

PERMITS, RENEWALS, & MODS

Certified Mail: #7002 0510 0000 0307 7411

March 23, 2004

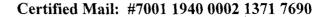
Mr. William C. Olson New Mexico Oil Conservation Division 1220 St. Francis Dr. Santa Fe, NM 87504

RE: 2003 ANNUAL REPORT FOR THE JAQUEZ COM E #1 AND C #1 AND THE SANJUAN RIVER PLANT

Dear Mr. Olson:

El Paso Field Services (EPFS) hereby submits the 2003 Annual Report for the Jaquez Com E #1 and C #1 located near Blanco, New Mexico and the San Juan River Plant located near Kirtland, New Mexico. The enclosed reports detail the remediation and sampling activities for the year 2003.

If you have any questions concerning the enclosed reports, please call me at (505) 599-2124.


Sincerely,

Scott T. Pope P.G. Senior Environmental Scientist

Enclosures: as stated

xc: Mr. Denny Foust, NMOCD, Aztec - w / enclosures; Certified Mail # 7002 0510 0000 0307 7435
 Mr. John Jaquez, Landowner, Jaquez Report Only - w / enclosures; Certified Mail # 7002 0510 0000 0307 7428

El Paso Field Services 614 Reilly Ave. Farmington, NM 87401

March 31, 2003

RECEIVED

Field

Mr. William C. Olson New Mexico Oil Conservation Division 1220 St. Francis Dr. Santa Fe, NM 87504 APR 0 2 2003

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

RE: 2002 ANNUAL REPORT FOR THE JAQUEZ COM E #1 AND C #1 AND THE SAN JUAN RIVER PLANT

Dear Mr. Olson:

El Paso Field Services (EPFS) hereby submits the 2002 Annual Report for the Jaquez Com E #1 and C #1 located near Blanco, New Mexico and the San Juan River Plant located near Kirtland, New Mexico. The enclosed reports detail the remediation and sampling activities for the year 2002.

If you have any questions concerning the enclosed reports, please call me at (505) 599-2124.

Sincerely,

=T.P

Scott T. Pope P.G. Senior Environmental Scientist

Enclosures: as stated

xc: Mr. Denny Foust, NMOCD, Aztec - w / enclosures; Certified Mail # 7001 1940 0002 1371 7683
 Mr. John Jaquez, Landowner, Jaquez Report Only - w / enclosures; Certified Mail # 7001 1940 0002 1371 7706

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary

January 15, 2003

Lori Wrotenberv Director **Oil Conservation Division**

CERTIFIED MAIL RETURN RECEIPT NO. 7001-1940-0004-3929-7129

Mr. Scott Pope **El Paso Field Services** 614 Reilly Avenue Farmington, New Mexico 87401

RE: CASE # GW039R **GROUND WATER REMEDIATION AND MONITORING** SAN JUAN RIVER PLANT **KIRTLAND, NEW MEXICO**

Dear Mr. Pope:

The New Mexico Oil Conservation Division (OCD) has reviewed El Paso Field Services' (EPFS) March 27,2001 correspondence titled "2001 ANNUAL REPORT FOR THE JAQUEZ COM E#1 AND C#1 AND THE SAN JUAN RIVER PLANT" and accompanying April 2002 "ANNUAL REPORT SAN JUAN RIVER PLANT SITE-WIDE SAMPLING AND HYDROCARBON REMEDIATION". These documents contain the results of EPFS's ground water remediation and monitoring at the San Juan River Plant in Kirtland, New Mexico. The documents also request a change in the sampling frequency of monitor well MW-5 from quarterly to annual sampling.

The above-referenced request is approved. Please be advised that OCD approval does not relieve EPFS of responsibility if the monitoring program fails to adequately monitor contamination related to EPFS's activities. In addition, OCD approval does not relieve EPFS of responsibility for compliance with any other federal, state or local laws and regulations.

If you have any questions, please call me at (505) 476-3491.

Sincerely,

William C. Olson Hydrologist **Environmental Bureau**

Denny Foust, OCD Aztec District Office cc:

Certified Mail: #7001 1940 0003 8582

March 27, 2001

RECEIVED

Mr. William C. Olson New Mexico Oil Conservation Division 1220 St. Francis Dr. Santa Fe, NM 87504 APR 01 2002

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

RE: 2001 ANNUAL REPORT FOR THE JAQUEZ COM E #1 AND C #1 AND THE SAN JUAN

Dear Mr. Olson:

El Paso Field Services (EPFS) hereby submits the 2001 Annual Report for the Jaquez Com E #1 and C #1 located near Blanco, New Mexico and the San Juan River Plant located near Kirtland, New Mexico. The enclosed reports detail the remediation and sampling activities for the year 2001.

If you have any questions concerning the enclosed reports, please call me at (505) 599-2124.

Sincerely,

Scott T. Pope P.G. Senior Environmental Scientist

Enclosures: as stated

xc: Mr. Denny Foust, NMOCD, Aztec - w / enclosures; Certified Mail # 7001 1940 0003 1553 8599
 Mr. John Jaquez, Landowner, Jaquez Report Only - w / enclosures; Certified Mail # 7001 1940 0003 1553 8575

El Paso Field Services 614 Reilly Farmington, New Mexico 87401

Olson, William

From:Pope, Scott [Scott.Pope@EIPaso.com]Sent:Tuesday, November 27, 2001 9:02 AMTo:'Bill Olson'Cc:'Lynn Benally'; 'Neil Wrubel'; 'Valda I.Terauds'Subject:Remediation at the San Juan River Plant

Bill,

As we discussed in our November 26, 2001, phone conversation, after several attempts to install a sparge well up gradient of MW-8 at the San Juan River Plant were unsuccessful due to auger refusal, a sparge well was eventually installed. The sparge well could only be advanced to a depth of 15 feet which was 6 feet above the target depth of 21 feet. After attempting to develop the well by surging with potable water, only .4 feet of water would accumulate in the well. A preliminary sparge test was conducted using a compressor while pressure and dissolved oxygen (DO) readings were observed in MW-8. No changes were noted in pressure or DO in MW-8, indicating no communication between the sparge well and the monitoring well. As discussed with Valda Terauds of Montgomery Watson Harza, the most appropriate remedy for MW-8 at this point would be the installation of an Oxygen Release Compound (ORC) sock. Based on our phone call we understand this remedy has been approved and the ORC sock will be installed.

Installation of the sparge well up gradient of MW-9 was very difficult as well and preliminary tests did indicate communication is occurring between the sparge and monitoring wells. The sparge system at MW-9 will be installed and pilot tested as approved. A final report will be submitted following the conclusion of the 8 week sparge test. The report will detail the drilling attempts, results from the preliminary sparge tests, installation of the sparge system and 8 week pilot test.

If you have any additional questions or concerns please contact me at (505) 599-2124 or Valda Terauds at (505) 878-1430.

Sincerely,

<<...OLE Obj...>> Scott T. Pope P.G. Senior Environmental Scientist Environmental Remediation Department (505) 599-2124 (505) 599-2119 Fax

1

OIL CONSERVATION DIV 614 Rielly Avenue Farmington, NM 87401 01 SEP 24 PH(595) 599-2124

Certified Mail # 7000 1670 0012 7260 9150

September 19, 2001

Mr. William C. Olson New Mexico Oil Conservation Division 1220 St. Francis Dr. Santa Fe, NM 87504

RE: Revised Work Plan for Groundwater Remediation for the San Juan River Plant

Mr. Olson;

El Paso Corporation (EPC), hereby submits the attached "Revised Work Plan for Groundwater Remediation for the San Juan River Plant (SJRP)", prepared by Montgomery Watson Harza. The initial work plan for the SJRP was submitted January 24, 2001 and approved June 4, 2001. After review of the initial plan and site visit, modifications to the initial work plan were discussed and the following changes were made to the initial work plan.

- 1. Revise sparging pilot test to 8 weeks from 4 weeks identified in initial work plan. There is a better chance of seeing measurable results in a subsurface system that has to change from oxygen-poor to an oxygen-rich environment with the attendant changes in microbial populations.
- 2. Revise groundwater sampling periods as follows: prior to installation, four weeks and at conclusion of 8 week sparge period. The sparge system will be shut down 48 hours prior to sample collection.
- 3. The overall operating period will be changed from a twelve hour pulsing versus eight hour pulsing. This is better suited to distributing oxygen and will employ the use of a timer to eliminate visits by subcontractor.

If you have any comments or questions regarding the modifications to the original work plan please call me at (505) 599-2124 or Lynn H. Benally at (505) 599-2178. The project is estimated to begin on October 19, 2001.

Sincerely,

Scott T. Pope P.G. Senior Environmental Scientist Environmental Remediation Department

Attachments: as stated

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

GARY E. JOHNSON Governor Jennifer A. Salisbury Cabinet Secretary Lori Wrotenbery Director Oil Conservation Division

June 4, 2001

<u>CERTIFIED MAIL</u> RETURN RECEIPT NO. 3771-7323

Mr. Scott Pope El Paso Energy Corporation 614 Reilly Avenue Farmington, New Mexico 87401

RE: CASE # GW039R GROUND WATER MONITORING RESULTS AND REMEDIATION WORK PLAN SAN JUAN RIVER PLANT KIRTLAND, NEW MEXICO

Dear Mr. Pope:

The New Mexico Oil Conservation Division (OCD) has reviewed El Paso Energy Corporation's (EPEC) January 24, 2001 "WORK PLAN FOR GROUNDWATER REMEDIATION AND 2000 GROUNDWATER SAMPLE RESULTS FOR THE SAN JUAN RIVER PLANT" and accompanying December 2000 "SAN JUAN RIVER PLANT, GROUNDWATER REMEDIATION WORK PLAN". These documents contain the results of EPEC's ground water monitoring and a proposed work plan for additional remediation of contaminated ground water at the San Juan River Plant in Kirtland, New Mexico.

The above referenced work plan is approved with the following conditions:

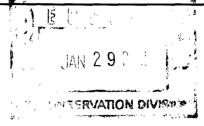
- 1. On an annual basis EPEC shall sample and analyze ground water from all existing site monitor wells for concentrations of benzene, toluene, ethylbenzene and xylene (BTEX), nitrates, total dissolved solids and New Mexico Water Quality Control Commission (WQCC) metals and cations and anions using EPA approved methods and quality assurance/quality control procedures.
 - Note: This sampling was required in the OCD's October 13, 1999 approval of EPEC's ground water remediation plan due to exceedances of WQCC standards in ground water at various points throughout the plant.

- 2. EPEC shall submit the as built construction information on the air sparge system to the OCD in the subsequent annual report.
- 3. All wastes generated shall be disposed of at an OCD approved facility.
- 4. EPEC shall notify the OCD at least 1 week in advance of all scheduled activities such that the OCD has the opportunity to witness the events and split samples.

Please be advised that OCD approval does not relieve EPEC of liability if contamination exists which is beyond the scope of the work plan, or if the activities fail to adequately remediate and monitor contamination related to EPEC's activities. In addition, OCD approval does not relieve EPEC of responsibility for compliance with any other federal, state or local laws and regulations.

If you have any questions, please call me at (505) 827-7154.

Sincerely,


William C. Olson Hydrologist Environmental Bureau

xc: Denny Foust, OCD Aztec District Office

January 24, 2001

Mr. William C. Olson New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87504 Certified Mail: #Z 213 707 479

RE: Work Plan for Groundwater Remediation and 2000 Groundwater Sample Results for the San Juan River Plant

Dear Mr. Olson:

El Paso Energy Corporation (EPEC) hereby submits the attached "Groundwater Remediation Work Plan" prepared by PSC and 2000 groundwater sample results for the San Juan River Plant near Kirtland, New Mexico. A Work Plan was approved on October 13, 1999 for the injection of an oxygen release compound to aid in the biodegradation of the BTEX compounds above New Mexico Water Quality Control Commission standards. After closer review of the proposed remediation method and associated costs, EPEC has concluded air sparging is a better option for roughly the same costs. In telephone conversations you have indicated you would be willing to review the Work Plan for the implementation of a sparge system for groundwater remediation in place of the approved oxygen release proposal at the site.

In the interim period of reviewing remediation technologies, new project management and preparing the enclosed Work Plan, quarterly groundwater monitoring has continued at the site. Groundwater sample results for the year 2000 are presented in the attached Table 1. Original laboratory reports are also included as an attachment to this letter.

Most of the parameters sampled for during the year 2000 were related to natural attenuation, with the exception of BTEX. Since we have a years worth of data showing which natural attenuation parameters we are deficient in at the site, EPEC requests that sampling be limited to BTEX only, until remediation activities indicate the need for additional tests.

If you have any questions or require any additional information, please contact me at (505) 599-2124.

Sincerely, Lott T. Scott T. Pope P.G.

Senior Environmental Scientist

Enclosures: as stated

xc: Mr. Denny Foust, NMOCD - Aztec - Certified Mail # Z 213 707 480

MW # Iron Manganese Amnonia - ng't mg't N ng/L
0.12 3.3
0.38 3.3
0.24 1.8
0.59 0.026
9.2
3.6
1.6
0.011
2.4
8.5
8.4
0.11

TKN = Total Kjeldahl Nitrogen ND = Not Detected mg/L = Mitigrams per Liter ug/L = Mitrograms per Liter

TABLE 1

•

.

San Juan River Plant Groundwater Results 2000 (Page 1 of 1) STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE. NEW MEXICO 87505 (505) 827-7131

October 13, 1999

CERTIFIED MAIL RETURN RECEIPT NO. Z-274-520-716

Mr. Bryan Gay El Paso Energy Corporation P.O. Box 2511 Houston, Texas 77252-2511

RE: GROUND WATER REMEDIATION WORK PLAN SAN JUAN RIVER PLANT KIRTLAND, NEW MEXICO

Dear Mr. Gay:

The New Mexico Oil Conservation Division (OCD) has reviewed El Paso Energy Corporation's (EPEC) August 31, 1999 "AMENDED SCOPE OF WORK ASSOCIATED WITH BTEX CONTAMINATION IN GROUND WATER, SAN JUAN RIVER PLANT, KIRTLAND, NEW MEXICO" and June 2, 1999 "PROPOSED SCOPE OF WORK ASSOCIATED WITH BTEX CONTAMINATION IN GROUND WATER, SAN JUAN RIVER PLANT, KIRTLAND, NEW MEXICO". These documents contain EPEC's proposed work plan for remediation and monitoring of contaminated ground water at the San Juan River Plant in Kirtland, New Mexico.

The above referenced work plans are approved with the following conditions:

1. On an annual basis EPEC shall sample and analyze ground water from all site monitor wells for concentrations of benzene, toluene, ethylbenzene and xylene (BTEX), nitrates, total dissolved solids and New Mexico Water Quality Control Commission (WQCC) metals and cations and anions using EPA approved methods and quality assurance/quality control procedures.

2. EPEC shall submit an annual report on the results of the remediation and monitoring activities to the OCD by April 1 of each year. The report shall be submitted to the OCD Santa Fe Office with a copy provided to the OCD Aztec District Office and shall contain:

a. A description of all remediation and monitoring activities conducted during the past calendar year.

- c. Isopleth maps of contaminants of concern for each sampling event.
- d. Summary tables of all water quality sampling results and copies of all recent laboratory analytical data sheets and associated quality assurance/quality control data.
- e. The disposition of all wastes generated.
- f. The composition of any material used for insitu bioremediation of contaminants.
- 3. All wastes generated shall be disposed of at an OCD approved facility.
 - EPEC shall notify the OCD at least 1 week in advance of all scheduled activities such that the OCD has the opportunity to witness the events and split samples.
- 5. Ground water quality monitoring shall continue until sampling analyses show that the contaminants in ground water which are related to EPEC's activities are below WQCC standards for 8 consecutive quarters.

Please be advised that OCD approval does not relieve EPEC of liability if contamination exists which is beyond the scope of the work plan, or if the activities fail to adequately remediate and monitor contamination related to EPEC's activities. In addition, OCD approval does not relieve EPEC of responsibility for compliance with any other federal, state or local laws and regulations.

If you have any questions, please call me at (505) 827-7154.

Sincerely,

4.

b.

William C. Olson Hydrologist Environmental Bureau

xc: Denny Foust, OCD Aztec District Office

D	ß	E	[M	F	
	SEP		7	1999)	
OILCO	INSEE	2VA	τιο	N O	<u> </u>	

August 31, 1999

Mr. Wayne Price Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, NM 87505

Re: Amended Scope of Work Associated with BTEX Contamination in Groundwater. San Juan River Plant Kirtland, New Mexico

Dear Mr. Price:

In a previous letter dated June 2, 1999 El Paso Energy proposed to treat BTEX contaminated groundwater using ORC socks placed in impacted groundwater monitoring wells MW-8 and MW-9, located on the northern portion of the San Juan River Plant property. After reconciliation of alternative application processes of the ORC technology El Paso Energy would like to amend the original scope of work accordingly.

As an alternative to placing ORC socks into the monitoring wells El Paso Energy would rather use a drill rig to install a total of 18 soil borings to an approximate depth of 21 feet below ground surface (bgs). Each set of soil borings will be placed around each of the impacted groundwater monitoring wells MW-8 and MW-9, approximately 10 feet apart in a column and row grid arrangement. An ORC slurry (magnesium peroxide and water) is proposed to be injected into each of the boreholes in order to come in contact with the shallow groundwater. Each of the boreholes will be completed from five feet bgs to the surface with a cement/bentonite slurry.

We believe this is a more appropriate strategy than the formally proposed ORC sock installation. With this approach we will avoid disturbing the quality of the samples collected from the currently impacted monitoring wells. In addition, more of the impacted area will be exposed to the ORC, resulting in a greater decrease in the contaminant mass. Sampling of the wells will occur within 72 hours of injecting the ORC slurry and then again every quarter as previously proposed.

1

As an added note this process has been previously approved by the New Mexico Oil Conservation Division for other sites in the area. According to our field services office located in Farmington, New Mexico these sites approved for ORC injection have been a success.

If you have any questions or comments after reviewing this amendment to the original work plan dated June 2, 1999 please feel free to call me at (713) 420-5947. I have attached the original work plan for your reference.

Sincerely,

Bryan Gay, CAPM Project Environmental Scientist Environmental Remediation Department

Attachments

June 2, 1999

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, NM 87505

Re: Proposed Scope of Work Associated with BTEX Contamination in Groundwater. San Juan River Plant Kirtland, New Mexico

Dear Mr. Olson:

As per your discussion with Bryan Gay on Thursday, May 26, 1999 I have enclosed this proposed scope of work associated with the benzene, toluene, ethylbenzene, and xylene (BTEX) contamination in groundwater surrounding monitoring wells MW-8 and MW-9 at the subject site. These wells have been impacted through a historical release at the site. BTEX concentrations above New Mexico Water Quality Control Commission (NMWQCC) standards have been observed in these wells since July 1995. However, BTEX has never been observed in monitoring well (MW-5) located down gradient near the property boundary, therefore; the plume mass appears to be isolated and stable. In addition, benzene concentrations appear to be decreasing through natural processes. A table summarizing groundwater analytical results for MW-5, MW-8, and MW-9 have been attached as **Table 1**.

The forth-coming proposed activities include the evaluation of parameters associated with the natural attenuation of BTEX in groundwater, the addition of nutrients to impacted wells if necessary, the installation of magnesium peroxide socks to provide an increased source of oxygen to the impacted wells, and continued groundwater monitoring.

El Paso Energy proposes that monitoring wells MW-5, MW-8, and MW-9 be sampled for the following natural attenuation parameters; dissolved oxygen (DO), oxygen reduction potential (ORP), pH, temperature, nitrates, sulfates, and ferrous iron (FeII). DO, ORP, temp, and pH will be measured in the field using New Mexico Oil Conservation Division (NMOCD) approved methods. Nitrates, sulfates, and Fell will be analyzed in the laboratory. A comparison of results from impacted monitoring wells MW-8 and MW-9 and historically documented non-detect monitoring well MW-5 will be used to determine if present conditions are suitable for natural attenuation. If results indicate any nutrient deficiencies, nutrients will be added to wells MW-8 and MW-9 in order to support natural attenuation processes. The addition of nutrients would include the mixing of urea nitrate with potable water at a 1:5 ratio. Hydrogen peroxide should also be added in order to bring the dissolved oxygen concentration of the water to 20 mg/l. The nutrient mixture will be added to the monitoring wells as a supplement to existing nutrients. Prior to the addition of any nutrients (if necessary), monitoring wells MW-5, MW-8, and MW-9 will be sampled and analyzed for BTEX using EPA method 8020. This initial sampling will be used to establish a baseline of BTEX concentrations prior to any assisted natural attenuation. Monitoring well MW-5 will be sampled due to its down gradient location and its history of non-detectable concentrations of BTEX. Hence, monitoring well MW-5 will be sampled to determine if plume migration is occurring.

After the appropriate nutrients have been added to monitoring wells MW-8 and MW-9 (if necessary), each well will be fitted with a magnesium peroxide sock in order to provide a continued source of oxygen to the groundwater. The addition of oxygen to groundwater should increase the rate of aerobic degradation of BTEX constituents in the vicinity of monitoring wells MW-8 and MW-9. Following a minimum of three months (I guarter) the magnesium peroxide socks will be removed from each well. After the well has stabilized for two weeks groundwater samples will be collected from MW-5, MW-8 and MW-9 and analyzed for BTEX using EPA method 8020 and the fore-mentioned natural attenuation parameters. Based on the results of the groundwater monitoring event, additional nutrients and the magnesium socks may be placed into the well for an additional guarter. This process will be continued on a quarterly basis until BTEX concentrations in groundwater are below NMWQCC standards. El Paso Energy proposes to continue groundwater monitoring activities for monitoring wells MW-5, MW-8, and MW-9 for two additional guarters in order to document plume stability and insure BTEX concentrations have been reduced to levels below NMWQCC standards.

Please contact me at (713) 420-3306 with any questions or comments.

Sincerely,

Nancy K Prince, CGWP Principal Environmental Scientist Environmental Remediation Department

Attachments

June 2, 1998

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, NM 87505 RECEIVED

JUN 0 3 1999

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Re: Proposed Scope of Work Associated with BTEX Contamination in Groundwater. San Juan River Plant Kirtland, New Mexico

Dear Mr. Olson:

As per your discussion with Bryan Gay on Thursday, May 26, 1999 I have enclosed this proposed scope of work associated with the benzene, toluene, ethylbenzene, and xylene (BTEX) contamination in groundwater surrounding monitoring wells MW-8 and MW-9 at the subject site. These wells have been impacted through a historical release at the site. BTEX concentrations above New Mexico Water Quality Control Commission (NMWQCC) standards have been observed in these wells since July 1995. However, BTEX has never been observed in monitoring well (MW-5) located down gradient near the property boundary, therefore; the plume mass appears to be isolated and stable. In addition, benzene concentrations appear to be decreasing through natural processes. A table summarizing groundwater analytical results for MW-5, MW-8, and MW-9 have been attached as *Table 1*.

The forth-coming proposed activities include the evaluation of parameters associated with the natural attenuation of BTEX in groundwater, the addition of nutrients to impacted wells if necessary, the installation of magnesium peroxide socks to provide an increased source of oxygen to the impacted wells, and continued groundwater monitoring.

El Paso Energy proposes that monitoring wells MW-5, MW-8, and MW-9 be sampled for the following natural attenuation parameters; dissolved oxygen (DO), oxygen reduction potential (ORP), pH, temperature, nitrates, sulfates, and ferrous iron (FeII). DO, ORP, temp, and pH will be measured in the field using New Mexico Oil Conservation Division (NMOCD) approved methods. Nitrates, sulfates, and FeII will be analyzed in the laboratory. A comparison of results from impacted monitoring wells MW-8 and MW-9 and historically documented non-detect monitoring well MW-5 will be used to determine if present conditions are suitable for natural attenuation. If results indicate any nutrient deficiencies, nutrients will be added to wells MW-8 and MW-9 in order to support natural attenuation processes. The addition of nutrients would include the mixing of urea nitrate with potable water at a 1:5 ratio. Hydrogen peroxide should also be added in order to bring the dissolved oxygen concentration of the water to 20 mg/l. The nutrient mixture will be added to the monitoring wells as a supplement to existing nutrients. Prior to the addition of any nutrients (if necessary), monitoring wells MW-5, MW-8, and MW-9 will be sampled and analyzed for BTEX using EPA method 8020. This initial sampling will be used to establish a baseline of BTEX concentrations prior to any assisted natural attenuation. Monitoring well MW-5 will be sampled due to its down gradient location and its history of non-detectable concentrations of BTEX. Hence, monitoring well MW-5 will be sampled to determine if plume migration is occurring.

After the appropriate nutrients have been added to monitoring wells MW-8 and MW-9 (if necessary), each well will be fitted with a magnesium peroxide sock in order to provide a continued source of oxygen to the groundwater. The addition of oxygen to groundwater should increase the rate of aerobic degradation of BTEX constituents in the vicinity of monitoring wells MW-8 and MW-9. Following a minimum of three months (I quarter) the magnesium peroxide socks will be removed from each well. After the well has stabilized for two weeks groundwater samples will be collected from MW-5, MW-8 and MW-9 and analyzed for BTEX using EPA method 8020 and the fore-mentioned natural attenuation parameters. Based on the results of the groundwater monitoring event, additional nutrients and the magnesium socks may be placed into the well for an additional guarter. This process will be continued on a quarterly basis until BTEX concentrations in groundwater are below NMWQCC standards. El Paso Energy proposes to continue groundwater monitoring activities for monitoring wells MW-5, MW-8, and MW-9 for two additional guarters in order to document plume stability and insure BTEX concentrations have been reduced to levels below NMWQCC standards.

Please contact me at (713) 420-3306 with any questions or comments.

Sincerely,

1 ancy Prince

Nancy K Prince, CGWP Principal Environmental Scientist Environmental Remediation Department

Attachments

Table 1
San Juan River Plant
Summary of VOC Groundwater Analytical Results for MW-5, MW-8, and MW-9

. . .

	г					
		enzene 8020	00 toluene	8 05 05 05 05 05 05 05 05 05 05 05 05 05	soro xylenes 8020	8 00 00 00 00 00 00
Date	Sample ID	ug/l	ug/l	ug/l	ug/l	ug/l
Jul-95	MW-5	ND(0.1)	ND(0.5)	ND(0.5)	ND(0.5)	ND(1.6)
	MW-8	510	0.8	46	130	686.8
	MW-9	140	0.6	25	84	249.6
Oct-95	MW-5	ND(0.1)	ND(1.0)	ND(0.5)	ND(0.5)	ND(1.6)
	MW-8	488	3.3	33.7	9 5.8	620.8
	MW-9	124	ND(2.5)	26	128	278
May-96	MW-5	ND(1.0)	ND(1.0)	ND(1.0)	ND(3.0)	ND(6.0)
	MW-8	79.1	ND(5.0)	ND(5.0)	35.4	114.5
	MW-9	103	ND(1.0)	16.7	31.9	151.6
Aug-96	MW-5	ND(1.0)	ND(1.0)	ND(1.0)	ND(3.0)	ND(6.0)
	MW-8	427	1.03	17.3	71.3	516.63
	MW-9	75.2	ND(1.0)	26.8	132	234
May-97	MW-5	ND(1.0)	ND(1.0)	ND(1.0)	ND(3.0)	
	MW-8	141	ND(1.0)	3.78	35.1	38.88
	MW-9	84.9	1.03	8.2	7.95	102.08
Aug-97	MW-5	ND(1.0)	ND(1.0)	ND(1.0)	ND(3.0)	ND(6.0)
	MW-8	307	2.92	6.93	20.7	337.55
	MW-9	106	ND(1.0)	12	21.8	139.8
May-98	MW-5	ND(1.0)	ND(1.0)		NA	ND(3.0)
	MW-8	449	ND(1.0)	13.9	62.9	525.8
	MW-9	89.5	ND(1.0)	8.51	5.61	103.62
08/07/98		ND(1.0)	ND(1.0)	ND(1.0)	ND(3.0)	ND(6.0)
	MW-8	509	ND(1.0)	7.05	42.9	558.95
	MW-8 DUP	520	ND(1.0)	7.27	44.4	572
	MW-9	77	ND(1.0)	7.08	5	89
11/04/98		ND(1.0)	ND(1.0)	ND(1.0)	ND(3.0)	ND(6.0)
	MW-8	408	ND(1.0)	ND(1.0)	14.5	429
	MW-9	89.8	ND(1.0)	9.42	10.9	110
	MW-9 DUP	94.3	ND(1.0)	9.89	11.3	116
02/10/99		ND(1.0)	ND(1.0)	ND(1.0)	ND(3.0)	ND(6.0)
	MW-8	261	ND(1.0)	ND(1.0)	6.1	267
	MW-9	77	ND(1.0)	8.1	6	92
	MW-9 DUP	76.8	ND(1.0)	8	5.7	91
5/17/99		ND(1.0)	ND(1.0)	ND(1.0)	ND(3.0)	ND(6.0)
	MW-8	205	1.02	ND(1.0)	7.25	213
	MW-9	78.3	ND(1.0)	7.54	3.63	89
	MW-9 DUP	75.5	ND(1.0)	7.21	3.46	86
NMWQCC	Standards	10	75	75	62	

NMWQCC = New Mexico Water Quality Control Commission ug/I = micrograms per liter

11

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

June 17, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-410-431-182

Mr. David Bays El Paso Field Services Company P.O. Box 4990 Farmington, New Mexico 87499

RE: SOIL LANDFARM CLOSURE SAN JUAN RIVER PLANT

Dear Mr. Bays:

The New Mexico Oil Conservation Division (OCD; has completed a review of El Paso Field Services (EPFS) April 4, 1997 "SAN JUAN RIVER PLANT LANDFARM" and November 13, 1996 "SAN JUAN RIVER PLANT LANDFARM" These documents contain the results of EPFS's sampling of the soils landfarm at the San Juan River Gas Plant and requests closure of the landfarm based upon the analytical results to date.

The above referenced closure request is approved.

Please be advised that OCD approval does not relieve EPFS of liability if remaining contaminants are found to pose a future threat to surface water, ground water, human health or the environment. In addition, OCD approval does not relieve EPFS of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please call me at (505) 827-7154.

Sincerely

William C. Olson Hydrogeologist Environmental Bureau

xc: Denny Foust, OCD Aztec District Office

P 410 431 182

	US Postal Service Receipt for Cer	JS Postal Service Receipt for Certified Mail								
	No Insurance Coverage	Provided.								
	Do not use for Internation Sent to	nal Mail <i>(See reverse)</i>								
	Street & Number									
	Post Office, State, & ZIP Cod	e								
	Postage	\$								
	Certified Fee									
0	Special Delivery Fee									
	Restricted Delivery Fee									
, April 1995	Return Receipt Showing to Whom & Date Delivered									
, Apri	Return Receipt Showing to Whom, Date, & Addressee's Address									
800	TOTAL Postage & Fees	\$								
n S E	Postmark or Date									
HS FORM 38UU										
цi		1								

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

February 20, 1997

Mr. Davis Bays El Paso Field Services Company P.O. Box 4990 Farmington, New Mexico 87499

RE: SOIL LANDFARM SAN JUAN RIVER PLANT

Dear Mr. Bays:

The New Mexico Oil Conservation Division (OCD) has reviewed El Paso Field Services (EPFS) November 13, 1996 "SAN JUAN RIVER PLANT LANDFARM" This document contains the results of EPFS's sampling of the soils landfarm at the San Juan River Gas Plant and requests closure of the landfarm based upon the analytical results to date.

The soil analytical results show that the total petroleum hydrocarbon (TPH) concentrations in the soils are less than the OCD's recommended remediation levels. However, the document does not contain either the benzene, toluene, ethylbenzene and xylene (BTEX) or volatile headspace measurements for the soils from each cell. In order for the OCD to complete a review of EPFS's closure request, please provide the OCD with this information.

If you have any questions, please call me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: Denny Foust, OCD Aztec District Office

di dhe in P.O. Box 1492 El Paso, TX 79978 Phone: 915-541-2600

January 10, 1997

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

Subject: Pond Closures EPNG San Juan River Plant

Dear Bill,

When the four ponds at San Juan River Plant were closed, the entire disturbed area was re-seeded with a BLM approved native grass mix. As we discussed on the telephone yesterday, January 9, 1997, because 1996 was a relatively dry year, the seed has not yet sprouted. EPNG proposes to wait one more growing season before additional seed is applied. The area will be checked periodically to make sure that present erosion control measures continue to be effective.

We are also completing a report to be sumitted soon summarizing the activities taken to investigate the groundwater over the past 10 years at the plant. This report will include the results of the investigations and recommendations for further action.

Please call me at 915-496-2839 if you have any questions. (Note that the downtown El Paso prefix has changed from 541 to 496.)

Sincerely,

Jancy Prince

Nancy K. Prince, CGWP Principal Environmental Scientist Environmental Affairs Department

cc:	D. Foutz
	WesGas Processors

R. A. Sumner S. Miller J. McNeely M. Heimer

NEW MEXICO ENERGY AINERALS AND NATURA RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. Pacheco Santa Fe, New Mexico 87505

November 1, 1995

CERTIFIED MAIL RETURN RECEIPT NO. Z-765-962-502

Ms. Nancy K. Prince Environmental Affairs Department El Paso Natural Gas Company P.O. Box 1492 El Paso, Texas 79978

RE: POND CLOSURE PLAN SAN JUAN RIVER PLANT

Dear Ms. Prince:

The New Mexico Oil Conservation Division (OCD) has completed a review of El Paso Natural Gas Company's (EPNG) October 10, 1995 " POND CLOSURES, EPNG SAN JUAN RIVER PLANT" and October 30, 1995 "POND CLOSURES EPNG SAN JUAN RIVER PLANT". These documents contain EPNG's work plan for closure of the three former non-contact waste water ponds and the former raw water pond located at the San Juan River Plant.

The above referenced closure plan is approved with the following conditions:

- EPNG will submit a final report to the OCD upon completion of 1. closure activities. The report will be submitted to the OCD Santa Fe Office with a copy provided to the OCD Aztec Office.
- 2. EPNG will notify the OCD at least one (1) week prior to all scheduled activities such that the OCD has the opportunity to witness the events.
- 3. EPNG will supply copies of the above referenced closure plans to the OCD Aztec Office.

Ms. Nancy K. Prince November 1, 1995 Page 2

Please be advised that OCD approval does not relieve EPNG of liability should contamination exist which is outside the scope of work plan, or if the proposed closure plan fails to the adequately contain contamination at the site. In addition, OCD approval does not relieve EPNG of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please call me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: Denny Foust, OCD Aztec District Office

Z 765 962 502

Receipt for Certified Mail No Insurance Coverage Provided Do not use for International Mail

	(See Reverse)	
	Sent to]
	Street and No.	
	P.O., State and ZIP Code	
	Postage	\$
	Certified Fee	1
	Special Delivery Fee	
33	Restricted Delivery Fee	
PS Form 3800, March 1993	Return Receipt Showing to Whom & Date Delivered	
Marc	Return Receipt Showing to Whom, Date, and Addressee's Address	
ő	TOTAL Postage & Fees	\$
38	Postmark or Date	
E C		
PS		
Fold	at line over top of en right of the return a	velope to the

AN CONCERT ON EIVERDATE REFEICET

195 MM IN HE 8 52

P.O. Box 1492 El Paso, TX 79978 Phone: 915-541-2600

October 30, 1995

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

Fax received on 10/30/95 7/10/000

Subject: Pond Closures EPNG San Juan River Plant

Dear Bill,

This letter is in response to your request of October 23, 1995 for more information on the proposed closure of the former evaporation ponds at San Juan River Plant as described in my October 10, 1995 letter.

Three of the ponds were used for evaporating non-contact waste water at the plant. One pond was raw water storage for the plant. Previous soil and water samples indicated that the only consitutents of concern associated with these ponds were elevated chloride concentrations in the near surface soils. No petroleum hydrocarbons have been detected in soils within the ponds. This was confirmed by soil samples collected on June 26, 1995 (see attached table).

The proposed closure consists of grading the three waste water ponds to a single drainage in the approximate location of pit 3 and capping the area with six inches of locally available, low permeability clay soil. The cap will be mounded, machine compacted and re-seeded with native vegetation.

This cap should prevent infiltration of surface water and subsequent migration of salts in the groundwater. Monitoring wells installed at the downgradient edge of the facility boundary will be sampled annually to verify that no migration has occurred.

A report is being prepared which summarizes monitoring wells installation and sampling activities in June and July 1995. A copy will be forwarded to you as soon as it is available. Please call me at 915-541-2839 if you have any further questions.

Sincerely,

ancy K. Prince

Nancy K. Prince, CGWP Principal Environmental Scientist Environmental Affairs Department

San Juan River Plant Evaporation Ponds Soil Samples 6/26/95

i

ļ

				Samp	Sample Point			
	Pond #1	Pond #1	Pond #2	Pond #2	Pond #3	Pond #3	Storage	Storage
	Surface	Subsurface	Surface	Subsurface	Surface	Subsurface	Pond	Pond
							Surface	Subsurface
Lab ID#	950732	950733	950734	950735	950736	950737	950738	950739
Date ofSample	26-Jun-95	26-Jun-95	26-Jun-95	26-Jun-95	26-Jun-95	26-Jun-95	26-Jun-95	26-Jun-95
TimeSampled (Hrs)	1335	1345	1410	1420	1445	1455	1515	1535
Calcium As Ca	318	25	351	143	413	293	662	584
Magnesium As Mg	458	6	58	55	110	32	108	82
Total Hardness As Ca	2680	66	1115	584	1484	863	2098	1796
Chloride As Cl	49352	985	24	140	20	28	45	24
Sulfate As SO4	23319	2120	37463	9546	47647	9767	1695	1478
Potassium As K	133	< 2	129	10	65	15	32	7
Sodium As Na	39855	1559	37862	5113	20746	5583	121	75
Conductivity (umhos)	75000	4000	32500	10100	26000	10500	25000	2100
TPH-EPA 418.1 (MG/	142	42	126	06	49	72	77	44
Percent Solids (%)	89.9	82.8	96.6	80.7	97.4	84.7	96.7	98

All results expressed as ppm unless otherwise stated
 All results by Standard Methods (AVWA) or EPA Method 300

SJRP Soil.xls on 10/28/95 at 16:19

State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505

MEMORANDUM OF MEETING OR CONVERSATION

Time Oate 1613 Personal 10/2-6/95 Telephone Originating Party Other Parties Birrean ino HAC. LARY Subject mo han in gil re 1 Discussion CC. Cerian en 1/0 D linWO. ?ir ho Source-9.100 5 r To С Cr (D 0/01 122 ann Source - 50 Sú t O d 11 npm Mili Jowe 0 D Ś iran Concon e 4CC CA-No Jen s 10 3645-Ce Q1 1 hnow \mathcal{O} Conclusions or Agreements 4.SA Source racsonil d< C.VR (1) 160 m hee CU.On Distribution file Signed Denny Foust-OCD Azter

911 CONSERVE 211 DIVISION REC: FD 195 DC 11 AFT 8 52 P.O. Box 1492 El Paso, TX 79978

Phone: 915-541-2600

October 10, 1995

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

Subject: Pond Closures EPNG San Juan River Plant

Dear Bill,

As we discussed on October 4, 1995, attached is a copy of the project description for closing four ponds at San Juan River Plant. This is a preliminary description written to be included in a bid package. The drawing referenced in the document has not been completed yet, but will be submitted under separate cover as soon as possible.

A location drawing has been enclosed to help you evaluate the plan for closing the ponds. The highest area of the site is to the east, and lowest to the west. The plan for closing the three former wastewater ponds calls for moving dirt from the dikes into the low areas, grading everything to a single drainage in the approximate location of pit 3. The entire site will be capped with locally available low permeability clay soil, and machine compacted.

The fourth pond was used only for raw water storage, and will be closed by simply breaching the dike to allow for drainage. Any additional material from grading ponds 1 - 3 will be placed into the lowest portion of the raw water pond.

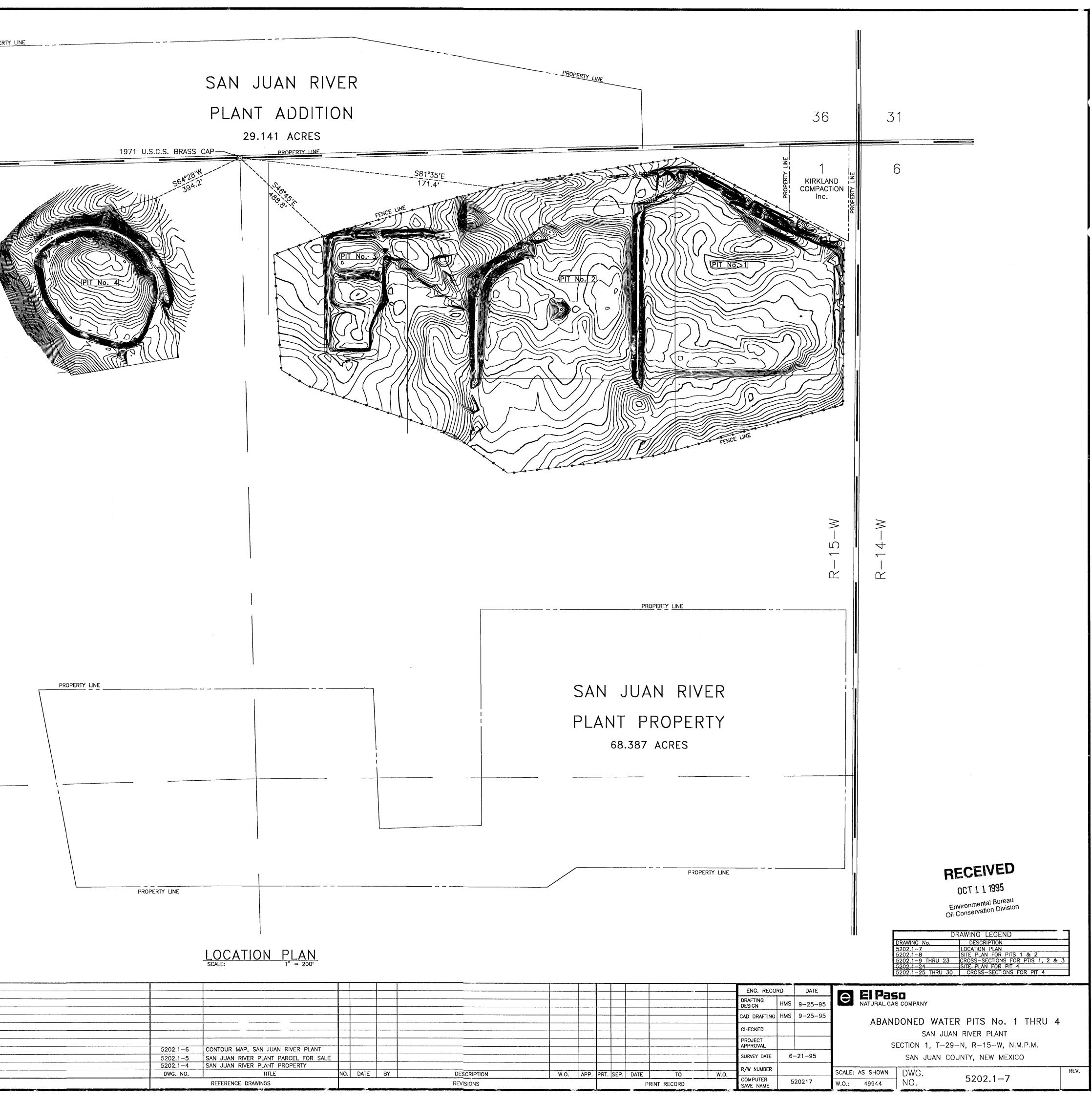
Please call me at 915-541-2839 if you have any questions or need further information to evaluate our proposal. In order to expedite the completion of this project this fall we will present this bid package to our contractors as soon as it is ready. The contractor will be informed of any changes that you suggest prior to initiation of the construction.

Sincerely,

any K Prince

Nancy K. Prince, CGWP Principal Environmental Scientist Environmental Affairs Department

cc: T. D. Hutchins


J. McNeely

PROJECT DESCRIPTION CLOSE FOUR PITS AT SAN JUAN RIVER PLANT

Pits 1,2 and 3 are contiguous and will be closed as one project. The contractor will grade these three pits to conform to the cross sections shown on the drawings in the bid package. The contractor will compact the sub grade to 90 percent of the maximum density obtained in the modified proctor test for the soil in the pits. The contractor will place a one foot thick cap of soil as designated by the engineer. The cap for pits 1, 2 and 3 will require approximately 90,000 cubic yards and will be provided by the contractor on a per cubic yard basis. The cap will be compacted to 95 percent of the maximum density obtained in the modified proctor test for the soil in the cap. The compaction tests for the sub soil and the cap will be taken at the discretion of the project engineer or the project inspector. All soils test required will be the responsibility of El Paso Natural Gas. If there is any excess sub soil material from pits 1, 2 and 3 it will be disposed of in pit 4. The modified proctor test procedure is specified in ASTM D1557. The inplace compaction tests will conform to ASTM D1556, D2167 or D2922

The dike on the north side of pit 4 will be cut as shown on drawing 5202.1-30 in the bid package. The cut will be 100 feet at the bottom and the side slopes will be graded to 1 1/2 to 1. Any excess material from pits 1, 2 and 3 placed in pit 4 will be spread evenly over the bottom of the pit.

				<u></u>		· · · · · · · · · · · · · · · · · · ·	
	3	5	36 —1971 IIS	C.S. BRASS CAP	T-3	0—N	
		2	1		T-2	9-N	
	Ν						Ŋ
FM9 ((Rev. 12/94)				LEGENI	U	

HSERVE UN DIVISION REFE VED

June 20, 1995

Mr. William C. Olson Hydrogeologist, Environmental Bureau Energy, Mineral and Natural Resources Department New Mexico Oil Conservation Division P.O. Box 2088 Sante Fe, New Mexico 87504

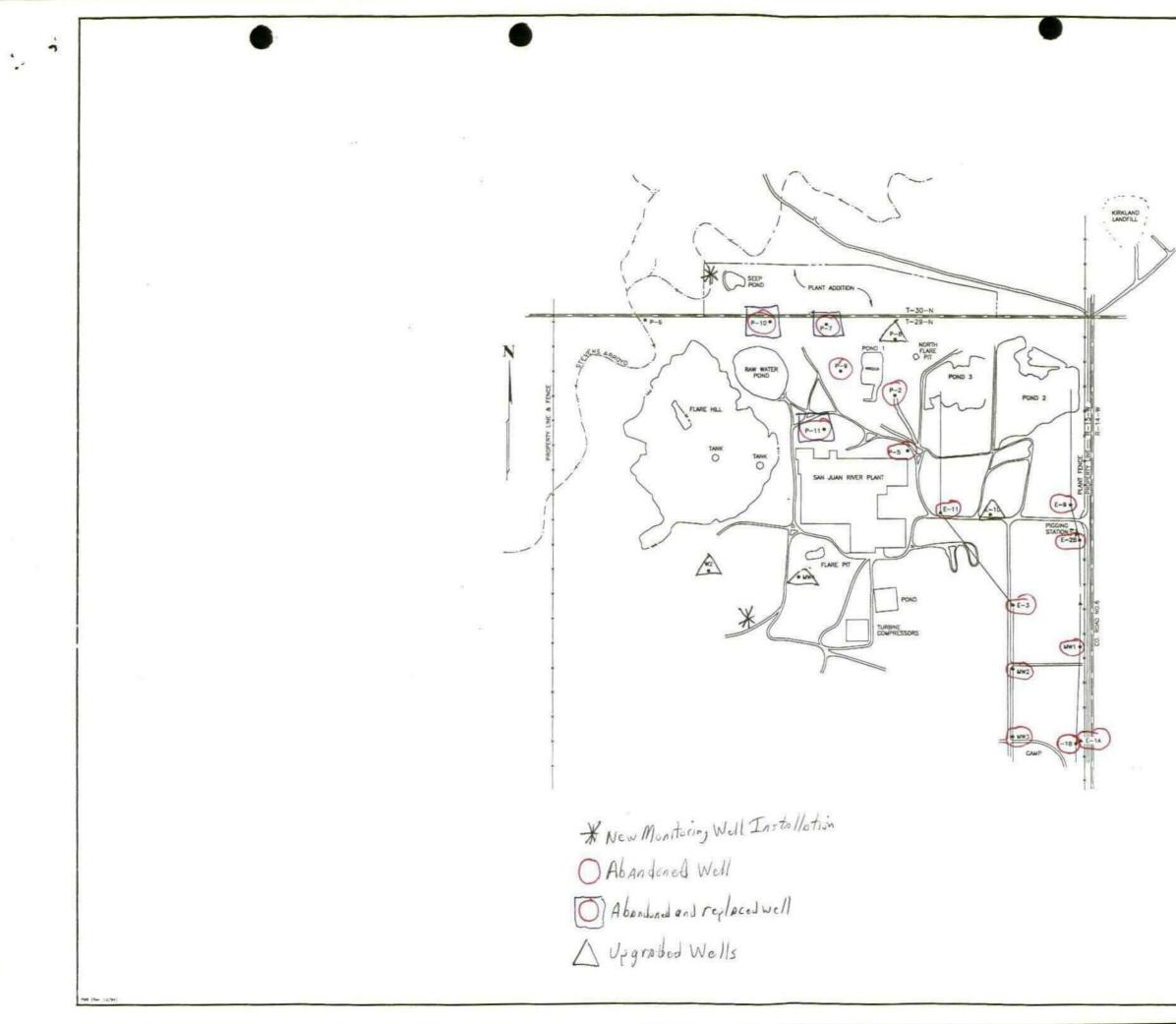
RE: San Juan River Plant Groundwater and Soil Gas Study.

Dear Mr. Olson:

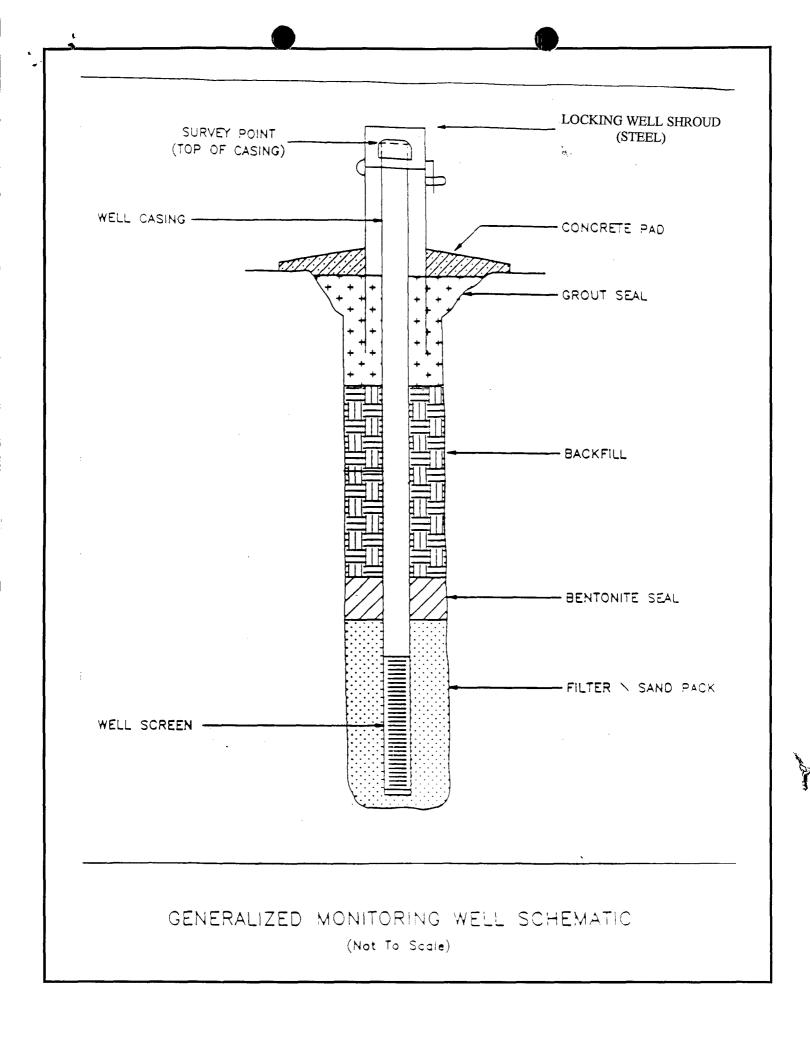
As we discussed last week, El Paso Natural Gas plans to begin the Groundwater and Soil Gas Survey at San Juan River Plant on Monday, June 26, 1995. It is anticipated that the soil gas survey will take three days, and the monitoring well project will take three weeks.

Two scope of work documents are enclosed: one for the monitoring well work and the other for the soil gas project. Also enclosed is a map depicting the monitoring wells which will be abandoned, replaced and/or upgraded and a typical monitoring well construction diagram.

If you have any questions or comments please feel free to call me at (915) 541-2839.


Sincerely,

any Trince


Nancy K. Prince, CGWP Principal Environmental Scientist Environmental Affairs Department

cc: J. Lambdin (w/o attach) Shauna Doven (WesGas) file: 5202 gw T. D. Hutchins (w/o attach)K. SedlakKent McEvers (WesGas)J. B. Ward

K. Sedlak L.A. Allen J. B. Ward (w/o attach)

	à.	
5		
	DIG. REDRE DAT. DWTING KS 5/24/PD EI Paso Natural das company	
	DE DEUTRE F.B. 5/24/25 EL PASO NATURAL GAS COMPANY	
	Ministra Same size Same size <td< td=""><td>×</td></td<>	×
	SDUL 17460 DWC, 25J-1-M25	-

WELL ABANDONMENT, INSTALLATION AND UPGRADE

-**h**, 1

3

AT THE SAN JUAN RIVER PLANT

SCOPE OF WORK

JUNE 1995

TABLE OF CONTENTS

• •

ï

¥

1.0 BACKGROUND	
2.0 INTRODUCTION	
3.0 ENVIRONMENTAL REGULATIONS/GUIDELINES	
4.0 SCOPE OF WORK.14.1 Monitoring Well Installation14.2 Soil Sampling.24.3 Monitoring Well Development24.4 Upgrading of Existing Wells24.5 Well Abandonment.24.6 Reports2	
5.0 RESPONSIBILITIES OF THE CONTRACTOR	•
6.0 RESPONSIBILITY OF EPNG	
7.0 RELATIONSHIP BETWEEN EPNG AND THE CONTRACTOR	
8.0 SITE INSPECTIONS	i i
9.0 CONTRACTING ISSUES	
10.0 SCHEDULE	
11.0 SAFETY AND HEALTH	
12.0 CONTACTS	
13.0 INVOICING	
14.0 SITE LOCATION	ŀ
15.0 ATTACHMENTS	ł

SCOPE OF WORK

MONITORING WELL/PIEZOMETER ABANDONMENT AND REPLACEMENT SAN JUAN RIVER PLANT FARMINGTON, NEW MEXICO EL PASO NATURAL GAS COMPANY

1.0 BACKGROUND

<u>_</u>*

The San Juan River Plant previously owned by El Paso Natural Gas is located in Section 1, T-29-N, R-15-W, San Juan County, New Mexico. Nineteen monitoring wells/piezometers (wells) were installed from 1985 through 1987. These were installed to aid in characterization of potential contamination migration and to support installation of a landfarm.

2.0 INTRODUCTION

El Paso Natural Gas Company (EPNG) wishes to abandon selected wells which are no longer required or are unusable. Three wells will be replaced with new wells will be installed at selected locations. Remaining wells will be upgraded with protective surface casings and concrete pads.

3.0 ENVIRONMENTAL REGULATIONS/GUIDELINES

The drilling contractor shall be licensed to work in New Mexico. All personnel working on-site shall have 40 hour OSHA 1910.120 training and submit certification to EPNG with the bid proposal. The contractor must meet all of the general conditions specified on the back of the EPNG company contract form.

The contractor shall familiarize himself with any such specifications, drawings, and permits as furnished by EPNG and shall comply with all requirements and stipulations with that respect. The contractor shall receive written approval from EPNG before using subcontractors for any portion of the work.

The contractor shall adhere to the New Mexico Environment Department (NMED) Groundwater Section, Monitoring Well Construction and Abandonment Guidelines.

4.0 SCOPE OF WORK

Fifteen wells will be abandoned, three of the wells will be replaced. The following wells will be abandoned; E1B, E1A, E2B, E3, E9, E11, MW-1, MW-2, MW-3, P-2, P-9, P-5, P-7, P-10, and P-11. Wells P-7, P-10, and P-11 will be replaced with four-inch PVC monitoring wells. The remaining four wells, P-8, W-2, E10 and MW-4, will be upgraded with steel protective casings and concrete pads. Monitoring well E-10 will also be upgraded and utilized as a background well. Two additional four-inch monitoring wells will be installed at selected locations (See Map). Changes to this scope of work may be proposed based on the outcome of the soil gas survey being conducted under a separate contract amendment. At the close of this phase of the project it is anticipated that 8 wells will be active at the site.

4.1 Monitoring Well Installation

Monitoring wells will be constructed of 4-inch flush threaded schedule 40 PVC. The screen will consist of 0.010-inch factory slotted PVC. The screen length will be 15 feet. A fifteen foot screen will be placed 10 feet below the water table with five feet of screen above the water table. All wells will be completed with a steel protective brightly painted surface riser, a two by two foot square four-inch thick concrete pad, and a locking cap on the inner casing. The maximum depth anticipated for the

monitoring wells is approximately 65 feet in depth. All monitoring wells will have a permanent I.D. marker such as a brass survey plate placed into the cement.

4.2 Soil Sampling

During the installation of six monitoring wells, soil samples will be collected at five foot intervals. Soil samples will be screened for volatile organics with a PID or equivalent instrument. One sample per boring displaying a large salt content will be analyzed for saline parameters. If any of the samples collected from a well indicates >50 ppm VOCs, the sample with the highest reading will be collected for BTEX analysis. Lithologic descriptions of the soil samples shall be logged at the time of drilling.

Soil cuttings and/or water generated during the project will be containerized in appropriate 55-gallon DOT approved new drums. The decontamination water will be taken to the EPNG Kutz separator for disposal.

4.3 Monitoring Well Development

The new monitoring wells will be developed by pumping a minimum of three well volumes or until conductivity, pH, turbidity and temperature have stabilized within 5% for three consecutive readings, on field calibrated equipment. Monitoring wells will not be developed sooner than 24 hours after installation and no later than one week after installation. All parameters and volumes of water produced during development will be documented. All development waters will be transported to the EPNG Kutz separator.

4.4 Upgrading of Existing Wells

The three wells which will not be abandoned will have concrete pads and protective risers installed. These pads and risers will be similar to the pads and risers for the new monitoring wells.

4.5 Well Abandonment

Wells will be abandoned per the New Mexico Environment Department (NMED) Groundwater Section, Monitoring Well Construction and Abandonment Guidelines. These guidelines state that "monitoring wells no longer in use shall be plugged in such a manner as to preclude migration of the surface runoff or groundwater along the length of the well. Where possible, this shall be accomplished by removing the well casing and pumping expanding cement from the bottom to the top of the well using a tremie pipe. If the casing can not be removed, the casing shall be ripped or perforated along it's entire length if possible, and grouted. Filling with bentonite pellets from the bottom to the top is an acceptable alternative to pressure grouting" (NMED1992).

4.6 Reports

The contractor will submit weekly project status reports to the project engineer every Thursday. The weekly progress status report will include but not be limited to a) status, b) schedule, c) budget status, d) problems encountered.

A report summarizing field activities including QA/QC and problems encountered shall be prepared. Include all lithologic logs, completion diagrams, and abandonment records.

5.0 RESPONSIBILITIES OF THE CONTRACTOR

5.1 The contractor will be responsible for providing any required protection and security or all materials and equipment at the job site. **Note:** EPNG will assume no liability for losses of materials and equipment, furnished by the contractor, after delivery to the job site.

- 5.2 The contractor shall provide a field geologist/engineer superintendent, supervisor or foreman whom shall supervise the work through to completion. The contractor shall provide necessary sanitation facilities for their employees.
- 5.3 The contractor shall provide a written work schedule showing the starting date, progress, completion dates, and an applicable NMED guidelines for the project, prior to the start of work.

6.0 RESPONSIBILITY OF EPNG

. .

÷

6.1 EPNG will designate access and egress locations for the contractor's trucks and equipment. EPNG will determine those water supply locations for supplying the steam cleaner. EPNG will flag or otherwise mark underground utilities in the areas targeted for exploration. EPNG will provide an on-site inspector. EPNG will also sample the monitoring wells and survey the well locations and altitude. No other materials, equipment, or services for this work will be provided.

7.0 RELATIONSHIP BETWEEN EPNG AND THE CONTRACTOR

EPNG will have personnel familiar with the site and location of the existing wells. EPNG and the Contractor will agree on all well locations. Any modifications to this scope of work proposed by EPNG or the Contractor that will effect the project cost, will be approved in writing by both parties prior to performing the additional work. All drawings, records, and reports generated by the contractor for this project will be the property of EPNG.

8.0 SITE INSPECTIONS

- 8.1 A final inspection shall be made by a representative of EPNG and a representative of the contractor. If the inspection indicates that work has been completed according to the specifications and work descriptions, the contract will be accepted.
- 8.2 Those items or conditions which are not approved will be corrected at the contractors expense.

9.0 CONTRACTING ISSUES

The Contractor shall follow all specifications set out in the current contract. The Contractor shall respond to this SOW with an estimate of time and material costs required to complete the tasks outlined in Section 4.0. Any proposed changes in the SOW should be forwarded with the cost estimate.

10.0 SCHEDULE

Work will be initiated as soon as possible after approval by EPNG. Contractor shall supply EPNG with a work and completion schedule prior to beginning work.

11.0 SAFETY AND HEALTH

- 11.1 Any contractor's employee not complying with EPNG's safety requirements shall be removed from the job site.
- 11.2 The contractor is responsible for supplying a health and safety plan. The contractor will provide personnel with adequate safety equipment to include but not limited by hard-hat, safety shoes, eye protection, ignition proof outerwear, and other items the contractor deems appropriate to insure safe working conditions. The contractor will also be obligated to supply gloves to prevent cross-contamination during well installation.
- 11.3 A safety meeting will be held prior to the start of the project work, and a tailgate safety meeting will be held prior to the start of each days activities.

12.0 CONTACTS

EPNG contacts for this project are: Ms. Nancy Prince Project Hydrogeologist (915) 541-2839 and Mr. John Lambdin will be the project Quality Assurance/Quality Control Manager.

13.0 INVOICING

, **~***

The contractor will provide EPNG with invoices for this project, at intervals not to exceed 30 days. All invoices must include backup documentation for all listed costs. This should include, but not be limited to the following:

- all labor/hour reports
- computer work station reports
- travel: airline tickets, rental car, and lodging
- overnight mail
- equipment (e.g., coolers, buckets) and misc. supplies
- rental equipment
- BEI equipment and supplies report
- film developing and video tapes
- copies of all subcontractor invoices
- parking
- long distance telephone calls
- general office overhead costs

14.0 SITE LOCATION

The site is located approximately 10 miles from Farmington, New Mexico on Route 64. (attached map)

15.0 ATTACHMENTS

Piezometer and well boring logs, cross-sections and well location maps will be provided under a separate cover.

cc:

VIA E-Mail T.D. Hutchins N.K. Prince G. Garibay J. Lambdin R.E. Molder Hard Copy File 5202 Groundwater Chron

VERTICAL AND HORIZONTAL ASSESSMENT

•

OF SOIL VAPOR CONTAMINATION

AT THREE LOCATIONS

AT THE

SAN JUAN RIVER PLANT

SCOPE OF WORK

JUNE 1995

TABLE OF CONTENTS

۰ ب

1

1.1

1.0 BACKGROUND	
2.0 INTRODUCTION	
3.0 ENVIRONMENTAL REGULATIONS AND GUIDELINES	
4.0 SCOPE OF WORK	
5.0 RESPONSIBILITY OF THE CONTRACTOR	
6.0 RESPONSIBILITY OF EPNG	
7.0 RELATIONSHIP BETWEEN EPNG AND THE CONTRACTOR	
8.0 SITE INSPECTIONS	
9.0 CONTRACTING ISSUES	
10.0 SCHEDULE	
11.0 HEALTH AND SAFETY	
12.0 CONTACTS	
13.0 INVOICING	
14.0 SITE LOCATION	

1

VERTICAL AND HORIZONTAL ASSESSMENT OF SOIL VAPOR CONTAMINATION AT THREE LOCATIONS AT THE SAN JUAN RIVER PLANT

1.0 BACKGROUND

The San Juan River Plant previously owned by El Paso Natural Gas is located in Section 1, T-29-N, R-15-W, San Juan County, New Mexico. During the course of monitoring well sampling three wells consistently contained elevated levels of BTEX. EPNG would like to investigate these locations further to determine the source of these hydrocarbons.

2.0 INTRODUCTION

EPNG would like to conduct a preliminary investigation to determine the horizontal extent of the hydrocarbon contamination in the soil at the above referenced locations. Additional groundwater investigations may be conducted during the monitoring well abandonments and replacement projects.

3.0 ENVIRONMENTAL REGULATIONS AND GUIDELINES

The contractor and all subcontractors shall have proper license to work in New Mexico. All boring abandonments shall meet the requirements of the State of New Mexico and EPNG policy. All personnel working on the site shall have 40 hour 29CFR 1910.120 training and submit certification to EPNG with the bid proposal. The contractor must meet all of the general conditions specified on the back of the EPNG company contract form.

The contractor shall familiarize himself with any such specifications, drawings, and permits as furnished by EPNG and shall comply with all requirements and stipulations with that respect. The contractor shall receive written approval from EPNG before using subcontractors for any portion of the work.

4.0 SCOPE OF WORK

The specifications of each task to be conducted under this scope of work are defined in Section 4.1 through 4.5.

4.1 The RECON^R van will be utilized for horizontal determination of soil vapor contamination at the site. Although the exact number of sample locations will be based on field conditions i.e. underground utilities, buildings and accessibility, EPNG estimates that at a minimum four sample locations will be required for each well location. This exact number will be determined in the field depending on site

conditions and analytical results as determined by consensus of EPNG and the contractor.

These locations will be placed on all four sides of existing monitoring wells P-7, P-10 and P-11. The locations will be placed on 25 foot centers. If the horizontal contamination is not determined from these sample locations it will be necessary to conduct additional sampling locations. Based upon the depth to groundwater approximately three soil gas depths will be collected per location. These depths are 3 feet below ground surface (bgs), 6 feet bgs, and 9 feet bgs. The maximum depth is anticipated to be 9 feet bgs, at P-7 and P-10 but deeper borings may be required especially at P-11. One water sample will be collected and analyzed per sampling location, if groundwater is encountered.

- 4.2 The soil gas and water samples will be analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) per USEPA Method 8020 and USEPA Method 3810. Groundwater samples collected will be analyzed for BTEX per USEPA Method 6220. In addition, all analytical work should be performed in accordance with SW 846 criteria. All soil gas locations will be placed on a sketch map for each site. The results of the soil gas and groundwater analyses will be used to determine future activities. All soil gas borings will be filled with granulated bentonite and hydrated immediately after removal of the probe.
- 4.3 The contractor will also collect QA samples these samples will include an equipment blank, a system blank and a duplicate sample. The equipment blank will be collected prior to each days sampling activities. The system blank will be collected at the beginning of each survey day and every ten samples, or at least once daily. Duplicate samples will be collected and analyzed every ten samples, or at least once a day.
- 4.4 Provide EPNG with a brief summary report detailing field procedures and QA/QC. Include all boring logs, sketch maps of soil gas and water sampling locations and summary analytical data, and tables with soil gas and water analytical data.
- 4.5 The contractor shall furnish to EPNG a report summarizing the activities conducted under this scope of work..

5.0 **RESPONSIBILITY OF THE CONTRACTOR**

•

5.1 The contractor will be responsible for providing any required protection and security of all materials and equipment at the job site. **Note:** EPNG will assume no liability for losses of materials and equipment, furnished by the contractor, after delivery to the job site.

- 5.2 The contractor shall provide a geologist/engineer to supervise the work through to completion. EPNG expects the contractor to provide technical expertise/advice with regard to sampling points and site evaluations. The contractor shall provide necessary sanitation facilities for their employees that they deem necessary.
- 5.3 The contractor shall provide a written work schedule showing the starting date, progress, completion dates, prior to the start of work.
- 5.4 The contractor will notify the appropriate underground utility protection service with the proper information and with a minimum of 48 hour advance notice.
- 5.5 Decontamination water can be stored on-site for 48 hours from completion of the project. The decontamination water will then be transported to EPNG's Kutz separator for disposal. The contractor shall supply all necessary equipment and manpower to move and empty the drums of decontamination water. The disposal of personnel protection equipment will be the contractors responsibility.

6.0 **RESPONSIBILITY OF EPNG**

•

EPNG will provide an on-site inspector. EPNG will survey the soil gas and well locations and altitude. No other materials, equipment, or services for this work will be provided.

7.0 RELATIONSHIP BETWEEN EPNG AND THE CONTRACTOR

EPNG will have personnel familiar with the site and location of the existing wells. EPNG and the contractor will agree on all soil gas locations. Any modifications to this scope of work proposed by EPNG or the Contractor that will effect the project cost, will be approved in writing by both parties prior to performing the additional work. All drawings, records, and reports generated by the contractor for this project will be the property of EPNG

8.0 SITE INSPECTIONS

- 8.1 A final inspection shall be made by a representative of EPNG and a representative of the contractor. If the inspection indicates that work has been completed according to the specifications and work descriptions, the contract will be accepted.
- 8.2 Those items or conditions which are not approved will be corrected at the contractors expense.

9.0 CONTRACTING ISSUES

The contractor shall follow all specifications set out in the current contract. The contractor shall respond to this SOW with an estimate of the time and material costs

required to complete the tasks outlined in Section 4. EPNG would like the contractor to base their pricing on a 12 hour day and provide a daily cost and estimated number of days to accomplish the tasks. Any proposed changes in the SOW should be forwarded with the cost estimate.

10.0 SCHEDULE

Work shall be initiated as soon as possible after approval by EPNG. Philip shall supply EPNG with a work and completion schedule prior to beginning work.

11.0 HEALTH AND SAFETY

The contractor will provide personnel with adequate safety equipment to include hard-hat, safety shoes, safety eyewear, ignition-proof outerwear, and other items the contractor deems appropriate to insure safe working conditions. The contractor will also be obligated to provide gloves to prevent cross-contamination during sampling.

12.0 CONTACTS

EPNG contacts for this project are: Ms. Nancy Prince, Project Hydrogeologist, Mr. John Lambdin will be the Project Quality Assurance/Quality Control Manager

13.0 INVOICING

The contractor will provide EPNG with invoices for this project, at intervals not to exceed 30 days. All invoices must include backup documentation for all listed costs. This should include, but not be limited to the following:

- all labor/hour reports
- computer work station reports
- travel: airline tickets, rental car, lodging
- overnight mail
- equipment (e.g., ice checks, buckets) and misc. supplies
- rental equipment
- Philip equipment and supplies report
- film developing, video tapes
- copies of all subcontractor invoices
- parking
- long distance telephone calls
- general office overhead costs

14.0 SITE LOCATION

See attached map. Logs for existing wells and analytical data will be provided under separate cover.

KMS/kms/EAD

*

file:c:\winword\wrkscope\sjrpsow.doc

6/1715 OCD/EPN6 Main 10:30 cm Hander - Bill Olson OCD - Tom Hutchins - EPNG - Gerry Garibay - " - Nang Prime - " Jal #4 (see hundout,) discussed NW locations install I MW's instead at nested set proposed oil well recently installed adjacent to ACW-11, big jump in Cl- in recent sampling remediction system not yet operational Sun Uhan Plant Piscas, MW, What to recounter old pit site Should be OK but, Need to characterize soils in pit bottom prior to closure They will subinit plan

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

POST OFFICE BOX 2088

STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504

(505) 827-5800

BRUCE KING GOVERNOR

June 29, 1993

ANITA LOCKWOOD CABINET SECRETARY

> CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-349

Ms. Sandra D. Miller Sr. Environmental Scientist El Paso Natural Gas Company P.O. Box 4990 Farmington, New Mexico 87499

RE: FLARE PIT CLOSURE REPORT EPNG SAN JUAN RIVER PLANT SAN JUAN COUNTY, NEW MEXICO

Dear Ms. Miller:

The New Mexico Oil Conservation Division (OCD) has completed a review of the El Paso Natural Gas Company (EPNG) February 8, 1993 "EL PASO NATURAL GAS CO. SAN JUAN RIVER PLANT FLARE PIT CLOSURE REPORT" and April 6, 1993 "FLARE PIT CLOSURE REPORT - INQUIRY, SAN JUAN RIVER PLANT". These documents describe the recent north flare pit and south flare pit remediation activities at the San Juan River Plant.

The closures of the flare pits referenced in the above reports have been completed to the standards in effect at the time of closure and **are hereby approved** with the following conditions:

- 1. Ground water from monitor well MW-4 located downgradient of the south flare pit and monitor well P-8 downgradient of the north flare pit will be sampled on an annual basis for benzene, toluene, ethylbenzene, xylene and polycyclic aromatic hydrocarbons (PAH) using appropriate EPA laboratory methods.
- 2. A report containing the results of the annual sampling will be submitted to OCD by December 31 of each year.
- 3. OCD will be notified at least two weeks in advance of sampling activities such that OCD may have the opportunity to witness the sampling and/or split samples.

Ms. Sandra D. Miller June 29, 1993 Page 2

Please be advised that OCD approval does not relieve EPNG of liability should remaining contaminants be found to be migrating from the closed flare pit units. In addition, OCD approval does not relieve EPNG of responsibility for compliance with any other state, federal or local laws and/or regulations.

If you have any questions please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc : OCD Aztec District Office

HE GONGER. IN DIVISION RED .ED 193 AP- 7 AM 8 48

P. O. BOX 4990 FARMINGTON, NEW MEXICO 87499

April 6, 1993

Mr. William C. Olson New Mexico Oil Conservation Division P.O. Box 2088 State Land Office Building Santa Fe, NM 87504

Re: Flare Pit Closure Report - Inquiry San Juan River Plant

Dear Mr. Olson:

This letter is in response to your inquiry dated March 17, 1993 regarding the EPNG San Juan River Plant Flare Pit Closure Report. The following information is provided for your information:

1. <u>Section 1e - Exploratory Trenching</u> - The samples taken from the exploratory trenches were taken from the layer of soil that had the most discoloration. The sample depths for trenches 2-7 are as follows:

Trench 2 - 21'	Trench 5 - 13'
Trench 3 - 21'	Trench 6 - 14'
Trench 4 - 14'	Trench 7 - 21'

- 2. We have been unable to determine a logical explanation for the high levels of TPH found in sample number N22562. The sample was secured in an area south east of the south flare pit, near a well traveled dirt road. Another background sample was taken the same day as noted in section 1f. This sample (#N22536), showed no measurable TPH concentrations.
- 3. It appears in the diagram in Section 1f that a factor "x" is being subtracted out of results for the east and south walls. The "x" does not represent a factor. The "x" represents "xylene" concentrations that were measured in those two samples. There were no other measurable BTEX concentrations detected in any of the other samples indicated in the diagram. This is also shown in the verification summary also located in Section 1f.
- 4. Sample number N22486 represents a background soil sample taken from the middle of the landfarm area, prior to spreading of soil, and approximately 2' below the surface.

The results as noted in Section 3b indicate a total chromium content of 29.6 mg/kg and a total lead content of 7 mg/kg. EPNG is interested in knowing the criteria that NMOCD has used to determine that these levels are "elevated". EPNG's in-house hydrogeologist has provided references from published data which indicate that these concentrations are within normal ranges for background levels. These references are as follows:

Source: Linsay, W.L., 1979. Chemical Equilibria in Soils, John Wiley and Sons. From Table 6.46 in EPA 1983, Hazardous Waste Land Treatment, SW-874 (28a).

	Common Range	<u>Average</u>
Chromium	1-1,000 mg/kg	100 mg/kg
Lead	2-200 mg/kg	10 mg/kg

Source: Shacklette, H.T., and Boeragen, J.G.; Element Concentrations in Soils and Other Surficial Materials of the Coterminous United States. U.S. Geol. Surv. Professional Paper 1270. 105pp

"Normal Ranges of Elemental Concentrations in Soils of the Western United States"

		Normal Kange
	<u>Mean</u>	<u>Mean +/- 1 s.d.</u>
Chromium	41 mg/kg	19-90 mg/kg
Lead	17 mg/kg	9-31 mg/kg

Means and Standard Deviations are geometric to account for log-normal distributions.

If you have any questions or comments regarding the above information, please feel free to contact me at 599-2141.

Sincerely, El Paso Natural Gas Co.

Sandy D. Niller

Manual Danas

Sandra D. Miller Sr. Environmental Scientist

cc: Denny Foust, NMOCD W.D. Hall, EPNG STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY March 17, 1993

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-328

Ms. Sandra D. Miller Sr. Environmental Scientist El Paso Natural Gas Company P.O. Box 4990 Farmington, New Mexico 87499

RE: FLARE PIT CLOSURE REPORT EPNG SAN JUAN RIVER PLANT SAN JUAN COUNTY, NEW MEXICO

Dear Ms. Miller:

The New Mexico Oil Conservation Division (OCD) is in the process of reviewing the El Paso Natural Gas Company (EPNG) February 8, 1993 "EL PASO NATURAL GAS CO. SAN JUAN RIVER PLANT FLARE PIT CLOSURE REPORT". The report documents the recent north flare pit and south flare pit remediation activities at the San Juan River Plant.

The OCD has the following questions regarding the above referenced report:

- 1. Section 1e refers to sample results for exploratory trenching at the south flare pit to determine the extent of contamination outside the excavated area. It is not clear what soil sample intervals are represented for trenches 2-7. Please clarify what soil interval these samples represent.
- 2. The sample results table in Section 1f shows background sample N22562 containing high levels of TPH. Where were the background samples taken and why are the TPH levels so high?
- 3. The diagram in Section 1f showing the location of the verification samples and their corresponding TPH analytical result has a factor "x" being subtracted from the TPH results of the east wall and south wall results. What does factor "x" represent?

Ms. Sandra D. Miller March 17, 1993 Page 2

4. The background soil sample results for the landfarm in Section 3b show the native soils containing elevated levels of chromium and lead. What is the source of these metals?

The OCD looks forward to your response. If you have any questions please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc : Denny Foust, OCD Aztec District Office

OIL CONSERVE ON DIVISION RECEIVED

'93 FER 11 AM 9 02

P. O. BOX 4990 FARMINGTON, NEW MEXICO 87499

February 8, 1993

Mr. William Olson New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Dear Mr. Olson;

During the last quarter of 1992, El Paso Natural Gas Co. performed the remediation and closure of the north and south flare pits located at San Juan River Plant in Kirtland, NM. The onsite work activities were completed in late November.

Enclosed for your review is the final closure report for the work done on these two flare pits. As a paper saving measure, all analytical information is provided in the form of tabulated summaries. The actual laboratory reports are available upon request.

If you have questions or comments regarding this project, you may reach me a (505)599-2141.

Yours Truly,

El Paso Natural Gas Co.

1) Miller

Sandra D. Miller Sr. Environmental Scientist

cc: Mr. Denny Foust, NMOCD, Aztec Mr. W.D. Hall, El Paso Natural Gas Co. STATE OF NEW MEXICO

12

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

DRUG FREE

BRUCE KING GOVERNOR

October 19, 1992

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-303

Ms. Sandra D. Miller Sr. Environmental Scientist El Paso Natural Gas Company P.O. Box 4990 Farmington, New Mexico 87499

RE: FLARE PIT CLOSURE PLAN MODIFICATION EPNG SAN JUAN RIVER PLANT SAN JUAN COUNTY, NEW MEXICO

Dear Ms. Miller:

The New Mexico Oil Conservation Division (OCD) has completed a review of the El Paso Natural Gas Company (EPNG) October 12, 1992 correspondence requesting permission to modify EPNG's September 16, 1992 "FLARE PIT CLOSURES AT SAN JUAN RIVER PLANT" which was approved by OCD on September 28, 1992. The modification seeks to remediate petroleum contaminated soils onsite using landfarming techniques instead of removing the soils for offsite disposal.

The above referenced request to modify the previously approved flare pit closure plan is hereby approved with the following conditions:

- 1. Only contaminated soils generated during the closure of the San Juan River Plant flare pits will be landfarmed onsite.
- The location of the landfarm, identified by you in our October 16, 1992 conversation, will be the 15 acre area west and south of the south flare pit.
- 3. The landfarm will be operated according to the attached operating conditions.

Ms. Sandra D. Miller October 19, 1992 Page 2

Please be advised that OCD approval does not relieve EPNG of liability should the landfarm operation result in actual pollution of surface waters or the environment actionable under other laws and/or regulations. In addition, OCD approval does not relieve you of liability for compliance with any other laws and/or regulations.

:8

If you have any questions please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

Attachment

xc : Denny Foust, OCD Aztec District Office

ATTACHMENT TO OCD PERMIT APPROVAL EL PASO NATURAL GAS COMPANY SOILS LANDFARM SAN JUAN RIVER GAS PROCESSING PLANT (October 19, 1992)

LANDFARM OPERATION

4

- 1. The landfarm area will be bermed to prevent runon or runoff to or from the landfarm area.
- 2. All contaminated soils will be spread and disked within 72 hours of receipt.
- 3. Soils will be spread on the surface in six inch lifts or less.
- 4. Soils will be disked a minimum of one time every two weeks (biweekly) to enhance biodegradation of contaminants.
- 5. Successive lifts of contaminated soils will not be spread until a laboratory measurement of Total Petroleum Hydrocarbons (TPH) in the previous lift is less than 100 parts per million (ppm), and the sum of all aromatic hydrocarbons (BTEX) is less than 50 ppm, and the benzene is less than 10 ppm. Comprehensive records of the laboratory analyses and the sampling locations will be maintained by EPNG. Authorization from the OCD will be obtained prior to application of successive lifts.
- 6. Moisture will be added as necessary to control blowing dust and to enhance bioremediation. There will be no ponding, pooling or run-off of water allowed. Any ponding of precipitation will be removed within seventy-two (72) hours of discovery.
- 7. Enhanced bio-remediation through the application of microbes (bugs) will only be permitted after prior approval from the OCD. Request for application of microbes must include the location of the area designated for the bio-remediation program, composition of additives, and the method, amount and frequency of application.
- 8. No free liquids or soils with free liquids will be accepted at the site.
- 9. Comprehensive records of all material disposed of at the facility will be maintained by EPNG. The records for each load will include: 1) the origin; 2) analysis for hazardous constituents, if required; 3) transporter; and 4) exact cell location.

TREATMENT ZONE MONITORING

- 1. One (1) background soil sample will be taken from the center portion of the landfarm two (2) feet below the native ground surface. The sample will be analyzed for total petroleum hydrocarbons (TPH), general chemistry, and heavy metals using approved EPA methods.
- 2. A treatment zone not to exceed two (2) feet beneath the land farm will be monitored. A minimum of one random soil sample will be taken from each individual cell, with no cell being larger than five (5) acres, six (6) months after the first contaminated soils are received in the cell and then quarterly thereafter. The sample will be taken at two to three (2-3) feet below the native ground surface.
- 3. The soil samples will be analyzed for TPH, volatile aromatic organics (BTEX) quarterly and general chemistry and heavy metals annually using approved EPA methods.
- 4. After obtaining the soil samples the boreholes will be filled with an impermeable material such as bentonite cement.

REPORTING

- 1. Analytical results from the treatment zone monitoring will be submitted to the OCD Santa Fe Office within thirty (30) days of receipt from the laboratory.
- 2. The OCD will be notified of any leak, break, spill, blow out, or fire or any other circumstance that could constitute a hazard or contamination in accordance with OCD Rule 116.

CLOSURE

When the facility is to be closed no new material will be accepted. Existing soils will be remediated until they meet the OCD standards in effect at the time of closure. The area will then be reseeded with natural grasses and allowed to return to its natural state. Closure will be pursuant to all OCD requirements in effect at the time of closure.

OCT 1 3 1992

P. O. BOX 4990 FARMINGTON, NEW MEXICO 87499

OIL CONSERVATION DIV. SANTA FE

October 12, 1992

Mr. William Olson New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Dear Mr. Olson;

El Paso Natural Gas Co. is currently remediating and closing the two flare pits located at our former San Juan River Plant in Kirtland, NM. Our activities to date have been limited to the south flare pit. We have excavated approximately 10,000 cubic yards of soil since we started the project. We anticipate that the final amount from the south flare pit will be greater than 12,000 cubic yards.

We have identified a distinct clay layer at a depth of approximately 12-15 feet below the original pit bottom. We have also performed some exploratory trenching around the perimeter of the pit. It appears that the contamination at the pit berm is approximately 15 feet thick. As you follow the trench out, the thickness of the contaminated layer drops drastically and quickly. EPNG proposes to remove the contaminated plume to the point where the ratio of overburden vs. contaminated layer is approximately 5:1.

We have performed preliminary sampling and analyses at various phases of the project. A summary of the analytical results along with descriptions of the sample locations is enclosed. The results have indicated the following:

- 1. The TPH results in the clay layer are well below 100 ppm.
- 2. The soil that is being excavated from the pit is showing levels of approximately 7000ppm TPH.
- 3. The excavated soil is very black in color. The blackness is due to the presence of iron sulfide.
- 4. There is little or no BTEX levels in the excavated soils.
- 5. The TPH readings indicate hydrocarbons in the range of C10-C36.

Mr. William Olson 10/12/92 Page 2

Denny Foust of NMOCD's Aztec office has inspected the remediation operations on two different occasions. He has commented that the contaminated soil is not as rich as he anticipated. He also stated that pending your review, the option of landfarming the soil on site **may** be feasible. As a result of the conversations that I have had with Mr. Foust, I am submitting a proposal that EPNG landfarm the soil on site. I feel that the following items are in support of my request.

- 1. The TPH levels in the clay layer are well below 100ppm. This indicates that the clay is acting as a barrier to any migration. (The clay layer is also evident in the trenches that we excavated.)
- 2. The monitor well located 100 feet downgradient of the pit has tested negative for BTEX. This supports item #1 above.
- 3. The contaminated soil has little or no BTEX content. (Well below NMOCD guideline limits.)
- 4. The TPH levels of the contaminated soil are relatively low.
- 5. As related to item #2 above, the groundwater has not been impacted by the soil when it was in the pit. Placing it on the surface would be less of a risk.
- 6. The TPH analyses show hydrocarbons in the range of C10-C36. These are heavy ends and are less likely to migrate.
- 7. EPNG has adequate property in the immediate vicinity to accommodate a landfarming operation.

As with similar landfarming applications that you have approved for EPNG, the San Juan River site would be operated according to NMOCD guidelines. This would include berming, disking, and periodic sampling. EPNG would also be willing to explore the use of additives to speed up the degradation of the soil. EPNG acknowledges that this would apply to the flare pit project only. Contaminated soils from locations outside of San Juan River Plant would not be brought in. Mr. William Olson 10/12/92 Page 3

7

Landfarming on site would result in significant cost savings to EPNG. If you have any questions or comments, you can reach me at 505/599-2141. I look forward to your response regarding this matter.

Sincerely,

El Paso Natural Gas

D. Mille

Sandra D. Miller Sr. Env. Scientist

cc: Mr. Denny Foust, NMOCD, Aztec Office Mr. W.D. Hall, EPNG

SAN JUAN RIVER PLANT SOUTH FLARE PIT CLOSURE SAMPLE DESCRIPTIONS

Sample Number N22296 - This soil sample was taken on the west side of the pit in the area just below the contaminated layer.

Sample Number N22297 - This soil sample was taken on the west side of the pit in the black soil layer, just above the clay layer.

Sample Number N22298 - This soil sample was taken on the east side of the pit in the black soil layer. The clay layer on east side of the pit was deeper than on the west side.

Sample Numbers N22299 to N22301 - These samples were taken from a trench that was dug perpendicular to the west side of the pit, extending outside the pit perimeter.

Sample Numbers N22306 to N22308 - These samples were composited from the excavated soil stockpile.

Sample Numbers N22310 to N22315 - These samples were composited from the excavated soil stock pile.

Sample Number N22316 - This sample was taken at the point at which the clay layer began in the pit bottom.

FIELD SERVICES LABORATORY ANALYTICAL RESULTS SAN JUAN RIVER PLANT – SOUTH FLARE PIT Summary to Date: October 9, 1992

Summ	Summary to Date: Oct	ober 9	October 9, 1992	-		ĘP	EPA Met. 8020 (BTEX)	020 (B	TEX)	
				IR	C10-C36		<u>ียง/ตพ)</u>			
Sample Sample	Sample		Date	TPH						TCLP
Number Location	Description	Time	Time (MM/DD/YY)	Mod.	Mod.	B	T	m	×	Metals
				418.1 (MG/KG)	8015 (MG/KG)					
N22296 West Pit @ 10 Foot, Gray Soil	Gray: Sand–Clay	833	26/62/60	28.5	12	<.025	<.025	<.025	<.025	Pass
N22297 West Pit @ 10 Foot, Black Soil	Black: Fine Grain	837	09/29/92	171	27	<.025	<.025	< .025	<.025	Pass
N22298 East Pit @ 10 Foot	Black: Rocky	843	09/29/92	6453	2000	<.025	<.025	<.025	0.029	Pass
N22299 20 Foot outside W. Berm, Above Clay	Black: Sandy	853	09/29/92	979	369	NR	NR	NR	NR	Pass
N22300 20 Foot outside W. Berm, Below Clay	Brown: Clay	006	26/62/60	75.3	7	<.025	<.025	<.025	0.041	Pass
N22301 20 Foot outside W. Berm, Top of Clay	Grey: Clay	902	09/29/92	52.8	7	<.025	<.025	<.025	<.025	Pass
N22302 Background Soil	Brown: Sandy	913	09/29/92	177	10	<.025	<.025	<.025	<.025	Pass
N22306 Main Soil Pile, North - Bottom	Black/Gray Sand	1530	09/30/92	> 10,000	6400	<.025	0.1	0.049	0.5	NR
N22307 Main Soil Pile, Middle- Bottom	Black/Gray Sand	1535	09/30/92	> 10,000	6954	0.028	0.13	0.058	0.49	NR
N22308 Main Soil Pile, South – Bottom	Black/Gray Sand	1540	09/30/92	> 10,000	7352	<.025	0.049	0.032	0.26	NR
N22310 North Pile side 1 – Core	Gray, Fine Sand	1048	10/02/92	>5,000	3400	<.025	<.025	<.025	0.03	NR
N22311 North Pile side 2 – Core	Gray, Fine Sand	1100	10/02/92	> 10,000	5600	<.025	<.025	0.026	0.2	NR
N22312 Middle Pile side 1 - Core	Gray, Fine Sand	1113	10/02/92	>10,000	6500	<.025	<.025	<.025	0.1	NR
N22313 Middle Pile side 2 – Core	Gray, Fine Sand	1125	10/02/92	> 10,000	8200	<.025	0.028	0.091	0.59	NR
N22314 South Pile side 1 – Core	Gray, Fine Sand	1142	10/02/92	>10,000	7000	<.025	<.025	0.027	0.15	NR
N22315 South Pile side 2 – Core	Gray, Fine Sand	1152	10/02/92	> 10,000	7100	<.025	0.027	0.079	0.46	NR
N22316 Bottom of Pit – 10 Foot, South Wall	Gray, Clay	1212	10/02/92	280	۸ 5	<.025	<.025	<.025	<.025	NR
N22317 Background Soil	Brown: Sandy	1220	10/02/92	118	79	<.025	<.025	<.025	<.025	NR
NOTES.										

NOTES: NR = Not Run, Sample Problems: Not enough, too wet, etc.

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

September 28, 1992

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-299

Ms. Sandra D. Miller Sr. Environmental Scientist El Paso Natural Gas Company P.O. Box 4990 Farmington, New Mexico 87499

RE: FLARE PIT CLOSURE EPNG SAN JUAN RIVER PLANT SAN JUAN COUNTY, NEW MEXICO

Dear Ms. Miller:

The New Mexico Oil Conservation Division (OCD) has completed a review of the El Paso Natural Gas Company (EPNG) September 16, 1992 "FLARE PIT CLOSURES AT SAN JUAN RIVER PLANT". This plan proposes a method for closure of the north and south flare pits at the San Juan River Plant.

The OCD approves of the above referenced closure plan with the following conditions:

- 1. The assessment to determine the lateral and vertical extent of contamination related to the flare pits will be performed pursuant to the enclosed OCD "GUIDELINES FOR SURFACE IMPOUNDMENT CLOSURE".
- 2. The excavations will be inspected by OCD prior to backfilling.
- 3. A report containing the results of the closure will be submitted to OCD within 60 days of completion of the closure activities.

The OCD understands that closure work at the site will begin on September 28, 1992. Please contact Denny Foust at the OCD Aztec Office prior to commencement of work so that the OCD may have the opportunity to have a representative present. Ms. Sandra D. Miller September 28, 1992 Page 2

• * *

Please be advised that OCD approval does not limit you to the work proposed should the closure activities fail to remediate petroleum contaminated soils with contaminant levels in excess of OCD actionable levels or if ground water should be impacted by contaminants migrating from the flare pits. In addition, OCD approval does not relieve you of liability under any other laws and/or regulations. If you have any questions please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

Enclosure

xc : Denny Foust, OCD Aztec District Office

SEP 1 7 1992

El Paso Natural Gas Company

OIL CONSERVATION DIV. SANTA FE P. O. BOX 4990 FARMINGTON, NEW MEXICO 87499

September 16, 1992

Mr. William C. Olson New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Re: Flare Pit Closures at San Juan River Plant

Dear Mr. Olson,

El Paso Natural Gas Co. is developing final plans to close the north and south flare pits at San Juan River Plant per discharge plan requirements. We are seeking NMOCD approval to close the pits in the following manner.

As stated in our November 1, 1991 correspondence to NMOCD, visually contaminated soil is to be removed from each of the flare pits to a depth of approximately 10 feet. An assessment will be made at that time to determine the need for further action.

For the south flare pit, rocks shall be separated from the contaminated soil. This will be performed by running the soil through a "shaker" type apparatus on site. Removal of the rocks will help us reduce costs by reducing the volume going to the landfarm. All rocks that are separated out will be allowed to weather, will be placed back into the excavation, and covered with backfill. This procedure will also be performed for the north flare pit, should the situation warrant.

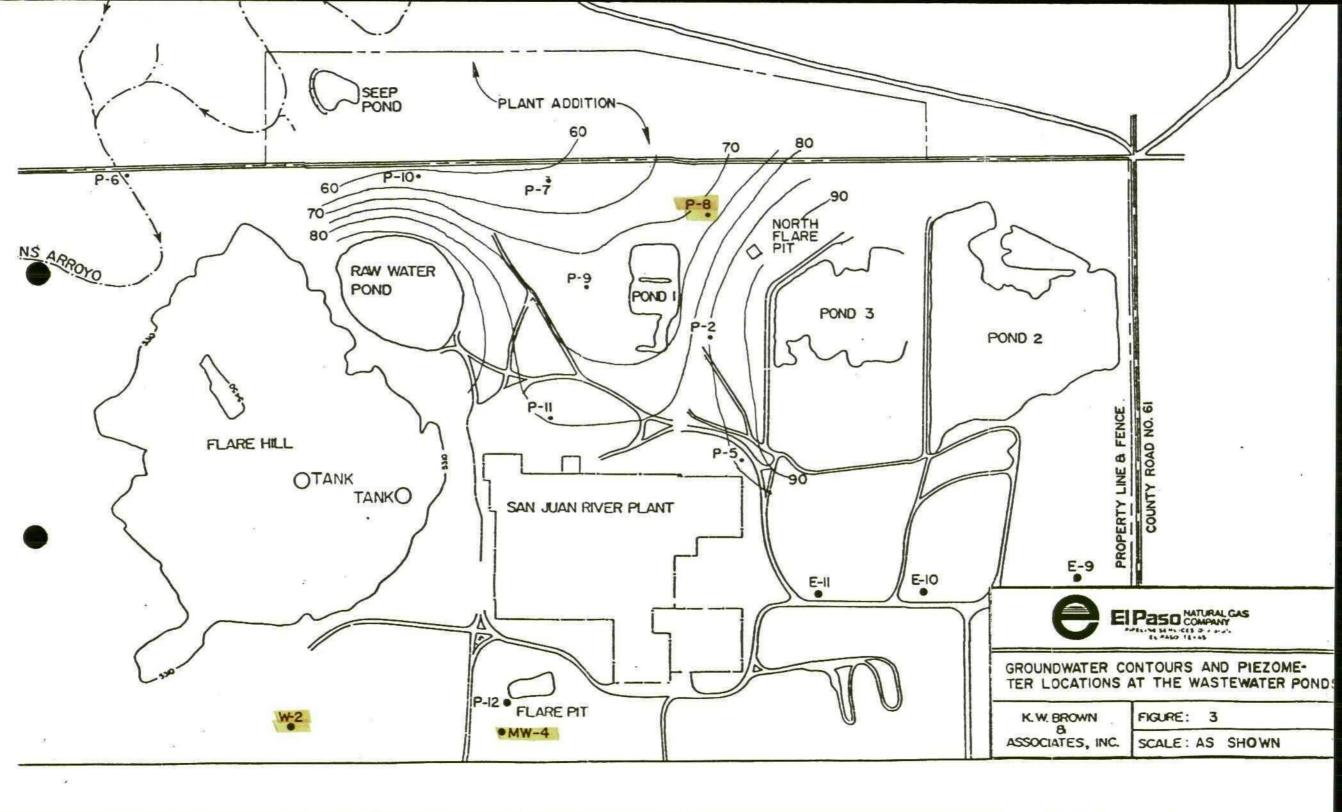
Monitor well #MW-4, W-2, and piezometer P-8 were sampled on July 8, 1992 and analyzed for BTEX. All results were below detectable limits for those constituents. For your convenience, I have enclosed a copy of a drawing which indicates the position of the sampling points with regard to the flare pits. I have also enclosed copies of the analytical data.

The south flare pit will be backfilled with native soil taken from EPNG property near our Angel Peak facility. The north flare pit will be backfilled with dike material taken from the nearby evaporation pond. In order to prevent surface ponding, both pits will be contoured appropriately to divert runoff. September 16, 1992 Page 2

All contaminated soil will be transported to Envirotech's landfarm facility located on highway 44. Remediation and transportation services will be provided by Burlington Environmental, Inc..

EPNG wishes to begin remediation activities as soon as possible. El Paso would like to schedule work to begin the week of 9/21/92, pending your approval.

If you have any questions or comments regarding this matter, you can reach me at (505)599-2141. Your prompt attention would be greatly appreciated.


Sincerely,

El Paso Natural Gas Co.

1) Miller

Sandra D. Miller Sr. Environmental Scientist

cc: W.D. Hall, El Paso Natural Gas Co. Denny Foust, NMOCD

SOUND ADALYTICAL SERVICES, INC.

+ ·

ŗ

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST. TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmer Seattle Facility	ntal Date: July 17, 1992
Report On: Analysis of Water	Lab No.: 25610 Page 1 of 4
<u>IDENTIFICATION:</u> Samples received on 07-13-92 Project: EPNG	
ANALYSIS:	(JRP MW=4)
Lab No. 25610-1	Client ID: <u>N21613</u> 40285-1
BTEX by Met Date Extracte Date Analyzed	d: 7-15-92
Benzene, mg/l Toluene, mg/l	< 0.001 < 0.001
	< 0.001 < 0.001
SURROGATE RECOVERY, % Trifluorotoluene	134
	SJEP P-9
Lab No. 25610-2	Client ID: N21614 40285-2
BTEX by Met Date Extracte Date Analyzed	d: 7-15-92
Toluene, mg/l Ethyl Benzene, mg/l	< 0.001 < 0.001 < 0.001 < 0.001
<u>SURROGATE RECOVERY, %</u> Trifluorotoluene	79

Continued . . .

is report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with

SOUND AMALYTICAL SERVICES, INC.

Burlington Environmental Project: EPNG Page 2 of 4 Lab No. 25610 July 17, 1992

SJRP P.S.

Lab No. 25610-3

Client ID: [N21615] 40285-3

BTEX by Method 8020 Date Extracted: 7-15-92 Date Analyzed: 7-15-92

Benzene, mg/l	< 0.001
Toluene, mg/l	< 0.001
Ethyl Benzene, mg/l	< 0.001
Xylenes, mg/l	< 0.001

SURROGATE RECOVERY, & Trifluorotoluene

150

ETRP W-2

Lab No. 25610-4

Client ID: [N21616] 40285-4

BTEX by Method 8020 Date Extracted: 7-15-92 Date Analyzed: 7-15-92

Benzene, mg/l	< 0.001
Toluene, mg/l	< 0.001
Ethyl Benzene, mg/l	< 0.001
Xylenes, mg/l	< 0.001

SURROGATE RECOVERY, % Trifluorotoluene

92

Continued . . .

is report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with

instru accordable arearding. In an event chall Cound Anabetical Coving Inc. or its complexes he resonable for consequential or evenial damages in any kind or in any among

SOUND AMALYTICAL SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5947

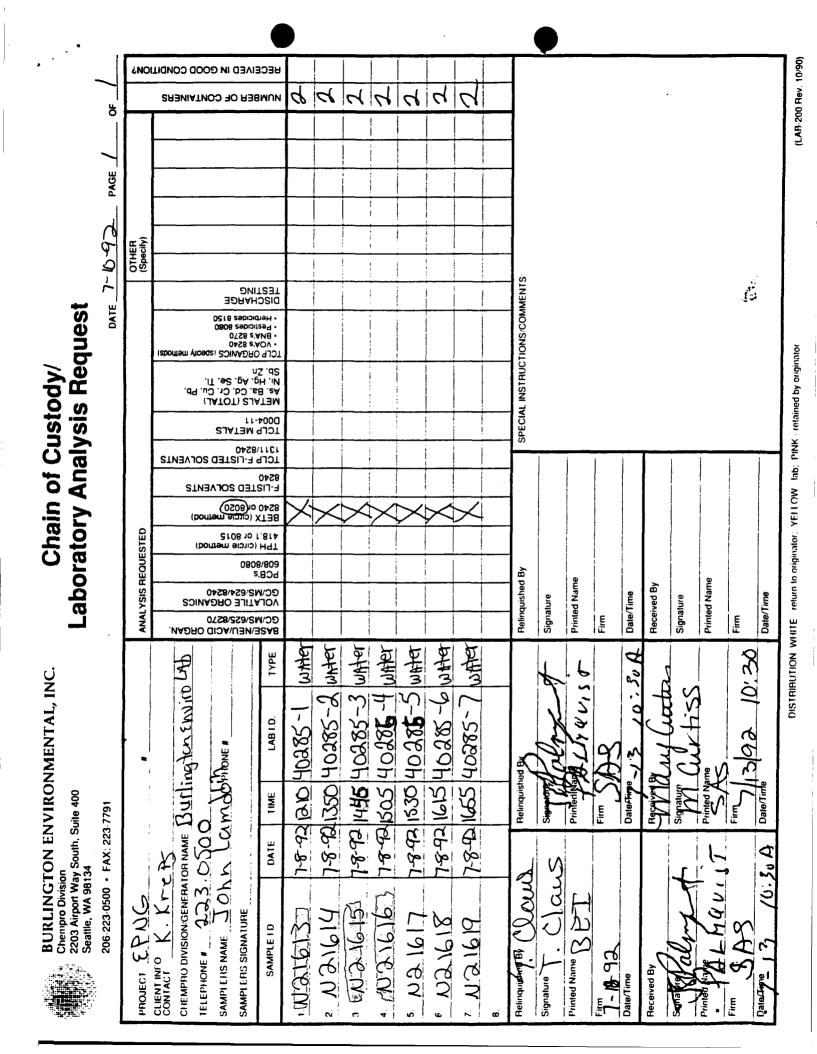
QUALITY CONTROL REPORT

BTEX by EPA SW-846 Method 8020

Client:	Burlington Environmental	Seattle Office
Lab No:	25610qc	
Matrix:	Water	
Units:	mg/l	
Date:	July 17, 1992	

DUPLICATES

Dup No. 25610-5		•		•
Parameter	Sample (S)	Duplicate (D)	RPD	FLAGS
Benzene Toluene Ethyl Benzene Xylenes	5.6 0.25 0.24 1.2	5.5 0.23 0.24 1.2	1.8 8.3 0.0 0.0	
SURROGATE RECOVERY, & Trifluorotoluene	142	141		


RPD = Relative Percent Difference $= [(S - D) / ((S + D) / 2] \times 100$

METHOD BLANK

Blank No. 92071603	
Parameter	Blank Value
Benzene Toluene Ethyl Benzene Xylenes	< 0.001 < 0.001 < 0.001 < 0.001
SURROGATE RECOVERY, % Trifluorotoluene	86

Acceptable Alger

his report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with dustry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

SAMPLE KEY

SAMPLE NUMBER: F00-0350 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #5 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 12:40 SAMPLE DATE: 12/21/2000 BY: Chuck Padilla

SAMPLE KEY

SAMPLE NUMBER: F00-0351 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #8 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 14:10 SAMPLE DATE: 12/21/2000 BY: Chuck Padilla

SAMPLE KEY

SAMPLE NUMBER: F00-0352 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #9 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 12:00 SAMPLE DATE: 12/21/2000 BY: Chuck Padilla

RECEIVED

311. **2**) 2001

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Reno • Las Vegas • Boise Phoenix • Sacramento

CLIENT: El Paso Natural Gas Company 8645 Railroad Drive El Paso, TX 79904 ATTN: Darrell Campbell

PROJECT NAME: San Juan River Plant PROJECT NUMBER: NA

NEL ORDER ID: P0012070

Attached are the analytical results for samples in support of the above referenced project.

Samples submitted for this project were not sampled by NEL Laboratories. Samples were received by NEL in good condition, under chain of custody on 12/22/00.

Should you have any questions or comments, please feel free to contact our Client Services department at (602) 437-0099.

gluen an Van Wagenen

Laboratory Manager

CERTIFICATIONS:

	Reno	Las Vegas	S. California	
Arizona	AZ0520	AZ0518	AZ0605	
California	1707	2002	2264	
US Army Corps	Certified	Certified		
of Engineers				

	Reno	Las Vegas	S. California
Idaho	Certified	Certified	l
Montana	Certified	Certified	l
Nevada	NV033	NV052	CA084
L.A.C.S.D.			10228

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company San Juan River Plant NA	CLIENT ID: F00-0350 DATE SAMPLED: 12/21/00 NEL SAMPLE ID: P0012070-01
TEST: MATRIX:	Metals Aqueous	ANALYST: FRM - Reno Division
	RESULT REPORTING	

PARAMETER	mg/L	LIMIT	D. F.	METHOD	DIGESTED	ANALYZED
Iron Manganese	0.59 0.026	0.1 mg/L 0.005 mg/l	1	EPA 6010 EPA 6010	12/28/00	12/29/00 12/29/00
Manganese	0.026	0.005 mg/L	1	EPA 6010	12/28/00	12/29/00

D.F. - Dilution Factor

ND - Not Detected

mg/L

0.16

0.011

PARAMETER

Iron

Manganese

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company San Juan River Plant NA	CLIENT ID: F00-0351 DATE SAMPLED: 12/21/00 NEL SAMPLE ID: P0012070-02
TEST: MATRIX:	Metals Aqueous	ANALYST: FRM - Reno Division
	RESULT REPORTING	

D. F.

1

1

METHOD

EPA 6010

EPA 6010

LIMIT

0.1 mg/L

0.005 mg/L

DIGESTED

12/28/00

12/28/00

ANALYZED

12/29/00

12/29/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

NEL LABORATORIES CLIENT: El Paso Natural Gas Company CLIENT ID: PROJECT ID: San Juan River Plant DATE SAMPLED: 12/21/00

NA NEL SAMPLE ID: P0012070-03 PROJECT #: TEST: Metals MATRIX: Aqueous ANALYST: FRM - Reno Division RESULT REPORTING PARAMETER ANALYZED DIGESTED LIMIT METHOD mg/L **D. F.** Iron 0.34 0.1 mg/L 12/28/00 12/29/00 1 EPA 6010 12/29/00 Manganese 0.11 0.005 mg/L EPA 6010 12/28/00 1

F00-0352

D.F. - Dilution Factor

ND - Not Detected

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant
PROJECT #:	NA

TEST: Metals

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	ND	0.1 mg/L	1	EPA 6010	12/28/00	12/29/00
Manganese	ND	0.005 mg/L	1	EPA 6010	12/28/00	12/29/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	
PROJECT ID:	San Juan River Plant	DATE SAMPLED:	
PROJECT #:	NA	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

PARAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Ammonia, as N	1.1	0.3	1	SM 4500-NH3 B/E	mg/L-N	12/31/00
Nitrate, as N	ND	1.	10	EPA 300.0	mg/L-N	12/23/00
Nitrite, as N	ND	1.	10	EPA 300.0	mg/L-N	12/23/00
Orthophosphate, as P	ND	0.01	1	SM 4500-P E	mg/L-P	12/22/00
Sulfate	14000	500.	5000	EPA 300.0	mg/L	1/2/01
TKN (Total Kjeldahl Nitrogen)	0.98	0.3	1.	SM 4500-N C/NH3 E	mg/L-N	1/4/01

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	
PROJECT ID:	San Juan River Plant	DATE SAMPLED:	
PROJECT #:	NA	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

<u>PARAMETER</u>	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	<u>ANALYZED</u>
Ammonia, as N	1.8	0.3	1	SM 4500-NH3 B/E	mg/L-N	12/31/00
Nitrate, as N	ND	1.	10	EPA 300.0	mg/L-N	12/23/00
Nitrite, as N	ND	1.	10	EPA 300.0	mg/L-N	12/23/00
Orthophosphate, as P	ND	0.01	1	SM 4500-P E	mg/L-P	12/22/00
Sulfate	12000	1000.	10000	EPA 300.0	mg/L	1/2/01
TKN (Total Kjeldahl Nitrogen)	2.0	0.3	1	SM 4500-N C/NH3 E	mg/L-N	1/4/01

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected *This report shall not be reproduced except in full, without the written approval of the laboratory.*

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	
PROJECT ID:	San Juan River Plant	DATE SAMPLED:	
PROJECT #:	NA	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

UNITS ANALYZED PARAMETER RESULT R. L. <u>D. F.</u> METHOD Ammonia, as N 0.34 0.3 1 SM 4500-NH3 B/E mg/L-N 12/31/00 12/23/00 mg/L-N Nitrate, as N ND 1. 10 EPA 300.0 mg/L-N 12/23/00 Nitrite, as N 10 EPA 300.0 ND 1. Orthophosphate, as P 0.029 0.01 1 SM 4500-P E mg/L-P 12/22/00 10000 EPA 300.0 mg/L 1/2/01 Sulfate 3800 1000. TKN (Total Kjeldahl Nitrogen) 0.3 1 SM 4500-N C/NH3 E mg/L-N 1/4/01 0.42

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

NE	EL LAB	ORATORIES	6				
CLIENT: PROJECT ID: PROJECT #:		Vatural Gas Comp River Plant	pany		AMPLED: NA	od Blank 20P-BLK	
TEST:	Non-Me	tals		,			
PARAMETER	2	RESULT	REPORTING LIMIT	D. F.	METHOD	UNITS	ANALYZED
Orthophosphate,	as P	ND	0.01	1	SM 4500-P E	mg/L-P	12/22/00
D.F Dilution	Factor						
ND - Not Detec	cted						

This report shall not be reproduced except in full, without the written approval of the laboratory.

Ł

ł

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Method Blank
PROJECT ID:	San Juan River Plant	DATE SAMPLED:	NA
PROJECT #:	NA	NEL SAMPLE ID:	001223IC-BLK

TEST: Non-Metals

		REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Nitrate, as N	ND	0.1	1	EPA 300.0	mg/L-N	12/23/00
Nitrite, as N	ND	0.1	1	EPA 300.0	mg/L-N	12/23/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

	NE	L LABORATORIE	S					
-	CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Con San Juan River Plant NA	ipany		ID:Method ISAMPLED:NAMPLE ID:001231N			
	TEST:	Non-Metals						
			REPORTING					
	PARAMETER Ammonia, as N	RESULT ND	<u> </u>	<u>D.F.</u> 1	METHOD SM 4500-NH3 B/E	UNITS mg/L	<u>ANALYZED</u> 12/31/00	
	D.F Dilution l	Factor						

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

	NE	L LABORATOR	RIES			
	ENT: JECT ID: JECT #:	El Paso Natural Gas San Juan River Plan NA	• •		ID: Me AMPLED: NA MPLE ID: 010	
TES	Г:	Non-Metals				
PAR Sulfa	AMETER te	<u>RESUI</u> ND	REPORTING LT LIMIT 0.1	<u>D. F.</u> 1	<u>METHOE</u> EPA 300.0	 ANALYZED 1/2/01
D.F.	- Dilution I	Factor				

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

NE	EL LABC	RATORIE	S					
CLIENT: PROJECT ID: PROJECT #:	El Paso Na San Juan R NA	tural Gas Com iver Plant	pany		IT ID: SAMPLED: AMPLE ID:	Method B NA 010104Tk		
TEST:	Non-Meta	ls						
PARAMETER		RESULT	REPORTING LIMIT	D. F.	METH	HOD	UNITS	ANALYZED
TKN (Total Kjeld	lahl Nitrogen)	ND	0.3	1	SM 4500-N	C/NH3 E	mg/L	1/4/01
D.F Dilution l	Factor							
ND - Not Detec	ted	•						

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0350
PROJECT ID:	San Juan River Plant	DATE SAMPLI	ED: 12/21/00
PROJECT #:	NA	NEL SAMPLE	ID: P0012070-01
TEST:	BTEX by EPA SW846 Method 80211	B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JQT - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	1/3/01
			Reporting
PARAMETER		Result	Limit
Benzene	_	2.2 µg/L	$\frac{1}{2. \ \mu g/L}$
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		9.1 μg/L	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluorote	oluene	96	69 - 120

ND - Not Detected

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0351
PROJECT ID:	San Juan River Plant	DATE SAMPLED	D: 12/21/00
PROJECT #:	NA	NEL SAMPLE ID): P0012070-02
TEST:	BTEX by EPA SW846 Method 80211	B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JQT - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	1/3/01
			Reporting
PARAMETER	t i i i i i i i i i i i i i i i i i i i	Result	Limit
Benzene	_	ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		6.7 μg/L	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluorot	oluene	92	69 - 120

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0352
PROJECT ID:	San Juan River Plant	DATE SAMPLE	D: 12/21/00
PROJECT #:	NA	NEL SAMPLE II	D: P0012070-03
TEST:	BTEX by EPA SW846 Method 8021	B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JQT - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	1/3/01
	· · · · · · · · · · · · · · · · · · ·		Reporting
PARAMETER		Result	Limit
Benzene		86 µg/L	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		7.1 μg/L	2. μg/L
Total Xylenes		12 µg/L	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluorote	oluene	94	69 - 120

ND - Not Detected

1.41			
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Trip Blank
PROJECT ID:	San Juan River Plant	DATE SAMPLEI	D: 12/21/00
PROJECT #:	NA	NEL SAMPLE II	D: P0012070-04
TEST:	BTEX by EPA SW846 Method 80211	B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JQT - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
DILUTION:	1	ANALYZED:	1/3/01
<u> </u>			Reporting
PARAMETER	2	Result	Limit
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		7.00 μg/L	2. μg/L
QUALITY CON	VTROL DATA:		
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluorot	toluene	96	69 - 120

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Method Blank
PROJECT ID:	San Juan River Plant	DATE SAMPLED:	NA
PROJECT #:	NA	NEL SAMPLE ID:	010103BX_A-BLK
TEST:	BTEX by EPA SW846 Method 8021)	B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JQT - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	NA
		ANALYZED:	1/3/01
			Reporting
PARAMETER		Result	Limit
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluoroto	oluene	105	69 - 120
a,a,a-Trifluoroto	oluene	105	69 - 12

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant
PROJECT #:	NA
TEST:	Inorganic Non-Metals
MATRIX:	Aqueous

рараметер		<u>Spike</u>	Spike	Percent	Acceptable Banga	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	<u>RPD</u>
Orthophosphate, as P	001222OP-LCS	0.25	0.251	100	94 - 100	
Orthophosphate, as P	P0012070-01-MS	0.25	0.241	96	90 - 104	
Orthophosphate, as P	P0012070-01-MSD	0.25	0.246	98	90 - 104	2.1

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company San Juan River Plant NA
TEST: MATRIX:	Inorganic Non-Metals Aqueous

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	RPD
Nitrite, as N	001223IC-LCS	100	109	109	90 - 110	
Nitrite, as N	001223IC-LCSD	100	108	108	90 - 110	0.9
Nitrite, as N	P0012070-01-MS	100	101	101	80 - 120	
Nitrate, as N	001223IC-LCS	100	104	104	90 - 110	
Nitrate, as N	001223IC-LCSD	100	103	103	90 - 110	1.
Nitrate, as N	P0012070-01-MS	100	106	106	80 - 120	

ND - Not Detected

CLIENT:El Paso Natural Gas CompanyPROJECT ID:San Juan River PlantPROJECT #:NATEST:Inorganic Non-MetalsMATRIX:Aqueous

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	Acceptable Range	RPD
Ammonia, as N	001231NH3-LCS	1	1.008	101	84 - 117	
Ammonia, as N	P0012070-02-MS	. 1	2.8	100	76 - 124	

ND - Not Detected

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant
PROJECT #:	NA
TEST:	Inorganic Non-Metals
MATRIX:	Aqueous

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	<u>Acceptable</u> Range	<u>RPD</u>
Sulfate	010102IC-LCS	100	106	106	90 - 110	
Sulfate	010102IC-LCSD	100	106	106	90 - 110	0.
Sulfate	L0012166-12-MS	100	270	80	80 - 120	

ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

22

. 1

.

i

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant
PROJECT #:	NA
TEST:	BTEX by EPA SW846 Method 8021B, Dec. 1996
MATRIX:	Aqueous

	Spike	Spike	Percent	Acceptable	•
NEL Sample ID	Amount	Result	Recovery	Range	<u>RPD</u>
010103BX_A-LCS	20	21.002	105	85 - 115	
010103BX_A-LCSD	20	20.922	105	80 - 120	0.4
P0012070-04-MS	20	20.656	103	70 - 130	
P0012070-04-MSD	20	20.528	103	70 - 130	0.6
010103BX_A-LCS	20	20.867	104	85 - 115	
010103BX_A-LCSD	20	20.396	102	80 - 120	2.3
P0012070-04-MS	20	19.796	99	70 - 130	
P0012070-04-MSD	20	19.712	99	70 - 130	0.4
010103BX_A-LCS	20	20.801	104	85 - 115	
010103BX_A-LCSD	20	20.692	103	80 - 120	0.5
P0012070-04-MS	20	20.63	103	70 - 130	
P0012070-04-MSD	20	20.098	100	70 - 130	2.6
010103BX_A-LCS	60	62.569	104	85 - 115	
010103BX_A-LCSD	60	61.891	103	80 - 120	1.1
P0012070-04-MS	60	76.449	116	70 - 130	
P0012070-04-MSD	60	65.47	97	70 - 130	5.8
	010103BX_A-LCS 010103BX_A-LCSD P0012070-04-MS P0012070-04-MSD 010103BX_A-LCS 010103BX_A-LCSD P0012070-04-MS P0012070-04-MSD 010103BX_A-LCSD P0012070-04-MSD 010103BX_A-LCS 010103BX_A-LCSD P0012070-04-MS	NEL Sample ID Amount 010103BX_A-LCS 20 010103BX_A-LCSD 20 P0012070-04-MS 20 P0012070-04-MSD 20 010103BX_A-LCS 20 010103BX_A-LCS 20 010103BX_A-LCS 20 010103BX_A-LCSD 20 P0012070-04-MSD 20 P0012070-04-MSD 20 010103BX_A-LCS 20 010103BX_A-LCSD 20 P0012070-04-MSD 20 010103BX_A-LCSD 20 P0012070-04-MSD 20 010103BX_A-LCSD 20 P0012070-04-MSD 20 010103BX_A-LCS 60 010103BX_A-LCSD 60 P0012070-04-MS 60	NEL Sample IDAmountResult010103BX_A-LCS2021.002010103BX_A-LCSD2020.922P0012070-04-MS2020.656P0012070-04-MSD2020.528010103BX_A-LCS2020.867010103BX_A-LCSD2020.396P0012070-04-MSD2019.796P0012070-04-MSD2019.796P0012070-04-MSD2019.712010103BX_A-LCS2020.692P0012070-04-MSD2020.692P0012070-04-MSD2020.692P0012070-04-MSD2020.692P0012070-04-MSD2020.098010103BX_A-LCS6062.569010103BX_A-LCSD6061.891P0012070-04-MS6076.449	NEL Sample IDAmountResultRecovery010103BX_A-LCS2021.002105010103BX_A-LCSD2020.922105P0012070-04-MS2020.656103P0012070-04-MSD2020.528103010103BX_A-LCS2020.867104010103BX_A-LCSD2020.396102P0012070-04-MSD2019.79699P0012070-04-MSD2019.71299010103BX_A-LCS2020.692103P0012070-04-MSD2020.692103P0012070-04-MSD2020.692103P0012070-04-MS2020.692103P0012070-04-MSD2020.098100010103BX_A-LCS6062.569104010103BX_A-LCS6061.891103P0012070-04-MS6076.449116	NEL Sample IDAmountResultRecoveryRange010103BX_A-LCS2021.00210585 - 115010103BX_A-LCSD2020.92210580 - 120P0012070-04-MS2020.65610370 - 130P0012070-04-MSD2020.52810370 - 130010103BX_A-LCS2020.86710485 - 115010103BX_A-LCSD2020.39610280 - 120P0012070-04-MS2019.7969970 - 130P0012070-04-MSD2019.7129970 - 130P0012070-04-MSD2020.69210380 - 120P0012070-04-MSD2020.69210380 - 120P0012070-04-MSD2020.69210380 - 120P0012070-04-MSD2020.09810070 - 130P0012070-04-MSD2020.09810070 - 130P0012070-04-MSD2020.09810070 - 130P0012070-04-MSD2020.09810070 - 130P0012070-04-MSD2020.09810070 - 130P0012070-04-MSD6061.89110380 - 120P0012070-04-MS6076.44911670 - 130

El Paso Natural Gas Company
San Juan River Plant
NA
Inorganic Non-Metals
Waste Water

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	<u>Acceptable</u> <u>Range</u>	<u>RPD</u>
TKN (Total Kjeldahl Nitrogen)	010104TKN-LCS	1.25	1.12	90	82 - 119	
TKN (Total Kjeldahl Nitrogen)	L0012259-03-MS	1.25	1.68	90	58 - 131	

ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant
PROJECT #:	NA
TEST:	Metals
MATRIX:	Aqueous

	Spike	Spike	Percent	Acceptable	2
NEL Sample ID	Amount	Result	Recovery	Range	RPD
P1207012-LCS	1	0.999	100	85 - 115	
P0012070-01-MS	1	1.64	105	75 - 125	
P0012070-01-MSD	1	1.79	120	75 - 125	13.3
P12070I2-LCS	0.5	0.51	102	85 - 115	
P0012070-01-MS	0.5	0.532	101	75 - 12 5	
P0012070-01-MSD	0.5	0.537	102	75 - 125	1.
	P1207012-LCS P0012070-01-MS P0012070-01-MSD P1207012-LCS P0012070-01-MS	P1207012-LCS1P0012070-01-MS1P0012070-01-MSD1P1207012-LCS0.5P0012070-01-MS0.5	NEL Sample IDAmountResultP1207012-LCS10.999P0012070-01-MS11.64P0012070-01-MSD11.79P1207012-LCS0.50.51P0012070-01-MS0.50.532	NEL Sample IDAmountResultRecoveryP1207012-LCS10.999100P0012070-01-MS11.64105P0012070-01-MSD11.79120P1207012-LCS0.50.51102P0012070-01-MSD0.50.532101	NEL Sample ID Amount Result Recovery Range P1207012-LCS 1 0.999 100 85 - 115 P0012070-01-MS 1 1.64 105 75 - 125 P0012070-01-MSD 1 1.79 120 75 - 125 P12070I2-LCS 0.5 0.51 102 85 - 115 P0012070-01-MSD 1 1.79 120 75 - 125 P12070I2-LCS 0.5 0.51 102 85 - 115 P0012070-01-MS 0.5 0.532 101 75 - 125

White - Testing Laboratory Canary - EPNG Lab	BILL NO :	CARRIER CO.	BROUTINE 7 RUSH		Carls R. Lacht							0 4 12-21.60 Nat		14:10	01 12-21-00 12:40 Wat	LAB ID DATE TIME MATRIX	SAMPLERS SALAS	PROJECT NUMBER PROJECT NAME	EL PASO NATURAL CAS
ab Pink - Field Sampler	CHARGE CODE		SAMPLE HECEIPT HEMAHKS	DATE/TIME RECEIVED BY: (Sugnature)	×5	DATE/TIME RECEIVED BY: Accordu			/			Trip Blank	E00 -		F00-0350	SAMPLE NUMBER	DATE:	Rivér Plant	ue 1/2400
				Signature) RELINQUISHED BY: (Signature)	H H	Accusture)	0	· X				2 &	7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 6 2020 2 2	сок 103 103 <u>РО</u> 50 10 10	y 13 14		CHAIN OF CUSTODY RECORD
F1,4-08-0566 (Rev. 10-29;	915-587-3729 FAX: 915-587-3835	EL PASO NATURAL GAS COMPANY 8645 RAILHOAD DRIVE EL PASO, TEXAS 79904	HESULIS & INVUICES FO: LABORATORY SERVICES	DATE/TIME REGENCED OF LABORATORY BY signature	12/22/135 1/2	DATECTIME RECEIVED BY Annual		Condition when received: Pool Bood	2			7	<u> </u> 		7 7	MA, BTC BO: REMARKS	'Y L/	CONTRACT LABORATORY	IRECORD POULOTO Page (of 1

SAMPLE KEY

SAMPLE NUMBER: F00-0198 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONIOTR WELL #5 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 15:20 SAMPLE DATE: 09/29/2000

SAMPLE KEY

SAMPLE NUMBER: F00-0199 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONIOTR WELL #6 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 13:55 SAMPLE DATE: 09/29/2000

SAMPLE KEY

SAMPLE NUMBER: F00-0200 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONIOTR WELL #7 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 14:45 SAMPLE DATE: 09/29/2000

ORIGINAL

SAN JUAN RIVER PLANT QUARTERLY MONITOR WELL TESTING FIELD TESTS

loamie Time	11.00	11.0%	74.47				
Sample Lime	15:20	13:55	14:45				
Field pH	5.7	7.05	4.81		EPA 150.1	00400	
Field Conductivity	16,780	15,520	13,040 µS	s	EPA 120.1	00095	
Field Temperature	16.5	16.9	15.1 °C	0	EPA 170.1	00010	
Field Dissolved Oxygen	3.60	1.14		1.2 mg/l O ₂	HACH - HR	HACH - HRDO Method	
Field Ferrous Iron	0.04	20.0	1.27 m	1.27 mg/l Fe ²⁺		Hach Phenanthroline Method 1,10	d 1,10
ORP Millivolts	99.30	-198.4	247.7				

Reno • Las Vegas • Boise Phoenix • Sacramento Las Vegas Division 4208 Arcata Way, Suite A • Las Vegas, NV 89030 (702) 657-1010 • Fax: (702) 657-1577 1-888-368-3282

CLIENT: El Paso Natural Gas Company 8645 Railroad Drive El Paso, TX 79904 ATTN: Darrell Campbell

PROJECT NAME: San Juan River Plant-M.W. PROJECT NUMBER: NA NEL ORDER ID: P0009093

Attached are the analytical results for samples in support of the above referenced project.

Samples submitted for this project were not sampled by NEL Laboratories. Samples were received by NEL in good condition, under chain of custody on 9/30/00.

Should you have any questions or comments, please feel free to contact our Client Services department at (602) 437-0099.

Some QA results have been flagged as follows:

C - Sample concentration is a least 5 times greater than spike contribution. Spike recovery criteria do not apply.

Stan Van Wagenen

Laboratory Manager

CERTIFICATIONS:

	Reno	Las Vegas	S. California
Arizona	AZ0520	AZ0518	AZ0605
California	1707	2002	2264
US Army Corps	Certified	Certified	
of Engineers			

10/00

	Reno I	Las Vegas	S. California
Idaho	Certified	Certified	_
Montana	Certified	Certified	
Nevada	NV033	NV052	CA084
L.A.C.S.D.			10228

[•] NE	EL LABORATORIES	
, CLIENT: PROJECT ID:	El Paso Natural Gas Company San Juan River Plant-M.W.	CLIENT ID: F00-0198 DATE SAMPLED: 9/29/00
PROJECT #:	NA	NEL SAMPLE ID: P0009093-01
TEST:	Metals	
MATRIX:	Aqueous	ANALYST: JY - Reno Division

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	0.24	0.1 mg/L	1	EPA 6010	10/3/00	10/4/00
Manganese	1.8	0.005 mg/L	1	EPA 6010	10/3/00	10/4/00

D.F. - Dilution Factor

ND - Not Detected

ļ

This report shall not be reproduced except in full, without the written approval of the laboratory.

. CLIENT:	El Paso Natural Gas Company	CLIENT ID: F00-0199
" PROJECT ID:	San Juan River Plant-M.W.	DATE SAMPLED: 9/29/00
PROJECT #:	NA	NEL SAMPLE ID: P0009093-02
TEST:	Metals	
MATRIX:	Aqueous	ANALYST: JY - Reno Division

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	0.32	0.1 mg/L	1.	EPA 6010	10/3/00	10/4/00
Manganese	1.6	0.005 mg/L	1	EPA 6010	10/3/00	10/4/00

D.F. - Dilution Factor

ND - Not Detected

NEL LABORATORIES CLIENT: El Paso Natural Gas Company CLIENT ID: F00-0200 PROJECT ID: San Juan River Plant-M.W. DATE SAMPLED: 9/29/00 PROJECT #: NA NEL SAMPLE ID: P0009093-03 TEST: Metals MATRIX: Aqueous ANALYST: JY - Reno Division

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	1.2	0.1 mg/L	1	EPA 6010	10/3/00	10/4/00
Manganese	8.4	0.005 mg/L	1	EPA 6010	10/3/00	10/4/00

D.F. - Dilution Factor

ND - Not Detected

5

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant-M.W.
PROJECT #:	NA

CLIENT ID:	Method Blank
DATE SAMPLED:	NA
NEL SAMPLE ID:	R10005i-BLK

TEST: Metals

PARAMETER	RESULT mg/L	REPORTING	D. F.	METHOD	DIGESTED	ANALYZED
Iron	ND	0.1 mg/L	1	EPA 6010	10/3/00	10/4/00
Manganese	ND	0.005 mg/L	1	EPA 6010	10/3/00	10/4/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

۰.

CLIENT:El Paso Natural Gas CompanyPROJECT ID:San Juan River Plant-M.W.PROJECT #:NA			DA	IENT ID: ATE SAMPLED EL SAMPLE ID	F00-0198 : 9/29/00 P0009093-01		
TEST: MATRIX:	Inorganic Non-Metals Aqueous						
РА	RAMETER	RESULT	R. L.	D. F.	METHOD	UNITS	ANALYZED

	RESCHI	<u> </u>	<u> </u>	MICTIOD	UNITE	ALCIED TELED
Ammonia, as N	0.78	0.3	1	SM 4500-NH3 B/E	mg/L-N	10/4/00
Nitrate, as N	ND	1.	10	EPA 300.0	mg/L-N	9/30/00
Nitrite, as N	ND	1.	10	EPA 300.0	mg/L-N	9/30/00
Sulfate	14000	1000.	10000	EPA 300.0	mg/L	10/4/00
TKN (Total Kjeldahl Nitrogen)	1.7	0.3	1	SM 4500-N C/NH3 E	mg/L-N	10/3/00
Total Phosphorus	ND	0.01	1	SM 4500-P E	mg/L-P	10/6/00

R.L. - Reporting Limi D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

5

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0199	
PROJECT ID:	San Juan River Plant-M.W.	DATE SAMPLED:	9/29/00	
PROJECT #:	NA	NEL SAMPLE ID:	P0009093-02	
TEST:	Inorganic Non-Metals			
MATRIX:	Aqueous			
	· · · · · · · · · · · · · · · · · · ·			

PARAMETER	RESULT	R. L.	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Ammonia, as N	ND	0.3	1	SM 4500-NH3 B/E	mg/L-N	10/4/00
Nitrate, as N	ND	1.	10	EPA 300.0	mg/L-N	9/30/00
Nitrite, as N	ND	1.	10	EPA 300.0	mg/L-N	9/30/00
Sulfate	8500	500.	5000	EPA 300.0	mg/L	10/4/00
TKN (Total Kjeldahl Nitrogen)	2.0	0.3	1	SM 4500-N C/NH3 E	mg/L-N	10/5/00
Total Phosphorus	0.076	0.01	1	SM 4500-P E	mg/L-P	10/6/00

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

:

· CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas San Juan River Plan NA		DA	IENT ID: TE SAMPLED: L SAMPLE ID:			
TEST: MATRIX:	Inorganic Non-Mer Aqueous	tals	· · · ·				
PA	RAMETER	RESULT	R. L.	D. F.	METHOD	UNITS	ANALYZED

	ILLOUNT					
Ammonia, as N	1.8	0.3	1	SM 4500-NH3 B/E	mg/L-N	10/4/00
Nitrate, as N	ND	1.	10	EPA 300.0	mg/L-N	9/30/00
Nitrite, as N	ND	1.	10	EPA 300.0	mg/L-N	9/30/00
Sulfate	11000	500.	5000	EPA 300.0	mg/L	10/4/00
TKN (Total Kjeldahl Nitrogen)	3.2	0.3	1	SM 4500-N C/NH3 E	mg/L-N	10/5/00
Total Phosphorus	0.018	0.01	1	SM 4500-P E	mg/L-P	10/6/00

R.L. - Reporting Limi D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

NE	EL LABC	RATORIE	S					
. CLIENT:			CLIEN		Method B	lank		
PROJECT ID:	San Juan R NA	iver Plant-M.V	N.		SAMPLED: AMPLE ID:	NA 0001003T	ννιριν	
PROJECT #:	INA			NEL 5	AMFLE ID:	00010031	KIN-DLK	
TEST:	Non-Meta	s						
<u>PARAMETER</u> TKN (Total Kjeld		RESULT ND	REPORTING LIMIT 0.3	<u>D. F.</u> 1	<u>METI</u> SM 4500-N		UNITS mg/L	<u>ANALYZED</u> 10/3/00
D.F Dilution I	Factor							
ND - Not Detec	ted							

This report shall not be reproduced except in full, without the written approval of the laboratory.

N	EL LABORATORIES	•					
CLIENT:			CLIEN		Method E	Blank	
PROJECT ID:	San Juan River Plant-M.W.			SAMPLED:			
PROJECT #:	NA		NEL S	AMPLE ID:	0001005T	KN-BLK	
TEST:	Non-Metals						
PARAMETER TKN (Total Kjelo	RESULT	REPORTING LIMIT 0.3	<u>D. F.</u> 1	<u>METI</u> SM 4500-N		UNITS mg/L	<u>ANALYZED</u> 10/5/00
D.F Dilution	Factor						

This report shall not be reproduced except in full, without the written approval of the laboratory.

NE	EL LABORATORIES							
. CLIENT:	El Paso Natural Gas Comp	any	CLIENT	ID:	Method	Blank		
PROJECT ID:	San Juan River Plant-M.W	•		AMPLED: 1	NA			
PROJECT #:	NA		NEL SA	MPLE ID:	0001006	TP-BLK		
TEST:	Non-Metals							
PARAMETER Total Phosphorus	<u>RESULT</u> ND	REPORTING LIMIT 0.01	<u>D.F.</u> 1	<u>METH</u> SM 4500		UNITS mg/L-P	ANALYZED 10/6/00	
D.F Dilution F	actor							
ND - Not Detect	ed							
This report shall	not be reproduced except in	full, without the w	ritten appro ⁻	val of the labo	oratory.			

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Method Blank
PROJECT ID:	San Juan River Plant-M.W.	DATE SAMPLED:	NA
PROJECT #:	NA	NEL SAMPLE ID:	000930IC-BLK
TEST:	Non-Metals		

		REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Nitrate, as N	ND	0.1	1	EPA 300.0	mg/L-N	9/30/00
Nitrite, as N	ND	0.1	1	EPA 300.0	mg/L-N	9/30/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

NE	EL LABORATORIE	S				
. CLIENT:			CLIEN		Blank	
· PROJECT ID:	San Juan River Plant-M.V	W.		SAMPLED: NA		
PROJECT #:	NA		NEL SA	AMPLE ID: 001003N	H3-BLK	
TEST:	Non-Metals					
PARAMETER Ammonia, as N	<u>RESULT</u> ND	REPORTING LIMIT 0.3	<u>D. F.</u> 1	METHOD SM 4500-NH3 B/E	UNITS mg/L	ANALYZED 10/4/00
D.F Dilution H	actor					
ND - Not Detect	ed					

This report shall not be reproduced except in full, without the written approval of the laboratory.

•

NE	EL LABORATORIE	S					
. CLIENT:	El Paso Natural Gas Com	pany	CLIENT	ID:	Method B	ank	
 PROJECT ID: 	San Juan River Plant-M.	N.	DATE S.	AMPLED:	NA		
PROJECT #:	NA		NEL SA	MPLE ID:	001004IC-	BLK	
TEST:	Non-Metals						
PARAMETER Sulfate	<u>RESULT</u> ND	REPORTING LIMIT 0.1	<u>D.F.</u> 1	<u>METH</u> EPA 3		UNITS mg/L	ANALYZED 10/4/00
D.F Dilution F	actor						

This report shall not be reproduced except in full, without the written approval of the laboratory.

INL	L LABURATURIES			
. CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0198	
PROJECT ID:	San Juan River Plant-M.W.	DATE SAMPLED	: 9/29/00	
PROJECT #:	NA	NEL SAMPLE ID:	P0009093-01	
TEST:	BTEX by EPA SW846 Method 80	21B, Dec. 1996		
METHOD:	EPA 8021B	ANALYST:	JQT - Division	
MATRIX:	Aqueous	EXTRACTED:	10/9/00	
DILUTION:	1	ANALYZED:	10/9/00	
				Reporting
PARAMETER		Result		Limit
Benzene	_	ND		2. μg/L
Toluene		ND		2. μg/L
Ethylbenzene		ND		2. μg/L
Total Xylenes		ND		2. μg/L
QUALITY CON	TROL DATA:	. <u> </u>		
Surrogate		% Recovery		Acceptable Range
a,a,a-Trifluoroto	oluene	106		69 - 120

ND - Not Detected

NE	EL LABORATORIES			
. CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0199	
PROJECT ID:	San Juan River Plant-M.W.	DATE SAMPLED): 9/29/00	
PROJECT #:	NA	NEL SAMPLE ID	: P0009093-02	
TEST:	BTEX by EPA SW846 Method 8021	B, Dec. 1996		
METHOD:	EPA 8021B	ANALYST:	JQT - Division	
MATRIX:	Aqueous	EXTRACTED:	10/9/00	
DILUTION:	1	ANALYZED:	10/9/00	
				Reporting
PARAMETER	_	Result		Limit
Benzene	-	284 µg/L		2. µg/L
Toluene		ND		2. μg/L
Ethylbenzene		6.6 μg/L		2. μg/L
Total Xylenes		ND		2. μg/L
QUALITY CON	TROL DATA:			
Surrogate		% Recovery		Acceptable Range
a,a,a-Trifluoroto	luene	99		69 - 120

۰.

1 11				
. CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0200	
PROJECT ID:	San Juan River Plant-M.W.	DATE SAMPLE	D: 9/29/00	
PROJECT #:	NA	NEL SAMPLE I	D: P0009093-03	
TEST:	BTEX by EPA SW846 Method 8021	1B, Dec. 1996		
METHOD:	EPA 8021B	ANALYST:	JQT - Division	
MATRIX:	Aqueous	EXTRACTED:	10/9/00	
DILUTION:	1	ANALYZED:	10/9/00	
				Reporting
PARAMETER		Result		Limit
Benzene	-	95 μg/L		2. µg/L
Toluene		ND		2. μg/L
Ethylbenzene		11.0 μg/L		2. μg/L
Total Xylenes		9.0 μg/L		2. μg/L
QUALITY CON	TROL DATA:			
Surrogate		<u>% Recovery</u>		Acceptable Range
a,a,a-Trifluorote	oluene	106		69 - 120

ND - Not Detected

۰.

. CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Trip Blank	
PROJECT ID:	San Juan River Plant-M.W.	DATE SAMPLEI	D: 9/29/00	
PROJECT #:	NA	NEL SAMPLE ID	: P0009093-04	
TEST:	BTEX by EPA SW846 Method 802	1B, Dec. 1996		
METHOD:	EPA 8021B	ANALYST:	JQT - Division	
MATRIX:	Aqueous	EXTRACTED:	10/9/00	
DILUTION:	1	ANALYZED:	10/9/00	
				Reporting
PARAMETER		Result		Limit
Benzene	-	<u>5.3</u> μg/L		2. µg/L
Toluene		ND		2. μg/L
Ethylbenzene		ND		2. μg/L
Total Xylenes		ND	······	2. μg/L
QUALITY CON	TROL DATA:			
<u>Surrogate</u>		% Recovery		Acceptable Range
a,a,a-Trifluoroto	oluene	102		69 - 120

ND - Not Detected

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Method Blank
• PROJECT ID:	San Juan River Plant-M.W.	DATE SAMPLED:	NA
PROJECT #:	NA	NEL SAMPLE ID:	001009BTEX_A-BLK
TEST:	BTEX by EPA SW846 Method 80211	3, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JQT - Division
MATRIX:	Aqueous	EXTRACTED:	10/9/00
	•	ANALYZED:	10/9/00
			Reporting
PARAMETER	2	Result	Limit
Benzene		ND	2. µg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluorot	oluene	104	69 - 120

ND - Not Detected

٠,

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant-M.W.
PROJECT #:	NA
TEST: MATRIX:	Inorganic Non-Metals Aqueous

PARAMETER	NEL Sample ID	<u>Spike</u> <u>Amount</u>	<u>Spike</u> Result	Percent Recovery	Acceptable Range	<u>RPD</u>
TKN (Total Kjeldahl Nitrogen)	0001003TKN-LCS	1.25	1.19	95	82 - 119	
TKN (Total Kjeldahl Nitrogen)	P0009093-01-MS	1.25	3.15	116	58 - 131	

ND - Not Detected

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant-M.W.
PROJECT #:	NA
TEST:	Inorganic Non-Metals
MATRIX:	Aqueous

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	RPD
TKN (Total Kjeldahl Nitrogen)	0001005TKN-LCS	1.25	1.26	101	82 - 119	

ND - Not Detected

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant-M.W.
PROJECT #:	NA
TEST: MATRIX:	Inorganic Non-Metals Aqueous

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	RPD
Total Phosphorus	0001006TP-LCS	0.25	0.24	96	80 - 120	
Total Phosphorus	P0009089-01-MS	0.25	0.707	95	91 - 105	
Total Phosphorus	P0009089-01-MSD	0.25	0.709	96	91 - 105	1.

ND - Not Detected

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant-M.W.
PROJECT #:	NA
TEST:	Inorganic Non-Metals
MATRIX:	Aqueous

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	RPD
Nitrite, as N	000930IC-LCS	100	105	105	90 - 110	
Nitrite, as N	000930IC-LCSD	100	104	104	90 - 110	1.
Nitrate, as N	000930IC-LCS	100	96	96	90 - 110	
Nitrate, as N	000930IC-LCSD	100	98	98	90 - 110	2.1
Nitrate, as N	P0009078-01-MS	100	109	98	80 - 120	

CLIENT:El Paso Natural Gas CompanyPROJECT ID:San Juan River Plant-M.W.PROJECT #:NATEST:Inorganic Non-MetalsMATRIX:Aqueous

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	<u>Acceptable</u> <u>Range</u>	<u>RPD</u>
Ammonia, as N	001003NH3-LCS	1	1	100	84 - 117	
Ammonia, as N	L0009303-05-MS	1	1.46	101	76 - 124	

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	San Juan River Plant-M.W.
PROJECT #:	NA
TEST:	Inorganic Non-Metals
MATRIX:	Drinking Water

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	<u>Acceptable</u> <u>Range</u>	RPD
Sulfate	001004IC-LCS	100	101	101	90 - 110	
Sulfate	001004IC-LCSD	100	99	99	90 - 110	2.
Sulfate	P0009081-01-MS	10	53.2	102	36 - 136	

ND - Not Detected

CLIENT:El Paso Natural Gas CompanyPROJECT ID:San Juan River Plant-M.W.PROJECT #:NATEST:MetalsMATRIX:Aqueous

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	<u>RPD</u>
Iron	R10005i-LCS	1	1.04	104	85 - 115	
Iron	R0010005-08-MS	1	1.07	107	75 - 125	
Iron	R0010005-08-MSD	1	0.977	98	75 - 125	9.1
Manganese	R10005i-LCS	0.5	0.5	100	85 - 115	
Manganese	R0010005-08-MS	0.5	9.91	-18 C	75 - 125	
Manganese	R0010005-08-MSD	0.5	9.18	-164 C	75 - 125	-160.4

EI BACO	P0009093	$\tilde{\mathcal{O}}$		J	3						
22			-	CHAIN L& 5	UPE C	F CUSTO	CHAIN OF CUSTODY RECORD	ORD		Page	
PROJECT NUMBER PROJECT NAME	River Plant- M.L.	7 .			μ. Έ	QUESTED	REQUESTED ANALYSIS		CONTRACT LABORATORY		<u> </u>
ool il		ער א∩שנ	AL NUME ONTAINI POSITE GRAB	88HD	3	N	17	200			
LAB ID DATE TIME MATRIX		101		ъN	HN EON	XL	.08 71 EI	'had		REMARKS	
(01) 9-29.00 15:20 what	F00-0198	~	৬	X	X X	×	×	X X			· · · · ·
(02) 9.2900 13:55 Wet	F00-0199		2	א א ג	× 	X	×	x x			
(03) 9.29.00 14) 48 Wet	600-020	7	৬	ע ג	×	×	×	x x			
(04) 9.3900 13.10 water	Trip Blank	7	5				×				
Ž											
									Cictody Soal Intact: V II None	Anna) Tamn' 200	
		f						Con	Condition when received:	J 🖵	
				/						<u>a</u>	
					1					\$	
							\vdash				
RELINOUISHED BY: (Signature)	DATE/TIME RECEIVE	RECEIVED BY: (Signature)			RELINO	RELINOUISHED BY: (Signature)	(Signature)	-	DATE/TIME	RECEIVED BY: (Signature)	
Chill R Park	9-29-00 14:05				26	1 A 20100	Ą	entis entis	9/30/00 0910	Wet-LV Weblits and	
HED BY: (Signa	+	RECEIVED BY: (Signature)			RELINO		(Signature)		DATE/TIME	RECEIVED OF LABORATORY BY: (Signature)	
REQUESTED TURNAROUND TIME: C ROUTINE C RUSH	SAMPLE	SAMPLE RECEIPT REMARKS	IARKS				B	RESULTS & INVOICES TO:			
CARRIER CO.									LABOHATORY SERVICES EL PASO NATURAL GAS COMPANY 8645 RAILROAD DRIVE	CES AS COMPANY TE	
: ON TING	CHARGE CODE	CODE			1				EL PASU, IEXAS / 999 915-587-3729 FA)	/9904 FAX: 915-587-3835	
White - Testing Laboratory Canary - EPNG	Canary - EPNG Lab Pink - Field Sampler									ELA OR 0565 (Rev. 10 99)	

 $\begin{pmatrix} 10\\ e \end{pmatrix}$

SAMPLE KEY

SAMPLE NUMBER: F00-0155 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #5 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 12:48 SAMPLE DATE: 06/29/2000

SAMPLE KEY

SAMPLE NUMBER: F00-0156 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #8 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 14:35 SAMPLE DATE: 06/29/2000

SAMPLE KEY

SAMPLE NUMBER: F00-0157 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #9 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 13:37 SAMPLE DATE: 06/29/2000

ORIGINAL

SAN JUAN RIVER PLANT QUARTERLY MONITOR WELL TESTING FIELD TESTS

9

Sample Number	F00-0155	F00-0156	F00-0157	Method	Method STORET No.
Sample Description	Monitor Well #5	Monitor Well #8	Monitor Well #9		
Sample Date	6/29/00	6/29/00	6/29/00		
Sample Time	12:48	14:35	13:35		
Field pH	6.52	11.7	14:24	EPA 150.1	00400
Field Conductivity	18,860	13,920	16,320 µS	EPA 120.1	00095
Field Temperature	17.8	17.1	17.9°C	EPA 170.1	00010
Field Dissolved Oxygen	1.84	2.1	0.6 mg/l O2		HACH - HRDO Method
Field Ferrous Iron	0.01	0.13	2.56 mg/l Fe ²⁺		Hach Phenanthroline Method 1,10
ORP Millivolts	176.30	-217.5	292.5		

I

Reno • Las Vegas Phoenix • So, California

Las Vegas Division 4208 Arcata Way, Suite A • Las Vegas, NV 89030 (702) 657-1010 · Fax: (702) 657-1577 1-888-368-3282

CLIENT: El Paso Natural Gas Company 8645 Railroad Drive El Paso, TX 79904 ATTN: Darrell Campbell

PROJECT NAME: S.J.R.P. PROJECT NUMBER: NA

NEL ORDER ID: P0006089

Attached are the analytical results for samples in support of the above referenced project.

Samples submitted for this project were not sampled by NEL Laboratories. Samples were received by NEL in good condition, under chain of custody on 6/30/00.

Should you have any questions or comments, please feel free to contact our Client Services department at (602) 437-0099.

Some QA results have been flagged as follows:

Jl - The batch MS and/or MSD were outside acceptance limits. The batch LCS was acceptable.

mater

Stan Van Wagenen Laboratory Manager

CERTIFICATIONS:

	Reno	Las Vegas	S. California
Arizona	AZ0520	AZ0518	AZ0605
California	1707	2002	2264
US Army Corps	Certified	Certified	
of Engineers			

113/00

	Reno	Las Vegas	S. California
Idaho	Certified	Certified	
Montana	Certified	Certified	
Nevada	NV033	NV052	CA084
L.A.C.S.D.			10228

Corporate Office & Reno Division • 1030 Matley Lane • Reno, NV 89502 • (702) 348-2522

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NATEST:Inorganic Non-Metals

CLIENT ID: F00-0155 DATE SAMPLED: 6/29/00 NEL SAMPLE ID: P0006089-01

TEST: Inorganic Non-Metals MATRIX: Aqueous

		REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Ammonia, as N	0.90	0.3	1	SM 4500-NH3 B/E	mg/L-N	7/8/00
Nitrate, as N	ND	10.	100	EPA 300.0	mg/L-N	7/1/00
Nitrite, as N	ND	10.	100	EPA 300.0	mg/L-N	7/1/00
Sulfate	16000	1000.	10000	EPA 300.0	mg/L	7/7/00
TKN (Total Kjeldahl Nitrogen)	2.7	0.3	1	SM 4500-N C/NH3 E	mg/L-N	7/11/00
Total Phosphorus	ND	0.01	1	SM 4500-P E	mg/L-P	7/5/00

D.F. - Dilution Factor

ND - Not Detected

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	S.J.R.P.
PROJECT #:	NA
TEST:	Inorganic Non-Metals
MATRIX:	Aqueous

 CLIENT ID:
 F00-0156

 DATE SAMPLED:
 6/29/00

 NEL SAMPLE ID:
 P0006089-02

	REPORTING				
RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
ND	0.3	1	SM 4500-NH3 B/E	mg/L-N	7/8/00
ND	5.	50	EPA 300.0	mg/L-N	7/1/00
ND	5.	50	EPA 300.0	mg/L-N	7/1/00
7500	1000.	10000	EPA 300.0	mg/L	7/7/00
1.8	0.3	1	SM 4500-N C/NH3 E	mg/L-N	7/11/00
0.040	0.01	1	SM 4500-P E	mg/L-P	7/5/00
	ND ND ND 7500 1.8	RESULTLIMITND0.3ND5.ND5.75001000.1.80.3	RESULTLIMITD. F.ND0.31ND5.50ND5.5075001000.100001.80.31	RESULTLIMITD. F.METHODND0.31SM 4500-NH3 B/END5.50EPA 300.0ND5.50EPA 300.075001000.10000EPA 300.01.80.31SM 4500-N C/NH3 E	RESULT LIMIT D. F. METHOD UNITS ND 0.3 1 SM 4500-NH3 B/E mg/L-N ND 5. 50 EPA 300.0 mg/L-N ND 5. 50 EPA 300.0 mg/L-N ND 5. 50 EPA 300.0 mg/L-N 7500 1000. 10000 EPA 300.0 mg/L 1.8 0.3 1 SM 4500-N C/NH3 E mg/L-N

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0157
PROJECT ID: PROJECT #:		DATE SAMPLED: NEL SAMPLE ID:	
TROJECT #.			

TEST: Inorganic Non-Metals MATRIX: Aqueous

		REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Ammonia, as N	2.7	0.3	1	SM 4500-NH3 B/E	mg/L-N	7/8/00
Nitrate, as N	ND	5.	50	EPA 300.0	mg/L-N	7/1/00
Nitrite, as N	ND	5.	50	EPA 300.0	mg/L-N	7/1/00
Sulfate	11000	250.	2500	EPA 300.0	mg/L	7/7/00
TKN (Total Kjeldahl Nitrogen)	4.6	0.3	1	SM 4500-N C/NH3 E	mg/L-N	7/10/00
Total Phosphorus	0.020	0.01	1	SM 4500-P E	mg/L-P	7/5/00

D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Co	mpany	CLIENT	ID: Method	l Blank	
PROJECT ID:	S.J.R.P.	mpuny		AMPLED: NA	Diam	
PROJECT #:	NA				IC-BLK	
TTOT.						
IESI:	Non-Metals					
	Non-Metals		_ ;			<u></u>
1501: 	Non-Metals	REPORTING				
		REPORTING LIMIT	D. F	METHOD	UNITS	ANALYZED
TEST: PARAMETER Nitrate, as N			<u>D.F.</u> 1	<u>METHOD</u> EPA 300.0	UNITS mg/L-N	<u>ANALYZED</u> 7/1/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

· NI	NEL LABORATORIES						
CLIENT:	El Paso Natural Gas Company		CLIENT ID: Method Blank				
PROJECT ID:	S.J.R.P.			DATE S.	AMPLED: NA		
PROJECT #:	NA			NEL SA	MPLE ID: 000705	IP-BLK	
TEST:	Non-Metals						
PARAMETER Total Phosphorus		R ULT D	EPORTING LIMIT 0.01	<u>D.F.</u> 1	<u>METHOD</u> SM 4500-P E	UNITS mg/L-P	<u>ANALYZED</u> 7/5/00
D.F Dilution I	Factor						
ND - Not Detec	ted						

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID:	El Paso Natural Gas Company S.J.R.P.		CLIENT ID: Method Blank DATE SAMPLED: NA			
PROJECT #:	NA			MPLE ID: 00070	7IC-BLK	
TEST:	Non-Metals					
			<u>.</u>			
PARAMETER	RESUI	REPORTING T LIMIT	D. F.	METHOD	UNITS	ANALYZED
PARAMETER Chloride	<u>RESUI</u> ND		<u>D. F.</u> 1	METHOD EPA 300.0	UNITS mg/L	<u>ANALYZED</u> 7/7/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

· N	EL LABORATORIES	5				
CLIENT:	El Paso Natural Gas Com	pany	CLIEN	T ID: Method 1	Blank	
PROJECT ID:	S.J.R.P.		DATE SAMPLED: NA			
PROJECT #:	NA		NEL S.	AMPLE ID: 000708nł	n3-BLK	
TEST:	Non-Metals					
PARAMETER Ammonia, as N	<u>RESULT</u> ND	REPORTING LIMIT 0.2	<u>D. F.</u> 1	METHOD SM 4500-NH3 B/E	<u>UNITS</u> mg/L	<u>ANALYZED</u> 7/8/00
D.F Dilution	Factor					
ND - Not Detec	ted					

This report shall not be reproduced except in full, without the written approval of the laboratory.

<u> </u>	NEL LABORATORIES						
CLIENT:					Method Blank		
PROJECT ID:	S.J.R.P. NA			SAMPLED: AMPLE ID:			
PROJECT #:			NEL 5	AMPLE ID:	000/1011	IN-DLK	
TEST:	Non-Metals						
PARAMETER TKN (Total Kjeld		REPORTING LIMIT 0.3	<u>D. F.</u> 1	<u>METI</u> SM 4500-N		UNITS mg/L	<u>ANALYZED</u> 7/10/00
D.F Dilution 1	Factor						
ND - Not Detec	ted						
This report shal	l not be reproduced except	in full without the w	ritten annr	oval of the la	horatory		

9

ł

. NI	EL LABORATORIES	
CLIENT:	El Paso Natural Gas Company	CLIENT ID: Method Blank
PROJECT ID:	S.J.R.P.	DATE SAMPLED: NA
PROJECT #:	NA	NEL SAMPLE ID: 000711TKN-BLK
TEST:	Non-Metals	
PARAMETER TKN (Total Kjeld		D. F.METHODUNITSANALYZED1SM 4500-N C/NH3 Emg/L7/11/00
D.F Dilution I	Factor	
ND - Not Detec	ted	
This report shal	l not be reproduced except in full, without the	written approval of the laboratory.

10

ι

N	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0155
PROJECT ID:	S.J.R.P.	DATE SAMPLED:	6/29/00
PROJECT #:	NA	NEL SAMPLE ID:	P0006089-01
TEST:	BTEX by EPA SW846 Method 802	1B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JJM - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	7/10/00
DILUTION:	1	ANALYZED:	7/10/00
			Reporting
PARAMETER		Result	Limit
Benzene	_	ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		······································
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluoroto	oluene	95	75 - 125

N	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0156
PROJECT ID:	S.J.R.P.	DATE SAMPLED:	6/29/00
PROJECT #:	NA	NEL SAMPLE ID:	P0006089-02
TEST:	BTEX by EPA SW846 Method 802	1B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JJM - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	7/10/00
DILUTION:	1	ANALYZED:	7/10/00
			Reporting
PARAMETER	·	Result	Limit
Benzene		24 µg/L	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluoroto	oluene	82	75 - 125

. NI	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0157
PROJECT ID:	S.J.R.P.	DATE SAMPL	ED: 6/29/00
PROJECT #:	NA	NEL SAMPLE	ID: P0006089-03
TEST:	BTEX by EPA SW846 Method 8021B	, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JJM - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	7/10/00
DILUTION:	1	ANALYZED:	7/10/00
		_	Reporting
PARAMETER	<u>.</u>	Result	Limit
Benzene		μg/L	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		9.2 μg/L	2. μg/L
Total Xylenes		ND	2. µg/L
QUALITY CON	TROL DATA:		
Surrogate		<u>% Recovery</u>	Acceptable Range
a,a,a-Trifluoroto	oluene	98	75 - 125

N	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Trip Blank
PROJECT ID:	S.J.R.P.	DATE SAMPLED	-
PROJECT #:	NA	NEL SAMPLE ID	: P0006089-04
TEST:	BTEX by EPA SW846 Method 8021	B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JJM - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	7/10/00
DILUTION:	1	ANALYZED:	7/10/00
			Reporting
PARAMETER		Result	Limit
Benzene		μg/L	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		<u>% Recovery</u>	Acceptable Range
a,a,a-Trifluoroto	oluene	94	75 - 125

ND - Not Detected

. NI	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Method Blank
PROJECT ID:	S.J.R.P.	DATE SAMPLED:	NA
PROJECT #:	NA	NEL SAMPLE ID:	000710BX20_A-BLK
TEST:	BTEX by EPA SW846 Method 8021	B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	JJM - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	7/10/00
	-	ANALYZED:	7/10/00
			Reporting
PARAMETER		Result	Limit
MTBE	_	ND Mt	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		<u>% Recovery</u>	Acceptable Range
a,a,a-Trifluoroto	oluene	106	75 - 125

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

. NI	EL LABORATORIES	
CLIENT:	El Paso Natural Gas Company	CLIENT ID: F00-0155
PROJECT ID:	S.J.R.P.	DATE SAMPLED: 6/29/00
PROJECT #:	NA	NEL SAMPLE ID: P0006089-01
TEST:	Metals	
MATRIX:	Aqueous	ANALYST: JY - Reno Division

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	0.38	0.3 mg/L	3	EPA 6010	7/3/00	7/10/00
Manganese	3.3	0.015 mg/L	3	EPA 6010	7/3/00	7/10/00

D.F. - Dilution Factor

ND - Not Detected

ł

CLIENT:	El Paso Natural Gas Company	CLIENT ID: F00-0156
PROJECT ID:	S.J.R.P.	DATE SAMPLED: 6/29/00
PROJECT #:	NA	NEL SAMPLE ID: P0006089-02
TEST: MATRIX:	Metals Aqueous	ANALYST: JY - Reno Division

3

3

EPA 6010

EPA 6010

7/10/00

7/10/00

7/3/00

7/3/00

0.3 mg/L

0.015 mg/L

D.F. - Dilution Factor

ND - Not Detected

Iron

Manganese

0.32

3.6

CLIENT:	El Paso Natural Gas Company	CLIENT ID: F00-0157
PROJECT ID:	S.J.R.P.	DATE SAMPLED: 6/29/00
PROJECT #:	NA	NEL SAMPLE ID: P0006089-03
TEST: MATRIX:	Metals Aqueous	ANALYST: JY - Reno Division
	RESULT REPORTING	

PARAMETER	mg/L	LIMIT	<u>D.F.</u>	METHOD	DIGESTED	ANALYZED
Iron	0.85	0.3 mg/L	3	EPA 6010	7/3/00	7/10/00
Manganese	8.5	0.015 mg/L	3	EPA 6010	7/3/00	7/10/00

D.F. - Dilution Factor

ND - Not Detected

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas S.J.R.P. NA	Company		MPLED: NA	hod Blank 089-FeMn-BLK	
TEST:	Metals					
			· · · · · · · ·			
	RESULT	REPORTING			DICHOTED	

PARAMETER	mg/L	LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	ND	0.1 mg/L	1	EPA 6010	7/3/00	7/10/00
Manganese	ND	0.005 mg/L	1	EPA 6010	7/3/00	7/10/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	S.J.R.P.
PROJECT ID. PROJECT #:	NA
TEST:	Inorganic Non-Metals
MATRIX:	Aqueous

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	RPD
Nítrite, as N	0007011C-LCS	100	98	98	90 - 110	
Nítrite, as N	000701IC-LCSD	100	97	97	90 - 110	1.
Nitrite, as N	L0006360-02-MS	100	98	98	80 - 120	
Nitrate, as N	000701IC-LCS	100	92	92	90 - 110	
Nitrate, as N	000701IC-LCSD	100	91	91	90 - 110	1.1
Nitrate, as N	L0006360-02-MS	100	91	91	80 - 120	

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NATEST:Inorganic Non-MetalsMATRIX:Waste Water

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	<u>RPD</u>
Total Phosphorus	000705TP-LCS	0.25	0.239	96	80 - 120	

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NATEST:Inorganic Non-MetalsMATRIX:Aqueous

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	RPD
Chloride	0007071C-LCS	100	96	96	90 - 110	
Chloride	000707IC-LCSD	100	98	98	90 - 110	2.1
Sulfate	000707IC-LCS	100	98	98	90 - 110	
Sulfate	000707IC-LCSD	100	98	98	90 - 110	0.

ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

.

rouuced ex

El Paso Natural Gas Company
S.J.R.P.
NA
Inorganic Non-Metals
Drinking Water

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	RPD
Ammonia, as N	000708nh3-LCS	1	1.008	101	85 - 115	
Ammonia, as N	L0007006-01-MS	1	1.064	106	80 - 120	

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NATEST:Inorganic Non-MetalsMATRIX:Aqueous

.

PARAMETER	NEL Sample ID	Spike Amount	<u>Spike</u> Result	Percent Recovery	Acceptable Range	RPD
TKN (Total Kjeldahl Nitrogen)	000710TKN-LCS	1.25	1.33	106	82 - 119	
TKN (Total Kjeldahl Nitrogen)	L0007010-13-MS	1.25	1.89	101	58 - 131	

El Paso Natural Gas Company
S.J.R.P.
NA
Inorganic Non-Metals
Drinking Water

PARAMETER	NEL Sample ID	<u>Spike</u> <u>Amount</u>	<u>Spike</u> Result	Percent Recovery	Acceptable Range	<u>RPD</u>
TKN (Total Kjeldahl Nitrogen)	000711TKN-LCS	1.25	1.26	101	80 - 120	
TKN (Total Kjeldahl Nitrogen)	L0007049-01-MS	1.25	2.24	91	80 - 120	

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NA

CLIENT ID: Method Blank DATE SAMPLED: NA NEL SAMPLE ID: P06089-FeMn-BLK

TEST: Metals

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	ND	0.1 mg/L	1	EPA 6010	7/3/00	7/10/00
Manganese	ND	0.005 mg/L	1	EPA 6010	7/3/00	7/10/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

ţ

ļ

i

SAMPLE KEY

SAMPLE NUMBER: F00-0043 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #5 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 13:30 SAMPLE DATE: 04/10/2000

4 M

SAMPLE KEY

SAMPLE NUMBER: F00-0044 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #9 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 15:30 SAMPLE DATE: 04/10/2000

SAMPLE KEY

SAMPLE NUMBER: F00-0045 LOCATION: SAN JUAN RIVER PLANT MATRIX: WATER SAMPLE DESCRIPTION: MONITOR WELL #8 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 16:45 SAMPLE DATE: 04/10/2000

Reno • Las Vegas Phoenix • So. California Las Vegas Division 4208 Arcata Way, Suite A • Las Vegas, NV 89030 (702) 657-1010 • Fax: (702) 657-1577 1-888-368-3282

CLIENT: El Paso Natural Gas Company 8645 Railroad Drive El Paso, TX 79904 ATTN: Darrell Campbell

PROJECT NAME: S.J.R.P. PROJECT NUMBER: NA NEL ORDER ID: P0004027

Attached are the analytical results for samples in support of the above referenced project.

Samples submitted for this project were not sampled by NEL Laboratories. Samples were received by NEL in good condition, under chain of custody on 4/12/00.

Should you have any questions or comments, please feel free to contact our Client Services department at (602) 437-0099.

Some results have been flagged as follows:

Jl - The batch MS and/or MSD were outside acceptance limits. The batch LCS was acceptable.

Rl - Reporting limit raised due to sample matrix interference.

Some QA results have been flagged as follows:

Jl - The batch MS and/or MSD were outside acceptance limits. The batch LCS was acceptable.

Stan Van Wagenen

Laboratory Manager

CERTIFICATIONS:

	Reno	Las Vegas	S. California
Arizona	AZ0520		AZ0605
California	1707	2002	2264
US Army Corps	Certified	Certified	
of Engineers			

	Reno	Las Vegas	S. California
Idaho	Certified	Certified	
Montana	Certified	Certified	
Nevada	NV033	NV052	CA084
L.A.C.S.D.			· 10228

Corporate Office & Reno Division + 1030 Matley Lane + Reno, NV 89502 + (702) 348-2522

CLIENT:	El Paso Natural Gas Company	CLIENT ID: F00-0043
PROJECT ID:	S.J.R.P.	DATE SAMPLED: 4/10/00
PROJECT #:	NA	NEL SAMPLE ID: P0004027-01
TEST:	Metals	
MATRIX:	Aqueous	ANALYST: JF - Reno Division

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	0.12	0.02 mg/L	1	EPA 6010	4/13/00	4/17/00
Manganese	3.3	0.005 mg/L	1	EPA 6010	4/13/00	4/17/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

	El Paso Natural Gas Company	CLIENT ID:	F00-0044
PROJECT ID: S	J.R.P.	DATE SAMPLED:	4/10/00
PROJECT #: N	JA .	NEL SAMPLE ID:	P0004027-02
TEST: N	Aetals		
MATRIX: A	Aqueous	ANALYST: JF -	Reno Division

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	2.7	0.02 mg/L	1	EPA 6010	4/13/00	4/17/00
Manganese	9.2	0.005 mg/L	1	EPA 6010	4/13/00	4/17/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

. N	EL LABORATORIES	
CLIENT: PROJECT ID:	El Paso Natural Gas Company S.J.R.P.	CLIENT ID: F00-0045 DATE SAMPLED: 4/10/00
PROJECT #:	NA	NEL SAMPLE ID: P0004027-03
TEST: MATRIX:	Metals Aqueous	ANALYST: JF - Reno Division

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	<u>METHOD</u>	DIGESTED	ANALYZED
Iron	1.8	0.02 mg/L	1	EPA 6010	4/13/00	4/17/00
Manganese	2.4	0.005 mg/L	1	EPA 6010	4/13/00	4/17/00

D.F. - Dilution Factor

ND - Not Detected

٠,

٢.

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NA

CLIENT ID:Method BlankDATE SAMPLED:NANEL SAMPLE ID:R04036i-BLK

TEST: Metals

۰.

۰,

PARAMETER	RESULT mg/L	REPORTING LIMIT	<u>D. F.</u>	METHOD	DIGESTED	ANALYZED
Iron	ND	0.02 mg/L	1	EPA 6010	4/13/00	4/17/00
Manganese	ND	0.005 mg/L	1	EPA 6010	4/13/00	4/17/00

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NA

TEST: Inorganic Non-Metals

MATRIX: Aqueous

ļ

۰,

•	DATE SAMPLED: NEL SAMPLE ID:	

CLIENT ID:

F00-0043

		R	EPORTING				
PARAMETER	RESUL	<u>r</u>	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Ammonia, as N	1.8		0.3	1	SM 4500-NH3 B/E	mg/L-N	4/14/00
Nitrate, as N	ND	Rl	5.	50	EPA 300.0	mg/L-N	4/12/00
Nitrite, as N	ND	Rl	5.	50	EPA 300.0	mg/L-N	4/12/00
Orthophosphate, as P	ND		0.01	1	SM 4500-P E	mg/L-P	4/12/00
Sulfate	16000		500.	5000	EPA 300.0	mg/L	4/17/00
TKN (Total Kjeldahl Nitrogen)	4.8		0.3	1	SM 4500-N C/NH3 E	mg/L-N	4/17/00

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0044
PROJECT ID:	S.J.R.P.	DATE SAMPLED:	4/10/00
PROJECT #:	NA	NEL SAMPLE ID:	P0004027-02

TEST: Inorganic Non-Metals MATRIX: Aqueous

		R	EPORTING				
PARAMETER	RESUL	<u>T</u>	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Ammonia, as N	1.3		0.3	1	SM 4500-NH3 B/E	mg/L-N	4/14/00
Nitrate, as N	ND	Rl	5.	50	EPA 300.0	mg/L-N	4/12/00
Nitrite, as N	ND	Rl	5.	50	EPA 300.0	mg/L-N	4/12/00
Orthophosphate, as P	ND		0.01	1	SM 4500-P E	mg/L-P	4/12/00
Sulfate	12000		500.	5000	EPA 300.0	mg/L	4/17/00
TKN (Total Kjeldahl Nitrogen)	5.9		0.3	1	SM 4500-N C/NH3 E	mg/L-N	4/17/00

D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0045
PROJECT ID:	S.J.R.P.	DATE SAMPLED:	4/10/00
PROJECT #:	NA	NEL SAMPLE ID:	P0004027-03

TEST:Inorganic Non-MetalsMATRIX:Aqueous

. . .

!

		R	EPORTING				
PARAMETER	RESUL	<u>r</u>	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Ammonia, as N	ND		0.3	1	SM 4500-NH3 B/E	mg/L-N	4/14/00
Nitrate, as N	ND	R1	5.	50	EPA 300.0	mg/L-N	4/12/00
Nitrite, as N	ND	Rl	5.	50	EPA 300.0	mg/L-N	4/12/00
Orthophosphate, as P	0.040		0.01	1	SM 4500-P E	mg/L-P	4/12/00
Sulfate	5000		500.	5000	EPA 300.0	mg/L	4/17/00
TKN (Total Kjeldahl Nitrogen)	3.4		0.3	1	SM 4500-N C/NH3 E	mg/L-N	4/17/00

D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NA

CLIENT ID:Method BlankDATE SAMPLED:NANEL SAMPLE ID:000412IC-BLK

TEST: Non-Metals

٠.

:

		REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Nitrate, as N	ND	0.1	1	EPA 300.0	mg/L-N	4/12/00
Nitrite, as N	ND	0.1	1	EPA 300.0	mg/L-N	4/12/00

9

D.F. - Dilution Factor

ND - Not Detected

N	JEL LAI	BORATORIES	5				
CLIENT: PROJECT ID		Natural Gas Comp	any	CLIENT ID: Method Blank			
PROJECT ID PROJECT #:	NA				AMPLED: NA MPLE ID: 0004120	OP-BLK	
TEST:	TEST: Non-Metals						
<u></u>						<u></u>	
PARAMETE	g	RESULT	REPORTING LIMIT	D. F.	METHOD	UNITS	ANALYZED
Orthophosphate	· · · ·	ND	0.01	<u>D. F.</u> 1	SM 4500-P E	mg/L-P	4/12/00
D.F Dilution	n Factor						
ND - Not Det	ected						

This report shall not be reproduced except in full, without the written approval of the laboratory.

!

	N	EL LABO	DRATORIES	3				
•	CLIENT: El Paso Natural Gas Company PROJECT ID: S.J.R.P.			SAMPLED: NA				
	PROJECT #: TEST:				NEL SZ	AMPLE ID: 000414N	HJ-BLK	
	PARAMETER		RESULT	REPORTING LIMIT	D. F.	METHOD	UNITS	ANALYZED
	Ammonia, as N		ND	0.3	1	SM 4500-NH3 B/E	mg/L	4/14/00
		_						
	D.F Dilution I	Factor						
	ND - Not Detect	ted						

This report shall not be reproduced except in full, without the written approval of the laboratory.

ł

. N	EL LABORATOR	IES				
CLIENT: PROJECT ID: PROJECT #:			CLIENT ID: Method Blank DATE SAMPLED: NA NEL SAMPLE ID: 0004171C-BLK			
TEST:	Non-Metals	·				
PARAMETE	R RESULT	REPORTING LIMIT	D. F.	METHOD	UNITS	ANALYZED
Sulfate	ND	0.1	1	EPA 300.0	mg/L	4/17/00
D.F Dilution	Factor					
ND - Not Deter	cted					

This report shall not be reproduced except in full, without the written approval of the laboratory.

NE	EL LABORATORIES			
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0043	
PROJECT ID:	S.J.R.P.	DATE SAMPLED) : 4/10/00	,
PROJECT #:	NA	NEL SAMPLE ID	: P0004027-01	
TEST:	BTEX by EPA SW846 Method 8021	B , Dec. 1996		
METHOD:	EPA 8021B	ANALYST:	BBC - Division	
MATRIX:	Aqueous	EXTRACTED:	4/13/00	
DILUTION:	1	ANALYZED:	4/13/00	
				Reporting
PARAMETER	<u> </u>	Result		<u>Limit</u>
Benzene		ND		2. μg/L
Toluene		ND		2. μg/L
Ethylbenzene		ND ·		2. μg/L
Total Xylenes		ND		2. μg/L
QUALITY CON	TROL DATA:			
	TROL DATA:	% Recovery		Acceptable Range

ND - Not Detected

. NI	EL LABORATORIES				
CLIENT:	El Paso Natural Gas Company	CLIENT	ID:	F00-0044	
PROJECT ID:	S.J.R.P.	DATE S	SAMPLED:	4/10/00	
PROJECT #:	NA	NEL SA	MPLE ID:	P0004027-02	
TEST:	BTEX by EPA SW846 Method 8021B, De	c. 1996			
METHOD:	EPA 8021B	ANALY	'ST:	BBC - Division	
MATRIX:	Aqueous	EXTRA	CTED:	4/13/00	
DILUTION:	1	ANALY	ZED:	4/13/00	
					Reporting
PARAMETER		Result			Limit
Benzene	-	48	μg/L		2. μg/L
Toluene		2.1	µg/L		2. μg/L
Ethylbenzene		4.7	μg/L		2. μg/L
Total Xylenes		5.9	μg/L		2. μg/L
QUALITY CON	TROL DATA:				
Surrogate		<u>% Recove</u>	ry		Acceptable Range
a,a,a-Trifluoroto	bluene	89			75 - 125

ND - Not Detected

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	F00-0045	
PROJECT ID:	S.J.R.P.	DATE SAMPLE	ED: 4/10/00	
PROJECT #:	NA	NEL SAMPLE I	D: P0004027-03	
TEST:	BTEX by EPA SW846 Method 8021B, D	ec. 1996		
METHOD:	EPA 8021B	ANALYST:	BBC - Division	
MATRIX:	Aqueous	EXTRACTED:	4/13/00	
DILUTION:	1	ANALYZED:	4/13/00	
				Reporting
PARAMETER		Result		Limit
Benzene	-	200 Л µg/L		2. μg/L
Toluene		4.4 μg/L		2. μg/L
Ethylbenzene		ND		2. μg/L
Total Xylenes		9.5 μg/L		2. μg/L
QUALITY CON	TROL DATA:			
Surrogate		% Recovery		Acceptable Range
a,a,a-Trifluoroto	bluene	87		75 - 125

ND - Not Detected

١.

. NI	EL LABORATORIES			
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Trip Blank	
PROJECT ID:	S.J.R.P.	DATE SAMPLED:	4/10/00	
PROJECT #:	NA	NEL SAMPLE ID:	P0004027-04	
TEST:	BTEX by EPA SW846 Method 802	1 B, Dec. 199 6		
METHOD:	EPA 8021B	ANALYST:	BBC - Division	
MATRIX:	Aqueous	EXTRACTED:	4/13/00	
DILUTION:	1	ANALYZED:	4/13/00	
				Reporting
PARAMETER		Result		Limit
Benzene	-	ND		2. μg/L
Toluene		ND		2. μg/L
Ethylbenzene		ND		2. μg/L
Total Xylenes		ND		2. μg/L
QUALITY CON	TROL DATA:			
Surrogate		% Recovery		Acceptable Range
	oluene	85		75 - 125

ND - Not Detected

4

. NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Method Blank
PROJECT ID:	S.J.R.P.	DATE SAMPLED:	NA
PROJECT #.	NA	NEL SAMPLE ID:	000413AQ21-BLK
TEST:	BTEX by EPA SW846 Method 8021	B, Dec. 1996	
METHOD:	EPA 8021B	ANALYST:	BJV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	4/13/00
	-	ANALYZED:	4/13/00
			Reporting
PARAMETER	_	Result	Limit
MTBE		ND	5. μg/L
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	<u>2. µg/L</u>
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
a,a,a-Trifluoroto	oluene	100	75 - 125

ł

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID:	El Paso Natural Gas Company S.J.R.P.
PROJECT #:	NA
TEST: MATRIX:	Inorganic Non-Metals Aqueous

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	<u>Acceptable</u> Range	<u>RPD</u>
Nitrite, as N	000412IC-LCS	100	105	105	90 - 110	
Nitrite, as N	L0004017-03-MS	5	4.23	85	67 - 116	
Nitrate, as N	000412IC-LCS	100	103	103	90 - 110	
Nitrate, as N	L0004017-03-MS	5	6.38	106	80 - 120	

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NATEST:Inorganic Non-MetalsMATRIX:Aqueous

۰.

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	RPD
Orthophosphate, as P	000412OP-LCS	0.25	0.241	96	85 - 115	
Orthophosphate, as P	P0004027-01-MS	0.25	0.239	96	80 - 120	
Orthophosphate, as P	P0004027-01-MSD	0.25	0.24	96	80 - 120	0.4

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	S.J.R.P.
PROJECT #:	NA
TEST:	BTEX by EPA SW846 Method 8021B, Dec. 1996
MATRIX:	Aqueous

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	Acceptable Range	<u>RPD</u>
Benzene	000413AQ21-LCS	20	21	105	85 - 115	
Benzene	P0004027-03-MS	20	212	60 Л	70 - 130	
Benzene	P0004027-03-MSD	20	214	70	70 - 130	
Toluene	000413AQ21-LCS	20	21	105	85 - 115	
Toluene	P0004027-03-MS	20	23	93	70 - 130	
Toluene	P0004027-03-MSD	20	23	93	70 - 130	0.
Ethylbenzene	000413AQ21-LCS	20	20	100	85 - 115	
Ethylbenzene	P0004027-03-MS	20	19	95	70 - 130	
Ethylbenzene	P0004027-03-MSD	20	19	95	70 - 130	0.
Total Xylenes	000413AQ21-LCS	60	62	103	85 - 115	
Total Xylenes	P0004027-03-MS	60	64	91	70 - 130	
Total Xylenes	P0004027-03-MSD	60	63	89	70 - 130	1.9

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NATEST:Inorganic Non-MetalsMATRIX:Waste Water

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	<u>Acceptable</u> Range	RPD
Ammonia, as N	000414NH3-LCS	1	1.008	101	80 - 120	
Ammonia, as N	000414NH3-LCSD	1	1.008	101	80 - 120	0.
Ammonia, as N	L0004102-01-MS	1	1.008	101	80 - 120	

İ

NEL LABORATORIES

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	S.J.R.P.
PROJECT #:	NA
TEST:	Inorganic Non-Metals
MATRIX:	Drinking Water

PARAMETER	NEL Sample ID	<u>Spike</u> <u>Amount</u>	<u>Spike</u> Result	<u>Percent</u> Recovery	Acceptable Range	RPD
Sulfate	000417IC-LCS	100	102	102	90 - 110	
Sulfate	000417IC-LCSD	100	100	100	90 - 110	2.
Sulfate	P0004024-09-MS	100	139	92	80 - 120	
Sulfate	P0004024-09-MSD	100	150	103	80 - 120	11.3

ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

NEL LABORATORIES

CLIENT:El Paso Natural Gas CompanyPROJECT ID:S.J.R.P.PROJECT #:NATEST:Inorganic Non-MetalsMATRIX:Waste Water

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	<u>RPD</u>
TKN (Total Kjeldahl Nitrogen)	L0004107-02-MS	1.25	61.88	70	70 - 130	

NEL LABORATORIES

CLIENT: PROJECT ID:	El Paso Natural Gas Company
PROJECT ID.	S.J.R.P.
PROJECT #:	NA
TEST:	Metals
MATRIX:	Aqueous

PARAMETER	NEL Sample ID	<u>Spike</u> Amount	<u>Spike</u> Result	Percent Recovery	Acceptable Range	RPD
Iron	R04036i-LCS	1	0.909	91	85 - 115	
Iron	R0004036-01-MS	1	1.11	89	75 - 125	
Iron	R0004036-01-MSD	1	1.1	88	75 - 125	1.1
Manganese	R04036i-LCS	0.5	0.52	104	85 - 115	
Manganese	R0004036-01-MS	0.5	0.517	100	75 - 125	
Manganese	R0004036-01-MSD	0.5	0.52	101	75 - 125	0.6

ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

White - Testing Laboratory Canary - EPNG Lab Pink - Field Sampler	BILL NO ::			VIA FELX YI2/00 0905 Ta	RELINGUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	andle. 4-11-00 1500	RELINOU(SHED BY: (Signalure) DATE/TIME RECEIVED (<u>↓</u>	03 41000 16:45 Water 100-0045	K	61 40.00 13:20 Water FOO-0043	LAB ID DATE TIME MATRIX SAMPLE NUMBER	SAMPLERS, Synature Acuto & foudille DATE.	S.J. R. P.	SO RALGAS
	DE		SAMPLE RECEIPT REMARKS	alin Foter	3Y: (Signature)		RECEIVED BY: (Signature)	 					 	2	7	7	7	TOT OF C		BER IERS	4/19/00
			55	ter		Т Х		 	-/	/ / {				9	<i>₽</i>	S X	e) N	COM NO2	GRAB	OR	СНА
					REL		REL	 	// /						XX	XX	X X	NO3	-N		Vegas Liad Chain of custody record
					RELINQUISHED BY: (Signature)		RELINQUISHED BY: (Signature)	 /							x X	x x	X	NH. TK.		REQUES	2 b i
			l		BY: (Signat) BY: (Signat	 1				<u> </u>	 	×	X	X	×	BTE 803	ex.	REQUESTED ANALYSIS	
		I	RESULTS		(arc		ure)	1							۲	×	×	Mn,		SISA	RECO
			RESULTS & INVOICES TO:							Cond					x	X	×	POy,	,504		
FM-05-0560 (Rev. 10-39)	915-587-3729 FAX: 915-587-3835	LABORATORY SERVICES EL PASO NATURAL GAS COMPANY 8645 RAILROAD DRIVE EL PASO, TEXAS 79904			DATE/TIME RECEIVED OF LABORATORY BY: (Signature)	/	BATE/TIME RECEIVED BY: (Synaisse)			tion when received: Poor	North And Tomp: 7 °C			Lostina Alialeo ta (gh Sample run Toto	in 0- Pho	Run Noz No. Separately	REMARKS		CONTRACT LABORATORY	P000 40 27

- -----

SAN JUAN RIVER PLANT

GROUNDWATER REMEDIATION WORK PLAN

December 2000

Prepared For

EL PASO NATURAL GAS FARMINGTON, NEW MEXICO

Project 62800362

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

ş.

SAN JUAN RIVER PLANT

GROUNDWATER REMEDIATION WORK PLAN

December 2000

Prepared For

EL PASO NATURAL GAS FARMINGTON, NEW MEXICO

Project 62800362

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262

TABLE OF CONTENTS

1	INTRODUCTION	.1
2	OBJECTIVE	.1
3	SITE BACKGROUND	. 1
4	PROPOSED REMEDIAL ACTION	. 3
	4.1 PROPOSED TECHNOLOGY	. 3
5	TECHNICAL APPROACH	.3
6	PILOT TEST METHODOLOGY	. 4
7	SYSTEM MONITORING	. 4
8	REPORTING	. 4
9	REGULATORY REQUIREMENTS	. 5
10	SUMMARY	. 5

LIST OF FIGURES

FIGURE 1 - LOCATION OF EXISTING AND PROPOSED WELLS FIGURE 2 - PROPOSED PILOT SYSTEM PROCESS AND INSTRUMENTATION DIAGRAM FIGURE 3 - PROPOSED SPARGE WELL DETAIL

LIST OF APPENDICES

APPENDIX A - PROPOSED AIR SPARGING EQUIPMENT

1 INTRODUCTION

At the request of El Paso Natural Gas Company (EPNG), PSC has prepared the following Work Plan for a groundwater remediation pilot test at the San Juan River Plant (Plant).

The Plant is located in Section 1, Township 29 North, Range 15 West, in San Juan County, New Mexico, approximately one mile north of Kirtland, New Mexico on San Juan County Rd. 6500. The Plant is situated on approximately 630 acres.

The Plant was previously owned by El Paso Natural Gas Company (EPNG), and is currently owned and operated by Western Gas Processors, Ltd. EPNG has pursued environmental issues at the Plant since 1985. EPNG installed 21 monitoring wells (MW) between 1985 and 1995 to evaluate groundwater quality and characteristics and determine if impacts to the environment may have been the result of plant activities.

2 OBJECTIVE

The objective of the workplan is to describe a Pilot Study that will determine the feasibility of using air-sparging technologies to reduce levels of hydrocarbons in groundwater to below regulatory standards. Regulatory drivers for soil and groundwater at this site include the New Mexico Oil Conservation Division's (NMOCD) Remediation of Leaks, Spills, and Releases Guidelines and the New Mexico Water Quality Control Commission's (NMWQCC) Regulations 3-103. Concentrations of benzene in groundwater from monitoring wells MW-08 and MW-09 have historically been above NMWQCC standards. EPFS will operate this pilot test to determine if air sparging is a suitable method for remediating the groundwater at monitoring wells MW-08 and MW-09. The locations of the monitoring wells are shown on Figure 1.

3 SITE BACKGROUND

A number of studies were conducted at the Plant from 1985 to 1995. Relevant studies are summarized below.

In 1985, Geoscience Consultants, Ltd. (GCL) conducted an investigation prior to submittal of a discharge plan. GCL identified petroleum hydrocarbon-impacted groundwater in two of nine piezometers installed during the investigation. In two other wells installed during the investigation a "petroliferous odor" was described, but sample results were not reported.

K.W. Brown and Associates (KWB&A) conducted a study in 1987 to support the land treatment and disposal of approximately 9.67 million gallons of non-contact wastewater produced annually at the Plant. This report focused primarily on the potential effect of land treatment and disposal of wastewater on the soil and groundwater at the Plant. An extensive evaluation of local soil and groundwater was completed which described site specific geology, hydrology, and groundwater quality.

KWB&A also installed three monitoring wells and piezometers in 1987 to further evaluate groundwater quality and groundwater flow in the land application areas, as well as the feasibility of land application of discharge water from the Plant. Piezometers installed during a Phase II investigation indicated the wastewater ponds appeared to be leaking and were considered the source of groundwater for the east portion of the Plant and may have influenced local groundwater flow characteristics.

In 1992, the South Flare Pit and North Flare Pits were closed with Closure Summaries submitted to the NMOCD on February 8, 1993. These reports detailed remediation efforts when removing hydrocarbon-contaminated soil from the old flare pit locations. Remediation of the South Flare Pit began on September 28, 1992, and a total of 18,200 cubic yards of contaminated material was removed. MW-04, 200 feet south of the South Flare Pit, did not show hydrocarbon contamination in groundwater samples collected in December of 1992.

Remediation activities at the North Flare Pit began on October 29, 1992. Approximately 3,520 cubic yards of contaminated soil was removed from the pit. Sampling of monitor well P-08, located 100 feet down gradient of the North Flare Pit, showed no benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations. The soil excavated from the pits has been landfarmed at the site. Details of the flare pit closures are outlined in EPNG's September 16, 1992 report.

EPNG produced soil sampling and analysis reports, dated August 3, 1995, and August 22, 1995, documenting the soil sampling and analysis from the former ponds at the Plant. Soil samples collected during this sampling event were analyzed for common cations and anions, total petroleum hydrocarbons (TPH), and BTEX.

The former wastewater evaporation ponds were closed by EPNG in late 1995 and early 1996. Pit and pond closure activities resulted in capping the ponds with low permeability, compacted soil. The activities were summarized in a letter report to the NMOCD dated November 26, 1996.

The most recent investigation at the Plant was completed in the summer of 1995. During this phase of work Philip abandoned 17 wells, upgraded two wells, and installed five new monitoring wells. The abandoned wells had been installed between 1985 and 1987 to aid in the characterization of potential contaminant migration and to support the installation of the landfarm. EPNG chose to abandon these wells because they were no longer required or were found to be unusable. Three of the five new wells were installed to replace three of the abandoned wells in areas where EPNG wished to continue monitoring groundwater. These wells were replaced because they did not have accurate well construction data to allow them to be useful. Philip's 1995 report titled "Monitoring Well Installation, Upgrade and Abandonment" details this work. A soil and soil-gas investigation was also conducted in 1995 using Philip's RECON[®] van. Soil and soil-gas samples were collected

from areas adjacent to three wells that EPNG had identified as areas of concern. Philip's August 1995 report titled "Soil Gas and Soil Survey" presents the results of this work.

Based on these past studies, it appears hydrocarbons remain concentrated in these isolated areas.

4 PROPOSED REMEDIAL ACTION

EPNG currently conducts quarterly groundwater sampling at the Plant. Historical data from groundwater samples at two of the wells indicate that benzene concentrations in groundwater are above NMWQCC standards. Based upon past success EPNG believes that air sparging in the impacted groundwater around monitoring wells MW-08 and MW-09 will supply oxygen to indigenous microorganisms that will reduce benzene concentrations in the groundwater to below NMWQCC standards.

4.1 Proposed Technology

EPNG proposes injecting a low flow of air beneath impacted groundwater and pulsing that flow by turning the system off for a period of 12 hours every day to help reduce channeling and induce bioremediation. A low flow of air into the groundwater will also help volatilize the contaminants as well as encourage bioremediation of these components by supplying oxygen to microorganisms in both groundwater and the vadose zone. No vent testing will be conducted during this pilot test.

One advantage of using low flow air sparging is that volatile organic hydrocarbons are not directly discharged to the atmosphere. Low flow air injection systems produce no condensate, no liquid wastes, and no contaminated air stream, and since there is no discharge to the atmosphere, do not require air permitting. A process and instrumentation diagram is shown on Figure 2.

Examples of the equipment or similar equipment to be used are included in Appendix A.

5 TECHNICAL APPROACH

EPNG proposes to install two sparge wells approximately 10 feet up-gradient from MW-08 and MW-09. Historical groundwater data indicates that the sparge wells should be installed just south of MW-08 and MW-09. The sparge wells will be constructed in unconsolidated sediment to a total depth of approximately 20 feet below the water table providing bedrock is not encountered. If bedrock is encountered, the wells will be installed below the water table and just above the bedrock if possible. The wells will be constructed with two-inch PVC casing and 0.01 inch slotted well screen. The entire length of the well screen will be submerged beneath the water table and will be two feet in length.

A 10-20 grade silica sand filter pack will be placed from the bottom of the boring to approximately one to two feet above the well screen. A bentonite seal will be placed above the filter pack to two feet above the water table. The remainder of the annular space will be grouted with a neat cement/bentonite slurry seal to the surface. The proposed sparge well construction is shown on Figure 3.

6 PILOT TEST METHODOLOGY

EPNG anticipates initiating the pilot test by sparging on 12-hour cycles. Extensive testing conducted by the United States Air Force Center for Environmental Excellence (AFCEE), and EPNG's experience in the local area, has shown that sparge systems are more effective when the air injected into a formation is pulsed. The pulsing helps to prevent and close preferential pathways that may be generated by overpressuring the formation. These pathways essentially short-circuit the treatment process and reduce the effectiveness of the sparge system. EPNG anticipates injecting 10 cubic feet per minute (cfm) of air into each well at 50 pounds per square inch (psi).

7 SYSTEM MONITORING

Groundwater samples will be collected from MW-08 and MW-09 before, two weeks after startup, and after the pilot test, following standard purging and sampling methods. Dissolved oxygen readings will be recorded immediately before the pilot test and weekly thereafter for the duration of the pilot test to evaluate radius of influence and biologic activity. Groundwater samples will be analyzed for BTEX using US Environmental Protection Agency (USEPA) Method 8021. Forty-eight hours prior to sample collection, the sparge system will be shut-off to ensure natural groundwater conditions are encountered and the samples are not biased by the system. EPNG will operate the pilot test system for a period of one month, unless a decision is made to operate the system longer.

After the sampling event at the end of the one-month testing period, sampling will continue at the regularly scheduled quarterly time frame until four consecutive clean quarters have been achieved.

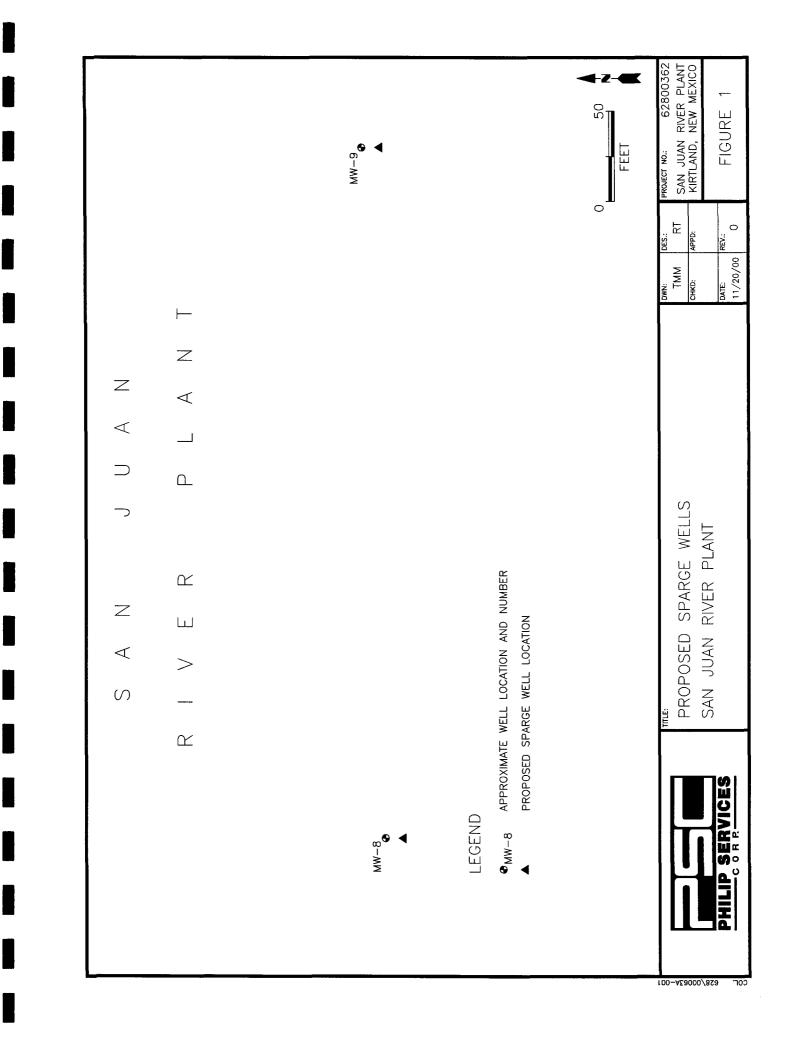
In the event sample analysis indicates groundwater above standards, a decision will be made by EPNG to operate the air sparge system or use an alternative method for treating the groundwater.

8 **REPORTING**

At the completion of the air sparge pilot test, EPNG will submit a report summarizing the results. Included in the report will be a diagram showing locations of the existing MW's and sparge wells, pressure readings recorded during the pilot test activities and groundwater analytical results for all sample events conducted during the pilot test.

9 REGULATORY REQUIREMENTS

The San Juan River Plant is subject to quarterly groundwater sampling requirements that are submitted to the NMOCD in an annual report.


The system will be turned off 48 hours prior to any scheduled groundwater-sampling event to allow the groundwater conditions to stabilize prior to groundwater-sampling activities.

10 SUMMARY

EPNG proposes to perform a Pilot Test to determine the feasibility of remediating groundwater at the San Juan River Plant using air sparging technologies. Air sparging is proposed to supply air/oxygen to promote bioremediation of hydrocarbons in the groundwater.

Figure 2 – Proposed Pilot System Process and Instrumentation Diagram

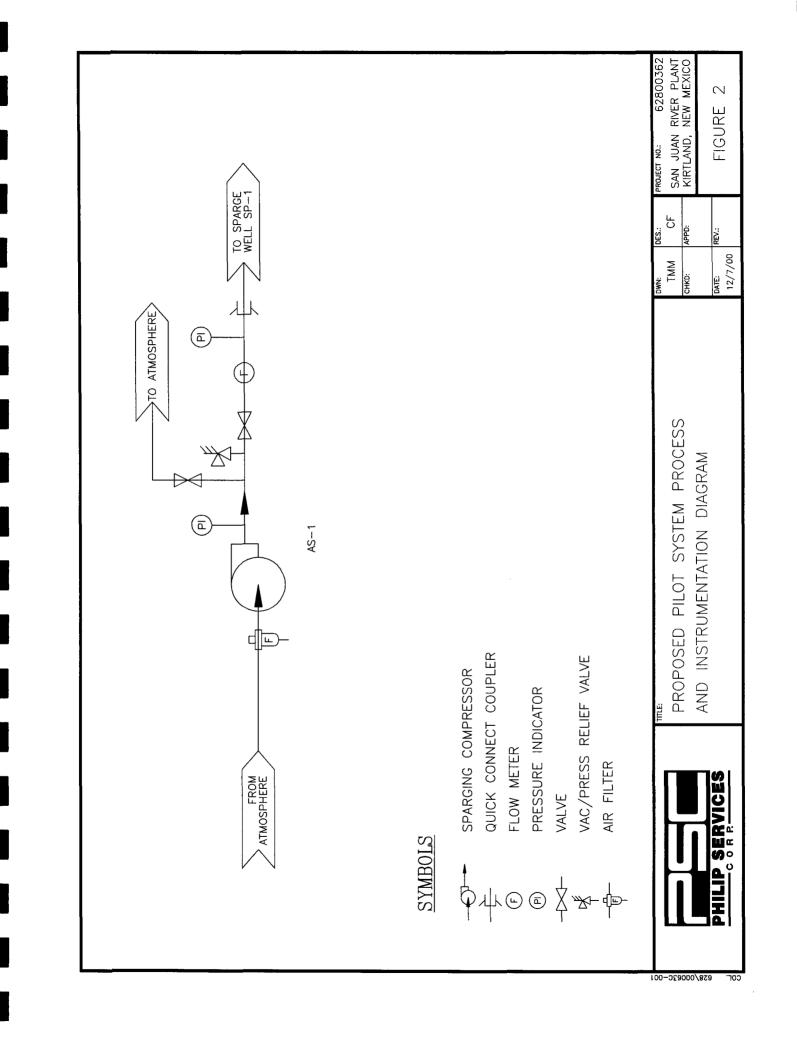
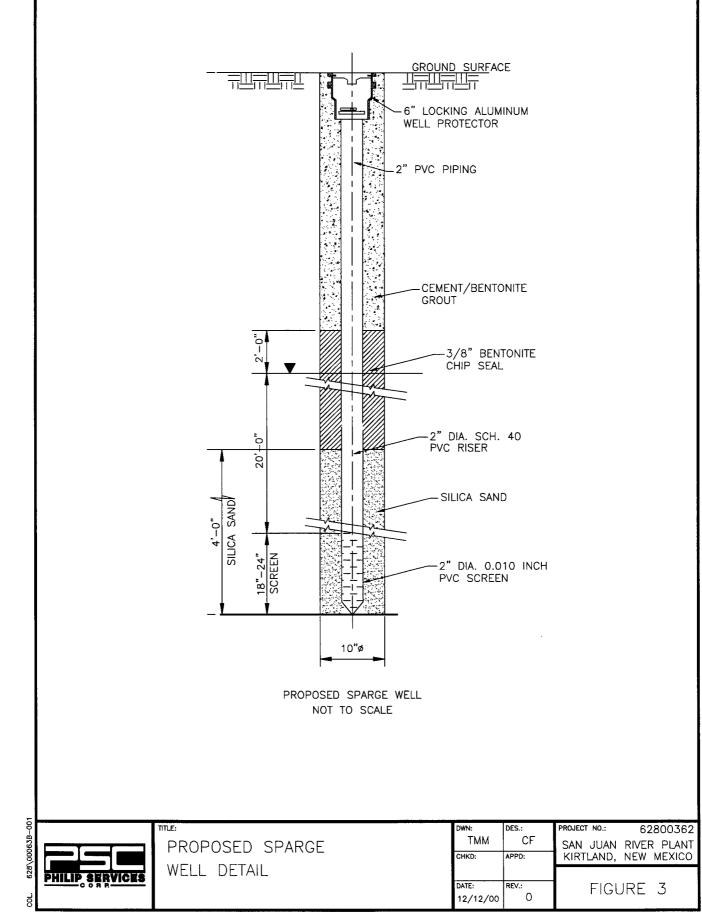



Figure 3 – Proposed Sparge Well Detail

.....

Appendix A – Proposed Air Sparging Equipment

OPERATING INSTRUCTIONS & PARTS MANUAL

OIL-LESS AIR COMPRESSOR

MODEL 4Z707

READ CAREFULLY BEFORE ATTEMPTING TO ASSEMBLE, INSTALL, OPERATE OR MAINTAIN THE PRODUCT DESCRIBED. PROTECT YOURSELF AND OTHERS BY OBSERVING ALL SAFETY INFORMATION. FAILURE TO COMPLY WITH INSTRUCTIONS COULD RESULT IN PERSONAL INJURY AND/OR PROPERTY DAMAGE! RETAIN INSTRUCTIONS FOR FUTURE REFERENCE.

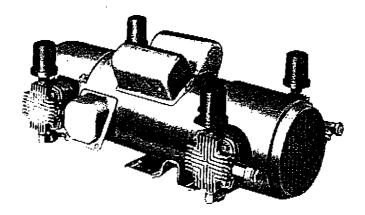
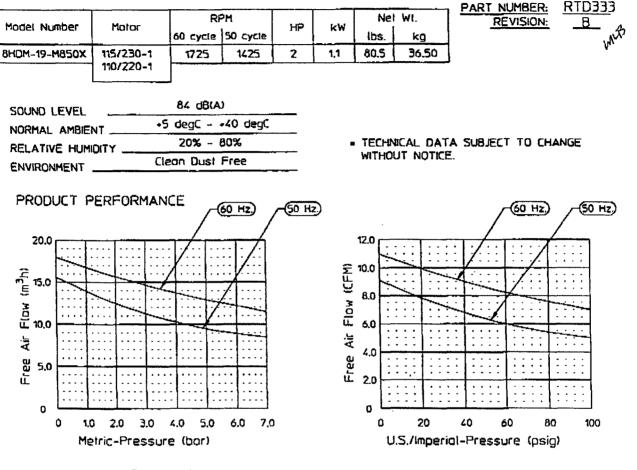


Figure 1

Description

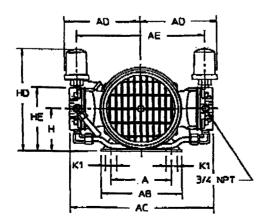
The Gast oil-less air compressor is specifically designed to give long life under demanding conditions. Specially suited for providing compressed air for aeration, dental, food processing, pneumatic controls, computer electronics, OEM equipment, etc.

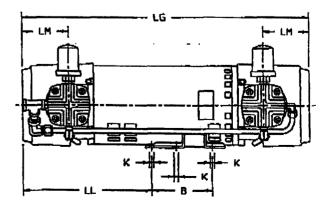

Specifications

Ī					DISPL	OIN	IENSIC	ONS	
	MODEL	HP	VOLTS @ 60 HZ.	MAX. PRESS.	CFM	W	Ħ	L	Wt
	42707	2	230	100 PSI	10.9	12.25	8.75	22.50	80

GAST MANUFACTURES. NC. A Unit of DEX Corporation Post Office Box 97 Benton Horbor. Michigan Ph: 616/925-6278 Fox: 616/925-6288

Product Specifications




PRODUCT DIMENSIONS

* METRIC (mm)

* ALL DIMENSIONS ARE REFERENCE ONLY

Model Number	A	AB	AC	AD	AE	AF	8	н	нс	HD	HE	к	к1	LÉ	LG	LL	ĽM
8HDM-19-M850X	124	165	290	155	261		127	89		213	133	9	32		548	195	97

General Safety Information

CAUTION: Never lubricate this dry oil-less piston pump. The tefton filled rings are self-lubricating and require no oil. The motor bearings are grease packed for the life of the bearing.

WARNING: TO AVOID EXPLOSIVE HAZARD, DO NOT PUMP COMBUSTIBLE LIQUIDS OR VAPORS WITH THESE UNITS OR USE IN AN AMBIENT THAT CON-TAINS COMBUSTIBLE VAPORS OR LIQUIDS.

IMPORTANT: UNIT COMES WITH PRE-SET SAFETY VALVE, DO NOT MAKE ANY ADJUSTMENTS TO THIS VALVE. IF VALVE MALFUNCTIONS, REPLACE IT. ALL ELECTRIC WIRING TO THIS UNIT SHOULD BE DONE IN ACCORDANCE WITH LOCAL AND STATE CODES. UNIT SHOULD BE ELECTRICALLY GROUNDED FOR SAFETY.

Operation

CAUTION: DO NOT exceed maximum pressure on compressor. When operating compressor under start-stop conditions, use properly rated pressure switch.

Installation

Select a cool, clean area for location of compressor.

ELECTRICAL

- 1. Wiring instructions are located on plate covering electrical terminals.
- When wiring is completed, secure plate to original position.

NOTE: Do not discard this plate.

PIPING

Use only discharge pipe or tubing ID equal to or greater than pump discharge port.

Maintenance

CLEANING

NOTE: Unit requires NO flushing.

To remove filter, proceed as follows using Figure 2 as reference:

- 1. Twist and remove plastic jar of inlet filter (Ref. No. 1) to expose felt element.
- Remove felt from holder and check condition.
 Clean or replace felt element as required.
- NOTE: Dust off felt element if it becomes dirty.

4. Replace plastic jar.

INSPECTION

Regular inspection may prevent expensive repairs.

CAUTION: If pump or motor shows evidence of overheating or excessive noise, stop immediately for repairs.

DISASSEMBLY

It is not necessary to remove the filter (Ref. No. 1) from the cylinder head (Ref. No. 4) as metal chips could be dislodged and enter the unit.

- 1. Remove the shroud (Ref. No. 19), cylinder head, and valve components.
- DO NOT re-arrange the valve components.
- Remove the cylinder (Ref. No. 10) and rings.
- Make sure all parts are clean before reassembling.
- 5. DO NOT use any chlorinated solvents to clean valves, or any liquids to flush units.

IMPORTANT: THE STAINLESS STEEL VALVES MAY BE CLEANED WITH WATER. ALL PARTS, EXCEPT THE VALVES, CAN BE CLEANED WITH ANY INDUS-TRIAL, NON-FLAMMABLE, NON-TOXIC, CLEANING SOLVENT.

RE-ASSEMBLY

- Install piston seals (Ref. No. 12), piston rings (Ref. No. 11), and the rider ring (Ref. No. 14) on the piston (Ref. No. 13).
- Locate ring joints approximately opposite each other.
- Attach cylinder to shaft end motor bracket with the cylinder screws (Ref. No. 31) and 1/4⁻ washers.
- Tighten screws finger tight.
- 5. Move piston to top, dead center position.
- Adjust the cylinder flush with the top of the piston and torque cylinder screws to 150 lb. in.
- 7. Re-torque a second time.
- Stack the valve components in order as shown in the detail. The valve leaf is pre-bent and should not be adjusted in any way.
- Install the cylinder head, lockwashers and head screws. The exhaust ports in the cylinder head have been marked by omitting the ends of the fins.
- Torque the head screws to 95-105 lb. in. and retorque a second time.

ORDER REPLACEMENT PARTS BY CALLING TOLL FREE

1-800-323-0620

Please provide following information:

- Model Number
- Serial Number (if any)
- Part Description and Number as shown in Parts List.

Address parts correspondence to:

Parts Company of America

1250 Busch Parkway Buffalo Grove, IL 60089

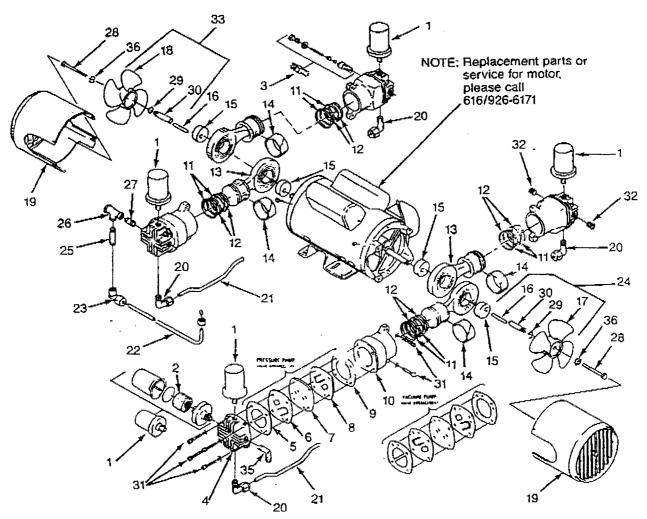


Figure 2 - Replacement Parts Illustration

REF. NO.	DESCRIPTION	PART NO.	QTY.	REF. NO.	DESCRIPTION	PART NO.	QTY.
1	Filter assembly	8300F	4	20	Elbow fitting w/nut & sleeve	AF537A	4
2	Filter felt	B344A	4	21	Manifold	AF550A	2
3	†Safety valve	AF720A	1	22	Manifold	AF659	1
4	Cylinder head	AF507	4	23	Flareless elbow	AF665	1 1
5	Head gasket	AF520A	4	24	Fan & adapter assem., CCW	AF748	1
6	Outlet valve	AF545	4	25	Nipple	BA707	1
7	Valve plate	AF543	4	26	Reducing tee	BA409	
8	Inlet valve	AF544	4	27	Close nipple	BA706C	1
9	Cylinder gasket	AF521	4	28	Fan screw, 1/4-20 x 21/4"	68663	2
10	Cylinder	AF509	4	29	Retaining ring	AF663	2
11	Piston ring	AF541	8	30	Fan adaptor	AF743	2
12	●Piston seal	AF540	8	31	Socket head cap screw,		
13	Piston rod assembly	AH356M	4		1/4-20 x 1	BB619	24
14	Rider ring	AF595	4	32	Cylinder head plug	BA503	5
15	Eccentric	AF515M	4	33	- Fán & adapter assem., CW	AF747	1
16	Square key	A8136F	2	34*	Shroud screw, 8-32 x 5/8	BB417	8
17	CCW fan 1	AF662	1	35	Elbow fitting w/nut &	-	1
18	CW fan	AF661	1 -	The state of the s	sleeve	, AF664	1 1
19	Shroud	AF656	2	36	1/4 Lockwasher	AF744	2

(•) Included in Service kit K303.
(†) Adjustable safety valve.

KOBOLD KSM FLOWMETER

User instructions

CAUTION: For safety reasons, please read the cautionary information located at the end of the manual, before attempting installation.

1.0 - General

The KOBOLD KSM flowmeter is a high volume measuring device, intended for applications in which the corrosion resistance of synthetic materials (plastic) is required.

The KSM operates on the principle of the variable area flowmeter (float in a conical tube).

The KSM may be outfitted with setpoint relays (reed type - as many as fit on the rear rail) to allow control of external electronics by triggering on flow rate information.

A reed contact chain may be mounted on the measuring tube which, in conjunction with a magnet in the float, can give a nearly continuous electrical output signal indicating flow rate. This signal may be coupled to a bar graph or digital type display to allow remote reading, of the flow rate as a percentage of full scale.

The display electronics used by the reed contact chain also contains two setpoint relays capable of switching motor type loads and an analog output signal proportional to float movement (user selected to be 0-20 mA or 4-20 mA).

2.0 - Specifications

Operating Principle:	Variable area orifice
Dimensions:	Sea Diagram 2.3
Display:	Directly read, calibrated for Air or H ₂ O Electronic display available
Range:	See Table 2.2 & Diagram 2.3
Operating Temperature:	32° F to 140° F
Maximum Internal Pressure:	145 PSIG

KSM

KOBOLD KSM FLOWMETER

User Instructions

2

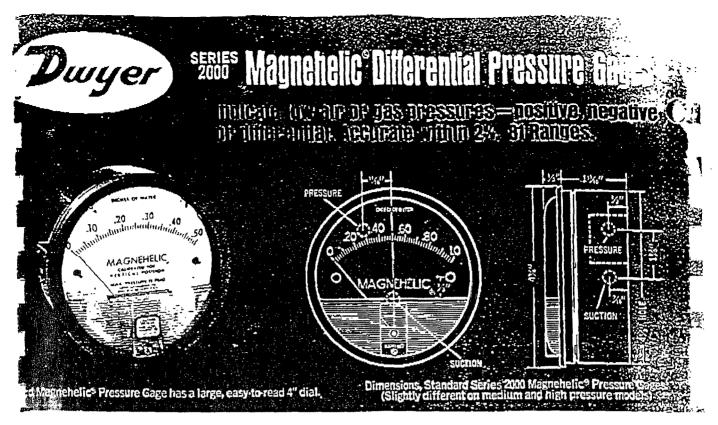

Body:	Trogamid-T* or Polysullona
Hoat: KSM X001 to KSM-X300	PVDF
KSM X600	PVC
Float Step:	PVDF
Q Rings:	EPDM
Attings:	PVC.

Table 2.1: Material Composition

Table 2.2: Air Scales/Meter Types at Yarious Pressures

Model				Opti	onal Air Sc	ales			·
	Nm³/h 10 PSiG1	14.2 PSG1	Mar ¹ m (28.4 PSIG)	Nim ¹ /b (42_7 PSiG)	Nm³/ti (56_9 PS/G)	Nm³/h (71,1 PSIG)	Nm ³ fa (85_3 PS/G)	Nm ³ /N (39.6 PSK)	Nor ³ th (114 PSIG
5M X001	0.8-5	1.2.7	1,4-9	1.6-10	2-12	2.13	2-14	2.5-14	2.5-15
3M X005	2-18	3-25	4-30	5-35	5-40	6-43	6-45	7-50	6-52
ы хота	4-34	6.50	8-60	8-70	10-74	10-84	10-90	12-96	12-100
34 X020	10-70	12.90	14-120	15-130	20-150	20-160	20-170	20-190	20-200
-M X030	10-90	15-130	20-150	20-190	25.210	25-230	30-250	30-260	30-280
M X060	22-190	30-260	40-360	40-400	50-450	50-480	75-500	70-550	75-550
M X120	45-370	60-520	80 660	100-760	100-840	100-900	100-1000	120-1000	140-110
M X200	60-580	90-800	100-1060	120-1200	150-1300	150-1500	150-1500	200-1700	200-180
M X300	100-860	140-1200	200-1500	200-1700	250-1900	250-2100	300-2200	300-2400	300-250
M,X600				·	-				

KSM

Science the Dwyer Magnehelic* gage for high accuracy - guaranteed fails 2% of full scale - and for the wide choice of 81 ranges availbe that your needs precisely. Using Dwyer's simple, frictionless Magneticle movement, it quickly indicates low air or non-corrogive () a pressures - either positive, negative (vacuum) or differenall the design resists shock, vioration and over-pressures. No passanter fluid to evaporate, freeze or cause toxic or leveling prob-Tems. 1013 inexpensive, too.

"lidely used to measure fan and blower pressures, filter resistance, ir velocity, furnace draft, pressure drop across orifice plates, liquid wels with bubbler systems and pressures in fluid amplifier or fluidic Witcom. It also checks gas-air ratio controls and automatic valves. "nd monstors blood and respiratory pressures in medical care luncomert.

Mounting. A single case to most ranges Magnehelic Bages. They man be flush or surface Mounted with standard Bardware supplied. With the

Flush....Surface....or Pioc Mounted

Monal A-G10 Pipe Mounting Kit they may be conveniently installed on hori-Mal or vertical 1%-2" pipe. Although calibrated for vertical position, many ranges nove 1 inch may be used at any angle by simply re-zeroing. However, for maximum touracy, they must be calibrated in the same position in which they are used. These Paracteristics make Magnehelic gages ideal for both stationary and portable applications. 14/27 hole is required for flush panel mounting. Complete mounting and connection Pings of us instructions are furnished with each instrument.

Vent valves

In applications where pressure is continuous and the Magnehelic gage is connected by metal or plastic tubing which cannot be easily removed, we suggest using Dwyer A-310A vont valves to connect gage. Pressure can then the removed to check or re-zero the gage

HIGH AND MEDIUM PRESSURE MODELS

Installation is similar to standard gages except that a 4%" hole is needed for flush mounting. The modium pressure construction is rated for internal pressures up to 35 psig and the high pressure up to 80 psig. Available in all ranges. Because of larger case, will not fit in portable case, weight 115, 10 oz. (Installation of the A-321 safety relief valve on standard Magneticitic gages often provides adequate protection against infrequent overpressure; see Bulletin \$ 1011

PHYSICAL DATA

Ambient lemperature range: 20° to 140°F.*

Rated total pressure: -- 20" Hg. to 15 psig."

Connections: 1/3" NPT high and low pressure taps cuplicated - one pair side and one pair on back.

Housing: Die east aluminum. Case and aluminum parts tridite-dipped to withstand 168 hour salt spray test. Exterior finish is baked dark gray hammerloid.

Standard ranges: See facing page.

Accuracy: Plus or minus 2% of full scale (3% on -0 and 4% on 400 ranges), throughout range at 70°F.

Standard accessories: Two Vet NPT plugs for duplicate pressure taps, two valipipe thread to rubber tubing adapters, and three flush mounting adapters with screws, (Mounting ring and shap ring retainer substituted for 3 adapters in MP & HP gage accessories)

Weight: 1 10, 2 oz.

Low temperature models available as special option For abolications with high cycle rate within gage lotal ores-sure rating, next higher rating is recommended. See Medium and high pressure options at lower fell.

OPTIONS AND ACCESSORIES

Transparent overlays

Furnished in red and green to high-light and emphasize critical pressures

Adjustable signal flag

Integral with plastic gage cover; has external reset screw. Available for all ranges (not high pressure). Can be or-dered with gage or separately.

Portable units

Combine carrying case with any Mag-neholic gage of standard range (not high pressure) includes 3 ft of X₂" 1.0. rubber (ubing, stand-hang bracket, and terminal tube with holder.

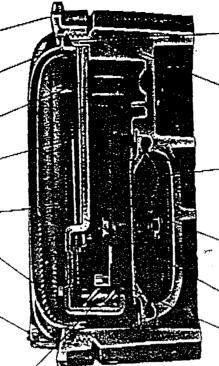
Air filter gage accessory package

Air filler gage accessory package Adapts any standard Magneheir (an, use as an an filter gage, includes alu-minum surface-mounting bracket with Screws. No 5 ft. lengths or K- dumi-num lubing, two static pressure tins and two molded plastic vent valves, integral compression fittings on both tins and valves.

Quality design and construction features

provides flange for flush mountpanel.

plastic face is highly resistant to ige. Provides undistorted viewing iter and scale.


on lithe-printed scale is accurate sy to read.

ped pointer of heat treated alumibing is easy to see. It is rigidly d on helix shaft.

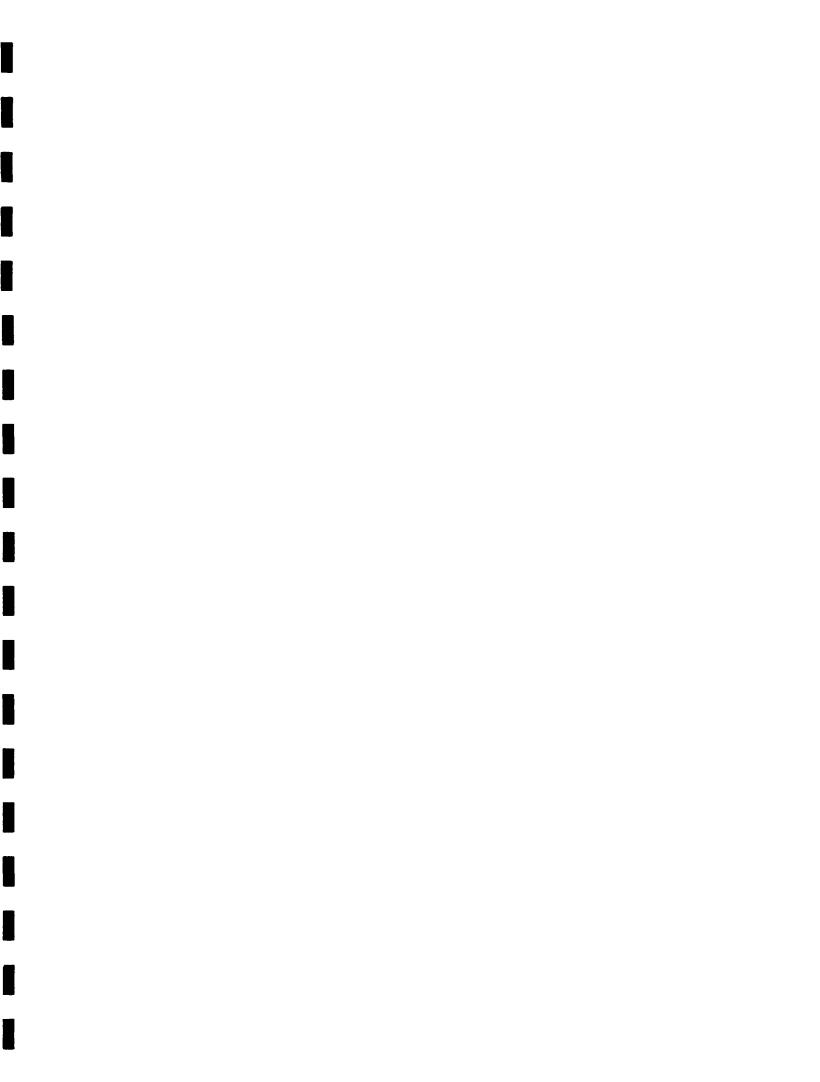
stops of molded rubber prevent over-travel without damage.

e bearings are shock-resistant d; provide virtually friction-free for helix. Motion damped with cosity silicone fluid.

justment screw is conveniently in plastic cover, accessible withaving cover. "0" ring seal proissure tightness.

"" ring seal for cover assures pressure integrity of case.

Die cast aluminum case is precision made. Iridite-dipped to withstand 168 hour salt spray test. Exterior finished in baked dark gray hammerfold. One case size used for all standard pressure ranges, and for both surface and flush mounting.


Silicone rubber diaphragm with integrally molded "0" ring is supported by front and rear plates. It is locked and sealed in position with a sealing plate and retaining ring. Diaphragm motion is restricted to prevent damage due to overpressures.

Calibrated range spring is a flat leaf of Swedish spring steel in temperature compensated design. Small amplitude of motion assures consistency and long life. It reacts to pressure on diaphragm. Live length adjustable for calibration.

"Wishbone" assembly provides mounting for helix, helix bearings and pointer shaft.

Samarium cobalt magnet mounted at end of range spring rotates helix without mechanical linkages.

Helix is precision milled from an alloy of high magnetic permeability, deburred and annealed in a hydrogen atmosphere for best magnetic qualities. Mounted in jewered bearings, it turns freely to align with magnetic field of magnet to transmit pressure indication to pointer.

April 4, 1997

Mr. William Olson New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505

RE: San Juan River Plant Landfarm

Dear Mr. Olson:

In response to your letter of February 29, 1997 regarding closure of the San Juan River Plant Landfarm, please find attached the benzene, ethylbenzene, toluene, and xylene sample results from the four landfarm cells. Also attached is the laboratory Quality Assurance / Quality Control data. These samples were collected in November of 1996. All measured levels were within specified clean up levels. If you need any additional information to support final closure of the landfarm, please call me at (505) 599-2256.

Sincerely yours,

2 und Bag

David Bays Sr. Environmental Scientist

cc: Denny Foust - NMOCD - Aztec S. D. Miller/R. D. Cosby/SJRP Landfarm Project file

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960963
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1118
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #1-1

Field Remarks:

RESULTS PARAMETER RESULT UNITS QUALIFIERS DF 0 BENZENE <1 MG/KG TOLUENE <1 MG/KG **ETHYL BENZENE** <1 MG/KG TOTAL XYLENES <3 MG/KG TOTAL BTEX MG/KG <6

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

1

95.4% Solid Narrative:

Approved By:

John Larch

115

Date: 12/9/96

960963.XLS,12/4/96

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960964
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1120
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #1-2

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	٥		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG		ļ		
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	<6	MG/KG				

-BTEX is by EPA Method 8020 --

The Surrogate Recovery was at DF = Dilution Factor Used

% for this sample All QA/QC was acceptable.

94.2% Solid Narrative:

Approved By:

John Lach	
)	

114

Date: 12/9/46

960964.XLS,12/4/96

	Field 1D	Lab ID
SAMPLE NUMBER:	N/A	960965
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1123
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #1-3

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	Q		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

112

John Larde

-BTEX is by EPA Method 8020 -

The Surrogate Recovery was at DF = Dilution Factor Used

% for this sample All QA/QC was acceptable.

91.3% Solid Narrative:

Approved By:

Date: 17/9/94

960965.XLS,12/4/96

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960966
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1126
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #1-4

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	0		
BENZENE	<1	MG/KG		•		
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	<3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

113

-BTEX is by EPA Method 8020 -

The Surrogate Recovery was at DF = Dilution Factor Used % for this sample All QA/QC was acceptable.

91.7% Solid Narrative:

Approved By:	John	Lala	960966.XLS,12/4/96	Date:	17 9/46	_

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960967
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1130
PROJECT:	San Juan La	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #1-5

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS		QUALIFIERS			
			DF	0			
BENZENE	< 1	MG/KG					
TOLUENE	<1	MG/KG					
ETHYL BENZENE	<1	MG/KG					
TOTAL XYLENES	<3	MG/KG					
TOTAL BTEX	<6	MG/KG					

-BTEX is by EPA Method 8020 -

The Surrogate Recovery was at DF = Dilution Factor Used % for this sample All QA/QC was acceptable.

92.0% Solid Narrative:

	$\gamma \neq 0$		
Approved By:	_ folin falchi		Da
		960967.XLS,12/4/96	

113

ate: <u>12/9/96</u>

	Field ID	Lab ID	
SAMPLE NUMBER:	N/A	960968	
MTR CODE SITE NAME:	N/A	San Juan River Plant	
SAMPLE DATE TIME (Hrs):	11/18/96	1138	
PROJECT:	San Juan Landfarm Closure		
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96	
TYPE DESCRIPTION:	Soil	Cell #2-1	

Field Remarks:

RESULTS

PARAMETER	RESULT	<u>UNITS</u>	QUALIFIERS		
			DF	Q C	
BENZENE	<1	MG/KG			
TOLUENE	<1	MG/KG			
ETHYL BENZENE	<1	MG/KG			
TOTAL XYLENES	< 3	MG/KG			
TOTAL BTEX	< 6	MG/KG			

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

91.6% Solid Narrative:

۲

John failhi Approved By: Date: ____ 12/9/94 960968.XLS,12/4/96

111

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960969
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1142
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #2-2

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	0		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG		 		
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	<3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

108

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

92.4% Solid Narrative:

ph- Hoch Approved By:

9/96 Date:

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960970
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1145
PROJECT:	San Juan La	ndfarm Closure
DATE OF BTEX EX ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #2-3

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	<u> Q</u>		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

91.0% Solid

Narrative:

phe Farles Approved By:

110

149/94 Date:

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960971
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1148
PROJECT:	San Juan La	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/28/96
TYPE DESCRIPTION:	Soil	Cell #2-4

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
· · · · · · · · · · · · · · · · · · ·			DF	۵		
BENZENE	< 1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG		 		
TOTAL BTEX	< 6	G/ KG				

107

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

91.9% Solid Narrative:

······································	· · · · · · · · · · · · · · · · · · ·	······································				
Approved By: _	John	Laldi	960971.XLS,12/4/96	Date:	12/9/96	

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960972
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1152
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/28/96	11/28/96
TYPE DESCRIPTION:	Soil	Cell #2-5

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	Q		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

108

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

91.9% Solid Narrative:

Approved By:	fot	- Sal D.	7
			960972.XLS

19/90 Date:

5,12/4/96

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960973
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1152
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/28/96	11/28/96
TYPE DESCRIPTION:	Soil	Cell #2-5

Field Remarks: Field Duplicate

RESULTS

PARAMETER	RESULT	RESULT UNITS	QUALIFIERS			
			DF	Q		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG	<u></u>			
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	<3	MG/KG	<u>. </u>	 		
TOTAL BTEX	< 6	MG/KG				_

104

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

91.9% Solid Narrative:

Ele Felch Approved By:

9/90 Date: _

	Field ID	Lab iD
SAMPLE NUMBER:	N/A	960974
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1232
PROJECT:	San Juan La	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/28/96	11/28/96
TYPE DESCRIPTION:	Soil	Cell #3-1

Field Remarks:

RESULTS

PARAMETER	RESULT UNITS	UNITS	· ·	QUALIF	IERS	
			DF	<u> </u>		
BENZENE	<1	MG/KG		 		
TOLUENE	<1	MG/KG		 		
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG		<u> </u>		

102

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

91.7% Solid Narrative:

Approved By:	stu	Auth	
		0	

Date: <u>n/9/ace</u>

	Field ID	Lab iD
SAMPLE NUMBER:	N/A	960975
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1234
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/28/96	11/28/96
TYPE DESCRIPTION:	Soil	Cell #3-2

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS		QUALIF	IERS	
			DF	0		
BENZENE	< 1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	< 1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

100

de Fuel

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

85.3% Solid

Narrative:

Approved By:

Date:

12/9/96

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960976
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1243
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/26/96	11/26/96
TYPE DESCRIPTION:	Soil	Cell #3-3

Field Remarks:

RESULTS

PARAMETER	RESULT	RESULT UNITS	QUALIFIERS			
			DF	Q		
BENZENE	<1	MG/KG				
TOLUENE	< 1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

101

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

88.5% Solid Narrative:

John Juli Approved By:

9/90 12 Date:

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960977
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1246
PROJECT:	San Juan Lar	ndfarm Closure
DATE OF BTEX EXT. ANAL.:	11/26/96	11/26/96
TYPE DESCRIPTION:	Soil	Cell #3-4

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	Q		
BENZENE	< 1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

The Surrogate Recovery was at DF = Dilution Factor Used -BTEX is by EPA Method 8020 --

was at ______% for

% for this sample All QA/QC was acceptable.

89.3% Solid Narrative:

John Lorden Approved By:

Date: 179/46

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960978
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1251
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/26/96	11/26/96
TYPE DESCRIPTION:	Soil	Cell #3-5

Field Remarks:

RESULTS

PARAMETER	RESULT	RESULT UNITS	QUALIFIERS			
			DF	Q		
BENZENE	< 1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	<3	MG/KG		,		
TOTAL BTEX	< 6	MG/KG				

101

-BTEX is by EPA Method 8020 -

The Surrogate Recovery was at DF = Dilution Factor Used

% for this sample All QA/QC was acceptable.

89.6% Solid Narrative:

John Lachi Approved By:

19/94 Date: ____

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960979
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1253
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/26/96	11/26/96
TYPE DESCRIPTION:	Soil	Cell #3-6

Field Remarks:

RESULTS

PARAMETER	RESULT	RESULT UNITS	QUALIFIERS			
		DF	0			
BENZENE	<1	MG/KG				:
TOLUENE	< 1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

102

The Surrogate Recovery was at DF = Dilution Factor Used -BTEX is by EPA Method 8020 -% for this sample All QA/QC was acceptable.

89.5% Solid Narrative:

John Julich Approved By:

12/9/66 Date:

	Field ID	Lab ID	
SAMPLE NUMBER:	N/A	960980	
MTR CODE SITE NAME:	N/A	San Juan River Plant	
SAMPLE DATE TIME (Hrs):	11/18/96	1259	
PROJECT:	San Juan Landfarm Closure		
DATE OF BTEX EXT. ANAL.:	11/26/96	11/26/96	
TYPE DESCRIPTION:	Soil	Cell #3-7	

Field Remarks:

RESULTS

PARAMETER RESULT UNITS QUALIFIE			IERS			
			DF	Q		
BENZENE	< 1	MG/KG				
TOLUENE	< 1	MG/KG				
ETHYL BENZENE	< 1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG		1		

102

-BTEX is by EPA Method 8020 --

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

92.8% Solid Narrative:

John Hollen Approved By:

12/9/90 Date: _

Field ID Lab ID N/A SAMPLE NUMBER: 960981 MTR CODE | SITE NAME: N/A San Juan River Plant SAMPLE DATE | TIME (Hrs): 11/18/96 1301 PROJECT: San Juan Landfarm Closure DATE OF BTEX EXT. | ANAL.: 11/26/96 11/26/96 TYPE | DESCRIPTION: Soil Cell #3-8

Field Remarks:

RESULTS

PARAMETER	RESULT	R RESULT UNITS	UNITS	QUALIFIERS			
·	· · ·		DF	Q			
BENZENE	< 1	MG/KG					
TOLUENE	< 1	MG/KG					
ETHYL BENZENE	< 1	MG/KG					
TOTAL XYLENES	< 3	MG/KG					
TOTAL BTEX	< 6	MG/KG					

103

The Surrogate Recovery was at DF = Dilution Factor Used -BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

DF = Dilution Factor (

87.8% Solid Narrative:

John Falle Approved By:

19/46 Date: ____

Field ID Lab ID N/A SAMPLE NUMBER: 960982 MTR CODE | SITE NAME: N/A San Juan River Plant SAMPLE DATE | TIME (Hrs): 11/18/96 1307 PROJECT: San Juan Landfarm Closure DATE OF BTEX EXT. | ANAL.: 11/26/96 11/26/96 TYPE | DESCRIPTION: Soil Cell #3-9

Field Remarks:

RESULTS

PARAMETER	RESULT		QUALIFIERS			
			DF	Q		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG			_	
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

The Surrogate Recovery was at DF = Dilution Factor Used

-BTEX is by EPA Method 8020 -

102 % for this sample All QA/QC was acceptable.

84.3% Solid Narrative:

Jan Jarch Approved By:

Date: 12/9/90

	Field ID	Lab iD
SAMPLE NUMBER:	N/A	960983
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1309
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/26/96	11/26/96
TYPE DESCRIPTION:	Soil	Cell #3-10

Field Remarks:

RESULTS

	RESULT	RESULT UNITS	QUALIFIERS			
			DF	0		
BENZENE	<1	MG/KG				
TOLUENE	< 1	MG/KG				
ETHYL BENZENE	<1	MG/KG		-		
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

105

The Surrogate Recovery was at DF = Dilution Factor Used

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

89.1% Solid

Narrative:

John Larch Approved By:

19/46 Date:

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960984
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1316
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #3-11

Field Remarks:

RESULTS

PARAMETER	RESULT	METER RESULT UNITS	UNITS	QUALIFIERS			
	· · · · · · · · · · · · · · · · · · ·		DF	٥			
BENZENE	<1	MG/KG					
TOLUENE	< 1	MG/KG					
ETHYL BENZENE	< 1	MG/KG					
TOTAL XYLENES	< 3	MG/KG					
TOTAL BTEX	< 6	MG/KG					

109

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

84.2% Solid Narrative:

John Lach Approved By:

Date: 12/9/96

	Field ID	Lab ID	
SAMPLE NUMBER:	N/A	960985	
MTR CODE SITE NAME:	N/A	San Juan River Plant	
SAMPLE DATE TIME (Hrs):	11/18/96	1318	
PROJECT:	San Juan Landfarm Closure		
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96	
TYPE DESCRIPTION:	Soil	Cell #3-12	

Field Remarks:

RESULTS

PARAMETER	RESULT	RESULT UNITS	S QUALIFIERS			
		- 	DF	Q		
BENZENE	< 1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

109

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

85.8% Solid Narrative:

John Jack Approved By:

Date: (2/9/46

	Field ID	Lab ID		
SAMPLE NUMBER:	N/A	960986		
MTR CODE SITE NAME:	N/A	San Juan River Plant		
SAMPLE DATE TIME (Hrs):	11/18/96	1321		
PROJECT:	San Juan Landfarm Closure			
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96		
TYPE DESCRIPTION:	Soil	Cell #3-13		

Field Remarks:

RESULTS

PARAMETER	RESULT	PARAMETER RESULT	PARAMETER RESULT UNITS	QUALIFIERS			
			DF	Q			
BENZENE	<1	MG/KG					
TOLUENE	< 1	MG/KG				<u> </u>	
ETHYL BENZENE	< 1	MG/KG					
TOTAL XYLENES	< 3	MG/KG					
TOTAL BTEX	< 6	MG/KG					

108

The Surrogate Recovery was at DF = Dilution Factor Used -BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

90.1% Solid

Narrative:

John Lakle Approved By:

N9/94 Date: __

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960987
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1328
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #3-14

Field Remarks:

RESULTS

PARAMETER	PARAMETER RESULT	UNITS	QUALIFIERS			
			DF	Q		
BENZENE	<1	MG/KG				
TOLUENE	< 1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

111

The Surrogate Recovery was at DF = Dilution Factor Used -BTEX is by EPA Method 8020 -% for this sample All QA/QC was acceptable.

DF = Dilution Factor Us

85.7% Solid Narrative:

John Halden Approved By:

Date: 12/9/66

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960988
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1328
PROJECT:	San Juan Lar	ndfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #3-14

Field Remarks: Field Duplicate

RESULTS

PARAMETER	RESULT	RESULT UNITS	QUALIFIERS			
			DF	۵		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	<6	MG/KG				

The Surrogate Recovery was at

-BTEX is by EPA Method 8020 -

DF = Dilution Factor Used

111

John Labdi

% for this sample All QA/QC was acceptable.

86.8% Solid Narrative:

Approved By:

12/9/46 Date: _

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960989
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1338
PROJECT:	San Juan La	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #4-1

Field Remarks:

RESULTS

PARAMETER	PARAMETER RESULT UNITS	QUALIFIERS			
			DF	Q	
BENZENE	< 1	MG/KG			
TOLUENE	<1	MG/KG			
ETHYL BENZENE	<1	MG/KG			
TOTAL XYLENES	<3	MG/KG			
TOTAL BTEX	< 6	MG/KG			

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

86.0% Solid Narrative:

۲

John Larch 12/9/44 Approved By: Date: 960989.XLS,12/4/96

105

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960990
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1340
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #4-2

Field Remarks:

RESULTS

PARAMETER	RESULT	RESULT UNITS	QUALIFIERS		
		All second	DF	Q	
BENZENE	<1	MG/KG			•
TOLUENE	<1	MG/KG			
ETHYL BENZENE	<1	MG/KG			
TOTAL XYLENES	<3	MG/KG			
TOTAL BTEX	<6	MG/KG			

106

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

74.9% Solid Narrative:

٢

John Labolu Approved By:

Date: 12/9/46

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960991
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1344
PROJECT:	San Juan L	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #4-3

Field Remarks:

RESULTS

PARAMETER	RESULT	RESULT UNITS	QUALIFIERS		
		· · ·	DF	Q	
BENZENE	< 1	MG/KG			
TOLUENE	<1	MG/KG			
ETHYL BENZENE	< 1	MG/KG			
TOTAL XYLENES	< 3	MG/KG			
TOTAL BTEX	< 6	MG/KG			

108

The Surrogate Recovery was at DF = Dilution Factor Used

83.5% Solid Narrative:

John Taller Approved By:

Date: 12/9/6/

960991.XLS,12/4/96

-BTEX is by EPA Method 8020 --

% for this sample All QA/QC was acceptable.

	Field ID	Lab iD
SAMPLE NUMBER:	N/A	960992
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1349
PROJECT:	San Juan Li	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96
TYPE DESCRIPTION:	Soil	Cell #4-4

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS		QUALIF	ERS
			DF	Q	
BENZENE	<1	MG/KG			
TOLUENE	<1	MG/KG			
ETHYL BENZENE	<1	MG/KG			
TOTAL XYLENES	<3	MG/KG			
TOTAL BTEX	< 6	MG/KG			

The Surrogate Recovery was at DF = Dilution Factor Used --BTEX is by EPA Method 8020 --

108 % for this sample All QA/QC was acceptable.

84.9% Solid

Narrative:

John Jardin Approved By:

12/9/96 Date: __

	Field ID	Lab iD		
SAMPLE NUMBER:	N/A	960993		
MTR CODE SITE NAME:	N/A	San Juan River Plant		
SAMPLE DATE TIME (Hrs):	11/18/96	1352		
PROJECT:	San Juan Landfarm Closure			
DATE OF BTEX EXT. ANAL.:	11/28/96	11/28/96		
TYPE DESCRIPTION:	Soil	Cell #4-5		

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS		QUALIF		
		1	DF	<u>Q</u>		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

-BTEX is by EPA Method 8020 -

The Surrogate Recovery was at DF = Dilution Factor Used

% for this sample All QA/QC was acceptable.

84.3% Solid Narrative:

Approved By:	Dolu	Tertila.	
			960993.XLS,1

99.3

Date: 12/9/96

2/4/96

Lab (D Field ID N/A SAMPLE NUMBER: 960994 MTR CODE | SITE NAME: N/A San Juan River Plant SAMPLE DATE | TIME (Hrs): 11/18/96 1354 PROJECT: San Juan Landfarm Closure DATE OF BTEX EXT. | ANAL.: 11/27/96 11/27/96 TYPE | DESCRIPTION: Cell #4-6 Soil

Field Remarks:

RESULTS

PARAMETER	RESULT		QUALIFIERS			
			DF	0		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG			_	
TOTAL XYLENES	<3	MG/KG				
TOTAL BTEX	<6	MG/KG				

The Surrogate Recovery was at DF = Dilution Factor Used _____% for this sample All QA/QC was acceptable.

108

--BTEX is by EPA Method 8020 --

87.1% Solid Narrative:

Jan Fabdu Approved By:

Date: 12/9/96-

	Field ID	Lab iD		
SAMPLE NUMBER:	N/A	960995		
MTR CODE SITE NAME:	N/A	San Juan River Plant		
SAMPLE DATE TIME (Hrs):	11/18/96	1402		
PROJECT:	San Juan Landfarm Closure			
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96		
TYPE DESCRIPTION:	Soil	Cell #4-7		

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	0		
BENZENE	<1	MG/KG				
TOLUENE	< 1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG			_	
TOTAL BTEX	< 6	MG/KG				

111

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

82.8% Solid Narrative:

Jun Latan Approved By:

n/9/410 Date: ____

	Field ID	Lab ID		
SAMPLE NUMBER:	N/A	960996		
MTR CODE SITE NAME:	N/A	San Juan River Plant		
SAMPLE DATE TIME (Hrs):	11/18/96	1404		
PROJECT:	San Juan Landfarm Closure			
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96		
TYPE DESCRIPTION:	Soil	Cell #4-8		

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS	QUALIFIERS			
			DF	Q		<u> </u>
BENZENE	<1	MG/KG				
TOLUENE	< 1	MG/KG			_	
ETHYL BENZENE	< 1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

The Surrogate Recovery was at DF = Dilution Factor Used

84.5% Solid

Narrative:

John Lalle Approved By:

111

Date: 12/9/9/0

960996.XLS,12/4/96

-BTEX is by EPA Method 8020 --

% for this sample All QA/QC was acceptable.

	Field ID	Lab ID		
SAMPLE NUMBER:	N/A	960997		
MTR CODE SITE NAME:	N/A	San Juan River Plant		
SAMPLE DATE TIME (Hrs):	11/18/96	1407		
PROJECT:	San Juan Landfarm Closure			
DATE OF BTEX EXT. ANAL.:	11/27/96	11/27/96		
TYPE DESCRIPTION:	Soil	Cell #4-9		

Field Remarks:

RESULTS

PARAMETER	RESULT	UNITS				
			DF	<u> </u>		
BENZENE	<1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

85.4% Solid Narrative:

	Λ		
Approved By:	John Level		D
	0	960997.XLS,12/4/96	

111

ate: 12/9/46

	Field ID	Lab ID
SAMPLE NUMBER:	N/A	960998
MTR CODE SITE NAME:	N/A	San Juan River Plant
SAMPLE DATE TIME (Hrs):	11/18/96	1407
PROJECT:	San Juan La	andfarm Closure
DATE OF BTEX EXT. ANAL.:	11/28/96	11/28/96
TYPE DESCRIPTION:	Soil	Cell #4-9

Field Remarks: Field Duplicate

RESULTS

PARAMETER	RESULT	UNITS		QUALIFIERS		
	·.		DF	Q		
BENZENE	< 1	MG/KG				
TOLUENE	<1	MG/KG				
ETHYL BENZENE	<1	MG/KG				
TOTAL XYLENES	< 3	MG/KG				
TOTAL BTEX	< 6	MG/KG				

94.2

-BTEX is by EPA Method 8020 -

% for this sample All QA/QC was acceptable.

The Surrogate Recovery was at DF = Dilution Factor Used

85.5% Solid Narrative:

John Fulch Approved By:

QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 960963 - 960975; 960993 and 960998

QA/QC for 11/27/96 Sample Set

LABORATORY CALIBRATION CHECKS, LABORATORY CONTROL SAMPLES:

2

1

i

SAMPLE		EXPECTED	ANALYTICAL			ACCEPTA	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
ICV LA-52589		PPB	PPB			YES	NO
50 PPB					RANGE		
Benzene	Standard	50.0	54.3	109	75 - 125 %	X	
Toluene	Standard	50.0	54.8	110	75 - 125 %	х	
Ethyl benzene	Standard	50.0	54.4	109	75 - 125 %	х	
m & p - Xylene	Standard	100	112	112	75 - 125 %	х	
o - Xylene	Standard	50.0	54.2	108	75 - 125 %	х	
SAMPLE		EXPECTED	ANALYTICAL				
NUMBER	TYPE	RESULT	RESULT	%R		ACCEP	TABLE
LCS LA-45476		PPB	PPB			YES	NO
25 PPB					RANGE		
Benzene	Standard	25.0	24.9	99.6	39 - 150	X	
Toluene	Standard	25.0	25.8	103	46 - 148	Х	
Ethyl benzene	Standard	25.0	25.7	103	32 - 160	Х	
m & p - Xylene	Standard	50.0	55.6	111	Not Given	Х	
o - Xylene	Standard	25.0	25.6	102	Not Given	X	
SAMPLE		EXPECTED	ANALYTICAL			ACCEPTA	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
CCV1 LA-52589		PPB	PPB			YES	NO
50 PPB		<u> </u>			RANGE		
Benzene	Standard	50.0	55.3	111	75 - 125 %	Х	
Toluene	Standard	50.0	55.6	111	75 - 125 %	Х	
Ethyl benzene	Standard	50.0	55.4	111	75 - 125 %	Х	
m & p - Xylene	Standard	100	115	115	75 - 125 %	Х	
o - Xylene	Standard	50.0	55.0	110	75 - 125 %	X	
SAMPLE		EXPECTED	ANALYTICAL			ACCEPTA	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
CCV2 LA-52589		PPB	PPB			YES	NO
50 PPB		<u></u>			RANGE		
Benzene	Standard	50.0	51.4	103	75 - 125 %	Х	
Toluene	Standard	50.0	52.6	105	75 - 125 %	Х	
Ethyl benzene	Standard	50.0	51.6	103	75 - 125 %	Х	
m & p - Xylene	Standard	100	109	109	75 - 125 %	X	
o - Xylene	Standard	50.0	51.4	103	75 - 125 %	X	
SAMPLE		EXPECTED	ANALYTICAL			ACCEPTA	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
CCV3 LA-52589		PPB	PPB		-	YES	NO
50 PPB		<u></u>			RANGE		
Benzene	Standard	50.0	49.0	98.0	75 - 125 %	X	
Toluene	Standard	50.0	49.3	98.6	75 - 125 %	X	
Ethyl benzene	Standard	50.0	48.6	97.2	75 - 125 %	x	
m & p - Xylene	Standard	100	103	103	75-125%	· · X	
o - Xylene	Standard	50.0	48.2	96.4	75 - 125 %	X	

Narrative: Acceptable.

SANTES:	Trees		DOPAGATES RESELT	RPO		ACCEPTABL	
Jecones.	-	ugit.	ugit		RANGE	YES	NO
Benzene	Extraction Dup	<1.0	<1.0	0.00	+/- 35 %	×	
Toluene	Extraction Dup	<1.0	<1.0	0.00	+/- 35 %	х	
Ethyl benzene	Extraction Dup	<1.0	<1.0	0. 00	+/- 35 %	х	
m & p - Xylene	Extraction Dup	<2.0	<2.0	0. 00	+/- 35 %	х	
o - Xylene	Extraction Dup	<1.0	<1.0	0.00	+/- 35 %	X	- 74

Narrative: Acceptable.

LABORATORY DUPLICATES:

SAMPLE NUMBER NA	TYPE	SAMPLE RESULT ug/L	DUPLICATE RESULT ug/L	RPD	RANGE	ACCEPTABLE
Benzene	Extraction Dup			0	+/- 35 %	NA
Toluene	Extraction Dup			0	+/- 35 %	NA
Ethyl benzene	Extraction Dup			0	+/- 35 %	NA
m & p - Xylene	Extraction Dup	1		0	+/- 35 %	NA
o - Xylene	Extraction Dup			0	+/- 35 %	NA

Narrative:

LABORATORY DUPLICATES:

SAMPLE NUMBER 960963	туре	SAMPLE RESULT PPM ug/L	DUPLICATE RESULT PPM ug/L	RPD	RANGE	ACCEPTABLE
Benzene	Matrix Duplicate	<1.0	<1.0	0. 00	+/- 35 %	Х
Toluene	Matrix Duplicate	<1.0	<1.0	0. 00	+/- 35 %	Х
Ethyl benzene	Matrix Duplicate	<1.0	<1.0	0.00	+/- 35 %	Х
m & p - Xylene	Matrix Duplicate	<2.0	<2.0	0.00	+/- 35 %	Х
o - Xylene	Matrix Duplicate	<1.0	<1.0	0.00	+/- 35 %	X

Narrative: Acceptable.

LABORATORY DUPLICATES:

SAMPLE NUMBER NA	TYPE (Analysis, Portion, or Sample)	SAMPLE RESULT PPM ug/L	DUPLICATE RESULT PPM ug/L	RPD	RANGE	ACCEPTABLE YES NO
Benzene	Matrix Duplicate			0	+/- 35 %	NA
Toluene	Matrix Duplicate			0	+/- 35 %	NA
Ethyl benzene	Matrix Duplicate		Į	0	+/- 35 %	NA
m & p - Xylene	Matrix Duplicate			0	+/- 35 %	NA
o - Xylene	Matrix Duplicate			0	+/- 35 %	NA

Narrative:

LABORATORY SPIKES:

SAMPLE NUMBER 960963	SPIKE ADDED PPB	SAMPLE RESULT PPB	SPIKE SAMPLE RESULT PPB	%R	RANGE	ACCEPTABLE YES NO
Benzene	50.0	<1.0	54.8	110	75 - 125 %	X
Toluene	50.0	<1.0	55.8	112	75 - 125 %	X
Ethyl benzene	50.0	<1.0	55.4	111	75 - 125 %	X
m & p - Xylene	100.0	<2.0	114	114	75 - 125 %	· X
o - Xylene	50.0	<1.0	55.0	110	75 - 125 %	<u> </u>

Narrative: Acceptable.

LABORATORY SPIKES:

SAMPLE NUMBER NA	SPIKE ADDEN PPS 50.00	SAMPLE REBULT PPB	SPIKE SAMPLE RESULT PP8	9 8	RANGE	ACCEPTABLE YES NO	
Benzene	50.0			0	75 - 125 %	NA	
Toluene	50.0			0	75 - 125 %	NA	
Ethyl benzene	50.0			0	75 - 125 %	NA	
m & p - Xylene	100.0			0	75 - 125 %	NA	
o - Xylene	50.0			0	75 - 125 %	NA	

Narrative:

ADDITIONAL ANALYTICAL BLANKS:

SAMPLE ID AUTO BLANK/BOILED WATER	SOURCE	PPB	STATUS
Benzene	Boiled Water	<1.0	ACCEPTABLE
Toluene	Boiled Water	<1.0	CCEPTABLE
Ethyl benzene	Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

SAMPLE ID SOIL VIAL BLANK	SOURCE	PPB	STATUS
Benzene	√ial + Boiled Water	<1.0	ACCEPTABLE
Toluene	7/ai + Boiled Water	<1.0	ACCEPTABLE
Ethyl benzene	∵ial + Boiled Water	<1.0	ACCEPTABLE
⊺otai Xylenes	Vial + Boiled Water	⊴0	AC IPTABLE

Narrative: Acceptable.

SAMPLE ID EXTRACTION BLANK	SOURCE 1016. ext bik	PPB (One analyzed with this set)	STATUS
Benzene	Methanoi	<1.0	ACCEPTABLE
Toluene	Methanol	<1.0	ACCEPTABLE
Ethyl benzene	Methanol	<1.0	ACCEPTABLE
Total Xvienes	Methanoi	<3.0	ACCEPTABLE

Narrative: Acceptable.

Carryover contamination checks	SOURCE	NARRATIVE (None analyzed with this set)	STATUS
Benzene	Vial + Boiled Water	<1.0	NA
Toluene	Vial + Boiled Water	<1.0	NA
Ethyl benzene	Vial + Boiled Water	<1.0	NA
Total Xylenes	Vial + Boiled Water	<3.0	NA

Narrative:

SAMPLE ID METHANOL CHECK	SOURCE Lot # H18318	PPB (Not analyzed with this set)	STATUS
Benzene	MeOH/Boiled Water	<2.5	ACCEPTABLE
Toluene	MeOH/Boiled Water	<2.5	ACCEPTABLE
Ethyl benzene	MeOH/Boiled Water	<2.5	ACCEPTABLE
Total Xylenes	MeOH/Boiled Water	<7.5	ACCEPTABLE

Narrative: Acceptable.

Reported By: Mdu

Approved By: John Fartch

2/40 Date:__ SOQC1127.XLS

engenter ven bivision alter atte

November 13, 1996

Mr. Bill Olson New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505

RECEIVED

NOV 1 5 1996

Environmental Bureau Oil Conservation Division

RE: San Juan River Plant Landfarm

Dear Mr. Olson:

As you are aware, during 1992, El Paso Field Services (EPFS) constructed a landfarm to remediate hydrocarbon contaminated soils excavated from the flare pits at the San Juan River Plant. The hydrocarbon concentrations in soils excavated from these pits ranged from 6,500 to 8,000 Mg/Kg.

The landfarm was constructed with four cells. Cells 3 and 4 reached the desired clean up levels in 1995, and are no longer active. The results from the most recent sampling on cells 1 and 2 are:

Sample Location	TPH Results - Mg/Kg
Cell 1-1	42
Cell 1-2	ND
Cell 1-3	76
Cell 1-3*	14
Cell 1-4	33
Cell 1-5	42
Cell 2-1	48
Cell 2-2	87
Cell 2-2*	17
Cell 2-3	33
Cell 2-4	50
Cell 2-5	51

* TPH results at 2 feet below ground surface. Also a field duplicate sample from Cell 2-3 tested to contain 29 Mg/Kg.

Mr. Bill Olson November 13, 1996, 1996 Page 2

Analysis results on all samples are below the permitted action level of 100 Mg/Kg, and subsurface samples have always indicated no downward migration of the hydrocarbons. Therefore, EPFS is proposing to discontinue any further treatment or testing of the landfarm. After you have had opportunity to review the attached sample results, please let me know if you agree that the landfarm can now be closed without further activity.

If you need any additional information, please call me at (505) 599-2256.

Sincerely yours,

anil Bay

David Bays, REM Sr. Environmental Scientist

cc: Mr. Denny Foust, NMOCD - Aztec S. D. Miller/R. D. Cosby/J. S. Sterrett/San Juan Plant file

AEN I.D. 610383

Anni 1996 RECEIVED

October 29, 1996

EL PASO FIELD SERVICE CO. P.O. BOX 4990 FARMINGTON, NM 87499

Project Name S.J. LANDFARM Project Number (none)

Attention: JOHN LAMBDIN

On 10/24/96 American Environmental Network (NM), Inc. (ADHS License No. AZ0015), received a request to analyze **non-aq** samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

Kimberly D. McNeill Project Manager

MR: mt

Enclosure

H. Mitchell Rubenstein, Ph. D. General Manager

CLIENT	: EL PASO FIELD SERVICE CO.	AEN I D.	: 610383
PROJECT #	: (none)	DATE RECEIVED	: 10/24/96
PROJECT NAME	: S.J. LANDFARM	REPORT DATE	: 10/29/96
AEN			DATE
ID. #	CLIENT DESCRIPTION	MATRIX	COLLECTED
01	960883 (ell #1-1	NON - AQUEOUS	10/23/96
02	<u>960884 (الله المر) 960884</u>	AQUEOUS	10/23/96
03	960885 CHI # 1-3	AQUEOUS	10/23/96
04	960886 (211# 1-3 2' Subsitiace	AQUEOUS	10/23/96
05	960887 (:11 j-4	AQUEOUS	10/23/96
06	960888 Cell #1-5	AQUEOUS	10/23/96
07	960889 C+11 # Z-1	AQUEOUS	10/23/96
08	960890 Coil # 2-2	AQUEOUS	10/23/96
09	960891 (411 # Z-Z Z'Subsurface	AQUEOUS	10/23/96
10	960892 (Jell ± 2-3	AQUEOUS	10/23/96
11	960893 (-11 # 2-3 D. PIKHTE	AQUEOUS	10/23/96
12	960894 G11 # 2 -4	AQUEOUS	10/23/96
13	960895 (411+z-5	NON - AQUEOUS	10/23/96

AVARAGE TPH (Mudified SOIS) Cell #1 = 39 mg/kg AVARAGE TPH (Modified SOIS) Cell #2 = 54 mg/kg

All Subsurface = CleAN

GAS CHROMOTOGRAPHY RESULTS

TEST CLIENT PROJECT # PROJECT NAME	: EPA 8015 MO : EL PASO FIEI : (none) : S.J. LANDFAF	_D SERVICE)	AEN I.I	D.: 610383
SAMPLE			DATE	DATE	DATE	DIL.
ID. # CLIENT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
01 960883		NON-AQ	10/23/96	10/25/96	10/25/96	1
02 960884		NON-AQ	10/23/96	10/25/96	10/25/96	1
03 960885		NON-AQ	10/23/96	10/25/96	10/25/96	1
PARAMETER	DET. LIMIT	UN	IITS	01	02	03
FUEL HYDROCARBONS, C6-C10	10	MG	6/KG	< 10	< 10	< 10
FUEL HYDROCARBONS, C10-C22	5.0	MG	i/KG	17	< 5.0	22
FUEL HYDROCARBONS, C22-C36	5.0	MG	i/KG	25	< 5.0	54
CALCULATED SUM:				42		76
SURROGATE: O-TERPHENYL (%) SURROGATE LIMITS	(66 - 151)		Ce	91 #1-1	91 ۲- ۱∔۱، من	90 (`əll #1 - 3

CHEMIST NOTES:

GAS CHROMOTOGRAPHY RESULTS

TEST CLIENT PROJECT # PROJECT NAME		10DIFIED (DIR ELD SERVICE ARM)	AEN I.I	D.: 610383
SAMPLE			DATE	DATE	DATE	DIL.
ID. # CLIENT I.E).	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
04 960886		NON-AQ	10/23/96	10/25/96	10/25/96	1
05 960887		NON-AQ	10/23/96	10/25/96	10/25/96	1
06 960888		NON-AQ	10/23/96	10/25/96	10/25/96	1
PARAMETER	DET. LIMI	T UN	IITS	04	05	06
FUEL HYDROCARBON	S, C6-C10 10	MG	G/KG	< 10	< 10	< 10
FUEL HYDROCARBO	IS, C10-C22 5.0	MG	i/KG	< 5.0	14	12
FUEL HYDROCARBON	IS, C22-C36 5.0	MG	i/KG	14	19	30
CALCULATED SUM:				14	33	42
SURROGATE: O-TERPHENYL (%) SURROGATE LIMITS	(66 - 151)	(2 ⁺¹ = 1	93 -3 G	91 511 #1 - 4	90 Cell#1-5

CHEMIST NOTES: N/A

Confidential

GAS CHROMOTOGRAPHY RESULTS

TEST CLIENT PROJECT #	:	EPA 8015 MO EL PASO FIEL (none)	•)	AEN I.	D.: 610383
PROJECT NAME		S.J. LANDFAF	RM				
SAMPLE				DATE	DATE	DATE	DIL.
ID. # CLIEN	IT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
07 96088	9		NON-AQ	10/23/96	10/25/96	10/25/96	1
08 96089	0		NON-AQ	10/23/96	10/25/96	10/25/96	1
09 96089	1		NON-AQ	10/23/96	10/25/96	10/25/96	1
PARAMETER		DET. LIMIT	UN	ITS	07	08	09
FUEL HYDROCAR	BONS, C6-C10	10	MG	/KG	< 10	< 10	< 10
FUEL HYDROCAR	BONS, C10-C22	5.0	MG	/KG	13	23	< 5.0
FUEL HYDROCAR	BONS, C22-C36	5.0	MG	/KG	35	64	17
CALCULATED SU	M:				48	87	17
SURROGATE: O-TERPHENYL (%)				90	91	92
SURROGATE LIMI	TS	(66 - 151)		Cell	#z-1 (p11+2-2	Cell#2-2_ 2. Sibsueface

CHEMIST NOTES: N/A

i.

Confidential

GAS CHROMOTOGRAPHY RESULTS

TEST CLIENT	:EPA 8015 MC :EL PASO FIE	•	AEN I.D.: 610383			
PROJECT #	: (none)					
PROJECT NAME	: S.J. LANDFA	RM				
SAMPLE			DATE	DATE	DATE	DIL.
ID. # CLIENT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
10 960892		NON-AQ	10/23/96	10/25/96	10/25/96	1
11 960893		NON-AQ	10/23/96	10/25/96	10/25/96	1
12 960894		NON-AQ	10/23/96	10/25/96	10/25/96	1
PARAMETER	DET. LIMIT	U	NITS	10	11	12
FUEL HYDROCARBONS, C6-C10	10	MO	G/KG	< 10	< 10	< 10
FUEL HYDROCARBONS, C10-C22	5.0	MG	5/KG	12	12	11
FUEL HYDROCARBONS, C22-C36	5.0	MG	6/KG	21	17	39
CALCULATED SUM:				33	29	50
SURROGATE: O-TERPHENYL (%)				90	93	93
SURROGATE LIMITS	(66 - 151)		Cell‡	± 2-3	Cell #2-3	Cell # 2-4
CHEMIST NOTES:					Field Dupli247E	
					Duplization	

GAS CHROMOTOGRAPHY RESULTS

TEST CLIENT PROJECT # PROJECT NAME	: EPA 8015 MO : EL PASO FIEI : (none) : S.J. LANDFAF	_D SERVICE)	AEN I.D.	.: 610383
SAMPLE			DATE	DATE	DATE	DIL.
ID. # CLIENT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
13 960895		NON-AQ	10/23/96	10/25/96	10/25/96	1
PARAMETER	DET. LIMIT	UN	IITS	13		
FUEL HYDROCARBONS, C6-C10	10	MG	S/KG	< 10		
FUEL HYDROCARBONS, C10-C22	5.0	MG	i/KG	16		
FUEL HYDROCARBONS, C22-C36	5.0	MG	/KG	35		
CALCULATED SUM:				51		
SURROGATE: O-TERPHENYL (%) SURROGATE LIMITS	(66 - 151)		G	90 p/1 F7Z ·5		

CHEMIST NOTES: N/A

1

ł

i

	GAS CHROMOTOG REAGEN		RESULTS	
TEST	: EPA 8015 MODIFIED (DIREC	T INJECT)	
BLANK I.D.	102596		AEN I.D.	: 610383
CLIENT	: EL PASO FIELD SERVICE CO) .	DATE EXTRACTED	: 10/25/96
PROJECT #	: (none)		DATE ANALYZED	: 10/25/96
PROJECT NAME	: S.J. LANDFARM		SAMPLE MATRIX	: NON-AQ
PARAMETER		UNITS		
FUEL HYDROCARBONS	, C6-C10	MG/KG	< 10	
FUEL HYDROCARBONS	, C10-C22	MG/KG	< 5.0	
FUEL HYDROCARBONS	, C22-C36	MG/KG	< 5.0	
SURROGATE:				
O-TERPHENYL (%)			91	
SURROGATE LIMITS	(80 - 151)			

CHEMIST NOTES: N/A

Act-Atom

GAS CHROMOTOGRAPHY QUALITY CONTROL

TEST	: EPA 8015 MG	ODIFIED (D	IRECT INJECT	-)					
MSMSD #	: 610371-01				AEN I.D.			610383	
CLIENT	: EL PASO FIE	ELD SERVIC	CE CO.		DATE EXRA	ACTED	:	10/22/96	
PROJECT #	: (none)				DATE ANAL	YZED.	:	10/22/96	
PROJECT NAME	: S.J. LANDFA	RM			SAMPLE MA	:	NON-AQ		
							:	MG/KG	
	SAMPLE	MPLE CONC SPIKED		%	DUP DUP			REC	RPD
PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
FUEL HYDROCARBONS	<5.0	100	94	94	96	96	2	(56 - 148)	20

----- X 100

CHEMIST NOTES: N/A

% Recovery =

i

(Spike Sample Result - Sample Result)

----- X 100

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

Average Result

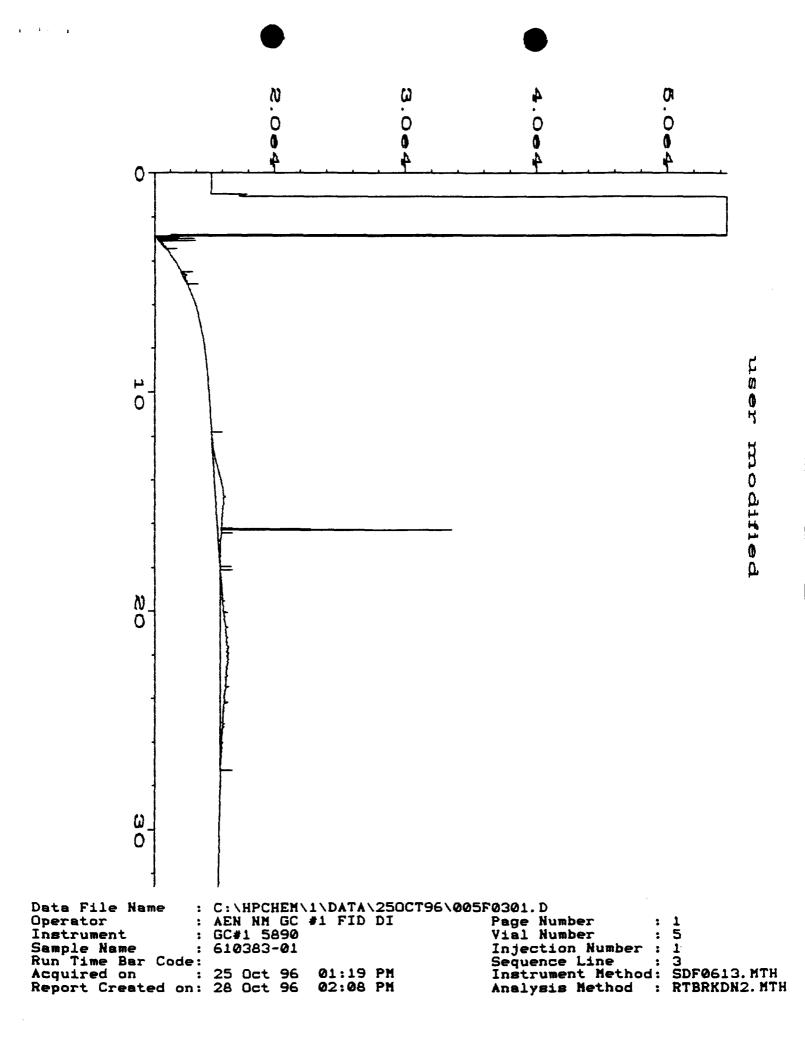
Acced Billion

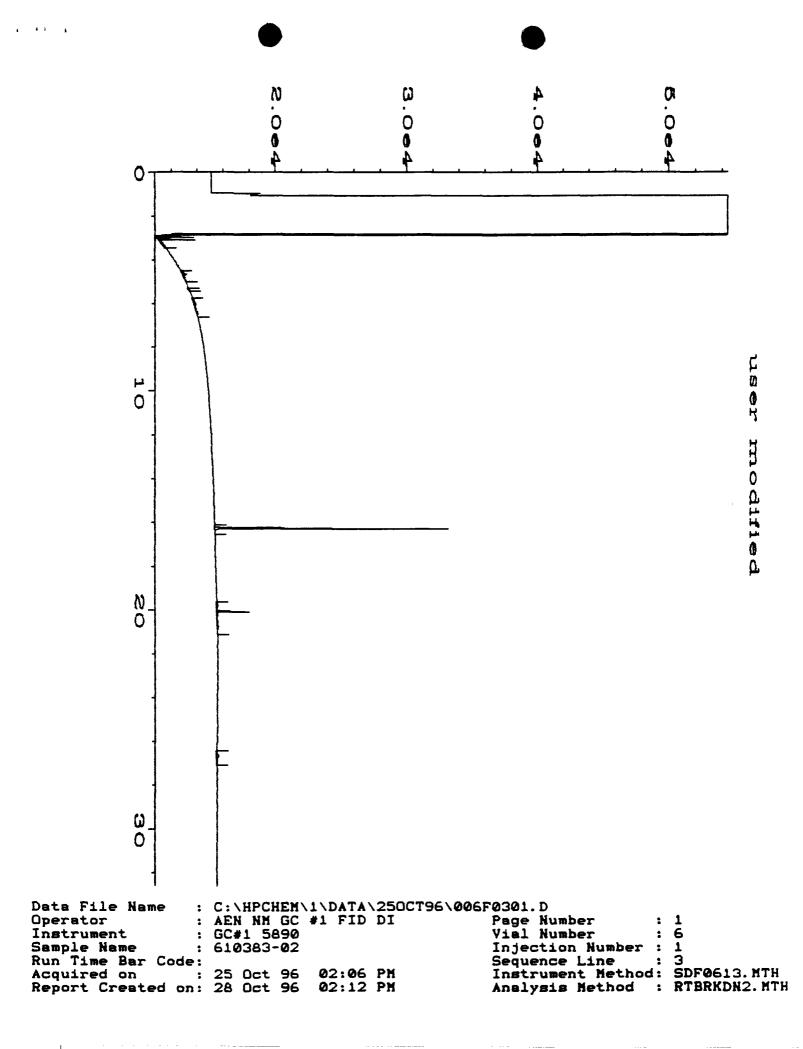
DISTRIBUTION: White, Canary - AEN Pink - ORIGINATOR

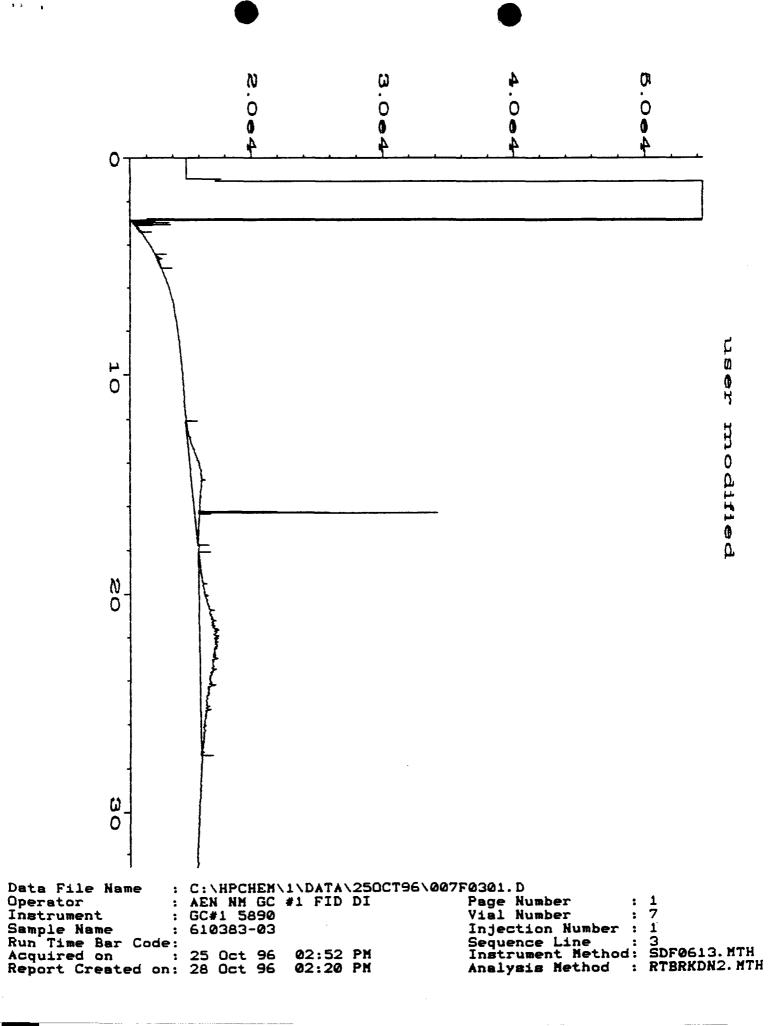
4/1/96 AEN Inc.: American Environmental Network (NM), Inc. • 2709-D Pan American Freeway, NE • Albuquerque, New Mexico 87107

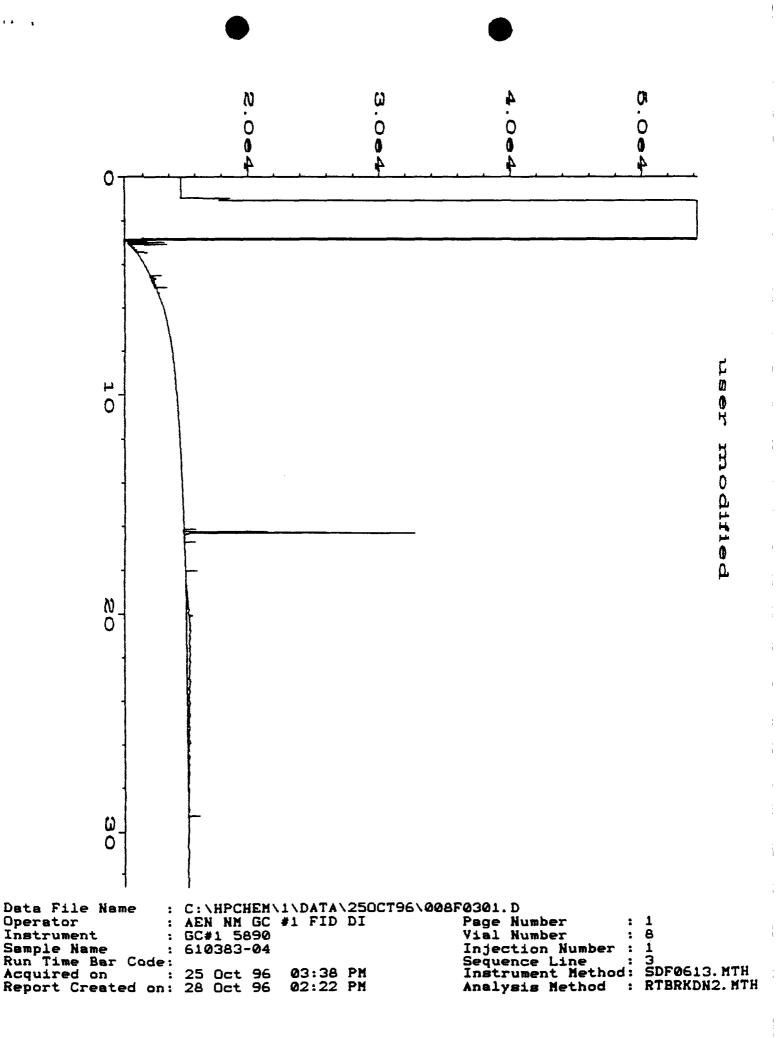
ľ	UNDER OF CONTRINERS	N -				-	-		-	-	1						2	2	
	sigis:																	0	13
	(TEL Metals by TCLP (Method 1311)			_		 	ļ	<u> </u>	ļ	ļ	\downarrow		Time.		a			12	Jet.
1	(S) Sigis (S)	_		- <u> </u>			 	[$\left - \right $	₿	1	ľ	ň			Š,	٦
	riority Pollutant Metals (13) arget Analyte List Metals (23)			+-	┼──	<u> </u>		┣──-	<u> </u>	<u> </u>	-	l₽	1		i); (J	2	
	(£1) aleteM tretuling vision		+-	+-	┼──	<u> </u>	┨───				+	ISID		i	i.		EDE		ĬË
				+		\vdash			╞	<u> </u>		RELINQUISHED	Signature:	Drinted Mamo		Company.	RECEIVED BY: (LAB		NN
	General Chemistry:	5	+-	+	┼─	 	<u> </u>	<u> </u>				۳ ۳	Sign				BE		1-
				\uparrow					╞──			-	Ī	ò	1R0 - 13- 7	ĽŘ.			1
	ase/Neutral/Acid Compounds GC/MS (625/8270)	8		T	1		[1434	1	2	SERVICE			
REQUEST	lerbicides (615/8150)	Н											12		2.0	25			
	esticides/PCB (608/8080)	d										1.	Time:		A A	1211		Time:	Date:
												1 a		×°	g,	5		F	
X SI	olatile Organics (8260) GC/MS	_		ļ	<u> </u>	ļ			ļ	ļ		E H	-	201	5		β		
ANALYSIS	olatile Organics (624/8240) GC/MS		_	+	ļ	 						ļğ		27 1.72 40	All I	120	IVE		ame:
A	olynuclear Aromatics (610/8310)			4	<u> </u>	 	 					RELINQUISHED BY:	Signature:	VLPA 1.92 Printed Name	CANN I	Company	RECEIVED	Signature:	Printed Name:
		9		┥	<u> </u>							Ľ	S.	2 1 1	0	<u>Ph</u>	"	Sign	Print
)hlorinated Hydrocarbons (601/8010)				<u> </u>							၂၇	X						
	TEX/MTBE/EDC & EDB (8020/8010/Short)				┼							PROJECTS]					
	TEX & Chlorinated Aromatics (602/8020)										┼╌┨	١ <u>5</u>	(NORMAL)						
	3TXE/MTBE (8020)			+	┼──						$\left\{ -1 \right\}$	A T	Ż						
	Sasoline/BTEX & MTBE (M8015/8020)	_			<u> </u>							RUSH		HER					
	asiT & Spurge & Trap	0		1								FORF		[]OTHER					
	MOD.8015) Diesel/Direct		× ×	· - ×	×	*	\checkmark	*	*	*	£	HE	EEK	I. ISDWA					
	etroleum Hydrocarbons (418.1) TRPH											REQUIRED	🗌 1 WEEK	[]S					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10-	18	10	16	-0%	60-	80-	-09	2		1	N					
	274P	ין צ		1	ĽĬ	1	ĩ	7	1	Ĩ	ī	NO	[] 72hr	MN I					
	SERVICE 14 17 18 18 18 18 18 18 18 18 18 18 18 18 18	≨ [`		$\langle \cdot \rangle$		11	1.	12	?'.	11	$\left \mathbf{x} \right $	PRIOR AUTHORIZATION IS	ᆂ	JED:	METHANOL PRESERVATION	FIXED FEE			
2	R IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			35	Ĩ.	20	2015	SOL	50%	5	20	OBI	[] 48hr	CERTIFICATION REQUIRED:	RVA	IXEI			
2	100 555 100 555 100 555 100 555 100 555 100 555 100 100				0	57,				3	N	E	1	ON RI	RESE	1			
19	10 30 30 30 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40		1041	10:3	1103	11,	1126	1142	1150	115.	5	R A	(RUSH) [] 24hr	CATIC	OL P	COMMENTS:			
X	No. No. X		_	-					K	9	20	l ₿	(HSI	ATIFI	THAN	MM			
2	2222		15-22-14	10-23:54	10-23-94	10-25-51	10-23-96	10-23:94	1023.96	10-23-96	10.25 R	L	Ē	CEI	ME	8			
F		٦Ľ	Ľί	10	10-	10	10:	10-	101	1.0-1	Ś			4			1	$\sum \mathcal{L} $	à !
2		{												XX	ſ			0	
	1. 194. 194. 194. 194. 194. 194. 194. 19		1.2				ŝ	<i>a</i> .	\sim	/		D		WYYJONYT)			EL		<u> </u>
i E	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		DA A		36	ŝ	Pa	5	え	ど~	<u>c</u> .~)	E		115		$\mathbf{\dot{\mathbf{x}}}$	3		ľ
GE		9	5 6	5	CP (5	FJ	ŝ	20	5	à. 0	μĔ				FED-			
AN/			1440X4	9×0725	960 234	9605039	280 28B	980889	640 230	75089 P	X,	EC		S.V.		2	SAMPLE RECEIPT	ST o	3
ST N	AN) IE: IE: JO: ZAN) ZAN)	r C	20	6	3	6	6	62	6-	୯ଁ	ピー	PROJECT INFORMATION	<u>.</u>			VIA:	S	ANE	§ I
PROJECT MANAGER:	Company: Address: Phone: Fax: Bil.l To: Company: Address:			1									PROJ. NO	PROJ. NAME:	NO.:	SHIPPED VIA:		NO. CONTAINERS	
PRC													PRO,	PRO.	P.O. NO.:	SHIP		Q Z	3
-								_									-		
Γ	S ARE FOR LAB USE ONLY.	Street of the local division of the local di	232	<u>n</u>	**	10	1)		_		JMF	20			<u>~ ·</u>	~ * * *			

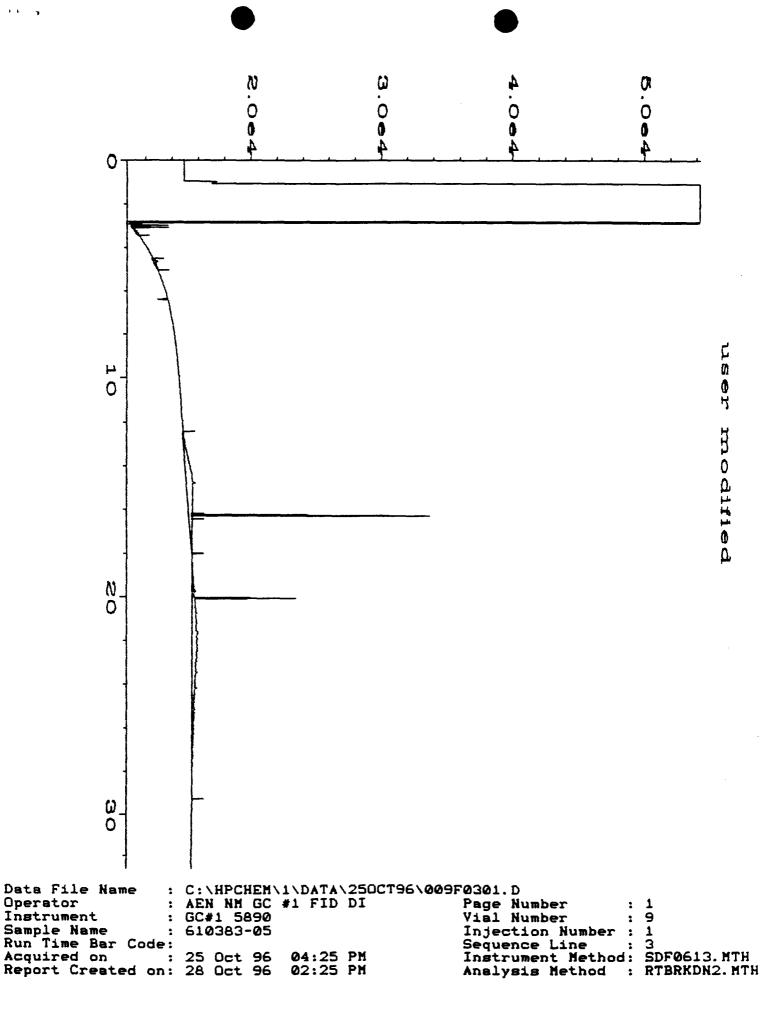
1

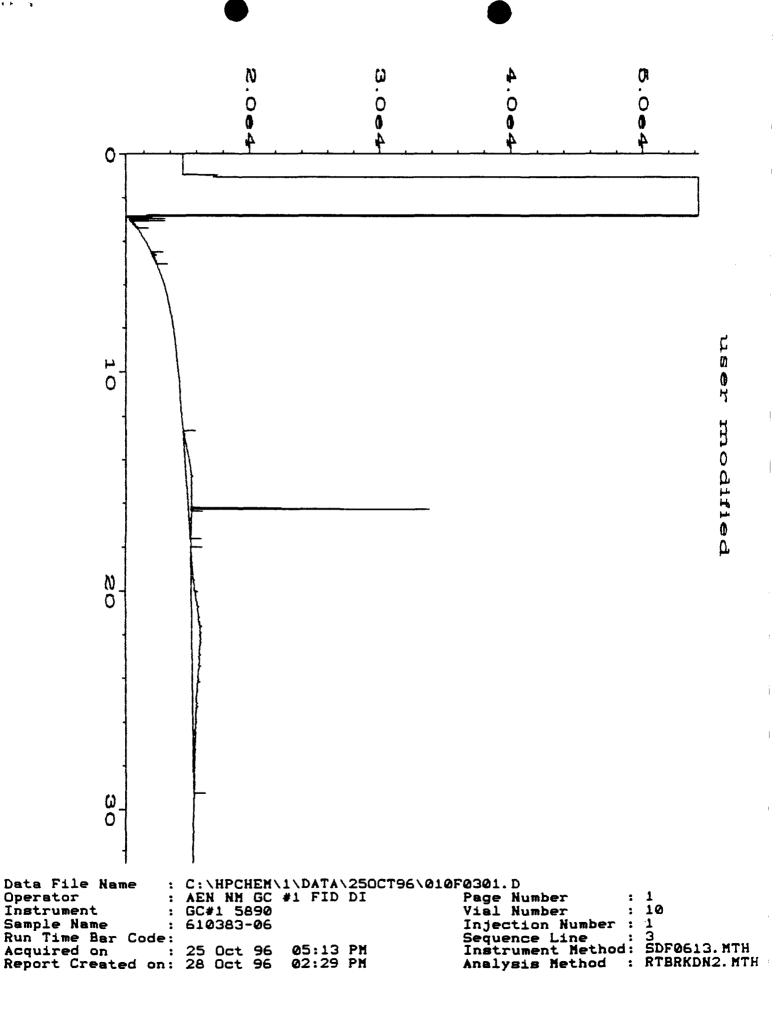

i

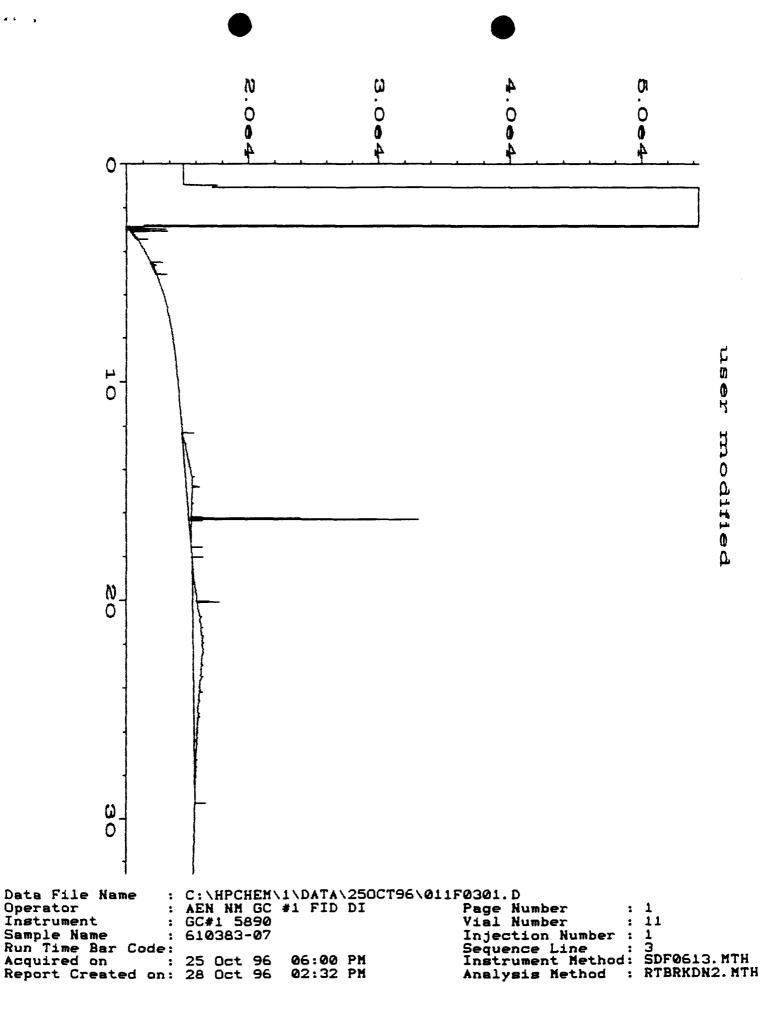

ļ

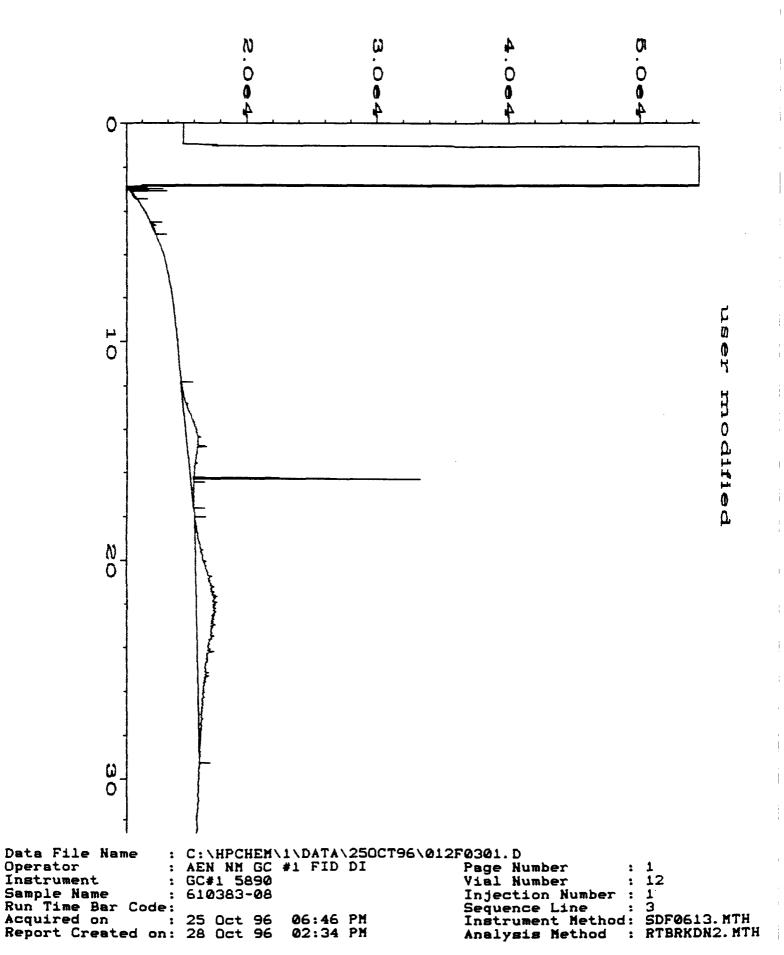

٦-

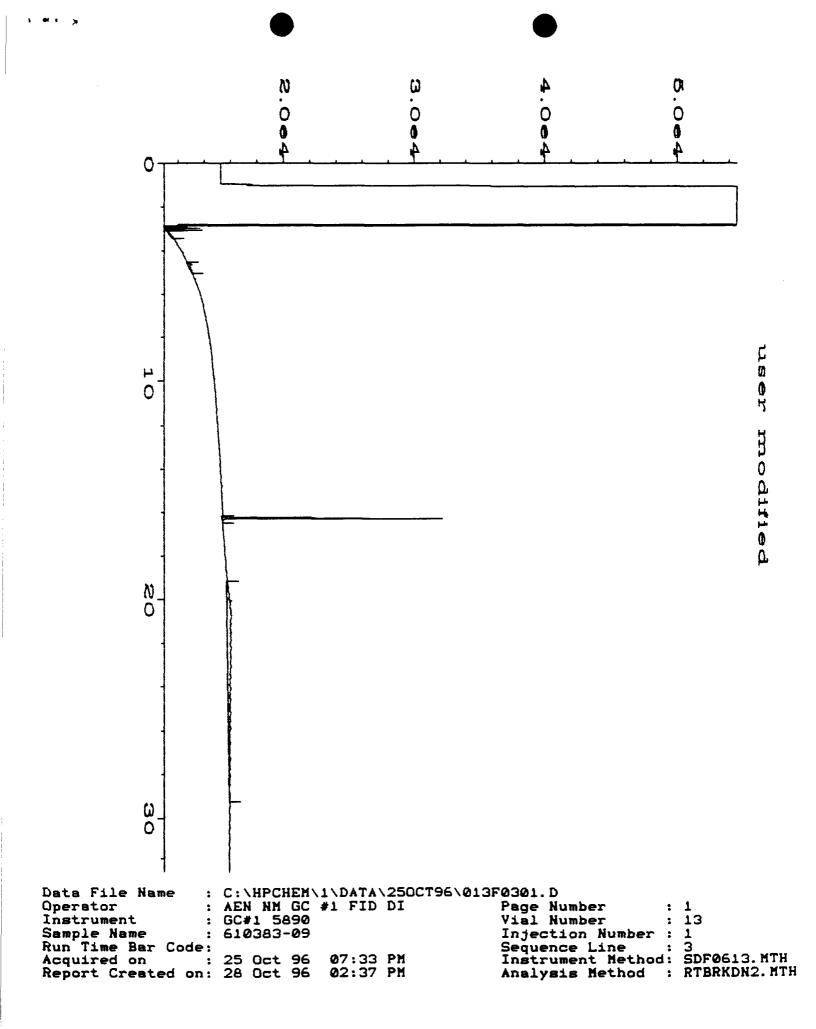

2	American Environmental Network (NM),	! Network (NM), Inc.	CHAIN OF CUST	ODY AEN LAB LD.	
Albu	luerque • Phoenix • Pensacola • Portl	tland • Pleasant Hills • Columbia	DATE: 10 23- 76 PAGE: 2 OF 2	or 2 610383	
	PROJECT MANAGER: JOHN	1 449 B (112)		ANALYSIS REQUEST	-
Е ОИГХ	COMPANY: ZU PASO FA ADDRESS: P.O. FOX FARALLICT	RUICE	;t (602/8020) (602/8020)	C/W2 (0)	(1151 5
2U 8A		15/27.0	irect/Injec & Trap BE (M801 Aromatics	(P (Methood
אס:	BILL TO: JAT W.S. JAT	re how	Diesel/D KPurge 8 (8020) (8020) Minated 4	Aromatic: hics (622 hics (608/ 15/8150 15/8150	anî Meta e Lisî Me
4 38 <i>1</i>	ADDRESS:		(2108.C 235) (315) 715) (325) 715 715 715 715 715 715 715 715 715 715	A Iselour ile Orga ile Orga cides/P(6 icides (6 6 icides (6	tylenA te elst9M A A Metals Is: Is:
/ S∀	SAMPLE ID DATE	TIME MATRIX LAB1.D.	(MOI BTXE BTXE BTXE BTE) BTE	Yolat Volat ites fierb Herb	Priori RCR. RCR. RCR.
'EY		11- 2012 1125	×		
IA C	24-9-11 128 296	3-76 1215 501 -12	×		
JEC		1035-1212 501 -13	X		
IAH					
łS					
רא					
ЭT3					
376					
эмс					
))	PROJECT INFORMATION	PRIOR AUTHORIZATION IS REQU	REQUIRED FOR RUSH PROJECTS	RELINQUISHED BY: 1.	RELINQUISHED BY:
NL	PROJ. NO.:	(RUSH) [] 24hr [] 48hr [] 72hr [] 1 WEEK	NEEK (NORMAL) 🖌	Signature:Time: //43.P	Signature: Time:
NR(PROJ. NAME: 5,7, 6,5,1,0,67,7,1	CERTIFICATION REQUIRED: [] INM []]S	[]SDWA []OTHER	Ś	Printed Name: Date:
ЬO	P.O. NO.:	METHANOL PRESERVATION		WS BIR	
SIH		COMMENTS: FIXED FEE []		COMPANY HED SARWER	Company:
LT	SAMPLE RECEIPT		********	RECEIVED BY: 1.	RECEIVED BY: (LAB) 2.
FIL	NO. CONTAINERS			Signature: Time:	Signalighes of Minnes of CI 20
32A				Printed Name: Date:	Printed Name, Later Dates
הבי	RULE (EERCE			Company:	American Environmental Network (NM), Anc.
1	4/1/96 AEN Inc.: American Environmental Network (NM) Inc. • 2709-D Pap American Free	(NM). Inc. • 2709-D Pan American Freeway. NF •	Albuauerane. New Mexico 87107		N: White Canace AEN Pink - OBIGINATOR

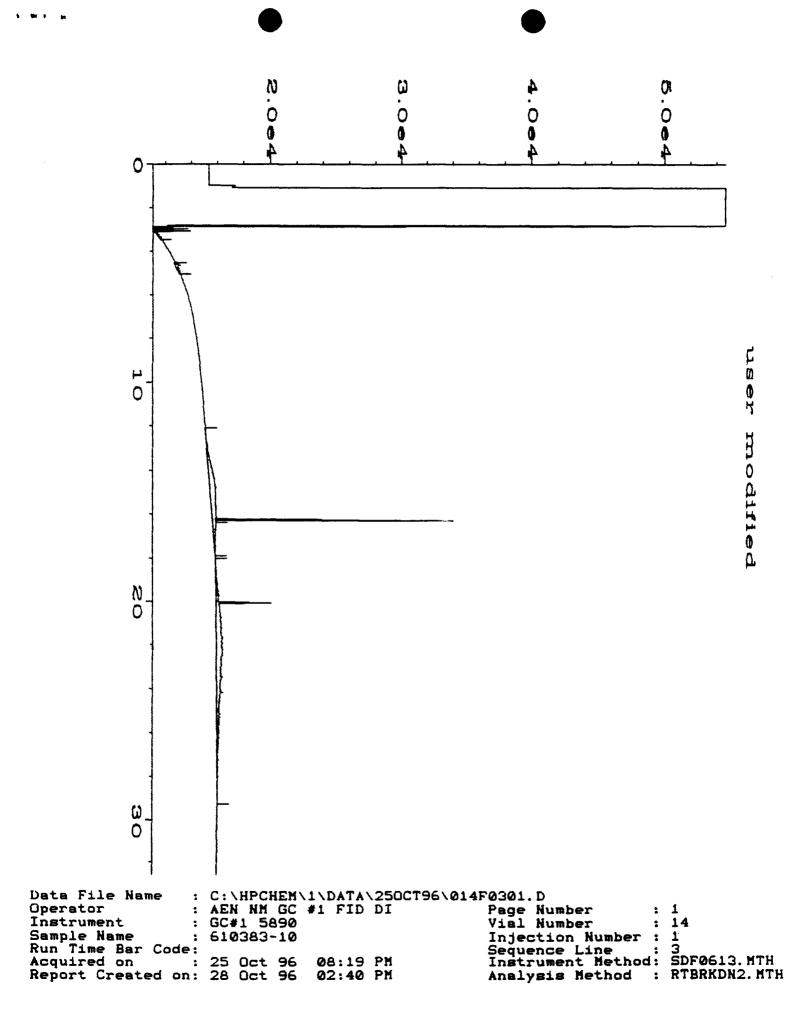

ĺ

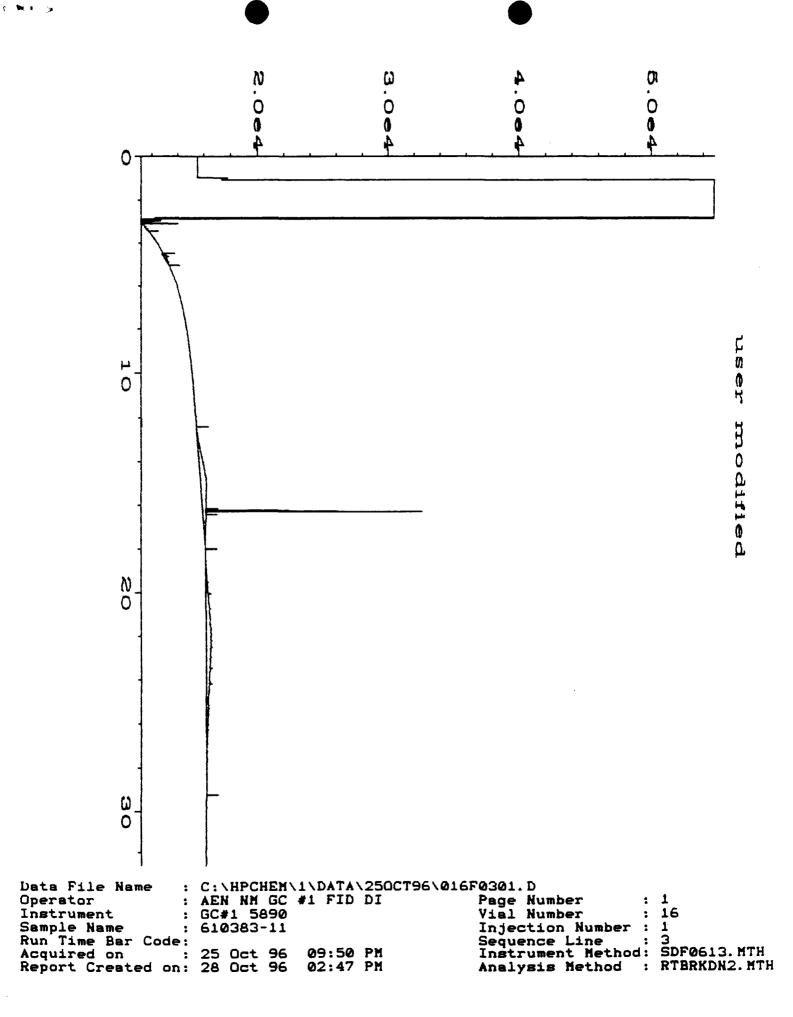


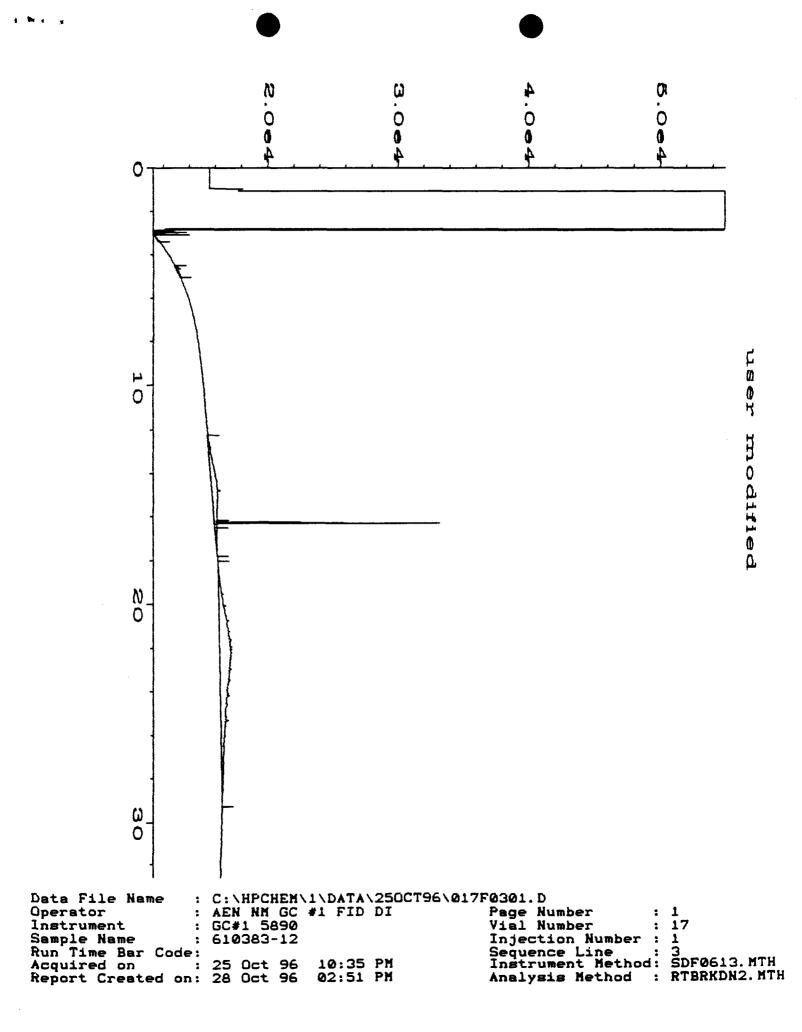




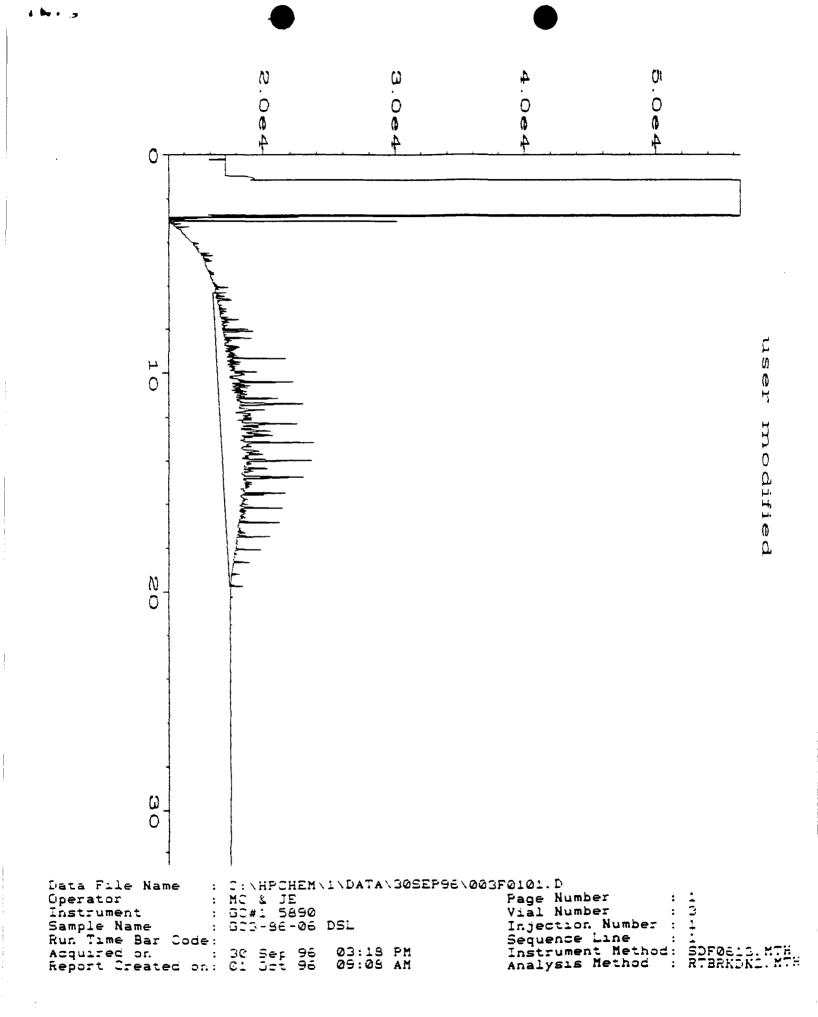

۰. ۲

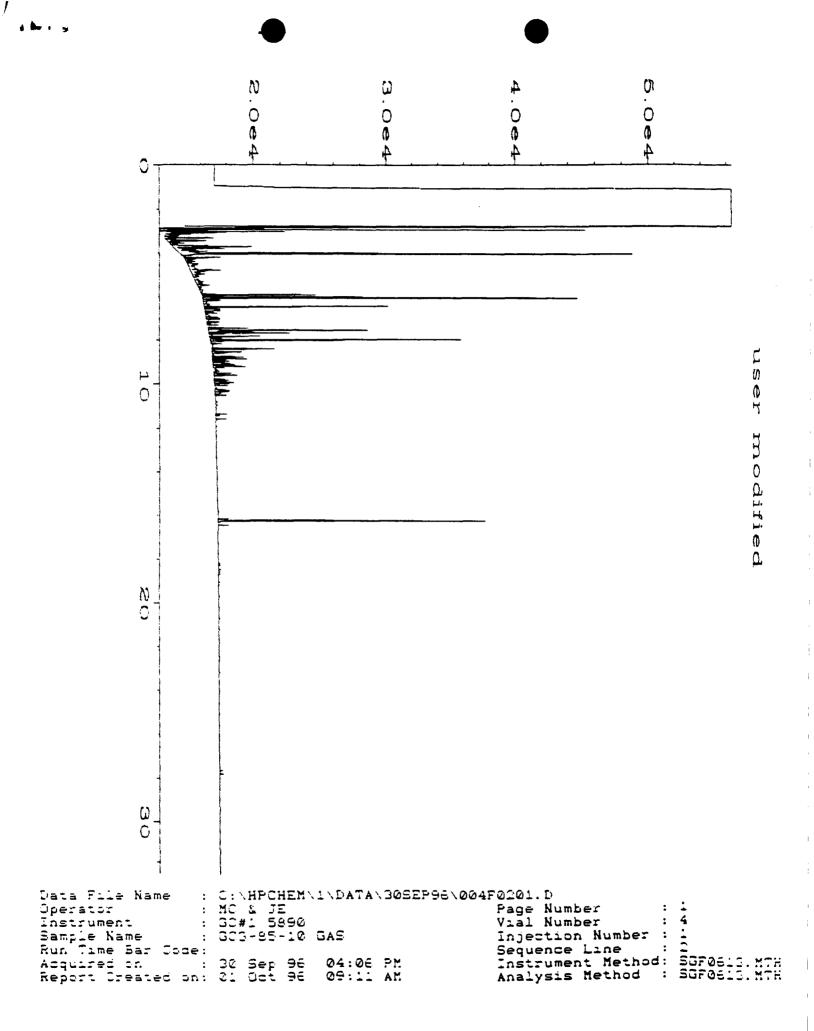


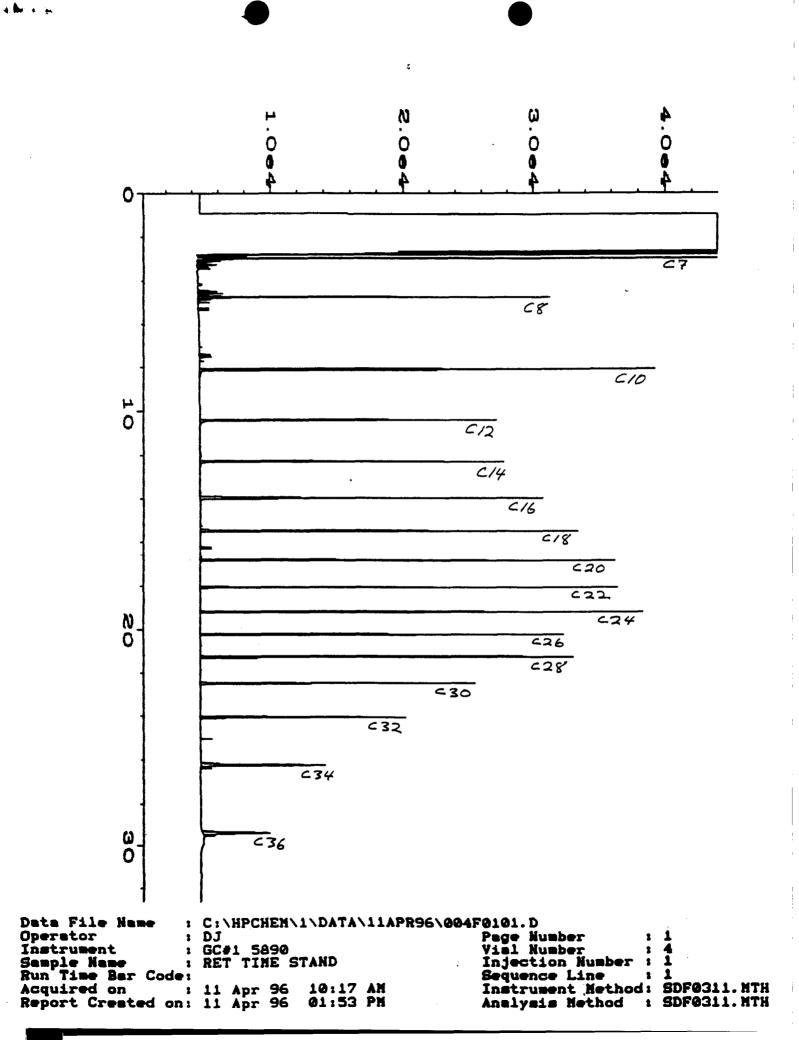

1

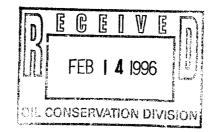

<u>۱</u>...











P.O. Box 1492 El Paso, TX 79978 Phone: 915-541-2600

February 13, 1996

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

Subject: Pond Closures EPNG San Juan River Plant

Dear Bill,

Four ponds at San Juan River Plant have been closed according to the plans submitted to you in October, 1995 and approved by you on November 1, 1995. All work was completed by January 19, 1996 and as-built cross sections were surveyed on January 24, 1996. Enclosed are copies of asbuilt drawings for the site.

The three former wastewater ponds were closed by moving dirt from the dikes into the low areas, grading everything to a single drainage in the approximate location of pit 3. The entire site was capped with low permeability clay soil, and machine compacted. The fourth pond was used only for raw water storage, and was closed by breaching the dike and leveling the area. Some material from this dike was used in closing the wastewater ponds. The entire disturbed area was re-seeded with a BLM approved native grass mix.

Denny Foutz of the OCD Aztec Office was on site periodically to inspect activities, and met with EPNG and RossRae representatives on January 11 to approve the work that had been completed.

Please call me at 915-541-2839 if you have any questions.

Sincerely,

ancy K. Prince

Nancy K. Prince, CGWP Principal Environmental Scientist Environmental Affairs Department

Encl.San Juan Plant Pond Closure As Built Topography, January 23, 1996cc:D. Foutz (w/encl.)T. D. Hutchins (e)J. McNeely (e)

Site: rossre	a Surface 1: e	xist Surface 2:	azhlt Volun	ne tagʻazhit		
5110. 103510		EARTHWORK			LISTING	
	Cut Fi	ll Cut 1.230	00 Fill 1.30	000 Cut 1.230	0 Fill 1.30	00
Station		Area (sqft) V	olume (yds)	Volume (yds)	Tot Vol (yd	ls)
Vol (yds)	Mass Ordinate					

0+00	81.73	289.20				
		83.52	366.06	83.52	366.06	-
282.54	(4.02	212.02				
0+25	64.93	319.02	41765	167.92	702 71	
615.89		84.30	417.65	167.82	783.71	-
0+50	83.12	374.92				
		122.68	531.27	290.50	1314.97	-
1024.48						
0+75	132.31	507.80				
1588.51		182.05	746.08	472.55	2061.06	-
1+00	187.39	731.85				
	101.05	247.51	879.86	720.06	2940.91	-
2220.86						
1+25	247.25	730.07				
		324.16	823.12	1044.21	3764.03	-
2719.82	221.00	627 69				
1+50	321.99	637.58 424.13	663,94	1468.35	4427.97	
2959,63		424.13	003.94	1406.55	4427.97	•
1+75	422.83	465.59				
		581.98	438.82	2050.33	4866.80	-
2816.47						
2+00	599.19	263.54	(21.01	0001.10	5000 71	
2377.52		87 0. 8 6	431.91	2921.18	5298.71	
2377.32	930.1 2	454.09				
2 20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1261.04	704.46	4182.22	6003.17	
1820.94						
2+50	1284.38	716.40				
10(2.00		1612.37	1054.42	2 5794.59	7057.59	
1263.00 2+75	1547,10	1035.56				
2+75	1947.10	1033.36	1458.27	7 7629.75	8515.86	
886.12		1055.15	1450.2	1029.15	0515.00	
3+00	1675.61	1387.41				
		1833.95	2491.11	9463.69	11006.97	
1543.27	1544.00	0761 CC				
3+25	1544.98	2751.66 1730.43	1972 4	11104.10	15000.40	、 、
4686.49		1730.43	4873.64	11194.12	15880.60	,
3+50	1493.82	5346.08				
	_	1682.99	6581.26	5 12877.11	22461.86	ć
9584.75						
3+75	1461.68	5588.94				
		1930.38	6675.91	14807.50	29137.77	1

RECEIVED

FEB 1 4 1996

Environmental Bureau Oil Conservation Division

4+00	1928.26	5503.34 2208.76	6988.57	17016.06	26126.24	
19110.08		2208.70	0988.37	17016.26	36126.34	-
4+25	1950.54	6108.43				
4+23	1950.54	2313.62	7495.40	10220.99	43621.74	
24291.86		2313.02	7495.40	19329.88	43021.74	-
4+50	2112.40	6345.47				
4.50	2112.40	2528.67	7453.40	21858.55	51075.14	
29216.59		2328.07	7455.40	21030.33	51075.14	-
4+75	2328.20	6038.65				
4175	2520.20	2738.87	6809.16	24597.42	57884.31	
33286.88		2750.07	0007.10	24377.42	57864.51	-
5+00	2481.53	5275.04				
	2.01.05	2909.56	5703.98	27506.99	63588.28	-
36081.30		_,,,,,	5.05.70	21300.37	05500.20	
5+25	2627.95	4202.34				
		3082.04	4708.92	30589.03	68297.20	-
37708.17				00000000		
5+50	2784.42	3621.72				
		309 8.57	4194.39	33687.60	72491.59	-
38803.99						
5+75	2656.98	3347.43				
		2986.91	4138.57	36674.51	76630.16	-
39955.65						
6+00	2588.32	3528.96				
		339 8 .97	4487.20	40073.48	81117.36	-
41043.88		-				
6+25	3380.60	3926.70				
		4398.95	4749.47	44472.43	85866.83	-
41394.40						
6+50	4344.38	3964.72				
		5490.13	4599.59	49962.56	90466.42	-
40503.86						
6+75	5296. 82	3677.67				

ø

1

ł

Project: rossr	ea			Мо	on Jan 29 08:20	5:34
1996		6510.94	4180.27	56473.50	94646.69	-
38173.19						
7+00	6137.02	3268.01 7055.83	3533.18	63529.33	98179.86	_
34650.53						
7+25	6253.71	2602.50 7313.90	2750.89	70843.23	100930.75	-
30087.52						
7+50	6590.21	1968.20 7146.62	2595.61	77989.85	103526.36	-
25536.51						
7+75	5959.94	2344.50 6904.72	3284.74	84894.57	106811.10	-
21916.53						
8+00	6165.42	3113.22 6293.38	3581.50	91187.95	110392.60	-
19204.65						
8+25	4886.37	2837.58 5125.22	3324.90	96313.17	113717.50	-
17404.34						
8+50	4114.02	2686.87 4579.84	3106.05	100893.01	116823.55	-
15930.55						
8+75	3928.63	2473 <i>.</i> 96 4704.74	2611.07	105597.75	119434.62	-
13836.87	1000.05	10/1/0				
9+00	4333.35	1864.43 5788.50	2032.77	111386.25	121467.39	-
10081.14 9+25	5831.82	1512 10				
6360.54	3631.62	1513.10 5187.06	1466.46	116573.31	122933.85	-
0300.34 9+50	3277.16	923.48				
3547.30	5277.10	3772.78	959.54	120346.09	123893.39	-
9+75	3348.21	670,84				
343.44	JJ70.21	4083.71	879.85	124429.80	124773.24	-
10+00	3823.18	791.06				
2854.19	5625.18	4120.87	923.24	128550.67	125696.49	
10+25	3413.47	742.94				
	5415.47	3381.34	801.15	131932.01	126497.64	
5434.38						
10+50	2524.49	588.20 2287.63	528.34	134219.65	127025.98	
7193.67						
10+75	1492.82	289.66 1315.01	338.69	135534.66	127364.67	
8169.98						
11+00	816.47	273.09 722.76	680.89	136257.42	128045.57	
8211.85 11+25	452.77	858.24				

		503.80	1341.15	136761.22	129386.71
7374.51					
11+50	431.96	1370.13			
		386.07	1328.50	137147.29	130715.21
6432.08					
11+75	246.01	837.22			
		775.74	533.22	137923.03	131248.43
6674.60					
12+00	1116.27	48.75			
		693.89	30.13	138616.92	131278.56
7338.36					
12+25	102.28	1.31			
		58.24	0.79	138675.16	131279.35
7395.81					
12+50	0.00	0.00			
		0.00	0.00	138675.16	131279.35
7395.81					
12+75	0.00	0.00			
		0.00	0.00	138675.16	131279.35
7395.81		0.00			
13+00	0.00	0.00			

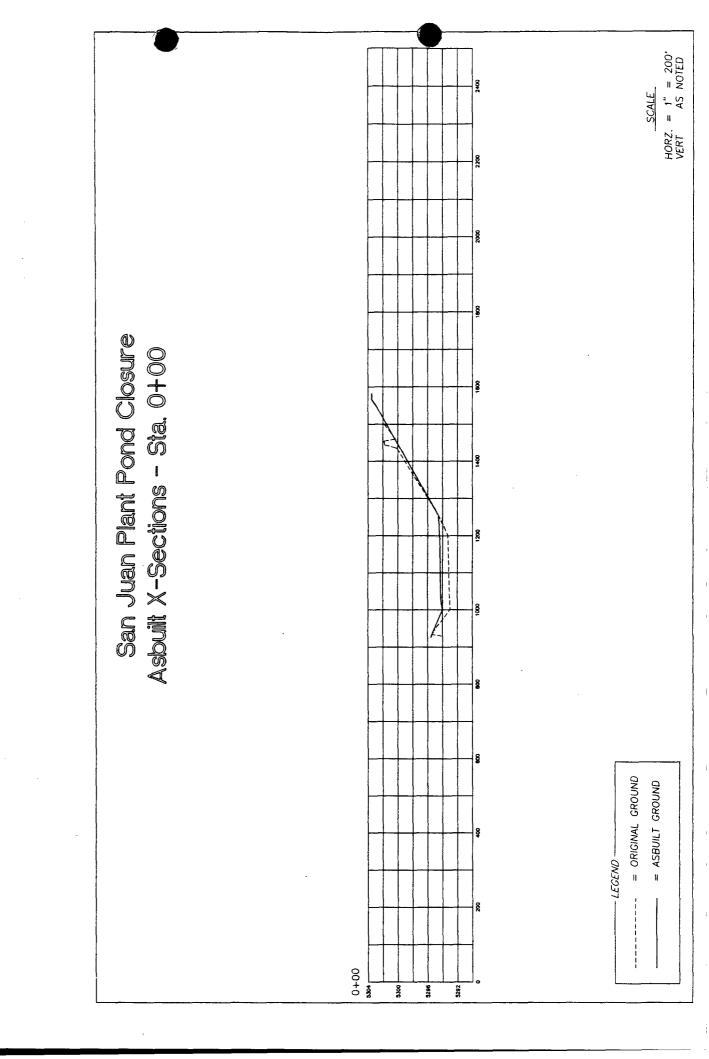
.

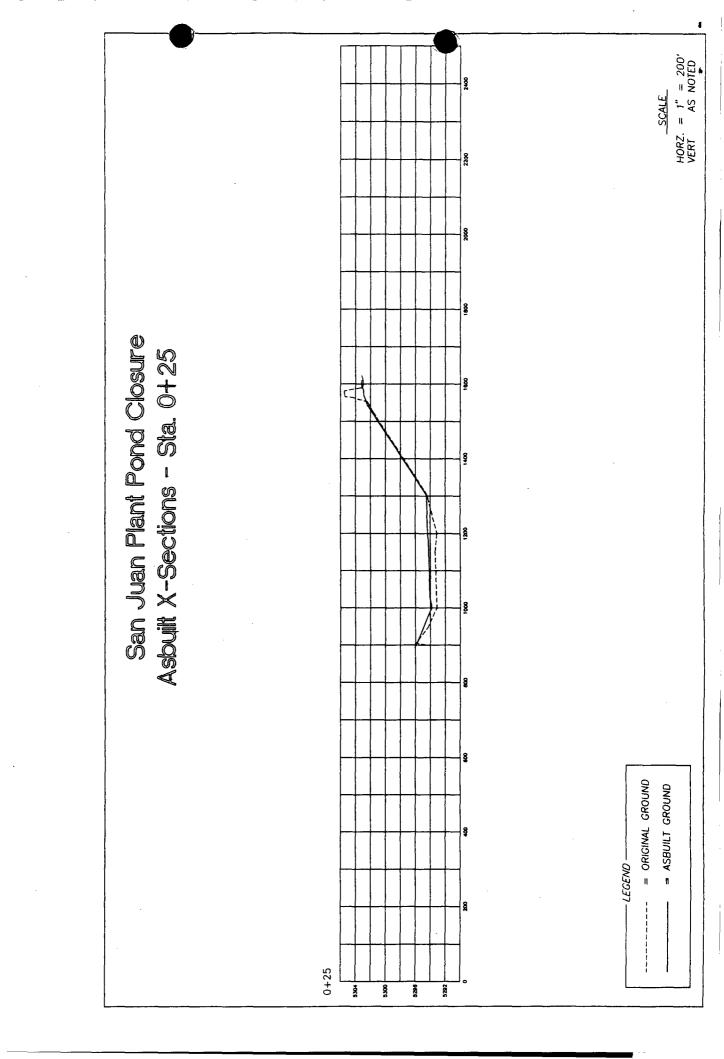
1

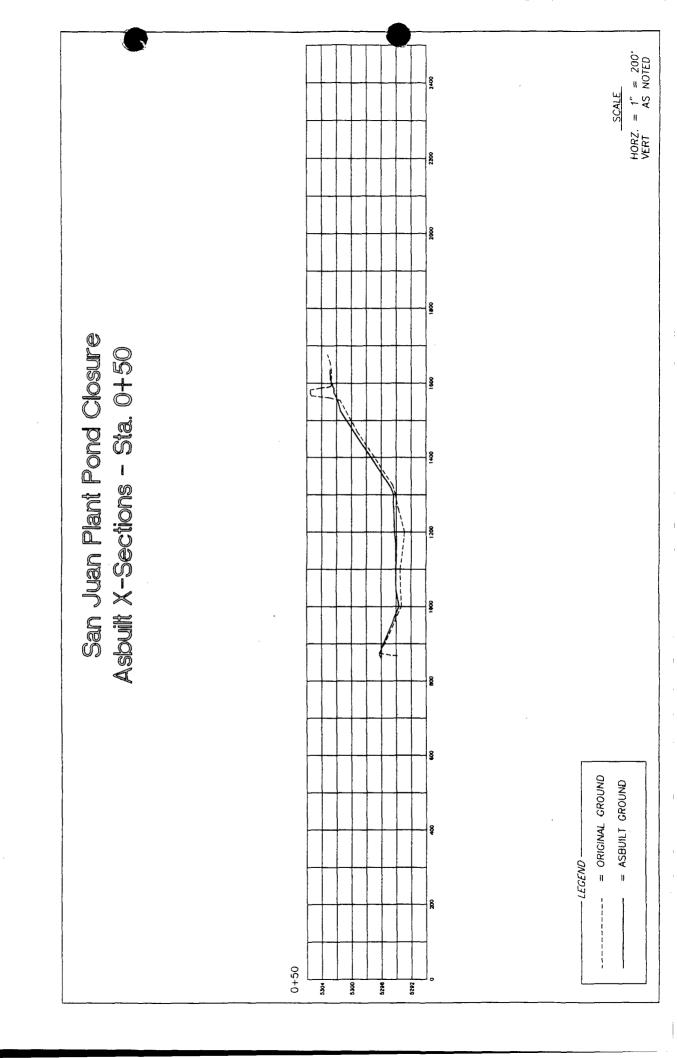
.

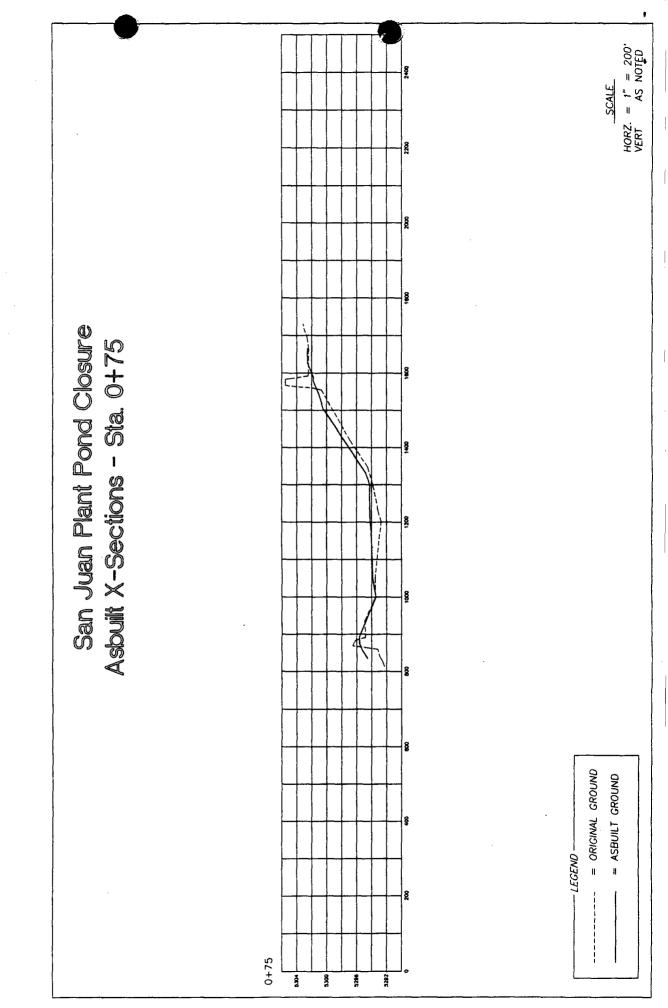
page l

Project: ros 1996 Site: rossre		grid Surface 2: a	zhlt. Volume		Wed Jan 24	19,70.40
Site. 105516		EARTHWORKS			LISTING	
	Cut Fi			00 Cut 1.23		
Station		Area (sqft) Vo	lume (yds)	Volume (yds) Tot Vol (yds) To
Vol (yds)	Mass Ordinate	1				
					**	
0+00	- 0.00	0.00				
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0+25	0.00	0.00				
		0.00	0.00	0.00	0.00	0.00
0+50	0.00	0.00				
0.75	0.00	0.00	0.00	0.00	0.00	0.00
0+75	0.00	0.00 0.00	0.00	0.00	0.00	0.00
1+00	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.00	0.00	0.00	0.00	0.00	0.00
1+25	0.00	0.00				
		0.00	0.00	0.00	0.00	0.00
1+50	0.00	0.00				
1.75	0.00	0.00	0.00	0.00	0.00	0.00
1+75	0.00	0.00 8.54	140.53	8.54	140 52	121.0
2+00	15.00	233.50	140.55	0.24	140.53	-131.9
2.00	15.00	98.38	301.74	106.92	442.28	-
335.35						
2+25	157.76	267,86				
		247.21	353.04	354.13	795.32	-
441.19						
2+50	276.36	318.74	400.14	505.20	1000 40	
518.18		351.17	428.16	705.30	1223.48	-
2+75	340.33	392.67				
2.10	510.55	396.90	535.25	1102.20	1758.73	-
656.53				,		
3+00	356.67	496.67				
		424.28	616.81	1526.49	2375.54	-
849.05	200.40	500.10				
3+25	388.42	528.18	640 61	2002 20	2016 15	
1013.85		475.81	640.61	2002.30	3016.15	-
3+50	447,16	536.22				
		547.92	625.42	2550.22	3641.57	-
1091.35				_		
3+75	515.04	502.93				
1001 40		631.22	561.30	3181.44	4202.87	-
1021.43 4+00	502 44	420.60				
4700	593.44	429.69 692.55	473.21	3873.99	4676.08	
802.09		072.33	413.21	30/3.79	4070.08	-
4+25	622.74	356.57				
		718.79	387.54	4592.78	5063.62	-
470.84						
4+50	639.53	287.34				

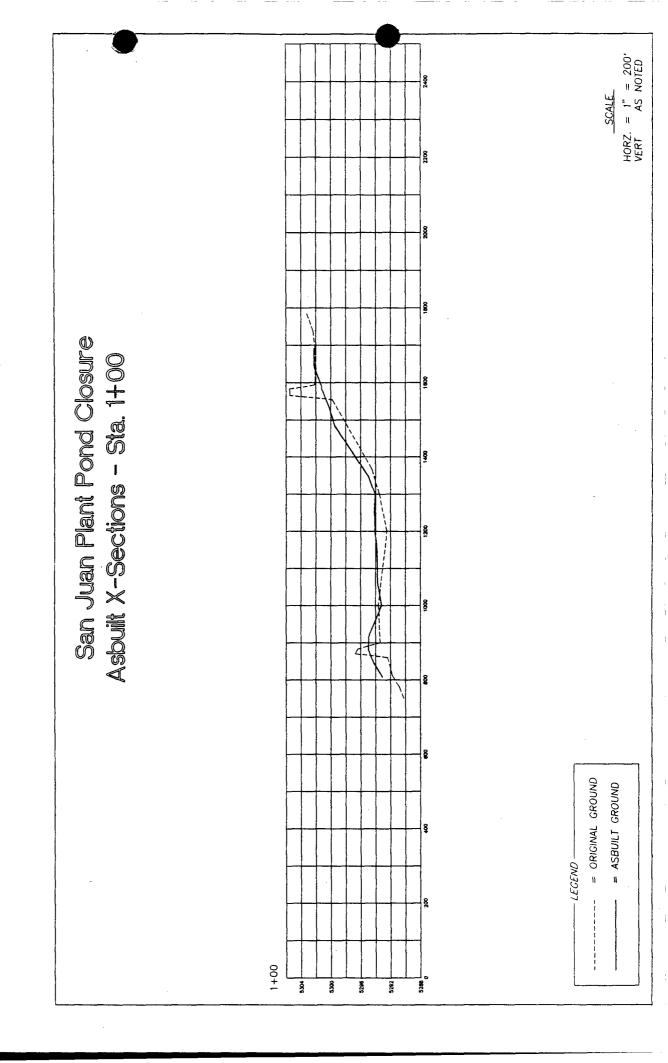

-				•	
		731.35	307.14	5324.13	5370.77
46.64					
4+75	644.79	222.99			
		728.58	230.30	6052.71	5601.07
451.64					
5+00	634.66	159.66			
		666.24	211.95	6718.94	5813.02
905.92					
5+25	535.32	192.50			
		577.17	258.50	7296.11	6071.52
1224.59					
5+50	478.25	237.00			
		526.83	309.12	7822.95	6380.64
1442.31					
5+75	446.92	276.61	250 10	0005 51	(72) 0(
1504 45		502.56	350.42	8325.51	6731.06
1594.45	435.63	205 (2			
6+00	433.03	305.63	327.22	8773.03	7058.28
1714.75		447.52	521.22	8773.03	/038.28
6+25	350.25	238.06			
0+25	550.25	238.00 345.06	249.78	9118.09	7308.06
1810.03		545.00	247.70	9110.09	7508.00
6+50	255.71	176.96			
0.00	200.71	258.80	208.26	9376.89	7516.32
1860.56		200.00	200.20	,,,,,,,	
6+75	198.77	169.08			


Project: rossre	a			١	Wed Jan 24 15:40:2	8
1996		233.75	250.25	9610.63	7766.57	
1844.06						
7+00	211.71	246.71 260.79	282.15	9871.42	8048.73	
1822.70						
7+25	246.26	222.10 313.55	258.41	10184.98	8307.13	
1877.84						
7+50	304.37	207.26 382.46	242.27	10567.44	8549.40	
2018.04						
7+75	367.27	195.28 463.75	243.78	11031.19	8793.18	
2238.01						
8+00	447.12	209.77 520.25	209.31	11551.44	9002.49	
2548.94						
8+25	466.48	138.02 578.65	138.13	12130.09	9140.62	
2989.47						
8+50	549.69	91.49 711.86	99.50	12841.95	9240.12	
3601.83						
8+75	700.41	73.83 914.66	87.91	13756.61	9328.03	
4428.58						
9+00	905.82	72.23 904.65	82.50	14661.26	9410.53	
5250.73						
9+25	682.83	64.84 641.29	214.74	15302.54	9625.27	
5677.28						
9+50	443.34	291.96 473.55	502.30	15776.09	10127.57	
5648.52						
9+75	388.26	542.64 434.32	781.40	16210.41	10908.97	
5301.44						
10+00	374.45	755.68 351.06	1109.70	16561.48	12018.67	
4542.80						
10+25	242.05	1088.13 271.52	1327.39	16833.00	13346.06	
3486.94						
10+50	234.77	1117.38 259.47	1164.47	17092.46	14510.53	
2581.93						
10+75	220.88	817.43 257.06	879.75	17349.52	15390.28	
1959.24						
11+00	230.53	644.30 220.0 8	515.54	17569.60	15905.82	
1663.78 11+25	155.95	212.29				

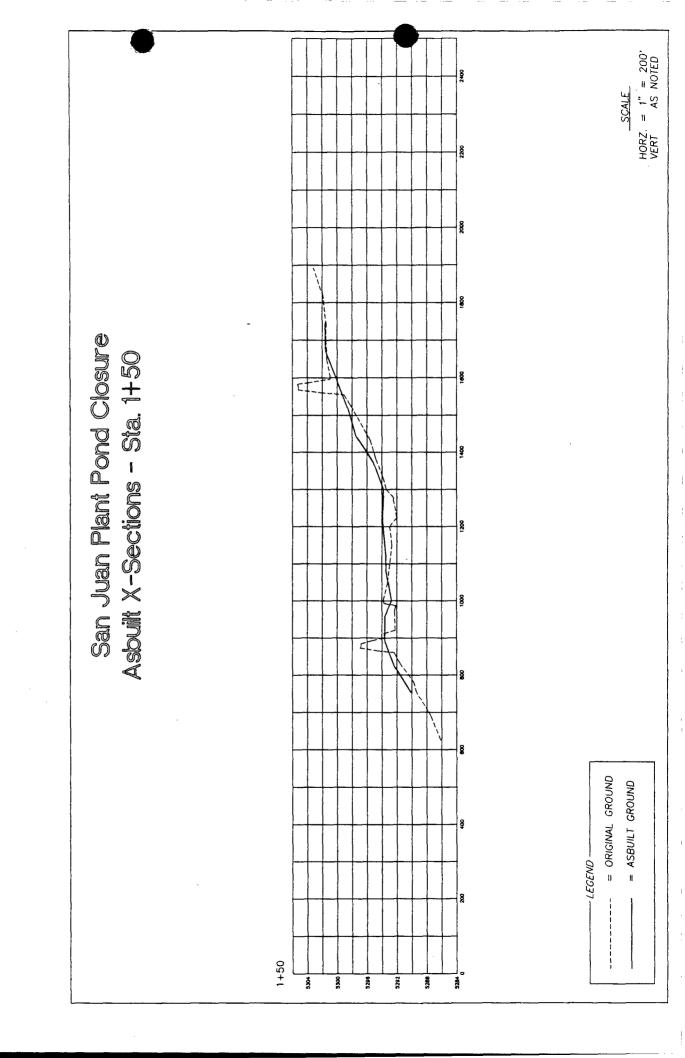

K,

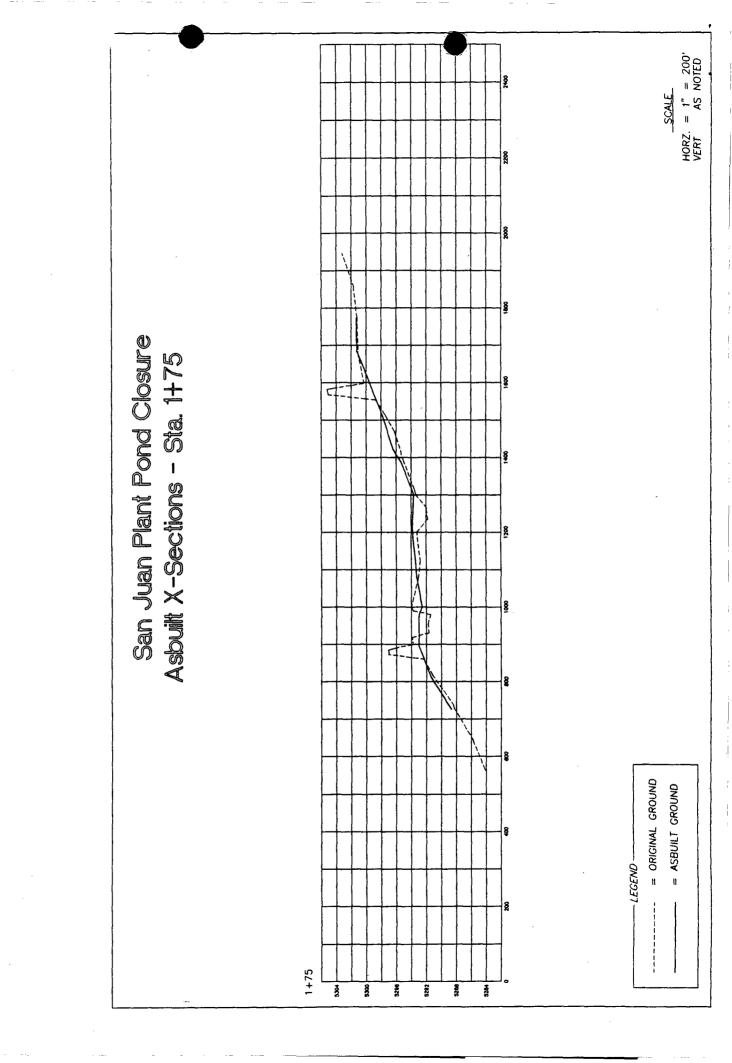

page 2

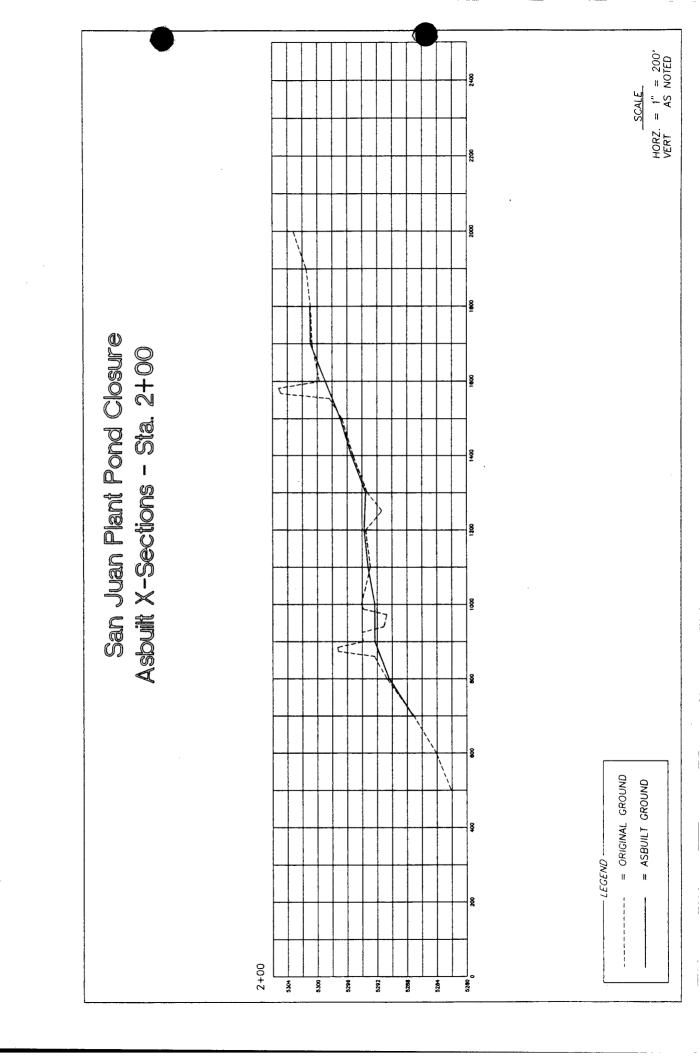
		129.34	196.87	17698.95	16102.69		
1596.26							
11+50	71.19	114.81					
		80.27	157.26	17779.22	16259,94		
1519.28							
11+75	69.7 8	146.48					
		82.47	174.67	1 78 61.69	16434.61		
1427.08							
12+00	75.05	143.73					
		59.86	93.18	17921.55	16527.79		
1393.76							
12+25	30.07	11.09					
		17.12	6.67	17938.67	16534.46		
1404.21							
12+50	0.00	0.00					
		0.00	0.00	17938.67	16534.46		
1404.21							
12+75	0.00	0.00					
		0.00	0.00	17938.67	16534.46		
1404.21							
13+00	0.00	0.00					

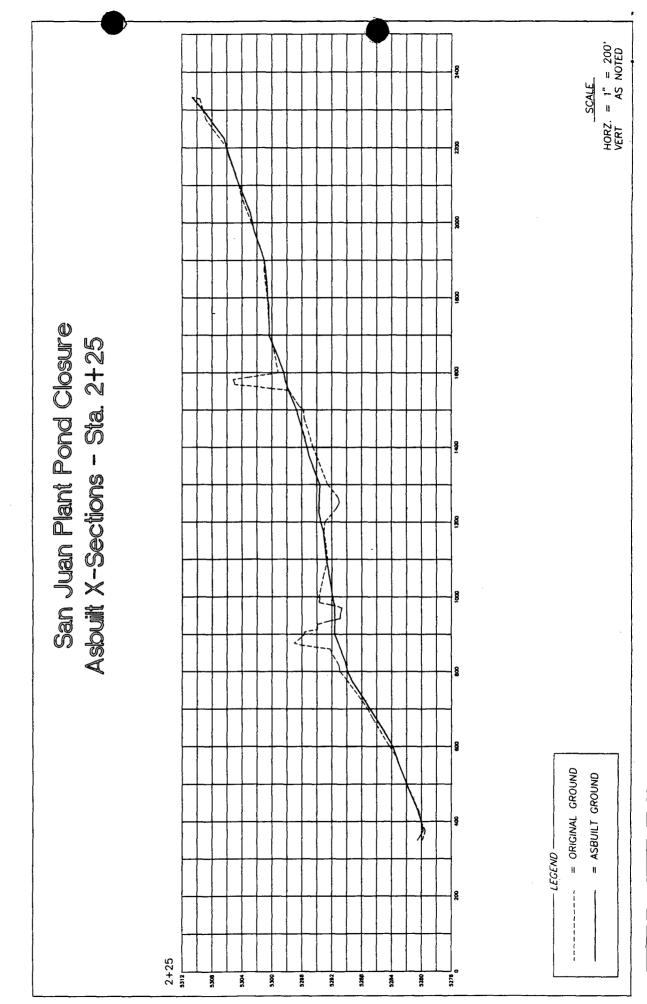


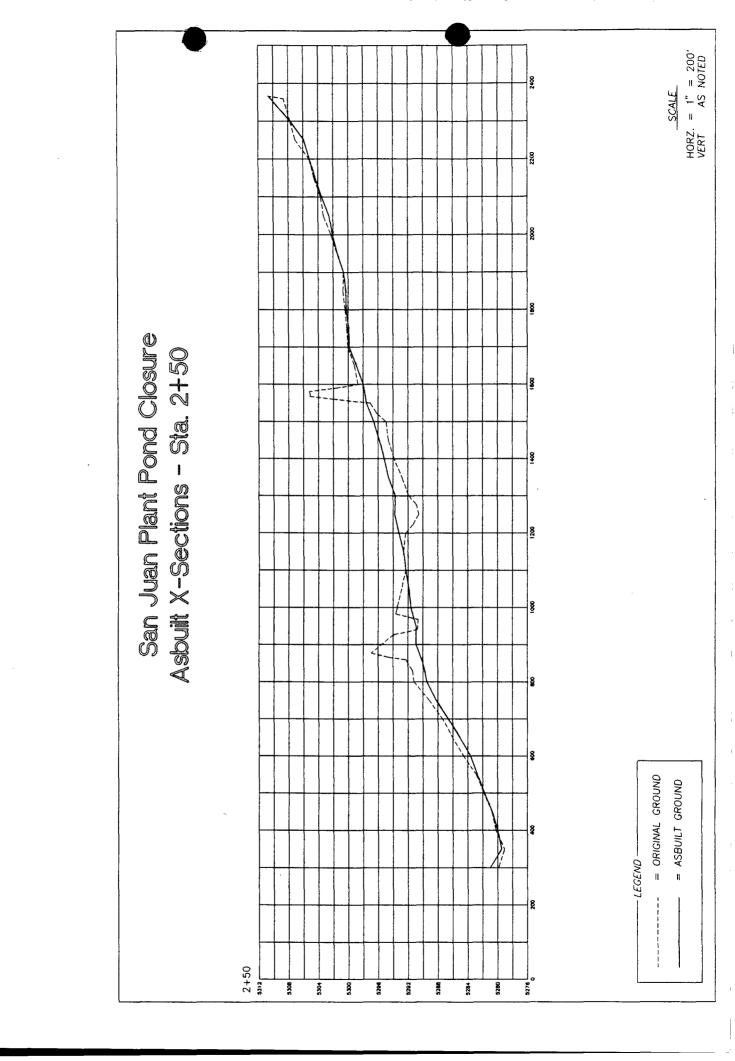


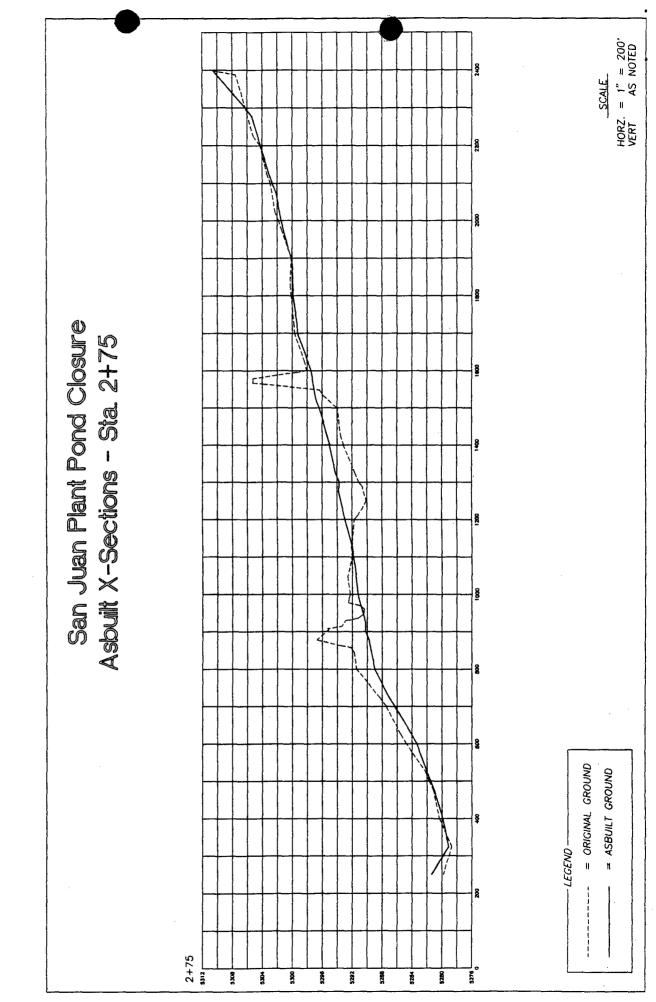


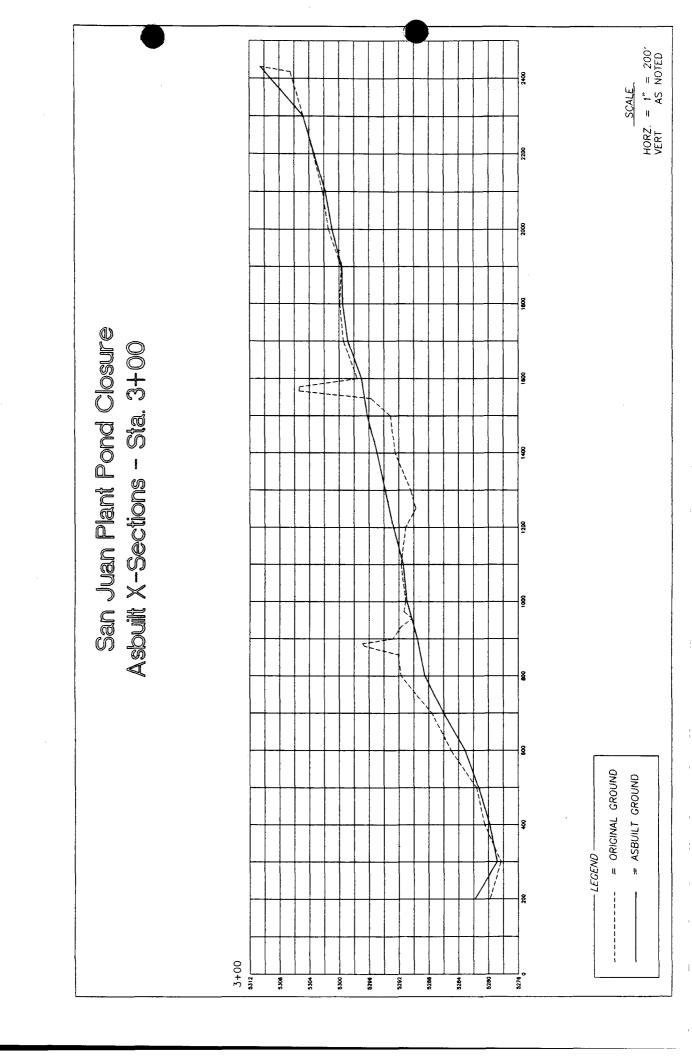


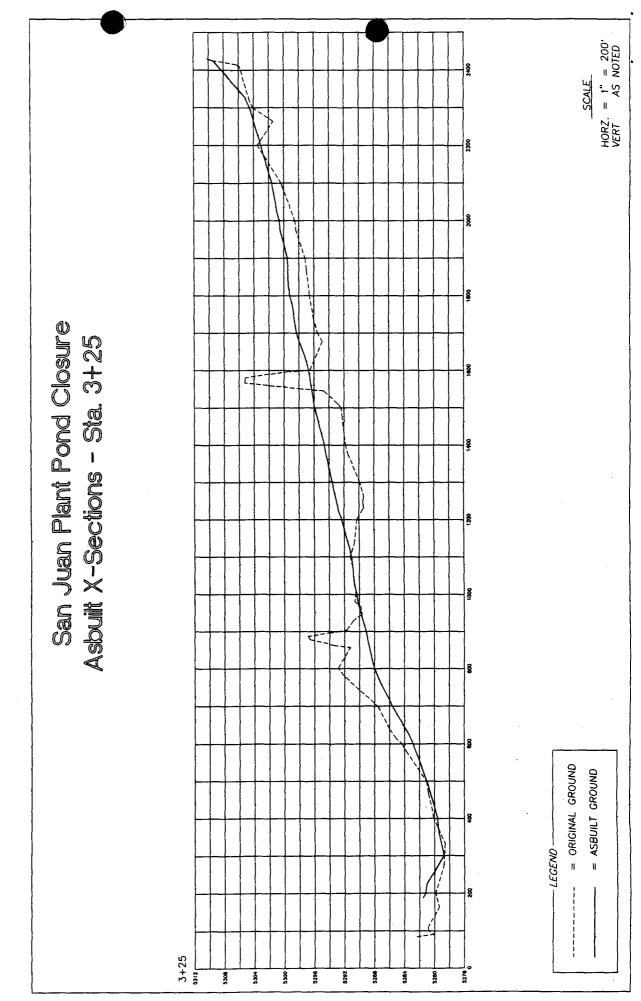


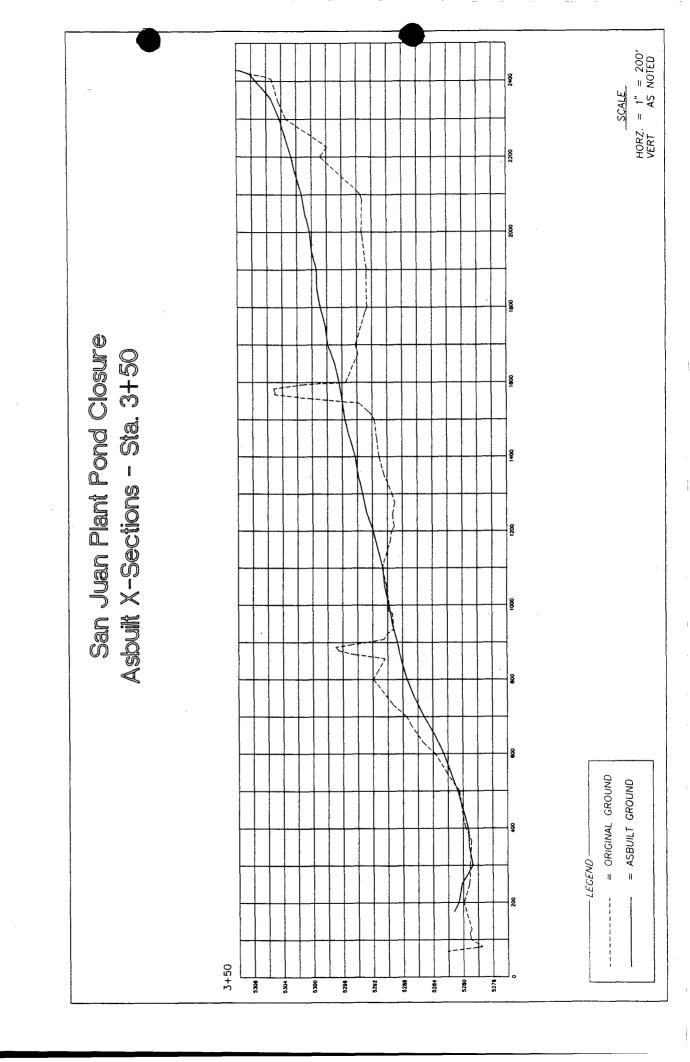


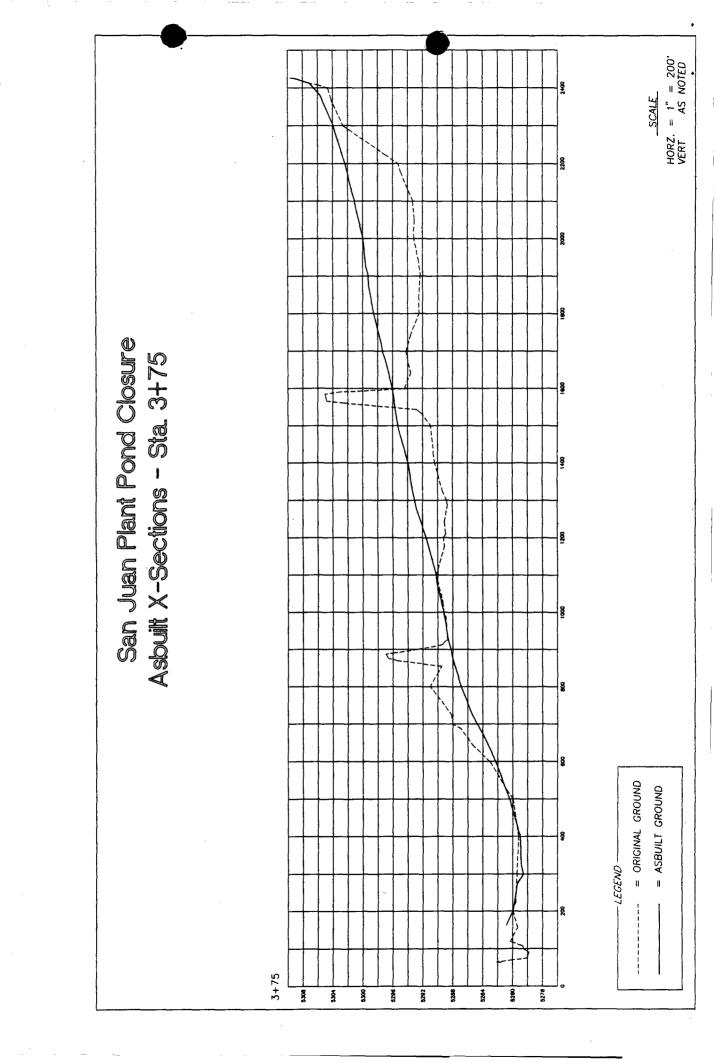


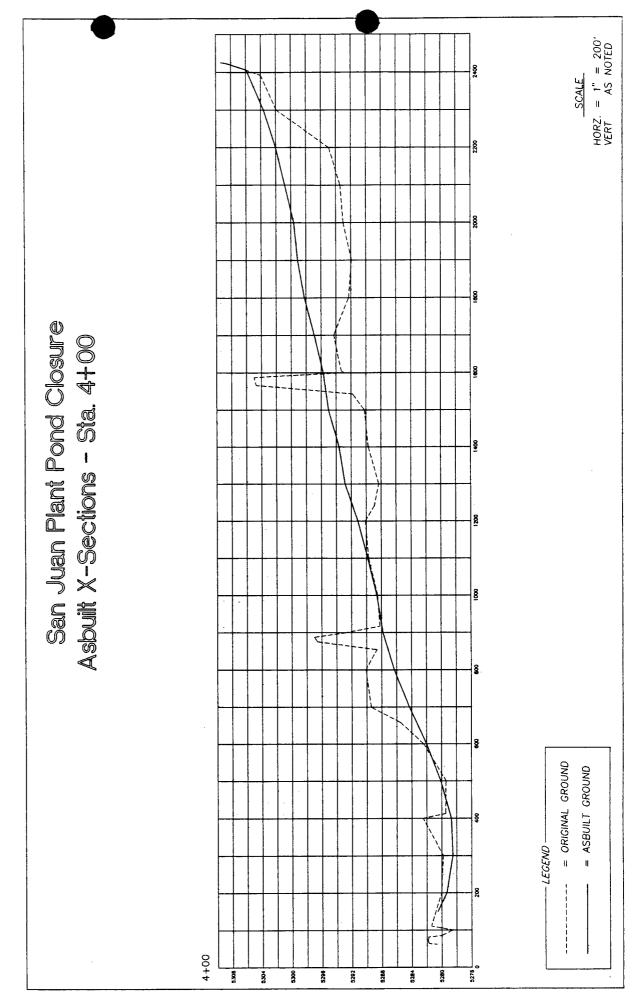


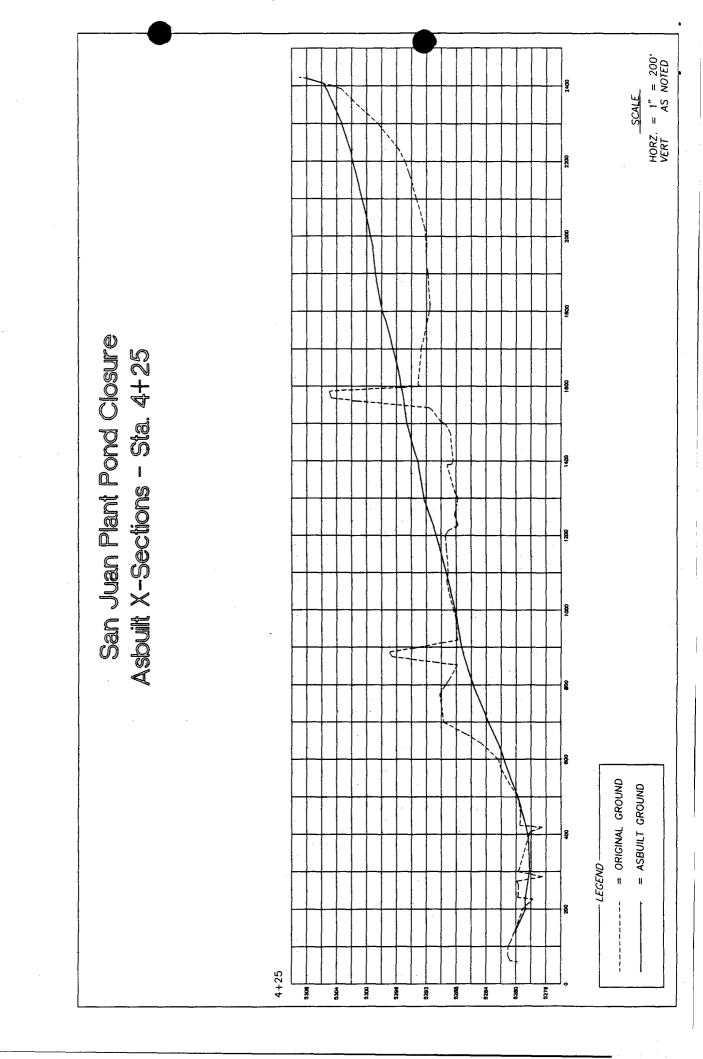




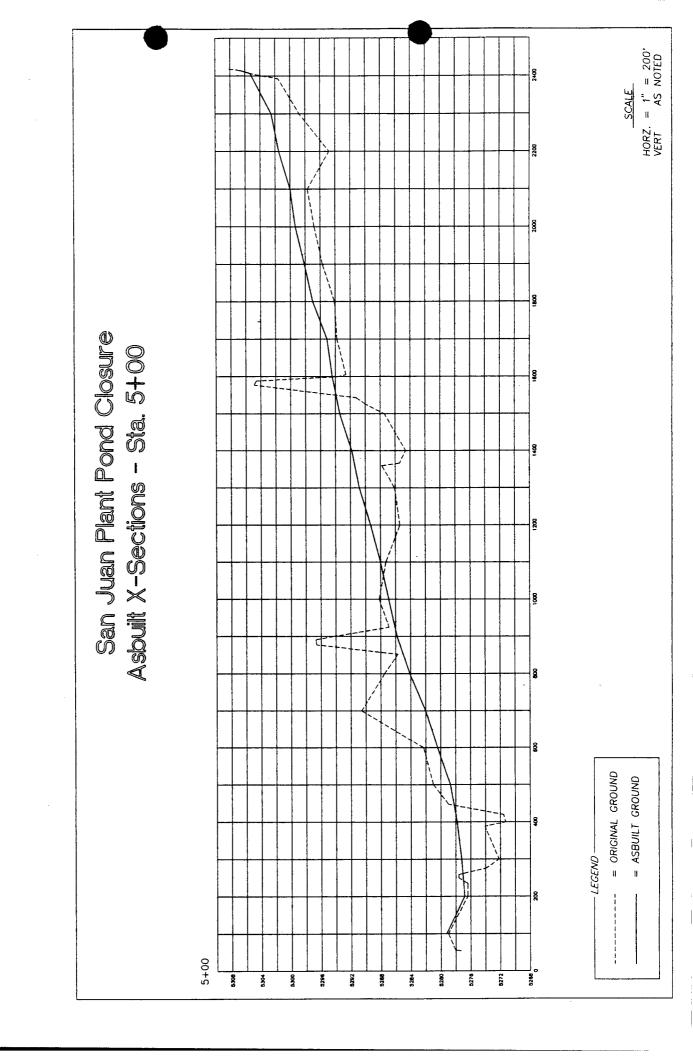


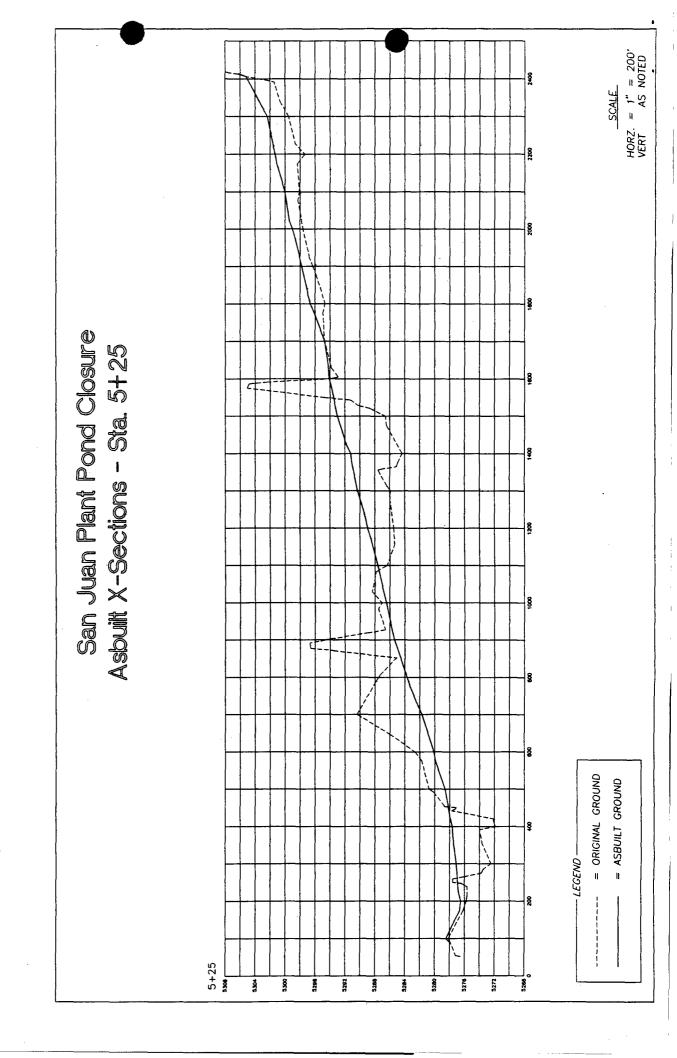


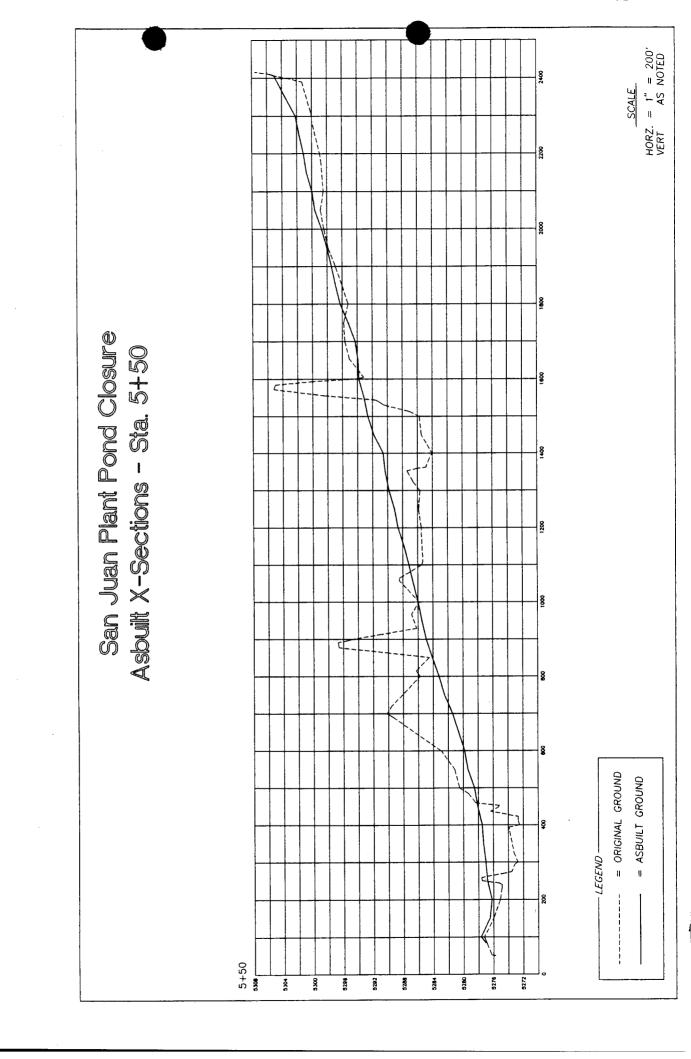


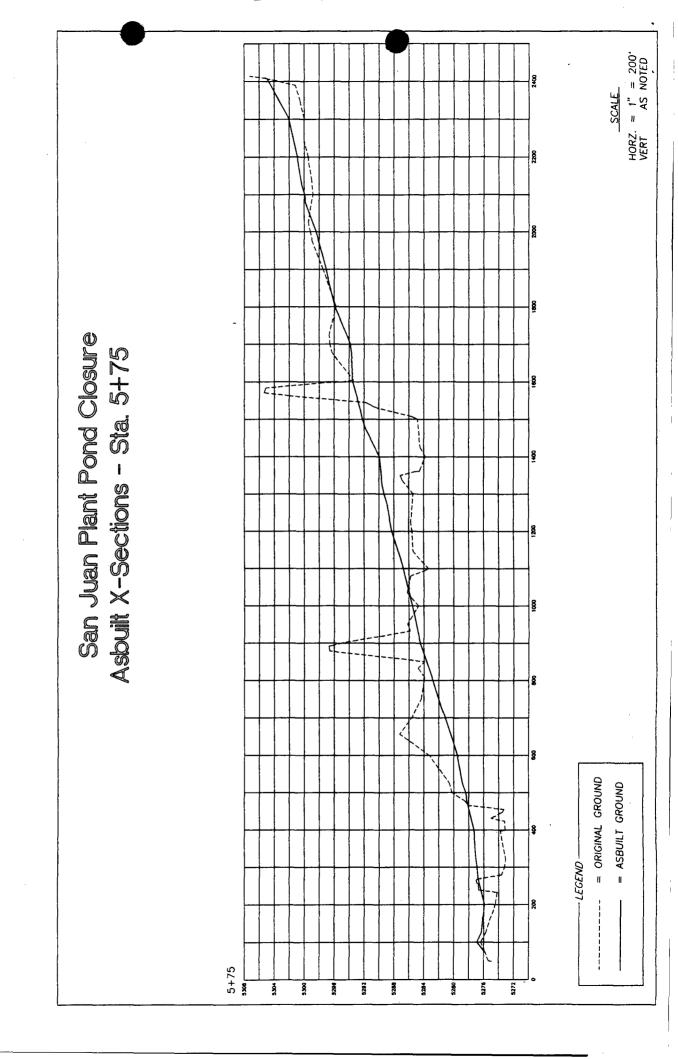


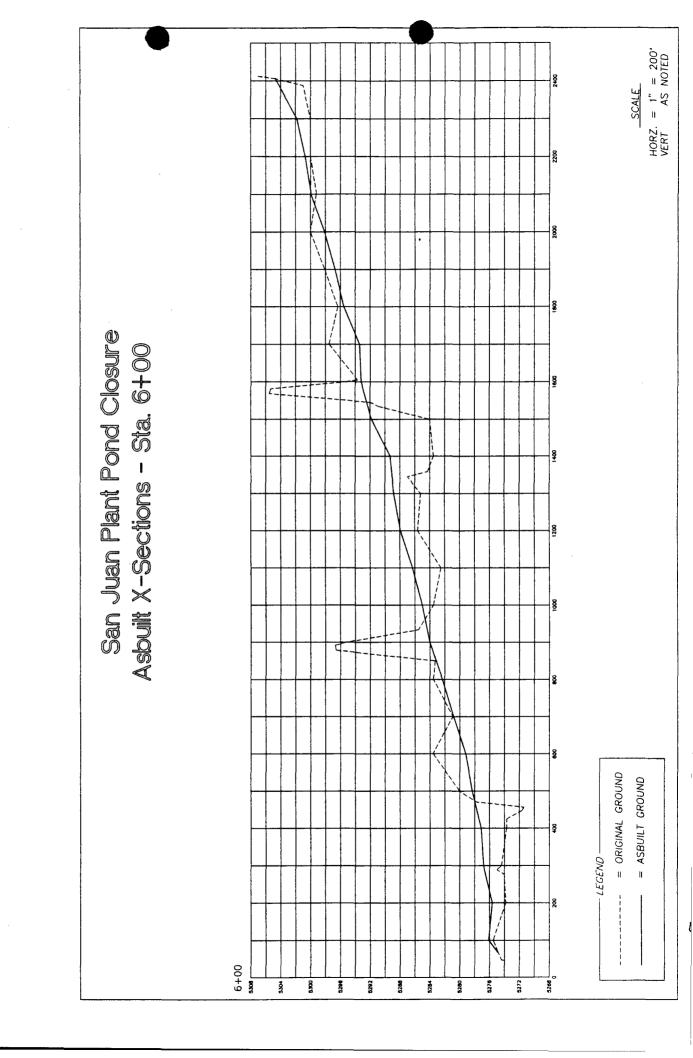


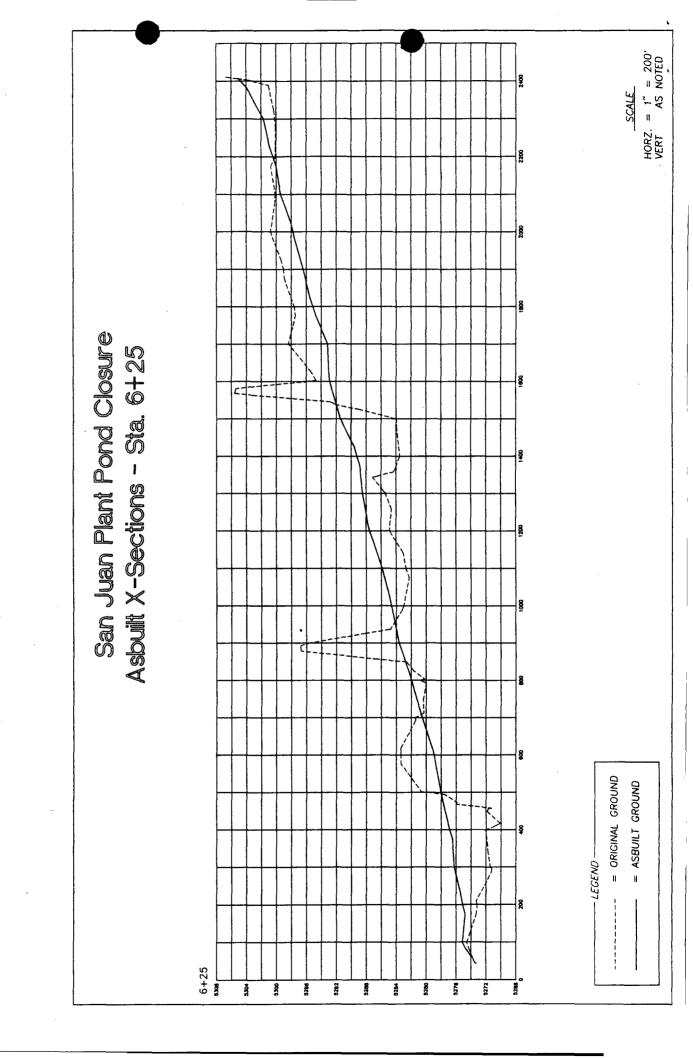


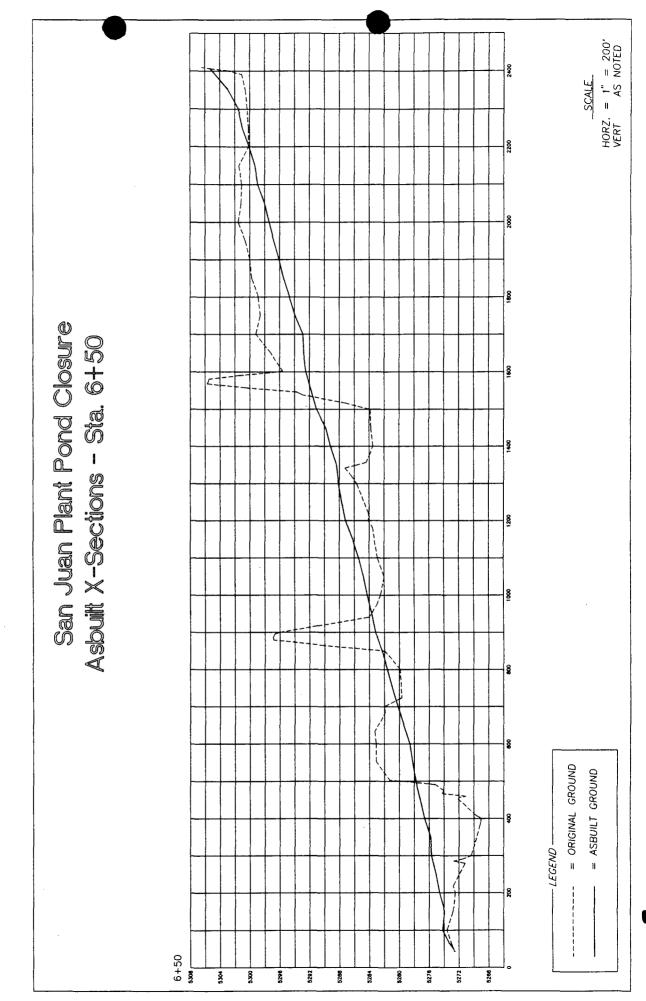


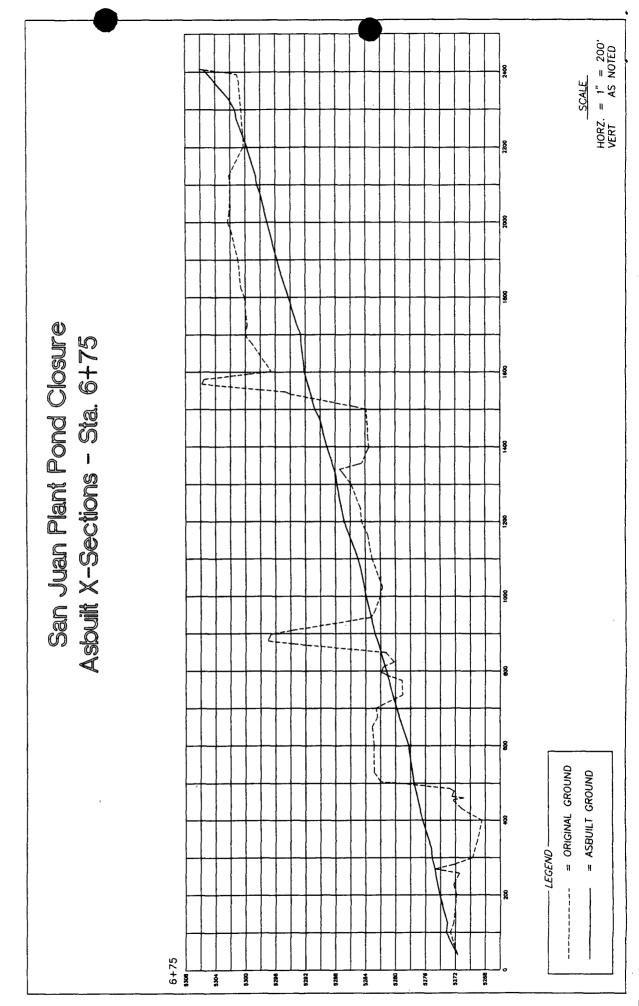


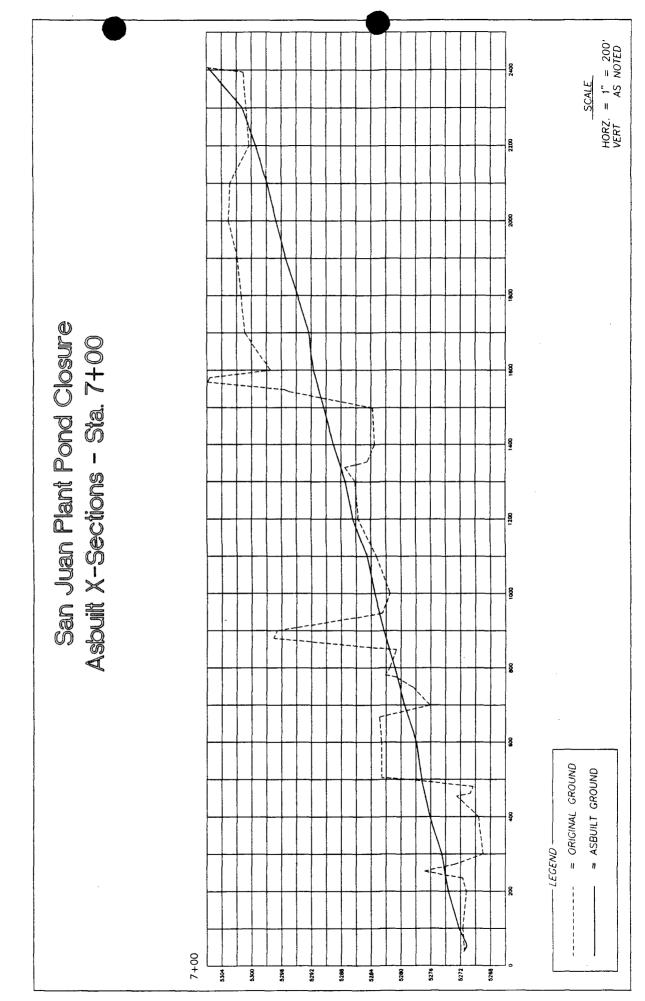

I

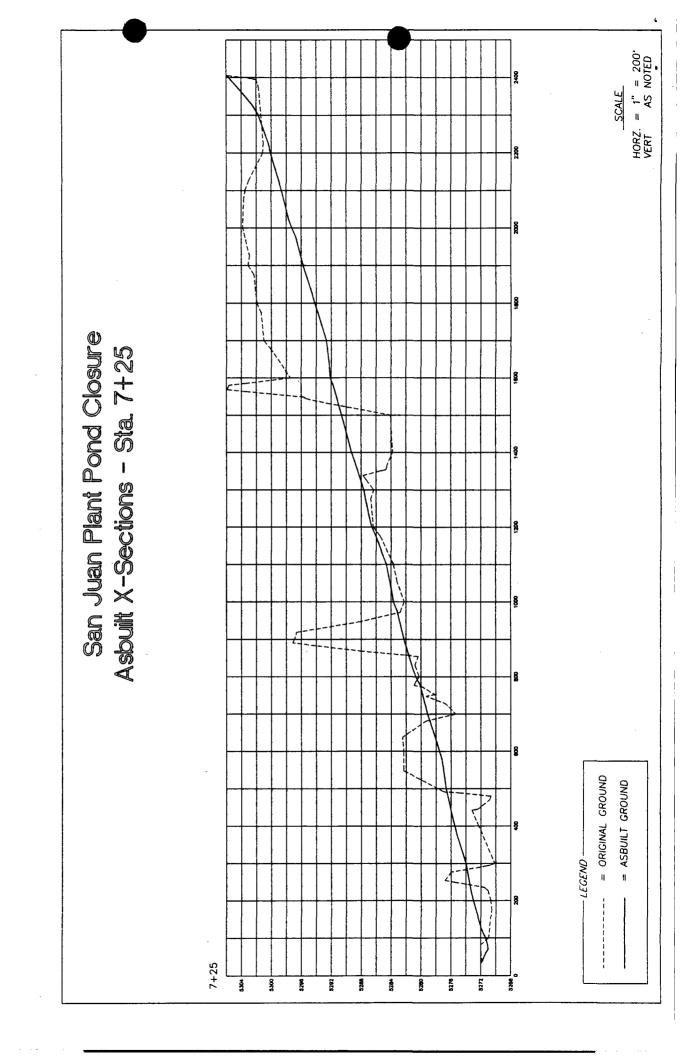


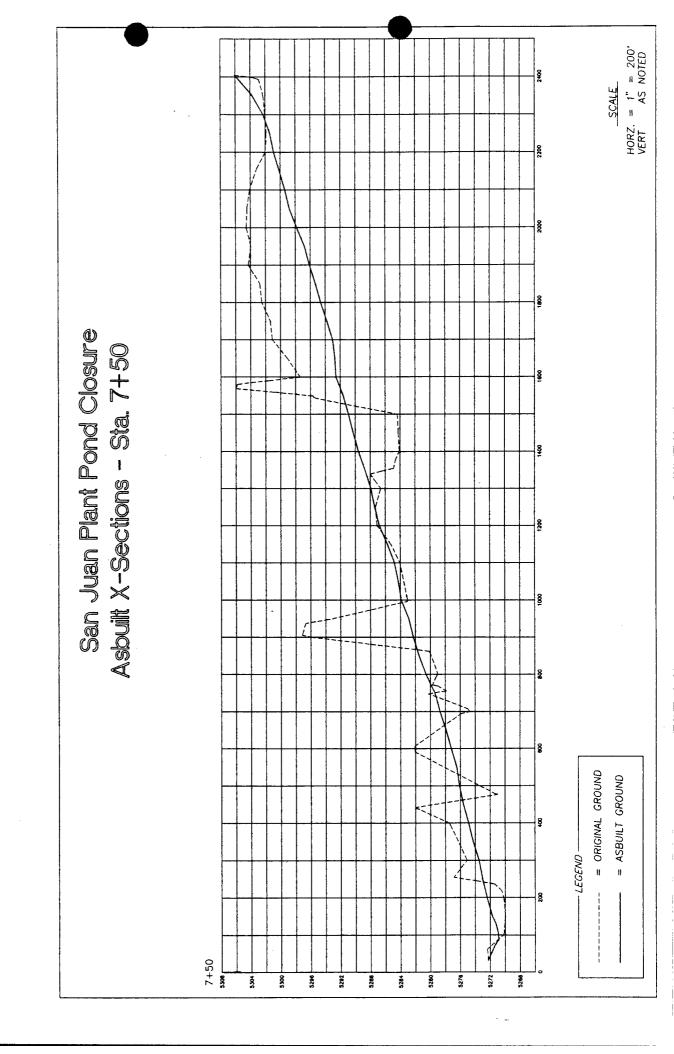


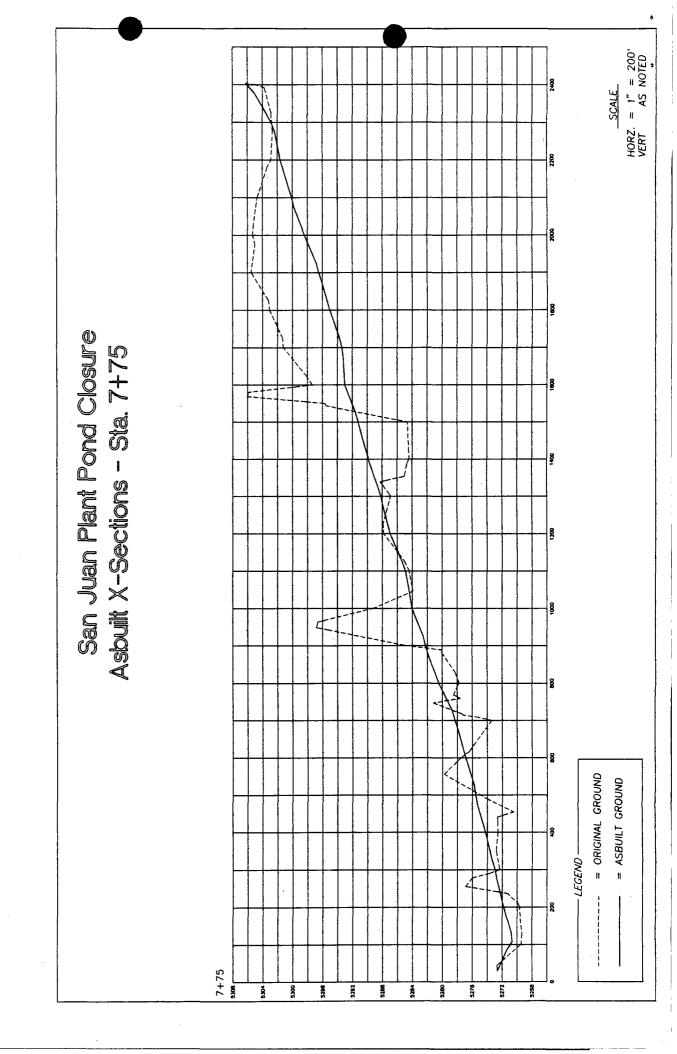


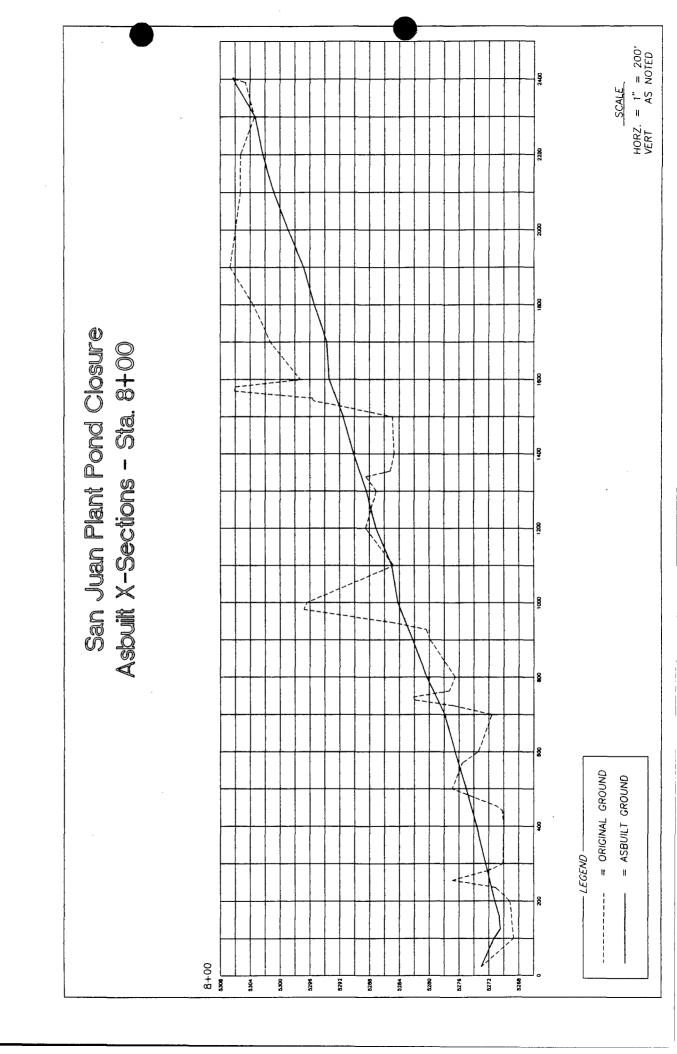


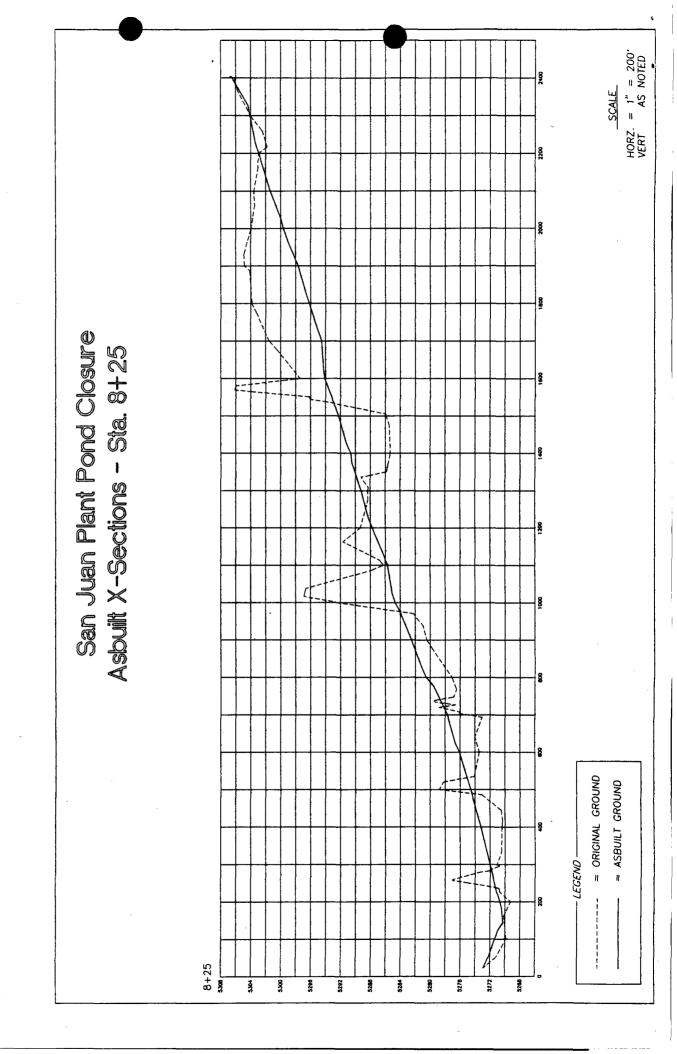


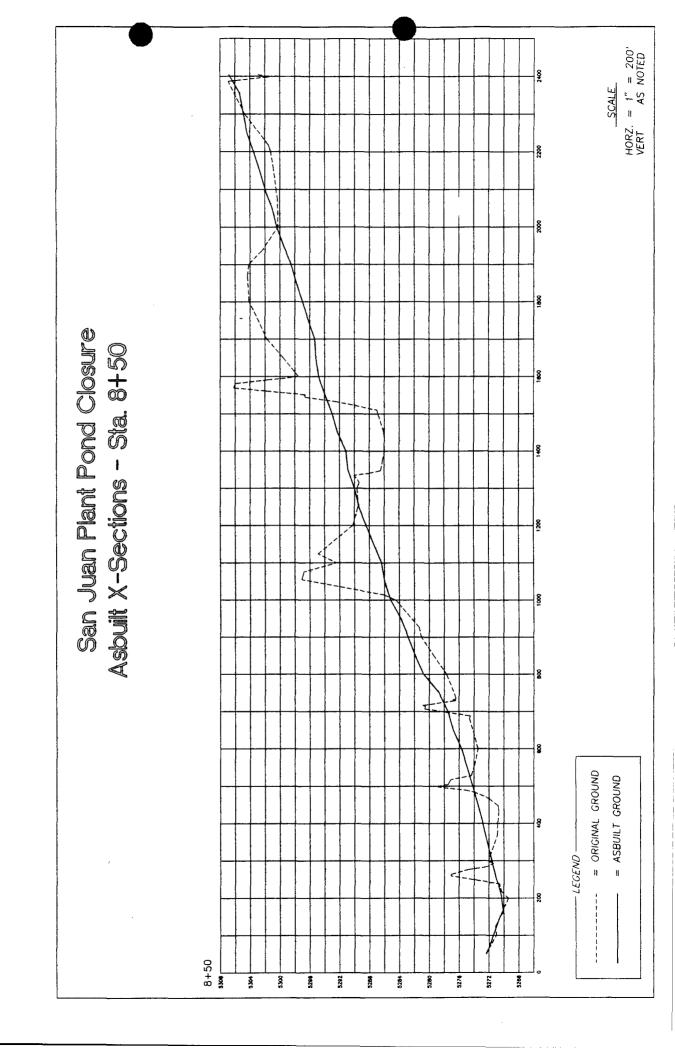


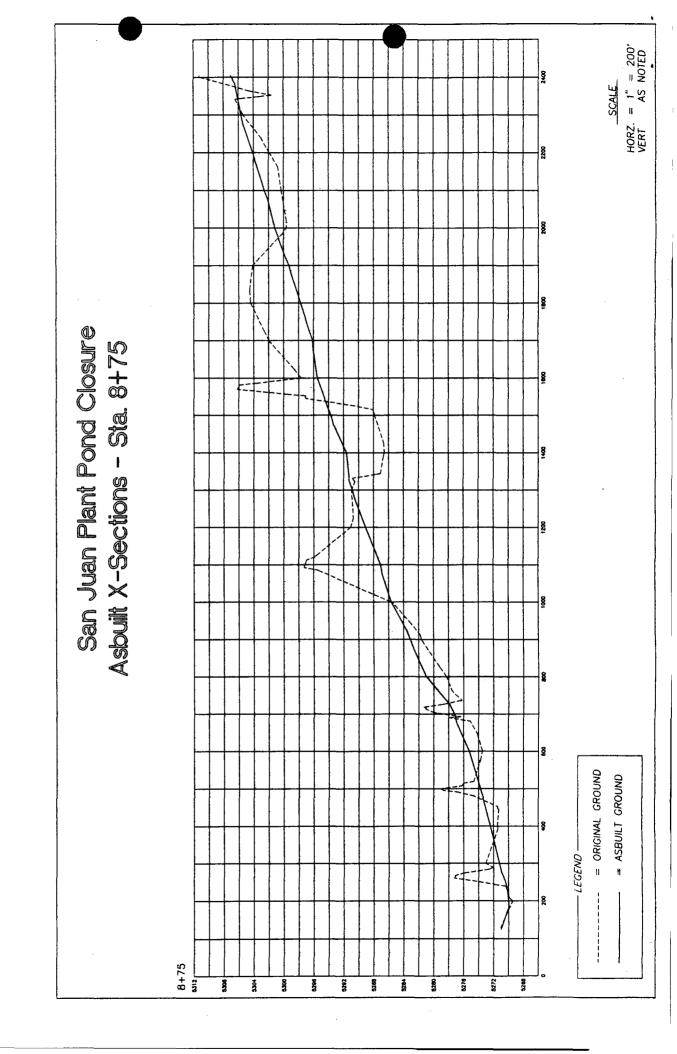


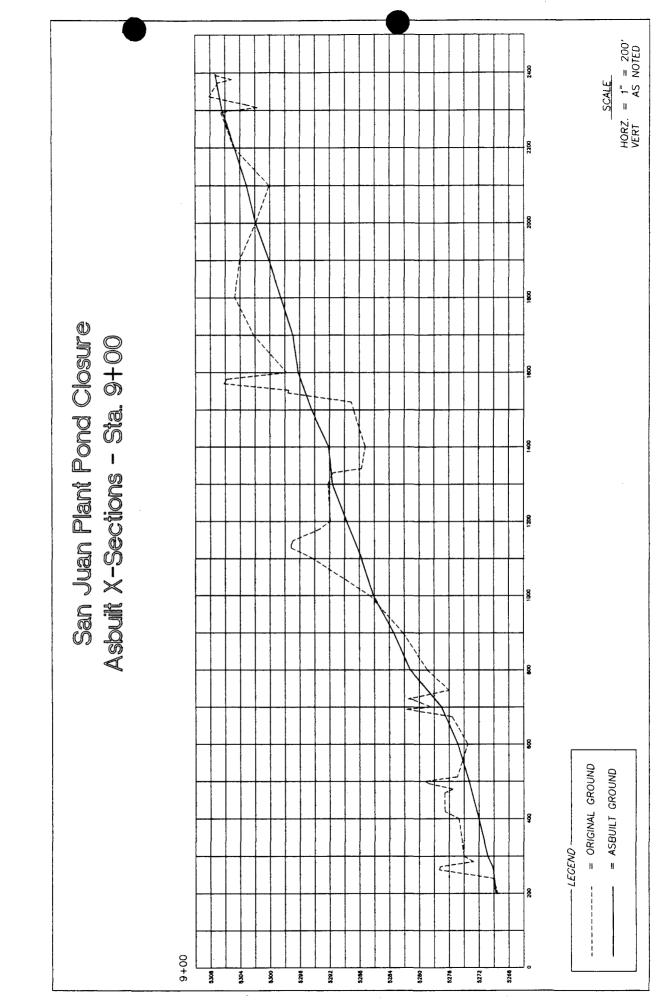

ſ

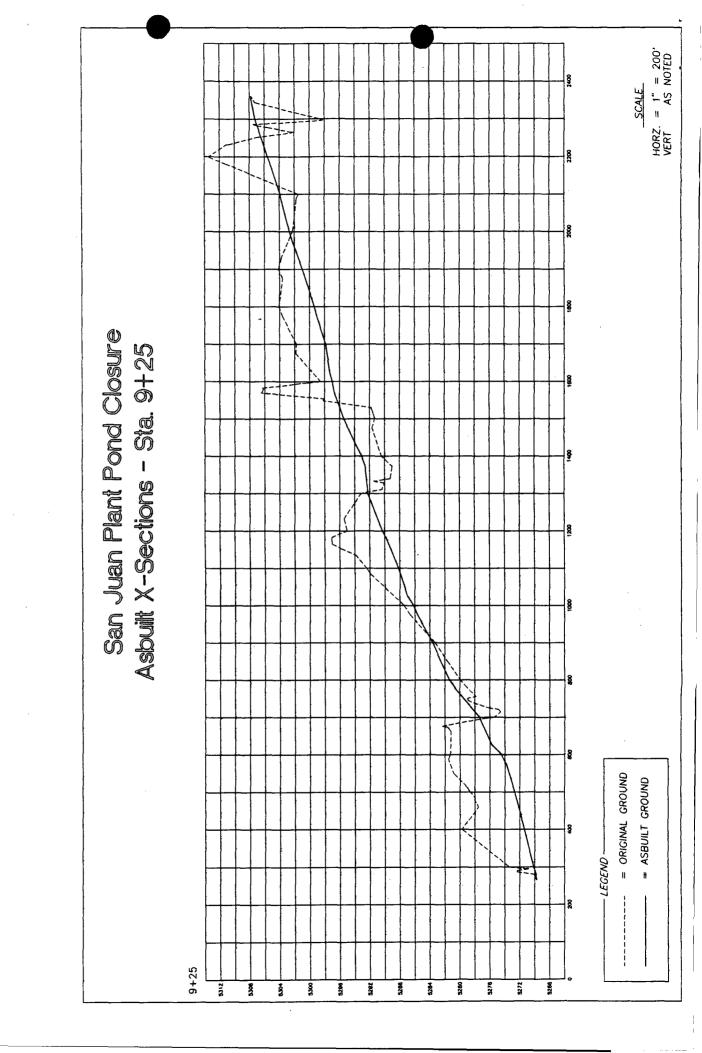


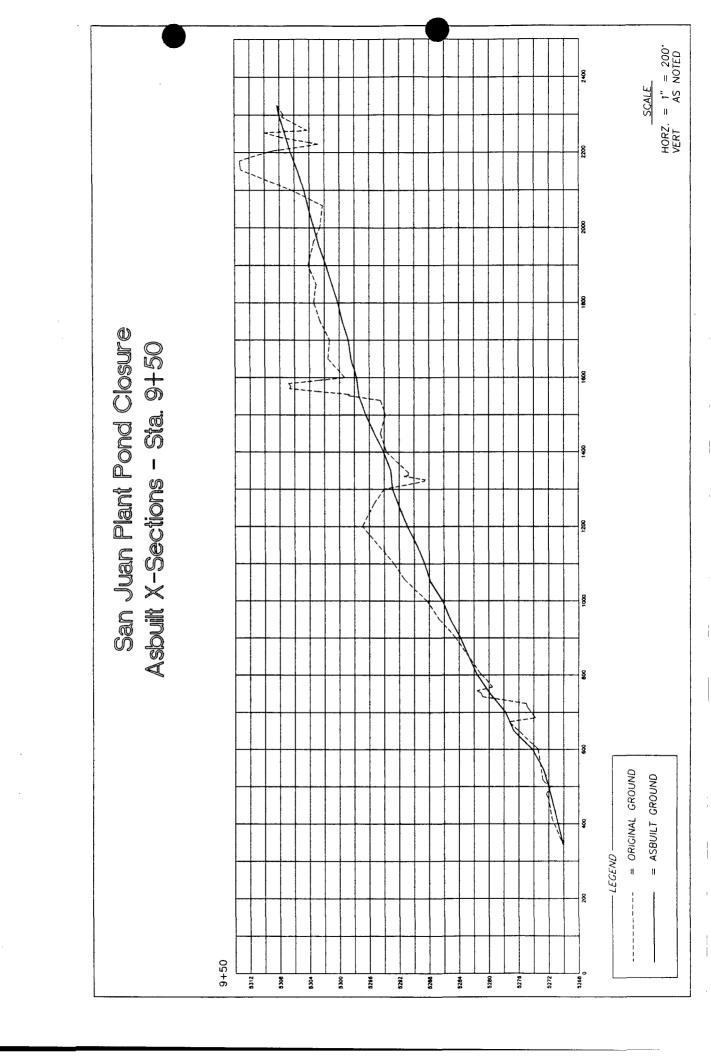


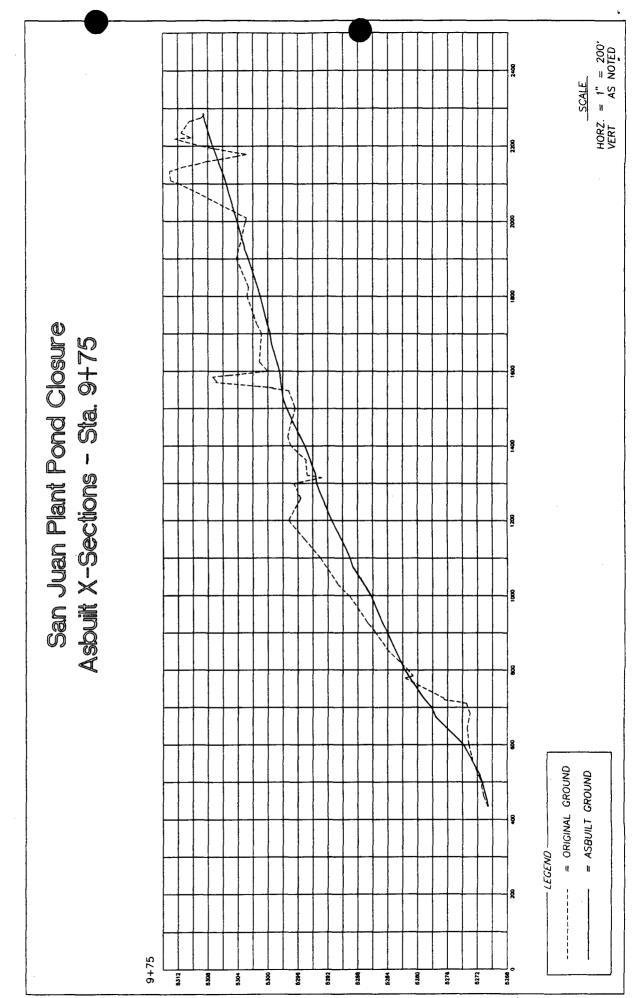


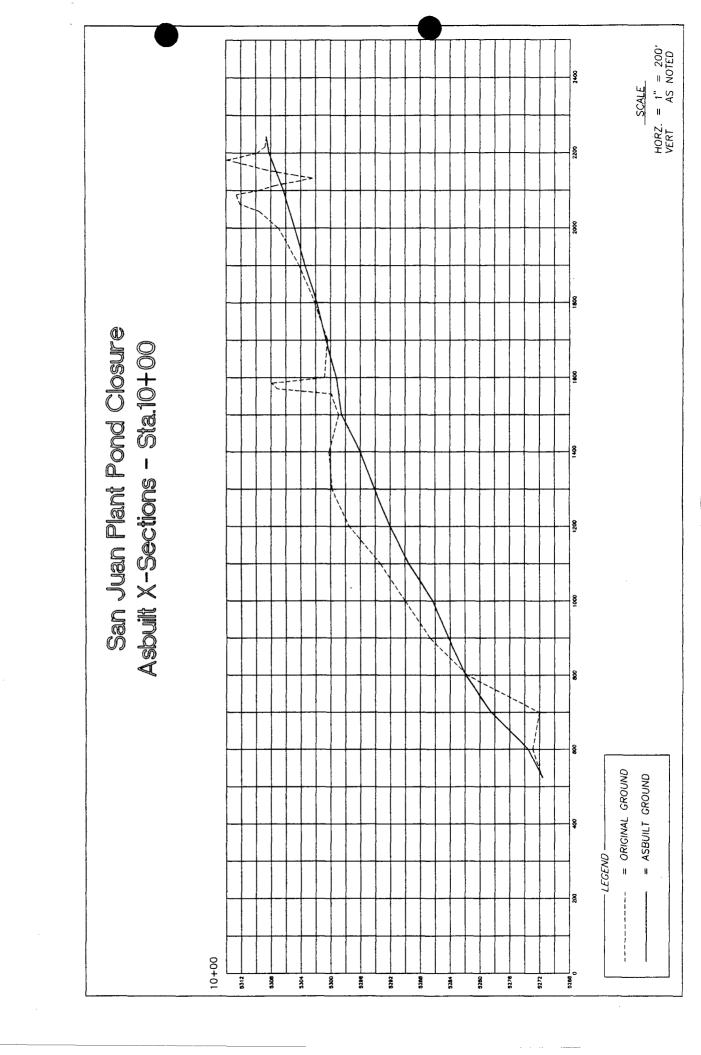


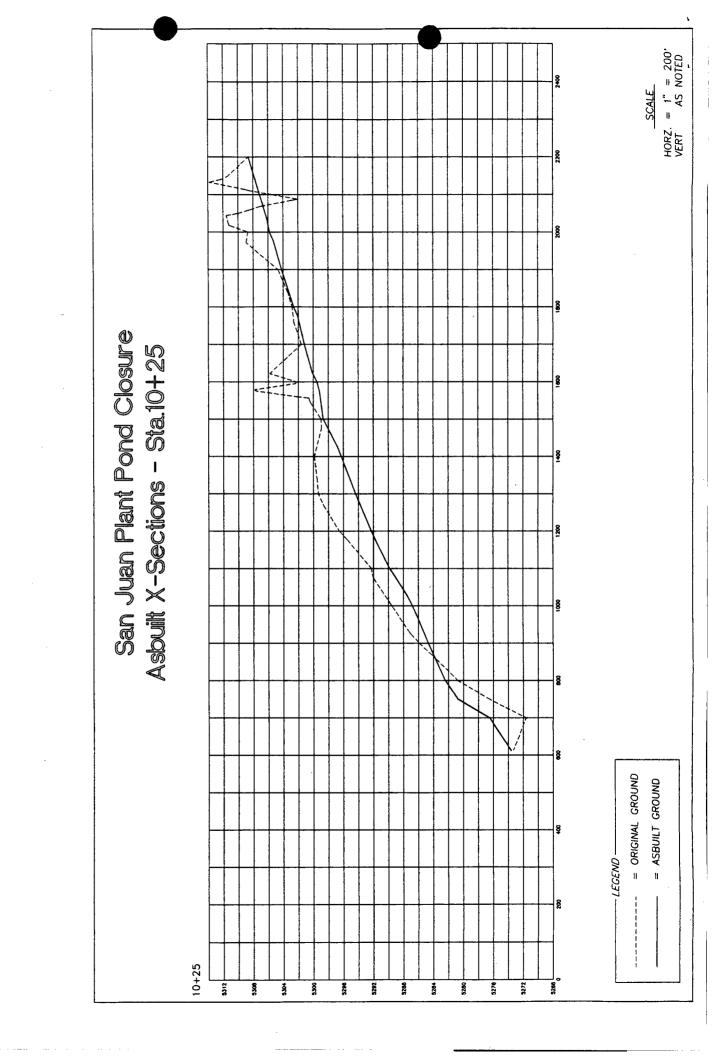


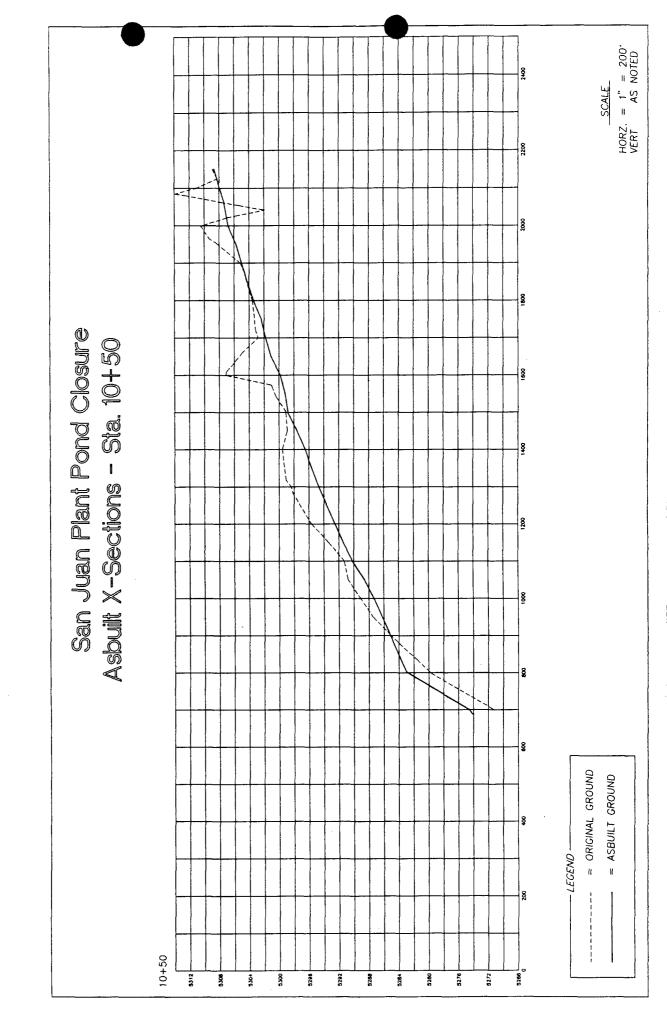


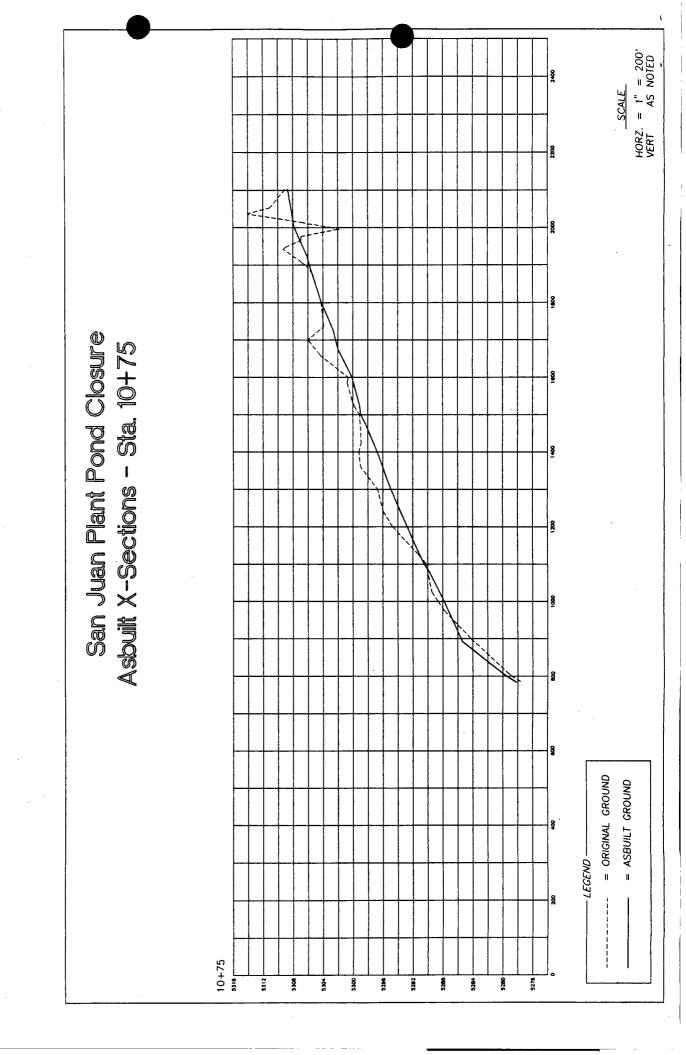


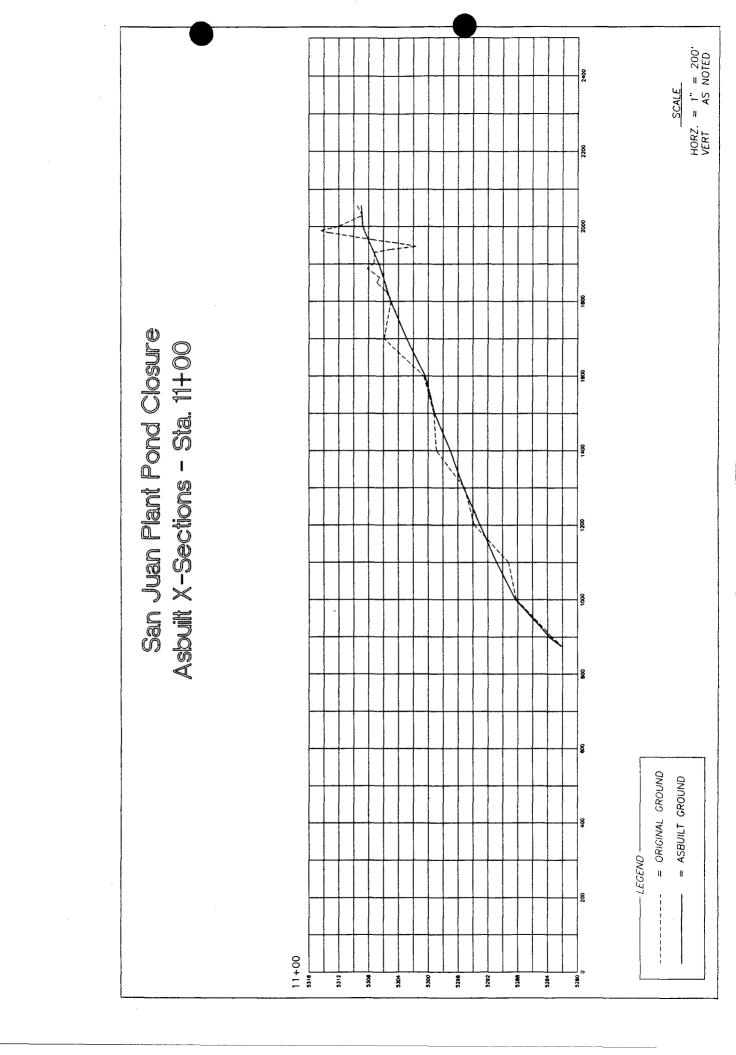


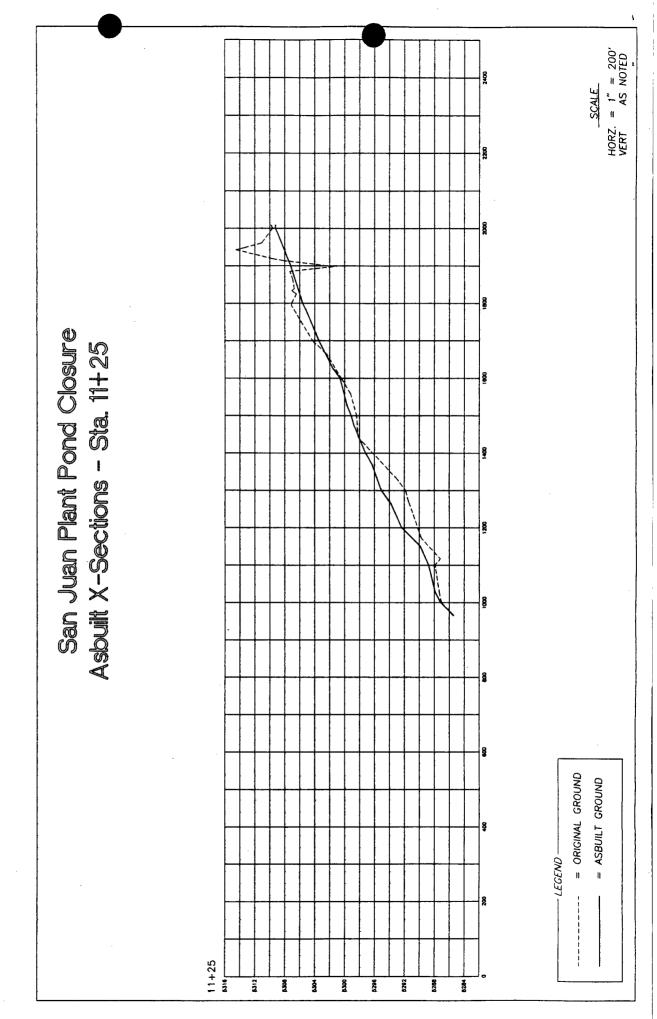


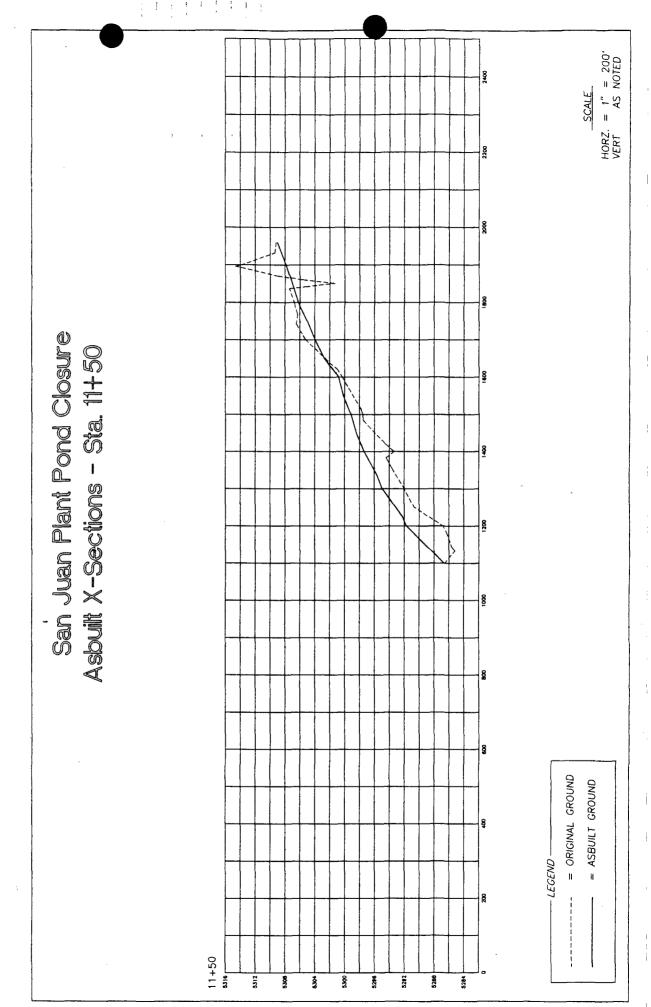


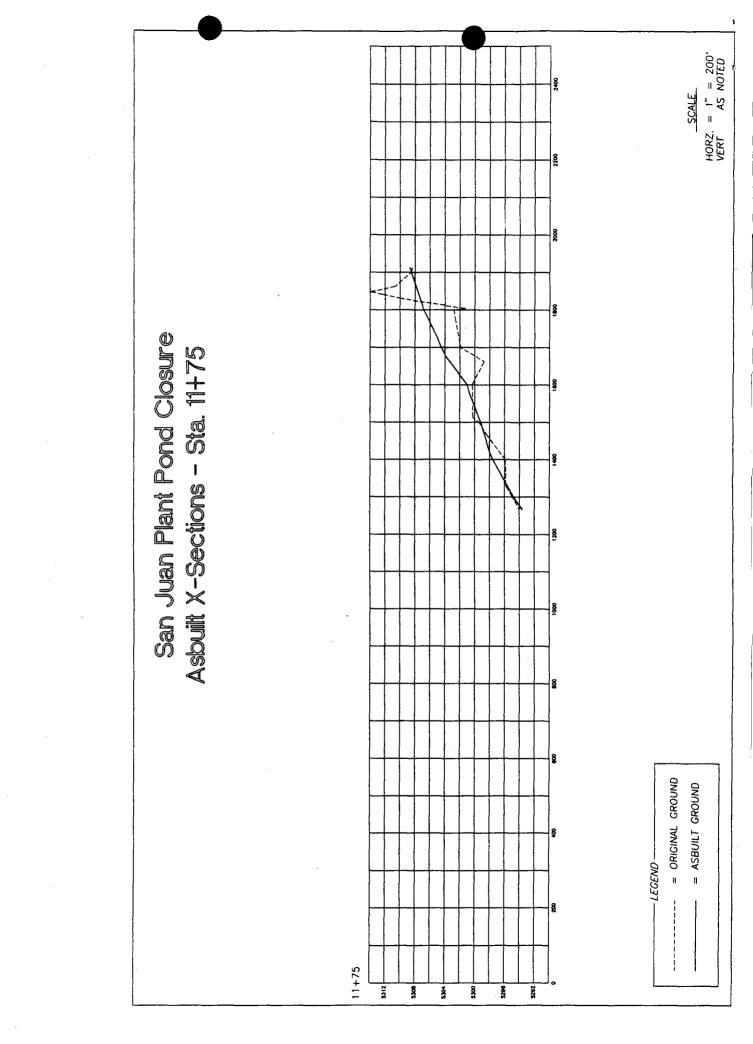


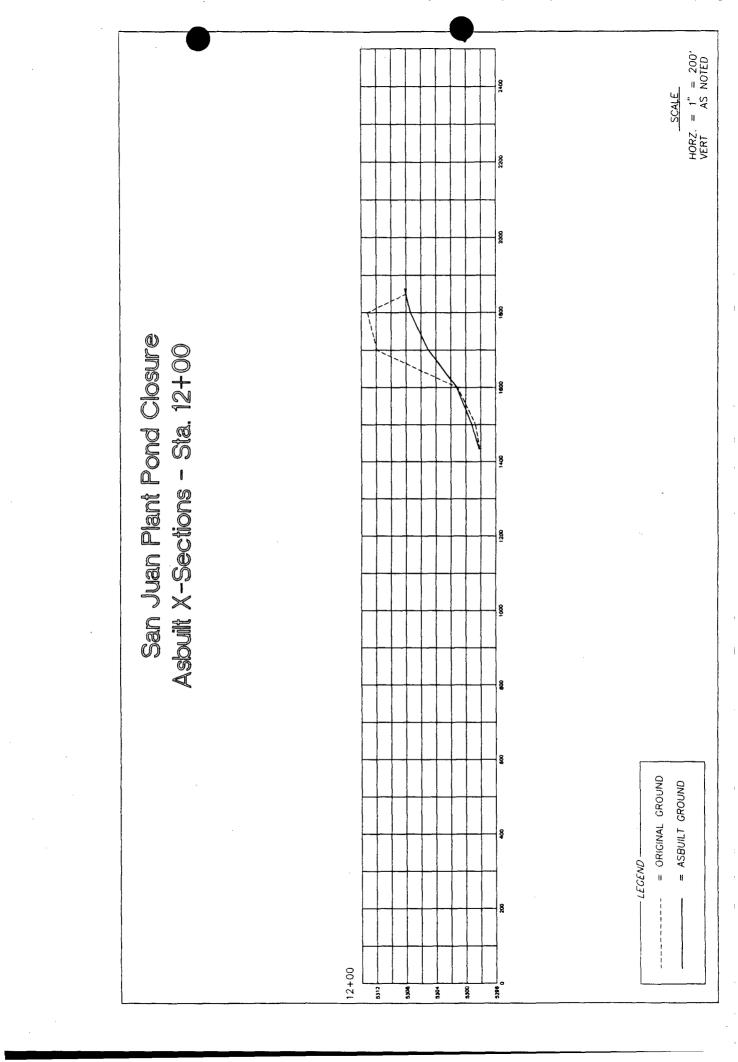


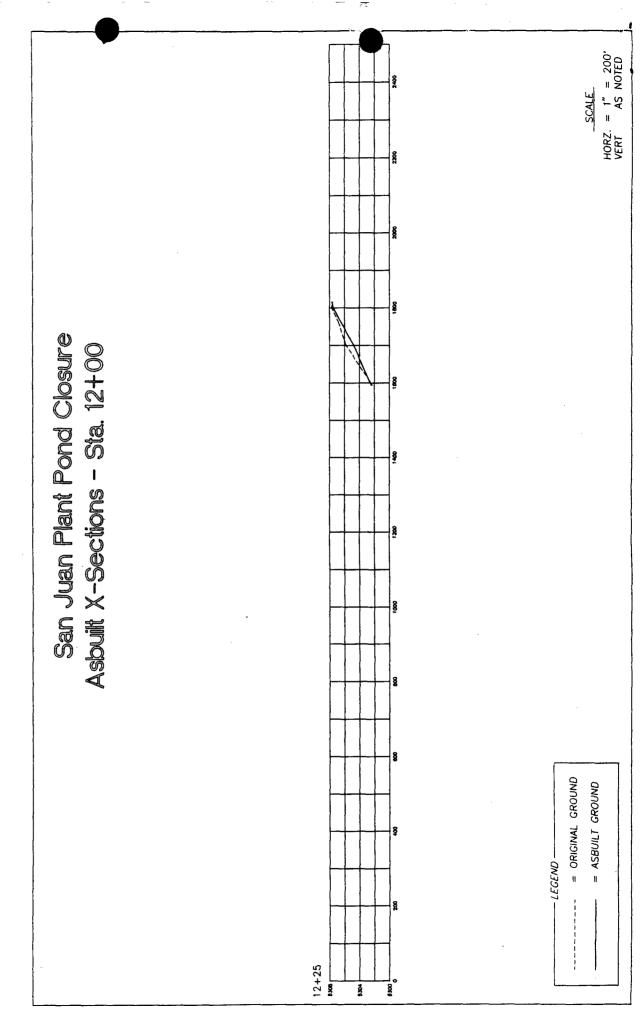


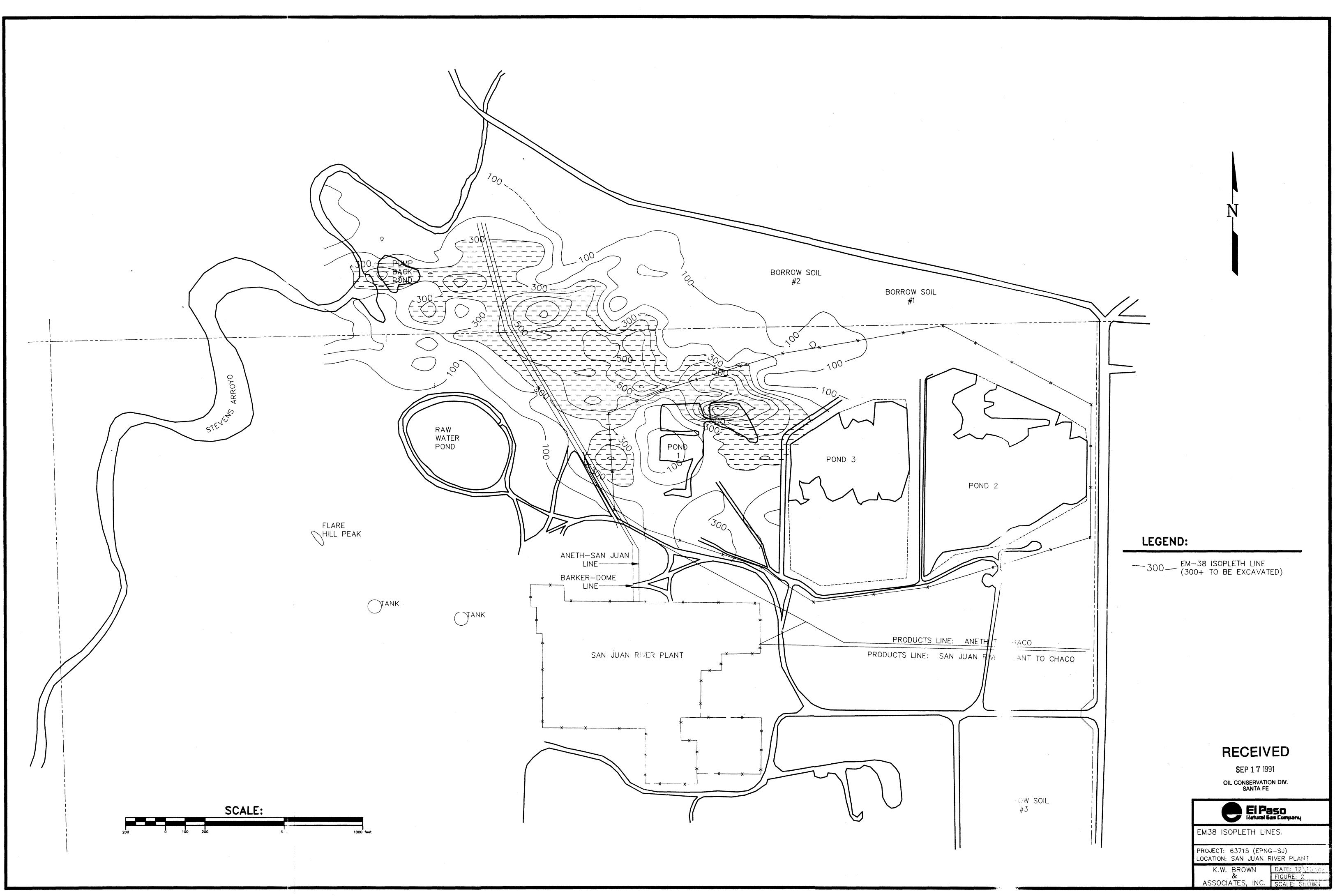











: ;

.

I

`, ^{*}

State of New Mexico INERALS and NATURAL RESOURCE Santa Fe, New Mexico 87505

OIL CONSERVATION DIVISION

Nus Huing DRUG FREE Hisa State of Hinal Hisa State of Hinal

November 18, 1991

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY

MATTHEW BACA DEPUTY SECRETARY

CERTIFIED MAIL RETURN RECEIPT NO. P-690-155-081

ENERGY

Mr. Thomas D. Hutchins North Region Compliance Manager El Paso Natural Gas Company P.O. Box 1492 El Paso, Texas 79978

Re: Pond and Pit Closure San Juan River Gas Processing Plant San Juan County, New Mexico

Dear Mr. Hutchins:

The Oil Conservation Division (OCD) has received your correspondence, dated November 1, 1991, summarizing the October 24, 1991 meeting concerning the San Juan River Plant Pond and Pit Closure Plan. The OCD concurs with EPNG's summary of the meeting.

The correspondence also includes an addendum to the pond and pit closure plan. The addendum is acceptable with the following exceptions:

1. EPNG has proposed to use the areas of borrow soil numbers 1 & 3 as landfarms for the soils excavated from the north and south flare pit respectively. It is OCD policy to restrict any landfarming in areas where the depth to ground water is less than 100 feet, unless positive protection is in place to prevent the possibility of contaminants reaching the ground water. Please supply information on how EPNG proposes to prevent contaminant migration from the landfarm areas.

VILLAGRA BUILDING - 408 Galisteo

Forestry and Resources Conservation Division P.O. Box 1948 87504-1948 827-5830 Park and Recreation Division P.O. Box 1147 87504-1147 827-7465 2040 South Pacheco Office of the Secretary 827-5950 LAND OFFICE BUILDING - 310 Old Santa Fe Trail Oil Conservation Division

P.O. Box 2088 87504-2088 827-5800

Administrative Services 827-5925

Energy Conservation & Management 827-5900 Mining and Minerals 827-5970 Mr. Thomas D. Hutchins November 18, 1991 Page -2-

- 2. Borrow area #1 is in a potential drainage area. What preventative measures are proposed to prevent all run-on and run-off from rainfall events?
- 3. Operating procedures for the landfarm areas were omitted from the plan. Please supply these procedures.
- 4. A report containing the results of the closure will be submitted to the OCD within 60 days of completion of the closure activities.

closure activities. Please contact the OCD at least one week prior to commencement of work to afford the OCD the opportunity to have a representative present to witness the work and/or split samples.

Please be advised that OCD approval of this plan does not limit you to the work proposed should the remediation activities fail to effectively mitigate the contamination.

If you have any questions, please call me at (505) 827-5812 or Bill Olson at (505) 827-5885.

7. 70 A. Mar. 1711

Sincerely,

Rogér C. Anderson Acting Bureau Chief

xc: OCD Aztec Office

OIL CONSERVE ON DIVISION RECTIVED

P. O. BOX 1492 EL PASO, TEXAS 79978 PHONE: 915-541-2600

'91 NOT 4 AM 9 06

November 1, 1991

Mr. Roger Anderson Acting, Environmental Bureau Chief New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Dear Mr. Anderson:

On October 24, 1991 El Paso Natural Gas Co. (EPNG) met with you and William Olson to discuss our San Juan River Plant Pond and Pit Closure Plan. Several questions that the New Mexico Oil Conservation Division (NMOCD) had asked in a September 30, 1991 letter with regard to the plan were addressed at that time.

As a follow up to the meeting and a documented response to the questions, listed below are the issues that were discussed.

- 1. EPNG plans to keep the pump-back system in operation as an active unit during the closure process. Upon completion of the project, the pump-back pond would be closed. If the pond should need dewatering, EPNG would transfer the water to a lined impoundment prior to closure. EPNG feels that closure of this pond is warranted to prevent the persistence of the existing artificially high water table.
- Pond #1 has already been dewatered through enhanced evaporation techniques.
- 3. Significant levels of benzene have been detected in piezometer P-10. In addition total Kjeldahl nitrogen has been detected in monitor well M-4. EPNG plans to submit proposals for the investigation and remediation of these locations. The plans will be submitted to NMOCD for approval by the end of the earthwork phase of the project.

Mr. Roger Anderson November 1, 1991 Page 2

In addition to the items listed above, EPNG proposes the attached addendum to the closure plan. The proposals are with regard to the cover system, the salt impacted area, and remediation of the soil excavated from the flare pits.

EPNG requests approval of the amended closure plan and is prepared to commence closure as soon as approval is received. I look forward to your response.

Sincerely yours,

Thomas D. Hutchinis

Thomas D. Hutchins Manager, North Region Compliance Engineering Mr. Roger Anderson November 1, 1991 Page 3

ADDENDUM TO THE SAN JUAN RIVER PLANT POND & PIT CLOSURE PLAN

Section 4.3 Drainage Basin Remediation and Closure

EPNG proposes to apply the cover system to the salt impacted area (see Figure 6) without removing the top 6" layer as previously planned. Electrical conductivity measurements taken within the salt impacted area do not significantly decrease at depths of 3-4 feet. The removal of the top 6 inches is, therefore, not warranted in the effort to prevent upward migration of salts. The key to success in this effort is in the removal of the artificial water table that has resulted from the ponds in the area. Once they have been closed and contoured to prevent ponding, EPNG feels that the water table will drop to a depth sufficient to prevent capillary rise. Upon completion of closure activities, EPNG will pump water from the water table, if needed, to ensure the groundwater table is sufficiently lowered.

Section 5.0 Cover System Design

Figure 5 of the closure plan identifies three areas of borrow soil. EPNG has recently performed a visual evaluation of the soil types. It has been determined that there is no major difference in texture between borrow soil #1 and borrow soil #2. EPNG therefore proposes to combine the areas of borrow soil #1 and #2, and to consider it entirely as borrow soil #1. The first 9" layer of the cover system is to be borrow soil #1. The top 9" layer is to be borrow soil #3 (see figure 9).

The sources of borrow soil are of adequate area and topography such that EPNG does not anticipate problems with supply or erosion control. The borrow areas will be contoured and reseeded to provide erosion control.

Section 4.5 Flare Pit Closure

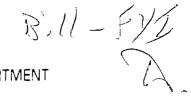
Visually contaminated soil is to be removed from the north and south flare pits. Soil will be excavated to a depth of 10 feet. An assessment will be made at that time to determine the need for further action. EPNG proposes to construct small land treatment cells in the areas of the borrow soils #1 and #3. Soil excavated from the north flare pit would be taken to the area from which the borrow soil #1 has been removed. Similarly, soil removed from the south flare pit would be landfarmed in the area of borrow soil #3. The land treatment cells would be operated in accordance with NMOCD guidelines.

Bernie are, parmit reader below to be or modification used as land to exist, D.P. treatment area,

More detald proposal reeded Implementer in schedule

UCD - PMIG Meeting 10/24/91 1000 hrs participant. Bill Olson 2 OCO Rogen Anderson 3 OCO Anou Panderi Tom Harthin, Sandra Blance Plant Hydrocadon Recovery TH Address Oct Synt 16, 1991 letter on recommy system Eyest installation by January 1992 BI) provider Soil sus Sumany requested - 4.) steam ent collector, checked art. no product about punyed out will sample att cheened smokeless, flore will be installed by early 1992 Swith Alcre will be closed at that the

KA closur plan ten Planes


A.P. Handel and scope at work for Alanes pit Want to take soil to Angel Peak station NO OCD will review & comment by rest week Kutz Plant RA. Cour have no oil on lined point Need to separate ensite room sup Aniels prime to discharge to pour Sim Juan River Plant Check on beaking poind at Western Gas Co. plant See sept 30, 1991 letter her response discussed need to review 1) need to excavate soils in salt aver, 2) A disposal of spils from Place Opit be done prisite

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVEPNOR

September 30, 1991

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 927-5800

notes ut OCO/EPN6 10/24/91 weting

CERTIFIED MAIL RETURN RECEIPT NO. P-327-278-258

Mr. Thomas D. Hutchins, Manager North Region Compliance Engineering El Paso Natural Gas Company P.O. Box 1492 El Paso, TX 79978

RE: EPNG SAN JUAN RIVER PLANT: POND AND PIT CLOSURE PLAN SAN JUAN COUNTY, NEW MEXICO

Dear Mr. Hutchins:

1

On June 25, 1991, David Boyer and William Olson of the New Mexico Oil Conservation Division (OCD) met with you to discuss the April 1991 "FINAL CLOSURE PLAN FOR WASTEWATER IMPOUNDMENTS AND FLARE PITS AT EL PASO NATURAL GAS COMPANY'S SAN JUAN RIVER PLANT". The discussion focused on the need to update ground water and soil/sludge information from selected piezometers and monitor wells so that at the completion of work ground water will be protected and EPNG will have minimum future liability for past activities. During the meeting OCD stated that before approval could be given for the proposed work, the additional updated information needed to be provided for our evaluation. The requested analytical analyses and answers to a number of questions asked during the June meeting were provided in your letter of August 30, 1991.

The OCD has reviewed the information provided in your August 30 letter, and meeting notes taken by Mr. Olson and Mr. Henry Van of your office, and finds that additional information and/or commitments from EPNG are necessary before the Plan can receive OCD approval:

The pump-back system is to be kept in operation as an "active" unit during the closure process (p.24). What decision has been reached regarding disposal of this water? Will the pump-back system be kept operational or in working order for the duration of the proposed five-year cover system monitoring as a back-up measure (p.28)?

Will pond 1 be dewatered prior to the start of closure? If so, how? Botone closan will be clewatere

Mr. Thomas D. Hutchins September 30, 1991 Page 2

- 3. OCD has concerns regarding the effectiveness of the two-layer cover system proposed for the salt impacted area. Additional information must be provided to demonstrate that the system can work as designed. Specifically, the following questions must be adequately answered:
 - a. Are borrow soils #1 and #3 sufficiently coarse to prevent wicking from the substrate to these soils?
 - b. Are the textural differences between borrow soil #2 (proposed for the top layer) and soils #1 and #3 (lower layer) sufficient to discourage downward movement of the limited rainfall moisture expected at this locality?

What effect will compaction by earthmoving equipment have on the ability of the cover system to perform as designed?

Show specifically on the site map the proposed locations for the borrow soils. Is enough soil available in the selected areas to complete the cover system? How will the borrow soil areas be closed and returned to grade so that additional erosion problems are not created?

A high level of benzene (7,400 ppb) and elevated values of other volatile aromatic hydrocarbons were detected in well P-10. Prepare an additional work element to provide adequate investigation and remediation of petroleum hydrocarbons at this location.

A high level of total Kjeldahl nitrogen (120 ppm) was detected in well M-4. Over time and distance this species can change to nitrate-nitrogen and threaten domestic water supplies. Prepare an additional work element to provide adequate investigation, delineation and remediation (if necessary) of the various nitrogen species in the vicinity of this location.

Sufficiently high levels of benzene and other aromatics were found at the North Flare Pit to require additional vertical and horizonal sampling by EPNG. Provide additional specifics on the proposed investigation and remediation procedures necessary to properly close both this pit and the South Flare Pit.

Proposed at soil at Plant? ¥ Proposed at soil at Plant? ¥

already in Ang 30 1

4.

work

10' m=x

Mr. Thomas D. Hutchins September 30, 1991 Page 3

If you have any questions regarding the material or information requested in this letter, please call Bill Olson at (505) 827-5885 after October 21. Before providing a specific response to the items addressed in this letter, an additional meeting to discuss this matter could be scheduled if desired by EPNG to speed up resolution of these issues so that physical closure can begin.

Sincerely,

10.00


Koger Chader

Roger Anderson, Acting Chief Environmental Bureau

cc: OCD Aztec Office

		······································	n i i norgener a di secono de la constante a de la constante de la constante de la constante de la constante de de la constante de br>la constante de la constant	
Put yo card f to and for fe	and 4. Dur address in the "RETUR rom being returned to you. I the date of delivery. For a es and check box(es) for a Show to whom delivered	IN TO" Space on the The return receipt fee i dditional fees the folio dditional service(s) re	onal services are desired, and reverse side. Failure to do this will provide you the name of the wing services are available. Co quested. 's address. 2. (Extra cho	will prevent this person delivered possit postmaster d Delivery
Th E P	ticle Addressed to: In Thomas D ? Pooo Natura O. Box 1492 ? Paoo TX	Hutchins 8 Gas Co 79978	Certified Express Mail	insured COD Return Receipt for Merchandise
1			Always objeti signature	
X 6. Sig X	nature - Address Insture - Agent te of Delivery	- Contraction of the second se	8 Addressee's Addre Femested and fee pai	

P8 Form 3811, Mar. 1988 + U.S.G.P.O. 1988-212-865 DOMESTIC RETURN RECEIPT

ATI I.D. 106920

October 3, 1991

handent at 10/24/91 EPNG-000 neet.

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: Blanco Plant North Flare Pit

Attention: John Lambdin

On 06/27/91, Analytical Technologies, Inc. received a request to analyze soil sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

TCLP-BTEX analyses were performed by ATI, Fort Collins.

For EPA Method 8015, modified, client sample N11248 does not exhibit a typical gasoline pattern. Sample appears to contain a mixture of gasoline and a heavier hydrocarbon.

The results reported for TCLP analyses are the actual measured values, and are not corrected for matrix spike recovery bias. The matrix spike recovery results for TCLP analyses are included in this report.

Enclosed is an amended report for TCLP method 8020 (BTEX). The units have been changed from ug/kg to ug/L. We apologize for any inconvenience this may have caused.

If you have any questions or comments, please do not hesitate to contact us at (602) 496-4400.

Mary & Type

Mary Tyer Project Manager

Jober V. Work

Robert V. Woods Laboratory Manager

RVW:jat Enclosure

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

Analytical Technologues , Inc	: .
--------------------------------------	------------

81

CLIENT	:	EL PASO NATURAL GAS, NEW MEXICO	DATE RECEIVED : 06/27/9
PROJECT #	:	(NONE)	
PROJECT NAME	:	BLANCO PLNT	REPORT DATE : 07/22/9
		ATI I.D. : 106920	

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTE
01	N11248	SOIL	06/26/9
02	N11249	SOIL	06/26/9

----- TOTALS -----

MATRIX SOIL # SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contactour sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

ATI I.D. : 106920CLIENT : EL PASO NATURAL GAS, NEW MEXICODATE RECEIVED : 06/27/91PROJECT # : (NONE)PROJECT NAME : BLANCO PLNTREPORT DATE : 07/22/91PARAMETERUNITS 01 02PETROLEUM HYDROCARBONS, IRMG/KG 63000 32000

Analytical Technolog	Inc.							
		CHEMISTRY	Y - QUALI	TY CONT	ROL			
CLIENT : EL PASO PROJECT # : (NONE) PROJECT NAME : BLANCO P		GAS, NEW	MEXICO	ATI	I.D.	: 10692	20	
PARAMETER	UNITS	ATI I.D.	-	DUP. RESULT	RPD	SPIKED SAMPLE		% RE(
PETROLEUM HYDROCARBONS	MG/KG	10690603	<20	23	NA	220	190	110

% Recovery = (Spike Sample Result - Sample Result) 100 ---- X Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) 10 Х

Average Result

METALS RESULTS

ATI I.D. : 106920 CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) PROJECT NAME : BLANCO PLNT DATE RECEIVED : 06/27/1 REPORT DATE : 07/22/9 PARAMETER UNITS 01 02 MG/L<0.010</th><0.010</th>MG/L<0.1</td><0.1</td>MG/L2.351.43MG/L0.006<0.005</td>MG/L<0.05</td><0.05</td>MG/L<0.0002</td><0.0002</td>MG/L<0.10</td><0.10</td>MG/L<0.1</td><0.1</td> SILVER (IN TCLP) ARSENIC (IN TCLP) MG/L BARIUM (IN TCLP) MG/L CADMIUM (IN TCLP) MG/L CHROMIUM (IN TCLP) MG/L MERCURY (IN TCLP) MG/L LEAD (IN TCLP) MG/L SELENIUM (IN TCLP) MG/L

NATES OF STREET

METALS - QUALITY CONTROL

CLIENT PROJECT # PROJECT NAME	: EL PASO : : (NONE) : BLANCO P		GAS, NEW		ATI I	.D.	: 10692	0	
PARAMETER		UNITS	ATI I.D.		DUP. RESULT R		SPIKED SAMPLE		% RE(
SILVER (IN TO ARSENIC (IN TO BARIUM (IN TO CADMIUM (IN TO CHROMIUM (IN MERCURY (IN TO	TCLP) CLP) TCLP) TCLP) TCLP)	MG/L MG/L MG/L MG/L MG/L	10756003 10756003 10755003 10756003 10692002 10756003	<0.1 0.722 <0.005 <0.05 <0.0002	0.725 0 <0.005 <0.05 <0.0002	NA).4 NA NA	1.1 1.84 1.02 0.49	1.00	-
LEAD (IN TCL) SELENIUM (IN		MG/L MG/L	10755003 10756003		<0.10 <0.1	NA NA	0.94 10.7	1.00 10.0	94 101

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result)

Average Result

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 10692001

TEST : FUEL HYDROCARBONS (MODIFIED EPA METHOD 8015)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, : (NONE) : BLANCO PLNT : N11248 : SOIL	DATE RECEIVED DATE EXTRACTED	: 06/26/9 : 06/27/9 : 06/28/9 : 06/29/9 : MG/KG : 10
COMPOUNDS		RESULTS	
FUEL HYDROCAR HYDROCARBON R HYDROCARBONS		2600 C5-C32 GASOLINE	

SURROGATE PERCENT RECOVERIES

DI-N-OCTYL-PHTHALATE (%)

99

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 10692002

TEST : FUEL HYDROCARBONS (MODIFIED EPA METHOD 8015)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, : (NONE) : BLANCO PLNT : N11249 : SOIL	DATE RECEIVED DATE EXTRACTED DATE ANALYZED	: 06/26/9 : 06/27/9 : 06/28/9 : 06/30/9 : MG/KG : 100
COMPOUNDS		RESULTS	
FUEL HYDROCAR HYDROCARBON R HYDROCARBONS		15000 C5-C14 GASOLINE	

SURROGATE PERCENT RECOVERIES

DI-N-OCTYL-PHTHALATE (%)

** Due to the necessary dilution of the sample, result was not attainable

Analytical Technologies, Inc.

GAS CHROMATOGRAPHY - RESULTS

REAGENT BLANK

TEST : FUEL HYDROCARBONS (MODIFIED EPA METHOD 8	015)
CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) PROJECT NAME : BLANCO PLNT CLIENT I.D. : REAGENT BLANK	ATI I.D. : 106920
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBONS QUANTITATED USING	<5 - -
SURROGATE PERCENT RECOVERIES	

SURROGATE PERCENT RECOVERIES

DI-N-OCTYL-PHTHALATE (%)

· Watter

98

TEST : FUEL HYDE	QUALITY ROCARBONS (MODIFIED	CONTRO		ATI . 1	.D.	:	106920	0
PROJECT # : PROJECT NAME : I	EL PASO NATURAL GAS (NONE) BLANCO PLNT 10799815	, NEW MI	EXICO		LE MA	LYZED : ATRIX : :		QUEO
COMPOUNDS				SPIKED SAMPLE	۶ REC	DUP. SPIKED. SAMPLE	•	RP
FUEL HYDROCARBO	NS	<5	50	40	80	40	80	

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result

Result Sample Result Average of Spiked Sample

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 10692001

TEST : BTEX (8020) AND MTBE IN TCLP EXTRACT

	: N11248	DATE RECEIVED	: 06/26/9 : 06/27/9 : 07/01/9 : 07/03/9 : UG/L : 100
COMPOUNDS		RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTYL	ETHER	2000 8100 E 230 270 NA	
BROMOFLUOROBEN	IZENE (%)	120	

E-EXCEEDS INSTRUMENT CALIBRATION RANGE

AND THE

ł

-

ļ

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 10692002

TEST : BTEX (8020) AND MTBE IN TCLP EXTRACT

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX		XICO DATE SAMPLED : 06/26/9 DATE RECEIVED : 06/27/9 DATE EXTRACTED : 07/01/9 DATE ANALYZED : 07/03/9 UNITS : UG/L DILUTION FACTOR : 100
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTY		2300 7900 E 240 940 NA
CIIDDO	CAME DEPORTION DECOVEDTES	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

130

E-EXCEEDS INSTRUMENT CALIBRATION RANGE

2000 2000 2

GAS CHROMATOGRAPHY - RESULTS

REAGENT BLANK

TEST : BTEX (8020) AND MTBE IN TCLP EXTRACT

PROJECT # PROJECT NAME	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : BLANCO PLNT : REAGENT BLANK	ATI I.D. : 106920 DATE EXTRACTED : 07/01/91 DATE ANALYZED : 07/03/91 UNITS : UG/L DILUTION FACTOR : N/A
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTYL	ETHER	<0.5 <0.5 <0.5 <0.5 NA

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

95

- 11		
X	Analytical Technolog	han Inc.
3	, , , , , , , , , , , , , , , , , , , ,	

METHYL-T-BUTYL ETHER

QUALI	TY CONTRO	L DATA	ATI I	· n		106920	i
TEST : BTEX (8020) AND MTBE IN TCL	P EXTRACT	•	AII 1		i	100920	
CLIENT : EL PASO NATURAL GAN PROJECT # : (NONE) PROJECT NAME : BLANCO PLNT REF I.D. : 10799910	S, NEW ME	XICO		LE MA	YZED : ATRIX : :		-
COMPOUNDS	SAMPLE RESULT			ہ REC		DUP. % REC.	RPI
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	<0.5 <0.5	5 5 5 5 5	13 4.4 5.8 5.8	108 88 116 116	NA NA	NA NA NA NA	NA NA NA NA

NA

NA

NA

NA NA

1.5

NA

NA

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result Average of Spiked Sample

				CHAIN			EI Paso Natural Eas Company OF CUSTODY RECC	anų ECORC	وهکا (د) 59	אין	•	
Project No. Samplers: Za (2000-000	Project Name NOKTH (Signature)	PLA 9/7	X.T. Receiving Temp. (*F) a Number	Total No. of Containers	stae8 ybotau3 to niart3	Intact?	91000000000000000000000000000000000000			A C C C C C C C C C C C C C C C C C C C	P ALALLY BROCKIZ	Laboratory TECALUNCAJIES, DIC SLIFT STRET STRE Z & SSO 44	1 W T
2 6/24/91	1/20 Solt	4211N		44	V0 V0		XX	XX	XX	XX	Spaint Composite - 6" Spaint Ergen erfle 25 1	TE - 6" DE TH EDI = E MAX PEUSTON	
			-								~	suisoil 1	-1-1-
						╉╍╉╾				-			1-1-
					$\left\{ \begin{array}{c} \\ \end{array} \right\}$	┼╌┼╌┼	$\left - \right $			╉╾╂╾╄			
Relinquished by: (Signature)	lgmature)	6/26/97 13:00	Received by: (Signature)	(entre)	-	-	Relinquished by: (Signature)	d by: (Sign	ature)	-	Date/Time	Received by: (Signature)	T
quished	ignature)	Date/Time	Received by: (Signature)	nature)		α.	Relinquished by. (Signature)	d by: (Sign	ature)		Date/Time	Received by: (Signature) Nind Calelmon	
Refinquished by: (Signature)	ignature)	Data/Time	Received for Laboratory by: (Signature)	oratory b	y: (Signat	(e.j	Date	Date/Time	Remarks:	¥ ل	17 ACC.#	#106920	T
Results & Invoices to: JOA P.O. BOX 4990	10: Jahn Ka 4990 JEAN	Results & Invoices to: JOhn LAMD LAMD E PUG P.C. BOX 4990 JA MUNITON JUM F	EPUG, where a	Charge / OP-	X50	charge code cuard	Charge code wath another of -201	40/08		esuits Rep	Date Results Reported / by: (Signature)		

ĩ

•

نغد (۲۰۱۰ ما د

ii

October 23, 1991

ţ

Mr. Roger Anderson Acting Environmental Bureau Chief New Mexico Oil Conservation Division P.O. Box 2088 Land Office Building Santa Fe, New Mexico 87504-2088

handerts et 10/24/9/ EPA16-OCD metry

P. O. BOX 1492 EL PASO, TEXAS 79978

PHONE: 915-541-2600

RE: Hydrocarbon Recovery Proposal for El Paso Natural Gas Company's Blanco Compressor Station

Dear Mr. Anderson:

It is my pleasure to provide the attached HYDROCARBON RECOVERY, WORK PLAN, dated October 1991, covering the installation of two recovery wells at EPNG's Blanco Compressor Station. The plan has been revised as requested in Mr. David Boyer's letter dated September 16, 1991. The October 1991 plan addresses the issues of increased screen length and providing for active pumping of the recovery wells, as requested in the September 16 letter.

Also attached is a summary of the John Mathes and Associates soil gas survey and water samples collected at Blanco earlier this year. Furthermore, copies of the analytical results for samples collected earlier this year by EPNG lab personnel in thirteen monitor wells are attached as requested in the September 16 letter. This is provided as additional information on soil and groundwater investigations performed at Blanco.

The attached data should be satisfactory to comply with the conditions set forth in Mr. Boyer's letter. We anticipate the installation of the recovery wells will commence before the end of the year.

If you have any questions or need additional information please advise.

Very truly yours,

Thomas D. Netetims

Thomas D. Hutchins, Manager North Region Compliance Engineering bc: G. E. Bauer N. Prince A. N. Pundari H. Van File 5200

, , ,

t

1 11

SCOPE OF WORK

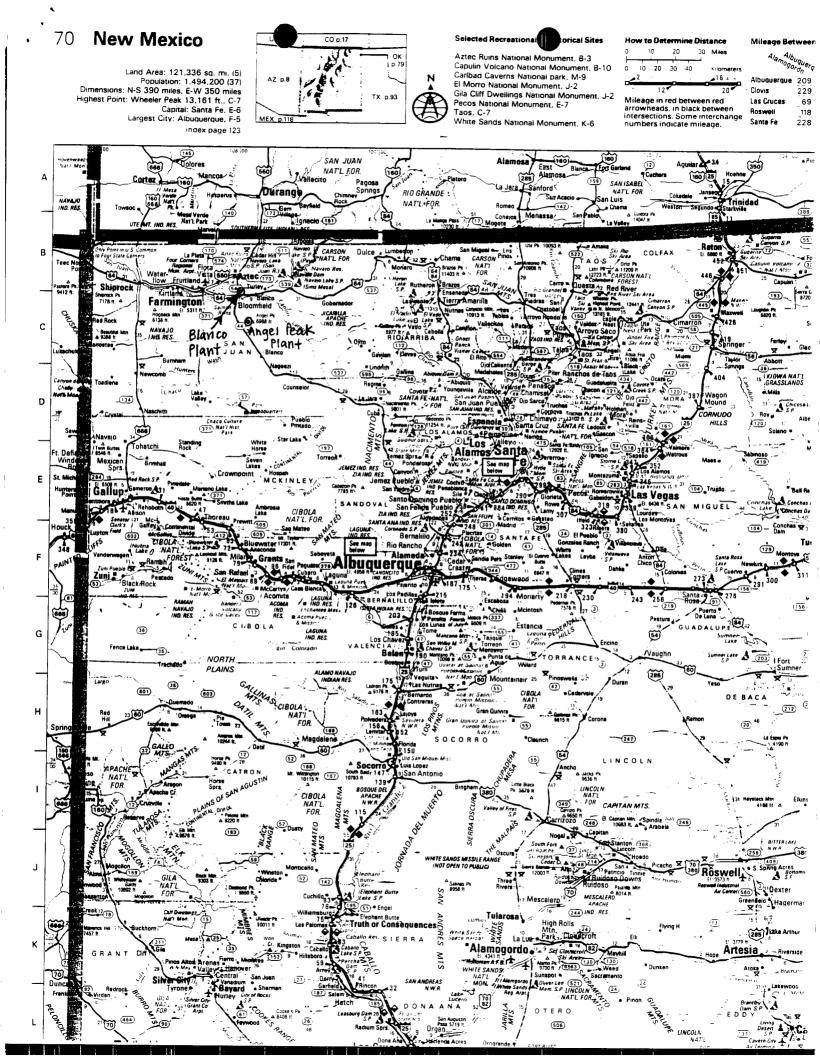
10/24/91
 EPN6/OCA meetil

CLOSURE OF NORTH FLARE PIT NEAR BLANCO PLANT

I. GENERAL

The project involves closure of an inactive flare pit located north of El Paso Natural Gas Company's Blanco Plant. The flare pit is located in Section 11, Township 29N, Range 11W, San Juan County, approximately 1/4 mile north of Blanco Plant. Blanco Plant is located approximately one mile north of Bloomfield, New Mexico. The location of the plant is shown on the attached map.

The primary objective is to remove all hydrocarbon contaminated soil.


II. EXCAVATION AND HAULING REQUIREMENTS

The existing pit is approximately 150 foot feet long, 75 feet wide and 20 feet deep. The contractor must excavate a minimum 20 feet of soil from the bottom of the pit. In addition, hydrocarbon contaminated soil from the pit berms should also be excavated and removed. Since the existing pit is approximately 20 feet from grade, the contractor will need to slope the existing pit sides in order to allow equipment access to the bottom of the pit.

The contractor must transport the contaminated soil to El Paso Natural Gas Company's(EPNG) Angel Peak Plant. Angel Peak Plant is located at NE/4, Section 8, T-27-N,R-10-W,San Juan County. The plant is approximately sixteen miles from Blanco Plant. To get to the plant, go south on Highway 44. Then turn left on a dirt road, across from the intersection of NAPI Road 3003 and Highway 44. A six mile dirt road leads to the plant. The road does not have a county road designation and is known only as the "Angel Peak Plant Road".

At Angel Peak Plant, the contractor must install a two foot high earthen berm and forty seven inch high "hogwire" fence around the proposed soil remediation area. The location of the soil remediation area will be selected by an EPNG representative. In addition, a twenty foot wide drive through gate must be installed on one side of the remediation area.

The contractor must spread the soil at the disposal site in a six inch lift. Assuming 8333 cubic yards (150ft*75ft*20ft) of soil will be excavated, a 300 feet by 750 feet area must be bermed and fenced. In addition, the contractor must disc the soil two times per week for the duration of the remediation project. Assuming a backhoe can excavate 550 cubic yards per day, the project length will be approximately sixteen days.

Page 2 Scope of Work - North Flare Pit near Blanco Plant

The contractor must assist EPNG by providing the use of the backhoe for collection of soil samples (after excavation of 20 feet of pit bottom). Additional excavation beyond the 20 feet depth will be based on field Total Petroleum Hydrocarbon(TPH) soil tests.

At EPNG's request, the contractor shall dig bellholes at various locations (after excavation of 20 feet of pit bottom) at the site. EPNG will analyze the soil samples from the bellholes. Based on the TPH results from the bellholes and NMOCD guidance , EPNG will decide whether to dig further or backfill the pit.

EPNG estimates a minimum of two weeks will be needed to provide a decision on whether further excavation is required. EPNG will give the contractor a three day notice before requiring the contractor to either excavate further or backfill the excavation.

If further excavation is required, the costs will be based on Items #1 and #2 of the Cost Schedule shown in Section IV.

II. CLOSURE REQUIREMENTS

Once the project inspector or project engineer determines that further excavation is impractical or the field TPH test results are acceptable, the pit may be backfilled.

EPNG will provide a borrow site near Angel Peak Plant for clean backfill. The backfill soil is located approximately 600 feet from the soil remediation area. The backfill must be stored onsite, southwest of the flare pit, until EPNG gives approval to backfill the pit.

As a final step in the closure of the flare pit, the contractor shall contour the backfill to avoid ponding, control runoff and erosion.

III. OTHER REQUIREMENTS

The contractor is required to follow New Mexico Motor Transportation Division and Department of Transportation rules regarding truck weight limitations and other applicable transportation rules.

All work performed by the contractor shall conform to applicable industry codes and standards and the EPNG Manual of Engineering Standards. All excavation activities must be in accordance with applicable OSHA and EPNG standards. The EPNG inspector or project engineer will have authorization to make changes in the material or specified procedures. No changes shall be made without the written approval of the project inspector or engineer. Page 3 Scope of Work - North Flare Pit near Blanco Plant

The contractor shall be responsible for providing the required protection and security for equipment or materials on the job site. EPNG will not assume any liability for losses of materials or equipment.

The contractor must provide a list of any subcontractors with the bid. The contractor must receive written approval from EPNG before using subcontractors for any portion of the work. Such approval will not relieve the contractor of any obligations with EPNG.

The contractor shall be responsible for keeping the job site clean and neat and shall provide a general cleanup of the area after completion of the project.

IV. COST SCHEDULE

- 1. Contaminated Soil Excavation, Hauling, Spreading and Discing at Angel Peak Plant _____/cubic yard
- 2. Clean Sandy Backfill from Angel Peak Plant _____/cubic yard
- 3. Construction of two foot high berm and forty seven inch high "Hogwire" Fence at Angel Peak Plant /lineal foot

HYDROCARBON RECOVERY at El Paso Natural Gas Company's Blanco Plant

WORK PLAN

handont at 10/24/91 EPAIG - OCD meetily

OCTOBER, 1991

EXECUTIVE SUMMARY

Hydrocarbon recovery is proposed at two locations at EPNG's Blanco plant. In the north area a new 6-inch diameter well is proposed near the existing monitoring well MW-19 (referred to here as RW-19A). This well will be screened so as to intercept the hydrocarbon layer at the top of the unconfined alluvial aquifer. In the south area the existing 4-inch diameter monitoring well, MW-6 which is screened across the top of the aquifer, is proposed as a recovery well while investigations proceed at this facility.

It is proposed that a dual pump system be installed in well RW-19A. This system will consist of a small diameter hydrocarbon-selective pump and a watertable depression pump. The liquids removed from the aquifer will be pumped separately as hydrocarbons and water, and will be disposed of separately.

It is proposed that a single pump be installed in MW-6 to pump both water and floating hydrocarbons. The hydrocarbon phase will be separated from the water phase on site and both fluids disposed of separately.

Pump sizes and pumping rates for both wells will be determined after completion of aquifer tests and analysis of the physical properties of the fluids to be pumped.

CONTENTS

- I. BACKGROUND
- II. NORTH AREA
- III. SOUTH AREA
- IV. SPECIFICATIONS
- FIGURES:
- Figure 1. Top of Bedrock and Water Levels
- Figure 2. Proposed Well Location, North Area
- Figure 3. Proposed Well Location, South Area

TABLES:

- Table 1. Hydrogeologic Conditions and Contaminants
- Table 2. Water Levels at Blanco Plant

HYDROCARBON RECOVERY at El Paso Natural Gas Company's Blanco Plant

I. <u>BACKGROUND</u>

Floating hydrocarbons have been identified in two monitoring wells at the Blanco Plant site. The New Mexico Oil Conservation Division has requested that El Paso Natural Gas (EPNG) prepare a work plan for removal of the hydrocarbons. This plan shall consist of recovery well installation, and pumping and disposal of the hydrocarbons. Further studies will be conducted to assess site hydrogeology and the source and extent of hydrocarbons.

The actions recommended are based on hydrogeologic information obtained during the studies by McBride-Ratcliff and Associates, Inc., (1988), Bechtel (1988) and K. W. Brown (1990), on preliminary results of the soil gas and groundwater survey performed by John Mathes and Associates (April 15-17, 1991), and on groundwater quality information obtained by EPNG personnel in June, 1991. The information pertinent to this work plan is summarized in Tables 1 and 2.

II. NORTH AREA

Based on data from soil borings for monitor wells and geotechnical programs, Well 19 is located in a paleochannel (buried canyon) in the bedrock (Figure 1), which is now filled with alluvial sediment. The canyon appears to be relatively steepwalled, and probably is reflected in the location of the present arroyo. The canyon walls appear to act as a control on the local groundwater movement.

This well was installed on January 11, 1990. At that time, PID vapor readings were at 2,000 ppm from inside the PVC casing and a hydrocarbon odor and oily sheen were reported on the water level probe. Water samples collected indicated 29 mg/l of total petroleum hydrocarbons, 4200 ug/l benzene, <50 ug/l toluene, 340 ug/l ethylbenzene, and 3740 ug/l total xylenes. None of these analytes were detected in water samples collected at that time from Well 2, approximately 500 feet downgradient.

Water samples were collected on June 18, 1991. At that time approximately 4 inches of free hydrocarbons were observed in the well. No odor or visible contamination was reported in Well 2 during that sampling event. Toluene was detected at .7 ug/l and total xylenes at .9 ug/l were detected in the samples from Well 2. The analyses did not detect total petroleum hydrocarbons at a detection limit of 1 mg/l.

The soil gas survey performed by John Mathes and Associates (JMA) at the north flare pit (samples designated AFP), which is no longer in use, indicates that this pit is possibly the source of the hydrocarbons found in Well 19 (Figure 2). Four borings were located at this pit, one upgradient and three downgradient. All four borings indicated the presence of hydrocarbons in soil gas samples collected. The evaporation pond which is presently lined, was previously unlined (samples designated EP), and may also be a source for hydrocarbons in Well 19. JMA collected three soil gas samples at this area. The upgradient sample (EP-1-20-SG) from location B-1 indicated the presence of hydrocarbons.

Groundwater was not encountered in probe holes at these locations and therefore no water samples were collected by JMA at either the flare pit or the pond.

A single recovery well is recommended just downgradient of Well 19. This location would recover hydrocarbons from both possible sources (the abandoned flare pit and the old unlined pond) and be near the leading edge of the plume of floating hydrocarbons. This proposed well is referred to as RW-19A in this work plan.

III. SOUTH AREA

The steep paleochannel identified in the north area appears to become more broad and shallow to the south end of the site (Figure 1), and filled with less alluvial material. The flare pit and Well 6 appear to be near the eastern edge of this channel. Groundwater flow is to the southwest near the flare pit. It appears that although Well 6 is slightly cross-gradient to the flare pit, no other potential sources exist in the area. In addition, the soil gas survey conducted by JMA (see below) indicates that hydrocarbon contamination attenuates rapidly away from this pit in the downgradient direction.

Well 6 was installed on September 21, 1988. Stained soil with hydrocarbon odor was detected between 12 and 23 feet below the surface. Soils analyzed from these intervals did not contain detectable levels of organic compounds. The well was screened between 19 and 29 feet below the surface. Water samples collected at that time were analyzed for benzene, toluene, ethylbenzene and total xylenes, and none of these compounds were detected. No samples were collected from this well in the January 1990 sampling round.

Water samples were collected on June 18, 1991. At this time 2 inches of free hydrocarbons were observed in this well.

Five soil gas samples were collected by JMA around the south flare pit (Figure 3). Sample FP-5-30-SG from the upgradient location (B-5) and samples FP-1-30-SG and FP-2-30-SG from downgradient locations (B-1 and B-2) indicated that hydrocarbons are present in the unsaturated zone. Only a trace of hydrocarbons (1 ug/l) were detected in upgradient location B-6 (sample FP-6-30-SG) and none in downgradient location B-4 (sample FP-4-30-SG). Water was encountered at the downgradient location B-3. No TPH or BTEX were detected in sample FP-3-30-WH collected at that location.

A single recovery well is indicated near the flare pit at this time. Existing Well 6 is located in such a position as to collect hydrocarbons, and is large enough to accommodate a pump. From the sampling history detailed above, it appears that hydrocarbons are migrating at a slow rate in this area. The best alternative therefore would be to pump this well with known contamination, while further studies are underway as to the configuration of the plume.

IV. SPECIFICATIONS

Specifications will be prepared for a contract driller and for in-house support from the conceptual outline which follows.

Well Drilling: The preferred drilling method is hollow stem auger, but air rotary equipment may be considered. Split spoon samples should be collected every 5 feet if hollow stem auger equipment is used. These samples will be for chemical analysis and lithologic logging purposes.

Well Construction: The well RW-19A will be constructed of six inch PVC. The screen will be either mild or stainless steel, placed near the with at least two feet of screen above the water level and at least 10 feet of screen below the water surface to produce sufficient volume of pumping and to accommodate seasonal water level fluctuations. At least a 15 foot, .010 screen will be used as it is anticipated that only the product layer will be pumped. A gravel pack consisting of silica sand, size #30, a bentonite seal, cement - bentonite grout to surface, and galvanized surface casing will also be installed.

Well Development: The well will be developed by surging and pumping with air or water to remove fine material introduced during drilling prior to sampling.

Aquifer Tests: Slug tests (either bail down or plug) will be conducted on both hydrocarbons and groundwater in the new recovery well RW-19A and in Well 6 prior to initiation of pumping.

Sampling and Analysis: Physical tests (grain size analysis, porosity, bulk density) will be performed on soils from screened intervals. Physical tests (viscosity, specific gravity) will be performed on hydrocarbons and on water samples. Chemical analysis will be performed on soil samples from the new well, and on floating hydrocarbons and water from both wells. Analytes will include cations/anions, TDS and nitrogen (NO3, NO2 and TKN). BTEX and TPH analyses will not be performed because floating product is present.

Surveying: Location, surface level, top of casing will be surveyed.

Pumping: Pump sizes and pumping rates for both wells will be determined after completion of aquifer tests and analysis of the physical properties of the fluids to be pumped.

<u>RW-19A:</u> The dual pump system should be of a small diameter in order to fit inside the 6 inch diameter well. One pump should be equipped with a sensor which allows collection of floating hydrocarbons only. The other pump shall be placed lower in the well in such a way as to create sufficient drawdown to recover the floating product.

<u>MW-6:</u> The pump should be of a small diameter in order to fit inside the 4 inch diamter well. The pump will be explosion proof and capable of pumping both hydrocarbons and water.

Disposal:

<u>RW-19A:</u> Assuming that the pumps collect the hydrocarbon phase and water phases separately, the limited volume of hydrocarbon liquid could possibly be disposed of through a used oil vendor. The water phase will be disposed of appropriately.

<u>MW-6:</u> Since both water and hydrocarbons are removed together, the liquids will be separated at the surface and disposed of appropriately.

TABLE 1

Hydrogeologic Conditions And Presence Of Contaminants At Existing Monitor Wells

MW-19

Lithology of screened interval Aquifer thickness Saturated thickness Seasonal fluctuations Boundaries

Amount of product Sources Well diameter Hydraulic conductivity Gradient Transmissivity

9-WW

clay, fine to med. sand 35' (estimated) 12' (estimated) June 91 2' > Jan 90 outcrop 600' to west

Arroyo/paleo channel wall $< 50^{\circ}$ to SE

June 91 1' > Jan 90

gravel, sandstone

10,40

2" layer (6/19) south flare pit

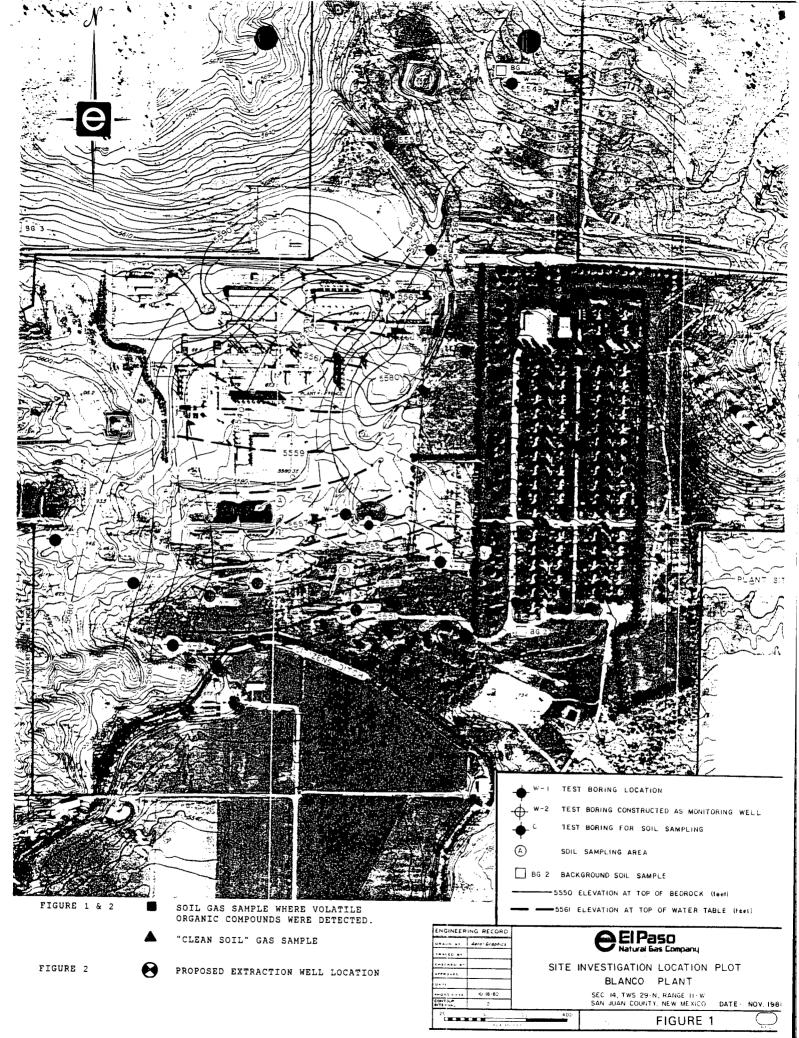
north flare pit/unlined evap. pond

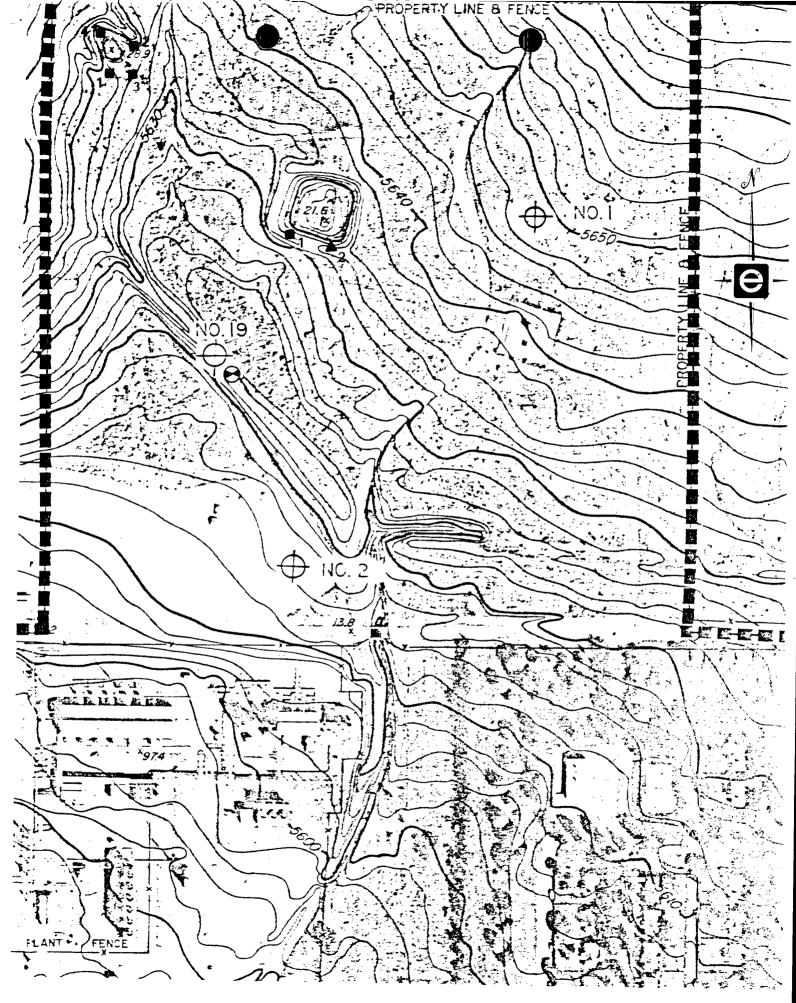
4" layer (6/18)

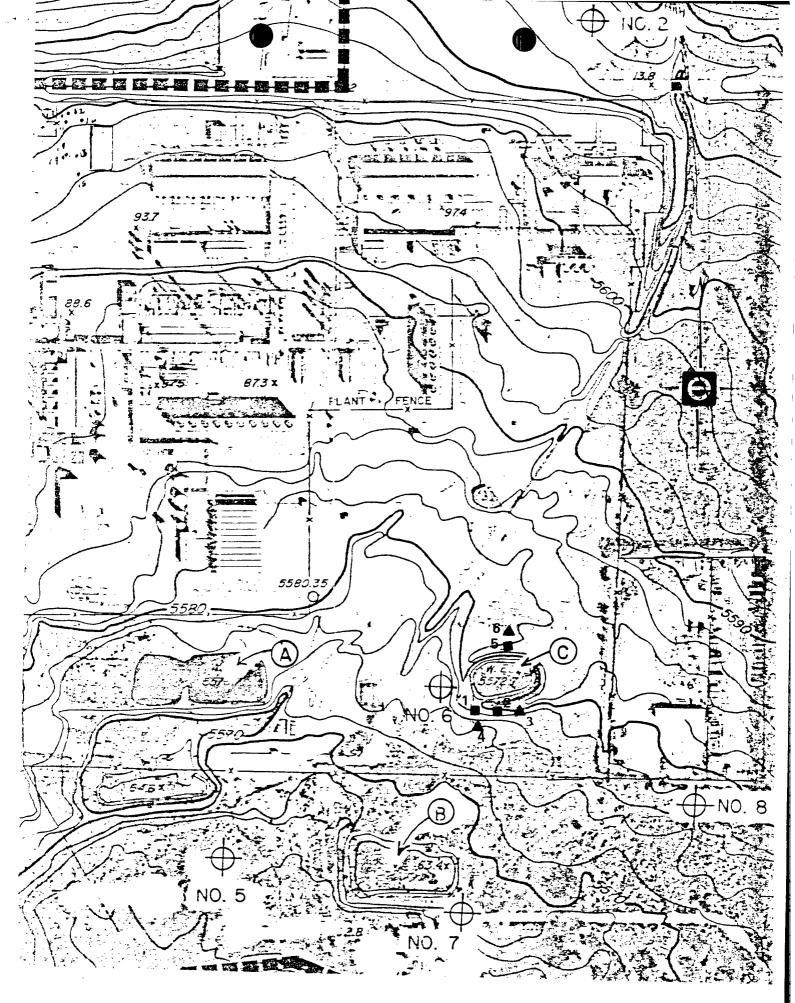
1 x 10⁻¹ (estimate no bail test)

2"

 $212 \text{ gpd/ft.} (b = 10^{\circ})$


.007


4


1.5 x 10^{4} cm/sec from bail test .006 102 gpd (b = 32') 38 gpd/ft (b = 12')

Data
Well
Monitor
Plant
Blanco
Table 2.

DATE DEPTH	ER IO WAIER			4.1 6/18/91 53.75 5562.22	6/18/91 53.75	6/18/91 53.75	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 18	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 28.83	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 18 6/18/91 28.83	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 28.83 6/18/91 28.83 6/18/91 28.83 6/18/91 28.83 6/18/91 28.83 6/18/91 28.83	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 18 6/18/91 28.83 6/18/91 28.83 6/18/91 13.5 6/18/91 13.5	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 18 6/18/91 18.83 6/18/91 13.5 6/18/91 13.5 6/18/91 18.58	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 28.83 6/18/91 18 6/18/91 13.5 6/18/91 13.5 6/18/91 18.58 6/18/91 13.5 6/18/91 15.17	6/18/91 53.75 6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 18.83 6/18/91 18.68 6/18/91 13.5 6/18/91 18.58 6/18/91 15.17 6/18/91 15.17 6/18/91 15.17	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 18.63 6/18/91 18.63 6/18/91 18.58 6/18/91 18.58 6/18/91 18.58 6/18/91 13.5 6/18/91 22.58 6/18/91 22.58 6/18/91 22.58 6/18/91 22.58 6/18/91 22.58 6/18/91 22.58 6/18/91 22.58 6/18/91 22.58 6/18/91 22.58 6/18/91 22.58	6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 28.83 6/18/91 28.83 6/18/91 13.5 6/18/91 13.5 6/18/91 15.17 6/18/91 15.17 6/18/91 15.17 6/18/91 15.17 6/18/91 22.58 6/18/91 22.58 6/18/91 19.33 6/18/91 19.33	6/18/91 53.75 6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 18.68 6/18/91 13.5 6/18/91 15.17 6/18/91 15.17 6/18/91 15.17 6/18/91 15.33 6/18/91 15.17 6/18/91 15.33 6/18/91 15.17 6/18/91 15.33 6/18/91 15.33 6/18/91 19.33 6/18/91 19.33 6/18/91 19.33 6/18/91 19.33 6/18/91 19.33	6/18/91 53.75 6/18/91 53.75 6/18/91 53.75 6/18/91 14.67 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 23.25 6/18/91 18.63 6/18/91 13.5 6/18/91 13.5 6/18/91 13.5 6/18/91 13.5 6/18/91 13.5 6/18/91 13.5 6/18/91 13.5 6/18/91 13.5 6/18/91 13.3 6/18/91 22.58 6/18/91 19.33 6/18/91 19.33 6/18/91 19.33 6/18/91 19.33 6/18/91 19.33 6/18/91 10
) WATER				5564.1	5564.1	5564.1	5564.1 5552.45	5564.1 5552.45 5555.78	5564.1 5552.45 5555.78 5551.35	5564.1 5564.1 5552.45 5552.45 5551.35 5553.83	5564.1 5552.45 5555.78 5555.78 5551.35 5553.83	5564.1 5564.1 5552.45 5551.35 5551.35 5553.83 5553.83 5551.61	5564.1 5552.45 5555.78 5551.35 5553.83 5553.83 5553.83	5564.1 5552.45 5555.78 5551.35 5553.83 5553.83 5551.61 5580.04 5580.04	5564.1 5564.1 5552.45 5551.35 5551.35 5553.83 5553.83 5551.61 5570.74 5579.74	5564.1 5552.45 5555.78 5555.78 5551.35 5553.83 5553.83 5553.83 5553.83 5553.83 5553.83 5553.83 5553.83 5553.83 5553.83 5553.63 5553.57 5556.57	5564.1 5564.1 5552.45 5555.78 5551.35 5553.83 5553.83 5553.83 5553.83 5553.83 5553.83 5553.83 5550.04 5576.57 5576.32	5564.1 5564.1 5552.45 5555.78 5551.35 5551.35 5551.61 5551.61 5551.61 5551.61 5551.61 5550.04 5570.13 5570.13	5564.1 5552.45 5555.78 5555.78 5551.35 5553.83 5553.83 5553.83 5553.83 5551.61 5551.61 5559.74 5570.13 5570.13 5570.13 71	5564.1 5564.1 5552.45 5555.78 5551.35 5553.83 5553.83 5553.83 5553.83 5553.83 5550.04 5570.13 5570.13 5570.13 na
TO WATER LI			51.87				14.05	14.05 21.22	14.05 21.22 17.65	14.05 21.22 17.65 26.47	14.05 21.22 17.65 26.47	14.05 21.22 17.65 26.47 26.47 12.59	14.05 21.22 17.65 26.47 12.59	14.05 21.22 17.65 26.47 26.47 12.59 21.4	14.05 21.22 17.65 26.47 12.59 12.59 12.59 12.59	14.05 21.22 17.65 26.47 26.47 26.47 26.47 26.47 21.4 21.5 21.5	14.05 21.22 17.65 26.47 26.47 12.59 12.59 21.4 21.5 21.5 21.5 20 20	14.05 21.22 17.65 26.47 26.47 12.59 12.59 12.59 12.59 21.4 17.7 21.5 20 20 20	14.05 21.22 17.65 26.47 26.47 26.47 21.5 21.4 17.7 21.5 21.5 20 20 dry dry	14.05 21.22 17.65 17.65 26.47 12.59 12.59 12.59 21.5 21.5 21.5 21.5 21.5 20 20 20 dry dry
			1/8/90				1/8/90	1/8/90 1/8/90	1/8/90 1/8/90 1/8/90	1/8/90 1/8/90 1/8/90 1/8/90	1/8/90 1/8/90 1/8/90 1/8/90	1/8/90 1/8/90 1/8/90 1/8/90 1/8/90	1/8/90 1/8/90 1/8/90 1/8/90 1/8/90	1/8/90 1/8/90 1/8/90 1/8/90 1/8/90 1/8/90 1/8/90	1/8/90 1/8/90 1/8/90 1/8/90 1/8/90 1/15/90 1/15/90	1/8/90 1/8/90 1/8/90 1/8/90 1/8/90 1/15/90 1/15/90 1/15/90	1/8/90 1/8/90 1/8/90 1/8/90 1/15/90 1/15/90 1/15/90 1/15/90	1/8/90 1/8/90 1/8/90 1/8/90 1/18/90 1/15/90 1/15/90 1/15/90 1/15/90	1/8/90 1/8/90 1/8/90 1/8/90 1/8/90 1/15/90 1/15/90 1/15/90 1/15/90 1/15/90	1/8/90 1/8/90 1/8/90 1/8/90 1/15/90 1/15/90 1/15/90 1/15/90 1/15/90 1/15/90
SCREEN			5557.7				5546.5	5546.5 5547	5546.5 5547 5549	5546.5 5547 5549 5549 5544.7	5546.5 5547 5549 5544.7	5546.5 5546.5 5549 5549 5544.7 5549.2	5546.5 5547 5549 5549 5544.7 5549.2	5546.5 5547 5549 5544.7 5544.7 5549.2 5549.2	5546.5 5547 5549 5549 5549.2 5549.2 5573.83	5546.5 5547 5549 5544.7 5544.7 5549.2 5574.3 5570.99	5546.5 5547 5549 5549.2 5549.2 5549.2 5574.3 5574.3 5570.99 5569.85	5546.5 5547 5547 5549 5544.7 5549.2 5574.3 5573.83 5570.99 5570.99 5569.85 5568.83	5546.5 5547 5549 5544.7 5549.2 5549.2 5573.83 5573.83 5570.99 5569.85 5568.83 5587.41	5546.5 5547 5549 5544.7 5544.7 5544.7 5549.2 5574.3 5574.3 5573.83 5569.85 5569.85 5568.83 5568.83 5587.41
INTER-	VAL	ทล	10	1	าล	ทล ทล	па 10	па 10 10	па 10 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	na 10 10 10 10 10 10 10 10 10 10 10 10 10	ла 10 10 10 10 10 10 10	ла 10 10 10 10 10 10 10 10 10 10 10	па 10 10 10 10 10 10 10 10 5 5	ла 10 10 10 10 10 10 10 5 5 7 5 5	ла 10 10 10 10 10 10 10 10 5 5 5 5 5 5	ла 10 10 10 10 10 10 10 10 10 10 10 10 10	ла 10 10 10 10 10 10 10 10 10 10 10 10 10	ала 10 10 10 10 10 10 10 10 10 10 10 10 10 1	ла 10 10 10 10 10 10 10 10 10 10 10 10 10
	DEPTH ELEV.	5597	5556.5	5582	1000	5574	5574 5545	5574 5574 5545 5545	5574 5545 5545 5547	5574 5575 5545 5545 5547 5543	5574 5574 5545 5545 5545 5543 5543	5574 5574 5545 5545 5545 5547 5543 5554.5 5554.5	5574 5574 5545 5545 5545 5543 5554.5 5558.1	5574 5574 5545 5545 5545 5543 5554.5 5554.5 5554.5 5528.1	5574 5574 5545 5545 5547 5543 5543 5548 5528.1 5528.1 5573.58	5574 5574 5545 5545 5547 5547 5554.5 5554.5 5554.6 5554.05 5573.58	5574 5574 5545 5545 5545 5545 5543 5554.5 5554.5 5558.1 5558.1 5558.1 55570.74 5569.6	5574 5574 5545 5545 5547 5543 5543 5543	5574 5574 5545 5545 5545 5543 5543 5543	5574 5574 5545 5545 5545 5545 5543 5543
	2 01	52	57.5	8		8	⁸ 20	8 20 31	8 20 31 21	8 20 31 21 35	8 20 31 21 21 35 12.5	8 20 31 21 21 21 12.5 12.5	8 20 31 31 21 21 12.5 12.5 15 15 70	8 20 31 21 21 21 21 12.5 12.5 15 70 25	8 20 31 35 35 12.5 12.5 15 70 70 25 25 23.8	8 20 21 31 21 21 15 15 15 15 15 70 70 25 25 25 27.4	8 20 31 21 21 21 21 15 12.5 12.5 25 25 25 25 25 26.9 26.9	8 20 20 21 31 12.5 15 15 15 25 25 25 23.8 23.8 26.9 26.9 29	8 20 20 20 21 21 21 221 221 221 221 221 2	8 20 20 21 31 31 35 35 35 35 25 25 25 25 25 25 25 25 25 25 25 21 11 11
ROOK XOOK	ELEV	5598	5556.5	5584		5575	5575 5565	5575 5565 5576	5575 5565 5565 5576 5576	5575 5565 5576 5576 5547.5 5546	5575 5575 5576 5576 5576 5546 5546	5575 5575 5576 5547.5 5546 5546 5549	5575 5575 5576 5576 5576 5546 5546 5557 5557	5575 5575 5576 5546 5546 5557 5557 5557	5575 5575 5576 5547.5 5546 5549 5543.1 5594.05 5594.05	5575 5575 5576 5547.5 5546 5557 5557 55549 5593.1 5593.1 5594.05 5594.14	5575 5575 5576 5546 5546 5546 5549 5563 5594.05 5594.05 5594.14 5594.14 5594.14	5575 5575 5576 5547.5 5547.5 5549 5549 5593.1 5594.05 5594.05 5594.14 5593.58	5575 5575 5576 5547.5 5546 5557 5554 55549 5594.14 5594.14 5594.14 5594.14 5594.14 5594.14	5575 5575 5576 5546 5546 5549 5593.1 5594.05 5594.05 5594.14 5594.14 5594.16 5594.16 5594.16
10	BR	51	57.5	9		7	5 7			7 ? 20.5 32	7 ? ? 20.5 32 32 10	7 20.5 32 32 10	7 ? 20.5 32 32 10 14 14	7 20.5 32 32 10 10 14 5 5	7 20.5 20.5 32 32 10 14 14 14 5 5 33	7 ? ? 20.5 32 32 32 10 10 14 14 4 4	7 20.5 20.5 32 32 5 5 3 3 3 3 3 4 4	7 ? 20.5 20.5 20.5 10 10 10 10 14 14 14 14 14 14 14 14 14 14 14 14 14	7 20.5 32 32 32 10 10 14 14 4 4 4 4 4 4 4 4	
CASING		na	5615.97	na		na	na 5566.5	na 5566.5 5577	na 5566.5 5577 5569	na 5566.5 5577 5569 5580.3	па 5566.5 5577 5569 5569 5580.3 га	na 5566.5 5569 5569 5580.3 na na	па 5566.5 5577 5577 5580.3 5580.3 5580.3 na na	na 5566.5 5569 5569 5580.3 na 5564.2 na 5561.44	na 5566.5 5569 5569 5569.3 na 5564.2 na aa 5501.44 5597.44	na 5566.5 5577 5569 5569.3 na 5564.2 na 5564.2 na 5597.44 5598.07	na 5566.5 5569 5569 5569.3 na 8564.2 na 5501.44 5601.44 5598.07 5598.07	na 5566.5 5577 5577 5569 5560.3 na 5597.44 5597.44 5597.43 5597.43	na 5566.5 5577 5577 5569 5569.3 na 5597.44 5598.07 5598.07 5598.07 5598.07 5597.43 5597.43 5597.43	na 5566.5 5569 5569 5569.3 na 8564.2 na 8561.44 5601.44 5598.07 5598.07 5598.07 5598.07 5598.07 5598.21
		5649	5614	5590		5985	5565	5565 5565 5576	5565 5565 5576 5568	5565 5565 5576 5578 5568	5565 5565 5576 5576 5568 5578 5567	5565 5565 5576 5568 5578 5567 5567 5563	5565 5565 5576 5576 5568 5567 5563 5563 5563	5565 5565 5576 5568 5568 5567 5567 5563 5563 5563 5598.1	5565 5565 5576 5568 5568 5567 5567 5563 5593.1 5599.05	5565 5565 5576 5568 5563 5567 5563 5598.1 5598.1 5598.14	5565 5565 5576 5568 5567 5567 5567 5563 5563 5593.1 5599.05 5599.05 5598.14 5598.14	5565 5565 5576 5568 5568 5567 5567 5567	5598.1 55565 5576 5558 5558 5557 5557 5557 555	5598.1 55565 5576 5558 5557 5557 5557 5557 555
	Ö	-	~	e		4	4 W	4 v o	4 2 2 7	4 v 0 v ∞	4 5 9 7 8 6	4 2 0 × 4 0 1 4	1 1 0 9 8 7 6 5 4	4 7 5 5 1 1 1 0 8 8 1	4 ω ω ν ∞ 0 0 1 1 <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u></u>	4 ω ω ν ∞ 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 0 0 0 0 1	4 Ω ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞ × ∞	4 0 0 0 0 0 1

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

September 30, 1991

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT NO. P-327-278-258</u>

Mr. Thomas D. Hutchins, Manager North Region Compliance Engineering El Paso Natural Gas Company P.O. Box 1492 El Paso, TX 79978

RE: EPNG SAN JUAN RIVER PLANT: POND AND PIT CLOSURE PLAN SAN JUAN COUNTY, NEW MEXICO

Dear Mr. Hutchins:

On June 25, 1991, David Boyer and William Olson of the New Mexico Oil Conservation Division (OCD) met with you to discuss the April 1991 "FINAL CLOSURE PLAN FOR WASTEWATER IMPOUNDMENTS AND FLARE PITS AT EL PASO NATURAL GAS COMPANY'S SAN JUAN RIVER PLANT". The discussion focused on the need to update ground water and soil/sludge information from selected piezometers and monitor wells so that at the completion of work ground water will be protected and EPNG will have minimum future liability for past activities. During the meeting OCD stated that before approval could be given for the proposed work, the additional updated information needed to be provided for our evaluation. The requested analytical analyses and answers to a number of questions asked during the June meeting were provided in your letter of August 30, 1991.

The OCD has reviewed the information provided in your August 30 letter, and meeting notes taken by Mr. Olson and Mr. Henry Van of your office, and finds that additional information and/or commitments from EPNG are necessary before the Plan can receive OCD approval:

- 1. The pump-back system is to be kept in operation as an "active" unit during the closure process (p.24). What decision has been reached regarding disposal of this water? Will the pump-back system be kept operational or in working order for the duration of the proposed five-year cover system monitoring as a back-up measure (p.28)?
- 2. Will pond 1 be dewatered prior to the start of closure? If so, how?

Mr. Thomas D. Hutchins September 30, 1991 Page 2

- 3. OCD has concerns regarding the effectiveness of the two-layer cover system proposed for the salt impacted area. Additional information must be provided to demonstrate that the system can work as designed. Specifically, the following questions must be adequately answered:
 - a. Are borrow soils #1 and #3 sufficiently coarse to prevent wicking from the substrate to these soils?
 - b. Are the textural differences between borrow soil #2 (proposed for the top layer) and soils #1 and #3 (lower layer) sufficient to discourage downward movement of the limited rainfall moisture expected at this locality?
 - c. What effect will compaction by earthmoving equipment have on the ability of the cover system to perform as designed?
- 4. Show specifically on the site map the proposed locations for the borrow soils. Is enough soil available in the selected areas to complete the cover system? How will the borrow soil areas be closed and returned to grade so that additional erosion problems are not created?
- 5. A high level of benzene (7,400 ppb) and elevated values of other volatile aromatic hydrocarbons were detected in well P-10. Prepare an additional work element to provide adequate investigation and remediation of petroleum hydrocarbons at this location.
- 6. A high level of total Kjeldahl nitrogen (120 ppm) was detected in well M-4. Over time and distance this species can change to nitrate-nitrogen and threaten domestic water supplies. Prepare an additional work element to provide adequate investigation, delineation and remediation (if necessary) of the various nitrogen species in the vicinity of this location.
- 7. Sufficiently high levels of benzene and other aromatics were found at the North Flare Pit to require additional vertical and horizonal sampling by EPNG. Provide additional specifics on the proposed investigation and remediation procedures necessary to properly close both this pit and the South Flare Pit.

Mr. Thomas D. Hutchins September 30, 1991 Page 3

If you have any questions regarding the material or information requested in this letter, please call Bill Olson at (505) 827-5885 after October 21. Before providing a specific response to the items addressed in this letter, an additional meeting to discuss this matter could be scheduled if desired by EPNG to speed up resolution of these issues so that physical closure can begin.

Sincerely,

Roger Anderson, Acting Chief Environmental Bureau

cc: OCD Aztec Office

SEP 1 7 1991

RECEIVED

August 30, 1991

OIL CONSERVATION DIV. SANTA FE P. O. BOX 1492 EL PASO, TEXAS 79978 PHONE: 915-541-2600

Mr. David Boyer Environmental Bureau Chief New Mexico Oil Conservation Division P.O. Box 2088 Land Office Building Santa Fe, New Mexico 87504-2088

RE: Pond and Pit Closure Plan for El Paso Natural Gas Company's San Juan River Plant

Dear Mr. Boyer

Thank you for the opportunity to meet with Bill Olson and yourself on June 25, 1991, concerning the proposed closure plan for the ponds and pits at San Juan River Plant. In accordance with your request, attached are two copies of the EM38 ISOPLETH LINES drawing and the revised FIGURE 3 from the Final Closure Plan. Figure 3 was revised to note the datum used and the date the contours were determined.

As we discussed at the meeting, El Paso is planning to contract for the closure of the ponds and pits. Work continues on contract preparation. However, a job showing will not take place, and therefore no work, until the plan is approved by NMOCD.

In order to answer questions raised at our meeting, please consider the following:

- 1. The raw water pond will also be closed;
- 2. The north and south flare pits will be both closed;
- 3. The pump-back pond will remain open until the other closure activities are completed;
- 4. K.W. Brown & Associates advised that no additional compaction, other than that obtained during cover placement was considered during the bench-scale analysis.
- 5. The cover system will not be compacted other than that which occurs as a part of placement;
- 6. An EPNG inspector will be on site to supervise the work and the inspector will verify the correct borrow sources are used. The inspector will also make sure that at least nine inches (9") of each borrow source will be used on the cover system; and,
- 7. Gypsum will not be utilized as part of the cover system.

Also attached are copies of the analytical results from soil and sludge samples collected in the ponds/pits and water samples collected in monitor wells.

El Paso is ready to perform the activities outlined in the closure plan and further clarified above. I look forward to receiving your approval so El Paso may commence the project. If you have any questions or need additional information please advise.

Very truly yours,

Thomas D. Hutchins

Thomas D. Hutchins, Manager North Region Compliance Engineering

bc: G. Aragon G. E. Bauer S.D. Miller N. Prince H. Van File

i.

1 11

TO: John Lambdin

FROM: Norman Norvelle

DATE: July 2, 1991

PLACE: North Engineering Laboratory-Farmington

SUBJECT: SAN JUAN RIVER PLANT MONITOR WELLS

On June 27, 1991, Richard Benson and Dennis Bird sampled the following monitoring wells at San Juan River Plant: W-2, MW-4, P-7, P-8, and P-9. The sample D-2 was a duplicate sample of W-2 to be used for quality control The following analytical parameters are to be performed on these purposes. samples: EC, pH, nitrate, sulfate, groundwater chloride, magnesium, potassium, sodium, benzene, toluene, xylene, ethylbenzene, carbonate, bicarbonate, total alkalinity, and TKN. All bailing and sampling was done with disposable, one-time use equipment and bottles.

All wells were bailed 3 casing volumes. The following information was collected on each well:

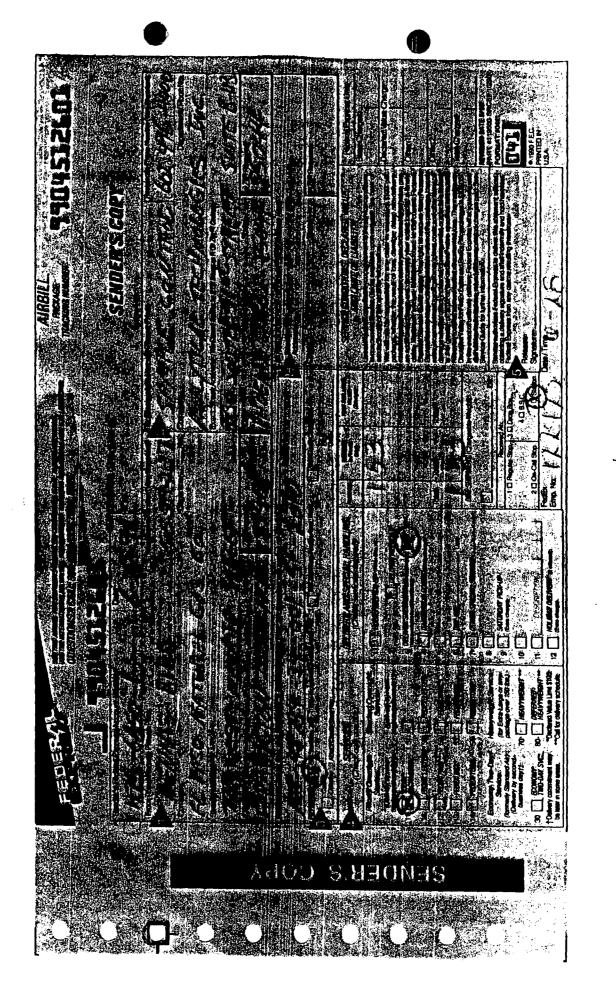
MONITOR	DEPTH TO	DEPTH TO	CASING
WELL #	BOTTOM	WATER	I.D.
W-2	62' 4"	51' 1"	4"
MW-4	57'	45	2"
P=7 P-10	15' 9"	4' 11"	2"
P-8	24' 3"	8' 2"	2"
P-9	26' 4"	10' 9"	2"
P-10			

Monitor well P had the smell of hydrogen sulfide. ρ -7 - Hit bottom at 2.0'

The sample numbers used were N11258 to N11263. The samples were sent to A.T.I. Labs the next day via Federal Express. Samples were stored and shipped at 4 degrees Centigrade. Analysis and shipping was charged to 108-48734-34-001-51-2010. Each tech worked 4 hours overtime each and this will be charged to 108-48734-34-001-11-2010. Attached is the C.O.C., map, sender's copy, and the parameters from K. W. Brown.

Should you have any questions or comments, please let me know.

Korma


Norman Norvelle

Enclosures

7/10/91

cc: Richard Benson Dennis Bird Tom Hutchins Sandra Miller File

FM-10-0003

ANALYSIS# NIIZSP - NIIZ63

.

-1

1

EPNG Juan Final Closure Plan

Table 3.	Analytical p	arameters for a	oil, aludge, and	groundwater samples.
----------	--------------	-----------------	------------------	----------------------

BC pH Arsenic* Barium* Cadmium*	Chromium* Chloride Cyanide Fluoride Lead* Magnesium*	Mercury* Nitrate Potasaium Sodium Selenium* Silver*	Sulfate Zinc Benzene Toluene Xylenes Oil & Grease
Groundwater Sa	unles		\setminus
EC pH Nitrate Sulfate	Chloride Magnesium Potasaium Sodium	Benzene Toluene Xylene Ethylbenzene	CARBONATE BICARBONATE TOTAL ALKALINITY TICN

equipment decontamination with distilled-water rinse for EC and pH measurements, followed by instrument calibration using known standards. QA/QC procedures for cleaning sampling equipment used to collect soil and sludge samples for organic laboratory analysis were as follows:

- removing all excess soils from the tools
- rinsing with tap water
- rinsing with analytical-grade hexane
- rinsing with analytical-grade acetone
- rinsing with deionized water.

Dedicated bailers will be used to collect groundwater samples. All equipment used to collect groundwater samples, other than the bailers, will be subjected to the same described decontamination rinsing procedures, as appropriate.

In addition to observing field QA/QC procedures, laboratory QA/QC was required. Information concerning laboratory procedures was provided by the contract laboratory for inclusion with laboratory results. The laboratory was required to conduct matrix spikes and analyze duplicate samples. Recovery rates reported for the QA/QC samples will be required to most the standards specified by the EPA for the given procedure.

Shipment of all samples collected at the site for offsite analyses were tracked using chainof-custody procedures. Organic samples were preserved at 4°C and shipped to the analyzing laboratory via an overnight carrier.

4.3 DRAINAGE BASIN REMEDIATION AND CLOSURE

anteann ann

Previous investigations have indicated that the drainage basin downgradient from the wastewater impoundments is heavily impacted by saits (KWB&A, 1989). The extent of the sait-affected area can be visually distinguished by the presence of amorphous saits at the soil sur-

23

			C					OF CU	EI Paso Natural Eas Company DF CUSTODY RECC	npanu RECORD			· · · ·	e
Project No.	u.	Project Nan	N / 2 /		Project Name SAN UMAN KITER STATION						Requested Analysis		aboratory	
San	Samplers: (Signature)	N 0N Signature)	11 LOX-	R UULIR Date	Receiving Temp (°F)							1000	ECHUUI	
Tennio	że C	Rind		16-22-9		-1		<u>p</u>	3/1500	Deuseningeninge	N St	MAN	57 UN XEE/	
Lab ID	Date	Time	Matrix		Sample Number	Total N	o nisdO	(1581n1	0,400	60	XXX	PHORNIX	-11- Remarks A2 85044	
-	5-27-9	6-27-9 15:00	inter	NII	258	1	ON.	1	くの	X	X X	monitor well	0-2	
2 6	12-1-9	6-27-9114:50 LLATER	Lenter	NIN	259	4	NO	1	0	XX	X X	maritar Let	K-2	
3 6	-27-91	6-27-91 16:20 LINTCA	LLATCK	NIN	360	4	NO	1	へつ	X	X	main a heli	い サー うと	
7 +	16-22-	×2241 11:10 Enter	in 72	110	261	4	01	۱	への	$\widehat{\mathbf{X}}$	X X	moniter well	P-10	
S S	16-12-	6-27-91 19:00 harren	match	IIN	262	4	ON	1	への		X X	maritar LELL	prof 1/2 / make	>~
6 6	16-22-	6-27-91 18:00 hutch	ante.	MINI	263	4	NG	١	へつ	$\langle \rangle$	X V	maiitar UELL	p-9 6-9	
			 	· · ·								XTACHED:		
								 				Scuent chies	157K7	
							 					and a	1 603	
													KCO,	
												SOG	Tetal Alkylinity	
												5	/	
												The		
								 				~~		
												Za		
Relinquished by: (Signature)	by: (Sign	lature) Bin o		Date/Time		Received by: (Signature)	(e)		Relinquis	Relinquished by: (Signature)	lre)	Date/Time Recei	Received by: (Signature)	
Relinquished by: (Signature)	by: (Sign	lature)		Date/Time	_	Received by: (Signature)	e)		Relinquis	Relinquished by: (Signature)	(eur	Date/Time Received $\begin{pmatrix} 29/q_1 \\ 11:00 \end{pmatrix}$	Received by: (Signature) X (I Tun Cale Pure	· · · · · · · · · · · · · · · · · · ·
Relinquisned by: (Signature)	by: (Sign	lature)		Date/Time		Received for Laboratory by: (Signature)	y by: (Sig	Inature)		Date/Time	Remarks:	FT ACC.# 106989	89	
Results & Invoices to:: Jan. V	oices to::	Jan, 1	1 .	FARMAIN, F	EPNG,		Charge Code	8734	-34- ¢1	-/2	Date Results	Date Results Reported / by: (Signature)		
VHITE-Testing Laborator	horatory	VELOW EPA	Id us I Dr	WK-Fiald Sampler				6	>				san juan repro Form 71-65	-

9830 S. 51st Street Suite B-113 Phoenix, AZ 85044 (602) 496-4400

ATI I.D. 106989

July 18, 1991

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: San Juan River Station

Attention: John Lambdin

On 06/29/91, Analytical Technologies, Inc. received a request to analyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (602) 496-4400.

Mary A. Typer

Mary Tyer Project Manager

M. barry for Robert V. Woods Laboratory Manager

RVW:jat Enclosure

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

Analytical **Technologies**, Inc.

CLIENT	EL PASO NATURAL GAS, NEW MEXICO	DATE RECEIVED : 06/29/91
PROJECT # PROJECT NAME		REPORT DATE : 07/17/91
FROJECT NAME	ATI I.D. : 106989	KEPOKI DATE : 07/17/91

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01 02 03 04 05 06	N11258 - Well $D - 2$ N11259 - Well $W - 2$ N11260 - Well $WW - 4$ N11261 - Well $\rho - 10$ N11262 - Well $\rho - 8$ N11263 - Well $\rho - 9$	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	06/27/91 06/27/91 06/27/91 06/27/91 06/27/91 06/27/91

----- TOTALS -----

MATRIX	<pre># SAMPLES</pre>
AQUEOUS	6

a put an

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

l

GENERAL CHEMISTRY RESULTS

ATI I.D. : 106989

CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) PROJECT NAME : SAN JUAN					DATE RECEIVED : 06/29/91 REPORT DATE : 07/17/91			
PARAMETER	UNITS		02	03	04	05		
PARAMEIER	01115	01				03		
CARBONATE (CACO3) BICARBONATE (CACO3) HYDROXIDE (CACO3) TOTAL ALKALINITY (AS CACO3) CHLORIDE CONDUCTIVITY, (UMHOS/CM) NITRATE AS NITROGEN PH SULFATE TOTAL KJELDAHL NITROGEN	MG/L MG/L MG/L MG/L MG/L UNITS MG/L MG/L	<1 113 <1 113 610 7300 8.0 8.0 8.0 3400 2.3	<1 134 <1 134 620 7460 8.1 7.9 3600 1.9	<pre><1 605 <1 605 190 4520 <0.06 6.9 1200 120</pre>	<1 1950 <1 1950 260 15800 <0.06 6.9 7100 0.6	<1 505 <1 505 8000 33900 15.6 7.4 1300 1.0		

GENERAL CHEMISTRY RESULTS

ATI I.D. : 106989 CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) DATE RECEIVED : 06/29/91 PROJECT NAME : SAN JUAN **REPORT DATE : 07/17/91** ______ PARAMETER UNITS 06 MG/L <1 MG/L 179 MG/L <1 MG/L 179 MG/L 179 ______ CARBONATE (CACO3) BICARBONATE (CACO3) 179 HYDROXIDE (CACO3) TOTAL ALKALINITY (AS CACO3) 179 CHLORIDE 930 CONDUCTIVITY, (UMHOS/CM) 148000 NITRATE AS NITROGEN MG/L 0.60 ΡH UNITS 6.4 SULFATE MG/L 8800 MG/L 0.5 TOTAL KJELDAHL NITROGEN

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT		:	EL PASO NATURAL GAS, NEW MEXICO		
PROJECT	#	:	(NONE)		
PROJECT	NAME	:	SAN JUAN	ATI	I.D.
INCOLU	INDUID	•	BRIV U URIN	VIT	1.0.

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE	SPIKE CONC	% REC
CARBONATE	MG/L	10698901	<1	<1	NA	NA	NA	NA
BICARBONATE	MG/L		113	117	3	NA	NA	NA
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	NA
TOTAL ALKALINITY	MG/L		113	117	3	NA	NA	NA
CARBONATE	MG/L	10698903	<1	<1	NA	NA	NA	NA
BICARBONATE	MG/L		605	594	2	NA	NA	NA
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	NA
TOTAL ALKALINITY	MG/L		605	594	2	NA	NA	NA
CHLORIDE	MG/L	10750902	240	240	0	500	250	104
CONDUCTIVITY (UMHOS/CM)		10698902	7460	7510	0.7	NA	NA	NA
NITRATE AS NITROGEN	MG/L	10698906	0.60	0.59	2	2.56	2.00	98
PH	UNITS	10698901	8.0	8.0	0	NA	NA	NA
PH	UNITS	10698903	6.9	6.9	0	NA	NA	NA
SULFATE	MG/L	10693101	260	270	4	600	340	100
SULFATE	MG/L	10698903	1200	1100	9	2300	1200	92
TOTAL KJELDAHL NITROGE	MG/L	10698906	0.5	0.6	18	2.8	2.0	115

Acertable . 1/23/41

: 106989

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) Average Result

وما العرز مردو

METALS RESULTS

CLIENT PROJECT # PROJECT NAME	: EL PASO NATURAL GAS : (NONE) : SAN JUAN	, NEW MEXIC	.	REPORT I		: 06/29/91 : 07/17/91
PARAMETER	UNIT	S 01	02	03	04	05
POTASSIUM MAGNESIUM SODIUM	MG/I MG/I MG/I	J 134	6.8 140 1410	5.0 62.6 933	12.2 162 4380	17.3 256 9280

ATI I.D. : 106989

METALS RESULTS

		ATI I.D. : 106989
	EL PASO NATURAL GAS, NEW MEXICO	DATE RECEIVED : 06/29/91
PROJECT NAME : S		REPORT DATE : 07/17/91
PARAMETER	UNITS 06	
POTASSIUM MAGNESIUM SODIUM	MG/L 13.4 MG/L 181 MG/L 3720	

ń

METALS - QUALITY CONTROL

CLIENT PROJECT # PROJECT NAME	: EL PASO NAT : (NONE) : SAN JUAN	TURAL GAS,	NEW MEXICO		. : 10698	39
PARAMETER	יט	NITS ATI 1	SAMPLE I.D. RESULI		SPIKED SAMPLE	
POTASSIUM MAGNESIUM SODIUM	M	G/L 10698	8901 8.3 8901 134 8901 1400	8.3 0 134 0 1400 0	379	50.0 98 250 98 500 92

% Recovery = (Spike Sample Result - Sample Result) Х 100 Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) -----Х 100 Average Result

ATI I.D. : 10698901

TEST : BTEX & MTBE (EPA METHOD 602)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, 1 : (NONE) : SAN JUAN : N11258 : AQUEOUS	DATE DATE DATE UNITS	SAMPLED : 06/27/91 RECEIVED : 06/29/91 EXTRACTED : N/A ANALYZED : 07/09/91 S : UG/L CION FACTOR : 1
COMPOUNDS	•	RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTY	L ETHER	<0.5 <0.5 <0.5 <0.5 <0.5 <2.5	
SURRO	GATE PERCENT RECOVERIES		

BROMOFLUOROBENZENE (%)

ATI I.D. : 10698902

TEST : BTEX & MTBE (EPA METHOD 602)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW : (NONE) : SAN JUAN : N11259 : AQUEOUS	DATE RECEIVED DATE EXTRACTED DATE ANALYZED	: 06/27/91 : 06/29/91 : N/A : 07/09/91 : UG/L : 1
COMPOUNDS		RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTY	L ETHER	<0.5 <0.5 <0.5 <0.5 <0.5 <2.5	
SURRO	GATE PERCENT RECOVERIES		

BROMOFLUOROBENZENE (%)

ATI I.D. : 10698903

TEST : BTEX & MTBE (EPA METHOD 602)

PROJECT # PROJECT NAME CLIENT I.D.	: EL PASO NATURAL (: (NONE) : SAN JUAN : N11260 : AQUEOUS	S, NEW MEXICO	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 06/27/91 : 06/29/91 : N/A : 07/09/91 : UG/L : 1
COMPOUNDS			RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTYL	ETHER		<0.5 <0.5 <0.5 <0.5 <0.5 <2.5	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

I.

ATI I.D. : 10698904

TEST : BTEX & MTBE (EPA METHOD 602)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GA : (NONE) : SAN JUAN : N11261 : AQUEOUS	DATE R DATE E DATE A UNITS	SAMPLED : 06/27/91 RECEIVED : 06/29/91 SXTRACTED : N/A ANALYZED : 07/09/91 : UG/L : 250
COMPOUNDS		RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTY		7400 140 260 910 <625	
SURRO	GATE PERCENT RECOVERI	IES	

103

BROMOFLUOROBENZENE (%)

ATI I.D. : 10698905

TEST : BTEX & MTBE (EPA METHOD 602)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX		DATE DATE DATE UNITS	SAMPLED : 06/27/91 RECEIVED : 06/29/91 EXTRACTED : N/A ANALYZED : 07/09/91 S : UG/L FION FACTOR : 1
COMPOUNDS		RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTY	L ETHER	<0.5 <0.5 <0.5 <0.5 <0.5 <2.5	
SURRO	GATE PERCENT RECOVERIES		

BROMOFLUOROBENZENE (%)

ATI I.D. : 10698906

TEST : BTEX & MTBE (EPA METHOD 602)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN : N11263 : AQUEOUS	D DATE SAMPLED : 06/27/91 DATE RECEIVED : 06/29/91 DATE EXTRACTED : N/A DATE ANALYZED : 07/09/91 UNITS : UG/L DILUTION FACTOR : 1
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTY		<0.5 <0.5 <0.5 <0.5 <0.5 <2.5
SURRO	GATE PERCENT RECOVERIES	

11

BROMOFLUOROBENZENE (%)

REAGENT BLANK

TEST : BTEX & MTBE (EPA METHOD 602)

PROJECT # PROJECT NAME	: EL PASO NATURAL GAS, NEW ME : (NONE) : SAN JUAN : REAGENT BLANK	ATI I.D. DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 106989 : 07/09/91 : 07/09/91 : UG/L : N/A
COMPOUNDS		RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTYL	ETHER	<0.5 <0.5 <0.5 <0.5 <0.5 <2.5	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

partonly 2/23/91

	QUALITY	CONTRO	DL DATA	ATI]	· -		106989	
TEST : BTEX & M	TBE (EPA METHOD 602)		ATT 1		÷	100303	
PROJECT # : PROJECT NAME :	EL PASO NATURAL GAS (NONE) SAN JUAN 10799805	, NEW MH	EXICO		LE MA	ATRIX :	07/10/ AQUEOU UG/L	
COMPOUNDS				SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE		RPD
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTYL	ETHER	<0.5 <0.5 <0.5 <0.5 <0.5 <2.5	10 10 10 30 20	9.0 9.5 9.7 28 16	90 95 97 93 80	8.8 9.2 9.5 28 15	88 92 95 93 75	2 3 2 0 6

Accepton 2/22/21

TO: Sandra Miller[№]

FROM: John Lambdin

DATE: April 1, 1991

PLACE: North Engineering Laboratory/Farmington

RE: San Juan River Plant Pits & Ponds Analytical Results

Please find enclosed the referenced results for samples collected on January 22, 1991. The TCLP metals analyses are now finished which completes all the requested analyses on these samples You will also find my data assessment summary attached.

Let me know if you have any questions.

John Lalli

FM-10-0003A

cc: file

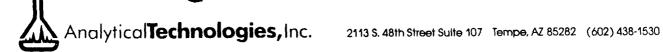
	NORTH REGION LABORATORY CONTRACT LABORATORY DAY EVALUATION: OVER		VIEW
	DATE: 04/01/91 SDG No: 103534	LABORATORY: ATI # SAMPLES: 10	
	BY: J.A. LAMBDIN	ANALYTE: TCL	
	FILE: N10026.WK2	ANALYSIS DATE: 03- Page: 2	26-91
	DATA ASSES	SMENT SUMMARY	COMMENTS
1	HOLDING TIMES & TEMPERATURE	0	
2	CALIBRATIONS	W/A	
3	BLANKS	0	
4	LABORATORY CONTROL SAMPLES		
5	DUPLICATE ANALYSIS	As No	tep
6	MATRIX SPIKES	0	
7	SAMPLE VERIFICATION (C.O.C.)	0	
8	FIELD SAMPLES	<u> </u>	
9	OTHER QC	<i>C</i> /	
10	OVERALL ASSMENT	O	
M = Dat $Z = Dat$ $X = Pro$ ACTION		-	Keronany
	RPD Should be treated a	an estimate	
		·	
AREAS O	F CONCERN: Nawe		
NOTABLE	performance: <u>Complex</u> soil	matazx not	l'
······			
The sig has bee	nature below indicates that the da n reviewed by a qualified chemist	ata for this analyse and and evaluated a	es group as stated.
Approve	ed by: Laboratory Coordinator	Date: //	101/91

l

. 1

NORTH REGION LABORATORY CONTRACT LABORATORY DATA REVIEW LABORATORY DATA EVALUATION: FIELD SAMPLE

	04/01/91	LABORATORY:	ATI
ACCESSION #:	103534	# SAMPLES:	10
BY:	J.A. LAMBDIN	ANALYTE:	TCLP METALS
FILE:	N10026.WK2	REPORT DATE:	03-26-91
		Page:	1


FIELD DUPLICATES

Ì

N10035 and Duplicate N10043 - Pond #2 SOIL Composite N10035 N10043

TEST	UNITS		SAMPLE RESULT (S)		N10043 DUPLICATE RESULT (D)	RPD (%)	ACCEP' YES	TABLE NO	CONTROL
EPNG ID #			N10035		N10043				
ATI ID #			05		09				
Silver	MG/L	<	0.010	<	0.010	0	х		+/- 35%
Arsenic	MG/L	<	0.1	<	0.1	0	х		+/- 35%
Barium	MG/L		0.162		0.161	1	X X		+/- 35%
Cadmium	MG/L		0.005	<	0.005	0	х		+/- 35%
Chromium	MG/L	<	0.010		0.013	-26	Х		+/- 35%
Mercury	MG/L	<	0.0002			0	Х		+/- 35%
Lead	,	<	0.05			0	X		+/- 35%
Selenium	MG/L	<	0.1	<	0.1	0	X		+/- 35%
Zinc	MG/L		0.072		0.093	-25	X		+/- 35%
N10037 and Dupl	icate N10045 -	- F	ond #2 8	SLU	JDGE Compos	site			
EPNG ID #			N10037		N10045				
ATI ID #			06		10				
Silver	MG/L		0.010			0	Х		+/- 35%
Arsenic	MG/L	<	0.1	<	0.1	0	X X		+/- 35%
Barium	MG/L		0.296		0.262	12	Х		+/- 35%
Cadmium	MG/L	<	0.005		0.005	0	Х		+/- 35%
Chromium	MG/L		0.036		0.019	62		Х	+/- 35%
Mercury	MG/L	<	0.0002			0	Х		+/- 35%
Lead	MG/L	<	0.05		0.05	0	X		+/- 35%
Selenium Zinc	MG/L MG/L	<	0.1 0.180	<	$0.1 \\ 0.115$	0	Х	х	+/- 35%
						44			+/- 35%

Comments: Data marked with a "No" in the acceptance column should be treated as estimates. The variability seen here in not unreasonable considering the nature of the sample matrix.

ATI I.D. 103534

March 26, 1991

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: San Juan River

Attention: John Lambdin

On 03/04/91, Analytical Technologies, Inc. received a request to analyze soil sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

The results reported for TCLP analyses are the actual measured values, and are not corrected for matrix spike recovery bias. The matrix spike recovery results for TCLP analyses are included in this report.

If you have any questions or comments, please do not hesitate to contact us at (602)438-1530.

Jane Humphren Foote

Jane Humphress Foote Project Manager

RVW:clf Enclosure

Joher V. Work

Robert V. Woods Laboratory Manager

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

				27201	7						E	Notale	
			~ 7				EI Paso Natural 6as Company	mpany	477	#	+ 101707		,
					CH	CHAIN OF CU	STODY	OF CUSTODY RECORD	+	>	6		
L	Project No.	Ĕ	Project Name			Type			Aequested Analysis		121	SENT TO ANALY (1 Col	1001
<u>ني ط</u> يبي	Samplers: (Signature)	- 41	متملح	Jun V	KIVER STRIVIN PONDE	and No.		eni uoije,					
	Per ma	an RR	rail	1 Serines	P. Brid Rup Ka	Sample		AL PROVIDE LAND	Que -		ά.	Remarks	
L = L		Date	Time	Comp. GRA8	(B) Sample Number	ers	\geq	ALC AND		San Jun	ו צומכע	San JUAN RIMER STATION (SJKS)	. (يەرك
		1-22-91 16-22-1	<u>8</u>	X	NIDDLE	0	4 22	X		5565	KLXAV	1 FLARE PI	TSOIL COM
~	6	" "	·[`	X		2		XX	レ ハ	5065	:	· · · ·	" • "
·	12	: :		X	N/UD25	9	11	XX	~1	2 2252	50072	FLAKE Pil.	5212 (240
5	4	" "		X	N10029	\mathcal{A}	1	X	い 	SJKS	1	1 1	1 V
	- <i>b</i>		- -	\mathbf{X}	N10030	0	11	XX	5		Pour #1	5014 CC	Congers17E
3)			-	X	1500IN	2	1,	XX	5	SJRS	~		V 11
					1110032	5	1.	$X \\ X$		STRS PO.	PONDA	SLUDGE	17
4	00	-		X	N10033	Q	;	X X		5765			4
<	-					0	:	XX			C#UNOU	2017	*
<u>7</u>	9				N100 35	2	=	XX		7	POND#2	5016	4
<u>,</u>			ţ^		NJOOSC	9	2	XX		CC SATI	240100	SLUDAS	< 11
5	13			X	N10037	\mathcal{A}	*	XX		בתתבר י	۲ ۲		1.
<u> </u>			<u>`</u>	X	N10038	9	11	XX	-1	5725 PO	02043	3 2012	¢ ,
F	-	-			· ·	d		X	L1	SAL	:	2	
\	15	-			040011	Q	×	XX	15		~	240075	15
00	-	~ ;	$\left \right $		1700/11	\mathcal{A}^{*}	v	XX	ι _ς		17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
	Relinquished by: (Signature)	by: (Signat	ure)	11	Date/Time Received by: (Signature)	(6	Retinqui	Retinquished by: (Signature)	ture)	Date/Time		Received by: (Signature)	(6
	howman	J' L'	here an))	1-23-91 10:00								
	Relinquished by: (Signature)	by: (Signat	(eu		Date/Time Received by: (Signature)	(8	Relinqu	Relinquished by: (Signature)	ture)	Date/Time		Received by: (Signature)	
<u> </u>	Relinquished by: (Signature)	by: (Signat	ure)		Date/Time Received for Laboratory 1/1: (Signature)	v 🔥: (Signature)		Date/Time	Remarks:		_		
					aher	mith	124	191 10:15 apr	ž				
<u> </u>	Carrier Co:	and a	2100010	16. 6.	2 JOH. J LAMPOND Carrie	Carrier Phone No.			Date Results Re	Date Results Reported / by: (Signature)	ature)		
	Air Bill Min - C				-1) Geo - 71% 4			I					

held Bink ELANIC Gick FIRIS BLANK ISNT TU ANALYTICAL Technologics, PHENIX Remarks Received by: (Signature) Duplicate Received by: (Signature) DuplicaTa SLUDGE DUPLICATE Puply call 11 # 10192 GLASS - 820 PLASTER - 50 520065 Soll 5012 Date Results Reported / by: (Signature) Date/Time Date/Time SJES 2755 SARS SITKC STAS STRS SJES Requested Analysis Remarks: Retinquished by: (Signature) Relinquished by: (Signature) 1-24-91 10:15 am CHAIN OF CUSTODY RECORD Date/Time E Paso Natural Bas Company Pechnique DIG2 BLASHOU 4 7 ₹ 5 2 2 Type and No. Sample Contain-Received for Laborator//by. (Signature) S 9 5 Carrier Phone No. 0 \bigcirc Leil R. Praller Date: 1-23791 Received by: (Signature) Received by: (Signature) areno SAN JUNN RIVER STATUN POLOS Sample Number 111100 00 00 11+++ 10040 0044 10045 V100 46 84.00IN 20/01 0 0 1-23-91 10:00 Date/Time Date/Time Date/Time 13000 10. Jux 499 Time Comp. GRA8 Carrier Co: SeNDILUARCH Air Rill No. Z. a J. J. J. J. S. J. Vargen & Jacob 1 Project Name 1-2-4/1/6-2-1 Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) 2 ~ -2 2 2 LANDOW, Samplers: (Signature) Date 2 \$ \$ < < 5 Project No. 202 33 1 K 6 R R 0 đ

Analytical Technolog

CLIENT	: EL PASO NATURAL GAS, NEW MEXICO	DATE RECEIVED
PROJECT #	: (NONE)	
PROJECT NAME	: SAN JUAN RVR	REPORT DATE

: 03/26/91

: 01/24/91

ATI I.D. : 103534

ATI #	CLIENT DE	SCRIPTION	MATRIX	DATE COLLECTED
01	N10027 (1	01792-02) North FI	are Pit SOIL	01/22/91
02	N10029 (1	01792-04) South F	LAE DIT SOIL	01/22/91
03		01792-06) Rond #1		01/22/91
04		01792-08) Pond #1	(sludge) SOIL	01/22/91
05	N10035 (1			01/22/91
06	N10037 (1	01792-12) Bud #2	(Shaye) SOIL	01/22/91
07		01792-14) Rind #3		01/22/91
08		01792-16) Pond #3		01/22/91
09	N10043 (1	01792-18) Deplicate:	Bond #2 (Corp) SOIL	01/22/91
10	N10045 (1	01792-20) Deplicato:	Ruy #2/studie) SOIL	01/22/91

---- TOTALS -----

MATRIX _____ SOIL

SAMPLES

10

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date. Analytical Technologiana.

METALS RESULTS

MG/L

CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) DATE RECEIVED : 01/24/91 PROJECT NAME : SAN JUAN RVR REPORT DATE : 03/26/91 **** UNITS 01 02 03 04 05 PARAMETER _______ SILVER (IN TCLP) <0.010 <0.010 <0.010 <0.010 <0.010 MG/L

 <0.1</td>
 <0.1</td>
 <0.1</td>
 <0.1</td>
 <0.1</td>

 0.064
 0.085
 0.200
 0.180
 0.162

 0.005
 <0.005</td>
 0.010
 <0.005</td>
 <0.005</td>

 <0.010</td>
 0.192
 0.013
 0.027
 <0.010</td>

 <0.0002</td>
 <0.0002</td>
 <0.0002</td>
 <0.0002</td>
 <0.0002</td>

 ARSENIC (IN TCLP) MG/L BARIUM (IN TCLP) MG/L CADMIUM (IN TCLP) MG/L MG/L CHROMIUM (IN TCLP) MG/L MERCURY (IN TCLP) LEAD (IN TCLP) MG/L <0.05 <0.05 <0.05 <0.05 <0.05 SELENIUM (IN TCLP) MG/L <0.1 <0.1 <0.1 <0.1 <0.1

0.186

ATI I.D. : 103534

0.406 0.062 0.059

0.072

i.

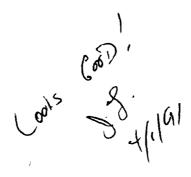
ZINC (IN TCLP)

•

METALS RESULTS

ATI I.D. : 103534

CLIENT : EL PASO NATURA PROJECT # : (NONE) PROJECT NAME : SAN JUAN RVR	L GAS, N	NEW MEXICO		DATE RECH REPORT DA		01/24/91 03/26/91	
PARAMETER	UNITS	06	07	08	09	10	j
SILVER (IN TCLP) ARSENIC (IN TCLP) BARIUM (IN TCLP) CADMIUM (IN TCLP) CHROMIUM (IN TCLP) MERCURY (IN TCLP) LEAD (IN TCLP) SELENIUM (IN TCLP) ZINC (IN TCLP)	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	<0.010 <0.1 0.296 <0.005 0.036 <0.0002 <0.05 <0.1 0.180	<0.010 <0.1 0.103 <0.005 <0.010 <0.0002 <0.05 <0.1 0.209	<0.010 <0.1 0.113 0.008 0.017 <0.0002 <0.05 <0.1 0.143	<0.010 <0.1 0.161 <0.005 0.013 <0.0002 <0.05 <0.1 0.093	<0.010 <0.1 0.262 0.005 0.019 <0.0002 <0.05 <0.1 0.115	



METALS - QUALITY CONTROL

CLIENT		:	EL PASO NATURAL GAS, NEW MEXICO
PROJECT	#	:	(NONE)
PROJECT	NAME	:	SAN JUAN RVR

ATI I.D. : 103534

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE		ዩ REC
SILVER (IN TCLP) ARSENIC (IN TCLP) BARIUM (IN TCLP) CADMIUM (IN TCLP) CADMIUM (IN TCLP) CHROMIUM (IN TCLP) MERCURY (IN TCLP) LEAD (IN TCLP) SELENIUM (IN TCLP) ZINC (IN TCLP) ZINC (IN TCLP)	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	$\begin{array}{c} 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353402\\ 10353405 \end{array}$	<0.1 0.085 <0.005 <0.005 0.192 <0.0002 <0.05 <0.1 0.406	<0.010 <0.1 0.096 <0.005 <0.005 0.200 <0.0002 <0.05 <0.1 0.363 0.075	NA NA 12 NA NA 4 NA NA NA 11 4	0.822 1.0 1.00 0.956 0.999 1.04 0.0049 0.89 1.0 1.45 1.10	1.00 1.0 1.00 1.00 1.00 0.0050 1.00 1.0 1.00 1.0	82 10C 92 96 10C 85 98 89 100 104 103

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) ------ X 10 Average Result

NORTH FLARE PITSOIL COMP SOUTH FLAKE PIT SUIL COMPA 5 CompuSITE ANALY (1 CAL SAN JUAN RIVER STATION (SURS) 5 5 BTEX (Non- aqueorit) 5 2 7 5 \$ 5 1 SENT TO ANALY (10 Tech rologies, Macinix 2 7 570065 52425 Received by: (Signature) Received by: (Signature) ZIL SLUDGE 2012 5012 2012 2 2 Remarks #101792 PONDAS SJRS POND#2 STRS POND#2 POND # 1#ano 2#UNOU : Date Results Reported / by: (Signature) ~ 2 5 Date/Time Date/Time 3 7 5 とうい SAES 2265 5005 STR SJKS SNES SALS 2520 STRE SNES 5425 50 525 Requested Analysis Remarks: The second Relinquished by: (Signature) Relinquished by: (Signature) H2491 10:15am Carles Alexandre CHAIN OF CUSTODY RECORD Date/Time Preservation Preservation **EPaso** Natural 6as Company 120H 5 5 Z ž 13 -r -: ; < Type and No. Sample Contain-Received for Laboratory Wr: (Signature) Ń 5 10 Ô 0 ŝ (^ Q0 Q 0 ١ ا Carrier Phone No. Ŋ Received by: (Signature) Received by: (Signature) I HAND GOID . 71/ N. 5 Sample Number 2 mg 0 0 10034 10033 1500, 220011 N10026 40032 100 21 110037 N10038 110029 10040 N 0030 N10039 マメアイト 1003: 7004 N1003 10:01 16-52-1 Date/Time Date/Time Date/Time 2400 040 70 SAN JUNNAIVER Lennis P. シャンナ Comp. GRA8 PO. Por - 990, 2100012 · · · · · · · · · · · · · · · · Project Name *Led Mr. de S*ignature) Relinquished by: (Signature) Romon Reduce Time Relinquished by: (Signature) Relinquished by: (Signature) 1-22-91 1600 2 ~ 2 2 4 \$ 3 • 2 ٦ \$ 2 2 Samplers: (Signature) Ì Date 2 2 \$ ÷ 2 = ۶, 2 \$ \$ ٠ * r 2 \$ Carrier Co: Project No. ALC BULLIC -2 m) $\widetilde{\mathcal{O}}$ 0 7 5 4 S 3 3 و a 7 8

	T		1	1	ļ	1	T	1	!	1	;	1			-	•
١							Φ		El Paso Natual 6as Companu			111	#	101701	- C C	· · .
							CHAIN OF CUSTODY RECORD	OF CU:	зторү	RECOR	٥	+ , ,		11101	Ś	
Project No.	ç	Project Name	ame					T				Requested Analysis	/seri	7 75	ANA 4710	18.
		- 1	SAN JUAN	RWER	STAR	1 Paros		and		, er , er	$\left \right $		Trach,	volair	- Ollari	×
Samplers	Samplers: (Signature)) بر بر بر		Check R	R Park	La Date: / -23	791 amarl	No. of Sample	-*9JC	enbiuuse Neruesei	X			Remark	Remarks	
	Date	Time	Comp. GRA8	1A8		Sample Number	Þ	Contain-		Selection of	And Solo					
1	1229	16:00	X	2	100 /,	42		Q	4	X X	 	SATES		Soll Du	Pupli cate	
Æ	1	1		6	1001	t M		Q	17	X		57.65	5 Sold		Duplicate	
6	:	-	X	2	11004	4	5	6	*	$\frac{X}{X}$		SZES	1	l	Duplicate	
30	=	2	X	\mathcal{N}_{i}	1004	5		ح	- `	Y X		STIC		DEE DE	pheate	
R	:	=	X	2	1004	\$	~	Ś	:	$\frac{\lambda}{\lambda}$		STRS		2- 23	BLANK Gelt	الاحلا
33	~	:	X		400/1	61		٩	~	XX		SZKC		No - Se	PLASTE - 8 5 Field Bluck	Lut
66	۲	2	X	5	100.48	2		ح	:	$\frac{X}{\lambda}$		STE		74- 2	Erele B.	Buck
												 		2		
						4. 										
Belincinie	Belinoniished hu: (Sinnatura)	natura)			Data/Tima	Received hv. (Signature)	batural		Retinouis	Retinguished by: (Signature)	inature)		Date/Time	Received	Received bv: (Signature)	
	in . An neur		N	1-23-91	10.00											
Relinquis	Relinquished by: (Signature)	gnature)			Time	Received by: (Signature)	nature)		Relinqui	Relinquished by: (Signature)	gnature)		Date/Time	Received	Received by: (Signature)	
Relinquis	Relinquished by: (Signature)	gnature)			Date/Time	Received for Laboratory by: (Signature)	ratoryby: (Si		1-24	1-34-91 10:15 and	Remarks:	- ks:	-	-		
Carrier Co:	Carrier Co: SeA	NTX P.O.	LUARS .	4990	115 10 , 51 No	Jan .	Carrier Phor	Phone No.	-		Date R	Date Results Reported / by: (Signature)	/ by: (Signatur	(6		
As all No. Z	. r.	11/2	, i			2144				ļ	-					

ATI I.D. : 10179201 ,

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, : (NONE) : SAN JUAN RVR : N10026 : NON-AQUEOUS	DATE RECEIVED DATE EXTRACTED DATE ANALYZED	: 01/22/91 : 01/24/91 : 01/28/91 : 01/29/91 : MG/KG : 5
COMPOUNDS		RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		1.2 PPM 5.6 1.5 14	·
SURRO	SATE PERCENT RECOVERIES		

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

1

119

Sauple ID

01 = NIOUZO = NORTH FLARE Pit Soil Composite

ATI I.D. : 10179203

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN RVR : N10028 : NON-AQUEOUS : NON-AQUEOUS : EL PASO NATURAL GAS, NEW MEXICO DATE SAMPLED DATE RECEIVED DATE RECEIVED DATE EXTRACTED : 01/22/91 DATE EXTRACTED DATE ANALYZED : 01/24/91 DATE ANALYZED : 01/24/91 DATE ANALYZED : 01/24/91 DATE ANALYZED : 01/29/91 : 01/29/91
COMPOUNDS	RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	<0.025 0.11 0.11 0.68

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

124

Saugolo IT

03 = N10028 = South FLARE Dit Soil Rupposite

ATI I.D. : 10179205

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN RVR : N10030 : NON-AQUEOUS DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 01/22/91 : 01/24/91 : 01/28/91 : 01/29/91 : MG/KG : 1
COMPOUNDS	RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	<0.025 <0.025 <0.025 <0.025 <0.025	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

105

Sauple FD 05 = N10030 = Pond #1 Soil Composite

ATI I.D. : 10179207

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN RVR : N10032 : NON-AQUEOUS	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 01/22/91 : 01/24/91 : 01/28/91 : 01/29/91 : MG/KG : 1
COMPOUNDS		RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025 <0.025	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

Sarpho II) 07 = NI0032 = Pond #1 Shudge l'ouposite

ATI I.D. : 10179209

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN RVR : N10034 : NON-AQUEOUS	DATE SAMPLED : 01/22/91 DATE RECEIVED : 01/24/91 DATE EXTRACTED : 01/28/91 DATE ANALYZED : 01/29/91 UNITS : MG/KG DILUTION FACTOR : 1
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025 <0.025

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

101

Saple ID

69 = NIGO34 = Poud #2 Soil Composite

ATI I.D. : 10179211

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN RVR : N10036 : NON-AQUEOUS	DATE SAMPLED : 01/22/91 DATE RECEIVED : 01/24/91 DATE EXTRACTED : 01/28/91 DATE ANALYZED : 01/29/91 UNITS : MG/KG DILUTION FACTOR : 1
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025 <0.025

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

100

Sample ID 11 = N10036 = Pond #2 Sludge Corposite

ATI I.D. : 10179213

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW MEXIO : (NONE) : SAN JUAN RVR : N10038 : NON-AQUEOUS	CO DATE SAMPLED : 01/22/91 DATE RECEIVED : 01/24/91 DATE EXTRACTED : 01/28/91 DATE ANALYZED : 01/28/91 UNITS : MG/KG DILUTION FACTOR : 1
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025 <0.025

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

٠,

Saughe ID 13 = NI0038 = Pond #3 Soil Corposite

ATI I.D. : 10179215

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN RVR : N10040 : NON-AQUEOUS DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 01/22/91 : 01/24/93 : 01/28/91 : 01/29/91 : MG/KG : 1
COMPOUNDS	RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	<0.025 <0.025 <0.025 <0.025 <0.025	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

Saple ID

15 = N16040 = Pond #3 Studye Corposita

ATI I.D. : 10179217

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PAÈO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN RVR : N10042 : NON-AQUEOUS	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 01/22/91 : 01/24/91 : 01/28/91 : 01/29/91 : MG/KG : 1
COMPOUNDS		RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025 <0.025	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

88

Scuple ID

17 = NIOOYZ = Dupluate: Porp # 2 Soil

ATI I.D. : 10179219

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: (NONE)DATE RECEIVED: SAN JUAN RVRDATE EXTRACTED: N10044DATE ANALYZED	: 01/22/91 : 01/24/91 : 01/28/91 : 01/29/91 : MG/KG : 1
COMPOUNDS	RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	<0.025 <0.025 <0.025 <0.025 <0.025	.

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

100

Sampl- IT

19 = NICO44 = Duplicate : Pond #2 sharge

REAGENT BLANK

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D.	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : SAN JUAN RVR : REAGENT BLANK	ATI I.D. : 101792 DATE EXTRACTED : 01/28/91 DATE ANALYZED : 01/28/91 UNITS : MG/KG DILUTION FACTOR : N/A
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025 <0.025

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

Saughe ID Blank

REAGENT BLANK

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D.	: EL PASO NATURAL GAS, NEW MEXIC : (NONE) : SAN JUAN RVR : REAGENT BLANK	ATI 1.D. : 101792 DATE EXTRACTED : 01/28/91 DATE ANALYZED : 01/29/91 UNITS : MG/KG DILUTION FACTOR : N/A	
COMPOUNDS		RESULTS	-
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025 <0.025	-

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

Analytical Technologies , inc.					
QUALITY TEST : BTEX (8020)	Y CONTROL DATA	ATI I.D.	:	101792	
CLIENT : EL PASO NATURAL GAS, PROJECT # : (NONE) PROJECT NAME : SAN JUAN RVR REF I.D. : 10179213	, NEW MEXICO	DATE ANAL SAMPLE MAY UNITS	TRIX :		
COMPOUNDS	SAMPLE CONC. RESULT SPIKED	SPIKED %	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE ETHYL BENZENE XYLENES	<0.025 1.0 <0.025 1.0 <0.025 1.0 <0.025 1.0 <0.025 3.0	1.0 100 0.97 97	0.84 0.94 0.90 2.7	84 94 90 90	15 6 7 7

11

% Recovery = (Spike Sample Result - Sample Result) -----X 100 Spike Concentration

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result 100 Х ---Average of Spiked Sample

•	NORTH REGION LABORATORY CONTRAC LABORATORY DA EVALUATION: OVE		DATA REVIEW
	DATE: 02/25/91 SDG No: 101792 BY: J.A. LAMBDIN FILE: N10026.WK1	# SAMP Anal Analysis d	PORY: ATI LES: 23 ATE: VARIOUS PATE: $10-03-9$ Page: 2
	DATA ASSE	SSMENT SUMMA	RY COMMENTS
1	HOLDING TIMES & TEMPERATURE	O	-
2	CALIBRATIONS	NIA	-
3	BLANKS	<u>()</u>	Bottle blanks occupit the SUPROGATE Reconsis Acceptible
4	LABORATORY CONTROL SAMPLES	<u></u>	SUAROGATE RECEIVING Arequitille
5	DUPLICATE ANALYSIS/LAB and Field	<u>()</u>	As Noted .
6	MATRIX SPIKES		- low + noted, Selavium 9:2 low
7	SAMPLE VERIFICATION (C.O.C.)	0	-
8	FIELD SAMPLES	0	_
9	OTHER QC	0	_
10	OVERALL ASSMENT	0	_
ACTION	ITEMS: Any value with an	unaccostable finate c	Po Keloven OR RPT)
AREAS (DF CONCERN: NONE		
	e performance: Complex Watrix deg 1 with.	matim -	these samples difficult
The sig has bee	gnature below indicates that the deep reviewed by a qualified chemist	t and and eva	aluated as stated.
Approve	ed by:Laboratory Coordinate	or/Chemist	Date: 2/27/9/

MEMORANDUM

John Lambdin O.

Norman Norvelle FROM:

July 2, 1991 DATE:

North Engineering PLACE: Laboratory-Farmington

SAN JUAN RIVER PLANT PONDS SUBJECT:

On June 26, 1991, Richard Benson and Dennis Bird sampled the following ponds at San Juan River Plant: Pond 1, Raw Water Pond and Seep (Recycle) Pond. The following analyses were to be performed on each sample: 8 EP TOX metals, aromatic hydrocarbons (8020) and chlorinated hydrocarbons (8010). A one point grab sample was taken about 8 feet from the shore.

The samples were stored and shipped at 4 degrees Centigrade. Samples were shipped to A.T.I. Labs the same day they were collected via Federal Express. The analytical testing and shipping were charged to 108-48734-34-001-51-2010.

Attached is a copy of the C.O.C. and a map. Should you have any questions, please let me know.

non

Norman Norvelle

Enclosures

cc: Richard Benson Dennis Bird Tom Hutchins Sandra Miller File

Ог		NUMBER OF CONTAINERS	m	M	M					2				~		ixed	X.
DATE <u>6.34-91</u> PAGE /		The 13 Priority Pollutant Metals The 8 EP Tox Metals by EP Tox Prep. (1310) The 8 EP Tox Metals by Total Digestion The 8 EP Tox Metals by Total Digestion	×	X	X					RELINCUISHED BY:	re: Time:	Name: Date	.Xu	HEGEIVED BY:(LAB) Haute: ///// 7me/	ul Malle	Name / Buen	Company: Analytical Technologies, Inc.
Alt C		(1.502/1.502) selitisloV AWQS		-						REI	Signature:	Printed Name:	Company:	Sionalur		Printed I	Analytical
ñ	EQUEST	sbisbing Symmetry Symmetry AWQS SUMA Swandards Yishinooses AWQS								2	Time:	Date		Time:		Date:	
	ANALYSIS REQUEST	Base/Neutral/Acid Compounds GC/MS (625/8270) Volatile Organics GC/MS (624/8240)								RELINOUISHED BY:	نف	Name:	:A:	RECEIVED BY:		Name:	:AL
>	A	Herbicides (615/8150)								REL	Signature:	Printed Name:	Company:	RECEI Sonature:	b	Printed Name	Company
Chain of Custody		Pesücides/PCB (608/8080)								BY: 1.	Time:		11-02-07	Time:		Date:	
uf CL		Diesel/Gasoline/BTXE (MOD 8015/8020) BTXE (8020) Chlorinated Hydrocarbons (601/8010) Aromatic Hydrocarbons (602/8020)	<u>vxx</u>	XXX				 	_	RELINOUISHED BY:	ain Rin	ame:	2	RECEIVED BY:		ime:	
nain		Petroleum Hydrocarbons (418.1) (MOD 8015) Gas/Diesel								BEL	Signature:	Printed Name	Company	RECEI Sonaure:		Printed Name:	Company:
ΰ				2	2						0	SNON	-	51	S	1 WEEK	
	2	(30,00 2137 BBH MATHIX	LUMER	<u> </u>	> KLTER					SAMPI E RECEIPT	NTAINERS	DY SEALS	COND./COLD	09 20	ISH PROJECT	148 17 1 1 1 1 1 1 1 1 1	31-21
	LAM bdil	HONNA STOR	-91 11:25	00:11 K.	05:11 16:		 	 		ANS.	TOTAL NO. OF CONTAINERS	CHAIN OF CUSTODY SEALS	RECEIVED GOOD COND./COLD	LABNUMBER 106 59	PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECT		
gies, Inc.	Tohu ,	1222 11511122 11511122 11522 11522 11522 11522 11522 11522 11522 11522 11522 11522 11522 11522 11522 11522 1152	16-52-9	25-Xama	16-52-9 2		 	 			– २				ION IS REOL	(RUSH) 24 [-34-
.col Technologies, Inc. Phoenix, Arizona		EL PASC MATCH PU RUX 499 TERMINETON 1 DORN LAMAN DORN LAMAN TERMINETON. TREMINETON.	Pew D 1	Rei witter Ruck-25-9	Sup pout	•				SROLECE INFORMATION	SAN JUAN	PROJECT NAME: RIVE K STRETUN		SAMPLE DISPOSAL INSTRUCTIONS	AUTHORIZAT	11.000	42734 -
An, col	PROJECT MANAGER:	Selection States States	N/1242	ł	5 7701					PROJECT IN	PROJECT NO: 0	ECT NAME: A	SHIPPED VIA:	MPLE DISPOSAL	PRIOR	¥1	108-40
	PRO	COMPAN ADDRES BILL TO: COMPAN ADDRES	i la		12						PROJE		IddlHS			TAT/TNOH Comments	Ϊć

1

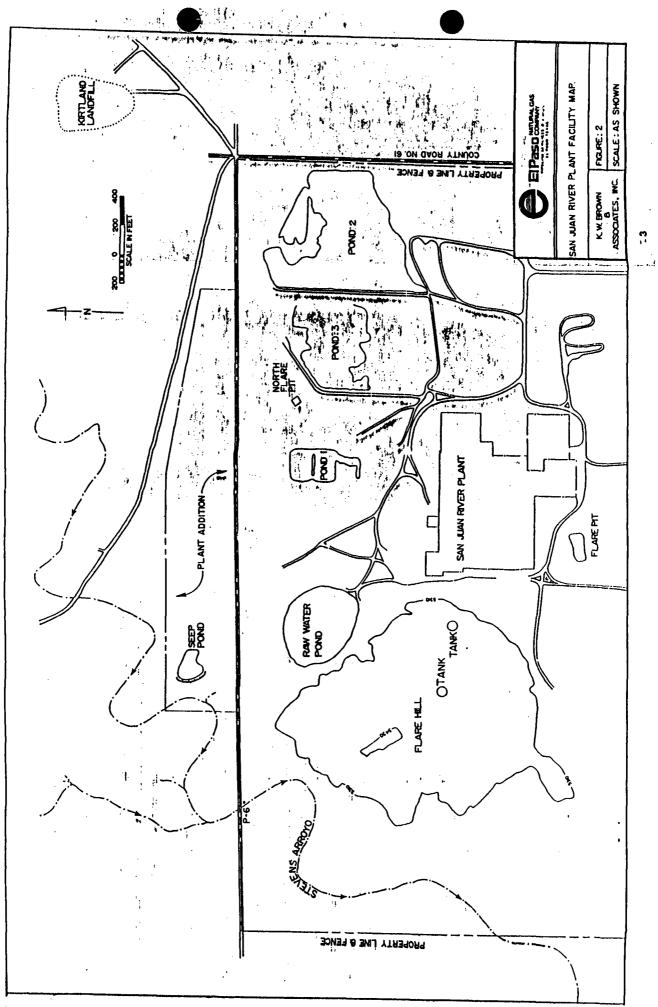
... .

,

of /		NUMBER OF CONTAINERS	M	M	Ŋ						T				4				SINATOR
DATE <u>6-24-91</u> PAGE_		SDWA Volatiles (502.1/503.1) The 13 Priority Pollutant Metals The 8 EP Tox Metals by EP Tox Prep. (1310) The 8 EP Tox Metals by Total Digestion The 8 EP Tox Metals by Total Digestion			X				CUSHED BY:	Signature: Time		Printed Name: Uate	Comnanu'	· limbuo	VED BY: (LAB	Signature: I true:	Printed Name: Date:	Analytical Technologies, Inc.	DISTBURITION: While Camery - ANALYTICAL TECHNOLOGIES, INC. Pink - ORIGINATOR
	REQUEST	ebisbinals yisming AWOS							<u>5</u> 2	Time:		Date			2	Time:	Date:		I INALYTICAL TECH
	ANALYSIS REQUEST	Base/Neutal/Acid Compounds GC/MS (625/8270) Volatile Organics GC/MS (624/8240)							RELINOUSHED BY	Signature:		Primed Name:		company.	RECEIVED BY:	Signature:	Printed Name:	Company:	· White Canady . A
or custoay		BTXE (8020) Chlorinated Hydrocarbons (601/8010) MTBE MTBE MTBE	XX						RELINCUSKED BY: 1.		via third 13:45	Date	KIRD 6-25-YI		RECEIVED BY: 1	Time:	Cate:		
Jhalli		Petroleum Hydrocarbons (418.1) (MOD 8015) Gas/Diesel Diesel/Gasoline/STXE (MOD 8015/8020)								Sopetre	- Item		DENNS	Company	RECE	Signature:	Printed Name	Company:	
	Lambdin	845 COMPAUNY P7499 P7499 RENUMBER	11.75 1.25			11/1/20 MIE/1				SAMPLE RECEPT	TOTAL NO. OF CONTAINERS	CHAIN OF CUSTODY SEALS KONE	INTACT?	RECEIVED GOOD COND./COLD	LAB NUMBER		PRIOR AUTHORIZATION IS REQUIRED FOR TUSH PHOLECIES	ORDER NUMBER	108-48734-34-001-51-2070
Phoenix, Arizona	PROJECT MANAGER: (TODA)			Pour l	RAL WITTR RUD	NIGHT, Sap pour bi				PROJECT INFORMATION	PROJECT NO: CAN JUNN	PROJECT NAME: RIVE K STATUR	P.O. NO.	SHIPPED VIA:	SAMPLE DISPOSAL INSTRUCTIONS		PRIOR AUTHORIZATION IS REG TAT MORIALI	CHARES	108-40734-34

ī

ļ


1

ţ

(

.

. •

9830 S. 51st Street Suite B-113 Phoenix, AZ 85044 (602) 496-4400

ATI I.D. 106899

July 22, 1991

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: San Juan River

Attention: John Lambdin

On 06/26/91, Analytical Technologies, Inc. received a request to analyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

Method 601/602 analyses were performed by ATI, San Diego.

Sample N11244 Seep Pond, contains approximately 60% solid crystals. This solid layer was not broken down during the digestion for graphite furnace analysis. Per your instruction all metal values reported for this sample are from the liquid layer only.

ATI uses Scandium as an internal standard for ICP analyses. Low Scandium recovery was reported for samples N11242, Pond 1 and N11244, Seep Pond. Redigestion and reanalysis on dilutions did not improve Scandium recovery. Matrix interference is suspected.

Due to matrix interference Selenium by graphite furnace and ICP analyses for samples N11242, Pond 1 and N11244, Seep Pond were run at a dilution. Detection limits were raised accordingly.

If you have any questions or comments, please do not hesitate to contact us at (602) 496-4400.

Mary S. Type

Mary Tyer Project Manager

forraine Lavis

Lorraine Davis QA Coordinator

RVW:jat Enclosure Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

Lober V. Woods

Laboratory Manager

Robert V. Woods

CLIENT	: EL PASO NATURAL GAS, NEW MEXICO	DATE RECEIVED : 06/26/91
PROJECT #	: (NONE) : SAN JUAN RVR	REPORT DATE : 07/22/91
	ATI I.D. : 106899	

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	N11242, POND 1	AQUEOUS	06/25/91
02	N11243, RAW WATER POND	AQUEOUS	06/25/91
03	N11244, SEEP POND	AQUEOUS	06/25/91

---- TOTALS -----

MATRIX AQUEOUS # SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

METALS RESULTS

			ATI I.D. : 106	899
CLIENT : EL PASO NATURA PROJECT # : (NONE)	L GAS, NEW	MEXICO	DATE RECEIVED	: 06/26/91
PROJECT NAME : SAN JUAN RVR			REPORT DATE	: 07/22/91
PARAMETER	UNITS 01	02	03	
SILVER ARSENIC BARIUM CADMIUM CHROMIUM MERCURY LEAD	MG/L <(MG/L <(MG/L <(MG/L <(MG/L <().10 <0.010).005 0.005).10 0.114).05 <0.005).10 <0.010).0002 <0.000 .008 <0.002	<0.05 0.119 <0.020 <0.040 2 <0.0002	
SELENIUM	MG/L <	0.05 <0.005	<0.05	

- Nr

METALS - QUALITY CONTROL

LIENT		:	EL PASO NATURAL GAS, NEW MEXICO	
PROJECT	#	:	(NONE)	
PROJECT	NAME	:	SAN JUAN RVR	

ATI I.D. : 106899

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT H	RPD	SPIKED SAMPLE	SPIKE CONC	% REC
SILVER SILVER ARSENIC BARIUM CADMIUM CADMIUM CHROMIUM CHROMIUM MERCURY LEAD SELENIUM	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	10690807 10696901 10693301 10690807 10697501 10690807 10696901 10696901 10696901 10685401 10767202 10692830	0.039 0.039 <0.005 <0.005 1.16 0.025 <0.0002 <0.002	<0.010 <0.010 0.034 0.038 0.038 <0.005 <0.005 1.16 0.024 <0.0002 <0.002 <0.002	NA NA 6 3 NA NA 0 4 NA NA NA	0.096 0.393 MSA 0.139 0.139 0.102 0.454 2.10 0.840 0.0051 0.046 0.046	0.100 0.500 CC= 0.100 0.100 0.100 0.500 1.00 1.00 0.0050 0.050 0.050	96 79 1.00 100 102 91 94 82 102 92 92

Accoptable . 2. 124/41

% Recovery = (Spike Sample Result - Sample Result) ----- X 100 Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) Average Result

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 10689901

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602)

CLIENT : EL PASO NATURAL GAS,	DATE RECEIVED : 06/26/91
PROJECT # : (NONE)	DATE EXTRACTED : N/A
PROJECT NAME : SAN JUAN RVR	DATE ANALYZED : 07/07/91
CLIENT I.D. : N11242, POND 1	UNITS : UG/L
SAMPLE MATRIX : AQUEOUS	DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 2-CHLOROETHYL VINYL ETHER ,3-DICHLOROBENZENE 1,2 & 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLENE CHLOROETHENE 1,2,2-TETRACHLOROETHANE TRANS-1,3-DICHLOROPENE ETHYLENE DICHLOROETHENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROFTIFLUOROETHANE SURROGATE PERCENT RECOVERIES	< 0.5 < 0.2 < 1 < 0.2 < 0.2 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <
NOMOCHLOROMETHANE (%)	94
BROMOFLUOROBENZENE (%)	106

Γ

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 10689902

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602)

CLIENT : EL PASO NATURAL GAS, NEW PROJECT # : (NONE) PROJECT NAME : SAN JUAN RVR CLIENT I.D. : N11243, RAW WATER POND SAMPLE MATRIX : AQUEOUS	UNITS : UG/L DILUTION FACTOR : 1
	RESULTS
BENZENE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE DIBROMOCHLOROMETHANE 2-CHLOROETHYL VINYL ETHER ,3-DICHLOROBENZENE 1,2 & 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TETRACHLOROETHENE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE TOTAL XYLENES TRICHLOROTRIFLUOROETHANE	$ \begin{array}{c} < 0.5 \\ < 0.2 \\ < 1 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.5 \\ < 1 \\ < 0.5 \\ < 1 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.$
SURROGATE PERCENT RECOVERIES	
3ROMOCHLOROMETHANE (%) BROMOFLUOROBENZENE (%)	94 110

GAS CHROMATOGRAPHY - RESULTS

1

ATI I.D. : 10689903 TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602) : EL PASO NATURAL GAS, NEW MEXICO DATE SAMPLED : 06/25/91 CLIENT PROJECT # : (NONE) DATE RECEIVED : 06/26/91 DATE EXTRACTED : N/A PROJECT NAME : SAN JUAN RVR CLIENT I.D. : N11244, SEEP POND DATE ANALYZED : 07/07/91 SAMPLE MATRIX : AQUEOUS UNITS : UG/L DILUTION FACTOR : _____ COMPOUNDS RESULTS BENZENE 0.67 < 0.2 BROMODICHLOROMETHANE BROMOFORM <1 BROMOMETHANE < 0.2 CARBON TETRACHLORIDE <0.2 CHLOROBENZENE < 0.5<0.2 CHLOROETHANE CHLOROFORM <0.2 CHLOROMETHANE <0.2 DIBROMOCHLOROMETHANE <0.2 2-CHLOROETHYL VINYL ETHER NA , 3-DICHLOROBENZENE <0.5 1,2 & 1,4-DICHLOROBENZENE <0.5 DICHLORODIFLUOROMETHANE <1 1,1-DICHLOROETHANE <0.2 1,2-DICHLOROETHANE < 0.21,1-DICHLOROETHENE <0.2 1, 2-DICHLOROETHENE(TOTAL) <0.2 1,2-DICHLOROPROPANE <0.2 CIS-1, 3-DICHLOROPROPENE <0.2 TRANS-1, 3-DICHLOROPROPENE <0.2 ETHYLBENZENE <0.5 METHYLENE CHLORIDE < 2 <0.2 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE <0.2 TOLUENE <0.5 1,1,1-TRICHLOROETHANE <0.2 <0.2 1,1,2-TRICHLOROETHANE TRICHLOROETHENE <0.2 TRICHLOROFLUOROMETHANE < 0.5VINYL CHLORIDE <0.2 TOTAL XYLENES <1 TRICHLOROTRIFLUOROETHANE <2.0 SURROGATE PERCENT RECOVERIES ROMOCHLOROMETHANE (%) 104 BROMOFLUOROBENZENE (%)

119

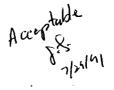
GAS CHROMATOGRAPHY - RESULTS

REAGENT BLANK

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602)

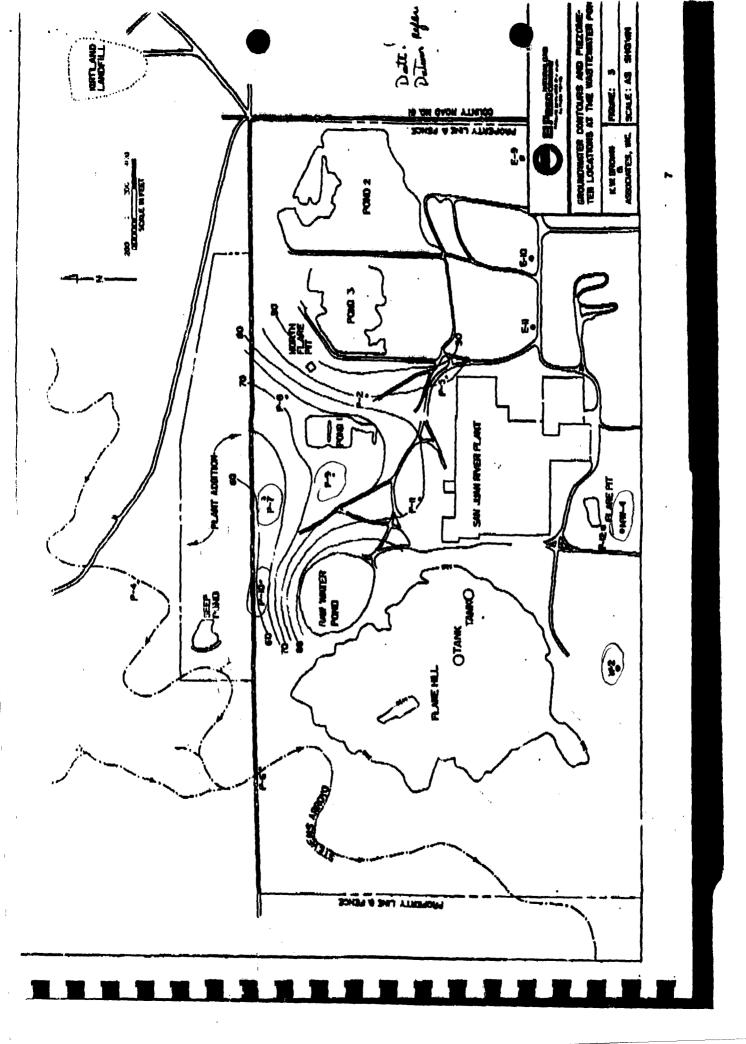
CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) PROJECT NAME : SAN JUAN RVR CLIENT I.D. : REAGENT BLANK	ATI I.D. : 106899 DATE EXTRACTED : 07/07/91 DATE ANALYZED : 07/07/91
COMPOLINDS	DECITOR
BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROFTHANE DIBROMOCHLOROMETHANE 2-CHLOROETHYL VINYL ETHER 1,3-DICHLOROBENZENE 1,2 & 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE (IS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TOLUENE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE	<0.5 <0.2 <1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
TOTAL XYLENES TRICHLOROTRIFLUOROETHANE	<1 <2.0

SURROGATE PERCENT RECOVERIES


BROMOCHLOROMETHANE	(8)	100
BROMOFLUOROBENZENE	(8)	108

QUALITY CONTROL DATA

ATI I.D. : 106899


TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602)

CLIENT : EL PASO NATURAL GAS, PROJECT # : (NONE) PROJECT NAME : SAN JUAN RVR REF I.D. : 10799911	, NEW MI	EXICO		LE MA	LYZED : ATRIX : :		
COMPOUNDS		CONC. SPIKED	SPIKED SAMPLE		DUP. SPIKED. SAMPLE	DUP. % REC.	RPD
1,1-DICHLOROETHENE TRICHLOROETHENE TETRACHLOROETHENE BENZENE BROMODICHLOROMETHANE CHLOROFORM 1,1,1-TRICHLOROETHANE TOLUENE CHLOROBENZENE	<0.20 <0.20 <0.20 <0.50 <0.20 <0.20 <0.20 <0.20 <0.50 <0.50	$\begin{array}{c} 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ \end{array}$	3.4 4.2 4.0 3.8 4.1 3.6 4.0 3.8 3.8	105	3.4 4.2 4.0 3.6 4.1 3.6 3.9 3.6 3.9 3.6 3.8	85 105 100 90 102 90 98 90 95	0 0 5 0 2 5 0
M-XYLENE	NA	NA	NA	NA	NA	NA	NA

% Recovery = (Spike Sample Result - Sample Result) Х 100 Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result ---- X 100

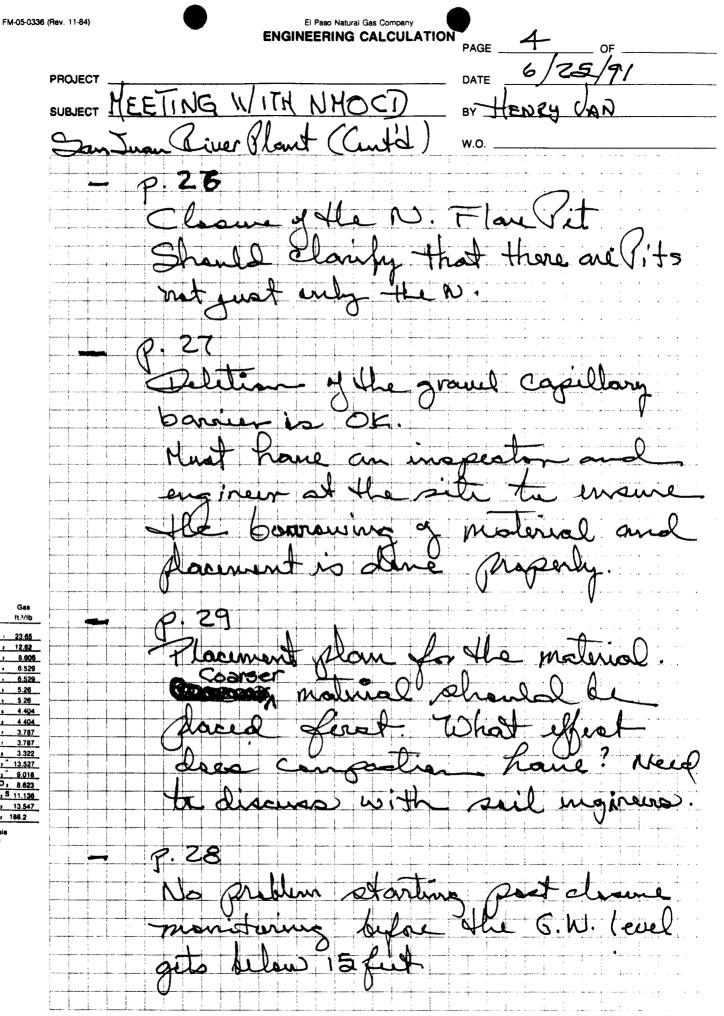
Average of Spiked Sample

FM-05-0336 (Rev. 11-84) El Paso Natural Gas Company ENGINEERING CALCULATION PAGE DATE 6/25/91 PROJECT SUBJECT MEETING WITH NMOCD BY HENRY VAN i articipants - David Boyer - NMOCI Bill OSEN NMOCD Tonta tehins ERIG - Anu Vundari EPNG Nancy Trince ERNG - Haniy Van EPNG Place of Meeting: NMOCD Office, Sta. Fe. TURPOSE OF MEETING : 1 Discuss Blanco (lant Grandwa Quality am River lant l'ocura 2) 4 Liquid aai/moie Wastewater Clasure Than NSCUSSIONS JUAN RIVER MANT **LAN** 9.018 te get approvale te le conduct 28 N 13.547 14.7 Dais being draine Jund Water 手は、う Needo date of the work Hear or andristrary da

FM-05-0336 (Rev. 11-84)

El Paso Natural Gas Company ENGINEERING CALCULATION PAGE 6/25/91 SUBJECT NEETING WITH NMOCD Henry Van San Turn Kiver Plant (Cont'd) W.O. Page 11 Tig. 5 Surface barran page 12 Tleed Er map of the KWI frown Survey. Maybe the data should be put in in the Fig. 6 p. 19 Page 14 Elus. & H20 @ 36 ft after the water manul is delited page 17 May enhance exagenstion of Sand 1 The timed good may have a Gas ft.3/lb leak. Western Gas has detected wasterater in the wet well, May evaporate Rand I water by punjang to Pand 3 (Spraying) read to assess the impact _ H, S 11.136 13.547 H, 188.2 of the Douth Flore (it aprolis Need to Dample MW-4 first and after reviewing reputte a Grandwa For study may be required. p. 23 growide the results for Talle 3

Liouid


gal/mole MW

FM-05-0336 (Rev. 11-84) El Paso Natural Gas Company ENGINEERING CALCULATION PAGE _____ DATE 6/25/9/ PROJECT SUBJECT MEETING WITH NMOCI San Juan River (lant (Cunt'd) w.o. Need to Sande the Disch . Clamo Monitaring wells that had HC, on the North Sides (P-7, P-9, 7-10) Develop ((unging) and resample p. 23 Calcium Calcium NO2 NO3, HC03/CO TKN p.24 Where is could the primp back HeD will le dispred? it may Liquid Gas desproad in the Lined Kand handed. Henever, NHOCI needs 8.529 sr 5.26 te natified They need to prevent the seep pour 3.322 flowing into the Stevens Urray p.26 Optional Kemediation Efforts Not sure about a the use of gypum

would

the process of the gypour

6.4 16 С 10.12 30 C, 10.42 44 C 12.38 58 iC 11.94 58 C 13.86 72 C 72 C 13 71 15.59 86 .C . 15.59 86 100 .C 17 2 100 C 19.38 114 C. 28 C, 10.02 42 C 6.456 44 CO : 8.623 5.193 34 H, S 11.136 4.151 28 N, 13.547 3.399 2 H, 188.2

Liquid

gai/mote MW

14.7 psia 60° F

OCD/EPNG Meetin, 6/25/91 0930 hrs participati Dave Boyon 7 OCD Bill Olion Henry Van Tom Hutchinson EPNG Anon Chunkin Mancy Rince T.H. Would a like to get oppy at EPA NPOES General On shore Order P.N. Get sive you Print not to disching e cropt for wildlich, ag. uses NOF. P.D 4 VO Diskings filing O.P. A for all ner compressor existing any resser Stations will be phered DB Whit about Flore Viste TH. Some prob. with access with landowing also not all equips in to field detectors Expert to resolve in next four well's So far badyrd with field detertion in 40 ppm in soil

May take excavated soils to Enviro tack San Juan Rive Plant Final Closure Plan April 1991 Q.B. Need to get approval from OCD prior to any major wark IH. Will do D. D. Appears to be good plan T.H. Key item reducing elevated W.T. D.B. Is can with pour in euse T.H. Pond clown but need to get vacuum track H.V. Know st any more work at Kitland landfill DA +W.D. Old BLM did initial invest but only recommended monitoring and no other work OCD feels could be potential supertrud site * D.A. What is date at measurement of W.T. elevations.

H.V. Believe from last D.P. applic. 1985? Will get to DCD D.B. Are all birrow ster on EPNG prop. T.H. Yes with possible exception of borrow site # 1 Would have to negotiate access it not EMUG prop. * P.B. No, EM contour map provided need to get one T.H. Will got provide p.B. Will Western alling water disposal (seen to py 17 -"I, had put used to evap. excess wate") in their poul T.H. Probe with fajing lines May Want to deapart in plant drain system or spray an adjacent poind 2 A.B. -Be aware we believe may be leak in pester liver poind. Weiter Gas has been notified Belot - No solid samples from bother at impomilants also no 6.W. samples H.V. A Well below South Flore pit P-12 was run over by dozer doesn't exist

T.H. Water in MW-Y appeared clean, no ochen P.B. Need to get with guility crownel south Alere pit. Diel have high nitratur in D-12, sickly odor G.W in this area is high priority, may need G.W. invest. in this area based on results in rearby will Taken G.W. rangeles for reput Tett. No do you wont D.D. Yes, for south Hare and especially but not for land application area totat about Sample - north plant wells to that previously showed hydrocar bons - south Plane pit area wells that previously shown H.C. or nitrets Som Gan cham (anions /cation,) missin, - C+2 - brea HCO, - total 10 14 - NO3= T.H. Will Jo

D.B. p. 24 where will pump burk Anid. 53 T.H. Fith head off or to lived pond P.B. - Need to notiting OCD of disposal location Also mant to cloce pump burle pond as landfill Should keep for containant, at salts also could be used to contral ranolt from Accility TH. Will look into P.B. Pg. 26. Optimal Regied Fiffents where maild excernated important bottom. Le excepted to Excavatel topological salts, push bullowing as couler D.B. Purpise of gypsum Titt Educe is gyp worker monthly imperte vertical migration capillary burrier But wouldn't it also have potutial to add salts Don't unchotand TH. Don't want to use but will clarify

W.O. Du 15 26 South Alure pit not addressed Telt. Will clarity it applies to both north & south P.B. -Need to see results at sludge tist, between decision of closure can be reached - Will FMG have person on site to ensure quelity of borrow material T.H. Will have inspectar, onsite to verity borrow quelity P.B. 18" cover in both drainages & impondants, Will 1.ft. be compacted T.H. Screper applied then allow for there equipment conjunction P.B. If have more compartion in bottom coarse layer won't you lose some at othert at approprillary ie will you have some capillary barrier estant when compacted it put may need use other haterial (ie gravel) Will talk to KWBrown to see it comparts was considered in compellary burrin

• T.H. KW Brown recommendant 15 drop in W.T. for effectiveness does need to be below the bene to begin mork P.B. As long as source of head removed (ponds) prim to work OCD believe sloorld so shead with work Till. Can sent OCP latter supplying into on Issues diressed above, to expediate papenork Blanco Dollant Throst. (Nov. 1990) T.H: Handy out now into on MW. Fome produt in 4 it wells - W-18 - W-19 - W-6 P.N. And to Are till projector proponer J.H. Yes D.B. Collector well has product ?

OIL CONSERV JN DIVISION REC: (ED

P. O. BOX 1492 EL PASO, TEXAS 79978 PHONE: 915-541-2600

May 2, 1991

'91 MAY 6 AM 9 24

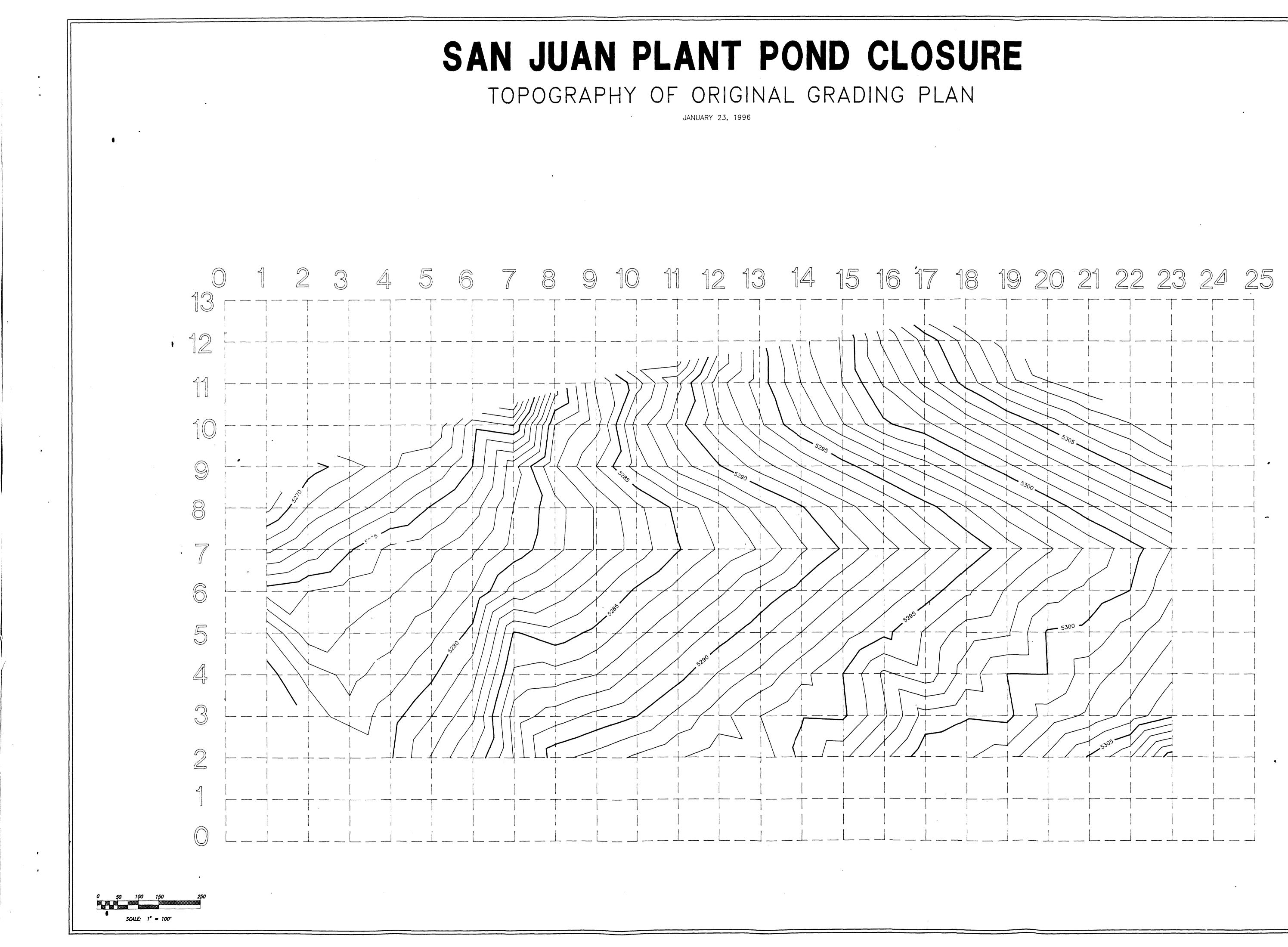
David G. Boyer, Hydrogeologist Environmental Bureau Chief Oil Conservation Division Energy, Minerals & Natural Resources Dept. State of New Mexico Post Office Box 2088 State Land Office Bldg. Santa Fe, New Mexico 87504

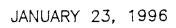
Re: San Juan River Plant Pond Closure Plan

Dear Mr. Boyer:

Enclosed please find two copies of our plan for closure of the flare pits and wastewater impoundments at San Juan River Plant in portions of Section 1, T-29-N, R-15-W and Section 36, T-30-N, R-15-W, San Juan County, New Mexico.

As you know, this is the culmination of a long series of studies. The objective has evolved from discharge of wastewater to the development of a method of closure to prevent leached salts from entering the San Juan River watershed. We believe the extent of these previous investigations have provided us with much more information than would ordinarily have been the case. We have been able to draw upon that knowledge to put together a plan that is exceptionally well-founded.


We have endeavored to include as much pertinent data as necessary in the closure plan to explain and justify the measures proposed. In order to expedite the process, we have been monitoring groundwater levels since last fall and have conducted sludge and soil sampling in accordance with the guidelines presented in the plan. We have scheduled further geotechnical testing and other measures aimed at implementing the plan as soon as possible. We hope to complete the soil work associated with the closure by the end of the summer.


If you have any questions or would like to schedule a meeting to discuss this plan, please call me any time at (915) 541-3531. Please be assured that we have every intention of continuing our long record of cooperation with the Division to achieve our mutual goals.

Sincerely,

Thomas D. Hatchma

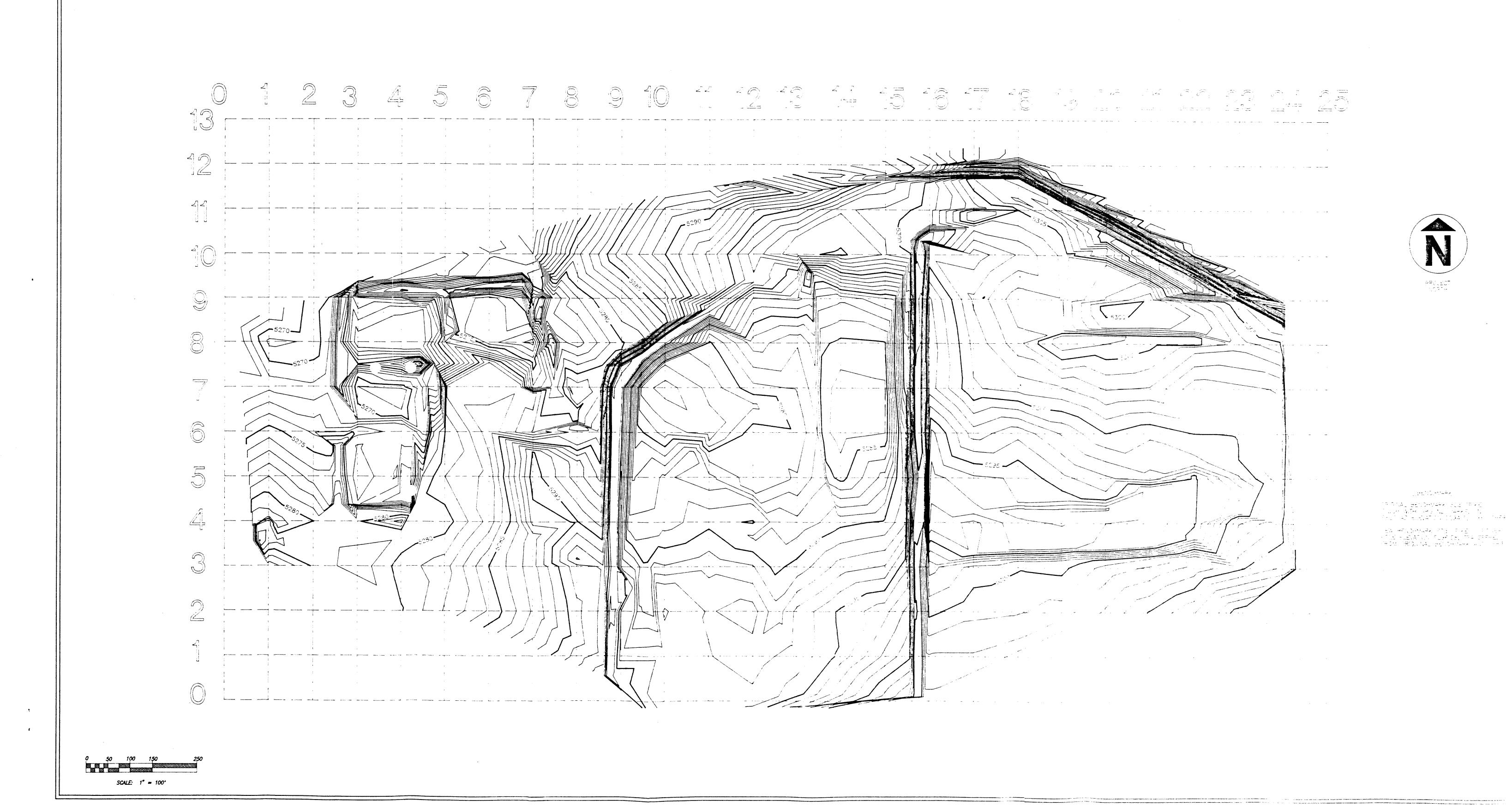
Thomas D. Hutchins, Manager North Region Compliance Engineering

N PROJECT NORTH

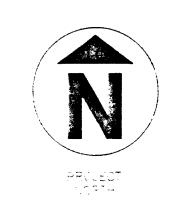
BENCHMARK

ORIGINAL BENCHMARK 80d SPIKE. FLUSH WITH GROUND MARKED IN FIELD AS ELEVATION 5294.35 (BY OTHERS)

NEW BENCHMARK 60d SPIKE IN POWER POLE ELEVATION 5296.58, TRANSFERED FROM ORIGNINAL BENCHMARK AND VERIFIED


PROJECT NORTH

BENCHMARK ORIGINAL BENCHMARK 80d SPIKE FLUSH WITH GROUND MARKED IN FIELD AS ELEVATION 5294.35 (BY OTHERS)


NEW BENCHMARK 60d SPIKE IN POWER POLE ELEVATION 5296.58, TRANSFERED FROM ORIGNINAL BENCHMARK AND VERIFIED

.



SAN JUAN PLANT POND CLOSURE ORIGINAL TOPOGRAPHY JANUARY 23, 1996

_tel`Cathere TERNAL BÉNDHMARK SUS TERE n an an Alline and Allin and Al

- EN HEROHMARK MONTON FAIL - MONGH MONE ALEXATION FLURFER, TRA SPEREL MROM MROWNAL EEROHMARK AND MONTON FE

ILIE 	SCIENTIFIC ABORATORY DIVISION 700 Camino de Salud NE Albuquergue, NM 87106 841-2570
REPORT TO: PLEASE PRINT DAVID G. BOYER <u>NEW MEXICO OIL CONSERVATION DIV</u> <u>P.O. BOX 2088</u> SANTA FE, NM 87504-2088	S.L.D. NO.: OR- $5\frac{16-17-B}{22/8}$ DATE REC. : $5\frac{22}{8}$ SLD PRIORITY #:
PHONE (S) : 827-5812	USER CODE: [8] 2] 2] 3] 5
SUBMITTER: DAVID BOYER	SUBMITTER CODE:
SAMPLE TYPE: WATER A, SOIL , OTHER	SAMPLE TYPE CODE:
	CODE: 86052076750 778800884076750 CODE: $1+1+1$ AQUIFER DEPTH CODE: $1+1$
DOCATION: EP SAN JUAN PLANT pH= 7.5; Conductivity=4820 umho/cm at	2/ °C; Chlorine Residual=
Dissolved Oxygen=mg/l; Alkalinity= Sampling Location, Methods and Remarks (i. HEAVY HC/AMINE DOOR; GREEN IRIO BAILED J TIMES J OF PROCESS PLANT; WSW OF FLARE	e. odors, etc.) escent color
I certify that the statements in this bloc	
of my field analyses, observations and act Method of shipment to the Laboratory <u>the</u>	ivities. Some Parle
This form accompanies Containers are marked as follows to indicate NP: No preservation; sample stored in an ice bat P-Na ₂ S ₂ O ₃ ; Sample preserved with Na ₂ S ₂	Glass Jugs, ate preservation: pred at room temperature. th (not frozen).
I (we) certify that this sample was trans	ferred from
to at (location)	
and that the stateme pare AND TIME and that the stateme Evidentiary Seals: Not Sealed Seal	
Signatures	
(we) certify that this sample was transf to at (location) / and that the stateme	on
Evidentiary Seals: Not Sealed Signatures	s Intact: Yes 🔲 No 🛄

.

					<u> </u>		
IR	VAL'	YSES REQUESTED			L	AB. No.: ORG-	586
		CHECK THE APPROPRIATE	BOXES BELOW TO	INDIC	ATE 🖥	THE TYPE OF ANALYTICA	L SCREENS
RE	QUIR	ED. WHENEVER POSSIBLE	LIST SPECIFIC C	OMPOU	NDS	SUSPECTED OR REQUIRED	•
/E	N			VE I	1 Z		
TI	AT.	PURGEAI		II	LAT	EXTRACTAE	
ITA	TIT			IT/			
QUAL IT AT IVE	QUANTITATIVI	SCREE	NS	QUALITATIVE	QUANT I TAT	SCREEN	S
<u>ă</u>	d d			<u> </u>	<u> ₹</u>		
~	X	ALIPHATIC HYDROCARBON AROMATIC HYDROCARBON				ALIPHATIC HYDROCAR	
<u>ス</u>		HALOGENATED HYDROCAR				CHLORINATED HYDROC CHLOROPHENOXY ACID	and the second secon
X	<u> </u>	GAS CHROMATOGRAPH/MAS				HYDROCARBON FUEL S	
					+	ORGANOPHOSPHATE PE	
					+	POLYCHLORINATED BI	PHENYLS (PCB's)
—						POLYNUCLEAR AROMAT	IC HYDROCARBONS
			·····			TRIAZINE HERBICIDE	S
		SPECIFIC COMF				SPECIFIC COMP	
ļ							
<u> </u>							
					+		
<u> </u>					+-		
REM	ARKS	:				<u> </u>	
		<u> </u>			<u> </u>		
	······································	A	NALYTICAL	RE	รบเ	_TS	
	COL			1			гееві
	COI	1POUND	[РРВ]	1		_TS POUND	[PPB]
aji Aji	COL	1POUND atic pur quebles	[РРВ]	1			[PPB]
ar ha	CON	1POUND	[РРВ]	1			[PPB]
ar ha	CON com log	1POUND atic pur quebles	[РРВ]	1			[PPB]
ar ha	CON Com Log	1POUND atic pur quebles	[РРВ]	1			[PPB]
ar ha	CON Con Cong	1POUND atic pur quebles	[РРВ]	1			[PPB]
ar ha	CON Com Log	1POUND atic pur quebles	[РРВ]	1			
ar ha	CON Com Log	1POUND atic pur quebles	[РРВ]	1			
	CON Com Log	1POUND atic pur quebles	[РРВ]		:OM		[PPB] 5 pob
Ar ha	CON Const Co	1POUND atic purgablest cenated purgables	[РРВ]	*	DETI	POUND	[PPB] 5pb omatic
Ar ha	log	1POUND atic purgeablest enated purgeables RKS: Six compo	[PPB] none letected noneffected actented	*	DETI	POUND	[PPB] 5 ppb omatic bossible
Ar ha	log	1POUND atic purgeablest enated purgeables RKS: Six compo	[PPB] none letected none fected defected	*	DETI	POUND	[PPB] 5 ppb omatic possible
Ar ha	log	1POUND atic purgeablest enated purgeables RKS: Six compo	[PPB] none letected noneffected actented	*	DETI	POUND	[PPB] 5 pob omatic possible
And ha	REMA	1POUND atic purgeablest enated purgeables enated purgeables RKS: Six compo een that wer ce of bemane	[PPB] none stected nonestected nonestected nonestected actected unds wer e not ident < / ppb, ertificate of AN	× e de tife	DETI	POUND ECTION LIMIT Ted by the are Defere is a	[PPB] 5 pob omatic possible
A ha ·	REMA Log	POUND atic purgeablest enated purgeables RKS: Six compo een that were ce of bemane Intact: Yes_NOX	[PPB] none lefected noneffected noneffected noneffected actented winds were enot ident 	× e d ALYTI n by:	DETI	POUND ECTION LIMIT Ted by the ar Dension of the art PERSONNEL	5 ppb omatic possible
A F Sea I c	REMA Log	POUND atic purgeablest enated purgeables enated purgeables PRKS: Six compo- sen that were ce of beingine CI Intact: Yes_NOX fy that I followed star	[PPB] none lefected none fected none fected none fected actented with a wer e not ident 	* e d ALYTI n by: proc	DETI	POUND ECTION LIMIT ted by the are Derecises	5ppb omatic. possible ate: alysis of this
A ha F Sea I c sam	REMA 1(s) ple	1POUND atic purgablest cenated purgables cenated purgables RKS: Six compa sein that were ce of bemane CI Intact: Yes NOX fy that I followed star unless otherwise noted	[PPB] none lefected none lefected none lefected actented acte	ALYTI n by: proc	DETI DETI	POUND ECTION LIMIT Cted by the arr Defension PERSONNEL des on handling and an in this block and the	5ppb omatic possible ate: alysis of this
A F Sea I c sam on Dat	REMA 1(s) erti ple this e(s)	1POUND atic purgables enated purgables enated purgables enated purgables RKS: Six compa sen that were ce of bemane CI Intact: Yes NOX fy that I followed star unless otherwise noted page accurately reflect of analysis: S Jung	[PPB] none lefected none fected none br>fected none fected fected none fected none fected none fected none fected none fected fected none fected fected fected fected fected fected fected fected fected fected fected fected fected fected fected fected fected fec	ALYTI ALYTI n by: proc ateme 1 res t's s	DETI DETI CAL edur nts ults igna	POUND ECTION LIMIT Cted By the arr Defension PERSONNEL des on handling and and in this block and the for this grample. ture: Defension	Spok omatic possible ate: alysis of this analytical data
A F Sea I c sam on Dat I c	REMA 1(s) erti erti	1POUND atic purgables enated	[PPB] none steets none steets	ALYTI ALYTI n by: proc ateme 1 res t 's s h the	DETI Edur cAL edur ults igna ana	POUND ECTION LIMIT Ted by the arr Define is a PERSONNEL des on handling and and in this block and the for this sample. ture: Array fresults for the	Spok omatic possible ate: alysis of this analytical data
A F Sea I c sam on Dat I c	REMA 1(s) erti ple this e(s) erti h th	1POUND atic purgables enated purgables enated purgables enated purgables RKS: Six compa sen that were ce of bemane CI Intact: Yes NOX fy that I followed star unless otherwise noted page accurately reflect of analysis: S Jung	[PPB] none lefected none lefected	ALYTI ALYTI n by: proc ateme 1 res t 's s h the	DETI Edur cAL edur ults igna ana	POUND ECTION LIMIT Ted by the arr Definition of the sample. ture: Arrow and the for this sample. ture: Arrow and the for this sample.	Spok omatic possible ate: alysis of this analytical data

0/24 CIENTIFIC LABORATORY DIVISION 700 Camino de Salud NE STATE OF NEW MEXICO Albuquerque, NM 87106 841-2570 ENVILONMENT S.L.D. NO.: OR- 601. 14 DAVID G. BOYER REPORT TO: PLEASE PRINT DATE REC. : _ 5/22/8% NEW MEXICO OIL CONSERVATION DIV. P.O. BOX 2088 SLD PRIORITY #: SANTA FE, NM 87504-2088 827-5812 USER CODE: | 8| 2|2|3|5| PHONE(S): M. ROYER SUBMITTER CODE: SUBMITTER: SAMPLE TYPE CODE: | | SAMPLE TYPE: WATER X, SOIL , OTHER COLLECTED: B6/DS/JP- 15: 40 BY INITIALS CODE: 86052016154 P/Z CODE: || + || + |SOURCE: NEAREST CITY: Stora Tisto EP SANJUAN CODE: []]] LOCATION: <u>XIRTLAND</u> CODE: 29 N 15 W 01 TOWNSHIP RANGE SECTION TRACTS pH=____; Conductivity=____umho/cm at _____OC; Chlorine Residual=___ Dissolved Oxygen= mg/l; Alkalinity=____; Flow Rate=____; Sampling Location, Methods and Remarks (i.e. odors, etc.) TRIDESCENT GREENPOLOR, HC/AMINE ODDR I certify that the statements in this block accurately reflect the results of my field analyses, observations and activities. and Method of shipment to the Laboratory Han Corrul This form accompanies _____Septum Vials, ____Glass Jugs, _____ Containers are marked as follows to indicate preservation: NP: No preservation; sample stored at room temperature. P-Ice Sample stored in an ice bath (not frozen). P-Na25203; Sample preserved with Na25203 to remove chlorine residual. I (we) certify that this sample was transferred from _____ at (location) $\underline{\Sigma} L \overline{D}$ on' to and that the statements in this block are correct. Evidentiary Seals: Not Sealed Signatures _____ (we) certify that this sample was transferred from / at (location)_____ to on and that the statements in this block are correct. Evidentiary Seals: Not Sealed
Seals Intact: Yes No Signatures

			•••			· · · · · · · · · · · · · · · · · · ·	
AN	VAL'	YSES REQUESTED				LAB. No.: ORG- 601	
		CHECK THE APPROPRIATE			ATE	THE TYPE OF ANALYTICAL SCREENS	
RE	QUIR	ED. WHENEVER POSSIBLE	LIST SPECIFIC C	OMPOU	NDS	SUSPECTED OR REQUIRED.	
ы	N			0E	TÊ		
LI I	ΠA	PURGEA		II	AT	EXTRACTABLE	
TA	ГТ			ITA	E		
QUAL IT AT IVE	QUANTITATIVI	SCREE	'NS	QUAL ITATIVE	QUANTITATIV	SCREENS	
βű	0 O			1 D	ļē		
		ALIPHATIC HYDROCARBO		┝┥──-	+	ALIPHATIC HYDROCARBONS	
		AROMATIC HYDROCARBON HALOGENATED HYDROCAR				CHLORINATED HYDROCARBON PESTICII CHLOROPHENOXY ACID HERBICIDES	DES
		GAS CHROMATOGRAPH/MA			+	HYDROCARBON FUEL SCREEN	
				-	+	ORGANOPHOSPHATE PESTICIDES	
					.†	POLYCHLORINATED BIPHENYLS (PCB's	5)
—				X	1 D	POLYNUCLEAR AROMATIC HYDROCARBON	15
			•			TRIAZINE HERBICIDES	
		SPECIFIC COM	POUNDS			SPECIFIC COMPOUNDS	
ļ				┝-┟			
						Papthalaper, Bennpapyres	el_
					+		
					1		
REM	ARKS	•		••			
		F	NALYTICAL	RE	ເຣບ	ILTS	
	00	MPOUND	[PPB]				
NA	DHA	HALGNG	2 STRAB				
	1	HULNAPHTHALENE	6 5000				
		/	45 \$5 miles	B			
Re		(a) Rynene	45000				
		(c) que					i
<u> </u>		······································					
}					DET	FECTION LIMIT	
	FMA	RKS:					
					$\overline{\alpha}$	ienzo(a, R) authracene when	0
110	<u>u sr</u>	OD PNAR 23	spon excep	<u>т </u>	Dele	unzola, *) en thacene when	<u>~</u>
	1	- 10 ppB					
		(ERTIFICATE OF AN	ALYTT	CAL	PERSONNEL	
		Intact: YesNO	. Seal(s) broke	n by:		date:	
						res on handling and analysis of this	
		unless otherwise noted page accurately refle				in this block and the analytical da	ita
Dat	e(s)	of analysis: 7/9/8	5 . Analys	t's s	igna	ature: al Berrya	
I c	erti	fy that I have reviewe	d and concur wit	h the	ana	alytical results for this sample and	
wit	h th	e statements in this b	lock. Reviewers	sign	atur	re: K Meyerhen	
F	FOR C	OCD USE Date Owner	Notified	Pho	one	or letter? Initials	

	NO. WC 2925	USER 5930	о 🗆 59600 🕅 от	HER: 82	235	
5 20 86	1776 SITE	Sample location	P12			
lection TIME	ATION	Collection site descriptio	· <0 m	ال ل	<u> </u>	DI DI ET
lected by - Person/Agency	VER. 10CD		EP SAN		4N	PLANT
ND NM OIL CON IAL State Land	ITAL BUREAU ISERVATION DI I Office Bidg NM 87504-208	, PO Box 208	8	<u>\$6_ /</u>	739/	V RISW
	yer			Station/		
Phone: 827-5	812			well code		
MPLING CONDITIONS				Owner		
Kailed 🗆 Pump Dipped 🗆 Tap	Water level CSC 22700	5 1.6°G.L.	Discharge		Sample ty	pe
H (00400) 75	Conductivity (Unc	orrected) 4820 μmho	Water Temp. (00010)	2/°C	Conductiv	ity at 25°C (00094) μ
7.5						
ld commonte		DINE D	DDR - GREA		IP OF	SCENT CO
HEAVY	HC/ An	NINE O	DOR - GREE		IRIDE	SCENT CON
d commonte		MINE O	DOR - GREG		IRIDE	SCENT CON
HEAVY BAKED 5	HC/ AM TIMES	·	DOR - GREG		1R1DE	SCENT CON
BAKED S MPLE FIELD TREATMEN No. of samples Submitted Y	HC/An TIMES IT - Check prop IF: Whole sample (Non-filtered)	er boxes F: Filtered in 0.45 μme	field with DA: 2 r	ni H₂SO₄/	L added	
HEAVY BAKED 5 MPLE FIELD TREATMEN No. of samples Hubmitted Y II N NA: No acid added II NALYTICAL RESULTS from	HC/An TIMES IT - Check prop IF: Whole sample (Non-filtered) Other-specify:	er boxes F: Filtered in 0.45 μme	field with DA: 2 r mbrane filter 5ml conc. HNO ₃ add	ni H₂SO₄/	L added	fuming HNO ₃ ad
eld comments HEAVY BAKED 5 MPLE FIELD TREATMEN No. of samples Y Image: Submitted Y Image: NA: No acid added Image: Submitted Image: NF, NA Image: Submitted	HC/An TIMES IT - Check prop IF: Whole sample (Non-filtered) Other-specify:	er boxes F: Filtered in 0.45 μme	field with mbrane fitter A: 2 r 5m1 conc. HNO ₃ add	ni H₂SO₄/	L added	fuming HNO ₃ ad
eld comments HEAVY BAKED 5 MPLE FIELD TREATMEN No. of samples Y Image: Submitted Y Image: NA: No acid added Image: Submitted Image: NF, NA Image: Submitted	HC/An TIMES IT - Check prop IF: Whole sample (Non-filtered) Other-specify:	er boxes F: Filtered in 0.45 μme	field with mbrane filter 5m1 conc. HNO ₃ add d F. NA Calcium (00915) He Magnesium (00925)	ml H ₂ SO ₄ / led \Box / 	Ladded A: 4ml	fuming HNO ₃ ad Units Date analy mg/1 mg/1
Balken S Balken 5 MPLE FIELD TREATMEN No. of samples / Submitted / NA: No acid added I IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25°C (00095) Total non-filterable I	HC/An TIMES IT - Check prop IF: Whole sample (Non-filtered) Other-specify:	er boxes F: Filtered in 0.45 μme Δ A: Units Date analyze	field with mbrane filter A: 2 r 5m1 conc. HNO ₃ add d A NA Calcium (00915) H Magnesium (00925) Sodium (00930)	ni H ₂ SO ₄ / led [] 	Ladded A: 4ml	fuming HNO ₃ ac Units Date analy mg/I $\frac{6}{2}$ mg/I $\frac{\pi}{4}$
eld comments HEAVY BAKED 5 MPLE FIELD TREATMEN No. of samples Image: Note that the same submitted Submitted Image: Note that the same submitted Image: Note that the same submitted Image: NA: No acid added Image: Note that the same submitted Image: Note that the same submitted Image: NA: No acid added Image: Note that the same submitted Image: Note that the same submitted Image: NA: No acid added Image: Note that the same submitted Image: Note that the same submitted Image: Note that the same submitted Image: Note that the same submitted Image: Note the same submitted Image: Note that the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note that the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note the same submitted Image: Note same submitted	<u>HC</u> An <u>TIMES</u> IT — Check propu IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Δ A: Δ A: Units Date analyze	field with mbrane filter 5m1 conc. HNO ₃ add d /F, NA Calcium (00915) D Calcium (00925) Sodium (00930) D Potassium (00935) D Ecarbonate (00440)	ni H ₂ SO ₄ / led <u>252</u> <u>322</u> <u>726</u> <u>17.2</u> <u></u>	L added A: 4ml	fuming HNO ₃ ac Units Date analy mg/I $\frac{6}{2}$ mg/I $\frac{\pi}{4}$
eid comments <u>HEAVY</u> <u>BAKED 5</u> MPLE FIELD TREATMEN No. of samples y IN Submitted Y IN X NA: No acid added I IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25°C (00095) Total non-filterable residue (suspended) (00530)	HC/An TIMES IT - Check prop IF: Whole sample (Non-filtered) Other-specify:	er boxes F: Filtered in 0.45 μme Δ A: Δ A: Units Date analyze	field with mbrane filter 5ml conc. HNO ₃ add d F. NA Calcium (00915) D Calcium (00935) Calcium (00930) Calcium (00940) Calcium (00940) Calciu	ni H ₂ SO ₄ / led <u>252</u> <u>322</u> <u>726</u> <u>17.2</u> <u>2.3</u> <u>2.3</u> <u>2.3</u> <u>2.3</u>	L added A: 4ml	fuming HNO ₃ ac Units Date analy mg/1 $\frac{6}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{5}{2}$
Balken S Balken S MPLE FIELD TREATMEN No. of samples No. of samples Image: No. of samples Submitted Image: No. of samples No. of samples Image: No. of samples Submitted Image: No. of samples MA: No acid added Image: No. of samples Image: No. of samples Image: No. of samples <	<u>HC</u> An <u>TIMES</u> IT — Check propu IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Δ A: Δ A: Units Date analyze	field with mbrane filter 5ml conc. HNO ₃ add d F. NA Calcium (00915) D Calcium (00935) Calcium (00930) Calcium (00930) Calcium (00930) Calcium (00930) Calcium (00930) Calcium (00930) Calcium (00935) Calcium (00930) Calcium (00935) Calcium (00940) Calcium (00945)	ni H ₂ SO ₄ / led <u>252</u> <u>322</u> <u>726</u> <u>17.2</u> <u>2.3</u> <u>2.3</u> <u>2.3</u> <u>2.3</u>	L added A: 4ml	fuming HNO ₃ ac Units Date analy mg/1 $\frac{6}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$
ALYTICAL RESULTS from No. of samples is bubmitted / N No. of samples is NA: No acid added NA: No acid added NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Other: Other:	<u>HC</u> An <u>TIMES</u> IT — Check propu IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Δ A: Δ A: Units Date analyze	field with mbrane filter 5m1 conc. HNO ₃ add d A, NA Calcium (00915) D Calcium (00925) Sodium (00930) D Fotassium (00935) D Bicarbonate (00440) D Chloride (00940) D Sulfate (00945) D Jotal filterable residue	ni H ₂ SO ₄ / led <u>252</u> <u>322</u> <u>726</u> <u>17.2</u> <u>2.3</u> <u>2.3</u> <u>2.3</u> <u>2.3</u>	Ladded A: 4ml .8 .222 /8 /2	fuming HNO ₃ ac Units Date analy mg/1 $\frac{6}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{5}{2}$
HEAVY BAKED 5 MPLE FIELD TREATMEN No. of samples ubmitted Y N NA: No acid added ALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other:	<u>HC</u> An <u>TIMES</u> IT — Check propu IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Δ A: Δ A: Units Date analyze	field with mbrane filter 5ml conc. HNO ₃ add d F. NA Calcium (00915) D Calcium (00935) Calcium (00930) Calcium (00930) Calcium (00930) Calcium (00930) Calcium (00930) Calcium (00930) Calcium (00935) Calcium (00930) Calcium (00935) Calcium (00940) Calcium (00945)	ni H ₂ SO ₄ / led <u>122</u> <u>124</u> <u>17, 2</u> <u>23</u> <u>23</u> <u>2</u> <u>7</u>	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ac Units Date analy mg/1 $\frac{6}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{\pi}{2}$ mg/1 $\frac{5}{2}$ mg/1 $\frac{5}{2}$
Alter of the second sec	<u>HC</u> An <u>TIMES</u> IT — Check propu IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Δ A: Δ A: Units Date analyze	field with mbrane filter 5m1 conc. HNO ₃ add Calcium (00915) Calcium (00935) Calcium (00930) Sodium (00930) Fotassium (00935) Chloride (00940) Sulfate (00940) Chloride (00945) Cotal filterable residue (dissolved) (70300)	nl H2SO4/ led 252 322 726 17.2 23 24 17.2 23 27 5270	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ad Units Date analy mg/1 $\frac{6.2}{}$ mg/1 $\frac{\pi}{}$ mg/1 $\frac{\pi}{}$ mg/1 $\frac{5}{2c}$ mg/1 $\frac{5}{2c}$ mg/1 $\frac{6}{5}$ mg/1 $\frac{6}{2}$
eid comments HEAVY BAKED 5 MPLE FIELD TREATMEN No. of samples IN submitted IN X NA: No acid added IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: F, A-H2SO4 Nitrate-N + Nitrate-N total (00630)	<u>HC</u> An <u>TIMES</u> IT — Check propu IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Ω A: Units Date analyze μmho	field with mbrane filter 5ml conc. HNO ₃ add Calcium (00915) B Magnesium (00925) Sodium (00930) Fotassium (00935) B Calconate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Chter:	$ \begin{array}{c} nl H_2 SO_4 \\ led $	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ad Units Date analy mg/1 $\frac{6.2}{}$ mg/1 $\frac{\pi}{}$ mg/1 $\frac{\pi}{}$ mg/1 $\frac{5}{2c}$ mg/1 $\frac{5}{2c}$ mg/1 $\frac{6}{5}$ mg/1 $\frac{6}{2}$
eid comments HEAVY BAILED 5 MPLE FIELD TREATMEN No. of samples IN submitted IN X NA: No acid added IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: Other: Other: Mitrate-N +, Nitrate-N total (00630) Armonia-N total (00610)	<u>HC</u> An <u>TIMES</u> IT — Check propu IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Ω A: Units Date analyze μmho	field with mbrane filter 5ml conc. HNO ₃ add d A NA Calcium (00915) Magnesium (00925) Sodium (00930) Fotassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residue (dissolved) (70300) Chter: Total filterable residue (dissolved) (70300) Total filterable residue (dissolved) (70300)	$ \begin{array}{c} nl H_2 SO_4 \\ led $	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ad Units Date analy mg/1 $\frac{6.2}{}$ mg/1 $\frac{\pi}{}$ mg/1 $\frac{\pi}{}$ mg/1 $\frac{5}{2c}$ mg/1 $\frac{5}{2c}$ mg/1 $\frac{6}{5}$ mg/1 $\frac{6}{2}$
eid comments HEAVY BAILED 5 MPLE FIELD TREATMEN No. of samples IN submitted IN X NA: No acid added IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: Other: Other: Mitrate-N +, Nitrate-N total (00630) Armonia-N total (00610)	<u>HC</u> An <u>TIMES</u> IT — Check prop IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Ω A: Units Date analyze μmho mg/l mg/l	field with mbrane filter Sml conc. HNO ₃ add Calcium (00915) Calcium (00925) Calcium (00930) Fotassium (00935) Chloride (00940) Chloride (00945) Collar filterable residue (dissolved) (70300) Chlor: Collar: Collar filterable residue Chloride (00945) Collar filterable residue Collar filterable residue	$ \begin{array}{c} nl H_2 SO_4 \\ led $	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ad Units Date analy mg/1 6-2 mg/1 7 mg/1 7 mg/1 7 mg/1 6/2 mg/1 6/5 mg/1 6/5 mg/1 6/5 mg/1 5/28 5/28 5/28
eld comments HEAVY BAKED BAKED Submitted No. of samples Submitted X NA: No acid added IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25°C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: Total (00630) Ammonia-N total (00610) Total Kjeldahl-N (Chemical oxygen	<u>HC</u> An <u>TIMES</u> IT — Check prop IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme □ A: Units Date analyze μmho mg/l mg/l mg/l	field with mbrane filter Sml conc. HNO ₃ add Calcium (00915) Magnesium (00925) Sodium (00930) Fotassium (00930) Galcarbonate (00440) Chloride (00945) Jotal filterable residue (dissolved) (70300) Chlorite (00945) F, A-H ₂ SO ₄ Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608)	$ \begin{array}{c} nl H_2 SO_4 \\ led $	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ac Units Date analy mg/1 $6 = 2$ mg/1 $\frac{\alpha}{2}$ mg/1 $\frac{\alpha}{2}$ mg/1 $\frac{\beta}{2}$ mg/1 $\frac{\beta}{2}$ mg/1 $\frac{\beta}{2}$ mg/1 $\frac{\beta}{2}$ mg/1 $\frac{\beta}{2}$ mg/1 $\frac{\beta}{2}$ mg/1 $\frac{\beta}{2}$
eid comments HEAVY BAKED 5 MPLE FIELD TREATMEN No. of samples Submitted Y □ N X NA: No acid added □ IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: F, A-H ₂ SO ₄ Nitrate-N +, Nitrate-N total (00630) Ammonia-N total (00610) Total Kjeldahl-N () Chemical oxygen demand (00340)	<u>HC</u> An <u>TIMES</u> IT — Check prop IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme Ω A: Units Date analyze μmho mg/l mg/l	field with mbrane filter Sml conc. HNO ₃ add Calcium (00915) Calcium (00925) Calcium (00930) Fotassium (00935) Chloride (00940) Chloride (00945) Collar filterable residue (dissolved) (70300) Chlor: Collar: Collar filterable residue Chloride (00945) Collar filterable residue Collar filterable residue	$ \begin{array}{c} nl H_2 SO_4 \\ led $	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ac Units Date analy mg/1 <u>6-2</u> mg/1 <u>7</u> mg/1 <u>7</u> mg/1 <u>7</u> mg/1 <u>6/5</u> mg/1 <u>6/5</u> mg/1 <u>6/5</u> mg/1 <u>5/28</u> <u>5/28</u> <u>5/26</u> <u>5/26</u>
eld comments HEAVY BAKED 5 IMPLE FIELD TREATMEN No. of samples IN Submitted IN X NA: No acid added IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: Total (00630) Ammonia-N total (00610) Total Kjeldahl-N () Chemical oxygen demand (00340)	HC/ An TIMES IT Check prop IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme □ A: Units Date analyze μmho mg/l mg/l mg/l	field with mbrane filter Sml conc. HNO ₃ add Calcium (00915) Magnesium (00925) Sodium (00930) Fotassium (00930) Galcarbonate (00440) Chloride (00945) Jotal filterable residue (dissolved) (70300) Chlorite (00945) F, A-H ₂ SO ₄ Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608)	$ \begin{array}{c} nl H_2 SO_4 \\ led $	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ad Units Date analy mg/1 6-2 mg/1 7 mg/1 7 mg/1 7 mg/1 6/2 mg/1 6/5 mg/1 6/5 mg/1 6/5 mg/1 5/28 5/28 5/28
eid comments HEAVY BAKED S MPLE FIELD TREATMEN No. of samples Submitted No. of samples Submitted NA: No acid added NALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: Total (00630) Ammonia-N total (00610) Total Kjeldahl-N () Chemical oxygen	<u>HC</u> An <u>TIMES</u> IT — Check prop IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme □ A: Units Date analyze μmho mg/l mg/l mg/l	field with mbrane filter Sml conc. HNO ₃ add Calcium (00915) Magnesium (00925) Sodium (00930) Fotassium (00935) Bicarbonate (00440) Chloride (00945) Jotal filterable residue (dissolved) (70300) Chlor: Co Sulfate (00945) F, A-H ₂ SO ₄ Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N () Chlor: Co Sulfate (00945) Total Kjeldahl-N () Cother: Co Sulfate (00631)	ni H ₂ SO ₄ / led 122 122 126 132 127 5 2 10 2 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3	L added A: 4ml .8 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	fuming HNO ₃ ad Units Date analy mg/I mg/I mg/I mg/I mg/I mg/I mg/I mg/I f/2 & 5/2 & 5/2 & 5/2 & 5/2 & 5/2 & mg/I mg/I mg/I
eid comments HEAVY BAKED 5 MPLE FIELD TREATMEN No. of samples Submitted Y □ N X NA: No acid added □ IALYTICAL RESULTS from NF, NA Conductivity (Corrected) 25 °C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: F, A-H ₂ SO ₄ Nitrate-N +, Nitrate-N total (00630) Ammonia-N total (00610) Total Kjeldahl-N () Chemical oxygen demand (00340) Total organic carbon ()	HC/ An TIMES IT Check prop IF: Whole sample (Non-filtered) Other-specify: m SAMPLES	er boxes F: Filtered in 0.45 μme □ A: Units Date analyze μmho mg/l mg/l mg/l	field with mbrane filter Sml conc. HNO ₃ add Calcium (00915) Magnesium (00925) Sodium (00930) Fotassium (00935) Garbonate (00440) Chloride (00945) Jotal filterable residue (dissolved) (70300) Chlorice (00945) Jotal filterable residue (dissolved) (70300) Chlorice (00945) Jotal filterable residue (dissolved) (70300) Chlorice (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N ()	ni H ₂ SO ₄ / led 122 122 126 132 127 5 2 10 2 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3	Ladded A: 4ml .8 .22 /8 42 2)	fuming HNO ₃ ac Units Date analy mg/1 <u>6-2</u> mg/1 <u>7</u> mg/1 <u>7</u> mg/1 <u>5/2C</u> mg/1 <u>5/2C</u> mg/1 <u>6/5</u> mg/1 <u>6/5</u> mg/1 <u>5/2C</u> mg/1 <u>5/2C</u> mg/1 <u>5/2C</u>

FOR OCD USE -- Date Owner Notified _____ Phone or letter? _____ Initials _____

Г

4

\$

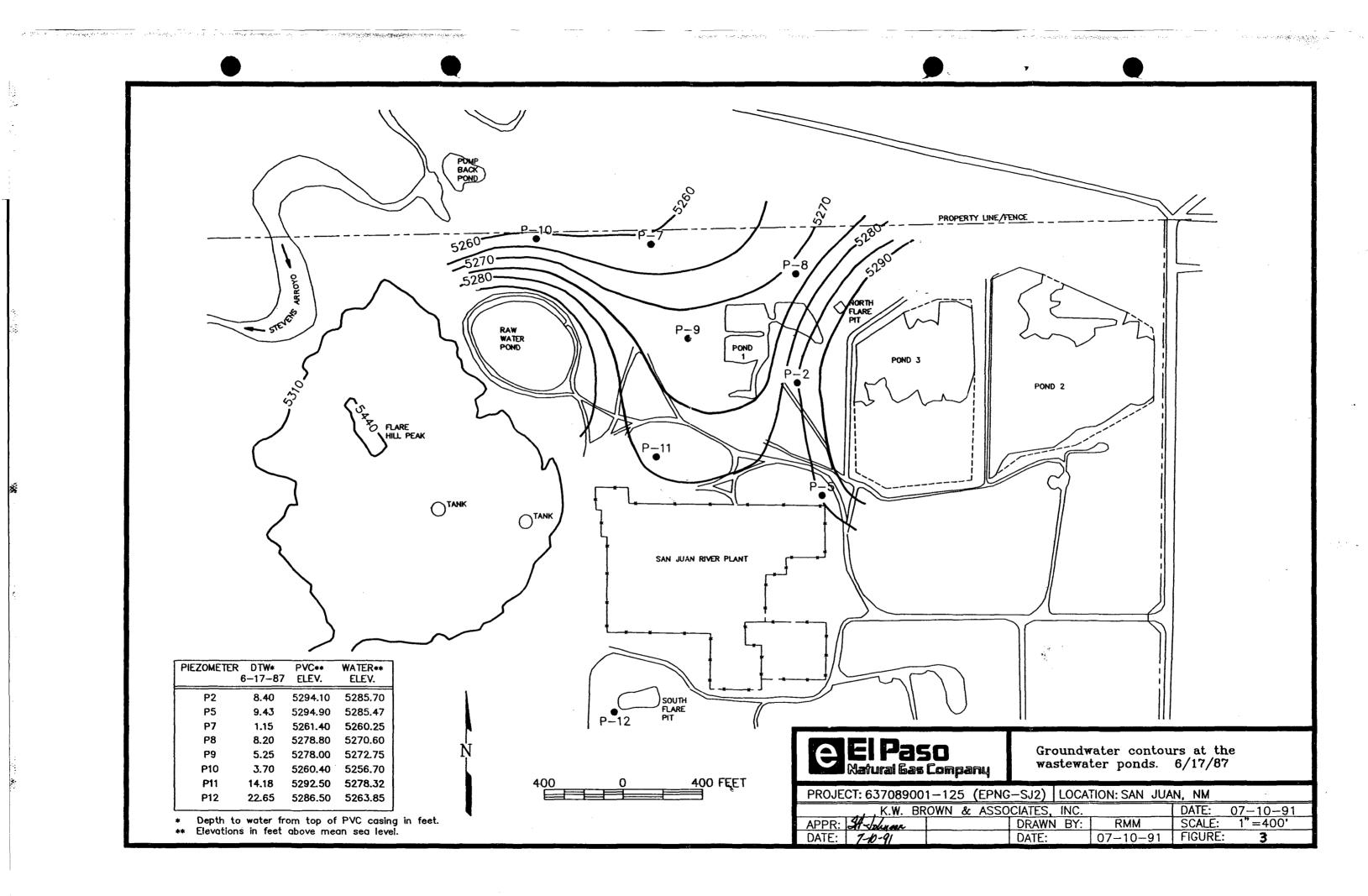
ł

- - -

ATE ECEIVED 5 22 84	LABU 2233		□ <u>59600</u> ★ C	THER: 82	235	
SIZO186	SITE	Sample location	P12			
Nection TIME	INFORM- ATION	Collection site description				
lected by Bernen (Assem)	OYERLOCD		EP SAN	JUAN) PLANT	-
ND NM OIL CON IAL State Land	NTAL BUREAU NSERVATION DI d Office Bldg NM 87504-208 Over	, PO Box 2088				
Phone: 827-5	5812	- S		Station/ well code		
MPLING CONDITIONS						
Bailed 🗆 Pump Dipped 🗆 Tap	Water level	CSG 1.6 G.L.	Discharge		Sample type	
1(00400) 7.5	Conductivity (Unco	orrected) 4820 μmho	Water Temp. (00010)	21 °C	Conductivity at 25	°C (00094) µп
eld comments HEAVY	HCLAM	INE Q	DOR - GREE	EN IN	DESCENT	T COLO
	5 TIMES		······································			
MPLE FIELD TREATMEN	NT - Check prop	er boxes		<u> </u>		
		F: Filtered in I				
· /) (F	IF: Whole sample	2 F:	A: 2	2 mí H ₂ SO ₄ /	L added	
submitted /	(Non-filtered)	(0.45 µiner		2 mí H ₂ SO ₄ /		
submitted /	(Non-filtered)	(0.45 µiner	nbrane filter A: 2 5ml conc. HNO ₃ ad			ng HNO ₃ add
Submitted /	(Non-filtered) Other-specify:		Sml conc. HNO3 ad		A: 4ml fumir	
Submitted / UF NA: No acid added NALYTICAL RESULTS fro NF, NA	(Non-filtered) Other-specify:	(0.45 µiner	5ml conc. HNO ₃ ad		A: 4ml fumir Units	
submitted / UF	(Non-filtered) Other-specify: m SAMPLES		5ml conc. HNO ₃ ad	ided 🗆	A: 4ml fumir	
submitted / Image: Constraint of the second se	(Non-filtered) Other-specify: m SAMPLES	Units Date analyzed	5ml conc. HNO3 ad i F, NA □ Calcium (00915) □ Magnesium (00925) □ Sodium (00930)	ided 🗆	A: 4ml fumir Units mg/l	
Submitted / Image: Constraint of the second se	(Non-filtered) Other-specify: m SAMPLES	Units Date analyzed	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935)	ided []/	A: 4ml fumir Units mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted Image: Submitted Image: Image: Submitted Image: Submitted Image: Submitted Image: Submitted Image: Submitted Image: Image: Submitted	(Non-filtered) Other-specify: m SAMPLES	Units Date analyzed	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440)	ided []/	A: 4ml fumir Units mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Construction of the state of	(Non-filtered) Other-specify: m SAMPLES	Units Date analyzed	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940)	ided []/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted / Image: Image: Submitted Image: Submitted Image: Submitted / / Image: Image: Submitted Image: Submitted Image: Submitted / / / Image: Image: Submitted Image: Submitted Image: Submitted / / / Image: Image: Submitted Image: Submitted Image: Submitted / <td>(Non-filtered) Other-specify: m SAMPLES</td> <td>Units Date analyzed</td> <td>5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440)</td> <td>ided []/</td> <td>A: 4ml fumir Units mg/l mg/l mg/l mg/l</td> <td>Date analyz</td>	(Non-filtered) Other-specify: m SAMPLES	Units Date analyzed	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440)	ided []/	A: 4ml fumir Units mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted / Image: Image: Submitted Image: Submitted Image: Submitted / / Image: Image: Submitted Image: Submitted Image: Submitted / / / Image: Image: Submitted Image: Submitted Image: Submitted / / / Image: Image: Submitted Image: Submitted Image: Submitted / <td>(Non-filtered) Other-specify: m SAMPLES</td> <td>Units Date analyzed</td> <td>5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00933) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residu (dissolved) (70300)</td> <td>ided []/</td> <td>A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l</td> <td>Date analyz</td>	(Non-filtered) Other-specify: m SAMPLES	Units Date analyzed	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00933) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residu (dissolved) (70300)	ided []/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Construction of the state of	(Non-filtered) Other-specify: m SAMPLES	Units Date analyzed	5ml conc. HNO3 ac I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) J Sutfate (00945) Total filterable residu	ided []/	A: 4ml fumin Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted Image: Submitted Image: All the submitted Image: Submitted Image: Submitted Image: Submitted Image: Submitted Image: All the submitted Image: Submitted <td>(Non-filtered) Other-specify: m SAMPLES</td> <td>A:</td> <td>5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00933) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residu (dissolved) (70300)</td> <td>ided []/</td> <td>A: 4ml fumin Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l</td> <td>Date analyz</td>	(Non-filtered) Other-specify: m SAMPLES	A:	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00933) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residu (dissolved) (70300)	ided []/	A: 4ml fumin Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted / Image: ALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted / Image: ALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted / Conductivity (Corrected) 25°C (00095) _ _ _ Total non-filterable residue (suspended) (00530) _ _ _ Other: _ _ _ _ _ _ Other: _	Other-specify: mSAMPLES	A:	5ml conc. HNO3 ac 5ml conc. HNO3 ac Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H2 SO4	ided []/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted NALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Conductivity (Corrected) 25°C (00095) Image: Submitted 25°C (00095) Image: Submitted Image: Submitted Total non-filterable residue (suspended) (00530) Image: Submitted Image: Submitted Image: Other: Image: Submitted Image: Submitted Image: Submitted Image: Submitted Image: Other: Image: Submitted Image: Submitted Image: Submitted Image: Submitted Image: Other: Image: Submitted Image: Submitted Image: Submitted Image: Submitted Image: Submitted Image: Submitted	T: (Non-filtered) Other-specify: m SAMPLES	A:	5ml conc. HNO3 ad 5ml conc. HNO3 ad Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate- Vissolved (00631)	ided □/	A: 4ml fumin Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted Image: Submitted NALYTICAL RESULTS from NF, NA Image: Submitted Image: Su	Other-specify: mSAMPLES	A:	5ml conc. HNO3 ad 5ml conc. HNO3 ad Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate- dissolved (00631) Ammonia-N dissolved	ided □/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted Image: Submitted Image: ALLYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Image: Submitted Image: ALLYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Image: Submitted Image: ALLYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Image: Submitted Image: Conductivity (Corrected) 25°C (00095) Image: Submitted Image: Submitted Image: Submitted Image: Conductivity (Corrected) 25°C (00095) Image: Submitted Image: Submitted Image: Submitted Image: Submitted Image: Conductivity (Submitted Submitted Image: Submitted Submitted Submitted Image: Submitted Submitted Submitted Submitted Image: Submitted Subm	Other-specify: mSAMPLES	A:	5ml conc. HNO3 ad 5ml conc. HNO3 ad Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate- Vissolved (00631)	ided □/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted NA: No acid added Image: Submitted Image: Submitted NALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Conductivity (Corrected) 25°C (00095) 25°C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: Other: Other:	Other-specify: mSAMPLES	A:	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H ₂ SO4 Kitrate-N + , Nitrate- dissolved (00631) Ammonia-N dissolv (00608) Total Kjeldaht-N ()	ided □/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted NA: No acid added Image: Submitted Image: Submitted NALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Conductivity (Corrected) 25°C (00095) 25°C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: Other: Other:	Other-specify: mSAMPLES	(0.45 µmeri [] A: 9 Units Date analyzed µmho mg/l mg/l mg/l mg/l	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residu (dissolved) (70300) Other: F, A-H ₂ SO ₄ Nitrate-N + , Nitrate- dissolved (00631) Ammonia-N dissolv (00608) Total Kjeldahl-N	ided □/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted NALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Conductivity (Corrected) 25°C (00095) Image: Submitted 25°C (00095) Image: Submitted Image: Submitted Total non-filterable residue (suspended) (00530) Image: Submitted Submitted Image: Submitted Su	Other-specify: mSAMPLES	(0.45 µmeri [] A: 9 Units Date analyzed µmho mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5ml conc. HNO3 ad 5ml conc. HNO3 ad Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate- dissolved (00631) Ammonia-N dissolv (00608) Total Kjeldahl-N () Other:	ided □/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz Date analyz 6/2 6-29 6-10
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted NA: No acid added Image: Submitted Image: Submitted NALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Conductivity (Corrected) 25°C (00095) 25°C (00095) Total non-filterable residue (suspended) (00530) (00530) Other: Other: Other: Nitrate-N +, Nitrate-N total (00610)	Other-specify: mSAMPLES	(0.45 µmeri [] A: 9 Units Date analyzed µmho mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H ₂ SO4 Kitrate-N + , Nitrate- dissolved (00631) Ammonia-N dissolv (00608) Total Kjeldaht-N ()	ided □/	A: 4ml fumin Units mg/l	Date analyz Date analyz €/2- 6-29
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted NALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted NF, NA Image: Submitted Image: Submitted Image: Submitted Conductivity (Corrected) 25°C (00095) Image: Submitted Conductivity (Corrected) 25°C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Image: Submitted Subm	Other-specify: mSAMPLES	(0.45 µmeri [] A: 9 Units Date analyzed µmho mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H ₂ SO ₄ Mitrate-N + , Nitrate- dissolved (00631) Ammonia-N dissolv (00608) Total Kjeldahl-N () Other:	ided □/	A: 4ml fumir Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Date analyz
submitted / Image: Submitted / Image: NA: No acid added Image: Submitted Image: Submitted NA: No acid added Image: Submitted Image: Submitted NALYTICAL RESULTS from NF, NA Image: Submitted Image: Submitted Conductivity (Corrected) 25°C (00095) 25°C (00095) Total non-filterable residue (suspended) (00530) Other: Other: Other: Other: Other: Other: Other:	Other-specify: mSAMPLES	(0.45 µmeri [] A: 9 Units Date analyzed µmho mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	5ml conc. HNO3 ad I F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residu (dissolved) (70300) Other: F, A-H ₂ SO ₄ Mitrate-N + , Nitrate- dissolved (00631) Ammonia-N dissolv (00608) Total Kjeldahl-N () Other:	ided □/	A: 4ml fumin Units mg/l	Date analyz Date analyz 6/2 6-29 6-10

*	▲ ~	$n \downarrow \downarrow$	EAVV	METALS	5
New Mexico He SCIENTIFIC LA 700 Camino de	BORATORY		,	VATER CHEMISTI	
	IM 87106 — (505) 841-2555	/ar	NITH	OGEN ANALYSIS	
	NO. M. GAL USER 5930	о 🗆 59600 🕅 отн	IER: 82	235	
Collection DATE 5 20 86	SITE Sample location	P12			
Collection TIME	ATION Collection site description	n			
Collected by - Person/Agency	YE R'/OCD	EP JAN,	JUAN	PLANT	
			5021	TZ9N RISC	ω
	ITAL BUREAU	-		······	
SEND NM OIL CONSERVATION DIVISION FINAL State Land Office Bldg, R0 Box 2088					
TO Santa Fe,	NM 87504-2088				
Attn:David_Bo	oyer				
Phone: 827-5			Station/ well code		
SAMPLING CONDITIONS			wner	<u>, ,, ,, , , , , , , , , , , , , , , , </u>	
🛱 Bailed 🗔 Pump	Water level 254 1.66.4	Discharge		Sample type	
□' Dipped □ Tap pH (00400)	22'TOC Conductivity (Hecorrected)	Water Temp. (00010)		Conductivity at 25°C (10094)
рн (00400) 7.5	Conductivity (Uncorrected) 4820 µmho		/ •C	Conductivity at 25°C (0	µmho
Field comments HERVY	HCLAMINE ODOR	- GREEN IR	INESC	ENT COLO.	R.
BAILED STL			- 		
SAMPLE FIELD TREATMEN					
No. of samples	M/holo comple	field with		Ladded	
submitted /	(Non-filtered) 0.45 μme				
🗆 NA: No acid added 🛛	Other-specify:	5ml conc. HNO, adde	ad DT	A: 4ml fuming H	INO added
		5412 00000 14103 000			
			~ 7		ate analyzed
ANALYTICAL RESULTS from -NF, NA E, 44 Conductivity (Corrected)	m SAMPLES Units Date analyze				
-NF, NAD E, 44		d F, NA Calcium (00915) Magnesium (00925)		Units D mg/l mg/l	ate analyzed
-NF, NA> E, 44 Conductivity (Corrected) 25°C (00095) Total non-filterable	Units Date analyze	d F, NA		Units D mg/l mg/l	ate analyzed
NF, NA E, 4 Conductivity (Corrected) 25°C (00095) Total non-filterable residue (suspended) (00530)	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440)		Units D mg/l mg/l mg/l mg/l	ate analyzed
-NF, NA> E, H Conductivity (Corrected) 25°C (00095) Total non-filterable residue (suspended) (00530) Other: /CAP SCAN	Units Date analyze µmho mg/l	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945)		Units D mg/l mg/l mg/l mg/l mg/l	ate analyzed
-NF, NA E, H Conductivity (Corrected) 25°C (00095) Total non-filterable residue (suspended) (00530) Other: /CA P SCAN Other: ∧ S Other: ∧ S Other: ∧ S Other: SC	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940)		Units D mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	ate analyzed
 Conductivity (Corrected) 25°C (00095) □ Total non-filterable residue (suspended) (00530) ○ Other: /CA P SCAN ○ Other: N 5 	Units Date analyze µmho mg/l	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue		Units D mg/l mg/l mg/l mg/l mg/l	ate analyzed
 NF, NA> E, H Conductivity (Corrected) 25°C (00095) □ Total non-filterable residue (suspended) (00530) ○ Other: /CAP SCAN ○ Other: A 5 ○ Other: A 5 ○ Other: SC NF, A-H₂SO₄ □ Nitrate-N + Nitrate-N 	Units Date analyze	Image: second		Units D mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	ate analyzed
-NF, NA E, H □ Conductivity (Corrected) 25°C (00095) □ Total non-filterable residue (suspended) (00530) □ Other: /CAP ○ Other: /AS ○ Other: /S ○ Other: /S ○ Hq NF, A-H₂SO4	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H ₂ SO ₄ Nitrate-N + , Nitrate-N		Units D mg/l	ate analyzed
-NF, NA E, H □ Conductivity (Corrected) 25°C (00095)	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate-N dissolved (00631)		Units D mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	ate analyzed
-NF, NA E, H □ Conductivity (Corrected) 25°C (00095)	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608)		Units D mg/l	ate analyzed
-NF, NA E, H □ Conductivity (Corrected) 25°C (00095)	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H ₂ SO ₄ Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved		Units D mg/l	ate analyzed
-NF, NA E, H □ Conductivity (Corrected) 25°C (00095)	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N		Units D mg/l	ate analyzed
Image: NF, NA E, H □ Conductivity (Corrected) 25°C (00095)	Units Date analyze mho mg/l mg/l mg/l mg/l mg/l mg/l	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00945) Total filterable residue (dissolved) (70300) Other: F, A-H ₂ SO ₄ Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N ()		Units D mg/l	ate analyzed
NF, NA E, H □ Conductivity (Corrected) 25°C (00095)	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N () Other:		Units D mg/l	ate analyzed
NF, NA E, H □ Conductivity (Corrected) 25°C (00095)	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N () Other:		Units D mg/l	ate analyzed
NF, NA E, H □ Conductivity (Corrected) 25°C (00095)	Units Date analyze mho mg/l mg/l mg/l mg/l mg/l mg/l	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N () Other:		Units D mg/l	ate analyzed
-NF, NA> E F □ Conductivity (Corrected) 25°C (00095) □ Total non-filterable residue (suspended) (00530) □ Other: ICAP ○ ICAP ICAP ○ ICAP ICAP ○ Intrate-N +, Nitrate-N Intrate-N I Intrate-N +, Intrate-N Intrate-N	Units Date analyze	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N () Other:		Units D mg/l	ate analyzed
-NF, NA> E, ff □ Conductivity (Corrected) 25°C (00095)	Units Date analyze mho mg/l mg/l	d F, NA Calcium (00915) Magnesium (00925) Sodium (00930) Potassium (00935) Bicarbonate (00440) Chloride (00940) Sulfate (00945) Total filterable residue (dissolved) (70300) Other: F, A-H2 SO4 Nitrate-N + , Nitrate-N dissolved (00631) Ammonia-N dissolved (00608) Total Kjeldahl-N () Other:		Units D mg/l	ate analyzed

.


i

Lab Number: <u>Fr.M. 996</u> Date Submitted: <u>5/22/86</u> By: <u>Boyer</u>

Sample de: P12 EPSan Juan Plant Date Analyzed: 5/27 86 Reviewed By: Jim Rohly Date Reported 7/23

Element	ICAP VALUE(MG/L)	AA VALUE (MG/L)
Aluminum		<u></u>
Barium	0.1	
Berylium	<u> ~0.1</u>	
Boron	0.9	
Cadmium	40.1	
Calcium	130.	
Chromium		
Cobalt	1	
Copper	_<0.[
Iron	3.2	
Lead	_ <0.1	<u></u>
Magnesium	170.	
Manganese	0.7	
Molybdenum	<u> </u>	
Nickel	0.2	
Silicon	4.7	
Silver	<0.1	
Strontium	6.5	
Tin	<u> </u>	
Vanadium	20.1	
Zinc	< 0.1	
Arsenic		0.035 <0.01
Selenium		<0.01
Mercury		<0,0005

12111

Summary of Investigations at the San Juan River Plant Kirtland, New Mexico

RECEIVED

JUN 0 3 1999

GW 039

JUNE 1998

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Prepared for:

EL PASO NATURAL GAS COMPANY FARMINGTON, NEW MEXICO

Project 14323

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	2
2.0 PREVIOUS STUDIES AND REMEDIAL ACTIVITIES	3
3.0 1995 INVESTIGATION	5
3.1 MONITORING WELL ABANDONMENT. 3.2 MONITORING WELL INSTALLATION. 3.3 MONITORING WELL UPGRADE	5 6
4.0 REGIONAL AND SITE GEOLOGY	7
4.1 REGIONAL GEOLOGY	
5.0 REGIONAL AND SITE HYDROLOGY	9
 5.1 REGIONAL HYDROLOGY	9 10
6.0 SITE DATA RESULTS AND CONCLUSIONS	12
6.1 RESULTS OF VADOSE ZONE INVESTIGATION General Evaporation Ponds RECON® Investigation Results 6.2 VADOSE ZONE CONCLUSIONS Vadose Zone Cations and Anions Vadose Zone Hydrocarbons 6.3 RESULTS OF GROUNDWATER INVESTIGATION Groundwater Flow Direction Conclusion Groundwater Flow Direction Conclusion Groundwater Quality Groundwater Quality Conclusion Groundwater Hydrocarbon Impacts Hydrocarbon Impacts Conclusion pH pH Conclusion Metals Metals Conclusion Nitrates	12 13 14 14 14 15 16 16 16 17 18 20 21 23 23
7.0 RECOMMENDATIONS	26
7.1 VADOSE ZONE	
8.0 REFERENCES	28

LIST OF TABLES

TABLE 1 CHRONOLOGY OF WORK DONE AT SAN JUAN RIVER PLANT - EPNG
TABLE 2 WORK COMPLETION SUMMARY - JULY, 1995
TABLE 3 GROUNDWATER ELEVATION DATA
TABLE 4 SOIL SAMPLING RESULTS - JULY, 1995
TABLE 5 SOIL SAMPLING RESULTS, EVAPORATION PONDS, AUGUST, 1995
TABLE 6 HISTORICAL RESULTS FOR WELLS ABOVE NMWQCC STANDARDS (BTEX EXCLUDED)
TABLE 7 HISTORICAL BTEX RESULTS

LIST OF FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE MAP
- FIGURE 3 RECON® INVESTIGATION RESULTS
- FIGURE 4 RECON® INVESTIGATION RESULTS
- FIGURE 5 RECON® INVESTIGATION RESULTS
- FIGURE 6 POTENTIOMETRIC SURFACE MAP
- FIGURE 7 STIFF DIAGRAMS, LOCAL WELLS, W-2 & MW-4
- FIGURE 8 STIFF DIAGRAMS, MW-5, MW-7, MW-8, AND MW-9
- FIGURE 9 STIFF DIAGRAMS, MW-6
- FIGURE 10 GROUNDWATER CHLORIDE CONCENTRATIONS
- FIGURE 11 GROUNDWATER TOTAL DISSOLVED SOLIDS CONCENTRATIONS
- FIGURE 12 GROUNDWATER SULFATE CONCENTRATIONS
- FIGURE 13 BTEX CONCENTRATIONS IN GROUNDWATER

LIST OF APPENDICES

APPENDIX A RECORD OF SUBSURFACE EXPLORATION FORMS

EXECUTIVE SUMMARY

This report serves to summarize environmental work completed by El Paso Natural Gas Company (EPNG) at the San Juan River Gas Plant (the plant) located in San Juan County, New Mexico. The San Juan River Plant is a natural gas processing plant that was sold to Western Gas Processors, Ltd. by EPNG. Environmental work completed by EPNG has focused on the closure of three waste water evaporation ponds, two raw water makeup ponds, and the closure of two flare pits. Previous to the pond closure EPNG studied the feasibility of land application of waste water to eliminate pond usage. This effort resulted in the installation of groundwater monitoring wells where dissolved phase hydrocarbons and other inorganic chemicals of concern were identified in groundwater. In pursuing the discovery of hydrocarbons and inorganics in groundwater, EPNG installed additional monitoring wells, abandoned unnecessary ones, completed soil gas investigations, and completed quarterly groundwater sampling and reporting.

To date, studies do not indicate pervasive impact of the vadose zone at the Plant.

Based on previous investigations, the concentrations of inorganic chemicals in groundwater appear to be the result of plant activities; though the naturally occurring concentrations in the groundwater surrounding the plant are above relevant standards. The hydrocarbon impact to groundwater is localized and does not appear to be migrating. Due to natural attenuation, nutrient and oxygenate addition to enhance bioremediation and groundwater monitoring is recommended.

1.0 INTRODUCTION

The San Juan River Plant (the plant) is located in Section 1, Township 29 North, Range 15 West, San Juan County New Mexico (Figure 1). The site associated with the plant is approximately 630 acres. The plant and surrounding area contain the following items:

- A gas processing plant
- Two raw water ponds (now closed)
- Three wastewater evaporation ponds (now closed)
- Two flare pits (now closed)

- A sulfur recovery plant
- Various hydrocarbon and water tanks
- Pigging stations for line cleaning
- Various 16- to 24-inch diameter natural gas pipelines entering and leaving the plant.

The plant was previously owned by El Paso Natural Gas Company (EPNG) and is currently owned by Western Gas Processors, Ltd. EPNG installed 21 monitoring wells at the plant between 1985 and 1995. EPNG's purpose for installation of the wells was to identify any impacts to the environment that may have been the result of plant activities, and to evaluate groundwater quality and characteristics at the plant. This report includes a brief summary of the previous investigations at the facility, and details of the latest investigation by EPNG, including monitoring well installation and abandonment, groundwater sampling, and a soil-gas survey.

This report serves to summarize previous activities at the plant and to draw together all of the information collected to interpret current conditions at the plant. Sections 2 and 3 of the report summarize previous studies and remedial activities at the plant, then briefly discusses the work completed at the plant in 1995. Regional and site geology and hydrology are discussed in Sections 4 and 5, using all available information from published sources and past investigations. Section 6 details the results of contaminant investigations in the plant and conclusions are drawn regarding the source and extent of contaminants at the areas of the plant that were investigated. Section 7 gives brief recommendations for future action at the plant.

2.0 PREVIOUS STUDIES AND REMEDIAL ACTIVITIES

A number of studies were conducted at the plant from 1985 to 1995. A brief chronology of the work completed is presented in Table 1. Relevant studies are summarized below.

In 1985, Geoscience Consultants, Ltd. (GCL) conducted an investigation prior to a discharge plan submittal. GCL identified petroleum hydrocarbon-impacted groundwater in two of nine piezometers installed during the investigation. In two other wells installed during the investigation a "petroliferous odor" was described, but sample results were not reported.

KWB&A and Associates (KWB&A) conducted a study in 1987 (KWB&A 1987a) to support the land treatment and disposal of approximately 9.67 million gallons of noncontact wastewater produced annually at the plant. This report focused primarily on the potential effect of land treatment and disposal of wastewater on the soil and groundwater at the plant. Extensive evaluation of local soil and groundwater was completed. Sitespecific geology, hydrology, and groundwater quality were also described.

KWB&A also installed three monitoring wells and three piezometers in 1987 to further evaluate groundwater quality and groundwater flow in the land application areas, as well as the feasibility of land application of discharge water from the plant (KWB&A 1987b). Piezometers installed during the Phase II investigation indicated the wastewater ponds appeared to be leaking and were considered the source of groundwater for the east portion of the plant; this may have influenced local groundwater flow characteristics.

In 1992, the south and north flare pits were closed and Closure Summaries were submitted to the New Mexico Oil Conservation Division (NMOCD) on February 8, 1993. These reports detailed remediation efforts removing hydrocarbon-contaminated soil from the old flare pit locations. Remediation of the south flare pit began on September 28, 1992, and a total of 18,200 cubic yards of contaminated material were removed from the pit. MW-4, which was 200 feet south of the south flare pit, did not show hydrocarbon contamination in groundwater samples collected in December of 1992.

Remediation activities at the north flare pit began on October 29, 1992. Approximately 3,520 cubic yards of contaminated soil were removed from the pit. Sampling of monitoring well P-8, located 100 feet down gradient of the north flare pit, indicated no benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations. The soil excavated from the flare pits has been landfarmed at the site, as shown on Figure 2.

Details of the flare pit closures are outlined in EPNG's September 16, 1992, report.

EPNG produced two soil sampling and analysis reports, dated August 3, 1995, and August 22, 1995. These two reports documented the sampling of the soils in the former ponds at the plant. Soil samples collected in this sampling event were analyzed for common cations and anions, total petroleum hydrocarbons (TPH), and BTEX.

EPNG closed the former wastewater evaporation ponds in late 1995, and early 1996. Pit and pond closure activities resulted in capping the ponds with low permeability, compacted soil. The activities were summarized in a letter report to the NMOCD, dated November 26, 1996.

3.0 1995 INVESTIGATION

The most recent investigation at the San Juan River Plant, was completed in the summer of 1995. Additional sampling of ground water monitor wells MW-5, MW-8, and MW-9 has; however, occurred since 1995. During the 1995 phase of work, Philip Environmental Services Corporation (Philip) abandoned 17 wells, upgraded 2 wells, and installed 5 new monitoring wells. The abandoned wells had been installed between 1985 and 1987 to aid in the characterization of potential contaminant migration and to support the installation of the landfarm. EPNG chose to abandon these wells because they were no longer required, or they were found to be unusable. Three of the five new wells were installed to replace three of the abandoned wells in areas where EPNG wished to continue monitoring groundwater impacts. The abandoned wells were replaced because they did not have accurate well construction data to allow them to be useful. Table 2 summarizes the work completed in this phase of work. Philip's 1995 report, "Monitoring Well Installation, Upgrade and Abandonment" and Philip's August 1995 report, "Soil Gas and Soil Survey" presents the results of this work. The soil and soil-gas investigation was also conducted in 1995 using Philip's RECON® van. Soil and soil-gas samples were collected from areas adjacent to three wells that EPNG had identified as areas of concern.

3.1 MONITORING WELL ABANDONMENT

The existing monitoring wells were abandoned by first trying to pull the casing with a drilling rig. If the casing could not be removed, Philip utilized drill rig equipment with a case-cutting tool to rip the casing from surface to bottom. The final step was to seal the open hole or ripped casing with grout, using a tremie cementing method. Abandoned wells are shown on Figure 2.

3.2 MONITORING WELL INSTALLATION

The monitoring well portion of this phase of work included the installation of four wells, MW-6, MW-7, MW-8, and MW-9. These wells were installed in the vicinity of existing wells which were abandoned as part of this project. A fifth well, MW-5, was installed down-gradient of MW-8 and MW-9. The purpose of the well installations was to further

assess the groundwater quality in the area of known impact and to document up-gradient and down-gradient water quality.

3.3 MONITORING WELL UPGRADE

Two of the existing monitoring wells, W-2 and MW-4, were upgraded by placing a locking protective casing cover over the existing polyvinyl chloride (PVC) casing and setting a concrete pad to support the protective casing. Upgraded well locations are shown in Figure 2.

3.4 **RECON®** INVESTIGATION

On June 28, 1995, EPNG conducted a soil and soil-gas investigation around three wells at the plant. The groundwater samples from these wells had historically elevated levels of BTEX. The purpose of the investigation was to attempt to gather data with respect to the horizontal and vertical extent of BTEX contamination around each well.

The three wells investigated included P-7, P-10, and P-11. Probe holes were initiated radially around each well location and soil-gas samples were taken at various depths until non-detect samples were obtained. Once the vertical extent of contamination was determined in a probe hole, step-out probe holes were initiated at approximately 20-foot intervals, until non-detect samples were observed horizontally. Each soil or soil-gas sample was analyzed on-site by United States Environmental Protection Agency (USEPA) SW-846 Method 3810 Static Headspace Extraction Procedure, and USEPA Method 8020 Aromatic Volatile Organics Analysis. Figures 3, 4, and 5 show the location of the probe holes around the investigated wells.

4.0 REGIONAL AND SITE GEOLOGY

4.1 **REGIONAL GEOLOGY**

The plant is located in the northeastern portion of the San Juan Basin. The San Juan Basin is a structural basin, formed of a thick sequence of sedimentary rocks, which underlies the north-western corner of New Mexico. Formation of the basin began in the late Cretaceous Period and continued into the Tertiary Period. During the late Cretaceous Period, sediments were deposited in a shallow sea which was vacillating between transgressive and regressive sequences. This resulted in the deposition of both marine and non-marine sediments. Cretaceous and Tertiary sediments in the basin usually dip gently toward the center of the basin. (Stone et al 1983).

The primary geologic formations in the area of the plant are considered to be the Kirtland Shale and alluvial sediments. The Kirtland shale and the underlying Fruitland formation are often lumped together in mapping and have similar hydrologic properties (Stone et al 1983). The Kirtland shale is a late Cretaceous marine deposit which was divided into three members by Bauer (1916). Bauer recognized three members: the upper and lower shale; and a middle member called the Farmington Sandstone.

The lower member is described as a greenish shale and is stated to be 271 to 1,031 feet thick. The middle member sandstone, which is described as tan, fine- to medium-grained sandstone, has a thickness of 20 to 480 feet; and the upper member is described as a greenish gray shale which is 12 to 475 feet thick (Stone et al., 1983; O'Sullivan and Beikman, 1963). According to Stone et al, 1983, the sandstone unit is not restricted to the middle member of the Kirtland Shale; the upper member is quite sandy as well.

In addition to the Kirtland Shale, alluvial and eolian sediments are present at the plant. O'Sullivan and Beikman (1963) mapped the unconsolidated sediments at the plant as Terrace Gravel and described the unit as a "surficial veneer of unconsolidated gravel and on stream-cut terrace surfaces along and near the San Juan River." O'Sullivan and Beikman (1963) also described other alluvial sediments found in the area as "unconsolidated surficial deposits of valley fill, mainly stream-deposited silt, and gravel,

but includes some wind-blown sand and silt, colluvial material, and locally, low-level terrace gravels."

4.2 SITE GEOLOGY

In general, based on drill logs from past and 1995 activities, the soil samples described in the investigations consist of a fine sand to fine sandy clay, with some gravel and cobbles. The soil samples from the borings located in the valley or alluvial fans, such as P-10, P-7, P-9, MW-5, MW-8, and MW-9, consist of fine sand to clay. The soil samples from the borings located on the mesas, plateaus, and terraces, such as E-10, E-11, E-9, MW-6, and MW-7, consist of fine sand with some gravel and cobble layers and some consolidated sandstone and shales (KWB&A, 1987a; Philip, 1995)

The uppermost and most prevalent lithology at the plant are alluvial sediments, which KWB&A found to cover the entire surface of the site. KWB&A described these sediments as consisting of "fluvial deposits and, to a lesser extent, terrace deposits of gravel and cobbles."

Beneath the alluvium at the plant are the consolidated sediments of the Kirtland Shale Formation, which include both shale and sandstone members. KWB&A's August, 1987 report (Figure 4-2) shows that the portion of the site that is north of the plant itself are underlain by a shale member of the Kirtland Formation. The plant and the flare hill are underlain by a sandstone member of the Kirtland Formation. South of the plant and the flare hill are Quaternary alluvium and alluvial terrace deposits. The contacts on this map strike east-west, except for where they curve around the flare hill.

• Flare Pit Geology

During remediation of the south flare pit on September 28, 1992, a distinct clay layer was encountered at a depth of approximately 15 feet below the original bottom of the pit, which appeared to limit downward migration of hydrocarbons. Confirmation samples were collected to verify clean soil in the clay layer at the bottom of the pit and the excavation was closed.

5.0 **REGIONAL AND SITE HYDROLOGY**

5.1 **REGIONAL HYDROLOGY**

Stone et al 1983, stated that in general, regional groundwater flow in the San Juan Basin is from the topographically high outcrop areas around the edges of the basin, towards the lower outcrop areas. The San Juan River valley is indicated in this report as a main discharge area for the San Juan Basin. Stone et al 1983, also states that ephemeral-stream channels filled with alluvium are the principle locations of groundwater discharge in some areas, and the principle locations of recharge in other areas.

5.2 SITE HYDROLOGY

Figure 6 is a potentiometric surface map drawn using water level measurements taken on July 18, 1995. These measurements indicate a groundwater flow divide that strikes approximately east-west through the plant, approximately paralleling the topographic divide in the same location. KWB&A clarified this groundwater flow divide in Section 3.2.3 of their November, 1987 report. Based on the data collected by EPNG in July of 1995, Philip could not substantiate a breach in the groundwater flow divide described by KWB&A in 1987.

Table 3 and it's graph depict the change in water levels over time at the wells closest to the ponds. Water levels in these wells dropped between June, 1987 and July, 1992, the period in which use of the ponds was discontinued. The wells closest to the ponds, P-2 and P-5, showed the greatest decrease in hydraulic head with drops of approximately 9 feet. Wells P-8, P-9, P-10, and P-11, all down or cross gradient from the ponds, showed decreases in hydraulic head ranging from 3.3 to 5.22 feet.

Figure 6 indicates that, at present, the shallow potentiometric surface approximates the topography of the plant. On the north side of the groundwater flow divide, groundwater appears to follow the drainage to the north, presumably to the valley formed by Stevens Arroyo. On the south side of the groundwater flow divide, groundwater appears to flow in a relatively uniform southerly direction. South of the divide, however, the potenti-

ometric surface is based largely on inference, the actual flow direction may have a westerly or an easterly component that cannot be detected with the geometry of the current wells.

In their 1987 investigation, KWB&A used the Hvorslev Method and the Falling Head Test to calculate hydraulic conductivities for the alluvial sediments at the plant. Tests on wells E1A, E1B, E3, and W2 indicated an average hydraulic conductivity of 2.3 x 10^{-5} centimeters per second (cm/sec) for these sediments. A Falling Head Test conducted on E2B, a well screened in a sandstone member of the Kirtland Shale, indicated a hydraulic conductivity of 3.3 x 10^{-9} cm/sec.

Philip's well logs for MW-9 and MW-5 indicate 5 to 10 feet of loose, silty, or clayey sand on top of hard sand or clay layers. This suggests that in some locations there is a cover of less consolidated material on top of the more consolidated sediments in the northern portion of the plant. This weathered layer may be transporting some of the groundwater at the plant.

During the remediation of the south flare pit, water seepage was noted on the north-center to northwest corner of the pit. Water appeared to be migrating along the top of the impermeable clay layer noted in the excavation. MW-4, which was 200 feet due south of the south flare pit, did not show hydrocarbon contamination in groundwater samples collected in December of 1992. Groundwater was encountered during excavation activities at the north flare pit, but sampling of monitoring well P-8 located 100 feet down gradient of the pit showed no BTEX.

5.3 **REGIONAL WATER QUALITY**

Specific conductance is used as a measure of water quality; the total dissolved-solids (TDS) concentration in milligrams per liter (mg/L) is about 0.7 times the specific conductance in micromhos (μ mhos). Stone et al 1983, states that specific conductance of water from valley-fill aquifers in the San Juan Basin generally ranges from 1,000 μ mhos to 4,000 μ mhos (2,800 mg/L TDS). Water with the higher conductance values is believed to be contributed by discharge from bedrock sources. Stone et al 1983, found that in the San Juan Basin, "Sodium and sulfate are major constituents in water that has a specific

conductance between 1,000 and 4,000 μ mhos; chloride commonly is a major ion when specific conductance exceeds 4,000 μ mhos."

Site water quality is discussed in detail in Section 6.2 of this report.

5.4 GROUNDWATER USE AND POTENTIAL RECEPTORS

KWB&A concluded in their August, 1987 report that groundwater use in the area around the plant is primarily restricted to shallow groundwater contained in the alluvial sediments. KWB&A identified eight wells that were completed in the shallow alluvial sediments in the vicinity of the plant. These wells are identified in KWB&A's August, 1987 report as being for domestic use. Of these eight, two are located near Stevens Arroyo, the anticipated flowpath for shallow groundwater originating from the plant area. These two wells are both located approximately 80 to 100 feet above the floor of Stevens Arroyo. The depth of these two wells is given as 50 feet. It is unlikely that groundwater traveling at or below the level of the bottom of Stevens Arroyo would affect the groundwater tapped by these wells.

In April, 1996, the New Mexico State Engineers office had records of four wells in the NW 1/4 of Section 11, Township 29 N, Range 15 W. Stevens Arroyo enters the floodplain of the San Juan River in this quarter section. The wells are between 60 and 25 feet deep and tap aquifers identified as sand and gravel layers.

6.0 SITE DATA RESULTS AND CONCLUSIONS

6.1 **RESULTS OF VADOSE ZONE INVESTIGATION**

• General

Based on data previously collected at the plant, data from above the saturated zone is somewhat limited. GCL identified "petroliferous odors" during the drilling and sampling of P-7, P-10, P-12 and a "solvent odor" in P-10. Soil contamination was identified and removed during the 1992 north and south flare pit remediation project. The July, 1995 RECON® investigation and monitoring well installment, abandonment and replacement project identified soil impacted by BTEX compounds. The evaporation ponds and the areas investigated by the RECON® van were identified by EPNG as areas of concern for vadose zone contamination; both of these areas are discussed under separate headings in this section.

The areas identified as having vadose zone BTEX impacts are at the north end of the plant in and around MW-8 and MW-9. During the RECON® investigation around P-7 and P-10 (replaced by MW-9 and MW-8, respectively) BTEX compounds were detected as stated earlier, but P-11 showed no soil or soil-gas contamination for BTEX above detection limits. During the installation of MW-6, organic compounds were noted while monitoring soil samples with a Photoionization Detector (PID), but soil samples collected for laboratory analysis did not indicate the presence of BTEX compounds. Results from soil samples collected during the 1995 investigation can be found in Table 4 and field screening results can be found on Philip's boring logs found in Appendix A.

In 1992, EPNG conducted a large scale remediation of soils from the north and south flare pits by excavation and landfarming. These remediation activities removed much of the source hydrocarbons at the plant. Closure samples were collected to verify the lack of hydrocarbon contaminants at the bottom of the excavations. These activities were documented by EPNG and reported to the NMOCD.

Evaporation Ponds

To determine TPH, BTEX, cation, and anion concentrations left in place following closure of the evaporation ponds, soil samples were collected and analyzed by EPNG on August 3, 1995, and August 22, 1995. Samples were collected from three of the ponds at the plant identified as "the old evaporation ponds," Former Pond #1, Former Pond #2 and Former Pond #3 in Figure 2. The Storage Pond referenced in EPNG's reports corresponds to Raw Water Pond #2 shown in Figure 2 of this report. Samples were collected from the lowest part of each pond using a hand auger. At each sampling location, one sample was collected from the surface and one sample was collected from 3 feet below the surface. Soil samples collected in this sampling event were analyzed for common cations and anions, TPH, and BTEX. Cation, anion, and TPH results from these two soil sampling events are summarized in Table 5.

The results of this soil sampling indicated high levels of common cations and anions in the soils at the surface in the bottom of the ponds. Samples collected 3 feet below ground surface (bgs) generally indicated significantly decreased levels of the common cations and anions when compared to the surface soil samples. TPH levels in the six samples ranged from 42 parts per million (ppm) in Pond #1, 3 feet bgs to 142 ppm at the surface in Pond #1.

BTEX results for soil samples collected from within the evaporation ponds are documented in an EPNG report dated August 22, 1995. Benzene was not detected in any of these soil samples using USEPA Method 8020. Toluene was detected in one of the samples at 59 parts per billion (ppb). Ethylbenzene was detected in two of the samples at 27 ppb and 140 ppb. Total xylenes were detected in two of the samples at 38 ppb and 330 ppb. These concentrations are well below NMOCD recommended remediation action levels for BTEX.

RECON® Investigation Results

Based on the soil and soil-gas results from the RECON® investigation, which occurred before wells were replaced, it appears that soil has been impacted to the west and to the south of P-7 (MW-8). BTEX compounds were observed in soil samples collected approximately 20 feet due east of P-7; however soil-gas sample concentrations of BTEX were non-detect at the 40 foot step-out probe hole. BTEX concentrations were not observed at the 20 foot step-out soil-gas probe hole due south of P-7, but were observed in the 3- to 5-foot depth soil sample collected at the 40 foot step-out probe hole. This suggests a south, southeast trend of the localized BTEX contamination at a depth of approximately 3 to 5 feet bgs. Soil sample and soil-gas results can also be found on Figures 3, 4 and 5.

Results from the investigation around P-10 (MW-9) show soil-gas concentrations in the soil to the east and north of P-10. The BTEX compounds diminish to non-detect at the 60 foot step-out probe hole to the east, and concentrations in the 20 and 40 foot step-out probe holes were highest at 6 feet bgs. North of P10, the only sample location showing BTEX was the 20 foot probe hole at a depth of 7.5 feet. These results suggest localized soil contamination to the north, northeast of P-10.

The soil-gas investigation around P-11 showed no appreciable BTEX concentrations in any direction or any depth sampled.

6.2 VADOSE ZONE CONCLUSIONS

• Vadose Zone Cations and Anions

High concentrations of chlorides, sulfate, and sodium remain in the near surface vadose zone in the vicinity of the former Pond #1. Because the ponds are closed and capped with low permeability material, to retard infiltration, and the primary transport mechanism to move the chloride, sulfate, and sodium is gone, it is anticipated that these ions will remain in place with minimal movement caused by infiltration of rainwater. Results of all investigations, including 1995 borehole logs and soil-gas sampling, suggest that the vadose zone in the area of the plant is relatively impermeable.

Vadose Zone Hydrocarbons

The analytical results of soil sampling obtained prior to closure of the former evaporation ponds indicate that TPH concentrations in the soil range from 42 to 142 milligrams per kilograms (mg/kg). The results of the soil sampling during the installation of monitoring wells MW-5, MW-6, MW-7, and MW-8, down-gradient of the ponds, indicate that concentrations of TPH between 18 and 61 mg/kg remain in the vadose

zone in the vicinity of these wells. With the exception of two surface samples, with results of 142 ppm and 126 ppm TPH, from Ponds #1 and #2, respectively, all of the analyses indicate TPH concentrations below the 100 ppm TPH NMOCD guideline standards for remediation of spills, leaks, and releases. These soils were covered when the ponds were closed.

Liquids from the ponds and/or a former collection sump are most likely the source of hydrocarbons in the soil. Because the ponds and the sump are closed, and the primary transport mechanism to move these hydrocarbons is gone, they will remain in place and naturally degrade over time.

The July, 1995 soil-gas survey indicates that soil-gas BTEX concentrations diminish away from the P-7 and P-10 well locations. This could indicate highly localized, or patchy, BTEX contamination in the soils in the vicinity of these wells. Soil samples collected near P-7 confirm BTEX contaminated soils near this well. The BTEX contamination indicated by soil-gas sample analyses near P-10 and P-7 may be indicative of BTEX contaminated soil in that area, or BTEX contaminated water just below the zone from which the soil-gas was collected.

Soil samples collected during the 1995 well installation, replacement and abandonment project indicated that small amounts of BTEX compounds were present in the soil at 30 to 32 feet bgs in MW-5 and at 18.5 to 20.5 feet bgs in MW-8. MW-5 was a new monitoring well installed northwest of areas previously investigated (Figure 2), and MW-8 was the replacement well for P-10 which was also investigated during the RECON® investigation. The results of BTEX analysis for soil samples from the borings for MW-6, MW-7, and MW-9 were below detection limits for all samples collected. Soil sample results from the monitoring well borings are presented in Table 4.

6.3 **RESULTS OF GROUNDWATER INVESTIGATION**

• Groundwater Flow Direction

KWB&A's August, 1987 report used local water supply wells to estimate the regional potentiometric surface and interpreted the data to indicate a regional groundwater

flow direction to the south, south-west. The wells at the plant indicate that shallow groundwater flow is more strongly influenced by local topography and geology than by the regional flow direction. Figure 6 shows the potentiometric surface at the plant as interpreted from water levels collected in July, 1995.

Groundwater Flow Direction Conclusion

Review of existing data indicates that, although the regional groundwater flow appears to be to the south-west, shallow groundwater flow at this site can be estimated by using the plant topography as a guide. A groundwater flow divide is present at the site, trending approximately east-west through the plant. Shallow groundwater to the north of the groundwater flow divide appears to be flowing along an unnamed drainage from the plant area, towards Stevens Arroyo. Shallow groundwater to the south of the groundwater flow divide appears to be flowing to the south, toward a shallow, unnamed, west-trending drainage that eventually merges with Stevens Arroyo.

Although MW-6 appears to be located south of the groundwater divide the water quality at that location is similar to the water quality of wells on the north side of the groundwater flow divide. This information can be used as evidence supporting the existence of a breach in the groundwater flow divide in the area of E-11.

The data supports the interpretation that the plant area is characterized by A paleostream channel or channels which eroded into the Kirtland Shale Formation. The eroded surface of the Kirtland Formation, and therefore the depths of the sandy, alluvial sediments, appear to be variable across the plant.

Groundwater Quality

Philip constructed Stiff Diagrams to aid in the interpretation of the groundwater quality data collected from the presently existing wells in July, 1995. Stiff Diagrams provide a quick visual comparison of water quality chemical analyses. Data from two of the "local wells" sampled by KWB&A for their August, 1987 report is also illustrated in Stiff Diagrams for comparison. These two "local wells" are offsite and up-gradient from the plant. Figure 7 shows the Stiff Diagrams for the two local wells outside the plant, Lester and Dailey, and the two wells south of the groundwater divide, W-2 and

ENVIRONMENTAL

MW-4. The KWB&A report indicates that all of these wells are screened in the alluvial sediments. The Stiff Diagrams for W-2 and the Dailey well are very similar. The Dailey well has a high relative concentration of sulfate. The MW-4 Stiff diagram is similar to the Lester well Stiff diagram with the exception that MW-4 has a greater concentration of HCO_3 . This difference may be due to locally varying amounts of carbonate cement within the alluvial sediments.

The Stiff Diagrams for wells north of the groundwater divide, MW-5, MW-7, MW-8, and MW-9, are shown in Figure 8. These diagrams indicate a similar quality of groundwater is present at MW-7, MW-5, and MW-9. Specific conductivity values in these wells is generally at least twice that of W-2 and MW-4 on the south side of the divide. Sodium and sulfate appear in much higher relative concentrations in the wells north of the divide than in the wells south of the divide. The only exception to this being MW-8, which is relatively higher in carbonate than in sulfate.

MW-6 is unique, in that it is located south, though very close to the top of the groundwater divide; however, it's Stiff diagram is more similar to the north side well diagrams than those of the south. Two Stiff diagrams for MW-6, one illustrating the July, 1995 results and the other illustrating the October, 1995 results are shown in Figure 9. These diagrams indicate a water quality similar to wells north of the divide; with the exception of high relative chloride levels in July, 1995. In October, 1995, the chlorides appeared similar to the remaining north side wells.

Figure 10 is a groundwater chloride concentration map. This map indicates that chloride concentrations are highest in the area of former ponds 2 and 3. A similar pattern is indicated by TDS concentrations. Figure 11 shows the most recent TDS results for all wells, past and present, at the plant. Figure 12 shows the recent sulfate results for all wells, past and present, at the plant. MW-5 located down-gradient from the ponds at the edge of the plant boundary does not appear to be affected by chloride. In MW-5, sodium and sulfates appear similar to MW-7 and MW-9.

Groundwater Quality Conclusion

Groundwater quality is poor throughout the area. The two offsite wells sampled by KWB&A in 1987, exceeded several New Mexico Water Quality Control Committee

(NMWQCC) standards. The Lester well exceeded NMWQCC standards for sulfate and TDS. The Dailey well exceeded NMWQCC standards for chloride, sulfate, and TDS. Similarly, the wells south of the groundwater divide at the plant, W-2 and MW-4, do not meet NMWQCC standards for those parameters. Table 6 summarizes these results.

North of the groundwater flow divide, water quality remains poor and is relatively elevated in sodium and sulfate. For the October, 1995 sampling event, the average TDS for the four wells north of the groundwater divide was 15,275 micrograms per liter (mg/L). For the same sampling event the average TDS for the two wells south of the groundwater divide was 4,460 mg/L.

The groundwater north of the groundwater divide, as well as groundwater at MW-6, may have been affected by wastewater from the plant that was stored in the former ponds. The magnitude of this effect is difficult to quantify, as there is no current data from surrounding domestic wells. The former wastewater ponds have not received wastewater since their use was discontinued sometime between 1988 and 1989. The difference in water quality between wells north and south of the groundwater divide, indicate that the wells to the north have been affected by poor quality recharge. This source of recharge was removed when use of the ponds ceased in 1988 or 1989.

Virtually every well sampled at the plant had or has elevated chlorides, sulfates and TDS concentrations above NMWQCC standards. This is mostly likely due to a combination of poor background water quality and historical wastewater discharge which ceased in 1989.

Groundwater Hydrocarbon Impacts

Historical data indicates BTEX impacted groundwater at the plant. Groundwater samples from wells P-7, MW-9, MW-8, P-10, and P-11 have shown BTEX above NMWQCC standards as indicated on Table 7. Well P-9 showed only one round of sampling in May, 1986, with benzene above standards. All subsequent sampling events of P-9 showed concentrations below NMWQCC standards. MW-8 and MW-9 were installed by Philip during the 1995 well abandonment and replacement project. MW-9 was a replacement well for P-7 and MW-8 was a replacement well for P-10.

After well installation, groundwater samples collected by EPNG on July 18, 1995, showed BTEX compounds present in MW-4, MW-8, and MW-9. BTEX concentrations found in this sampling of MW-4 were below NMWQCC standards, but were above standards in MW-8 and MW-9. October, 1995, sample results showed no BTEX compounds in MW-4. Monitor wells MW-5, MW-8, and MW-9 were also sampled in May and August 1996, 1997, and May 1998. Benzene concentrations in monitor wells MW-8 and MW-9 are above NMWQCC standards. BTEX results for all sampling events are presented in Table 7.

No BTEX was detected in samples collected from P-11 in December, 1985 and May, 1986; however, in July of 1992, 340 ppb were detected. Free product was also detected in this well in July, 1992. P-11 was abandoned in 1995 and replaced by MW-7. No BTEX was detected in groundwater samples collected from MW-7 The soilgas survey did not detect any BTEX in the vicinity of P-11. Analytical results from soil samples collected from the MW-7 boring indicated no BTEX compounds present; however, TPH was detected at 18 mg/kg. This data suggests that BTEX concentrations and free product detected in P-11 are a local anomaly. The possibility cannot be ruled out that someone introduced a small amount of free phase hydrocarbons directly into the monitoring well P-11. The additional data collected during the installation of MW-7 and the 1995 soil-gas survey indicate that there is not a pervasive BTEX problem at this location.

The soil-gas survey conducted in July, 1995 in the vicinity of P-10 detected BTEX in soil-gas 20 feet to the north and 40 feet to the east of P-10. No BTEX was detected in soil-gas at 3, 6, and 9 feet depths, 60 feet to the east of P-10. BTEX was not detected to the south and west of P-10. In July, 1995, groundwater sampling at MW-8, the well replacing P-10, indicated 510 ppb benzene and 687 ppb total BTEX.

The soil-gas survey conducted in July, 1995 in the vicinity of P-7 detected BTEX in soil gas 20 feet to the east of P-7. Forty feet to the east, BTEX was detected at 1 ppb. To the south, west, and north of P-7, BTEX was detected in small concentrations. A soil sample collected 40 feet to the south of P-7 did detect BTEX at a depth of 3 to 5 feet. In July, 1995, groundwater sampling at MW-9, the well replacing P-7 indicated 140 ppb benzene and 250 ppb total BTEX.

Hydrocarbon Impacts Conclusion

Based on data collected in this phase of work, it appears that soil and groundwater have been impacted in the areas of MW-8 and MW-9 by BTEX compounds. Although soil samples from MW-8 and MW-9 boreholes were either very low or non-detect for BTEX, soil-gas samples collected during the RECON® investigation suggest some soil impact in the area. Possible sources for soil-gas BTEX impact include desorption from soil particles and volatilization from the groundwater surface.

Groundwater results from MW-8 and MW-9 are above NMWQCC standards for BTEX, which are consistent with historical data from the wells they replaced (P-10 and P-7). MW-7 showed no evidence of soil or groundwater impact during drilling, or the RECON® investigation. This is not consistent with historical data from P-11, the well it replaced. Based on data from the 1995 investigation, it would appear that impact indicated at P-11 is localized and does not appear to be migrating in the direction of MW-7, and maybe due to introduced material.

Soil-gas survey results indicate that soil-gas BTEX levels drop off in all directions away from MW-8 and MW-9. This may indicate that soil and groundwater BTEX contamination is of limited areal extent. If this is the case, the source of the contamination may be small, isolated points created by past improper waste disposal or by unauthorized, illegal dumping. The areas around these wells are not protected from unauthorized entry. Another possibility is that the fine grained soils tested during the RECON® investigation have a low vapor permeability. If this is the case, then BTEX vapors may not have been detected because they could not travel through the soil pores from the source, whether it be diffusion from contaminated soil or groundwater, to the sampling equipment. If the soil permeability is low enough to limit vapor diffusion, it may also be low enough to limit contaminant mobility in both the vapor and dissolved phases.

The monitoring well locations and analytical results where groundwater impacted by hydrocarbons were detected are shown in Figure 13. Hydrocarbon impact appears confined to the wells located down-gradient of former Pond #1 and the location of a former collection sump as shown in Figure 2. The collection basin received waste

from a flare drain, the sulfur plant boiler blowdown drain, the sulfur plant sump drain, and the boiler blowdown drain. This information was obtained from an October, 1976 air photo, modified in 1985 to show the location of used oil, pigging liquid, and hydrocarbon drip liquid tanks (EPNG Drawing Number 520214-1). Pond #1 received waste from essentially all of the plant drains not plumbed into the collection sump system. Immediately south and west of the collection sump are two natural gas intake lines and a products line that runs through the plant. These pipelines and their associated pigging operations may also have been a source of hydrocarbons, or may have provided a conduit for hydrocarbon migration from the former collection sump.

A hydrocarbon source may have been removed when the collection sump was abandoned and the ponds and flare pit closed. Based on the high benzene concentrations present in the groundwater, additional investigation in the collection sump area and the areas adjacent to MW-8 and MW-9 may clarify whether or not the collection sump or other unidentified areas are a continuing source of impact. If the former collection sump and the soils beneath the former ponds are not continuing sources the dissolved hydrocarbons present in the groundwater may degrade naturally over time. MW-5, the down-gradient well location at the plant boundary, has not shown any hydrocarbon impacts.

• pH

Two of the new monitoring wells installed by Philip and sampled by EPNG showed pH levels outside of the NMWQCC standards range. After installation in July, 1995, MW-9 had a pH of 4.83, and a pH of 4.67 in October of 1995. After installation in July, 1995, MW-6 also showed a pH value of 4.63, and a pH of 4.79 in October of 1995. Sample results with pH outside of the NMWQCC range can be found in Table 6. Based on wastewater analysis from the KWB&A Phase I report, none of the wastewater had pH values in this range.

pH Conclusion

MW-9 is located down-gradient of a former collection sump shown on EPNG Drawing No. 5292:14-1 (1986) to have received waste from the sulfur recovery area. On

PHILIP

this photo, a 2-inch, steel pipe labeled "sulfur plant blowdown", and a 2-inch PVC pipe labeled "sulfur plant sump drain" are shown draining to this collection sump. A draft report written by GCL in October of 1986 documenting wastewater flow measurements, states, "The two drain lines from the sulfur plant produce such small amounts of effluent as to be insignificant and no attempt was made to measure these effluents or include them in the estimates (of wastewater production)." Another report written by GCL in March, 1986 indicated that discharge from the "sulfur sludge pit" entered the collection area of pond #1. It further states that the discharge from the sulfur sludge pit is a "...very minor discharge compared to overall wastewater production."

One cause of the low pH in MW-9 may be sulfuric acid formed by the oxidation of sulfur recovery plant wastes. If the wastes were oxidized, by exposure to air, to sulfur trioxide (SO₃), the SO₃ could combine with atmospheric water or groundwater to form sulfuric acid. If the acid was formed in the former collection sump or the former pond #1, it could have traveled from these areas as a diluted solution in groundwater to MW-9.

Another cause of low pH in MW-9 may be gaseous H_2S associated with the nearby pipelines. Both the San Juan-Aneth and Barker Dome Lines carry sour gas. Small leaks of natural gas from these pipelines could provide enough H_2S to the groundwater to give it an H_2S odor. Water with small amounts of H_2S will also form a weak acid. In sampling events from 1992 to 1995, an H_2S odor was noted at monitoring well P-10, near both MW-9 and the gas lines. However, MW-8, the well installed in 1995 to replace P-10, has a pH close to neutral in the July and October, 1995 sampling events.

MW-6 does not appear to have any surficial features or potential subsurface features that would explain the low pH values in groundwater. However, as indicated by the KWB&A Phase I report, a possible breach in the groundwater divide could exist in this area; resulting in seepage from the ponds flowing towards MW-6. Undocumented spills or past improper disposal practices may be responsible for the low pH at this well, if either of the two processes noted above is responsible. Another possibility for the cause of the low pH at both MW-6 and MW-9 could be the oxidation of organic

matter in the subsurface. Oxidation of organic matter produces CO_2 which combines with water to produce H_2CO_3 , a weak acid. The weak acid formed in this way usually has a pH of approximately 5.7 (Fetter, 1988). No historical data for pH is available prior to July, 1995; therefore, results cannot be confirmed over time. Resampling and continued monitoring of pH in these two wells is warranted.

• Metals

Based on laboratory results supplied to Philip by EPNG, the groundwater from two wells had metals concentrations that were above the NMWQCC standards. MW-6 and W-2 had reported values of .3 and .4 mg/L, respectively, for selenium, which is above the NMWQCC standard for selenium of .05 mg/L. Additionally the July, 1995 sampling event showed cadmium in groundwater in W-2 to be 0.018 mg/L, which is slightly above the NMWQCC standard of 0.01 mg/L. The results from the July, 1995 and May, 1996 sampling for metals are presented in Table 6. Between the two sampling events, MW-9 indicated a slight increase in cadmium concentrations, barium and selenium levels remained at or near non-detectable levels. MW-8 indicated a slight drop in cadmium levels from the July, 1995 to the May, 1996 sampling events; barium and selenium remained at or near non-detectable levels. Samples collected at MW-7 indicate that selenium level went from non-detect in July, 1995 to 0.424 mg/L in May, 1996. This selenium level is above the NMWQCC standard of 0.05 mg/L. Barium and cadmium remained at or near non-detectable levels. Samples collected in MW-6 indicated small concentrations of selenium, barium, and cadmium, all below NMWQCC standards. None of the three metals mentioned above were detected in samples collected from W-2 in May, 1996. Samples collected from MW-4 indicated that levels of selenium, barium, and cadmium are at or near non-detectable levels, and are below NMWQCC standards. In May, 1996 none of the three metals mentioned above were detected in MW-5.

Metals Conclusion

There is no historical data to confirm metals concentrations over time. Selenium is known to be naturally occurring in concentrations of 0.6 mg/kg in shales which are

present at the plant. Cadmium also occurs naturally in shale at concentrations of 0.3 mg/kg (from Turekian, 1971; Martin and Meybeck, 1979 and other sources).

Nitrates

Based on sample results supplied by EPNG, elevated nitrate above NMWQCC standards of 10 mg/L exist in several wells at the plant. The following wells indicated elevated nitrate levels: P-5, P-8, P-11, E-10, E-11, MW-6, and W-2. Of these wells, only P-11, MW-7, E-10, E-11, W-2 and MW-6 indicated levels above NMWQCC standards in the most recent sampling events. Sample results for nitrates are presented in Table 6.

In the May, 1996 sampling event W-2 was slightly above the NMWQCC standard at 11.5 mg/L. W-2 has historically indicated nitrate between 8 and 13 mg/L. For the four sampling events between December, 1992 and October, 1993 nitrate was not detected in this well. MW-7 also indicated nitrate levels above the NMWQCC standard, at 24.9 mg/L, in May, 1996. Since MW-7's construction in July, 1995, nitrate has been detected in groundwater samples collected in three separate sampling events at approximately the same levels. P-11, the well that MW-7 replaced, also indicated nitrate in previous sampling events with levels varying from 26 to 103 mg/L. Relatively high levels of nitrate were detected in MW-6 in May, 1996 at 167 mg/L. In the three sampling events since it's construction in July, 1995, groundwater samples collected from MW-6 have indicated nitrate levels between 82 and 167 mg/L. E-10 and E-11, both located in the vicinity of MW-6 also indicated similar nitrate levels in groundwater samples collected between July, 1992 and their abandonment in July, 1995.

In KWB&A's 1987a report, wastewater analyses indicated that only the boiler blowdown contained nitrate. Nitrate levels in this waste stream were indicated as approximately 9 mg/L. No other possible source for the higher nitrate levels was identified. Sewage discharges and agricultural fertilizers are common sources of nitrate and nitrogen in groundwater, there may be unidentified sources of these types, perhaps associated with past land uses, in the plant area. The wells closest to the plant boundaries,

W-2 south of the groundwater divide and MW-5 north of the groundwater divide, show low or non-detectable nitrate. W-2 indicated 11.5 mg/L in May, 1996 and MW-5 indicated that nitrate was not detected in May, 1996.

7.0 RECOMMENDATIONS

7.1 VADOSE ZONE

Studies to date do not indicate pervasive contamination of the vadose zone at the plant. Additional investigation in the areas adjacent to MW-8 and MW-9 may clarify the source of groundwater BTEX impacts at these wells. Investigation in the area of the former collection sump could clarify whether or not this is a source of BTEX contamination. The hydrocarbons in the vadose zone do not appear an additional threat to human heath, welfare or the environment. Left alone the hydrocarbons in the vadose zone will naturally degrade.

7.2 GROUNDWATER

Philip believes that the BTEX compounds in the groundwater are coming from hydrocarbons that are absorbed onto clay and naturally occurring organic carbon particles within the soil. This natural attenuation has limited the migration of BTEX. Due to a depletion of oxygen in the groundwater the natural degradation process of the BTEX has proceeded slowly.

Philip proposes that EPNG collect groundwater samples and have them analyzed for nutrient content. If the groundwater is deficient in nutrients, urea nitrate should be mixed into 500 gallons of potable water, 7 parts water to 1 part urea nitrate. Hydrogen peroxide should be added to bring the dissolved oxygen concentration of the water to 20 milligrams per liter. EPNG should then inject the water into the monitoring well. This procedure can also be used on other monitoring wells in the vicinity of the ones with groundwater over NMWQCC standards.

Following nutrient injection, EPNG should fill the monitoring wells with magnesium peroxide socks (socks) to provide a continuing source of oxygen to the groundwater.

Following a minimum of three months of treatment with the socks, and two weeks prior to groundwater sampling, the socks should be removed. If the groundwater concentrations of BTEX are below NMWQCC standards, EPNG should collect groundwater samples on a weekly basis. If the concentrations of BTEX increase to above standards, EPNG should re-treat the monitoring wells and reinsert the socks. If the concentrations of BTEX remain below standards EPNG should apply for closure. If the use of nutrients and oxygenates do not prove beneficial, EPNG should discontinue their use and, provided that the concentrations of contaminants decrease for two sampling events, apply for closure.

Semi-annual groundwater sampling should be continued at MW-8, MW-9, MW-7, MW-4, MW-6, and MW-5. Groundwater samples from these wells should be sampled for BTEX, common cations and anions, nitrate, TDS and pH. Semi-annual sampling should continue at these wells to track levels of these parameters and should be discontinued after two consecutive sampling events indicate that they are below NMWQCC standards.

8.0 **REFERENCES**

- K.W. Brown and Associates, "Land Application Feasibility Study, San Juan River Plant, Phase I Final Report", August, 1987. (KWB&A, 1987a)
- K.W. Brown and Associates, "Land Application Feasibility Study, San Juan River Plant, Phase II Final Report", November, 1987 (KWB&A, 1987b)
- Stone W.J., F.P. Lyford, P.F.Frenzel, N.H. Mizell and E.T. Padgett, "Hydrogeology and Water Resources of the San Juan Basin, New Mexico." New Mexico Bureau of Mines and Mineral Resources, 1983
- Bauer, C.M. "Stratigraphy of a Part of the Chaco River Valley" U.S. Geologic Survey, Professional Paper 98P; 1916; as cited in Stone et al., 1983
- O'Sullivan, R.B. and H.M. Beikman, "Geology, Structure, and Uranium Deposits of the Shiprock Quadrangle, New Mexico." Miscellaneous Geologic Investigations, Map I-345, 1963; as cited in K.W. Brown and Associates, 1987a
- Geoscience Consultants, Ltd., "EPNG, San Juan River Plant, Phase I Drilling Program, Preliminary Report" 1986
- Geoscience Consultants, Ltd., "Draft Wastewater Flow Measurements, El Paso Natural Gas Company, San Juan River Plant" October 6, 1986
- Geoscience Consultants, Ltd., "Wastewater Treatment Options, Analysis, Conceptual Designs, and Cost Analysis, El Paso Natural Gas Company, San Juan River Plant" March 7, 1986.
- Philip Environmental Services Corporation, "Monitoring Well Installation, Upgraded and Abandonment", "San Juan River Plant, Kirtland, New Mexico", September, 1995.
- Philip Environmental Services Corporation, "Soil Gas and Soil Survey, San Juan River Plant, Kirtland, New Mexico", August, 1995.

TABLES

i

: [

i

1

Chronology of Work Done at the San Juan River Plant EPNG

Date	Author	Event	
December, 1985	Raba Kistner	Analytical Report for Hydrogeologic and Geologic Study	
January, 1986	GCL	Phase I Drilling Program Preliminary Report	
February, 1987	KWB&A	Proposal to Perform a Land Application Feasibility Study	
August, 1987	KWB&A	Land Application Feasibility Study Phase I Final Report	
November, 1987	KWB&A	Land Application Feasibility Study Phase II Final Report	
January, 1988	KWB&A	Proposal to Prepare a Closure Plan For the Wastewater Ponds and Flare Pits	
April, 1988	KWB&A	Soil Sampling Plan for Wastewater Impoundment	
June, 1988	KWB&A	Closure Plan for Wastewater Impoundments and Flare Pits	
December, 1989	KWB&A	Closure Plan Field Study for the SJRP	
January 18, 1991	KWB&A	Response to comments on the Closure Plan	
January 28, 1991	B. Campbell,EPNG	G Response to above Response	
May 2, 1991	Hutchins, EPNG	Submitted flare pit closure plan, submitted wastewater impoundment closure plan	
August 30, 1991	Hutchins, EPNG	Plans to close raw water pond, pump back pond, no compaction of cover materials	
September 30, 1991	NMOCD	Questions about borrow soil, wicking; Work element to address hydrocarbons at P-10; Work element to address nitrogen at MW 4; Require closure of north and south flare pits	
November 18, 1991	NMOCD	Landfarm areas discussed	

Philip Environmental Services Corporation Farmington, New Mexico

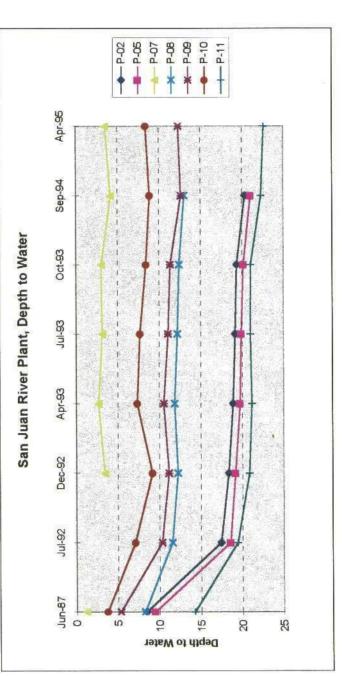
1

Chronology of Work Done at the San Juan River Plant EPNG

Date	Author	Event
12/1/1991	KWB&A	Final Closure Plan for Wastewater Impoundments and Flare Pits
September 1992	KWB&A	Water Balance Simulation for the EPNG SJRP Wastewater Pond Cover System
September 16, 1992	Miller, EPNG	Discussion of flare pit closure details; Monitoring Well analyses MW-4, W-2, P-8
February 1993	Miller, EPNG	Informal discussion of simple cap for wastewater ponds
August 1995	Philip	Soil Gas and Soil Survey
August 1995	Philip	Monitoring Well Installation, Upgrade, and Abandonment
May 1997-May 1998	EPNG	Additional Groundwater Sampling of Monitor Wells MW-5, MW-8, and MW-9

1

LOCATION	ACTION	TD	SCREENED INTERVA
E1B	Abandoned	79.8	76-71
E1A	Abandoned	59.0	58.9-53.9
E2B	Abandoned	78.6	78.5-73.5
E3	Abandoned	78.5	77-72
E9	Abandoned	30.0	Open, 30-40
E11	Abandoned	24.8	Open at 30
MW-1	Abandoned	93.3	92-77
MW-2	Abandoned	81.5	80-74
MW-3	Abandoned	83.1	83-63
P-2	Abandoned	23.4	NA
P-9	Abandoned	20.0	NA
P-5	Abandoned	21.5	NA
P-7	Abandoned and replaced by MW-9	18.5	NA
P-10	Abandoned and replaced by MW-8	15.0	NA
P-11	Abandoned and replaced by MW-7	30.1	NA
MW-4	Upgraded	57.7	54-34
W-2	Upgraded	36.5	60.5-55.5
P-8	Abandoned	23.4	NA
E-10	Abandoned	33.0	Open, 25-40
MW-5	New well installed 6/95	38.0	30.0-15.0
MW-6	New well installed 6/95	43.0	40.0-20.0
MW-7	New well replacing P-11	30.5	30.0-15.0
MW-8	New well replacing P-10	20.5	20.0-5.0
MW-9	New well replacing P-7	22.0	20.0-5.0


at the San Juan River Plant Summary of Investigations Kirtland, New Mexico

1

Groundwater Depth Data San Juan River Plant

TABLE 3

Monitoring Well	Jun-87	Jul-92	Dec-92	Apr-93	Jul-93	Oct-93	Sep-94	Apr-95
P-02	8.4	17.4	18.3	18.85	19.1	19.3	20.3	
P-05	9.43	18.5	19.1	19.7	19.85	20.1	21	
P-07	1.15		3.4	2.65	3.1	3	4.15	3.5
P-08	8.2	11.5	12.2	11.8	12.15	12.4	13	
P-09	5.25	10.25	11.1	10.5	11.05	11.3	12.6	12.3
P-10	3.7	7.05	9.1	7.3	7.65	8.4	8.85	8.4
P-11	14.18	19.4	20.8	21.1	20.95	21	22.25	22.6

Soil Sampling Results July 1995

TABLE 4

MELL	SAMPLE	DEPTH (feet)	TPH (mg/kg)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYLBENZENE (mg/kg)	XYLENES (mg/kg)	Total BTEX (mg/kg)
MW-5	MW5 S6	30-32	55	<0.025	0.15	<0.025	0.041	0.19
9-WW	MW6 S4	18-20	50	<0.025	<0.025	<0.025	<0.025	<0.10
7-WM	MW7 S4	18.5-20.5	8	<0.025	<0.025	<0.025	<0.025	<0,10
MW-8	MW8 S3	13.5-15.5	61	<0.025	<0.025	<0.025	<0.025	<0.10
MVV/-8	MWR S3-1	13 5-15 5	51	<0.025	<0.025	<0.025	<0.025	<0.10
8-WW	MW8 S4	18.5-20.5	39	<0.025	0.027	0.033	0.1	0.16
6-MW	MW9 S1	3-5	55	<0.025	<0.025	<0.025	<0.025	<0.10

Philip Environmental Services Corporation Farmington, New Mexico

TABLES - Page 5

TABLE 5

I

Summary of Investigations at the San Juan River Plant Kirtland, New Mexico

Soil Sampling Results Evaporation Ponds August 1995

Location	Calcium (ppm)	Magnesium (ppm)	CaCO3 (ppm)	Chloride (ppm)	Sulfate (ppm)	Potassium (ppm)	Sodium (ppm)	Conductivity (umhos)	TPH (mg/kg)
Pond #1, Surface	318	458	2,680	49,352	23,319	133	39,855	75,000	142
Pond #1, 3' Subsurface	25	6	66	985	2,120	<2	1,559	4,000	42
Pond #2, Surface	351	58	1,115	24	37,463	129	37,862	32,500	126
Pond #2, 3' Subsurface	143	55	584	140	9,546	10	5,113	10,100	06
Pond #3, Surface	413	110	1,484	20	47,647	65	20,746	26,000	49
Pond #3 3' Subsurface	293	32	863	28	9,767	15	5,583	10,500	72
Storage Pond, Surface	662	108	2,098	45	1,695	32	121	25,000	77
Storage Pond, 3' Subsurface	584	82	1,796	24	1,478	7	75	2,100	44
TPH = Total Petroleum Hydrocarbons	arbons Figure 2 of th	this report							
Pond #2 = Former Pond #3 on Figure 2 of this report	Figure 2 of th	nis report							
Pond #3 = Former Pond #4 on Figure 2 of this report	Figure 2 of th	nis report							
Storage Pond = Raw Water Pond #2 on Figure 2 of this report	nd #2 on Figu	ure 2 of this rep	ont		State State				

Historical Results for Wells Above NMWQCC Standards (BTEX Excluded)

Date Month/Year	Well ID	Well Status	pH (units)	Chloride mg\L	Sulfate mg/L	TDS mg/L	Nitrate mg/L	Selenium mg/L	mg/L	Cadmium mg/L
NA	= not analy	zed	902-10 m	ND =	not dete	cted	de la cale	NF =	well not	found
NMWG	CC STAN	DARDS	4-6	250	600	1,000	10	0.05	1.0	0.05
Dec-85	P-2	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jan-86	P-2	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-2	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-86	P-2	NA	NA	6530	5470	NA	2	NA	NA	NA
Jul-92	P-2	NA	NA	7985	4518	19720	3.25	NA	NA	NA
Dec-92	P-2	NA	NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	P-2	NA	NA	NA	NA	21200	NA	NA	NA	NA
Jul-93	P-2	NA .	NA	NA	NA	21220	NA	NA	NA	NA
Oct-93	P-2	NA	NA	NA	NA	21260	NA	NA	NA	NA
Sep-94	P-2	Abandoned		8410	4229	21300	1.1	NA	NA	NA
Dec-85	P-4	NA	NA	NA	NA	13600	NA	NA	NA	NA
Jan-86	P-4	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-4	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-86	P-4	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-92	P-4	NA	NA	NF	NF	NF	NF	NA	NA	NA
Dec-92	P-4	Abandoned		NF	NF	NF	NF	NA	NA	NA
Dec-85	P-5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jan-86	P-5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-5	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-86	P-5	NA	NA	3840	3820	NA	35.4	NA	NA	NA
Jul-92	P-5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dec-92	P-5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	P-5	NA	NA	NA	NA	15550	NA	NA	NA	NA
Jul-93	P-5	NA	NA	NA	NA	15890	NA	NA	NA	NA
Oct-93	P-5	NA	NA	NA	NA	16460	NA	NA	NA	NA
Sep-94	NA	Abandoned		NA	NA	NA	NA	NA	NA	NA
Dec-85	P-6	NA	NA		NA	22400	NA	NA	NA	NA
Jan-86	P-6	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-6	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-86	P-6	NA	NA	621	16500	NA	ND	NA	NA	NA
Jul-92	P-6	NA	NA	NF	NF	NF	NF	NA	NA	NA
Dec-92	P-6	Abandoned		NF	NF	NF	NF	NA	NA	NA
Dec-85	P-7	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jan-86	P-7	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-7	NA	NA	NA	NA	NA	NA	NA	NA	NA

Philip Environmental Services Corporation Farmington, New Mexico

TABLES - Page 7

1

Historical Results for Wells Above NMWQCC Standards (BTEX Excluded)

Date Month/Year	Well ID	Well Status	pH (units)	Chloride mg\L	Sulfate mg/L	TDS mg/L	Nitrate mg/L	Selenium mg/L	Barium mg/L	Cadmium mg/L
NA	= not analy	zed		ND =	not detec	cted		NF =	well not	found
NMW	QCC STAND	ARDS	4-6	250	600	1,000	10	0.05	1.0	0.05
May-86	P-7	NA	NA	101	7140	NA	ND	NA	NA	NA
Jul-92	P-7	NA	NA	218	5600	6665	ND	NA	NA	NA
Dec-92	P-7	NA	NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	P-7	NA	NA	NA	NA	14290	NA	NA	NA	NA
Apr-93	P-7	NA	NA	NA	NA	14020	NA	NA	NA	NA
Jun-93	P-7	NA	NA	NA	NA	14480	NA	NA	NA	NA
Oct-93	P-7	NA	NA	NA	NA	14940	NA	NA	NA	NA
Sep-94	P-7	NA	NA	304	8807	14290	< 0.1	NA	NA	NA
Apr-95	P-7	Abandoned		NA	NA	NA	NA	NA	NA	NA
Jul-95	MW-9	New	4.83	516	9417	16700	< 0.1	< 0.1	0.02	0.008
Oct-95	MW-9		4.67	436	11457	16340	<0.1	NA	NA	NA
Oct-95	MW-9 Dup		4.79	412	11392	16460	<0.1	NA	NA	NA
May-96	MW-9		5.4	549	10949	16780	<1.6	<0.005	<0.50	0.013
May-96	MW-9 Dup		5.4	561	11025	16920	<1.6	<0.005	<0.50	0.013
Aug-96	MW-9		5	613	11580	17320	<2.1	<0.010	0.073	0.005
Dec-85	P-8		NA	NA	NA	16900	NA	NA	NA	NA
Jan-86	P-8		NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-8		NA	NA	NA	NA	NA	NA	NA	NA
May-86	P-8		NA	7200	14300	NA	43.6	NA	NA	NA
Jul-92	P-8		NA	2505	12250	14485	15.5	NA	NA	NA
Dec-92	P-8		NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	P-8		NA	NA	NA	30080	NA	NA	NA	NA
Jul-93	P-8		NA	NA	NA	30070	NA	NA	NA	NA
Jul-93	P-8		NA	NA	NA	30140	NA	NA	NA	NA
Oct-93	P-8		NA	NA	NA	30570	NA	NA	NA	NA
Sep-94	P-8	Abandoned		9291	10088	31380	1.1	NA	NA	NA
Dec-85	P-9		NA	NA	NA	16900	NA	NA	NA	NA
Jan-86	P-9		NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-9		NA	NA	NA	NA	NA	NA	NA	NA
May-86	P-9		NA	291	10000	NA	ND	NA	NA	NA
Jul-92	P-9		NA	1008	9000	7920	3.47	NA	NA	NA
Dec-92	P-9		NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	P-9		NA	NA	NA	13950	NA	NA	NA	NA
Jun-93	P-9		NA	NA	NA	14180	NA	NA	NA	NA
Oct-93	P-9		NA	NA	NA	14260	NA	NA	NA	NA
Sep-94	P-9	Abandoned	T	1703	8316	13860	0.7	NA	NA	NA

Philip Environmental Services Corporation Farmington, New Mexico

TABLES - Page 8

TABLE 6

Historical Results for Wells Above NMWQCC Standards (BTEX Excluded)

TABLE 6

Date Month/Year	Well ID	Well Status	pH (units)	Chloride mg\L	mg/L	TDS mg/L	Nitrate mg/L	Selenium mg/L	Barium mg/L	Cadmium mg/L
NA	= not analy	zed		ND =	not deter	ted	- Alle and the	NF =	well not	found
NMWG	DCC STAN	DARDS	4-6	250	600	1,000	10	0.05	1.0	0.05
Dec-85	P-10		NA	NA	NA	NA	NA	NA	NA	NA
Jan-86	P-10		NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-10		NA	NA	NA	NA	NA	NA	NA	NA
May-86	P-10		NA	NA	NA	NA	NA	NA	NA	NA
Jul-92	P-10		NA	300	7500	7965	3.1	NA	NA	NA
Dec-92	P-10		NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	P-10		NA	NA	NA	24990	NA	NA	NA	NA
Jun-93	P-10		NA	NA	NA	23460	NA	NA	NA	NA
Oct-93	P-10		NA	NA	NA	15800	NA	NA	NA	NA
Sep-94	P-10		NA	299	7778	15340	< 0.1	NA	NA	NA
Apr-95	P-10	Abandoned		NA	NA	NA	NA	NA	NA	NA
Jul-95	MW-8	New	7.08	159	2912	8540	< 0.1	< 0.1	0.06	0.005
Oct-95	MW-8		7.21	191	3739	8880	<0.1	NA	NA	NA
May-96	MW-8		7.16	164	2963	7940	<1.1	<0.005	<0.50	0.002
Aug-96	MW-8		7.1	NA	3506	9200	<0.6	<0.01	0.059	<.0004
Dec-85	P-11		NA	NA	NA	19000	NA	NA	NA	NA
Jan-86	P-11		NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-11		NA	NA	NA	NA	NA	NA	NA	NA
May-86	P-11		NA	93.2	6540	NA	26.7	NA	NA	NA
Jul-92	P-11		NA	280	8203	9285	103	NA	NA	NA
Dec-92	P-11		NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	P-11		NA	NA	NA	19470	NA	NA	NA	NA
Jul-93	P-11		NA	NA	NA	19130	NA	NA	NA	NA
Oct-93	P-11	_	NA	NA	NA	19220	NA	NA	NA	NA
Oct-93	P-11		NA	NA	NA	19210	NA	NA	NA	NA
Sep-94	P-11		NA	294	11539	19530	50	NA	NA	NA
Apr-95	P-11	Abandoned		287	11437	19940	39	NA	NA	NA
Jul-95	MW-7	New	6.91	(311)	10387	18980	29.6	< 0.1	0.02	< 0.005
Oct-95	MW-7		6.83	278	10368	15900	25.7	NA	NA	NA
May-96	MW-7		6.9	364	9517	15520	(24.9	0.424	<0.50	0.003
Aug-96	MW-7		6.9	381	9526	15380	(22.1)	<0.01	0.002	<0.0004
Dec-85	P-12		NA	NA	NA	NA	NA	NA	NA	NA
Jan-86	P-12		NA	NA	NA	NA	NA	NA	NA	NA
Mar-86	P-12		NA	NA	NA	NA	NA	NA	NA	NA

Philip Environmental Services Corporation Farmington, New Mexico

TABLES - Page 9

Historical Results for Wells Above NMWQCC Standards (BTEX Excluded)

TABL	E	6
------	---	---

Date Month/Year	Well ID	Well Status	pH (units)	Chloride mg\L	mg/L	TDS mg/L	Nitrate mg/L	Selenium mg/L	Barium mg/L	Cadmium mg/L
NA	= not analy	zed	e e care	ND =	not detec	ted		NF =	well not	found
NMWG	DCC STAND	DARDS	4-6	250	600	1,000	10	0.05	1.0	0.05
May-86	P-12		NA	74	833	NA	1.77	NA	NA	NA
Jul-92	P-12		NA	NF	NF	NF	NF	NA	NA	NA
Dec-92	P-12	Abandoned		NF	NF	NF	NF	NA	NA	NA
Apr-95	E-1B		NA	325	3075	5630	8.4	NA	NA	NA
Apr-95	E-1B(D)	Abandoned		317	3081	5660	8.4	NA	NA	NA
Apr-95	E-3	Abandoned		531	3234	6470	2.2	NA	NA	NA
Jul-92	E-10		NA	602	7220	6890	65.3	NA	NA	NA
Dec-92	E-10		NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	E-10		NA	NA	NA	13560	NA	NA	NA	NA
Jul-93	E-10		NA	NA	NA	13880	NA	NA	NA	NA
Oct-93	E-10		NA	NA	NA	14030	NA	NA	NA	NA
Sep-94	E-10		NA	923	7417	13930	141.4	NA	NA	NA
Apr-95	E-10	Abandoned		910	7304	13840	157.1	NA	NA	NA
Jul-92	E-11		NA	NA	NA	NA	NA	NA	NA	NA
Dec-92	E-11		NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	E-11		NA	NA	NA	10180	NA	NA	NA	NA
Jul-93	E-11		NA	NA	NA	10490	NA	NA	NA	NA
Oct-93	E-11		NA	NA	NA	10450	NA	NA	NA	NA
Sep-94	E-11		NA	1155	5703	10850	174.5	NA	NA	NA
Apr-95	E-11	Abandoned		1140	5078	10710	(180.9)	NA	NA	NA
Jul-95	MW-6	New	4.63	10461	4997	18460	82.7	0.3	0.02	0.018
Oct-95	MW-6		4.79	884	11131	17360	126	NA	NA	NA
May-96	MW-6		5.01	1108	10361	17360	167.5	<0.005	<0.50	0.018
Aug-96	MW-6		4.8	1103	10513	17440	159.2	0.246	0.049	0.01
Jul-92	W-2		NA	679	3944	3234	13.8	NA	NA	NA
Dec-92	W-2		NA	NA	NA	NA	NA	NA	NA	NA
Apr-93	W-2		NA	NA	NA	6430	NA	NA	NA	NA
Jun-93	W-2		NA	NA	NA	6480	NA	NA	NA	NA
Oct-93	W-2		NA	NA	NA	6540	NA	NA	NA	NA
Sep-94	W-2		NA	613	3402	6440	0.77	NA	NA	NA
Jul-95	W-2		7.18	564	3320	6320	8.3	0.4	0.01	< 0.005
Oct-95	W-2		7.46	454	3747	5900	9.5	NA	NA	NA
May-96	W-2		7.66	503	3509	5990	11.5	NA	NA	NA
Aug-96	W-2		7.5	480	3367	5860	10.3	0.177	0.016	<0.0004

Philip Environmental Services Corporation Farmington, New Mexico

TABLES - Page 10

Historical Results for Wells Above NMWQCC Standards (BTEX Excluded)

Date Month/Year	Well ID	Well Status	pH (units)	Chloride mg\L	Sulfate mg/L	TDS mg/L	Nitrate mg/L	Selenium mg/L	Barium mg/L	Cadmium mg/L
	= not analy		Service .		not deter	cted			well not	
NMW	CC STAND	ARDS	4-6	250	600	1,000	. 10	0.05	1.0	0.05
Oct-87	MW-1		NA	170	2800	4800	3.1	NA	NA	NA
Mar-88	MW-1		NA	175	4190	6710	5.82	NA	NA	NA
Sep-94	MW-1	Abandoned		411	3763	6970	1.7	NA	NA	NA
Oct-87	MW-2		NA	320	3000	5400	0.21	NA	NA	NA
Mar-88	MW-2		NA	347	3360	6040	0.07	NA	NA	NA
Sep-94	MW-2	Abandoned		539	3109	6300	< 0.1	NA	NA	NA
Oct-87	MW-3		NA	110	1900	3300	0.87	NA	NA	NA
Mar-88	MW-3		NA	208	3510	5810	0.45	NA	NA	NA
Sep-94	MW-3	Abandoned		354	3079	5720	0.7	NA	NA	NA
Mar-88	MVV-4		NA	267	1340	4260	0.02	NA	NA	NA
Jul-92	MVV-4		NA	164	1200	1734	3.12	NA	NA	NA
Dec-92	MW-4		NA	233	950	3090	NA	NA	NA	NA
Apr-93	MW-4		NA	NA	NA	3680	NA	NA	NA	NA
Jun-93	MW-4		NA	NA	NA	3610	NA	NA	NA	NA
Oct-93	MW-4		NA	NA	NA	3680	NA	NA	NA	NA
Sep-94	MW-4		NA	148	1024	3804	< 0.1	NA	NA	NA
Jul-95	MW-4		6.94	129	843	3600	0.6	< 0.1	0.02	< 0.005
Oct-95	MW-4		6.85	116	1076	3384	<0.1	NA	NA	NA
May-96	MW-4		6.89	143	1001	3448	<1.1	<0.005	<0.50	0.006
Aug-96	MW-4		6.9	146	990	3500	<0.6	6.01	0.041	0.003
Jul-95	MW-5	New	7.59	251	11613	20060	< 0.1	< 0.1	0.02	< 0.005
Jul-95	MW-5 Dup		7.61	243	11551	20100	< 0.1	< 0.1	0.02	< 0.005
Oct-95	MW-5		7.36	165	14415	20080	<0.1	NA	NA	NA
May-96	MW-5		7.15	246	13572	20260	<1.1	<0.005	<0.50	<0.0004
Aug-96	MW-5		7.5	256	13097	19800	<1.1	< 0.01	<0.02	< 0.0004

780

2470

1400

4300

< 0.1

< 0.1

NA

NA

NA

NA

The results of EPNG's August 1996 groundwater sampling are included in this Table, but are not referenced in the report.

110

450

NA

NA

Philip Environmental Services Corporation Farmington, New Mexico

Lester

Dailey

off site

off site

1987

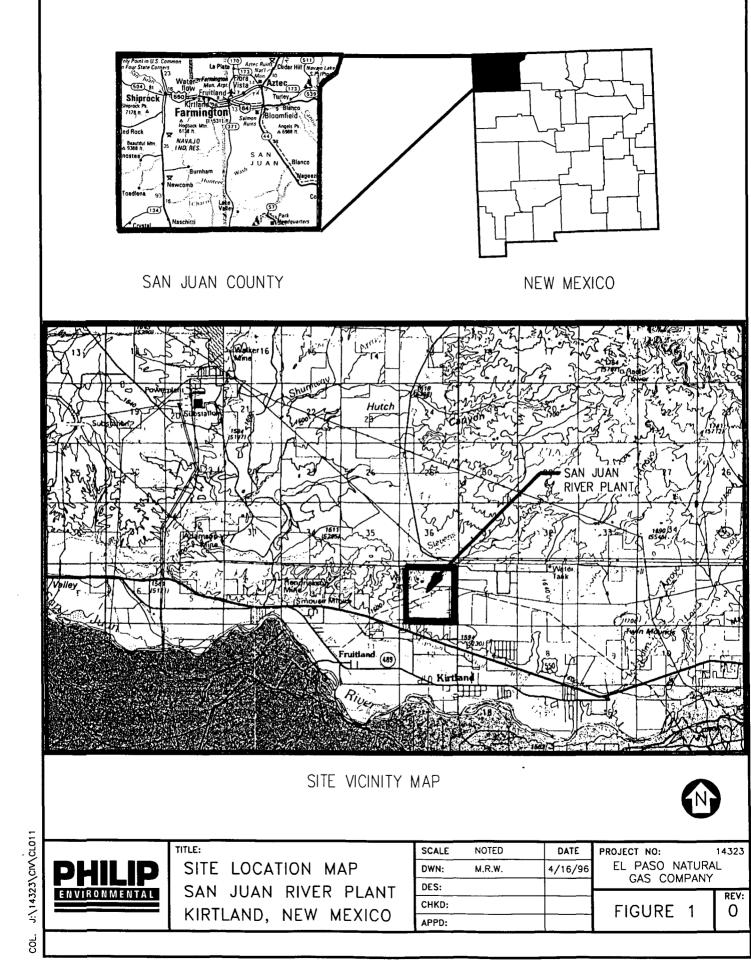
1987

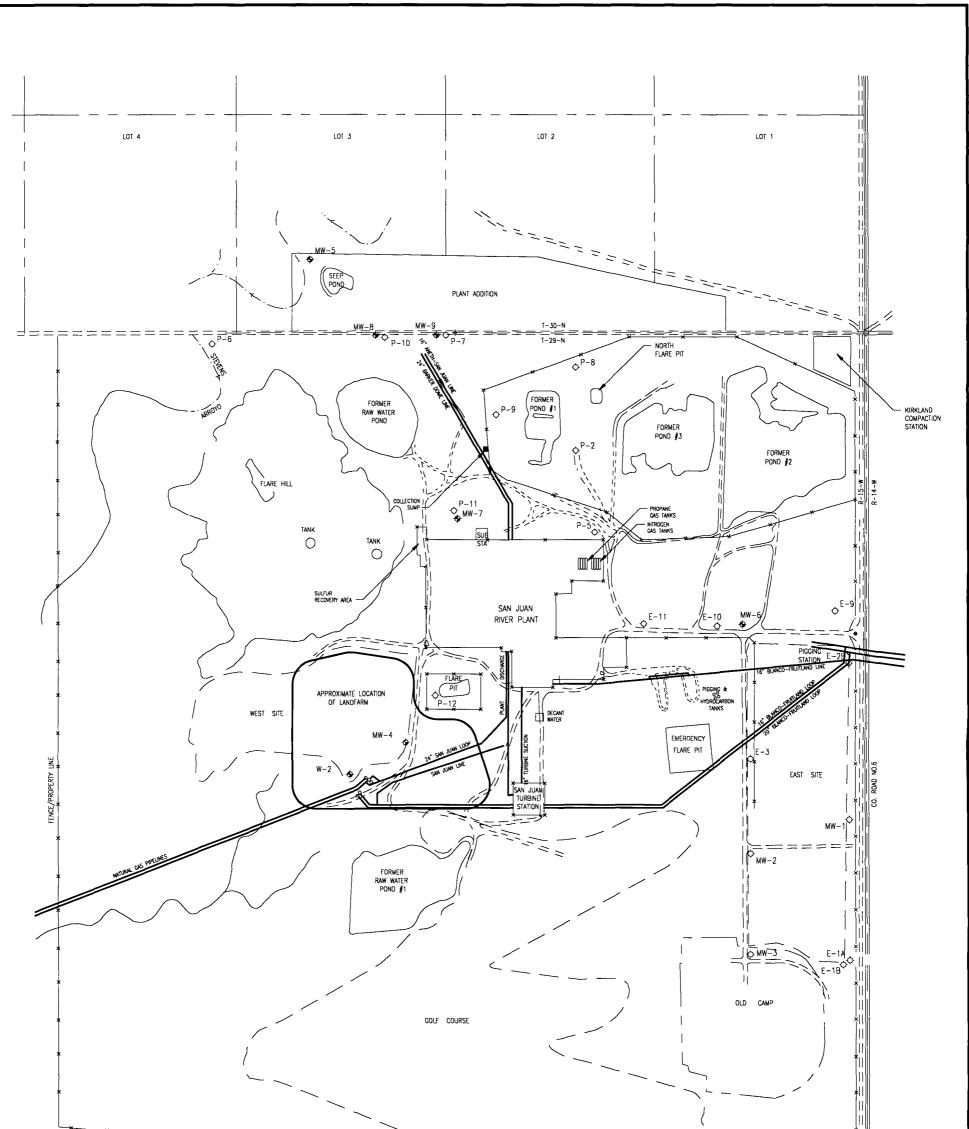
TABLES - Page 11

NA

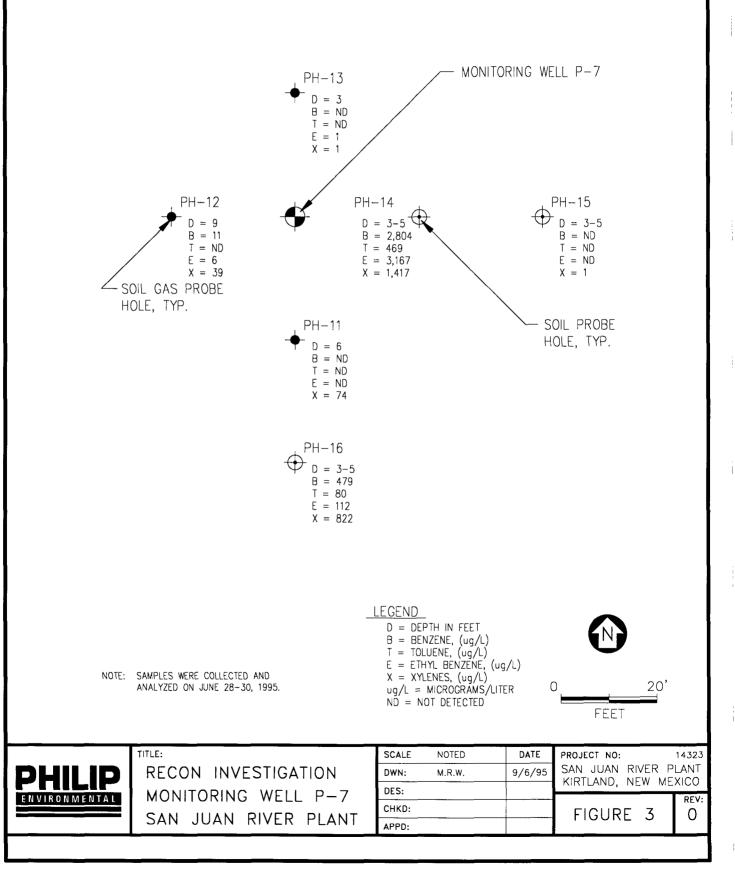
NA

Date Month/Year	Well ID	Well Status	Benzene ug/L	Toluene ug/L	Ethylbenzene ug/L	Xylene ug/L
NMW	QCC STAN	DARD	10	750	750	620
Dec-85	P-7		1320	ND	ND	ND
Jan-86	P-7		(100)	ND	NA	41
Mar-86	P-7		4000	ND	5100	NA
May-86	P-7		ND	ND	ND	ND
Jul-92	P-7		ND	ND	ND	40
Dec-92	P-7		(567)	16.7	232	1047
Apr-93	P-7		491	NA	214	1748
Apr-93	P-7		466	NA	213	1531
Jun-93	P-7		(471)	NA	209	1208
Oct-93	P-7		844	33.3	288	1970
Sep-94	P-7		430	15.7	208	1540
Apr-95	P-7	Abandoned	452	8.48	189	1693
Jul-95	MW-9		140	0.6	25	85
Oct-95	MW-9		124	<2.5	26	128
May-96	MW-9		113	<1.0	17.8	42.7
May-96	MW-9		103	<1.0	16.7	31.9
Aug-96	MW-9		75.2	1.03	26.8	132
May-97	MW-9		84.9	<1.0	8.2	7.95
Aug-97	MW-9		106	<1.0	12	21.8
May-98	MW-9		89.5	<1.0	8.51	5.61
May-86	P-9	Abandoned	162	ND	ND	ND
Dec-85	P-10		12800	318	ND	ND
Jan-86	P-10		1900	839	NA	369
Mar-86	P-10		ND	ND	NA	ND
May-86	P-10		445	ND	NA	ND
Jul-92	P-10		5600	250	240	1200
Dec-92	P-10		ND	225	388	941
Apr-93	P-10		3315	NA	407	1300
Jun-93	P-10		9790	NA	832	2880
Oct-93	P-10		3310	11.4	133	379
Sep-94	P-10		1015	<2.0	51	174
Арг-95	P-10	Abandoned	1693	34.2	92.7	338
Jul-95	MW-8		510	0.8	46	130
Oct-95	MW-8		488	3.3	33.7	95.8
May-96	MW-8		79.1	<5.0	<5.0	35.4
Aug-96	MW-8		427	1.03	17.3	71.3
May-97	MW-8		141	<1.0	3.78	35.1
Aug-97	MW-8		307	2.92	6.93	20.7
May-98	MW-8		449	<1.0	13.9	62.9
Dec-85	P-11		ND	ND	ND	ND
Jan-86	P-11		NA	NA	NA	NA

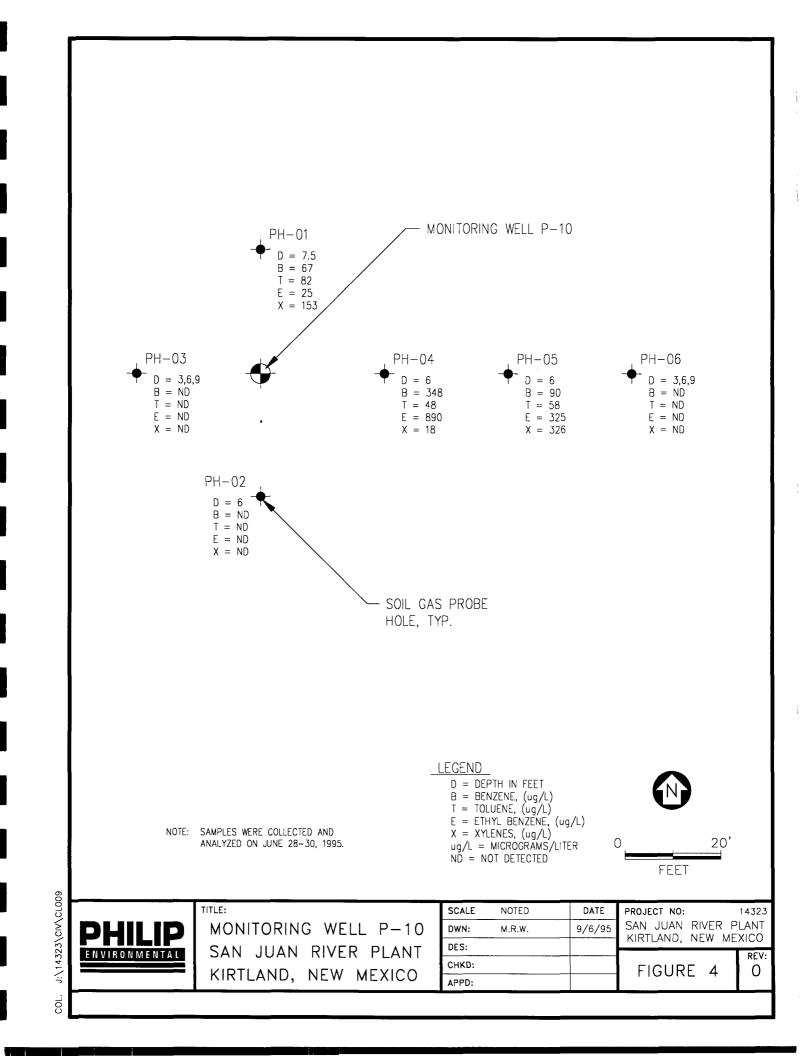

Date Month/Year	Well ID	Well Status	Benzene ug/L	Toluene ug/L	Ethylbenzene ug/L	Xylene ug/L
NMW	QCC STAN	DARD	10	750	750	620
Mar-86	P-11		NA	NA	NA	NA
May-86	P-11		ND	ND	ND	ND
Jul-92	P-11		340	210	60	310
Dec-92	P-11		981	208	122	1141
Apr-93	P-11		524	NA	15.9	281
Jul-93	P-11		277	NA	9.7	428
Oct-93	P-11		349	ND	8	408
Oct-93	P-11		ND	ND	7.4	395
Sep-94	P-11		260	360	200	1400
Apr-94	P-11	Abandoned	195	7.46	5.96	38.9
Jul-92	W-2		ND	ND	ND	ND
Dec-92	W-2		ND	ND	ND	6.6
Apr-93	W-2		ND	ND	ND	2.7
Jun-93	W-2		ND	ND	ND	ND
Oct-93	W-2		ND	ND	ND	ND
Sep-94	W-2		< 0.5	<0.5	<0.5	<0.5
Jul-95	W-2		<0.5	<0.5	<0.5	<0.5
Oct-95	W-2		<2.5	<2.5	<2.5	<7.5
May-96	W-2		<1.0	<1.0	<1.0	<3.0
Aug-96	W-2		<1.0	<1.0	<1.0	<3.0
Jul-95	MW-7		<0.5	<0.5	<0.5	<0.5
Oct-95	MW-7		<2.5	<2.5	<2.5	<7.5
May-96	MW-7		<1.0	<1.0	<1.0	<3.0
Aug-96	MW-7		<1.0	<1.0	<1.0	<3.0
Mar-88	MW-4		0.44	ND	0.5	ND
Jul-92	MW-4		ND	ND	ND	ND
Dec-92	MW-4		5.4	ND	ND	3.1
Apr-93	MW-4		ND	ND	ND	ND
Jun-93	MW-4		ND	ND	ND	ND
Oct-93	MW-4		4.5	ND	2	ND
Sep-94	MW-4		<0.1	<2.0	<2.0	<2.0
Jul-95	MW-4		0.7	<0.5	<0.5	1.4
Oct-95	MVV-4		<2.5	<2.5	<2.5	<7.5
May-96	MW-4		<1.0	<1.0	<1.0	<3.0
Aug-96	MW-4		<1.0	<1.0	<1.0	<3.0
Jul-95	MW-5		<0.1	<0.5	<0.5	<0.5
Oct-95	MW-5		<0.1	<0.5	<0.5	<0.5
May-96	MW-5		<1.0	<1.0	<1.0	<3.0
Aug-96	MW-5		<1.0	<1.0	<1.0	<3.0
May-97	MW-5		<1.0	<1.0	<1.0	<3.0
Aug-97	MW-5		<1.0	<1.0	<1.0	<3.0
May-98	MW-5		<1.0	<1.0	<1.0	Not Analyze

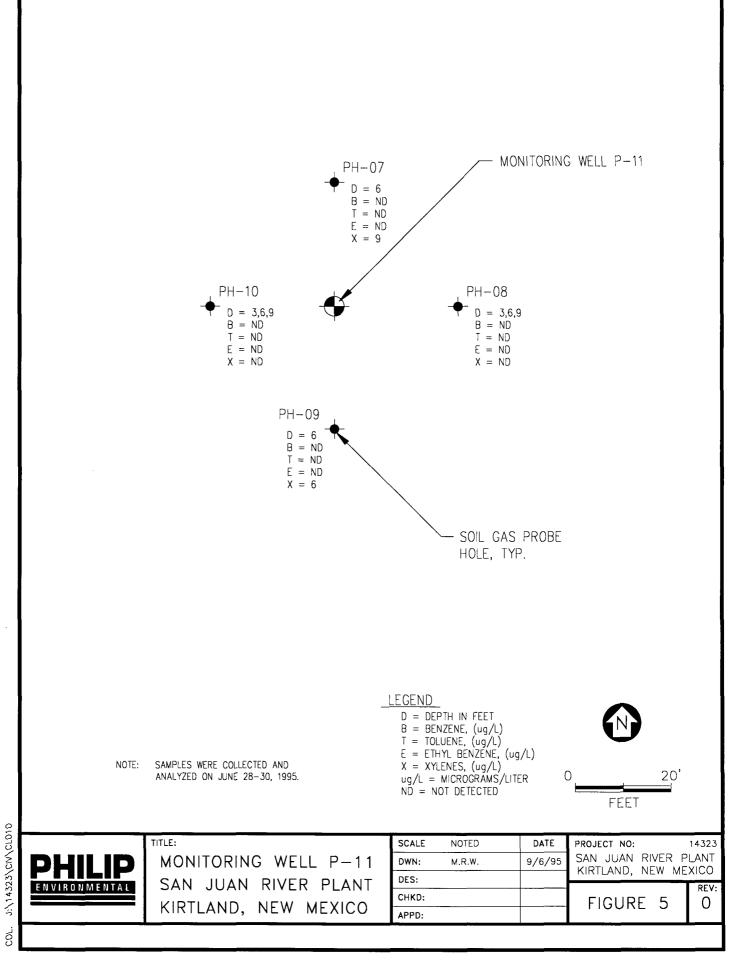

Date Month/Year	Well ID	Well Status	Benzene ug/L	Toluene ug/L	Ethylbenzene ug/L	Xylene ug/L
NMW	QCC STANL	DARD	10	750	750	620
Jul-95	MW-6		<0.5	<0.5	<0.5	<0.5
Oct-95	MW-6		<2.5	<2.5	<2.5	<7.5
May-96	MW-6		<1.0	<1.0	<1.0	<3.0
Aug-96	MW-6		<1.0	<1.0	<1.0	<3.0

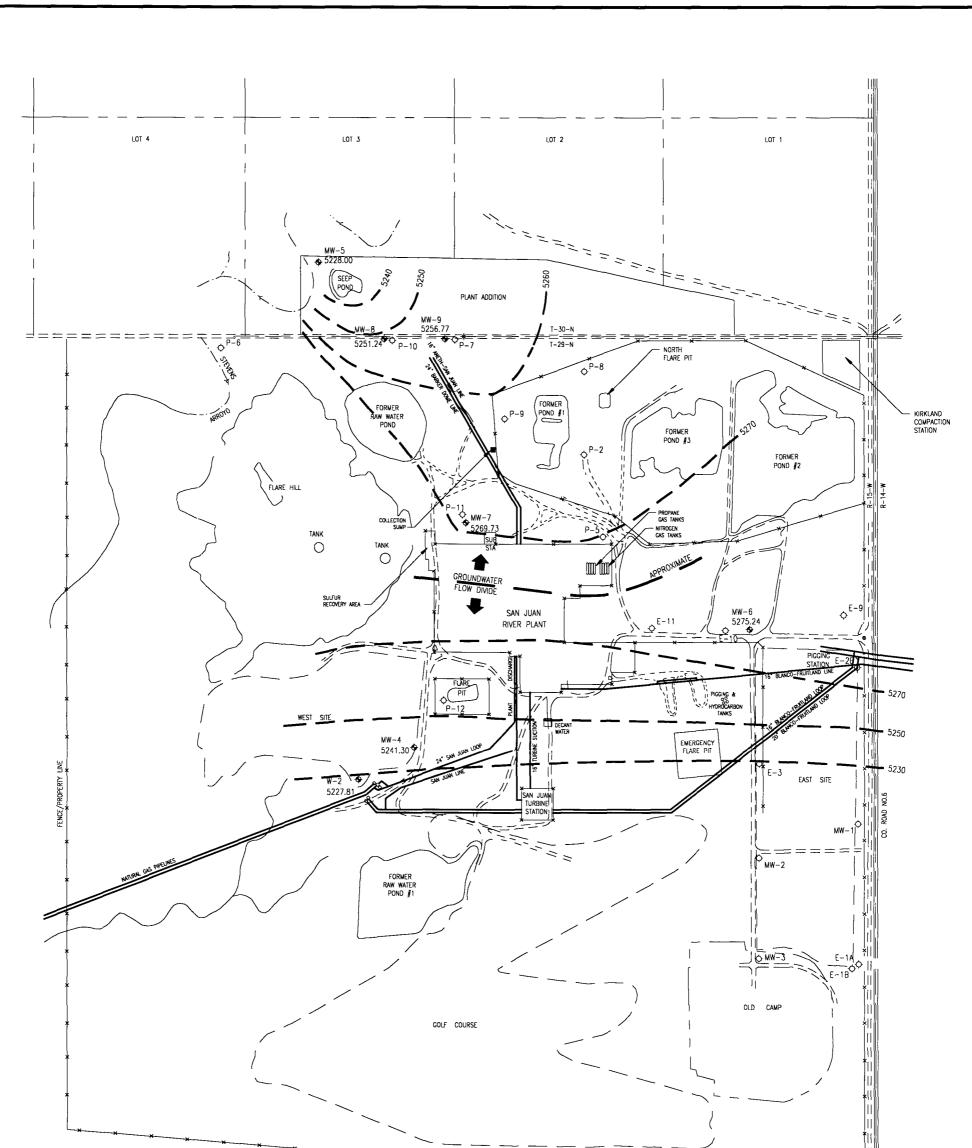
Wells P-2, P-4, P-5, P-6, P-8, P-12, E1-B, E-3,E-10,E-11, MW-1, MW-2, MW-3 have not had BTEX detected.


Philip Environmental Services Corporation Farmington, New Mexico

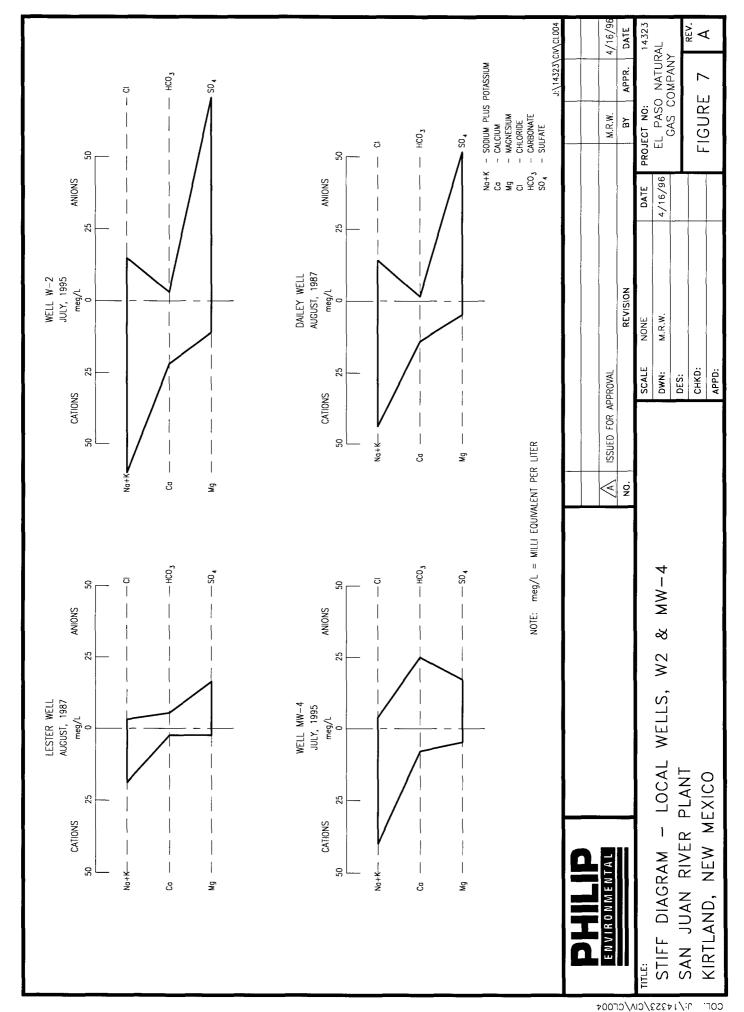
FIGURES

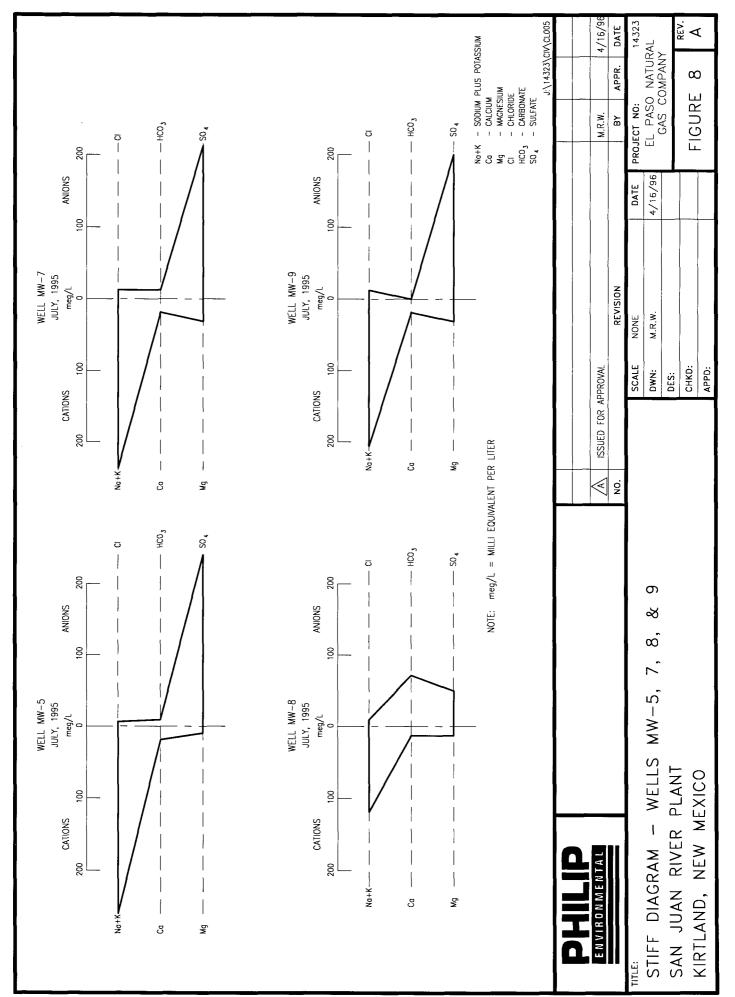


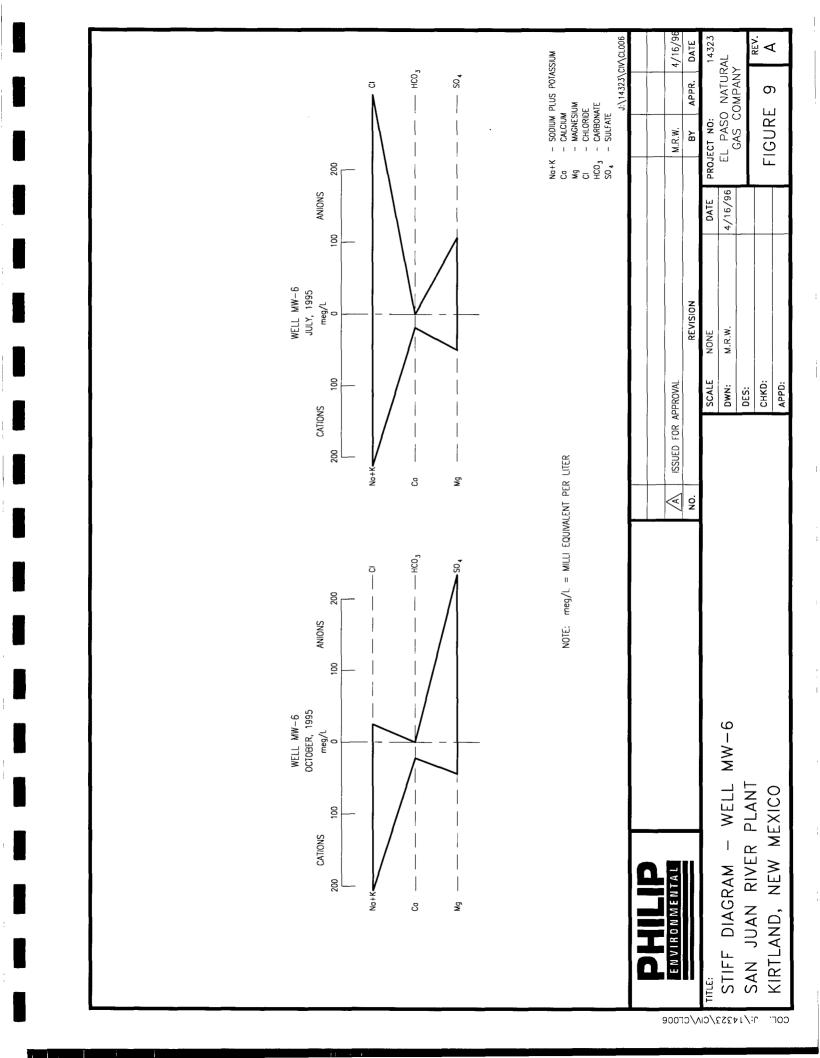


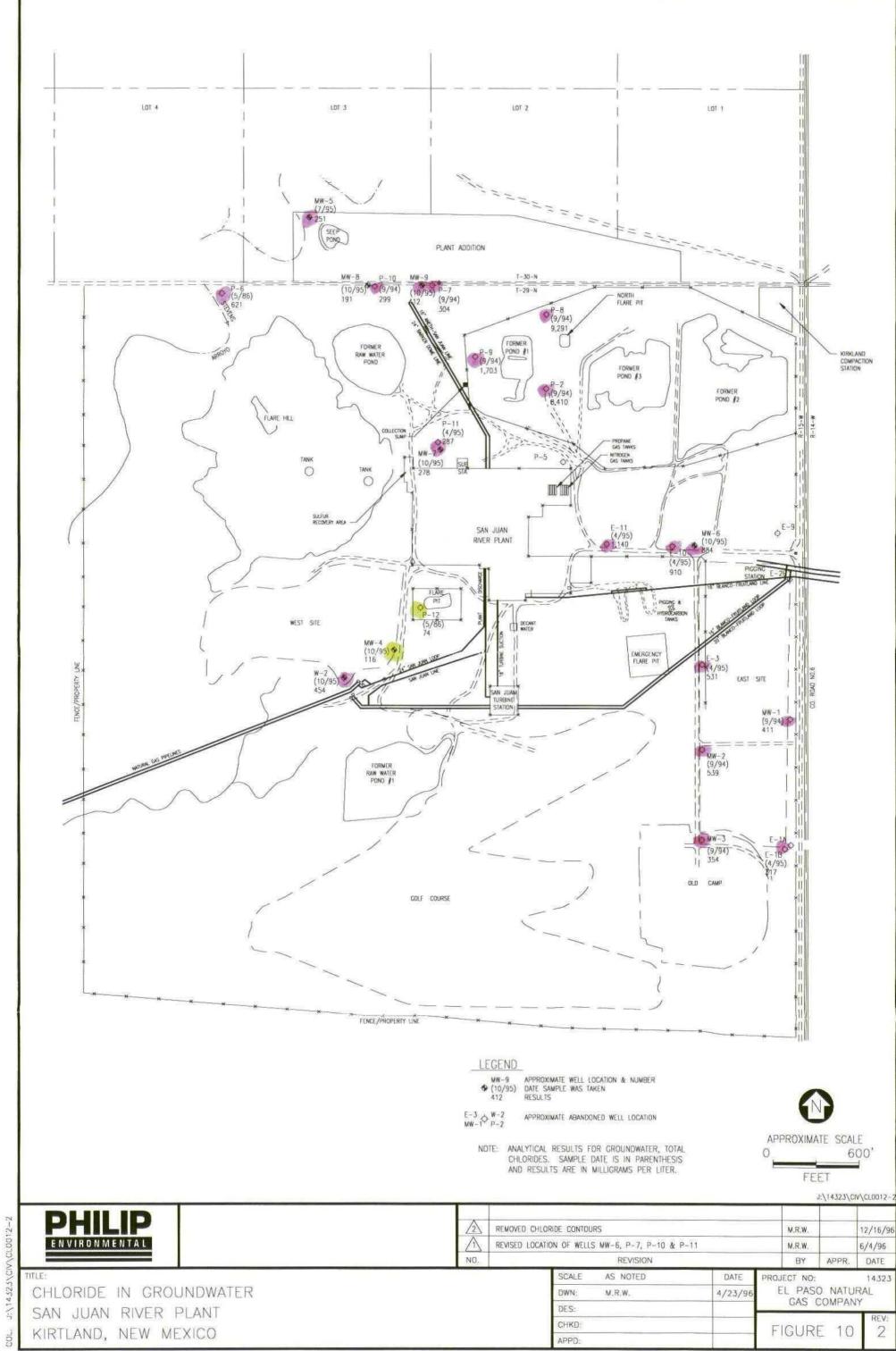

× × × × ×	FENCE/PROPERTY LINE	X	· /	××	* *		
		<u>LEGEN</u> • ^{MW} E-3 WW-PP-2	APPROXIMATE MONITORING WELL LOCATION			60	00' ∎
PHILIP			,				
	Δ	REVSIED LO	DCATION OF WELLS MW-6, P-7, P-10 & P-11	1	M.R.W.		6/4/96
<u> المستحمد المستحم</u>	NO		REVISION		BY	APPR.	DATE
			SCALE AS NOTED	DATE	PROJECT NO:		1432
SITE/WELL LOCATION PLAN			DWN: M.R.W.	4/16/96		O NATUF COMPAN	
🗧 SAN JUAN RIVER PLANT			DES:				REV
J KIRTLAND, NEW MEXICO			СНКО:		FIGUR	E 2	1
S KIRILAND, NEW MEXICO			APPD:				

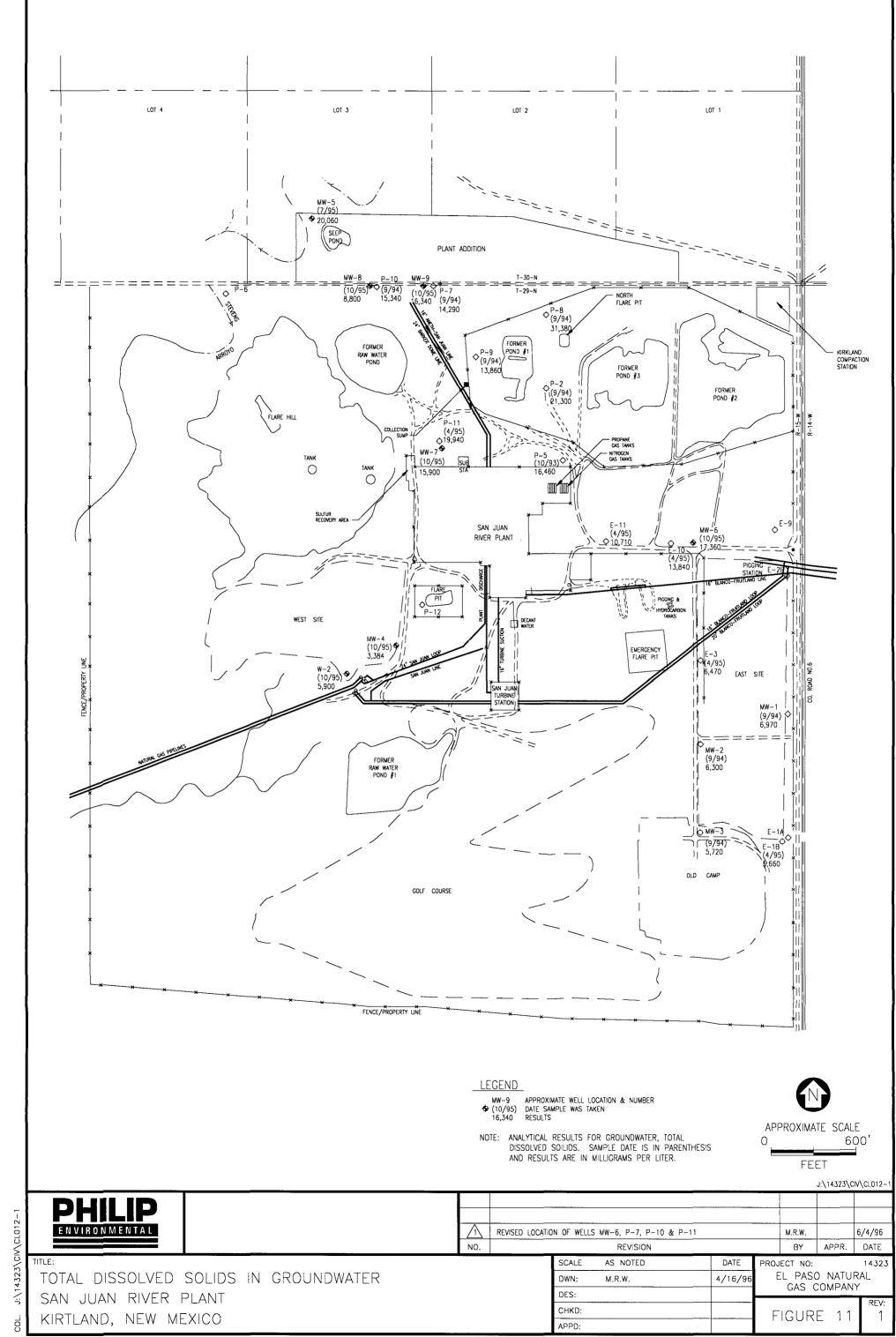
COL. J:\14323\CIV\CL008

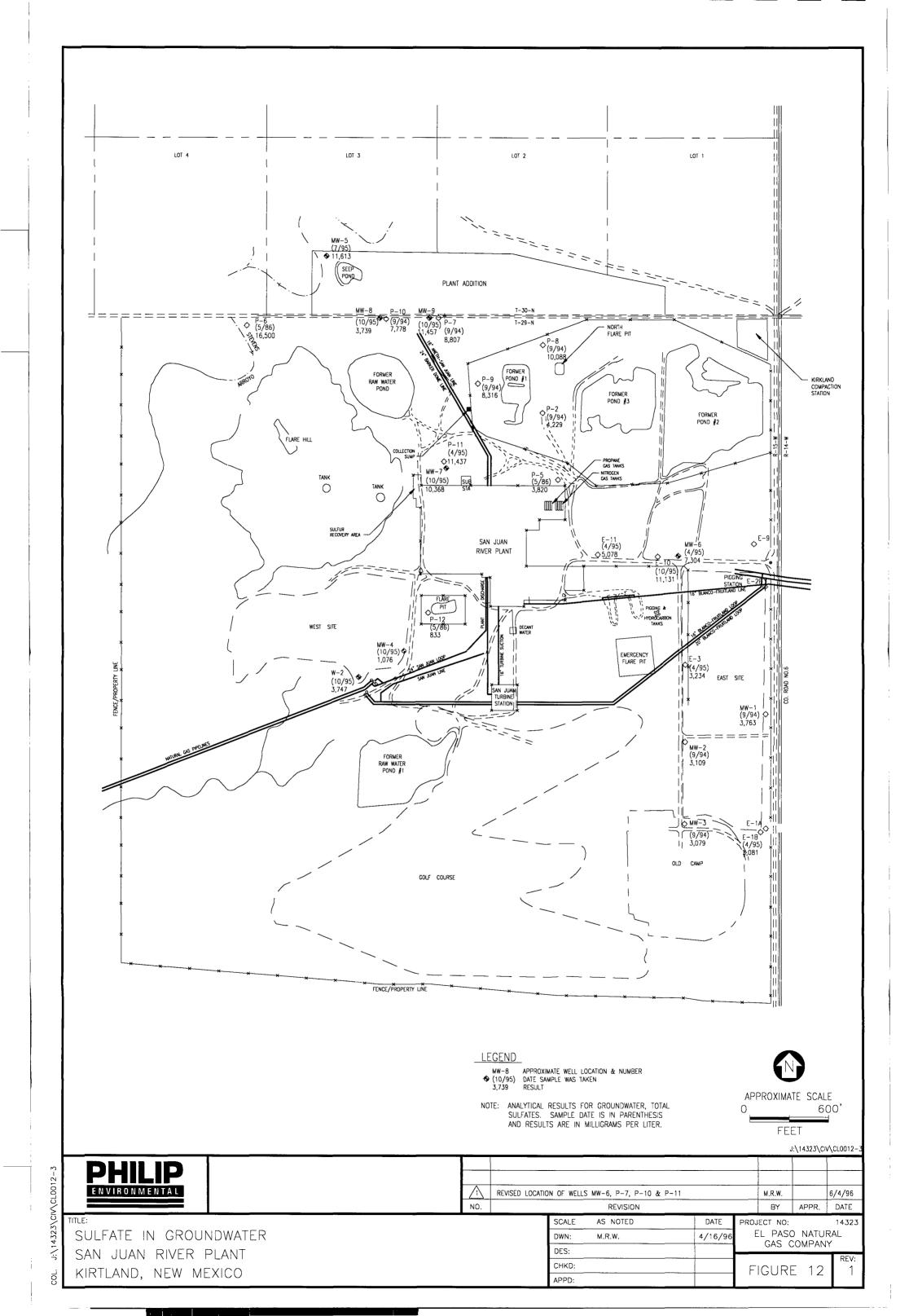


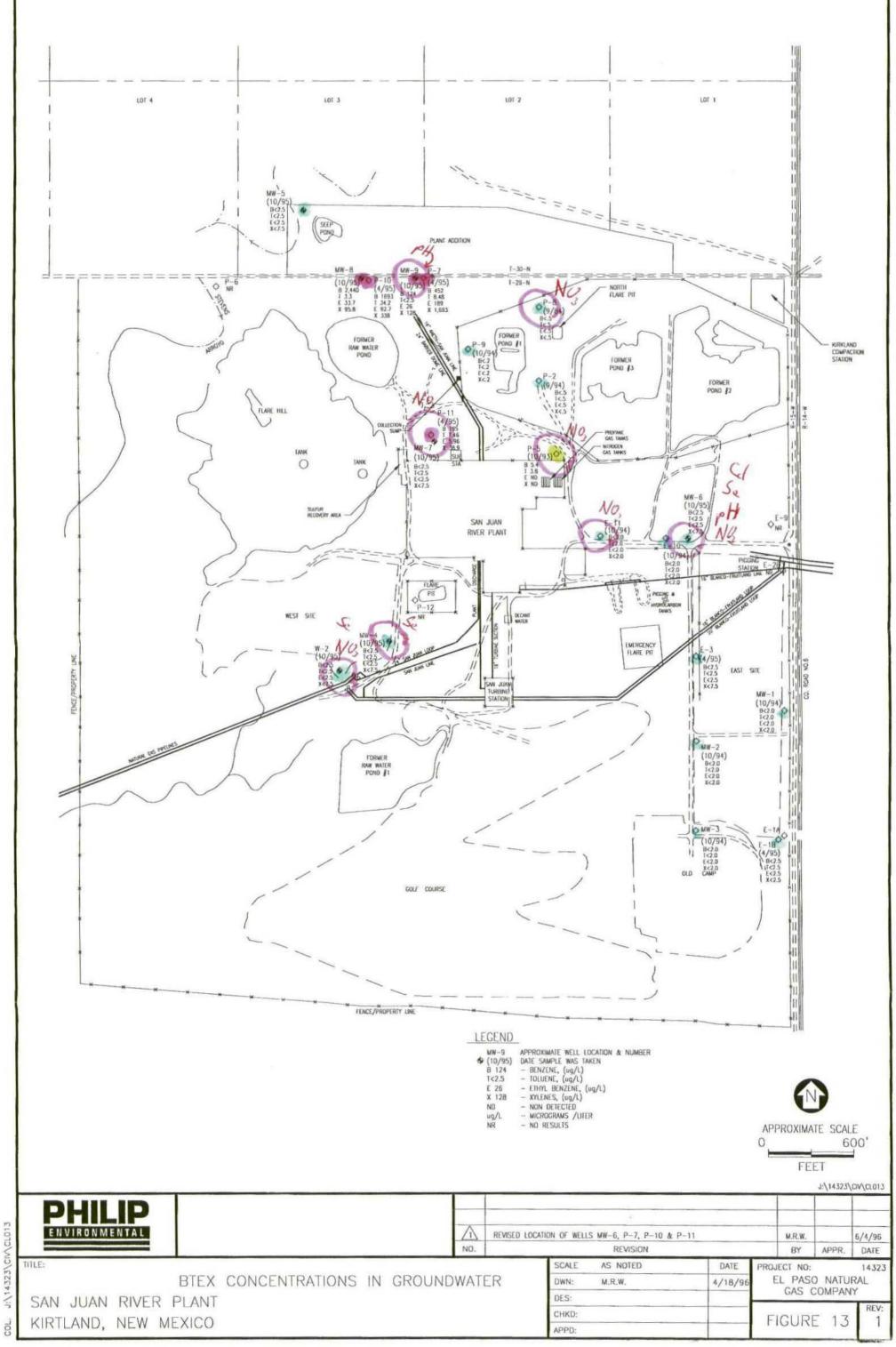





FENCE/PROPERTY LINE	
NOTE: POTENTIOMETRIC SURFACE WAS DRAWN USIN WITH THE POTENTIOMETRIC SURFACE ELEVATI TOPOGRAPHY AND ABANDONED WELL PREVIO LEVELS WERE ALSO USED FOR FURTHER INT IN DRAWING THIS FIGURE.	TION NOTED. $E-3$ W-2 APPROXIMATE ABANDONED WELL LOCATION O 600'
PHILIP	
	Image: Market All Control of Wells MW-6, P-7, P-10 & P-11 M.R.W. 6/4/9 NO. REVISION BY APPR. DATE
TITLE:	SCALE AS NOTED DATE PROJECT NO: 1432
POTENTIOMETRIC SURFACE MAP - JULY 18, 1995	DWN: M.R.W. 4/16/96 EL PASO NATURAL GAS COMPANY
SAN JUAN RIVER PLANT KIRTLAND, NEW MEXICO	CHKD: FIGURE 6







APPENDIX A

Record of Subsurface Exploration Forms

Philip Environmental Services Corporation

Allen S. Hains

Philip Environmental

6-26-95 10:30

6-26-95 14:30

5257.44 Feet MSL

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation

Drilled By

Borehole Location GWL Depth Logged By

Date/Time Started

Date/Time Completed

	Page 1 of 1
Project Name	EPNG San Juan River Plant
Project Number	14323 Phase 3003
Project Location	Kirtland, New Mexico
Well Logged By	Allen S. Hains
Personnel On-Site	Mike Donohue
Contractors On-Site	James O'Keefe
Client Personnel Or	-Site Kevin Sedlak

Borehole #

Well #

MW-5

MW-5

Drilling Method Hollow-Stem Auger Air Monitoring Method Photoionization Detector

Depth (Feet)	Sampie Number	Sample Interval	Sample Type & Recovery	Sample Description Classification System: USCS		Depth Lithology Change	Air Monitoring Units: NDU		bu	Drilling Conditions & Blow Counts
0			(inches)			(feet)	ВZ	вн	s	
5 	S-1	5'-7'	8"	Light Brown Silty Fine SAND, Loose, Dry			0	0	0	11:35
10 10	S-2	10'-12	7"	Dark Grey CLAY, Hard, Dry			0	0	0	11:40
15 15 	S-3	15'-17	8"	Light Grey to Rust CLAY, Hard, Dry			0	0	14	11:55
20	S-4	20'-22	12"	Light Brown to Dark Grey Silty CLAY, Hard, Dry			0	0	1	12:10
25 	S-5	25'-27	10"	Dark Grey CLAY, Very Hard, Dry			0	0	2	12:30
30 	S-6	30'-32	12"	Light Grey CLAY, Hard, Dry			0	0	0	12:50
35 	S-7	35'-37		Light Grey CLAY, Very Hard, Dry to Moist			0	0	0	13:10
40				Auger Refusal @ 38"						

Comments:

Borehole left open overnight. Water found in borehole next morning. S-6 sent to laboratory for chemical analyses.

Geologist Signature

in the second second

YN1 -1-	Y-4	•		· ·	0	
12 12 1 1 1 1	n Hn	WITOD	montal	Services	(orno	ration
1 11131	$\boldsymbol{\nu}$		mentar	JEIVICES	C.01DO	ration

Allen S. Hains

Date/Time Started 7-10-95 7:15

Date/Time Completed 7-10-95 9:15

Philip Environmental

5304.84 Feet MSL

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation

Logged By Drilled By

7

Borehole Location GWL Depth

Borehole	e #	MW-6	;		
Wetl #		MW-6			
Page	1	of	1		

Project Number	14323	Phase	3003
Project Location	Kirtland, Ne	w Mexico	
Well Logged By	Allen	S. Hains	
Personnel On-Site	Mike	Donohue	······································
Contractors On-Site	Jame	s O'Keefe	
	Site Kevir	Sedlak	

Drilling Method Holl	ow-Stem Auger
Air Monitoring Method	Photoionization Detector

Depth (Feet)	Sample Number		Sample Type & Recovery (inches)	Sample Description Classification System: USCS			Drilling Conditions & Blow Counts			
	S-1	3'-5'	12"	Light Brown Fine Silty SAND, Soft,			0	0	0	7:15
5		8'-10'		Light Brown Fine Silty SAND, Firm,			0	0	0	7:30
10				Dry			, ,	v	J	
15	S-3	13'-15	8"	Light Brown Fine Silty SAND, Firm, Dry			0	0	30	7:40
20	S-4	18'-20	10"	Light Brown Fine Silty SAND, Hard, Dry			0	0	58	7:55
25	S-5	23'-25	9"	Light Brown Fine Silty SAND, Hard, Dry			0	0	13	8:10
	S-6	28'-30	9"	Light Grey Fine Silty SAND, Hard, Dry			0	0	0	8:25
35	S-7	33'-35		Light Grey Fine Silty SAND, Hard, Dry to Moist			0	0	27	8:40
40	S-8	38'-40		Light grey to Brown Fine Silty SAND,			0	0	7	9:10
L 40			1	Hard, Dry Boring Terminated @ 43 feet.						

Comments:

Sample S-4 sent to laboratory.

Geologist Signature

Philip Environmental Services Corporation

Allen S. Hains Philip Environmental

Date/Time Started 6-30-95 7:45 Date/Time Completed 6-30-95 9:55

5293.13 Feet MSL

-100 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation Barehole Location GWL Depth Logged By

Drilled By

Borehole #	MW-7
Well #	MW-7
Page 1	of 1

Project Number	14323	Phase	3003	
Project Location Kin	pject Location Kirtland, New 1			
Well Logged By	Allen	S. Hains		
Personnel On-Site	Mike I	Donohue	•••••••••••••••••	
Contractors On-Site	James	s O'Keefe		
Client Personnel On-Site	Kevin	Sedlak		

Orining Wethou	Tionow-Stern Auger
Air Monitoring Meth	nod Photoionization D

Drilling Method	Hollow-Stem Auger
Air Monitoring Meth	Photoionization Detector

			Sample		1	Depth	1	·		
Depth	Sample		Type &	Sample Description	USCS	Lithology	Ai	ir Monito	ring	Drilling Conditions
(Feet)	Number	Interval	Recovery	Classification System USCS	Symbol	Change		Units: PF		& Blow Counts
0			(inches)			(feet)	BZ	BH	s	
					Į				ł	
									[
5	S-1	3.5'-		Light Brown Silty Fine SAND.			0	0	0	8:00
		5.5'		Medium Hard, Dry					[
10	S-2	8.5'-	13"	Medium Brown to Green Sitty Fine			0	0	0	8:15 -
		10.5'		SAND, Hard, Dry			Ű	Ĭ	Ű	
		-							Ì	
15	S-3	13.5'-		Medium Brown to Green Sity Fine			0	0	0	8:45
		15.5'		SAND, Hard, Dry						
		ĺ								
20	S-4	18.5'-	6"	Yellow to Grey Fine Silty S≐ND,			0	0	0	9:15
		20.5'		Hard, Moist						
25	S-5	23.5'-	8"	Yellow to Grey Fine Silty SAND,			0		0	0.00
²⁵	3-5	25.5'	°	Hard, Moist			0	0	0	9:30
		20.0								
			{							
	l									
30	S-6	28.5'-	7"	Dark Grey to Green w/ Rust Colored			0	0	0	9:55
		30.5'		Streaks Fine SAND, Hard, Dry	ĺ					
⊢			1							
			1	Boring Terminated @ 31 feet.						
35				bonng reminated @ 51 reet.						
							ĺ			
	1					}]			
		1								
						ł				
40										
			L	1			l			

Comments:

Geologist Signature

1. Jan

7

1 h

Philip Environmental Services Corporation

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation		5259.94 Feet MSL					
Borehole L	ocation						
GWL Dept	:h						
Logged By	,	Allen	S. Hains				
Drilled By		Philip	Environme	ntal			
Date/Time	Started		6-30-95	13:00			
Date/Time	Comple	ted	6-30-95	14:30			

Borehole #		MW-8		
Well #		MW-8		
Page	1	of	1	

Project Name EF	EPNG San Juan River Plant					
Project Number	14323	Phase	3003			
Project Location Kir	tland, Nev	v Mexico				
Well Logged By	Allen	S. Hains				
Personnel On-Site	Mike [Donohue				
Contractors On-Site	James	O'Keefe				
Client Personnel On-Site	Kevin	Sedlak				
Drilling Method Ho	llow-Stem	Auger				

Air Monitoring Method Photoionization Detector

Hollow-Stem Auge

Depth	Sample	Sample	Sample Type &	Sample Description	uscs	Depth Lithology	A	ir Monito	rina	Drilling Conditions
(Feet)	Number		Recovery	Classification System: USCS	Symbol	Change	.	Jnits: PF	νM	& Blow Counts
0			(inches)			(feet)	BZ	BH	s	
<u> </u>										
							_			
5	S-1	3.5'- 5.5'		Light Brown Fine Silty SAND, Hard, Dry			0	0	0	13:05
10	S-2	8.5'- 10.5'	11"	Light Grey Fine Clayey SAND, Hard,			ο	4	58	13:45
		10.5		Dry						Petroleum Odor
15	S-3	13.5'-	8"	Light Grey to Brown Fine Silty SAND,			0	32	85	14:15
		15.5'	-	Hard, Dry						Petroleum Odor
20	S-4	18.5'- 20.5'		Light Grey Fine SAND, Hard w/ Very Hard Stringers, Dry			0	10	736	14:30
				Boring Terminated @ 21 Feet						
25										
30										
35										
40										
			1							

Comments:

Soil sample S-3 (and dupilcate) and S-4 were sent of the laboratory.

Philip Environmental Services Corporation

Ŷ

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

		Borehole #	MW-9	
		Well #	MW-9	
		Page 1	of 1	
Project Name	EPNG Sar	i Juan River I	Plant	
Project Number	14323	Phase	3003	
Project Location	Kirtland, Ne	ew Mexico		

Elevation	5260.97 Feet MSL						
Borehole Location							
GWL Depth							
Logged By	Allen S. Hains						
Drilled By	Philip Environmental						
Date/Time Started	7-10-95 13:00						
Date/Time Comple	ted 7-10-95 14:00						

Mike Donohue Personnel On-Site Contractors On-Site James O'Keefe Client Personnel On-Site Kevin Sedlak Drilling Method Hollow-Stem Auger

Allen S. Hains

Air Monitoring Method

Well Logged By

Photoionization Detector

Depth (Feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description Classification System: USCS	USCS Symbol	Depth Lithology Change (feet)		ir Monito Units: Pf BH	-	Drilling Conditions & Blow Counts
0							32			
5	S-1	3'-5'	6"	Dark Brown Fine Clayey SAND, Soft, Moist			0	0	767	13:10 Petroleum Odor
10	S-2	8'-10'	12"	Medium Grey to Brown Clayey SAND, Soft, Dry			0	0	737	13:20 Petroleum Odor
15 15	S-3	13'-15	14"	Medium Grey to brown Clayey SAND, Hard w/ Very Hard Stringers, Dry			0	0	10	13:35
20	S-4	18'-20	11"	Light Brown Fine Silty SAND, Hard, Dry			0	0	176	14:00
25				Boring Terminated @ 22 Feet						
30										
35										
40										

Comments:

a la constructiva Marc

Geologist Signature

- 1. South Flare Pit
 - a. Remediation & Closure Summary
 - b. Sample results clay layer
 - c. Groundwater Sample Results
 - d. Contaminated Stockpile Sample Results
 - e. Exploratory Trenching Sample Results
 - f. Final Verification Sample Results
 - g. Backfill Operation Sample Results

FEB 1 1 1993 OIL CONSERVATION DIV. SANTA FE

RECEIVED

- 2. North Flare Pit
 - a. Remediation & Closure Summary
 - b. Groundwater Sample Results
 - c. Contaminated Stockpile Sample Results
 - d. Exploratory Trenching Sample Results
 - e. Final Verification Sample Results
- 3. Onsite Land Farm
 - a. Summary
 - b. Sample Results
- 4. San Juan River Plant Facility Drawing
- 5. Regulatory Correspondence
 - a. Request to remediate and close pits.
 - b. Approval to commence
 - c. Request to landfarm onsite
 - d. Approval to landfarm onsite

South Flare Pit Remediation and Closure Summary

San Juan River Plant is located in Kirtland, NM in Section 1, Township 29N, and Range 15W, San Juan County. El Paso Natural Gas Co. no longer owns the plant itself, but does have property located adjacent to the plant boundaries on both the north and south sides. The south flare pit is located immediately south of the plant yard as noted in the aerial photograph found in Section 4.

In September 1992, EPNG requested approval from NMOCD to proceed with the remediation and closure of the south flare pit. Approval was subsequently received (see section 5b), and closure activities commenced.

The original pit size was approximately 100' wide by 200' long. The pit was historically used for the flaring of plant liquids during upset conditions or for the disposal of liquids from plant vessels during operations and maintenance type activities.

Excavation activities commenced on 9/28/92. All contaminated soil was run through a screen apparatus that segregated large rocks (>1" diameter) from the excavated material. The rocks were stockpiled in a separate location from the contaminated soil.

A distinct gray-colored clay layer was encountered across the entire excavation. The layer was evident at approximately 15 feet below the original bottom of the pit. It appeared to dip gently to the south east and was significantly thicker in the center of the pit. Samples of the clay were collected and analyzed for BTXE and TPH. These analytical results may be found in Section 1b. The analyses indicate that this layer is preventing migration of contaminants to the alluvial aquifer which is approximately 46 feet below the surface. The entire pit was therefore excavated to the point at which this clay layer was found. Specific care was taken to avoid breaching the clay layer.

Water Seepage

Along the north-center to northwest corner of the pit excavation, water seepage was noted. The water appeared to be seeping into the excavation from the north wall, from a level above the clay layer. A total of approximately 240 bbls of water were pumped from the excavation. The water was transported to EPNG's oil/water separator located just north of Blanco Plant. A sample of the seepage water was collected and analyzed for general chemistry and BTXE. These results are located in section 1c.

The water which seeped into the pit appeared to be coming from a perched zone of limited aerial extent. As noted above, this water was encountered at approximately 25 feet below the ground

surface (elevation of approximately 5260), just above the locally extensive clay layer. Monitor well MW-4 is located approximately 200 feet south of the pit and is screened in the alluvial aquifer. The water level in MW-4 was measured at 46.1 feet below the ground surface (elevation 5243) on December 1, 1992. Additionally, the flow of water was low and intermittent and appeared to be limited to one area of the pit wall.

Stockpile

Throughout the excavation activities, the contaminated soil was stockpiled onsite. The stockpile was sampled on a number of occasions throughout the project. The analytical results of the stockpile samples indicated little or no BTXE contamination and TPH values less than 10,000 ppm. Sample results of the stockpile can be found in Section 1d. Based on the contamination levels measured and related conversations held with the district NMOCD inspector, EPNG requested NMOCD approval to landfarm the contaminated material onsite. Approval was subsequently received as noted in Section 5d. The landfarm application will be discussed in more detail in Section 3. A total of 18,200 cubic yards were excavated from the south flare pit proper. Of that total, 3900 cubic yards represented the rocks that were screened out.

Exploratory Trenching

In order to determine the lateral extent of the contamination, seven exploratory trenches were excavated around the original pit. A drawing which depicts the location of each of the trenches in relation to the pit and the analytical results are located in Section 1e. The trenching revealed that contamination did exist out beyond the boundaries of the original pit. The contaminated layer, however, appeared to drastically reduce in thickness within approximately 50'. Because the layer of overburden that would need to be removed in order to excavate the contaminated soil was 15+ feet, it was left in place. This matter was discussed with NMOCD's district inspector.

Verification

After excavation of 18,000+ cubic yards of soil, and a review of the exploratory trenching had occurred, EPNG felt that excavation was at the point of practical extent. Excavation stopped and verification samples were secured. The pit floor was sampled according to the grid diagram shown in section 1f. Three samples were also collected from each of the pit walls. These represented grab samples taken from the top, middle, and bottom sections of each wall at locations which visually appeared to be the worst case. The verification sample results were analyzed for BTXE and TPH and can also be found in Section 1f. BTXE was not detected in any of the verification samples.

Backfill

The verification and trenching sample results were discussed with the district NMOCD inspector. It was then agreed that backfilling operations could be initiated. As noted earlier, we observed that the clay layer in the pit bottom was quite thick in the center. This clay "hump" was therefore spread out over the entire pit bottom which allowed us to leave at a minimum, a 4' layer of clay in the pit bottom. Then, to optimize the operation, the next step was to push the pit walls in towards the center of the pit. As an added measure, more samples were secured after each wall was pushed in. These samples represent a composite picture of sorts for each wall. The analytical results are located in Section 1g.

All backfill soil was acquired through Arco, a local gravel company. As specified in the original closure plan (Section 5a), the rocks that were originally segregated from the contaminated soil were also used to backfill the hole. The rocks were returned to the excavation intermittently with the backfill soil. This was to avoid creating a single, solid layer of rocks. The final phase of the backfilling operation involved the installation of a 2' cap over the entire excavated area. This was to account for settling and to prevent ponding.

SAN JUAN RIVER	FIELD SERVICES	Verification §
SAN JUAN RIVER PLANT - SOUTH FLARE PIT	FIELD SERVICES LABORATORY ANALYTICAL RESULTS	Summary - January 15, 1992

							EPA	EPA Met. 8020 (BTEX) (MG/KG)	(BTEX))		
Sample Number	Sample Location	Sample Description	Time	Date (HH/DD/TY)	18 194 Mod. 418.1 (MG/XG)	C6-C36 TPH Nod. 8015 (NG/KG)	B	T	m	×	TCLP Metals
N22316	Bottom of Pit - 10 Foot, South Wall	Gray, Clay	1212	10/02/92	280	ŝ	<.025	<.025	<.025	<.025	NR
N22317	Background Soil	Brown: Sandy	1220	10/02/92	118	79	<.025	<.025	<.025	<.025	NR
N22460	Trench #1 - 15 Foot	Grey: Clay	1600	10/19/92	<10	NR	NR	NR	NR	NR	NR
N22462	Trench #2	Grey: Clay	1400	10/19/92	^10	NR	NR	NR	NR	NR	NR
N22463	Trench #3	Grey: Clay	1500	10/19/92	10	NR	NR	NR	NR	NR	NR
N22464	Trench #4	Grey: Clay	900	10/20/92	65	NR	NR	NR	NR	NR	NR

Note: NR = Not Run

NATURAL	GA8	Company	MEMORANDUM
---------	-----	---------	------------

TO: Sandra Miller -

DATE: October 19, 1992

FROM: John Lambdin

EL PASO

PLACE: Field Services Engineering Laboratory

Subject: San Juan River Plant, South Flare Pit, Seep Water Results

On October 13, 1992 the Field Services lab collected one aqueous sample for general chemistry and BETX analysis from the West Pit at the referenced location. The sample was assigned the laboratory number N22379. Attached are the results of our testing.

Please let me know, if you have any questions.

John Lambdin

cc: Results Log Book File David Hall

Attachments:

EL PASO NATURAL GAS COMPANY FIELD SERVICES LABORATORY - WATER ANALYSIS

DATE OF SAMPLE: 10-13-92 SAMPLED BY: Dennis Bird

LOCATION: San Juan River Plant SOURCE: South Flare Pit Excavation

PROJECT:	SJRP SFP
SAVE FILE:	N22379
REPORT DATE:	Oct. 19, 1992

SAMPLE POINT	West Pit Seep Water		
LAB ID #	N22379		
рН	7.54		
ALKALINITY AS CO3	0	··· •	 ,
ALKALINITY AS HCO3	1903		
CALCIUM AS Ca	88		
MAGNESIUM AND Mg	96		
TOTAL HARDNESS AS CaCO3	615		
CHLORIDE AS CI	101		
SULFATE AS SO4	1205		
SILICA AS SIO2	45		 -
FLUORIDE AS F	19		
POTASSIUM AS K	22		
TOTAL DISSOLVED SOLIDS	1980		
CONDUCTIVITY (umhos)	2820		
SODIUM (ACTUAL)	256		
NITRATE as NO3-N	4.4		
Ammonium as NH4	392		
Iron as Fe (Noto-1) Syngala	Not Tested		
Phosphate as PO4	12		
Nitrite as NO2-N	Trace		
Bromide as Br		essed as ppm or um	

REMARKS:

-- All Results expressed as ppm or umhos --

Hydrocarbons were present in this sample.

ND = None Detected. Trace is <10 ppm.

10/19/93 white OR . Date Analyst

42 D/ate Lab Superintendent

EL PASO NATURAL GAS COMPANY FIELD SERVICES LABORATORY ANALYTICAL REPORT EPA METHOD 8020 - BETX

SAMPLE IDENTIFICATION

SAMPLE NUMBER: N22379

SAMPLE DATE: 10-13-92 SAMPLE TIME (Hrs.): 1405 SAMPLED BY: Dennis Bird LOCATION: San Juan River Plant SAMPLE SITE: South Flare Pit SAMPLE POINT: West Pit, Seep Water DATE OF ANALYSIS: 10-19-92

REMARKS: This was not a valid sample because it was not properly preserved and was collected in a plastic container. Results are only crude estimates.

RESULTS

PARAMETER	PPB (ug/L)	QUALIFIER	COMMENTS
BENZENE	58.4	J	This value is an estimate.
ETHYLBENZENE	<10.0	B	The result is below the detection level.
TOLUENE	10.4	J	This value is an estimate.
TOTAL XYLENES	<10.0	<u> </u>	The result is below the detection level.

Approved By: John Jack 10/19/92 Date

	S Contract Laboratory Sel PASC MATURAC SAS TOD WEST NAVAJO FAMMUNSTON N.M. Remarks	WATER ABOVE CLAY		Date/Time Received by: (Signature)	Remarks: Date Results Reported / by: (Signature)
AIN OF CUSTODY RECORD	Contraction of the contraction o			Relinquished by: (Signature) Relinquished by: (Signature)	A Date/Time Remarks: パイチュートレン Bate Results Repo
CHAIN OF CUS	RUMBER Beceiving Temp. (°F) Total No. of Containers Chain of Custody Seals intact?			Received by: (Signature) Received by: (Signature)	Received for Laboratory by: (Signature)
	SeVTH Pate Date 5-13-97 Sample	A 422379		Date/Time	Date/Time
	0. Project Name Samplers: (Signature) M. C. Ariet Ic Date Time Matrix	1910 WATER		: (Signature)	: (Signature) Date/1
	Project No. Samplers Lab ID Date	100		Relingerished by: (Signature)	Relinquished by: (Signature) Results & Invoices to::

;

.....

- - - -----

.

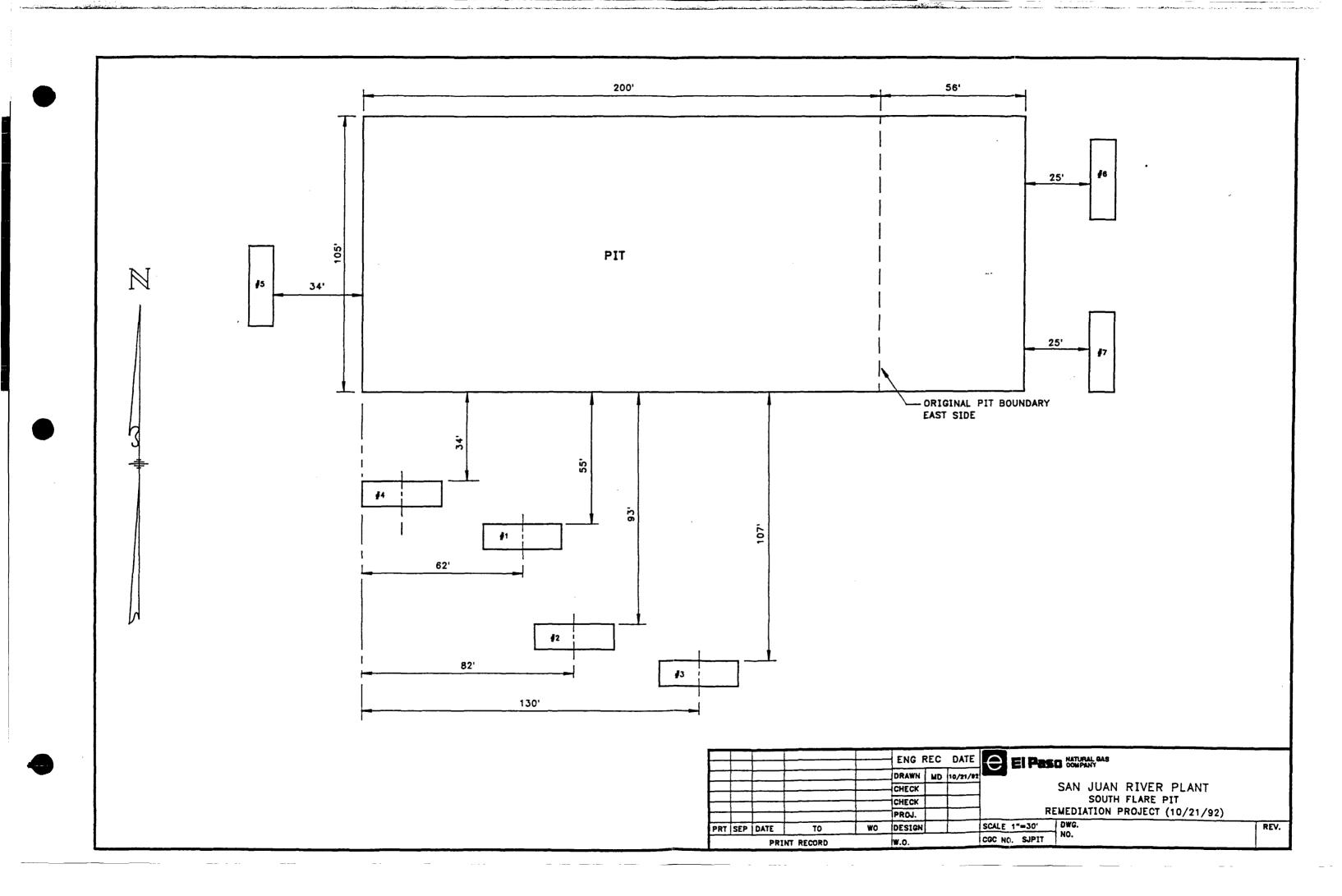
SAN JUAN RIVER PLANT	FIELD SERVICES	Verification
PLANT - SOUTH FLARE PIT	LABORATORY ANALYTICAL RESULTS	Summary - January 15, 1992

-

ļ

NR	NR	NR	NR	NR	NR	>5,000	10/13/92	1335	Brown: Chunks	6 Inches from Top of Pile	N22371
NR	NR	NR	NR	NR	NR	2366	10/13/92	1332	Brown: Grey Chks.	Top of Pile	N22370
NR	0.46	0.079	0.027	<.025	7100	>10,000	10/02/92	1152	Gray, Fine Sand	South Pile side 2 - Core	N22315
R	0.15	0.027	<.025	<.025	7000	>10,000	10/02/92	1142	Gray, Fine Sand	South Pile side 1 - Core	N22314
NR	0.59	0.091	0.028	<.025	8200	>10,000	10/02/92	1125	Gray, Fine Sand	Middle Pile side 2 - Core	N22313
NR	0.1	<.025	<.025	<.025	6500	>10,000	10/02/92	1113	Gray, Fine Sand	Middle Pile side 1 - Core	N22312
NR	0.2	0.026	<.025	<.025	5600	>10,000	10/02/92	1100	Gray, Fine Sand	North Pile side 2 - Core	N22311
NR	0.03	<.025	<.025	<.025	3400	>5,000	10/02/92	1048	Gray, Fine Sand	North Pile side 1 - Core	N22310
NR	0.26	0.032	0.049	<.025	7352	>10,000	09/30/92	1540	Black/Gray Sand	Main Soil Pile, South - Bottom	N22308
NR	0.49	0.058	0.13	0.028	6954	>10,000	09/30/92	1535	Black/Gray Sand		N22307
NR	0.5	0.049	0.1	<. 025	6400	>10,000	09/30/92	1530	Black/Gray Sand	Main Soil Pile, North - Bottom	N22306
Pass	<.025	<.025	<.025	<.025	15	177	26/62/60	913	Brown: Sandy	Background Soil	N22302
TCLP Metals	×	m	I	50	C6-C36 TPH Hod. 8015 (MG/KG)	IR TPH Mod. 418.1 (MG/KG)	Date (NW/OD/TY)	[ime	Sample Description		Sample Number
		(BTEX)	EPA Met. 8020 (BTEX) (MG/KG)	EPA							

NOTES: NR = Not Run, Sample Problems: Not enough, too wet, etc.


i

SAN JUAN RIVER PLANT - SOUTH FLARE PIT	FIELD SERVICES LABORATORY ANALYTICAL RESULTS	Verification Summary - January 15, 1992
11	RESULTS	1992

ł

							EPA	EPA Wet. 8020 (BTEX) (MG/KG)	(BTEX))		
Semple Humber	Sample Location	Sample Description	Time	Date (NN/DD/TY)	IR TPH Hod. 418.1 (MG/KG)	06-C36 TPH Nod. 8015 (MG/KG)	œ	I	m	×	TCLP Metals
N22459	Trench #1 - 13 Foot	Brown: Chunks	1545	10/19/92	<10	NR	NR	NR	NR	NR	NR
N22460	Trench #1 - 15 Foot	Grey: Clay	1600	10/19/92	<10	NR	NR	NR	NR	NR	NR
N22461	Trench #1 - 17 Foot	Brown: Sand	1630	10/19/92	382	NR	NR	NR	NR	NR	NR
N22462	Trench #2	Grey: Clay	1400	10/19/92	<10	NR	NR	NR	NR	NR	NR
N22463	Trench #3	Grey: Clay	1500	10/19/92	-10	NR	NR	NR	NR	NR	NR
N22464	Trench #4	Grey: Clay	900	10/20/92	65	NR	NR	NR	NR	NR	NR
N22465	Irench #5	Black	930	10/20/92	-10	NR	NR	NR	N.R.	NR	NR
N22466	Trench #6	Black	1000	10/20/92	945	NR	NR	NR	NR	NR	NR
N22467	Trench #7	Clumpy Fine Sand	1025	1025 10/20/92	<10	NR	NR	NR	NR	NR	NR

Note: NR = Not Run

SAN JUAN RIVER	FIELD SERVICES	Verification
PLANT - SOUTH FLARE PIT	LABORATOR	Summary - January 15, 1992
	LTS	

ļ

i

		57	3778 JU228 21962			EPA	EPA Met. 8020 ((MG/KG)	(BTEX))		
Sample Sample Wumber Location	Sample Description	l ine	Date (NN/DD/YY)	IR TPH Mod. 418.1 (NG/KG)	C6-C36 TPH Nod. 8015 (NG/KG)	8	Ţ	m	×	TCLP Metals
N22550 Grid Point # 1-1, N22521	Fine Dirt	1120	10/22/92	465	377	<.025	<.025	<.025	<.025	NR
	Clay	1125	10/22/92	1867	1030	<.025	<.025	<.025	<.025	NR
Grid Point # 1-3,	Clay Dirt	1137	10/22/92	566	430	<.025	<.025	<.025	<.025	NR
Grid Point # 1-4,	Rock Dirt	1145	10/22/92	132	660	<.025	<.025	<.025	<.025	NR
Grid Point # 2-1,	Clay	1231	10/22/92	<10	6	<.025	<.025	<.025	<.025	NR
Grid Point # 2-2,	Clay/Rock	1236	10/22/92	376	175/215	<.025	<.025	<.025	<.025	NR
N22000 GF10 P0101 # 2-3, N22020		1241	26/22/01	7616	720	×.025	×.025	< N25	< 025	
Grid Point # 3-1,	Fine Sand	1253	10/22/92	801	580	<.025	<.025	<. 025	<.025	NR
Grid Point # 3-2,	Clay	1257	10/22/92	626	238	<.025	<.025	<.025	<.025	NR
	Clay	1301	10/22/92	<10	12/8	<.025	<.025	<.025	<.025	NR
Grid Point # 3-4,	Clay	1308	10/22/92	<10	~ 5	<.025	<.025	<.025	<.025	NR
N22562 Background, N22535	Fine Sand	1315	10/22/92	4901	2220	<.025	<.025	<.025	<.025	NR
	Sand	1318	10/22/92	NR	\$	<.025	<.025	<.025	<.025	NR
N22537 East Wall - Top Layer	Sand	1325	10/22/92	NR	2800	<.025	<.025	<.025	<.025	NR
N22538 East Wall - Middle Layer	Sand	1327	10/22/92	NR	206	<.025	<.025	<.025	<.025	NR
N22539 East Wall - Bottom Layer	Sand	1329	10/22/92	NR	7100	<.025	<.025	<.025	0.12	NR
N22540 North Wall - Top Layer	Sand	1332	10/22/92	NR	480	<. 025	<.025	<.025	<.025	NR
N22541 North Wall - Middle Layer	Sand	1335	10/22/92	NR	211	<.025	<.025	<.025	<.025	NR
N22542 North Wall - Bottom Layer	Sand	1337	10/22/92	NR	5600	<.025	<.025	<.025	<.025	R
N22543 South Wall - Top Layer	Sand	1341	10/22/92	NR	46	<.025	<.025	<.025	<.025	NR
N22544 South Wall - Middle Layer	Sand	1343	10/22/92	NR	3190	<.025	<.025	<.025	0.03	Ŗ
N22545 South Wall - Bottom Layer	Sand	1345	10/22/92	NR	1510	< <u>.</u> 025	<.025	<.025	<.025	R
N22546 West Wall - Top Layer	Sand	1350	10/22/92	NR	\$	<.025	<.025	<.025	<.025	NR
N22547 West Wall - Middle Layer	Sand	1353	10/22/92	NR	450	<.025	<.025	<. 025	<.025	NR
N22548 West Wall - Bottom Layer	Sand	1355	10/22/92	NR	\$	<.025	<.025	<.025	<.025	R

Note: NR = Not Run

4

I

To: John Lambdin

Date: October 26, 1992

From: Dennis Bird

Place: Field Services Engineering-Lab

Subject: San Juan River South Flare Pit

On Thursday, October 22, 1992, I went to San Juan River to collect final vertification samples on the south flare pit. There were samples taken on the 3 different layers on each of the 4 walls. Samples were taken on the bottom of the pit at various locations. Attached is a drawing of the area that was sampled.

The soil was to be analyzed for Total Petroleum Hydrocarbons (TPH) and BTXE (Mod 8015/8020). The TPH will be by the EPA Method 418.1 Modified to accommodate soil samples. The samples were assigned the lab numbers N22521 to N22548. The field services laboratory will be analyzing for TPH. The samples for BTXE (Mod 8015/8020) were sent to analytical technologies Inc. in Phoenix, Arizona for analysis.

Should you have any question or comments, please let me know.

cc. Sandra Miller

•	50	AN JUAN RIV OTH FLARE P! 10-22-92 Tip= 2500 mid= 2010 E Bot = 7100	2 ×	$BK_{g} = \frac{2220}{490} \frac{1}{5631}$ $BK_{g} = \frac{25}{5631}$
	3-/	2-1 9 40 FT 210	20 FT 5 19.59	
Top = 480 .: 1 = 211 bot = 5600 N	3-2 	2.2 + Iuplicate 179/215 376	1-2 1030 1867	$T_{ap} = 46$ $M_{al} = 3190 - x = .032$ $B_{al} = 1510$ S
	3-3 + Duplizate 12/8 210	2-3 720 3152	1-3 430 566/433	
•	3-4 25 210	2-4 35 34 W Top = 25 Mil = 450 By = 25	1.4 1660 132	NOTES: (All values mg/kg) -> Mod. 8015 -> mod. 418.1

North Flare Pit Remediation and Closure Summary

San Juan River Plant is located in Kirtland, NM in Section 1, Township 29N, and Range 15W, San Juan County. El Paso Natural Gas Co. no longer owns the plant itself, but does have property located adjacent to the plant boundaries on both the north and south sides. The north flare pit is located at the north edge of the wastewater pond area, between pond #1 and pond #3. The location of the flare pit is identified in the aerial photograph found in Section 4.

In September 1992, EPNG requested approval from NMOCD to proceed with the remediation and closure of the north flare pit. Approval was subsequently received as documented in section 5b. Closure activities commenced immediately following excavation activities at the south flare pit location.

The original pit size was approximately 50' wide by 75' long. The pit was historically used for the flaring of liquids associated with pigging and maintenance of the incoming field lines.

Excavation activities commenced on or near 10/29/92. Because the rock content was minimal, the contaminated soil was not screened as done at the south pit.

The pit was originally dug to an average depth of approximately 13'. The center of the pit was dug to approximately 16' because of higher TPH concentrations found there. A total of 3520 cubic yards of soil was excavated from the north flare pit.

Groundwater

Groundwater began seeping into the excavation near the 13' depth. Significant amounts of water seeped into the hole overnight. A total of approximately 100 bbls of water were pumped from the excavation. The water was transported to EPNG's oil/water separator located just north of Blanco Plant. A sample of the seepage water was collected and analyzed for general chemistry. The water was inadvertently not sampled for BTXE.

The results from the pit water, and the most recent sampling of monitor well P-8 are located in Section 2b. P-8 is located approximately 100' downgradient of the pit. It is completed to a depth of 30 feet. The water level measured in the well on December 1, 1992 was at 12.2 feet below the ground surface (elevation of approx. 5267). The elevation of the original pit bottom was surveyed at 5278.7 in 1982. This would mean that the water came in about 5265 fmsl. The monitor well appears therefore, to be monitoring the same interval that was encountered in the pit. The samples collected from this well indicate that contaminants are not migrating from the pit.

Stockpile

Throughout the excavation activities, the contaminated soil was stockpiled in immediate proximity to the pit. Several samples of the stockpiled soil were collected. The analytical results of the stockpile samples indicated little or no BTXE contamination and TPH values of around 5000. Sample results of the stockpile can be found in Section 2c. Because EPNG had already received approval to landfarm contaminated soil onsite, the soil was transferred to the landfarm for spreading.

Exploratory Trenching

In order to determine the lateral extent of the contamination, a trench was dug headed due south of the pit. The soil appeared very discolored with somewhat of an organic smell. The discolored soil was excavated and stockpiled separately from the actual pit soil. Samples of this stockpile were collected with the results showing no detectable TPH or BTXE. Results of this sampling effort are located in Section 2d. The results delineated the lateral extent on the south side.

Verification Samples

Because we had reached groundwater, EPNG, with concurrence from the district NMOCD inspector, decided to collect verification samples. The pit floor was sampled according the grid diagram shown in section 2e. Samples were also collected from each of the pit walls. These represented grab samples taken from points which visually appeared to be the worst case. The verification sample results were analyzed for BTXE and TPH and can also be found in Section 2e. BTXE levels were either not detected or well below clean up criteria of 50 ppm and 10 ppm for benzene.

Backfill

The verification sample results were discussed with the district NMOCD inspector. The backfilling operation was subsequently initiated. Backfill material was acquired from material onsite as noted in the original closure plan (Section 5a). This material appeared to be predominately a clay/shale type material. The final phase of the backfilling operation involved the installation of a 2' cap over the entire excavation area. This was to account for settling and to prevent ponding.

TO: Sandra Miller

FROM: John Lambdin

DATE: Jan. 7, 1993

PLACE: Field Services Engineering Laboratory

Subject: San Juan River Plant, North Flare Pit, Seep Water Results

On November 4, 1992 the Field Services lab collected one (1) water sample for general chemistry analysis from the remediation pit. The sample was assigned the laboratory number N22712 and analyzed for general chemistry components in accordance with EPA and APHA Standard Methods. This sample represents the groundwater which was seeping into the excavation during the remediation.

Attached you will find the results of our testing, COC and field sampling information.

Please let me know, if you have any questions.

🗸 John Lambdin

cc: David Hall Nancy Prince Results Log Book File

Attachments:

EL PASO NATURAL GAS CO. - NORTH REGION LAB - WATER ANALYSIS REPORT

SAMPLED BY: 1	R. BENSON			
	4' EAST OF I ISMPL.PT.2-31		, 	
LAB ID #	N22712			
COMPLIANCE ID #				
рН	6.72			
ALKALINITY AS CO3	Ø			,
ALKALINITY AS HCO3	569			
CALCIUM AS Ca	844	a ang bang nang nang nang nang nang nang		
MAGNESIUM AND Mg	443			
TOTAL HARDNESS AS CACO3	3931	2	2	(@
CHLORIDE AS Cl	10735			
SULFATE AS SO4	8750		}	
STLICA AS SiO2	9			
FLUORIDE AS F	62			
POTASSIUM AS K	17			
SODIUM (CALCULATED)	9588		2	2
TOTAL DISSOLVED SOLIDS				
CONDUCTIVITY (umhos)	32700			
SODIUM (ACTUAL)	9600		· ···· ···· ···· ···· ····· ····· ····· ····	
IRON AS Fe (Dissolved)	1.90			
NITRATE AS NO3-N	3.74			
			\	
			}	

Genn is Bha

Analyst

John

Lab Superintendent

EL PASO NATURAL GAS COMPANY FIELD SERVICES LABORATORY ANALYTICAL REPORT EPA METHOD 8020 - BETX

SAMPLE IDENTIFICATION

SAMPLE NUMBER: N22993

SAMPLE DATE: 12-3-92 SAMPLE TIME (Hrs.): 1255 SAMPLED BY: Dennis Bird LOCATION: San Juan River Plant SAMPLE SITE: Monitor Well #P-8 SAMPLE POINT: Monitor Well Casing DATE OF ANALYSIS: December 9, 1992

REMARKS:

RESULTS

	PARAMETER	PPB (نړو/ل)	QUALIFIER	COMMENTS
	BENZENE	<10		
	ETHYLBENZENE	<10		
 	TOLUENE	<10	·	
	TOTAL XYLENES	<10		

⊶prov⊶d By: __ 12/11/62 Date

QUALITY CONTROL REPORT EPA METHOD 8020 – BETX Samples: N22986 to N22997

LABORATORY DUPLICATES:

SAMPLE NUMBER <u>N22988</u>	TYPE	SAMPLE RESULT (S) (PPB)	DUPLICATE RESULT (D) (PPB)	RPD	ACCEPTABLE RANGE + / - 25% YES NO
Benzene	2nd Run	<10	<10	0.0	x
Ethylbenzene	2nd Run	388	391	0.8	X
Toluene	2nd Run	225	229	0.0	x
Total Xylenes	2nd Run	941	962	2.2	x

Narrative: Acceptable!

FIELD DUPLICATES:

SAMPLE NUMBER N22991/N22992D	ТУРЕ	SAMPLE RESULT (S) (PPB)	DUPLICATE RESULT (D) (PPB)	RPD	ACCEPTABLE RANGE + / - 25% YES NO
Benzene	2nd VOA Vial	<10	<10	0.0	X
Ethylbenzene	2nd VOA Vial	<10	<10	0.0	X
Toluene	2nd VOA Vial	<10	<10	0.0	X
Total Xylenes	2nd VOA Vial	<10	<10	0.0	X

Narrative: Acceptable!

LABORATORY SPIKES:

SAMPLE NUMBER N22986	SPIKE ADDED (SA) PPB	SAMPLE RESULT (S) (PPB)	SPIKE SAMPLE RESULT (SR) (PPB)	% A	ACCEPTABLE RANGE 75-125 %R YES NO
Benzene Ethylbenzene Toluene Total Xylenes	20.0 20.0 20.0 40.0	1.2 0.0	23.9 22.1 23.7 46.4	93 105 119 108	x x x x

Narrative: Acceptable!

LABORA (ORY AND TRIP BLANKS:

SAMPLE ID	SOURCE	Component (PPB)	STATUS
Benzene	EPNG Water	<10	ACCEPTABLE
Ethylbenzene	EPNG Water	<10	ACCEPTABLE
Toluene	EPNG Water	<10	ACCEPTABLE
Total Xylenes	EPNG Water	<10	ACCEPTABLE

Approved By: ____

1/2/91

Date

ative: Acceptable!

						IR	8-0%		(MG/KG)			
Sample Number		Sample Location	Sample Description	I i me	Date (MM/DD/TT)	1PH Mod. 418.1 (MG/KG)	TPH Nod. 8015 (NG/KG)	œ		m	×	TCLP Metals
N22645	Stock Pile,	Stock Pile, S.E. Corner	Clay Sand	1020	10/27/92	1630	891	<.025	0.056	0.086	0.67	Pass
N22646	Stock Pile,	Stock Pile, N.E. Corner	Clay Sand	1033	10/27/92	4845	4981	<.025	0.64	0.69	6.5	Pass
N22647	Stock Pile,	Stock Pile, S.W. Corner	Sand	1049	10/27/92	7005	5000	0.052	0.44	0.89	6.4	Pass
N22648	Stock Pile,	N.W. Corner	Sand	1104	10/27/92	5673	2956	<.025	0.052	0.16	1.0	Pass
N22652	Background		Fine Sand Some Rock Very Fine	1146	10/27/92	<10	NR	NR	NR	NR	NR	NR

Verification Summary - January 18, 1993 FIELD SERVICES LABORATORY ANALYTICAL RESULTS SAN JUAN RIVER PLANT - NORTH FLARE PIT

EPA Met. 8020 (BTEX)

i I

. . .

:

I

Ì

i

Note: NR= Not Run

ł

i

i

I.

1

i

I

							EPA	EPA Met. 8020 (BTEX) (MG/KG)	(BTEX))		
Sample Number	Sample Location	Sample Description	Time	Date (MM/DD/TY)	18 TPH Mod. 418.1 (MC/KG)	C6-C36 TPH Nod. 8015 (N6/KG)	œ	T	m	×	TCLP Hetals
N22632	Stockpile, South Side	Clay	1415	10/23/92	<10	NR	NR	NR	NR	NR	NR
N22633	Stockpile, (Top) North Side	Fine Sand	1410	10/23/92	<10	NR	NR	NR	NR	NR	NR
N22634	West Side of North Face	Clay	1435	10/23/92	<10	NR	NR	NR	NR	NR	NR
N22635	East Side of North Face	Fine Sand	1440	10/23/92	<10	NR	NR	NR	NR	NR	NR
N22642	Background, 300 feet Suth of Pit	Sand	1435	10/26/92	<10	NR	NR	NR	NR	NR	NR

Note: NR = Not Run

1

i

Verification Summary - January 18, 1995 FIELD SERVICES LABORATORY ANALYTICAL RESULTS SAN JUAN RIVER PLANT - NORTH FLARE PIT	
---	--

I.

							EPA	EPA Met. 8UZU ((MG/KG)	(BIEX)		-
Sample Kumber	Sample	Sample Description	Time	Date (NH/DD/YY)	IR IPH Hod.	CG-C36 TPH Mod.	æ	-	m	×	TCLP Metals
					418.1 (NG/KG)	8015 (HG/KG)					
N22653	Grid Point #1-1	sand	1312	10/28/92	1472	1375	<.025	0.069	0.19	0.31	NR
N22654	Grid Point #1-2	Clay	1315	10/28/92	187	103	<. 025	0.029	<.025	0.026	NR
N22655	Grid Point #1-2, Field Duplicate	Clay	1315	10/28/92	91	79	<.025	<.025	<.025	<.025	NR
N22656	#1-3	Clay	1318	10/28/92	370	421	<.025	<.025	0.031	0.13	NR
N22657	Grid Point #1-4	Clay	1320	10/28/92	<10	17	<.025	<.025	<.025	<.025	NR
N22658	Grid Point #2-1	Clay & Rock	1323	10/28/92	3068	2860	<.025	<.025	0.4	0.69	NR
N22659	Grid Point #2-2	Clay & Rock	1325	10/28/92	627	534	<.025	<.025	0.08	0.17	NR
N22660	Grid Point #2-3	Clay & Rock	1328	10/28/92	2437	1699	<.025	0.042	0.2	0.43	NR
N22661	Grid Point #2-4	Sand & Clay	1331	10/28/92	1156	1010	<.025	0.028	0.059	0.2	NR
N22662	Grid Point #3-1	Clay	1334	10/28/92	1804	1375	<.025	<.025	0.23	0.26	NR
N22663	Grid Point #3-2	Black Clay	1336	10/28/92	1390	1231	<.025	<.025	0.13	0.26	NR
N22664	Grid Point #3-2, Field Duplicate	Black Clay	1336	10/28/92	1306	1346	<.025	<.025	0.13	0.27	NR
N22665		Wet Clay	1339	10/28/92	228	307	<.025	0.03	0.12	0.28	NR
N22666	Grid Point #3-4	Clay	1342	10/28/92	2065	1777	<.025	0.078	0.11	0.43	Ŗ
N22667	South Wall, West End	Sand	1345	10/28/92	140	17	<.025	<.025	<.025	<.025	R
N22668	5	Clay	1348	10/28/92	958	585	<.025	<.025	<.025	0.084	Ŗ
N22669		Clay	1351	10/28/92	35	100	<.025	<.025	<.025	<.025	NR
N22670	- I	Clay	1354	10/28/92	<10	5	<.025	<.025	<.025	<.025	Ŗ
N22671		Sand	1358	10/28/92	<10	~ 5	<.025	<.025	<.025	<.025	NR
N22672	North Wall, W. End In Stain	Sand	1402	10/28/92	8298	NR	NR	NR	NR	NR	NR
N22673	West Wall, No Stain	Sand	1406	10/28/92	7516	NR	NR	NR	NR	NR	NR
N22674	Background	Sand	1428	10/28/92	<10	<5	<.025	<.025	<.025	<.025	Ŋ
N22675	Background	Sand	1432	10/28/92	<10	\$	<.025	<.025	<.025	<.025	NR
N22695	North Wall, West	Fine Sand	1250	10/30/92	<10	11	<.025	<.025	<.025	<.025	NR
YOYCCII	West Wall	Fine Sand	1255	10/30/92	<10	\$	<.025	<.025	<.025	<.025	NR

Note: NR = Not Run

1

I

ļ

l

To: John Lambdin

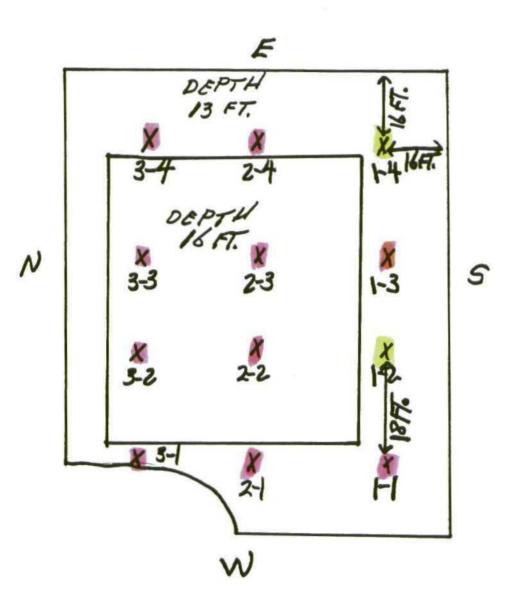
Date: October 30, 1992

From: Dennis Bird

Place: Field Services Engineering-Lab

Subject: San Juan North Flare Pit

On Wednesday, October 28, 1992, I went to San Juan River to collect final vertification samples on the north flare pit. There were samples taken on different layers on each of the 4 walls. Samples were taken on the bottom of the pit at various locations. Attached is a drawing of the area that was sampled.


The soil was to be analyzed for Total Petroleum Hydrocarbons (TPH) and BTXE (Mod 8015/8020). The TPH will be by the EPA Method To Accommodate Soil Samples. The samples were assigned the Lab numbers N22653 to N22675. The field services laboratory will be analyzing for TPH. The samples for BTXE (Mod 8015/8020) were sent to Analytical Technologies Inc. in Phoenix, Arizona for analysis.

Should you have any question or comments, please let me know.

cc. Sandra Miller

Dennis P. Bird

SAN JUAN RIVER NORTH FLARE PIT 10-28-92

5

Onsite Landfarm Summary

As noted earlier, EPNG requested approval from NMOCD to landfarm the flare pit soils onsite. A copy of this request may be found in Section 5c. The supporting reasons for this request were the lack of BTXE present in the contaminated soil, and the relatively low TPH levels that were measured (<10,000ppm). Also, the trenching exercise indicated that the clay layer in the pit bottom extended under the landfarm location. It would, therefore, act as a good barrier in preventing migration of hydrocarbons to groundwater. On October 19, 1992, EPNG received approval to proceed with landfarming the soil on site. The landfarm is located on EPNG property in the area located due west and south of the south flare pit. The aerial drawing in Section 4 depicts the landfarm facility.

Soil from the south flare pit was spread on the landfarm site in a 6" layer. As the north pit soil was being transferred to the landfarm, it became evident that space was going to be a factor. EPNG proposed to the local NMOCD inspector that the contaminated layer be increased from 6" to 10". The inspector agreed to the proposal, with the stipulation that the equipment used to turn the soil have the capability of disking at least 14". EPNG and it's contractor proposed that we utilize a Ford Farm Tractor 8000 Series equipped with a 3 bottom plow. The NMOCD inspector, after taking a look at the proposed equipment, agreed to increasing the thickness of the contaminated layer.

The entire perimeter of the landfarm area was protected by 3'-4' berms. Double berms were installed along the south and west edges because of the tendency for run off to go in that direction. In addition to the outer berms, internal berms were built to keep the cells from being too large. The internal berms were installed perpendicular to the direction of potential water run off.

Burlington Environmental has been contracted to administer the facility in accordance with NMOCD guidelines. Background samples were secured from the landfarm site prior to spreading soil. These results may be found in Section 3b. Once the soil was spread, an initial set of samples was secured to establish a baseline. A copy of the grid representing this sampling effort is also in Section 3b. The results are not yet available. The landfarm will continue to be sampled periodically for the purpose of monitoring the remediation rate of the soil. Should EPNG decide to enhance degradation by treating the soil with fertilizers, bacteria, or any other substance, NMOCD will be contacted for approval prior to implementation.

TO: Sandra Miller

DATE: 11/24/92

FROM: John Lambdin

atural Gas Companu

PLACE: Field Services Engineering Lab

Project: San Juan River Plant Landfarm - Background Soil

On October 21, 1992, the Farmington Field Services Engineering Laboratory collected one (1) soil sample for Total Petroleum Hydrocarbon (TPH), General Chemistry, and heavy metals analysis from the referenced site. The sample was collected in accordance with New Mexico OCD landfarm treatment zone monitoring requirements. The sample was assigned the Field Services Laboratory number N22486.

The sample was analyzed at EPNG's Laboratory for TPH by EPA Method 418.1 modified to accommodate soil samples. We also analyzed the sample for general chemistry components by first producing an aqueous extract of the sample and analyzing the extract solution according to "Standard Methods". Equal portions of the soil (mass:mass ratio) were mixed with high purity 18 Megohm water and ultrasonicated for 10 minutes followed by gravity filtration to produce the extract.

A split portion of the sample was analyzed for TPH by Analytical Technologies (ATI) using Modified EPA method 8015 and for BETX using EPA Method 8020. ATI also analyzed the sample for heavy metals using standard EPA methods.

Enclosed are the analytical results for all these tests, any necessary C.O.C. information, and any quality control reports required.

Please let me know, if you have any questions or comments.

/ John Lambdin

cc: David Hall Results Log Book File

Attachments:

0

l

FIELD SERVIC ABORATORY ANALYTICAL RESULTS SAN JUAN RIVER PLANT – South Flare Pit Soil Remediation Site – Land Farm Collected By: Richard Benson and Dennis Bird

> Date Collected: 10/21/92 Date Extracted: 10/21/92 Date Analyzed: 10/21/92 Holding Time Status: Acceptable

Data Qualifier								-
IR TPH Mod. 418.1 (MG/KG)	<10							
Matrix	Soil	 	 					
Date (MM/DD/YY) Matrix	10/21/92							
Time	1130							
Sample Description	Brown: Sandy							
Sample Location	Middle of Dirt Farm (SRS) at 2 Foot Depth							
Sample Number	N22486							
Field ID								

STATISTICS STATES

STATE OF

10/22/42 Date/ Approved: Jelen Lerleh

i

1 =

Barris and

QUALITY CONTROL REPORT Modified 418.1 by Infrared Total Petroleum Hydrocarbons Samples N22486 to N22472

LABORATORY CONTROL SAMPLES: CALIBRATION CHECKS

SAMPLE	SOURCE	TRUE VALUE (PPM)	FOUND (MG/KG)	%R	ACCEPTABLE RANGE 75-125 %R YES NO
INITIAL CALIBRATION VERIFICATION "B" Heavy Oil (Lot MOR9480)	HORIBA	300.0	297.6	99.2	X

LABORATORY AND FIELD DUPLICATES:

SAMPLE		SAMPLE	DUPLICATE		ACCEPTABLE
NUMBER	ТҮРЕ	RESULT (S)MG/KG	RESULT (D)MG/KG	RPD	RANGE + / - 35% YES NO
None In This Set	2nd Extract				

LABORATORY SPIKES:

SAMPLE	SPIKE	SAMPLE	SPIKE		ACCEPTABLE
	ADDED (SA)MG/KG	RESULT (S)MG/KG		R	RANGE 75-125 %R YES NO
			(SR)MG/KG		
None In This Set					

REFERENCE SOIL (Laboratory Control Sample):

SAMPLE	SOURCE	KNOWN VALUE (MG/KG)	SAMPLE RESULT FOUND (MG/KG)	RPD	ACCEPTABLE RANGE + / - 35% YES NO
ERA TPH STANDARD #1 LOT # 91016	ENVIRONMENTAL RESOURCE ASS.	2350	2606	10.3	X
ERA TPH STANDARD #2 w/interf. LOT # 91016	ENVIRONMENTAL RESOURCE ASS.	Not Run	Not Run	ERR	y 🤊

LABORATORY REAGENT BLANK:

Freon Solvent	HORIBA	<pre>TPH LEVEL (MG/KG) <10.0</pre>	ACCEPTABLE
Reagent Blank	EPNG Lab	<10.0	ACCEPTABLE

Approved By: John Falli 10/22/92 Date

EL PASO NATURAL GAS COMPANY FIELD SERVICES LABORATORY - WATER ANALYSIS

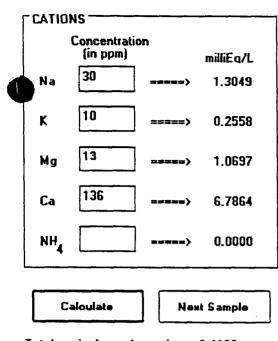
DATE OF SAMPLE: 10-21-92 SAMPLED BY: Richard Benson Extraction Date: 11-12-92

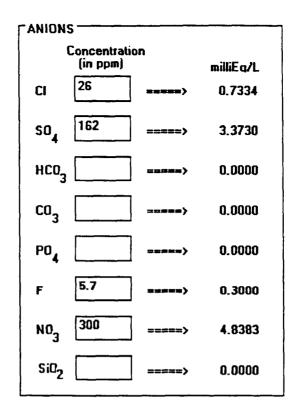
LOCATION: San Juan River Plant SOURCE: Land Farm Soil, 2' below Surface Matrix: Soil Ectract

PROJECT: LF Monitoring SAVE FILE: N22486W **REPORT DATE:** Nov. 24, 1992

SAMPLE POINT	Middle of Land Farm 2' Down		
LAB ID #	N22486		
pH (Units)	7.74		
CALCIUM AS Ca	136	 	
MAGNESIUM AND Mg	13		
TOTAL HARDNESS AS CaCO3	393		
CHLORIDE AS CI	26		
SULFATE AS SO4	162		
FLUORIDE AS F	5.7		
POTASSIUM AS K	10		
SODIUM as Na	30		
CONDUCTIVITY (umhos)	900		
NITRATE as NO3-N	67		
Anion – Cation Balance	Attached	 	

-- All Results expressed as ppm or umhos --


REMARKS:


The soil sample was extracted in accordance with the procedures outlined in this report. The resulting extractant fluid was analyzed for the parameters shown above using procedures outlined in Standard Methods for the Examination of Water and Wastewater, AWWA, 17 Edition, 1989,

24/92

olin Larelii 11/24/92 Superintendent Date

1 =

Total equivalence for cations: 9.4169 Total equivalence for anions: 9.2447 The percent difference is: 0.922

- 1 =

Anion - Cation Balance Sample # NZZ486 San Juan River Plant Land Farm Soil Extract

Results & Invoices to::	Relinquished by: (Signature)	Relinquished by: (S(gnature)	app 18	ampiers)(Signature) aud Pulan Date Time Matrix 16-21-92 1130 Sall 130 Sall	Project No. Project Name
	Date/Time	Date/Time	Date/Time	lave Prt lazer Receiving N22486 N22486	
Charge Code	Received for Laboration by Isignature	Received by: (Signature)	Received by: (Signature)	Receiving Temp (°F) Total No. of Containers Chain of Custody Seals	
	iture) Date/Time	Relinquished by: (Signature)	Relinquished by: (Signature)	Intact?	Natural Gas Company OF CUSTODY RECORD
Date Results Reported / by: (Signature)	Remarks:	ture)	ture)	Analysis	
y: (Signature)		Date/Time	Date/Time		, - J =
D		Received by: (Signature)	Received by: (Signature)	Remarks Aver 21 deep	Contract Laboration

ATI I.D. 210908

November 6, 1992

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: None given San Jvan Riven Plant South Flace Pit LAND FARM Attention: John Lambdin Middle of Land Farm 2' below Native Grand Surface

On 10/23/92, Analytical Technologies, Inc. received a request to analyze soil sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (602) 496-4400.

Mary Tyer

Project Manager

RVW:ktd Enclosure

Robert V. Woods Laboratory Manager

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

	: EL I : (NON AME : (NON		REPORT	ECEIVED : 10/23/92 DATE : 11/05/92
 \TI #	CLIENT	DESCRIPTION	MATRIX	DATE COLLECTED
01	N22486	2' helow Native Grand Surface Middle of Land Farm	SOIL	10/21/92
			COCERRIES AND	STRONIUS W 1992 STRONG
		TOTALS		
M	MATRIX	# SAMPLES		, - , - , - , - , - , - , - , - , - , -
-	SOIL	1		,
		ATI STANDARD DISPOSAL	PRACTICE	
<u>date</u> of t	this repor	ATI STANDARD DISPOSAL This project will be dispose t. If an extended storage p department before the sche	ed of in thirty period is requi	ired, please conta

METALS RESULTS

MG/KG

ATI I.D. : 210908

	: EL PASO NATURAL GAS, NE : (NONE) : (NONE)	W MEXICO DATE R REPORT	ECEIVED : 10/23/92 DATE : 11/05/92
PARAMETER	UNITS	01	
SILVER ARSENIC BARIUM CADMIUM CHROMIUM MERCURY LEAD	MG/KG MG/KG MG/KG MG/KG	<0.5 <5 296 0.3 29.5 <0.1 7	

<5

LEAD SELENIUM

-17

METALS - QUALITY CONTROL

CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) PROJECT NAME : (NONE)

ATI I.D. : 210908

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE		% REC
SILVER ARSENIC BARIUM CADMIUM CHROMIUM MERCURY LEAD SELENIUM	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	21090801 21090801 21090801 21090801 21090801 21090801 21090801 21090801 21090801	<5 296 0.3 29.5	<0.5 <5 286 <0.3 29.9 <0.1 6 <5	NA NA 3 NA 1 NA 15 NA	20.2 42 341 21.0 71.8 2.5 48 39	25.0 50.0 25.0 50.0 2.5 50 50	81 84 90 83 85 100 82 78

Acceptable.

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) Average Result

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 21090801

TEST : FUEL HYDROCARBONS (MOD. EPA 8015, BLS-191)

CLIENT : EL PASO NATURAL GAS, PROJECT # : (NONE) PROJECT NAME : (NONE) CLIENT I.D. : N22486 SAMPLE MATRIX : SOIL 	NEW MEXICO DATE SAMPLED : 10/21/92 DATE RECEIVED : 10/23/92 DATE EXTRACTED : 10/23/92 DATE ANALYZED : 10/28/92 UNITS : MG/KG DILUTION FACTOR : 1 RESULTS
	RESULTS
FUEL HYDROCARBONS, C6-C10 FUEL HYDROCARBONS, C10-C22(BLS-191) FUEL HYDROCARBONS, C22-C36	<5 <5 18
FUEL HYDROCARBONS (CALCULATED SUM) SURROGATE PERCENT RECOVERIES	18

64

DI-N-OCTYL PHTHALATE (%)

GAS CHROMATOGRAPHY - RESULTS

REAGENT BLANK

TEST : FUEL HYDROCARBONS (MOD. EPA 8015, BLS-191)

CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) PROJECT NAME : (NONE) CLIENT I.D. : REAGENT BLANK	ATI I.D. : 210908 DATE EXTRACTED : 10/23/92 DATE ANALYZED : 10/24/92 UNITS : MG/KG DILUTION FACTOR : N/A
COMPOUNDS	RESULTS
FUEL HYDROCARBONS, C6-C10 FUEL HYDROCARBONS, C10-C22(BLS-191) FUEL HYDROCARBONS, C22-C36	<5 <5 <5
FUEL HYDROCARBONS (CALCULATED SUM)	<5
SURROGATE PERCENT RECOVERIES	
DI-N-OCTYL PHTHALATE (%)	86

Accostable II-14-92

1 =

Analytical **Technologies,** Inc.

QUALITY	CONTRO	L DATA	ATI I	. D.	:	210908	}
TEST : FUEL HYDROCARBONS (MOD. EPA	8015, B	LS-191)					
CLIENT : EL PASO NATURAL GAS, PROJECT # : (NONE) PROJECT NAME : (NONE) REF I.D. : 21091026	NEW ME	XICO	DATE SAMPL UNITS	E MA	TRIX :	10/25/ SOIL MG/KG	/92
COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	₽	DUP. SPIKEI SAMPLI		RPD
FUEL HYDROCARBONS (C10-C22)	<5	50	41	82	41	82	0

Recipiente

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result Average of Spiked Sample

1 =

Analytical **Technologies, Inc**.

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 21090801

TEST : BTEX (8020) AND MTBE

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO : (NONE) : (NONE) : N22486 : SOIL	NATURAL	GAS,	NEW	MEXICO	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	::	10/21/92 10/23/92 10/23/92 10/26/92 MG/KG 1
COMPOUNDS						RESULTS		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTY	L ETHER					<0.025 <0.025 <0.025 <0.025 <0.025 <0.12	~~~~	

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

Analytical Technologies, Inc. GAS CHROMATOGRAPHY - RESULTS

REAGENT BLANK

TEST : BTEX (8020) AND MTBE

CLIENT PROJECT # PROJECT NAME CLIENT I.D.	: EL PASO NATURAL GAS, NEW MEXICO : (NONE) : (NONE) : REAGENT BLANK	ATI I.D. : 210908 DATE EXTRACTED : 10/23/92 DATE ANALYZED : 10/23/92 UNITS : MG/KG DILUTION FACTOR : N/A
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-t-BUTYI	L ETHER	<0.025 <0.025 <0.025 <0.025 <0.025 <0.12

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

Recent this

Analytical Technologies, Inc.

TEST : BTEX (80	QUALITY	CONTRO	L DATA	ATI I	.D.	:	210908	
PROJECT # : PROJECT NAME :	EL PASO NATURAL GAS, (NONE) (NONE) 21091026	NEW ME	XICO		LE MA	LYZED : ATRIX : :		92
COMPOUNDS			CONC. SPIKED		۶ REC	DUP. SPIKED. SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES METHYL-T-BUTYL	ETHER	<0.025	1.0 1.0 3.0	0.95	98 95 100	0.93 0.88 0.89 2.7 2.1	93 88 89 90 105	5 11 7 11 5

Keith Struch

% Recovery = (Spike Sample Result - Sample Result) ______ X 100 Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result ______ X 100 Average of Spiked Sample

Constant in the stant				SHE	NIATNOD TO	NUMBER	い			ļ	1					-		eri	~		
AltOLO AltOL <											İ								Ö	42	2
Antiole Other Louis Other Lo																			l	52	es, lr
Antiole Other Louis Other Lo							X					ļ			ine:	ate:		-	Ë	8 Q	igolo 1
Antiole Other Louis Other Lo				sisteM	Instulio9 vinc	Ding Et ent						 		ΒY	-			(LAE	Ē	<u>م</u> ا	BChn
Antiole Other Louis Other Lo	<u></u>							<u> </u>	 			–		SHE				ΒY			
Antiole Other Louis Other Lo	00					DBS AWUS								IND	*	ame		IVE			nalytí Circe
Antiole Other Louis Other Lo	07							<u> </u>	 	\neg				RELI	nature	Ited N	luban	JECE		8-8	
Antiole Other Louis Other Lo	3		BUC	ozinA - ebnet	preis Viebno	SDWA Sec						1			Sig	Pai-	Ö			23	
Antiole Other Louis Other Lo				<mark>snozhA -</mark> st	brebruers yuen	ning AWOS								c'i				c,		P	
Antiole Other Louis Other Lo	i	ST																			
Antiole Other Louis Other Lo	2	DUE		10.0010.0					_		_	ļ			×				H		
Antiole Other Louis Other Lo	j	REC					 		 		_			3Y:	Ĕ	Date			Ĩ	Date	
Antiole Other Louis Other Lo							┣—		 		+		-	ίED				:۲:			
Antiole Other Louis Other Lo		ALΥ								-+	+	+		ISING		:e:		EDE		ще:	
Antiole Other Louis Other Lo		AN,		(08			1-					1		ILING	ture:	d Na	any:	CEIV	ture:	d Na	Suny:
Antiole Other Louis Other Lo	L L													RE	Signa	Printe	Comp	RE.	Signa	Printe	Comp
ANDIO CONTRACT: TATING - POINT - March Anton Ant	Ŭ													÷.	<u> </u>	a					
ANDIO CONTRACT: TATING - POINT - March Anton Ant								<u> </u>				<u> </u>		BY:	p		5				1000
ATICITY COMPANY: Settle PENNSCOLO FILL, Theens, Arzono San Disgo Thoonix - Settle PENNSCOLO FILL, Theora, Arzono FPOJECT MANAGER: (D-HAL CALEDIA ADDRESS: <u>7.599 - 2.1 444</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.40(LIAI AT AT AT 49</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 41</u> BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 176</u> BILL TO: <u>7.400 - 2.1 176</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 3.0 10</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 5.0 10</u> Comments: <u>7.400 - 3.0 10</u> Comments: <u>7.400 - 3.0 10</u> Clary, Code - 1.05 - 5.487 - 001 - 3.0 10	PAG						 		 -+					<u>fed</u>			2				a) fea
ATICITY COMPANY: Settle PENNSCOLO FILL, Theens, Arzono San Disgo Thoonix - Settle PENNSCOLO FILL, Theora, Arzono FPOJECT MANAGER: (D-HAL CALEDIA ADDRESS: <u>7.599 - 2.1 444</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.40(LIAI AT AT AT 49</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 41</u> BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 176</u> BILL TO: <u>7.400 - 2.1 176</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 3.0 10</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 5.0 10</u> Comments: <u>7.400 - 3.0 10</u> Comments: <u>7.400 - 3.0 10</u> Clary, Code - 1.05 - 5.487 - 001 - 3.0 10							—		 					ISING	2 ^ä	Sa K	hone.		Ë	Date:	150
ATICITY COMPANY: Settle PENNSCOLO FILL, Theens, Arzono San Disgo Thoonix - Settle PENNSCOLO FILL, Theora, Arzono FPOJECT MANAGER: (D-HAL CALEDIA ADDRESS: <u>7.599 - 2.1 444</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.40(LIAI AT AT AT 49</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 41</u> BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 176</u> BILL TO: <u>7.400 - 2.1 176</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 3.0 10</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 5.0 10</u> Comments: <u>7.400 - 3.0 10</u> Comments: <u>7.400 - 3.0 10</u> Clary, Code - 1.05 - 5.487 - 001 - 3.0 10	~													IINC	5	ૢૢૢૺૼ	B.				- Hore
ATICITY COMPANY: Settle PENNSCOLO FILL, Theens, Arzono San Disgo Thoonix - Settle PENNSCOLO FILL, Theora, Arzono FPOJECT MANAGER: (D-HAL CALEDIA ADDRESS: <u>7.599 - 2.1 444</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.40(LIAI AT AT AT 49</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 41</u> BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 176</u> BILL TO: <u>7.400 - 2.1 176</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 3.0 10</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 5.0 10</u> Comments: <u>7.400 - 3.0 10</u> Comments: <u>7.400 - 3.0 10</u> Clary, Code - 1.05 - 5.487 - 001 - 3.0 10					E (8020)	8TM/3XT8						1		6 0	21	\$ · · ·		-		65	
ATICITY COMPANY: Settle PENNSCOLO FILL, Theens, Arzono San Disgo Thoonix - Settle PENNSCOLO FILL, Theora, Arzono FPOJECT MANAGER: (D-HAL CALEDIA ADDRESS: <u>7.599 - 2.1 444</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.40(LIAI AT AT AT 49</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 41</u> BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 176</u> BILL TO: <u>7.400 - 2.1 176</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 3.0 10</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 5.0 10</u> Comments: <u>7.400 - 3.0 10</u> Comments: <u>7.400 - 3.0 10</u> Clary, Code - 1.05 - 5.487 - 001 - 3.0 10			(0208/9108 (OOM) 38TI	M/3XT8/9nilo	Diesel/Gas	X							LED	ie ei	₹	Ž	IVED	ë	Nam	7
ATICITY COMPANY: Settle PENNSCOLO FILL, Theens, Arzono San Disgo Thoonix - Settle PENNSCOLO FILL, Theora, Arzono FPOJECT MANAGER: (D-HAL CALEDIA ADDRESS: <u>7.599 - 2.1 444</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.40(LIAI AT AT AT 49</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 41</u> BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 176</u> BILL TO: <u>7.400 - 2.1 176</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 3.0 10</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 5.0 10</u> Comments: <u>7.400 - 3.0 10</u> Comments: <u>7.400 - 3.0 10</u> Clary, Code - 1.05 - 5.487 - 001 - 3.0 10	5 A													SAMF	C matty	Ę		RCE	gnatu	inted	un pai
ATICITY COMPANY: Settle PENNSCOLO FILL, Theens, Arzono San Disgo Thoonix - Settle PENNSCOLO FILL, Theora, Arzono FPOJECT MANAGER: (D-HAL CALEDIA ADDRESS: <u>7.599 - 2.1 444</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.40(LIAI AT AT AT 49</u> FAX: BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 41</u> BILL TO: <u>5.5599 - 2.1 444</u> ADDRESS: <u>7.400 - 2.1 176</u> BILL TO: <u>7.400 - 2.1 176</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 3.0 10</u> FILL TO: <u>7.400 - 1.05 - 5.400 - 5.0 10</u> Comments: <u>7.400 - 3.0 10</u> Comments: <u>7.400 - 3.0 10</u> Clary, Code - 1.05 - 5.487 - 001 - 3.0 10		Ļ		(1.814) s	Hydrocarbons	244	àna a						L.C.		<u>85</u>	120	<u>o</u>		ت ت	ā	
ATION MATCH Colline Portand PROJECT MANAGER: (70 44 N. LAU (Dr. N. Procins, And PROJECT MANAGER: (70 44 N. LAU (Dr. N. M.			रे			BID									K)			Ĕ		
ATICITY ATICITY ATICITY ATICITY ADDENS San Diago Thoman Protand ATIC ATIC ADDEN PROJECT MANAGER: AL ALALEDTA ATE ADDEN COMPANY: 21 PAS ALALLAL ATE ADDRESS: 21 PAS ALALEDTA ATE ADDRESS: 74 AS AENE ATE PHONE: 25 299 21 44 FAX: 25 299 21 44 PHONE: 25 299 21 44 ADDRESS: 021 021 21 44 ADDRESS: 021 021 21 44 ADDRESS: 021 021 21 47 ADDRESS: 012 021 021 21 47 ADDRESS: 012 021 024 </td <td>IZO</td> <td></td> <td>JAC .</td> <td></td> <td></td> <td>LA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>9</td> <td>₹∕ੇ</td> <td>$\left \right\rangle$</td> <td>S</td> <td>]2 W</td> <td>-</td> <td>ระ</td>	IZO		JAC .			LA								7	9	₹∕ੇ	$\left \right\rangle$	S]2 W	-	ระ
ATICITY ATICITY OF A CONTRACT A LAND CONTRACT A DIRESS: PROJECT MANAGER: (DAHN LAND) AND PHONE: PHONE: RACHAIN GRAN NND PHONE: RACHAIN GRAN NND PHONE: RACHAIN COMPANY: RACHAIN RATE A LAND A	₹					RIX	1							CEI				JECT	Ä	NO NO	S B
ATICITY ATICITY OF A CONTRACT A LAND CONTRACT A DIRESS: PROJECT MANAGER: (DAHN LAND) AND PHONE: PHONE: RACHAIN GRAN NND PHONE: RACHAIN GRAN NND PHONE: RACHAIN COMPANY: RACHAIN RATE A LAND A	tand		AN.		w.	МАТ	त्र							μ Έ	ERS	ACT ALS	9	РRО,	AN I	1	1906
	Pod	3			A.		•							AMPI	TAIN	N S S	D C	HSN	21	કે	atte
	ins i	4	4		Ŧ	TIM	2							Ś	8		CEN	R HC	Y	1	
		Z	N N N					-							ğ	요 변	BE C	EDF		33	AAD
	ES.	7	3878		T V	AŢE	21-9					ŀ				-		nII	EEK	ζς.	40
		2					2											; REC	E I	X.	
		è	A S S G		14									N				SINC	1	۱ اکت	act d
	ĬŝĔ		1336	8	W									MAT				ZATIC		õ	141 •
		÷	Marte	1	[]	Q								FOR				J U U U U		ı	15.8-Q1
	- Xe					PLE PLE	BC							CT IN				5		ų.	6191
		MA	žä		ži ži	AMI	さ	1						OLE				BO	4hr	2	Que
		5	PAN RES:	Ш. Z	TO: PAN 3ES!	S	2							ВЯ	ö	₩Ü) VIA:	H	ŭ ä	- 3	
		5		AX:			2	4							ž Z		PPEC		ISH)	2	
		Ë													Ж Ш	Here and a second secon	HS	:	<u>n</u> S	<u>ರ</u>	
				רעים ב	H01 38	W OVT	บพ	07		• 1 -	317	را_ ال [_]			I TATL				ב רור	ICH-	

CHAIN OF CUSTONY I.

; T

To: John Lambdin

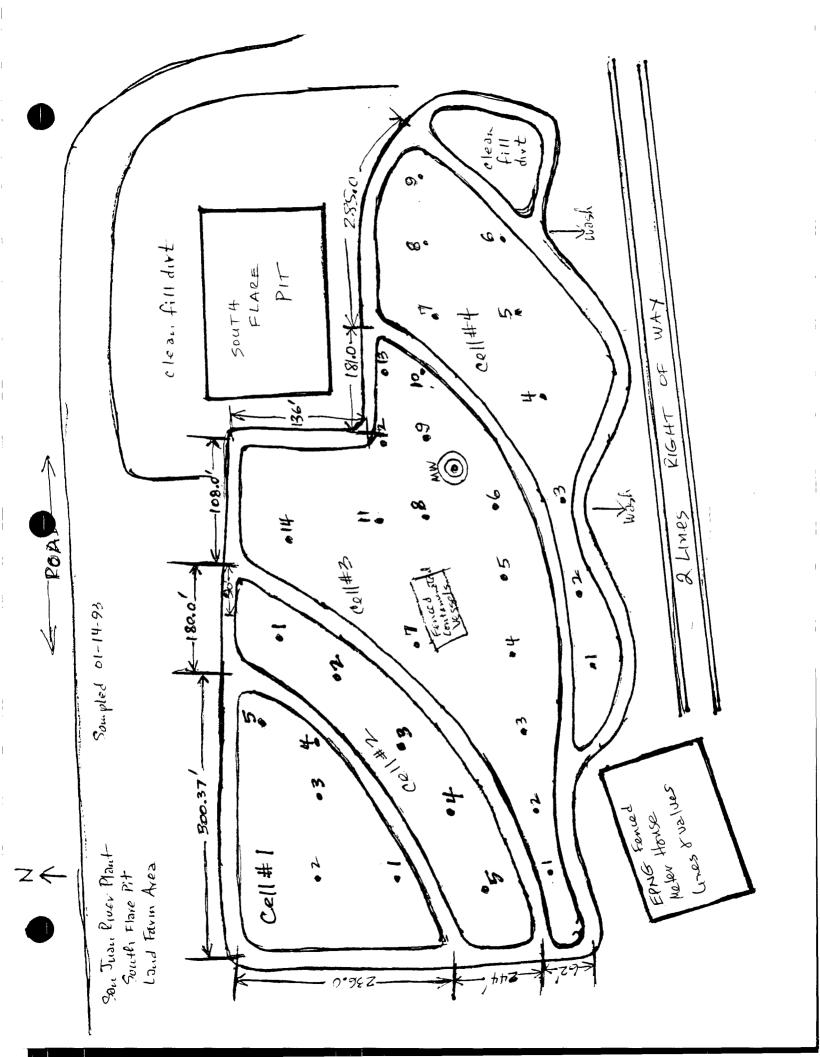
Date: January 15, 1993

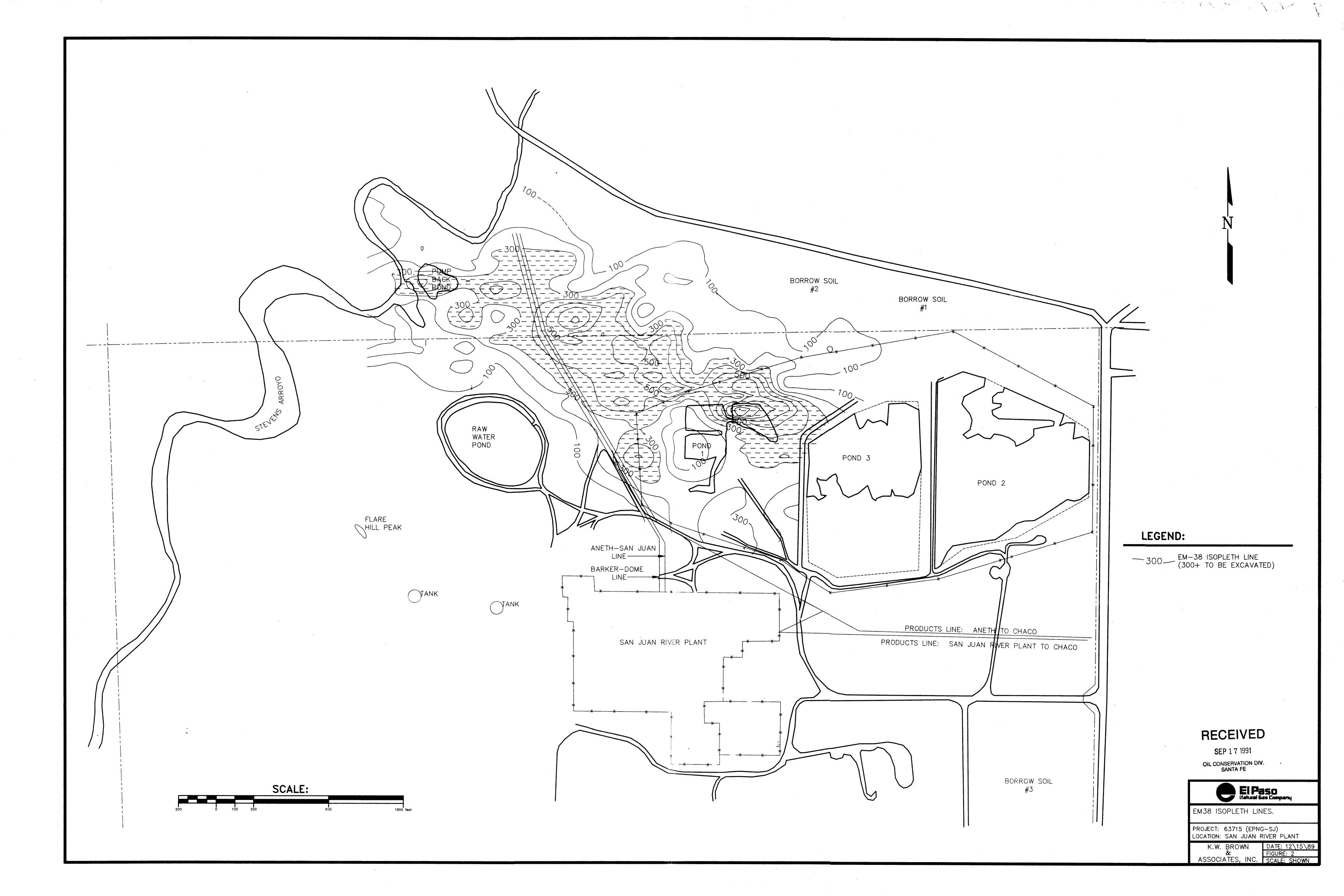
From: Dennis Bird

Place: Field Services Engineering-Lab

Project: San Juan River Dirt Farm

On Thursday, January 14, 1993 Richard Benson and I went to San Juan River to collect soil samples from the dirt farm. This was the first sampling since the dirt was removed from the north and south flare pits. Attached is a drawing where the samples were taken.


The soil was to be analyzed for Total Petroleum Hydrocarbons (TPH). The samples were analyzed by the EPA Method 418.1 Modified to accommodate soil samples. The samples were assigned the laboratory numbers N30025 to N30063. The field services laboratory will be analyzing the soil.


The samples were stored on ice immediately after collection. The soil was sampled using a auger, sampling depth was between 4 to 6 inches deep.

Should you have any question or comments please let me know.

cc. David Hall Sandra Miller

Dennis P. Bird

P. O. BOX 4990 FARMINGTON: NEW MEXICO: 87499

September 16, 1992

Mr. William C. Olson New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Re: Flare Pit Closures at San Juan River Plant

Dear Mr. Olson,

El Paso Natural Gas Co. is developing final plans to close the north and south flare pits at San Juan River Plant per discharge plan requirements. We are seeking NMOCD approval to close the pits in the following manner.

As stated in our November 1, 1991 correspondence to NMOCD, visually contaminated soil is to be removed from each of the flare pits to a depth of approximately 10 feet. An assessment will be made at that time to determine the need for further action.

For the south flare pit, rocks shall be separated from the contaminated soil. This will be performed by running the soil through a "shaker" type apparatus on site. Removal of the rocks will help us reduce costs by reducing the volume going to the landfarm. All rocks that are separated out will be allowed to weather, will be placed back into the excavation, and covered with backfill. This procedure will also be performed for the north flare pit, should the situation warrant.

Monitor well #MW-4, W-2, and piezometer P-8 were sampled on July 8, 1992 and analyzed for BTEX. All results were below detectable limits for those constituents. For your convenience, I have enclosed a copy of a drawing which indicates the position of the sampling points with regard to the flare pits. I have also enclosed copies of the analytical data.

The south flare pit will be backfilled with native soil taken from EPNG property near our Angel Peak facility. The north flare pit will be backfilled with dike material taken from the nearby evaporation pond. In order to prevent surface ponding, both pits will be contoured appropriately to divert runoff. September 16, 1992 Page 2

All contaminated soil will be transported to Envirotech's landfarm facility located on highway 44. Remediation and transportation services will be provided by Burlington Environmental, Inc..

EPNG wishes to begin remediation activities as soon as possible. El Paso would like to schedule work to begin the week of 9/21/92, pending your approval.

If you have any questions or comments regarding this matter, you can reach me at (505)599-2141. Your prompt attention would be greatly appreciated.

Sincerely,

El Paso Natural Gas Co.

10 Miller

Sandra D. Miller Sr. Environmental Scientist

cc: W.D. Hall, El Paso Natural Gas Co. Denny Foust, NMOCD

SOUND ANALYTICAL SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Env. Seattle Facilit	ironmental Date: July 17, 1992 Ly
Report On: Analysis of Wat	ter Lab No.: 25610 Page 1 of 4
<u>IDENTIFICATION:</u> Samples received on 07-13 [.] Project: EPNG	-92
ANALYSIS:	
Lab No. 25610-1	Client ID: 121115 40285-1
Date Ex	by Method 8020 stracted: 7-15-92 malyzed: 7-15-92
Benzene, mg/l Toluene, mg/l Ethyl Benzene, mg/l Xylenes, mg/l	< 0.001 < 0.001 < 0.001 < 0.001
SURROGATE RECOVERY, % Trifluorotoluene	134
Lab No. 25610-2	SJEP P-9 Client ID: N21614 40285-2
	by Method 8020
	tracted: 7-15-92 alyzed: 7-15-92
Benzene, mg/l Toluene, mg/l Ethyl Benzene, mg/l Xylenes, mg/l	< 0.001 < 0.001 < 0.001 < 0.001
SURROGATE RECOVERY, % Trifluorotoluene	79
	Continued

is report is issued solely for the use of the perion or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with

and a construction of a second state of the states of the second second states and the

SOUND ANALYTICAL SERVICES, INC.

Burlington Environmental Project: EPNG Page 2 of 4 Lab No. 25610 July 17, 1992

Lab No. 25610-3	Client ID: 40285-3
Date	EX by Method 8020 Extracted: 7-15-92 Analyzed: 7-15-92
Benzene, mg/l Toluene, mg/l Ethyl Benzene, mg/l Xylenes, mg/l	< 0.001 < 0.001 < 0.001 < 0.001
SURROGATE RECOVERY, % Trifluorotoluene	150

WT-1-4

Lab No. 25610-4

Client ID: Water 40285-4

BTEX by Method 8020 Date Extracted: 7-15-92 Date Analyzed: 7-15-92

Benzene, mg/l	< 0.001
Toluene, mg/l	< 0.001
Ethyl Benzene, mg/l	< 0.001
Xylenes, mg/l	< 0.001

SURROGATE RECOVERY, % Trifluorotoluene

Continued . . .

92

is report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with

ntre encontrable meaning in an event shall from Anabetical Convices for or its emolecants for measurable for measurable for encounts in an event shall form are singly at in any kind or in any amount

SOUND ANALYTICAL SERVICES, INC.

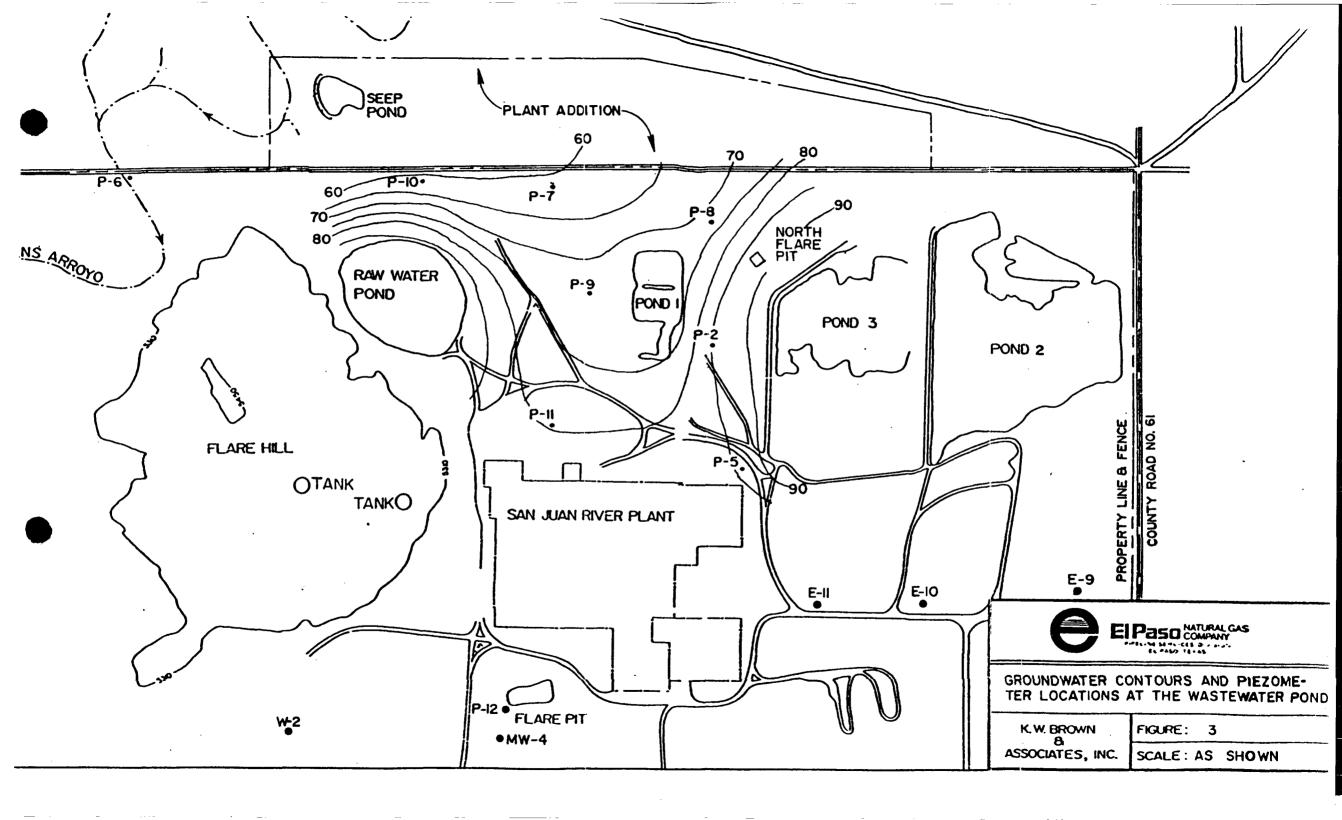
SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

OUALITY CONTROL REPORT

BTEX by EPA SW-846 Method 8020

Client:	Burlington Environmental Seattle Office	Ð
Lab No:	25610qc	
Matrix:	Water	
Units:	mg/l	
Date:	July 17, 1992	

DUPLICATES


Parameter	Sample (S)	Duplicate (D)	RPD	FLAGS	
Benzene Toluene Ethyl Benzene Xylenes	5.6 0.25 0.24 1.2	5.5 0.23 0.24 1.2	1.8 8.3 0.0 0.0		
SURROGATE RECOVERY, % Trifluorotoluene	142	141			

METHOD BLANK

Blank No. 92071603	
Parameter	Blank Value
Benzene Toluene Ethyl Benzene Xylenes	< 0.001 < 0.001 < 0.001 < 0.001
SURROGATE RECOVERY, % Trifluorotoluene	86

is report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with dustry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

-		ć NOI.		ED IN COC	· · · · ·	+	7	7	4	2	d	2												11 AR 200 Bay 10/001
•	ö																							1 000 0
	PAGE								i					1										
	_								1	1	ŀ													
	G	ER cily)					1	Ì	1		*													
	1-10-9	OTHER (Specily)					1				•	1		s										
				395		;	ł	!	:	:	1			AMENT								; [=	2	
sənb	DATE		(spoujaw Ápc	52 9090 510 540	Herbicos BANS 8 848.2 8 2004.2 8 2005.2 8	1			1					TIONS/COM										ator
Chain of Custody/ Laboratory Analysis Request			°⊄d	(TOTAL) d. Cr. Cu. g. Se. Ti.	NETALS No. 193. C No. 193. Ai No. 20				1 - -	1			:	SPECIAL INSTRUCTIONS/COMMENTS										return to originator. YELLOW Tab. PPLK retained by originator
ust Vsi					004-11 CCP WE	<u> </u>	1	1		;				SPECI										X EP
			STVENTS	0 ISTED SC		-			\$					 				í						÷ چ
Ar			STI			· 															1	-		2 S
		0	(p			Y	$\mathbf{\tilde{\mathbf{X}}}$	\succ	\geq	\sum	\succ	\ge												YFL
ato		JESTE	(poutaut al:	0808080	· 		1	:	!	 													dimator.
, ro		ANALYSIS REQUESTED		54/8540	S.804	<u>'</u>			;	! 	:			hed By		em e			By		ame			rn to or
-at		IAL YSI:	son	E OHEAN		4		 	1 1					Relinquished By	Signature	Printed Name	E	Date/Time	Received B)	Signature	Printed Name	E	Date/Time	
		Ă	NADRO		AN/BSAR			 	 _	! 	 			Ê	้เรื	i d	E E E		ĥ	้รั	à	Firm		WHIF
NC.			PM 0		1 YPE	Li Mar				mitter	7892 1615 40205 -6 WHA	WHE			t	. 6		. So A	-6			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		IN NOLLUBINISI
AL, I			Nivi		ō	-	1				5-6	<u>, '</u>			Ž	4 V 1 5 0		4		L V			T	DIST
ENT		•	5		LABID	40385 -	28	38	381	28.	28	38.			J.	5	γ			6	5	そのた		
WN		•	Bui	A NOW		Ê	- H	L D	40	40	Ц С Н	40		hud By		R		,	B A					
BURLINGTON ENVIRONMENTAL, INC. Chempro Division 2203 Airport Way South, Suite 400 Seattle, WA 98134	1677		CLIENTIN'O K. Krebs CONTACT V. Krebs CHEMPRID DIVISION GENERATOR NAME BULTING ICM ENVILO	JOHN CANDONNAME	IIME	N.6-2-1	1-8-201350 40285-2	18-92 1446 40385-	7-78204 0286-4	1-8-92 1530 40286-	5191	7-8-12 1655 40285-		Reimquisted	Serence S	Printed		Date Frye _/	T	Signatur	Printed Z		Date/Tim	
LEN uth. St	206-223-0500 + FAX: 223-7791		AME		DATE	26-2	8	Ę	CP-20	8	242	8-8-								;	1		Þ	
TOP ton fay So	· FA	ł	Krey	0 5		17		- 62		ۍ ج	r F	~		A	Ŋ					1	·		10: Ju A	
BUTUNGTO Cherupto Division 2203 Airport Way S Seattle, WA 98134	-0500	J		101	u l		 					İ		loud	3	FI				J	5		9	
hempr 203 Ail	6-223	EPNG		(카이) (북) (북)			219				810	919		I	$\overline{\mathcal{O}}$	20				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		g	2	
δικς α 	×	ίυ,		IS NAN	TS SIGNATI. SAMPLE I D		N SIGIL			N3 1617	N21618	Maren		181	ښر	ست عنوا	92		7.	Pal	ALGUNIT	5	-	
		PROJECT	CLIENT INFO CONTACT	TELEPHONE #	SAMPI LAS SIGNATURE SAMPLE I D		2			2	, S	R		Relinquidene BP	Signature	Printed Name	7-B-92	Date/Time	Received By	eners.	Linit L	Firm	Datedane	•
	L	ĩ	55 5	SA SA	Ś	<u> </u>	Ň		4	- un l	Ľ	~	æ	Ϋ́	ด้	lă.	121	ö	ř I	<i>8</i>	č ·	Ē	č	

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

September 28, 1992

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-299

Ms. Sandra D. Miller Sr. Environmental Scientist El Paso Natural Gas Company P.O. Box 4990 Farmington, New Mexico 87499

RE: FLARE PIT CLOSURE EPNG SAN JUAN RIVER PLANT SAN JUAN COUNTY, NEW MEXICO

Dear Ms. Miller:

The New Mexico Oil Conservation Division (OCD) has completed a review of the El Paso Natural Gas Company (EPNG) September 16, 1992 "FLARE PIT CLOSURES AT SAN JUAN RIVER PLANT". This plan proposes a method for closure of the north and south flare pits at the San Juan River Plant.

The OCD approves of the above referenced closure plan with the following conditions:

- 1. The assessment to determine the lateral and vertical extent of contamination related to the flare pits will be performed pursuant to the enclosed OCD "GUIDELINES FOR SURFACE IMPOUNDMENT CLOSURE".
- 2. The excavations will be inspected by OCD prior to backfilling.
- 3. A report containing the results of the closure will be submitted to OCD within 60 days of completion of the closure activities.

The OCD understands that closure work at the site will begin on September 28, 1992. Please contact Denny Foust at the OCD Aztec Office prior to commencement of work so that the OCD may have the opportunity to have a representative present. Ms. Sandra D. Miller September 28, 1992 Page 2

Please be advised that OCD approval does not limit you to the work proposed should the closure activities fail to remediate petroleum contaminated soils with contaminant levels in excess of OCD actionable levels or if ground water should be impacted by contaminants migrating from the flare pits. In addition, OCD approval does not relieve you of liability under any other laws and/or regulations. If you have any questions please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

Enclosure

xc : Denny Foust, OCD Aztec District Office

GUIDELINES FOR SURFACE IMPOUNDMENT CLOSURE

(October 29,1991)

NEW MEXICO OIL CONSERVATION DIVISION STATE LAND OFFICE BUILDING P.O. BOX 2088 SANTA FE, NEW MEXICO 87504-2088

PREFACE

The following procedures shall be used as a guide for the closure of surface impoundments used for the containment of those wastes regulated by the Oil Conservation Division, individual districts may impose additional requirements. All plans and specifications shall be submitted to and approved by the Oil Conservation Division prior to closure. Procedures may deviate from the following guidelines if it can be shown that the proposed procedure will remove or isolate contaminants in such a manner that ground water, surface water and the environment are protected from future contamination.

If a number of impoundments are to be closed by a single company, one plan detailing the procedures to be followed at all locations may be submitted for approval. The plan must state the specific location of each impoundment that is to be closed under the procedures proposed in the plan.

Constituents and procedures for soil and ground water testing and remediation may vary depending on the site specific conditions.

INTRODUCTION

OCD Surface Impoundment Closure Guidelines are intended to provide guidance to operators and facility owners for closure of surface impoundments in a manner that assures protection of surface waters, ground waters and the environment.

PART 1 EXEMPT IMPOUNDMENTS

I. <u>SITE ASSESSMENT</u>

Prior to final closure of surface impoundments, the operator or facility owner will perform an investigation to determine the extent to which soils and/or ground water have been impacted by the operation of the impoundment using the following procedures:

A. Soil Contamination Assessment

1. Highly Contaminated Soils

Highly contaminated soils are defined as soils which are stained or saturated with any type of petroleum product. These soils can be distinguished by observing the physical properties of the soil for observable free phase petroleum product, gross staining and evidence of a very strong odor. These physical properties are criteria which may be used to determine if the soil is highly contaminated.

2. Other Contaminated Soils

Other contaminated soils are defined as those soils which do not exhibit highly contaminated characteristics as described in Part 1 I.A.1. above. The following field or laboratory procedures may be utilized to determine the degree of contamination:

- a. Headspace Method
 - i. Fill a 0.5 liter or larger jar half full of sample.
 - ii. Seal top tightly with aluminum foil.
 - iii. Ensure sample is at 15 to 25 degrees Celsius or approximately 60 to 80 degrees Fahrenheit. A warm water bath should be used if necessary to raise sample temperature to an acceptable range.
 - iv. Aromatic hydrocarbon vapor concentrations must be allowed to develop in the headspace of the sample jar for 5 to 10 minutes. During this headspace development period, the sample jar should be shaken vigorously for 1

minute.

- v. Pierce aluminum foil seal with the probe of either a PID or FID organic vapor analyzer, and then record the highest (peak) measurement. The instrument must be calibrated to assume a benzene response factor.
- b. Laboratory Method
 - i. Sampling Procedure
 - Collect samples in clean air tight jars, preferably jars supplied by the laboratory which will conduct the analysis.
 - 2. Cool and store samples on ice.
 - Promptly ship sample to the lab for analysis following chain of custody procedures as necessary,

Below are the OCD required laboratory methods required for the analysis of contaminated soils. Alternate laboratory methods may be used for analyzing soils for contaminant concentrations, if approved in advance by the OCD.

- 1. Purgeable organic contaminants will be determined using EPA Method 8010 and EPA Method 8020.
- 2. Total Petroleum Hydrocarbons (TPH) will be determined using the modified EPA Method 8015.

B. Ground Water Contamination Assessment

The installation of monitor wells to determine the impact of the disposal of wastes to surface impoundments may be required depending on the results of the assessment of soil contamination at the site. If monitor wells are required, they are to be installed and sampled using the following guidelines:

1. Monitor Well Installation

a. Locations

One monitor well should be installed through the center of the impoundment or directly adjacent and downgradient of the impoundment to determine if ground water has been impacted by disposal activities. Additional monitor wells, upgradient and downgradient of the impoundment, to delineate the full extent of ground water contamination may be required if ground water directly underneath the pit has been found to be impacted by disposal activities.

b. Construction

Monitor wells construction materials shall be selected to be chemically resistant to the contaminants to be monitored and be able to be installed without the use of glues or adhesives.

Monitor wells shall be constructed according to accepted industry standards with a minimum of five feet of well screen above the water table to accommodate seasonal fluctuations in the static water table.

2. Ground Water Sampling

Ground water shall be sampled from monitor wells according to accepted industry standards. Samples shall be analyzed for potential contaminants contained in the wastes disposed of in the impoundment. All laboratory analyses will be conducted pursuant to standard EPA Methods unless OCD has approved the use of alternate laboratory methods.

II. Action Levels

A. Soils

The action levels listed below apply directly for sites where soils are to be remediated in place or removed for treatment on the surface.

- 1. Highly Contaminated Soils
 - a. Soils which are determined to be highly contaminated either by the observation of physical properties must be remediated.

- 2. Other Contaminated Soils
 - a. Field Headspace Method

A measurement of 100 parts per million (ppm) or greater of total organic vapor indicates that remedial action is necessary.

b. Laboratory Method

Remedial action is necessary if any of the following contaminant levels are exceeded:

- i. The sum of the concentrations of all detected aromatics is greater than 50 ppm.
- ii. The benzene concentration is greater than 10 ppm.
- iii. The concentration of TPH is greater than 100 ppm.

B. Ground Water

Ground waters found to be contaminated from waste disposal at a surface impoundment with free phase products and dissolved phase constituents in excess of New Mexico Water Quality Control Commission (WQCC) water quality standards will be required to perform remedial actions.

III. <u>REMEDIATION</u>

A. Soils

When a contaminated soil requires remediation according to standards set forth in Part 1.II.A., it must be remediated according to the criteria described below.

....Removal

a. Highly Contaminated Soils

Highly contaminated soils should be excavated from the ground to the maximum depth and horizontal extent practicable.

b. Other Contaminated Soils

Contaminated soil which exceeds the action levels set out in Part 1.II.A.2. must be excavated to the maximum depth and horizontal extent practicable until samples from the walls and bottom of the excavation pass the contaminant specific action level.

2. Disposal/Treatment

Below is a list of options to be used for either the treatment or disposal of contaminated soils.

a. Disposal

Excavated contaminated soils may be disposed of offsite at an OCD approved facility with prior OCD approval.

b. Treatment Of Excavated Soils

i. Thin Spreading

Soil must be spread in a single layer no greater than six inches thick in a bermed area. If the depth to the seasonal

high static water level is less than 100 feet, the soil must be placed in a level bermed area on an impermeable barrier such as hypalon or concrete. All necessary precautions must be taken to prevent runoff of contaminants or the infiltration of contaminants below the ground surface. The soil should be disced to enhance aerobic biodegradation approximately once every two weeks.

ii. Other Methods

The OCD encourages other methods of soil remediation, including but not limited to, active soil aeration, bioremediation and thermal treatment. Alternatives to thin spreading must be proposed to OCD for approval or disapproval prior to commencement of remediation activities. Soils which are temporarily stockpiled prior to treatment or disposal must be kept on an impermeable barrier in a bermed area to prevent runoff or infiltration of contaminants.

c. Residual Contamination

Where contaminated soils remain beyond the horizontal or vertical

extent of practicable excavation, they must be treated in place. In place treatment may be accomplished using vapor venting, bioremediation or some other treatment system. The method to be used must be approved in advance by the OCD and must be capable of reducing contaminant levels in a timely manner.

B. Ground Water

When contaminated ground water requires remediation according to standards set forth in Part 1.II.B., it must be remediated according to the criteria described below.

1. Free Phase Contamination

Free phase products must be removed from ground water. Floating product can be removed from ground water through the use of either skimming type devices or total fluid type pumps. The OCD does not endorse the use of any specific product for the removal of free phase products from ground water.

2. Dissolved Phase Contamination

Ground water contaminated with dissolved phase constituents in excess of WQCC water quality standards can be remediated by either removing and treating the ground water or insitu treatment. The OCD does not require the use of any specific technique or product to remediate contaminated ground water. If treated waters are to be disposed of onto or below the ground surface, a discharge plan must be submitted and approved by OCD.

IV. TERMINATION OF REMEDIAL ACTION

Remedial action may be terminated when the criteria described below have been met:

A. Soils

Soil contamination must be reduced to a concentration which will not contaminate ground water through percolation (aquifer recharge) or as the water table rises and falls with seasonal fluctuations. Analytical testing must be conducted on sites where the seasonal high static water table is 50 feet or less and the ground water contains 10,000 ppm or less of total dissolved solids(TDS). The appropriate,

contaminant specific procedure for soils testing must be conducted on representative samples of the remaining contaminated soils. The results of the analysis of these samples must conform to the standards specified in Part 1.II.A.2.. of the guidelines.

If the soil contaminant standards cannot practicably be attained, a risk assessment may be performed and provided to OCD for approval showing that the remaining contaminants will not pose a threat to beneficial use for the foreseeable future

B. Ground Water

A ground water remedial action may be terminated if all free phase product has been removed from the water and the concentration of dissolved phase contaminants in the ground water does not exceed New Mexico WQCC water quality standards.

If the water quality standards cannot practicably be attained, a risk assessment may be performed and provided to OCD for approval showing that the remaining contaminants will not pose a threat to beneficial use for the foreseeable future

V. Final Closure

Upon completion of any necessary remediation activities the impoundment shall be backfilled with clean materials and mounded to prevent ponding.

P. O. BOX 4990 FARMINGTON NEW MEXICO 87499

October 12, 1992

Mr. William Olson New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Dear Mr. Olson;

El Paso Natural Gas Co. is currently remediating and closing the two flare pits located at our former San Juan River Plant in Kirtland, NM. Our activities to date have been limited to the south flare pit. We have excavated approximately 10,000 cubic yards of soil since we started the project. We anticipate that the final amount from the south flare pit will be greater than 12,000 cubic yards.

We have identified a distinct clay layer at a depth of approximately 12-15 feet below the original pit bottom. We have also performed some exploratory trenching around the perimeter of the pit. It appears that the contamination at the pit berm is approximately 15 feet thick. As you follow the trench out, the thickness of the contaminated layer drops drastically and quickly. EPNG proposes to remove the contaminated plume to the point where the ratio of overburden vs. contaminated layer is approximately 5:1.

We have performed preliminary sampling and analyses at various phases of the project. A summary of the analytical results along with descriptions of the sample locations is enclosed. The results have indicated the following:

- 1. The TPH results in the clay layer are well below 100 ppm.
- 2. The soil that is being excavated from the pit is showing levels of approximately 7000ppm TPH.
- 3. The excavated soil is very black in color. The blackness is due to the presence of iron sulfide.
- 4. There is little or no BTEX levels in the excavated soils.
- 5. The TPH readings indicate hydrocarbons in the range of C10-C36.

Mr. William Olson 10/12/92 Page 2

Denny Foust of NMOCD's Aztec office has inspected the remediation operations on two different occasions. He has commented that the contaminated soil is not as rich as he anticipated. He also stated that pending your review, the option of landfarming the soil on site **may** be feasible. As a result of the conversations that I have had with Mr. Foust, I am submitting a proposal that EPNG landfarm the soil on site. I feel that the following items are in support of my request.

- 1. The TPH levels in the clay layer are well below 100ppm. This indicates that the clay is acting as a barrier to any migration. (The clay layer is also evident in the trenches that we excavated.)
- 2. The monitor well located 100 feet downgradient of the pit has tested negative for BTEX. This supports item #1 above.
- 3. The contaminated soil has little or no BTEX content. (Well below NMOCD guideline limits.)
- 4. The TPH levels of the contaminated soil are relatively low.
- 5. As related to item #2 above, the groundwater has not been impacted by the soil when it was in the pit. Placing it on the surface would be less of a risk.
- 6. The TPH analyses show hydrocarbons in the range of C10-C36. These are heavy ends and are less likely to migrate.
- 7. EPNG has adequate property in the immediate vicinity to accommodate a landfarming operation.

As with similar landfarming applications that you have approved for EPNG, the San Juan River site would be operated according to NMOCD guidelines. This would include berming, disking, and periodic sampling. EPNG would also be willing to explore the use of additives to speed up the degradation of the soil. EPNG acknowledges that this would apply to the flare pit project only. Contaminated soils from locations outside of San Juan River Plant would not be brought in. Mr. William Olson 10/12/92 Page 3

يبي بالماد ما مادم دام

Landfarming on site would result in significant cost savings to EPNG. If you have any questions or comments, you can reach me at 505/599-2141. I look forward to your response regarding this matter.

Sincerely,

El Paso Natural Gas

D. Mille ndre

Sandra D. Miller Sr. Env. Scientist

cc: Mr. Denny Foust, NMOCD, Aztec Office Mr. W.D. Hall, EPNG

SAN JUAN RIVER PLANT SOUTH FLARE PIT CLOSURE SAMPLE DESCRIPTIONS

Sample Number N22296 - This soil sample was taken on the west side of the pit in the area just below the contaminated layer.

Sample Number N22297 - This soil sample was taken on the west side of the pit in the black soil layer, just above the clay layer.

Sample Number N22298 - This soil sample was taken on the east side of the pit in the black soil layer. The clay layer on east side of the pit was deeper than on the west side.

Sample Numbers N22299 to N22301 - These samples were taken from a trench that was dug perpendicular to the west side of the pit, extending outside the pit perimeter.

Sample Numbers N22306 to N22308 - These samples were composited from the excavated soil stockpile.

Sample Numbers N22310 to N22315 - These samples were composited from the excavated soil stock pile.

Sample Number N22316 - This sample was taken at the point at which the clay layer began in the pit bottom.

Ĕ	1	ž
LABORAT	Ė	Octobel
ő	PLANT	5
٢	2	0
	Ē	
SERVICES	I RIVER	Summary to Date:
ž	E	0
Ĕ	Z	Ĭ
S	JUAN	an
Q	Ξ	Ē
FIELD	SAN	Un
ĩ	Ŵ	Ō

ļ

Sample Environment of the condition of the conditing the condition of the condition of the condition o		FIELC	FIELD SERVICES LABORATOR SAN JUAN RIVER PLANT - SO	DRATC	Œ	NALYTICAL RESULTS I FLARE PIT	LTS					
Sample Sample Sample Sample FH C10-C56 FH FH C10-C56 FH <		Sumr.	Date:	er	, 1992			ЕD	Meî (M		TEX)	
Gray: Sand-Clay 833 09/29/92 28.5 171 27 <.025	Sample Numbe	Sample Location	Sample Description	Lime	11 51	IR TPH Mod. 418.1 (MG/KG)	C10-C36 TPH Mod. 8015 (MG/KG)			U	*	TCLP Metals
Black: Fine Grain B37 09/28/92 171 27 <025	N22296	k West Pit @ 10 Foot, Gray Soil	Gray: Sand-Clay	833	09/29/92	28.5	12	<.025	<.025		<.025	Pass
Black: Racky 843 09/29/92 6453 2000 <.025	N22297	West Pit @ 10 Foot, Black Soil	Black: Fine Grain	837	09/29/92	171	27	<.025	<.025	<.025	<.025	Pass
ψ Black: Sandy 853 09/29/92 979 369 NR NR <th>N22298</th> <th>t East Pit @ 10 Foot</th> <th>Black: Rocky</th> <th>843</th> <th>09/29/92</th> <th>6453</th> <th>2000</th> <th><.025</th> <th><.025</th> <th></th> <th>0.029</th> <th>Pass</th>	N22298	t East Pit @ 10 Foot	Black: Rocky	843	09/29/92	6453	2000	<.025	<.025		0.029	Pass
ψ Brown: Clay 900 09/29/92 75.3 7 < 0.025	N22299		Black: Sandy	853	09/29/92	979	369	R	R	RN	Ħ	Pass
yv Grey: Clay 902 09/29/92 52.8 7 <025	N22300	20 Foot outside W. Berm, Below Clay	Brown: Clay	006	09/29/92	75.3	7	<.025	<.025		0.041	Pass
Brown: Sandy 913 09/29/92 177 10 <	N22301		Grey: Clay	902	09/29/92	52.8	7	<.025	<.025	<.025	<.025	Pass
Black/Gray Sand 1530 09/30/92 >10,000 6400 <.025	N22302	Background Soil	Brown: Sandy	913	09/29/92	177	10	<.025	<.025		< .025	Pass
Black/Gray Sand 1535 09/30/92 >10,000 6954 0.028 0.13 0.058 0.49 Black/Gray Sand 1540 09/30/92 >10,000 7352 <.025 0.032 0.26 Gray, Fine Sand 100 10/02/92 >5,000 3400 <.025 <.025 0.03 Gray, Fine Sand 1113 10/02/92 >10,000 6500 <.025 <.025 0.03 Gray, Fine Sand 1113 10/02/92 >10,000 6500 <.025 <.025 0.1 Gray, Fine Sand 1112 10/02/92 >10,000 6500 <.025 <.025 0.1 Gray, Fine Sand 1122 10/02/92 >10,000 8200 <.025 <.025 0.1 Gray, Fine Sand 1142 10/02/92 >10,000 8200 <.025 <.025 0.1 Gray, Fine Sand 1152 10/02/92 >10,000 7100 <.025 <.025 0.1 Gray, Fine Sand 1152 10/02/92	N22306	Main Soil Pile, North	Black/Gray Sand	1530	09/30/92	> 10,000	6400	<.025	0.1	0.049	0.5	R
Black/Gray Sand 1540 09/30/92 >10,000 7352 <.025	N22307	Main Soil Pile, Middle – Bottom	Black/Gray Sand	1535	09/30/92	> 10,000	6954	0.028	0.13	0.058	0.49	R
Gray, Fine Sand104810/02/92>5,0003400<.025	N22308	Main Soil Pile, South - Bottom	Black/Gray Sand	1540	09/30/92	> 10,000	7352	<.025	6:0.0	0.032	0.26	RN
Gray, Fine Sand110010/02/92>10,0005600<.025	N22310	North Pile side 1 – Core	Gray, Fine Sand	1048	10/02/92	>5,000	3400	<.025	<.025		0.03	RN
Gray, Fine Sand111310/02/92>10,0006500<.025	N22311	North Pile side 2 – Core		1100	10/02/92	> 10,000	5600	<.025	<.025		0.2	RN
Gray, Fine Sand 1125 10/02/92 >10,000 8200 <.025	N22312	: Middle Pile side 1 - Core	Gray, Fine Sand	1113	10/02/92	> 10,000	6500	<.025	<.025	<.025	0.1	RN
Gray, Fine Sand 1142 10/02/92 >10,000 7000 <.025 <.025 0.027 0.15 Gray, Fine Sand 1152 10/02/92 >10,000 7100 <.025 0.027 0.079 0.46 Gray, Fine Sand 1212 10/02/92 >10,000 7100 <.025 0.027 0.079 0.46 Brown: Sandy 1220 10/02/92 118 79 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 <.025 </th <th>N22313</th> <td>Middle Pile side 2 - Core</td> <td>Gray, Fine Sand</td> <td>1125</td> <td>10/02/92</td> <td>> 10,000</td> <td>8200</td> <td><.025</td> <td>0.028</td> <td>0.091</td> <td>0.59</td> <td>R</td>	N22313	Middle Pile side 2 - Core	Gray, Fine Sand	1125	10/02/92	> 10,000	8200	<.025	0.028	0.091	0.59	R
Gray, Fine Sand 1152 10/02/92 >10,000 7100 <.025	N22314	South Pile side 1 - Core	Gray, Fine Sand	1142	10/02/92	> 10,000	7000	<.025	<.025		0.15	RN
Gray, Clay 1212 10/02/92 280 <5	N22315	South Pile side 2 - Core	Gray, Fine Sand	1152	10/02/92	> 10,000	7100	<.025	0.027	0.079	0.46	R
Brown: Sandy 1220 10/02/92 118 79 <.025 <.025 <.025 <.025	N22316	Bottom of Pit - 10 Foot, South Wall	Gray, Clay	1212	10/02/92	280	<5	<.025	<.025		<.025	R
	N22317	Background Soil	Brown: Sandy	1220	10/02/92	118	79	<.025	<.025		<.025	R

NOTES: NR = Not Run, Sample Problems: Not enough, too wet, etc.

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

October 19, 1992

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-303

Ms. Sandra D. Miller Sr. Environmental Scientist El Paso Natural Gas Company P.O. Box 4990 Farmington, New Mexico 87499

RE: FLARE PIT CLOSURE PLAN MODIFICATION EPNG SAN JUAN RIVER PLANT SAN JUAN COUNTY, NEW MEXICO

Dear Ms. Miller:

The New Mexico Oil Conservation Division (OCD) has completed a review of the El Paso Natural Gas Company (EPNG) October 12, 1992 correspondence requesting permission to modify EPNG's September 16, 1992 "FLARE PIT CLOSURES AT SAN JUAN RIVER PLANT" which was approved by OCD on September 28, 1992. The modification seeks to remediate petroleum contaminated soils onsite using landfarming techniques instead of removing the soils for offsite disposal.

The above referenced request to modify the previously approved flare pit closure plan is hereby approved with the following conditions:

- 1. Only contaminated soils generated during the closure of the San Juan River Plant flare pits will be landfarmed onsite.
- The location of the landfarm, identified by you in our October 16, 1992 conversation, will be the 15 acre area west and south of the south flare pit.
- 3. The landfarm will be operated according to the attached operating conditions.

Ms. Sandra D. Miller October 19, 1992 Page 2

Please be advised that OCD approval does not relieve EPNG of liability should the landfarm operation result in actual pollution of surface waters or the environment actionable under other laws and/or regulations. In addition, OCD approval does not relieve you of liability for compliance with any other laws and/or regulations.

If you have any questions please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

Attachment

xc : Denny Foust, OCD Aztec District Office

ATTACHMENT TO OCD PERMIT APPROVAL EL PASO NATURAL GAS COMPANY SOILS LANDFARM SAN JUAN RIVER GAS PROCESSING PLANT (October 19, 1992)

LANDFARM OPERATION

- 1. The landfarm area will be bermed to prevent runon or runoff to or from the landfarm area.
- 2. All contaminated soils will be spread and disked within 72 hours of receipt.
- 3. Soils will be spread on the surface in six inch lifts or less.
- 4. Soils will be disked a minimum of one time every two weeks (biweekly) to enhance biodegradation of contaminants.
- 5. Successive lifts of contaminated soils will not be spread until a laboratory measurement of Total Petroleum Hydrocarbons (TPH) in the previous lift is less than 100 parts per million (ppm), and the sum of all aromatic hydrocarbons (BTEX) is less than 50 ppm, and the benzene is less than 10 ppm. Comprehensive records of the laboratory analyses and the sampling locations will be maintained by EPNG. Authorization from the OCD will be obtained prior to application of successive lifts.
- 6. Moisture will be added as necessary to control blowing dust and to enhance bioremediation. There will be no ponding, pooling or run-off of water allowed. Any ponding of precipitation will be removed within seventy-two (72) hours of discovery.
- 7. Enhanced bio-remediation through the application of microbes (bugs) will only be permitted after prior approval from the OCD. Request for application of microbes must include the location of the area designated for the bio-remediation program, composition of additives, and the method, amount and frequency of application.
- 8. No free liquids or soils with free liquids will be accepted at the site.
- 9. Comprehensive records of all material disposed of at the facility will be maintained by EPNG. The records for each load will include: 1) the origin; 2) analysis for hazardous constituents, if required; 3) transporter; and 4) exact cell location.

TREATMENT ZONE MONITORING

- 1. One (1) background soil sample will be taken from the center portion of the landfarm two (2) feet below the native ground surface. The sample will be analyzed for total petroleum hydrocarbons (TPH), general chemistry, and heavy metals using approved EPA methods.
- 2. A treatment zone not to exceed two (2) feet beneath the land farm will be monitored. A minimum of one random soil sample will be taken from each individual cell, with no cell being larger than five (5) acres, six (6) months after the first contaminated soils are received in the cell and then quarterly thereafter. The sample will be taken at two to three (2-3) feet below the native ground surface.
- 3. The soil samples will be analyzed for TPH, volatile aromatic organics (BTEX) quarterly and general chemistry and heavy metals annually using approved EPA methods.
- 4. After obtaining the soil samples the boreholes will be filled with an impermeable material such as bentonite cement.

REPORTING

- 1. Analytical results from the treatment zone monitoring will be submitted to the OCD Santa Fe Office within thirty (30) days of receipt from the laboratory.
- 2. The OCD will be notified of any leak, break, spill, blow out, or fire or any other circumstance that could constitute a hazard or contamination in accordance with OCD Rule 116.

CLOSURE

When the facility is to be closed no new material will be accepted. Existing soils will be remediated until they meet the OCD standards in effect at the time of closure. The area will then be reseeded with natural grasses and allowed to return to its natural state. Closure will be pursuant to all OCD requirements in effect at the time of closure.

CENTRAL CONTRACT

FINAL CLOSURE PLAN FOR WASTEWATER IMPOUNDMENTS AND FLARE PITS AT EL PASO NATURAL GAS COMPANY'S SAN JUAN RIVER PLANT

-

prepared for

El Paso Natural Gas Company El Paso, Texas

by

K. W. Brown & Associates, Inc. 500 Graham Rd College Station, Texas 77845

April 1991

RECEIVED

MAY 06 1991

OIL CONSERVATION DIV. SANTA FE

linn

STORY ST

SC L L L

10.00

9714-6349K35

A CONTRACTOR

10.10

Saute and

たいまいたい

1000

Stancers'

Sidney H. Johnson Project Manager/QC Reviewer

a 10

W. Wayne Crawley Director of Operations

A CALL AND COMPANY AND IN A SUCCESSION OF A CALL OF A

A-244 - 1274

Paulan (1816)

1044-000

64.74.7

100 A 100 A

TABLE OF CONTENTS

Page

EXE	CUTIVE SUMMARY	iv
1.0	INTRODUCTION	1
2.0	 BACKGROUND INFORMATION AND SCOPE. 2.1 UNIT DESCRIPTION AND HISTORY. 2.2 ENVIRONMENTAL FACTORS. 2.2.1 Climate. 2.2.2 Hydrogeology. 2.3 STORMWATER RUNOFF. 2.4 SURROUNDING LAND USE. 2.5 REGULATORY CONSIDERATIONS 	4 4 5 6 8 8
3.0	INVESTIGATION EFFORTS 3.1 SOIL SAMPLING AND ANALYSIS 3.2 GEOPHYSICAL SURVEY 3.3 CAPILLARY RISE STUDY 3.3.1 Capillary Rise Potential 3.3.2 Physiography 3.3.2.1 Depth to Groundwater 3.3.2.2 Saline Soil Horizons 3.3.2.3 Water Balance and Salt Migration 3.3.3 Summary and Discussion	10 12 13 14 14 14 15
4.0	CLOSURE 4.1 GROUNDWATER MONITORING 4.2 SLUDGE AND SOIL SAMPLING AND ANALYSIS 4.2.1 Sampling Methodology 4.2.1.1 North Units 4.2.1.2 South Flare Pit 4.2.2 Analytical Parameters 4.2.3 Sample Quality Assurance/Quality Control 4.3 DRAINAGE BASIN REMEDIATION AND CLOSURE 4.4 WASTEWATER IMPOUNDMENTS CLOSURE 4.5 FLARE PIT CLOSURE 4.6 OPTIONAL REMEDIATION EFFORTS	17 17 18 18 22 22 22 23 24 26
5 .O	COVER SYSTEM DESIGN	27
6.0	POST-CLOSURE	28
7.0	SUMMARY AND RECOMMENDATIONS	29
8.0	REFERENCES	31

10.00 Mar

1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

a surger

1.00.007

LIST OF TABLES

Page

Table 1.	Water balance and temperature ranges for the SJRP	5
Table 2.	Surface areas for EM38 isopleth lines	13
	Analytical parameters for soil, sludge, and groundwater samples	

LIST OF FIGURES

Figure 1.	Location of El Paso Natural Gas, San Juan River Plant	2
Figure 2.	San Juan River Plant facility map	3
Figure 3.	Groundwater contours and piezometer locations at the wastewater ponds	7
Figure 4.	Surrounding land use	9
Figure 5.	Soil sample and borrow soil locations	11
Figure 6.	Salt-affected soils, San Juan River Plant	19
Figure 7.	Sample locations for wastewater ponds and flare pits	20
	Sample compositing scheme	
	Soil cover design	

LIST OF APPENDICES

Appendix A. Stormwater Runoff Study

Appendix B. March 1988 and October 1989 Soil Sample Analysis

EXECUTIVE SUMMARY

Closure of the wastewater impoundments and flare pits and remediation of the salt-affected soils at El Paso Natural Gas Company's San Juan River Plant can be accomplished by limited excavation and the installation of a soil cover, provided that the water level of the induced water table is lowered. The primary objective of the closure effort will focus on the need to isolate salts in the subsurface. These recommendations are supported by the field data, environmental setting, and a bench-scale study.

A geophysical survey using a Geonics EM38 Ground Conductivity Meter (EM38), and soil sampling were used to define quantitatively the extent of the salt-affected soils in the drainage area. This field exercise defined an outer boundary for an excavation area of approximately 24 acres. The data also illustrate a soil profile impacted by salts to a depth exceeding 4 ft, which makes extensive excavation economically impractical. Therefore, the proposed excavation in the drainage area will be limited to the upper 6 in. of soil, which will effectively remove the most highly impacted soils. The excavated soils can be buried in the retired wastewater impoundments.

The environmental results in the formation of saline soil horizons at depths of 1–6 ft. The formation of these saline horizons is the direct result of limited rainfall and the type of soils present. Remedial activities presented in this report are designed to simulate naturally occurring soil conditions.

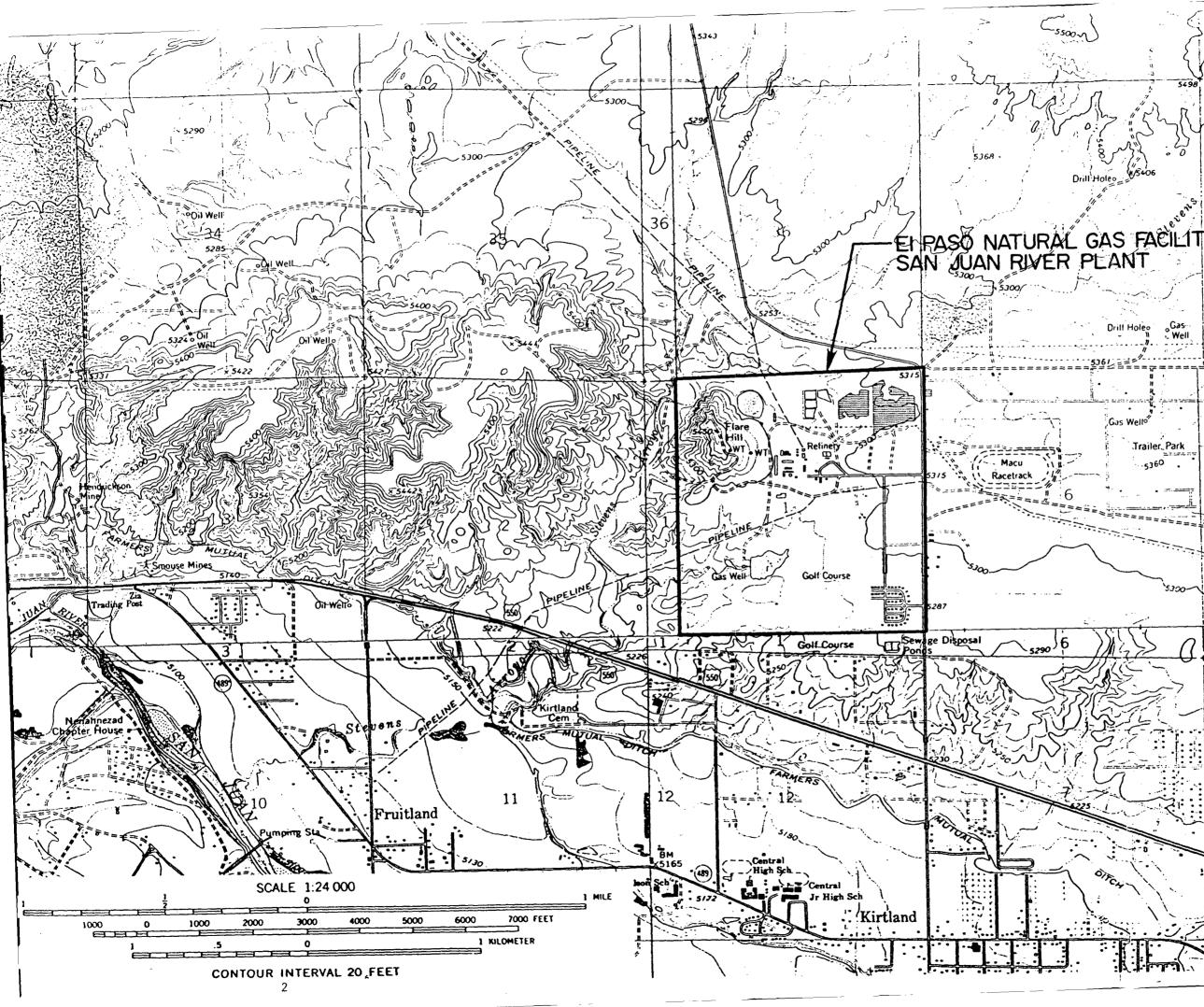
A bench-scale study determined that the potential for capillary rise in the local soils was in excess of 2 ft when the soil was in contact with a shallow water table. Hence, closure of the site will require that the artificially high water table resulting from the leaking wastewater impoundments be eliminated before closure can begin. It is also recommended that the north raw water impoundment be closed to further eliminate the potential for a high water table.

Closure of the wastewater impoundments and the salt-affected drainage will require some recontouring and the installation of a soil cover system. The cover system design will include two layers: the first will be a sandy textured soil from borrow site #1 or #3, and the second will be finer textured soil from borrow site #2. This design will create a slight textural discontinuity that will aid in moisture retention.

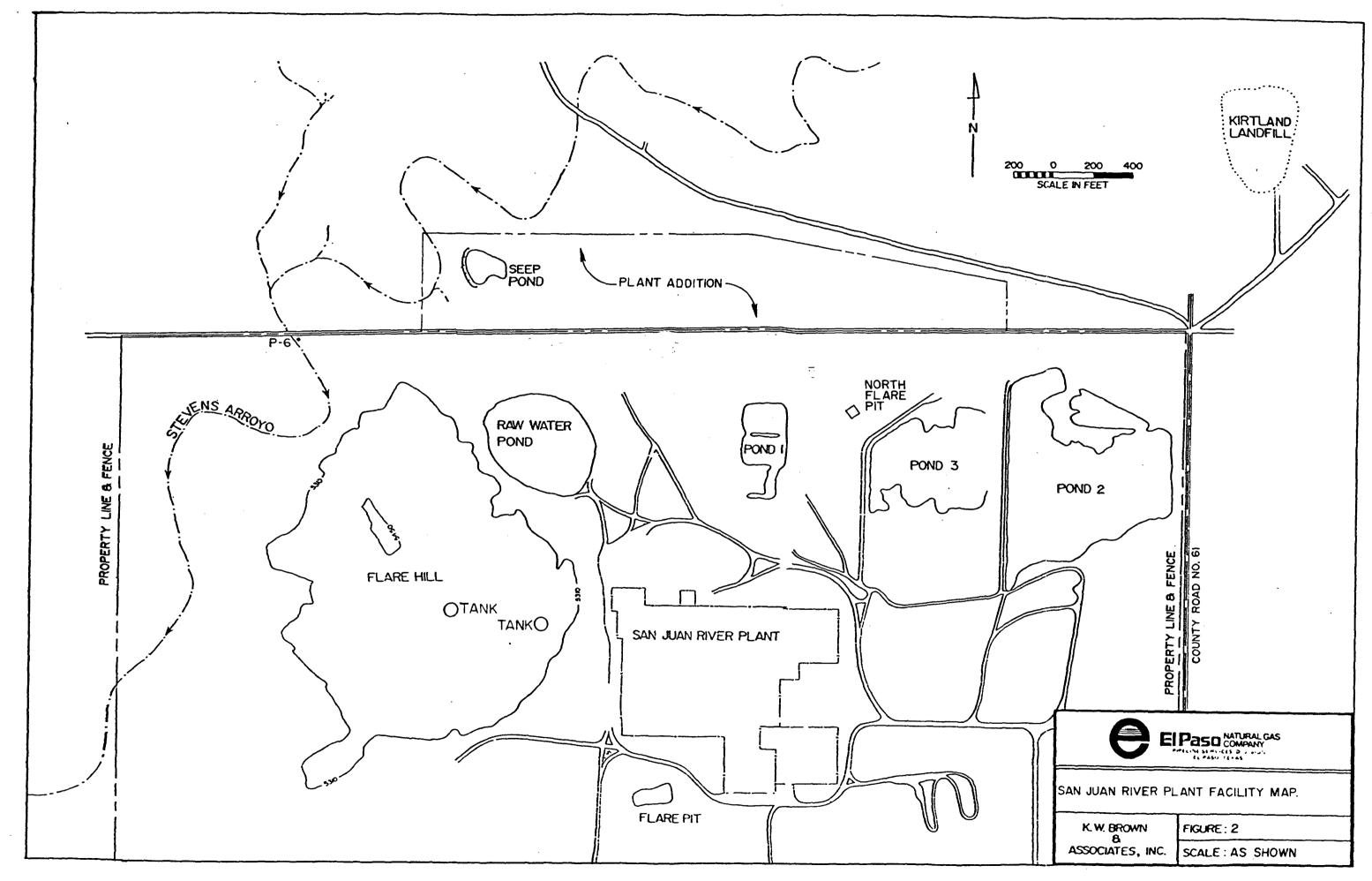
1.01.01 - 1.01.00

And Mark

Heleland


1.0 INTRODUCTION

This plan addresses the final closure activities developed by K. W. Brown & Associates, Inc. (KWB&A) for the wastewater impoundments and flare pits at El Paso Natural Gas Company's (EPNG) San Juan River Plant (SJRP), which is located in Section 1, Township 29 N, Range 15 W, San Juan County, approximately 8 miles west of Farmington, New Mexico (Figure 1). A total of five units will be addressed in this plan: wastewater impoundments 1, 2, and 3 and the north and south flare pits (Figure 2). Additionally, areas that have been affected by the operation of the wastewater impoundments (i.e., surface soils downgradient of the north impoundments) will be addressed. This closure plan is arranged in a format that includes discussions of the regulatory considerations, investigation efforts, closure methodology, cover system design, and post-closure care.


This document combines all closure recommendations and data presented to EPNG into one final closure report. This closure report will define the final methods and procedures that were ultimately selected for final closure of the impoundments and pits. It is not within the scope of this plan to detail daily activities, describe specific types of equipment used to implement closure, or present engineering specifications for all aspects of closure activities to be performed at the site. Though some specific details are offered, this closure plan is designed to allow EPNG and the state agencies the flexibility to address specific conditions as they arise.

The primary objective of the closure effort will focus on isolating salts in the subsurface. Additional closure objectives will concentrate on the presence of organic constituents, development and implementation of a program to ensure the long-term stability of the closed units.

Closure activities proposed for the wastewater impoundments and the salt-affected drainage will include shallow excavation (6 in. depth), recontouring of the surface, and the installation of a soil cover system. The north and south flare pits will be re-excavated in much the same manner depending on the amounts and type of wastes present.

RIVER NA SAI Gas⊷ € Well Dritt Holeo _7. GAS, 5386 ====== PASO NATURAI frailer Gas Wello Trailer, Park 5360 ជ Ь ATION FIGURE

2.0 BACKGROUND INFORMATION AND SCOPE

This section defines the magnitude of the closure effort, addresses regulatory requirements that govern the closure of the wastewater ponds and flare pits, and includes a brief discussion on past operation of the waste management units.

2.1 UNIT DESCRIPTION AND HISTORY

The three wastewater ponds at the SJRP cover approximately 33 acres and have a combined capacity of 98.2 acre-feet. As wastewater was discharged, it was received by pond 1, then pumped to pond 2, and if necessary, allowed to flow by gravity to pond 3. All wastewater handled at the ponds and flare pits was nonhazardous.

Over the past 30 years, these impoundments have received both contact and noncontact wastewaters. Recently, discharge to the impoundments has been limited to wastewater from noncontact sources. Sources of noncontact wastewater received by the impoundments included boilers, water treatment, cooling towers, and stormwater. Contact wastewaters from scrubber/separators, dehydration, the gasoline plant, and the sulfur plant were discharged to the ponds in the past. All contact wastewater is now discharged to a double-lined surface impoundment, which is equipped with a leak detection system.

2.2 ENVIRONMENTAL FACTORS

One of the objectives of the closure plan is to present a method by which the salts (and other waste constituents) present at the site can be isolated in the subsurface. To prevent migration of the salts or other waste constituents following closure, it is important to consider avenues that could lead to migration either at the surface or through leaching. Therefore, climate, hydrogeology, and stormwater runoff are reviewed in view of their potential to influence waste and especially salt migration. Additionally, a brief description of local land use is presented to illustrate that closure activities will not adversely impact daily activities in the surrounding areas.

2.2.1 Climate

The climatic setting at the site is characterized by low amounts of precipitation, a high evaporation potential, temperate winters, and hot summers. The mean annual precipitation is 7.6 in. (mean annual snowfall is 12 in.) and the potential evaporation rate, as measured from a free water surface (lake evaporation), is 46.2 in. per year. These values readily illustrate the strongly negative water balance at the site. Temperatures for the area are characterized by 150 days during which the mean minimum daily temperature is 32'F or less and 60 days for which the maximum temperature is equal to or exceeds 90'F. Table 1 illustrates a simple water balance for the area and includes representative temperatures.

The significance of the water balance is its influence on local groundwater recharge. Intuitively, minimal rainfall and a strongly negative water balance indicate that recharge is limited, but this alone does not define the magnitude of recharge or verify that recharge is not occurring. Therefore, additional data are required to quantify groundwater recharge.

Work performed at the site during the Phase I investigation for the land application system included the collection of deep cores (90 ft) using a hollow-stem auger. Samples collected from the cores were submitted to Dr. William Stone at the New Mexico Bureau of Mines and Minerals Resources for analysis to determine the native rate of recharge for the area. Results of the analysis from these cores indicate the native recharge rate is approximately 0.03 in./yr. for the alluvial sediments documented on the southern side of the facility (Stone, 1987). The recharge rate is not anticipated to exceed this value in the area of the north units, and may very well be less due to the more abundant clay (shale) sediments on the north side of the facility.

	Mean ^a	Lakea	PrecipEvap.	•	Temperature	со — — — — — — — — — — — — — — — — — — —
Month	Precip. (in.)	Evap. (in.)	Balance (in.)	Min. (°F)	Max. (°F)	Avg. ('F)
January	0.65	0.77	-0.12	15	42	30
February	0.47	0.82	-0.35	20	50	31
March	0.62	3.04	-2.42	34	58	40
April	0.52	5.13	-4.61	33	70	50
May	0.45	5.86	-5.41	42	80	60
June	0.30	7.29	-6.99	50	88	68
July	0.70	7.01	-6.31	61	92	78
August	0.98	6.22	-5.24	58	90	74
September	0.84	4.63	-3.79	49	82	63
October	0.87	3.04	-2.17	38	71	52
November	0.53	1.63	-1.10	22	55	40
December	0.68	0.80	-0.12	20	43	32
Annual	7.61	46.24	-38.63	36.8	68.4	51.5

Table 1. Water balance and temperature ranges for the SJR	 Water balance and temperature ranges for the 	ie SJRP.
---	--	----------

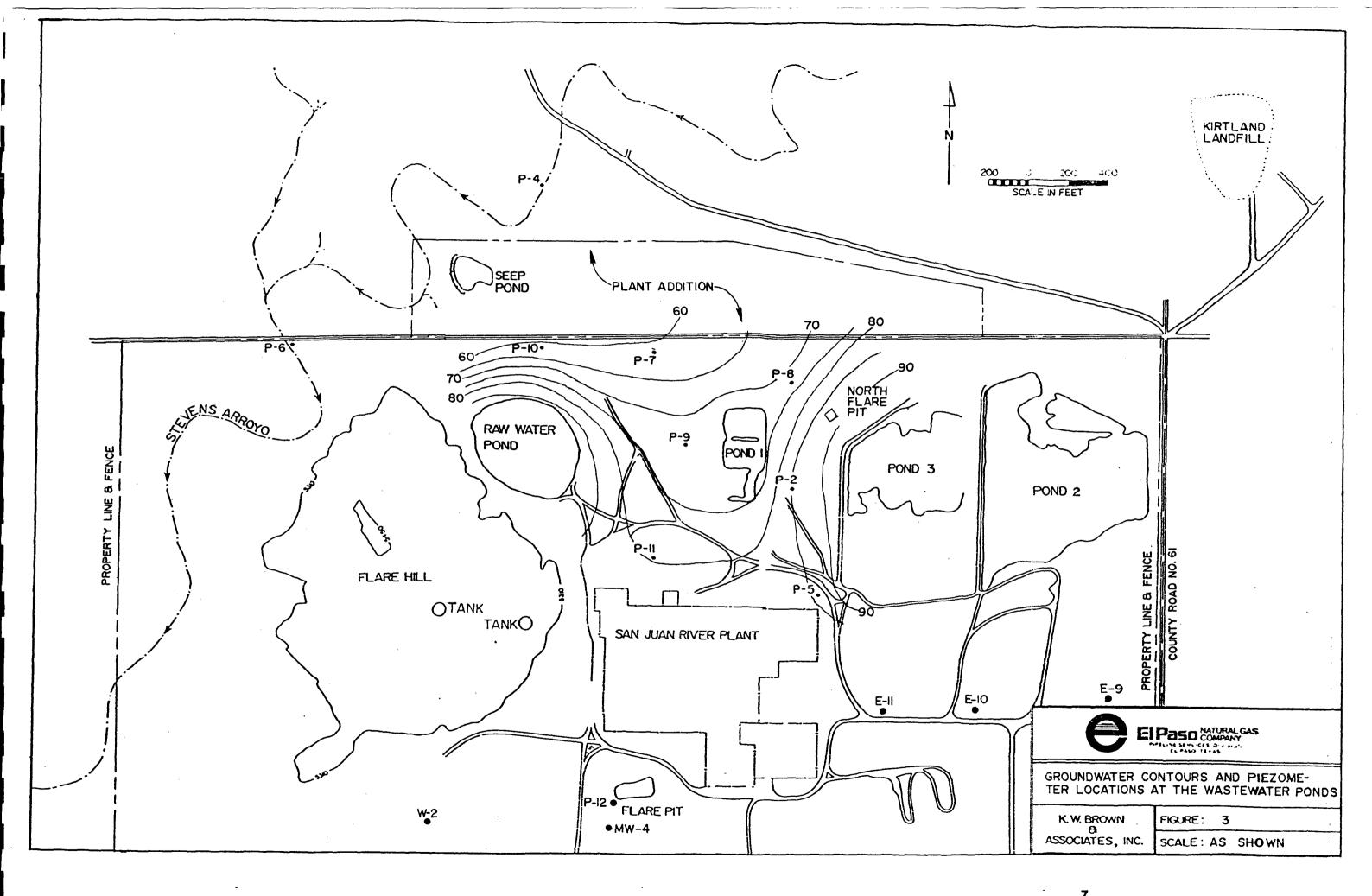
a Values from EPNG comments to OCD, April 1988.

b Values from NOAA Climatic Atlas, 1979.

2.2.2 Hydrogeology

Investigations associated with the land application site have identified a piezometric divide between the wastewater ponds and the south flare pit. Because this divide is reasonably well documented, the hydrogeology of the northern units will be considered separately from the south flare pit.

North Units


The hydrogeology of the north units is based on interpretations offered in the land application feasibility study, borings conducted during the installation of the "P" monitoring wells around the wastewater ponds, and logs provided by San Juan County concerning geologic investigations at the Kirtland landfill. From the available information, it appears that groundwater on the north side of the divide naturally occurs at depths in excess of 36 ft. However, because the ponds once represented a source of recharge, an artificial water table was created at or slightly below the ground surface. The ponds are now partially drained and with the completion of drainage and drying time, it is anticipated that the artificial water table will dissipate.

Flow of the "artificial groundwater" follows surface topography to the northwest and the configuration of the contours is influenced by groundwater mounding caused by the ponds (Figure 3). During the land application feasibility study, it was determined that some "groundwater" was moving in a southerly direction crossing the divide in the area of piezometer E-11. However, this probably represents a small percentage of the total flow. During closure activities, depth-to-water measurements will be taken in the piezometers and changes in groundwater flow direction will be documented.

In the area of the north wastewater ponds, it appears that a clay/shale zone is acting as a confining layer that perches the infiltrating water near ground surface. As the water moves laterally along this zone, capillary action draws the water to the surface and the precipitating salt causes the formation of a salt crust.

South Flare Pit

The hydrogeology in the area of the south flare pit appears to be very similar to the setting described in the land application reports (KWB&A, 1987a, 1987b). The surface geology is characterized by sandy Quaternary alluvium that overlies gray shale. The log of monitoring well 4 (MW-4) and piezometer W-2 indicates that the alluvium is approximately 53 ft thick and is underlain by gray shale. The shale appears to represent a confining layer along which groundwater flows.

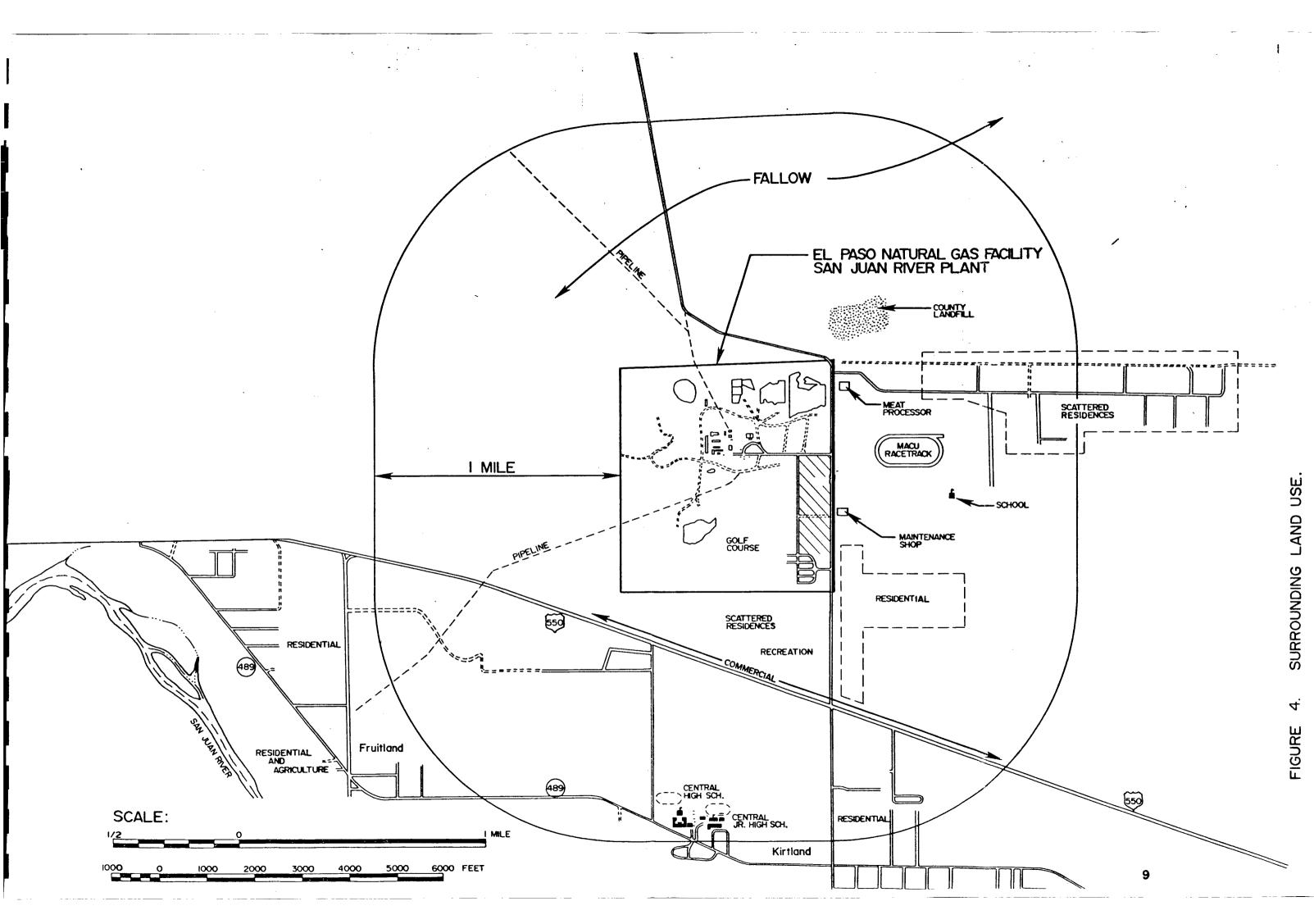
7

-

The depth-to-water measurements for MW-4 and W-2 are 47 and 53 ft, respectively. Groundwater flow in the area, as defined by MW-4 and piezometers W-2 and P-12, indicates that movement is to the southwest, which is consistent with surface topography. Depth-to-water measurements during closure activities will be gathered to further verify the southwesterly groundwater flow direction.

2.3 STORMWATER RUNOFF

As per New Mexico Oil Conservation Division's (NMOCD) request, EPNG completed a watershed study, including a computer simulation of rainfall/runoff conditions, of the salt-affected area to the north of the SJRP; this area lies within the Stevens Arroyo watershed. Following this study, EPNG purchased this property from the state. The impetus for conducting this study was twofold: (1) to generate expected stream flow conditions for a predetermined climatic event and (2) to aid in the development of stormwater management techniques during closure activities. Appendix A describes the hydrologic setting of Stevens Arroyo, the hydrologic data available to EPNG, a detailed description of the computer program used to simulate rainfall/runoff conditions, and findings obtained as a result of the effort.


2.4 SURROUNDING LAND USE

Land to the north and west of the facility is owned by the State of New Mexico and is currently under lease to a private individual for livestock grazing. To the east are several small commercial buildings, the Kirtland city landfill, and scattered residences. To the south are several residences and additional commercial buildings. Figure 4 illustrates local land use.

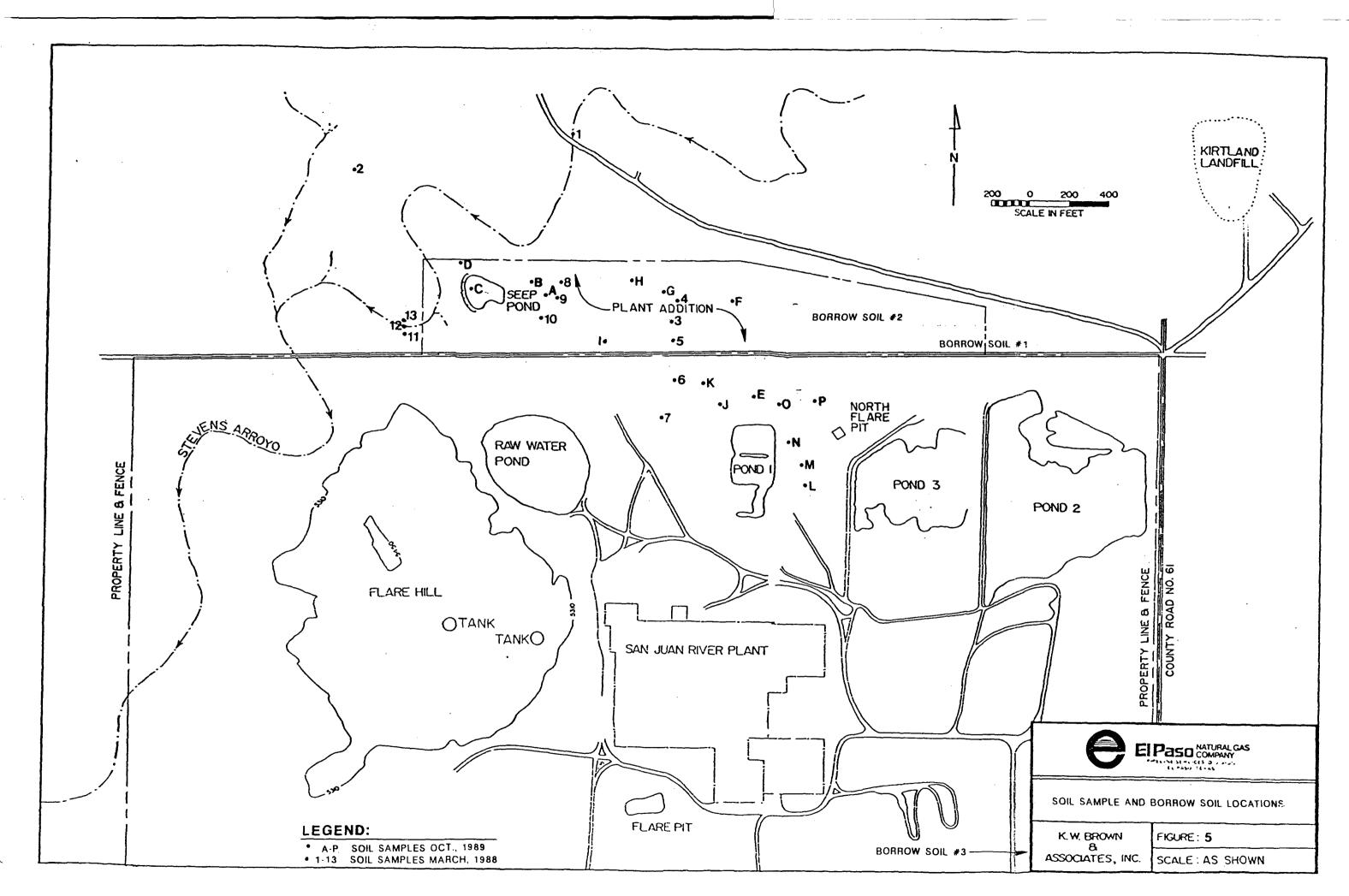
It is unlikely that closure activities will result in a release that would impact any of the local residences. However, a release from the south flare pit could affect groundwater that flows to the southwest, where several residents pump groundwater. The most likely avenue followed by a release from the north units would be down Stevens Arroyo to the San Juan River.

2.5 REGULATORY CONSIDERATIONS

Discussions with NMOCD, New Mexico Environmental Improvement Division (NMEID), and the U.S. Environmental Protection Agency (EPA) Region VI personnel indicate that NMOCD has jurisdiction over natural gas processing plants in New Mexico. However, NMOCD has no formal guidance for closure of surface impoundments. It is the intent of EPNG to provide closure of these units that would be deemed acceptable, in both technical and regulatory arenas.

3.0 INVESTIGATION EFFORTS

As stated previously, the NMOCD does not have formal guidelines for the closure of waste units at natural gas facilities. Therefore, it is left to the owner/operator of facilities to compose closure criteria that NMOCD will find acceptable.


Before proposing closure criteria, it should be remembered that the primary objective of these closure activities is to isolate the salts at the site to prevent future migration and the ultimate impact that migrating salts would have on the San Juan River. It is not within the scope of the closure activities to return all of the affected areas to background conditions. Hence, the closure methods will be based on preventing the likelihood of future migration, rather than restoring the site to its "native state." Characterization of the affected areas was accomplished through soil sampling and analysis in conjunction with a geophysical field survey and a bench-scale capillary rise laboratory study.

3.1 SOIL SAMPLING AND ANALYSIS

Two separate soil sampling events were performed to characterize the magnitude to which soils in the drainage basin below the wastewater impoundments were affected by leaching salts (Figure 5). The first set of soil samples was collected in March 1988 to characterize the chemistry of soils in the drainage basin below the impoundments. These samples received numeric identifiers (e.g., 1:0-1 denotes sample 1, depth 0–1 ft) (KWB&A, 1988). The second set of soil samples was collected in October 1989 for correlation of the EM38 survey to the soil electrical conductivity (EC).

Both soil sampling events were conducted using a standard hand auger to collect samples at 1-ft soil intervals. The maximum soil sampling depth was 4 ft. During the 1988 soil sampling event, the impoundments had not begun to dry; therefore, the soils situated topographically downgradient from the impoundments were saturated, which made sampling very difficult. However, the impoundments had essentially dried out by the 1989 soil sampling event, resulting in more efficient sampling conditions.

Laboratory analyses for the 1988 soil samples illustrate high EC values as well as high values for constituents found in inorganic salts (e.g., sodium, calcium, magnesium, carbonate, chloride, potassium, and sulfate). Other than the elevated concentrations of salts at the sur-

face, no clear trends with respect to depth as a function of EC were noted. EC values remain high throughout the sampled soil profile

The laboratory results for the 1989 soil samples, once again, do not illustrate a clear trend in terms of soil EC gradients. Furthermore, the magnitude of the EC values is essentially the same as those of the 1988 samples (Appendix B).

3.2 GEOPHYSICAL SURVEY

A geophysical survey designed to collect EM conductivity measurements was performed in October 1989 by KWB&A in the salt-affected drainage basin area. The objective of this field investigation was to both quantitatively and qualitatively define the magnitude and aerial extent of the salt-affected area. EM conductivity surveys are well-recognized and popular investigative tools for the delineation of salt-affected soils.

The EM data were collected using a Geonics EM38 Ground Conductivity Meter which measures apparent ground conductivity in units of mmhos/m. Individual data points were recorded using a data logger that interfaces with the EM38.

The EM38 is capable of looking into a soil profile to a depth of 5 ft when in the vertical dipole position, which was the position used in this investigation. A reading is taken with the EM38 instrument placed on the ground surface. The reading is directly proportional to the relative EC of the soil and can be influenced by the soil texture, amount of salt present, and buried metal objects (e.g., pipelines).

Interpretation of the EM38 data, in part, consisted of contouring a map of the values collected along the transects and correlating individual EM38 measurements with EC analytical values for soil samples collected in the study area (KWB&A, 1989). In addition to contouring the EM38 values, the surface area of segregated EM levels was also calculated (Table 2).

3.3 CAPILLARY RISE STUDY

A major concern of the closure effort is the upward migration of salts. To quantify the upward migration potential of the soil, a bench-scale study was undertaken to determine if a capillary barrier was needed. The principle behind a capillary barrier is that a textural discontinuity in a soil profile will restrict the vertical movement of moisture. Hence, installing a capillary barrier is a method by which upward vertical migration can be eliminated (Brady, 1974).

The potential for capillary rise was determined empirically via a bench-scale experiment using two local soils that could be used to construct the cover system. Evaluation of climatic

clusive cres) 19 12.7	Nested (acres) 43	Saturated Paste EC ^b (mmhos/cm) 15.7
		15.7
107	A 4	
12.1	24	21.2
6.9	11.3	28.7
2.9	4.4	38.0
1.1	1.5	49.2
0.2	0.4	62.4
0.15	0.2	77.4
0.05	0.05	94.3
	2.9 1.1 0.2 0.15	2.9 4.4 1.1 1.5 0.2 0.4 0.15 0.2

Table 2. Surface areas for EM38 isopleth lines.

^a Surface area calculated as a planar surface.

b EC values correspond to upper EM38 values.

factors that influence the potential for salt migration was extracted from prior reports prepared for the land application study (KWB&A, 1987a, 1987b).

3.3.1 Capillary Rise Potential

A primary consideration in the remediation of the wastewater ponds and the salt-affected drainage is to prevent future migration of salt from the site to the San Juan River. This closure plan calls for excavating the surficial soils in the drainage, which are heavily affected with salt, and placing them in the wastewater ponds. Once in place, a cover system would be constructed over the wastewater ponds and portions of the drainage to limit the infiltration of precipitation and the subsequent vertical migration of salt downward to groundwater or upward to be redeposited at the soil surface.

Part of the closure effort will entail the construction of a cover system to isolate the salts present in the soils found in the drainage basin and the pond bottoms. To this end, it was desirable to find a local source for soil to be used in the cover system. Hence, three separate soil samples were collected from potential borrow sites (Figure 5). In addition to identifying soils that are suitable for use in the cover system, it is may be possible to use the different borrow soils to construct a textural discontinuity in the soil cover (see Section 5.0).

Testing of the three potential borrow soils included textural analysis and EC. Based on these results, borrow soil #2 was omitted from further testing because of its finer-grained texture and its higher EC (2,980 μ mhos/cm) relative to the other borrow soils (data included in Appendix B). Borrow soils #1 and #3 were packed into 2-ft-long, 3-in.-diameter clear Plexiglas columns, which were in turn placed in a free water source containing rhodamine dye. Timed

observations were taken during the course of the experiment to measure the capillary rise potential.

The bench-scale study clearly illustrates that if the cover system were constructed of a 2-ft borrow soil layer and if this layer were exposed to a free groundwater source, then the potential exists to wick water, as well as any salts that may be present, to the surface. With the closure of the wastewater ponds and the removal of the hydraulic source, these conditions are not expected to be present.

3.3.2 Physiography

Because capillary bench-scale study clearly indicates the potential for upward salt migration exists under certain circumstances, the local setting must be examined to determine if the circumstances necessary for capillary rise could occur. Characteristics concerning the local setting that need to be examined include the depth to groundwater, occurrence of native saline horizons, and water balance.

3.3.2.1 Depth to Groundwater

The capillary rise study illustrated that more than 2 ft of borrow soil would be needed if the bottom of the soil column were in contact with a free water surface (i.e., the water table). It can be demonstrated that the water table is subsiding as a result of removing the hydraulic head from the wastewater ponds. Thus, it is reasonable to argue that capillary rise will occur only if precipitation is sufficient to support a natural elevated water table.

Observations during the 1988 soil sampling event clearly illustrated that soils in the drainage were saturated and the water table was sufficiently near the surface to preclude the collection of some 3-4-ft samples. Collection of the 1989 soil samples generally illustrated that the soils were not saturated and the water table was deeper than noted the previous year. Current site conditions point to a native water table at a depth in excess of 36 ft, which is more than adequate to allow the salt-affected soil to be isolated using a soil cover system.

3.3.2.2 Saline Soil Horizons

Soils in the area are identified in the San Juan County Soil Survey as the Badland-Monierco-Rock (BB) outcrop complex and the Blancot-Notal (BT) Association. The BB soils are characterized as having an annual wetting depth of about 11 in. where a native vegetative cover exists, whereas the BT soils have an average annual wetting depth of 6–16 in. (Soil Conservation Service [SCS], 1980).

The wetting depth of a soil is important to this project for two reasons; first, if moisture cannot penetrate the soil profile it is not likely that salts will migrate, and second, if a wetting

front exists, then it is likely that a saline horizon will develop within the soil profile, not at the soil surface (Brady, 1974).

Saline horizons have been documented in local soils during the land application study (KWB&A, 1987a) and a saline horizon was noted during the collection of borrow soil #1. The presence of saline horizons in the soil profile across the area strongly indicates the downward movement of salts to a depth that corresponds to the annual wetting front.

3.3.2.3 Water Balance and Salt Migration

The annual wetting front mentioned Section 2.2.1 is directly related to the local water balance, which was determined to be negative during the land application study (KWB&A, 1987a, 1987b). Average annual precipitation was calculated to be 7.6 in. and the evaporation potential was estimated at 46.2 in. (Table 1). This skewed water balance lends credibility to the identified wetting front depths.

In addition to considering the vadose zone interaction of precipitation and salt movement, it is worthwhile to re-evaluate the calculations offered by Dr. William Stone (Stone, 1987) concerning the migration of salt to groundwater for the area and the computer modeling exercises conducted for the land application study. Dr. Stone's migration calculations were based on soil samples collected during the land application study and a procedure he developed at the New Mexico Bureau of Mines and Mineral Resources. His calculations indicate local recharge to groundwater is on the order of 0.03 in. annually (Stone, 1987). This empirically derived recharge rate suggests vertical migration of salts from the areas to be remediated will, for all practical purposes, not occur.

Modeling simulations conducted to determine if wastewater could be irrigated, without inducing migration of salt to the groundwater, were performed as a precursor to implementing the land application system. Results of the modeling indicated that significant quantities of wastewater could be irrigated, in addition to the annual precipitation, without increasing the native groundwater recharge rate (KWB&A, 1987a). Therefore, it can be stated with a reasonable degree of certainty that recharge to groundwater from the remediated salt-affected areas will be negligible, if any occurs at all.

3.3.3 Summary and Discussion

The results of bench-scale testing to empirically derive the capillary rise potential for borrow soils that could be used to construct the cover system clearly indicate that if a free water surface is present, then water and salts will be wicked through the soil cover system. Review of the local setting indicates that the water balance, soils, and expected depth to water are such that this situation will not occur in the EPNG site area. However, this is contingent upon removing the

artificial water table caused by the wastewater impoundments and the north raw water impoundment. Information gathered during the land application study and observations during the field activities associated with this project indicate that local conditions are favorable for the formation of a saline horizon in the subsoil. Thus, using a soil cover of 18 in. (as discussed in Section 4.4) in this area will be an effective measure in isolating an elevated salt layer.

4.0 CLOSURE

Closure activities at the EPNG site will entail groundwater monitoring, soil and sludge sampling and analysis, and unit-specific closure protocols developed for the drainage basin, the wastewater impoundment, and the flare pit.

4.1 GROUNDWATER MONITORING

Prior to initiating closure activities, the groundwater in the drainage basin area must be monitored using the piezometers present to determine that a depth-to-water measurement of approximately 15 ft is maintained. Soils of the textural class found in the drainage basin area will require a depth to water of 15 ft to ensure that capillary rise will not reach the surface (Brown, 1991). Results from the bench-scale study indicate that capillary rise through a soil cover constructed from potential borrow sites is possible. The conditions needed to cause capillary rise would be saturated conditions near the soil surface (i.e., shallow water table). However, it appears the shallow water table that persisted at the site was the direct result of water leaching from the wastewater impoundments. Therefore, by removing the hydraulic head from the impoundments, it is expected that the water table will drop to acceptable levels. Recent observations from the site indicate that the water table is responding favorably to the reduced hydraulic head. If necessary, measures can be taken to ensure that the ponds remain empty and the groundwater lowered to a level that will permit closure. The lined pond at SJRP can be used to evaporate any excess water.

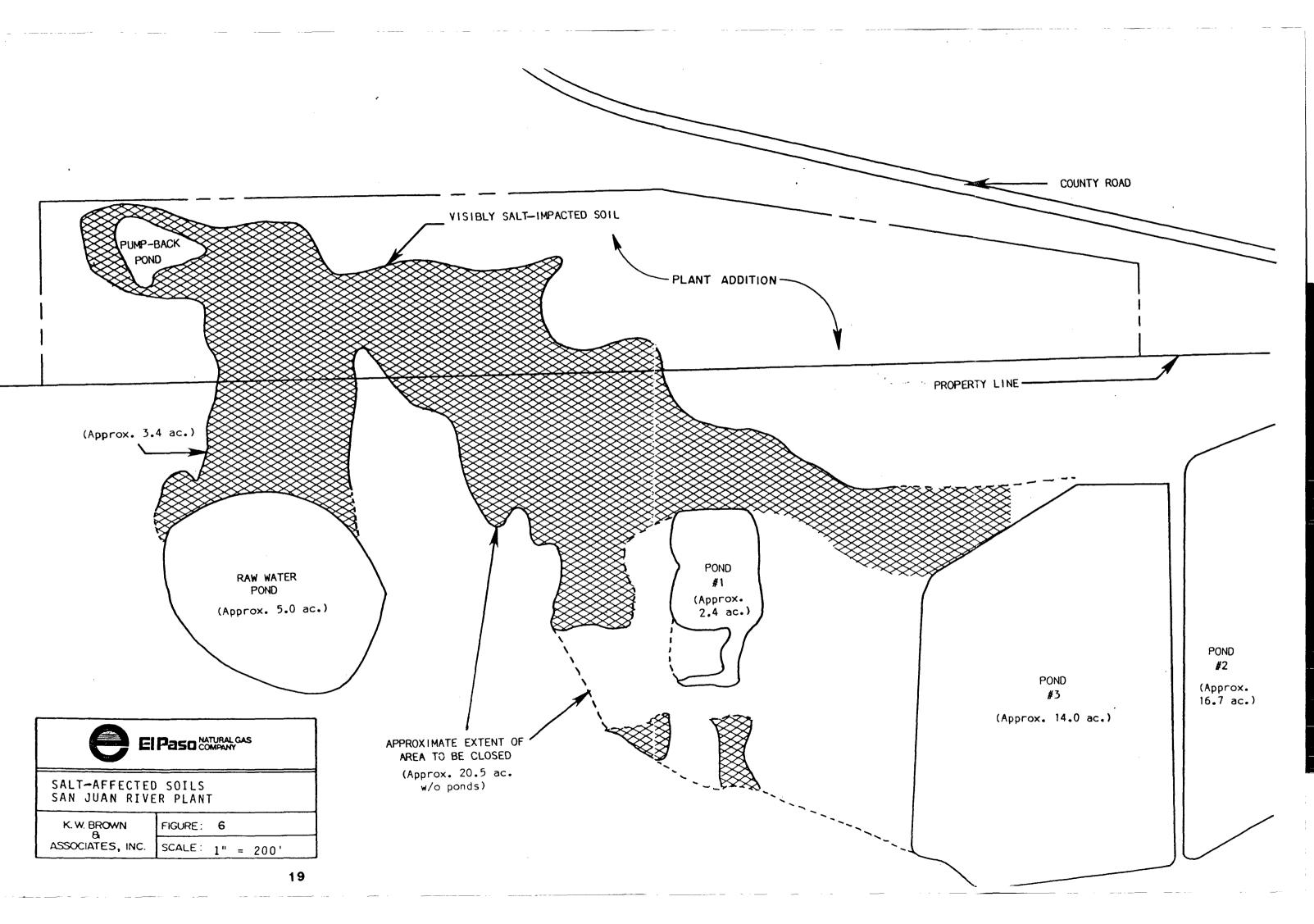
The efforts made to lower the water table would be compromised, however, by the reactivation of the north raw water impoundment. Evidence at the site clearly indicates water from this impoundment leaches into the salt-affected drainage basin area. It is reasonable to assume that continued operation of the raw water impoundment will support an elevated water table in some portion of the drainage. Therefore, in order to consider using a soil cover system, EPNG will need to remove the raw water impoundment from service.

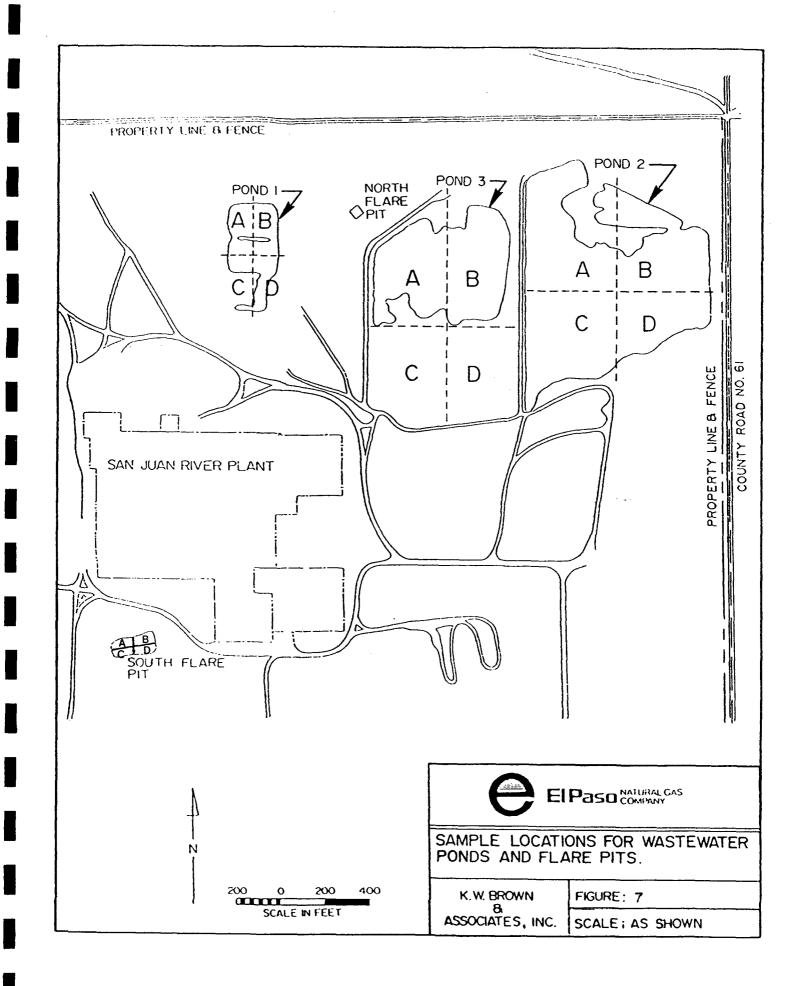
4.2 SLUDGE AND SOIL SAMPLING AND ANALYSIS

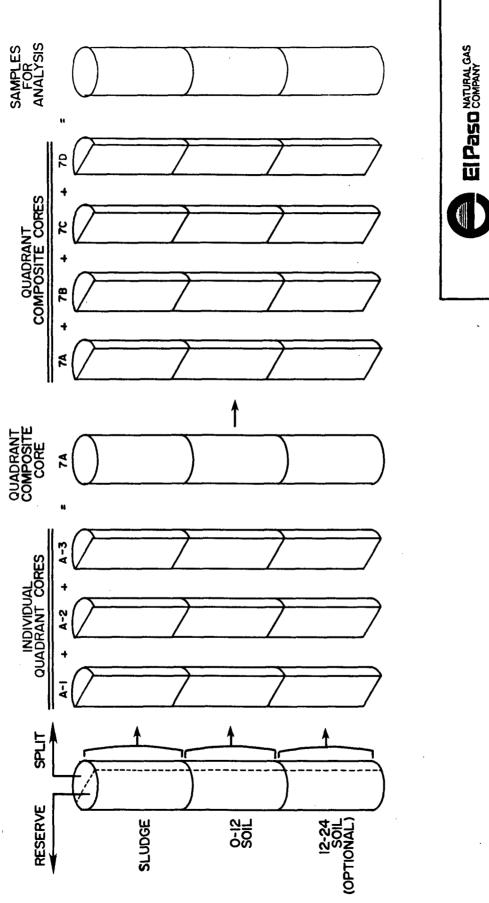
Sludge and soil samples were collected by EPNG on January 18, 1991, for analysis from the wastewater impoundment bottoms and the areas surrounding the wastewater impoundments.

These samples were collected as the initial phase of closure activities to assess the condition of the site. To determine the effectiveness of reclamation efforts, sludge and soil samples will also be collected following implementation of closure activities. These samples will serve to determine if additional work is required and will document the condition of the site following closure activities. Methods used for collecting the samples and the analytical parameters selected are discussed in the following sections.

4.2.1 <u>Sampling Methodology</u>


Impoundments 1, 2, 3, and the north flare pit (north units) will be discussed as one area, and the south flare pit will be considered separately. In addition to sludge and soil samples collected from the affected drainage basin and wastewater impoundment bottoms, background soil samples were collected. Background samples were analyzed for the same suite of inorganic constituents slated for samples taken from the affected areas.


4.2.1.1 North Units


The drainage basin area was investigated using an EM38 survey in conjunction with soil sampling to define the level and extent of leached salt in the soil. The area of investigation also encompassed the previously state-owned land to the north of the EPNG facility property line, as well as soils on EPNG property (Figure 6). Selection of sampling locations was based on visual evidence of salts present at the surface in conjunction with specific EM readings. Collection of soil samples was accomplished using a shovel and soil auger.

The remaining sampling of the wastewater impoundment bottoms and the bottom of the north flare pit included collecting samples from the sludge layer (if present) and the first foot of soil underlying the sludge, using a shovel and auger. Visual observations concerning the presence of organic constituents below the first foot of soil determined if deeper samples were warranted. Wastewater impoundments 2 and 3 were divided into quadrants (Figure 7) and three sample locations were selected from each quadrant for a total of 12 individual samples. Both sludge and soil samples were collected at these locations. The individual sludge samples were composited to form a single sample, as were the individual soil samples. The composite sludge sample and the composite soil sample(s) for each impoundment were then submitted for analysis (Figure 8). Selection of the sample locations within the quadrants of the wastewater impoundments was done on a site-specific basis.

Because of the smaller size of wastewater impoundment 1, only four individual samples were collected; one from each quadrant. As with the other wastewater impoundments, the individual cores were composited to form a single sample for laboratory analysis.

C El Paso Matural GAS SAMPLE COMPOSITING SCHEME. K. W. BROWN R. W. BROWN R. W. BROWN FIGURE: 8 ASSOCIATES, INC. SCALE: NON E

Collection of samples from the north flare pit was limited to the first foot of soil within the pit and the underlying sludge layer. The north flare pit was also sampled on January 18, 1991, by EPNG. Sample locations were selected on a site-specific basis. Because of the small size of the north flare pit, only two samples of each media were collected to form single composite samples. Samples were collected using a hand auger and shovel.

4.2.1.2 South Flare Pit

The south flare pit has been inactivated by EPNG and all of the free liquids have been removed. Samples of the sludge and underlying soils were collected on January 18, 1991. Sample location selection was made on a site-specific basis. The south flare pit was divided into quadrants and a single core was collected from each quadrant. A single composite core was generated from the four individual cores (refer to Figures 7 and 8). Visual descriptions were recorded in a field log.

4.2.2 Analytical Parameters

Soil and sludge samples were analyzed for a subset of the parameters listed in the Water Quality Control Commission (WQCC) regulations, Section 3-103. Both organic and inorganic constituents were examined. Justification for selecting a subset is based on wastewater analysis that indicates that certain chemical species listed in the regulations are not present in the wastewater. Also, some of the species listed are known to be absent in the wastes generated at natural gas processing plants. Table 3 lists the constituents that will be monitored during closure activities. Background samples collected were subjected to the same analysis suggested for samples collected in the affected areas, with the exception of the organic parameters. Because the anthropogenic organic constituents listed in the WQCC regulations should not occur in native soils, they will not be analyzed for in the background samples.

Groundwater samples will be collected at the site and analyzed for the suite of parameters listed in Table 3. Selection of these parameters is based on the WQCC regulations and the relative mobility of the constituent.

4.2.3 Sample Quality Assurance/Quality Control

In order to assure the quality of the soil and sludge samples collected, quality assurance/ quality control (QA/QC) procedures were followed both in the field and by the subcontracted laboratory. Duplicate samples were submitted for blind analysis as a QC measure for 10 percent of the samples collected. Thus, 1 of every 10 samples was duplicated. Field blanks were submitted to gauge lab performance. Briefly, field analytical QA/QC procedures included

Soil and Sludge Samples

Table 3. Analytical parameters for soil, sludge, and groundwater sample	Table 3.	Analytical	parameters f	for soil,	sludge.	and	groundwater sample
---	----------	------------	--------------	-----------	---------	-----	--------------------

A ALL DISH ALL DE A			
EC	Chromium*	Mercury*	Sulfate
pH	Chloride	Nitrate	Zinc
Arsenic*	Cyanide	Potassium	Benzene
Barium*	Fluoride	Sodium	Toluene
Cadmium*	Lead*	Selenium*	Xylenes
	Magnesium*	Silver*	Oil & Grease
Groundwater San	nples		
EC	Chloride	Benzene	
pH	Magnesium	Toluene	
Nitrate	Potassium	Xylene	
Sulfate	Sodium	Ethylbenzene	

TCLP or EP Toxicity analysis.

equipment decontamination with distilled-water rinse for EC and pH measurements, followed by instrument calibration using known standards. QA/QC procedures for cleaning sampling equipment used to collect soil and sludge samples for organic laboratory analysis were as follows:

- removing all excess soils from the tools
- rinsing with tap water
- rinsing with analytical-grade hexane
- rinsing with analytical-grade acetone
- rinsing with deionized water.

Dedicated bailers will be used to collect groundwater samples. All equipment used to collect groundwater samples, other than the bailers, will be subjected to the same described decontamination rinsing procedures, as appropriate.

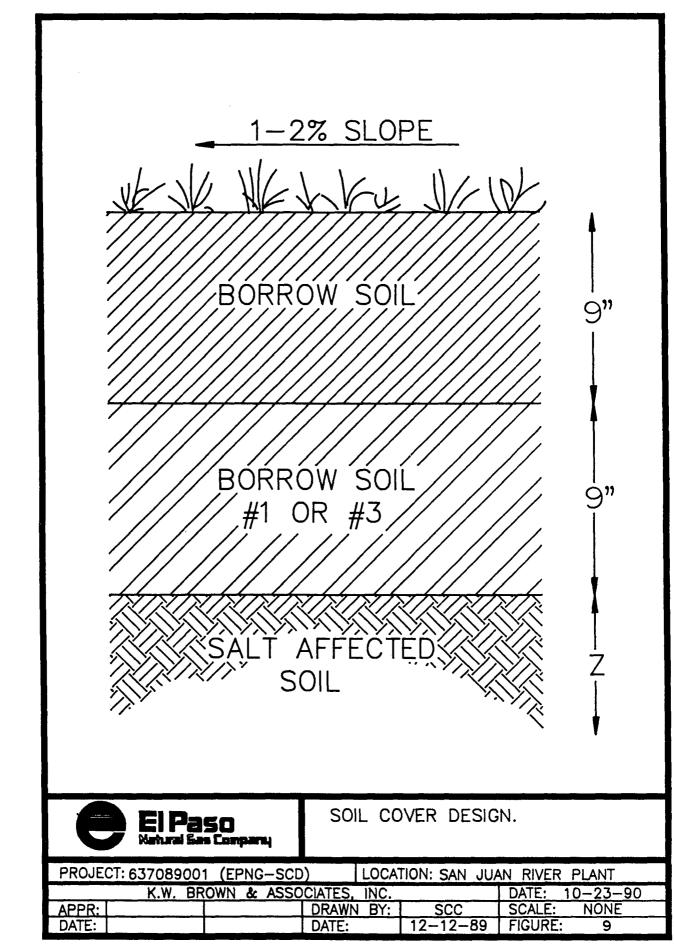
In addition to observing field QA/QC procedures, laboratory QA/QC was required. Information concerning laboratory procedures was provided by the contract laboratory for inclusion with laboratory results. The laboratory was required to conduct matrix spikes and analyze duplicate samples. Recovery rates reported for the QA/QC samples will be required to meet the standards specified by the EPA for the given procedure.

Shipment of all samples collected at the site for offsite analyses were tracked using chainof-custody procedures. Organic samples were preserved at 4°C and shipped to the analyzing laboratory via an overnight carrier.

4.3 DRAINAGE BASIN REMEDIATION AND CLOSURE

Previous investigations have indicated that the drainage basin downgradient from the wastewater impoundments is heavily impacted by salts (KWB&A, 1989). The extent of the saltaffected area can be visually distinguished by the presence of amorphous salts at the soil sur-

face. The magnitude of the salt-affected area has been established through the EM38 survey to delineate the boundaries for varying levels of impacted soil.


The need for excavating the soil is tied to concerns about the potential for future migration resulting from extreme precipitation events that could result in the entrainment of salt and the surface transport of these salts in the form of runoff from the site to the San Juan River. Review of the environmental setting indicates that if the salt were left in place it would, in time, be leached into the soil profile to form an innocuous saline horizon. However, the time required to accomplish this would be considerable. Therefore, it is perceived that some type of remediation that would hasten this natural phenomenon would be desirable.

In order to achieve such desirable soil horizonation, while lessening the potential that salts will migrate to vulnerable surface water bodies, it is proposed that the most impacted surface soils in the drainage basin be removed to a depth of 6 in. As the soils are excavated, they can be transported to one of the wastewater impoundments for disposal. Once excavation is completed, the excavation area would be covered with two 9-in. layers of borrow soil to simulate a saline subsoil horizon and to provide a suitable environment for the establishment of a vegetative cover (Figure 9).

4.4 WASTEWATER IMPOUNDMENTS CLOSURE

Closure activities will focus on filling the wastewater impoundments with the salt-affected surface soils excavated from the area between the wastewater impoundments and the pumpback impoundment. Initially, the cut volume of the impoundments will be calculated to determine the amount of soil needed to fill the impoundments and construct the cover system. When the impoundments have been filled and the area of affected saline soil effectively closed, the impoundments will be capped with a cover system using soil excavated from a separate borrow site. The soil cover will be 18 in. thick to prevent capillary rise of the buried salts and to restrict infiltration of precipitation. The final step will entail contouring the cover system, as well as the area downgradient of the impoundments, to control ponding, runoff, and erosion. Also included in the final step will be the establishment of a vegetative cover to control wind erosion. Discussion on the proposed cover system is presented in Section 6.0.

In addition to closing the wastewater impoundments and the north flare pit, the pumpback impoundment will have to be closed. The pump-back impoundment will be maintained as an "active" unit during the closure process to intercept any latent seepage or runoff from the impoundments that are scheduled to be closed. Ultimately, the pump-back impoundment will be closed as a landfill, and a cover system consistent with the type used for the wastewater impoundments will be used. The raw water impoundment will also be closed during site closure

activities. Sampling of the raw water pond will not be required because it never received wastewater. This pond will be filled with the dike material and the most convenient borrow material and contoured.

4.5 FLARE PIT CLOSURE

Closure of the north flare pit will be incorporated into the closure activities of the wastewater impoundments. That is, the contaminated area of the flare pit will be excavated and an 18-in. soil cover will be placed over it. Depth of excavation will depend on the depth to which contamination has been determined.

It may be likely that some of the material present in the flare pits will have to be treated and may need to be removed. If it is necessary to remove sludges and contaminated soil due to high organic constituents content, it is proposed that a small land treatment cell be constructed to degrade the organic constituents using conventional land treatment technology. Following treatment, it is proposed that the treated soils/sludges then be replaced in the flare pit for closure. In the event site assessment activities indicate that the sludges and contaminated soil can be managed inplace, the bottom of the pit will be managed much like a land treatment unit to degrade the organic constituents present. Regardless of where the waste material is treated, samples will be collected for hydrocarbon constituents to verify degradation prior to final closure activities.

4.6 OPTIONAL REMEDIATION EFFORTS

Dependent upon the data acquired during the site assessment phase of the closure process, wastewater impoundment bottoms may be excavated to make room for the disposal of excavated soils containing higher salt levels. The objective of this measure is to ensure that soils containing the highest levels of salts are as far from the surface as possible.

Another remediation option is the application of a thin layer of gypsum to the subsoil soil surface before the cover system is placed on top. This may prove useful in localized areas of excessively high salt concentrations. In addition to creating a capillary barrier for the upward migration of salts, the gypsum will also help stabilize salts that would otherwise move toward the surface.

5.0 COVER SYSTEM DESIGN

Based on information gathered during the land application feasibility study, observations from the bench-scale study concerning capillary rise, and field observations, it has been determined that a soil cover system will be acceptable, provided that a shallow water table does not persist. (Determining the presence of a water table will rely on measurement from the piezometers installed in the drainage basin.) The soil cover system is intended for use in the drainage area where soils will be excavated as well as over the recontoured wastewater impoundments.

Justification for using a soil cover, which consists of 18 in. of borrow soil, is related to the amount of precipitation received and the type of soil at the site. These two site characteristics, as documented by the SCS and previous field observations, have resulted in the formation of natural saline horizons in the soil profile. Using an 18-in. soil cover will, in essence, result in the formation of a subsurface saline horizon.

The effectiveness of the soil cover can be enhanced by using two separate borrow soils. Borrow soils #1 or #3 are coarser textured than borrow soil #2; therefore, a minor textural discontinuity can be created. Using either borrow #1 or #3 to construct the lower portion of the soil cover will encourage moisture to be retained by the finer-textured borrow soil #2 in place as a top dressing (Figure 9). The effects of a shallow water table cannot be discounted because it is this feature that has resulted in the precipitation of salt in the drainage. Therefore, in order for the proposed 18-in. soil cover to be effective, it is imperative that the water table be lowered. Observations during the field investigation indicate that soils in the drainage are drying, and the depth to groundwater is increasing in response to removing the hydraulic head from the wastewater impoundments. It will be necessary to verify this trend by routine monitoring.

Based on this assessment, a gravel capillary barrier is not necessary. Consideration for using textural discontinuity in the cover system may be warranted based on the final cut and fill calculations and the observed depth to water.

The stability of the soil cover system will be insured by the establishment of a vegetative cover. A mixture of annual and perennial grasses will be planted on the cover system to accomplish soil stability. Attempts will be made to keep vegetative ground cover of the soil cover system at approximately 90 percent of the vegetative ground cover found in similar background locations.

6.0 POST-CLOSURE

Once all closure activities are completed and the cover systems are in place, the post-closure care period will begin. Activities associated with this phase will include measuring water levels in the piezometers and establishing and caring for the cover systems. A notice will be attached to the property deed which details the location and nature of the closed units.

6.1 GROUNDWATER MONITORING

The groundwater in the area will continue to be monitored on a semiannual basis to determine that the depth to water remains at or below 15 feet to prevent the upward migration of salts. Following the closure activities, it is expected that the depth to groundwater will gradually increase as a result of the removal of the hydraulic head created by the impoundments. Collection of groundwater is not suggested for the post-closure care period.

6.2 COVER SYSTEM MONITORING

The cover system would be monitored visually on an annual basis for approximately 5 years to ensure that adequate ground cover by vegetation exists and that salts are not accumulating on the soil surface.

Potential cover system problems that should be monitored are the development of erosion channels, subsidence, and degradation to the cover system by prairie dogs. If these or any other circumstances arise, they will require alternative steps to ensure the preservation of the cover system. After the cover system has been stabilized, it can be decided at what time interval it will be checked or if monitoring can be discontinued.

7.0 SUMMARY AND RECOMMENDATIONS

This report defines the final methods and procedures that were selected for the closure of the EPNG SJRP wastewater impoundments and flare pits. The primary objective of this closure effort is to isolate the salt-contaminated soil in such a manner that the salts are no longer mobile in the environment. To accomplish this goal, excavation, burial, and a soil cover system are proposed. These closure protocols are based on the field data gathered during previous studies, an EM38 geophysical study, and a bench-scale capillary rise study.

Excavation of the drainage basin area will involve the removal of highly impacted surface soils exhibiting amorphous salt deposits and degraded soil structure. Visual observations, sample data, and the EM38 survey define these areas as having excessively high salt concentrations. Additional excavation and recontouring will also be required to insure proper slope and drainage patterns are maintained. Information presented in this report supports removal of the top 6 in. of affected soil from the drainage basin area. Removal of soil to this depth will insure that the most highly impacted soil is removed and transported to the wastewater impoundments for burial. Following excavation, a soil cover system will be put inplace using two 9-in. lifts of native borrow soil. This 18-in. soil cover system will aid in the isolation of the salt-contaminated soil and will provide adequate rooting depth for the establishment of vegetation.

Results from the bench-scale study indicate that capillary rise through a soil cover constructed from potential borrow sites is possible. The conditions that might cause capillary rise would be saturated conditions near the soil surface (i.e., shallow water table). However, it appears that the shallow water table that has persisted at the site is the direct result of water leaching from the wastewater impoundments. Therefore, as the hydraulic head is removed from the impoundments, it is expected that the water table will drop to acceptable levels. Observations from the site indicate that the water table is responding favorably (e.g., increasing depth from the soil surface) to the reduced hydraulic head. In the event that the water table does not fully dissipate, additional options (e.g., drainage system) will be considered.

It is reasonable to assume that continued operation of the raw water impoundment would support an elevated water table in some portion of the drainage. Therefore, in order to consider using a soil cover system, the raw water impoundment will be removed from service.

Use of an 18-in. soil cover over the excavated drainage area and the wastewater impoundments represents a cost-effective, environmentally acceptable goal. Evidence presented in this report indicates that environmental conditions are favorable for isolating the salts using this approach. Based on closure cost estimates it may be desirable to consider constructing a textural discontinuity subsoil horizon by using two different borrow soils available at the site. However, the use of a gravel capillary barrier is not deemed necessary. Conclusions offered in this report can be summarized as follows:

- 1. The salt-affected area has been identified and the lateral extent quantified.
- 2. The salt-affected soil extends to a depth of greater than 4 ft, which makes excavation impractical.
- 3. Excavation of salt-affected soil can be limited to the upper 6 in. of the drainage basin area with highly impacted surface soils and should be followed by placement of a soil cover system.
- 4. Closure of the wastewater impoundments can be limited to placing the salt-affected soils excavated from the drainage into the pond, recontouring, and installing a soil cover system.
- 5. Construction of the cover system can be limited to an 18-in. layer of borrow soil; the thickness may be increased based on cut and fill calculations.
- 6. The effectiveness of the cover can be enhanced by employing two borrow soils; the coarser soil forms a capillary barrier and the finer textured soil is a moisture-retention zone.
- 7. An optional layer of gypsum may also be incorporated locally to aid in providing a capillary barrier and help stabilize elevated levels of salts.
- 8. The presence (or lack) of a shallow water table must be documented prior to initiating closure activities.

8.0 **REFERENCES**

Brady, N. C. 1974. The Nature and Properties of Soils, Eighth Edition, MacMillan Publishing Co., Inc. New York.

Brown, K. W. 1991. Personal Communications.

EPNG and KWB&A. 1988. Response to specific comments and information requests concerning the wastewater land application project at the El Paso Natural Gas San Juan River Plant. Prepared for State of New Mexico Oil Conservation Division, Santa Fe, New Mexico.

KWB&A. 1987a. Land Application Feasibility Study, San Juan River Plant, Phase I Final Report. Prepared for El Paso Natural Gas Company.

KWB&A. 1987b. Land Application Feasibility Study, San Juan River Plant, Phase II Final Report. Prepared for El Paso Natural Gas Company.

KWB&A. 1988. Soil Sampling Plan for Wastewater Impoundments Area at the El Paso Natural Gas San Juan River Plant. Prepared for El Paso Natural Gas Company.

KWB&A. 1989. Closure Plan Field Study for the San Juan River Plant. Prepared for El Paso Natural Gas Company.

NOAA. Climatic Atlas of the United States. 1968. U.S. Department of Commerce. Reprinted by the National Oceanic and Atmospheric Administration.

SCS. 1980. United States Department of Agriculture. Soil Survey of San Juan County, New Mexico. Eastern Part.

Stone, W. J. 1987. Senior Hydrogeologist, New Mexico Bureau of Mines and Mineral Resources. Personal Communication.

APPENDIX A

Stormwater Runoff Study

STORMWATER RUNOFF STUDY

HYDROLOGIC SETTING --

Stevens Arroyo is located in the northwest sector of San Juan County, New Mexico, which is characterized by a high plateau dissected by the San Juan River. Runoff conveyed by the intermittent streams in Stevens Arroyo ultimately empties into the San Juan River (i.e., Stevens Arroyo is located within the San Juan River drainage basin). Distant high mountains form an orographic barrier to the plateau and river valley, effectively shielding the area from storms capable of delivering high volumes of precipitation to the basin. Summer showers are less frequent and intense than those occurring in most of northwestern New Mexico. The majority of the annual precipitation received by the county occurs during the winter months (SCS, 1980).

The principal soil unit occurring in Stevens Arroyo is the Badland-Monierco-Rock outcrop complex. This map unit is characterized by 40 percent Badland soils, 30 percent Monierco soils, and 20 percent Rock outcrop. Badland soils consist of barren shale uplands dissected by deep drainageways, accommodating intermittent streams. Soils of the Monierco series were formed in alluvial and eolian material derived mainly from shale. Rock outcrop consists of barren sandstone occurring as ridges, benches, and escarpments. Textures assigned to these soils by the United States Department of Agriculture (USDA) include fine sandy loam, sandy clay loam, clay loam, and loam. Permeability of the unit is estimated to range from 0.2–6.0 in./hr. (SCS, 1980).

AVAILABLE DATA --

Information used as input to the watershed model was derived from U.S. Geological Survey (USGS) topographic and geologic maps, SCS soil survey of San Juan County, and U.S. Weather Bureau Technical Paper 40 (TP-40) (U.S. Weather Bureau, 1963). These sources provided information on drainage basin morphology, soil character, and statistical climatic events of the region. The available data were adequate to justify performing the watershed study.

DESCRIPTION OF THE MODEL --

The watershed model chosen for use in this exercise was the U.S. Army Corps of Engineer HEC-1 Flood Hydrograph Package developed at the Hydrologic Engineering Center (HEC) in Davis, California. The computer program—written in FORTRAN—is implemented on an IBM PC-compatible computer system at K. W. Brown & Associates, Inc. (KWB&A). The version of the model used in the study is dated January 1985.

To avoid misstatement of the principal function of the computer model, note that "the HEC-1 model is designed to simulate the surface runoff response of a river basin to precipitation by representing the basin as an interconnected system of hydrologic and hydraulic components" (HEC, 1981).

As with any type of mathematical modeling exercise, there are a number of assumptions accompanying the HEC-1 computer program. The most salient assumptions employed by the model include (HEC, 1981):

- Hydrologic processes can be represented by model parameters that reflect average conditions within a sub-basin.
- Model parameters represent temporal as well as spatial averages.
- There are no provisions within the model for soil moisture recovery during periods of zero precipitation.
- Stream flow routing is approximated by hydrologic methods and does not consider hydraulic effects described by the St. Venant equations.

Similar to the majority of currently available engineering simulation software, HEC-1 is designed to operate in "batch" mode. Unlike interactive programs, a "batch" program conducts a single simulation by accepting input, performing computations, and generating output. HEC-1 requires a number of input data describing the following:

- stream network geometry;
- sub-basin characteristics (e.g., area);
- the precipitation event to be applied to the river basin;
- interception/infiltration losses;
- type of unit hydrograph to be utilized; and
- type of stream flow routing to be employed.

The principal output generated by the HEC-1 model consists of values of volumetric flow rate versus time, or stream flow hydrographs, at selected locations in the river basin (HEC, 1981). Conversion of this output to water levels in the river requires a stage (elevation) versus discharge (volumetric flow rate) curve. A companion program developed by HEC, called HEC-2 Water Surface Profiles, can be used conjunctively with HEC-1 to generate "water surface profiles for steady gradually-varied flow in natural or man-made channels" (HEC, 1982). Usage of HEC-2 requires accurate knowledge of channel geometry, however.

APPLICATION OF MODEL TO STEVENS ARROYO --

The first step in development of the input file for the model involved delineation of the watershed and subdivision of the watershed into sub-basins. A sub-basin is a component of a watershed possessing approximately uniform hydrologic properties throughout its extent. Figure A-1 is a map of the watershed accommodating Stevens Arroyo and its associated tributaries. The watershed was subdivided into eight sub-basins, each with similar hydrologic characteristics (Table A-1).

Sub- basin	Area ^a (sq mi)	Length to Divide ^b (ft)	Average Watershed Slope ^b (%)	SCS Curve Number ^c	SCS Time Lag ^d (hrs)
10	1.1131	9,200	4.00	70	1.25
20	0.9899	11,900	6.67	70	1.19
30	1.2449	14,400	2.50	70	2.27
40	0.2797	5,400	9.23	70	0.54
50	0.2667	8,400	10.53	70	0.72
60	0.2754	7,000	3.85	70	1.03
70	0.8725	12,900	4.44	70	1.56
80	0.3493	9,000	4.71	70	1.13

Table A-1.	Sub-basin c	haracteristics of	the Stevens .	Arroyo Watershed.
------------	-------------	-------------------	---------------	-------------------

a Planimetered from 1:24,000 map of watershed.

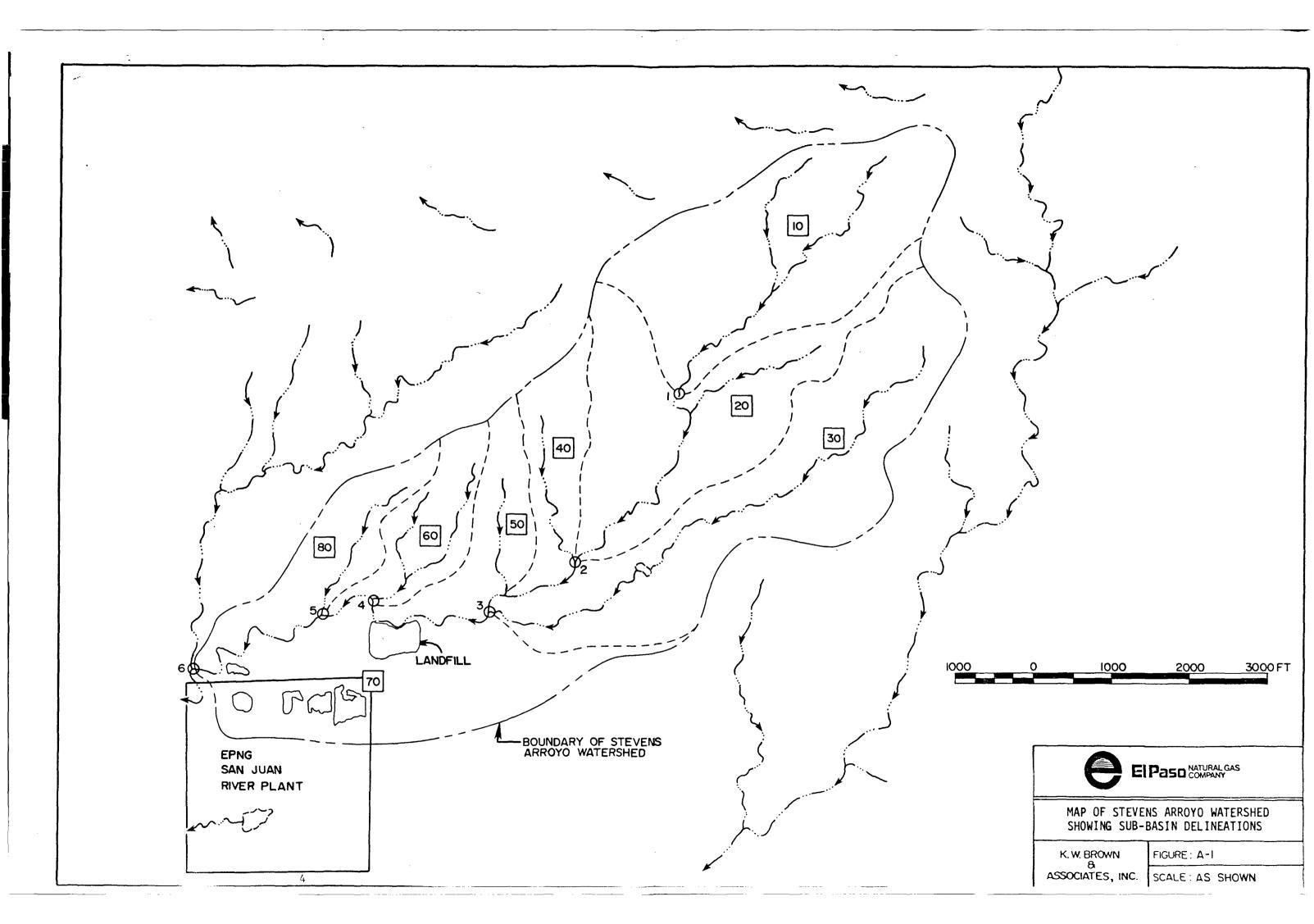
b Measured from 1:24,000 USGS quadrangle.

^c Estimated using SCS soil survey and SCS curve number tables for the following conditions (SCS, 1980; McCuen, 1982): antecedent soil moisture condition II hydrologic soil group "C"

pasture or range in good condition.

d Computed using the following equation (Viessman et al., 1977):

tı =


where:

 $t_1 = lag time (hours)$

1 = length to divide (ft)

- S = (1000/CN)-10 (dimensionless)
- CN = SCS curve number (dimensionless)
- Y = average watershed slope (percent).

The HEC-1 is designed to simulate the response of a watershed to a precipitation event. Accordingly, statistical data were compiled describing historical climatic events occurring in Stevens Arroyo. TP-40 (U.S. Weather Bureau, 1963) is an invaluable source of statistical climatic data for hydrologists because the data are presented in a manner amenable to rapid access and cover a wide range of recurrence intervals (from 1–100 years). Table A-2 lists storm duration and precipitation depth for selected values of recurrence interval for the Stevens

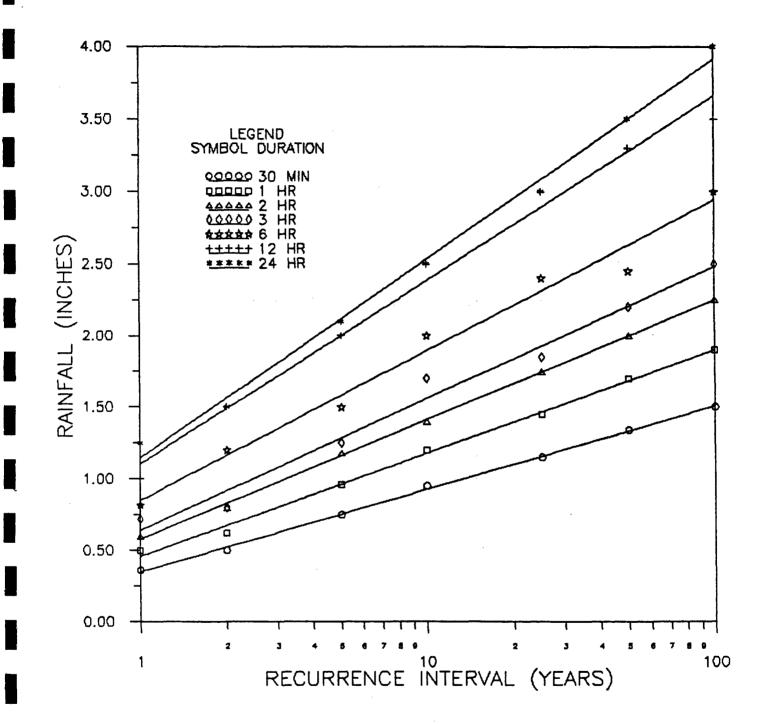
Recurrence	Storm	Precipitation	Recurrence	Storm	Precipitation
Interval	Duration	Depth	Interval	Duration	Depth
	(hrs)	(in)			(in)
(yrs)	(1115)	(111)	(yrs)	(hrs)	(111)
1	0.5	0.36	25	0.5	1.15
		0.50			1.45
	2	0.60		2	1.75
	1 2 3 6	0.72		1 2 3 6	1.85
	6	0.82		6	2.40
	12	1.00	12	3.00	
	24	1.25	24	3.00	
2	0.5	0.50	50	0.5	1.34
-		0.62			1.70
	1 2 3 6	0.80		1 2 3 6	2.00
	3	0.80		3	2.20
	6	1.20		6	2.45
	12	1.50	12	3.30	4.40
	24	1.50	24	3.50	
	24	1.50	24	5.50	
5	0.5	0.75	100	0.5	1.50
	1	0.96	1	1.90	
	1 2 3 6	1.18		2	2.25
	3	1.25		2 3 6	2.50
	6	1.50			3.00
	12	2.00	12	3.50	
	24	2.10	24	4.00	
10	0.5	0.95			
		1.20			
	2	1.40			
	3	1.70			
	1 2 3 6	2.00			
	12	2.50			
	24	2.50			

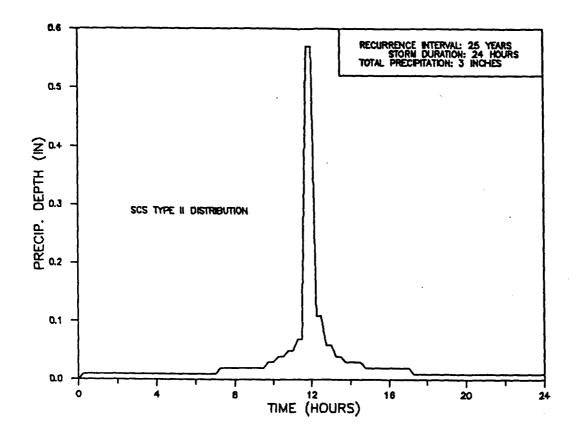
Table A-2. Statistical, climatic data for Farmington, NM.ª

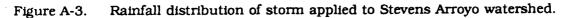
^a Source: U.S. Weather Bureau, 1963.

Arroyo area, taken from TP-40 (Note: these data were interpolated from contour maps and, as such, represent mild approximations because each interpreter may choose slightly different values). Figure A-2 is a graphical display of these data.

Reflection on the purpose of the watershed model was used to arrive at appropriate values of recurrence interval and storm duration. Because closure activities at Stevens Arroyo may impact the surface drainage system, it seemed prudent to choose a fairly significant climatic event for simulation with HEC-1. Correspondingly, a recurrence interval of 25 years and a




Figure A-2. Graph of recurrence interval versus rainfall depth for selected storm durations for Farmington, NM (Source: TP-40).


storm duration of 24 hours were used to determine a total precipitation depth of 3.00 in. of rainfall (Table A-2).

Not only is total precipitation depth important to a simulation effort, but the temporal distribution of the rainfall plays an equally important role. For example, a slow, steady rain may not develop any appreciable runoff. Conversely, a storm similar to a thunderstorm, where the majority of the rainfall is received in a matter of minutes, may result in a substantial volume of precipitation excess, or runoff. Studies of historical records of rainfall distribution in the United States by the SCS indicate two major regions with similar rainfall patterns; these regions have been assigned rainfall distributions of Type I and Type II. Type I distributions apply to Hawaii, Alaska, and the coastal side of the Sierra Nevada and Cascade Mountain ranges in California, Oregon, and Washington. The balance of the United States, including Puerto Rico and the Virgin Islands, possess Type II storm patterns (McCuen, 1982). Thus, the 3.00-in. total precipitation depth for Stevens Arroyo was distributed using the SCS Type II rainfall distribution. Figures A-3 and A-4 graphically depict the rainfall distribution used in the HEC-1 model. Figure A-3 is the incremental precipitation pattern for the storm of 24-hour duration. Note that rainfall intensity rapidly peaks at the 12-hour point on the graph. Figure A-4 is a "mass curve" of Figure A-3, which is a plot of cumulative precipitation versus time.

HEC-1 uses the unit hydrograph (UH) method of computing runoff hydrographs at selected points in a drainage basin (HEC, 1981). A UH, developed through an analysis of rainfall/runoff records of a given watershed/sub-basin, may be directly input to HEC-1, or a synthetic UH may be computed by HEC-1 using user-supplied parameters (HEC, 1981). There are a number of synthetic UHs available. The version of HEC-1 used in the present study allows for the use of the Clark UH, the Snyder UH, and the SCS Dimensionless UH. The Clark UH requires that three parameters, specific to a given watershed/sub-basin, be input to generate the UH. The Snyder UH requires that two parameters be specified by the user; however, HEC-1 uses the Clark method to generate a Snyder UH. Finally, only one parameter—SCS lag time—is required to use the SCS Dimensionless UH. SCS lag time is defined as the time interval between the center of mass of effective precipitation and the time at which peak discharge occurs (Viessman et al., 1977). As lag time is a fairly easy parameter to calculate, the SCS UH was selected for the Stevens Arroyo watershed study. Figure A-5 is a plot of the SCS Dimensionless UH.

The last piece of information needed to complete the input data set deals with hydrograph routing parameters unique to given reaches of the main channel of Stevens Arroyo. Hydrograph routing is used to simulate the movement of a flood wave through a river reach or reservoir (HEC, 1981). As a wave moves downstream, friction between the water and the chan-

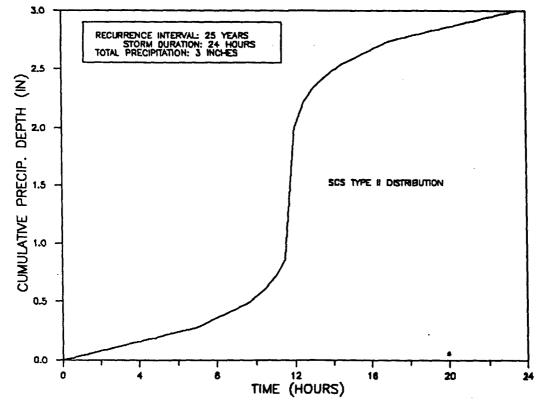
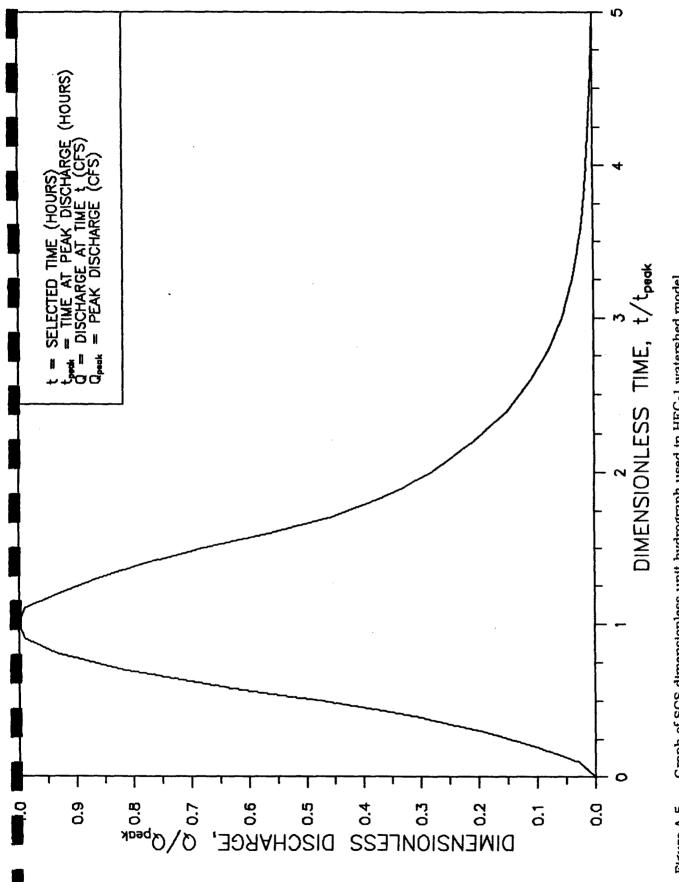



Figure A-4. Mass curve of rainfall distribution applied to Stevens Arroyo.

Graph of SCS dimensionless unit hydrograph used in HEC-1 watershed model. Figure A-5.

nel bottom and sides results in loss of energy. Without routing, a hydrograph moves downstream unimpeded by frictional loss, and an overestimate of peak discharge and an underestimate of time to peak discharge result.

Two types of routing are available in modeling: (1) hydrologic routing and (2) hydraulic routing. Hydrologic routing utilizes conservation of mass and some type of analytic or assumed relationship between storage and discharge within the routing reach (Viessman et al., 1977). Conversely, hydraulic routing, a much more precise representation of the dynamics of wave motion, requires the solution of a system of partial differential equations, the so-called St. Venant equations of continuity and motion (Viessman et al., 1977).

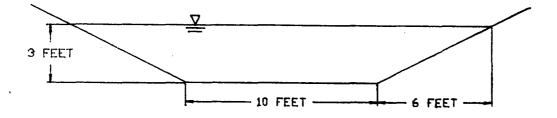
HEC-1 permits the use of hydrologic routing techniques only (HEC, 1981). Options available for river routing in HEC-1 include (1) channel infiltration, (2) Muskingum, (3) modified Puls, (4) working R & D, (5) average-lag method, and (6) kinematic wave routing (HEC, 1981). For the sake of brevity, the merits and/or disadvantages of each of the aforementioned methods will not be enumerated here.

Because of its simplicity, Muskingum channel routing was selected for the Stevens Arroyo model. Two parameters are required to utilize the Muskingum method: (1) travel time through the routing reach (the Muskingum "K") and (2) a weighting coefficient between inflow and outflow from a river reach (the Muskingum "x") (Viessman et al., 1977). The Muskingum "x" ranges from 0 to 0.5, and generally averages 0.2. A value of "x" = 0.5 results in pure translation of the hydrograph. In the absence of gauged discharge data, a value for "x" must be assumed. Because there are no data available for stream discharges, 0.2 was used for the Muskingum "x" in the Stevens Arroyo model for each routing reach. Figure A-1 identifies routing reaches as those lengths of the main channel lying between adjacent river stations. Table A-3 lists the characteristics of the routing reaches within the Stevens Arroyo watershed.

Routing Reach	Channel Length ^a (ft)	Estimated Stream Velocity ^b (ft/sec)	Estimated Travel Time (hrs)	Muskingum "K" (hrs)	Muskingum "x"
1-2	5,500	2.69	0.5683	0.5683	0.20
2-3	2,800	2.69	0.2893	0.2893	0.20
3-4	3,200	2.69	0.3307	0.3307	0.20
4-5	1,800	2.69	0.1860	0.1860	0.20
5-6	4,200	2.69	0.4340	0.4340	0.20

Table A-3. Hydrograph routing rata for the Muskingum method.

a Measured from 1:24,000 USGS quadrangle.


^b Approximated via the Manning equation (Linsley and Franzini, 1979):

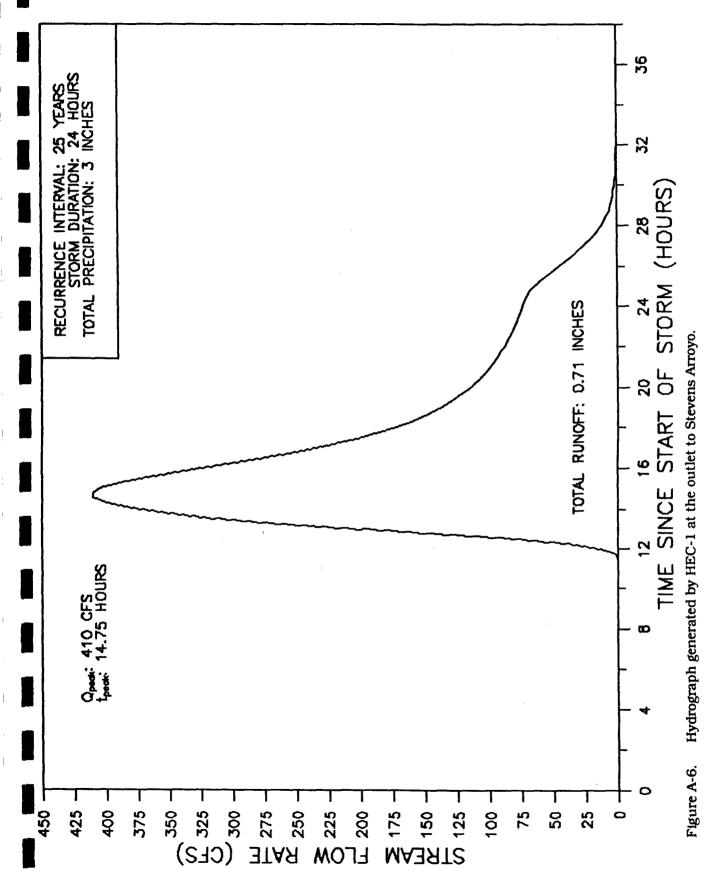
$$1.49$$

V = ---- R^{2/3}S₀^{1/2}
n

where:

- V = average flow velocity in channel (ft/sec)
- n = Manning's roughness coefficient (dimensionless)
- R = hydraulic radius (ft) = A/P
- A = cross-sectional area of flow (sq ft)
- P = wetted perimeter (ft)
- $S_0 = slope of the channel bottom (dimensionless)$

The following channel geometry was assumed:


n = 0.040 (natural channel - winding w/some pools and shoals) (Vennard and Street, 1982).

 $S_0 = 0.002$ # estimated.

RESULTS AND DISCUSSION --

As mentioned previously, output produced by HEC-1 consists of hydrographs at given locations within a watershed. Figure A-6 is the generated hydrograph at the outlet to the Stevens Arroyo watershed, Station 6 (Figure A-1). Hydrographs are available at the end of this appendix for the remaining river stations. The peak discharge computed by HEC-1 for the 25-year, 24-hour storm is 410 cubic ft per second (cfs); this peak occurred 14.75 hours after the onset of precipitation.

Unless the relationship between river stage (water surface elevation) and discharge is known (i.e., a rating curve must be available), it is not possible to determine the water depths in the stream at Station 6. As an approximation, a rating curve was developed (Figure A-7) using the Manning equation and the assumptions used to define Table A-3. The stream geometry was approximated by a trapezoidal channel, 10 ft wide at the bottom, having side slopes of 2H:1V. A bed slope of 0.002 (0.2 percent) was assumed, and a Manning's "n" value of 0.040 was chosen to represent the stream channel's roughness coefficient. Manning's equation assumes uniform flow conditions in the stream channel. Entering Figure A-7 with the peak discharge value of 410 cfs yields a maximum normal depth at Station 6 of 5.4 ft. Caution should be exercised,

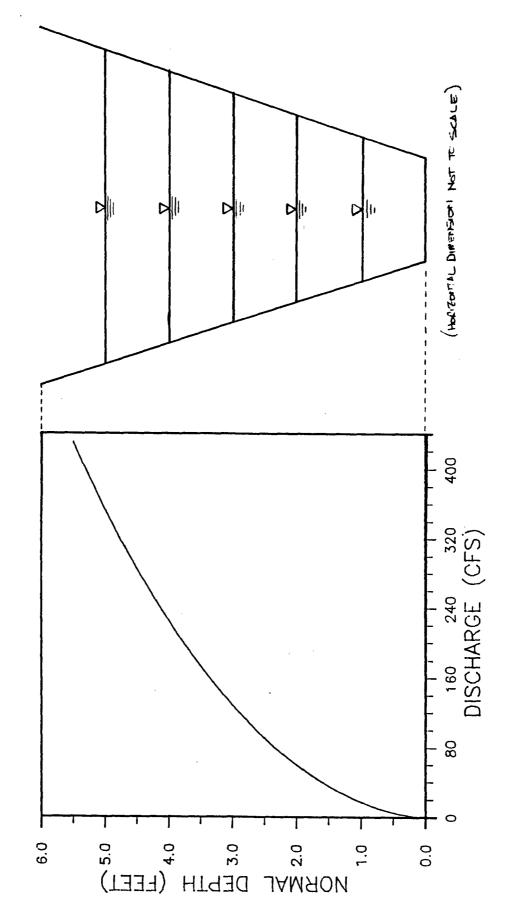


Figure A-7. Rating curve for stream channel cross-section at the outlet to Stevens Arroyo.

however, when utilizing this value to represent actual, expected field conditions. This exercise is merely offered to aid the reader in understanding the magnitude of flows depicted by the output hydrograph. To properly determine stream stage, a cross section should be constructed from field-surveyed elevations at selected points transverse to the stream flow direction.

Finally, the storm of 24-hour duration resulted in an outflow hydrograph with a time base of about 32 hours (i.e., 32 hours after the rain began to fall, there was no more flow in the stream, as the infiltration capacity exceeded the precipitation intensity). The 25-year, 24-hour storm yielded a total precipitation of 3.00 in. However, as a result of hydrologic abstractions (losses), only 0.71 in. was found to result as precipitation excess (i.e., only 23.7 percent of the total rainfall was manifested as runoff).

REFERENCES

HEC. 1981. HEC-1 Flood Hydrograph Package - User's Manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, California. September, 1981.

HEC. 1982. HEC-2 Water Surface Profiles - User's Manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, California. September, 1982.

Linsley R. K. and J. B. Franzini. 1979. Water-Resources Engineering. Third Edition. McGraw-Hill. NY.

McCuen, R. H. 1982. A Guide to Hydrologic Analysis Using SCS Methods. Prentice-Hall, Inc. Englewood Cliffs, NJ.

SCS. 1980. United States Department of Agriculture. Soil Survey of San Juan County, New Mexico, Eastern Part.

U.S. Weather Bureau. 1963. Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years. Technical Paper 40.

Vennard J. K. and R. L. Street. 1982. Elementary Fluid Mechanics. Sixth Edition. Wiley & Sons. NY.

Viessman, Jr., W., L. J. W. Knapp, G. L. Lewis and T. E. Haraugh. 1977. Introduction to Hydrology. Second Edition. Harper & Row, NY.

1

I

.

Table A-1. HEC-1 Output: Sub-basin 10 Hydrograph.

				FLOW	-				FLOW						FLOW						FLI
Day	Nonth	Hr.	Nin.	(CFS)	: Da	y Month	Hr.	Nin.	(CFS)	: D)ay	Month	Hr.	Nin.	(CFS)	: D	ay 	Month	Hr.	Min.	(CF
38	MAY	8	0	8	:	38 MAY	9	30	8	:	30	MAY	19	8	22		31	MAY	4	30	
- 30	MAY	8	15	8	:	30 MAY	9	45	0	:	30	MAY	19	15	21	:	31	MAY	4	45	
- 30	MAY	0	- 38	8	:	30 May	10	0	8	:	30	MAY	19	30	20	:	31	May	5	0	
	MAY	0	45	8	:	30 May	10	15	0	:	38	MAY	19	45	20	:	31	MAY	5	15	
	MAY	1	8	0	:	30 May	10	30		1	30	HAY	50	0	19	:	31	May	5	- 30	
	MAY	1	15	8	:	30 May	18	45	0	:	38	MAY	56	15	19	:	31	MAY	5	45	
	MAY	1	30	8		38 MAY	11	0	-	:	30	HAY	20	- 30	18			MAY	6	0	
	NAY	1	45	0	:	30 MAY	11	15	0	:	30	MAY	20	45	18	:	31	May	6	15	
	MAY	2	8	8	:	38 MAY	11	30	0	ł	30	MAY	21	0	17	:	31	MAY	6	30	
- 39	MAY	2	15	9	1	30 MAY	11	45	2	:	30	MAY	21	15	17	:	31	May	6	45	
	MRY	2	38	0		38 MAY	12	0				MAY	21	30	17			MAY	7	0	
	May	2	45	0		30 May	12	15			30	MAY	21	45	16			MAY	7	15	
- 30	MAY	3	. 0	0	;	30 May	12	30	65	:	30	MAY	22	0	16	:	31	MAY	7	30	
- 30	i may	3	15	0	:	30 May	12	45	97	ţ	30	MAY	22	15	16	:	31	MAY	7	45	
- 30	MAY	3	38	8	:	310 MAY	13	0	118	1	30	MAY	22	30	15	:	31	May	8	0	
39	May	3	45	0	:	30 MAY	13	15	128	:	30	MAY	22	45	15	:	31	MAY	8	15	
- 30) May	4	0	0	:	38 MAY	13	30	126	1	30	MAY	23	8	15	:	31	May	8	30	
38	May	4	15	0	:	30 MAY	13	45	117	:	30	MAY	23	15	14	:	31	MAY	8	45	
- 38	May	4	38	0	:	30 MAY	14	6	102	:	30	MAY	23	30	14	:	31	MAY	9	0	I
	s May	4	45	8	:	30 MAY	14	15			30	MAY	23	45	14	1	31	May	9	15	
	May	5	8	0	:	30 May	14	30	78	:	- 31	MAY	0	8	14	:	31	MAY	9	30	
30	nay 🛛	5	15		:	30 MAY	14	45	69	1	- 31	MAY	0	15	13	:	31	MAY	9	45	į
) May	5	30		:	30 MAY	15	8	62	:	- 31	MAY	0	30	13	:	31	May	10	0	i
	nay 🛛	5	45			30 MAY	15	15	55	:	31	May	8	45	12	:	31	May	10	15	i
) May	- 6	0	-	:	340 MAY	15				- 31	MAY	1	0		:	31	MAY	10	30	
) May	6	15		:	30 May	15	45	46	1	31	May	1	15	8	1	31	MAY	10	45	
	May	6	30	-	:	30 May	16					May	1	30		:	31	MAY	11	0	
) May	6	45			30 MAY	16			:		May	1	45	5	:		MAY	11	15	
) May	7	8		1	30 MAY	16					MAY	2	9		:		MAY	11	30	
	e May	7	15	-	-	30 MAY	16			1		MAY	5	15		:	31	May	11	45	i
) May	7	30	-	:	30 MAY	17			ł		May	2	30	2	:		MAY	- 12	0	
	B MAY	7	45	i 0	:	30 MAY	17			1	31	May	2	45	1	:	31	MAY	12	15	i
	e May	8	0	-	:	30 May	17	30	28	:	31	MAY	3	0	1	:	31	MAY	12	30	1
	n May	8	15	0	:	30 MAY	17	45	i 27	:	31	MAY	3	15	1	:	31	May	12	45	i
38	nay .	8	30	. 0	:	38 MAY	18	e	26			MAY	3	30	1	:	31	MAY	13	0	1
30) May	8	45	i 0	:	30 MAY	18	15	i 24	:	31	MAY	3	45	0	:	31	MAY	13	15	
34	h May	9	0	0	:	30 MAY	18	30	23	::	31	MAY	4	9	9	:					
3) HAY	9	15	. 0	:	30 MAY	18			::		MAY	4	15		:					

Day	Nonth	Hr.	Min.	FLOW (CFS))ay	Month	Hr.	Nin.	Flow (CFS)		Day	Month	Hr.	Min.	flow (CFS)		Day	Month	Hr.	Min.	FLO (CFS
	MAY		8 8		•		MAY	9	30	B	:		MAY	19	0	24			May	4	30	
- 30	May	. !	0 15	i 0	:	30	May	9	45	8	:	- 30	MAY	- 19	15	23	:	31	May	4	45	
- 38	MAY	I	0. 30	0	ŧ	30	May	10	0	6	:	- 38	May	19	30	22	:	- 31	MAY	5	0	
30	MAY		0 45	i 0	:	30	MAY	10	15	0	:	- 30	MAY	19	45	21	:	31	MAY	5	15	
30	MAY		1 0	0	:	30	MAY	10	30	0	:	30	MAY	20	0	21	:	31	MAY	5	30	
- 39	MAY		1 15	j 🛛	:	30	MAY	10	45	0	:	30	MAY	20	. 15	20	:	31	MAY	5	45	
30	MAY		1 30	0	:	30	MAY	11	8	0	:	30	MAY	20	30	19	:	31	MAY	6	0	
30	MAY		1 45	50	:	30	MAY	11	15	0	:	30	MAY	20	45	19	:	31	MAY	6	15	
30	MAY		2 8) 0	:	30	MAY	11	30	0	:	30	MAY	21	0	18	:	31	MAY	6	30	
30	MAY		2 15	5 0	1	30	MAY	11	45	8	;	30	MAY	21	15			31	MAY	6	45	
30	MAY		2 34	8 0	:	30	MAY	12	0	1	:	30	MAY	21	30			31	MAY	7	0	
30	MAY		2 45	50	:	30	MAY	12	15	7	;		MAY	21	45			31	MAY	7	15	
30	MAY		3	9 0	:	30	MAY	12	30	19	:	30	MAY	22	0	17	:	31	MAY	7	30	
30	MAY		3 15	5 8	:		MAY	12	45				MAY	22	15				MAY	7	45	
30	MAY		3 34		:	30	MAY	13	0				MAY	22	30				MAY	8	0	
	May		3 45		:		MAY	13	15				MAY	22	45				MAY	8	15	
	MAY		4 (:		MAY	13					MAY	23	0				MAY	8	30	
	MAY		4 1		:		MAY	13					MAY	23	15				MAY	8	45	
	MAY		4 34		:		MAY	14					MAY	23	30				MAY	9	0	
	MAY		4 45		:		MAY	14	-				MAY	23	45				MAY	9	15	
	MAY		5 (:		MAY	14					MAY	0	0				MAY	9	30	
	MAY		5 1		;		MAY	14					MAY	õ	15				MAY	9	45	
	MAY		5 34		;		MAY	15					MAY	Â	30				MAY	10	0	
	MAY		5 4		:		MAY	15					MAY	a a	45				MAY	10	15	
	MAY		6 (:		MAY	15					MAY	1					MAY	10	30	
	MAY		6 1		:		MAY	15					MAY	+ t	15				MAY	10	45	
	MAY		6 34		:		MAY	16	0				MAY		30				MAY	11		
	MAY		6 4!		;		MAY	16	15				MAY	•	45		:		MAY	11	15	
	MAY		7 (:		MAY	16	30				MAY	2	0		:		MAY	11	30	
	MAY		7 1		:		MAY	16	45				MAY	2	15		:		MAY	11	45	
	MAY		7 34		;		MAY	17					MAY	2	30		:		MAY	12	. 0	
	MAY		7 4		:		MAY	17					MAY	2	45		:		MAY	12	15	
) MAY				;		MAY	17					MAY	3					MAY	12	30	
	MAY		8 1		1		MAY						MAY									
	MAY		8 3				MAY	17	45					3	15		:		MAY	12	45	
	D MAY				-			18	0				MAY	3	30		;		MAY	13		
	BINAY		8 4		:		MAY	18					MAY	3			1		May	13	15)
					1		MAY	18					MAY	4	8		1					
5E) May		9 1	U 1	:	30	May	18	45	i 25	1	- 51	MAY	4	15	1	:					

Table A-2. HEC-1 Output: Sub-basin 10 Hydrograph Routed to Station 2.

ļ

1

Table A-3. HEC-1 Output: Sub-basin 20 Hydrograph.

Day	Month	Hr.	Min.	Flow (CFS)		Day	Month	Hr.	Min.	FLOW (CFS)		Day	M	lonth	Hr.	Min.	FLOW (CFS)		Day	Month	Hr.	Min.	FLOI (CFS)
					+-						+			~~~~	*****	*****		•					
	MAY	0	0	0			MAY	9	30	-					19	0	19			MAY	4	30	1
	MAY	0	15	8			MAY	9	45						19	15	18			MAY	4	45	
	MAY	8	38	8			MAY	10	8	-		30			19	38	18			MAY	5	8	
	MAY	8	45	-	-		MAY	10	15	-	1			iay	19	45	17			MAY	5	15	
	MAY	1	8				MAY	10	30	-				iay	20	8	17			MAY	5	30	
	MAY	1	15				MAY	10	45	-	:			iay Ay	20	15	16			MAY	2	45	
	MAY	1	30 45		•		MAY	11	0	-	:			iay av	20	30	16			MAY	6	0	
	MAY	1	40 0				MAY	11	15		:			iay Ay	20	45	16			MAY	6	15	
	MAY	5	-	-			MAY	11	30	-	:			iay Ay	21	0	15			MAY	6	30	
	May May	2	15 38		-		MAY	11	45 8		1			iay av	21	15	15			MAY	6 7	45	
	MAY	2		-	:		May May	12 12						l AY lAY	21 21	38 45	· 15			may May	7	0 15	
	MAY	3	رب 8		1		MAY	12						1947 1947	22	6 6	14			MAY	7	30	
	MAY	3	15	-	:		MAY	12						1AY	22	15	14			MAY	7	30 45	
	MAY	3	30		:		MAY	13						1AY	22	30				MAY	8		
	MAY	3	45	-	:		MAY	13						1AY	22	45	-			MAY	8	15	
	MAY	4	رب 0		:		MAY	13						1AY	23	ربر 0				MAY	0 8	30	
	MAY	Ā	15		:		MAY	13						4AY	23	15				MAY	8	45	
	MAY	4	30		:		MAY	14						4AY	23	30				MAY	9	رب 0	
	MAY		45	-	:		MAY	14						4AY	23	45				MAY	9	15	
	MAY	5	0	-	:		MAY	14						4Aγ	0					MAY	9	30	
	MAY	5	15		:		MAY	14						1AY	8	15				MAY	9	45	
	MAY	5	30		:		MAY	- 15						4AY	6	30				MAY	10	0	
	MAY	5	45				MAY	15						4AY	å	45	-			MAY	10	15	
	MAY	6		-	:		MAY	15						ŧΑY	1	9		:		MAY	10	30	
	MAY	6	15	-	1		MAY	15	_					AY	1	15		:		MAY	10	45	
	MAY	6	30		:		MAY	16						4AY	1	30		:		MAY	11	0	
	MAY	6	45		1		MAY	16						MAY	1	45	_	:		MAY	11	15	
	MAY	7			:		MAY	16						HAY .	ż		-			MAY	11	30	
	MAY	7	-	-			MAY	16						MAY	2	15		:	-	MAY	11	45	
	MAY	7			1		MAY	17						MAY	2	30				MAY	12	0	
	MAY	7			1:		MAY	17						MAY	2	45	-	;		MAY	12	15	
	MAY	8	0		:		MAY	17						MAY	3	8				MAY	12	30	
	MAY	8			-		MAY	17						MAY	3	15	-			MAY	12		
	MAY	8			;		MAY	18						MAY	3	30				MAY	13		-
	B MAY	8	45	. 0			MAY	18						MAY	3	45	-			MAY	13		
	MAY	9					MAY	18						MAY	4	6							-
	MAY	9					MAY	18						MAY	4	15							

				FLOW					FLOW					FLOW	-				FLO
lay	Month	Hr.	Min	(CFS)	: Day	Month	Hr.	Min	(CFS)	: Day	Nonth	Hr.	Min	(CFS)	: Day	Month	Hr.	Min	(CFS
	MAY	0	8	8		Ø MAY	9	30			MAY	19	0	43		MAY	4	30	
	May	0	15	8		Ø MAY	9	45			May	19	15	41		May	4	45	
	MAY	0	30	8		9 May	18	8) May	19	30	40		MAY	5	8	
	MAY	0	45	0		8 May	10	15) May	19	45			MAY	5	15	
	MAY	1	0	0		Ø MAY	18	30			hay .	20	0			MAY	5	30	
	MAY	1	15	9		19 MAY	10	45			May	20	15			MAY	5	45	
30	May	1	30	0	: 3	ð May	11	0	0	: 34	MAY	20	30	35	: 31	MAY	6	0	
30	MAY	1	45	8	: :	NAY NAY	11	15	0	: 3	MAY	28	45	35	: 31	MAY	6	15	
- 30	MAY	2	8	0	: :	NAY S	11	30	. 0	: 3) May	21	0	34	: 31	May	6	30	I
30	MAY	5	15	0	: .	NO MAY	11	45	2	: 3	MAY	21	15	33	: 31	MAY	6	45	i
- 38	MAY	5	30	0	: :	10 May	12	. 0	14	: 3	B MAY	21	30	32	: 31	MAY	7	0)
30	MAY	2	45	0	:	NAY NAY	12	15	i 40	: 3) May	21	45	31	: 31	MAY	7	15	5
38	MAY	3	0	0	: :	NAY MAY	12	30	83	: 3	B MAY	22	0	31	: 31	MAY	7	30)
30	MAY	3	15	0	: 3	KA MAY	12	45	i 133	: 3	B MAY	22	15	30	: 31	MAY	7	45	5
30	MAY	3	30	0	:	10 May	13	0	176	: 3	D MAY	22	30	30	: 31	MAY	8	e)
30	MAY	3	45	0	:	VAM B	13	15	206	: 3	B MAY	22	45	- 29	: 31	MAY	8	15	i
30	MAY	4	0	0	:	18 MAY	13	30	219		e May	23	8	28	: 31	l May	8	38	3
30	MAY	4	15	0	:	SØ MAY	13	45	i 217	: 3	B MAY	23	15	28	: 31	MAY	8	45	5
38	MAY	4	30	8	:	SIG MAY	14	e	204	: 3	B MAY	23	38	27	: 31	MAY	9	e	3
	MAY	4	45			90 May	14				D MAY	23				MAY	9	15	5
	MAY	5	8			38 MAY	14				1 MAY	0				MAY	9	38)
ં ઝ	MAY	5	15	8		38 MAY	14	45			1 MAY	0				MAY	9	45	5
	MAY	5	30			30 MAY	15				1 MAY	Ō	30			MAY	10		-
	MAY	5	45			SO MAY	15				1 MAY	0				MAY	10		
	MAY	6	0			SØ MAY	15				1 MAY	1	e			MAY	10		
	MAY	6	15			38 MAY	15				1 MAY	1	15			MAY	10		
	MAY	6	30			30 MAY	16			-	1 MAY	1	30			L MAY	11		
	MAY	6	45			30 MAY	16				1 MAY	i				i may	11		-
	MAY	7	0			30 MAY	16				1 MAY	2				LMAY	11		
	MAY	7				30 MAY	16				1 MAY	2				1 MAY	11		
	MAY	7	30			38 MAY	17				1 MAY	2				1 MAY	12		
	MAY	7				30 MAY	17				1 MAY	2				1 MAY	12		
	MAY	. 8	0	-		30 MAY	17				1 MAY	3				1 MAY	12		
	MAY	8	15	-		300 MAY	17				1 MAY	3				1 MAY	12		
	MAY	8	30			348 MAY	18				1 MAY	3				1 MAY	13		9
) MAY	8	45	-		340 MAY	18				1 MAY	3		-		1 MAY	13		
) May	9				30 MAY	18				1 MAY								-
) May	9				340 MAY	18				1 MAY	4			:				

Table A-4. HEC-1 Dutput: Combination of Routed Sub-basin 10 Hydrograph and Sub-basin 20 Hydrograph.

				FLOW	i				FLOW	:					FLOW	;				FLO
Day	Nonth	Hr.	Hin.	(CFS)	: Day	Month	Hr.	Hin.	(CFS)	:	Day	Nonth	Hr.	Min.	(CFS)	: Day	Month	Hr.	Min.	(CFS
30	MAY	0	8	0	: 30	MAY	9	30	8	•+- ;	30	MAY	19	0	45	: 31	MAY	4	30	
- 30	MAY	0	15	0	: 31	MAY	9	.45	0	:	- 30	MAY	19	15	43	: 31	MAY	4	45	
38	MAY	8	38	8	: 30	MAY	18	8	8	:	38	MAY	19	38	42	: 31	MAY	5	8	
- 38	MAY	8	45	8	: 30	MAY	10	15	0	:	30	MAY	19	45	40	: 31	MAY	5	15	
- 30	MAY	1	0	0	: 34	MAY	10	30	0	:	30	MAY	28	0	39	: 31	MAY	5	30	
- 30	MAY	1	15	0	: 31	i May	10	45	0	:	30	MAY	20	15	38	: 31	MAY	5	45	I
30	MAY	1	30	0	: 34	MAY	11	0	0	:	38	MAY	20	38	37	: 31	MAY	6	0	
- 30	MAY	1	45	0	: 34	May	11	15	9	:	- 30	MAY	20	45	36	: 31	MAY	6	15	
- 38	MAY	2	0	8	: 36	i May	11	30	0	:	30	MAY	21	0	35	: 31	MAY	6	30	
- 39	MAY	2	15	9	: 30	MAY	11	45	8	:	30	MAY	21	15	34	: 31	MAY	6	45	i
- 30	MAY	2	30	0	: 3	MAY	12	0	4	:	30	MAY	21	30	33	: 31	MAY	7	C	[
30	MAY	2	45	0	: 34	MAY	12	15	16	:	30	MAY	21	45	32	: 31	MAY	7	15	i
- 38	MAY	3	8	0	: 30	MAY	12	30	41	:	30	MAY	22	8	32	: 31	MAY	7	30	1
38	MAY	3	15	0	: 3	MAY	12	45	i 80	١	30	MAY	22	15	31	: 3	MAY	7	45	i
38	MAY	3	30	0	: 34	MAY	13	e	125	:	30	MAY	22	30	30	: 3	MAY	8	0	1
30	MAY	3	45			MAY	13	15				MAY	22	45			MAY	8	15	5
	MAY	4	0			MAY	13					MAY	23	0			MAY	8	30	
32	MAY	4	15			MAY	13					MAY	23	15			MAY	8	45	
	MAY	4	30			B MAY	14					MAY	23	30			MAY	9	0	
	MAY	4	45			MAY	14					MAY	23	45			MAY	9		
	MAY	5	-			MAY	14					MAY	0	0			MAY	9	30	
	MAY	5		-		ð MAY	14					MAY	8	15			MAY	3		
	MAY	5				MAY	15					MAY	. 0	30			MAY	10	e	-
	MAY	5) MAY	15					MAY	Õ	45			MAY	10		
	MAY	6	0			B MAY	15					MAY	1	0			MAY	10	30	
	MAY	6	15			D MAY	15					MAY	1	15			MAY	10		
	MAY	6	30			B MAY	16					MAY	. 1	30			MAY	11	e	
	MAY	6	45			B MAY	16					MAY	1	45			MAY	11	15	
	MAY	7				d May	16					MAY	2	0			LMAY	11	30	
	MAY	7				D MAY	16					MAY	2	15			MAY	11		
	MAY	7				8 MAY	17			:		MAY	2	30			L MAY	12		
	MAY	.7				0 MAY	17					MAY	2				1 MAY	12		
	MAY	. 8				0 MAY	17					MAY	3				1 MAY	12		
	MAY	8				0 MAY	17					MAY	3				1 MAY	12		
	9 MAY	8				0 May	18					MAY	3				1 MAY	13		
	MAY	8				0 MAY	18			2		MAY	3				1 MAY	13		
	D MAY	9				0 MAY	18);		MAY	4				4 73F1 F	13	1.	
	MAY	9				0 MAY	18					L MAY	4							

.

Table A-5. HEC-1 Dutput: Station 2 Hydrograph Routed to Station 3.

Table A-6. HEC-1 Output: Sub-basin 30 Hydrograph.

i

_				FLOW					FLOW					FLOW						FLI
Day 	Nonth	Hr.	Nin.	(CFS)	: Da	y Montl	1 Hr.	Hin.	(CFS)	: Day	Nonth	Hr.	Nin.	(CFS)	: D	ay	Month	Hr.	Min.	(CF)
	MAY	8	0	0		30 May	9	38	0		MAY	19	0	33		31	MAY	4	30	
	MAY	8	15	0		30 May	9	45	0	: 32	MAY	19	15			31	May	4	45	
	May	0	30	0		310 MAY	10	8	0		MAY	19	30	30			May	5	0	
	MAY	9	45	9		30 MAY	10	15	0	: 30	May	19	45			31	May	5	15	
	May	1	0	-	:	30 MAY	10	30	8	: 30	MAY	20	0				May	5	30	
	MAY	1	15			38 MAY	18	45	0		MAY	20	15				May	5	45	
	May	1	30	0		38 MAY	11	0	6		May	20	30		-		MAY	6	8	
	MAY	1	45	0	:	30 MAY	11	15	0		MAY	50	45			31	MAY	6	15	
	May	2	Ø		:	38 MAY	11	30	8		MAY	21	8			31	MAY	6	30	
	MAY	5	15			30 May	11	45			MAY	21	15			31	May	6	45	
	MAY	2	30			30 May	12	8	3		May	21	30			31	MAY	7	0	
	MAY	2	45			30 May	12	15			MAY	21	45				May	7	15	
	MAY	3	9			30 May	12	30			May	22	0				MAY	7	30	
	MAY	3	15		:	30 May	12	45			May	22	15			31	MAY	7	45	
	MAY	3	30		:	30 May	13	0			May	22	30			31	MRY	8	0	
	MAY	3	45		:	30 May	13	15) May	22	45			31	May	8	15	
	MAY	4	8	-	1	38 MAY	13	30	69	: 3	s May	23	8	19	:	31	MAY	8	30	I.
- 30	MAY	4	15	0	;	30 MAY	13	45	81	: 3) May	23	15	18	:	31	May	8	45	
	MAY	4	30	-	:	30 MAY	14	0	89	: 30) May	23	30	18	:	31	May	9	0	
	May	4	45	0	:	30 May	14	15	94	: 3	MAY	23	45	18	:	31	May	9	15	i
- 30	MAY	5	0	6	:	38 May	14	30	96	: 3	MAY	0	0	17	:	31	MAY	9	30	1
30	MAY	5	15	0	;	30 MAY	14	45	96	: 3	MAY	8	15	17	:	31	MAY	9	45	i
- 30	MAY	5	30	8	:	30 MAY	15	0	94	: 3	MAY	8	39	16	:	31	MAY	10	0)
- 30	MAY	5	45	0	:	30 MAY	15	15	89	: 3	MAY	0	45	16	:	31	MAY	10	15	j i
- 30	MAY	6	0	8	t	30 May	15	30	83	: 3	MAY	1	0	15	:	31	MAY	10	30	I
	MAY	6	15		:	30 May	15	45	77	: 3	May	1	15	14	:	31	MAY	10	45	,
	MAY	6	30	0	:	30 MAY	16	0	71	: 3	MAY	1	30	13	:	31	MAY	11	0	l
- 30	MAY	6	45	6	1	30 MAY	16	15	66	: 3	MAY	1	45	12	:	31	May	11	15	i
- 39	MAY	7	0	0	:	30 MAY	16	30	61	: 3	MAY	2	0	11	:	31	MAY	11	30	I
- 30	MAY	7	15	i 0	:	30 MAY	16	45	57	: 3	l may	2	15	10	:	31	MAY	11	45	j
30	MAY	7	38	0	:	30 MAY	17	8	54	: 3	MAY	2	30	9	:	31	MAY	12	0)
38	MAY	7	45	i 8	:	30 MAY	17	15	50	: 3	May	2	45	i 7	:	31	MAY	12	15	i
38	MAY	8	0	0	:	30 MAY	17	30	47	: 3	l May	3	0	6	:	31	MAY	12	30	
38	MAY	8	15	i 0	;	30 MAY	17	45	i 44	: 3	l May	3	15	i 5	:	31	MAY	12	45	i
38	MAY	8	38	0	:	30 MAY	18	0			l May	3	30		:	31		13	8	
38	MAY	8	45	i 0	:	30 MAY	18	15			MAY	3	45		1		MAY	13	15	
38	May	9	8		:	38 MAY	18	38			MAY	4	8		1					
	MAY	9				30 MAY	18				1 May		15							

Table A-7. HEC-1 Output: Sub-basin 40 Hydrograph.

N -1-1	Maukh	14.	Mi.	FLOW			Manht	16.	Mán	FLOW			Mandet	0.	Mtu	FLOW	-	Manakti	11.	M2	FLO
<i></i>	Nonth	Hr.	#1 n .	(CFS)	: 1 +-		Honth	Hr.	H 1n .	(0+5)	۱ : -+	Jay 	Month	Hr.	H 1n.	(CFS)	: Day +	Month	Hr.	Min.	
	MAY	9	Ø	8	:		MAY	9	30	8	:		MAY	19	8	5		1 May	4	30	
	MAY	8	15	8	:	-	MAY	9	45	0	:		May	19	15	5		1 May	4	45	
	MAY	0	- 30	8	1	38	MAY	10	0	0	:	- 30	May	19	30	5	: 3	1 May	5	8	
	MAY	8	45	0	:		May	10	15	0	:	30	MAY	19	45	4	: 3	1 May	5	15	
	MAY	1	8	8	:	_	May	10	30	8	1	30	May	20	8	4		1 May	5	30	
	MAY	1	15	0	:	- 30	MAY	10	45	8	:	30	MAY	20	15	4	: 3	1 MAY	5	45	
	MAY	1	30	8	:	- 30	May	11	8	0	:	30	MAY	20	30	4		1 MAY	6	0	
	MAY	- 1	45			30	May	11	15	9	:	- 30	May	20	45	4	: 3	1 MAY	6	15	
	MAY	2	8	0	I	- 38	MAY	11	30	0	:	- 30	MAY	21	0	4	: 3	1 MAY	6	30	
	MAY	2	15	0	:	30	MAY	11	45	- 4	:	- 30	MAY	21	15	4	: 3	1 May	6	45	i
	MAY	2	30		ł	- 30	MAY	12	0			- 30	MAY	21	30	4	: 3	1 NAY	7	0	l
	MAY	2	45	8	:	- 30	MAY	12	15	46	1	- 39	May	21	45	- 4	: 3	1 MAY	7	15	i
	hay .	3	0	8	:	- 30	MAY	12	38			30	MAY	22	0	4	: 3	1 MAY	7	30	
) May	3	15	0	:	- 30	May	12	45	45	:	- 30	MAY	22	15	4	: 3	1 MAY	7	45	i
) May	3	39	0	:	- 30	May	13	0	35	:	- 30	MAY	22	30	4	: 3	1 MAY	8	0	
- 38	MAY	3	45	0	ŧ	- 30	MAY	13	15	27	:	30	MAY	22	45	4	: 3	1 MAY	8	15	i
30	hay -	4	0	0	:	30	MAY	13	38	21	:	30	MAY	23	0	3	: 3	1 MAY	8	30)
	h May	4	15	0	:	- 30	MAY	13	45	17	:	- 30	MAY	23	15	3	: 3	1 MAY	8	45	i
	May	4	30	6	:	- 30	MAY	14	0	15	;	- 39	MAY	23	30	3	: 3	1 MAY	9	8)
38	nay 🗌	- 4	45	0	:	- 30	MAY	14	15	13	:	- 30	MAY	23	45	3	: 3	1 MAY	9	15	i
38	i May	5	8	0	:	- 30	MAY	14	30	11	:	31	MAY	. 0	8	3	: 3	1 MAY	9	30)
- 38	hay -	5	15	8	:	30	MAY	14	45	10	:	31	MAY	0	15	3	: 3	I MAY	9	45	5
38	hay -	5	30	0	:	- 30	MAY	15	e	10	:	- 31	MAY	8	30	2	: 3	1 MAY	10	0	ļ
38	hay -	5	45	0	;	30	MAY	15	15	9	:	31	MAY	9	45	1	: 3	i May	18	15	5
- 38) May	6	0	0	:	30	MAY	15	30	8	:	31	MAY	1	0	1	: 3	1 MAY	10	30)
38	B MAY	6	15	. 0	1	30	MAY	15	45	8	:	31	MAY	1	15	9	: 3	1 MAY	10	45	5
-) May	6	30		;	30	MAY	16	0	7	:	31	MAY	1	30	0	: 3	1 MAY	11	e)
30) May	6	45	i 0	:	30	MAY	16	15	7	:	31	MAY	1	45	0	: 3	1 MAY	11	15	5
	B MAY	7	8	0	1	30	MAY	16	30	7	:	31	MAY	2	0	0	: 3	1 MAY	11	30)
) May	7	15	i 0	:	30	MAY	16	45	i 6	ŧ	31	MAY	2	15	0	: 3	I MAY	11	45	5
30) May	7	30	0	:	30	MAY	17	0	6	:	31	MAY	2	30	0	: 3	1 MAY	12	e)
30) May	7	45	i 0	:	30	MAY	17	15	6	:	31	MAY	2	45	0	: 3	1 MAY	12	15	5
3	MAY	8	e	8	:	38	MAY	17	38	6	:	31	MAY	3	0	8		1 MAY	12	38	5
3) May	8	15	i 0	1	30	MAY	17	45	i 6	:	31	MAY	3	15	0	: 3	SI MAY	12	45	5
3) May	8	30	0	:		MAY	18			:		MAY	3	30			1 MAY	13		
31) May	8	45	i 0	:		MAY	18					MAY	3	45			BI MAY	13		
3	B MAY	9	e		:		MAY	18		-			NAY	4	0	-					
	D MAY	9			:		MAY	18					MAY	4	15	-	1				

				FLOW	:				FLOW	:				FLOW	•				FLO
Day	Nonth	Hr.	Min.	(CFS)	: Day	Month	Hr.	Min.	(CFS)	: Day	Month	Hr.	Min.	(CFS)	: Day	Month	Hr.	Min.	(CFS
	MAY	8	8	8		MAY	9	30	9		MAY	19	0	83		MAY	4	30	
	MAY	0	15	8		MAY	9	45	0		MAY	19	15	80		MAY	4	45	
	NAY	0	30	8		May	10	0			MAY	19	30	77		MAY	5	0	
	MAY	0	45	8		MAY	10	15			MAY	19	45	74		MAY	5	15	
	MAY	1	8	9		MAY	18	38			MAY	50	8	71		MAY	5	30	
	MAY	1	15	Ð		MAY	10	45	8		MAY	20	15	69		MAY	5	45	
	May	1	30	0	: 30	MAY	11	0	0	: 30	MAY	20	30	67	: 31	May	6	0	
- 30	e May	1	45	0	: 34	MAY	- 11	15	8	: 30	MAY	20	45	65	: 31	MAY	6	15	
30	May	2	9	9	: 38	MAY	11	38	0	: 30	MAY	21	0	63	: 31	MAY	6	30	
- 30	May	2	15	0	: 30	MAY	11	45	5	: 30	MAY	21	15	61	: 31	MAY	6	45	
38	MAY	2	30	0	: 34	MAY	12	0	28	: 32	MAY	21	38	59		MAY	7	0	
30	MAY	2	45	0	: 30	MAY	12	15	70	: 30	MAY	21	45	58	: 31	MAY	7	15	
38	MAY	3	0	9	: 34	May	12	30	110	: 38	MAY	22	0	56	: 31	MAY	7	30	
38) May	3	15	8	: 30	May	12	45	152	: 38	MAY	22	15	55	: 31	MAY	7	45	
38	May	3	30	0	: 30	MAY	13	0	200	: 32	MAY	22	30	54	: 31	MAY	8	8	
30	HAY	3	45	0	: 34	MAY	13	15	249	: 30	MAY	22	45	53	: 31	MAY	8	15	
38	May -	4	0	8	: 30	i may	13	30	287	: 30	MAY	23	0	52	: 31	MAY	8	30	
38	MAY	4	15	0	: 30	MAY	13	45	310	: 30	MAY	23	15	50	: 31	MAY	8	45	
32	MAY	4	30	0	: 34	HAY	14	0	316	: 30	MAY	23	30	49	: 31	May	9	0	
38	MAY	4	45	8		MAY	14	15			MAY	23	45			MAY	9	15	
38	MAY	5	8	0	: 34	MAY	14	38			MAY	8	0	48		May	9	30	i
	MAY	5	15	8		MAY	14				MAY	8	15			MAY	9	45	i
	MAY	5	30			MAY	15				MAY	0	30			MAY	18	0	
	MAY	5	45			MAY	15				MAY	ē	45			MAY	10	15	
	MAY	6	9			MAY	15				MAY	1				L MAY	10	30	
	MAY	6	15	-		MAY	15		-		MAY	1	15			MAY	10	45	
	MAY	6	30			MAY	16				MAY	1	30			MAY	11		
	MAY	6	45			MAY	16				MAY	1	45			MAY	11	15	
	MAY	7				MAY	16				MAY	2				MAY	11	30	
	D NAY	7		-		MAY	16				MAY	2	15			IMAY	11	45	
	MAY	7				MAY	17				MAY	2	30			MAY	12	. 0	
	B MAY	7				D MAY	17				MAY	2				1 MAY	12	15	
	9 MAY	8				D MAY	17				IMAY	3				1 MAY	12	30	
	D MAY	8	-			d May	17				LMAY	3				1 MAY	12		
	8 MAY	8				d May	18				L MAY	3				1 May	13		
	Ø MAY	8				0 MAY	18				lmay	3				1 MAY	13		
	8 MAY	9				ð May	18				1 May	4					20	••	•
	0 MAY	9				0 MAY	18				1 MAY	4	-						

Table A-8. Combination of Station 3 Hydrograph, Sub-basin 30 Hydrograph, and Sub-basin 40 Hydrograph.

i

1

n	Mault	14.	Mi	FLOW		Merry		Mi	FLOW			Maukk	H.,	Mila	FLOW		\	Mauht	11.	Miu	FLO
uay 	Honth	Hr.	H1n.	(UFS) 	: Ja +	y non	:h Hr.	#1n.	(LFS) 	: Day +	·	H ontn 	Hr.	#1n.	(LF5)	u : -+	/ay 	Month	Hr.	Min.	(LFS
	MAY	9	0	9		30 M ay	9					MAY	19	0	89			MAY	4	30	
	May	0	15			30 M ay	9					May	19	15	6 5			May	4	45	
	May	0	30	0	:	30 MAY	10	8				MAY	19	30	81			MAY	5	0	
	May	0	45	0	:	30 May	10					May	19	45	78			May	5	15	
	MAY	1	8	-		30 May	19					MAY	20	9	75			May	5	38	
	MAY	1	15			30 M ay	10	. –			0	May	20	15	72			May	5	45	
	MAY	1	30	0	;	30 MAY	11	0	6	: 3	10	May	20	30	70	1	31	May	6	0	
	MAY	1	45	0	:	30 May	11	15	8	: 3	8	May	20	45	67	:	31	May	6	15	
- 38	MAY	2	8		:	38 MAY	11	38	8	: 3	8	MAY	21	8	65	1	- 31	MAY	6	30	
	MAY	2	15			30 MAY	11					May	21	15	63			May	6	45	
	MAY	2	30		:	30 MAY	12		•			May	21	30	62			MAY	7	0	
	MAY	2	45		-	30 May	12				10	May	21	45	60	:	31	May	7	15	
	MAY	3	0			30 May	12				0	May	22	0	58	:	31	MAY	7	30	
	May	3	15			30 M ay	12	45	98	: 3	10	May	22	15	57	:	- 31	MAY	7	45	
	MAY	3	- 30	0	:	30 M ay	13	9	148	: 3	10	May	22	30	56	:	- 31	May	8	0	
- 38	MAY	3	45	0	:	30 MAY	13	15	186	: 3	8	MAY	22	45	54	;	31	MAY	8	15	
- 38	MAY	4	0	0	:	30 M ay	13	30	232	: 3	10	MAY	23	0	53	:	- 31	MAY	8	30	
- 30	MAY	4	15	0	:	30 MAY	13	45	271	: 3	90	MAY	23	15	52	:	31	MAY	8	45	
- 30	MAY	4	38	0	:	30 MAY	14	. 8	297	: 3	30	MAY	23	30	51	:	31	MAY	9	0	
- 30	MAY	4	45	8	:	30 MAY	14	15	309	: 3	98	MAY	23	45	50	:	31	MAY	9	15	
30	MAY	5	0	8	:	30 MAY	14	- 38	307	: 3	31	MAY	8	0	49	:	31	MAY	9	30	
- 30	MAY	5	15	0	:	30 MAY	14	45	297	: 3	31	MAY	0	15	48	:	31	MAY	9	45	i
- 38	MAY	5	30	8	:	30 MAY	15	1	281	: :	31	MAY	0	30	47	:	31	MAY	10	0	t
- 30	MAY	5	45	i 0	:	30 May	15	i 15	i 262	: 3	31	MAY	0	45	45	:	31	MAY	10	15	i
38	MAY	6	0	. 0	:	30 M ay	15	30	242	: 3	31	MAY	1	0	43	:	31	MAY	10	30	
	MAY	6	15		:	30 MAY	15	i 45	; 222	: :	31	May	1	15	40	:	31	MAY	10	45	i
- 30	MAY	6	30	8	:	30 MAY	16	. 0	202	: 3	31	MAY	1	30	37	:	31	MAY	11	0	
	MAY	6	45			30 May	16				31	MAY	1	45	33	:	31	MAY	11	15	i
	MAY	7	0	0	:	30 MAY	16	30	169	: :	31	MAY	5	0	29	:	31	MAY	11	30	I
r	MAY	7	15		:	30 MAY	16	45	i 156	: :	31	MAY	5	15	25	:	31	MAY	11	45	i
	MAY	7	30		:	30 MAY	17	6	144	: 3	31	MAY	2	30	21	:	31	MAY	12	0	l
	MAY	7	45	i 0	:	30 MAY	17	15	i 134	: :	31	MAY	2	45	18	:	31	MAY	12	15	i
30	MAY	8	0	0	:	30 MAY	17	38	125	: :	31	MAY	3	0				MAY	12	30	l
30	MAY	8	15	i · 0	:	38 MAY	17	45	5 117	:	31	MAY	3	15				MAY	12	45	;
30	MAY	. 8	30	0	:	30 MAY	18				31	MAY	3	30				MAY	13	0	
38	MAY	8	45	i 0	:	30 MA)	18	15				MAY	3	45		:		MAY	13	15	
39	MAY	9	8) 0	:	30 MA)	18	38	98	:	31	MAY	4	9		:	-		_		
38	MAY	9			:	30 MAY						MAY	4	15							

Table A-9. HEC-1 Output: Station 3 Hydrograph Routed to Station 4.

Table A-10. HEC-1 Output: Sub-basin 50 Hydrograph.

)av	Nonth	Hn	Min	FLOW (CFS)			Month	Line.	Min	FLOW (CFS)		ป้อน	Month	i.in	Min	FLOW		Dav	Month	Цw	Min.	FLO
	HUNGI		M 10.	(673)	: 90 +	sy 	HUNCH	nr.	Filfi.	(GF3)	i +-		MONTI	nr.	Piln.	(LFS)	: -+-		Honta		Filfi.	ILF5
	MAY	0	8	8			MAY	9	38	0			NAY	19	15	5			MAY	4	45	
	MAY	0	15	0			May	9	45				May	19	30	5			MAY	4	0	
	MAY	8	38	8			MAY	10	0	-			MAY	19	45	4			MAY	5	15	
	MAY	8	45		-		MAY	10	15				MAY	19	0	4	-		MAY	5	30	
	MAY	1	8	-			MAY	10	30				MAY	50	15	4			MAY	5	45	
	MAY	1	15				MAY	18	45	_			MAY	20	38	4			MAY	Ş	8	
	MAY	1	38				MAY	11	8	-			MAY	28	45		:		MAY	6	15	
	MAY	1	45				MAY	11	15				MAY	20	9		:		MAY	6	38	
	MAY	2	9	-			MAY	11	30				MAY	21	15	-	:		MAY	6	45	
	MAY	2	15 38	-			MAY	11	45	-			MAY	21	30	-	:		MAY	6	0	
	MAY	2	- 36 45	-			MAY	12	0				MAY	21	45	-	:		MAY	7	15 30	
	May May	2	40 8				May May	12 12	15 30				MAY	21	0 15	-	1		May May	7	30 45	
	i May	· 3	9 15	-			may	12	30 45				May May	22 22	10 30		:		MAY	7	40 0	
	MAY	3	30				MAY	12	40 0					22	ათ 45		:		MAY	/ 8	15	
	i May	3		-			MAY	13	15				May May	22	40 0	-	:		MAY	8	30	
	MAY	ن ه	40 0				MAY	13	30				MAY	23	15		:		PIRT	8	30 45	
	MAY		15				MAY	13	45				MAY	23	38		1		MAY	8	د ، 0	
	MAY		38				MAY	15	Ст 0				MAY	23	ుల 45		:		MAY	9	15	
	MAY		45				MAY	14	15				MAY	23	6 6		i		MAY	9	30	
	MAY	5		-			MAY	14	30				MAY	23 0	15		i		MAY	3		
	MAY	5	15	-			MAY	14	45				MAY	9	30		;		MAY	9	د ، 9	
	MAY	5	30				MAY	15	6				MAY	0	30 45		:		MAY	18	15	
	MAY	5	45	-			MAY	15	15		1		MAY	0 8	6 0		:		MAY	10	30	
	MAY	6		-	-		MAY	15	30		•		MAY	0 1	15		; ;		MAY	10	30 45	
	MAY	6	15	-			MAY	15			:		MAY	1	30		i		MAY	10	د ہ 9	
	MAY	6	30		-		MAY	16	0		;		MAY	1	45		•		MAY	11	15	
	MAY	6	45				MAY	16	15		:		MAY	1	6		:		MAY	11	30	
	MAY	7	0				MAY	16	30		:		MAY	2	15	÷			MAY	11	45	
	MAY	7	15	-	-		MAY	16			1		MAY	2	30				MAY	11	0	
	MAY	7	30				MAY	17			:		MAY	2	45	-	:		MAY	12	15	
	MAY	7	45	-			MAY	17	-		;		MAY	2	.0				MAY	12	30	
	MAY	8	0	-	:		MAY	17			:		MAY	3					MAY	12	45	
	MAY	. 8	15		-		MAY	17			;		MAY	3					MAY	12		
	B MAY	8	30				MAY	18			:		MAY	3					MAY	13		
	MAY	8	45		-		MAY	18			;		MAY	3		-			MAY	13		
	MAY	9	8	-	:		MAY	18			;		MAY	4	15							
	MAY	9			:		MAY	18			:		MAY	4	30							

K.W. Brown & Associates, Inc.

ł

				FLOW	:					FLOW	:					FLOW	:					FLO
Day	Nonth	Hr.	Min.			Day	Month	Hr.	Min.)ay	Month	Hr.	Min.	(CFS)		/ M	lonth	Hr.	Min.	
30	MAY	9	8	8	:	39	MAY	9	30	. 0	:	30	MAY	19	0	93	: 3	31 Þ	4 AY	4	30	
	MAY	0	15	0	:	- 30	May	9	45	0	:	30	MAY	19	15	89		31 F		4	45	
. 30	MAY	9	30	0	:	30	May	10	Ø	0	:	- 30	May	19	- 38	85	: 3	31 🖡	tAΥ	5	0	
- 38	MAY	8	45	8	:	- 38	May	18	15	8	1	30	MAY	19	45	82	: 3	31 🖡	4AY	5	15	
	MAY	1	8	0	:	30	May	10	30	0	:	. 30	MAY	20	0	79		31 P		5	30	
	MAY	1	15		;	- 30	May	10	45	0	:	- 30	MAY	20	15			31)		5	45	
30	MAY	1	30				MAY	11	0	-	:	30	MAY	20	30	74		31 🕴		6	0	
- 38	MAY	1	45	8	ł	- 30	MAY	11	15	0	:	- 30	MAY	20	45	71	: :	31 🕴	MAY	6	15	
- 30	MAY	2	0	0	:	- 30	May	11	30	0	:	30	MAY	21	0			31 1	MAY	6	38	
	MAY	2	15	8	:	- 30	MAY	11	45		:	30	MAY	21	15			31		6	45	
- 30	MAY	2	30	0	:	- 30	MAY	12	8	18	1	30	May	21	30	65	:	31	MAY	7	0	
- 30	MAY	2	45	0	:	30	MAY	12	15	i 55	:	30	MAY	21	45	64	:	31 I	MAY	7	15	
38	May	3	0	0	:	30	MAY	12	38	101	:	30	MAY	22	0	62	1.	31	MAY	7	30	ļ
38	MAY	3	15	6	:	30	May	12	45	i 141	:	30	May	22	15	60	:	31	MAY	7	45	i
32	May	3	32	8	;	38	MAY	13	e) 178	1	30	MAY	22	30	59	:	31	MAY	8	6)
38	May	3	45	i 0	:	30	MAY	13	15	i 216	1	30	MAY	22	45	58	:	31 (MAY	8	15	;
30	MAY	4	e) 0	:	32	May	13	30	257	:	30	MAY	23	6	56	:	31	May	8	30)
30	May	4	15	i 0	:	32	MAY	13	45	i 291	:	30	MAY	23	15	55	:	31	MAY	8	45	i
34	MAY	4	38) (:	30	MAY	14	6	314	:	38	MAY	23	32	54	:	31	MAY	9	6	5
3	MAY	4	45	5 0	:	30	MAY	14	15	i 323	:	30	MAY	23	45	i 53	:	31	MAY	9	15	5
36) May	5	e	8 8	:	30) May	14	3	320	:	31	MAY	0	2	52	:	31	May	9	30	8
- 36	May	5	15	i 8	:	30	MAY	14	45	5 388	:	31	MAY	0	15	i 51	:	31	May	9	4	i
36	é may	5	34	9 8	:	30	MAY	15	(292	2:	- 31	MAY	9	30	49	:	31	MAY	10		
30	MAY	5	45	5 6	:	30	MAY	15	15	5 278	2 :	- 31	MAY	0	45	5 47	:	31	MAY	10	15	5
3	D MAY	6		0 0	:	36	MAY	15	- 36	25	:	31	MAY	1	e) 44	:	31	MAY	10	30	
3) MAY	6	15	5 8	:	39	MAY	15	4	5 23(:	31	MAY	1	15	5 41	:	31	MAY	10	45	5
- 31	ð May	6	- 30	8	:	34) May	16	(210	:	- 31	MAY	1	30	37	:	31	MAY	11	()
- 34	ð May	6	4:	5 8	::	34) May	16	1				MAY	1	45	i 34	:	31	MAY	11	1.	5
3) May	7	6	8	:	36) May	16	- 36	0 17(5:	31	MAY	2	0	30	:	31	MAY	11	- 30	8
3	a May	7	15	56) :	3	b May	16	4	5 16	3:	31	MAY	2	15	i 25	:	31	MAY	11	4	5
3) MAY	7	3	8 8) :	3	B MAY	17	' (0 15:	l :	31	MAY	2	30	21	:	31	MAY	12	: 1	3
31	D MAY	7	4		:		D MAY	17	1	5 14	8 :		MAY	2					MAY	12	! 1	5
3	0 MAY	8		9 6) :	3	D MAY	17	3	0 13	l :		MAY	3		15	:		MAY	12		8
3	8 MAY	8	1):		D MAY	17	4	5 12	3:	3	MAY	3	1	5 12	:		MAY	12	2 4	5
	8 MAY	8			8 :		8 MAY	18			5:		MAY	3			1		MAY	13		8
	B MAY	8) :		D MAY	18			9:		MAY	3					MAY	13		
	0 MAY	9) :		D MAY	18			3:		MAY	4							-	
	e May	9) :		B MAY	18			B :		MAY	4			:					

Table A-11. HEC-1 Output: Combination of Station 4 Hydrograph and Sub-basin 50 Hydrograph.

Day	Month	Hr.	Nin.	FLON (CFS)		Month	Hr.	Nin.	FLOW (CFS)		Month	Hr.	Min.	FLOW (CFS)	-	Month	Hr.	Min.	FLO (CFS)
	MAY	8	8	0		MAY	9	38	0		MAY	19	0	97		MAY	4	30	5
	MAY	8	15	0		MAY	9	45	0		MAY	19	15	92		MAY	4	45	
	MAY	8	38	8		May	10	8	8		MAY	19	30	88		MAY	5	0	
	MAY	0	45	0		May	10	15			May	19	45	85		May	5	15	
	MAY	1	8	0		MAY	10	30			MAY	20	8	81		MAY	5	30	
	MAY	1	15	8		MAY	18	45			May	26	15	78		May	5	45	
	MAY	1	30	0		MAY	11	0	-		MAY	20	30	76		May	6	0	
	MAY	1	45	0		May	11	15			May	50	45			MAY	6	15	
	MAY	2	0	0		MAY	11	30			May	21	0			l May	6	30	
	MAY	5	15	0		MAY	11	45			May	21	15			May	6	45	
	MAY	2	30	0		MAY	12				MAY	21	30			May	7.		
	MAY	2	45	0		MAY	12				May	21	45			May	7	15	
	MAY	3	8	0		MAY	12				MAY	22	0			l May	7	30	
	MAY	3	15	0		May	12) May	22	15			M ay	7	45	
	MAY	3	38	e		May	13				May	22	30			l May	8	0	
	MAY	3	45	0		MAY	- 13				hay .	- 22	45			MAY	8	15	
	MAY	4	0	0		May	13				May	23	0			MAY	8	30	
	MAY	4	15	-		MAY	13				nay .	23	15			i May	8	45	
	MAY	4	30			MAY	14) May	23	30			1 May	9	0	
	MAY	4	45	-		MAY	14				MAY	23				1 MAY	9		
	MAY	5	8	-		MAY	14				May	0	0			i May	9		
	Ma y	5	15			May	14				i may	0	15			1 May	9		
	May	5	30	•		May	15				l May	0	30			1 MAY	10		
	May	5	45			May	15				May	0	45			1 MAY	10		
	May	6	0	-		May	15				l May	1	0			1 May	10		
	MAY	6	15			May	15				l May	1	15			1 May	10		
	MAY	6	30) May	16				May	1	30			i May	11	0	
	MAY	6	45			May	16				l May	1	45			1 MAY	11	15	
	MAY	7	0	-		May	16				l May	2	8			1 May	11	30	
	MAY	7	15			MAY	16				May	2	15			1 MAY	11		
	MAY	7	30			MAY	17				May	2	30			1 May	12		
	MAY	7	45	-		May	17				l May	5	45			1 MAY	12		
	MAY	8	0	-		May	17				l May	3				1 May	12		
	MAY	8	15			9 May	17				l May	3				1 May	12		
	MAY	8	30			d May	18				i may	3				1 MAY	13		
	MAY	8) May	18				1 MAY	3		-		1 MAY	13	15	i
	MAY	9				d May	18				1 May	- 4			:				
- 3	B May	9	15	0	: 3	i may	18	45	5 102	: 3	1 May	4	15	i 6	1				

Table A-12. HEC-1 Output: Station 4 Hydrograph Routed to Station 5.

DELAZZAZ**IO DE LE COMENSO DE LA COMENSIONE**

Table A-13. HEC-1 Dutput: Sub-basin 60 Hydrograph.

Day	Month	Hr.	Min.	FLOW (CFS)		Day	Nonth	Hr.	Nin.	Flow (CFS)		Day	Mo	onth	Hr.	Nin.	Flow (CFS)		Day	Month	Hr.	Min.	FLO (CFS
30	MAY			8	-+- 	30	MAY	9	30	0	+• 1		 MA	 7Y	 19	 0	5	-+- :		May	4	30	
30	MAY	8	15	8	:		MAY	9	45				MA		19	15	5			MAY	4	45	
38	MAY	0	38	0	:	38	MAY	18	8	8	:	30	MA	ΑY	19	30	5	:	31	MAY	5	0	
30	MAY	0	45	8	:	38	MAY	18	15	0	:	30	MA	AY	19	45	5	:	31	MAY	5	15	
30	MAY	1	8	0	1	30	May	10	30	0	;	30	MA	ΑY	-20	0	5	:	31	MAY	5	30	
_ 30	MAY	1	15	9	1	- 30	MAY	18	45	0	1	30	W	AY	20	15	4	:	31	MAY	5	45	
30	MAY	1	30		1	30	MAY	11	9	0	:	- 30	W	AY	28	30	4	:	31	May	6	0	
30	MAY	1	45	0	:	30	MAY	11	15	0	:	30	W	AY	20	45	4	:	31	MAY	6	15	
38	MAY	2	8	0	:	30	MAY	11	30	0	:	- 30	M	AY	21	8	4	:	31	MAY	6	30	
38	MAY	2	15	9	;	30	MAY	11	45	i 1	;	30	I MA	AY	21	15	4	:	31	MAY	6	45	
38	MAY	2	30	0	;	30	May	12	0	5	:	- 30	MA	AY	21	30	4	;	31	MAY	7	0	
	May	5	45	-	:		MAY	12	15	i 13	:	30	I M	AY	21	45	4	:	- 31	MAY	7	15	
38	MAY	3	0	0	:	30	MAY	12	30	24	:	30	M	AY	22	0	4	:	- 31	MAY	7	30	
3	May	3	15		:	30	MAY	12	45	i 32	:	- 30) M	AY	22	15	4	:	31	MAY	7	45	i
	MAY	3	30		:		MAY	13	0				I M	AY	55	30		:	31	MAY	8	0	
	May	3	45	0	:	- 30	MAY	13	15	i 35	:	38) M	AY	22	45	4	;	- 31	MAY	8	15	i
	May	4	0	-	:		MAY	13	38) 31	1	- 30	M	AY	23	0		:	31	MAY	8	30	
	i May	4	15		:	- 30	MAY	13	45	i 26	:	- 30)	AY	23	15	4	:	31	MAY	8	45	i
	MAY	4	30	-	:	- 30	MAY	14	e	23	:	- 38) 4	ay	23	30	3	;	31	May	9	0	l
	May	4	45	8	:		MAY	14			:) Mi		23	45	3	:	31	MAY	9	15	
30	May	5	0		:	- 30	MAY	14	30	17	:	31	M	AY	8	0	3	:	31	MAY	9	30	1
3	May	5	15	6	:	- 30	May	14	45	5 15	:	31	M	AY	0	15	3		31	MAY	9	45	5
3	i may	5	30	6	:	30	May	15	e	13	:	31	M	AY	8	30	3	:	31	MAY	10	e)
3	i may	5	45	e	:	- 30	MAY	15	15	5 12	:	: 31	M	AY	0	45	3	:	31	May	10	15	i
38	May	6	0	6	:	- 30	MAY	15	30	11	:	31	M	AY	1	0	2	:	31	MAY	10	30	l
	May	6	15		:	30	MAY	15	45	5 10	:	31	M	AY	1	15			31	MAY	10	45	i
	May	6	- 30		:	- 30	i May	16	e) 9	:	31	M	AY	1	30		:	31	MAY	11	8	l
	9 May	6	45	e);		May	16			1	: 31	M	AY	1	45	1	;	31	MAY	11	15	
) May	7		-	:		i May	16			:		M		2	0		:		MAY	11	30	
) May	7);) May	16					l M	AY	2	15) :		MAY	11	45	
	May	7);		May	17			1		L M		2	30) ;		May	12	e)
) May	7) ;) May	17					l M		2	45				MAY	12	15	-
	B May	8	0	-) :		hay .	17					l M		3	0	-) :		May	12	30)
) May	8) :) May	17					l M		3) :		MAY	12		
) May	8) :) May	18					IM		3	30) :		May	13		
	g May	8		5 6) May	18					1 M	IAY	3	45	8) :	: 31	MAY	13	15	5
	d May	9					n May	18			i :		l M	iay	4	8	0) :	1				
3	D MAY	9	15	5 . ()	: 34) May	18	4	5 5	i 1	. 3	1 M	ίΩV	4	15	; g		•				

				FLOW					FLOW						FLOW					FLO
)ay	Month	Hr.	Min.	(CFS)	: Day	Month	Hr.	Nin.	(CFS)	: Da	ly	Month	Hr.	Min.	(CFS)	: Day	Month	Hr.	Min.	(CFS
	MAY	8	0	0		MAY	9	30				MAY	19	9	102		MAY	4	30	
	MAY	8	15	0		May	9	45				MAY	19	15	97		l May	4	45	
	MAY	8	38	8		MAY	10	0				May	19	30	9 3		l May	5	0	
	MAY	- 8	45	0		May	10	15				May	19	45	89		l May	5	15	
	MAY	1	0	-		MAY	10	30				MAY	28	0	86		l May	5	30	
	MAY	1	15	0		May	10	45				MAY	20	15	83		l May	5	45	
	MAY	1	30	-	-	MAY	11	0	-			MAY	20	30	80		l May	6	8	
	MAY	1	45			May	11	15				May	28	45	77		May	6	15	
	MAY	2	0	-		MAY	11	30				MAY	21	0	75		l May	6	30	
	MAY	2	15			MAY	11	45				MAY	21	15	73		1 May	6	45	
	MAY	2	30			MAY	12	0				MAY	21	30	71		1 May	7	0	
	MAY	5	45			MAY	12	15				MAY	21	45			1 May	7	15	
	MAY	3	0	-		MAY	12	30				MAY	22	0			i May	7	30	
	MAY	3	15			MAY	12	45				MAY	22	15			1 MAY	7	45	
	MAY	3	30			MAY	13					MAY	22	30			1 MAY	8	0	
	MAY	3	. –			MAY	13					MAY	22	45			1 MAY	8	15	
	MAY	4	0	-		MAY	13					MAY	23	0			1 MAY	B	30	
	MAY	4	15			MAY	13					MAY	23	15			1 MAY	8	45	
	MAY	4	30			MAY	14	0				MAY	23	30			1 May	9	0	
	MAY	4	45	-		MAY	14					MAY	23	45			1 MAY	9	15	
	MAY	5	9	-		MAY	14					MAY	0	0			1 MAY	9	30	
	MAY	5	15			MAY	14					MAY	0	15			1 MAY	9	45	
	MAY	5	30	-		MAY	15					MAY	0	30			1 May	10	8	
	MAY	5	45			MAY	15					MAY	0	45			1 MAY	10	15	
	MAY	6	0			MAY	15					MAY	1	0			1 MAY	10	30	
	MAY	6	15			MAY	15					MAY	1	15			1 MAY	10	45	
	MAY	6	30			May	16					MAY	1	30			1 MAY	11	0	
) May May	6 7	45 0) May May	16 16					MAY	1	45 9			1 MAY	11	15	
	MAY	, 7) May	16					MAY	5	-			1 MAY	11	30	
) MAY	7) MAY	16					May May	2 2	15 30			1 MAY	11 12	45	
) MAY	7) May	17					MAY	. 2	- 30 45			1 May 1 May	12	. e 15	
	9 MAY	8) May	17						3							
	B MAY	о 8) MAY	17					MAY		0			1 MAY	12	38	
	D MAY	8) May	17					May May	3 3				I MAY	12	45	
	B MAY	8				5 MAY	18					MAY	3 3				1 MAY	13		
	D MAY	9				D MAY	18										1 May	13	12	1
	D MAY	9 9					18					MAY	4	0		:				
ال	u marti	3	10	0	4 J	d May	10	4.	10/	i	ા	May	- 4	15	5	:				

Table A-14. HEC-1 Dutput: Combination of Station 5 Hydrograph and Sub-basin 60 Hydrograph.

				FLOW	;					FLOW	;					FLOW	:					FLO
Day	Nonth	Hr.	Nin.	(CFS)	:	Day	Month	Hr.	Nin.	(CFS)	;	Day	Month	Hr.	Min.	(CFS)	: [Day	Month	Hr.	Min.	(CFS
	MAY	8	8	0	:		MAY	9	30	0			MAY	19	0	112			MAY	4	30	
	MAY	0	15	-	ł		May	9	45	8			MAY	19	15	106			MAY	4	45	
	May	0	30	6	:	- 30	May	10	0	0		30	May	19	30	101			May	5	0	
	MAY	0	45	-	:		May	10	15		;		May	19	45	97	-		May	5	15	
	MAY	1	8		:		May	10	30	0	1	30	MAY	20	8	92			MAY	5	30	
	MAY	1	15		;	30	May	10	45	0	:	30	May	20	15				MAY	5	45	
	MAY	1	30	-	1		MAY	11	8	-			MAY	50	30				May	6	0	
	MAY	1	45	0	:	30	MAY	11	15		:	30	May	20	45				MAY	6	15	
	MAY	2	0	-	;		May	11	30				MAY	21	0	• -			May	6	30	
	MAY	5	15		;		MAY	11	45				May	21	15				MAY	6	45	
	MAY	2	30		:		MAY	12	0		:		MAY	21	30				MAY	7	0	
	MAY	2	45	0	;		MAY	12	15				MAY	21	45				May	7	15	
	MAY	3	8		;	30	MAY	12	30				MAY	22	0	• -			May	7	30	
	MAY	3	15		;		MAY	12	45				May	22	15				MAY	7	45	
	May	3	- 39		:		May	13	0				May	22	30				MAY	8	e	
	i may	3	45	0		30	MAY	13	15				MAY	22	45	_			May	8	15	
30	May	4	0		:		MAY	13	30				May	23	0	-			MAY	8	30	
	i May	4	15	i 0		30	MAY	13	45				MAY	23	15				May	8	45	
) May	4	30				May	14	e				MAY	23	30				May	9	l	-
) May	4	45		1	: 30	May	14					MAY	23					MAY	9		
	s May	5	6				HAY .	14					MAY	8	0				MAY	9		
	b May	5	15) ;	: 30	May	14	45				MAY	0	15			31	MAY	9	45	5
.30	MAY	5	38) 8) ;	: 30	May	15	l	328		: 31	May	0	30	56	:	- 31	MAY	10		-
30	MAY	5	45	5 e) :	: 30) May	15	15	i 321	1	: 31	MAY	0	45	i 54	:	31	MAY	10		
30	MAY	6	2) () ;	: 30	May	15	30	307	:	: 31	MAY	1	8	52	:	- 31	MAY	10		
30	MAY	6	15	i 0		: 30	May	15	45	i 290		: 31	May	1	15	50	:	31	MAY	10	45	5
30) May	6	30) e);	: 30	May	16	e	278		: 31	MAY	1	30	47	:	- 31	MAY	11	ĺ.	9
- 34	B MAY	.6	45	58	3 :	: 30	May	16	15	5 249		: 31	MAY	1	45	i 43	:	- 31	MAY	11	15	5
38	nay 🛛	7	8) () :	: 30) May	15	- 30	229		: 31	MAY	2	e	40	:	- 31	MAY	11	30	8
3	B May	7	15	5 8) ;	: 34) May	16	45	5 210		: 3	MAY	2	15	i 36	:	- 31	MAY	11	4	5
30) May	7	30) () ;	: 34	MAY	17	6	9 193		: 3:	MAY	2	30) 32	:	31	MAY	12	(0
34	ð May	7	45	56		: 30) May	17	15	5 178		: 3	MAY	2	45	5 28	:	- 31	MAY	12	1	5
- 36) May	8	ę)	: 34	B MAY	17	- 34	165	i :	: 3	MAY	3	Q	24	:	- 31	l May	12	34	0
34	8 MAY	8	15				MAY	17	4:	5 153	5	: 3	MAY	3	15	5 20	:	31	May	12	4	5
	B MAY	8	34	8 8	8		MAY	18	6				MAY	3	30	3 17	:	31	l May	13	. (3
3	0 MAY	8	45	56		: 30	n May	18	1	5 134		: 3	MAY	3	45	5 14	1		i May	13	1	5
3	B MAY	9				: 3	b May	18	3	0 126	5 8	: 3	MAY	4) ii	:					
	B MAY	9			8		D MAY	18					MAY	4):					

Table A-15. HEC-1 Output: Station 5 Hydrograph Routed to Station 6.

				FLOW	:					FLOW	:				FLOW	:				FL
Day	Month	Hr.	Min.	(CFS)	:	Day	Month	Hr.	Min.	(CFS)	: Day	Month	Hr.	Min.	(CFS)	: Day	Month	Hr.	Min.	(CF
30	MAY	8	8	0	-	38	MAY	9	30	8		MAY	19	8	19	: 3	1 MAY	4	30	
30	May	8	15	9	:	30	May	9	45	0	: 34	MAY	19	15	18	: 3	1 MAY	4	45	
30	MAY	8	38	0	ł	- 38	May	10	0	0	: 34	MAY	19	30	17	: 3	ii May	5	0	
	May	0	45	8	:	30	May	10	15	0	: 30	MAY	19	45	17	: 3	I MAY	5	15	
- 30	MAY	1	0	8	:	- 30	May	10	- 30	0	: 34	MAY	20	0	16	: 3	11 May	5	30	
- 30	MAY	1	15	0	:	- 30	MAY	10	45	0	: 34	MAY	20	15	16	: 3	NAY	5	45	
30	May	1	30	8	:	30	May	11	0	8	: 30	May	20	30	15	: 3	31 MAY	6	9	
- 38	MAY	1	45	0	:	30	MAY	11	15	8	: 3	May	20	45	15	: 3	31 MAY	6	15	
30	MAY	2	0	i 0	:	30	MAY	11	30	0	: 3	MAY	21	0	14	: :	31 MAY	6	30	
38	MAY	2	15	0	:	30	MAY	11	45	1	: 3	MAY	21	15	14	: 3	31 MAY	6	45	i
30	MAY	2	30	0	:	30	MAY	12	0	6	: 3	hay .	21	30	14	: :	31 MAY	7	0	
38	MAY	2	45	i 8	:	30	MAY	12	15	i 15	: 3	MAY	21	45	13	:	31 MAY	7	15	i
30	MAY	3	0	0	:	30	MAY	12	30	30	: 3	MAY	22	0	13	:	31 MAY	7	30	1
38	MAY	3	15	i 0	:	30	MAY	12	45	48	: 3	MAY	22	15	13	:	31 MAY	7	45	5
32	MAY	3	30	0	:	30	MAY	13	e	66	: 3	B MAY	22	30	12	:	31 MAY	8	e)
34	MAY	3	45	i (:	30	MAY	13	15	5 78) May	22	45	12		31 MAY	8	15	5
34	MAY	4	0) 0	:		MAY	13		85		MAY	23	0			31 MAY	8	38)
30	MAY	4	15):	30	MAY	13				MAY	23	15	12		31 MAY	8	45	
	MAY	4			:		MAY	14				B MAY	23	30			31 MAY	9		
	MAY	4) :		MAY	14				D MAY	23				31 MAY	9		
	MAY	5					MAY	14				I MAY	0				31 MAY	9		
	MAY	5		-):		MAY	14				1 MAY	0	15			31 MAY	9		
	MAY	5					MAY	15				LMAY	8	30			31 MAY	10		
	MAY	5):		MAY	15				MAY	8	45			31 MAY	10	-	
	MAY	6) :		MAY	15				1 MAY	1	0			31 MAY	10		
	MAY	6		-) :		MAY	15				1 MAY	. 1	15			31 MAY	10		
	MAY	6) :		MAY	16				1 May	. 1	30			31 MAY	11		
	MAY	6) :		MAY	16				1 May	1	45			31 MAY	11		
	MAY	7) :		MAY	16				1 May	2				31 MAY	11		
	MAY	7) :		MAY	16				1 May	2				31 MAY	11		
	MAY	7):		MAY	17				1 MAY	2				31 MAY	12		
	MAY	7):		May	17	-			1 MAY	2				31 MAY	12		-
-	MAY	8):		MAY	17				1 MAY	3				31 MAY	12		
) MAY	8		_) ;] :		9 MAY	17				1 MAY	3				31 MAY	12		
	MAY	8):) May	18				1 MAY	3				31 MAY	13		2
	MAY	8):) MAY	18				1 MAY	3				31 MAY	13		
	MAY	9):		S MAY	18				1 MAY					at Linit	10		<u>د</u>
) MAY	ć) :) :) MAY	18				1 MAY	4			i 1				

Table A-16. HEC-1 Output: Sub-basin 70 Hydrograph.

ł

L

Table A-17.	HEC-1 Outpu	t: Sub-basin	80	Hydrograph.
-------------	-------------	--------------	----	-------------

i.

n	Wast	H.,	M:	FLOW			M_ 11			FLOW	:	_				FLOW	:					FLO
uay 	Month	Hr.	Ħ1n.	(CFS)	: Da +	ay 	Month	Hr.	Min.	(CFS)	: -+-	Day	Month	Hr.	Min.	(CFS)	: 1	Day 	Month	Hr.	Min.	(CFS
	MAY	0	0	8			MAY	9	30		1	30	MAY	19	0	7	:	31	MAY	4	30	
	MAY	0	15	8		30	May	9	45	0	:	30	May	19	15	6	:	31	MAY	4	45	
	May	0	30	-			May	10	6	0	:	- 30	MAY	19	30	6	:	- 31	MAY	5	0	
	MAY	8	45				May	10	15		;	30	MAY	19	45	6	:	31	MAY	5	15	
	May	1	0	0			May	10	30	-	:	30	MAY	20	0	6	:	- 31	MAY	5	30	
	May	1	15				May	10	45	0	:	30	MAY	20	15	6	:	- 31	MAY	5	45	
	MAY	1	30	0			MAY	11	0	-	:	30	MAY	20	30	6	:	31	MAY	6	0	
	MAY	1	45	0	:	30	MAY	11	15	0	;	- 30	MAY	20	45	5	:	- 31	MAY	6	15	
	MAY	2	8	8	:	30	May	11	30	. 0	:	30	MAY	21	0	5	;	31	MAY	6	30	
30	May	2	15	0	:	30	MAY	11	45	1	1	30	MAY	21	15	5	:	31	MAY	6	45	
	MAY	2	30	0		30	MAY	12	9	5	:	30	MAY	21	30	5	:	31	MAY	7	0	
	MAY	5	45				hay	12	15	13	;	30	May	21	45	5	:	31	MAY	7	15	
	MAY	3	8	-		30	MAY	12	30	26	:	30	MAY	22	0	5	:		MAY	7	30	
	MAY	3	15		:	30	May	12	45	36	:	30	MAY	22	15	5	:	31	MAY	7	45	
	MAY	3	30	-	;	30	May	13	0	42	:	30	MAY	22	30	5	:	31	MAY	8	0	
	May	3	45	-		30	MAY	13	15	43	:	30	MAY	22	45	5	:	31	MAY	8	15	
	May	4	0	8	:	30	MAY	13	30	40	:	30	May	23	0	5	:		MAY	8	30	
	May	4	15			30	MAY	13	45	35	:	30	MAY	23	15	4	;	31	MAY	8	45	
	MAY	4	30			30	May	14	0	30	;	30	MAY	23	30	4	:	31	MAY	9	0	
	MAY	4	45	0	:	30	MAY	14	15	26	;	30	MAY	23	45	4	:		MAY	9	15	
	MAY	5	0	0	1	30	MAY	14	30	23	:	31	MAY	0	0	- 4		31	MAY	9	30	
	MAY	5	15			30	May	14	45	20	:	31	MAY	0	15	4	:	31	MAY	9	45	
30	May	5	30		:	30	May	15	0	18	:	31	MAY	0	30	4		31	MAY	10	0	
	MAY	5	45	0	:	30	MAY	15	15	16	:	31	MAY	0	45	3			MAY	10	15	
	May	6	6	0	:	30	May	15	30	15	:	31	MAY	1	0	3			MAY	10	30	
	MAY	6	15	9	:	30	MAY	15	45	13	:	31	MAY	1	15	2			MAY	10	45	
	May	6	30	0	:	30	MAY	16	8	12	:		MAY	1	30	2			MAY	11	0	
	MAY	6	45	0	:	30	May	16	15	11	:	31	MAY	1	45	1			MAY	11	15	
	May	7	0	0		30	MAY	16	30				MAY	2	0	1	-		MAY	11	30	
	MAY	7	15	0	:	30	MAY	16	45	10	:		MAY	2	15	1			MAY	11	45	
	MAY	7	30	8	:	30	MAY	17	0	9	:		MAY	2	30	0			MAY	12	0	
	May	7	45	0	:	30	May	17	15		:		MAY	5	45	0			MAY	12	15	
- 30	MAY	8	0	8	:	30	MAY	17	30		:		MAY	3	0	0			MAY	12	30	
30	MAY	8	15	8	:	30	May	17	45		:		MAY	3	15	Ő	-		MAY	12	45	
38	MAY	8	30	9	:		MAY	18	0				MAY	3	30	õ	•		MAY	13	9	
30	MAY	8	45	8	:		MAY	18	15	_			MAY	3	45	ě			MAY	13	15	
30	MAY	9	0	0			MAY	18	30				MAY	4	0	0		41	1811	13	10	
	MAY	9	15				MAY	18	45				MAY		15	0						

)ay	Month	Hr.	Min.	FLOW (CFS)			Month	Hr.		Min.	FLOW (CFS)		y	Month	Hr.			FLOW (CFS)	: :Da	зy	Month Hr.	1	41n.	FLO: (CFS
 70					-1	•			~~~	 70	 *	-+							•+					
	May May	e 6					8 May 9 May		9	30 45		:		May May		19 19	0	137			May May	4	30 45	
	MAY	2					o Pilit O May		9 10	64 8		:				19	15 30	131			MAY	4 5	40	
	MAY	6		-)		d May		10	15	-	•		May May		19	30 45	119			MAY	5	15	
	MAY						D MAY		10	30		i 1		MAY		20	40 0	115			MAY	5	30	
	MAY	1			, , , ,		8 MAY		10	45		•		MAY	•	20	15	110			MAY	5	45	
	MAY	1			, }		2 MAY		11	0		:		MAY		20	30	106			MAY	6	0 0	
	MAY	1			, }		D MAY		11	15	-	:		MAY		20	45	102			LMAY	6	15	
	MAY	-	2 1		5		8 MAY		11	30				MAY		21	10	39			l May	6	30	
	MAY		2 1		5		0 MAY		11	45				MAY		21	15	96			l May	6	45	
	MAY		2 3		j		0 MAY		12	0		:		MAY		21	30	93			MAY	7	0	
	MAY		2 4		0		0 MAY		12					MAY		21	45	91			L MAY	7	15	
	MAY)		0 MAY		12					MAY		22	0	88			1 MAY	7	30	
	MAY		31)		0 MAY		12					MAY		22	15	86			1 MAY	7	45	
30	MAY		3 3		0	: 3	0 MAY		13					MAY		22	30	84	1		1 MAY	8	0	
30	MAY		34	5 (8	: 3	0 MAY		13	15	275	i :		MAY		22	45	82	:	3	1 MAY	8	15	i
30	MAY		4	0 ()	: 3	Ø MAY		13	30	319):	30	MAY		23	0	80	:	3	1 MAY	8	30	
38	May		4 1	5 (0	: 3	Ø MAY		13	45	i 353	3:	32	MAY		23	15	78	:	3	1 MAY	8	45	i
38	MAY		43	0 (8	: 3	Ø MAY		14	0	380	:	32	MAY		23	30	77	:	3	1 MAY	9	0	
30	MAY		4 4	5 (8	: 3	0 May		14	15	400	: (30	MAY		23	45	75	:	3	1 MAY	3	15	i i
30	MAY		5	0 (0	: 3	Ø May		14	- 30	416):	- 31	MAY		- 0	0	74	:	3	1 MAY	9	38	l
30	May		51	5 (0	: 3	ø May		14	45	i 410	:	- 31	May		0	15	72	::	3	1 MAY	Э	45	i
	May		53		9	: 3	8 May		15	i 8	403	3:	- 31	MAY		0	30	78	11	3	1 MAY	10	e)
	May		54	5 1	0	: 3	ið May		15	i 15			- 31	MAY		0	45	68	:	3	1 MAY	10	15	5
	May		6	8 (0		Ø MAY		15				- 31	MAY		: 1	0		:		1 MAY	10	30	
	May		61		0		Ø MAY		15					MAY		1					1 MAY	10	45	
	MAY		63		0		Ø MAY		16					May		1	30		:		1 MAY	11	e	
	MAY		64		0		10 May		16				- 31	MAY		1	45			3	1 MAY	11	15	
	MAY		-		0		10 May		16			-		MAY		2			: :		1 May	11	30	
	MAY			-	0		10 MAY		16					MAY		2			:		1 MAY	11	45	
	MAY				0		10 MAY		17					MAY		5			: :		1 MAY	12	e	
	MAY				0		10 MAY		17					MAY		2			:		1 MAY	12	15	
	MAY			-	0		KO MAY		17					May		3			:		1 MAY	12	30	
	MAY			-	0		10 May		17					MAY		3			::		1 MAY	12	45	
	MAY			-	0	• •	NO MAY		18	-		3:		MAY		3			3:		1 MAY	13		
	MAY				0		NO MAY		18					MAY		3	45		i :	3	1 MAY	13	15	ò
	MAY		9		8		NO MAY		18			3:		MAY		4	. 0		:					
3	d May		9 1	5	0		SØ MAY		18	3 45	5 14	5:	- 3	May		4	- 15	1):					

Table A-18. HEC-1 Output: Combination of Station 6 Hydrograph, Sub-basin 70 Hydrograph, and Sub-basin 80 Hydrograph.

ł

K.W. Brown & Associates, Inc.

i.

.

1

-

-

ł

APPENDIX B

March 1988 and October 1989 Soil Sample Analysis

ł

MARCH 1988

|

i I

ļ

;

Soil Sample Analysis

	2506 West 2506 West 3628 0-1-0 1.0-2.0 2.2-3.0 0.0-1.0 1.0-2.0 1.0-2.0	Z H	Inter-Mountain Laboratories, Inc. Farmington, New Mexico 87401 EL PASC NATURAL GAS KIRTLAND, NEW MEXICO Mine: SAN JUAN RIVER PLANT PROJECT #63708	Tel. (505) 326-4737	
# * * * # # # # * # # # # # # # # # # #	2.0-3.0 3.6-6.0 3.6-6.0 3.6-6.0 3.6-6.0 3.6-7.0 3.0-4-0 3.0-1.0 2.0-2.0 3.0-1.0 3.0-1.0 3.0-1.0 3.0-1.0 3.0-1.0 1.0-2.0 3.0-2.0 1.0-2.0 3.0-2.0 1.0-2.0 3.0-2.0 1.0-2.0 3.0-2.0 1.0-2.0 3.0-2.0 1.0-2.0 3.0000000000000000000000000000000000	22.23 2.42.5 2.42.5 2.42.5 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63			

.

.

1

•

I.

1 -

)

-

	4737		rase 2 of 2			
	Tel. (505) 326-4737					
لكمز	Inter-Mountain Laboratorles, Inc. Farmington, New Mexico 87401	EL PASO NATURAL GAS KIRTLAND, NEW MEXICO Mine: SAN JUAN RIVER PLANT PROJECT #63708		· ·		
	2506 West Main Street		1988	EC marios/cm Depths a 25C	2.3-3.0 20.4 5.0-1.0 1.37 1.0-2.0 24.6 2.0-3.0 24.0 2.0-1.0 1.85 1.6-2.0 1.14 2.0-3.0 23.4 3.0-6.0 23.3	
) _			ete Reported: April 11, 1983	is No. Location		

i

: **.** .

I)

1

. I

1

ļ

i

÷---

OCTOBER 1989

-

. |

, **|**

.

I.

ļ

Soil Sample Analysis

K. W. Brown & Associates, Inc. Analytical Services 6 Graham Road College Station, TX 77845 Phone: 409-690-0051 FAX: 409-690-7310 El Paso Natural Gas Facility: San Juan River Project Sid Johnson Account 63715 No.: Date: 11/28/89 Lab ID: 8910015

Electrical Conductivity Analysis

	Saturated Paste		Saturated Paste
Sample ID	EC (umhos)	Sample ID	EC (umhos)
A: 0-1"	38200	I: 0-1"	13580
1-2"	27500	1-2"	27700
2-3"	23900	2-3"	26500
3-4"	8140	3-4"	25800
B: 0-1"	4890	J: 0-1"	51900
1-2"	1032	1-2"	39100
2-3"	3040	2-3"	34100
3-4"	7470	3-4"	25500
C: 0-1"	44700	K: 0-1"	22400
1-2"	51000	1-2"	28700
2-3"	49200	2-3"	25290
3-4"	13720	3-4"	19660
D: 0-1"	14400	L: 0-1"	19200
1-2"	15000	1-2"	15990
2-3"	20400	2-3"	13780
3-4"	19810	3-4"	13700
E: 0-1"	17590	M: 0-1"	34400
1-2"	19270	1-2"	19130
2-3"	20300	2-3"	18190
3-4"	19820	3-4"	19310
F: 0-1"	5500	N: 0-1"	110700
1-2"	24300	1-2"	76200
2-3"	27400	2-3"	54500
3-4"	16000	3-4"	45800
G: 0-1"	11070	O: 0-1"	56800
1-2"	18540	1-2"	23600
2-3"	15910	2-3"	29500
3-4"	15280	3-4"	28900
H: 0-1"	27400	P: 0-1"	13780

ý

1-2"	41600	1-2"	8580
2-3"	36600	2-3"	4580
3-4"	44100	3-4"	4300

Quality Control Data El Paso Natural Gas

San Juan River Project

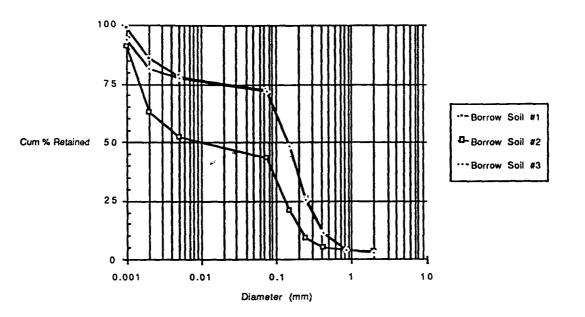
Electrical Conductivity

Sample Group EC umhos/cm

A thru F	7970
G thru K	7530
L thru P	6180
Reruns	8130

Mean	7453
Std (Sample	767
Population)	

K. W. Brown & Associates Analytical Services


6 Graham Road College Station, TX 77840 Phone: 409-690-0051 FAX: 409-690-7310

)

El Paso Natural Gas San Juan River Project Attn: Sid Johnson

Account No.:	63715		Date:	11/28/89		
Lab I.D.:	8910015	Soil Mechan	nical Analysi	s	<u>, , , , , , , , , , , , , , , , , , , </u>]
	· · · · · · · · · · · · · · · · · · ·	Texture		<u>*</u>	Soil Reac	tion
	Sand	Silt	Clay	Gravel		
USDA (mm)	.05 - 2.00	.002 to .05	<.002	2.00	pН	EC
U.S. Sieve (mesh)	270 to 10			10		
Sample ID			Percent Reta	ined on Sieve		umhos/c m
Borrow Soil #1	71.4	12.3	13.2	2.0		868
Borrow Soil #2	48.8	19.5	28.2	3.5		2980
Borrow Soil #3	74.5	9.8	12.6	3.1		725
		1				4
		}				1
			ASTM 1	Particle Siz	e Distri	bution
U.S. Sieve No.	20	40	ASTM 1 60	Particle Siz	e Distri 200	bution 270
U.S. Sieve No. Diameter (mm)	20 0.850		60 0.250	100 0.150		
		40 0.425	60 0.250	100	200	270
Diameter (mm) Sample ID		40	60 0.250 Percent Reta	100 0.150	200 0.075	270
Diameter (mm) Sample ID Borrow Soil #1	0.850	40 0.425 9.7	60 0.250 Percent Reta 15.3	100 0.150 ined on Sieve 17.4	200 0.075 19.7	270 0.005 6.3
Diameter (mm) Sample ID	0.850	40 0.425	60 0.250 Percent Reta	100 0.150 ined on Sieve	200 0.075	270 0.005
Diameter (mm) Sample ID Borrow Soil #1 Borrow Soil #2	0.850	40 0.425 9.7	60 0.250 Percent Reta 15.3	100 0.150 ined on Sieve 17.4	200 0.075 19.7	270 0.005 6.3
Diameter (mm) Sample ID Borrow Soil #1	0.850 3.0 0.5	40 0.425 9.7 1.3	60 0.250 Percent Reta 15.3 4.1	100 0.150 ined on Sieve 17.4 11.3	200 0.075 19.7 22.7	270 0.005 6.3 9.0

EPNG San Juan River Project

K. W. Brown & Associates, Inc.

Analytical Services

6	Graham Road	College	Station, TX	77845
-				100 100

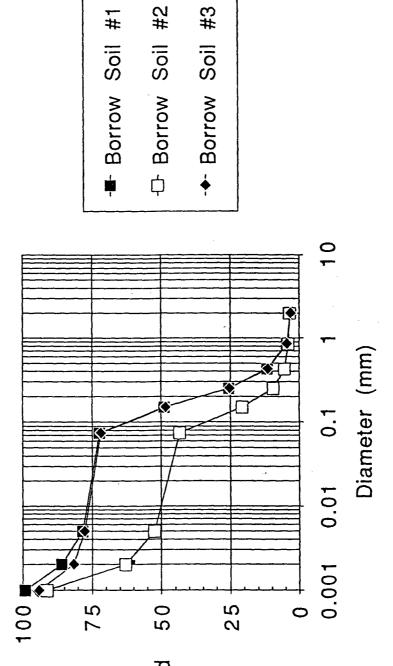
Phone: 409-690-0051	FAX: 409-690-7310
El Paso Natural Gas	Facility: San Juan River Project
Sid Johnson	Account No.: 63715

	Date: 11/28/89	٠	Lab ID: 8910015	
1				

Capillary Rise Study

	Bulk Density		
Sample ID	gm/cm3		
Borrow Soil #1	1.24		
Borrow Soil #3	1.28		

K. W. Brown & Associates Analytical Services 6 Graham Road College Station, TX 77840 Phone: 409-690-0051 FAX: 409-690-7310


•

El Paso Natural Gas San Juan River Project Attn: Sid Johnson

Account No.:	63715		Date:	10/31/89		
Lab LD.:	8910015	Soil Mechani	cal Analysis			7
		Texture	· ·		Soil Reactio	n
	Sand	Silt	Clay	Gravel		
USDA (mm)	.05 - 2.00	.002 to .05	<.002	2.00	pН	EC
U.S. Sieve (mesh)	270 to 10			10	_	1
Sample ID		Perc	ent Retained on	Sieve		umhos/cm
Borrow Soil #1	71.4	12.3	13.2	2.0		868
Borrow Soil #2	48.8	19.5	28.2	3.5	L <u></u>	2980
Borrow Soil #3	74.5	9.8	12.6	3.1		725
			[
		ASTM Pa	rticle Size D	istribution		ן ו
U.S. Sieve No.	20	40	60	100	200	270
Diameter (mm)	0.850	0.425	0.250	0.150	0.075	0.005
Sample ID			ent Retained on			
Borrow Soil #1	3.0	9.7	15.3	17.4	19.7	6.3
Borrow Soil #2	0.5	1.3	4.1	11.3	22.7	9.0
Borrow Soil #3	1.3	7.1	13.8	23.0	23.4	5.9
		•				
Reviewed By:	COT					
Title:	USI					

EPNG San Juan River Project

ì

Cum % Retained

K. W. Brown & Associates, Inc.

Analytical Services

6 Graham Road College Station, TX 77845

Phone: 409-690-0051	FAX: 409-690-7310		
El Paso Natural Gas	Facility: San Juan River Project		
Sid Johnson	Account No.: 63715		
Date: 11/28/89	Lab ID: 8910015		
Capillary Ri	ise Study		
Container W	Vt Soil Container Height Diameter		

	Container Wt.	Soil + Container	Height	Diameter	Bulk Density
Sample ID	gms	gms	cm	cm	gm/cm3
Borrow Soil #1	711.13	4155	60.96	7.62	1.24
Borrow Soil #3	618.44	4169	60.96	7.62	1.28

OIL CONSERV IN DIVISION RECEIVED

P. O. BOX 1492 EL PASO, TEXAS 79978 PHONE: 915-541-2600

May 2, 1991

'91 MAY 6 AM 9 24

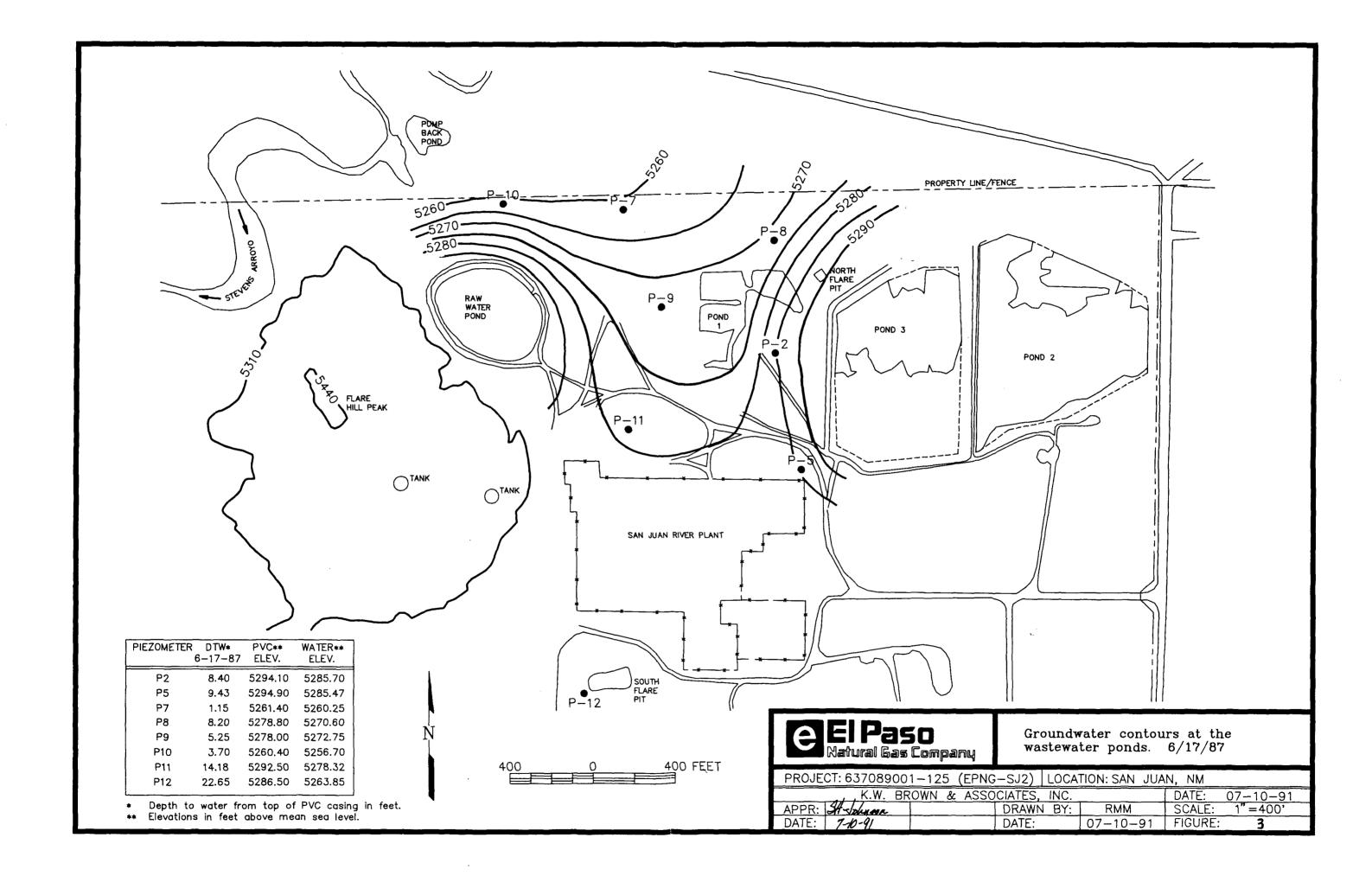
David G. Boyer, Hydrogeologist Environmental Bureau Chief Oil Conservation Division Energy, Minerals & Natural Resources Dept. State of New Mexico Post Office Box 2088 State Land Office Bldg. Santa Fe, New Mexico 87504

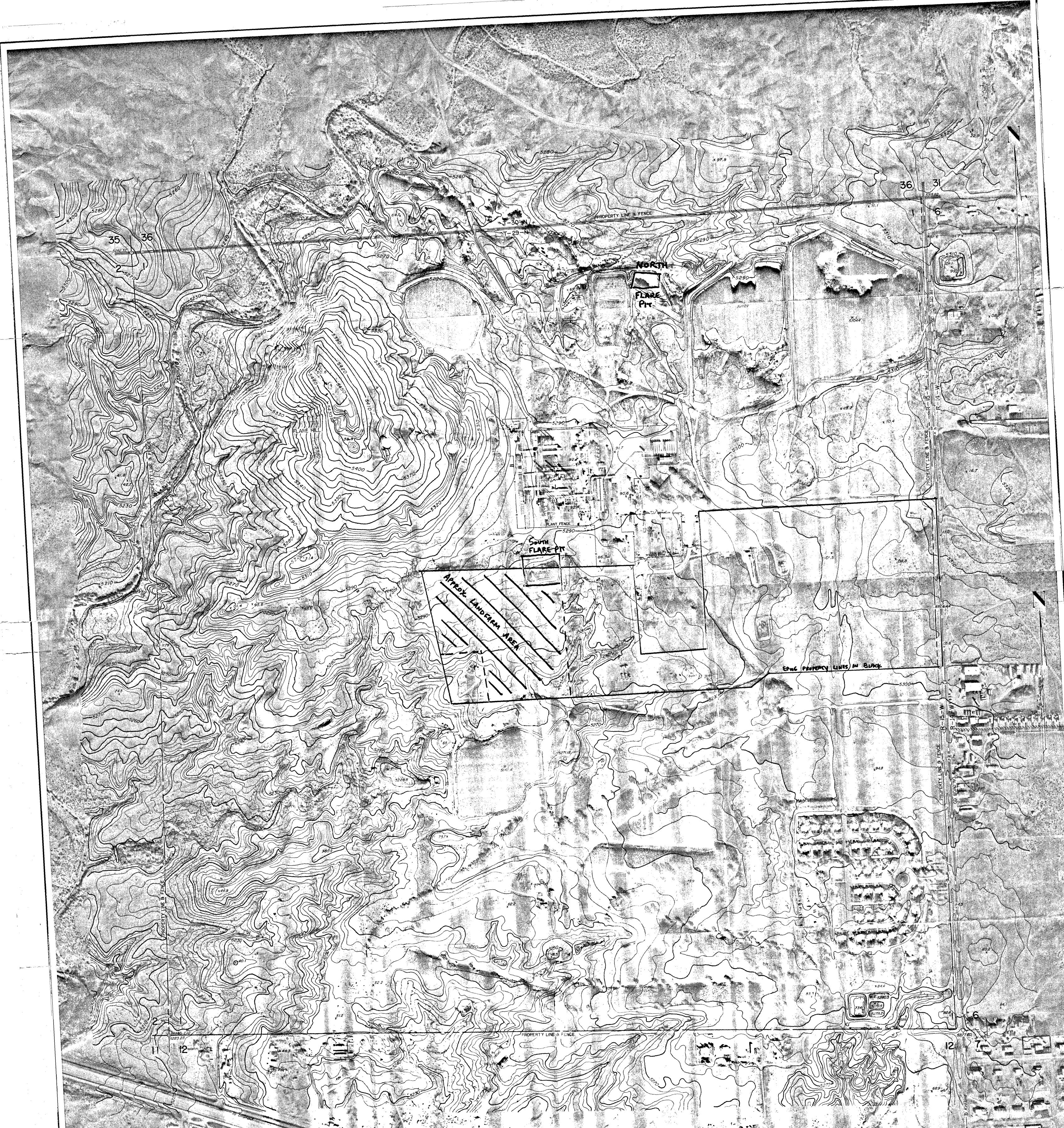
Re: San Juan River Plant Pond Closure Plan

Dear Mr. Boyer:

Enclosed please find two copies of our plan for closure of the flare pits and wastewater impoundments at San Juan River Plant in portions of Section 1, T-29-N, R-15-W and Section 36, T-30-N, R-15-W, San Juan County, New Mexico.

As you know, this is the culmination of a long series of studies. The objective has evolved from discharge of wastewater to the development of a method of closure to prevent leached salts from entering the San Juan River watershed. We believe the extent of these previous investigations have provided us with much more information than would ordinarily have been the case. We have been able to draw upon that knowledge to put together a plan that is exceptionally well-founded.


We have endeavored to include as much pertinent data as necessary in the closure plan to explain and justify the measures proposed. In order to expedite the process, we have been monitoring groundwater levels since last fall and have conducted sludge and soil sampling in accordance with the guidelines presented in the plan. We have scheduled further geotechnical testing and other measures aimed at implementing the plan as soon as possible. We hope to complete the soil work associated with the closure by the end of the summer.


If you have any questions or would like to schedule a meeting to discuss this plan, please call me any time at (915) 541-3531. Please be assured that we have every intention of continuing our long record of cooperation with the Division to achieve our mutual goals.

Sincerely,

Thomas D. Hutchins

Thomas D. Hutchins, Manager North Region Compliance Engineering

SITE INVESTIGATION REPORT KIRTLAND LANDFILL SITE SAN JUAN COUNTY

Prepared for The United States Department of Interior Bureau of Land Management

BLM Contract Number AA852-CT-4

Prepared by Roy F. Weston, Inc.

TABLE OF CONTENTS

·' .

i

DACE

	List	of Figures	iv
	List	of Tables	v
SECTION 1	នហ	MARY	1
	1.1	DEGREE OF RISK TO HUMAN HEALTH AND THE ENVIRONMENT	1
	1.2	RESPONSIBLE PARTIES AND OFF SITE CONTRIBUTORS	- 3 3
	1.3	RECOMMENDED ACTIONS	3
SECTION 2	SITE	BACKGROUND INFORMATION	4 ~
	2.1	LOCATION	4
	2.2	SITE DESCRIPTION	4
	2.3	SITE LAYOUT	4
SECTION 3		E OF EVALUATION AND YTICAL EFFORT	8
	3.1	BACKGROUND DATA ACQUISITION	8
	3.2	ENVIRONMENTAL MONITORING AND SAMPLING PROGRAM	8
	3.2.	l Surface Sampling	9
	3.2.	2 Subsurface Soil Sampling 3 Soil Gas Survey	9 12
	3.3	SAMPLING RESULTS	12
	3.3.	l Surface Sampling Results	13
	3.3.3	2 Subsurface Sampling Results	13
	3.3.3	3 Soil Gas Results	16
	3.4	QUALITY ASSURANCE PROCEDURES	16
	3.5	SITE AREA RECONNAISSANCE	18

1.

ł

Π

TABLE OF CONTENTS (Continued)

. · ,

SECTION 4	WASTE TYPES AND QUANTITY	19
	4.1 LOCATION	19
	4.2 FORM AND PHYSICAL STATE OF WASTE	19
	4.3 QUANTITIES AND CONCENTRATIONS	20
	4.4 EXISTING REGULATIONS	20
	4.5 CONTAINMENT AND ACCESSIBILITY	22 ~
SECTION 5	EFFECTS ON HUMAN HEALTH AND THE ENVIRONMENT	23
	5.1 SITE LAND USE, DEMOGRAPHICS, AND ENVIRONMENT	23
	5.2 SURFACE WATER CHARACTERISTICS AND USE	23
	5.3 GROUNDWATER CHARACTERISTICS AND USE	23
	5.4 SOIL AND GEOLOGY OF THE SITE	25
	5.4.1 Soils 5.4.2 Geology	25 27
	5.5 ASSESSMENT OF WASTE MIGRATION	28
	5.6 ENVIRONMENTAL EFFECTS	28
SECTION 6	RESPONSIBLE PARTY INFORMATION	29
SECTION 7	SUMMARY OF PAST RESPONSE ACTIVITIES	30
SECTION 8	B SITE CLASSIFICATION AND RANKING	31
SECTION 9	RECOMMENDED ACTIONS	32

.....

Į

.

I

i

-

.

E

ł

ii

TABLE OF CONTENTS (Concluded)

- Appendix A SOIL BORING LOGS
- Appendix B ANALYTICAL DATA
- Appendix C CHAIN-OF-CUSTODY FORMS
- Appendix D EPA FORM FOR SITE INVESTIGATION
- Appendix E HRS DATA SHEET

100000

LIST OF FIGURES

· · .

FIGURE 2-1	SITE LOCATION	5
FIGURE 2-2	SITE LAYOUT	6
FIGURE 3-1	SEPTIC PIT SAMPLE LOCATIONS	10
FIGURE 3-2	DUMP PIT SAMPLE LOCATIONS	11
FIGURE 3-3	SEPTIC PIT AT CROSS-SECTION OF SOIL BORINGS	15
FIGURE 3-4	DUMP PIT AT CROSS-SECTION OF Soil Borings	17
FIGURE 5-1	LOCATION OF WATER WELLS	26

ļ.,

.

P

LIST OF TABLES

;

L

 $\{ c_i \}_{i \in \mathcal{C}}$

.

[

1

I.

TABLE 3-1	SUMMARY OF ANALYTICAL RESULTS	14
TABEL 4-1	NEW MEXICO GROUNDWATER HUMAN HEALTH STANDARD	21
TABLE 5-1	RECORDS OF WATER WELLS IN SAN JUAN COUNTY, PRIOR TO 1983	24

v

SECTION 1 SUMMARY

A site investigation was conducted at the 40 acre Kirtland Landfill located approximately 13 miles west of the city of Farmington in San Juan County, New Mexico. A sampling program was conducted that included surface sampling, subsurface soil borings, and a soil gas study. Site documented, conditions observed and were existing regulations governing contamination of soils and groundwater were reviewed, an EPA site inspection report (form 2070-13) was completed, and the EPA Hazard Ranking System was applied to the site.

1.1 DEGREE OF RISK TO HUMAN HEALTH AND THE ENVIRONMENT

The Kirtland site investigation identified and characterized potential hazards at the site that pose the most significant threats to the health of the public and the environment. Approximately 3,300 cubic yards of waste that contain volatile and semi-volatile organic compounds are located in the inactive septic waste pit. Compounds detected included (110 ug/Kg), 1,1,1-trichlorethene (530 ug/Kg), acetone toluene (690 ug/Kg), and bis(2-ethylhexyl)phthalate (1000 ug/Kg). An estimated 32,500 cubic yards of waste material that contain volatile semi-volatile organic and inorganic compounds may exist in the dump pit. Analysis of samples collected from subsurface sampling activities detected 1,300 ug/Kg of toluene, 250 ug/Kg of methylene chloride, 1,200 ug/Kg of bis(2-ethylhexyl)phalate, arsenic (8,470 ug/Kg) and selenium (2,060 ug/Kg).

Extensive migration of waste from the inactive septic-waste> pits has not been detected, however, chemical_compounds_have migrated-vertically-and-horizontally.____Toluene-(690-ug/Kg)-<1,1,1-trichloroethane (32 ug/Kg _)___ and bis(2-ethylhexyl)phthalate (520-ug/Kg) were detected forty feet___below___surface___grade. Available___hydrogeologic -information_indicates_that_a_shallow_aquifer_(at-a-depth-of <u>approximately-70-feet-below-the-surface) possibly_underlays-</u> the site. Groundwater was not encountered during subsurface sampling activities and clay materials were identified that did not completely restrict the vertical/horizontal migration of chemical compounds. Review of USGS data did not identify any domestic water wells downgradient of the site within a distance of 2 miles from the site.

The degree of human health and environmental risks posed by the Kirtland site can be defined by comparing the sampling results to standards that do exist, along with a consideration of the mobility of accessibility and adjacent land use. the waste, site The state of New has not implemented specific regulations Mexico or guidelines for "action levels" of organic contaminates in soils against which the levels of contamination found on site can be compared. However, the state has Human Health Standards for Groundwater that apply to several compounds detected at the site. Compounds such such as toluene, methylene chloride and 1,1,1-trichloroethane were detected in several samples exceeding the New Mexico standards. Arsenic and selenium were detected above EP toxicity limitations. These compounds present the potential for discharging to a shallow aquifer below the site at levels above New Mexico standards.

A shallow aquifer potentially exists below the site. However, due to the buffer distance of 2.5 miles to the nearest domestic downgradient water well, the low chemical compound concentrations and the low annual precipitation (8 inches) in the region, it does not appear that a major threat to human health or the environment is posed by the Kirtland site.

The site has been classified as Level III and has been given an HRS score of 6.30. This classification and score reflect the following:

- 1. A significant volume of waste is present (35,000 cubic yards).
- 2. The site is located in a remote area. Land surrounding the property to the north, west, and east are primarily undeveloped. Migration of chemical compounds via surface water is deemed insignificant due the low annual precipitation and lack of surface waters in the immediate area.
- 3. Vertical migration of chemical compounds from the waste material has occurred. Compound concentrations were detected at less that one mg/Kg at a 40 foot depth.
- 4. Available hydrogeologic information indicates that a shallow aquifer possibly underlays the site. Compounds detected in the waste present the potential for discharging to a shallow aquifer, above New Mexico Human Health Standards for Groundwater.

- 2 -

5. No domestic water wells were identified downgradient at the site within a 2 mile distance from the site.

1.2 RESPONSIBLE PARTIES AND OFF SITE CONTRIBUTORS

The Kirtland Landfill property has been leased by BLM to the San Juan County Road Department since May 21, 1962 for use as a modified landfill. No potential off site contributors that may have disposed of hazardous substances in the waste pits have been identified.

1.3 <u>RECOMMENDED ACTIONS</u>

The results of the Kirtland Landfill site investigation indicate that the inactive septic and dump pits contain several organic compounds in the disposed wastes. Several of these compounds have migrated vertically downward and were detected as deep as 40 feet.

Based on the site investigation results and available information the potential exists for migration of chemical constituents to a shallow aquifer. Therefore, WESTON recommends the following activities be initiated:

• Restrict access to and contain both the inactive septic and dump pit; and

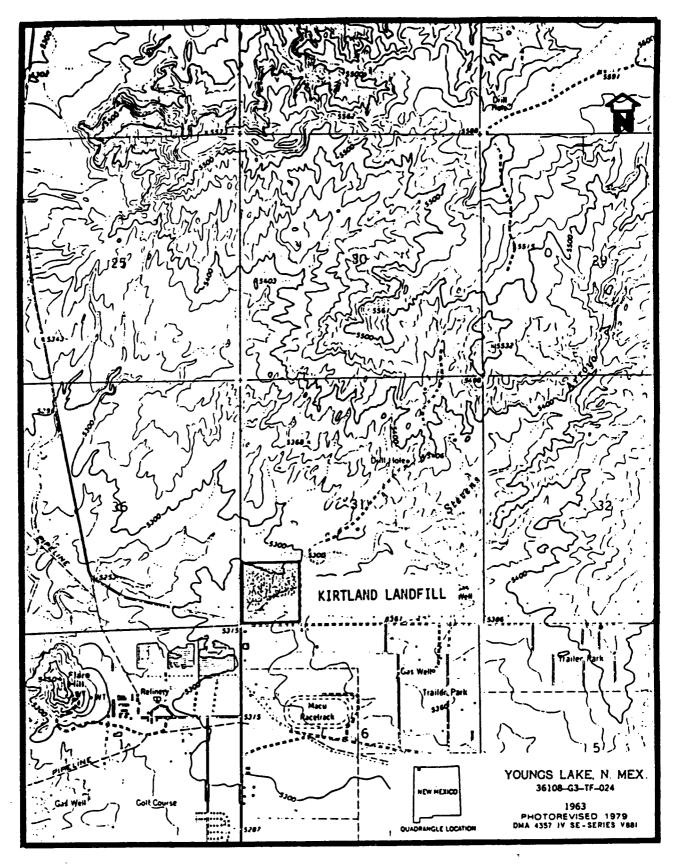
• Conduct a subsurface investigation to define the local aquifer and potential for its contamination.

SECTION 2 SITE BACKGROUND INFORMATION

-2.1 LOCATION

The Kirtland Landfill site is near the city of Kirtland, approximately 13 miles west of Farmington, San Juan County, New Mexico. It is located on the USGS Youngs Lake, New Mexico, 7.5 minute quadrangle map at 36°46'00' N latitude 108°21'15" W longitude. Consisting of about 40 acres in T3ON, R14W, Lot 4, Section 31, the site is located about 0.3 miles northeast of the El Paso Natural Gas Company (EPNG), San Juan River Plant, a refinery, about 0.2 mile from the intersection of San Juan County Routes 6500 and 6480 (Figure The landfill operation extends to the southern 2-1). portion of the site between two powerlines (115kv powerline) owned and operated by the Public Service Company of New Mexico, Farmington, New Mexico. The site is under the jurisdiction of the Farmington Resource Area (FRA), Albuquerque District, BLM New Mexico State Office, Santa Fe, New Mexico.

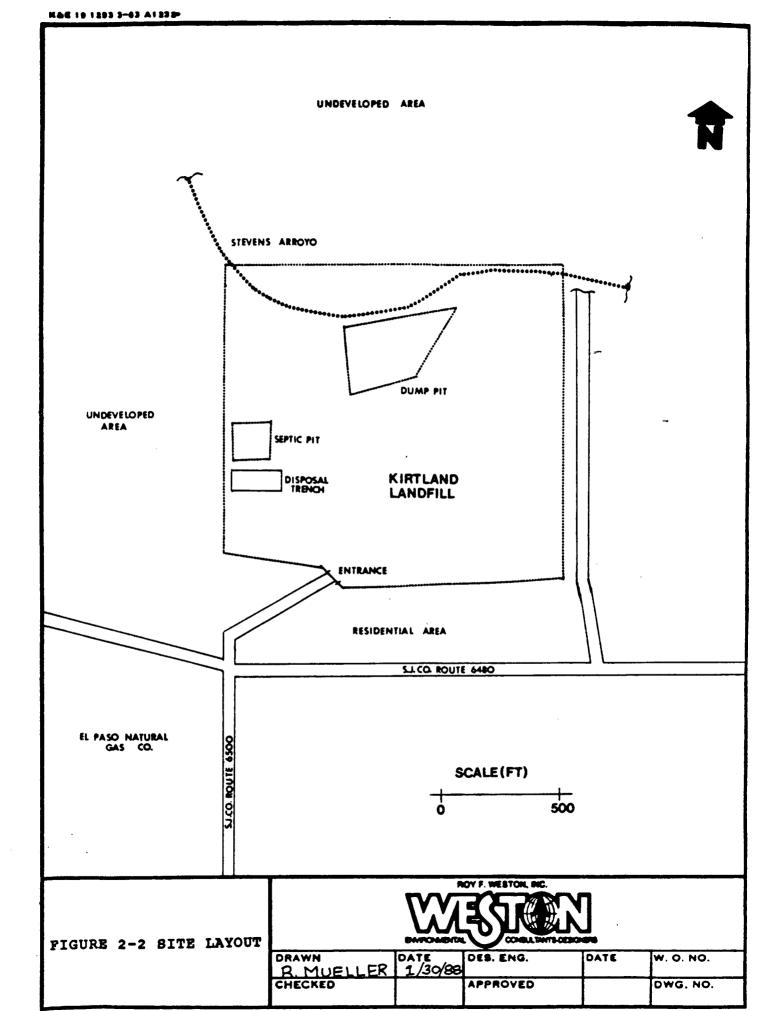
2.2 SITE DESCRIPTION


The site is an active modified sanitary landfill leased by the BLM to San Juan County since May 1962. The site covers an area of approximately 40 acres (generally square in shape with the sides measuring approximately 1,300 feet) and has been partially modified from time to time as a result of the landfill operations. The site is located in a gently sloping area along Stevens Arroyo at an approximate elevation of 5,300 feet above mean sea level. The region an arid climate and receives an average has annual precipitation of about 8 inches. The average annual air temperature is about 53 degrees Fahrenheit and the average frost-free period is about 150 days. The native vegetation is primarily grass (i.e. Indian rice grass, winterfat, and big sagebrush).

2.3 SITE LAYOUT

The entire site is fenced. The site entrance contains a lockable gate that is located on the southwest portion of the site and is equipped with warning signs. The inactive septic waste pit located along the western portion of the site and the dump pit located along the northern portion of the site are both enclosed by individual chain-link fences. A San Juan County officer resides on the site during operation hours. The layout of the site is shown in Figure 2-2. At the time the site investigation (SI) was conducted,

4、蒲路


STEN

Ł

FIGURE 2-1 KIRTLAND LANDFILL SITE LOCATION MAP

- 5 -

t has

لانفنا

- 6 -

the inactive septic waste pit that had been sampled during the preliminary assessment (PA) was closed and bermed with native soils and consisted of a mound approximately 4 to 6 feet above grade.

١.

and a second

SECTION 3 SCOPE OF EVALUATION AND ANALYTICAL EFFORT

3.1 BACKGROUND DATA ACQUISITION

Available background data was obtained from the U. S. Department of the Interior Bureau of Land Management (BLM), State of New Mexico Environmental Improvement Division (EID), U.S. Department of Agriculture Soil Conservation Service (SCS) and the U.S. Geological Survey (USGS). Materials obtained included:

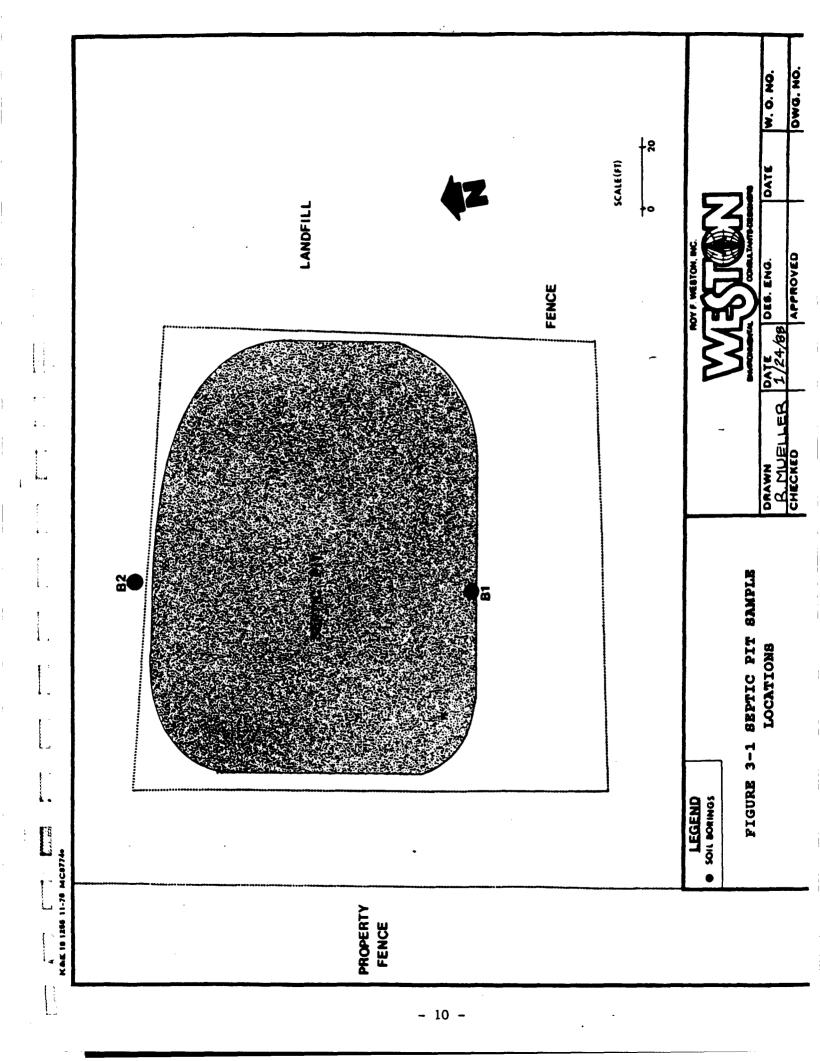
- o Site maps and facility sketches;
- Preliminary Assessment (PA) Report conducted by AEPCO, Inc. - August 1986;
- o BLM Recreation or Public Purposes lease agreements and operational compliance inspection reports;
- New Mexico EID solid waste facility inspection reports;
- SCS Soil Survey of San Juan County, New Mexico, Eastern Part; and
- USGS Hydrologic Data for the San Juan and Animas River Valleys in the Farmington, Aztec, Bloomfield, and Cedar Hill Areas, San Juan County, New Mexico.

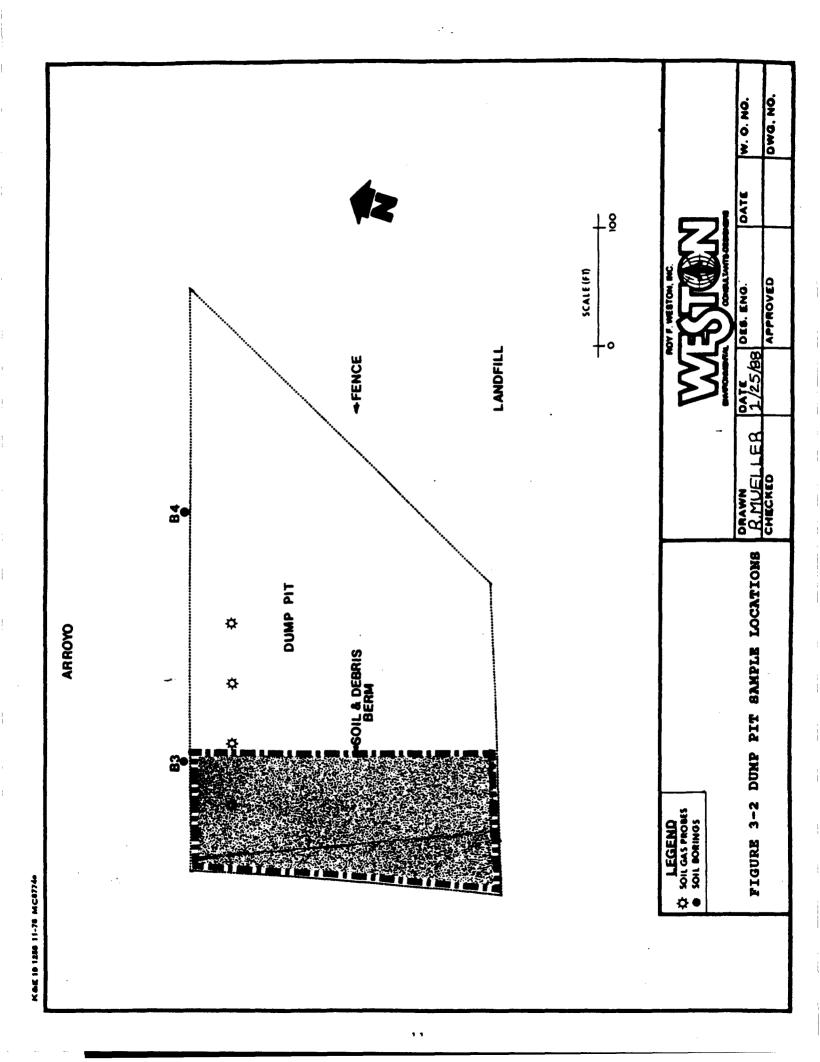
3.2 ENVIRONMENTAL MONITORING AND SAMPLING PROGRAM

The objective of the site monitoring and sampling program was to observe and document on-site conditions and to safely and representatively sample all potentially hazardous materials. Efforts were directed at obtaining information that could be used to develop plans for possible remedial actions, and to assist in cost recovery from potentially responsible parties.

Initially, an off-site reconnaissance survey was conducted around the perimeter and in the general vicinity of the site. The general layout of the site was observed and mapped. No evidence for off-site migration of contaminants, or hazardous conditions were noted. Available background information on the Kirtland Landfill indicated that petroleum industrial wastes and other hazardous wastes had been disposed of in the landfill inactive septic pit. Compounds identified in the inactive septic pit and inactive dump pit during PA activities included metallic, volatile and semi-volatile compounds. Based on this information, sampling activities for the site investigation study focused on the site receptors and drainage pathways. Sampling activities included surface samples, subsurface soil borings, and a soil gas study.

3.2.1 <u>Surface Sampling</u>


Surface waste samples from the inactive septic pit (Sample No. KLF-SP) and the dump pit (Sample No. KLF-WOL) were collected with a stainless steel trowel and placed directly into eight ounce laboratory cleaned jars with teflon-lined lids. The sample from the inactive septic pit consisted primarily of inactive septic sludge waste while the samples from the dump pit consisted of a dark stained soil. Samples were stored on ice in coolers. United States EPA chain-of-custody procedures were followed.


3.2.2 <u>Subsurface Soil Sampling</u>

Two soil borings to 30-35 foot depths were conducted at the inactive septic waste pit and two soil borings to 20 and 30 foot depths were conducted at the dump pit. Figures 3-1 and 3-2 present the location of the soil borings. Samples were obtained from a hollow-stem auger soil borings by means of a 4-inch (ID) split spoon continuous sampler using brass sleeves for soil retention. At the time of collection samples were qualitatively screened for chemical constituents using a photoionization detector (PID) and/or organic vapor analyzer (OVA) and visually classified. Soil boring logs are included in Appendix A.

Boring Bl was located at southern corner of the inactive septic pit inside the chain-link fence at the rim of the pit soil berm. Boring Bl was drilled at a 25 degree angle to a vertical depth of 30.4 feet to intersect below the pit. Samples were collected at 5, 10, 20, and 30 foot intervals. Soil consisted primarily of slightly silty fine-grained sand to an approximate depth of 12.2 feet with silt and clay continuing to a depth of 19.9 feet. An olive clay was encountered to a total depth of 30.4 feet.

Boring B2 was located on the north end of the inactive septic waste pit adjacent to the chain-link fence. Boring B2 was drilled at 25 degree angle to a vertical depth of 34.9 feet to intersect below the pit. Samples were

collected at 5, 10, 15, 20, 25, 30 and 35 foot intervals. Soil consisted primarily of fine sands with silt layers to an approximate depth of 13.6 feet. An olive clay continued to the total depth of 34.9 feet.

Boring B3 was located at the west side of the north end of the dump pit adjacent to the chain-link fence. Boring B3 was drilled at a 25 degree angle to a vertical depth of 31.7 feet. Samples were collected at 5, 10, 20 and 30 foot intervals. Soils consisted primarily of silty sand to an approximate depth of 18.1 feet with olive claystone continuing to the total depth of 31.7 feet.

Boring B4 was located at the east side of the north end of the dump pit adjacent to the chain-link fence. Boring B4 was drilled vertically to a depth of 20 feet. Samples were collected at 5, 10 and 20 foot depths. Soils consisted primarily of silt and clay with a low percentage of sand to an approximate depth of 10 feet with olive claystone continuing to a total depth of 20 feet.

3.2.3 Soil Gas Survey

A soil gas survey was conducted the first week of January 1988. The survey was to focus on areas surrounding known or suspected sources of disposed hazardous substances such as the dump pit. Soil gas probe locations are shown in Figure 3-2. Probe holes were installed to a depth of approximately 4 feet using a 1/2-inch diameter slam-bar. One quarter-inch diameter copper probes with a teflon inner tubing were placed in each hole. Soil gas samples were obtained using an air sampling pump at a purge rate of 200 milliliters per minute run for a 5 minute purge time. Samples were collected in 250 milliliter glass bulbs.

Severe weather conditions that included one foot of snow on the ground and temperatures as low as 5 degrees Fahrenheit were encountered. The top 1 to 1 1/2 feet of soil below the snow was frozen. Modifications in the sampling routine were initiated to reduce probe time in the ground and, therefore, reducing chances of temperatures decreasing in the probe holes and corresponding condensation of volatiles, and air flow restriction.

3.3 <u>SAMPLING RESULTS</u>

Based on Preliminary Assessment results (AEPCO, 1986) surface and subsurface samples were analyzed for volatile organic compounds (EPA method 8240), semi-volatile organic compounds (EPA method 8270), and toxic metals (EP toxicity method). In addition, the inactive septic pit and dump pit surface samples (KLF-SP and KLF-WOL) were analyzed for corrosivity and ignitability. Results of the Kirtland Landfill Site Investigation sampling program are summarized in Table 3-1. No organic compounds were detected in the laboratory blank. Alliquots of soil samples from various depths of the same boreholes were composited on an equal volume basis prior to analyses. Analytical laboratory results are included in Appendix B.

3.3.1 <u>Surface Sampling Results</u>

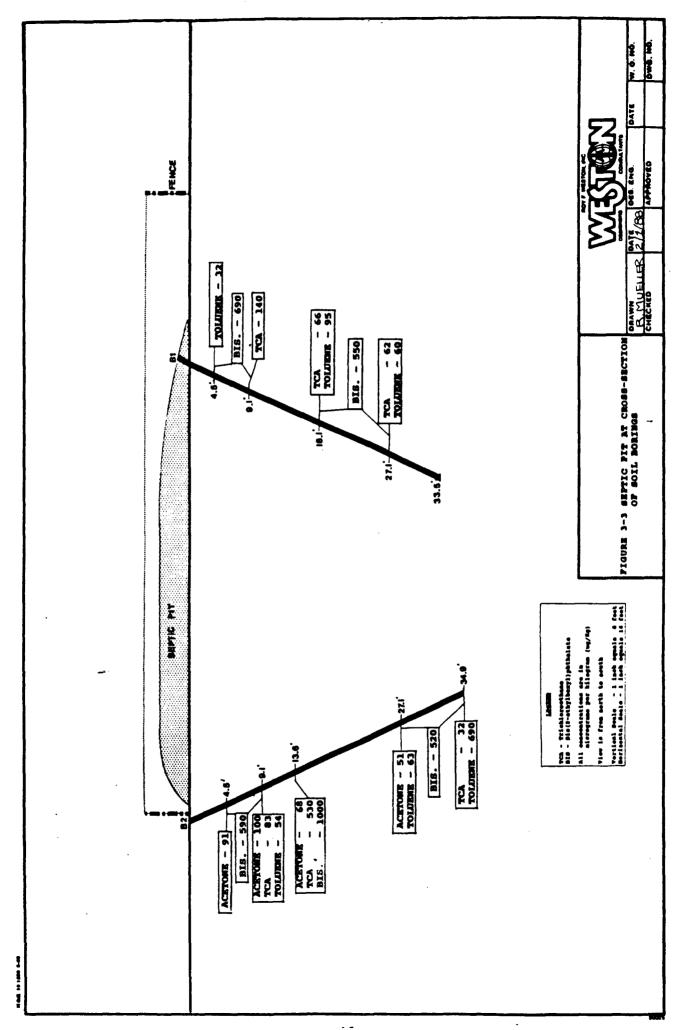
Two volatile organic compounds, acetone and toluene, were detected in the inactive inactive septic pit (KLF-SP) at concentrations of 110 and 470 micrograms per kilogram (ug/Kg) respectively. Barium and mercury were detected at concentrations below EP toxicity limitations. No semi-volatile organic compounds were detected and the sample did not contain corrosivity or ignitability characteristics.

Acetone and toluene were detected at 63 ug/Kg and 1,300 ug/Kg respectively in the dump pit (KLF-WOL). Barium was detected at a concentration below EP toxicity limitations. No semi-volatile organic compounds were detected and the sample did not contain corrosivity or ignitability characteristics.

3.3.2 <u>Subsurface Sampling Results</u>

Samples from boring B1, which was located at the south edge of the inactive inactive septic waste detected 1,1,1 trichloroethane, toluene, and bis(2-ethylhexyl)phthalate at various depths. Figure 3-3 presents a cross section of Soil Boring B1 and compounds identified. Bis(2-ethylhexyl) phthalate was detected at 550 ug/Kg in the 20 and 30 foot composite sample, while 1,1,1 trichloethane and toluene were only detected 62 and 60 ug/Kg, respectively, at the 30 foot interval. Mercury was detected in boring B1 but at concentrations below EP toxicity levels.

Samples from boring B2, located at the north fenceline of the inactive inactive septic waste pit, detected acetone, trichloroethane, toluene and bis(2-ethylhexyl) 1,1,1 phthalate at various depths. Figure 3-3 presents a cross section of Boring B2 compounds and identified. Bis(2-ethylhexyl) - phthalate was detected at 1200 ug/Kg in the 20 and 30 foot composite sample, while toluene was detected at 690 ug/Kg at the 40 foot interval. Mercury was detected in boring B2 but at concentrations below EP toxicity levels.


Results of soil samples collected from borings B3 and B4 at the dump pit detected methylene chloride, 1,1,1 trichloro-

							SURFIART	SUMMART UP ANALYTICAL INSULTS	LE RESOLIS										
							LI'L Conce	firtland tand fill Concentration (ug/Kg)	111 9/E91										
volatile Volatice N.A.M. R.(F.01-5 R.(F-01-10 R.(F-01-20 R.(F-01-30 R.(F-0	DLANK	5-10-JN	01-14-311	0[- - - - - - - - - - - - -	RLF-11-30		9		R.F. 42-30 R.F. 42-40 R.F. 43-5 R.F. 43-10 R.F. 43-20 R.F. 43-50 R.F. 44-5 R.F. 44-11 R.F. 44-20 R.F. 58	KLF-62-40		LF-65-10 1	LF -03-20 KL		- 94-5 ILLF	. 54-11 RLF	-64-20 KLF	- S	11 F-400
Methylene Chloride NB NB NB NB NB NB NB NB NB NB NB NB NB		99997	***	8 8 3 S	9237 		9953	5 3 5 5	8263	9 9 2 ⁷ 3	4 0 2	288 288 288	2 2 2 3	25 6 6 8 8 8 8 8 8 8			62 62 62 64 64 64 64 64 64 64 64 64 64 64 64 64	14	e 3 e 8
Seei Volatile Seei Volatile Organic Coepounds (LE-01-5,10 RE-02-5,10 RE-02-15 RE-02-10,40 RE-03-50,30 (LE-04-5,11 RE-04-20 RE-57 RE-00)	**	rtf-01-5,10	ut 41 5,10 MF 41 20,30 MF 42-5,10 MF 42-15 MF 42-			LF-62-30,40		RAF- 03-20, 30	-	ttf-04-5,11 ALF-04-20 ALF-5P	RLF-14-20	uf-sr 1	ELE-MUL				··· ··· ··· ···	24 44 14 14 14 14 14 14	14 19 46 44 14
bis(2-Ethrlikerri)Phthalate k0 690 550 590 1000 520 kD 1200 kD 320	2	e90	8	5y0	0001	220	9	1300		9	06 [2	g.	44 47 47 47 47 47 47 47 47 47	• # • • • • • • • • • •			F4 45 94 94 94 94 94 94 94 94 94	10 10 10 10 10 10 10
retais	•••																••		
Arsenic ND ND ND ND ND ND ND ND ND ND ND ND ND	99	2 9	29	2 9	29	99	2 5	21	•	9	8470 1910	9	2 5						
Cadalua	1 2 1	121	2 2 9	1 2 1	2 9	2 2 9	2 2 1	2 2 1		(9 1	811 911	1	3 2 9						
Lar colue Lead	2 9 9	22-	2 2 2	2 2 -	2 2 2	22	29,	2 2 _		2 2 3	2000	2 2 3	1 2 1						
Selentua Selentua Sılter	2 2 2	22	22	2 9	<u>9</u> 9	22	22	22		22	2090 2009								
uther Parameters																		44 44 44 44 44 44 44 44 44 44 44 44 44	14 10 10 14 14 14
Corrosivity, pH Ignitability, degrees F	11	a a a a a a a a a a a a a a a a a a a	22		N	22	22	4	NA NA 44 42 NA NA 6.42 NA NA 320	33	22	6.42)230	7.78)230						

i

140LE 3-1

SUMMARY OF AMALYTICAL RESULTS

ethane, toluene and bis(2-ethylhexyl)phthalate at various depths. Figure 3-4 shows a cross section of Boring B3 and B4 and compounds identified. The highest concentration of compounds detected in boring B3 were methylene chloride (250 ug/Kg), and toluene (580 ug/Kg) at the 30 foot interval and bis(2-ethylhexyl)- phthalate (1200 ug/Kg) in the 20 and 30 foot composite sample. Mercury was detected in boring B3 but at concentrations below EP toxicity levels.

Methylene chloride, toluene and bis(2-ethylhexyl)phthalate were detected in boring B4. Toluene was detected in all three samples with the highest concentration of 610 ug/Kg detected at the 11 foot interval. Methylene chloride was detected at only 34 ug/l in the 5 foot interval and bis-(2-ethylhexyl)phthalate at 390 ug/l in the 20 foot interval. Several inorganic compounds were detected in boring B4. However, only arsenic and selenium were detected above EP toxicity levels at 8.47 mg/l and 2.06 mg/l, respectively.

3.3.3 Soil Gas Results

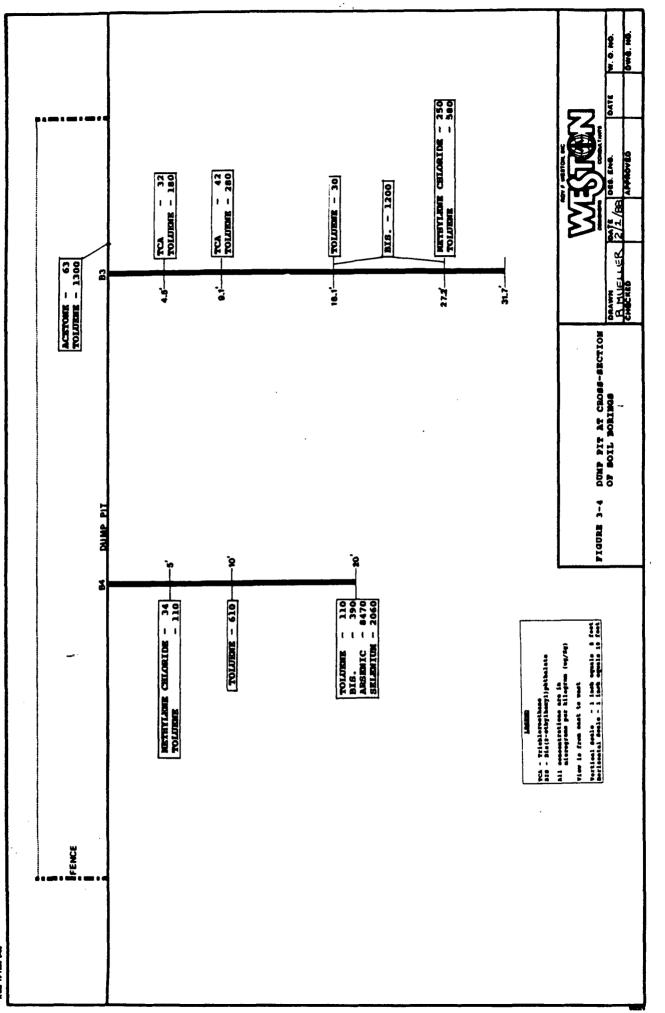
Analysis of soil gas samples obtained were not within the detection range of the field equipment, except in the area directly above the waste pit. More sensitive equipment was ordered and installed. However, despite the additional equipment valid results from new samples were unobtainable. The soil gas assessment was not able to provide any additional information concerning migration of contaminants on the site.

3.4 QUALITY ASSURANCE PROCEDURES

To assure that quality data were obtained, care was taken to avoid contamination of samples and cross contamination between samples. A dedicated effort was made to ensure representative samples were collected. Specifically, this involved using clean sampling equipment to begin with and decontaminating equipment between holes, careful sample handling, appropriate sample preservation, and stringent aboratory requirements.

to split spoon continuous samplers were utilized during the bsurface sampling operations. Samplers were contaminated after each use by a four step process:

- o Trisodium phosphate wash;
- o Tap water rinse;


<u>غن</u>

177

2.2

- o Distilled water rinse; and
- Allowing the sampler to air dry.

flights were steam cleaned between holes.

Stainless steel trowels were used for sampling waste material to avoid cross-contaminating the samples. Composited of soil samples was performed in the laboratory. Aliquots of soil samples from the same boreholes were composited on a equal volume bases prior to analyses. Pertinent sample information was recorded in the site logbook and sample data sheets in the field. Soil samples were individually bagged, kept on ice, and shipped for delivery overnight to the laboratory. Sample labels were completed at the site and appropriate chain of custody procedures were followed for all samples. Chain of custody sheets are included in Appendix C.

3.5 SITE AREA RECONNAISSANCE

The Kirtland site and vicinity was thoroughly traversed during the site investigation. No evidence of hazards were encountered, that might pose an immediate or long term threat to the public or environment, that were not already addressed in the sampling operations.

SECTION 4 WASTE TYPES AND QUANTITY

4.1 LOCATION

The inactive septic waste pit and inactive dump pit were the only two areas identified during the site investigation to warrant sampling and to contain chemical constituents. The inactive septic pit is located along the western boundry of the site and the dump pit is located along the northern portion of the site. Figure 2-2 shows the site layout and location of the pits.

The inactive septic pit is approximately 100 feet by 150 feet and has been bermed above ground with 4 to 6 feet of native soils. The dump pit is approximately 500 feet by 350 feet and slopes downward to the north, towards Stevens Arroyo. The western part of the dump pit contains a area that is bermed on the northern and western sites.

4.2 FORM AND PHYSICAL STATE OF WASTE

No records of the quantity, types of wastes disposed or the exact dates of disposal have been maintained at the facility. Waste disposed of in the inactive septic pit is comprised of a inactive septic sludge waste containing several organic compounds. Organic compounds are also contained in soils below the waste material. Waste disposed of in the dump pit is comprised of various debri, inactive septic waste and dark stained soil containing several organic compounds. Organic compounds, arsenic and selenium are also contained in soils below the waste materis. According to San Juan County personnel, the pits are unlined and no lining material was encountered during the subsurface investigation.

The five organic compounds detected in the subsurface samples were acetone, methylene chloride, 1,1,1-trichloroethane, toluene and bis(2-ethylhexyl)phthalate. Acetone, methylene chloride and toluene are primarily used as paint and varnish solvents. 1,1,1-trichloroethane is used as a metal degreaser (solvent). Toluene is also used as an aviation gasoline blending stock. Bis(2-ethylhexyl)phthalate is a liquid used in vacuum pumps.

Arsenic and selenium were also detected in the subsurface samples. Arsenic is a nonmetallic element that is highly toxic by ingestion and inhalation and is a carcinogen. Arsenic is used as an alloying additive for metals especially lead and copper (shot, battery grids, cable sheaths and boiler tubes. Selenium is a nonmetallic element primarily used in electronic equipment.

4.3 QUANTITIES AND CONCENTRATIONS

The inactive septic waste pit covers an approximate area of 15,000 square feet. The exact depth of the waste material is unknown. However, fill material was encountered to an average depth of six feet in the borings of 12 feet in Boring Bl which indicates the pit contains approximately six feet or 3,300 cubic yards of waste material. Organic compounds have migrated vertically from the waste to the surrounding soils. The highest concentration of compounds was detected at Boring B2 at the 15 foot depth. Compounds detected included acetone (68 ug/Kg), 1,1,1-trichloroethane (530 ug/Kg) and bis(2-ethyl- hexyl)phthalate (1000 ug/Kg).

The depth of the 146,000 square foot dump pit is unknown. Review of the soil borings indicates that the pit fill material extends 6 feet below grade. Therefore, the pit may contain 32,500 cubic yards of waste materials. However, hazardous substances have migrated vertically and horizontally from the waste to the surrounding soils. Analysis of the waste material and soil is identified as toluene at 1300 ug/Kg and bis(2-ethylhexyl)phthalate at 1200 ug/Kg.

4.4 EXISTING REGULATIONS

The state of New Mexico has not implemented specific regulations or guidelines for "action levels" of contaminants in soils. The New Mexico Environmental Improvement Division's (EID) regulatory authority is based on the state's Water Quality Control Commission Regulations (as amended March 3, 1986). The EID follows the state's Water Quality Control (Part 3) Regulations for Discharges Onto or Below the Surface of the Ground, Section A (Human Health Standards) or EPA Drinking Water Standards, whichever is more stringent. Table 4-1 presents the State of New Mexico Human Health Standards for Groundwater. "Action Levels" for a specific site are normally negotiated in Settlement Agreements with the state. This allows for state oversight of groundwater/subsurface investigations and remediation (telephone conversation, Mr. Bruce Fredrick, EID, with Mr. Burt Hyde, WESTON, December 2, 1987.).

Acetone, 1,1,1-trichloroethane, toluene, bis(2-ethylhexyl)phthalate and mercury were detected in samples collected at the inactive septic pit. 1,1,1-trichloroethane was the only compound that exceeded the New Mexico Groundwater Human

Arsenic (As)	0.1 mg/1
Barium (Ba)	1.0 mg/l
Cadmium (Cd)	0.01 mg/1
Chromium (Cr)	0.05 mg/l
Cyanide (CN)	0.2 mg/1
Fluoride (F)	1.6 mg/l
Lead (Pb)	0.05 mg/l
Total Mercury (Hg)	0.002 mg/
Nitrate (NO ₃ as N	10.0 mg/1
Selenium (Se)	0.05 mg/l
Silver (Ag)	0.05 mg/l
Uranium (U)	
Radioactivity: Combined	5.0 mg/1
Radium-226 and Radium-228	
	30.0 pCi/l
Benzene Deluchlerizated birberule (DODe)	0.01 mg/1
Polychlorinated biphenyls (PCBs)	0.001 mg/
Toluene	0.75 mg/1
Carbon Tetrachloride	0.01 mg/l
1,2-dichloroethane (EDC)	0.01 mg/l
1,1-dichloroethylene (1,1-DCE)	0.005 mg/
1,1,2,2-tetrachloroethylene (PCE)	0.02 mg/]
1,1,2-trichloroethylene (TCE)	0.1 mg/1
ethylbenzene	0.75 mg/1
total xylenes	0.62 mg/l
methylene chloride	0.1 mg/l
chloroform	0.1 mg/l
1,1-dichloroethane	0.025 mg/
ethylene dibromide (EDB)	0.0001 mg
1,1,1-trichloroethane	0.06 mg/]
1,1,2-trichloroethane	0.01 mg/1
1,1,2,2-tetrachloroethane	0.01 mg/1
vinyl chloride	0.001 mg/
PAHs: total naphthalene plus	
monomethylnaphthalenes	0.03 mg/]
benzo-a-pyrene	0.0007 mg
Chloride (Cl)	250.0 mg/l
Copper (Cu)	1.0 mg/1
Iron (Fe)	1.0 mg/1
Manganese (Mn)	0.2 mg/l
Phenols	
Sulfate (SO4)	0.005 mg
	600.0 mg/1
Total Dissolved Solids (TDS)	1000.0 mg/1
Zinc (Zn)	10.0 mg/1
рН	between 6 and 9

		TABLI	5 4-1		
NEW	MEXICO	GROUNDWATER	HUMAN	HEALTH	STANDARDS

1.0 mg/1 0.01 mg/1 0.05 mg/l0.2 mg/l1.6 mg/l0.05 mg/l0.002 mg/1 10.0 mg/10.05 mg/l 0.05 mg/l5.0 mg/l30.0 pCi/l 0.01 mg/1 0.001 mg/l 0.75 mg/l0.01 mg/l0.01 mg/1 0.005 mg/l 0.02 mg/l0.1 mg/l0.75 mg/1 0.62 mg/l0.1 mg/1 0.1 mg/l0.025 mg/l 0.0001 mg/1 0.06 mg/l0.01 mg/l0.01 mg/l0.001 mg/1 0.03 mg/l 0.0007 mg/l 250.0 mg/l 1.0 mg/l 1.0 mg/l 0.2 mg/l0.005 mg/l 600.0 mg/1 1000.0 mg/1 10.0 mg/1

Health Standards. However, acetone and bis(2-ethylhexyl) phthalate are not listed on the New Mexico standards.

Methylene chloride (Sample B3-30) and toluene (Sample WOL) were detected exceeding New Mexico standards. Arsenic and selenium were detected in Sample B4-20 exceeding EP toxicity limitations. Arsenic, barium, cadmium, chromium, lead and selenium in Sample B4-20 and mercury in Sample B4-5 were detected at concentrations exceeding New Mexico standards.

Compounds, exceeding concentration standards, in the inactive septic and dump pit present the potential for discharging to a shallow aquifer below the site above the New Mexico standards.

4.5 <u>CONTAINMENT AND ACCESSIBILITY</u>

Both the inactive septic pit and dump pit are not lined and are constructed within the native soils at the site. Wastes contained within the pits have been bermed with native soils. Both waste pits are located within the fenced landfill and are enclosed by individual chain link fences.

Various clays were encountered below the pits during the subsurface investigations. Generally, clays were encountered 15 to 20 feet below the pits and were dense olive or gray with some shaly partings beginning to develop. The soils are apparently not impermeable due to compounds detected at various depths within the clays.

SECTION 5 EFFECTS ON HUMAN HEALTH AND THE ENVIRONMENT

5.1 SITE LAND USE, DEMOGRAPHICS, AND ENVIRONMENT

The Kirtland Landfill is readily accessible; however the area is of limited use. Property south of the site is residential with the exception of the El Paso Natural Gas Company. The nearest residence is located directly adjacent to the south property boundary of the landfill. The population, within 1 mile south of the site, is estimated to be greater than 100 persons.

The area to the north, west and east of the property is primarily open range with some oil and gas exploration activity. No significant agricultural use or livestock were noted in the immediate vicinity of the site.

5.2 SURFACE WATER CHARACTERISTICS AND USE

The Kirtland site is located along Stevens Arroyo (Figure 2-1). The arroyo drainage trends southwest and joins with the San Juan River within approximately 5 miles. Adjacent to the north boundary of the landfill, the arroyo drains westerly. No surface water was present during site investigation activities, however, Stevens Arroyo is listed as a special flood hazard area by the U. S. Department of Housing and Urban Development.

5.3 GROUNDWATER CHARACTERISTICS AND USE

Groundwater was not encountered during the subsurface sampling activities, therefore, the depth to the uppermost aquifer below the site has not been defined. However, water well records in San Juan County indicate that the uppermost aquifer in the vicinity of the site occurs less than 70 feet below grade. The lack of precise well elevations and well logs prevents a precise determination of the groundwater flow direction, however, regional topography suggest groundwater flow would be southwest along Stevens Arroyo.

Review of records of water wells in San Juan County prior to 1983 (U.S.G.S Open-file Report 87-385) identified 6 water wells within 1 mile south of the site and 2 miles west of the site. Table 5-1 presents the location, registration name, county well numbers, use and depth of the 6 wells. Well locations are based on the common subdivision of the land into township, ranges, sections and subsections and are presented in that order. Well locations were reviewed for six sections based on their proximity to the site and coverage of Stevens Arroyo southwest of the site. The six TABLE 5-1 KIRILAND

L

RECORDS OF WATER WELLS IN SAN JUAN COUNTY, PRIOR TO 1983

·' .

Ì

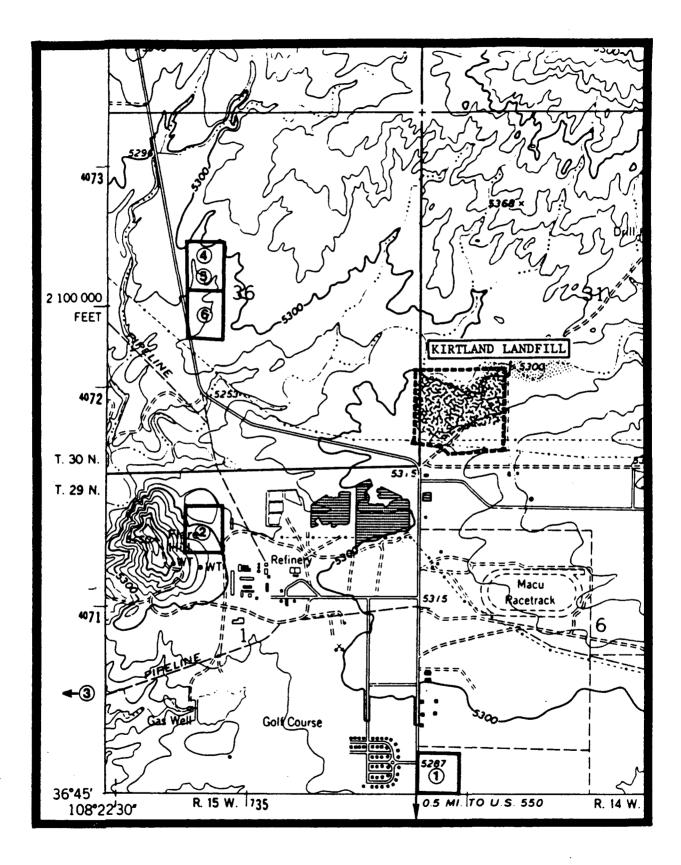
I

sections are:

0	30N.15W.36
0	30N.15W.35
0	30N.14W.31
0	29N.14W.6
0	29N.15W.1
0	29N.15W.2

The locations of the 6 wells in these six sections and there proximity to the site are shown in Figure 5-1. Wells 2, 4, 5, and 6 are exploratory wells that exceed 500 feet in depth. Wells 1 and 3 are domestic and sanitary water wells. However, Well 1 is located one mile south of the facility and is not believed to be downgradient of the site. Well 3 is allocated approximately 0.5 miles west of Stevens Arroyo and 2.5 miles southwest of the site. Current information does not provide exact locations of the wells, but data available indicates that no domestic wells are downgradient of the site within a distance of 2 miles.

Subsurface sampling activities identified vertical migration of compounds from the waste pits. A shallow aquifer potentially exists below the site, however due to the buffer {distance of 1 mile to the nearest domestic water well, low chemical compound concentrations, and low annual precipitation (8 inches), the possibility of contamination from the site in downgradient wells is low.


5.4 SOIL AND GEOLOGY OF THE SITE

5.4.1 <u>Soils</u>

Site _specific lithology obtained during the subsurface sampling program identified types of soils to 38.5 feet below grade. Soils below the disposed waste are primarily composed of silty sands with olive clay forming below 15 to 20 feet below grade. Appendix A provides the soil boring logs.

A general soil map prepared by the U.S. Soil Conservation Service for the eastern part of San Juan County, New Mexico (USDA/SCS,1980) shows broad areas that have a distinctive pattern of soils, relief and drainage. Typically, a map unit consists of one or more soils and some minor soils but is named for the major soils. The Kirtland Landfill is located within Stevens Arroyo on sheet number 5 and has been classified as having the major soil type of Badland-Monierco-Rock outcrop complex, moderately steep.

FIGURE 5-1 LOCATION OF WATER WELLS

This unit is 40 percent Badland, 5 to 30 percent slopes; 30 percent Monierco fine sandy loam, 0 to 8 percent slopes; and 20 percent Rock outcrop, 5 to 30 percent slope. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

Included in this unit are small areas of Avalon, Sheppard, and Shiprock soils on mesas and plateaus and Dork soils on mesas, plateaus, and terraces. Included areas make up about 10 percent of the total acreage.

Badland consists of nonstony, barren shale uplands that are dissected by deep, intermittent drainageways and gullies.

The Monierco soil is shallow and well drained. It formed in alluvial and eolian material derived dominantly from shale. Typiclly, the surface layer is light yellowish brown fine sandy loam about 2 inches thick. The subsoil is brown and yellowish brown clay loam and sandy clay loam about 12 inches thick. Shale is at a depth of 14 inches.

Permeability of the Monierco soil is moderately slow. Available water capacity is very low. Effective rooting depth is 10 to 20 inches. Runoff is medium, and the hazard of water erosion is moderate. The hazard of soil blowing is severe. Where this soil has a cover of native vegetation, the average annual wetting depth is about 11 inches.

Rock outcrop consists of barren sandstone on ridges, benches, and escarpment.

This unit is used for livestock grazing and for wildlife habitat.

5.4.2 Geology

The Farmington area of San Juan County consists of plateaus and deep valleys of Cretaceous/Tertiary formations, i.e., belonging to or relating to the last period of the Mesazoic era or corresponding system of rocks. The bedrock geology comprises of low dipping (relief) sandstones and shales. The general area of the site, especially near the river beds, consists of an outwash of gravels and sands. Rock outcrops are prevalent in some locations at and near the site. The bedrock is fractured. The rocks exposed in the field area in the region are upper Cretaceous formations, which consits of the Cliff House Sandstone (uppermost unit of the Mesa Verde Group) and a normal sequence of younger Cretaceous beds culminating with the Fruitland Formation.

5.5 ASSESSMENT OF WASTE MIGRATION

Extensive waste migration from the Kirtland Landfill has not been detected, however chemical constituents have migrated vertically and horizontally. Review of EID inspection reports identified that discharge of septage materials occured from the northern dump pit down the embankment into-Stevens Arroyo. Several discharges were recorded from 1976

The highest concentrations of compounds in Borings B3 and B4 at the dump pit were detected at the 30 and 40 foot depths, respectively. This is suspected to result from the borings being completed at 25 degree angles to intersect below the pits where the potential for vertical migration is the highest.

The subsurface soil investigation results show that chemical concentrations generally decrease with depth in Borings B1 and B4 (Table 3-1).

Because Boring B4 was located approximately south of the dump pit's northern berm, the detection of chemical compounds in the samples indicate that the compounds have migrated horizontally northward in addition to vertical migration.

Based on available hydrogeologic information the site is potentially underlayed by a shallow aquifer. The subsurface investigation identified vertical and horizontal migration of chemical compounds from the inactive waste pit that potentially could effect the shallow aquifer. The clay materials encountered in the subsurface investigation are not providing an impermeable layer.

5.6 <u>ENVIRONMENTAL EFFECTS</u>

No visible environmental effects such as stressed vegetation are apparent at the Flora Vista site.

SECTION 6 RESPONSIBLE PARTY INFORMATION

The Kirtland Landfill property has been leased by the Bureau of Land Management (BLM) to the San Juan County Road Department since May 21, 1962 for use as a modified landfill.

The State of New Mexico Environmental Improvement Division (EID) reported on several occasions in their inspection reports that small quanities of oil had been dumped in the septage disposal area. The septage disposal area referred to seems to be the inactive dump pit located in the northern section of the landfill. No disposers were identified in the available background data reviewed. Dumping of petroleum industrial and other hazardous wastes is presently prohibited by the County as well as by the BLM. Specifically no potential off-site contributors are known.

SECTION 7 SUMMARY OF PAST RESPONSE ACTIVITIES

There have been no past attempts to remediate any perceived environmental problems at the Kirtland site with the exception of the closure and berming of the inactive septic waste and dump pits. BLM conducted a Preliminary Assessment Study at the Kirtland site that included a limited amount of soil/waste sampling in August 1986. Samples of the inactive septic waste and surface liquid were collected and analyzed. The flash point of the solid composite waste sample collected from the five locations at the two on-site inactive septic waste pits was measured to be greater than 100°C, indicating the wastes in the inactive septic waste pit were not potentially flammable and ignitable. The exhibit reactivity wastes did not or corrosivity characteristics. The waste sample also detected barium and lead, but at a concentration below EP toxicity levels. Chromium (300 ug/l), copper (1,570 ug/l), manganese (7,120 ug/l) and lead (2,070 ug/l) were detected above the National Primary and Secondary Drinking Water Standards in the liquid/surface water sample.

The analytical findings for a composite waste sample collected during the PA indicated that the wastes contain elevated concentrations of benzene (106 ug/Kg), and exylene (379 ug/Kg). The liquid sample contained toluene (520 ug/l), and phenol (480 ug/l).

SECTION 8 SITE CLASSIFICATION AND RANKING

The EPA Potential Hazardous Waste Site - Site Inspection Report (EPA Form 2070-13) for the Kirtland Landfill is included in Appendix D. The Kirtland site has been classified as a Level III site. The site has also been ranked using the Uncontrolled Hazardous Waste Site Ranking System (HRS). The HRS helps evaluate the relative potential of uncontrolled hazardous substance facilities to cause health or safety problems, or ecological or environmental damage. It is a means for applying uniform technical judgement regarding the potential hazards presented by the facility relative to other facilities. The HRS assigns three scores to a hazardous facility:

- SM reflects the potential for harm to humans or the environment from migration of a hazardous substance away from the facility by routes involving groundwater, surface water, or air. It is a composite of separate scores for each of the three routes.
- SFE reflects the potential for harm from fire and explosion with hazardous substances at the facility (i.e., no migration need be involved).
- Spc reflects the potential for harm from direct contact with hazardous substances at the facility (i.e., no migration need be involved).

The score for each hazard mode (migration, fire and explosion and direct contact) or route is obtained by considering a set of factors that characterize the potential of the facility to cause harm. The Flore Vista site received the following scores:

A score of 28.5 for S_M places a facility of EPA's National Priority List. The HRS data sheets for the Kirtland site are included in Appendix E.

SECTION 9 RECOMMENDED ACTIONS

The results of the Kirtland Landfill site investigation indicate that the inactive septic and dump pits contain several organic compounds in the disposed waste materials. Several of these compounds have migrated vertically downward and were detected at depths to 40 feet. The highest concentrations of compounds in Borings B2 and B3 were detected at the 35 and 30 foot depths, respectively. This is suspected to result from the borings being completed at 25 degree angles to intersect below the pits where the potential for vertical migration is the highest. Some compounds have also migrated horizontally from the dump pit as were evidenced by chemical constituents detected in Borehole B4 located north of the actual waste pit.

Available hydrogeologic information indicates that a shallow aquifer (at a depth approximately 70 feet below the surface) possibly underlays the site. Groundwater was not encountered during subsurface sampling activities and clay materials identified did not completely restrict the vertical/horizontal migration of chemical compounds.

Based on the site investigation results and available information the potential for migration of chemical constituents to a shallow aquifer exists. Therefore, WESTON recommends the following activities be initiated:

- o Restrict access to and contain both of the inactive septic pits; and
- Conduct a subsurface investigation to define the local aquifer and potential resulting contamination.

Several hazardous substances were detected in the active inactive septic waste pit. Due to the waste contamination this pit should be closed to restrict an increase in waste volume. Surface liquids from the pit should be removed and properly disposed of and the pit capped with an impermeable cover to reduce migration from precipitation. The acceptance of inactive septic waste should be discontinued at the site unless measures for screening and evaluating contents of wastes can be initiated.

Access to both inactive septic pit areas should be restricted to reduce the potential for direct contact by persons on site. This has primarily been completed by the existing fencing surrounding each pit. In general, the northern and western sections of the landfill should be restricted from all persons. An impermeable surface barrier should also be constructed surrounding each pit to reduce the potential for off-site surface migration of the waste.

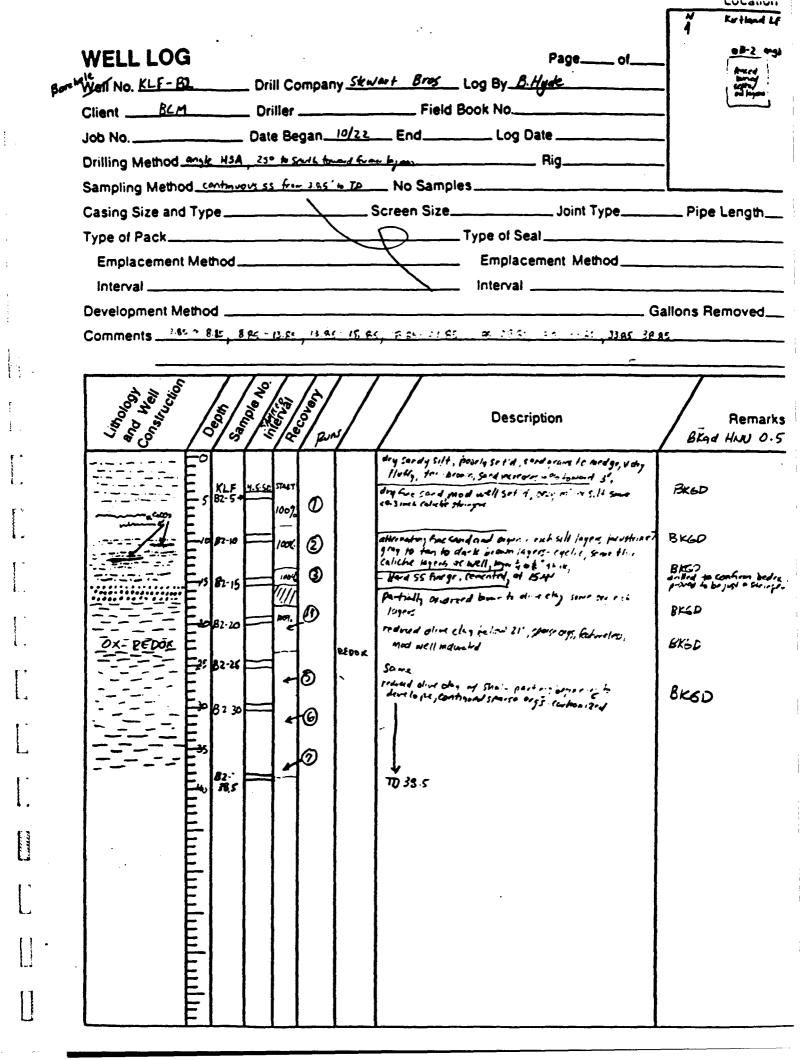
A subsurface investigation should be conducted to define the local aquifer and potential resulting contamination from the inactive septic and dump pits. The investigation should include the subsurface soil sampling and the installation of several groundwater monitoring wells. Subsurface soil sampling and analysis should be conducted at both pits to further characterize any vertical and horizontal migration of compounds from the pit. Several shallow (20 foot) borings should be conducted on each side of the pits to define any horizontal migration of the waste or chemical constituents. Due to the close proximity of the pits to the western and northern property boundaries of the landfill, it is recommended that at least four monitoring wells be installed to establish the local groundwater gradient without conducting off-site sampling activities. The four wells_should_potentially_be_located:

1. Adjacent_to_the_western=edge_of_the_inactive_septic_

2. Adjacent to the northern edge of the dump pit;

- 3. Adjacent to the north west corner of the property; and
- 4. Along the center of the eastern property boundary.

The four wells will potentially provide information on the local groundwater gradient, potential groundwater contamination resulting directly from the pits, upgradient water quality data, and downgradient water quality exiting the site.


The recommended actions will reduce migration of hazardous compounds, restrict direct contact with waste materials and define if on-site and off-site contamination of groundwater has occurred. Analysis of the additional data would determine what (if any) further remedial studies or actions are required at the site. APPENDIX A

÷.,

SOIL BORING LOGS

i.

Job No. <u>2878 01 · /2</u> Drilling Method <u>4 454</u> Sampling Method <u>(entropy</u>	Date Began A	End Field Book No End Log I No Samples	Date Rig	KIRTUAN
Type of Pack Emplacement Method_ Interval Development Method		Screen SizeType of Se Type of Se Emplac Interval	eal cement Method Ga	· · · · · · · · · · · · · · · · · · ·
Constituent of Constituent	Recred No.		ription	R
	 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<th>TD 33.5 Swell</th><th>to boom , sitt ~ 15%, chay bogers, chay band</th><th>r</th>	TD 33.5 Swell	to boom , sitt ~ 15%, chay bogers, chay band	r

- ¹	· .	· · · · · · · · · · · · · · · · · · ·	- Point of a
WELL LOG		Page of	
	_ Drill Company	Strwart Bros Log By B. Hude	
		Field Book No	Be
		2/23 End 10/23 Log Date 10/23	(Ariture
		Rig <u>F-10 Failing</u>	
		No Samples	25° 8 town ut hy son
		Screen Size Joint Type	Pipe Length
-		Type of Seal	-
		Emplacement Method	
Interval	<u></u>	Interval	
Development Method			Gallons Removed_
Comments			
•	. · ·		
Constitution Constitution Constitution	Pecovery		/
Con Manuel Con Con Con Con Con Con Con Con Con Con	ample A hileral Recovery	Description	HNU Remark
	Amole Mileral		HANU BKED 02
F	011	dry fine and it this or gen 13, lasse, some debuil bruk	
E B3-			
		LF debris within randy dive silt and chay May be nature sandy silt at 13.0, glass	BKGD
	3.4	and wood do bra,	
		- FILL EXAMP	
		SHy Sand	BKED
0.co	F4	- light sine such sand , 60:40 Soud sitt, sand & finger	5~00
	3/*/	due chy, org rich layes. storse sond mod	
		well indicated inges. storse sand mod	BEGD
	,ES	dive to dark gray claystone	
B3-34			03-30 meention co
En En	Do	TO 35'	when 2 attempts to core failed. Termina
SS E		find centralist fine go sandstone in his augor	note because stor of improvements clay with
Epo			readings was eacounted
E		Brder P 20'	
E E			
E E			
E E			
I EI			
I El			

1

• •

•

•		•••••	KIETLAND LE
WELL LOG		Page of_!	
•• =	Drill Company Stru	which Bras Log By B. Hyde	84 14/
		Field Book No	
		End 10/22 Log Date 10/22	
		Rig F-10 Failing	
		No Samples	
-		Screen Size Joint Type	
Type of Pack		Type of Seal	
Emplacement Method	·	Emplacement Method	
Interval		Interval	
Development Method			Gallons Removed
Comments		······································	·····
·			
48.5	21/2/		
Semi Colo	Tecology	Description	Remark
Senacy de la contraction de la	Merral No.	Description	- neillark:
ð J É	D	fine Sand w/ LF debris	
8 E 84-5	φχ	1	
fuller tont E'	D	4	
E	5%	Mixture of silt and clay ~ 10% song	
	157	The second and second and	
	2	Dense, well indusated, deop dire chy	
=======================================	1002 .	Dense olive claystone, v low permability TD 20'	couses swelling ars
		TO 20'	ougers dugers
E			
		Bodix - 14.5	
E			
հուլու			
E E			
E E			
E E			
F F			

:

i

APPENDIX B

ANALYTICAL DATA

1.

ĺ.

ί.

NICIA	Approved by: D. Markhan	RFW Batch Number: 87105080 Client: BLM - Kirtland Land Fill			,			
	ANALYTICS OTHER PARAMETERS Api	Kirtland Land Fill	KLF-WOL -30 Soil	7.78 > 230°			-	
	WESTON ANALYT SUMMARY OF OTHER	Client: BLM - Kir	KLF-SP -29 Soil	6.42 > 230 °				
			Customer ID: RFW#: Matrix:		·	ND = Not detected at detection limits.		
		RFW Batch Number:	Sample Information	Analyte: Corrosivity, pH Ignitability, T		ND = Not detected		

. | |

.

S

-14 -

1

۱.

.

in the second second second second second second second second second second second second second second second

۱.

WESTON ANALYTICS METALS DATA SUMMARY

		METALS DA	ETALS DATA SUMMARY		0 000
				Approved by:	Approved by: A. Monthan
RFW Batch Number:	871 65886	Client:	Client: BLM - Kirtland Land Fill Page 1 of 5	Fill [Page 1 of 5
Sample Information	Customer ID: RFW\$: Matrix: Units:	- - 1/6m	- Prep Blank EP Toxicity mg/L	្រ ជ	- KLF-B1-5,-10 Method Spike -13/-14 Ktract EP Toxicity Extract mg/L mg/L
Analyte:		Detection Limits	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Arsenic (As)		0.2 0.2 0.1 0.0 0.0 0.25 0.2 0.2 0.2 0.2 0.2	<u> 2 2 2 2 2 2 2 2</u>	9 0 0 0 0 0 0 0 0 4 1 0 0 1 7 0 0 4 4 4 4 4 4 4 4 4 4	

ND = Not detected at detection limits.

i

1

3
ß
M

1.

[]

Ι.

ļ

i

1

WESTON ANALYTICS METALS DATA SUMMARY

	METALS DA	IETALS DATA SUMMARY		1 ~ 1
			Approved by:	Approved by: Q. Maaklar
RFW Batch Number: 87105080	Client:	Client: BLM - Kirtland Land Fill Page 2 of 5	Fill	Page 2 of 5
Customer ID: Sample RFW#:		KLF-B1-20,-30 -15/-16	8-5,	KLF-B2-15 -19
Information Matrix: Units:	k: - 5: mg/L	EP Toxicity Extract mg/L mg/L		EP Toxicity Extract mg/L
Analyte:	Detection Limits			
Arsenic (As)	0.2	Ð	Q	2
Barium (Ba)	0.2	Ð	QN	Q
Cadmium (Cd)	•	Q	Ð	Ð
Chromium (Cr)	•	QN	QN	92
Lead (Pb)	0.025	QN	QN	2
Mercury (Hg)	•	0.0009	0.0010	6.0067
Selenium (Se)	0.2	Q	Ð	Ð
Silver (Ag)	0.1	QN	Ð	Ð

ND = Not detected at detection limits.

S
3
S

H

L ...

ţ

ί.

1_

İ.

WESTON ANALYTICS Metals data summary

· .	METALS DA	METALS DATA SUMMARY	Annroved hv.	Annroved hv. d. M. L.
		- 11		
RFW Batch Number: 8/105080	Client:	BLM - Kirtland Land Fill	F111 	Page 3 of 5
	J	KLF-B2-30,-4	KLF-B2-30,-40 KLF-B3-5,-10	-
Sample RFW#:	ı	-20/-21	-22/-23	-24/-25
Information Matrix:	ł	EP Toxicity Extract		EP Toxicity Extract
Units:	mg/L	mg/L	mg/L	ng/L
Analyte:	Detection		, , , , , , , , , , , , , , , , , , ,	
	<u>Limits</u>			
Arsenic (As)	0.2	Ð	Ð	Ð
Barium (Ba)	0.2	QN	QN	2
Cadmium (Cd)	0.1	Ð	Ð	QN
Chromium (Cr)	0.1	QN	Ð	Ð
Lead (Pb)	0.025	QN	Ð	Q
Mercury (Hg)	0.0002	0.0047	0.0097	0.0015
Selenium (Se)	0.2	Q	QN	QN
Silver (Ag)	0.1	Ð	Q	92

ND = Not detected at detection limits.

L

I

i

NIC

.....

00

hear a

i .

• •

i. .

.

WESTON ANALYTICS METALS DATA SUMMARY

		METALS DA	ETALS DATA SUMMARY	Approved	Approved by: S. Madha
RFW Batch Number:	REW Batch Number: 87105089	client:	BLM - X	Fill Fill	Page 4 of 5
Sample Information	Customer ID: RFW#: Matrix: Units:	- - mg/L	KLF-B4-5,-11 KLF-B -26/-27 -28 EP Toxicity Extract mg/L mg/L	4-20	KLF-SP -29 EP Toxicity Extract mg/L
Analyte:		Detection Limit		5 	
Arsenic (As)	Arsenic (As)	0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ND 8.27 ND ND 8.6628 ND ND	8.47 8.118 0.118 0.309 2.0 0.0003 2.06 ND	ND 8.29 8.8682 8.8682 0.8682

ND=Not detected at detection limits.

ł

-

i

i

		WESTON /	WESTON ANALYTICS METALS DATA SUMMARY Approved by: <u>O</u>	WING Well
w Batch Number:	871 85888	client:	BLM - Kirtland Land Fill	Page 5 of 5
Sample Information	Customer ID: RFW#: Matrix: Units:	л/бш - -	KLF-WOL -30 EP Toxicity Extract mg/L	F 0 0 0 0 0 0 0 0 0 0 0 0 0
Analyte:		Detection Limits	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Lead (Pb) Mercury (Hg) Selenium (Se) Silver (Ag) ND = Not detected at	at detection limits.	00.7 00.7 00.00 00.1 00.1 00.1 00.1 00.1	₽°₽₽₽₽₽ [©] [©]	

ł

İ

÷

ļ

I

Date Received: Date Extracted: Date Analyzed:	26/87 /5/87 23/87	SEMI-VOLATILE	ATA NTA US	ALYTICS SUMMARY SUBSTANCE LIST COMPOUNDS	Şı	
RFW Batch Number:	87-10-	SØ80	Client:	BLM - Kirtland Land	Fill	Page 1 of 16
	; ; ; ; ; ; ; ;	Cust ID:))) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		J J J J J J J J J J J J J	KLF-B1-5,10
Sample		RFW# :	ł	Blank	Blank Spk	-13/-14
Information		Matrix:	ł	••••		11
		D.F.:	1	•	33.33	33 °3
		Units:	ug/kg	ug/kg	<pre>& Recovery</pre>	ng/kg
	2-Fluor	2-Fluorophenol:	3	82 8	8 8 88	74 8
Surrogate	łđ	Phenol-d5:	ı			71 8
Recovery (%)	2,4,6-Br3-Phenol	3-Phenol:	J	121 8	120 %	88
•	Nitrobenzene-d5	nzene-d5:	Detection	85 %	85 %	3 62
	2-Fluorobiphenyl	oiphenyl:	Limits	81 8	86 %	88
	p-Terphe	enyl-dl4:	I	108 %	108 %	110 %
THEFTEREETEREETEREETEREETEREETEREETEREET		所省的持续增持省有有效投付 ••••••••••	BEEEEEEEEEEEEEEEEEEEEEEEEE		eteretereteret 9] &	
bis(2-Chloroethyl)Ether	•	•	10	Ð	Ð	2
2-Chlorophenol.	• • • • • • • • •	• • • • • • • •	10	Ð	97 8	2
1,3-Dichloroben	zene		10	Q	Q	2
1,4-Dichlorobenzene	zene		16	Ð	103 %	Ð
Benzyl Alcohol	• • • • • • • •		16	£	2	2
l, 2-Dichlorobenzene	zene		10	2	2	2
2-Methylphenol.		•••••	10	2	2	2
DIS (2-Chlorolsopropyl) Ether	propy1) Ethe	er	10			2
4-Methylphenol		• • • • • • • •	0 T	2		
N-NICLOSO-UI-N-PLOPYIAMINE. Hexachloroethane	brupy Lamin		9 T			2 2
Nitrobenzene			91			2 5
Isophorone			10	2		
2-Nitrophenol		• • • • • • •	10	Ð	2	2
2,4-Dimethylphenol	nollon	• • • • • • • • •	10	- ON	QN	2
Benzoic Acid		••••••	50	Q	Ð	2
bis(2-Chloroethoxy)Methane	oxy)Methane	e	10	Ð	Q	2
2,4-Dichlorophenol	nol	• • • • • • • •	10	£	Ð	2
1,2,4-Trichlorobenzene	benzene			Q	848	2
Naphthalene	• • • • • • • • •		10	Ð	g	2
4-Chloroaniline	• • • • • • • •	••••••	10	Ð	2	2
Hexachlorobutadiene	iene	•••••	10	2	Ð	2
4-Chloro-3-methylphenol	ylphenol	• • • • • • • •	10	QN	145 %	2
2-Methulnarhthalane	Jana		र <i>г</i>	ţ		

i

....

1

. . .

17 N 1

•

.

.

....

RFW Batch Number: 87	87-10-5080	Client:	BLM - Kirtland I	Land Fill	Page 2 of 18
	Cust ID:	Detection		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KLP-B1-5,16
	RFW# :		Blank	Blank	Spk -13/-14
sessessessessessessessessessessessesses			ND	n n	
2.4.5-Trichlorophenol		95		2	
2-Chloronaphthalene.	· ·	10	Ð	2	
2-Nitroaniline		95		2	2
Dimethyl Phthalate		16	2	2	2
Acenaphthylene		10	QN	Ð	2
3-Nitroaniline		50	Ð	Ð	9
Acenaphthene		10	QN	103 8	Ð
2,4-Dinitrophenol		50	Ð		Ð
4-Nitrophenol		50		818	Ð
Dibenzofuran		10			Ð
2,4-Dinitrotoluene		16	R	97 8	Ð
2,6-Dinitrotoluene		10	2		
Diethyl Phthalate		10		2	
4-Chlorophenyl-phenylether	ether	10		£	Q
Fluorene		10	29		2
4-NICLOANILING		90			
4,0-DINICTO-Z-metnylphenol.	onenol	20		29	
N-NICTOSOGIPNENYLAMINE	10	91	2		2
Herachlorohanzene		9 T		2 2	29
Pentachlorophenol		9 B 1			
Phenanthrene		10			
Anthracene		10	2	2	2
di-n-Butyl Phthalate		10	Ð	Ð	2
Fluoranthene		10	Q	Ð	Q
Pyrene		10	Ŕ	78 %	QN
Butyl Benzyl Phthalate		10	g	2	Ð
3,3'-Dichlorobenzidine	Je	20	Ð	Q	Ð
Benzo (a) Anthracene		10	R	2	Ð
bis(2-Ethylhexyl)Phthalate	alate	10	B	Q	698
Chrysene		10	2	2	Ð
di-n-Octyl Phthalate		16	QN	Ð	9
Benzo (b) Fluoranthene		10	Ð	2	Ð
Benzo(k)Fluoranthene		10	Ð	Ð	Ð
Benzo (a) Pyrene		10	Ð	Ð	Q
Indeno (1, 2, 3-cd) Pvrei	Je		ŧ		

[. . .

1

l

. . .

1

.

.

Phenol
<pre>4-metnytpneno1propylamine Hexachloroethane Nitrobenzene Isophorone 2.4-Dimethylpheno1 bis(2-Chloroethoxy)Methane 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene Hexachlorobutadiene 2-Methylnaphthalene</pre>

. مىنىة

ł. . .

KFW Batch Number: 87-10-5080	Client:	BLM - Kirtland Land	Fill Pag	e 4 of 10
	Detection Limits	KLF-B1-20,30 -15/-16	KLF-B2-5,1 8 -17/-18	KLP-B2-15 -19
errererererererererererererererererere	ttettettettettette 0			
2.4.5-Trichloronhenol	1 C			
2-Chloronaphthalene	10			
2-Nitroaniline	0.5			2
Dimethvl Phthalate	10			2
Acenaphthylene	91			
3-Nitroaniline	0			
	10			
2,4-Dinitrophenol.	50			2
4-Nitrophenol	50	Q	Ð	2
Dibenzofuran	10	QN	Q	2
2,4-Dinitrotoluene	10	QN	Q	2
2,6-Dinitrotoluene	10	QN	Ð	2
Diethyl Phthalate	10	QN	Ð	2
4-Chlorophenyl-phenylether	10	<u>CN</u>	Ð	2
Fluorene	10	QN	Ð	2
4-Nitroaniline	50	Ð	Ð	2
4,6-Dinitro-2-methylphenol	50	QN	Q	2
N-Nitrosodiphenylamine	10	QN	Ð	2
4-Bromophenyl-phenylether	10	Ð	Ð	2
Hexachlorobenzene	1.6	Ð	Ð	9
Pentachlorophenol	56		Q	2
	10		2	2
Antnfäcene	9 C	£!		2
garmenty flucturations	9 T		2 9	29
Pyrene	87	25	2	
Butyl Benzyl Phthalate	10		2	2
3,3'-Dichlorobenzidine	20	QN	2	2
Benzo (a) Anthracene	10	Ð	Ð	2
bis(2-Ethylhexyl)Phthalate	10	550	590	1000
Chrysene	10		Ð	2
di-n-Octyl Phthalate	10			2
Benzo (D) r Luoranthene	18	Ð	Ð	2
Benzo(K) Fluoranthene	10	QN	Q	2
Benzo (a) Pyrene	10	Q	Ð	2
Thueno (T, Z, J~ca) Pyrene	51	Ę		•

.

!

I .

> ta Et -

> > 1

.

.

[]

i 1 •

NIGI	Page 5 of 10	KLP-B3-20,30	-24/-25		33.33	ug/kg		73 8	110 %	19 8	8 6L	8 86		1	25	2 5	2		2	2	2	2		2 5	2	Ð	Ð	Ð	Ð	Ð	Ð	92	Ð	Ð	Ð	•
S, S	Fill	KLF-B3-5,10	2	Soil	33.33	ug/kg	19 %	23 8	38 %	33 8	50 %	64 8				2 5	2		2	Q	Ð	£ !	2 9	2 5	2	Q	Ð	2	Q	Q	Q	Ð	Ð	Ð	Ð	
Y CE LIST COMPOUNDS	- Kir	KLF-B2-30,40	-20/-21	Soil	33.33	ug/kg	75 %	73 8	121 8	75 %	78 %	104 8				2 5			2	Ð	2	29	2 9	29	2	Ð	Ð	Q	Q	Q.	Q.	2	Q	Ð	Q	
WESTON ANALYTICS GC/M8 DATA BUMMARY HAZARDOUS SUBSTANCE			1	1	1	ug/kg	ð	1	1	Detection	Limits	ł	1.8.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		91		10	10	10	16	10	16	9 T	91	10	10	10	50	0 T	10	10		10	10	10	
Date Received: 10/26/87 Date Extracted: 11/5/87 Date Analyzed: 11/23/87 SEMI-VOLATILE H	5080	Cust ID:	RFW# :	Matrix:	D.F.:	Units:	2-Fluorophenol:	Phenol-d5:	2,4,6-Br3-Phenol:	Nitrobenzene-d5:	biphenyl:	••		•						••••••	er	•••••••••••••••••••••••••••••••••••••••					••••••		e		•••••		• • • • •	• • • • •	• • • • •	· · · · · · · · · · · · · · · · · · ·
10/26/87 11/1/5/87 11/23/87	Jer: 87-10-5080						2-Fluo	4	2,4,6-Br	Nitrobe	2-Fluoro	p-Terph		-hvl)Ether		enzene	enzene		en zene	l	sopropyl) Eth		ne propy amar			• • • • • • • • • •	nenol		choxy)Methan	nenol	cobenzene	•••••••••••••••••••••••••••••••••••••••	1e	diene	:hylphenol	alene
Date Received: Date Extracted Date Analyzed:	RFW Batch Number:		Sample	Information				Surrogate	Recovery (%)					his(2-Chloroethvl)Ether	2-Chlorophenol.	1.3-Dichlorobenzene.	1,4-Dichlorobenzene.	Benzyl Alcohol	1,2-Dichlorobenzene	2-Methylphenol	bis (2-Chloroisopropyl) Ether	4-Methylphenol	N-NLC[050-U1-N-PC0Pylamine Revachloroethane	Nitrobenzene	Isophorone	2-Nitrophenol	2,4-Dimethylphenol.	Benzoic Acid	bis (2-Chloroethoxy) Methane	2,4-Dichlorophenol	I, Z, 4-Trichlorobenzene	Naphthalene	4-Chloroaniline			2-Methvlnaphthalene.

.

.

.....

,

.

RFW Batch Number:	87-1 0-50 80	Client:	BLM - Kirtland Lu	Land Fill	Page 6 of 18
)]]]]]]]]]]]]]]]]]]]	Cu	Detection Limits	KLF-B2-30,40 -20/-21	KLF-B3-5,10 -22/-23	KLF-B3-28,3 -24/-25
zsererererererererererer 2.4.6-Trichlorophenol		z	renseransassesses ND		
2.4.5-Trichlorophe		50		Q	2
2-Chloronaphthalene.		10	R	Ð	2
2-Nitroaniline		50	QN	Q.	2
Dimethyl Phthalate		10	QN	2	2
Acenaphthylene		10	QN	2	2
3-Nitroaniline		50	2	2	2
Acenaphthene		10	Q	Ð	2
2.4-Dinitrophenol		50	<u>Q</u>	R	2
		50	Ð	2	2
Dibenzofuran		10	QN	Ð	2
2,4-Dinitrotoluene		10			2
2.6-Dinitrotoluene		10			2
Diethyl Phthalate		10		Q	9
4-Chlorophenvl-phenvlether	nvlether	10		2	2
Fluorene		91		2	2
4-Nitroaniline		50			2
4,6-Dinitro-2-methylphenol	ylphenol	50		2	2
N-Nitrosodiphenylamine	mine	10	QN	QN	2
4-Bromophenyl-phenylether	ylether	10	Ð	2	2
Hexachlorobenzene		10	Ð	Ð	2
Pentachlorophenol		50	Ð	Ð	2
Phenanthrene		10	Ð	Ð	Ð
Anthracene		10	Ð	Ð	2
di-n-Butyl Phthalate	te	10	Ð	Ð	Ð
Fluoranthene	• • • • • • • • • • • •	10	Ð	2	2
Pyrene		10	Ð	Ð	2
Butyl Benzyl Phthalate	late	36	Ð	Ð	2
3,3'-Dichlorobenzidine	dine	20	Ð	Ð	2
Benzo (a) Anthracene		10	Ð	Ð	2
bis(2-Ethylhexyl)Phthalate	hthalate	10	520	QN	1200
Chrysene		10	Ð Z	Ð	2
di-n-Octyl Phthalate	.te	10	Ð	Ð	9
Benzo(b)Fluoranthene	ne	10	Ð	QN	9
Benzo(k)Fluoranthene.	ne	10	Ð	Ð	2
Benzo (a) Pyrene		10	Ð	Ð	9
1					

.

-

ſ

: . .

•

1 1 1

.

!

RFW Batch Number: 87-19-5986 Client: BLM Kittland Land Sample RFWH: - -24/-25 9.9 Sample Nation Nation - -24/-25 9.9 Sample Nation Nation - -26,39 - -26,39 Sample Nation Nation - - -26,39 -	Analyzed; 11/	Date Received: 10/26/87 Date Extracted: 11/5/87 Date Analyzed; 11/23/87 SEMI-VOLATILE	WESTON ANALYTICS GC/MS DATA SUMMAR HAZARDOUS SUBSTAN	ALYTICS SUMMARY SUBSTANCE LIST COMPOUNDS		
Cust ID: Cust ID: KLF-B3-20 RFW#: -24/-25 D.F: -24/-25 D.F: -33.33 D.F: -33.33 D.F: -75 % D.F: -79 % D.F: -79 % D.F: -79 % D.F: -79 % D.F: -79 % D.F: -79 % D.F: -79 % D.F: -79 % D.F: -79 % D.F: -71 % D.F: -71 % D.F: -71 % D.F: -71 % D.F: -71 % D.F: -71 % D.F: -71 % D.F: -71 %	Number:	87-1 0- 5080	Client:	- Kirtland	Fill Page	: 7 of 10
RFW#: 24/-25 D.F. 24/-25 D.F.) 		KLF-B4-5,11	KLF-B4-20
Matrix: Soi D.F.: D.F.: D.F.: Units: Units: Ug/kg Units: Ug/kg Vitrobencene-d5: - Fluorobiphenyl: - Prephenyl: Limits Prephenyl: - Prephenyl:			1	/-25	/-27	8
D.F. Units: ug/kg ug/kg ug/kg 2-Fluorophenol: - 73 7 - 73 *4.6-Br3-Pholod: - 73 *10 Vitrobenzene-d5: - 73 *79 - 73 *70 - 73 *70 - 73 *71 - 73 *70 - 73 *70 - 73 *70 - 73 *71 - 73 *71 - 74 *75 - 74 *76 - 74 *76 - 116 *76 - 16 *76 - 16 *76 - 16 *76 - 16 *76 - 16 *76 - 16 *76 - 16 *77 - 16 *77 - 16 *77	on	Matrix:	ı	. –	, i i	Soil
Units: ug/kg ug/kg ug/kg 2-Fluorophenol: - 73 7 - 73 7 - 73 7 - 73 7 - 73 7 - 73 7 - 73 7 - 73 7 - 73 7 - 73 7 - 73 7 - 73 7 - 74 7 - 74 7 - 74 7 - 74 7 - 74 7 - 16 7 - 16 7 - 16 7 - 16 7 - 16 7 - 16 7 - 16 7 - 16 7 - 16 7 - 16		D.F.	I	m	330	33.33
2-Fluorophenol: - - - - - - - - 1 - - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 1 - 1		Unite:	ug/kg		ug/kg	ug/kg
7 - 7 7 - 11 7 - 7 7 - 11 9 - 9 9 - 9 9 - 9 9 - 10 10 10 10 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 - - 11 -) luorophenol:	: : : : : : : : : : : : : : : : : : :		78 %	68 2	
,4,6-Br3-Phenol: - 11 rfluorobiphenyl: Limits 7 rfluorobiphenyl: 19 9 rfluorobiphenyl: 19 80 rfluorobiphenyl: 10 80 rfluorobiphen		Phenol-d5:	ı		64 8	
Nitrobenzene-d5: Detection 7 -Fluorobiphenyl: Limits 7 -Fluorobiphenyl: - 9 -Fluorobiphenyl: - 10 -Fluorobiphenyl: - <td>(8)</td> <td>4,6-Br3-Phenol:</td> <td>1</td> <td>-</td> <td>84 8</td> <td>132 8</td>	(8)	4,6-Br3-Phenol:	1	-	84 8	132 8
-Fluorobiphenyl: Limits 7 9 - 9 6 - 9 6 - 10 8 10 ND 6 10 ND 6 10 ND 6 10 ND 7 10 ND 9 10 ND <		itrobenzene-d5:	Detection	~	75 8	
p-Terphenyl-d14: - 9 Ether 16 ND e 16 ND pylamine 16 ND e 16 ND benol 16 ND e 16 ND b	2	Fluorobiphenyl:	Limits		886	73 8
Ether e	đ		l		110 %	95 8
Ether e			eesterester 10	iederenderenderenderender ND		
Pylbrane Pylbrane Pylbrane Pylbrane Pylbrane Pylbrane Pylbrane Pylbrane Pylbrane Pylbrane Pylbrane Penol Penol Penol Penol Penol	oroethyl)E	ther	10	Q	Q	2
e Pylbrine Pyl	henol		10	Ð	2	2
Pyllo Bther Pyllo Bther Methane Nethane S50 S50 S60 S60 S60 S60 S60 S60 S60 S60 S60 S6	orobenzene		10	Ð	Ð	2
Pyla Pyla Pyla Pyla Pyla Pyla Perol Methane S56 S56 S56 S56 S56 S56 S56 S56 S56 S56	orobenzene		10	Ð	Ð	Ð
Pylamine Pylamine Pylamine Pylamine I Methane S S B B B B B B B B B B B B B B B B B	cohol		10	Ð	QN	2
py1)Ether py1amine py1amine py1amine 10 10 10 10 10 10 10 10 10 10	orobenzene		10	QN	Ð	2
pyl) Ether pylamine 10 10 10 10 10 20 20 20 10 10 10 10 10 10 10 10 10 10 10	henol		10	Ð	Q	2
Pylamine Pylamine Methane Sene Penol Dig Sene Sene Dig Dig Dig Sene Dig Sene Dig Sene Dig Dig Sene Dig Dig Dig Dig Dig Dig Dig Dig Dig Dig	oroisoprop	yl)Ether	10		Ð	2
Pyteamine Methane 10 10 10 10 10 10 10 10 10 10 10 10 10	henol		10			2
Merica Merica Merica SS SS SS SS SS SS SS SS SS SS SS SS SS	-di-li-prop.	A damage	0 T	2		29
Met hane Sene Feno 10 10 10 10 10 10 10 10 10 10 10 10 10	ene	• •	9 F			29
Methane Sene Sene Sene Sene Sene Sene Sene S	6		10	2	2 5	2 5
10 56 57 58 59 50 50 50 50 50 50 50 50 50 50 50 50	enol		10	2	9	
4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	hylphenol.		10	- ON	2	2
	cid		50	Ð	Ð	2
10 10 10 10 10 10 10 10 10 10	oroethoxy)	Methane	10	QN	Q	2
	orophenol.		10	Q	Ð	2
10 10 10 10 10	chlorobenz	ene	16	Q.	Ð	2
16 16 16 16 10	ne	• • • • • • • • • • • • • • •	10	Q	Ð	Ð
	niline		10	Q	2	9
	obutadiene		10	Q	2	2
	3-methylph	eno1	10	Q	Ð	9
1 7	aphthalene	• • • • • • • • • • • • • • • • • • •	10	QN	Ð	9

I I

:

. . .

{

-

;

- - - -

RFW Batch Number: 87-10-5080	Client:	BLM - Kirtland Land	Fill Page	je 8 of 18
Cust ID: RFW#:	Detection Limits	KLF-B3-20,30 -24/-25	KLF-B4-5,11 -26/-27	KLF-B4-2 6 -28
并结合的作为自己的自己的行为自己的有效的最 的复数的复数的 有效的这位的现在分词有可以在这些人。	aaataataatatatatata Jo	在19月1日月月月月月月月月月月月日 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日 - 11日	adaraareedaa se ND	
,4,6-Trichlorophenol	T D			2 5
Z, 4, 5-Tricniorophenol		5	2 9	29
2-Unioronaphunalene	96			2
Z-NITTOANILING	، ۵	E į	5	51
Dimethyl Phthalate	10	QN		
Acenaphthylene	10			
3-Nitroaniline	50			2
	10			2
	0.0	Ð	Q	2
4-Nitrophenol	50			2
	10	£	£	2
	10	2	ł	2
2,6-Dinitrotoluene	10	8	R	2
Diethyl Phthalate	10	Ð	2	2
4-Chlorophenyl-phenylether	10	QN	Ð	2
Fluorene	10	QN	Q	2
4-Nitroaniline	50	Q	Q	2
4,6-Dinitro-2-methylphenol	50	Ð	Q	2
N-Nitrosodiphenylamine	10	QN	Q	2
4-Bromophenyl-phenylether	10	QN	QN	2
Hexachlorobenzene	10	QN	9	Ð
Pentachlorophenol	50	QN	Q	Ð
Phenanthrene	10	Ð	Ð	2
Anthracene		QN	Q	2
di-n-Butyl Phthalate	10	Ð	<u>í</u>	2
Fluoranthene	10	Ð	Ð	2
Pyrene		Q	Q	2
Butyl Benzyl Phthalate	10		Ð	Ð
3, 3' -Dichlorobenzidine	0	N	Ð	Ð
Benzo (a) Anthracene	10		Ð	2
bis(2-Ethylhexyl)Phthalate	10	1200	Q	398
Chrysene	10		Ð	Ð
di-n-Octyl Phthalate	10	QN	Q	2
Benzo(b)Fluoranthene	10	QN	Ð	2
Benzo(k)Fluoranthene	10	Q	Q	2
Benzo (a) PyreneBenzo (a)	10	QN	Q	2
Indeno(1,2,3-cd)Pvrene	5 r	•••	!	2

Date Received: 10/26/8 Date Extracted: 11/5/8 Date Analyzed: 11/23/8	10/26/87 11/5/87 11/23/87 SEMI-VOLATILE	WESTON ANALYTICS GC/MS DATA SUMMARY HAZARDOUS SUBSTANCE	S RY NCE LIST COMPOUNDS	6	N PARN
RFW Batch Number:	87-1 6 -S		- Kirt	a Fill	Page 9 of 10
	Cust ID:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KLF-SP	KLF-WOL	
Sample	RFW# :	ı	-29	-30	
Information	Matrix:	ı	Soil	Soil	
	D.F.: Unite:	-	41000	8250	
		64/6n		ng/kg	
	2-Fluorophenol:		Dilution Loss	8 0	
(۵	Phenol-d5:	ı	8	8	
Recovery (%)	2,4,6-Br3-Phenol:	ı	E	98 []	
	Nitrobenzene-d5:	Detection	B	89 63	
	2-Fluorobiphenyl:	Limits	8 1	8	
	p-rerpererererererererererererererererer	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		99 53	
Phenol		10	DD DD		" 杨宗章杨宗章杨宗章杨宗章位 杨子子
	/l)Ether	10	QN		
2-Chlorophenol		10	QN	Ð	
l,3-Ulchlofobenzene.]_4-Dichlorobenzene.	cene	91	9	2	
Benzyl Alcohol		9 T C			
l.2-Dichlorohenzene		9 T		2	
				2 9	
bis(2-Chloroisopropyl)Ethe	vropyl)Ether	91			
4-Methylphenol		10		2	
N-Nitroso-di-n-propylamine	sropylamine	10	QN	2	
Hexachloroethane		10	QN	QN	
Nitrobenzene		6 1	Ð	R	
Leopnorone			Ð	Ð	
2_4_Dimethylcherol	•	10		Q	
Benzoic Arid	•	9 6			
bis(2-Chloroethoxy)Methan	xy)Methane				
2,4-Dichlorophenol	loi	10		55	
1,2,4-Trichlorobenzene	enzene	10		2	
Naphthalene		10	Q	Ð	
4-Chloroaniline		10	QN	Ð	
Hexachlorobutadiene	ene	10	QN	Q	
4-Cnloro-3-methylpheno.	Iphenol	10	Q	Q	
z-mernyinaphthal	.ene	90	G		

i

|

I

!

:

.

.

ł

.

RFW Batch Number: 87-10-5080	Client:	BLM - Kirtland La	Land Fill	Page 18 of 18
1	Detection Limits	KLF-SP -29	KLF-WOL -30	
	aataataataataataataa] A	eessssaussuusees ND		田建築和新加加業業業業はは 実施は;
4	95			
2-Chloronaphthalene	10	Q	Ð	
2-Nitroaniline	50	QN	Ð	
Dimethyl Phthalate	10	QN	Ð	
Acenaphthylene	10	QN	2	
3-Nitroaniline	50	QN	Ð	
Acenaphthene	10	QN	Q	
2,4-Dinitrophenol	50	QN	Q	
4-Nitrophenol	50	Q	Ð	
Dibenzofuranbenzofuran	10	QN	QN	
2,4-Dinitrotoluene	10	QN	Ð	
2,6-Dinitroto:uene	10	QN		
Diethyl Phthalate	10	Q	Q	
4-Chlorophenyl-phenylether	10	QN	Ð	
Fluorene	10	QZ	Ð	
l-Nitroaniline	50	QN	Ð	
4,6-Dinitro-2-methylphenol	50	QN	Ð	
N-Nitrosodiphenylamine	10	QN	Ð	
4-Bromophenyl-phenylether	10	Ð	Q	
Hexachlorobenzene		Ð	Ð	
Pentachlorophenol	50	QN	Ð	
Phenanthrene	10	QN	Ð	
Anthracene	16	QN	9	
di-n-Butyl Phthalate	10	Q	Q	
Fluoranthene	10	Q	Ð	
Pyrene		Ð	Q	
Butyl Benzyl Phthalate		A	Ð	
3,3'-Dichlorobenzidine	20	Q	Q	
Benzo (a) Anthracene	10	Q	Ð	
DIS(2-Ethylhexyl)Phthalate		Ð	Ð	
	10	QN -	₽	
al-n-Octyl Pathalate	10		£.	
benzo(b)filuorantnene	91,		2	
ocii 20 (v / r Juur ali clielie • • • • • • • • • • • • • • • • • • •	9 0		2	
bei 20 (a) fytelle Trdeno /] 0 3_od \ burreno	9 T	ON I		
	A L	QN	Ē	

NERM

24

1

į

i.,

| '

ł

Date Sampled: 10/22/87 Date Received: 10/26/87 Date Analyzed: 11/4/87

.

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

Shu - Za e	
	į
	H
٦ ۵	ï
	ũ
g	Ņ
,ec	Ņ
2	1
Vpprov	ĩ
ិជ	ï
ā	i
4	ł

Sample Cust ID: Information Blank RIF-BI-5 or 13 Rif-BI-15 or 13 Suit	RFW Batch Number:	RFW Batch Number: 87-10-5080 Clien	Client: BLM - K	irtland Land Fil	l	Page 1 of 14
RFW# - 13 - - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13 13 13 13 13 <th13< th=""> <th13< th=""> <th13< th=""></th13<></th13<></th13<>		Cust ID:		Blank	11	KLP-B1-10
attion Matrix D_F: Soil US/kg Soil US/kg	Sample	RFW# :	I	1	-13	-14
D.F.: - <th>Information</th> <th>Matrix:</th> <th>ı</th> <th>Soil</th> <th>Soil</th> <th>Soil</th>	Information	Matrix:	ı	Soil	Soil	Soil
Units: Ug/kg ug/kg <t< th=""><th></th><th>D.F.:</th><th>1</th><th>1</th><th>*5</th><th>*5</th></t<>		D.F.:	1	1	*5	*5
ateToluene-d8:-96 %94 %94 %ry:Bromofluorobenzene:Detection94 %102 %1,2-Dichloroethane-d4:Limits100 %WDwmthane10 %WDWDWDwmthane10 %WDWDWDwmthane10 %WDWDWDwmthane10 %WDWDWDwmthane10 %WDWDWDwmthane10 %WDWDNDwmthane10 %NDNDNDwmthane10 %NDNDNDwmthane10 %NDNDNDwmthane10 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDNDvictoroethane5 %NDNDND		Units:	ug/kg	く	ug/kg	ug/kg
Ity:Bromofluorobenzene:Detection94 %102 %I.2-Dichloroethane-d4:Limits100 %0000methane1000000000methane1000000000methane1000000000methane1000000000methane1000000000methane1000000000methane1000000000methane1000000000methane1000000000methane1000000000chloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000frichloroethane5000000<	Surrogate	Toluene-d8:	8	8 96	94 8	95 &
1,2-Dichloroethane-d4: Limits 100 % 94 94 methane 10 ND		romofluorobenzene:	Detection	948	102 %	96 8
methane. 10 00 00 rethane. 10 00 00 00 rethane. 10 00 00 00 00 rethane. 10 00	(\$) 1,2-	Dichloroethane-d4:		100 %	94 8	96 8
Chloride 10 N0 <	Chloromethane			ND	ND	
Chloride 10 N0 N0 ethane 10 N0 N0 N0 ethane 10 N0 N0 N0 N0 ethoroethene 5 N0 N0 N0 N0 chloroethene 5 N0	Bromomethane	•••••••••••••••••••••••••••••••••••••••	10	QN	Q	Ð
16 ND ND ND ene Chloride 5 ND ND ND 1 Disulfide 5 ND ND ND 1 Disulfide 5 ND ND ND ND 1 Disulfide 5 ND	Vinyl Chloride	• • • • • • • • •	10	9	Q	Ð
ene Chloride 5 ND ND 1 Disulfide 5 ND ND 1 Disulfide 5 ND ND 1 2-Dichloroethane 5 ND ND 1 2-Dichloroptopane 5 ND ND 1 3-Dichloroptopane 5 ND ND <	Chloroethane	•	10	QN	QN	Ð
101011 <t< td=""><td>Methylene Chloride.</td><td>• • • • • • • • • • • • • • • •</td><td>S</td><td></td><td>£</td><td>Ð</td></t<>	Methylene Chloride.	• • • • • • • • • • • • • • • •	S		£	Ð
1 Disulfide	Acetone	• • • • • • • • • • • • • •	10	Q	Q	Ð
chloroethene5NDND1,2-Dichloroethene5NDND1,2-Dichloroethene5NDND7richloroethane5NDND7richloroethane5NDND7richloroethane5NDND7richloroethane5NDND7richloroethane5NDND7richloroethane5NDND1,3-Dichloromethane5NDND1,3-Dichloropropene5NDND1,3-Dichloromethane5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,3-Dichloropropene5NDND1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Carbon Disulfide		ى د	QN	Ð	Ð
Chloroethane	1,1-Dichloroethene.		S	QN	Q	Q
1, 2-Dichloroethene 5 ND ND 7 form 5 ND ND 7 form 10 ND ND 7 form 10 ND ND 7 for color 10 ND ND 7 for color 10 ND ND 7 for color 10 ND ND 1 for concethane 5 ND ND	1,1-Dichloroethane.		ŝ	QN	Ð	Ð
No No No No No Trichloroethane 10 No No No No Trichloroethane 10 No No No No No Trichloroethane 5 No No No No No No No Acetate 10 No No <td>Trans-1,2-Dichloroe</td> <td>:</td> <td>ŝ</td> <td>QN</td> <td>Ð</td> <td>Ð</td>	Trans-1,2-Dichloroe	:	ŝ	QN	Ð	Ð
ChloroethaneNDNDTrichloroethane10NDNDTrichloroethane5NDNDAcetate10NDNDAcoethar10NDNDAcethylvinylether10NDNDAcethylvinylether10NDNDAcethylvinylether10NDNDAcethylvinylether10NDNDAcethylvinylether10NDNDAcethylvinylether10NDNDAcethylvinylether10ND <t< td=""><td>Chloroform</td><td>• • • • • • • • • • • • • •</td><td>ŝ</td><td>Q</td><td>Q</td><td>Ð</td></t<>	Chloroform	• • • • • • • • • • • • • •	ŝ	Q	Q	Ð
Trichloroethane 10 ND ND ND Trichloroethane 5 ND ND ND Acetate 10 ND ND ND Acetate 10 ND ND ND Acetate 10 ND ND ND Acetate ND ND ND ND -1, 3-Dichloropropene 5 ND ND ND -1, 3-Dichloroethane 5 ND ND ND -1, 3-Dichloroethane 5 ND ND ND -1, 3-Dichloroethane 5 ND ND ND -1, 10roopropene 5 ND ND ND -1, 2	1,2-Dichloroethane.	•	· مى	Q	Q	Ð
Trichloroethane	2-Butanone	•	10	QN	Q	Ð
Netrachloride5NDNDAcetateNDNDNDNDAcetateNDNDNDNDAcetate5NDNDNDI.dhloropropane5NDNDNDI.dhloropropene5NDNDNDAcethene5NDNDNDAcethene5NDNDNDAcethene5NDNDNDAcoethene5NDNDNDAcoethane5NDNDNDAcoethylvinylether10NDNDNDNoethylvinylether10NDNDND	1,1,1-Trichloroetha	•	ı م	Ð	Q	140
Acetate10NDNDlichloromethane5NDNDl.hloropropane5NDNDl.j.J-Dichloropropene5NDNDnochloromethane5NDNDTrichloroethane5NDNDnochloropropene5NDNDnoethloropropene5NDNDnoethloropropene5NDNDnoethloropropene10NDNDnoethloropropene10NDNDnoethloropropene10NDNDnoethloropropene10NDNDnoethloropropene10NDNDnoethloropropene10NDND	Carbon Tetrachlorid	e	م	QN	Ð	Ð
~ ~ ~ ~ ~	Vinyl Acetate		10	Q	Q	Q
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Bromodichloromethan	e	ŝ	- ON	Ð	Q
ი ი ი ი ი ი ი მ მ მ მ მ მ მ მ მ მ მ მ მ	1,2 Dichloropropane		ŝ	QN	Ð	Q
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trans-1, 3-Dichlorop	ropene	ŝ	Q	Q	Ð
	Trichloroethene	• • • • • • • • • • • • •	ŝ	QN	QN	Ð
10     10     10     10       110     ND     ND     ND	Dibromochloromethan	.e	S	Q	Ð	Ð
5     ND     ND       5     ND     ND       5     ND     ND       10     ND     ND	1,1,2-Trichloroetha	ne	Ŋ	Ð	Q	Ð
	Benzene		ŝ	QN	Ð	2
10 ND ND	cis-l, 3-Dichloropro	pene	Ŋ	QN	Q	Ð
	2-Chloroethylvinyle	ther	10	QN	Q	Q

. . .

-----

-----

-----

. . ....

:

Client: BLM - Kirkland Land Fill	Detection Blank KLF-Bl-5 Limits13	
RFW Batch Number: 87-16-5080 Clie	Cust ID: RFW#:	BromoformBromoform Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes

in the

|.

1

* = Detection limit must be multiplied by dilution factor.

ND=Not detected at specified detection limit. B=Present in blank. J=Present at less than detection limit. NR=Not requested.

- -----

l

i i

1

ł

NUTERN

Date Sampled: 10/22/87 Date Received: 10/26/87 Date Analyzed: 11/4/87

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

14 Page 3 of **KLP-B2-5** 23/kg Soil 1.06 96 -17 نې * Ð Ð Ð KLF-B1-30 ug/kg Soil 95 103 -16 97 ۍ * 888888 Ð ĝ ę Ð 9 BLM - Kirkland Land Fill KLF-B1-20 ug/kg Soil -15 ۍ * 95 36 66 88 Ð ĝ ß Ð ĝ Ð ę Ð ę Detection ug/kg Limits 0 S ŝ 0 9 10 Client: Matrix: Cust ID: RFW#: D.F.: Units: Toluene-d8: Bromofluorobenzene: . . . . . . . . . . . . . 2-Chloroethylvinylether..... . . . . . . . . . . . . . . . ,2-Dichloroethane-d4; ......... cis-1,3-Dichloropropene..... .......... 1,2 Dichloropropane..... ....... .......... rans-1,2-Dichloroethene..... .... Trans-1, 3-Dichloropropene..... ....... 87-10-S080 l,l,l-Trichloroethane.... Run Zm Benzene..... Bromodichloromethane.... Dibromochloromethane.... l,l-Dichloroethane.... ,l-Dichloroethene..... l,l,2-Trichloroethane.... Trichloroethene..... Chloroform..... l,2-Dichloroethane.... Carbon Disulfide.... Vinyl Acetate..... Carbon Tetrachloride. 2-Butanone..... Bromomethane..... Methylene Chloride. Acetone..... Chloromethane.... Chloroethane..... Vinyl Chloride.... RFW Batch Number: Approved by:_ Information Surrogate Recovery: Sample 8

					NEW
RFW Batch Number: 87-10-5080	Client:	BLM -	Kirkland Land Fill		4
Cust ID: RFW#:	1 1	Detection Limits	KLF-B1-20 -15	KLF-B1-30 -16	KLP-B2-5 -17
Bromoform	2 2 1 1 1 1	5	R R	RD RD	9
4-Methyl-2-pentanone	•	10	Q	Q	Ð
2-Hexanone		10	Ð	Q	Ð
Tetrachloroethene	•	5	Ð	2	Ð
1,1,2,2-Tetrachloroethane	:	2	Ð	2	Ð
Toluene		2	95	60	Ð
Chlorobenzene	•	2	Q	2	2
Ethylbenzene	:	5	R	Q	Ð
Styrene	•	5	Q	Q	9
Total Xylenes	:	5	Q	Ð	QN

55

E......

* = Detection limit must be multiplied by dilution factor.

÷,

ND=Not detected at specified detection limit. B=Present in blank. J=Present at less than detection limit. NR=Not requested.

I

Date Received: 10/26/87 Sampled: 10/22/87 Date Analyzed: 11/4/87 Date

GC/MS DATA SUMMARY WESTON ANALYTICS

14 Page 5 of KLP-B2-30 ng/kg Soil #5 98 104 101 -20 ß Ð Ð Ð KLF-B2-15 ug/kg soil *5 105 -19 104 5 ę 22 BLM - Kirkland Land Fills VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS KLF-B2-10 -18 ug/kg Soil 128 96 106 \$ * 888888 ĝ g ĝ B ĝ Ð Detection ug/kg Limits 10 0 0 6 S D 0 S 5 C D D Client: Toluene-d8: Bromofluorobenzene: RFW# : Matrix: D.F.: Units: l,2-Dichloroethane-d4: Cust ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ rans-l,2-Dichloroethene..... ,2-Dichloroethane..... 2-Butanone............. ,l-Dichloroethane................ Chloroform...... cis-1,3-Dichloropropene...... RFW Batch Number: 87-10-5080 Trichloroethene..... 1,2 Dichloropropane..... Trans-1,3-Dichloropropene Approved by: Nue - Zan Bromodichloromethane.... Benzene...... Carbon Tetrachloride.... ,1,2-Trichloroethane... ,1,1-Trichloroethane... Dibromochloromethane... ,l-Dichloroethene.... Carbon Disulfide.... Vinyl Acetate..... Bromomethane..... Chloroethane..... Methylene Chloride.. Vinyl Chloride.... Acetone..... Chloromethane... Information Surrogate Recovery: Sample **e** 

2-Chloroethylvinylether.....

# # # # # # # # # # # # # # # # # # #	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NICIA
RFW Batch Number: 87-10-5080 Clie	Client	nt: BLM	- Kirtland Land Fill	)    ge 6 of 14	
Cust ID: RFW#:	: #:		KLF-B2-10 -18	KLF-B2-15 -19	KLF-B2-3 <b>0</b> -26
Bromoform		5	ND	Ŋ	
4-Methyl-2-pentanone		16	Ð	Q	Ð
2-Hexañone	•	10	Ð	Q	2
Tetrachloroethene	•	2	Ð	Ð	Q
1,1,2,2-Tetrachloroethane	•	5	Ð	Ð	QN
Toluene	•	S	54	Q	63
Chlorobenzene	•	S	Q	Q	QN
EthylbenzeneEthylbenzene	•	5	Q.	Q	Ð
Styrene	•	S	Q	Q	QN
Total Xylenes	•	S	Ð	Ð	Q

ł

р¢.,

.

Ι.

1

* = Detection limit must be multiplied by dilution factor.

· .

ND=Not detected at specified detection limit. B=Present in blank. J=Present at less than detection limit. NR=Not requested.

Ì

;;;;

-----

----

:

Date Sampled: 10/22/87 Date Received: 10/26/87 Date Analyzed: 11/4/87

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

|

-----

i. .

1 -

1 ١.

Į

Ę ì,

ļ

ł.

い で い に い し

T

Ņ 2

Approved by: Nue Ta P	la p				
RFW Batch Number: 87	87-10-5080	it: BLM - K	irkland Land Fill		Page 7 of 14
	Cust ID:		KLF-B42-40	KLF-B3-5	KLP-B3-16
sample	RFW# :	J	-21	-22	-23
Information	Matrix:	ð	Soil	Soil	Soil
	D.F. :	:	#D	۲ ۲	<b>1</b>
	Units:	ug/kg	ug/kg	ug/kg	ug/kg
Surrogate	Toluene-d8:		93 <b>8</b>	106 %	105 %
	Bromofluorobenzene:	Detection	104 %	102 %	106 8
(%) 1,2-Dichloroethane-d4:	1,2-Dichloroethane-d4:	Limits	106 %	105 %	168 <b>8</b>
Chloromethane		10	N	ND	
Bromomethane		10	QN	QN	QN
Vinyl Chloride	• • • • • • • • • • • • • • • • • • •	10	QN	Q	CN CN
Chloroethane		10	Ð	Ð	CN CN
Methylene Chloride		ŝ	Ð	Ð	Ð
Acetone		10	Ð	Q	Ð
Carbon Disulfide	• • • • • • • • • • • • • • •	ŝ	QN	Ð	Ð
1,1-Dichloroethene		ß	Ð	Q	Ð
1,1-Dichloroethane		5	QN	Ð	Ð
Trans-1,2-Dichloroethene	hene	ى	Ð	Q	Ð
Chloroform	• • • • • • • • • • • • •	ŝ	Ð	Q	Ð
1,2-Dichloroethane		ى ا	Ð	Ð	Ð
2-Butanone		10	Q	Ð	Ð
l, l, l-Trichloroethane	0	ŝ	32	32	42
Carbon Tetrachloride		'n	Q	Ð	Ð
Vinyl Acetate		10	Q Q	Q	Ð
Bromodichloromethane		ŝ		Ð	Ð
1,2 Dichloropropane		ۍ	Ð	Ð	Ð
Trans-1, 3-Dichloropro	opene	ŝ	Ð	Q	Ð
Trichloroethene		ŝ	Ð	Ð	Ð
Dibromochloromethane		ŝ	Ð	Ð	Ð
1,1,2-Trichloroethane	e	ŝ	Ð	Ð	Ð
Benzene	• • • • • • • • • • • • •	2	QN	R	Q
cis-l, 3-Dichloropropene	ene	2	Ð	Ð	Q
z-Cnloroetnylvinylether	her	10	Q	Ð	QN

i

ł

Ì

.

521	F 14	B											
ANE MARK	Page 8 of 1	KLF-B3-10 -23	: : : : : : : : : : : : : : : : : : :	Ð	Ð	Ð	Q	Q	280	Ð	Ð	Q	Ð
		KLF-B3-5 -22		R	2	Ð	Ð	Q	180	Q	Q	Q	Ð
	ent: BLM - Kirkland Land Fill Page 8 of	KLF-B42-40 -21	erseaeseeaeeeeeeeeeeeeeeeeeeeeeeeeeeeee	<b>UN</b>	Q	Ð	QN	Ð	690	QN	QN	Q	Ð
		Detection Limits		n (	10	10	S	S	S	S	S	S	ŝ
	r: 87-10-5080	Cust ID: RFW <b>\$</b> :	ØLFORFORFERFERFERERERERERERERERERERERERERE		4-Methyl-2-pentanone	2-Hexanone	Tetrachloroethene	l,l,2,2-Tetrachloroethane	Toluene	Chlorobenzene	EthylbenzeneEthylbenzene	Styrene	Total Xylenes

Ľ

Ľ

[

* = Detection limit must be multiplied by dilution factor.

ND=Not detected at specified detection limit. B=Present in blank. J=Present at less than detection limit. NR=Not requested.

1

i

NTO M

< ``

. ......

[

ļ

Date Sampled: 10/22/87 Date Received: 10/26/87 Date Analyzed: 11/4/87

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

Approved by: Sun Cr. P.	5				
RPW Batch Number: 87-1	87-16-5686	Client: BLM - Ki	irkland Land Fill		Page 9 of 14
	Cust ID:	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	KLF-B3-20	KLF-B3-30	KLP-B4-5
Sample	RFW4 :	ł	-24	-25	-26
Information	Matrix:	I	Soil	Soil	Soil
	D.F.:	J	<b>*</b> 5	*20	<b>+</b> 5
	Units:	ug/kg	ug/kg	ug/kg	ug/kg
Surrogate	Toluene-d8:		106 %	95 &	106 &
	Bromofluorobenzene:	Detection	106 8	135 %	105 %
(8) ⁻ 1,2-Dich	1,2-Dichloroethane-d4:	Limits	104 %	103 8	104 %
ERERTERERERERERERERERERERERERERERERERER	명해 및 철상 영상 위 및 현 기 및 현 기 및 1 및 1 및 1 및 1 및 1 및 1 및 1 및 1 및 1 및	. * * * * * * * * * * * * * * * * * * *			
Bromomethane		10	QN	QN	Q
Vinyl Chloride		10	QN	Ð	Q
Chloroethane	• • • • • • • • • • • •	10	QN	Q	
Methylene Chloride		ŝ	QN	250	34
Acetone		10	Ð	Ð	Ð
Carbon Disulfide		ŝ	Q	Ð	Ð
1,1-Dichloroethene	• • • • • • • • • • • •	ß	Ð	Q	QN
1,1-Dichloroethane		ŝ	Q	Q	Ð
Trans-1,2-Dichloroethene	Je	5	Ð	QN	QN
Chloroform		ŝ	QN	Q	QN
1,2-Dichloroethane		۲	Q	Q	Q
2-Butanone		10	Q	Ð	Ð
I, I, 1-Trichloroethane		ŝ	Q	Ð	Ð
Carbon Tetrachloride		5	Q.	2	Q
Vinyl Acetate	• • • • • • • • • • •	1.0	Q.	Ð	Ð
Bromodichloromethane		ı G		Q	Ð
1,2 Dichloropropane		Ω.		£	Q
Trans-1,3-Dichloropropene	ene	in n	QN	2	2
Trichloroethene		10	QN	Q	Q
Dibromochloromethane		i Ci	AN AN AN AN AN AN AN AN AN AN AN AN AN A	Ð	
I,1,2-Trichloroethane	• • • • • • • • • • • •	ı G	Ð	Ð	Ð
Benzene		ŝ	Ð	2	Ð
C15-1, 3-D1Chloropropene	•••••••••••••••••••••••••••••••••••••••	، م ر			QN QN
<pre>&lt;</pre>		<b>9</b> T	QN	2	2

Ì

. . .

-----

i

:

RFW Batch Number: 87-10-5080		mmennemener Client: BLM - Ki	wessessessessessessessessessessessessess		Page 18 of 14
Cust ID: RFW#:	t ID: RFW4:	Detectio	KLF-B3-20 -24	KLF-B3-30 -25	KLP-B4- -26
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE			eseterterterter ND	ND Statements	4 4 11 11
4-Methyl-2-pentanone		10	Q	Q	2
2-Hexanone	•	10	QN	Ð	Ð
Tetrachloroethene	•	ß	QN	Ð	Ð
1,1,2,2-Tetrachloroethane	•	Ś	Ð	Q	Q
Toluene	•	'n	30	580	110
Chlorobenzene	•	ۍ	QN	Q	Q
Ethylbenzene	•	ъ	Ð	Ð	Ð
Styrene	•	5	QN	Q	<u>A</u>
Total Xylenes	•	S	Ð	Ð	9

ļ

.

1

* = Detection limit must be multiplied by dilution factor.

ND=Not detected at specified detection limit. B=Present in blank. J=Present at less than detection limit. NR=Not requested.

Date Sampled: 10/22/87 Date Received: 10/26/87 Date Analyzed: 11/4/87

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS



! ί...

ţ 

> ł

> > į

1.4 ι,

Approved by: Stur 72 P	5				
RFW Batch Number: 87-10-5080	-5080	nt: BLM -	Land Fi		Page 11 of 14
Sample	Cust ID: RFW#:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KLF-B4-11 -27	KLF-B <b>4</b> -20 -28	KLF-SP -29
Information	Matrix: D.F.:	11	Soil *5	Soil *5	Soil *16
	Units:	ng/kg	ug/kg	ug/kg	ug/kg
Surrogate	Toluene-d8:		104 %	105 %	103 8
Recovery: Bromofl (%) 1,2-Dichlc	Bromofluorobenzene: 1,2-Dichloroethane-d4:	Detection Limits	102 & 103 &	107 % 102 %	102 8 102 8
Esserencenterterterterterterterterterterterter Chloromethane		resercesereseres 10	BEEGEEGEGEGEGEGE ND	eccecceccecce ND	kekterrekkerrek
Bromomethane	• • • • • • • • • •	10	Q	Ð	QN
Vinyl Chloride		10	Q	Q	Q
Chloroethane		10 7			
	• • • • • • • • • • • • • • • • • • • •	lø	29		811
Carbon Disulfide	• • • • • • • •	ŝ	QN	Q	QN
1,1-Dichloroethene	• • • • • • • • • •	ιΩ I	9	8	29
Trans-1.2-Dichloroethane		ი <b>ເ</b>			2 2
Chloroform		о <b>н</b> о	9	2	2
1,2-Dichloroethane	• • • • • • • • • •	ŝ	QN	QN	QN
2-Butanone		10		2	
L, L, L-Trichloroethane Carbon Tetrachloride		റഗ			22
Vinyl Acetate		10	2	2	2
Bromodichloromethane		ŝ	- Q	Q	QN
1,2 Dichloropropane	• • • • • • • • • •	ı م	Q	Q	QN
Trans-1, J-Dichloropropene mrichlorocthene	e	LO LI		8	
Dibromochloromethane		n ur			
1,1,2-Trichloroethane		<u>م</u> .	2	Ð	9
Benzene	• • • • • • • • • •	ц С	Q	Q	QN
cis-1,3-uichloropropene 2-Chloroethylvinylether		16	88		
•		1		•	2

Ì

----

_____

-

RFW Batch Number: 87-10-5080 Clie		it :	BLM - Kirkland Land Fill		Page 12 of 14
Cust ID: RFW#:	: 43 11	Dete			KLF-SP -29
Bromoform				unerererer ND	ntereresterererer ND
4-Methyl-2-pentanone		10	Q	Ð	2
2-Hexanone	•	10	Q	Ð	Q
Tetrachloroethene	•	2	<b>B</b>	Q	Q
1,1,2,2-Tetrachloroethane	•	5	QN	QN	Q
Toluene	•	S	610	110	470
Chlorobenzene	•	S	QN	QN	QN
Ethylbenzene	•	S	Q	Q	Ð
Styrene	•	2	Ð	Ð	2
Total Xylenes	•	5	Q	Q	Q

.....

------

1.

in the second

* = Detection limit must be multiplied by dilution factor.

ND=Not detected at specified detection limit. B=Present in blank. J=Present at less than detection limit. NR=Not requested.

ł

į

i

10/22/87	10/26/87	11/4/87
Sampled:	Received:	Analyzed:
Date	Date	Date

# WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS



-----

÷.

1

ţ

.....

1

[_

RFW Batch Number:	RFW Batch Number: 87-10-5080 Clie	nt: BLM -	Kirkland Land Fill	nt: BLM - Kirkland Land Fill Page 13 of 14
Sample Information	Cust ID: RFW#: Matrix: D.F.: Units:	- - ug/kg	KLF-WOL -30 Soil *5 ug/kg	
Surrogate Recovery: B: (%) 1,2-1	Toluene-d8: Bromofluorobenzene: 1,2-Dichloroethane-d4:		113 & 96 & 106 &	
Chloromethane	there here here here here here here here	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- - -	

]

ļ

			NEW
RFW Batch Number: 87-18-5989 Clie	nt: BLM -	Kirkland Land Fill	Page 14 of 14
Cust ID:     Detection     KLF-WOL       RFW#:     Limits     -30	Detection Limits	KLF-WOL -30	
Bromoform			
<pre>* = Detection limit must be multiplied</pre>	by dilution	factor.	

• •

ę

÷ -

:

. .

.

۶. ٤...

ND=Not detected at specified detection limit. B=Present in blank. J=Present at less than detection limit. NR=Not requested.

سر.

į

i

.

## APPENDIX C

÷.,

i

## CHAIN-OF-CUSTODY FORMS

-

1.

Ĺ_

Ľ

SHIP TO.	BhipperAddress	
ATTENTION: Dernis Jennen Phone No. 209/957-34	<u> Dete Shipped パーネー/- そう</u> Shipment Service デーチェンAirbill No. <u>508218335</u>	6
Relinquiened by: (Signature)	Received by: (Signature)	Date/Tim
Relinquished by: (Signature)	Received by: (Signature)	Date/Tim
Relinquished by: (Signature)	Received by: (Signature)	Date/Tin
Relinquished by: (Signature)	Received for laboratory by: (Signature)	

Analysis laboratory should complete "sample cond. upon receipt" section below, sign and return copy to Shipper

Site No. Of Date Sample Analysis Sample Co Identification Number " Cont. Sampled Requested Upon Rece 10-22-37 HE-82-5 1-8 EP TO MOLL SFA E KITTIAND 01 K1 II. Compusite **5** è 10 11-CF-B1-10 11 LID MARKED KLE-! 1 t. 11 SP TOX mobile 1 E BI-OC 590 2240.822 OK ٦r 76 m nomposit 20,30 1. F 81-1 S. IX II ١ SPA SIYONTO =-82-SP TOX mal 11 11 11F-B2-10 Composite 5 10 11 11 11 11 S'D 2, · (E-B2-15 SPARANDE 270 T 1.1 11 11 (LE-B2-30 STON 1405170 SPR 4, LE-BZ-YO 30 F UD . 1A 4 E-83-5 .41 PA & 240, 8210 223 11 1 1. (Ompos 210 KLF-B3 11% 1 4LF-83-1 0 SPA Say Ora 1. 1( r 30 4LF - A3 - 27 14 11 1, 11 9P ۶ PN 2 24- 127-1. 1. 11 -1.y ۰, \¢. 1. FO TOP 1, E-34-20 9 11 1170 11 SP Tix Metilo 11 til-0110510 Initabil 811.824. 1 1 1. SLF-WX Remarks: 🖈 Fallen JUL Cu 大 1.1 P1 22) razie

White - Sampler

### APPENDIX D

# EPA FORM FOR SITE INVESTIGATION

-

1.

ί.

1.

1

i.,

I.

						I. IDENTI	FICATION
\$EPA	POI	ENTIAL HAZAR SITE INSPECT					2878-01-12
VLFA	PART 1 - SIT	ELOCATION AND			ATION	MM	2878-01-12
II. SITE NAME AND LOC				· · · · · · · · · · · · · · · · · · ·			
OI SITE MAME ILegal common of			02 STREE	T. ROUTE NO . OR SP	ECIFIC LOCATION	DENTIFIER	
Kirtland Land	Eill		Inte	rsection of	S.J. Co.	Route	6500 at 6480
03 CITY	·····		04 STATE	OS ZIP CODE	OS COUNTY		OTCOUNTY OF CON
Kirtland			NM		San Juan		CODE DIST
OS COCACINATES	•	10 TYPE OF OWNERSH			L		I
3_6_4_6_0_0	LONGITUDE	A PRIVATE				D. COUNTY G. UNKNOW	DE. MUNICIPAL
III. INSPECTION INFORM				<u></u>			
OI DATE OF INSPECTION	02 SITE STATUS	03 YEARS OF OPERAT	-				
$10_{1}22_{1}87_{1}$		62	NINING YEA	Ipresent A ENDING YEAR		UNKNOWN	
04 AGENCY PERFORMING INS	PECTION (Crock of the saply)	1			•		· · · · · · · · · · · · · · · · · · ·
DA EPA DE EPAC		Name of Long	D C. ML	JNICIPAL D. M	UNICIPAL CONTI		(Name of imag
DE STATE DE STATE	CONTRACTOR	Nome of land	XXG. 01	HER_BLM_COT	sector		
05 CHIEF INSPECTOR		OG TITLE			07 ORGANIZA	TION	OS TELEPHONE NO
Robert Mueller		Field Tea	n Lead	ler	Weston		(819 340-261
09 OTHER INSPECTORS		10 TITLE			11 ORGANIZA	TION	12 TELEPHONE NO
Bert Hyde		Field Sup	port S	Staff	Weston		200 527-203
Susan Kraemer		Field Sup	port S	Staff	Weston		(818) 340-261
			•	<u> </u>			
							( )
							( )
· · · · · · · · · · · · · · · · · · ·	<u>_                               </u>						( )
13 SITE REPRESENTATIVES IN	TERVIEWED	14 TITLE		SADORESS			18 TELEPHONE NO
							( )
·····	·······						
							()
	······································						1
							( )
							( )
							( )
							( )
						<u></u>	<u>_1</u>
17 ACCESS GAINED BY	18 TIME OF INSPECTION	19 WEATHER COND	TIONS				
C WARRANT		10/87 Su	nny, 1	Cemperature snowfall,		re 10°F	
IV. INFORMATION AVAIL	LABLE FROM						
DI CONTACT		02 OF IAgency Organi	Her				03 TELEPHONE NO
Chuck Pettee		BLM					( )
04 PERSON RESPONSIBLE FO	A SITE INSPECTION FORM	OS AGENCY	OS ORG	ANIZATION	07 TELEPHONE	NO.	08 DATE
Robert Muelle	r		Wes	ston	818/340	-2610	1-28-88
					1		MONIN DAY YEAR

· ·

EPA FORM 2070-13 (7-81)

,• · •

•

•

-----

[

.

|

:

!

*...* •

C B POWDER, FINES U F C C SLUDGE 0 0 C O OTHER		PO	SITE INSPEC	RDOUS WASTE TION REPORT TE INFORMATION		I. IDENTIFICAT 01 STATE 02 SHE NM 2878	
DI PHYSCAL STATES (Check of the C A SOLO C B POWDER, FINES U F C SLUQGE 0 C O OTHER (Sector) II. WASTE TYPE CATEGORY SU SLU SLUDGE OLW OILY WAS SOL SOLVENT PSD PESTICIO OCC OTHER OI OCC OTHER OI IOC INORGAN ACD ACIDS BAS BASES MES HEAVY MI V. HAZARDOUS SUBSTAN 1 CATEGORY 02 SU Sludge a inated w semivola Compound Chlorpet V. FEEDSTOCKS Sectors	ANTITIES, AN	D CHARACTER	ISTICS		·····		
II. WASTE TYPE CATEGOMY SU SLU SLUDGE OLW ONLY WAS SOL SOLVENT PSD PESTICION OCC OTHER ON NOC MORGAN ACD ACIOS BAS BASES MES HEAVY MI V. HAZARDOUS SUBSTAN 1 CATEGOMY 02 SU Sludge a inated w Semivola Compound Chlorpet	af inar agayy D E SLURRY D F LIQUID D G GAS	02 WASTE QUANT	17 AT SITE	OS WASTE CHARACTI A TORC B CORRO C C RADOA C O PERSIST	CIME GG FLAMMA	E DIEHIGHLY DUS L'JEXPLOS BLE LIKPEACT LE DIENCOM	SIVE . ME
CATEGORY SU SLU SLUDGE OLW ONLY WAS SOL SOLVENT PSD PESTICIO OCC OTHER OD IOC NORGAN ACD ACIOS BAS BASES MES HEAVY MI V. HAZARDOUS SUBSTAN I CATEGORY 02 SU Sludge a inated w semivola compound chlorpet		no or onous .		1			
SLU     SLUDGE       OLW     ORLY WAS       SOL     SOLVENT       PSD     PESTICION       OCC     OTHER OD       NOC     NORGAN       ACD     ACIOS       BAS     BASES       MES     HEAVY MI       V. HAZARDOUS SUBSTAN     02 SU       Sludge a     inated w       Semivola     compound       ChlorDet     0       V. FEEDSTOCKS     Sur Argence       CATEGORY     01	SUBSTANCE N			OZ UNIT OF MEASURE	03 COMMENTS		
OLW     ORLY WAS       SOL     SOLVENT       PSD     PESTICION       OCC     OTHER OD       NOC     NORGAN       ACD     ACIOS       BAS     BASES       MES     HEAVY MI       ALTEGORY     02 SU       Sludge a     inated w       Semivola     Compound       Chlorpet     0       SOL     Strategory       ACD     ACIOS			35,000	Cubic Yards			
PSD PESTICION OCC OTHER OD NOC NORGAN ACO ACIOS BAS BASES MES HEAVY MI V. HAZARDOUS SUBSTAN CATEGORY 02 SU Sludge a inated w semivola compound chloroet 	WASTE	· · · · · · · · · · · · · · · · · · ·	1 33,000	CUDIC Tards	in the vola	tile and se	minared. mivolatil
OCC OTHER ON NOC NORGAN ACO ACIOS BAS BASES MES HEAVY MI A HAZARDOUS SUBSTAN CATEGORY 02 SU Sludge a inated w semivola compound chlorpet	ENTS				organic com		
OCC OTHER OF NOC NORGAN ACD ACIDS BAS BASES MES HEAVY MI V. HAZARDOUS SUBSTAN CATEGORY 02 SU Sludge a inated w semivola compound chlorpet	CIDES						
INDE     INDRGAN       ACD     ACIOS       BAS     BASES       MES     HEAVY MI       V. HAZARDOUS SUBSTAN     02 SU       CATEGORY     02 SU       Sludge a     inated w       Semivola     compound       Chlorpet     0       V. FEEDSTOCKS     See Argenee       CATEGORY     01	R ORGANIC CH	HEMICALS	<u> </u>	<b></b>			
ACD ACIOS BAS BASES MES HEAVY MI V. HAZARDOUS SUBSTAN CATEGORY 02 SU Sludge a inated w semivola compound chlorpet	GANIC CHEMIC		<b></b>	<u> </u>		•	
BAS BASES MES HEAVY MI V. HAZARDOUS SUBSTAN CATEGORY 02 SU Sludge a inated w semivola compound chlorpet V. FEEDSTOCKS Sur Argument CATEGORY 01				<u> </u>	· · · · · · · · · · · · · · · · · · ·		
MES HEAVY MI V. HAZARDOUS SUBSTAN CATEGORY 02 SU Sludge a inated w semivola compound chlorpet 			<u> </u>				
A CATEGORY 02 SU Sludge a inated w semivola compound chlorpet 	Y METALS					·····	·····
CATEGORY 02 SU Sludge a inated w semivola compound chlorpet	ANCES (See Ar	pende lar mast keaven	I	L			
<pre>inated w semivola compound chlorpet</pre>	2 SUBSTANCE N		03 CAS NUMBER	04 STORAGE DISP	OSAL METHOD	05 CONCENTRATION	OS MEASURE C
/. FEEDSTOCKS :See Argenee	and soi	1 contam-		Unlined Pit			1
/. FEEDSTOCKS :See Argenee CATEGORY 01							
/. FEEDSTOCKS :See Argenee CATEGORY 01					["		
/. FEEDSTOCKS :See Argenee CATEGORY 01			71-55-6			530	uglKg
CATEGORY DI	ethane)	(TO Luene)	108-88-3			1300	uglKg
CATEGORY DI							
CATEGORY DI			<u> </u>				I
CATEGORY DI	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	<b> </b>				
CATEGORY DI							
CATEGORY DI							1
CATEGORY DI	<u></u>	<u></u>	<u> </u>			· · · · · · · · · · · · · · · · · · ·	
CATEGORY DI			<b></b>	<u> </u>			<u> </u>
CATEGORY DI			<u> </u>				
CATEGORY DI	<u> </u>		<u> </u>			<u></u>	<u> </u>
CATEGORY DI			<del> </del>	{			
CATEGORY DI			<u> </u>	<u> </u>			t
CATEGORY DI			L	I			L
			r	I			
FDC I	01 FEEDSTOC	X NAME	02 CAS NUMBER	CATEGORY	01 FEEDSTOC		02 CAS NUMBER
				FDS			
FDS			<u>  .</u>	FDS			
FDS			<b></b>	FDS			<u></u>
FDS				FDS			

EPAFORM 2070 1317 811

ł

e i

	POTENTIAL	HAZARDOUS WASTE SITE	I. IDENTIF	CATION
SEPA	SITEIN	ISPECTION REPORT AZARDOUS CONDITIONS AND INCIDER	ITS	878-0
I. HAZARDOUS COND	TIONS AND INCIDENTS			
	R CONTAMINATION	02 0 OBSERVED (DATE)	D POTENTIAL	
		ounds to potential underlyin;	g aquifer	
01 C B SURFACE WATE	ER CONTAMINATION TIALLY AFFECTED:	02 C OBSERVED (DATE) 04 NARRATIVE DESCRIPTION	D POTENTIAL	
Unlikely S	an Juan River is over	5 miles from site		
01 C CONTAMINATIK 03 POPULATION POTEN	ON OF AIR ITIALLY AFFECTED.	02 C OBSERVED (DATE) 04 NARRATIVE DESCRIPTION	CI POTENTIAL	C AL
None				
01 C D FIRE EXPLOSIV 03 POPULATION POTEN	E CONDITIONS TIALLY AFFECTED	02 OBSERVED (DATE) 04 NARRATIVE DESCRIPTION		
None		·		
01 C E DIRECT CONTA 03 PCPULATION POTEN		02 O OBSERVED (DATE) 04 NARRATIVE DESCRIPTION		2 4
None				
01 C F CONTAMINATIO	AFFECTED:	02 OBSERVED (DATE 10-22-87) 04 NARRATIVE DESCRIPTION		<u> </u>
	waste pits has been c latile organic compoun	onfirmed by sample analysis ds	to contain v	olati
01 C G DRINKING WATE 03 POPULATION POTEN	A CONTAMINATION 5 Persons	02 () OBSERVED (DATE) 04 NARRATIVE DESCRIPTION	C POTENTIAL	C AL
distance of		ists below the site. However les to the nearest downgradi		
01 TH WORKER EVER		0212 09559450 (0415		
None				
01 21 POPULATION EX 03 POPULATION POTEN	POSURE INJURY TIALLY AFFECTED	02 () OBSERVED (DATE) 04 NARRATIVE DESCRIPTION	C POTENTIAL	
None				

· ·

••

T

.

.

.

------

POTENTIAL H	AZARDOUS WASTE SITE	L IDEN	TIFICATION
SEPA SITE INS	PECTION REPORT	OI STAT	2878-01-12
PART 3 · DESCRIPTION OF HA	ZARDOUS CONDITIONS AND INCIDENTS	; L	
I. HAZARDOUS CONDITIONS AND INCIDENTS			
01 C J DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION	02 [] OBSERVED (DATE)	G POTENTIA	L G ALLEGED
None			
01 C K DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION incluse nomenal of later as a	02 C OBSERVED (DATE)		L C ALLEGED
None			
01 C L CONTAMINATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	02 C OBSERVED (DATE)	C POTENTIA	
None		~	
01 T M UPISTABLE CONTAINMENT OF WASTES	02 - OBSERVED (DATE 10-22-87)	- POTENTIA	L C ALLEGED
Waste materials are poorly contained.		the dip	osal pits.
01 I N DAVIAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION	02 OBSERVED (DATE)	I POTENTIA	L CALLEGED
None			
01 TO CONTAMINATION OF SEWERS, STORM DRAINS, WWTPs 04 NARRATIVE DESCRIPTION	02 - OBSERVED (DATE)	I POTENTIA	L C ALLEGED
None			
DI XXP ELEGAL'UNAUTHORIZED DUMPING DA NARRATIVE DESCRIPTION	02 - OBSERVED (DATE)	E POTENTIA	L ALLEGED
Based on EID reports and sample acetone, toluene, methylene chlo		material	s and
DS DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLEG	ED HAZAROS		
None			
R. TOTAL POPULATION POTENTIALLY AFFECTED: Popul	ation within 1 mile radius g	reater t	han 100 pers
V. COMMENTS			
Conditions suggest surrounding p	oopulation would not be affec	ted.	
V. SOURCES OF INFORMATION Car surveile primeries a groupe free -	201 1 2020 1 1 10000		
*BLM Files *Roy F. Weston Site Investigation	a Report		
A FORM 2010-13 (7-81)	······································		

Ì

İ

.' .

!

[ [_____

.

• 1 • •

.

.

i

{

1

.

.

. .

D2 PERMIT NUMBER		62 1 62 1 6 2 1 6 2 1 6 2 1 6 2 6 2 7 6 2 7 7 8 0 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 10 7 8 10 7 8 10 7 10 7	04 EXPERATION DATE	Lease to	San Juan County
Lease	5-21-(	62 1 62 1 6 2 1 6 2 1 6 2 1 6 2 6 2 7 6 2 7 7 8 0 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 10 7 8 10 7 8 10 7 10 7	Unknown ATMENT CARL & PAR NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	Lease to	OS OTHER A. BUILDINGS ON SIT
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMP NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER A. BUILDINGS ON SIT
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMP NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER A. BUILDINGS ON SIT
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMP NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMP NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMP NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMP NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMPO NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMPO NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMPO NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER
OUNT 03 UNIT OF	ME ASURE	04 TRE C A IN C B U C C C C D B C E W	ATMENT ICANS IN IMPO NCENERATION INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	JECTION	OS OTHER
		C A N C 8. U C C C C D 8 C E W	NCENERATION UNDERGROUND IN. CHEMICAL/PHYSIC HOLOGICAL	JECTION	A BUILDINGS ON SIT
		C A N C 8. U C C C C D 8 C E W	NCENERATION UNDERGROUND IN. CHEMICAL/PHYSIC HOLOGICAL	JECTION	A BUILDINGS ON SI
000 yrd ³		C A N C 8. U C C C C D 8 C E W	NCENERATION UNDERGROUND IN. CHEMICAL/PHYSIC HOLOGICAL	JECTION	A BUILDINGS ON SIT
		08.U 0000 008 008	INDERGROUND IN CHEMICAL/PHYSIC HOLOGICAL	AL.	-
			CHEMICAL/PHYSIC HOLOGICAL	AL.	OG AREA OF SITE
			HOLOGICAL	~	DE AREA OF SITE
			VASTE OIL PROCE	SSING	OG AREA OF SITE
		C F SI			
			OLVENT RECOVE		1 10
	I		OTHER RECYCLING	1 AECOVERY	40
	1	<b>Ц Н. О</b>	DTHER	*****	
	<u> </u>				<u> </u>
B. MODERATE RS. ETC not contain 1					RE.UNSOUND.DANGEROUS
ed within the	site.				g hours, and the
	RS.ETC not contain 1 NO a chain-link ed within the	RS. ETC not contain liners a NO a chain-link fence, ed within the site.	RS.ETC not contain liners and NO a chain-link fence, gua ad within the site.	RS ETC not contain liners and were const: NO a chain-link fence, guarded during ad within the site.	RS.ETC not contain liners and were constructed with NO a chain-link fence, guarded during operating ed within the site.

EPAFOPM 2070 13 (7 81)

l.

1.

1

.

≎epa		POTE	ENTIAL HAZA SITE INSPEC , DEMOGRAPH	TION REP	PORT			ENTIFICA ATE 02 SITE 28	
H. DRINKING WATER SUP	PLY								
01 TYPE OF DRINKING SUPPLY	URFACE	WELL	02 STATUS	are unl	ikelv	any affects	01	DISTANCE	to site
COMMUNETY NON-COMMUNITY		B. [] D. 10	A. [] D. []	8.		C. D F D	A. B	1.0	
III. GROUNDWATER									······
OI GROUNDWATER USE IN VICH		B DRINKING (Other Sources around	DUSTRIAL, IRRIGATIC	A	COMMERCIAL	NOUSTRIAL, RAIGAT (01 analah)	ion (	D D NOT US	SED. UMUSEABLE
02 POPULATION SERVED BY GR		<u> </u>	•	03 DISTANC	CE TO NEARE	ST DRIMKING WATER 1	weu	2.5	(mi)
04 DEPTH TO GROUNDWATER		Southwes	_	OF CONC		OF ADUFER	0 _ 0	Unk	OURCE AQUIFEI
IO RECHARZE AREA UYES COMMENTS NO	Unknown			11 DISCHAR	GE AREA COMMEN	unknown			
U YES COMMENTS D NO			N. ECONOMICALLY T RESOURCES	C YES	COMMEN	Unknown		D. NOT CUI	RRENTLY USE
U YES COMMENTS UNO IV. SURFACE WATER OT SURFACE WATER USE (Check DEBNIK ING WATER SC OF AFFECTED (POTENTIALLY AFF NAME.	ATION ATION SURCE FECTED BODH	G 8 IRRIGATION IMPORTAN		C YES	COMMEN	Unknown		DISTANC	E TO SITE
U YES COMMENTS	ATION ATION SURCE FECTED BODH	G 8 IRRIGATION IMPORTAN		C YES	COMMEN	AL. INDUSTRIAL			E TO SITE
D YES COMMENTS	ATION ATION SURCE FECTED BODH	G B IRRIGATION IMPORTAN IS OF WATER		C YES	COMMEN	AL, INDUSTRIAL AFFECTED		DISTANC	E TO SITE
U YES COMMENTS UNO IV. SURFACE WATER OT SURFACE WATER USE (Check DRUNKENG WATER SC OF AFFECTED (POTENTIALLY AFF NAME.	TWO	G B IRRIGATION IMPORTAN IS OF WATER	T AESOURCES	C YES		AL, INDUSTRIAL AFFECTED		DISTANC 5	E TO SITE (n (n (n
COMMENTS	TION ATION DURCE ECTED BOOM T NOPERTY II TWO B	C B IRRIGATION IMPORTAN IS OF WATER VFORMATION 2) MILES OF SITE 100 NO OF PLASONS	T AESOURCES	C YES D NO C C C C C C		AL, INDUSTRIAL AFFECTED AFFECTED AFFECTED		DISTANC 5 LATION SILE	E TO SITE (n (n (n

· · · ·

Alle man as all

...

an an ann an A

. | |

:

€EPÅ		SITE INSPEC	RDOUS WASTE		I. IDENTIFICATIO OT STATE OF HIEM NM 2878	
VI. ENVIRONMENTAL INFORMA OI PERMEABLITY OF UNSATURATED 2	TION					
□ A. 10** - 10*	* cm/sec 018 10-4	- 10-4 cm/sec	) C 10-4 - 10-3 cm	vsec 🛛 D. GREATER	THAN 10 ⁻³ cm/sec	
O2 PERMEABLITY OF BEDROCK ICNeed	AABLE DO REL	ATIVELY IMPERMEAE		LY PERMEABLE D	VERY PERMEABLE	
of DEPTH TO BEDROCK Greater than _40_feet(M)	04 DEPTH OF CONTAM	NATED SOL ZOME	05 504 #	H	······································	
06 NET PRECIPITATION - 32 (in)	07 ONE YEAR 24 HOUR	-2(in)	DE SLOPE SITE SLOPE 1-3	Southwest	LOPE TERRAIN AV	ERAGE SLOP
OF FLOOD POTENTIAL WITHIN FLOODZONI SITE IS NYEAR FLO		E SITE IS ON BARA	IER ISLAND, COASTA	L HIGH HAZARD AREA	RIVERINE FLOODWA	Y
IT DISTANCE TO WETLANDS IS at I MAN	OTHE	R	12 DISTANCE TO CRIT	IICAL HABITAT IN ondergon	(mi)	
A (1 (mi)	B	(mi)	ENDANGER	ED SPECIES:	< 1 -	
	-	80		PRIME AG LAN	40 AGL (mi) D	_
The Kirtland Landfi The northern bounda elevation is approx	111 is locate ary of the si	d in a gentl te increase	slope dramat	rea adjacent ticly to the	to Stevens A arroyo. The	rroyo. site
					•	
•						
		•				
VII. SOURCES OF INFORMATION	N 1040 scoche roloroneos o (	5 - 51610 files 1.200000 200072.5	*****			

-

· .

EPAFORM 2070 13(7 8))

.• .

2

Ľ

ł

I

1

. •

€PA	
-----	--

•

I

### POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION

· .

I. IDENTIFICATION 01 STATE 02 SITE NUMBER NM 2878-01-12

I. SAMPLES TAK	EN			
SAMPLE TYPE		OI NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT 10	03 ESTMATED DATE RESULTS AVALABLE
GROUNDWATER				
SURFACE WATER	۹			
WASTE		2	Roy F. Weston, Stockton CA Lab	Available
AIR				
RUNOFF				
SPILL				
SOL		16	Roy F. Weston, Stockton CA Lab	Available
VEGETATION			· · · ·	
OTHER			· · ·	
HI. FIELD MEASUR	EMENTS TA	KEN		
DI TYPE		02 COMMENTS		
Radiation	Meter	No readin	g above background	
HNU		Zero		
			•	
IV. PHOTOGRAPH	S AND MAPS			<u></u>
OI TYPE I GROUN			02 N CUSTOON OF ROY F. Weston/ Robert Mueller	
DI MAPS DI YES DI NO	Sketc		aste pits (Weston SI Report)	
V. OTHER FIELD D	ATA COLLEC	TED IProved Adriative des		
A soil ga	is survey waste pi	was conduc ts. Survey	ted to delineate the horizontal migration of was unable to produce any additional informat	contaminates ion on

VI. SOURCES OF INFORMATION IC INSTALL CONTINUES A 2 STREET AN LANCE MALLER NOT

EPAFORM 2070 13 (7 81)

٤._

1.

1.,

1 ι.

SEPA	1	SITE INSP	ZARDOUS WASTE SITE PECTION REPORT WNER INFORMATION		ICATION 23 SITE NUMBER 2878-01-
II. CURRENT OWNER(S)			PARENT COMPANY		
Department of the		02 D+ B NUMBER	OB NAME		09 0 + 8 MUMBER
Interior Bureau of Lan	d Manag	ement			
3 STREET ADDRESS (P 0 Boy A/D+ ore )		04 SIC CODE	10 STREET ADDRESS + 0 Bee MOR and	)	11 SIC CODE
					1
DS CITY	US STATE	07 21 CODE	12 CITY	13 STATE	14 ZIP CODE
I NAME		02 D+ B NUMBER	OB NAME	<b>I</b>	09 D+8 MUMBER
DESTREET ADORESSIP O Ber AFD F etc		04 SIC CODE	10 STREET ADORESS (P O Box #D+. ore )	,	1 SIC CODE
05 CITY	OS STATE	OT ZIP CODE	12 CITY	113 STATE	14 ZIP CODE
01 NAME		02 D+B NUMBER	OS NAME	<b>A</b>	
DI STREET ADDRESS (P 0 Bos. R/D + ME)		04 SIC CODE	10 STREET ADORESS (P 0 Dea MD+ one)	,	1150 CODE
D5 CITY	06 STATE	07 21P CODE	13 CITY	13 STATE	14 ZIP CODE
DINAME	<u></u>	02 D+8 NUMBER	OB NAME		09 D + 8 NUMBER
03 STREET ADDRESS IP D Bos AFD + HE J		04 SIC CODE	10 STREET ADDRESS (P 0 Box MD+, ore)	)	11 SIC CODE
OS CITY	06 STATE	07 210 CODE	12 CITY	13 STATE	14 ZIP CODE
······································		l			
III. PREVIOUS OWNER(S) :Las most records	-1.11		IV. REALTY OWNER(S)	ar mass rac are brait	
DI NALAE		02 0+8 NUMBER	OI NAME		02 D+ B NUMBER
OJ STREET ADDRESSIP O BOI ALON ME ;			03 STREET ADDRESS F O Bos MO+ or	1	04 5/C COD
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 2# CODE
01 NAME		02 D+8 MUMBER	01 NAME	<u>I</u>	02 D+ B NUMBER
03 STREET ADORESS (P 0 Box. AFD P. ore )		04 SIC CODE	03 STREET ADDRESS (P 0 Box AFD P. ore )	,	04 SIC CODE
DS CITY	OG STATE	07 ZIP CODE	OS CITY	06 \$1A1E	07 ZIP CODE
01 NAME		02 D+ & NUMBER	01 NAME		02 D+ B NUMBER
DJ STREET ADORESSIP O Box AFD + ore ;		04 SIC CODE	DJ STREET ADDRESSIP C Due ATD P. ore 1		04 SIC COO
· · ·	1000000				
DSCITY	OG STATE	07 ZIP CODE	05 CITY	USSATE	67 2# CODE
V. SOURCES OF INFORMATION ICH	<u> </u>	E # g = 6/82# 1-#3 = 68.740 # 8.741 #		I	1

· •

.

EPAFORM 2070-13 (7 81)

ित

Ţ

ļ.

ļ

		PO	ENTIAL HAZ	ARDOUS WASTE SITE	I. IDENTIFI	
SEPA				CTION REPORT	OI STATE OZ	SITE NUMBER 2878-01-12
		1	PART 8 - OPER	ATOR INFORMATION		2070-01-12
H. CURRENT OPERATO	DR IP-s-se & offeren have			OPERATOR'S PARENT COMPANY	P	
DI NAME			2 D+ B NUMBER	10 NAME	<u>ا</u>	1 D+ B NUMBER
San Juan Count	y Road Dept	•				
OJ STREET ACORESS (PO A		A	04 SIC CODE	12 STREET ADDRESS IP O Bos MO . ore I		13 SIC CODE
1900 W. Aztec	Blvd.					
DS CITY		OS STATE O		14 CITY	IS STATE I	6 ZIP CODE
Aztec		NM	87410			
B YEARS OF OPERATION	09 NAME OF OWNER	L				
III. PREVIOUS OPERAT	OB(S) it as more second to			PREVIOUS OPERATORS' PARENT		
1 NAME	011(5)121-20100110		2 D+ 8 NUMBER	10 NAME		1 D+ B NUMBER
		ľ				
DI STREET ACORESS IP O B	. AFD #, etc )		04 SIC CODE	12 STREET ADDRESS (P O Bor, M/D P. ME)		13 SIC CODE
	· •					1
)\$ CIT Y		OS STATE O	7 ZIP CODE	14 CITY	IS STATE I	I CODE
B YEARS OF OPERATION	09 NAME OF OWNER D	URING THIS I	PERIOD			· · · · · · · · · · · · · · · · · · ·
	I	0	2 D+8 NUMBER	10 NAME	<u>[1</u>	1 D+ B NUMBER
· _						
DI STREET ACORESS (PO BO	a. NFD F. ME	L	04 SIC CODE	12 STREET ADDRESS (P O Bos, MD P. MC )	l	13 SIC CODE
5 CITY		DE STATE O	T ZIP CODE	14 CITY	IS STATE I	S ZIP CODE
TEARS OF OPERATION	09 NAME OF OWNER	DURING THIS	PERIOD			
	1	0	2 D+8 NUMBER	10 NAME		1 D+B NUMBER
DI STREET ACORESS IP O M	s. AFD J. ME J		04 SIC CODE	12 STREET ADDRESS IP O Bra AFD + ME J		13 SIC CODE
IS CITY		OS STATE O	1 7 2IP CODE	14 CITY	15 STATE 1	S ZIP CODE
B YEARS OF OPERATION	OS NAME OF OWNER	URING THIS I	PERIOD			
IV. SOURCES OF INFO	RMATION		11010 https://	· · · · · · · · · · · · · · · · · · ·		<u></u>
<b></b> .						
					•	
				·		

••••

EPA FORM 2070-13 (7-81)

٢

.

Ι.

[]

Ì. 2

ι.

•

⇒EPA		SITE INSP	ARDOUS WASTE SITE ECTION REPORT IRANSPORTER INFORMATION		ICATION SITE NUMBER 2878-01-12
I. ON-SITE GENERATOR					
NA NA		02 D+8 NUMBER			
03 STREET ADDRESS (P 0 Bos, AFD + erc )		04 SIC CODE			
05 017	IOA STATE	07 ZIP CODE			
HI. OFF-SITE GENERATOR(S)					
Unidentified		02 D+ B NUMBER	O1 NAME		02 D+B NUMBER
OITGENETADORESS (PO Bos AFD + ore )		04 SIC CODE	OJ STREET ADDRESS (P O Bus MO+. art )		04 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME		02 D+8 NUMBER	OI NAME	1	02 D+8 NUMBER
03 STREET ADDRESS (P 0 Bor. RF0 P arc )		04 SIC CODE	03 STREET ADDRESS (P 0 Bos A/D + ant )		04 SIC CODE
05 CIT Y	OS STATE	07 ZIP CODE	OS CITY	06 51418	07 ZIP CODE
IV. TRANSPORTER(S)					
Unidentified		02 D+8 NUMBER	OI NAME		02 D+B NUMBER
03 STREET ADDRESS (P 0 Bos AFD + MC)	·	04 SIC CODE	03 STREET ADDRESS (P O Ber AFO+ and )		04 SIC CODE
OS CITY	OS STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME	I	02 D+8 NUMBER	O1 NAME	<u>l</u>	02 0 + 8 NUMBER
03 STREET ADDRESS (P O Bot. AFD +, ore )		04 SIC CODE	03 STREET ADDRESS (P 0 Bar AFD + out )		04 SIC CODE
05 CITY	O6 STATE	07 Z# CODE	05 CITY	06 STATE	07 ZIP CODE
V. SOURCES OF INFORMATION CON	19535 1919187698 8	9 . 1886 (403 - 18m5 19 and 19 3	·6 ·64:343;		
	·				••
· .					

· ,

EPA FORM 2070 13 (7-81)

i.

\$EPA	SITE	HAZARDOUS WAS INSPECTION REPOR AST RESPONSE ACT	RT	L IDENTIFICATION OI STATE 02 SITE NUMBER NM 2878-01-1
PAST RESPONSE ACTIVITIES				
01 CA WATER SUPPLY CLOSED		02 DATE	03 AGENCY	
None			× .	
01 D B TEMPORARY WATER SUPPLY P	ROVIDED	02 DATE	03 AGENCY	
04 DESCRIPTION None				
01 C PERMANENT WATER SUPPLY P	ROVIDED	02 DATE	03 AGENCY	
04 DESCRIPTION None				
01 D SPLLED MATERIAL REMOVED		02 DATE	OJ AGENCY	
04 DESCRIPTION None				_
	<u> </u>		03 AGENCY	
01 DE CONTAMINATED SOR REMOVED 04 DESCRIPTION	J	UZ UATE	UJ AGENCY	<del></del>
None				
01 D F WASTE REPACKAGED 04 DESCRIPTION		02 DATE	OJ AGENCY	
None				
01 C G WASTE DISPOSED ELSEWHERE 04 DESCRIPTION		02 DATE	O3 AGENCY	· · · · · · · · · · · · · · · · · · ·
None				
01 D H ON SITE BURIAL 04 DESCRIPTION		02 DATE	03 AGENCY	
None				
01 1 1. IN SITU CHEMICAL TREATMENT		02 DATE	03 AGENCY	
04 DESCRIPTION None				
01 I J IN SITU BIOLOGICAL TREATMEN	ſ	02 DATE	O3 AGENCY	
04 DESCREPTION None				
01 C K IN STU PHYSICAL TREATMENT		02 DATE	03 AGENCY	
04 DESCRIPTION				
01 D L ENCAPSULATION	<u></u>	02 DATE	O3 AGENCY	
04 DESCRIPTION None				
01 O M EVERGENCY WASTE TREATME		02 0415	O3 AGENCY	
04 DESCRIPTION				
None				
01 D N CUTOFF WALLS 04 DESCRIPTION		02 DATE	03 AGENCY	
None				
01 [] O EMERGENCY DIKING SURFACE 04 DESCRIPTION	WATER DIVERSION	02 DATE	O3 AGENCY _	
None				
01 CI P CUTOFF TRENCHES SUMP 04 DESCRIPTION		02 DATE	O3 AGENCY _	······································
None				
01 C O SUBSURFACE CUTOFF WALL	<del></del>	02 DATE	OJ AGENCY	
04 DESCRIPTION None				

· .

•

i

•

...

≎epa		POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES		L. IDENTIFICATION 01 STATE 02 SITE NUMBER NM 2878-01-12
H PAST RESPONSE A	CTIVITIES (Commons)			
01 C R BARRIER 04 DESCRIPTION	WALLS CONSTRUCTED	02 DATE	03 AGENCY	
01 I S CAPPING D4 DESCRIPTION	COVERING None	02 DATE	03 AGENCY	
01 C T BULK TAN 04 DESCRIPTION	None	02 DATE	03 AGENCY	
01 (L' U GROUT C 04 DESCRIPTION	URTAIN CONSTRUCTED None	02 DATE	03 AGENCY	
01 C V BOTTOM : 04 DESCRIPTION	SEALED None	02 DATE	03 AGENCY	
01 근 W GAS CON 04 DESCRIPTION	None	02 DATE	03 AGENCY	-
01 T & FIRE CON C4 DESCRIPTION	None	02 DATE	03 AGENCY	
01 C Y LEACHAT 04 DESCRIPTION	e treatment None	02 DATE	03 AGENCY	
01 I Z AREA EVA 04 DESCRIPTION	CUATED None	02 DATE		
01 XX 1 ACCESS T 04 DESCRIPTION	OSITE RESTRICTED Site is fence	OZDATE ed, waste pits are also individua		
01 C 2 POPULATI 04 DESCRIPTION	None	02 DATE	03 AGENCY	
01 🗔 3 OTHER RE 04 DESCRIPTION	NORE	02 DATE	03 AGENCY	
III. SOURCES OF INFO	· · · · · · · · · · · · · · · · · · ·	Site Investigation Report		

· · · ----

-----

· .

EPAFORN 2070 13(7 81)

۰.

!

[]

.

) · · · · · · · · · · · · · · · ·

. . .

|

------

•



ł

## POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

. .....

I. IDENTIFICATION 01 STATE 02 STE NUMBER NM 2878-01-12

- ---- --- ---

II. ENFORCEMENT INFORMATION

OT PAST REGULATORY ENFORCEMENT ACTION I YES IN NO

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY ENFORCEMENT ACTION

III. SOURCES OF INFORMATION (Can specific relation (as a p state res same and pas reparts)

EPAFORM 2073 13 (7 81)

# APPENDIX B

ļ

1

# HRS DATA SHEET

National Nationality	New Mexico
A Region:6	
rson(s) in charge of the fa	Chuck PetteeBLM
	San Juan County Road Department
	1-28-88
	t Mueller
ineral description of the fac	ce impoundment, pile, container; types of hazardous substances; location
	of major concern; types of information needed for rating; agency action, e
The site is an active	e modified landfill operated by San Juan County. Two Unline
	•
contio mento site el .	· · · · ·
septic waste pits tha	at contain hazardous substances are located at the landfill.
	at contain hazardous substances are located at the landfill.
	at contain hazardous substances are located at the landfill.
	· · · · ·
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480;
The site is located a	at contain hazardous substances are located at the landfill.
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480;
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480;
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480;
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480;
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480;
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480;
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480, mington, NM
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480, mington, NM
The site is located a 3 miles West of Farm 5 miles West of Farm 6.30 (Sgw =	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480;
The site is located a	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480, mington, NM
The site is located a 3 miles West of Farm 5 miles West of Farm 6.30 (Sgw =	at contain hazardous substances are located at the landfill. At the intersection of San Juan County Route 6500 at 6480, mington, NM

· .

ť

ł

.

[]

{

-----

|

	Rating Factor	Assigned Value (Circle One)	Multi- piler		Max. Score	(3
1	Observed Release	0 45	1	0	45	
		iven a score of 45, proceed to line $4$ . iven a score of 0, proceed to line $2$ .				
2	Route Characteristics Depth to Aquifer of Concern	0 1 2 3	2	4	•	
	Net Precipitation Permeability of the Unasturated Zone		1	0 1	3 3	
	Physical State	0 1 2 3	1	3	3	<b></b>
		Total Route Characteristics Score		8	15	L
3	Containment	0 1 2 3	1	3	3	1
	Waste Characteristics Toxicity / Persistence Hazardous Waste Quantity		) 1	12 8	18	
		Total Waste Characteristics Score		20	28	
	Targets Ground Water Use Distance to Nearest Well/Population Served	0 1 2 3 0 4 8 8 10 12 1 18 20 24 30 32 35 40	3 1	6 6	<b>0</b> 40	
		Total Targets Score	_	17	49	
	If line 1 is 45, multiple If line 1 is 0, multiply	** 1 × 4 × 5 / 2 × 3 × 4 × 5		5760	57,330	

.

• .

ł

......

1

ļ

.

.

•

i

		Surface Water Route Work Sh	9et	_		
	Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Γ,
0	Observed Release	0 45	1	0	45	
		en a value of 45, proceed to line ( en a value of 0, proceed to line (2)	-	_		
2	Route Characteristics Facility Slope and Interv Terrain	ening 0 (1) 2 3	1	1	3	
	1-yr. 24-hr. Rainfall Distance to Nearest Surf Water	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2	1 0	3 6	
	Physical State	0 1 2 3	1	3	3	
		Total Route Characteristics Score		5	_ 15	
3	Containment	0 1 2 3	1	3	3	
0	Waste Characteristics Toxicity/Persistence Hazardous Waste Quantity	0 3 8 9 12 15 18 0 1 2 3 4 5 8 7 (	1	12 8	18 8	
		Total Waste Characteristics Score		20	28	
6	Targets Surface Water Use Distance to a Sensitive Environment	0 1 2 3 0 1 2 3	3 2	9 0	9	
	Population Served/Distar to Water Intake Downstream	10     4     6     8     10       12     18     18     20       24     30     32     35     40	1	0	40	
•		Total Targets Score		9	55	
0	If line 1 is 45, multiply If line 1 is 0, multiply			2,700	64,350	
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		5 3 20 9				-

· · .

-055

و د برو

.

;

. .

, ·

.

•.

•

		Assigned Value	Multi-		Max	<b>T</b>
	Rating Factor	(Circle One)	plier	Score	Score	(5
	Observed Release	0 45	1	0	45	
	Date and Location:					
	Sampling Protocol:					
		= 0. Enter on line 5. proceed to line 2.				
2	Waste Characteristics Reactivity and	0 1 2 3	1	<u> </u>	· .	
	Incompatibility	e	-	-	3	
	Toxicity Hazardous Waste	0 1 2 3 0 1 2 3 4 5 6 7 (	3	6 8	9_8	
	Quantity				-	
	Quantity	Total Waste Characteristics Score		14	20	
3	Targets			14	20	
3	Targets Population Within		1	14	20 30	
3	Targets	) 0 9 12 15 18 ) 21 24 27 30				
3	Targets Population Within 4-Mile Radius Distance to Sensitive Environment	) 0 9 12 15 18 ) 21 24 27 30 0 1 2 3	1 2	18 0	30 6	
3	Targets Population Within 4-Mile Radius Distance to Sensitive	) 0 9 12 15 18 ) 21 24 27 30	1	18	30	
3	Targets Population Within 4-Mile Radius Distance to Sensitive Environment	) 0 9 12 15 18 ) 21 24 27 30 0 1 2 3	1 2	18 0	30 6	
3	Targets Population Within 4-Mile Radius Distance to Sensitive Environment	) 0 9 12 15 18 ) 21 24 27 30 0 1 2 3	1 2	18 0	30 6	

--

------

-----

•

1

. .....

	S	s ²
Groundwater Route Score (Sgw)	10.05	101
Surface Water Route Score (S _{SW} )	4.20	17.64
Air Route Score (Sa)	0	0
$s_{gw}^{2} + s_{sw}^{2} + s_{a}^{2}$		- 87.70
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		10.89
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 - s_M =$		6.30

.

# WORKSHEET FOR COMPUTING SM

	Direct Contact Work She	et			
Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	R (Sec
Observed Incident	0 45	1		45	8
If line 1 is 45, proceed If line 1 is 0, proceed to					
Accessibility	0 1 2 3	1	0	3	8
3 Containment	0 15	1	15	15	8
Waste Characteristics Toxicity	0 1 2 3	5	10	15	8
Targets Population Within a 1-Mile Radius	0 1 2 3 4 5	4	8	20	8
Distance to a Critical Habitat	0 1 2 3	4	0	12	
	Total Targets Score		8	35	
If line 1 is 45, multiply If line 1 is 0, multiply			0	21,600	
Divide line 6 by 21,600 a	15 10 8 and multiply by 100	S _{DC} -	0		-

• :

į

|. |-

1 .....

-----

Ĺ

*******

******

1

	Fire a	Ind	Ex	plo	sio	n We	ork	She	et			
Rating Factor			igne lircle						Multi- plier	Score	Max. Score	Re (Sect
1 Containment	1					3			1		3	7.
Waste Characteristics Direct Evidence Ignitability Reactivity Incompatibility Hazardous Waste Quantity	. –	1 1 1	2	3		5	6	7	1 1 1 8 1	-	3 3 3 8	7.;
	Total Was	ste	Chi	Brac	:ter	istic	<b>3</b> S/	core			<u>.</u> 20	
Targets Distance to Nearest Population	-	1	-	3	4	5			1		5	73
Distance to Nearest Building Distance to Sensitive	0	1	-	3 3					1		3 3	
Environment Land Use Population Within	0		2 2	3 3	4	5			1 1		3 5	
2-Mile Radius Buildings Within 2-Mile Radius	0	1	2	3	4	5			1		5	
	Tot	iài 1	Tarç	jets	ı Sc	core					24	
A Multiply 1 x 2 x 3	]										1,440	
Divide line 4 by 1,440 a	and multiply	/ by	, 10	ю					SFE -			

I

I

1

ţ

.

{

. .

. .

-----

----

-

۲.

·

# PRELIMINARY ASSESSMENT (PA) REPORT

EPNG-SJR

FOR

KIRTLAND SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

> BLM Site Code: NM 000000000 AEPCO Site No. 2 Group A

> > (FINAL REPORT)

Under BLM Contract No. AA852-CT5-26 AEPCO Project No. 1200.1722

AEPODING

# TABLE OF CONTENTS

EVEC		Page EX-1
1.0	UTIVE SUMMARY BACKGROUND	1-1
1.1	Scope of Services	1-1
1.2	Site Location and Layout	1-1
1.3	Site Description	1-4
1.3.1	Topographic Features	1-4
1.3.2		1-4
	Geology	1-7
	Hydrogeology	1-8
	Water Supply	1-10
1.3.6		1-10
	Land Use, Population, and Distribution	1-10
	Climate	1-11
	Natural Resources	1-12 1-12
	Other Unique Features Potential Receptors	1-12
1.5.11	rotential Receptors	1-14
2.0	SITE HISTORY AND OWNERSHIP	2-1
3.0	SITE RECONNAISSANCE	3-1
3.1	Purpose	3-1
3.2	Field Observations	3-1
3.3	Air Monitoring Program	3-2
4.0	CHARACTERISTICS AND ENVIRONMENTAL CONCENTRATIONS OF	
	HAZARDOUS SUBSTANCES	4-1
4.1	Environmental Monitoring and Sampling Program	4-1
4.2 4.3	Air Quality and Health and Safety Location of Hazardous Substances on Site	4-1 4-2
4.3	Form and Physical State of Hazardous Wastes	4-2 4-2
4.4	Laboratory Analysis of Hazardous Wastes on Site	4-2
4.6	Environmental Concentrations	4-9
	·	
5.0	CONCLUSIONS	5-1
5.1	Major Study Findings	5-1
5.2	BLM Site Classification	5-2
6.0	RECOMMENDED ACTIONS	6-1
REFE	RENCES	<b>R-1</b>
APPE	NDIX	
ALL A.		A-1

(Under Separate Cover)

12

ii

# PRELIMINARY ASSESSMENT (PA) REPORT

# FOR

# KIRTLAND SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

BLM Site Code: NM 000000000 AEPCO Site No. 2 Group A

# (FINAL REPORT)

# Under BLM Contract No. AA852-CT5-26 AEPCO Project No. 1200.1722

#### Submitted to:

Department of the Interior Bureau of Land Management (BLM) 18th and C Streets, N.W. Washington, D.C. 20240

# Submitted by:

AEPCO, Inc. 5272 River Road, Suite 600 Bethesda, Maryland 20816

Tel. (301) 951-6400

11 August 1986

## EXECUTIVE SUMMARY

A preliminary assessment (PA) was performed at the Kirtland Site with the objectives of using available information as supplemented by a site reconnaissance and a field sampling and laboratory analysis program to:

- o Define the type and estimate the quantities of hazardous materials/wastes on site;
- o Estimate the status of contamination migration; and
- o Classify the site for possible future site actions.

# A. <u>Site Location, History and Layout</u>

The site is located near Farmington, New Mexico, and is under the jurisdiction of the BLM Farmington Resource Area. A total of approximately 40 acres has been leased by the BLM to San Juan County to operate a modified sanitary landfill for over twenty years.

Visual observations indicate that wastes, not necessarily all hazardous, have been deposited in an inactive old dump pit, a new septic waste pit, a new landfill trench, and a dead animal pit. Laboratory analysis results for onsite waste samples suggest that oil and gas industrial sludges have been illegally disposed at the site. The sludge in the old dump pit appeared to be dry, and was light brown in color with red patches.

The site entrance contains a cattleguard and warning signs, but no gates. Other than fencing and natural terrain barriers, no other access control mechanisms are in place.

An El Paso Natural Gas Company plant is located about 0.3 miles southwest of the site. The plant property contains a large unlined pond system, which might be used to hold industrial discharges. During the area reconnaissance, the pond water was observed to be deep red or discolored. Whether the pond system is a potential offsite source of contamination cannot be determined due to the lack of information regarding its exact contents. The pond system is located at approximately the same elevation as the site and may potentially play a role in regulating shallow or deeper groundwater aquifer flows, if any. The extent of groundwater elevation and flow modification by this pond system is currently unknown.

## B. <u>Features of the Site and Vicinity</u>

The general area of the site, especially near river beds, consists of an outwash of gravels and sands; and is underlain by a shallow "alluvial gravel fill aquifer" that is highly vulnerable to contamination from surface discharges and leachates from surface/subsurface contamination. In the general area of the site, the groundwater most likely flows westward along the Stevens Arroyo. Bedrock in the region is fractured; and as a result intercommunication between the shallow unconsolidated and the bedrock aquifers may exist.

Most of the surface soils are shallow, highly permeable, and coarse in texture with small amounts of silts and clay. Because of prior soil excavation activities for the landfill, soils on site have been disturbed to a depth of 5 to 7 feet. No definite clay layer was noticed at these depths. Because of their high permeability, the onsite soils are highly susceptible to contamination by hazardous liquid and solid wastes.

# LIST OF TABLES

Table 1-1	Engineering Indices of Soils at and near the Site	1-5
Table 1-2	Physical and Chemical Properties of Soils at and near the Site	1-6
Table 1-3	Hydrogeologic Properties of Alluvial Valley Aquifers	
	in the Study Region	1-9
Table 2-1	Site Chronology	2-2
Table 3-1	Summary of PA Environmental Monitoring Program and Results	3-3
Table 4-1	Concentrations of HSL Metals and Other Parameters in Wastes	
	and Onsite Surface Water	4-4
Table 4-2	Concentrations of Volatile Organic Compounds (VOCs) in Wastes	
	and Onsite Surface Water	4-5
Table 4-3	Concentrations of Acid Extractable Organic Compounds in Wastes	
	and Onsite Surface Water	4-6
Table 4-4	Concentrations of Base/Neutral Extractable Organic Compounds	
	in Wastes and Onsite Surface Water	4-7
Table 4-5	Concentrations of Pesticides and PCBs in Wastes and	
	Onsite Surface Water	. 4-8

# LIST OF FIGURES

		Page
Figure 1-1	Location Map for Kirtland Site, Farmington, New Mexico	1-2
Eigure 1-7	Kistland Site Lavout	1-3

# D. <u>BLM Site Classification</u>

The Kirtland Site is classified as a BLM Class III site, because it contains hazardous wastes or other hazardous substances in such form and quantity and under such conditions that there is specific reason to believe that a potentially significant hazard to human health or the environment may exist and that further definitive investigations must be undertaken.

## E. <u>Recommendations</u>

Initial remedial measures (IRMs) recommended to minimize potential exposure to onsite wastes and contaminated soils and prevent further complication of the site problem are:

- o Establishment of effective site access control mechanisms such as placement of a security gate at the site entrance and implementation of a permit system to regulate waste disposers; and
- o Improvements to the northern dike at the old waste pit to minimize the erosion potential and reduce the chance of offsite transport of waste materials via the surface water route;

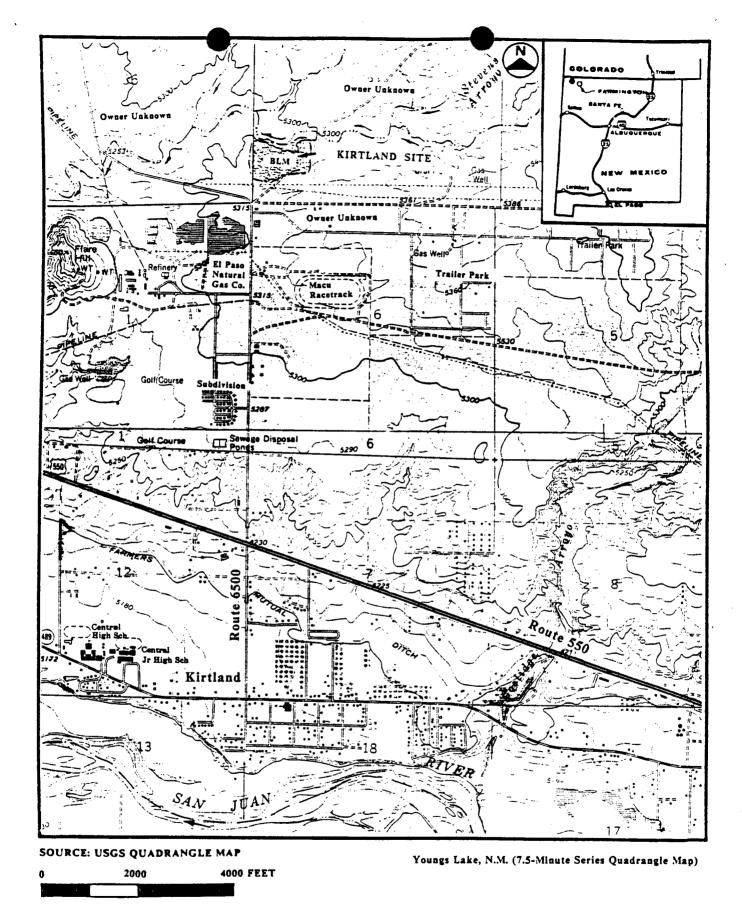
Installation of new monitoring wells on and off the site is recommended to determine the hydrogeologic characteristics and groundwater quality at the site. The exact number of monitoring wells needed will be determined during the preparation of the work plan for this followup investigation. In addition, collection of well water samples from selected residential wells would assist in the determination of the extent of offsite contaminant migration, if any. Although, residential wells, if any, near the site are expected to be located side-gradient from the site, the potential of residential well contamination still exists if the depression cones created by these wells have extensively overlapped with the potentially contaminated groundwater plume(s).

Surface water/sediment sampling downgradient from the site would remedy data gaps to gain better understanding of the site contamination and contaminant migration problems via the surface water route.

Because of the potential multiple contamination sources (both onsite and offsite) in the study area appropriate EPA, BLM, State of New Mexico, and San Juan County authorities and affected parties should be called upon to cooperatively undertake the followup investigations. The site and vicinity contain nearly level to gently sloping terrain (3-5%). Surface runoff from the site is normally scarce, because the annual precipitation only averages approximately 7 inches. However, during intensive rainstorms, surface runoff from the site can be significant. Runoff from the site drains into the Stevens Arroyo, thence flows westwards, and eventually empties into the San Juan River.

# C. <u>Contamination Concerns</u>

The site contains an estimated 11,000 cubic yards of liquid, semi-solid, and solid wastes, not necessarily all hazardous. Field evidence and laboratory results for onsite waste samples reveal that unauthorized and illegal dumping of petroleum industrial or other hazardous wastes has occurred on the site. No records were kept of the volumes of wastes dumped nor the exact dates on which they were dumped. In general, the wastes are considered noncorrosive, highly volatile, and nonreactive. Some of the substances in the wastes are considered toxic.


The analytical findings from the composite waste sampling indicate that the wastes contain elevated concentrations of highly volatile and mobile benzene and total xylenes. A grab surface water/liquid waste sample collected from the septic waste pit revealed elevated concentrations of chromium, copper, manganese, and lead. The liquid medium also contained toluene, phenol, 1,4-dichlorobenzene, and benzyl alcohol.

Most of the residents in the area are served by a public water system managed by the Lower Valley Water Users Association. A field reconnaissance of the immediate site vicinity revealed that there are approximately 60 housing units within a 1 mile radius of the site. The site is visited by a transient population, including site workers, waste disposers, scavengers, and occasional trespassers and visitors. The permanent and transient population is estimated to amount to approximately 230 and 50 individuals, respectively.

Land users who might be affected by releases of hazardous substances on or from the site are 1) neighboring residents; 2) transient onsite workers, waste disposers, scavenger, and occasional site trespassers and visitors; and 3) a few users, if any, who still rely on the groundwater aquifer(s) as a water supply source for drinking and other domestic purposes.

Particular environmental and health concerns are the (1) uncontrolled release of wastes via erosion of a containment dike into a nearby ditch, thence to Stevens Arroyo, and subsequently to San Juan River; (2) leaching of hazardous substances into the shallow unconsolidated aquifer, if present beneath the site, and possibly the bedrock aquifer at the site; and (3) offsite migration of contaminants via groundwater.

Whether the groundwater under near the site is contaminated cannot currently be assessed, due to the lack of a groundwater monitoring program for the area. However, based on the estimated westward groundwater flow, existing wells, if present, would be closely located to and sidegradient from the site. They may be threatened by the site contamination, if the depression cones created by these individual wells have significantly overlapped with the potentially contaminated groundwater plume(s).





### 1.0 BACKGROUND

This Preliminary Assessment (PA) report has been prepared in accordance with:

- o the requirements in the Project Guidance Documents prepared by AEPCO, Inc. for the Bureau of Land Management (BLM);
- o Section 105 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980;
- o the National Contingency Plan (NCP) (Federal Register Vol. 47, No. 137, July 16, 1982); and
- o the Federal Facilities Program Manual for Implementing CERCLA Responsibilities for Federal Agencies prepared by the U.S. Environmental Protection Agency.

#### 1.1 <u>Scope of Services</u>

A Preliminary Assessment (PA) was performed at the Kirtland Site by AEPCO, Inc. under a contract agreement with the BLM. The objectives of this PA are to:

- o Define the type and estimate the quantities of hazardous materials or wastes on site;
- o Estimate the status of contamination migration,
- o Determine the extent to which the site is in compliance with Federal and State regulations or permits; and
- o Facilitate site classification for subsequent actions including no action.

This PA report will be the basis for a scoping decision to be made by BLM for requesting funding for follow-up site investigation, remedial investigation, feasibility studies, and whatever onsite or offsite remedial actions are required.

This report has been prepared exclusively from existing information supplemented by a site reconnaissance and a field sampling and laboratory analysis program.

# 1.2 <u>Site Location and Layout</u>

The site is near Kirtland, approximately 13 miles west of Farmington, San Juan County, New Mexico. It is located on the USGS Youngs Lake, New Mexico, 7.5-minute quadrangle map at 36°46'00" N latitude 108°21'15" W longitude (Figure 1-1). Consisting of about 40 acres in T30N, R14W, Lot 4, Section 31, the site is located about 0.3 mile northeast of the El Paso Natural Gas Company (EPNG), San Juan River Plant, a refinery, or about less than 0.2 mile from the intersection of San Juan County Routes 6500 and 6480 (Figures 1-1 and 1-2). The landfill operation extends to the southern portion of the site between two powerlines (115 kv powerline) owned and operated by the Public Service Company of New Mexico, Farmington, New Mexico. The site is under the jurisdiction of the Farmington Resource Area (FRA), Albuquerque District, BLM New Mexico State Office, Santa Fe, New Mexico.

San Juan County is in the northwestern part of New Mexico. The County is bordered on the north by the State of Colorado, on the east by Rio Arriba and Sandoval Counties, on the south by McKinley County, and on the west by the State of Arizona. Aztec, the county seat, is on the Animas River and in the northeastern part of the county. The area is home



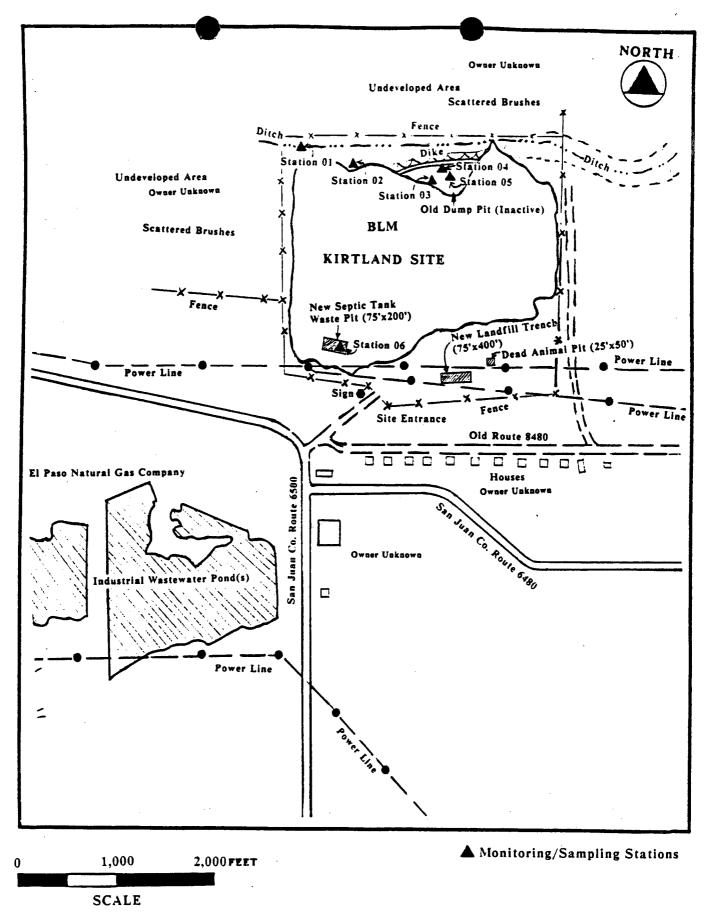
to the Jicarilla Apache, Laguna, Navajo, and Ute mountain indians. San Juan County is also the site of major oil and gas fields. The Navajo Mine and Four Corners power plant west of Farmington constitute the world's largest contiguous coal mine and electric powergenerating complex. The Grants uranium region, spanning the southern edge of the San Juan basin, has generally led the nation in uranium production since the early 1950's.

Visual observations and laboratory analysis results for wastes collected during this PA indicate that wastes, not necessarily all hazardous, have been deposited in an inactive old dump pit on the northcentral border; in a new septic tank waste pit (75'x200') to the southwestern end; and in a new landfill trench (75'x400') and a dead animal pit (25'x50') close to the southcentral border of the site. Apparently, petroleum industrial wastes, other hazardous wastes or still bottoms were illegally deposited in the old dump pit and the new septic tank waste pit. The sludge in the old dump pit appeared to be dry, and was light brown in color with red patches.

The site entrance is located on the southern part of the fenced site. The entrance contains a cattleguard and warning signs, but no gates. Other than the fencing and natural terrain barriers, no other access control mechanisms are in place.

#### 1.3 <u>Site Description</u>

#### 1.3.1 Topography


The eastern part of San Juan County is on a high plateau that is dissected in the north by the San Juan River Valley. Farmington and vicinity consist of plateaus and deep valleys formed as a result of distant hills and mountains. Local relief is low.

The site and vicinity feature nearly level to gently sloping terrain (approximately 3-5%) consisting of shallow soils, well drained, formed in alluvial and eolian materials on uplands with intermittent rock outcrop. The site is located approximately 5,300 ft to 5,320 ft above mean sea level.

#### 1.3.2 Soils

A general soil map prepared by the U.S. Soil Conservation Service for the eastern part of San Juan County, New Mexico (USDA/SCS, 1980) shows a spatial distribution of various soil associations -- a landscape having a proportional pattern of one or more major soils and at least one minor soil. The soils in one association may occur in another but in a different pattern. Several of the soil associations identified in the eastern part of the San Juan County general soil map are present at the site and its vicinity. However, the descriptions, names, and delineations of soils in the soil survey of the County do not fully agree with those on soil maps for adjacent counties. Differences are the result of better knowledge of soils, modifications in series concepts, intensity of mapping, or the extent of soils within the survey area. (op. cit.).

Engineering indices and physical and chemical properties of these soils are presented in Tables 1-1 and 1-2, respectively. The soils at the site vary from very shallow to deep, nearly level, well drained, formed in alluvial, residual, and colian materials on uplands.





AEPCO, Inc.

# TABLE 1-2. PHYSICAL AND CHEMICAL PROPERTIES OF SOILS AT AND NEAR THE SITE

PROPERTIES	OF SOILS AT AND IN THE	VICINITY OF THE SUBJECT SITE
SITE NAME:	KIRTLAND SITE	SITE CODE: 2
CITY:	FARMENGTON	GROUP NO.: A
COUNTY:	SAM JUAN COUNTY	BLN CODE: NN 000000000
STATE:	NEW MEXICO	
	THE MAYERIAL & MANAGEMENT	Den (SPT

REV. DATE: 06 NOVEMBER 1985

 SOIL NAME	(Inch)	CLAY <200 (X)	PERMEABLLITY (Inch/Nr)	SOIL REACTION (pil)	SALLHETY (Pinkos/cm)	SHRINK-SWELL • POTENTIAL	ORGANIC MATTER (%)
	0-14	4424284484 12-17	2.9-6.0	7.9-8.4	2-8	LOW	0.5-0.8
Avelan (Av)					2-8		0.3-0.8
	14-53	20-30	0.6-2.0	7.9-8.4		Low	
	53-72	15-25	2.0-6.0	7.9-8.4	2-8	Low	
Nonjerco	0-2	10-15	2.0.6.0	7.4-8.4	< 2	Low	••••
	2-14	16-35	0.2-0.6	7.4-9.0	< 2	Noderate	••••
	14	••••	••••			••••	••••
Persevo (BC)	0-2	27-35	0.2-0.6	7.9.9.0	< 8	Noderste	0.5-1.0
rer seyo (bot	2-12	27-35	0.2-0.6	7.9.9.0	< 8	Roderate	
	12						
					_		
Blancot	0-2	15-26	0.2-2.0	7.9-8.4	< 2	Low	••••
	2-60	20-35	0.6-2.0	7.9-9.0	< 4	••••	••••
Notal (ST)	0-3	28-35	0.2.0.6	7.9-9.0	4-8	Hoderete	
	3-60	40-50	< 0.06	7.9-9.0	4-8	High	
•	0-3	15-27	0.6-2.0	7.4-8.4	< 2	Law	0.5-0.6
Poek	3-60	25-35	0.2-0.6	7.4-9.0	2.4	Hoderate	
	2-00	23.33	0.2.0.0	7.4-7.0	2.4	ACCRET OS O	
Shepperd (DS)	0-3	5+10	6.0-20	7.9-8.4	< 2	Law	
	3-60	5-10	6.0-20	7.9-8.4	< 2	Low	
at lange to	0-3	10-20	2.0.6.0	7.4-8.4	< 2	Low	0.5-0.6
Shiprock		10-20		7.4-9.0			0.3-0.8
•	3-60	10-18	2.0-6.0	7.4-9.0	< 2	Low	
farb	0-7	15-20	2.0-6.0	7.4-8.4	< 2	Low	••••
	7-10	10-20	2.0-6.0	7.4-8.4	< 2	Low	••••
	10						••••
Persavo (FA)	0-2	28-35	0.2.9.6	7.9.9.0	< 8	Noderate	0.5-1.0
Persayo (PA)	2-15	28-35	0.2-0.6	7.9.9.0	< 8	Hoderate	
	15		0.2-0.0			HOGETECE	
Fruitland	0-4	5-10	2.0-6.0	7.4-8.4	< 4	Low	0.6-0.8
	4-60	5-18	2.0-6.0	7.4-8.4	< 6	Low	••••
Persevo (FX)	0-2	28-35	0.2-0.6	7.9.9.0	< 8	Noderate	0.5-1.0
	2-18	18-35	0.2-0.6	7.9-9.0	< 8	Moderate	
	18			• • • • • •		••••	
Shepperd (FX)	0-4	5-10	6.0-20	7.9.8.4	< 2	Low	
SHEDDER (TA)	4-60	5-10	6.0-20	7.9-8.4	42	Low	
	4.00				-		
flackston	0-11	18-27	2.0-6.0	7.9-8.4	2.4	Low	
	11-28	15-30	0.2-0.6	8.5-9.0	< 2	Low	
	28-60	5-15	6.0.20	7.9-8.4	< 2	Low	
Stumble	0-3	0-10	6.0-20	7.9-8.4	< 2	Low	
	3-60	0-10	6.0-20	7.9-9.0	< 4	Low	
Notal (SX)	0-26	28.35	0.2.0.6	7.9.9.0	4-8	Noderate	
HULBI (34)	24-60	40-50	< 0.06	7.9-9.0	4-8	Kigh	
	24-00	40.39			~ •		

.....

Source: Department of Agriculture/Soil Conservation Service, 1980. Soil Survey of San Juan County, New Mexico. Eastern Pert.

# TABLE 1-1. ENGINEERING INDICES OF SOILS AT AND NEAR THE SITE

2 1. 1 * * F

SITE HAME: Kirtland Site CITY: Farmington COUNTY: San Juan STATE: New Mexico

SITE CODE: 2 GROUP NO.: A BLN CODE: NN 00000000

	۰.	•	
ATE	t		Ne

NEW MEXICO									LIQUID	
SOIL NAME	DEPTN (IXCN)	USDA TEXTURE	UNIFIED CLASSI- FICATION	PERCENT OF FRAGMENTS >3 INCHES			PASSING #40		LIMIT (L.L.) (X)	PLASTICIT (NOEX (P.1.)*
Avalon (Av)	0-14 14-53	Sandy Loom Loom, sandy clay	50 CL-ML, CL	0	100 85-95	90-100 80-90	60-60 65-85	35-50 50-70	15-25 20-35	HP-5 5-15
	53-72	loam, clay loam Gravelly sandy Loam, gravelly loam, gravelly sandy clay loam	514 514 - 50 614 614 - 60	Ø	55-73	50-70	35-60	25-40	15-25	NP-10
Xani erco	0-2 2-14 14	Fine sandy loan Sandy clay loan, clay loan, loan, Venthered bedrock	5H CL,CL-ML	0 0	100 109	100 100	60-82 80-100	30-50 50-80	15-25 20-35	89-5 5-15
Persayo (85)	0-2 2-12 12	Clay Loam, Clay Loam, silty Clay Loam Westhered bedrock	đđ	0- 10 0- 10	80- 100 80- 100	75-100 75-100	73-95 73-95	60-85 60-85	25-40 25-40	10-29 10-29
Blancot	0-2 2-60	Loan Clay Loan, sandy Clay Loan	a.•∎ a.•≋,a	0 9	100 100	100 100	75-95 80-100	50+80 50+80	25-35 25-40	5-10 5-20
Hotal (\$7)	0-3 3-60	Silty clay loan Silty clay, clay	₩. α, α.₩.	0	100 100	100 100	90+100 90-100	70-80 80-95	35-45 40-60	10-20 15-30
Doek	0-3 3-60	Loam Clay Loam, silty clay Loam, loam.	₩. CL, CL-W.	0 0	100 100	100 100	80-95 80-100	60-75 60-80	20-30 25-40	NP-\$ 5-20
Shepperd (DS)	0-3 3-60	Loomy fine sand Loomy fine sand Loomy sand, fine sand.	5H 5H	0	100 100	100 100	80-95 65-85	60-75 15-30	20 · 30 15 · 30	ыр-5 КР-5
Sh i prock	0-3 3-60	Fine sandy Loam Sandy Loam, fine Sandy Loam,	91, 91-50 51, 91-50	0	100 100	100 100	75-90 75-90	30-50 30-50	20-30 20-30	ыр - 10 ыр - 10
farð	0-7 7-10 16	Fine sandy loam Loamy sand, sandy loam, fine sandy loam, Unwrachered bedrock	51 Sm	e G	100 100	100 100	65-80 65-80	35-50 35-50	15-25 20-25	кр-3 Кр-3
Persayo (FA)	0-2 2-15 15	Cley Loam Cley Loam, silty cley Loam Veetherad bedrock	đ	0- 10 0- 10	80-100 80-100	75-100 75-100	75-95 75-95	60-85 60-85	25+40 25+40	10+20 10+20
fruitland	0-4 4-60	Sandy Loam Fine sandy Loam sandy Loam.	5H 5H	0	100 100	100 100	60 · 73 60 · 73	30-45 30-50	15-25 15-25	NP - 5 NP - 5
Persayo (FX)	0-2 2-18 18	Clay Loan, silty Clay Loan, silty Clay Loan Weathered bedrock.	ದ	0- 10 0- 10	80-100 80-100	75-100 75-100	75-95 75-95	60-85 60-85	3-40 3-40	10-20 10-29
Sheppard (FX)	0-4 4-60	Loamy fine send Loamy fine send, Loamy send, fine send	5H 5H	0	100 100	100 100	65-85 65-85	15-30 15-30	15-20 15-20	KP - 5 KP - 5
Sleckston	0-11 11-28	Grevelly loam Very gravelly sandy loam, very gravelly loam, very gravelly clay loam.	5H, 5H-SC GH, GH-GC	0-5 35-55	70-90 20-50	60-80 15-40	45-70 10-30	25-50 5-25	20+30 20+30	NP - 10 NP - 10
	28-60	Very gravelly sand, very gravelly sandy loam.	32	35-55	15-45	10-40	5-20	0-5		KP
Stumble	0-3 3-60	Loamy send Loamy coarse send, loamy send, send.	5N 5H, 5P-5N	0 0	100 100	100 100	50 - 75 40 - 75	15-25 5-25	15-20 15-20	NP-5 NP-5
Notal (SX)	0+24 24-60	Clay loam Silty clay, clay	СL, ML CL, CH	0.	100 100	100 100	90-100 90-100	70-80 80-95	35-45 40-60	10-20 15-30

NP = Nonplestic
 Source: Department of Agriculture/Soil Conservation Service, 1980.
 Soil Survey of San Juan County, New Mexico. Eastern Part.

#### Geology of the Site and Vicinity

The Farmington area of San Juan County consists of plateaus and deep valleys of Cretaceous/Tertiary formations, i.e., belonging to or relating to the last period of the Mesazoic era or corresponding system of rocks. The bedrock geology comprises of low dipping (relief) sandstones and shales. The general area of the site, especially near the river beds, consists of an outwash of gravels and sands. Rock outcrops are prevalent in some locations at and near the site (Wells, 1985; and Gorham, et al., 1977). The bedrock is fractured (Wells, 1985). The rocks exposed in the field area in the region are upper Cretaceous formations, which consist of the Cliff House Sandstone (uppermost unit of the Mesa Verde Group) and a normal sequence of younger Cretaceous beds culminating with the Fruitland Formation (Gorham, et al., 1977).

#### 1.3.4 Hydrogeology

The general study area of the site is in an outwash of gravels and sands. Bedrock outcrops in some areas. The uppermost aquifer, the "alluvial gravel valley aquifer", occurs at approximately 30 to 40 feet depth near river beds in this region (Wells, 1985). At these depths, there appears to be fill material and unconsolidated outwash of gravels and sands.

New Mexico contains dozens of geologic formations which are potential fresh-water aquifers (Wilson, 1981). One of the basic fresh-water aquifers that may be associated with the general area of the site appears to belong to the Quaternary age. This aquifer consists of an alluvium (40-80 feet thick) with unconsolidated sands, gravels, silts, and clays (Wilson, 1981; and Stone, et al., 1983), i.e., an alluvial valley aquifer (Wells, 1985).

Typical hydrogeologic properties of alluvial valley aquifers as compiled by Wilson (1981) are shown in Table 1-3. Although they are only applicable on a regional basis and not be a specific locale, the values do provide a general guide as to the potential for aquifer contamination and contaminant migration.

Based on the distribution of aquifers in the State of New Mexico and vadoze-zone characteristics, Wilson (1981) constructed a map of aquifers vulnerable to pollution. In accordance with the map, the general area of the site appears to be within a shallow aquifer zone that is highly vulnerable to contamination from surface discharges and leachates from surface/subsurface contamination.

The alluvial valley-fill aquifer water table is shallow (30 to 40 feet) near river beds with no apparent impervious layer for protection. The regional groundwater movement throughout the State follows river valleys. In all cases, the regional groundwater flows from upland recharge areas (e.g., San Juan Mountain areas) towards natural discharge zones (e.g., the San Juan River). Local flow conditions are dictated by the size of associated recharge zones and the hydraulic gradient between the recharge zones and the discharge areas.

The local topography at and near the site indicates that the shallow groundwater aquifer, if present, probably flows westward along Stevens Arroyo.

Bedrock in the region is fractured (Gorham, et al., 1977), hence intercommunication between the shallow unconsolidated and the bedrock aquifers may exist (Wells, 1985). Most of the surface soils are shallow, varying in depth from 12" to 72" and coarse in texture with small amounts of silts and clay (15-20%) and with low shrink-swell potential. The surface soils are low in organic matter (0-1%), alkaline in reaction (pH of approximately 8.0), and permeable (2.0-6.0 in/hr).

Because of prior soil excavation activities for landfill purposes, soils on site have been disturbed down to 5-7 feet. No definite clay layer was noticed at these depths. The exact extent of clay layer, if any, and its depth is unknown.

Because of their high permeability, the onsite soils are highly susceptible to contamination by hazardous liquid and solid wastes dumped in the inactive old dump pit, in the new septic tank waste pit on site, and industrial wastes potentially deposited in other offsite sources near the site (e.g., in the El Paso Natural Gas Co.'s industrial storage pond system about 1,600 feet southwest of the site).

#### 1.3.3 Geology

#### Regional Geology

Stone, et al. (1983) reported that San Juan County occupies the Navajo Section of the Colorado Plateau physiographic province. The region is a structural depression containing deep Tertiary fill resting on rocks of Late Cretaceous age. Quaternary deposits are restricted mainly to major valleys. (op. cit.).

The study area has three distinct geomorphic units. The first unit is in the northern and eastern parts of the County and is characterized by high relief, stepped topography, upland summits, narrow valleys, and steep canyon walls. Surface deposits on uplands consist of thin veneers of eolian sediment in some areas and of gravelly alluvium in others. In many areas, bedrock crops out at the surface. Resistant sandstone beds of the early Tertiary San Jose Formation form prominent structural benches, buttes, and mesas bounded by cliffs. Elevation ranges from 6,400 to 7,200 feet above mean sea level. (op. cit.).

The second unit consists of the alluvial fans and flood plains in the entrenched, narrow valleys of the San Juan, Animas, and La Plata Rivers. There are several smaller ephemeral stream systems and high, level terraces and terrace gravels that form a stepped sequence of river cut benches at elevations of as much as 600 feet above the present floodplain. Elevation ranges from 4,800 to 6,000 feet above mean sea level. The unit crosses parts of the other two units. (op. cit.).

The third unit is the largest of the three. It is bounded on the north and east by the first geomorphic unit and is dissected by the second one. This unit is characterized by moderate canyon dissection; relatively broad valleys; broad, gently sloping plateaus and mesas; locally thick deposits of alluvium; and sandy eolian sediment. Except for local areas underlain by cliff-forming Ojo Alamo and Pictured Cliff Sandstone of Late Cretaceous age, the relatively smooth and gently sloping topography of the plateaus reflects the erodibility of generally shaly bedrock such as that of the Kirtland and Nacimiento Formations of Cretaceous to early Tertiary age. Elevation ranges from 5,600 to 6,400 feet above mean sea level. (op. cit.).

#### 1.3.5 Water Supply

The New Mexico Environmental Improvement Division (N.M. EID, 1986) reports that the area population is served by the public water supply system managed by the Lower Valley Water Users Association. This population includes about 60 houses (230 persons) within a 1 mile radius of the site. The N.M. EID is not aware of the presence of any individual residential wells near the site. A comprehensive review of available well records is necessary to ensure that there are no residential wells near the site. Assuming that there are still very limited individual well(s) in the vicinity of the site, the above public water supply system is easily made available in the vicinity for immediate hookup without the installation of an extensive piping system.

Whether the groundwater aquifer(s), if present under and near the site, is contaminated cannot currently be assessed, due to the lack of a groundwater monitoring program for the area. However, based on the westward groundwater flow, existing residential wells, if present, seem to be closely located but side-gradient from the site and may potentially be threatened by the site contamination, provided that the depression cones created by these individual wells overlap the potentially contaminated groundwater plume(s). A follow-up investigation of this problem is advisable.

#### 1.3.6 Surface Hydrology

San Juan County depends heavily on surface waters. The Animas and San Juan Rivers in the county are the largest streams flowing perennially. Most of the other stream channels, in the county however, are ephemeral or intermittent. Groundwater flowing from bedrock sources also persumably contribute to stream flows in small quantities (Stone, 1983).

The San Juan and Animas Rivers originate in Colorado and flow through the State of New Mexico. The San Juan River, joined by the Animas River at Farmington, flows westward along an arcuate course and leaves the state near Four Corners.

Surface runoff from the site is normally scarce, because the annual precipitation only averages approximately 7 inches. However, during storms with an intensity averaging about 2.5 inches for a typical 10-year 24-hour rain storm, surface runoff from the site can be excessive. Locally, runoff from the site and its vicinity drains into the Stevens Arroyo, flows westward, and eventually empties into the San Juan river.

#### 1.3.7 Land Use, Population, and Distribution

Early settlers came from Colorado to the Farmington area in 1876. Major enterprises of these settlers were farming and cattle raising. Alfalfa and such fruit as apples, pears, and peaches were the major crops. Abundant rangeland lent itself to the cattle business.

In 1900, the first gas and oil production wells were drilled near Farmington, marking the start of an industry that plays a major role in the employment and economy of the area.

A town of approximately 25,000 residents, Farmington is located approximately 13 miles east of the site. Aztec, the San Juan County seat, is located approximately 30 miles northeast of the site. The population of northeastern San Juan County is about 50,000 (USDA/SCS, 1980).

# TABLE 1-3. HYDROGEOLOGIC PROPERTIES OF ALLUVIAL VALLEY AQUIFERSIN THE STUDY REGION

PROPERTY Hydraulic Conductivity	UNIT ft/day	RANGE OF VALUES	TYPICAL VALUE
Saturated Thickness	feet	0-350	50
Transmissivity	sq. feet/day	0-30,000	5,000
Porosity	percent (%)	10-40	30
Specific Yield	percent (%)	1-25	15
Specific Capacity	gal/minft of drawdown	1-200	20
Water Table Gradient	feet/mile	5-100	10
Flow Velocity	feet/day	1.3	••••

Source: Wilson, L., 1981. Potential for Groundwater Pollution in New Mexico. New Mexico Geological Society, Special Report No. 10, pp. 47-54.

Winds blow predominantly from the east and west as a result of the chanelling effect of the San Juan Valley. Spring is the windiest season, with an average windspeed of 10 miles per hour. Winds of 25 miles per hour or greater occur only 1 percent of the time, but they occasionally entrain dusts when the soil is dry. (op. cit.).

#### 1.3.9 Natural Resources

Natural resources in the region include soil, water, coal, natural gas, and oil. Cattle that graze the rangeland and crops produced on farms are marketable products from the soil. Water for irrigation, industry, municipalities, and recreation is primarily supplied by the San Juan, Animas, and La Plata Rivers (USDA/SCS, 1980).

The area contains part of a field of strippable coal containing an estimated 6 billion tons. An abundance of additional coal lies beyond the strippable depths at 150 feet. Coal is mined for use by two power generating plants. (op. cit.).

Since 1951, the gas and oil industry has contributed greatly to the economy of the area. Ninety-eight percent of the gas produced in the area comes from Upper Cretaceous rock at a depth of 1,000 to 8,500 feet. Farmington Sandstone, the Fruitland Formation, and Pictured Cliff Sandstone are the most important geologic formations (Stone, et al., 1983).

#### 1.3.10 Other Unique Features

The site is located about 0.3 mile northeast of the El Paso Natural Gas Company (EPNG) San Juan River plant. The water supply to the plant is from the San Juan River (N.M. EID, 1986). The plant property contains a large pond system, which might be used to hold industrial discharges. The pond system is located immediately east of San Juan County Route 6500, a paved road (Figure 1-2). During the 21 November 1985 area reconnaissance, the pond water was observed to be deep red or discolored. This pond system appears to be located side-gradient from the site. Whether the pond system is a potential offsite source of contamination cannot be determined due to the present lack of information regarding its exact contents.

#### 1.3.11 Potential Receptors

The foregoing information indicates that land users who might be affected by releases of hazardous substances on or from the site are:

- o Neighboring residents and workers;
- o A few users, if any, of the shallow groundwater aquifer for drinking and other domestic purposes; and
- o Onsite workers, scavengers, waste disposers, and occasional site trespassers and visitors.

In summary, the three major concerns are:

(1) The wastes in the inactive old dump pit and the new septic tank waste pit and their associated contaminated soils;

During the PA site visit, a field reconnaissance of the immediate site vicinity revealed that, within a 1 mile radius of the site, there are approximately 60 housing units with an estimate population of about 230 individuals. Within a 2-mile radius, there are about 187 houses with an estimated population of 960, including 710 permanent residents, and a transient population of 200 people at the nearby Macu Racetrack. The site is visited by an estimated transient population of 50 people, including onsite workers, waste disposers, scavengers, and occasional site trespassers and visitors. The cited permanent and transient population groups in the area would be potential receptors of the site contamination.

#### 1.3.8 Climate

San Juan County, is located in a high plateau that is dissected in the north by the San Juan River Valley. Distant high mountains shield the plateau and valley from precipitation and from shallow, extremely cold air masses in winter. The area is arid to semi-arid. Water, therefore, plays a key role in land development. Precipitation varies considerably. Summer shower activity in this area is less frequent and intense than in most of the northwestern half of New Mexico.

Approximately 60% of the total precipitation occurs during summer months as local, often intense thunderstorms (Stone, et al., 1983). An average of 40 thunderstorms a year occur, occasionally accompanied by hail. Precipitation totals are slightly greater in winter than in spring and fall. (op. cit.).

Annual precipitation ranges from an average of 7 inches in the valley at Fruitland to 12 inches along the Colorado border. Average annual precipitation generally increases as elevation increases. Wide variations in the amount of precipitation may occur from year to year. Record lows and highs of annual precipitation of 2 and 24 inches, respectively, have been measured. Annual precipitation is 2 to 3 inches less in the valley near Farmington (op. cit.). The recorded 10-year and 1-year 24-hour rainfalls in the region are 2.5 and 1.2 inches, respectively.

Snowfall occurs from November through April. Total snowfall ranges from about 9 inches in the valley to more than 20 inches along the Colorado border. The higher mountains in Colorado receive more snow and are the main source of irrigation water for the eastern part of San Juan County. (op. cit.).

Temperatures rarely reach  $100^{\circ}$ F or higher, and only a few days each year have temperatures of zero or lower. Continental-like average daily temperature fluctuations of 33 degrees are common. Mean temperature of  $67^{\circ}$ F (maximum) and  $37^{\circ}$ F (minimum) were reported for Farmington. (op. cit.).

Evaporation from May through October averages 49 inches at Farmington, but may be as much as 25 percent higher on the plateau, where there is much more wind. Sunshine may be expected about 70 percent of the possible hours. (op. cit.).

Average relative humidity is about 50 percent, and ranges from about 70 percent early in the morning to about 30 percent in the afternoon. Late in spring and early in summer the humidity averages 15 to 20 percent in the afternoon. In winter and early in spring, fog occassionally occurs in the valley for brief periods. (op. cit.).

- (2) The potential contamination of groundwater aquifers, if present beneath the site, by the onsite wastes and other potential offsite source(s) [e.g., El Paso Natural Gas Co.'s industrial storage pond system]; and
- (3) The health hazards to a few nearby residents, if any, still relying on groundwater for drinking and other domestic uses.

# 2.0 SITE HISTORY AND OWNERSHIP

Approximately twenty acres of the site were originally operated for grazing under the name Taylor Grazing Land. Subsequently, the leasers of the site relinquished their rights in favor of a San Juan County application for use of the land for recreation and public purposes. Land belonging to the BLM was determined to be suitable primarily for use as a sanitary landfill. A total of 40.24 acres of land was officially leased to San Juan County to operate as a sanitary landfill for a period of 20 years beginning 21 May 1962. The lease was renewed on 10 January 1983 to continue the sanitary landfill operation. Pits or trenches excavated on site were used as surface impoundments to dispose of household trash, septic tank liquid, and carcasses. A history of site use, permit and regulatory actions, and remedial actions to date is presented in Table 2-1.

# TABLE 2-1. SITE CHRONOLOGY

Site: Kirtland Site, Farmington, San Juan County, New Mexico BLM Site Code: NM 000000000 AEPCO Site No. 2, Group A Date Event 02/02/61 An affidavit was prepared by leaser relinquishing the rights to Taylor Grazing Land, consisting of 20 acres, in favor of San Juan County for recreation and public purposes. 04/30/62 A land classification statement was prepared by Theo E. Anhder of BLM stating the terms and conditions to which San Juan County must obligate before the issuance of the lease for 40.24 acres of land. 05/21/62 An official lease of the site to San Juan County to operate as a sanitary landfill for a period of 20 years was signed by all parties, along with other legal documents, including stipulations, a development and management plan, and assurance of compliance. 02/20/68 An onsite examination was conducted on 6 and 7 February 1968 and a report was prepared by C.H. Roberts, BLM Realty Specialist. The report stated that the San Juan County Commissioners and San Juan County Health Department be notified of the urgent need of erecting fences around the site and coverage of refuse where needed. 04/05/68 Correspondence from Peter A. Gutierrez (Acting Chief, Branch of Lands. BLM State Office) to San Juan County Commissioners requesting compliance with lease stipulations. 04/23/68 A letter report and a schedule of clean-up work done at the landfill was prepared by A. R. Schmitt (San Juan County Manager) and sent to Peter Gutierrez (Acting Chief, Branch of Lands, BLM State Office). 07/31/68 A report was prepared by C.H. Roberts, BLM Realty Specialist and reviewed by Warren J. Corby, BLM District Manager, which stated that a steel post net-wire fence was erected around the site. 08/07/68 A letter report concerning an on-the-ground examination was sent by Peter Gutierrez (Acting Chief, Branch of Lands, BLM New Mexico State Office) to the San Juan County Commissioners. The construction of a steel post net-wire fence around the exterior boundary of the site was mentioned in the report.

## TABLE 2-1. SITE CHRONOLOGY (Continued) Kirtland Site, Farmington, N.M.

Date Event A notice of stipulation violations on the method of operation and condi-10/01/68 tion of the landfill was prepared by Samuel Davalos of BLM's Solid Waste Disposal Unit, Farmington Resource Area (FRA) and delivered to Rodell Schmitt, San Juan County Manager concerning scattered debris, decaying carcasses, flies, rodents, odors and placement of new trenches, fencing, cattle guards, and proper signs. A similar notice was prepared and delivered by Phil Kirk, BLM FRA to 03/05/73 Robert Bacon, San Juan County Manager to pay immediate attention to correcting the problems at the site. 07/30/81 The San Juan County Public Works Department wrote to Doug Burger of BLM FRA expressing the need to provide extra land (20 acres or so) to avoid possible dangers of fire in open pits at the existing landfill. Gregory Church, Environmentalist III, State of New Mexico Environmen-09/09/81 tal Improvement Division sent a Solid Waste Inspections Notice to Jim Dacy, San Juan County Public Works citing violations such as trash blowing and discontinuous fencing around the cattle guard. 10/22/81 San Juan County Public Works Department requested BLM New Mexico State Office to renew the site lease for an additional five years. 05/10/82 The Director of San Juan County Public Works replied to BLM (Robert Reed) that all violations in the 30 April 1982 citation had been corrected. A Realty Specialist from DOI/BLM, in an internal memorandum to the Area Manager recommended renewal of the lease. 08/27/82 A Realty Specialist from DOI/BLM in an Internal Memorandum to the Area Manager recommended renewal of the lease based on the San Juan County letter of 10 May 1982 reporting corrections of violations and on the BLM examination of landfills on 23 and 24 August 1982. 09/02/82 A notice of stipulation violation was prepared and delivered by Richard Watts, BLM Acting Area Manager to C.C. Cash of the San Juan County Department of Public Works concerning hazards to cattle from the exposed trash.

01/10/83 An official renewal of lease of the site to San Juan County to operate as a sanitary landfill was signed by all parties along with stipulations, a development plan, and assurance of compliance.

# TABLE 2-1. SITE CHRONOLOGY (Continued)Kirtland Site, Farmington, N.M.

<u>Date</u> 01/17/85	<u>Event</u> San Juan County expressed no objection to a proposed northwesterly pipeline crossing the Kirtland site. (Hall, 1983)
04/09/84	The agreement between Public Service Company of New Mexico, City of Farmington, San Juan County and the BLM on the location of existing powerlines in relation to Kirtland site was confirmed by Mat Millenbach BLM Area Manager, in a letter to C. C. Cash of the San Juan County Department of Public Works.
05/02/85	A report on public landfills in San Juan County was prepared by a BLM FRA Supervisory Realty Specialist and sent to the FRA Manager in an internal memorandum concerning a hazardous waste prohibited sign and the users of pits.
09/27/85	A compliance check of the Kirtland site by BLM FRA personnel revealed the presence of "No Hazardous Waste" and "No Liquid Waste" signs, a nearly dry septic tank, and a new trench construction along the southern boundary of the landfill (BLM internal memorandum.)

2-4

# 3.0 SITE RECONNAISSANCE

# 3.1 <u>Purpose</u>

### The AEPCO field team conducted a site reconnaissance during the PA to:

- o Identify the unique site features including waste disposal areas, ponds, depression areas, utilities, drainage patterns, seeps, drums, odors, vegetation under stress, discoloration, and site boundaries.
- o Identify potential sampling locations and collect sample(s) of surface water, groundwater, soils, waste, biota, and sediments, when appropriate.
- o Take representative photographs of the site.
- o Conduct air quality monitoring using an hNu meter, an explosimeter/oxygen meter, methane detector, and a radiometer.
- o Observe surface soil and geological characteristics.
- o Identify access routes and potential access problems, if any, for future investigations.
- o Assess potential health and safety hazards.
- o Inspect downgradient surface water discharge areas visually for signs of contamination (water pollution, vegetation under stress, and effects on wildlife).
- o Identify potential offsite waste sources, such as spills and/or migration paths.
- o Observe regional geologic patterns (e.g., bedrock outcrops).
  - o Estimate surface water flow rates, if any.

# 3.2 Field Observations

The AEPCO field team conducted a site reconnaissance on 21 November 1985 (Thursday). The sky was partly cloudy, temperatures were in the mid 30s⁰F, and winds were from northwest at 15-20 mph, and ground surface was wet from melting snow.

The site was once a cattle grazing land. Following excavation of pits or trenches for disposal of sanitary materials, septic waste, and carcasses, the site has been drastically modified and is now characterized by undulating terrain. Part of the land south and southwest of the site is residential and industrial. Approximately 3 to 5 acres of formerly used disposal area is covered with soil. The site, as noted, contains three pits (a new septic tank waste pit, a dead animal pit, and an inactive old dump pit), a new landfill trench, a dry ditch at the northern portion, and a low-lying undeveloped area further north shielded by distant high hills and mountains.

The unwooded site lacks distinct vegetation. Small grass patches in undisturbed areas were dry. Two parallel power lines pass through the southern portion of the site. Based on the site resonnaisance, no other utility lines (e.g., telephone, telecommunication, or gas) exist within the site.

Visual observations indicate that wastes have been deposited in an inactive old pit on the north central border of the site. It appears that sludges and still bottoms were originally and illegally deposited in this pit. The sludge in the old pit appeared dry, and was light brown in color with red patches. Sampling of these wastes revealed the presence of dark black oily and greasy materials at approximately 1 to 1.5 feet depth. No distinct odors were noticed but air quality measurements registered 5 ppm benzene equivalent indicating that the old pit may be a potential emission source of volatile organic substances at that depth. No drums or industrial/commercial containers were noticed in the pits, the landfill trench, or the ditch. Wastes and waste piles were limited to the pits and the new landfill trench. None of these pits and trenches have been lined (N.M. EID, 1986). Thus, they could be a potential source of contamination to the shallow unconsolidated aquifer(s), if present beneath the site, or the bedrock groundwater aquifer.

#### 3.3 <u>Air Monitoring</u>

The locations of air monitoring stations are shown in Figure 1-2. Table 3-1 provides a quick reference to the locations and air quality measurements made at different stations on site.

No contaminated air was noted in the vicinity of and downwind from the site. However, air quality measurements taken during the site reconnaissance as part of the waste sampling effort at approximately 1 foot depth in the old dump pit, as mentioned, registered a 5 ppm benzene equivalent indicating some air pollution problem. The hNu and explosimeter readings taken above stirred water near the septic waste pit and offsite downwind (generally to the southwest) all showed background readings.

Sampling stations and liquid sample monitoring stations are shown in Figure 1-2.

The air monitoring data revealed that toxic contaminants exist in soil and sediment mixtures in the old dump pit. Some of these contaminants were confirmed to be volatile by the hNu meter. If the wastes and contaminated soils are not disturbed, risk exposure via the air route is considered minimum. However, for any site activities, potential exposure via direct contact with the wastes and contaminated soils cannot be ruled out, and should be avoided by wearing protective clothing.

No data are available on the potential for fire and explosions on this site. Much of the wastes disposed on the site are buried and, unless disturbed, should pose a minimum fire and/or explosion threat. Although volatile organics are present in the old dump pit, it is not clear whether the wastes are flammable.

TABLE 3-1. SUMMARY OF PA ENVIRONMENTAL MONITORING PROGRAM AND RESULTS

	OTHER FIELD OBSERVATIONS	Yellowish brown and sandy	:
	viuo speed (aph) 15-20	15-20	15-20
,	vikb bisection Northwest	Northwest	Northuest
	EXPLOSIMETER/ ONYGEN METER ONYGEN* LEVELOSION OXYGEN* LEVEL (\$) (\$) 17.8 0.00	0.00	0.00
	EXPLOS EXPLOS OXYGEN CXYGEN 17.8	17.8	17.8
•	RADIONETER (m8/hr) 0.01	0.01	0.01
	NETHANE DETECTOR (ppm)	•	•
	hhu PHOTO- IONIZER (ppm Benzene) 0.3	0.3	0.3
KIRILANO SIJE, FARNINGIÓN, SAN JUAM COUMIY, W.M. Aépco sije no: 02, group a Bin sije code: ny godogogod	LOCATION LOCATION destern edge of the site on the top of a bank	Tail end of a drainage ditch on the western edge of the site	Western edge of the old pit
04, SAN JI P A 00000	NILITARY 11ME 11.07	11:14	11:23
TE, FARMINGT Vo. 02, GROUA De: NN 00000	MONITORING MILITARY STATION DATE TIME 01 21-NOV-85 11:07	21-Nov-85 11:14	21-Nov-85 11:23
KIRTLAND SI AEPCO SITE BLM SITE CO	MOMITORING STATION 01	8	03

: :

15-20 15-20 15-20

Nor these t

0.0 . 0. 0

17.8

0.01 0.01

0

0.3 5.0

21-Nov-85 11:25 21-Nov-85 11:31

2

5

Central portion of the old pit (1 ft. below the surface) Worthern edge of the old pit

17.8

Nor thues t

i 17.8 0.00 Northwest 15-20 Greesy material	计计计算计语言 医马利特林氏的 网络哈哈哈斯
15-20	
Northwest	
0.0	
17.8	******
0.01	
0	
0.3	8289272222255522728;
Septic waste pit	be due to high altitude.
11:11	tration may
21-Nov-85	ygen concentre
8	COW OX

Oily and greasy mat at 1 ft. depth and black sludge

. . .

ļ

# 4.0 CHARACTERISTICS AND ENVIRONMENTAL CONCENTRATIONS OF HAZARDOUS SUBSTANCES

The material in this section on the characteristics and environmental concentrations of hazardous substances on and off site was compiled from recent environmental sampling and laboratory analyses, which were performed coincidentally with the present study.

# 4.1 Environmental Sampling and Analyses Program

As part of the Preliminary Assessment (PA), the AEPCO field investigation team established an environmental monitoring and sampling network on 21 November 1985 to monitor the air quality, assess health and safety conditions, and collect a representative composite waste/sediment/soil sample, and a grab surface water/liquid waste sample. This environmental monitoring and sampling network consists of:

- o One composite waste sample (WS-A) from Stations 02 to 06 (Figure 1-2); and
- One grab surface water/liquid waste sample (SW-A) from the new septic waste pit (Figure 1-2).

Table 3-1 and Figure 1-2 provide a quick reference to the locations of these sampling stations and air quality monitoring stations.

#### 4.2 Air Ouality and Health and Safety

Organic vapor analyzer (hNu meter), methane detector, radiometer, explosimeter, and oxygen meter readings were taken at each station. Hydrogen sulfide-sensitive badges were also worn during the field investigation. All of the instrument and badge readings were used to assist the team in evaluating health and safety requirements. The readings also provided clues to areas that might contain volatile hazardous organic substances.

After background levels were established, it was determined that modified Level C health and safety protection would be adequate for the field work. Thus, full-face self-purifying respirators were carried by the team members at all times during the site investigation for use during unanticipated adverse site conditions. However, no conditions were subsequently met that required the use of the respirators.

The monitoring results are summarized in Table 3-1. The results revealed that the background levels in ambient air were:

- 0 0.3 ppm benzene equivalent for volatile organic vapor concentrations as measured by an hNu photoionizer;
- o methane concentration below detection limit;
- o 0.01 to 0.02 mRem/hour gross radioactivity;
- o 17.8% oxygen concentration due to the high altitude of the project site; and
- o 0.001% explosimeter reading.

Instrument readings throughout the site were consistent with background levels with the exception of one hNu reading at Station 05. This station was located within the old dump pit, into which hazardous wastes may have been dumped. One spontaneous reading of 5

ppm in the headspace of the wastes was detected at 1 foot depth. This high reading is indicative of the presence of highly volatile organic substances. Thus, a representative sample was collected for a composite sample for laboratory analysis. Hydrogen sulfidesensitive badge data suggested that  $H_2S$  concentrations were low or negliglible (at least in the breathing zone of the field personnel).

In summary, Level C protection without a full-face self-purifying respirator was adequate for the site reconnaissance. However, if excavation work in the inactive old dump pit is planned, health and safety protection in strict compliance with Level C specifications, at a minimum, is strongly recommended.

# 4.3 Location of Hazardous Substances on Site

Figure 1-2 shows a general layout of the project site. The dimensions of the new septic waste pit and the old dump pit and water marks are signs that the site may possibly contain approximately 11,000 cubic yards of liquid, semi-solid, and solid wastes, not necessarily all hazardous, resulting from unrestricted or unauthorized dumping of a variety of wastes including petroleum industrial wastes. The hazardous contaminants are estimated to cover a surface area of 0.5 acre occupied by the new septic waste pit on the western corner and 8-12 acres occupied by the inactive old dump pit at the northcentral border of the site.

Particular concerns are the:

- (1) uncontrolled release of wastes via erosion of a containment dike into a nearby ditch, thence the Stevens Arroyo, and subsequently San Juan River;
- (2) leaching of hazardous substances into the shallow unconsolidated aquifer, if present, and possibly the bedrock aquifer beneath the site and migration of contaminants via the groundwater systems of f site;
- (3) potential hazards to a few nearby residents, if any, still using the groundwater as a water supply for drinking and other domestic purposes; and
- (4) potential hazards to the transient population including site workers, waste disposers, scavengers, and occasional trespassers and visitors.

#### 4.4 Form and Physical State of Hazardous Wastes

No records were kept of the volumes of wastes dumped nor the exact dates on which they were dumped. The abundance of greasy substances in onsite wastes suggests that area petroleum refineries and gas production facilities might have disposed petroleum wastewater or waste on site in addition to the septic wastes.

Most of the wastes disposed at the site had presumably been in bulk pumpable form and were contained in the old dump pit and the new septic waste pit. Air monitoring results and the presence of greasy materials suggest that industrial wastes and possibly petroleum wastes have been disposed at the site. The onsite pits and trenches have not been lined (N.M. EID, 1986), hence, the potential exists for leaching of hazardous substances into soils and groundwater aquifer systems, if any. The laboratory results of onsite PA waste samples reveal that onsite wastes are noncorrosive, highly volatile, potentially flammable, and nonreactive. Some of the substances in the wastes are considered toxic. Acute toxicity from short-term exposure is unlikely. However, potential chronic health effects from long-term exposure to the wastes cannot be conclusively ruled out.

# 4.5 Laboratory Analysis of Hazardous Wastes on Site

Tables 4-1 to 4-5 summarize the results of the laboratory analysis of the samples. One composite sample was collected for the solid medium representing the wastes from five stations (Figure 1-2). One grab sample representing the liquid waste/surface water was collected from the septic waste pit. The results of the laboratory analysis are discussed below.

#### Ignitability (Table 4-1)

The composite waste sample showed an ignitable flash point greater than  $100^{\circ}$ C. Owing to the compositing technique used, the waste sample may contain soil materials, which tend to increase the flash point to a level higher than that which would be exhibited by an actual waste substance.

### Corrosivity (Table 4-1)

The waste sample was subjected to the corrosivity test in accordance with the Resource Conservation and Recovery Act (RCRA). The waste pH was determined to be 8. Based on this pH value, the waste is not considered to be corrosive.

# Reactivity (Table 4-1)

The waste sample was subjected to the reactivity test specified in the RCRA. No reaction products such as hydrogen sulfide or hydrogen cyanide were detected. Therefore, the waste is considered nonreactive.

Extraction Procedure (EP) Toxicity Test Results and Total Organic Halogens (TOH) (Table 4-1)

The extractants from the waste sample subjected to the RCRA EP Toxicity test contain heavy metals, however, at concentrations below EPA contract detection limits, with the exceptions of barium at 230 ug/L and lead at 44 ug/L. These low concentrations of heavy metals are well below the applicable RCRA standards and are not considered hazardous.

The liquid waste/surface water sample contained concentrations of heavy metals that were less than the lower values of applicable National Interim Primary and Secondary Drinking Water Standards, with the exceptions of chromium (300 ug/L), copper (1,570 ug/L), manganese (7,120 ug/L), and lead (2,070 ug/L).



# TABLE 4-1 CONCENTRATIONS OF HSL METALS AND OTHER PARAMETERS IN WASTES AND SURFACE WATER

# KIRTLAND SITE, FARMINGTON, SAN JUAN COUNTY, N.M. AEPCO SITE 2, GROUP A BLM SITE CODE: NM 000000000

	WASTE						NATIONAL DRINKING	
PARAMETER	UNIT	STATION WS-A*	DETECTION LIMIT**	RCRA STANDARD***	UNIT	STATION SW-A	DETECTION LIMIT**	WATER STANDARD#
	•••••	••••	******	22222222222			22222223	**********
Silver (Ag)	ug/L	<10 U	10	5,000	ug/L	<10 U	10	50
Arsenic (As)	ug/L	<b>(6.7</b> )	10	5,000	ug/l	17.0	10	50
Boron (B)	ug/L	• • •	· • •		ug/L	2,165	•••	
Barium (Ba)	ug/L	230	200	100,000	ug/i	•••	•••	•••
Beryllium (Be)	, ug∕L	•••	• •••	•••	ug/L	7.0	5	
Cadmium (Cd)	ug/L	<5	5	1,000	ug/L	23	5	10
Cobalt (Co)	ug/L	• • •			ug/L	94	50	
Chromium (Cr)	ug/L	10	10	5,000	ug/L	300	10	50
Copper (Cu)	ug/L	• • •	•••	j	ug/L	1,570	25	1,000
Mercury (Hg)	ug/L	<0.2 U	0.2	200	Ug/L	<0.2 U	0.2	2
Manganese (Mn)	ug/L	•••	•••		ug/L	7,120	15.0	50
Nickel (Ni)	ug/L	•••		· • • •	Ug/L	205	40	
Lead (Pb)	ug/L	44	40	5,000	Ug/L	2,070	5	50
Selenium (Se)	ug/L	<4 U	5	1,000	ug/L	<4 U	5	10
Thallium (Te)	ug/L	•••	•••		Ug/L	<3 U	10	
Vanadium (V)	ug/L	•••	•••		ug/L	129 U	50	
Total Organic Halogen (TOH)	ug/L	•••	•••		ug/L	476	•••	
Ignitability: Flash Point	deg. C	>100	•••			•••		
Corrosivity: pH Reactivity:	Std. Unit	8##		<2 or >12		•••	•••	
Total Sulfide	ug/Kg	3		i			•••	
Total Cyanide	ug/Kg	<5	•••			•••	•••	· ···

WS-A = Waste Sampling Station A

SW-A = Surface Water Sampling Station A

U = Not detected or below detection limit

* Extraction Procedure (EP) toxicity test results ** EPA detection limits based on zero dilution

*** Resource Conservation and Recovery Act

# Lower Value of National Interim Primary and Secondary Drinking Water Standards

## pH greater than 2 and less than 12 indicates noncorrosive characteristics.

(): indicates the substance is found above the laboratory's limit,

but below EPA contract required detection limit.

NONE: Indicates non-reactivity ovserved.

--- Not applicable or analysis not requested.

# TABLE 4-2 CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS (VOCs) IN WASTES AND SURFACE WATER

# KIRTLAND SITE, FARMINGTON, SAN JUAN COUNTY, N.M. AEPCO SITE 2; GROUP A BLM SITE CODE: NM 000000000

		WASTE		SURFACE WATER			
PARAMETER	UNIT	STATION WS-A	DETECTION	UNIT	STATION SW-A	DETECTION	
Acrolein	ug/Kg	ND	100	ug/L	ND	10	
Acrylonitrile	ug/Kg	ND	100	ug/L	ND	10	
Benzene	ug/Kg	106	100	ug/L	2 U	10	
Carbon Tetrachloride	ug/Kg	ND	100	ug/L	ND	10	
Chlorobenzene	ug/Kg	ND	100	ug/L	ND	10	
1,2-Dichloroethane	ug/Kg	ND	100	ug/L	ND	10	
1,1,1-Trichloroethane	ug/Kg	ND	100	ug/L	4 U	10	
1,1-Dichloroethane	ug/Kg	ND	100	ug/L	ND	10	
1,1,2-Trichloroethane	uġ/Kg	ND	100	ug/L	ND	10	
1,1,2,2-Tetrachloroethane	ug/Kg	ND	100	ug/L	ND	10	
Chloroethane	ug/Kg	ND	100	ug/L	ND	10	
2-Chloroethylvinylether	ug/Kg	ND	100	ug/L	ND	10	
Chloroform	ug/Kg	ND	100	ug/L	ND	10	
1,1-Dichloroethylene	ug/Kg	ND	100	ug/L	ND	10	
1,2-trans-Dichloroethylene	ug/Kg	ND	100	ug/L	ND	10	
1,2-Dichloropropane	ug/Kg	ND	100	ug/L	ND	10	
1,3-Dichloropropylene	ug/Kg	ND	100	ug/L	ND	10	
Ethylbenzene	ug/Kg	24 U	100	ug/L	ND	10	
Methylene Chloride	ug/Kg	ND	100 1	ug/L	ND	10	
Methyl chloride	ug/Kg	ND	100	ug/L	ND	10	
Methyl bromide	ug/Kg	ND	100	ug/L	ND	10	
Bromoform	ug/Kg	ND	100	ug/L	ND	10	
Dichlorobromomethane	ug/Kg	ND	100	ug/L	ND	10	
Trichlorofluoromethane	ug/Kg	ND	100	ug/L	ND	10	
Dichlorodifluoromethane	ug/Kg	ND	100	ug/L	ND	10	
Chlorodibromomethane	ug/Kg	ND	100	ug/L	ND	10	
Tetrachioroethylene	ug/Kg	ND	100	ug/L	ND	10	
Toluene	ug/Kg	49 U	100	ug/L	520	10	
Trichloroethylene	ug/Kg	ND	100	ug/L	ND	10	
Vinyl Chloride	ug/Kg	ND	100	ug/L	ND	10	
Total Xylenes	ug/Kg	379	100	ug/L	ND	10	
DILUTION RATIO	-3, -3	10x	10x		1X	1X	

WS-A = Waste Sampling Station A SW-A = Surface Water Sampling Station A U = Not detected or below detection limit

--- Not applicable

# TABLE 4-3 CONCENTRATIONS OF ACID EXTRACTABLE ORGANIC COMPOUNDS IN WASTES AND SURFACE WATER

i.

# KIRTLAND SITE, FARMINGTON, SAN JUAN COUNTY, N.M. AEPCO SITE 2; GROUP A BLM SITE CODE: NM 000000000

#### ACID EXTRACTABLE ORGANIC COMPOUNDS

		WASTE		SURFACE WATER			
	2222222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	************************************			
PARAMETER	UNIT	STATION WS-A	DETECTION	UNIT	STATION SW-A	DETECTION	
Benzoic Acid	mg/Kg	ND	5,000	ug/L	ND	500	
2,4,5-Trichlorophenol	mg/Kg	ND	5,000	ug/L	ND .	500	
2,4,6-Trichlorophenol	mg/Kg	ND	1,000	ug/L	ND	100	
p-Chloro-m-cresol	mg/Kg	ND	1,000	ug/L	ND	100	
2-Chlorophenol	mg/Kg	ND	1,000	ug/L	ND	100 \	
2,4-Dichlorophenol	mg/Kg	ND	1,000	ug/L	ND	100	
2,4-Dimethylphenol	mg/Kg	ND	1,000	ug/L	ND	100	
2-Methylphenol	mg/Kg	ND	1,000	ug/L	ND	100	
4-Methylohenol	mg/Kg	ND	1,000	ug/L	ND .	100	
2-Nitrophenol	mg/Kg	ND '	1,000	ug/L	ND	100	
4-Nitrophenol	mg/Kg	ND	5,000	ug/L	ND	500	
2,4-Dinitrophenol	mg/Kg	ND	5,000	ug/L	ND	500	
4,6-Dinitro-o-cresol	mg/Kg	ND	5,000	ug/L	ND	500	
Pentachlorophenol	mg/Kg	ND	5,000	ug/L	ND	500	
Phenol	mg/Kg	ND	1,000	ug/L	480	100	
DILUTION RATIO	•••	100X	100X		10X	10X	

......

WS-A = Waste Sampling Station A SW-A  $\approx$  Surface Water Sampling Station A U = Not detected of below detection limit --- Not applicable

# TABLE 4-4 CONCENTRATIONS OF BASE/NEUTRAL EXTRACTABLE ORGANIC COMPOUNDS IN WASTES AND SURFACE WATER

# KIRTLAND SITE, FARMINGTON, SAN JUAN COUNTY, N.N. Aepco site 2; group a BLM site code: NN 0000000000

BASE AND NEUTRAL EXTRACTABLE ORGANIC COMPOUNDS:

	WASTE						
		STATION	DETECTION	******	NOITATZ	DETECTION	
PARAMETER	UNIT	WS-A	LINIT	UNIT	SV-A	LIMIT	
***********	•••••	•••••					
Acenaphthene	mg/Kg	ND	1,000	սց/Լ	NO	10	
Benzidine	mg/Kg	NO	1,000	Ug/L	NO.	10	
1,2,4-Trichlorobenzene	mg/Kg	ND	1,000	սց/Լ	ND	10	
Hexach Lorobenzene	mg/Kg	KO	1,000	1/L	NO	10	
Hexachiorosthane	mg/Kg	ND	1,000	Ug/L	NO	10	
bis (2-chloroethyl) ether	mg/Kg	ND	1,000	U9/L	KD	10	
2-Chioronaphthaiene 1.2-Bichlorobenzene	mg/Kg	ND	1,000	ug/L	ND	10	
1,3-Dichtorobenzene	mg/Kg	ND	1,000	Ug/L	, ND	10	
1,4-Bichtorobenzene	mg/Kg	ND	1,000	Ug/L	ND	10	
	mg/Kg	ND	1,000	i ug/L	16	10	
3,3-Dichlorobenzidine	mg/Kg	ND	1,000	Ug/L	ND	10	
2,4-Dinitrotoluene	mg/Kg	ND	1,000	ug/L	ND	10	
2,6-Dinitrotoluene	mg/Kg	ND	1,000	ագ/Լ	ND	10	
1,2-Diphenylhydrazine (as azobenzene)	mg/Kg	ND	1,000	Ug/L	ND	10	
Butl benzyl phthalate	mg/Kg	ND	1,000	ug/L	ND	10	
Di-n-butyl phthalate	mg/Kg	ND	1,000	ug/L	ND	10	
Di-n-octyl phthalate	mg/Kg	NO	1,000	ug/L	ND	10	
Diethyl phthalate	mg/Kg	ND	1,000	ug/L	ND	10	
Dimethyl phthalate	mg/Kg	ND	1,000	ug/L	ND	10	
Benzo (a) anthracene	mg/Kg	ND	1,000	Ug/L	NÔ	10	
Benzo (a) pyrene	mg/Kg	ND	1,000	Ug/L	ND	10	
3,4-Benzofluoranthene	mg/Kg	ND	1,000	Ug/L	ND	10	
Benzo (k) fluoranthene	mg/Kg	ND.	1,000	ug/L	ND	10	
Fluoranthene	mg/Kg	ND	1,000	ug/L	ND	10	
4-Chlorophenyl phenyl ether	mg/Kg	ND	1,000	ug/L	ND	10	
4-Bromophenyl phenyl ether	mg/Kg	ND	1,000	ug/L	ND	10	
bis (2-chloroisopropyl) ether	mg/Kg	ND	1,000	ug/L	ND	10	
bis (2-chloroethoxy) methane	mg/Kg	ND	1,000	Սց/Լ	ND	10	
Wexachiorobutadiene	mg/Kg	ND	1,000	ug/L	ND	10	
Nexachlorocyclopentadiene	mg/Kg	ND	1,000	սց/Լ	ND	10	
Isophorone	mg/Kg	ND	1,000	ug/L	ND	10	
Naphthalene	mg/Kg	ND	1,000	ug/L	ND	10	
Nitrobenzene	mg/Kg	ND	1,000	սց/Լ	ND	10	
N-Hitrosodimethylamine	mg/Kg	ND	1,000	ug/L	ND	10	
N-Nitrosodiphenylamine	mg/Kg	ND	1,000	Ug/L	ND	10	
bis (2-ethylhexyl) phthalate Chrysene	mg/Kg	ND	1,000	Ug/L	ND	10	
Acenaphthy(ene	mg/Kg	ND	1,000	Ug/L	ND	10	
Acenaphthylene	mg/Kg	ND	1,000	սց/Լ	ND	10	
Anthracene	mg/Kg	ND	1,000	Ug/L	NO	10	
Benzo (ghi) perylene	mg/Kg	ND	1,000	ug/L	ND	10	
fluorene	mg/Kg	ND	1,000	ug/L	ND	10	
Phenanthrene	mg/Kg	ND	1,000	ug/L	ND	10	
Oibenzo (a,h) anthracene	mg/Kg	ND ND	1,000	ւ սց/Լ	ND	10	
Indeno (1,2,3-cd) pyrene	mg/Kg		1,000	ug/L	ND	10	
Pyrene	mg/Kg	ND	1,000	ug/L	ND	10	
Senzyl alcohol	mg/Kg.	ND ND	1,000	ug/L	NO	10	
DILUTION RATIO	mg/Kg	100x	1,000	ug/L	12	10	
·····		IUUX	100X	,	1X	1x	
WS-A = Waste Sampling Station A							

WS-A = Waste Sampling Station A SW-A = SW-face Water Sampling Station A U = Not detected of below detection limit --- Not applicable

# TABLE 4-5 CONCENTRATIONS OF PESTICIDES AND PCBs IN WASTES AND SURFACE WATER

.

KIRTLAND SITE, FARMINGTON, SAN JUAN COUNTY, N.M. AEPCO SITE 2; GROUP A BLM SITE CODE: NM 0000000000

# PESTICIDES AND PCBs:

		WASTE		SURFACE WATER				
	3253391	STATION	DETECTION	8229328	DETECTION			
PARAMETER	UNIT	WS-A	LIMIT	UNIT	STATION SW-A	LIMIT		
Aldrin	ug/Kg	ND	1,000	ug/L	ND	10		
Dieldrin	ug/Kg	ND	1,000	ug/L	ND	10		
Chlorodane	ug/Kg	ND	1,000	ug/L	ND	10		
4,4-DDT	ug/Kg	ND	1,000	ug/L	ND	10		
4,4-DDE	ug/Kg	ND	1,000	ug/L	ND	10		
4,4-DDD	ug/Kg	ND	1,000	ug/L	ND	10		
alpha-Endosulfan	ug/Kg	ND	1,000	ug/L	ND	10		
beta-Endosulfan	ug/Kg	ND	1,000	ug/L	ND	10		
Endosulfan sulfate	ug/Kg	ND	1,000	ug/L	ND	10		
Endrin	ug/Kg	ND	1,000	ug/L	ND	10		
Endrin aldehyde	ug/Kg	ND	1,000	ug/L	ND	10		
Heptachlor	ug/Kg	ND	1,000	ug/L	ND	10		
Heptachlor epoxide	ug/Kg	ND	1,000	ug/L	ND	10		
alpha-BHC	ug/Kg	ND	1,000	ug/L	ND	10		
beta-BHC	ug/Kg	ND	1,000	ug/L	ND	10		
gamma - BHC	ug/Kg	ND	1,000	ug/L	ND	10		
delta-BHC	ug/Kg	ND	1,000	ug/L	ND	10		
PCB-1016 (Aroclor 1016)	ug/Kg	ND	1,000	ug/L	ND	10		
PCB-1221 (Aroclor 1221)	ug/Kg	ND	1,000	ug/L	ND	10		
PCB-1232 (Aroclor 1232)	ug/Kg	ND	1,000	ug/L	ND	10 -		
PCB-1242 (Aroclor 1242)	ug/Kg	ND	1,000	ug/L	ND	10		
PCB-1248 (Aroclor 1248)	ug/Kg	ND	1,000	ug/L	ND	10		
PCB-1254 (Arocior 1254)	ug/Kg	ND	1,000	ug/L	ND	10		
PCB-1260 (Aroclor 1260)	ug/Kg	ND	1,000	ug/L	ND	10		
DILUTION RATIO	•••	100X	100 <b>X</b>	•••	1X	1X		

......

WS-A = Waste Sampling Station A

SW-A = Surface Water Sampling Station A U = Not detected or below detection limit ... Not applicable

# Volatile Organic Compounds (VOCs) (Table 4-2)

As shown in Table 4-2, the waste sample contained elevated concentrations of:

- o Benzene (106 ug/Kg); and
- o Total xylenes (379 ug/Kg).

It should be noted that the waste sample was a composite of wastes from 5 stations. This composite technique may result in chemical concentrations much less than those of an actual waste without dilution by inert soil materials.

The grab liquid waste/surface water sample contained toluene (520 ug/L).

### Acid Extractable Organic Compounds (Table 4-3)

No acid extractable organic compounds were found in the waste sample. However, the presence of phenol (480 ug/L) was confirmed in the aqueous medium.

#### Base/Neutral Extractable Organic Compounds (Table 4-4)

No base/neutral extractable organic compounds were found in the composite waste sample. Two compounds were detected in the liquid medium. They are 1,4-dichlorobenzene and benzyl alcohol at concentrations within a factor of 2 of EPA contract detection limits.

#### Pesticides and PCBs (Table 4-5)

No pesticides or PCBs were found to be present in either the waste or liquid waste/surface water samples. These results are consistent with earlier N.M. EID analytical findings.

## 4.6 Environmental Concentrations

Because of the limitation on the scope of the services, neither onsite nor offsite groundwater samples were taken during the site reconnaissance. The same is true for offsite surface water, sediment, and soils. Therefore, the environmental concentrations cannot be defined at the present time. Judging from the onsite permeable soils and the high mobilities of certain hazardous substances found in the waste and liquid samples, it is likely that some hazardous substances might have leached out and migrated off site via the shallow unconsolidated groundwater route, if any, or the bedrock groundwater route.

# 5.0 CONCLUSIONS

# 5.1 <u>Major Study Findings</u>

Air monitoring during the site reconnaissance generally revealed negligible contamination of air at and near the site. However, a 5 ppm benzene equivalent concentration of volatile organic vapor was detected in the headspace of the wastes 1-ft below the surface in the inactive old dump pit located on the northcentral border. This finding indicates a potential for the exposure of the public to the vapor via the air route.

A septic waste pit and an inactive old waste pit were reportedly used for the disposal of septic wastes, sludges, oily wastes, and petroleum industrial wastes. Approximately 11,000 cubic yards of wastes, not necessarily all hazardous, were estimated to be present in these pits as a result of unauthorized dumping.

These wastes are in solid, semi-solid, and liquid forms. The analytical findings for a composite waste sample collected during the PA indicated that the wastes contain elevated concentrations of highly volatile and mobile benzene and total xylenes. The grab surface water/liquid waste sample collected from the septic waste pit revealed the presence of chromium, copper, manganese, and lead above the lower values of the applicable National Interim Primary and Secondary Drinking Water Standards. The liquid medium also contains toluene, phenol, 1,4-dichlorobenzene, and benzyl alcohol.

Based on limited hydrogeologic information, the general area of the site is potentially underlayed by a shallow alluvial aquifer under groundwater table conditions (approximately 35 to 40 feet below the surface) and a bedrock aquifer. The shallow aquifer, if present beneath the site, is reportedly highly vulnerable to contamination from surface discharges of leachates or septic effluent and surface/subsurface contamination. No impervious layer that would serve to protect the shallow aquifer from contamination was evident. Lack of groundwater quality data at and near the site makes it difficult to identify and define the potential zone(s) of contamination in the shallow groundwater system, if any.

Bedrock in the area is fractured and its aquifer may be communicating with the upper shallow aquifer. Potential cross contamination of bedrock aquifer by the upper shallow aquifer, if present beneath the site, cannot be effectively ruled out unless an in-depth hydrogeologic study is conducted.

An industrial pond system located within the property of the El Paso Natural Gas Co. is located approximately 0.3 mile southwest of the site. During the 21 November 1985 area reconnaissance, the pond water was observed to be deep red or discolored. This pond system is unlined (N.M. EID, 1986). Whether it is a potential offsite source of contamination cannot be assessed due to lack of specific information. The pond is hydraulically located side-gradient from the site and may potentially play a role in regulating shallow or deeper groundwater aquifer flow in the area.

### 5.2 BLM Site Classification

Each site investigated as part of this project is classified into one of four BLM's categories:

Class I. There is no significant reason to believe that hazardous wastes or other haz-

ardous substances have been generated, treated, stored, or disposed of on the site, or alternatively that hazardous wastes were disposed but in such quantities, forms, or under such conditions that there is negligible hazard to human health or the environment.

- Class II. Hazardous wastes or other hazardous substances are present but there is small risk of onsite contact or release of contaminants to the environment in such form and quantity that would constitute a significant hazard to human health or to the environment.
- Class III. Hazardous wastes or other hazardous substances exist on the site in such form and quantity and under such conditions that there is specific reason to believe that a potentially significant hazard to human health or the environment may exist and that further definitive investigations must be undertaken.
- Class IV. Hazardous wastes or other hazardous substances exist on the site in such form and in such quantity and under such conditions, including offsite considerations, as to constitute an imminent and substantial endangerment to human health or the environment.

For the subject site, hazardous wastes or other hazardous substances were documented to be disposed or present on the site. Hazardous substances identified include:

- o Solid medium: benzene and total xylenes
- o Aqueous medium: chromium, copper, manganese, lead, toluene, phenol, 1,4dichlorobenzene, and benzyl alcohol.

Some of these substances are highly volatile and toxic. However, the quantity, form, and degree of containment suggest that instances of acute toxicity from short-term exposure are currently unlikely to occur. Nevertheless, chronic health effects may result from long-term exposure to these substances by:

- (1) A few nearby residents, if any, who may still rely on groundwater for drinking and other domestic purposes;
- (3) Nearby residents via the air route and, to a lesser extent, direct contact; and
- (2) Onsite personnel (e.g., workers, waste disposers, scavengers, and occasional trespassers and visitors) via the air route and, to a lesser extent, direct contact.

The potential exists that the shallow groundwater aquifer, if present beneath the site, and possibly bedrock aquifer may be contaminated due to high permeability of soils, lack of impervious clay layer for groundwater protection against contamination, and fractured bedrock. This concern is also supported by the documented presence of hazardous substances on site and potential offsite source(s) of contamination.

The above considerations justify the classification of the Kirtland Site as a Class III site, requiring further investigations. The scope of the recommended followup investigations is presented in Section 6.0.

# 6.0 RECOMMENDED ACTIONS

Initial remedial measures (IRMs) recommended to minimize potential exposure to onsite wastes and contaminated soils and prevent further complication of the site problem are:

- o Establishment of effective site access control mechanisms such as placement of a security gate at the site entrance and implementation of a permit system to regulate waste disposers; and
- o Improvements to the northern dike at the old waste pit to minimize the erosion potential and reduce the chance of offsite transport of waste materials via the surface water route;

Installation of new monitoring wells on and off the site is recommended to determine the hydrogeologic characteristics and groundwater quality at the site. The exact number of monitoring wells needed will be determined during the preparation of the work plan for this followup investigation. In addition, collection of well water samples from selected residential wells would assist in the determination of the extent of offsite contaminant migration, if any. Although, residential wells, if any, near the site are expected to be located side-gradient from the site, the potential of residential well contamination still exists if the depression cones created by these wells have extensively overlapped with the potentially contaminated groundwater plume(s).

Surface water/sediment sampling downgradient from the site would remedy data gaps to gain better understanding of the site contamination and contaminant migration problems via the surface water route.

Because of the potential multiple contamination sources (both onsite and offsite) in the study area, appropriate EPA, BLM, State of New Mexico, and San Juan County authorities and affected parties should be called upon to cooperatively undertake the followup investigations.

#### REFERENCES

Gorham, F.D., L.A. Woodward, J.F. Callender, and A.R. Greer, 1977. Fracture Permeability in Cretaceous Rocks of the San Juan Basin, New Mexico, New Mexico Geological Society Guidebook, 28th Field Conference, San Juan Basin III.

Stone, W.J., F.P. Lyford, P.F. Frenzel, et al., 1983. Hydrogeolgoy and Water Resources of San Juan Basin, New Mexico, Hydrogeologic Report No. 6, New Mexico Bureau of Mines, Santa Fe, New Mexico.

U.S. Department of Agriculture, Soil Conservation Service (USDA/SCS), 1980. Soil Survey of San Juan County, New Mexico. Eastern Part.

U.S. Environmental Protection Agency, July 16, 1982. National Contingency Plan (NCP), Federal Register, Vol. 47, No. 137., Washington, D.C.

U.S. Environmental Protection Agency, The Federal Facilities Program Manual for Implementing CERCLA Responsibilities for Federal Agencies (Final Draft), Washington, D.C.

Wells, S., 1985. Personal Communication, University of New Mexico, Albuquerque, New Mexico.

Wilson, L., 1981. Potential for Ground-Water Pollution in New Mexico, New Mexico Geological Society Special Publication No. 10, pp. 47-54.