 6.4 6.0 to 6.8	5.8 to 6.4	7.4 to 8.4 7.8 to 8.6 7.8 to 8.6	1 5 5 7		6. 4 10 7. 4 6. 2 10 7. 4 6. 6 10 7. 4 6. 6 10 7. 4 6. 6 10 7. 8		Reaction	- č
	Moderate				High High High High High	Low Moderate Moderate Moderate	Low	High High High High	Moderate Moderate	High Moderate	Low-	Low	Moderate Moderate Moderate	4		Low High		Dispersion	-
	Moderate.	4			- High High High High High	Moderate. Moderate. High.	- Low. High. High.	- Moderate. High. High. High.	- Low. - Moderate.	- High. - High. - High.	- Low. Low.	- Iow.	Moderate. Moderate. High.			- Moderate. - High. - High. - High.		Shrink-swell	

	÷,.`
	1
:	•
5	· .

hazard
erosion
and
classification,
erodibility
factors,
9.—Hydrologic
Тавце

=
had
0 00
đ
2
ina
101
2
÷
the
4
i o a
ind
8
ij
Par
aa
E

Erosion hazard •	Moderate. Low. High. High. Low. Moderate. Moderate. Low. Low. High. High. High. High. High. High. Low.	Moderate. Moderate. High. High. Moderate. High. Migh. High. High.
Erodibility •	Moderate Moderate Moderate Moderate Moderate Moderate Moderate High High High High High Hoderate Moderate Moderate Moderate	Moderate High High High Moderate High High High
Hydro- logic group *	ひ <<ひひひんしい ひ しつき ひつつききつ	
Runoff potential (water yield) ³	Medium Low Low Low Low Low Low Low Medium Medium Low Medium High Low Medium Medium Medium	Medium Low Low Low Low Low Medium Medium Medium
Space for water storage 1	Low Low Low Medium Medium High High High Medium Low Low Low Low Low Low Low Low Low Low	High- Low- Low- Low- Low- Low- Low- Low- High- Medium- Low- Low- Low- Low- Low- Low- Low-
Permeability ¹ of least pervious layer	Slow Moderate Moderate Slow Slow Slow Slow Slow Slow Slow Slow	Moderate to Moderate to rapid. Moderate to rapid. Slow to very slow. Slow Slow Slow Slow Slow Slow
Infiltration ¹	Moderate Rapid Rapid Rapid Moderate Moderate Moderate Rapid Rapid Rapid Rapid Moderate Moderate Moderate Moderate Moderate Moderate	Rapid Rapid Rapid Rapid Moderate Moderate Moderate Moderate
Soil	Andrews gravelly loam, 5 to 20 percent slopes Badland	Lava rock land
Map symbol	مهههههوووووودتو ۽ جاجم جِججِ الم	NAR Z Z Ž Ž Ž ČČČČ ž ŽŽČČ

SOIL SURVEY

66

DE LOUGHLEUR AND TO LOU -

ł

APPENDIX C AQUIFER-TEST DATA AND ANALYSES

1

ł.

i I

TEST PUMPING OF CHINLE SHALE

METHODOLOGY AND DESCRIPTION OF THE TEST

The test consisted of a 5 hour pumping period and a 2 hour recovery period. An air-driven piston pump capable of sustaining pumping rates as low as 10 gallons/hour (0.167 gpm) was used for the test. Water level measurments were taken with an electronic sounder. The well (OW-24) is located approximately 250 feet northwest of the land treatment facility and is completed within the Chinle shale. The lithologic and completion log of the well is attached (Figure F-2).

Pumping began at 1515 hours on February 20, 1985 at a rate of 10 gallons/hour. The produced water was very turbid. Clogging of the pump and pump lines necessitated continuous monitoring and adjustment of the discharge.

After 4 hours of pumping at 10 gallons/hour, the drawdown of the well appeared to stabilize at about 7 feet. The discharge rate was increased to 20 gallons/hour in order to more effectively stress the aquitard. After one hour of additional pumping a total drawdown of 12 feet was observed. However, this higher pumping rate increased the turbidity of the discharge and caused instability of the pumping rate. The lack of control of the discharge rate and the potential of diamage to the pump forced the termination of the test after a total of 5 hours of pumping.

Water level recovery was observed for 100 minutes. At this time the water level had recovered to within 90% of the pre-pumping level.

TABLE F-1

Pump Test Data, OW-24

48

PUMP TEST ANALYSIS

Field measurements are summarized in Table F-1. Due to the short pumping time and potential well-bore and gravel-pack effects, the final analysis was based on methods developed by Shafer, for low-conductivity materials.

Partial penetration effects were neglected in the analysis because the low pumping rates and the expected anisotropy of the aquitard would prevent significant vertical flow to the well bore. The low pumping rate was also designed to completely drain the gravel pack in the well to insure accurate recovery data.

A copy of Shafer's methodology is attached, and the data for his analysis is given in Table F-2. Figure F-1 is a plot of the recovery data, according to Shafer's methods. This Figure includes calculation of T and K for the Chinle shales.

TD= 58'-4'	= 58.33'	_(PUMPING D	ATA .	Page 1	of 2
Tump 6 23	26.37 of	DATA SHEET FOR	RECONDING PUMP	TEST DATA	2
	County <u>11.K</u> Location: <u>111.Z</u>	nley (c. - Retinery 2	Observ <u> 72</u> /85 Pumped	well no. <u>24</u>	. 34
		erage QSI	n r=ft.	r ²	····
	Dista Haur (u		n s August (unad- ment insted) As	(ad- Q instand)	Born artice
	2-20 1515 U	31-1	15 0 Feet	10	STATIC LEVEL
	1516 i	33 -	0 12.5 1.04		LARLE INTITLE SK-
	1517 2	53-	1 13.5 1.13		Setting pump rate
	1518 3	33 -	4 16.5 1.38		
-	1519 4	B3-4	1/4-20.75 1.73		
	1570 5	33-11	24.0 2.0'		
.	1521 6	34-	726.5 2.22		
	1532 7	<u> </u>	727.0 2.25		
1 min	1523 8		3 27.5 2.27		
	1574 9	37-4	28.5 2.37		
	1525 10	34-5	29.3 2.46		
in the second	- 1527 17		22.56		
	1501 14	34-1	33.5 2.19		
Zimin		75-0	34.75 7 77		
	1535 20	33,24	41.0 3.43		
· ·	15 40 15	35-42	47.0 3.92		
	1545 30	36-3	51.5 4.28		•
	15.50 35	36-25	51.0 4.25		
	15 55 40	32-8	56.5 4.71	10gglic	LEARLI PUMP Value
S mm	1600 45	37-24	62.75 5.23		
	1605 50	36-14/2	81.0 5.08		lear pump Nalve
. .	1610 55	NR	70.75		
	1615 60	37-104	\$2.75 5.90		Pumped 10 gal
	1625 70	38-1/2	85.0 6.08		

ď

PUMPING DATA

(

Page 2 of 2

١.

	County	· :		5 7.			Queerva	tion well	110 /	MW - 24
	lucati	ion: <u>C</u>	niga	<u>Cefciu</u>	it al	.	Pungled	vell no D	MW	-24 _
		7	<u> </u>	- 0_ <u>/</u> 	Depth	·	ft. 4/just-	<u></u>		· · · · · · · · · · · · · · · · · · ·
	Date	ltour	(min)	ť (min)	to t/l' water	(unad- justyd)	ment A s	(#d- justed)	76 (5577.)	Decorks
	<u>= -20</u>	16.35	30		38.32	88,0	6.33		10	
		1645	90		38.7.	79.5 91.5	6.79			Lift sump to 50'
		1655	100		37-6!	69.0	5.75			clear Aunp, rendy
		1705	110		36-11/2	94.0	7.00			prestine .
2 hours	<u></u>	1715	120		39-22		7.27			Pumped 20 gal
		17.30	1.35		38-11		6.97			
15 mm		1745	150		34-242		7.25			
		1800	165		<u> </u>	·	7.08			
34		1815	180		39-2		7.21			Pumped 30 gal
		1930	195				7.46			
		1845	210		39.5		7.46			
		1900	225		39-2		7.21			
44		1915	240 D		38-113		7,00			Pumped 40 pal
		1930	a55		39-0		7.04			ADGRASE DUTE RATE
-		1932	257				7.38	K	20	TO DO GPH PUMP SLIPPLD APPRIX
- , -		1934	259		39-10		7.87			APPEON SAME LEVEL
- ~~~ C		1936	26/		4035	<u> </u> 8	3.23			
-		1938	267		10-50	6	3.33		F	WARING PATE FELL-OFF
	{	990	30		10-1 /a		2.17		<u>f</u>	SLIGHTLY
-		1745	25		<u>ho-4</u>	8	2.77			
		150	917 40 05 0			9	.83			
Sven -		133	146		hi a	Y	0.04			
-	¥	2005	en 2			7	75			·
		010	392		43-4	7	. 27			silf in Prings
	∂	2015	3005	A	43-2%		25			Ing pump value
5. 54 -	2	<u>().ý()</u>	313		43-101	2 11.	9 Z			pumped to gol
										SATINA

DATA SHEET FOR RECORDING POMP TEST DATA

•

RECOVERY DATA

(

181

Page 1 of 1

ĩ

DATA SHEET FOR RECOSDING PUMP TEST DATA

Prin	
· · ·	

	County :			Observation_setting				
	Incation: Concep Refusicag			_ Punged well no. It is 24				
		V v Average 0	·/ SI+n F=,	ft.	c ² =			
	Date Hour	ε ε' (min) (min)	t/t ⁴ water jus	ad- ment (Led) As	s' (#d- justed)	Q (57m)	Bestarks	
-	·/·2 20:32	0	43-10/ 14	4 " 12.0	0	20.9	ch	
	20 34	Z	42-7-	10.63	1.37			
	20.36	4	41-834	9.69	2.31		····	
Lun	2038	6	40 roly	8.86	3.14			
	2040	8	40-2	8.21	3.79			
	20-12	10	39-644	7.56	4.44			_
	2047	15	36-0-3A	6.11	5.81			_
	2052	20	37-1/c	5.17	6.33			
	2057	25	36:4-	4.38	7.62		······································	_
	2102	30	35-8/2	3.75	8.25		•	
	2107	25	35-214	3.27	8.73			
	2112	40	34-94	2.86	9.14			-
Sum	2/17	45	34.5	2.52	9.48			-
	2122	. 50	37-374	2.27	9.73			
	3127	55	34-05	2.07	9.93			
	2132	60	33-104	1.92	10.03			
	2142	70	3-75	1.66	10.34			
10 min	2152	80	33-53%	1.51	0.49		•	
	2202	90	83-4/2	1.42	10.58			
	2212	100	83-34	1.32 1	0.68			
	2227	110						
	2:32	120						
15	2247	1.3.5						
	1302	150						
-	3317	165						

TABLE F-2

.

Time Since Pumping Started (min)	Drawdown (feet) (s)	Feet of Casing Filled (ft)	Time To Fill (min)	Q (gpm)	S/Q (ft/gpm)
317	12.0	0	0		
319	10.63	1.37	2	.45	23.8
321	9.69	.94	2	.31	31.6
323	8.86	.83	2	.27	32.7
325	8.21	.65	2	.21	38.7
327	7.56	.65	2	.21	35.6
332	6.11	1.45	5	.19	32.3
337	5.17	.94	5	.13	42.1
342	4.38	.79	5	.10	42.5
347	3.75	.63	5	.08	45.6
352	3.27	.48	5	.06	52.2
357	2.86	.41	5	.05	53.4
362	2, 52	.34	5	.04	56.8
367	2.27	.25	5	.03	69.5
372	2.07	.20	5	.026	79.3
377	1.92	.15	5	.019	98.0
387	1.66	.26	10	.017	97.8
397	1.51	.15	10	.009	154
407	1.42	.15	10	.009	145
417	1.32	.10	10	.006	202

DATA FOR SHAFER'S METHOD

ļ

Portfolio #12: Pumping Test Analyses & Devices for Groundwater Monitoring-

Pumping Test Analyses for Low Yield Formations

by David C. Shafer

ccasionally it is necessary to determine aquifer characteristics of very low yielding formations-those with transmissivities less than 500 gallons per day per foot. Though interest in these aquifers is certainly not because of their productive capability, it may be desirable to determine groundwater flow characteristics even in these low yield formations in order to determine such things as regional groundwater flow patterns, effect of dewatering or migration of pollution plumes near point sources of contamination.

Conventional pumping test analysis using the standard time drawdown graph often does not work effectively in low T (transmissivity) formations for two reasons. First, the pumped well's low specific capacity (gallons per minute per foot of drawdown) may cause the pump to break suction during the test and it may be impractical to throttle back the pumping rate sufficiently to prevent this. Second, even if a constant pumping rate can be maintained without breaking suction, most of the data obtained. will probably reflect casing storage effects rather than true aquifer parameters (see "Casing Storage Can Affect Pumping Test Data,"

William F. Achuff Director

Jan-Feb. 1978, Johnson Drillers Journal). Thus a different approach is required.

The best method for analyzing these formations is to pump a substantial portion of the casing empty, then shut the pump off and measure water levels as they recover. In ordinary pumping tests these measurements correspond to the nonpumping portion of the test. However, in the low T formations this "recovery period" is actually the "pumping period!"

After pump shut-off, the casing slowly begins filling with water. This water comes from the aquifer and actually represents the water pumped during this so called "pumping period." The pumping rate is determined by measuring the volume of

Different Approach

Pumping rate = 10 gpm Pumping period = 15 minutes Drawdown at pump shut off = 90 ft Casing 6" I.D. Drop pipe 11/4" I.D.							
Time in minutes since pumping started (t)	Drawdown in feet (s)	Number of feet of casing filled	Time in minutes required to fill	Volume filled divided by time required in gallons per minute (Q)	s/Q in feet per gallon •per minute		
15	90				•		
(pump shut off)							
17	85.66	4.34	2	3.04	28.2		
20	79.7	5.96	3	2.78	28.6		
30	64.2	15.5	10	2.17	29.5		
40	51.9	12.3	10	1.72	30.2		
60	35.6	13. 3	20	1.14	31.1		
80	24.6	11.0	20	.77	31.8		
Table 1							

---Portíolio #12: Pumping Test Analyses & Devices for Groundwater Monitoring –

casing filled in a given length of time.

During the test, careful measurements are made of time since pumping began (t) along with drawdown (s) at each of these times. Then a calculation is made to determine Q for each time t and finally the ratio s/Q is computed for each measured drawdown value. The ratio is simply the reciprocal of the specific capacity.

A graph is then constructed showing t versus the ratio s/Q plotted as usual on semi-logarithmic graph paper with t on the log scale. A straight line of best fit is drawn through the data points and T is calculated as follows:

 $T = \frac{264}{\Delta(s/Q)}$

where $\Delta(s/Q)$ is the change in s/Q

over one log cycle of graph paper.

This graph has the unique advantage that it will accurately reflect aquifer transmissivity independent of casing storage effects. In addition it will be sensitive to nearby recharge and/or negative boundaries and will reveal these conditions like any ordinary time drawdown graph.

To see how this technique works it is best to work an example. Table 1 shows data obtained from a 6-inch well pumped at 10 gpm for 15 minutes. Drawdown after 15 minutes of pumping measured 90 feet.

The next data point was recorded two minutes following pump shutoff or 17 minutes since pumping started. At this time the pumping water level was 85.66 feet, indicating that 4.34 feet of casing had filled during the two minute interval.

The annulus between the 6-inch casing and 1%" drop pipe holds 1.4 gallons per foot so that the volume of casing filled is 1.4 times 4.34, or 6.08 gallons in two minutes. Thus,

Q = 6.08 gallons/2 minutes = 3.04 gpm

finally,

= 28.2·ft/gpm

which is plotted at a time of 17 minutes on the graph shown here. This analysis is repeated for each

In low transmissivity situations, readings are taken after pump shut-off. In this method, s/Q is the reciprocal of the specific Capacity and t is time, measured after shut-off as water begins to enter the casing.

drawdown measurement. The resultant calculated s/Q values are shown in the table and plotted in the figure. The formation T value from the graph is

$$T = \frac{264}{\Delta(s/Q)} = 264/5.3 = 49 \text{ gpd/rs}^2$$

Conventional Analysis

Examination to pathe figuratic ciraracteristics of this well indt included Hereicshowsthat is a conwentional time drawdown graph had . been used, casing storage effects ... would risvelasted or approximately twebreakourse. This means that data recorded in the first twelve hours of pumping would have been useless and longer pumping than this would have been required to obtain any usable data at all. However, data collected after twelve hours of pumping probably would be more influenced by boundary conditions than by aquifer transmissivity. (Thus; cin_onactioentweeteallysmightshave.

been impossible to determine the T value using a conventional farial ysis technique and a solution of the method described above becomes very clear; it may be the only way to determine T values in certain low yielding aquifers.

In order to maximize the accuracy of this method, it is best to unload (empty) the casing as rapidly as possible. Thus it is actually better to use a high capacity pump than a low capacity pump in analyzing extremely low-yielding wells!

Another good idea is to unload the casing with compressed air since this can typically be done in one minute or less.

Recorded Data Must Be Accurate

An additional important consideration is that all data recorded for this type of analysis must be absolutely accurate. Small errors in the recorded values of time and/or drawdown can result in large errors in the calculated values of s/Q. For best results, drawdown should be recorded to the nearest hundredth of a toot and timed to the nearest second or two. JOHN W. SHOMAKER consulting geologist 3236 candelaria, n.e. albuquerque, new mexico 87107 RECEIVED SEP 2 4 1984

September 20, 1984

Carl D. Shook, Plant Manager Giant Refining Company, Ciniza Refinery Route 3, Box 7 Gallup, New Mexico 87301

Re: results of permeability tests, July 2 and 3, 1984

Dear Carl:

Copies of the field notes, calculations, and data plots for the two permeability tests are attached. The tests are summarized as follows:

<u>Well OW-4</u> The well is completed principally in the clay and shale sequence which overlies the uppermost aquifer; a small thickness of sandstone which may be part of the uppermost aquifer was also penetrated. Total depth when drilled was 102.0 ft. Perforations are from 62.0 ft to 102 ft. The well is located near the center of the land-treatment area. A slug test was performed on July 3, 1984, following the method described by S. W. Lohman (1972, Ground-Water Hydraulics, U. S. Geol. Survey Prof. Paper 708, p. 27-29), which indicates the permeability of the section open to the well to be about 4 X 10⁻⁷ cm/sec.

<u>Well MW-1</u> This well is one of the monitoring wells on the boundary of the land-treatment area, and is completed in the uppermost aquifer. It was drilled to 120 ft, and is screened in the interval 87 to 120 ft; the casing is sealed above 89 ft so as to isolate the uppermost aquifer. The slug test performed on July 3, 1984 indicated a permeability of about 1.2 X 10^{-4} cm/sec.

Information as to the construction of the wells is taken from Dames and Moore (March, 1981; Ground water and soils investigation, Ciniza Refinery near Gallup, New Mexico, and November, 1981, Groundwater monitoring plan, Ciniza Refinery near Gallup, New Mexico).

Please let me know if there are questions.

Sincerely,

John W. Shomaker Consulting Geologist
			date		· iniza UW-4
cosing size: no water levels r which is <u>1.</u> volume of slu	ominal <u>4</u> peosured t <u>1 ± ob</u> ore G:	1/2"] from _10 = groui	D 4.0 p <u><u>4</u>/20 nd level.</u>	D PVE	mati. <u>PVC</u> casing, <u>5 sido</u> ,
$ \begin{array}{c} $	π. _x lenqth	6, ff 		0.006 4 0.003 0.224 0.015 .223 .015 .001 .002	Note- obstruction in cosing at <u>33.</u> won't pass 0,27 00.
$r_c = internal radius of s$	dius of co screen or d	sum sing ob open hal	 bove per le:	<u>.489</u> = fs. <u>0.1</u>	V, ff ³ = 3.66 gol. 165 ff
initial water $H_0 = \frac{V}{\pi n^2} =$	level <u>26.</u> 0.489 TT (0.165	<u>15</u> ft 	below <u>5.72</u>	fi fi	ime 07:51
20:54 21:25 ? 22:28	$\begin{array}{c} \underline{c}, \underline{s}\underline{c}\underline{c}, \\ 0 \\ 3\underline{l}, \underline{c} \\ a\underline{u} \end{array}$	20.75	5.40		Slug released top slug: 23.2' MP
23:14 23:51 24:42 25:42	<u> </u>	20.80 20.81 20.83 20.83	5.35 5.34 5.32 5.28	0.935 0.934 0.930 0.930	
27:06 28:14 29:43 30:55	372 440 529 601	20.90 20.92 20.95 20.95 20.97	5.25 5.23 5.20 5.18	0.918 0.914 0.909 0.901	
32:46 35:16 38:38 43:20	712 862 1064 1356	21.00 21.04 21.10 21.19	5.15 5.11 5.05 4.96	0.900 0.893 0.883 0.867	
<u>46:</u> 52 <u>49:26</u> 52:54	1558 	21.21 21.25 21.30	4.94 4.90 4.85	0 <u>864</u> 0 <u>85</u> 1 0.848	<u>raised Slug 0,4ft.</u>

···- ø

.

(

	clack times	<u> </u>	level	Н	H/Ho_	remarks
ζ ₀ = 0.	8:20:54 - 08:54:13-		-21.34-			
	08:56:50	2096	21.35	4.80	0,839	
0:00=	09:00:16	2362	21.39	4.76	0,832	
23,46	: 05 :00	2646	21.45	4.70	0,822	
	09:55	2941	21.50	4.65	0,8.13	
	17:46	3412	21.60	4.55	0.795	
	28:25	4051	21.71	4.44	0.776	m-scope trouble
	46:00	5106	21.89	4.26	0,745	
	10:02:23	6089	22.05	4,10	0,717	
	14:00	6786	22.15	4,00	0.699	
1	10:24:20	7412	22.25	3.90	0.682	stopped test;
						Jug almost un-
						covered
•	•					
	·					
				•		
						·
ł		l				
						·
	<u></u>					
			· · · · · · · · · · · · · · · · · · ·			
I			····			
					7 2	
	late data m	hatches:	q = 10 c	urve, It	12=1 at	t= 20,000 sec.
•	•····			12 - (
1	······································	T= 1.0 2	= (1.0) (0.165) <u> </u>	10-1 ++ 2/	560
		t	50,000			0.00 1/0
		l		= 0.05	tt /day	= 0.33 gpd/f+
					- 121.	
	<u></u>	<u> </u>		K, 0.05	tt/day	<u>= 0.001 ++/day</u>
•	• • • • • • • • • • • • • • • • • • •			40	tt screen	
•			······································			<u> </u>
-	0.001 ++/day_	<u>x 30.3 cm/H</u>	-X	= //	<u> </u>	cm/sec
	<u></u>	d	60 × 1440	Sec/day		· · · · · · · · · · · · · · · · · · ·
	- 1, d 0.027	1-1-003	· · · · · · ·	+ 11 Fl		<u></u>
•		10 = 0.00	. water-	14010 270	waye	
	- 15 7					
• .	64	"hale?				
						<u></u>
L	<u></u>					
Ì	·					<u> </u>

į

ļ

:

Ì

Q

dole: 1-2-84

Cas	, ing 5128: 10	ominal <u>5</u>	1/2" 00, 7	D <u>5.1"</u>	csq	matl	PVC	-
wot	er levels r	peosured f	rom _t	op PVC	<u>Cosing</u>	<u>, 5w</u>	side	- \
	which is	<u>37 ++ obore</u>	e grour	od levels	concrete	5/06)	205	/
volu	me of slu	9:	·				c.05	
	$\sqrt{2}$	•	0	_	DALL P	3 7	.37	
cap OZ	$\int f(\frac{0.37}{0.30} \times \frac{1}{2}) \times f(\frac{0.37}{0.$	TT x length	-5 + - 0.10	<u> </u>	0.011 #			
	<u>0.37</u>			<u> </u>	0.000			
	0.55		<u>4.8</u>	/ ·	0,411			
	0.38			<u> </u>	0.037			
	0.55			<u>† </u>	0.005			
	0:19			<u>7 </u>	0.000			
	0.11			~	0.001			
	0.16		0.0	<u> </u>	0.007			
				,				
			Sum		<u>,474</u> =	V, ff	3 = 3,55	al
	• /		. /					
<i>F</i> _C =	internal rad	dius of co	sing ab	ove per	fs. <u>0.7</u>	-11	ť	
5:	radius of 3	screen or c	open hal	<u>/o</u> :	<i>f</i>			
• •	• , , ,		. (.	· / /		•	12120	
init	ial water	level _ 3.7	<u>2</u> <i>ff</i>	below	mo, ti	mo _	/5:32	
Ц	= V =	0.474	L	3.389	f,			
' '0	$\pi \lambda^2$	π (0.211	<u>י</u> ב ב <u>רי</u>		• 1			
	C	ι	· · ·		. /			
	clock times	t, scc.	level	Н	HHA	re	marks	
		0	1	1		5/00	released	
	/3:48:00		ļ			7		
	13:48:20	20	2.30 ft	2 3.42	1.009	52	<u></u>	
-	49:00	60	2.36	3.56	0.991			
-	49:20	86	- 2.42 -	3.30	0,974	. <u> </u>		
	<u>77:5d</u>	112	2.44	3,70	0.968			
-	50:75	132	2.50	3.10	0,730	· · · · 		
-	51.03	122	2 40	3.12	0.73			
-	57.19	259	2.45	3.07	a.90/0			
-	52:55	295	2.70	3.02	0.891			
	53:33	323.	2.74	2,98	0879			
	54:26	386	2,80	2.92	0.862			
-	55;30	450	2.86	2.80	0.844	 - ·		
_	57:05	545	2.97	2.75	0.811			
	59:12	672	3.10	2.62	0,773			
	14:01:05	785	3.20	2.52	0,744]		····	
	02:25	868	3,28	2.44	0.720		· · · · · · · · · · · · · · · · · · ·	
	03:52	952	3.36	2.36	0.696			
_			· .		••••••••••			
	{	(1		1			

(

clack times	<u>t, sec.</u>	level	<u>.</u> н	H/Ho	remarks
14.05.20	1058	3.45	227	0 620	
<u> </u>	11/24	3,54	2.18	0/042	
(19:11)	12.710	3.62	2.10	0/20	
	1710	3 69	2.03	0 599	
17:01	1201	3.07	1.93	0.51	
	1.70	3. 79	1.45	0.507	
15:57	1619	3.07	100	0.570	
70,14	1910		1.15	0.310	
02:15	2015	4,07	1.63		
25.11	224.4	4.13	1.5	0.463	
20:44	145	7.66	1130	0.443	, , , , , , , , , , , , , , , , , , , ,
22.00	2713	4.51	1.41	0.410	
35.07	2931	4.45	1.20	0.361	<u> </u>
11.0	20,21	4.36	1.10	0,307	
41:56	3196	4.64	1.00	0.219	
40:19	3719	4.11	1.01	0.770	
<u> </u>	3/123	4.18	0.94	0.11	
	41/9	4.90	0.8 .	0.141	
<u>/5:05:36</u>	4556		0.11	0.410	
14112	3/12	5,12	0.00	0.111	
21:12	3592	3,18	0.54	0.139	· · · · · · · · · · · · · · · · · · ·
33:0/	6301	5,28	0.44	0.130	
44:55	6995	5.20	0,30	0.106	
33:43	7543	3,40	0.32	0.094	<u> </u>
16:08:22	8422	5.46	0.76	0.077	
26:59	9539	5.52	0.70	0.059	
47:10	10,750.	5.56	0.16	0.047	
17:00:20	11,540	5.58	0.14	0.041	
					·
				7.2	
late dota mo	itches:	$\chi = 10^{-1}$ cu	rre, It	$n^{2}=1$ at	C= 830 sec.
	7 10 02		2		
	1= 1.0 100	= (1.0)(0.21)	¯ ₌ 5.36	× 10 ++ /	sec
<u>+</u>	<u> </u>	830	1	/	20
			= 4.63	4 / day =	33 apd / ++
·····				27.4	
			K/: 4.6	2 ft/day	= 0.33 ++/day
			· /a.3	tt Screenee	<u>y</u>
		0 25 01			
		0. 23 H/d	X X 30.5	confft	= 1.2×10 cm
					the sudday are
					V
		· ·		·	
·					
	1	· [l	1	

· --

		······································	
		Q	
	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		
		2, 29, 29, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	

.

.....

71

18

المراجع المراجع المراجع المراجع المراجع المراجع المراجع	
	00
	8 SC
	-

