GW - 1

REPORTS

YEAR(S):

1994

Groundwater Technology, Inc.

2501 Yale Boulevard S.E., Suite 204, Albuquerque, NM 87106 USA

SOIL VAPOR EXTRACTION
AND AIR SPARGE PILOT TEST REPORT
BLOOMFIELD REFINING COMPANY
#50 COUNTY ROAD 4990
BLOOMFIELD, NEW MEXICO
JUNE 13 - 16, 1994

PROJECT NO. 023353014

August 23, 1994

Prepared for:

Mr. Chris Hawley Bloomfield Refining Company P.O. Box 159 Bloomfield, New Mexico 87413 (505) 632-8013

Groundwater Technology, Inc.

Written/Submitted by

Teresa J. Bennett Hydrogeologist Groundwater Technology, Inc.

Reviewed/Approved by

Sara Brothers

Hydrogeologist

Operations Manager, New Mexico

BRC/Pilottest.rpt

TABLE OF CONTENTS

LIST O	F FIGUE	RESi
LIST O	F TABLE	:Si
LIST O	F APPE	NDICES ii
1.0	INTRO	DUCTION
	1.1 1.2 1.3	Purpose of Investigation
2.0	SITE H	YDROGEOLOGY 2
3.0	INSTAL	LATION OF PILOT TESTS WELLS AND MONITOR POINTS
	3.1 3.2	Drilling and Well Completion Operations
4.0	SOIL V	ENT/AIR SPARGE PILOT TESTS
	4.1 4.2 4.3	Soil Vent Test Equipment
		4.3.2 Pilot Test Results - VEW-15
	4.4 4.5 4.6 4.7 4.8	Soil Vent Pilot Test Analysis
	4.9 4.10	Combination Air Sparge/Soil Vent Test Results
	4.11	Pilot Testing Conclusions

OIL CONSERVE ON DIVISION RECEIVED

*94 8U:31 AM 8 50

Groundwater Technology, Inc.

August 24, 1994

2501 Yale Boulevard, SE, Suite 204, Albuquerque, NM 87106 USA Tel: (505) 242-3113 Fax: (505) 242-1103

Mr. Greg J. Lyssy Project Coordinator RCRA Technical Section - Enforcement Branch U.S. Environmental Protection Agency Region 6 1445 Ross Avenue, Suite 1200 Dallas, Texas 75202-2733

RE: Bloo

Bloomfield Refining Company

#50 County Road 4990

Bloomfield, New Mexico 87413

EPA ID #NM089416416

Administrative Order On Consent - Docket No. VI-303-H

Results of the Phase IV RFI - Soil Vapor Extraction and Air Sparge Pilot Test

Dear Mr. Lyssy:

Enclosed is the report entitled "Soil Vapor Extraction and Air Sparge Pilot Test" for the above-referenced site. This report described the procedures and findings of the soil vent and air sparge pilot testing conducted as part of the Phase IV RCRA Facility Investigation (RFI) at the Bloomfield Refining Company (BRC) site during the third week of June 1994.

Should you have any questions concerning this report, please do not hesitate to contact me or Ms. Sara Brothers at (505) 242-3113.

Sincerely,

Groundwater Technology, Inc.

Teresa J. Bernett for

Cymantha Liakos

Project Manager

Enclosure

CC:

Chris Hawley - BRC

Joe Warr - BRC

Dave Roderick - BRC

Roger-Anderson-NM-Oil: Conservation: Division

Ed Horst - NMED Hazardous Waste Bureau

LIST OF FIGURES

FIGURE	E 1 SITE MAP
FIGURE	GENERALIZED GEOLOGIC CROSS-SECTION SHOWING LOCATIONS OF SCREENED INTERVALS AT SOIL VENT PILOT TEST WELLS
FIGURE	SOIL VAPOR EXTRACTION/AIR SPARGE PILOT TEST STUDY AREA
FIGURE	FIELD RESULTS FOR SOIL VENT PILOT TESTS ON WELL VEW-1
FIGURE	LOG OF INDUCED VACUUM VS. DISTANCE FROM VAPOR EXTRACTION WELL VEW-1S, SHALLOW ZONE TEST
FIGURE	APPLIED VACUUM VS. AIR FLOW RATE FOR VENT STEP-TESTS ON NESTED WELL VEW-1
FIGURE	LOG OF INDUCED VACUUM VS. DISTANCE FROM VAPOR EXTRACTION WELL VEW-1D, DEEP ZONE TEST
FIGURE	LOG OF INDUCED PRESSURE VS. DISTANCE FROM SPARGE WELL AS-1, 3 PSI
FIGURE	LOG OF INDUCED PRESSURE VS. DISTANCE FROM SPARGE WELL AS-1, 5 PSI
	LIST OF TABLES
TABLE	MAXIMUM INDUCED VACUUM RESPONSE, SOIL VENT PILOT TEST ON VEW-1S (SHALLOW ZONE), BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 14, 1994
TABLE	2 MAXIMUM INDUCED VACUUM RESPONSE, SOIL VENT PILOT TEST ON VEW-1D (DEEP ZONE), BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 14, 1994
TABLE	SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS, BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 14 AND 16, 1994
TABLE	MAXIMUM INDUCED PRESSURE RESPONSE, AIR SPARGE PILOT TEST, BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 15, 1994
TABLE	MAXIMUM CHANGE IN VOC CONCENTRATIONS, AIR SPARGE PILOT TEST, BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 15, 1994
TABLE	6 MAXIMUM INDUCED PRESSURE/VACUUM RESPONSE, COMBINED AIR SPARGE/SOIL VENT PILOT TEST ON WELLS VEW-1D AND AS-1, BLOOMFIELD

REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 16, 1994

TABLE 7 SUMMARY OF HYDROCARBON MASS EXTRACTION RATES, AIR SPARGE/SOIL VENT PILOT TESTS, BLOOMFIELD REFINING COMPANY, BLOOMFIELD, NEW MEXICO, JUNE 14 AND 16, 1994

LIST OF APPENDICES

APPENDIX A	SUMMARY OF WELL COMPLETION INFORMATION AND MONITOR WELL
	INSTALLATION/LITHOLOGIC LOGS

- APPENDIX B SOIL SAMPLE CERTIFICATES OF ANALYSIS, CHAIN-OF-CUSTODY DOCUMENTATION, AND QA/QC DATA, MAY 16 17, 1994
- APPENDIX C SOIL VENT AND AIR SPARGE PILOT TEST FIELD DATA
- APPENDIX D AIR SAMPLE CERTIFICATES OF ANALYSIS, CHAIN-OF-CUSTODY DOCUMENTATION, AND QA/QC DATA, JUNE 13 16, 1994
- APPENDIX E "ESTIMATION OF EFFECTIVE CLEANUP RADIUS FOR SOIL-VAPOR EXTRACTION SYSTEMS", SCIENTIFIC PAPER FROM JOURNAL OF SOIL CONTAMINATION
- APPENDIX F COMPUTER-GENERATED OUTPUT FROM VENT-ROI 3.0
- APPENDIX G HYDROCARBON MASS EXTRACTION RATE CALCULATIONS

1.0 INTRODUCTION

1.1 Purpose of Investigation

This report summarizes the results of soil vapor extraction and air sparge pilot tests conducted as part of the Phase IV RCRA Facility Investigation (RFI) at the Bloomfield Refining Company (BRC) site located in Bloomfield, New Mexico. The objective of the pilot testing was to determine the feasibility of these technologies for application at the BRC site. The work scope for the investigation included the installation of pilot test wells and monitor points, and short-term soil vapor extraction, air sparge, and combined pilot tests conducted on the test wells.

1.2 Background

The BRC facility consists of 287 acres and is located at #50 County Road 4990 (Sullivan Road) in Bloomfield, San Juan County, New Mexico (Figure 1). The refinery is situated on a bluff approximately 100 feet above and immediately south of the San Juan River, which flows westerly. On the bluff and between the river and the process area of the facility is the Hammond Ditch. The ditch is an unlined man-made channel for irrigation water supply which borders all but the southern side of the process area of the facility.

1.3 Setting

The current facility layout is shown in Figure 1. The refinery offices, warehouse space, maintenance shops, drum storage area and raw water ponds are located in the western portion of the property and along Sullivan Road. Process areas are located east of the offices. The eastern most portion of the property contains the tank farm, the waste water treatment and evaporation ponds, and the fire training area.

2.0 SITE HYDROGEOLOGY

The site is underlain by Quaternary Jackson Lake Terrace deposits comprised of 10 to 15 feet of coarse-grained fluvioglacial outwash deposits blanketed by wind-blown loess. These coarse grained sediments (sands grading to cobbles) unconformably overlie the Nacimiento Formation which is a thick (570 feet) layer of black carbonaceous mudstone with interbedded white sandstones. Seeps have been observed along the contact between the consolidated Nacimiento and unconsolidated Jackson Lake deposits. Perched, shallow groundwater in the Quaternary deposits is encountered between 6 and 40 feet below ground surface, generally increasing in depth from west to east across the site. Groundwater flows to the northwest and west, toward Hammond Ditch and the San Juan River. The ditch is known to influence groundwater flow at the site; during the non-irrigation season, BRC dikes the ditch to maintain a mounding effect year-round which inhibits groundwater flow to the north (toward the seeps).

3.0 INSTALLATION OF PILOT TESTS WELLS AND MONITOR POINTS

3.1 Drilling and Well Completion Operations

On May 13 - 17, 1994, Groundwater Technology, Inc. (Groundwater Technology) supervised the installation of seven wells on the southwestern part of the BRC site for use in the aquifer testing and soil vent/air sparge pilot studies. Drilling was performed by Layne Environmental Services, Inc., the subcontracted driller, using a Drill Systems 180 air percussion drill rig. One nested vapor extraction well (VEW-1), one air sparge well (AS-1) and five monitor points (MP-1 through MP-5) were installed. Well locations are shown in Figure 1.

Soil samples were collected from select borings at 5-foot intervals for lithologic identification and field and laboratory analysis using a 2-foot long split-spoon sampler. Detailed geologic logs based on the samples were recorded by an experienced Groundwater Technology scientist during drilling and are presented in Appendix A. The soil samples were field-screened for relative concentrations of volatile organic compounds using a photoionization detector (PID) calibrated to 100 parts per million (ppm) isobutylene gas. Soil samples for field-screening were placed in 16-ounce glass jars, sealed with aluminum foil, agitated, and allowed to equilibrate for five to ten minutes prior to analysis. The PID results are included on the geologic logs in Appendix A. Select soil samples retained for laboratory analysis were placed in 250-ml glass jars with teflon septa, sealed, labeled, placed on ice in an insulated shipping cooler, and transported to Inter-Mountain Laboratories, Inc. in Bozeman, Montana via overnight courier. The samples were analyzed for volatile organic compounds in accordance with EPA method 8240. Laboratory Certificates of Analysis and Chain-of-Custody documentation are included in Appendix B.

Following completion of drilling, each soil boring was converted to a well. A summary of well construction specifications is included in Appendix A. Vapor extraction well VEW-1 was drilled to a total depth of 26 feet and completed as a nested well with two screened intervals to allow for separate vent testing of discreet stratigraphic zones. The screened intervals are 5 -13 feet (0.040-inch slot PVC screen) across the upper silt and clay interval; and 16 - 26 feet (0.040-inch slot PVC screen from 16 - 21 feet and 0.020-inch slot screen from 21 - 26 feet) across the lower sand and cobble zone. Each well nest was separated from one other in the borehole by a gravel pack and a 2-foot thick bentonite and grout seal.

Air sparge well AS-1 was drilled to a total depth of approximately 32 feet below the ground surface (top of bedrock) and screened approximately five feet below the water table from 29 to 31 feet, followed by blank casing to the surface. The well was completed with 2-inch diameter, 0.020-inch slotted PVC well screen and casing and the bottom of the well was fitted with a PVC well cap. The annular space was backfilled with 10-20 silica sand to 26.5 feet below the surface, followed by bentonite to 22.5 feet, and grout to the surface.

Monitor points MP-1 through MP-5 were drilled to total depths of 30 - 32 feet and completed with 20 to 25 feet of 2-inch diameter schedule 40 PVC screen (0.020-inch slotted) and 5 to 10 feet of blank casing. The bottom of each well was fitted with a PVC cap and the annular space was backfilled to one to two feet above the well screen with sand pack, followed by a one to 2-foot thick bentonite seal and grout to the surface.

3.2 Soil Sampling and Analytical Results

The wells (except VEW-1) were generally installed to the top of the Nacimiento Formation (30 to 32 feet below grade) which appeared as a weathered limestone at each location. The vadose zone consists of poorly graded silt and clay to approximately 18 to 20 feet beneath the surface. Below this upper fine-grained unit is a sand and cobble layer occurring from approximately 20 to 30 feet below grade and which directly overlies the limestone (Figure 2).

Soil samples from borings VEW-1 and MP-3 were field-screened with a Photovac Microtip PID during drilling for relative concentrations of volatile organic compounds. Headspace readings for soil samples collected from both borings ranged from 21 ppm to 2,415 ppm. Laboratory results for soil samples collected during drilling and analyzed per EPA method 8240 are provided in Appendix B. Identified hydrocarbon compounds included 0.5 mg/kg total xylenes in the soil sample obtained from VEW-1 from a depth of 24 feet, and 1.4 mg/kg total xylenes in the sample from MP-3 from 27 feet.

4.0 SOIL VENT/AIR SPARGE PILOT TESTS

On June 13 - 16, 1994, Groundwater Technology conducted short-term air sparge and soil vapor extraction pilot tests at the BRC facility. The purpose of the pilot tests was to determine the following information:

- The effective radius of influence for a proposed air sparge/vapor extraction (ASVE) remediation system at the site;
- Engineering criteria and equipment specifications for use in designing a full-scale remediation system; and
- Hydrocarbon mass extraction rates for selection of air emissions treatment methodology.

Pilot testing consisted of three stages: a soil vapor extraction test, an air sparge test, and a combined air sparge/soil vent test. The tests consisted of actual field operation of a soil vacuum blower and air compressor temporarily connected to vapor extraction and air sparge wells. Induced response in the subsurface as a result of the tests was measured in surrounding monitor points. The sparge and vent tests were performed first to define the individual radii of influence and to determine the most effective operational conditions (pressure and vacuum settings) for these individual systems. The combined test documented actual field response to the optimum pressure and vacuum identified during the individual tests and allowed for balancing of the two systems.

Pilot tests at the BRC facility were performed using the newly installed air sparge (AS-1) and vapor extraction (VEW-1) wells as the test wells. Monitoring points were selected to provide multi-directional data at varying distances from the test wells, and to provide information concerning potential vertical differences in response both in the unsaturated and saturated zones. Figure 3 shows the layout of the pilot test monitoring array. The monitoring network utilized for the pilot tests consisted of five existing monitor or recovery wells (P-2, P-3, MW-4, RW-2, MW-25, and MW-26), newly installed monitor points MP-1, MP-2, and MP-4, and the soil vapor extraction nested well (VEW-1). Construction of all test wells and monitor points are detailed on the well logs included in Appendix A and a generalized geologic cross-section showing well screen intervals is provided in Figure 2.

4.1 Soil Vent Test Equipment

Soil vapor extraction pilot tests were performed by attaching a 1.5-horsepower (HP) regenerative vacuum blower with an explosion-proof motor to the pilot test well, VEW-1. The blower system included a particulate filter, vacuum gauges, and an ambient air intake valve to control flow/vacuum. The blower was powered by a portable generator. Blower exhaust was discharged directly to the atmosphere via a 10-foot high, 2-inch diameter PVC pipe effluent stack. One in-line air sampling port for collection of air samples and PID measurements was installed in the effluent stack.

Blower performance and vacuum were monitored using pre- and post-filter Ashcroft vacuum gauges with a range of 0 to 100 inches of water (in 1-inch increments). The vacuum gauges have an accuracy of + 1%. Air velocity measurements were obtained at a port installed in the 4-inch diameter PVC pipe at a point located approximately midway between the extraction wellhead and the blower. Measurements were obtained using a Dwyer Instruments thermal anemometer (Model 470). The thermal anemometer was calibrated following manufacturer's instruction prior to initiating each test.

Ambient air temperature and process flow temperature were measured using an Omega HH-70KF pocket thermometer, which has a range of -112 to 1,383 °F and an accuracy of <u>+</u> 1% for ambient air temperatures between 68°F to 86°F. Process air stream temperature was measured during the test at inlet ports installed in the piping prior to the blower (pre-blower temperature) and on the discharge side of the blower (post-blower temperature) to monitor blower performance and for use in hydrocarbon mass extraction calculations.

Organic vapor concentrations were monitored at the air sampling port located on the discharge side of the blower using a Microtip PID calibrated with 100 ppm isobutylene gas. The lower explosive limit (LEL) of the discharge vapors was also monitored using an Industrial Science Mx251 meter.

Induced vacuum at monitor wells surrounding the vapor extraction well were measured using a combination of Dwyer Instruments, Inc. magnehelic gauges (Model Nos. 2000-00, 2000-0C, 2002, and 2010). Gauges were attached to the pressure monitoring ports with 1- to 2-foot lengths of flexible rubber tubing.

4.2 Soil Vent Test Protocol

Following equipment set-up and calibration, Groundwater Technology conducted two short-term soil vent pilot tests on nested well VEW-1: one test was conducted on VEW-1S, screened across the vadose zone from 5 to 13 feet below the ground surface (corresponding to a silt and clay stratigraphic zone) and one test was conducted on VEW-1D, screened across both the vadose zone and into the saturated zone from 16 to 26 feet below the surface (corresponding to a sand and gravel stratigraphic zone). Each test was conducted at the maximum obtainable extraction vacuum for approximately three hours or until stabilization occurred in the monitoring parameters. A complete round of static vacuum, temperature, velocity, and organic vapor concentrations were collected prior to the start of each test. After each test was started, the following parameters were measured at approximate 5-minute intervals for the first elapsed 15 minutes, at approximate 15-minute intervals for the remainder of the first elapsed hour, and hourly thereafter:

- Pre- and post filter vacuum at the blower;
- Induced vacuum at surrounding monitor points;
- Applied vacuum at the vapor extraction wellhead;
- Pre- and post-blower air stream temperature;
- Process air stream velocity; and
- Air effluent organic vapor concentrations.

Air effluent samples were collected for laboratory analysis near the end of each test. The samples were collected in 1-liter Tedlar bags from the air sampling port located on the blower discharge stack. Following sample collection, the Tedlar bags were labeled and stored at ambient air temperature inside shipping coolers and shipped via overnight courier with full Chain-of-Custody documentation to Coast-to-Coast Analytical Services in Camarillo, California. The samples were analyzed for total non-methane hydrocarbons and volatile organic compounds per EPA method TO-14, and for fixed gases (carbon dioxide, oxygen, nitrogen, and carbon monoxide) and methane in accordance with method GC/TCD.

4.3 Soil Vent Pilot Test Results

The field data collected during the June 14, 1994 soil vent pilot tests is provided in Appendix C. Tables 1 and 2 summarize the applied vs. the induced vacuum response observed in surrounding monitoring points while venting on test wells VEW-1S and VEW-1D, respectively. A map depicting the pilot test results as observed in the field while venting on test well VEW-1 is provided in Figure 4.

4.3.1 Pilot Test Results - VEW-1S

The maximum vacuum obtained while venting on the shallow zone from VEW-1S during the pilot test ranged from 42 to 43 inches of water. The maximum process air velocity reading obtained was 1,600 feet per minute (fpm). Conversion to standard cubic feet per minute (scfm) yielded 115 scfm.

Maximum induced vacuum (0.15 to 0.19 inches of water) due to venting on VEW-1S was observed in wells MP-1 and RW-2, located 19 and 33 feet from the test well, respectively. An induced vacuum of 0.10 inches of water was detected in MW-4, the most distant monitor point (57 feet) from the test well in which a response was observed. A graph of the log of the induced vacuum vs. distance from extraction well VEW-1S for the pilot test is included in Figure 5.

While venting on VEW-1S, no organic vapor concentrations were detected in the air stream when measured with a PID. However, maximum LEL readings in the process air stream were on the order of 310% to 403%.

A summary of air sample analytical data obtained from well VEW-1S is provided in Table 3, and Laboratory Certificates of Analysis, Chain-of-Custody documentation, and QA/QC data are included in Appendix D. Air sample analytical data collected during the vent pilot test on June 14, 1994 from well VEW-1S indicates that effluent air concentrations were 2.2 milligrams per cubic meter (mg/m³) benzene, 0.4 mg/m³ toluene, 0.53 mg/m³ ethylbenzene, 3.2 mg/m³ total xylenes, and 460 mg/m³ total fuel (non-methane hydrocarbons). EDC and EDB were not detected in the air stream. Fixed gases and methane concentrations from well VEW-1S were 0.3% carbon dioxide, 18% oxygen, and 18% methane.

A step-test was also conducted on well VEW-1S. For each step, the applied vacuum was progressively lowered and the resulting air velocity was measured at the wellhead for the various applied vacuums. At applied vacuums of 42, 40, 28, and 16 inches of water, air velocities of 1,600,

> **GROUNDWATER** TECHNOLOGY

1,300, 1,150, and 750 fpm, respectively, were measured in 4-inch diameter pipe. Conversion to scfm yielded air flow rates of 115, 94, 83, and 54 scfm for the four vacuum settings, respectively. A graph of air flow rate versus applied vacuum for the step test is provided in Figure 6.

4.3.2 Pilot Test Results - VEW-1D

The maximum vacuum obtained while venting on the deep zone from VEW-1D during the pilot test ranged from 20 to 21 inches of water. The maximum process air velocity reading was 1,750 fpm or 131 scfm.

At the maximum applied vacuum of 20 to 21 inches of water, maximum induced vacuum measured at the monitor points ranged from 0.08 inches of water in well MP-4 (located approximately 225 feet from VEW-1) to 4.0 inches of water at MP-1 (located approximately 19 feet from VEW-1). A graph of the log of the induced vacuum vs. distance from extraction well VEW-1D for the pilot test is shown in Figure 7.

Maximum organic vapor concentrations of the extracted vapors (based on PID readings) were 110 ppm. LEL readings in the process air stream ranged from 76 to 109% throughout the test.

Air sample analytical data collected during the vent pilot test on June 14, 1994 from well VEW-1D indicates that effluent air concentrations were 380 mg/m³ benzene, 16 mg/m³ toluene, 57 mg/m³ ethylbenzene, 280 mg/m³ total xylenes, and 11,000 mg/m³ total fuel. EDC and EDB were not detected in the air stream. Fixed gases and methane concentrations from well VEW-1D were 2.3% carbon dioxide, 4.3% oxygen, and 68% methane (Table 3, Appendix D).

A step-test was also conducted on well VEW-1D. For each step, the applied vacuum was progressively lowered and the resulting air velocity was measured at the wellhead for the various applied vacuums. At applied vacuums of 21, 18, 13, and 10 inches of water, air velocities of 1,750, 1,250, 900, and 650 fpm, respectively, were measured in 4-inch diameter pipe. Conversion to scfm yielded air flow rates of 131, 94, 67, and 48 scfm for the four vacuum settings, respectively. A graph of air flow rate versus applied vacuum for the step test is provided in Figure 6.

4.4 Soil Vent Pilot Test Analysis

The data collected from the soil vent pilot tests on VEW-1 were analyzed using Groundwater Technology's software program, VENT-ROI Version 3.0. VENT-ROI is based on a simple one-dimensional analytical model that provides a rough estimate of the effective cleanup radius (defined as "the maximum distance from a vapor extraction point through which sufficient air is drawn to remove the required fraction of contamination in the desired time"). The effective radius (R_E) is based on site-specific conditions and SVES parameters, and is specific to the contaminant, cleanup goals, and cleanup time frame (Bass, 1993). A more detailed explanation of the model is included in the scientific paper provided in Appendix E.

Using VENT-ROI, data from the pilot tests was analyzed for each separate zone vented at the site: shallow (5 to 13 feet below grade); and deep (16 to 26 feet). Computer-generated output from the $R_{\rm E}$ calculations is provided in Appendix F. A summary of the calculated $R_{\rm E}$ values based on the optimum set of parameters is detailed below.

Assuming an approximate 24-foot thickness of vented soil interval for the shallow zone beneath the site (defined as the depth to top of groundwater), a soil gas temperature of 50°F, an air flow rate of 118 scfm per well, a cleanup time of 730 days, and 90% removal of xylene/ethylbenzene, the single well effective radius of influence (for volatilization plus biodegradation) for the shallow zone was approximately 36 feet, and the calculated interwell effective radius of influence was approximately 31 feet at an applied vacuum of 42 inches water column.

For the deep zone, keeping the input variables the same except for an 11-foot thick vented interval (defined as the thickness of the more permeable sand/cobble zone beneath the less permeable upper silt/clay zone) and an air flow rate of 105 scfm per well, the calculated single well $R_{\rm E}$ was 84 feet with an interwell effective radius of 18 feet at an applied vacuum of 21 inches water column.

For vapor extraction/bioventing to work, the contaminant of concern must be either volatile or biodegradable. Light-end products are treated primarily by volatilization, heavy-end products by biodegradation. Effective radius is most sensitive to the volatility of the contaminant; contaminants with high volatility are easier to remove than those with just high degradability. Taking this into consideration, the effective radii of influence for the shallow and deep zones were also calculated for removal of weathered gasoline/JP-4 and diesel/No. 2 fuel oil contaminant mixtures. Keeping all other input variables the same as above, the calculated single well R_E for the shallow zone for

GROUNDWATER TECHNOLOGY

removal of weathered gasoline/JP-4 was 34 feet and 2 feet for removal of diesel/No. 2 fuel oil. For the deep zone, the calculated $R_{\rm F}$ values were 78 feet for weathered gasoline and 3 feet for diesel.

4.5 Air Sparge Test Equipment

The air sparge pilot test was performed by connecting a compressed air line to the top of the air sparge well. The compressed air system consisted of a 90 pounds per square inch (psi) (105 cfm) air compressor, 3/4-inch diameter air hose, an in-line oil/water filter, and a pressure regulator to control flow/pressure.

Air velocity measurements were obtained using a combination of Dwyer air flowmeters (Model Nos. RMC and VFC) plumbed into the air line at the air sparge wellhead. Induced pressure at monitoring points surrounding the air sparge well was measured using a combination of Dwyer magnehelic gauges, (Model Nos. 2000-00, 2000-0C, 2002, and 2010). Organic vapor concentrations were measured at the surrounding monitor points using a properly calibrated Microtip PID. Depth-to-water and dissolved oxygen (DO) in surrounding monitor wells screened across the water table were measured using an ORS electronic interface probe (IP) and a YSI Model 51B Dissolved Oxygen Meter, respectively.

4.6 Air Sparge Test Protocol

The sparge test was performed at two different pressures, 3 psi and 5 psi (approximately 30% and 120% over the pressure needed for air to overcome the 5-foot water column above the screened interval of the sparge well). A complete round of static pressure, DO (in wells without separate-phase hydrocarbons (SPH)), fluid-level, and volatile organic compound (VOC) concentration measurements were collected from each monitor point prior to starting the sparge test.

The following parameters were collected during each pressure setting at periodic intervals. Field measurements are included in Appendix C:

- Applied air pressure at the sparge wellhead;
- Air flow rate of compressed air injected into the sparge well;
- Induced pressure at surrounding monitor points;
- VOC concentrations at the surrounding monitor points; and

DO and depth-to-water were recorded in the monitor wells at the end of each pressure setting (removal of the pressure caps during sparging would interfere with the pressure readings).

4.7 Air Sparge Test Results

At the maximum applied pressure of 5 psi, maximum induced pressure measured at the monitor wells ranged from 0.20 inches of water in well MP-4 (located approximately 230 feet from AS-1) to 2.90 inches of water at VEW-1D (located approximately 10 feet from AS-1) (Table 4). The maximum induced pressure versus distance for each of the injection pressures is plotted in Figures 8 and 9.

VOC concentrations recorded at each monitor point throughout the test are included in Appendix C and summarized in Table 5. The most significant increase in VOC concentrations was observed during the sparge test at 5 psi injection pressure and in those monitor points located closest to the sparge well. After approximately three hours of sparging, VOC concentrations increased from less than approximately 145 ppm (background) to greater than 2,500 ppm in wells VEW-1D and MP-1, located 10 and 14 feet from AS-1, respectively. Significant increases in VOC concentrations were also observed in wells RW-2 (from 193 to 855 ppm) and MP-4 (from 16 to 760 ppm), located 27 and 230 feet from AS-1, respectively.

Fluid levels and DO concentrations in water were measured in those wells screened across the water table prior to pilot testing at each sparge pressure. An increase in the DO concentration is indicative of aeration during the sparge test, which in turn indicates the transport of injected air through the aquifer. The data indicate a significant increase in the DO concentration in the sparge well (AS-1) after approximately three hours of sparging, from background concentrations of 0.2 ppm to maximum concentrations of approximately 4.2 ppm at the end of the test. Because SPH was present in all other monitoring points, DO measurements could not be obtained in these wells.

An increase in the groundwater elevation as a result of sparging (i.e., water-table mounding) was detected in wells RW-2, P-2, MW-4, and MP-4. The maximum difference (pre-test minus post-test values) in depth-to-water values (uncorrected for SPH) ranged from 0.05 feet in MP-4 (located 230 feet from AS-1) to 0.16 feet in MW-4 (located 47 feet from AS-1).

4.8 Combination Air Sparge/Soil Vent Test Protocol

The last phase of pilot testing consisted of a combined air sparge/soil vent test conducted on wells AS-1 and VEW-1D. The objective of the combination test was to ensure that a net vacuum could be established across the site under maximum operating conditions so that all sparge vapors were contained. The combination test was run at 5 psi pressure and 17 - 19 inches of water vacuum, which were the maximum sparging and venting levels recorded during the individual sparge and vent tests, respectively.

The same parameters measured above for the individual vent and sparge tests were collected periodically during the combination test. An effluent air sample was collected at the end (approximately 2.5 hours) of the combination test. The sample was collected in 1-liter Tedlar bags from the sampling port located on the vacuum blower discharge stack. The sample was shipped at ambient air temperature under full Chain-of-Custody to Coast-to-Coast Analytical Services, Inc. in Camarillo, California for analysis of total non-methane hydrocarbons and volatile organics in accordance with EPA method TO-14 and for fixed gases and methane per method GC/TCD.

4.9 Combination Air Sparge/Soil Vent Test Results

The final test involved simultaneous operation of both the vent and sparge pilot systems. Monitoring results for the combined test are included in Appendix C and induced pressure/vacuum responses are summarized in Table 6. Readings taken during the corresponding vent only and sparge only tests are also presented in Table 6 for comparison.

During the combined test at 18 inches of water vacuum and 5 psi, net negative (vacuum) readings were observed in all monitor points at the site, indicating that sparge vapors were being contained by the vent system (Table 6).

PID readings at the monitor points during the combined test were substantially reduced as compared to PID readings measured under sparging conditions alone, indicating that the vacuum system was collecting the sparged vapors. After approximately 125 minutes of the combined test, PID readings at the monitor points ranged from 0 to 240 ppm, as compared to 1.3 to greater than 2,500 ppm obtained during the sparge only test at 5 psi after 185 minutes (Appendix C).

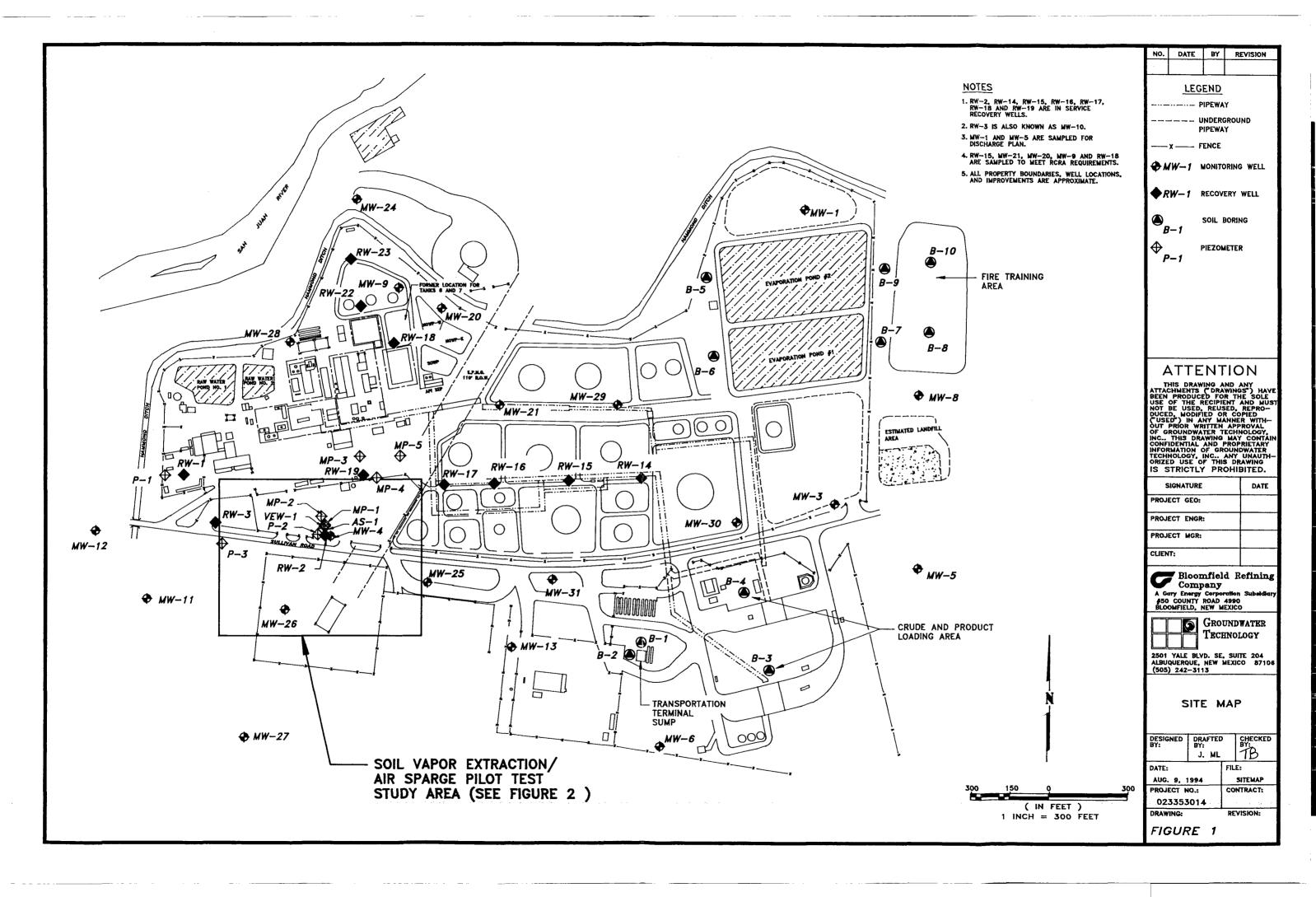
Air sample analytical data collected after 145 minutes of the combined test at 5 psi sparge pressure and 22 inches of water vacuum indicate that benzene concentrations were 460 mg/m³ in the air effluent, toluene concentrations were 170 mg/m³, 140 mg/m³ ethylbenzene, 1,100 mg/m³ xylenes, and total fuel concentrations were 13,000 mg/m³. A summary of air sample analytical data obtained during the combined test from well VEW-1D is provided in Table 3, and Laboratory Certificates of Analysis, Chain-of-Custody documentation, and QA/QC packages are included in Appendix D.

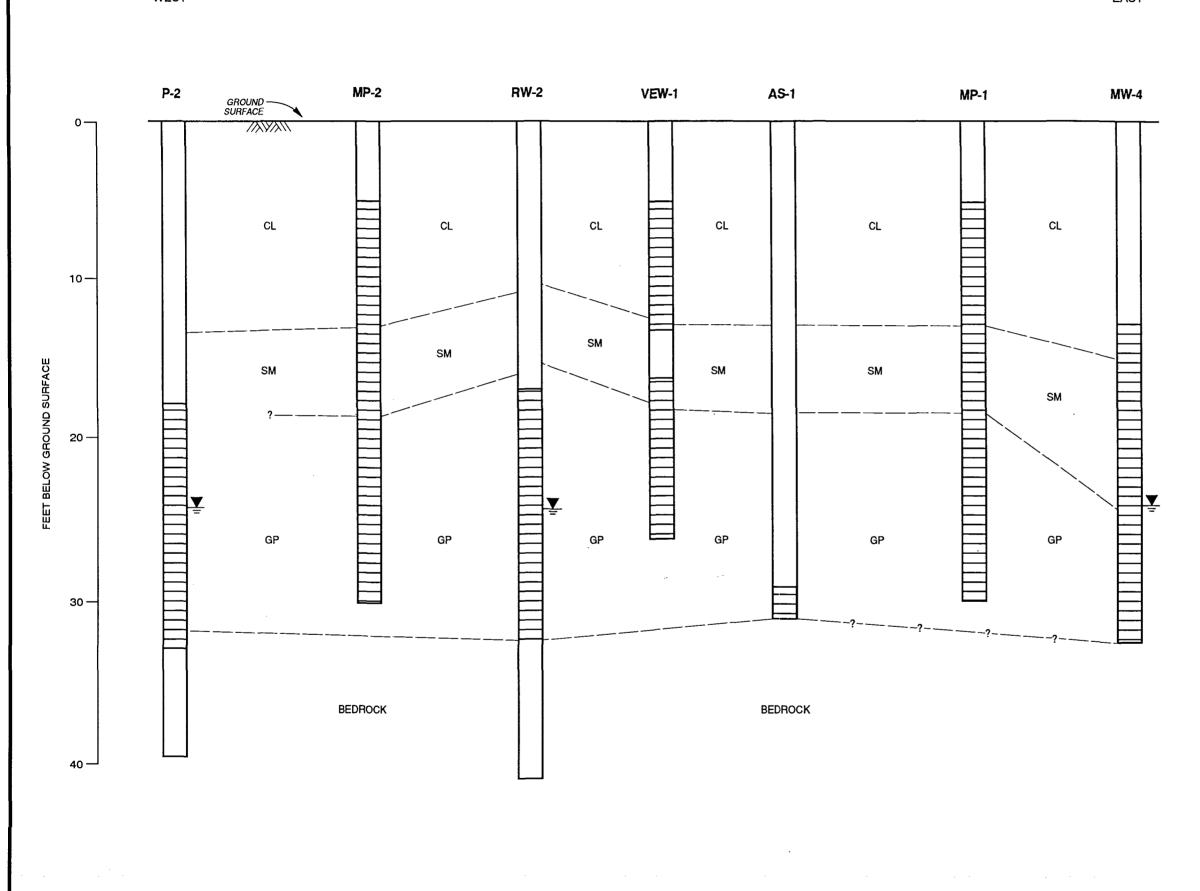
4.10 Hydrocarbon Mass Extraction Rates

Based on the air effluent analytical results from vent wells VEW-1S and VEW-1D, hydrocarbon mass extraction rates were calculated for BTEX and total fuel (non-methane hydrocarbons). Mass extraction rates while venting only on the shallow zone (5 to 13 feet below grade) at an air flow rate of 115 scfm were 9.5 x 10⁻⁴ pounds per hour (lb/hr) benzene, 1.72 x 10⁻⁴ lb/hr toluene, and 0.20 lb/hr total fuel. Mass extraction rates while venting only on the deep zone (16 to 26 feet below grade) at an air flow rate of 131 scfm were 0.19 lb/hr benzene, 0.008 lb/hr toluene, and 5.4 lb/hr total fuel. Mass extraction rates while venting from the deep zone at an air flow rate of 112 scfm and sparging at 5 psi were 0.19 lb/hr benzene, 0.07 lb/hr toluene, and 5.5 lb/hr total fuel. A summary of the hydrocarbon mass extraction rates is presented in Table 7 and mass extraction rate calculations are provided in Appendix G.

4.11 Pilot Testing Conclusions

Based on the results of the pilot tests, the following conclusions are made:


- Induced vacuum as a result of venting on the shallow zone (5 to 13 feet below grade) at the site was measured in wells up to 57 feet away from the vent well. At the maximum applied vacuum of 42 inches of water column, induced vacuum response was low (less than 0.19 inches water column), reflecting the low permeability sediments (clay) characteristic of this zone. Calculated effective radii of influence for the shallow zone ranged from 2 feet (for removal of diesel products) to 36 feet for removal of gasoline (xylene/ethylbenzene) products.
- Induced vacuum response measured while venting on the deep zone (16 to 26 feet below grade) at a maximum applied vacuum of 21 inches water column ranged from 1.9 to 4.0 inches of water at distances of 19 to 57 feet from the vent well.


14

GROUNDWATER TECHNOLOGY

Extrapolation of the observed data indicate that significant response (greater than 1% of the applied vacuum) would occur as far away as 175 feet from the vent well. Greater response to venting in the deep zone is probably attributable to the high permeability sands and gravels occurring at this depth. Calculated *effective* radii of influence for the deep zone ranged from 3 feet (for diesel) to 84 feet for removal of gasoline components.

- Aquifer sparging effectiveness was evaluated based on observed induced pressure and VOC concentrations while sparging at applied pressures of 3 to 5 psi. A conservative value of 50 feet was selected as the effective radius of influence for the sparge test, based on the observed pressure responses.
- Based on the results of the combined pilot test, a net negative vacuum was observed in all monitor points while venting at near maximum vacuum (18 inches water column) and sparging at approximately 120% (5 psi) above breakthrough pressure. This indicates that any vapors generated as a result of sparging can be captured and contained by the vacuum system. For the combined test, vacuum measured in the monitor points was generally reduced by more than one-half (when compared to the vacuum measured in these same points while venting only) as a result of sparge pressure, further confirming the effectiveness of sparging at the site.
- Hydrocarbon mass removal rates ranged from 0.20 lb/hr total fuel for the shallow zone to 5.5 lb/hr total fuel while venting and sparging on the deep zone. Elevated concentrations of methane ranging from 18 to 68% were also detected in the vented effluent and oxygen levels ranged from 4.3 to 18%.

LEGEND

MW-4

WELL ID

SCREENED INTERVAL OF MONITOR WELL

DEPTH TO GROUNDWATER AUGUST 2, 1994

CL **BROWN SILTY CLAY**

FINE, POORLY-GRADED SILTY SAND

GRAVEL AND COBBLES WITH SOME GP

FINES

BEDROCK NACIMIENTO FORMATION

(CARBONACEOUS MUDSTONE WITH INTERBEDDED SANDSTONE)

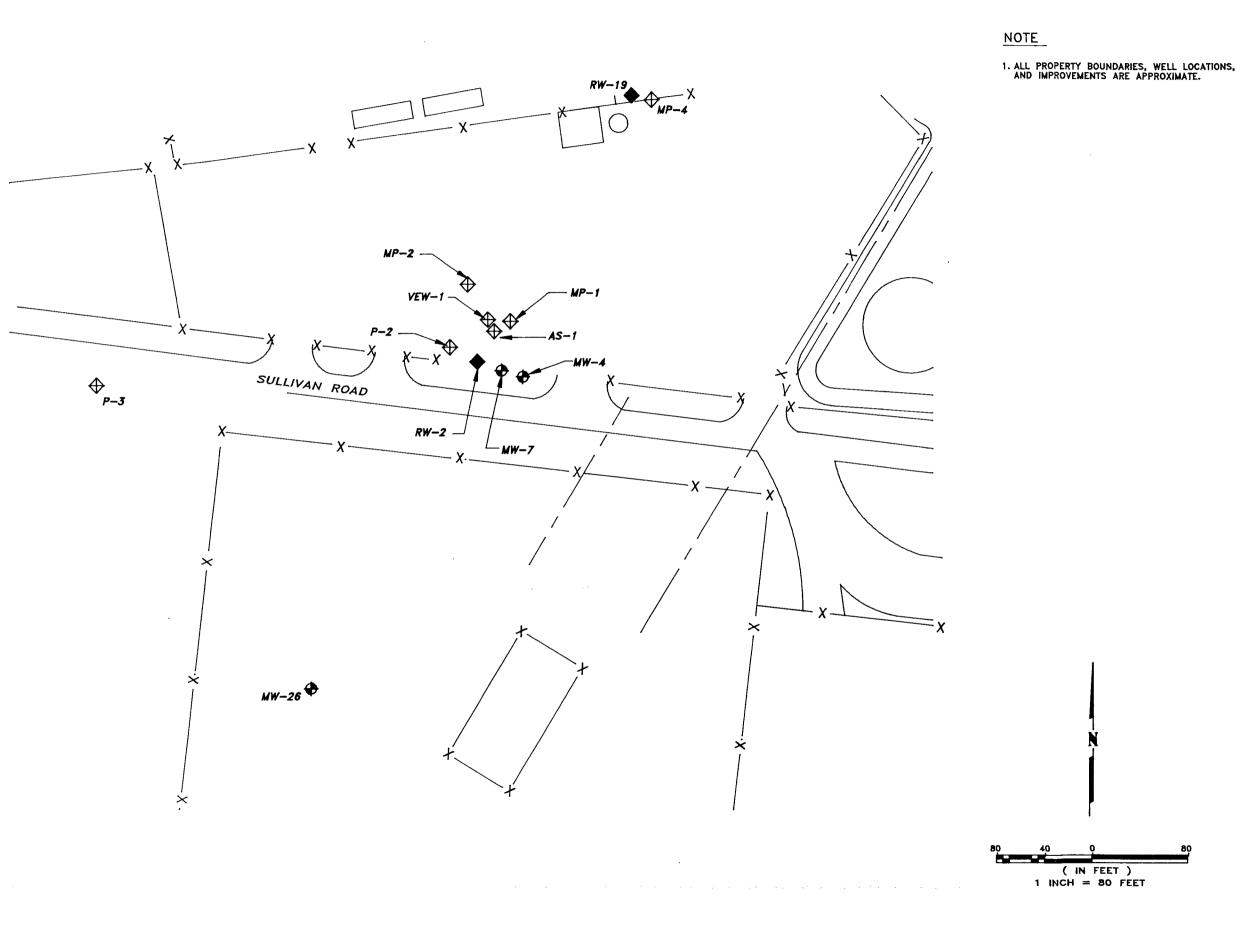
VERTICAL SCALE: 1" = 60'

HORIZONTAL SCALE: 1"~ 6"

NOTE: ALL WELLS PROJECTED INTO LINE OF SECTION.

BLOOMFIELD REFINING COMPANY / NO. 50 COUNTY ROAD 4990

PROJECT NO.: 023353014


LOCATION: BLOOMFIELD, N.M.

GENERALIZED GEOLOGIC CROSS-SECTION SHOWING LOCATIONS OF SCREENED INTERVALS AT SOIL VENT **PILOT TEST WELLS**

DRAWN BY: JU	DATE: 8/10/94	CHECKED TB	DATE: 8/11/94
FOLDER: CHV// FILE: XSEC	Alamogordo CT 8/94	APPROVED TO	DATE:8/11/94
			- -

FIGURE 2

LEGEND

PIPEWAY

UNDERGROUND

PIPEWAY

----- FENCE

♦ MW-1 MONITORING WELL

♦ RW-1 RECOVERY WELL

● B-1 SOIL BORING

♦ P-1 PIEZOMETER
OR MONITOR POINT

♦ AS-1 AIR SPARGE WELL

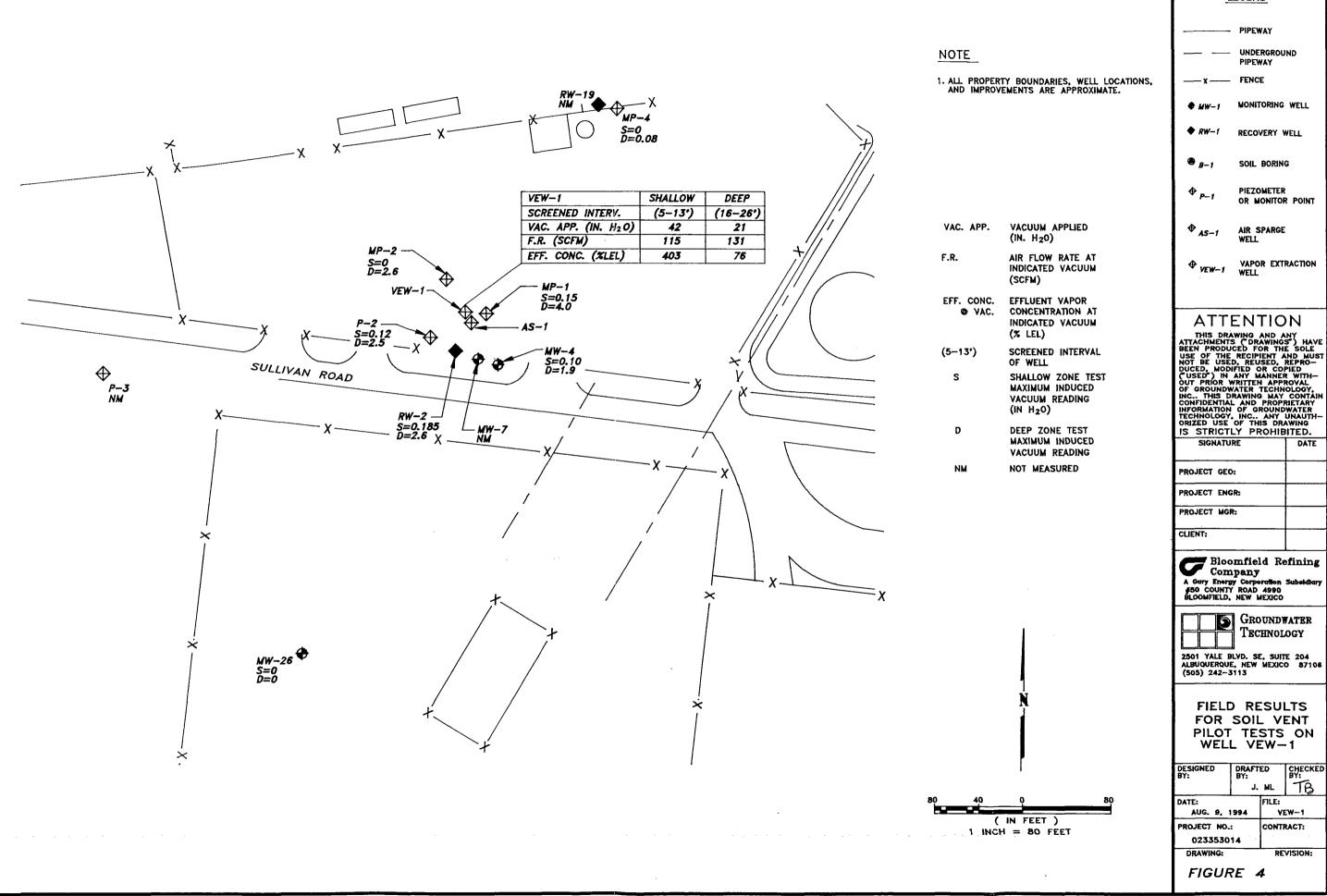
♦ VEW-1 VAPOR EXTRACTION WELL

ATTENTION

THIS DRAWING AND ANY
ATTACHMENTS ("DRAWINGS") HAVE
BEEN PRODUCED FOR THE SOLE
USE OF THE RECIPIENT AND MUST
NOT BE USED, REUSED, REPRODUCED, MODIFIED OR COPIED
("USED") IN ANY MANNER WITHOUT PRIOR WRITTEN APPROVAL
OF GROUNDWATER TECHNOLOGY,
INC.. THIS DRAWING MAY CONTAIN
CONFIDENTIAL AND PROPRIETARY
INFORMATION OF GROUNDWATER
TECHNOLOGY, INC.. ANY UNAUTHORIZED USE OF THIS DRAWING
IS STRICTLY PROHIBITED.

SIGNATURE	DATE
PROJECT GEO:	
PROJECT ENGR:	
PROJECT MGR:	
CLIENT:	

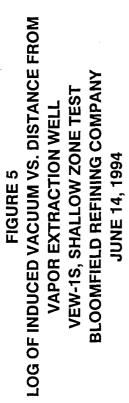
Bloomfield Refining
Company
A Gary Energy Corporation Subsidiary
#50 COUNTY ROAD 4990
BLOOMFIELD, NEW MEXICO

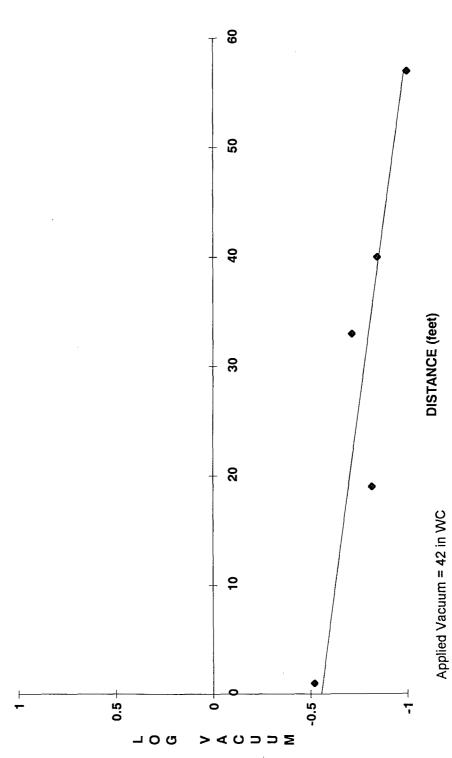


2501 YALE BLYD. SE, SUITE 204 ALBUQUERQUE, NEW MEXICO 87106 (505) 242-3113

SOIL VAPOR
EXTRACTION/AIR
SPARGE PILOT
TEST STUDY AREA

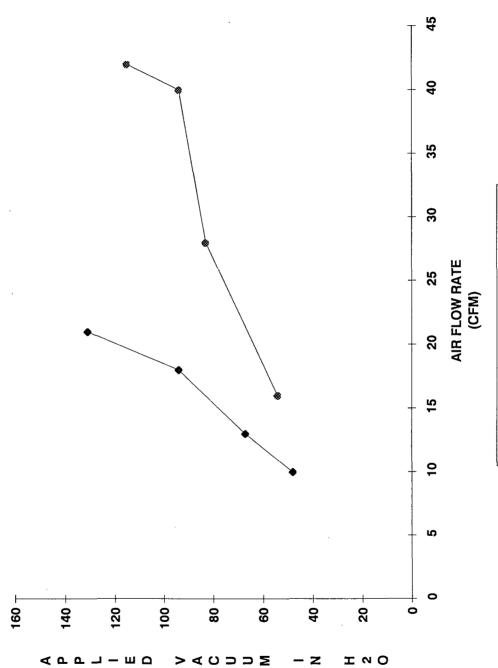
DESIGNED BY:	DRAFT BY: J.	ED ML	CHECKEI BY: TB
DATE: AUG. 9.	FILE:		OR-EX
PROJECT NO. 0233530	-	CONT	RACT:
DRAWING:	,	RE	VISION:


FIGURE 3



LEGEND MONITORING WELL OR MONITOR POINT VAPOR EXTRACTION WELL

FOR SOIL VENT


DESIGNED BY:	DRAFT BY:	ED	CHECKED BY:
	J.	ML	TB
DATE:		FILE:	
AUG. 9, 1	994	VI	W-1
PROJECT NO.	:	CONT	RACT:
0233530	14		
DRAWING:		RE	VISION:

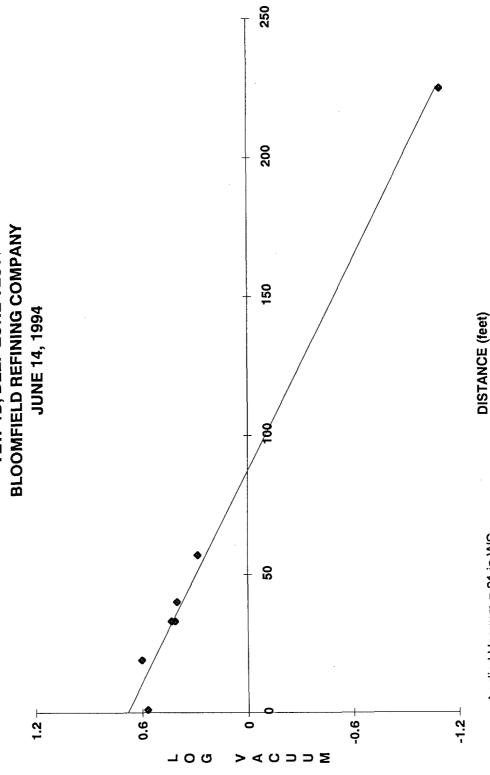
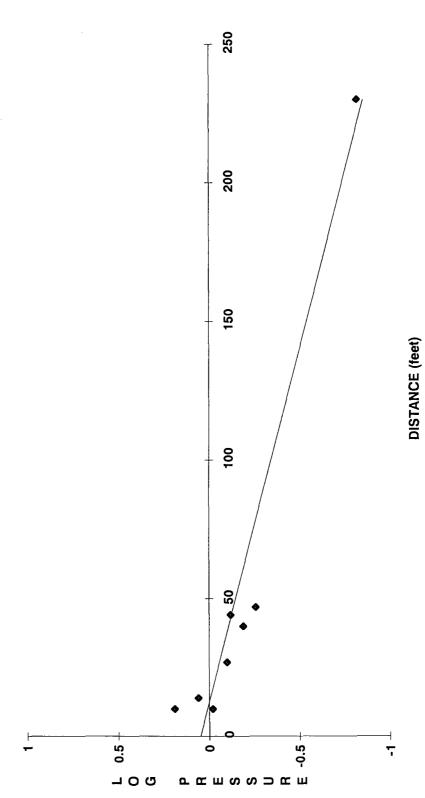

GROUNDWATER TECHNOLOGY ...

FIGURE 6
APPLIED VACUUM VS. AIR FLOW RATE
FOR VENT STEP-TESTS ON NESTED WELL VEW-1
BLOOMFIELD, NEW MEXICO
JUNE 14, 1994


-- VEW-1D (deep) -- VEW-1S (shallow)

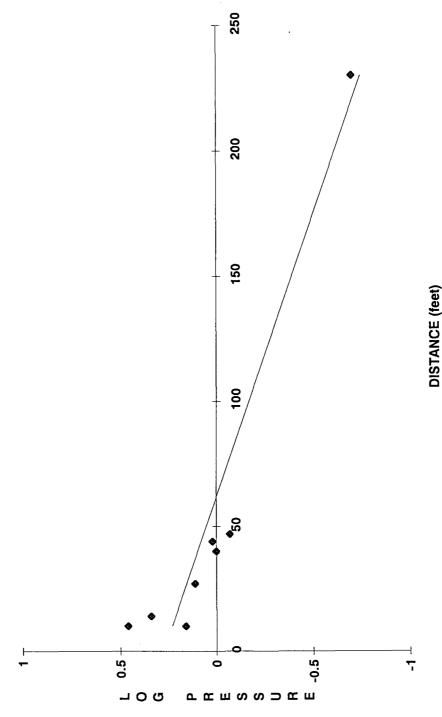

Applied Vacuum = 21 in WC

FIGURE 8
LOG OF INDUCED PRESSURE VS. DISTANCE
FROM SPARGE WELL AS-1
BLOOMFIELD REFINING COMPANY
JUNE 15, 1994

Applied Pressure = 3 psi Flow rate = 11 scfm

FIGURE 9
LOG OF INDUCED PRESSURE VS. DISTANCE **BLOOMFIELD REFINING COMPANY** FROM SPARGE WELL AS-1 JUNE 15, 1994

Applied Pressure = 5 psi Flow rate = 19 scfm

MAXIMUM INDUCED VACUUM RESPONSE SOIL VENT PILOT TEST ON VEW-1S (SHALLOW ZONE) BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 14, 1994

(Induced vacuum response reported in inches of water)

MONITOR	DISTANCE		APPLIED VACU	IED VACUUM (in. H₂O)		
POINT	FROM VEW-1S (FT.)	42	40	28	16	
VEW-1D	0	0.30	0.20	0.15	0.05	
MP-1	19	0.15	0.10	0.05	0.025	
MP-2	33	0.0	0.0	+0.05(1)	+0.15	
RW-2	33	0.19	0.13	0.09	0.015	
P-2	40	0.14	0.10	0.075	0.0	
MW-4	57	0.10	0.05	0.025	0.0	
MP-4	225	+0.10	NM ⁽²⁾	NM	NM	
MW-26	400	0	NM	NM	NM	

- (1) (+) Indicates that a positive (pressure) reading was detected in well as opposed to a negative (vacuum) reading.
- (2) NM = Not Measured.

MAXIMUM INDUCED VACUUM RESPONSE SOIL VENT PILOT TEST ON VEW-1D (DEEP ZONE) BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 14, 1994

(Induced vacuum response reported in inches of water)

MONITOR	DISTANCE		APPLIED VACU	DUUM (in. H₂O)		
POINT	FROM VEW-1D (FT.)	21	18	13	10	
VEW-1S	0	3.7	3.4	2.5	1.7	
MP-1	19	4.0	3.4	2.6	1.9	
MP-2	33	2.6	2.4	1.7	1.2	
RW-2	33	2.7	2.4	1.8	1.2	
P-2	40	2.5	2.1	1.6	1.1	
MW-4	57	1.9	1.7	1.2	1.0	
MP-4	225	0.08	0.05	0.05	0.035	
MW-26	400	0.0	NM ⁽¹⁾	NM	NM	
MW-25	450	0.0	NM	NM	NM	

(1) NM = Not measured

GROUNDWATER
TECHNOLOGY

TABLE 3 SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS⁽¹⁾ BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 14 AND 16, 1994

SAMPLE ID ⁱ²ⁱ	BENZENE (mg/m³)	TOLUENE (mg/m³)	ETHYL- BENZENE (mg/m³)	TOTAL XYLENES (mg/m³)	TOTAL FUEL (NON-METHANE HYDROCARBONS) (mg/m³)	EDC (mg/m³)	EDB (mg/m³)	CARBON DIOXIDE (%)	OXYGEN (%)	METHANE (%)
VEW-1S Effluent	2.2	0.4	0.53	3.2	460	ND ⁽³⁾	QN	0.3	18	18
VEW-1D EFF	380	16	25	280	11,000	QN	QN	2.3	4.3	68
VEW-1D V/S	460	170	140	1,100	13,000	ND	QN	0.4	14	28

Air samples analyzed in accordance with methods EPA TO-14 and GC/TCD.

Ξ

- Sample VEW-1S Effluent collected during vent only pilot test on shallow zone (5-13"); sample VEW-1D EFF collected during vent only pilot test on deep zone (16-26"); and VEW-1D V/S collected during combined air sparge/soil vent pilot test. <u>(7</u>
- (3) ND = Not detected at or above the practical quantification limit (PQL).

MAXIMUM INDUCED PRESSURE RESPONSE AIR SPARGE PILOT TEST BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 15, 1994

(Induced pressure response reported in inches of water)

MONITOR	DISTANCE	APPLIED SPARGING PRESSURE		
POINT	FROM AS-1 (FT.)	3 PSI	5 PSI	
VEW-1S	10	0.95	1.45	
VEW-1D	10	1.55	2.90	
MP-1	14	1.15	2.20	
RW-2	27	0.80	1.30	
P-2	40	0.65	1.0	
MP-2	44	0.75	1.05	
MW-4	47	0.55	0.85	
MP-4	230	0.15	0.20	

MAXIMUM CHANGE IN VOC CONCENTRATIONS⁽¹⁾ AIR SPARGE PILOT TEST BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO JUNE 15, 1994

(VOC concentrations reported in ppm)

MONITOR	DISTANCE	APPLIED SPARGING PRESSURE		
POINT	FROM AS-1 (FT.)	3 PSI	5 PSI	
VEW-1S	10	1	1.4	
VEW-1D	10	1,476	>2,355	
MP-1	14	168	>2,443	
RW-2	27	157	662	
P-2	40	31	71	
MP-2	44	1.7	1.3	
MW-4	47	-50	-112	
MP-4	230	5	744	

Calculated by subtracting the background concentrations measured in each well before start-up from the maximum concentration observed in each well for each applied sparging pressure.

MAXIMUM INDUCED PRESSURE/VACUUM RESPONSE COMBINED AIR SPARGE/SOIL VENT PILOT TEST ON WELLS VEW-1D AND AS-1 BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

JUNE 16, 1994

(Induced pressure/vacuum responses reported in inches of water)

MONITOR POINT	AVERAGE DISTANCE (FEET)	VACUUM ONLY (18" H₂O)	SPARGE ONLY (5 PSI)	COMBINED TEST (18" H ₂ O & 5 PSI)
VEW-1S	10 (from AS-1)	-3.4	+1.45	-1.70
VEW-1D	10 (from AS-1)	NA ⁽¹⁾	+2.90	NA
MP-1	16	-3.4	+2.20	-1.20
RW-2	30	-2.4	+1.30	-0.75
P-2	40	-2.1	+1.0	-0.90
MP-2	39	-2.4	+1.05	-1.25
MW-4	52	-1.7	+0.85	-0.50
MP-4	228	-0.05	+0.20	-0.05

(1) NA = Not applicable

TABLE 7

SUMMARY OF HYDROCARBON MASS EXTRACTION RATES⁽¹⁾ AIR SPARGE/SOIL VENT PILOT TESTS BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

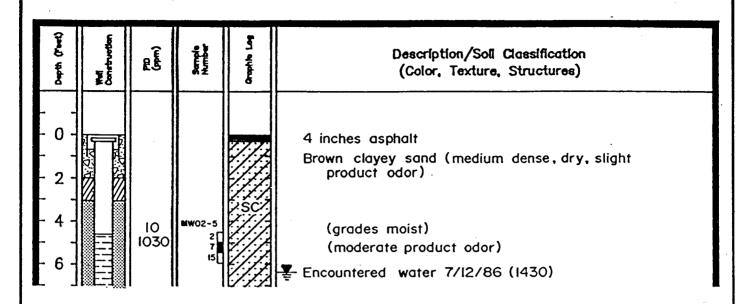
JUNE 14 AND 16, 1994

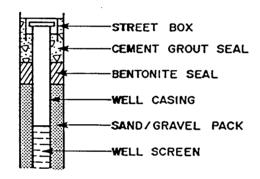
SAMPLE ID	PILOT TEST	BENZENE (lb/hr)	TOLUENE (lb/hr)	ETHYL- BENZENE (lb/hr)	TOTAL XYLENES (lb/hr)	TOTAL FUEL (lb/hr)
VEW-1S Effluent	Soil vent only, shallow zone (5-13')	9.5 x 10 ⁻⁴	1.72 x 10 ⁻⁴	2.3 x 10 ⁻⁴	1.4 x 10 ⁻³	0.20
VEW-1D EFF	Soil vent only; deep zone (16-26')	0.19	0.008	0.03	0.14	5.4
VEW-1D V/S	Combined air sparge/soil vent	0.19	0.07	0.06	0.46	5.45

(1) Mass extraction rate calculations provided in Appendix G.

APPENDIX A

SUMMARY OF WELL COMPLETION INFORMATION AND MONITOR WELL INSTALLATION/LITHOLOGIC LOGS


BRC/Pilottest.rpt



WELL CONSTRUCTION SPECIFICATIONS FOR PILOT TEST WELLS BLOOMFIELD REFINING COMPANY

Well #	Date Installed	Diameter/Material	Total Well Depth (Feet)	Screened Interval (Feet)
VEW-1	5/16/94	2" PVC (nested)	26	5-13 16-26
AS-1	5/16/94	2" PVC	31	29-31
MP-1	5/13/94	2" PVC	30	5-30
MP-2	5/16/94	2" PVC	30	5-30
MP-3	5/17/94	2" PVC	31	11-31
MP-4	5/17/94	2" PVC	32	12-32
MP-5	5/17/94	2" PVC	31	11-31

KEY TO BORING LOG

ORGANIC VAPOR CONCENTRATION DETERMINED BY PHOTO IONIZATION DETECTOR (P.I.D.) IN PARTS PER MILLION (ppm) FROM SOIL SAMPLES (TIME COLLECTED)

MW02-5 SAMPLE IDENTIFICATION (TEST HOLE - SAMPLE DEPTH)

BLOW COUNTS TO DRIVE A SPLIT BARREL SAMPLER USING A 140 Ib. HAMMER
FALLING 30 INCHES. COUNTS ARE FOR EACH 6 INCH INCREMENT THE
SAMPLER IS DRIVEN.

INTERVAL SAMPLED
SAMPLE INCREMENT RETAINED FOR LABORATORY ANALYSES

SOIL CLASSIFICATION GRAPHIC/SYMBOL (SEE UNIFIED SOIL CLASSIFICATION SYSTEM)

DEPTH TO WATER, DATE, TIME

Monitoring Point MP-1

Project 🕹	BRC .						_ 0	wner <u>Bloomfield Refining Co.</u>	See Site Map For Boring Location
Location	50 Count	y Roa	d 49.	90, L	Blooi	nfield,	New	Mexico Proj. No. <u>023353014</u>	FOR BORING ECCATION
Surface (Elev		Tot	al H	ole D	epth :	30 ft	Diameter <u>10 in.</u>	COMMENTS:
								t. Static	Į į
Screen: (Dia <u>2 in. </u>		Len	gth	<u>25 f</u>	<u>'t.</u>		Type/Size <u>PVC 0.020 in.</u>	Start @ 1315 hrs.
								Type <u>PVC</u>	
	ial <u>10/20</u>							ig/Core <u>Drill Systems 180</u>	
Drill Co. 4						od <u>Air</u>			
		TAM	_					Date <u>05/13/94</u> Permit #	
Checked		1MIA/				Licer		10.	
۔	Well			Blow Count/	Recovery	ပ္	Class.	Descripti	on .
Depth (ft.)	let l	PID (ppm)	Sample	ပိ	ò	Graphic Log		•	
l ã∽ ∣	3 E	اع	Ē	≩	Re	3ra L	SCS	(Color, Texture, S	
	ŭ		Ś	ā	×		S	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%
2 -									
-									
┝╶┪		.							
- o -							\vdash	See drilling log VEW-1 for lithology	
L j	ЩЩ								
	h4 h4								
- 2 -	K-H K-H								
L 4 -									
									Ŧ
1									
├ 6 -									
	l∷l≣l∷								
- 8 -									
- 0 7									
f 1	l∷l≣l∷l								
- 10 -	l∷l≣l∷l								
]	: ≣ :)		Ì	'			
40	l∷l≣l∷								
- 12 -	l:l≣l:l								
-	: ≣ :								
- 14 -	l:l≣l:l								
	[: ≣[:		 		i	:			
[]	:: ≡ ::								
- 16 -	l⊹l≣l⊹l				ľ				
┠ ╡	[: ≣[:								
- 18 -	<u> </u>								
I '	: ≣ :								
† †									
– 20 –	∷ ≣[∷								
. ↓	l∷l≣l∷				}				
22	[:]≣[:]								
- 22 -	: ≣[:								
├ -	⊩l≣l∷				1		 		
- 24 -	IJ≣Ŀ								
	li						II .	li de la companya de	

Monitoring Point MP-1

Project BRC Owner Bloomfield Refining Co.

Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. 023353014

Depth (ft.)	Well Completion	PID (ppm)	Sample ID	Blow Count/	% Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - - 26 -								₹ Groundwater encountered at 25 feet on 5/13/94
- 28 -								
- 30 - - 32 -								End of boring at 30 feet (1335 hrs). Installed well screened from 5 to 30 feet on 5/13/94.
- 34 - - 36 -								
- 38 -								
- 40 - 42 -								
- 44 - - 46 -								
- 48 -								
- 50 - 52 -					10			
- 54 - - 56 -								

-
GROUNDWATER
TECHNOLOGY

Monitoring Point MP-2

					wner <u>Bloomfield Refining Company</u>	See Site Map For Boring Location
Location 50 Count	ty Roa	d 4990, Blooi	nfield, i	New	Mexico Proj. No. <u>023353014</u>	. Joing Education
					Diameter <u>10 in.</u>	COMMENTS:
Top of Casing		Water Level	Initial	<u> 24 f</u>	t Static	
Screen: Dia 2 in.		Length <u>25 1</u>	t.		Type/Size <u>PVC .020 in.</u>	Start at 1615 hrs.
Casing: Dia 2 in.		Length <u>5 ft</u>			Type <u>PVC</u>	
					ig/Core Drill Systems 180	
Drill Co. <u>Layne</u>					<u>ussion</u> Date <u>05/I6/94</u> Permit #	·
Checked By	JAN	Log by <u>ven</u> 1	<i>y may</i> Licer	ise N	Date 03710794 Permit #	
				_		
±-	ج ا	very	운_	Class.	Descripti	ion
Depth (ft.)	PIO (ppm)		Graphic Log		(Color, Texture, S	
Depth (ft.) Well Completion	~	Sample ID Blow Count/ % Recovery	້ ວັ	nscs	Trace < 10%, Little 10% to 20%, Some	
		W -K		-		
2-						
ŀ - ↓	.					
					See well VEW-1 for lithology	
					See Well YEM I TOT ILLIIOTOGY	
- 2						
- 4 -						
1 6 1 1 1 1 1 1 1 1 1 1 						
- 8 - 						
L 10 山昌:						
<u> </u>						
- 14 - III						
<u>- 16 - </u>						
}						
- 18 -		1				
- 20 -						
	1					
- 14 -						
: <u> </u>						
1 1 1						
24 - 1=1:	1				 	

Monitoring Point MP-2

Project BRC Owner Bloomfield Refining Company
Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. 023353014

Depth (ft.)	Well Completion	PID (mdd)	Sample ID	 % Recovery	Graphic Log	8	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 -							♥ Groundwater encountered at 24 feet on 5/16/94
26 -							
- 28 -							
- 30 -							End of boring at 30 feet (1640 hrs). Installed well screened from 5 to 30 feet on 5/16/94.
- 32 -							
- 34 -				'			
- 36 -							
- 38 -							
-40-							
- 42 -							
-44-							
- 46 -					<u> </u>		
- 48 -							
- 50 -							
- 52 -							
-54-							
- 56 -							

	GROUNDWATER
	TECHNOLOGY

Monitoring Point MP-3

Project £	BRC					_ 0	wner Bloomfield Refining Company	See Site Map
		y Roa					Mexico Proj. No. <u>023353014</u>	For Boring Location
							Diameter <u>10 in.</u>	COMMENTS:
Top of C	asing		Wate	er Leve	el Initial	28 f	t. Static	1
Screen: [Dia <i>2 in</i> .		Leng	gth <u><i>20</i></u>	ft.		Type/Size <u>PVC .020 in.</u>	Start at 0950 hrs.
Casing: D	ia <u>2 in. </u>	<u> </u>	Leng	gth <u>#</u> /	ft.		Type <u>PVC</u>	
Fill Mater	ial <u>10/20</u>	Co. Sii	ica_			_ R	ig/Core Drill Systems 180	
	Layne							,
Driller <u>Ge</u>	But Hode	<u>iquez</u> 1Mn	Log 1	Ву <u><i>Је</i></u>	rry may	1	Date <u>05/17/94</u> Permit #	
Спескеа	ву	UMI	1		_ Licer	nse r	No.	
	Well	_		Blow Count/ X Recovery	U	88S.	Descripti	
Depth (ft.)	ie je	PIO (ppm)	Sample	, , ,	Graphic Log	อั	·	
a~	¥ E	اعها	E G	A O	3.2 L	S	(Color, Texture, S	Structure)
	ပိ		ű	ăх		Sn	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%
-2-								
-								
1 1								
┝०┤					Hillian	-	Tan, fine, poorly—graded silty SAND	(dry)
	ЩЩ							
- 2 -								
Γ $^{\prime}$ $^{\prime}$	F4 F4							
f -	 							
- 4 -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					SM		
L j							(Same as above)	
	1 74	62					(Same as above)	
F 6 -	<hr/> <h< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></h<>					1		
} →								
L 8 -					HH			
						1		
1						1		
- 10 -		70				SM	Tan, fine, poorly-graded silty/claye	ey SAND (moist)
ļ .						1		
- 12 -	. ≣ .					1		
12						 		
t . †	: <u>≡</u> :				7//	1		
- 14 -								
1 1	 	, , ,				1	Brown/gray-stained, silty CLAY (m	oist low-medium plasticity)
,,	∥∷I≣I∷I	238				CL	Drown/gray stained, siity CLAT (III	oist, ion inculum plasticity)
- 16 -						1		
}	:: ≣ ::					1		
– 18 –	: <u> </u>					1		
``	: <u> </u> :					$\ $		
					1	1	<u>'</u>	
- 20 -		61					Tan, fine-coarse, poorly-graded S	AND (moist)
<u> </u>						SP		
22 -	⊪ l≣l∷						(Comp with grouples of sabbles of	22 ±/= foot)
	: ≣ ::				10	1	(Same with gravel and cobbles at 2	22 +/- (881)
† -	fi:l≣fi:l				::Þ	얆		
- 24 -	- = -				<u> </u> ::•}\	-	1	
1	H	l			11	1	ll .	

Monitoring Point MP-3

Project BRC Owner Bloomfield Refining Company Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. <u>023353014</u> Well Completion Class. Blow Count/ Graphic Log Description PID (ppm) (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% 24 Tan, fine-coarse, poorly-graded SAND with gravel and cobbles 516 26 (Gray-stained at 27 feet) 2415 MP-3 28 Groundwater encountered at 28 feet on 5/17/94 Sample MP-2-27 collected at 27' for lab analysis 30 Encountered weathered limestone at 31 feet. End of boring at 31 feet (1125 hrs). Installed well screened from 11 to 31 feet on 5/17/94. 32 34 36 38 40. 42 44 46 48 50 52 54 56

GROUNDWATER
TECHNOLOGY

Monitoring Point MP-4

Project <i>E</i>	BRC					_ 0	wner <u>Bloomfield Refining Company</u>	See Site Map For Boring Location
							Mexico Proj. No. <u>023353014</u>	FOI BOING ECCATION
Surface 8	Elev		Tota	al Hole [epth :	32 ft.	Diameter <u>10 in.</u>	COMMENTS:
Top of Ca	asing		Wate	er Level	Initial	28 f	<u>f.</u> Static	
Screen: D)ia <i>2 in.</i>		Leng	gth <u>20</u>	ft		Type/Size <u>PVC 0.020 in.</u>	Start at 0845 hrs.
Casing: D	ia <i>2 in.</i>		Leng	gth <u><i>12 f</i></u>	t		Type <u>PVC</u>	
Fill Materi	ial <u>10/20</u>	Co. Sil	lica -			_ R	ig/Core <u>Drill Systems 180</u> ussion	
Drill Co. 🕹	.ayne			_ Meth	od <u>Air</u>	Perc	ussion	
							Date <u>05/17/94</u> Permit #	
Checked	Ву	JPN	Ч		_ Licer	ise N	lo	
	Well Completion		22	Blow Count/ % Recovery	ပ	58.		
Depth (ft.)	eti e	PIO (ppm)	<u>0</u>	, ove	Graphic	S	Descripti	on
e C	3 6	<u>@</u>	Sample	3 8	raj Lo		(Color, Texture, S	Structure)
	ပိ		S	8 %	ן ט	nscs	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%
-2-								
┠┤		}	1					
$\vdash \circ \dashv$		'				<u> </u>	See well MP-3 for lithology	
								•
[]	F7 F7							
- 2 -	< <							
 	\ <u>\</u>							
Γ 4 7	74 74							
ŀ ┤	<							
- 6 -	< <							
	יל היל							
	74 74							
├ 8 ┤								
┝╶┤								
- 10 -				i				
'								
1	ļ.: <u> </u>							
├ 12 -								
├								
,,	. <u> </u> :							
- 14 -	: ≣ ::							
ŀ ┥	l∶l≣l∶							
- 16 -	: <u> </u>							
	- = -							
[ŀ			
- 18 -	⊫i ≣I∷						,	
} - ↓	<u> </u>							
- 20 -	: = ::							
[20]	<u> </u>							
† -						1		
- 22 -	i <u>=</u> i							
	<u>=</u> :		.					
			`				-	
- 24 -	1-1-							

Monitoring Point MP-4

Owner Bloomfield Refining Company Project BRC Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. 023353014 Blow Count/ % Recovery Well Completion Class. Sample ID Graphic Log Description 019 (maa) (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% 24 26 -28 -Groundwater encountered at 28 feet on 5/17/94 30 32 Encountered weathered limestone at 32 feet. End of boring at 32 feet (0910 hrs). Installed well screened from 12 to 32 feet on 5/17/94. 34 36 -38 40 42 44. - 46 48 50 52 54 56

			0	GROUNDWATER
L	الـ	:		TECHNOLOGY

Monitoring Point MP-5

Project <u>4</u>							wner <u>Bloomfield Refining Company</u>	See Site Map For Boring Location
Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. 023353014								
Surface Elev Total Hole Depth <u>31 ft</u> Top of Casing Water Level Initial <u>28</u>					Depth =	31 TT.	Diameter <u>10 in.</u>	COMMENTS:
op of C	asing		wat	er Level	Initial	<u> 20 T</u>	Static	Chart at 0700 to
Screen: I	Dia <u>2 1/1.</u>		Len	gth <u>20</u>	π		Type/Size <u>PVC 0.020 in.</u>	Start at 0720 hrs.
Casing: Dia 2 in. Length 11 ft.								
							ig/Core Drill Systems 180	
	Layne abby Rodi						Date <u>05/17/94</u> Permit #	
Oriller <u>o</u>	Du nour	Ta	LOG M	By Jen	liay		Date <u>0571794</u> Permit #	
Checked		<u> </u>			Licei	156 1	10.	
Depth (ft.)	Well	(mdd) 01d	Sample ID	Blow Count/ % Recovery	Graphic Log	USCS Class	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)
2 - -								
- 0 -							See well MP-3 for lithology	
- 2 -	5 V 5							
- 4 -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$							
6 -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			,				
- 8 -		***		:				
- - 10 -				,				
-								
- 12 - 								
- 14 - 								
- 16 -				• •	1			
- 18 -								
- 20 -					<u> </u>			
- 22 -								
- 24 -		-	-				-	

Monitoring Point MP-5

Cocation 50 County Road 4990, Bloomfield, New Mexico Proi No. 0233 Proj. No. 023353014 Blow Count/ % Recovery Class. Well Completion Sample ID Description P10 (mqq) Graphi Log (Color, Texture, Structure) SCS Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% 24 26 28 Groundwater encountered at 28 feet on 5/17/94 30 Encountered weathered limestone at 31 feet. End of boring at 31 feet (0755 hrs). Installed well screened from 11 32 to 31 feet on 5/17/94. 34 36 38 40 42-44 46 48 50 -52 54. 56

GROUNDWATER
TECHNOLOGY

Air Sparge Well AS-1

roject <u>BRC</u> Owner <u>Bloomfield Refining Company</u> ocation <u>50 County Road 4990, Bloomfield, New Mexico</u> Proj. No. <u>023353014</u>	Boring Location
Surface Elev Total Hole Depth 32 ft Diameter 10 in COMI Top of Casing Water Level Initial 24 ft. Static Screen: Dia 2 in Length 2 ft Type/Size PVC .020 in Start Casing: Dia 2 in Length 29 ft Type PVC Type PVC Silica Rig/Core Drill Systems 180 Drill Co. Layne Method Air Percussion Method Air Percussion Start	MENTS: at 1200 hrs.
Oriller <u>Gabby Rodriguez</u> Log By <u>Jerry May</u> Date <u>05/16/94</u> Permit #	
Description Color, Texture, Struc Trace < 10%, Little 10% to 20%, Some 20%	
-20- (See well VEW-1 for lithology) -2111111111-	

Air Sparge Well AS-1

Owner Bloomfield Refining Company Project BRC Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. <u>023353014</u> Class. Blow Count/ Sample ID X Recovery Graphic Log Description PID (ppm) SCS (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% 24 -Groundwater encountered at 24 feet on 5/16/94 26 28 30 Encountered weathered limestone at 31 feet 32 End of boring at 32 feet (1225 hrs). Installed well screened from 29 to 31 feet on 5/16/94. 34 36 38 40 42 44 46 48 - 50 52 54 56

Vapor Extraction Well VEW-1

		ner Bloomfield Refining Company	See Site Map For Boring Location			
Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. 023353014 Surface Elev Total Hole Depth 26 ft. Diameter 10 in COMMENTS:						
Top of Casing	. Water Level Initial <u>24 ft.</u>	Static	COMMENTS:			
Screen: Dia 2 in	Length See comments	Type/Size PVC 0.020" & 0.040 in.	Start at 1410 hrs. Set nested well. Deep			
Contract Dia 2 in	Length See comments	Type/Size	well servened from 21 to 26 feet (0.020)			
Casing. Dia 2 11.	Co Silica	19pe 170	in. slot, 10/20 sand) and 16 to 21 feet (0.040 in. slot, 6/16 sand). Shallow well screened from 5 to 13 feet (0.040 in.			
		/Core <u>Drill Systems 180</u>	screened from 5 to 13 feet (0.040 in. slot, 6/16/ sand)			
Drill Co. Layre	Method Air Percu	SSION	Siot, 07107 Sand)			
Driller Babby Rounguez	Log By Jerry May	Date <u>05/16/94</u> Permit #				
Checked By	License No					
Depth (ft.) Well Completion PID (ppm)	Sample ID Blow Count/ * Recovery Graphic Log JSCS Class.	Descript	ion			
Te le	Sample Slow Cou & Recove Graphi Log SCS Cle	(Color, Texture, S				
	S S 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%			
2-						
		Tan, fine, poorly-graded, silty SAN(O (dry-moist)			
- 2 - 4	.''SM					
357		Brown, silty CLAY (moist, low plastic	city)			
<u> </u>			:			
- 8 - B	CL					
- 10 - 10 - 21		(Tan same as should				
21		(Tan, same as above)				
- 12 - III III						
- 14 -						
- 16 - 343	SM	Gray-stained, fine poorly-graded,	silty SAND (moist)			
		(Cobbles at 17 feet)				
- 18 -	000					
- 20 - 610	0000	Gravel and cobbles with some fines	(moist)			
	0 00 GP					
- 22 - 3 3 3	0000					
24 - 2048						

GROUNDWATER TECHNOLOGY

Drilling Log

Vapor Extraction Well. VEW-1

Owner Bloomfield Refining Company Project BRC Location 50 County Road 4990, Bloomfield, New Mexico Proj. No. <u>023353014</u> Class. Well Completion Blow Count/ Recovery Graphic Log Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% 24 2048 VEW-1 -24 Gray-stained, fine-coarse, poorly-graded SAND with gravel and GM GM cobbles (moist-wet) 26 Groundwater encountered at 24 feet on 5/16/94 Sample VEW-1-24 collected at 24' End of boring at 26 feet (1500 hrs). Installed nested wells 28 screened from 5 to 13 feet and from 16 to 26 feet (see comments) on 5/16/94. 30 32 34 36 38 40 42 44 46 48 50 52 54 56

APPENDIX B

SOIL SAMPLE CERTIFICATES OF ANALYSIS CHAIN-OF-CUSTODY DOCUMENTATION AND QA/QC DATA, MAY 16 - 17, 1994

BRC/Pilottest.rpt

CASE NARRATIVE

On May 20, 1994, two samples were received for analysis at Inter-Mountain Laboratories, Bozeman, Montana. The chain of custody form requested analysis for volatile organic compounds by method 8240. Client name/Project name was listed as Groundwater Technology / Bloomfield Refinery.

Detectable amounts of targeted compounds were present in the samples.

Limits of detection for each instrument/analysis are determined by sample matrix effects, instrument performance under standard conditions, and dilution requirements to maintain chromatography output within calibration ranges.

Wynn Sudtelgte
IML-Bozeman

0615gt

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:

GROUNDWATER TECHNOLOGY

Sample ID:

VEW-1-24

Project ID:

Bloomfield Refinery

Laboratory ID:

5044666

Sample Matrix:

B944823

Dragoryation:

Carbon Disulfide

cis-1,3-Dichloropropene

Soil

Preservation: Condition:

Cool Intact Date Reported:
Date Sampled:
Date Received:

1

0.2

0.2

06/14/94 05/16/94 05/20/94

Units

mg/kg

mg/kg

mg/kg

Date Extracted: 05/26/94
Date Analyzed: 05/27/94

	Parameter	Analytical Result	Detection Limit
1.1.1-Trichloroethane ND 0.2	1,1,1-Trichloroethane		- Control of the Cont
	1,1,2,2-Tetrachloroethane	ND	0.2

1,1,2-Trichloroethane	ND	0.2
1,1-Dichloroethane	ND	0.2
1,1-Dichloroethene	ND	0.2
1,2-Dichloroethane	ND	0.2
1,2-Dichloropropane	ND	0.2
2-Butanone (MFK)	ND	1 5

ND

ND

J

2-Hexanone	ND
4-Methyl-2-pentanone (MIBK)	ND
Acetone	ND
Benzene	ND
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND

Carbon Tetrachloride	ND
Chlorobenzene	ND
Chloroethane	ND
Chloroform	ND
Chloromethane	ND

Dibromochloromethane		ND
Ethylbenzene		ND
m,p-Xylene	0.3	
Methylene chloride		ND

o-Xylene	0.2
Styrene	ND

0.2	mg/kg
0.2	mg/kg
1.5	mg/kg
0.2	mg/kg
0.2	mg/kg

0.2	mg/kg
0.2	mg/kg

0.2	mg/kg
0.2	mg/kg
0.3	malka

0.2	mg/kg
1	mg/kg
0.2	mg/kg
0.2	mg/kg

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:

GROUNDWATER TECHNOLOGY

Sample ID:

VEW-1-24

Laboratory ID: Sample Matrix:

B944823

Soil

Date Reported: Date Sampled:

06/14/94 05/16/94

Date Analyzed:

05/10/94

Parameter	Analytical Result	Detection Limit	Units
Tetrachloroethene (PCE)	ND	0.2	mg/kg
Toluene	ND	0.2	mg/kg
trans-1,2-Dichloroethene	ND	0.2	mg/kg
trans-1,3-Dichloropropene	ND	0.2	mg/kg
Trichloroethene (TCE)	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:

GROUNDWATER TECHNOLOGY

Sample ID:

VEW-1-24

Laboratory ID: Sample Matrix:

B944823

Soil

Date Reported:

Date Sampled:

Date Analyzed:

06/14/94

05/16/94

05/27/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units
Unknown Hydrocarbon	18.94	20	mg/kg
Unknown Substituted Benzene	19.42	10	mg/kg
Unknown Hydrocarbon	19.82	10	mg/kg
Unknown Hydrocarbon	20.78	30	mg/kg
Unknown Hydrocarbon	22.44	10	mg/kg

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

	Soil	
%	QC Limits	
103	70 - 121	
104	81 - 117	
98	74 - 121	
	103 104	% QC Limits 103 70 - 121 104 81 - 117

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst V

Reviewed

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:

GROUNDWATER TECHNOLOGY

Sample ID:

MP-3-27

Project ID:

Bloomfield Refinery

Laboratory ID:

B944824

Sample Matrix:

Soil

Preservation:

Cool

Date Reported:

Date Sampled: Date Received:

06/14/94 05/17/94 05/20/94

Date Extracted:

05/26/94

Date Analyzed:

05/27/94

Condition:

Intact

Parameter	Analytical Result	Detection Limit	Units
		0.0	N
1,1,1-Trichloroethane	ND	0.2	mg/kg
1,1,2,2-Tetrachloroethane	ND	0.2	mg/kg
1,1,2-Trichloroethane	ND	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloropropane	ND	0.2	mg/kg
2-Butanone (MEK)	ND	1.5	mg/kg
2-Hexanone	ND	0.2	mg/kg
4-Methyl-2-pentanone (MIBK)	ND	0.2	mg/kg
Acetone	ND .	1	mg/kg
Benzene	ND	0.2	mg/kg
Bromodichloromethane	ND	0.2	mg/kg
Bromoform	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg
Carbon Disulfide	ND	0.2	mg/kç
Carbon Tetrachloride	ND	0.2	mg/kg
Chlorobenzene	ND	0.2	mg/kg
Chloroethane	ND	0.2	mg/kg
Chloroform	ND	0.2	mg/kg
Chloromethane	ND	0.2	mg/kg
cis-1,3-Dichloropropene	ND	0.2	mg/ko
Dibromochloromethane	ND	0.2	mg/kg
Ethylbenzene	ND	0.2	mg/kg
m,p-Xylene	1.2	0.2	mg/kg
Methylene chloride	ND	1	mg/kg
o-Xylene	0.2 J	0.2	mg/kg
Styrene	ND	0.2	mg/kg

EPA METHOD 8240 HSL VOLATILE COMPOUNDS

Client:

GROUNDWATER TECHNOLOGY

Sample ID:

MP-3-27

Laboratory ID: Sample Matrix: B944824

Soil

Date Reported:

Date Sampled: Date Analyzed: 06/14/94

05/17/94

05/27/94

Parameter	Analytical Result	Detection Limit	Units
i arameter	nesuit	Liiiit	Onits
Tetrachloroethene (PCE)	ND	0.2	mg/kg
Toluene	ND	0.2	mg/kg
trans-1,2-Dichloroethene	ND	0.2	mg/kg
trans-1,3-Dichloropropene	ND	0.2	mg/kg
Trichloroethene (TCE)	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg

ND - Compound not detected at stated Detection Limit.

- J Meets identification criteria, below Detection Limit.
- B Compound detected in method blank.

EPA METHOD 8240 TENTATIVELY IDENTIFIED COMPOUNDS

Client:

GROUNDWATER TECHNOLOGY

Sample ID:

MP-3-27

Laboratory ID: Sample Matrix:

B944824

Soil

Date Reported:

Date Sampled: Date Analyzed:

06/14/94

05/17/94

05/27/94

Tentative	Retention		
Identification	Time (min)	Concentration	Units
Unknown Hydrocarbon	18.94	20	mg/kg
Unknown Substituted Benzene	19.43	10	mg/kg
Unknown Hydrocarbon	19.80	10	mg/kg
Unknown Hydrocarbon	20.79	20	mg/kg
Unknown Hydrocarbon	22.45	10	mg/kg

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Soil
Surrogate Recovery	%	QC Limits
1,2-Dichloroethane-d4	101	70 - 121
Toluene-d8	104	81 - 117
Bromofluorobenzene	110	74 - 121

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst

Reviewed

1160 Research Drive Bozeman, Montana 59715

QUALITY ASSURANCE / QUALITY CONTROL

LAB QA/QC VOLATILE COMPOUNDS BY GC/MS METHOD BLANK

Date Analyzed:

05/27/94

Laboratory ID:

2MB-147A

Sample Matrix:

Water

n	Analytical	Detection	
Parameter	Result	Limit	Units
Chloromethane	ND	5	ug/L
Bromomethane	ND	5	ug/L
Vinyl Chloride	ND	5	ug/L
Chloroethane	ND	5	ug/L
Methylene Chloride	ND	20	ug/L
Acetone	ND	20	ug/L
Carbon Disulfide	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethene	ND	5	ug/L
Chloroform	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
2-Butanone	ND	20	ug/L
1,1,1-Trichloroethane	ND	5	ug/L
Cyclohexane	ND	5	ug/L
Carbon Tetrachloride	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
1,2-Dichloropropane	ND	5	ug/L
1,4-Dioxane	ND	500	ug/L
cis-1,3-Dichloropropene	ND	5	ug/L
Trichloroethene	ND	5	ug/L
Dibromochloromethane	ND	5	ug/L
1,1,2-Trichloroethane	ND	5	ug/L
Benzene	ND	5	ug/L
trans-1,3-Dichloropropene	ND	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Bromoform	ND	5	ug/L
4-Methyl-2-pentanone	ND	5	ug/L
2-Hexanone	ND	5	ug/L
Tetrachloroethene	ND	5	ug/L
1,1,2,2-Tetrachloroethane	ND	5	ug/L

VOLATILE COMPOUNDS BY GC/MS

Date Analyzed:

05/27/94

Laboratory ID:

2MB-147A

Sample Matrix:

Water

Parameter	Analytical Result	Detection Limit	Units
Toluene	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Ethylbenzene	ND	5	ug/L
Styrene	ND	5	ug/L
m,p-Xylene	ND	5	ug/L
o-Xylene	ND	5	ug/L

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

TENTATIVELY IDENTIFIED COMPOUNDS METHOD BLANK ANALYSIS

Date Analyzed:

05/27/94

Laboratory ID:

2MB-147A

Sample Matrix:

Water

Tentative	Retention		
Identification	Time (min)	Concentration	Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Water	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	100	76 - 114	
Toluene-d8	103	88 - 110	
Bromofluorobenzene	99	86 - 115	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Apralyst V

Reviewed

LAB QA/QC VOLATILE COMPOUNDS BY GC/MS EXTRACTION BLANK

Date Analyzed:

05/26/94

Laboratory ID:

2EB-146

Sample Matrix:

Soil

Date Extracted:

05/26/94

Do no manda : ::	Analytical	Detection	11
Parameter	Result	Limit	Units
Chloromethane	ND	0.2	mg/kg
Bromomethane	ND	0.2	mg/kg
Vinyl Chloride	ND	0.2	mg/kg
Chloroethane	ND	0.2	mg/kg
Methylene Chloride	ND	1	mg/kg
Acetone	ND	1	mg/kg
Carbon Disulfide	ND	0.2	mg/kg
1,1-Dichloroethene	ND	0.2	mg/kg
1,1-Dichloroethane	ND	0.2	mg/kg
1,2-Dichloroethene	ND	0.2	mg/kg
Chloroform	ND	0.2	mg/kg
1,2-Dichloroethane	ND	0.2	mg/k
2-Butanone	ND	1.5	mg/k
1,1,1-Trichloroethane	ND	0.2	mg/k
Carbon Tetrachloride	ND	0.2	mg/k
Bromodichloromethane	ND	0.2	mg/k
1,2-Dichloropropane	ND	0.2	mg/k
cis-1,3-Dichloropropene	ND	0.2	mg/k
Trichloroethene	ND	0.2	mg/k
Dibromochloromethane	ND	0.2	mg/k
1,1,2-Trichloroethane	ND	0.2	mg/k
Benzene	ND	0.2	mg/k
trans-1,3-Dichloropropene	ND	0.2	mg/k
Bromoform	ND	0.2	mg/k
4-Methyl-2-pentanone	ND	0.2	mg/k
2-Hexanone	ND	0.2	mg/k
Tetrachloroethene	ND	0.2	mg/k
1,1,2,2-Tetrachloroethane	ND	0.2	mg/k

VOLATILE COMPOUNDS BY GC/MS

Date Analyzed:

05/26/94

Laboratory ID:

2EB-146

Sample Matrix:

Soil

Date Extracted:

05/26/94

Parameter	Analytical Result	Detection Limit	Units	
Toluene	ND	0.2	mg/kg	
Chlorobenzene	ND	0.2	mg/kg	
Ethylbenzene	ND	0.2	mg/kg	
Styrene	ND	0.2	mg/kg	
m,p-Xylene	ND	0.2	mg/kg	
o-Xylene	ND	0.2	mg/kg	

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in method blank.

TENTATIVELY IDENTIFIED COMPOUNDS EXTRACTION BLANK ANALYSIS

Date Analyzed:

05/26/94

Laboratory ID:

2EB-146

Sample Matrix:

Soil

Date Extracted:

05/26/94

Tentative Identification Retention Time (min)

Concentration

Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

QUALITY CONTROL:

		Soil	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	101	70 - 121	
Toluene-d8	103	81 - 117	
Bromofluorobenzene	97	74 - 121	

References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Analyst Analyst

Reviewed

LAB QA/QC PURGEABLE ORGANIC COMPOUNDS BY GC/MS MATRIX SPIKE SUMMARY

Date Analyzed:

05/31/94

Laboratory ID:

3EMS4804

Sample Matrix:

Soil

Date Extracted:

5/26/94

ORIGINAL SAMPLE PARAMETERS

ONIGINAL SAMILLE LANAMIETERS													
Parameter	Addeo	l Conc	Conc	Recover	y Limits								
1,1-Dichloroethene	2.0	0	1.7	81	59-172								
Trichloroethene	2.0	0	1.7	85	62-137								
Benzene	2.0	0	1.9	95	66-142								
Toluene	2.0	0	2.0	96	59-139								
Chlorobenzene	2.0	0	2.0	100	60-133								

Spike Recovery:

0 out of 5 outside QC limits.

QUALITY CONTROL:

		Soil	
Surrogate Recovery	%	QC Limits	
1,2-Dichloroethane-d4	104	70 - 121	
Toluene-d8	105	81 - 117	
Bromofluorobenzene	95	74 - 121	

Analyst Analyst

Reviewed

CHAIN OF CUSTODY RECORD

	<i>j</i>		<u> </u>		,	1	<i>i</i>	` .		,						2ra			<u></u>	٠.		"H) <u>)</u> ,	,	
		<i>r</i> .	ırks		es 130 17/2	() Luc (x)		Mens	37.		The second secon	1		E OF	-24 BROKEN	Z		Date Time	3/18/611 6946	Date Time	1/ /// // / / / / / / / / / / / / / / /	- John		21787	
		ANALYSES / PARAMETERS	Remarks		2023	(Q000) /	Col				<i>'</i>	the state of the s	1 BOTLE	VEW-1									3304 Longmire Drive	
		ANALYSES				amed of the	y .				*		estu egi egil egil		Ser Sec.	ه.			2 4 774 7		(Signature)	N. S.	0		
	_		51:3	No. of Containe	7	7			# 1 m									Received by: (Signature)	9	Received by: (Signature)		The L	lnc.	11183 SH 30 College Station, TX 77845	ו מומוולמום (
	ng digital sa sa Sa ga da sa Sa sa sa sa sa	£. X		Matrix				W.	· 公文	qu'i	**						A STATE OF THE STA	Time Received	MO Lan	Time Received	-	<u>)</u>	Laboratories, Inc.	1160 Research Dr. Bozeman, Montana 59715 Telenhone (406) 586-8450	~~~ ~~ /~~/~
	Project Location	[2] mars 1:0	Ohain of Custody Tape No.	2	3 < 2, 1	7		:									405	Date	5/18/11/	ate // // // // // // // // // // // // //			ain		
	Proj		/ Ohain of Cu	Lab Number	19944623	ht94468		C	٠		₩ **			ar K								1	Inter-Mount	2506 West Main Street Farmington, NM 87401 Telephone (505) 326-4737	Inan' aunindain
		2 Miner	~ ~ /	e Time	05:11	02.11.20														**************************************	1			1714 Phillips Circle Gillette, Wyoming 82716	
	•	eld Dos	, (6	n Date	24 5/11	29 54	Trans.					1		Ç Y				(Signature)	CORE	(Signature)	(altrin)	Carrier		ζ,	
Laboratorië	Cllent/Project Name	Browisie	Sampler: (Signature)	Sample No./	1000-1 - 2	M. 18-3-	~		**						は、			Relinquished by: (Sign	A.	Relinquished by (Sign		FEDEX (a		1833 Terra Avenue Shekara, Wyoming 82801	
. (<u> </u>	200	7	i i		-	_1_	1	لالا			i			4			- <u>- </u>	1		1 1	لــــ		K	

APPENDIX C SOIL VENT AND AIR SPARGE PILOT TEST FIELD DATA

BRC/Pilottest.rpt

SOIL VENTING PILOT TEST DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

8215006 ર્ Measured by: Date:

Extraction Well:

10 %

The Eleven and Pre-Prox P					A						ے											_													
Time Represol account Relations Perfores Oxford Production Conf. 1971 Time Test Well at Blower Residue Blower Perfores Conf. 1971 Time Test Well at Blower Residue Blower			1	*	- MK -						0.0				220.0		0.075		3.05		0.05		0/10		0.0		0,,0		3		20 0	0.025	0.0		/ent.xls
Time Represol account Relations Perfores Oxford Production Conf. 1971 Time Test Well at Blower Residue Blower Perfores Conf. 1971 Time Test Well at Blower Residue Blower				¥ /	1614-11						200						NC			-			25.0		3.30		27.0	,	3	Į		3/2			RC/Excel/
Time Estavol account President Pre				¥	$\overline{}$						K			-	١		١		1				1		٦		1				1	1	1		
Time Earsed yearum at Preinst Pre-Bound in Reports Concentration (EII)	16			#	W-26								_	-	20		20		Ž	-	ý,			+	0		2	\c		-	3,4		5/3		VSTRUK
Time Earsed yearum at Preinst Pre-Bound in Reports Concentration (EII)	ACH SO			7 6	7-25 M)]		_	-	<u> </u>		\vdash		Ш	_	-		_]	\dashv	J	\dashv	\dashv	+	╁	+	+	+	13		17/
Time Elassed vacuum at Prierbost Pie-Blower Vapor Time Elassed vacuum at Vacuum Annonom Pre-Post Concentration (Eth.) (Ins. 1420) (Ins. 1420) (Ithmin) Temp (or) (PMP) (PMP) (ALE) (Ins. 1420) (Ithmin) Temp (or) (Ithmin)	Malle f		Well	₽ #.	2 MV		_			-			_	-	-		_			_		_		\dashv			1.	_	4	-	\perp	L			,
Time Eleased Acousting Prefront Pr	vation		raction	₩.	-2 P-					_			_	_	_		_		9		\rightarrow			_		\dashv	800			-			1/2		
Time Eleased Acousting Prefront Pr	Ohean		SM EX	± %	-4 RW	1200								_									_	\dashv	1001			6		-	7	Т	7		
Time Eleased Acousting Prefront Pr	irm at		ance in	# 2%	2 MP.	12074	\ -				9.12			_			Н						\rightarrow			_	\neg			\perp	╅				
Time Earsed vacuum at Vacuum Anemom Pre-Post Pre-Blower (Secretarion Eff) OUTO CAPA (INS. HZO) (IN	Var		UIST2	الم 14	1 MP		_							_			_		+.		_		٥	_	0		-		+-	1	\	3 4		7-	
Time Elapsed Vacuum at Vacuum Anemom Preflower Reading Blower PierPost Concentration (Min) (Ins. H2O) (Itamin) Temp (oF) (Itami					12	100					400						0.13		9.15	_	\vdash	$\overline{}$	\neg		1					1	1.	. `	_	_	
Time Elapsed Vacuum at Vacuum Anemom Preflower Reading Blower PierPost Concentration (Min) (Ins. H2O) (Itamin) Temp (oF) (Itami	X	į		L Metd	»(EEL)	201								`		F			KNA		LNA	× 81.			250.5	The state of	10.07	2010	2/11/2			1	61/	1	
Time Elapsed Vacuum at Vacuum Anemom, Pre-Post Time Test Well at Blower Reacting Blower Time Test Well at Blower Reacting Blower C825 C448. P.		•	ation (31 		M		_		_		_			7	X	*				Ž	(63/2	12	\dashv	30	ŢŢ	3,6	- ;	2	+	14	2/2	2/2	1_	2
Time Elapsed Vacuum at Vacuum Anemom, Pre-Post Time Test Well at Blower Reacting Blower Time Test Well at Blower Reacting Blower C825 C448. P.	appe		oncent	OId	(ppmy	18940			9				1000	ľ	0		0		0		δ		Q		٥		3	1			1-	10	10	$\overline{}$	HOCK
Time Elansed Vacuum at Vacuum Anemom. Preison Time Time Test Well at Blower Reading Bloomer Time Test Well at Blower Reading Bloomer Time Test Well at Blower Reading Bloomer Colors Color Color Colors Color Colors	2			ver	(OF)	_			-				A	\	661		83	-	43		38		100	1	40		105		9	-	1	7 5	34		Į.
Time Elapsed Vacuum at Vacuum Anemor Time Elapsed Vacuum at Vacuum Anemor O'320 (mis. H20) (ins. H20) (ins. H20) (thmis) O'320 (mis. H20) (mis		(91	<u>0</u>	Temp		-61	hold	276				1,		82			,	\sim	_	_	_	10,8				148				733	1	X:	11	(
Time Elapsed Vacuum at Vacuum An Time Test Well at Blower Roof Color Col	RICAME		mom:	ading	(min)	-5±	¥.	+	2			(ž		50		50		257		600		g		8		B		23	3 8	250	Pow	20
Time Elabsed Vacuum at Vac 0320	# Dra					1222	2 12	511	d1-1				202		<u> </u>						Щ			-	-	_	\perp	1	+	+	\	+	1	15	
Time Elapsed Vacuum at Time Test Well OUT20 CMB. P.19 (178: H20) (3ra/Doc		vacuur	t Blow	rs. H2(J. HO.	20,	VEW	V21		ones		1300	,	\setminus		\sim		18/40		18/40		8/40		30/40	-	18/40		2000		2/20		12/21	47	
Time Elabsed Va	j	****				7	۱ ۱	m			Rat		Fr.											\exists				+	\dagger	+	╁	1	-	$\overline{}$	7 60
Time Time (250) (2			Vacuu	Test		18.	٧.	0					55		4		42		4.7		43		47		4	<u>o</u> Q.	41	4	4	1	1	4,0	4	1/20	20 0
Time Time (250) (2		1	:lapsed	Time	(ein)	S. C.		Di	٧		574		٥		Ŋ		0/		5/		30		45		00	1410	07)	433	180	1/1/	3	2 2	222	OLU,	24XR
E 6 5 8 8 6 6 6 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1								53	+0.		15		3	-	35		40		145		00		15,	{	\dashv		0		5	17/	4	1-	1_		4
21 V V LXL		j				0,0		080	8		C		00	<u> </u>			60		ŏ		<u>ğ</u>		0/		<u>0</u>	/10	113		1		$oldsymbol{\perp}$				•

- * MAXED OUT LEL p-30, No Acuess

SOIENTIFICA SOIENTIFICA MX 251

SOIL VENTING PILOT TEST DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

Date: 6/14/94
Measured by Jenay may chuck Baiscat

Extraction Well: ジをル・1P

20%

[332	S 80000	Spran 2	À	r	ı Q ı		r⊜	<u> </u>	-		_				_	_	, —	, —,	,			 			_					
		*	1- MOA		40,20		2.40	2.70	3,10	3.50	3.60	3.60	3,00	3.70			3.4	2,5	117											
		¥	Dww 4		+0.10		001/	\$	<i>CS'</i>	80	08%		1.90	6		-	1	.2	٥											
		14 M 57 H	3 12			-		>	7	11 -	/	./	7 -	//	-	-	//	. 11.	7 -						-	-	_			-
			!		XX	_	1	1	<u> </u>	1	١	+	_	1	_	_		-	'						_	_				
ĺ		8	4W-2		0.0		2	9	NC	200	20	8	NC	7			7.0	7	7											
ins H		7 04	92-MW 52-MW		0.0		3	J	NC	νc	NC	0,0		100		-	2	20.	46											
/ells (Well	# 45					2	-		Н		0	٧	_	-	_	5		٧			_			_	_				
tion V	G G	\$	P-2	Ŀ	0.0		1.70	1.90		2.3	7.7	2.4	5.2	5.5			2.1	9 1/	1.1						L	L				
Vacuum at Observation Wells (ins H2O)	Distance from Extraction Well	334 1254 534 404 45214 400A	RW-2		0.0		8,	01.5	2.30	9.7	2.6	2.6	2.7	9.2			2.4	1.0	1.1											
at Ot	moj:	2 5ft	1P-4		10.012 to		3	3	20	0.0	0.0	200	800	30.0			So	0.05	0.035											
Unito	tance	3 ft 1	MP-2 MP-4			#	-	081	B				-	2,60	-	-	40								-	-				\dashv
Va		7 # >	_		02.20 to.25	1	80 /			0 2.40	8 2.5	2.5	2.6	<u> </u>	_	_	2.4		21			_			_	-		-		
			MP-1		4 0.		1	3.20	3.40	3.80	3.8	3.8		4.0		_	3.4	,,	6.1						_		_			
	, ⊕	LEL Meter	(%LEL)*[5.0	821/	יא//	5.7/	///5	5.5/	oo! /	14.5	_	1	1/2.4	113.9	1/5.8											
	ion (fi		%)				43/	102	18	5,8	86	,601	76	16	L		17	141	260						_		_			
	Concentration (Eff)	PID	(vmdd)	DLA			00	- 0	Jo,	120	60	194	0	7				22	137											
Vapor	Suc	В	dd)	J V/0			\	/	/	/) /)/	011	701			11	7/	13	-										
	Pre/Post	wer) (OF)	C 31			75	96/	86	16	53	96	193	26			26	26	76											
	Pre/	Blower	Тетр (оЕ	52		,	74/	(3)	150	104	631	/£9	189	123			129	129	1,39	_	4									
lower	nom	ding	(ft/min)	24.29	an		5	0541	1250	1750	R	12 SO	0541	6			1250	S S	٥		24.24									
Pre-Blowe	Anemorn	Reading	(ftvr	124	/ 6	_	1750	11	17	17	1750	<u> </u>	17	1750			(3	9 00	650		2/09									
Pre/Post	****	ower	H20)	23.87	9		52/	5	57	22/02	72	27	82/	7			25	12/	97,		236									
Pre/	ζąς	at Blower	Œ	7	CALB.		1/02	7/2	52/02	97	54/02	52p2	1/12	52/12			18/2	141	101		= (
	un at	Test Well	(ins. H2O)	-1D	5		Q	0	Q	0	Q	0					m	5	0		1/0/									
	Vacu	Test	(ins:	11-M24		2	92	O.B	20	20	2	20	20	7			81	. /	1	24/	270,									
	Elapsed Vacuum at Vacuum	Тіте	(min.)	1010	ζ (5742-1	\ \	0/	ζ,	30	بر	o 9	07/	081		3	08/	561	0		0									
		-) ((7	-				1 5		4			L.	_	3	L		2	Power	1-12		_	_	-	_	_	_	_	H
	Time			DTW	1420	1430	1435	140	1945	ws/	5151	0851	05,91	1730		STEP COUR	1745	1800	1815	5HU7	11 20 VEW									
<u> </u>	*******	000000	*****			۰,٥		L				L	<u>ل</u> ح.	Ž			<u>é</u> 6	×ۆ	3%		1	 L	l	 <u> </u>	l	<u></u>	1	1 —	L	 لب

BRC/Excel/Vent.xis

Bac Moustain solower mx 251 Line. when

-737

AIR SPARGE PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

1-54	23.77	2,0	Mac 412 Suppuy	1 00 06
Air Sparge Test Well:	Static DTW in AS-1:	Static DO in AS-1:	Compressor type/size:	
Date 6/15/94	Measured by:			Proper projects and the contract of the property of the proper

Distance from sparge well to monitoring point Description Descripti
Distance from sparge well to monitoring point

V																							
Pressure at MP (in H2O)			70,125	40,20	10.005	40.15	40.10	0.0	40.10	40.05			0./+	+055	+0.10	+0.75	4.20	+0.40	+0.60	+0.55			
PID at MP (ppmv)				0,0	5.16	0,0	1/45	1362	661	202 1			59	1.5	20	0.0	140	334	317	146			
DTW DTW in MP (ft)			23.78 14.24	24.56/25,03	685,7/19.52	pra	13.85/4.22	25.09/24H	24:19:20	1.4.63/24.77													
Dissolved Oxygen at MP (mg/l)			PSH)	7	hud /		_	سند	7	2.0												
Monitoring Point (MP)			1-dw	2.00	RP14	120-15	ロールシー	BW-4	RW-2	7-9	1-54		100	2-0W	4-0m	180-15	V8W-10	mu- 4	Ru-2	ケーカ			
Air flow at Sparge Well (scfm)												3 PS4	0/										
Pressure at Sparge Well (psi)												58266 P	M										
Pressure at Regulator (psi)	ĺΩ											418 50	K										
Elapsed Time (min.)	A		٥									Stard	202										
Time		CHANCS	æ									2/2	530										_ _

3/4 " AIR LINE

BRC/Excel/Sparg.xls

AIR SPARGE PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

Air Sparge Test Well:	Static DTW in AS-1:
6/15/94	JAN C1B
ite:	Measured by

310 C C C C C C C C C C C C C C C C C C C	Static DTW in AS-1:	Static DO in AS-1:	Compressor type/size:			
					H	VEW-1S
						<u> </u>
					ų,	MP-4
) point	t t	RW-2
				to monitoring	t t	6-d
174	JAN 018			n sparge well to n	H	MW-4
44/5/19	3			Distance from st	Į	VEW-10
	easured by:				¥	MP_2
are:	easured				ij	MD-1

Pressure at MP (in H2O)	1.15	+0.7	+0.15	to.90	+1.50	+ 6,50	+0.75	+ 0.55	1.15	+0.75	0.15	0.95	+ 1.55	+ 0.55	40,80	10,65		1.75	+0,90	+0.15	41,20	42.40	+0.75	+1,20	+0.90	
PID P	-	+ /	100	0 +	+ 529	322 +	355 1	Н	225 +	1.7	21 7	+	+ 1291	417 +	350 7	623		245 F	1	+ 9/		+ 8061	28 +	478 +1	ᅥ	
DTW a in MP a					<i>y</i>	.~\							7	1				`						7		
Dissolved Oxygen at MP in (mg/l)						_																				
			4	×	0,	4	7	1			<u> </u>	/5	10	*	7	7			2	*	5	10				
Monitoring Point (MP)	1. Al.	NPI	4-9W	VEW/IS	Vew-10	N. 4-4	7-00%	2-2	1-04	2-du	4-0W	51-m21	11-man	mm-	アーカイ	2-0		1-dw	2-dW	4-9W	VEW-15	12m-10	4-4	Rw-2	2-0	-
Air flow at Sparge Well (scfm)	7.1								-									17.5								
Pressure at Sparge Well (bS)	3								3								152	2								
Pressure at Regulator (osi)	ک								3								2 3									
Elapsed Time (min.)	8								60								40Just	03								
Time	625/								0/9/								1615	1630								

BRC/Excel/Sparg.xls

AIR SPARGE PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

Air Sparge Test Well:	Static DTW in AS-1:	Statig DO in AS-1;
Date: 6/5/94	Measured by:	

Compressor type/size:			
		+	VEW-1S
		¥	MP-4
	g point	t t	RW-2
	o monitoring	t t	P-2
	sparge well	4	MW-4
	Distance from	¥	VEW-1D
	3	Ħ	MP-2
		Ħ	MP-1

Pressure at MP (in H2O)	07.17	40.20	+ 1،50	t 2.80	40.90	+1.35	41.0	42.20	71.05	ez.0+	1 0.45	+2.80	+0.85	+1.30	+0.95	- 1	٠, ا	+1.05	40.50	+1.45	72.9D	10,85	41.30	4/5	
PID at MP (ppmv)	1785	630	8,0	22500	285	710	260	72500	3.0	13/	ĩ	22500	235	125	04.7		ON. Y. <	1.3	760	1.4	52500	052	5 0 8	273	
DTW in MP (ft.)																									
Dissolved Oxygen at MP (mg/l)																									
Monitoring Point (MP)	1-04	4-9W	Man-15	15W-10	AW-4	7-02	42	1-04	1.9W	MP-4	51-0021	12m-10	p-mu	イーのと	p - 2		1-94	rodu	4.0W	11-m21	VEW -10	mw - 4	Rw.r	7-0	
Air flow at Sparge Well (scfm)	15.1							5.81																	
Pressure at Sparge Well (DSI)	61							19.5									97								
Pressure at Regulator (osi)	>							5									>								
Elapsed Time (min.)	5210							#8 K									185								
Time	1715							145									5181								

BRC/Excel/Sparg.xls

AIR SPARGE PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

	Air Sparge Test Well:	Static DTW in AS-1:	Static DO in AS-1:	Compressor type/size:	
Date: 6/15/44 // // // // // // // // // // // //		asured by:			

Static	Static	Compre			
•				#	VEW-1S
				ft	MP-4
			point) i	RW-2
			to monitoring	- 4	P-2
; C16			n sparge well	14	4-WM
jam CTE			Distance from	ff	VEW-1D
oy:				#	MP-2
Measured t				#	MP-1

Pressure at MP (in H2O)									-		
DTW PID in MP at MP (ft) (ppmv)		26.55	3/24/97	6/125,00	412K 78	Olay	25.14/2590	25.11 (25.78	24 46/24/60	24-64/2465	
Oxygen D' at MP in (fig/l) (fig/l)		4.7 - 1265	1244	P518 24.	1/28.64/2	0	1.25.	1510 25.	1241	¥ 24.c	
Monitoring C Point (MP)		AS-1 🐗	1-0W	200	np4	レモガイン	0 mg/	mw-4	アーかる	2-0	
Air flow at Sparge M Well (scfm)			•	`)				
Pressure at Pressure at Regulator Sparge Well (psl) (psl)											
Pressure at Regulator (psi)	ALA LIA									MP	1 DTW/
Elapsed Time (min.)	SHU D										1200 KOADIAG
Time	1430	1830									SENO

$\frac{1}{1}$					•	1		
o ka	1845 END KOADINGK	P1W/				,	:	
_			8	1-54		125,47		
-			7	1-dw		24.20/24	318	40.01
-			14	2.0		24.61/25	10.	10.01
			4	4-0		25.66/23	80	٥.٥
			25/	2-15		'hva		40.0
-			2	01-2		25.01/25	78	0,08
			3	4-4		25.15/25	5	0.0
-			8	スールン		24.34.44.69	64	+0.05
-			7	2-0		24.70/24.8	4	0,0
-						,		
-								
-								
_								
-								

AIR SPARGE/SOIL VENTING PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

34"4 AIR 163E

	oints:	MP-1	MP 4	VFW-1S	/d2 MW4	P-2	RW-2	and possibly	MW-25	MW-26	P-3																											Spaven.xis		
:	Monitor Points:			•	18/10	11/1)																									\	6/20.3					BRC/Excel/Spaven.xls		
				Pressure	at MP	(in H2O)				40.2	10.01	0.0	+0.06	0.0	o . o	e i	0.0	ı														7	I		0.0	1.65	0.40	0.30	0.80	
				Old	at MP	(Mudd)				63	2 153	427		2230	2	101 6	NA 704	1															3	رځ	1055	Q	11	8	<u>ئ</u> ئ	
			1000	, wid	In MP	(#)		,	12384	4257/8777	2390 24.4	0012/895Z	KOLA	2448 12489	1551V254	6941/0477	14. A. A. A.																							
			Dissolved	******	at MP	(VBW)			NA	₩	PKK		mo		PS4	1.	*																							
	AS-1	VEW-1D		Monitoring		(MP)			1-54	1-on	work.	no-4	S)- M2/	VEN-10	nw-d	8m-2	2-0							1-04	2-00	4-9W	VEW-15	MW-4	GAW 2	AP-2			1-04	mp. 2	Max	Vaw-15	Aw-4	Rw.r	2'4	
	Air Sparge lest Well AS-1	Vel:	Vanor Con	at Blower		(Audd)				7														430		,							35						!	
	Air Sparge	Vent lest Well:		Pre/Post	Blower	(40) dwa L																											63/85							
			Pre-Blower	Алетот	Reading	(f/min)																				2							120							
_			Pre/Post	Vacuum	at Blower	(in. H2O)																	1	27/33	1	6 /Blowan						,	97/02							
			Vacuum	at Vent	Well	(III H2O)	NORKING												-	1001	\	(ISA)		23		es piping					non	P\$2)/	14							
			Air flow at	Sparce	Well		NOT NOW													0%0 DILU 7100		(5		17	1	12 5025				Į	DILU	2	20							
1	27,0	010		Pressure at	Sparge Well	(bs)	71												1	0	7	SPANCE				MATON 12				1	1259	8000	,							1
	V	1000/		Pressure at		(jg()	8		200									5747165		5068		A112		5		+ rumad				`		7 410							İ	(, , ,
				Elansed P		(min.)	010		514716								ļ	END	_	55247		Stant		15		JHL DIG				1410	1257427	Result	25						,	1 161 /65
1	Uate:	Measured by		Time			200		0815								,	6845		0900		0415		0830	Н	0435				$\overline{}$	0350	2360	5101							7

LEL/02 IND - INOUSH. MSA-

AIR SPARGE/SOIL VENTING PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

	25	RW-2 and possibly	n yo		2					9					4	,	D. BATTORY	/ Otto O			<u>s</u>
Monitor Points: MP-1	MP4 MEL/Q2 MW4 P-2	7 /20 / and p	MW-2	<u>-</u>	Qx1 5.2/1					15/19.9 120					7 100/ASM SA		7			- !: !	0.40 BRC/Excel/Spaven.xls
	Pressure AP at MP TM (in H2O)	60.7			+	\prod	0.0 1,70	5 0,45	\mathbb{H}	7.7	1.15	7.7	0.45	0.85	<i>C7.1</i>	1	-		+	1	1
	DTW PID at MP (ft.) (ppirty)	0.0	970	3.5	4	0	6/	714	2	42	4	750	E k.	0	06	0	339	Ø	0	Q'	2
	Dissolved ring Oxygen rt et MP r (mg/l)	1	£ %	47		2,	±1.5	4 7	7		2	15	+			7	7	\$/	4	7	
Well: AS-1 VEW-1D	at Blower, Monforing (eff) PID Point (ppmv) (MP)	314 MO-1	Mp-4	Aw-4 8w-2	12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	H	Mon4	MW-4	2-0	337 MO-1	П	51-m21	+-mu	7-d	194 89		200	1/600-15	1111-4	1 m2	17
Air Sparge Test Well: AS-1 Vent Test Well: VEN	Pre/Post Blower Temp (oF)	06/20			64/90 3	╢				2 08/19					64/97	,					
	Pre-Blower Anemorn Reading (ft/min)	1200			(200					720					67.)					-	
	n Pre/Post Vacilum at Blower (m. H20)	20/26			12/02					C7/02					10/27						
	wat Vacuum ye ar Vent if Well n) (in H2O)	17			6					80					8/						
8	Pressure at Sparge Sparge Well Well (591) (5471)	73			12					1.7					12 -						_
6/16/94 Jan, CTB	Pressure at Pres Regulator Span (pal)	1			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					\ \ \					5						
þý.	Elapsed Pri Time Ri (mln.)	35			50					5%					36						
Date: Measured by:	Time	1030			1045					00//					041/						

AIR SPARGE/SOIL VENTING PILOT TEST FIELD DATA BLOOMFIELD REFINING COMPANY BLOOMFIELD, NEW MEXICO

Monitor Points: MP-1	$\sqrt{\frac{NP4}{OL}}$ NP4 \sqrt{OL} P-2	A RW-2	and possibly	MW-25	MW-26	P.3																		•				•			,	BRC/Excel/Spaven.xls
Mo	Presente at MP //E	7	1.25/	0.05	1.15	54.0	0.70	0 85																			10.15	40.20	40.20	+0.15		BRC
	PID at MP (pprrv)		0	240	ව ට	,	ن	0						24:14	12500	2125.88	124.40		4543	1465	74,77		7	. 7	8/24c K						1	
	wed DTW DTW In MP (ft.)											-		1282	2463	25.6%	2345/	000		24341	1467/		2403	24.65	2418							_
AS-1 VEW-1D	Monitoring Dissolved Point at MP (MP) (mg/l)	Н	2-04	ma4	VBW-15	AW-4	RW-2	2-2						10	2.2	MP-4	Van-1D	5+m2/	mw-4	ew-2	2-1		1-04	2-04	1641P		mp	2-00	VEW-15	v@w-10	+	
Vell:	Vapor Con at Blower (eff) PID (ppmv)	4	H	"	1/1	¥	A				-			MP	7	W	1/4	1/1	U	100					150	ľ	3		2/	Š		
Afr Sparge Test Vent Test Well:	Pre/Post Blower Temp (oF)	\vdash	,							100	/20																	1			1	
	Pre-Blower Anemorn. Reading (f,/min)	Ш									2, ()																				-	
	Pre/Post Vacuum at Blower (in. H2O)	П									١																	-			+	
	e at Verum Well Well (in H20)	H							20	Dilitary 22																				1	+	
	Air flow a sparge Well (scfm)								0/ 7/1/	47 40. /	0/0	72	545	12		AIR SPACE												+			1	
1/6/44	Pressure at Pressure at Regulator Sparge Well (ps) (ps)								55 DICOTION	20-016		YEAR / MANY	۸,	-																1	+	
	Elapsed Pressi Tune Regu (min.) (p.	5 52	•					ı	SAU 5/05	200	11.18	SH 7 3		L		SHUT PENU	-										+				+	
Date: Measured by:	Time E	1 000						+	(170	13.30	76.22	17-20	200	3521		1249 51						***	020			77.25	1245					

APPENDIX D

AIR SAMPLE CERTIFICATES OF ANALYSIS, CHAIN-OF-CUSTODY DOCUMENTATION, AND QA/QC DATA, JUNE 14 AND 16, 1994

BRC/Pilottest.rpt

IN ANALYSIS

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Terry Bennett

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

Lab Number : CK-2892-1

: BRC/023353014.32

Analyzed

: 06/15/94

Analyzed by: EJ

Method

: EPA TO-14

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED :	BY	SAMPLED	RECEIVED
VEW-1S Effluent	Air	Jerry A.	May	06/14/94 1230	06/15/94
CONSTITUENT		*PQL	RESULT ppbv	RESULT μg/cu M	NOTE
FUEL FINGERPRINT in AIR					1
Benzene		20.	690.	2200.	
Toluene		20.	110.	400.	
Ethylbenzene		20.	120.	530.	
Xylenes		20.	740.	3200.	
Ethylene Dichloride		20.	ND	ND	
Ethylene Dibromide		10.	ND	ND	
Total Fuel (non-methane hydrocarbons)		1000.	130000.	460000	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V04E GD/geepr(dw)/yl MS2*A

Respectfully submitted,

COAST_TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D.

Group Leader

CLIENT: Terry Bennett

Groundwater Technology

Albuquerque, NM 87106

2501 Yale Boulevard SE, Suite 204

COAST-TO-COAST ANALYTICAL SERVICES, INC.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012 (805) 389-1353

FAX (805) 389-1438

Lab Number : CK-2892-1

Project

: BRC/023353014.32

Analyzed by: EJ

Analyzed : 06/15/94

Method

: GC/TCD

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

MATRIX	SAMPLED BY		SAMPLED	RECEIVED
Air	Jerry A. Ma	у 06	/14/94 1230	06/15/94
	(CAS RN)	*PQL PERCENT	RESULT PERCENT	NOTE
	(124389)	0.1	0.3	
	(7782447)	0.01	18.	
	(7727379)	0.02	64.	
	(74828)	0.005	18.	
	(630080)	0.1	ND	
		Air Jerry A. Ma (CAS RN) (124389) (7782447) (7727379) (74828)	Air Jerry A. May 06 (CAS RN) *PQL PERCENT (124389) 0.1 (7782447) 0.01 (7727379) 0.02 (74828) 0.005	Air Jerry A. May 06/14/94 1230 (CAS RN) *PQL RESULT PERCENT PERCENT (124389) 0.1 0.3 (7782447) 0.01 18. (7727379) 0.02 64. (74828) 0.005 18.

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/27/94 TCD/06159411 GD/geepr(dw)/yl KF15TA

Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D

Group Leader

EXCELLENCE
IN ANALYSIS SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Terry Bennett

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

QC Batch ID: MS2*A CK-2892-1 Project : BRC/023353014.32

Analyzed : 06/15/94

Analyzed by: EJ

Method : EPA TO-14

QC DUPLICATE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SA	MPLED BY	SAMPLE	D DATE	RECEIVED
VEW-1S Effluent	Air	Je	rry A. May	06/1	4/94	06/15/94
CONSTITUENT		*PQL	RESULT ppbv	RESULT μg/cu M	%DIFF	NOTE
FUEL FINGERPRINT in AIR						1
Benzene		20.	780.	2500.	13.	
Toluene		20.	130.	480.	18.	
Ethylbenzene		20.	140.	600.	12.	
Xylenes		20.	900.	3900.	20.	
Ethylene Dichloride		20.	ND	ND		
Ethylene Dibromide		10.	ND	ND		
Total Fuel (non-methane hydrocarbons)		1000.	140000.	490000	6.3	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V05E GD/geepr(dw)/yl CK2892-1

Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Pk.

Group Leader

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/15/94

Analyzed by: EJ

Method

: EPA TO-14

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED I	3Y	SAMPLED DA	TE RECE	IVED
QC SPIKE	Air					
CONSTITUENT		*PQL μg/cu M	SPIKE AMOUNT	RESULT µg/cu M	%REC	NOTE
FUEL FINGERPRINT in AIR						1,2
Benzene		50.	7100.	7200.	101.	
Toluene		100.	28000.	23000.	82.	
Ethylbenzene		100.	3200.	2600.	81.	
Xylenes		100.	19000.	15000.	79.	
Ethylene Dichloride		100.	5500.	5400.	98.	
Ethylene Dibromide		100.	4100.	3600.	88.	
Total Fuel (non-methane hydrocarbons	s)	4000.	230000	190000	83.	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.
- (2) Zero Air spiked with premium unleaded gasoline.

06/17/94 MS2/2V06E GD/gegcc(dw)/yl CK9406-15

Respectfully submitted,

COAST-TO-QOAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D.

Group Leader

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/15/94

Analyzed by: EJ

Method: EPA TO-14

INSTRUMENT BLANK

REPORT OF ANALYTICAL RESULTS Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAM	IPLED DATE RI	ECEIVED
INSTRUMENT BLANK	Air				
CONSTITUENT		(CAS RN)	*PQL μg/cu M	RESULT μg/cu M	NOTE
FUEL FINGERPRINT in AIR	, <u>, , , , , , , , , , , , , , , , , , </u>				1
Benzene		(71432)	50.	ND	
Toluene		(108883)	100.	ND	
Ethylbenzene		(100411)	100.	ND	
Xylenes			100.	ND	
Ethylene Dichloride		(107062)	100.	ND	
Ethylene Dibromide		(106934)	100.	ND	
Total Fuel (non-methane hydrocarbons)			4000.	ND	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V03E GD/gegcc(dw)/yl CK9406-15 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph. R

Group Leader

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012 (805) 389-1353 FAX (805) 389-1438

QC Batch ID: KF15TA

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/15/94

Analyzed by: EJ

Method : GC/TCD

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	<u>r</u>	SAMPLED DATE RECEIVE		
QC SPIKE	Air					
CONSTITUENT		*PQL PERCENT	SPIKE AMOUNT	RESULT PERCENT	%REC	NOTE
FIXED GASES AND METHANE						
Carbon Dioxide		0.1	15.	15.	100.	
Oxygen		0.01	7.1	7.0	99.	
Nitrogen		0.02	66.	66.	100.	
Methane		0.005	4.6	4.6	100.	
Carbon Monoxide		0.1	7.1	7.2	101.	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/27/94 TCD/06159413 GD/geepr(dw)/yl CK2891-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D.

Group Leader

Halm Off Lington 168 ŏ Lab ID# * Matrix.

DW - Drinking Water

WW - Wastewater

GW - Groundwater

SW - Surface Water

IM - Impinger

FI - Fitter

FP - Free Product

A/G Air/Gas

SL - Sludge/Soil/Soild

OT - Other Ν 532 Auth. Init. Received By X FAX. N Remarks 1110 لٰا 80/3 Project MGR Myanoram 1 ptact \ Date/Time Copies To: N Condition (See Remarks) Phone # (<0<) MACATEGORISM S/60H Y Y Sealed * Subject to Availability -FAX (805) 543-2685 FAX (805) 967-4386 FAX (707) 747-2765 FAX (219) 462-2953 FAX (805) 389-1438 FAX (207) 775-4029 ヴィジ Circle for RUSH* Tech 100 14000 Jest Analysis State Relinquished By <u>Ş</u> = MALL REMARKS & Pulgi CCG TO CNS N (805) 964-7838 (707) 747-2757 (219) 464-2389 (805) 389-1353 (207) 874-2400 SIJU 15. CA 5 100 Date/Time Due Date Contact 911 1112 H 流が Received By Valparaiso, Indiana 46383 San Luis Obispo, CA 934 Goleta, CA 93117 Benicia, CA 94510 Čamarillo, CA 93012 Westbrook, ME 04092 *Matrix Containers Pres. Address 250 J Raso Received By 4 重 ÇĮÇ 7/08 PROCE 1,567 745 Date/Time に関する 123 Date/Time Coll'd Mr. Car A. 20 41 Suburban Koad 751 S. Kellogg, Suite A 6006 Egret Ct. 2400 Cumberland Dr. 340 County Road No. 5 4765 Calle Quetzal 4 N er numbern let 85388706 Shipping # Kirney May Sample Description ۱Ĺ VENT Relinquished By Bill (If different than above) PLEASE PRINT IN PEN Ū Sampler (Print and sign) 17:11 110 Shipping Method Project Name/Number 15 REMARKS VEW = TO FOUND AN ANALYTICAL SERVICES アたろ Address Client FOR LAB USE ONLY

SAMPLE CONTROL

DEOPOFF YOUR PACKAGE AND SAVE SENDER'S COPY

1906	Phone Number (Very Important) 357-13 Department/Floor No.	21.5/ quired	duired	Rase Charges Beclared Value Charge	Other 1 Other 2	Total Charges Revision Date 1292 Per 137504 FEW -1093 Per 137504 Per 1350 • 192-33 FEEX PRINTED IN
AIRBILL 8533939061	1888 - Bellink v. Beetpenre 1888 - Beetjan J. Beetjan J	Dome or to to Goods 1 2 1/2 / 2 1/2 1/	I, Print FEDEX Address Here Services of the system of definition NAVA WINSING I. N. 1. ZIP Required Considering to the state of the services Windows Consideration of the services Conside	AND LIMIT OF LIABILITY or order to be considered by the constraint of the single from the control of the single from the control of the single from the control of the cont	not be responsible for any oldin in excess of \$100 per, whether it is neared to exact, strange, dealy non-oldinery, ery, or maintenantion, intess you declare a higher year. Middlional charles when the person of the person in t	porti, sitorneys less, const., and office, brims officiantego whether, offered, incidential, consequential, or specials ill imited to the greater of \$100 over the because verils as posteriol to the full. Recovery cannot active dictual focus with a marinum Declared Value for FedEz-Park packages is \$500,1% con-constructions and FedEz-Park packages is \$500,1% con-constructions and FedEz-Park packages is \$500,1% con-constructions and FedEz-Park packages in a your conjugate and parties of the full marinum of the packages in the properties of the packages in a your conjugate and parties of full for infinite information, and you sequent authorizes Federal Express from any dains resulting, therefrom Relinease Federal Express from any dains resulting, therefrom Relineases.
AIRBILL PACKING NUMBER TRACKING NUMBER	James Print	Address (The Cannot Letter to Fo. 8	THOU AT FEDEL LOCATION, Print FEDEL Address Hera Hera A		We will not b package, whe misdelivery, o pay an additio claim, thribatic apply. Your it including their	profit, attended, inc. \$100 or; it stood or; it seeked or it seek
L HOH U.S. LOCATIONS. LYON U.S. LOCATIONS. SKIP, 2745(3.7)	Important) To (Recipients in Floor No.	Exel Sirel An	Bill Com Card Mich. (1978) 5. 1999 5.	CY COLT AND	Soft Street is created at the soft of the	DIM SHIPMENT Chargeable Weight) LA W X H Received AI 1 Regular Stop 2 Drop Box
HE CL. GETTL LISA, ALSKA AND HAWAT. 3355 TQLL FREE. SAULT FREE	A You forging Number (Nery Important)	Company of the property of the		Check Bentoss required Check Bentoss required Check Bentoss required Check Bentos Remove Check Town WEERON Con In FEDST CONTINUMERONY	CATION SATURDAY, a	Office of boatons
Millette for synemetris minnin ine co. minemannous an invision synemetris minnin ine co. 170NS7 CALL 800-238-5355 July 170NS7	CHNOLDGY INC	A Commence of the commence of	*YOUR INTERNAL BILLING REFERENCE INFORMATION (optional) (First 24 characters will appear on involca.) PAYMENT) Toolar Sender " 2	DELIVERY AND SPECIAL HANDLING COPICS SERVICES TO COPICS THE COPICS SERVICES SONTON THE COPICS SERVICES THE COPICS SERVICES TO THE SERVICE SONTON WESTON TO THE SERVICE SONTON WESTON TO THE SERVICE SONTON WESTON TO THE SERVICE SONTON TO THE SERVICE	38 46 TRIN Saluday	
SACOM BS SECOND MINERS	Please Print to printed		BILLING REFERENCE INFORM 1313 Gill Songel 2 Ditt Fickbierth Accu. Connic Cara fro. 23919	Studies (1997) 9 box) andaid Oyemlor the Sanda defenses after OTHER 1997		54 FEDEX TUBE, GOVERNMENT OF CONTROL Managed in American in American 10 GOVT 11 GOVT 11 GOVT 11 GOVT 12 MCMAGE 13 MO-DAY 19 GOVT 10 GOVT
3300M sanons mean of	From (Your Name)	Street Address Chr. Chr. Chr. Chr. Chr. Chr. Chr. Chr.	AOURINTERNAL	Check only on Check on	16 FEDEX PART 12 FEDEX PART 13 FEDEX POX	14 FEDEX TUBE ECOTOTY, THO-Day Denning and between 187 (1) 30 ECOMONIV. (Company tel.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

Lab Number : CK-2970-1

Project

: BRC/023353014132

CLIENT: Terry Bennett

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

Analyzed : 06/16/94

Analyzed by: EJ

Method : EPA TO-14

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED	SAMPLED BY Jerry A. May 06		RECEIVED
VEW-ID EFF	Air	Jerry A			0 06/16/94
CONSTITUENT		*PQL ppmv	RESULT ppmv	RESULT mg/cu M	NOTE
FUEL FINGERPRINT in AIR					
Benzene		0.1	120.	380.	
Toluene		0.1	4.3	16.	
Ethylbenzene		0.1	13.	57.	
Xylenes		0.1	65.	280.	
Ethylene Dichloride		0.1	ND	ND	
Ethylene Dibromide		0.05	ND	ND	
Total Fuel (non-methane hydrocar)	bons)	5.	3100.	11000	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V10E GD/gegcc(dw)/yl MS2*A

CC: Chris Hawley Bloomfield Refining Company #50 Country Road 4990 Bloomfield, NM 87413

Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai,

Group Leader

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012 (805) 389-1353

FAX (805)389-1438

CLIENT: Terry Bennett

Lab Number : CK-2970-1

Groundwater Technology

Project

: BRC/023353014132

2501 Yale Boulevard SE, Suite 204

Analyzed : 06/16/94

Albuquerque, NM 87106

Analyzed by: GD

Method

: GC/TCD

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY		SAMPLED	RECEIVED
VEW-ID EFF	Air	Jerry A. Ma	y 06	/14/94 1730	06/16/94
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	NOTE
FIXED GASES AND METHANE			,		
Carbon Dioxide		(124389)	0.1	2.3	
Oxygen		(7782447)	0.01	4.3	
Nitrogen		(7727379)	0.02	25.	
Methane		(74828)	0.005	68.	
Carbon Monoxide		(630080)	0.1	ND	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/17/94 TCD/06169403 GD/gegcc (dw) KF16TA

CC: Chris Hawley

Bloomfield Refining Company #50 Country Road 4990 Bloomfield, NM 87413

Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D.

Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

Air, Water & Hazardous Waste Sampling, Analysis & Consultation • Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories

CLIENT: Terry Bennett

Groundwater Technology

Albuquerque, NM 87106

2501 Yale Boulevard SE, Suite 204

COAST-TO-COAST ANALYTICAL SERVICES, INC.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

QC Batch ID: MS2*A CK-2970-1

Project

: BRC/023353014132

Analyzed : 06/16/94

Analyzed by: EJ

Method

: EPA TO-14

QC DUPLICATE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAM	PLED BY	SAMPLE	D DATE	RECEIVED
VEW-ID EFF	Air	Jer	ry A. May	06/1	4/94	06/16/94
CONSTITUENT		*PQL ppmv	RESULT ppmv	RESULT mg/cu M	%DIFF	NOTE
FUEL FINGERPRINT in AIR						1
Benzene		0.1	110.	350.	8.2	
Toluene		0.1	4.	15.	6.5	
Ethylbenzene		0.1	12.	52.	9.2	
Xylenes		0.1	62.	270.	3.6	
Ethylene Dichloride		0.1	ND	ND		
Ethylene Dibromide		0.05	ND	ND		
Total Fuel (non-methane hydrocarbons)		5.	2800.	10000	9.5	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V11E GD/gegcc(dw)/yl CK2970-1

Respectfully submitted,

-TO/COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Group Leader

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/16/94

Analyzed by: EJ

Method : EPA TO-14

INSTRUMENT BLANK REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX SAMPLED		SAM	PLED DATE RE	CEIVED
INSTRUMENT BLANK	Air				
CONSTITUENT		(CAS RN)	*PQL μg/cu M	RESULT μg/cu M	NOTE
FUEL FINGERPRINT in AIR					1
Benzene		(71432)	50.	ND	
Toluene		(108883)	100.	ND	
Ethylbenzene		(100411)	100.	ND	
Xylenes			100.	ND	
Ethylene Dichloride		(107062)	100.	ND	
Ethylene Dibromide		(106934)	100.	ND	
Total Fuel (non-methane hydrocarbo	ns)		4000.	ND	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/17/94 MS2/2V08E GD/gegcc(dw)/yl CK9406-16

Respectfully submitted,

COAST-TO-QUAST ANALYTICAL SERVICES, INC.

Gesheng Dai,

Group Leader

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/16/94

Analyzed by: EJ

Method : EPA TO-14

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED E	SAMPLED BY		TE RECE	EIVED
QC SPIKE	Air					
CONSTITUENT		*PQL μg/cu M	SPIKE AMOUNT	RESULT µg/cu M	%REC	NOTE
FUEL FINGERPRINT in AIR						1,2
Benzene		50.	7100.	8200.	115.	
Toluene		100.	28000.	24000.	86.	
Ethylbenzene		100.	3200.	4100.	128.	
Xylenes		100.	19000.	22000.	116.	
Ethylene Dichloride		100.	5500.	5400.	98.	
Ethylene Dibromide		100.	4100.	3800.	93.	
Total Fuel (non-methane hydrocarbons)		4000.	230000	290000	126.	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.
- (2) Zero Air spiked with premium unleaded gasoline.

06/17/94 MS2/2V12E GD/gegcc (dw) /yl CK9406-16

Respectfully submitted,

COAST-TO-GOAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph Group Leader

CLIENT: Terry Bennett

Groundwater Technology

Albuquerque, NM 87106

2501 Yale Boulevard SE, Suite 204

COAST-TO-COAST ANALYTICAL SERVICES, INC.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

QC Batch ID: KF16TA CK-2970-1

: BRC/023353014132

Project

Analyzed Analyzed by: GD

: 06/16/94

Method

: GC/TCD

QC DUPLICATE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMP	LED BY	SAMPLE	DATE RE	CEIVED
VEW-ID EFF	Air	Jerry	y A. May	06/14	/94 06	5/16/94
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	%DIFF	NOTE
FIXED GASES AND METHANE						
Carbon Dioxide		(124389)	0.1	2.2	4.4	
Oxygen		(7782447)	0.01	5.1	17.	
Nitrogen		(7727379)	0.02	28.	11.	
Methane		(74828)	0.005	65.	4.5	
Carbon Monoxide		(630080)	0.1	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/17/94 TCD/06169404 GD/gegcc (dw) CK2970-1

Respectfully submitted,

COAST-TO-GOAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D

Group Leader

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

QC Batch ID: KF16TA

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/16/94

Analyzed by: GD

Method : GC/TCD

OC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED B	SAMPLED BY		SAMPLED DATE RECEIVED		
QC SPIKE	Air						
CONSTITUENT		*PQL PERCENT	SPIKE AMOUNT	RESULT PERCENT	%REC	NOTE	
FIXED GASES AND METHANE							
Carbon Dioxide		0.1	15.	15.	100.		
Oxygen		0.01	7.1	7.1	100.		
Nitrogen		0.02	66.	66.	100.		
Methane		0.005	4.6	4.7	102.		
Carbon Monoxide		0.1	7.1	7.1	100.		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/17/94 TCD/06169405 GD/gegcc(dw) CK2970-1 Respectfully submitted,

COAST-TO-GOAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D.

Group Leader

SFree Product Air/Gas Sludge/Soil/Solid Other Drinking Water Surface Water Wastewater Groundwater Impinger Received FAX# Remarks Zip Project MGR Date/Time Copies To: Condition (See Remarks) Phone # . 75 '\ Sealed Subject to Availability The state of the s Sono Š Ş FAX (805) 543-2685 FAX (805) 967-4386 FAX (707) 747-2765 FAX (219) 462-2953 FAX (805) 389-1438 FAX (207) 775-4029 Circle for RUSH* Analysis /State Relinquished By 41100 (805) 543-2553 (805) 964-7838 (707) 747-2757 (219) 464-2389 (805) 389-1353 (207) 874-2400 , Date/Time Z. Ž Due Date Contact San Luis Obispo, CA 93401 Goleta, CA 93117 Benicia, CA 94510 Valparaiso, Indiana 46383 Received By Camarillo, CA 93012 Westbrook, ME 04092 *Matrix Containers Pres. Received By Address ĊŢ Contraction of Ś 6 より Date/Time Date/Time Coll'd 141 Suburban Road 751 S. Kellogg, Suite A 6006 Egret Ct. 2400 Cumberland Dr. . . . 340 County Road No. 5 4765 Calle Quetzal 500 Shipping # Sample Description Relinquished By 4 PLEASE PRINT IN PEN Bill (If different than above) Shipping Method Sampler (Print and sign) Project Name/Number REMARKS ANALYTICAL SERVICES COAST Address Client FOR LAB USE ONLY

á

Chain of Custody

Lab ID#

Auth. Init.

ŏ

141 GOVT 100 OVERMIGHT 100 OVERMIG Company DEOP OFF YOUR PACKAGE AND SAVE SENDER'S COPY

AIRBILL

1985288712

2 - On-Call Stop

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: T. Bennett / C. Liakos

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

Lab Number : CK-3124-1

Project : (CK2992) Bloomfield NM,

#023353014.32

Analyzed : 06/17/94

Analyzed by: ZS

Method : EPA TO-14

REPORT OF ANALYTICAL RESULTS

Page 1 of 3

SAMPLE DESCRIPTION	MATRIX	SAMPLED	BY	SAMPLED	RECEIVED
VEW-1D V/S (CK2992-1)	Air	Jerry A.	May	06/16/94 1220	06/17/94
CONSTITUENT		*PQL	RESULT ppmv	RESULT mg/cu M	NOTE
VOLATILE ORGANICS BY EPA TO-14					1
Acetone		1.	ND	ND	
Benzene		0.2	140.	460.	
Bromodichloromethane		0.1	ND	ND	
Bromomethane (Methyl Bromide)		0.2	ND	ND	
Bromoform		0.1	ND	ND	
1,3-Butadiene		0.5	ND	ND	
2-Butanone (MEK)		0.2	ND	ND	
Carbon Disulfide		2.	ND	ND	
Carbon Tetrachloride		0.2	ND	ND	
Chlorobenzene		0.1	ND	ND	
Chloroethane (Ethyl Chloride)		0.2	ND	ND	
2-Chloroethyl Vinyl Ether		1.	ND	ND	
Chloroform		0.5	ND	ND	
Chloromethane (Methyl Chloride)		0.2	ND	ND	
Dibromochloromethane		0.1	ND	ND	
1,2-Dibromoethane (EDB)		0.2	ND	ND	
1,2-Dichlorobenzene		0.2	NID	ND	
1,3-Dichlorobenzene		0.2	ND	ND	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/29/94 MS1/1M97L GD/geepr(dw)/yl KF17M1

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: T. Bennett / C. Liakos

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

Lab Number: CK-3124-1

roject : (CI

: (CK2992) Bloomfield NM,

#023353014.32

Analyzed : 06/17/94

Analyzed by: ZS

Method : EPA TO-14

REPORT OF ANALYTICAL RESULTS

Page 2 of 3

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY		SAMPLED	RECEIVED
VEW-1D V/S (CK2992-1)	Air	Jerry A.	Jerry A. May		06/17/94
CONSTITUENT		*PQL	RESULT ppmv	RESULT mg/cu M	NOTE
1,4-Dichlorobenzene	-	0.2	ND	ND	
1,1-Dichloroethane		0.1	ND	ND	
1,2-Dichloroethane (EDC)		0.2	ND	ND	
1,1-Dichloroethene		0.2	ND	ND	
cis-1,2-Dichloroethene		0.2	ND	ND	
trans-1,2-Dichloroethene		0.2	ND	ND	
Dichloromethane		1.	ND	ND	
1,2-Dichloropropane		0.1	ND	ND	
cis-1,3-Dichloropropene		0.1	ND	ND	
trans-1,3-Dichloropropene		0.1	ND	ND	
Ethylbenzene		0.2	32.	140.	
2-Hexanone		0.1	NID	ND	
4-Methyl-2-Pentanone (MIBK)		0.1	ND	ND	
Styrene		0.2	ND	ND	
1,1,2,2-Tetrachloroethane		0.1	ND	ND	
Tetrachloroethene (PCE)		0.1	ND	ND	
Toluene		0.2	45.	170.	
1,1,1-Trichloroethane (TCA)		0.2	ND	ND	
1,1,2-Trichloroethane		0.2	ND	ND	
Trichloroethene (TCE)		0.1	ND	ND	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/29/94 MS1/1M97L GD/geepr(dw)/yl KF17M1

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: T. Bennett / C. Liakos

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

Lab Number : CK-3124-1

: (CK2992) Bloomfield NM,

#023353014.32

Analyzed : 06/17/94

Analyzed by: ZS

Method : EPA TO-14

REPORT OF ANALYTICAL RESULTS

Page 3 of 3

SAMPLE DESCRIPTION	MATRIX	SAMPLED	SAMPLED BY		RECEIVED	
VEW-1D V/S (CK2992-1)	Air	Jerry A	. May	06/16/94 1220	06/17/94	
CONSTITUENT		*PQL	RESULT ppmv	RESULT mg/cu M	NOTE	
Trichlorofluoromethane (F-11)		0.2	ND	ND		
Trichlorotrifluoroethane (F-113)		0.2	ND	ND		
Vinyl Acetate		0.5	ND	ND		
Vinyl Chloride		0.2	ND	ND		
Xylenes		0.2	250.	1100.		
Percent Surrogate Recovery				109.		
Total Fuel (non-methane hydrocark	ons)	50.	3700.	13000		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/29/94 MS1/1M97L GD/geepr(dw)/yl KF17M1

Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai,

Group Leader

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353

FAX (805)389-1438

CLIENT: T. Bennett / C. Liakos

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

Lab Number : CK-2992-1

Project

: Bloomfield NM,

#023353014.32

Analyzed : 06/17/94

Analyzed by: ZS

Method:

: EPA TO-14

REVISED

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED	BY	SAMPLED	RECEIVED	
VEW-1D V/S	Air	Jerry A.	May	06/16/94 1220	06/17/94	
CONSTITUENT		ppmv *PQL	RESULT ppmv	RESULT mg/cu M	NOTE	
BTEX & Total Fuel In Air					1	
Benzene		0.2	140.	460.		
Toluene		0.2	45.	170.		
Ethylbenzene		0.2	32.	140.		
Xylenes		0.2	250.	1100.		
Total Fuel (non-methane hydrocarbons)		50.	3700.	13000		
1,2-Dichloroethane (EDC)		0.2	ND	ND		
1,2-Dibromoethane (EDB)		0.1	ND	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; AZLA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/29/94 MS1/1M97L GD/gegcc(dw)/yl MS1*A Respectfully submitted,

COAST-TO-POAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D.

Group Leader

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012 (805) 389-1353 FAX (805) 389-1438

CLIENT: T. Bennett / C. Liakos

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

Lab Number : CK-2992-1

Project :

: Bloomfield NM,

#023353014.32

Analyzed : 06/17/94

Analyzed by: GD
Method : GC/TCD

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY		SAMPLED	RECEIVED	
VEW-1D V/S	Air	Jerry A. Ma	y 06	/16/94 1220	06/17/94	
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	NOIE	
FIXED GASES AND METHANE		-				
Carbon Dioxide		(124389)	0.1	0.4		
Oxygen		(7782447)	0.01	14.		
Nitrogen		(7727379)	0.02	58.		
Methane		(74828)	0.005	28.		
Carbon Monoxide		(630080)	0.1	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/20/94 TCD/06179403 GD/gegcc(dw)/yl KF17TA Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

() qi

Gesheng Dai, Ph.I Group Leader

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805)389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/17/94

Analyzed by: ZS

Method: EPA TO-14

INSTRUMENT BLANK
REPORT OF ANALYTICAL RESULTS

Page 1 of 2

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVED			
INSTRUMENT BLANK	Air					
CONSTITUENT		(CAS RN)	*PQL μg/cu M	RESULT μg/cu M	NOTE	
VOLATILE ORGANICS BY EPA TO-14					1	
Acetone		(67641)	3.	$N\!D$		
Benzene		(71432)	0.5	ND		
Bromodichloromethane		(75274)	1.	ND		
Bromomethane (Methyl Bromide)		(74839)	1.	ND		
Bromoform		(75252)	1.	ND		
1,3-Butadiene		(106990)	1.	ND		
2-Butanone (MEK)		(78933)	1.	ND		
Carbon Disulfide		(75150)	5.	ND		
Carbon Tetrachloride		(56235)	1.	ND		
Chlorobenzene		(108907)	0.5	ND		
Chloroethane (Ethyl Chloride)		(75003)	0.5	NID		
2-Chloroethyl Vinyl Ether		(110758)	5.	ND		
Chloroform		(67663)	3.	ND		
Chloromethane (Methyl Chloride)		(74873)	0.5	ND		
Dibromochloromethane		(124381)	1.	ND		
1,2-Dibromoethane (EDB)		(106934)	2.	ND		
1,2-Dichlorobenzene		(95501)	1.	ND		
1,3-Dichlorobenzene		(541731)	1.	ND		
1,4-Dichlorobenzene		(106467)	1.	ND		
1,1-Dichloroethane		(75343)	0.5	ND		
1,2-Dichloroethane (EDC)		(107062)	1.	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

06/20/94 MS1/1M87L GD/gegcc(dw)/yl CK9406-17

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/17/94

Analyzed by: ZS

Method: EPA TO-14

INSTRUMENT BLANK

REPORT OF ANALYTICAL RESULTS

Page 2 of 2

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVE			
INSTRUMENT BLANK	Air					
CONSTITUENT		(CAS RN)	*PQL μg/cu M	RESULT μg/cu M	NOTE	
1,1-Dichloroethene		(75354)	1.	ND		
cis-1,2-Dichloroethene		(156694)	1.0	ND		
trans-1,2-Dichloroethene		(156605)	1.	ND		
Dichloromethane		(75092)	5.	ND		
1,2-Dichloropropane		(78875)	0.5	ND		
cis-1,3-Dichloropropene		(10061015)	0.5	ND		
trans-1,3-Dichloropropene		(10061026)	0.5	ND		
Ethylbenzene		(100411)	1.	ND .		
2-Hexanone		(591786)	0.5	ND		
4-Methyl-2-Pentanone (MIBK)		(108101)	0.5	ND		
Styrene		(100425)	1.	ND		
1,1,2,2-Tetrachloroethane		(79345)	1.	ND		
Tetrachloroethene (PCE)		(127184)	1.	ND		
Toluene		(108883)	1	ND		
1,1,1-Trichloroethane (TCA)		(71556)	1.	ND		
1,1,2-Trichloroethane		(79005)	1.	ND		
Trichloroethene (TCE)		(79016)	0.5	ND		
Trichlorofluoromethane (F-11)		(75694)	1.	ND		
Trichlorotrifluoroethane (F-113)		(76131)	2.	ND		
Vinyl Acetate		(108054)	2.	ND		
Vinyl Chloride		(75104)	0.5	ND		
Xylenes	•	(1330207)	1.	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/20/94 MS1/1M87L GD/gegcc(dw)/yl CK9406-17 Respectfully submitted,

COAST-TO, COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D Group Leader

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/17/94

Analyzed by: EJ

Method: EPA TO-14

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 2

SAMPLE DESCRIPTION	MATRIX SAMPLED B		Y	SAMPLED DA	TE RECE	IVED
QC SPIKE	Air					
CONSTITUENT		*PQL μg/cu M	SPIKE AMOUNT	RESULT µg/cu M	%REC	NOTE
VOLATILE ORGANICS BY EPA TO-14						1,2
Acetone		3.		NS		
Benzene		0.5	16.	17.	106.	
Bromodichloromethane	_	1.		NS		
Bromomethane (Methyl Bromide)		1.	21.	15.	71.	
Bromoform		1.		NS		
1,3-Butadiene		1.	10.	8.8	88.	
2-Butanone (MEK)		1.		NS		
Carbon Disulfide		5.		NS		
Carbon Tetrachloride		1.	31.	35.	113.	
Chlorobenzene		0.5	23.	24.	104.	
Chloroethane (Ethyl Chloride)		0.5		NS		
2-Chloroethyl Vinyl Ether		5.		NS		
Chloroform		3.	25.	27.	108.	
Chloromethane (Methyl Chloride)		0.5		NS		
Dibromochloromethane		1.		NS		
1,2-Dibromoethane (EDB)		2.	10.	8.6	86.	
1,2-Dichlorobenzene		1.		NS		
1,3-Dichlorobenzene		1.		NS		
1,4-Dichlorobenzene		1.		NS		
1,1-Dichloroethane		0.5		NS		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187

06/20/94 MS1/1M99L GD/gegcc(dw)/yl CK9406-17

^{*} RESULTS listed as 'NS' were not spiked. PQL = Practical Quantitation Limit

⁽¹⁾ Concentration in ug/cu M or mg/cu M reported at 760mm Hg pressure and 298 deg. K.

⁽²⁾ Zero Air spiked with NIST SRM 1804, Cylinder # ALM-000881.

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/17/94

Analyzed by: EJ

Method : EPA TO-14

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 2 of 2

SAMPLE DESCRIPTION MATRIX SAMPLED BY SAMPLED DATE RECEIVED

QC SPIKE Air

QC 51 Hu					
CONSTITUENT	*PQL μg/cu M	SPIKE AMOUNT	RESULT µg/cu M	%REC	NOTE
1,2-Dichloroethane (EDC)	1.	20.	22.	110.	
1,1-Dichloroethene	1.		NS		
cis-1,2-Dichloroethene	1.0		NS		
trans-1,2-Dichloroethene	1.		NS		
Dichloromethane	5.	17.	21.	124.	
1,2-Dichloropropane	0.5	23.	23.	100.	
cis-1,3-Dichloropropene	0.5		NS		
trans-1,3-Dichloropropene	0.5		NS		
Ethylbenzene	1.	15.	15.	100.	
2-Hexanone	0.5		NS		
4-Methyl-2-Pentanone (MIBK)	0.5		NS		
Styrene	1.		NS		
1,1,2,2-Tetrachloroethane	1.		NS		
Tetrachloroethene (PCE)	1.	34.	38.	112.	
Toluene	1	18.	19.	106.	
1,1,1-Trichloroethane (TCA)	1.	28.	29.	104.	
1,1,2-Trichloroethane	1.		NS		
Trichloroethene (TCE)	0.5	27.	30.	111.	
Trichlorofluoromethane (F-11)	1.	29.	24.	83.	
Trichlorotrifluoroethane (F-113)	2.		NS		
Vinyl Acetate	2.		NS		
Vinyl Chloride	0.5	14.	13.	93.	
Xylenes	1.	15.	15.	100.	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187

* RESULTS listed as 'NS' were not spiked. PQL = Practical Quantitation Limit

06/20/94 MS1/1M99L GD/gegcc(dw)/yl CK9406-17 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D. Group Leader

COAST-TO-COAST ANALYTICAL SERVICES, INC.

SoCal Division (Camarillo Laboratory) 4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

CLIENT: T. Bennett / C. Liakos

Groundwater Technology

2501 Yale Boulevard SE, Suite 204

Albuquerque, NM 87106

QC Batch ID: KF17TA CK-2992-1

Project

: Bloomfield NM,

#023353014.32

: 06/17/94 Analyzed

Analyzed by: GD

Method

: GC/TCD

QC DUPLICATE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMP	SAMPLET	06/17/94		
VEW-1D V/S	Air	Jerr	06/16/94			
CONSTITUENT		(CAS RN)	*PQL PERCENT	RESULT PERCENT	%DIFF	NOTE
FIXED GASES AND METHANE						
Carbon Dioxide		(124389)	0.1	0.4	0.	
Oxygen		(7782447)	0.01	14.	0.	
Nitrogen		(7727379)	0.02	58.	0.	
Methane		(74828)	0.005	27.	3.6	5
Carbon Monoxide		(630080)	0.1	ND		

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/20/94 TCD/06179404 GD/gegcc(dw)/yl CK2992-1

Respectfully submitted,

COAST-TO-QOAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph

Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

COAST-TO-COAST ANALYTICAL SERVICES, INC.

SoCal Division (Camarillo Laboratory)
4765 Calle Quetzal, Camarillo, California 93012

(805) 389-1353 FAX (805) 389-1438

QC Batch ID: KF17TA

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 06/17/94

Analyzed by: YL

Method : GC/TCD

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED B	Y	SAMPLED DATE RECEIVED		
QC SPIKE	Air					
CONSTITUENT		*PQL PERCENT	SPIKE AMOUNT	RESULT PERCENT	%REC	NOTE
FIXED GASES AND METHANE						
Carbon Dioxide		0.1	15.	15.	100.	
Oxygen		0.01	7.1	7.0	99.	
Nitrogen		0.02	66.	66.	100.	
Methane		0.005	4.6	4.6	100.	
Carbon Monoxide		0.1	7.1	7.0	99.	

Lab Certifications: CAELAP #1598; UTELAP #E-142; AZELAP #AZ0162; A2LA #0136-01; L.A.Co.CSD #10187 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

06/20/94 TCD/06179405 GD/gegcc(dw)/yl CK2992-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Gesheng Dai, Ph.D.

Group Leader

Reports shall not be reproduced except in full without the written consent of Coast-to-Coast Analytical Services Inc.

:	p maa.		RO	P O	SI	EN YC	D UF		?'S	S C CKA	OF GE	Y ANI	o s <i>i</i>	WE				
	70 VERNIGHT 80 (Continued reservation required) 1 Delivery commitment may be later in some areas.	Freight (for packages	30 ECONOMY* 46 *Economy Letter Rate not available Minimum change M		FEDEX BOX	16 FEDEX LETTER 56		Priority Overnight (Delivery by next business mornings) (Delivery by next business mornings) (Delivery by next business mornings)	SERVICES (Check only one box)	PAYMENT 1 dill Sender 2 t	TOUR INTERNAL BILLING	AL BUQUERQUE	2501	GROUNDHATER	From (Your Name) Please Print ###################################	SCHOOLS LEGEN CALCES YCCONNI WANKEN	33007	EPRES.
	TWO-DAY FREIGHT** Declared Value Limit \$500. 12 [Cell for delivery schedule.	(50,6±)	GOVT GOVT GOVT PACKAGE 6	FEDEX:TUBE	FEDEX BOX		Mo Saturday delikeryo) OTHER PACKAGING	Standard Overnight (Delivery by read business afternoon.	9	2 Bill Recipient's FedEx Acct. No.	CEPENCE INFORMATION (OF	QUE CONTROL CO	YALE BLYD SE	\$.	so Print / Technic	S ACCOUNT NUMBER	BEE38	USE THIS AIRBILL USE THE INTERNA QUESTIONS
A CARLO STANDARD STAN	HOLIDAY DELIVERY (II offered)	Dry Ice, 9, LW 1845.	DANGEROUS GOODS (Extra charge) DRY ICE Dangerous Goods Shipper's Declaration not required	(Expanding) Special Handling	JELIVER SATURDAY 3 DELIVER SATURDAY (Fill in Section H) (Fill in Section H)	FEDEX LETTER 34 30 AN THU Saturday Service	2 DELIVER WEEKDAY	HOLD AT FEDEX LOCATION WEEKDAY	DELIVERY AND SPECIAL HANDLING (Check services required)	cct. No. 3 Bill 3rd Party FedEx Acct. No.	O Z 3 3 12 1/25 3 4	Specification of State of the Control of the Contro	STE 204	TECHNOLOGY INC	CO Company	Date 16/16/	26TONEES	USE THIS AIRBILL FOR SHIPMENTS WITHIN THE CONTINENTAL U.S.A., ALISSA AND HAWAII. USE THE INTERNATIONAL AIR MAYBILL FOR SHIPMENTS TO PUERTO RICO AND ALL KION U.S. LOCATIONS. QUESTIONS? CALL 800-238_5355 TOLL FREE.
The second secon	1 ☐ Regular Stop 3	kg 904 III Received	stragulard	DIM SHIPMENT (Chargeable weight)	tion H) Total Total available Total Total		on H)		ING PACKAGES WEIGHT	Acct. No. 4 Bill Credit Card	opear on invoice.)	0	3		Tour Phone Number (Very Important) Department/Floor No.	A Company of the Comp	a the out them there's	TINENTAL U.S.A., ALISKA AND HAHAII. VIS TO PUERTO RICO AND ALL NON U.S. LOC. TOLL FREE.
	3□ Drop Box 4□ B.S.C. Reju		bs required paid	<u> </u>		paci misc	Vary Sen		NOUR DECLARED	7.45	AST AST	CAMPEILL	TANCE CALL	COAST	To (Reciple			ATIONS.
14 A	Lighted	Sender authorizes Federal Express to obtaining a delivery signature and	FedEx Letterand FedEx Pak packages is \$500. In the event of untimely delivery, Federal E. request and with some limitations refund all tra paid. See Service Guide for further information.	proin, attoriety's tees, custs, atto printing of the direct, incidental, consequential, or specified \$100 or, the declared value specified exceed actual documented loss. The respectively.	claim. Limitations found in the current Fi capply. Your right to recover from Fe including intrinsic value of the package,	re will foll de responsible for any claim in excess or a loo per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, bay an additional charge, and document your actual loss for a firnely	server's copy of this sirch for morries and the sort of Government Overnight Ser Service Guide for details.		SERVICE CONDITIONS, L	City (2.50.1.25)	OÉY FORM	C	ALLE CONTRACTOR	70 0015	>	5		AIRBILL PACKAGE TRACKING NUMBER
The second secon	come a committy transmission	Express to deliver this shipment without nature and shall indemnify and hold	k packages is \$500. delivery, Federal Express will at your liations refund all transportation charges of further information.	costs, and outer to this or carriage whether truently or special is limited to the greater of the specified to the left. Recovery cannot ted loss. The maximum Declared Value for	he current Federal Express Service Guide rer from Federal Express for any loss, le package, loss of sales, income interest, the package, loss of sales, income interest, the sead offer of come of depages whether	damage, detay, non-delivery, you declare a higher value.	emight Service. See U.S. Government	your agreement to the service conditions de, available upon request. See back of	IMIT OF LIABILITY	State ZIP Required	HUN, FIIIN FEDEA AUGUSSS TIERE	1 5	72	7	Recipients Proce Number (V. S. O.S.) S. S. S. Departmen	ER'S COPY		8533940192
The second second second second	PAINTED IN	Δ 5 Δ	REVISION DATE 12/92 PART #137204 FXEM 10 FORMAT #158	Total Charges	Other 2	Other 1	Declared Value Charge	Base Charges	Federal Express Us	quired		73072			Recipient's Phone Number (Very Import			26.00

APPENDIX E

"ESTIMATION OF EFFECTIVE CLEANUP RADIUS FOR SOIL-VAPOR EXTRACTION SYSTEMS", SCIENTIFIC PAPER FROM JOURNAL OF SOIL CONTAMINATION

BRC/Pilottest.rpt

Estimation of Effective Cleanup Radius for Soil-Vapor Extraction Systems

David H. Bass, Sc.D., CHMM

Groundwater Technology, Inc., 3 Edgewater Drive, Norwood, MA 02062

ABSTRACT: Soil-vapor extraction (SVE) is a standard and effective in situ treatment for the removal of volatile contaminants from vadose-zone soil. The duration of SVE operation required to reach site closure is quite variable, however, ranging up to several years or more. An understanding of the contaminant recovery rate as a function of distance from each vapor-extraction well allows SVE systems to be designed so that cleanup goals can be achieved within a specified time frame.

A simple one-dimensional model has been developed that provides a rough estimate of the effective cleanup radius (defined as "the maximum distance from a vapor extraction point through which sufficient air is drawn to remove the required fraction of contamination in the desired time") for SVE systems. Because the model uses analytical rather than numerical methods, it has advantages over more sophisticated, multidimensional models, including simplicity, speed, versatility, and robustness.

The contaminant removal rate at a given distance from the vapor-extraction point is assumed to be a function of the local rate of soil-gas flow, the contaminant soil concentration, and the contaminant volatility. Soil-gas flow rate as a function of distance from the vapor-extraction point is estimated from pilot test data by assuming that the infiltration of atmospheric air through the soil surface is related to the vacuum in the soil. Although widely applicable, the model should be used with some caution when the vadose zone is highly stratified or when venting contaminated soil greater than 30 ft below grade. Since 1992, Groundwater Technology, Inc. has been using this model routinely as a design tool for SVE systems.

KEY WORDS: soil-vapor extraction, modeling, design tool, effective radius.

I. BACKGROUND

Soil-vapor extraction (SVE) is a widely used *in situ* remediation technique for treatment of contaminated vadose-zone soil. SVE removes volatile organic compounds (VOCs) from vadose-zone soils by inducing air flow through contaminated

areas. SVE is typically performed by applying a vacuum to vertical vapor-extraction wells screened through the level of soil contamination, using a vacuum blower. The resulting pressure gradient causes the soil gas to migrate through the soil pores toward the vapor-extraction wells. VOCs are volatilized and transported out of the subsurface by the migrating soil gas. In addition, SVE increases oxygen flow to contaminated areas, thus stimulating natural biodegradation of aerobically degradable contaminants.

The performance of SVE systems improves as the air permeability of the vadose-zone soil increases. SVE is applicable to any compound with a vapor pressure greater than about 1 mmHg. This includes a wide variety of common contaminants such as benzene, toluene, ethylbenzene, xylene, gasoline hydrocarbons, mineral spirits, methyl *t*-butyl ether, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, methanol, acetone, and butanone. Because vapor pressure increases with temperature, SVE also can be applied to semivolatile compounds by heating the vadose zone with steam or hot air.

The efficacy of a SVE system is determined by its ability to draw sufficient air through the contaminated portion of the vadose zone. The number and spacing of vapor-extraction wells and the soil-gas extraction rate are the critical parameters determining air flow through the subsurface. In addition, several modifications to SVE systems are sometimes used in an effort to enhance the flow of air through the contamination zone. These include air injection (forcing air or allowing air to be drawn through wells screened at the level of the vadose-zone contamination) and surface sealing (paving a surface or covering an unpaved surface with a layer of polyethylene film to prevent infiltration of air and water from the surface).

Vapor-extraction well spacing is typically determined by performing a field pilot test to determine the radius-of-influence (ROI) at the site under specified SVE conditions. Historically, pilot test data were interpreted by assessing the distance from the vapor-extraction well where an arbitrary vacuum level (usually 0.01 to 1 in of water column) could be measured in the soil. Although such "rules of thumb" often result in adequate SVE system design, they do not yield any information on the quantity of air moving through the vadose zone. This approach, therefore, cannot provide any assessment of remediation time, nor can it provide design information specific to the contaminant (a system designed to remove benzene will be less effective on the less volatile xylene, for example).

Several alternative approaches to interpretation of SVE pilot test data have recently been developed based on multidimensional modeling of vacuum and soilgas flow fields in the vadose zone. Johnson *et al.* (1990a, 1990b) derived equations describing air flow in the vadose zone beneath a sealed surface and applied these equations to the SVE remediation of gasoline contaminated soil. Baehr *et al.* (1989) and Marley *et al.* (1990) and others have used numerical solutions for systems with unsealed or partially sealed surfaces, and Lingineni and Dhir (1992) superimposed variable temperature on this approach. Joss and Baehr (1993) have

recently adapted MODFLOW, a groundwater numerical modeling program, to SVE applications.

II. MOTIVATION AND OBJECTIVES

The modeling efforts discussed in the previous section represent important advances in the understanding of SVE and provide a basis for more effective design of SVE systems. However, they are not universally applicable. The data available at many small sites where SVE is considered, such as retail gasoline stations and dry cleaning facilities, are often sparse, and budgets rarely exist for gathering the more extensive data required for sophisticated models. Most of these sites have been repeatedly excavated and refilled, creating subsurface anisotropies that confound the limited data. Furthermore, many of the models assume that the surface is sealed, a condition not commonly encountered (and sometimes not even feasible) at such retail sites. Finally, multidimensional models typically require substantial time to input variables and to run, making the design process tedious.

Therefore, the need exists for a model that can provide rapid order-of-magnitude assessments of potential SVE performance based on very limited data. For this application, a simpler one-dimensional model is adequate; the data quality is ordinarily too poor and the subsurface too laden with unidentified anisotropies to warrant a more sophisticated, multidimensional approach. To be most useful, such a model must exhibit the following characteristics:

- Simplicity: cumbersome computer models are intimidating and tend not to be used; a really useful model must be readily accessible by the most junior of engineers.
- Speed: instantaneously, solutions enable an engineer to apply many "what
 if" scenarios in a short period of time, and hence rapidly converge on an
 optimum design.
- Versatility: depending on the specific project requirements, the model may be called on to specify SVE well spacing, soil-gas extraction rate, cleanup level, or cleanup time at sites with sealed or unsealed surfaces.
- Robustness: the model must provide reasonable estimates of SVE performance over wide ranges of soil permeability, soil-gas extraction rate, soil temperature, and contaminant volatility.

III. MODEL DERIVATION

The goal of the model is to determine the maximum distance from the vaporextraction well through which sufficient air is drawn to remove the required fraction of contamination in the desired time. This is the effective radius, $R_{\rm E}$, and it differs from the ROI, which is the distance from the vapor-extraction well that vacuum can be detected. The effective radius is based on site-specific conditions and SVE system parameters, and it is specific to the contaminant, cleanup goals, and cleanup time frame.

This derivation is applicable to sites with unsealed surfaces and single-well SVE systems or multiple-well systems in which each well is operated individually, rather than simultaneously (as if often done when surface infiltration of air is insufficient to achieve adequate remediation between vapor-extraction wells). This approach has also been extended to simultaneously operated multiple-well systems and to sites at which an engineered surface seal is to be applied, and these will be the subject of future publications.

Figure 1 illustrates the general air-flow patterns through soil during SVE. Because this derivation is for a single-well SVE system, it is assumed that the effective radius will extend to the edge of the contaminant plume. At the outer edge of the plume, all air entering the contamination zone is initially uncontaminated. As the air flows through the soil, contaminants rapidly equilibrate between soil and air phases (the rapid approach to equilibrium was demonstrated by Johnson *et al.*, 1990a). This equilibration is determined by contaminant-soil concentration, vapor pressure, and water solubility, and by the moisture and organic content of the soil. Of these parameters, only the contaminant soil concentration changes dramatically during the course of the vapor extraction, and so for a given site and contaminant, the equilibrium-gas concentration can be expressed generally as a function of soil concentration:

$$C_{\sigma} = f(C_{s}) \tag{1}$$

The rate at which contaminant mass is lost from soil must equal the rate at which the soil gas flowing through the soil carries the contamination away:

$$\frac{dM_s}{dt} = \frac{d(V_s C_s)}{dt} = C_g q = f(C_s)q$$
 (2)

or

$$\frac{dC_s}{f(C_s)} = \frac{q}{V_s} dt$$
 (3)

where M_s = mass rate of contaminant removal from soil, t = time, V_s = volume of soil (control volume), q = flow rate of gas through control volume.

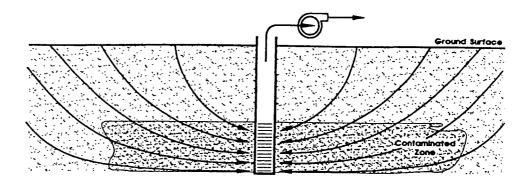
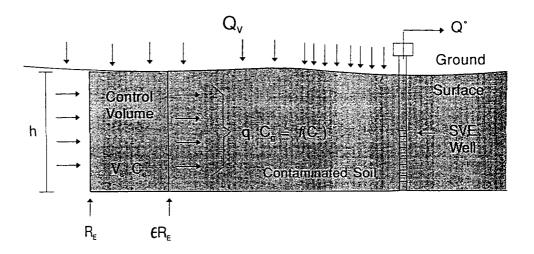



FIGURE 1. Generalized air flow paths in a soil-vapor extraction system.

FIGURE 2. Conceptualization of the model. The system is to be designed so that the effective radius, R_{E} , corresponds to the extent of contamination. Clean air enters the contaminated zone by horizontal movement through the soil and by vertical infiltration through the ground surface. The overall cleanup time is dominated the remediation rate for the contaminated soil between ϵR_{E} and R_{E} ("control volume"), which is determined by the air flow rate, q, through this portion of the contaminated zone.

The contaminated zone is represented as a uniform cylinder of radius R_E and height h, as indicated in Figure 2. Remediation will occur from the outside of the plume inward (due to lateral introduction of uncontaminated air into the contamination zone) and from the top down (due to vertical infiltration of air). Although the outermost portion of the contamination zone will be treated first, the rate of treatment at this location will be the slowest because the air flux decreases rapidly with distance from the vapor-extraction well. The control volume is therefore taken

as a fraction of the contamination zone furthest from the vapor-extraction well, that is, an annulus of outer radius R_E and inner radius ϵR_E , where $O < \epsilon < 1.*$ The control volume is then

$$V_{s} = \pi \left(R_{E}^{2} - \left(\varepsilon R_{E}\right)^{2}\right) h = \left(1 - \varepsilon^{2}\right) \pi R_{E}^{2} h$$
(4)

The gas flow through the control volume, q, is calculated by assuming that, at a distance r from the vapor-extraction well, any infiltration of atmospheric air through the soil surface is related to the vacuum in the soil and the area of the ground surface:

$$dQ_{v} = k_{v} (P_{a}^{2} - P_{r}^{2}) dA = k_{v} (P_{a}^{2} - P_{r}^{2}) 2\pi r dr$$
 (5)

where Q_v = vertical infiltration of atmospheric air, r = distance from the vapor extraction well, P_a = absolute atmospheric pressure, P_r = absolute pressure at distance r from the vapor-extraction well, k_v = constant, A = area of ground surface. The term $k_v(P_a^2 - P_r^2)$ comes from Darcy's Law for flow of a compressible fluid. The constant k_v is related to the permeability of the soil to vertical gas infiltration, as well as to the gas viscosity, density, and travel distance.

Because all the air collected at the vapor-extraction well must come ultimately from the atmosphere through the ground surface, the integral of Equation 5 from the well radius to the radius of influence yields the rate of total soil-gas recovery, Q°:

$$\int_{r_{uv}}^{R_1} dQ_v = 2\pi k_v \int_{r_{uv}}^{R_1} (P_a^2 - P_r^2) r dr = Q^o$$
 (6)

where r_w = radius of vapor-extraction well, R_1 = radius of influence.

Substituting Equation 6 into Equation 5 and integrating again, this time from the well radius to the inner edge of the control volume, yields

$$\frac{Q_{v}}{Q^{o}} = \frac{\int_{r_{w}}^{\epsilon R_{E}} (P_{a}^{2} - P_{r}^{2}) r dr}{\int_{r_{w}}^{R_{I}} (P_{a}^{2} - P_{r}^{2}) r dr}$$
(7)

* The value of the parameter ε is selected so that vertical infiltration at distances less than εR_E from the vapor-extraction well provides a rate of remediation at least comparable with the remediation rate within the control volume due to lateral and vertical introduction of clean air. In other words, by the time the control volume is clean, the rest of the contaminated zone will have been remediated as well. For most sites where SVE is considered, ε ranges from 0.7 to 0.9. Within this range, the precise value of ε selected is not crucial, because values of R_ε computed from the design equation derived later are not particularly sensitive to changes in ε, varying typically by 10% or less.

The gas passing through the control volume is the total gas flow collected less the vertical infiltration that occurs closer to the SVE well

$$q = Q_{v}^{o} - Q_{v} = Q_{v}^{o} \frac{\int_{r_{w}}^{R_{I}} (P_{a}^{2} - P_{r}^{2}) r dr - \int_{r_{w}}^{\epsilon R_{E}} (P_{a}^{2} - P_{r}^{2}) r dr}{\int_{r_{w}}^{R_{I}} (P_{a}^{2} - P_{r}^{2}) r dr}$$
(8)

Combining Equations 3, 4, and 8 and integrating yields

$$\int_{C_s}^{C_s^o} \frac{dC_s}{f(C_s)} = \frac{\int_{r_w}^{R_I} (P_a^2 - P_r^2) r \, dr - \int_{r_w}^{\epsilon R_E} (P_a^2 - P_r^2) r \, dr}{(1 - \epsilon^2) \pi R_E^2 \int_{r_w}^{R_I} (P_a^2 - P_r^2) r \, dr} \frac{Q^o t}{h}$$
(9)

where C_s^o = initial contaminant concentration in the soil.

Whenever $dC_s/f(C_s)$ and P_r^2 dr are analytically integrable, Equation 9 provides a vehicle for relating the effective radius (R_E) to soil concentration in the control volume (C_s) , soil-gas recovery rate (Q^o) , and remediation time (t) without the use of cumbersome numerical methods. Depending on site-specific conditions, any of a number of expressions for P_r and $f(C_s)$ are appropriate.

For example, Johnson *et al.* (1990a) derived the following expression for P_r, which is applicable when the ground surface is sealed:

$$P_{r}^{2} = P_{w}^{2} + \left(P_{a}^{2} - P_{w}^{2}\right) \frac{\ln(r/r_{w})}{\ln(R_{I}/r_{w})}$$
(10)

where P_w = absolute pressure in the vapor extraction well.

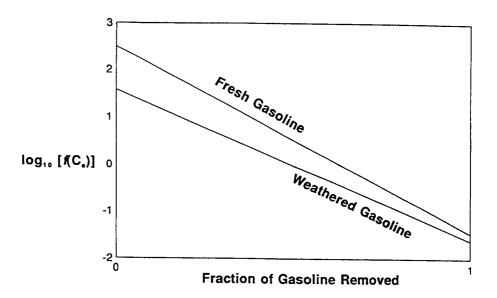
When the ground surface is not sealed, P_r can be approximated by the following simple exponential relationship over a substantial range of distances from the vapor-extraction well (i.e., when r is greater than a few feet) (Mohr, personal communication, 1992):

$$\ln(\mathbf{P}_{\mathbf{r}}) = \mathbf{c}_{1}\mathbf{r} + \mathbf{c}_{2} \tag{11}$$

where c_1 and c_2 are fitted constants.

At lower soil concentrations, it is proper to assume ideal partitioning between soil and gas ($f(C_s) = K_{gs}C_s$), whereas above a compound-specific threshold soil concentration, vapor concentration becomes independent of soil concentration

(Lyman et al., 1990); under such conditions, $f(C_s)$ is simply the contaminant saturated-vapor density and is constant. More complex representations of $f(C_s)$ are required for soil contaminated with a diverse mixture of compounds, such as gasoline. As SVE proceeds, the more volatile species are preferentially removed and the remaining contamination becomes less volatile. Therefore, $f(C_s)$ must decrease as C_s decreases, and this effect is demonstrated in Figure 3 for fresh and weathered gasoline. As is evident from the figure, the decrease in $f(C_s)$ with decreasing C_s is roughly exponential.


IV. MODEL IMPLEMENTATION AND LIMITATIONS

Equation 9 contains the following parameters:

- gas-soil equilibrium relationship (f(C_s)), which is a function of soil-gas temperature and contaminant volatility
- pressure as a function of distance from the vapor-extraction well (P_r), which
 is a function of vapor-extraction well pressure (P_w) if Equation 10 is used
 the fitted constants c₁ and c₂ if Equation 11 is used
- depth of vented interval (h)[†]
- soil-gas recovery rate (Q°)
- treatment time (t)
- effective radius (R_F)
- vapor-extraction well radius (r_w)
- radius of influence (R₁) and
- extent of remediation (1 C₀/C₀).

Equation 9 can be evaluated to solve for any of these variables, provided all others are specified. The model has been implemented in a computer program written in Basic that prompts the user to choose which variable to solve for (effective radius, cleanup time, extent of remediation, or soil-gas recovery rate). The user then

The vented interval is the portion of the vadose zone through which air movement is induced during SVE. If the vadose zone is fairly homogeneous, air movement will be induced throughout, and it is appropriate to consider the vented interval to be the depth to the bottom of the vapor-extraction well. When the vadose zone is stratified, each contaminated stratum is vented separately. If a contaminated low permeability stratum underlying a clean higher permeability stratum is being vented, the vented interval should be considered to be the thickness of the low permeability stratum. This approach is not applicable, however, for a higher permeability stratum underlying a substantial, continuous lower permeability stratum.

FIGURE 3. $f(C_s)$ for fresh and weathered gasoline. This figure is derived from constituent data in Johnson *et al.* (1990a).

specifies the contaminant, choosing from a list of common volatile soil contaminants or entering a new contaminant with its vapor pressure and vaporization enthalpy. Values for all other parameters are then entered, and the value of the dependent variable is displayed virtually instantaneously.

Of course, the simplifying assumptions that provide this ease of calculation also contribute to the uncertainty in the result. Significant subsurface anisotropies (sewers, foundations, etc.) can upset the assumed radial symmetry of the air flow, and extreme stratification can make the assumption of uniform air flow across the vented stratum inappropriate. However, site data are often inadequate to characterize the anisotropies in any event, and it is rare that horizontal and vertical permeabilities differ by more than an order of magnitude within a vented stratum. Equation 9 can therefore provide reasonable rough estimates of SVE system performance over a wide range of site conditions.

However, because the model assumes the vadose-zone conditions to be uniform with depth, caution should be exercised when applying this model to SVE systems venting strata greater than about 30 ft below grade. In addition, Equation 9 is not appropriate when vertical infiltration of air through the ground surface is virtually nonexistent. Such a situation would arise during venting of a high permeability stratum underlying an extensive, substantial, and continuous stratum of much lower permeability. Fortunately, such situations occur only rarely, and they can be modeled effectively using the sealed surface approach taken by Johnson *et al.* (1990a, 1990b).

V. EXAMPLES

Equation 9 indicates that for a fixed cleanup level, changes in vapor extraction rate (Q°) , cleanup time (t), and depth of the vented interval (h) will not effect the effective radius so long as $Q^{\circ}t/h$ remains constant. In other words, the same system performance can be obtained in half the time by doubling the vapor-extraction rate or halving the depth of the vented interval.

Figure 4 shows an example of how effective radius varies with Q°t/h for a variety of common volatile soil contaminants (where cleanup is defined as 90% removal, ideal soil-vapor partitioning and an unsealed surface are assumed). The conditions in this example are typical for SVE systems, and the resulting effective radius varies from a few feet to as much as 70 ft. Effective radius is most sensitive to the volatility of the contaminant; the effective radius for weathered gasoline is 3 to 10 times less than for 1,1,1-trichloroethane under the same conditions. Large changes in Q°t/h are required to substantially affect effective radius, especially for the more volatile contaminants; doubling the effective radius generally requires increasing Q°t/h by a factor of 10 to 50.

This relationship between effective radius and Q°t/h has profound implications regarding SVE system design. Decreasing the spacing between vapor-extraction wells increases the number of wells required, but also decreases the effective radius required. This greatly reduces remediation time and/or soil-gas recovery rate requirements. For example, a reduction in effective radius from 40 ft to 30 ft would

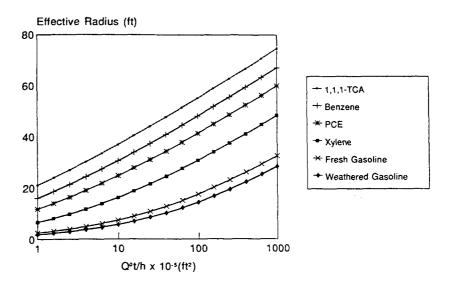
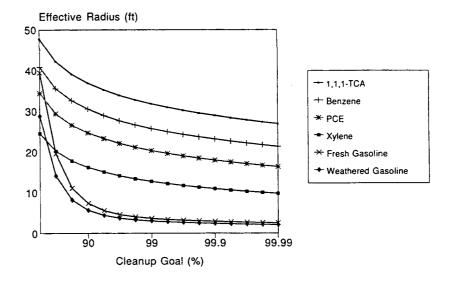



FIGURE 4. Effective radius at a typical SVE site as a function of Q°t/h for several volatile contaminants (90% cleanup, ideal soil-vapor partitioning, and unsealed surface assumed).

nearly double the number of vapor-extraction wells but would also reduce remediation time by nearly an order of magnitude. The lower soil-gas recovery rates required when effective radius is reduced in many cases results in lower costs associated with less powerful blowers that more than make up for the costs associated with additional vapor-extraction wells.

Effective radius also varies with desired cleanup level, as shown in Figure 5 for a typical unsealed system where Q° is 30 scfm per vapor extraction well, h is 10 ft, and t is 1 year. Contaminant volatility has a large impact on effective radius, but increasing cleanup level from 90% to 99.99% only decreases the effective radius for single component systems by 35 to 50%. For contaminant mixtures such as gasoline, however, changing cleanup level can have a more dramatic effect. This is because the volatility of the mixture decreases over the course of the SVE process, because the most volatile components are removed first. The volatility of contaminant mixtures is thus a function of cleanup level, and so effective radius is strongly affected by changes in cleanup level.

This model can also be used to assess the effect of soil temperature on effective radius, cleanup level, or remediation time. The effectiveness of SVE can be significantly enhanced by injecting hot air, steam, or radio frequency to heat vadose-zone soil, because $f(C_s)$ increases rapidly with increasing temperature. Evaluating Equation 9 at various temperatures gives an indication of the magnitude of SVE enhancement. For example, 90% removal of fresh gasoline from a 10-ft depth of medium sand, 20 ft from a vapor-extraction well pulling 30 cfm is

FIGURE 5. Effective radius at a typical SVE site as a function of cleanup goal ($Q^{ot}/h = 1.6 \times 10^6 \text{ ft}^2$; ideal soil-vapor partitioning and unsealed surface assumed).

estimated to require almost 5 years of SVE operation at 50°F, but 16 months at 100°F, 6 months at 150°F, and 10 weeks at 200°F.

VI. CONCLUSIONS

A simple one-dimensional model has been developed that can provide rapid order-of-magnitude assessments of potential SVE performance based on very limited data. Because the model uses analytical rather than numerical methods, it has advantages over more sophisticated, multidimensional models, including simplicity, speed, versatility, and robustness. Although accuracy and resolution are somewhat reduced, the use of this model instead of more complicated approaches is generally justified, given the limited site characterization data ordinarily available and the subsurface anisotropies commonly encountered at most small SVE sites. Since 1992, Groundwater Technology, Inc. has been using this model routinely as a design tool for SVE systems.

REFERENCES

- Baehr, A. L., Hoag, G. E., and Marley, M. C., 1989. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport. J. Contam. Hydrol. 4:1.
- Johnson, P. C., Kemblowski, M. W., and Colthart, J. D., 1990a. Quantitative analysis for the cleanup of hydrocarbon-contaminated soils by in-situ soil venting. *Groundwater* 28–3:413.
- Johnson, P. C., Stanley, C. C., Kemblowski, M. W., Byers, D. L., and Colthart, J. D., 1990b. A practical approach to the design, operation, and monitoring of in situ soil-venting systems. Ground Water Monitoring Review, Spring.
- Joss, C. J. and Baehr, A. L., 1993. AIRFLOW an adaptation of the groundwater flow code MODFLOW to simulate three dimensional air flow in the unsaturated zone. (To be published as a U.S. Geological Survey open file report).
- Lingineni, S. and Dhir, V. K., 1992. Modeling of soil venting processes to remediate unsaturated soils. *J. Environ. Eng.* 118–1:135.
- Lyman, W. J., Feehl, W. F., and Rosenblatt, D. H., 1990. *Handbook of Chemical Property Estimation Methods*. Washington, DC, American Chemical Society.
- Marley, M. C., Richter, S. D., Cody, R. J., and Cliff, B. L., Modeling for *in-situ* evaluation of soil properties and engineered vapor extraction system design. *Presented at the NWWA/API Conference, Houston, TX* (November 1990).
- Mohr, D., 1992. Chevron Research & Technology Co., Richmond, CA, personal communication.

APPENDIX F COMPUTER-GENERATED OUTPUT FROM VENT-ROI 3.0

. BRC/Pilottest.rpt

VEW-1S ANALYSIS

BRC/Pilottest.rpt

ANALYSIS OF VACUUM DISSIPATION DATA FROM PILOT TEST

42 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	.15	824
* MP2	33	0	
rw2	33	.185	 733
p2	40	.12	921
mw4	57	.1	-1

* = outlier, not considered in analysis
Additional data point based on applied vacuum:

8.4 inches of water column at 0 feet from SVE well

Slope = -.031 per foot

Intercept = 2.585 inches of water column

R squared = .682

40 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	.1	-1
* MP2	33	0	
rw2	33	.13	886
p2	40	.1	-1
mw4	57	.05	-1.301

* = outlier, not considered in analysis
Additional data point based on applied vacuum:
 8 inches of water column at 0 feet from SVE well

Slope = -.035 per foot

Intercept = 2.387 inches of water column

R squared = .714

28 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	.05	-1.301
* MP2	33	0	
rw2	33	.09	-1.046
p2	40	.08	-1.097
mw4	57	.03	-1.523

* = outlier, not considered in analysis

Additional data point based on applied vacuum:

5.6 inches of water column at 0 feet from SVE well

Slope = -.035 per foot

Intercept = 1.533 inches of water column

R squared = .67

16 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	.03	-1.523
* MP2	33	0	
rw2	33	.015	-1.824
* p2	40	0	
* mw4	57	0	

* = outlier, not considered in analysis

Additional data point based on applied vacuum:

3.2 inches of water column at 0 feet from SVE well

Slope = -.073 per foot

Intercept = 2.053 inches of water column

R squared = .903

Average slope from tests at 4 applied vacuums = -.043 per foot.

Varning! Calculated ratio of horizontal to vertical permeability is .73 which ay indicate either a short circuit during the pilot test (caused perhaps by a poor well seal or the proximity of a past excavation) or a failure to reach steady state subsurface vacuum during the test. The pilot test results are therefore suspect, and the site may be unsuitable for SVE. Kh/Kv will be adjusted to 1.0 for the remainder of the analysis.

(Press any key to continue)

OBSERVED AND PREDICTED FLOW RESPONSE TO APPLIED VACUUM

	Applied Vacuum (inches w.c.)	Observed Flow Response (scfm)	Predicted Flow Response (scfm)	Relative Percent Difference			
1.	42	115	118.22	2.8 %			
2.	40	94	112.88	18.3 %			
3.	28	83	80.24	-3.4 %			
4.	16	54	46.55	-14.8 %			
	Mean Value of Relative Percent Difference: Mean Absolute Value of Relative Percent Difference: Standard Deviation of Prediction:						
	Soil Permeability in Horizontal Direction (sq cm): 1.87E-07 Standard Deviation of Soil Permeability Estimation (sq cm): 2.5E-08 Ratio of Horizontal to Vertical Permeability: 1						

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Xylene/Ethylbenzene (single component, volatile and biodegradable)

Molecular Weight = 106

Vapor Pressure = 3.48 mm Hg
Temperature Constant = 1904 deg K
Liquid Density = .87 g/cc
Zero Order Bioremediation Rate Constant = 5 ppm/day
Initial Total Soil Contaminant Concentration = 7750 ppm
Residual (Non-degradable) Soil Concentration = 1 ppm

Vertical wells in 10 inch boreholes, not extending to groundwater, screened from 5 to 13 feet

Thickness of Vented Soil Interval = 23.6 feet Slope of log10(P) vs Distance from Pilot Test = .043 per ft

Soil Gas Temperature = 50 deg F

Applied Vacuum = 42 in. water column

Air Flow Rate per Vapor Extraction Well = 118.2 scfm
Desired Time to Cleanup = 730 days
Cleanup Goal = 90 % removal

OLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = 30.93 FEET INTERWELL EFFECTIVE RADIUS = 24.6 FEET

BIODEGRADATION: SINGLE WELL RADIUS OF INFLUENCE = 36.01 FEET

INTERWELL RADIUS OF INFLUENCE = 30.6 FEET

OL. PLUS BIO.: SINGLE WELL EFFECTIVE RADIUS = 36.01 FEET

INTERWELL EFFECTIVE RADIUS = 30.6 FEET

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Weathered Gasoline/JP-4 (contaminant mixture, volatile and biodegradable)

log10(MW P*) = 1.34 - 3.19 õm Temperature Constant = 1904 deg K

Liquid Density = .7 g/cc
Zero Order Bioremediation Rate Constant = 5 ppm/day

Initial Total Soil Contaminant Concentration = 7750 ppm Residual (Non-degradable) Soil Concentration = 1 ppm

Vertical wells in 10 inch boreholes, not extending to groundwater, screened from 5 to 13 feet

Thickness of Vented Soil Interval = 23.6 feet Slope of log10(P) vs Distance from Pilot Test = .043 per ft

Soil Gas Temperature = 50 deg F

Applied Vacuum = 42 in. water column
Air Flow Pate per Vaper Extraction Well = 118 2 seff

Air Flow Rate per Vapor Extraction Well = 118.2 scfm
Desired Time to Cleanup = 730 days

Cleanup Goal = 90 % removal

VOLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = 16.17 FEET

INTERWELL EFFECTIVE RADIUS = 3.93 FEET

BIODEGRADATION: SINGLE WELL RADIUS OF INFLUENCE = 36.01 FEET

INTERWELL RADIUS OF INFLUENCE = 30.6 FEET

VOL. PLUS BIO.: SINGLE WELL EFFECTIVE RADIUS = 34.42 FEET

INTERWELL EFFECTIVE RADIUS = 28.74 FEET

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Diesel/No. 2 Fuel Oil (contaminant mixture, volatile and biodegradable)

log10 (MW P*) =-.05 - 6.03 δm

Temperature Constant = 1904 deg K

Liquid Density = .8 g/cc

Zero Order Bioremediation Rate Constant = 5 ppm/day Initial Total Soil Contaminant Concentration = 7750 ppm

Residual (Non-degradable) Soil Concentration = 1 ppm

Vertical wells in 10 inch boreholes, not extending to groundwater, screened from 5 to 13 feet

Thickness of Vented Soil Interval = 23.6 feet

Slope of log10(P) vs Distance from Pilot Test = .043 per ft

Soil Gas Temperature = 50 deg F

Applied Vacuum = 42 in. water column

Air Flow Rate per Vapor Extraction Well = 118.2 scfm
Desired Time to Cleanup = 730 days

Cleanup Goal = 90 % removal

**OLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = .22 FEET

INSUFFICIENT SURFACE INFILTRATION FOR MULTIPLE WELL SYSTEM

BIODEGRADATION: SINGLE WELL RADIUS OF INFLUENCE = 36.01 FEET

INTERWELL RADIUS OF INFLUENCE = 30.6 FEET

<u>V</u>OL. PLUS BIO.: SINGLE WELL EFFECTIVE RADIUS = 2.37 FEET

INTERWELL EFFECTIVE RADIUS = .1 FEET

VEW-1D ANALYSIS

BRC/Pilottest.rpt

10 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	1.9	.279
MP2	33	1.2	.079
MP4	225	.035	-1.456
RW2	33	1.2	.079
P2	40	1.1	.041
MW4	57	1	0

Additional data point based on applied vacuum:
2 inches of water column at 0 feet from SVE well

Slope

= -.008 per foot

Intercept

= 2.348 inches of water column

R squared = .992

21 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	4	.602
MP2	33	2.6	.415
MP4	225	.08	-1.097
RW2	33	2.6	.415
P2	40	2.5	.398
MW4	57	1.9	.279

Additional data point based on applied vacuum:

4.2 inches of water column at 0 feet from SVE well

Slope

= -.008 per foot

Intercept

= 4.928 inches of water column

R squared

= .995

Average slope from tests at 4 applied vacuums = -.008 per foot.

ANALYSIS OF VACUUM DISSIPATION DATA FROM PILOT TEST

18 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	,
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	3.4	.531
MP2	33	2.4	.38
MP4	225	.05	-1.301
RW2	33	2.4	.38
P2	40	2.1	.322
MW4	57	1.7	.23

Additional data point based on applied vacuum:

3.6 inches of water column at 0 feet from SVE well

Slope = -.009 per foot

Intercept = 4.542 inches of water column

R squared = .994

13 INCHES APPLIED VACUUM:

Monitoring	Distance from	Measured Vacuum	
Well	SVE Well (ft)	(inches w.c.)	log10(Vac)
MP1	19	2.6	.415
MP2	33	1.7	.23
MP4	225	.05	-1.301
RW2	33	1.8	.255
P2	40	1.6	.204
MW4	57	1.2	.079

Additional data point based on applied vacuum:

2.6 inches of water column at 0 feet from SVE well

Slope = -.008 per foot

Intercept = 3.202 inches of water column

R squared = .994

OBSERVED AND PREDICTED FLOW RESPONSE TO APPLIED VACUUM

	Applied Vacuum		Predicted Flow Response	Relative Percent
	(inches w.c.)	(scfm)	(scfm)	Difference
1.	18	94	93.77	2 %
2.	13	67	72.73	8.2 %
3.	10	48	58.28	19.3 %
4.	21	131	104.57	-22.4 %
	Mean Value of Relative Percent Difference:			1.2 %
	Mean Absolute Value of Relative Percent Difference: Standard Deviation of Prediction: Soil Permeability in Horizontal Direction (sq cm): Standard Deviation of Soil Permeability Estimation (sq cm):			12.6 %
				16.7 scfm
				6.59E-07
				cm): 1.21E-07
	Ratio of Horizonta			6.6

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Weathered Gasoline/JP-4 (contaminant mixture, volatile and biodegradable)

 $\log 10 \text{ (MW P*)}$ = 1.34 - 3.19 ŏm

Temperature Constant = 1904 deg K
Liquid Density = .7 q/cc

Zero Order Bioremediation Rate Constant = 5 ppm/day
Initial Total Soil Contaminant Concentration = 7750 ppm

Residual (Non-degradable) Soil Concentration = 1 ppm

Vertical wells in 10 inch boreholes, extending to groundwater, screened from 16 to 23.6 feet

Thickness of Vented Soil Interval = 11.1 feet Slope of log10(P) vs Distance from Pilot Test = .008 per ft

Soil Gas Temperature = 50 deg F

Applied Vacuum = 21 in. water column

Air Flow Rate per Vapor Extraction Well = 104.6 scfm
Desired Time to Cleanup = 730 days

Cleanup Goal = 90 % removal

VOLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = 27.01 FEET

INSUFFICIENT SURFACE INFILTRATION FOR MULTIPLE WELL SYSTEM

BIODEGRADATION: SINGLE WELL RADIUS OF INFLUENCE = 84.22 FEET

INTERWELL RADIUS OF INFLUENCE = 17.78 FEET

VOL. PLUS BIO.: SINGLE WELL EFFECTIVE RADIUS = 78.5 FEET

INTERWELL EFFECTIVE RADIUS = 7.44 FEET

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Xylene/Ethylbenzene (single component, volatile and biodegradable)

Molecular Weight = 106

Vapor Pressure = 3.48 mm Hg
Temperature Constant = 1904 deg K
Liquid Density = .87 g/cc
Zero Order Bioremediation Rate Constant = 5 ppm/day
Initial Total Soil Contaminant Concentration = 7750 ppm
Residual (Non-degradable) Soil Concentration = 1 ppm

Vertical wells in 10 inch boreholes, extending to groundwater, screened from 16 to 23.6 feet

Thickness of Vented Soil Interval = 11.1 feet Slope of log10(P) vs Distance from Pilot Test = .008 per ft

Soil Gas Temperature = 50 deg F

Applied Vacuum = 21 in. water column

Air Flow Rate per Vapor Extraction Well = 104.6 scfm

Desired Time to Cleanup = 730 days

Cleanup Goal = 90 % removal

OLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = 66.91 FEET

INSUFFICIENT SURFACE INFILTRATION FOR MULTIPLE WELL SYSTEM

SIODEGRADATION: SINGLE WELL RADIUS OF INFLUENCE = 84.22 FEET

INTERWELL RADIUS OF INFLUENCE = 17.78 FEET

OL. PLUS BIO.: SINGLE WELL EFFECTIVE RADIUS = 84.22 FEET

INTERWELL EFFECTIVE RADIUS = 17.78 FEET

EFFECTIVE RADIUS CALCULATION FOR CONVENTIONAL SOIL VAPOR EXTRACTION SYSTEM

BRC site in BLOOMFIELD, NM

Diesel/No. 2 Fuel Oil (contaminant mixture, volatile and biodegradable)

log10(MW P*) =-.05 - 6.03 δ m Temperature Constant = 1904 deg K

Liquid Density = .8 g/cc

Zero Order Bioremediation Rate Constant = 5 ppm/day

Initial Total Soil Contaminant Concentration = 7750 ppm Residual (Non-degradable) Soil Concentration = 1 ppm

Vertical wells in 10 inch boreholes, extending to groundwater, screened from 16 to 23.6 feet

Thickness of Vented Soil Interval = 11.1 feet Slope of log10(P) vs Distance from Pilot Test = .008 per ft

Soil Gas Temperature = 50 deg F

Applied Vacuum = 21 in. water column

Air Flow Rate per Vapor Extraction Well = 104.6 scfm
Desired Time to Cleanup = 730 days

Cleanup Goal = 730 days = 90 % removal

OLATILIZATION: SINGLE WELL EFFECTIVE RADIUS = .3 FEET

INSUFFICIENT SURFACE INFILTRATION FOR MULTIPLE WELL SYSTEM

PIODEGRADATION: SINGLE WELL RADIUS OF INFLUENCE = 84.22 FEET

INTERWELL RADIUS OF INFLUENCE = 17.78 FEET

<u>VOL. PLUS BIO.: SINGLE WELL EFFECTIVE RADIUS = 3.24 FEET</u>

INTERWELL EFFECTIVE RADIUS = .1 FEET

APPENDIX G HYDROCARBON MASS EXTRACTION RATE CALCULATIONS

BRC/Pilottest.rpt

Air sample effluent analytical data were used to calculate maximum extraction rates for the soil vent pilot tests on well VEW-1.

$$ER = Q \times C \times \frac{28.32I}{ft^3} \times \frac{lb}{454 \times 10^6 ug} \times \frac{60 \text{min}}{hr}$$

Where:

ER = Extraction rate (lb/hr)

Q = Air velocity under standard temperature and pressure conditions (scfm)

C = Soil vapor concentration (ug/l) $(1 \text{ mg/m}^3 = 1 \text{ ug/l})$

and final three terms are conversion factors

SCFM = cfm x
$$\frac{P_{\text{field}}}{P_{\text{lab}}}$$
 x $\frac{(T_{\text{lab}} + 460^{\circ} R)}{(T_{\text{field}} + 460^{\circ} R)}$

Where:

cfm = Air velocity in cubic feet per minute (fpm x π x r^2) P_{lab} = Standard Pressure (29.92 inches Hg at sea level)

P_{field} = 25 inches Hg (average for Albuquerque, NM; National Weather Service)

T_{field} = Average Temperature in field (°F)

T_{lab} = Standard Temperature (60°F, standard laboratory temperature)

°R = Temperature in Rankin

- I. SVES Extraction Rate Calculations Well VEW-1 Shallow and Deep Zone Pilot Tests
 - Air sample VEW-1S collected 180 minutes after start of shallow zone soil vent test at 42 inches of water applied vacuum, 115 scfm.
 - Air sample VEW-1D collected 180 minutes after start of deep zone soil vent test at 21 inches of water applied vacuum, 131 scfm.

Extraction rates in pounds per hour (lb/hr) were calculated in the following manner:

- A. <u>Benzene Calculations</u>
 - 1. Sample VEW-1S Effluent

(115scfm) x (2.2ug/l) x 3.74 x
$$10^{-6}$$
 $\frac{I-Ib-min}{ft^3-ug-hr}$

- = 9.5 x 10⁻⁴ lb/hr Benzene
- 2. Sample VEW-1D EFF

(131 scfm) x (380 ug/l) x 3.74 x
$$10^{-6} \frac{I-Ib-min}{ft^3-ug-hr}$$

= 0.19 lb/hr Benzene

B. Toluene Calculations

1. Sample VEW-1S Effluent

(115scfm) x (0.4ug/l) x 3.74 x
$$10^{-6}$$
 $\frac{I-Ib-min}{ft^3-ug-hr}$

- = 1.72 x 10⁻⁴ lb/hr Toluene
- 2. Sample VEW-1D EFF

(131 scfm) x (16 ug/l) x 3.74 x
$$10^{-6}$$
 $\frac{I-Ib-min}{ft^3-ug-hr}$

- = 0.008 lb/hr Toluene
- C. <u>Ethylbenzene Calculations</u>
 - 1. Sample VEW-1S Effluent

(115scfm)
$$x$$
 (0.53ug/l) x 3.74 x 10⁻⁶ $\frac{I-Ib-\min}{ft^3-ug-hr}$

- = 2.3 x 10⁻⁴ lb/hr Ethylbenzene
- 2. Sample VEW-1D EFF

(131 scfm) x (57 ug/l) x 3.74 x
$$10^{-6}$$
 $\frac{I-Ib-min}{ft^3-ug-hr}$

= 0.03 lb/hr Ethylbenzene

- D. <u>Total Xylenes Calculations</u>
 - 1. Sample VEW-1S Effluent

(115scfm) x (3.2ugll) x 3.74 x
$$10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$$

- = 1.4 x 10⁻³ lb/hr Total Xylenes
- 2. Sample VEW-1D EFF

(131 scfm) x (280 ug/l) x 3.74 x
$$10^{-6}$$
 $\frac{I-Ib-\min}{ft^3-ug-hr}$

- = 0.14 lb/hr Total Xylenes
- E. Total Fuel (non-methane hydrocarbons) Calculations
 - 1. Sample VEW-1S Effluent

(115scfm) x (460ug/l) x 3.74 x
$$10^{-6} \frac{l-lb-min}{tt^3-ug-hr}$$

- = 0.20 lb/hr Total Fuel
- 2. Sample VEW-1D EFF

(131 scfm) x (11,000 ug/l) x 3.74 x
$$10^{-8} \frac{I-Ib-\min}{ft^3-ug-hr}$$

= 5.4 lb/hr Total Fuel

- II. SVES Extraction Rate Calculations Well VEW-1D and AS-1 Combined Air Sparge/Soil Vent Test
 - Air sample VEW-1D V/S collected 145 minutes after start of combined air sparge/soil vent test at 22 inches of water applied vacuum and 5 psi.

Extraction rates in pounds per hour (lb/hr) were calculated in the following manner:

- A. <u>Benzene Calculations</u>
 - 1. Sample VEW-1D V/S

(112scfm) x (460ugl1) x 3.74 x
$$10^{-6}$$
 $\frac{I-Ib-min}{ft^3-ug-hr}$

- = 0.19 lb/hr Benzene
- B. <u>Toluene Calculations</u>
 - 1. Sample VEW-1D V/S

(112scfm) x (170ug/l) x 3.74 x
$$10^{-6}$$
 $\frac{l-lb-min}{ft^3-ug-hr}$

- = 0.07 lb/hr Toluene
- C. <u>Ethylbenzene Calculations</u>
 - 1. Sample VEW-1D V/S

(112scfm) x (140ug/l) x 3.74 x
$$10^{-6}$$
 $\frac{l-lb-min}{tt^3-ug-hr}$

= 0.06 lb/hr Ethylbenzene

- D. <u>Total Xylenes Calculations</u>
 - 1. Sample VEW-1D V/S

(112scfm) x (1,100ug/l) x 3.74 x
$$10^{-6} \frac{I-Ib-min}{ft^3-ug-hr}$$

- = 0.46 lb/hr Total Xylenes
- E. Total Fuel (non-methane hydrocarbons) Calculations
 - 1. Sample VEW-1D V/S

(112scfm) x (13,000ug/l) x 3.74 x
$$10^{-8}$$
 $\frac{I-Ib-min}{ft^3-ug-hr}$

= 5.45 lb/hr Total Fuel

