

GENERAL CORRESPONDENCE

YEAR(S):

FLARE PIT CLOSURE PROJECT WINGATE FRACTIONATING PLANT MCKINLEY COUNTY, NEW MEXICO

RECEIVED

NOV 0 1 1993

OIL CONSERVATION DIV. SANTA FE

Prepared for

Meridian Oil Inc. October, 1993

Prepared by

SUNDANCE Property Consultants, Inc. Albuquerque, New Mexico

Flare Pit Closure Project Wingate Fractionating Plant

I. INTRODUCTION

This report documents the activities and current status of the Wingate Flare Pit Closure Project. It includes a description of the site assessment, remediation efforts, and recommendations for future actions.

The flare pit is a circular structure (80 ft. diameter x 7 ft. deep) located adjacent to the candle flare, approximately 100 meters NE of the main facility. The site is surrounded by a chain link fence and access is provided through a locked gate.

The pit was recently taken out of service, after many years of use as an emergency/upset flare facility. Meridian Oil, Inc. (MOI) has contracted with **SUNDANCE** Property Consultants, Inc. (SPCI) to evaluate and implement site closure activities, in accordance with NMOCD guidelines.

II. SITE ASSESSMENT

A site assessment was initiated on September 14, 1993, to determine the extent to which soils and ground water may have been impacted by previous site operations.

A. General Site Characteristics

Depth to Ground Water - based on a review of previously installed ground water monitoring wells at the Wingate facility, depth to ground water was estimated at approximately 8 - 10 feet. This estimate was later confirmed during excavation at the site.

Wellhead Protection Area - the horizontal distance to the nearest domestic water source was determined to be approximately 900 ft. to the facility's domestic water well (east and upgradient of the flare pit). Surface Water Bodies - the nearest surface water body, a seasonal channel of the Rio Puerco River, was determined to be approximately 1200 ft. north and downgradient of the flare pit. No other surface water bodies are present in close proximity to the site.

B. Soil and Water Remediation Levels

666555 Westerner and the

The general site characteristics discussed above, were compared with NMOCD guidelines, resulting in the following ranking scores:

Ranking Criteria	Ranking Score
Depth to	
Ground Water	20
Wellhead	••
Protection	20
Distance to	0
Surface Water	U
Total Ranking	40
Score	

A total ranking score of 40 results in the following recommended remediation levels for soil:

Benzene	10 mg/l
BTEX	50 mg/)
ТРН	100 mg/l

New Mexico Water Quality Control Commission (WQCC) ground water standards provide the required remediation levels for ground water contaminants. Relevant hydrocarbon component limitations are:

Benzene	0.01 mg/l
Toluene	0.75 mg/l
Ethylbenzene	0.75 mg/l
Total xylenes	0.62 mg/l

C. Soil/Waste Characteristics

Soil sampling procedures followed NMOCD guidelines. Field testing was performed utilizing a PID organic vapor meter for headspace analysis as a substitute for Benzene and BTEX (100 ppm criteria). In addition, a PETRO RISc[™] Soil Test kit was used to screen TPH levels in the field. This testing protocol conforms to EPA SW-846 method 4030 for petroleum hydrocarbons.

Initial sampling indicated the flare pit soil exceeded criteria contamination levels for both Benzene and BTEX vapor and TPH, particularly at sample points in the southern half of the pit (located closest to the flare tip). PID values showed a high peak of 139.5 ppm and TPH values ranged between 100 ppm -2000 ppm. Contamination exceeding criteria levels was found to a depth of a least 3 feet at some sampling locations.

Based on these results, remediation of the site was determined to be necessary.

III. REMEDIATION ACTIVITIES

On September 27, 1993, MOI submitted a remediation/closure plan to NMOCD. Approval of this plan was provided by NMOCD letter of October 1, 1993.

A. Soils

The remediation effort required the excavation of approximately 285 yds^3 of contaminated soil from the pit area. Six to eight feet of soil was removed from the pit bottom and lower sides; until soil samples met the remediation criteria. A confirmation sample for TPH was sent to an independent laboratory and confirmed a TPH value of 16.4 mg/kg (ppm) after excavation (see Attachment A).

The 285 yds³ contaminated soil was placed in a landfarm in an area immediately adjacent to the flare pit (within the fenced area and behind the locked gate). The final landfarm configuration was 140 ft. x 110 ft. x 6 inches,

SUNDANCE Property Consultnats, Inc.

surrounded by a containment berm. Initial (October 24, 1993) TPH measurements in the landfarm were 1300 ppm, 576 ppm, and 336 ppm resulting in an average value of 737 ppm.

Further remediation of the soil will be accomplished through volatilization and bioremediation. The landfarm is scheduled to be tilled and watered on a biweekly basis until the remediation criteria levels are achieved.

B. Ground Water

In the course of the excavation activities at the flare pit, shallow ground water was encountered within the pit (at 8-10 ft.). At the request of Mr. Deny Foust of NMOCD, samples were taken and analyzed for BTEX with the following results (see Attachment B):

	<u>Benzene</u>	Toluene	<u>Ethylbenzen</u>	<u>Xylenes</u>
9/23/93	0.370 mg/l	0.078 mg/l	0.008 mg/l	0.085 mg/l
10/7/93	0.031 mg/l	ND	ND	ND

Since both BTEX samples show an exceedance of the WQCC standard for Benzene, the flare pit remains open at this time, pending satisfactory remediation of the ground water.

It should be noted that the ground water contamination at this site appears to be very localized i.e. to the immediate vicinity of the flare pit. This is based on the fact that a ground water monitoring well (B-8/WMW-3) is located approximately 250 feet downgradient of the pit and has not shown any contamination to date.

SUNDANCE Property Consultnats, Inc.

IV. RECOMMENDATIONS

A. Soil

Based on the confirmation TPH measurement, it appears that sufficient material has been excavated from the flare pit such that minimal contaminated material remains. The remaining soil is well below the remediation level of 100 ppm TPH.

The landfarm should continue to be tilled and watered on a bi-weekly basis until remediation levels are obtained. It is proposed that TPH monitoring samples be obtained on a monthly basis.

B. Ground Water

Since the ground water contamination at the site appears to be very localized, additional monitoring wells are not recommended. Continued monitoring of the existing downgradient well should be sufficient.

Regarding remediation of the water within the pit, it is recommended that the natural processes of volatilization/dissipation be allowed to operate, at least for up to 9 months. It is suggested that quarterly samples be obtained to monitor BTEX levels. If remediation criteria levels are met during any quarter, closure of the pit should be implemented immediately.

In the event remediation levels for BTEX are not achieved within 9 months, a more active technique (i.e. air stripping) may need to be developed for the site.

Attachment A

Flare Pit Soil Data

3332 Wedgewood, Sulte E.5 • El Paso, Texas 79925 # 93 - 09 - 1.59		EPA 418.1 Category <mark>SOIL</mark>	UNAL.	93			AENT BY THE NWUDD
	Results by Sample	FRACTION <u>01A</u> TEST CODE <u>BIRPH</u> NAME <u>IRPH/EPA</u> Date & Time Collected <u>09/23/93 08:30:00</u> Cate	RESULT LIMIT D_F DATE_ANAL	n HCs <u>16.4 5.0 1.0 09/24/93</u>	Notes and Definitions for this Report: EXTRACTED 09/23/93 ANALYST JCB UNITS MG/KG BATCH ID STRPH-114 PRCNT_MOIST		THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.
ANALYTICAL LABORATORIES, INC. • 7300 Jefferson, N.E. • Albuquerque. New Mexico 87109 Page 1	Received: 09/24/93	SAMPLE ID FLARE PIT WINGATE	PARAMETER	Total Petroleum HCs	С	·	Member: American Council of This REPORT MUST NOT BE USE IN INTROMEDIATE THIS REPORT MUST NOT BE USE

Attachment B

Flare Pit Ground Water Data

Work Order # 93-09-190	CODE <u>WBTRX</u> NAME <u>BTRX/RPA 602</u> 09/28/93 15:15:00 Category WATRR	LIMIT D_F DATE_ANAL	1.0 10 09/29/93 1.0 10 09/29/93 1.0 1.0 09/29/93 1.0 1.0 09/29/93 1.0 1.0 09/29/93	this Report:	N/A	PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NULLED STATES GOVERNMENT.
REPORT Results by Sample	_ FRACTION <u>01A</u> TEST CODE <u>WB</u> Date & Time Collected <u>09/28</u> /	LI RESULT LI	370 78 8.3 72 13	Notes and Definitions for	EXTRACTED ANALYST NO FILE ID UNITS UNITS UNITS UG/L BATCH_ID WGCVOA-085 COMMENTS	TIIIS REFORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LARORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER THIRD FARTY TO CLAIM PRODUCT ENDORSEMENT BY THE
Page 1 Received: 09/29/93) MINGATE FLARE PIT	PARAMETER	Benzene Toluene Ethylbenzene P-&m-xylene O-xylene			THIS REFORT MUST NOT BE USED
Page 1 Received:	SAMPLE ID					Menher: American Council of Independent Labor startes, Inc.

ТИІЯ МЕРОЯТ MUST NOT BE USED IN ANY MANKER BY THE CLIENT OR ANY OTHER THIND PARTY TO CLAIM FRODUCE ENDORSEMENT BY THE NUMBED AND ANTIONAL LABORATORY VOLUNTARY ACCREDITATION PRODURM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.	THIS REPORT MUST NOT BE USED IN ANY MANKER NATIONAL LABORATORY VOLUMTARY ACCREI		Mashen: Azartana Council of Ediperation (Labor uselia, Inu.
			65225ÞE505 6Þ:II E6, 22 100
<u>X0</u> 009 ug/1 NgCVOA-022 N/A	EXTRACTED ANALYST FILE ID UNITS BATCH ID COMMENTS		
Notes and Definitions for this Report:	Notes		
	Benzene Toluene Ethylbenzene P-&m-xylene O-xylene		
RESULT LIMIT D.F DATE ANAL	parameter		
NON 02A TEST CODE NETEX NAME <u>BTEX/EPA 602</u> & Time Collected 10/07/93 08:45:00 Category MATER	FLARE PIT FRACTION 02A Date & Time	SAMPLE ID LLA	€ ⊅∕€`d
KOXJIRY MARANA, Suite E.S. & Pasa, letts 7925 REPORT NOTA OTA OTA 93-10-058 Results by Sample	- Rage 2 • Rage 2 · Received 10/07/93	Page 2 Fage 2 Received: 10/	

L

ļ.

.

• • • • •

FIRE TRAINING PIT CLOSURE PROJECT WINGATE FRACTIONATING PLANT MCKINLEY COUNTY, NEW MEXICO

RECEIVED

NOV 2 2 1993

OIL CONSERVATION DIV. SANTA FE

Prepared for

Meridian Oil Inc. November, 1993

Prepared by

SUNDANCE Property Consultants, Inc. Albuquerque, New Mexico

FIRE TRAINING PIT CLOSURE PROJECT WINGATE FRACTIONING PLANT MCKINLEY COUNTY, NEW MEXICO

Prepared for

Meridian Oil, Inc. November, 1993

Prepared by

SUNDANCE Property Consultants, Inc. Albuquerque, New Mexico

Fire Training Pit Closure Project Wingate Fractionating Plant

I. INTRODUCTION

This report documents the activities and current status of the Wingate Fire Training Pit Closure Project. It includes a description of the site assessment, remediation efforts, and recommendations for future actions.

The fire training pit is a rectangular structure (approximately 35 ft. x 32 ft. x 2 ft.) located approximately 500 meters East of the main facility.

The pit was recently taken out of service, after many years of use as a fire training facility. Meridian Oil, Inc. (MOI) has contracted with **SUNDANCE** Property Consultants, Inc. (SPCI) to evaluate and implement site closure activities, in accordance with NMOCD guidelines.

II. SITE ASSESSMENT

A site assessment was initiated on September 14, 1993, to determine the extent to which soils and ground water may have been impacted by previous site operations.

A. General Site Characteristics

Depth to Ground Water - based on a review of previously installed ground water monitoring wells at the Wingate facility, depth to ground water was estimated at approximately 8 - 10 feet.

Wellhead Protection Area - the horizontal distance to the nearest domestic water source was determined to be approximately 500 ft. to the facility's domestic water well (north and west of the fire training pit). **Surface Water Bodies** - the nearest surface water body, a seasonal channel of the Rio Puerco River, was determined to be approximately 1500 ft. north and downgradient of the fire training pit. No other surface water bodies are present in close proximity to the site.

B. Soil and Water Remediation Levels

The general site characteristics discussed above, were compared with NMOCD guidelines, resulting in the following ranking scores:

Ranking Criteria	Ranking Score
Depth to	20
Ground Water	
Wellhead	20
Protection	
Distance to	0
Surface Water	
Total Ranking	40
Score	

A total ranking score of 40 results in the following recommended remediation levels for soil:

Benzene	10 mg/kg
BTEX	50 mg/kg
ТРН	100 mg/kg

New Mexico Water Quality Control Commission (WQCC) ground water standards provide the required remediation levels for ground water contaminants. Relevant hydrocarbon component limitations are:

Benzene	0.01 mg/l
Toluene	0.75 mg/l
Ethylbenzene	0.75 mg/l
Total xylenes	0.62 mg/l

SUNDRACE Property Consultnats, Inc.

C. Soil/Waste Characteristics

Soil sampling procedures followed NMOCD guidelines. Field testing was performed utilizing a PID organic vapor meter for headspace analysis as a substitute for Benzene and BTEX (100 ppm criteria). In addition, a PETRO RISc[™] Soil Test kit was used to screen TPH levels in the field. This testing protocol conforms to EPA SW-846 method 4030 for petroleum hydrocarbons.

Initial sampling indicated the flare pit soil exceeded criteria contamination levels for both Benzene and BTEX vapor and TPH, in a small portion in the northern half of the pit. PID values showed a high peak of 101.6 ppm and TPH values ranged between 100 ppm - 2000 ppm. Contamination exceeding criteria levels was found to a depth of a least 2.5 feet at some sampling locations.

Since the fire training facility is not directly associated with gas production and processing, waste generated at the site is not exempt from RCRA regulations. As a result, a composite sample of the contaminated soil was obtained on September 29, 1993, and tested for hazardous waste characteristics. The sample results did not exceed any of the RCRA characteristic criteria, and the waste material was confirmed to be nonhazardous (see Attachment A).

Based on these results, remediation of the site was determined to be necessary, utilizing NMOCD guidelines for Unlined Surface Impoundments.

III. REMEDIATION ACTIVITIES

On September 27, 1993, MOI submitted a remediation/closure plan to NMOCD. Approval of this plan was provided by NMOCD letter of October 1, 1993.

A. Soils

The remediation effort required the excavation of approximately 45 yds³ of contaminated soil from the pit area. Approximately four (4) feet of soil was removed from the pit bottom and lower sides; until soil samples met the

remediation criteria. A confirmation sample for TPH was sent to an independent laboratory and confirmed a TPH value of 72.4 mg/kg (ppm) after excavation (see Attachment B).

The 45 yds³ of contaminated soil was placed in a landfarm in an area immediately adjacent to the fire training pit. The final landfarm configuration was 57 ft. x 37 ft. x 6 inches, surrounded by a containment berm. Initial (October 7, 1993) TPH measurement in the landfarm was 15,500 ppm.

Further remediation of the soil will be accomplished through volatilization and bioremediation. The landfarm is scheduled to be tilled and watered on a biweekly basis until the remediation criteria levels are achieved.

B. Ground Water

During excavation of the contaminated soil at the fire training pit, *ground* water was not encountered.

IV. RECOMMENDATIONS

A. Soil

Based on the confirmation TPH measurement, it appears that sufficient material has been excavated from the flare pit such that minimal contaminated material remains. The remaining soil is well below the remediation level of 100 ppm TPH. Based on this result, authorization from NMOCD should be obtained to backfill the fire training pit with clean soil material.

The landfarm should continue to be tilled and watered on a bi-weekly basis until remediation levels are obtained. It is proposed that TPH monitoring samples be obtained on a monthly basis.

SUNDANCE Property Consultnats, Inc.

Attachment A

-

Fire Training Pit

RCRA Characteristic Test Data

3332 Wedgewood, Sulte E-5 • EUC: so Texas 79935

ANALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico 87109

> Assaigai Analytical Labs 7300 Jefferson NB Albuquerque, NM 87109

Attn: MARLBAH M. MARTIN Phone: (505) 345-8964

MERIDIAN OIL 3535 EAST 30TH STREET FARMINGTON, NM 87402

Attn: MIKE FRAMPTON Invoice Number:

Order #: 93-09-191 Date: 10/06/93 09:33 Work ID: WINGATE Date Received: 09/29/93 Date Completed: 10/06/93 Client Code: MER01

SAMPLE IDENTIFICATION

Sample Sample Description Number

Sample Sample Number Description

WINGATE FIRE PIT 01

ND = None Detected D F = Dilution Factor NT = Not Tested

B = Analyte was present in the blank J = Estimated value

E = Estimated Value, Concentration exceeds calibration range MULTIPLY THE LIMIT BY THE DILUTION FACTOR.

or Certified Bv Marleah Martin

THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

Member: American Council of Independent Laboratories, Inc.

THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

RVLAD

TEST CODE	Sample 01
default units	(entered units)
	J
PRCTSX	N/Л
<pre>% (Percent)</pre>	1
T0270X	N/A
	,

REPORT

Results By Test

	ASSAL	-1	
·			

PRCTSX % (Percent) **T8270X** N/A TCLPXX

N/A TCLPZX

м/λ TCVHGX

N/A трллх

N/A IGFAAX

N/A

Received: 09/29/93

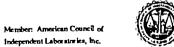
Page 1

ANALY LICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico 87109

N/A

N/A

Ν/Λ


Ν/λ

N/A

Work Order # 93-09-191

3332 Wedgewood, Suite E-5 • El Paso, Texas 79925

YTICAL LABORAFORIES, INC. + 7300 Jefferson, N.E.	 Albuquerque, New Mexico 87109 		3332 Wedgewood, Sulte E-5 * El E-so, Texas 799
Page 2	REPORT	Work Order # 93-09-191	
Received: 09/29/93	Results by Sample		
SAMPLE ID WINGATE FIRE PIT	FRACTION <u>01C</u> TEST CODE <u>SCOR</u>	NAME CORROSIV (NACE) /SW846	1110_
	Date & Time Collected <u>09/28/93</u>	15:50:00 Category <u>SOIL</u>	
PARAMETER	RESULT LIMI'	T D_F DATE_ANAL	
Corrosivity (NACE) <u>ND</u>	<u>6.0 1.0 9/30/93</u>	
	Notes and Definitions for th	s Report:	
	EXTRACTED09/30/93		
	ANALYST <u>JB</u>		
	UNITS MM/YR		
	BATCH_IDSNACE-002		
	COMMENTS		_

THIS REFORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

(TICAL LABORATORIES, INC. + 7300 Jefferson, N.E.						
Page 3	RBPORT	Work Order 93-09-	191			
Received: 09/29/93	Results by Sample					
SAMPLE ID WINGATE FIRE PIT	FRACTION <u>01C</u> TEST CODE <u>SPH</u>	NAME pH/SW846 9045				
	Date & Time Collected 09/28/93					
PARAMETER	RESULT LIMIT	D_F DATE_ANAL				
рн	7.7 0.	<u>.10 1.0 09/29/93</u>				
P						
	Notes and Definitions for this	Report:				
	EXTRACTED					
	ANALYST <u>TSH</u>					
	UNITS <u>pH Units</u>					
	BATCH_IDSPH-036					
	COMMENTS		N/A			

Member: American Council of

Independent Laboratories, Inc.

THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

YTICAL LABORATORIES, INC. + 7300 Jefferson, N.F. +	Albuquerque, New Mexico 87109				3332 Wedgewood, Sulte E-5 * El Paso, Texas 799.
Page 4	RBPORT		Work	Order # 93-09-191	
Received: 09/29/93	Results by Sample				
SAMPLE ID WINGATE FIRE PIT	FRACTION 01C TEST CODE	SREACT NA	ME <u>RBA</u>	CTIVITY/SW846 7-3	
	Date & Time Collected <u>09/</u>	28/93 15:50	0:00	Category <u>SOIL</u>	
PARAMETER	RESULT	L1MIT	D_F	DATE_ANAL	
Sulfide	NON-REACT		1.0		
Cyanide	NON-REACT	250	1.0	10/05/93	
	Notes and Definitions f	or this Rep	ort:		
		04/93			
	ANALYST DH	ι.			
	UNITS <u>mq/Kq OF WASTE</u>				
	BATCH_ID <u>SREACT-021</u> COMMENTS				

YTICAL LABORATORIES, INC. + 7300 Jefferson	n, N.E. + Albuquerque. New Mexico 87109		3332 Wedgewood, Sulte E-5 • El Paso, Texas 79925
Page 5	RBPORT	Work Order # 93-09-191	
Received: 09/29/93	Results by Sample		

 SAMPLE ID WINGATE FIRE PIT
 FRACTION 01B
 TEST CODE T0270
 NAME TCLP SVOA/METHOD 1311/0270

 Date & Time Collected 09/20/93 15:50:00
 Category SOIL

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL
2-Methylphenol / O-Cresol	<u> </u>	0.0010	3.0	10/02/93
3/4-Methylphenol / M/P-Cresol	<u>ND</u>	0.0020	3.0	10/02/93
Hexachloroethane	<u>ND</u>	0.0010	3.0	<u>10/02/93</u>
Nitrobenzene	<u> </u>	0.0010	3.0	<u>10/02/93</u>
Hexachlorobutadiene	<u>ND</u>	0.0010	3.0	<u>10/02/93</u>
2,4,6-Trichlorophenol	<u>ND</u>	0.0010	3.0	<u>10/02/93</u>
2,4,5-Trichlorophenol	<u>ND</u>	0.0010	3.0	<u>10/02/93</u>
2,4-Dinitrotoluene	ND	0.0010	3.0	<u>10/02/93</u>
Hexachlorobenzene	ND	0.0010	3.0	<u>10/02/93</u>
Pentachlorophenol	<u>ND</u>	0.0010	3.0	<u>10/02/93</u>
Pyridine	<u>ND</u>	0.0010	3.0	<u>10/02/93</u>

Notes and Definitions for this Report:

EXTRACTED	10/01/93
ANALYST <u>JS</u>	
FILE ID	S1670.D
UNITS	mq/L
BATCH_ID	TVOA-59
TCLP_XT_DATE	<u>09/29/93</u>

THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

LYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Alb	uquerque, New Mexico 87109					3332 Wedgewood, Sulte E-5 • El Paso, Texas 799
Page 6		RBPORT		Work	Order # 93-09-191	
Received: 09/29/93	Results by	Sample				
SAMPLE ID WINGATE FIRE PIT	FRACTION 01B	TEST CODE	<u>Imblut</u>	NAME <u>TCL</u>	P MRTALS/1311/SWB46	ΔΛ
	Date & Time Col	lected <u>09/</u>	28/93 1	5:50:00	Category <u>SOIL</u>	
PARAMETER	RESULT	LIMIT	D_F	DATE_EXT	DATE_ANAL	
PARAMETER Arsenic, As	RESULT	LIMIT	D_F <u>1.0</u>	DATE_EXT	DATE_ANAL <u>10/04/93</u>	
				_	—	
Arsenic, As	<u>ND</u>	0.0050	1.0	_ <u>10/01/93</u>	_ <u>10/04/93</u>	

Lead, Pb 0.10 1.0 10/01/93 10/04/93 ND ND 0.00020 1.0 10/04/93 10/04/93 Mercury, Hg Selenium, Se ND 0,0050 1.0 10/01/93 10/04/93 0.010 1.0 10/01/93 10/04/93 Silver, Ag ND

Notes and Definitions for this Report:

 ANALYST
 KH

 UNITS
 mg/L

 BATCH_ID
 WCVAA-087, WGFAA-266, WFAAA-243, TCLP-141

 TCLP_XT_DATE
 09/29/93

	TICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albu	querque, New Mexico 87109		3.332 Wedgewood, Suite E-5 + El Paso, Texas 79935
N.	Page 7	REPORT	Work Order # 93-09-191	
	Received: 09/29/93	Results by Sample		
	SAMPLE ID WINGATE FIRE PIT	FRACTION <u>01A</u> TEST CODE <u>Z8240</u> Date & Time Collected <u>09/28/93 15</u>	NAME <u>ZIIB/VOA/MIXIIIOD 1311/82</u> :50:00 Category <u>SOII.</u>	40

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL
Vinyl Chloride	ND	0.0010	1.0	10/01/93
1,1-Dichloroethene	<u>ND</u>	0.0010	1.0	<u>10/01/93</u>
Chloroform	<u>ND</u>	0.0010	1.0	<u>10/01/93</u>
1,2-Dichloroethane	<u>ND</u>	0.0010	1.0	<u>10/01/93</u>
2-Butanone (MEK)	ND	0.0010	<u> 1.0</u>	<u>10/01/93</u>
Carbon Tetrachloride	<u>ND</u>	0.0010	1.0	<u>10/01/93</u>
Trichloroethene	<u> </u>	0,0010	<u> 1,0</u>	<u>10/01/93</u>
Benzene	ND	0.0010	1.0	<u>10/01/93</u>
Tetrachloroethene	ND	0.0010	1.0	<u>10/01/93</u>
Chlorobenzene	<u>ND</u>	0.0010	1.0	<u>10/01/93</u>
1,4-Dichlorobenzene	ND	0,0010	1.0	<u>10/01/93</u>

Notes and Definitions for this Report:

EXTRACTED	
ANALYST <u>JS</u>	
FILE ID	<u>V3134</u>
UNITS	mg/L
BATCH_ID	<u> TVOA-59</u>
TCLP_XT_DATE	<u>09/29/93</u>

THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

			1	(Ch	ain o	f Cus	to	dy R	e (;0	rd	l				ALI	00 JEFFEF BUQUERO 5) 345-89	UE, NEW) 87109
p/phat)	LABOR/		L RIES	`) 		Løb job no.:	9 Page			- 1	<u>د</u>					(2)	EL	11 ADMIR PASO, TE 5) 593-60	XAS 7992		
														,	55	(2)54)					
Client Me	ridian 5 E. 30	Oil				Project Mar	nager_Mik	e fo	MOTON	-		[1				id <i>≥.</i> : 	-17	and the second sec		
Address 353	5 E.30	th st	· fo	<u>rm</u>	ingt	017Telephone I	No. 326	- 98	41	-			+-/	<u>5</u> /(J				1.	1	
Project Name/N	umber Wing.	9-1e	·	87	40a	. Fax. No				-	1	/<)/ \	$\frac{1}{k}$							n se sin Nationalista Nationalista
Contract/Purcha	ase Order∕Quote					Samplers: (Signature)			- /	2	-/0	N	A)			/.	and and a second			
Láboratory Sámple Number	Field Semple Number	Location	Date	Time	Sample Type ,	Typie/Size	of Container a si	Temp	ervation Chemical	V	// [}]	$ \xi $	13	1.	/					۲A	
61 A	wingate Fire Pit		<u> 1/27</u>	15 50	5	402	VOA	4°C	none	1	×							Due	10/1	4173	3
<u> 18</u>			<u> </u>			802	61955	$\left \right _{\cdot}$				X									
10	V		V.	V	₩	`	V	$ \mathbf{V} $	V				<u>×</u>		_						
					<u> </u>					$\left - \right $	-	-			-	-					
															-+						
					{										$ \uparrow$, , , , , , , , , , , , , , , , ,		
		 																			
		<u> </u>	Date p.		<u> </u>		·····												<u> </u>		
Relinquished by: Signature	in Miero			ignature_	2)-Pr	An		elinquished Signature	by:							Receiv Signa					
1 12	MYERS			rinted		IKins	F	Printed						. Tir	ne	Printe	od				
Company		q	:10 0	ompanγ_	<u>AIA</u>		‹	Company	<u></u>					·		Com	pany				
Reason			<u>A</u>	eason		<u> </u>		leason						Afte	er ane	Reaso alysis,		oles are to	be:		
Method of Shipmen	t:		c	ommente	-5	<u>0°/0 :</u>	Sur-CI	$h \infty$	<u>&</u>						[DD	ispos	ed of (addi	tional fee)	
Shipment No		<u> </u>	— -	CALL	1/1	IN W/ V	ERDAL	27	5- 71	83)							(30 days r		anal fact	
Special Instructions:			<u>`</u>	<u></u>	<u> \</u> _				<u> </u>	~~								over 30 d	• •	ionai tee)	

ASSAIGAI PROJECT FILE

.

Attachment B

Fire Training Pit Soil Data

Confirmation TPH Sample

3332 Wedgewood, Sulte E-5 + El Paso, Texas 79925

ANALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico 87109

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: MARLEAH M. MARTIN Phone: (505)345-8964

MERIDIAN OIL 3535 EAST 30TH STREET FARMINGTON, NM 87402

Attn: MIKE FRAMPTON Invoice Number: Order #: 93-11-042 Date: 11/08/93 16:56 Work ID: FIRE PIT Date Received: 11/04/93 Date Completed: 11/08/93 Client Code: MER01

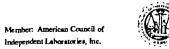
SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
<u>Number</u>	<u>Description</u>	Number	Description
01	FIRE TRAINING PIT		

ND = None Detected D F = Dilution Factor NT = Not Tested

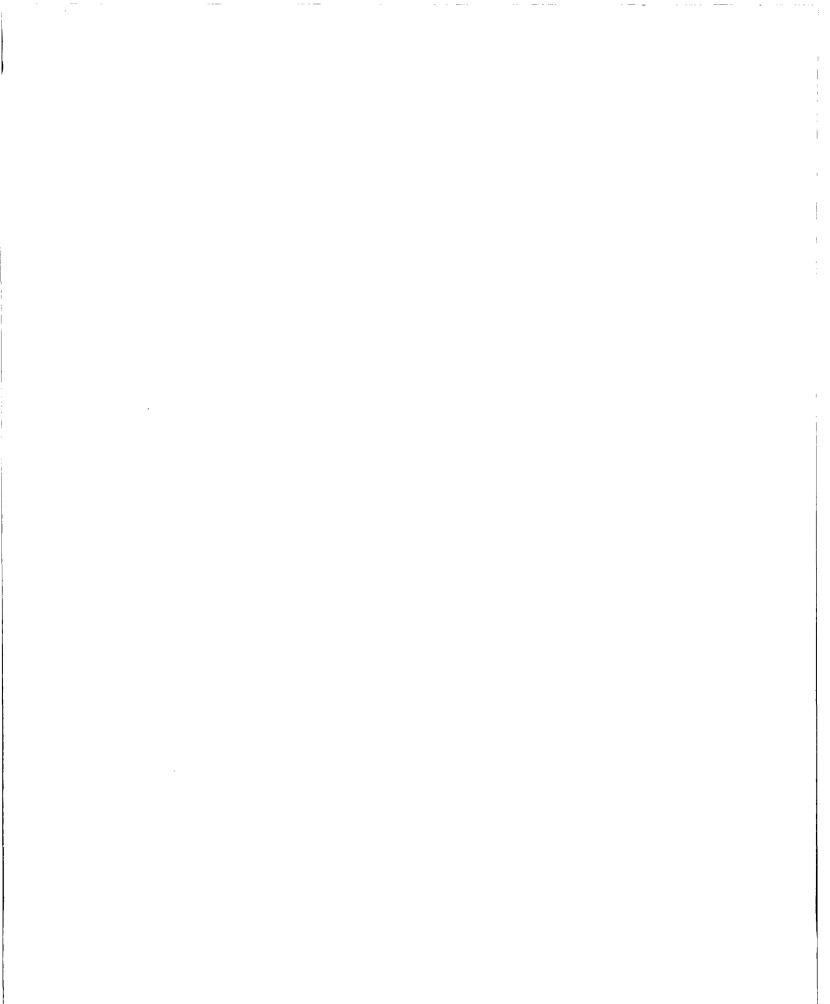
B = Analyte was present in the blank J = Estimated value

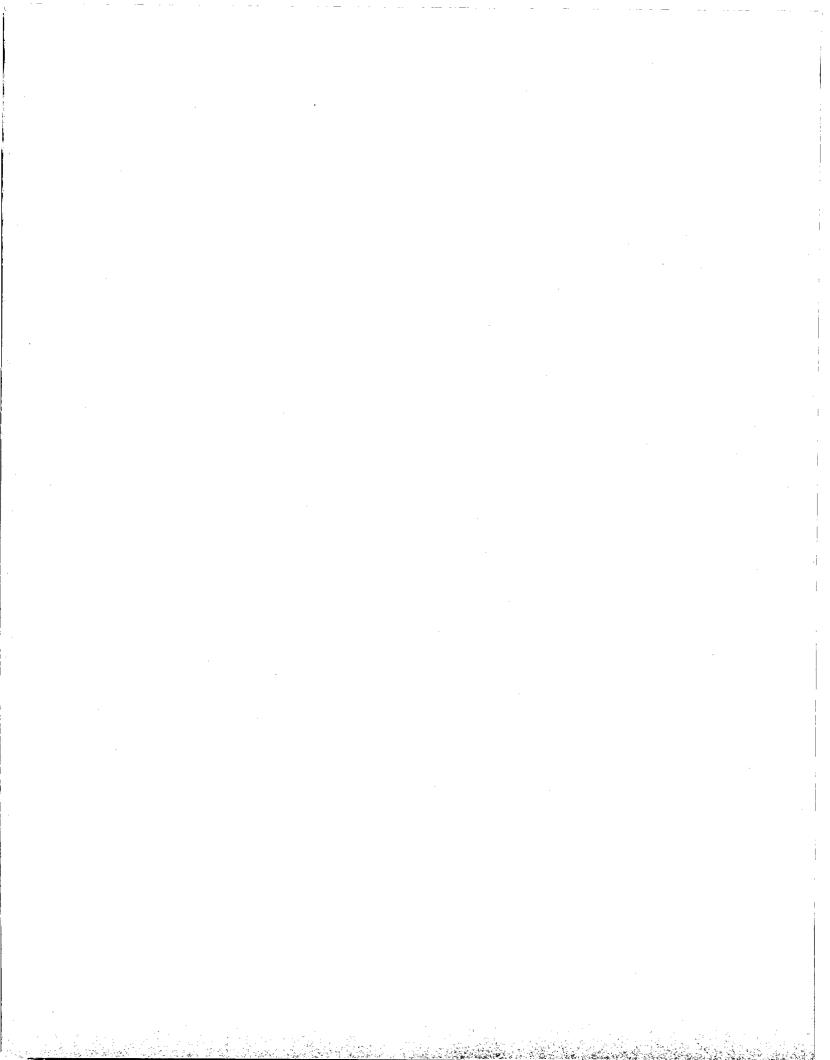
E = Estimated Value, Concentration exceeds calibration range MULTIPLY THE LIMIT BY THE DILUTION FACTOR.


Certified BV Marleah Martin

THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.

` ANALYTICAL LABORATORIES, Page 1 Received: 1	INC. • 7300 Jefferson, N.F. • Albuquerque, New 1	Mexico 87109 Results by	REPORT		Work	3332 Wedgewor : Order # 93-11-	od, Suite E-5 • El Paso, Texas 79925 - 042
	TRE TRAINING PIT	FRACTION <u>01A</u> Date & Time Co	TEST CODE			H/EPA 418.1 Category <u>SOII</u>	
	PARAMETER		RESULT	LIMIT	D_F	DATE_ANAL	
	Total Petroleum	HCs	72.4	5.0	1.0	11/05/93	
		Notes and De	finitions fo	or this R	eport:		
		EXTRACTED		<u>05/93</u>			


THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE NATIONAL LABORATORY VOLUNTARY ACCREDITATION PROGRAM OR ANY OTHER AGENCY OF THE UNITED STATES GOVERNMENT.



· · · · · · · · · · · · · · · · · · ·			Chain of Custody Record Lab job no.: H-042 Date (1493 Page 1 of 1 Project Manager/Contact MIKE FFAMFTON							7300 JEFFERSON, N.E. ALBUQUERQUE. NEW MEXICO 87109 (505) 345-8964								
											3711 ADMIRAL, SUITE C EL PASO, TEXAS 79925 (915) 593-6000							
										MELQUIADES ALANIS 6411 LOCAL UNO CIUDAD JUAREZ, CHIHUAHUA MEXICO 32320								
			Telephone No						7		Analysis Required							
									//	[1]								
Project Name/Number																Remarks	\rightarrow	
	nase Order/Quote							-	of Com		//				$\left(\right)$	/ 21	TAT	
Laboratory Sample Number	Field Sample Number Location	Date	Time	Sample Type	Type/Size of Container	Temp.	Chemical 4	1/ /	κ		· / · :			[]	1	· · · · · ·		1:
61A	FIRE TRAINING PIT	11/3/93):15	5	407 GLASS	<i>•</i> Ψ (Πy										
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ					\perp										
		↓	ļ															
	- 	<u> </u>			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				_							
	<u> </u>												$\left - \right $					{
					•••••••••••••••••••••••••••••••••••••••		<u>_</u>	$\left\{ -1 \right\}$	+++		+		┼─┤		+			{
									++			+						
					,,,,,,,,													
												ļ						
l	Date	L									Date		Ļ					
Relinquished by: Signature Ka vin Myan Signature Signature			MANK 2			elinquished by: Signature						Received by: Signature						
PrintedTime Printed			THOM AS POTOS		Printed					Time		Printed						
COMPANY SUNMARS CONSURATS COMPANY		AAL		Company					_ Company_									
Reason Reason			Reason						After analysis, samples are to be:									
									_	Disposed of (additional fee)								
			D REPORTS TO MERIDIAN & KEVIN MYERS						≥_	Stored (30 days max)								
Special Instructions:			24	the TAT						 Stored over 30 days (additional fee) Returned to customer 								

I.

ASSAIGAI PROJECT FILE

MERIDIAN OIL

÷

RELEVANCESS - UN DIVISION Releverd

193 DE 👾 FIN 9 34

December 20, 1993

Certified - P 142 129 965

William C. Olson, Hydrogeologist
Energy, Minerals, & Natural Resources Dept.
Oil Conservation Division
P.O. Box 2088
Santa Fe, New Mexico 87504

Re: Fire Training Pit Closure Discharge Plan GW-54 Closure Report - Addendum #1

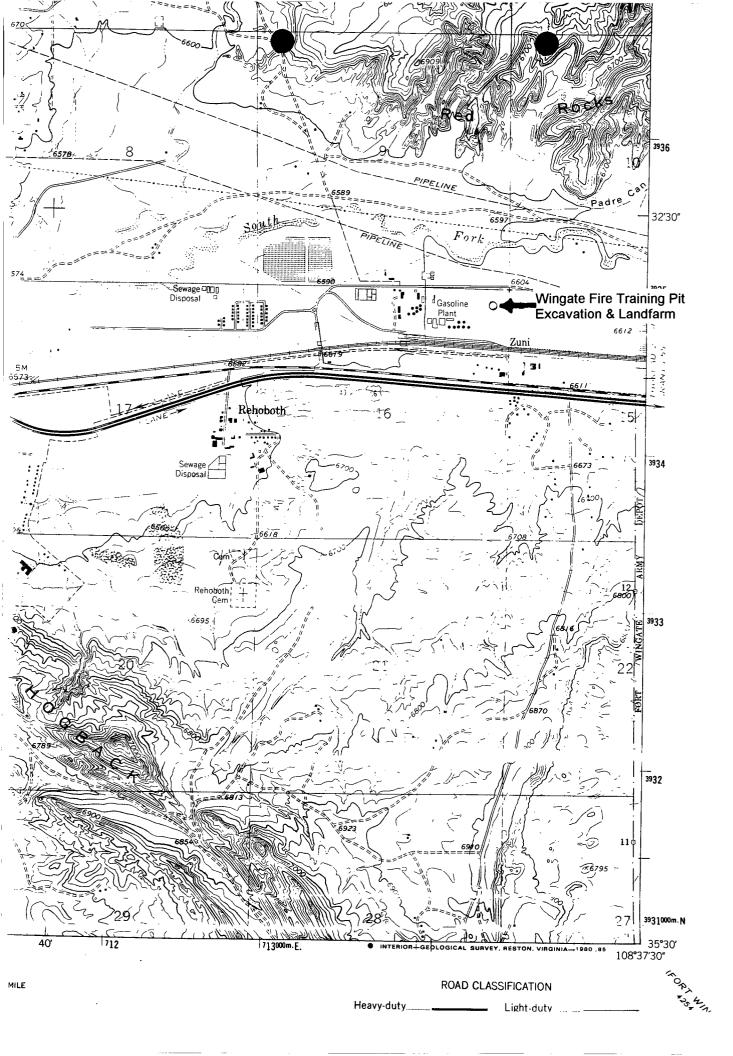
Dear Mr. Olson:

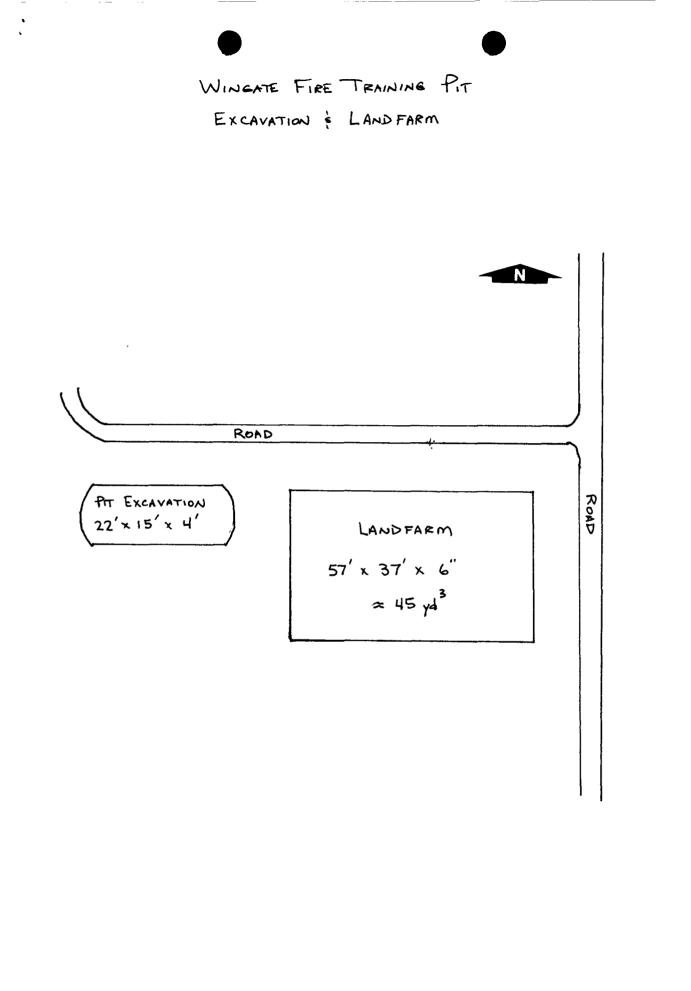
Meridian Oil Inc. is submitting additional information pursuant to your request described in your November 22, 1993 correspondence (Certified Mail - P 667 242 412).

Attached for your information is a map showing the location of the excavated area and landfarm and a figure showing soil sampling locations. Also attached are the field PID and Petro Risc soil measurements made initially and after excavation was completed.

If you have any questions please call me at (505) 326-9841.

Sincerely,

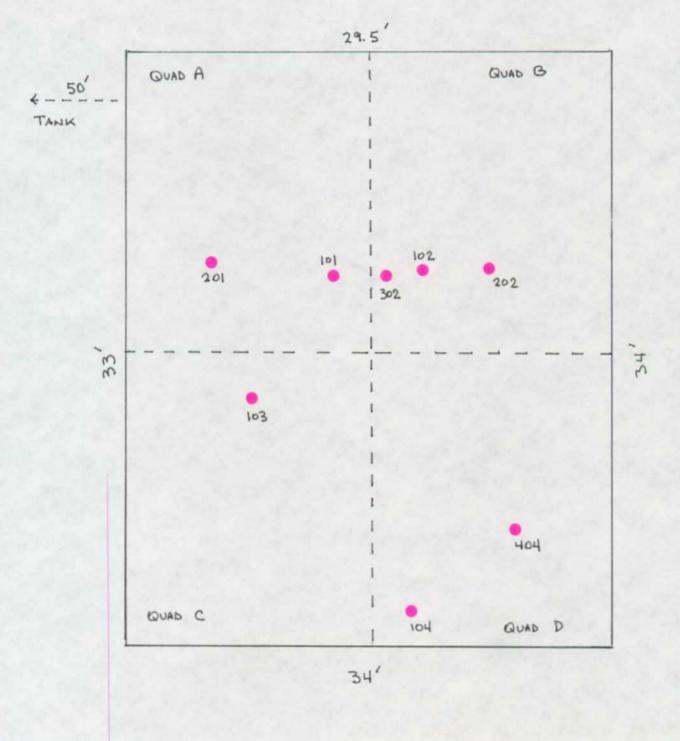

Michael J/Frampton


Sr. Staff Environmental Representative

- Attachment: Map (2 Page) Sample Locations Field PID Results (1 Page) Petro Risc Soil Results (1 Page)
- cc: Denny Foust OCD, Aztec, N.M. Wingate Plant Closures: Fire Training

mjf/sn/c:winftran

Meridian Oil Inc., 3535 East 30th St., P.O. Box 4289, Farmington, New Mexico 87499-4289, Telephone 505-327-0251



ス

WINGATE FIRE TRAINING PIT SAMPLE LOCATIONS PID, TPH/PETRO RISC, TCLP

.

NOT TO SCALE

3

N

۰.

Wingate Pit Closure Project Field PID Results Fire Training Pit

Date	/Time	Grid #	Sample #	Depth	Peak - ppm
9-16	1502	A	5-101	۷"	0.7
9-16	1509	В	5-102	6 "	0.6
9-16	1520	C	5-103	6"	0.6
9-16	1514	P	5-104	6"	0.5
9-17	0940	A	M- 101	1'5'	101.6
9-17	1025	A	101 - C	2 1/2'	68.4
9-17	1345	ß	M - 102	11/21	1.6
9-17	1235	D	M-104	151	0.9
9 - 20	1145	В	M- 102	2' i''	4.5
9-20	1105	U ,	M - 103	27"	0.9
9 - 20	1445	B	M- 202	24"	0.9
			After Excavation		
10-6	1455	Compos ITE		0-4'	4.9
	·····				
				·	

₩

L

sundance Consultants, Inc.

FIRE TRAINING PIT

\$

		Data	for P	ETR	D RIS	CTM S	oil T	est	
Оре	rator: K.C. Myer	s	Date: <u>٩-</u> ।	6 thru 9-20	1993	Location	FIRE	TRAINING	Per
	Sample ID	∆OD standards	OD sample	Interpret.	OD sample 5₀⇔ ppm	Interpret.		Notes	
A	5-101	-0.04	+ 0.15	< 100	+ 0.14	< 500	6"	oK	
D	5-104	-0.06	+0.02	< 100	+0.49	< 500	6"	\circ	
Α	M · 101	-0.10	-0.54	> 100	- 0.06	<u>کې د</u>	11/2'	Exceeds S	itraubard
A	D - 101	-0.05	-0.48	γ l∞o	- 0.07	> 5∞	2'2'	ÊxCEEOS	standard
B	M-102	-0.08	-0.51	> 100	-0.12	> 500	25"	EXCEEDS	STANDARD
С	M-103	-0.07	+0.27	< 100	+0.30	6 500	27"	οκ	
B	M· 202	-0.01	+ 0.24	< 100	+0.41	< 500	27"	oK	
			TCLP	COMPOSITE	SAMPLE				
B	302	0-22″							
D	404	0-12"							
B	202	21-27							
C	103	24"-30 "							······
D	104	18"-24"							
A	201	0-13"							
							<u>_,</u> ,,		

4

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY December 3, 1993

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-667-241-887

Mr. Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

RE: FLARE PIT CLOSURE MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) has reviewed the Meridian Oil, Inc. (MOI) October 29, 1993 "FLARE PIT CLOSURE PROJECT, WINGATE FRACTIONATING PLANT, MCKINLEY COUNTY, NEW MEXICO" and MOI'S November 21, 1993 "FLARE PIT CLOSURE, DISCHARGE PLAN GW-54, CLOSURE REPORT - ADDENDUM #1. These documents present the results of MOI's remedial activities associated with the closure of the former unlined flare pit at the Wingate Fractionating Plant.

The soil remediation actions as documented in the above referenced reports appear to have adequately removed contaminated soils related to the use of the pit. The ground water monitoring recommendations which are contained in the above referenced reports are approved with the following conditions:

- 1. MOI will notify OCD at least 72 hours in advance of all sampling activities such that the OCD may have the opportunity to witness the events and/or split samples.
- 2. Upon completion of landfarming the contaminated soils, MOI will submit an analysis of the final contaminant levels in the landfarmed soils to OCD for approval.

Please be advised that OCD approval does not relieve MOI of future liability if remaining soil contaminants are found to pose a threat

Mr. Michael J. Frampton December 3, 1993 Page 2

to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve MOI of responsibility for compliance with any other federal, state or local laws and/or regulations

If you have any questions, please call me at (505) 827-5885.

Sincerely

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec Office

MERIDIAN OIL

00 KD 24 FA 10 29

November 21, 1993

Certified - P 142 129 934

William C. Olson, HydrogeologistEnergy, Minerals, & Natural Resources Dept.Oil Conservation DivisionP.O. Box 2088Santa Fe, New Mexico 87504

Re: Flare Pit Closure Discharge Plan GW-54 Closure Report - Addendum #1

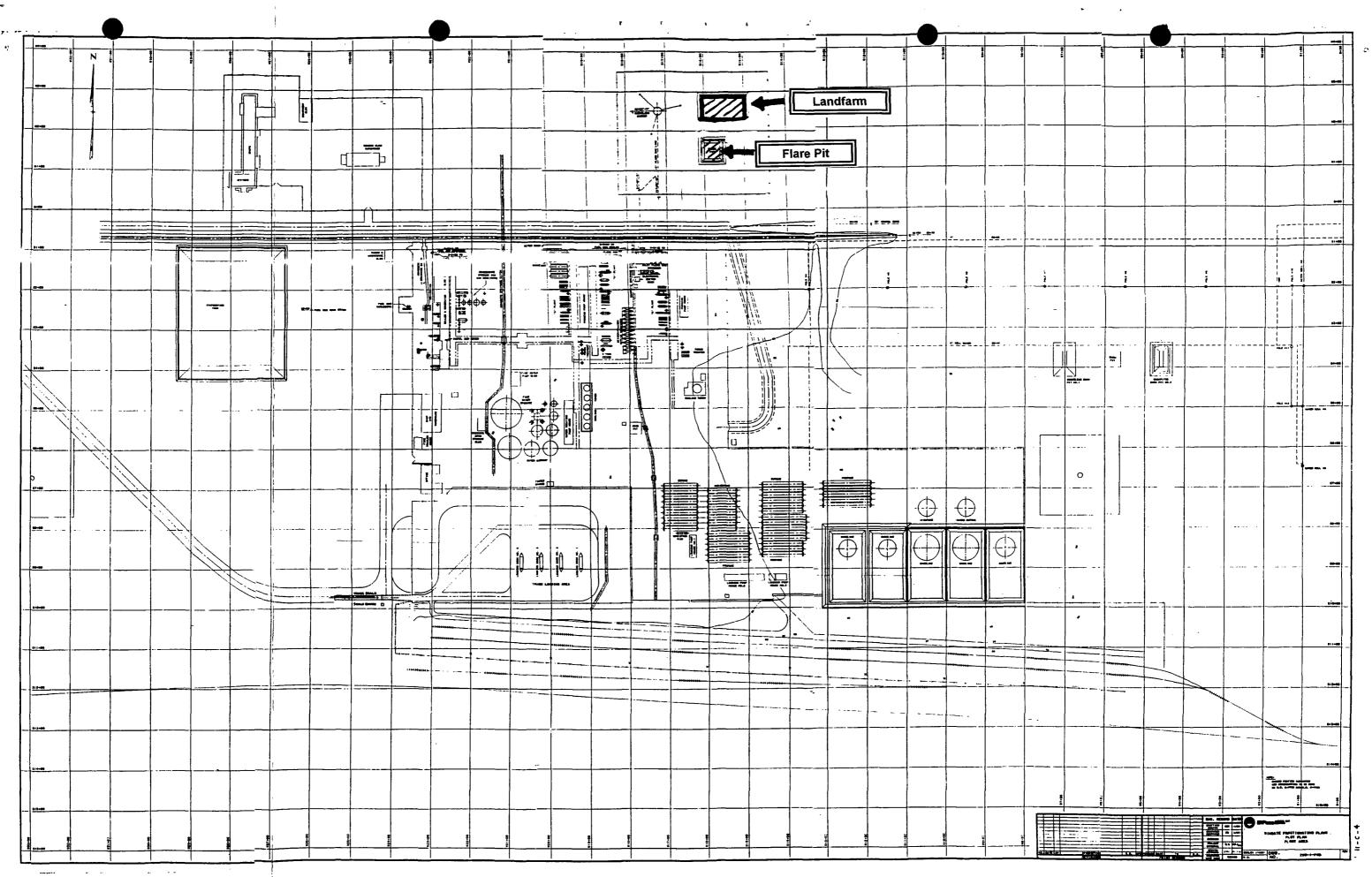
Dear Mr. Olson:

Meridian Oil Inc. is submitting additional information pursuant to your request described in your November 16, 1993 correspondence (Certified Mail - P 667 242 408).

Attached for your information is a map showing the location of the excavated area and landfarm. Also attached are the field PID measurements made initially and after excavation was complete. Water quality monitoring will be conducted at two locations. The open excavation will be monitored quarterly in December, March, June and September. The downgradient monitoring well (WMH-3) will be monitored semi-annually in March and September. Monitoring will continue at both locations until water quality criteria is met at the open excavation. Analytical results of water quality samples will be forwarded to your office as they become available.

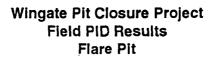
If you have any questions please call me at (505) 326-9841.

Sincerely,


Michael J. Frampton

Sr. Staff Environmental Representative

Attachment: Map (1 Page) Field PID Results (5 Pages)


cc: Denny Foust - OCD, Aztec, N.M. Wingate Plant Closures: Flare Pit

mjf/sn/c:winflar1

, 6**1**

Date/Time	Grid #	Sample #	Depth	Peak - ppm
9/14 1255	A	S- 101	0-6"	3,5
9/14 1257	A	5-201	0-6"	1.6
9/14 1300	A	S-301	0-6"	3.8
9/14 1303	A	5-401	0-6"	0,5
9/14 1304	A	5-501	0-6"	0.6
9/14 1320	B	5-102	0-6"	3.7
9/14 1322	ß	5-202	0-6''	0.5
9/14 1325	B	5 - 302	0-6"	11.8
9/14 1323	B	5-402	0-6"	0.4
9/14 1329	B	5-502	0-6"	0.8
9/14 1340	J	5-103	0-6"	4.6
9/14 1342	C	5-203	0-6"	2.5
9/14 1345	\subset	5-303	0-6"	2.9
9/14 1350	C	5-403	0-6"	139.5
9/14 1354	C	S- 503	0-6"	3.2
9/14 1410	D	5-104	0-6"	8.4
9/14 1411	D	5-204	0-6"	3.5
9/14 1414	D	5-304	0-6"	2.4
9/14 1417	D	S-404	0-6"	98.3
9/14 1418	J	5-504	0-6"	1.5

SUNDANCE Consultants, Inc.

Wingate Pit Closure Project Field PID Results Flare Pit

Date/	Time	Grid #	Sample #	Depth	Peak - ppm
9-15	1320	D	M-104	1-12'	68.4
	-	۵	D-104	2-2%	105.5
9-15	1345	С	M- 403	1-15'	15.8
9-15	1350	C	D-403	2-21/2'	101.2
9-15	1400	В	M - 102	1-1/2'	3.6
9-15	1410	B	D - 102	2-21/2'	2.2
9-16	1010	A	M - 501	1-15'	3.5
9-16	1014	A	D-501	2-21/2'	4.8
9-21	1405	A	ED- 101	4'	1.8
9-21	1407	B	ED-102	4	14.4
9-22	0818	D	ED-104	5′	37.3
9-22	10(3	C	ED - 103	45'	119.6
9-22	1019	C	ED - 203	5'	70.9
9-22	13-00	D	ED - 204	6'	0.7
9-22	1305	<u>ک</u>	ED - 303	5'	0.8
9.22	1420	ç	ED-403	6'	1.5
		,			

SUNDANCE Consultants, Inc.

• • •	For	e Pit	Wingot		
ł		Samples			$\mathbf{\Lambda}$
				· · · · · · · · · · · · · · · · · · ·	~
		_			
Flace					
0	A			B	
	/			-*4	
5 101			• 5		20Z 30Z
201 301			13	* 0,	407_
401	0	•	· · · · · · · · · · · · · · · · · · ·		<u>ج دی</u>
501					<u>}</u>
	• 5 40	8	01		
	10		1		
				• • 2	
				19	
	2		· · · ·	/	
			•		
	3 •	Of*	9	` /	
		0 11 Iu	•5		<u> </u>
		.5			
C	11-1				D
5103			·	S	104
203	·		······································	· · · · · · · · · · · · · · · · · · ·	204
303					.364
403 503			· · · · · · · · · · · · · · · · · · ·		424 5at
د ۵۵					
			······································		
	······································				
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
į			· · · · · · · · · · · · · · · · · · ·		
(s-a		an and a second second second second second			
teles	<u>.</u>	•			

Flare Pit Wingste 9-15-93 NS A M-102 D-102 M-102 • M 501 D-102 D 501 ۲ 5-001 1, 1 1 M-403 X ⊀ M- 104 * ł M-403 D-403* $\boldsymbol{\wedge}$ m - 104 104 **D** -M= 1-1/2 D= 2-21/2 + = Excends Standard 3

Flass Pit 9-21-93/9-22-P3 After Excavation B A KO BOV NED-001 * ED-101 ED- 102 ED-103* ED-303 ED-403 ED - 104 ED - 204 • * * \$D-203 0 D 104 - 5' 204 - 6' 101- 5' 601- 5' 102- 5' 103- 3' 203-5'

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

POST OFFICE BOX 2088

STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504

(505) 827-5800

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY

November 22, 1993

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-412

Mr. Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

RE: FIRE TRAINING PIT CLOSURE REPORT MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) is in the process of reviewing the Meridian Oil, Inc. (MOI) November 19, 1993 "FIRE TRAINING PIT CLOSURE PROJECT, WINGATE FRACTIONATING PLANT, MCKINLEY COUNTY, NEW MEXICO". This report presents the results of MOI's remedial activities associated with the closure of the former unlined fire training pit at the Wingate Fractionating Plant.

While the remedial activities appear to have adequately removed contaminated soils related to the use of the pit, the OCD has the following comments, questions and requests for information regarding the above referenced report:

- 1. The report does not contain a map showing the excavated area and the location of the landfarming area. Please provide OCD with a map delineating the areas excavated and the location of the landfarm.
- 2. The report stated that benzene, toluene, ethylbenzene, xylene (BTEX) and photoionization detector (PID) measurements were made initially and after excavation was complete, however, neither the results nor the sample locations were provided in the report. Please provide the OCD with this information.

Mr. Michael J. Frampton November 22, 1993 Page 2

Receipt of the above information will allow the OCD to complete a review of the above referenced report.

If you have any questions, please call me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec Office

MERIDIAN OIL

November 19, 1993

OIL CONSER ... ON DIVISION RELY VED

133 NO 122 AM 9 58

Certified - P 142 129 933

William C. Olson, HydrogeologistEnergy, Minerals, & Natural Resources Dept.Oil Conservation DivisionP.O. Box 2088Santa Fe, New Mexico 87504

Re: Fire Training Pit Closure Discharge Plan GW-54 Closure Report

Dear Mr. Olson:

Meridian Oil Inc. (MOI) is submitting a closure report pursuant to your request described in your October 1, 1993 correspondence (Certified Mail - P 667 242 394).

The attached report documents the activities and current status of the fire training closure project. The report includes a description of the site assessment and remediation efforts. The pit has been cleaned to below OCD guideline levels. Landfarming will continue until remediation targets are achieved.

If you have any questions please call me at (505) 326-9841.

Sincerely,

Michael/J. Frampton /Sr. Staff Environmental Representative

Attachment: Fire Training Pit Closure Project Report

cc: Denny Foust - OCD, Aztec, N.M. Greg Kardos - MOI Wingate Plant Closures: Fire Training

mjf/sn/c:winfire

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

IG FREE

BRUCE KING GOVERNOR

November 16, 1993

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE. NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD CABINET SECRETARY

> CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-408

Mr. Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

RE: FLARE PIT CLOSURE MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) is in the process of reviewing the Meridian Oil, Inc. (MOI) October 29, 1993 "FLARE PIT CLOSURE PROJECT, WINGATE FRACTIONATING PLANT, MCKINLEY COUNTY, NEW MEXICO". This report presents the results of MOI's remedial activities associated with the closure of the former unlined flare pit at the Wingate Fractionating Plant.

While the remedial activities appear to have adequately removed contaminated soils related to the use of the pit, the OCD has the following comments, questions and requests for information regarding the above referenced report:

- 1. The report does not contain a map showing the excavated area. Please provide OCD with a map delineating the areas excavated.
- 2. The report stated that benzene, toluene, ethylbenzene, xylene (BTEX) and photoionization detector (PID) measurements were made initially and after excavation was complete, however, these results were not provided in the report. Please provide the OCD with this information.
- 3. The report recommends water quality monitoring of the downgradient monitor well and the open excavation but does not include a sampling schedule. Please provide OCD with a sampling schedule for these proposed sampling points.

Mr. Michael J. Frampton November 16, 1993 Page 2

Receipt of the above information will allow the OCD to complete a review of the above referenced report.

If you have any questions, please call me at (505) 827-5885.

Sincerely/

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec Office

MERIDIAN OIL

October 29, 1993

Federal Express

William C. Olson, HydrogeologistEnergy, Minerals, & Natural Resources Dept.Oil Conservation DivisionP.O. Box 2088Santa Fe, New Mexico 87504

Re: Flare Pit Closure Discharge Plan GW-54 Closure Report NOV 1 1993

OIL CONSERVATION DIV. SANTA FE

Dear Mr. Olson:

Meridian Oil Inc. (MOI) is submitting a closure report pursuant to your request described in your October 1, 1993 correspondence (Certified Mail - P 667 242 393).

The attached report documents the activities and current status of the flare pit closure project. The report includes a description of the site assessment, remediation efforts, and recommendation for future actions.

If you have any questions please call me at (505) 326-9841.

Sincerely,

Michael J. Frampton Sr. Staff Environmental Representative

Attachment: Flare Pit Closure Project Report

cc: Denny Foust - OCD, Aztec, N.M. Greg Kardos - MOI Wingate Plant Closures: Flare Pit

mjf/sn/c:winflare

Meridian Oil Inc., 3535 East 30th St., P.O. Box 4289, Farmington, New Mexico 87499-4289, Telephone 505-326-9700

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR October 1, 1993

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-393

Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

RE: FLARE PIT CLOSURE MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) has reviewed the Meridian Oil, Inc. (MOI) September 27, 1993 "DISCHARGE PLAN GW-54 WINGATE FRACTIONATING PLANT - FLARE PIT CLOSURE".

The OCD approves of the above referenced closure plan with the following conditions:

- 1. MOI will notify OCD at least one week in advance of the final sampling of the landfarmed soils such that OCD may have the opportunity to split samples.
- 2. A report containing the results of the investigation will be submitted to OCD by November 1, 1993.

Please be advised that OCD approval does not limit you to the work proposed should the activities fail to adequately remediate contaminants related to operation of the flare pit. In addition, OCD approval does not relieve you of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please call me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec Office

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

E DRUG FREE

POST OFFICE BOX 2088

STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504

(505) 827-5800

BRUCE KING GOVERNOR October 1, 1993

ANITA LOCKWOOD CABINET SECRETARY

> CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-394

Mr. Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

RE: FIRE TRAINING PIT CLOSURE MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) has reviewed the Meridian Oil, Inc. (MOI) September 27, 1993 "DISCHARGE PLAN GW-54, WINGATE FRACTIONATING PLANT, FIRE TRAINING PIT CLOSURE".

The OCD approves of the above referenced closure plan with the following conditions:

- 1. MOI will notify OCD at least one week in advance of sampling the soils from the pit for hazardous waste characteristics such that OCD may have the opportunity to split samples.
- 2. MOI will submit the results of the hazardous waste characteristic tests to OCD for approval prior to landfarming the contaminated soils.

Please be advised that OCD approval does not limit you to the work proposed should the activities fail to adequately remediate contaminants related to operation of the flare pit. In addition, OCD approval does not relieve you of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please call me at (505) 827-5885.

Sincerely

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec Office

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

NG FREE

POST OFFICE BOX 2088

STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504

(505) 827-5800

BRUCE KING GOVERNOR October 1, 1993

ANITA LOCKWOOD CABINET SECRETARY

> CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-395

Mr. Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

RE: TRAIN RACK GROUND WATER CONTAMINATION MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) has reviewed the Meridian Oil, Inc. (MOI) September 27, 1993 "DISCHARGE PLAN GW-54, WINGATE FRACTIONATING PLANT, TRAIN RACK GROUND WATER CONTAMINATION" and September 24, 1993 "MERDIAN OIL INC. WINGATE FRACTIONATING PLANT, GALLUP, NEW MEXICO, FINAL REPORT, PRELIMINARY GROUNDWATER INVESTIGATION".

The OCD approves of the recommendations in the above referenced documents with the following conditions:

- 1. Monitor well WMW-5 will be installed with at least 5 feet of well screen above the water table and 10 feet of well screen below the water table.
- 2. MOI will notify OCD at least one week in advance of all ground water sampling events such that OCD may have the opportunity to split samples.
- 3. MOI will submit a report on the installation of the proposed monitor well WMW-5 to OCD by December 1, 1993. The report will include a completion schematic for the monitor well and the results of water quality sampling.
- 4. MOI will notify OCD of the types of nutrients to be applied during the bioremediation activities prior to their use.
- 5. The semi-annual sampling will include measurements of the water table elevations from all facility monitor wells.

Mr. Michael J. Frampton October 1, 1993 Page 2

6. MOI will submit semi-annual reports containing the laboratory analytical results of the monitor well sampling and a water table potentiometric map to OCD on April 1 and October 1 of each year.

Please be advised that OCD approval does not limit you to the work proposed should the activities fail to adequately define or remediate contaminants related to MOI's operations. In addition, OCD approval does not relieve you of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please call me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: OCD Aztec Office

MERIDIAN OIL

Re: Discharge Plan GW-54

Wingate Fractionating Plant

September 27, 1993

Federal Express

Bill OlsenEnergy, Minerals, and Natural Resources Dept.Oil Conservation DivisionP.O. Box 2088Santa Fe, New Mexico 87504

Train Rack Ground Water Contamination

RECEIVED

SEP 2 9 1993

OIL CONSERVATION DIV. SANTA FE

Dear Mr. Olsen:

On August 17, 1992 the OCD approved the referenced plan. A groundwater contamination investigation was a condition of approval for the discharge plan. Meridian Oil Inc. (MOI) submitted the required plan of December 10, 1992. The groundwater investigation was conducted on April 6 and 7, 1993. Preliminary results of the investigation were reviewed with the OCD (Bill Olsen and Roger Anderson) at a meeting in Santa Fe on June 28, 1993. Attached is the final report on the April 6 and 7, 1993 groundwater investigation.

Based upon the findings of the investigation MOI is proposing the following course of action to address the groundwater contamination:

- Groundwater monitoring will continue at the facility. Sampling frequency will be increased to semi-annual monitoring beginning in 1994. Groundwater monitoring will be conducted as described in Section 6.1 of the attached report. If sample results for WMW-4 reveal the presence of BTEX at concentrations higher than Water Quality Control Commission (WQCC) groundwater standards for two successive groundwater monitoring periods, MOI will notify and consult NMOCD for further direction.
- 2. One additional monitoring well will be installed at the facility. The approximate location of the additional well (WMW-5) is shown in Figure 3 of the attached report. The well will be completed consistent with the well schematic shown in Attachment I. The well will be completed to a depth of approximately 24 feet.
- 3. An insitu bioremediation program will be instituted along the train rack. Nutrients will be applied on an annual basis to stimulate and augment natural bioremediation. The program will continue until groundwater contaminants are below applicable WQCC criteria.

Installation of the new monitoring well is currently scheduled for the second week of October. If you have any questions please call me at 326-9841. Thank you for your consideration of this proposal.

Sincerely Michael J. Frampton

Sr. Staff Environmental Representative

Attachments: Final Report Preliminary Groundwater Investigation Attachment I - Well Construction

cc: Richard Duarte - EPNG Greg Kardos - MOI Wingate Plant GW Issues: Correspondence

mjf/sn/wingw54t

Analytical Results

ň

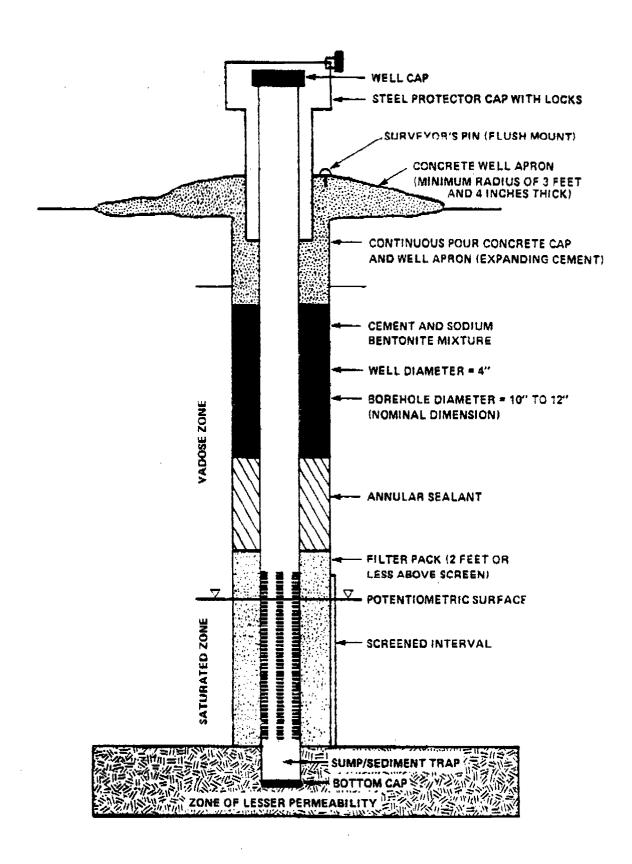
Meridian Oil Inc. - Wingate Plant Gallup, New Mexico

April 6 r_{c} 7, 1993

Sample	Probe Hole	Depth		Conce	Concentration (µg/L)	•	Comments
<u>.</u>	Number	(feel)	Benzene	Toluene	Ethylbenzene	Total Xylenes	
Hank .04	N A	٩N	(1) ON	(I) UN	(I) UN	(I) (N	QC-System Blank
Blank 05	A N	Ň		(I) (I)	(I) ON	(I) (I)	QC-Reagent Blank
CW-11	PH-12	15	(E) QN	(I) UN	(I) UN	(I) UN	Groundwater
GW-14	PH-13	1	24	(1) ON	, E	2	Groundwater
GW-15	PH-14	L	6	(I) (I)	(I) UN	(I) UN	Groundwater
GW-16	PH-15	٢	(1) UN	(I) UN	(I) U N	(I) (I)	Groundwater
GW-17	PH-16	L	262	(1) UN	(I) U N	(I) U N	Groundwater
GW-18	PH-17	15	51	(I) ON	6	Ś	Groundwater
GW-19	PH-18	15	4320	(I) UN	73	36	Groundwater
GW-20	PH-19	15	61	12	e.	4	Groundwater
GW-21	PH-20	15	(I) UN	(I) U N	(I) QN	(I) QN	Groundwater
GW-22	PH-21	20	(I) (I)	(I) UN	(I) D N	(I) QN	Groundwater
GW-22D	PH-21	20	(I) (I)	(I) UN	(I) dN	(I) QN	QC-Duplicate
Blank-06	AN	٩N	(I) (I)	(I) QN	(I) (I)	(I) U N	QC-System Blank
GW-23	PH-22	15	(I) QN	(I) (I)	(I) UN	(I) U N	Groundwater
GW-24	PH-23	15	4	(I) UN	(1) UN	(I) UN	Groundwater
GW-25	PH-24	L	(1) UN	(I) QN	(I) U N	(I) QN	Groundwater

duplicate analysis

not detected at lower quantifiable limit indicated in parentheses


a a o Ja

quality control micrograms per Liter of headspace vapor analyzed

|

1

ATTACHMENT I

MERDIAN OIL INC.

ب ج د

۲.

WINGATE FRACTIONATING PLANT GALLUP, NEW MEXICO

FINAL REPORT

PRELIMINARY GROUNDWATER INVESTIGATION

SEPTEMBER 24, 1993

TABLE OF CONTENTS

ł

		P	age
1.0	INTRO	DUCTION	
2.0	FIELD	SURVEY	1
	2.1 2.2	Overview	1 2
3.0	DATA	ACQUISITION	2
	3.1 3.2	Groundwater Sampling and Analysis Field Analytical Quality Control	
4.0	DATA	INTERPRETATION	4
5.0	SITE I	EVALUATION	5
6.0	RECO	MMENDATIONS	5
	6.1 6.2 6.3	Groundwater Monitoring Monitoring Well Installation Passive Bioremediation	6

APPENDIX A - Figures 1, 2, and 3

-'3[#]

ړ د

APPENDIX B - Tables 1, 2, 3, and 4

APPENDIX C - Analytical Results

MERIDIAN OIL, INC. WINGATE PLANT GALLUP, NEW MEXICO

PRELIMINARY GROUNDWATER INVESTIGATION

1.0 INTRODUCTION

3

Wingate Plant is a facility which fractionates a mixed liquefied petroleum gas stream into usable products. The feed stock is received via pipelines from four natural gas facilities. The facility products include propane, normal butane, isobutane, natural gas liquid (light gasoline) and mixed butane. A facility map is presented in Figure 1, Appendix A.

On April 9, 1992, Meridian Oil, Inc. (MOI) submitted a Discharge Plan to the New Mexico Oil Conservation Division (NMOCD). In summary, the Discharge Plan stated that the presence of BTEX had been detected within the plant property. The BTEX levels are low however, exceed New Mexico WQCC standards. It is believed by MOI that the contamination is possibly related to historic accidental releases of hydrocarbons from the train loading rack area. At the time, the extent of contamination was unknown. On August 17, 1992, NMOCD approved the Discharge Plan with six conditions. The sixth condition included a groundwater investigation that would delineate the extent of contamination.

Pursuant to the Discharge Plan condition, NMOCD required an investigation proposal by December 18, 1992 which was submitted on December 10, 1992. The plan submitted by MOI consisted of the use of a "Geoprobe"-type instrument to determine the horizontal contamination boundary. This investigative equipment consisted of a hydraulic probe unit used to collect groundwater samples from the saturated zone and analyzed for BTEX. On January 14, NMOCD approved the plan. The geoprobe survey was conducted on April 6 and 7, 1993. All analytical results were provided by the geoprobe contractor on April 26, 1993.

2.0 FIELD SURVEY

2.1 <u>Overview</u>

Horizontal contamination boundaries were established by use of the geoprobe-type instrument operated by Burlington Environmental, Inc. This system includes a hydraulic probe unit mounted on the back of a van. Twenty-five groundwater samples were collected from 24 probehole locations and analyzed on-site using a laboratory quality gas chromatograph (GC) within the van. The GC was set to analyze total Benzene, Toluene, Ethylbenzenes and total Xylenes (BTEX) using "modified" USEPA method 8010/8020. The detection limit was set at 5 parts per billion (ppb) of benzene. Probehole locations are illustrated in Figure 2, Appendix A.

2.2 Sample Collection

A rectangular sample grid was established at 100-foot intervals near the train rack. Groundwater samples were collected from the saturated zone. The saturated zone was estimated from existing monitoring well geologic logs and historic depth to water data. The groundwater sampling depth is documented in Table 1, Appendix B.

3.0 DATA ACQUISITION

3.1 Groundwater Sampling and Analysis

A hydraulic probe driving unit was used to drive and withdraw the groundwater sampling probes. A hydraulic hammer was used where necessary to assist in driving through unusually hard soils. The probes consisted of three-foot sections of one-inch-diameter threaded steel pipes with a detachable drive point.

After the probe was inserted into the groundwater, an unused section of polyethylene tubing was inserted through the probe into the water table. The aboveground end of the tubing was connected to a peristaltic vacuum pump. A controlled vacuum was pulled to draw the groundwater to the surface. The pump was turned off, the tubing disconnected from the pump, and the water in the tubing drained from the bottom into a 40-milliliter (mL) glass vial sealed with a Teflon-lined septum screw cap. The sample was immediately given to the GC technician for on-site analysis.

The samples were prepared and analyzed using field modifications to United States Environmental Protection Agency (USEPA) SW-846 Method 3810 (static headspace screening) and Method 8010/8020. The field modifications provide USEPA Level II field screening data for establishing the identity and relative concentration of compounds detected.

A 20-mL aliquot of the groundwater sample was placed into a headspace vial containing 3 grams of reagent grade potassium carbonate. The sample vial was heated to 70°C for ten minutes to equilibrate the volatile components between the liquid and the air in the vial. An aliquot of up to 500 microliters of the headspace was collected by inserting a syringe through the septum of the vial and pulling the headspace sample into the syringe. The aliquot was then injected directly into the GC.

A Hewlett-Packard Model 5890A Series II gas chromatograph (GC) was used for the analysis of the groundwater samples. Compound separation and detection was performed using a 30-meter wide-bore DB-624 capillary column and a photo-ionization detector (PID) fitted with a 10.2 eV lamp. The analysis was performed with an oven temperature of 60°C with a total analysis time of 10 minutes. Table 1 contains groundwater sampling depths, ground elevation, groundwater elevation, groundwater sampling elevation, and benzene concentration. Appendix C contains analytical results for all BTEX components.

Sample component concentrations were measured based on an external standard calibration. Known concentrations of benzene, toluene, ethylbenzene, m&p-xylenes, and o-xylene were injected as a calibration gas mixture into the GC. Compound peak area versus standard concentrations were used to calculate sample concentrations. The computing integrator performs the calculation but will occasionally mislabel a peak and the calculation must be performed by hand.

Compound identification was based on comparison of target compound retention times with sample retention times. A reference peak compound, α , α , α -trifluorotoluene, was added to each sample to aid in target compound identification. Compounds are considered as tentatively identified. Sample matrices and coeluting compounds can make peak recognition and identification difficult.

The lower quantifiable limit (LQL) is the lowest concentration of a compound that can be practicably measured relative to the injection volume, and the detector sensitivity. The LQL is calculated from the current target compound response factor, sample size, and the estimated peak area that would have been detected under the given conditions. For this survey, the LQL for the target compounds was one microgram of compound detected per liter of headspace vapor analyzed (μ g/L).

Analytical results for the groundwater samples analyzed by this technique will not necessary be the same as those obtained by submitting the same groundwater sample for laboratory analysis. Different techniques are used in each case and, although method sensitivities and accuracies are comparable, different results are possible.

3.2 Field Analytical Quality Control

Quality control is an essential part of an analytical test methodology. Quality control procedures increase the confidence in the analytical results and are used to evaluate the reproducibility of the data.

The GC was calibrated prior to sample analysis using a single-point external standard calibration procedure. Known concentrations of each of the target compounds were prepared as a gas-phase standard. The USEPA recommends instrument calibration be performed at least once every 12 hours. The calibration helps to evaluate the operating conditions of the GC and to calculate compound concentrations in samples.

A chromatographic system blank is analyzed at the beginning of each survey day, prior to calibration and analyzing samples. The system blank is used as a means of indicating that sample carryover has not occurred. In addition, a system blank is analyzed after every 10 samples, or at least daily for each survey. If sample carryover has occurred, the concentration detection in the system blank can be subtracted from any subsequent samples containing that compound. A probe rod blank is analyzed prior to sample collection to ensure that the sample probe is free of contamination.

A duplicate sample analysis is performed after every 10 samples, or at least once daily for each survey. The duplicate analysis serves to demonstrate analytical reproducibility. Duplicate samples results of plus or minus 20 percent of the original sample results are considered acceptable.

A calibration check standard is analyzed periodically during the survey day. The check standard is used to validate target compound retention times and identification and to verify compound response factors. Calibration check standard concentrations results of plus or minus 20 percent of the original calibration are considered acceptable.

An internal reference peak compound α , α , α -trifluorotoluene, (α , α , α -TFT) is added to all samples to aid in target compound identification. This reference compound serves to increase the accuracy of target compound recognition and provides qualitative sample injection information. The α , α , α -TFT is used as an internal reference peak compound because of the unlikely detection of the compound in samples collected on site.

4.0 DATA INTERPRETATION

Twenty-five groundwater samples were collected from 24 probeholes and analyzed on-site for benzene, toluene, ethylbenzene, and total xylenes. Figure 2, Appendix A, shows probehole locations and detected benzene concentrations.

Based on the analytical results, the area adjacent to the railroad loading racking exhibits the highest benzene concentrations (> 500 μ g/L). Probehole PH4 had the highest benzene concentration west of monitoring well WMW-2. Six probeholes east of this monitoring well also had high benzene concentrations (PH1, PH3, PH7, PH8, PH9, and PH18).

The survey results an aerial pattern which delineates the extent of hydrocarbon contamination. The analytical results show the hydrocarbon contamination is concentrated along the midsection of the railroad loading rack. Historical monitor well data also indicates (or suggests) that groundwater is flowing in a northwesterly direction. It is along this northwest direction, that the higher concentrations of benzene were detected. Figure 2 shows reported benzene concentrations.

Data obtained from this probe survey and previous groundwater investigations consistently suggest the hydrocarbon contamination is generally concentrated within the railroad loading rack area. Furthermore, the hydrocarbon plume is contained within the railroad loading rack area. Plume migration has not been observed since it was first detected in 1990 when the initial groundwater investigation was conducted.

5.0 SITE EVALUATION

Based on existing or present monitoring at the site, including current and previous groundwater investigations, the following site characteristics have been established:

- A thick clay unit with permeabilities found to be less than 10⁻⁷ cm/sec is present beneath the site.
- Perched aquifer conditions exist within the site perimeter due to the underlying clay unit. This unit has been detected throughout the site which directly controls the localized perched aquifer.
- There are no known or nearby receptors from this perched aquifer.
- Tight sands are prevalent in the area, resulting in minimal groundwater velocity. Based on aquifer test data for the San Andres/Glorieta, transmissivity and storage coefficient values range between ≤5 to 3,740 ft²/day, and 7.6 x 10⁻⁵ to 1.3 x 10⁻⁴, respectively.
- Based on the above factors, common remediation technologies are not practically or economically feasible for direct application at this site.

Analytical results for all site monitoring wells completed in the perched aquifer are provided in Tables 2 and 3, Appendix B. Regional groundwater quality data is provided in Table 4, Appendix B.

In general, collected data indicates hydrocarbon contamination is contained within the train loading rack area. The hydraulic head in the shallow aquifer indicates that the upward flow is limited and restricted by the clayey-rich intermediate unit previously identified in the 1992 Discharge Plan. Therefore, the hydrocarbon plume is not expected to migrate at any detectable rate. Furthermore, the geoprobe survey delineated the extent of contamination in the horizontal direction and established the vertical containment of the contamination by the thick clay unit.

6.0 **RECOMMENDATIONS**

Based on the observations and information contained in Sections 4 and 5 above, MOI recommends the following: (1) a continuation of the groundwater monitoring program with a change in sampling frequency from the current to semi-annually beginning in 1994, (2) install an additional monitoring well, and (3) initiate passive bioremediation. Each point is further described below.

6.1 <u>Groundwater Monitoring</u>

Ċ,

Currently, EPNG is monitoring the groundwater on a quarterly basis while MOI monitors on an annual basis, as required by the Discharge Plan. The contamination is isolated to the perched aquifer; therefore, a continuation of the groundwater monitoring program is proposed. The monitoring program will consist of water sample collection from WMW-1, 2, 4, and 5 on a semi-annually basis; a sample from WMW-3 will be collected annually. Sampling will include analysis for BTEX.

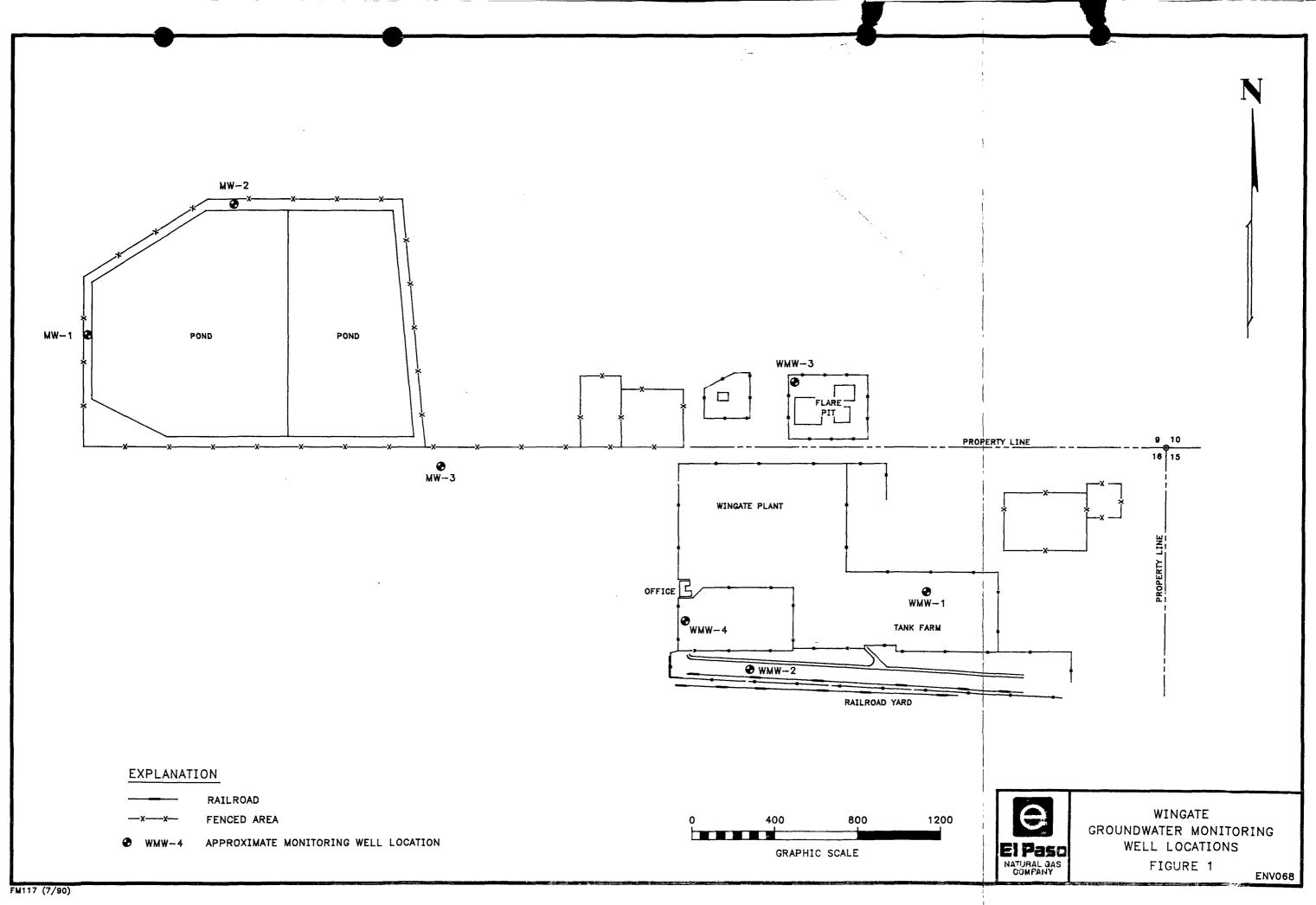
EPNG and MOI will each sample once per year, split samples during the first year, and share all results. Monitoring periods would take place during two critical periods in the hydrological cycle at the site, based on data collected during the current year. While EPNG will decrease its monitoring well sampling events, this proposed monitoring program will continue to fulfill requirements of the 1992 Discharge Plan.

Monitoring well WMW-4 will be observed closely since it is located downgradient of WMW-2 and is within the area of concern. If sample results for WMW-4 reveal the presence of benzene at concentrations higher than groundwater standard for two successive groundwater monitoring periods, MOI will notify and consult NMOCD for further direction.

6.2 Monitoring Well Installation

MOI proposes to install an additional monitor well. This monitor well will be number WMW-5 and will be located in a strategic region north of WMW-2 to insure proper monitoring of the plume in the groundwater gradient direction. Figure 3, Appendix A, illustrates the location of this new monitoring well. NMOCD will be notified prior to any drilling activity at the site.

6.3 <u>Passive Bioremediation</u>

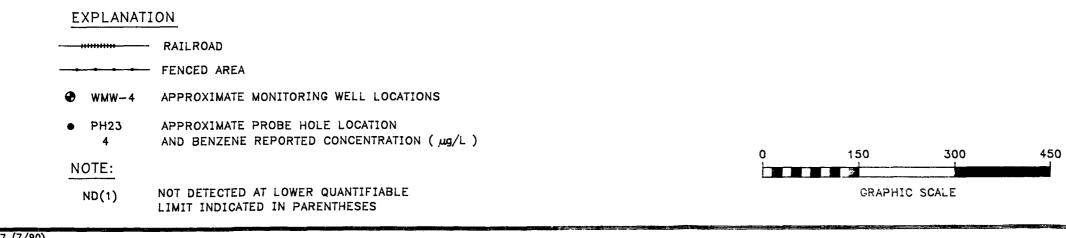

MOI will attempt passive bioremediation within the area of concern. Since groundwater is relatively shallow and hydrocarbon concentrations are relatively low, the addition of nutrients should initiate or enhance passive remediation of the contaminants in the soil above the saturated zone.

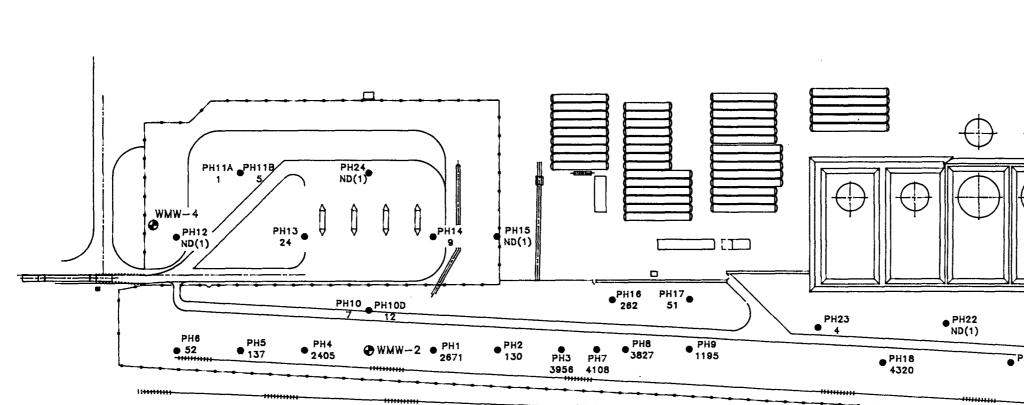
APPENDIX A

Gi

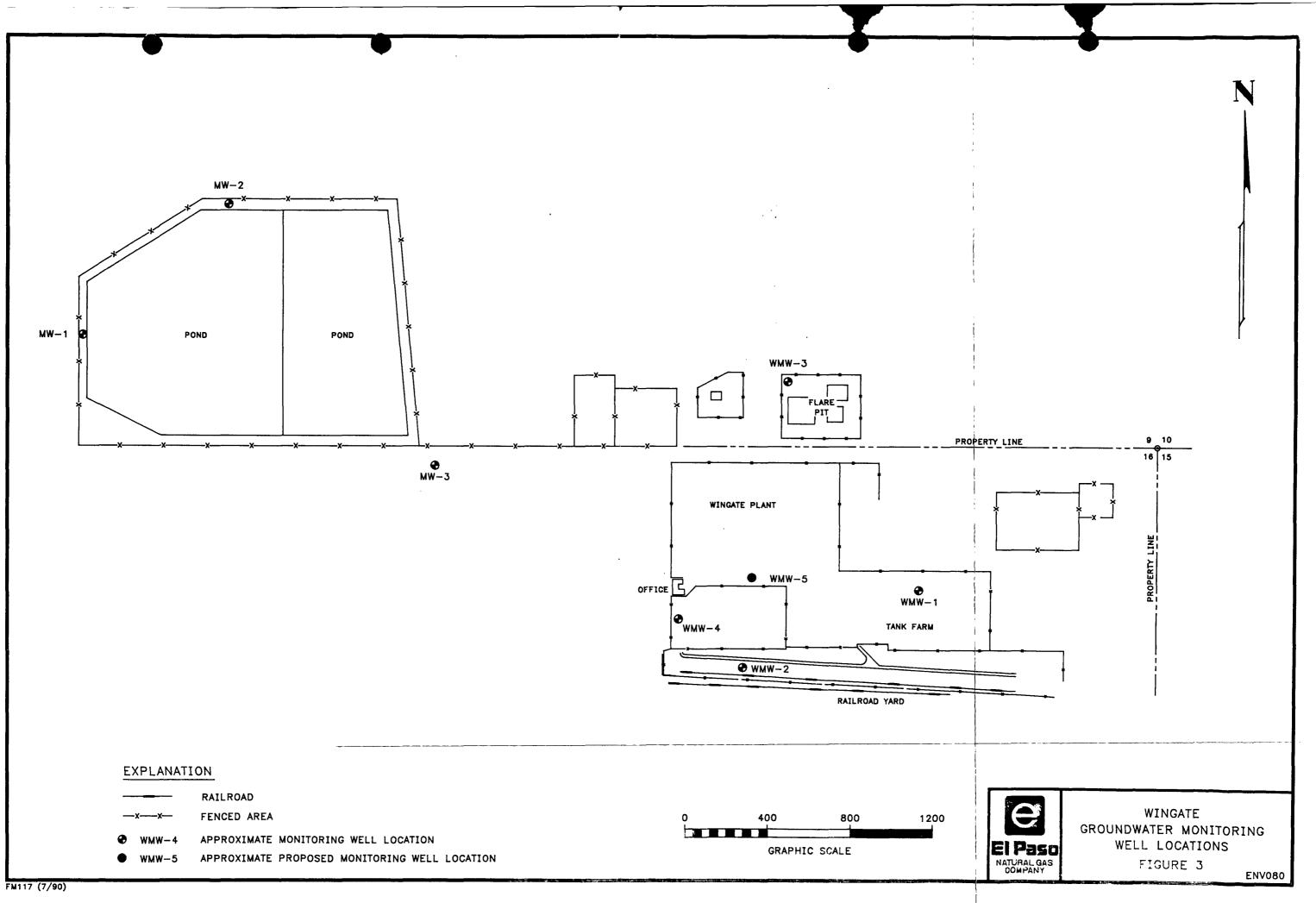
~'

FIGURES 1, 2, AND 3


•••


•.•




. 1-

1 #

....

APPENDIX B

ار ب

TABLES 1, 2, 3, AND 4

PROBE HOLE NUMBER	GROUNDWATER SAMPLING DEPTH (FEET)	GROUND ELEVATION (FEET)	GROUNDWATER ELEVATION (FEET)	GROUNDWATER SAMPLING ELEVATION (FEET)	BENZENE (µg/l)
PH1	8	6594.00	6586.00	6586.00	2671
PH2	7	6594.59	6587.59	6587.59	130
PH3	7	6595.21	6592.96	6588.21	3956
PH4	20	6593.86	6573.86	6573.86	2405
PH5	20	6593.99	6584.82	6573.99	137
PH 6	15	6593.63	6585.63	6578.63	52
PH7	7	6595.05	6592.80	6588.05	4108
PH 8	7	6595.40	6588.40	6588.40	3827
PH9	7	6595.92	6588.92	6588.92	1195
PH10	7	6594.06	6590.31	6587.06	7
PH10D	7	6594.06	6590.31	6587.06	12
PH11A	20	6593.05	6590.30	6573.05	1
PH11B	7	6593.05	6590.30	6586.05	5
PH12	15	6592.54	6587.29	6577.54	ND(1)
PH13	7	6593.61	6590.11	6586.61	24
PH14	7	6594.38	6591.46	6587.38	9
PH15	7	6594.48	6591.81	6587.48	ND(1)
PH16	• 7	6595.09	6591.09	6588.08	262
PH17	15	6595.22	6590.22	6580.22	51
PH18	15	6596.33	6590.83	6581.33	4320
PH19	15	6597.21	6592.21	6582.21	19
PH20	15	6598.91	6584.41	6593.91	ND(1)
PH21	20	6599.23	6589.65	6579.23	ND(1)
PH21D	20	6599.23	6589.65	6579.23	ND(1)
PH22	15	6595.43	6589.51	6580.43	ND(1)
PH23	15	6595.17	6591.17	6580.17	4
PH24	7	6594.09	6589.67	6587.09	ND(1)
WMH-2	-	6593.92		-	-
WMH-4	-	6592.51		_	

ND(1)

51

NOT DETECTED AT LOWER QUANTIFIABLE LIMIT INDICATED IN PARENTHESES

WINGATE PLANT PROBE HOLE AND GROUNDWATER MONITORING LOCATIONS - CHART TABLE 1 ENV078

Table	2
Evaporation Pond	Monitoring Wells

		MW-1				MW-2				MW-3		
Laboratory Data	6/23/80	07/14/90	11/15/91	1/22/92	6/23/80	7/14/90	11/15/91	1/22/92	6/23/90	7/14/80	11/15/01	1/21/92
pH	8.4	8.3	8.07	8.07	8.5	8.4	7.98	8.19	8.1	7.8	7.85	7.91
TOS	490	570	838	722	1,010	1,400	1100	1220	1,350	520	486	478
Alkalinity,	420	444	566	510	735	281	795	772	659	419	417	411
Total												
Bicarbonate	414	444	689	622	695	271	970	939	6 59	419	509	502
Carbonate	. 6	<1	0	0	40	10		0	<1	<1	0	0
Calcium (Ca)	11.3	9.9	5.27	3.56	18.2	18.8	12.1	14.1	46.8	0.5	32.4	32.0
Chloride (CI)	15.7	20.9	43	36.0	50	79	47.6	66.7	140	21.8	16	16.9
Fluoride (F)	0.83	0.97	1.82	1.45	1.49	1.77	2.95	2.87	1.32	1.09	1 00	1.01
Hardness	63.6	54.4	13.1	18.9	96.5	92.6	38.5	36.7	186	1.2	102	125
Hydroxide	<1	<1			<1	<1			<1	<1		
Iron (Fe)	0.216	1.40		5.81	3.111	2.34		16.98	0.067	0.658		0.60
Magnesium (Mg)	8.6	7.2	≪0.1	2.44	12.4	11.1	2.05	0.40	16.7	⊲0.1	5 23	11.0
Manganese (Mn)	0.174	0.228		0.25	0.290	1.36		0.68	0.242	0.481		0.46
Nitrate (25 N)	<0.06	≪0.06	<0.02	≪0.02	<0.06	<0.06	<0.02	≪0.02	<0.06	<0.06	₹0 02	<0.02
Nitrite			<0.02	<0.02			≪0.02	<0.02			₹0.02	<0.02
Potessium			<0.1	0.73			0.3	0.96			02	0.33
Silica				10.7				8.30				12.4
Sodium (Na)	172	176	328	267	362	470	445	435	445	120	162	150
Sulfate (SO4)	1.0	19	86.5	51.9	73	240	112	150	280	26	18 9	16.1
Antimony (Sb)				0.063				ND				ND
Arsenic (As)	≪0.005	<0.005		0.006	<0.005	0.021		0.020	<0.005	0.007		0.009
Barium (Ba)	0.248	0.235			0.158	0.175			0.110	0.139		
Beryilium (Be)				ND				ND				ND
Cadmium (Cd)	<0.005	0.006		0.003	<0.005	0.006		0.003	<0.005	<0.005		ND
Chromium (Cr)	€0.01	<0.01		ND	≪0.01	₹0.01		0.03	⊲0.01	⊲0.01		ND
Copper (Cu)	€0.02	<0.02		ND	⊲0.02	€0.02		ND	<0.02	<0.02		ND
Lead (Pb)	0.002	<0.002		ND	<0.002	0.004		ND	0.004	<0.002		ND
Mercury (Hg)	<0.0002	<0.0002		ND	<0.0002	<0.0002		ND	<0.0002	<0.0002		ND
Nickel (Ni)				ND				ND				ND
Selenium (Se)	<0.005	<0.005		ND	<0.005	<0.005		ND	<0.005	<0.005		ND
Silver (Ag)	<0.01	<0.01		ND	⊲0.01	⊲0.01		ND	€0.01	<0.01		0.02
Thailium (TT)				ND				ND				ND
Zinc (Zn)	€0.010	0.043		0.03	0.015	0.120		0.04	<0.010	0.094		0.03
TPH - ug/l			ND				2.6				ND	
Benzene - ug/l			ND	ND			ND	ND			0.2	ND
Toluene - ug/l			ND	ND			ND	ND			02	3.9
Ethylbenzene - ug/l			ND	ND			ND	· ND			0.4	0.6
Total Xylenes - ug/i			ND	NQ			0.1	ND			1.7	4.4

All results in mg/l unless otherwise indicated.

٠,٠

	Table 3		
Wingate	Plant Mo	nitoring	Wells

з_ат.

.

.

 \sim 1

	I	WMH-1							WMH-2			
Laboratory Data	7/17/80	7/10/01	10/28/01	1/21/82	7/17/80	7/10/01	8/1/01	10/28/01	11/1/80	12/4/01	12/31/01	1/21/82
pH	7.9	7.38	7.84	7.70	7.6	7.83		8.34		7.87	8.03	8.03
TDS	780	4,270	3,490	4,620	1,200	4,280	3,050	3,370	3,060	3,060	2,640	2,230
Bicarbonate		1,230	1,110	1,340		2,610		2,090		1,770	1,590	1,450
Calcium (Ca)		242	230	286		82		63.6		49.2	42.4	42.4
Carbonate		0	0	· ·		0	732	19.5		0	0	0
Chloride (Cl)	38	467	425	593	38	1110		842	714	714	623	522
Fluoride (F)	1.3	0.65	0.46	0.43	1.4	1.36		1.5		1.84	1.79	1 63
Hardness		848	. 804	1000		408		191		-205	187	188
Hydroxide			_									
Iron (Fe)	5.2				2							
Magnesium (Mg)	[]	59.5	56	70.2		49.5		7.91		20.1	19.8	199
Manganese (Mn)	0.24				0.19							Ì
Nitrate (as N)	≪0.01	<0.04	⊲0.02	⊲0.02	<0.01	0.12		⊲0.02		3.45	<0.02	<002
Nitrite		⊲0.04	⊲0.02	⊲0.02				⊲0.02		≪0.02	₹0.02	40 02
Potessium (K)		1150	2.9	2.56		2.02		0.5		0.98	0.61	0.08
Silica												1
Sodium (Na)		1,150	1,010	1,300		1,600		1,300	İ	1,020	964	826
Sulfate (SO4)		1,690	1,400	1,840		34.6		49.4		9.88	16.9	14.8
Total Organic N	0.07				1.8							
Aluminum (Al)	0.7				0.9							
Antimony (Sb)		ND									[
Arsenic (As)	⊲0.005	0.006			<0.005	0.01						
Barium (Ba)	0.29				0.14							t
Beryllium (Be)		ND				ND					· · · · ·	1
Cadmium (Cd)	⊲0.01	0.002			≪0.01	ND						
Chromium (Cr)	≪0.02	0.02			⊲0.02	ND						1
Cobelt (Co)	⊲0.05				<0.05							
Copper (Cu)	0.01	0.02			0.02	0.01						
Cyanide	⊲0.005				⊲0.005				1			<u> </u>
Lead (Pb)	<0.05	0.02	1	l	<0.05	0.02		1			<u> </u>	
Mercury (Hg)	⊲0.005	ND			<0.005	ND						1
Molybdenum (Mo)	⊲0.05	· · · · · ·			<0.05			 				
Nickel (Ni)	<0.04	0.03			<0.04	0.01			<u> </u>	t	t	1
Selenium (Se)	0.005	ND			<0.005	ND			1		<u> </u>	<u> </u>

Table 3 (continued)

		WMH-1							WMH-2			
Laboratory Data	7/17/80	7/10/81	10/28/01	1/21/82	7/17/80	7/10/81	9/1/01	10/28/01	11/1/80	12/4/01	12/31/01	1/21/82
Silver (Ag)	⊲0.01	ND			₹0.01	ND						
Thailum (TI)		ND				ND						
Zinc (Zn)	0.01	0.14			0.05	0.14						
TPH - ug/		9.5	ND			191,000	38,500	4,000	6,800	6.800	18,460	
Benzene - ug/l		ND	ND	ND		26,800	5,400	5,700	2,520	2,520	2,540	3,090
Ethylbenzene - ug/l		ND	ND	1.3		NO		164	990	990	2,090	129
Toluene - ug/i		ND	ND	8.2		6,800	5,400	5,300	1,610	1,610	1,600	1.320
Total Xylenes - ug/l		ND	ND	7.9		1,145	1,127	1,067		374	1,900	1 020

All results in mg/l unless otherwise indicated.

•5

Table 3 (continued)

-51

		WMH-3				WMH-4	
Laboratory Data	7/17/90	7/10/91	10/26/91	1/22/92	7/10/91	10/28/91	1/21/92
pH	7.3	7.79	8.08	8.37	7:81	8.82	8.06
TDS	540	3.800	6,570	5,930	1,780	1,780	1,750
Bicarbonate		720	1,350	1,260	1,000	1,060	921
Calcium (Ca)		120	236	163	25.2	61.5	19.4
Carbonate		0	0	13.8	0	65.7	0
Chloride (CI)	23	693	1210	1050	125	157	125
Fluoride (F)	1.2	0.65	0.81	0.86	1.36	1.63	1 51
Hardness		460	732	634	125	278	100
Hydroxide							
iron (Fe)	1.4						
Magnesium (Mg)		39.1	35	55.4	15.1	30.3	126
Manganese (Mn)	0.38						
Nitrate (as N)	<0.1	10.3	6.66	3.56	<0.04	<0.02	2 36
Nitrite			≪0.02		<0.04	<0.02	
Potassium (K)		15	2.9	1.91	2.95	1.2	0 36
Silice							16 7
Sodium (Na)		1170	2140	1880	638	640	622
Sulfate (SO4)		1450	2520	2170	548	519	492
Total Organic N	<0.3						
Aluminum (Al)	0.5						
Antimony (Sb)		ND			ND		
Arsenic (As)	<0.005	0.013			0.010		
Barium (Ba)	0.12						
Beryllium (Be)		0.006			ND		
Cadmium (Cd)	≪0.01	ND			ND		
Chromium (Cr)	≪0.02	0.03			ND		
Cobalt (Co)	<0.05						
Copper (Cu)	<0.01	0.02			0.01		
Cyanide	<0.005						
Lead (Pb)	<0.05	0.03			ND		
Mercury (Hg)	<0.005	ND			ND		
Molybdenum (Mo)	<0.05						
Nickel (Ni)	<0.04	0.04			0.01		
Selenium (Se)	<0.005	ND			ND		
Silver (Ag)	<0.01	ND			ND		

Table 3 (continued)

		WMH-3				WMH-4	
Laboratory Data	7/17/90	7/10/91	10/28/91	1/22/92	7/10/91	10/28/91	1/21/92
Thailium (TI)		ND	-		ND		
Zinc (Zn)	0.05	0.15			0.06		
TPH - ug/t		7.8	ND		14.7	ND	
Benzene - ug/l		ND	3.1	44.3	ND	1.3	19
Ethylbenzene - ug/l		ND	ND	1.3	ND	ND	11
Toluene - ug/l		ND	ND	18.3	ND	ND	40
Total Xylenes - ug/l		ND	ND	7.7	ND	ND	5 1

All results in mg/l unless otherwise indicated.

÷., i

	WELL \$3 (ON SITE)	WELL 83 (ON SITE)	WELL 84 (ON SITE)	WELL 96 (OFF SITE)	WELL ST (OFF SITE)	WELL
	T15N 417W	T15N R 17W	TISN R 17W	TISN RIGW	TISN RIGW	TIEN RINW
	SIS NENENE	SIS NEMENE	818 NE/NE/NE	820 8E/8E/NE	S20 HW/BE/NE	
Constituent	04/09/76	04/04/89	04/14/89	04/04/89	04/09/89	04/14/89
pH	8.2	7.7	7.7	7.8	7.75	7.6
Alkalinity, Total	174	202	191	164	166	166
Calcium	62	40	107	156	344	. 154
Chloride	64	34	16	17	14	. 16
Fluoride	-	0.39	0.24	0.23	-	0.23
Hardness, Total	118	190	420	628	680	710
Iron, Dissolved		0.15	0.13	0.12	-	0.1
Iron, Total	-	0.37	7.9*	0.35	-	0.15
Magnesium	56	22	37	58	336	79
Maganese, Dissolved		0.12	0.16	0.14	-	0.14
Manganese, Total	-	0.17	0.22	0.17	-	0.17
Nitrate (as NO3)		⊲0.1	⊲0.1	⊲0.1	-	4 0.1
Nitrate (as NO2)	-	0.03	0.06	0.02	-	0.03
Potassium	-	. 5.1	6.7	5.2	-	5.4
Silice	-	9.4	8.2	7.1	-	7.1
Sodium	-	237	82	75	-	35
Specific Conductance (umhos)	1360	1215	1171	1199	1340	1173
Sulfate	502	478	410	614	679	618
Total Dissolved Solids	888	932	944	1058	1135	• 92
Turbidity	9.2	-	-	-	4.4	
BOD	1	<1	<1	<1	-	<'
COD		<1	<1	<1	-	<1
Ammonia Nitrogen (as NH4)		0.35	0.25	0.29	-	0.1
TOC		0.67	0.62	1.09	-	0.6

Table 4Regional Groundwater Quality Data

Units expressed in mg/l

-

APPENDIX C

41

ANALYTICAL RESULTS

Analytical Results

r i

4

Meridian Oil Inc. - Wingate Plant Gallup, New Mexico

April 6 - 7, 1993

ł

				Concer	CONCENTRATION (PR/L-)		Comments
1.D.	Number	(leel)	Benzene	Toluene	Ethylbenzene	Total Xylenes	
Blank-01	NA	AN	(I) (I)	(I) (I)	(I) (I)	(I) UN	QC-System Blank
Blank-02	NA	AN	(I) QN	(I) UN	(I) UN	(I) UN	QC-Reagent Blank
GW-01	I-Hd	~	2671	(I) DN	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Groundwater
GW-02	PH-2	L	130	(I) UN	2	œ	Groundwater
GW-03	PH-3	٢	3956	20	26	2	Groundwater
GW-04	PH-4	20	2405	7	33	204	Groundwater
GW-05	PH-5	20	137	9	14	18	Groundwater
GW-06	PH-6	15	52	(I) QN	-	•	Groundwater
GW-07	PH-7	L	4108	4478	116	981	Groundwater
GW-08	PH-8	٢	3827	12	86	488	Groundwater
GW-09	6-HJ	٢	1195	(I) UN	-	4	Groundwater
GW-10	01-H4	٢	L	(I) UN	(I) U N	(I) U N	Groundwater
GW-10D	01-H4	7	12	(I) QN	6 0	Ē	QC-Duplicate
Blank-03	NA	NA	(1) QN	(I) QN	(I) (I)	(I) UN	QC-System Blank
GW-11	III-Hd	20	-	1	(I) (I)	-	Groundwater
GW-12	III-HA	L	S	(1) UN	(I) (IN	(I) UN	Groundwater

duplicate analysis not detected at lower quantifiable limit indicated in parentheses a no v

quality control micrograms per Liter of headspace vapor analyzed

MERIDIAN OIL

September 27, 1993

RECEIVED

SEP 2 9 1993

OIL CONSERVATION DIV.

SANTA FE

Federal Express

Bill OlsenEnergy, Minerals, and Natural Resources Dept.Oil Conservation DivisionP.O. Box 2088Santa Fe, New Mexico 87504

Re: Discharge Plan GW-54 Wingate Fractionating Plant - Flare Pit Closure

On August 17, 1992, the OCD approved the referenced plan. Closure of an abandoned flare pit was a condition of discharge plan approval. Pursuant to the closure requirement Meridian Oil Inc. (MOI) intends to close the abandoned flare pit.

MOI proposes to close the flare pit following OCD "Unlined Surface Impoundment Closure Guidelines". A site assessment has been conducted. Contamination is minor with TPH generally below 2,000 ppm and BTEX generally less than 100 (PID readings). Contaminated soils have been excavated from the pit. The target cleanup criteria used for this project was 100 ppm TPH and 10 ppm BTEX (100 ppm PID reading). Soil and water sampling procedures followed OCD recommendations described in Section 3 of referenced guidelines. In addition, MOI used a field TPH sampling method to assist in directing excavation. The field methodology conforms to EPA SW-846 Method 4030 for screening for petroleum hydrocarbons.

Remediation efforts were managed according to criteria described in Section 4 of the referenced guidelines. Excavated materials will be landfarmed in a one-time application on location. The location is secured by a fence and locked gate and the landfarmed media will be bermed. Treatment will be consistent with OCD guidelines.

The landfarm will be operated until contaminated soils meet recommended soil remediation levels. A closure report will be submitted upon termination of remediation activities.

On September 23, 1993 Denny Foust visited the flare pit. Mr. Foust requested that a berm be constructed around the contaminated media to be landfarmed. Mr. Foust also requested that a ground water sample (if ground water becomes apparent in the excavation) be collected and analyzed for hydrocarbon contamination. Both requests have been incorporated into the site work plan and analytical results will be reported in the closure report.

If you have any questions please call me at (505) 326-9841.

Sincerely,

Michael J. Frampton

Sr. Staff Environmental Representative

cc: Denny Foust - OCD, Aztec, N.M. Wingate Plant Discharge Plan: Correspondence Greg Kardos - MOI

mjf/sn/winggw54

MERIDIAN OIL

September 27, 1993

Federal Express

Bill Olsen Energy, Minerals, and Natural Resources Dept. Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504

Re: Discharge Plan GW-54 Wingate Fractionating Plant Fire Training Pit Closure SEP 2 9 1993

Dear Mr. Olsen:

On August 17, 1992 the OCD approved the referenced plan. Closure of an abandoned fire training pit was a condition of discharge plan approval. Pursuant to the closure requirement, Meridian Oil Inc. (MOI) intends to close the abandoned fire training pit.

MOI proposes to close the fire training pit following OCD "Unlined Surface Impoundment Closure Guidelines" (February 1993). A preliminary site assessment has been conducted at the fire training pit. Contamination appears to be minor with TPH generally below 2,000 ppm and BTEX generally less than 100 ppm (headspace analysis using PID organic vapor meter). Soil sampling procedures have followed OCD recommendations described in Section 3 of the guidelines. In addition, MOI has used a field TPH analysis method to evaluate contamination levels. The field methodology conforms to EPA SW-846 method 4030 for screening for petroleum hydrocarbons.

MOI intends to conduct additional sampling at this site in order to determine specific remedial actions. Since the petroleum contaminated soil at this site is not RCRA exempt, characterization testing is planned in order to determine RCRA status. Should the soil exceed RCRA criteria, the remediation and disposal will conform to EPA/ED requirements. Should the soil test RCRA nonhazardous, MOI proposes to remediate the soil using an onsite landfarm, in accordance with Section 4 of OCD's guidelines. The landfarm will be operated in a bermed area adjacent to the pit, until the contaminated soils meet recommended soil remediation levels. A closure report will be submitted upon termination of remediation activities.

If you have any questions please call me at 326-9841.

Sincerely,

Michael J/Frampton Sr. Staff Environmental Representative

cc: Denny Foust - OCD Aztec Greg Kardos - MOI Wingate Plant Discharge Plan: Correspondence

mjf/sn/wngw53fr

Meridian Oil Inc., 3535 East 30th St., P.O. Box 4289, Farmington, New Mexico 87499-4289, Telephone 505-326-9700

OCO/Meridia/EPNIO neeting on Wingste Ger Plant Bill Non - OCD Mila Frangton - Mericai Phil BALA - EPALG Kichard Duarte 1' Koza Anderson - OCD 24 probe holes around rail loweling onen 25 sumption taken (work) contamination localizing around bailing onen commention. by EPING & Maridian - monitoring of water quality than 1993 quarterly in 1994 Samianandly - install additional MW - If standards contrium to be exceed will can sold with OCD - Mutricent addition to promote bioelegradeting of constant. in Sold - writen

State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505

STATE OF OIL CONSERVATION DIVISION

MEMORANDUM OF MEETING OR CONVERSATION

Time Date 1445 Telephone Personal Originating Party Other Parties Bil Olson М 10 leric Fhu Gn Subject Ison MAG Discussion 41. 9. 10 'e t 1 n ير 0 bonton iea 48 0 70 a Conclusions or Agreements L Jon P tani Use Signed Distribution -,1e

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING

POST OFFICE 80X 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

January 14, 1993

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-318

Michael J. Frampton Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289

RE: GROUND WATER CONTAMINATION INVESTIGATION PROPOSAL MERIDIAN OIL WINGATE PLANT MCKINLEY COUNTY, NEW MEXICO

Dear Mr. Frampton:

The New Mexico Oil Conservation Division (OCD) has completed a review of the Meridian Oil, Inc. (MOI) December 10, 1992 "GROUNDWATER ASSESSMENT WINGATE PLANT WORK PLAN".

The OCD approves of the above referenced work plan with the following conditions:

- 1. Upon completion of sampling activities, all boreholes will be sealed with a bentonite grout.
- 2. A report containing the results of the investigation will be submitted to OCD within 60 days of completion of the water quality sampling.

The OCD understands that investigation work at the site will begin in the spring of 1993. Please contact the OCD at least one week prior to commencement of work so that the OCD may have the opportunity to have a representative present to split samples.

Please be advised that OCD approval does not limit you to the work proposed should the investigation fail to completely define the extent of contamination related to operation of the Wingate Mr. Michael J. Frampton January 14, 1993 Page 2

Plant. In addition, OCD approval does not relieve you of liability for compliance with any other laws and/or regulations.

If you have any questions, please call me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: Denny Foust, OCD Aztec Office

" L GENSERT - IN DIVISION RET: LED

192 DE 114 FUT 10 40

December 10, 1992

Certified Mail - P 794 519 392

Roger Anderson New Mexico Oil Conservation Division P.O. Box 2088 State Land Office Building Santa Fe, New Mexico 87504

RE: Discharge Plan GW-54 Ground Water Contamination Investigation Proposal

Dear Mr. Anderson:

Pursuant to your Department's letter dated August 17, 1992 Meridian Oil Inc. (MOI) is submitting the requested investigation proposal for the contaminants described in Discharge Plan GW-54.

MOI and El Paso Natural Gas Company (EPNG) will be jointly conducting this investigation. EPNG will be primarily responsible for the field investigation while MOI will remain the point of contact with the NMOCD. MOI requests that all correspondence and questions concerning this plan and its implementation be directed to MOI.

I look forward to receiving your comments on the proposed investigation plan. I will be out of the office from December 14 through December 25, 1992. If you have any questions, please call me at your convenience at (505) 326-9841.

Sincerely. Michael J. Frampton

Sr. Staff Environmental Representative

Attachment - 5 pages Ground Water Assessment Work Plan

xc: Pamela K. Kirschner - EPNG
 G.C. Kardos - MOI
 Wingate Discharge Plan: Correspondence

MJF/vka:gwater

Meridian Oil Inc., 3535 East 30th St., P.O. Box 4289, Farmington, New Mexico 87499-4289, Telephone 505-326-9700

GROUNDWATER ASSESSMENT WINGATE PLANT WORK PLAN

I. BACKGROUND

The Wingate Plant is currently owned and operated by Meridian Oil Production, Inc., (MOPI). The plant was contructed by El Paso Natural Gas (EPNG) in 1953, and operated by them until 1990. The facility is located approximately six miles east of Gallup, New Mexico on U.S. Highway No. 66., in McKinley County, New Mexico. The facility fractionates mixed liquified petroleum products.

Two groundwater investigations were conducted in 1990. Three monitoring wells (MW series) were installed by EPNG in July, 1990 to provide hydrogeologic information around the existing ponds. In August, 1990 four wells (WMW series) and 9 boreholes were installed as part of a property transfer assessment by John Mathes & Associates.

During the property transfer assessment hydrocarbon contamination was identified in the groundwater in the train loading rack area. This contamination is possibly related to historic accidental release of hydrocarbons when the facility was owned and operated by EPNG. The extent of contamination is unknown at this time.

MOPI and EPNG have conducted periodic sampling events of all groundwater monitoring wells since 1990. Attached is a summary table of groundwater data acquired during 1991 and 1992 at this facility.

MOPI submitted a Discharge Plan to New Mexico Oil Conservation Division (NMOCD) in April 1992. The plan was approved in August 1992, with the provision that MOPI submit a plan to delineate the extent of groundwater contamination at the loading rack. Pursuant to a letter agreement between MOPI and EPNG, EPNG proposes to perform a groundwater survey to investigate the extent of this contamination.

II. EXTENT OF CONTAMINATION

The presence of BTEX has consistently been detected in WMW-02, (Figure A) with levels exceeding New Mexico WQCC standards. WMW-02 is the closest to the loading rack, and has a total depth of 24 feet. During drilling operations in 1990, hydrocarbon odor and/or discolored soil were identified between 3 to 24 feet in WMW-02. Groundwater was first encountered at a depth of 13 feet. Plastic clay was encountered from 5 to 20 feet. In borehole B-03, which is approximately 300 feet east of WMW-02, hydrocarbon odors were identified at a depth of 3 feet. Plastic clay was also encountered from 4 to 17 feet in this boring. Groundwater was encountered at a depth of 11 feet.

In other boreholes adjacent to the loading rack, no hydrocarbon contamination was encountered. In borehole B-06, 700 feet down gradient of WMW-02, no hydrocarbon odors were identified. Clay was encountered from the surface to a depth of 10 feet and again at a depth of 17 feet. A gravely sand was encountered at an interval of 10 to 17 feet. Groundwater was first encountered at 11 feet.

No hydrocarbon odor or stain was encountered in bore hole 13, which is 350 feet down gradient from the loading rack. Because of its location downgradient of WMW-2, this boring hole was completed as WMW-4. This monitor well is 20 feet deep; sandy clay was encountered in the boring up to 15 feet, and fine sand was encountered between 15 and 20 feet. Groundwater samples obtained from this well have reported BTEX levels below WQCC standards.

MOPI reported trace levels of BTEX below WQCC standards in MW-03, 1800 feet down gradient from the loading rack in November 1991 and January 1992. EPNG samples in April 1992 show less than 1 mg/L for each BTEX component.

III. INVESTIGATIVE SURVEY

To determine the horizontal boundaries of the contamination around WMW-2, a preliminary survey using a "Geoprobe"-type instrument is proposed. This investigative equipment includes a hydraulic probe unit mounted on the back of a van. Groundwater samples will be collected and analyzed using a laboratory quality gas chromatograph within the van. This GC can be set to analyze individual and total BTEX and individual and total volatile components. The detection limit will be 5 ppb of benzene. From the information gathered on detected hydrocarbons, a horizontal area of contamination will be determined. This information will be used to evaluate the need for future work.

iV. SAMPLE FREQUENCY

It is proposed that a rectangular sample grid be established with probe holes taken at 100 feet intervals near the train rack (see Figure B). Groundwater samples will be collected from the saturated zone. Borings will be advanced until the sample collected is determined to be below 5 ppb benzene, or until refusal. If a boring has a non-detect reading, another sample will be taken halfway between (50 feet) from the last positive detection and the non-detect boring. This will be done to have a better understanding of the boundary perimeter.

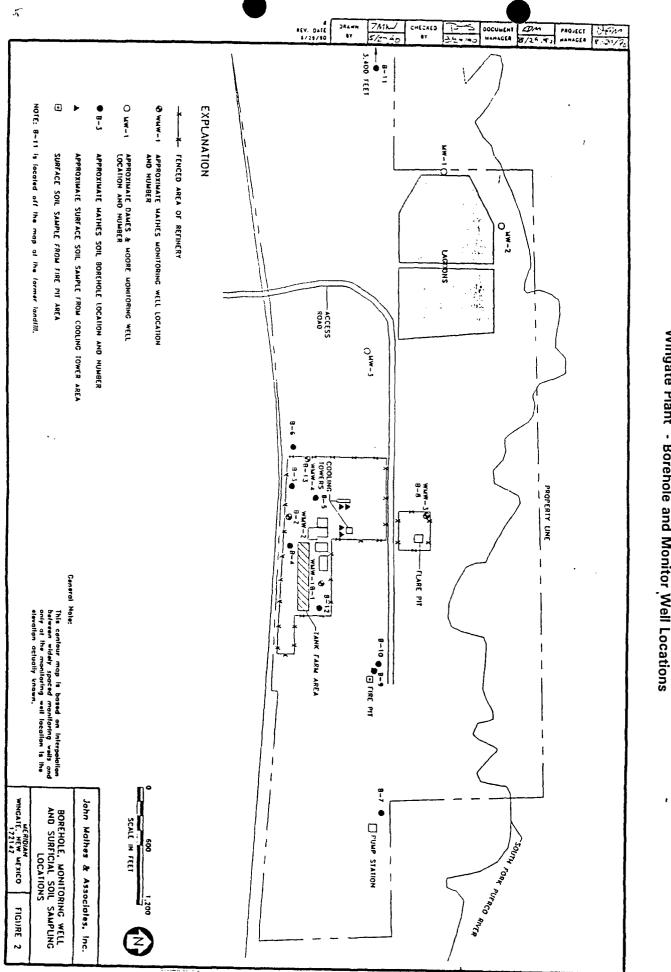
The present WMW-02 will be the starting point. We propose to move north, east and west from this well. Additionally, there will be an attempt to take a sample upgradient of WMW-2 on the south side of the loading rack. There may be difficulty in positioning the equipment in this area because of soil conditions which worsen with inclement weather.

ļ

ļ

V. SPECIFICATIONS

Listed below are some specifications which will be included in any bid package presented on this project:


- 1. When a borehole has been sampled and water level measurements completed, it shall be backfilled with proper filling material to the surface of the hole. No borehole shall be left unfilled overnight.
- 2. The mobile unit should consist of a mounted probe for soil probing, equipped with accessories for groundwater sampling and power supply.
- 3. The mobile laboratory should be equipped to perform headspace analysis on

groundwater samples. Concentrations should be able to be detected in the ppb range.

- 4. The contractor shall at all times prevent the contamination or crosscontamination of all borehole locations. Proper clothing shall consist of appropriate outerwear, and latex, vinyl, or PVC gloves. Protocol procedures for sampling and analyses shall be followed throughout field activities. Gloves shall be changed between borehole locations. Clean, new gloves shall be worn when sampling and analyzing soil and groundwater samples.
- 5. The contractor will be obligated to provide contractor's personnel with adequate safety equipment including hardhat, safety shoes, safety eyewear, and items the contractor deems appropriate to insure safe working conditions.

VI. SCHEDULE

Work will proceed within 90 days of acceptance of this plan, subject to contractor availability and adequate weather conditions. It is anticipated that this sampling event will be conducted in the first quarter of 1993.

, **%**.

Figure A Wingate Plant - Borehole and Monitor Well Locations

-

_ %.

* N

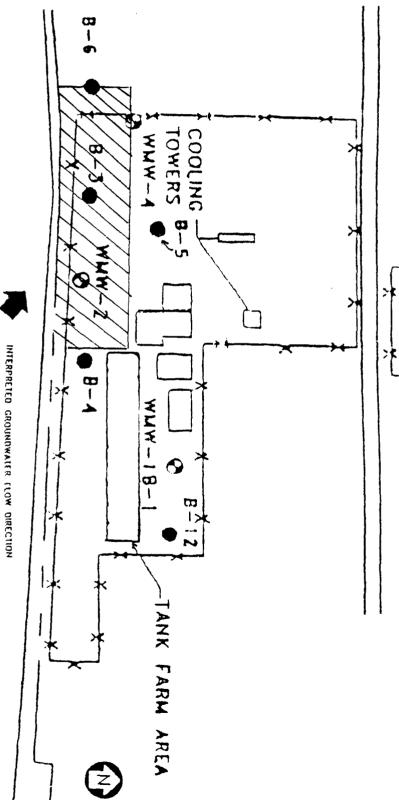


Figure B Wingate Plant - Proposed Area of Investigation

WUW-3

-FLARE PIT

Wingate Monitoring Well Suggary

<u></u>

|--|

Well	Samoled	Benzene	Toluene	Ethyl	Total	Gasoline	TPH
No.	By			benzene	Xylenes		
Standard	/	10	750	760	620		
MCLs		5 µg/L	1000 ug/L	+	10000 µg/L		µg/L
MW-1					·		
11/15/91	Mer.	ND	ND	ND	ND	_	ND
1/22/92	Mer.	ND	ND	ND	ND	-	_
1/22/92	EPNG	<.5	<.5	<.5	<.5	-	-
4/28/92	EPNG	<1	<1	<1	<1	<100	-
MW-2				, _			
11/15/91	Mer.	ND	ND	ND	0.1	-	2.6
1/22/92	Mer.	ND	ND	ND	ND .	-	-
1/22/92	EPNG	<.5		<.5	<.5	-	-
4/28/92	EPNG	<1	<1	<1	<1	<100	-
MW-3						_	
11/15/91	Mer.	0.2	0.2	0.4	1.7	ND	-
1/21/92	Mer.	ND	3.9	0.6	4.4	-	-
Jan 92	EPNG	-	-	***	-	-	_
4/28/92	EPNG	<1	<1	<1	<1	<100	-
WMW-1							
7/10/91	Mer.	ND	ND	ND	ND	-	9,5
10/28/91	Mer.	ND	ND	ND	ND	-	ND
1/21/92	Mer,	ND	1.3	8.2	7.9		-
2/5/92	EPNG	<.6	<.5	<.5	<.5		
4/29/92	EPNG	<1	<1	<1	<1	<100	-
WMW-2				·			
7/10/91	Mer.	26800	6800	ND	1145		191000
8/1/91	Mer,	6400		5400	1127	49	38500
10/28/91	Mer.	5700	5300	164	1067		4000
11/1/91	Mer.	2620	1610	990	<u> </u>	<i>a</i> ,	6800
12/4/91	Mer.	2520	1610	990	374		6800
12/31/91	Mer.	2540	1800	2090	1900	4.1	18460
1/21/92	EPNG	3090	1320	129	1020	<u></u>	-
2/6/92	EPNG	30000	6000	<500	<500	-	-
4/29/92	EPNG	3700	2300	73	610	3(1000	-
WMW-3			·			·····	
7/10/91	Mer.	ND	ND	ND	ND		7.8
10/28/91	Mer.	3.1	ND	ND	ND		ND
1/22/92	Mer.	44.3	18.3	1.3	7.7	-	-
1/22/92	EPNG	1.2	<.5	<.5	<.5	-	-
4/29/92	EPNG	<1	<1	<1	<1	<100	-

WMW-4

7/10/91	Mer.	ND	ND	ND	ND		14.7
10/28/91	Mer.	1.3	ND	ND	ND	-	ND
1/21/92	Mer.	1.9	4	1.1	5.1		-
2/6/92	EPNG	0,7	<.5	<.5	<.5		-
4/29/92	EPNG	3	<1	<1	<1	<100	-

MERIDIAN ONLOL CONSER. ON DIVISION RECT VED

September 28, 1992 '92 SEP 311 PM 8 46

Certified Mail - P 794 519 874

Roger Anderson New Mexico Oil Conservation Division P.O. Box 2088 State Land Office Building Santa Fe, New Mexico 87504

RE: Discharge Plan GW-54 Modifications and Closure Schedule

Dear Mr. Anderson:

Listed below is Meridian Oil's proposed compliance schedule for the modifications and closures described in Section 6.0 of the referenced plan and your Department's letter dated August 17, 1992 (William J. LeMay).

Requirement	Start Date	Comments
Fee	10-15-92	\$3335
Sump Inspection	July 1993	Clean & visually inspect - annual
Leak Detection	Not Applicable	
Drum Storage	July 1993	Curb
Flare Pit	July 1993	Closure
Fire Training Grounds	July 1993	Closure
NPDES Stormwater	10-01-92/04-01-93/10-01-93	Copies of to OCD
Annual Monitoring	January 1993	GWC, Metals, BTEX
Fuel Storage Upgrade	July 1993	Containment dikes & pans in storage areas
Acid Storage Upgrade	July 1993	Cement line basin
Septic reconfigure	December 1992	Install storage vessel
GW Contamination		Investigation plan by 12/18/92

If you have any comments or questions please call me at 326-9841.

Sincerely,

lichael J. F amoton

Sr. Staff Environmental Representative

cc: Wingate Plant Discharge Plan : Correspondence

Meridian Oil Inc., 3535 East 30th St., P.O. Box 4289, Farmington, New Mexico 87499-4289, Telephone 505-326-9700

MERIDIAN OIL

or onser IN Division REA: FED '92 SE^{III} 名 PFT 8 47

Certified Mail - P 794 519 870

August 27, 1992

Roger Anderson New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504

RE: Hydrotest Water Disposal Wingate Fractionating Plant Discharge Plan GW-54

Dear Mr. Anderson:

Meridian Oil (MOI) will shut down the referenced facility on September 13, 1992 to perform annual maintenance and to replace several existing pipelines. MOI will hydrotest the new pipelines with fresh water originating from our four fresh water supply groundwater wells. Hydrotest activities will generate approximately 4,500 gallons of hydrotest water. MOI proposes to dispose of this hydrotest water in the evaporation ponds described in the referenced discharge plan. Only minor levels of contaminants will be added to the fresh water from the hydrotest of the new pipe. MOI believes these minor contaminants will not compromise the operation or integrity of the evaporation ponds. With this letter, MOI requests your approval for the proposed disposal. With your approval MOI will dispose of the water around the 15th of September.

Thank you for your consideration of this request. If you have any questions, please call me at 326-9841.

Sincerely,

Michael J. Frampton

Sr. Staff Environmental Representative

MJF/vka:hydrotst

Affidavit of Publication

STATE OF NEW MEXICO

) SS

COUNTY OF McKINLEY

VALERIE De La O _ being duly sworn upon oath, deposes and says:

AS LEGAL CLERK _ of The Independent, a newspaper published in and having a general circulation in McKinley County, New Mexico and in the City of Gallup, New Mexico and having a general circulation in Cibola County, New Mexico and in the City of Grants, New Mexico and having a general circulation in Apache County, Arizona and in the City of St. Johns and in the City of Window Rock, Arizona therein: that this affiant makes this affidavit based upon personal knowledge of the facts herein sworn to. That the publication, a copy of which is hereto attached was published in said notice was published in by an accidental discharge is at a depth period and time of publication and said notice was published in by an accidental discharge is at a depth ranging from 15 to 110 feet with a total dissolved accentration of 17,500

for	<u>_ON</u>	<u>- 11</u>	ME		, the firs	st publ	ication	being	on the
_2	24TH		_ day of	APRI	L		, 1	1 <u>9 92 -</u>	the
səc	cond	publ	ication be	eing o	n the				day
of .					_, 19		the th	ird pub	lication
on	the		da	ay of .		<u>-</u>		_, 19_	
									
			·····		<u></u>	. <u> </u>		<u> </u>	
and	d the	last	publicati	on bei	i <mark>ng on t</mark> i	he			day o
					10				

and the last publication being on the ______ day of viewed at the above address between 8:00 a.m. and 5:00 p.m., Monday through Fri-day. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after was published, is now and has been at all times material hereto, him and public hearing may be requested duky qualified for such purpose, and to publich logal patience and public hearing may be requested duly qualified for such purpose, and to publish legal notices and by any interested preson. Requests for advertisements within the meaning of Chapter 12, of the statutes why a hearing should be held. A hearing will be held if the Director determines of the State of New Mexico, 1941 compilation.

	ant.
Ń	and
	K

Sworn and subscribed to before me this 23RD

of <u>J</u>	<u>JNE, A</u>	.D., 19_92
	\bigcirc	\sim
	kre	ine Chartz
	7	Notary Public
Му со	mmission expires	\mathcal{E}

JUNE 22, 1993

CE'GAL NOT SANTA FE, SANTA FE COUNTY A NEW MEXICO NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Quality Control Commission Regulations, the following discharge plan application and modification have been submitted to the Director of the Oil Con-servation Division, State Land Building, P.O. Box 2068, Santa Fe, New Mexico 87504-2088, Telephone (505) 827-5800:

(GW-33) - Western Gas Resource Shauna Doven, Environmental Coor-dinator, 12200 N. Pecos Street, Suite 230, Denver, Colorado 89234-3439, has submitted a discharge plan modification application for the previously approved dis-charge plan for their San Juan River Gas Processing Plant which is located in Sec-tion 1, Township 29 North, Range 15 West, tion 1, Township 29 North, Range IS West., NMPM, San Juan County, New Mexico. The modification proposes the addition of a non-hazardous landfill which will ac-cept industrial solid waste from the gas plant facility. No liquids or hazardous wastes will be accepted at the site. Groundwater most likely to be affected by an accidental discharge is at a depth mgl. The discharge plan modification addresses how spills, leaks, and other accidental discharges to the surface will, be managed. 4.6.2

(GW-54) - Meridian Oil, Inc., Michael J. Frampton, Senior Staff Environmental Frampton, Sealor Staff Environmental Representative, 3535 East 30th Street, P.O. Box 4289, Parmington, New Mexico S7499-4289, has submitted a discharge plan application for their Wingate Gas Processing Plant which is located in Sec-tions 16 and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. Approximately 52,006 gallons per day of waste water with a total disco solids concentration of approximately solids concentration of approximately once and is discharged into two unlined 3000 mg/ is discharged into two unlined evaporation ponds. Groundwater most likely to be affected by an accidental discharge is at a depth ranging from 5 to 39 feet with a total dissolved solids con-centration ranging from 480 mgl to 1400 mgl. The discharge plan addresses how spill, leaks, and other accicental dis-charges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conserva-tion Division at the address given above. The discharge plan application may be viewed at the above address between 6:00

there is significant public interest. 10 3

If no public hearing is held, the Director will approve the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on infor-mation in the plan and information subday mitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe New Mexico, on this 16th day of April, 1992. يعرج المح 18. 3

STATE OF NEW MEXICO

OIL CONSERVATION DIVISION

WILLIAM J. LEMAY, Director

Legal #8068 Published in The Independent April 24, 1992.

Affidavit of Publication

STATE OF NEW MEXICO

) SS

COUNTY OF McKINLEY

VALERIE De La O _ being duly sworn upon oath, deposes and says:

AS <u>I.FGAL_CLERK</u> _ of The Independent, a newspaper published in and having a general circulation in McKinley County, New Mexico and in the City of Gallup. New Mexico and having a general circulation in Cibola County, New Mexico and in the City of Grants, New Mexico and having a general circulation in Apacine County, New Mexico. St. Johns and in the City of Window Rock, Arizona therein: that NMPM, San Juas County, New Mexico. The modification proposes the addition of a non-bazardous iandfill which will ac-of the facts herein sworn to. That the publication, a copy of which is hereto attached was published in said newspaper during the period and time of publication and said notice was published in the supplement thereof, and not in a supplement thereof, the discharge plan modification in a supplement thereof. general circulation in Apache County, Arizona and in the City of

for <u>ONE</u>	<u>CIME</u> , the first	publication being on the
<u>24TH</u>	day of <u>APRIL</u>	, 19 <u>.92</u> the
second pu	blication being on the	day
of	, 19	the third publication
on the	, 19 day of	, 19
		17 M
	·	
		c
		11 8
	·····	A
<u></u>		
	·····	
and the la	st publication being on the	• day of
	10	

That such newspaper, in which such notice or advertisementithe date of publication of this notice durwas published, is now and has been at all times material hereto, him and public hearing may be requested duly qualified for such purpose, and to publish legal notices and by any interested person. Requests for advertisements within the meaning of Chapter 12, of the statutes why a hearing shall be held. A hearing of the State of New Movies, 1941 compilation will be held if the Director determines of the State of New Mexico, 1941 compilation.

/ / X===	Affi	ant.	~
aleia	Ń	and	

Sworn and subscribed to before me this 2.3 RD

JUNE A.D., 19_92 of

My commission expires

JUNE 22, 1993

LEGAL NOT SANTA FE. SANTA FE C NEW MEXICO: NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Quality Control Commission Regulations, the following discharge plan application and modification have been submitted to the Director of the Oll Con-servation Division, State Land Building, P.O. Box 2068, Santa Fe, New Mexico 87504-2088, Telephone (505) 827-5800

(GW-33) - Western Gas Resources, Inc. (UV-S3) - Western Gas Resources, Inc., Shauna Doven, Environmental Coor-dinator, 12200 N. Pecco Street, Saite 239, Denver, Colorado 89234-3439, has submiti-ed a discharge plan modification applica-tion for the previously approved dis-charge plan for their San Juan River Gas Processing Plant which is located in Sec-tion 1. Townshin 28 Month Parce 15 West addresses how spills, leaks, and other accidental discharges to the surface will be managed.

GW-54) - Meridian Oil, Inc., Michael J. rampion, Senior Staff Environmental lepresentative, 3535 East 30th Street, .0. Box 4259, Farmington, New Mexico 10. 100 4229, Farmington, New Mexico 1499-4289, has submitted a discharge lan application for their Wingate Gas. rocessing Plant which is located in Sec-ons 16 and 17, Township 15 North, Range. West, NMPM, McKinley County, New Jexico. Approximately 82,009 gallons per ay of waste water with a tori filesof olids concentration of approximately. Mas mod is discharged into two unlined 00 mg/l is discharged into two unline vaporation ponds. Groundwater most tely to be affected by an accidental scharge is at a depth ranging from 5 to feet with a total dissolved solids conntration ranging from 480 mg/ to 1400 g/. The discharge plan addresses how jill, leaks, and other accicental disharges to the surface will be managed.

ny interested person may obtain further formation from the Oil Conservation livision and may submit written com-tents to the Director of the Oil Conservaments to the Director of the Oil Conserva-tion Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 5:00 p.m., Monday through Fri-day. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division there is significant public interest.

If no public hearing is held, the Director will approve the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on infor-mation in the plan and information subday mitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 16th day of April, 51 N. 157 A. 19

STATE OF NEW MEXICO

OIL CONSERVATION DIVISION

WILLIAM J. LEMAY, Director

Legal #8068 Published in The Indepen-dent April 24, 1992.

NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND "NATURAL RESOURCES £

DEPARTMENT OIL CONSERVATION DIVISION Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the follow-ing discharge plan renewal applica-tions have been submitted to the Director of the Oil Conservation Division, State Land Office Building, P.O. Box 2068, Santa Fe, New Mexicc 87504-2088, Telephone (505) 827-5800:

(GW-33) -- Western Gas Reirces, Inc., Shauna Doven, Environa Pecos Street, Suite 230, Denver, Colorado 80234-3439, has submitted a discharge plan inodification application for this-previously approved discharge plan for their San Juan River Gas Processing lant which is located in Se Annu which as hocked in account account of a social and an angels Week (NMPM, San Juan County, New Mexico. The modification program oses the addition of a non hazardous landfill which will nonaccept industrial solid w e from thegas plant facility. No liquide of hazardous wastes will a accept at the site. Groundwater nic **D** likely to be affected by accidental discharge is at a d 20 ranging from 15 to 110 feet w totaldissolved solids once id i ec tion of 17,500 mg/L Th plan lication a t he leaks, and other scole diach rges to he surfa ce will bi 1. 18 14

managod. (GW-54) - Meridian Oll, Inc., Michael J. Frampton, Senior Staff Environmental: Representative, 3535 East 30th Street, P.O. Box Farmington, New I 4289. 289, has sub nitted a dis rge plan application for the gate Gas Processing Pla ch is located in Sections 16 a which is located in Sections 17, Township 15 North, Rai West, NMPM, McKinley C New Mexico. Approximately gallons per day of waste with a total dissolved solids cont 18 en 1ge 17 ly 82,000 a total dissolve solids concentra-tion of approximately 2000 mg/l a discharged into two unlined evaporation ponds. Groundwater most literate avaporation ponton, arounterstar-most likely to be affected by an accidental discharge is at a depth ranging from 5 to 30 feet with a total discolved acdids concentra-tion ranging from 480 mg/t to 1400 mg/t. The discharge plan addres-ma how anilla, insk_rand other

and 5:00 p.m., Monday through Fn-day. Prior to ruling on any proposed discharge plan or its modification, the Diractor of the Oil Conservation Divi-sion shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public: harrive may be any bar any any any submitted to him and public to the submitted to him and public. many ce submitted to nerr and public hearing may be requested by any interested person. Requests for pub-lic hearing shall set forth the reasons why a hearing shall set forth the reasons why a hearing shall set for the black. A hearing will be held if the Director determines there is significant public interest. interest.

interest. If no public hearing is held, the Director will approve or disapprove the proposed plain based on informa-tion available. If a public hearing is held, the director will approve or disapprove the proposed plain based on information in the plain based on information in the plain based on information submitted at the hearing. GIVEN under the Seal of New Mexico Oil Conservation Commission

Given under the seal or new Mexico Oil Conservation Commission at Santa Fe, New Mexico, on the 16th day of April, 1992. STATE OF NEW MEXICO OIL CONSERVATION DIVISION

s/William J. LeMay, Director Journal: April 23, 1992

STATE OF NEW MEXICO County of Bernalillo

SS

'92 APR 27 Thomas J. Smithson being duly sworn declares and says that he is National Advertising manager of the Albuquerque Journal, and that this newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chaper 167, Session Laws of 1937, and that payment therefore has been made or assessed as court costs; that the notice, a copy of which is hereto attached, was published in said paper in the regular daily edition,

OIL CONSER.

REC: YED

JN DIVISION

.....times, the first publication being on the 33...day for....., 1992, and the subsequent consecutive of.... 1992. publications on..... Sworn and subscribed to before me, a Notary Public in and for the County of Bernalillo and State of New orpowie PRICE. Statement to come at end of month.

CLA-22-A (R-12/92)

ACCOUNT NUMBER C 21184

VIT OF PUBLICATION

No. 29360

OF NEW MEXICO, of San Juan:

____ being duly ISTINE HILL says: "That she is the ATIONAL AD MANAGER of irmington Daily Times, a daily per of general circulation shed in English in Farmington , county and state, and that the > attached LEGAL NOTICE

ublished in a regular and entire of the said Farmington Daily a daily newspaper duly qualifor the purpose within the ng of Chapter 167 of the 1937 on Laws of the State of New o for ONE consecutive) (////) on the same day as ws:

Publication THURSDAY, APRIL 23, 1992

.d Publication

1 Publication

ch Publication

the cost of publication was \$ 50.56

ubscribed and sworn to before me day of

APRIL

1992

tary Public, San Juan County,

v Mexico

omm expires: JULY 3, 1993

COPY OF PUBLICATI

NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPAR

Notice is hereby given that pursuant to New Mexico Water Quali Commission Regulations, the following discharge plan applica modification have been submitted to the director of the Oil Cor Division, State Land Office Building, P.O. Box 2088, Santa Fe, Ne

87504-2088, Telephone (505) 827-5800: (GW-33) Western Gas Resources, Inc., Shauna Doven, Environm Coordinator, 12200 N. Pecos Street, Suite 230, Denver, Colorado 80234-3439, has submitted a discharge plan modification application for the previously approved discharge plan for their Sa Juan River Gas Processing Plant which is located in Section 1, Tc

29 North, Range 15 West, NMPM, San Juan County, New Mexico The modification proposes the addition of a non-hazardous landfi which will accept industrial solid waste from the gas plant facility. No liquids or hazardous wastes will be accepted at the site.

Groundwater most likely to be affected by an accidental discharg is at a depth ranging from 15 to 110 feet with a total dissolved solids concentration of 17,500 mg/l. The discharge plan

modification addresses how spills, leaks, and other accidental. discharges to the surface will be managed.

discharges to the surface will be managed. (GW-54) - Meridian Oil, Inc., Michael J. Frampton, Senior Staff Environmental Representative, 3535 East 30th Street, P.O. Box 4289, Farmington, New Mexico 87499-4289, has submitted a di plan application for their Wingate Gas Processing Plant which is located in Sections 16 and 17, Township 15 North, Range 17 W NMPM, McKinley County, New Mexico, Approximately 82,000 g day of waste water with a total dissolved solids concentration of approximately 3000 mg/l is discharged into two unlined evapora Groundwater most likely to be affected by an accidental discharg depth ranging from 5 to 30 feet with a total dissolved solids conranging from 480 mg/ to 1400 mg/l. The discharge plan addres spills, leaks, and other accidental discharges to the surface will (managéd. 💠

Any interested person may obtain further information fr Conservation Division and may submit written comments to the Div Oil Conservation Division at the address given above. The dis application may be viewed at the above address between 8:00 a. p.m., Monday through Friday. Prior to ruling on any proposed disch its modification, the Director of the Oil Conservation Division shall ϵ thirty (30) days after the date of publication of this notice d comments may be submitted to him and pubic hearing may be r any interested person. Requests for pubic hearing shall set forth why a hearing should be held. A hearing will be held if the Directo

If no public hearing is held, the Director will approve or dit proposed plan based on information available. If a public hearing director will approve or disapprove the proposed plan based on i the plan and information submitted at the hearing. I GIVEN under the Seal of New Mexico Oil Conservation Co

Banta Fe, New Mexico, on this 16th day of April, 1992

SFAL STATE OF N OIL CONSERVATI WILLIAM J. LE SEAL. Legal No 29360 published in the Farmington Daily Times, Far

Vexico on Thursday, April 23, 1992. 1. 5

Affidavit of Publication

STATE OF NEW MEXICO

) SS

COUNTY OF McKINLEY

<u>VALERIE</u> <u>De La O</u> being duly sworn upon oath, deposes and says:

As LEGAL CLERK of The Independent, a newspaper published in and having a general circulation in McKinley County, New Mexico and in the City of Gallup, New Mexico and having a general circulation in Cibola County, New Mexico and in the City of Grants, New Mexico and having a general circulation in Apache County, Arizona and in the City of St. Johns and in the City of Window Rock, Arizona therein: that this affiant makes this affidavit based upon personal knowledge of the facts herein sworn to. That the publication, a copy of which is hereto attached was published in said newspaper during the period and time of publication and said notice was published in the newspaper proper, and not in a supplement thereof,

tor $_ON$	NE TIME	, the first p	ublication being	on the
24TH	day of	APRIL	, 19 92	the
second	publication being	g on the	······································	day
of		, 19	the third pub	lication
on the	day	of	, 19	·
			······································	
				· .
and the	e last publication	being on the		day of
		19		

That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico (1941 compilation.

Sworn and subscribed to before me this <u>24TH</u> day

of <u>APRIL</u>

and than Notary Public My commission expires

A.D., 19_92

JUNE 22, 1993

2735 2M BUTLER'S Gallup

LEGAL NOTICE MENTAL MARKEN SANTAFE, SANTAFE COUNTE IN INFORMATION NEW MEXICO COMPACT NOTICE OF PUBLICATION AND STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT: OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Quality Control Commission Regulations, the following discharge plan application and modification have been submitted to the Director of the Oll Conservation Division, State Land Building, P.O. Box 2088, Santa Fe, New Mexico 87504-2088, Telephone (505) 827-5800:

(GW-33) - Westera Gas Resources, Inc., Shauna Doven, Environmental Coordinator, 12200 N. Pecos Street, Suite 230 Denver, Colorado 80224-3439, has submitt ed a discharge plan modification application for the previously approved discharge plan for their San Juan River Gas Processing Plant which is located in Section 1, Township 29 North, Range 15 West, NMPM, San Juan County, New Mexico. The modification proposes the addition of a non-hazardous landfill which will accept industrial solid waste from the gas plant facility. No liquids or hazardous wastes will be accepted at the site. Groundwater most likely to be affected by an accidential discharge is at a depth ranging from 15 to 110 feet with a totaf dissolved solids concentrations of 17,500 mgfl. The discharges to the surface will the industrial discharge to the surface will be managed. M. Market M.

(GW-54) - Meridian Oll, Inc., Michael J. Frampton, Senior Staff Environmental Representative, 3535 East 30th Street, P.O. Box 4239, Farmington, New Mexico 87499-4239, has submitted a discharge plan application for their Wlagate Gas Processing Plant which is located in Sections 16 and 17. Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. Approximately 82.006 gallons per day of waste water with a total dissolved solids concentration of approximately 3000 mg/ is discharged into two unlined evaporation ponds. Groundwater most likely to be affected by an accidental discharge is at a depth ranging from 5 to 30 feet with a total dissolved solids concentration ranging from 460 mg/1 to 1400 mg/l. The discharge plan addresses how spill, leaks, and other accidental charges to the surface will be managed.

Any interested person may obtain further information. from the Oil Conservation Division and may subinit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 5:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Requests for public hearing shall set forth the reasons there is significant public interest.

If no public hearing is held, the Director, will approve the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

Conservation Commission at Santa Fe, New Mexico, on this 16th day of April, 1992. Down of Constants Older of States STATE OF NEW MEXICO

OIL CONSERVATION DIVISION

WILLIAM J. LEMAY, Director

Legal #8068 Published in The Independent April 24 1992

OIL CONSERVE OUN DIVISION RECEIVED

'92 APR 29 AM 8 51

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan application and modification have been submitted to the Director of the Oil Conservation Division, State Land Office Building, P.O. Box 2088, Santa Fe, New Mexico 87504-2088, Telephone (505) 827-5800:

(GW-33) - Western Gas Resources, Inc., Shauna Doven, Environmental Coordinator, 12200 N. Pecos Street, Suite 230, Denver, Colorado 80234-3439, has submitted a discharge plan modification application for the previously approved discharge plan for their San Juan River Gas Processing Plant which is located in Section 1, Township 29 North, Range 15 West, NMPM, San Juan County, New Mexico. The modification proposes the addition of a non-hazardous landfill which will accept industrial solid waste from the gas plant facility. No liquids or hazardous wastes will be accepted at the site. Groundwater most likely to be affected by an accidental discharge is at a depth ranging from 15 to 110 feet with a total dissolved solids concentration of 17,500 mg/l. The discharge plan modification addresses how spills, leaks, and other accidental discharges to the surface will be managed.

(GW-54) - Meridian Oil, Inc., Michael J. Frampton, Senior Staff Environmental Representative, 3535 East 30th Street, P.O. Box 4289, Farmington, New Mexico 87499-4289, has submitted a discharge plan application for their Wingate Gas Processing Plant which is located in Sections 16 and 17, Township 15 North, Range 17 West, NMPM, McKinley County, New Mexico. Approximately 82,000 gallons per day of waste water with a total dissolved solids concentration of approximately 3000 mg/l is discharged into two unlined evaporation ponds. Groundwater most likely to be affected by an accidental discharge is at a depth ranging from 5 to 30 feet with a total dissolved solids concentration ranging from 480 mg/l to 1400 mg/l. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 5:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Requests for public hearing shall set forth the reasons why a hearing should be held., A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 16th day of April, 1992.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION WILLIAM J. LEMAX, Director

SEAL

MERIDIAN OIL

CIL CONSER M DIVISION REL: VID

192 APR 21 AM 9 44

April 15, 1992

William J. LeMay Director New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504-2088

Certified Mail P 117 121 722

RE: Discharge Plan - Wingate Fractionating Plant Filing Fee

Dear Mr. LeMay:

Attached is the \$50.00 filing fee for the referenced discharge plan that was recieved by your department on April 9, 1992.

If you or your staff have questions please contact me at (505) 326-9841.

Sincerely,

Michael J. Frampton /Sr. Staff Environmental Representative

Attachment - \$50.00 check to NMED Water Quality Management

APR 0 8 1992

OIL CONSERVATION DIV. SANTA FE

Discharge Plan Wingate Fractionating Plant Meridian Oil Inc.

Submitted April 9, 1992

Table of Contents

List of	Tables	5	iv
List of	Figure	s/Maps	v
List of	Drawin	ngs	vi
1.0	GENE	RAL INFORMATION	1
	A.	Name of discharger or Legally Responsible Party	1
	В.	Name of Local Representative or Contact Person	1
	C.	Location	1
	D.	Type of Natural Gas Operation	2
	E.	Copies	2
	F.	Affirmation	2
2.0	PLAN	T PROCESSES	3
	2.1	OVERVIEW	3
	2.2	PLANT PROCESS DESCRIPTION	5
	2.3	WATER SYSTEM	6
		2.3.1 Wells and Pretreatment System	6
		2.3.2 Water Treatment Systems	9
		2.3.3 A/B Cooling Water System	9
		2.3.4 C Cooling Water System	10
		2.3.5 Steam System	10
		2.3.6 Domestic and Firewater System	11
	2.4	WATER BALANCE/EFFLUENT SOURCES	11
		2.4.1 Waste Streams	11
		2.4.2 Water Balance	14
		2.4.3 Storm Water	19
		2.4.4 Wastewater Recycle	1 9
	2.5	QUALITY CHARACTERISTICS	19
		2.5.1 Evaporation Pond Wastewater Analysis	19

		2.5.2 Evaporation Pond Influent Analysis	23
	2.6	SPILL/LEAK PREVENTION AND HOUSEKEEPING PROCEDURES	25
		2.6.1 Operating and Maintenance Procedures	25
		2.6.2 Chemical and Environmental Hazards	25
		2.6.3 Cleanup Procedures	25
		2.6.4 Reporting	28
		2.6.5 General Housekeeping Procedures	28
3.0	EFFL	UENT DISPOSAL	29
	3.1	EVAPORATION PONDS	29
	3.2	WASTE DISPOSAL	29
	3.3	MONITORING SYSTEM	29
	3.4	PROPOSED MODIFICATIONS	30
		3.4.1 Containment Dikes	30
		3.4.2 Abandoned Flare Pit Closure	30
		3.4.3 Sulfuric Acid Tanks	34
		3.4.4 Drain Line to Evaporation Pond	34
		3.4.5 Fire Training Pit	34
4.0	SITE	CHARACTERISTICS	35
	4.1	GEOLOGY DESCRIPTION	35
		4.1.1 Regional Geology	35
		4.1.2 Local Geology	39
	4.2	HYDROGEOLOGY	39
		4.2.1 Regional Hydrogeology	39
		4.2.2 Local Hydrogeology	40
	4.3	WATER QUALITY	45
		4.3.1 Regional Aquifer	45
		4.3.2 Alluvial Aquifer	45
	4.4	HYDROLOGIC FEATURES	56
	4.5	FLOOD PROTECTION	56

J.

5.0	ADD	TIONAL INFORMATION	58
	5.1	SOIL PROPERTIES	58
	5.2	CLIMATE	58
	5.3	HISTORY OF OPERATION	58
6.0	BASI	S FOR APPROVAL	60
7.0	REFI	ERENCES	61

List of Tables

Table 2-1	Water Supply Wells Completion Data	7
Table 2-2	Water Supply Well Water Analysis	8
Table 2-3	Wastewater Streams	13
Table 2-4	Monthly Weather Data & Cooling Water Temperatures	15
Table 2-5	Well Water Usage and Plant Production	16
Table 2-6	Wastewater Flow to Evaporation Ponds	18
Table 2-7	Evaporation Pond Water Analysis	20
Table 2-8	Evaporation Pond Influent Water Analysis	24
Table 2-9	Chemicals Used at Wingate Plant	
Table 3-1	Flare Pit Water Quality Analysis	
Table 4-1	Regional Groundwater Quality Data	48
Table 4-2	Offsite Wells Adjacent to Wingate Plant	49
Table 4-3	Evaporation Pond Monitoring Wells	50
Table 4-4	Wingate Plant Monitoring Wells	51

List of Figures/Maps

,

Figure 4-1	Regional Structural Map San Juan Basin	36
Figure 4-2	Regional Geologic Map	37
Figure 4-3	Generalized Stratigraphic Column	38
Figure 4-4	Potentiometric Surface of Alluvial Aquifer	42
Figure 4-5	Shallow Groundwater Elevations	43
Figure 4-6	Fence Diagram - Stratigraphic Relation Underlying Pond Area	44
Figure 4-7	Shallow Alluvial Well Location Map	55
Figure 4-8	Flood Hazard Boundary Map	57

List of Drawings

(all drawings are located in pocket)

Drawing Number	Description
5151	Water Flow Block Diagram
5152	Water Equipment Diagram
5153 (sheets 1-4)	Wingate Plant and Area
5155	A & B Plant Cooling Water Equipment Diagram
5156	C Plant Cooling Water Equipment Diagram
5157	Steam System Equipment Diagram
5158	Process Flow Schematic

1.0 GENERAL INFORMATION

A. <u>Name of Discharger or Legally Responsible Party</u>

C.R. Owen Regional Vice President Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87449-4289 (505) 326-9760

B. Name of Local Representative or Contact Person

MOI requests that all correspondence regarding this plan be sent to:

Michael Frampton Senior Staff Environmental Representative Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289 (505) 326-9841

MOI requests that copies of correspondence also be sent to:

Danny W. Hill Plant & Pipeline Manager Meridian Oil, Inc. P.O. Box 4289 Farmington, New Mexico 87499-4289 (505) 326-9504

C. <u>Location</u>

Meridian Oil, Inc. (MOI) Wingate Plant is located approximately six miles east of Gallup, New Mexico, on U.S. Highway No. 66. It includes portions of sections 16 and 17, township-15-north, Range-17-West lying north of AT&SF Railroad in McKinley County, New Mexico. The exact location of the plant is at latitude 35°32'36" north and longitude 108°38'30" west. The elevation is 6593 feet above sea level.

Portions of Section 9, 10 and 15 are leased from the Navajo Indian Tribe.

D. <u>Type of Natural Gas Operation</u>

Wingate Plant, is a facility which fractionates a mixed liquefied petroleum gas stream into usable products. Its feed stock is received via pipelines from four natural gas facilities and consists of hydrocarbons with the majority of molecules containing from two to six carbon atoms along with small amounts containing up to ten and higher carbon atoms. The products of the facility are propane, normal butane, isobutane, natural gas liquid (light gasoline) and mixed butane.

E. <u>Copies</u>

Three copies of this discharge plan have been provided to the Santa Fe office of the OCD. The OCD will make available copies for District offices and public review.

F. <u>Affirmation</u>

I hereby certify that I am familiar with the information contained in and submitted with this application and that such information is true, accurate and complete to the best of my knowledge and belief.

4/8/92 Ultion

Signature

Date

Mr. C.R. Owen Regional Vice President

2.0 PLANT PROCESSES

2.1 OVERVIEW

The Wingate Plant discharges approximately 30,000,000 gallons of wastewater per year. Virtually all of the wastewater is non-contact water. 75% of the wastewater is blown-down from the plant boilers, cooling towers and water treatment equipment. The remaining 25% is domestic wastewater. Less then 400 gallons per year of contact water from the inlet surge tanks is discharged with the wastewater. The TDS of the waste stream averages less than 3,000 ppm.

Groundwater which may be affected by operations at the Wingate plant is at a depth of 5 to 30 feet and is a non-potable water supply due to the high TDS level.

The plant feed stock is split into the product components using a distillation chain. Three parallel and largely duplicate sections exist in the facility producing propane, mixed butane and natural gas liquid (light gasoline). They are called "A", "B", and "C" Plants. Typically "A" and "B" Plant run continuously and "C" Plant is used during peak demand. The mixed butane from these three sections are fed to a fourth section (deisobutanaizer plant) where normal butane and isobutane are produced.

Finished product is stored in a large tank farm. Spherical tanks are used for natural gas liquid (light gasoline) and part of the normal butane storage. These have containment dikes surrounding them. Other products which are gaseous under atmospheric pressure are stored in undiked horizontal tanks. There is no underground product storage.

Product is transported from the site via pipeline, tank trucks and railway tank cars. Giant Refinery, the largest customer, receives product via a pipeline extending approximately 15 miles to the east. Giant maintains a pumping station on the Wingate property. Both the pipeline and the pumping station are property of Giant Refinery.

Natural gas from an El Paso Natural Gas (EPNG) transmission pipeline located north of the plant is used to provide utilities. Vapors recovered from product loading supplement gas from EPNG which is burned in boilers to produce steam. Electricity is produced by both steam driven turbines and natural gas fueled engines. The generating capacity of the plant is 2094 KVA.

Underground piping is used extensively throughout the plant for water and wastewater. Process piping is aboveground except for areas between the shipping pumps and the truck and train loading rack. The product pipeline to Giant Refinery is also underground. Underground tanks have never been used at the Wingate Plant.

A vapor recovery system exists to recover all vapors vented during loading and from many relief valves. Product tanks and tower relief valves vent to atmosphere. When this system is overloaded, the excess gas is fed to a candlestick flare and is burned. Two emergency flare pits exist to burn flammable liquid and gas caused by major upsets and to replace the candlestick flare when it requires maintenance.

Water is supplied to the plant by four deep (in excess of 1000 feet) wells. Two are on MOI property and two are six miles east of the plant. The well water is treated to remove iron, then stored in five ground level tanks for plant and fire water use, and one overhead tank for domestic use. The overhead tank is chlorinated.

One-half of the cooling tower make-up water is softened using sodium zeolite ion exchange and stored in a ground level tank for use. Boiler feed water make-up is purified using a reverse osmosis unit and stored in a ground level tank for use. The reverse osmosis unit replaced an evaporator and was placed in service on July 1, 1990.

Two cooling water systems are used. A large cooling tower feeds "A", "B", and boiler/auxiliary Plants. It is continuously loaded. A smaller system is loaded intermittently for "C" Plant. One boiler system, consisting of five gas fired boilers, feeds all four plant sections.

Wastewater is fed to the evaporation pond via a general waste sump and brine sump. These sumps receive the waste streams from cooling tower blowdown, boiler blowdown, filter back wash, softener regenerating streams and reverse osmosis effluent.

Six septic tanks exist on the site. Three drain to the general waste sump, one ties into the line from the general waste sump, one empties directly into the pond and one has a leach field.

There are two evaporation ponds. The east pond receives water directly from the plant. The west pond receives overflow from the east pond.

In addition to the fractionating plant, two other facilities are adjacent to the Wingate property which are owned by El Paso Natural Gas Company. They are the EPNG Gallup Pipeline District office, shops and yard and the EPNG Gallup General warehouse. They both receive domestic water from and discharge septic tank effluent to the Wingate systems and are connected to the fire water system.

2.2 PLANT PROCESS DESCRIPTION

A schematic diagram of the processes that handle the various liquefied petroleum gas components is shown on Drawing Number 5158.

Process feed arrives at the Wingate Plant via pipeline from EPNG's Chaco Plant and Conoco's San Juan Gas Plant in northwest New Mexico, Mobil's McElmo Creek Plant in southeast Utah, and Texaco's Aneth Plant in southeastern Utah. A maximum of 1,080,000 gallons per day of feed liquids are received and fed into six incoming feed tanks. The feed is sent to three plant sections, A, B, and C, where the liquid is fractionated into propane, mixed butane and a natural gas (light gasoline or straight run gasoline) liquid consisting of pentane, hexane and higher molecular weight components. A separate plant unit contains a distillation column used to fractionate mixed butane into normal and isobutane components.

Iron sponge units on the propane streams are used to remove sulfur that is in the form of hydrogen sulfide. Heavier organic sulfides are removed from the natural gas liquid (light gasoline) streams by perco treaters which convert sulfides to disulfides. Propane and butane streams are odorized with ethyl mercaptan as they are loaded for shipment at a concentration of 1.5 pounds per 10,000 gallons of product. Product which the customer may store underground or process is not odorized.

Product at the Wingate Plant is stored in a tank farm consisting of 49 spherical and horizontal tanks. All horizontal tanks containing propane or butane are undiked since these products are gaseous at atmospheric pressure. Spherical tanks containing the natural gas liquid (light gasoline) and normal butane have unlined spill containment dikes of earth or concrete.

Product leaves the plant via pipeline, railway tank cars and tanker trucks. Giant refinery receives product via a 15 mile pipeline which extends east of the plant. Tank cars and tanker trucks are loaded at a facility which includes a deluge system in case of fire, an extensive lightning rod system and a vapor recovery

system. The vapor recovery system condenses and recovers liquids lost in depressurizing and venting the tankers during loading operations. Condensed liquids are removed by scrubbers and returned to the plant inlet. Vapors are compressed and used as boiler fuel with excess being sent to the candlestick flare. When the vapor recovery system is overloaded, the excess is burned off in a candlestick flare. Two emergency flare pits exist to burn off gas and liquid in the event of a major upset. Complete combustion of liquid occurs in these pits so no liquid hydrocarbons reach the ground.

2.3 WATER SYSTEM

Water is supplied to the Wingate Fractionating plant by four groundwater wells. The water is passed through a series of pretreatment processes and into a set of raw water storage tanks prior to distribution to the plant and miscellaneous water systems.

Some of the water for plant use is softened by sodium zeolite ion exchange. This water is then used in the "A & B" cooling water system and the "C" cooling water system. The steam system and engine jackets use soft water which has been further purified using a reverse osmosis system.

Wastewater from the water systems is discharged to an evaporation pond via a general waste sump and a brine sump. The waste streams received by the sumps include the cooling tower blowdown, the filter backwash, the boiler blowdown, reverse osmosis effluent and the softener regeneration processes. There are two evaporation ponds in series. Wastewater is discharged into the east pond and overflows into the west pond.

The general flow diagram is outlined in the Water Flow Block Diagram, Drawing 5151. The water equipment diagram, Drawing 5152, shows all water systems except the cooling water and steam systems.

2.3.1 Wells and Pretreatment System

Water is supplied to the plant by four production wells in excess of 1,000 feet deep. Two of these wells are located on MOI property and two are located approximately six miles east of the plant. The onsite wells, #3 and #4, have pump capacities of 60 gallons/minute and 75 gallons/minute, respectively. The offsite wells #6 and #7 have pump capacities of 300 gallons/minute and 200 gallons/minute, respectively. Well construction data for all four Plant water supply wells is presented in Table 2-1, Samples of all four wells were taken by

Table 2-1

Water Supply Wells Completion Data

	WELL #3 (on site)	WELL #4 (on site)	WELL #6 (offsite)	WELL #7 (offsite)
Location	T15N R17W S16 NE/NE/NE	T15N R17W S16 NE/NE/NE	T15N R16W S28 SE/SE/NE	T15N R16W S20 NW/SE/NE
Completion Date	04/53	05/53	03/58	02/67
Total Depth (ft)	2,012	1,941	1,275	1,384,
Casing Depth (in/ft)	16-76 12-3/4-185 8-5/8-1,614 6-2.012	12-3/4-131 8-5/8-1,610	16-264 12-3/4-1,033	16-180 12-33/4-1,296
Static Water Level 10/89 (ft)	Flowing Artesian	89	Flowing Artesian	Flowing Artesian
Pumping Water Level 10/89 (ft)	810	Not measured	290	310
Well Yield (gpm)	55	67	261	237

Table 2-2	
-----------	--

Water Supply Well Water Analysis

	WATER	WATER	WATER	WATER
	WELL#3	WELL#4	WELL#6	WELL#7
рН	7.7	7.7	7.8	7.6
Alkalinity (as CaCO3)	0	0	0	0
Total Alkalinity (asCacO3)	202	191	164	166
Chloride (as Cl)	34	16	17	16
Sulfate (as SO4)	478	410	614	618
Total Hardness (as CaCO3)	190	420	628	710
Calcium (as Ca)	40	107	156	154
Magnesium (as Mg)	22	37	58	79
Sodium (calculated as Na)	237	82	75	39
Silica (as SiO2)	0.39	0.24	0.23	0.23
Fluoride (as F)	5.1	6.7	5.2	5.4
Total Iron (Fe)	0.37	7.9*	0.35	0.15
Dissolved Iron (Fe)	0.15	0.13	0.12	0.1
Total Manganese (Mn)	0.17	0.22	0.17	0.17
Dissolved Manganese	0.12	0.16	0.14	.14
Total Dissolved Solids	932	944	1058	921
Biological Oxygen Demand	<1	<1	<1	<1
Chemical Oxygen Demand	<1	<1	<1	<1
Ammonia Nitrogen (as NH4)	.35	.25	.29	.13
Nitrate (as NO3)	<.1	<.1	<.1	<.1
Nitrite (as NO2)	.03	.06	.02	.03
Total Organic Carbon	.67	.62	1.09	.68
Specific Conductance	1215	1171	1199	1173

Concentrations in ppm, specific conductance in micromhos(mhos).

The iron content may be high as well #4 had recently been serviced.

Sample date: April 4, 1989

MOI personnel on April 4, 1989 to be analyzed. The results of the analysis are presented in Table 2-2.

The water is transported via a pumping and underground piping system to the pretreatment processes located at MOI. Pretreated consists of aeration which oxidizes iron to a form which precipitates as iron (III) hyroxide. Pretreated water is then passed through filters to remove the iron. The filters are permanent and are cleaned by backwashing rather than replacement. Filter backwash is piped to the general waste sump. The water is stored in five ground level tanks for plant use and one overhead tank for domestic use. The overhead tank is chlorinated.

2.3.2 Water Treatment Systems

Some of the raw water is treated with a sodium zeolite ion exchange softening system. This system removes calcium and magnesium ions and replaces them with sodium ions. The softened water is used as 1/2 of the makeup for the "A & B" cooling tower, the "C" cooling tower and after further treatment, the steam system. The softeners are regenerated using a saturated brine (NaCl Solution) from the salt pit. The regeneration stream is discharged to the general waste sump. The soft water is stored in a ground level tank.

A portion of the soft water is treated with a reverse osmosis unit to remove dissolved ions. This water is stored in a ground level tank and is used as makeup for the steam system. The concentrated waste stream is discharged to the general waste sump.

2.3.3 <u>"A & B" Cooling Water System</u>

The "A & B' plant cooling water system is diagrammed in Drawing 5155. The water in this system is cooled through the evaporation process via spraying in a cooling tower. A portion of the cooled water is passed through a sidestream filter to control the level of suspended solids in the circulating water. A controller maintains the proper level of total dissolved solids in the cooling water by adjusting the blowdown stream. The blowdown and side stream filter backwash are discharged to the general waste sump Cooling water pH is controlled using H₂So₄.

The cooling water is pumped to the process condensers and heat exchangers. The condensers which utilize the cooling water include "A" plant depropanizer,

debutanizer, "B" plant stabilizer and depropanizer overhead product condensers. The coolers which utilize the cooling water include the debutanizer natural gas liquid (light gasoline), butane, and propane coolers, the depropanizer butane and propane coolers and the propane dehydrator cooler. The piping system is designed to allow the condensers to be backwashed by reversing the flow of water in the condenser and draining the reversed stream directly to the waste line feeding the evaporation pond. A small portion of this stream is also used as bearing cooling water for the product pumps.

Cooling water is also used in the boiler plant in the closed loop cooling water system (engine jacket and oil water coolers) and in the starting and instrument air coolers, fan and feed water pump bearing coolers, and boiler blowdown sample coolers.

The "A & B" cooling water is returned to the cooling tower after passing through the coolers and condensers listed in this section.

2.3.4 <u>"C" Cooling Water System</u>

The "C" plant cooling water system is diagrammed in Drawing 5156. A portion of the cooling tower water is passed through a side stream filter to control the level of suspended solids in the circulating water. The level of total dissolved solids in the water is controlled by a constant blowdown stream. The side stream filter backwash and the blowdown are discharged to the brine sump. Cooling water pH is controlled using H₂So₄.

"C" plant cooling water is used in the process condensers and heat exchangers, including stabilizer and depropanizer overhead product condensers and butane, propane, natural gas liquids (light gasoline), and dehydrator coolers. The water is then recycled to the cooling tower. The "C" plant condensers are backwashed using the same method as in the "A" and "B" plants. A small portion of the stream also provides bearing cooling water for the product pumps.

2.3.5 Steam System

A part of the softened water is treated with a reverse osmosis unit to remove the dissolved salts for use in the steam system. The steam system is shown in Drawing 5157. The plant capacity is 201,000 pounds of steam per hour (65,000 lb/hour at 100 psig and the remainder at 400 psig).

The water from the reverse osmosis unit is used for the boiler feed water makeup. It is conducted into a feed line that connects a set of condensate storage tanks then pumped into the deaeration heaters and then is transferred through a preheater to the boilers. The water is deaerated to prevent air buildup in the steam lines and to prevent oxygen corrosion in the boilers and steam systems.

Steam is distributed to electrical generators, reboilers, preheaters, and steam driven pumps throughout the "A & B" Plant, the "C" Plant and the boiler plant. The equipment that utilizes the steam for heat exchange include the stabilizer, depropanizer, debutanizer, mixed butane, and the iso-butane preheaters and reboilers. The equipment that utilizes the steam for a power source include the stabilizer, stand-by, depropanizer, and iso-butane feed pumps, reflux pumps, #4 and #5 electrical generators, the boiler feed pumps and cooling tower spray pumps in both "A & B" and "C" cooling systems.

After passing through the process equipment, the condensate is returned to the set of condensate storage tanks for reuse. Fin-fan condensers are used to condense some of the exhausted steam.

2.3.6 Domestic and Firewater System

Water for domestic use is chlorinated and fed to the plant from an elevated storage tank. EPNG's general warehouse and pipeline district office also receive domestic water and fire water from the plant.

Two fire water pumps feed fire hydrants and monitors throughout the property and a deluge system in the train and truck loading areas. A runoff pond exists to capture and evaporate water from the deluge system. The pond has received no water from the fire water system but it has been filled with fresh water and stocked with fish. Water will no longer be added to this pond except in an emergency when the deluge system is activated. An additional utility pump is connected to the fire water system and is used for various utility applications and to clean equipment.

2.4 WATER BALANCE/EFFLUENT SOURCES

2.4.1 Waste Streams

Waste streams originate from the backwashing of the iron filters in the pretreatment system, from the regeneration of the sodium zeolite ion exchanger, from the reverse osmosis waste, from the boiler and cooling tower blowdowns,

from the backwashing of the condensers, from the backwashing of the side stream filters and from the septic tank systems. The only wastewater in contact with process streams (hydrocarbons) is the flow from the inlet feed tank water legs. This amounts to less than one gallon per day. Table 2-3 lists the waste streams with their flows.

The waste streams are directed to either the general waste sump, the brine sump, or are discharged directly to the evaporation pond. The wastes from the general waste and brine sumps are subsequently discharged into the evaporation ponds.

The general waste sump provides a waste collection point for the iron filter backwash, the softener regeneration water, the reverse osmosis waste, the boiler blowdown waste, the "A & B" side stream filter backwash, the "A & B" cooling tower blowdown water, the boiler house drain water, and the plant northeast, northwest and southwest septic tank water. The general waste sump may include some surface water runoff.

The brine sump provides a waste collection point for the overflow from the salt pit, the "C" cooling tower blowdown water, and the overflow from the plant northeast, northwest and southwest septic tanks. The waste in the brine sump may also include some surface water runoff.

The backwash from the condensers, the water from the inlet feed surge tanks, and the discharge from the warehouse septic tank are discharged into the waste stream between the sumps and the evaporation ponds. The water from the inlet feed surge tanks is the only contact water discharged to the evaporation pond. This water is entrained in the feed stock from the incoming pipeline. Any condensed water is removed via a manual valve in water legs on the six feed tanks. It is discharged to an open drain pipe and is pumped to the metered line to the evaporation pond. All other contact water and water which is produced in the process is sent to the candlestick flare to incinerate any hydrocarbon compounds which may be present.

Domestic discharges are made through six septic tanks. One septic tank in the southeast corner of the plant, is fed by one low use restroom. It has a leach field and does not empty into the evaporation ponds. The other three septic tanks in the processing plant area are discharged into the general waste sump. The septic tank for EPNG's general warehouse discharges into a metered line to the evaporation pond. The septic tank for EPNG's pipeline district office discharges into the pond through an unmetered line.

Table 2-3

Wastewater Streams

Stream	Flow
Iron Filter Backwash	2,325 gal/day
Sodium Zeolite Regeneration	12,890 gal/day
Boiler Blowdown	28,000 gal/day
A & B" Cooling Tower Blowdown	26,400 gal/day
C" Cooling Tower Blowdown	360 gal/day
A & B" Side Stream Filter Backwash	7,500 gal/day
C" Side Stream Filter Backwash	575 gal/day
Reverse Osmosis Unit Waste Stream	14,400 gal/day
Process Feed Water Legs (Contact)	1 gal/day
Septic Tanks	
District Office	1,600 gal/day
Warehouse	1,600 gal/day
Plant (to general waste sump)	5,135 gal/day
Plant (to leach field)	50 gal/day
Pond Influx	94,960 gal/day

2.4.2 Water Balance

A water balance has been calculated from flowmeter data collected on April 10 and May 30, 1990. This data was supplemented using information on water treatment regeneration and blowdown schedules. Estimates of domestic sewage were made based on number of workers in various areas. The balance is accurate for the period covered but water use can vary as a function of plant production and climate. The temperature and humidity will have a large effect on cooling water usage. Table 2-4 lists the minimum cooling water temperature which may be obtained throughout the year. These temperatures are never achieved in practice but they demonstrate the large difference in cooling capacity of an evaporative tower from summer to winter. During the winter a part of the cooling load is obtained from conduction of heat in the water to cold air instead of from evaporation of the cooling water. The production load of the plant effects both cooling water and boiler water usage. During the period of the balance, "C" plant was in little use which accounts for the low makeup water the "C" plant cooling tower. Table 2-5 gives well water production and plant hydrocarbon production for various months from 1988 to 1992.

Approximately 305,000 gallons of water per day (gpd) are produced by the inlet wells. This can vary depending on which well is on. The majority of the water, approximately 60% of the total, is produced by inlet Well #7. This load can be shifted to Well #6 or be distributed more evenely between the four wells. Approximately 200,000 gpd (65%) is utilized by the "A & B" cooling system, approximately 3,000 gpd (1%) is utilized by the "C" cooling system, and 11,300 gpd (4%) is utilized by the domestic system. Boiler feed make-up water is estimated to be 60,000 gpd (20%). The remaining 10% is used in water treatment regeneration and blowdown streams. The rate of waste from the main inlet into the evaporation pond is approximately 95,000 gpd (31% of well flow). The water balance is shown on Drawing 5151.

94,528,000 gallons of well water was used in 1989. From the water balance, the flow to the evaporation ponds would be 31 percent of this flow or 30,000,000 gallons per year. A totalizing flow meter was installed in the pipe discharging waste to the ponds. It became operational in February 1990. Discharges to the ponds since flow meter installation are shown in Table 2-6.

The capacity of the ponds to evaporate water is determined by subtracting the annual rainfall (9.66 inches) from the annual lake evaporation rate (52.00 inches). The monthly and annual rainfall and evaporation data are presented in Table 2-4. The net evaporation rate is 42.34 inches/year. Using the surface

area of 1,173,000 square feet, the annual evaporation capacity of the ponds is 31,000,000 gallons. Evaporative capacity exceeds wastewater inflow.

Table 2-4

	Mean Temp. F	Normal Precipitation Inches	Mean Relative Humidity %	Cooling Water Min. Temp F	Lake Evaporation Inches
January	28.8	0.63	75	32	0.59
February	33.6	0.54	65	32	0.78
March	38.9	0.63	54	33	1.31
April	46.9	0.41	50	40	3.19
May	55.5	0.38	33	43	5.94
June	65.1	0.40	38	52	9.03
July	70.9	1.52	60	62	11.06
August	68.7	1.61	58	60	9.20
September	62.0	0.95	59	54	6.05
October	51.2	1.30	50	43	3.16
November	38.3	0.67	55	33	1.09
December	30.2	0.62	72	32	0.06
Year	49.2	9.66	58	43	52.0

Monthly Weather Data & Cooling Water Temperatures

Source: NOAA & USDA

Table 2-5

Weil Water Usage and Plant Production

Month	Weil Water (gallons)	Plant Production (gallons)	
1988			
January	6,869,700	30,272,776	
February	5,750,100	26,380,556	
March	5,321,600	22,685,502	
April	6,164,400	17,488,575	
May	5,746,500	24,874,015	
June	8,847,600	19,441,101	
July	7,373,500	15,109,098	
August	8,842,100	23,888,268	
September	4,767,400	23,035,496	
October	4,284,400	15,935,274	
November	6,201,500	15,808,874	
December	6,129,900	21,474,719	
1988 TOTAL	76,298,700	256,394,254	
1989			
January	5,330,200	27,818,123	
February	9,021,300	22,263,065	
March	7,758,400	26,029,011	
April	8,531,100	24,039,436	
May	10,404,500	20,547,167	
June	6,,464,100	19,905,292	
July	12,038,300	24,632,457	
August	3,948,300	23,447,143	
September	8,161,500	24,316,557	
October		29,022,340	
November		25,229,383	
December		27,056,834	
1989 TOTAL	94,528,100	294,306,808	

Month	Well Water (gallons)	Plant Production (gallons)
1990		
January	6,938,300	28,341,060
February	9,616,510	24,062,850
March	7,501,180	27,398,137
April	7,495,870	19,594,803
May	6,569,200	24,262,884
June	10,320,700	22,578,022
July	6,042,270	21,679,253
August	8,431,830	18,539,414
September	7,670,840	23,711,620
October	8,068,000	18,283,706
November	3,724,740	24,447,234
December	17,863,790	26,046,594
1990 TOTAL		278,945,577
1991	0.075.400	05 440 000
January	6,875,100	25,418,680
February	5,399,810	17,214,197
March	12,136,070	23,317,302
April	5,438,190	22,596,762
May	6,903,300	23,020,949
June	7,303,320	17,527,933
July	13,782,550	18,210,300
August	17,011,870	22,150,703
September	12,204,130	22,438,746
October	12,068,300	22,379,776
November	5,266,388	19,842,738
December	10,577,740	21,977,707
1991 TOTAL		256,095,793

Table 2-5 (continued)

Table 2-6

Wastewater Flow to Evaporation Ponds

1990	GPD
February	2,249,600
March	1,952,100
April	2,105,300
May	2,490,300
June	2,513,500
July	154,200
August	2,219,500
September	1,017,900
October	2,298,900
November	2,168,400
December	823500
1990 Total	21,384,200
1991	
January	1,00600
February	1,371,700
March	1,092,100
April	977,000
May	2,167,600
June	1,179,300
July	1,393,300
August	2,129,400
September	1,668,900
October	***
November	***
December	***
1991 Total	12,146,300

*** Flow meter to ponds was defective.

1991 total represents a partial total.

2.4.3 Stormwater

Storm water is routed to a discharge ditch by five shallow cement lined depressions. The drainage ditch runs to the west along the north edge of the plant. It empties into a larger ditch about 2,300 feet west of the plant processing area. The larger ditch flows northwest for about another 2,300 feet and discharges into the Rio Puerco. In management of stormwater runn off MOI will comply with the National Pollutant Discharge Elimination System (NPDES) stormwater requirements to be promulgated for New Mexico.

2.4.4 Wastewater Recycle

Due to a general lack of sufficient groundwater in McKinley County, New Mexico, wastewater from the east evaporation pond has been requested for use in dust control during road construction and the withdrawal approved. None has been used since 1990. No contaminant in the water would prevent its use in this manner. Water will be taken from the east rather than the west pond due to the lower concentration of dissolved solids.

2.5 QUALITY CHARACTERISTICS

2.5.1 Evaporation Pond Wastewater Analysis

On April 6, 1990 and January 22, 1992, wastewater grab samples were collected from the east and west evaporation ponds. Samples were obtained from four different locations at each pond (Drawing 5153-4) at a distance of approximately four feet from the waterline using a Wheaton grab sampler. These samples were then field-composited and stored in ice chests for shipment to the laboratory. Water samples which were to be used for metals analyses were not filtered as per a discussion with NMOCD (Roger Anderson, March 30, 1990); however, these samples were preserved with nitric acid. Those samples for which volatile halocarbons/aromatic analyses (EPA Methods 601/602) were to be performed were collected so that no headspace existed in the sample bottles.

Laboratory results are summarized in Table 2-7.

Tabl	e	2-7
------	---	-----

Evaporation Pond Water Analysis

· · ·		West Pond	West Pond	East Pond	East Pond
Constituent	Units	4/6/90	1/22/92	4/6/90	1/22/92
Arsenic (As)	mg/l	0.011		<0.005	
Barium (Ba)	mg/l	0.078		0.045	
Cadmium (Cd)	mg/l	<0.005		<0.005	
Chromium (Cr)	mg/l	<0.01		<0.01	
Cyanide (Cn)	mg/l	<0.01		<0.01	
Lead (Pb)	mg/l	0.029		0.028	
Mercury (Hg)	mg/l	< 0.0002		<0.0002	
Selenium (Se)	mg/l	<0.025		<0.025	
Silver (Ag)	mg/l	<0.01		<0.01	
Bicarbonate	mg/l		275		210
Calcium	mg/i		856		731
Carbonate	mg/l		0		0
Chloride (Cl)	mg/l	36000	31320	4180	6310
Copper (Cu)	mg/l	0.03		<0.02	
Fluoride (F)	mg/l	2.44	1.09	0.67	0.73
Iron (Fe)	mg/l	0.066	0.32	0.088	0.57
Manganese (Mn)	mg/l	0.165	0.34	0.071	0.09
Nitrate (NO3 as N)	mg/l	<0.06	<0.02	<0.06	<0.02
Potassium	mg/l		231		71.0
Silica	mg/l		19.4		32.2
Sodium	mg/l		19910		4400
Sulfate	mg/l		7710		3420
Sulfate (SO4)	mg/l	10000	7710	2400	3420
Total Dissolved Solids (TDS)	mg/l	75800	65400	10000	15900
pH		7.73	8.14	8.63	8.20
Alkalinity			225		165
Hardness			9350		2960
Polychlorinated biphenyls (PCBs)	ug/l	<2.5		<2.5	
Benzene	ug/l	<5.0	0.8	<5.0	1.3
Toluene	ug/l	<5.0	0.5	<5.0	0.8
Ethylbenzene	ug/l	<5.0	ND	<5.0	ND
Total xylenes	ug/l	<5.0	ND	<5.0	0.5
Carbon Tetrachloride	ug/l	<2.0		<2.0	
1,2-dichloroethane (EDC)	ug/l	<2.0		<2.0	
1,1-dichloroethylene (1,1- DCE)	ug/l	<2.0		<2.0	
1,1,2,2-tetrachloroethylene (PCE)	ug/l	<2.0		<2.0	
1,1,2-trichloroethylene (TCE)	ug/l	<2.0		<2.0	
Methylene chloride	ug/l	<20.0		<20.0	
1,1-dichloroethane	ug/l	<2.0		<2.0	
Ethylene dibromide (EDB)	ug/l	<0.01		<0.01	
1,1,1-trichloroethane	ug/l	<2.0		<2.0	
1,1,2-trichloroethane	ug/l	<2.0	Τ	<2.0	
1.1.2.2-tetrachloroethane	ug/l	<2.0		<2.0	

Table	2-7
(contin	ued)

		West Pond	West Pond	East Pond	East Pond
Constituent	Units	4/6/90	1/22/92	4/6/90	1/22/92
Vinyl choride	ug/l	<2.0		<2.0	
Benzo-a-pyrene	ug/l	<10		<10	
Acrolein	ug/l	<50.0		<50.0	
Acrytonitrile	ug/l	<50.0		<50.0	
Aldrin	ug/l	<0.25		<0.25	
Benzidine	ug/l	<100		<100	
Carbon Tetrachloride	ug/l	<2.0		<2.0	
Chlordane	ug/l	<2.5		<2.5	
Monochlorobenzene	ug/l	<5.0		<5.0	
Hexachlorobenzene	ug/l	<10		<10	
1.2-dichloroethane	ug/i	<2.0		<2.0	
Hexachloroethane	ug/l	<10		<10	
1,1,2,2-tetrachloroethane	ug/I	<2.0		<2.0	
1,1,1-trichloroethane	ug/l	<2.0		<2.0	i
1,1,2-trichloroethane	ug/l	<2.0	[<2.0	İ
2,4-dichlorophenol	ug/l	<10		<10	
2,4,5-trichlorophenol	ug/l	<50	<u> </u>	<50	h
2,4,6-trichlorophenol		<10		<10	
Bis)2-chloroethyl) Ether	ug/l	<10		<10	
Bis (2-chloroisopropyl) Ether	ug/l	<10		<10	
Chloroform	ug/l	<2.0		<2.0	
DDT	ug/i	<0.5		<0.5	-
Dichlorobenzene	ug/l	<5.0		<5.0	
Dichlorobenzidine		<20		<20	
	×				
1,1-dichloroethylene	ug/l	<2.0 <2.0		<2.0 <2.0	
Dichloropropenes	ug/l				·
Dieldrin 2.4 dialitatakunaa	ug/l	<0.5 <10		<0.5	
2,4-dinitrotoluene	ug/i			<10	
Endosulfan	ug/i	<0.5		<0.5	
Endrin	ug/l	<0.5		<0.5	
Bromodichloromethane	ug/l	<2.0		<2.0	
Bromomethane	ug/l	<2.0		<2.0	
Chloromethane	ug/i	<2.0		<2.0	
Dichlorodifluoromethane	ug/l	<2.0		<2.0	
Trichlorofluoromethane	ug/l	<5.0	<u> </u>	<5.0	ļ
Heptachlor	ug/l	<0.25		<0.25	
Hexachlorobutadiene	ug/l	<10		<10	
Hexachlorocyclopentadiene	ug/l	<10		<10	
Isophorone	ug/l	<10		<10	
Nitrobenzene	ug/l	<10		<10	
Dinitrophenols	ug/l	<50		<50	
N-nitrosodimethylamine	ug/l	<10		<10	
N-nitrosodiphenylamine	ug/l	<10		<10	
Pentachlorophenol	ug/l	<50		<50	
Phenol	ug/l	<10		<10	
Dibutyl Phthalate	ug/l	<10		<10	
Di-2-ethylhexyl Phthalate	ug/i	<10		<10	
Diethyl Phthalate	ug/l	<10		<10	
Dimethyl Phthalate	ug/l	<10		<10	

Table	2-7
(contin	ued)

		West Pond	West Pond	East Pond	East Pond
Polychlorinated Biphenyls (PCBs)	ug/I	<2.5		<2.5	
Anthracene	ug/i	<10		<10	
Benzo (k) Fluoranthene	ug/l	<10		<10	
Fluoranthene	ug/i	<10		<10	
Fluorene	ug/i	<10		<10	
Phenanthrene	ug/i	<10		<10	
Pyrene	ug/i	<10		<10	
Tetrachloroethylene	ug/i	<2.0		<2.0	
Toxaphene	ug/l	<5.0		<5.0	
Trichloroethylene	ug/l	<2.0		<2.0	
1,1-dichloroethane	ug/1	<2.0		<2.0	
Ethylene Dibromide (EDB)	ug/l	<0.01		<0.01	
Cis-1, 2-dichloroethylene	ug/l	<2.0		<2.0	
Trans-1,2-Dichloroethylene	ug/l	<2.0		<2.0	
Naphthalene	ug/l	<10		<10	
2-Methylnaphthalene	ug/l	<10		<10	

On May 30, 1990, field personnel tested the pH of the evaporation ponds and of the flow to the evaporation ponds. The sample from the pipe leading to the ponds was taken at a sample valve installed in the flow meter manifold. The pond samples were taken at the same locations as the samples for analyses. The pH average for the east and west pond was 8.63 and 7.73, respectively. The pH of the incoming stream to the pond was 8.64.

2.5.2 Evaporation Pond Influent Analysis

On July 18, 1990 samples were taken from the six inch line discharging to the east evaporation pond. The sample point is south of the pipeline office and is shown in Drawing 5153-3. Organics were tested for using BTEX test 8020. No organics were detected in the water. The detection limit was 0.5 UG/L. General chemistry as well as toxic metals were tested for using EPA methodologies. The level of total dissolved solids is of greatest concern due to its potential to add solids to groundwater. TDS was 3510 MG/L. The results from the above tests are shown in Table 2-8.

Table 2-8

Evaporation Pond Influent Water Analysis

Carbonate (CaCO3)	mg/l	20
Bicarbonate (CaCO3)	mg/l	418
Hydroxide (CaCo3)	mg/l	<1
Total Alkalinity (as CaCO3)	mg/l	438
Chloride	mg/l	220
Fluoride	mg/l	0.93
Nitrate as Nitrogen	mg/l	0.48
pH		8.5
Phosphate, Ortho (as P)	mg/l	1.29
Sulfate	mg/l	1700
Total Dissolved Solids	mg/l	3510
Silver	mg/l	<0.01
Arsenic	mg/l	<0.1
Barium	mg/l	<0.01
Calcium	mg/l	25.4
Cadmium	mg/l	0.005
Chromium	mg/l	0.01
Copper	mg/l	<0.02
Iron	mg/l	0.868
Mercury	mg/l	<0.0002
Potassium	mg/l	34.8
Magnesium	mg/l	11.3
Sodium	mg/l	1170
Lead	mg/l	<0.05
Selenium	mg/l	<0.05
Silica	mg/l	38.7
Zinc	mg/l	<0.01
Benzene (ug/l)	ug/l	<0.5
Toluene (ug/l)	ug/l	<0.5
Ethybenzene (ug/l)	ug/l	<0.5
Total Xylenes (ug/l)	ug/l	<0.5

2.6 SPILL/LEAK PREVENTION AND HOUSEKEEPING PROCEDURES

2.6.1 Operating and Maintenance Procedures

The Wingate Plant is operated in a manner to prevent and mitigate any unplanned releases to the environment. The plant is manned 24 hours per day and 365 days per year including holidays. Plant process and storage units are regularly observed by a number of personnel during normal operations, and any evidence or sign of spill/leaks are routinely reported to supervisory personnel so that repairs or cleanup can be promptly effected. Routine maintenance procedures conducted at the Wingate Plant also help to assure that equipment remains functional and that the possibility of spills/leaks is minimized.

2.6.2 Chemical and Environmental Hazards

A number of process and non-process chemicals or additives used at the Wingate Plant could present a threat to the environment only in the event of a major spill or release. A list of products stored in quantities of greater than 55 gallons is presented in Table 2-9. The majority of the chemicals are stored in small quantities (55 gallons to 3,000 gallons) and any spills or leaks would be very small in volume and easily contained in the immediate area.

A spill of wastewater could result from possible dike failure of the evaporation pond. The spill would flow into the Puerco River and would possibly degrade the groundwater quality by increasing the dissolved salt content. The wastewater contains no hazardous contaminate in concentration high enough to be of concern.

2.6.3 <u>Cleanup Procedures</u>

Cleanup procedures would obviously vary with the nature and extent of any unplanned release. Spills of acids and bases are relatively easy to control and

Table 2-9

Chemicals Used at Wingate Plant

		Use or	
		Storage	
Chemicai	Description	Location	Amount
ACETYLENE	GAS	SHOP	3 BOTTLES
AMBERLITE IR-120 PLUS	ION EXCH.RESIN	CHEM STOR	742 LB
ANSUL PURPLE K	FIRE RETARDENT	WAREHOUSE	2,250 LB
CALCIUM CHLORIDE	SOLID	CHEM STOR	2,900 LB
CAUSTIC SODA BEADS	SOLID BASE	CHEM STOR	700 LB
CCH - DRY CHLOIRINE	BIOCIDE	COOLING TOWER	300 LBS
DELVAC 1200	DIESEL OIL	WAREHOUSE	110 GAL
DELVAC 1300	1030W OIL	WAREHOUSE	110 GAL
DENSE SODA ASH	Na2Co3	CHEM STOR	2,500 LB
DIESEL FUEL	LIQUID	SHOP	500 GAL
DIXICHLOR (SODIUM HYPOCHLORITE)	DOMESTIC WATER TREATMENT	WAREHOUSE	275 GAL
ETHYL MERCAPTAN	LIQ.ODORIZER	LPG STOR	3,000 GAL
GASOLINE LEADED-REGULAR	LIQUID	SHOP	380 GAL
н.т.н.	BIOCIDE CA(OCL)2	CHLORINE TABLE	500 LB
HELIUM	GAS	LAB	10 BOTTLES
HI YIELD ENZYME 400	POWDER	CHEM STOR	100 LB
HYDROGEN	GAS	LAB	1 BOTTLE
ICE FOE	CACL2	MELTICE	10,000 LB
LIQUICHLOR	NaOCI	COOLING TOWER	200 GAL
METHANOL	LIQUID	FRAC PLANT	1,000 GAL
NITROGEN	GAS	SHOP & LAB	18 BOTTLES
OIL MOBIL DELVAC 1230	BEARING LUBE	WAREHOUSE	165 GAL
OIL MOBIL DTE 20	TURBINE OIL	WAREHOUSE	165 GAL
OIL MOBIL DTE HEAVY MED	TURBINE OIL	WAREHOUSE	165 GAL
OIL MOBIL PEGASUS 490	ENGINE OIL	WAREHOUSE	165 GAL
OIL MOBIL SUPER 10W30	ENGINE OIL	WAREHOUSE	73 GAL
OIL MOBIL SUPER 10W40	ENGINE OIL	WAREHOUSE	73 GAL
OIL WHITE 22	BEARING LUBE	WAREHOUSE	110 GAL
OXYGEN	GAS	SHOP	5 BOTTLES
PURPLE K	POTASSIUM SALT	FIRE EXTINGUISHER	3000 LB
SULFURIC ACID	LIQUID	COOLING TOWER	2,200 GAL
TRIAD WO-44	DEPOSIT INHIBITOR	CHEM STOR	220 GAL
UNICHEM 1000	DISPERSANT	WATER TREAT	110 GAL
UNICHEM 1705	INHIBITOR	COOLING TOWER	165 GAL
UNICHEM 1710	INHIBITOR	WATER TREAT	1,000 GAL
UNICHEM 3030	INHIBITOR	CHEM STOR	165 GAL

L

UNICHEM 3140	02 SCAVENGER	CHEM STOR	165 GAL	
UNICHEM 3270	INHIBITOR	WAREHOUSE	165 GAL	
UNICHEM 544	BIOCIDE	COOLING TOWER	165 GAL	
UNICHEM 7156	PIPELINE INHIBITOR	WAREHOUSE	110 GAL	
UNICHEM ALPHA 512	MICROBIOCIDE	WATER TREAT	165 GAL	
UNICHEM ALPHA 544	MICROBIOCIDE	WATER TREAT	110 GAL	
UNICIHEM 1700	DISPERSANT	WATER TREAT	165 GAL	
UREABOR	HERBICIDE	CHEM STOR	2500 LB	

general procedures would include neutralization of the material in-place before a final evaluation is made on its ultimate disposal. Once neutralization is confirmed by sampling, it is quite probable that no further actions will be required to ensure protection of human health and the environment.

If a chemical spill occurs, general cleanup procedures would involve minor earthwork to prevent migration, and recovery of as much free liquid as possible. Recovered chemical would then be transported off-site for reclamation or disposal. Any organic chemical which may have soaked in the soil will be left in place and will be disked periodically to enhance biodegradation.

Spills of organic materials which might occur at the drum storage area will be small in nature and easily contained. If a spill occurs, any free liquids will be contained by earthwork, recovered if possible and held in storage pending a decision on final disposal. Based on existing literature, analysis, and regulatory guidelines, any contaminated soil will either be left in place, transferred to other existing waste-management areas (if no incompatibilities exist), or transported off-site for proper disposal.

Potential releases could result from dike failure of the evaporation pond. Should a potential or actual release occur, some earth moving equipment is available on site or through contractors to repair damage to any dikes. Any liquids which have been released will be collected, where practical, and reintroduced into the wastewater system as is practical.

2.6.4 <u>Reporting</u>

Should a release of materials occur, MOI will comply in accordance with provisions described in NMOCD Rule & Regulation # 116.

2.6.5 General Housekeeping Procedures

MOI strives to reduce the potential for spills and leaks in all areas. Records from 1972 to present indicate that no reportable liquid spills are documented at the Wingate Plant. Interviews with plant personnel have also indicated that no reportable liquid spills occurred between the 1950's and 1972.

Non-process chemicals are used in relatively small quantities at the plant and are managed in a manner to prevent discharges to the environment. Any chemical spills which might occur would be immediately contained, controlled and any effects mitigated.

3.0 EFFLUENT DISPOSAL

3.1 EVAPORATION PONDS

Plant wastes streams are discharged to the evaporation ponds for final disposal by evaporation. The streams enter the east pond through a metered line containing most of the effluent and through an unmetered line from the district office containing only domestic waste. When the east pond is full the west pond receives the overflow. The east pond contains water throughout the year. The west pond only receives overflow during the winter months and sometimes dries up in the summer months. The east pond is contained in a 560 foot by 940 foot area and has a surface area of 480,000 square feet (11.0 acres). The west pond is contained in a 900 foot by 850 foot area and has a surface area of 693,000 square feet (15.9 acres). The north edges of the ponds are about 200 feet from the normally dry Rio Puerco. The east pond was placed in operation between 1968 and 1970. These ponds replaced smaller evaporation ponds which have been closed.

3.2 WASTE DISPOSAL

Waste oil from engines, generators, and motors is stored in drums on a concrete slab to the east of the processing area. The drums are periodically removed and recycled by Mesa Oil of Albuquerque, New Mexico.

Other wastes such as waste paper, office and domestic garbage and miscellaneous wastes are removed to a landfill by the City of Gallup, New Mexico.

3.3 MONITORING SYSTEM

A series of flow meters have been installed to measure incoming water and outgoing waste streams. They measure both flow rate and total flow. They are indicated on the process flow diagrams with a circle with the letters FIT inside. The letters stand for Flow Indicating Transmitter. These flowmeters will be read weekly and the total flow recorded.

Samples from the evaporation ponds will be obtained annually and analyzed for general water chemistry, priority pollutant metals and BTEX. Any records related to waste characteristics will be retained by MOI for at least five years as required by WQCC regulations. The results of the analysis will be reported to NMOCD to

comply with the WQCC regulations. Any changes, anticipated or otherwise, to the disposal system will be reported to NMOCD.

3.4 PROPOSED MODIFICATIONS

3.4.1 Containment Dikes

Two small (500 gal) elevated tanks are used to provide gasoline and diesel fuel for plant vehicles. They are presently without spill containment dikes. Dikes or steel containment pans will be provided.

A cement containment dike will also be provided around the waste drum storage area. This is currently a cement pad which holds barrels of used oil prior to shipment to an oil reclamation facility.

3.4.2 Abandoned Flare Pit Closure

An abandoned 25 feet x 25 feet flare pit is located north of the plant. The pit contains runoff rain water and there is a gas line which is leaking natural gas products into it. An analysis of the water in the pit is listed in Table 3-1. The process line to the pit will be capped. The water, which contains some hydrocarbons, will be disposed of in accordance with NMOCD guidelines. The pit will then be closed in accordance with current environmental standards. Research has shown that petroleum residues can be degraded in a soil environment (Cresswell, 1977). The process usually involves the mixing of contaminated soil with fresh soil and harrowing to improve aeration, addition of fertilization to facilitate bacterial breakdown of the residue and the establishment of vegetation (Gudin and Svratt, 1975). Cresswell (1977) reports that healthy crops of wheat were grown on test plots in Oklahoma containing four to eight percent of oil in the upper six inches of soil. It was found that the oil, including oily waste from the bottoms of wastewater treatment pond, was held in the shallow soil zone in which it was originally applied and did not move vertically or horizontally in the soil. Such reclamation steps would improve the closure process and will be utilized where possible.

Table 3-1

Flare Pit Water Quality Analysis

		Flare Pit
Constituent	Units	4/6/90
Arsenic (As)	mg/l	0.01
Barium (Ba)	mg/l	0.457
Cadmium (Cd)	mg/i	<0.005
Chromium (Cr)	mg/l	<0.01
Cyanide (Cn)	mg/l	0.04
Lead (Pb)	mg/l	0.003
Mercury (Hg)	mg/i	0.0005
Selenium (Se)	mg/i	<0.025
Silver (Ag)	mg/l	<0.01
Chloride (Cl)	mg/l	31
Copper (Cu)	mg/t	<0.02
Fluoride (F)	mg/i	0.35
Iron (Fe)	mg/l	6.78
Manganese (Mn)	mg/l	1.01
Nitrate (NO3 as N)	mg/l	<0.06
Total Dissolved Solids (TDS)	mg/l	860
Polychlorinated biphenyls (PCBs)	ug/l	<5.0
Benzene	ug/l	125
Toluene	ug/l	213
Ethylbenzene	ug/l	<12.5
Total xylenes	ug/l	43
Carbon Tetrachloride	ug/l	<5.0
1,2-dichloroethane (EDC)	ug/l	<5.0
1,1-dichloroethylene (1,1-DCE)	ug/l	<5.0
1,1,2,2-tetrachloroethylene (PCE)	ug/i	<5.0
1,1,2-trichloroethylene (TCE)	ug/i	<5.0
Methylene chloride	ug/l	<50.0
1,1-dichloroethane	ug/l	<5.0
Ethylene dibromide (EDB)	ug/l	<0.01
1,1,1-trichloroethane	ug/l	<5.0
1,1,2-trichloroethane	ug/l	<5.0
1,1,2,2-tetrachloroethane	ug/l	<5.0
Vinyl chloride	ug/l	<5.0
Benzo-a-pyrene	ug/l	<10
Acrolein	ug/i	<50.0
Acrylonitrile	ug/l	<50.0
Aldrin	ug/l	<5.0

Table	3-1
(contin	ued)

		Flare
		Pit
Constituent	Units	4/6/90
Benzidine	ug/i	<100
Carbon Tetrachloride	ug/l	<5.0
Chiordane	ug/l	<5.0
Monochlorobenzene	ug/l	<12.5
Hexachlorobenzene	ug/l	<10
1,2-dichloroethane	ug/l	<5.0
Hexachloroethane	ug/i	<10
1,1,2,2-tetrachloroethane	ug/l	<2.0
1,1,1-trichloroethane	ug/l	<2.0
1,1,2-trichloroethane	ug/l	<2.0
2,4-dichlorophenol	ug/l	<10
2,4,5-trichlorophenol	ug/l	<50
2,4,6-trichlorophenol	ug/l	<10
Bis)2-chloroethyl) Ether	ug/i	<10
Bis (2-chloroisopropyl) Ether	ug/l	<10
Chloroform	ug/l	<5.0
DDT	ug/l	<1.0
Dichlorobenzene	ug/l	<10.0
Dichlorobenzidine	ug/l	<20
1,1-dichloroethylene	ug/l	<5.0
Dichloropropenes	ug/l	<12.5
Dieldrin	ug/l	<1.0
2,4-dinitrotoluene	ug/l	<10
Endosulfan	ug/l	<1.0
Endrin	ug/l	<1.0
Bromodichloromethane	ug/i	<5.0
Bromomethane	ug/l	<5.0
Chloromethane	ug/l	<5.0
Dichlorodifluoromethane	ug/l	<5.0
Trichlorofluoromethane	ug/l	<12.5
Heptachlor	ug/l	<0.5
Hexachlorobutadiene	ug/l	<10
Hexachlorocyclopentadiene	ug/l	<10
Isophorone	ug/l	<10
Nitrobenzene	ug/l	<10
Dinitrophenols	ug/l	<50
N-nitrosodimethylamine	ug/l	<10
N-nitrosodiphenylamine	ug/l	<10

Table 3-1	
(continued)	

		Fiare Pit
Constituent	Units	4/6/90
Pentachlorophenol	ug/t	<50
Phenol	ug/l	32
Dibutyl Phthalate	ug/l	<10
Di-2-ethylhexyl Phthalate	ug/l	<10
Diethyl Phthalate	ug/l	<10
Dimethyl Phthalate	ug/l	<10
Polychlorinated Biphenyls (PCBs)	ug/l	<5.0
Anthracene	ug/i	<10
Benzo (k) Fluoranthene	ug/l	<10
Fluoranthene	ug/l	<10
Fluorene	ug/l	<10
Phenanthrene	ug/l	<10
Pyrene	ug/l	<10
Tetrachloroethylene	ug/l	<5.0
Toxaphene	ug/l	<10.0
Trichloroethylene	ug/l	<5.0
1,1-dichloroethane	ug/l	<5.0
Ethylene Dibromide (EDB)	ug/l	<0.01
Cis-1, 2-dichloroethylene	ug/l	<5.0
Trans-1,2-Dichloroethylene	ug/l	<5.0
Naphthalene	ug/l	<10
2-Methylnaphthalene	ug/l	<10

3.4.3 Sulfuric Acid Tanks

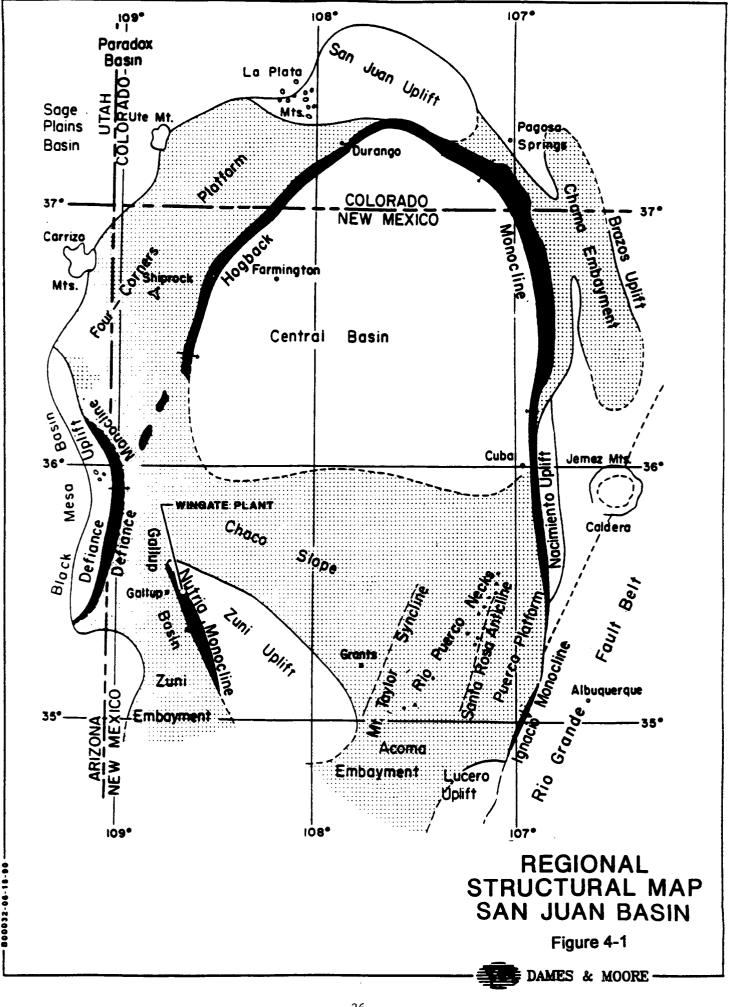
Sulfuric acid is stored in five 500 gallon tanks in two locations. The tanks have concrete containment walls but the containment floor is dirt. A concrete floor will be installed in the diked areas and the floor and walls will be coated with epoxy or other acid resistant material.

3.4.4 Drain Line to Evaporation Pond

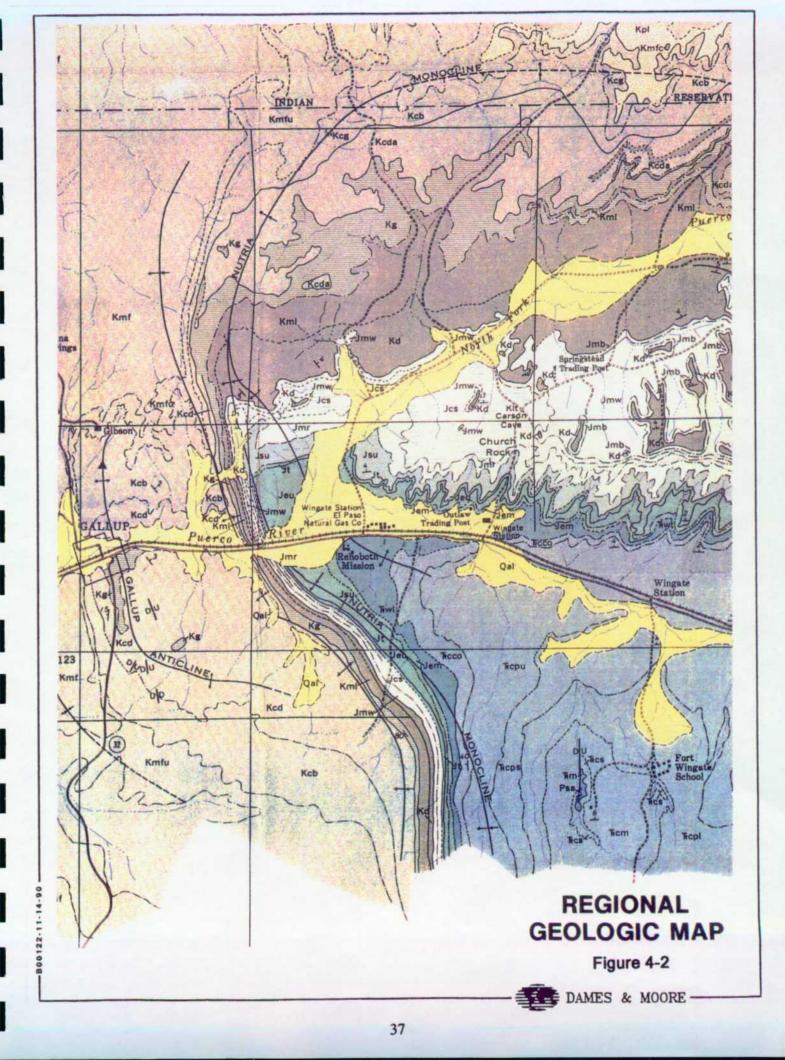
The septic tank from the EPNG district office drains directly to the evaporation pond without going through a meter. The line will be connected to the main pond drain line which is metered.

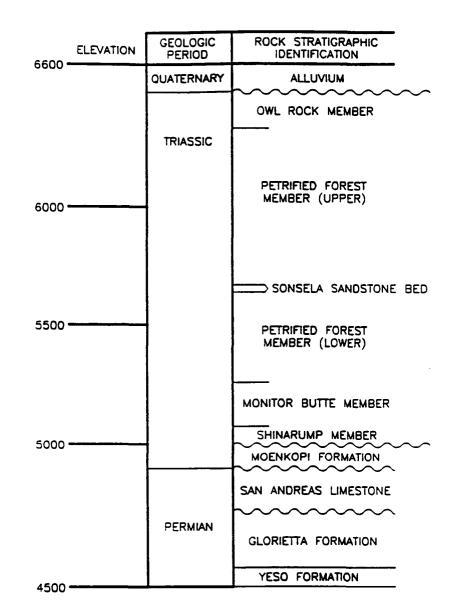
3.4.5 Fire Training Pit

In the past, fire training has been conducted at a fire training pit. Oil was floated on water in the pit and set afire and then extinguished. Use of this pit has been discontinued. MOI proposes to close the pit in accordance with NMOCD guidelines.


4.0 SITE CHARACTERISTICS

4.1 GEOLOGY DESCRIPTION


4.1.1 <u>Regional Geology</u>


The Wingate Plant is situated along the southwestern margin of the San Juan Basin designated the Zuni Uplift, in the Colorado Plateau physiographic Province (Figure 4-1). The Zuni Uplift is a northwest trending structural dome comprising an area approximately 55 miles in length by 20 miles in width. The site lies at the head of the western side of the uplift termed the Nutria Monocline. The San Juan Basin forms an asymmetric basin covering an area of about 25,000 square miles in northwestern New Mexico, and portions of northeastern Arizona, and southwestern Colorado. The basin is reported to contain as much as 15,000 feet of Paleozoic and Mesozoic sediments (Fassett and Hinds, 1971).

The regional geology in the area surrounding the Wingate Plant is shown in Figure 4-2. Based on available drilling log information the generalized Stratigraphic Column in Figure 4-3 was prepared. As shown, the surficial geology surrounding the site areas is comprised of Quartenary-ages alluvial deposits. Below the alluvium lies a thick sequence (on the order of 1,500 feet) of the Chinle Formation siltstones and mudstones. Underlying the Moenkopi Formation, also unconformably, are the Permian-ages San Andres Limestone, and Glorieta Sandstone (102 and 230 feet thick, respectively), which comprise the regional aquifer in the site area. The deepest onsite well is completed into the top portion of the Yeso Formation also of Permian age, described as a finegrained Arkosic sandstone, to a depth of approximately 2,000 feet. Below the base of the Yeso Formation in descending order are the sandstone, claystone and siltstone of the Permian-ages Abo Formation, unnamed limestone and conglomerate rocks of Pennsylvania age, and Precambrian granitic and metamorphic rocks which comprise the basement rocks in the regions.

Į

CHINLE FORMATION

LEGEND:

100011-06-15-90

CONTACT

VERTICAL SCALE: 1 INCH = 400 FEET

DAMES & MOORE -01889-115-022

Figure 4-3

4.1.2 Local Geology

The site lies along the south side of an east-west trending alluvial drainage formed by the South Fork of the Puerco River. To the south of the site are the Zuni Mountains, reaching a maximum elevation of around 9,000 feet. North of the Plant, a massive red sandstone escarpment comprised of the Triassic/Durassic-aged sandstone and siltstone deposits of the Entreda and Wingate sandstones. It rises approximately 400 feet above the valley to an elevation of around 7,000 feet. The Wingate Plant property ranges in elevation from around 6,580 to 6,612 ft-MSL.

As shown in Figure 4-2, the surficial geology in the site area, consisting of Quaternary-ages alluvium. These strata dip to the northwest at approximately 2-3 degrees.

4.2 HYDROGEOLOGY

4.2.1 <u>Regional Hydrogeology</u>

The hydrogeology of the region is a function of geologic structure and hydraulic properties of the sedimentary formations deposited in the basin. Permeable sandstones and limestones, are typically interbedded with relatively impermeable shales, siltstones and mudstones, resulting in the formation of numerous confined aquifer systems in the Permian, Triassic, Jurassic, and Cretaceous-aged deposits. The northward dip of these strata in the southwestern portion of the San Juan Basin, in conjuction with the presence of impermeable overlying formations, result in recharge being limited to the outcrop exposure of the water-bearing unit, with progressively artesian conditions occurring to the north. The major regional aquifer in the site are is San Andres Limestone/Glorieta Sandstone of Permian age. Recharge to the San Andres Andres/Glorieta aquifer occurs primarily in areas of the Zuni Mountains to the south of the site area.

As stated previously, the San Andres Limestone/Glorieta Sandstone formations constitute the primary aquifer in the region. This aquifer has been designated part of the C multiple-aquifer system (Cooley, etal 1969). The top of the San Andres is found at a depth of approximately 1,670 feet, according to driller's log data from onsite wells. The thickness of the combined aquifer system in the site area is reported to be about 330 feet. Driller's log data from offsite wells approximately six miles to the east, which service the Plant via pipeline indicate the top of the San Andres/Glorieta aquifer to be present locally at a depth of around 1,000 feet. Based on well data from the four active wells (two onsite and

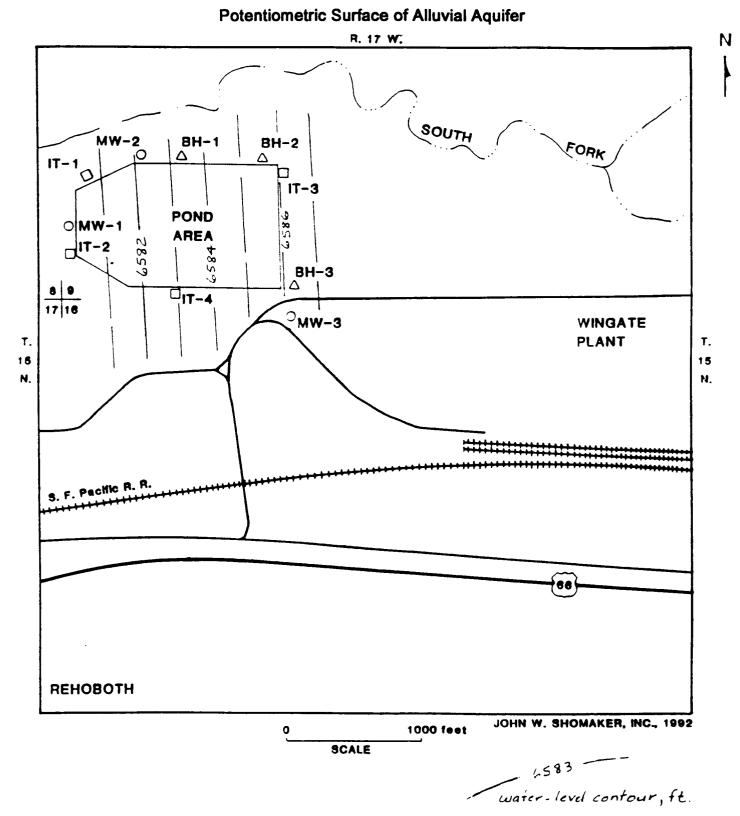
two offsite), the San Andres/Glorieta aquifer appears to become more productive to the east perhaps reflecting an increased degree of fracturing and/or solution cavities in that area.

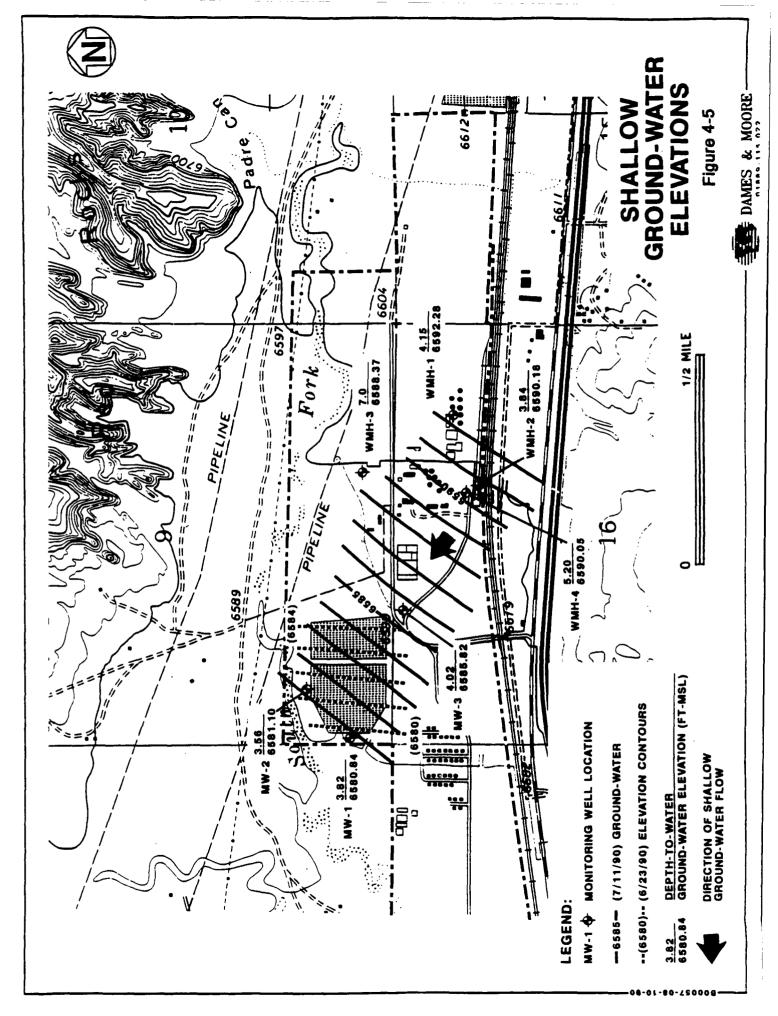
Available aquifer test data for the San Andres/Glorieta report transmissivity and storage coefficient ranges of <5 to 3,740 ft²/day, and 7.6 x 10^{-5} to 1.3 x 10^{-4} , respectively (Shomaker, 1971).

4.2.2 Local Hydrogeology

Shallow borings in the southwestern corner of the Plant site associated with a geotechnical investigation for a railroad overpass (Sergent, Hauskins and Beckwith, 1987), encountered between 40 and 80 feet of unconsolidated clays, silty clays, silty sands and gravels, prior to auger refusal in weathered siltstones and sandstone. The specific capacity of offsite wells completed in alluvium is reported to range from 0.19 to 1.75 gpm/ft (Shomaker, 1971). A review of driller's logs for the onsite water supply wells indicated alluvial thicknesses on the order of 100 feet. These logs variously report that the Chinle Formation or basal unit of the Wingate sandstone to underlie the alluvial fill deposits.

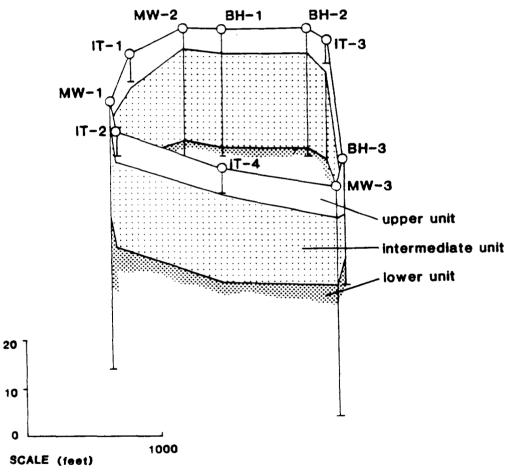
In order to better define the hydrogeology of the shallow alluvial aquifer and assess the impact of the Plant's wastewater impoundments (i.e. east and west evaporation ponds) three groundwater monitoring wells were installed around the impoundments (Dames & Moore 1990) and three additional test holes were drilled and four field permeability tests were conducted (Shomaker 1992). Two of the monitoring wells were sited downgradient (MW-1 & MW-2), and one upgradient to the approximate direction of shallow groundwater flow. The location of these monitoring wells (MW), bore holes (BH) and field tests (IT) are shown in Figure 4-4. In addition, four other wells were installed onsite as part of a property transfer environmental assessment (WMH-1,2,3,4). The location of these wells is shown in the Figure 4-5.


Three test holes were drilled around the ponds between January 6 and 8, 1992. Each hole was drilled to a depth of 26.5 feet. Split-spoon samples were collected to total depth in each hole. Core samples were collected in BH-3 from 12.5 to 14 (red clay), and 17.5 to 19 feet (dark red clayey silt). The core samples were submitted for laboratory analysis for column constant-head permeability tests. The laboratory was unable to saturate the samples after 21 days. The samples were sieved and found to be very fine-grained with 76 percent of the samples passing 200 mesh. The plasticity and liquid limit of both samples were 35 and 51, respectively, indicating both samples were high plasticity clays. The permeabilities were found to be less than 10^{-7} cm/sec.


Based upon well logs, bore holes and cores, the stratigraphy of the alluvium under the ponds consists generally of three unconsolidated units which are illustrated in Figure 4-6. These units include (from the surface downward): an upper unit consisting of sands and silty clays to depths of four or five feet; an intermediate unit consisting of clay with minor silt and sands to depths of 15 to 23 feet; and a lower unit consisting of sands, silts and interbedded clay at depths from 15 to 55 feet. As discussed above, the hydraulic conductivity of the intermediate clay unit was determined to be less than 10^{-7} cm/sec. Saturated conditions were encountered only in the lower unit.

The shallow aquifer at the plant is in the shallow alluvium. In the pond area, the aquifer occurs in sands, silty sands interbedded with clays and silty clays of the lower unit at depths between 20 to 25 feet. Logs indicated soils were unsaturated to a depth of between 21 and 25 feet around the ponds. Saturated conditions were encountered below these depths. The potentiometric surface is about three feet below the land surface. The shallow aquifer, beneath the pond area, is confined by the overlying intermediate unit. This confining interval should restrict downward migration of water from the pond.

As shown by the water level contours in Figure 4-4 and 4-5, the direction of groundwater flow in the alluvial aquifer underlying the site is variable. Water levels in the evaporation pond monitoring wells, measured on June 23, 1990, indicate a westerly flow direction prevailed at the time. Water levels measured July 17, 1990 (Figure 4-5) indicated a northwesterly flow. Additional analysis on January 1, 1992 shifts the direction of flow back to a more westerly direction (Figure 4-4). This apparent shifting in flow direction suggests communication in the subsurface flow with the South Fork of the Puerco River east of the plant (Shomaker 1992, and Dames & Moore 1990).



Fence Diagram - Stratigraphic Relation Underlying Pond Area

JOHN W. SHOMAKER, INC., 1992

4.3 WATER QUALITY

4.3.1 <u>Regional Aquifer</u>

Water quality data for the four Plant water supply wells are presented in Table 4-1. The data for the onsite wells probably represent a composite of that found in the San Andres/Glorieta aquifer and the Sonsila Sandstone bed of the Chinle Formation. Groundwater from these wells meets New Mexico State water quality standards.

4.3.2 <u>Alluvial Aquifer</u>

The locations of wells within one mile of Wingate Plant and the onsite water supply wells are shown in Figure 4-7 (USGS, 1990). All the offsite wells listed are shallow alluvial wells to the east and upgradient of the facility. The available water quality data for these wells are presented in Table 4-2. Additional analyses of groundwater samples from the shallow alluvial aquifer in the area of the Wingate Plant were given in Shomaker (1971). The 11 reported analyses suggest the groundwater was generally a sodium-bicarbonate type, with total dissolved solids ranging from 692 to 954 mg/l.

Analyses of water samples from the pond monitoring wells indicate the shallow groundwater is similar to analyses reported in Shomaker (1971). Four sets of groundwater samples have been collected from the evaporation pond monitoring wells MW-1, MW-2, and MW-3. The results of these analyses are presented in Table 4-3. Concentrations of total dissolved solids, fluoride, iron, and maganese in MW-2, exceed New Mexico Water Quality Control Commission standards; the standards are 1,000, 1.6, 1.0 and 0.2 mg/l, respectively. Concentrations of manganese in MW-1 and MW-3 and iron in MW-1 exceed also exceed these standards.

The monitoring wells at the site are completed to a depth of about 58 feet and the depth of the first water-bearing zone is between 20 and 25 feet. By nature of this construction, these wells are open to more than one water-bearing interval. Therefore water produced from these wells is probably not representative of the uppermost water-bearing interval beneath the ponds. Water samples are composites of the 30+ feet of saturated interval open to the wells.

The hydraulic and stratigraphic relationships previously discussed suggest water in the pond is not likely to leak into the aquifer beneath the ponds. This interpretation is based upon the following:

- The clayey sediments in the intermediate unit underlying the ponds has a hydraulic conductivity less than 10⁻⁷ cm/sec.
- The intermediate interval is from 15 to 20 feet thick beneath the ponds.
- The confined hydraulic head in the shallow aquifer indicates upward flow is limited and restricted by the clay-rich intermediate unit.

The higher concentrations of total dissolved solids, chloride, biocarbonate, and sulfate in monitor wells MW-1 and MW-2 compared with well MW-3, may be due to communication with the South Fork. Such communication is suggested by the observed changes in direction of groundwater flow in the shallow aquifer. This appears to be influenced by flow and recharge from the South Fork, east of the Plant (Shomaker 1992, and Dames & Moore 1990). The concentration of total dissolved solids and other anions in water samples collected in November 1991 and January 1992, are not significantly greater than concentrations in water samples collected from the same wells in November 1990. This also suggests the quality of water is controlled by natural conditions not pond leakage.

The November 1991 and January 1992 samples from MW-3 showed trace levels of BTEX. MOI attributes these readings to inadequate decontamination of sampling equipment or contamination from upgradient sources. The second point is discussed in the following paragraphs. MW-2 also showed a trace of BTEX in November 1991. This result was not repeated in January 1992. MOI attributes the trace November reading to inadequate sampling equipment decontamination. In order to continue to demonstrate the absence of a significant impacts to aquifer water quality, MOI proposes to conduct annual water quality monitoring in MW-1 through MW-3 for general water chemistry, priority pollutant metals and BTEX.

Several additional sets of water quality samples have been collected from the WMH 1 through 4 monitoring wells. These data are presented in Table 4-4. These wells are upgradient of the evaporation ponds. There are no plant process discharges that can impact water quality in this area.

The most significant aspect of the data presented in Table 4-4 is the presence of BTEX consistently detected in WMH-2. BTEX levels exceed New Mexico WQCC standards. At this time, MOI believes the contamination is possibly related to a historic accidental release of hydrocarbon in the train loading rack area when the facility was owned and operated by EPNG. The extent of contamination is unknown at this time. MOI is prepared, and commits, to further investigate the BTEX contamination if the OCD determines that such action is warranted. MOI proposes that any follow-up assessment of the BTEX contamination be handled

as a stand-alone investigation and not be linked to this Wingate Plant Discharge Plan.

Regional Groundwater Quality Data

	WELL	WELL	WELL	WELL	WELL	WELL
	#3 (ON SITE)	#3 (ON SITE)	#4 (ON SITE)	#8 (OFF SITE)	#7 (OFF SITE)	#7 (OFF SITE)
	T15N 417W	T15N R 17W	T15N R 17W	T15N R16W	T15N R16W	T15N R16W
	S16 NE/NE/NE	S16 NE/NE/NE	S16 NE/NE/NE	S20 SE/SE/NE	S20 NW/SE/NE	S20 NW/SE/NE
Constituent	04/09/76	04/04/89	04/14/89	04/04/89	04/09/89	04/14/89
рН	8.2	7.7	7.7	7.8	7.75	7.6
Alkalinity, Total	174	202	191	164	166	166
Calcium	62	40	107	156	344	154
Chloride	64	34	16	17	14	16
Fluoride	-	0.39	0.24	0.23		0.23
Hardness, Total	118	190	420	628	680	710
Iron, Dissolved	-	0.15	0.13	0.12	-	0.1
Iron, Total		0.37	7.9*	0.35	-	0.15
Magnesium	56	22	37	58	336	79
Maganese, Dissolved	-	0.12	0.16	0.14		0.14
Manganese, Total		0.17	0.22	0.17		0.17
Nitrate (as NO3)		<0.1	<0.1	<0.1	-	<0.1
Nitrate (as NO2)		0.03	0.06	0.02		0.03
Potassium		5.1	6.7	5.2		5.4
Silica	-	9.4	8.2	7.1		7.1
Sodium		237	82	75	-	39
Specific Conductance (umhos)	1360	1215	1171	1199	1340	1173
Sulfate	502	478	410	614	679	618
Total Dissolved Solids	888	932	944	1058	1135	921
Turbidity	9.2	-	-		4.4	-
BOD		<1	<1	<1		<1
COD		<1	<1	<1	-	<1
Ammonia Nitrogen (as NH4)		0.35	0.25	0.29	-	0.13
TOC		0.67	0.62	1.09	-	0.68

Units expressed in mg/l

Offsite Wells Adjacent to Wingate Plant

· · · · · · · · · · · · · · · · · · ·	Well	Well	Well	Well	
	14.1	14 .1A	15.1321	15.2414	
	08/07/75	08/07/75	03/65	03/65	MCL
pH (units)	8.5	8.5	7.7	7.7	6-9
Alkalinity, Total					
(as CaCo3)	315	524	418	-	
Carbonate (as CaCO3)	61	83	-		-
Bicarbonate (as CaCO3)	260	470	5120	282	
Hydroxide		-		-	
Chloride (Cl)	50	82	23	50	250
Fluoride (F)	1.3	1.2	0.6	0.5	1.6
Nitrate (as N)	0.14	0.14	0.05	6.6	10
Sulfate (SO4)	210	39	173	340	600
Total Dissolved Solids (TDS)	739	747	692	932	1,000
Silver (Ag)	-			-	0.05
Arsenic (As)	-	-		1	0.1
Barium (Ba)		-	_	-	1.0
Calcium (Ca)	22	22	52	98	-
Cadmium (Cd)		-		-	0.01
Chromium (Cr)	-			-	0.05
Copper (Cu)	-			-	1.0
Iron (Fe)	-	1	-		1.0
Hardness	75	80	372	352	
Mercury (Hg)	-	-	-		0.002
Magnesium (Mg)	4.8	6.1	59	26	
Manganese (Mn)	-	-	1		0.2
Sodium (Na)	260	280	120	189	-
Lead (Pb)	-	1	-	-	0.05
Selenium (Se)	-			-	0.05
Zinc (Zn)	-			-	10
Silica (SiO2)	-	-	13	11	
Potassium (K)	0.8	1.0	_		
Boron (B2)	0.26	0.54	-		

Units expressed in mg/l

Evaporation Pond Monitoring Wells

		MW-1				MW-2				MW-3		
Laboratory Data	6/23/90	07/14/90	11/15/91	1/22/92	6/23/90	7/14/90	11/15/91	1/22/92	6/23/90	7/14/90	11/15/91	1/21/92
pH	8.4	8.3	8.07	8.07	8.5	8.4	7.98	8.19	8.1	7.8	7.85	7.91
TDS	490	570	838	722	1,010	1,400	1100	1220	1,350	520	486	478
Alkalinity,	420	444	566	510	735	281	795	772	659	419	417	411
Total												
Bicarbonate	414	444	689	622	695	271	970	939	659	419	509	502
Carbonate	6	<1	0	0	40	10	0	0	<1	<1	0	0
Calcium (Ca)	11.3	9.9	5.27	3.56	18.2	18.8	12.1	14.1	46.8	0.5	32.4	32.0
Chloride (Cl)	15.7	20.9	43	36.0	50	79	47.6	66.7	140	21.8	16	16.9
Fluoride (F)	0.83	0.97	1.82	1.45	1.49	1.77	2.95	2.87	1.32	1.09	1.00	1.01
Hardness	63.6	54.4	13.1	18.9	96.5	92.6	38.5	36.7	186	1.2	102	125
Hydroxide	<1	<1			<1	<1			<1	<1		
Iron (Fe)	0.216	1.40		5.81	3.111	2.34		16.98	0.067	0.658		0.60
Magnesium (Mg)	8.6	7.2	<0.1	2.44	12.4	11.1	2.05	0.40	16.7	<0.1	5.23	11.0
Manganese (Mn)	0.174	0.228		0.25	0.290	1.36		0.68	0.242	0.481		0.46
Nitrate (as N)	<0.06	<0.06	<0.02	<0.02	<0.06	<0.06	<0.02	<0.02	<0.06	<0.06	<0.02	<0.02
Nitrite			<0.02	<0.02			< 0.02	<0.02			<0.02	<0.02
Potassium			<0.1	0.73			0.3	0.96			0.2	0.33
Silica				10.7				8.30				12.4
Sodium (Na)	172	176	328	267	362	470	445	435	445	120	162	150
Sulfate (SO4)	1.0	19	86.5	51.9	73	240	112	150	280	26	18.9	16.1
Antimony (Sb)				0.063				ND				ND
Arsenic (As)	<0.005	<0.005		0.006	<0.005	0.021		0.020	< 0.005	0.007		0.009
Barium (Ba)	0.248	0.235			0.158	0.175			0.110	0.139		
Beryllium (Be)				ND				ND				ND
Cadmium (Cd)	<0.005	0.006		0.003	<0.005	0.006		0.003	< 0.005	<0.005		ND
Chromium (Cr)	<0.01	<0.01		ND	<0.01	<0.01		0.03	<0.01	<0.01		ND
Copper (Cu)	<0.02	<0.02		ND	<0.02	<0.02		ND	<0.02	<0.02		ND
Lead (Pb)	0.002	<0.002		ND	<0.002	0.004		ND	0.004	<0.002		ND
Mercury (Hg)	<0.0002	<0.0002		ND	<0.0002	< 0.0002		ND	< 0.0002	<0.0002		ND
Nickeł (Ni)				ND				ND				ND
Selenium (Se)	<0.005	<0.005		ND	< 0.005	< 0.005		ND	<0.005	<0.005		ND
Silver (Ag)	<0.01	<0.01		ND	<0.01	<0.01		ND	<0.01	<0.01		0.02
Thallium (TI)				ND				ND				ND
Zinc (Zn)	<0.010	0.043		0.03	0.015	0.120		0.04	<0.010	0.094		0.03
TPH - ug/l			ND				2.6				ND	
Benzene - ug/l			ND	ND			ND	ND			0.2	ND
Toluene - ug/i			ND	ND			ND	ND			0.2	3.9
Ethylbenzene - ug/l			ND	ND			ND	ND			0.4	0.6
Total Xylenes - ug/l			ND	ND			0.1	ND			1.7	4.4

All results in mg/l unless otherwise indicated.

İ

Wingate Plant Monitoring Wells

······································	1	WMH-1							WMH-2			
Laboratory Data	7/17/90	7/10/91	10/28/91	1/21/92	7/17/90	7/10/91	9/1/91	10/28/91	11/1/90	12/4/91	12/31/91	1/21/92
рН	7.9	7.38	7.84	7.70	7.6	7.83		8.34		7.87	8.03	8.03
TDS	780	4,270	3,490	4,620	1,200	4,280	3,050	3,370	3,060	3,060	2,640	2,230
Bicarbonate		1,230	1,110	1,340		2,610		2,090		1,770	1,590	1,450
Calcium (Ca)	1	242	230	286		82		63.6		49.2	42.4	42.4
Carbonate		0	0			0	732	19.5		0	0	0
Chloride (Cl)	38	467	425	593	38	1110		842	714	714	623	522
Fluoride (F)	1.3	0.65	0.46	0.43	1.4	1.36		1.5		1.84	1.79	1.63
Hardness		848	804	1000		408		191		205	187	188
Hydroxide												
Iron (Fe)	5.2				2							
Magnesium (Mg)	1	59.5	56	70.2		49.5		7.91		20.1	19.8	19.9
Manganese (Mn)	0.24				0.19							
Nitrate (as N)	<0.01	<0.04	<0.02	<0.02	<0.01	0.12		<0.02		3.45	<0.02	<0.02
Nitrite	1	<0.04	<0.02	<0.02				<0.02		<0.02	<0.02	<0.02
Potassium (K)		1150	2.9	2.56		2.02		0.5		0.98	0.61	0.08
Silica												
Sodium (Na)		1,150	1,010	1,300		1,600		1,300		1,020	964	826
Sulfate (SO4)		1,690	1,400	1,840		34.6		49.4		9.88	16.9	14.8
Total Organic N	0.07				1.8			_				
Aluminum (Al)	0.7				0.9							
Antimony (Sb)		ND										
Arsenic (As)	<0.005	0.006			<0.005	0.01						
Barium (Ba)	0.29				0.14							
Beryllium (Be)	1	ND				ND						
Cadmium (Cd)	<0.01	0.002			<0.01	ND						
Chromium (Cr)	<0.02	0.02			<0.02	ND						
Cobalt (Co)	<0.05				<0.05							
Copper (Cu)	0.01	0.02			0.02	0.01						
Cyanide	<0.005				<0.005							
Lead (Pb)	<0.05	0.02			<0.05	0.02						
Mercury (Hg)	<0.005	ND			<0.005	ND		·······				
Molybdenum (Mo)	<0.05				<0.05							
Nickel (Ni)	<0.04	0.03			<0.04	0.01						
Selenium (Se)	0.005	ND			<0.005	ND						

Table 4-4 (continued)

		WMH-1							WMH-2			
Laboratory Data	7/17/90	7/10/91	10/28/91	1/21/92	7/17/90	7/10/91	9/1/91	10/28/91	11/1/90	12/4/91	12/31/91	1/21/92
Silver (Ag)	<0.01	ND			<0.01	ND						
Thailium (TI)		ND				ND						
Zinc (Zn)	0.01	0.14			0.05	0.14						
TPH - ug/l		9.5	ND			191,000	38,500	4,000	6,800	6.800	18,460	
Benzene - ug/l		ND	ND	ND		26,800	5,400	5,700	2,520	2,520	2,540	3,090
Ethylbenzene - ug/l		ND	ND	1.3		ND		164	990	990	2,090	129
Toluene - ug/i		ND	ND	8.2		6,800	5,400	5,300	1,610	1,610	1,600	1,320
Total Xylenes - ug/l		ND	ND	7.9		1,145	1,127	1,067		374	1,900	1,020

All results in mg/l unless otherwise indicated.

Carl stand Area Carl standing Africa En anim Proposi int

Table 4-4 (continued)

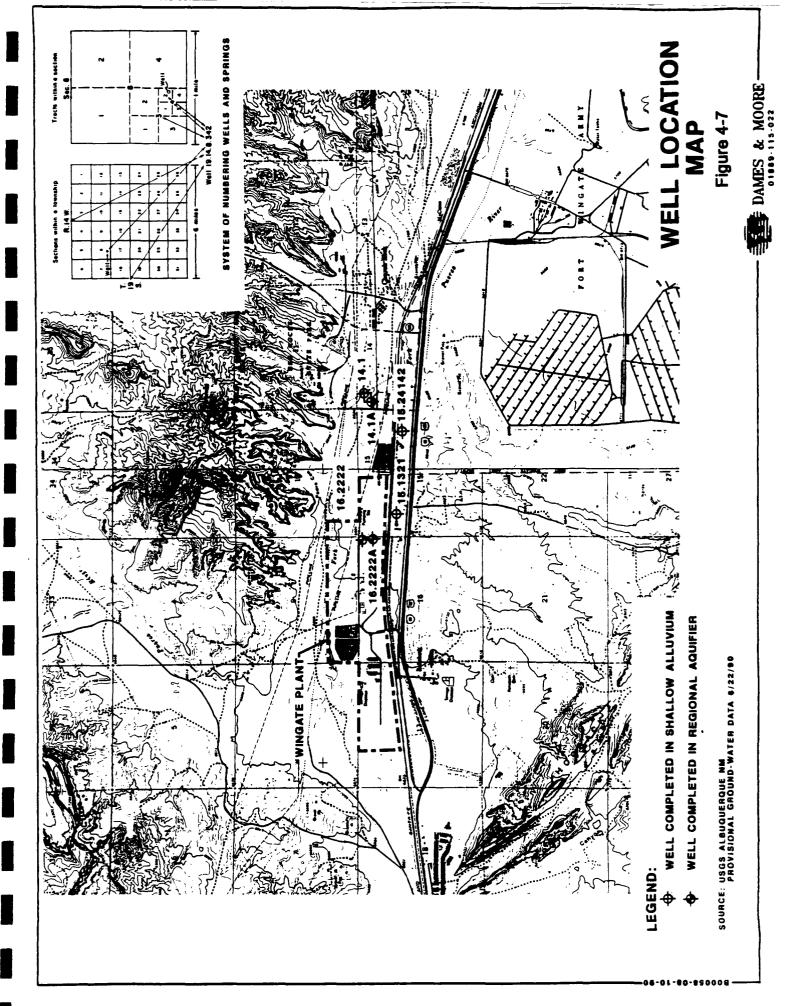
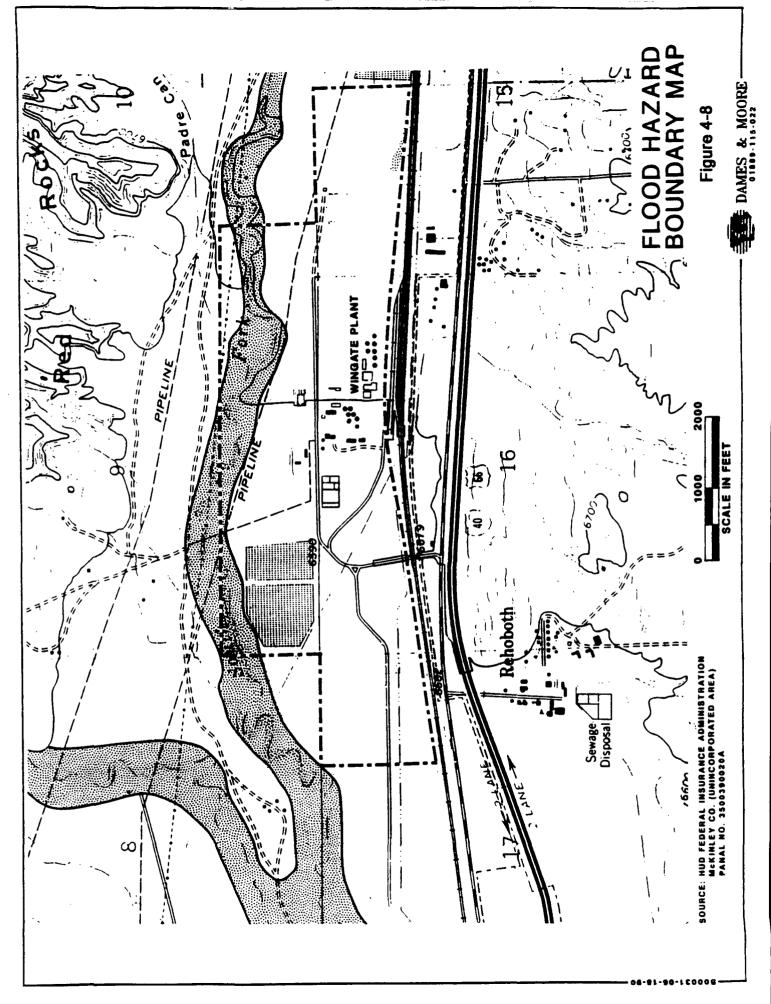

· · · · · · · · · · · · · · · · · · ·		WMH-3			WMH-4				
Laboratory Data	7/17/90	7/10/91	10/28/91	1/22/92	7/10/91	10/28/91	1/21/92		
рН	7.3	7.79	8.08	8.37	7.81	8.82	8.06		
TDS	540	3,800	6,570	5,930	1,780	1,780	1,750		
Bicarbonate		720	1,350	1,260	1,000	1,060	921		
Calcium (Ca)		120	236	163	25.2	61.5	19.4		
Carbonate		0	0	13.8	0	65.7	0		
Chloride (Cl)	23	693	1210	1050	125	157	125		
Fluoride (F)	1.2	0.65	0.81	0.86	1.36	1.63	1.51		
Hardness		460	732	634	125	278	100		
Hydroxide									
Iron (Fe)	1.4			_		1			
Magnesium (Mg)		39.1	35	55.4	15.1	30.3	12.6		
Manganese (Mn)	0.38								
Nitrate (as N)	<0.1	10.3	6.66	3.56	<0.04	<0.02	2.36		
Nitrite			<0.02		<0.04	<0.02			
Potassium (K)		15	2.9	1.91	2.95	1.2	0.36		
Silica							16.7		
Sodium (Na)		1170	2140	1880	638	640	622		
Sulfate (SO4)		1450	2520	2170	548	519	492		
Total Organic N	<0.3								
Aluminum (Al)	0.5								
Antimony (Sb)		ND			ND				
Arsenic (As)	<0.005	0.013			0.010				
Barium (Ba)	0.12								
Beryllium (Be)		0.006			ND				
Cadmium (Cd)	<0.01	ND			ND				
Chromium (Cr)	<0.02	0.03			ND				
Cobalt (Co)	<0.05								
Copper (Cu)	<0.01	0.02			0.01				
Cyanide	<0.005								
Lead (Pb)	<0.05	0.03			ND				
Mercury (Hg)	<0.005	ND			ND		<u></u>		
Mołybdenum (Mo)	<0.05								
Nickel (Ni)	<0.04	0.04			0.01				
Selenium (Se)	<0.005	ND			ND				
Silver (Ag)	<0.01	ND			ND				

Table 4-4
(continued)

	WMH-3				WMH-4		
Laboratory Data	7/17/90	7/10/91	10/28/91	1/22/92	7/10/91	10/28/91	1/21/92
Thallium (TI)		DN			ND		·
Zinc (Zn)	0.05	0.15			0.06		
TPH - ug/l		7.8	ND		14.7	ND	
Benzene - ug/l		ND	3.1	44.3	ND	1.3	1.9
Ethylbenzene - ug/l		ND	ND	1.3	ND	ND	1.1
Toluene - ug/i		ND	ND	18.3	ND	ND	4.0
Total Xylenes - ug/l		ND	ND	7.7	ND	ND	5.1

All results in mg/l unless otherwise indicated.

Contennine in Contennine in Low provision from Dares 2 Nove Frices Programal


4.4 HYDROLOGIC FEATURES

The northern portion of the Wingate Plant property is bounded by the South Fork of the Puerco River. The Puerco River is an intermittent stream tributary to the Little Colorado River watershed. The confluence of the North and South forks occurs to the west of the Plant, upstream from the City of Gallup. The Puerco River (north and south branches) comprises a drainage area of approximately 558 square miles. No other surface water sources are known to be present within a one mile radius of the Wingate Plant.

Surface water runoff upgradient of the Plant property to the south is intercepted by the I-40 Freeway, and routed to the south around the facility. Runoff from the east of the Plant is channeled north to the Puerco River. Onsite run-off is routed to the north and south of the developed portion of the site, where it rejoins preexisting natural drainages to the west.

4.5 FLOOD PROTECTION

The Flood Hazard Boundary Map for this portion of McKinley County (HUD, 1978) delineates the area described as "subject to special flood hazards" shown in Figure 4-8. This area is approximately that which would be inundated as a result of a 100-year flood flow in the Puerco River. Although it appears from this information that some undeveloped areas of the Plant property, outside the stream channel, may be subject to flooding, no facilities, with the possible exception of the evaporation ponds appears to be at risk as a result of flood flows in the Puerco River.

5.0 ADDITIONAL INFORMATION

5.1 SOIL PROPERTIES

Soil survey data for the Wingate Plant area is not available at this time from the U.S. Soil Conservation Service or New Mexico state agency (U.S. Soil Conservation Service, personal communication).

5.2 CLIMATE

The MOI Wingate Plant is located in a semi-arid region. Data recorded at the Wingate weather station show an annual precipitation of 9.66 inches. The mean annual temperature is 49.2 F. A monthly summary of temperatures, precipitation and relative humidity was previously presented in Table 2-4.

The prevailing winds are southwesterly although southeasterly and westsouthwesterly winds are also common. Strong winds are predominant in the winter and spring months.

The area is prone to lightning strikes which necessitate an extensive protection system against lightning caused fires.

5.3 HISTORY OF OPERATION

The Wingate Plant was owned and operated by EPNG until October 1990. The initial section of the MOI Wingate Plant was the "A" plant. It was designed by Fluor Corporation to process 338,991 gallons per day of natural gas liquids. It was placed in service on October 28, 1953 and modified in May 1962.

The "B" plant section was designed by Sterns-Roger and Fish Engineering Corporations to process 659,038 gallons per day. This section was placed in service on October 25, 1956.

A deisobutanaizer section was designed by Fish Engineering. It was placed in service in December 1957. A new deisobutanaizer section was built in May 1962 and the original section was abandoned in place. The deisobutanaizer section currently produces 250,000 gallons per day of normal butane and 115,000 gallons per day of isobutane.

The "C" plant section was designed by Sterns-Roger Corporation to process 330,000 gallons per day. It was placed in service on April 7, 1967.

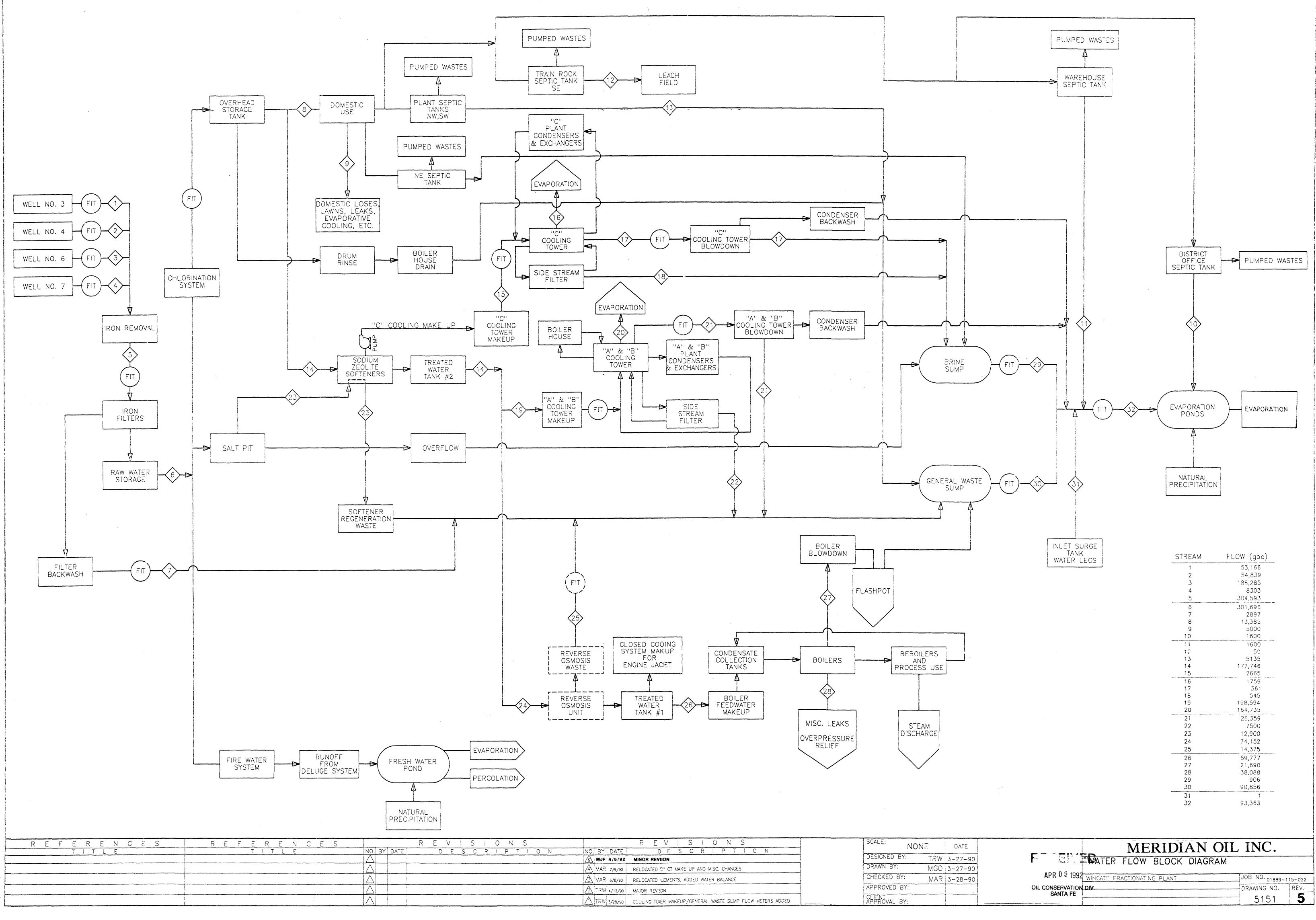
A train loading facility capable of handling 82 cars was placed in service on September 15, 1959. A major fire occurred at this facility in 1982. A deluge system and lightning protection system were installed as a result for both truck and train loading racks.

A company lodging camp consisting of forty-eight houses and twenty-three house trailers existed on the property and received utilities from the plant. The camp was retired and the houses and trailers were removed in 1986.

6.0 BASIS FOR APPROVAL

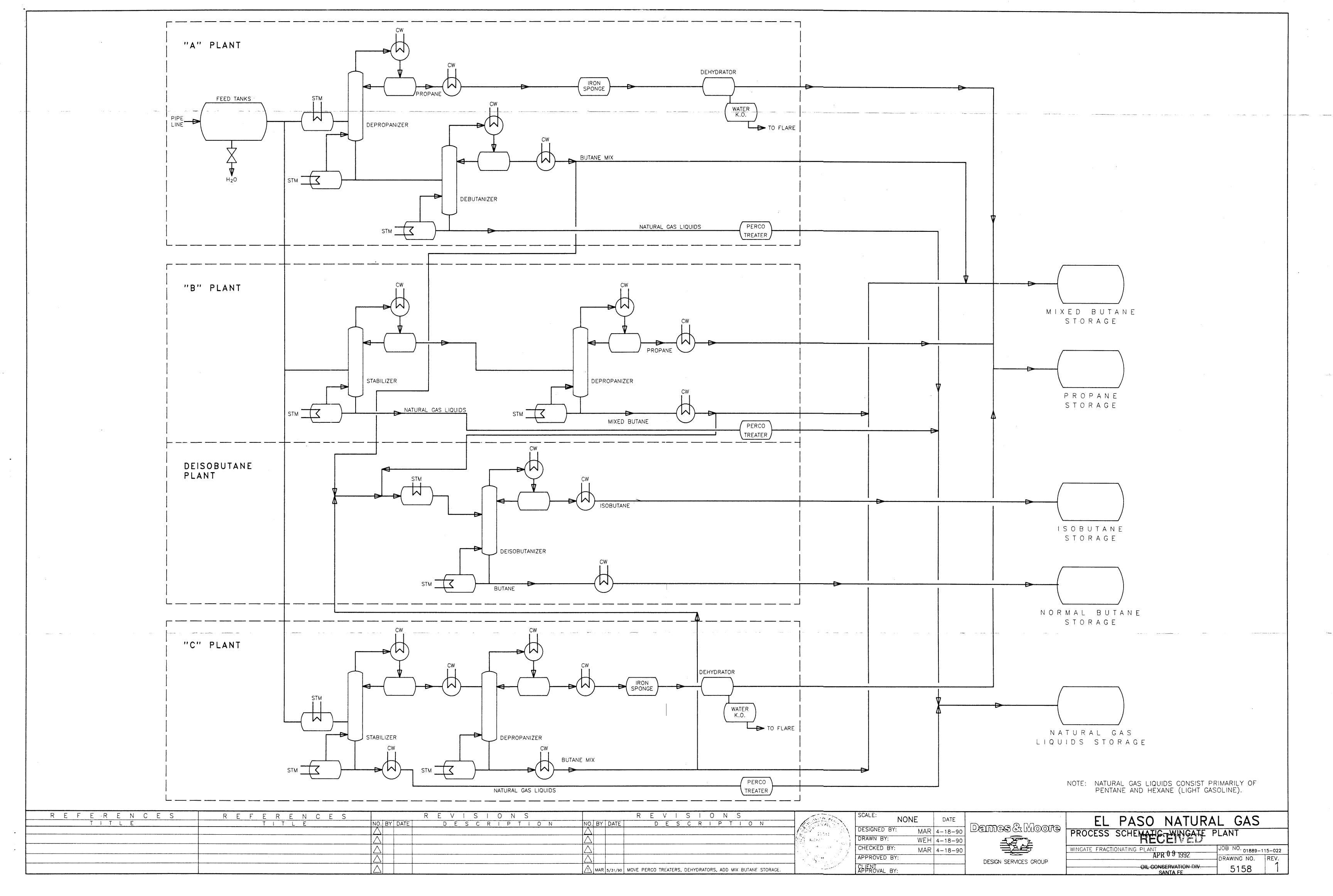
The existing site conditions at the Wingate Plant provide protection from present or future danger to groundwater. All plant processes are closed pipe, contained in tanks, or otherwise controlled to prevent leakage. Hydrogeologic assessments of the evaporation ponds have demonstrated that the pond waters are effectively contained by the natural impermeability of 12 to 15 feet of highly plastic clay (< 10^{-7} cm/sec hydraulic conductivity). Slight elevated concentrations of several constituents in the shallow aquifer system is likely due to hydrogeologic communication with shallow alluvium groundwater of poor water quality and not infiltration from the evaporation ponds. MOI is committed to further investigation of observed BTEX contamination in the train rack area if such action is deemed necessary by the OCD.

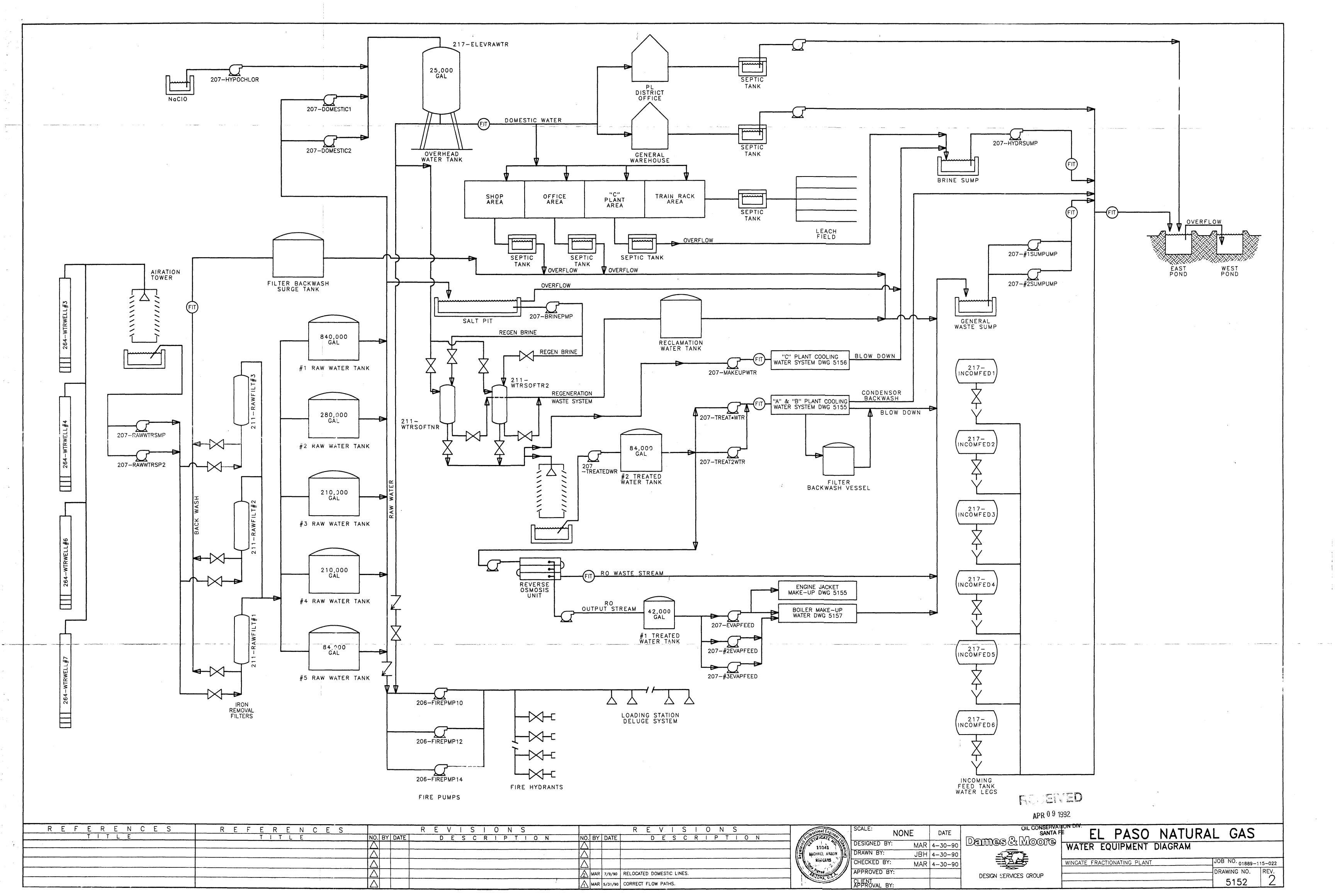
To further enhance groundwater protection, as part of this discharge plan, MOI proposes the following plant modifications, practices and continued groundwater monitoring:

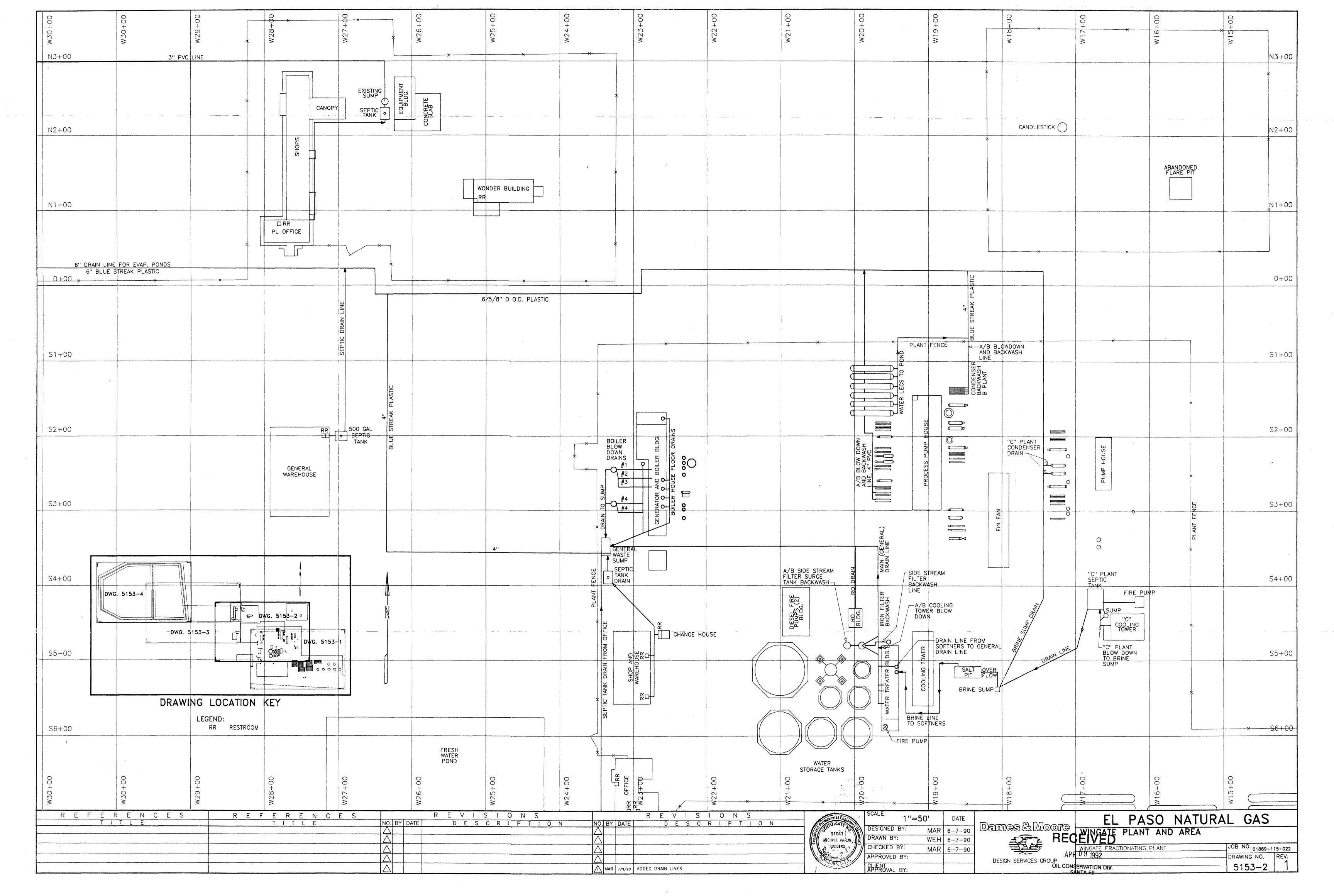

- Close the abandoned flare pit containing contaminated water.
- Close the fire training grounds to eliminate oil contamination of soil and prevent future contamination.
- Comply with applicable upcoming Stormwater Discharge NPDES requirements. MOI will supply the OCD with copies of applicable permits/plans developed under the Stormwater program.
- Monitor evaporation ponds and associated monitoring wells on an annual basis for general water chemistry, priority pollutant metals, and BTEX.
- Install fuel containment dikes or pans in plant vehicle fuel storage areas.
- Install a containment dike in the waste drum storage area.
- Install a concrete floor/liner in sulfuric acid storage area.
- Re-plumb the single septic tank that utilizes a leach line to the evaporation ponds.

MOI is wholly committed to carrying out sound disposal practices and to this end submits this plan outlining the proposed procedures. Likewise, MOI is committed to cooperating fully with NMOCD in honoring requests for additional information or clarification of existing information related to the Discharge Plan.

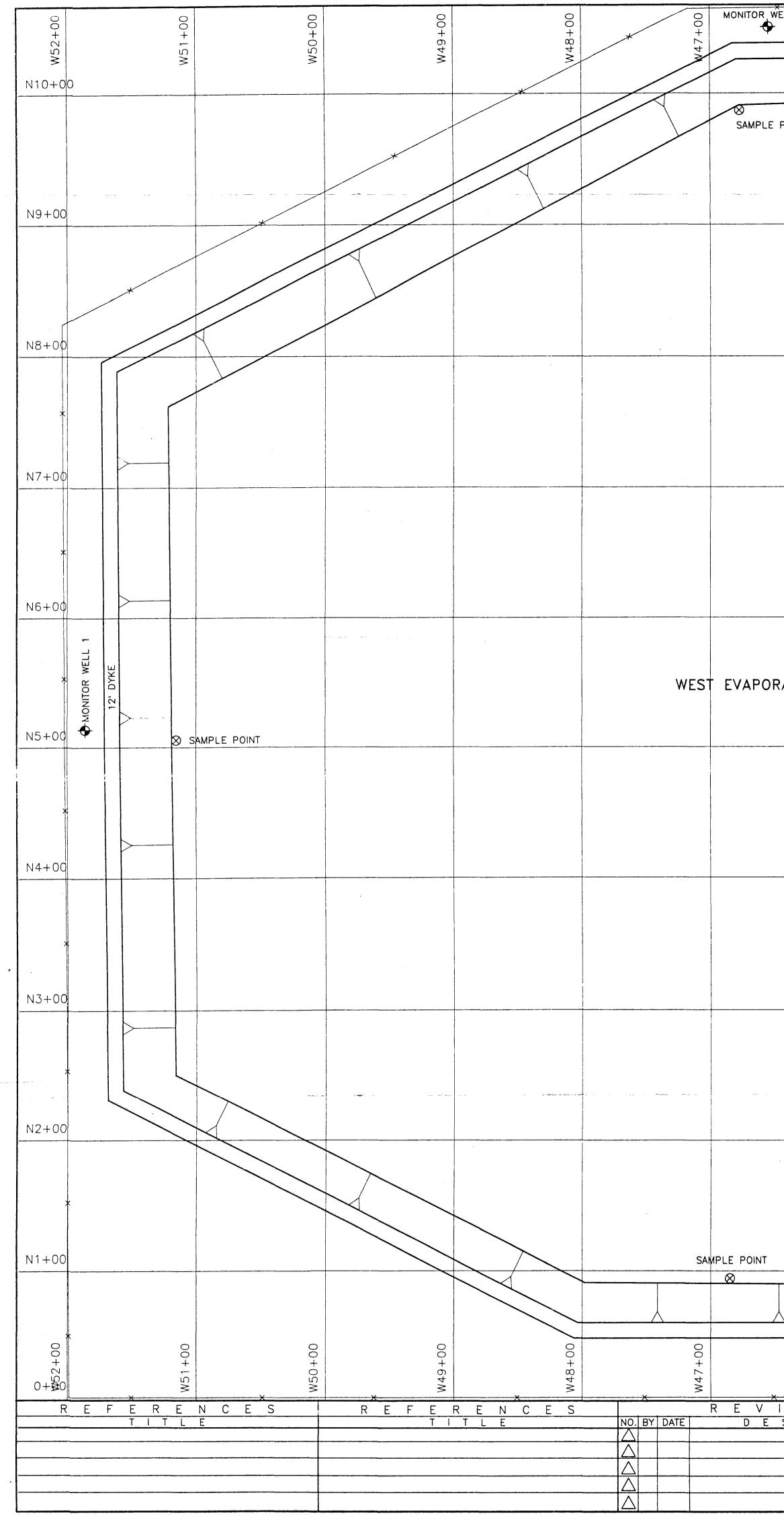
7.0 REFERENCES

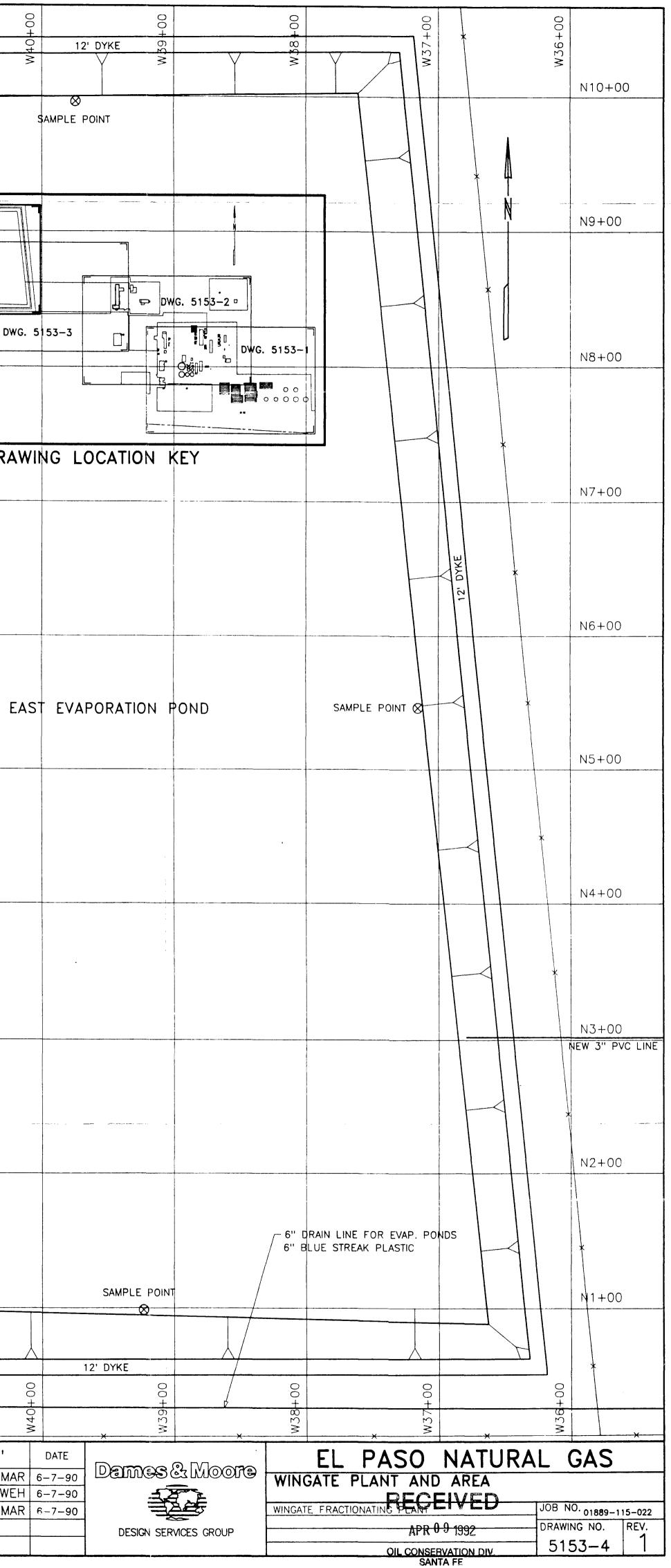

- Cooley, M.E., Harsburger, J.W., Akers, J.P., and Hardt, W.F., 1969, <u>Regional</u> <u>Hydrogeology of the Navajo and Hopi Indian Reservations</u>, <u>Arizona</u>, <u>New</u> <u>Mexico, and Utah</u>, USGS Professional Paper 521-A.
- Cresswell, L.W., <u>The Fate of Petroleum in a Soil Environment</u>, 1977 Oil Spill Conference Proceedings, American Petroleum Institute Publication N. 4284, pp. 479-482, 1977.
- Dames and Moore, <u>Hydrogeologic Assessment Wingate Fractionating Plant For</u> <u>El Paso Natural Gas Company</u>, 1990, unpublished report prepared for El Paso Natural Gas Company.
- Gudin, C., and W.J. Syratt, <u>Biological Aspects of Land Rehabilitation Following</u> <u>Hydrocarbon Contamination</u>, Environmental Pollution, Volume 8:107-117, 1975.
- National Oceanic and Atmospheric Administration, <u>Climatography of the United</u> <u>States No. 81 (New Mexico)</u>, 1982.
- National Oceanic and Atmospheric Administration, <u>Mean Relative Humidity (%)</u>. <u>Monthly and Annual</u>, pp 61-62, 1970.
- Personnel Communication, Mr. Ken Scheffy, U.S. Soil Conservation Service, Albuquerque, New Mexico, June 20, 1990.
- Sergent, Hauskins, and Beckwith Engineers, 1987, EPNG Wingate Plant Railroad Bridge Overpass - Geotechnical Investigation Report, June 26, 1987.
- Shomaker, J. W., 1971, <u>Water Resources of Fort Wingate Army Depot and</u> <u>Adjacent Areas, McKinley County, New Mexico</u>, USGS Open File Report MK-32, September 1971.
- Shomaker and Associates, 1992, <u>Hydrologic Evaluation of Evaporation Pond</u> <u>Area, Wingate Plant, McKinley County, New Mexico</u>, unpublished report prepared for Meridian Oil, Inc.
- U.S. Department of Agriculture, <u>Annual Lake Evaporation map</u>, USSCS, 1978.

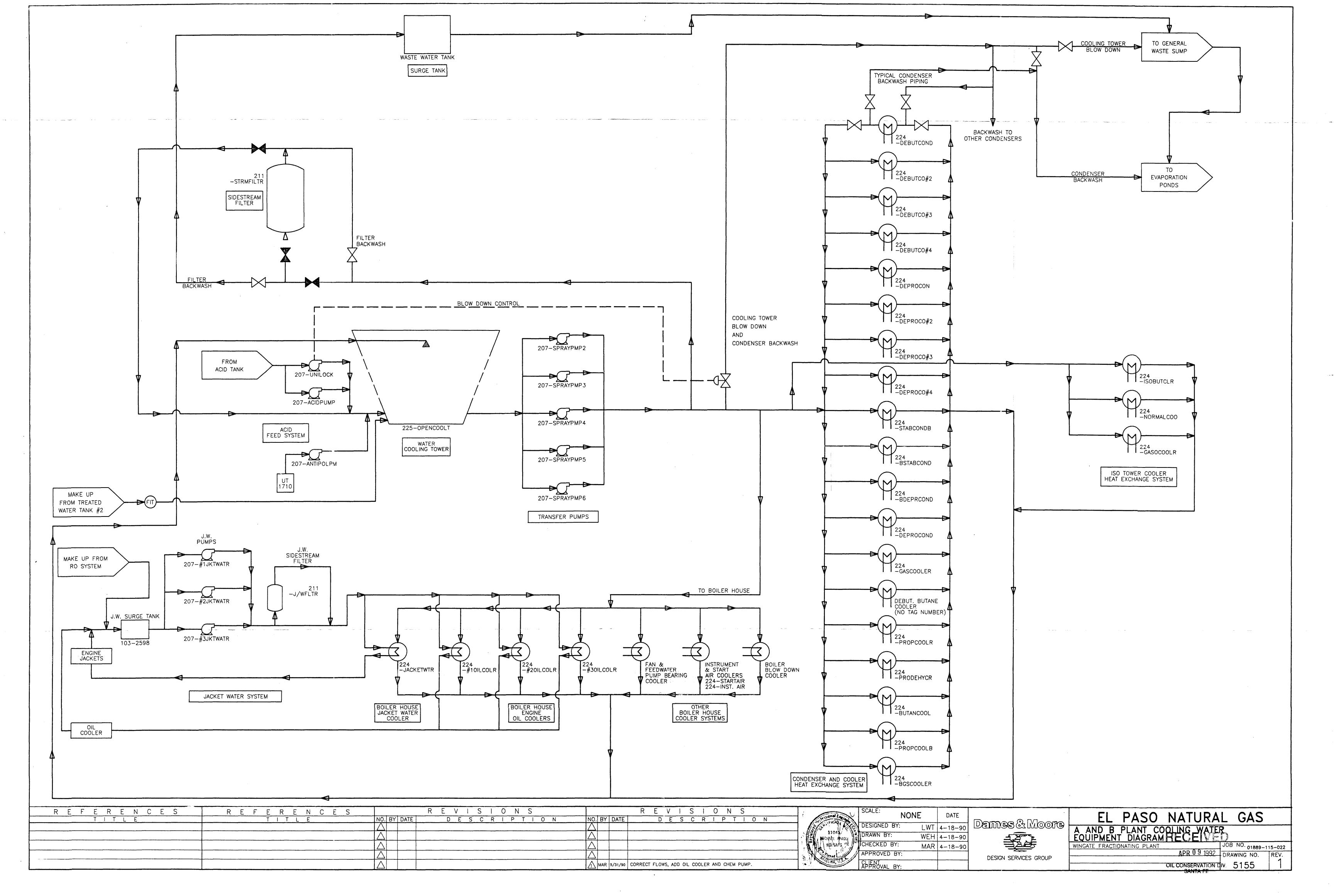

- U.S. Department of Housing and Urban Development, <u>Federal Insurance</u> <u>Administration, 1978, Flood Hazard Boundary Map</u>, Mckinley County, New Mexico.
- U.S. Geological Survey, <u>Well Information Database</u>, <u>McKinley County</u>, <u>New</u> <u>Mexico</u>, <u>June 6</u>, 1990, Albuquerque, New Mexico.

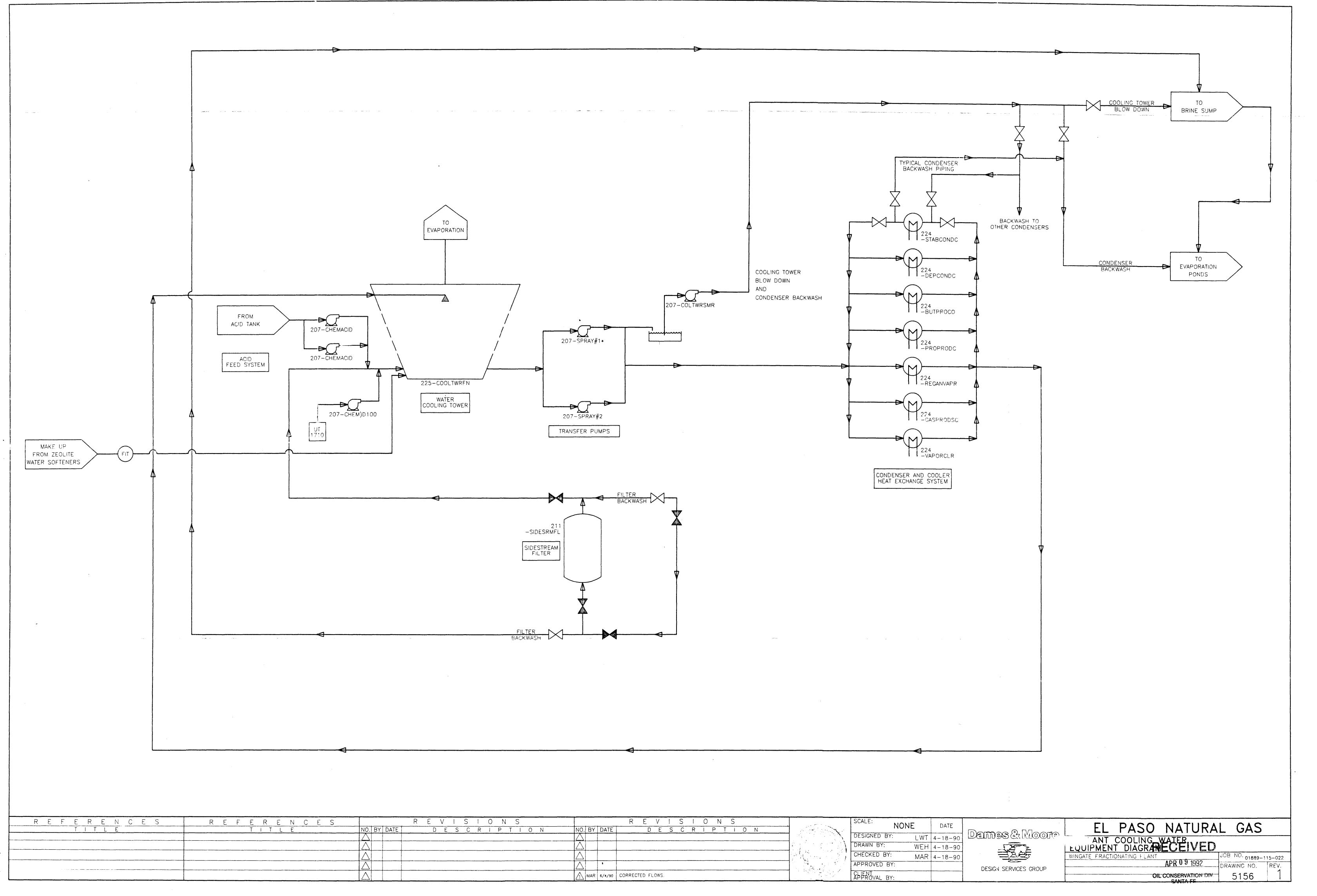

and the second se

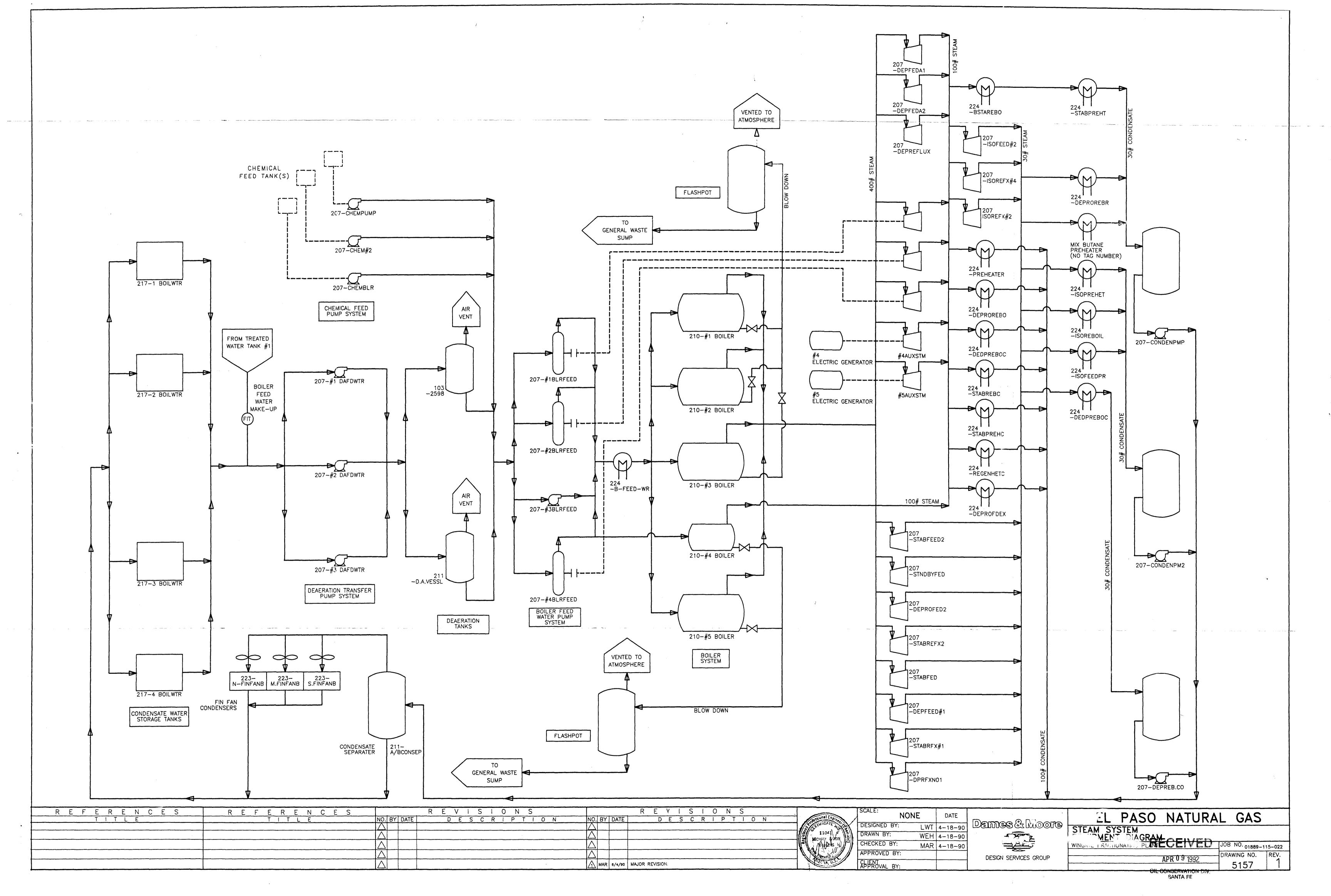
ISIONS	REVISIONS	SCALE: NON	NONE	
ESCRIPTION	NO. BY DATE DESCRIPTION			
	5 MJF 4/5/92 MINOR REVIION	DESIGNED BY:	TRV	
	A, MAR 7/9/90 RELOCATED " CT MAKE UP AND MISC. CHANGES	DRAWN BY:	MGC	
	MAR 6/8/90 RELOCATED LEMENTS, ADDED WATER BALANCE	CHECKED BY:	MAF	
	TRW 4/12/90 MAJOR REVISON	APPROVED BY:		
	A TRW 3/28/90 COULING TOVER MAKEUP/GENERAL WASTE SUMP FLOW METERS ADDED	CLIENT APPROVAL BY:		






w43+00	W42+00	W41+00	W40+00	W39+00	W38+00	W37+00	W36+00
N6+00 SAMPLE POINT &	SAMP	LE POINT			SAMF		
N5+00 EAST							
EVAPORATION POND N4+00			WEST EV.	APORATION POND			*
	12' DYKE					12' DYKE	×
N3+00							 *
N2+00		. ~.					
		OVERFLOW PIPE	·	SAMPLE POINT			
N1+00							
× 0+00	X			X			
S1+00							
			a. No manual a contra da se de 1999.	, 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997			
S2+00							
S3+00							
B E F E	R E N C E 3	S R	E F E R E	00+62M N C E S	00+82M R E V	00+25W - S I O N S	W36+00
		<u> </u>			BY DATE DE		N 2 2


W39+00	W38+00 W37+00 W36+00	W35+00 W34+00	w33+00 w32+00	W31+00 W30+00	w29+00 w28+00	W27+00
	SAMPLE POINT &			DWG 5153-4	D₩G. 5153-2 0	N6+00
ATION POND				DWG. 5153-3	$ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\$	N5+00
	DYKE			DFAWING LO LEGEND RR	CATION KEY	N4+00
				3" PVC LINE		N3+00
					× Sdohs	CANOPY N2+00
					R PL OFFICE	N1+00
2' DYKE			×	6" DRAIN LINE FOR EVAP. PONDS 6" BLUE STREAK PLASTIC		× , 0+00
						SEPTIC DRAIN
						RR S2+00 E • 500 GAL SEPTIC TANK
		HONITOR WELL 3			GENERAL WAREHOUS	E S3+00
00 +6℃ ≫ E S NO. BY DATE △ △	00+82M R E V I S I O N S D E S C R I P T I O N NO. BY	000+35 R E V I S I O N S DATE D E S C R I P T I O I	N N N N N N N N N N N N N N	$\frac{1''=50'}{MAR} = \frac{1}{6-7-90}$	EL PASO NATURAL EL PASO NATURAL EL PASO NATURAL	00+22M GAS
		7/9/90 ADDED DRAIN LINES AND A MONITOR WELL	RODGERS AND CHECKED B APPROVED CLIENT APPROVAL	WEH 6-7-90 IY: MAR 6-7-90 BY: DESIGN SERVICES GROUP OIL O		DOB NO. 01889-115-022 DRAWING NO. REV. 5153-3 1


ŽELL 2 00+ +9+ +9+		~	00+0		+ 00		43+00			42+00		00+	
		Y		12' DYKE	W44		\		A	4;		× \	
POINT											OVERFLOW PIPI	E	
						an an 1999 a chuir an 19	,			-			49 +
												DWG. 5153-4	
													DV
		·			<u>1883) (1986) (1987) (1987)</u>								
													DRA
										-			
				,									
RATION I	POND						SAMP	PLE POINT (8		⊗ SAMPLE POIN	т	ł
					1/								
								:					
	summer to state a second						-						**
									<				
											-OVERFLOW PI	эЕ	
00+	1:	2' DYKE	00+		00+		00+			00+		00+	
- w46+00	O N	<u>×</u>	W45+00		W44+00	E V I	0 W43+00	N S		W42+00	×	× ×	E A'
S C R		<u> </u>	1	NO. BY DAT		D E S			<u>0 N</u>	· · · · · · · · · · · · · · · · · · ·	ANDHAEL AARDN	1"=	50' <u>M</u> / WE
·····									· · · · · · · · · · · · · · · · · · ·		ROJUSES	APPROVED BY:	M
				MAR 7/9/1	O ADDED	MONITOR WELLS						APPROVAL BY:	

SIONS REVISIONS	SCALE: NONE
CRIPTION NO. BY DATE DESCRIPTI	O N DESIGNED BY: LWT
	DRAWN BY: WEH
	CHECKED BY: MAR
· ·	APPROVED BY:
A MAR 6/4/90 CORRECTED FLOWS.	CLIENT APPROVAL BY:

MERIDIAN OIL

April 9, 1992

William J. LeMay Director New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504-2088 RECEIVED

APR 0 9 1992

OIL CONSERVATION DIV. SANTA FE

Hand Delivered

RE: Discharge Plan - Wingate Fractionating Plant

Dear Mr. LeMay:

Enclosed are two copies of the Discharge Plan for Meridian Oil, Inc.'s (MOI) Wingate Fractionating Plant near Gallup, NM. One additional copy has been supplied to the OCD regional office in Aztec.

On September 10,1990, the NMOCD granted MOI an extension until April 13, 1992 to file the wastewater discharge plan. Today's submission fulfills this filing requirement.

MOI is wholly committed to carrying out sound disposal practices and to this end submits this plan outlining the proposed procedures. Likewise, MOI is committed to cooperating fully with NMOCD in honoring requests for additional information or clarification of existing information related to the Discharge Plan. When you or your staff have questions please contact me at (505) 326-9841.

Sincerely,

Michael J. Frampton /Sr. Staff Environmental Representative

2 copies of Discharge Plan enclosed

cc: NMOCD Regional Office - Aztec

PROPOSED MEETING AGENDA

Wingate Wastewater Discharge Plan January 10, 1992 - Santa Fe, New Mexico

Attendees:

Roger Anderson Bill Olsen Matt McEneny Mike Frampton John Bridges

OCD OCD Meridian Oil Meridian Oil El Paso Natural Gas

- I. Introductions
- II. Groundwater Concerns
- III. Existing Draft Plan
- IV. Proposed Monitoring Program
- V. Evaporation Ponds Ongoing Assessment
- VI. Process and Stormwater Discharges
- VII. Timetable

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS

December 26, 1990

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-327-278-332

Mr. Thomas D. Hutchins, Manager North Region Compliance Engineering El Paso Natural Gas Company P.O. Box 1492 El Paso, Texas 79978

RE: Discharge Plan GW-54, Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Hutchins:

The Oil Conservation Division (OCD) has received and reviewed your letter of December 12, 1990 and accompanying technical information on ground water levels and water quality analyses for the above facility. The information submitted verifies the results of previous hydrogeological work performed at the site and demonstrates that no hazard to ground water exists for continued short-term use of the ponds.

The letter of August 10, 1990 from W. J. LeMay, OCD Director, to EPNG required submittal of this information as one condition of continued operation of the facility without an approved discharge plan under New Mexico Water Quality Control Commission Regulations. The information submitted satisfies this condition and the facility may continue to discharge without an approved plan provided the remaining two conditions continue to be met.

If you have any questions concerning this letter, please contact me at the above address or by phone at (505) 827-5812.

Sincerely,

David G. Boyer, Hydrogeologist Environmental Bureau Chief

cc : Frank Chavez, OCD Aztec District Office

H HIMISIO⊟ 1.1 ÷Γ

'90 DEC 1" PM 1 23

÷.,

P. O. BOX 1492 EL PASO, TEXAS 79978 PHONE: 915-541-2600

December 12, 1990

÷

Mr. David G. Boyer Environmental Bureau Chief New Mexico Oil Conservation Division State Land Office Building 310 Old Santa Fe Trail, 206 Santa Fe, New Mexico 875Ø4

RE: Requested Wingate Plant Information Per Letter Dated September 10, 1990

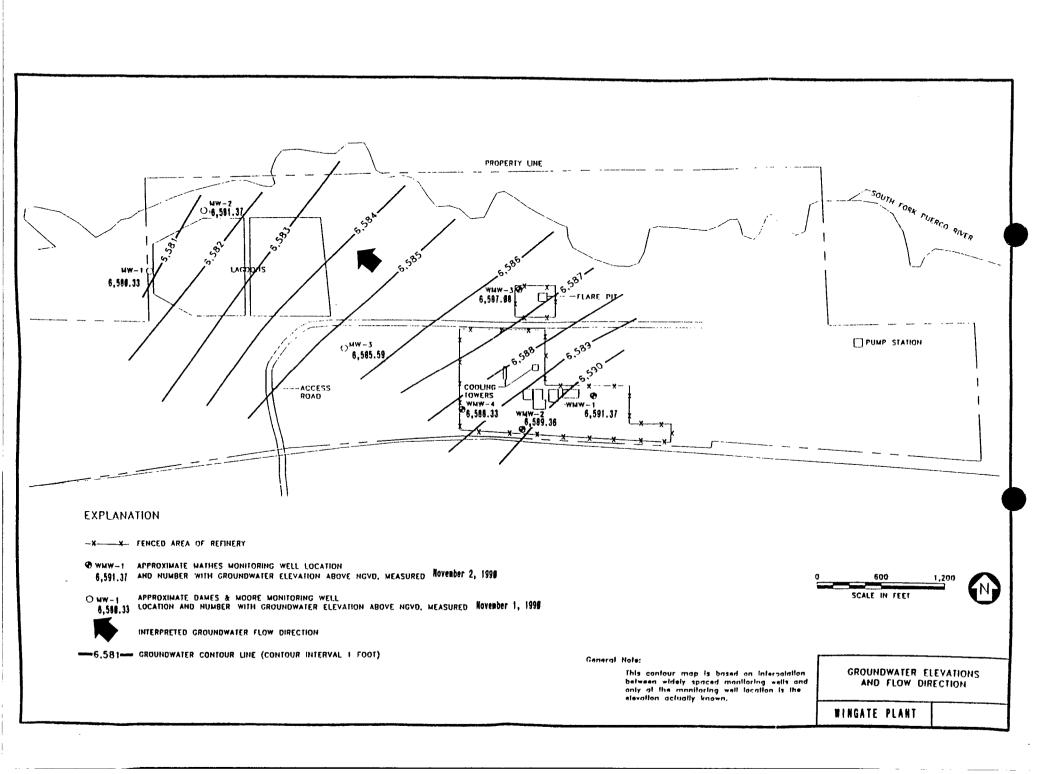
Dear Mr. Bover:

Enclosed please find the results of the additional water analyses for the evaporation pond monitor wells and the water level measurements per your request. The results verify previous tests indicating no hazard to groundwater exists for short term continued use of the ponds.

The groundwater elevation map is located in Tab A, ground and water elevation data is located in Tab B and the analytical results are located in Tab C. Information on the depth of the confined water in each of the pond monitor wells during drilling and prior to its artisan level is not available. Artisan conditions were not expected therefore, this information was not recorded. Tab D contains the monitor well logs and well construction summaries. Tab E contains copies of both your and Mr. LeMay's letters.

If you have questions concerning the requested information, feel free to call me at (915) 541-3531.

Sincerely,


Thomas D. Hutchin's

Thomas D. Hutchins, Manager North Region Compliance Engineering

TDH/gg

Enclosure

C: G. Garibav W. D. Hall G. C. Kardos W. J. LeMay, OCD T. McMillin, Meridian Oil G. J. Odegard H. Van File: 52Ø4 (w/w)

EL PASO NATURAL GAS COMPANY

GROUND AND WATER ELEVATION DATA WINGATE PLANT GALLUP, NEW MEXICO

NOVEMBER 1-2, 1990

WELL NUMBER	GROUND ELEVATION	TOP OF RISER ELEVATION	DEPTH TO WATER	GROUNDWATER ELEVATION
MW- 1	6,582.93*	6,584.66	4.33	6,580.33
MW-2	6,584.99*	6,585.37	4.00	6,581.37
MW-3	6,588.95*	6,589.84	4.25	6,585.59
WMW-1	6,596.41	6,596.Ø4	4.67	6,591.37
WMW-2	6,593.92	6,593.69	4.33	6,589.36
WMW-3	6,593.Ø3	6,593.91	6.83	6,587.Ø8
WMW-4	6,592.51	6,594.5Ø	6.17	6,588.33

NOTE: ELEVATIONS IN FEET ABOVE NATIONAL GEODETIC VERTICAL DATUM (NGVD).

* TOP OF INNER CASING.

2

ATI I.D. 011554

November 26, 1990

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: Wingate Plant

Attention: John Lambdin

On 11/06/90, Analytical Technologies, Inc. received a request to analyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (602)438-1530.

M. Barry

Michael G. Barry Project Manager

- Cober V. Wood

Robert V. Woods Laboratory Manager

RVW:clf Enclosure

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458 91.11

CLIENT	EL PASO NATURAL GAS, NEW MEXICO	DATE RECEIVED : 11/06/90
PROJECT #	(NONE)	
PROJECT NAME	WINGATE PLNT	REPORT DATE : 11/26/90
	ATI I.D. : 011554	

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	A90421 MW-3	AQUEOUS	11/01/90
02	A90422 MW-2	AQUEOUS	11/01/90
03	A90423 MW-1	AQUEOUS	11/01/90

----- TOTALS -----

MATRIX _____ **#** SAMPLES

AQUEOUS

_____ 3

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

				ATI I.D. : 01	1554
CLIENT : EL PASO NATURA PRCJECT # : (NONE)	L GAS, I	NEW MEXI	:co	DATE RECEIVED	: 11/06/90
PROJECT NAME : WINGATE PLNT				REPORT DATE	: 12/03/90
PARAMETER	UNITS	01	02	03	
BICARBONATÈ (CACÓ3)	MG/L MG/L MG/L MG/L MG/L UNITS MG/L MG/L	<1	•	<1 465 <1 465 25 977 <1 8.3 29 560	

Analytical Technologies, inc.

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT	1	EL PASO	NATURAL GA	AS, NEW	MEXICO				
PRCJECT #	:	(NONE)							
PROJECT NAME	t	WINGATE	PLNT			ATI	I.D.	ł	011554

PARAMETER	UNITS	ATI I.D.	Sample Result	DUP. RESULT	RPD	SPIKED SAMPLE		% REC
CARBONATE	MG/L	01155401	<1	<1	NA	NA	NA	NA
BICARBONATE	MG/L		420	426	1	NA	NA	NA
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	NA
TOTAL ALKALINITY	MG/L		420	426	1	NA	NA	NA
CARBONATE	MG/L	01075123	34	32	6	NA	NA	NA
BICARBONATE	MG/L		<1	<1	NA	NA	NA	NA
HYDROXIDE	MG/L		2	3	40	NA	NA	NA
TOTAL ALKALINITY	MG/L		36	35	3	NA	NA	NA
CARBONATE	MG/L	01154403	168	168	0	NA	NA	NA
BICARBONATE	MG/L		44	44	0	NA	NA	NA
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	NA
TOTAL ALKALINITY	MG/L		212	212	0	NA	NA	NA
CHLORIDE	MG/L	01155407		460	2	1500	1000	103
CONDUCTIVITY (UMHOS/CM)		01155407		5550	1.0	NA	NA	NA
PHENOLPHTHALEIN ALKALI	MG/L	01155401	<1	<1	NA	NA	NA	NA
PHENOLPHTHALEIN ALKALI	MG/L	01161005	<1	<1	NA	NA	NA	NA
PH	UNITS	01155401	8.1	8.1	0	NA	NA	NA
PH	UNITS	01075123		8.97	0.1	NA	NA	NA
PH	UNITS	01154403		10.0	Ō	NA	NA	NA
SULFATE	MG/L	01155401	17	17	ō	34	17	100
SULFATE	MG/L	01157306		120	õ	220	100	100
TOTAL DISSOLVED SOLIDS	MG/L	01155405	1940	1840	õ	NA	NA	NA
TOTAL DISSOLVED SOLIDS	MG/L	01156202	210	210	õ	NA	NA	NA

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) Average Result

METALS RESULTS

CLIENT : EL PASO NATURAL GAS, NEW MEXICO DATE RECEIVED : 11/06/90 PROJECT # : (NONE) PROJECT NAME : WINGATE PLNT **REPORT DATE** : 11/26/90 PARAMETER UNITS 01 02 03 ور کے ایک ایک سے سے بھی جب بین سے جب سے سے جب ایک سے جب بی جب بین بین جب بی دیگر ہے جب بی _____ MG/L26.916.49.9MG/L12280.154.4MG/L<1.0</td><1.0</td><1.0</td>MG/L13.29.57.2MG/L158435220MG/L12.48.111.8 CALCIUM HARDNESS POTASSIUM MAGNESIUM SODIUM SILICA

!

ATI I.D. : 011554

METALS - QUALITY CONTROL

CLIENT PROJECT # PROJECT NAME	: EL PASO NATURAL : (NONE) : WINGATE PLNT	GAS, NEW MEXICO		: 011554	
PARAMETER	UNITS	SAMPLE ATI I.D. RESULT		SPIKED SPIKE % SAMPLE CONC R	EC
CALCIUM	MG/L	01155404 152	153 0.7	204 50.0 1	.04
HARDNESS	MG/L	01155404 621	625 0.6	NA NA N	IA
POTASSIUM	MG/L	01155404 2.8	2.8 0	52.5 50.0 9	9
MAGNESIUM	MG/L	01155404 58.6	59.0 0.5	85.4 25.0 1	.07
SODIUM	MG/L	01155404 2100	2100 0	7380 5000 1	06
SILICA	MG/L	01155404 11.6	11.8 2	33.6 21.4 1	03

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) X 100

Average Result

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 01155401

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602)

PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: WINGATE PLNT : A90421	NEW MEXICO DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : 11/06/90 : UG/L : 1
COMPOUNDS		RESULTS	
BENZENE BROMODICHLORON BROMOFORM BROMOMETHANE CARBON TETRACI CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROMETHANE DIBROMOCHLORON 2-CHLOROETHYL 1,3-DICHLOROB 1,2 & 1,4-DIC DICHLORODIFLUN 1,1-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,1,2,2-TETRA TETRACHLOROET TOLUENE 1,1,1-TRICHLO 1,1,2-TRICHLO VINYL CHLORID TOTAL XYLENES TRICHLOROTRIF	METHANE HLORIDE METHANE VINYL ETHER ENZENE HLOROBENZENE OROMETHANE THANE THANE THANE THENE (TOTAL) ROPANE OROPROPENE HLOROPROPENE HLOROPROPENE HLOROPROPENE CHLOROETHANE HENE ROETHANE ROETHANE ROETHANE E	< 0.5 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.5 < < 0.2 < < 0.5 < < 0.5 < < 0.2 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.	
BROMOCHLOROME BROMOFLUOROBE		99 100	

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 01155402

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: WINGATE PLNT : A90422 : AQUEOUS	NEW MEXICO DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : 11/06/90 : UG/L : 1
COMPOUNDS		RESULTS	
BENZENE BROMODICHLOROM BROMOFORM BROMOMETHANE CARBON TETRACH CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM 2-CHLOROETHANE DIBROMOCHLOROM 2-CHLOROETHYL 1,3-DICHLOROE 1,2 & 1,4-DIC DICHLORODIFLUM 1,1-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-DICHLOROE 1,2-TETRA TETRACHLOROET TOLUENE 1,1,1-TRICHLO 1,1,2-TRICHLO VINYL CHLORID TOTAL XYLENES TRICHLOROTRIF	METHANE HLORIDE METHANE VINYL ETHER ENZENE HLOROBENZENE OROMETHANE THANE THANE THANE THENE (TOTAL) ROPANE OROPROPENE HLOROPROPENE HLOROPROPENE HLOROPROPENE CHLOROETHANE HENE ROETHANE ROETHANE ROETHANE E	< 0.5 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.5 < < 0.2 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.5 < < 0.2 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.	
BROMOCHLOROME BROMOFLUOROBE		99 95	

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 01155403

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602)

PROJECT NAME CLIENT I.D. SAMPLE MATRIX		DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 11/06/90 : N/A : 11/06/90 : UG/L
COMPOUNDS		RESULTS	
BENZENE BROMODICHLOROM BROMOFORM BROMOMETHANE CARBON TETRACH CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM 2-CHLOROETHANE DIBROMOCHLOROM 2-CHLOROETHYL 1,3-DICHLOROEM 1,2 & 1,4-DICH DICHLORODIFLUG 1,2-DICHLOROEM 1,2-DICHLOROEM 1,2-DICHLOROEM 1,2-DICHLOROEM 1,2-DICHLOROEM 1,2-DICHLOROEM 1,2-DICHLOROEM CIS-1,3-DICHLO TRANS-1,3-DICH ETHYLBENZENE METHYLENE CHLM 1,1,2,2-TETRA TETRACHLOROET TOLUENE 1,1,1-TRICHLO 1,1,2-TRICHLO TRICHLOROFLUO VINYL CHLORID TOTAL XYLENES TRICHLOROTRIF	METHANE HLORIDE METHANE VINYL ETHER ENZENE HLOROBENZENE OROMETHANE THANE THANE THANE THENE THENE (TOTAL) ROPANE OROPROPENE HLOROPROPENE HLOROPROPENE HLOROPROPENE CRIDE CHLOROETHANE HENE ROETHANE ROETHANE NE ROMETHANE E	< 0.5 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.2 < < 0.5 < < 0.5 < < 0.2 < < 0.5 < < 0.5 < < 0.2 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.5 < < 0.	
BROMOCHLOROME BROMOFLUOROBE		96 102	

Analytical Technologies, Inc. GAS CHROMATOGRAPHY - RESULTS

낐

-

REAGENT BLANK

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/ CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE) PROJECT NAME : WINGATE PLNT CLIENT I.D. : REAGENT BLANK	ATI I.D.: 011554DATE EXTRACTED: 11/06/90DATE ANALYZED: 11/06/90UNITS: UG/LDILUTION FACTOR: N/A
COMPOUNDS	
BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 2-CHLOROETHYL VINYL ETHER 1,3-DICHLOROBENZENE 1,2 & 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE (TOTAL) 1,2-DICHLOROFTHENE (TOTAL) 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPENE ETHYLBENZENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TICHLOROFTHENE TRICHL	<pre><0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>
SURROGATE PERCENT RECOVERIES	2
BROMOCHLOROMETHANE (%) BROMOFLUOROBENZENE (%)	106 100

Analytical Technologies, Inc. GAS CHROMATOGRAPHY - RESULTS

,

REAGENT BLANK

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/	602) ATI I.D. : 011554
CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : (NONE)	DATE EXTRACTED : 11/07/90 DATE ANALYZED : 11/07/90
	UNITS : UG/L
CLIENT I.D. : REAGENT BLANK	DILUTION FACTOR : N/A
	<0.5
BROMODICHLOROMETHANE	<0.2
BROMOFORM	<0.2
BROMOMETHANE	<0.2 <0.2
CARBON TETRACHLORIDE CHLOROBENZENE	<0.2
CHLOROETHANE	<0.2
CHLOROFORM	<0.2
CHLOROMETHANE	<0.2
DIBROMOCHLOROMETHANE	<0.2
2-CHLOROETHYL VINYL ETHER	<0.5
1,3-DICHLOROBENZENE	<0.5
1,2 & 1,4-DICHLOROBENZENE	<0.5
DICHLORODIFLUOROMETHANE	<0.2
1,1-DICHLOROETHANE	<0.2 <0.2
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE	<0.2
1,2-DICHLOROETHENE(TOTAL)	<0.2
1,2-DICHLOROPROPANE	<0.2
CIS-1, 3-DICHLOROPROPENE	<0.2
TRANS-1, 3-DICHLOROPROPENE	<0.2
ETHYLBENZENE	<0.5
METHYLENE CHLORIDE	1.7
1,1,2,2-TETRACHLOROETHANE	<0.2
TETRACHLOROETHENE	<0.2
TOLUENE 1,1,1-TRICHLOROETHANE	<0.5 <0.2
1,1,2-TRICHLOROETHANE	<0.2
TRICHLOROETHENE	<0.2
TRICHLOROFLUOROMETHANE	<0.5
VINYL CHLORIDE	<0.2
TOTAL XYLENES	<0.5
TRICHLOROTRIFLUOROETHANE	<2.0
SURROGATE PERCENT RECOVERIES	
BROMOCHLOROMETHANE (%)	98
BROMOFLUOROBENZENE (%)	101

QUALITY CONTROL DATA

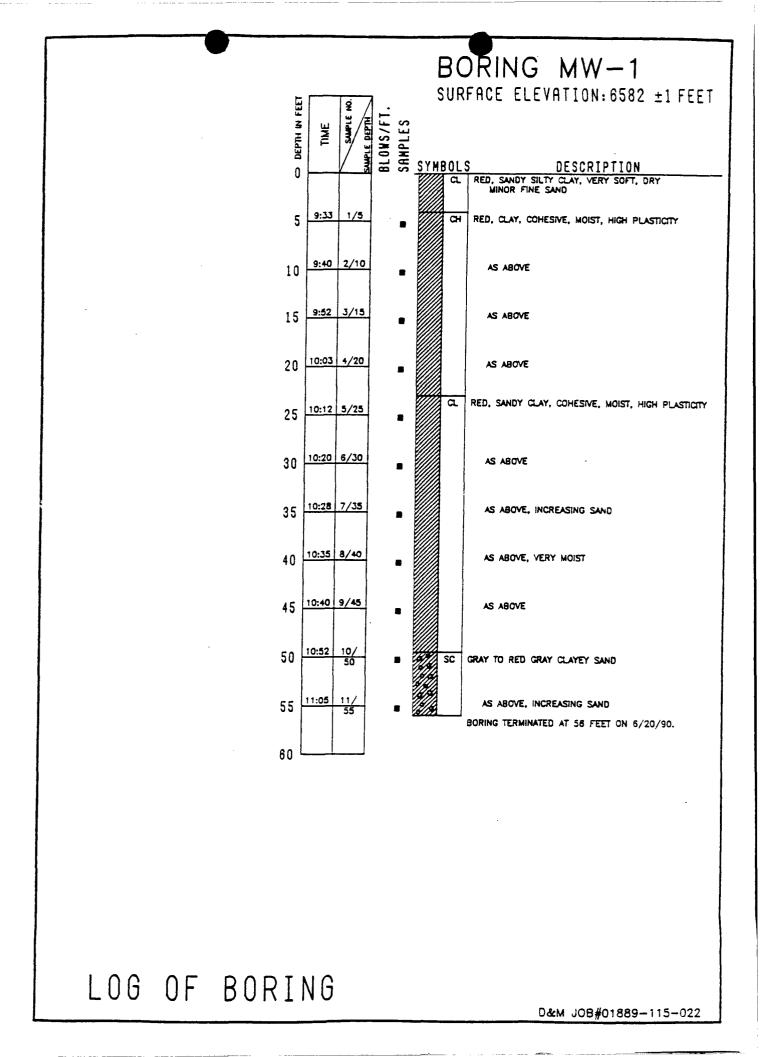
ATI I.D. : 011554

ļ.

TEST : VOLATILE HALOCARBONS/AROMATICS (EPA 601/602)

CLIENT	: EL PASO NATURAL GAS, NEW MEXICO	
PROJECT #	: (NONE)	DATE ANALYZED : 11/07/90
PROJECT NAME	: WINGATE PLNT	SAMPLE MATRIX : AQUEOUS
REF I.D.	: 01155401	UNITS : UG/L

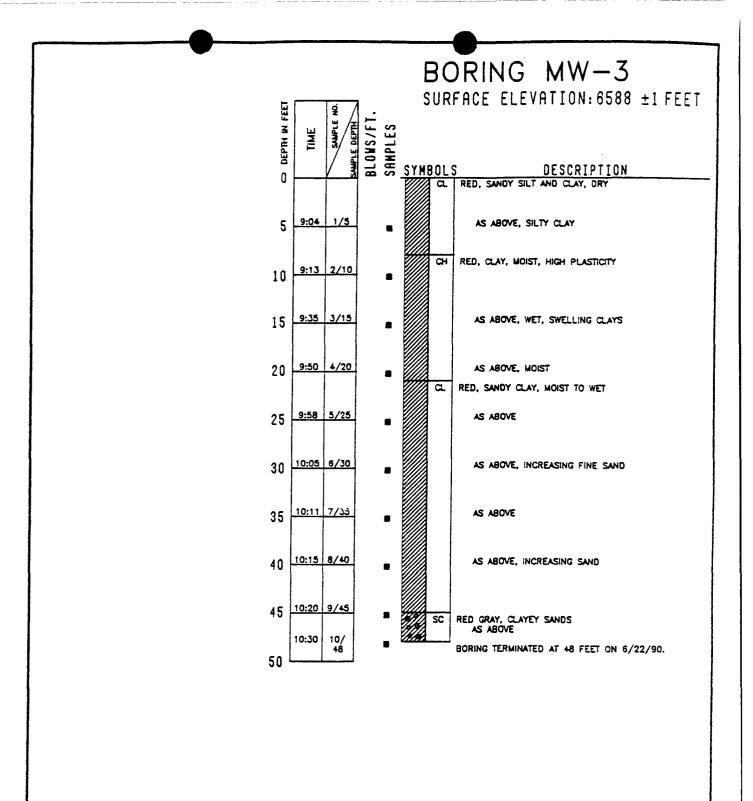
COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	% REC	DUP. SPIKED. SAMPLE	DUP. % REC.	RPD
1,1-DICHLOROETHENE	<0.2	20	21	105	21	105	0
TRICHLOROETHENE	<0.2	20	20	100	19	95	5
TETRACHLOROETHENE	<0.2	20	22	110	18	90	20
BENZÉNE	<0.5	20	19	95	18	90	5
BROMODICHLOROMETHANE	<0.2	20	19	95	17	85	11
CHLOROFORM	<0.2	20	21	105	20	100	5
1,1,1-TRICHLOROETHANE	<0.2	20	18	90	17	85	6
TOLUENE	<0.5	20	19	95	18	90	5
CHLOROBENZENE	<0.5	20	22	110	19	95	15
M-XYLENE	<0.5	20	21	105	18	90	15


% Recovery = (Spike Sample Result - Sample Result) ------ X 100 Spike Concentration RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result ------ X 100 Average of Spiked Sample

Chain of Custody

DATE 11-5-90 PAGE 1 OF 1

PROJECT MANAGER: JO HW	LAMO.	\mathcal{N}								AN	ALYSIS	REQUE	ST			2014) 2014		1
COMPANY: <u>EL PASO A</u> ADDRESS: <u>778 WEST</u> <u>FARMINGTO</u> BILL TO: <u>JOHN LA</u> COMPANY: <u>EL PASO M</u> ADDRESS: <u>770 WEST</u>	VATURA <u>NAVA</u> A <u>MEOIN</u> VATURA	(645 150 1. 1. 1. 645	7499		ABLE AROMATIC. 116 3020		AL CH	K MK C	TDS ()									NUMBER OF CONTAINERS
					65	いい	21	SU.	У,									BEH
				i inin	לריצ	2.R	25	5-	م م									N N
	e parte de l'este	2001.2999 - 1201.		and of advertise	× ×	$ \ge $	$\stackrel{\frown}{=}$	100	<	<u> </u>			┼──┤					3
					\Leftrightarrow	\bigotimes	\bigcirc											2
					\Rightarrow	\bowtie		+					╉╼╾╂		+			3
11 10 423	11-1-10	1050	WAICK			\vdash		┥───		┼╌╌┼╌			+					3
· · · · · · · · · · · · · · · · · · ·	++		·			╞───┤				1			╎──┤					2
	<u>∱`</u>				<u> </u>	<u>}</u> †	<u>.</u>	+		+			╉╼╾╂	_	+			3
·	+		\ `		<u>†</u>	┝──┤	•	+							1	╏───┤		5
	1.					┟───╀				┼──┼─			++					
	1			<u> </u>	ř	<u>}</u> }	•	+		1					1	<u> </u>		
PROJECT INFORMATION	N		SAM	PLE RECI	IPT		RE	LINQUIS	HED B	/: 1,	RELINC	UISHED E	9Y;	2.	RELING	JISHED 8	BY:	3.
PROJECT NUMBER:	<u></u>	TOTAL	NUMBER OF	CONTAI	NERS	72		nature:	<u></u>	, Time:	Signature	<u></u>	Time:		Signature:		Time	
	Imr			Y SEALS		N												
	<u></u>				0	1-7			BIRD	11-5-70	Company							
							- 22	PASO	NAT	URAL GAS					Company.			
DDRESS: TZD_WEST_MAUATO Bandlers(Spruce) Sos 597 - 2144 SAMPLERS(Spruce) DATE TABLERS(Spruce) DATE MARCH DOLLARS(Spruce) DATE	BECEIVED B			- RECEIVED BY: 1		3.												
							Sig	nature:		Time:	Signature	•	Time:	<u></u>	spitte:	TLA	D/ Time	The
Comments:							Pri	nted Name	:	Date:	Printed N	ame:	Date:	{	PWAM	W/V	74	+r
							Co	mpany:			Company	:	····				the second second second second second second second second second second second second second second second s	4
ATI Labs: San Diego (619) 458-9141 •	Phoenix (602)	438-1530 •	Seattle (206) 228-833	5 • Pens	acola (904) 474-1	1001 DI	STRIBU	TION: Whit	e, Canary -	ANALYTIC	CAL TECHN	IOLOGI	ES, INC.	Pink - OŘ	GINATOR	l



BORING MW-2 SURFACE ELEVATION: 6584 ±1 FEET

-					S	URF	FACE ELEVATION:6584 ±1 FEET
DEPTH IN FEET	TIME	SAUPLE DEPTH	BLONS/FT.	SAMPLES	SYMB		
0		y ø	—	5	Ť	a	RED BROWN, SANDY SILT AND CLAY
5	9:30	1/5				ß	RED, CLAY, DRY, HIGH PLASTICITY
10	9:45	2/10					AS ABOVE
15	9:56	3/15					AS ABOVE, MOIST
20	10:03	4/20		8			AS ABOVE
25	10:20	3/25		8		æ	RED, SANDY CLAY, WET
30	10:26	6/30					as above
35	10:33	7/35					AS ABOVE
40	10:52	8/40					as above, increasing sand
45	10:58	9/45		-			AS ABOVE
, •				-			AS ABOVE
	11:00	10/ 48]	BORING TERMINATED AT 48 FEET ON 6/21/90.
50							

LOG OF BORING

D&M JOB#01889-115-022

LOG OF BORING

D&M JOB#01889-115-022

3		MONITOR WELL CONSTRUC		
1				
ıL		Survey Coords:	Elevation Ground Level Top of Casing 6582.93 fvc	,
Ì∏			Top of Casing 0306.75	, •
		Drilling Summary:	Construction Time Log:	
			Start Finish	
		Total Depth 56 FF Borehole Diameter 11 - inch	Task Date Time Date Time Drilling 6.20.31 0.92.4 6.20.31 1(05)	• •
		Casing Stick-up Height: PVC + 0.5 ft Driller Rodgers & Company		Ľ
		Driller Rodgers & Company Albuquerque, NM		DAI
		-Hisudardas Vind	Geophys.Logging:	0
	• •	Rig CME-75 Wollow Stem anger	Casing: 6 20.50 1220 12090 1305	Ц
'		Bit(s) N · A		ι
đ		Drilling Fluid None		
			Filter Placement: 6-20-94 1315 6 20-94 1505 Cementing: 6-20-94 1632 6-20-54 1650	
十	. +°	Protective Casing 65/3 - Inch. Jocking	Cementing: (29%) (633 6-1653 (653 Development:	10
	. .	Well Design & Specifications		
']	. - .		llllll	
	· _	Basis: Geologic Log Geophysical Log Casing String (s): C = Casing S = Screen.	Well Development:	
	· - •		well was wormented of 400+	
	. - ·	Depth String(s) Elevation	well was evaluated of 400+ gallons with a 4-not submers!	لملو
		+. <u>5</u> - <u>20</u> <u>C2</u>	pump Q= Sagan	
	·	20 - 45 51		
		45 - 45. 2 EAD Cap	Stabilization Test Data:	
IJ				
			Time p H Spec. Cond. Temp (C)	
		Casing: C1 65/3-Inch OD Locking		_
1		C2 H-Inch SCH 45 PVC AND		
	· - •	Flush-threaded, blank		2
		Screen: SI H-Inch Schills PVC . Fuch threaded, 1010 SLie		E.
-	· - ·	S2	Recovery Data:	DNEL
		Filter Pack: Color 90 Silice Sand	Q= S ₀ =	<u>د</u>
		10-20 mesh 14-51 feet		
		Grout Seal: Tydent Port In concent		Ņ
۲.		0-11 Full with 3 sacks		8
	كمانج بيلمها			~
	17.5.19	Bentonite Sezi: Pel Plug 1/4 -uch Dentonite nellet 11-14 feet	R 20	supervised by
ト	000	with 2 backets, 5 guilancuch	0 20 40 50 50 100	ISEI
		· · ·	TIME ()	ERV
	stough	Comments:		SUP
	1861			
	H-4-1			

4

		Dame 🏶 Moore 🕸	W	o. <u>Mw</u>	-2
	1	BO MONITOR WELL CONSTRUC	Dring No. X-Re		
		Survey Coords:	Elevation Ground L		1.99 PUL
	18	Drilling Summary:	Construction 1		
1	3	Total Depth 48 FF	Task	Start Date Time	Finish Date Time
		Borehole Diameter IF Inch Casing Stick-up Height: PVC +1 ft	Drilling	6-21.90 0925	
		Driller Rodyers + Company Albuquerave, NM		·	
	•	Rig <u>CME 75 Hollaw skin auger</u> Bit(s) <u>N.A.</u>	Geophys.Logging Casing:	6-21.40 1420	6.21.40 1450
	•	Drilling Fluid Nme	Filter Placement:		
		Protective Casing 6 5/8 - inch 102/6113 Stack	Cementing: Development:	<u>6.21.90 1630</u> 6.23.90 1330	
	0	Basis: Geologic Log Geophysical Log Casing String (s): C = Casing S = Screen.	Weil Developm		
	•	$\frac{\text{Depth}}{+1.5} - \frac{2.5}{2.5} - \frac{2.5}{5}$	Well was gallons w pump. Q	executed ith 4-ind = 33pm.	of Soot L subaurith
30	•	+1 - 20 <u>C2</u> 20 - 45 <u>S1</u> 45 - 45.2 End Cap	Stabilization Te	ist Data:	
	•		Time p H	Spec. Cond.	Temp (C)
7 - 0	-	Casing: C1 6 3/3 - Neh locking steel			
	•	C2 4-inch SCH 40 PUC Fluch- Arrended, blank			
40- 1-	•	Screen: SI <u>H-inch Scil Ho</u> <u>PVC</u> <u>fhish-Macadad</u> , <u>mois slut</u> S2	Recovery Data:		
	·	Filter Pack: Colorado Silica Sun) 10-20 mesto 14-48 feet	Q= % ¹⁰⁰	S _o =	
- 7 -		Grout Seal: Types II yearthand comput 0-10 feet 3 sacks The	R 50 E 60		
	•	Bentonite Seal: Pel-Blug 1/4-inch bentonite sellete 10-14 feet	V 40 E R 20		
st		with 2 buckets, 5 sollow each	0 20 TIME	40 60 ()	80 100
	4	Comments:	· · ·		
] - °		· · · · · · · · · · · · · · · · · · ·	_		

ŝ.

e

	• • •					
		Dames 🌢 Moore 🐲	Well	p. <u>MW-</u>	3	-
		Bo	oring No. X-Re	f:		-
-	4	MONITOR WELL CONSTRUC	TION SUMM	ARY		
-	1/	Survey Coords:	Elevation Ground L		•	
			Top of Ca	sing 6598	.95 PVL	_
	\mathcal{A}	Drilling Summary:	Construction 7]
	\mathcal{A}			Start	Finish	
	2	Total Depth 48 54	Task	Date Time		1
		Borehole Diameter <u>11- IACH</u> Casing Stick-up Height; <u>PVL +1 FF</u>	Drilling	6-22-90 085	6.22.40 1034	1
	•	Driller Rodyers a Company				
	•	Albuquerque, NM			-	
		RIG CAME 75 Hollow Stem ander	Geophys.Logging: Casing:	6.22.90 1110	6-2270 1130	
20		Bit(s) N.A				
6		Drilling Fluid None				
	0	•	Filter Placement: Cementing:	6.2270 1130	6.22.90 1330	
		Protective Casing 65/3-Mch locking steel	Cementing: Development:	6.22.70 13 30	6.23.30 1230	
	<u>.</u>	Well Design & Specifications				
					_	
	•	Basis: Geologic Log Geophysical Log Casing String (s): C = Casing S = Screen.	Weil Developm	ent:	-	
	• / /		well was	evente) of 500+	
		Depth String(s) Elevation +2 -	Well was gallons with	1 a 4.1	nch	
·	•	$\frac{1}{+1} - \frac{20}{-2}$	3ubmarshe	pung. C	2 = s g/m	
		20 - 45 51	•	, · · · = # · · · · · · · · · · · · · · ·		
└	•	45 - 45.2 End Cup	Stabilization Te	st Data:		
	•					
•	•	Casing: C1 65/3-nch lacking steel	Time pH	Spec. Cond.	Temp (C)	
	•	C2 4-inch Scil 40 PVC Flush- Morreded, black			······	
		Screen: SI 4-inch SCIL 49 PVC				
	-	Flush masded, viodot	Recovery Data:			
! ! ! 그	, 	S2	Q=	S _o =		
) ' -]	.	Filter Pack: Colorado Silica Sand 10-20 mesh 12-43 feet	% 100			
27	0	with 12 sacks the	E 30		┼┼┼┤│	•
	.6	Grout Seal: Type II porting current	E 50 C 60		┼╾┼╌┤╴╽	•
	3	0-1 FREE WITH 3 SALES FIL		┼╍╁╴┼╶┼	╁╍╁╍┤╴╽	(
	.	Bentonite Seal: Kel-Plug 14-Meh henton, te Bellets 9-12 feet	R 20		+++	
┟┟┼┥	-	henton te pellets 9-12 feet with 2 buckets, 5 gallons each	0 20	40 60	80 100	
L			TIME	()		
	-6-	Comments:				(
<u>} </u>		· · · · · · · · · · · · · · · · · · ·				
	┵┵╾┨	·				

I DEATION WING ANT A ANT

DATE 6.22.90

OIL COLORA ON DIVISION RECEIPED

'90 SEP 21 AM 10 01

3801 ATRISCO, N. W. ALBUQUERQUE, NEW MEXICO 87120 PHONE: 505-831-7700

September 18, 1990

Mr. Roger Anderson New Mexico Oil Conservation Division State Land Office 310 Old Santa Fe Trail #206 Santa Fe, New Mexico 87504

Dear Mr. Anderson:

Confirming our phone conversation of September 10, 1990, El Paso Natural Gas Company recently changed the media in the iron sponge filter at our Wingate Plant. This was done on September 11, 1990. Approximately 200 cubic feet of thoroughly wetted spent iron sponge was removed and spread on the ground surface on company property and will be allowed to weather for approximately ten days. After such time, the material will be buried in a shallow pit with eight to twelve inches of fill. The area will be documented in company records.

Should you have any questions, or wish to discuss this further, please give me a call at 505-831-7759.

Sincerely,

. David 9

W. David Hall, P.E. Senior Engineer

ENERGY, MINERALS AND NATURAL RESOURCES DEPETMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS

September 10, 1990

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-918-402-361

Mr. W. David Hall, Senior Engineer El Paso Natural Gas Company 3801 Atrisco Northwest Albuquerque, New Mexico 87120

RE: Wingate Plant Hydrogeologic Report Submittal

Dear Mr. Hall:

The Oil Conservation Division (OCD) has received the above report. The report generally demonstrates that continued short term use of the ponds is warranted although some discrepancies were seen in the sample results for pond monitor wells MW-2 and MW-3. Accordingly, I am requesting that EPNG conduct additional tests and provide the follow-up information listed below:

- 1. Remeasure water levels at all MW and WMH monitor wells and provide a water table map.
- 2. Resample the three evaporation pond monitor wells for general water chemistry, and purgeable aromatic and halogenated hydrocarbons. Water chemistry parameters include sodium, potassium, calcium, magnesium, chloride, sulfate and carbonate/bicarbonate.
- 3. Provide information, if available, on the depth of the confined water in each of the pond monitor wells during drilling and prior to its artisan level.

Formal approval to continue to use the ponds is being sent to Meridian Oil as part of their request for discharge plan extension. Additional field work, including installation of several more monitor wells, will be necessary if the ponds are to be in use beyond the term of the extension. Mr. W. David Hall August 10, 1990 Page -2-

If you have any questions, please contact me at (505) 827-5812.

Sincerely,

6

Toger andres

∽ David G. Boyer, Hydrogeologist Environmental Bureau Chief

DGB/sl

cc: OCD Aztec Office K. E. Beasley, EPNG El Paso STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS GOVERNOR POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

September 14, 1990

Mr. Kenneth E. Beasley, Manager North Region Compliance Engineering EL PASO NATURAL GAS COMPANY P. O. Box 1492 El Paso, Texas 79978

RE: Discharge Plan GW-54 Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Beasley:

In our letter of September 10, 1990, approving an extension of time to discharge without an approved discahrge plant at the Wingate Plant, an error was made in the date shown in condition number 2. Condition 2 should read:

2. Submittal of the discharge plan for OCD review by August 13, 1992.

I apologize for any inconvenience this has caused.

Sincerely,

David G. Boyer, Hydrogeologist Environmental Bureau Chief

DGB/sl

cc: OCD Aztec Office Dean Priest, Meridian Oil STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS

September 10, 1990

POST OFFICE 80X 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-918-402-360

Mr. Kenneth E. Beasley, Manager North Region Compliance Engineering EL PASO NATURAL GAS COMPANY P. O. Box 1492 El Paso, Texas 79978

RE: Discharge Plan GW-54 Wingate Fractionating Plant McKinley County, New Mexico

Dear Mr. Beasley:

On August 8, 1990, the Oil Conservation Division (OCD) received a request from Mr. Dean Priest of Meridian Oil for an extension of time of three years to operate the Wingate Plant without an approved discharge plan. Since we have not received formal notification of the plant sale, we are responding to your office. A decision on the request awaited EPNG's hydrogeological report on the facility which was received August 21, 1990. Information in the report supports a two-year extension of time for evaporation pond use.

Meridian's letter listed several estimates of time needed for evaluation of the plant operations, consultant evaluation, construction modifications and discharge plan compilation. WQCC Regulations only require approval of commitments to make necessary modifications, before plan approval, not completion of construction. Therefore, as discussed at the July 23, 1990 EPNG-Meridian-OCD meeting the term of the extension to discharge without and approved plan will be two years. The term of pond use is also two years although further short term or long term use will be authorized if such use is part of an approved discharge plan. Mr. Kenneth E. Beasle, August 10, 1990 Page -2-

Pursuant to Section 3-106.A of the New Mexico Water Quality Control Commission Regulations and for good cause shown, El Paso Natural Gas Company is hereby granted an extension of time until August 13, 1992 to submit a discharge plan application and to operate the Wingate Fracturing Plant to December 13, 1992 without an approved discharge plan provided the following conditions are met.

- Submittal to OCD within 90-days of receipt this letter results of the additional water analyses for the evaporation pond monitor wells, and water level measurements requested in Mr. David Boyer's September 10, 1990 letter to Mr. W. David Hall of EPNG. These tests are required to verify the results of previous tests that no hazard to ground water exists for short term continued use of the ponds.
- 2. Submittal of the discharge plan for OCD review by April 13, 1992.
- 3. Formal notification to OCD of transfer of the facility to Meridian and any conditions which may affect discharge plan preparation of this time extension.

This extension of time is valid for operation of the facility by EPNG or Meridian provided condition No. 3 is met.

If you have any questions, please feel free to contact David Boyer at (505) 827-5812 or Roger Anderson at (505) 827-5884.

Sincerely,

William J. LeMay Director

WJL/DGB/sl

cc: OCD Aztec Office Dean Priest, Meridian Oil STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

September 10, 1990

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT NO. P-918-402-361</u>

Mr. W. David Hall, Senior Engineer El Paso Natural Gas Company 3801 Atrisco Northwest Albuquerque, New Mexico 87120

RE: Wingate Plant Hydrogeologic Report Submittal

Dear Mr. Hall:

The Oil Conservation Division (OCD) has received the above report. The report generally demonstrates that continued short term use of the ponds is warranted although some discrepancies were seen in the sample results for pond monitor wells MW-2 and MW-3. Accordingly, I am requesting that EPNG conduct additional tests and provide the follow-up information listed below:

- 1. Remeasure water levels at all MW and WMH monitor wells and provide a water table map.
- 2. Resample the three evaporation pond monitor wells for general water chemistry, and purgeable aromatic and halogenated hydrocarbons. Water chemistry parameters include sodium, potassium, calcium, magnesium, chloride, sulfate and carbonate/bicarbonate.
- 3. Provide information, if available, on the depth of the confined water in each of the pond monitor wells during drilling and prior to its artisan level.

Formal approval to continue to use the ponds is being sent to Meridian Oil as part of their request for discharge plan extension. Additional field work, including installation of several more monitor wells, will be necessary if the ponds are to be in use beyond the term of the extension. Mr. W. David Hall August 10, 1990 Page -2-

If you have any questions, please contact me at (505) 827-5812.

. . i

Sincerely,

Å

Loger Cander

Monometric David G. Boyer, Hydrogeologist Environmental Bureau Chief

DGB/sl

cc: OCD Aztec Office K. E. Beasley, EPNG El Paso Dean Priest, Meridian Oil

DAMES & MOORE

OIL CONSERVE UN DIVISION REDEVED

· '90 AUG 2? AM 11 02

HYDROGEOLOGIC ASSESSMENT WINGATE FRACTIONATING PLANT FOR EL PASO NATURAL GAS COMPANY

BAMES & MOORE

August 21, 1990 D&M Job No. 01889-115-022

TABLE OF CONTENTS

			PAGE
1.0	SITE	CHARACTERISTICS	1-1
	1.1	GEOLOGY DESCRIPTION	1-1
		l.l.l Regional Geology	1-1 1-2
	1.2	HYDROGEOLOGY	1-2
		<pre>1.2.1 Regional Hydrogeology</pre>	1-2 1-3
	1.3	WATER QUALITY	1-5
		1.3.1 Regional Aquifer	1~5 1-5
	1.4	HYDROLOGIC FEATURES	1-5
	1.5	FLOOD PROTECTION	1-6
2.0	ADDI	TIONAL INFORMATION	2-1
	2.1	EFFECT ON GROUND WATER USERS	2-1
		2.1.1Aquifer Units	2-1 2-1 2-1 2-2
	2.2	SOIL PROPERTIES	2-3
	2.3	CLIMATE	2-3
	2.4	HISTORY OF OPERATION	2-3

REFERENCES

APPENDIX A: EVAPORATION POND MONITORING WELL INSTALLATION APPENDIX B: BORING LOGS OF WELL COMPLETION FORMS APPENDIX C: LABORATORY DATA SHEETS, WATER SAMPLE COLLECTION RECORDS, AND CHAIN-OF-CUSTODY FORMS

LIST OF TABLES

- TABLE 1.1: DEEP WELL CONSTRUCTION DATA
- TABLE 1.2: REGIONAL GROUND-WATER QUALITY DATA
- TABLE 1.3: WATER QUALITY ANALYSES EVAPORATION POND MONITORING WELLS
- TABLE 1.4: WATER QUALITY ANALYSES ENVIRONMENTAL ASSESSMENT MONITORING WELLS
- TABLE 2.1: WATER QUALITY ANALYSES OFFSITE WELLS
- TABLE 2.2: MONTHLY WEATHER DATA AND COOLING WATER TEMPERATURE
- TABLE A-1: MONITORING WELL CONSTRUCTION
- TABLE A-2: MONITORING WELL DEVELOPMENT AND PURGING
- TABLE A-3: WATER QUALITY ANALYSES EVAPORATION POND MONITORING WELLS

LIST OF FIGURES

- FIGURE 1.1: REGIONAL STRUCTURAL MAP SAN JUAN BASIN
- FIGURE 1.2: REGIONAL GEOLOGIC MAP
- FIGURE 1.3: GENERALIZED STRATIGRAPHIC COLUMN
- FIGURE 1.4: SHALLOW GROUND-WATER ELEVATIONS
- FIGURE 1.5: FLOOD HAZARD BOUNDARY MAP

1.0 SITE CHARACTERISTICS

1.1 GEOLOGY DESCRIPTION

1.1.1 Regional Geology

The Wingate Plant is situated along the southwestern margin of the San Juan Basin designated the Zuni Uplift, in the Colorado Plateau physiographic Province (Figure 1.1). The Zuni Uplift is a northwest trending structural dome comprising an area approximately 55 miles in length by 20 miles in width. The site lies at the head of the western side of the uplift termed the Nutria Monocline. The San Juan Basin forms an asymmetric basin covering an area of about 25,000 square miles in northwestern New Mexico, and portions of northeastern Arizona, and southwestern Colorado. The basin is reported to contain as much as 15,000 feet of Paleozoic and Mesozoic sediments (Cooley et al., 1969).

The regional geology in the area surrounding the Wingate Plant is shown in Figure 1.2. Based on available drilling log information the generalized Stratigraphic Column in Figure 1.3 was prepared. As shown, the surficial geology surrounding the site area is comprised of Quaternary-aged alluvial deposits. Below the alluvium lies a thick sequence (on the order of 1,500 feet) of Chinle Formation siltstones and mudstones. Underlying the Chinle Formation, in unconformable contact, is reported to be a 90-foot section of Moenkopi Formation siltstones and mudstones. Underlying the Moenkopi Formation, also unconformably, are the Permian-aged San Andres Limestone, and Glorieta Sandstone (102 and 230 feet thick, respectively), which comprise the regional aquifer in the site area. The deepest onsite well is completed into the top portion of the Yeso Formation also of Permian age, described as a fine-grained arkosic sandstone, to a depth of approximately 2,000 feet. Below the base of the Yeso Formation in descending order are the sandstone, claystone and siltstone of the Permian-aged Abo Formation, unnamed limestone and conglomerate rocks of Pennsylvania age, and Precambrian granitic and metamorphic rocks which comprise the basement rocks in the region.

1.1.2 Local Geology

The site lies along the south side of an east-west trending alluvial drainage formed by the South Fork of the Puerco River. To the south of the site are the Zuni Mountains, reaching a maximum elevation of around 9,000 feet. North of the Plant, a massive red sandstone escarpement comprised of the Triassic/Jurassic-aged sandstone and siltstone deposits of the Entrada and Wingate sandstones. It rises approximately 400 feet above the valley to an elevation of around 7,000 feet. The Wingate Plant property ranges in elevation from around 6,580 to 6,612 ft-MSL.

As shown in Figure 1.2, the surficial geology in the site area, consist of Quaternary-aged alluvium. These strata dip to the northwest at approximately 2-3 degrees.

1.2 HYDROGEOLOGY

1.2.1 Regional Hydrogeology

The hydrogeology of the region is a function of geologic structure and hydraulic properties of the sedimentary formations deposited in the Basin. Permeable sandstones and limestones, are typically interbedded with relatively impermeable shales, siltstones and mudstones, resulting in the formation of numerous confined aquifer systems in the Permian, Triassic, Jurassic, and Cretaceous-aged deposits. The northward dip of these strata in the southwestern portion of the San Juan Basin, in conjunction with the presence of impermeable overlying formations, result in recharge being limited to the outcrop exposure of the water-bearing unit, with progressively artesian conditions occurring to the north. The major regional aquifer in the site area is San Andres Limestone/Glorieta Sandstone Recharge to the San Andres/Glorieta aquifer occurs of Permian age. primarily in areas of the Zuni Mountains to the south of the site area.

As stated previously, the San Andres Limestone/Glorieta Sandstone formations constitute the primary aquifer in the region. This aquifer has been designated part of the C multiple-aquifer system (Cooley et al., 1969).

The top of the San Andres is found at a depth of approximately 1,670 feet, according to driller's log data from onsite wells. The thickness of the combined aquifer system in the site area is reported to be about 330 feet. Driller's log data from offsite wells approximately six miles to the east, which service the Plant via pipeline indicate the top of the San Andres/Glorieta aquifer to be present locally at a depth of around 1,000 feet. Based on well data from the four active wells (two onsite and two offsite), the San Andres/Glorieta aquifer appears to become more productive to the east perhaps reflecting an increased degree of fracturing and/or solution cavities in that area. Well construction data for all four Plant water supply wells is presented in Table 1.1. Available water quality data for these wells is contained in Table 1.2.

Available aquifer test data for the San Andres/Glorieta report transmissivity and storage coefficient ranges of ≤ 5 to 3,740 ft²/day, and 7.6 x 10⁻⁵ to 1.3 x 10⁻⁴, respectively (Shomaker, 1971).

1.2.2 Local Hydrogeology

Shallow borings in the southwestern corner of the Plant site associated with a geotechnical investigation for a railroad overpass (Sergent, Hauskins and Beckwith, 1987), encountered between 40 and 80 feet of unconsolidated clays, silty clays, silty sands and gravels, prior to auger refusal in weathered siltstones and sandstones. The specific capacity of offsite wells completed in alluvium is reported to range from 0.19 to 1.75 gpm/ft (Shomaker, 1971). A review of driller's logs for the onsite water supply wells indicated alluvial thicknesses on the order of 100 feet. These logs variously report that either the Chinle Formation or the basal unit of the Wingate sandstone underlie the alluvial fill deposits.

In order to better define the hydrogeology of the shallow alluvial aquifer and assess the impact of the Plant's wastewater impoundments (i.e. east and west evaporation ponds), three ground-water monitoring wells were installed around the impoundments. A more detailed discussion of the monitoring well installation and sampling program is provided in Appendix A. Two of these monitoring wells were sited downgradient, and one upgradient to

the approximate direction of shallow ground-water flow. The location of these three wells (MW-1, MW-2, and MW-3) in relation to the evaporation ponds are shown in Figure 1.4. In addition, elevation data and contours for these and four other wells installed onsite as part of a property transfer environmental assessment (WMH-1, 2, 3, and 4) are also presented in the same figure.

As shown by the water level contours in Figure 1.4, the direction of ground-water flow in the alluvial aquifer underlying the site was to the northwest when measured on July 17, 1990. Water levels in the evaporation pond monitoring wells, measured on June 23, 1990, prior to the installation of the WMH series monitoring wells, indicate a more westerly flow direction prevailed at that time. This apparent shift in flow direction may be due to a reduction in the subsurface flow associated with the South Fork of the Puerco River, or conversely an increase in the ground-water flow component from the southern portion at the basin.

Boring logs from the evaporation pond monitoring wells (Appendix A) indicate the presence of an apparently continuous clay layer underlying the evaporation ponds at shallow depth. This clay unit appears to thin to the southeast in boring MW-3, and was not encountered in the WMH series borings. The areal extent of the clay unit to the north, west and south, is unknown.

Ground-water in the alluvial aquifer was found to occur under confined conditions. The upper water-bearing unit consisted of a sandy clay encountered below the clay layer. Following completion of the evaporation pond monitoring wells, water levels rose to within three feet of the surface. In contrast, ground-water in the WMH series wells, located to the southeast of the evaporation ponds, appeared to occur under unconfined conditions.

1.3 WATER QUALITY

1.3.1 Regional Aquifer

Water quality data for the four Plant water supply wells is presented in Table 1.2. The data for the onsite wells probably represent a composite of that found in the San Andres/Glorieta aquifer and the Sonsila Sandstone bed of the Chinle Formation. Ground-water from these wells meets New Mexico State water quality standards.

1.3.2 Alluvial Aquifer

Two rounds of ground-water samples have been collected from the evaporation pond monitoring wells MW-1, MW-2, and MW-3. The first samples were collected on June 23, 1990, following well installation and development. The second round of samples were obtained approximately three weeks later on July 14, 1990. These samples were analyzed for primary and secondary drinking water constituents. The results of these analyses are presented in Table 1.3.

Water samples were also collected from the WMH series monitoring wells on July 17, 1990. The results of these analyses are presented in Table 1.4.

1.4 HYDROLOGIC FEATURES

The northern portion of the Wingate Plant property is bounded by the South Fork of the Puerco River. The Puerco is an intermittent stream tributary to the Little Colorado River watershed. The confluence of the North and South forks occurs to the west of the Plant, upstream from the City of Gallup. The Puerco River (north and south branches) comprises a drainage area of approximately 558 square miles. No other surface water sources are known to be present within a one mile radius of the Wingate Plant.

Surface water runoff upgradient of the Plant property to the south is intercepted by the I-40 Freeway, and routed to the south around the facility. Runoff from the east of the Plant is channeled north to the Puerco River. Onsite run-off is routed to the north and south of the developed portion of the site, where it rejoins pre-existing natural drainages to the west.

1.5 FLOOD PROTECTION

The Flood Hazard Boundary Map for this portion of McKinley County (HUD, 1978) delineates the area described as "subject to special flood hazards" shown in Figure 1.5. This area is approximately that which would be inunated as a result of a 100-year flood flow in the Puerco River. Although it appears from this information that some undeveloped areas of the Plant property, outside the stream channel, may be subject to flooding, no facilities, with the possible exception of the evaporation ponds appears to be at risk as a result of flood flows in the Puerco River.

DEEP WELL CONSTRUCTION DATA

	WELL NUMBER					
	#3 (ON SITE)	#4 (ON SITE)	#6 (OFFSITE)	#7 (OFFSITE)		
Location	T15N R17W S16 NE/NE/NE	T15N R17W S16 NE/NE/NE	T15N R16W S28 SE/SE/NE	T15N R16W S20 NW/SE/NE		
Completion Date	04/53	05/53	03/58	02/67		
Total Depth (ft)	2,012	1,941	1,275	1,384		
Casing Depth	16-76	12-3/4-131	16-264	16-180		
(in/ft) .	12-3/4-185 8-5/8-1,614 6-2,012	8-5/8-1,610	12-3/4-1,033	12-3/4-1,296		
Perforated						
Interval (ft-ft)	122-185	811-830	Open hole			
	815-835 1,180-1,230	1,173-1,220 Open hole/1,94	1,033-1,275	Open Hole 1,296-1,384		
	1,100 1,200	open noie/1,)-	*1	1,290 1,304		
Static Water	Planta -	80				
Level 10/89 (ft)	Flowing Artesian	89	Flowing Artesian	Flowing Artesian		
Pumping Water Level 10/89 (ft)	810	Not measured	290	310		
Well Yield (gpm)	55	67	261	237		

REGIONAL GROUND-WATER QUALITY DATA

	WELL NUMBER					
	#3 (ON SITE)		#4 (ON SITE)	#6 (OFF SITE)	#7 (OF	F SITE)
	T15N R17W		T15N R17W	T15N R16W	T15N	R16W
	S16 N	E/NE/NE	S16 NE/NE/NE	S20 SE/SE/NE	S20 N	W/SE/NE
Constituent	04/09/76	04/04/89	04/14/89	04/04/89	04/09/89	04/14/89
рН	8.2	7.7	7.7	7.8	7.75	7.6
Alkalinity, Total (as CaOO3)	174	202	191	164	166	166
Calcium	62	40	107	156	344	154
Chloride	64	34	16	17	14	16
Fluoride		0.39	0.24	0.23	—	0.23
Hardness, Total (as CaOO3)	118	190	420	628	680	710
Iron, Dissolved	—	0.15	0.13	0.12		0.1
Iron, Total	_	0.37	7 . 9 ²	0•35		0.15
Magnesium	56	22	37	58	336	79
Manganese, Dissolved	—	0.12	0.16	0.14	—	0.14
Manganese, Total		0.17	0.22	0•17		0.17
Nitrate (as NO3)		<0.1	<0.1	<0.1	_	<0.1
Nitrate (as NO2)		0.03	0.06	0.02		0.03
Potassium		5.1	6.7	5.2		5.4
Silica		9•4	8.2	7.1		7.1
Sodium		237	82	75		39
Specific Conductance (umho)	1360	1215	1171	1199	1340	1173
Sulfate	502	478	410	614	679	618
Total Dissolved Solids	888	932	944	1058	1135	921
Turbidity	9.2			—	4.4	
Biological Oxygen Demand (BOD)		<1	<1	<1		<1
Chemical Oxygen Demand (COD)		<1	<1	<1		<1
Ammonia Nitrogen (as NH4)		0.35	0.25	0.29	—	0.13
Total Organic Carbon (TOC)		0.67	0.62	1.09	—	0.68

¹All results in milligrams per liter (mg/1) unless otherwise noted.

.

 $^2\mathrm{Iron}$ concentration believed to be a result of recent well rehabilitation

WATER QUALITY ANALYSES¹ EVAPORATION POND MONITORING WELLS

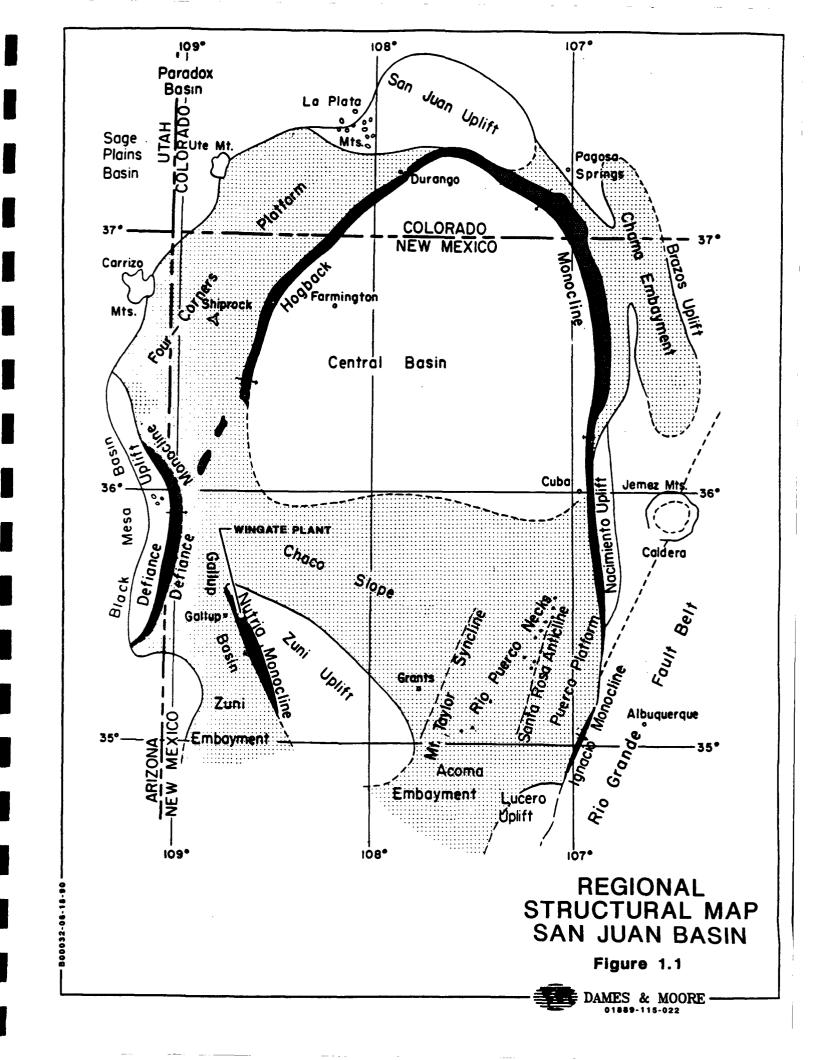
Į.

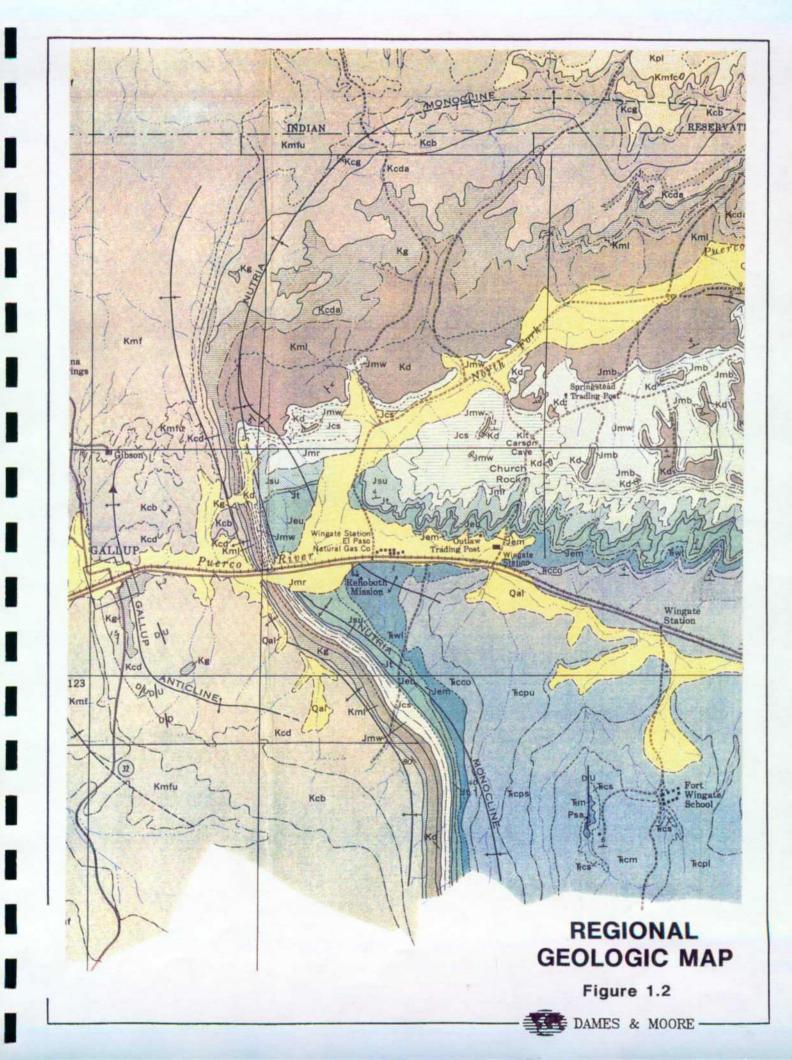
	Mi		MW	-	MW	-3	MC	Ls ²
Field Data	6/23/90	7/14/90	6/23/90	7/14/90	6/23/90	7/14/90	Primary	Secondary
рH	7.93	7.60	7.93	7.69	7.62	7.05		
Specific Conductance						/ • • • •		
(unhos/cm)	1,400	600	1,700	1,300	1,500	520		
Temperature (°C)		16		15		16		
Laboratory Data								
рН	8.4	8.3	8.5	8•4	8.1	7.8		6–9
Alkalinity, Total								
(as CaCo3)	420	444	735	281	659	419		
Carbonate (as CaCO3)	6	<1	40	10	<1	<1		
Bicarbonate (as CaCO3)	414	444	695	271	659	419		
Hydroxide	<1	<1	<1	<1	<1	<1		
Chloride (Cl)	15.7	20.9	50	79	140	21.8		250
Fluoride (F)	0.83	0 •9 7	1.49	1.77	1.32	1.09	1.6	
Nitrate (as N)	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	10	
Sulfate (SO4)	1.0	19	73	240	280	26		600
Total Dissolved Solids (TDS)	490	570	1,010	1,400	1,350	520		1,000
Silver (Ag)	<0.01	<0.01	<0•01	<0.01	<0.01	<0.01	0.05	
Arsenic (As)	<0.005	<0.005	<0.005	0.021	<0.005	0.007	0.1	
Barium (Ba)	0.248	0.235	0.158	0.175	0.110	0.139	1.0	
Calcium (Ca)	11.3	9.9	18.2	18.8	46.8	0.5		
Cadmium (Cd)	<0.005	0.006	<0.005	0.006	<0.005	<0.005	0.01	
Chromium (Cr)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	
Copper (Cu)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		1.0
Iron (Fe)	0.216	1.40	3.111	2.34	0.067	0.658		1.0
Hardness	63.6	54.4	96.5	92.6	186	1.2		
Mercury (Hg)	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.002	
Magnesium (Mg)	8.6	7.2	12.4	11.1	16.7	<0.1		
Manganese (Mn)	0.174	0.228	0.290	1.36	0.242	0.481		0.2
Sodium (Na)	172	176	362	470	445	120		
Lead (Pb)	0.002	<0.002	<0.002	0.004	0.004	<0.002	0.05	
Selenium (Se)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.05	
Zinc (Zn)	<0.010	0.043	0.015	0.120	<0.010	0.094		10

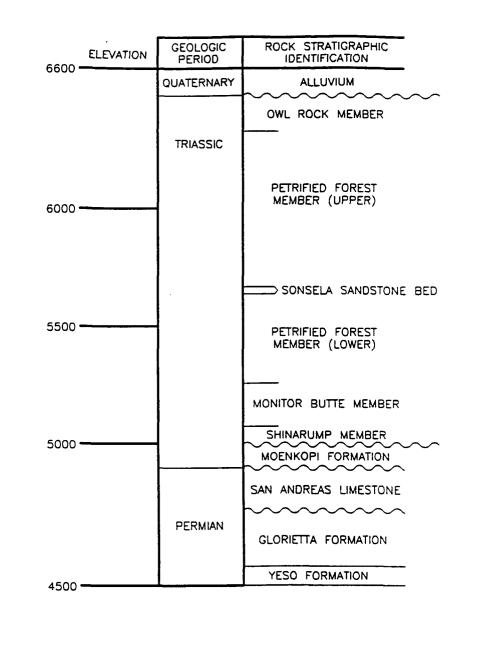
¹All results reported in milligrams per liter (mg/l) unless otherwise indicated

²New Mexico Water Quality Control Commission Human Health Standard Sections 3-013(A&B) Maximum Contaminant Levels

ì.


WATER QUALITY ANALYSES¹ ENVIRONMENTAL ASSESSMENT MONITORING WELLS


	WMH-1	WMH-2	WMH-3	MC	له ²
_				Primary	Secondary
Constituents					
pH	7.9	7.6	7.3	-	6-9
Alkalinity, Total					
(as CaCo3)	-	-	-	-	
Carbonate (as CaCO3)	-	-	-	-	-
Bicarbonate (as CaCO3)	-	-	-	-	
Hydroxide	-	-	-		-
Chloride (Cl)	38	68	23	-	250
Fluoride (F)	1.3	1.4	1.2	1.6	
Nitrate (as N)	<0.1	<0.1	<0.1	10	-
Sulfate (SO4)	-	-	-	-	600
Total Dissolved Solids (TDS)	780	1,200	540	-	1,000
Silver (Ag)	<0.01	<0.01	<0.01	0.05	-
Arsenic (As)	<0.005	<0.005	<0.005	0.1	-
Barium (Ba)	0.29	0.14	0.12	1.0	-
Calcium (Ca)	-	-	-	-	-
Cadmium (Cd)	<0.01	<0.01	<0.01	0.01	
Chromium (Cr)	<0.02	<0.02	<0.02	0.05	-
Copper (Cu)	0.01	0.02	<0.01	-	1.0
Iron (Fe)	5.2	2.0	1.4	-	1.0
Hardness	-	_	-	-	-
Mercury (Hg)	<0.005	<0.005	<0.005	0.002	
Magnesium (Mg)	-	· 🗕	-	-	_
Manganese (Mn)	0.24	0.19	0.38	-	0.2
Sodium (Na)	-	-	-	-	-
Lead (Pb)	<0₊05	<0.05	<0.05	0.05	-
Selenium (Se)	0.005	<0.005	<0.005	0.05	-
Zinc (Zn)	0.01	0.05	0.05	-	10
Aluminum (Al)	0.7	0.9	0.5	-	-
Molybdenum (Mo)	<0₊5	<0.5	<0.5	-	_
Nickel (Ni)	<0.04	<0.04	<0.04	-	
Cyanide	<0.005	<0.005	<0.005	-	_
Cobalt (Co)	<0.05	<0.05	<0.05	-	-
Total Organic Nitrogen	0.7	1.8	<0.3	-	-

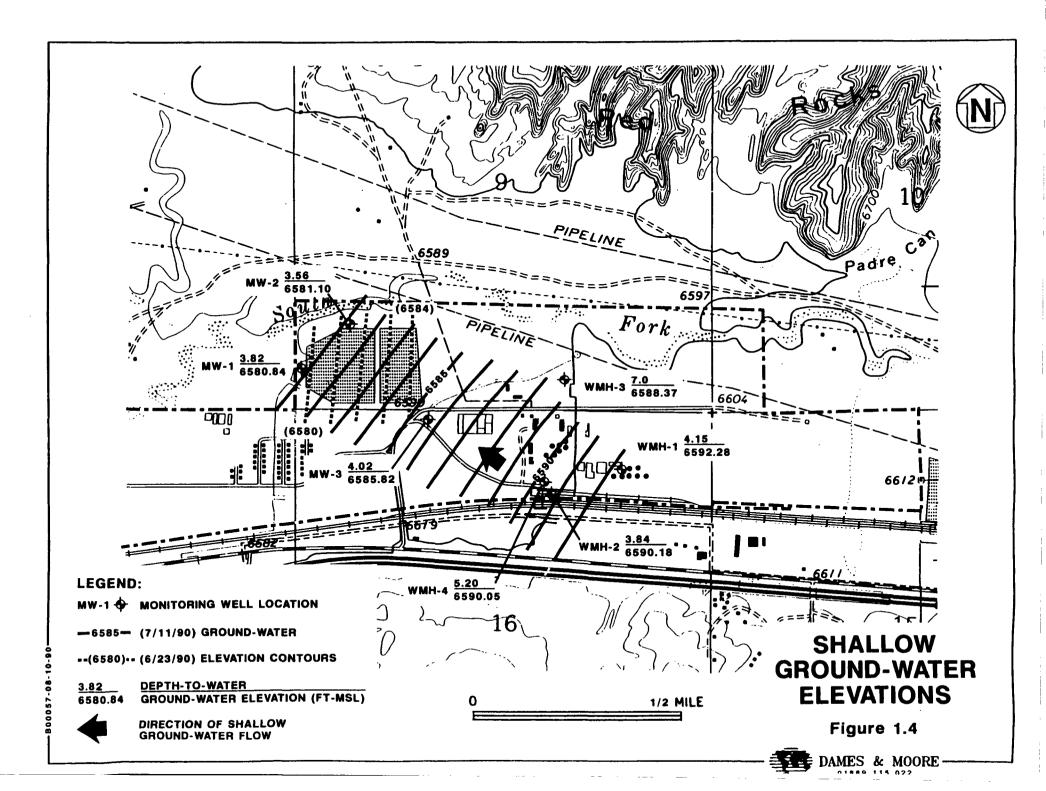

 ^{1}All results reported in milligrams per liter (mg/1)

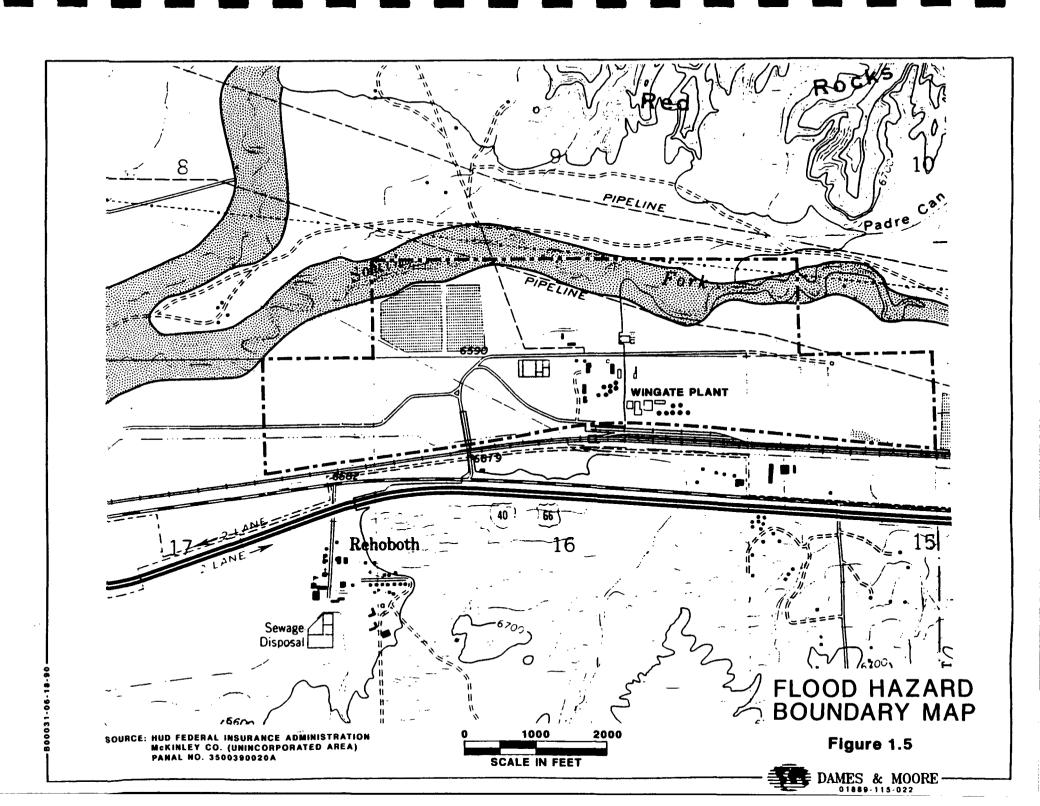
 $^2\mathrm{New}$ Mexico Water Quality Control Commission Human Health Standard Sections 3-013(A&B) Maximum Contaminant Levels

Source: John Mathes & Associates

LEGEND: —— CONTACT ~~ UNCONFORMABLE CONTACT

VERTICAL SCALE: 1 INCH = 400 FEET


00011-06-15-90


GENERALIZED STRATIGRAPHIC COLUMN

CHINLE FORMATION

Figure 1.3

DAMES & MOORE -01889-115-022

2.0 ADDITIONAL INFORMATION

2.1 EFFECT ON GROUND WATER USERS

2.1.1 Aquifer Units

As identified in the previous section, three water-bearing units underlie the Wingate Plant. These units are:

- o The San Andres Limestone/Glorieta Sandstone formations, designated as the regional aquifer,
- o The Sonsela Sandstone Bed of the Chinle Formation, also utilized by the onsite water supply wells, and
- o The basin fill alluvial deposits adjacent to the Puerco River, designated as the uppermost water-bearing zone.

2.1.2 San Andres/Glorieta Aquifer

The San Andres Limestone and Glorieta Sandstone formations of Permian age are present at depths of between 1,670 and 2,000 feet beneath the site area. This aquifer system occurs under confined conditions regionally, and is used for municipal, industrial, domestic and stock purposes. The depth of this aquifer, the presence of flowing artesian conditions, and thick sequence of relatively impermeable overlying formations, appear to preclude the possibility of contamination occurring as a result of the activities at the Wingate Plant.

2.1.3 Sonsela Sandstone Bed

The Sonsela Sandstone Bed, supporting the upper and lower parts of the Petrified Forest Member of the Chinle Formation, is screened in the onsite water supply wells at depths of between 811 and 835 feet. The presence of the overlying Upper Petrified Forest unit, and the confined conditions reported to occur within the unit, are also believed sufficient to preclude any potential contamination occurring due to activities at the Wingate Plant.

2.1.4 Shallow Alluvial Deposits

The uppermost water-bearing unit at the Wingate Plant site are the alluvial basin fill which underlie the Plant at the surface to a depth of approximately 100 feet.

The locations of wells within one mile of the Wingate Plant and the onsite water supply wells are shown in Figure 2.1 (USGS, 1990). All the offsite wells listed are shallow alluvial wells to the east and upgradient of the facility. The available water quality data for these wells are presented in Table 2.1. A number of additional wells were identified as part of a previous investigation at the Wingate Army Depot (Shomaker, 1971). However, even at the time of this earlier study most of these wells were reported to be capped or abandoned.

Based on the results of laboratory analyses of the wastewater in the evaporation ponds, the elevated constituents present in excess of New Mexico water quality standards are TDS (10,000 to 75,800 ug/l), chloride (4,180 to 26,000 mg/l) and sulfate (2,400 to 10,000 mg/l). A comparison of these values with those reported for the water quality data from the evaporation pond monitoring wells, WMH series monitoring wells, and offsite alluvial wells, resulted in the following conclusions:

- o The total dissolved solids (TDS) concentrations in the offsite alluvial wells ranged from approximately 500 to 950 mg/l. The remaining chemical parameters appeared to meet all other New Mexico State primary and secondary quality water requirements.
- o The range in TDS values for the onsite monitoring wells is from approximately 500 to 1,400 mg/1, with individual analysis for fluoride, iron and manganese in excess of state MCLs.
- o Although the TDS levels in MW-2 and MW-3 appear to be slightly elevated with respect to TDS concentration reported for offsite alluvial wells, from analyses during the period 1964-1975, they do not appear to be significantly higher than TDS concentrations observed in the WMH series monitoring wells upgradient from the evaporation ponds. Monitoring well MW-3 which exhibited the second highest TDS concentration of the onsite monitoring wells, is also upgradient to the evaporation ponds. Chloride and sulfate were also not found to differ significantly between monitoring wells downgradient and upgradient to the evaporation ponds.

The foregoing support a conclusion that the elevated concentrations noted for several constituents is not due to the infiltration of poor quality water from the evaporation ponds into the shallow ground-water system, but is characteristic of the relatively poor water quality present in the shallow aquifer system.

2.2 SOIL PROPERTIES

Soil survey data for the Wingate Plant area is not available at this time from the U.S. Soil Conservation Service or New Mexico state agency (U.S. Soil Conservation Service, personal communication).

2.3 CLIMATE

The El Paso Natural Gas Company (EPNG) Wingate Plant is located in a semi-arid region. Data recorded at the Wingate weather station shows an annual precipitation of 9.66 inches. The mean annual temperature is 49.2°F. A monthly summary of temperatures, precipitation and relative humidity is given in Table 2.2.

The prevailing winds are southwesterly although southeasterly and west-southwesterly winds are also common. Strong winds are predominant in the winter and spring months.

The area is prone to lightning strikes which necessitate an extensive protection system against lightning caused fires.

2.4 HISTORY OF OPERATION

The initial section of the EPNG Wingate Plant was the "A" plant. It was designed by Fluor Corporation to process 338,991 gallons per day of natural gas liquids. It was placed in service on October 28, 1953 and modified in May 1962.

The "B" plant section was designed by Sterns-Roger and Fish Engineering Corporations to process 659,038 gallons per day. This section was placed in service on October 25, 1956.

A deisobutanizer plant was designed by Fish Engineering. It was placed in service in December 1957. A new plant was built in May 1962 and the original plant was abandoned in place. It currently produces 250,000 gallons per day of normal butane and 115,000 gallons per day of isobutane.

The "C" plant section was designated by Sterns-Roger Corporation to process 330,000 gallons per day. It was placed in service on April 7, 1967.

A train loading facility capable of handling 82 cars was placed in service on September 15, 1959. A major fire occurred at this facility in 1982. A deluge system and lightning protection system were installed as a result for both truck and train loading racks.

A company lodging camp consisting of forty-eight houses and twenty-three house trailers existed on the property and received utilities from the plant. The camp was retired and the houses and trailers were removed in 1986.

Table 2.1

WATER QUALITY ANALYSES¹ OFFSITE WELLS ADJACENT TO WINGATE PLANT

	14.1	14•1A	15.1321	15.2414	•2414 MCL	
	08/07/75	08/07/75	03/65	03/65	Primary	Secondary
Laboratory Data						
pH (units)	8.5	8.5	7.7	7.7	-	6-9
Alkalinity, Total						
(as CaCo3)	315	524	418	-	-	-
Carbonate (as CaCO3)	61	83	-	-	-	-
Bicarbonate (as CaOO3)	260	470	510	282	-	-
Hydroxide	-	-	-	-	-	-
Chloride (Cl)	50	82	23	50	-	250
Fluoride (F)	1.3	1.2	0.6	0.5	1.6	_
Nitrate (as N)	0.14	0.14	0.05	6.6	10	-
Sulfate (SO4)	210	39	173	340	-	600
Total Dissolved Solids (TDS)	739	747	692	932	-	1,000
Silver (Ag)	-	-	-	-	0.05	
Arsenic (As)	-		-		0.1	_
Barium (Ba)	-	-	-	_	1.0	-
Calcium (Ca)	22	22	52	98	-	
Cadmium (Cd)	-	-	-	-	0.01	-
Chromium (Cr)	_	_	-	-	0.05	-
Copper (Cu)		-	-	-	-	1.0
Iron (Fe)	·	-		-	-	1.0
Hardness (as CaCO3)	75	80	372	352	-	-
Mercury (Hg)	-	-	-		0.002	-
Magnesium (Mg)	4.8	6.1	59	26	-	
Manganese (Mn)	-	_	-	-	-	0.2
Sodium (Na)	260	280	120	189	-	-
Lead (Pb)	-	_	-	-	0.05	-
Selenium (Se)	-	_ ·	-	-	0.05	_
Zinc (Zn)	-	-	-	-	-	10
Silica (SiO ₂)	-	-	13	11	-	-
Potassium (K)	0.8	1.0		-	-	
Boron (B ₂)	0.26	0.54	-	-	-	-

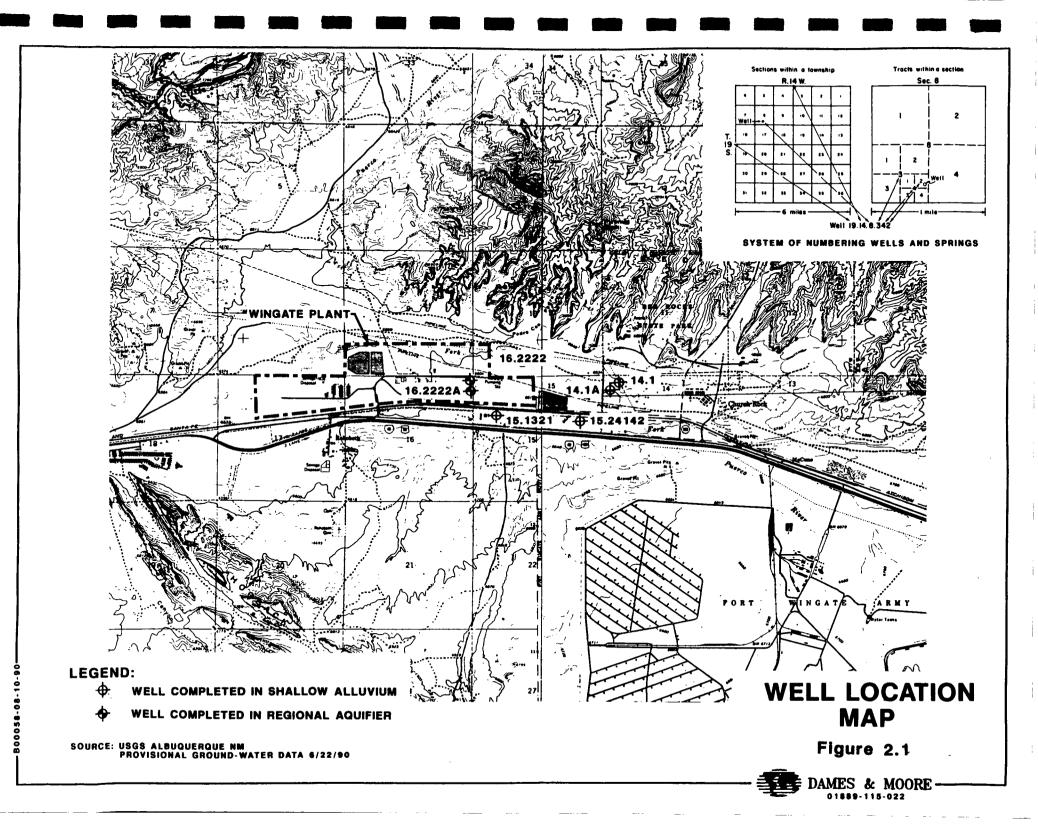
¹All results reported in milligrams per liter (mg/l) unless otherwise indicated

 $^2{\rm New}$ Mexico Water Quality Control Commission Human Health Standard Sections 3-013(A&B) Maximum Contaminant Levels

TABLE 2.2

ţ.

i I


ł.

į.

MONTHLY WEATHER DATA AND COOLING WATER TEMPERATURE

	Mean Temp, °F	Normal Precipitation Inches	Mean Relative Humidity %	Cooling Water Min. Temp °F	Lake Evaporation inches
Jan.	28.8	0.63	75	32°	0.59
Feb.	33.6	0.54	65	32°	0.78
March	38.9	0.63	54	33°	1.31
April	46.9	0.41	50	40°	3.19
May	55.5	0.38	33	43°	5.94
June	65.1	0.40	38	52°	9.03
July	70.9	1.52	60	62°	11.06
Aug.	68.7	1.61	58	60°	9.20
Sept.	62.0	0.95	59	54°	6.05
Oct.	51.2	1.30	50	43°	3.16
Nov.	38.3	0.67	55	33°	1.09
Dec.	30.2	0.62	72	32°	0.06
Year	49.2	9.66	58	43°	52.0

Source - NOAA, USDA

REFERENCES

- Cooley, M.E., Harshberger, J.W., Akers, J.P., and Hardt, W.F., 1969, Regional Hydrogeology of the Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah, USGS Professional Paper 521-A.
- Personnel Communication, Mr. Ken Scheffy, U.S. Soil Conservation Service, Albuquerque, New Mexico, June 20, 1990.
- Sergent, Hauskins, and Beckwith Engineers, 1987, EPNG Wingate Plant Railroad Bridge Overpass - Geotechnical Investigation Report, June 26, 1987.
- Shomaker, J.W., 1971, Water Resources of Fort Wingate Army Depot and Adjacent Areas, McKinley County, New Mexico, USGS Open File Report MK-32, September 1971.

İ

1

- U.S. Department of Housing and Urban Development, Federal Insurance Administration, 1978, Flood Hazard Boundary Map, McKinley County, New Mexico.
- U.S. Geological Survey, Well Information Database, McKinley County, New Mexico, June 6, 1990, Albuquerque, New Mexico.

APPENDIX A

EVAPORATION POND MONITORING WELL INSTALLATION

EVAPORATION POND MONITORING WELL INSTALLATION

LOCATION

The evaporation ponds are located at the Wingate Natural Gas Processing Facility, east of Gallup, New Mexico.

PURPOSE AND SCOPE

In order to assess the impact of the Plant's wastewater evaporation ponds on the uppermost water-bearing unit, three monitoring wells were installed around the impoundments. Two of the wells were placed hydraulically downgradient, and one upgradient, of the ponds.

METHODOLOGY

The monitoring wells MW-1, MW-2, and MW-3, were installed during the period June 19-22, 1990, by Rodgers Drilling, of Albuquerque, New Mexico, utilizing a CME-75 truck-mounted drilling rig equipped with hollow-stem continuous flight augers. Boring logs were compiled based on drill cuttings. The borings were drilled to the following depths:

Boring	Depth (ft.)
MW-1	56
MW-2	48
MW-3	48

Boring logs for these sites are attached.

Well Completions

The monitoring wells shown in Figure 1, were constructed using 4-inch diameter schedule 40 PVC casing and screen consisting of 0.1-inch slot perforations. At the surface the PVC casing is protected by a 6-5/8 inch diameter steel casing and locking cap. The monitoring well

A-1

construction data are summarized in Table A-1. The well elevations were surveyed on June 25, 1990, by Daggett Surveying, Inc., of Farmington, New Mexico.

Table A-1

MONITORING WELL CONSTRUCTION

	<u>MW-1</u>	<u>MW-2</u>	<u>MW-3</u>
Well Depth (ft.)	45	45	45
Screened Interval (ft-ft)	20-45	20-45	20-45
Elevation Top of PVC Casing	6,582.93	6,584.99	6,588.95
Elevation Top of Steel Casing	6,584.66	6,585.37	6,589.84

Well completion forms for each well are continued in Appendix B.

Boring Log Data

The boring logs indicated the presence of an apparently continuous clay unit underlying the surface impoundments at shallow depth. Based on the ground surface elevations at the three sites, the top of the clay unit appears to dip gently to the west. In the area immediately around the evaporation ponds, the clay layer reached a maximum thickness of 19 feet, at MW-1, apparently thinning toward the southeast, where it exhibited a thickness of 11 feet in MW-3. Boring log data is continued in Appendix B.

Underlying the relatively impermeable clays was a sandy clay zone which continued to the total depth of the boring, except in MW-2 which encountered a clayey sand at 45 feet. This unit constitutes the uppermost water-bearing unit at this location. The water-bearing unit is presumed to be under confined conditions due to the subsequent rise in water levels to within three feet of the surface following well completion.

Well Development

The monitoring wells were developed on June 23, 1990, utilizing a 4-inch diameter submersible pump. In order to facilitate the development process the pump was periodically raised and lowered opposite the screened

A-2

portion of the well. Table A-2 summarizes the volume of water added to the well during installation of casing and screen and pumped during development.

Table A-2

MONITORING WELL DEVELOPMENT AND PURGING

Units (gallons)	<u>MW-1</u>	<u>MW-2</u>	<u>MW-3</u>
Water Added During Completion	66	75	75
Water Pumped During Development	>400	>500	>500
Excess Water Removal	>334	>425	>425
Number of Saturated Casing Volumes	>12.3	>15.4	>15.4

Well Sampling

Following development and field measurement of pH and specific conductance, the monitoring wells were sampled on June 22, 1990 utilizing a nylon disposable bailer and line. A total of three one-liter containers were collected at each well. The water sample from each well intended for metal analyses was filtered in the field and preserved with HNO₃.

Upon collection the samples were labeled and immediately placed in an iced cooler for storage pending delivery to the laboratory conducting the analyses.

A second round of ground-water samples from MW-1, MW-2, and MW-3 were collected by El Paso Natural Gas personnel on July 14, 1990. The samples were obtained and by air-lift pumping preserved in a manner similar to that described above, after purging, and field measurement of pH, specific conductance, and temperature.

Standard chain-of-custody procedures were followed for all samples. Completed chain-of-custody forms and sample collection records are continued in Appendix C.

A-3

ANALYSES

NO

The samples were delivered to Analytical Technologies, Inc. of Tempe, Arizona for analysis. The water samples were analyzed for primary and secondary drinking water parameters, in accordance with EPA methods.

RESULTS OF ANALYSES

The results of the analyses for primary and secondary drinking water standards are summarized in Table A-3. Laboratory data sheets for these analyses are continued in Appendix C.

A great deal of variability were observed between wells and also between successive samples from the sample well. This observation was particularly true for monitoring well MW-3, where concentration differences on the order of two orders of magnitude were reported for several constituents. MW-3 parameters which exceeded one order of magnitude difference between the June 23, 1990 and July 14, 1990 analyses included chloride, sulfate, calcium, hardness, and magnesium. In contrast, only sulfate and iron were found to exhibit a similar variability for MW-1 and MW-2, respectively. The reasons behind the observed variability are not known, and may be a function of the natural dynamics of the water-bearing unit.

Table A-3

WATER QUALITY ANALYSES¹ EVAPORATION POND MONITORING WELLS

Ì

pH 7.93 7.60 7.93 7.69 7.62 7.05 Specific Conductance (umhos/cm) 1,400 600 1,700 1,300 1,500 520 Temperature (°C) — 16 — 15 — 16 Laboratory Data		MW-1		MW	-2	M	-3	MCLs ²	
Specific Conductance (mhos/cm) 1,400 600 1,700 1,300 1,500 520 Temperature (°C) 16 15 16 Laboratory Data pH 8.4 8.3 8.5 8.4 8.1 7.8 $6-9$ Alkalinity, Total (as CaCo ₃) 420 444 735 281 659 419 Carbonate (as CaO3) 6 (1 40 10 (1 (1 Bicarbonate (as CaO3) 414 444 695 271 659 419 Hydroxide (1 (1 (1 (1 (1 (1 (1 (1 (1 (1) (1) (2) (2) Bicarbonate (as CaO3) 414 444 695 271 659 419 (1)	Field Data	6/23/90	7/14/90	6/23/90	7/14/90	6/23/90	7/14/90	Primary	Secondary
Specific Conductance (mhos/cm) 1,400 600 1,700 1,300 1,500 520 Temperature (°C) 16 15 16 Laboratory Data pH 8.4 8.3 8.5 8.4 8.1 7.8 $6-9$ Alkalinity, Total (as CaCo ₃) 420 444 735 281 659 419 Carbonate (as CaO3) 6 (1 40 10 (1 (1 Bicarbonate (as CaO3) 414 444 695 271 659 419 Hydroxide (1 (1 (1 (1 (1 (1 (1 (1 (1 (1) (1) (2) (2) Bicarbonate (as CaO3) 414 444 695 271 659 419 (1)	На	7.93	7.60	7.93	7.69	7.62	7.05		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-								
Temperature (°C) — 16 — 15 — 16 Laboratory Data pH 8.4 8.3 8.5 8.4 8.1 7.8 6^{-9} Alkalinity, Total (as CaCo ₃) 420 444 735 281 659 419 Carbonate (as CaO ₃) 6 <1	-	1,400	600	1.700	1,300	1,500	520		
pH 8.4 8.3 8.5 8.4 8.1 7.8 6-9 Alkalinity, Total (as CaCo ₃) 420 444 735 281 659 419 Carbonate (as CaCO ₃) 6 (1 40 10 (1 (1 Bicarbonate (as CaCO ₃) 414 444 695 271 659 419 Hydroxide (1 (1 (1 (1 (1 (1 Chloride (Cl) 15.7 20.9 50 79 140 21.8 250 Fluoride (F) 0.83 0.97 1.49 1.77 1.32 1.09 1.6 Nitrate (as N) (0.06 (0.06 (0.06 (0.06 (0.06 10 Sulfate (SO ₄) 1.0 19 73 240 280 26 600 Total Dissolved Solids (TDS) 490 570 1,010 1,400 1,350 520 1,000 Silver (Ag) (0.01 (0.01 (0.01 (0.01 0.01 0.05 Arsenic (As) 0.025 (0.005 (0.005 0.021 (0.005 0.007 0.1 Barium (Ba) 0.248 0.235 0.158 0.175 0.110 0.139 1.0 Calcium (Ca) 11.3 9.9 18.2 18.8 46.8 0.5 Cadmium (Cd) (0.01 (0.01 (0.01 0.01 0.05 Arsense 6.000 (0.005 (0.005 0.005 0.005 0.005 0.005 0.01) Orronium (Cr) (0.01 (0.01 (0.01 0.01) 0.05 Cadmium (Cd) (0.02 (0.02 (0.02 (0.02 (0.02 (0.02 (0.02 1.00 Hardness 63.6 54.4 96.5 9.668 1.2 Hercury (Hg) (0.0002 (0.0002 (0.0002 (0.0002 (0.0002 (0.0002 Magnaese (Mh) 0.174 0.228 0.290 1.36 0.242 0.481 0.2 Sodium (Na) 172 176 362 470 445 120 Lead (Pb) 0.002 (0.005 (0.005 (0.005 (0.005 0.005 0.005 Selenium (Se) (0.005 (0.005 (0.005 (0.005 0.002 0.002 Sodium (Se) (0.005 (0.005 (0.005 (0.005 0.005 0.002 Sodium (Se) (0.005 (0.005 (0.005 (0.005 0.0002 (0.0002 (0.002 Sodium (Se)) (0.005 (0.005 (0.005 (0.005 0.0002 (0.002 Sodium (Se)) (0.005 (0.005 (0.005 (0.005 0.005 0.005 Selenium (Se) (0.005 (0.005 (0.005 (0.005 (0.005 0.005 Selenium (Se)) (0.005 (0.005 (0.005 (0.005 (0.005 0.005 Selenium (Se)) (0.005 (0.005 (0.005 (0.005 (0.005 0.005 Selenium (Se)) (0.005 (0									
Alkalinity, Total (as CaCo3)420444735281659419Carbonate (as CaC03)6<1	Laboratory Data								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	рH	8.4	8.3	8.5	8.4	8.1	7.8		69
$ \begin{array}{c} \mbox{Carbonate (as CaCO3)} & 6 & <1 & 40 & 10 & <1 & <1 \\ \mbox{Bicarbonate (as CaCO3)} & 414 & 444 & 695 & 271 & 659 & 419 \\ \mbox{Bydroxide} & <1 & <1 & <1 & <1 & <1 & <1 \\ \mbox{Carbonate (as CaCO3)} & 414 & 444 & 695 & 271 & 659 & 419 \\ \mbox{Bydroxide} & <1 & <1 & <1 & <1 & <1 \\ \mbox{Carbonate (C1)} & 15.7 & 20.9 & 50 & 79 & 140 & 21.8 & 250 \\ \mbox{Fluoride (C1)} & 15.7 & 20.9 & 50 & 79 & 140 & 21.8 & 250 \\ \mbox{Fluoride (F)} & 0.83 & 0.97 & 1.49 & 1.77 & 1.32 & 1.09 & 1.6 \\ \mbox{Sitrate (as N)} & <0.06 & <0.06 & <0.06 & <0.06 & <0.06 & <0.06 & <0.06 & <0.06 & <0.06 \\ \mbox{Sulfate (S04)} & 1.0 & 19 & 73 & 240 & 280 & 26 & 600 \\ \mbox{Sulfate (S04)} & 1.0 & 19 & 73 & 240 & 280 & 250 & 1,000 \\ \mbox{Silver (Ag)} & <0.01 & <0.01 & <0.01 & <0.01 & <0.01 & <0.01 & <0.01 \\ \mbox{Sulfate (As)} & <0.005 & <0.005 & <0.021 & <0.005 & 0.007 & 0.1 \\ \mbox{Barium (Ba)} & 0.248 & 0.235 & 0.158 & 0.175 & 0.110 & 0.139 & 1.0 \\ \mbox{Calcium (Ca)} & 11.3 & 9.9 & 18.2 & 18.8 & 46.8 & 0.5 \\ \mbox{Cadmium (Cd)} & <0.001 & <0.01 & <0.01 & <0.01 & <0.01 & <0.01 & <0.01 \\ \mbox{Const} & <0.002 & <0.02 & <0.02 & <0.02 & <0.02 & <0.02 & 1.0 \\ \mbox{Crown (Fe)} & 0.216 & 1.40 & 3.11 & 2.34 & 0.67 & 0.658 & 1.0 \\ \mbox{Harchness} & 63.6 & 54.4 & 96.5 & 92.6 & 186 & 1.2 \\ \mbox{Magnessium (Mg)} & 8.6 & 7.2 & 12.4 & 11.1 & 16.7 & <0.1 \\ \mbox{Magnessium (Mg)} & 172 & 176 & 362 & 470 & 445 & 120 \\ \mbox{Lead (Pb)} & 0.002 & <0.002 & <0.002 & <0.003 & <0.004 & <0.002 & 0.005 \\ \mbox{Suber (Ab)} & 0.0174 & 0.228 & 0.290 & 1.36 & 0.242 & 0.481 & 0.22 \\ \mbox{Solium (Na)} & 172 & 176 & 362 & 470 & 445 & 120 \\ \mbox{Lead (Pb)} & 0.002 & <0.002 & <0.002 & <0.005 & <0.005 & <0.005 & <0.005 \\ \mbox{Suber (Ab)} & 0.005 & <0.002 & <0.002 & <0.005 & <0.005 & <0.005 & <0.005 \\ \mbox{Suber (Ab)} & 0.005 & <0.005 & <0.005 & <0.005 & <0.005 & <0.005 & <0.005 \\ \mbox{Suber (Ab)} & 0.005 & <0.005 & <0.005 & <0.005 & <0.005 & <0.005 \\ \mbox{Suber (Ab)} & 0.005 & <0.005 & <0.005 & <0.005 & <0.005 & <0.005 & <0.005 \\ \mbox{Suber (Ab)} & 0.00$	Alkalinity, Total								
Bicarbonate (as CaO3)414444695271659419Hydroxide<1	(as CaCo3)	420	444	735	281	659	419		
Hydroxide $\langle 1$ <td>Carbonate (as CaCO3)</td> <td>6</td> <td><1</td> <td>40</td> <td>10</td> <td><1</td> <td><1</td> <td></td> <td></td>	Carbonate (as CaCO3)	6	<1	40	10	<1	<1		
	Bicarbonate (as CaCO3)	414	444	695	271	659	419		
	Hydroxide	<1	<1	<1	<1	<1	<1		
Fluoride (F) 0.83 0.97 1.49 1.77 1.32 1.09 1.6 Nitrate (as N) $\langle 0.06$ $\langle 0.00$ \langle	÷	15.7	20.9	50	79	140	21.8		250
Nitrate (as N) $\langle 0.06 \rangle$ $\langle 0.00 \rangle$ <		0.83	0 •9 7	1.49	1.77	1.32	1.09	1.6	
Total Dissolved Solids (TDS)4905701,0101,4001,3505201,000Silver (Ag) $\langle 0.01$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.007$ $\langle 0.1$ Barium (Ba) 0.248 0.235 0.158 0.175 0.110 0.139 1.0 Calcium (Ca)11.39.918.218.846.8 0.5 Cadmiun (Cd) $\langle 0.005$ 0.006 $\langle 0.005$ 0.006 $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ Ohromium (Cr) $\langle 0.01$ <	• •	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	10	
Silver (Ag) $\langle 0,01 \rangle$ $\langle 0,00 \rangle$ $\langle 0,00 \rangle$ $\langle 0,00 \rangle$ $\langle 0,01 \rangle$ $\langle 0,00 \rangle$ $\langle 0,00 \rangle$ $\langle 0,01 \rangle$ $\langle 0,00 \rangle$ $\langle 0,01 \rangle$ $\langle 0,00 \rangle$ $\langle 0,01 \rangle$ <td>Sulfate (SO4)</td> <td>1.0</td> <td>19</td> <td>73</td> <td>240</td> <td>280</td> <td>26</td> <td></td> <td>600</td>	Sulfate (SO4)	1.0	19	73	240	280	26		600
Arsenic (As) $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.007 \rangle$ 0.1 Bariun (Ba) 0.248 0.235 0.158 0.175 0.110 0.139 1.0 Calciun (Ca) 11.3 9.9 18.2 18.8 46.8 0.5 Cadmiun (Cd) $\langle 0.005 \rangle$ 0.006 $\langle 0.005 \rangle$ 0.005 $\langle 0.005 \rangle$ 0.005 Ohromiun (Cr) $\langle 0.01 \rangle$ $\langle 0.01 \rangle$ $\langle 0.01 \rangle$ $\langle 0.01 \rangle$ $\langle 0.01 \rangle$ $\langle 0.01 \rangle$ Copper (Cu) $\langle 0.02 \rangle$ $\langle 0.02 \rangle$ $\langle 0.02 \rangle$ $\langle 0.02 \rangle$ $\langle 0.02 \rangle$ $\langle 0.02 \rangle$ Iron (Fe) 0.216 1.40 3.111 2.34 0.067 0.658 1.0 Hardness 63.6 54.4 96.5 92.6 186 1.2 Mercury (Hg) $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ Magnesiun (Mg) 8.6 7.2 12.4 11.1 16.7 $\langle 0.1$ Manganese (Mn) 0.174 0.228 0.290 1.36 0.242 0.481 0.2 Sodium (Na) 172 176 362 470 445 120 Lead (Pb) 0.002 $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ Selenium (Se) $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$ $\langle 0.005 \rangle$	Total Dissolved Solids (TDS)	490	570	1,010	1,400	1,350	520		1,000
Bariun (Ba) 0.248 0.235 0.158 0.175 0.110 0.139 1.0 Calcium (Ca) 11.3 9.9 18.2 18.8 46.8 0.5 Cadmium (Cd) <0.005 0.006 <0.005 0.006 <0.005 <0.005 Chromium (Cr) <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 Copper (Cu) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Iron (Fe) 0.216 1.40 3.111 2.34 0.067 0.658 1.0 Hardness 63.6 54.4 96.5 92.6 186 1.2 Mercury (Hg) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 Magnesium (Mg) 8.6 7.2 12.4 11.1 16.7 <0.1 Manganese (Mn) 0.174 0.228 0.290 1.36 0.242 0.481 0.2 Sodium (Na) 172 176 362 470 445 120 122 Lead (Pb) 0.002 <0.002 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Silver (Ag)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	
	Arsenic (As)	<0.005	<0.005	<0.005	0.021	<0.005	0.007	0.1	
	Barium (Ba)	0.248	0.235	0.158	0.175	0.110	0.139	1.0	
	Calcium (Ca)	11.3	9.9	18.2	18.8	46.8	0.5		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cadmium (Cd)	<0.005	0.006	<0.005	0.006	<0.005	<0.005	0.01	
Iron (Fe) 0.216 1.40 3.111 2.34 0.067 0.658 1.0 Hardness 63.6 54.4 96.5 92.6 186 1.2 Mercury (Hg) $\langle 0.0002$ $\langle 0.0002$ $\langle 0.0002$ $\langle 0.0002$ $\langle 0.0002$ $\langle 0.0002$ Magnesium (Mg) 8.6 7.2 12.4 11.1 16.7 $\langle 0.1$ Manganese (Mn) 0.174 0.228 0.290 1.36 0.242 0.481 0.2 Sodium (Na) 172 176 362 470 445 120 Lead (Pb) 0.002 $\langle 0.002$ $\langle 0.002$ $\langle 0.003$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ Selenium (Se) $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$	Chromium (Cr)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	
Hardness 63.6 54.4 96.5 92.6 186 1.2 Mercury (Hg) $\langle 0.0002$ $\langle 0.0002$ $\langle 0.0002$ $\langle 0.0002$ $\langle 0.0002$ $\langle 0.0002$ Magnesium (Mg) 8.6 7.2 12.4 11.1 16.7 $\langle 0.1$ Manganese (Mn) 0.174 0.228 0.290 1.36 0.242 0.481 0.2 Sodium (Na) 172 176 362 470 445 120 Lead (Pb) 0.002 $\langle 0.002$ $\langle 0.002$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ Selenium (Se) $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$ $\langle 0.005$	Copper (Cu)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		1.0
Mercury (Hg) $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.0002 \rangle$ $\langle 0.002 \rangle$ </td <td>Iron (Fe)</td> <td>0.216</td> <td>1.40</td> <td>3.111</td> <td>2.34</td> <td>0.067</td> <td>0.658</td> <td></td> <td>1.0</td>	Iron (Fe)	0.216	1.40	3.111	2.34	0.067	0.658		1.0
Magnesium (Mg) 8.6 7.2 12.4 11.1 16.7 <0.1 Manganese (Mn) 0.174 0.228 0.290 1.36 0.242 0.481 0.2 Sodium (Na) 172 176 362 470 445 120 Lead (Pb) 0.002 <0.002 <0.002 0.004 0.004 <0.002 0.005 Selenium (Se) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Hardness	63.6	54.4	96.5	92.6	186			
Manganese (Mn) 0.174 0.228 0.290 1.36 0.242 0.481 0.2 Sodium (Na) 172 176 362 470 445 120 Lead (Pb) 0.002 <0.002	Mercury (Hg)	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.002	
Sodium (Na) 172 176 362 470 445 120 Lead (Pb) 0.002 <0.002	Magnesium (Mg)	8.6	7.2	12.4	11.1	16.7	<0.1		
Sodium (Na) 172 176 362 470 445 120 Lead (Pb) 0.002 <0.002	Manganese (Mn)	0.174	0.228	0.290	1.36	0.242	0.481		0.2
Selenium (Se) <0.005 <0.005 <0.005 <0.005 <0.005 0.005		172	176	362	470	445	120		
Selenium (Se) <0.005 <0.005 <0.005 <0.005 <0.005 0.005	Lead (Pb)	0.002	<0.002	<0.002	0.004	0.004	<0.002	0.05	
Zinc (Zn) <0.010 0.043 0.015 0.120 <0.010 0.094 10	Selenium (Se)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.05	
		<0.010	0.043	0.015	0.120	<0.010	0.094		10

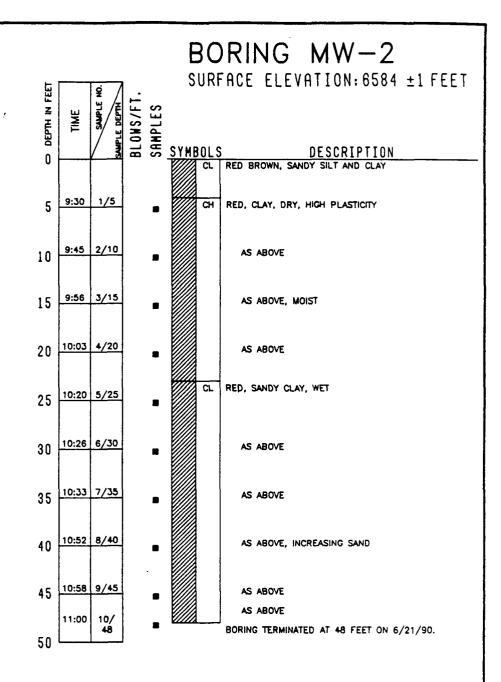
¹All results reported in milligrams per liter (mg/l) unless otherwise indicated

²New Mexico Water Quality Control Commission Human Health Standard Sections 3-013(A&B) Maximum Contaminant Levels

APPENDIX B

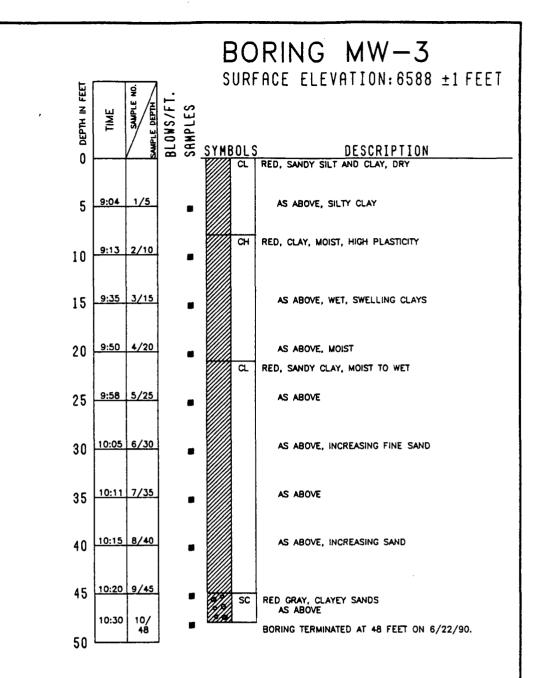
L

I.


BORING LOGS AND WELL COMPLETION FORMS

		_				DRING MW-1
DEPTH IN FEET	TIME	SAMPLE NO.	BLONS/FT.	SHAPLES	SUR	FACE ELEVATION: 6582 ±1 FEET
0	<u> </u>	<u> </u>		Ĩ		RED, SANDY SILTY CLAY, VERY SOFT, DRY
5	9:33	1/5		•	CH	MINOR FINE SAND RED, CLAY, COHESIVE, MOIST, HIGH PLASTICITY
10	9:40	2/10		•		AS ABOVE
15	9:52	3/15	1	•		AS ABOVE
20	10:03	4/20	1	•		AS ABOVE
25	10:12	5/25		•	CL	RED, SANDY CLAY, COHESIVE, MOIST, HIGH PLASTICITY
30	10:20	6/30		•		AS ABOVE
35	10:28	7/35	. I	•		AS ABOVE, INCREASING SAND
40	10:35	8/40		•		AS ABOVE, VERY MOIST
45	<u>10:40</u>	9/45		•		AS ABOVE
50	10:52	10/ 50			SC	GRAY TO RED GRAY CLAYEY SAND
55	11:05	11/ 55		•		AS ABOVE, INCREASING SAND
60						BORING TERMINATED AT 56 FEET ON 6/20/90.

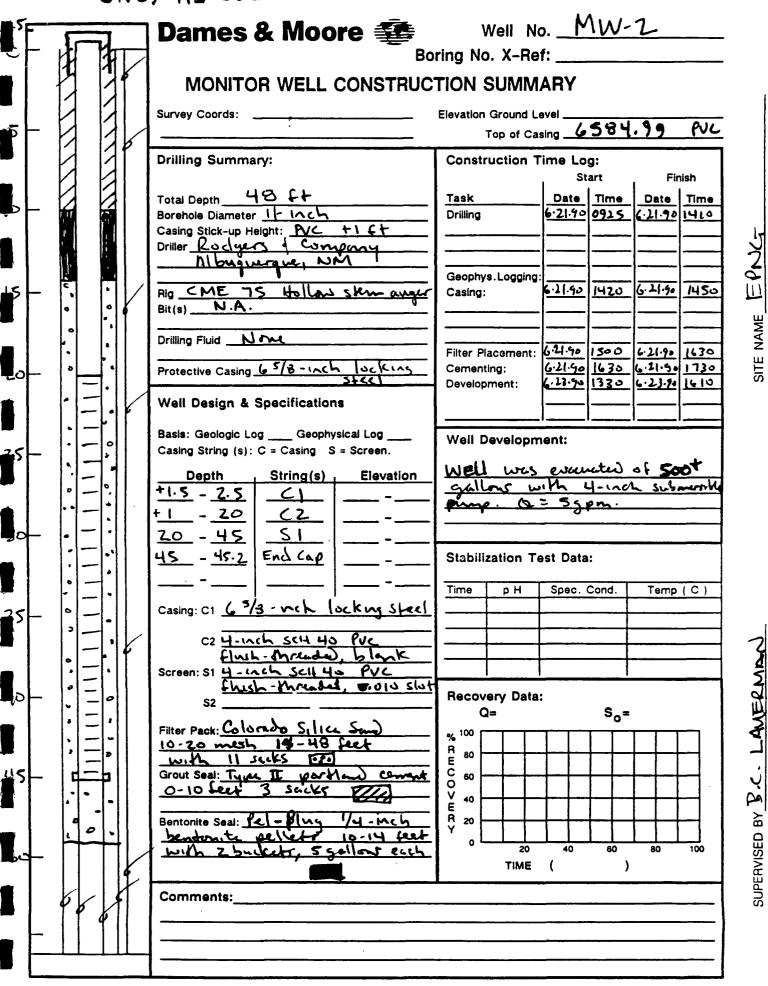
LOG OF BORING


D&M JOB#01889-115-022

i i

LOG OF BORING

D&M JOB#01889-115-022



LOG OF BORING

D&M JOB#01889-115-022

		5	(0)-113-000	
+2	Γ	F	🛾 Dames & Moore 🐲	
		HI ET	Во	ring No. X-Ref:
			MONITOR WELL CONSTRUC	
			Survey Coords:	Elevation Ground Level
2	┝╴		·	Elevation Ground Level Top of Casing <u>6582.93 PVL</u>
			Drilling Summary:	Construction Time Log:
-			Total Depth 56 FF	Start Finish Task Date Time
	╞		Borehole Diameter	TaskDateTimeDateTimeDrilling6.20.3*0.92.46.20.3*11.0517
_			Casing Stick-up Height: <u>PVC + 0.5 ft</u> Driller Rodgers d Company	Task Date Time Date Time Drilling (9.20.2)* 0.924 (6.20.2)* 1105 1105
			Albuquerque, NM	
15	L		Rig CME-75 Hollow stem anger	Geophys. Logging: Casing: 6 20.50 12.20 (20.94 1305
١ ا				
■.			Drilling Fluid None	Filter Placement: 6 20 % 1315 6 10 % 1505 W Z Cementing: 6 20 % 1 3 15 6 10 % 1505 U 0
			Protective Casing 65/3 - Inch. Jocking	Filter Placement: 6 20 % 1315 6 20 % 150 5 Z Cementing: 6 20 % 16 30 6 20 % 150 5 H C
þ			Protective Casing G 75 - INER 10000	Development:
1		· - •	Well Design & Specifications	
		: - •	Basis: Geologic Log Geophysical Log	Well Development:
25	\vdash		Casing String (s): C = Casing S = Screen.	
			Depth String(s) Elevation	quillons with a 4-not submersible pump: Q= Sggm
-			$\frac{+2}{+.5} - \frac{2}{20}$ $\frac{-1}{-2}$	pump Q= Sgen
1		· _ ;	$\overline{20}$ $\overline{45}$ $\overline{51}$ $$	
	ĺ	•	45 - 45.2 END Cap	Stabilization Test Data:
			///	Time p H Spec. Cond. Temp (C)
35		:-:	Casing: C1 6513 - Inch OD Locking	
	Γ		C2 H-Inch Sch 40 PVC Lines	[å
		· - ·	finch-threaded, blank	ξ
			Screen: SI 4-inch Schub PVC	
P	\vdash	5 - 0	S2	Recovery Data: Q= S _o =
-			Filter Pack: Colorado Silice Sand	
			with 12 salles	
Чs	\vdash	, 4 7.	Grout Seal: Type IT porting concent	
		با نړ نړ		
_		9.19	Bentonite Seal: Pel Plug 1/4-uch Suntraite Relation 11-14 feet	
		000	with 2 buckty, 5 guilancen	
				R 20 40 60 80 100 Y 0 20 40 60 80 100 TIME () 100 100
Î		slough	Comments:	
55	L	1 AA		
Ĩ	<u> </u>			
		·		

01107-112-016	0		07	-	• •	5	- 0		4
---------------	---	--	----	---	-----	---	-----	--	---

I DEATION WINCTATE PLAN

DATE 6.71.90

01187-115-022

-	A	7	П		Dames & Moore 🔹		D. X-Re				
		1			MONITOR WELL CONSTRUC	-			<u></u> .		
			11		Survey Coords:	Elevation	Ground I	evel			
-	Ń	1		6		LIGTATION	Top of Ca	sing 6	588.	95	PVL
	\boldsymbol{V}		11		Drilling Summary:		ruction 7				
	Ń								art	Fi	nish
-		ľ			Total Depth 48 FF	Task		Date		Date 6-22-50	Time
		-			Borehole Diameter <u>11-12Ch</u> Casing Stick-up Height: <u>PVC</u> +1 FF	Drilling		0.22.90	0030		[037
		•			Driller Rodgers a Company						
	•				Albuquerque, NM	Geophy	s.Logging				
-	٥	6	4	5	Rig CAME 75 Hollow Stem anytor	Casing		6.22.90	1110	6-22.90	1130
	50				Bit(s) N.A						
	•	20			Drilling Fluid None						172.
	0				Protective Casing 65/3-Mch locking spec	Filter P Cemen	lacement: ting:	6.22.70	1330	6.22.70	1350
-	1.]:				Develop	-	6.23.90	1032	<u>c 23.90</u>	1230
					Well Design & Specifications						
]			Basis: Geologic Log Geophysical Log	Well	Developn	hent.		·	
-	- 0	- .			Casing String (s): $C = Casing S = Screen$.				. 1		Ŀ
	. -	4			Depth String(s) Elevation	Well	ns with	esre h	<u>velu</u>	01 5	500 4
					$\left \frac{+2}{-2}-\frac{-2}{-2}\right $	Jubr	ws.by	pun	<u>9.10</u>	5 -	en
	- [- •			$\frac{+1}{-20}$ $\frac{-20}{$. <u> </u>		•			
•	<u>ں</u>	'			$\frac{20-45}{45}$ $\frac{51}{5}$	Chale !!!					
	•				45 - 45.2 End Cup	513011	zation T	est Data	i		
		二,	ן וי			Time	рH	Spec.	Cond.	Temp	(C)
-		-	۱		Casing: C1 65/3-neh locking shel						
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				C2 4-Inch SCH 40 PVC						
	-	•			Screen: S1 4-inch SCII 49 PVC		1				
	·, -	—	4		Flush Mradel, 1010slot	8	Land Data	·			
-	•	1			S2		very Data ⊇=		s₀=		
	v -	- .]		Filter Pack: Colorado Silica Sand	% 100	<u> </u>				
	7 -];	;	,	10-20 mesh 12-48 feet with 12 sacks 12			+			
-	i-	中	4	6	Grout Seal: Type IT porting cement	R 80 C 60 V 40 E 20	_			$\left \right $	
	••	0			0-9 feet with 3 sacks 12	V 40		+	┢╴┠╌╸	╂──┼──┤	\vdash
	2	°.			Bentonite Seal: Pel-Plug 74-neh	R 20		╉╌╂─	┝─┝─	┟╌┟╼┤	┝┤ │
	[+	┽	┥		hentonite pellets 9-12 feet with 2 buckets, 5 gallout each	ٰ ،ل	20	40	60	80	100
-							TIME	()		
		-]-	L		Comments:	.					
	Ĩľ		1			· · · · · · · · · · · · · · · · · · ·					

.

LOCATION WINGATE RANT

DATE 6.22.30

APPENDIX C

LABORATORY DATA SHEETS, WATER SAMPLE COLLECTION RECORDS AND CHAIN-OF-CUSTODY FORMS

ver. 6/22/89

6.23.90

WATER QUALITY SAMPLE COLLECTION RECORD

1

,						
OWNER: EL PASO NATURAL GA	S SAMPLE I.D. NO. MW-1					
PROJECT: WINGATE PLANT	SOURCE AND TYPE OF SAMPLE:					
JOB NO: 01885 - 115 - 022	WELL X SPRING					
SAMPLER(S): BCL	AFFILIATION(S): <u>b</u>					
(PRINT) ANDY, BRINN	RODLITERS 1 CO.					
INSTRUMEN	TATION					
WATER LEVEL METER: S.T.	CORRECTION FACTOR(CF):ft					
pH METER (brand and model): Mark CALIBRATED WITH ph 4: pH 7	:XX					
SC METER (brand and model): Amber STANDARD SOLUTION USED: 2000	Servere model 605 					
45.5-3.33 : 42.17 WELL EVAC	WATION Q = Sypm					
DEPTH TO WATER(DTW+OF-CF): ft ELEV.OF MEAS.POINT(ELEV): ft TOTAL DEPTH OF WELL (TD): 45.5 ft	DATESTIME MEAS.: /006 SWL ELEV. (ELEV-DTW) = ft					
TIME SINCE EVACUATION START (min): VOLUME EVACUATED (gal): pH: SPECIFIC CONDUCTANCE (unhos/cm): TEMPERATURE (circle F or C): DEPTH TO WATER(DTW+or-CF):	<u> <u> uitial</u> <u> <u> 4000 +</u> <u> 4000 +</u> <u> 1400 -</u> <u> </u></u></u>					
TOTAL VOL. EVAC .: 400 gal DATEGTI	ME EVACUATED: 1845					
EVACUATION EQUIPMENT: 4-Inch sub	nersible puno on 1-uch yoly					
SAMPLE COL						
DEPTH TO WATER (DTW+or-CF):ft DATESTIME SAMPLED:ft SAMPLE APPEARANCE: COLOR: TURBIDITY:	WEATHER: SUMMY, 95 °F Some ODOR:					
ANALYSES-CONTAINERS: See Chair	Sillet- custody					
SAMPLE COLLECTION EQUIPMENT: 41540						
COMMENTS: metals were field fi	Hered w/ 0.45 micron filter					
I certify that to the best of my knowledge the information recorded on this document is a true statement of fact.						
Gignature of Sampler/Date	Signature of Sampler/Date					

ver. 6/22/89

6.23.90

WATER QUALITY SAMPLE COLLECTION RECORD

,

OWNER: EL PASO NATURAL GA	S SAMPLE I.D. NO. MW-Z
PROJECT: WINGATE PLANT	SOURCE AND TYPE OF SAMPLE:
JOB NO: 01889 - 115 - 022	WELL X SPRING
SAMPLER(S): BCL	AFFILIATION(S): 54M
(PRINT) ANDY, BRINN	RODLITERS & CO.
INSTRUMEN	TATION
WATER LEVEL METER: S.T.	CORRECTION FACTOR(CF):ft
pH METER (brand and model): Mark CALIBRATED WITH ph 4: Y pH 7	:
SC METER (brand and model): Awaba (STANDARD SOLUTION USED: 2000	
46-363: 42.37 WELL EVAC	UATION Q = Syem
DEPTH TO WATER(DTW+or-CF): 3.63 ft ELEV.OF MEAS.POINT(ELEV): ft TOTAL DEPTH OF WELL (TD): 46 ft EVACUATION VOL. (((d/24)**2)(3.14)	DATESTIME MEAS.: 1000 SWL ELEV. (ELEV-DTW) =ft CASING DIA (d): 4 in (TD-DTW) (7.48) (2)):7.7 gal each
TIME SINCE EVACUATION START (min): VOLUME EVACUATED (gal): pH: SPECIFIC CONDUCTANCE (unhos/cm): TEMPERATURE (circle f or C): DEPTH TO WATER(DTW+or-CF):	$ \frac{1111}{1700} = \frac{1100}{1700} $
TOTAL VOL. EVAC .: 500 + gal DATESTI	ME EVACUATED: 10 70
EVACUATION EQUIPMENT: 4-Inch subm	nosible pump on 1-not yoly
SAMPLE COL	LECTION
DEPTH TO WATER(DTW+or-CF):ft DATESTIME SAMPLED: SAMPLE APPEARANCE: COLOR: TURBIDITY:	
ANALYSES-CONTAINERS: See Chair	silt- custody
COMMENTS: Metals GaD Gliered	vel 0.45 micron filter
I certify that to the best of recorded on this document is a true Recorded on this document is a true Record on the second secon	f my knowledge the information a statement of fact.
6.23.93	FLORADURA OF SARDIAT/Data

Signature of Sampler/Date

Signature of Sampler/Date

ver. 6/22/89

6.23.90

WATER QUALITY SAMPLE COLLECTION RECORD

OWNER: EL PASO NATURAL GAS SAMPLE I.D. NO. MW. 3
PROJECT: WINGATE PLANT SOURCE AND TYPE OF SAMPLE: WELL X SPRING
JOB NO: 01889 - 115 - 022 SURFACE WATER
SAMPLER(S): BCL AFFILIATION(S): DAM
(PRINT) ANDY, BRIAND RODLAFERS 1 CO.
INSTRUMENTATION
WATER LEVEL METER: S.T. CORRECTION FACTOR(CF):ft
pH METER (brand and model): Marking wodel 88 CALIBRATED WITH ph 4: pH 7: pH 10: TIME: 1020
SC METER (brand and model): Amber Serence madel 605 STANDARD SOLUTION USED: 2000. umhos/cm TIME: 1020
46-3.87= 42.13' WELL EVACUATION Q= 5 grm
DEPTH TO WATER(DTW+or-CF): 3.87 ft DATESTIME MEAS.: 0948 ELEV.OF MEAS.POINT(ELEV): ft SWL ELEV.(ELEV-DTW) = ft TOTAL DEPTH OF WELL (TD): 44 ft CASING DIA (d): 4 in EVACUATION VOL. (((d/24)**2)(3.14)(TD-DTW)(7.48)(G)): galeed
TIME SINCE EVACUATION START (min): Mitial final VOLUME EVACUATED (gal): 7.66 pH: 7.66 SPECIFIC CONDUCTANCE (umhos/cm): 1500 TEMPERATURE (circle F or C):
TOTAL VOL. EVAC .: 500 gal DATESTIME EVACUATED: 1230
EVACUATION EQUIPHENT: 4-inch submarsible pump on 1-uch poly
SAMPLE COLLECTION
DEPTH TO WATER (DTN+OF-CF): IT DATESTIME MEAS.: DATESTIME SAMPLED: IZ30 WEATHER: SUMMY, 95°F SAMPLE APPEARANCE: COLOR: TURBIDITY: Some ODOR: COLOR: TURBIDITY: Some ODOR: ANALYSES-CONTAINERS: SEE Chan - of - custody
SAMPLE COLLECTION EQUIPMENT: ALGORADE SAUCE
COMMENTS: metals field filked with 0.45 min filter
I certify that to the best of my knowledge the information recorded on this document is a true statement of fact. f_{1} f_{2} f_{3} f

Analytical Technologies, Inc. 2113 S. 48th Street Suite 107 Tempe, AZ 85282 (602) 438-1530

ATI I.D. 006861

July 25, 1990

Dames & Moore 7500 N. Dreamy Draw Drive Suite 145 Phoenix, AZ 85020

Project Name/Number: EPNG

Attention: Bob Harding

On 06/26/90, Analytical Technologies, Inc. received a request to analyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (602)438-1530.

is with P.w/

Elizabeth Proffitt Project Manager

her V. Doorte

Robert V. Woods Laboratory Manager

RVW:clf Enclosure 90-21

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

Analytical Technologies, Inc.

	: DAMES & : (NONE)	MOORE, PHOENIX	DATE	RECEIVED : 06/26/9
ROJECT NAM		ATI I.D. : 006		TT DATE : 07/25/9
?I #	CLIENT DESC	CRIPTION	MATRIX	DATE COLLECT
	MW-1 MW-2 MW-3		AQUEOUS AQUEOUS AQUEOUS	06/23/9 06/23/9 06/23/9
		· .		
	***********	TOTALS		
MA	TRIX	# SAMPLES		
AQ	UEOUS	3		
		ATI STANDARD DISPO	SAL PRACTICE	
ate of th	is report. I	project will be dis f an extended stora artment before the	ge period is requ	ired, please cont

GENERAL CHEMISTRY RESULTS

				ATI I.D. : 006861
CLIENT : DAMES & MOORE, PROJECT # : (NONE)	PHOENIX			DATE RECEIVED : 06/26/90
PROJECT NAME : EPNG				REPORT DATE : 07/25/90
PARAMETER	UNITS	01	02	03
	MG/L MG/L MG/L UNITS	414 <1 420 15.7 0.83 <0.06 8.4 1.0	695 <1 735 50 1.49 <0.06 8.5 73	<1 659 140 1.32 <0.06 8.1 280

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT	:	DAMES	&	MOORE,	PHOENIX
PROJECT #	ŧ :	(NONE)			
PROJECT N	IAME :	ÉPNG			

ATI I.D. : 006861

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE		% REC
CARBONATE BICARBONATE HYDROXIDE TOTAL ALKALINITY	MG/L MG/L MG/L MG/L	00690201	<1 144 <1 144	<1 142 <1 142	NA 1 NA 1	NA NA NA NA NA	NA NA NA NA	NA NA NA NA
CHLORIDE FLUORIDE FLUORIDE NITRATE AS NITROGEN PH	MG/L MG/L MG/L MG/L UNITS	00686401 00680707 00755601 00690201	120 0.31 1.99 3.6 7.9	120 0.30 1.97 3.6 7.9	0 3 1 0 0	330 0.62 4.01 12.7 NA	200 0.30 2.00 10.0 NA	105 102 101 91 NA
SULFATE TOTAL DISSOLVED SOLIDS	MG/L MG/L	00690201 00684701	52 940	52 930	0 1	104 NA	50 NA	104 NA

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) X 100

Average Result

METALS RESULTS

ATI I.D. : 006861

CLIENT : PROJECT # : PROJECT NAME :	(NONE)	MOORE,	PHOENIX			DATE RECEIVED REPORT DATE	
PARAMETER			UNITS	01	02	03	
SILVER ARSENIC BARIUM CALCIUM CADMIUM CHROMIUM COPPER IRON HARDNESS MERCURY MAGNESIUM MANGANESE SODIUM LEAD SELENIUM ZINC			MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	11.3 <0.005 <0.01 <0.02 0.216 63.6 <0.0002 8.6 0.174 172 0.002 <0.005	<0.005 0.158 18.2 <0.005 <0.01 <0.02 0.111 96.5 <0.0002 12.4 0.290 362	<0.005 0.110 46.8 <0.005 <0.01 <0.02 0.067 186 <0.0002 16.7 0.242 445 0.004 <0.005	

İ.

| **|**

METALS - QUALITY CONTROL

CLIENT : DAMES & MOORE, PHOENIX PROJECT # : (NONE) PROJECT NAME : EPNG

ATI I.D. : 006861

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT I	RPD	SPIKED SAMPLE		% REC
SILVER	MG/L	00686103	• • • -	<0.01	NA	0.08	0.10	80
ARSENIC BARIUM	MG/L MG/L	00686501 00686103		<0.005 0.110	NA 0	0.045 0.218	0.050 0.100	90 108
CALCIUM	MG/L	00686103 00686103	-	47.8 <0.005	2 N D	96.9 0.102	50.0	100 102
CADMIUM CHROMIUM	MG/L MG/L	00686103		<0.005	NA NA	0.102	$0.100 \\ 0.10$	102
COPPER	MG/L	00686103		<0.02	NA 3	0.11	0.10	110 95
IRON HARDNESS	MG/L MG/L	00686103 00686103		0.065 188	1	1.02 NA	1.00 NA	95 NA
MERCURY	MG/L	00684801 00686103		<0.0002 16.9	NA 1	0.0049	0.0050 25.0	98 98
MAGNESIUM MANGANESE	MG/L MG/L	00686103		0.243	1	0.351	0.100	109
SODIUM	MG/L	00686103		447	1	935	500 0.050	98 122
LEAD SELENIUM ZINC	MG/L MG/L MG/L	00686102 00686103 00686103	<0.005	0.002 <0.005 <0.010	NA NA NA	0.061 STDA 0.104	CC= 0.100	.998 104

<pre>% Recovery = (Spike Sample Result - Sample Result)</pre>			
Spike Concentration			
RPD (Relative Percent Difference) = (Sample Result - Duplicate Result)	v	100	
Average Result	Λ	100	

Phoenix, Arizona	С.		Ch	air	וֹמ	of	Cı	JS	to	d	y						ε	DATE	<u>- 6·2</u>	5.9	70	PAC	SE_[_ OF
PROJECT MANAGER: BOb ta	ding											AN	ALY	'SIS	REQU	ES	T							
COMPANY: DAMES & MOORE ADDRESS: 7500 N. DREAMY DRAW PUY, AZ BSOZO BILL TO: COMPANY: SAME ADDRESS:				(hiere)	Diesel/Gasoline/BTXE (MOD 8015/8020)		Chlorinated Hydrocarbons (601/8010) Armmin Hudrocarbons (602/8020)			Pesticides/PCB (608/8080)	5/8150) -		Base/Neutral/Acid Compounds GC/MS (625/8270)	Volatile Organics GC/MS (624/8240)	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		Primary Standards	SDWA Volatiles (502 1/503 1)	Ti toooti 1000 a	The 13 Priority Pollutant Metals	The 8 EP Tox Metals by EP Tox Prep. (1310)	The 8 EP Tox Metals by Total Digestion		NUMBER OF CONTAINERS
SAMPLERS: (Signature)	(602)37(-1110 PHONE NUMBER		Date	015) Ga	(MOD 8015) Gas/Diesel Diesel/Gasoline/BTXE	BTXE (8020)	ho Hy			ides/PC	Herbicides (615/8150)		leutral/A	e Organi		SDWA Primary	Primary	Volatile	- Alterio	Priority	EP Tox h	EP Tox N		BER C
1		MATRIX LAB	et of	QON	Diesel	К	Chlorin	MTBE		estic	terbic		Base/h	/olatii			SDWA	AWG		The 13	lhe 8	he 8		NUN
	3.90 PM	1+20 /		++		┼╌┼	<u> </u>	+					Ĥ					+	++	-+	_			5
MW-2 -		$\sum z$		┠╌╂╌	╋	┼╌╂	-+-	+			-+-					ł	1	+	┼╌╂	-+	-+	+	┽┥	1
	$\frac{1}{2}$	$\frac{1}{4}$ $\frac{1}{3}$		┠─╂─	+	┼╌╂			-		-+-			-+-	╉╌╊	ť		+	┼┽	-+	-+	╉	+-	5
	9 6	4-2		++	+	┼╌╂				┝╌╂		24	$\left - \right $	-+-	++	ľ	4	+	++	-+	+	╉	┽┥	
			-[-	\vdash	+	++	-+-	+-	+	┝──╂			$\left - \right $		+			╋	++	-+	-†	+	+	
				┠╌┠╴	+	++	-+-	+-		┝──╂			\vdash	+	╉╍╊	3	+	+	++	-+	-+	╋	+	
				┟╌┼╴	+	┼╌┼	+	+				+	$\left - \right $		++			+	╂╌╂	-+	+	+	┼╌┨	
				┟─┟─	+	┼╌┼	-+-	-{	+	┝╼╂			\vdash		+		+	╋	╋	-+	-+	-	+-+	n an the second se
				┟╌┼╴	+-	++	-+-	+-	+				$\left - \right $	-+-	++			╋	┼╌┼		-+	+	+	100 N
					0611	NQUI	eucr							HED 6				1		<u> </u>				ଁ 3.
PROJECT INFORMATION	werden desertet interestion in	IPLE RECEIPT					JILL	_	me:	1.	-	ature:			-> Tim	ye:	2		RELI			UB.	Time	
PROJECT NO .: PROJECT NAME: EPNG	TOTAL NO. OF CO		5		ature:				20	0	1(is	nci	5	apt	18	>-	10	<u>ll</u>	1	L	<u> </u>	H:	
P.O. NO.:	INTACT?		$\frac{2}{\sqrt{2}}$		ed Na	ime: AUE			ate G. Z	5.27	Priñ	ted Na	angé:	/	Da	te		Pri	inted N	lame:	1.1	lis	Date と	126/20
VIA:	RECEIVED GOOD	COND./COLD	$\overline{\zeta}$		pany:			~				pany	IJ	. /	<u> </u>		7		mpany 7 D					
							.				44	MI	121	<u>рС</u> Эву:-	11/1	<u>A 1</u>	10	K	the second second second second second second second second second second second second second second second s	_	_	. (I' A	6)/////	<u>് ງ</u>
SAMPLE DISPOSAL INSTRUCTIONS					iecei iture:			Ţin	ne:	<u></u>	Sign	ature:		101:	, Tim	e:		نبيبها:	nature		197	. [1.4	Time:	3.
ATI Disposal @ \$5.00 each			Sed Nar	<u> </u>	-	_	7:0	<u>や</u>	K	ls	0_	14		r. 4	6	R	ùL	$\lambda \xi$	al		_	:20		
Comments:							un		ate: 25-	90	R	ted Na 2	He	مانار ا	/ Da	ie: zc	150	Pri	inted Na	ame:	sh.	1-	Date	5/26/20
Metals bottles vere 0.45	held-filt	even up		Com	pany:	1/1	to	<u>_/</u>	loj	WiR.	Con V L	npany	": M					Analytical Technologies, Inc.						

ATI Labs: San Diego (619)458-9141 · Phoenix (602)438-1530 · Seattle (206)228-8335 · Pensacola (904)474-1001 DISTRIBUTION: White, Canary - ANALYTICAL TECHNOLOGIES, INC. Pink - ORIGINATOR

Analytical Technologies, Inc. 2113 S. 48th Street Suite 107 Tempe, AZ 85282 (602) 438-1530

ATI I.D. 007676

August 8, 1990

Dames & Moore 7500 N. Dreamy Draw Drive Suite 145 Phoenix, AZ 85020

Project Name/Number: 001889-115-022

Attention: Bob Harding

On 07/17/90, Analytical Technologies, Inc. received a request to analyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (602)438-1530.

Glinabeth the /he

Elizabeth Proffitt Project Manager

Koberg V. Work

Robert V. Woods Laboratory Manager

RVW:clf Enclosure 90-24

Analytical Technologies, inc

CLIENT	: DAMES & MOORE, PHOENIX	DATE RECEIVED : 07/17/90
PROJECT #	: 001889-115-022	
PROJECT NAME	C: (NONE)	REPORT DATE : 08/08/90
	ATI I.D. : 007676	

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	MW-1	AQUEOUS	07/14/90
02	MW-2	AQUEOUS	07/14/90
03	MW-3	AQUEOUS	07/14/90

----- TOTALS -----

MATRIX	# SAMPLES
AQUEOUS	3

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

ATI I.D. : 007676

CLIENT: DAMES & MOORE, PHOENIXDATE RECEIVED : 07/17/90PROJECT #: 001889-115-022REPORT DATE: 08/08/90PROJECT NAME : (NONE)NITS010203PARAMETERUNITS010203CARBONATE (CACO3)MG/L444271419HYDROXIDE (CACO3)MG/L444281419HYDROXIDE (CACO3)MG/L444281419CHLORIDEMG/L20.97921.8FLUORIDEMG/L0.971.791.01NITRATE AS NITROGENMG/L<0.06</td><0.06</td>PHUNITS8.38.47.8SULFATEMG/L1924026TOTAL DISSOLVED SOLIDSMG/L5701400520

Analytica Technologies, and GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT		:	DAMES	&	MOORE,	PHOENIX
PROJECT	#	:	001889	- 1	15-022	
PROJECT	NAME	:	(NONE)			

ATI I.D. : 007676

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE		% REC
CARBONATE	MG/L	00768403	16	16	0	NA	NA	NA
BICARBONATE	MG/L		206	204	1	NA	NA	NA
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	NA
TOTAL ALKALINITY	MG/L		222	220	1	NA	NA	NA
CARBONATE	MG/L	00767603	<1	<1	NA	NA	NA	NA
BICARBONATE	MG/L		419	423	1	NA	NA	NA
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	NA
TOTAL ALKALINITY	MG/L		419	423	1	NA	NA	NA
CHLORIDE	MG/L	00772701	220	220	0	430	200	105
FLUORIDE	MG/L	00767603	1.01	0.98	3	1.98	1.00	97
NITRATE AS NITROGEN	MG/L	00759005	2.8	2.8	0	7.6	5.0	96
PH	UNITS	00770801	8.1	8.1	0	NA	NA	NA
РН	UNITS	00767603	7.8	7.8	0	NA	NA	NA
SULFATE	MG/L	00765506	7.8	7.7	1	12	5	84
TOTAL DISSOLVED SOLIDS	MG/L	00767904	510	510	0	NA	NA	NA
TOTAL DISSOLVED SOLIDS	MG/L	00781002	450	470	7	NA	NA	NA

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) Average Result

METALS RESULTS

CLIENT : DAMES & MOORE, PHOENIX PROJECT # : 001889-115-022 DATE RECEIVED : 07/17/90 PROJECT NAME : (NONE) REPORT DATE : 08/08/90 UNITS 01 02 03 PARAMETER _____

 MG/L
 <0.01</td>
 <0.01</td>
 <0.01</td>

 MG/L
 0.005
 0.021
 0.007

 MG/L
 0.235
 0.175
 0.139

 MG/L
 9.9
 18.8
 0.5

 MG/L
 0.006
 0.006
 <0.005</td>

 MG/L
 0.01
 <0.01</td>
 <0.01</td>

 MG/L
 <0.02</td>
 <0.02</td>
 <0.02</td>

 MG/L
 <0.02</td>
 <0.02</td>
 <0.02</td>

 MG/L
 1.40
 2.34
 0.658

 MG/L
 54.4
 92.6
 1.2

 MG/L
 <0.0002</td>
 <0.0002</td>
 <0.0002</td>

 MG/L
 <0.0002</td>
 <0.0002</td>
 <0.0002</td>

 SILVER ARSENIC BARIUM CALCIUM CADMIUM CHROMIUM COPPER IRON HARDNESS MERCURY 7.2 11.1 <0.1 MAGNESIUM MG/L 7.2 0.228 1.36 176 470 0.481 MG/L MANGANESE 120 176 SODIUM MG/L MG/L <0.002 0.004 <0.002 MG/L <0.005 <0.005 <0.005 LEAD SELENIUM 0.043 0.120 0.094 ZINC MG/L

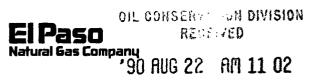
ATI I.D. : 007676

METALS - QUALITY CONTROL

CLIENT		:	DAMES & MOORE,	PHOENIX
PROJECT	#	:	001889-115-022	
PROJECT	NAME	:	(NONE)	

ATI I.D. : 007676

			SAMPLE	DUP.		SPIKED		8
PARAMETER	UNITS	ATI I.D.	RESULT	RESULT	RPD	SAMPLE	CONC	REC
SILVER	MG/L	00765504	<0.01	<0.01	NA	0.45	0.50	90
ARSENIC	MG/L	00767801	0.009	0.008	12	STDA	CC=	.998
BARIUM	MG/L	00765504	0.105	0.106	1	1.00	1.00	89
CALCIUM	MG/L	00768701	69.3	69.3	0	120	50.0	101
CADMIUM	MG/L	00765504	<0.005	<0.005	NA	0.483	0.500	97
CHROMIUM	MG/L	00768701	<0.01	<0.01	NA	0.09	0.10	90
COPPER	MG/L	00769109	0.03	0.03	0	0.12	0.10	90
COPPER	MG/L	00768701	<0.02	<0.02	NA	0.09	0.10	90
IRON	MG/L	00768701	0.259	0.268	3	1.25	1.00	99
HARDNESS	MG/L	00799907	299	298	0.3	NA	NA	NA
MERCURY	MG/L	00768701	<0.0002	<0.0002	2 NA	0.0049	0.0050	98
MAGNESIUM	MG/L	00768701	30.6	30.4	0.7	54.6	25.0	96
MANGANESE	MG/L	00765504	0.522	0.539	3	1.50	1.00	98
SODIUM	MG/L	00768701	163	161	1	207	50.0	88
SODIUM	MG/L	00767602		460	2	5670	5000	104
LEAD	MG/L	00767601	<0.002	<0.002	NA	0.053	0.050	106
SELENIUM	MG/L	00767801	<0.005	<0.005	NA	STDA	CC=	.997
ZINC	MG/L	00765505	0.012	0.013	8	0.526	0.500	103


% Recovery = (Spike Sample Result - Sample Result)
Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result)

RPD (Relative Percent Dis	fierence) = (Sample Result - Duplicate Result)		
		Х	100
	Average Result		

Analytical Technologies, Inc. Phoenix, Arizona	Ch	al	n	0	T		u	51(00	Jy								D	ATE.	<u>7/</u>	7/9	10	PAC	ΞΕ <u>(</u>		F_
PROJECT MANAGER: BOB HARDING		ģe			i Î	<u> </u>						AN	ALY	'SIS	REC	JUE	ST	<u></u>	11		<u></u>	- 				
COMPANY: <u>DAMES & MOORE</u> DDRESS:				(0)				NAMES OF STREET					S (625/8270)								10101	(1310)				
ILL TO: <u>DAMES & MODEE - Bob Harding</u> COMPANY: DDRESS:	Detroleum Hydrocarbons (418.1)		as/Diesel	Diesel/Gasoline/BTXE (MOD 8015/8020)		Chlorinated Hydrocarbons (601/8010)	Aromatic Hydrocarbons (602/8020)		E (EAB/BABA)	15/8150)			Acid Compounds GC/MS	iics GC/MS (624/8240)			v Standards	Secondary Standards	SDWA Volatiles (502.1/503.1)	-	The 13 Priority Pollutant Metals	The 8 EP Tox Metals by EP Tox Prep. (1310) The 8 ED Tox Metals by Total Discrition	The 8 EP Tox Metals by Total Digestion The 8 EP Tox Metals by TCI D			OF CONTAINERS
SAMPLERS: (Signature) (9/5) 541 - 5492_ PHONE NUMBER SAMPLE ID DATE TIME MATRIX	⊐. Petroleum Hyc		(MOD 8015) Gas/Diesel	Diesel/Gasolin	BTXE (8020)	Chlorinated H	Aromatic Hyd	MIBE	Docticidoe/DCB	Herbicides (615/8150)	-		Base/Neutral/Acid	Volatile Organics			SDWA Primary Standards	SDWA Second	SDWA Volatil		The 13 Priorin	The & EP 10X	The A EP Toy	5		NUMBER
		$\left \right $				-				╈	+-							17			+	+	+	-		3
MW-B 7/14/90 445 M AQUEOUS 1 MW-2 7/14/90 546 FM AQUEOUS 2	-	╞─┼			+					\dagger	╉				+		ľ	Ť	+-	$\neg \uparrow$	+	+	+	1-		3
MW-3 $7/14/90 3 56FM 40000003 3$				-†	+		\uparrow	-		+-	+-				\top			۲,			+	╉	╈	+		17
					+		+			+	\uparrow				-		ľ	r			+	1	+			
										╈	╈							\uparrow			╈	+	\dagger			
			+	-+		-†	-†			+	1							1-			十	+	\uparrow			
				-†						╋	╈							\uparrow			╈	+	+			
		<u>}</u> †					1			+	+-		_		-†-			┢	\square		+	+	\uparrow	+		,
	-1-	╞╌┼								╈	╈				-†-			1-			十	+	+	+		
PROJECT INFORMATION SAMPLE RECEIPT		T	RE	LIN	QUI	SHE	DB	Y:		1.	R	LIN	NIS	HED	BY:			2	1	RELIN		SHE	D B'	Y:	3.	
PROJECT NO.: TOTAL NO. OF CONTAINERS	9	Sig	inatur	e:)	.1		Time 13:			Sign	ature	/	1	4	Time	7	.31	Sign	ature;				Time	9:	
PROJECT NAME: CHAIN OF CUSTODY SEALS	Ŷ	- <u>/</u>	nted	Narr	Ane:	14	4	Date			Prio	ted N	ame:	they		Date	• •	1.	Prin	ted Na	ame:			Dat	e	
P.O. NO.: INTACT?	Ý	Ŕ	- H	le r	<u>d : .</u>			710	16/-	50	\mathcal{K}	<u>55</u>	6	M	and	77	17	HA)								
/IA: RECEIVED GOOD COND./COLD	<u>Y</u>	- DIM Company: DIM DEM								Company:																
			RECEIVED BY: 1. RECEIVED													B)	3,									
SAMPLE DISPOSAL INSTRUCTIONS		Sig	natur	e.	Ko	7	/	Time:			Sign	ature		_		Time: Signature: • Jime:					30					
iomments:			nted l	Nam	ka ve:			Date T	161 161	4 9 98		ted N				Date):		Prin M	ted Na	ame: A	SN)	אדו	Date		,
	Company: Company: Analytic			ny:				T	F		Сол	npanj						Analytical Technologies, Inc.								

ATI Labs: San Diego (619)458-9141 • Proenix (602)438-1530 • Seattle (206)228-8335 • Pensacola (904)474-1001 DISTRIBUTION: White, Canary - ANALYTICAL TECHNOLOGIES, INC. • Pink - UniGiNATOR

P. O. BOX 1492 EL PASO, TEXAS 79978 PHONE: 915-541-2600

August 21, 1990

Mr. David G. Boyer Environmental Bureau Chief New Mexico Oil Conservation Division State Land Office Building 310 Old Santa Fe Trail, 206 Santa Fe, New Mexico 87504

Dear Mr. Boyer:

Enclosed please find the Wingate Plant hydrogeologic report in support of the Meridian Oi!, Inc. August 5, 1990 request to continue current operation without an approved discharge plan (copy attached). The report includes geology, hydrogeology and all groundwater quality data to date.

As per your conversation with ESAD on August 17, OCD granted a hydrogeologic report submittal extension of one week. This report was originally due on August 19.

If you have questions concerning the requested extension, feel free to call me at (505) 831-7759.

1

Sincerely,

W. David Hall, P.E. Senior Engineer

WDH/gg

Enclosure

CC: K. E. Beasley G. Garibav G. C. Kardos G. J. Odegard H. Van File: 5204 (w/w) (w/ ens!osure)

Reported and South Story Report of the Story

'SO AUG 8 AM 8 48

Mr. David Boyer Oil Conservation Division P.O. Box 2088 Land Office Building Santa Fe, NM 87504-2088

Dear Mr. Boyer:

You are aware of the Meridian Oil and El Paso Natural Gas (EPNG) negotiations for transfer (purchase) of the Wingate Fractionation Plant. Current WQCC regulations would require an approved effluent discharge plan in order to continue to operate the plant after takeover. Meridian feels it would be impossible to adequately address and submit a detailed discharge plan for a plant we are operationally unfamiliar with. Meridian at this time would request the OCD to grant a three year extension to operate the plant without an approved discharge plan. Discharges would remain as currently operated by EPNG or any modifications made would be done so with OCD knowledge and input.

Attached, are some of the time restraints we currently foresee as reasons for the three year extension and submitted upon request once operations become more conversant. EPNG is submitting hydrological data which upon your review may assist and define measures Meridian will have to adopt in the future.

If you have any questions concerning this request, please notify me as indicated below.

Very truly yours,

Dean Priest

Dean Priest Plant & Pipeline Superintendent

DDP/ks

WINGATE PLANT EVALUATION FOR DISCHARGE PLAN SUBMITTAL

PROCESS	TIME				
Current Operations Evaluation (in house)	6-12 Months				
Consultant Operations Evaluation	6-12 Months				
Modifications (construction, Equipment)	6-12 Months				
Discharge Plan Compilation	6-12 Months				

Total - 3 Years

EPNG, Meridian, CCP Meetil, On Wingste Gas Plant 7/23/90 10:00 am participant, Pare H-11 - EPALe Terry McMillen - Meridian Henry Van - EMG Dave Boyen - OCD QCD Rogen Anderson -000 Bill Olson -HV. - passed out G.C. and heavy netels results from MILV-1,2,3 ground the plant point Meridian taking one plant Went pouls to continue than Allerichan permit West pouls to continue than Allerichan permit Leoling then 2 yr extension it for assis P.B. - when will hydro expert he prepared 170. - Second doct should be ready this week DB - Davision should be deterred until cevias at Hylisso He. Should submit report in advance? R.A. - D.P. could be extended with committeent to close. In two yrs. HV. - When D.P. due, plant will be Meridians

 \mathbb{Q}

PA OCD needs hydrones that to make decision Could be enomitted as - full P.P. Extension at current P.P. with commitments, schodules HU- Will it be Meridian responsibility for D.P. Man sold D.B. - Ves some as I San Jaan plant (now Western Gas) EPAL6 + Maidian will discuss options and set back to COD

3801 ATRISCO, N. W. ALBUQUERQUE, NEW MEXICO 87120 PHONE: 505-831-7700

June 6, 1990

Mr. David Boyer New Mexico Oil Conservation Division State Land Office 310 Old Santa Fe Trail #206 Santa Fe, New Mexico 87504

RE: Analyses of Pond Water Used For Road Construction - Wingate Plant

100 JUN 9 AM 5 20

Dear Mr. Boyer:

Attached are copies of the analyses previously sent to you via the Fax. These analyses were performed per your letter of April 20, 1990 Item # 1.

To bring you up to date, the contractor for McKinley County used water for approximately 10 days after receiving the temporary approval. The water usage was discontinued about two to three weeks ago, and, to the best of my knowledge, is still not being used. I believe usage will continue at appropriate stages of their highway work pending your final approval.

If you require further information, please let me know. Thank you for your assistance in this matter.

Sincerely,

Taird

W. David Hall, P.E. Senior Engineer

OK by phone. to septelary 6/8/92

Be'd 5-18-10 D-J.

Analytical Technologies, Inc. 2113 S. 48th Street Suite 107 Tempe. AZ 85282 (602) 438-1530

ATI I.D. 005520

May 16, 1990

Ĵ

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: Wingate Plant, 5204

Attention: John Lambdin

On 05/03/90, Analytical Technologies, Inc. received a request to analyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

 $2 < \gamma < \frac{1}{2} < \gamma < \frac{1}{2}$

If you have any questions or comments, please do not hesitate to contact us at (602)438-1530.

lijabeth 1.

Elizabeth Proffitt Project Manager

= obert U. Woods

Robert V. Woods Laboratory Manager

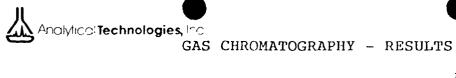
RVW:clf Enclosure 90-14

ń.

CLIENT : EL	PASO NATURAL GAS, NEW	MEXICO DATE RE	CEIVED : 05/03/90
PROJECT # : 52	04		
PROJECT NAME : WI	NGATE PLNT	REPORT	DATE : 05/16/90
	ATI I.D. :	005520	

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	F90647	AQUEOUS	05/01/90
02	F90646	AQUEOUS	05/01/90

••••


----- TOTALS -----

MATRIX # SAMPLES AQUEOUS 2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

-

ATI I.D. : 00552001

TEST : BTEX (8020)

ŝ

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO : 5204 : WINGATE : F90647 : AQUEOUS		GAS,	NEW	MEXICO	DATE DATE DATE UNITS	SAMPLED RECEIVED EXTRACTED ANALYZED S FION FACTOR	::	05/01/90 05/03/90 N/A 05/08/90 UG/L 1
COMPOUNDS						RESULTS			
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES						<0.5 <0.5 <0.5 <0.5 <0.5			
SURRO	GATE PERCEN	NT RECOVE	RIES						

TRIFLUOROTOLUENE (%)

110

اومی از از مراجع مراجع

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 00552002

1 •

TEST : BTEX (8020)

Ť

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, NEW : 5204 : WINGATE PLNT : F90646 X : AQUECUS	MEXICO DATE SAMPLED : 05/01/90 DATE RECEIVED : 05/03/90 DATE EXTRACTED : N/A DATE ANALYZED : 05/08/90 UNITS : UG/L DILUTION FACTOR : 1
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	5 5	<0.5 <0.5 <0.5 <0.5 <0.5
SURRO	GATE PERCENT RECOVERIES	• · · ·

TRIFLUOROTOLUENE (%)

104

· ••

GAS CHROMATOGRAPHY - RESULTS

REAGENT BLANK

TEST : BTEX (8020)

ĩ

CLIENT PROJECT # PROJECT NAME CLIENT I.D.	: EL PASO : 5204 : WINGATE : REAGENT	PLNT	GAS,	NEW	MEXICO	ATI I.D. DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 005520 : 05/05/90 : 05/06/90 : UG/L : N/A
COMPOUNDS						RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES						<0.5 <0.5 <0.5 <0.5 <0.5	

SURROGATE PERCENT RECOVERIES

TRIFLUOROTOLUENE (%)

90

QUALITY CONTROL DATA

ATI I.D.

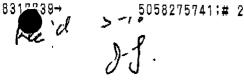
: 005520

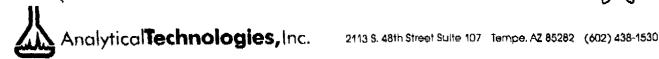
TEST : BTEX (8020)

CLIENT : EL PASO NATURAL GAS, NEW MEXICO PROJECT # : 5204 PROJECT NAME : WINGATE PLNT REF I.D. : 00599911	DATE ANALYZED : 05/07/90 SAMPLE MATRIX : AQUEOUS UNITS : UG/L
--	---

COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	-	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE	<0.5	10	9.7	99	9.5	95	2
TOLUENE	<0.5	10	9.9		9.6	96	3
ETHYLBENZENE	<0.5	10	10		9.8	98	2
XYLENES	<0.5	30	30		29	97	3

<pre>% Recovery = (Spike Sample Result - Sample Result)</pre>		
Spike Concentration		
RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike) Result Sample Result	v	100
Average of Spiked Sample	л	100


e 4.			EL PASO NATURAL GAS	СС	мра			
	,		ENVIRONMENTAL SAME	PLI	NG DAT	(File:BLANK	3.1	WK1)
Facility Number 1_151210	214 Sample Matrix	Wat	er Sample Number					
Sample Location _ Wingate	e Mant					Charge	<u>Ed</u>	anket RO.
Sampling Site Description								
Date Of Collection (MMDDY			Collec	ctio	n Method:	X Grab		CompositeIIrs.
Sample Collected By						Phone	5	iq-ziyy (505)
Laboratory Conducting Analys								
	ANALYSIS	REQU	·	atc				
GENERAL CHEMISTRY	Organic Carbon		Sclenium	_	OR	GANICS		METHOD SCANS
pH	Orthophosphate		Silver					TPHC - 418.1
Alkalinity, Hydroxide	Total Phosphorous-P		Aluminum					EPA - 601
Alkalinity, Carbonate	Total Phosphate		Antimony	_				EPA - 602
Alkalinity, Bicarbonate	Mcta-Phosphate		Beryllium	_				EPA - 610
Acidity. Total	Color		Bismuth					EPA - 624
Carbon Dioxide	Odor		Cobalt					EPA - 625
Chloride	Conductivity		Copper					EPA - 8010
Fluoride	Specific Gravity		Iron		RADIO	OCHEMISTRY		EPA - 8015
Bromide	Total Dissolved Solid		Manganese		Gross Alp	ha	X	EPA - 8020 (BETX)
lodide	Total Suspended Solid	5	Molybdenum		Gross Bel	8		EPA - 8040
Nitrate/Nitrite as N	Total Solids		Nickel		Radium 2	26		EPA - 8080
Nitrate-N	Turbidity		Thallium		Radium 2	28	Γ	EPA - 8100
Nitrite-N	Sodium		Tin		Strontium	90		EPA - 8240
Ammonia	Potassium		Vanadium		Uranium			EPA - 8270
Total Kjeldahl (TKN)-N	Dissolved Oxygen		Zinc	<u>,</u>	Tritium			
Calcium as Ca	Phenols				Lead-210)		
Magnesium as Mg	Cyanide, Total		CHARACTERIZATIONS		Polonium	-210		
Total Hardness as CaCO3	Boron		Corrosivity		Radon			
Silica	METALS		Ignitability	-			1	
Sulfate	Arsenic		Reactivity (CN,S)		MICR	BIOLOGICAL	1-	OTHER
Sulfide	Barium		TCLP (8 metals)	1	T.C N	1F		Asbestos
Sulfite	Cadmium		TCLP (Organics)	1-	T.C N	IPN	\uparrow	
112S as S	Chromium, Total		TCLP ()	┢╴	Fecal - N		┢	
Cation/Anion Balance	Chromium, +6		EP TOX (8 Metals)	\vdash	Fecal - N		┢	
Total Organic Carbon	Chromium, +3		EP TOX ()	┢─			┢	
Chemical Oxygen Demand	Lead			-			┢	
}{	Mercury, Total	{-					╀╴	
Biological Oxygen Demand							╋	·
Oil and Grease	Mercury, Organic		1	1_	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		L	
COMMENTS/SPECIAL IN	STRUCTIONS	ts c	and Analyses by H	Un	y 10th	1 ioo	5	520-01
All Invoices Pecults and con			mation to: John Lambdin, c/c		1		-	• • • • • • • • • • •
All invoices, results and col	mprover chain of Custon	,		- •-			-4410	
	CHAR	OF	CUSTODY INFORMATION				_	
RELINQUISHED BY	1.		NQUISHED BY		2.	RELINQUISH	ED	BY 3
Jow Falli	13:00		· · · · · · · · · · · · · · · · · · ·					
(Signature)	(time)	(Sig	nature)	<u> </u>	(time)	(Signature)		(time)
JOHN LAMBDI	N 5/2/91 ((date)	I				· ·		
(Print Name)	(date)	(Prù	nt Name)		(datc)	(Print Name)		(date)
El Paso Natural Gas Co.		10				(Company)		
(Company)	A A		npany) CEIVED BY	222	2.	(Company) RECEIVED B	Y	3
RECEIVED BY	el por	REC			4.	ACCEIVED B		د
Synature	(Nume)	(Sig	naturc)		(time)	(Signature)		(time)
Monlite	JUL XB							
(Print Name)	(date)	(Prù	nt Name)		(date)	(Print Name)	_	(date)
1 + 1 F		10-	munaul			(Company)		,
(Company)		1 (00)	mpany)			[(combany)		


i . .

								_		
	• •			EL PASO NATURAL GAS	cc	MPAN]
	Facility Number 1_157210	—	.	ENVIRONMENTAL SAME	PLI	NG DATA	(File:BLANK	3.1	WKI) 1600	1 5-6
	Facility Number 1_151219	2171 Sample Matrix	Wat	Sample Number	14	CHIOT	6 6 9 J	Ti	me 1 <u>+161+15</u> 1	24 Îlr Clk.
	Sample LocationUius Sampling Site Description	ate Plant	<u> </u>		F	- 4064	Charge B	a	ket P.O,	
	Date Of Collection (MMDDY Sample Collected By	Y) OISIOII YIO		Collec	tio	n Method:	X Grab		Composite	Hrs.
	Sample Collected By _ More	non Norvelle /.	SOHI	J LAMBDIN			Phone	5	99-2144 (<u>sc)</u>
	Laboratory Conducting Analy				·					
_		ANALYSIS		<u>``</u>	ate					
	GENERAL CHEMISTRY	Organic Carbon		Selenium	_	OR	OANICS	_	METHOD SC	ANS
	pH	Orthophosphate		Silver					TPHC - 418.1	
-	Alkalinity, Hydroxide	Total Phosphorous-P		Aluminum					EPA - 601	
	Alkalinity, Carbonate	Total Phosphate		Antimony					EPA - 602	
	Alkalinity, Bicarbonate	Mcta-Phosphate		Beryllium					EPA - 610	
	Acidity. Total	Color		Bismuth					EPA - 624	
	Carbon Dioxide	Odor		Cobult					EPA - 625	
	Chloride	Conductivity		Copper					EPA - 8010	
	Fluoride	Specific Gravity		Iron			CHEMISTRY	_	EPA - 8015	
	Bromide	Total Dissolved Solids		Manganese		Gross Alp		\mathbf{X}	EPA - 8020 (BE	Tx)
	Iodide	Total Suspended Solid	s	Molybdenum		Gross Bet	4		EPA - 8040	
	Nitrate/Nitrite as N	Total Solids		Nickel		Radium 2	26		EPA - 8080	
	Nitrate-N	Turbidity		Thallium		Radium 2	28		EPA - 8100	
	Nitrite-N	Sodium		Tin		Strontium	90		EPA - 8240	
	Ammonia	Potassium		Vanadium		Uranium			EPA - 8270	
	Total Kjeldahl (TKN)-N	Dissolved Oxygen		Zinc		Tritium				
	Calcium as Ca	Phenols				Lead-210				
	Magnesium as Mg	Cyanide, Total		CHARACTERIZATIONS		Polonium	-210			
	Total Hardness as CaCO3	Boron		Corrosivity		Radon				
	Silica	METALS		Ignitability						
	Sulfate	Arsenic		Reactivity (CN,S)		MICRO	BIOLOGICAL	-	OTHE	 ۲
	Sulfide	Barium		TCLP (8 metals)	-	T.C M	F		Asbestos	·····
F	Sulfite	Cadmium		TCLP (Organics)		T.C M	IPN			
	H2S as S	Chromium, Total		TCLP()	-	Fecul - N	1F ,			
	Cation/Anion Balance	Chromium, +6		EP TOX (8 Metals)	-	Fecal - N	APN	F		
F	Total Organic Carbon	Chromium, +3		EP TOX ()		ţ		┢╴		
F	Chemical Oxygen Demand	Lead			-	 		┢╴		
┢	Biological Oxygen Demand	Mercury, Total			-			┟╌		
┢	Oil and Grease	Mercury, Organic				<u> </u>		┢╴		
Þ	COMMENTS/SPECIAL IN				<u>-</u>	L				
	COMMENTS OF COME IN		sults	and Analyses	la	, Mai	, 10th		00552	0-02
	All Invoices, Results and con			mation to: John Lambdin, c/c	-7		·····	min		- -
L									-	
Γ		CHAIN	OF C	USTODY INFORMATION						
F	RELINQUISHED BY	1.	RELI	NQUISHED BY		2.	RELINQUISH	ED	BY	3.
	John Jakdi	13:00								
	(Signature)	(time)	(Sign	sturc)		(time)	(Signature)			(time)
F	(Print Name)	1 <u>5/7/70</u> (date)	(Print	t Name)		(date)	(Print Name)			(date)
	El Paso Natural Gas Co.	(oac)				((* i bit frame)			(04(0)
\vdash	(Company)	1	(Corr	ipany)			(Company)			
F	RECEIVED BY	111 not		EIVED BY	<u>a</u>	2.	RECEIVED B	Y		3.
L	1/1/ ALO	MAR YOU								
	(Signature)	The City	(Sign	aturc)		(time)	(Signature)			(time)
+	(Print Name)	_(datc)	(Prin	t Name)		(date)	(Print Name)			(date)
	ATT	/ -(0410)	````	/						
+	(Company)		1 (Con	аралу)			(Company)			

STATE OF NEW MEXICO OIL CONSERVATION DIVISION MEMORANDUM OF MEETING OR CONVERSATION Time Date Telephone Personal 10:30AM 92 30 Originating Party Other Parties VNCS フィア 618) 28) bject Lon), 2) Discussion Mathet colle Me. nI er1 19 Conclusions or Agreements 10 0920 10 0 æ 11 Ed $\sigma \upsilon$ endradio Spills. Signed Distribution β artine Winpole

ATI I.D. 005520

May 16, 1990

El Paso Natural Gas Company P.O. Box 4990 Farmington, NM 87499

Project Name/Number: Wingate Plant, 5204

Attention: John Lambdin

On 05/03/90, Analytical Technologies, Inc. received a request to analyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (602)438-1530.

Elizabeth My

Elizabeth Proffitt Project Manager

RVW:clf Enclosure 90-14

Pat U. Dont.

Robert V. Woods Laboratory Manager

Analylical Technologies, Inc.

CLIENT			NATURAL GAS,	NE	W MEXICO	DATE	RECEIVED	ŧ	05/03/90
PROJECT # PROJECT NAME	-	5204 WINGATE	PLNT ATI I.D		005520	REPO	RT DATE	:	05/16/90
			WIT T'D		005520				

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	F90647	AQUEOUS	05/01/90
02	F90646	AQUEOUS	05/01/90

---- TOTALS -----

MATRIX **#** SAMPLES ----AQUEOUS

2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

83<u>177</u>39→

. <i>1</i>	-		EL PASO NATURAL GAS			•		
Facility Number 1_151219		<u>61) -</u>	ENVIRONMENTAL SAMP	PLU	NG DAT	A (File: BLANI	C3 .'	WK1)/600 2-1
Facility Number $ - 3 2 2$	ZIZI Sample Mstrix	Wat	<u>CC</u> Sample Number	Ļ		<u>9</u>	Ţ	mo 1111115124 Hr Cik.
Sample LocationUiMa	ate Plant				- 400	Charge B	14	sket P.O,
Sampling Site Description	HOULL CHARGE	291	INLET			N /	<u> </u>	
Date Of Collection (MMDDY Sample Collected By	มเธเราอารารเร	1	Colles	ctio	n Meuhod	: X Orab		CompositeIlrs.
Sample Collected By	nan Dorvellar/	704	N LAMBOIN			Phone	2	49-2144 (SOS)
Laboratory Conducting Analys					· · · · · · · · · · · · · · · · · · ·			
	ANALYSIS	REQU	ويستركبون والمحاجب والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج وال	Alc				
GENERAL CHEMISTRY	Organic Carbon		Selenium		OR	GANICS		METHOD SCANS
pH	Orthophosphate		Silver		م و سر و مع ال معلوم م			TPHC - 418.1
Alkalinity, Hydroxide	Total Phosphorous-P		Aluminum					EPA - 601
Alkalinity, Carbonate	Total Phosphate		Antimony	-				EPA - 602
Alkalinity, Bicarbonate	Meta-Phosphate		Beryllium					EPA - 610
Acidity. Total	Color	-+-	Bismuth					EPA - 624
Carbon Dioxide	Odor		Cobult				ļ	EPA - 625
Chloride	Conductivity		Copper					EPA - 8010
Fluoride	Specific Gravity		Iron			CHEMISTRY		EPA - 8015
Bromide	Total Dissolved Solid		Mangancso		Gross Al	······	X	EPA - 8020 (BETX)
Iodide	Total Suspended Soli	35	Molybdenum		Gross Bei			EPA - 8040
Nitrate/Nitrite as N	Total Solida		Nickel		Radium 2		 	EPA - 8080
Nitrate-N	Turbidity		Thallium		Radium 2	······		EPA - 8100
Nitrite-N	Sodium		Tin		Strontlum	90	L	EPA - 8240
Ammonia	Potassium		Vanadium		Uranium			EPA - 8270
Total Kjeldahl (TKN)-N	Dissolved Oxygon		Zine		Tritium			
Calcium se Ca	Phenois				Lead-210)		
Magnesium as Mg	Cyanide, Total		CHARACTERIZATIONS		Polonium	-210		
Total Hardness as CaCO3	Boron		Corrosivity		Radon			
Silica	METALS		Ignitability					
Sulfate	Arsenio		Reactivity (CN,S)		MICR	BIOLOGICAL		OTHER
Sulfide	Barium		TCLP (8 metals)		T.C M	IF	Γ	Asbestos
Sulfite	Cadmium		TCLP (Organics)		T.C M	IPN		
H2S as S	Chromium, Total		TCLP ()		Fecal - N	AF,		
Cation/Anion Balance	Chromium, +6		ÉP TOX (8 Motels)		Fecal - N	APN	Γ	
Total Organic Carboa	Chromium, +3		EP TOX ()				Γ	
Chemical Oxygen Demand	Lead		· ·	Γ	[ىنى بىرى بىرى بىرى بىرى بىرى بىرى بىرى ب	Γ	
Biological Oxygen Demand	Mercury, Total			Γ			T	
Oil and Grosse	Mercury, Organic		· · · · · · · · · · · · · · · · · · ·	1	1	<u> </u>	t	
COMMENTS/SPECIAL IN								
		sult.	s and Analyses	k	1 Ma	y loth		005520-02
All Invoices, Results and con	nploted Chain of Custod	y Infos	mation to: John Lambdin, c/c	s É	PNG, P.O	. Box 4990, Far	on la	igton, N.M. 87499
	СНАЛ	I OF C	USTODY INFORMATION					
RELINQUISHED BY	1.		NQUISHED BY		2.	RELINQUISH	ĒĎ	BY 3.
John datali	/3:00							
(Signature)	(time) 1 5/2/90	(Sig	lature)		(time)	(Signature)		(time)
(Print Name)	$\frac{3/2/90}{(date)}$	17P.1	it Name)		(date)	(Print Name)	_	(datc)
El Paso Natural Gas Co,	\ + /		······································		()	· · · · · · · · · · · · · · · · · · ·		
(Company)			npany)			(Company)		
RECEIVED BY	Man Att Cold V HOU				3.			
(Sterature)	the GHB	(Sig	naturc)		(time)	(Signature)		(time)
(Print Name)	-(#ate)	(Pri	nt Name)		(date)	(Print Name)		(date)
(Company)		(Cor	npany)		······································	(Company)		

GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 00552002

TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL : 5204 : WINGATE PLNT : F90646 : AQUEOUS	GAS, NEW MEXICO	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 05/01/90 : 05/03/90 : N/A : 05/08/90 : UG/L : 1
COMPOUNDS			RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	• ** •• •• •• •• •• •• •• •• •• •• •• •• ••		<0.5 <0.5 <0.5 <0.5 <0.5	
GIIDDO				

SURROGATE PERCENT RECOVERIES

TRIFLUOROTOLUENE (%)

83	12	3	9→	
----	----	---	----	--

	J.	-		EL PASO NATURAL GAS	C	MPANY	· ·			
	ENVIRONMENTAL SAMPLING DATA (File:BLANK3.WK1)									
	Facility Number 1_151210141 Sample Mateix Water Sample Number 1519101614171 Time 11161115124 Hr Cik									
	Sample Location KAALC FICUL									
	Sampling Site Description				·]
	Date Of Collection (MMDDY)			Colle	ctio	n Method	: X Grab	_	CompositeIlrs.	1
	Sample Collected By	nan Norvelle /.	13HA	· LAUIBDIN					99-2144 (505)	1
	Laboratory Conducting Analysi	A NALYTICAL	TEC	HOLOGTES						
		ANALYSIS	REQU	ESTED (Check Appropri	810	Blocks)				
_	GENERAL CHEMISTRY	Organic Carbon		Scionium	Ι	OR	OANICS		METHOD SCANS	1
_	рН	Orthophosphate	\Box	Silver					TPHC - 418.1	1
	Alkalinity, Hydroxide	Total Phosphorous-P		Aluminum	1				EPA - 601	1
	Alkalinity, Carbonate	Total Phosphate		Antimony					EPA - 602	1
	Alkalinity, Bicarbonata	Mcta-Phosphate		Boryllium					EPA - 610	1
	Acidity, Total	Color		Bismuth				-	EPA - 624	1
	Carbon Dioxide	Odor		Cobalt	1	,			EPA - 625	1
	Chloride	Conductivity		Copper	1				EPA - 8010	1
	Fluorido	Specific Gravity		Iron		RADIO	CHEMISTRY		EPA - 8015	1
	Bromide	Total Dissolved Solids		Manganeso		Gross Alp	sha	X	EPA- 8020 (BETK)	1
	Iodide	Total Suspended Solid	8	Molybdenum		Gross Bet	A CONTRACTOR OF THE OWNER OWNE		EPA - 8040	1
	Nitrate/Nitrito as N	Total Solids		Nickel		Radium 2	26		EPA - 8080	1
	Nilrato-N	Turbidity		Thallium		Radium 2	28		EPA - 8100	1
-	Nitrito-N	Sodium		Tip		Strontlum	90		EPA - 8240	-1
	Ammonia	Potassium		Vanadium		Uranium			EPA - 8270	1
	Total Kjeldahl (TKN)-N	Dissolved Oxygen		Zine		Tritium				
	Calcium as Ca	Phenols				Lcad-210)			
	Magnesium as Mg	Cyanide, Total		CHARACTERIZATIONS		Polonium	-210			
	Total Hardness as CaCO3	Boron		Corrosivity		Radon				
	Silica	METALS		Ignitability						
	Sulfato	Arsenie		Reactivity (CN,S)		MICRO	BIOLOGICAL		OTHER	
	Sulfide	Barlum		TCLP (8 metals)		T.C M	IF		Asbostos	
	Sulfite	Cadmium		TCLP (Organics)		T.C M	IPN]
	HI25 as S	Chromium, Total		TCLP ()	Focal - MF]	
	Cation/Anion Balance	Chromium, +6		EP TOX (8 Metals)		Fecal - N	4PN			
	Total Organić Carbon	Chromium, +3		ËP TOX ()						1
	Chemical Oxygen Demand	Lead	·							
-	Biological Oxygen Demand	Mercury, Total								
_	Oil and Greese	Mercury, Organia						Γ		
	COMMENTS/SPECIAL INS	TRUCTIONS								
	۰	بالتكافي فالمتعاقب والمترجين والمتحد والمتحد							520-0	_
	All Involces, Results and com	pleted Chain of Custody	lnforn	nation to: John Lambdin, c/o	EF	NG, P.O	. Box 4990, Fari	nia	gton, N.M. 87499	
╞										-
-	BELINGWALLER SU	CHAIN	Statistics in succession of the local division ivision of the local division of the loca	USTODY INFORMATION				<u>u -</u>		
	RELINQUISHED BY	1. /3:00	RELIN	QUISHED BY		2.	RELINQUISHI	D	BY 3.	
-	(Signature)	(time)	(Signa	turc	-	(lime)	(Signature)		(time)	
	JOHN LAMBDIN		1			(/0		(((((()))))))))))))))))))))))))))))))))	
Γ	(Print Name)	(date)	(Print	Name)		(datc)	(Print Name)		(date)	-
	El Paso Natural Gas Co.			······································						_
, Carrier	(Company)	A .A.	(Com				(Company)	,		=
	RECEIVED BY	eld por	RECE	IVED BY		2.	RECEIVED BY	r	3	
	Signature A.E.	(iyana)	(Signa	itu re)		(time)	(Signature)		(time)	
	. Wormer Las	KURB								
	(Print Name)	(daije)	(Print	Name)		(date)	(Print Name)		(date)	
-	(Company)		1Com	neu)			10 contractions			

Analylical Technologies, Inc. GAS CHROMATOGRAPHY - RESULTS

ATI I.D. : 00552001

TEST : BTEX (8020)

Ì

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX	: EL PASO NATURAL GAS, : 5204 : WINGATE PLNT : F90647 : AQUEOUS	DATE RECEIVED DATE EXTRACTED DATE ANALYZED	: 05/01/90 : 05/03/90 : N/A : 05/08/90 : UG/L : 1
COMPOUNDS		RESULTS	
BENZENE Toluene ETHYLBENZENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5 <0.5	

SURROGATE PERCENT RECOVERIES

TRIFLUOROTOLUENE (%)

Analytical Technologies, Inc.

GAS CHROMATOGRAPHY - RESULTS

REAGENT BLANK

TEST : BTEX (8020)

Ţ

CLIENT PROJECT # PROJECT NAME CLIENT I.D.	: EL PASO NATURAL GAS, NEW MEXICO : 5204 : WINGATE PLNT : REAGENT BLANK	ATI I.D. : 005520 DATE EXTRACTED : 05/05/90 DATE ANALYZED : 05/06/90 UNITS : UG/L DILUTION FACTOR : N/A
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5

SURROGATE PERCENT RECOVERIES

TRIFLUOROTOLUENE (%)

SENT BY:Xerox Telecopier 7021 -30-90 ; 7:57AM ;	SENT	BY:Xerox	Telecopier	7021	-30-90	;	7:57AM ;
---	------	----------	------------	------	--------	---	----------

Analytical Technologies, Inc.						
QUALITY TEST : BTEX (8020)	CONTRO	DL DATA	ATI :	I.D. :	005520	
CLIENT : EL PASO NATURAL GAS, PROJECT # : 5204 PROJECT NAME : WINGATE PLNT REF I.D. : 00599911	. NEW MI	EXICO		ANALYZED : LE MATRIX : S :		
COMPOUNDS		CONC. SPIKED	SPIKED SAMPLE	DUP. % SPIKED REC.SAMPLE		RPD
BENZENE Toluene Ethylbenzene Xylenes	<0.5 <0.5 <0.5 <0.5 <0.5	10 10 10 30	9.7 9.9 10 30	97 9.5 99 9.6 100 9.8 100 29	95 96 98 97	2 3 2 3

```
% Recovery = (Spike Sample Result - Sample Result)
Spike Concentration

RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
Result Sample Result
Average of Spiked Sample
```

Ť

8317739→

EL PASO NATURAL GAS CO.

ALBUQUERQUE DIVISION OFFICE

3801 Atrisco NW Albuquerque, NM 87120

FAX Phone (505)831-7739 Confirmation Phone (505)831-7700

	and the second second second second second second second second second second second second second second secon	NAME MR. TAVID BOYER PHONE	
	та	COMPANY NMOCD	
		ADDRESS	
		FAX PHONE (505) 827- 5741	
	FROM	NAME DAVID HALL DATE 5-30-90	
		PHONE (505) 831-7759	
		Please confirm receipt.	
		No confirmation necessary.	
		9 Number of pages sent. (including this page)	
	والواد بي محمد في محمد ال		
Ĩ	REMARK	5:	
-	Ke	E: HAMILTON CONST. CO. MSKINLEY COUNTY WATER USE - EPNG WINGATE PLANT	
-	an and Sector States (Sector States) , and	USE - EPNG WINGATE PLANT	
-	Homes	ED IS THE EAST POND WATER ANALYSIS REQUESTED	
6 2		UR APRIL 20, 1990 LETTER, ITEM # 1. I WILL	
	EDRMA	LIZE THIS & FOLLOW THROUGH THE MAIL BUT I	
	WANT	ED TO FORWARD FOR YOUR INFO.	
		, , , , , , , , , , , , , , , , , , , ,	
,		Thank you - W. David Hell	
		W. David Hall	

W. DAVID HALL, P.E.

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

April 27, 1990

CERTIFIED MAIL RETURN RECEIPT NO. P-918-402-236

Mr. W. David Hall, Senior Engineer El Paso Natural Gas Company 3801 Atrisco Northwest Albuquerque, New Mexico 87120

Dear Mr. Hall:

I have received your telefax of April 25th which included an April 23rd letter from Hamilton Construction Company describing the proposed application of the wastewater and the disposal of any excess wastewater. These procedures are acceptable and, beginning immediately, the use of wastewater from the east pond is hereby approved. However, this approval is contingent on OCD receiving the results of the previously requested water analysis within 30-days.

If wastewater is to be used in this manner on a recurring basis, you are directed to incorporate complete procedures for use, excess water disposal, periodic testing and any other legal or environmental safeguards EPNG finds necessary, into the ground water discharge plan currently in preparation for submittal to OCD. Such procedures should also include a commitment to notify OCD at the seasonal start of such use and again upon cessation at the end of the construction season. The latter notification shall include an approximate volume of wastewater diverted from the pond.

4 --- ---

If you have any questions, please contact me at 827-5812.

Sincerely,

L KREIX

David G. Boyer, Hydrogeologist Environmental Bureau Chief

DGB/sl

cc: NMOCD Aztec District Office NMEID Gallup Ken Beasley, EPNG El Paso

* 50 6.73 27 6.14 9 55

3801 ATRISCO, N. W. ALBUQUERQUE, NEW MEXICO 87120 PHONE: 505-831-7700

April 25, 1990

Mr. David Boyer New Mexico Oil Conservation Division State Land Office 310 Old Santa Fe Trail #206 Santa Fe, New Mexico 87504

RE: Use of Wingate Plant Wastewater for Road Construction

Dear Mr. Boyer:

Attached is a letter from Hamilton Construction Company addressing the questions of Item #3 in your April 20, 1990 letter. I am also enclosing an aerial photograph showing the approximate location of the influent line to the east pond and the location of the water loading area to be used by the contractor.

The analysis required by Item #1 will be conducted and the results forwarded as soon as possible. A letter agreement will be entered into between El Paso and McKinley to assure compliance with NMOCD and EPNG requirements.

I hope this information is sufficient to answer your immediate concerns. As I conveyed during our phone conservation, an immediate need of approximately 50,000 gallons of water is required.

If you have any questions, please give me a call at 505-831-7759.

Sincerely,

W. David Hall, P.E. Senior Engineer

APRIL 23, 1990

To: State of New Mexico Energy, Minerals and Natural Resources

Re: Use of Wingate Plant wastewater

Dear Mr. Boyer:

This is in reply to your letter dated April 20, 1990.

- 1) Water will be applied by power spray only onto roadway construction.
- We do not anticipate any excess water, however, if in the event this does occur, the water will be returned to El Paso's pond.
- 3) At the end of each day we will inform El Paso of any excess water.

If there may be any more questions, please feel free to call our office. The new number is 722-7855.

Thank You for your help, Vernon Hamilton Construction Co.

Vernon I. Hamilton, President

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE. NEW MEXICO 87504 (505) 827-5800

April 20, 1990

CERTIFIED MAIL RETURN RECEIPT NO. P-918-402-147

Mr. W. David Hall, Senior Engineer El Paso Natural Gas Company 3801 Atrisco Northwest Albuquerque, New Mexico 87120

RE: Use of Wingate Plant Wastewater for Road Construction

Dear Mr. Hall:

The New Mexico Oil Conservation Division (NMOCD) has reviewed your letter of February 21, 1990, requesting permission for McKinley County to utilize Wingate Plant wastewater for road construction. After review of the request and phone discussion with you on April 9, we will need the following additional information submitted before we can continue review of the request:

- 1. Aromatic hydrocarbon analysis of the effluent entering the east pond;
- 2. The proposed location of the pumping site at the east pond;
- 3. A work plan for use of the water. Only water drawn from the east pond shall be used for road construction since it is of better quality than the west pond. However, since several constituents in the east pond exceed WQCC standards (some by a factor of ten or more), proper application of the water to prevent ponding or runoff is essential.
 - a. How will the water be applied and what precautions will be taken to prevent runoff to arroyos or stream channels?
 - b. What provisions will be made to ensure proper disposal of excess water? It shall not be allowed to discharge or drain into stream channels or arroyos, or onto the ground surface.
- 4. Provide specific information on the method EPNG will use (e.g. signed agreement-or other legal document) to ensure that McKinley County properly utilizes and disposes of excess water in accordance with the work plan.

If you have any questions, please contact me at 827-5812.

Sincerely,

David G. Boyer, Hydrogeologist Environmental Bureau Chief

DGB/sl

cc: NMOCD Aztec NMEID Gallup Ken Beasley, EPNG El Paso James Radosevich, McKinley County STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS

April 19, 1990

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-918-402-143

Mr. Kenneth E. Beasley, Manager North Region Compliance Engineering EL PASO NATURAL GAS COMPANY P. O. Box 1492 El Paso, Texas 79978

RE: Discharge Plan GW-54 Wingate Plant McKinley County, New Mexico

Dear Mr. Beasley:

The Oil Conservation Division (OCD) has received your request dated March 14, 1990 for an extension to August 13, 1990 for the submission of a discharge plan application for the above referenced facility.

Pursuant to Section 3-106 of the New Mexico Water Quality Control Commission (WQCC) regulations and for good cause shown, El Paso Natural Gas Company is hereby granted an extension until August 13, 1990 for submission of a discharge plan application for the Wingate Plant. This extension is granted to allow El Paso sufficient time to complete site specific investigations and formulate a comprehensive plan.

If you have any questions, please feel free to contact David Boyer at (505) 827-5812 or Roger Anderson at (505) 827-5884.

Sincerely, William J. LeMay Director WJL/RCA/sl cc: **OCD** Aztec Office

		NTE OF NEW MEXICO
		ONSERVATION DIVISION
ontract Lab AN	4-1-14135	Contract No. 78-521.07-0
OCD Sample No. 90	04161153	
Collection Date Collection Ti	me Collected byPerson/Agency	
1 10 90 1153	ALUGRSON/CL	SOKI NOCD
ND ENVIRONMEN	TAL BUREAU ERVATION DIVISION	Township, Range, Section, Tract:
PORT PO Box 2088 Santa Fe, NM		No. of samples submitted: $4V_{IALS} + 2$
SAMPLING CONDITIONS	Discharge	NF: Whole sample (Non-filtered) F: Filtered in field with 0.45 Amembrane filter PF: Pre-filtered w/45 Amembrane filter
pH(00400) Water Temp. (00010)	Sample type Sci 14-13 Conductivity (Uncorrected) 32-0-00 4(mhc	$2 \sqrt{12} \text{ NA: No acid added} \qquad \square \text{ A: } 5 \text{mile}$ $2 \sqrt{12} \text{ A: } \text{HCL} \qquad / \boxed{2} \text{ A: } 4 \text{millioning HNU, added}$ $\square \text{ A: } 2 \text{mile} \text{SO/L added}$
18°C	Conductivity at 25° C	FIELD COMMENTS:
يى بىغار سېزىكى بىغان بىرى مەر يېچىكى مۇنىكى قىلىرىكى بىكى بىك		

i.

LAB ANALYSIS REQUESTED:

.

ITEM	DESC	METHOD	ITEM	DESC	METHOD	ITEM	DESC	METHO
X 001	VOA VOA	8020 602	□013 □014	PHENOL VOC	604 8240	□ 026 □ 027	Cd Pb	710 74:
003	VOH VOH	8010 601	□015 □016	VOC	624 8250	028	Hg(L)	747
	SUITE	8010-8020 601-602	017	SVOC	625	031	Se ICAP	774 601
007	HEADSPACE			VOC SVOC	8260 8270	033	CATIONS/ANIONS N SUITE	
□ 008 □ 009	PAH PAH	8100 610	□ 020 □ 022	O&G AS	9070 7060	□ 035 □ 036	NITRATE NITRITE	•
□ 010 □ 011	PCB PCB	8080 608	023	8a Cr	70 80 7190	□ 037 □ 038	AMMONIA TKN	
012	PHENOL	8040	025	Cr6	7198		OTHER	

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Received:

05/31/90

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

RECEIVED

JUN 0 8 1990

OIL CONSERVATION DIV. Sample Identification: Sample #9004101153 SANTA FE Collected By: Anderson/Olson Date & Time Taken: 04/10/90 1153 Other: EPNG- Wingate A/B Cooling Tower

Į	Lab	Sample	Number	1	163717

04/16/90

 PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Acrolein	(100	ug/1	0550	04/21/90	EPA Method 8240	PM
Acrylonitrile	(100	ug/1	0550	04/21/90	EPA Nethod 8240	PM
Benzene	(5	ug/1	0550	04/21/90	EPA Method 8240	PM
Bromoform	(5	ug/1	0550	04/21/90	EPA Nethod 8240	ри
Bromomethane	<10	ug/1	0550	04/21/90	EPA Method 8240	PM
Carbon Tetrachloride	(5	ug/1	0550	04/21/90	EPA Method 8240	PM
Chlorobenzene	(5	ug/1	0550	04/21/90	EPA Method 8240	PM
Chloroethane	(10	ug/1	0559	94/21/90	EPA Nethod 8240	PM
2-Chloroethylvinyl ether	(10	ug/1	0550	04/21/90	EPA Method 8240	PM
Chloroform	(5	ug/1	0559	04/21/90	EPA Method 8240	PM
Chloromethame	(10	ug/1	0559	04/21/90	EPA Method 8240	pm
Dibromochloromethane	(5	ug/1	0559	04/21/90	EPA Method 8240	рм
Bromodichloromethane	(5	ug/l	0559	04/21/90	EPA Method 8240	PM
1,1-Dichloroethane	(5	ug/l	0550	04/21/90	EPA Method 8240	рм
1,2-Dichloroethame	(5	ug/1	0552	04/21/90	EPA Method 8240	PM
1,1-Dichloroethene	(5	ug/1	0559	04/21/90	EPA Method 8240	рм

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Lab Sample Number:	16	3717 Cont	tinued			Page 2
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	ВҮ
trans-1,2-Dichloroethene	(5	սց/1	0559	04/21/90	EPA Method 8240	PM
1,2-Dichloropropane	(5	ug/1	0550	04/21/90	EPA Method 8240	PM
cis-1,3-Dichloropropene	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
Ethyl benzene	(5	ug/1	0559	04/21/90	EPA Method 8240	PM
Methylene Chloride	(5	ug/1	0559	04/21/90	EPA Nethod 8240	РМ
1,1,2,2-Tetrachloroethane	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
Tetrachloroethene	(5	ug/1	0559	04/21/90	EPA Method 8240	PM
Toluene	(5	ug/1	0550	04/21/90	EPA Method 8240	PM
1,1,1-Trichloroethane	(5	ug/1	0559	04/21/90	EPA Nethod 8240	PM
1,1,2-Trichloroethane	(5	ոն\յ	0550	04/21/90	EPA Method 8240	PM
Trichloroethene	(5	ug/l	0553	04/21/90	EPA Method 8240	РИ
Vinyl Chloride	(10	ug/1	0550	04/21/90	EPA Method 8240	РИ
trans-1,3-Dichloropropens	(5	ug/1	0550	04/21/90	EPA Method 8240	РМ
Alkalinity	53	rg/1	1409	04/26/90	EPA Method 310.	l DFK
Boron	1.6	og/1	2100	05/09/90	EPA Method 212.	3 DFK
Cation-Anion Balance	2.36	e!	1103	05/31/90	ference	NT
Carbonate	(.5	mg/l	1562	94/26/90	APHA Method 263	DFK
Chloride	110	mg/l	1BØØ	05/23/90	EPA Method 325.	3 MLR
Specific Conductance	6000	Nicrochos	2263	04/17/90	EPA Method 120.	I KLM
Bicarbonate	53	rg/1	1520	04/26/99	PPHA Method 263	DFK
Sulfate	3200	₽g/l	2052	65/22/90	EPA Method 375.	4 MLR

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

163717 **Continued** Page 3 PARAMETER RESULTS UNITS TIME DATE METHOD BY Total Dissolved Solids 5020 mg/1 0803 95/24/90 EPA Method 160.1 MLR pН 6.9 50 1630 04/17/90 EPA Method 159.1 LB Silver (. 03 1700 EPA Method 272.1 6K eg/134/19/90 Aluminum (.5 EPA Method 202.1 mg/1 1730 04/20/90 GX Arsenic (.995 m/12215 04/23/90 EPA Method 206.2 GK Barium (.5 mg/11945 04/20/90 EPA Method 208.1 6K Beryllium (. 21 2109 EPA Method 210.2 55g/1 %5/22/% GK Calcium 14 rg/1 1709 04/26/90 EPA Method 215.1 EK Cadmium (. 991 1845 04/26/90 EPA Method 213.2 $\log/1$ 6K Cobalt (.5 1645 04/19/90 EPA Method 219.2 @g/1 6K Chroaiun .07 153% 34/19/90 EPA Method 218.1 6D6 -ag/1 Copper .08 0930 EPA Method 220.1 mg/104/19/90 GØG Iron 2.6 Mg/1 0815 04/25/90 EPA Method 236.1 6DG Potassium 58 erg/1 1730 05/22/90 EPA Method 258.1 EK Magnesivm 4.4 1739 04/25/90 EPA Method 242.1 6DG @g/1 Manganase .03 EPA Method 243.1 1540 04/23/90 6DG 6ng/1 Molybdenvn (.5 1845 EPA Method 246.2 eg/194/19/90 GK Sedium 1620 2130 04/24/90 EPA Method 273.1 EK mg/1 Nickel (.1 1610 04/19/90 EPA Method 249.1 GDG mg/1 Lead (. 661 **336**8 EPA Method 239.2 6K mg/] 04/26/90 Antireony ٤.2 mg/1 1815 05/22/90 EPA Method 204.2 6K

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

163717 Continued Page 4 PARAMETER RESULTS UNITS TIME DATE METHOD BY Selenium (.005 1\<u>n</u>e 2315 94/19/90 EPA Method 270.2 6K Silicon (as Silica) 25 mg/1 1615 04/20/92 APHA Method 303C GK Thallium (.025 1445 85/87/90 EPA Method 279.2 eg/1 60G Vanadium (2) mg/15500 04/19/90 EPA Method 286.2 GΚ Zinc .17 reg/1 6900 04/19/90 EPA Nethod 289.1 GNG

Quality Assurance for Sample Number 163717

Sauple 9 Dup/Std Value Spk Conc. Description Result Unite Percent Time Date By Alkalinity Standard 101 100/1 122101 1400 04/26/90 DFK 162692 Duplicate 765 mg/1765 189 1400 04/26/90 DFK Boron mg/1Standard . 59 . 50 2100 10005/09/90 DFK 163716 Duplicate 1.9 $m_1/1$ 1.9 199 2100 05/09/90 DFK Chloride Standard 71 рри 1065 1800 05/23/90 MLR 163722 Duplicate 1073 1073 109 1800 ppm 05/23/90 MLR 153722 Spike 100 1800 ppn **%5/23/9** MLR Specific Conductance Stendard 1402 Micromhos 1413 101 5500 04/17/90 KLM 163715 Duplicate 5195 Picrochos 5195 169 2200 04/17/90 KLM Sulfate <u>%</u> Standard sig/kg 132 104 2000 05/22/90 MLR Standard 99 ng/kg 100 101 2000 05/22/90 MLR 165744 Duplicate 1275 1275 eg/kg 100 2000 05/22/90 MLR 165744 Spike mg/kg 160 95 2000 05/22/90 MLR Total Dissolved Solids Blank .060 mg/1 0800 05/24/90 MLR 1006 1050 Standard m/1101 0802 05/24/90 MLR 163729 Duplicate 864 868 109 mg/10800 65/24/99 MLR Silver Blank (. 23 Mg/1 1700 04/19/90 GK Standard . 29 mg/1. 29 107 1709 04/19/90 GK 163718 Duplicate (.03 (.03 Mg/] 109 1700 04/19/90 GK 163718 Spike .20 95 mg/1 1700 04/19/90 GK Aluminum Blank. (.5 Mg/1 1730 04/20/90 GK **Blank** (.5 Mg/1 1730 04/20/90 GK

ے م

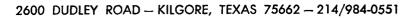
2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Quality Assurance for Sample Number 163717

Sample 8	Description	Result	Units	Dup/Std Value		Percent	Time	Date	Ву
	B) ank	(.5	mg/1				1730	04/20/90	GK
	Standard	1.9	10g/1	1.9		102	1739	04/20/90	GK
163715	Duplicate	<i>(</i> .5	mg/1	(.5		100	1730	04/20/90	GK
153756	Duplicate	(.5	mg/l	(.5		109	1730	04/20/90	GK
163715	Spike		1\gs		4.0	95	1730	04/20/90	GK
163766	Spike		81g/l		4.0	102	1730	04/20/90	GK
	•		-	Arseni	c				
	Blank	(.005	mg/)				2215	04/23/90	GK
	Blank	(,005	mg/l				2215	04/23/90	GK
	Standard	. 192	sig/1	. 190		102	2215	04/23/90	GK
162814	Duplicate	(.005	mg/1	(.005		100	2215	04/23/90	GX
163717	Duplicate	(.025	mg/l	(. 005		169	2215	04/23/90	GK
152814	Spike		mg/1		. 100	107	2215	04/23/90	GK
153717	Spike		:1g/1		. 199	93	2215	04/23/90	GK
	•		2	Bariu	177			• · · • • • • •	
	Blank	(.5	mg/1				1845	04/20/90	GK
	Plank	(.5	Mg/1				1845	04/20/90	GK
	Standard	1.9	mg/l	1.9		100	1845	04/20/90	GK
161742	Duplicate	79	Mg/1	91		114	1845	04/20/90	GK
163715	Duplicate	(.5	11g/1	 (.5		100	1845	04/20/90	GK
161742	Spike		ng/1		4.0	109	1845	04/20/90	GK
163715	Spike		mg/l		4.0	102	1845	04/20/90	GK
				Berylli		572	1010	01120130	0,1
	Blank	(. 91	mg/kg	,			2109	05/22/90	GK
	Blank	(, <u>1</u>	mg/kg				2100	05/22/90	6K
	Standard	.02	mg/kg	.02		100	2109	05/22/90	GK
165593	Duplicate	.4	ng/kg	.3		129	2100	05/22/90	6K
163715	Duplicate	(. 01	ю <u>д</u> /1	(.91		102	2109	05/22/50	GK
163716	Spike		mg/l		.50	92	2100	05/22/90	GK
				Calciu			2100	VU/ 25/ 30	0.11
	Blank	. 19	mg/1				1700	04/26/90	GK
	Blank	.11	mg/l				1702	04/26/90	GK
	Standard	.47	мg/l	. 50		105	1700	04/26/90	GK
162261	Duplicate	239	mg/1	232		100	1702	04/26/90	GK
163802	Duplicate	3,0	mg/l	3.1		103	1700	04/26/90	GK
163715	Duplicate	149	mg/l	160		113	1709	04/26/90	6K
163718	Spike		mg/l	200	1.00	94	1700	04/26/90	GK
	spans.		g , ,	Cadmiu		51	1700	01720750	011
	Blank	(.001	Mg/1	6.764 (III 2. 4	-1250		1845	04/26/90	GK
	Blank	(. 201	mg/l				1845	04/26/90	GK
	Standard	.002	mg/1	. 992		100	1845	04/26/90	GK
163716	Duplicate	(.001	ng/1 ng/l	<.021		100	1845	04/26/90	6K
	*********	12 997	51 1 1	Cobal	i t	2423	1070	077 207 20	101
	B1 ank	(.5	Mg/1	me.met 5			1845	04/19/90	GK
	Standard	10	eg/l	10		100	1845	04/19/90	GK
163715	Duplicate	<.5	mg/1	(. 5		100	1845	04/19/90	GK
****	ar si ya a a ba bi U 28		1.21			4 * **	1012	w 11 & d1 dW	Un

. .


2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Quality Assurance for Sample Number 163717

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	Ву
163715	Spike		ag/1		10	98	1845	04/19/90	6K
	51 1			Chromi	. LATAB				
	Blank	(.05	ng/kg				1539	04/19/90	GDG
	Blank	(.05	mg/kg				1530	04/19/90	GDG
	Blank	(.05	ng/kg				1530	04/19/90	GDG
	Blank	(.@1	mg/kg				1530	04/19/90	GDG
	Standard	. 95	ng/kg	. 05		109	1530	04/19/90	GDG
163377	Duplicate	. 16	Mg/1	. 16		109	1530	04/19/90	GDG
163519	Duplicate	(.05	ng/l	(. 95		100	1530	04/19/90	GDG
163715	Duplicate	(.05	mg/1	(.05		100	1530	04/19/90	GDG
163766	Duplicate	(. 95	mg/1	(. 05		100	1539	04/19/90	GDG
163859	Duplicate	. 15	mg/1	.14		113	1530	04/19/90	SDG
163377	Spike		mg/1		. 40	91	1539	04/19/90	6DG
163519	Spike		mg/l		. 89	89	1530	04/19/90	GDG
163715	Spike		mg/1		. 80	93	1530	04/19/90	GDG
163766	Spike		mg/1		. 40	105	1530	04/19/90	6DG
163860	Spike		Mg/1		.80	95	1539	04/19/90	6DG
				Сорре	er -				
	Blank	(.05	mg/1				0930	04/19/90	6DG
	Blank	⟨.₡5	mg/1				0930	04/19/90	GDG
	Blank	(.01	mg/l				0933	04/19/90	606
	Standard	. 98	mg/1	1.0		102	0932	04/19/90	GDG
	Standard	. 65	eg/1	. 05		118	6930	04/19/90	6DG
163255	Duplicate	. 21	mg/1	.21		100	0930	04/19/90	GDG
163519	Duplicate	(.05	eig/1	(.05		109	6930	04/19/90	6DG
163715	Duplicate	(.05	mg/1	(. \$5		169	0930	04/19/90	6DG
163869	Duplicate	. 05	mg/1	. 05		109	0930	04/19/90	GDG
163256	Spike		mg/1		. 40	97	0930	04/19/90	GDG
163519	Spike		mg/1		. 89	9 4	6930	04/19/90	GDG
163715	Spike		mg/1		. 89	3 6	6930	04/19/90	6DG
163869	Spike		mg/1		. 80	95	0930	04/19/90	6DG
				Iror	3				
	Blank	.2	61_66 mg				0815	04/25/90	6DG
	Blank	.2	mg/l				0815	94/25/90	GDG
	Blank	. 1	eng/l				0815	04/25/90	GDG
	Blank	.1	mg/1				0815	04/25/90	GDG
	Standard	1.9	мg/1	1.9		109	0815	04/25/90	6DG
153715	Duplicate	.2	Mg/1	. 1		167	Ø815	04/25/90	GDG
163802	Duplicate	.5	mg/1	.5		169	0815	04/25/90	GDG
163802	Spike		mg/l		. 80	103	Ø815	04/25/90	GDG
	•			Potassi	i um				
	Blank	.05	ng/1				1730	05/22/90	GK
	Standard	. 98	mg/l	1.69		104	1730	05/22/90	GK
163715	Duplicate	24	ng/l	24		160	1730	05/22/90	GK
			-	Magnesi	i um				
	Blank	. 608	mg/l				1730	04/25/90	GDG

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Quality Assurance for Sample Number 163717

163933	Duplicate Duplicate Duplicate Spike	.091 (.091 (.091	ng/1	004	•				
163933	Duplicate		-	.001		109	2200	04/26/90	GK
		1 17-12-1	rig/1	(.031		100	5500	04/26/90	6K
163717	Spike	1001	mg/1	(.091		109	2200	04/26/90	GK
			mg/1		.025	104	5500	04/26/90	GK
			_	Antimo	ony				
	Blank	۲.۷	mg/kg		_		1815	05/22/90	6K
	Standard	1.0	ng/kg	1.9		162	1815	05/22/90	GK
163715	Duplicate	۲.2	mg/l	(.2		109	1815	05/22/90	GK
165596	Duplicate	(2	mg/kg	(2		100	1815	05/22/90	GK
165596	Spike		mg/kg		2.5	97	1815	05/22/90	GK
				Seleni	um				
	81ank	(.095	mg/kg				2315	04/19/90	GK
	Standard	. 109	ng/kg	. 190		109	2315	04/19/90	6K
163717	Duplicate	(.605	mg/l	(.005		100	2315	04/19/90	GK
	•		Sil	icon (as	Silica)				
	81ank	(5	mg/kg				1615	04/20/90	GK
	Standard	5.5	ng/kg	5.9		110	1615	04/20/90	6K
163715	Duplicate	13	ag/1	12		108	1615	04/20/90	GK
163715	Spike		mg/1		20	103	1615	04/20/90	GK
	•		-	Thalli	i um				
	Blank	(.655					1445	05/07/90	6DG
	Standard	.052	₽g/1	. 050		104	1445	05/07/90	GDG
163716	Duplicate	(. 995		(. 625		163	1445	05/07/90	6DG
163718	Spike		ng/1		. 109	99	1445	05/07/90	GDG
			-	Vanadi	ium				
	Bl ank	(2	mg/1				5500	04/19/90	GK
	Standard	11	mg/1	10		113	2203	04/19/90	GK
163715	Duplicate	(2	Eg/1	(2		100	5500	04/19/98	6K
	·			Zinc	2				
	Blank	.05	mg/1				6900	04/19/90	SDG
	Blank	. 02	<u>n:g</u> /1				0900	04/19/90	GDG
	<u>B</u> lank	. 63	mg/l				0900	04/19/90	GDG
	Blank	. 020	ng/l				0900	04/19/90	GDG
	Standard	.21	mg/1	.26		105	0920	04/19/90	SDG
163377	Duplicate	. @1	mg/l	. 03		200	6909	04/19/90	GDG
163539	Duplicate	2.6	eg/1	2.7		104	6900	04/19/90	GDG
163715	Duplicate	.02		. 01		167	0900	04/19/90	GDG
163959	Duplicate	.025	mg/l	. 030		118	0900	04/19/90	GDG
1.63715	Duplicate	. 02	mg/1	.01		167	0909	04/19/90	GDG
163377	Spike		mg/l	-	. 49	100	0900	04/19/90	GDG
163539	Spike [,]		ng/1		. 40	102	0902	04/19/92	GDG
163869	Spike		ng/l		. 40	97	0900	04/19/90	GDG

Whiteside, Ph.D., President С. 1.

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

07/23/90

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: Sample #9004101153 Collected By: Anderson/Olson Date & Time Taken: 04/10/90 1153 Other:

EPNG- Wingate A/B Cooling Tower

Lab Sample Number: 163717

Received: 04/16/90

Client: SNM1

AUG 0 3 1990

OIL CONSERVATION DIV. SANTA FE

PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Acrolein	(100	ug/l	0550	04/21/90	EPA Method 8240	PM
Acrylonitrile	<100	ug/l	0550	04/21/90	EPA Method 8240	PM
Benzene	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
Bromoform	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
Bromomethane	(10	ug/l	0550	04/21/90	EPA Method 8240	PM
Carbon Tetrachloride	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
Chlorobenzene	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
Chloroethane	(10	ug/l	0550	04/21/90	EPA Method 8240	PM
2-Chloroethylvinyl ether	(10	ug/l	0550	04/21/90	EPA Method 8240	PM
Chloroform	(5	ug/1	0550	04/21/90	EPA Method 8240	PM
Chloromethane	(19	ug/l	0550	04/21/90	EPA Method 8240	PM
Dibromochloromethane	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
Bromodichloromethane	(5	ug/1	0550	04/21/90	EPA Method 8240	PM
1,1-Dichloroethané	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
1,2-Dichloroethane	(5	ug/l	0550	04/21/90	EPA Method 8240	PM
1,1-Dichloroethene	(5	ug/l	0550	04/21/90	EPA Method 8240	PM

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

THE COMPLETE SERVICE LAB							
Lab Sample Number:	16.	3717 Cont	inued		3 1990	Page	2
					RVATION DIV. TA FE		
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD		BY
trans-1,2-Dichloroethene	(5	ug/l	0550	04/21/90	EPA Method 8240		PM
1,2-Dichloropropane	(5	ug/l	0550	04/21/90	EPA Method 8240		PM
cis-1,3-Dichloropropene	(5	ug/1	0550	04/21/90	EPA Method 8240		PM
Ethyl benzene	(5	ug/l	0550	04/21/90	EPA Method 8240		PM
Methylene Chloride	(5	ug/l	0550	04/21/90	EPA Method 8240		PM
1,1,2,2-Tetrachloroethane	(5	ug/1	0550	04/21/90	EPA Method 8240		PM
Tetrachloroethene	(5	ug/1	0550	04/21/90	EPA Method 8240		PM
Toluene	(5	ug/l	0550	04/21/90	EPA Method 8240		PM
1,1,1-Trichloroethane	(5	ug/l	0550	04/21/90	EPA Method 8240		PM
1,1,2-Trichloroethane	(5	ug/1	0550	04/21/90	EPA Method 8240		PM
Trichloroethene	(5	ug/l	6550	04/21/90	EPA Method 8240		PM
Vinyl Chloride	(10	ug/l	0550	04/21/90	EPA Method 8240		PM
trans-1,3-Dichloropropene	(5	ug/l	0550	04/21/90	EPA Method 8240		PM
Alkalinity	53	#g/1	1400	04/26/90	EPA Method 310.1		DFK
Boron	1.6	ag∕1	2100	05/09/90	EPA Method 212.3		DFK
Cation-Anion Balance	2.36	*	1100	05/31/90	ference		NT
Carbonate	<.5	mg/1	1500	04/26/90	APHA Method 263		DFK
Chloride	110	mg/l	1800	05/23/90	EPA Method 325.3		MLR
Specific Conductance	6000	Micromhos	2200	04/17/90	EPA Method 120.1		KLM
Bicarbonate	53	mg/1	1500	04/26/90	APHA Method 263		DFK
Sulfate	3200	mg/1	2000	05/22/90	EPA Method 375.4		MLR

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

RECEIVED

Lab Sample Number:	163	717 Ca	ontinued	AUG 0 3 19	90	Page	3
PARAMETER	RESULTS	UNITS	TIME	oil Conservatio DATE ^{SANTA FE}	N DIV. Method		BY
Total Dissolved Solids	5020	mg/1	0800	05/24/90	EPA Method 160.1		MLR
pH	6.9	SU	1630	04/17/90	EPA Method 150.1		LB
Silver	(.03	@g/l	1700	04/19/90	EPA Method 272.1		GK
Aluminum	(.5	mg/1	1730	04/20/90	EPA Method 202.1		6K
Arsenic	(.005	mg/1	2215	04/23/90	EPA Method 206.2	2	GK
Barium	(.5	mg/l	1845	04/20/90	EPA Method 208.1		6K
Beryllium	< .0 1	mg/l	2100	05/22/90	EPA Method 210.2	2	GK
Calcium	14	mg/l	1700	04/25/90	EPA Method 215.1		6X
Cadmium	(. 001	mg/l	1845	04/26/90	EPA Method 213.2	2	GK
Cobalt	(.5	mg/l	1845	04/19/90	EPA Method 219.2	!	6K
Chromium	.07	@g∕l	1530	04/19 /9 0	EPA Method 218.1		6D6
Copper	.06	mg/l	0930	04/19/90	EPA Method 220.1		6DG
Iron	2.6	mg/l	0815	04/25/90	EPA Method 236.1	L	gdg
Potassium	58	mg/l	1730	05/22/90	EPA Method 258.1		6K
Magnesium	4,4	mg/l	1730	04/25/90	EPA Method 242.1	l	GDG
Manganese	. 03	mg/1	1540	04/23/90	EPA Method 243.1		GDG
Molybdenum	<.5	mg/1	1845	04/19/90	EPA Method 246.2	2	GK
Sodium	1600	mg/l	2130	04/24/90	EPA Method 273.1		GK
Nickel	{.1	mg/l	1610	04/19/90	EPA Method 249.1		GDG
Lead	(.001	mg/l	2200	04/26/90	EPA Method 239.2	2	6K
Antimony	. 2	mg/l	1815	05/22/90	EPA Method 204.2	2	ek

Analytical Chemistry • Waste Treatment & Disposed VED ent Sales

, THE CON	PLETE SERVICE LAB				AUG	0 3 1990	
Lab S	ample Number:	16	3717 Cor	tinued	OIL CONS Si	ERVATION DI V. ANTA FE	Page 4
Param	IETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Selenium		(.005	mg/1	2315	04/19/90	EPA Method 270.2	GK
Silicon	(as Silica)	25	mg/l	1615	04/20/90	APHA Method 303C	GK
Thallium		(.005	mg/1	1445	05/07/90	EPA Method 279.2	6D6
Vanadium		(2	mg/1	2200	04/19/90	EPA Method 286.2	GK
Zinc		.17	Mg/1	0900	04/19/90	EPA Method 289.1	6D6
	Qualit	y Assuranc	e for Sam	ple Numb	er 163717	7	
Sample #	Description Resu	lt Units Du	p/Std Value Sp	k Conc. F	Percent	Time Date	Ву

00 Whiteside, Ph.D., President С н.

		OILCC	DNSERVATION	EXICO RESOURCES DIVISION EST FORM	Deartment 163719		
Contract Lab	ANIA - No. 900.			_ Contract	No. 78-521.07-013		
Collection Date	Collection Time	Collected by Person/Agency ANINERSON/CL	••••••••••••••••••••••••••••••••••••••		/OCD		
	escription F / E V / H /		DTE		Township, Range, Section, Tract:		
FINAL NM	(IRONMENTAL OIL CONSER) Box 2088 Ia Fe, NM 875	VATION DIVISION	SAMPLE FIELD TREATMENT - Check proper boxes No. of samples submitted: 2. VIALS				
Bailed [Discharge	NF: F: PF:	Filtered in fi	ble (Non-filtered) eld with 0.45 Amembrane filter w/45 Amembrane filter		
pH(00400) Water Temp. (00		Sample type , Conductivity (Uncorrected)	∑ NA □ A: □ A:	: No acid add HCL 2ml H ₂ SO ₄ L	A: 4ml fuming HNO, added		
		Conductivity at 25° C	FIELD COMI				

LAB ANALYSIS REQUESTED:

ITEM	DESC	METHOD	ITEM	DESC	METHOD	ITEM	DESC	METHC
001	VOA	8020	013	PHENOL	604	□ 026	Cd	71
□ 002	VOA	602	014	VOC	8240	027	Pb	74
2003	VOH	8010	015	VOC	624	028	Hg(L)	74
004	VOH	601	016	SVOC	8250	031	Se	7.
D 005	SUITE	8010-8020	017	SVOC	625	032	ICAP	61
006	SUITE	601-602	018	VOC	8260	033	CATIONS/ANIONS	•
007	HEADSPACE		019	SVOC	8270	034	N SUITE	
008	PAH	8100	020	O&G	9070	035	NITRATE	
009	РАН	610	022	AS	7060	036	NITRITE	•
010	PCB	8080	[]023	Ba	7080		AMMONIA	
011	PCB	608	024	Cr	7190		TKN	
012	PHENOL	8040	025	Cr6	7198		OTHER	

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

05/18/90

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: Sample #9004101225 Collected By: Anderson/Olson Date & Time Taken: 04/10/90 1225 On Site Data: EPNG-Wingate West Evap Pond

163719	Recei	ved:	04/16/90	
SULTS UN	TS TIME	DATE	METHOD	BY
0 ug/1	0817	04/21/96) EPA Method	8240 PM
0 ug/1	0817	04/21/90	EPA Method	8240 PM
ug/1	6817	04/21/90	EPA Method	8240 PM
ug/1	0817	. 04/21/90	EPA Method	8240 PM
ug/1	0817	04/21/90	EPA Method	8240 PM
vg/1	0817	04/21/90	EPA Method	8240 PM
ug/1	. 0817	04/21/90	EPA Method	8240 PM
ug/1	0817	04/21/90	EPA Method	8240 PM
ug/1	0817	04/21/90	0 EPA Method	8240 PM
ug/1	Ø817	04/21/90	EPA Method	8240 PM
ug/1	0817	04/21/90	EPA Method	8240 PM
[/פַט	0817	04/21/90) EPA Method	8240 PM
ug/1	0817	04/21/90	0 EPA Method	8240 PM
ug/1	Ø817	04/21/90	EPA Method	8240 PM
սց/)	0817	04/21/90	2 EPA Method	8240 PM
ug/1	0817	04/21/90	EPA Method	8240 PM
	SULTS UN Ø ug/l Ø ug/l Ø ug/l UN UN Ø ug/l UN UN Ø ug/l US US US	SULTS UNITS TIME 0 ug/l 0817 0 ug/l 0817 0 ug/l 0817 0 ug/l 0817 ug/l 0817 0917 ug/l 0817 0917	SULTS UNITS TIME DATE 0 ug/1 0817 04/21/90 0 ug/1 0817 04/21/90 ug/1 <td>SULTS UNITS TIME DATE METHOD 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method <tr< td=""></tr<></td>	SULTS UNITS TIME DATE METHOD 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method 0 ug/1 0817 04/21/90 EPA Method <tr< td=""></tr<>

CH 6 UU Tophylinifed

10121.17

ANA-LAB COR THE COMPLETE SERVICE LAB

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

111	Lab Sample Number:	1637	19 Contin	nued			Page	2
	PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD		BY
	trans-1,2-Dichloroethene	(5	ug/l	0817	04/21/90	EPA Method 8240		PM
	1,2-Dichloropropane	(5	ug/1	0817	04/21/90	EPA Method 8240		PM
	cis-1,3-Dichloropropene	- (5	ug/1	0817	04/21/90	EPA Method 8240		PM
	Ethyl benzene	(5	ug/1	0817	04/21/90	EPA Method 8240		PM
	Methylene Chloride	(5	ug/l	0817	04/21/90	EPA Method 8240		PM
	1,1,2,2-Tetrachloroethane	(5	ug/1	0817	04/21/90	EPA Method 8240		PM
	Tetrachlorcethene	(5	ug/1	0817	04/21/90	EPA Method 8240		PM
	Toluene	(5	ug/1	0817	04/21/90	EPA Method 8240		PM
	1,1,1-Trichloroethane	(5	ug/1	0817	04/21/90	EPA Method 8240		PM
	1,1,2-Trichloroethane	(5	ug/l	0817	04/21/90	EPA Method 8240		PM
	Trichloroethene	(5	ug/l	0817	04/21/90	EPA Method 8240		pm
	Vinyl Chloride	<10	ug/l	0817	04/21/90	EPA Method 8240		PM
	trans-1,3-Dichloropropene	(5	ug/l	6817	04/21/90	EPA Method 8240		PM

C.

Whiteside, Ph.D., President Н.

2600 DUDLEY ROAD -- KILGORE, TEXAS 75662 -- 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

07/23/90

RECEIVED

AUG 0 3 1990

OIL CUNSERVATION DIV. SANTA FE

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe. NM 87504

Sample Identification: Sample #9004101225 Collected By: Anderson/Olson Date & Time Taken: 04/10/90 1225 On Site Data: EPNG-Wingate West Evap Pond

Lab Sample Number: 163719 Rec

Received: 04/16/90

Client: SNM1

PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Acrolein	(100	ug/l	0817	04/21/90	EPA Method 8240	PM
Acrylonitrile	(100	ug/l	6817	04/21/90	EPA Method 8240	PM
Benzene	(5	ug/1	0817	04/21/90	EPR Method 8240	PM
Bromoform	(5	ug/1	0817	04/21/90	EPA Method 8240	PM
Bromomethane	(10	ug/1	0817	04/21/90	EPA Method 8240	PM
Carbon Tetrachloride	(5	ug/1	0817	04/21/90	EPA Method 8240	PM
Chlorobenzene	(5	ug/l	0817	04/21/90	EPA Method 8240	PM
Chloroethane	(10	ug/l	0817	04/21/90	EPA Method 8240	PM
2-Chloroethylvinyl ether	(10	u <u>p</u> /1	0817	04/21/90	EPA Method 8240	PM
Chloroform	(5	u <u>p</u> /1	0817	04/21/90	EPA Method 8240	PM
Chloromethane	(10	ug/1	0817	04/21/90	EPA Method 8240	PM
Dibromochloromethane	(5	ug/1	0817	04/21/90	EPA Method 8240	PĦ
Bromodichloromethane	(5	ug/1	0817	04/21/90	EPA Method 8240	PM
1,1-Dichloroethane	(5	ug/l	0817	04/21/90	EPA Method 8240	PM
1,2-Dichlorcethane	(5	ug/l	0817	04/21/90	EPA Method 8240	PM
1,1-Dichloroethene	(5	u <u>o</u> /1	0817	04/21/90	EPA Method 8240	PM

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Lab Sample Number:	16	3719 Coni	tinued			Page 2
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BÅ
trans-1,2-Dichloroethene	(5	ug/1	Ø817	04/21/90	EPA Method 8240	PN
1,2-Dichloropropane	(5	u <u>n</u> /1	0817	04/21/90	EPA Method 8240	PM
cis-1.3-Dichloropropene	(5	u <u>o</u> /1	0817	04/21/90	EPA Method 8240	PM
Ethyl benzene	(5	u <u>n</u> /1	0817	04/21/90	EPA Method 8240	PM
Methylene Chloride	(5	ug/1	0817	04/21/90	EPA Method 8240	PM
1, 1, 2, 2-Tetrachloroethane	(5	u <u>n</u> /1	0817	04/21/90	EPA Method 8240	PM
Tetrachloroethene	(5	ug/1	0817	04/21/90	EPA Method 8240	PM
Toluene	(5	u <u>p</u> /1	0817	04/21/90	EPA Method 8240	PM
1,1,1-Trichloroethane	(5	ug/l	0817	04/21/90	EPA Method 8240	PM
1,1,2-Trichloroethane	(5	u <u>p</u> /l	0817	04/21/90	EPA Method 8240	PM
Trichloroethene	(5	ug/l	0817	04/21/90	EPA Method 8240	PM
Vinyl Chloride	(10	ug/1	0817	04/21/90	EPA Method 8240	PM
trans-1,3-Dichloropropene	(5	ug/1	0817	04/21/90	EPA Method 8240	PM

Plen President Whiteside. Ph.D., C. н.

RECEIVED

AUG 0 3 1990

OIL CONSERVATION DIV. SANTA FE

		ENERGY, MINERALS AN	te of New Me) D NATURAL R DNSERVATION D	ESOURCES	DEPARTI	MENT /6	3718.
in. dr.	S	ANALYS	SIS REQUES	ST FORM	ļ		
Contract Lab	ANA	- LARS		Contract	No	1-521.	07-013
OCD Sample	No. 900	410 1210					
Collection Date	Collection Time	Collected byPerson/Agency					
4 11 90	1216	ANDERSON/UL:	SON				/OCD
	IRONMENTAI					Range, Section	+ +
EPORT POE	3ox 2088	VATION DIVISION	<u> </u>			- Check pro	
SAMPLING C	a Fe, NM 875 ONDITIONS W Pump [] Tap		No. of samples	Whole sampl	e (Non-filte Id with 0.45	membrane	
pH(00400) Water Temp. (000		Sample type GRA13 Conductivity (Uncorrected) 2.72.5 H (mho	20 1 4	No acid adde HCL 2ml H ₂ SO/L a		□ A: / X A:	5ml conc. HNO, added
12/10		Conductivity at 25°C	FIELD COMME	INTS:			

LAB ANALYSIS REQUESTED:

<u>ITEM</u>	DESC	METHOD	ITEM	DESC	METHOD	ITEM	DESC	METHOL
001	VOA	8020	013	PHENOL	604	026	Cd	7130
200	VOA	602	□014	VOC	8240	027	Pb	7421
2,003	VOH	8010	015	VOC	624	028	Hg(L)	7470
004	VOH	601	016	SVOC	8250	031	Se	7740
005	SUITE	8010-8020	017	SVOC	625	2032	ICAP	6010
006	SUITE	601-602	018	VOC	8260	032	CATIONS/ANIONS	••••
<u> </u>	HEADSPACE		019	SVOC	8270	034	N SUITE	
008	PAH	8100	020	O&G	9070	035	NITRATE	•
009	PAH	610	□ 022	AS	7060	C 036	NITRITE	
010	PCB	8080	023	Ba	7080	037	AMMONIA	
011	PCB	608	024	Cr	7190	038	TKN	
012	PHENOL	8040	025	Cr6	7198		OTHER	

2600 DUDLEY ROAD -- KILGORE, TEXAS 75662 -- 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

05/31/90

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Sample Identification: Sample #9004101210 Collected By: Anderson/Dison Date & Time Taken: 04/10/90 1210 Other: EPNG-Wingate C Cooling Tower

JUN 0 8 1990

OIL CONSERVATION DIV. SANDA FE

Lat: Sample Num	ber: 1637	18	Receive	e d: Ø4.	54064 PE /16/90	
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Acrolein	(100	ug/1	0704	04/16 /90	EPA Method 8240	PM
Perylonitrile	(100	ug/1	0704	04/21/90	EPA Method 8240	PM
Benzene	(5	ug/1	0704	04/21/90	EPA Method 8240	PM
Branoform	(5	ug/1	0704	04/21 /90	EPA Method 8240	PM
Browersthane	<10	ug/1	0704	04/21/90	EPA Method 8240	PM
Carbon Tetrachloride	(5	ug/1	0704	04/21 /90	EPA Method 8240	PM
Chlorobenzene	(5	սց/1	0704	04/21/90	EPA Method 8240	PM
Chloroethane	(12	ug/1	0704	04/21/90	EPA Method 8240	РМ
2-Chlorosthylvinyl ether	<10	ug/1	0704	04/21 /90	EPA Method 8240	PM
<u>Chloroform</u>	(5	ug/1	0704	04/21/90	EPA Nethod 8240	PM
Chloromethane	(10	ug/1	07 04	04/21/90	EPA Method 8240	PM
Dibremechloromethane	(5	ug/1	0704	04/21/90	EPA Method 8240	PM
Brenedichloromethane	(5	ug/1	0704	04/21/90	EPN Method 8240	PM
1,1-Dichlorcethane	(5	ug/1	9704	04/21/90	EPA Nethod 8240	PM
1,2-Dichloroethane	(5	ug/1	0704	04/21/50	EPA Method 8240	PM
1,1-Dichlorcethene	(5	ug/1	0704	94/21 /90	EPA Method 8240	PM

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Lab Sample Number:	16	371 8 Cont	inued:			Page 2
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
trans-1,2-Dichloroethene	(5	ug/1	0704	<u>84/21/90</u>	EPA Method 8240	рŅ
1,2-Dichloropropane	(5	ug/1	0704	04/21/50	EPA Method 8240	рМ
cis-1,3-Dichloropropene	(5	ug/1	0764	04/21 /90	EPA Nethod 8240	PM
Ethyl benzene	(5	ug/1	0 70 4	04/21/90	EPA Method 8240	PM
Nethylene Chloride	(5	ug/1	0794	64/21/90	EPA Method 8240	PM
1,1,2,2-Tstrachloroethane	(5	ug/1	(79 4)	94/21/90	EPA Method 8240	PM
Tetrachlorcethene	(5	ug/1	6 70 4	04/21/90	EPA Nethod 8240	ри
Toluene	(5	ug/1	0704	04/21/90	EPA Method 8240	PM
1,1,1-Trichloroethane	(5	ug/1	0704	<u> 94/21/90</u>	EPA Method 8240	PM
1,1,2-Trichloroethane	(5	ug/1	6 784	04/21/90	EPA Method 8240	PM
Trichloroethens	(5	ug/1	C 70 4	64/21 /90	EPA Nethod 8240	PM
Vinyl Chloride	(10	ug/1	0704	G4 /21/90	EPA Method 8240	PM
trans-1,3-Dichloropropene	(5	ug/1	©704	94/21/90	EPA Nethod 8240	PM
Alkalinity	23	rg/1	1450	04/26/90	EPA Method 310.1	DFK
Boron	. 65	5 <u>6</u> /1	2109	95/09/90	EPP Method 212.3	DFK
Cation-Anion Balance	2.47	7	1120	95/31/90	ference	NT
Carbonate	(.5	ng/l	1509	04/25 /90	APHA Method 263	DFK
Chloride	70	ng/1	1119	04/18/90	EPA Method 325.3	DFK
Specific Conductance	6020	Microwhos	2209	©4/17/90	EPR Method 120.1	KLM
Bicarbonate	23	uā \)	1500	04 /26/90	APHA Method 263	DFK
Sulfate	3200	uā\j	2000	\$5/22/90	EPA Nethod 375.4	MLR

5

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Lab Sample Number:	16	371 8 C on	tinued		ρ _ē	uge 3
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Total Discolved Solids	4750	ng/1	6367	05/24/90	EPA Nethod 160.1	MLR
pH	6.9	SU	1639	04/17/90	EPA Method 150.1	LB
Silver	(.@3	6g/1	1793	04/19/90	EPA Method 272.1	GK
Aluminum	(.5	mg/1	1730	04/20/90	EPA Method 202.1	GK
Arsenic	.017	eg/1	2215	04/23/90	EPA Nethod 206.2	GK
Barium	(.5	mg/1	1845	04/20/90	EPA Method 208.1	GK
Beryllium	<. <u>91</u>	ug/1	2100	%5 /22/90	EPA Method 210.2	GK
Calcium	35	M g/ 1	2345	05/29/90	EPA Method 215.1	GK
Cadnium	(.901	mg/1	1845	04/26/90	EPA Nathod 213.2	GK
Cobalt	(.5	mg/1	1845	04/19 /90	EPA Method 219.2	GK
Chroniun	.08	ail\]	1532	04 /19/90	EPA Method 218.1	GDG
Chromium	. 06	<u>۳</u> д/1	0920	04/25/ 90	EPA Method 218.1	GDG
Copper	. 46	mg/1	<i>0</i> 930	04/19 /90	EPA Method 220.1	GDG
Iron	3.9	mg/1	2115	Ø5/14/9 0	EPA Method 236.1	FX
Potassium	100	og/l	1732	05/22/90	EPA Method 258.1	G K
Magnesium	11.4	mg/1	1730	04/25/90	EPA Method 242.1	SDG
Manganese	. 10	ngri	1549	04/23/90	EPA Method 243.1	GDG
Molybdenum	(.5	μ <mark>υ</mark> Γί	1945	@4/19/9 0	EDA Method 246.2	GK
Sodium	1580	mg/1	2133	94 /24/90	EPA Method 273.1	GK
Nickel ·	(. <u>1</u>	rg/1	1510	04 /19/9 0	EPA Method 249.1	GDG
Laed	(. 301	naVJ	6203	64 /25/90	EPA Method 239.2	GK

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

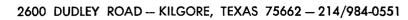
Lab Sa	mple Numb	er:		16371 8	Contin	ueci				Page	4
PARAME	TER		RESULTS	LINX	TS T	IME	DATE	ME	THOD		BY
Antimony			(.2	7 <u>5</u> /1		1615	<i>55/22/5</i> 9	epa	Method 204.2		ek
Selenium			(.025	rg/)	:	2315	04/19/52	EDA	Method 270.2		6K
Silicon (a	s Silica)		22	::g/1		1515	04 /20/90	АРН	A Method 303C		GK
Thallium			(.005	ng/l		1445	05 /07/92	EPA	Method 279.2		GDG
Vanadium			(2	- 78/1	:	2213	0%/19 /50	500	Nethod 286.2		GK
Zinc			. 84	Pig/1		0306	04/19 /99		Method 289.1		GDG
LIIIL	.			-					revnou cos i		000
		പംപം		దిన ఎక్టెఫ్ట్		6 3 8 8					
Sample 0	Description	Result	linite	Dup/Std Val	lue Spk Cor.	Ľ.	Percent	Tice	Date		Ву
					lnity.						
463866	Standard	181	词八	153			101	1400	04/26/90		DFK
163892	Duplicate	765	P <u>1</u> /1	765			109	1400	04/26/90		DFK
	Standard	. 39	mg/1	Der .59			160	2100	05/09/90		DFK
163716	Duplicate	* 0 * 0	ng/3	1.9			166	2109	03/09/90 05/09/90		DFK
	dar bega er er be an er ba		-	eific C	conducta	nce		2200	03/03/30		2/113
	Standard	1470		kre 1413			191	2209	04/17/90		KLM
163715	Duplicate	5195	Microwh				105	5500	04/17/90		KLM
	•			Sul?	ate						
	Standard	95	og/bg	100			104	2000	05/22/90		MLR
	Standard	<u>e</u> e	rig/hg	100			101	5000	05/22/90		MLR
155744	Duplicate	1275	797kg	1275			100	5660	05/22/90		MLR
155744	Spike		eg/hg		150		96	5003	05/22/90		MLR
				l Disso	lved So	lide	5				
	Blank	. 600	m <u>a/1</u>					0800	05/24/90		MLR
	Standard	1995	rg/1	1029			101	0920	05/24/90		MLR
163720	Duplicate	<u> 65.</u>	ng/l	PE8			100	0809	05/24/90		MLR
				Sil	ver						
	Blank	(_23	-1 <u>1</u> /1					1700	04/19/90		ek
	Standard	.20	mg/1	.20			100	1700	04/19/90		GK
153/18	Duplicato	(.93	mg/1	(. 03			102	1769	04/19/90		GK
163718	Spiker		ng/l	~ `	.20		95	1709	04/19/90		GK
	Diauli	/ F	n - 11	HIGN	linum			(750	al 100 100		01/
	Blank Blank	(15 (15	mg/1					1739	04/20/90 86/20/90		GK
	Blank	(. 2 (. 5	(ag/)					1730 1730	04/20/90 04/20/90		GK
			mg/1	1 0			160		04/20/90 04/20/90		GK
	Standard	1.0	mg/l	1.9			T 60/0	1730	04/20/90		GK

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Quality Assurance for Sample Number 163718

Sevpla 8	Description	Regult	Unite	Dup/Std Value		Percent	Time	Date	By
153715	Deplicite	(.5	reg/1	(.5		100	1730	04/20/90	GK
163766	Duplicate	(.5	mg/1	(.5		106	1730	04/20/90	GK
167715	Spile		mg/1		4.0	95	1739	04/20/90	GK
163765	Spike		Pig/1		4.0	109	1730	04/20/90	GK
	,			Arseni					
	Blank	(.005	mg/l				2215	04/23/90	GK
	Blank	(.635	mg/l				2215	04/23/90	GK
	Standard	. 102	mg/1	, 109		102	2215	(14/23/99	GK
168814	Duplicate	(. 005	90g/1	(.905		107	2215	04/23/90	GK
163717	Duplicate	(.025	eg/l	(.005		160	2215	04/23/90	GK
152214	Spike		mg/l		. 169	107	2215	04/23/90	GK
163717	Spike		mg/1		. 109	93	2215	04/23/90	GK
				Barig				11110720	570
	Blank	(.5	ng/1				1845	04/20/90	GK
	Blank	(.5	mg/1				1845	04/20/90	GK
	Standard	1.0	ng/l	1.0		102	1845	04/20/90	GK
161742	Duplicate	79	erg/1	91		114	1845	04/20/90	GK
163715	Duplicate	(.5	mg/1	<.5		109	1845	04/20/90	GK
161742	Spike	េដ	ng/1	ل دا	4.0	109	1845	04/20/90	GK
163715	Spike				4.Ø	102	1845	04/20/90	GK
102710	Shire		mg/l	Berylli		765	1043	V4/CV/JV	on
	Blank	(.01	ng/kg	Derylli	1 44820		2100	(45/22/90	GK
	B1 ank	(.1					2100	05/22/99	GK
	Standard	.02	ng/kg ng/kg	. 62		100	2100	05/22/90	GK
165596	Duplicate	, UL , Ą		.3		129			
163715	Duplicate	. ~ (. @1	eg/kg	. 01		100	2100	05/22/90	GK
163715	Spike	1 a VI I	mg/]	1.892	. 59	<u>92</u>	2109	05/22/90	GK
103/16	abiwe		mg/1	Cadmiu		25	2109	05/22/90	6 K
	B1 ank	(. 991		Leumiu	7999		1045	04.100.100	C 1/
	Blank		mg/1				1845	04/26/90	GK
	51ank Standard	(.001	mg/1	600		100	1845	04/26/90 04/26/90	GK
4 C 374 C		. 602	eg/1	. 622		100	1845	04/26/90	GK
163716	Duplicate	(<i>.</i> 601	mg/1	(. 0041		102	1845	04/26/90	GK
	51 /			Cobal	L C				
	Blank	(.5	mg/l			4.00	1845	04/19/90	GK
	Standard	10	mg/l	10		102	1845	04/19/90	6K
163715	Duplicate	(.5	mg/l	(.5		100	1845	04/19/90	GK
163715	Spike		Mg/1		10	98	1845	04/19/90	GK
				Chromi	um				
	Blank	٢. 95	ng/kg				1539	04/19/99	GDG
	B1 ank	(.05	mg/kg				1539	04/19/90	GDG
	Blank	(. 95	rig/kg				1530	04/19/90	GDG
	Blank	(. 61	ng/kg				1530	04/19/90	GDG
	Standard	. 95	≈g/kg	. 05		167	1539	04/19/90	6DG
163377	Duplicate	. 16	eg/1	.16		100	1530	04/19/90	GDG
163519	Duplicate	(.05	01 <u>0</u>	(.05		160	1530	04/19/90	6DG
163715	Duplicate	(. 05	54g/1	<.05		100	1530	04/19/90	GDG



2600 DUDLEY ROAD -- KILGORE, TEXAS 75662 -- 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Quality Assurance for Sample Number 163718

Sample #	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	Time	Date	By
163766	Duplicate	(. 65	mg/1	(, 85		105	1532	04/19/90	GDG
153960	Duplicate	. 16	/ng/1	. 14		113	1532	04/19/90	GDG
163377	Scike		eg/l		. 40	91	1530	04/19/90	SDG
163519	Spike		mg/1		. 80	8 9	1532	04/19/90	GDG
163715	Spike		ng/l		. 80	<u>ð3</u>	1530	04/19/99	GDG
163756	Spike		Hg/1		.40	195	1539	04/19/90	GDG
163860	Spike		mg/l		. 80	95	1530	04/19/90	GDG
	-		.	Chroni					
	Blan k	(. 61	@g/1				0920	04/25/90	GDG
	Blank	(. 95	eg/1				0920	04/25/90	GDG
	Standard	. 25	₽g/1	. 15		118	0920	04/25/90	GDG
163771	Duplicate	6.8	sg/kg	6.6		103	0929	04/25/90	GDG
164101	Duplicate	. 22	20 mg/1	. 22		102	0920	04/25/90	GDG
164101	Spike		51g/1		1.68	101	0920	04/25/90	GDG
	-1		-14	Coppe					
	Blank	(.95	mg/1	••			0930	04/19/90	6DG
	Blank	(.05	pg/1				0930	04/19/90	GDG
	Blank	(. 91	ng/1				0930	04/19/90	GDG
	Standard	. 98	ng/1	1.0		102	0930	04/19/90	GDG
	Standard	. 26	89g/1	. 95		118	6930	04/19/90	GDG
163255	Duplicate	.21	1 <u>0</u>	.21		100	0930	04/19/90	GDG
163519	Duplicate	(. 25	mg/1	(. 25		100	0930	04/19/90	GDG
163715	Duplicate	(.05	mg/l	(. 05		100	0930	04/19/90	GDG
167669	Duplicate	. 95	ng/1	.95		102	0930	04/19/90	GDG
163256	Spike	162	mg/l		. 49	97	0930	04/19/90	GDG
163519	Spike		м <u>д</u> /1		. 80	54 54	0930	04/19/90	GDG
163715	Spike		mg/1		. 80	96 95	0930 0930	04/19/90	6DG
163259	•								
109203	Spiks		Pg/1	Iror	. 60	95	0930	04/19/90	GDG
	Blank	.2	ng/l	ەقببە ئىد	3		2115	05/14/90	GK
	Blank	.2	mg/1				2115	05/14/90	GK
	Standard	5.2	mg/1	2.0		119	2115	05/14/90	GK
164957	Duplicate	1,5	mg/l	1.5		103	2115	05/14/90	GK
164957	Spike		mg/l	202	.90	104	2115	05/14/90	GK
107341	wpika		orBy 7	Potassi		164	6110	01/14/30	on
	Blank	.05	mg/1				1730	05/22/90	GK
	Standard	. 95	™y/1	1.00		194	1730	05/22/90	GK
163715	Duplicate	24	mg/1	24		162	1732	05/22/90	GK
	uni in gat de na tele an el tre		.2	Magnesi	LUNG	200	1102	991 EE1 38	uit
	Blank	.078	Mg/1				1730	04/25/90	6DG
	Standard	.207	mg/l	.200		103	1730	04/25/90	GDG
163715	Duplicate	40	/1/1	39		103	1730	04/25/90	GDG
152251	Puplicate	22, 220	ng/l	20,099		120	1730	04/25/90	GDG
167892	Duplicata	9.1	mg/1	9.1		100	1739	04/25/90	GDG
163809	Spike		mg/l		. 409	160	1730	04/25/90	GDG
	r			Mangane					

.. :

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Quality Assurance for Sample Number 163718

selus:	Description	Result	Units	Dup/Std Value	Spk Conc.	Percent	saaaaaa Tipe	Date	Ву
	Blan':	(. 93	∾g/]				1542	04/23/90	ede
	Blank	(.03	mg/1				1540	@4/23/90	GDG
	Standard	. 53	eng/1	. 52		106	1542	04/23/90	6DG
163042	Duplicate	. 16	mg/1	. 68		122	1542	04/23/90	GDG
163119	Duplicate	.12	mg/1	. 10		118	1542	04/23/90	6DG
163432	Duplicate	(.03	mg/l	. 03		369	1540	04/23/90	GDG
153715	Duplicate	.27	mg/1	. 25		108	1542	04/23/90	6DG
163892	Duplicate	. Ø6	mg/l	. 05		129	1540	04/23/90	GDG
153432	Spike		mg/l		. 40	96	154%	04/23/90	GDG
163802	Spike		mg/1		. 40	109	1540	04/23/90	GDG
	•			Molybd					
	Blank	(.5	mg/l				1845	04/19/90	GK
	Standard	10	rg/1	10		1.00	1845	04/19/90	GK
153715	Duplicate	(15	rg/1	(,5		100	1845	04/19/90	GK
163715	Spike		ng/1		19	S 8	1845	04/19/90	GK
				Sodi					0/1
	Blank	(4	mg/1				2139	04/24/90	GK
	Standard	11	ng/1	10		116	2130	04/24/90	GK
162261	Duplicate	90, CCO	mg/1	98, 969		169	2130	04/24/90	GK
163432	Duplicate	42	ю <u>л</u> /1	43		102	2130	04/24/90	GK
163715	Duplicate	1080	mg/1	1670		100	2130	04/24/99	GK
163892	Duplicate	449	ag/1	44@		100	2130	04/24/90	GK
163432	Spike		ng/1	772	40	102	2130	04/24/90	ek ev
u M'e l'des	14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		tige a	Nick		105	6130	07/C7/20	UN
	Blank	<. <u>1</u>	∞g/1				1619	04/19/90	GDG
	B1 ank	6.1	mg/l				1610	04/19/90	GDG
	Blank	(, @2	ng/1				1619	04/19/90	6DG
	Standard	.1	ng/l	. 1		163	1610	04/19/90	GDG
163377	Duplicate	7.2	ng/l	7.2		102	1619	04/19/90	GDG
163715	Duplicate	{ , <u>1</u>	mg/l	(.1		102	1610	04/19/90	GDG
163369	Duplicate	.03	۔ 1/gr	. 03		102	1619	04/19/90	6DG
163715	Spike		mg/1		. 40	110	1510	04/19/90	GDG
163069	Spike		eg/1		. 49	108	1610	04/19/90	GDG
	•		3	Lea					
	Blank	. 694	4ŋ/1				2209	04/26/90	GK
	Blank	.013	mg∕kg				5500	04/26/90	GK
	Blank	. GD1	eg/kg				2200	04/26/90	GK
	Standard	.927	mg/l	. 025		198	2200	04/26/90	GK
	Standard	. 024	erg/kg	.025		104	2203	04/26/99	GK
152404	Duplicate	.092	mg/l	(. 691		300	2200	04/26/90	GK
163453	Duplicate	. 601	eg/1	. 091		102	2209	04/26/90	6K
163716	Duplicate	(. 6 91	mg/l	(. 931		170	2200	04/26/90	GK
163933	Duplicate	(. 031	ng/1	(. 901		100	2200	04/26/90	GK
163717	Spike		eg/1		.025	104	5500	04/26/90	GK
				Antim	mm.v				
	Blank	٤.2	mg/kg				1815	05/22/90	6K

4

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Quality Assurance for Sample Number 163718

Sauple 8	Description	Result	Units	Dup/Std V	alue Spk Conc.	Percent	Time	Date	Ву
	Standard	1,0	mg/kg	1.0		103	1815	05/22/90	GK
163715	Duplicate	۲.2	/ig/1	(.2		109	1815	05/22/90	GK
165595	Duplicate	(2	mg/kg	(2		169	1815	05/22/90	GK
165595	Spike		mg/kg		2.5	97	1815	05/22/90	GK
	·			Sel	enium				
	Bl enk	(.005	ng/kg				2315	04/19/90	GK
	Standard	.109	æg/kg	. 109		109	2315	04/19/90	GK
163717	Duplicate	(. 005	rig/1	(.005		163	2315	04/19/90	GK
	·		-Sil	icon (as Silica)				
	Blank	(5	Fig/kg				1615	04/20/90	GK
	Standard	5.5	mg/kg	5.0		110	1615	04/20/90	GK
163715	Duplicate	13	mg/1	12		1.08	1615	04/20/90	GK
153715	Spike		mg/1		2%	103	1615	04/20/90	GK
				Tha	llium				
	Blank	(, 695	61 / 1				1445	05/07/90	GDG
	Standard	.652	ng/1	.050		104	1445	05/07/90	GDG
163716	Duplicate	(.805	ю д/1	(. 625		100	1445	05/07/90	GDG
163718	Spike		ng/1		. 109	90	1445	05/07/90	GDG
			-	Van	adium				
	B1 ank	(5	eig/1				5505	04/19/90	GK
	Standard	13	mg/l	10		110	2200	04/19/90	GK
163715	Duplicate	(2	mg/1	(2		109	5500	04/19/90	GK
				Z	inc				
	Blank	. 65	mg/1				0902	04/19/90	6DG
	Blank	.02	r9 g/1				0900	@4/19/9 0	GDG
	Blank	. 03	61/1				0902	04/19/90	6DG
	Blank	.020	ng/1				6990	04/19/90	GDG
	Standard	. 21	eg/1	.2%		105	0900	04/19/90	GDG
163377	Duplicate	. 01	6g/1	. 03		200	0300	04/19/90	6DG
163539	Duplicate	2.6	mg/1	2.7		104	0500	04/19/90	6DG
163715	Duplicate	. 02	61g/1	, 01		167	0900	04/19/90	GDG
163862	Duplicate	. 025	5ig/1	. 030		118	0900	04/19/90	GDG
163715	Duplicate	. 02	mg/1	.01		167	0900	04/19/90	GDG
163377	Spike		∿1₫\]		. 40	102	0900	04/19/90	GDG
163539	Spike		mg/1		. 49	120	6900	04/19/90	GDG
163860	Spike		mg/1		. 40	97	0900	04/19/90	GDG

H. Whiteside, Ph.D., President C.

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

07/23/90

Environmental Bureau NM Oil D. PO Box 2088 Santa Fe, NM 87504

Lab Sample Number: 163718

S

CORP

THE COMPLETE SERVICE LAB

RECEIVED

AUG 0 3 1990

OIL CONSERVATION DIV. SANTA FE

Sample Identification: Sample #9004101210 Collected By: Anderson/Olson Date & Time Taken: 04/10/90 1210 Other: EPNG- Wingate C Cooling Tower

Received: 04/16/90

Client: SNM1

PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Acrolein	(100	ug/l	0704	04/15/90	EPA Method 8240	PM
Acrylonitrile	(100	ug/l	0704	04/21/90	EPA Method 8240	PM
Benzene	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
Bromoform	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
Bromomethane	(10	ug/l	0704	04/21/90	EPA Method 8240	PM
Carbon Tetrachloride	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
Chlorobenzene	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
Chloroethane	(10	ug/l	0704	04/21/90	EPA Method 8240	PM
2-Chloroethylvinyl ether	(10	ug/l	0704	04/21/90	EPA Method 8240	РМ
Chloroform	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
Chloromethane	<10	ug/l	0704	04/21/90	EPA Method 8240	PM
Dibromochloromethane	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
Bromodichloromethane	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
1,1-Dichloroethané	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
1,2-Dichloroethane	(5	ug/l	0704	04/21/90	EPA Method 8240	PM
1,1-Dichloroethene	(5	ug/1	0704	04/21/90	EPA Method 8240	PM

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposit Analytical Chemistry • Waste Treatment & Disposit Analytical Chemistry

AUG 0 3 1990

Lab Sample Number:	163	718 Cont	tinued	OIL CONS	SERVATION DIV. ANTA FE	Page	2
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD		BY
trans-1,2-Dichloroethene	(5	ug/l	0704	04/21/90	EPA Method 8240		PM
1,2-Dichloropropane	(5	ug/l	0704	04/21/90	EPA Method 8240		PM
cis-1,3-Dichloropropene	(5	ug/l	0704	04/21/90	EPA Method 8240		PM
Ethyl benzene	(5	ug/l	0704	04/21/90	EPA Method 8240		PM
Methylene Chloride	(5	ug/l	0704	04/21/90	EPA Method 8240		PM
1,1,2,2-Tetrachloroethane	(5	ug/l	070 4	04/21/90	EPA Method 8240		PM
Tetrachloroethene	(5	ug/l	0704	04/21/90	EPA Method 8240		PM
Toluene	(5	ug/l	0704	04/21/90	EPA Method 8240		PM
1,1,1-Trichloroethane	(5	ug/1	0704	04/21/90	EPA Method 8240		PM
1,1,2-Trichloroethane	(5	ug/l	0704	04/21/90	EPA Method 8240		PM
Trichloroethene	(5	ug/1	0704	04/21/90	EPA Method 8240		PM
Vinyl Chloride	(10	ug/l	0704	04/21/90	EPA Method 8240		PM
trans-1,3-Dichloropropene	(5	ug/1	0704	04/21/90	EPA Method 8240		PM
Alkalinity	23	mg/l	1400	04/26/90	EPA Method 310.1		DFK
Boron	.65	mg/1	2100	05/09/90	EPA Method 212.3		DFK
Cation-Anion Balance	2.47	*	1100	0 5/31/90	ference		NT
Carbonate	<.5	mg/l	1500	04/26/90	APHA Method 263		DFK
Chloride	70	mg/1	1110	04/18/90	EPA Method 325.3		DFK
Specific Conductance	6000	Micronhos	2200	04/17/90	EPA Method 120.1		KLM
Bicarbonate	23	mg/1	1500	04/26/90	APHA Method 263		DFK
Sulfate	3200	mg/1	2000	05/22/90	EPA Method 375.4		MLR

2600 DUDLEY ROAD - KILGORE, TEXAS 75662 - 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

LECEIVED

Lab Sample Number:	16	3718 Con	tinued	AU	G 0 3 1990	Page	3
PARAMETER	RESULTS	UNITS	TIME		NSERVATION DI V. SANT <mark>HEE</mark> THOD		BY
Total Dissolved Solids	4750	mg/1	0800	65/24/90	EPA Method 160.1		MLR
рH	6.9	SU	1630	04/17/90	EPA Method 150.1		LB
Silver	(.0 3	mg/l	1700	04/19/90	EPA Method 272.1		GK
Aluminum	(.5	mg/l	1730	04/20/90	EPA Method 202.1		6K
Arsenic	.017	mg/l	2215	04/23/90	EPA Method 206.2		GK
Barium	(.5	mg/l	1845	04/20/90	EPA Method 208.1		GK
Beryllium	<.01	mg/l	2100	05/22/90	EPA Method 210.2		GK
Calcium	35	mg/l	2345	05/ 29/90	EPA Method 215.1		GK
Cadmium	< .001	mg/l	1845	04/26/90	EPA Method 213.2		GK
Cobalt	(.5	mg/l	1845	04/19/90	EPA Method 219.2		GK
Chromium	.06	mg/l	1530	04/19/90	EPA Method 218.1		GDG
Chromium	.06	mg/1	0920	04/25/90	EPA Method 218.1		GDG
Copper	. 46	mg/l	0930	04/19/90	EPA Method 220.1		GDG
Iron	3.9	mg/l	2115	05/14/90	EPA Method 236.1		GK
Potassium	100	mg/l	1730	05/22/90	EPA Method 258.1		6K
Magnesium	11.4	mg/l	1730	04/25/90	EPA Method 242.1		GDG
Manganese	. 10	mg/l	1540	04/23/90	EPA Method 243.1		GDG
Molybdenum	‹.5	mg/l	1845	04/19/90	EPA Method 246.2		GK
Sedium	1500	mg/1	2130	04/24/90	EPA Method 273.1		6K
Nickel	{ . 1	mg/l	1610	04/19/90	EPA Method 249.1		GDG
Lead	< . 00 1	mg/1	2200	04/26/90	EPA Method 239.2		GK

2600 DUDLEY ROAD -- KILGORE, TEXAS 75662 -- 214/984-0551

Analytical Chemistry • Waste Treatment & Disposal • Equipment Sales

Lab Sample Number:	16	3718 Con	tinued		Pa	ge 4
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Antimony	(.2	mg/l	1815	05/22/90	EPA Method 204.2	GK
Selenium	(. 00 5	mg/l	2315	04/19/90	EPA Method 270.2	GK
Silicon (as Silica)	55	mg/1	1615	04/20/90	APHA Method 303C	GK
Thallium	< .00 5	mg/l	1445	05/07/90	EPA Method 279.2	6D6
Vanadium	(2	mg/1	2200	04/19/90	EPA Method 286.2	GK
Zinc	. 84	mg/1	0900	04/19/90	EPA Method 289.1	GDG
Quali	ty Assuranc	e for Sam	ple Num	ber 163718	3	
Sample # Description Resu	ilt Units Du	p/Std Value Sp	k Conc.	Percent	Time Date	By

President H. Whiteside, Ph.D., С.

RECEIVED

AUG 0 3 1990 OIL CONSERVATION DIV. SANTA FE

LAL COMPANY AND A DIVISION AND INVED

290 MAR 19 AM 9 10

P. O. BOX 1492 EL PASO, TEXAS 79978 PHONE: 915-541-2600

March 14, 1990

Mr. William J. LeMay New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87501

Subject: Request for Extension, Wingate Plant Wastewater Dischcharge Plan, GW-54

Dear Mr. LeMay:

On December 12, 1989 El Paso Natural Gas (El Paso) received your request to prepare a discharge plan for the Wingate Processing Plant located in McKinley County, New Mexico. Due to Christmas holidays the preparation of a scope of work for this project was delayed until early January. The scope was circulated for internal review and approval. From the scope we developed a proposal request to submit to several qualified consultants.

There have been several iterations with information requests from the respondents to the proposal request. Some of these questions were aptly answered by Mr. David Boyer's staff. We are making our final selection and anticipate commencing work on the plan on March 19.

El Paso is committed to preparing a comprehensive plan that demonstrates compliance with applicable regulations. For this reason, we respectfully request an extension for the deadline to submit the plan. Barring any unforeseen difficulties, El Paso would be able to deliver the final discharge plan to you on or before August 13, 1990.

Thank you for your consideration in this matter.

Sincerely yours,

Kenneth E. Beasley Manager, North Region Compliance Engineering

. 5, *

112 CONSTRUCTION STATSTON ADDINADD

'90 FEB 26 RM 10 27

3801 ATRISCO NW ALBUQUERQUE, NEW MEXICO 87120

831-7700 -7752

February 21, 1990

Mr. David Boyer New Mexico Oil Conservation Division State Land Office 310 Old Santa Fe Trail #206 Santa Fe, New Mexico 87504

Dear Mr. Boyer:

El Paso Natural Gas Company has received a request from McKinley County to utilize pond water from our Wingate Plant for road construction (copy attached). Mr. Ken Beasley of our El Paso office talked to you regarding this a few weeks ago. At that time you requested copies of the most recent water analysis for review. I am enclosing these.

McKinley County is anxious to begin construction of their facilities in order to be ready for the upcoming warm weather. Your timely attention to this matter is appreciated.

Sincerely,

W. David Hall, P.E. Senior Engineer

OPHELIA GONZALES-BASS CHAIRPERSON

MARSHALL PLUMMER COMMISSIONER

RAPHAEL MARTIN COMMISSIONER

DONALD L. JORDAN MANAGER

County of McKinley

P. O. Box 70 GALLUP. NEW MEXICO 87305-0070 505 - 722-3868

January 8, 1990

Mr. Gregory C. Kardos El Paso Natural Gas Co. P. O. Box 368 Gallup, New Mexico 87305

Dear Mr. Kardos:

After our meeting on January 5, 1990, I contacted Mr. Lord in Farmington. He suggested that all correspondence and discussions regarding the proposed water agreement be channeled through your office. I will therefore outline our proposal to E P N G as follows:

The McKinley County Commission and Vernon Hamilton Construction Company request permission to utilize any excess pond water located on your Wingate plant site. This water will be used for road construction purposes only.

McKinley County and Vernon Hamilton will provide all the necessary equipment required to pump the water from the pond into water trucks. Vernon Hamilton has indicated that he would pave the area from the existing paving to the pump site.

McKinley County and Vernon Hamilton both agree to provide E P N G any documents required to protect E P N G from any liability or responsibility for the pump, quantity or quality of water. In addition, both parties agree to abide by all E P N G safety requirements or regulations.

We appreciate your willingness to pursue this proposal and will be available to provide any information or documentation that may be required.

Sincerely,

(Ladasii)

James C. Radosevich Public Works Director

JCR/rmg cc: Vernon Hamilton Inc.

CDS LABORATORIES 75 SUTTLE STREET 2.0. BOX 2605 DURANGO CO 81362		.IENT: El Paso Natural Gas P O Box 4396 Farmington, NM 8743		CDS ID# 1185 SAMPLE DESCRIPTION A89156 Wingate Pt		ond
(303) 247-4220		TTN: John Lambdin		SAMPLER: DATE TAKEN: 10717. DATE RECEIVED: 10.	/89 T	IME: 1400 DC: Yes
FRACE METALS	mg/L	CHEMICAL PARAMETERS	mg/L	PHYSICAL PARAMETERS		
			218	ACIDITY as CaCO3 ALKALINITY as CaCO3	200	mg/L
NTIMONY RSENIC		HYDROXIDE as CaCO3 CARBONATE as CO3	80	COLOR	538	mg/L
BARIUM		BOD	OV	CONDUCTIVITY		umha∕am
SERYLLIUM		BORON		DISSOLVED OXYGEN		aanto/ ca ag/L
ISMUTH		COD		HARDNESS as CaCO3		mg/L
ADMIUM				pH	8.18	UNITS
ALCIUM	871	CHLORINE	64600	SPECIFIC GRAVITY		
HROMIUM		CHLORINE DEMAND		TEMPRATURE		DEGREES C
+3 FORM		COLIFORM-TOTAL/100ml		TOTAL COMBUSTABLE		ag/L
+6 FORM		COLIFORM-FECAL/100ml		TOTAL DISSOLVED SOLIDS	145.000	
206ALT		CYANIDE		TOTAL FILTERABLE SOLIDS		mg/L
OPPER			3.30	TOTAL SOLIDS		
IRON		MBAS	••••	TOTAL SUSPENDED SOLIDS		ag/L
EAD		AMMONIA-N		TOTAL SETTLEABLE SOLIDS		ml/L
	3450	NITRATE/NITRITE-N NITRATE-N NITRITE-N		TURBIDITY		NTU
IOL YEDENUM		TOTAL KJELDAHL (TKN)-N		GROSS ALPHA		oCi∕L
IICKEL		OIL AND GREASE		GROSS BETA		pCi/L
OTASSIUM		PHENOLS		RADIUM 226		oCi∕L
ELENIUM		PHOSPHATE-P	.70	RADIUM 228		DCi/⊾
ILVER		TOTAL PHOSPHORUS-P		URANIUM (NATURAL)		pCi/L
	24800		9.1			I
HALLIUM		SULFATE	20000	ENDRIN		mg/L
IN		SULFIDE		LINDANE		ag/L
ANADIUM		SULFITE		METHOXYCHLOR		ng/L
LINC		H2S as S		TOXAPHENE		mg/L
-		SAR		2, 4, -D		тэ/L
		TOC		2, 4, 5 -TP (silvex)		mg/L
		+/- BALANCE		TOTAL TRIHALOMETHANES		ag/L

This laboratory report may not be published or used for advertising or in connection with advertising of any kind without prior written permission from CDS Laboratories. Results are based on analysis made at the time samples are received at the laboratory

COMMENTS:

VPPROVED BY:

L. 1

DR. JOE BOWDEN, DIRECTOR

CHECKED BY:

SKD

CDS LAEORATORIES 75 SUTTLE STREET P.O. BOX 2605 BURANGO CO 81302 (303) 247-4220	· :	CLIENT: El Paso Nateral Gas P O Box 4990 Farmington, NM 874 ATTN: John Lambdin			CDS ID# 1184 SAMPLE DESCRIPTIO A89155 WINGATE A EAST POND OVERFO SAMPLER: DATE TAKEN: 10/1 DATE RECEIVED:	PLANT _DW 17/89	TIME: 1400 COC: Yes
TRACE METALS TOTAL DISSOLVED	. ag/L	CHEMICAL PARAMETERS		mg/L	PHYSICAL PARAMETERS		
ALUMINUM		BICARBONATE as HCO3	1		ACIDITY as CaCO3		£ ag∕L
ANTIMONY		HYDROXIDE as CaCO3			ALKALINITY as CaCO3	105	mg∕L
ARSENIC	.001	CARBONATE as CO3	104		COLOR		
Barium	<.5	BOD			RESISITIVITY		oha-ca
BERYLLIUM		BORON	-	·	DISSOLVED DXYGEN		ng∕L
BISMUTH		COD			HARDNESS as CaCO3	•	ag/L
	(.005	CHLORIDE	5760		рH	9.58	UNITS
	528	CHLORINE		•	SPECIFIC GRAVITY		
Chronium	(.01	CHLORINE DEMAND			TEMPRATURE		DEGREES C.
+3 FORM		COLIFORM-TOTAL/100ml			TOTAL COMBUSTABLE		øg∕L
+6 FORM		COLIFORM-FECAL/100ml			TOTAL DISSOLVED SOLIDS	5 14400	mg/L
COBALT		CYANIDE		· · .	TOTAL FILTERABLE SOLI	S	eg/L
Coffer		FLUORIDE	.65		TOTAL SOLIDS		ng/L
IRON		MBAS		•	TOTAL SUSPENDED SOLIDS	3	£g/L
Lead	.08	AMMONIA-N			TOTAL SETTLEABLE SOLI	JS	al/L
MAGNESIUM	291	NITRATE/NITRITE-N			TURBIDITY		NTU
MANGANESE		NITRATE-N					
MERCURY	(.001	NITRITE-N					
MOLYBDENUM		TOTAL KJELDAHL (TKN)-N	l		GROSS ALPHA		pCi/L
NICKEL		OIL AND GREASE	-		GROSS BETA		pCi/L
FOTASSIUM		PHENOLS		•	RADIUM 226		pCi/L
	(.001	PHOSPHATE-P	.18	· .	RADILM 228		pCi/L
	(.01	TOTAL PHOSPHORUS-P			URANIUM (NATURAL)		pCi/L
	3440	SILICA	8.0				P
THALLIUM		SULFATE	3340		ENDRIN		ag/L
TIN		SULFIDE	••••		LINDANE		ng/L
/ANADIUM		SULFITE			METHOXYCHLOR		ng/L
ZINC		H2S as S			TOXAPHENE		-
		SAR			2, 4, -D		ng/L
		TOC	11.4		2, 4, 5 -TP (silvex)		۵g/L
		+/- BALANCE	1114				mg/L
		7/- DHLHNLC			TOTAL TRIHALOMETHANES		ng/L

his laboratory report may not be published or used for advertising ir in connection with advertising of any kind without prior written vermission from CDS Laboratories. Results are based on analysis vade at the time samples are received at the laboratory

1

ΚŊ CHECKED BY: .

COMMENTS:

DR. JOE BOWDEN, DIRECTOR

FPROVED BY

-

DURANGO, CD 81302	2 POBOX 4 POBOX 4 FARMINGTO	
(303) 247-4220	NOVEMBER	23, 1989
	METHOD 8020 AROMATIC VOLATILE ORGANICS	
	84	
DATE TAKEN: 10.	/19/89	d Dverflow
	ma/L	Detection Limit
Benzene	<	.010
Ethyl benzene	< .010	.010
Toluene	< .010	.010
Xylenes	। यह स्वयं स्वित्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क द्रिया क् रि क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क्षेत्र के क	.010
Annound by:	- Spirlan	ecked by: SKL
Approved by: Dr.	Joe Bowden, Director	
This laboratory r	wport may not be published	or used for
	connection with advertisir	
adventieing on in		G OT ANY KING
advertising or in without prior wri Results are based	tion permission from CDB La on analysis made at the ti	ng of any kind Doratories. Mg samples are
Results are based received at the 1	tten permission from CDB La on analysis made at the ti aboratory.	ng of any kind Doratories. Mg Samples arg
Results are based received at the l	on analysis made at the ti aboratory.	ng of any kind Doratoriwe. Mg Samplee are
Results are based received at the l	on analysis made at the ti aboratory.	ng of any kind Doratories. Mg samples are
Results are based received at the l	on analysis made at the ti aboratory.	ng of any kind boratories. Mg samples are
Results are based received at the l	on analysis made at the ti aboratory.	ng of any kind Doratories. Mg Samples are
Results are based received at the l	on analymis made at the ti aboratory.	ng of any kind boratories. Mg Samples arg
Results are based received at the 1	on analysis made at the ti aboratory.	ng of any kind boratories. Mg samples are
Results are based received at the 1	on analysis made at the ti aboratory.	ng of any kind boratories. Mg samples are
Results are based received at the 1	on analysis made at the ti aboratory.	ng of any kind boratories. Mg Samples are
Results are based received at the 1	on analysis made at the ti aboratory.	
Results are based received at the 1	on analysis made at the ti aboratory.	ng of any kind boratories. Mg Samples are
Results are based received at the 1	on analysis made at the ti aboratory.	
Results are based received at the 1	on analysis made at the ti aboratory.	
Results are based received at the 1	on analysis made at the ti aboratory.	
Results are based received at the 1	on analysis made at the ti aboratory.	
Results are based received at the 1	on analysis made at the ti aboratory.	
Results are based received at the 1	on analysis made at the ti aboratory.	
Results are based received at the 1	on analysis made at the ti aboratory.	
Results are based received at the 1	on analysis made at the ti aboratory.	· · · · · · · · · · · · · · · · · · ·
Results are based received at the 1	on analysis made at the ti aboratory.	

OIL CONSERVATION DIVISION Santa Fe, New Mexico

TELECOPIER TRANSMITTAL SHEET TO: DAVE Hall EANG ALB FROM: DAVE BOYER, NM ORD (Phone 357-3812) DATE: 4/20/90NUMBER OF SHEETS (INCLUDING TRANSMITTAL SHEET): 2(cment 4/20)

IF YOU HAVE ANY PROBLEMS WITH THIS TRANSMISSION, PLEASE CALL (505) 827-5806.

MESSAGE

Dave - In response De your phone call Today, I will approve use of 50,000 pallont before submitted of the additional information provided & receive information on The material requested in item #3 of my cetter, FAX 931-7739

(505) 827-5741

ENVIRONMENTAL RELEASE REPORTING

1. Name of Reporter, Phone Number - G.C. Kardos, 505-611-4245 OIL CON. DN 2. Company Name - El Paso Natural Gas DIST -3. Mailing Address - P.O. Box 1492, El Paso, Texas

RECEIVE

DEC1 3 1989

4. Geographical location of release - County, State, Section, Township, Range, distance from major geographical landmark (ideally a town) - Section 17, T-15-N, R-17-W, McKinley County, New Mexico. 6 Miles East of Gallup, New Mexico.

5. Type of Facility (Drilling Well, Producing Well, Tank Battery, Pipeline, Gasoline Plant, Oil Refinery, Other) - Fractionating Plant.

6. Name of Facility - Wingate Plant

7. Date and hour of occurrence - 7:30 P.M. 12/07/89

8. Did the spill reach a waterway? No

9. What was the environment where the release took place? (Soil, a wash, in a populated area, on pavement, in a building?) Gravel over soil. 120 feet X 15-20 feet area covered.

a.Surface conditions (Sandy, Sandy Loam, Clay, Rocky, Wet Dry Snow) Clayey soil under gravel, dry

b. Describe General Conditions Prevailing (Temperature, Precipitation, etc.) dry, 35 degrees

10. Were there deaths, injuries, or evacuations? No

11. What was the material spilled? Mixed solution for chemical cleaning a boiler. Contained 2% Ammonium Hydroxide, .3% Sodium Bromate, .08% Sodium Sulfite, .5% Ammonium Bicarbonate, .6% HCl. pH of the solution as it was released was 5.9 - 6.1.

12. What was the amount spilled? 100 gallons

13. Where was the release from? A tank truck

14. What caused the release? While neutralizing the basic solution used to clean a boiler, foaming occurred which caused the release.

15. What was remedial action? Neutralize with Soda Ash to pH 7.

16. Volume of fluid recovered. None, soaked a couple of inches into the ground.

17. Were any state or local agencies notified? If so, to whom, by whom and date and hour. - Yes, NMOCD, Frank Chavez, K.E. Beasley, 12/7/89, 8:30 A.M. STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

GARREY CARRUTHERS GOVERNOR

December 8, 1989

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

ļ

L

CERTIFIED MAIL RETURN RECEIPT NO. P-106-675-199

Mr. Kenneth E. Beasley, Manager North Region Compliance Engineering EL PASO NATURAL GAS COMPANY P. O. Box 1492 El Paso, Texas 79978

RE: Discharge Plan GW-54 Wingate Gas Procesing Plant McKinley County, New Mexico

Dear Mr. Beasley:

Under the provisions of the Water Quality Control Commission (WQCC) Regulations, you are hereby notified that the filing of a discharge plan is required for your existing Wingate Gas Processing Plant located in Section 16, Township 15 South, Range 17 East, (NMPM), McKinley County, New Mexico.

This notification of discharge plan requirement is pursuant to Sections 3-104 and 3-106 of the WQCC Regulations. The discharge plan, defined in Section 1.101.P. of the WQCC Regulations, should cover all discharges of effluent or leachate at the plant site or adjacent to the plant site. Included in the application should be plans for controlling spills and accidental discharges at the facility (including detection of leaks in buried underground tanks and/or piping), and closure plans for any ponds whose use will be discontinued.

A copy of the regulations is enclosed for your convenience. Also enclosed is a copy of an OCD guide to the preparation of discharge plans for gas processing plants. The guidelines are presently being revised to include berming of tanks, curbing and paving of process areas susceptible to leaks or spills and the disposition of any solid wastes. Please include these items in your renewal application. Three copies of your discharge plan should be submitted for review purposes. Mr. Kenneth E. Beasley December 8, 1989 Page -2-

Section 3-106.A. of the regulations requires a submittal of the discharge plan within 120 days of receipt of this notice unless an extension of this time period is sought and approved for good cause. Section 3-106.A also allows the discharge to continue without an approved discharge plan until 240 days after written notification by the Director of the OCD that a discharge plan is required. An extension of this time may be sought and approved for good cause.

If there are any questions on this matter, please feel free to call David Boyer at 827-5812, or Roger Anderson at 827-5884 as they have the assigned responsibility for review of all discharge plans.

Sincerely,

William J. LeMay

Director

WJL/RCA/sl

cc: OCD Aztec Office

SENDER: Complete items 1 and 2 when additional s 3 and 4. Put your address in the "RETURN TO" Space on the revers card from being returned to you. <u>The return receipt fee will pr</u> to and the date of delivery. For additional fees the following for fees and check box(es) for additional service(s) request 1. Show to whom delivered, date, and addressee's add (Extra charge)	se side. Failure to do this will prevent this ovide you the name of the person delivered services are available. Consult postmaster ed.
3. Article Addressed to: El Paso Natural Gas	4. Article Number P106675199
PO BOX 1492 El Paso, DX 79978	Type of Service: Registered Insured Certified COD Express Mail Return Receipt for Merchandise
atta: Lemeth Beasley	Always obtain signature of addressee or agent and DATE DELIVERED.
5. Signature – Address X	B. Addressee's Address (ONLY if requested and fee paid)
6. Signature – Agent X Q	
7. Date of Delivery	

3801 ATRISCO NW ALBUQUERQUE, NEW MEXICO 87120

June 13, 1989

JUN 22 1989 OIL CONSERVATION DIV. SANTA FE

Mr. Frank Chavez State of New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, New Mexico 87410

RE: <u>Wastewater Hauling-Wingate Plant</u>

Dear Mr. Chavez:

Per our discussion today, El Paso Natural Gas Company has received two requests to use water from the disposal ponds at Wingate Plant, McKinley County, New Mexico. The water will be used for road construction and dust suppression.

The disposal pond influent consists primarily of cooling tower blowdown, boiler blowdown and water softener regenerator blowdown.

Based on your verbal approval, we will notify the requesting parties they may proceed as required.

Sincerely,

W. D. Hall Senior Compliance Engineer

cc: K. E. Beasley G. C. Kardos File

WINGATE PLANT

These ponds receive all waste water from the plant and camp. The water from Pond #1 flows by gravity into Pond #2. All sanitary sewage goes through a septic system before being pumped into these waste ponds.

Annual volume - 36,013,000 gallons.

The ponds are lined with rock rip-rap.

51 ACRES 20 17 7 ω 21 16 16 6'Deep 6'Dee 10 10 10 \mathbb{Z} RANGE 17-W <u>..</u> Tws:15-A SCALE 1" - 1000 Ś INGATE EL PASO NATURAL GAS COMPANY 9 ယ 127 17 MC 14 ົດ 0 FLAN SIT 2 CS

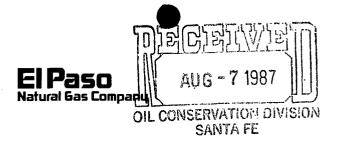
EL PASO NATURAL GAS COMPANY SAN JUAN DIVISION LABORATORY DECEMBER 6, 1978 WATER ANALYSIS

WINGATE PLANT WASTE WATER POND

SAMPLE SECURED 11-29-78 by H.L. HADLOCK

ANALYSIS NUMBER: 2-9385

5 - .1 (5 - 52)


PH	6.8	· · · · · · · · · · · · · · · · · · ·
Total hardness as CaCO ₃	4500	
Calcium as CaCO ₃	2350	
Magnesium as CaCO ₃	2150	
P Alkalinity as CaCO ₃	0	
Total Alkalinity as CaCO ₃	8	
Claride os Cl	. 835	
Sulfate as SO ₄	6350	•
Silica as SiO ₂		
Iron as Fe		
Total Solids	23950	
Sodium as Na Chromate as Cr Conductivity @ 25 ⁰ C Phosphate as PO ₄	2.4 15000 0	

--all results expressed as parts per million --- trace is less than 0.1 ppm --

REMARKS:

cc; G.B.Harshfield J.L.Allison L.E.McElrath Jr. L.J.Estlack M.A.Manley File

R.L. Ellsbury Chemist

P. O. BOX 4990 FARMINGTON, NEW MEXICO 87499 PHONE: 505-325-2841

August 5, 1987

Mr. David G. Boyer Hydrogeologist/Environmental Bureau Chief Energy and Minerals Department New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87501-2088

> Subject: New Mexico Highway Department use of Wingate Plant Wastewater

Dear Mr. Boyer:

Attached are the analytical results for samples collected from the two wastewater ponds at the El Paso Natural Gas Company's Wingate Plant. As we have discussed, Mr. Ken Parker of the New Mexico Highway Department has requested the use of this water as a dust suppressant during construction activities in the near future. We would appreciate your granting permission for this use. Any correspondence related to this issue should be addressed to El Paso and the New Mexico Highway Department. Please feel free to contact me at (505)-325-2841 or Mr. Parker at (505)-827-5361 should you require further information.

Sin<u>cerely</u> yours,

Kenneth E. Beas/ley III Compliance Engineer

KEB:cam

cc: Ken Parker New Mexico Highway Department P.O. Box 1149 Santa Fe, New Mexico 87504-1149

Report of Chemical Analysis

Consulting Geotechn Materials and Environmental Engineers Geologists, Scientists and Chemists

To: El Paso Natural Gas Company P.O. Box 4990 Farmington, New Mexico 87499

P.O. Box 690287, San Antonio, TX 78269-0287 12821 W. Golden Lane, San Antonio, TX 78249 (512) 699-9090

Attn: Mr. Kenneth E. Beasley

Project No.:	SA0687-0003-007
Assignment No.:	6-10983
Date:	6/05/87

Subject: Chemical Analysis of Water Sample

Background: Water samples were reportedly collected from Wingate Plant by Mr. Kardos with EPNG on 5/14/87.

Test Method: Metals - EPA Method 600/4-79-020 VOAs - EPA 624

Test Results:

	Wastewater Pond <u>No. 1, J87-013</u> (6-10735-1)	Wastewater <u>No. 2, J87–014</u> (6–10735–2)
I. Metals:		
Arsenic, mg/L	. <0.01	<0.01
Barium, mg/L	<0.3	<0.3
Cadmium, mg/L	0.03	0.12
Chromium, mg/L	0.02	0.07
Lead, mg/L	0.19	0.49
Mercury, mg/L	<0.001	<0.001
Selenium, mg/L	<0.01	<0.01
Silver, mg/L	0.03	0.09
II. VOA	See attached	See Attached

Raba-Kistner Consultants, Inc. by Frank B. Schweitzer Vice-President, Chemistry

Page 1 of 3

Project No.: SA0687-0003-007 Assignment No.: J87-013 (6-10983)

(PURGEABLES) (EPA Method 624)

	Compound	Concentration (ug/L)	Method Detection Limits (ug/L)
	Chloromethane	N.D.	5.0
	Bromomethane	N.D.	5.0
•	Vinyl Chloride	N.D.	10.0
	Chloroethane	N.D.	5.0
	Methylene Chloride	N.D.	2.8
	Trichlorofluoromethane	N.D.	5.0
	1,1-Dichloroethene	N.D	2.8
	1,1-Dichloroethane	N.D.	4.7
	Trans-1,2-Dichloroethene	N.D.	1.6
	Chloroform	N.D.	1.6
	1,2-Dichloroethane	N.D.	2.8
	l,l,l-Trichloroethane	N.D.	3.8
	Carbon Tetrachloride	.N.D.	2.8
	Bromodichloromethane	N.D.	2.2
	1,2-Dichloropropane	N.D.	6.0
	Trans-1,3-Dichloropropene	N.D.	5.0
	Trichloroethene	N.D	1.9
	Dibromochloromethane	N.D.	3.1
	1,1,2-Trichloroethane	N.D	5.0
	cis-1,3-Dichloropropene	N.D.	5.0
	Benzene	N.D.	4.4
	2-Chloroethylvinyl Ether	N.D.	5.0
	Bromoform	N.D.	4.7
	1,1,2,2-Tetrachloroethane	N.D.	6.9
	Tetrachloroethene	N.D	4.1
	Toluene	N.D.	6.0
	Chlorobenzene	N.D.	6.0
	Ethylbenzene	N.D.	7.2
	Xylenes	N.D.	5.0
	N.D.= Not Detected		

Page 2 of 3

Project No.: SA0687-0003-007 Assignment No.: J87-104 (6-10735-2)

(PURGEABLES) (EPA Method 624)

K 4

Compound	Concentration (ug/L)	Method Detection Limits (ug/L)
Chloromethane	N.D.	5.0
Bromomethane	N.D.	5.0
Vinyl Chloride	N.D.	10.0
Chloroethane	N.D.	5.0
Methylene Chloride	N.D.	2.8
Trichlorofluoromethane	N.D.	5.0
1,1-Dichloroethene	N.D	2.8
1,1-Dichloroethane	N.D.	4.7
Trans-1,2-Dichloroethene	N.D.	1.6
Chloroform	N.D.	1.6
1,2-Dichloroethane	N.D.	2.8
l,l,l-Trichloroethane	N.D.	3.8
Carbon Tetrachloride	N.D.	2.8
Bromodichloromethane	N.D.	2.2
1,2-Dichloropropane	N.D.	6.0
Trans-1,3-Dichloropropene	N.D.	5.0
Trichloroethene	N.D	1.9
Dibromochloromethane	N.D.	3.1
1,1,2-Trichloroethane	N.D -	5.0
cis-1,3-Dichloropropene	N.D.	5.0
Benzene	N.D.	4,4
2-Chloroethylvinyl Ether	N.D.	5.0
Brcmoform	N.D.	4.7
1,1,2,2-Tetrachloroethane	N.D.	6.9
Tetrachloroethene	N.D	4.1
Toluene	N.D.	6.0
Chlorobenzene	N.D.	6.0
Ethylbenzene	N.D.	7.2
Xylenes N.D.= Not Detected	N.D.	5.0

Page 3 of 3

EL FAID MATURAL DAS CONTRA SAN JUAN DIVISION LABURATORY FARMINGTON, NEW MEXICO PROCESS WATER ANALYSIC

SAMPLE NAME: WINSATE POND #1 Date Secured: May 14, 1987			WHALVEIS NG.: 2-12154 Secured by: G.C. Mardos		
LONFONENT			AS CaCOD		
₽H	,		Q. 77		
OTAL ALKALINITY	50	6.4	128		
P ALKALINITY	50	1.5	SO		
BICARBUNATE	50	3.4	68	85	1.36
CARBONATE	50	بوری ان ی ا	60	Ze	1.20
HTDROXIDE	50.	C)	۲ <u>]</u> ،	, 0	2.00
CHLORIDE	10	48.4		$\mathcal{L} \subseteq \mathcal{A}$.)	17e.4=
SULFATE				(17 2)	48.28
TETAL HARDNESS	1.0	23.8	2380		
CALCIUM	10	12.0	:290	5:6	25.8
. AGNESIUM	10	10.9	1090	267	11. 98
I HON				PRESENT	
(GDIUL (CALCULATED)				3210	139.57
CHUITLEN NE CHO4				117	
ELLFITE AS 507				117	
-JERHATE AS FOA				NT	•
TUTAL DISSOLVED SOLI	DS		•	12360	
CORPUTIVITY AT 250.			18500 MICHOMH09		

ALL RESULTS EXPRESSED AS PARTS PER MILLION-TRACE IS LESS THAN C.1 . p

CI: J.F. BARNETT FILE

CHEMIST

GCH 1/86

MEL MARCHARDERS GALLAR MUSICAL 148 JUNE DRATES AN LOCATION BRATERIZATION INDUSTRIAL FOR LOCATION PRODUCT PRACTICE AND LOCATION

HARLYE E MOLL DHIDIE

CATE SECURELY MAY 14. 1987 SECUREL LY: S.C. MARDOS SHMPLE SIZE TH. THT AS CROOP AS LUN edge COMPONENT З Т. E ji 7 9 OTAL ALKALINITY 148 F ALTALINIT 50 1.2 50 E1CARBONATE 100 50 2.4 48 28 5.45 CHEEDNATE 50 1.5 0 4,00 - 3 H, IRCXIDE 32,800 22801 1 DA.92 J-ALGRIDE 25(100:1) S.C 1193 19J.D1 SULFATE Ĺ J 41.4 94**8**0 UTAL HARDNESS 14.2 2341 11 a 5a.8 الالت فاكتحد رسوس الجديد والرسوس والوالي. المراد ماليات ما الالشانية ف MULSEVIEW 5 6840 PRESENT 1 ROM 21358 928.et JUDIUM COALCULATED ULAUAIUN AS CHOA LELLE RE 193 1.T Support for the 117 18240 6824D THE PLEEDENED SHELDS 116900 NIGR(MHUS THAT REPARTS AT 250.

FUL RESULTS EXPRESSED AS FARTS PER MILLIUN-TRACE IS LESS THAN 0.1 pro-

C.F. BARAETT

LA FLE, NAME, UI VEALE FOND HE

Sundre angon

00 ./Ea