

GENERAL CORRESPONDENCE

YEAR(S):

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

GARY E. JOHNSON Governor Jennifer A. Salisbury Cabinet Secretary

July 11, 2000

Lori Wrotenbery Director Oil Conservation Division

U.S. Postal Service 🗸 **CERTIFIED MAIL** CERTIFIED MAIL RECEIPT (Domestic Mail Only; No Insurance Coverage Provided) RETURN RECEIPT NO. 5050 9733 Article Sent To ר-ר 5050 Postage Ms. Joyce M. Woodfin Conoco, Inc. Certified Fee P.O. Box 2197 HU3036 ostmark Return Receipt Fee (Endorsement Required) Here 000 Houston, Texas 77252 estricted Delivery Fee (Endorsement Reg Total Postage & Fees 딥 RE: **Disposal of Sulfa Scrub** n m Name Wingate Plant (GW-54) Street, Ant. No McKinley County, New Mexico П Ē Dear Ms. Woodfin:

The New Mexico Oil Conservation Division (OCD) has completed a review of the Conoco, Inc. (Conoco) request, received on July 5, 2000, for disposal of 35 barrels of Sulfa Scrub. The requested site for disposal is Key Energy Disposal facility at Aztec, New Mexico. Based on the information provided, the Conoco disposal request is approved.

Please be advised that OCD approval does not relieve Conoco of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please feel free to call me at (505) 827-7156.

Sincerely,

W. Jack Ford, C.P.G. Oil Conservation Division

xc: OCD Aztec Office

Joyce M. Woodfin Environmental Consultant Engineering and Compliance Natural Gas & Gas Products Department

June 1, 2000

Certified Mail No. 7099 3220 0005 0587 1316 Return Receipt Requested

Mr. Denny Foust District 3 Oil Conservation Division 1000 Rio Brazos Road, Aztec, New Mexico 88240

Disposal of Sulfa Scrub

Wingate Fractionator

Conoco Inc. 600 N. Dairy Ashford Rd. P.O. Box 2197, HU3036 Houston, TX 77252 Telephone: (281) 293-4498 Facsimile: (281) 293-1214

ERGRE / RUD

JUN 36 2000

Emirconantal Defeate Of Communition Division

RECEIVED

JUL 0 5 2000

Environmental Bureau Oll Conservation Division

Dear Mr. Foust

Re:

Conoco Inc. submits the following information in accordance with OCD discharge plan requirements for disposing of oilfield wastes. The Wingate Fractionator generated approximately 35 barrels of Sulfa Scrub which was used for treating natural gasoline. Conoco Inc. has chosen Key Energy as the disposal location.

Generator Name:	Conoco Inc., Natural Gas & Gas Products Department
	Wingate Fractionator
Location:	68 El Paso Circle
	Gallup, New Mexico 87301
Waste Hauler Name:	Key Energy
Waste Stream:	Sulfa Scrub
Approximate Quantity:	35 BBLs.
Disposal site:	Key Disposal
Disposal Location:	345 County Road 3500
	Aztec, New Mexico 87410

Conoco Inc., Natural Gas & Gas Products Department

Conoco Inc. appreciates your cooperation in this matter. If you have any questions concerning this information, please call Mr. Louis E. Ferrari at (505) 863-1028 or myself at (281) 293-4498. Thank you for your assistance.

Sincerely,

Joyce M. Woodfin

cc: Jack Ford Environmental Bureau Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505 Certified Mail No. 7099 3220 0005 0587 1323 Return Receipt Requested

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 South First, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 2040 South Pacheco, Santa Fe, NM 87505	State of New Mexico Energy Minerals and Natural Resou Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505	Revised March 17, 1999 Submit Original Plus 1 Copy to Appropriate District Office
REQUEST FO	R APPROVAL TO ACCEPT	SOLID WASTE
1. RCRA Exempt: Non-Exempt:		4. Generator
Verbal Approval Received: Yes	No 🗌	5. Originating Site
2. Management Facility Destination		6. Transporter
3. Address of Facility Operator		8. State
7. Location of Material (Street Address or I	ULSTR)	

9. Circle One:

ŝ

- A. All requests for approval to accept oilfield exempt wastes will be accompanied by a certification of waste from the Generator; one certificate per job.
- B. All requests for approval to accept non-exempt wastes must be accompanied by necessary chemical analysis to PROVE the material is not-hazardous and the Generator's certification of origin. No waste classified hazardous by listing or testing will be approved
- All transporters must certify the wastes delivered are only those consigned for transport.

BRIEF DESCRIPTION OF MATERIAL:

Estimated Volume cy Known Volume (to be entered by the operator at the end of the haul) cy						
SIGNATURE Waste Management Facility Auth	TITLE:	DATE:				
TYPE OR PRINT NAME:	TELEPH	ONE NO				
(This space for State Use)						
APPROVED BY:	TITLE:	DATE:				
APPROVED BY:	TITLE:	DATE:				

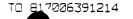
JUN 27 2000 13:18 FR 334341

CICCIANN

P.02/02

CERTIFICATE OF WASTE STATUS

1. Generator Name and Address: 2. Destination Name: Key Disposal CONOCO Inc. Wingete Fractionator #345 CO. Rd. 3500 #68 El Paso Cirule Azter NM. Gallup NM 87301 3. Originating Site (name): Location of the Weste (Street address &/or ULSTR): Conoco wingute Fractionator #68 El Paso Circle Gallup MM. 87301 Attach list of originating sites as appropriate 4. Source and Description of Waste Sulfa Scrub HSW 0710L used to treat natural basoline. 1. Louis E. Ferrari representative for: (Print Nama) Conoca Inc. do hereby certify that, according to the Resource Conservation and Recovery Act (RCRA) and Environmental Protection Agency's July, 1988, regulatory determination, the above described waste is: (Check appropriate classification) X EXEMPT oilfield weste NON-EXEMPT olifield waste which is non-hazardous by characteristic analysis or by product identification and that nothing has been added to the exempt or non-exempt non-hazardous waste defined above. For NON-EXEMPT waste only the following documentation is attached (check appropriate items): MSDS Information ____ Other (description): RCRA Hazardous Waste Analysis


_ Chain of Custody

Name (Original Signature): ______ Title: _ Process Foreman Date: _06/27/00

JUN 28 2000 37:22 FR

296.30AS

2169 296 912

P.02/07 EEE 10 .62 IV: 20

MATERIAL SAFETY DATA SHEET Petrolite Corporation

SECTION 1 - CHEMICAL PRODUCT AND COMPANY WENTIFICATION * HSW0700F PRODUCT NAME: SULFA-SCRUB EMERGENCY TELEPHONE NUMBERS (24 HOUR): MANUFACTURERSUPPLIER Chemree: 800-424-9300 Petrolian Corporation 369 Manual Avo St. Louis, Mo 63119-1197 CUSTOMER CARE: 1-800-872-1916 8:00am-5:00pes Monday-Priday (CST) 01/02/97 Date of Last Revision: Preparer: Irv Knepper 12/28/96 Supercedet MSDS Dated: Tide: Sr. Product Manager

SECTION	2. COMPOSITIO	N/INPORMATION OF	INGREDIENIS			2 ° 2
ПЕМ		HAZARDOUS I	NGREDIENTS	C.	AS / WT	WT 5
01 02 03	Methanol Ethanolamine Alkanolamine/al	idehydia cozidensate		67-56 141-43 Trade Se	1-3	5-10 5 30-60
TEM	TLV-TWA ACC	GH TLV-STEL	OSP PEL-TWA	IA PEL-STEL	COMPANY TLV-TWA	SKIN
01 02 03	200 ppm Jppm N.E.	250 ррт бррт N.L.	200 ppm 3997 N.B.	N.E. N.E. N.E.	N.E. N.E. N.E.	Y Z Z
LEGEND:	N.A.: Not A	pplicable): Ceiling Limit		

N.E.: Not Established N.D.: Not Determined

N: Skin absorption is not significant

SECTION 9 - HAZARDS IDENTIFICATION

-----***********************

ODOR: Amine odor

APPEARANCE: Amber liquid

SIGNIFICANT HAZARDS:

FLAMMABLE liquid and vapor. Soverely irritating to the eyes and akin. Irritating to the respiratory tract. Contains a material which can be shoorbed through the shin. Contains a material which can cause visual disturbances. Contains a material which can cause pervous system. offects. Contains a material which may cause embryo/fetotoxicity based on animal data.

EMERGENCY OVERVIEW

POTENTIAL HEALTH EFFECTS

EYE CONTACT: Direct sys contact may cause severe irritation or burns. If not immediately removed, may cause permanent eye damage.

SKIN CONTACT:

Direct skin contact may cause severe irritation. Prolonged and repeated skin contact may cause dermatics, drying, and defuting due to the solvest properties. Prolonged and repeated skin contact may cause moderate to severe akin irritation and possibly buras. A component(s) of

THIS MSDS PRODUCED BY PETROLITE CORPORATION, ST. LOUIS, MO. PRODUCT WARRANTY, DISCLAIMER AND LIMITATION OF LIABILITY ARE FOUND ON THE LAST PAGE CONTINUED ON NEXT PAGE

Page 1

JUN 28 2000 27:22 FR

5189 556

12:01 26, 01 834

ļ

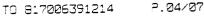
Product Name: SULFA-SCRUB HSW0700P Dute of Last Revision: 01/02/97
SECTION S HAZARDS DENTIFICATION continued
this product can be absorbed through the skin upon direct contact, possibly resulting in toxic effects similar to those of inhalation. Repeated skin contact may produce an allergic sensitization. In such cases, incidental (minor) contact may cause allergic rankes. INHALATION: Inhalation of high concentrations may cause headache, natisca, giddiness and shortness of breath. Prolonged, repeated, or high exponence to the vapor of a component(s) of this product may cause visual distribunces and sys damage. Vaport are intensely initiating to the nucous
membranes, and may be harmful or even facal if inhaled at high concentrations. Severe cases may result in sovere and delayed lung irritation and pulmonary edema.
INGESTION: Harmful if availowed. May cause severe gastrointestinal disturbance with headache, nausca, vomiting and diarthes. May be readily absorbed through the gastrointestinal tract. May result is initiation of burns to the mouth and digestive system. Effects of ingestion are similar to those of inhalation.
CHRONIC EFFECTS: Ingestion or inhalation of high concentrations of a component(a) of this product may result in visual disturbances. In extreme cases, may cause temporary or permanent blindness, metabollic acidosis, and central narvous system depression which can possibly lead to death. Studios have shown that inhalation of a component in this product has produced teratogenic effects in laboratory animals. Animal studies have shown that a component(s) of this product is associated with adverse effects of embryo/fectoracity at non-statemally toxic desage levels.
CARCINOGENICITY: No known information.
SECTION - FIRST AID MEASURES
EYES: If material gets into eyes, fluch with water immediately for 15 minutes. Consult a physician.
SKIN: In case of contact, immediately flush skin with plenty of water while removing contaminated clothing and shows. If rash, irritation or burns develop, consult a physician. Launder clothing before reuse.
INHALATION: If inhaled, remove to fresh sir. Administer oxygen if processary. Consult a physician if symptoms persist or exposure was revere.
INCESTION: If ingested, DO NOT induce vomiting. If conscious, drink 8-10 oz. of water prompily. Call a physician immediately.
NOTE TO PHYSICIAN
NOTE TO PHYSICIAN: Probable mucosal damage may contraindicate the use of gateric lavage. Measures against circulatory shock and convulsion may be necessary.
SECTION 5 PIRE-PICHTING MRASORES
Plashpoint and Method: 52 C (126 P) SPCC ASTM D-3828 Autoignition Temperature: N.D.
Flammable Limits: LEL: 6.0 % UEL: 36.5 %
HAZARDOUS COMBUSTION PRODUCTS: Oxides of ribrogen, Carbon monoxide, Carbon dioxide.
UNUSUAL FIRE AND EXPLOSION HAZARDS: Flammable liquid. Vapors can form an ignitable mixture with sir. Vapors can flow along surfaces to a distant ignition source and flash back.
EXTINGUISHING MEDIA: Alcohol Foam, CO2, Dry Chemical, Foam, Water Fog

THIS MSDS PRODUCED BY PETROLITE CORPORATION, ST. LOUIS, MO. CONTINUED ON NEXT PAGE

130.00

C24

Page 2



-131 -C3 107 - ---- -----

JLN 28 2000 07:23 FR

PGG : 32299

(123 FR g139 296

25:01 72' 72' 14:32

1

Product Name:

SULFA-SCRUB . HSW0700F

Date of Last Revision: 01/02/97

SECTION S FIRE FIGHTING MEASURIS - commont

FIRE-FIGHTING INTRUCTIONS:

Use a suff-contained breathing apparatus with full facepiece operated in pressure-domand or other positive pressure mode. Flammable, Cool fire-exposed containers using water spray.

SECTION & ACCIDENTAL RELEASE MEASURES

LEAKS OR SPILLS:

Use personal protective equipment as necessary. Absorb with suitable chemical absorbent. Dispose of material in accordance with all federal, state and local regulations. Dike to prevent entering any acwar or waterway. Transfer liquid to a holding container.

OTHER:

No known information.

Refer to Section 15 for regulatory reporting requirements in the event of an accidental release.

SECTION 7 BRANDLONG AND STORAGE

HANDLING AND STORAGE:

Planmable liquid. Avoid best, sparks and open flames. Avoid breathing vapor and contact with eyes, skin and clothing. Keep container closed when not in use. Chemical residue may remain in ampied container. Do not reuse empty containers without commercial cleaning or reconditioning. Use in well ventilated area.

SECTION & ECPOSURE CONTROLS FREISONAL PROTECTION

ENGINEERING CONTROLS:

General ventilation should be provided to maintain ambient concentrations below auisance levels. Local ventilation of emission sources may be necessary to maintain ambient concentrations below recommended exposure limits.

PERSONAL PROTECTIVE EQUIPMENT (PPE):

Chemical registant gloves and chemical goggles should be used to prevent skin and eye connet.

RESPIRATORY PROTECTION:

When concentrations exceed the exposure limits specified, use of a NIOSH approved supplied air respirator with full facepiece is recommended. Where the protection factor of the respirator may be exceeded, use of a Self Contained Breathing Apparatus (SCBA) may be necessary.

ROPERTIES
pH @ 5.0% 75/25 Isopropanol/Water: 9.9 - 11.4
Evaporation Rate: Is slower than Ether
Vapor Density: Is beavier than air
Physical States: Liquid

Specific Grould: 108

SECTION 10 - STABLITY AND REACTIVITY

HAZARDOUS POLYMERIZATION: Will not occur under normal conditions.

STABILITY: This product is stable under normal storage conditions.

INCOMPATTBLE MATERIALS AND CONDITIONS TO AVOID: Keep away from strong oxidizing ageors, bent and open flames.

HAZARDOUS DECOMPOSITION PRODUCTS: No known information.

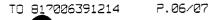
07:23	FR		
2189	296		

, JUN 28 2000

200.3049

14 P.05/07 22:71 25,01 EEE

Product Name:	SULFAS	CRUB . HSWOT	00F	Date of Last Revision:	01/02/97
SECTION 10	STABIL	TX AND BEAC	HVILY - customed		
SECTION 11	TOKICO		RMATION		
			PRODUCT TOXICOLO	GICAL INPORMATION	
OTHER:	n information) of this prod er, follow-up	uct has cented part	tive as a human shin ser and negative results.	nsitizer. A component(s) of th	ue product has sevend positive in an Ames
		C	MPONENT TOXICOL	OGICAL INFORMATION:	
Compone Methanol Ethanolamino Alkanolamino/a		icasate	LD <u>s Dermal</u> 15500 mg/kg-RB 1000 mg/kg-RB >2000 mg/kg-RB	LD 20 Oral 5628 mg/Lg-R 1720-2740 mg/Lg 1788 mg/Lg-R	LC <u>plphalation</u> 64000 ppm/4H-R -R N.D. 0.62 mg/l/4H-R
LEGEND:	$\begin{array}{rcl} R & = & Ra \\ RB & = & Ra \\ M & = & Mc \\ GP & = & Gu \end{array}$	aide	SKIN AND EYE SCOR	2 = Moderate Irrite 3 = Strong Irritent	
SPONDNE	ano ano	ICAL INDORM	ATION		
An ECOTOX OTHER: No beam info	•	uilable for this pro	dict. Please contact Por	able Carparation for a copy o	f this report.
SECTION 19	- DISPOSA	LINFORMAT	ON		
regulations. No	for proper wi	ute disposal rerta regulations may al	with the generator of the as apply to empty contra- ical properties to change.	lacre, liners, and rinsate. Pro-	material in accordance with applicable ceasing, use, dilution, or contamination or
SECTION LA	TRANSP	ORT ATTON IN	ORMAN		
		U.S. DEPAI	TMENT OF TRANSPO	RTATION (D.O.T.) INFOR	MATION
Proper Shippin	g Namo: Flar	nmeble liquid, n.o	.s. (contains Mothanol	nd Monoethanolamine) 3 U	N1993 III
D.O.T. Emerge	eacy Respon	e Guide: 128		Marine Pollutant:	N.A.


)

.

T 70 1

٠	ЛЦГ	28	2000	27:23	FR	
90	10 ' 30	гd		2189	296	

PE:PI 26.01 EEs

Ł

İ.

i.

Product Name: SULPA-SCRUB	HSW0700F	Date of Last Revision:	01/02/97	
SECTION 14 - TRANSPORTAT	ON INFORMATION - CONT	Construction of the second s	ال () ((((((((((((((((((Constraints and the second s
INTE	RNATIONAL MARITIME ORG	NIZATION (I.M.O.) IN	FORMATION	
Proper Shipping Name: Flammable 1	quid, B.O.S. (contains Methanol a	nd Monoefhanclamine) 3.	3 UN1993	ш
MDG Code Page: 3345		EMS Number: 3-06		
MFAG Table Number 1: 306		MFAG Table Number	2: N.A.	
Marine Pollucam: N	A.		tr	
SECTION IS REGULATORY	NFORMATION			
CERCIA HAZARDOUS SUBSTAN The Petrolize product contains the fol Environmental Response, Compensa- the amount of product, in gallone, the	lowing components that are subjection, and Liability Act. Also listed	t to the release reporting r	equirements o (RQ) in pour	f the Comprehensive ds for each such component, and
Chemical Name Methanol	·····	<u>CAS Number</u> 67-56-1	<u> </u>	RO. GAL. 7,416
SARA TITLE III: This Petrolics product contains the fo and Resuthorization Act. Also listed gallons, that must be released or spill component, and the amount of produ	is the Reportable Quantity (RQ) in ed in order to exceed the RQ; and	pounds for each such cor the Threshold Planning O	moonent, and t	he amount of product, in
Chemical Name No SARA Extremely Hazard	rus Substances are present in this :	CAS Number	RO (Iba.) RO	(ml) TPO (ha) TPO (ml.)
ecrolice has determined that under Se	ctions 311/312 of SARA Title III,	the following hazard cate	gories apply a	o this product:
Hazard: Immediate Health, Chronic	Health, Fire			
SARA SECTION 313: This Petrolite product contains the fol 313 of SARA Title III. Also listed is concentration is less than the de mini-	The concentration of the component	t to the annual toxic releas I, in weight percent, in th	se inventory re s product, A c	porting requirements of Section Outpoaset is not listed if its
Chemical Name			Number	Weight Percent
Methapol		I	67-56-1	7.5 %
TOXIC SUBSTANCES CONTROL. This product or its components, if a g	NCT (TSCA): nixture, are listed on the TSCA inv	cnlory.		
This Petrolite product contains the fol the United States:	owing components that are subject	t to the reporting requires	ience of TSCA	Section 12(b) if exported from
Chemical Nama No TSCA 12(b) obomicals an	present in the product.	CAS	Number	-
SIGNIFICANT NEW USE RULES (This product does not contain any con	NUR): apo assute that are subject to a Sign	ificant Now Use Rule (SN	IUR).	
PENNSYLVANIA RIGHT-TO-KNO The following pon-hazardous ingredie	V: Nis are present in the product at gr	tater than 3%:		

THIS MSDS PRODUCED BY PETROLITE CORPORATION, ST. LOUIS, MO. CONTINUED ON NEXT PAGE

Page 5

Ť.

JUN	28	2000	37:24	FR	
200.3	1 08-	ł	2185	22 6	3

Product Nate:	SULPA-SCRUB + HSW0700F	Date of Last Revision:	01/02/97	
	אייייייייייייייייייייייייייייייייייייי			
Chomical Name Water			Number 32-18-5	
SECTIONIE	OTHER INPORTATION			
NFPA HAZARI Health: 3	D CLASSIFICATIONS: Flammability: 2	Reactivity: 0	Special: COR	
REVISION HIS 03/27/96 update 10/21/96 new fo 11/96 updated F	od sect. 11 toxicology, new base format, up	adate soct. E resp prot		
File 431			·	

The information and recommendations contained hereon are believed to be accurate and reliable as of the data issued. However, we do not warrant their accuracy or reliability.

We only warrant to you, but no other persons, that the product inferenced herein shall conform to our quality assurance specifications for the product on the date of shipment to you. WE EXPRESSLY DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Any technical advice, information or recommendation given to you is given gratis without any warranty whatsoever as to the advice, information or recommendation given or results obtained.

You shall assume all risks and shall be solely responsible for the results obtained from the storage, handling or use of the product and any information or recommendation regarding the product, whether alone or in combination with other substances.

NDER NO CIRCUMSTANCES SHALL WE BE LIABLE FOR ANY ECONOMIC, CONSEQUENTIAL (INCLUDING LOST PROFITS OR IVINGS) OR INCIDENTAL DAMAGES, EVEN IF WE ARE INFORMED OF THEIR POSSIBLITY, EXEMPLARY OR FUNITIVE AMAGES, REGARDLESS OF THE FORM OR ACTION, WHETHER IN CONTRACT OR TORT, INCLUDING OUR SOLE OR JOINT NEGLIGENCE AND STRICT LIABILITY.

THIS MSDS PRODUCED BY PETROLITE CORPORATION, ST. LOUIS, MO.

** TOTAL PAGE. 07 **

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

Louis Ferrari Conoco, Inc. #68 El Paso Circle Gallup, NM 87301 November 3,2000

Mr. Ferrari:

Enclosed please find the reports for the samples received by our laboratory for analysis on October 10, 2000.

If you have any questions about the results of these analyses, please don't hesitate to call at your convenience.

Thank you for choosing IML for your analytical needs!

ans liams

Organic Analyst/IML-Farmington

Enclosure

xc: File

Phone (505) 326-4737 Fax (505) 325-4182

2506 West Main Street, Farmington, NM 87401

CONOCO, INC. WINGATE PLANT

Case Narrative

On October 10, 2000, two water samples for were submitted to Inter-Mountain Laboratories - Farmington for analysis. The parameters performed on the samples are indicated on the accompanying Chain of Custody.

It is the policy of this laboratory to employ, whenever possible, preparatory and analytical methods which have been approved by regulatory agencies. The methods used in the analysis of the samples reported herein are found in: EPA: "<u>Methods for Chemical Analysis of Water and Wastes (MCAWW)</u>" – EPA/600/4-79-020 – March 1983, "<u>Methods for the Determination of Metals in Environmental Samples</u>", Supplement I-600/R-94-111 – May, 1994, SM-"<u>Standard Methods for the Examination of Water and Wastewater</u>", APHA-AWWA-WEF, 18th Edition, 1992.

Quality control data appear at the end of the analytical report and may be identified by title. If there are any questions regarding the information presented in this report package, please feel free to contact us at your convenience.

Sinceret Helin

Sharon Williams Organic Analyst/IML-Farmington

.... IM 87401

Analysis

Phone (505) 326-4737	Fax (505) 325-4182	2506 West Main Street, Farmington, NM 874
Client:	Conoco, Inc. Gallup	
Project:	. Wingate Plant	
Sample ID	: East Evap Pond	Date Received: 10/10/00
Lab ID:	0300W04417	Date Reported: 11/03/00
Matrix:	Water	Date Sampled: 10/10/00
Condition	: Intact	Time Sampled: 0830

Analytical

Parameter	Result	Units		Units	PQL	Method	Date	Time	Init.
GENERAL PARAMETERS									
PH	8.9	s.u.			0.1	EPA 150.1	10/10/00	1500	WL
Electrical Conductivity	75,000	µmhos/cm			10	EPA 120.1	10/10/00	1500	WL
Solids - Total Dissolved	53,800	mg/L			10	EPA 160.1	10/12/00	0905	JP
Cyanide	<0.01	mg/L			0.01	SM 4500-CN E	10/25/00	1600	WL
Nitrogen - Nitrate/Nitrite	0.35	mg/L			0.05	EPA 353.2	10/11/00	0930	KA
Alkalinity (CaCO3)	198	mg/L			1	EPA 310.1	10/10/00	1300	KA
Hardness (CaCO3)	5,090	mg/L			1	EPA 200.7	11/01/00	1537	WL
MAJOR ANIONS									
Bicarbonate (HCO3)	178	mg/L	2.91	meq/L	1	EPA 310.1	10/10/00	1300	KA
Carbonate (CO3)	32	mg/L	1.05	meq/L	1	EPA 310.1	10/10/00	1300	KA
Hydroxide (OH)	<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/10/00	1300	KA
Bromide (Br)	<5	mg/L	<0.01	meq/L	5	EPA 300.0	10/20/00	1227	WL
Chloride	26,700	mg/L	753	meq/L	100	EPA 300.0	10/20/00	1227	WL
Fluoride	40	mg/L	1.99	meq/L	10	EPA 300.0	10/20/00	1227	WL
Sulfate	6,500	mg/L	136	meq/L	500	EPA 300.0	10/20/00	1227	WL
MAJOR CATIONS									
Calcium	1,020	mg/L	50.9	meq/L	0.2	EPA 200.7	11/01/00	1537	WL
Magnesium	618	mg/L	50.8	meq/L	0.2	EPA 200.7	11/01/00	1537	WL
Potassium	183	mg/L	4.68	meq/L	0.2	EPA 200.7	11/01/00	1537	WL
Sodium	14,500	mg/L	631	meq/L	0.2	EPA 200.7	11/01/00	1537	WL

Reference: EPA - "Methods for Chemical Analysis of Water and Wastes (MCAWW)" - EPA/600/4-79-020 - March, 1983. SM - "Stantland Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF,18th Edition, 1992. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

1

Reviewed By:

inl

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

Phone (505) 326-4737	Fax (505) 325-4182
Client:	Conoco, Inc. Gallup
Project:	Wingate Plant
Sample ID:	East Evap Pond
Lab ID:	0300W04417
Matrix:	Water
Condition:	Intact
••••••••••	

Date Received: 10/10/00

 Date Reported:
 11/03/00

 Date Sampled:
 10/10/00

 Time Sampled:
 0830

	Analytical				An	alysis	
Parameter	Result	Units	Units PQL	Method	Date	Time	Init.
TOTAL METALS							
Arsenic	<0.005	mg/L	0.005	SM 3114B	10/20/00	1400	EJ
Barium	0.08	mg/L	0.01	EPA 200.7	10/25/00	1545	WL
Cadmium	0.013	mg/L	0.005	EPA 200.7	10/25/00	1545	WL
Chromium	<0.01	mg/L	0.01	EPA 200.7	10/25/00	1545	WL
Lead	<0.005	mg/L	0.005	EPA 200.9	10/21/00	0830	SW
Mercury	<0.001	mg/L	0.001	EPA 245.1	10/26/00	1600	EJ
Selenium	<0.005	mg/L	0.005	SM 3114B	10/21/00	1315	EJ
Silica	21.8	mg/L	0.1	EPA 200.7	10/25/00	1545	WL
Silver	<0.01	mg/L	0.01	EPA 200.7	10/25/00	1545	WL

Reference: SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF, 19th Edition, 1995. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

inl

Inter-Mountain Laboratories, Inc.

Phone (505) 326-4737 Fax (505) 325-4182

2506 West Main Street, Farmington, NM 87401

VOLATILES

EPA Method 624

Client:	Conoco, Inc.		
Project:	Wingate Plant	Date Reported:	11/03/00
Sample ID:	East Evap Pond	Date Sampled:	10/10/00
Laboratory ID:	0300W04417	Date Received:	10/10/00
Sample Matrix:	Water	Date Analyzed:	10/11/00

		Reporting	
Parameter	Result	Limit	Units
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
Carbon Tetrachloride	ND	1.0	ug/L
Chlorobenzene	5 ND	1.0	ug/L
Chloroethane	ND	2.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethylene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
Dichloromethane	ND	3.0	ug/L
1,2 Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichlorpropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Methylene Chloride	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene (TCE)	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Vinyl Chloride	ND	2.0	ug/L

Reported By:

Reviewed:

2506 West Main Street, Farmington, NM 87401

BASE NEUTRALS & ACID EXTRACTABLES

EPA Method 625 (page1)

Client:	Conoco, Inc.		
Project:	Wingate Plant	Date Reported:	11/03/00
Sample ID:	East Evap Pond	Date Sampled:	10/10/00
Laboratory ID:	0300W04417	Date Received:	10/10/00
Sample Matrix:	Water	Date Analyzed:	10/19/00

		Reporting	
Parameter	Result	Limit	Units
		WITPIT'S	Of inde
Acenaphthene	ND	10	ug/L
Acenapthylene	ND	10	ug/L
Aniline	ND	10	ug/L
Anthracene	ND	10	ug/L
Benzidine	ND	20	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Benzo(b)fluoranthene	ND	10	ug/L
Benzo(g,h,i)perylene	ND	10	ug/L
Benzo(k)fluoranthene	ND	10	ug/L
Benzoic Acid	ND	50	ug/L
Benzyl Alcohol	ND	20	ug/L
bis(2-Chloroethoxy)methane	ND	10	ug/L
bis(2-Chloroethyl)ether	ND	10	ug/L
bis(2-Chloroisopropyl)ether	ND	10	ug/L
bis(2-ethylhexyl)phthalate	ND	10	ug/L
4-Bromophenyl-phenylether	ND	10	ug/L
Butylbenzylphthalate	ND	10	ug/L
4-Chloroaniline	ND	20	ug/L
4-Chloro-3-methylphenol	ND	20	ug/L
3-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
4-Chlorophenyl-phenylether	ND	10	ug/L
Chrysene	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Dibenzofuran	ND	10	ug/L
Di-n-butyl phthalate	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
2,6-Dichlorophenol	ND	10	ug/L
Diethylphthalate	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
Dimethyl phthalate	ND	10	ug/L

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

BASE NEUTRALS & ACID EXTRACTABLES / EPA METHOD 625 (page 2)

Wingate Plant-East Evap Pond

4,6-Dinitro-2-methylphenol	ND	50	ug/L
2,4-Dinitrophenol	ND	50	ug/L
Di-n-octylphthalate	ND	10	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	ug/L
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	10	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Hexachloroethane	ND	10	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Isophorone	ND	20	ug/L
2-Methylnaphthalene	ND	20	ug/L
2-Methylphenol	ND	20	ug/L
4-Methylphenol	ND	20	ug/L
Naphthalene	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
3-Nitroaniline	ND	50	ug/L
4-Nitroaniline	ND	20	ug/L
Nitrobenzene	ND	10	ug/L
2-Nitrophenol	ND	10	ug/L
4-Nitrophenol	ND	50	ug/L
N-Nitrosodimethylamine	ND	20	ug/L
N-Nitrosodi-n-propylamine	ND	10	ug/L
N-Nitrosodiphenylamine(1)	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L
1,2,4-Trichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichloropheneol	ND	10	ug/L
•			~

Reported By:__

Reviewed:_

et, Farmington, NM 87401

Phone (505) 326-4737	Fax (505) 325-4182	2506 West Main Street, Farmington, NM 8740
Client:	Conoco, Inc. Gallup	
Project:	Wingate Plant	
Sample ID	: West Evap Pond	Date Received: 10/10/00
Lab ID:	0300W04418	Date Reported: 11/03/00
Matrix:	Water	Date Sampled: 10/10/00
Condition:	Intact	Time Sampled: 0830

Analytical						An	alysis	
Result	Units		Units	PQL	Method	Date	Time	Init.
	ىرىمان كى كى مەر مەر مەر		يت و في من يو من و من و من و من و من و من و	الريسة الارساني الارتبار المتاري بسبي				الشياني مترجمين
7.9	s.u.			0.1	EPA 150.1	10/10/00	1500	WL
193,000	µmhos/cm			10	EPA 120.1	10/10/00	1500	WL
299,000	mg/L			10	EPA 160.1	10/12/00	0905	JP
<0.01	mg/L			0.01	SM 4500-CN E	10/25/00	1600	WL
0.43	mg/L			0.05	EPA 353.2	10/11/00	0930	KA
860	mg/L			1	EPA 310.1	10/10/00	1300	KA
57,600	mg/L			1	EPA 200.7	11/01/00	1539	WL
1,050	mg/L	17.2	meq/L	1	EPA 310.1	10/10/00	1300	KA
<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/10/00	1300	KA
<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/10/00	1300	KA
37	mg/L	0.46	meq/L	5	EPA 300.0	10/20/00	1227	WL
75,200	mg/L	2,120	meq/L	100	EPA 300.0	10/20/00	1227	WL
150	mg/L	8.02	meq/L	10	EPA 300.0	10/20/00	1227	WL
34,000	mg/L	708	meq/L	500	EPA 300.0	10/20/00	1227	WL
98.2	mg/L	4.90	meq/L	0.2	EPA 200.7	11/01/00	1539	WL
13,900	mg/L	1,150	meq/L	0.2	EPA 200.7	11/01/00	1539	WL
1,940	mg/L	49.6	meq/L	0.2	EPA 200.7	11/01/00	1539	WL
64,700	mg/L	2,810	meq/L	0.2	EPA 200.7	11/01/00	1539	WL
	Result 7.9 193,000 299,000 <0.01	Result Units 7.9 s.u. 193,000 μmhos/cm 299,000 mg/L <0.01	Result Units 7.9 s.u. 193,000 µmhos/cm 299,000 mg/L <0.01	Result Units Units 7.9 s.u. 193,000 µmhos/cm 299,000 mg/L .u. <0.01	Result Units Units PQL 7.9 s.u. 0.1 193,000 µmhos/cm 10 299,000 mg/L 10 <0.01	Result Units PQL Method 7.9 s.u. 0.1 EPA 150.1 193,000 µmhos/cm 10 EPA 120.1 299,000 mg/L 10 EPA 160.1 <0.01	Result Units PQL Method Date 7.9 s.u. 0.1 EPA 150.1 10/10/00 193,000 µmhos/cm 10 EPA 120.1 10/10/00 299,000 mg/L 10 EPA 160.1 10/12/00 <0.01	Result Units PQL Method Date Time 7.9 s.u. 0.1 EPA 150.1 10/10/00 1500 193,000 µmhos/cm 10 EPA 120.1 10/10/00 1500 299,000 mg/L 10 EPA 160.1 10/12/00 0905 <0.01

Reference: EPA - "Methods for Chemical Analysis of Water and Wastes (MCAWW)" - EPA/600/4-79-020 - March, 1983. SM - "Standald Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF,18th Edition, 1992. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

iml

Inter-Mountain Laboratories, Inc.

Phone (505) 326-4737 Fax (505) 325-4182 2506 West Main Street, Farmington, NM 87401 Conoco, Inc. Gallup **Client:** Project: Wingate Plant Date Received: 10/10/00 West Evap Pond Sample ID: Date Reported: 11/03/00 Lab ID: 0300W04418 Water Date Sampled: 10/10/00 Matrix: Time Sampled: 0830 **Condition:** Intact Analytical Analysis

Parameter	Result	Units	Units PQL	Method	Date	Time	_Init.
TOTAL METALS							
Arsenic	<0.005	mg/L	0.005	SM 3114B	10/20/00	1400	EJ
Barium	0.01	mg/L	0.01	EPA 200.7	10/25/00	1548	WL
Cadmium	0.021	mg/L	0.005	EPA 200.7	10/25/00	1548	WL
Chromium	<0.01	mg/L	0.01	EPA 200.7	10/25/00	1548	WL
Lead	0.005	mg/L	0.005	EPA 200.9	10/21/00	0830	SW
Mercury	0.002	mg/L	0.001	EPA 245.1	10/26/00	1600	EJ
Selenium	<0.005	mg/L	0.005	SM 3114B	10/21/00	1315	EJ
Silica	7.1	mg/L	0.1	EPA 200.7	10/25/00	1545	WL
Silver	0.06	mg/L	0.01	EPA 200.7	10/25/00	1548	WL

Reference: SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF,19th Edition, 1995. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

Reviewed By:

2506 West Main Street, Farmington, NM 87401

VOLATILES

EPA Method 624

Client:	Conoco, Inc.		
Project:	Wingate Plant	Date Reported:	11/03/00
Sample ID:	West Evap Pond	Date Sampled:	10/10/00
Laboratory ID:	0300W04418	Date Received:	10/10/00
Sample Matrix:	Water	Date Analyzed:	10/11/00

Parameter	Result	Limit	Units
Benzene	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
Carbon Tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	2.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethylene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
Dichloromethane	ND	3.0	ug/L
1,2 Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichlorpropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Methylene Chloride	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene (TCE)	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Vinyl Chloride	ND	2.0	ug/L

Reported By:

22 Reviewed:

2506 West Main Street, Farmington, NM 87401

BASE NEUTRALS & ACID EXTRACTABLES

EPA Method 625 (page1)

Client:	Conoco, Inc.		
Project:	Wingate Plant	Date Reported:	11/03/00
Sample ID:	West Evap Pond	Date Sampled:	10/10/00
Laboratory ID:	0300W04418	Date Received:	10/10/00
Sample Matrix:	Water	Date Analyzed:	10/19/00

		en Richtsteiten	
Parameter	Result	Limit	Units
Acenaphthene	ND	100	ug/L
Acenapthylene	ND	100	ug/L
Aniline	ND	100	ug/L
Anthracene	ND	100	ug/L
Benzidine	ND	200	ug/L
Benzo(a)anthracene	ND	100	ug/L
Benzo(a)pyrene	ND	100	ug/L
Benzo(b)fluoranthene	ND	100	ug/L
Benzo(g,h,i)perylene	ND	100	ug/L
Benzo(k)fluoranthene	ND	100	ug/L
Benzoic Acid	ND ND	500 200	ug/L
Benzyl Alcohol			ug/L
bis(2-Chloroethoxy)methane	ND ND	100 100	ug/L
bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether	ND	100	ug/L
	ND	100	ug/L
bis(2-ethylhexyl)phthalate 4-Bromophenyl-phenylether	ND	100	ug/L
Butylbenzylphthalate	ND	100	ug/L ug/L
4-Chloroaniline	ND	200	ug/L ug/L
4-Chloro-3-methylphenol	ND	200	
3-Chloronaphthalene	ND	100	ug/L
2-Chlorophenol	ND	100	ug/L
4-Chlorophenyl-phenylether	ND	100	ug/L ug/L
Chrysene	ND	100	ug/L
Dibenz(a,h)anthracene	ND	100	-
			ug/L
Dibenzofuran	ND	100	ug/L
Di-n-butyl phthalate	ND	100	ug/L
1,2-Dichlorobenzene	ND	100	ug/L
1,3-Dichlorobenzene	ND	100	ug/L
1,4-Dichlorobenzene	ND	100	ug/L
2,4-Dichlorophenol	ND	100	ug/L
2,6-Dichlorophenol	ND	100	ug/L
Diethylphthalate	ND	100	ug/L
2,4-Dimethylphenol	ND	100	ug/L
Dimethyl phthalate	ND	100	ug/L
- •			_

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

BASE NEUTRALS & ACID EXTRACTABLES / EPA METHOD 625 (page 2)

Wingate Plant-West Evap Pond

4,6-Dinitro-2-methylphenol	ND	500	ug/L
2,4-Dinitrophenol	ND	500	ug/L
Di-n-octylphthalate	ND	100	ug/L
2,4-Dinitrotoluene	ND	100	ug/L
Fluoranthene	ND	100	ug/L
Fluorene	ND	100	ug/L
Hexachlorobenzene	ND	100	ug/L
Hexachlorobutadiene	ND	100	ug/L
Hexachlorocyclopentadiene	ND	100	ug/L
Hexachloroethane	ND	100	ug/L
Indeno(1,2,3-cd)pyrene	ND	100	ug/L
Isophorone	ND	200	ug/L
2-Methylnaphthalene	ND	200	ug/L
2-Methylphenol	ND	200	ug/L
4-Methylphenol	ND	200	ug/L
Naphthalene	ND	100	ug/L
2-Nitroaniline	ND	500	ug/L
3-Nitroaniline	ND	500	ug/L
4-Nitroaniline	ND	200	ug/L
Nitrobenzene	ND	100	ug/L
2-Nitrophenol	ND	100	ug/L
4-Nitrophenol	ND	500	ug/L
N-Nitrosodimethylamine	ND	200	ug/L
N-Nitrosodi-n-propylamine	ND	100	ug/L
N-Nitrosodiphenylamine(1)	ND	100	ug/L
Pentachlorophenol	ND	500	ug/L
Phenanthrene	ND	100	ug/L
Phenol	ND	100	ug/L
Pyrene	ND	100	ug/L
1,2,4-Trichlorobenzene	ND	100	ug/L
2,4,5-Trichlorophenol	ND	100	ug/L
2,4,6-Trichloropheneol	ND	100	ug/L

K Reviewed:_

Reported By:_____

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

QUALITY CONTROL / QUALITY ASSURANCE

2506 West Main Street, Farmington, NM 87401

Phone (505) 326-4737 Fax (505) 325-4182

Quality Control / Quality Assurance

Client:	Conoco, Inc.	Date Reported:	03/23/99
Project:	Wingate	Date Analyzed:	03/19/99
Sample Matrix:	Water	Date Received:	03/15/99

625 Spike	Sample	Spike	Spike	Dup Spike	
Compound	Amount	Amount	Recovery	Recovery	RPD
			%	%	
Phenol	<10	200	38	45	16
2-Chlorophenol	<10	200	66	70	6
1,4-Dichlorobenzene	<10	100	57	61	7
n-Nitro-di-n-propylamine	<10	100	73	72	1
1,2,4-Trichlorobenzene	<10	100	69	71	3
4-Chioro-3 methylphenol	<20	200	76	78	3
Acenaphthene	<10	100	69	74	7
4-Nitrophenol	<10	200	38	45	18
2,4-Dinitrotoluene	<10	100	72	77	7
Pentachlorophenol	<10	200	73	75	2
Pyrene	<10	100	102	95	7

Reported by

Reviewed by

2506 West Main Street, Farmington, NM 87401

Quality Control / Quality Assurance

Spike Analysis / Blank Analysis TOTAL METALS

Client: Project: Sample Matrix: **Conoco, Inc.** Wingate Plant Water Date Reported:11/03/00Date Analyzed:10/25/00Date Received:10/10/00

	Spike Analysis					
	Spike	Sample	Spike			
	Result	Result	Added	Percent		
Parameter	(mg/L)	<u>(mg/L)</u>	(mg/L)	Recovery		
Arsenic	0.038	<0.005	0.040	95%		
Barium	0.97	<0.01	1.000	97%		
Cadmium	1.000	<0.001	1.000	100%		
Chromium	0.09	<0.01	0.10	91%		
Lead	0.024	<0.005	0.025	97%		
Mercury	0.002	<0.001	0.002	93%		
Selenium	0.045	<0.001	0.040	113%		
Silver	0.09	<0.01	0.10	94%		

Method Blank Analysis

		Detection	
Parameter	Result	Limit	Units
Arsenic	ND	0.005	mg/L
Barium	ND	0.01	mg/L
Cadmium	ND	0.001	mg/L
Chromium	ND	0.01	mg/L
Lead	ND	0.005	mg/L
Mercury	ND	0.001	mg/L
Selenium	ND	0.001	mg/L
Silver	ND	0.01	mg/L

Reference:

Method 200.2: Acid Digestion for Water and Waste Water, SW-846, Revison 1, July, 1992.

Comments: Reported by

Reviewed by

2506 West Main Street, Farmington, NM 87401

Quality Control / Quality Assurance KNOWN ANALYSIS TOTAL METALS

Client: Project: Sample Matrix: **Conoco, Inc.** Wingate Plant Water Date Reported:11/03/00Date Analyzed:10/25/00Date Received:10/10/00

Known Analysis					
Parameter	Found Result	Known Result	Percent Recovery	Units	
Arsenic	0.041	0.040	103%	mg/L	
Barium	1.960	2.000	96%	mg/L	
Cadmium	1.95	2.00	98%	mg/L	
Chromium	1.95	2.00	98%	mg/L	
Lead	0.047	0.050	95%	mg/L	
Mercury	0.002	0.002	95%	mg/L	
Selenium	0.043	0.040	108%	mg/L	
Silver	0.24	0.25	97%	mg/L	

Reference: Method 200.2: Acid Digestion for Water and Waste Water, SW-846, Revision 1, July, 1992.

Comments:

Reported by

Reviewed by _____

Joyce M. Woodfin Environmental Consultant Natural Gas & Gas Products

Certified Mail No: Z 413 451 644 Return Receipt Requested

January 13, 2000

Mr. Jack Ford Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division P.O. Box 6429 Santa Fe, NM 87505 Conoco Inc Humber 3036 P.O. Box 2197 Houston, TX 77252-2197 (281) 293-4498 Fax: (281) 293-1214

Re: Discharge Plan GW-054 Compliance Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford:

Please find attached the results from the annual evaporation pond sampling event and the annual groundwater monitoring well sampling event at Conoco's NGGP's Wingate facility.

8 2000

CT. CONSERVATION DIMENC

The ponds were sampled pursuant to Discharge Plan GW-54 Approval Condition #17 (November 21, 1997) and analyzed by Inter-Mountain Laboratories, Farmington New Mexico. The monitoring wells were sampled according to our agreement and follow-up letter dated June 23, 1999 reducing the sampling of MW-1, MW-2, MW-3 and WMW-4 to an annual basis. Monitoring wells were sampled on September 22, 1999 and analyzed by NEL Laboratories, Las Vegas, Nevada. Water level measurements were taken on December 28, 1999.

If you have any questions or require any additional information, please contact Joyce Woodfin at (281) 293-4498. Thank you for your time and consideration.

Sincerely,

Joyce M. Woodfin

cc: Chuck White – Wingate File: ENV 215-5-6

2506 West Main Street, Farmington, NM 87401

CCT | 8 1999

Date: 10/13/99

Client: Conoco, Inc. Bloomfield

Lab ID: 0399W04866 - 67

Project: Wingate Plant

Dear Client:

The samples were received for analysis at Inter-Mountain Laboratories (IML), Farmington, New Mexico. Enclosed are the results of these analyses.

Comment:

Analytical results were obtained by approved methods. Sample analyses were obtained within the method specific holding times. Practical Quantitation Limits (PQL's) are based on method requirements, and any dilutions necessary to maintain proper method response without matrix interference.

If you have any questions, please call me at (505) 326-4737.

William Lipps IML-Farmington, NM

بع.

one (505) 326-4737 Fax Client:	(505) 325-4182 Conoco, Inc. Gallup						2506 West Main	Street, Farming	gton, Ni	1 87401
Project:	Wingate Plant									
Sample ID:	East Evap. Pond						Date R	eceived: (09/28/	99
Lab ID:	0399W04866						Date R	leported:	10/13/	99
Matrix:	Water							Sampled: (
Condition:	Cool/Intact							Sampled:		
	n an the second seco	Analytical	1. 1.					Ana	lysis	
Para	meter	Result	Units		Units	PQL	Method	Date	11me	Init
GENERAL PAR	RAMETERS									
PH		8.9	s.u.			0.1	EPA 150.1	09/28/99	1630	JP
Electrical Conduct	ivity	46,400	µmhos/cm			10	EPA 120.1	09/28/99	1630	JP
Solids - Total Diss	olved	31,800	mg/L			10	EPA 160.1	09/30/99	0800	GD
Cyanide (Total) - F	RFA	<0.01	mg/L			0.01	EPA 335.3	10/11/99	0800	AP
Alkalinity (CaCO3)	•	209	mg/L			1	EPA 310.1	10/04/99		JP
Hardness (CaCO3	3)	1,750	mg/L			0.2	Calculation	10/11/99	1500	BJ
MAJOR ANION	IS									
Bicarbonate (HCO)3)	116	mg/L	1.90	meq/L	1	EPA 310.1	10/04/99		JP
Carbonate (CO3)		68	mg/L	2.28	meq/L	1	EPA 310.1	10/04/99	0900	JP
Hydroxide (OH)		<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/04/99		JP
Bromide (Br)		<10+	mg/L	<0.01	meq/L	10	EPA 300.0	10/12/99		BJ
Chloride		15,300	mg/L	432	meq/L	1	EPA 300.0	10/12/99		BJ
Fluoride		0.74	mg/L	0.04	meq/L	0.05	EPA 340.2	09/30/99		JP
Nitrogen - Nitrate		<0.05	mg/L	<0.01	meq/L	0.05	EPA 353.2	10/05/99		WL
Sulfate		3,790	mg/L	79.1	meq/L	5	EPA 300.0	10/12/99	0800	BJ
MAJOR CATIO	NS									
Calcium		67.3	mg/L	3.36	meq/L	0.2	EPA 200.7	10/13/99		WL
Magnesium		384	mg/L	31.6	meq/L	0.2	EPA 200.7	10/13/99		WL
Potassium		97.6	0	2.50	meq/L	0.2	EPA 200.7		1100	WL
Sodium		9,860	mg/L	429	meq/L	0.2	EPA 200.7	10/13/99	1100	WL
CATION/ANION	N BALANCE QC INFOR	MATION								
Anion Sum				515	meq/L	0.1	Calculation	10/12/99	1100	BJ
Cation Sum				466	meq/L	0.1	Calculation	10/12/99		BJ
Cation/Anion Bala	nce			4.96	%	N/A	N/A	10/12/99	1100	BJ

+ - High PQL due to matrix interference

Reference: EPA - "Methods for Chemical Analysis of Water and Wastes (MCAWW)" - EPA/600/4-79-020 - March, 1983. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

Phone (505) 326-4737 Fox (505) 325-4182 Client: Conoco, Inc. Gallup Project: Wingate Plant Sample ID: East Evap. Pond Lab ID: 0399W04866 Matrix: Water Condition: Cool/Intact

2506 West Main Street, Farmington, NM 87401

 Date Received:
 09/28/99

 Date Reported:
 10/13/99

 Date Sampled:
 09/27/99

 Time Sampled:
 1000

	Analytical				An	alysis	
Parameter	Result	Units Units	PQL	Method	Date	Time	Init.
TOTAL METALS							
Arsenic	<0.005	mg/L	0.005	SM 3114B	10/13/99	1020	HR
Barium	0.09	mg/L	0.01	EPA 200.7	10/12/99	1235	WL
Cadmium	<0.001	mg/L	0.001	EPA 200.9	11/01/99	0900	SW
Chromium	<0.01	mg/L	0.01	EPA 200.7	10/12/99	1235	WL
Lead	<0.005	mg/L	0.005	EPA 200.9	10/11/99	1420	SW
Mercury	<0.001	mg/L	0.001	EPA 245.1	10/12/99	1450	HR
Selenium	<0.005	mg/L	0.005	SM 3114B	10/08/99	1325	HR
Silica	11.8	mg/L	0.1	EPA 200.7	10/12/99	1235	WL
Silver	<0.01	mg/L	0.01	EPA 200.7	10/12/99	1235	WL

Reference: SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF, 19th Edition, 1995. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

۰.

iml

Inter-Mountain Laboratories, Inc.

Phone (505) 326-4737 Fax (505) 325-4182 2506 West Main Street, Farmington, NM 87401 Conoco, Inc. Gallup **Client: Project:** Wingate Plant Date Received: 09/28/99 Sample ID: West Evap. Pond Lab ID: 0399W04867 Date Reported: 10/13/99 Matrix: Water Date Sampled: 09/27/99 Time Sampled: 1000 **Condition:** Cool/Intact

	Analytical			а			An	alysis	
Parameter	Result	Units		Units	PQL	Method	Date	Time	lnit.
GENERAL PARAMETERS									
РН	7.9	s.u.			0.1	EPA 150.1	09/28/99	1630	JP
Electrical Conductivity	216,000	µmhos/cm			10	EPA 120.1	09/28/99	1630	JP
Solids - Total Dissolved	247,000	mg/L			10	EPA 160.1	09/30/99	0800	GD
Cyanide (Total) - RFA	<0.01	mg/L			0.01	EPA 335.3	10/11/99	0800	AP
Alkalinity (CaCO3)	528	mg/L			1	EPA 310.1	10/04/99	0900	JP
Hardness (CaCO3)	21,500	mg/L			0.2	Calculation	10/11/99	1500	BJ
MAJOR ANIONS									
Bicarbonate (HCO3)	644	mg/L	10.6	meq/L	1	EPA 310.1	10/04/99	0900	JP
Carbonate (CO3)	<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/04/99	0900	JP
Hydroxide (OH)	<1	mg/L	<0.01	meq/L	1	EPA 310.1	10/04/99	0900	JP
Bromide (Br)	<10+	mg/L	<0.01	meq/L	10	EPA 300.0	10/12/99	0800	BJ
Chloride	127,000	mg/L	3,590	meq/L	1	EPA 300.0	10/12/99	0800	BJ
Fluoride	0.77	mg/L	0.04	meq/L	0.05	EPA 340.2	09/30/99	0809	JP
Nitrogen - Nitrate	<0.05	mg/L	<0.01	meq/L	0.05	EPA 353.2	10/05/99	1620	WL
Sulfate	23,500	mg/L	490	meq/L	5	EPA 300.0	10/12/99	0800	BJ
MAJOR CATIONS									
Calcium	734	mg/L	36.6	meq/L	0.2	EPA 200.7	10/13/99	1100	WL
Magnesium	4,780	mg/L	393	meq/L	0.2	EPA 200.7	10/13/99	1100	WL
Potassium	720	' mg/L	18.4	meq/L	0.2	EPA 200.7	10/13/99	1100	WL
Sodium	77,200	mg/L	3,360	meq/L	0.2	EPA 200.7	10/13/99	1100	WL
CATION/ANION BALANCE QC INF	ORMATION								
Anion Sum			4,090	meq/L	0.1	Calculation	10/12/99	1100	BJ
Cation Sum			3,800	meq/L	0.1	Calculation	10/12/99	1100	BJ
Cation/Anion Balance			3.66	%	N/A	N/A	10/12/99	1100	BJ

+ - High PQL due to matrix interference

Reference: EPA - "Methods for Chemical Analysis of Water and Wastes (MCAWW)" - EPA/600/4-79-020 - March, 1983.

EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

inl

Inter-Mountain Laboratories, Inc.

Phone (505) 326-4737
Client:Fax (505) 325-4182
Conoco, Inc. GallupProject:Wingate PlantSample ID:West Evap. PondLab ID:0399W04867Matrix:WaterCondition:Cool/Intact

2506 West Main Street, Farmington, NM 87401

 Date Received:
 09/28/99

 Date Reported:
 10/13/99

 Date Sampled:
 09/27/99

 Time Sampled:
 1000

	Analytical				· An	alysis	
Parameter	Rosult	Units	Units PQL	Method	Date	Time	lnit.
TOTAL METALS							
Arsenic	0.007	mg/L	0.005	SM 3114B	10/13/99	1020	HR
Barium	0.06	mg/L	0.01	EPA 200.7	10/12/99	1238	WL
Cadmium	0.002	mg/L	0.001	EPA 200.9	11/01/99	0900	SW
Chromium	<0.01	mg/L	0.01	EPA 200.7	10/12/99	1238	WL
Lead	0.022	mg/L	0.005	EPA 200.9	10/11/99	1420	SW
Mercury	<0.001	mg/L	0.001	EPA 245.1	10/12/99	1450	HR
Selenium	<0.005	mg/L	0.005	SM 3114B	10/08/99	1325	HR
Silica	6.9	mg/L	0.1	EPA 200.7	10/12/99	1238	WL
Silver	<0.01	mg/L	0.01	EPA 200.7	10/12/99	1238	WL

Reference: SM - "Standard Methods for the Examination of Water and Wastewater", APHA-AWWA-WEF, 19th Edition, 1995. EPA - "Methods for the Determination of Metals in Environmental Samples" - Supplement I - 600/R-94-111 - May, 1994.

Reviewed By:

Sample ID:

Laboratory ID:

Sample Matrix:

Method Blank

V3MB99-280

Water

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

EPA METHOD 624 VOLATILE ORGANIC COMPOUNDS USING GC/MS

Method Blank Analysis

Date Reported: 10/12/99 Date Extracted: NA

Date Analyzed: 10/07/99

_	Analytical	Detection	
Parameter	Result	Limit	Units
1,1,1-Trichloroethane	ND	5	μg/L
1,1,2,2-Tetrachloroethane	ND	5	μg/L
1,1,2-Trichloroethane	ND	5	μg/L
1,1-Dichloroethane	ND	5	µg/L
1,1-Dichloroethene	ND	5	µg/L
1,2-Dichlorobenzene	ND	5	µg/L
1,2-Dichloroethane	ND	5	μg/L
1,2-Dichloropropane	ND	5	µg/L
1,3-Dichlorobenzene	ND	5	µg/L
1,4-Dichlorobenzene	ND	5	µg/L
2-Chloroethylvinyl ether	ND	5	µg/L
Benzene	ND	5	µg/L
Bromodichloromethane	ND	5	μg/L
Bromoform	ND	5	µg/L
Bromomethane	ND	5	µg/L
Carbon tetrachloride	ND	5	μg/L
Chlorobenzene	ND	5	µg/L
Chloroethane	ND	5	μg/L
Chloroform	ND	5	μg/L
Chloromethane	ND	5	μg/L
cis-1,3-Dichloropropene	ND	5	μg/L
Dibromochloromethane	' ND	5	μg/L
Ethyl benzene	ND	5	µg/L
Methylene chloride	ND	20	µg/L
Tetrachloroethene (PCE)	ND	5	µg/L
Toluene	ND	5	µg/L
trans-1,2-Dichloroethene	ND	5	μg/L
trans-1,3-Dichloropropene	ND	5	μg/L
Trichloroethene (TCE)	ND	5	μg/L
Trichlorofluoromethane	ND	5	µg/L
Vinyl chloride	ND	5	μg/L

ND - Compound not detected at stated Detection Limit.

Surrogate Recovery

Method 624	%	Limits
Dibromofluoromethane	102	86 - 118
1,2-Dichloroethane-d4	97	80 - 120
Toluene-d8	88	88 - 110
4-Bromoflourobenzene	97	8 6 - 115

Reference:

Method 624, Volatile Organic Compounds using GC/MS. 40 CFR July 1992, Pt. 136, App. A

Analyst: Es hy du

Why Reviewed:_

Inter-Mountain Laboratories, Inc.

EPA METHOD 624 VOLATILE ORGANIC COMPOUNDS USING GC/MS

Blank Spike/Blank Spike Duplicate

Sample ID:Blank Spike/DuplicateDate Reported:10/12/99Laboratory ID:V3BSD99-280Date Extracted:NASample Matrix:WaterDate Analyzed:10/07/99

Parameter	Analytical Result µg/L	Spike Added µg/L	Spike Results µg/L	Spike Recovery %	Duplicate Results µg/L	Duplicate Recovery %	Relative Difference %RSD
							_
1,1,1-Trichloroethane	ND	50	63	126	60	120	5
1,1,2,2-Tetrachloroethane	ND	50	67	133	65	129	3
1,1,2-Trichloroethane	ND	50	64	129	65	130	1
1,1-Dichloroethane	ND	50	61	121	58	116	5
1,1-Dichloroethene	ND	50	46	92	44	87	5
1,2-Dichlorobenzene	ND	50	52	103	47	95	8
1,2-Dichloroethane	ND	50	67	134	65	130	3
1,2-Dichloropropane	ND	50	59	117	55	111	6
1,3-Dichlorobenzene	ND	50	49	97	45	91	7
1,4-Dichlorobenzene	ND	50	51	101	47	93	8
2-Chloroethylvinyl ether	ND	100	121	121	120	120	1
Benzene	ND	50	54	108	52	104	4
Bromodichloromethane	ND	50	67	135	64	128	5
Bromoform	ND	50	66	131	63	126	4
Bromomethane	ND	50	24	48	23	46	5
Carbon tetrachloride	ND	50	60	120	59	119	1
Chlorobenzene	ND	50	52	103	47	94	9
Chloroethane	ND	50	28	56	26	52	8
Chloroform	ND	50	64	127	61	122	4
Chloromethane	ND	50	9	17	10	20	18
cis-1,3-Dichloropropene	ND	50	63	126	60	120	4
Dibromochloromethane	ND .	50	65	131	64	128	2
Ethyl benzene	ND	50	53	106	49	98	7
Methylene chloride	ND	50	55	109	52	105	4
Tetrachloroethene (PCE)	ND	50	56	111	52	104	7
Toluene	ND	50	57	113	53	107	6
trans-1,2-Dichloroethene	ND	50	53	106	51	103	3
trans-1,3-Dichloropropene	ND	50	58	117	55	109	7
Trichloroethene (TCE)	ND	50	55	111	52	105	6
Trichlorofluoromethane	ND	50	38	75	36	72	4
Vinyl chloride	ND	50	13	26	13	26	0

ND - Compound not detected at stated Detection Limit.

Surrogate Recovery

		Dup	
Method 624	%	%	Limits
Dibromofluoromethane	107	107	86 - 118
1,2-Dichloroethane-d4	115	118	80 - 120
Toluene-d8	90	92	88 - 110
4-Bromoflourobenzene	102	102	86 - 115

Reference:

Method 624, Volatile Organic Compounds using GC/MS. 40 CFR July 1992, Pt. 136, App. A

Inter-Mountain Laboratories, Inc. EPA METHOD 624 VOLATILE ORGANIC COMPOUNDS USING GC/MS 2506 West Main Street, Farmington, NM 87401

Client:	Conoco	Date Reported:	10/12/99
Sample ID:	E. Pond	Date Sampled:	09/27/99
Project ID:	Wingate Plant	Date Received:	09/28/99
Laboratory ID:	0399W04866	Date Extracted:	NA
Laboratory ID:	0399W04866	Date Extracted:	NA
Sample Matrix:	Water	Date Analyzed:	10/07/99

	Analytical	Detection	
Parameter	Result	Limit	Units
1,1,1-Trichloroethane	ND	5	µg/L
1,1,2,2-Tetrachloroethane	ND	5	µg/L
1,1,2-Trichloroethane	ND	5	µg/L
1,1-Dichloroethane	ND	5	µg/L
1,1-Dichloroethene	ND	5	µg/L
1,2-Dichlorobenzene	ND	5	µg/L
1,2-Dichloroethane	ND	5	µg/L
1,2-Dichloropropane	ND	5	µg/L
1,3-Dichlorobenzene	ND	5	µg/L
1,4-Dichlorobenzene	ND	5	µg/L
2-Chloroethylvinyl ether	ND	5	µg/L
Benzene	ND	5	µg/L
Bromodichloromethane	ND	5	μg/L
Bromoform	ND	5	µg/L
Bromomethane	ND	5	μg/L
Carbon tetrachloride	ND	5	µg/L
Chlorobenzene	ND	5	μg/L
Chloroethane	ND	5	μg/L
Chioroform	ND	5	μg/L
Chioromethane	ND	5	μg/L
cis-1,3-Dichloropropene	ND	5	µg/L
Dibromochloromethane	· ND	5	µg/L
Ethyl benzene	ND	5	μg/L
Methylene chloride	ND	20	µg/L
Tetrachloroethene (PCE)	ND	5	μg/L
Toluene	ND	5	µg/L
trans-1,2-Dichloroethene	ND	5	µg/L
trans-1,3-Dichloropropene	ND	5	µg/L
Trichloroethene (TCE)	ND	5	µg/L
Trichlorofluoromethane	ND	5	µg/L
Vinyl chloride	ND	5	µg/L

ND - Compound not detected at stated Detection Limit.

Surrogate Recovery

Method 624	%	Limits
Dibromofluoromethane	111	86 - 118
1,2-Dichloroethane-d4	117	80 - 120
Toluene-d8	93	88 - 110
4-Bromoflourobenzene	105	86 - 115

Reference:

Method 624, Volatile Organic Compounds using GC/MS. 40 CFR July 1992, Pt. 136, App. A

in di

Reviewed

Inter-Mountain Laboratories, Inc. EPA METHOD 624 VOLATILE ORGANIC COMPOUNDS USING GC/MS 2506 West Main Street, Farmington, NM 87401

Phone (505) 326-4737 Fax (505) 325-4182

Client: Conoco Date Reported: 10/12/99 Sample ID: W. Pond Date Sampled: 09/27/99 Project ID: Wingate Plant Date Received: 09/28/99 0399W04867 Laboratory ID: Date Extracted: NA Sample Matrix: Water Date Analyzed: 10/07/99

	Analytical	Detection		
Parameter	Result	Limit	Units	
1,1,1-Trichloroethane	ND	5	µg/L	
1,1,2,2-Tetrachloroethane	ND	5	µg/L	
1,1,2-Trichloroethane	ND	5	µg/L	
1,1-Dichloroethane	ND	5	µg/L	
1,1-Dichloroethene	ND	5	µg/L	
1,2-Dichlorobenzene	ND	5	µg/L	
1,2-Dichloroethane	ND	5	µg/L	
1,2-Dichloropropane	ND	5	µg/L	
1,3-Dichlorobenzene	ND	5	µg/L	
1,4-Dichlorobenzene	ND	5	µg/L	
2-Chioroethylvinyl ether	ND	5	µg/L	
Benzene	ND	5	µg/L	
Bromodichloromethane	ND	5	µg/L	
Bromoform	ND	5	µg/L	
Bromomethane	ND	5	µg/L	
Carbon tetrachloride	ND	5	µg/L	
Chiorobenzene	ND	5	µg/L	
Chloroethane	ND	5	µg/L	
Chloroform	ND	5	µg/L	
Chloromethane	ND	5	μg/L	
cis-1,3-Dichloropropene	ND	5	µg/L	
Dibromochloromethane	· ND	5	µg/L	
Ethyl benzene	ND	5	µg/L	
Methylene chloride	ND	20	µg/L	
Tetrachloroethene (PCE)	ND	5	µg/L	
Toluene	ND	5	µg/L	
trans-1,2-Dichloroethene	ND	5	µg/L	
trans-1,3-Dichloropropene	ND	5	μg/L	
Trichloroethene (TCE)	ND	5	µg/L	
Trichlorofluoromethane	ND	5	µg/L	
Vinyl chloride	ND	5	µg/L	

ND - Compound not detected at stated Detection Limit.

Surrogate Recovery

Method 624	%	Limits
Dibromofluoromethane	111	86 - 118
1,2-Dichloroethane-d4	121	80 - 120
Toluene-d8	90	88 - 110
4-Bromoflourobenzene	97	86 - 115

Reference:

Method 624, Volatile Organic Compounds using GC/MS. 40 CFR July 1992, Pt. 136, App. A

Analyst /

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

EPA METHOD 625 GC/MS SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES Method Blank Analysis

Sample ID: Method Blank Laboratory ID: Sample Matrix:

Phone (505) 326-4737 Fax (505) 325-4182

MB99-273 Water

Date Reported: 10/12/99 Date Extracted: 09/30/99 Date Analyzed: 10/07/99

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	µg/L
1,2-Dichlorobenzene	ND	10	µg/L
1,3-Dichlorobenzene	ND	10	µg/L
1,4-Dichlorobenzene	ND	10,	µg/L
2,4,5-Trichlorophenol	ND	50	µg/L
2,4,6-Trichlorophenol	ND	10	µg/L
2,4-Dichlorophenol	ND	10	µg/L
2,4-Dimethylphenol	ND	10	µg/L
2,4-Dinitrophenol	ND	50	µg/L
2,4-Dinitrotoluene	ND	10	µg/L
2,6-Dinitrotoluene	ND	10	µg/L
2-Chloronaphthalene	ND	10	µg/L
2-Chlorophenol	ND	10	μg/L
2-Nitrophenol	ND	20	µg/L
3,3'-Dichlorobenzidine	ND	50	µg/l
4,6-Dinitro-2-methylphenol	ND	20	µg/L
4-Bromophenyl-phenylether	ND	10	µg/l
4-Chloro-3-methylphenol	ND	10	µg/l
4-Chlorophenyl-phenylether	ND	10	µg/l
4-Methylphenol	ND	10	µg/l
4-Nitrophenol	ND	50	µg/l
Acenaphthene	ND	10	μg/L
Acenaphthylene	ND	10	μg/L
Anthracene	ND	10	µg/L
Benzidine	ND	50	µg/L
Benzo[a]anthracene	ND	10	µg/L
Benzo[a]pyrene	ND	10	μg/L
Benzo[b]fluoranthene	ND	10	μg/L
Benzo[g,h,i]perylene	ND	20	µg/L
Benzo[k]fluoranthene	ND	10	μg/L
bis(2-Chloroethoxy)methane	ND	10	µg/L
bis(2-Chloroethyl)ether	ND	10	μg/L
bis(2-chloroisopropyl)ether	ND	10	μg/l
bis(2-Ethylhexyl)phthalate	ND	10	µg/l
Butylbenzylphthalate	ND	10	μg/l
Chrysene	ND	10	μ g/ L
Dibenz[a,h]anthracene	ND	20	µg/l
Diethylphthalate	ND	10	μg/L
Dimethylphthalate	ND	10	μg/l
Di-n-butylphthalate	ND	10	µg/l

2506 West Main Street, Farmington, NM 87401

Phone (505) 326-4737 Fax (505) 325-4182

GC/MS SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Blank Spike/Spike Duplicate Analysis

Sample ID:	Blank Spike Duplicate	Date Reported:	10/12/99
Laboratory ID:	BSD99-273	Date Extracted:	09/30/99
Sample Matrix:	Water	Date Analyzed:	10/07/99

	Analytical	Spike	Spike	Spike	Duplicate	Duplicate	Relative
	Result	Added	Results	Recovery	Results	Recovery	Difference
Parameter	ug/L	ug/L	ug/L	%	ug/L	%	%RSD
1,2,4-Trichlorobenzene	ND	100	71	71	75	75	5
1,4-Dichlorobenzene	ND	100	66	66	68	68	3
2,4-Dinitrotoluene	ND	100	95	95	89	89	7
2-Chlorophenol	ND	200	158	79	159	80	1
4-Chioro-3-methylphenol	ND	200	173	87	179	90	3
4-Nitrophenol	ND	200	114	57	111	56	3
Acenaphthene	ND	100	97	97	95	95	2
N-Nitrosodi-n-propylamine	ND	100	125	125	122	122	2
Pentachlorophenol	ND	200	177	89	182	91	3
Phenol	ND	200	111	56	110	55	1
Pyrene	ND	100	113	113	112	112	1

ND - Compound not detected at stated Detection Limit.

QUALITY CONTROL:

	Spike	Duplicate	Water
Surrogate Recoveries	%	%	QC Limits
2-Fluorophenol	54	56	21 - 100
Phenol-d6	55	57	10 - 94
Nitrobenzene-d5	95	100	35 - 114
2-Fluorobiphenyl	77	78	43 - 116
2,4,6-Tribromophenol	74	77	10 - 123
Terphenyl-d14	97	96	33 - 141

Reference:

Method 625 - Base/Neutral and Acids, Methods for Organic Chemical Analysis of Municipal and Industrial Discharges, Federal Register, 40 CFR 136, Environmental Protection Agency, July 1, 1992

٩,

Analyst

Review

2506 West Main Street, Farmington, NM 87401

Phone (505) 326-4737 Fax (505) 325-4182

EPA METHOD 625 GC/MS SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

Client:ConocoSample ID:E. PondProject ID:Wingate PlantLaboratory ID:0399W04866Sample Matrix:Water

 Date Reported:
 10/12/99

 Date Sampled:
 09/27/99

 Date Received:
 09/28/99

 Date Extracted:
 09/30/99

 Date Analyzed:
 10/07/99

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	µg/L
1,2-Dichlorobenzene	ND	10	µg/L
1,3-Dichlorobenzene	ND	10	µg/L
1,4-Dichlorobenzene	ND	10	µg/L
2,4,5-Trichlorophenol	ND	50	µg/L
2,4,6-Trichlorophenot	ND	10	µg/L
2,4-Dichlorophenol	ND	10	µg/L
2,4-Dimethylphenol	ND	10	μg/L
2,4-Dinitrophenol	ND	50	μg/L
2,4-Dinitrotoluene	ND	10	µg/L
2,6-Dinitrotoluene	ND	10	μg/L
2-Chloronaphthalene	ND	10	µg/L
2-Chlorophenol	ND	10	μg/L
2-Nitrophenol	ND	20	µg/L
3,3'-Dichlorobenzidine	ND	50	µg/L
4,6-Dinitro-2-methylphenol	. ND	20	μg/L
4-Bromophenyl-phenylether	ND ND	10	µg/L
4-Chloro-3-methylphenol	ND	10	µg/L
4-Chiorophenyl-phenylether	ND	10	µg/L
4-Methylphenol	ND	10	µg/L
4-Nitrophenol	ND	50	µg/L
Acenaphthene	ND	10	µg/L
Acenaphthylene	ND	10	µg/L
Anthracene	ND	10	µg/L
Benzidine	ND	50	µg/L
Benzo[a]anthracene	ND	10	µg/L
Benzo[a]pyrene	ND	10	µg/L
Benzo[b]fluoranthene	ND	10	μg/L
Benzo[g,h,i]perylene	ND	20	µg/L
Benzo[k]fluoranthene	ND	10	µg/L
bis(2-Chloroethoxy)methane	ND	10	μg/L
bis(2-Chloroethyl)ether	ND	10	µg/L
bis(2-chloroisopropyl)ether	ND	10	µg/L
bis(2-Ethylhexyl)phthalate	ND	10	μg/L
Butylbenzylphthalate	ND	10	μg/L
Chrysene	ND	10	μg/L
Dibenz[a,h]anthracene	ND	20	μg/L
Diethylphthalate	ND	10	μg/L
Dimethylphthalate	ND	10	µg/L
Di-n-butylphthalate	ND	10	µg/L

Inter-Mountain Laboratories, Inc.

Phone (505) 326-4737 Fax (505) 325-4182

EPA METHOD 625 GC/MS SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

2506 West Main Street, Farmington, NM 87401

Client:	Conoco
Sample ID:	E. Pond
Project ID:	Wingate Plant
Laboratory ID:	0399W04866
Sample Matrix:	Water

Date Reported:10/12/99Date Sampled:09/27/99Date Received:09/28/99Date Extracted:09/30/99Date Analyzed:10/07/99

	Analytical	Detection	
Parameter	Result	Limit	Units
Di-n-octylphthalate	ND	10	µg/L
Fluoranthene	ND	10	μg/L
Fluorene	ND	10	μg/L
Hexachlorobenzene	ND	10	μg/L
Hexachlorobutadiene	ND	10	µg/L
Hexachlorocyclopentadiene	ND	10	µg/L
Hexachioroethane	ND	20	µg/L
Indeno[1,2,3-cd]pyrene	ND	20	µg/L
Isophorone	ND	10	µg/L
Naphthalene	ND	10	µg/L
Nitrobenzene	ND	10	µg/L
N-nitrosodimethylamine	ND	50	µg/L
n-Nitroso-di-n-propylamine	ND	20	µg/L
n-Nitrosodiphenylamine	ND	20	µg/L
Pentachlorophenol	ND	50	µg/L
Phenanthrene	ND	10	µg/L
Phenol	ND	10	µg/L
Pyrene	ND	10	µg/L
Pyridine	, ND	20	µg/L

ND - Compound not detected at stated Detection Limit.

QUALITY CONTROL:

		Water
Surrogate Recoveries	%	QC Limits
2-Fluorophenol	51	21 - 100
Phenol-d6	60	10 - 94
Nitrobenzene-d5	81	35 - 114
2-Fluorobiphenyl	59	43 - 116
2,4,6-Tribromophenol	78	10 - 123
Terphenyi-d14	71	33 - 141

Reference:

Method 625 - Base/Neutral and Acids, Methods for Organic Chemical Analysis of Municipal and Industrial Discharges, Federal Register, 40 CFR 136, Environmental Protection Agency, July 1, 1992

Analyst

Reviewed

Page 2 of 2

Inter-Mountain Laboratories, Inc.

2506 West Main Street, Farmington, NM 87401

Phone (505) 326-4737 Fax (505) 325-4182

EPA METHOD 625 GC/MS SEMI-VOLATILE COMPOUNDS **BASE/NEUTRAL/ACID EXTRACTABLES**

Client: Conoco Sample ID: Project ID: Laboratory ID: Sample Matrix:

W. Pond Wingate Plant 0399W04867 Water

Date Reported: 10/12/99 Date Sampled: 09/27/99 Date Received: 09/28/99 Date Extracted: 09/30/99 Date Analyzed: 10/07/99

Parameter	Analytical Result	Detection Limit	Units
1,2,4-Trichlorobenzene	ND	10	µg/L
1,2-Dichlorobenzene	ND	10	µg/L
1,3-Dichlorobenzene	ND	10	µg/L
1,4-Dichlorobenzene	ND	10	µg/L
2,4,5-Trichlorophenol	ND	50	µg/L
2,4,6-Trichlorophenol	ND	10	µg/L
2,4-Dichlorophenol	ND	10	µg/L
2,4-Dimethylphenol	ND	10	µg/L
2,4-Dinitrophenol	ND	50	µg/L
2,4-Dinitrotoluene	ND	10	µg/L
2,6-Dinitrotoluene	ND	10	µg/L
2-Chloronaphthaiene	ND	10	µg/L
2-Chlorophenol	ND	10	µg/L
2-Nitrophenol	ND	20	µg/L
3,3'-Dichlorobenzidine	ND	50	µg/L
4,6-Dinítro-2-methylphenol	ND	20	µg/L
4-Bromophenyl-phenylether	ND	10	µg/L
4-Chloro-3-methylphenol	ND	10	µg/L
4-Chlorophenyl-phenylether	ND	10	µg/L
4-Methylphenol	ND	10	μg/L
4-Nitrophenol	ND	50	μg/L
Acenaphthene	ND	10	μg/L
Acenaphthylene	ND	10	µg/L
Anthracene	ND	10	µg/L
Benzidine	NP	50	µg/L
Benzo[a]anthracene	ND	10	µg/L
Benzo[a]pyrene	ND	10	µg/L
Benzo[b]fluoranthene	ND	10	μg/L
Benzo[g,h,i]perylene	ND	20	μg/L
Benzo[k]fluoranthene	ND	10	μg/L
bis(2-Chloroethoxy)methane	ND	10	μg/L
bis(2-Chloroethyl)ether	ND	10	րց/լ
bis(2-chloroisopropyl)ether	ND	10	μg/l
bis(2-Ethylhexyl)phthalate	ND	10	րց/լ հց/լ
Butylbenzylphthalate	ND	10	μg/l
Chrysene	ND	10	μg/ι μg/l
Dibenz[a,h]anthracene	ND	20	μg/ι μg/l
			-
Diethylphthalate	ND	10	µg/l
Dimethylphthalate Di-n-butylphthalate	ND	10	hð\l

Phone (505) 326-4737 Fax (505) 325-4182

f

EPA METHOD 625 GC/MS SEMI-VOLATILE COMPOUNDS BASE/NEUTRAL/ACID EXTRACTABLES

2506 West Main Street, Farmington, NM 87401

Client:	Conoco	Date Reported:	10/12/99
Sample ID:	W. Pond	Date Sampled:	09/27/99
Project ID:	Wingate Plant	Date Received:	09/28/99
Laboratory ID:	0399W04867	Date Extracted:	09/30/99
Sample Matrix:	Water	Date Analyzed:	10/07/99

Parameter	Analytical Result	Detection Limit	Units
Di-n-octylphthalate	ND	10	µg/L
Fluoranthene	ND	10	µg/L
Fluorene	ND	10	µg/L
Hexachlorobenzene	ND	10	µg/L
Hexachlorobutadiene	ND	10	µg/L
Hexachlorocyclopentadiene	ND	10	µg/L
Hexachloroethane	ND	20	μg/L
Indeno[1,2,3-cd]pyrene	ND	20	µg/L
Isophorone	ND	10	µg/L
Naphthalene	ND	10	µg/L
Nitrobenzene	ND	10	µg/L
N-nitrosodimethylamine	ND	50	µg/L
n-Nitroso-di-n-propylamine	ND	20	µg/L
n-Nitrosodiphenylamine	ND	20	µg/L
Pentachlorophenol	ND	50	μg/L
Phenanthrene	ND	10	µg/L
Phenol	ND	10	µg/L
Pyrene	ND	10	µg/L
Pyridine	ND	20	µg/L

ND - Compound not detected at stated Detection Limit.

QUALITY CONTROL:

		Water	
Surrogate Recoveries	%	QC Limits	
2-Fluorophenol	67	21 - 100	
Phenol-d6	91	10 - 94	
Nitrobenzene-d5	97	35 - 114	
2-Fluorobiphenyl	67	43 - 116	
2,4,6-Tribromophenol	89	10 - 123	
Terphenyl-d14	63	33 - 141	

Reference:

Method 625 - Base/Neutral and Acids, Methods for Organic Chemical Analysis of Municipal and Industrial Discharges, Federal Register, 40 CFR 136, Environmental Protection Agency, July 1, 1992

Blug Ste

Reviewed

Page 2 of 2

CHAIN OF CUSTODY RECORD

•

Client/Project Name]
Conoco Inc. hi	JINGAT	TIT	EA	SI EVAF	. Pond				ANAL	YSES	/ PAR	AMETERS	S		
Sampler: (Signature)	I			stody Tape			7	/	10	/	/				
Diffact Han							/ s.	k.	Xm,	/		Rema	IFKS		
Sample No./ Identification	Date	Time	Lab Number		Matrix		No. of Containers	N N	56035						
625 SIAN YOANI	9/27/99	10:00	0399004866	W	ATER				/						
625 St.1 I VOH #2	N	11												γ	
FAW	11	11			i,							Lac	J_A	le !	
CYMNicle	4	11										~/	XZ	(CVAC	
Litrate	//	11													
TOTAL MIT	11	11										\mathbf{i}			
624 VOA #1	A	4													
624 VOH #2	6	4	•										*)		
												1	ΔA		
											•		<u>YN</u>		
Z	IN					•									
	を														
Relinguished by: (Signature)	11	2. 66	1	Date	Time	Received	by: (Sigi	nature)					Date	Time	
	John &	- Cale	ot	9-28-97.	3:28pm										
Relinquished by: (Signature)				Date	Time	Received	by: (Sigi	nature)					Date	Time	
							\checkmark			Δ					
Relinquished by: (Signature)	\geq			Date	Time	Received	by labor	atory: (S	ignature		0		Date	Time	
						$1 \rightarrow$	la	~	Å	ma	X	۱ ۲	12/99	15:2	4
			Inter-Mounta	ain Lab	oratorie	es, Ine	•								
	Ο		σ		```	A							AIT	N X Y	
555 Absaraka Sheridan Wyoming 829						2506 West					e Hwy. 3		616		
				tte, Wyoming 82718 Farmington, NM 87401 College Statio phone (307) 682-8945 Telephone (505) 326-4737 Telephone (40											

CHAIN OF CUSTODY RECORD

Client/Project Name					ct Location		~						
Conoro Inc. 1	VINGATE	= PAT.	•	WE	ST B	EVAP.	POND		/	ANALYSI	ES / PARAMETEI	HS	
Sampler: (Signature)			Chair	n of Cus	tody Tape I	No.	-	/	/	6		marks	
D. Hat Hund	a				· · ·	-			Lan	/ 0/			
Sample No./ Identification	Date	Time	Lab Nur	nber		Matrix		No. of Containers	A5 6	2505			
615 SENIS VOA"	9/27/99	10:00	48	367	U	JATE	$\mathbb{R}^{}$						
625 SEMIT YOM # 2	11	11											
RAW	11	"											
CYANIDE	11	11									Har	d. D	, /
Su Hich Pre Holes	£ 11	11									0	IXI.	fact
TOTAL M4	1,	11					·····						
624 VO4 # 1	+	11											
62" VOA # 2	11	11		*									
		×				1						hh	
		1		_		· · · · · · · · · · · · · · · · · · ·						XXI.	
							•'						
	X						<u></u>						
· · · · · · · · · · · · · · · · · · ·													
								_					$\overline{}$
Relinquished by: (Signature)	11	P. Cala	4		Date 9728-99	Time 3:280	Received	l by: (Sig	nature)	_		Date	Time
Relinquished by: (Signature)	rorm v	- Curc	<u> </u>		Date	Time	Received	t by Sia	nature)			Date	Time
						•		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_			
Relinguished by: (Signature)	\rightarrow				Date	Time	Received	t by labo	ratory: (S	ignature)	<u> </u>	Date	Time
		\searrow	<u></u>				C	Year	- /	umen	To	11	15:2
··	N.,		Inter-Mo	ounta	in Lab	oratori	es, Inc	7					
555 Absaraka Sheridan, Wyoming 820 Telephone (307) 674-79	801 Shei	Terra Aven ridan, Wyom phone (307)	ue ing 82801	D 1701 F Gillette	Phillips Circle , Wyoming one (307) 6	e 82718	2506 Wes Farmingto Telephone	st Main S on, NM 8	7401	College	State Hwy. 30 Station, TX 77845 one (409) 776-8945	610	508

January 4, 2000

Ms. Joyce Woodfin Conoco, Inc. P.O. Box 2197 Houston, TX 77252-2197

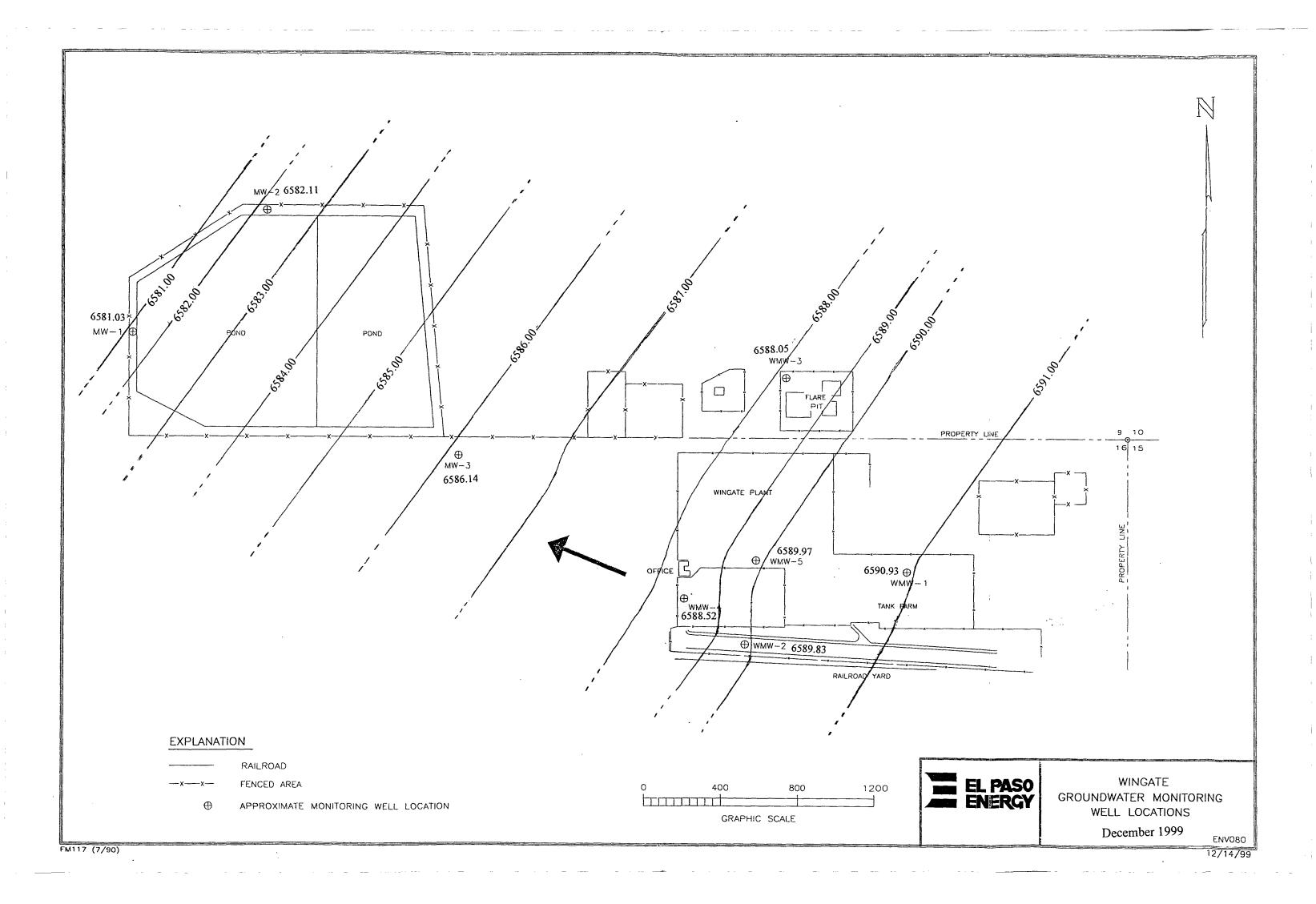
RE: Wingate Plant Gallup, New Mexico Annual Groundwater Sampling

Dear Ms. Woodfin:

Enclosed please find the above referenced analytical results for submittal to the New Mexico Oil Conservation Division (NMOCD). Groundwater samples were collected from one on-site monitoring well (WMW-4) and from three monitoring wells located off-site (MW-1through 3) on September 22, 1999. A duplicate sample was collected from MW-2.

Water level measurements were taken on December 28, 1999. Groundwater elevations for all monitoring wells were calculated using the Top of Riser measurements, consistent with the data previously submitted to NMOCD. A new potentiometric surface map is enclosed for submittal to NMOCD, which includes the recently surveyed monitoring well WMW#5.

Please contact me at (713) 420-3827 if you have questions or comments.


Sincerely,

barbar

Gerry Garibay Principal Environmental Scientist Environmental Remediation Department

Enclosure

El Paso Energy Corporation P. O. Box 2511 Houston, Texas 77252-2511 Phone (713) 420-2131

WINGATE PLANT GROUNDWATER ELEVATIONS December-99

	TOP OPRISER		लारका सार्थका स्वारंग जन्म
WELLENUMBER		Derinowater	<u>elevraton</u>
MW-1	6,584.66	3.63	6,581.03
MW-2	6,585.37	3.26	6,582.11
MW-3	6,589.84	3.70	6,586.14
WMW-1	6,596.04	5.11	6,590.93
WMW-2	6,593.69	3.86	6,589.83
WMW-3	6,593.91	5.86	6,588.05
WMW-4	6,594.50	5.98	6,588.52
WMW-5	6,596.98	7.01	6,589.97

TABLES

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chloride
			μg/L	μg/L	μg/L	μg/L		μg/L		
		Standard	10 μg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 μg/L	700 μg/L	10000 μg/L				
09/14/94	MW-01	EPNG	<0.5	<0.5	<0.5	<1.0				
09/14/94	MW-01D	EPNG	<0.5	<0.5	1.4	1.1				
03/01/95	MW-01	MOI	<0.3	< 0.3	<0.3	<0.6		< 0.3	535	20.4
08/22/95	MW-01	EPNG	ND	87	9	49				
03/27/96	MW-01	MOI	ND	ND	ND	ND		ND	690	22.5
03/27/96	MW-01D	MOI	ND	ND	ND	ND		ND	650	25
08/27/96	MW-01	EPNG	ND	ND	ND	ND				
03/26/97	MW-01	CON	1.2	ND	ND	ND		0.6	660	24
08/27/97	MW-01	EPNG	ND	ND	ND	ND				
03/31/98	MW-01	CON	1.8	10	ND	11		ND	610	20
08/25/98	MW-01	EPNG	ND	ND	ND	ND				
08/25/98	MW-01D	EPNG	ND	ND	ND	ND			1	
09/22/99	MW-01	EPNG	ND	ND	ND	ND			550	28

1

AMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chlorid
			μg/L	μg/L	μg/L	μg/L		μg/L		
		Standard	10 µg/L	750 μg/L		620 μg/L			1000	250
		MCLs	5 μg/L	1000 μg/L	700 μg/L	10000 μg/L				
11/15/91	MW-02	MOI	ND	ND	ND	0.1	-	2.6		
01/22/92	MW-02	MOI	ND	ND	ND	ND	-	-		-
02/25/93	MW-02	MOI	ND	ND	ND	ND	-	-		
01/22/92	MW-02	EPNG	<0.5	<0.5	<0.5	<0.5	-	-		
04/28/92	MW-02	EPNG	0.002	<1.0	<1.0	<1.0	<100	-		
01/93	MW-02	EPNG	-	-	-	-	-	-		
04/06/93	MW-02	EPNG	2.0	2.0	ND	1.0	-	-		
09/14/94	MW-02	EPNG	<0.5	<0.5	<0.5	<1.0	l l			
03/01/95	MW-02	MOI	<0.3	<0.3	<0.3	<0.6		<0.3	1030	57
08/22/95	MW-02	EPNG	ND	ND	ND	ND				
03/27/96	MW-02	MOI	ND	ND	ND	ND		ND	1120	53.7
08/27/96	MW-02	EPNG	ND	ND	ND	ND				
03/26/97	MW-02	CON	2.0	ND	ND	ND		0.5	1100	56
08/27/97	MW-02	EPNG	ND	ND	ND	ND				
03/31/98	MW-02	CON	ND	ND	ND	ND		ND	1140	60.8
08/25/98	MW-02	EPNG	ND	ND	ND	ND				1
09/22/99	MW-02	EPNG	ND	ND	ND	ND			980	70
09/22/99	MW-02D	EPNG	ND	ND	ND	ND			1000	66

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chlorid
			μg/L	μg/L	μg/L	μg/L		μg/L		
		Standard	10 µg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 μg/L	700 μg/L	10000 μg/L	_			
01/15/91	MW-03	MOI	0.2	0.2	0.4	1.7	ND	-	T	1
01/21/92	MW-03	MOI	ND	3.9	0.6	4.4	-	-		
02/25/93	MW-03	MOI	ND	ND	ND	ND	-	-		
01/92	MW-03	EPNG		-		-	-	-		
04/28/92	MW-03	EPNG	<1.0	<1.0	<1.0	<1.0	<100	-	1	
01/12/93	MW-03	EPNG	<1.0	2.0	<1.0	<1.0	-	-	1	
04/06/93	MW-03	EPNG	ND	ND	ND	ND	-	-	1	
01/06/94	MW-03	EPNG	46	1.4	3.5	4.7				
01/06/94	MW-03	EPNG	1.5	1.4	1.2	3.4				
09/14/94	MW-03	EPNG	2	<0.5	<0.5	<1.0		·····	1	
09/14/94	MW-03D	EPNG	1.4	<0.5	<0.5	<1.0				
03/01/95	MW-03	MOI	<0.3	< 0.3	< 0.3	<0.6		<0.3	481	18.7
08/22/95	MW-03	EPNG	ND	ND	ND	ND				
03/28/96	MW-03	MOI	ND	ND	ND	ND		ND	540	23.7
08/28/96	MW-03	EPNG	ND	ND	ND	ND				
03/26/97	MW-03	CON	9.2	ND	ND	ND		1.1	600	21
08/27/97	MW-03	EPNG	ND	ND	ND	ND				
03/31/98	MW-03	CON	ND	ND	ND	ND		ND	530	19.2
08/26/98	MW-03	EPNG	ND	ND	ND	ND				
09/22/99	MW-03	EPNG	ND	ND	ND	ND			750	59

SAMPLE DATE	WELL ID	Sampled by	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline	TPH	TDS	Chloride
			μg/L	μg/L	μg/L	μg/L		μg/L		
		Standard	10 μg/L	750 μg/L	750 μg/L	620 μg/L			1000	250
		MCLs	5 μg/L	1000 μg/L	700 μg/L	10000 μg/L			<u> </u>	
07/10/91	WMW-04	MOI	ND	ND	ND	ND	- 1	14.7	<u> </u>	
10/28/91	WMW-04	MOI	1.3	ND	ND	ND	- [ND	t	[
01/21/92	WMW-04	MOI	1.9	4.0	1.1	5.1	-	-	-	
02/25/93	WMW-04	MOI	7.6	3.0	ND	ND		-	<u> </u>	
02/06/92	WMW-04	EPNG	0.7	<0.5	<0.5	<0.5		-	t	
04/29/92	WMW-04	EPNG	3.0	<1.0	<1.0	<1.0	<100	-	†	
01/12/93	WMW-04	EPNG	68.0	8.0	<1.0	4.0	-	-	<u> </u>	
04/07/93	WMW-04	EPNG	ND	1.0	ND	ND	-	-	<u> </u>	
01/05/94	WMW-04	EPNG	13	1.5	3.3	5.6				
09/13/94	WMW-04	EPNG	< 0.5	<0.5	2	2			İ	
03/01/95	WMW-04	MOI	0.9	0.8	<0.3	<0.6		< 0.3	1470	123
08/23/95	WMW-04	EPNG	ND	ND	ND	ND			1	
03/28/96	WMW-04	MOI	ND	ND	ND	ND		ND	1500	110
08/27/96	WMW-04	EPNG	ND	ND	ND	ND				
08/27/96	WMW-04D	EPNG	ND	ND	ND	ND			<u>† – – – – – – – – – – – – – – – – – – –</u>	
03/25/97	WMW-04	CON	ND	ND	ND	ND		0.4	1500	120
08/26/97	WMW-04	EPNG	ND	ND	ND	ND	[t	
03/30/98	WMW-04	CON	3.6	ND	ND	ND	t	ND	1440	110
08/25/98	WMW-04	EPNG	ND	ND	ND	ND	F		†	
09/22/99	WMW-04	EPNG	ND	ND	ND	ND			1200	110
									t	

CHAIN OF CUSTODY

EL PASO NATURAL CAS Due 10/1	(/iz@ Chain	14-5 OF C	ہے۔/ usto	∠cl ≌ DY RE	L OL	`		709079 Pageor	
	ER	Ю	REQUESTED ANALYS				SIS	00	NTRACT LABORATORY	
LAB ID DATE TIME MATRIX SAMPLE NUMBER		COMPOSITE OR GRAB	BTEX	1 PH BOIS	HOD. FULL	SOT	ਗ਼		REMARKS	
C/ plastagesa His M99.0105	5		X			\times	×	-	TPH - 8015 Mod. Full RAUGE	
012 ALDARA 0840 HID MA9-0106	5		X	ý					RUM 8260 pro WENDER D.	
03 Fileski (FISO 1120 M99-0107	5		X	X		×	×		/	
69 9/22/130 HzO M99-0108	5		x	X		\mathbf{k}	x			
05 Ababa 1445 HZO M99-0109	5		x	×		$\boldsymbol{\chi}$	x			
06 AL22491445 11,0 M99-0110	5		×	x		\sim	×			
67 abatig 1645 HO MAQ-0111	5		×	×		×	¥			
E8 ABORS 175 14.0 MPA-0112	5	1	×	x		×	\mathbf{x}		6	
C 9 ABOK 1730 HIO M99-0113	5		×	×		×	×		69	
10 9/22/19/205 14.0 199-0114	5		~	×		X	x		aunteel * * CO	
		1					C	SINIS		
Un Dista plastes 1500	D BY: (<i>Signature</i>)	<u></u>	1						DATE/TIME RECEIVED BY: (Signature)	
	D BY: (Signature)	\mathcal{U}_{l}	14	FELINO		(: (Signatu			24 100 NFL-LY	
REQUESTED TURNAROUND TIME: SAMPLE	RECEIPT REMARK	S					RESUL	TS & INVOIC		
CARRIER CO. CHARGE BILL NO.:	CODE						LABORATORY SERVICES EL PASO NATURAL GAS COMPANY 8645 RAILROAD DRIVE EL PASO, TEXAS 79904 915-759-2229 FAX: 915-759-2335			

.

White - Testing Laboratory Canary - EPNG Lab Pink - Field Sampler

ANALYTICAL DATA

SAMPLE KEY

SAMPLE NUMBER: M99-0105 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: PUMP BLANK EMP #1 BEFORE SAMPLING S D CONTINUED: S D CONTINUED: SAMPLE TIME: 08:20 SAMPLE DATE: 09/22/99

SAMPLE KEY

SAMPLE NUMBER: M99-0106 LOCATION: Wingate Plant (MATRIX: Water SAMPLE DESCRIPTION: BAILER BLANK BEFORE SAMPLING S D CONTINUED: S D CONTINUED: SAMPLE TIME: 08:40 SAMPLE DATE: 09/22/99

SAMPLE KEY

SAMPLE NUMBER: M99-0107 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: WMW #4 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 09:50 SAMPLE DATE: 09/22/99

SAMPLE KEY

SAMPLE NUMBER: M99-0108 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: MW #3 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 11:30 SAMPLE DATE: 09/22/99

SAMPLE KEY

SAMPLE NUMBER: M99-0109 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: MW #2 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 14:45 SAMPLE DATE: 09/22/99

SAMPLE KEY

SAMPLE NUMBER: M99-0110 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: MW #2 DUPLICATE S D CONTINUED: S D CONTINUED: SAMPLE TIME: 14:45 SAMPLE DATE: 09/22/99

SAMPLE KEY

SAMPLE NUMBER: M99-0111 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: MW #1 S D CONTINUED: S D CONTINUED: SAMPLE TIME: 16:45 SAMPLE DATE: 09/22/99

ъ

t

SAMPLE KEY

SAMPLE NUMBER: M99-0112 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: PUMP BLANK EMP #1 AFTER SAMPLING S D CONTINUED: S D CONTINUED: SAMPLE TIME: 17:15 SAMPLE DATE: 09/22/99

SAMPLE KEY

SAMPLE NUMBER: M99-0113 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: BAILER BLANK AFTER SAMPLING S D CONTINUED: S D CONTINUED: SAMPLE TIME: 17:20 SAMPLE DATE: 09/22/99

SAMPLE KEY

SAMPLE NUMBER: M99-0114 LOCATION: Wingate Plant MATRIX: Water SAMPLE DESCRIPTION: FIELD BLANK S D CONTINUED: S D CONTINUED: SAMPLE TIME: 17:25 SAMPLE DATE: 09/22/99

Reno • Las Vegas Phoenix • So. California

Las Vegas Division 4208 Arcata Way, Suite A • Las Vegas, NV 89030 (702) 657-1010 · Fax: (702) 657-1577 1-888-368-3282

CLIENT: El Paso Natural Gas Company 8645 Railroad Drive El Paso, TX 79904 ATTN: Darrell Campbell

NEL ORDER ID: P9909079

PROJECT NAME: NA PROJECT NUMBER: NA

Attached are the analytical results for samples in support of the above referenced project.

Samples submitted for this project were not sampled by NEL Laboratories. Samples were received by NEL in good condition, under chain of custody on 9/24/99.

Should you have any questions or comments, please feel free to contact our Client Services department at (602) 437-0099.

Some results have been flagged as follows: Jm - Result should be considered an estimated value due to probable matrix effects. Some surrogate results have been flagged as follows: Sf -- This surrogate was outside acceptance limits.

Stan Van Wagenen

Laboratory Manager

CERTIFICATIONS

1	1
1011	199
Date	7

California

CLKIIFICATION	10.						
	Reno	Las Vegas	S. California		Reno	Las Vegas	S. Californ
Arizona	AZ0520	AZ0518	AZ0605	Idaho	Certified	Certified	
California	1707	2002	2264	Montana	Certified	Certified	
US Army Corps	Certified	Certified		Nevada	NV033	NV052	CA084
of Engineers				L.A.C.S.D.			10228

NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0105
PROJECT ID:	NA	DATE SAMPLEI	D: 9/22/99
PROJECT #:	NA	NEL SAMPLE ID): P9909079-01
TEST:	Volatile Organic Compounds by EP	A SW846 Method 8260B, D	ec. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	1	ANALYZED:	9/30/99
		· ·	Reporting
PARAMETER	_	Result	Limit
Benzene		22 μg/L	2. μg/L
Toluene		ND '	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. µg/L
QUALITY CON	ITROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluoro	benzene	106	86 - 115
Toluene-d8		99	88 - 110

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0106
PROJECT ID:	NA	DATE SAMPLED	: 9/22/99
PROJECT #:	NA	NEL SAMPLE ID:	P9909079-02
TEST:	Volatile Organic Compounds by EPA SW84	6 Method 8260B, De	c. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	1	ANALYZED:	9/30/99
			Reporting
PARAMETER		Result	Limit
Benzene	_	ND	2. µg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	ITROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluoro	benzene	106	86 - 115
Toluene-d8		105	88 - 110

ND - Not Detected

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0107
PROJECT ID:	NA	DATE SAMPLED	: 9/22/99
PROJECT #:	NA	NEL SAMPLE ID	: P9909079-03
TEST:	Volatile Organic Compounds by EPA S	SW846 Method 8260B, De	c. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	1	ANALYZED:	9/30/99
		_	Reporting
PARAMETER	-	Result	Limit
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	ITROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorol	benzene	104	86 - 115
Toluene-d8		104	88 - 110

ND - Not Detected

1 1 1			
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0108
PROJECT ID:	NA	DATE SAMPLED	: 9/22/99
PROJECT #:	NA	NEL SAMPLE ID:	P9909079-04
TEST:	Volatile Organic Compounds by EPA S	SW846 Method 8260B, De	c. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	1	ANALYZED:	9/30/99
			Reporting
PARAMETER		Result	Limit
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorol	benzene	105	86 - 115
Toluene-d8		107	88 - 110

ND - Not Detected

CLIENT: El Paso Natural Gas Company CLIENT ID: M99-0109	
PROJECT ID: NA DATE SAMPLED: 9/22/99	
PROJECT #: NA NEL SAMPLE ID: P9909079-05	
TEST: Volatile Organic Compounds by EPA SW846 Method 8260B, Dec. 1996	
METHOD: EPA 8260B ANALYST: SKV - Las Vegas Division	
MATRIX: Aqueous EXTRACTED: 9/30/99	
DILUTION: 1 ANALYZED: 9/30/99	
Reporting	·
PARAMETER Result Limit	
Benzene ND 2. µg/L	
Toluene ND 2. µg/L	
Ethylbenzene ND 2. µg/L	
Total Xylenes ND 2. µg/L	
QUALITY CONTROL DATA:	
Surrogate % Recovery Acceptable Range	
4-Bromofluorobenzene 103 86 - 115	
Toluene-d8 105 88 - 110	

	EL LABORATORIES		······································
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0110
PROJECT ID:	NA	DATE SAMPLED): 9/22/99
PROJECT #:	NA	NEL SAMPLE ID	: P9909079-06
TEST:	Volatile Organic Compounds by EP	A SW846 Method 8260B, De	ec. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	1	ANALYZED:	9/30/99
			Reporting
PARAMETER		Result	Limit
Benzene	_	ND	2. µg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. µg/L
QUALITY CON	TROL DATA:		
Surrogate		<u>% Recovery</u>	Acceptable Range
4-Bromofluorot	benzene	105	86 - 115

.

NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0111
PROJECT ID:	NA	DATE SAMPLED:	: 9/22/99
PROJECT #:	NA	NEL SAMPLE ID:	P9909079-07
TEST:	Volatile Organic Compounds by E	PA SW846 Method 8260B, De	c. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	1	ANALYZED:	9/30/99
			Reporting
PARAMETER		Result	Limit
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorol	penzene	105	86 - 115
Toluene-d8		106	88 - 110

NE	L LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0112
PROJECT ID:	NA	DATE SAMPLED:	9/22/99
PROJECT #:	NA	NEL SAMPLE ID:	P9909079-08
TEST:	Volatile Organic Compounds by EPA	SW846 Method 8260B, De	c. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	1	ANALYZED:	9/30/99
			Reporting
PARAMETER		Result	Limit
Benzene		ND Jm	2. μg/L
Toluene		ND Jm	2. μg/L
Ethylbenzene		ND Jm	2. μg/L
Total Xylenes		ND Jm	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorol	Denzene	105	86 - 115
Toluene-d8		79 Sf	88 - 110

NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0113
PROJECT ID:	NA	DATE SAMPLED	D: 9/22/99
PROJECT #:	NA	NEL SAMPLE ID	: P9909079-09
TEST:	Volatile Organic Compounds by EP.	A SW846 Method 8260B, De	ec. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	1	ANALYZED:	9/30/99
DADAMETED		D	Reporting
PARAMETER		Result	Limit
Benzene		ND	2. μg/L
Toluene		ND	2. μg/L
Ethylbenzene		ND	2. μg/L
Total Xylenes		ND	2. μg/L
QUALITY CON	TROL DATA:		
Surrogate		% Recovery	Acceptable Range
4-Bromofluorol	benzene	105	86 - 115
Toluene-d8		107	88 - 110

.

ł

NE	EL LABORATORIES		
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	M99-0114
PROJECT ID:	NA	DATE SAMPLEE	D: 9/22/99
PROJECT #:	NA	NEL SAMPLE ID	P9909079-10
TEST:	Volatile Organic Compounds by EP	A SW846 Method 8260B, De	ec. 1996
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division
MATRIX:	Aqueous	EXTRACTED:	9/30/99
DILUTION:	l	ANALYZED:	9/30/99
			Reporting
		Desult	
PARAMETER		Result	Limit
Benzene	<u> </u>	ND	<u></u> 2. µg/L
	_		
Benzene		ND	<u>2. μg/L</u>
Benzene Toluene	<u>_</u>	ND ND	2. µg/L 2. µg/L
Benzene Toluene Ethylbenzene	-	ND ND ND	2. µg/L 2. µg/L 2. µg/L
Benzene Toluene Ethylbenzene Total Xylenes	-	ND ND ND	2. µg/L 2. µg/L 2. µg/L
Benzene Toluene Ethylbenzene Total Xylenes QUALITY CON	ITROL DATA:	ND ND ND ND	2. μg/L 2. μg/L 2. μg/L 2. μg/L 2. μg/L

NEL LABORATORIES						
CLIENT:	El Paso Natural Gas Company	CLIENT ID:	Method Blank			
PROJECT ID:	NA	DATE SAMPLED:	NA			
PROJECT #:	NA	NEL SAMPLE ID:	990930BX60-BLK			
TEST:	Volatile Organic Compounds by EPA	SW846 Method 8260B, Dec.	. 1996			
METHOD:	EPA 8260B	ANALYST:	SKV - Las Vegas Division			
MATRIX:	Aqueous	EXTRACTED:	9/30/99			
		ANALYZED:	9/30/99			
			Reporting			
PARAMETER	-	Result	Limit			
MTBE		ND	5. μg/L			
Benzene		ND	2. μg/L			
Toluene		ND	2. μg/L			
Ethylbenzene		ND	2. μg/L			
Total Xylenes		ND	2. μg/L			
QUALITY CON	TROL DATA:	·				
Surrogate		% Recovery	Acceptable Range			
4-Bromofluorob	enzene	103	86 - 115			
Toluene-d8		105	88 - 110			

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural NA NA	Gas Company							
TEST: METHOD: ORDER ID:	Total Extractable EPA 8015M P9909079	e Petroleum Hyc	irocarbons b	99 EPA I	Method 8015M	, Decembe	x 199	96	
MATRIX:	Aqueous				A1	NALYST:	JR	W - Las Vega	s Division
CLIENT <u>SAMPLE ID</u>	SAMPLE DATE	NEL SAMPLE ID	RESULT mg/L	C.R.	Reporting Limit	Surrogat Recovery		<u>XTRACTED</u>	ANALYZED
M99-0105	9/22/99	P9909079-01	0.53	G	0.5 mg/L	. 99	%	9/28/ 99	9/29/99
M99-0106	9/22/ 99	P9909079-02	ND	ND	0.5 mg/I	. 95	%	9/28/99	9/29/99
M99-0107	9/22/99	P9909079-03	ND	ND	0.5 mg/I	. 95	%	9/28/99	9/29/99
M99-0108	9/22/99	P9909079-0 4	ND	ND	0.5 mg/I	. 99	%	9/28/99	9/29/99
M99-0109	9/22/99	P9909079-05	ND	ND	0.5 mg/I	100	%	9/28/99	9/29/99
M 99-0110	9/22/99	P9909079-06	ND	ND	0.5 mg/I	- 98	%	9/28/99	9/29/99
M99-0111	9/22/99	P9909079-07	ND	ND	0.5 mg/I	105	%	9/28/99	9/29/99
M99-0112	9/22/99	P9909079-08	ND	ND	0.5 mg/I	. 97	%	9/28/99	9/29/99
M99-0113	9/22/99	P9909079-09	ND	ND	0.5 mg/I	80	%	9 /28/99	9/29 /99
M99-0114	9/22/99	P9 90 9079-1 0	ND	ND	0.5 mg/I	_ 102	%	9/28/ 99	9/29/99

C.R.: Carbon Range G Gas Range Organics (C4 to C14). QUALITY CONTROL DATA (Total for Diesel Range):									
Sample ID	Result	Acceptable Rang	e Surrogate Recovery*	Sample Number					
Blank, 990928TP -BLK	ND	< 0.5 mg/	L 95 %	NA					
LCS, 990928TPHW-LCS	80 %	57 - 109 %	105 %	NA					
LCSD, 990928TPHW-LCSD	80 %	57 - 109 %	93 %	NA					
* Surrogate used was Octacosane, acceptance limits 60-121%.									

ND - Not Detected

CLIENT:	El Paso Natural Gas Company
PROJECT ID:	NA
PROJECT #:	NA
TEST:	Volatile Organic Compounds by EPA SW846 Method 8260B, Dec. 1996
MATRIX:	Aqueous

		Spike	Spike	Percent	Acceptable	
PARAMETER	NEL Sample ID	Amount	Result	Recovery	Range	<u>RPD</u>
Benzene	990930BX60-LCS	50	54	108	80 - 120	
Benzene	P9909079-10-MS	50	54	108	76 - 127	
Benzene	P9909079-10-MSD	• 50	55	110	76 - 127	1.8
Tolucne	990930BX60-LCS	50	54	108	80 - 120	
Toluene	P9909079-10-MS	50	54	108	76 - 125	
Toluene	P9909079-10-MSD	50	58	116	76 - 125	7.1
Ethylbenzene	990930BX60-LCS	50	52	104	80 - 120	
Ethylbenzene	P9909079-10-MS	50	51	102	70 - 130	
Ethylbenzene	P9909079-10-MSD	50	52	104	70 - 130	1.9
Total Xylenes	990930BX60-LCS	150	160	107	80 - 120	
Total Xylenes	P9909079-10-MS	150	158	105	70 - 130	
Total Xylenes	P9909079-10-MSD	150	163	109	70 - 130	3.1

ND - Not Detected

NE	EL LABORATORIES		
CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company NA NA	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

1

]	REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	22	5.	5	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	840	15.	1	SM 2540 C	mg/L	9/27/99

D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT:	El Paso Natural Gas Company	CLIENT ID:	
PROJECT ID:	NA	DATE SAMPLED:	
PROJECT #:	NA	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

]	REPORTING				
PARAMETER	<u>RESULT</u>	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	110	50.	50	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	1200	15.	1	SM 2540 C	mg/L	9/27/99

D.F. - Dilution Factor ND - Not Detected This report shall not be reproduced except in full, without the written approval of the laboratory.

э

•

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company NA NA	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST:	Inorganic Non-Metals		
MATRIX:	Aqueous		

]	REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	59	10.	10	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	750	15.	1	SM 2540 C	mg/L	9/27/99

CLIENT: PROJECT ID: PROJECT #:		CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

]	REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	70	10.	10	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	980	15.	1	SM 2540 C	mg/L	9/27/99

D.F. - Dilution Factor

ND - Not Detected

This report shall not be reproduced except in full, without the written approval of the laboratory.

1

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company NA NA	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
	REPORTING		

PARAMETER	RESULT _	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	66	10.	10	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	1000	15.	1	SM 2540 C	mg/L	9/27/99

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company NA NA	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
<u></u>			

	I	REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	28	5.	5	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	550	15.	1	SM 2540 C	mg/L	9 /27/99

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company NA NA	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

	F	REPORTING				
PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	23	5.	5	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	980	15.	1	SM 2540 C	mg/L	9/27/99

Į

CLIENT: PROJECT ID:	El Paso Natural Gas Company NA	CLIENT ID: DATE SAMPLED:	M99-0113 9/22/99
PROJECT #:	NA	NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		

	I	REPORTING	÷			
PARAMETER	<u>RESULT</u>	LIMIT	<u>D. F.</u>	METHOD	<u>UNITS</u>	ANALYZED
Chloride	18	2.	2	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	86	15.	1	SM 2540 C	mg/L	9/27/99

D.F. - Dilution Factor
ND - Not Detected
This report shall not be reproduced except in full, without the written approval of the laboratory.

CLIENT: PROJECT ID: PROJECT #:	El Paso Natural Gas Company NA NA	CLIENT ID: DATE SAMPLED: NEL SAMPLE ID:	
TEST: MATRIX:	Inorganic Non-Metals Aqueous		
	REPORTING		

PARAMETER	RESULT	LIMIT	<u>D. F.</u>	METHOD	UNITS	ANALYZED
Chloride	45	20.	20	EPA 300.0	mg/L	9/25/99
Total Dissolved Solids	270	15.	1	SM 2540 C	mg/L	9/27/99

D.F. - Dilution Factor
ND - Not Detected
This report shall not be reproduced except in full, without the written approval of the laboratory.

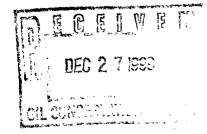
NE	EL LABORATORIE	S				
CLIENT:	El Paso Natural Gas Con	ipany	CLIENT	ID: Metho	d Blank	
PROJECT ID:	NA		DATE SA	AMPLED: NA		
PROJECT #:	NA		NEL SAN	MPLE ID: 092599	-CL-BLK	
TEST:	Non-Metals					
PARAMETER Chloride	ND	REPORTING LIMIT	<u>D. F.</u> 1	<u>METHOD</u> EPA 300.0	<u>UNITS</u> mg/L	<u>ANALYZED</u> 9/25/99
D.F Dilution	Factor					

ND - Not Detected

l

This report shall not be reproduced except in full, without the written approval of the laboratory.

24


NE	EL LAE	ORATORIES					
CLIENT:	El Paso	Natural Gas Compa	any	CLIENT	ID: Method	Blank	
PROJECT ID:	NA			DATE SA	AMPLED: NA		
PROJECT #:	NA			NEL SAI	MPLE ID: 092799	-TDS-BLK	
TEST:	Non-Me	etals					
PARAMETER	-	RESULT	REPORTING LIMIT	<u>D.F.</u>	METHOD		ANALYZED
Total Dissolved S	solids	ND	15	1	SM 2540 C	mg/L	9/27/99
D.F Dilution	Factor						
ND - Not Detec	cted						

This report shall not be reproduced except in full, without the written approval of the laboratory.

25

Conoco, Inc. Wingate Plant P.O. Box 119 Rehoboth, NM 87322 (505)863-3900 Fax: (505)863-1040

December 24, 1999

W. Jack Ford, C.P.G. Environmental Bureau Oil Conservation Division 2040 South Pachece Street Santa Fe, New Mexico 87505

RE: Discharge Plan GW-054 Compliance Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford

Conoco, Inc. Wingate Plant, apologizes for the delay in submitting test records to show that our underground drain lines meet the required mechanical integrity conditions.

We made numerous attempts to eliminate all unnecessary tie-ins into the drain system in an attempt to test only permitted pipes, however with no drawings showing all existing and abandoned lines these efforts proved futile. The old system inside the process area was totally abandoned. The only existing piping currently utilized was from the boiler house sump to the discharge ponds.

A new 6" steel main line was installed from the sump located on the southwest corner of the boiler house across the plant yard on the south side of the Butamer area turning north to the VRU flash tank. All lateral tie-ins from 6" main were made with 3" steel pipe with block valves at each source.

The system was pressure tested utilizing the block valves at each source. Air was compressed into the system bringing the system pressure to 42 psig. This pressure was held on the system for two hours. System pressure dropped 1 psig. This is easily explained by a 3 degree drop in ambient temperature. The existing piping from the boiler house sump to the discharge ponds was pressure tested for two hours at 20 psig with no drop in pressure.

If you have any questions contact Mike Neeley or Chuck White at (505) 863-3900.

Wingate Plant Manager: Chuck White

cc: Joyce Woodfin File

			ONOCO, INC. GATE GAS PLAN	т	
		PNEUMATI	IC PRESSURE TE	STING	
	-		RED CLOSE		
System or		g resieu. <u> </u>			<u> </u>
			Vessel or Equ	ipment Serial	No:
Maximum V	/orking Pressu	re:0	105.	<u></u>	
Test Pressu	1re: <u>42</u>	lbs,	(Max	imum Working	Pressure X 1.5)
1:3 1:4 2:0 2:1 2:0 2:0	ime 5 PM 0 5 90 5 30 45 00 15		$\frac{PSIG}{42.0} \\ 42.0 \\ 42.0 \\ 42.0 \\ 42.0 \\ 41.5 \\ 41.5 \\ 41.5 \\ 41.0 \\ 41.0 \\ 41.0 \\ 41.0 \\ 41.0 \\ $	-	<u>Temp. °F</u> 40° 41° 40° 39° 39° 39° 38° 38° 38° 38°
Comments: <u>DITCH</u> <u>H2[@]</u>	Partly a	cloudy	- 10 - 30 NUDDY 70	SATURA	JUNDS TEL WITH
circulate:	Process Fore Maintenance		Mile M	uly	·
Plant Manag	er	1'huch	11/ hit	<u> </u>	

*File - SSF-333 Safety File

	CONOCO, INC. NGATE GAS PLANT	т
HYDROST	ATIC PRESSURE TE	ESTING
Date: <u>12</u> / <u>23</u> / <u>99</u> Inspector: System or Equipment Being Tested:_	· •	· · · · ·
	-	ER HOUSE TO WATER PONDS
Plant ID Number: 155		
Maximum Working Pressure: <u>/2</u>	PSIL	
Test Pressure: 20 R516.	(Maxii	imum Working Pressure X 1.5)
Time	PSIG	Temp. °F
10:00 AM. 10:15 AM.	20 PS16 20 PS16	32
10: 30 AM.	20 PS/6	320
60:45 AM.	20 PS16	
<u>11:00 AM.</u> <u>11:15 AM</u>	20 PS16 20 PS16	<u> </u>
11:30 AM.	20 Asil	34
11:45 AM	20 PSil	<u>35°.</u> <u>35°</u>
12:00 AM.	20 ASIL	

Comments:	CLEAK	SKIES	NO U	in	COLL	1
LINE	is BURG	RIED 7	EMP W	VONT	MAKE	MUCH
•	FRENCE.					

=================	
Circulate:	Process Foreman
	Maintenance Poreman 31166 Marly
Plant Manage	
*File - 55F-333 Safety	File

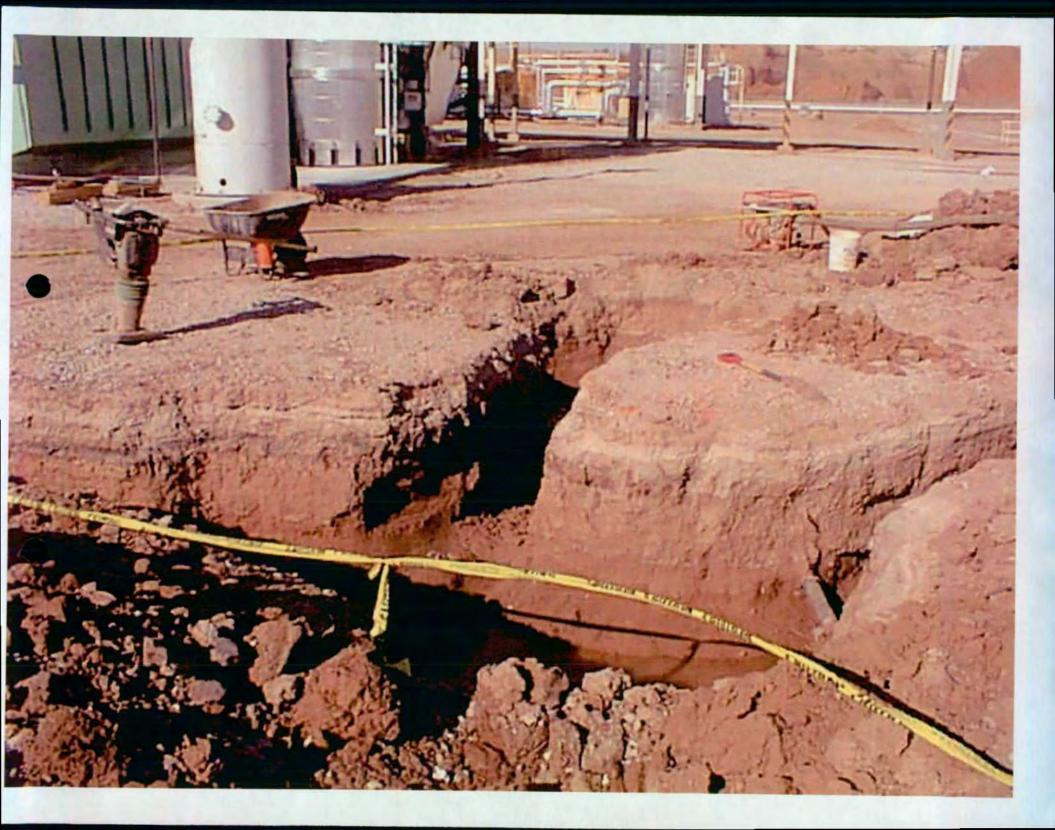
NEW DRAIN LINE DITCH RUNNING EAST & WEST. SOUTH OF BOILER HOUSE TO EXISTING SUMP S.W. CORVER OF BUILTA HOUSE.

NEW DRAIN LINE PITCH. RUNNING EAST & WEST. LOCATED SOUTH OF & 6 BOILER

NEW DRAIN LINE DITCH SOUTH OF TIGBOILER


NEW DRAIN LINE MAIN LINE 6" CONTER PIPE

NEW 6" DRAID LINE RUNNING EAST 4WEST SOUTH OF "6 BOILER


WEU ARAIN LINF DITRH WEST OF FIRE PUMP HOOSE.

NEW DRAID LINT DITCH NORTH OF FIRE WATER PUMP HOUSE.

NEW ARAIN LINE DITCH BETWEEN FIRE WATER PUMP BLOG. & A/B. COOKING TOUGH.

AITCH FOR NEW DRA XINE 4 BRANCH FOR The DOILER DRAIN.

Joyce M. Woodfin Environmental Expert Natural Gas & Gas Products

November 12, 1999

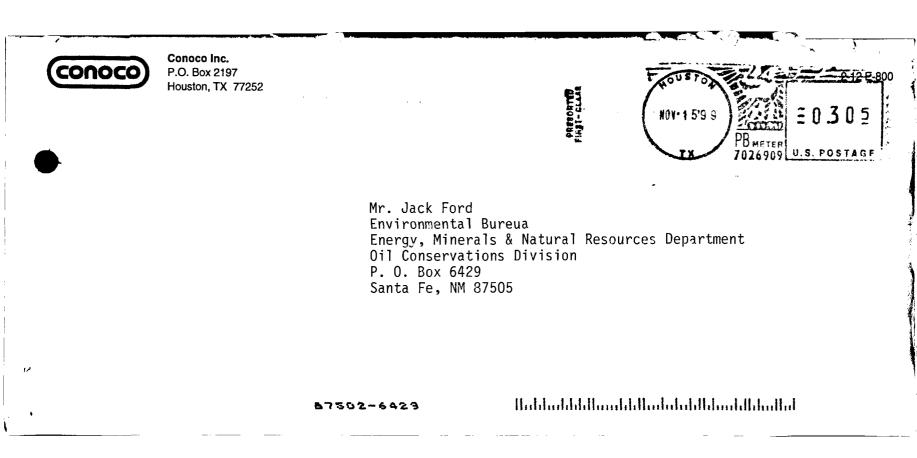
Mr. Jack Ford Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division P.O. Box 6429 Santa Fe, NM 87505

Re: Discharge Plan GW-054 Compliance Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford:

This is in response to your letter dated October 26, 1999 and our attempts to satisfy discharge plan GW-054 requirements and discharge plan conditions dated November 21, 1997.

Conoco has attempted to perform the mechanical integrity tests of the underground lines as required. We have been able to get sections of the lines to hold pressure but have not been successful in getting the entire system to test tight at one time. Because of this, we have ordered new discharge pipe and are preparing to install a new line to replace the existing underground lines. We plan to install this new line as soon as the material arrives and will send you a copy of the test results by December 31, 1999.


If you have any questions or require any additional information, please contact Joyce Woodfin at (281) 293-4498. Thank you for your time and consideration.

Sincerely,

Jayce Wood

Joyce M. Woodfin

cc: Chuck White – Wingate File: ENV 215-5-6 Conoco Inc • Humber 3036 P.O. Box 2197 Houston, TX 77252-2197 (281) 293-4498 Fax: (281) 293-1214

Joyce M. Woodfin Environmental Consultant Natural Gas & Gas Products

OCT 2 8 1999

SERVATION 1944

1

Conoco Inc Humber 3036 P.O. Box 2197 Houston, TX 77252-2197 (281) 293-4498 Fax: (281) 293-1214

October 25, 1999

Certified Mail Return Receipt Requested

Ms. Tamera Long Navajo Nation EPA Air Quality Program P.O. Box 529 Fort Defiance, Arizona 86504 Certified No: P 298 298 640

Certified No: P 298 298 641

Mr. Patrick Antonio Navajo Nation EPA Water Quality Program P.O. Box 339 Window Rock, Arizona 86515

Re: Conoco Inc. Wingate Fractionator McKinley County, New Mexico

Dear Madam & Sir:

Conoco Inc. was asked this summer if we operated our above referenced facility on Indian Lands. At the time the question was asked Conoco believed that the facility was situated on private land in close proximity to the Navajo Nation. This question prompted some internal file research that indicated part of our facility acquisition on April 1, 1996 from Meridian Oil included a lease of 151 acres of land in Section 9, 10 & 15, Township 15 North, Range 17 West, McKinley County, New Mexico from the Navajo Nation.

Since we were not sure what portions of our operations, if any, were located on the leased land we hired a survey firm to determine equipment locations in respect to land section boundaries. This survey was recently completed and the preliminary results indicate that we have a candlestick flare (NMED Air Permit No. 1313-M1) and two water retention/discharge ponds (OCD Water Discharge Plan GW-54) on the leased land.

I would like your assistance in determining a path forward to establishing a working relationship with the Navajo Nation EPA. I am available to travel to your offices to discuss this issue and explain our operations, review past history of this equipment and get guidance on how to properly register these emission points with the Navajo Nation. EPA.

If you have any questions, require any additional information or have a preference on when we could meet, please contact me at (281) 293-4498. Thank you for your time and consideration.

Sincerely,

Joke Word Joyce M. Woodfin

CC:

Ms. Sandra Ely State of New Mexico Environmental Department Air Quality Bureau Harold Runnels Building 1190 St. Francis Drive, P.O. Drawer 26110 Santa Fe, New Mexico 87502-0110

Mr. Jack Ford New Mexico Energy, Minerals and Natural Resources Department Environmental Bureau Oil Conservation Division 2040 S. Pacheco Santa Fe, New Mexico 87505

Certified No: Z 413 451 641

Mr. Clancy Tenley Tribal Program Manager EPA Region IX (E-4) 75 Hawthorne Street San Francisco, California 94104

Chuck White – Wingate Plant Manager Jeff Smail – Operations District Coordinator San Juan

File: ENV 214-2-37 File: ENV 215-5-6

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

October 26, 1999

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT NO.</u> Z-274-520-546

Ms. Joyce M. Woodfin Conoco Inc. P.O. Box 2197 HU 3036 Houston, Texas 77252-2197

RE: Discharge Plan GW-054 Compliance Wingate Fractionating Plant McKinley County, New Mexico

Dear Ms. Woodfin:

Conoco Inc. received the approved ground water discharge plan renewal GW-054, for the Conoco Inc. Wingate Fractionating Plant located in Sections 9, 10, 15, 16, 17 Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico, on November 28, 1997. The approved discharge plan consisted of the original discharge plan as approved August 17, 1992, the renewal application dated April 16, 1997 and the attachment of discharge plan conditions dated November 21, 1997.

A review of the file indicates that Conoco Inc. may be in violation of its discharge plan. Condition number 10 requires that underground process/wastewater lines must be tested to demonstrate their mechanical integrity every five years or prior to discharge plan renewal. The OCD has no record that the underground lines were tested prior to renewal nor since renewal. If the underground lines have been tested furnish the OCD with test results and certification that the lines have met the required mechanical integrity conditions. If this testing has not been conducted a test must be performed prior to December 31, 1999 with the results and certification of their condition submitted to this office.

If you have any questions contact me at (505) 827-7156.

Sincerely,

W. Jack Ford, C.P.G. Environmental Bureau Oil Conservation Division

xc: OCD Aztec District Office

	- - -	
	Z 274 520	1 546 OCD
	US Postal Service Receipt for Cei No insurance Coverage	
	Do not use for Internation	onal Mail <i>(See reverse)</i>
	Sent to	The stain
	Street & Number	noca
	Post Stilce, State, & ZIP Co	de
	Postage	\$ /
	Certified Fig.	
	Special Delivery Fee	
	Restricted Delivery Fee	
221	Return Receipt Showing to Whom & Date Delivered	
Ed Y	Return Receipt Showing to Whom Date, & Addressee's Address	•
S	TOTAL Postage & Fees	\$
rs rom Joud, April 1995	Postmark or Date 90	0-054
-1		1

Conoco Inc

Joyce M. Woodfin Environmental Expert Natural Gas & Gas Products

Humber 3036 P.O. Box 2197 Houston, TX 77252-2197 (281) 293-4498 Fax: (281) 293-1214 F. P. F. J. W. F. F. C. Y. 2 8 1999

June 23, 1999

Mr. Jack Ford Environmental Bureau Energy, Minerals & Natural Resources Department Oil Conservation Division P.O. Box 6429 Santa Fe, NM 87505

Re: Modification to Monitoring Requirements Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford:

This letter is to follow-up our phone conversation from last month when we agreed on a frequency for monitoring the groundwater wells at the above referenced location. Conoco will continue to monitor MW-1, MW-2 and MW-3 on an annual basis as per the site's Discharge Plan GW-054 (April 1997). We will also monitor and sample WMW-4, which was installed as part of a property transfer environmental assessment, on an annual basis during this same sampling event.

If you have any questions or require any additional information, please contact Joyce Woodfin at (281) 293-4498. Thank you for your time and consideration.

Sincerely,

Jake Wood

Joyce M. Woodfin

CC:

Chuck White – Wingate Gerry Garibay – El Paso Energy File: ENV 215-5-6

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

February 2, 1999

CERTIFIED MAIL RETURN RECEIPT NO. Z-357-870-056

Ms. Larissa Forseth Conoco, Inc. P.O. Box 2197-HU3038 Houston, Texas 77252

RE: Modification to GW-054 Discharge Plan Wingate Fractionating Plant McKinley County, New Mexico

Dear Ms. Forseth:

The New Mexico Oil Conservation Division has received a request, dated January 26, 1999, for a modification to the groundwater monitoring requirements specified in the approved discharge plan (GW-054), dated April 8, 1997, for the Wingate Fractionating Plant. The request to cease monitoring of WMH-1, WMH-2, WMH-3 and WMH-5 is **hereby approved**. The abandonment of any monitoring well must be approved by the OCD. This change to the approved discharge plan is considered a minor modification to the existing discharge plan.

Please note that Section 3104 of the regulations requires that "When a plan has been approved, discharges must be consistent with the terms and conditions of the plan." Pursuant to Section 3107.C Conoco, Inc. is required to notify the Director of any facility expansion, production increase, or process modification that would result in any change in the discharge of water quality or volume.

Please be advised this authorization does not relieve Conoco, Inc. of liability should the operations of this facility result in pollution of surface waters, ground waters or the environment. Further, OCD authorization does not relieve Conoco, Inc. from responsibility for compliance with other federal, state, and local permitting requirements, rules, and regulations.

Sincerely,

W. Jack Ford, C.P.G.

W. Jack Ford, C.P.G. Environmental Bureau Oil Conservation Division

xc: Aztec OCD District Office

Z 357 870 056

	US Postal Service Receipt for Cer No Insurance Coverage Do not use for Internation Sent to Sent to Servet & Number Double Composition Servet & Number Composition Servet & Number Servet & Servet &	Provided. nal Mail (See reverse) A. Torsett. ocn
	Post Office, State, & ZIP Con	e el
	Postage	\$
	Certified Fee	
	Special Delivery Fee	
ហ	Restricted Delivery Fee	
199	Return Receipt Showing to Whom & Date Delivered	
, Apri	Return Receipt Showing to Whom, Date, & Addressee's Address	
800	TOTAL Postage & Fees	\$
PS Form 3800, April 1995	Postmark or Date GU)-054

Larissa Forseth Environmental Engineer Engineering & Compliance Natural Gas & Gas Products Conoco Inc.

Certified Mail No. P 365 861 344 Return Receipt Requested

January 26, 1999

Mr. Jack Ford Environmental Bureau Energy, Minerals and Natural Resource Department Oil Conservation Division P.O. Box 6429 Santa Fe, NM 87505 Conoco Inc. 600 N. Dairy Ashford P.O. Box 2197—HU3038 Houston, TX 77252 (281) 293-3149

RE: Modification to Monitoring Requirements Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford,

As we discussed via telephone this afternoon, Conoco Inc. requests a modification to groundwater monitoring requirements specified in Wingate Plant's discharge plan (GW-054, April 1997). Currently, semi-annual groundwater monitoring is conducted on three wells (MW-1 through MW-3) near the evaporation ponds and five wells (WMH-1 through WMH-4 and WMW-5) up-gradient of the evaporation ponds. The latter five wells were installed as part of a property transfer environmental assessment and bear no relationship to the evaporation ponds.

Conoco requests permission to cease monitoring of WMH-1, WMH-2, WMH-3, and WMW-5; as you requested, well WMH-4 will continue to be monitored on account of regularly high benzene levels up-gradient of the well. Wells MW-1, MW-2, and MW-3 will continue to be monitored semi-annually according to discharge plan requirements. If you have any questions, please contact me at (281) 293-3149. Thank you for your time and consideration in this matter.

Sincerely,

ing foroth

Larissa Forseth

Larissa Forseth Environmental Engineer Engineering & Compliance Natural Gas & Gas Products Conoco Inc.

Certified Mail No. P 365 861 339 Return Receipt Requested

August 21, 1998

Mr. Jack Ford Environmental Bureau Energy, Minerals and Natural Resource Department Oil Conservation District P.O. Box 6429 Santa Fe, NM 87505

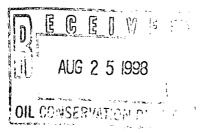
RE: Spent Caustic Sample Results Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Ford:

The Attachment to Conoco Inc.'s Wingate Discharge Plan (GW-54) Renewal puts forth the condition that the spent caustic from the butamer unit be analyzed and the sample results be submitted to the OCD within 60 days of beginning operations at the butamer unit. The start-up date of the butamer was June 27^{th} , 1998. A sample of the spent caustic was submitted to SPL Lab in Farmington on August 17, 1998. As we discussed on July 22^{nd} , this sample was to be analyzed for pH; attached are the results of this analysis. The pH reading of 7.74 indicates that the spent caustic from the butamer is being neutralized effectively before being sent to the evaporation pond.

If you have any questions regarding this matter, please contact me at (281) 293-3149. Thank you for your time.

Sincerely,


rissa Forseth

Larissa Forseth

Enclosure

FEAD this NOW and BELIEVE it LATER Jack, /26/99	
Thank you for your input regarding Conoco's proposed recongenization; I	
have passed it on. Thanks, Harison © 1995 Bradman Video. Inc Under License from NBC. Ordingraph by Edite Bakin @ Hallmark cards, linc. Res Photo	

Conoco Inc. 600 N. Dairy Ashford P.O. Box 2197—HU3038 Houston, TX 77252 (281) 293-3149

08/21/1998 0	7:38 5053262552	SPL FARMI	PAGE 02	
	PL/。	Water Analysis Conoco	1	GTON LABORATORY 807 S. CARLTON NGTON, NM 87499-1289 (505) 326-2588
Matrix:	Cococo Wingate Plant Water 9808082-01		Date Reported: Date Sampled: Date Received:	08/21/98 08/17/98 08/17/98
Presidente.		мі)н. (
General	рн	7.74	s.u.	
Quality Con	trol	•		
	ERA QC Lot #9978	9.10	s.u.	
,	Actual Vatue: 9.07 Acceptance Range: 8.87 - 9.27			
		Billy G. Rich, Lab Ma	Auch anager	

NEW MEXICO DERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 South Pachaco Street Santa Fe, New Mexico 87505 (505) 827-7131

	T 1 20 1000		Z 357 8	70 00l
	July 30, 1998		US Postal Service Receipt for Cer No Insurance Coverage	Provided.
			Do not use for Internatio	· · · · · /
CERTIFIED RETURN RE	MAIL CEIPT NO. Z-357-870-001		Post Office, State, & ZIP Coc FOUS	. /
Ms. Larrisa Fo	orseth		Postage Certified Fee	\$
Conoco, Inc. P.O. Box 219		i	Special Delivery Fee	
Houston, Texa	as 77252	1995	Restricted Delivery Fee Return Receipt Showing to	
	ion to Submittal of Sample Results te Fractionating Plant	, April	Whorn & Date Delivered Return Receipt Showing to Whom, Date, & Addressee's Address	
•	lley County, New Mexico	3800	TOTAL Postage & Fees Postmark or Date	\$
Dear Ms. For	seth:	PS Form	G	FW-054
The New Mey	ico Ail Conservation Division has received		anost doted Tulu	22 1009 for a

The New Mexico Oil Conservation Division has received a request, dated July 22, 1998 for an extension of submittal of sampling and laboratory results of water from the evaporation pond at the above captioned facility which was due January 21, 1998. It is OCD's understanding that this sampling will be conducted concurrently with the next scheduled semi-annual ground water sampling event. Based upon the information furnished with the request the extension is hereby approved.

Please be advised this authorization does not relieve Conoco of liability should the operations of this facility result in pollution of surface waters, ground waters or the environment. Further, OCD authorization does not relieve Conoco from responsibility for compliance with other federal, state, and local permitting requirements, rules, and regulations.

Sincerely.

W. Jack Ford, C.P.G. Environmental Bureau **Oil Conservation Division**

xc: Aztec OCD District Office

Larissa Forseth Environmental Engineer Engineering & Compliance Natural Gas & Gas Products Conoco Inc. Conoco Inc. 600 N. Dairy Ashford P.O. Box 2197—HU3038 Houston, TX 77252 (281) 293-3149

G Ę JUL 2 9 1998 OIL CONSERVATION DIS

Certified Mail No. P 365 861 338 Return Receipt Requested

July 22, 1998

Mr. Jack Ford Environmental Bureau Energy, Minerals and Natural Resource Department Oil Conservation District P.O. Box 6429 Santa Fe, NM 87505

RE: Wingate Evaporation Pond Annual Sampling

Dear Mr. Ford,

The Attachment—dated November 21, 1997—to Conoco Inc.'s Wingate Discharge Plan (GW-54) Renewal puts forth the conditions that "samples from the evaporation ponds will be obtained annually," and "results will be submitted to the OCD by January 21, 1998." As we discussed via telephone this morning, Conoco experienced a change in project management during this period, and the sampling was unintentionally overlooked.

Conoco requests an extension for submitting the evaporation pond sampling results. As you and I discussed, these results will be submitted to the OCD concurrently with the results of the next semi-annual groundwater sampling event, which will be conducted in August or September 1998. If you have any questions regarding this matter, please contact me at (281) 293-3149. Thank you for your time and consideration.

Sincerely,

Harison Horseth

Larissa Forseth

Larissa V. Forseth Associate Engineer-Environmental Safety & Environmental Services

Natural Gas & Gas Products

Certified Mail No. 365 861 357 Return Receipt Requested

March 2, 1998

Mr. Mark Ashley Oil Conservation Division Environmental Bureau 2040 South Pacheco Santa Fe, NM 87505

Conoco Inc. 600 N. Dairy Ashford P.O. Box 2197 - HU3038 Houston, TX 77252 (281) 293-3149

Dear Mark:

This letter is a follow-up to your conversation with Ed Kirk on Friday, February 27, 1998, in reference to the chemical additions at Conoco's Wingate fractionation facility and their impact on the discharge plan. Operation of the butamer unit requires storage of an additional 250 BBL of NaOH and 5,200 gallons of perchloroethylene at the Wingate site.

The NaOH is a liquid. The tank, surrounded by concrete secondary containment, stores the NaOH at atmospheric pressure. In the scrubber, the NaOH is added to the HCI and light hydrocarbons coming from the top of the stabilizer to produce a neutralized NaCI solution.

The other chemical, perchloroethylene, is injected into the reactors upstream of the butamer unit for use as a catalyst promoter. This tank, which is also surrounded by concrete secondary containment, holds the perchloroethylene under a 20-psi nitrogen blanket.

Additionally, water that will be removed from the mole sieve dehydrator and discharged to the evaporation pond is estimated to be 5,000 gallons per week. The high flow in an extreme case is estimated at 45,000 gal/wk. No exact numbers will be available until after start-up of the butamer.

If you have any questions, please contact me at (281) 293-3149 or Ed Kirk at ext. 2561.

Sincerely,

Dariosa Foresch

Larissa Forseth

cc: ENV 215-5-6

Alan D. Higginbotham Plant Manager Wingate Plant Natural Gas and Gas Products **Conoco Inc.** P.O. Box 1728 Gallup, NM 87305 (505) 863-1000

New Mexico EPA Oil Conservation Division

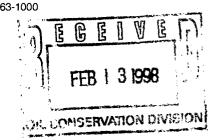
Subject: NORM testing of asbestos insulated piping

Dear Mr. Roger Anderson,

We are in the process of disposing of some asbestos insulation we have removed from existing piping at the Wingate Plant in Gallup, New Mexico. As I was making disposal arrangements with the representative of Waste Management of Four Corners I was informed that a NORM survey of the piping would be required. I was referred to a Mrs. Martyne Kieling in Santa Fe for information on what steps would be required to satisfy the new regulation. She referred me to a Mr. Denny Foust, the local representative in Aztec.

Since this is a new regulation and there is no form currently available to fill out to meet the requirement Mr. Foust requested that I send you a letter notifying you of precautions we had taken to insure that no NORM was present on our piping.

We are very familiar with NORM and have previously performed a NORM survey in our Gallup plant. This test was done on March 12, 1997. Conoco uses 50 Microrems per hour as a threshold for equipment that is considered NORM contaminated. The only NORM detected was at several of our process pumps with 17 m/hour being the highest reading. We also did a NORM survey on the specific piping we have prepared for disposal and it showed no detectable NORM. The test was conducted with a Ludlum Model 3 Survey Meter.


We are trying to dispose of this asbestos as quickly as possible and would request your assistance in expediting your response to us. I would appreciate a verbal approval with a follow up letter if possible.

This waste will be disposed of at the Waste Management Denver Arapahoe Disposal Site located at Aurora, Colorado. This site is approved as an asbestos disposal site by Dupont, our parent company. When we receive your approval we will load the transporting containers and should ship them next week.

If you have any questions or I can be of assistance, please call me at (505) 863-1001.

Thank You. alan D. Kingintotham

Alan D. Higginbotham

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

February 13, 1998

CERTIFIED MAIL RETURN RECEIPT NO. P-288-259-019

Mr. Alan D. Higginbotham Conoco, Inc. P.O. Box 1728 Gallup, New Mexico 87305

RE: NORM Testing and Disposal of Asbestos Pipe Insulation Wingate Plant (GW-54) McKinley County, New Mexico

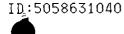
Dear Mr. Higginbotham:

The New Mexico Oil Conservation Division (OCD) has completed a review of the Conoco, Inc. (Conoco) request, received via fax on February 11, 1998, for out of state disposal of NORM tested asbestos pipe insulation. The requested site for disposal is Waste Management Denver Arapahoe Disposal Site located at Aurora, Colorado. Based on the information provided, the Conoco disposal request is approved.

Please be advised that OCD approval does not relieve Conoco of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please feel free to call me at (505) 827-7155.

P 288 259 019


	US Postal Service Receipt for Certified Mail No Insurance Coverage Provided. Do not use for International Mail (See reverse) Sent to		
	Street & Number		
	Post Office, State, & ZIP Code		
	Postage	\$	
	Certified Fee		
	Special Delivery Fee		
10	Restricted Delivery Fee		
1995	Return Receipt Showing to Whom & Date Delivered	-	
April	Return Receipt Showing to Whom, Date, & Addressee's Address		
800,	TOTAL Postage & Fees	\$	
PS Form 3800 , April 1995	Postmark or Date		

Sincerely, Mark halim

Mark Ashley Geologist

xc: OCD Aztec Office

CONOCO/WINGATE PLANT

8:18 No.004 P.02

Alan D. Higginbotham Plant Manager Wingato Plant Natural Gas and Gas Products

Conoco Inc. P.O. Box 1728 Gallup, NM 87305 (505) 883-1000

New Mexico EPA Oil Conservation Division

Subject: NORM testing of asbestos insulated piping

Dear Mr. Roger Anderson,

We are in the process of disposing of some asbestos insulation we have removed from existing piping at the Wingate Plant in Gallup, New Mexico. As I was making disposal arrangements with the representative of Waste Management of Four Corners I was informed that a NORM survey of the piping would be required. I was referred to a Mrs. Martyne Kieling in Santa Fe for information on what steps would be required to satisfy the new regulation. She referred me to a Mr. Denny Foust, the local representative in Aztec.

Since this is a new regulation and there is no form currently available to fill out to meet the requirement Mr. Foust requested that I send you a letter notifying you of precautions we had taken to insure that no NORM was present on our piping.

We are very familiar with NORM and have previously performed a NORM survey in our Gallup plant. This test was done on March 12, 1997. Conoco uses 50 Microrems per hour as a threshold for equipment that is considered NORM contaminated. The only NORM detected was at several of our process pumps with 17 m/hour being the highest reading. We also did a NORM survey on the specific piping we have prepared for disposal and it showed no detectable NORM. The test was conducted with a Ludium Model 3 Survey Meter.

We are trying to dispose of this asbestos as quickly as possible and would request your assistance in expediting your response to us. I would appreciate a verbal approval with a follow up letter if possible.

This waste will be disposed of at the Waste Management Denver Arapahoe Disposal Site located at Aurora, Colorado. This site is approved as an asbestos disposal site by Dupont, our parent company. When we receive your approval we will load the transporting containers and should ship them next week,

If you have any questions or I can be of assistance, please call me at (505) 863-1001.

Thank You. Alan D. Higginbotham

Edward E. Kirk Project Engineer - Environmental Safety & Environmental Services

Natural Gas & Gas Products

(co**re**co)

Conoco Inc. 600 N. Dairy Ashford P.O. Box 2197 - HU 3030 Houston, TX 77252 (281) 293-2561

September 23, 1997

Mr. Mark Ashley Oil Conservation Division Environmental Bureau 2040 South Pacheco Sante Fe, NM 87505

Re: Wingate Butamer Spent Caustic

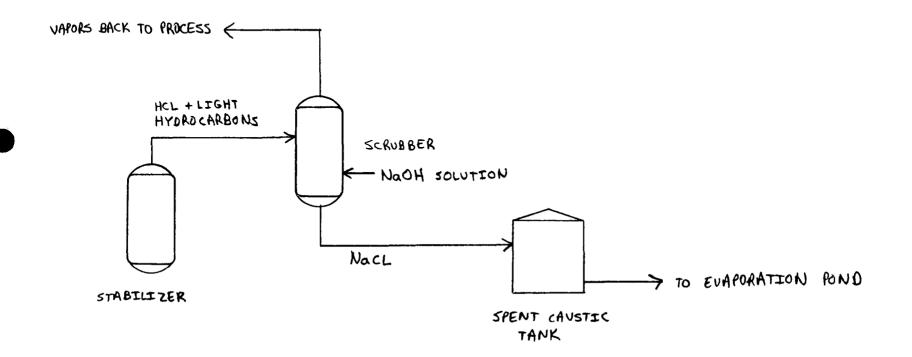
Dear Mark:

This letter is a follow up to our phone conversation on Sept. 23, 1997 in reference to the spent caustic from the Wingate Fractionator's butamer unit which is scheduled to be in operation in April 1998. We would like to add the spent caustic to the evaporation pond constituents in the Wingate Discharge Plan which you currently have for approval.

The spent caustic would be generated from the following process (see attached sketch). HCL gas and light hydrocarbons will leave the stabilizer and enter the scrubber where NaOH (about 10% by wt.) will be added to the HCL to produce NaCl. This liquid NaCl will go from the scrubber to the spent caustic tank where more HCL will be added to neutralize the solution. Once the solution is neutralized it will be sent to the evaporation pond essentially as a neutralized NaCl brine. Estimated volumes will be about 3,000 gallons per week. No hydrocarbons are expected in the solution.

Let me know if you need anymore information.

Sincerely,


Ed Kirk

Attachment

cc: ENV 215-5-6

ß CONCERVATION ENVISION

WINGATE BUTAMER CAUSTIC FLOW DIAGRAM

STATE OF NEW MEXICO OIL CONSERVATION DIVISION	MEMORANDUM OF MEET	TING OR CONVERSATION
Telephone Pers	onal Time 8,15	5 M Date 9-2-9)
Origin	ating Party	Other Parties
ED KIRK (281)293-25 Subject Coroco-	-CONOCO 561 WIN GATE	MRK ASHLEY
Discussion NE NAM FROM G AN IS I TO THE PADOR TO	NON-MAR, RANG	PENT CANSTIC WASSY IT'S AN NGL METTURE. IDE. WANTS TO SEND IT WASH IS NELLITRICED
Conclusions or Agreement	Conocols REQUES	THE NOTIFICATION OF THE ST TO INCLUDE THIS IN LIST OF THE ASCHNRGE PAN.
<u>Distribution</u>		Signed Markehry

Pat Sanchez

From:Denny FoustSent:Tuesday, June 17, 1997 2:30 PMTo:Pat SanchezSubject:CONOCO WINGATE PLANT GW-054Importance:High

JUNE 17, 1997

MY CONCERNS ARE THE OPERATION OF THE EMERGENCY FLARE PITS (LINED?) AND THE INTEGRITY OF THE WASTE WATER PIPING AT THIS PLANT. THE EVAPORATION PONDS APPARENTLY ARE NOT RECEIVING ANYTHING TO FAR OUT OF LINE. THE LIMITED VOLUME OF CONTACT WATER MAY BE VERY HOT WITH LIQUID HYDROCARBONS. GENERAL CONSTRUCTION OF THE POND BERMS IN RELATION TO THE RIVER AND THE POSSIBILITY OF OVERTOPPING SHOULD BE CONSIDERED. WE NEED SOME GROUNDWATER QUALITY INFORMATION FROM THE SHALLOW ZONES AND SOME POND WATER QUALITY INFORMATION. I OBJECT TO SEPTIC TANK WASTE BEING ALLOWED TO GO TO EVAPORATION PONDS.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New Mexico Ecological Services Field Office 2105 Osuna NE Albuquerque, New Mexico 87113 Phone: (505) 761-4525 Fax: (505) 761-4542

May 30, 1997

IUN 4 1997

William J. Lemay, Director Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Cil Conservation Obticion

Dear Mr. Lemay:

This responds to your agency's public notices dated April 29, 1997, and May 6, 1997, regarding the discharge plan renewal applications for the three applicants described below:

(GW-126) - Weatherford Enterra US. Ms. Lesa Griffin has submitted an application for renewal of the company's approved discharge plan for the Farmington facility located in Section 19, Township 29 North, Range 12 West, San Juan County, New Mexico. Discharges will be stored in a closed-top receptacle.

(GW-054) - Conoco, Inc. Ms. Terry L. Killian has submitted an application for renewal of the company's approved discharge plan for the "Wingate" gas plant located in Sections 9, 10, 15, 16, and 17, Township 15 North, Range 17 West, McKinley County, New Mexico. Discharges of plant waste water are stored and disposed of in two evaporation ponds.

GW-042) - GPM Gas Services Company. Mr. Scott Seeby has submitted an application for renewal of the company's approved discharge plan for the Indian Hill Gas Plant located in Section 13, Township 21 South, Range 25 East, Eddy County, New Mexico. The facility is currently inactive with no discharges occurring.

The U.S. Fish and Wildlife Service (Service) heartily approves of discharge plans that utilize closed top receptacles or tanks (i.e., Discharge Plan GW -126). The installation of berms around these structures is also recommended to help prevent any contamination of the surface waters of New Mexico in the event that a tank or receptacle is accidentally ruptured.

The Service recommends the use of wildlife exclusion technology (nets, fences, enclosed tanks, etc.) to prevent migratory bird and other wildlife access to any brine or produced water storage ponds, lined or unlined evaporative ponds, open tanks, or lagoons that contain toxic chemicals, or that may harbor a surface oil sheen. During flight, migratory birds may not distinguish between an evaporation or storage pond and a natural water body: the artificial water body may serve as an "attractive nuisance" if measures are not taken to exclude migratory birds from access. Alternatively, the applicant may demonstrate that the retained waters are "bird-safe" (e.g., can meet New Mexico general water quality standards 1102.B, 1102.F, and 3101.K or 3101.L).

William J. Lemay, Director

If the construction and operation of such structures results in migratory bird deaths and the problem is not addressed, the operator may be held liable under the enforcement provisions of the Migratory Bird Treaty Act (MBTA). Under the MBTA, the courts have held that an operator of process waste water storage facilities may be held liable for an "illegal take" of migratory birds. An "illegal take" has been interpreted to include accidental poisoning or accumulation of harmful concentrations of contaminants by migratory birds, which might occur as a result of access to the stored water. Hydrocarbon pollutants, for instance, can be carried to the nest on breast feathers, feet, or in nesting materials, where the eggs can subsequently become contaminated, leading to embryo death and reduced hatchability.

Our intent is to inform and intercede before any migratory bird deaths occur, since these birds constitute a legally protected resource. The Service would rather prevent a problem resulting from migratory bird access to contaminated ponds than take enforcement actions, which are expensive and disruptive to legitimate mineral extraction and energy production activities.

Thank you for the opportunity to review and comment on this discharge plan application. If you have any questions about these comments, please contact Dennis Byrnes at (505) 761-4525.

Sincerely, ennifer Fowler-Propst Field Supervisor

CC:

Director, New Mexico Department of Game and Fish, Santa Fe, New Mexico Geographic Manager, New Mexico Ecosystems, U.S. Fish and Wildlife Service, Albuquerque, New Mexico

Senior Resident Agent, U.S. Fish and Wildlife Service, Albuquerque, New Mexico Migratory Bird Office, U.S. Fish and Wildlife Service, Albuquerque, New Mexico

2

Affidavit of Publication CEWED

STATE OF NEW MEXICO

COUNTY OF McKINLEY

MAY 1 5 1997

Environmental Bureau Oil Conservation Division

<u>RANGEL, LYDIA</u> being duly sworn upon oath, deposes and says:

) SS

As <u>LEGAL CLERK</u> of The Independent, a newspaper published in and having a general circulation in McKinley County, New Mexico and in the City of Gallup, New Mexico and having a general circulation in Cibola County, New Mexico and in the City of Grants, New Mexico and having a general circulation in Apache County, Arizona and in the City of St. Johns and in the City of Window Rock, Arizona therein: that this affiant makes this affidavit based upon personal knowledge of the facts herein sworn to. That the publication, a copy of which is hereto attached was published in said newspaper during the period and time of publication and said notice was published in the newspaper proper, and not in a supplement thereof,

e .

.

for <u>one time</u> , the first publication being on the
7th day of <u>May</u> , 1997 the
second publication being on the day
of, 19 the third publication
on the day of, 19
and the last publication being on the day of

That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation.

19_

Tydia Kange

Sworn and subscribed to before me this <u>9th</u> day

Mav A.D., 19_97 of Notary My commission expires February 5, 2001

LEGAL NOTICE Gallup McKinley County New Mexico

NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Quality Control Commission Regulations, the following discharge plan renewal applications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (S05)827-7131: (GW-126) - Weathford Enterra US, Ms. Lesa Griffin, (713)-693-4922, 515 Post Oak Blvd., Suite 600, Houston, TX, 77027, has submitted a Discharge Plan Renewal Application for their Farmington facility located in the SW/4 NW/4, Section 19, Township 29, North, Range 12 West, NMPM, San Juan County, New Mexico. Any potential discharge at the facility will be stored in a closed top receptacle. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 30 feet with a total dissolved solids concentration of approximately 1,000 to 2,000 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed. (GW-054) - Conoco, Inc., Ms. Terry L. Killian, (281)-293-1188, P.O. Box 2197 -IU3036, Houston, TX, 77252, has submitted a Discharge Plan Renewal Application for their (Wingstei' cas plant located in

Idian, (281)-293-1188, P.O. Box 2197 HU3036, Houston, TX, 77252, has submitted a Discharge Plan Renewal Application for their 'Wingate'' gas plant located in Sections 9, 10, 15, 16, and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. Plant waste water is disposed of into two surface evaporation ponds. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 5 to 30 feet with a total dissolved solids concentration of approximately 480 to 1400 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan applications may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and a public hearing may be requested by any interested person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held of the Director determines there is significant public interest. If no public hearing is held, the Director

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the discharge plan application and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 29th day of April, 1997.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

/s/William J. LeMay, Director Legal #13969 Published in The Independent May 7, 1997.

Okay to ANG

2735 2M BUTLER'S Gallup

Affidavit of Publication FORMED

STATE OF NEW MEXICO

) SS COUNTY OF Mckinley

MAY 1 5 1997

Environmental Bureau **Oil Conservation Division**

RANGEL, LYDIA oath, deposes and says: _____ being duly sworn upon

As LEGAL CLERK _____ of The Independent, a newspaper published in and having a general circulation in McKinley County, New Mexico and in the City of Gallup, New Mexico and having a general circulation in Cibola County, New Mexico and in the City of Grants. New Mexico and having a general circulation in Apache County, Arizona and in the City of St. Johns and in the City of Window Rock, Arizona therein: that this affiant makes this affidavit based upon personal knowledge of the facts herein sworn to. That the publication, a copy of which is hereto attached was published in said newspaper during the period and time of publication and said notice was published in the newspaper proper, and not in a supplement thereof,

for <u>one time</u> , the first publication being on the
7th day of <u>May</u> , 19 <u>97</u> the
second publication being on the day
of the third publication
on the day of, 19
and the last publication being on the day of
, 19

That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation.

udice_ ange

Sworn and subscribed to before me this ____9th____ day

A.D., 19<u>97</u> Mav of

My commission expires

February 5, 2001

LEGAL NOTICE Gallup McKinley County New Mexico

NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL **RESOURCES DEPARTMEN**

OIL CONSERVATION DIVISION Notice is hereby given that pursuant to New Mexico Quality Control Commission Regulations, the following discharge plan renewal applications have been submitted to the Director of the Oil Conservation Di-vision, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505)827-7131: (GW-126) - Weathford Enterra US, Ms. Le-sa Griffin, (713)-693-4922, 515 Post Oak Blvd., Suite 600, Houston, TX, 77027, has Bird, Suite 600, Houston, 1X, 77027, has submitted a Discharge Plan Renewal Ap-plication for their Farmington facility lo-cated in the SW/4 NW/4, Section 19, Township 29, North, Range 12 West, NMPM, San Juan County, Néw Mexico. Any potential discharge at the facility will be stored in a closed top receptacle. Groundwater most likely to be affected by scrill lack on actionated discharge to the Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 30 feet with, a total dissolved solids concen-tration of approximately 1,000 to 2,000 mg/L. The discharge plan addresses how spills, leaks, and other accidental dis-charges to the surface will be managed. (GW-054) - Conoco, Inc., Ms. Terry, L. Kil-lian, (281)-293-1188, P.O. Box 2197 - HU3036, Houston, TX, 77252, has submit-ted a Discharge Plan Renewal Application for their 'Wingate'' gas plant located in Sections 9, 10, 15, 16, and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. Plant waste water is

County, New Mexico. Plant waste water is disposed of into two surface evaporation disposed of into two surface evaporation ponds. Groundwater most likely to be af-fected by a spill, leak, or accidental dis-charge to the surface is at a depth of ap-proximately 5 to 30 feet with a total dissolved solids concentration of approxi-mately 480 to 1400 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Di-vision and may submit written comments to the Director of the Oil Conservation Dito the Director of the Oil Conservation Di-vision at the address given above. The dis-charge plan applications may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publica-tion of this notice during which comments may be submitted to him and a public hearing may be requested by any interest-ed person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held of the Director determines there is significant public interest. If no public hearing is held, the Director

will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the discharge plan application and information submit-ted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico; on this 29th day of April, 1997

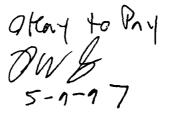
STATE OF NEW MEXICO OIL CONSERVATION DIVISION /s/ William J. LeMay, Director Legal #13969 Published in The Indepen-

dent May 7, 1997.

Okay to Pay DUG 5-15-97

The Santa Fe New Mexican

Since 1849. We Read You.


NM OIL DIVISION ATTN: SALLY MARTINEZ 2040 S. PACHECO ST. SANTA FE, NM 87505

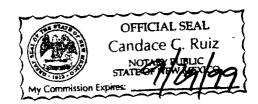
RECEIVED

MAY - 9 1997

Environmental Bureau Oil Conservation Division

	AD NUMBER:	634754	ACCOUNT: 50	5689
	LEGAL NO:	61661	<u>P.O. #:</u> 96-19	99-002997
206	LINES	ONCE	at\$82	2.40
Affìdavits:				5.25
Tax:				5.48
Total:		<u> </u>	\$ 93	3.13

AFFIDAVIT OF PUBLICATION


STATE OF NEW MEXICO COUNTY OF SANTA FE

being first duly sworn declare and I. BETSY PERNER say that I am Legal Advertising Representative of THE SANTA FE NEW MEXICAN, a daily news paper published in the English language, and having a general circulation in the Counties of Santa Fe and Los Alamos, State of New Mexico and being a Newspaper duly qualified to publish legal notices and advertisements under the provisions of Chapter 167 on Session Laws of 1937; that the publication # 61661 a copy of which is hereto attached was published in said newspaper once each WEEK for ONE consecutive week(s) and that the notice was published in the newspaper proper and not in any supplement; the first publication being on the 5 day of MAY 1997 and that the undersigned has personal knowledge of the matter and things set forth in this affidavit. /S/

LEGAL ADVERTISEMENT REPRESENTATIVE

Subscribed and sworn to before me on this 5 day of MAY

Notary Commission Expires

202 Fast Marcy Street • P.O. Box 2048 • Santa Fe, New Mexico 87501

505~983~3303

NOTICE OF PUBLICATION

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OH CONSERVATION

Notice is hereby given the pursuant to New Mexico War, ter Quality Control Commission Regulations, the following discharge plan renewalapplications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico, 87505, Telephone (505) 827-7131:

(GW-126) - Weatherford Enterra US, Ms. Lesa Griffin, (713)-693-4922, 515 Post Oak Blvd., Suite 600, Houston, TX 77027, has submitted a Discharge Plan Application for their Farmington facility incated in the SW/4 NW/4, Settion 19- Township 29 North Range 12 West, NMPM, Sea Juan County, New Mexica. Any potential discharge atthe facility will be stored in a clesed for receptacies Groundwater most likely to be affected by a spill, leak, or: accidental discharge to me surface is at a deptil of approximately 30 feet with a te tal dissolved solids concerned tration of approximately 1,000 to 2,000 mg/L. The dis charge plan addresses hour spills, leaks, and other acch dental discharges to the sale face will be managened NO. 6 CASE

(GW-0547-Conoco, Inter Main Terry 16 Killian, (221)-2004 Houston, TX, 77252, has submitted a Discharge Pian Renewal Application for theirs "Wingate" gas plant located, in Sections 9, 10, 15, 16 and 17, Township 15 North, Range IF West, NMP KA, McKinfey, County, New Mexico: Planti waste water is disposed of into two surface evaporation ponds.- Greendwater most likety by Ba affected b7, 5 spill leak, or accidental diacharge to the surface is at a depth of approximately 5 to 3 feet with a total dissolved solids concentration of approximately 480 to 1400 mg/L. The discharge plan ad dresses. how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit write ten comments to the Director of the Oil Conservation Division at the address given above. The discharge plan applications may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling an any proposed discharge plan or its modification, the Director of: the Oil Conservation Division shall allow at least thirty (308 days after the date of publication of this notice during which comments may be submitted to him and a mus lic hearing may be requested by any interested person. Requests for a public hearts shall set forth the reason why a hearing should be hild A hearing will be held if the Director determines there significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the Director will approve or disapprove the proposed plan based on the information in the discharge glansubmitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation for Commission at Santa Fei New Mexico, on this 29th days of April 1997.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION WILLIAM J. LEMAY, Director Legal Middi Pub. May S. MIN

RECEIVED

MAY - 9 1997

Environmental Bureau Oil Conservation Division

0 Km 8 Ml

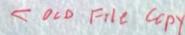
NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

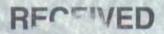
Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan renewal applications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

(GW-126) - Weatherford Enterra US, Ms. Lesa Griffin, (713)-693-4922, 515 Post Oak Bvld., Suite 600, Houston, TX, 77027, has submitted a Discharge Plan Renewal Application for their Farmington facility located in the SW/4 NW/4, Section 19, Township 29 North, Range 12 West, NMPM, San Juan County, New Mexico. Any potential discharge at the facility will be stored in a closed top receptacle. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 30 feet with a total dissolved solids concentration of approximately 1,000 to 2,000 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

(GW-054) - Conoco, Inc., Ms. Terry L. Killian, (281)-293-1188, P.O. Box 2197 - HU3036, Houston, TX, 77252, has submitted a Discharge Plan Renewal Application for their "Wingate" gas plant located in Sections 9, 10, 15, 16, and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. Plant waste water is disposed of into two surface evaporation ponds. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 5 to 30 feet with a total dissolved solids concentration of approximately 480 to 1400 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.


Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan applications may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and a public hearing may be requested by any interested person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the discharge plan application and information submitted at the hearing.


GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 29th day of April, 1997.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION WILLIAM J./LEMAY, Director WJL/pws

SEAL

CONOCO INC. WINGATE FRACTIONATING PLANT

APR 1 7 1997

Environmental Bureau Oil Conservation Division

DISCHARGE PLAN GW-054

APRIL 1997

Baton Rouge, LA

Lake Charles, LA

Shreveport, LA

Beaumont, TX

Austin, TX

magan

Pensacola, F

17170 PERKINS ROAD BATON ROUGE, LA 70810 PH (504) 755-1000 FAX (504) 751-2010

AREA OFFICES

LAKE CHARLES, LA 70601 PH (318) 479-0303 FAX (318) 479-1145

SHREVEPORT, LA 71105
 PH (318) 797-8636
 FAX (318) 798-0478

BEAUMONT, TX 77705 PH (409) 842-2265 FAX (409) 840-9116 AUSTIN, TX 78759

> PH (512) 346-1048 FAX (512) 346-7320

SALES OFFICES

JACKSON, MS 39236 PH (601) 853-6987 FAX (601) 856-9784 PENSACOLA, FL 32574 PH (904) 934-8979 FAX (904) 934-6198

April 16,1997

New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505 Attn: Mr. Roger C. Anderson

Ref: Final Discharge Plan Wingate Plant C-K Associates Project No. 15-586

Dear Mr. Anderson:

Enclosed please find one original and one copy of the Final Discharge Plan for the Wingate Fractionating Plant. Also enclosed, please find a check in the amount of \$50.00 to cover the filing fees. If you have any questions about the enclosed document, please feel free to call me at (504) 755-1000.

RECEIVED

APR 1 7 1997

Environmental Bureau

Oil Conservation Division

Very truly yours, C-K Associates, Inc.

orbin

Bill Corbin Groundwater and Remediation Services Division Director

WLC/mgb

Attachment: As Stated

cc: Ms. Cindy Thompson C-K Associates, Inc.

> Ms. Terry L. Killian, P.E. Conoco Inc.

Mr. Denny Foust OCD - Aztec Office w/ 1 copy of Discharge Plan w/o check

CONOCO INC. WINGATE FRACTIONATING PLANT

DISCHARGE PLAN GW-054

APRIL 1997

APR 1 7 1997

Environmental Bureau Oil Conservation Division

CONOCO INC. WINGATE FRACTIONATING PLANT

DISCHARGE PLAN GW-054

APRIL 1997

PREPARED BY:

C-K ASSOCIATES, INC. 17170 PERKINS ROAD BATON ROUGE, LOUISIANA 70810 (504) 755-1000

C-K ASSOCIATES' PROJECT NO. 15-586

C-K Associates, Inc.

TABLE OF CONTENTS

Section	Page	<u>: No.</u>
List c	Tables	iii
List o	Figures/Maps	iv
List o	Drawings	v
Disch	ge Plan Application	vi
1.0	TYPE OF OPERATION	1
	1.1. History of Operation	1
2.0	NAME OF OPERATOR OR LEGALLY RESPONSIBLE PARTY AND LOCAL REPRESENTATIVE	2
	 Name of Legally Responsible Party	
3.0	LOCATION OF THE DISCHARGE PLAN FACILITY	3
4.0	LANDOWNER	5
5.0	FACILITY DESCRIPTION	6
	5.1Overview5.2Plant Process Description5.3Water System5.3.1Wells and Pretreatment System5.3.2Water Treatment Systems5.3.3"A & B" Cooling Water System5.3.4"C" Cooling Water System5.3.5Steam System5.3.6Domestic and Firewater System	12 13 13
6.0	MATERIALS STORED OR USED AT THE FACILITY	15
7.0	SOURCES AND QUANTITIES OF EFFLUENT AND WASTE SOLIDS GENERATED AT THE FACILITY 1	l 9
	7.1 Waste Systems 1 7.2 Stormwater 2 7.3 Water Balance 2	21

i

TABLE OF CONTENTS (Continued)

<u>Sectio</u>	on P	age No.		
8.0	DESCRIPTION OF CURRENT LIQUID AND SOLID WASTE COLLECTION/STORAGE/DISPOSAL PROCEDURES			
	 8.1 Evaporation Ponds			
9.0	PROPOSED MODIFICATIONS	. 26		
10.0	INSPECTION, MAINTENANCE, AND REPORTING	. 27		
	10.1 General Housekeeping Procedures	. 27		
11.0	SPILL/LEAK PREVENTION AND REPORTING PROCEDURES	. 28		
12.0	SITE CHARACTERISTICS	. 29		
	 12.1 Geology Description	. 29 . 29 . 33 . 33 . 34 . 37 . 37 . 40 . 45		
	12.6 Climate			
13.0	OTHER COMPLIANCE INFORMATION	. 47		
	13.1Spill/Leak Reporting			
14.0	REFERENCES	. 48		

ii

List of Tables

Table	Page No.
5-1	Water Supply Wells Completion Data
5-2	Water Supply Well Water Analysis
6-1	Chemicals Used at Wingate Plant
7-1	Wastewater Streams
8-1	Evaporation Pond Water Constituents
12-1	Regional Groundwater Quality Data
12-2	Offsite Wells Adjacent to Wingate Plant
12-3	Wingate Plant Monitoring Well Constituents

I.

iii

List of Figures

Figure Figure	Page No.
3-1	Site Location Map 4
12-1	Regional Structural Map - San Juan Basin
12-2	Regional Geology Map 31
12-3	Generalized Stratigraphic Column
12-4	Potentiometric Surface of Alluvial Aquifer
12-5	Shallow Ground-water Elevations
12-6	Fence Diagram-Stratigraphic Relation Underlying Pond Area 39
12-7	Well Location Map 41
12-8	Flood Hazard Boundary Map 46

List of Drawings

Drawing Number	Description
5151	Water Flow Block Diagram
5152	Water Equipment Diagram
5153 (sheets 1-4)	Wingate Plant and Area
5155	"A & B" Plant Cooling Water Equipment Diagram
5156	"C" Plant Cooling Water Equipment Diagram
5157	Steam System Equipment Diagram
5158	Process Flow Schematic

Drawings were previously submitted in the Discharge Plan from Meridian Oil, Inc. dated April 1992.

P. O. Box 198			
Hobbs, NM 8	Energy Minerals and Natural Resources Department	Revised 12/1/	
811 S. First	On Conservation Division	Submit Origin	
Artesia, NM a District III -	2040 South Pacheco Street (505) 334-6178 Santa Fe, New Mexico 87505	Plus I Cop: to Santa	
1000 Rio Bra	zos Road (505) 827-7131	I Copy to appropria	
Aztec, NM 87	(505) 827-7131 Wingats: GW-054	District Offi	
	DISCHARGE PLAN APPLICATION FOR SERVICE COMPANIES,		
	GAS PLANTS, REFINERIES, COMPRESSOR, AND CRUDE OIL PUMP STATIONS (Refer to the OCD Guidelines for assistance in completing the application)		
	RECEIVED		
	New Renewal APR 1997		
1.	Type: <u>Gas Plant</u> Environmental Bureau	• <u></u>	
2.	Operator: <u>Conoco Inc., Wingate Fractionator</u>	•	
۷.			
	Address: Post Office Box 1728 Gallup, New Mexico 87305	<u> </u>	
	Contact Person: Alan Higginbotham, Plant Manager Phone: (505) 863-1000		
3.	See Figure 3.1 9, 10, 15, Location: /4 /4 Section 16, & 17 Township 15N Rang Submit large scale topographic map showing exact location.	e <u>17w</u>	
4.	Attach the name, telephone number and address of the landowner of the facility site.		
5.	Attach the description of the facility with a diagram indicating location of fences, pits, dikes and tank	s on the facility.	
6.	Attach a description of all materials stored or used at the facility.		
7.	Attach a description of present sources of effluent and waste solids. Average quality and daily v water must be included.	olume of waste	
8.	Attach a description of current liquid and solid waste collection/treatment/disposal procedures.	Ň	
9.	Attach a description of proposed modifications to existing collection/treatment/disposal systems.		
10.	Attach a routine inspection and maintenance plan to ensure permit compliance.		
11.	Attach a contingency plan for reporting and clean-up of spills or releases.	tach a contingency plan for reporting and clean-up of spills or releases.	
12.	Attach geological/hydrological information for the facility. Depth to and quality of ground water mu	st be included.	
13.	Attach a facility closure plan, and other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders.		
14.	CERTIFICATION		
	I herby certify that the information submitted with this application is true and correct to the best of and belief.	^t my knowledge	
	NAME: Terry L. Killian Title: Director-Environmental		
	Signature: Verry Killian Date: April 15, 1997		

1.0 TYPE OF OPERATION

Wingate Plant, is a processing plant which fractionates a mixed liquefied petroleum gas stream into usable products. Its feed stock is received via pipelines from four natural gas facilities and consists of hydrocarbons with the majority of molecules containing from two to six carbon atoms along with small amounts containing up to ten and higher carbon atoms. The products of the facility are propane, normal butane, isobutane, natural gas liquid (light gasoline) and mixed butane.

1.1 History of Operation

The Wingate Plant is currently owned and operated by Conoco Inc. (Conoco). The Wingate Plant was previously owned and operated by El Paso Natural Gas Company (EPNG) until October 1990 and by Meridian Oil, Inc. (Meridian) from October 1990 to April 1996. The initial section of the Conoco Wingate Plant was the "A" plant. It was designed by Fluor Corporation to process 338,991 gallons per day of natural gas liquids. It was placed in service on October 28, 1953 and modified in May 1962.

The "B" plant section was designed by Sterns-Roger and Fish Engineering Corporations to process 659,038 gallons per day of natural gas liquids. This section was placed in service on October 25, 1956.

A deisobutanaizer section was designed by Fish Engineering. It was placed in service in December 1957. A new deisobutanaizer section was built in May 1962 and the original section was abandoned in place. The deisobutanaizer section currently produces 250,000 gallons per day of normal butane and 115,000 gallons per day of isobutane.

The "C" plant section was designed by Sterns-Roger Corporation to process 330,000 gallons per day of natural gas liquids. It was placed in Service on April. 7, 1967.

A train loading facility capable of handling 82 cars was placed in service on September 15, 1959. A major fire occurred at this facility in 1982. As a result, a deluge system and lightning protection system were installed for both truck and train loading racks.

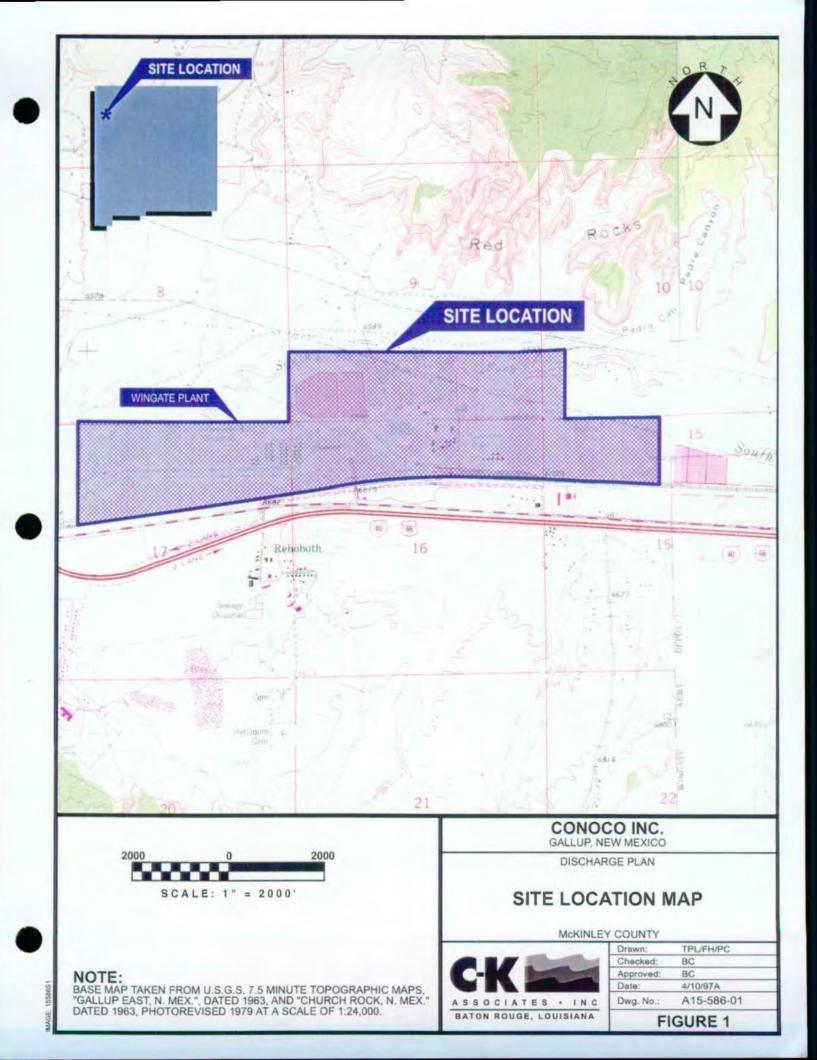
A company lodging camp consisting of 48 houses and 23 house trailers existed on the property and received utilities from the plant. The camp was retired and the houses and trailers were removed in 1986.

2.0 NAME OF OPERATOR OR LEGALLY RESPONSIBLE PARTY AND LOCAL REPRESENTATIVE

2.1 <u>Name of Legally Responsible Party</u>

Conoco requests that all correspondence regarding this plan be sent to:

Ms. Terry L. Killian, P.E. Director-Environmental Conoco Inc. P.O. Box 2197 - HU3036 Houston, Texas 77252 (281) 293-1188


2.2 Name of Local Representative

Conoco requests that copies of correspondence also be sent to:

Alan Higginbotham Plant Manager Conoco Inc. Wingate Fractionator Post Office Box 1728 Gallup, New Mexico 87305 (505) 863-1000

1507R10.WLC

2

4.0 LANDOWNER

Conoco is the landowner of record. The facility address is as follows:

Conoco Inc. Wingate Fractionator Post Office Box 1728 Gallup, New Mexico 87305 (505) 863-1000

Portions of Section 9, 10 and 15 are leased from the Navajo Tribe. Their address is as follows:

The Navajo Tribal Council Post Office Box 701 Window Rock, Arizona 86515

5.0 FACILITY DESCRIPTION

5.1 Overview

The Wingate Plant discharges approximately 30,000,000 gallons of wastewater per year. Virtually all of the wastewater is non-contact water. Approximately 22,500,000 gallons of the wastewater is blown-down from the plant boilers, cooling towers and water treatment equipment. The remaining 7,500,000 gallons is domestic wastewater. Less then 400 gallons per year of contact water from the inlet surge tanks is discharged with the wastewater. The total dissolved solids (TDS) of the wastewater stream averages less than 3,000 ppm.

Groundwater which may be affected by operations at the Wingate Plant is at a depth of 5 to 30 feet and is a non-potable water supply due to TDS levels.

The plant feedstock is split into the product components using a distillation chain. Three parallel and largely duplicate sections exist in the facility producing propane, mixed butane and natural gas liquid (light gasoline). They are called "A", "B", and "C" Plants. Typically "A" and "B" Plants run continuously and "C" Plant is used during peak demand. The mixed butane from these three sections are fed to a fourth section (deisobutanaizer plant) where normal butane and isobutane are produced.

Finished product is stored in a large tank farm. Spherical tanks are used for natural gas liquid (light gasoline) and part of the normal butane storage. These have containment dikes surrounding them. Other products which are gaseous under atmospheric pressure are stored in undiked horizontal tanks. There is no underground product storage.

Product is transported from the site via pipeline, tank trucks and railway tank cars. Giant Refinery, the largest customer, receives product via a pipeline extending approximately 15 miles to the east. Giant Refinery maintains a pumping station on the Wingate Plant property. Both the pipeline and the pumping station are property of Giant Refinery.

Natural gas from an El Paso Natural Gas Company (EPNG) transmission pipeline located north of the plant is used to provide utilities. Vapors recovered from product loading supplement gas from EPNG which is burned in boilers to produce steam. Electricity is produced by both steam driven turbines and natural gas fueled engines. The generating capacity of the plant is 2,094 kilovolt-amperage (KVA).

Underground piping is used extensively throughout the plant for water and wastewater. Process piping is aboveground except for areas between the shipping pumps and the truck and train loading rack. The product pipeline to Giant Refinery is also underground. Underground tanks have never been used at the Wingate Plant.

A vapor recovery system exists to recover all vapors vented during loading and from relief valves. Product tanks and tower relief valves vent to atmosphere. When this system is overloaded, the excess gas is fed to a candlestick flare and is burned. Two emergency flare pits exist to burn flammable liquid and gas caused by major upsets and to replace the candlestick flare when it requires maintenance.

Water is supplied to the plant by four deep (in excess of 1,000 feet) wells. Two wells are on Conoco property and two wells are six miles east of the plant. The well water is treated to remove iron, then stored in five ground level tanks for plant and firewater use, and one overhead tank for domestic use. The overhead tank is chlorinated.

One half of the cooling tower make-up water is softened using sodium zeolite ion exchange and stored in a ground level tank for use. Boiler feedwater make-up is purified using a reverse osmosis unit and stored in a ground level tank for use. The reverse osmosis unit replaced an evaporator and was placed in service on July 1, 1990.

Two cooling water systems are used. A large cooling tower services "A", "B", and boiler/auxiliary Plants. It is continuously loaded. A smaller system is loaded intermittently for "C" Plant. One boiler system, consisting of five gas-fired boilers, services all four plant sections.

Wastewater is fed to the evaporation ponds via a general waste sump and brine sump. These sumps receive the waste streams from cooling tower blowdown, boiler blowdown, filter back wash, softener regenerating streams and reverse osmosis effluent.

Six septic tanks exist on the site. Three drain to the general waste sump, one ties into the line from the general waste sump, one empties directly into the pond and one has a leach field.

There are two evaporation ponds. The east pond receives water directly from the plant. The west pond receives overflow from the east pond.

In addition to the fractionating plant, two other facilities are adjacent to the Wingate property which are owned by EPNG. They are the EPNG Gallup Pipeline District office, shops and yard and the EPNG Gallup general warehouse. They both receive domestic water from and discharge septic tank effluent to the Wingate systems and are connected to the firewater system.

5.2 Plant Process Description

A schematic diagram of the processes that handle the various liquefied petroleum gas components is shown on Drawing Number 5158.

Process feed arrives at the Wingate Plant via pipeline from EPNG's Chaco Plant, Conoco's San Juan Gas Plant in northwest New Mexico and Texaco's Aneth Plant in southeastern Utah. A maximum of 1,080,000 gallons per day of feed liquids are received and fed into six incoming feed tanks. The feed is sent to three plant sections where the liquid is fractionated into propane, mixed butane and a natural gas (light gasoline or straight run gasoline) liquid consisting of pentane, hexane and higher molecular weight components. A separate plant unit contains a distillation column used to fractionate mixed butane into normal and isobutane components.

Iron sponge units on the propane streams are used to remove sulfur that is in the form of hydrogen sulfide. Heavier organic sulfides are removed from the natural gas liquid (light gasoline) streams by perco treaters which convert sulfides to disulfides. Propane and butane streams are odorized with ethyl mercaptan as they are loaded for shipment at a concentration of 1.5 pounds per 10,000 gallons of product. Product which the customer may store underground or process is not odorized.

Product at the Wingate Plant is stored in a tank farm consisting of 49 spherical and horizontal tanks. All horizontal tanks containing propane or butane are undiked since these products are gaseous at atmospheric pressure. Spherical tanks containing the natural gas liquid (light gasoline) and normal butane have unlined spill containment dikes of earth or concrete.

Product leaves the plant via pipeline, railway tank cars and tanker trucks. Giant Refinery receives product via a 15 mile pipeline which extends east of the plant. Tank cars and tanker trucks are loaded at a facility which includes a deluge system in case of fire, an extensive lighting rod system and a vapor recovery system. The vapor recovery system condenses and recovers liquids lost in depressurizing and venting the tankers during loading operations. Condensed liquids are removed by scrubbers and returned to the plant inlet. Vapors are compressed and used as boiler fuel with excess being sent to the candlestick flare. When the vapor recovery system is overloaded, the excess is burned off in a candlestick flare. Two emergency flare pits exist to burn off gas and liquid in the event of a major upset. Complete combustion of liquid occurs in these pits so no liquid hydrocarbons reach the ground.

5.3 Water System

Water is supplied to the Wingate Plant by four groundwater wells. The water is passed through a series of pretreatment processes and into a set of raw water storage tanks prior to distribution to the plant and miscellaneous water systems.

Some of the water for plant use is softened by sodium zeolite ion exchange. The water is then used in the "A" and "B" cooling water system and the "C" cooling water system. The steam system and engine jackets use soft water which has been further purified using a reverse osmosis system.

Wastewater from the water systems is discharged to an evaporation pond via a general waste sump and a brine sump. The waste streams received by the sumps include the cooling tower blowdown, the filter backwash, the boiler blowdown, reverse osmosis effluent and the softener regeneration process. There are two evaporation ponds in series. Wastewater is discharged into the east pond and overflows into the west pond.

The general flow diagram is outlined in the Water Flow Block Diagram, Drawing 5151. The Water Equipment Diagram, Drawing 5152, shows all water systems except the cooling water and steam systems.

5.3.1 Wells and Pretreatment System

Water is supplied to the plant by four production wells in excess of 1,000 feet deep. Two of these wells are located on Conoco property and two are located approximately six miles east of the plant. The onsite wells, #3 and #4, have pump capacities of 60 gallons/minute and 75 gallons/minute, respectively. The offsite wells #6 and #7 have pump capacities of 300 gallons/minute and 200 gallons/minute, respectively. Well construction data for all four water supply wells is presented in Table 5-1. Groundwater samples from all four wells were taken by Meridian personnel on April 4, 1989 for analysis. The results of the analysis are presented in Table 5-2.

The water is transported via a pumping and underground piping system to the pretreatment processes located at the Wingate Plant. Pretreatment consists of aeration which oxidizes iron to a form which precipitates as iron (III) hydroxide. Pretreated water is then passed through filters to remove the iron. The filters are permanent and are cleaned by backwashing rather than replacement. Filter backwash is piped to the general waste sump. The water is stored in five ground level tanks for plant use and one overhead tank for domestic use. The overhead tank is chlorinated.

Table 5-1

Water Supply Wells Completion Data

	WELL #3 (onsite)	WELL #4 (onsite)	WELL #6 (offsite)	WELL #7 (offsite)
Location	T15N R17W S16 NE/NE/NE	515N R17W S16 NE/NE/NE	T15N R16W S28 SE/SE/NE	T15N R16W \$20 NW/SE/NE
Completion Date	04/53	05/53	03/58	02/67
Total Depth (ft)	2,012	1,941	1,275	1,384
Casing Depth (in/ft)	16-76 12 3/4-185 8 5/8-1,614 6-2,012	12 3/4-131 8 5/8-1,610	16-264 12 3/4-1,033	16-180 12 3/4-1,296
Static Water Level 10/89 (ft)	Flowing Artesian	89	Flowing Artesian	Flowing Artesian
Pumping Water Level 10/89 (ft)	810	Not measured	290	310
Well Yield (gpm)	55	67	261	237

Ref.: Discharge Plan-Wingate Fractionating Plant, Meridian Oil Inc., 4/9/92

1507R10.WLC

TABLE 5-2

Water Supply Well Water Analysis

	WATER WELL #3	WATER WELL #4	WATER WELL #6	WATER WELL #7
рН	7.7	7.7	7.8	7.6
Alkalinity (as CaCO3)	0	0	0	0
Total Alkalinity (as CaCO3)	202	191	164	166
Sulfate (as SO4)	478	410	614	618
Total Hardness (as CaCO3)	190	420	628	710
Calcium (as Ca)	40	107	156	154
Magnesium (as Mg)	22	37	58	79
Sodium (calculated as Na)	237	82	75	39
Silica (as SiO2)	0.39	0.24	0.23	0.23
Fluoride (as F)	5.1	6.7	5.2	5.4
Total Iron (Fe)	0.37	7.9*	0.35	0.15
Dissolved Iron (Fe)	0.15	0.13	0.12	0.1
Total Manganese (Mn)	0.17	0.22	0.17	0.17
Dissolved Manganese	0.12	0.16	0.14	.14
Total Dissolved Solids	932	944	1058	921
Biological Oxygen Demand	<1	<1	<1	<1
Chemical Oxygen Demand	<1	<1	<1	<1
Ammonia Nitrogen (as NH4)	0.35	0.25	0.29	0.13
Nitrate (as NO3)	< 0.1	<0.1	< 0.1	< 0.1
Nitrite (as NO2)	0.03	0.06	0.02	0.03
Total Organic Carbon	0.67	0.62	1.09	0.68
Specific Conductance	1215	1171	1199	1173

Concentrations in parts-per-million (ppm), pH in standard units (s.u.), specific conductance in micromhos/centimeter (μ mhos/cm).

*The iron content may be high as well #4 had recently been serviced.

Sample date: April 4, 1989

Ref.: Discharge Plan-Wingate Fractionating Plant, Meridian Oil Inc., 4/9/92

5.3.2 Water Treatment Systems

Some of the raw water is treated with a sodium zeolite ion exchange softening system. This system removes calcium and magnesium ions and replaces them with sodium ions. The softened water provides half of the makeup for the "A & B" cooling tower, the "C" cooling tower and after further treatment, the steam system. The softeners are regenerated using a saturated brine (NaCl Solution) from the salt pit. The regeneration stream is discharged to the general waste sump. The soft water is stored in a ground level tank.

A portion of the soft water is treated with a reverse osmosis unit to remove dissolved ions. This water is stored in a ground level tank and is used as makeup for the steam system. The concentrated waste stream is discharged to the general waste sump.

5.3.3 "A & B" Cooling Water System

The "A & B" cooling water system is diagrammed in Drawing 5155. The water in this system is cooled through the evaporation process via spraying in a cooling tower. A portion of the cooled water is passed through a sidestream filter to control the level of suspended solids in the circulating water. A controller maintains the proper level of total dissolved solids in the cooling water by adjusting the blowdown stream. The blowdown and side stream filter backwash are discharged to the general waste sump. Cooling water pH is controlled using H₂SO₄.

The cooling water is pumped to the process condensers and heat exchangers. The condensers which utilize the cooling water include "A" Plant depropanizer, "A" Plant debutanizer, "B" Plant stabilizer and "B" Plant depropanizer overhead product condensers. The coolers which utilize the cooling water include the debutanizer natural gas liquid (light gasoline), butane, and propane coolers, the depropanizer butane and propane coolers and the propane dehydrator cooler. The piping system is designed to allow the condensers to be backwashed by reversing the flow of water in the condenser and draining the reversed stream directly to the waste line feeding the evaporation pond. A small portion of this stream is also used as bearing cooling water for the product pumps.

Cooling water is also used in the boiler plant in the closed loop cooling water system (engine jacket and oil water coolers) and in the starting and instrument air coolers, fan and feed water pump bearing coolers, and boiler blowdown sample coolers.

The "A & B" cooling water is returned to the cooling tower after passing through the coolers and condensers listed in this section.

5.3.4 "C" Cooling Water System

The "C" Plant cooling water system is diagrammed in Drawing 5156. A portion of the cooling tower water is passed through a side stream filter to control the level of suspended solids in the circulating water. The level of total dissolved solids in the water is controlled by a constant blowdown stream. The side stream filter backwash and the blowdown are discharged to the brine sump. Cooling water pH is controlled using H_2SO_4 .

"C" Plant cooling water is used in the process condensers and heat exchangers, including stabilizer and depropanizer overhead product condensers and butane, propane, natural gas liquids (light gasoline), and dehydrator coolers. The water is then recycled to the cooling tower. The "C" plant condensers are backwashed using the same method as in the "A" and "B" plants. A small portion of the stream also provides bearing cooling water for the product pumps.

5.3.5 Steam System

A part of the softened water is treated with a reverse osmosis unit to remove the dissolved salts for use in the steam system. The steam system is shown in Drawing 5157. The plant capacity is 201,000 pounds of steam per hour (65,000 lb/hour at 100 psig and the remainder at 400 psig).

The water from the reverse osmosis unit is used for the boiler feed water make-up. It is conducted into a feed line that connects a set of condensate storage tanks, pumped into the deaeration heaters and transferred through a preheater to the boilers. The water is deaerated to prevent air buildup in the steam lines and to prevent oxygen corrosion in the boilers and steam systems.

Steam is distributed to electrical generators, reboilers, preheaters, and steam driven pumps throughout the "A & B" Plant, the "C" Plant and the boiler plant. The equipment that utilizes the steam for heat exchange include the stabilizer, depropanizer, debutanizer, mixed butane, and the iso-butane preheaters and reboilers. The equipment that utilizes the steam for a power source include the stabilizer, stand-by, depropanizer, and isobutane feed pumps, reflux pumps, #4 and #5 electrical generators, the boiler feed pumps and cooling tower spray pumps in both "A & B" and "C" cooling systems.

After passing through the process equipment, the condensate is returned to the set of condensate storage tanks for reuse. Fin-fan condensers are used to condense some of the exhausted steam.

5.3.6 Domestic and Firewater System

Water for domestic use is chlorinated and fed to the plant from an elevated storage tank. EPNG's general warehouse and pipeline district office also receive domestic water and fire water from the plant.

Two firewater pumps feed fire hydrants and monitors throughout the property and a deluge system in the train and truck loading areas. A runoff pond exists to capture and evaporate water from the deluge system. The pond has received no water from the firewater system. Water will no longer be added to this pond except in an emergency when the deluge system is activated. An additional utility pump is connected to the firewater system and is used for various utility applications and to clean equipment.

6.0 MATERIALS STORED OR USED AT THE FACILITY

A number of process and non-process chemicals or additives are used at the Wingate Plant. A list of products stored is presented in Table 6-1. The majority of the chemicals are stored in small quantities and any spills or leaks would be very small in volume and easily contained in the immediate area.

Table 6-1

Chemicals Used at Wingate Plant

Chemical	Description	Use or Storage Location	Amount
ACETONE	LIQUID	LAB	1 GAL
ACETYLENE	GAS	SHOP	420 CU FT
AMBERLITE IR-120 PLUS	SOLID	CHEM STOR	1,500 LB
AMINO ACID REAGENT	SOLID	LAB	1 LB
ANSUL PURPLE K	SOLID	WAREHOUSE	2,800 LB
BALANCED POLYMER	LIQUID	BOILER HOUSE	250 GAL
BETZ DEPOSIT CONTROL 40K	LIQUID	A/B COOLING Tower	200 GAL
BETZ INHIBITOR 26K	LIQUID	A/B COOLING TOWER	200 GAL
BUFFER SOLUTION PH 4.0	LIQUID	LAB	5 GAL
BUFFER SOLUTION PH 10.0	LIQUID	LAB	5 GAL
BUFFER SOLUTION PH 7.2	LIQUID	LAB	5 GAL
CALCIUM CHLORIDE	SOLID	CHEM STOR	2,900 LB
CAUSTIC SODA BEADS	SOLID BASE	CHEM STOR	50 LB
CIIAMPION R&O HYDROCARBON RECIPROCATING	LIQUID	WAREHOUSE	5 GAL
CHLORINE	BIOCIDE	A/B/C COOLING TOWER	2,000 LB S
CONDENSATE	LIQUID	TANK FARM	10,000 BBL
CONDUCTIVITY ST., 4600 MHOS CODE 245	LIQUID	LAB	1 GAL
CORR-SHIELD 736	LIQUID	BOILER HOUSE	1 BBL
DOCTOR SOLUTION	LIQUID	LAB	0.5 GAL
DPD 2 FREE CHLORINE	SOLID	LAB	1 LB
EL MAR 2000 ENGINE OIL	LIQUID	BOILER HOUSE	110 GAL
EP CONOLITH HT GREASE NO. 2	SEMI-SOLID	WAREHOUSE	21 LBS
FERROSWEET IRON SPONGE	SOLID	CHEM STG BLDG	3,000 LBS
FLEET HEAVY DUTY ENGINE OIL	LIQUID	WAREHOUSE	10 GAL
FLOCLEAN IPA 403	LIQUID	R. O. BLDG	2 GAL
GALLIC ACID CODE 276	LIQUID	LAB	0.5 GAL
HALON 1301 FIRE EXTINGUISHANT	GAS	CONTROL ROOM	200 LBS

ī.

Table 6-1

Chemicals Used at Wingate Plant (Continued)

Chemical	Description	Use or Storage Location	Amount
HARDNESS BUFFER	LIQUID	LAB	0.5 GAL
HARDNESS INDICATOR CODE 290	LIQUID	LAB	0.5 GAL
HARDNESS TITRATING SOLUTION	LIQUID	LAB	0.5 GAL
HELIUM	GAS	LAB	1,952 CU FT
HSW0700F (Sulfa-Scrub)	LIQUID	VRU AREA	1 BBL
HSW0710L (Sulfa-Scrub)	LIQUID	VRU AREA	1 BBL
HYPERSPERSE ANTIFOULANT	LIQUID	R.O. BLDG	0.5 BBL
METHANOL	LIQUID	C PLANT & DRUM STORAGE	75 0 GAL
METHYL ORANGE INDICATOR CODE 211	LIQUID	LAB	0.5 GAL
METHYL PURPLE INDICATOR - 1.0	LIQUID	LAB	0.5 GAL
MOBIL GLYGOYLE 22	LIQUID	VRU	110 GAL
MOLYBATE REAGENT FOR PO4 CODE 2044	SOLID	LAB	1 LB
MOLYVER 1, MOLYBDENUM REAGENT	SOLID	LAB	1 LB
MOLYVER 2, MOLYBDENUM REAGENT	SOLID	LAB	1 LB
MOLYVER 3, MOLYBDENUM REAGENT	SOLID	LAB	1 LB
MULTIGEAR LUBE EP SAE 85W-140	LIQUID	WAREHOUSE	5 GAL
N-BUTANE, ISO-BUTANE, "D" GRADE BUTANE	GAS	TANK FARM	20,000 BBL
NITROGEN, COMPRESSED GAS -	GAS	FIRE TRUCK BLDG, LAB & TRUCK ISLANDS	1,200 CU FT
NOSEGUARD	SOLID	CHEM STGE BLDG	60 LBS
OXYGEN	GAS	FIRE TRUCK BUILDING	484 CU FT
PBC MIX/EPBC MIX	LIQUID	PLANT INLET	150M GAL
PELADOW MINI-PELLETS 90% CALCIUM CHLORIDE	SOLID	CHEM STGE BLDG	5,000 LBS

C-K Associates, Inc.

Table 6-1

Chemicals Used at Wingate Plant (Continued)

Chemical	Use or Storage Description Location		Amount
PHENOLPHTHALEIN INDICATOR	SOLID	LAB	1 LB
PHENOLPHTHALEIN SOLUTIONS	LIQUID	LAB	1 LB
POLYMER 1120	LIQUID	DRUM STRGE	2 BBL
POTASSIUM IODIDE-IODATE	SOLID	LAB	1 LB
POTASSIUM PERMANGANATE	SOLID	CHEM STGE BLDG	0.5 LB
PROPANE	GAS	TANK FARM	15M BBL
PURPLE X	LIQUID	BOILERHOUSE	15 GAL
SAFETY-KLEEN PREMIUM SOLVENT	LIQUID	WAREHOUSE	30 GAL
SCENTINEL A	LIQUID	TANK FARM & TRUCK ISLANDS	2,000 GAL
SODA ASH	SOLID	CHEM STGE BLDG	750 LBS
SULFITE INDICATOR PLUS	SOLID	LAB	1 LB
SULFUR	SOLID	LAB	2 LB
SULFURIC ACID	LIQUID	A/B/C COOLING TOWER & LAB	700 GAL
SULLUBE 32	LIQUID	WAREHOUSE	10 GAL
SUPER HYDRAULIC OIL 22, 32, 46, 68	LIQUID	BOILER HOUSE	30 GAL
TRIBOL 890 HEAVY SYNTHETIC COMPRESSOR OIL	LIQUID	BOILER HOUSE	60 LBS
ZEP-A-LUME	LIQUID	CHEM STGE BLDG	5 GAL

Ref.: Wingate Plant Chemical Storage Inventory 1996

18

7.0 SOURCES AND QUANTITIES OF EFFLUENT AND WASTE SOLIDS GENERATED AT THE FACILITY

7.1 Waste Streams

Waste streams originate from the backwashing of the iron filters in the pretreatment system, from the regeneration of the sodium zeolite ion exchanger, from the reverse osmosis waste, from the boiler and cooling tower blowdowns, from the backwashing of the condensers, from the backwashing of the side stream filters and from the septic tank systems. The only wastewater in contact with process streams (hydrocarbons) is the flow from the inlet feed tank water legs. This amounts to less than one gallon per day. Table 7-1 lists the waste streams with their flows.

The waste streams are directed to either the general waste sump, the brine sump, or are discharged directly to the evaporation pond. The wastes from the general waste and brine sumps are subsequently discharged into the evaporation ponds.

The general waste sump provides a waste collection point for the iron filter backwash, the softener regeneration water, the reverse osmosis waste, the boiler blowdown waste, the "A & B" side stream filter backwash, the "A & B" cooling tower blowdown water, the boiler house drain water, and the plant northeast, northwest and southwest septic tank water. The waste in the general waste sump may include some surface water runoff.

The brine sump provides a waste collection point for the overflow from the salt pit, the "C" cooling tower blowdown water, and the overflow from the plant northeast, northwest and southwest septic tanks. The waste in the brine sump may also include some surface water runoff.

The backwash from the condensers, the water from the inlet feed surge tanks, and the discharge from the warehouse septic tank are discharged into the waste stream between the sumps and the evaporation ponds. The water from the inlet feed surge tanks is the only contact water discharged to the evaporation pond. This water is entrained in the feed stock from the incoming pipeline. Any condensed water is removed via a manual valve in water legs on the six feed tanks. It is discharged to an open drain pipe and is pumped to the metered line to the evaporation pond. All other contact water and water which is produced in the process is sent to the candlestick flare to incinerate any hydrocarbon compounds with may be present.

Table	7-1
-------	-----

Wastewater Streams

STREAM	FLOW
Iron Filter Backwash	2,325 gal/day
Sodium Zeolite Regeneration	12,890 gal/day
Boiler Blowdown	28,000 gal/day
"A" & "B" Cooling Tower Blowdown	26,400 gal/day
"C" Cooling Tower Blowdown	360 gal/day
"A" & "B" Side Stream Filter Backwash	7,500 gal/day
"C" Side Stream Filter Backwash	575 gal/day
Reverse Osmosis Unit Waste Stream	14,400 gal/day
Process Feed Water Legs (Contact)	1 gal/day
Septic Tanks	
El Paso Natural Gas District Office and Warehouse	1,600 gal/day
Warehouse	1,600 gal/day
Plant (3) (to general waste sump)	5,135 gal/day
Plant (to leach field)	50 gal/day
Pond Influx	94,960 gal/day

Ref.: Discharge Plan-Wingate Fractionating Plant, Meridian Oil Inc., 4/9/92

i I Domestic discharges are made through six septic tanks. One septic tank in the southeast corner of the plant, is fed by one low use restroom. It has a leach field and does not empty into the evaporation ponds. The other three septic tanks in the processing plant area are discharged into the general waste sump. The septic tank for EPNG's general warehouse discharges into a metered line to the evaporation pond. The septic tank for EPNG's pipeline district office discharges into the pond through an unmetered line.

7.2 Stormwater

Storm water is routed to a discharge ditch by five shallow cement lined depressions. The drainage ditch runs to the west along the north edge of the plant. It empties into a large ditch about 2,300 feet west of the plant processing area. The larger ditch flows northwest for about another 2,300 feet and discharges into the Rio Puerco. In management of stormwater run off Conoco will comply with the National Pollutant Discharge Elimination System (NPDES) stormwater permit requirements.

7.3 Water Balance

A water balance was calculated from flowmeter data collected in 1990. This data was supplemented using information on water treatment regeneration and blowdown schedules. Estimates of domestic sewage were made based on number of workers in various areas. The balance is accurate for the period covered but water use can vary as a function of plant production and climate. The temperature and humidity will have a large effect on cooling water usage. During the winter a part of the cooling load is obtained from conduction of heat in the water to cold air instead of from evaporation of the cooling water. The production load of the plant affects both cooling water and boiler water usage. During the period of the balance, "C" plant was in little use which accounts for the low makeup water for the "C" plant cooling tower.

Approximately 305,000 gallons of water per day (gpd) are produced by the inlet wells. This can vary depending on which well is on. The majority of the water, approximately 60% of the total, is produced by Well #7. This load can be shifted to Well #6 or be distributed more evenly between the four wells. Approximately 200,000 gpd (65%) is utilized by the "A & B" cooling system, approximately 3,000 gpd (1%) is utilized by the "C" cooling system, and 11,300 gpd (5%) is utilized by the domestic system. Boiler feed make-up water is estimated to be 60,000 gpd (20%). The remaining 10% is used in water treatment regeneration and blowdown streams. The rate of waste from the main inlet into the evaporation pond is approximately 95,000 gpd (31% of well flow). The water balance is shown on Drawing 5151.

94,528,000 gallons of well water was used in 1989. From the water balance, the flow to the evaporation ponds would be 31 percent of this flow or 30,000,000 gallons per year. A totalizing flow meter was installed in the pipe discharging waste to the evaporation ponds. It became operational in February 1990.

The capacity of the ponds to evaporate water is determined by subtracting the annual rainfall (9.66 inches) from the annual lake evaporation rate (52.00 inches). The net evaporation rate is 42.34 inches/year. Using the surface area of 1,173,000 square feet, the annual evaporation capacity of the ponds is 31,000,000 gallons. Evaporative capacity exceeds wastewater inflow.

8.0 DESCRIPTION OF CURRENT LIQUID AND SOLID WASTE COLLECTION/STORAGE/DISPOSAL PROCEDURES

8.1 Evaporation Ponds

Plant waste streams are discharged to the evaporation ponds for final disposal by evaporation. The streams enter the east pond through a metered line containing most of the effluent and through an unmetered line from the district office containing only domestic waste. When the east pond is full the west pond receives the overflow. The east pond contains water throughout the year. The west pond only receives overflow during the winter months and sometimes dries up in the summer months. The east pond is contained in a 560 foot by 940 foot area and has a surface are of 480,000 square feet (11.0 acres). The west pond is contained in a 900 foot by 850 foot area and has a surface area of 693,000 square feet (15.9 acres). The north edges of the ponds are about 200 feet from the normally dry Rio Puerco. The east pond was placed in operation between 1968 and 1970. These ponds replaced smaller evaporation ponds which have been closed.

A series of flow meters have been installed to measure incoming water and outgoing waste streams. They measure both flow rate and total flow. They are indicated on the process flow diagrams with a circle with the letters "FIT" inside which stand for Flow Indicating Transmitter (FIT). These flowmeters will be read monthly and the total flow recorded.

Samples from the evaporation ponds will be obtained annually and analyzed in accordance with the "Guidelines for the Preparation of Discharge Plans at Natural Gas Plants, Refineries, Compressor and Crude Oil Pump Stations (Revised 12/95). These parameters are listed on Table 8-1. Sampling and analytical methods will be consistent with the references provided in WQCC 3107.B. Any records related to waste characteristics will be retained by Conoco for at least five years as required by Water Quality Control Commission (WQCC) regulations. The results of the analysis will be reported to NMOCD to comply with the WQCC regulations. Any changes, anticipated or otherwise, to the disposal system will be reported to NMOCD.

1507R10.WLC

Table 8-1

Evaporation Pond Water Constituents

Constituent				
Arsenic (As)	Alkalinity			
Barium (Ba)	Hardness			
Bromide (Br)	Benzene			
Cadmium (Cd)	Toluene			
Chromium (Cr)	Ethylbenzene			
Cyanide (Cn)	Xylenes (m, o & p)			
Lead (Pb)	Carbon Tetrachloride			
Mercury (Hg)	1,2-dichloroethane (EDC)			
Selenium (Se)	1,1-dichloroethylene (1,1-DCE)			
Silver (Ag)	1,1,2,2-tetrachloroethylene			
Bicarbonate	1,1,2-trichloroethylene			
Calcium (Ca)	Methylene chloride			
Carbonate (CO ₃)	1,1-dichlorethane			
Chloride (Cl)	Ethylene dibromide (EDB)			
Fluoride (F)	1,1,1-trichloroethane			
Magnesium (Mg)	1,1,2-trichloroethane			
Nitrate (NO3 as N)	1,1,2,2-tetrachloroethane			
Potassium (K)	Vinyl chloride			
Silica (SiO ₂)	Benzo-a-pyrene			
Sodium (Na)	Naphthalene			
Sulfate (SO4)				
Total Dissolved Solids (TDS)				
pH				
Conductivity	· · · · · · · · · · · · · · · · · · ·			

C-K Associates, Inc.

8.2 Waste Disposal

Waste oil from engines, generators, and motors is stored in drums on a concrete slab to the east of the processing area. The drums are periodically removed and recycled by Mesa Oil of Albuquerque, New Mexico.

Wastes such as waste paper, office and domestic garbage and miscellaneous wastes are removed to a landfill by the City of Gallup, New Mexico.

Other waste such as activated alumina are to be disposed at the Northwest New Mexico Regional Solid Waste facility, while mercury from mercury meters would be properly handled by Kettleman's, a Chemical Waste Management facility in California.

10.0 INSPECTION, MAINTENANCE, AND REPORTING

The Wingate Plant is operated in a manner to prevent and mitigate any unplanned releases to the environment. The plant is manned 24 hours per day and 365 days per year including holidays. Plant process and storage units are regularly observed by a number of personnel during normal operations, and any evidence or sign of spill/leaks are routinely reported to supervisory personnel so that repairs or cleanup can be promptly effected. Routine maintenance procedures conducted at the Wingate Plant also help to assure that equipment remains functional and that the possibility of spills/leaks is minimized.

Should a release of materials occur, Conoco will comply in accordance with provisions described in NMOCD Rule 116 and WQCC Section 1203. A Spill Prevention Control and Counter Measures Plan exists for the plant.

10.1 General Housekeeping Procedures

Conoco strives to reduce the potential for spills and leaks in all areas. No reportable liquid spills have occurred since Conoco began operations in April 1996. According to plant records and information from the Discharge Plan-Wingate Fractionating Plant filed by Meridian Oil Inc. (April 1992) no reportable liquid spills are documented at the Wingate Plant since the 1950s.

Non-process chemicals are used in relatively small quantities at the plant and are managed in a manner to prevent discharges to the environment. Any chemical spills which might occur would be immediately contained, controlled and any effects mitigated.

11.0 SPILL/LEAK PREVENTION AND REPORTING PROCEDURES

Cleanup procedures vary with the nature and extent of any unplanned release. Spills of acids and bases are relatively easy to control and general procedures include neutralization of the material in-place before a final evaluation is made on its ultimate disposal. Once neutralization is confirmed by sampling, it is quite probable that no further actions will be required to assure protection of human health and the environment.

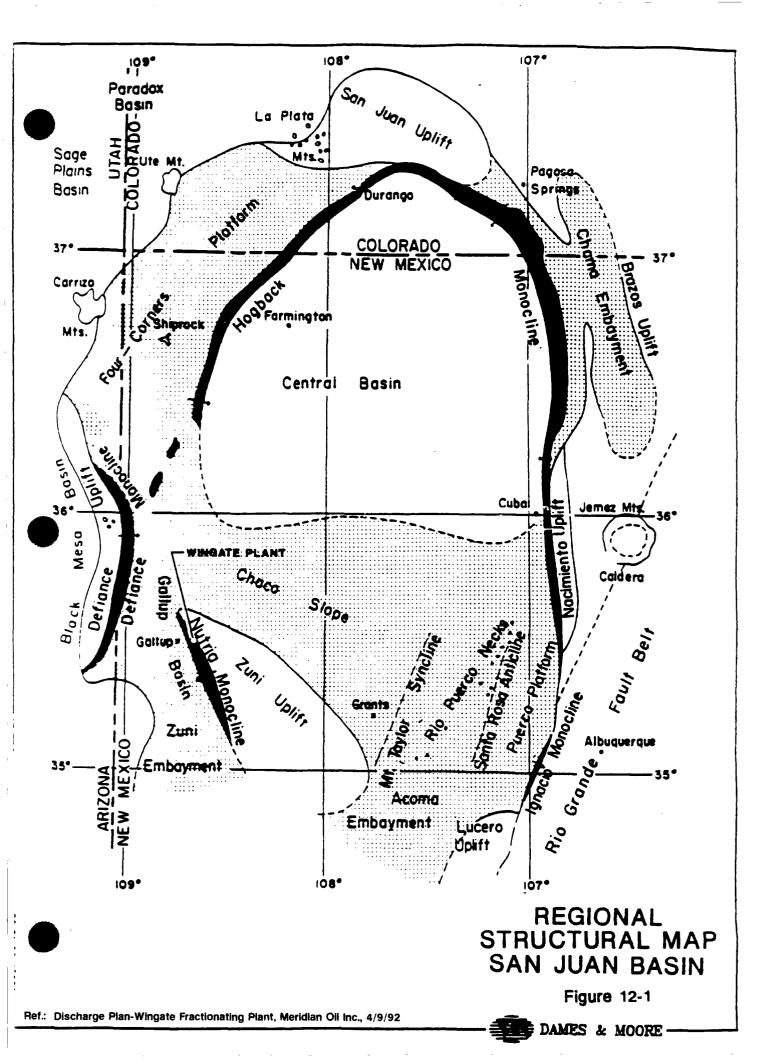
If a chemical spill occurs, general cleanup procedures would involve minor earthwork to prevent migration, and recovery of as much free liquid as possible. Recovered chemical would then be transported off-site for reclamation or disposal. Any organic chemical which may have soaked in the soil will be left in place and will be disked periodically to enhance biodegradation.

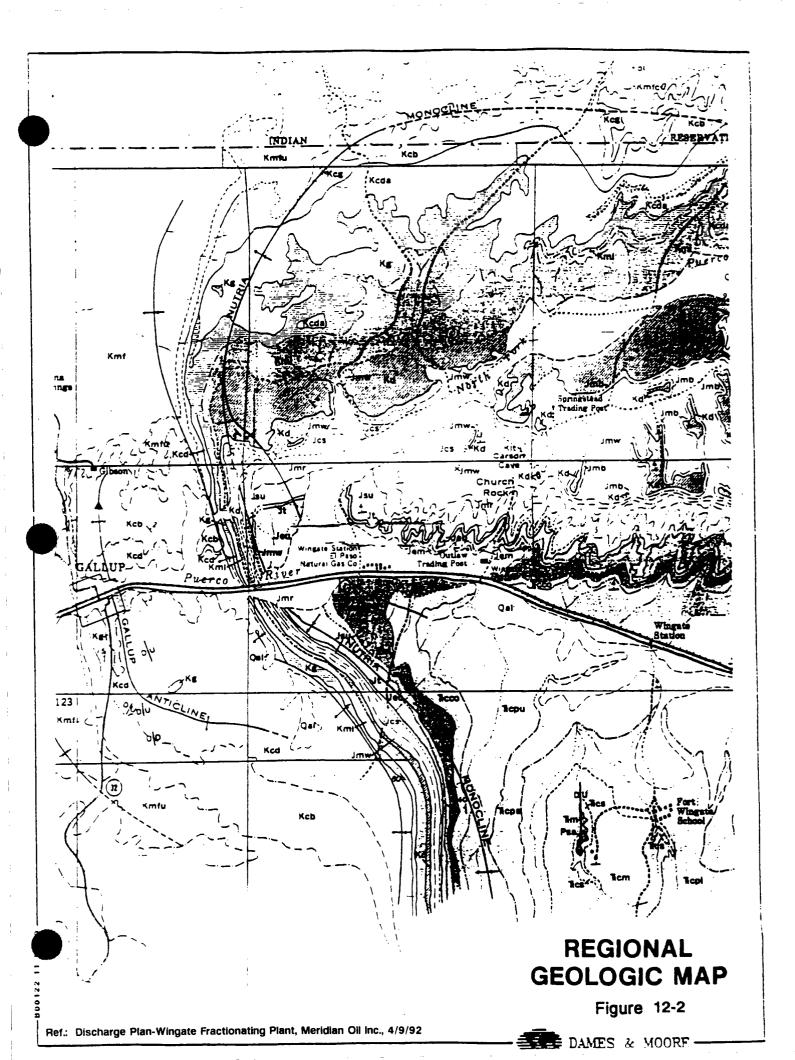
Spills of organic materials which might occur at the drum storage area will be small in nature and easily contained. If a spill occurs, any free liquids will be contained by earthwork, recovered if possible and held in storage pending a decision on final disposal. Based on existing literature, analysis, and regulatory guidelines, any contaminated soil will either be left in place, transferred to other existing waste-management areas (if no incompatibilities exist), or transported off-site for proper disposal.

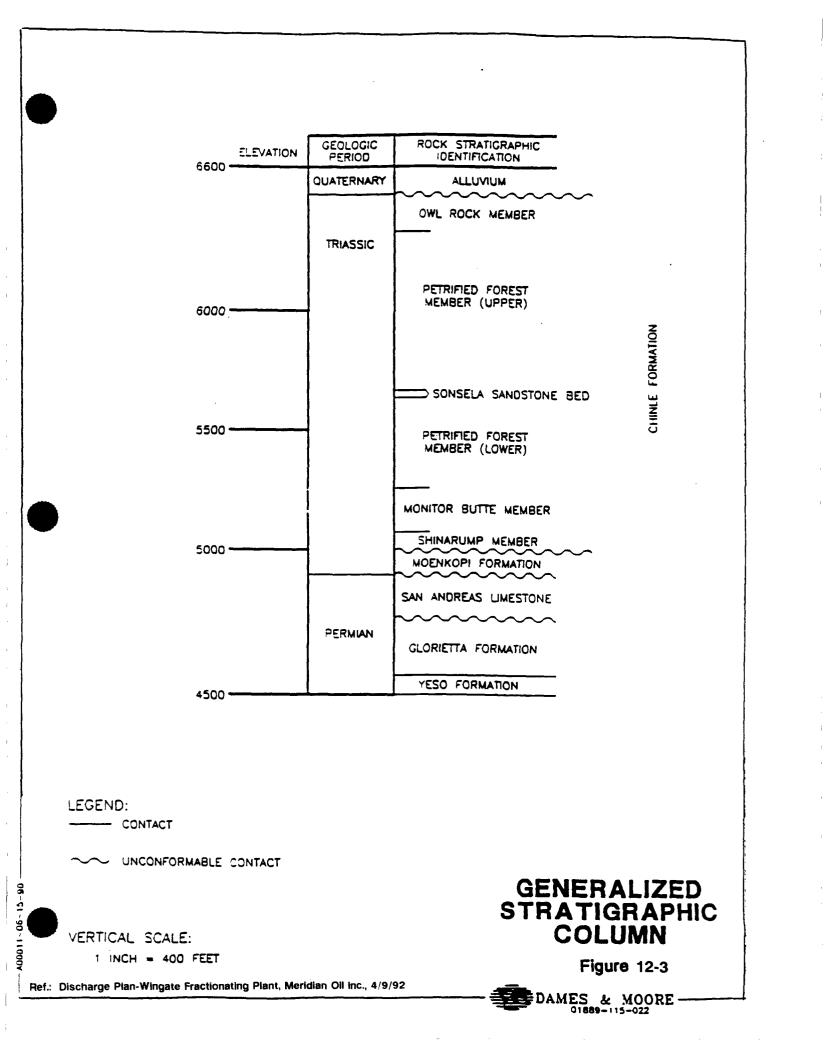
Potential releases could result from dike failure of the evaporation pond. Should a potential or actual release occur, some earth moving equipment is available on site or through contractors to repair damage to any dikes. Any liquids which have been released will be collected, where practical, and reintroduced into the wastewater system as is practical.

12.0 SITE CHARACTERISTICS

12.1 GEOLOGY DESCRIPTION


12.1.1 <u>Regional Geology</u>


The Wingate Plant is situated along the southwestern margin of the San Juan Basin designated the Zuni Uplift, in the Colorado Plateau physiographic Province (Figure 12-1). The Zuni Uplift is a northwest trending structural dome comprising an area approximately 55 miles in length by 20 miles in width. The site lies at the head of the western side of the uplift termed the Nutria Monocline. The San Juan Basin forms an asymmetric basin covering an area of about 25,000 square miles in northwestern New Mexico, and portions of northeastern Arizona, and southwestern Colorado. The basin is reported to contain as much as 15,000 feet of Paleozoic and Mesozoic sediments (Fassett and Hinds, 1971).


The regional geology in the area surrounding the Wingate Plant is shown in Figure 12-2. Based on available drilling log information the generalized stratigraphic column in Figure 12-3 was prepared. As shown, the surficial geology surrounding the site areas is comprised of Quaternary-aged alluvial deposits. Below the alluvium lies a thick sequence (on the order of 1,500 feet) of the Chinle Formation siltstones and mudstones. Underlying the Moenkopi Formation, also unconformably, are the Permian-age San Andres Limestone, and Glorieta Sandstone (102 and 230 feet thick, respectively), which comprise the regional aquifer in the site area. The deepest onsite well is completed into the top portion of the Yeso Formation also of Permian age, described as a fine-grained Arkosic sandstone, to a depth of approximately 2,000 feet. Below the base of the Yeso Formation in descending order are the sandstone, claystone and siltstone of the Permian-age Abo Formation, unnamed limestone and conglomerate rocks of Pennsylvania age, and Percambrian granitic and metamorphic rocks which comprise the basement rocks in the regions.

12.1.2 Local Geology

The site lies along the south side of an east-west trending alluvial drainage formed by the South Fork of the Puerco River. To the south of the site are the Zuni Mountains, reaching a maximum elevation of around 9,000 feet. North of the plant, a massive red sandstone escarpment comprised of the Triassic/Jurassic-aged sandstone and siltstone deposits of the Entreda and Wingate sandstones. It rises approximately 400 feet above the valley to an elevation of around 7,000 feet. The Wingate Plant property ranges in elevation from around 6,580 to 6,612 ft-msl.

As shown in Figure 12-2, the surficial geology in the site area, consists of Quaternary-ages alluvium. These strata dip to the northwest at approximately 2-3 degrees.

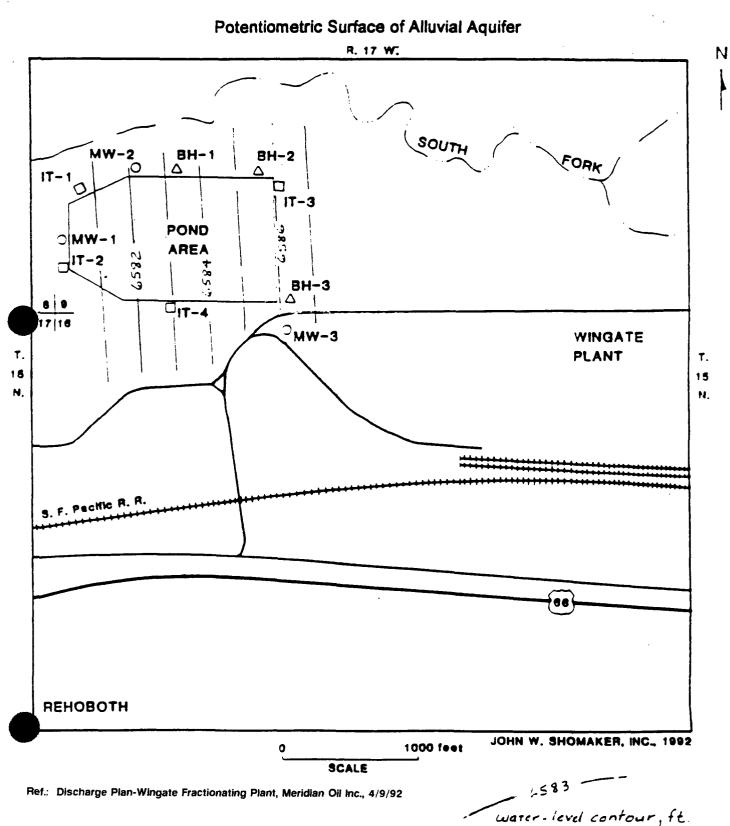
12.2 Hydrogeology

12.2.1 <u>Regional Hydrogeology</u>

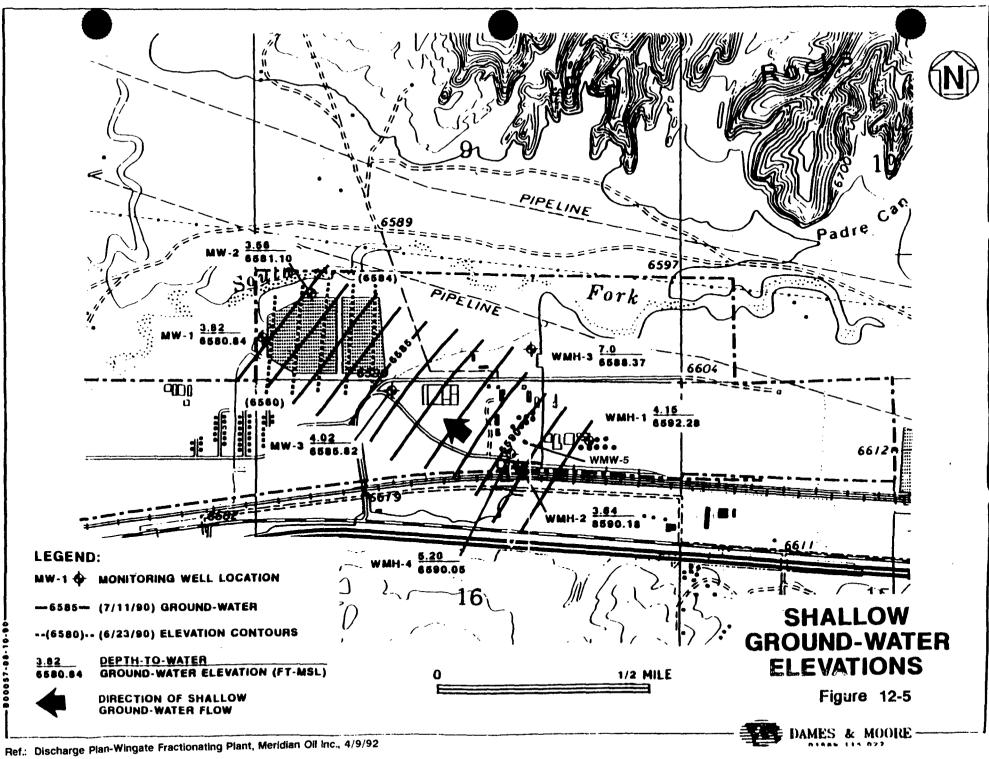
The hydrogeology of the region is a function of geologic structure and hydraulic properties of the sedimentary formations deposited in the basin. Permeable sandstones and limestones are typically interbedded with relatively impermeable shales, siltstones and mudstones, resulting in the formation of numerous confined aquifer systems in the Permian, Triassic, Jurassic, and Cretaceous-aged deposits. The northward dip of these strata in the southwestern portion of the San Juan Basin, in conjunction with the presence of impermeable overlying formations, results in recharge being limited to the outcrop exposure of the waterbearing unit, with progressively artesian conditions occurring to the north. The major regional aquifer in the site area is San Andres Limestone/Glorieta Sandstone of Permian age. Recharge to the Sand Andres/Glorieta aquifer occurs primarily in areas of the Zuni Mountains to the south of the site area.

As stated previously, the San Andres Limestone/Glorieta Sandstone formations constitute the primary aquifer in the region. This aquifer has been designated part of the C multiple-aquifer in the region. This aquifer has been designated part of the C multiple-aquifer system (Cooley, et.al 1969). The top of the San Andres is found at a depth of approximately 1,670 feet, according to the driller's log data from on site wells. The thickness of the combined aquifer system in the site area is reported to be about 330 feet. Driller's log data from off site wells approximately six miles to the east, which service the plant via pipeline indicate the tope of the San Andres/Glorieta aquifer to be present locally at a depth of around 1,000 feet. Based on well data from the four active wells (two onsite and two offsite), the San Andres/Glorieta aquifer appears to become more productive to the east perhaps reflecting an increased degree of fracturing and/or solution cavities in that area.

Available aquifer test data for the San Andres/Glorieta report transmissivity and storage coefficient ranges of < 5 to 3,740 ft²/day, and 7.6 x 10⁻⁵ to 1.3 x 10⁻⁴, respectively (Shomaker, 1971).


12.2.2 Local Hydrogeology

Shallow borings in the southwestern corner of the plant site associated with a geotechnical investigation for a railroad overpass (Sergent, Hauskins and Beckwith, 1987), encountered between 40 and 80 feet of unconsolidated clays, silty clays, silty sands and gravels, prior to auger refusal in weathered siltstones and sandstone. The specific capacity of offsite wells completed in alluvium reported to range from 0.19 to 1.75 gpm/ft (Shomaker, 1971). A review of driller's logs for the onsite water supply wells indicated alluvial thickness on the order of 100 feet. These logs variously report that the Chinle Formation or basal unit of the Wingate sandstone to underlie the alluvial fill deposits.


In order to better define the hydrogeology of the shallow alluvial aquifer and assess the impact of the plant's wastewater impoundments (i.e. east and west evaporation ponds) three groundwater monitoring wells were installed around the impoundments (Dames & Moore 1990) and three additional test holes were drilled and four field permeability tests were conducted (Shomaker 1992). Two of the monitoring wells were sited downgradient (MW-1 & MW-2), and one upgradient to the approximate direction of shallow groundwater flow. The location of these monitoring wells were sited downgradient (MW-1 & MW-2), and one upgradient to the approximately direction of shallow groundwater flow. The location of these monitoring wells (MW), bore holes (BH) and field tests (FT) are shown in Figure 12-4. In addition, five other wells were installed onsite as part of a property transfer environmental assessment (WMW.-1,2,3,4 and WMW-5). The location of these wells is shown in the Figure 12-5.

Three test holes were drilled around the ponds between January 6 and 8, 1992. Each hole was drilled to a depth of 26.5 feet. Split-spoon samples were collected to total depth in each hole. Core samples were collected in BH-3 from 12.5 to 14 feet (red clay), and 17.5 to 19 feet (dark red clayey silt). The core samples were submitted for laboratory analysis for column constant-head permeability tests. The laboratory was unable to saturate the samples after 21 days. The samples were sieved and found to be very fine-grained with 76 percent of the samples passing 200 mesh. The plasticity and liquid limit of both samples were 35 and 51, respectively, indicating both samples were high plasticity clays. The permeabilities were found to be less than 10^{-7} cm/sec.

C-K Associates, Inc.

Based upon well logs, bore holes and cores, the stratigraphy of the alluvium under the ponds consists generally of three unconsolidated units which are illustrated in Figure 12-6. These units include (from the surface downward): an upper unit consisting of sands and silty clays to depths of four or five feet; an intermediate unit consisting of clay with minor silt and sands to depths of 15 to 23 feet; and a lower unit consisting of sands, silts and interbedded clay at depths from 15 to 55 feet. As discussed above, the hydraulic conductivity of the intermediate clay unit was determined to be less than 10^{-7} cm/sec. Saturated conditions were encountered only in the lower unit.

The shallow aquifer at the plant is in the shallow alluvium. In the pond area, the aquifer occurs in sands, silty sands interbedded with clays and silty clays of the lower unit at depths between 20 to 25 feet. Logs indicated soils were unsaturated to a depth of between 21 and 25 feet around the ponds. Saturated conditions were encountered below these depths. The potentiometric surface is about three feet below the land surface. The shallow aquifer, beneath the pond area is confined by the overlying intermediate unit. This confining interval should restrict downward migration of water from the pond.

As shown by the water level contours in Figures 12-4 and 12-5, the direction of groundwater flow in the alluvial aquifer underlying the site is variable. Water levels in the evaporation pond monitoring wells, measured on June 23, 1990, indicate a westerly flow direction prevailed at the time. Water levels measured July 17, 1990 (Figure 12-5) indicated a northwesterly flow. Additional analysis on January 1, 1992 shifts the direction of flow back to a more westerly direction (Figure 12-4). This apparent shifting in flow direction suggests communication in the subsurface flow with the South Fork of the Puerco River east of the plant (Shomaker 1992, and Dames & Moore 1990).

12.3 Water Quality

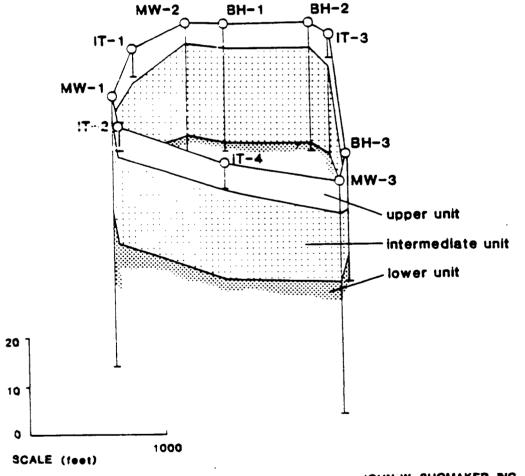
12.3.1 Regional Aquifer

Water quality data for the four plant water supply wells are presented in Table 12-1. The data for the onsite wells probably represent a composite of that found in the San Andres/Glorieta aquifer and the Sonsila Sandstone bed of the Chinle Formation. Groundwater from these wells meets New Mexico State water quality standards.

Table 12-1

Regional Groundwater Quality Data

Constituent	WELL #3 (ON SITE) T15N 417W S16 NE/NE/NE 04/09/76	WELL #3 (ON SITE) T15N R 17W S16 NE/NE/NE 04/04/89	WELL 44 (ON SITE) T15N R 17W S16 NE/NE/NE 04/14/89	WELL #6 (OFF SITE) T15N R16W S20 SE/SE/NE 04/04/89	WELL /7 (OFF SITE) T15N R16W \$20 NW/SE/NE 04/09/89	WELL /7 (OFF SITE) T15N R16W S20 NW/SE/NE 04/14/89
pH s.u.	8.2	7.7	7.7	7.8	7.75	. 7.6
Alkalinity, Total	174	202	191	164	166	166
Calcium	62	40	107	156	344	154
Chloride	. 64	34	16	17	14	16
Fluoride	-	0.39	0.24	0.23	-	0.23
Hardness, Total	118	190	420	628	680	710
Iron, Dissolved	-	0.15	0.13	0.12	-	0.1
Iron, Total	•	0.37	7.9*	0.35	-	0.15
Magnesium	56	22	37	58	336	79
Maganese, Dissolved	-	0.12	0.16	0.14	-	0.14
Manganese, Total	-	0.17	0.22	0.17	÷	0.17
Nitrate (as (NO3)	-	< 0.1	<0.1	< 0.1	-	< 0.1
Nitrate (as NO2)	-	0.03	0.06	0.02	-	0.03
Potassium	-	5.1	6.7	5.2	-	5.4
Silica	-	9.4	8.2	7.1	-	7.1
Sodium	-	237	82	75	-	39
Specific Conductance (µmhos)	1360	1215	1171	1199	1340	1173
Sulfate	502	478	410	614	679	618
Total Dissolved Solids	888	932	944	1058	1135	921
Turbidity	9.2	-	-	-	4.4	-
BOD	-	<1	<1	<1	-	<1
COD	-	<1	<1	1>	-	<1
Ammonia Nitrogen (as NH4)	-	0.35	0.25	0.29	-	0.13
тос	-	0.67	0.62	1.09	-	0.68

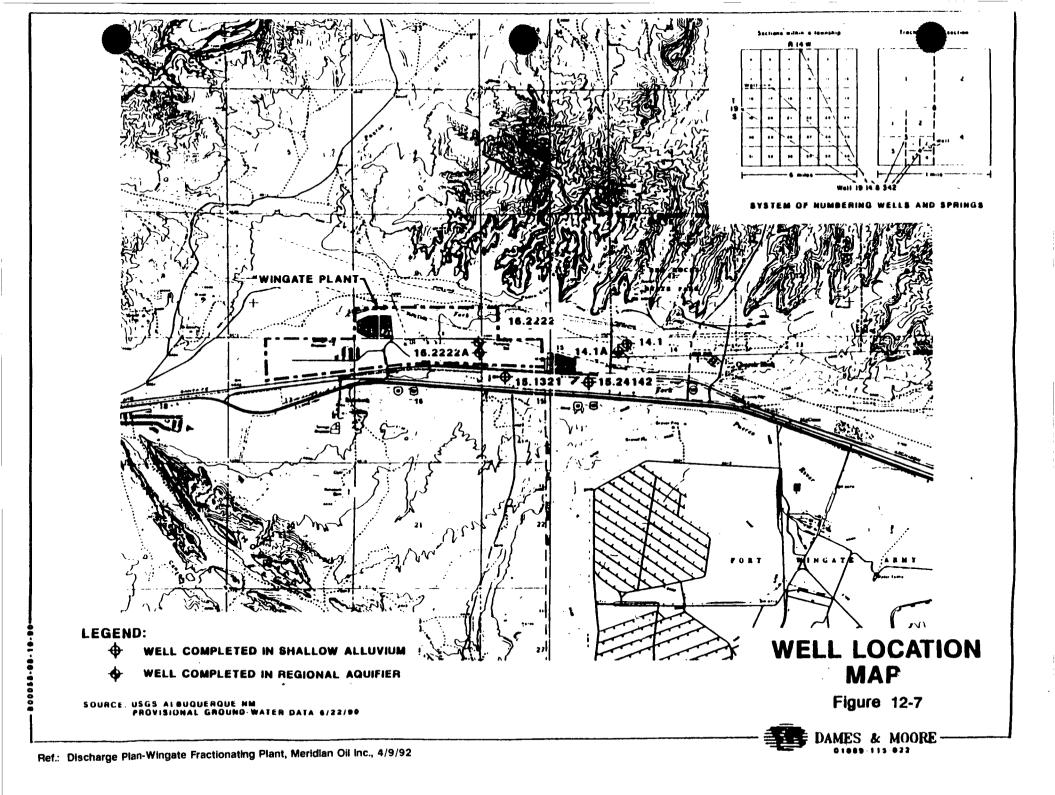

Units expressed in mg/l unless otherwise stated.

Ref.: Discharge Plan-Wingate Fractionating Plant, Meridian Oil Inc., 4/9/92

JOHN W. SHOMAKER, NC., 1992

Ref.: Discharge Plan-Wingate Fractionating Plant, Meridian Oil Inc., 4/9/92

12.3.2 <u>Alluvial Aquifer</u>


The locations of wells within one mile of Wingate Plant and the onsite water supply wells are shown in Figure 12-7 (USGS, 1990). All the offsite wells listed are shallow alluvial wells to the east and upgradient of the facility. The available water quality data for these wells are presented in Table 12-2. Additional analyses of groundwater samples from the shallow alluvial aquifer in the area of the Wingate Plant were given in Shomaker (1971). The reported analyses suggest the groundwater was generally a sodium-bicarbonate type, with total dissolved solids ranging from 692 to 954 mg/l.

Monitoring events have been previously conducted by El Paso and Meridian. The monitoring of the wells will be continued. Analyses of water samples from the evaporation pond monitoring wells indicate the shallow groundwater is similar to analyses reported in Shomaker (1971).

The monitoring wells at the site are completed to a depth of about 58 feet and the depth of the first water-bearing zone is between 20 and 25 feet. By nature of this construction, these wells are open to more than one water-bearing interval. Therefore water produced from these wells is probably not representative of the uppermost water-bearing interval beneath the ponds. Water samples are composites of the 30+ feet of saturated interval open to the wells.

The hydraulic and stratigraphic relationships previously discussed suggest water in the evaporation ponds is not likely to leak into the aquifer beneath the evaporation ponds. This interpretation is based upon the following:

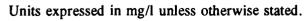

- The clayey sediments in the intermediate unit underlying the evaporation ponds has a hydraulic conductivity less than 10⁻⁷ cm/sec.
- The intermediate interval is from 15 to 20 feet thick beneath the ponds.
- The confined hydraulic head in the shallow aquifer indicates upward flow is limited and restricted by the clay-rich intermediate unit.

Table 12-2

Offsite Wells Adjacent to Wingate Plant

	Well 14.1 08/07/75	Well 14.1A 08/07/7f5	Well 15.1321 03/65	Well 15.2414 03/65	MCL
pH (s.u.)	8.5	8.5	7.7	7.7	6-9
Alkalinity, Total	<u> </u>				0-9
	315	524	418		
(as CaCO3)	61	83	410		
Carbonate (as CaCO3)	260	470	5120	282	
Bicarbonate (as CaCO3)	200	470	5120	282	-
Hydroxide		- 82	23	- 50	250
Chloride (Cl)	50				
Fluoride (F)	1.3	1.2	0.6	0.5	1.6
Nitrate (as N)	0.14	0.14	0.05	6.6	10
Sulfate (SO4)	210	39	173	340	600
Total Dissolved Solids (TDS)	739	747	692	932	1,000
Silver (Ag)	-	-	-	-	0.05
Arsenic (As)	-	-	-	-	0.1
Barium (Ba)	-	-	-	-	1.0
Calcium (Ca)	22	22	52	98	
Cadmium (Cd)	-	-	-	-	0.01
Chromium (Cr)	-	-	-	-	0.05
Copper (Cu)	-	-	-	-	1.0
Iron (Fe)	-	-	-	-	1.0
Hardness	75	80	372	352	-
Mercury (Hg)	-	-	-	-	0.002
Magnesium (Mg)	4.8	6.1	59	26	-
Manganese (Mn)	-	-	-	-	0.2
Sodium (Na)	260	280	120	189	-
Lead (Pb)	-	-	-	-	0.05
Selenium (Se)	-	-	-	-	0.05
Zinc (Zn)	-	-	-	-	10
Silica (SiO2)	-	-	13	11	-
Potassium (K)	0.8	1.0	-	-	-
Boron (B2)	0.26	0.54	-	-	-

MCL = Maximum Concentration Limit

Ref.: Discharge Plan-Wingate Fractionating Plant, Meridian Oil Inc., 4/9/92

1507R10.WLC

The concentrations of total dissolved solids, chloride, bicarbonate, and sulfate in monitor wells MW-1 and MW-2 compared with well MW-3, may be due to communication with the South Fork. Such communication is suggested by the observed changes in direction of groundwater flow in the shallow aquifer. This appears to be influenced by flow and recharge from the South Fork, east of the Plant (Shomaker 1992, and Dames & Moore 1990). The concentration of total dissolved solids and other anions in groundwater samples has been relatively consistent. This also suggests the quality of water is controlled by natural conditions and not pond leakage.

The November 1991 and January 1992 samples from MW-3 showed trace levels of BTEX. Meridian had attributed these readings to inadequate decontamination of sampling equipment or contamination from upgradient sources. The second point is discussed in the following paragraphs. MW-2 also showed a trace of BTEX in November 1991. This result was not repeated in January 1992. Meridian attributed the trace November reading to inadequate sampling equipment decontamination. In order to continue to demonstrate the absence of a significant impacts to aquifer water quality, Meridian proposed to conduct annual water quality monitoring in MW-1 through MW-3 for general water chemistry, priority pollutant metals and BTEX. These parameters are specified on Table 12-3.

Several additional sets of water quality samples have been collected from the WMH 1 through 4 monitoring wells for the parameters listed in Table 12-3. These data have been submitted to NMOCD. These wells are upgradient of the evaporation ponds. There are no plant process discharges that can impact water quality in this area.

The most significant aspect of the data is the presence of BTEX consistently detected in WMH-2. BTEX levels exceed New Mexico WQCC standards. According to Meridian, the contamination is possibly related to a historic accidental release of hydrocarbon in the train loading rack area when the facility was owned and operated by EPNG. Meridian conducted further investigation of the BTEX contamination by installing WMW-5. Meridian had also proposed that any follow-up assessment of the BTEX contamination be handled as a stand-alone investigation and not be linked to this Wingate Plant Discharge Plan. Currently, biannual monitoring is being conducted on these five wells and the three MW series wells located near the evaporation ponds. This monitoring program is to be continued on a biannual basis for the parameters listed in Table 12-3.

Table 12-3

Wingate Plant Monitoring Well Constituents

Constituents					
pH	Arsenic (As)				
TDS	Barium (Ba)				
Alkalinity	Beryllium (Be)				
Bicarbonate	Cadmium (Cd)				
Calcium (Ca)	Chromium (Cr)				
Carbonate	Copper (Cu)				
Chloride (Cl)	Lead (Pb)				
Fluoride (F)	Mercury (Hg)				
Hardness	Nickel (Ni)				
Iron (Fe)	Selenium (Se)				
Magnesium (Mg)	Silver (Ag)				
Manganese (Mn)	Thallium (Tl)				
Nitrate (as N)	Zinc (Zn)				
Nitrite	TPH				
Potassium	Benzene				
Silicia	Ethylbenzene				
Sodium (Na)	Toluene				
Sulfate (SO4)	Xylenes (m, o & p)				
Antimony (Sb)					

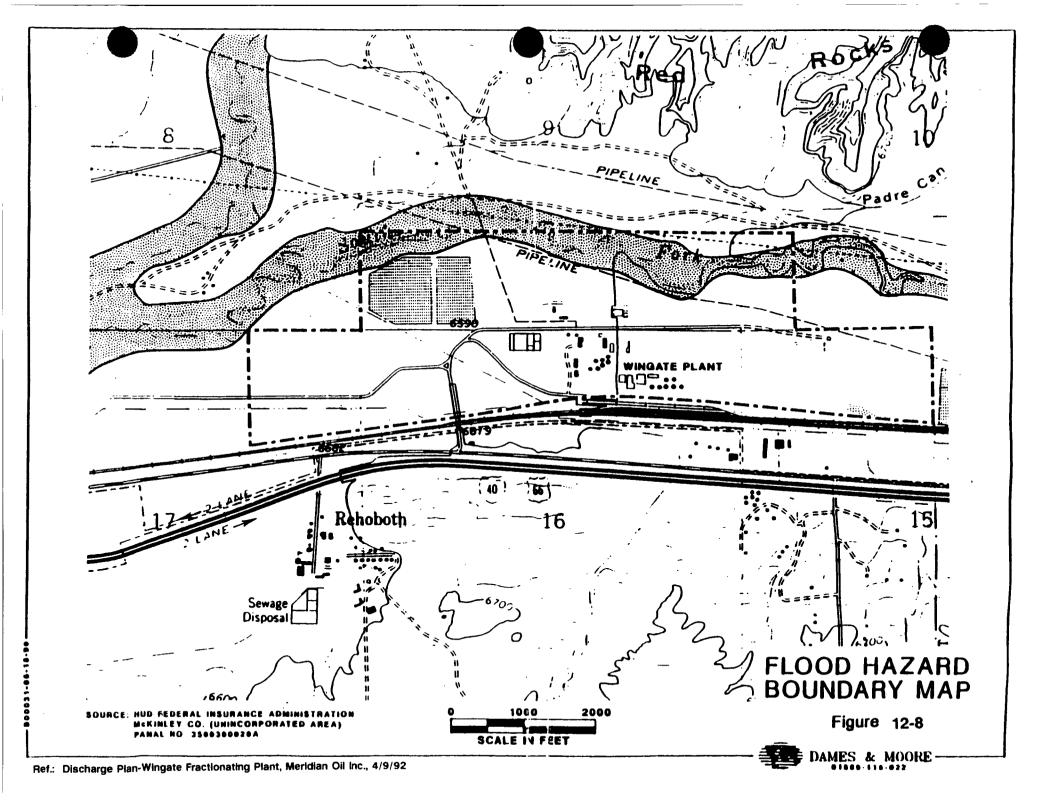
C-K Associates, Inc.

12.4 Hydrologic Features

The northern portion of the Wingate Plant property is bounded by the South Fork of the Puerco River. The Puerco River is an intermittent stream tributary to the Little Colorado River watershed. The confluence of the North and south forks occurs to the west of the plant, upstream from the City of Gallup. The Puerco River (north and south branches) comprises a drainage area of approximately 558 square miles. No other surface water sources are known to be present with in a one mile radius of the Wingate Plant.

Surface water runoff upgradient of the Plant property to the south is intercepted by the I-40 Freeway, and routed to the south around the facility. Runoff from the east of the Plant is a channeled north to the Puerco River. Onsite run-off is routed to the north and south of the developed portion of the site, where it rejoins pre-existing natural drainages to the west.

12.5 Flood Protection


The Flood Hazard Boundary Map for this portion of McKinley County (HUD, 1978) delineates the area described as "subject to special flood hazards" shown in Figure 12-8. This area is approximately that which would be inundated as a result of a 100-year flood flow in the Puerco River. Although it appears from this information that some undeveloped areas of the Plant property, outside the stream channel, may be subject to flooding, no facilities, with the possible exception of the evaporation ponds appears to be at risk as a result of flood flows in the Puerco River.

12.6 Climate

The Conoco Wingate Plant is located in a semi-arid region. Data recorded at the Wingate weather station show an annual precipitation of 9.66 inches. The mean annual temperature is 49.2°F.

The prevailing winds are southwesterly although southeasterly and westsouthwesterly winds are also common. Strong winds are predominant in the winter and spring months.

The area is prone to lightning strikes which necessitate an extensive protection system against lightning caused fires.

13.0 OTHER COMPLIANCE INFORMATION

13.1 Spill/Leak Reporting

Should a major discharge occur as defined in OCD Rule 116 and WQCC Section 12-3, verbal notification will be made to the following agencies:

OCD Santa Fe Office OCD Aztec District Office WQCC Ground Water Protection Agency - Chief

Notification to these agencies will be as soon as possible, but not more than 24-hours thereafter.

Information to be provided in the notification will include:

- Name, address and telephone number of person(s) in charge of the facility;
- Name and address of the facility;
- Date, time, location and duration of the discharge;
- Source and cause of the discharge;
- A description of the discharge and its chemical composition;
- Estimated volume of the discharge; and
- Actions taken to mitigate immediate damage from the discharge.

Within one week after the discharge, written notification will be provided by Conoco, to the WQCC. The context of the written notification will include the information above as well as additional information relative to actions taken in response to the discharge.

Subsequent written notification to the OCD will be provided in duplicate to the Aztec District Office within 10 days after discovery of the incident.

Should a "minor" discharge, as defined by OCD Rule 116, occur, subsequent notification will be provided as described above.

13.2 Closure Plan

In accordance with WQCC Section 3107.A.11, Conoco acknowledges and commits to the preparation of closure plan at the time the decision is made to close the evaporation ponds. The Closure Plan will include a description of closure measures, maintenance and monitoring plans, post-closure maintenance and monitoring plans, a financial assurance mechanism, as well as other measures deemed necessary to prevent and/or abate contamination should it be found to be present.

14.0 REFERENCES

- Cooley, M.E., Harsburger, J.W., Akers, J.P., and Hardt, W.F., 1969, <u>Regional Hydrogeology</u> of the Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah, USGS Professional Paper 521-A.
- Cresswell, L.W., <u>The Fate of Petroleum in a Soil Environment</u>, 1977 Oil Spill Conference Proceedings, American Petroleum Institute Publication N. 4284, pp. 479-482, 1977.
- Dames and Moore, <u>Hydrogeologic Assessment Wingate Fractionating Plant for El Paso Natural</u> <u>Gas Company</u>, 1990, unpublished report prepared for El Paso Natural Gas Company.
- Gudin, C., and W.J. Syratt, <u>Biological Aspects of Land Rehabilitation Following Hydrocarbon</u> <u>Contamination</u>, Environmental Pollution, volume 8:107-117, 1975.

Meridian Oil Inc., Discharge Plan, Wingate Fractionating Plant, April 9. 1992.

- National Oceanic and Atmospheric Administration, <u>Climatography of the United States No. 81</u> (New Mexico), 1982.
- National Oceanic and Atmospheric Administration, <u>Mean Relative Humidity (%)</u>, <u>Monthly and</u> <u>Annual</u>, pp 61-62, 1970.
- Oil Conservation Division, "Guidelines for the Preparation of Discharge Plans at Natural Gas Plants, Refineries, Compressor and Crude Oil Pump Stations", Revised December 1995.
- Sergent, Hauskins, and Beckwith Engineers, 1987, EPNG Wingate Plant Railroad Bridge Overpass - Geotechnical Investigation Report, June 26, 1987.
- Shomaker, J. W., 1971, <u>Water Resources of Fort Wingate Army Depot and Adjacent Areas</u>, <u>McKinley County</u>, <u>New Mexico</u>, USGS Open File Report MK-32, September 1971.
- Shomaker and Associates, 1992, <u>Hydrologic Evaluation of Evaporation Pond Area</u>, <u>Wingate</u> <u>Plant</u>, <u>McKinley County</u>, <u>New Mexico</u>, unpublished report prepared for Conoco Oil, Inc.
- U.S. Department of Agriculture, Annual Lake Evaporation map, USSCS, 1978.
- U.S. Department of Housing and Urban Development, <u>Federal Insurance Administration, 1978,</u> <u>Flood Hazard Boundary Map</u>, McKinley County, New Mexico.
- U.S. Geological Survey, <u>Well Information Database</u>, <u>McKinley County</u>, <u>New Mexico</u>, <u>June 6</u>, <u>1990</u>, Albuquerque, New Mexico.

Pat Sanchez

From:	Denny Foust
Sent:	Tuesday, April 22, 1997 7:50 AM
To:	Pat Sanchez
Subject:	Conoco Wingate Plant

April 22, 1997

Conoco Wingate Plant Discharge plan application dated April, 1997 for GW-054. Concerns for inspection arise for the Emergency Flare pits as to construction and operation. integrity of waste water piping will be a concer since no testing is mentioned. Evaporation pond construction and water quality are of concern since we are near the Rio Puerco. Are active monitor wells really checking shallow groundwater for contamination?

Denny Foust

17170 PERKINS ROAD BATON ROUGE, LA 70810 PH (504) 755-1000 FAX (504) 751-2010

AREA OFFICES

LAKE CHARLES, LA 70601 PH (318) 479-0303 FAX (318) 479-1145 SHREVEPORT, LA 71105 PH (318) 797-8636

FAX (318) 798-0478 BEAUMONT, TX 77705 PH (409) 842-2265 FAX (409) 840-9116

> AUSTIN, TX 78759 PH (512) 346-1048 FAX (512) 346-7320

SALES OFFICES

JACKSON, MS 39236 PH (601) 853-6987 FAX (601) 856-9784 PENSACOLA, FL 32574 PH (904) 934-879 FAX (904) 934-6198

April 16,1997

New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505 Attn: Mr. Roger C. Anderson

Ref: Final Discharge Plan Wingate Plant C-K Associates Project No. 15-586

Dear Mr. Anderson:

Enclosed please find one original and one copy of the Final Discharge Plan for the Wingate Fractionating Plant. Also enclosed, please find a check in the amount of \$50.00 to cover the filing fees. If you have any questions about the enclosed document, please feel free to call me at (504) 755-1000.

RECEIVED

APR 1 7 1997

Environmental Bureau

Oil Conservation Division

Very truly yours, C-K Associates, Inc.

orbin

Bill Corbin Groundwater and Remediation Services Division Director

WLC/mgb

Attachment: As Stated

cc: Ms. Cindy Thompson C-K Associates, Inc.

Ms. Terry L. Killian, P.E. Conoco Inc.

Mr. Denny Foust OCD - Aztec Office w/ 1 copy of Discharge Plan w/o check

DICE	NUMBER	DATE	VOUCHER NO.	AMOUNT
0416	97	04/16/97	NMED-WATER QUALITY MANAGEMENT	\$50.00
			Filing Fee - Project #015-586	
			· .	
1	ASSOCIATES	DAD	PREMIER BANK OF BATON ROU BANK CODE 02 BATON ROUGE, LOUISIANA	JGE
BATON	ROUGE, LOUISIA PHONE (504) 755-1	NA 70810	04/16/ 1997	
				NO.
	PAY ***	***50*****	DOLLARS AND ** NO/100** CENTS \$	50.00
	PAY ***	***50*****	DOLLARS AND ** NO/100** CENTS \$	50.00
	NMED-WATEF	R QUALITY MANAGE	MENT	50.00
ER	NMED-WATEF New Mexico Natural Re	R QUALITY MANAGE D Energy Mineral esources Dept.	MENT s and	
DER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral	MENT s and	
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
DER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest
ER	NMED-WATER New Mexico Natural Re 2040 South	R QUALITY MANAGE D Energy Mineral esources Dept. n Pacheco St.	MENT s and). Kenyest

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

February 17, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-288-258-765

Ms. Terry L. Killian, P.E. Director - Environmental Conoco, Inc. P.O. Box 2197 - HU 3002 Houston, TX 77252

RE: Discharge Plan GW-054 Renewal Wingate Gas Plant McKinley County, New Mexico

Dear Ms. Killian:

On August 17, 1992, the groundwater discharge plan, GW-054, for the Wingate Gas Plant located in Sections 16 and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico, was approved by the Director of the New Mexico Oil Conservation Division (OCD). This discharge plan was required and submitted pursuant to Water Quality Control Commission (WQCC) regulations and was approved for a period of five years. The approval will expire on August 17, 1997.

If the facility continues to have potential or actual effluent or leachate discharges and wishes to continue operation, the discharge plan must be renewed. Pursuant to Section 3106.F., if an application for renewal is submitted at least 120 days before the discharge plan expires (on or before April 17, 1997), then the existing approved discharge plan for the same activity shall not expire until the application for renewal has been approved or disapproved. The OCD is reviewing discharge plan submittals and renewals carefully and the review time can extend for several weeks to months. Please indicate whether Conoco, Inc. has made, or intends to make, any changes in the system, and if so, please include these modifications in the application for renewal.

The discharge plan renewal application for the **Wingate Gas Plant** is subject to WQCC Regulation 3114. Every billable facility submitting a discharge plan renewal will be assessed a fee equal to the filing fee of \$50 plus a flat fee of \$16675.50 for Gas Plants. The \$50 filing fee is to be submitted with the discharge plan renewal application and is nonrefundable.

Please make all checks payable to: NMED-Water Quality Management and addressed to the OCD Santa Fe Office.

Ms. Terry Killian Conoco, Inc., GW-054 6 Month Renewal Notice February 17, 1997 Page 2

Please submit the original discharge plan renewal application and one copy to the OCD Santa Fe Office and one copy to the OCD Aztec District Office. Note that the completed and signed application form must be submitted with your discharge plan renewal request. (Copies of the WQCC regulations and discharge plan application form and guidelines are enclosed to aid you in preparing the renewal application. A complete copy of the regulations is also available on OCD's website at <u>www.emnrd.state.nm.us/ocd/</u>)

If Conoco, Inc. no longer has any actual or potential discharges and a discharge plan is not needed, please notify this office. If Conoco, Inc. has any questions, please do not hesitate to contact Pat Sanchez at (505) 827-7156.

Sincerely,

Roger C. Anderson Environmental Bureau Chief

RCA/pws

enclosed: 20 NMAC 6.2 "WQCC Regulations", Discharge Plan Guidelines, Discharge Plan Application Form. P 288 258 765

1995

Form 3800

S

5 S 5 US Postal Service Receipt for Certified Mail No Insurance Coverage Provided. Do not use for International Mail (See reverse) Sent to Mς 61 200000 Street & Number 4 REN. NATRE. UMM. ost Office, State, & ZP Code Postage \$ **Certified Fee** Special Delivery Fee **Restricted Delivery Fee Return Receipt Showing to** Whom & Date Delivered Return Receipt Showing to Whom Date, & Addressee's Address TOTAL Postage & Fees \$ Postmark or Date

c: Mr. Denny Foust

MERIDIAN OIL

June 3, 1996

Certified Mail No. Z-382-118-134

William C. Olson
Environmental Bureau
Energy, Minerals and Natural Resources Dept.
Oil Conservation Division
P.O. Box 2088
Santa Fe, NM 87504

Re: Discharge Plan GW-54 Wingate Plant Ground Water Monitoring

Dear Mr. Olson:

Please find attached the ground water monitoring data and contour map for the March, 1996 sampling at the Wingate facility. This information is provided pursuant to your letter of October 1, 1993.

If you have any questions or need additional information please contact me at (505) 326-9841.

Sincerely,

Kent M. boodecker

Keith M. Boedecker Sr. Staff Environmental Representative

Attachment: 1996 First Semiannual Ground Water Sampling Report

cc: Kathy Kanocz - Conoco Inc. Gerry Garibay - EPNG Greg Kardos - MOI

file: Wingate Plant GW Contamination: Correspondence s:\2-envmnt\grndwatr\facility\wingate\corresp\win_gw96.doc

Meridian Oil, Inc. Farmington, New Mexico

TABLE 1

Wingate Groundwater Analytical Results

~

.

			and the second second second second second second second second second second second second second second second						St. Carlotha		
ANALYTES	MW-1	MW-2	MW-3	WMH-1	WMH-2	WMH-3	WMH-4	WMW-5	MW-51	EB-1	Trip Blank
Benzene (ug/L)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	29,800	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
Toluene (ug/L)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	3,100	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	1.39	ND(0.5)
Ethylbenzene (ug/L)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	132	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
Xylenes (ug/L)	ND *	ND *	ND *	ND *	994	ND *	ND *	ND *	ND *	ND *	ND *
ТРН	ND(0.48)	ND(0.48)	ND(0.48)	ND(0.48)	9.33	ND(0.48)	ND(0.48)	ND(0.48)	ND(0.48)	ND(0.48)	-
Chloride	22.5	53.7	23.7	472	500	810	110	471	25.0	1.50	-
Flouride	1.13	1.95	1.03	0.38	2.08	0.93	1.64	0.23	1.15	0.04	-
Hardness as CaCO3	47.3	74.6	134	836	179	473	139	1,050	34.8	10.9	-
Nitrate	<0.01	0.43	<0.01	0.36	<0.01	11.7	2.81	0.62	<0.01	0.31	-
Nitrite	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.015	<0.01	<0.01	<0.01	-
Alkalinity as CaCO3	516	792	453	931	1,530	1,160	805	1,160	490	15.1	-
TDS	690	1,120	540	3,690	2,450	5,060	1,500	4,870	650	18.0	,-
pH (pH units)	8.0	8.0	7.9	7.6	8.1	7.7	7.9	7.3	8.0	6.9	-
Antimony	0.014	0.019	0.012	0.084	0.021	0.18	0.039	0.19	0.017	<0.003	-
Arsenic	0.001	0.005	0.012	0.024	0.027	0.013	0.038	0.004	0.013	<0.001	-
Barium	<0.25	<0.25	<0.25	<0.25	0.43	<0.25	<0.25	<0.25	<0.25	<0.25	-
Beryllium	<0.001	0.002	<0.001	0.013	0.009	0.021	0.004	0.019	<0.001	<0.001	-
Cadmium	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	-
Calcium	7.68	14.5	18.8	185	22.2	63.2	12.1	270	7.54	0.24	-
Chromium	0.001	0.002	<0.001	0.025	0.003	0.034	0.006	0.040	<0.001	<0.001	-

ND - Analyte not detected at the stated detection limit (in parentheses)

ND* - Detection limit for m,p-Xylenes = 1.00, o=Xylene=0.50

Results are in milligrams per Liter (mg\L) unless otherwise noted

EB - Equipment Blank

MW-51 - Duplicate of MW-1

Samples collected on March 27 and 28, 1996

Page 1 of 2

Meridian Oil, Inc. Farmington, New Mexico

TABLE 1

Wingate Groundwater Analytical Results

.

e

	an a star and				من المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم مراجع المراجع ال	ar geologica		法的公式经济			
ANALYTES	MW-1	MW-2	MW-3	WMH-1	WMH-2	WMH-3	WMH-4	WMW-5	MW-51	EB-1	Trip Blank
Copper	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	0.16	
Iron	0.192	<0.05	<0.05	<0.05	0.073	0.051	<0.05	0.065	0.146	< 0.05	
Lead	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
Magnesium	3.70	7.12	12.6	46.6	16.6	36.8	10.2	86.0	3.65	<0.05	
Manganese	0.08	0.33	0.06	0.53	0.047	<0.02	<0.02	0.35	0.068	0.037	
Nickel	<0.05	<0.05	<0.05	<0.05	<0.05	0.055	<0.05	0.077	<0.05	<0.05	
Potassium	1.38	1.55	1.69	7.45	2.35	4.23	2.19	9.70	1.34	<0.05	
Selenium	0.006	0.017	0.004	0.20	0.033	0.059	0.065	0.41	0.005	<0.003	
Silica	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	
Silver	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Sodium	215	342	119	895	670	1,295	472	1,340	181	0.26	
Thallium	0.11	0.21	0.076	0.51	0.49	0.19	0.26	0.76	0.10	<0.001	
Zinc	0.018	0.020	<0.01	0.032	0.019	0.032	0.01	0.048	0.018	0.057	
Mercury	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Carbonate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Bicarbonate	516	792	453	931	1,530	1,160	805	1,160	490	15.1	
Sulfate	10.3	86.4	20.6	1,460	<10	1,730	302	2,120	12.3	<10	

ND - Analyte not detected at the stated detection limit (in parentheses)

ND* - Detection limit for m,p-Xylenes = 1.00, o=Xylene=0.50

Results are in milligrams per Liter (mg\L) unless otherwise noted

EB - Equipment Blank

MW-51 - Duplicate of MW-1

Samples collected on March 27 and 28, 1996

Page 2 of 2

Meridian Oil, Inc. Farmington, New Mexico


TABLE 2

Wingate Groundwater Elevation Data

March 1996

	TOP OF RISER		GROUNDWATER				
WELL NUMBER	ELEVATION	DEPTH TO WATER	ELEVATION				
MW-1	6,584.66	4.50	6,580.16				
<u>MW-2</u>	6,585.37	3.05	6,582.32				
<u>MW-3</u>	6,589.84	3.77	6,586.07				
WMH-1	6,596.04	3.50	6,592.54				
WMH-2	6,593.69	2.95	6,590.74				
WMH-3	6,593.91	6.77	6,587.14				
WMH-4	6,594.50	5.07	6,589.43				
WMW-5	NA	6.08	NA				
Elevation Data Supplied by Meridian Oil, Inc.							
Data is in Feet							
NA = Not Available							
Depth to Water Data Collected March 27 and March 28, 1996							

Kathy A. Kanocz Environmental Engineer Safety & Environmental Services Natural Gas & Gas Products

Mr. William C. Olson Environmental Bureau

Oil Conservation Division

Conoco Inc. P.O. Box 2197, HU 3086 Houston, TX 77525 (713) 293-4067 Fax: (713) 293-1214

Certified Mail - Return Receipt Requested P 365 728 001

Energy, Minerals and Natural Resource Department

RECEIVED

MAY 24 1996

Environmental Bureau Oil Conservation Division

RE: Wingate Plant Remediation Semiannual Sampling Event

Dear Mr. Olson,

P.O. Box 2088 Santa Fe, NM 78504

Conoco Inc. acquired the Wingate Plant from Meridian Oil on April 1, 1996. The OCD groundwater remediation approval for this site requires semi-annual sampling reports. Meridian did not conduct the required sampling or submit the April report. As per our conversation on May 9, 1996, Conoco will schedule a sampling event to meet the requirements. Burlington Environmental will conduct sampling the week of May 20th. The report will be submitted no later than June 15, 1996.

If you have any questions for Conoco about the sampling or anything else associated with the project, please let me know.

Thank you for your assistance,

Kathy A. Kanocz

CC:

Alan Higginbotham, Wingate ENV. 223-2-19

Gerry Garibay, El Paso Natural Gas P. O. Box 1492 El Paso, TX 79978

Terry L. Killian, P.E. Director - Environmental Safety & Environmental Services Natural Gas & Gas Products Department
 N DIVISION

 RE
 ED

 Conoco Inc.

 95 FP 600 N. Dairy Ashford

 P. O. Box/21197 BHU53002

 Houston, TX 77252

 (713) 293-1188

Certified Mail No. P 365 856 116 Return Receipt Requested

RECEIVED

April 1, 1996

APR 2 1996

Environmental Sureau Oil Conservation Division

Mr. Roger C. Anderson Environmental Bureau Chief Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department P. O. Box 6429 Santa Fe, NM 87505-6429

Re: Transfer of Ownership - Wingate Plant Discharge Plan No. GW-54 Conoco Inc., Natural Gas & Gas Products Department

Dear Mr. Anderson:

Conoco Inc. hereby provides notification to the Oil Conservation Division of ownership change for the Wingate Plant, located in McKinley County. Effective today the facility, previously owned and operated by Meridian Oil, has been purchased by Conoco Inc. Natural Gas & Gas Products Department.

For future matters concerning this facility and/or Discharge Plan No. GW-54, all correspondence should be addressed to me as follows:

Terry L. Killian Conoco Inc. P. O. Box 2197 - HU 3002 Houston, Texas 77252

My telephone number is (713) 293-1188.

If you have any questions, please contact me at the number above. Thank you for your assistance.

Sincerely,

Jelian

Terry L. Killian

March 29, 1996

Certified Mail No.P 895-114-312

APR 2 1996

Environmental Bureau Oil Conservation Division

New Mexico Oil Conservation Division. Attn: William LeMay (Director) P.O. Box 2088 Santa Fe, NM 87504

Re: Wingate Discharge Plan GW-54 Transfer Notice

Dear Mr. LeMay:

Please accept this notice that Meridian Oil, Inc. (MOI) has sold the Wingate Plant to Conoco Inc. effective April 1, 1996. As required by New Mexico Water Quality Control Commission Regulation Part 3.111, MOI notified Conoco Inc. of the existing Wingate Discharge Plan prior to the effective date. As evidence of this notification, attached you will find a copy of the letter sent to Conoco Inc. along with a copy of the Certified Return Receipt which documents that Conoco Inc. received the notification.

ML CONSERVE FOR DIVISION REFERED

196 RP + 1 0M 8 52

If you have any questions or need additional information concerning this notification, please feel free to contact me at (505) 326-9523 or Keith Boedecker at (505) 326-9841.

Sincerely,

NICO

Matthew *V*. McEneny Resource Manager

Attachments: Conoco Inc. Discharge Plan Notification Letter Certified Return Receipt Documentation

cc: Paul J. Grimm - Conoco Inc. Kent Beers - MOI Wingate file

s:\grndwatr\facility\wingate\corresp\wndisch2.doc

MERIDIAN OIL

March 18, 1996

Certified Mail No.P 895-114-311

Conoco Inc. Attn: Paul J. Grimm 600 North Dairy Ashford Houston, TX 77079

Re: Wingate Discharge Plan GW-54 Transfer Notice

Dear Mr. Grimm:

As required by New Mexico Water Quality Control Commission Regulation Part 3.111, Meridian Oil, Inc. (MOI) hereby notifies Conoco Inc. of the New Mexico Oil Conservation Division (NMOCD) approved Wingate Discharge Plan that currently exists for the facility. Upon official date of sale, April 1, 1996, Conoco Inc. will be responsible for complying with the provisions and requirements contained in the discharge plan. The Plan was approved on August 17, 1992 and must be renewed upon its expiration date of August 17, 1997.

Also required by Part 3.111, MOI is sending a copy of this notice to the NMOCD Director as evidence that MOI has notified Conoco Inc. of the existing discharge plan.

If you have any questions or need additional information concerning this notification, please feel free to contact me at (505) 326-9523 or Keith Boedecker at (505) 326-9841.

Sincerely,

Matthew J. McEneny Resource Manager

cc: NMOCD Director - William LeMay Kent Beers - MOI Wingate file

s:\grndwatr\facility\wingate\corresp\windisch.doc

side7 SENDER: ŧŧ. I also wish to receive the Complete items 1 and/or 2 for additional services.
Complete items 3, and 4a & b. following services (for an extra **g** 1 reverse · Print your name and address on the reverse of this form so that we can fee): return this card to you. Se Se 4 1. Addressee's Address · Attach this form to the front of the mailpiece, or on the back if space does not permit. Receipt 941 Write "Return Receipt Requested" on the mailpiece below the article number.
 The Return Receipt will show to whom the article was delivered and the date 2. Restricted Delivery delivered. S Consult postmaster for fee. : 3. Article Addressed to: 4a. Article Number B Return i Paul J. Grimm P 895 114 311 80 s your RETURN ADDRESS complet Conoco Inc. 4b. Service Type ÷ Registered Insured 600 North Dairy Ashford using Certified Houston, TX 77079 Return Receipt for Express Mail Merchandise 5 t MAROZI 19**96** Х оц . 8. Addressee's Address (Only if requested and fee is paid) 5. Signature (Addressee) × Than 6. Signature (Agent) 1, December 1997 40.8 GPO: 1993 PS Form 38 352.714 DOMESTIC RETURN RECEIPT 1 ţ NITED STATES POSTAL SERVICE Official Business PENALTY FOR PRIVATE USE TO AVOID PAYMENT OF POSTAGE, \$300 Print your name, address and ZIP Code here MERIDIAN OIL INC. ATTN: K. Boedecker P.O. BOX 4289 FARMINGTON, NM 87499

MERIDIAN OIL

MAR 2 2 1996

行动的 27 田 8 52

.4. N.S.C.

Environmental Sureau Oil Conservation Division

March 18, 1996

Certified Mail No.P 895-114-311

Conoco Inc. Attn: Paul J. Grimm 600 North Dairy Ashford Houston, TX 77079

Re: Wingate Discharge Plan GW-54 Transfer Notice

Dear Mr. Grimm:

As required by New Mexico Water Quality Control Commission Regulation Part 3.111, Meridian Oil, Inc. (MOI) hereby notifies Conoco Inc. of the New Mexico Oil Conservation Division (NMOCD) approved Wingate Discharge Plan that currently exists for the facility. Upon official date of sale, April 1, 1996, Conoco Inc. will be responsible for complying with the provisions and requirements contained in the discharge plan. The Plan was approved on August 17, 1992 and must be renewed upon its expiration date of August 17, 1997.

Also required by Part 3.111, MOI is sending a copy of this notice to the NMOCD Director as evidence that MOI has notified Conoco Inc. of the existing discharge plan.

If you have any questions or need additional information concerning this notification, please feel free to contact me at (505) 326-9523 or Keith Boedecker at (505) 326-9841.

Sincerely,

Matthew J. McEneny Resource Manager

cc: NMOCD Director - William LeMay Kent Beers - MOI Wingate file

s:\grndwatr\facility\wingate\corresp\windisch.doc

Santa Fe, New Mexico 87505

STATE OF in the

MEMORANDUM OF MEETING OR CONVERSATION

Time Date 25/96 1600 Telephone Personal Originating Party Other Parties Bock Buren son --nvir. rais lor Subject Montosins 16000 Q Inc Discussion 110 Missing aster mo 1au m 4 Conclusions or Agreements 45 mai te INT1 Distribution Signed

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

MEMORANDUM OF MEETING OR CONVERSATION

12-19-95 Date Time 8:20 AM Telephone Personal <u>Other Parties</u> Originating Party Grain Pat Sanchez - 0 (D <u>- MOI</u> Bach 320-2653 # 326 9537 Subject Wingate Plant - GW-54 (Fire Training Pit Closure. Discussion (i) Mr. Bach called carlier at 7:45.AM with a for Questions regarding the "Fire Training Pit" - clasure . LandForm Soils associated ajolosure. @ I told him I would check the File and call him back (# - he was in the field on Mubil Phone.) He said he needed the info. because Not is going sell wingate. Told him there is called him back and (3) Bill alson an approval letter dated 1-14-94 From they have to latter submit soils results clasure or Agreements the (N) handformed soils from the pit. Mr. Bach will follow up on the soils testing and also notify the purchaser of the Discharge Plan Her uslow) and them. C

Distribution File

Signed

Pat Sanchez

From:	Pat Sanchez
То:	Denny Foust
Subject:	MOI - Wingate plant flare pit closure letter GW-54
Date:	Wednesday, August 09, 1995 12:55PM
Priority:	High

Denny - do you have any comments? Call Me at -7156. Thanks Pat S.

August 9, 1995

CERTIFIED MAIL RETURN RECEIPT NO.Z-765-963-106

Mr. Kevin C. Myers Meridian Oil, Inc. P.O. Box 4289 Farmington, NM 87499-4289

RE: Closure Plan Approval Flare Pit - Wingate Plant GW-54 McKinley County, New Mexico

Dear Mr. Myers:

The New Mexico Oil Conservation Division (OCD) has received the Meridian Oil, Inc. closure proposal and sample data dated July 24, 1995 signed by Mr. Kevin C. Myers. The NMOCD shall approve the closure of the Meridian Oil, Inc. Flare Pit located at the Wingate Plant in Mckinley County, New Mexico. The conditions outlined below shall serve as basis for approval of the "Flare Pit" closure at the Meridian Oil, Inc. Wingate Plant.

- 1. The remmediated soil may be used by Meridian Oil, Inc. to backfill the excavation of the "Flare Pit."
- 2. Meridian Oil, Inc. shall mound the "Flare Pit" in order to prevent the ponding of rainwater over the former "Flare Pit" site.
- 3. Sampling/monitoring by Meridian Oil, Inc. at all the monitor wells shall continue.

Note, that OCD approval does not relieve Meridian Oil, Inc. of liability should it later be found that contamination exists which is beyond the scope of this work plan. In addition, OCD approval does not relieve Meridian Oil, Inc. of responsibility for compliance with any other Federal, State, or other local laws and/or regulations. If you have any questions regarding this matter feel free to call me at (505)-827-7156.

Sincerely,

Patricio W. Sanchez Petroleum Engineer, Environmental Bureau OCD

XC: Mssr. Denny Foust - Environmentalist.

Pat Sanchez

From: Date sent: To: Subject: Denny Foust Wednesday, August 09, 1995 1:27PM Pat Sanchez Registered: Denny Foust

Your message To: Subject: Date: was accessed on Date:

Denny Foust MOI - Wingate plant flare pit closure letter GW-54 Wednesday, August 09, 1995 12:55PM

Wednesday, August 09, 1995 1:27PM

Per Vorbal Donny Fanst Ukay

9-95 1:45 p.M.

MEMORANDUM OF MEETING OR CONVERSATION <u>X</u>TELEPHONE PERSONAL TIME 8:55 (A)/PM DATE 3-9-95ORIGINATING PARTY: KOVIN MYERS-MOT OTHER PARTIES: V. Sanchez -NMOCD mingute Plant - Flare Pit GW-54 SUBJECT:_ CLOSUR Rem. soils Pn+ DISCUSSION: Just vanta to tur Dit Not and will MAGE 71 Groun Sandina -GNY CONCLUSIONS/AGREEMENTS: I will doubt through the M711and put it SPA Ma birto PC ad Mill PATRICIO W. SANCHEZ:_ xc: FILE,

MERIDIAN OIL

July 24, 1995

Certified #895-114-170

RECEIVED

JUL 3 1 1995

Environmental Bureau Oil Conservation Division

Mr. William C. Olson Hydrogeologist NM Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505

Re: Meridian Oil Wingate Plant Flare Pit Closure

Dear Mr. Olson:

In reviewing our records, it appears that it has been some time since Meridian Oil, Inc. (MOI) has provided you with an update on remediation efforts associated with Wingate's flare pit closure project. This is intended to update you and request closure approval for both the flare pit and the flare pit landfarm soil. The following tables summarize all data collected to date:

Sample	Benzene	Toluene	E-Benzene	Xylenes
Date	<u>μg/l</u>	µg/l	<u>μg/l</u>	<u>μg/l</u>
09/23/93	370	78	8	85
10/07/93	31	ND	ND	ND
12/30/93	1.1	ND	ND	1
08/08/94	1.5	ND	ND	ND

Table 1Flare Pit Water Quality Samples

This data demonstrates that the water quality in the flare pit is below New Mexico Water Quality Control Commission (WQCC) ground water standards. Furthermore, it has met these standards on two consecutive sampling periods, as requested in your letter of March 11, 1994 (copy of final two consecutive sample periods is attached). Therefore, MOI requests that OCD approve cessation of further monitoring and that approval be given to close-out (backfill) the excavated pit.

Table 2 Flare Pit Landfarm Soils

Total Petroleum Hydrocarbon (mg/kg)

Sample Date	Sub-Sample A	Sub-Sample B	Sub-Sample C	Composite Average
09/23/93	576	336	1300	737.3
10/07/93	620	1040	1460	1040
11/03/93	339	42.6	55.2	145.6
12/30/93	406	379	51.5	278.8
08/08/94	188	34.7	35.0	85.9
10/27/94	99.4	ND	106	68.5

Note that both the August, 1994 and the October, 1994 composite average TPH results (copy attached) are below the 100 ppm guideline criteria applicable to this site. Note also that the field PID readings (substitute for BTEX) have been consistently below the 100 ppm criteria (see attached field notes provided by SUNDANCE Consultants, Inc.). Based on these results, MOI seeks approval from OCD that the landfarm is considered remediated and that this soil can be utilized as backfill material for the excavated flare pit discussed previously.

MOI is hopeful that the data provided is sufficient for OCD to approve the final closure as described. Please contact me at (505) 326-9841 with any questions.

Sincerely yours,

Levin C. Myers

Kevin C. Myers Environmental Specialist

cc: G. Kardos - MOI H. Humada - MOI

file: Wingate Pit Closures: Flare Pit/Landfarm

3332 Wedgewood, Suite E-5 • El Pas					on, N.E. • Albuquerque, New Mer	
	Order # 93-12-235	Work		REPORT Sample	Results by	5 ived: 12/30/93
				0 ap.2 a	Nebuleb by	IVEU. 12/50/55
		NAME <u>BTEX</u>		TEST CODE	FRACTION 05A	LE ID FLARE PIT
	Category <u>WATER</u>	<u></u> _	30/93	lected <u>12/</u>	Date & Time Col	
		DATE_ANAL	D_F	LIMIT	RESULT	PARAMETER
		<u>01/05/94</u>	<u>1.0</u>	1.0	1.1	Benzene
		01/05/94	<u>1.0</u>	1.0	ND	Toluene
		01/05/94		1.0	<u>ND</u>	Ethylbenzene
		01/05/94	<u>1.0</u>	1.0	1.0	P-&m-xylene
		01/05/94	1.0	1.0	<u>ND</u>	0-xylene
			port:	or this Re	Notes and Definitions f	
					EXTRACTED	
					ANALYST <u>NO</u>	
				07		
					UNITS ug/L	
	N/A				BATCH_1D WGCVOA-117 COMMENTS	
	<u>N/A</u>		····			
						•

Member: American Council of Independent Laboratories, Inc. THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

	-	•
Page 4	REPORT	Work Order # 94-08-090
Received: 08/09/94	Results by Sample	
SAMPLE ID <u>FLARE PIT</u>	FRACTION <u>04A</u> TEST CODE Date & Time Collected <u>08/</u>	
PARAMETER	RESULT LIMIT	D_F DATE_ANAL
Benzene Toluene	<u> </u>	<u>1.0</u> 08/12/94 <u>1.0</u> 08/12/94
Ethylbenzene	<u>ND 1.0</u>	1.0 08/12/94

Notes and Definitions for this Report:

ND

ND

P-&m-xylene

0-xylene

EXTRACTED		
ANALYST DH		
FILE ID	4VL1625.D	
UNITS	_ug/L	
BATCH_ID	WBTEXM-003	
COMMENTS		<u>N/A</u>

1.0

<u>1.0 1.0 08/12/94</u>

<u>1.0</u> <u>08/12/94</u>

Page 1 Received: 08/09/94	REPORT Results by Sample	Work Order # 94-08-090	
	Reduits by Sampie		
SAMPLE ID CELL A	FRACTION <u>01A</u> TEST CODE <u>STRPH</u> Date & Time Collected <u>08/08/94</u>		
	Date & lime collected 08/08/34	L0:05:00 Category <u>SOIL</u>	
PARAMETER	RESULT LIMIT D_F	DATE_ANAL	
Total Petroleum HCs	188 5.0 5.0	08/11/94	
	<u></u>	<u>231,331,235</u>	
Notes a	nd Definitions for this Report:		
	ED08/10/94		
ANALYST UNITS	mg/Kg		
	DSTRPH-192		
PRCNT_M	0IST		
P 0			
Page 2 Received: 08/09/94	REPORT Results by Sample	Work Order # 94-08-090	
CANDLE TO CRETE D			
SAMPLE ID <u>CELL B</u>	FRACTION <u>02A</u> TEST CODE <u>STRPH</u> Date & Time Collected <u>08/08/94</u>		
PARAMETER	RESULT LIMIT D_F	DATE_ANAL	
Total Petroleum HCs	34.75.01.0	08/11/94	
Notes a	and Definitions for this Report:		
EXTRACTED08/10/94 ANALYST JB			
UNITS			
	D STRPH-192		
PRCNT_M	10IST		
	REPORT	Work Order # 94-08-090	
Page 3 Received: 08/09/94	Results by Sample	WOLK OLDEL # 34-08-090	
	FRACTION 03A TEST CODE STRPH		
	Date & Time Collected 08/08/94 10		
PARAMETER	RESULT LIMIT D_F	DATE_ANAL	
Total Petroleum HCs	<u> </u>	08/11/94	
Notes an	d Definitions for this Report:		
EXTRACTE	D08/10/94		
ANALYST			
	mg/Kg STRPH-192		
PRCNT_MO			

ASSAIG ANALYI LABOR 7300 Jeffersor	GAI TCAL ATORIES D. N.E. • Albuquerq	ue, New Mexico	87109 • (505	5) 345-8	964 • FAX	(505) 345-7259		
3332 Wedgew	vood, E-5 • El Paso	, Texas 79925	1910 N. Big	g Spring	s • Midian	id, Texas 79705		
Report Generated: November 4, 1994 12:25 CERTIFICATE OF ANALYSIS RESULTS BY SAMPLE								
SENT MERIDIAN OIL TO: 3535 EAST 30TH S FARMINGTON, NM ATTN: KEVIN MEYERS	TREET 87402	WORKORDER # WORK ID CLIENT CODE DATE RECEIV	: SO : ME	R01				
						Page:1		
Lab ID: 9411012-01ACollected: 10/27/94Sample ID: LANDFARM AMatrix: SOIL								
TEST / METHOD	RESULT	UNITS	LIMIT	D_F	DATE ANAL	BATCH_ID		
TRPH/EPA 418.1 Total Petroleum HCs	99.4	mg/Kg	5.0	1.0	11/03/94	STRPH-210		
Lab ID: 9411012-02ACollected: 10/27/94Sample ID: LANDFARM BMatrix: SOIL								
TEST / METHOD	RESULT	UNITS	LIMIT	D_F	DATE ANAL	BATCH_ID		
TRPH/EPA 418.1 Total Petroleum HCs	ND	mg/Kg	5.0	1.0	11/03/94	STRPH-210		
Lab ID: 9411012-03A Sample ID: LANDFARM C								
TEST / METHOD	RESULT	UNITS	LIMIT	D_F	DATE ANAL	BATCH_ID		
TRPH/EPA 418.1 Total Petroleum HCs	106	mg/Kg	5.0	1.0	11/03/94	STRPH-210		

607 C. hat

For James A. Seely Operations Manager

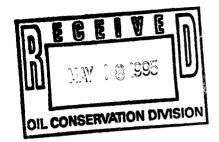
REPRODUCTION OF THIS REPORT IN LESS THAN FULL REQUIRES THE WRITTEN CONSENT OF AAL THIS REPORT MAY NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PRODUAM.

Wingate Pit Closure Project Field PID Results

FLARE POT LAND FARM

Date	/Time	Grld #	Sample #	Depth	Peak - ppm
9-23	<u>প 45</u>	A	Composite	3	97.2
9.23	1245	ß	Compositi	3″	79.6
9-23	1305	C	Conposite	3"	58.9
10-6	1040	A	GUNPOSCIE	3"	75.g
10-6	1030	B	Composité	3"	70.7
10-6	1020	Ċ	COMPOSITE	3"	10.2
12-30	1100	A	Composite	0-6"	18.5
12-30	1100	B	Compositie Compositie	0-6"	1.2
12.30	1100	C	Compositie	0-6"	13.7
		· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·			
ļ					
L					

SUNDANCE Consultants, Inc.


•

MERIDIAN OIL

May 15, 1995

Certified Mail #P 895-114-193

William C. Olson Environmental Bureau Energy, Minerals and Natural Resources Dept. Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Re: Discharge Plan GW-54 Wingate Plant Ground Water Monitoring

Dear Mr. Olson:

Please find attached the ground water monitoring data and contour map for the March, 1995 sampling at the Wingate facility. This is provided pursuant to your letter of October 1, 1993.

Should you have any additional questions, I can be reached at (505) 326-9561.

Sincerely yours,

Doug L. Thomas Environmental/Safety Representative

Attachments

cc: Gerry Garibay - EPNG Greg Kardos - MOI

file: Wingate Plant GW Contamination: Correspondence s:/dthomas/gw/wingwmor

WINGATE GROUNDWATER ANALYTICAL RESULTS

	MW-1	MW-2	MW-3	WMH-1	WMH-2	WMH-3	WMH-4	WMW-5	MW-53	EB-1	E. Pond	W. Pond
Analytes									·			
Benzene (ug/L)	<0.3	<0.3	<0.3	<0.3	12,300	<0.3	0.9	<0.3	<0.3	<0.3	<0.3	<0.3
Toluene (ug/L)	<0.3	<0.3	<0.3	<0.3	478	<0.3	0.8	<0.3	<0.3	0.4	<0.3	<0.3
Ethylbenzene (ug/L)	<0.3	<0.3	<0.3	<0.3	<200.0	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Xylenes (ug/L)	<0.6	<0.6	<0.6	<0.6	<300.0	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
TPH	<0.3	<0.3	<0.3	<0.3	34.5	<0.3	<0.3	<0.3	<0.3	<0.3	0.4	<0.3
Chloride	20.4	57.0	18.7	655.0	819.0	961.0	123.0	485.0	18.4	<0.1	12,000.0	63,500.0
Flouride	1.4	2.3	1.0	0.4	1.8	0.7	1.3	0.3	1.0	<0.1	<10	0.4
Hardness as CaCO3	39.6	62.3	132.6	857.1	251.2	580.0	142.7	1,016.0	122.0	6.0	5,000.0	21,600.0
Nitrate	<0.1	<0.1	<0.1	<0.1	<0.1	9.9	<0.1	<0.1	<0.1	0.3	<0.1	<1.0
Nitrite	<0.2	<0.2	<0.2	<0.2	<0.2	<2.0	<0.2	<0.2	<0.2	<0.2	<20	2.2
Alkalinity as CaCO3	459.0	748.0	400.0	993.0	1,760.0	1,110.0	769.0	1,080.0	404.0	1.0	206	391.0
TDS	535	1,030	481	4,350	3,200	4,970	1,470	4,250	470	15	26,900	172,000
pH (pH units)	8.31	8.08	7.80	7.36	8.11	8.01	7.95	7.30	7.98	4.68	8.08	8.42
Antimony	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	<0.001	0.006	0.004	0.001	0.006	0.004	0.010	0.001	0.004	<0.001	0.005	0.011
Barium	0.125	0.178	0.142	0.144	0.417	0.354	0.203	0.090	0.135	<0.005	0.081	0.039
Beryllium	<0.0005	<0.0005	<0.0005	0.0005	0.0008	0.0023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Cadmium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.008
Calcium	8.18	13.5	30.3	236.0	52.7	140.0	26.7	277.0	26.9	0.09	750.0	985.0
Chromium	<0.01	<0.01	<0.01	0.01	0.02	0.04	0.03	0.01	<0.01	0.01	<0.01	<0.01

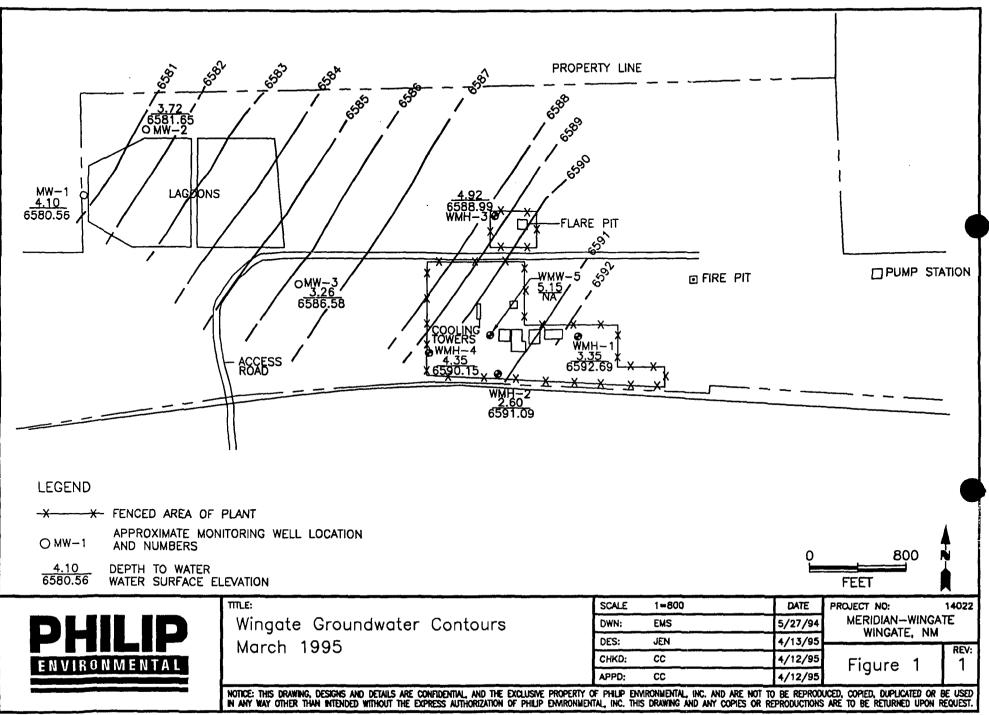
Results are in milligrams per Liter (mg/L) unless otherwise noted EB - Equipment Blank MW-53 - Duplicate of MW-3 E. Pond - East Pond W. Pond - West Pond Samples Collected on March 20, 21, 22, 23, and 28

Page 1

	MW-1	MW-2	MW-3	WMH-1	WMH-2	WMH-3	WMH-4	WMW-5	MW-53	EB-1	E. Pond	W. Pond
Analytes												
Copper	<0.01	<0.01	<0.01	<0.01	0.04	0.02	<0.01	<0.01	<0.01	<0.01	0.01	0.02
Iron	0.35	0.75	0.49	9.44	26.3	34.0	9.29	6.79	0.37	0.04	0.35	0.13
Lead	0.001	<0.001	<0.001	0.002	0.015	0.012	0.005	0.001	<0.001	0.001	<0.001	0.012
Magnesium	4.65	6.91	13.7	64.4	29.0	56.2	18.4	78.1	13.2	<0.05	522.0	3,860 👝
Manganese	0.13	0.37	0.49	3.35	0.54	0.69	0.55	1.97	0.46	<0.01	0.20	0.27
Nickel	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Potassium	1	<1	1	5	4	12	2	5	<1	<1	112	544
Selenium	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Silver	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Sodium	206.0	385.0	151.0	1,180.0	1,160.0	1,610.0	534.0	1100.0	148.0	<0.1	7,180.0	31,400
Thallium	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.004
Zinc	0.01	0.01	0.02	0.03	0.08	0.08	0.02	0.02	0.01	<0.01	<0.01	<0.01
Mercury	<0.00005	0.00007	<0.00005	0.00013	0.00009	<0.00005	<0.00005	0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Carbonate	275.7	449.1	240.4	596.3	1,056.0	670.0	461.6	648.4	242.8	0.6	<0.1	208.0
Bicarbonate	556.0	905.7	484.7	1,202.0	2,130.0	1,351.0	930.8	1,307.0	489.6	1.2	250.0	419.4
Sulfate	8.7	84.5	14.0	1,730.0	<0.5	1,760.0	346.0	1,800.0	13.8	<0.5	5,700.0	14,500.0

WINGATE GROUNDWATER ANALYTICAL RESULTS(cont.)

Results are in milligrams per Liter (mg/L) unless otherwise noted EB - Equipment Blank MW-53 - Duplicate of MW-3 E. Pond - East Pond W. Pond - West Pond Samples Collected on March 20, 21, 22, 23, and 28


Wingate Groundwater Elevation Data March 1995

Well Number	Top of Riser Elevation	Depth to Water	Groundwater Elevation
MW-l	6,584.66	4.10	6,580.56
MW-2	6,585.37	3.72	6,581.65
MW-3	6,589.84	3.26	6,586.58
WMH-1	6,596.04	3.35	6,592.69
WMH-2	6,593.69	2.60	6,591.09
WMH-3	6,593.91	4.92	6588.99
WMH-4	6,594.50	4.35	6,590.15
WMW-5	NA	5.15	NA

Notes

ĩ.

Elevation Data Supplied by MOI Data is in Feet NA = Not Available Depth to Water Data Collected March 20, 21, & 23, 1995

MERIDIAN OIL

ŝ . 1

> N DIVISION AL VONGERS 195 JAN 13 RA 8 52

January 9, 1995

Certified Mail #P 895-114-382

William C. Olson **Environmental Bureau** Energy, Minerals and Natural Resources Dept. **Oil Conservation Division** P.O. Box 2088 Santa Fe, NM 87504

Re: **Discharge Plan GW-54** Wingate Plant **Ground Water Monitoring**

Dear Mr. Olson:

Please find attached the ground water monitoring data and contour map for the September, 1994 sampling at the Wingate facility. This is provided pursuant to your letter of October 1, 1993.

Should you have any additional questions, I can be reached at (505) 326-9841.

Sincerely yours,

even C. Myers

Kevin C. Myers **Environmental Specialist**

Attachments

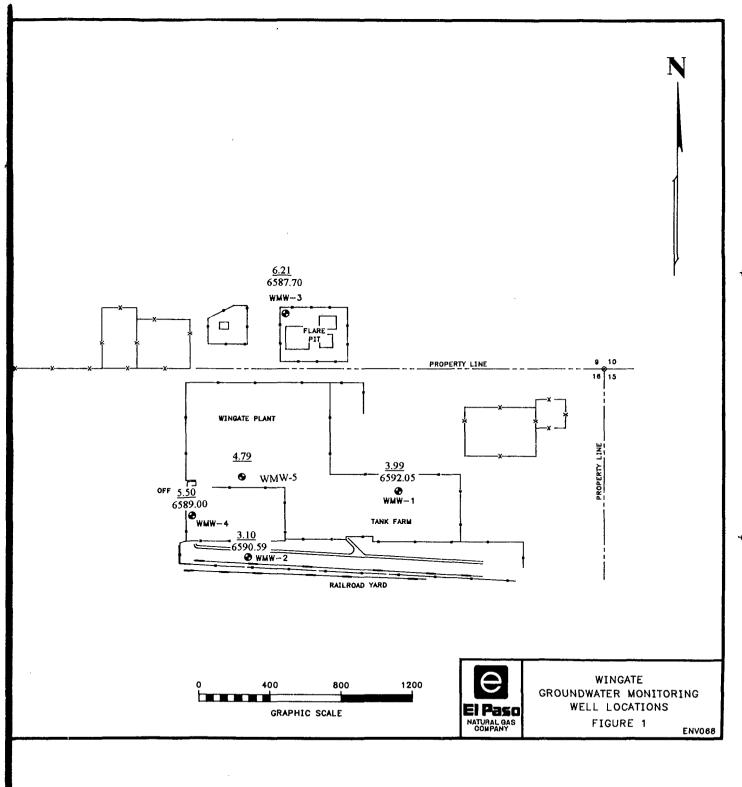
CC: Gerry Garibay - EPNG Greg Kardos - MOI

file: Wingate Plant GW Contamination: Correspondence

5

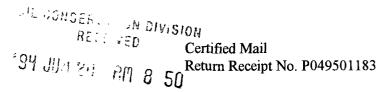
Wingate Plant Second Semiannual Ground Water Monitoring September, 1994 Summary of Results

Sample# Description	Benzene µg/l	Toluene μg/l	Ethyl Benzene µg/l	Total Xylenes µg/l
S94-0615 Bailer Blank	ND	ND	ND	ND
S94-0616 Equipment Blank #1	78	36	ND	25
S94-0617 WMW #3	ND	ND	ND	ND
S94-0618 WMW #4	ND	2	ND	2
S94-0619 WMW #2	35,000	5,000	46	640
S94-0620 WMW #2 Duplicate	28,000	4,100	66	900
S94-0621 WMW #5	5	0.8	ND	ND
S94-0622 MW #3	2	ND	ND	ND
S94-0622 MW #3 Duplicate	1.4	ND	ND	ND
S94-0623 WMW #1	2	1	ND	ND
S94-0624 MW #2	ND	ND	ND	ND
S94-0625 MW #1	ND	ND	ND	ND
S94-0626 MW #1 Duplicate	ND	1.4	ND	1.1


ND = Non-Detect

Wingate GW Monitoring Ground Water Elevation Data September, 1994

.


5

Well Number	Top of Riser Elevation	Depth to Water	Groundwater Elevation
MW-1	6,584.66	5.00	6579.66
MW-2	6,585.37	3.20	6582.35
MW-3	6,589.84	4.40	6585.44
WMH-1	6,596.04	3.99	6592.05
WMH-2	6,593.69	3.10	6590.59
WMH-3	6,593.91	6.21	6587.70
WMH-4	6,594.50	5.50	6589.00
WMH-5	Not Available	4.79	Not Available

MERIDIAN OIL

June 17, 1994

Mr. William C. Olson Environmental Bureau Energy, Minerals and Natural Resources Dept. Oil Conservation Division P.O. Box 2088 Santa Fe, NM 87504

Re: Discharge Plan GW-54 Wingate Train Rack Ground Water Contamination Monitoring

Dear Mr. Olson:

Please find attached the ground water monitoring data and ground water contour map for March, 1994 at the referenced facility. This is provided pursuant to your letter of October 1, 1993.

Sincerely yours,

Levin C. Myors

Kevin C. Myers Environmental Specialist

cc: Richard Duarte-EPNG Greg Kardos-MOI Wingate Train Rack: Correspondence

WINGATE GROUNDWATER ANALYTICAL RESULTS

	MW-1	MW-2	MW-3	EB-1	MW-52	TB-1
Benzene	ND	ND	ND	ND	ND	ND
Toluene	1.1	ND	1.4	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND
Xylenes	ND	ND	ND	ND	ND	ND
TPH mg/L	7.5	ND	ND	ND	ND	
Inorganic						
Chloride mg/L	29.4	49.5	18.4	3.5	49.8	
Flouride mg/L	1.3	2.5	1	ND	2.5	
Hardness						
as CaCO3 mg/L	44	56	128	ND	64	
Nitrate mg/L	ND	ND	1.8	1.7	ND	
Nitrite mg/L	ND	ND	ND	ND	ND	
Silica mg/L	6	4.4	6.5	ND	4.4	
Alkalinity						
as CaCO3 mg/L	519	705	438	1.73	871	
TDS mg/L	722	1070	560	20	1138	
pH S.U. @ 25C	8.01	7.97	7.52	8.1	7.98	
Antimony	ND	ND	ND	ND	ND	
Arsenic	ND	ND	ND	ND	ND	
Barium	205	235	184	5.9	228	
Beryllium	ND	ND	ND	ND	ND	
Cadmium	ND	ND	ND	ND	ND	
Calcium mg/L	8.58	12.1	2.92	0.606	11.9	
Chromium	ND	ND	ND	ND	ND	
Copper	10.7	10.4	ND	ND	ND	
Iron	2290	3220	3060	ND	3000	
Lead	5.9	6.1	ND	ND	3.6	
Magnesium mg/L	4.4	5.82	13.5	ND	5.84	
Manganese	169	232	723	ND	319	
Nickel	ND	ND	ND	ND	ND	
Potassium	867	1480	1160	ND	1140	
Selenium	ND	ND	ND	ND	ND	
Silver	ND	ND	ND	ND	ND	
Sodium mg/L	246	394	142	1.69	386	
Thallium	ND	ND	ND	ND	ND	
Zinc	15.8	19.4	ND	ND	18	
Mercury	ND	ND	ND	ND	ND	

*Results in ug/L unless noted EB- Equipment Blank, TB - Trip Blank MW-52- Duplicate of MW-2 Samples Collected March 28 & 29, 1994

> Burlington Environmental Inc. 4000 Monroe Road • Farmington, NM 87401 Phone 505/326-2262 • FAX 505/326-2388

WINGATE GROUNDWATER ANALYTICAL RESULTS

	WMH-1	WMH-2	WMH-3	WMH-4	WMW-5
Benzene	ND	21400	21.9	4.9	ND
Toluene	ND	4380	5.2	ND	ND
Ethylbenzene	ND	139	2.8	ND	ND
Xylenes	ND	1080	4.2	ND	ND
TPH mg/L	ND	22	ND	ND	ND
Inorganic					
Chloride mg/L	465	321	724	121	421
Flouride mg/L	ND	6.4	ND	1.1	ND
Hardness					
as CaCO3 mg/L	950	180	520	236	1030
Nitrate mg/L	ND	ND	6.2	1.7	ND
Nitrite mg/L	ND	ND	ND	ND	ND
Silica mg/L	5.5	5.1	3.2	8.3	6.2
Alkalinity					
as CaCO3 mg/L	897	891	1148	843	1018
TDS mg/L	3820	1912	4720	1587	4332
pH S.U. @ 25C	7.06	7.64	7.53	7.64	6.94
Antimony	ND	ND	ND	ND	ND
Arsenic	ND	ND	ND	ND	ND
Barium	913	265	344	622	36.4
Beryllium	2.5	ND	2.1	1.3	ND
Cadmium	5.2	ND	ND	ND	ND
Calcium mg/L	245	31.2	100	49.5	258
Chromium	10.8	ND	9.1	5.8	ND
Copper	31.3	61.9	16	12.5	ND
Iron	14300	8170	9980	11200	890
Lead	15.3	4.2	11.9	7.6	ND
Magnesium mg/L	56.9	19.7	36.9	21.3	67.7
Manganese	3940	274	713	915	1840
Nickel	13.5	ND	ND	ND	ND
Potassium	5940	1390	5360	2620	3940
Selenium	ND	ND	ND	ND	ND
Silver	ND	ND	ND	ND	ND
Sodium mg/L	924	620	1390	575	1040
Thallium	ND	ND	ND	ND	ND
Zinc	77.8	35.7	48.2	30.4	ND
Mercury	ND	ND	ND	ND	ND

*Results in ug/L unless noted Samples Collected March 28 & 29, 1994

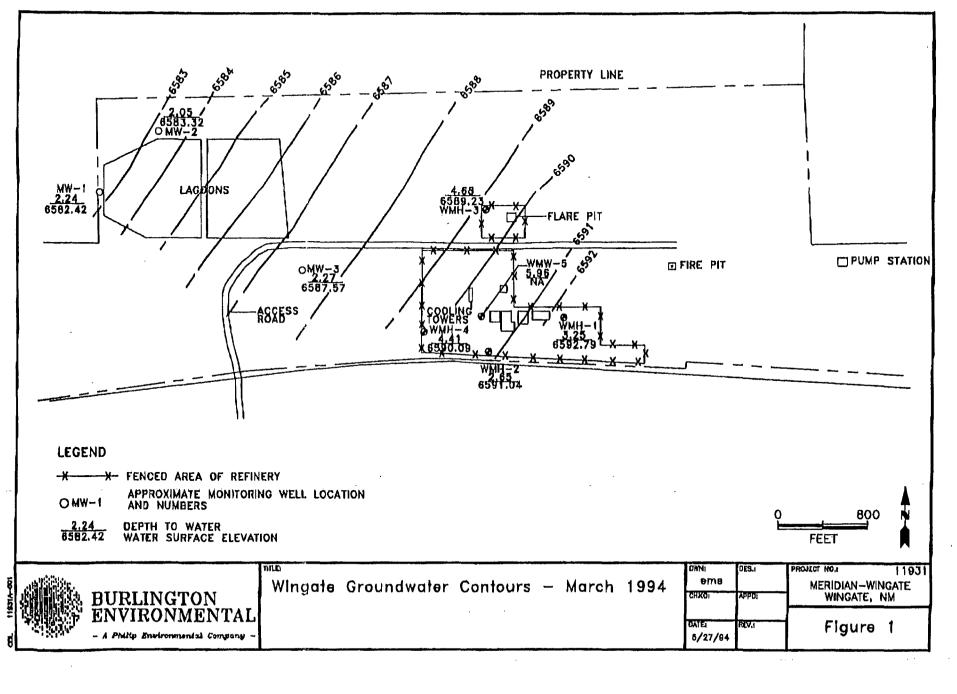
 (\mathbf{F})

.

Burlington Environmental Inc. 4000 Monroe Road • Farmington, NM 87401 Phone 505/326-2262 • FAX 505/326-2388

Groundwater Elevation Data March 1994

Well Number	Top of Riser Elevation	Depth to Water	Groundwater Elevation
MW-1	6,584.66	2.24	6,582.42
MW-2	6,585.37	2.05	6,583.32
MW-3	6,589.84	2.27	6,587.57
WMH-1	6,596.04	3.25	6,592.79
WMH-2	6,593.69	2.65	6,591.04
WMH-3	6,593.91	4.68	6,589.23
WMH-4	6,594.50	4.41	6,590.09
WMW-5	NA	5.46	NA


i.

Notes

Elevation Data Supplied by MOI Data is in Feet NA = Not Available

Depth to Water Data Collected March 28 & 29, 1994

Burlington Environmental Inc. 4000 Monroe Road • Farmington, NM 87401 Phone 505/326-2262 • FAX 505/326-2388

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

March 11, 1994

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD CABINET SECRETARY

CERTIFIED MAIL RETURN RECEIPT NO. P-667-241-909

Mr. Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

CE: FLARE PIT CLOSURE MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) has completed a review of the Meridian Oil, Inc. (MOI) February 22, 1994 "FLARE PIT CLOSURE, MERIDIAN OIL WINGATE PLANT, MCKINLEY COUNTY, NEW MEXICO" This report presents the results of MOI's ground water monitoring activities associated with the closure of the former unlined flare pit at the tate Fractionating Plant and requests discontinuation of ground water toring.

Le the sampling results provided in the above document show ground water contaminants to be below New Mexico Water Quality Control Commission (WQCC) ground water standards, this analysis represents a one time sampling. Therefore, the OCD requires that MOI provide OCD with at ar quarterly ground water analysis confirming that the contaminants a pelow WQCC standards prior to OCD approval of cessation of this monitoring requirement.

Please be advised that OCD approval does not relieve MOI of liability should remaining contaminants pose a future threat to surface water, ground water, human health or the environment. In addition, OCD approval does not relieve MOI of responsibility for compliance with any other federal, state or local lars and/or regulations.

If you have any questions, please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec Office

Certified - P794 519 790

MERIDIAN OL CONSER

February 22, 1994

William C. Olsen N.M. Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504

Re: Flare Pit Closure Meridian Oil Wingate Plant McKinley County, New Mexico

Dear Mr. Olsen,

Meridian Oil Inc. (MOI) recently conducted water quality sampling and analysis at the referenced flare pit. The results of the December 30, 1993 sampling show that BTEX levels have continued to decline. Shown below are the results of the three samples and analysis conducted to date. A copy of the most recent analysis is attached.

Date	Benzene	Toluene	Ethylbenzene	Xylenes
09/23/93	370 ug/L	78 ug/L	8 ug/L	85 ug/L
10/07/93	31 ug/L	ND	ND	ND
12/30/93	1.1 ug/L	ND	ND	l ug/L

These data indicate that contamination levels have steadily and rapidly decreased. Remaining contaminants are below New Mexico Water Quality Commission Criteria. These results are consistent with MOI's belief that the contamination at the site was very localized in shallow groundwater in the immediate vicinity of the flare pit. Based upon the above data MOI is discontinuing water quality monitoring as part of the flare pit closure.

Contaminated soil continues to be remediated on location. Contaminant levels continue to decline. Tilling and watering will continue until acceptable clean-up levels are met. Upon completion of the landfarming MOI will submit an analysis of the final contaminant levels in the landfarmed soils to the OCD for approval. Once approved MOI intends to backfill the evacuated flare pit with the remediated soil.

If you have questions please call me at (505) 326-9841.

Sincerely,

Michael J. Frampton

Sr. Staff Environmental Representative

Attachment: Water Quality Analysis

cc: G. Kardos w/o Attachments Wingate Plant Closures: Flare Pits

mf/sn/wgflar2

Meridian Oil Inc., 3535 East 30th St., P.O. Box 4289, Farmington, New Mexico 87499-4289, Telephone 505-327-0251

Page 5	lefferson, N.F. • Albuquerque, New Mexico 87109 REPORT	Work Order # 93-12-235	3332 Wedgewood, Suite E-5 • El Paso, Texas 799
Received: 12/30/93	Results by Sample		
SAMPLE ID FLARE PIT	FRACTION 05A TEST CODE WBTEX	NAME BTEX/EPA 602	
	Date & Time Collected 12/30/93	Category <u>WATER</u>	
PARAMETER	RESULT LIMIT D_F E	DATE_ANAL	
Benzene	<u> 1.1 1.0 1.0 0</u>	1/05/94	
Toluene	<u>ND 1.0 1.0 0</u>	1/05/94	
Ethylbenzene	<u>ND</u> <u>1.0</u> <u>1.0</u> <u>0</u>	1/05/94	
P-&m-xylene	<u> 1.0 1.0 1.0 0</u>	1/05/94	
0-xylene	<u>ND 1.0 1.0 0</u>	01/05/94	
	Notes and Definitions for this Report:		
	EXTRACTED		
	ANALYST <u>NO</u>		
	FILE IDOO7		
	UNITSuq/L		
	BATCH_ID WGCVOA-117		
	COMMENTS	<u>N/A</u>	

THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

Mamba American Council of Independent Laboratories, Inc.

••

MERIDIAN OIL

O'L CONSERVATION DIVISION RECEIVED

*SH FE : 4 AM 8 35

February 2, 1994

Certified - P 794 519 779

William C. Olsen Oil Conservation Division Environmental Bureau P.O. Box 2088 Santa Fe, New Mexico 87504

Re: Train Rack Ground Water Contamination Meridian Oil Wingate Plant McKinley County, New Mexico

Dear Mr. Olsen:

Pursuant to your request described as Conditions 3 and 4 in your October 1, 1993 letter (Certified Mail P 667 242 395) Meridian Oil Inc. is submitting the following information for your review:

- 1. Monitoring well (WMW-5) installation report with completion details and schematic.
- 2. BTEX water quality analysis from the newly completed well. Samples were collected 1/5/94. Reported values are below New Mexico Water Quality Control Commission Ground Water Standards.
- 3. Rico Verde fertilizer has been selected as the nutrient to be applied during bioremediation activities. Product information and an Action Plan are attached.

If you have any questions please call me at (505) 326-9841.

Sincerely,

Michael J. Frampton Sr. Staff Environmental Representative

- Attachments: Monitoring Well Installation Report WMW-5 Water Quality Analysis Rico Verde Product Information and Action Plan
- cc: Richard Duarte, EPNG Greg Kardos, MOI Wingate Plant GW Train Rack: Correspondence

TECHNICAL MEMORANDUM

TO: El Paso Natural Gas Company

FROM: Burlington Environmental Inc.

DATE: December 9, 1993

BURLINGTON

ENVIRONMENTAL

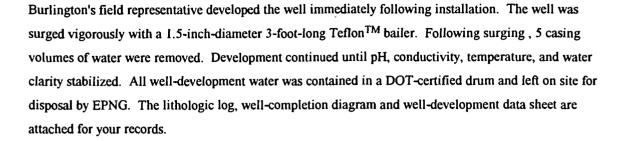
SUBJECT: Monitoring Well Installation at Wingate Gas Plant

On November 17, 1993, El Paso Natural Gas Company (EPNG) installed one monitoring well, WMW-5, at Meridian Oil Company's (Meridian's) Wingate Gas Plant. EPNG contracted Burlington Environmental Inc. to oversee the installation of the well. Rodgers Drilling Company from Albuquerque, New Mexico conducted drilling and soil sampling for the monitoring well installation.

Boring for the monitoring well installation was completed using a CME-75 drill rig and 6.25-inch inside diameter (ID) hollow-stem augers. Soil samples were collected at 5-foot intervals using a 3-inch-diameter, 2-foot-long split-spoon sampler. Burlington's field geologist recorded the lithologic descriptions of the soils on Record-of-Subsurface-Exploration forms.

Each 2-foot-long, split-spoon soil sample was scanned for volatile compounds with an HNu PI 101 photoionization detector (PID) immediately after opening. The results of the PID readings in needle deflection units (NDUs) were recorded on Record-of-Subsurface-Investigation forms. One NDU is approximately equivalent to 1 part per million hydrocarbons in vapor. Drilling and sampling continued to 21 feet below ground surface as specified by EPNG.

Monitor Well WMW-5 is constructed of flush threaded, 4-inch-ID, Schedule 40 polyvinyl chloride (PVC) riser and 15 feet of 0.010-inch slotted PVC well screen. The well screen was capped on the bottom and installed through the augers to allow a competent gravel pack to be emplaced prior to removing the augers.


The gravel pack consisted of 10-20 washed silica sand which was added slowly through the auger string as it was pulled upward. Once the gravel pack had extended approximately one foot above the screen, a minimum 1-foot-thick bentonite pellet scal was installed and the pellets hydrated with 5 gallons of potable water. A locking, 8-inch diameter, steel well protector and a 3-foot by 3-foot by 3-inch-thick cement pad with 3 bumper posts were installed.

ENVIRONMENTAL AFFAIRS

Burlington Environmental Inc. 4000 Monroe Road • Farmington, NM 87401 Phone 505/326-2262 • FAX 505/326-2388

025wl

Drilling equipment, sampling tools and bailers were decontaminated prior to use at the boring location. Decontamination included cleaning all equipment with high pressure steam or a soap solution followed by a potable water rinse. Decontamination fluids were contained in a bermed area designated by Meridian. The soil cuttings were shoveled into a front-end loader and placed in an area designated by Meridian.

•						·	
	WE	LL DEVEL	OPME	NT &	PURG	ING	
BURLI	NGTON	GEN	ERAL	DATA			
ENVIR	ONMENTAL						
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	NY T				1	RIAL NO. WD	
					PA	GE OF	
					•		
PROJECT	NAME Wingate NO. 11180					. WELL NO. W	MWS
PROJECT	NO. 11180 "	<u></u>				7 SUB TASK	00
DATE 11	17.9) FORM C	OMPLETED BY_	Cory	Chan	1.e		
		WELL	CONST	RUCTIO	M		
	ертн (FT)Д(TER (IN)	10
-	PACK INTERVAL (FT)						_4
+	OTECTOR: YES					2532	
QUANTITY	OF FLUID INJECTED D	NURING DRILLING					
				,			
	1	WATER VO	LUME C	ALCULA	NOITA		
DATE OF	MEASUREMENT 11/1	7[9.)		n	EM		VOLUME
	NG POINT TOR	ELEV. 2.2		WELL	CASING	FT ³	GAL
WATER L				}	L PACK		8.58
	ATER LEVEL (FT) 7.0					s	
•	EET OF WATER	,		TOTAL			8.58
	CEI SAIURALED GRAVI			L	1	4	
NOTE: Q	UANTITIES ARE TO BE	CALCULATED PR	NOR TO	DEVELOP	MENT.		
				ODITE			
NETHOD	OF DEVELOPMENT TE	Flos Bailer		CHILER	4A		
	UALITY MEASUREMENT			······································			· · · · · · · · · · · · · · · · · · ·
	LUME (ANNULUS) (GAL					ME (PIPE) (GAL)	8.58
	OLUME TO BE REMOVE				42.9		
						- · ·	•
	EVELOPMENT IS TO BE	PERFORMED IN	ACCORD	ANCE W	TH PROJ	ECT-SPECIFIC W	EL
U	EVELOPMENT PLAN						
		WATER QU	ALITY II	NSTRUM	IENTS		
DATE	INSTRUMENT	SERIAL NO.	CALIB	RATION	TECH	СОМ	IENTS
11/17/93	PH/Cond.	9206			CMC	Problems Culibron	in Austoroldwi
<u> </u>		+ + 2 2 2	1		<u> </u>		
			·				
	·						
			1		1		

COMMENTS ____

•

DATE	DEVELOPMENT METHOD	MATERIAL OR SERIAL NO.	DEVELOPMENT TECHNICIAN	VOLUMES REMOVED/TYPE
11/17/92	Dailer	Teflen	Scottfore C. Chance	5/CSG
	1			
	· · · · · · · · · · · · · · · · · · ·			

WATER QUALITY/WATER REMOVAL

WATER QUALITY READINGS

WATER REMOVAL DATA

WELL NO. WMWS

			_	-	-							······	_	-
	DATE	TIME	TOTAL INCREMENT QALLONS REMOVED	TOTAL WELL INCREMENT VOLUMES REMOVED	темр 40(° <i>F</i>)	Hd	CONDUCTIVITY (u mhos/om) X i	APPEARANCE/ COMMENTS	DEVELOPMENT START TIME	DEVELOPMENT STOP TIME	REMOVAL RATE (QPM)	PUMP INTAKE LEVEL	WATER LEVEL BEFORE DEVELOPMENT	WATER LEVEL AFTER DEVELOPMENT
	11/17/97	1140	5		62.2	7.2	7.17×100	Pedish Brown-Silty	1128			·	7.05	
	1	1147	5		60.3			Relish Brown-Silty						
		1154	5		60.1		7.21×1001	A/A						
		1159	5	[58.5		6.94 xiooo	A/A						
*		213	2		63.1	7.61	7.1 ×1000	A/A w/Less sand		121B				
•		1236	5		67.5	7.59	8.23 \$1000	Becoming Clearer	1220	1240			·	
		1300	4		56.7	8.02		Recoming Clear	1253					
		1336	lar.	1	61.3	7.96		Beconing Clear	1226					
		13A9	2.5		58.6	7.95	8.37×1000	Ala		•				
	\vee	1335	25		56.6	798	7.8 ×1000	Ata Mostly Clear		BCU				
		·				<u> </u>			<u> </u>					
									ļ		· ·	<u> </u>	<u> </u>	
			1	<u> </u>		L			<u> </u>			ļ	L	
		ļ	1		 							1		
			1	<u> </u>	 				ļ			ļ		
			1							1			1	

COMMENTS * Bailed dry after 25 cal. 1	Water becoming clearer after resuming bailinglan
initial bail.) Let will recharge 2nd time.]	Ential bailing is very clear.
Let recharge 3nd time (lat bailer very clear)	
,	

NOTES:

1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.

- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

WELL NO. WMWS

DEVELOPMENT TECHNIQUES

DEVELOPMENT METHOD	MATERIAL OR SERIAL NO.	DEVELOPMENT TECHNICIAN	VOLUMES REMOVED/TYPE
Osilec	Teflen	ScottPore C. Chance	5/CSG
		· · · · · · · · · · · · · · · · · · ·	
1	····		· · ·
	<u> </u>		``.
	METHOD	METHOD SERIAL NO.	METHOD SERIAL NO.

WATER QUALITY/WATER REMOVAL

WATER QUALITY READINGS

WATER REMOVAL DATA

	DATE	TIME	TOTAL INCREMENT QALLONS REMOVED	TOTAL WELL INCREMENT VOLUMES REMOVED	TEMP (C(F)	Hq	CONDUCTIVITY (umhos/om) X /	APPEARANCE/ COMMENTS	DEVELOPMENT START TIME	DEVELOPMENT STOP TIME	REMOVAL RATE (QPM)	PUMP INTAKE LEVEL	WATER LEVEL BEFORE DEVELOPMENT	WATER LEVEL. AFTER DEVELOPMENT
	11/17/97	1140	5		62.2	7.2	7.17×100	Pedish Brown-Silty	1128				7.05	
	1	1147	5		60.3	7.22	-	Relish Brown-Silty						
	•	1154	5		60.1	7.26	7.21×1000	A/A						
		1159	5		58.5	7.35	6.94 xioop							
*		1213	5		63.1	7.61	7.1 ×1000	A/A w/Less sand		121B				
		1236	5	 	67.5	7.59	8.23 \$1000	Becoming Clearer	1220	1240				
		1300	4	 	56.7	807	7.53×100	Becoming Clear	253	1302				
		1376	lar.		61.3	7.96	813 XIDO	Beconing Clear	1326			<u> </u>	ļ	
		1290	<u>2.5</u>	 	28.1	7.15	8.37×1000			·		I	ļ	
	<u> </u>	1335	\$5	<u> </u>	56.6	798	7.8 ×1000	Ata Mostly Clear		גנו			ļ	
		·		 	 		 		ļ			l		
				 	 		 		ļ	·			ļ	
•		}		}	}		}		 		ļ			┝───┤
					╂───	 	 	 	┨────			ł	 	├ ───┤
	<u>├</u>	╂────	╂	 									╂	\vdash
						1			1			1		

COMMENTS * Bailed dry afree 25 cal.	Water becoming clearer after resuming bailinglan
initial bail.) Let will recharge Zid Fine.	Initial bailings very clear.
Let recharge 3nd time (lat bailer very clear))J

NOTES:

1. COMMENTS SHOULD DELINEATE FINAL SAMPLE AND REPLICATE MEASUREMENTS.

- 2. ANY INSTRUMENTATION CALIBRATION OR USE ANOMALIES SHOULD BE NOTED.
- 3. APPEARANCE SHOULD BE NOTED BEFORE, DURING, AND AFTER DEVELOPMENT.

RECORD OF SUBSURFACE EXPLORATION

WMW - 5

11-17-93 / 0745

11-17-93 / 0945

8.1' C. Chance

Rodgers Inc.

Burlington Environmental Inc. 4000 Monroe Road Farmington, New Medico 67401 (505) 326-2262 FAX (505) 326-2368

Elevation

Logged By Drilled By

Borehole Location GWL Depth

Date/Time Started

Date/Time Completed

•		
•		
-		

Borehole #	WMW - 5	
Well #	WMW - 5	
Page 1	of _ 1	

Project Name	Wingate Plant	_		
Project Number	11180	Phase	77	
Project Location	Gallup, NM			

Personnel On-Site	Scott Pope	
Contractors On-Site	Rodgers Inc.	
Client Personnel On-Site	Gerry Garibay	

Drilling Method HS Air Monitoring Method H

HSA 6 1/4" ID, CME 75 HNU, CGI

Depth (Feet)	Sample Number	Sample Interval	Sample Type & Recovery (Inches)	Sample Description Classification System: USCS	Classification System: USCS Symbol Change Units: NDU		-	Drilling Conditions & Blow Counts		
0 	1	4		Reddish Brown CLAY, trace Silt, Iow-medium plasticity, trace evaporite Fillins, soft, slightly moist.		,,	o	0	0	- Very easy drilling.
10 10	2	9 11	22	Reddish-Brown CLAY, trace Silt, trace fine SAND, moist, SL-med plastic (~2- 3' Sandy Clay with high moisture @ ~9'),	CL		0	0	0	- Very wet cuttings @ ∼9-11'.
15	3	14 16	24	Reddish-Brown CLAY with fine Sand, trace Silt, SL moist, SL plastic, soft, very moist @ 14'.			0	ο	0	- Very soft drilling. - 2' water noted in BH.
20 20	4	19 21	24	Reddish-Brown Sandy CLAY, fine-medium Sand, SL-med plastic, soft, moist-very moist. TOB 21'			o	0	O	- Cuttings wet @ ~ 18'. Let well set to allow water to recharge 0900 water @ 8.1' after 15 min.
25										
30										
35 40										

Comments:

3.6' heave in BH. Will redrill to remove heave and set CSG @ 18'. Removed heave CSG went to bottom of hole.

Geologist Signature

11/29	/93	W	мw	15.1	NK1
-------	-----	----------	----	------	-----

MONITORING WELL INSTALLATION RECORD

 Burlington
 Environmental
 Inc.

 4000
 Monroe
 Road
 Farmington, New Mexico
 87401

 (505)
 326-2252
 FAX (505)
 326-2388
 Fax

Elevation		
Well Location	WMW5	
GWL Depth	8.1	
Installed By	RODGERS, INC.	

Date/Time Started	11/17/93	_0945
Date/Time Completed	11/17/93	

	Borehole # <u>WMW5</u> Well # <u>WMW5</u> Page <u>1</u> of <u>1</u>	`
Project Name	WINGATE	
Project Number_	11180 Phase 0077	-
Project Location	GALLUP, NM	-
On-Site Geologist	C.M. CHANCE	
Personnel On-Site	S. POPE	-
Contractors On-S	te RODGERS, INC.	-
Client Personnel (On-Site GERRY GARIBAY	_

Depths in Reference to Ground Surface				=	Top of Protective Casing	+2.5	
ltom	Material	Denth			ן ר	Top of Riser	+2.2
ltem	Materia	Depth (feet)				Ground Surface	0.0
			-				
Top of Protective Casing	8" STEEL	+2.5					
Bottom of Protective Casing		-1.5					
Top of Permanent Borehole							
Casing Bottom of Permanent Borehole	<u></u>	N/A					
Casing		N/A					
		1. 2					
Top of Concrete	PRE-MIX	+.3					
Bottom of Concrete	•	0.0					
Top of Grout		N/A					
		N/A					
Bottom of Grout	· · · · · · · · · · · · · · · · · · ·	N/A					
Top of Well Riser	4" SCH 40 PVC	+2.2					
Bottom of Well Riser		-2.8					
Top of Well Screen	4" SCH 40 PVC	-2.8				Top of Seal	0.0
				xx	bχ	· ·	
Bottom of Well Screen	.010 SLOT	-17.9		>>0 >>0	XXX		
Top of Peltonite Seal		0.0		$\tilde{\mathbf{x}}$	∞		
	1/8 BENTONITE			x	þχ	Top of Gravel Pack	-2.0
Bottom of Peltonite Seal	CHIPS	-2.0				Top of Screen	-2.8
Top of Gravel Pack	10-20 SILICA	-2.0		E	1		
Bottom of Gravel Pack		-19.0			4		
Doubli of Glaver Fack				\vdash	-	1	
Top of Natural Cave-In		-19.0		F]		
Bottom of Natural Cave-In		-21.0					
Top of Groundwater		-8.1		E		Bottom of Screen	-17.9
Total Depth of Borehole		-21.0				Bottom of Borehole	-21.0

Comments: POURED APPROXIMATELY 1 FOOT SAND IN BOREHOLE TO SET CASING AT 18 FEET. SEVEN (100 LBS.) BAGS

10-20 SILICA SAND, 1 (50 LB.) BAG BENTONITE CHIPS HYDRATED WITH 5 GALLONS WATER.

Geologist Signature

Û

8

BURLINGTON ENVIRONMENTAL INC.

CORPORATE LABORATORY

MODIFIED SOIA METHOD FOR BYEX ANALYSIS

Client: Date of Receipt	EI Pass Nut 01/07/94	arai Gae Contpiniy Data of Reports	01/1494
Analyst:	Sheng Pan	QC by:	
Project Bampic Identification Lab Number Sample Type:	Wingate 194-4005 51324-5 water		
Date of Extraction:		Date of Analysist	01/14/94
BTEX			
Paramata		3.7	r

۰.

Banauna	3.7 mg/ 3
Toluenc:	14 mg/1
Ethyl Bankene:	1.3 ug/l
Total Xylenes:	4.4 00/1

Storegate:	% Recovery
Trifluorotoulmente	9 8.9

MERIDIAN OIL -Wingate Plant, Gallup, NM.

ACTION PLAN for

APPLICATION OF FERTILIZER TO ENHANCE PASSIVE BIOREMEDIATION

I. Introduction: Pursuant a Discharge Plan condition, NMOCD required a preliminary groundwater investigation by Meridian Oil. A geoprobe survey was conducted on April 6 and 7, 1993. In general, data collected indicated hydrocarbon contamination still confined to the area around the train loading rack. The hydraulic head in the shallow aquifer indicates that the upward flow is limited and restricted by the clayey-rich intermediate unit previously identified in the 1992 Discharge Plan.

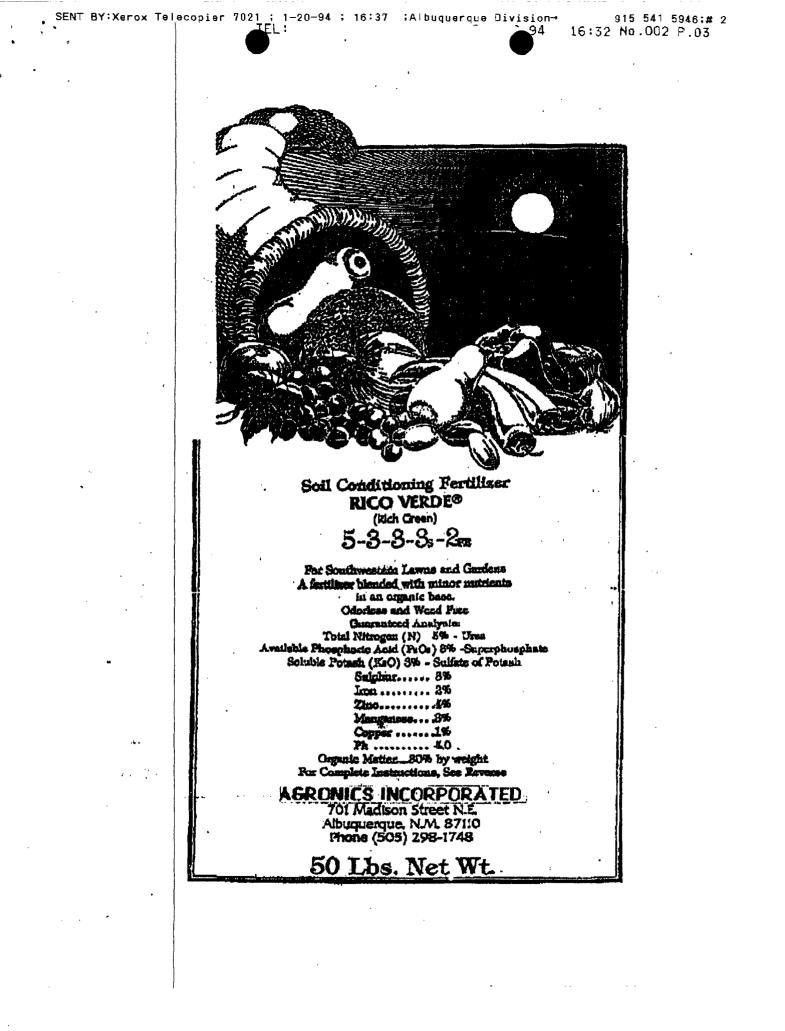
As a result of the preliminary groundwater investigation, several recommendation were proposed and accepted by NMOCD. Based on the observations, the following was agreed to by Meridian and NMOCD: 1) a continuation of the groundwater monitoring program with a change in the sampling frequency to semi-annually beginning in 1994; 2) install an additional monitoring well; and, 3) initiate passive bioremediation. The latter point is the focus of this action plan.

MOI will initiate an in situ passive bioremediation within the area of concern. Since the groundwater is relatively shallow and hydrocarbon concentrations are relatively low, the addition of nutrients should initiate or enhance passive remediation of the hydrocarbon contaminants in the soil above the saturated zone. Nutrients will be applied on an annual basis to stimulate and augment natural bioremediation. The program will continue until the groundwater contaminants are below the applicable WQCC criteria.

II. Schedule of Application: Contact for this application procedure is Richard Duarte, El Paso Natural Gas Co., 831-7763.

The dates shown below are subject to change pending weather or product delivery to Gallup, NM. Application shall be in and around non paved areas within the train rack, excluding the immediate area within the train rails.

Day 1: Approval is received from NMOCD to apply RICO VERDE. RICO VERDE will be applied per product instructions.


Day 2: Submit the request to purchase RICO VERDE. Delivery is estimated to be 10-days.

Day 7: Notify Wingate Plant Supervisor and Meridian Environmental Engineer of pending delivery and proposed application.

Day 12: Delivery of RICO VERDE.

Day 13 -15: Contractor will mechanically apply the RICO VERDE per instructions for the product.

Day 15: Notify Meridian of completion.

My gronics Incorporated

701 Medison St N.E. Albuquergue, New Mexico 87110 -DBA Farm Guard Products (505) 288-1748

AGRONICS, Inc. is pleased to announce.....

RYD VERDE (Rich Green)

A premium lawn and garden soil conditioning fertilizer.

RICO VERDE represents the most complete lawn and garden fertilizer available with a total supplement of major nutrients (Nitrogen 5%, Phosphate 3%, and Potash 3%) with a full complement of micronutrients (Iron 25, Sulfur 35, Zinc .45, Manganese .35, and Copper.13) in a concentrated, weed-free, odorless, humus base with 30% organic matter.

RICO VERDE is complete. It will soften soil, improve water penetration, balance soil nutrients, provide an organic matter, which is stable and does not oxidize as peat moss or composts which are very short-lived in the soil. RICO VERDE will save the cost of peat moss or organics as the RICO VERDE's organic components are very concentrated and highly active.

RICO VERDE's complete plant food mix reduces any possibility of minor nutrient deficiency. In Southwestern alkali soils, the organic base provides a chelating effect which releases the minor nutrients to the plant for maximum availability.

RICO VERDE represents the premium high quality lawn and garden fertilizer to supplement your product line. RICO VERDE can be placed on truckload orders with Clod Buster or micronutrients for your complete full season sales activity.

RICO VERDE can be sold to lawn and garden stores, nurseries, or you can sell it direct through your outlet. It is an excellent product and the repeat business you receive will be very profitable.

We welcome RICO VERDE.

AGRONICS. Inc.

Where Advanced Plent Hill Boil Technology Pay- Since 1967

1

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

EDRUG FREE

THE COLOR OF COLOR

BRUCE KING GOVERNOR

ANITA LOCKWOOO CABINET SECRETARY

January 27, 1994

Mr. Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, NM 87499-4289

RE: Wingate Fractionating Plant RCRA E&P Exemption Clarification McKinley County, New Mexico

Dear Mr. Frampton,

The New Mexico Oil Conservation Division (OCD) has received your January 24, 1994 request to clarify the Resource Conservation and Recovery Act (RCRA) Exploration and Production Hazardous Waste Exemption status of the Wingate Fractionating Plant in McKinley County, New Mexico.

The OCD has reviewed this letter and agrees with your general listing of exempt and non-exempt wastes, as well as with your justification of the Wingate Plant's E&P exempt status as determined in the Federal Register as you referenced. It appears that Meridian's management strategy is consistent with waste management standards under the OCD's jurisdiction.

Please be advised that compliance with these standards does not relieve Meridian Oil, Inc. of liability should their operation result in actual pollution of surface or ground waters or the environment actionable under other laws and/or regulations.

If you have any questions, please call me at (505)827-4080.

Sincerely,

ngers II

Robert L. Myers II Petroleum Engineer Specialist

RLM/rlm xc: Denny Foust, OCD Aztec Office POST OFFICE BOX 2088 STATE LAND DFFICE BUILDING SANTA FE, NEW MEXICD 87504 (505) 827-5800 MERIDIAN OL 1400.546 - 21. DEVISION

SY JAN TO AR S 09

January 24, 1994

Certified - P794 519 768

Roger Anderson New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504

Re: Wingate Fractionating Plant (Wingate) Resource Conservation and Recovery Act (RCRA) Exploration and Production Hazardous Waste Exemption (E & P Exemption) Clarification

Dear Mr. Anderson:

Meridian Oil Inc. (MOI) recently reviewed waste management practices at Wingate. (Wingate facility operations are thoroughly described in New Mexico Oil Conservation Division (OCD) approved Discharge Plan GW-54.) During this review a question arose concerning which wastes generated at the facility are included under the E & P exemption. With this letter MOI wants to share with OCD MOI's interpretation of E & P exemption applicability at Wingate. MOI requests your written concurrence with our management approach.

Listed below is a table that describes the major waste producing activities at Wingate and MOI's E & P exemption applicability determination.

Non-Exempt Machinery maintenance Construction and painting Fuel storage spills Cooling tower cleaning waste Fire training wastes Used equipment lubrication oil Used hydraulic fluids Odorants wastes (addition of) Drums, insulation and miscellaneous solids Waste mercury from meters and gauges Purchased product storage wastes Exempt

Process spill residue Process vessel wastes Process waste waters Process cooling tower blowdown Process dehydration wastes Process sweetening wastes Process filter media wastes

This table is not intended to cover all wastes generated at Wingate. Rather it is provided as an example of how MOI implements the E & P exemption to Wingate gas plant wastes.

Wingate Fractionating Plant

7

MOI believes that this implementation is consistent with E & P exemption regulatory determinations described in the Federal Register (Vol. 53, No. 129 July 6, 1988 and Vol. 58 No. 53 March 22, 1993). MOI's position is supported by the following:

- 1. Wingate is an operating gas plant with processes designed to fractionate various natural gas fractions into marketable products.
- 2. After processing at Wingate the processed products are ready for marketing and transportation to consumption markets.
- 3. Wingate processing removes natural impurities from natural gas fractions.
- 4. Wingate processing does not crack or reform the molecular structure of the various gas fractions.
- 5. Wingate is an essential gas plant extension of the upstream gas plants located in the San Juan Basin.

Roger, please review the points raised in this letter. MOI seeks your concurrence that our management strategy is consistent with waste management standards under your department's jurisdiction. If you have any questions or would like clarification on any of the above stated, please call me at 326-9841.

Sincerely,

Michael J. Frampton

Sr. Staff Environmental Representative

cc: Denny Foust, OCD - Aztec Greg Kardos, MOI Wingate Plant Waste Disposal Issues: Correspondence

mjf/sn/c:\wingclar

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

DRUG FREE

POST OFFICE BOX 2088

STATE LAND OFFICE BUILDING

SANTA FE, NEW MEXICO 87504 (505) 827-5800

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY

January 14, 1994

CERTIFIED MAIL RETURN RECEIPT NO. P-667-241-893

Mr. Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

RE: FIRE TRAINING PIT CLOSURE MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) has completed a review of the Meridian Oil, Inc. (MOI) November 19, 1993 "FIRE TRAINING PIT CLOSURE PROJECT, WINGATE FRACTIONATING PLANT, MCKINLEY COUNTY, NEW MEXICO" and MOI'S December 20, 1993 "FIRE TRAINING PIT CLOSURE, DISCHARGE PLAN GW-54, CLOSURE REPORT - ADDENDUM #1". These reports present the results of MOI's remedial activities associated with the closure of the former unlined fire training pit at the Wingate Fractionating Plant.

The remedial actions performed at the above referenced site have been completed in accordance with the standards in effect at the time of closure and are approved with the following condition:

1. Upon completion of landfarming activities, MOI will submit the final analyses of the landfarmed soils to OCD for final approval.

Please be advised that OCD approval does not relieve MOI of liability should remaining contaminants pose a future threat to surface water, ground water, human health or the environment. In addition, OCD approval does not relieve MOI of responsibility for compliance with any other federal, state or local laws and/or regulations.

Mr. Michael J. Frampton January 14, 1994 Page 2

5

If you have any questions please contact me at (505) 827-5885.

Sincerely William C. Olson

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec Office