

GENERAL CORRESPONDENCE

YEAR(S): 2007-1996

	vistrict 1 625 N. French Dr., Hobbs, NM 88240 Vistrict II 301 W. Grand Avenue, Artesia, NM 88210 Vistrict III 000 Rio Brazos Road, Aztec, NM 87410 Vistrict IV 220 S. St. Francis Dr., Santa Fe, NM 87505	State of New Energy Minerals and Oil Conservati 1220 South St. Santa Fe, N	Natural Resources on Division Francis Dr.	Revised June 10, 2003 Submit Original Plus 1 Copy to Santa Fe 1 Copy to Appropriate District Office
			EOTHERMAL	FACILITES
	Nev Nev	w 🔀 Renewal	Modifica	tion
	Type:Refinery			
2.	Operator:Giant Industries, Inc			
	Address:111 County Road 4990,			
	Contact Person:Mr. Bill Robertson	1	Phone:	505-632-4077
3.	Location:NW 1/4SW 1/4 Submit lat	4 Section22 & 27 rge scale topographic m	Township2 ap showing exact loc	9NRange12W ation.
4.	Attach the name, telephone number an	d address of the landow	ner of the facility site	. SECTION 4.0
5.	Attach the description of the facility w SECTION 5.0	ith a diagram indicating	location of fences, p	its, dikes and tanks on the facility.
6.	Attach a description of all materials sto	ored or used at the facili	ty. SECTION 6.0	
7.	Attach a description of present sources must be included. SECTION 7.0	s of effluent and waste so	olids. Average qualit	y and daily volume of waste water
8.	Attach a description of current liquid a	nd solid waste collectio	n/treatment/disposal	procedures. SECTION 8.0
9.	Attach a description of proposed modi	fications to existing coll	ection/treatment/disp	osal systems. SECTION 9.0
10	Attach a routine inspection and mainte	enance plan to ensure pe	ermit compliance. SE	CTION 10.0
11	. Attach a contingency plan for reportin	ig and clean-up of spills	or releases. SECTIO	N 11.0
12	 Attach geological/hydrological inform SECTION 12.0 	nation for the facility. D	bepth to and quality of	f ground water must be included.
13	. Attach a facility closure plan, and other rules, regulations and/or orders. SECT		essary to demonstrate	compliance with any other OCD
	14. CERTIFICATIONI hereby certify th best of my knowledge and belief.	nat the information subm	nitted with this applic	ation is true and correct to the
	Name:Dave Richards/		Title: Regulatory	Coordinator
	Signature:	/	Date: 1/11/2	27
	E-mail Address:	giunt, com	1	

Ti

THE LEVEL IN T

ACKNOWLEDGEMENT OF RECEIPT OF CHECK/CASH

I hereby acknowledge receipt of check No.	dated	1/11/07
or each received on in the amount		
in Grand Fredustries :	Fre C	
0	ی ۱۹۹۰ - ۲۰۰۰ ۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰	, ··
Submitted by Lowrenge Royie		iloz
Submitted to ASD by: Deutrace Fe		
Received in ASD by	Date	
Filing Fee New Facility	Renewal	
Modification Other		
Organization Code <u>521.07</u> A	pplicable FY2004	
To be deposited in the Water Quality Managen	nent Fund.	an a
Full Payment or Annual Increm	nent	
		· · · · · · · · · · · · · · · · · · ·
		<u>~</u>

Lodestar Services, Incorporated PO Box 3861 Farmington, NM 87499-3861 Office (505) 334-2791

January 11, 2007

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South Francis Drive Santa Fe, New Mexico 87505

RECEIVED

JAN 182007

Oil Conservation Division Environmental Bureau

RE: Discharge Plan Renewal DP -040

Dear Mr. Price:

Lodestar Services, Incorporated is pleased to submit the enclosed Discharge Plan Renewal Application on behalf of Giant Industries Arizona, Inc.

Once the discharge permit renewal application is deemed complete by the NMOCD, Giant will provide notice to the general public by publishing in English and Spanish a display advertisement 2" x 3" in area in the local newspaper, The Farmington Daily Times. The advertisement will be posted within 30 days of receiving approval of the renewal application from the NMOCD. Within 15 days of posting the public notice, Giant shall submit proof of the notice to the OCD in the form of a copy of the advertisement.

The notice shall include:

- 1. Name and address of the discharger
- 2. Location of the discharge
- 3. Brief description of the activities that produce the discharge

4. Brief description of the expected quality and volume of the discharge

5. Depth to and total dissolved solids concentration of the groundwater most likely affected by the discharge

6. Address and phone number of project manager

7. A statement that the OCD will accept comments and statements of interest regarding the application and will create facility-specific mailing lists for persons who wish to receive future notices."

Please call Mr. Mr. Bill Robertson of Giant at (505) 632-4001 or myself at (505) 334-2791 with any questions regarding this submittal.

Respectfully Submitted, Lodestar Services, Inc.

Martin Nee

Cc. Mr. Bill Robertson, Giant Mr. David Kirby, Giant Mr. Dave Richards, Giant

RECEIVED

JAN 18 2007

Oil Conservation Division Environmental Bureau

Discharge Plan GW 040 Former Giant Bloomfield Refinery

January 6, 2007

Prepared by

Lodestar Services, Incorporated PO Box 3861 Farmington, NM 87499 Office (505) 334-2791

Discharge Plan GW 040 Former Giant Bloomfield Refinery

January 6, 2007

Prepared by

Lodestar Services, Incorporated PO Box 3861 Farmington, NM 87499 Office (505) 334-2791

THE

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 RESPONSIBLE PARTIES
3.0 LOCATION OF DISCHARGE AND FACILITY
4.0 LANDOWNER
5.0 FACILITY DESCRIPTION
6.0 MATERIALS STORED OR USED AT THE FACILITY
7.0 SOURCES AND QUANTITIES OF EFFLUENT GENERATED AT THE FACILITY
8.0 DESCRIPTION OF LIQUID WASTE STORAGE AND DISPOSAL PROCEDURE
9.0 PROPOSED MODIFICATIONS
10.0 INSPECTION, MAINTENANCE AND REPORTING 10
11.0 SPILL AND LEAK PREVENTION AND REPORTING PROCEDURES
12.0 SITE CHARACTERISTICS
12.1 FLOODING POTENTIAL
13.0 OTHER COMPLIANCE INFORMATION 14
14.0 REFERENCES
LIST OF PLATES
FIGURES
APPENDIX A 18
APPENDIX B
APPENDIX C

1.0 Introduction

Giant Industries Arizona, Inc. proposes discharge of water derived from recovery wells at the inactive former Giant Bloomfield Refinery in San Juan County, New Mexico. The recovery wells were installed as part of a remedial action plan at the site. An annual discharge of approximately 5,000,000 gallons is expected, and the treated water will be discharged into infiltration trenches located within the site.

2.0 Responsible Parties

The operator and legally responsible party is Giant Industries:

Giant Industries Arizona, Inc. 23722 North Scottsdale Road Post Office Box 12999 Scottsdale, Arizona 85267 Phone: 602-585-8888

Correspondence regarding this discharge plan should be directed to the local representative, Mr. Bill Richardson:

Bill Robertson Remediation Project Manager Giant Refining Company 111 County Road 4990 Bloomfield, New Mexico 87413 Phone: 505-632-4077

3.0 Location of Discharge and Facility

The refinery is located in the NW ¹/₄ of Section 27 and the SW ¹/₄ of Section 22, Township 29 N, Range 12W in San Juan County, New Mexico. It is on the corner of Highway 64 and County Road 5569, approximately 5 miles west of the town of Bloomfield, New Mexico. Plate 1 is attached and shows an aerial photograph of the refinery with significant landmarks noted. Figure 1 is a topographic map showing the boundaries of the former refinery, as well as the location of significant water bodies.

4.0 Landowner

The landowner is Giant Industries:

Giant Industries Arizona, Inc. 23722 North Scottsdale Road Post Office Box 12999 Scottsdale, Arizona 85267 Phone: 602-585-8888

5.0 Facility Description

The facility consists of the former Giant Bloomfield Refinery and associated remedial structures both within and south of the refinery boundary. The refinery operated from 1974 to 1982 and is presently inactive.

A remedial system was installed in stages beginning in 1988 and has gradually been simplified over time. The remediation was designed to treat groundwater affected by various releases during operation of the former refinery and periodic spills at the truck unloading facility. It consists of a series of groundwater recovery wells, water treatment facilities, treated water infiltration trenches and groundwater monitoring wells (Figure 2). These facilities are located both north and south of Highway 64. The system processed approximately 4,655,006 gallons of water in 2005.

Impacted groundwater is pumped from the aquifer through a series of recovery wells located strategically within the affected area. Recovery wells are utilized to recover impacted groundwater from the aquifer and to create a hydraulic barrier to prevent migration of affected water beyond the well. A hydraulic barrier is formed as water is pumped through the recovery well, thereby depressing the water table. Figure 3 illustrates the concept. Sufficient recovery wells are placed throughout the site so that the radii of influence from adjacent wells overlap, and a barrier is formed across the plume to prevent migration of affected water.

Impacted groundwater is collected in Storage Tank 102 and subsequently treated. The method of treatment used at the Giant Bloomfield Refinery is carbon adsorption, where recovered water is pumped into a carbon filtration tank. Inside, volatile and non-volatile organic compounds are adsorbed into a carbon matrix lining the tank.

The treated water is discharged into the aquifer through an infiltration trench. The infiltration trench consists of a subsurface distribution system placed within gravel packs. Water infiltrates the surrounding strata and eventually makes its way back to the aquifer. The return of recovered water to the aquifer serves as a recharge mechanism. Figure 4 is a simplified diagram representation of groundwater recovery, treatment and disposal.

6.0 Materials Stored or Used at the Facility

Affected groundwater obtained through recovery wells is collected and temporarily stored in Tank 102. Tank 102 has a capacity of 500 barrels or 21,000 gallons. It is located within the fenced portion of the site and is bermed (Figure 2). The tank stores water before it is pumped to the carbon filtration unit for treatment. System influent is sampled and analyzed on a quarterly basis throughout the year. Results from 2005 are shown below and represent general characteristics of the recovered water stored in Tank 102.

11

IT IN

Table 1. 2005 Analytical Data for System Influent

Month Sampled	Units	January	April	July	October
General Chemistry	0				
Lab pH		6.6	6.9	6.7	6.9
Lab Conductivity @ 25C	umho	3000	2700	2760	3490
Total Dissolved Solids	mg/l	2300	2700	2260	2470
(Calc)	Ū.				
Total Alkalinity as CaCO3	mg/l	390	350	365	241
Total Hardness as CaCO3	mg/l	920	880	778	1200
Bicarbonate as HCO3	mg/l	390	350	365	241
Carbonate as CO3	mg/l	1.0	1.0	1.0	1.0
Hydroxide	mg/l	nd	nd	nd	1.0
Chloride	mg/l	84	81	188	78.7
Sulfate	mg/l	1300	1200	1270	1340
Calcium	mg/l	320	310	270	341
Magnesium	тgЛ	29	28	25.4	28.7
Potassium	mg/l	3.8	3.7	6.72	8.9
Sodium	mg/l	420	420	359	420
HALOCARBONS	_				
Bromodichloromethane	μg/L	nd	nd	nd	nd
Bromoform	µg/L	nd	nd	nd	nd
Bromomethane	μg/L	nd	nd	nd	nd
Carbon Tetrachloride	μg/L	nd	nd	nd	nd
Chloroethane	µg/L	nd	nd	nd	nd
Chloroform	μg/L	nd	nd	nd	nd
Chloromethane	μg/L	nd	nd	nd	nd
Dibromochloromethane	μg/L	nd	nd	nd	nd
1,2-Dibromomethane	μg/L	nd	nd	nd	nd
(EDB)					
1,2-Dichlorobenzene	μg/L	nd	nd	nd	nd
1,3-Dichlorobenzene	μg/L	nd	nd	nd	nd
1,4-Dichlorobenzene	μg/L	nd	nd	nd	nd
1,1-Dichloroethane	µg/L	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	μg/L	nd	nd	nd	nd
1,1-Dichoroethene	μg/L	nd	nd	nd	nd
trans-1,2-Dichloroethene	μg/L	nd	nd	nd	nd
1,2-Dichloropropane	µg/L	nd	nd	nd	nd
cis-1,-Dichloropropene	µg/L	nd	nd	nd	nd
trans-1,2-Dichloropropene	μg/L	nd	nd	nd	nd
Methylene Chloride	μg/L	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	μg/L	nd	nd	nd	nd
Tetrachloroethane	μg/L	nd	nd	nd	nd
1,1,1-Trichloroethane	µg/L	nd	nd	nd	nd
1,1,2-Trichloroethane	μg/L	nd	nd	nd	nd
Trichloroethene	µg/L	nd	nd	nd	nd
Trichlorofluoromethane	μg/L	nd	nd	nd	nd
Vinyl Chloride	μg/L	nd	nd	nd	nd
AROMATICS					
Benzene	µg/L	nd	nd	nd	nd
					nd
Chlorobenzene	μg/L ug/I	nd	nd nd	nd nd	nd nd
1,2-Dichlorobenzene	μg/L	nd	nd	nd	nd

1,3-Dichlorobenzene	μg/L	nd	nd	nd	nd
1,4-Dichlorobenzene	μg/L	nd	nd	nd	nd
Ethylbenzene	μg/L	nd	nd	nd	nd
Methyl-t-Butyl Ether	μg/L	nd	nd	nd	nd
Toluene	μg/L	nd	nd	nd	nd
Total Xylenes	μg/L	nd	nd	nd	nd
NOTE: nd: not detected, mg	g/l: milli	grams p	er liter, μg	L: micr	ograms per
liter					

All effluent is treated by activated carbon filtration prior to discharge. This process removes contaminants from the groundwater by forcing it through a tank containing activated carbon treated to attract the contaminants. Figure 5 details the carbon adsorption tank and associated piping used at the refinery. Several pallets of activated carbon media are stored in the building housing the water treatment system.

7.0 Sources and Quantities of Effluent Generated at the Facility

The facility effluent consists of treated water. Effluent is derived from groundwater, which is pumped from a series of recovery wells at each site. Up to 420,000 gallons of water may be treated and discharged per month. Table 2 shows the results of analytical work conducted in 2005 and is representative of effluent quality. General water chemistry, EPA 601, EPA 602 and PAH analysis are all shown. System effluent is sampled on a quarterly basis for general chemistry, halocarbons and aromatics. Semi-annual samples are analyzed for PAHs, and metals are analyzed annually.

Table 2. 2005 Analytical Data for System E	Effluent
--	----------

Month Sampled	Units	January	April	July	October
General Chemistry	Units				
Lab pH		6.7	7.0	6.8	7.0
Lab Conductivity @ 25C	umho	3000	2800	2900	3240
Total Dissolved Solids	mg/l	2500	2500	2240	2400
(Calc)					
Total Alkalinity as CaCO3	mg/l	330	360	338	273
Total Hardness as CaCO3	mg/l	970	880	868	1050
Bicarbonate as HCO3	mg/l	330	360	336	273
Carbonate as CO3	mg/l	1.0	nd	2.12	1.0
Hydroxide	mg/l	nc	nd	nd	nd
Chloride	mg/l	81	81	108	80.1
Sulfate	mg/l	1300	1200	709	1520
Calcium	mg/l	340	310	301	318
Magnesium	mg/l	29	28	28.4	27.4
Potassium	mg/l	3.8	3.6	7.6	6.34
Sodium	mg/l	410	420	405	410
HALOCARBONS					
Bromodichloromethane	μg/L	nd	nd	nd	nd

Month Sampled	Units	January	April	July	October
Bromoform	μg/L	nd	nd	nd	nd
Bromomethane	μg/L	nd	nd	nd	nd
Carbon Tetrachloride	μg/L	nd	nd	nd	nd
Chloroethane	μg/L	nd	nd	nd	nd
Chloroform	μg/L	nd	nd	nd	nd
Chloromethane	μg/L	nd	nd	nd	nd
Dibromochloromethane	μg/L μg/L	nd	nd	nd	nd
1,2-Dibromomethane	μg/L	nd	nd	nd	nd
(EDB)	μ6/12	na	nu	nu	nu
1,2-Dichlorobenzene	μg/L	nd	nd	nd	nd
1,3-Dichlorobenzene	µg/L	nd	nd	nd	nd
1,4-Dichlorobenzene	μg/L	nd	nd	nd	nd
1,1-Dichloroethane	μg/L	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	μg/L	nd	nd	nd	nd
1,1-Dichoroethene	μg/L	nd	nd	nd	nd
trans-1,2-Dichloroethene	μg/L	nd	nd	nd	nd
1,2-Dichloropropane	μg/L	nd	nd	nd	nd
cis-1,-Dichloropropene	μg/L	nd	nd	nd	nd
trans-1,2-Dichloropropene	μg/L	nd	nd	nd	nd
Methylene Chloride	µg/L	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	μg/L	nd	nd	nd	nd
Tetrachloroethane	μg/L	nd	nd	nd	nd
1,1,1-Trichloroethane	μg/L	nd	nd	nd	nd
1,1,2-Trichloroethane	μg/L	nd	nd	nd	nd
Trichloroethene	μg/L	nd	nd	nd	nd
Trichlorofluoromethane	μg/L	nd	nd	nd	nd
Vinyl Chloride	µg/L	nd	nd	nd	nd
AROMATICS					
Benzene	μg/L	nd	nd	nd	nd
Chlorobenzene	μg/L	nd	nd	nd	nd
1,2-Dichlorobenzene	μg/L	nd	nd	nd	nd
1,3-Dichlorobenzene	μg/L	nd	nd	nd	nd
1,4-Dichlorobenzene	μg/L	nd	nd	nd	nd
Ethylbenzene	μg/L	nd	nd	nd	nd
Methyl-t-Butyl Ether	µg/L	nd	nd	nd	nd
Toluene	µg/L	nd	nd	nd	nd
Total Xylenes	µg/L	nd	nd	nd	nd
РАН					
1-Methylnapthalene	μg/L	nd			nd
2-Methylnapthalene	μg/L	nd			nd
Benzo(a)pyrene	μg/L	nd			nd
Napthalene	µg/L	nd			nd
METALS					
Antimony	mg/l	nd			
Arsenic	mg/l	nd			
Beryllium	mg/l	nd			
Cadmium	mg/l	nd			
Chromium	mg/l	nd			
Copper	mg/l	0.022			
Lead	mg/l	nd			

" T "T

ТĽ

10.00

Month Sampled		January	April	July	October
_	Units		-		
Nickel	mg/l	0.024			
Selenium	mg/l	nd			
Silver	mg/l	nd			
Thallium	mg/l	nd			
Zinc	mg/l	nd			
Mercury	mg/l	nd			
NOTE: nd: not detected, n liter	ng/l: mil	ligrams per	liter, µg	/L: mic	rograms per

Grab samples of effluent water are collected through the sample valve shown in Figure 5. Sample water is collected by filling containers supplied by the laboratory. The precleaned and pre-preserved containers vials are filled and capped with no or minimal air inside to prevent degradation of the sample. Samples are labeled with the date and time of collection, well designation, project name, collector's name and parameters to be analyzed. They are immediately sealed and packed on ice. The samples are shipped to Pinnacle Laboratories in Albuquerque, NM in a sealed cooler via FedEx before designated holding times expire. Proper chain-of-custody (COC) procedures are followed with logs documenting the date and time sampled, sample number, type of sample, sampler's name, preservative used, analyses required and sampler's signatures.

As shown in Table 2, toxic pollutants, as defined by WQCC standards, are absent from the effluent water. Results for most analytes are not detected. When constituents are present, they show up only in trace amounts.

8.0 Description of Liquid Waste Storage and Disposal Procedure

Tank 102 acts an intermediate storage tank for the water treatment system. The tank stores water before it is pumped to the carbon filtration unit for treatment. It has a capacity of 500 barrels or 21,000 gallons. Berms are present around the tank and will contain a volume 1.5 times the volume of the tank itself. Piping and instrumentation associated with Tank 102 is illustrated in Figure 6. Water is pumped from Tank 102 to the carbon filtration unit by Pump #1, P1. Pump operation is based on the level of water in Tank 102. Level switches LS-1 and LS-2 are managed by the Control Panel, located in the old Dispatch Office, to determine the water level and consequently status of pumps. Level safety switches LSH-1 and LSL-1 indicate abnormally high or low water level conditions in Tank 102 and initiate control panel alarm and shutdown functions.

Most water piping was installed in 1990. However, construction of County Road 5569 to the west of the site demanded that all piping under the old road be replaced in 2006. All piping is constructed of PVC or other hydrocarbon and corrosion resistant plastic. The majority of the piping is underground, but water pipes that connect the on-site and offsite systems cross through a culvert under US Highway 64. The highway parallels the southern boundary of the refinery property (Figure 2). The exposed water piping is insulated and further protected from freezing by heat tracing. Hydrostatic testing of all

piping will be conducted on an annual basis in March of each year. All lines will be tested to a pressure ten percent above normal operating pressure for 30 minutes.

After water is treated by carbon adsorption, effluent water is discharged into an infiltration trench within the refinery (Figure 2). The infiltration trench consists of a subsurface distribution system placed within gravel packs. Figure 7 shows details and specifications of typical trench construction and layout.

Lab results detailing the quality of effluent water discharged through the infiltration gallery is shown in Table 2. System effluent is sampled on a quarterly basis for general chemistry, halocarbons and aromatics. Semi-annual samples are analyzed for PAHs, and metals are analyzed annually. Effluent water quality is generally good and analytes are consistently not detected in collected samples. Treated effluent volumes and flow rates are monitored weekly with a water meter that has been installed near the Carbon adsorption tank (Figure 5). These values are recorded and compared with previous readings to ensure normal operation.

Numerous monitoring wells are located within and south of the refinery (Figure 2) to detect leakage or failure of the remedial system. Monitoring wells within the refinery are identified by the acronym GBR (Giant Bloomfield Refinery) followed by a numerical designation. Monitoring wells located south of the refinery are identified by the acronym SHS (Suburban Heights Subdivision) followed by a number. Monitoring wells are sampled annually according to the sampling matrix attached as Appendix A.

Each well is unique in construction and geology. Drill logs and completion diagrams for all wells have been submitted to the New Mexico Oil Conservation Division in previously submitted reports.

9.0 Proposed Modifications

The treatment system has been simplified since the previous discharge permit was issued. Other steps are being taken to further reduce the facilities in use on site. All tanks, with the exception of Tank 102, have been abandoned in place and are no longer in use at the facility. This includes the long term storage tanks, Tank 22, Tank 21, Tank 101 and Tank 106. The northern most infiltration gallery has been abandoned, as has the air stripper. Gravity separation no longer occurs in Tank 102 since product is not recovered from the wells.

Giant Industries has requested approval from the OCD to plug and abandon nine groundwater monitoring wells and one groundwater recover well located down-gradient of the refinery. Giant understands that the OCD requires the wells to remain until the project is complete. Giant has removed these wells from the sampling matrix and has discontinued pumping well SHS-14 based on the number of clean reporting quarters as noted below. The proposed sampling matrix in Appendix A reflects these changes.

Type of Well Identification Years of Monitoring Beneath Standards

Type of Well	Identification	Years of Monitoring Beneath Standards
Monitoring	SHS-3	7
Monitoring	SHS-4	8
Monitoring	SHS-6	8
Monitoring	SHS-10	8
Monitoring	SHS-12	8
Monitoring	SHS-13	8
Recovery	SHS-14	3
Monitoring	SHS-15	8
Monitoring	SHS-16	8
Monitoring	SHS-17	7

10.0 Inspection, Maintenance and Reporting

Inspection, maintenance and reporting are an integral part of the remediation project. Inspection provides information critical to the safe and efficient operation of the system. Maintenance is key in the prevention of undesirable events and excessive downtime. Spills of untreated effluent will be reported to the OCD office when the volume exceeds five barrels.

Regular inspections are performed to assure safe and efficient operation. The system is monitored on a regular basis during the work week. Visual observations are made, leaks are reported, as are equipment malfunctions and the status of the control system. Observations are recorded in a bound field logbook with the date, time and person recording the information noted.

An inspection is made weekly in the control building at Tank 102, the southern infiltration gallery and each recovery well. All equipment is inspected for leaks and malfunctions. The operator is familiar with the location of underground lines and notes any surface indication of underground leaks. Leaks of any size are noted and repaired. Readings from all water meters are observed and recorded in the logbook, and comparisons to previous readings are made. Water levels are recorded on a quarterly basis. This includes both monitoring and recovery wells. An electronic water/oil detection tape is used to determine levels. The data are recorded in a bound logbook.

Maintenance of the system includes replacement of filters in well houses, rotating equipment lubrication, air compressor oil changes, adding nutrients as necessary, listening for unusual pump and motor noise, inspecting the carbon pre-filter and repairing all equipment as required.

Appendix A contains sampling frequency and analytical requirements for applicable wells. Analytical results help determine the effectiveness and progress of remedial efforts. Quarterly potentiometric surface maps are prepared from water level data for inclusion in the annual report. Figure 8 is a potentiometric map for 2005 water levels. The contours on the map represent the elevation of surface of the groundwater. The map is useful in determining direction of groundwater flow and effectiveness of hydraulic control achieved by the recovery well system. Sampling results are reported to the

NMOCD in the annual report submitted each year. A copy of the 2005 annual report is attached in Appendix C.

11.0 Spill and Leak Prevention and Reporting Procedures

Leaks and spills are not likely; however, the potential does exist for these events. Tanks and piping are the most likely locations. Historical monitoring of system influent and effluent indicates that neither recovered nor discharged water contain any toxic pollutants (Tables 1 and 2). A spill at the former refinery would not be a serious threat. Regardless, safeguards are in place to prevent such an occurrence including choice of construction materials, safety and shutdown devices, secondary containment, inspection and security.

All piping is constructed of PVC or other hydrocarbon and corrosion resistant plastic. Material choices for valves and controls include plastic, stainless steel, bronze and cast iron. All are suitable for water and hydrocarbon service. Storage Tank 102 is constructed of steel. Tank 102 has viable earthen secondary containment berms in place. The bermed area has a minimum liquid capacity of 1.5 times the total capacity of the tank contained within it. Berms are monitored and maintained to ensure effectiveness.

The Control Panel, located in the Dispatch Office, serves to monitor and control the operation of the treatment system, while providing alarm and shutdown functions to safeguard against spills and other undesirable events. Safety, alarm and shutdown functions are also initiated by the Control Panel. In the event of a power failure, the system will shut down. It will return to normal operations once power is restored. All storage tanks are equipped with high and low level liquid sensors to detect breaches or overfills.

Regular inspections are performed during the work week. These inspections include looking for visual indications of leaks, checking tank levels, recording and comparing meter readings and checking the condition of pump seals and motors. Unusual conditions are noted in the logbook and reported to the Project Manager.

The facility is entirely fenced with chain link or barbed wire. Gates are locked and access is limited to facility personnel and supervised visitors and contractors.

Should a problem occur, pumps or vacuum trucks are to be used to remove water contained within constructed berms. Leaks outside of tank containment berms should be contained or redirected so that they can be picked up by pumps or vacuum trucks and placed back in storage. In the event of a broken pipe, the leaking section should be isolated by closing necessary valves and shutting down pumps. A red emergency shutdown button is located on the face of the control panel. Depressing the button shuts down all pumps and closes all air-operated valves. It should be used in case of emergency. Any affected soil will be sampled, and if results indicate NMOCD standards have been exceeded, the impacted soil will be excavated and removed from the site.

In the event of an unplanned release of water or hydrocarbon at the facility, the Project Manager should be notified and act as the response coordinator. If the Project Manager is not available, the next person noted in the following list of alternates should be notified.

	Name	Office Phone	Cellular
			Phone
Project Manager	Bill Robertson	632-4077	320-3415
Environmental Technician	Jeany Overman	632-4018	330-6706
Transportation Safety Manager	Bill Robertson	632-4077	320-3415

If it is determined that the release is 5 barrels or greater, the local NMOCD field office will be notified within 24 hours of the spill and a written report submitted.

12.0 Site Characteristics

The refinery is located within a mile of major water features, including the San Juan River, the Hammond Irrigation Ditch and two dry arroyos. These features are marked on the attached topographic map. There are sixteen water wells located within one-quarter mile of the former refinery. All water wells are domestic and are listed in Appendix B. The use of all domestic water wells downgradient of the Bureau of Land Management's (BLM) Lee Acres Superfund Site (Lee Acres) has been discontinued and a public water supply provided for all residents. This includes all water wells downgradient of the refinery. The BLM has numerous groundwater monitoring wells surrounding the refinery.

The refinery is located on weathered outcrops of Nacimiento Formation, which is comprised of shales, sandstones and siltstones of Cretaceous-Tertiary age. Immediately to the west of the refinery and on Giant's property is a large unnamed arroyo, which is underlain by 30 to 60 feet of Quaternary alluvial sediments (Plate 1). Older Quaternary terrace deposits of cobbles and boulders are observed on the interfluvial ridges adjacent to the arroyo. These terrace deposits may have been utilized as fill on the refinery site. The San Juan River Valley is located south of the site and contains up to several hundred feet of alluvial fill.

The uppermost zone of groundwater in the refinery area is unconfined to partially confined water table unit, which is hosted by the weathered, locally porous sandstones and shales of the Nacimiento Formation and arroyo alluvium. These units merge hydrologically with the San Juan River alluvium to the south. Figure 9 is a generalized east-west cross section through the refinery site showing the relationship of the arroyo alluvium to bedrock. Major hydrogeologic features of the site are:

- An interconnected water table aquifer hosted by both valley and arroyo fill and the upper parts of the Nacimiento Formation;
- Groundwater at a depth of 30 to 70 feet beneath the land surface;

- An upper water table surface generally conforming to topography, with groundwater flow from north or northeast to south (towards the San Juan River) through the refinery area;
- Minor, local zones of perched groundwater lying 5 to 10 feet above the water table.

Water levels were measured in all wells on the refinery property during 2005. A record of these measurements is shown in the attached annual report (Appendix C). A groundwater contour map was prepared based on the static water levels of all the wells at the refinery (Figure 8). This map is representative of static conditions of the aquifer because pumping was not being done at the time. Total dissolved solids (TDS) concentrations of the area groundwater range from 1700 mg/L to 3100 mg/L. TDS concentrations of samples from groundwater monitoring wells are shown on Figure 8. Samples were collected according to the sampling matrix shown in Appendix A.

12.1 Flooding Potential

The greatest threat to flooding of the refinery site are the San Juan River, which is located less than one mile south of the site, and the unnamed arroyo located within the site itself. No other bodies of water or groundwater discharge sites are located within one mile of the perimeter of the facility.

History suggests flooding potential of the San Juan River is small. From 1904 until 1976, only 23 flood events (on individual streams, not concurrent on all streams) have been recorded. According to a study conducted by the New Mexico Floodplain Managers Association (2003), previous floods of the San Juan River resulted from general rainstorms, snowmelt augmented by rain, and from cloudburst storms. Rain floods usually occur during the months of September and October. This type of flood results from prolonged heavy rainfall over tributary areas and is characterized by high peak flows of moderate duration. Major floods (recurrence interval of 100 or more years) result from excessive snowmelt runoff generated in the watershed upstream from Bloomfield. Flood flows generated by snowmelt generally occur during the period from May through July. Snowmelt flooding is characterized by moderate peak flows, large volume and long duration, and marked diurnal fluctuation in flow. The refinery is elevated above the floodplain of the San Juan River, decreasing the chance of a river flood, such as the ones described above, from reaching the site.

The flooding potential of the arroyo is predicted to be low as well. Similar arroyos have been studied in detail near Farmington and are described as ephemeral in character, flowing only during periods of heavy rainfall (New Mexico Floodplain Managers Association, 2003). Furthermore, the arroyo's influence on the refinery site has been decreased due to the construction of a new highway located between the arroyo and the refinery.

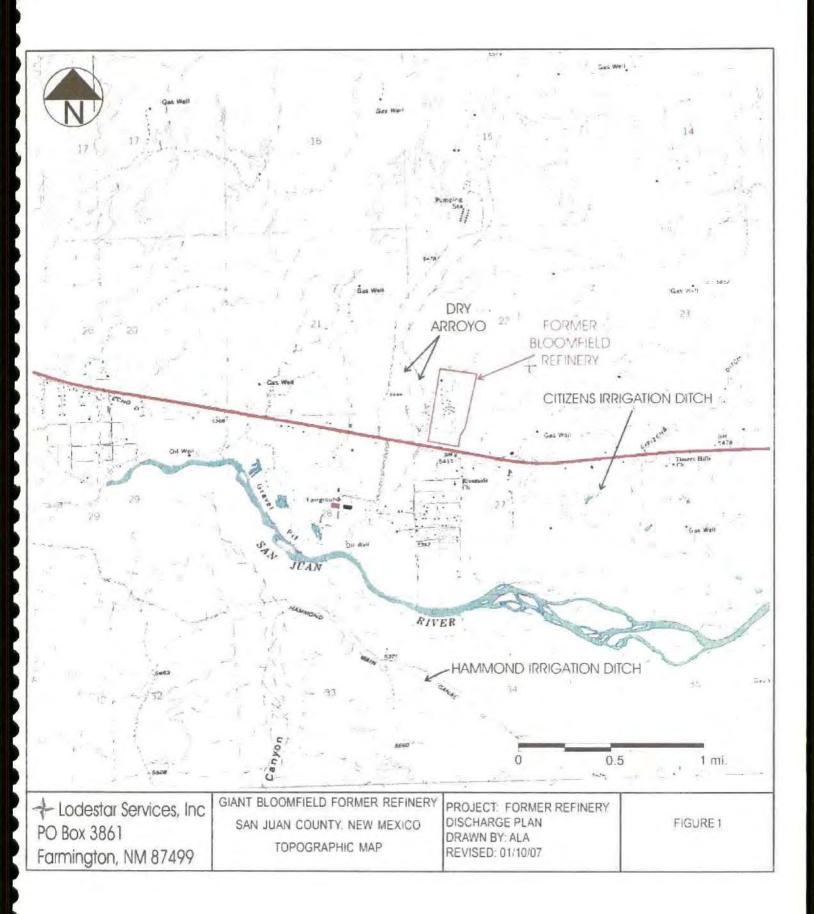
13.0 Other Compliance Information

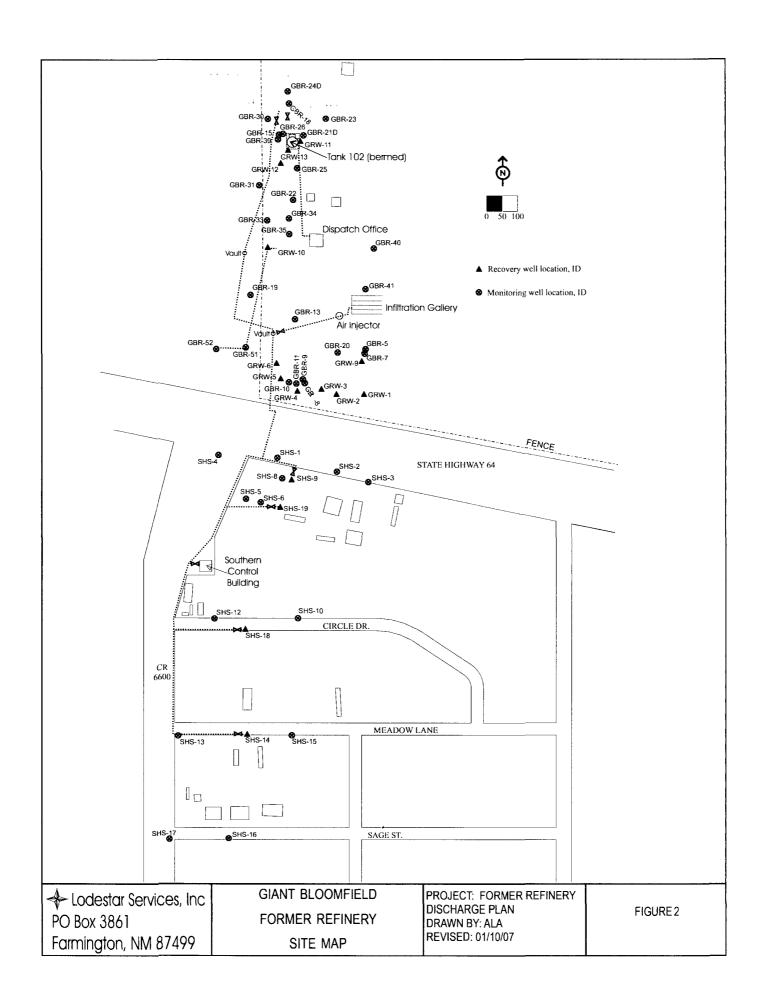
The NMOCD will be notified of any release in accordance with the requirements of NMOCD Rule 116 and WQCC Section 1203. Depending on the size of the release, verbal and written notification will be submitted. A major release is defined as a release in excess of 25 barrels or any amount of release that reaches a water body or causes harm to public health or the environment. A major release requires immediate verbal notice within 24 hours of the spill. Written notice shall be submitted within 15 days of the spill to confirm verbal notification and to detail planned corrective actions. A minor release, defined as less than 5 barrels, shall be reported in a written notice to the NMOCD within 15 days of the spill. All written notices shall include appropriate forms and detailed remediation plans.

The OCD will be notified when operations at the facility are discontinued for a period in excess of six months. Prior to closure of the facility, a closure plan will be submitted to the NMOCD for approval by the Director in accordance with WQCC Section 3107.A.11. Permanent closure will include removing all structures and grading the site to match natural contours. All materials will be salvaged or disposed of in accordance with regulations. Plans for any maintenance and monitoring will be described in the formal closure plan.

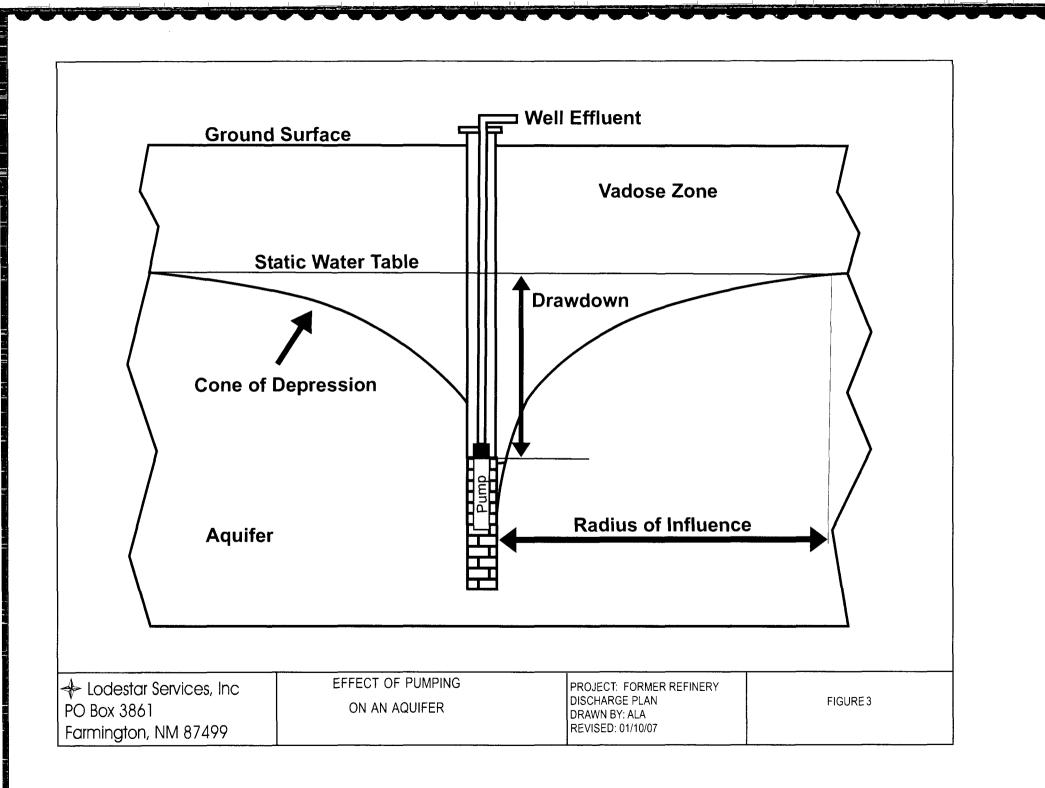
14.0 References

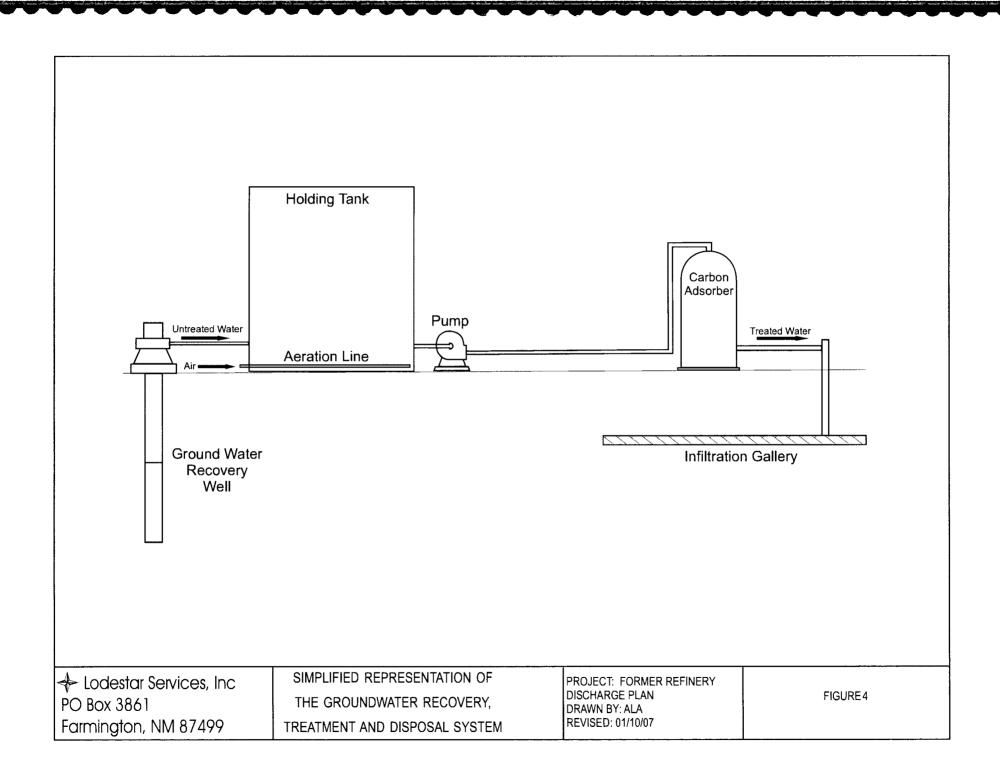
New Mexico Floodplain Managers Association, 2003, A History of Floods and Flood Problems in New Mexico, LA Bond Associates, High Rolls, New Mexico, 144 p.

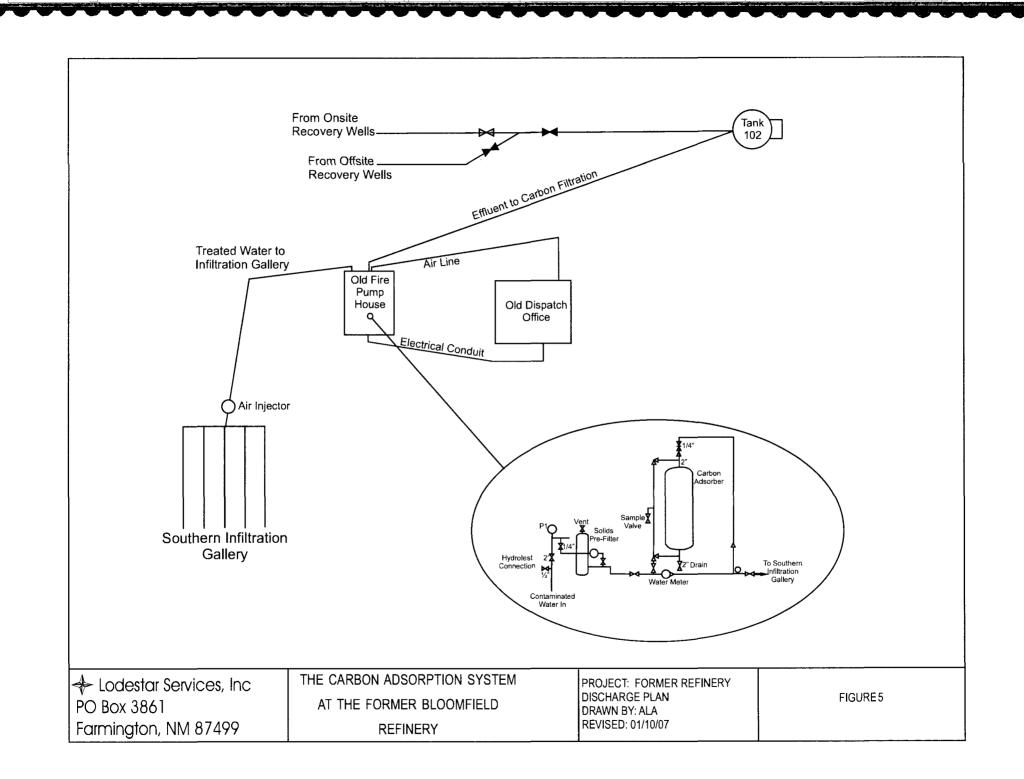

New Mexico Office of the State Engineer WATERS Database (<u>http://www.ose.state.nm.us/waters_db_index.html</u>)

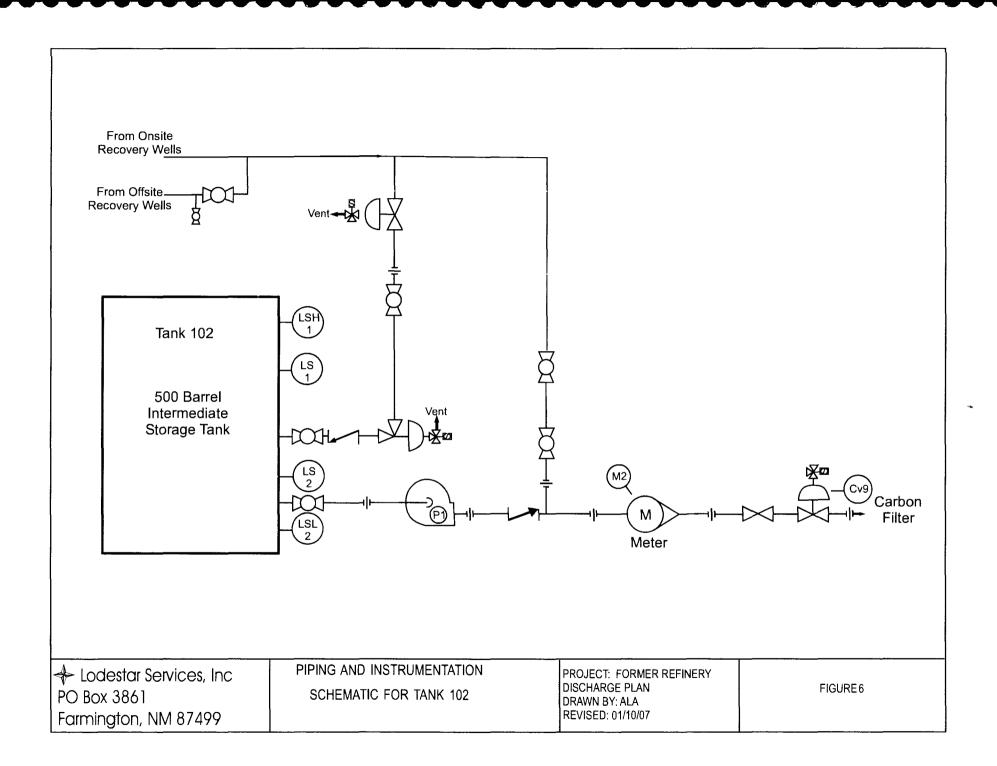

List of Plates

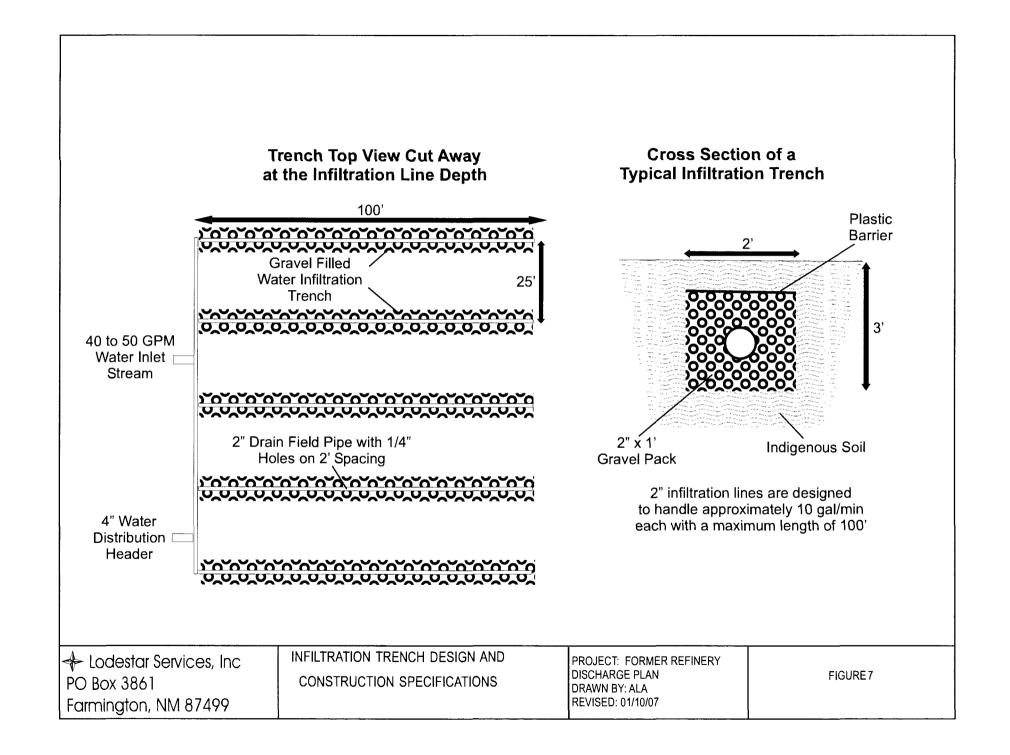
Statements and statements of the statement of the stateme

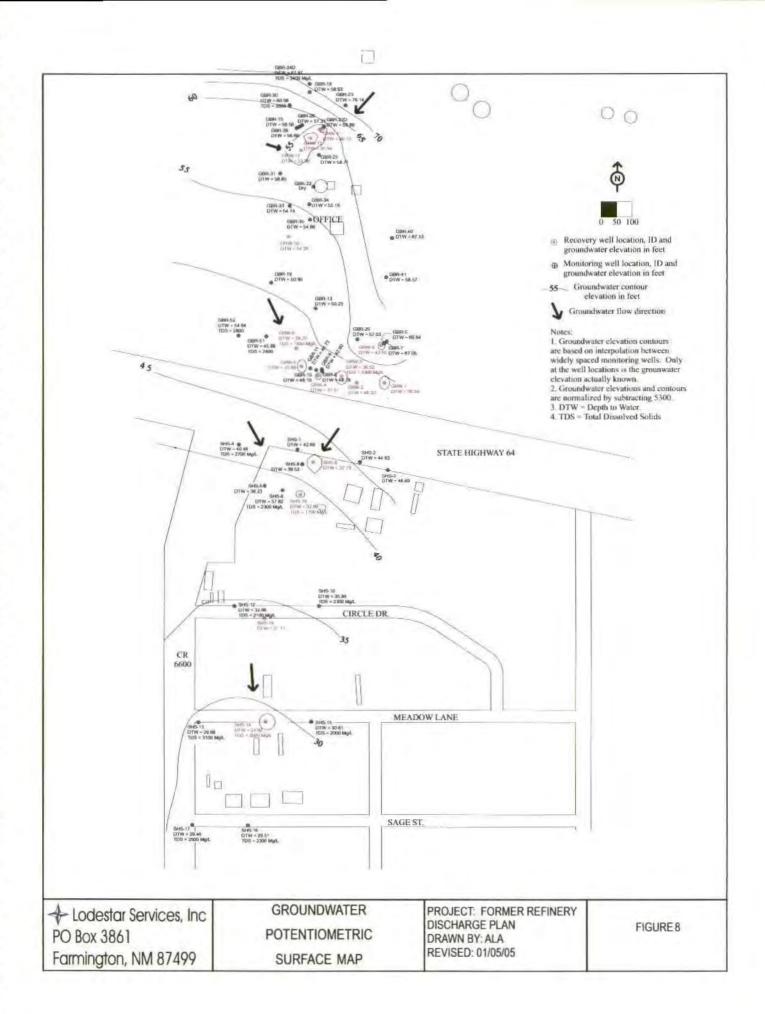

Plate 1: aerial photograph showing the location of the former Giant Bloomfield Refinery and major features adjacent to the site.


Figures






INTERNET REPORTS



Appendix A

Appendix A

Appendix A

11

FETA

11.1

11.1

GIANT INDUSTRIES, INC. BLOOMFIELD REFINERY

SAMPLE MATRIX Revised 10/10/05

		·····	SEMI-ANNUALLY	
LOCATION	MONTHLY	QUARTERLY		ANNUALLY
System Influent		601	601	601
		602	602	602
		GWC	GWC	GWC
System Effluent		601	601	601
		602	602	602
		GWC	GWC	GWC
				Metals
				PAH
GRW-3				601
				602
				GWC
				PAH
GRW-6				601
				602
				GWC
				PAH
GRW-13				
GBR-15				
GBR-17				601
				602
				GWC
				PAH
GBR-24D				601
				602
				GWC
				PAH
GBR-30				601
				602
				GWC
			4	PAH
GBR-31				601
				602
				GWC
				PAH
SHS-3				

		SEMI-ANNUALLY	······································
MONTHLY	QUARTERLY		ANNUALLY
			601
			602
			GWC
			601
			602
			GWC
· · · · · · · · · · · · · · · · · · ·	······································		601
			602
			GWC
	·· <u>=·····</u> ····· <u>·</u> ·····		601
			602
			GWC
			601
			602
			GWC
			Metals
			601
			602
			GWC
			Metals
			601
			602
			GWC
			Metals
			601
			602
			GWC
			Metals
	MONTHLY	MONTHLY QUARTERLY	MONTHLY QUARTERLY SEMI-ANNUALLY Image: Constraint of the second

NOTES: All wells will have water elevations determined on a quarterly basis.

3131

1:11

111111

Appendix B

Appendix B

DE GETTE

10 H

1

Appendix B

OWNER	COUNTY	WELL NO.	USE	Т	R	s	l=N	Q rters a W, 2= W, 4=	⁼NÉ,	START DATE	FINISH DATE	WELL DEPTH (FT)	WATER DEPTH (FT)
WINDELL D. WILLIAMS	San Juan	00991	Domestic	29N	12W	22	1	3					
RAYMOND M. STALLINGS	San Juan	00663	Domestic	29N	12W	28	4	2	2				
RUSS RATEY	San Juan	02047	Domestic	29N	12W	28	4	2		04/29/1986	04/30/1986	40	25
SAM ESPINOZA	San Juan	02061	Domestic	29N	12W	28	4	2		06/21/1986	06/23/1986	39	23
ROBERT W. JONES	San Juan	02345	Domestic	29N	12W	28	1	2	2				
ALBINO BARELA	San Juan	02864	Domestic	29N	12W	28	4	2	2				50
JOE BENCOMO	San Juan	00572	Domestic	29N	12W	27	3	1		03/01/1978	03/21/1978	35	28
RONALD REYNOLDS	San Juan	00726	Domestic	29N	12W	27	1	3	1	07/22/1978	07/24/1978	50	30
REYNALDO W. ORELLANO	San Juan	00904	Domestic	29N	12W	27	3	1	1	04/01/1979	04/05/1979	32	14
DORIS CLARK	San Juan	01690	Domestic	29N	12W	27	3	1	1	04/02/1983	04/04/1983	25	10
DOUGLAS A. HARMON	San Juan	01700	Domestic	29N	12W	27	3	1		05/07/1983	05/09/1983	87	48
CHARLIE W. PALMER	San Juan	01728	Domestic	29N	12W	27	3	1		05/25/1983	05/27/1983	25	11
THORNTON L. ASHBROOK	San Juan	02118	Domestic	29N	12W	27	1			06/17/1987	06/18/1987	29	6
BONNIE R. MONTOYA	San Juan	02654	Domestic	29N	12W	27	1	3	1	07/30/1995	08/12/1995	32	62
HAROLD STUBBLEFIELD	San Juan	02183	Domestic	29N	12W	27	4	1		05/05/1988	05/05/1988	40	26
MILTON C. BLACK	San Juan	02743	Domestic	29N	12W	27	4	1					
Source: New Mexico Office of the	e State Enginee	r WATER	S Database (h	nttp://ww	w.ose.s	tate.nr	n.us/	wate	rs_db_	index.html)			

Water Wells Located Within a Quarter Mile Radius of the Former Refinery.

Appendix C

Appendix C

I WALLS

11 1

10. A

11

ANNUAL DATA REPORT

GIANT BLOOMFIELD REFINERY

March 2006

Prepared By:

GIANT REFINING COMPANY 111 County Road 4990 Bloomfield, NM 87413 (505) 632-8006 FAX (505) 632-4021

TH

TABLE OF CONTENTS

1.0 INTRODUCTION AND METHODOLOGY	3
2.0 ANNUAL ANALYTICAL RESULTS	5
3.0 POTENTIOMETRIC SURFACE MAPS	
4.0 TOTAL VOLUME HISTORY	45
5.0 SAMPLE SCHEDULE	47
6.0 FIGURES	49

INTRODUCTION AND SUMMARY ANNUAL REPORT 2005

1.0 INTRODUCTION AND METHODOLOGY

Introduction

The following annual report describes work completed at Giant Industries, Inc.'s (Giant's) former refinery in Bloomfield, New Mexico since the previous annual report submitted in March 2005. The report contains data collected during that time including:

- Analytical data from ground water sampling;
- Ground water elevations;
- Tank volume data;
- Product levels from monitoring wells.

The refinery is located in the NW ¹/₄ of Section 27 and the SW ¹/₄ of Section 22, Township 29 N, Range 12W in San Juan County, New Mexico. It is approximately 5 miles west of the town of Bloomfield, New Mexico. The facility consists of the Giant Bloomfield Refinery and associated remedial equipment both within and south of the refinery boundary. The refinery operated from 1974 to 1982 and is presently inactive.

A remedial system was installed in stages beginning in 1988 and has gradually been simplified over time. The remediation was designed to treat ground water affected by various releases during operation of the former refinery and periodic spills at the truck unloading facility. It consists of a series of ground water monitoring wells, ground water recovery wells, water treatment facilities and treated water infiltration trenches (Figure 1). These facilities are located both north and south of Highway 64. The system processed approximately 4,655,006 gallons of water in 2005.

Methodology

Figure 2 is a simplified diagram representation of ground water recovery, treatment and disposal at the site. Recovery wells are utilized to recover free-floating product and impacted ground water from the aquifer and to create a hydraulic barrier to prevent migration of impacted water beyond the well. Impacted ground water is pumped from the aquifer through the recovery wells, which are located strategically throughout the site. The water is collected in Storage Tank 102 and subsequently treated by carbon adsorption. The water is discharged into the aquifer through an infiltration trench. Influent and effluent water quality is monitored quarterly to verify compliance with New Mexico Water Quality Control Commission (NMWQCC) standards. All water was

treated by the carbon filter unit exclusively. All treated water was discharged into the southern infiltration field. Additionally, oil absorbent socks are installed in all monitoring wells showing free-phase hydrocarbons. These socks are checked quarterly and replaced as necessary.

Monitoring consists of regular inspections and maintenance of facilities, as well as consistent ground water evaluations. Numerous monitor wells are located within and south of the refinery (Figure 1). Water samples are collected and analyzed on a regular basis. Lab results are presented in Section 2. In addition to sampling, water and product levels in each well are determined quarterly. Water levels are included in Section 3. Product levels are also shown. Section 5 contains sampling frequency and analytical requirements for applicable wells.

Modifications to the Treatment System

Giant Industries requested approval from the New Mexico Oil Conservation Division (NMOCD) to plug and abandon nine ground water monitoring wells and one ground water recovery well located down gradient of the refinery. The NMOCD did not approve of this proposal. Subsequently, Giant submitted a revised sample schedule in Discharge Plan GW040 in 2005 to remove the wells listed below from the sampling matrix and discontinue pumping well SHS-14 based on the number of clean reporting quarters, as noted.

Type of Well	Identification	Years of Monitoring Beneath Standards
Monitoring	SHS-3	7
Monitoring	SHS-4	8
Monitoring	SHS-6	8
Monitoring	SHS-10	8
Monitoring	SHS-12	8
Monitoring	SHS-13	8
Recovery	SHS-14	3
Monitoring	SHS-15	8
Monitoring	SHS-16	8
Monitoring	SHS-17	7

Surrounding Construction

Construction of county road 350 adjacent to the refinery was ongoing during 2005. Construction resulted in removal of the tops of well casings for monitoring wells GBR-19, GBR-31 and GBR-33. New casing elevations for GBR-19 and GBR-31 have been applied to the ground water elevation data. The amount of casing removed from GBR-33 was not recorded; therefore, ground water levels from the well were not used to calculate ground water elevation at the site.

2.0 ANNUAL ANALYTICAL RESULTS

Section 2 contains a summary of the 2005 analytical results. Raw data, as received from the laboratory, is available on request as a supplement to the annual report.

The following pages show the annual analytical data for the Giant Refining Remediation Project. The data are broken down into units as described below.

	Unit of <u>Measure</u>
Total dissolved solids (180)	mg/l
Total dissolved solids (calc)	mg/l
Total alkalinity as CaCO3	mg/l
Total hardness as CaCO3	mg/l
Bicarbonate as HCO3	mg/l
Carbonate as CO3	mg/l
Chloride	mg/l
Sulfate	mg/l
Calcium	mg/l
Magnesium	mg/l
Potassium	mg/l
Sodium	mg/l
Laboratory Conductivity	umhos/cm

The remainder of the data is measured in ug/l. Monitoring well GBR-31 inaccessible during January 2005 due to the construction of County Road 350 and was not sampled.

	TABI	LE 2.1					
CIAN		STRIES	INC				
			,	CT			
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY							
2005 ANNUAL AI							
	JAN	APR	JUL	OCT	DEC		
<u>SYSTEM EFFLUENT</u>							
Lab pH	6.7	7.0	6.8	7.0			
Lab Conductivity@25C	3000	2800	2900	3240			
Total Dissolved Solids (Calc)	2500	2500	2240	2400			
Total Alkalinity as CaCO3	330	360	338	273			
Total Hardness as CaCO3	970	880	868	1050			
Bicarbonate as HCO3	330	360	336	273			
Carbonate as CO3	1.0	nd	2.12	1.0			
Hydroxide	nc	nd	nd	nd			
Chloride	81	81	108	80.1			
Sulfate	1300	1200	709	1520			
Calcium	340	310	301	318			
Magnesium	29	28	28.4	27.4			
Potassium	3.8	3.6	7.6	6.34			
Sodium	410	420	405	410			
HALOCARBONS							
Bromodichloromethane	nd	nd	nd	nd			
Bromoform	nd	nd	nd	nd			
Bromomethane	nd	nd	nd	nd			
Carbon Tetrachloride	nd	nd	nd	nd			
Chloroethane	nd	nd	nd	nd			
Chloroform	nd	nd	nd	nd			
Chloromethane	nd	nd	nd	nd			
Dibromochloromethane	nd	nd	nd	nd			
1,2-Dibromomethane (EDB)	nd	nd	nd	nd			
1,2-Dichlorobenzene	nd	nd	nd	nd			
1,3-Dichlorobenzene	nd	nd	nd	nd			
I,4-Dichlorobenzene	nd	nd	nd	nd			
1,1-Dichloroethane	nd	nd	nd	nd			
1,2-Dichloroethane (EDC)	nd	nd	nd	nd			
I,1-Dichoroethene	nd	nd	nd	nd			
trans-1,2-Dichloroethene	nd	nd	nd	nd			
1,2-Dichloropropane	nd	nd	nd	nd			
cis-1,3-Dichloropropene	nd	nd	nd	nd			
trans-1,3-Dichloropropene	nd	nd	nd	nd			
Methylene Chloride	nd	nd	nd	nd	· · · · · · · · · · · · · · · · · · ·		
1,1,2,2-Tetrachloroethane	nd	nd	nd	nd			
Tetrachloroethane	nd	nd	nd	nd	···· ··· ··· ··· ··· ··· ··· ··· ··· ·		
1,1,1-Trichloroethane	nd	nd	nd	nd			
1,1,2-Trichloroethane	nd	nd	nd	nd			
Trichloroethene	nd	nd	nd	nd			
Trichlorofluoromethane	nd	nd	nd	nd			
Vinyl Chloride	nd	nd	nd	nd			

<u></u>	TAR	LE 2.1					
CIAN		STRIES	INC				
				Ст			
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY							
2005 ANNUAL A	······			······································	DEC		
	JAN	APR	JUL	OCT	DEC		
AROMATICS							
Benzene	nd	nd	nd	nd			
Chlorobenzene	nd	nd	nd	nd			
I,2-Dichlorobenzene	nd	nd	nd	nd			
1,3-Dichlorobenzene	nd	nd	nd	nd			
I,4-Dichlorobenzene	nd	nd	nd	nd	_		
Ethylbenzene	nd	nd	nd	nd			
Methyl-t-Butyl Ether	nd	nd	nd	nd			
Toluene	nd	nd	nd	nd			
Total Xylenes	nd	nd	nd	nd			
PAH							
I-Methylnapthalene	nd			nd			
2-Methylnapthalene	nd			nd			
Benzo(a)pyrene	nd			nd			
Napthalene	nd			nd			
METALS (
METALS (mg/l) Antimony	nd						
Antimony	nd nd				_		
Beryllium	nd						
Cadmium	nd						
Chromium	nd						
	0.022						
Copper Lead							
Nickel	0.024						
Selenium	0.024 nd						
Silver	nd						
Thallium	nd				· · · · · · · ·		
Zinc	nd						
	nd						
Mercury	nu						
SYSTEM INFLUENT							
Lab pH	6.6	6.9	6.7	6.9			
Lab Conductivity@25C	3000	2700	2760	3490			
Total Dissolved Solids (Calc)	2300	2700	2760	2470			
Total Alkalinity as CaCO3	390	350	365	241			
Total Hardness as CaCO3	920	880	778	1200			
Bicarbonate as HCO3	390	350	365	241			
Carbonate as CO3	1.0	1.0	1.0	1.0			
Hydroxide	nd	nd	nd	1.0			
Chloride	84	81	188	78.7			
Sulfate	1300	1200	1270	1340	<u> </u>		
Calcium	320	310	270	341			
Magnesium	29	28	25.4	28.7			
Potassium	3.8	3.7	6.72	8.9			

	TABL	F 2 1	·····					
GIAN			INC					
	GIANT INDUSTRIES, INC. ONSITE REMEDIATION PROJECT							
	2005 ANNUAL ANALYTICAL DATA SUMMARY							
2005 ANNUAL AN								
	JAN	APR	JUL	OCT	DEC			
Sodium	420	420	359	420	· · · ·			
HALOCARBONS								
Bromodichloromethane	nd	nd	nd	nd				
Bromoform	nd	nd	nd	nd				
Bromomethane	nd	nd	nd	nd				
Carbon Tetrachloride	nd	nd	nd	nd	······			
Chloroethane	nd	nd	nd	nd				
Chloroform	nd	nd	nd	nd				
Chloromethane	nd	nd	nd	nd				
Dibromochloromethane	nd	nd	nd	nd				
1,2-Dibromomethane (EDB)	nd	nd	nd	nd				
I,2-Dichlorobenzene	nd	nd	nd	nd				
1,3-Dichlorobenzene	nd	nd	nd	nd				
1,4-Dichlorobenzene	nd	nd	nd	nd				
I,1-Dichloroethane	nd	nd	nd	nd				
1,2-Dichloroethane (EDC)	nd	nd	nd	nd	· · · · · · ·			
1,1-Dichoroethene	nd	nd	nd	nd				
trans-1,2-Dichloroethene	nd	nd	nd	nd				
1,2-Dichloropropane	nd	nd	nd	nd				
cis-1,-Dichloropropene	nd	nd	nd	nd				
trans-1,2-Dichloropropene	nd	nd	nd	nd				
Methylene Chloride	nd	nd	nd	nd				
Tetrachloroethane	nd	nd	nd	nd				
	nd	nd	nd	nd				
<u>1,1,1-Trichloroethane</u> 1,1,2-Trichloroethane	nd	nd	nd	nd				
Trichloroethene	nd	nd	nd	nd				
Trichlorofluoromethane	nd	nd	nd	nd				
· · · · · · · · · · · · · · · · · · ·	nd	nd nd	nd	nd				
Vinyl Chloride	nd	na	nd	nd	·····			
ADOMATICS					, · · ·			
AROMATICS		nd	nd	nd				
Benzene Chlorobenzene	nd nd		nd	nd				
1,2-Dichlorobenzene		nd	nd	nd nd				
1,3-Dichlorobenzene	nd	nd	nd nd	nd				
I,4-Dichlorobenzene	nd nd	nd nd	nd	nd				
Ethylbenzene	nd		nd	nd				
Methyl-t-Butyl Ether		nd						
Toluene	nd nd	nd nd	nd	nd nd	·····			
Total Xylenes	nd	nd nd	nd	nd nd				
Total Aylenes		nu	nd					
GRW-3								
Lab pH	6.8							
Lab Conductivity@25C	4100		····					
Total Dissolved Solids (Calc)	3300			· · · · · · · · · · · · · · · · · · ·				

Concession of the local division of the loca

	TAB	LE 2.1						
GIAN '	T INDU	STRIES	. INC.					
			-	т				
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY								
2003 ANNUAL AI	JAN	APR			DEC			
Total Alkalinity as CaCO3	250	AFK	JUL		DEC			
Total Hardness as CaCO3	1100							
Bicarbonate as HCO3	250							
Carbonate as CO3								
	nd							
Hydroxide Chloride	nd							
	36							
Sulfate	2000							
Calcium	390							
Magnesium	20							
Potassium	6.8							
Sodium	620							
HALOCARBONS Bromodichloromethane	nd							
Bromodicnioromethane	nd							
	nd							
Bromomethane	nd							
Carbon Tetrachloride	nd							
Chloroethane	nd							
Chloroform	nd							
Chloromethane	nd							
Dibromochloromethane	nd							
1,2-Dibromomethane (EDB)	nd							
1,2-Dichlorobenzene	nd							
1,3-Dichlorobenzene	nd							
1,4-Dichlorobenzene	nd							
1,1-Dichloroethane	nd							
1,2-Dichloroethane (EDC)	nd							
1,1-Dichoroethene	nd							
trans-1,2-Dichloroethene	nd							
1,2-Dichloropropane	nd							
cis-1,-Dichloropropene	nd				<u> </u>			
trans-1,2-Dichloropropene	nd							
Methylene Chloride	nd							
1,1,2,2-Tetrachloroethane	nd							
Tetrachloroethane	nd							
1,1,1-Trichloroethane	nd							
1,1,2-Trichloroethane	nd							
Trichloroethene	nd							
Trichlorofluoromethane	nd							
Vinyl Chloride	nd							
					· · · · · · · · · · · · · · · · · · ·			
AROMATICS								
Benzene	nd							
Chlorobenzene	nd							
1,2-Dichlorobenzene	nd							
1,3-Dichlorobenzene	nd							

······································	TAB	LE 2.1						
GIAN'		STRIES	INC					
				T PC				
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY								
2005 ANNUAL A				· · · · · · · · · · · · · · · · · · ·	DEC			
	JAN	APR	JUL	ОСТ	DEC			
I,4-Dichlorobenzene	nd							
Ethylbenzene	nd							
Methyl-t-Butyl Ether	nd							
Toluene	nd							
Total Xylenes	nd							
РАН								
1-Methylnapthalene	nd							
2-Methylnapthalene	nd							
Benzo(a)pyrene	nd							
Napthalene	nd							
<u>GRW-6</u>	()							
Lab pH	6.8							
Lab Conductivity@25C	2400		· · · · · · · · · · · · · · · · · · ·					
Total Dissolved Solids (Calc)	1600							
Total Alkalinity as CaCO3	720							
Total Hardness as CaCO3	440							
Bicarbonate as HCO3	720							
Carbonate as CO3	nd							
Hydroxide	nd							
Chloride	96							
Sulfate	440							
Calcium	140							
Magnesium	22							
Potassium	1.8							
Sodium	420							
HALOCARBONS								
Bromodichloromethane	nd							
Bromoform	nd							
Bromomethane	nd							
Carbon Tetrachloride	nd							
Chloroethane	nd							
Chloroform	nd							
Chloromethane	nd							
Dibromochloromethane	nd							
1,2-Dibromomethane (EDB)	nd							
1,2-Dichlorobenzene	nd							
1,3-Dichlorobenzene	nd							
1,4-Dichlorobenzene	nd							
I,1-Dichloroethane	nd							
1,2-Dichloroethane (EDC)	nd							
1,1-Dichoroethene	nd							
trans-1,2-Dichloroethene	nd							
1,2-Dichloropropane	nd							

I.

11 6 17

10 21 20 10

1751

THE CH

	ТАВ	LE 2.1						
GIAN		STRIES	. INC.					
				'T				
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY								
2003 ANNUAL A	JAN			OCT	DEC			
cis-1,-Dichloropropene	nd	APR	JUL		DEC			
trans-1,2-Dichloropropene	nd							
Methylene Chloride	nd							
1,1,2,2-Tetrachloroethane	nd							
Tetrachloroethane	nd				· · · · · · · · · · · ·			
I,I,I-Trichloroethane	nd							
1,1,2-Trichloroethane	nd							
Trichloroethene	nd							
Trichlorofluoromethane	nd							
Vinyl Chloride	nd	· · · · · · · · · · · ·						
Villyr Cinoride	110							
AROMATICS								
Benzene	nd							
Chlorobenzene	nd							
1,2-Dichlorobenzene	nd							
1,3-Dichlorobenzene	nd							
1,4-Dichlorobenzene	nd	· · · · · · · · · · · · · · · · · · ·						
Ethylbenzene	nd							
Methyl-t-Butyl Ether	nd							
Toluene	nd							
Total Xylenes	nd							
РАН								
I-Methylnapthalene	nd							
2-Methylnapthalene	nd							
Benzo(a)pyrene	nd							
Napthalene	nd							
<u>GBR-17</u>								
Lab pH					7.4			
Lab Conductivity@25C					2900			
Total Dissolved Solids (Calc)					2200			
Total Alkalinity as CaCO3					210			
Total Hardness as CaCO3					970			
Bicarbonate as HCO3					210			
Carbonate as CO3					nd			
Hydroxide					nd			
Chloride					48			
Sulfate					1000			
Calcium					340			
Magnesium					30			
Potassium					4.4			
Sodium					300			
HALOCARBONS								
Bromodichloromethane					nd			

1 12 1 1 1

IF T

11 J

1.1

111

 1

×.

	TAB	LE 2.1						
GIAN	T INDU	STRIES	, INC.					
ONSITE R			,	Т				
2005 ANNUAL ANALYTICAL DATA SUMMARY								
2003 11 11 01 12 11	JAN	APR	JUL	OCT	DEC			
Bromoform					nd			
Bromomethane					nd			
Carbon Tetrachloride					nd			
Chloroethane					nd			
Chloroform					nd			
Chloromethane					nd			
Dibromochloromethane					nd			
1,2-Dibromomethane (EDB)					nd			
1,2-Dichlorobenzene					nd			
1,3-Dichlorobenzene					nd			
1,4-Dichlorobenzene					nd			
1,1-Dichloroethane					nd			
1,2-Dichloroethane (EDC)					nd			
1,1-Dichoroethene					nd			
trans-1,2-Dichloroethene					nd			
1,2-Dichloropropane					nd			
cis-1,-Dichloropropene					nd			
trans-1,2-Dichloropropene					nd			
Methylene Chloride					nd			
1,1,2,2-Tetrachloroethane					nd			
Tetrachloroethane					nd			
1,1,1-Trichloroethane					nd			
1,1,2-Trichloroethane					nd			
Trichloroethene					nd			
Trichlorofluoromethane					nd			
Vinyl Chloride					nd			
AROMATICS								
Benzene					nd			
Chlorobenzene					nd			
1,2-Dichlorobenzene					nd			
1,3-Dichlorobenzene					nd			
1,4-Dichlorobenzene					nd			
Ethylbenzene					nd			
Methyl-t-Butyl Ether					nd			
Toluene					nd			
Total Xylenes					nd			
<u>GBR-24D</u>								
Lab pH	7.0							
Lab Conductivity@25C	4300							
Total Dissolved Solids (Calc)	3400							
Total Alkalinity as CaCO3	260							
Total Hardness as CaCO3	1500							
Bicarbonate as HCO3	260							
Carbonate as CO3	<u> </u>							

- 1

5

- 11

	TAB	LE 2.1						
GIAN		STRIES	INC					
				T				
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY								
2005 ANNUAL A		APR		· · · · · · · · · · · · · · · · · · ·	DEC			
Lludaovido	JAN	АРК	JUL	ОСТ	DEC			
Hydroxide	nd							
Chloride Sulfate	310							
Calcium	<u> 1900</u> 520							
	<u> </u>							
Magnesium Potassium	9.2							
Sodium	<u>9.2</u> 560							
Sodium								
HALOCARBONS								
Bromodichloromethane	nd							
Bromodicinoromethane Bromoform	nd nd							
Bromomethane								
Carbon Tetrachloride	nd							
Carbon Tetracmonde Chloroethane	nd nd							
Chloroform								
Chloromethane	nd nd							
Dibromochloromethane	nd nd							
1,2-Dibromomethane (EDB)								
1,2-Dichlorobenzene	nd 0.8				· · ·			
1,3-Dichlorobenzene								
I,4-Dichlorobenzene	nd							
I,I-Dichloroethane	nd							
1,2-Dichloroethane (EDC)	0.5							
I,1-Dichoroethene								
trans-1,2-Dichloroethene	nd							
· · · · · · · · · · · · · · · · · · ·	nd							
1,2-Dichloropropane	nd							
cis-1,-Dichloropropene trans-1,2-Dichloropropene	nd				<u> </u>			
Methylene Chloride	nd							
I,1,2,2-Tetrachloroethane	nd							
	nd							
Tetrachloroethane	nd							
1,1,1-Trichloroethane	nd							
1,1,2-Trichloroethane	nd							
Trichloroethene	nd							
Trichlorofluoromethane	nd							
Vinyl Chloride	nd							
AROMATICS								
Chlorobenzene	0.6				···· · · · · · · · · ·			
Chlorobenzene	nd							
1,2-Dichlorobenzene	nd							
I,3-Dichlorobenzene	nd		·····					
I,4-Dichlorobenzene	nd							
Ethylbenzene	<u>0.9</u>							
Methyl-t-Butyl Ether	nd							
Toluene	nd							

Sector Real Property of the sector se

1111 11

11

i ii

	ТАВ	LE 2.1								
GIAN'		STRIES	. INC.							
				∼T						
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY										
2005 ANNUAL A	JAL I I	APR		OCT	DEC					
Total Vulance		AFK	JUL		DEC					
Total Xylenes	nd									
РАН										
I-Methylnapthalene	5.4									
2-Methylnapthalene										
Benzo(a)pyrene	nd			· ··· · · · · · · · · · · · · · · · ·						
Napthalene	nd									
Паршане	nu									
<u>GBR-30</u>										
Lab pH	7.3									
Lab Conductivity@25C	4600									
Total Dissolved Solids (Calc)	3500									
Total Alkalinity as CaCO3	220									
Total Hardness as CaCO3	1400									
Bicarbonate as HCO3	220									
Carbonate as CO3	<									
Hydroxide	<									
Chloride	35									
Sulfate	1800									
Calcium	500									
Magnesium	47									
Potassium	6.8									
Sodium	610									
Source	010									
HALOCARBONS										
Bromodichloromethane	nd									
Bromoform	nd									
Bromomethane	nd									
Carbon Tetrachloride	nd									
Chloroethane	nd									
Chloroform	nd									
Chloromethane	nd									
Dibromochloromethane	nd									
1,2-Dibromomethane (EDB)	nd									
I,2-Dichlorobenzene	nd									
I,3-Dichlorobenzene	nd									
I,4-Dichlorobenzene	nd									
1,1-Dichloroethane	nd									
1,2-Dichloroethane (EDC)	nd									
1,1-Dichoroethene	nd									
trans-1,2-Dichloroethene	nd									
1,2-Dichloropropane	nd									
cis-1,-Dichloropropene	nd	· · , · · · · · · · · · · · · · · · · ·								
trans-1,2-Dichloropropene	nd									
Methylene Chloride	nd									
1,1,2,2-Tetrachloroethane	nd									

THEFT

1 1

- F - F

117

11

T OF THE

11

1......

	TAB	LE 2.1								
GIAN		STRIES	. INC.							
			,	т						
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY										
2003 ANNUAL A	JAN	APR	JUL	OCT	DEC					
Tetrachloroethane	JAN nd	AFR	JUL		DEC					
1,1,1-Trichloroethane	nd									
1,1,2-Trichloroethane	nd									
Trichloroethene	nd									
Trichlorofluoromethane	0.8									
Vinyl Chloride	nd									
AROMATICS										
Benzene	nd			·····						
Chlorobenzene	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd									
1,4-Dichlorobenzene	nd									
Ethylbenzene	nd									
Methyl-t-Butyl Ether	nd									
Toluene	nd									
Total Xylenes	nd									
РАН										
1-Methylnapthalene	nd									
2-Methylnapthalene	nd									
Benzo(a)pyrene	nd									
Napthalene	nd									
<u></u>										
Lab pH										
Lab Conductivity@25C					. 4					
Total Dissolved Solids (Calc)										
Total Alkalinity as CaCO3										
Total Hardness as CaCO3										
Bicarbonate as HCO3					<u> </u>					
Carbonate as CO3										
Hydroxide										
Chloride										
Sulfate										
Calcium										
Magnesium										
Potassium										
Sodium										
HALOCARBONS										
Bromodichloromethane										
Bromodicinoromethane Bromoform										
Bromomethane	- · · · · · · · · · · · · · · · · · · ·				· · · · · · · · ·					
Carbon Tetrachloride					i					
Chloroethane										

 - Y

		LE 2.1		·····						
		STRIES								
ONSITE R	EMEDI	ATION	PROJEC	T						
2005 ANNUAL ANALYTICAL DATA SUMMARY										
	JAN	APR	JUL	ОСТ	DEC					
Chloroform										
Chloromethane										
Dibromochloromethane										
1,2-Dibromomethane (EDB)										
1,2-Dichlorobenzene										
1,3-Dichlorobenzene										
1,4-Dichlorobenzene										
1,1-Dichloroethane										
1,2-Dichloroethane (EDC)										
1,1-Dichoroethene										
trans-1,2-Dichloroethene										
1,2-Dichloropropane										
cis-1,-Dichloropropene										
trans-1,2-Dichloropropene					· · · · · · ·					
Methylene Chloride										
1,1,2,2-Tetrachloroethane										
Tetrachloroethane					<u></u>					
1,1,1-Trichloroethane				·····						
1,1,2-Trichloroethane										
Trichloroethene										
Trichlorofluoromethane			· · · · · · · · · · · · · · · · · · ·							
Vinyl Chloride										
AROMATICS										
Benzene										
Chlorobenzene										
1,2-Dichlorobenzene										
1,3-Dichlorobenzene										
1,4-Dichlorobenzene										
Ethylbenzene										
Methyl-t-Butyl Ether										
Toluene										
Total Xylenes										
РАН										
I-Methylnapthalene										
2-Methylnapthalene										
Benzo(a)pyrene										
Napthalene										
rupulatelle										
GBR-32										
Lab pH					7.3					
Lab Conductivity@25C					7300					
Total Dissolved Solids (Calc)					4400					
Total Alkalinity as CaCO3					240					
Total Hardness as CaCO3					1600					

IN STREET

Tex H

`• \$

1

Ľ

111 11

* 1 E

	TAB	LE 2.1								
GIAN	Γ INDU	STRIES	, INC.							
			,	T						
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY										
2003 ANNUAL A	JALTI	APR	JUL	OCT	DEC					
Bicarbonate as HCO3	JAN	АГК	JUL		 240					
Carbonate as CO3					240 nd					
Hydroxide					nd					
Chloride					520					
Sulfate					1700					
Calcium					550					
Magnesium					57					
Potassium					9.0					
Sodium					800					
Sodium					800					
HALOCARBONS					· · · · · · · · · · · · · · · · · · ·					
Bromodichloromethane					nd					
Bromoform					nd					
Bromomethane					nd					
Carbon Tetrachloride					nd					
Chloroethane					nd					
Chloroform					nd					
Chloromethane					nd					
Dibromochloromethane					nd					
1,2-Dibromomethane (EDB)					nd					
1,2-Dichlorobenzene					nd					
1,3-Dichlorobenzene					nd					
I,4-Dichlorobenzene					nd					
I, I-Dichloroethane					nd					
I,2-Dichloroethane (EDC)					nd					
1,1-Dichoroethene					nd					
trans-1,2-Dichloroethene					nd					
1,2-Dichloropropane					nd					
cis-1,-Dichloropropene					nd					
trans-1,2-Dichloropropene					nd					
Methylene Chloride					nd					
1,1,2,2-Tetrachloroethane					nd					
Tetrachloroethane					nd					
1,1,1-Trichloroethane					nd					
1,1,2-Trichloroethane					nd					
Trichloroethene					nd					
Trichlorofluoromethane					nd					
Vinyl Chloride					nd					
AROMATICS										
Benzene					nd					
Chlorobenzene					nd					
1,2-Dichlorobenzene					nd					
1,3-Dichlorobenzene					nd					
1,4-Dichlorobenzene					nd					
Ethylbenzene					nd					

12 1 1 1 1

÷11

1.01.11

111 1

10.11

		LE 2.1									
		STRIES									
ONSITE R	EMED	IATION	PROJEC	T							
2005 ANNUAL ANALYTICAL DATA SUMMARY											
	JAN	APR	JUL	OCT	DEC						
Methyl-t-Butyl Ether					nd						
Toluene					nd						
Total Xylenes					nd						
<u>GBR-48</u>											
Lab pH					7.2						
Lab Conductivity@25C					5700						
Total Dissolved Solids (Calc)					3400						
Total Alkalinity as CaCO3					230						
Total Hardness as CaCO3					1200						
Bicarbonate as HCO3					230						
Carbonate as CO3					nd						
Hydroxide					nd						
Chloride					420						
Sulfate					1300						
Calcium					390						
Magnesium					44						
Potassium					10						
Sodium					660						
HALOCARBONS											
Bromodichloromethane					nd						
Bromoform					nd						
Bromomethane					nd						
Carbon Tetrachloride					nd						
Chloroethane					nd						
Chloroform					nd						
Chloromethane					nd						
Dibromochloromethane					nd						
1,2-Dibromomethane (EDB)					nd						
1,2-Dichlorobenzene					nd						
1,3-Dichlorobenzene					nd						
I,4-Dichlorobenzene					nd						
1,1-Dichloroethane					nd						
1,2-Dichloroethane (EDC)					nd						
1,1-Dichoroethene					nd						
trans-1,2-Dichloroethene					nd						
1,2-Dichloropropane					nd						
cis-1,-Dichloropropene					nd						
trans-1,2-Dichloropropene					nd						
Methylene Chloride					nd						
I,1,2,2-Tetrachloroethane					nd						
Tetrachloroethane	+				2.3						
1,1,1-Trichloroethane					nd						
1,1,2-Trichloroethane					nd						
Trichloroethene					0.9						

I

TIPT I

131

- H

- F

TT BLE IS

1 1 1

17.28

Υ.

	TAB	LE 2.1			
CIAN		STRIES	INC		
ONSITE R			·	T	
2005 ANNUAL AN	·····				
	JAN	APR	JUL	OCT	DEC
Trichlorofluoromethane					nd
Vinyl Chloride					nd
AROMATICS					
Benzene					nd
Chlorobenzene					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
Ethylbenzene					nd
Methyl-t-Butyl Ether					nd
Toluene					nd
Total Xylenes					nd
······					
<u>GBR-49</u>					
Lab pH					6.9
Lab Conductivity@25C					7900
Total Dissolved Solids (Calc)					4900
Total Alkalinity as CaCO3					290
Total Hardness as CaCO3					1900
Bicarbonate as HCO3					290
Carbonate as CO3					nd
Hydroxide					nd
Chloride					530
Sulfate					1900
Calcium					670
Magnesium					61
Potassium					<20
Sodium					850
HALOCARBONS					
Bromodichloromethane					nd
Bromoform					nd
Bromomethane					nd
Carbon Tetrachloride					nd
Chloroethane					nd
Chloroform					nd
Chloromethane					nd
Dibromochloromethane					nd
1,2-Dibromomethane (EDB)		·····			nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
I,4-Dichlorobenzene					nd
I,1-Dichloroethane					nd
I,2-Dichloroethane (EDC)					nd
1,1-Dichoroethene					nd

-11

	TAB	LE 2.1								
GIAN'		STRIES	. INC.							
			·	'T						
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY										
2003 ANNUAL A	JAL I I	APR	JUL	OCT	DEC					
trans-1,2-Dichloroethene	JAN	АГК	JUL							
1,2-Dichloropropane					nd nd					
cis-1,-Dichloropropene					nd					
trans-1,2-Dichloropropene					nd					
Methylene Chloride					nd					
1,1,2,2-Tetrachloroethane					nd					
Tetrachloroethane		·			0.6					
1,1,1-Trichloroethane					0.0					
I,1,2-Trichloroethane					nd					
Trichloroethene										
Trichlorofluoromethane					nd					
					nd					
Vinyl Chloride					nd					
AROMATICS										
Benzene					nd					
Chlorobenzene					nd					
I,2-Dichlorobenzene					nd					
I,3-Dichlorobenzene					nd					
1,4-Dichlorobenzene					nd					
Ethylbenzene					nd					
Methyl-t-Butyl Ether					nd					
Toluene					nd					
Total Xylenes					nd					
<u>GBR-50</u>										
Lab pH					7.3					
Lab Conductivity@25C					3800					
Total Dissolved Solids (Calc)					2700					
Total Alkalinity as CaCO3					210					
Total Hardness as CaCO3					1100					
Bicarbonate as HCO3			· · · · · · · · · · · · · · · · · · ·		210					
Carbonate as CO3					nd					
Hydroxide					nd					
Chloride					51					
Sulfate					1300					
Calcium					400					
Magnesium					35					
Potassium					10					
Sodium					420					
HALOCARBONS		······································			nd					
Bromodichloromethane					nd					
Bromoform					nd					
Bromomethane				-	nd					
Carbon Tetrachloride		· · · · · · · · · · · · · · · · · · ·			nd					
Chloroethane					nd					

III III F

······································	TAB	LE 2.1							
GIAN		STRIES	INC.						
			,	Т					
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY									
2005 ANNUAL AN					DEC				
	JAN	APR	JUL	OCT	DEC				
Chloroform					nd				
Chloromethane					nd				
Dibromochloromethane					nd				
1,2-Dibromomethane (EDB)					nd				
1,2-Dichlorobenzene					nd				
I,3-Dichlorobenzene					nd				
1,4-Dichlorobenzene					nd				
1,1-Dichloroethane					nd				
1,2-Dichloroethane (EDC)					nd				
1,1-Dichoroethene					nd				
trans-1,2-Dichloroethene					nd				
1,2-Dichloropropane					nd				
cis-1,-Dichloropropene					nd				
trans-1,2-Dichloropropene					nd				
Methylene Chloride					nd				
1,1,2,2-Tetrachloroethane					nd				
Tetrachloroethane					nd				
1,1,1-Trichloroethane					nd				
1,1,2-Trichloroethane					nd				
Trichloroethene					nd				
Trichlorofluoromethane					nd				
Vinyl Chloride					nd				
AROMATICS									
Benzene					nd				
Chlorobenzene					nd				
1,2-Dichlorobenzene					nd				
1,3-Dichlorobenzene					nd				
1,4-Dichlorobenzene					nd				
Ethylbenzene					nd				
Methyl-t-Butyl Ether					nd				
Toluene					nd				
Total Xylenes					nd				
<u>GBR-51</u>									
Lab pH	7.8								
Lab Conductivity@25C	3000								
Total Dissolved Solids (Calc)	2400								
Total Alkalinity as CaCO3	220								
Total Hardness as CaCO3	1100								
Bicarbonate as HCO3	220								
Carbonate as CO3	1								
Hydroxide	<1								
Chloride	61								
Sulfate	1400								
Calcium	400				-				

1.51

11 11

 - 1°

	TAB	LE 2.1								
GIAN	T INDU	STRIES	, INC.							
ONSITE R			·	T						
2005 ANNUAL ANALYTICAL DATA SUMMARY										
2003 ANNUAL A	JAN	APR		OCT	DEC					
Magnesium	31		JUL		DEC					
Potassium	1.4									
Sodium	310									
Soutum	510									
HALOCARBONS										
Bromodichloromethane	nd									
Bromoform	nd									
Bromomethane	nd									
Carbon Tetrachloride	nd									
Chloroethane										
Chloroform	nd nd									
Chloromethane Dibromochloromethane	nd									
	nd									
1,2-Dibromomethane (EDB)	nd									
1,2-Dichlorobenzene	nd									
	nd				. <u></u>					
1,4-Dichlorobenzene	nd									
1,1-Dichloroethane	nd									
1,2-Dichloroethane (EDC)	nd									
I,1-Dichoroethene	nd									
trans-1,2-Dichloroethene	nd									
1,2-Dichloropropane	nd									
cis-1,-Dichloropropene	nd			~						
trans-1,2-Dichloropropene	nd									
Methylene Chloride	nd									
1,1,2,2-Tetrachloroethane	nd									
Tetrachloroethane	nd									
1,1,1-Trichloroethane	nd									
1,1,2-Trichloroethane	nd				· · · · · · · · · · · · · · · · · · ·					
Trichloroethene	nd									
Trichlorofluoromethane	5.2									
Vinyl Chloride	nd									
AROMATICS										
Benzene	nd									
Chlorobenzene	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd				<u> </u>					
1,4-Dichlorobenzene	nd									
Ethylbenzene	nd				· · · · · · · · · · · · · · · · · · ·					
Methyl-t-Butyl Ether	nd									
Toluene	nd									
Total Xylenes	nd									
<u>GBR-52</u>										
Lab pH	6.9									

EII ... II .

C 11

11

1 1

141111111111

17.6

2.1

	TAB	LE 2.1								
GIAN		STRIES	INC							
				T						
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY										
2005 ANNUAL A										
	JAN	APR	JUL	OCT	DEC					
Lab Conductivity@25C	3200									
Total Dissolved Solids (Calc)	2800									
Total Alkalinity as CaCO3	200									
Total Hardness as CaCO3	1400									
Bicarbonate as HCO3	200									
Carbonate as CO3	nd									
Hydroxide	nd									
Chloride	67									
Sulfate	1700									
Calcium	520									
Magnesium	36									
Potassium	2.0									
Sodium	330									
HALOCARBONS										
Bromodichloromethane	nd									
Bromoform	nd									
Bromomethane	nd									
Carbon Tetrachloride	nd									
Chloroethane	nd			_						
Chloroform	nd									
Chloromethane	nd									
Dibromochloromethane	nd									
1,2-Dibromomethane (EDB)	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd									
1,4-Dichlorobenzene	nd									
I,1-Dichloroethane	nd									
I,2-Dichloroethane (EDC)	nd									
I,1-Dichoroethene	nd									
trans-1,2-Dichloroethene	nd									
1,2-Dichloropropane	nd									
cis-1,-Dichloropropene	nd									
trans-1,2-Dichloropropene	nd			_						
Methylene Chloride	nd									
1,1,2,2-Tetrachloroethane	nd									
Tetrachloroethane	nd									
1,1,1-Trichloroethane	nd									
1,1,2-Trichloroethane	nd									
Trichloroethene	nd									
Trichlorofluoromethane	nd									
Vinyl Chloride	nd									
······································		· ·								
AROMATICS					** ******					
Benzene	nd									
Chlorobenzene	nd	· · · · · · · · · · · · · · · · · · ·								

ł

LIX L . E

111111

T E K

	TAR	LE 2.1								
GIAN'		STRIES	INC							
			-	∼T						
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY										
2005 ANNUAL A					DEC					
1.2 Disklasska	JAN	APR	JUL	ОСТ	DEC					
1,2-Dichlorobenzene	nd				·····					
I,3-Dichlorobenzene	nd									
1,4-Dichlorobenzene	nd									
Ethylbenzene	nd									
Methyl-t-Butyl Ether	nd									
Toluene	nd									
Total Xylenes	nd									
<u>SHS-4</u>										
Lab pH	7.3									
Lab Conductivity@25C	3200									
Total Dissolved Solids (Calc)	2700									
Total Alkalinity as CaCO3	210									
Total Hardness as CaCO3	1400									
Bicarbonate as HCO3	210									
Carbonate as CO3	1.0									
Hydroxide	nd									
Chloride	63									
Sulfate	1600									
Calcium	490									
Magnesium	39									
Potassium	5.1									
Sodium	320									
HALOCARBONS										
Bromodichloromethane	nd				<u> </u>					
Bromoform	nd									
Bromomethane	nd									
Carbon Tetrachloride	nd									
Chloroethane	nd									
Chloroform	nd									
Chloromethane	nd									
Dibromochloromethane	nd		·····							
1,2-Dibromomethane (EDB)	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd									
1,4-Dichlorobenzene	nd									
1,1-Dichloroethane	nd									
1,2-Dichloroethane (EDC)	nd									
1,1-Dichoroethene	nd									
trans-1,2-Dichloroethene	nd									
1,2-Dichloropropane	nd									
cis-1,-Dichloropropene	nd									
trans-1,2-Dichloropropene	nd									
Methylene Chloride	nd									
1,1,2,2-Tetrachloroethane	nd									

TIB'T IT

1117 111

· · · ·

	TAB	LE 2.1								
GIAN		USTRIES	. INC.							
			-	∼T						
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY										
2003 ANNOAL A	JAN	APR	JUL		DEC					
Tetrachloroethane	nd		JUL		DEC					
1,1,1-Trichloroethane	nd									
1,1,2-Trichloroethane	nd									
Trichloroethene	nd									
Trichlorofluoromethane	nd									
Vinyl Chloride	nd									
AROMATICS										
Benzene	nd									
Chlorobenzene	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd									
I,4-Dichlorobenzene	nd									
Ethylbenzene	nd									
Methyl-t-Butyl Ether	nd									
Toluene	nd									
Total Xylenes	nd									
<u>SHS-6</u>										
Lab pH	7.2									
Lab Conductivity@25C	2900									
Total Dissolved Solids (Calc)	2300									
Total Alkalinity as CaCO3	230									
Total Hardness as CaCO3	1100									
Bicarbonate as HCO3 Carbonate as CO3	230 nd									
Hydroxide	nd									
Chloride	61									
Sulfate	1300									
Calcium	390									
Magnesium	32									
Potassium	3.1									
Sodium	300									
HALOCARBONS										
Bromodichloromethane	nd									
Bromoform	nd									
Bromomethane	nd									
Carbon Tetrachloride	nd									
Chloroethane	nd									
Chloroform	nd									
Chloromethane	nd									
Dibromochloromethane	nd									
1,2-Dibromomethane (EDB)	nd									
1,2-Dichlorobenzene	nd				· · · · · · · · · · · · · · · · · · ·					
1,3-Dichlorobenzene	nd									

A NAME AND ADDRESS OF TAXABLE PARTY.

 - 1 i

- 7

-11

·····	TABI	LE 2.1					
GIAN'		STRIES	INC				
			-	'T			
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY							
2005 ANNUAL A		APR	JUL		DEC		
1,4-Dichlorobenzene	JAN	Ark	<u> </u>	001	DEC		
1,4-Dichloroethane	nd nd						
1,2-Dichloroethane (EDC)	nd						
1,1-Dichoroethene	nd						
trans-1,2-Dichloroethene	nd				·····		
1,2-Dichloropropane	nd						
cis-1,-Dichloropropene							
	nd						
trans-1,2-Dichloropropene Methylene Chloride	nd nd						
1,1,2,2-Tetrachloroethane							
Tetrachloroethane	nd						
I, I, I - Trichloroethane	nd nd						
I,1,2-Trichloroethane					· · · · · · · · · · · · · · · · · · ·		
Trichloroethene	nd						
Trichlorofluoromethane	nd nd						
Vinyl Chloride	nd						
AROMATICS							
Benzene	nd						
Chlorobenzene	nd						
I,2-Dichlorobenzene							
1,3-Dichlorobenzene	nd nd						
1,3-Dichlorobenzene							
Ethylbenzene	nd nd						
Methyl-t-Butyl Ether							
Toluene	nd						
	nd						
Total Xylenes	nd						
<u>SHS-19</u>	7 2						
Lab pH	7.3						
Lab Conductivity@25C	2600						
Total Dissolved Solids (Calc)	1700						
Total Alkalinity as CaCO3	660	<u> </u>					
Total Hardness as CaCO3	630						
Bicarbonate as HCO3	660						
Carbonate as CO3	2.0						
Hydroxide	nd						
Chloride	110						
Sulfate	580		·		······ ·· <u>··</u>		
Calcium	210						
Magnesium	26						
Potassium	2.5						
Sodium	390						
			·				
HALOCARBONS							
Bromodichloromethane	nd						

1.2.2

TH . T

"† i

1.1

 n r m

7

	TAB	LE 2.1					
GIAN'		STRIES	, INC.				
ONSITE REMEDIATION PROJECT							
2005 ANNUAL ANALYTICAL DATA SUMMARY							
2003 / 100/11/ /	JAN	APR	JUL		DEC		
Bromoform	nd	711 1	001				
Bromomethane	nd						
Carbon Tetrachloride	nd						
Chloroethane	nd						
Chloroform	nd						
Chloromethane	nd						
Dibromochloromethane	nd						
1,2-Dibromomethane (EDB)	nd						
1,2-Dichlorobenzene	nd						
1,3-Dichlorobenzene	nd						
1,4-Dichlorobenzene	nd						
1,1-Dichloroethane	nd						
1,2-Dichloroethane (EDC)	nd						
1,1-Dichoroethene	nd						
trans-1,2-Dichloroethene	nd						
1,2-Dichloropropane	nd						
cis-1,-Dichloropropene	nd						
trans-1,2-Dichloropropene	nd						
Methylene Chloride	nd						
1,1,2,2-Tetrachloroethane	nd						
Tetrachloroethane	nd						
I,1,I-Trichloroethane	nd						
1,1,2-Trichloroethane	nd						
Trichloroethene	nd						
Trichlorofluoromethane	nd						
Vinyl Chloride	nd						
AROMATICS							
Benzene	nd						
Chlorobenzene	nd						
1,2-Dichlorobenzene	nd						
1,3-Dichlorobenzene	nd						
1,4-Dichlorobenzene	nd						
Ethylbenzene	1.2						
Methyl-t-Butyl Ether	nd				·		
Toluene	nd						
Total Xylenes	nd						
<u></u>							
Lab pH	7.2						
Lab Conductivity@25C	3100						
Total Dissolved Solids (Calc)	2300						
Total Alkalinity as CaCO3	440						
Total Hardness as CaCO3	950						
Bicarbonate as HCO3	430						
Carbonate as CO3	1.0						

1.5

1

111 111

	TAB	LE 2.1					
GIAN'		STRIES	. INC.				
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY							
Hydroxide		Arn	301		DEC		
Chloride	100						
Sulfate	1100						
Calcium	290						
Magnesium	55						
Potassium	12						
Sodium	390						
Sodium	390						
HALOCARBONS							
Bromodichloromethane	nd						
Bromoform	nd						
Bromomethane	nd						
Carbon Tetrachloride	nd						
Chloroethane	nd						
Chloroform	nd						
Chloromethane	nd						
Dibromochloromethane	nd	<u></u>					
1,2-Dibromomethane (EDB)	nd		·····				
1,2-Dichlorobenzene	nd	<u></u> .					
1,3-Dichlorobenzene	nd						
1,3-Dichlorobenzene	nd						
I,1-Dichloroethane	nd	······································					
1,2-Dichloroethane (EDC)	nd						
1,1-Dichoroethene	nd						
trans-1,2-Dichloroethene	nd						
1,2-Dichloropropane	nd						
cis-1,-Dichloropropene	nd						
trans-1,2-Dichloropropene	nd				• • • • •		
Methylene Chloride	nd						
1,1,2,2-Tetrachloroethane	nd						
Tetrachloroethane	nd						
1,1,1-Trichloroethane	nd						
1,1,2-Trichloroethane	nd						
Trichloroethene							
Trichlorofluoromethane	nd nd						
	nd	·····			·····		
Vinyl Chloride	na						
ADOMATICS							
AROMATICS	nd						
Benzene	nd						
Chlorobenzene	nd						
1,2-Dichlorobenzene	nd		-				
1,3-Dichlorobenzene	nd		├				
I,4-Dichlorobenzene	nd		-		.,		
Ethylbenzene	nd						
Methyl-t-Butyl Ether Toluene	nd nd						

. Fr

1 1

131111111

	TAB	LE 2.1						
GIAN'			INC					
GIANT INDUSTRIES, INC.								
ONSITE REMEDIATION PROJECT								
2005 ANNUAL A								
· · · · · · · · · · · · · · · · · · ·	JAN	APR	JUL	OCT	DEC			
Total Xylenes	1.0							
<u>SHS-12</u>								
Lab pH	7.1							
Lab Conductivity@25C	2900							
Total Dissolved Solids (Calc)	2100							
Total Alkalinity as CaCO3	470							
Total Hardness as CaCO3	840							
Bicarbonate as HCO3	470							
Carbonate as CO3	1.0							
Hydroxide	nd							
Chloride	96							
Sulfate	1000							
Calcium	300							
Magnesium	22							
Potassium	1.8			_				
Sodium	420							
HALOCARBONS								
Bromodichloromethane	nd							
Bromoform	nd							
Bromomethane	nd							
Carbon Tetrachloride	nd							
Chloroethane	nd							
Chloroform	nd							
Chloromethane	nd							
Dibromochloromethane	nd							
1,2-Dibromomethane (EDB)	nd							
1,2-Dichlorobenzene	nd							
1,3-Dichlorobenzene	nd							
1,4-Dichlorobenzene	nd							
1,1-Dichloroethane	nd							
1,2-Dichloroethane (EDC)	nd							
1,1-Dichoroethene	nd							
trans-1,2-Dichloroethene	nd							
1,2-Dichloropropane	nd							
cis-1,-Dichloropropene	nd			-				
trans-1,2-Dichloropropene	nd							
Methylene Chloride	nd							
1,1,2,2-Tetrachloroethane	nd							
Tetrachloroethane	nd							
1,1,1-Trichloroethane	nd				·			
1,1,2-Trichloroethane	nd							
Trichloroethene	nd							
Trichlorofluoromethane	nd							
Vinyl Chloride	nd							

- I I I

1

	TAB	L E 2.1					
GIANT INDUSTRIES, INC. ONSITE REMEDIATION PROJECT							
2005 ANNUAL ANALYTICAL DATA SUMMARY							
	JAN	APR	JUL	ОСТ	DEC		
AROMATICS							
Benzene	nd						
Chlorobenzene	nd						
1,2-Dichlorobenzene	nd						
1,3-Dichlorobenzene	nd						
I,4-Dichlorobenzene	nd						
Ethylbenzene	nd						
Methyl-t-Butyl Ether	nd						
Toluene	nd						
Total Xylenes	nd						
<u>SHS-13</u>	(0						
Lab pH	6.8	· · · · · · · · · · · · · · · · · · ·					
Lab Conductivity@25C	3900						
Total Dissolved Solids (Calc)	3100						
Total Alkalinity as CaCO3	650						
Total Hardness as CaCO3	1600						
Bicarbonate as HCO3	650						
Carbonate as CO3	1.0						
Hydroxide	nd						
Chloride	170						
Sulfate	1500						
Calcium	550	·					
Magnesium	<u> </u>						
Potassium							
Sodium	410						
HALOCARBONS	1						
Bromodichloromethane	nd						
Bromoform	nd						
Bromomethane	nd						
Carbon Tetrachloride	nd						
Chloroethane	nd						
Chloroform	nd						
Chloromethane	nd						
Dibromochloromethane	nd						
1,2-Dibromomethane (EDB)	nd						
1,2-Dichlorobenzene	nd						
1,3-Dichlorobenzene	nd						
1,4-Dichlorobenzene	nd						
I,1-Dichloroethane	nd		·····				
1,2-Dichloroethane (EDC)	1.5						
I, I-Dichoroethene	nd						
trans-1,2-Dichloroethene	nd						
1,2-Dichloropropane	nd			l			

1111111

THE TH

~~T [

100

THE F.

-

	TAB	LE 2.1					
GIAN	T INDU	STRIES	, INC.				
ONSITE REMEDIATION PROJECT							
2005 ANNUAL ANALYTICAL DATA SUMMARY							
	JAN	APR	JUL	OCT	DEC		
cis-1,-Dichloropropene	nd						
trans-1,2-Dichloropropene	nd						
Methylene Chloride	nd						
1,1,2,2-Tetrachloroethane	nd						
Tetrachloroethane	nd						
1,1,1-Trichloroethane	nd						
1,1,2-Trichloroethane	nd						
Trichloroethene	nd						
Trichlorofluoromethane	nd						
Vinyl Chloride	nd						
AROMATICS					<u>-</u>		
Benzene	nd						
Chlorobenzene	nd						
I,2-Dichlorobenzene	nd						
1,3-Dichlorobenzene	nd						
I,4-Dichlorobenzene	nd						
Ethylbenzene	nd				. <u></u>		
Methyl-t-Butyl Ether	nd						
Toluene	nd						
Total Xylenes	nd						
<u>SHS-14</u>							
Lab pH	7.3						
Lab Conductivity@25C	2500						
Total Dissolved Solids (Calc) Total Alkalinity as CaCO3	<u>2000</u> 290						
Total Hardness as CaCO3	1400						
Bicarbonate as HCO3	290						
Carbonate as CO3	1.0						
Hydroxide			· · · · · · · · · · · · · · · · · · ·		· · · ·		
Chloride	<u>nd</u> 51						
Sulfate	1100						
Calcium	490						
Magnesium	49						
Potassium	5.2				····-		
Sodium	210						
Southin							
HALOCARBONS							
Bromodichloromethane	nd						
Bromoform	nd						
Bromomethane	nd						
Carbon Tetrachloride	nd						
Chloroethane	nd						
Chloroform	nd	· · ·					
Chloromethane	nd				· · · <u> · ·</u>		

i

-'¶?'

10.1

	TABI	LE 2.1					
GIAN'		STRIES	. INC.				
			·	T			
ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY							
2005 AITICAL AI	JAN	APR	JUL	OCT	DEC		
Dibromochloromethane	nd		301				
1,2-Dibromomethane (EDB)	nd						
1,2-Dichlorobenzene	nd						
1,3-Dichlorobenzene	nd						
1,4-Dichlorobenzene	nd						
1,1-Dichloroethane	nd						
1,2-Dichloroethane (EDC)	nd						
1,1-Dichoroethene	nd				······		
trans-1,2-Dichloroethene	nd						
1,2-Dichloropropane	nd	· · · · · · · · · · · · · · · · · · ·					
cis-1,-Dichloropropene	nd						
trans-1,2-Dichloropropene	nd						
Methylene Chloride	nd						
1,1,2,2-Tetrachloroethane	nd						
Tetrachloroethane	nd						
1,1,1-Trichloroethane	nd						
1,1,2-Trichloroethane	nd						
Trichloroethene	nd						
Trichlorofluoromethane	nd						
Vinyl Chloride	nd						
AROMATICS					······································		
Benzene	nd						
Chlorobenzene	nd						
1,2-Dichlorobenzene	nd	· ····					
1,3-Dichlorobenzene	nd						
1,4-Dichlorobenzene	nd						
Ethylbenzene	nd						
Methyl-t-Butyl Ether	nd						
Toluene	nd						
Total Xylenes	nd						
SHS-15					· · · · · · · · · · · · · · · · · · ·		
Lab pH	7.2						
Lab Conductivity@25C	2500						
Total Dissolved Solids (Calc)	2000						
Total Alkalinity as CaCO3	280						
Total Hardness as CaCO3	1200						
Bicarbonate as HCO3	280						
Carbonate as CO3	1.0	••••••••••••••••••••••••••••••••••••••		·····			
Hydroxide	nd						
Chloride	53						
Sulfate	1100						
Calcium	400						
Magnesium	42						
Potassium	2.9			· · · · · · · · · · · · · · · · · · ·	,		

THE R

T

- 1 - 1 - F

THE FLORE

32

T

	TABI	F 2 1								
CIAN		STRIES	INC							
			,	T						
	ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY									
2005 ANNUAL A			T							
	JAN	APR	JUL	OCT	DEC					
Sodium	220									
HALOCARBONS										
Bromodichloromethane	nd									
Bromoform	nd									
Bromomethane	nd									
Carbon Tetrachloride	nd (
Chloroethane	nd									
Chloroform	nd									
Chloromethane	nd									
Dibromochloromethane	nd									
1,2-Dibromomethane (EDB)	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd									
1,4-Dichlorobenzene	nd									
1,1-Dichloroethane	nd									
1,2-Dichloroethane (EDC)	nd									
1,1-Dichoroethene	nd									
trans-1,2-Dichloroethene	nd nd									
1,2-Dichloropropane	nd									
cis-1,-Dichloropropene trans-1,2-Dichloropropene	nd									
Methylene Chloride	nd									
1,1,2,2-Tetrachloroethane	nd									
Tetrachloroethane	nd									
1,1,1-Trichloroethane	nd									
1,1,2-Trichloroethane	nd									
Trichloroethene	nd									
Trichlorofluoromethane	nd				······································					
Vinyl Chloride	nd									
v inyi Cilionae										
AROMATICS										
Benzene	nd									
Chlorobenzene	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd									
1,4-Dichlorobenzene	nd									
Ethylbenzene	nd									
Methyl-t-Butyl Ether	nd									
Toluene	nd									
Total Xylenes	nd									
Tour Ayrenes										
<u>SHS-16</u>										
Lab pH	7.3									
Lab Conductivity@25C	2700									
Total Dissolved Solids (Calc)	2300									

heren

11

CHEER AND STREET

- F E

4.28

1...d

	TAB	LE 2.1								
GIAN'		STRIES	. INC.							
				T						
	ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY									
	JAN	APR	JUL	OCT	DEC					
Total Alkalinity as CaCO3	400				DEC					
Total Hardness as CaCO3	1000									
Bicarbonate as HCO3	400									
Carbonate as CO3	1.0									
Hydroxide	nd				-					
Chloride	44	·····-								
Sulfate	1300				····					
Calcium	360									
Magnesium	35									
Potassium	2.9									
Sodium	220									
Source										
HALOCARBONS										
Bromodichloromethane	nd									
Bromoform	nd									
Bromomethane	nd									
Carbon Tetrachloride	nd									
Chloroethane	nd									
Chloroform	nd									
Chloromethane	nd									
Dibromochloromethane	nd									
1,2-Dibromomethane (EDB)	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd									
1,4-Dichlorobenzene	nd									
1,1-Dichloroethane	nd									
1,2-Dichloroethane (EDC)	nd									
I,1-Dichoroethene	nd									
trans-1,2-Dichloroethene	nd									
1,2-Dichloropropane	nd									
cis-1,-Dichloropropene	nd									
trans-1,2-Dichloropropene	nd									
Methylene Chloride	nd									
1,1,2,2-Tetrachloroethane	nd									
Tetrachloroethane	nd									
1,1,1-Trichloroethane	nd									
1,1,2-Trichloroethane	nd				-					
Trichloroethene	nd									
Trichlorofluoromethane	nd									
Vinyl Chloride	nd									
AROMATICS										
Benzene	nd									
Chlorobenzene	nd									
1,2-Dichlorobenzene	nd									
1,3-Dichlorobenzene	nd									

TELL

111

11

 TT

17 1

3.1.11

11 1

		LE 2.1			
		STRIES			
ONSITE R					
2005 ANNUAL A	NALYT	ICAL D	ATA SUN	MMARY	
	JAN	APR	JUL	OCT	DEC
I,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
<u>SHS-17</u>					
Lab pH	7.2				
Lab Conductivity@25C	3400				
Total Dissolved Solids (Calc)	2500				
Total Alkalinity as CaCO3	310				
Total Hardness as CaCO3	1100				
Bicarbonate as HCO3	300				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	260				
Sulfate	1100				
Calcium	380				
Magnesium	46				
Potassium	4.5				
Sodium	320				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
I,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd				

TATE

1191

And a second second

South States of States

A SA ARTING A REAL AREA AND A REAL AREA AND A SA AN ANALAN AN AN AN ANALAN ANALAN ANALAN ANALAN ANALAN ANALAN

1.2

ONSITE R	TABLE 2.1 GIANT INDUSTRIES, INC. ONSITE REMEDIATION PROJECT 2005 ANNUAL ANALYTICAL DATA SUMMARY							
	JAN	APR	JUL	ОСТ	DEC			
1,1,2-Trichloroethane	nd							
Trichloroethene	nd							
Trichlorofluoromethane	nd							
Vinyl Chloride	nd							
AROMATICS								
Benzene	nd							
Chlorobenzene	nd							
1,2-Dichlorobenzene	nd							
1,3-Dichlorobenzene	nd							
1,4-Dichlorobenzene	nd							
Ethylbenzene	nd							
Methyl-t-Butyl Ether	nd							
Toluene	nd							
Total Xylenes	nd							
·								

1.1.1.4

111

1 1 111

3.0 POTENTIOMETRIC SURFACE MAPS

10.1

1

717171

111111111

Potentiometric surface maps, as well as the adjusted water surface elevation and product thickness for each well, are included in Section 3.

		Tab	le 3.1					
			ing Company					
Bloomfield Refinery Quarterly Potentiometric Surface								
Well #	Wellhead	Depth to	Depth to	Product	Adjusted			
	Elevation (ft)	Water (ft)	Product (ft)	Thickness (ft)	WSEL* (ft)			
GRW-1	5394.30	56.85	56.85	0.00	5337.45			
GRW-2	5391.28	49.35	49.35	0.00	5341.93			
GRW-3	5388.77	53.74	53.74	0.00	5335.03			
GRW-4	5390.02	56.10	56.10	0.00	5333.92			
GRW-5	5390.56	63.22	63.22	0.00	5327.34			
GRW-6	5390.81	53.44	53.44	0.00	5337.37			
GRW-10	5395.02	56.16	56.16	0.00	5338.86			
GRW-11	5397.85	56.60	56.60	0.00	5341.25			
GRW-12	5397.24	45.70	45.70	0.00	5351.54			
GRW-13	5396.90	57.35	57.35	0.00	5339.55			
GBR-5	5395.07	25.04	25.04	0.00	5370.03			
GBR-6	5395.70	52.35	52.35	0.00	5343.35			
GBR-7	5395.85	29.08	29.08	0.00	5366.77			
GBR-8	5390.50	42.90	42.90	0.00	5347.60			
GBR-9	5389.92	47.93	47.93	0.00	5341.99			
GBR-10	5390.57	42.49	42.49	0.00	5348.08			
GBR-11	5389.43	42.98	42.98	0.00	5346.45			
GBR-13	5393.04	43.40	43.40	0.00	5349.64			
GBR-15	5397.99	41.78	41.78	0.00	5356.21			
GBR-18	5421.68	35.60	35.60	0.00	5386.08			
GBR-19	5393.83	43.56	43.52	0.04	5350.34			
GBR-20	5393.47	36.24	36.24	0.00	5357.23			
GBR-21S	5400.65	26.80	26.80	0.00	5373.85			
GBR-21D	5400.19	41.17	41.17	0.00	5359.02			
GBR-22	5395.91	DRY	DRY	0.00	5395.91			
GBR-23	5403.72	29.25	29.25	0.00	5374.47			
GBR-24S	5396.08	33.56	33.54	0.02	5362.56			
GBR-24D	5396.77	41.17	41.17	0.00	5355.60			
GBR-25	5396.72	40.85	38.68	2.17	5359.78			
GBR-26	5395.59	38.32	38.32	0.00	5357.27			
GBR-30	5396.58	36.49	36.49	0.00	5360.09			
GBR-31	5394.86	NA	NA	NA	NA			
GBR-33	5396.28	41.78	41.78	0.00	5354.50			
GBR-34	5394.00	39.65	39.65	0.00	5354.35			

Table 3.1 Giant Refining Company Bloomfield Refinery Quarterly Potentiometric Surface January 2005								
Well #	Wellhead Elevation (ft)	Depth to Water (ft)	Depth to Product (ft)	Product Thickness (ft)	Adjusted WSEL* (ft)			
GBR-35	5393.66	35.98	35.75	0.23	5358.09			
GBR-39	5397.55	40.67	40.67	0.00	5356.88			
GBR-40	5400.76	33.84	33.84	0.00	5366.92			
GBR-41	5396.35	27.91	27.91	0.00	5368.44			
GBR-51	5389.68	44.02	44.02	0.00	5345.66			
GBR-52	5387.74	42.62	42.62	0.00	5345.12			
SHS-1	5383.54	40.30	40.30	0.00	5343.24			
SHS-2	5381.66	36.80	36.80	0.00	5344.86			
SHS-3	5383.33	36.64	36.64	0.00	5346.69			
SHS-4	5383.62	43.00	43.00	0.00	5340.62			
SHS-5	5378.36	38.80	38.80	0.00	5339.56			
SHS-6	5378.17	40.10	40.10	0.00	5338.07			
SHS-8	5380.25	40.48	40.48	0.00	5339.77			
SHS-9	5380.79	41.90	41.90	0.00	5338.89			
SHS-10	5373.80	38.25	38.25	0.00	5335.55			
SHS-12	5373.94	41.10	41.10	0.00	5332.84			
SHS-13	5367.81	37.65	37.65	0.00	5330.16			
SHS-14	5367.07	42.40	42.40	0.00	5324.67			
SHS-15	5366.21	34.80	34.80	0.00	5331.41			
SHS-16	5362.58	32.48	32.48	0.00	5330.10			
SHS-17	5364.35	34.90	34.90	0.00	5329.45			
SHS-18	5373.64	41.90	41.90	0.00	5331.74			
SHS-19	5378.89	44.70	44.70	0.00	5334.19			

*WSEL = Water Surface Elevation Adjusted for Product Depth

 10 5 11

Table 3.2 Giant Refining Company Bloomfield Refinery Quarterly Potentiometric Surface April 2005							
Well #	Wellhead Elevation (ft)	Depth to Water (ft)	Depth to Product (ft)	Product Thickness (ft)	Adjusted WSEL* (ft)		
GRW-1	5394.30	61.60	61.60	0.00	5332.70		
GRW-2	5391.28	47.78	47.78	0.00	5343.50		
GRW-3	5388.77	53.15	53.15	0.00	5335.62		
GRW-4	5390.02	48.85	48.85	0.00	5341.17		
GRW-5	5390.56	65.54	65.54	0.00	5325.02		
GRW-6	5390.81	43.30	43.30	0.00	5347.51		

		Tab	le 3.2					
			ing Company					
Bloomfield Refinery Quarterly Potentiometric Surface								
Well #	Wellhead Elevation (ft)	Depth to Water (ft)	Depth to Product (ft)	Product Thickness (ft)	Adjusted WSEL* (ft)			
GRW-10	5395.02	51.92	51.82	0.10	5343.18			
GRW-11	5397.85	57.80	57.80	0.00	5340.05			
GRW-12	5397.24	44.70	44.70	0.00	5352.54			
GRW-13	5396.90	55.22	55.22	0.00	5341.68			
GBR-5	5395.07	24.84	24.84	0.00	5370.23			
GBR-6	5395.70	50.40	50.40	0.00	5345.30			
GBR-7	5395.85	28.46	28.46	0.00	5367.39			
GBR-8	5390.50	41.70	41.70	0.00	5348.80			
GBR-9	5389.92	46.52	46.52	0.00	5343.40			
GBR-10	5390.57	42.46	40.32	0.00	5348.11			
GBR-11	5389.43	42.46	42.46	0.00	5346.97			
GBR-13	5393.04	42.40	42.25	0.00	5350.79			
GBR-15	5397.99	41.20	41.20	0.00	5356.79			
GBR-18	5421.68	35.34	35.34	0.00	5386.34			
GBR-19	5393.83	cannot access	cannot access	NA	NA			
GBR-20	5393.47	35.75	35.75	0.00	5357.72			
GBR-21S	5400.65	27.00	27.00	0.00	5373.65			
GBR-21D	5400.19	40.90	40.90	0.00	5359.29			
GBR-22	5395.91	DRY	DRY	NA	NA			
GBR-23	5403.72	30.04	30.04	0.00	5373.68			
GBR-24S	5396.08	33.86	33.86	0.00	5362.22			
GBR-24D	5396.77	34.83	34.83	0.00	5361.94			
GBR-25	5396.72	39.82	39.82	0.00	5356.90			
GBR-26	5395.59	38.25	39.82	0.00	5357.34			
GBR-30	5396.58	36.50	36.50	0.00	5360.08			
GBR-31	5394.86	cannot access	cannot access	NA	NA			
GBR-33	5396.28	42.31	42.31	0.00	5353.97			
GBR-34	5394.00	39.48	39.48	0.00	5354.52			
GBR-35	5393.66	39.62	39.60	0.00	5354.06			
GBR-39	5393.00	40.68	40.68	0.02	5356.87			
GBR-40	5400.76	32.00	32.00	0.00	5368.76			
GBR-41	5396.35	26.70	26.70	0.00	5369.65			
GBR-41 GBR-51	5389.68	43.85	43.85	0.00	5345.83			
GBR-51 GBR-52	5389.08	43.85	43.83	0.00	5345.85			
SHS-1	5387.74	42.47	42.47	0.00	5343.27			
SHS-1		36.72			5344.94			
SHS-2 SHS-3	5381.66		36.72	0.00				
SHS-3 SHS-4	5383.33	cannot access	cannot access	NA 0.00	NA 5340.62			
SHS-4 SHS-5	5383.62	43.00	43.00	0.00	5340.62			
SHS-5	5378.36	39.80	39.80	0.00	5338.56			
<u>⊍⊓ט-0</u>	5378.17	40.00	40.00	0.00	5338.17			

HI FETT

1111

10 mm 16 a

TO TR

111

1 1-

~ Fi

Table 3.2 Giant Refining Company Bloomfield Refinery Quarterly Potentiometric Surface April 2005							
Well #	Wellhead Elevation (ft)	Depth to Water (ft)	Depth to Product (ft)	Product Thickness (ft)	Adjusted WSEL* (ft)		
SHS-8	5380.25	40.44	40.44	0.00	5339.81		
SHS-9	5380.79	44.75	44.75	0.00	5336.04		
SHS-10	5373.80	37.98	37.98	0.00	5335.82		
SHS-12	5373.94	40.67	40.67	0.00	5333.27		
SHS-13	5367.81	37.11	37.11	0.00	5330.70		
SHS-14	5367.07	42.15	42.14	0.01	5324.93		
SHS-15	5366.21	34.30	34.30	0.00	5331.91		
SHS-16	5362.58	31.93	31.93	0.00	5330.65		
SHS-17	5364.35	33.82	33.82	0.00	5330.53		
SHS-18	5373.64	40.75	40.75	0.00	5332.89		
SHS-19	5378.89	52.60	52.60	0.00	5326.29		

Contraction of the local division of the loc

l

. K., U.

117.11

Table 3.3 Giant Refining Company Bloomfield Refinery Quarterly Potentiometric Surface July 2005							
Well #	Wellhead Elevation (ft)	Depth to Water (ft)	Depth to Product (ft)	Product Thickness (ft)	Adjusted WSEL* (ft)		
GRW-1	5394.30	58.31	58.31	0.00	5335.99		
GRW-2	5391.28	48.75	48.75	0.00	5342.53		
GRW-3	5388.77	53.80	53.80	0.00	5334.97		
GRW-4	5390.02	46.10	46.10	0.00	5343.92		
GRW-5	5390.56	66.35	66.35	0.00	5324.21		
GRW-6	5390.81	43.23	43.23	0.00	5347.58		
GRW-10	5395.02	53.76	53.70	0.06	5341.31		
GRW-11	5397.85	61.66	61.66	0.00	5336.19		
GRW-12	5397.24	44.70	44.70	0.00	5352.54		
GRW-13	5396.90	56.90	56.90	0.00	5340.00		
GBR-5	5395.07	25.87	24.84	1.03	5370.02		
GBR-6	5395.70	51.15	51.15	0.00	5344.55		
GBR-7	5395.85	28.04	28.04	0.00	5367.81		
GBR-8	5390.50	41.65	41.65	0.00	5348.85		
GBR-9	5389.92	44.27	44.27	0.00	5345.65		
GBR-10	5390.57	42.51	42.51	0.00	5348.06		
GBR-11	5389.43	42.42	42.42	0.00	5347.01		
GBR-13	5393.04	42.42	42.42	0.00	5350.62		

40

57 H I

Table 3.3 Giant Refining Company Bloomfield Refinery Quarterly Potentiometric Surface July 2005								
Well #	Wellhead	Depth to Depth to		Product	Adjusted			
	Elevation (ft)	Water (ft)	Product (ft)	Thickness (ft)	WSEL* (ft)			
GBR-15	5397.99	41.30	41.30	0.00	5356.69			
GBR-18	5421.68	36.26	36.26	0.00	5385.42			
GBR-19	5393.83	42.82	42.82	0.00	5351.01			
GBR-20	5393.47	36.08	36.08	0.00	5357.39			
GBR-21S	5400.65	26.02	26.02	0.00	5374.63			
GBR-21D	5400.19	41.55	41.55	0.00	5358.64			
GBR-22	5395.91	DRY	DRY	NA	NA			
GBR-23	5403.72	30.05	30.05	0.00	5373.67			
GBR-24S	5396.08	33.75	33.75	0.00	5362.33			
GBR-24D	5396.77	34.96	34.96	0.00	5361.81			
GBR-25	5396.72	39.58	39.52	0.06	5357.19			
GBR-26	5395.59	36.56	36.26	0.30	5359.27			
GBR-30	5396.58	36.57	36.57	0.00	5360.01			
GBR-31	5394.86	37.86	37.86	0.00	5357.00			
GBR-33	5396.28	42.30	42.30	0.00	5353.98			
GBR-34	5394.00	39.85	39.85	0.00	5354.15			
GBR-35	5393.66	40.32	40.32	0.00	5353.34			
GBR-39	5397.55	40.67	40.67	0.00	5356.88			
GBR-40	5400.76	32.05	32.05	0.00	5368.71			
GBR-41	5396.35	27.16	27.16	0.00	5369.19			
GBR-51	5389.68	43.60	43.60	0.00	5346.08			
GBR-52	5387.74	42.57	42.57	0.00	5345.17			
SHS-1	5383.54	40.68	40.68	0.00	5342.86			
SHS-2	5381.66	36.36	36.36	0.00	5345.30			
SHS-3	5383.33	DRY	DRY	NA	NA			
SHS-4	5383.62	42.96	42.96	0.00	5340.66			
SHS-5	5378.36	39.80	39.80	0.00	5338.56			
SHS-6	5378.17	40.09	40.09	0.00	5338.08			
SHS-8	5380.25	40.48	40.48	0.00	5339.77			
SHS-9	5380.79	43.50	43.50	0.00	5337.29			
SHS-10	5373.80	37.70	37.70	0.00	5336.10			
SHS-12	5373.94	40.93	40.93	0.00	5333.01			
SHS-13	5367.81	37.45	37.45	0.00	5330.36			
SHS-14	5367.07	41.10	41.10	0.00	5325.97			
SHS-15	5366.21	35.86	35.46	0.40	5331.07			
SHS-16	5362.58	32.36	32.36	0.00	5330.22			
SHS-17	5364.35	34.21	24.21	10.00	5348.14			
SHS-18	5373.64	41.40	41.40	0.00	5332.24			
SHS-19	5378.89	50.62	50.62	0.00	5328.27			

عدهقا

11

1

TA

THEFT

. 1

		Bloomfie Quarterly Poter	ing Company d Refinery tiometric Surface 2005	•	
Well #	Wellhead	Depth to	Depth to	Product	Adjusted
	Elevation (ft)	Water (ft)	Product (ft)	Thickness (ft)	WSEL* (ft)

Table 3.4 Giant Refining Company Bloomfield Refinery Quarterly Potentiometric Surface October 2005						
Well #	Wellhead Elevation (ft)	Depth to Water (ft)	Depth to Product (ft)	Product Thickness (ft)	Adjusted WSEL* (ft)	
GRW-1	5394.30	59.50	59.50	0.00	5334.80	
GRW-2	5391.28	49.45	49.45	0.00	5341.83	
GRW-3	5388.77	53.80	53.80	0.00	5334.97	
GRW-4	5390.02	59.20	59.20	0.00	5330.82	
GRW-5	5390.56	67.04	67.04	0.00	5323.52	
GRW-6	5390.81	43.82	43.82	0.00	5346.99	
GRW-10	5395.02	56.64	56.60	0.04	5338.41	
GRW-11	5397.85	59.07	59.07	0.00	5338.78	
GRW-12	5397.24	water below pump	water below pump	NA	NA	
GRW-13	5396.90	56.52	56.52	0.00	5340.38	
GBR-5	5395.07	30.50	30.50	0.00	5364.57	
GBR-6	5395.70	52.27	52.27	0.00	5343.43	
GBR-7	5395.85	31.83	31.83	0.00	5364.02	
GBR-8	5390.50	43.17	43.17	0.00	5347.33	
GBR-9	5389.92	47.87	47.87	0.00	5342.05	
GBR-10	5390.57	42.50	42.50	0.00	5348.07	
GBR-11	5389.43	43.15	43.15	0.00	5346.28	
GBR-13	5393.04	43.73	43.73	0.00	5349.31	
GBR-15	5397.99	40.56	40.56	0.00	5357.43	
GBR-18	5421.68	36.20	36.20	0.00	5385.48	
GBR-19**	5393.13	42.83	42.83	0.00	5350.30	
GBR-20	5393.47	39.25	39.25	0.00	5354.22	
GBR-21S	5400.65	25.60	25.60	0.00	5375.05	
GBR-21D	5400.19	40.79	40.79	0.00	5359.40	
GBR-22	5395.91	DRY	DRY	NA	NA	
GBR-23	5403.72	29.52	29.52	0.00	5374.20	
GBR-24S	5396.08	32.78	32.78	0.00	5363.30	
GBR-24D	5396.77	34.17	34.17	0.00	5362.60	
GBR-25	5396.72	37.44	37.44	0.00	5359.28	

1 1 1 1

.

Thi

11

Table 3.4 Giant Refining Company Bloomfield Refinery Quarterly Potentiometric Surface October 2005						
Well #	Wellhead	Depth to	Depth to	Product	Adjusted	
	Elevation (ft)	Water (ft)	Product (ft)	Thickness (ft)	WSEL* (ft)	
GBR-26	5395.59	37.60	37.60	0.00	5357.99	
GBR-30	5396.58	35.78	35.78	0.00	5360.80	
GBR-31**	5393.69	37.10	37.10	0.00	5356.59	
GBR-33†	5396.28	38.72	38.72	0.00	5357.56	
GBR-34	5394.00	38.42	38.42	0.00	5355.58	
GBR-35	5393.66	38.75	38.75	0.00	5354.91	
GBR-39	5397.55	40.00	40.00	0.00	5357.55	
GBR-40	5400.76	32.88	32.88	0.00	5367.88	
GBR-41	5396.35	29.85	29.85	0.00	5366.50	
GBR-51	5389.68	43.83	43.83	0.00	5345.85	
GBR-52	5387.74	42.38	42.38	0.00	5345.36	
SHS-1	5383.54	40.75	40.75	0.00	5342.79	
SHS-2	5381.66	36.95	36.95	0.00	5344.71	
SHS-3	5383.33	cannot access	cannot access	NA	NA	
SHS-4	5383.62	43.00	43.00	0.00	5340.62	
SHS-5	5378.36	39.89	39.89	0.00	5338.47	
SHS-6	5378.17	40.12	40.12	0.00	5338.05	
SHS-8	5380.25	40.54	40.54	0.00	5339.71	
SHS-9	5380.79	40.84	40.84	0.00	5339.95	
SHS-10	5373.80	37.65	37.65	0.00	5336.15	
SHS-12	5373.94	41.04	41.04	0.00	5332.90	
SHS-13	5367.81	97.56	97.56	0.00	5330.20	
SHS-14	5367.07	43.05	43.05	0.00	5324.02	
SHS-15	5366.21	34.90	34.90	0.00	5331.31	
SHS-16	5362.58	32.45	32.45	0.00	5330.13	
SHS-17	5364.35	34.32	34.32	0.00	5330.03	
SHS-18	5373.64	41.30	41.30	0.00	5332.34	
SHS-19	5378.89	43.00	43.00	0.00	5335.89	

*WSEL = Water Surface Elevation Adjusted for Product Depth

 ****** Wellhead elevations have been corrected after road construction.

† Wellhead elevation has not been corrected after road construction.

		TABLE 3.5		
	0	Fiant Refining Co		
		Bloomfield Refi	nery	
		2005 Product L	evels	
Well #	Product Level (ft)	Product Level (ft)	Product Level (ft)	Product Level (ft)
	Apr 2005	July 2005	October 2005	January 2006
GBR-10	0	0	0	0

1

1. 19

TABLE 3.5 Giant Refining Company Bloomfield Refinery 2005 Product Levels					
GBR-7	0	0	0	0	
GBR-11	0	0	0	0	
GBR-13	0	0	0	0	
GBR-19	NO ACCESS	NO ACCESS	NO ACCESS	0.38	
GBR-20	0	0	0	0	
GBR-23	0	0	0	0	
GBR-21S	0	0	0	0	
GBR-21D	0	0	0	0	
GBR-24D	0	0	0	0	
GBR-24S	0	0	0	0	
GBR-25	0	0.05	0.03	0	
GBR-34	0.01	0	0	0.03	
GBR-35	0.07	0	0	0.03	
SHS-1	0	0	0	0	
SHS-8	0	0	0	0	

معقالية مناحك كمستقنية فنافعتهم تقريب فألقد فللمقال

and the second

Statement of the local division of the local

Th

الحر ر

1

1116

11 H

4.0 TOTAL VOLUME HISTORY

Section 4 illustrates the volume of ground water managed for the year. Total volume pumped from each well, current tank volumes and the re-injection volume is reported. Tanks 21, 22, 101, and 106 are no longer in use for water storage.

TABLE 4.1 Giant Refining Company Bloomfield Refinery 2005 Tank Volume Change					
Tank Number	Beginning Volume (Gallons)	Ending Volume (Gallons)	Change (Gallons)		
102	14,984	11,670	3,314		
106	0	0	0		
21	0	0	0		
22	0	0	0		
	T	otal Net Volume Change:	3,314		

TABLE 4.2 Giant Refining Company Bloomfield Refinery 2005 Recovery Well Volume Tabulation				
Well	Jan-Jul	Jul-Dec	Total	
GRW-1	61,650	24,490	86,140	
GRW-2	27,880	19,190	47,070	
GRW-3	63,930	52,610	116,540	
GRW-4	61,310	36,110	97,420	
GRW-5	144,860	158,640	303,500	
GRW-6	43,490	44,020	87,510	
GRW-9	84,310	41,030	125,340	
GRW-10	1,552,450	1,245,700	2,798,150	
GRW-11	132,600	146,100	159,360	
GRW-12	960	20	980	
GRW-13	20,710	20,290	40,991	
SHS-9	7,883	1,591	9,494	
SHS-14	66,055	24,086	90,140	
SHS-18	3	932	935	
SHS-19	442,946	245,176	688,122	
	Total Volume Pum	ped in Gallons:	4,651,692	

TABLE 4.3 Giant Refining Company Bloomfield Refinery 2005 Total Volume Summary					
Total Volume of Water Recovered: Net Change in Storage Volume:	4,651,692 gallons 3,314 gallons				
Total Water Treated and Pumped to the Infiltration Gallery:	4,655,006 gallons				

in the

1 1 1 1

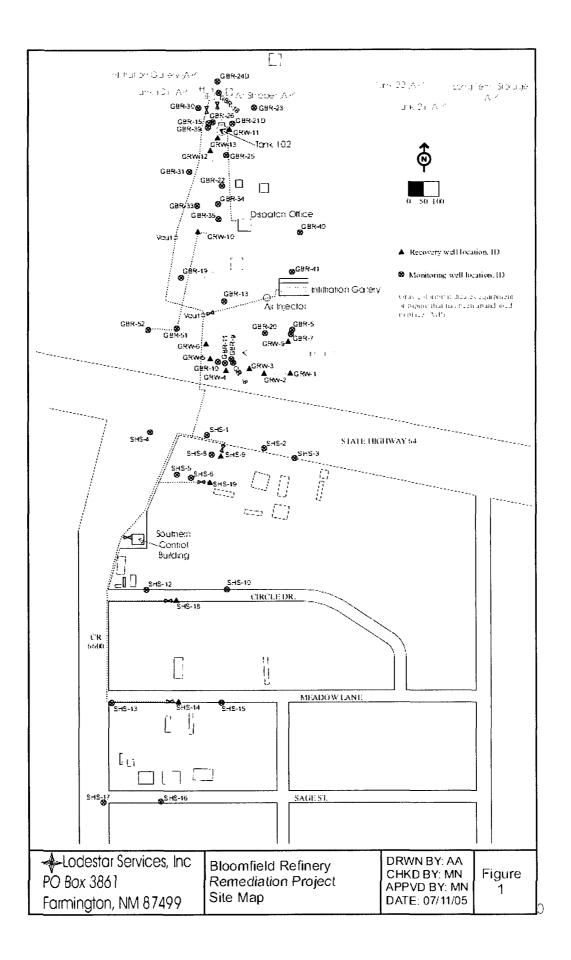
5.0 SAMPLE SCHEDULE

1911

COHT FIFT

GIANT INDUSTRIES, INC. BLOOMFIELD REFINERY SAMPLE SCHEDULE, Revised 04/2006

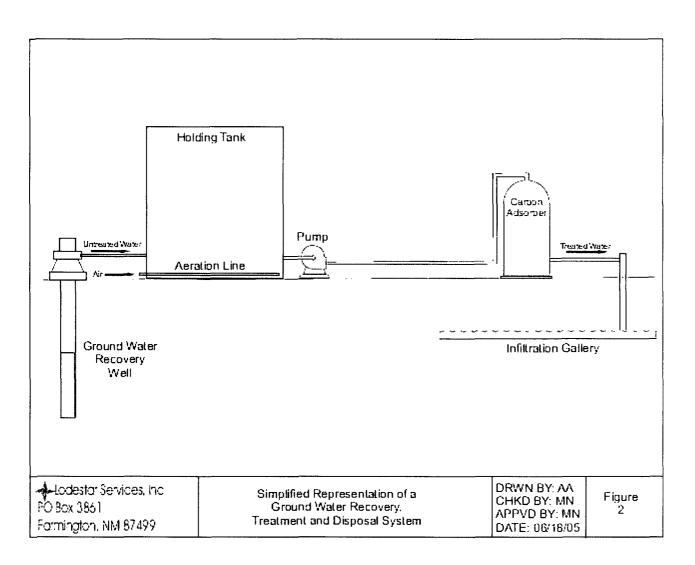
		<u></u>	SEMI-	
LOCATION	MONTHLY	QUARTERLY	ANNUALLY	ANNUALLY
System Influent		601	601	601
System mildent	·	602	602	602
		GWC	GWC	GWC
System Effluent		601	601	601
System Entuent		602	602	602
		GWC	GWC	GWC
		0.00	00	Metals
				PAH
GRW-3				601
ORW-5				602
				GWC
				PAH
GRW-6				601
				602
				GWC
	J .			РАН
GRW-13				
GBR-15				
GBR-17				601
				602
				GWC
				РАН
GBR-24D				601
UDIC-24D				602
				GWC
				PAH
GBR-30				601
OBR 50				602
				GWC
				PAH
GBR-31				601
				602
				GWC
				PAH
SHS-3			<u> </u>	
SHS-4				
SHS-6	1			
SHS-10			<u> </u>	
SHS-12				
SHS-12 SHS-13	-			
SHS-14	1			├ ───┤
SHS-15				
505-15	L			


0.2117

		······	SEMI-	
LOCATION	MONTHLY	QUARTERLY	ANNUALLY	ANNUALLY
SHS-16				
SHS-17				
SHS-7				601
				602
				GWC
SHS-9				
SHS-18				601
				602
				GWC
GBR-51				601
				602
				GWC
GBR-52				601
				602
				GWC
GBR-32				601
				602
				GWC
				Metals
GBR-48				601
				602
				GWC
				Metals
GBR-49				601
				602
				GWC
				Metals
GBR-50				601
				602
				GWC
				Metals

NOTES: All wells will have water and free product elevations determined on a quarterly basis. Wells exhibiting free product will not be sampled.

6.0 FIGURES


THE H

111.11

1.1

NARDE

~1T

VonGonten, Glenn, EMNRD

From:	VonGonten, Glenn, EMNRD
Sent:	Wednesday, December 27, 2006 4:50 PM
То:	'drichards@giant.com
Subject:	Discharge Permit GW040
Attachments:	Renewal WQCC Notice Regs.pdf; Discharge Plan App Form.pdf; Guidelines For Discharge Plans.pdf; PN Flow Chart.20.6.2renewal.pdf

GW 040

Dave,

Oil Conservation Division (OCD) records indicate that your discharge plan has expired. New Mexico Water Quality Control Commission regulations (WQCC) Section 3106.F (20.6.2.3106.F NMAC) specifies that if a discharger submits a discharge plan renewal application at least 120 days before the discharge plan expires and is in compliance with the approved plan, then the existing discharge plan will not expire until the application for renewal has been approved or disapproved. Our records indicate that Tim Kinney submitted an electronic discharge permit renewal application on October 11, 2005. However, Giant did not submit the required \$100 filling fee. Therefore, Giant is currently operating without a permit. Please submit a revised permit renewal application (hardcopy) with a filing fee (20.6.2.3114 NMAC) of \$100.00 by January 12, 2007. Please make all checks payable to the **Water Quality Management Fund** and addressed to the OCD Santa Fe Office. There is also a discharge plan permit fee, based on the type of facility, which OCD will assess after processing your application. An application form and guidance document is attached in order to assist in expediting this process.

In accordance with the public notice requirements (Subsection A of 20.6.2.3108 NMAC) of the newly revised (July 2006) WQCC regulations, "...to be deemed administratively complete, an application shall provide all of the information required by Paragraphs (1) through (5) of Subsection F of 20.6.2.3108 NMAC and shall indicate, for department approval, the proposed locations and newspaper for providing notice required by Paragraphs (1) through (4) of Subsection B or Paragraph (2) of Subsection C of 20.6.2.3108 NMAC." You are required to provide the information specified above in your permit renewal application submittal. Attached are a flow chart and the regulatory language pertaining to the new WQCC public notice requirements for your convenience. After the application is deemed administratively complete, the revised public notice requirements of 20.6.2.3108 NMAC must be satisfactory demonstrated to OCD. OCD will provide public notice pursuant to the revised WQCC notice requirements of 20.6.2.3108 NMAC to determine if there is any public interest.

Please contact me by phone at 505-476-3488 or email glenn.vongonten@state.nm.us if you have any questions regarding this matter.

Glenn von Gonten Senior Hydrologist

VonGonten, Glenn, EMNRD

From: Tim Kinney [takinney@giant.com]

Sent: Tuesday, October 11, 2005 3:28 PM

To: VonGonten, Glenn, EMNRD

Subject: Discharge Plan

Attachments: Tim Kinney (E-mail).vcf; Discharge Plan 101005.doc; Discharge Plan Application 1005.pdf

Attached is the plan application for the former refinery for your review. At what point do we send the fee and what is the amount due?

Tim Kinney

General Manager Giant Transportation (505)632-4001 takinney@giant.com

DISCLAIMER: The information contained in this e-mail message may be privileged, confidential and protected from disclosure. If you are not the intended recipient, any further disclosure, use, dissemination, distribution or copying of this message or any attachment is strictly prohibited. If you think you have received this e-mail message in error, please e-mail the sender at the above address and permanently delete the e-mail. Although this e-mail and any attachments are believed to be free of any virus or other defect that might affect any computer system into which they are received and opened, it is the responsibility of the recipient to ensure that they are virus free and no responsibility is accepted by Giant Industries, Inc. or its affiliates for any loss or damage arising in any way from their use.

144

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GWOHD Revised June 10, 2003

Submit Original Plus 1 Copy to Santa Fe 1 Copy to Appropriate District Office

DISCHARGE PLAN APPLICATION FOR SERVICE COMPANIES, GAS PLANTS, REFINERIES, COMPRESSOR, GEOTHERMAL FACILITES AND CRUDE OIL PUMP STATIONS

(Refer to the OCD Guidelines for assistance in completing the application)

	🗌 New 🛛 Renewal 🔲 Modification
1.	Type: <u>REFINERY</u> Susmittes VIA Email From
2.	Operator: Giant Industries, Inc. Tm. Kinwer @ 10/11/2005
	Address: 111 County Road 4990. Bloomfield, NM, 87413 FORMER BLOOMFIELD REFINEM
	Contact Person: Mr. Tim Kinney -7 DAVE RICHARD Phone: 505-632-8006
3. 4.	Location: <u>NW/4</u> <u>SW/4</u> Section <u>22 & 27</u> Township <u>29N</u> Range <u>12W</u> Submit large scale topographic map showing exact location . Attach the name, telephone number and address of the landowner of the facility site. <i>Section 2.0</i>
5. Sea	Attach the description of the facility with a diagram indicating location of fences, pits, dikes and tanks on the facility. <i>ctions 3.0 and 4.0, Figure 1 and Plate 1</i>
6.	Attach a description of all materials stored or used at the facility. Section 7.0.
7.	Attach a description of present sources of effluent and waste solids. Average quality and daily volume of waste water must be included. <i>Section 7.1.1</i> .
8.	Attach a description of current liquid and solid waste collection/treatment/disposal procedures. Section 7.0.
9.	Attach a description of proposed modifications to existing collection/treatment/disposal systems. Section 10.0
10.	Attach a routine inspection and maintenance plan to ensure permit compliance. Section 8.0.
11.	Attach a contingency plan for reporting and clean-up of spills or releases. Section 11.0.
	Attach geological/hydrological information for the facility. Depth to and quality of ground water must be included. <i>etion 5.0 and Appendix A.</i>
13.	Attach a facility closure plan, and other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders. <i>Section 13.0</i> .
	14. CERTIFICATIONI hereby certify that the information submitted with this application is true and correct to the pest of my knowledge and belief.
1	Name: _Tim Kinney Title:Refinery Remediation Project Manager
Ç	Signature: Date: _/0/10/05
I	E-mail Address: Takinnoy @ grant-com
	Dave RICHAMOS
	DRICHARDS OCIANT. COM (40)

Discharge Plan for the Former Giant Bloomfield Refinery

October 11, 2005

Prepared By: Lodestar Services, Incorporated PO Box 3861 Farmington, NM 87499-3861 Office (505) 334-2791

TABLE OF CONTENTS

1.0 INTRODUCTION	3
2.0 RESPONSIBLE PARTIES	3
3.0 LOCATION OF DISCHARGE AND FACILITY	3
4.0 FACILITY	3
5.0 SITE CHARACTERISTICS	4
5.1 Flooding Potential	4
6.0 WATER TREATMENT SYSTEM OVERVIEW	5
7.0 WATER TREATMENT SYSTEM EQUIPMENT AND OPERATION	6
 7.1 EFFLUENT	6 6 7 7 7
8.0 INSPECTION, MAINTENANCE AND REPORTING	7
9.0 SPILL AND LEAK PREVENTION AND MONITORING	
 9.1 Construction Materials 9.2 Safety and Shutdown Devices 9.3 Secondary Containment 9.4 Inspection 9.5 Security 	8 8 9
10.0 MODIFICATIONS TO THE TREATMENT SYSTEM	9
10.1 Abandoned Structures	9 9
11.0 EMERGENCY RESPONSE AND NOTIFICATION	9
12.0 REPORTING	10
13.0 CLOSURE PLAN	10
14.0 SAMPLE MATRIX	11
15.0 REFERENCES	14
FIGURES	15
APPENDIX A: 2004 ANNUAL DATA REPORT GIANT BLOOMFIELD REFINERY	24

1.0 Introduction

Giant Industries Arizona, Inc. proposes discharge of water derived from recovery wells at the inactive former Giant Bloomfield Refinery in San Juan County, New Mexico. The recovery wells were installed as part of a remedial action plan at the site. An annual discharge of approximately 5,000,000 gallons is expected, and the treated water will be discharged into infiltration trenches located within the site.

2.0 Responsible Parties

The landowner, operator and legally responsible party is Giant Industries:

Giant Industries Arizona, Inc. 23722 North Scottsdale Road Post Office Box 12999 Scottsdale, Arizona 85267 Phone: 602-585-8888

Correspondence regarding this discharge plan should be directed to the local representative, Mr. Timothy Kinney:

Timothy A. Kinney Remediation Project Manager Giant Refining Company 111 County Road 4990 Bloomfield, New Mexico 87413 Phone: 505-632-8006

3.0 Location of Discharge and Facility

The refinery is located in the NW ¼ of Section 27 and the SW ¼ of Section 22, Township 29 N, Range 12W in San Juan County, New Mexico. It is approximately 5 miles west of the town of Bloomfield, New Mexico. Plate 1 is attached and shows an aerial view of the refinery with significant landmarks noted.

4.0 Facility

The facility consists of the Giant Bloomfield Refinery and associated remedial equipment both within and south of the refinery boundary. The refinery operated from 1974 to 1982 and is presently inactive.

A remedial system was installed in stages beginning in 1988 and has gradually been simplified over time. The remediation was designed to treat ground water affected by various releases during operation of the former refinery and periodic spills at the truck unloading facility.

It consists of a series of ground water monitoring wells, ground water recovery wells, water treatment facilities and treated water infiltration trenches (Figure 1). These

facilities are located both north and south of Highway 64. The system processed approximately 4,873,917 gallons of water last year.

5.0 Site Characteristics

The refinery is located on weathered outcrops of Nacimiento Formation, which is comprised of shales, sandstones and siltstones of Cretaceous-Tertiary age. Immediately to the west of the refinery and on Giant's property is a large unnamed arroyo, which is underlain by 30 to 60 feet of Quaternary alluvial sediments (Plate 1). Older Quaternary terrace deposits of cobbles and boulders are observed on the interfluvial ridges adjacent to the arroyo. These terrace deposits may have been utilized as fill on the refinery site. The San Juan River Valley is located south of the site and contains up to several hundred feet of alluvial fill.

The uppermost zone of ground water in the refinery area is unconfined to partially confined water table unit, which is hosted by the weathered, locally porous sandstones and shales of the Nacimiento Formation and arroyo alluvium. These units merge hydrologically with the San Juan River alluvium to the south. Figure 2 is a generalized east-west cross section through the refinery site showing the relationship of the arroyo alluvium to bedrock. Major hydrogeologic features of the site are:

- An interconnected water table aquifer hosted by both valley and arroyo fill and the upper parts of the Nacimiento Formation;
- Ground water at a depth of 30 to 70 feet beneath the land surface;
- An upper water table surface generally conforming to topography, with ground water flow from north or northeast to south (towards the San Juan River) through the refinery area;
- Minor, local zones of perched ground water lying 5 to 10 feet above the water table.

Water levels and floating product thicknesses were measured in all wells on the refinery property during 2004. A record of these measurements in shown in Appendix A. A ground water contour map was prepared based on the static water levels of all the wells at the refinery (Figure 3). This map is representative of static conditions of the aquifer because pumping was not being done at the time. Where floating product was encountered, the product thickness has been multiplied by 0.8 and added to the measured water elevation. This calculation corrects for the difference in density between floating product and water.

5.1 Flooding Potential

The greatest threat to flooding of the refinery site are the San Juan River, which is located less than one mile south of the site, and the unnamed arroyo located within the site itself.

History suggests flooding potential of the San Juan River is small. From 1904 until 1976, only 23 flood events (on individual streams, not concurrent on all streams) have been recorded. According to a study conducted by the New Mexico Floodplain Managers Association (2003), previous floods of the San Juan River resulted from general

rainstorms, snowmelt augmented by rain, and from cloudburst storms. Rain floods usually occur during the months of September and October. This type of flood results from prolonged heavy rainfall over tributary areas and is characterized by high peak flows of moderate duration. Major floods (recurrence interval of 100 or more years) result from excessive snowmelt runoff generated in the watershed upstream from Bloomfield. Flood flows generated by snowmelt generally occur during the period from May through July. Snowmelt flooding is characterized by moderate peak flows, large volume and long duration, and marked diurnal fluctuation in flow. The refinery is elevated above the floodplain of the San Juan River, decreasing the chance of a river flood, such as the ones described above, from reaching the site.

The flooding potential of the arroyo is predicted to be low as well. Similar arroyos have been studied in detail near Farmington and are described as ephemeral in character, flowing only during periods of heavy rainfall (New Mexico Floodplain Managers Association, 2003). Furthermore, the arroyo's influence on the refinery site has been decreased due to the construction of a new highway located between the arroyo and the refinery.

6.0 Water Treatment System Overview

At the Giant Bloomfield Refinery, impacted ground water is pumped from the aquifer through a series of recovery wells located strategically within the plume. The water is collected in Storage Tank 102 and subsequently treated by carbon adsorption. The water is discharged into the aquifer through an infiltration trench. Figure 4 is a simplified diagram representation of ground water recovery, treatment and disposal.

Recovery wells are utilized to recover free-floating product and impacted ground water from the aquifer and to create a hydraulic barrier to prevent migration of the plume beyond the well. The hydraulic barrier is formed by pumping the recovery well and depressing the water table. Figure 5 illustrates the concept. If sufficient recovery wells are placed so that the radii of influence from adjacent wells overlap, a barrier can be formed across the plume to prevent migration.

Recovered water exhibiting dissolved phase and/or free phase hydrocarbons above New Mexico WQCC ground water regulatory levels require treatment to within applicable guidelines prior to discharge. The method of treatment used at the Giant Bloomfield Refinery is carbon adsorption, where recovered water is pumped into a carbon filtration tank. Inside, volatile and non-volatile organic compounds are adsorbed into a carbon matrix lining the tank.

Treated water is discharged to an infiltration trench located within the refinery. Infiltration trenches consist of subsurface distribution systems placed within gravel packs. Water infiltrates the surrounding strata and eventually makes its way to the aquifer. Figure 6 illustrates a typical infiltration gallery. The return of recovered water to the aquifer serves to recharge the aquifer.

7.0 Water Treatment System Equipment and Operation

Figure 4 illustrates the basic process of the treatment system. Water is pumped out of recovery wells and stored in Tank 102. The water is then pumped to a carbon adsorption unit where it is treated and discharged into an infiltration trench.

7.1 Effluent

The facility effluent consists of treated water. Effluent is derived from ground water, which is pumped from a series of recovery wells at each site. Up to 420,000 gallons of water may be treated and discharged per month. Appendix A shows the results of analytical work conducted in 2004 and is representative of effluent quality. General water chemistry, EPA 601, EPA 602 and PAH analysis are all shown. See Appendix A for sampling frequency, methods and procedures. Major variations in effluent volumes and quality are not expected.

7.1.1 Effluent Disposal

Effluent water is discharged into an infiltration trench within the refinery. Figure 6 shows details of typical trench construction. All water is treated prior to discharge. Effluent quality is monitored quarterly to verify compliance with WQCC standards. Treated effluent volumes are metered and reported. Approximately 4,873,917 gallons of treated water were discharged at the site last year.

7.2 Monitor Wells

Numerous monitor wells are located within and south of the refinery (Figure 1). Monitor wells within the refinery are identified by the acronym GBR (Giant Bloomfield Refinery) followed by a numerical designation. Monitor wells located south of the refinery are identified by the acronym SHS (Suburban Heights Subdivision) followed by a number. Each well is unique in construction and geology. Drill logs and completion diagrams for all wells have been submitted to the New Mexico Oil Conservation Division in previously submitted reports.

Appendix A contains sampling frequency and analytical requirements for applicable wells. Analytical results help determine the effectiveness and progress of remedial efforts. In addition to sampling, the water level in each well is determined quarterly. This information is tabulated and utilized to prepare potentiometric surface maps. Figure 3 is a potentiometric map for 2004 water levels. The contours on the map represent the elevation of surface of the ground water. The map is useful in determining direction of ground water flow and effectiveness of hydraulic control achieved by the recovery well system.

7.3 Recovery Wells

Recovery wells are an integral part of the containment and remediation system. Locations of recovery wells are shown in Figure 1. Recovery wells north of Highway 64 are identified by the acronym GRW (Giant Recovery Well) followed by a numerical designation. Recovery wells south of the highway are identified by SHS and a number. Water samples are collected and analyzed on a regular basis. Sampling frequency, methods and results are shown in Appendix A. Water volumes from each recovery well are metered. Metered water volumes, as well as water levels, indicate the effectiveness of the well pump and controls. Effort is made to maintain consistent pumping rates to maximize the effectiveness of the hydraulic containment barrier. There are solid filters in each recovery well enclosure and in the southern control building to control deposition of solid contaminants in the system. Each well employs a check valve.

7.4 Water Treatment

A carbon adsorption process is utilized for water treatment. All effluent is treated by carbon adsorption prior to discharge. This process removes contaminants from the ground water by forcing it through tanks containing activated carbon treated to attract the contaminants. Figure 7 details the carbon adsorption tank and associated piping used at the refinery.

7.4.1 Tank 102

Tank 102 acts an intermediate storage tank for the water treatment system. It has a capacity of 500 barrels or 21,000 gallons. The tank stores water before it is pumped to the carbon filtration unit for treatment. Piping and instrumentation associated with Tank 102 is illustrated in Figure 8. Water is pumped from Tank 102 to the carbon filtration unit by Pump #1, P1. Pump operation is based on the level of water in Tank 102. Level switches LS-1 and LS-2 are managed by the Control Panel, located in the old Dispatch Office, to determine the water level and consequently status of pumps. Level safety switches LSH-1 and LSL-1 indicate abnormally high or low water level conditions in Tank 102 and initiate control panel alarm and shutdown functions.

7.4.2 Control Panel

The Control Panel, located in the Dispatch Office, serves to monitor and control the operation of the treatment system, while providing alarm and shutdown functions to safeguard against spills and other undesirable events. Safety, alarm and shutdown functions are also initiated by the Control Panel. In the event of a power failure, the system will shut down. It will return to normal operations once power is restored.

7.4.3 Heat Tracing

Water pipes, which connect the On-Site and Off-Site systems, cross through a culvert under US Highway 64. The highway parallels the southern boundary of the refinery property (Figure 1). The exposed water piping is insulated and further protected from freezing by heat tracing.

8.0 Inspection, Maintenance and Reporting

Inspection, maintenance and reporting are an integral part of the remediation project. Inspection provides information critical to the safe and efficient operation of the system. Maintenance is key in the prevention of undesirable events and excessive downtime. Spills of untreated effluent are reported to the OCD office when the volume exceeds five barrels. Regular inspections are performed to assure safe and efficient operation. The system is monitored on a regular basis during the work week. Visual observations are made, leaks are reported, as are equipment malfunctions and the status of the control system. Observations are recorded in a bound field logbook with the date, time and person recording the information noted.

An inspection is made weekly in the control building at each tank, the southern area and each recovery well. All equipment is inspected for leaks and malfunctions. The operator is familiar with the location of underground lines and notes any surface indication of underground leaks. Leaks of any size are noted and repaired. Readings from all water meters are observed and recorded in the logbook regularly, and comparisons to previous readings are made. Abnormal meter readings can indicate problems within the system. On a quarterly basis, the level of water and product is determined for each well. This includes both monitoring and recovery wells. An electronic water/oil detection tape is used to determine levels. The data are recorded in a logbook.

Maintenance of the system includes replacement of filters in well houses, rotating equipment lubrication, air compressor oil changes, adding nutrients as necessary, listening for unusual pump and motor noise, inspecting the carbon pre-filter and repairing all equipment as required.

9.0 Spill and Leak Prevention and Monitoring

Leaks and spills are not likely; however, the potential does exist for these events. Tanks and piping are the most likely locations. Safeguards in place in the refinery include choice of construction materials, safety and shutdown devices, secondary containment, inspection and security.

9.1 Construction Materials

All piping is constructed of PVC or other hydrocarbon and corrosion resistant plastic. Material choices for valves and controls include plastic, stainless steel, bronze and cast iron. All are suitable for water and hydrocarbon service. Storage Tank 102 is constructed of steel.

9.2 Safety and Shutdown Devices

A microprocessor-based central control and safety shutdown panel monitors and shuts down the water treatment system based on the occurrence of abnormal conditions as indicated by equipment sensors. All storage tanks are equipped with high and low level liquid sensors to detect breaches or overfills.

9.3 Secondary Containment

Tank 102 has viable earthen secondary containment berms in place. The bermed area has a minimum liquid capacity of 1.5 times the total capacity of the tank contained within it. Berms are monitored and maintained to ensure effectiveness.

9.4 Inspection

Regular inspections are performed during the work week. These inspections include looking for visual indications of leaks, checking tank levels, recording and comparing meter readings and checking the condition of pump seals and motors. Unusual conditions are noted in the logbook and reported to the Project Manager.

9.5 Security

The facility is entirely fenced with chain link or barbed wire. Gates are locked and access is limited to facility personnel and supervised visitors and contractors.

10.0 Modifications to the Treatment System

The treatment system has been simplified since the previous discharge permit was issued. Other steps are being taken to further reduce the facilities in use on site.

10.1 Abandoned Structures

All tanks, with the exception of Tank 102, have been abandoned in place and are no longer in use at the facility. This includes the long term storage tanks, Tank 22, Tank 21, Tank 101 and Tank 106. The northern most infiltration gallery has been abandoned, as has the air stripper. Gravity separation no longer occurs in Tank 102 since product is not recovered from the wells.

10.2 Ground Water Wells

Giant Industries has requested approval from the OCD to plug and abandon nine ground water monitoring wells and one ground water recover well located down-gradient of the refinery. Giant understands that the OCD will not approve of this proposal. As an alternative Giant proposes to remove these wells from the sampling matrix and discontinue pumping well SHS-14 based on the number of clean reporting quarters as noted below.

Type of Well	Identification	Years of Monitoring Beneath Standards
Monitoring	SHS-3	7
Monitoring	SHS-4	8
Monitoring	SHS-6	8
Monitoring	SHS-10	8
Monitoring	SHS-12	8
Monitoring	SHS-13	8
Recovery	SHS-14	3
Monitoring	SHS-15	8
Monitoring	SHS-16	8
Monitoring	SHS-17	7

11.0 Emergency Response and Notification

In the event of an unplanned release of water or hydrocarbon at the facility, the Project Manager should be notified and act as the response coordinator. If the Project Manager is not available, the next person noted in the following list of alternates should be notified.

	Name	Office Phone	Cellular Phone
Project Manager	Tim Kinney	632-8006	320-0207
Environmental Technician	Jeany Overman	632-4018	330-6706
Transportation Safety Manager	Bill Robertson	632-4077	320-3415

If it is determined that the release is 5 barrels or greater, the OCD will be notified and a written report submitted.

Leaks occurring outside of tank containment berms should be contained or redirected so that they can be picked up by pumps or vacuum trucks and placed back in storage. In the event of a broken pipe, the leaking section should be isolated by closing necessary valves and shutting down pumps.

A red emergency shutdown button is located on the face of the control panel. Depressing the button shuts down all pumps and closes all air-operated valves. It should be used in case of emergency.

12.0 Reporting

A report of activities at the facility is prepared annually. The report includes an update of operations, analytical results, water levels, a potentiometric surface map, volume history and specific tracking.

13.0 Closure Plan

The OCD will be notified when operations at the facility are discontinued for a period in excess of six months. Prior to closure of the facility, a closure plan will be submitted for approval by the Director. Closure and waste disposal will be in accordance with the statutes, rules and regulations in effect at the time of closure.

14.0 Sample Matrix

GIANT INDUSTRIES, INC. BLOOMFIELD REFINERY

SAMPLE MATRIX Revised 10/10/05

			SEMI-	
LOCATION	MONTHLY	QUARTERLY	ANNUALLY	ANNUALLY
System Influent		601	601	601
		602	602	602
		GWC	GWC	GWC
System Effluent		601	601	601
		602	602	602
		GWC	GWC	GWC
				Metals
				PAH
GRW-3				601
				602
				GWC
				PAH
GRW-6				601
				602
				GWC
				РАН
GRW-13				
GBR-15				
GBR-17				601
				602
				GWC
				PAH
GBR-24D				601
				602
				GWC
				РАН
GBR-30				601
				602
				GWC
				PAH

			SEMI-	
LOCATION	MONTHLY	QUARTERLY	ANNUALLY	ANNUALLY
GBR-31				601
				602
				GWC
				PAH
SHS-3				
SHS-4				
SHS-6				
SHS-10				
SHS-12				
SHS-13				
SHS-14				
SHS-15				
SHS-16				
SHS-17				
SHS-7				601
				602
				GWC
SHS-9				

			SEMI-	
LOCATION	MONTHLY	QUARTERLY	ANNUALLY	ANNUALLY
SHS-18				601
				602
				GWC
GBR-51				601
				602
				GWC
GBR-52				601
				602
				GWC
GBR-32				601
				602
				GWC
				Metals
GBR-48				601
				602
				GWC
				Metals
GBR-49				601
				602
				GWC
				Metals
GBR-50				601
				602
				GWC
				Metals

NOTES: All wells will have water and free product elevations determined on a monthly basis.

Wells exhibiting free product will not be sampled.

11

1.1.1

THE TH

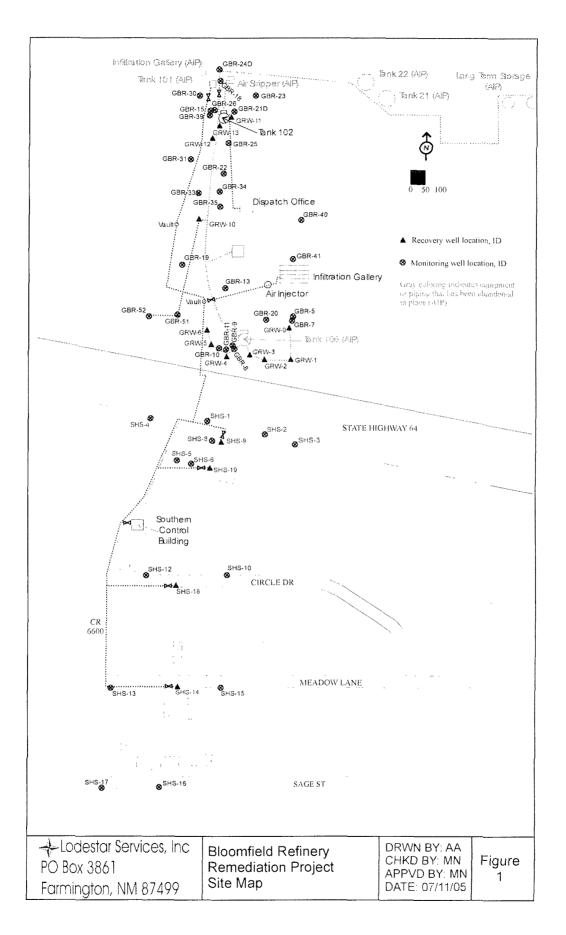
15.0 References

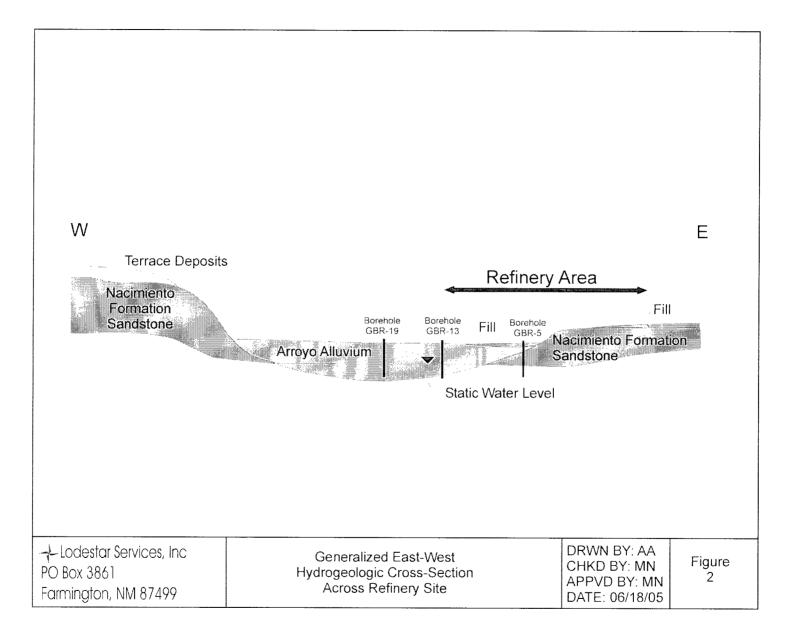
New Mexico Floodplain Managers Association, 2003, A History of Floods and Flood Problems in New Mexico, LA Bond Associates, High Rolls, New Mexico, 144 p.

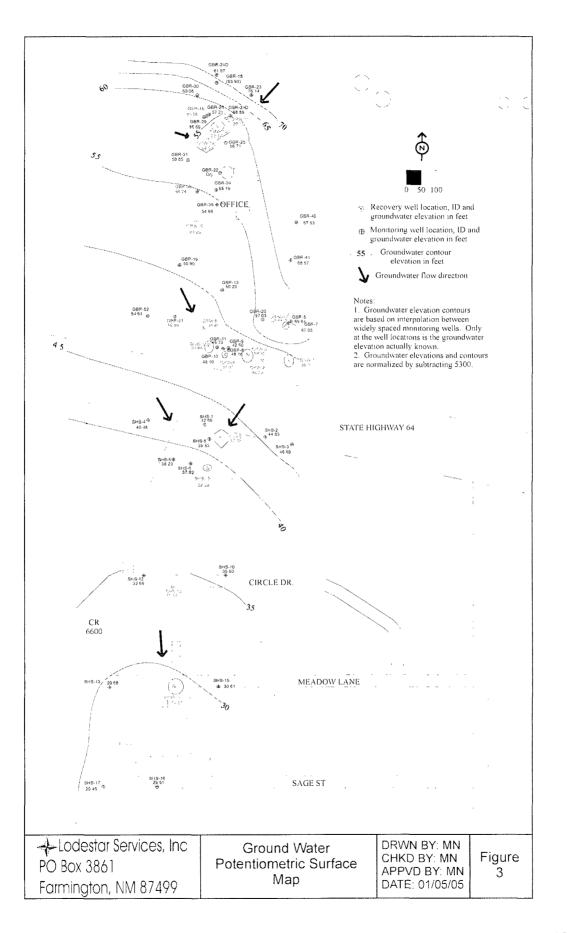
Figures

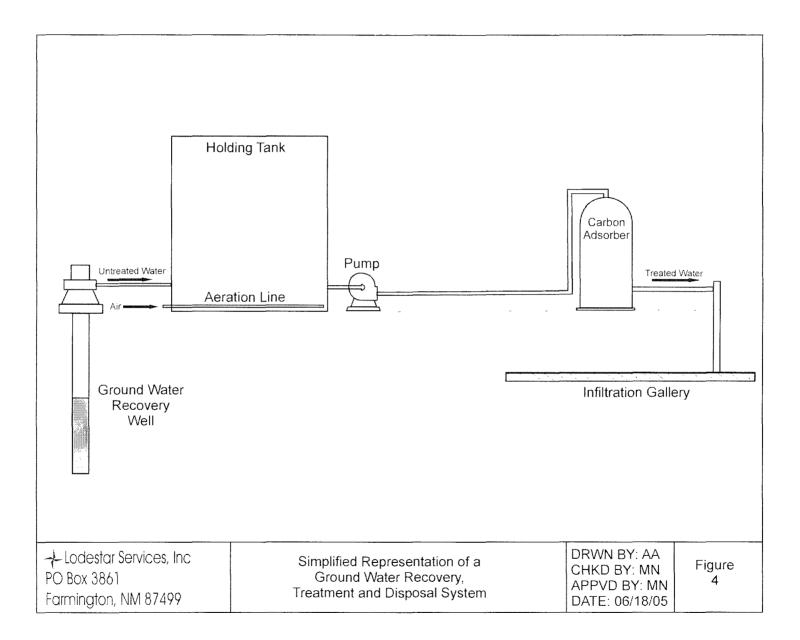
5

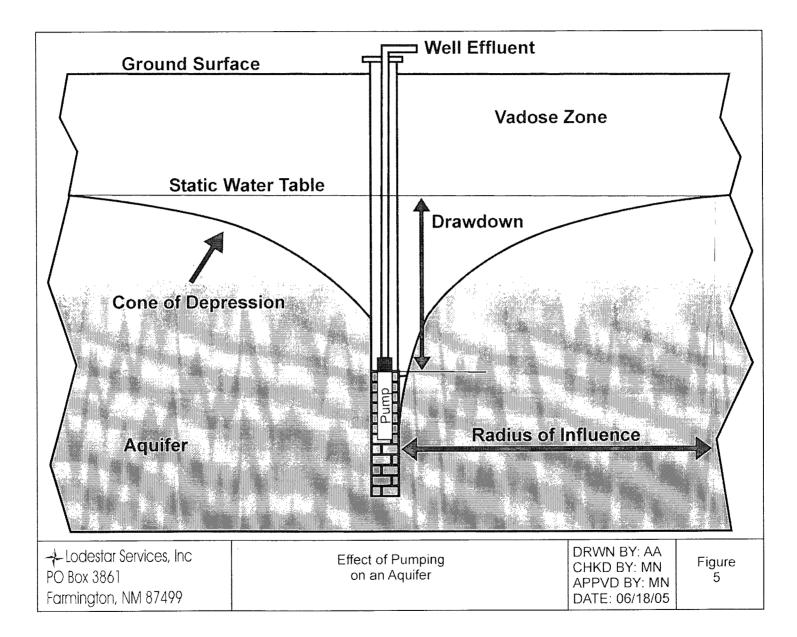
- 6

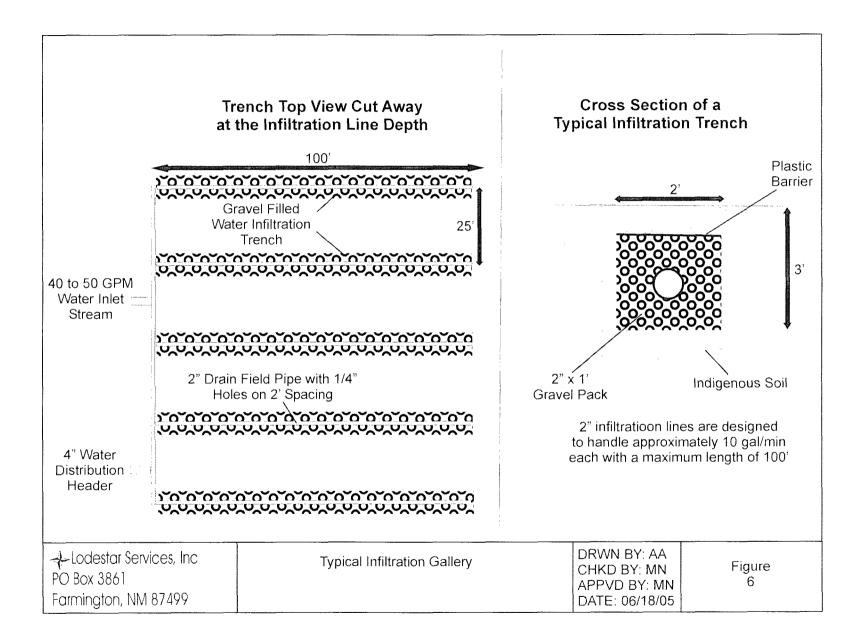

.....

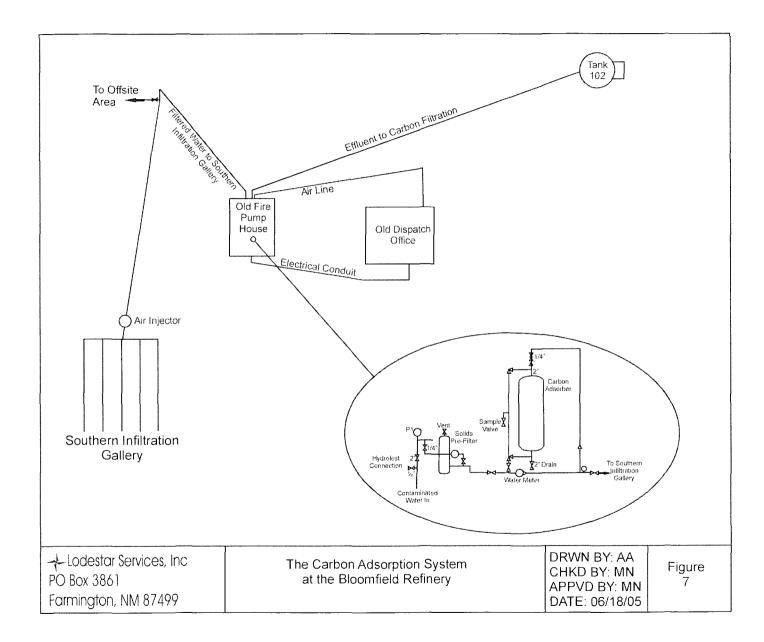

5.55.56

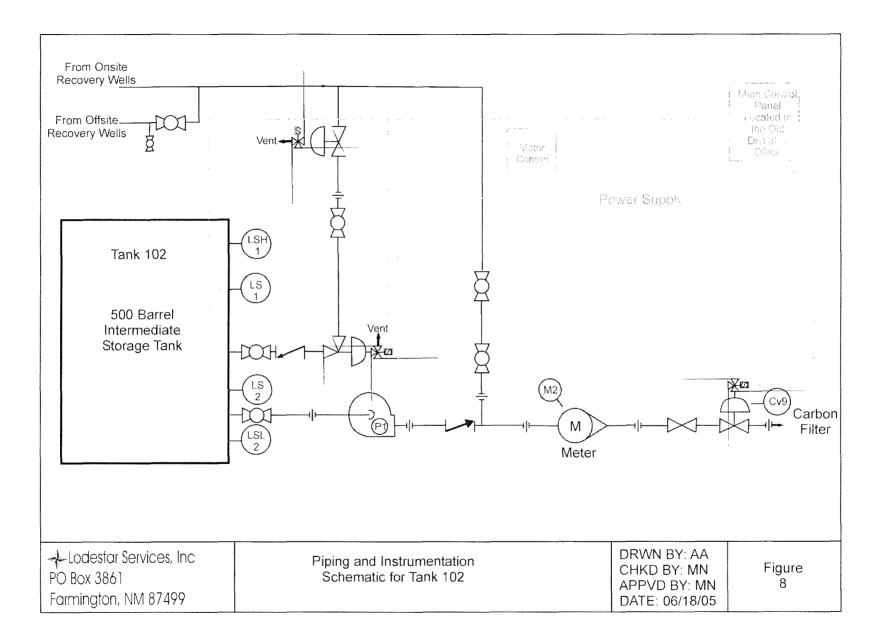

11 74 13


CL 7


1.1.11







Appendix A: 2004 Annual Data Report Giant Bloomfield Refinery February 1, 2005

Mr. Roger Anderson Bureau Chief New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87504

Dear Mr. Anderson:

Enclosed you will find the annual report for Giant Refining Company's Bloomfield Refinery for 2004.

111

Please contact me if you have any questions.

Sincerely,

Tim Kinney Remediation Project Manager

/dm

Enclosure

cc w/enc.: Luke Wethers-Giant David Kirby-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD

TITE

1 1 2

ANNUAL DATA REPORT

GIANT BLOOMFIELD REFINERY

2004

Prepared By:

GIANT REFINING COMPANY 111 County Road 4990 Bloomfield, NM 87413 (505) 632-8006 FAX (505) 632-4021

TABLE OF CONTENTS

i

Introduction and Summary	Section 1
Annual Analytical Results	Section 2
Potentiometric Surface Maps	Section 3
Total Volume History	Section 4

11

111

1111

u tilu

11511

-

111

111

11

i na interior

INTRODUCTION AND SUMMARY ANNUAL REPORT 2004

INTRODUCTION

Tank 22 is being used for intermediate water storage. All water is treated by the carbon filter unit exclusively. All water was discharged into the southern infiltration field in 2004.

SUMMARY

Section 2

Section 2 contains a summary of the annual analytical results. Raw data, as received from the laboratory, is available on request as a supplement to the annual report.

Section 3

Potentiometric surface maps, as well as the adjusted water surface elevation and product thickness for each well, are included in Section 3.

Section 4

Section 4 illustrates the volume history for the year. Total volume pumped from each well, as well as current tank volumes and the reinjection volume, is reported. Tanks 21, 22, and 106 are no longer in use for water storage.

SECTION 2

The following pages show the annual analytical data for the Giant Refining Remediation Project. The data is broken down into units as described below.

	Unit of
	<u>Measure</u>
Total dissolved solids (180)	mg/l
Total dissolved solids (calc)	mg/l
Total alkalinity as CaCO3	mg/l
Total hardness as CaCO3	mg/l
Bicarbonate as HCO3	mg/l
Carbonate as CO3	mg/l
Chloride	mg/l
Sulfate	mg/l
Calcium	mg/l
Magnesium	mg/l
Potassium	mg/l
Sodium	mg/l

The remainder of the data is measured in ug/l.

2.0

- 1 i

ETF.

GIANT INDUSTRIES, INC. ONSITE REMEDIATION PROJECT ANNUAL ANALYTICAL DATA SUMMARY 2004

	JAN	APR	JUL	OCT	DEC
SYSTEM EFFLUENT					
Lab pH	7.6	7.3	7.3	7.3	
Lab Conductivity@25C	2800	2900	2700	3200	
Total Dissolved Solids (Calc)	2100	2300	2200	2500	
Total Alkalinity as CaCO3	490	430	450	310	
Total Hardness as CaCO3	730	780	790	880	
Bicarbonate as HCO3	490	430	450	310	
Carbonate as CO3	5.0	nd	1.0	1.0	
Hydroxide	nd	nd	nd	nd	
Chloride	92	92	87	90	
Sulfate	1100	1200	1100	1300	
Calcium	250	260	270	310	
Magnesium	26	25	28	29	
Potassium	3.4	3.5	3.5	4.2	
Sodium	430	460	410	390	
HALOCARBONS					
Bromodichloromethane	nd	nd	nd	nd	
Bromoform	nd	nd	nd	nd	
Bromomethane	nd	nd	nd	nd	
Carbon Tetrachloride	nd	nd	nd	nd	
Chloroethane	nd	nd	nd	nd	
Chloroform	nd	nd	nd	nd	
Chloromethane	nd	nd	nd	nd	
Dibromochloromethane	nd	nd	nd	nd	
1,2-Dibromomethane (EDB)	nd	nd	nd	nd	·····
1,2-Dichlorobenzene	nd	nd	nd	nd	
1,3-Dichlorobenzene	nd	nd	nd	nd	<u></u>
1,4-Dichlorobenzene	nd	nd	nd	nd	
1,1-Dichloroethane	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	nd	nd	nd	nd	
1,1-Dichoroethene	nd	nd	nd	nd	
cis-1,-Dichloroethene					
trans-1,2-Dichloroethene	nd	nd	nd	nd	
1,2-Dichloropropane	nd	nd	nd	nd	
cis-1,-Dichloropropene	nd	nd	nd	nd	
trans-1,2-Dichloropropene	nd	nd	nd	nd	
Methylene Chloride	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	nd	nd	nd	nd	

	JAN	APR	JUL	OCT	DEC
Tetrachloroethane	nd	nd	nd	nd	
1,1,1-Trichloroethane	nd	nd	nd	nd	
1,1,2-Trichloroethane	nd	nd	nd	nd	
Trichloroethene	nd	nd	nd	nd	
Trichlorofluoromethane	nd	nd	nd	nd	
Vinyl Chloride	nd	nd	nd	nd	
AROMATICS					
Benzene	nd	nd	nd	nd	
Chlorobenzene	nd	nd	nd	nd	
1,2-Dichlorobenzene	nd	nd	nd	nd	
1,3-Dichlorobenzene	nd	nd	nd	nd	
1,4-Dichlorobenzene	nd	nd	nd	nd	
Ethylbenzene	nd	nd	nd	nd	
Methyl-t-Butyl Ether	nd	nd	nd	nd	
Toluene	nd	nd	nd	nd	
Total Xylenes	nd	nd	nd	nd	
РАН					
1-Methylnapthalene	nd				
2-Methylnapthalene	nd				
Benzo(a)pyrene	nd				
Napthalene	nd				
METALS (mg/l)					
Antimony	nd		_		
Arsenic	nd				
Beryllium	nd				
Cadmium	nd				
Chromium	nd				
Copper Lead	nd				
	nd				
Nickel Selenium	0.016				
Silver	nd				
Thallium	nd				
Zinc	nd				
Mercury	nd				· · · · · · · · · · · · · · · · · · ·
Wiercury	nd				
SYSTEM INFLUENT					
Lab pH	7.6	7.3	7.5	7.3	
Lab Conductivity@25C	2800	2900	2700	3200	
Total Dissolved Solids (Calc)	2300	2300	2200	2500	
Total Alkalinity as CaCO3	480	430	450	310	···

1 6

~ rf

~ i

11

~ P~

	JAN	APR	JUL	OCT	DEC
Total Hardness as CaCO3	720	710	780	900	
Bicarbonate as HCO3	480	430	450	310	
Carbonate as CO3	2.0	nd	1.0	nd	
Hydroxide	nd	nd	nd	nd	
Chloride	92	92	88	90	
Sulfate	1000	1200	1100	1300	
Calcium	250	260	270	310	
Magnesium	25	25	27	29	
Potassium	3.3	3.6	3.4	4.2	
Sodium	430	440	410	390	
HALOCARBONS					
Bromodichloromethane	nd	nd	nd	nd	
Bromoform	nd	nd	nd	nd	
Bromomethane	nd	nd	nd	nd	
Carbon Tetrachloride	nd	nd	nd	nd	
Chloroethane	nd	nd	nd	nd	
Chloroform	nd	nd	nd	nd	
Chloromethane	nd	nd	nd	nd	
Dibromochloromethane	nd	nd	nd	nd	
1,2-Dibromomethane (EDB)	nd	nd	nd	nd	
1,2-Dichlorobenzene	nd	nd	nd	nd	
1,3-Dichlorobenzene	nd	nd	nd	nd	
1,4-Dichlorobenzene	nd	nd	nd	nd	
1,1-Dichloroethane	nd	nd	nd	nd	••••
1,2-Dichloroethane (EDC)	nd	nd	nd	nd	
1,1-Dichoroethene	nd	nd	nd	nd	
trans-1,2-Dichloroethene	nd	nd	nd	nd	
1,2-Dichloropropane	nd	nd	nd	nd	
cis-1,-Dichloropropene	nd	nd	nd	nd	
trans-1,2-Dichloropropene	nd	nd	nd	nd	
Methylene Chloride	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	nd	nd	nd	nd	
Tetrachloroethane	nd	nd	nd	nd	
1,1,1-Trichloroethane	nd	nd	nd	nd	
1,1,2-Trichloroethane	nd	nd	nd	nd	· · ·
Trichloroethene	nd	nd	nd	nd	
Trichlorofluoromethane	nd	nd	nd	nd	
Vinyl Chloride	nd	nd		nd	
v myr Chloride		IU	nd		
AROMATICS					
Benzene	nd	nd	nd	nd	
Chlorobenzene	nd	nd	nd	nd	
1,2-Dichlorobenzene	nd	nd	nd	nd	

	JAN	APR	JUL	OCT	DEC
1,3-Dichlorobenzene	nd	nd	nd	nd	
1,4-Dichlorobenzene	nd	nd	nd	nd	
Ethylbenzene	nd	nd	nd	nd	
Methyl-t-Butyl Ether	nd	nd	nd	nd	
Toluene	nd	nd	nd	nd	
Total Xylenes	nd	nd	nd	nd	
<u>GRW-3</u>					
Lab pH	7.7				
Lab Conductivity@25C	4300				
Total Dissolved Solids (Calc)	3700				
Total Alkalinity as CaCO3	160				
Total Hardness as CaCO3	1100				
Bicarbonate as HCO3	160				
Carbonate as CO3	nd				
Hydroxide	nd				
Chloride	27				
Sulfate	2500				
Calcium	400				
Magnesium	19				
Potassium	9.1				
Sodium	740				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				- h
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				

the second s

111 11 11

- H

ŧ

	JAN	APR	JUL	OCT	DEC
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				_
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				-
1,2-Dichlorobenzene	nd			· · · · · · · · · · · · · · · · · · ·	
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
			,		
РАН		······			
1-Methylnapthalene	nd				
2-Methylnapthalene	nd				
Benzo(a)pyrene	nd				
Napthalene	nd				
·					
<u>GRW-6</u>					
Lab pH	7.7				
Lab Conductivity@25C	2300				
Total Dissolved Solids (Calc)	1500				
Total Alkalinity as CaCO3	720				
Total Hardness as CaCO3	410				
Bicarbonate as HCO3	720				
Carbonate as CO3	3.0			•	
Hydroxide	nd				
Chloride	110				
Sulfate	410			P 08 18	
Calcium	130				
Magnesium	22				
Potassium	1.8				
Sodium	430				
HALOCARBONS					
Bromodichloromethane	nd				
Diomodicitorioneutalle	nd			······	

	JAN	APR	JUL	ОСТ	DEC
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
РАН					
1-Methylnapthalene	nd				
2-Methylnapthalene	nd				
Benzo(a)pyrene	nd				
Napthalene	nd				
<u>GBR-17</u>					

. H

TIT

11

11

THE REPORT

THE REPORT

THE H

1 . 1

" T '

	JAN	APR	JUL	ОСТ	DEC
Lab pH]		6.4
Lab Conductivity@25C					2300
Total Dissolved Solids (Calc)					2000
Total Alkalinity as CaCO3			-		280
Total Hardness as CaCO3					990
Bicarbonate as HCO3					280
Carbonate as CO3					nd
Hydroxide					nd
Chloride					50
Sulfate					1100
Calcium					340
Magnesium					33
Potassium					7.2
Sodium					280
HALOCARBONS					
Bromodichloromethane					nd
Bromoform					nd
Bromomethane					nd
Carbon Tetrachloride					nd
Chloroethane					nd
Chloroform					nd
Chloromethane					nd
Dibromochloromethane					nd
1,2-Dibromomethane (EDB)	···-				nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
1,1-Dichloroethane					nd
1,2-Dichloroethane (EDC)	·				nd
1,1-Dichoroethene					nd
trans-1,2-Dichloroethene					nd
1,2-Dichloropropane					nd
cis-1,-Dichloropropene					nd
trans-1,2-Dichloropropene					nd
Methylene Chloride					nd
1,1,2,2-Tetrachloroethane					nd
Tetrachloroethane					nd
1,1,1-Trichloroethane					nd
1,1,2-Trichloroethane					nd
Trichloroethene					nd
Trichlorofluoromethane					nd
Vinyl Chloride					nd

ł

	JAN	APR	JUL	OCT _	DEC
AROMATICS					
Benzene					nd
Chlorobenzene					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
Ethylbenzene					nd
Methyl-t-Butyl Ether					nd
Toluene					nd
Total Xylenes					nd
<u>GBR-24D</u>					
Lab pH	7.6				
Lab Conductivity@25C	4300				
Total Dissolved Solids (Calc)	3400				
Total Alkalinity as CaCO3	230				
Total Hardness as CaCO3	1400				
Bicarbonate as HCO3	230				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	20	<u></u>			
Sulfate	2000				
Calcium	480	· · · · · · · · · · · · · · · · · · ·			
Magnesium	47				
Potassium	12				
Sodium	620				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	19				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				

1.2-Dichloropropene nd itras-1.2-Dichloropropene nd Methylene Chloride nd 1.1.2.2-Tetrachloroethane nd 1.1.1.2-Trichloroethane nd 1.1.1.2-Trichloroethane nd 1.1.1-Trichloroethane nd 1.1.1-Trichloroethane nd 1.1.2-Trichloroethane nd Trichloroethane nd MROMATICS		JAN	APR	JUL	OCT	DEC
trans-1,2-Dichloropropene nd Methylene Chloride nd 1,1,2.2-Tetrachloroethane nd Tetrachloroethane nd 1,1,1-Trichloroethane nd 1,1,2-Trichloroethane nd Trichloroethane nd Trichloroethane nd Mathyle nd Trichloroethane nd Vinyl Chloride nd AROMATICS Benzene nd 1,2-Dichlorobenzene nd 1,3-Dichlorobenzene nd 1,4-Dichlorobenzene nd Methyl-t-Butyl Ether nd Methyl-t-Butyl Ether nd Total Xylenes nd PAH 1-Methylnapthalene nd Mathylexet nd State GBR-30 Carbonate as CAC3 1.0 Total Akalimity as CaC03 2.40 Total Hardness as CaC03 1.0 Hydroxide nd Carbonate as CO3 1.0 Hydroxide nd <td></td> <td>nd</td> <td></td> <td></td> <td></td> <td></td>		nd				
Methylene Chloride nd 1,1,2,2-Tetrachloroethane nd Tetrachloroethane nd 1,1,1-Trichloroethane nd 1,1,2-Trichloroethane nd Trichloroethane nd Trichloroethane nd Trichloroethane nd Winyl Chloride nd AROMATICS	cis-1,-Dichloropropene	nd				
1,1,2,2-Tetrachloroethane nd Tetrachloroethane nd 1,1,1-Trichloroethane nd 1,1,2-Trichloroethane nd Trichloroethane nd Trichloroethane nd Trichloroethane nd March nd AROMATICS		nd				
Tetrachloroethane nd 1,1,1-Trichloroethane nd 1,1,2-Trichloroethane nd Trichloroethane nd Trichloroethane nd Trichloroethane nd Winyl Chloride nd AROMATICS	Methylene Chloride	nd				
1,1,1-Trichloroethane nd 1,1,2-Trichloroethane nd Trichloroethane nd Trichloroethane nd Winyl Chloride nd AROMATICS		nd				
1,1,2-Trichloroethane nd Trichloroethane nd Trichlorofluoromethane nd Vinyl Chloride nd AROMATICS	Tetrachloroethane	nd				
Trichloroethene nd Trichlorofluoromethane nd Vinyl Chloride nd AROMATICS	1,1,1-Trichloroethane	nd				
Trichlorofluoromethane nd Vinyl Chloride nd AROMATICS	1,1,2-Trichloroethane	nd				
Vinyl ChloridendAROMATICS	Trichloroethene	nd				
AROMATICS Image: state of the state o	Trichlorofluoromethane	nd				
BenzenendChlorobenzenend1,2-Dichlorobenzenend1,3-Dichlorobenzenend1,4-DichlorobenzenendEthylbenzenendMethyl-t-Butyl EtherndTotuenendTotal XylenesndPAH	Vinyl Chloride	nd				
BenzenendChlorobenzenend1,2-Dichlorobenzenend1,3-Dichlorobenzenend1,4-DichlorobenzenendEthylbenzenendMethyl-t-Butyl EtherndTotuenendTotal XylenesndPAH						
Chlorobenzenend1,2-Dichlorobenzenend1,3-Dichlorobenzenend1,4-Dichlorobenzenend1,4-DichlorobenzenendChloribenzenendMethyl-t-Butyl EtherndNathyl tablenzenendToluenendTotal XylenesndPAHImage: Constraint of the state of t	AROMATICS				-	
1,2-Dichlorobenzenend1,3-Dichlorobenzenend1,4-DichlorobenzenendEthylbenzenendMethyl-t-Butyl EtherndToluenendTotal XylenesndPAH1-Methylnapthalenend2-MethylnapthalenendBenzo(a)pyrenendMathalenendMapthalenendCBR-30Cabe Conductivity@25C4500Total Alkalinity as CaC03240Total Hardness as CaC031500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44	Benzene	nd				
1,3-Dichlorobenzenend1,4-DichlorobenzenendEthylbenzenendMethyl-t-Butyl EtherndToluenendTotal XylenesndPAHImage: State S	Chlorobenzene	nd				
1,4-DichlorobenzenendEthylbenzenendMethyl-t-Butyl EtherndToluenendTotal XylenesndPAH	1,2-Dichlorobenzene	nd				
EthylbenzenendMethyl-t-Butyl EtherndToluenendTotal XylenesndPAH1-Methylnapthalenend2-MethylnapthalenendBenzo(a)pyrenendMapthalenendGBR-30Lab pH7.0Lab pH7.0Total Nasolved Solids (Cale)3500Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44	1,3-Dichlorobenzene	nd				
Methyl-t-Butyl EtherndToluenendTotal XylenesndTotal XylenesndPAH1-Methylnapthalenend2-MethylnapthalenendBenzo(a)pyrenendMapthalenendCBR-30Lab pH7.0Lab pH7.0Total Alkalinity as CaCO3240Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44	1,4-Dichlorobenzene	nd		-		
ToluenendTotal XylenesndPAH1-Methylnapthalenend2-MethylnapthalenendBenzo(a)pyrenendMapthalenendMapthalenendCBR-30Cab Conductivity@25C4500Total Dissolved Solids (Cale)3500Total Alkalinity as CaCO3240Carbonate as HCO3240Carbonate as HCO3240Chloride110HydroxidendChloride410Sulfate2000Calcium510Magnesium44	Ethylbenzene	nd				
Total XylenesndPAH	Methyl-t-Butyl Ether	nd			-	
PAHImage: constraint of the second secon	Toluene	nd				
1-Methylnapthalenend2-MethylnapthalenendBenzo(a)pyrenendMapthalenendNapthalenendGBR-30Image: Constraint of the second seco	Total Xylenes	nd				
1-Methylnapthalenend2-MethylnapthalenendBenzo(a)pyrenendMapthalenendNapthalenendGBR-30Image: Constraint of the second seco						
2-MethylnapthalenendBenzo(a)pyrenendNapthalenendNapthalenendGBR-30Image: Constraint of the second se	РАН					
2-MethylnapthalenendBenzo(a)pyrenendNapthalenendNapthalenendGBR-30Image: Constraint of the second se	1-Methylnapthalene	nd	··· · · · · · · · · · · · · · · · · ·			
NapthalenendGBR-30GBR-30Lab pH7.0Lab pH7.0Lab Conductivity@25C4500Total Dissolved Solids (Calc)3500Total Alkalinity as CaCO3240Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Magnesium44	2-Methylnapthalene	nd				
NapthalenendGBR-30Lab pH7.0Lab pH7.0Lab Conductivity@25C4500Total Dissolved Solids (Calc)3500Total Alkalinity as CaCO3240Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Magnesium44	Benzo(a)pyrene	nd				
Lab pH7.0Lab Conductivity@25C4500Total Dissolved Solids (Calc)3500Total Alkalinity as CaCO3240Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44						-
Lab pH7.0Lab Conductivity@25C4500Total Dissolved Solids (Calc)3500Total Alkalinity as CaCO3240Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44						
Lab Conductivity@25C4500Image: Conductivity@25C4500Total Dissolved Solids (Calc)3500Image: Conductivity@25C3500Total Alkalinity as CaCO3240Image: Conductivity@25CImage: Conductivity@25CTotal Alkalinity as CaCO31500Image: Conductivity@25CImage: Conductivity@25CTotal Hardness as CaCO31500Image: Conductivity@25CImage: Conductivity@25CBicarbonate as HCO3240Image: Conductivity@25CImage: Conductivity@25CCarbonate as CO31.0Image: Conductivity@25CImage: Conductivity@25CMagnesium510Image: Conductivity@25CImage: Conductivity@25CMagnesium44Image: Conductivity@25CImage: Conductivity@25C	GBR-30					
Lab Conductivity@25C4500Total Dissolved Solids (Calc)3500Total Alkalinity as CaCO3240Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44	Lab pH	7.0			1	
Total Dissolved Solids (Calc)3500Total Alkalinity as CaCO3240Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44		A 14 YO 14				-
Total Alkalinity as CaCO3240Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44						
Total Hardness as CaCO31500Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44						
Bicarbonate as HCO3240Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44						
Carbonate as CO31.0HydroxidendChloride410Sulfate2000Calcium510Magnesium44						
HydroxidendChloride410Sulfate2000Calcium510Magnesium44						
Chloride410Sulfate2000Calcium510Magnesium44						
Sulfate2000Calcium510Magnesium44						
Calcium510Magnesium44						
Magnesium 44						
Sodium 630						

	JAN	APR	JUL	ОСТ	DEC
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				·····
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd	•••			
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)					
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd			1	
	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
	nd				
1,1,1-Trichloroethane 1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
	nd				
Vinyl Chloride	nd				
ADOMATICS					
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
PAH					
1-Methylnapthalene	nd				
2-Methylnapthalene	nd			<u> </u>	

-

1.7

÷.

1 .

	JAN	APR	JUL	OCT	DEC
Benzo(a)pyrene	nd				
Napthalene	nd				
<u>GBR-31</u>					
Lab pH	7.5				
Lab Conductivity@25C	3200				
Total Dissolved Solids (Calc)	2600				
Total Alkalinity as CaCO3	200				
Total Hardness as CaCO3	1000				
Bicarbonate as HCO3	200				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	79	- //w//			
Sulfate	1700				
Calcium	350				
Magnesium	31				
Potassium	5.3				
Sodium	460				
HALOCARBONS		- 199 T			
Bromodichloromethane	nd				
Bromoform	nd	,			
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd	·	<u> </u>		
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd			- <u> </u>	
1,1,2-Trichloroethane					
1,1,2-1110Horoethane	nd				

	JAN	APR	JUL	OCT	DEC
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
РАН					·
1-Methylnapthalene	nd				
2-Methylnapthalene	nd				
Benzo(a)pyrene	nd				
Napthalene	nd				
<u>GBR-32</u>					
Lab pH					6.1
Lab Conductivity@25C					4900
Total Dissolved Solids (Calc)					4200
Total Alkalinity as CaCO3					250
Total Hardness as CaCO3					1600
Bicarbonate as HCO3					250
Carbonate as CO3					nd
Hydroxide					nd
Chloride					470
Sulfate					2100
Calcium					550
Magnesium					58
Potassium					11
Sodium			·		770
HALOCARBONS					
Bromodichloromethane				1	nd
Bromoform					nd
Bromomethane					nd
Carbon Tetrachloride					nd
Chloroethane					nd
Chloroform					0.7

7 I I

1111

11

114

i

	JAN	APR	JUL	ОСТ	DEC
Chloromethane	altraine 8 = 10 f =				nd
Dibromochloromethane					nd
1,2-Dibromomethane (EDB)					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
1,1-Dichloroethane					nd
1,2-Dichloroethane (EDC)					nd
1,1-Dichoroethene		and a second			nd
trans-1,2-Dichloroethene					nd
1,2-Dichloropropane					nd
cis-1,-Dichloropropene					nd
trans-1,2-Dichloropropene					nd
Methylene Chloride					nd
1,1,2,2-Tetrachloroethane					nd
Tetrachloroethane					nd
1,1,1-Trichloroethane					nd
1,1,2-Trichloroethane					nd
Trichloroethene					nd
Trichlorofluoromethane					nd
Vinyl Chloride					nd
AROMATICS					
Benzene					nd
Chlorobenzene					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
Ethylbenzene					nd
Methyl-t-Butyl Ether					nd
Toluene			···		nd
Total Xylenes					nd
		- -			
<u>GBR-48</u>					
Lab pH				-	5.8
Lab Conductivity@25C					5900
Total Dissolved Solids (Calc)					4800
Total Alkalinity as CaCO3					50
Total Hardness as CaCO3					1800
Bicarbonate as HCO3					50
Carbonate as CO3					nd
Hydroxide					nd
Chloride					890
Sulfate					2100

	JAN	APR	JUL	ОСТ	DEC
Calcium					620
Magnesium					70
Potassium					11
Sodium					850
HALOCARBONS					
Bromodichloromethane					nd
Bromoform					nd
Bromomethane					nd
Carbon Tetrachloride		····			nd
Chloroethane					nd
Chloroform					1.1
Chloromethane					nd
Dibromochloromethane					nd
1,2-Dibromomethane (EDB)					nd
1,2-Dichlorobenzene		······································			nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
1,1-Dichloroethane				· · · · · · · · · · · · · · · · · · ·	nd
1,2-Dichloroethane (EDC)					nd
1,1-Dichoroethene					nd
trans-1,2-Dichloroethene					nd
1,2-Dichloropropane					nd
cis-1,-Dichloropropene					nd
trans-1,2-Dichloropropene					nd
Methylene Chloride		· · · · · · · · · · · · · · · · · · ·			nd
1,1,2,2-Tetrachloroethane					nd
Tetrachloroethane					2.5
1,1,1-Trichloroethane					nd
1,1,2-Trichloroethane					nd
Trichloroethene					1.0
Trichlorofluoromethane					nd
Vinyl Chloride					nd
AROMATICS					
Benzene					nd
Chlorobenzene					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
Ethylbenzene					nd
Methyl-t-Butyl Ether					nd
Toluene					nd
Total Xylenes			<u> </u>		nd

111 11

1

i

i

,

	JAN	APR	JUL	ОСТ	DEC
<u>GBR-49</u>					()
Lab pH					6.3
Lab Conductivity@25C					4500
Total Dissolved Solids (Calc)					3600
Total Alkalinity as CaCO3					250
Total Hardness as CaCO3 Bicarbonate as HCO3					1100
					250
Carbonate as CO3]		nd
Hydroxide					nd
Chloride					520
Sulfate					1700
Calcium					360
Magnesium					40
Potassium		1 			10
Sodium					450
HALOCARBONS	H a				
Bromodichloromethane	******	· · · ·			
Bromoform					nd
Bromomethane					nd nd
Carbon Tetrachloride					nd
Chloroethane					nd
Chloroform					1.9
Chloromethane					nd
Dibromochloromethane					nd
1,2-Dibromomethane (EDB)					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					
		1			nd
1,1-Dichloroethane					0.6
1,1-Dichoroethene					nd
trans-1,2-Dichloroethene					nd
1,2-Dichloropropane					nd
cis-1,-Dichloropropene					nd
					nd
trans-1,2-Dichloropropene					nd
Methylene Chloride					nd
1,1,2,2-Tetrachloroethane Tetrachloroethane				<u> </u>	nd
					3.5
1,1,1-Trichloroethane					nd
1,1,2-Trichloroethane					nd
Trichloroethene				 	1.7
Trichlorofluoromethane					nd

	JAN	APR	JUL	ОСТ	DEC
Vinyl Chloride					nd
AROMATICS					
Benzene					nd
Chlorobenzene					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
Ethylbenzene					nd
Methyl-t-Butyl Ether					nd
Toluene					nd
Total Xylenes					nd
<u>GBR-50</u>					
Lab pH					2.0
Lab Conductivity@25C					3300
Total Dissolved Solids (Calc)					2900
Total Alkalinity as CaCO3					160
Total Hardness as CaCO3					1100
Bicarbonate as HCO3					160
Carbonate as CO3					nd
Hydroxide					nd
Chloride					47
Sulfate					1900
Calcium					420
Magnesium					35
Potassium					7.2
Sodium					450
HALOCARBONS					
Bromodichloromethane					nd
Bromoform					nd
Bromomethane					nd
Carbon Tetrachloride					nd
Chloroethane					nd
Chloroform					nd
Chloromethane					nd
Dibromochloromethane					nd
1,2-Dibromomethane (EDB)					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
1,1-Dichloroethanc					nd
1,2-Dichloroethane (EDC)					nd

	JAN	APR	JUL	ОСТ	DEC
1,1-Dichoroethene					nd
trans-1,2-Dichloroethene					nd
1,2-Dichloropropane					nd
cis-1,-Dichloropropene					nd
trans-1,2-Dichloropropene					nd
Methylene Chloride					nd
1,1,2,2-Tetrachloroethane					nd
Tetrachloroethane					nd
1,1,1-Trichloroethane					nd
1,1,2-Trichloroethane					nd
Trichloroethene					nd
Trichlorofluoromethane					nd
Vinyl Chloride					nd
AROMATICS					
Benzene					nd
Chlorobenzene					nd
1,2-Dichlorobenzene					nd
1,3-Dichlorobenzene					nd
1,4-Dichlorobenzene					nd
Ethylbenzene					nd
Methyl-t-Butyl Ether					nd
Toluene					nd
Total Xylenes					nd
<u>GBR-51</u>					
Lab pH	7.7				
Lab Conductivity@25C	2800				
Total Dissolved Solids (Calc)	2400				
Total Alkalinity as CaCO3	210				
Total Hardness as CaCO3	970				
Bicarbonate as HCO3	210				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	61				
Sulfate	1400				
Calcium	340				
Magnesium	29				
Potassium	nd				
Sodium	330				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				

	JAN	APR	JUL	ОСТ	DEC
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd			,	
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
<u>GBR-52</u>					
Lab pH	8.0		·	-	
Lab Conductivity@25C	3000				
Total Dissolved Solids (Calc)	2600				
Total Alkalinity as CaCO3	200				
Total Hardness as CaCO3	1300				
Bicarbonate as HCO3	200				

11 7

	JAN	APR	JUL	ОСТ	DEC
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	64				
Sulfate	1600				
Calcium	470				
Magnesium	34				
Potassium	2.0				
Sodium	340				
					h h h h h h h h h h h h h h h h h
HALOCARBONS				-	
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd		-		
Chloroethane	nd				
Chloroform	nd		.,		
Chloromethane	nd				
Dibromochloromethane	nd		1		
1,2-Dibromomethane (EDB)	nd			-	
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd		-		
1,4-Dichlorobenzene	nd		_		
1,1-Dichloroethane	nd			-	
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane			-	-	
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd			-	
Trichloroethene	nd				
Trichlorofluoromethane	nd				
	nd				
Vinyl Chloride	nd				
ADOMATICS					
AROMATICS	1				
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
l,4-Dichlorobenzene	nd				

	JAN	APR	JUL	OCT	DEC
Ethylbenzene	nd	_			
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
<u>SHS-4</u>					
Lab pH	7.4	1			
Lab Conductivity@25C	3200				
Total Dissolved Solids (Calc)	2700				
Total Alkalinity as CaCO3	200				
Total Hardness as CaCO3	1400				
Bicarbonate as HCO3	200				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	66				
Sulfate	1700				
Calcium	480				
Magnesium	36				
Potassium	5.5				
Sodium	340				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd	_			
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd		_		
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				

THE CONSTRUCT

1 1 1

1

1.1.

-11

 ENN T

I

	JAN	APR	JUL	OCT	DEC
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
<u>SHS-6</u>					
Lab pH	7.3				
Lab Conductivity@25C	2800				
Total Dissolved Solids (Calc)	2300				
Total Alkalinity as CaCO3	220				
Total Hardness as CaCO3	970				
Bicarbonate as HCO3	220				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	60				
Sulfate	1400				
Calcium	340				
Magnesium	28				
Potassium	2.4				
Sodium	330				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd	www.itr			
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd		 		
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				

	JAN	APR	JUL	ОСТ	DEC
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				- true
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
AROMATICS					· · · · · · · · · · · · · · · · · · ·
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
<u>SHS-19</u>					
Lab pH	7.5				
Lab Conductivity@25C	2600				
Total Dissolved Solids (Calc)	1800				
Total Alkalinity as CaCO3	650				
Total Hardness as CaCO3	570				
Bicarbonate as HCO3	650				
Carbonate as CO3	2.0				
Hydroxide	nd				
Chloride	110				
Sulfate	630				
Calcium	190				
Magnesium	24				
Potassium	2.3				·
Sodium	450				

H i f a

1111

1. 4

11 1 H 1

1.111

1

- e - E

1

1

1

1

11

ļ

	JAN	APR	JUL	OCT	DEC
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd	,			
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd	·,			
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd		·h		
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd			+	
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd		·		
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
Villyr Chloride	110				
AROMATICS					
Benzene	nd				
Chlorobenzene	nd nd				
1,2-Dichlorobenzene					
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
	nd	. .			
Total Xylenes	nd				
CELC-10					
SHS-10 Lab pH	7.3	gere y			
Lab Conductivity@25C	3100				l.,

	JAN	APR	JUL	ОСТ	DEC
Total Dissolved Solids (Calc)	2400				
Total Alkalinity as CaCO3	440				
Total Hardness as CaCO3	950				
Bicarbonate as HCO3	440				
Carbonate as CO3	1				
Hydroxide	nd				
Chloride	120				
Sulfate	1200				
Calcium	290				
Magnesium	57				
Potassium	11				
Sodium	440				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				····.
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd			+	
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				····
1,2-Dichloropropane					
cis-1,-Dichloropropene	nd				·
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd		····		
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
	nd				
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd	• • ·			
Vinyl Chloride	nd				
AROMATICS				<u> </u>	
Benzene	nd			<u> </u>	

TT

T1 H

: i:

11. 1.7 1

111

- F.

1

111

31

	JAN	APR	JUL	OCT	DEC
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	1.6				
<u>SHS-12</u>					
Lab pH	7.2				
Lab Conductivity@25C	2900	an dan ak			
Total Dissolved Solids (Calc)	2300				
Total Alkalinity as CaCO3	500				
Total Hardness as CaCO3	740				
Bicarbonate as HCO3	500				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	110			·····	
Sulfate	980				
Calcium	260				
Magnesium	200				<u> </u>
Potassium	1.8				
Sodium	450	····			· # #1 · m· ·
	430				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd	· ·			
1,4-Dichlorobenzene	nd	167 M ¹ M ¹ M		-	
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd	43 . -			
1,1-Dichoroethene	nd				· · · · · · · · · · · · · · · · · · ·
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				

	JAN	APR	JUL	OCT	DEC
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				····
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd	-			
SHS-13					
Lab pH	7.0				
Lab Conductivity@25C	2800				
Total Dissolved Solids (Calc)	3200				
Total Alkalinity as CaCO3	650				
Total Hardness as CaCO3	1600				
Bicarbonate as HCO3	650				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	200				
Sulfate	1500				
Calcium	570				
Magnesium	49				
Potassium	3.1				
Sodium	410				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd			+ +	
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd			-	
Chloroform	nd				

	JAN	APR	JUL	ОСТ	DEC
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	1.7				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
SHS-14					
Lab pH	7.3				
Lab Conductivity@25C	2500				
Total Dissolved Solids (Calc)	2100				
Total Alkalinity as CaCO3	300				
Total Hardness as CaCO3	900		-		+
Bicarbonate as HCO3	300				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	56				
Sulfate	1200				
Suitate	1200				

	JAN	APR	JUL	ОСТ	DEC
Calcium	310				
Magnesium	32				
Potassium	3.0				······
Sodium	260				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				······································
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd	,			
1,1,2-Trichloroethane	nd				
Trichloroethene	nd		<u> </u>		
Trichlorofluoromethane	nd	······································			
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd		··		
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd		<u> </u>		
Toluene	nd		<u></u>		
Total Xylenes	nd				

T

ļ

.

,

 11

1

·	JAN	APR	JUL	ОСТ	DEC
<u>SHS-15</u>					
Lab pH	7.4				
Lab Conductivity@25C	2700		·		
Total Dissolved Solids (Calc)	2300				
Total Alkalinity as CaCO3	2300				
Total Hardness as CaCO3	1100				
Bicarbonate as HCO3	270				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	74				
Sulfate	1300				
Calcium	360				
Magnesium	44				
Potassium	3.7				
Sodium	260				
Socium	200	·			
HALOCARBONS					
Bromodichloromethane					
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				
Carbon Tetrachioride	nd				
Chloroform	nd				
Chloromethane	nd				
	nd			. 	
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd		,		
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd			-	
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd	,			
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd			ļ	
1,1,1-Trichloroethane	nd	·····			
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				

	JAN	APR	JUL	ОСТ	DEC
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				
SHS-16					
Lab pH	7.5			-	
Lab Conductivity@25C	2800				
Total Dissolved Solids (Calc)	2500	·····			
Total Alkalinity as CaCO3	310				
Total Hardness as CaCO3	1100				
Bicarbonate as HCO3	310				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	54				
Sulfate	1400				
Calcium	380				
Magnesium	45				
Potassium	7.2				
Sodium	250				
HALOCARBONS					
Bromodichloromethane	nd				
Bromoform	nd				
Bromomethane	nd				
Carbon Tetrachloride	nd				*******
Chloroethane	nd				
Chloroform	nd				-
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				

TH

	JAN	APR	JUL	ОСТ	DEC
1,1-Dichoroethene	nd				
trans-1,2-Dichloroethene	nd				
1,2-Dichloropropane	nd				
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd				
1,1,2-Trichloroethane	nd				
Trichloroethene	nd				
Trichlorofluoromethane	nd				
Vinyl Chloride	nd				
AROMATICS					
Benzene	nd	5.20 ⁻⁰ 1			
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd	- 1986 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990			
Toluene	nd				
Total Xylenes	nd				
<u>SHS-17</u>					
Lab pH	7.4				
Lab Conductivity@25C	3500				
Total Dissolved Solids (Calc)	2700				
Total Alkalinity as CaCO3	270				
Total Hardness as CaCO3	1100				
Bicarbonate as HCO3	270				
Carbonate as CO3	1.0				
Hydroxide	nd				
Chloride	270				
Sulfate	1200				
Calcium	350				
Magnesium	48				
Potassium	4.4				
Sodium	430				
HALOCARBONS		<u>, , , , , , , , , , , , , , , , , , , </u>			
Bromodichloromethane	nd				
Bromoform	nd				
	па		l		

	JAN	APR	JUL	ОСТ	DEC
Bromomethane	nd				
Carbon Tetrachloride	nd				
Chloroethane	nd				
Chloroform	nd				
Chloromethane	nd				
Dibromochloromethane	nd				
1,2-Dibromomethane (EDB)	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd				
1,1-Dichloroethane	nd				
1,2-Dichloroethane (EDC)	nd				
1,1-Dichoroethene	nd	11			
trans-1,2-Dichloroethene	nd	<u> </u>			
1,2-Dichloropropane	nd	·			· · · · · · · · · · · · · · · · · · ·
cis-1,-Dichloropropene	nd				
trans-1,2-Dichloropropene	nd				
Methylene Chloride	nd				
1,1,2,2-Tetrachloroethane	nd				
Tetrachloroethane	nd				
1,1,1-Trichloroethane	nd			-	
1,1,2-Trichloroethane	nd	· ···-			
Trichloroethene	nd				
Trichlorofluoromethane	nd	***			
Vinyl Chloride	nd				
AROMATICS	·····	******			
Benzene	nd				
Chlorobenzene	nd				
1,2-Dichlorobenzene	nd				
1,3-Dichlorobenzene	nd				
1,4-Dichlorobenzene	nd	· · · · ····		-	
Ethylbenzene	nd				
Methyl-t-Butyl Ether	nd				
Toluene	nd				
Total Xylenes	nd				

1

1.14

L I I I

Шr

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary Lori Wrotenbery Director Oil Conservation Division

September 11, 2003

Mr. Timothy A. Kinney Giant Industries Arizona, Inc. 111 County Rd. 4990 Bloomfield, New Mexico 87413

RE: CASE # GW-40 BLOOMFIELD REFINERY SAN JUAN COUNTY, NEW MEXICO

Dear Mr. Kinney:

The New Mexico Oil Conservation Division (OCD) has reviewed Giant Industries Arizona, Inc.'s (Giant) July 28, 2003 correspondence titled "FORMER GIANT BLOOMFIELD REFINERY" which was submitted on behalf of Giant by their consultant Martin Nee. This document contains the results of Giant's recent trial product removal activities at the former Bloomfield refinery. The document also contains a proposal to discontinue ground water recovery for one week in order to remove the pumps from the recovery wells and conduct tests on the wells.

The above-referenced proposal is approved with the following conditions:

- 1. Giant shall include the results of the tests in the subsequent annual ground water monitoring report for the refinery.
- 2. Giant shall notify the OCD at least 48 hours in advance of all scheduled activities such that the OCD has the opportunity to witness the events and split samples.

Please be advised that OCD approval does not relieve Giant of responsibility if the plan fails to adequately remediate or monitor contamination related to Giants activities, or if contamination exists which is outside the scope of the plan. In addition, OCD approval does not relieve Giant of responsibility for compliance with any other federal, state or local laws and regulations.

Mr. Timothy A. Kinney September 11, 2003 Page 2

If you have any questions, please contact me at (505) 476-3491.

Sincerely,

Vill C. Osa

William C. Olson Hydrologist Environmental Bureau

cc: Denny Foust, OCD Aztec District Office Martin J. Nee July 28, 2003

JUL 3 0 2003 OIL CONSERVATION DIVISION

Mr. William Olson New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico, 87505

RE: Former Giant Bloomfield Refinery

Dear Mr. Olson,

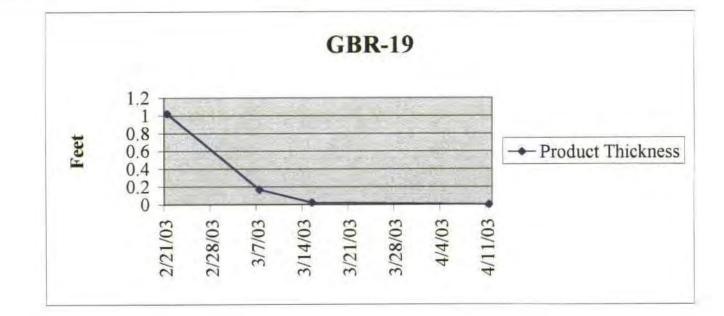
During March and April 2003, Giant Industries Arizona, Inc. (Giant) initiated product recovery at onsite ground water monitoring wells GBR-19, GBR 25, GBR-34, and GBR-35. This was done on a trial basis to examine the effect regular product removal would have on the product thickness at non-pumping wells. In total approximately 2 gallons of product were removed during this trial. The data from the trial product removal can be seen on the attached Excel[™] spreadsheets. The results of the trial showed that:

- Product was completely removed at GBR-19 and had not returned by the end of the trial.
- Product at GBR-25 showed a significant increase through the first three product removal events and then appears to decline.
- GBR-34 show a significant decline in product thickness through three product removal events that appears to rebound slightly by the fourth site visit.
- GBR-35 show a marked decrease in product thickness that appears to taper off to approximately 25 percent of the initial thickness.

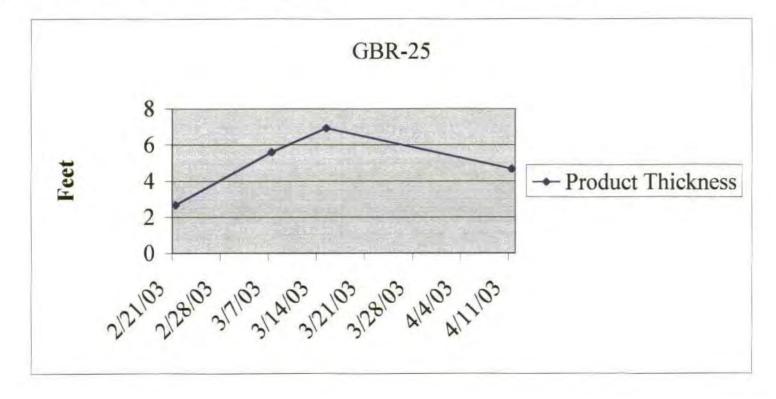
While looking at this data it became apparent that Giant has not reviewed static (non-pumping) groundwater elevations or sampled individual recovery wells recently. Giant proposes and herein requests New Mexico Oil Conservation Division (NMOCD) approval to discontinue ground water pumping for approximately one week. During this time ground water recovery pumps may be removed and static water level data will be collected at all monitoring and recovery wells. Individual ground water samples may be collected from all active recovery wells and select monitoring wells and sampled for benzene, toluene, ethyl benzene, and xylenes. Recovery wells with free-phase hydrocarbons will not be sampled. Giant will use this data to evaluate future pumping scenarios as well as a product recovery strategy. Product removal will continue on a monthly basis following ground water sampling.

We look forward to your approval of this proposed work. Should you have any comments, suggestions, questions, or require additional information please do not hesitate to call me at (505) 334-2791 or Tim Kinney (505) 632-4001.

Sincerely,

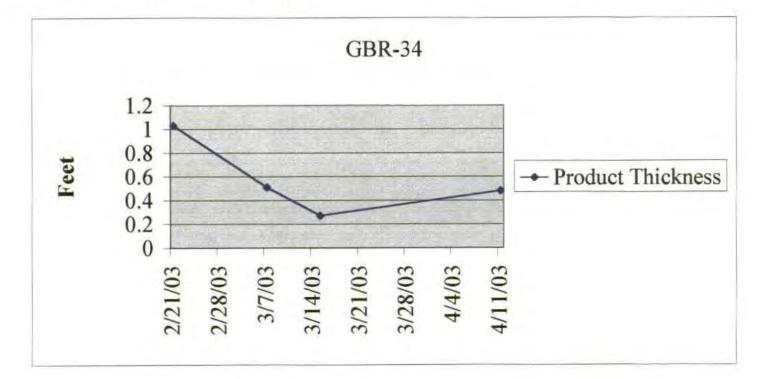

Martin Nee

Cc: Mr. Tim Kinney, Giant Industries Arizona, Inc. Mr. David Kirby, Giant Industries Arizona, Inc. File

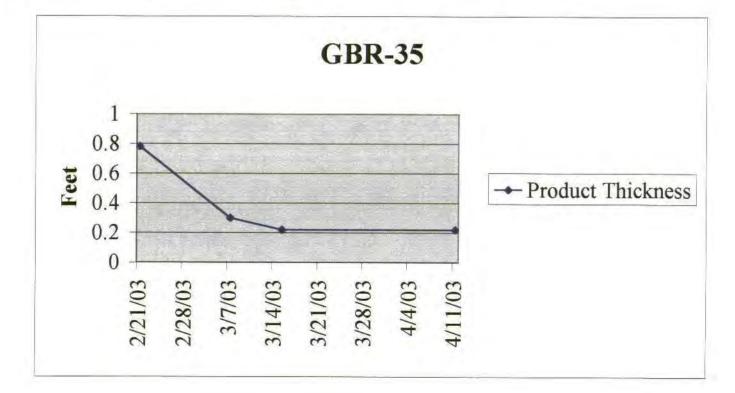

Martin Nee PO Box 3861 Farmington, NM 87499-386 (505) 334-2791

G	R	R.	-1	0	
u	ν	10.	-1	1	

Before Product Removal							
Date	Depth to Product	Depth to Water	Product Thickness	Depth to Product	Depth to Water	Product Thickness	TD
2/21/03	42.05	43.07	1.02	46.18	46.2	0.02	50.3
3/7/03	42.14	42.31	0.17		45.52	0	50.3
3/15/03	42.17	42.19	0.02		44.56	0	50.3
4/11/03		41.94	0		41.94	0	50.3



GBR-25							
	Before Prod	uct Removal	1		After Prod	uct Removal	
	Depth to	Depth to	Product	Depth to	Depth to	Product	
Date	Product	Water	Thickness	Product	Water	Thickness	TD
2/21/03	37.35	40.02	2.67	46	46.225	0.225	48.6
3/7/03	37.4	42.99	5.59	45.05	45.27	0.22	48.6
3/15/03	37.38	44.3	6.92		48.38	0	48.6
4/11/03	36.81	41.48	4.67	45.84	46.04	0.2	48.6


C	D	D	-3.	1
G	D	U.	- 3-	•

Before Product Removal					After Product Removal		
Date	Depth to Product	Depth to Water	Product Thickness	Depth to Product	Depth to Water	Product Thickness	TD
2/21/03	38.02	39.05	1.03		41.44	0	45.3
3/7/03	38.2	38.71	0.51		41.7	0	45.3
3/15/03	38.44	38.71	0.27		44.14	0	45.3
4/11/03	38.12	38.6	0.48		44.52	0	45.3

G	D	D	2	2
G	D	K	-0	3

Before Product Removal					After Produc	ct Removal	
	Depth to Product	Depth to Water	Product Thickness	Depth to Product	Depth to Water	Product Thickness	TD
2/21/03	38.4	39.18	0.78	42.35	42.36	0.01	42.4
3/7/03	38.45	38.75	0.3		44.8	0	42.4
3/15/03	38.23	38.45	0.22		41.89	0	42.4
4/11/03	37.96	38.18	0.22		41.59	0	42.4

INDUSTRIES, INC.

February 12, 2002

RECEIVED

Mr. William Olson Hydrogeologist New Mexico Oil Conservation Division Environmental Bureau 1220 S. St. Francis Drive Santa Fe, NM 87504

FEB 1 5 2002

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Dear Mr. Olson:

Enclosed you will find the annual report for Giant Refining Company's Bloomfield Refinery for 2001.

Please contact me if you have any questions.

Sincerely,

Tim Tim

Tim Kinney Remediation Project Manager

/dm

Enclosure

cc w/enc.:

Luke Wethers-Giant David Kirby-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD Steve Collins – Commercial Development

PHONE 505-632-8006 FAX 505-632-4021

III COUNTY ROAD 4990 BLOOMFIELD NEW MEXICO 87413

INDUSTRIES, INC. SAN JUAN REGIONAL OFFICE

March 5, 2001

1 2 200 WERVATION DIVI

Mr. William Olson Hydrogeologist New Mexico Oil Conservation Division Environmental Bureau 1220 S. St. Francis Drive Santa Fe, NM 87504

Dear Mr. Olson:

Enclosed you will find the annual report for Giant Refining Company's Bloomfield Refinery for 2000.

Please contact me if you have any questions.

Sincerely,

une,

Tim Kinney Remediation Project Manager

/dm

Enclosure

cc w/enc.: Luke Wethers-Giant Sarah Allen-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD

11.11.117

1 1

505-632-8006 FAX 505-632-402 |

PHONE

III COUNTY ROAD 4990 BLOOMFIELD NEW MEXICO 87413

INDUSTRIES, INC. SAN JUAN REGIONAL OFFICE

INGERVATION DAVION .,

January 4, 2001

Mr. Roger C. Anderson Environmental Bureau Chief New Mexico Oil Conservation Division 2040 S. Pacheco Street Santa Fe, NM 87505

Dear Mr. Anderson:

RE: GROUND WATER DISCHARGE PLAN GW-40 RENEWAL FORMER BLOOMFIELD REFINERY SAN JUAN COUNTY, NEW MEXICO

I am enclosing a check in the amount of \$3,910.00 in payment of the renewal fee for the Giant Bloomfield Refinery Discharge Plan.

Sincerely,

Wanna miller

Deanna Miller Administrative Manager Giant Transportation

/dm

Enclosure

PHONE 505-632-8006 FAX 505-632-402 I

1 . Sa . Line A ...

III COUNTY ROAD 4990 BLOOMFIELD NEW MEXICO 87413

	A
·	
ACXNO	ALEDGEMENT OF RECEIPT OF CHECX/CASH
I hereby acknowledge recei	
or cash received on	in the amount of \$ $39/0^{2^2}$
from GIANT INDUSTRI	ES, INC.
for FORMER BLOOMFIELD	REFINERY GW-40.
	E For BILLOLSON Data: 1/29/200,
Submitted to ASD by:	
•	Date:
	Facility Renewal
Modification Ot	
Organization Code 521.0	7 Applicable FY 2001
To be deposited in the Wat	er Quality Management Fund.
Full Payment or	Annual Increment
n an anna air anna ac marta ann ar ann an ann an ann an ann an ann an	ment. See back for defails filteness and grand and an and and and and and
GIANT INDUSTRIES, INC.	
111 COUNTY ROAD 4990 (505)632-8006 BLOOMFIELD, NM 87413	0.0 - (1.00) 95-629/1122
PAY TO THE OF NMED- Watch Quality	DATE Jan. 4, 2001 95-629/1122 3001 Maragement \$ 39/0,00 hundred fen 7 00/100 DOLLARS []
ORDER OF NMCD-WURLY GUILLITY	Gradademente \$ 39/0,00
Shree frousand nine	MURAKED THAT TOODOLLARS
BANN of the SOUTHWEST	_ /
FOR RFE #9834 DISCHARGE Plan.	he Tusto Atras

[1]

ł

Ϊ. Î

INDUSTRIES, INC. SAN JUAN REGIONAL OFFICE

NOV 1 3 2000 HISESYATION DIVISI

October 26, 2000

CERTIFIED MAIL RETURN RECEIPT #7099 3220 0010 2241 2327

Mr. Bill Olson Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Dear Bill:

RE: Discharge Plan Renewal GW-40

Enclosed you will find Plate #1 and Plate #2 referenced in the Discharge Plan. They were inadvertently omitted from the original transmittal. Thank you for your patience.

Please contact me with any questions that may arise concerning this matter at (505) 632-4001.

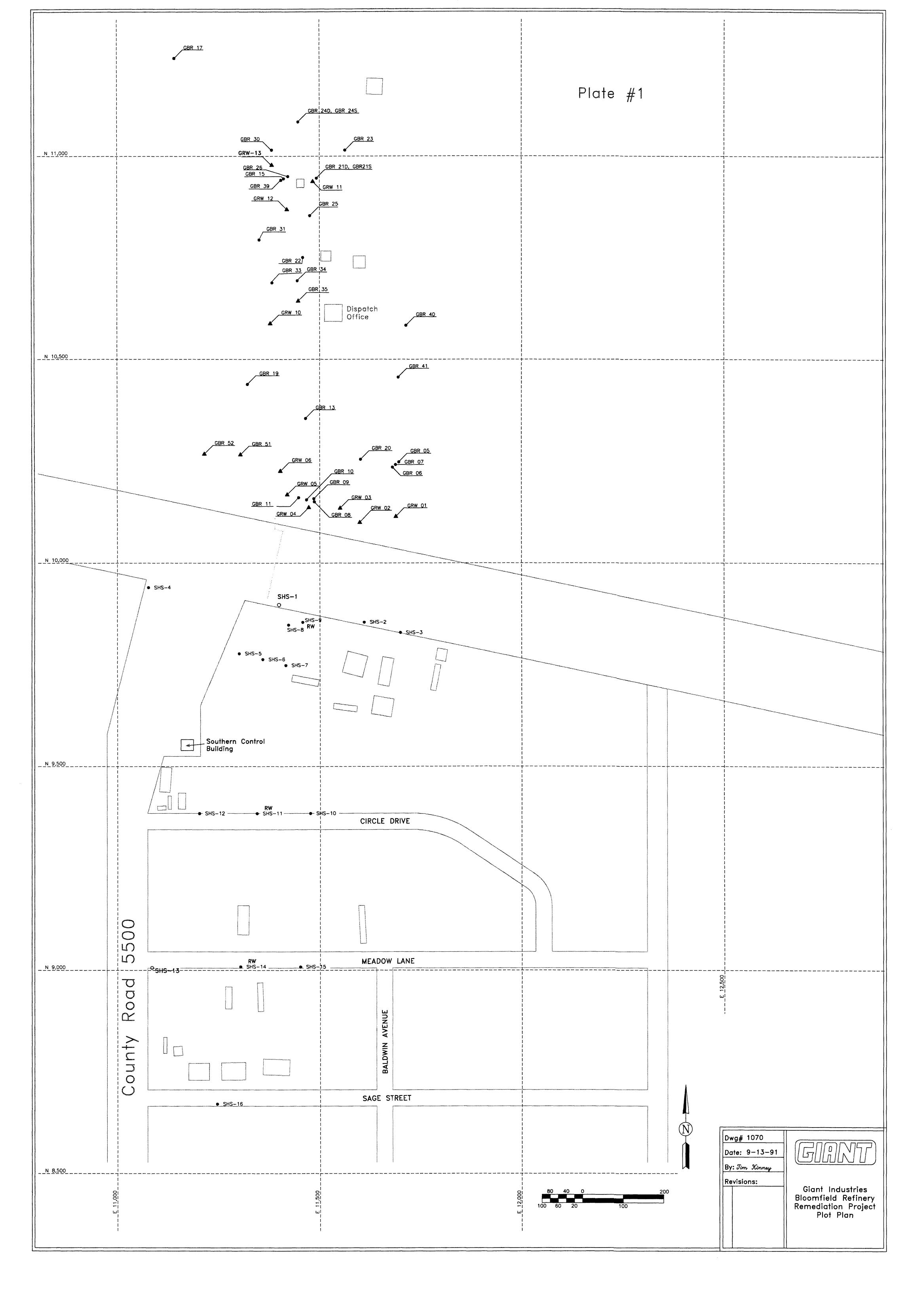
11 1

ti.

Sincerely,

/in

Tim Kinney General Manager Refinery Remediation Manager


/dm


Enclosures

cc: Denny Foust – OCD Aztec

PHONE 505-632-8006 FAX 505-632-4021

III COUNTY ROAD 4990 BLOOMFIELD NEW MEXICO 87413

Dwg #1043

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission (WQCC) Regulations, the following discharge plan application has been submitted to the Director of the Oil Conservation Division, 2040 S. Pacheco, Santa Fe, New Mexico 87540, Telephone (505) 827-7132:

(GW-40) – Giant Industries, Inc., Tim Kinney (Refinery Remediation Project Manager), 111 County Road 4990, Bloomfield, New Mexico 87413, has submitted a discharge plan application for remediation of contaminated ground water at the former Giant Bloomfield Refinery located in the NW 1/4 of Section 27 and the SW 1/4, of Section 22, Township 29 North, Range 12 West NMPM, Lea County, New Mexico. The application addresses discharges to ground water associated with the remediation of petroleum contaminated ground water. Approximately 23 gallons per minute of contaminated ground water is processed through a treatment system to remove contaminants to below WQCC ground water standards prior to reinjection in an infiltration gallery. Groundwater most likely to be affected by an accidental discharge is at a depth of approximately 25 feet with a total dissolved solids concentration of approximately 2500 mg/l. The discharge plan addresses system operation and monitoring, ground water quality monitoring and how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Request for public hearing shall set forth the reasons why a hearing shall be held. A hearing will be held if the Director determines that there is significant public interest. If no hearing is held, the Director will approve or disapprove the plan based on the information available. If a public hearing is held, the Director will approve the plan based on the information in the plan and information presented at the hearing.

GIVEN under the Seal of New Mexico Conservation Commission at Santa Fe, New Mexico, on this 24th day of July, 2000.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

LORI WROTENBERY, Director

SEAL

INDUSTRIES, INC. SAN JUAN REGIONAL OFFICE

April 13, 2000

UPS OVERNIGHT TRACKING #J096 866 836 2

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 S. Pacheco Street Santa Fe, NM 87505

RECEIVED

Dear Mr. Anderson:

RE: DISCHARGE PLAN RENEWAL GW-40

APR 1 4 2000 Environmental Bureau Of Conservation Division

Pursuant to your letter of February 11, 2000 regarding the Ground Water Discharge Plan GW-40 Former Bloomfield Refinery San Juan County, New Mexico, enclosed is the revised plan, the renewal application, and a check for the renewal fee.

Please contact me with any questions that may arise concerning this matter at (505) 632-4001.

111.

Sincerely,

Tim Kinney Refinery Remediation Manager

/dm

Attachments

cc: Carl Shook - Giant Kim Bullerdick - Giant Luke Wethers - Giant Denny Foust – OCD Aztec

PHONE 505-632-8006 FAX 505-632-4021

の言語

III COUNTY ROAD 4990 BLOOMFIELD NEW MEXICO 87413

ACXNOWLEDGEMENT OF RECEIPT OF CHECK/CASH

{

A

111 1 1

-

I hereby acknowledge receipt of chec	ck No dated $\frac{4/13}{00}$
or cash received on	in the amount of \$ 50.00
from Giant Industries, Inc.	
for Former Giant Bloomfield Refin	reny GW-40.
Submitted by: Bill Olson	Date: 4/14/00
Submitted to ASD by:	Date: 4/14/00
Received in ASD by:	Date:
Filing Fee New Facility	Renewal
Modification Other	
ويستعرف والمحافظ والم	
Organization Code <u>521.07</u>	Applicable FY 2000
To be deposited in the Water Qualit	y Management Fund.
To be deposited in the Water Qualit Full Payment or Annual	
Full Payment or Annual	Increment
Full Payment or Annual	Increment
Full Payment or Annual GIANT INDUSTRIES, INC.	Increment
Full Payment or Annual	Increment
Full Payment or Annual GIANT INDUSTRIES, INC. 111 COUNTY ROAD 4990 (505)632-8006 BLOOMFIELD, NM 87413 PAY TO THE NMED Water Quality Management Fund	
Full Payment or Annual GIANT INDUSTRIES, INC. 111 COUNTY ROAD 4990 (505)632-8006 BLOOMFIELD, NM 87413 PAY TO THE NMED Water Quality Management Fund	Increment Jor derails @ DATEApril 13, 2000 \$5-623/1122 3001 \$ 50.00
Full Payment or Annual GIANT INDUSTRIES, INC. 111 COUNTY ROAD 4990 (505)632-8006 BLOOMFIELD, NM 87413 PAY TO THE OF	Increment
Full Payment or Annual GIANT INDUSTRIES, INC. 111 COUNTY ROAD 4990 (505)632-8006 BLOOMFIELD, NM 87413 PAY TO THE OF	Increment Jor details (*) DATE 95-629/1122 3001 DATE 95-629/1122 3001
Full Payment or Annual GIANT INDUSTRIES, INC. III COUNTY ROAD 4990 (505)632-8006 BLOOMFIELD, NM 87413 PAY TO THE OF NMED Water Quality Management Fund PIfty and no/100 \$ SZO W. MANN (505) 325-1971	Increment Jor derails @ DATEApril 13, 2000 \$5-623/1122 3001 \$ 50.00

16

- 11 P

District I 1625 N. French Dr., Hobbs, NM 88240	State of New Mexico Energy Minerals and Natural Resources	Revised March 17, 1999
District II 811 South First, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 2040 South Pacheco, Santa Fe, NM 87505	Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505	Submit Original Plus 1 Copy to Santa Fe 1 Copy to Appropriate District Office
	LICATION FOR SERVICE COMPANI	

REFINERIES, COMPRESSOR, AND CRUDE OIL PUMP STATIONS

(Refer to the OCD Guidelines for assistance in completing the application)

	New 🛛 Renewal 🗌 Modification
1. T	ype: Refinery
	Operator: <u>Giant Industries, Inc.</u> Physical: 5764 U. S. Highway 64 Farmington, NM 87401 Address: <u>Mailing: 111 County Road 4990 Bloomfield, NM 87413</u>
C	Contact Person: Tim Kinney Phone: (505) 632–8006
3. L	NW /4 SW /4 Section 22 & 27 Township 29N Range 12W Submit large scale topographic map showing exact location. Submit large scale topographic map showing exact location. Range 12W
4. <i>F</i>	Attach the name, telephone number and address of the landowner of the facility site.
5. /	Attach the description of the facility with a diagram indicating location of fences, pits, dikes and tanks on the facility.
6. A	Attach a description of all materials stored or used at the facility.
	Attach a description of present sources of effluent and waste solids. Average quality and daily volume of waste water nust be included.
8 . <i>A</i>	Attach a description of current liquid and solid waste collection/treatment/disposal procedures.
9. A	Attach a description of proposed modifications to existing collection/treatment/disposal systems.
10.	Attach a routine inspection and maintenance plan to ensure permit compliance.
11.	Attach a contingency plan for reporting and clean-up of spills or releases.
12.	Attach geological/hydrological information for the facility. Depth to and quality of ground water must be included.
	Attach a facility closure plan, and other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders.
	14. CERTIFICATIONI hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	Name: <u>Tim Kinney</u> Title: <u>Refinery Remediation Project Mgr</u> .
	Signature: Jim Kinnen Date: 4/13/00

11 1

T1 1

DISCHARGE PLAN

1. TYPE OF OPERATION

Giant Industries Arizona, Inc. proposes an annual discharge of up to 12,000,000 gallons of treated water to infiltration trenches located within the inactive Giant Bloomfield Refinery. The water is derived from recovery wells which are part of a remedial action relating to the site.

11. OPERATOR/LEGALLY RESPONSIBLE PARTY AND LOCAL REPRESENTATIVE

Operator/Legally Responsible Party Giant Industries Arizona, Inc. 23733 North Scottsdale Road Post Office Box 12999 Scottsdale, Arizona 85267 Phone: (602) 585-8888

Local Representative Timothy A. Kinney Remediation Project Manager Giant Refining Company 111 County Road 4990 Bloomfield, New Mexico 87413 Phone: (505) 632-8006

Correspondence regarding this discharge plan should be directed to the local representative.

III. LOCATION OF DISCHARGE/FACILITY

Legal Description:

The refinery is located in the NW 1/4 of Section 27, and the SW 1/4, Section 22, Township 29 N, Range 12W, in San Juan County, New Mexico, approximately 5 miles west of Bloomfield, New Mexico.

Plate 1, enclosed, is an aerial view of the refinery with significant landmarks noted.

IV. LANDOWNER

Giant Industries Arizona, Inc. 23733 North Scottsdale Road Post Office Box 12999 Scottsdale, Arizona 85267

V. FACILITY

- 1

The facility consists of the Giant Bloomfield Refinery and the associated remedial equipment both within, and south of the refinery boundary. The Giant Bloomfield Refinery operated from 1974 to 1982, and is presently inactive. Basically, the remedial system consists of a series of ground water recovery wells, water treatment facilities, and treated water infiltration trenches, processing up to 12,000,000 gallons of water per year. Plate 1 illustrates the refinery boundaries and significant site features within the refinery. Plate 2 illustrates the location and significant details of the southern remedial area.

VI. SOURCES, QUANTITIES AND QUALITY OF EFFLUENT

The facility effluent consists of treated water and separated hydrocarbons. Effluent is derived from contaminated water, which is pumped from a series of recovery wells at the site. Up to 1,000,000 gallons of water may be treated and discharged per month. Figure 1 is the result of analytical work performed in 1999 and is representative of effluent quality. General water chemistry, EPA 601, EPA 602, and PAH analyses are represented in the figures. See Appendix A for sampling frequency, methods, procedures and locations. Major variations in effluent volumes and quality are not expected, as this has not been the operating experience over the last several years under the previous discharge plan.

VII. TRANSFER AND STORAGE OF PROCESS FLUIDS AND EFFLUENTS

Overview - Water Treatment System

At the Giant Bloomfield Refinery, contaminated water is pumped from the aquifer through a series of recovery wells located strategically within the contaminated plume, collected in storage tanks, and subsequently treated by carbon adsorption, and, at times, augmented with bacterial enhancing nutrients, prior to discharge into the aquifer through an infiltration trench. Figure #2 is a simplified pictorial representation of a ground water recovery, treatment, and disposal system.

The recovery wells are utilized to recover free-floating product and contaminated ground water from the aquifer and create a hydraulic barrier to prevent migration of the contamination plume beyond the well. The hydraulic barrier is formed as the pumping recovery well depresses the water table. This creates a cone of depression to which contamination from surrounding areas preferentially migrates. Figure #3 illustrates the concept. If sufficient recovery wells are placed so that the radii of influence from adjacent wells overlap, a barrier can be formed across the plume preventing migration beyond the barrier. This is the principle employed at the refinery to contain and remediate the contamination plume.

Recovered water exhibiting dissolved phase and/or free phase hydrocarbons above New Mexico WQCC groundwater regulatory levels require treatment to within applicable guidelines prior to discharge. The method of treatment used at the Giant Bloomfield Refinery for the removal of dissolved phase hydrocarbons is carbon adsorption where volatile and non-volatile organic compounds are adsorbed into the carbon matrix.

At times, recovered water exhibits free phase hydrocarbons. Gravity separation of these components takes place in various tanks. The free-floating hydrocarbon that is skimmed off the water is stored in a separate tank for eventual transportation to a refinery for processing into finished products.

Treated water is discharged to infiltration trenches strategically located within the refinery. Infiltration trenches consist of subsurface distribution systems placed within gravel packs where water can infiltrate the surrounding strata and eventually make its way to the aquifer. Figure #4 illustrates a typical infiltration gallery. The return of recovered water to the aquifer serves to recharge the aquifer and to flush contamination from overlying soil zones to the recovery well system. Infiltrated water also serves as a medium for the introduction of oxygen and nutrients for the stimulation of beneficial bacterial growth. The speed of remedial efforts is enhanced by the application of recovered water to specific source areas within the refinery. Infiltration trench locations are noted on Plate 1.

Equipment and Operation - Water Treatment System

Monitor Wells

Numerous monitor wells are located within the refinery and south of the refinery. Monitor wells within the refinery are identified by the acronym GBR (Giant Bloomfield Refinery) followed by a numerical designation. Monitor wells located south of the refinery are identified by the acronym SHS (South Highway Site) followed by a number. Monitor wells aid in characterization of the aquifer in their respective locations. Plate #1 illustrates the locations of the monitor wells within the refinery. Plate #2 illustrates the locations of the monitor wells south of the refinery.

Each well is unique in construction and geology. Informational sheets for each well are available. The sheets include well logs and completion details for every monitoring well.

Appendix A of this manual contains sampling frequency and analytical requirements for applicable wells. Analytical results from various wells help determine the effectiveness and progress of remedial efforts. In addition to sampling, the water level in each well is determined quarterly. This information is tabulated and utilized to prepare potentiometric surface maps. Figure #5 is a typical potentiometric map. The lines on the map represent the elevation of the surface of the ground water. The resulting contours are useful in determining the direction of ground water flow and the effectiveness of the hydraulic control achieved by the recovery well system.

Recovery Wells

Recovery wells are an integral part of the containment and remedial system. Recovery wells north of Highway 64 are identified by the acronym GRW (Giant Recovery Well) followed by a numerical designation. Recovery wells south of the highway are identified by their original SHS designation. See Plates 1&2. Analytical results from various wells help determine the effectiveness and progress of remedial efforts. Appendix A contains sampling frequency and analytical methods for applicable wells. The water level in each recovery well is determined quarterly. This information is used for the same purpose as the level information collected from the monitor wells. Water volumes from each recovery well are metered. Metered water volumes as well as well water levels indicate the effectiveness of the well pump and controls. Effort is made to maintain consistent maximum pumping rates to maximize the effectiveness of the hydraulic containment barrier.

Water Treatment

A carbon adsorption process is utilized for water treatment. All effluent is treated by carbon adsorption prior to discharge

Tank 102

1

Tank 102 acts as an intermediate storage tank for the water treatment system. It has a capacity of 500 barrels or 21,000 gallons. The tank stores water before it is pumped to the carbon filtration unit for treatment. Separation of any free phase hydrocarbon from the recovered water takes place in the tank. Free product is periodically skimmed from the tank and stored in a separate vessel. Piping and instrumentation associated with Tank 102 is illustrated by Figure #6. Water is pumped from Tank 102 to the carbon filtration unit by Pump #1, Pl. Pump operation is based on the level of water in Tank 102. Level switches LS-1 and LS-2 are utilized by the Control Panel, located in the old Dispatch Office, to determine the water level and consequently the run status of Pumps. Level safety switches LSH-1 and LSL-1 indicate abnormally high or low water level conditions in Tank 102 and initiate control panel alarm and shutdown functions.

Tank 21

Tank 21 is located in the central part of the refinery. See Plate #1. The tank serves as the collection point for excess volumes of untreated recovery water. See Figure #7 for a schematic of the valves and controls located at Tank 21. There is a high-level alarm switch, LSH-3, located at Tank 21. As a part of normal operation, Tank 21 may operate at very low water levels. Therefore, there is not a low level safety switch in the tank. A low-level switch, LS-7 is located in Tank 21. In the event of low water level in the tank, Pump #3 will not start even though the Control Panel may be calling for it to run. There is an elevated level limiting trap and siphon break at Tank 21. This device prevents any accumulated scum or hydrocarbon from exiting the tank into the system as the water level is drawn down close to the outlet level.

Rainbow Springs

In the vicinity of an area known as the Refinery Burn Pit there is an underground water collection gallery. See Plate #1. It drains into a covered agricultural stock tank. The gallery and tank are referred to as Rainbow Springs. During the spring, summer, and fall, contaminated water accumulates in the tank. Approximately once a week, water must be pumped from the tank into the water treatment system. Water from Rainbow Springs is metered into the system through the GRW-9 water meter. During the winter, operation of Rainbow Springs is terminated by capping the end of the gallery's effluent pipe, which protrudes from the side of the hill above the tank.

Air Compressor

The Air Compressor is an integral part of the remediation system. It is located in the Dispatch Office. The compressor pumps air for the operation of control valves and air sparging in various tanks. PSL-2 is located on the air compressor. It monitors the system air pressure. If the air pressure in the system drops below 50 psig, an alarm is enunciated by the Control Panel.

Control Panel

The heart of the water treatment system is the microprocessor based Control Panel located in the Dispatch Office in the refinery. See Plate #1 for the location of the Dispatch Office. The Control Panel serves to monitor and control the operation of the treatment system, while providing alarm and shutdown functions to safeguard against spills and other undesirable events. Figure #8 illustrates the basic process flow scheme of the treatment system. Safety, alarm, and shutdown functions are also initiated by the Control Panel. Tanks 102 and 21 are monitored for undesirable water levels.

In the event of a power failure, the system will shut down. It will return to normal operation after the power is restored.

The system operational logic is based on the program that is installed in the microprocessor within the Control Panel.

Recovery Well Filters

There are solids filters in each recovery well enclosure, and in the southern control building to control the deposition of solid contaminants in the system.

Heat Tracing

Water piping, which connects the On-Site and Off-Site systems, crosses through a culvert under US highway 64. The highway parallels the southern boundary of the refinery property. The exposed water piping is insulated and further protected from freezing by heat tracing.

Miscellaneous

All piping connecting wells and facilities is buried. All piping with the exception of infiltration trenches is pressurized at least occasionally. All piping is PVC or other suitable plastic. Underground piping is schedule 40 minimum and aboveground piping is schedule 80 minimum. Valves and controls are constructed of suitable materials such as bronze, cast iron and stainless steel. All active tanks are surrounded by earthen berms with a minimum capacity of 1.5 times the maximum individual or combined applicable tank volume.

VIII. EFFLUENT DISPOSAL

Effluent water is discharged to a variety of infiltration trenches within the refinery. See Figure #4 for details of typical infiltration trench construction. All water is treated prior to discharge. Effluent quality is monitored periodically to verify compliance with WQCC standards. See Appendix A for the sampling program schedule. In an effort to enhance both the degradation and recovery of hydrocarbons, water may have oxygen and nutrients added prior to discharge. Infiltration trenches are located such that contaminated zones are reached with oxygen and nutrients by the treated water. Some flushing of free hydrocarbons also occurs. Free hydrocarbons are flushed toward active recovery wells to speed recovery of hydrocarbons and clean contaminated soil sources. Infiltration trench locations are noted on Plate #1. Treated effluent volumes are metered and reported.

IX. INSPECTION, MAINTENANCE AND REPORTING

Inspection, maintenance, and reporting are an integral part of the remediation project. Inspection provides information critical to the safe and efficient operation of the system. Maintenance is key in the prevention of undesirable events and excessive downtime. Spills of untreated effluent are reported to the OCD office when the volume exceeds five barrels.

Regular inspections are performed to assure safe and efficient operation. On a regular basis during the workweek the system operation is monitored. Visual observations are made, looking for leaks, equipment malfunctions and the status of the control system. Observations are recorded in a bound field logbook with the date, time, and person recording the information noted.

An inspection in the control building at each tank, the southern area, and each recovery well is made regularly during the workweek. All equipment is inspected for leaks and malfunctions. The operator is familiar with the location of underground lines and notes any surface indication of underground leaks. Leaks of any size are noted and repaired. Readings from all water meters are observed and recorded in the logbook regularly and comparisons of previous readings are made. Abnormal meter readings can indicate problems within the system. On a quarterly basis, the level of water and product is determined for each well. This includes both monitoring and recovery wells.

Knowledge of the ground water elevation is useful in determining the effectiveness of the recovery well network. Levels are determined on a quarterly basis. An electronic water/oil detection tape is to be used to determine levels. Collected data is recorded in the logbook, noting the depth to water and the depth to product as well as the time, date and person recording the observations.

Maintenance of the system includes replacement of filters in well houses, rotating equipment lubrication, air compressor oil changes, adding nutrients as necessary, listening for unusual pump and motor noise, inspecting the carbon pre-filter, and repairing all equipment as required.

X. SPILL/LEAK PREVENTION AND REPORTING

Prevention

Leaks and spills are not likely, however, the potential does exist for these events. Tanks and piping are the most likely locations. Safeguards in place in the refinery include the choice of construction materials, safety and shutdown devices, secondary containment, inspection, and security.

1. Materials of Construction

All piping is constructed of PVC or other hydrocarbon and corrosion resistant plastics. Material choices for valves and controls include plastic, stainless steel, bronze, and cast iron, all selected to be suitable for water and hydrocarbon service. Storage tanks are constructed of steel.

2. Safety and Shutdown Devices

A microprocessor based central control and safety shutdown panel monitors, enunciates, and shuts down the water treatment system based on the occurrence of abnormal conditions as indicated by equipment sensors outlined following. All storage tanks are equipped with high and low level liquid sensors to detect breaches or overfills.

3. Secondary Containment

All tanks in service have viable earthen secondary containment berms in place. All of these bermed areas have a minimum liquid capacity of 1.5 times the total capacity of tank(s) contained within them. Berms are monitored and maintained to ensure effectiveness.

4. Inspection

Regular inspections during the workweek are performed. These inspections include looking for visual indications of leaks, checking tank levels, recording and comparing meter readings, and checking the condition of pump seals and motors. Unusual conditions are noted in the logbook and reported to the Project Manager.

5. Security

The facility is entirely fenced with chainlink or barbed wire. Gates are locked and access is limited to facility personnel and supervised visitors and contractors.

Emergency Response and Notification

In the event of an unplanned release of water or hydrocarbon at the facility, the project manager should be notified and act as the response coordinator. If he is not available, the next person noted in the following list of alternates should be notified.

	OFFICE	HOME
Project Manager Tim Kinney	632-8006	325-2907
Environmental Technician Jeany Overman	632-8006	325-0715
Transportation Safety Manager	632-8006	

If it is determined that the release is 5 barrels or greater, the OCD will be notified and a written report submitted.

Leaks occurring outside of tank containment berms should be contained or redirected so that they can be picked up by pumps or vacuum trucks and placed back in storage. In the event of piping leaks, the leaking section should be isolated by closing necessary valves and shutting down pumps. Leaks occurring inside of containment berms can be pumped back into storage tanks.

A red emergency shutdown button is located on the face of the control panel. Depressing the button shuts down all pumps and closes all air-operated valves. It should be used in case of emergency.

Reporting

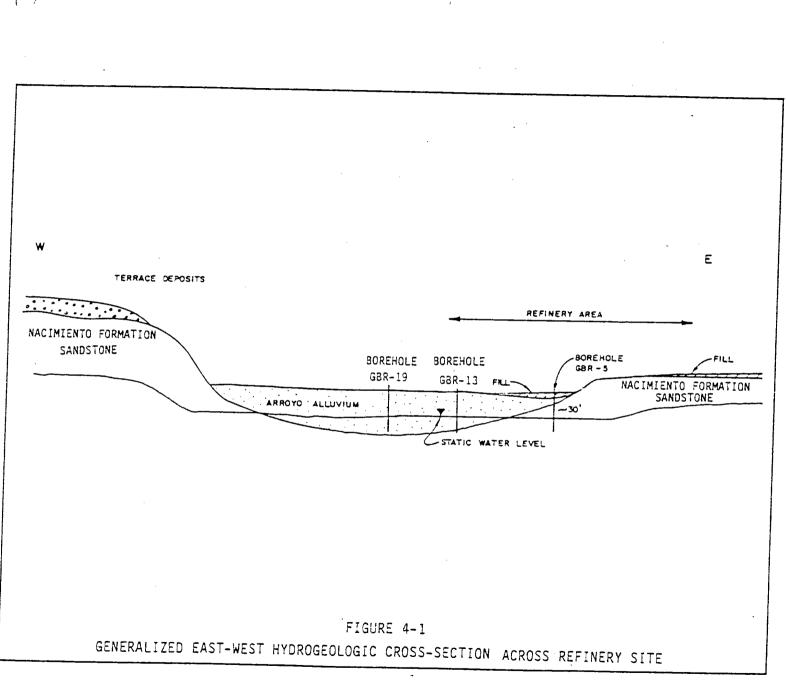
A report of activities at the facility is prepared annually. The report includes an update of operations, analytical results, water levels, a potentiometric surface amp, volume history, and specific conductance tracking.

XI. SITE CHARACTERISTICS

The refinery is located on weathered outcrops of the Nacimiento Formation, which is comprised of shales, sandstones, and siltstones of Cretaceous-Tertiary age. Immediately to the west of the refinery and on Giant's property is a large unnamed arroyo, which is underlain by 30 to 60 feet of Quaternary alluvial sediments. Older Quaternary terrace deposits of cobbles and boulders are observed on the interfluvial ridges adjacent to the arroyo. These terrace deposits may have been

utilized as fill on the refinery site. The San Juan River Valley is located south of the site and contains up to several hundred feet of alluvial fill.

The uppermost zone of ground water in the refinery area is an unconfined to partially confined water-table unit which is hosted by the weathered, locally porous sandstones and shales of the Nacimiento Formation and arroyo alluvium. These units merge hydrologically with the San Juan River alluvium to the south. Figure 4-1 is a generalized east-west cross section across the refinery site showing the relationship of the arroyo alluvium to bedrock. Major hydrogeologic features of the site are:


- an interconnected water-table aquifer, hosted by both valley and arroyo fill and the upper parts of the Nacimiento sandstone;
- ground water at a depth of 25 to 45 feet beneath the land surface;
- an upper water-table surface generally conforming to topography, with ground water flow from north or northeast to south (towards the San Juan River) through the refinery area; and
- minor, local zones of perched ground water, lying 5 to 30 feet above the water table.

Water levels and floating product thicknesses were measured in all wells on the refinery property from April through November 1986. A record of these measurements is shown in Table 4-1. A water table contour map was prepared (Figure 4-2) based on the static water levels of all the wells at the refinery measured in November 1986. This map is representative of static conditions of the aquifer because pumping was not being done at that time. Where floating product was encountered, the product thickness (Table 4-1) has been multiplied by 0.8 and added to the measured water elevation. This calculation corrects for the difference in density between floating product and water by taking into account a product density of approximately 0.8 g/cc. The result provides a value that should be the actual potentiometric surface.

The water table surface depicted in Figure 4-2 generally conforms to local topography. The ground water gradient slopes and flows from:

- north to south in the arroyo toward the San Juan River;
- northeast to southwest in the area east of the arroyo; and
- east to west at the arroyo boundary near the Diesel Spill Area.

Several pump tests were conducted in the Diesel Spill Area and in the Southern Refinery Area. Analysis of the pump tests in the Diesel Spill Area revealed small values of transmissivity and storativity near GBR-27 and moderate values near GBR-14. High values were found in the Southern Refinery Area near GBR-29. These findings imply that fine-grained sandstone, shale, and clay are more predominant in the northern part of the Diesel Spill Area and that coarse-grained sandstone dominates the geology in the southern part of the Diesel Spill Area and the Southern Refinery Area. Flow conditions appear to range from confined near GBR-27 where shale is present, to semi-confined near GBR-14 where clay is present.

Ì

:

. |

ì

1-

							CHRONOLOG	Y OF ST	GIAN ATIC WATER	it indus Levels	TRIES BLOOM AND PETROLE WELLS 5-1	um produ	FINERY CT THICKNE	ISSES IN	FEET					•		
date w <u>ell</u> NO, -	538 4. L.	5 P.T.	59. M.L.	R 6 P.T.	GBR ₩.L	7 P.T.	GBR .	а Р. Т.	GBR K.L.	³ р.т.	58R 4.L	10 P.T.	6BR W. L.	11 P.T.	68R 4. L	13 P.T.	6BR ᄣᇿ	14 P. T.	GBR ¥.L.	15 P.T.	GBR I W.L.	16 P.T.
4/3 4/15 4/16 4/23 4/30	5343, 10 5341, 20 5342, 54	- 0,00 0,00											5349, 95 5349, 91 5349, 83 5349, 83	0 0 0	5254.75 5352.75 5352.68 5352.79	0 0 0 0					- 5393. 10 5396. 60	ļ
5/2 5/9 5/28 5/29 5/30	5358.21	0,00 - 0.00 1.38 0.08						-					5349.83	0 0 0	5352.75 5350.08	0 0 0					-	0
7/1 7/15 7/31 3/12	- 5351.93 5351.53	6.75 }4.00 11.04 11.49								÷			5349.75 5348.66	0 0.40 0.17	5351.77 5350.71 5350.39	0 0.55 0.83 1.42						
10/7 10/8 10/8	5362, 31 5362, 81	1.00 0.83	5359, 50 5359, 54	ō	5553.00	ō	-	• -	-	-	-	-		-	5351,50	0.75 -	5365,83	0	5364.62	0		
(After Pumping 638-7) 10/9 10/9	5362.39	0.75 -	5358.58	0	5353.30	0 -	5348.42	0	5348.50	0	5345.50	2.33	5348.87		-	-	-	-	-	-		
(After Pumping GBR-31) 10/15 10/17	-	-	5360.00	-	5362.80	ō	5348, 33 5348, 38 5348, 42	0 0 0	5348.54 5347.92	0 0	5345.52 - -	2.38 - -	- - -			- -	5365.75 5365.50	0 - 0	5364, 50 5357, 58 5363, 46	0 0 0		
(after purging) 11/4 (after purging) 11/5 (art <i>e</i> r purge)	5363.10	0.71	5360.17	0.04	5362.50	0	5348.46	0.04	5348.71	0	5348. 17	2.04	5348.32	1.50	5351.79	0,38	•	-	-	-		
(After Pumping SBR-29) 11/19 11/21	5363.39	0.67	5360.33	- 0.08	5363.21	ō	5348.79	- 0.04	5349.12	- 0	5347.42	- 3. 17	5349.08	1.04	5352.33	- 0.38	5366, 46 5366, 33	0 0	5365, 12 5365, 25	0 0		8
(After pump test)	-	-	~	-	-	-	-	-	-	-	-	+	-	-	-	-	5358, 58	0	5360.37	Ø		

. |

TABLE 4-1

.

L

.

W.L. = WATER LEVEL IN FEET ABOVE SEA LEVEL P.T. = PRODUCT THICKNESS IN FEET ~ = NO MERSUREMENT 0 = ZERO MERSUREMENT

Ţ 1

l

i : ;

TABLE 4-1 CONTINUED GIGHT INDUSTRIES BLOOMFIELD REFINERY CHRONOLOGY OF STATIC HATER LEVELS AND PETROLEUM PRODUCT THICKNESSES IN FEET CONT. HELLS 17-25

DATE	HELL XO		17		18 P.T.	6BR I W.L.	9 P.T.	6BR 2 W.L	0 P.T	58R 21 W.L.	(S) P.T.	6BR 21 W.L	(D) P. T.	688 22 W.L	P. T.	68R 23 W.L.	P. T.	6BR 24 W.L.	+(S) P.T.	GBR 24 W.L.	4(D) P.T.	GBR 3 W.L.	25 P. T.
		W. L.	P.T.	W.L.	P. I.	W. L.	P. I.	N . L	F. 1	4, 64										_	_	-	-
4/3		-	-	-	-			-	-	-	-	-	-	<u>-</u> · ·	-	-	-	-	-	-	-	-	-
4/15		-	-	-	-			-	-		-		-	5361.33	-	-	-	-	-	-	-	-	-
4/16		-	-	-	-			-	-	5379.62 5377.70	-	5372.92 5366.53	-	5361.00	_	5377.15	-	5370.70	-	5370.10	-	5367.65	-
4/23		-	-	5407.15 5407.50	-			5364.35 5354.00	-	5366.67	-	5370.94	-	5361.21	-	5378.50		5368.79		5368.62		5367.08	2
4/30			-	3407.30	-			33371.00										C3C0 70	0.08	5368.17	٥	5366, 17	
5/2		-	-	-	0			-	0	5377.50	1.92	5370.54	0	5361.11	0	5378.71	0.01	5368, 79 5368, 83	0.08	5368.33	-	5367.21	
5/9		-	-	5407.75	-			5354.08	-	5289.67	-	5368.42	-	5361.17	-	5379.12	-		-	-	0	-	0
5/28		-	-	-	0				0 0	5775 20	-	5369.57	0	5357.58	ŏ	5375.71	-	5369.54	-	5365.12	Q	5365.29	0
5/29		5367.75	0	-	0			5352, 17	0	5375-29	1.05		ŏ	-	ŏ	-	0.01	-	0.08	-	0	-	0
5/30		-	U	-	U			-	•				-								۵	_	٥
7/1		-	٥	-	0			-	0	-	-	-	0		0	-	- 0.02	- 5368.07	0.01	5368.70	ň	5367.55	ŏ
7/15		5367.78	ŏ	5407.23	ŏ			5253,18	0	5368.33	1.04	5371.58	0	5361.07	0	5377.45 5379.23	0.02	5369,57	0.01	5369.32	ŏ	5367.74	0.04
7/31		5368.31	0	5411.46	o			5354.20	0	5378.12	0.30	5371.54 5372.25	0	5360.96 5361.11	ă	JJ 3. LJ	0.04	3003131	•				
				5110 70	•			5354.20	٥	5379.04	0.42	23/2623	v		v	5379.22	0.03	5369.72	0.03	5369.08	0	5367.81	0
3/1 2		5367.89	0	5410.78	0			0219120	v	3373.04	v										•	5365, 90	٥
10/7		-	-	-	-	-	-	-	-	5379.37	0.50	5370.71	0	5361.84	0	5379.69	0	5369.87	0.04	5369.16	-	1363. 10	-
10/8		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-
10/9		-	-	-	-	-	-	-	~	-	-	-	-	-	-	-							
10/9						ETEE AA	•	_	-	-	-			5361.75	0	5379.69	0	5369.91	0.04	5369.08	0	5367.96	0
(After Pump	oing 68R-31		-	5408.52	- -	5355.00 5755.00	ň	5754 66	0	-	-	5363.58	0	5361.46	0	-	-	-	-	5366.62	0	5366.28 5367.03	ŏ
10/16 10/17		5369.06 5369.06	0	5402.72	ŏ	5355,00 5355,00	ŏ	5354.66 5354.50	ŏ	-	-	5360.79	o	5361.38	0	-	-	-	-	5368.20	U	3367.03	v
(after purg	aina)	00077-00	•	•••••	-				_						_	_	-	-	-	-	-	-	-
11/4	33-	-	-	-	-	-	-	5354.37	0	-	-	-	-	-	-								
11/5		5368 34	•	5100 F5	0	5755 42	۵	-	-	5379.71	0.50	5369.71	0	-	-	5379, 98	0.02	5370.53	0.04	5369.58	0	5368.03	0
	oing GBR-29)	5369. 31 5369. 64	0	5408.56 5408.39	0	5355, 42 5355, 62	ŏ	5355.16	0	5379.79	0.46	5369.92	ŏ	5359.34	2.96	5380.36	0.02	5370.91	0.02	5370.03	Q	5363.03	v
11/19 11/21		7003-04	v		v		•		-						a 7 0	E700 75	•	5369.45	Λ	5367.82	0	5366.95	0
(After pump	test)	-	-	-	-	-	-	-	-	5.79.75	0.33	5366.34	Q	5360.04	2, 79	5380.36	U	7703° 41	~	J.J UL	2		
																							_

W.L. = WATER LEVEL IN FEET ABOVE SEA LEVEL P.T. = PRODUCT THICKNESS IN FEET - = NO WEASUREMENT 0 = ZERD WEASUREMENT

٠

BLCOMEL

TABLE 4-1 CONTINUED GIANT INDUSTRIES BLOOMFIELD REFINERY CHRONOLOGY OF STATIC WATER LEVELS AND PERFOLEDM PRODUCT THICKNESSES IN FEET CONT. WELLS 26-31

	688	26	GBR 27		68R 28		6BR 3	29	GBR 3		6BR 3	a		HEIT
DATE HELL NO	W.L.	°P.T.	W.L. P	.T.	H.L	P. T	W.L.	P.T.	W.L.	P. T.	W.L.	P.T.	W.L	P.T.
							_	-					-	-
4/3		-	-	-	-	-	-	_					5363.17	-
4/15	-	-	-	-	-	-	_	-					5363.08	-
4/16	-	-	-	-	-	-	-	_					5362.30	-
4/23	5362.65	-	-	-	-	-	_	-					-	
4/30	5362,92		5357.04	-	-	-	-							
				7 17		_	-	-					5363.12	0
5/2	5362.85	0	5360.16	7.17	-	-	-	-					5362.92	-
5/9	5362.75	-	-		-	_		-					-	0
5/28	-	0		8.08	5359.87	0.17	5345.00	0					5363.04	0
5/29	5361.29	0	5357.67	8.67 8.38	1012-01	0.13		ó					-	0
5/30	-	U	-	G. 20	-	0.10		•						•
		•		9.00	-	-	- <u>-</u>	1.50					-	0
7/1		0	-	3.00	5361.95	0.50	5342.85	4.50					5362.96	.0
7/15	5362.62	0	ere	2.91	5360.59	0.58	5341.02	7.34					-	-
7/31	5362,93	0	5364.75			0.00	0011102							
	11	•	(after being	- nomine	5360.43	1.22	5341.61	6.50					-	-
3/12	5362.31	0	-	-	3000.40							-		•
		0	5367.25	0.42	5362, 18	0	5342.27	6,25	5366.00	0	5362.30	0	5363.71	0
10/7	5363.72	U	لبتاريون	-	-	-		-	-	-	-	-		-
10/8	-	-	_	-	-	-	-	-	-	-	-	-	-	-
10/9	-	-										•		•
10/9		0.04	5367.08	0.38	5361.47	0	·	-	5365.92	0	5362.21	0	5363.56	0
(After Pumping 6BR-31)	5363.56	-	3307.00		5358.43	_	-	-	5365.79	0.	5362.00	0	5362.79 5363.04	ŏ
10/16	5363.33 5361.26	ŏ	-	-	-	-	-	-	5365.83	0	5362.00	0	2363-04	
10/17	3301-55	v												-
(after purging)	_	-	-	-	-	-	5343.02	5.58	-	-	-	-	-	
11/4	-											•	5364.21	0
11/5 (Offer Dunning 699-29)	5364.93	0.08	5368.08	0.29	5362.26	0.02	5345.94	2.04	5367.00	0.25	5362.42	0	5364.21	ŏ
(After Pumping 6BR-29)	5364.39	0.17	5367.91	0.08	5362, 64	0.12	5345.52	2.96	5366.50	0.17	5362, 84	U	11 .1000	v
11/19 11/21										•		-	5363.79	0
(After pump test)	5364.01	0.12	5357.16	0	5361.93	0	-	-	5366.42	0	-	-	ل ۽ وليوني	v

W.L. = WATER LEVEL IN FEET ABOVE SEA LEVEL P.T. = PRODUCT THICKNESS IN FEET - = NO MEASUREMENT 0 = ZERD MEASUREMENT

1 ··-- 1

APPENDIX A

MONITORING, SAMPLING AND REPORTING PROGRAM

Monitoring, sampling and analysis, and reporting are an integral part of the remediation project. Monitoring provides information critical to the safe and efficient operation of the system. Sampling and analytical work is the barometer by which the effectiveness of the project is determined. An emphasis is placed on correct monitoring, sampling, and analysis.

Monitoring

Monitoring the system helps maintain a safe and efficient operation. On a regular basis during the workweek the system operation should be monitored. Visual observations should be made, looking for leaks, equipment malfunctions and the status of the control system. Observations are to be recorded in a bound field logbook including the date, time, and person recording the information.

An inspection in all equipment enclosures should be made regularly. All equipment should be inspected for leaks and malfunctions. The operator should be familiar with the location of underground lines and note any surface indication of underground leaks. Leaks of any size should be noted and repaired. Leaks of a sufficient quantity may have to be reported to the appropriate governmental agency. Readings from all meters are to be observed and recorded in the logbook regularly. Comparisons of previous readings should be made. Abnormal meter readings can indicate problems within the system. On a quarterly basis, the level of water and product should be determined for each well. This includes both monitoring and recovery wells. Knowledge of the ground water flow direction is useful in determining the effectiveness of the recovery well network. An electronic water/oil detection tape is to be used to determine levels. Record collected data in the logbook noting the depth to water and the depth to product as well as the time, date and person recording the observations. All measurements are to be recorded in feet and tenths of feet. A mark on the north side of the top of each well casing serves as the measurement reference point. It is necessary to decontaminate the detection tape between each well.

Sampling

Water samples are collected from a variety of wells on a regular basis. The samples are analyzed for various components. The results are included as a part of quarterly reports. Figure #9 is the sample matrix for the project. It illustrates the required analyses and the frequency for various wells and points in the system.

Purging

Wells must be properly purged prior to collection of samples. To obtain a representative aquifer sample it is necessary to withdraw at least 3-5 casing volumes of water from monitoring wells before sample collection. Water is withdrawn using a Teflon or stainless steel bailer. The bailer is repeatedly lowered into the well, withdrawn and emptied until sufficient water has been purged from the well.

The temperature, Ph, and conductivity of the purged water should be monitored at regular intervals as the well is purged. This will help to determine if enough water has been purged to insure a representative ground water sample. As the well is purged, these three parameters should stabilize. If they do not stabilize after 3 casing volumes have been purged, additional water will have to be purged until they do.

Some wells will purge dry. If a well purges dry and does not recover in a reasonable period of time, allow the well to recover and collect samples.

If the well to be sampled has an active recovery pump, collect the sample directly from the pump discharge after allowing a small volume of water to purge the sample valve and line.

Wells which exhibit free-floating product are not sampled.

Decontamination

To prevent contamination of ground water samples or monitor wells, all sampling equipment must be thoroughly cleaned prior to each use. The following decontamination procedure is to be strictly adhered to.

- 1. Disassemble and thoroughly wash all sampling equipment with non-phosphate detergent and water.
- 2. Rinse several times with deionized water.
- 3. Rinse once with laboratory grade methanol.
- 4. Rinse again with deionized water.
- 5. Wrap the cleaned equipment with aluminum foil or plastic if it is not used immediately.

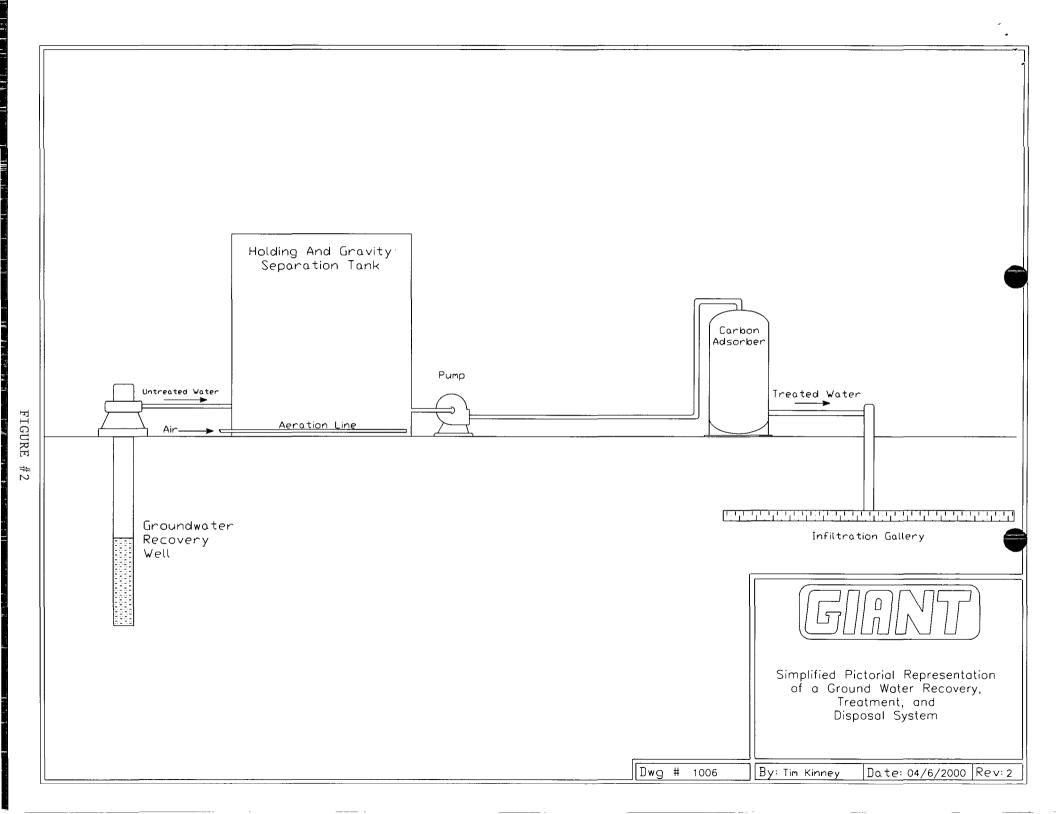
Plastic gloves should be worn during sampling. They must be disposed of or decontaminated per the above procedure between samples. Do not attempt to decontaminate the rope used with the bailer. Discard it and replace the rope with new rope for each well. Use new nylon, polypropylene or similar rope.

Sample Containers and Shipment

Laboratory supplied sample containers are to be used for all samples. All samples will be collected and placed in tightly sealed glass or polyethylene containers, as appropriate, and preserved in accordance with the requirements of EPA document SW846 and the standard practices of the laboratory contracted to perform the analyses. The container and preservation technique will be specified by the laboratory. Immediately upon collection, label each container with an adhesive label clearly indicating, in waterproof ink, the project and site identification, sample number, method of sample preservation, date and time of sampling, and the name of the sample collector. The sample number is a unique ten digit code indicating the date and time of sampling. The first two digits represent the year, the third and fourth digits, the month, the fifth and sixth, the day, and the seventh, eighth, ninth, and tenth, the time based on a twenty four hour clock. For example, a sample collected on December 10, 1990 at 1:45 PM would be assigned a sample number of 9012101345. Each sample container is to be sealed with a chain of custody seal. The seal is an adhesive strip, which contains the sample number, project and site designation, date and the signature and printed name of the sampler. The seal is affixed to the sample container in such a way that the container can only be opened by

breaking the seal. Seals are to be removed only by the laboratory. Samples should be placed on ice as soon as possible and chilled to below 4 degrees Celsius.

Samples are to be shipped via Federal Express or similar overnight air freight, or hand carried to the laboratory. Samples are to be shipped packed in ice, in suitable coolers supplied by the laboratory. The samples must arrive at the laboratory no warmer than 4 degrees Celsius. Samples are wrapped in Styrofoam, foam rubber, plastic bubble pack, or similar materials suitable for fragile shipment.


Chain of Custody Forms

All samples collected for analysis are to be accompanied by a chain of custody form. The document records the transfer of custody as the samples are processed. Figure #10 is an example of a properly filled out chain of custody form. The form is prepared in triplicate. One copy is to be retained by Giant prior to shipment. The original and the remaining copy are to be included with the samples. Chain of custody forms are kept on file with the corresponding laboratory report.

GIANT INDUSTRIES, INC. ONSITE REMEDIATION PROJECT ANNUAL ANALYTICAL DATA SUMMARY 1999

	JAN	APR	JUN	JUL	OCT	DEC
SYSTEM EFFLUENT						
Lab pH	7.1	7.1		7.1	7.1	
Lab Conductivity @25 C	3190	3130		3220	3090	_
Total Dissolved Solids (Calc)	2430	2490		2370	2430	
Total Alkalinity as CaCO3	481	480		428	456	
Total Hardness as CaCO3	1080	922		917	967	
Bicarbonate as HCO3	586	ND		522	556	
Carbonate as CO3	ND	204		ND	ND	
Hydroxide	ND	48		ND	ND	
Chloride	122	155		151	140	
Sulfate	1180	1130		1160	1140	
Calcium	384	318		316	330	
	30.4	31.3		31.1	34.8	
Magnesium Potassium	2.6	31.3		2.4	2.7	
······································						
Sodium	399	394		394	431	_
				┠────╂·		_
HALOCARBONS						
Bromodichloromethane	ND	ND		ND		
Bromoform	ND	ND		ND		
Bromomethane	ND	ND		ND		
Carbon Tetrachloride Chloroethane	ND ND	ND ND		ND ND		
Chloroform	ND ND	ND ND		ND ND		
Chloromethane	ND ND	ND		ND		
Dibromochloromethane	ND ND	ND		ND ND		
1,2-Dibromoethane (EDB)	ND ND	ND		ND	· · · · · · · · · · · · · · · · · · ·	
1,2-Dichlorobenzene	ND ND	ND		ND		
1,3-Dichlorobenzene	ND	ND		ND		
1,4-Dichlorobenzene	ND	ND		ND		
1,1-Dichloroethane	ND ND	ND		ND		
1,2-Dichloroethane (EDC)	ND ND	ND		ND		
1,1-Dichloroethene	ND	ND		ND		
cis-1,2-Dichloroethene	ND	0.43		0.8		
trans-1,2-Dichloroethene	ND	ND		ND		
1,2-Dichloropropane	ND	ND		ND		
cis-1,3-Dichloropropene	ND	ND		ND		
trans-1,3-Dichloropropene	ND	ND		ND		
Methylene Chloride	ND	ND		ND		
1,1,2,2-Tetrachloroethane	ND	ND		ND		
Tetrachlorethene	ND	ND		ND		
1,1,1-Trichloroethane	ND	ND		ND		_
1,1,2-Trichloroethane	ND	ND		ND		
Trichloroethene	ND	ND		ND		
Trichlorofluoromethane	ND	ND		ND		
Vinyl Chloride	ND	ND		ND		_
AROMATICS						
Benzene	ND	ND		0.6		
Chlorobenzene	ND	ND		ND		

	JAN	APR	JUN	JUL	OCT	DEC
1,2-Dichlorobenzene	ND	ND		ND		
1,3-Dichlorobenzene	ND	ND		ND		
1,4-Dichlorobenzene	ND	ND		ND		
Ethylbenzene	ND	ND		ND		
Methyl-t-Butyl Ether	ND	ND		ND		
Toluene	ND	ND		ND		
Total Xylenes	ND	ND		ND		

The Effect Of Pumping On An Aquifer

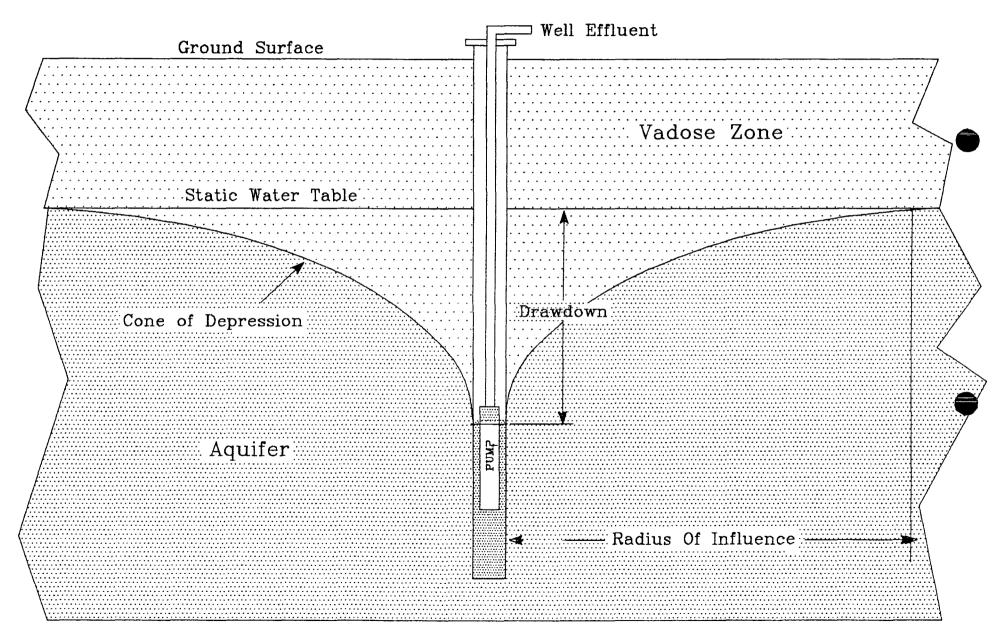
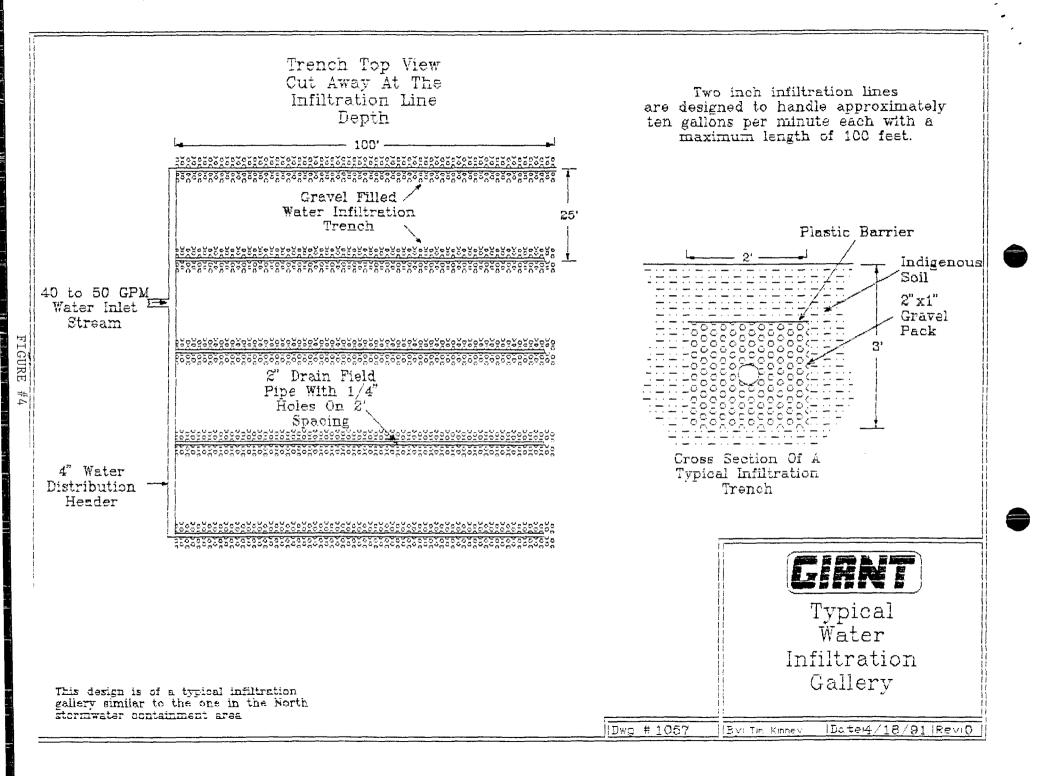
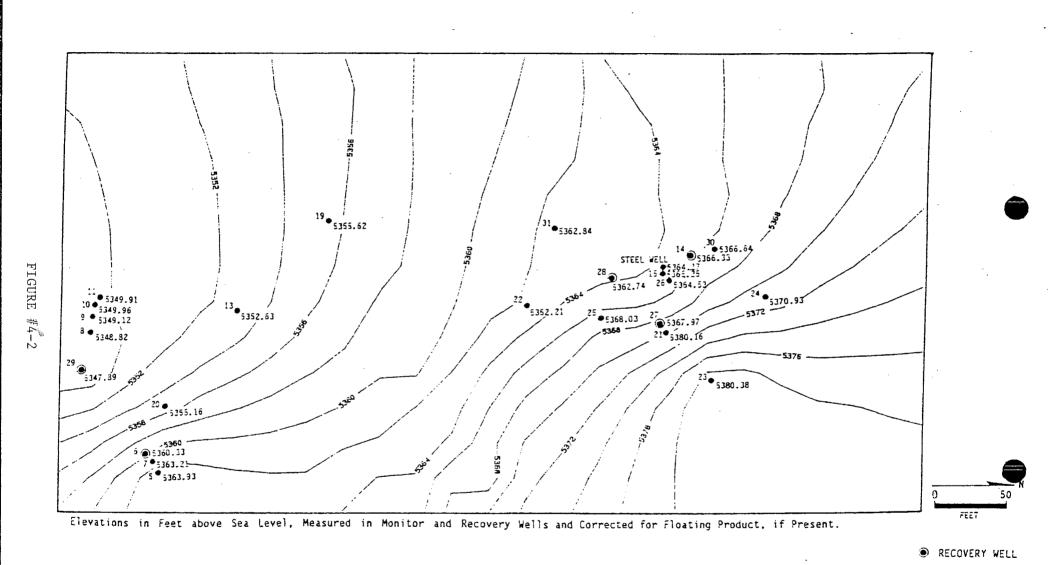
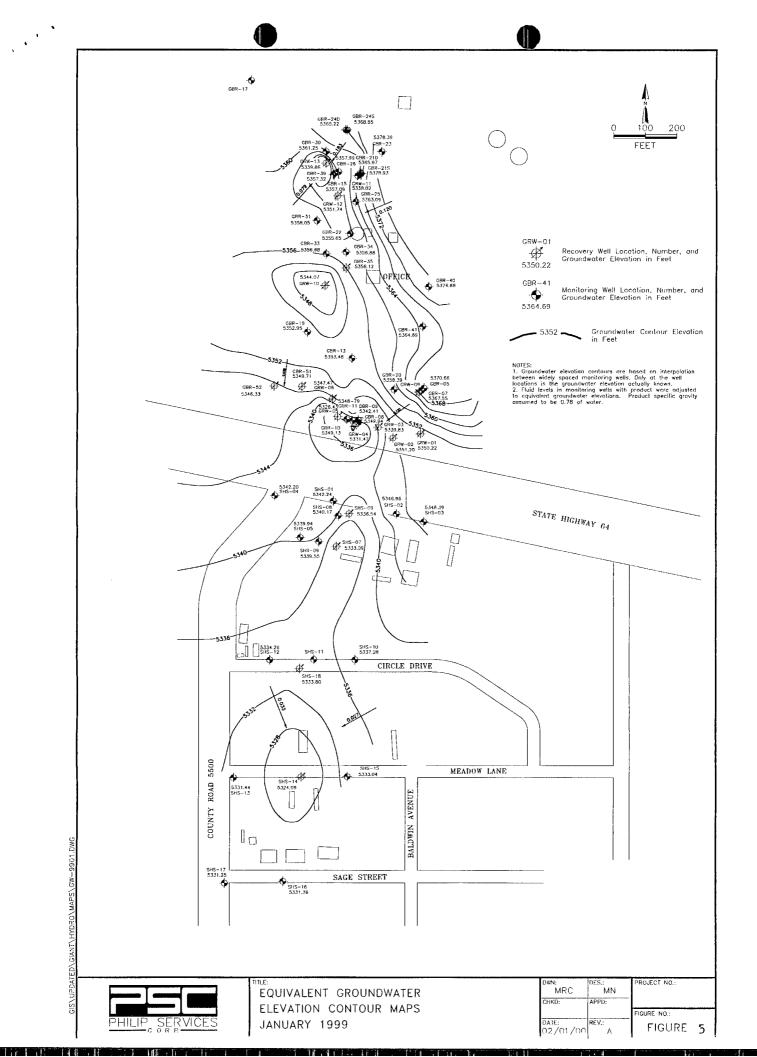
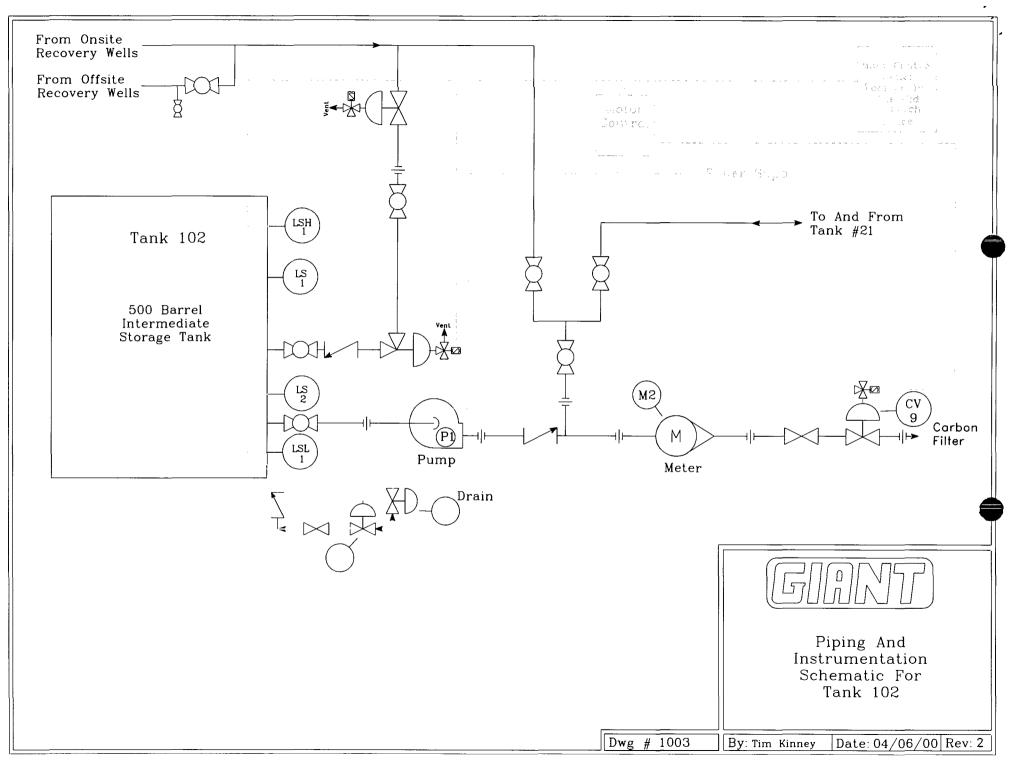
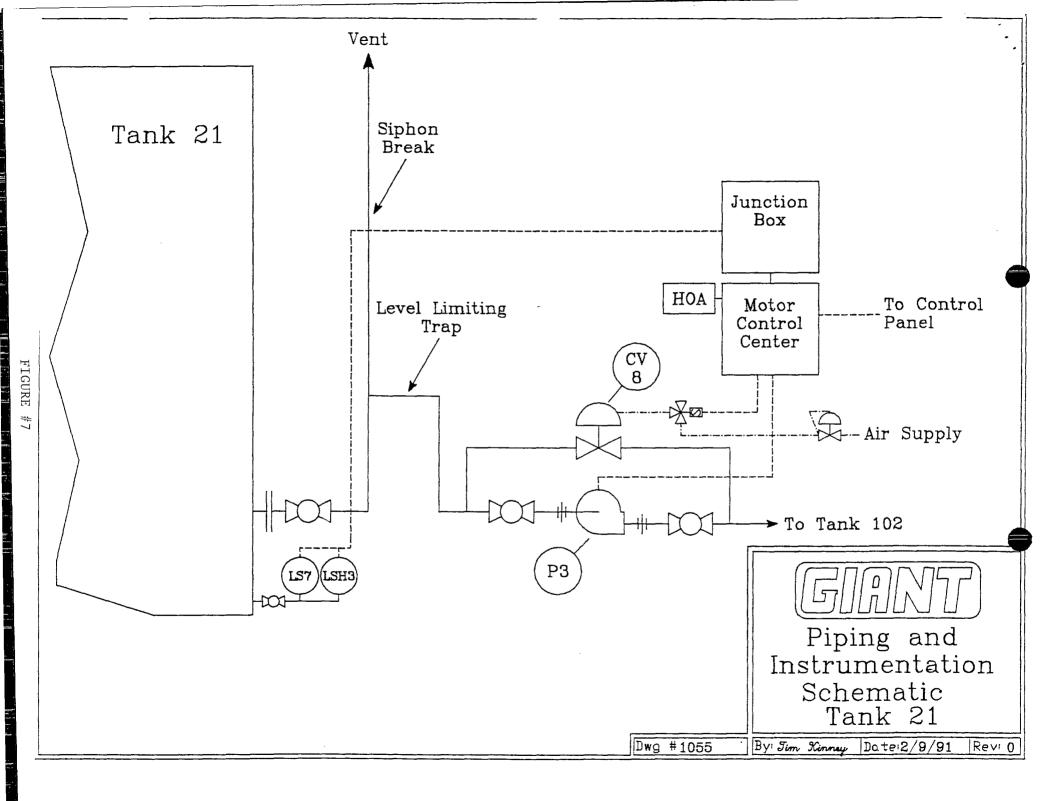




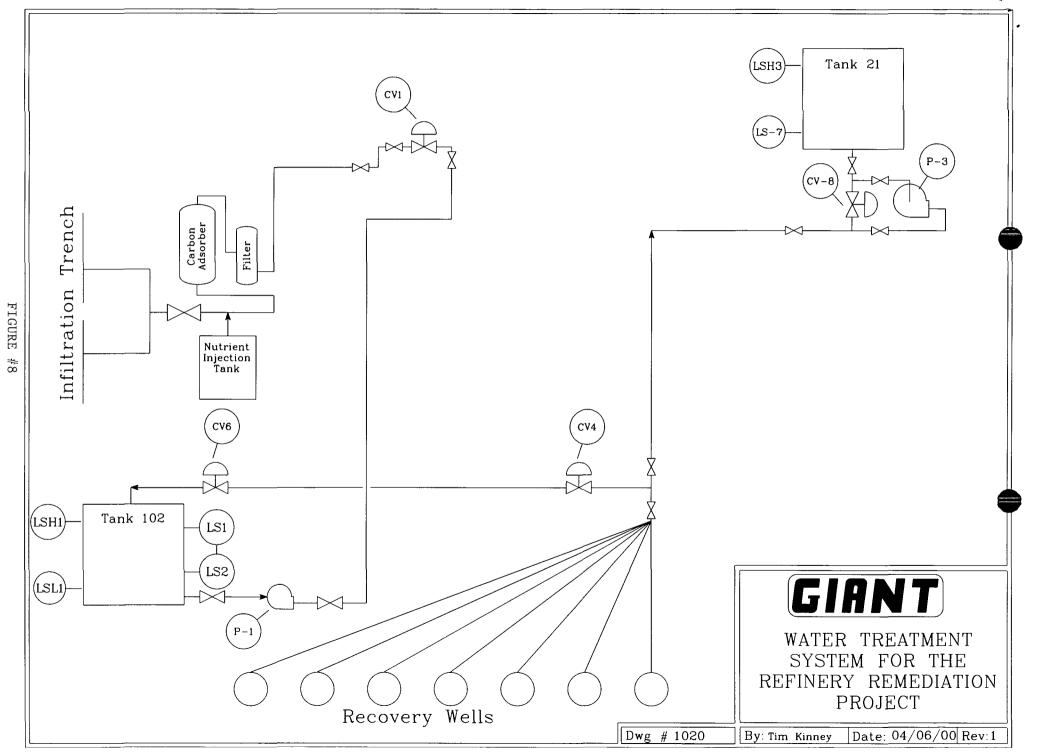
Figure #3

- - ---




- 1


MONITOR WELL


GROUND WATER LEVEL CONTOUR MAP - GIANT BLOOMFIELD REFINERY, NOV. 1986

#6

GIANT INDUSTRIES, INC. BLOOMFIELD REFINERY

. * *

REDUCED SAMPLE MATRIX AS MODIFIED BY THE NMOCD AUGUST, 1995

	MONTHEN		SEMI-	
LOCATION	MONTHLY	QUARTERLY 601	ANNUALLY 601	ANNUALLY 601
System Influent		602	602	601 602
		GWC	GWC	GWC
System Effluent		601	601	601
		602	602	602
		GWC	GWC	GWC
				Metals
				PAH
GRW-3				601
				602
				GWC
				PAH
GRW-6				601
				602
				GWC
				PAH
GRW-13				
GBR-15				
GBR-17				601
				602
				GWC
				PAH
GBR-24D				601
				602
				GWC
				PAH
GBR-30			·····	601
				602
				GWC
				PAH

			SEMI-	
LOCATION	MONTHLY	QUARTERLY	ANNUALLY	ANNUALLY
GBR-31				601
				602
				GWC
				PAH
SHS-3				601
				602
				GWC
SHS-4				601
				602
				GWC
SHS-6				601
				602
				GWC
SHS-10				601
				602
				GWC
SHS-12				601
				602
				GWC
SHS-13				601
				602
				GWC
SHS-14				601
				602
				GWC
SHS-15				601
				602
				GWC
SHS-16				601
				602
				GWC
SHS-17				601
				602
				GWC
SHS-7				601
				602
				GWC
SHS-9				

			SEMI-	
LOCATION	MONTHLY	QUARTERLY	ANNUALLY	ANNUALLY
SHS-18				601
				602
				GWC
GBR-51				601
				602
				GWC
GBR-52				601
				602
				GWC
GBR-32				601
				602
				GWC
				Metals
GBR-48				601
				602
				GWC
				Metals
GBR-49				601
				602
				GWC
				Metals
GBR-50				601
				602
				GWC
				Metals

, • *

NOTES: All wells will have water and free product elevations determined on a monthly basis.

Wells exhibiting free product will not be sampled.

	Reme IS Hwy Inty Ro 37413	64								1			ГОDҮ _/₀f_/				
LABORATORY	Uhe à	Rabohatohur						REQU	JESTED	ANAL	YSIS						
		Rabohatotup Main Start City, CA 555 - 2222	POLYNUCLEAR AROMATICS 610/8310	HALOGENATED VOLATILES 601/8010	AROMATIC VOLATILES 602/8020	ATER											
SAMPLER'S SIGNA	ATURE		4UCLE/ ATICS	GENAT	ATIC	GENERAL WATER CHEMISTRY										ER OF AINERS	
SAMPLE NUMBER	MATRIX	LOCATION	POLYN AROM	HALO(VOLA1	AROM. VOLAT	GENER					1					NUMBER OF CONTAINERS	¢
9104150955	Water	SHS-25		~	~	 ✓ 										5	
-	Water	GRW-64	V			V										3	
				-													
										-							
																-	Ţ
PROJECT INFOR PROJECT:		SAMPLE RECEIPT		IQUISHED	BY://(!	Signature	let' er		IQUISHED		Signature) 2.		IQUISHED		Signature)	3.
PROJECT MANAGER:	manun	CHAIN OF CUSTODY SEALS	50	III4-	Sar	npl	er	ļ .	ipany)					ipany)	_		
Tim Kinney SHIPPING I.D _n NO.		REC'D GOOD CONDITION/COLD			Giant	Refin	ing		AND TH	4F+				AND TH			
HIPPING I.U. NO. Hed. ExpHE:	<< #	CONFORMS TO RECORD		AND TH 120			00 p.m										
SHIPPED VIA		LABORATORY NUMBER:	RECE	IVED BY:	(Si	gnature)	* 1.	RECE	IVED BY:	(Sig	nature)	2.	RECE	IVED BY	: (Sig	nature) LABORATO	3 DRY
JEDEKAL EXA SPECIAL INSTRUCTIONS	OR COMMENT	S	(Prin	ted Nam	e)			(Prir	ited Nar	ne)			(Prin	ted Nam	ne)	<u>caddin (</u>	
Return original ((Con	npany)				(Company)				(Corr	ipany)				
100				DATE AND TIME: DATE AND TIME: DATE AND TIME:							ME:						

FIGURE #10

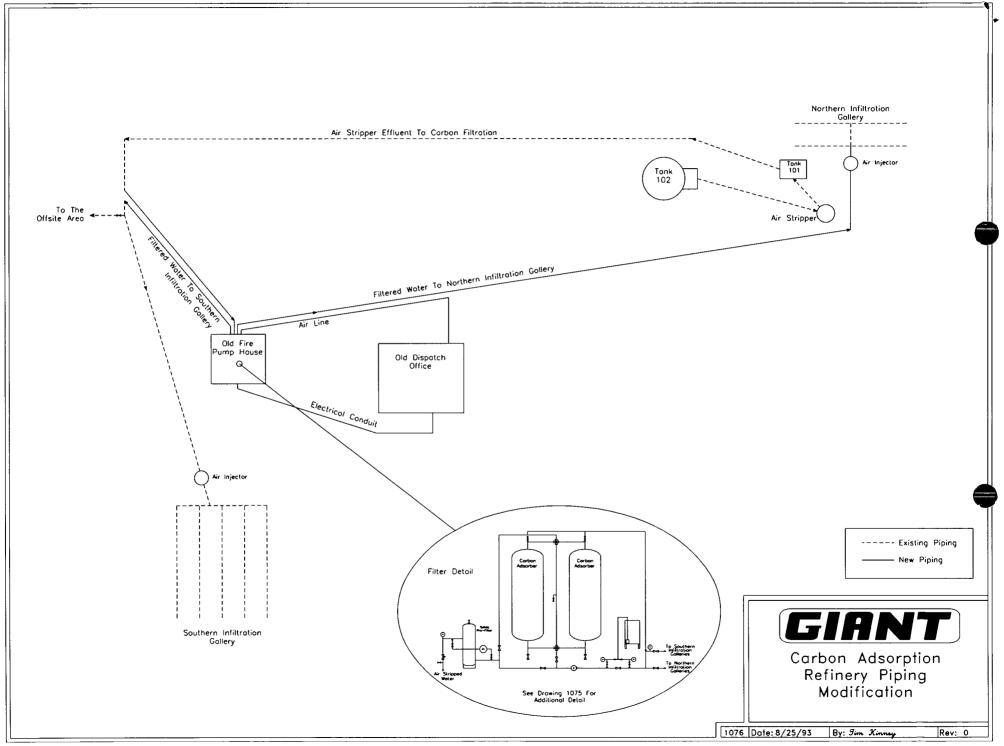
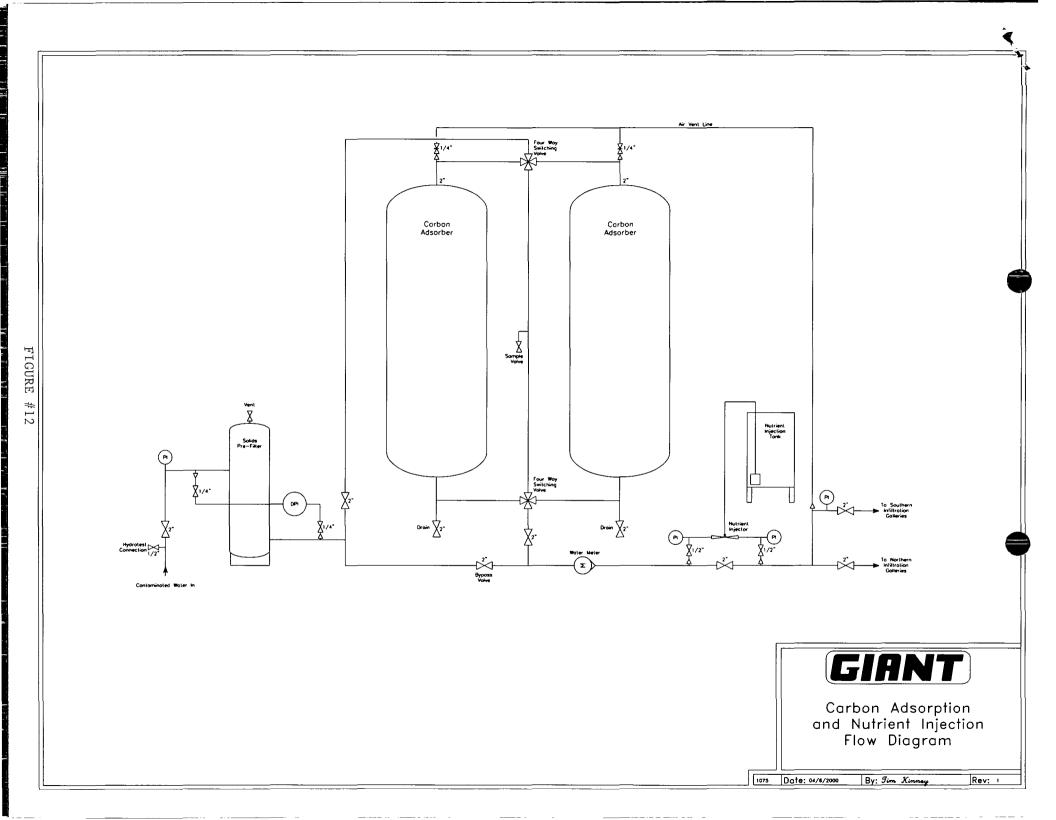



FIGURE #11

£

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission (WQCC) Regulations, the following discharge plan application has been submitted to the Director of the Oil Conservation Division, 2040 S. Pacheco, Santa Fe, New Mexico 87540, Telephone (505) 827-7132:

(GW-40) - Giant Industries, Inc., Tim Kinney (Refinery Remediation Project Manager), 111 County Road 4990, Bloomfield, New Mexico 87413, has submitted a discharge plan application for remediation of contaminated ground water at the former Giant Bloomfield Refinery lacated in the NW 1/4 of Section 27 and the SW 1/4, of Section 22, Township 29 North, Range 12 West NMPM. Lea County, New Mexico. The application addresses discharges to ground water associated with the remediation of petroleum contaminated ground water. Approximately 23 gallons per minute of contaminated ground water is processed through a treatment system to remove contaminants to below WQCC ground water standards prior to reinjection in an infiltration gellery. Groundwater most likely to be affected by an accidental discharge is at a depth of approximately 25 feet with a total dissolved solids concentration of approximately 2500 mg/l. The discharge plan addresses system operation and monitoring, ground water quality monitoring and how spills, leaks and other socidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge application may be viewed at the address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Request for public hearing shall set forth the reasons why a public hearing shall be said. A hearing will be held if the Director determines that there is significant public interest. If no hearing is held, the Director will approve for disapprove the plan based on the information available. If a public hearing is held, the Director will approve the plan based on the information in the plan and information presented at the hearing.

GIVEN under the Seal of New Mexico Conservation Commission at Santa Fe, New Mexico, on this 24th day of July, 2000.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

(s/ Roger Cullander Roger Cullander for LORI WROTENBERY, Director

SEAL

Legal No. 43197 published in The Daily Times, Farmington, New Mexico, Tuesday, August 8, 2000.

Affidavit of Pullication

STATE OF NEW MEXICO

) ss.

COUNTY OF LEA

Joyce Clemens being first duly sworn on oath deposes and says that she is Advertisting Director of THE LOVINGTON DAILY LEADER, a daily newspaper of general paid circulation published in the English language at Lovington, Lea County, New Mexico; that said newspaper has been so published in such county continuously and uninterruptedly for a period in excess of Twenty-six (26) consecutive weeks next Notice is hereby given prior to the first publication of the notice hereto attached as that pursuant to New hereinafter shown; and that said newspaper is in all things Control duly qualified to publish legal notices within the meaning of following discharge plan Chapter 167 of the 1937 Session Laws of the State of New Mexico.

That the notice which is hereto attached, entitled

Legal Notice

was published in a regular and entire issue of THE LOV-

INGTON DAILY LEADER and not in any supplement there-

of, for <u>one (1) day</u>, beginning with the issue of

July 28 _____, 2000 and ending with the issue

of July 28 2000.

And that the cost of publishing said notice is the sum of \$ 59.84 which sum has been (Paid) as Court Costs.

Subscribed and sworn to before me this 9th day of

August 2000 Debbie Schilling

Notary Public, Lea County, New Mexico My Commission Expires June 22, 2002

LEGAL NOTICE NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT **OIL CONSERVATION** DIVISION Mexico Water Quality Commission (WQCC) Regulations, the application has been sub-

mitted to the Director of

the Oil Conservation 2040 South Division. Pacheco, Santa Fe, New Mexico 87540, Teléphone (505) 827-7132: (GW-40) Giant Industries, Inc., Tim Kinney (Refinery Remediation Project Manager), 111 County Road 4990, Bloomfield. New Mexico 87413, has submitted a discharge plan application of remediation of contaminated ground water at the former Giant Bloomfield Refinery located in the NW 1/4 of Section 27 and the SW 1/4, of Section 22,

aminated ground water is processed through a treatment system to remove contaminants to below WQCC ground water standards prior to reinjection in an infiltration gallerv. Groundwater most likely to be affected by an accidental discharge is at a depth of approximately 25 feet with a total dissolved solids concentration of 2500 approximately mg/l. The discharge plan addresses system operation and monitoring, ground water quality monitoring and how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge: plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday: through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted and a public hearing may be requested by any interest-

ed person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest. If no hearing is held, the Director will approve or disapprove the plan based on information available. If a public hearing is held, the Director will approve the based on the information in the plan and information submitted at the hearing.

GIVEN under the Seal of 🔆 Mèxico New Oil Conservation Commission at Santa Fe, New Mexico, on this 24th day of July, 2000.

> STATE OF NEW MEXICO OIL CONSERVATION DIVISION

LORI WROTENBERY, Director SEAL

Published in the Lovington Daily Leader July 28, 2000.

Township 29 North. Range 12 West NMPM, Lea County, New Mexico. The application addresses discharges to ground water associated with the remediation of petroleum contaminated ground water. Approximately 23 gallons per minute of cont-

Affidavit of Publication

COUNTY OF LEA

) ss.

Joyce Clemens being first duly sworn on oath deposes and says that she is Advertisting Director of THE LOVINGTON DAILY LEADER, a daily newspaper of general paid circulation published in the English language at Lovington. Lea County, New Mexico; that said newspaper has been so published in such county continuously and uninterruptedly for a period in excess of Twenty-six (26) consecutive weeks next Notice is hereby given prior to the first publication of the notice hereto attached as hereinafter shown; and that said newspaper is in all things duly qualified to publish legal notices within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico.

That the notice which is hereto attached, entitled

Legal Notice

was published in a regular and entire issue of THE LOV-

INGTON DAILY LEADER and not in any supplement there-

of, for <u>one (1) day</u>, beginning with the issue of

July 28 _____, 2000 and ending with the issue

of July 28 , 2000.

And that the cost of publishing said notice is the sum of \$ 59.84 _ which sum has been (Paid) as Court Costs.

Subscribed and sworn to before me this 9th day of

August 2000 **Debbie Schilling**

Notary Public, Lea County, New Mexico My Commission Expires June 22, 2002

LEGAL NOTICE NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT **OIL CONSERVATION** DIVISION

that pursuant to New Mexico Water Quality Control Commission (WQCC) Regulations, the following discharge plan application has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe. New Mexico 87540, Telephone (505) 827-7132:

(GW-40) Giant Industries, Inc., Tim (Refinery Kinnev Remediation Project Manager), 111 County Road 4990, Bloomfield, New Mexico 87413, has submitted a discharge plan application of remediation of contaminated ground water at the former Giant Bloomfield Refinery located in the NW 1/4 of Section 27 and the SW 1/4, of Section 22, Township 29 North. Range 12 West NMPM, Lea County, New Mexico. The application addresses discharges to ground water associated with the remediation of petroleum contaminated ground water. Approximately 23 gallons per minute of contaminated ground water is processed through a treatment system to remove contaminants to below WQCC ground water standards prior to reinjection in an infiltration gallery. Groundwater most likely to be affected by an accidental discharge is at a depth of approximately 25 feet with a total dissolved solids concentration of 2500 approximately mg/l. The discharge plan addresses system operation and monitoring, ground water quality monitoring and how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or modification, the its Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted and a public hearing may be requested by any interested person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest. If no hearing is held, the Director will approve or disapprove the plan based on information available. If a public hearing is held, the Director will-approve the based on the information in the plan and information submitted at the hearing.

GIVEN under the Seal of Mexico New Oil Conservation Commission at Santa Fe. New Mexico, on this 24th day of July, 2000.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION LORI WROTENBERY, Director

SEAL in Published the Lovington Daily Leader July 28, 2000.

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission (WQCC) Regula-tions, the following dis-charge plan application has been submitted to the Director of the Oil Conservation Division, 2040 S. Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7132:

(GW-40) - Giant Industries, Inc., Tim Kinney (Refinery Remediation Project Manager), 111 County Road 4990, Bloomfield, New Mexico 87413, has submitted a discharge plan application for remediation of contaminated ground water at the former Giant **Bloomfield Refinery locat**ed in the NW 1/4 of Section 27 and the SW ¹/₄ of Section 22, Township 29 North, Range 12 West NMPM, Lea County, New Mexico. The application addresses discharges to ground water associated with the remediation of petroleum contaminated ground water. Approxi-mately 23 gallons per minute of contaminated ground water is pro-cessed through a treatment system to remove contaminants to below WQCC ground water standards prior to reinjection in an infiltration gallery. Groundwater most likely to be affected by an accidental discharge is at a depth of approximately 25 feet with a total dissolved solids concentraof approximately tion mg/l. The dis-plan addresses 2500 charge system operation and monitoring, ground water quality monitoring and how spills, leaks, and other accidental discharges to the surface will be managed.

NM OIL CONVERSATION DIVISION

ATTN: DONNA DOMGINUEZ 2040 S. PACHECO ST. SANTA FE, NM 87505

> Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Requests for public hearing shall set forth the reasons why a hearing shall be held. A hearing will be held if the Director determines there is significant public interest. If no hearing, is held, the Director will approve or disapprove the plan based on the information available. If a public hearing is held, the Director will approve the plan based on the information in the plan and information presented at the hearing.

/S/_

GIVEN under the Seal of New Mexico Conservation Commission at Santa Fe, New Mexico, on this 24th day of July, 2000.

STATE OF NEW MEXICO **OIL CONSERVATION** DIVISION LORI WROTENBERY, Director

Legal #67791 Pub. July 28, 2000 AFFIDAVIT OF PUBLICATION

5.25

1 time(s) at \$ 86.84

STATE OF NEW MEXICO

197 LINES

TAX:

TOTAL:

AFFIDAVITS:

THE SANTA FE

Founded 1849

AD NUMBER: 161699

LEGAL NO: 67791

5.76

97.85

COUNTY OF SANTA FE I, <u>Blenne</u> being first duly sworn declare and say that I am Legal Advertising Representative of THE SANTA FE NEW MEXICAN, a daily newspaper published in the English language, and having a general circulation in the Counties of Santa Fe and Los Alamos, State of New Mexico and being a Newspaper duly qualified to publish legal notices and advertisements under the provisions of Chapter 167 on Session Laws of 1937; that the publication #67791 a copy of which is hereto attached was published in said newspaper 1 day(s) between 07/28/2000 and 07/28/2000 and that the notice was published in the newspaper proper and not in any supplement; the first publication being on the 28 day of July, 2000 and that the undersigned has personal knowledge of the matter and things set forth in this affidavit.

ALG - 2

ACCOUNT: 56689

P.O.#: 00199000278

LEGAL ADVERTISEMENT REPRESENTATIVE

Subscribed and sworn to before me on this 28 day of July A.D., 2000

Notary 11/23/03

Commission Expires

THE SANTA FE NEW #MEXICAN Founded 1849

NM OIL CONVERSATION DIVISION ATTN: DONNA DOMGINUEZ 2040 S. PACHECO ST. SANTA FE, NM 87505

AD NUMBER: 161699 ACCOUNT: 56689 LEGAL NO: 67791 P.O.#: 00199000278 197 LINES 1 time(s) at \$ 86.84 AFFIDAVITS: 5.25 TAX: 5.76 TOTAL: 97.85

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission (WQCC) Regulations, the following discharge plan application has been submitted to the Director of the Oil Conservation Division, 2040 S. Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7132:

(GW-40) - Giant Industries, Inc., Tim Kinney (Refinery Remediation (Refinery Project Manager), 111 County Road 4990, County Road Bloomfield, New Mexico 87413, has submitted a discharge plan application for remediation of contaminated ground water at the former Giant at the **Bloomfield Refinery locat**ed in the NW 1/4 of Section 27 and the SW 1/4, of Section 22, Township 29 North, Range 12 West NMPM, Lea County, New Mexico. The application addresses discharges to ground water associated with the remediation of petroleum contaminated ground water. Approxi-mately 23 gallons per minute of contaminated ground water is processed through a treatment system to remove contaminants to below WQCC ground water standards prior to reinjection in an infiltration gallery. Groundwater most likely to be affected by an accidental discharge is at a depth of approximately 25 feet with a total dissolved solids concentration of approximately 2500 mg/l. The dis-charge plan addresses system operation and

monitoring, ground water quality monitoring and how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Requests for public hear ing shall set forth the reasons why a hearing shall be held. A hearing will be held if the Director determines there is significant public interest. If no hearing, is held, the Director will approve or disapprove the plan based on the information available. If a public hearing is held, the Director will approve the plan based on the information in the plan and information presented at the hearing,

GIVEN under the Seal of New Mexico Conservation Commission at Santa Fe, New Mexico, on this 24th day of July, 2000.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION LORI WROTENBERY, Director Legal #67791 Pub. July 28, 2000 AFFIDAVIT OF PUBLICATION

STATE OF NEW MEXICO COUNTY OF SANTA FE

I, <u>Defendence</u> being first duly sworn declare and say that I am Legal Advertising Representative of THE I, BITCH STREET SANTA FE NEW MEXICAN, a daily newspaper published in the English language, and having a general circulation in the Counties of Santa Fe and Los Alamos, State of New Mexico and being a Newspaper duly qualified to publish legal notices and advertisements under the provisions of Chapter 167 on Session Laws of 1937; that the publication a copy of which is hereto attached was published #67791 in said newspaper 1 day(s) between 07/28/2000 and 07/28/2000 and that the notice was published in the newspaper proper and not in any supplement; the first publication being on the 28 day of July, 2000 and that the undersigned has personal knowledge of the matter and things set forth in this affidavit.

ANK

LEGAL ADVERTISEMENT REPRESENTATIVE

Subscribed and sworn to before me on this 28 day of July A.D., 2000

pharel in Notary

Commission Expires

/S/

www.sfnewmexican.com

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

February 11, 2000

CERTIFIED MAIL RETURN RECEIPT NO: Z-559-572-902

Mr. Timothy A. Kinney Giant Industries, Inc. 111 County Rd. 4990 Bloomfield, New Mexico 87413

RE: GROUND WATER DISCHARGE PLAN GW-40 FORMER BLOOMFIELD REFINERY SAN JUAN COUNTY, NEW MEXICO

Dear Mr. Kinney:

On December 9, 1988 the ground water discharge plan, GW-40 for the Former Bloomfield Refinery located in NW ¹/₄ of Section 27 and the SW ¹/₄ Section 22, Township 29 North, Range 12 West, San Juan County, New Mexico was approved by the Director of the New Mexico Oil Conservation Division (OCD). The discharge plan was subsequently renewed on December 29, 1993. This discharge plan was required and submitted pursuant to New Mexico Water Quality Control Commission (WQCC) regulations and was approved for a period of five years. The approval expired on December 29, 1998.

If your facility continues to have potential or actual effluent or leachate discharges, you must renew your discharge plan. Please submit a renewal application to the OCD by April 14, 2000. Please submit an original application and one copy to the OCD Santa Fe Office and one copy to the OCD Aztec District Office. Note that the completed and signed application form must be submitted with your discharge plan renewal request (Copies of the WQCC regulations and the application form and guidelines can be found on the OCD web page at www.emnrd.state.nm.us/ocd/). Please indicate whether you have made, or intend to make, any changes in your system, and if so, please include these modifications in your application for renewal.

The discharge plan renewal application for the Former Bloomfield Refinery is subject to the WQCC Regulation 3114 discharge plan fees. Every billable facility submitting a discharge plan renewal will be assessed a fee equal to the filling fee of \$50.00 plus a flat fee of \$690.00 for ground water remediations.

Mr. Timothy A. Kinney February 11, 2000 Page 2

The \$50.00 filing fee is to be submitted with the discharge plan renewal application and is nonrefundable. The flat fee for an approved discharge plan renewal may be paid in a single payment due at the time of approval, or in equal installments over the duration of the discharge plan.

Please make all checks payable to the **NMED Water Quality Management Fund** and addressed to the OCD Santa Fe Office.

If you no longer have any actual or potential discharges, a discharge plan is not needed and you need to notify this office. If you have any questions regarding this matter, please do not hesitate to contact Bill Olson of my staff at (505) 827-7154.

Sincerely,

Róger C. Anderson Environmental Bureau Chief

xc: Denny Foust, OCD Aztec District Office

111 Road 4990 Bloomfield, New Mexico 87413

505 632.8006

Mr. William Olson Hydrogeologist New Mexico Oil Conservation Division Environmental Bureau P. O. Box 2088 Santa Fe, NM 87504-2088

FEB 1 1999 CONSERVATION DE

Dear Mr. Olson:

January 25, 1999

Enclosed you will find the annual report for Giant Refining Company's Bloomfield Refinery for 1998.

Please contact me if you have any questions.

Sincerely,

Tim Kinney Remediation Project Manager

/dm

Enclosure

cc w/enc.: Mike Hardy-Giant Kim Bullerdick-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD December 24, 1997

5764 US Highway 64 Farmington, New Mexico 87401

505.632.8006

MCERVATION DIVISION

Mr. Bill Olson Environmental Bureau New Mexico Oil Conservation Division Land Office Building P. O. Box 2088 Santa Fe, NM 87504-2088

Dear Bill:

As you are aware, the annual report for the former Giant Bloomfield Refinery remediation project contained analytical results which indicated the questionable presence of MTBE in several monitoring well samples. Philip Services was contracted to review the issue for Giant and prepared the attached report. For reasons noted in their report, they concluded that MTBE does not occur in the groundwater sampled at the facility.

Sincerely,

im

Tim Kinney Project Manager Refinery Remediation Project

/dm

Attachments

cc w/attachments:

Mike Hardy-Giant Kim Bullerdick-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD

Industrial Services Group Central Region

December 2, 1997

Mr. Timothy Kinney Giant Industries Arizona, Inc. 5764 Highway 64 Farmington, New Mexico 87401

RECEIVED DEC D'9 1991

RE: MTBE Reported on Laboratory Results for 12/96

Dear Mr. Kinney:

Philip Services Corporation (Philip) has reviewed the analytical results from the groundwater samples collected on 12/13/96. Unique to this sampling event is the occurrence of MTBE in groundwater samples. Careful review of other sampling data from these wells does not support the presence of MTBE.

On November 21, 1997 Philip contacted American Environmental Network, Inc., the laboratory that performed the analyses, and requested that they review the laboratory QA/QC for the analyses in question. Philip received a response from the laboratory on December 1, 1997 (copy attached), stating that the results indicating the presence of MTBE are invalid. American Analytical Network, Inc. stated that the peak present in the samples is an unknown interference.

Philip is confident that MTBE does not occur in the groundwater at these locations.

Respectfully submitted,

PHILIP SERVICES CORPORATION

Martin J. Nee

Operations Manager

Attachments: -As stated

J:\qtrsamp

Combining the Strengths of Philip Services Corp., Allwaste and Serv-Tech

AEN I.D. 612329

December 1, 1997

PHILIP ENVIRONMENTAL 4000 MONROE ROAD FARMINGTON, NM 87401

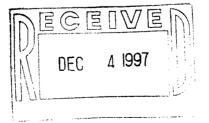
Project Name Giant Semi-Annual Project Number 10214

Attention: Martin Nee

On 12/13/96 American Environmental Network (NM), Inc. (ADHS License No. AZ0015), received a request to analyze **aqueous** samples. The samples were analyzed with EPA methodology or equivalent methods. A report for these samples was issued on 12/19/96.

American Environmental Network, Inc.

Per request the data for these samples were re-evaluated by a senior analyst and Quality Assurance. We now believe that the MTBE hits are invalid due to retention time variations. The peak present in the samples is an unknown interference.


If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

Christopher F. Froehlich Quality Assurance

MR: cff

tchellbutt

H. Mitchell Rubenstein, Ph. D General Manager

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION OIVISION 2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

February 20, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-269-269-261

Mr. Timothy A. Kinney Giant Industries, Inc. 5764 US Highway 64 Farmington, New Mexico 87401

RE: REMEDIATION SYSTEM MONITORING GIANT BLOOMFIELD REFINERY

Dear Mr. Kinney:

The New Mexico Oil Conservation Division (OCD) has reviewed Giant Refining Company's November 13, 1996 correspondence. This document recommends continuing the current ground water remediation monitoring program, but changing the frequency for reporting the results of monitoring from quarterly to annually.

The recommendations contained in the above referenced document are approved with the following condition:

1. The annual report will be submitted to the OCD Santa Fe Office by April 1 of each respective year with a copy provided to the OCD Aztec Office.

Please be advised that OCD approval does not limit Giant to the work proposed if the actions fail to effectively remediate or monitor contamination related to their activities. In addition, OCD approval does not relieve Giant of liability which may be actionable under any other federal, state or local laws and/or regulations.

If you have any questions please contact me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec District Office Maura Hanning, NMED Superfund Program Herbert M. Gorrod, EPA Region VI Stephanie Odell, BLM Farmington District Office

6 564 564 567

1

US Postal Service Receipt for Certified Mail

	No Insurance Coverage Do not use for Internation	
	Sent to	
	Street & Number	
	Post Office, State, & ZIP Code	
PS Form 3800 , April 1995	Postage	\$
	Certified Fee	
	Special Delivery Fee	
	Restricted Delivery Fee	
	Return Receipt Showing to Whom & Date Delivered	
	Return Receipt Showing to Whom, Date, & Addressee's Address	
800	TOTAL Postage & Fees	\$
PS Form 3	Postmark or Date	

H .I FILT LT R

-

e, r'H

- I.I.

1017 11 15

7 1 1

144

- F -

E.

l

5764 US Highway 64 Farmington, New Mexico 87401

505-632-8006

November 13, 1996

Mr. William Olson Hydrogeologist New Mexico Oil Conservation Division Environmental Bureau P. O. Box 2088 Santa Fe, NM 87504-2088

RECORE

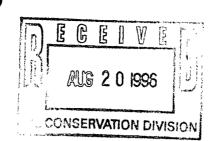
105 DE 15 MT 8 52

Dear Bill:

Per our recent conversation, Giant Industries Arizona, Inc. requests that data reports for the old Bloomfield Refinery be prepared and transmitted on an annual timetable rather than the present quarterly timetable. Sampling and monitoring frequencies will remain unchanged.

Sincerely,

1 m


Tim Kinney Remediation Project Manager

/dm

cc:

1.118

Mike Hardy-Giant Kim Bullerdick-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD

5764 US Highway 64 Farmington, New Mexico 87401

505-632-8006

August 14, 1996

Mr. William Olson Hydrogeologist New Mexico Oil Conservation Division Environmental Bureau P. O. Box 2088 Santa Fe, NM 87504-2088

Dear Mr. Olson:

Enclosed you will find the quarterly report for Giant Refining Company's Bloomfield Refinery for the second quarter of 1996.

Please contact me if you have any questions.

Sincerely,

ne

Tim Kinney Remediation Project Manager

/dm

Enclosure

cc w/enc.: Mike Hardy-Giant Kim Bullerdick-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD

QUARTERLY DATA REPORT GIANT BLOOMFIELD REFINERY SECOND QUARTER, 1996

Prepared By:

GIANT REFINING COMPANY 5764 U. S. Highway 64 Farmington, NM 87401 (505) 632-8006 FAX (505) 632-4025

E.**4**¹**E**.

TABLE OF CONTENTS

`

١.

1310

1 T 4

Introduction and Summary	Section	1
Quarterly Analytical Results	Section 2	2
Potentiometric Surface Maps	Section 3	3
Total Volume History	Section 4	4

INTRODUCTION AND SUMMARY QUARTERLY REPORT SECOND QUARTER, 1996

INTRODUCTION

Tank 22 is being used for intermediate water storage. All water is treated by the carbon filter unit exclusively.

SUMMARY

Section 2

Section 2 contains a summary of the quarterly analytical results. Raw data, as received from the laboratory, is available on request as a supplement to the quarterly report.

Section 3

A quarterly potentiometric surface map, as well as the adjusted water surface elevation and product thickness for each well, is included in Section 3.

Section 4

Section 4 illustrates the volume history for the quarter. Total volume pumped from each well, as well as current tank volumes and the reinjection volume, is reported. Additional detail, on a weekly basis, is also available if desired.

SECTION 2

1

The following pages show the quarterly analytical data for the Giant Refining Remediation Project. The data is broken down into units as described below.

	Unit of
	<u>Measure</u>
	11
Total dissolved solids (180)	mg/l
Total dissolved solids (calc)	mg/l
Total alkalinity as CaCO3	mg/l
Total hardness as CaCO3	mg/l
Bicarbonate as HCO3	mg/l
Carbonate as CO3	mg/l
Chloride	mg/l
Sulfate	mg /1
Calcium	mg/ 1
Magnesium	mg/l
Potassium	mg/l
Sodium	mg/l

The remainder of the data is measured in ug/l.

GIANT INDUSTRIES ONSITE REMEDIATION PROJECT QUARTERLY ANALYTICAL DATA SUMMARY SECOND QUARTER, 1996

SYSTEM EFFLUENT

	APRIL
Lab pH	7.2
Lab Conductivity @25 C	3510
Total Dissolved Solids @ 180 C	2730
Total Dissolved Solids (Calc)	2668
Total Alkalinity as CaCO3	361
Total Hardness as CaCO3	1145
Bicarbonate as HCO3	897
Carbonate as CO3	ND
Hydroxide	ND
Chloride	181
Sulfate	1390
Calcium	399
Magnesium	36
Potassium	3.1
Sodium	446

HALOCARBONS

1

Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND
Chloroform	ND
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	ND
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	ND

1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl Chloride	ND ND ND ND
AROMATICS	
Benzene	1.9
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND

SYSTEM INFLUENT

,

	APRIL
Lab pH	7.3
Lab Conductivity @25 C	3510
Total Dissolved Solids @ 180 C	2750
Total Dissolved Solids (Calc)	2615
Total Alkalinity as CaCO3	357
Total Hardness as CaCO3	1097
Bicarbonate as HCO3	897
Carbonate as CO3	ND
Hydroxide	ND
Chloride	181
Sulfate	1390
Calcium	384
Magnesium	34
Potassium	2.3
Sodium	413

HALOCARBONS

Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND
Chloroform	ND
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND

1

A

cis-1,2-Dichloroethene	1.4
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl Chloride	ND

AROMATICS

Benzene	24
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	53
Methyl-t-Butyl Ether	3.1
Toluene	ND
Total Xylenes	63

GBR-17

	JUNE
Lab pH	7.1
Lab Conductivity @25 C	2620
Total Dissolved Solids @ 180 C	2170
Total Dissolved Solids (Calc)	2190
Total Alkalinity as CaCO3	216
Total Hardness as CaCO3	1020
Bicarbonate as HCO3	264
Carbonate as CO3	ND
Hydroxide	ND
Chloride	50.2
Sulfate	1280
Calcium	360
Magnesium	30.3
Potassium	1.56
Sodium	340
HALOCARBONS	

Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND

10.5

A

Chloroform	ND
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	ND
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl Chloride	ND

AROMATICS

•

Benzene	ND
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND
GBR-31	

HALOCARBONS

Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chloroethane	APRIL ND ND ND ND ND
Chloroform	
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND

NTE.

1

1,1-Dichloroethane	ND
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	ND
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl Chloride	ND

GBR-32

.

	JUNE
Lab pH	7
Lab Conductivity @25 C	5420
Total Dissolved Solids @ 180 C	4320
Total Dissolved Solids (Calc)	3980
Total Alkalinity as CaCO3	306
Total Hardness as CaCO3	1580
Bicarbonate as HCO3	373
Carbonate as CO3	ND
Hydroxide	ND
Chloride	640
Sulfate	1750
Calcium	540
Magnesium	55
Potassium	4.69
Sodium	810
HALOCARBONS	

HALOCARBONS

Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND
Chloroform	2.7
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	1.4
1,2-Dichloroethane (EDC)	ND

157

~ I

P

1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	56 D(5)
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	7.1
1,1,1-Trichloroethane	1
1,1,2-Trichloroethane	ND
Trichloroethene	4.3
Trichlorofluoromethane	0.2
Vinyl Chloride	ND

AROMATICS

•

•

AROMATICS	
Benzene	ND
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND
GBR-48	
	JUNE
Lab pH	7
Lab Conductivity @25 C	5780
Total Dissolved Solids @ 180 C	4620
Total Dissolved Solids (Calc)	4440
Total Alkalinity as CaCO3	242
Total Hardness as CaCO3	1760
Bicarbonate as HCO3	295
Carbonate as CO3	ND
Hydroxide	ND
Chloride	740
Sulfate	2030
Calcium	600
Magnesium	62.5
Potassium	5.47
Sodium	860
HALOCARBONS Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND

Carbon Tetrachloride

1 566

Chloroethane

4.1

Ti

31

10

ND

ND

Chloroform	1.8
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	0.8
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	42 D(5)
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	5.3
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	3.4
Trichlorofluoromethane	0.2
Vinyl Chloride	ND

AROMATICS

,

.

Benzene	ND
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND
GBR-49	
	JUNE

Lab pH	7.1
Lab Conductivity @25 C	3810
Total Dissolved Solids @ 180 C	3160
Total Dissolved Solids (Calc)	3080
Total Alkalinity as CaCO3	298
Total Hardness as CaCO3	1210
Bicarbonate as HCO3	364
Carbonate as CO3	ND
Hydroxide	ND
Chloride	210
Sulfate	1720
Calcium	420
Magnesium	40.1

Potassium	274
Sodium	510
HALOCARBONS Bromodichloromethane	
Bromoform	ND ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND
Chloroform	1.2
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	0.6
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	49 D(5)
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	5
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	2.6
Trichlorofluoromethane	ND
Vinyl Chloride	ND
•	
AROMATICS	_
Benzene	0.6
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND
GBR-50	
1 - 6 - 11	JUNE
Lab pH	6.9
Lab Conductivity @25 C	3120
Total Dissolved Solids @ 180 C	2690
Total Dissolved Solids (Calc)	2690
Total Alkalinity as CaCO3	216
Total Hardness as CaCO3	1110

111

111 0 1

6

,

-1

1 1

1.1

TTT

Bicarbonate as HCO3	264
Carbonate as CO3	ND
Hydroxide	ND
Chloride	44.2
Sulfate	1670
Calcium	390
Magnesium	31.7
Potassium	3.13
Sodium	430
HALOCARBONS	
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND
Chioroform	ND
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	4.6
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	1.8
1,1,1-Trichloroethane	1
1,1,2-Trichloroethane	ND
Trichloroethene Trichlorofluoromothano	0.4 ND
Trichlorofluoromethane	ND
Vinyl Chloride	טא

4

AROMATIC	CS)
----------	-----

Benzene	24
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	53
Methyl-t-Butyl Ether	3.1
Toluene	ND
Total Xylenes	63

ĩ

14 . 1

J.

11

SHS-10

HALOCARBONS

	APRIL
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND
Chloroform	ND
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	ND
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl Chloride	ND
AROMATICS	
Benzene	ND
Chlorobenzene	ND
1.2 Dichlorobenzone	ND

ND
ND

1

11

SHS-12

HALOCARBONS

	APRIL
Bromodichloromethane	ND
Bromoform	ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND
Chloroform	ND
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	0.6
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyi Chloride	ND
AROMATICS	
Benzene	ND
Chlorobenzene	ND
1,2-Dichlorobenzene	ND

1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND

SHS-13

HALOCARBONS

	APRIL
Bromodichloromethane	ND

1

Bromoform	ND
Bromomethane	ND
Carbon Tetrachloride	ND
Chloroethane	ND
Chloroform	ND
Chloromethane	ND
Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	0.3
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	0.6
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	5.2
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl Chloride	ND
AROMATICS	
Benzene	ND
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,2-Dichlorobenzene	

r,z-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND

SHS-16

,

HALOCARBONS

AF	RIL
Bromodichloromethane	١D
Bromoform N	١D
Bromomethane N	١D
Carbon Tetrachloride	١D
Chloroethane N	١D
Chloroform N	١D
Chloromethane N	١D

1 77

. 1

PT 1

i.

Dibromochloromethane	ND
1,2-Dibromoethane (EDB)	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane (EDC)	ND
1,1-Dichloroethene	ND
cis-1,2-Dichloroethene	0.6
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	ND
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	5.2
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl Chloride	ND

AROMATICS

.

,

Benzene	ND
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND

SHS-17

HALOCARBONS

Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dibromoethane (EDB)	APRIL ND ND ND ND ND ND ND ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND
1,1-Dichloroethane	ND

r

10.1

A

1,2-Dichloroethane (EDC) 1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND 0.6 ND
trans-1,2-Dichloroethene	ND
1,2-Dichloropropane	• •
cis-1,3-Dichloropropene	ND
trans-1,3-Dichloropropene	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachlorethene	ND
1,1,1-Trichloroethane	5.2
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl Chloride	ND

AROMATICS

THE PROPERTY OF THE

- H

,

Benzene	ND
Chlorobenzene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
Ethylbenzene	ND
Methyl-t-Butyl Ether	ND
Toluene	ND
Total Xylenes	ND

۰ <u>۲</u>

•

T

GIANT REFINING BLOOMFIELD REFINERY QUARTERLY POTENTIOMETRIC SURFACE

APRIL, 1996

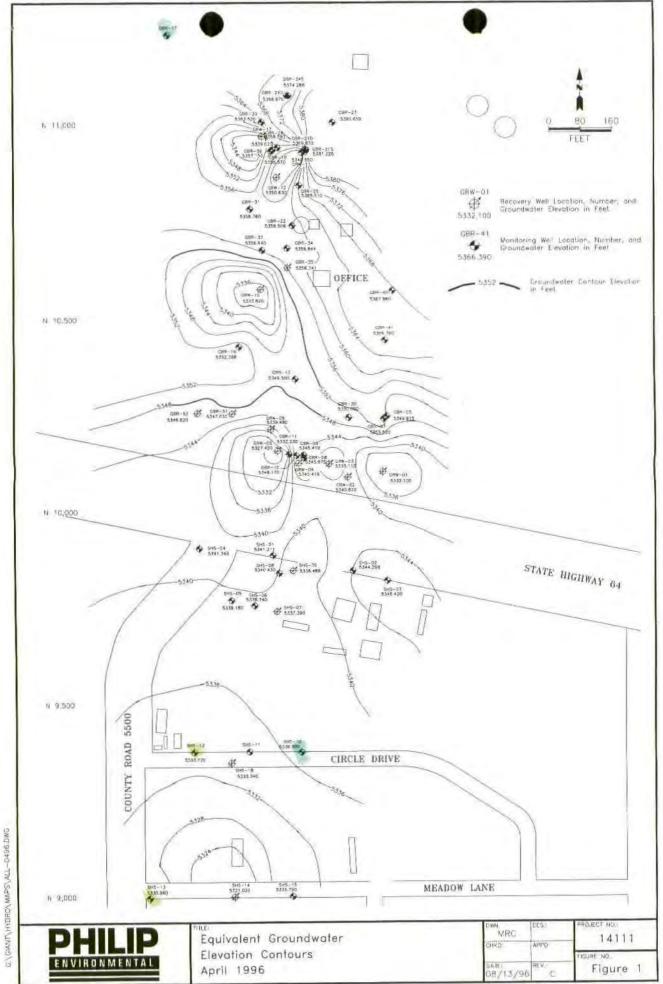
.

14.6

111

ïľ

				t=====================================	
	WELLHEAD	DEPTH TO	DEPTH TO	PRODUCT	ADJUSTED
	ELEVATION	WATER	PRODUCT	THICKNESS	WSEL*
WELL #	IN FEET	IN FEET	IN FEET	IN FEET	IN FEET
GRW-1	5394.30	62.20	62.20	0.00	5332.10
GRW-2	5391.28	50.46	50.46	0.00	5340.82
GRW-3	5388.77	53.66	53.66	0.00	5335.11
GRW-4	5390.02	45.56	44.33	1.23	5345.44
GRW-5	5390.56	63.14	63.14	0.00	5327.42
GRW-6	5390.81	51.33	51.33	0.00	5339.48
GRW-10	5395.02	61.20	61.20	0.00	5333.82
GRW-11	5397.85	57.20	57.20	0.00	5340.65
GRW-12	5397.24	46.61	46.61	0.00	5350.63
GRW-13	5396.90	57.88	57.88	0.00	5339.02
GBR-5	5395.07	45.35	45.10	0.25	5349.92
GBR-6	5395.70	56.13	56.13	0.00	5339.57
GBR-7	5395.85	41.75	39.93	1.82	5355.56
GBR-8	5390.50	45.50	44.25	1.25	5346.00
GBR-9	5389.92	44.51	44.51	0.00	5345.41
GBR-10	5390.57	42.40	42.40	0.00	5348.17
GBR-11	5389.43	57.20	57.20	0.00	5332.23
GBR-13	5393.04	57.88	57.88	0.00	5335.16
GBR-15	5397.99	41.42	41.42	0.00	5356.57
GBR-18	5421.68	30.45	30.45	0.00	5391.23
GBR-19	5393.83	43.10	41.00	2.10	5352.41
GBR-20	5393.47	43.38	43.38	0.00	5350.09
GBR-21S	5400.65	19.44	19.42	0.02	5381.23
GBR-21D	5400.19	30.32	30.32	0.00	5369,87
GBR-22	5395.91	38.98	36.96	2.02	5358,55
GBR-23	5403.72	22.10	22.05	0.05	5381.99
GBR-24S	5396.08	21.88	21.77	0.11	5366.37
GBR-24D	5396.77	29.80	29.80	0.00	5366.97
GBR-25	5396.72	31.21	31.21	0.00	5365.51
GBR-26	5395.59	37.00	37.00	0.00	5358.59
GBR-3 0	5396.58	33.06	33.06	0.00	5363.52
GBR-31	5394.86	36.08	36.08	0.00	5358.78
GBR-33	5396.28	39.34	39.34	0.00	5356.94
GBR-34	5394.00	38.42	36.80	1.62	5356.88
GBR-35	5393.66	38.70	36,93	1.77	5356.38
GBR-39	5397.55	40.40	40.40	0.00	5357.15
GBR-4 0	5400.76	32.88	32.88	0.00	5367.88
GBR-41	5396.35	29.96	29.96	0.00	5366.39
GBR-51	5389.68	42.65	42.65	0.00	5347.03
GBR-52	5387.74	41.12	41.12	0.00	5346.62


GIANT REFINING BLOOMFIELD REFINERY QUARTERLY POTENTIOMETRIC SURFACE APRIL, 1996 Page 2

	WELLHEAD	DEPTH TO	DEPTH TO	PRODUCT	ADJUSTED
	ELEVATION	WATER	PRODUCT	THICKNESS	WSEL*
WELL #	IN FEET	IN FEET	IN FEET	IN FEET	IN FEET
	5292 5A			0.12	5241.21
SHS-1	5383.54	42.43	42.30	0.13	5341.21
SHS-2	5381.66	37.78	37.50	0.28	5344.10
SHS-3	5383.33	36.91	36.91	0.00	5346.42
SHS-4	5383.62	42.28	42.28	0.00	5341.34
SHS-5	5378.36	39.18	39.18	0.00	5339.18
SHS-6	5378.17	39.43	39.43	0.00	5338.74
SHS-7	5375.89	38.50	38.50	0.00	5337.39
SHS-8	5380.25	39.82	39.82	0.00	5340.43
SHS-9	5380.79	44.32	44.30	0.02	5336.49
SHS-10	5373.80	36.92	36.92	0.00	5336.88
SHS-12	5373.94	40.22	40.22	0.00	5333.72
SHS-13	5367.81	36.85	36.85	0.00	5330.96
SHS-14	5367.07	46.05	46.05	0.00	5321.02
SHS-15	5366.21	34.42	34.42	0.00	5331.79
SHS-16	5362.58	31.65	31.65	0.00	5330.93
SHS-17	5364.35	33.64	33.64	0.00	5330.71
SHS-18	5373.64	40.30	40.30	0.00	5333.34

* WSEL - WATER SURFACE ELEVATION ADJUSTED FOR PRODUCT DEPTH

- F.

1.7

GIANT REFINING COMPANY BLOOMFIELD REFINERY QUARTERLY VOLUME CHANGE

SECOND QUARTER, 1996

Tank Number	Beginning Volume	Ending Volume	Net Change
102	11,691	1 2 ,916	1,225
106	8,010	8,010	0
21	67,472	230,133	162,661
22	212,927	252,739	39,812
Total Net Volu	me Change		203,698

treas Second . d.

THE OF S

1161

GIANT REFINING COMPANY BLOOMFIELD REFINERY QUARTERLY RECOVERY WELL VOLUME TABULATION

SECOND QUARTER, 1996

Well	Month #1	Month #2	Month #3	Total
GRW-1	4,810	2,300	1,210	8,320
GRW-2	5,340	2,430	1,386	9,156
GRW-3	9,010	5,010	1,870	15,890
GRW-4	7,370	3,920	3,490	14,780
GRW-5	15,200	660	5,150	21,010
GRW-6	9,820	5,820	2,850	18,490
GRW-9	1,210	520	460	2,190
GRW- 10	299,820	186,870	80,300	566,990
GRW-11	41,620	9,880	3,460	54,960
GRW-12	4,690	2,440	1,310	8,440
GRW-13	7,660	3,760	1,620	13,040
SHS-7	120	1,650	491	2,261
SHS-9	5,011	2,642	1,270	8,923
SHS-14	142,005	75,166	30,806	247,977
SHS-18	393	189	76	658
TOTAL VO	OLUME PUM	IPED IN GAL	LONS	993,085

T all the

- N. -

16.1

111

WILL

T

GIANT REFINING COMPANY BLOOMFIELD REFINERY TOTAL VOLUME SUMMARY

۰, ۴

SECOND QUARTER, 1996

Total Volume Of Water Recovered	993,085
Net Change In Storage Volume	203,698
Total Water Treated And Pumped To The Infiltration Gallery	789,387

1 H

1773

MIG | 4 1996

5764 US Highway 64 Farmington, New Mexico 87401

August 1, 1996

505-632-8006

Mr. William Olson Hydrogeologist New Mexico Oil Conservation Division Environmental Bureau P. O. Box 2088 Santa Fe, NM 87504-2088

Dear Mr. Olson:

I have enclosed additions to Section 2 of Giant Refinery's first quarter of 1996 report showing the analytical results for the offsite wells. These results were inadvertently left out of the original report.

Please contact me if you have any questions.

Sincerely,

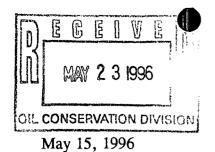
Branna Miller

Deanna Miller Administrative Manager

/dm

Enclosure

cc w/enc.: Mike Hardy-Giant Kim Bullerdick-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD



State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505

STATE OF NEW MEXICO OIL CONSERVITION DIVISION

MEMORANDUM OF MEETING OR CONVERSATION

8/1/96 Time Date Telephone 1440 Personal Originating Party Other Parties 1,m FNU.C. 1.m Surren 0111 hae 8006 632 Subject Vy GB Discussion De.ta SHS monitor Rom 15 missih ۲e Oikat He work -torna Isr tor he Conclusions or Agreements Missi Su te Distribution. Signed Bil File Denny Foust-OCD Azter

5764 US Highway 64 Farmington, New Mexico 87401

505-632-8006

Mr. William Olson Hydrogeologist New Mexico Oil Conservation Division Environmental Bureau P. O. Box 2088 Santa Fe, NM 87504-2088

Dear Mr. Olson:

Enclosed you will find the quarterly report for Giant Refining Company's Bloomfield Refinery for the first quarter of 1996.

Please contact me if you have any questions.

Sincerely,

Tim Kinney Remediation Project Manager

/dm

Enclosure

cc w/enc.: Mike Hardy-Giant Kim Bullerdick-Giant Jacque Cumbie-Giant Stephanie Odell-BLM Maura Hanning-EID Chris Shuey-SWRIC Jim Durrett-SJC Herbert Gorrod-EPA Denny Foust-OCD

State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505

STATE OF NEW MEXICO OL CONSERVATION OVISION

MEMORANDUM OF MEETING OR CONVERSATION

Date Time 96 1510 Telephone 2 Personal Originating Party Other Parties Tim Bureau ()Chill. 14,1 14m Linner 04 Subject niant Aash be Discussion 96 nosa 7166 recues 6 5 on C -9 Conclusions or Agreements Shismi GALLYSis un 16. m ē. 5 1 w 5 ذكا 00 **Distribution** Signed File Denny Fonst - OCD Artor