GW - 52

GENERAL CORRESPONDENCE

YEAR(S): 1995

OCD CHRONOLOGY OF REMEDIAL ACTIONS TRANSWESTERN PIPELINE ROSWELL STATION

2/14/92	Larry Campbell (Transwestern) meets with Roger Anderson (Oil Conservation Division (OCD) to discuss closure of surface impoundments at Compressor Station No. 9.
5/6/92	Joint meeting attended by Transwestern, NMED and OCD. Transwestern states intention to hire Halliburton-NUS Corporation to install a monitor well in the center of the former pit to remove and test liquids to determine their status as hazardous waste. Field work scheduled to begin July 20, 1995.
12/10/92	Joint meeting by Transwestern, NMED and OCD to discuss remediation and closure activities at former surface impoundments. NMED requests that the RCRA Part A permit application submitted previously be resubmitted using the proper EPA forms. The schedule for submittal of other documents and information is also discussed.
9/7/93	Transwestern notifies OCD of the installation of product recovery pumps in three monitor wells as part of ground-water cleanup and requests associated modifications to Discharge Plan GW-52.
9/22/93	OCD requests additional information regarding the design of the product recovery system prior to approving modifications to Discharge Plan GW-52.
10/25/93	Transwestern responds to comments from OCD regarding the product recovery system.
11/18/93	OCD approves Transwestern's proposed modifications to Discharge Plan GW-52 in accordance with ongoing remedial activities.
8/4/94	OCD conducts joint inspection with Terry Davis, Mare Sides, and Cornelius Amindyas of the NMED HRMB, Larry Campbell (Transwestern), Bill Kendrick (Enron Operations Corporation), and George Robinson (Cypress Engineering Services) at the Roswell Station site to gather information for a RCRA Facility Assessment.
7/26/95	Transwestern submits Phase I Soil & Groundwater Assessment work plan to OCD.
8/11/95	OCD conditionally approves Transwestern's Phase I Soil & Groundwater Assessment work plan.
8/22/95	OCD inspects drilling and sampling operations of Phase I activities and splits ground water samples from monitor wells.

8/23/95	Daniel B. Stephens & Associates completes the Phase I Soil and Ground Water assessment field activities in which soil samples were collected from the area of the former surface impoundments, three ground water monitor wells were installed down gradient of the former surface impoundments, and ground water samples were collected from three on-site and the three newly installed off-site monitor wells.
9/26/95	OCD sends Transwestern and HRMB copies at OCD's 8/22/95 ground water analyses.
10/26/95	Trans western submits request to dispose of investigation derived wastes to OCD.
11/9/95	Transwestern submits Phase I Soil & Groundwater Assessment Report to OCD and commits to send OCD a Phase II work plan by 12/15/95 for additional definition of the extent of contamination.
11/13/95	OCD conditionally approves of Transwestern's request to dispose of investigation derived wastes.
12/8/95	OCD meets with NMED HRMB and Ed Kelley NMED Director to discuss Transwestern's October 11, 1995 correspondence which provides Transwestern's technical and legal analysis of the reasons why this case should be regulated under OCD/WQCC authority and not under RCRA regulations.
12/19/95	Transwestern submits Phase II Soil & Groundwater Assessment work plan to OCD.
1/26/96	OCD requests NMED HRMB comments on Phase I report and Phase II work plan.

Events And Correspondence Chronology Roswell Station Remediation Project Transwestern Pipeline Company

Revised 8/24/95 (most recent revisions are in bold type)

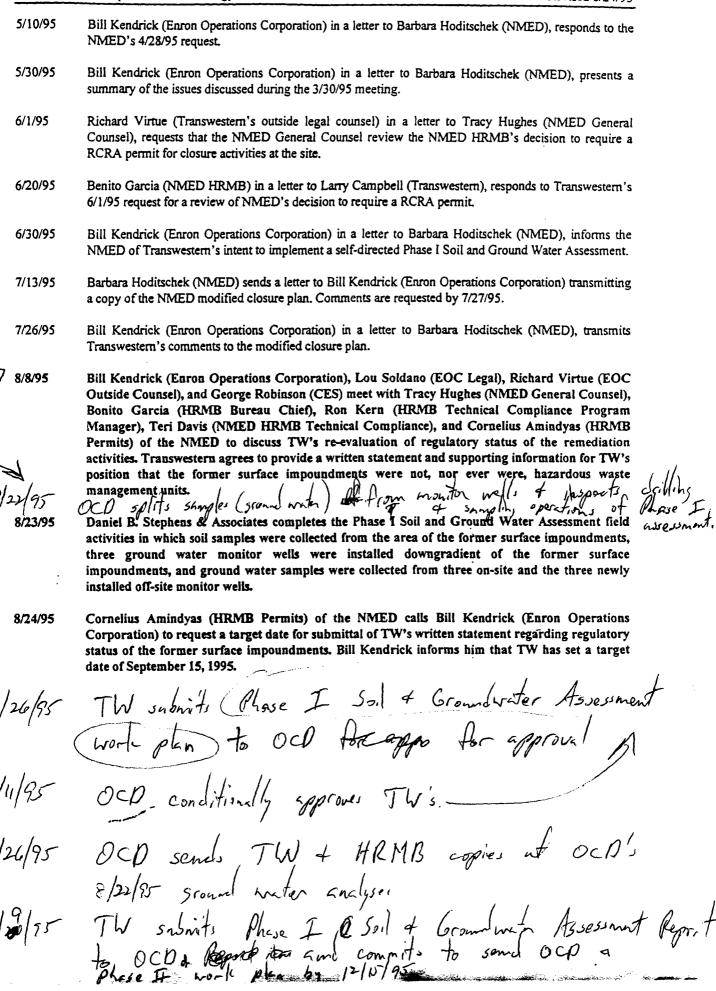
	· · · · · · · · · · · · · · · · · · ·
8/60	Compressor station begins operations.
Prior to	note the control of the property of the proper
10/72	Pit 1 is constructed to replace Pit 2.
6/73-4/81	Period during which Pit 2 and Pit 3 (if Pit 3 existed) are back-filled. The timeframe is based on a review of air photos.
6/82	The 210 bbl. waste lube oil tank is placed in service. No releases of waste lube oil after this date.
11/83	The 500 bbl. pipeline liquids tank is placed in service. No releases of pipeline liquids after this date. In addition, the scrubbers, the wash rack, and the engine room floor drains are tied into the 500 bbl pipeline liquids tank at this time.
11/83	Last use of surface impoundments. No releases to surface impoundments after this date.
12/31/85	F001, F002, F004, & F005 wastes redefined to include mixtures & blends of listed wastes.
6/86	Pit 1 back-filled.
4/90	Transwestern requests permission from the State of New Mexico Office of the Commissioner of Public Lands to drill exploratory borings on State Trust land in order to collect soil samples to assess soil contamination.
4/2/90	State of New Mexico Office of the Commissioner of Public Lands (Surface Water Resources Division) authorizes Transwestern to drill exploratory borings on State Trust land for the purpose of obtaining soil samples to be tested for contamination.
6/20/91	Harding Lawson Associates completes shallow soil vapor investigation at Compressor Station No. 9.
7/17/91	Transwestern requests authorization to drill additional soil borings on State Trust land northeast of the compressor station.
7/22/91	State of New Mexico Office of the Commissioner of Public Lands (Surface Water Resources Division) authorizes Transwestern to drill approximately 15 soil borings to allow collection of soil samples.
12/91	Metric Corporation completes report on a shallow subsurface investigation at the compressor station.
2/14/92	Larry Campbell (Transwestern) meets with Coby Muckelroy and Bruce Swanton (New Mexico Environment Department [NMED]) to discuss closure of surface impoundment at Compressor Station No. 9.
2/14/92	Larry Campbell (Transwestern) meets with Roger Anderson (Oil Conservation Division [OCD]) to discuss closure of surface impoundment at Compressor Station No. 9.
4/29/92	Bruce Swanton (NMED) calls Larry Campbell (Transwestern) to request additional information regarding the former surface impoundments.

6/11/93

Events An	d Correspondence Chronology	Revised 8/24/95
5/6/92	Joint meeting attended by Transwestern, NMED and OCD. Transwestern state Halliburton-NUS Corporation to install a monitor well in the center of the former pit liquids to determine their status as hazardous or non-hazardous waste. Field work school, 1992.	to remove and test
7/92	Monitor well MW-1 installed by Halliburton-NUS Environmental Corporation.	
10/92	Halliburton NUS completes report on monitor well installation at the compressor static	n.
10/15/92	Joint meeting attended by Transwestern, NMED and OCD. Transwestern presents the and analysis of the new monitor well. Options for closure of the site are discussed.	results of sampling
11/30/92	Transwestern submits duplicate copies of a RCRA Part A permit application to NMED	and OCD.
12/10/92	Joint meeting attended by Transwestern, NMED and OCD to discuss remediation and former surface impoundments. NMED requests that the RCRA Part A permit appreviously be resubmitted using the proper EPA forms. The schedule for submittal and information is also discussed.	plication submitted
1/5/93	Transwestern resubmits RCRA Part A permit application using the EPA forms.	
1/25/93	Transwestern notifies NMED that monitor wells will be installed to determine grabeneath the former surface impoundments.	ound-water quality
2/7/93	Transwestern provides NMED with historical information on the use of the impoundments.	e former surface
2/17/93	Transwestern meets with NMED to discuss remediation and closure of the surface impo	oundment.
2/17/93	Transwestern requests permission from the State of New Mexico Office of the Communication Lands to install two monitor wells on State Trust land in order to collect ground-water states.	
2/17/93	NMED requests that Transwestern submit a closure plan in accordance with the New Waste Management Regulations, Part VI, Section 40 CFR 265.112(a). NMI Transwestern with a list of Deficiency Comments related to NMED review of the RC application previously submitted and requests that a new or amended Part A applic within 30 days.	ED also provides CRA Part A permit
3/10/93	Transwestern requests NMED to grant a 60-day extension (until July 1, 1993) for filing	the closure plan.
3/16/93	George Robinson (Cypress Engineering Services) meets with Larry Campbell (Transconclusions of Metric Report.	western) to discuss
4/6/93	NMED grants extension for filing of closure plan.	
4/7/93	Transwestern submits amended RCRA Part A permit application to NMED, along with to NMED review comments on the previous permit application.	a list of responses
5/19/93	Larry Campbell and Lou Soldano (Transwestern) meet with NMED to discuss NMED plan for the surface impoundments. NMED requests information regarding the propos product recovery pump.	•
5/21/93	Product recovery pump installed in MW-1. Interim corrective action begins by pum MW-1 into aboveground storage tank.	ping product from

Transwestern notifies the State of New Mexico Office of the Commissioner of Public Lands that

remediation operations are in progress at the compressor station.


6/22/93	Brown & Root Environmental completes a report for Transwestern describing a ground-water assessment at the compressor station.
7/1/93	Larry Campbell (Transwestern) delivers closure plan to NMED. Transwestern begins free product recovery from recovery wells MW-1B, MW-2, and RW-1.
9/7/93	Transwestern notifies OCD of the installation of product recovery pumps in three monitor wells as part of ground-water cleanup and requests associated modifications to Discharge Plan GW-52.
9/22/93	OCD requests additional information regarding the design of the product recovery system prior to approving modifications to Discharge Plan GW-52.
10/25/93	Transwestern responds to comments from OCD regarding the product recovery system.
11/18/93	OCD approves Transwestern's proposed modifications to Discharge Plan GW-52 in accordance with ongoing remedial activities.
3/7/94	Transwestern receives a letter from NMED rejecting closure plan previously submitted on July 1, 1993, on the grounds that it is incomplete. NMED includes Notice of Deficiency listing items to be included in the closure plan.
3/23/94	Cypress Engineering Services removes inoperative product recovery pump from MW-1 and collects ground-water samples from MW-3 and MW-5.
4/5/94	George Robinson (Cypress Engineering Services) prepares letter report to Bill Kendrick (Enron Operations Corporation) discussing soil and ground-water quality at the Roswell compressor station.
4/8/94	Larry Campbell (Transwestern), Bill Kendrick (Enron Operations Corporation), and George Robinson (Cypress Engineering Services) meet with NMED to discuss Notice of Deficiency. NMED requests that another closure plan be submitted by June 1, 1994.
4/15/94	Brown & Caldwell installs new product recovery pump in MW-1 and measures depth to PSH and depth to ground water in MW-1, MW-1B, MW-2, and RW-1.
5/18/94	George Robinson (Cypress Engineering Services) and Jeffrey Forbes (DBS&A) meet with Marc Sides (NMED) to discuss closure plan format.
5/31/94	Closure Plan for Roswell Compressor Station Surface Impoundments submitted to NMED Hazardous and Radioactive Materials Bureau (HRMB).
8/4/94	Radioactive Materials Bureau (HRMB). OCD comment point in species Life HRMB) Terry Davis, Marc Sides, and Cornelius Amindyas of the NMED meet with Larry Campbell (Transwestern), Bill Kendrick (Enron Operations Corporation), and George Robinson (Cypress Engineering Services) at the Roswell Station site to gather information for a RCRA Facility Assessment.
9/9/94	NMED HRMB delivers a copy of the RCRA Facility Assessment to David Neleigh, RCRA Permits Section Chief, EPA Region VI.
9/28/94	NMED HRMB issues Notice of Deficiency (NOD) to Transwestern for closure plan dated May 31, 1994, including a list of NMED comments and requests for additional information. NMED gives Transwestern 30 days to revise the closure plan in response to their comments.
11/1/94	Bill Kendrick (Enron Operations Corporation) and George Robinson (Cypress Engineering Services) meet with NMED to discuss Notice of Deficiency dated September 28, 1994. NMED requests that

Transwestern (1) submit request for extension of the closure plan due date, (2) evaluate the potential to collect and analyze ground-water samples from off-site wells and the deep on-site well (TW-1), and

(3) revise the closure plan in accordance with NMED comments.

11/9/94	Transwestern requests a 75-day extension of the due date for the revised closure plan. Included with the letter is an attachment describing the procedure and method for installation of an upgradient monitor well.
11/16/94	Transwestern submits to the NMED HRMB the first status report of interim corrective measures covering the month of October 1994.
11/28/94	Transwestern presents arguments for the continued use of the MW-1 phase separated hydrocarbon recovery well.
12/1/94	Transwestern installs upgradient monitor well MW-6 approximately 500 feet southwest of the former surface impoundments. A ground-water sample collected by DBS&A from this well is submitted for laboratory analysis in accordance with procedures outlined in Transwestern's letter dated November 9, 1994. All existing on-site monitor wells are resurveyed.
12/2/94	Clayton Barnhill and George Robinson accurately locate off-site wells using Magellen GPS Satellite Navigator.
12/16/94	Transwestern receives letter from NMED dated December 8, 1994, granting a 75-day extension of closure plan due date until January 16, 1995. Also included are NMED's comments on Transwestern's procedures and methods for installation of the upgradient monitor well.
12/20/94	Transwestern sends letter to NMED HRMB describing proposed ground-water sampling and analysis for off-site wells.
12/22/94	Ground-water samples are collected by DBS&A from on-site deep well TW-1 and off-site Well #5 for laboratory analysis of Appendix IX constituents.
1/3/95	NMED HRMB accepts Transwestern's arguments for the continued use of recovery well MW-1.
1/11/94	Transwestern submits to the NMED HRMB status report of interim corrective measures covering the fourth quarter 1994.
1/16/95	Transwestern submits revised closure plan to NMED HRMB.
2/21/95	NMED HRMB delivers a copy of the RCRA Facility Assessment to Larry Campbell (Transwestern).
3/30/95	Bill Kendrick (Enron Operations Corporation), George Robinson (Cypress Engineering Services), Jeff Forbes (Daniel B. Stephens & Associates), and Kathleen O'Rielly (an independent consultant) meet with Barbara Hoditschek, Ron Kern, Terry Davis, and Cornelius Amindyas of the NMED HRMB to discuss the technical deficiencies of the most recent closure plan. The NMED requests Transwestern to submit additional information regarding waste characterization. The NMED also indicates to Transwestern that the NMED will modify other parts of the closure plan the NMED finds deficient and then submit the modified closure plan for public notice.
3/31/95	Bill Kendrick (Enron Operations Corporation), and George Robinson (Cypress Engineering Services) meet with Roger Anderson (NMOCD) and Bill Olson (NMOCD) to discuss several ongoing investigation and remediation projects at Transwestern facilities including the Roswell Station. Mr. Anderson indicates that the NMED HRMB is not copying the NMOCD on correspondence.
4/28/95	Barbara Hoditschek (NMED) sends a letter to Larry Campbell (Transwestern) requesting additional information is provided for inclusion into the closure within seven days of receipt of the request.
5/1/95	Transwestern obtains the assistance of outside legal counsel to assist in an evaluation of the regulatory

status of the Roswell Station facility and remediation activities.

The samits reguest to dispose of investigation derived wastes to OCD OCD conditionally approves at TW's regart to

1 Dal/ 12/19/95

TW submits Phase I Soil & Grandmath Assessment work plan to OCD

OCO requests HRMB comments on Phase I report and Phase I work plan

GARY E. JOHNSON GOVERNOR

State of New Mexico ENVIRONMENT DEPARTMENT

Harold Runnels Building
1190 St. Francis Drive, P.O. Box 26110
Santa Fe, New Mexico 87502

OFFICE OF GENERAL COUNSEL

PHONE 505-827-2990 FAX 505-827-1628 MARK E. WEIDLER SECRETARY

EDGAR T. THORNTON, III
DEPUTY SECRETARY

December 21, 1995

Mr. Richard Virtue, Esq.
Taichert, Wiggins, Virtue & Najjar
119 East Marcy Street, Suite 100
P.O. Box 4265
Santa Fe, New Mexico 87502-4265

Re: Transwestern Pipeline Company (TPC)

Dear Mr. Virtue:

This letter responds to the position of Transwestern Pipeline Company (TPC) that the New Mexico Environment Department (NMED) is not the proper regulatory authority for closure of the surface impoundments at the Roswell Compressor Station. We have carefully considered your position and have concluded that at this time closure is required pursuant to the New Mexico Hazardous Waste Act (HWA). Further, as discussed below, we do not believe that closure under the authority of the New Mexico Oil Conservation Division (OCD) will achieve the same remediation goals or adequately protect human health and the environment.

As you are aware, TPC submitted three RCRA closure plans for the surface impoundments in question which NMED staff concluded were either incomplete or inaccurate. (see attached letters from NMED regarding Notices of Deficiencies). Based upon the available information, we must conclude that hazardous wastes were disposed of at the facility during the time period in question (including 100% 1,1,1 TCA) and that proper closure can only be accomplished pursuant to the HWA's requirements. Further, there is substantial ground water contamination at this site. Solvents have been detected at 22,400 times the New Mexico Water Quality Control Commission (WQCC) standard for 1,1 DCA and three times the WQCC standard for 1,1,1 TCA.

As a technical, legal or practical matter, we do not agree that cleanup under OCD standards would be equally protective of human health and the environment. TPC's position appears to be premised upon an assumption that no hazardous wastes or constituents were

disposed of at the surface impoundments in question. As stated, the facts of this site do not support this conclusion. Contrary to your position, there are significant differences between the cleanup criteria and goals under OCD and NMED. For example, cleanup required by NMED under the HWA involves health based standards and other media not addressed by OCD. Further, OCD does not oversee solvent plume characterization and cleanup of hazardous waste sites or other RCRA concerns.

This letter will confirm that NMED intends to issue the modified closure plan for public comment no later than January 31, 1996. If you have any additional information which supports the position of TPC, we would appreciate receiving it as soon as possible and prior to January 31, 1996. Specifically, we request any information such as manifests or other documentation which demonstrate that no hazardous wastes were disposed of at this facility. Further, we would appreciate any area photos of the surface impoundments taken during the time period in question.

If we do not receive any further information from TPC, we will proceed with public comment to avoid any further delay with cleanup at this site. We are confident that proper cleanup may be achieved through the regulatory oversight of NMED with, as necessary, the coordination of OCD. If you have any questions, do not hesitate to call.

Sincerely,

SUSAN M. MCMICHAEL

Assistant General Counsel

san W. Well char

Enclosure(s)

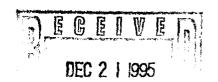
cc: Ed Kelley

Benito Garcia

Barbara Hoditscheck

Ron Kern

Bill Kendrick Rodger Anderson


David Neleigh, EPA Region 6 (PD-N)

ENRONOPERATIONS CORP.

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

December 19, 1995

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

أأساء

RE: Phase II Soil and Ground Water Assessment Plan Roswell Compressor Station Transwestern Pipeline Company

Dear Bill,

Enclosed for your review is a copy of the Phase II Soil and Ground Water Assessment Plan for the subject facility.

If you have any questions regarding this work plan, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

EOC Environmental Affairs Manager, Projects Group

gcr/BK

cc w/attachment: Barbara Hoditschek

NMED HRMB

Santa Fe, NM

OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe, New Mexico 87505

November 13, 1995

CERTIFIED MAIL
RETURN RECEIPT NO: Z-765-962-511

Mr. Bill Kendrick
ENRON Operations Corp.
P.O. Box 1188
Houston, Texas 77251-1188

RE: TRANSWESTERN PIPELINE CO. ROSWELL COMPRESSOR STATION

Dear Mr. Kendrick:

The New Mexico Oil Conservation Division (OCD) has completed a review of Transwestern Pipeline Company's (TPC) October 26, 1995 "FINAL DISPOSITION OF INVESTIGATION DERIVED WASTES, TRANSWESTERN PIPELINE COMPANY ROSWELL COMPRESSOR STATION". This document contains TPC's request to dispose of soils and ground water from soil borings and ground water monitor wells either onsite or at a hazardous waste disposal facility. The disposal requests are based upon laboratory analytical sampling results.

The above referenced request is approved with the following conditions:

- 1. The analyses of soil cuttings from monitor wells MW-7, MW-7A, MW-8 and MW-9 show boring intervals containing metals well in excess of New Mexico Water Quality Control Commission (WQCC) ground water standards. Therefore, the OCD defers approval of TPC's disposal request for the soils from these monitor wells and requests that TPC provide the OCD with a revised disposal plan for these soils.
- 2. TPC will supply the OCD with the name and location of the hazardous waste disposal facility to which wastes are taken.

Mr. Bill Kendrick November 13, 1995 Page 2

Please be advised that OCD approval does not relieve TPC of liability should their disposal actions result in actual pollution of ground water, surface water, or the environment. In addition, OCD approval does not relieve TPC of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist

Environmental Bureau

Jerry Sexton, OCD Hobbs District Supervisor

Wayne Price, OCD Hobbs District

George Robinson, Cypress Engineering Services, Inc.

Z 765 962 511

Sent to	
Street and No.	
P.O., State and ZIP Code	
Postage	\$
Certified Fee	
Special Delivery Fee	
Restricted Delivery Féc	
Return Receipt Showing to Whom & Date Delivered	
Return Receipt Showing to Whom, Date, and Addressee's Address	
TOTAL Postage & Fees	\$
Postmark or Date	

right of the return address

ENRONOPERATIONS CORP.

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

November 9, 1995

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

RE: Phase I Soil and Ground Water Assessment Report Roswell Compressor Station Transwestern Pipeline Company

Dear Bill,

Enclosed is one copy of the subject report. We are currently in the process of developing a Phase II Soil and Ground Water Assessment Plan to further delineate affected soil and ground water at the site. A work plan for the Phase II Assessment will be submitted to your office for review and approval by December 15, 1995.

If you have any questions regarding the enclosed report, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

Manager, Projects Group

gcr/BK

xc:

Tim Gum

NMOCD Artesia District Office

Barbara Hoditschek

NMED HRMB

ENRON 1.5 Pg 11: 149 8 52 OPERATIONS CORP.

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

October 26, 1995

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505 RECEIVED

OCT 3 0 1995

Environmental Bureau Oil Conservation Division

RE: Final Disposition of Investigation Derived Wastes
Transwestern Pipeline Company Roswell Compressor Station

Dear Bill,

During the course of the August 1995 subsurface assessment activities at the subject facility, several drums of potentially contaminated soil and ground water were collected from soil borings and ground water monitor wells. This water is currently stored at the site pending final disposition. The source, quantity, and proposed disposition of each drum is summarized below in Table 1. The proposed disposition is based on laboratory analysis of soil and ground water samples. A summary of the analytical results are attached. A copy of the laboratory reports will be included with the investigation summary report due to be submitted to your office by November 10, 1995.

Table 1. Source, quantity, and proposed disposition of investigation derived waste.

Source	Quantity	Proposed Disposition
Cuttings from off-site soil boring MW-7	five 55 gallon drums	Non-detect for VOCs and SVOCs; proposed disposition is to spread cuttings on ground surface within the facility fenceline
Cuttings from off-site soil boring MW-7A	four 55 gallon drums	Non-detect for VOCs and SVOCs; proposed disposition is to spread cuttings on ground surface within the facility fenceline
Cuttings from off-site soil boring MW-8	five 55 gallon drums	Non-detect for VOCs and SVOCs; proposed disposition is to spread cuttings on ground surface within the facility fenceline
Cuttings from off-site soil boring MW-9	five 55 gallon drums	Non-detect for VOCs and SVOCs; proposed disposition is to spread cuttings on ground surface within the facility fenceline
Cuttings from two soil borings located at the former Pit 2 location	one 55 gallon drum	Contains low concentrations of chlorinated compounds; due to unresolved issues associated with the regulatory status of the former surface impoundments and due to the small volume of waste involved, the proposed disposition is at a hazardous waste disposal facility
Cuttings from two soil borings located at the former Pit I location	one 55 gallon drum	Contains low concentrations of chlorinated compounds; due to unresolved issues associated with the regulatory status of the former surface impoundments and due to the small volume of waste involved, the proposed disposition is at a hazardous waste disposal facility

	والمراكب المراجع والمراجع	المراجع والمراجع والمراجع المراجع والمالي المراجع المالي المراجع المراجع المراجع المراجع المراجع المراجع المراجع
Purge water from ground water monitor well MW-3	≈ 25 gallons contained in one 55 gallon drum	Non-detect for VOCs and SVOCs; proposed disposition is to pour water on ground surface within the facility fenceline
Purge water from ground water monitor well MW-5	≈ 20 gallons contained in one 55 gallon drum	Non-detect for VOCs and SVOCs; proposed disposition is to pour water on ground surface within the facility fenceline
Purge water from ground water monitor well MW-6	≈ 20 gallons contained in one 55 gallon drum	Non-detect for VOCs and SVOCs; proposed disposition is to pour water on ground surface within the facility fenceline
Purge water from ground water monitor well MW-7	≈ 5 gallons contained in one 55 gallon drum	Non-detect for VOCs and SVOCs with the exception of detections for MEK and methyl methacrylate at low concentrations; neither detection represents either a characteristic or a potential listed hazardous waste, however, due to unresolved issues associated with the regulatory status of the former surface impoundments and due to the small volume of waste involved, the proposed disposition is to pour the water into one of the two drums of soil cuttings to be disposed of at a hazardous waste disposal facility
Purge water from ground water monitor well MW-8	≈ 20 gallons contained in one 55 gallon drum	Non-detect for VOCs and SVOCs with the exception of a detection for benzene at a concentration of 6 ppb; proposed disposition is to pour water on ground surface within the facility fenceline
Purge water from ground water monitor well MW-9	≈ 35 gallons contained in one 55 gallon drum	Non-detect for VOCs and SVOCs; proposed disposition is to pour water on ground surface within the facility fenceline

TPC, as operator of the subject facility, will implement the proposed disposition of investigation derived wastes upon review and approval by your office. If you have any questions regarding this proposal, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

EOC Environmental Affairs Manager, Projects Group

gcr/BK

xc: Barbara Hoditschek

NMED HRMB

Santa Fe, NM

Table 1. Summary of Analytical Results for Ground-Water Samples Roswell Compressor Station No. 9 Page 1 of 8

	Monitor Well (Sample Date)					
Analyte	MW-3 (08/22/95)	MW-5 (08/22/95)	MW-6 (08/22/95)	MW-7 (08/23/95)	MW-8 (08/22/95)	MW-9 (08/23/95)
Volatile Organic Compounds (µg/L) by	EPA Metho	od 8240				
Acetone	<100	<100	<100	<100	<100	<100
Acetonitrile	<100	<100	<100	<100	<100	<100
Acrolein (propenal)	<50	<50	<50	<50	<50	<50
Acrylonitrile	<20	<20	<20	<20	<20	<20
Allyl chloride	<20	<20	<20	<20	<20	<20
Benzene	<5	<5	<5	<5	6	<5
Benzyl chloride	<5	<5	<5	<5	<5	<5
Bromobenzene	< 5	<5	<5	<5	<5	<5
Bromochloromethane	<5	<5	<5	<5	<5	<5
Bromodichloromethane	< 5	<5	<5	<5	<5	<5
Bromoform (tribromomethane)	<5	<5	<5	<5	<5	<5
Bromomethane	<10	<10	<10	<10	<10	<10
Methyl ethyl ketone (2-Butanone)	<100	<100	<100	900	<100	<100
Carbon disulfide	< 5	<5	<5	<5	<5	<5
Carbon tetrachloride	<5	<5	< 5	<5	<5	<5
Chlorobenzene	< 5	< 5	< 5	< 5	< 5	<5
Chloroethane	<10	<10	<10	<10	<10	<10
2-Chloroethylvinyl ether	<5	< 5	< 5	< 5	< 5	<5
Chloroform (trichloromethane)	<5	<5	<5	<5	<5	< 5
Chloromethane (methyl chloride)	<5	<5	< 5	<5	< 5	<5
2-Chloro-1,3-butadiene (chloroprene)	<5	< 5	< 5	<5	< 5	< 5
Dibromochloromethane (chlorodibromomethane)	<5	<5	< 5	<5	<5	< 5
1,2-Dibromo-3-chloropropane (DBCP)	<20	<20	<20	<20	<20	<20
1,2-Dibromoethane (EDB)	<20	<20	<20	<20	<20	<20
Dibromomethane (methylene bromide)	<5	<5	<5	<5	<5	<5
trans-1,4-Dichloro-2-butene	<50	<50	<50	<50	<50	<50
Dichlorodifluoromethane (Freon 12)	<10	<10	<10	<10	<10	<10
1,1-Dichloroethane (1,1-DCA)	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane (ethylene chloride)	<5	<5	<5	<5	<5	<5

Table 1. Summary of Analytical Results for Ground-Water Samples
Roswell Compressor Station No. 9
Page 2 of 8

	Monitor Well (Sample Date)					
Analyte	MW-3 (08/22/95)	MW-5 (08/22/95)	MW-6 (08/22/95)	MW-7 (08/23/95)	MW-8 (08/22/95)	MW-9 (08/23/95)
1,1-Dichloroethene (vinylidene chloride)	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroethene	<5	<5	<5	< 5	<5	<5
trans-1,2-Dichloroethene	<5	<5	<5	<5	<5	<5
1,2-Dichloropropane (propylene chloride)	<5	<5	<5	< 5	<5	<5
cis-1,3-Dichloropropene	<5	<5	<5	<5	<5	<5
trans-1,3-Dichloropropene	<5	<5	<5	<5	<5	<5
Ethylbenzene	<5	<5	<5	<5	<5	<5
Ethyl methacrylate	< 5	<5	<5	<5	<5	<5
2-Hexanone	<50	<50	<50	<50	<50	<50
lodomethane	<5	<5	<5	<5	<5	<5
Isobutyl alcohol	<50	<50	<50	<50	<50	<50
Methylacrylonitrile	<50	<50	<50	<50	<50	<50
Methylene chloride (dichloromethane)	<5	<5	<5	<5	<5	<5
Methyl methacrylate	<5	<5	<5	5	<5	<5
4-Methyl-2-pentanone (MIBK)	<50	<50	<50	<50	<50	<50
Pentachloroethane	<5	<5	<5	<5	<5	<5
Propionitrile	<100	<100	<100	<100	<100	<100
Styrene	<5	<5	<5	<5	<5	<5
1,1,1,2-Tetrachloroethane (1,1,1,2-PCA)	<5	<5	<5	<5	<5	<5
1,1,2,2-Tetrachloroethane (1,1,2,2-PCA)	<5	<5	<5	<5	<5	<5
Tetrachloroethene (PCE)	<5	<5	<5	< 5	<5	<5
Toluene	<5	<5	< 5	<5	<5	<5
1,1,1-Trichloroethane (1,1,1-TCA)	< 5	<5	<5	< 5	<5	<5
1,1,2-Trichloroethane	< 5	< 5	< 5	<5	< 5	<5
Trichloroethene (TCE)	< 5	< 5	< 5	< 5	< 5	<5
Trichlorofluoromethane (Freon 11)	<10	<10	<10	<10	<10	<10
1,2,3-Trichloropropane	<5	< 5	<5	<5	<5	< 5
Vinyl acetate	<50	<50	<50	<50	<50	<50
Vinyl chloride	<10	<10	<10	<10	<10	<10
Xylene(s)	<5	<5	<5	<5	<5	<5

Table 1. Summary of Analytical Results for Ground-Water Samples
Roswell Compressor Station No. 9
Page 3 of 8

	Monitor Well (Sample Date)					
						MW-9
Analyte	(08/22/95)	(08/22/95)	(08/22/95)	(08/23/95)	(08/22/95)	(08/23/95)
Semivolatile Organic Compounds (μg/L) by EPA Method 8270						
Acenaphthene	<10	<10	<10	<10	<10	<10
Acenaphthylene	<10	<10	<10	<10	<10	<10
Acetophenone (methyl phenyl ketone)	<10	<10	<10	<10	<10	<10
4-Aminobiphenyl	<10	<10	<10	<10	<10	<10
Aniline	<10	<10	<10	<10	<10	<10
Anthracene	<10	<10	<10	<10	<10	<10
Benzidine	<50	<50	<50	<50	<50	<50
Benzoic acid	<50	<50	<50	<50	<50	<50
Benzo(a)anthracene	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene	<10	<10	<10	<10	<10	<10
Benzo(j)fluoranthene	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	<10	<10	<10	<10	<10	<10
Benzo(g,h,i)perylene	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene	<10	<10	<10	<10	<10	<10
Benzyl alcohol (phenyl methanol)	<10	<10	<10	<10	<10	<10
Bis(2-chloroethoxy)methane	<10	<10	<10	<10	<10	<10
Bis(2-chloroethyl)ether	<10	<10	<10	<10	<10	<10
Bis(2-chloroisopropyl)ether	<10	<10	<10	<10	<10	<10
Bis(2-ethylhexyl)phthalate	<10	<10	<10	<10	<10	<10
4-Bromophenyl phenyl ether	<10	<10	<10	<10	<10	<10
Butyl benzyl phthalate	<10	<10	<10	<10	<10	<10
4-Chloroaniline	<10	<10	<10	<10	<10	<10
Chlorobenzilate	<10	<10	<10	<10	<10	<10
1-Chloronaphthalene	<10	<10	<10	<10	<10	<10
2-Chloronaphthalene	<10	<10	<10	<10	<10	<10
4-Chloro-3-methylphenol	<10	<10	<10	<10	<10	<10
2-Chlorophenol	<10	<10	<10	<10	<10	<10
4-Chlorophenyl phenyl ether	<10	<10	<10	<10	<10	<10
Chrysene	<10	<10	<10	<10	<10	<10

Table 1. Summary of Analytical Results for Ground-Water Samples
Roswell Compressor Station No. 9
Page 4 of 8

		Mo	onitor Well (Sample Da	te)	
Analyte	MW-3 (08/22/95)	MW-5 (08/22/95)	MW-6 (08/22/95)	MW-7 (08/23/95)	MW-8 (08/22/95)	MW-9 (08/23/95)
Diallate	<10	<10	<10	<10	<10	<10
Dibenz(a,j)acridine	<10	<10	<10	<10	<10	<10
Dibenz(a,h)anthracene	<10	<10	<10	<10	<10	<10
Dibenzofuran	<10	<10	<10	<10	<10	<10
Di-n-butyl phthalate	<10	<10	<10	<10	<10	<10
1,2-Dichlorobenzene	<10	<10	<10	<10	<10	<10
1,3-Dichlorobenzene	<10	<10	<10	<10	<10	<10
1,4-Dichlorobenzene	<10	<10	<10	<10	<10	<10
3,3-Dichlorobenzidine	<20	<20	<20	<20	<20	<20
2,4-Dichlorophenol	<10	<10	<10	<10	<10	<10
2,6-Dichlorophenol	<10	<10	<10	<10	<10	<10
Diethyl phthalate	<10	<10	<10	<10	<10	<10
p-Dimethylaminoazobenzene	<10	<10	<10	<10	. <10	<10
Phosphorodithionic acid (Dimethoate)	<20	<20	<20	<20	<20	<20
7,12-Dimethylbenz(a)anthracene	<10	<10	<10	<10	<10	<10
α-,α-Dimethylphenethylamine	<10	<10	<10	<10	<10	<10
2,4-Dimethylphenol	<10	<10	<10	<10	<10	<10
Dimethyl phthalate	<10	<10	<10	<10	<10	<10
2-Methyl-4,6-dinitrophenol	<50	<50	<50	<50	<50	<50
2,4-Dinitrophenol	<50	<50	<50	<50	<50	<50
2,4-Dinitrotoluene	<10	<10	<10	<10	<10	<10
2,6-Dinitrotoluene	<10	<10	<10	<10	<10	<10
Dinoseb (DNBP)	<20	<20	<20	<20	<20	<20
Di-n-octyl phthalate	<10	<10	<10	<10	<10	<10
Diphenylamine	<10	<10	<10	<10	<10	<10
1,2-Diphenylhydrazine	<10	<10	<10	<10	<10	<10
Disulfoton	<10	<10	<10	<10	<10	<10
Ethyl methane sulfonate	<20	<20	<20	<20	<20	<20
Fluoranthene	<10	<10	<10	<10	<10	<10
Fluorene	<10	<10	<10	<10	<10	<10

Table 1. Summary of Analytical Results for Ground-Water Samples
Roswell Compressor Station No. 9
Page 5 of 8

	Monitor Well (Sample Date)									
Analyte	MW-3 (08/22/95)	MW-5 (08/22/95)	MW-6 (08/22/95)	MW-7 (08/23/95)	MW-8 (08/22/95)	MW-9 (08/23/95)				
Hexachlorobenzene	<10	<10	<10	<10	<10	<10				
Hexachlorobutadiene	<10	<10	<10	<10	<10	<10				
Hexachlorocyclopentadiene	<10	<10	.<10	<10	<10	<10				
Hexachloroethane (perchloroethane)	<10	<10	<10	<10	<10	<10				
Hexachlorophene	<100	<100	<100	<100	<100	<100				
Hexachloropropene	<10	<10	<10	<10	<10	<10				
Indeno(1,2,3-cd)pyrene	<10	<10	<10	<10	<10	<10				
Isodrin	<10	<10	<10	<10	<10	<10				
Isophorone	<10	<10	<10	<10	<10	<10				
Isosafrole	<10	<10	<10	<10	<10	<10				
Kepone	<50	<50	<50	<50	<50	<50				
Methapyrilene	<10	<10	<10	<10	<10	<10				
3-Methylcholanthrene	<10	<10	<10	<10	<10	<10				
Methyl methane sulfonate	<10	<10	<10	<10	<10	<10				
2-Methylnaphthalene	<10	<10	<10	<10	<10	<10				
3&4-Methylphenol (m&p-cresol)	<10	<10	<10	<10	<10	<10				
2-Methylphenol (o-cresol)	<10	<10	<10	<10	<10	<10				
Naphthalene	<10	<10	<10	<10	<10	<10				
1,4-Naphthoquinone	<10	<10	<10	<10	<10	<10				
1-Naphthylamine	<10	<10	<10	<10	<10	<10				
2-Naphthylamine	<10	<10	<10	<10	<10	<10				
2-Nitroaniline (o-Nitroaniline)	<50	<50	<50	<50	<50	<50				
3-Nitroaniline (m-Nitroaniline)	<50	<50	<50	<50	<50	<50				
4-Nitroaniline (p-Nitroaniline)	<50	<50	<50	<50	<50	<50				
Nitrobenzene	<10	<10	<10	<10	<10	<10				
2-Nitrophenol	<10	<10	<10	<10	<10	<10				
4-Nitrophenol	<50	<50	<50	<50	<50	<50				
4-Nitroquinoline-1-oxide	<10	<10	<10	<10	<10	<10				
n-Nitrosodi-n-butylamine	<10	<10	<10	<10	<10	<10				
n-Nitrosodiethylamine	<10	<10	<10	<10	<10	<10				

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 1. Summary of Analytical Results for Ground-Water Samples
Roswell Compressor Station No. 9
Page 6 of 8

		Mo	onitor Well (Sample Dat	== <u>=====</u> te)	
Analyte	MW-3 (08/22/95)	MW-5 (08/22/95)	MW-6 (08/22/95)	MW-7 (08/23/95)	MW-8 (08/22/95)	MW-9 (08/23/95)
n-Nitrosomethylethylamine	<10	<10	<10	<10	<10	<10
n-Nitrosomorpholine	<10	<10	<10	<10	<10	<10
n-Nitrosodimethylamine	<10	<10	<10	<10	<10	<10
n-Nitrosodiphenylamine	<10	<10	<10	<10	<10	<10
n-Nitrosodi-n-propylamine	<10	<10	<10	<10	<10	<10
n-Nitrosopiperidine	<10	<10	<10	<10	<10	<10
n-Nitrosopyrolidine	<10	<10	<10	<10	<10	<10
5-Nitro-o-toluidine	<10	<10	<10	<10	<10	<10
Ethyl parathion	<10	<10	<10	<10	<10	<10
Pentachlorobenzene	<10	<10	<10	<10	<10	<10
Pentachloronitrobenzene	<10	<10	<10	<10	<10	<10
Pentachlorophenol	<50	<50	<50	<50	<50	<50
Phenacetin	<10	<10	<10	<10	<10	<10
Phenanthrene	<10	<10	<10	<10	<10	<10
Phenol (carbolic acid)	<10	<10	<10	<10	<10	<10
p-Phenylenediamine	<10	<10	<10	<10	<10	<10
Phorate	<10	<10	<10	<10	<10	<10
2-Picoline	<10	<10	<10	<10	<10	<10
Pronamide	<10	<10	<10	<10	<10	<10
Pyridine (azabenzene)	<10	<10	<10	<10	<10	<10
Pyrene	<10	<10	<10	<10	<10	<10 ·
Safrole	<10	<10	<10	<10	<10	<10
1,2,4,5-Tetrachlorobenzene	<10	<10	<10	<10	<10	<10.
2,3,4,6-Tetrachlorophenol	<10	<10	<10	<10	<10	<10
o-Toluidine	<10	<10	<10	<10	<10	<10
1,2,4-Trichlorobenzene	<10	<10	<10	<10	<10	<10
2,4,5-Trichlorophenol	<10	<10	<10	<10	<10	<10
2,4,6-Trichlorophenol	<10	<10	<10	<10	<10	<10
0,0,0-Triethyl phosphorothioate	<10	<10	<10	<10	<10	<10
1,3,5-Trinitrobenzene	<10	<10	<10	<10	<10	<10

Table 1. Summary of Analytical Results for Ground-Water Samples
Roswell Compressor Station No. 9
Page 7 of 8

		Mo	onitor Well (Sample Da	te)				
	MW-3	MW-5	MW-6	MW-7	MW-8	MW-9			
Analyte	(08/22/95)	(08/22/95)	(08/22/95)	(08/23/95)	(08/22/95)	(08/23/95)			
Organochlorine Pesticides/PCBs (µg/L	by EPA M	ethod 8080)						
Aldrin	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			
α-BHC (benzene hexachloride)	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			
β-BHC (benzene hexachloride)	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06			
δ-BHC (benzene hexachloride)	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09			
γ-BHC (benzene hexachloride)(Lindane)	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			
Chlordane	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14			
4,4'-DDD	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11			
4,4'-DDE	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			
4,4'-DDT	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12			
Dieldrin	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
Endosulfan I	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14			
Endosulfan II	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			
Endosulfan sulfate	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66			
Endrin	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06			
Endrin aldehyde	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23			
Heptachlor	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			
Heptachlor epoxide	<0.83	<0.83	<0.83	<0.83	<0.83	<0.83			
Methoxychlor	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8			
Toxaphene	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4			
PCB-1016 (Aroclor-1016)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
PCB-1221 (Aroclor-1221)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
PCB-1232 (Aroclor-1232)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
PCB-1242 (Aroclor-1242)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
PCB-1248 (Aroclor-1248)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
PCB-1254 (Aroclor-1254)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
PCB-1260 (Aroclor-1260)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Metals¹ (mg/L) by EPA Methods 6010 and 7470 (for Mercury)									
Aluminum (Al)	0.24	0.38	0.69	1.39	0.33	3.13			
Antimony (Sb)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			

¹ Total metal concentrations determined on unfiltered samples

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 1. Summary of Analytical Results for Ground-Water Samples
Roswell Compressor Station No. 9
Page 8 of 8

		Mo	onitor Well (Sample Da	te)	
Analyte	MW-3 (08/22/95)	MW-5 (08/22/95)	MW-6 (08/22/95)	MW-7 (08/23/95)	MW-8 (08/22/95)	MW-9 (08/23/95)
Arsenic (As)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Barium (Ba)	<0.01	<0.01	<0.01	0.02	<0.01	0.04
Beryllium (Be)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cadmium (Cd)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chromium (Cr)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt (Co)	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Copper (Cu)	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Lead (Pb)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Mercury (Hg)	0.0002	<0.0002	0.0005	0.0004	0.0003	0.0005
Nickel (Ni)	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Selenium (Se)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Silver (Ag)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium (TI)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin (Sn)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vanadium (V)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Zinc (Zn)	0.03	0.01	0.03	0.02	0.01	0.03
Indicator Parameters (mg/L) (EPA me	thods showi	n in parenth	eses)			
Bicarbonate (EPA 2320B)	142	149	134	166	163	151
Carbonate (EPA 2320B)	<1	<1	<1	<1	<1	<1
Hydroxide (EPA 2320B)	<1	<1	<1	<1	<1	<1
Calcium (EPA 6010)	587	623	458	668	587	896
Chloride (EPA 325.2)	405	574	344	284	362	391
Cyanide (EPA 9010)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Magnesium (EPA 6010)	136	145	148	235	193	232
Nitrate + nitrite as N (EPA 353.2)	0.80	3.10	1.00	0.12	0.10	0.38
Potassium (EPA 6010)	3.2	3.8	3.9	8.2	3.7	17
Sodium (EPA 6010)	215	204	124	149	117	230
Sulfate (EPA 375.2)	1,800	1,800	1,600	2,000	2,000	2,200
Sulfide (EPA 376.2)	<0.05	<0.05	<0.05	0.08	<0.05	0.10
Total alkalinity (as CaCO ₃) (EPA 310.1)	116	122	110	136	134	124
Total dissolved solids (EPA 160.1)	3,650	3,440	2,800	3,640	3,640	4,060

Table 2. Summary of Analytical Results for Soil Samples from Off-Site Soil Borings Roswell Compressor Station No. 9 Page 1 of 3

						Sample	No. (Sample	Date)					
Analyte	MW-7 10-12' (08/22/95)	MW-7 30-32' (08/22/95)	MW-7 40-42' (08/22/95)	MW-7 50-52' (08/22/95)	MW-7 70-72' (08/22/95)	MW-7ABD 5-10'	MW-7ABD 40-42' (08/15/95)	MW-7ABD 60-62' (08/15/95)	MW-8 10' (08/16/95)	MW-8 65' (08/16/95)	MW-9 10' (08/16/95)	MW-9 40-42' (08/16/95)	MW-9 60-62' (08/22/95)
Volatile Organic Compounds (μg/kg) by EPA Method 8240													
Acetone	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Acetonitrile	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Acrolein (propenal)	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Acrylonitrile	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<2
Allyl chloride	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Benzene	<5	<5	< 5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Benzyl chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Bromobenzene	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Bromochloromethane	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Bromodichloromethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Bromoform (tribromomethane)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Bromomethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methyl ethyl ketone (2-Butanone)	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Carbon disulfide	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Carbon tetrachloride	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5
Chloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2-Chloroethylvinyl ether	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroform (trichloromethane)	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5 ·	<5	<5
Chloromethane (methyl chloride)	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-Chloro-1,3-butadiene (chloroprene)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

B = Analyte also present in method blank Bold values highlight concentrations above reporting limits

J:W115\TABLES\SOIL-RES.095

Table 2. Summary of Analytical Results for Soil Samples from Off-Site Soil Borings
Roswell Compressor Station No. 9
Page 2 of 3

						Sample	No. (Sample	Date)					
Analyte	MW-7 10-12' (08/22/95)	MW-7 30-32' (08/22/95)	MW-7 40-42' (08/22/95)	MW-7 50-52' (08/22/95)	MW-7 70-72' (08/22/95)	MW-7ABD 5-10' (08/15/95)	MW-7ABD 40-42' (08/15/95)	MW-7ABD 60-62' (08/15/95)	MW-8 10' (08/16/95)	MW-8 65' (08/16/95)	MW-9 10' (08/16/95)	MW-9 40-42' (08/16/95)	MW-9 60-62' (08/22/95)
Dibromochloromethane (chlorodibromomethane)	<5	<5	<5	< 5	<5	< 5	<5	<5	<5	<5	<5	<5	<5
1,2-Dibromo-3-chloropropane (DBCP)	<5	<5	5	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5
1,2-Dibromoethane (EDB)	<5	< 5	~ 5	< 5	<5	<5	<5	<5	<5	< 5	<5_	<5	<5
Dibromomethane (methylene bromide)	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,4-Dichloro-2-butene	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Dichlorodifluoromethane (Freon 12)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,1-Dichloroethane (1,1-DCA)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane (ethylene chloride)	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5
1,1-Dichloroethene (vinylidene chloride)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroethene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloropropane (propylene chloride)	<5	<5	<5	<5	< 5	< 5	<5	<5	<5	<5	<5	<5	<5
cis-1,3-Dichloropropene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,3-Dichloropropene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	<5	<5	<5	<5	< 5	<5	<5	<5	<5	<5	<5	<5	<5
Ethyl methacrylate	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5_	<5	<5
2-Hexanone	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
iodomethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Isobutyl alcohol	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Methylacrylonitrìle	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Methylene chloride (dichloromethane)	6 B	7 B	8 B	8 B	9 B	<5	<5	<5	<5	<5	<5	<5	10 B
Methyl methacrylate	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

B = Analyte also present in method blank Bold values highlight concentrations above reporting limits

J:\4115\TABLES\SOIL-RES.O95

Table 2. Summary of Analytical Results for Soil Samples from Off-Site Soil Borings
Roswell Compressor Station No. 9
Page 3 of 3

	T	······································	···									····	
						,	No. (Sample						T
	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7ABD	MW-7ABD	MW-7ABD	MW-8 10'	MW-8	MW-9 10'	MW-9 40-42'	MW-9
Analyte	10-12' (08/22/95)	30-32' (08/22/95)	40-42' (08/22/95)	50-52' (08/22/95)	70-72' (08/22/95)	5-10' (08/15/95)	40-42' (08/15/95)	60-62' (08/15/95)	(08/16/95)	65' (08/16/95)	(08/16/95)	(08/16/95)	60-62' (08/22/95)
4-Methyl-2-pentanone (MIBK)	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Pentachloroethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Propionitrile	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Styrene	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5
1,1,1,2-Tetrachioroethane (1,1,1,2-PCA)	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5
1,1,2,2-Tetrachioroethane (1,1,2,2-PCA)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Tetrachloroethene (PCE)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene	<5	<5	<5	<5	<5	<5	<5	<5	< 5	<5	<5	<5	<5
1,1,1-Trichloroethane (1,1,1-TCA)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,2-Trichloroethane	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethene (TCE)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichlorofluoromethane (Freon 11)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,2,3-Trichloropropane	<5	<5	<5	<5	<5	<5	<5	<5_	<5	<5	<5	<5	<5
Vinyl acetate	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Vinyl chloride	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Xylene(s)	<5	< 5	<5	<5	<5	<5	<5	<5_	<5	<5	<5	<5	<5
Metals (mg/kg) by EPA Methods 6010 and	1 7471 (for M	ercury)											
Arsenic (As)	<5	<5	<5	7	12	<5	8	5	<5	<5	8	12	14
Barium (Ba)	301	48	30	157	102	319	210	165	95	8	151	176	76
Chromium (Cr)	6	11	9	19	16	7	16	14	8	5	7	13	15
Lead (Pb)	<5	6	5	6	11	<5	18	8	<5	<5	<5	5	5
Mercury (Hg)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.42	0.12	<0.10	<0.10	<0.10	<0.10

B = Analyte also present in method blank Bold values highlight concentrations above reporting limits

J:W115\TABLES\SQIL-RES.095

Table 3. Summary of Analytical Results for Pit Soil Samples
Roswell Compressor Station No. 9
Page 1 of 7

	Sample No. (Sample Date)							
Analyte	Pit 1 NW Boring (08/18/95)	Pit 1 SE Boring (08/18/95)	Pit 2 NE Boring (08/17/95)	Pit 2 SW Boring (08/18/95)				
Volatile Organic Compounds (µg/kg) b	y EPA Metho	od 8240						
Acetone	1,400	<500	<500	<100				
Acetonitrile	<500	<500	<500	<100				
Acrolein (propenal)	<200	<200	<200	<50				
Acrylonitrile	<100	<100	<100	<20				
Allyl chloride	<100	<100	<100	<20				
Benzene	210	850	140	<5				
Benzyl chloride	<20	<20	<20	<5				
Bromobenzene	<20	<20	<20	<5				
Bromochloromethane	<20	<20	<20	<5				
Bromodichloromethane	<20	<20	<20	< 5				
Bromoform (tribromomethane)	<20	<20	<20	<5				
Bromomethane	<50	<50	<50	<10				
Methyl ethyl ketone (2-Butanone)	<500	<500	<500	<100				
Carbon disulfide	<20	60	<20	<5				
Carbon tetrachloride	<20	<20	<20	<5				
Chlorobenzene	<20	<20	<20	<5				
Chloroethane	<50	<50	<50	<10				
2-Chloroethylvinyl ether	<20	<20	<20	<5				
Chloroform (trichloromethane)	<20	<20	<20	<5				
Chloromethane (methyl chloride)	<20	<20	<20	<5				
2-Chloro-1,3-butadiene (chloroprene)	<20	<20	<20	<5				
Dibromochloromethane (chlorodibromomethane)	<20	<20	<20	<5				
1,2-Dibromo-3-chloropropane (DBCP)	<20	<20	<20	<5				
1,2-Dibromoethane (ethylene dibromide)	<20	<20	· <20	< 5				
Dibromomethane (methylene bromide)	<20	<20	<20	<5				
trans-1,4-Dichloro-2-butene	<200	<200	<200	<50				
Dichlorodifluoromethane (Freon 12)	<50	<50	<50	<10				
1,1-Dichloroethane (1,1-DCA)	1,000	1,200	<20	< 5				
1,2-Dichloroethane (ethylene chloride)	<20	<20	<20	<5				

Table 3. Summary of Analytical Results for Pit Soil Samples
Roswell Compressor Station No. 9
Page 2 of 7

	Sample No. (Sample Date)							
Analyte	Pit 1 NW Boring (08/18/95)	Pit 1 SE Boring (08/18/95)	Pit 2 NE Boring (08/17/95)	Pit 2 SW Boring (08/18/95)				
1,1-Dichloroethene (vinylidene chloride)	40	40	<20	<5				
cis-1,2-dichloroethene	<20	<20	<20	<5				
trans-1,2-Dichloroethene	<20	<20	<20	<5				
1,2-Dichloropropane (propylene chloride)	<20	<20	<20	<5				
cis-1,3-Dichloropropene	<20	<20	<20	<5				
trans-1,3-Dichloropropene	<20	<20	<20	<5				
Ethylbenzene	40	370	900	<5				
Ethyl methacrylate	<20	<20	<20	<5				
2-Hexanone	<20	460	<20	<5				
lodomethane	<20	<20	<20	<5				
Isobutyl alcohol	<200	<200	<200	<50				
Methylacrylonitrile	<200	<200	<200	<50				
Methylene chloride (dichloromethane)	<20	160	<20	<5				
Methyl methacrylate	<20	<20	<20	<5				
4-Methyl-2-pentanone (MIBK)	<200	<200	<200	<50				
Pentachloroethane	<20	<20	<20	<5				
Propionitrile	<500	<500	<500	<100				
Styrene	<20	<20	<20	<5				
1,1,1,2-Tetrachloroethane (1,1,1,2-PCA)	<20	<20	<20	<5				
1,1,2,2-Tetrachloroethane (1,1,2,2-PCA)	<20	<20	<20	<5				
Tetrachloroethene (PCE)	<20	40	<20	9				
Toluene	500	9,100	1,900	<5				
1,1,1-Trichloroethane (1,1,1-TCA)	1,900	16,000	<20	17				
1,1,2-Trichloroethane	<20	<20	<20	<5				
Trichloroethene (TCE)	<20	<20	<20	< 5				
Trichlorofluoromethane (Freon 11)	<50	<50	<50	<10				
1,2,3-Trichloropropane	<20	<20	<20	<5				
Vinyl acetate	200	7,000	<6,000	<50				
Vinyl chloride	<50	<50	<50	<10				
Xylene(s)	270	2,400	16,000	<5				

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3. Summary of Analytical Results for Pit Soil Samples
Roswell Compressor Station No. 9
Page 3 of 7

	Sample No. (Sample Date)							
Analyte	Pit 1 NW Boring (08/18/95)	Pit 1 SE Boring (08/18/95)	Pit 2 NE Boring (08/17/95)	Pit 2 SW Boring (08/18/95)				
Semivolatile Organic Compounds (µg/l	kg) by EPA I	Method 8270						
Acenaphthene	<3,300	<3,300	<330	<330				
Acenaphthylene	<3,300	<3,300	<330	<330				
Acetophenone (methyl phenyl ketone)	<3,300	<3,300	<330	<330				
4-Aminobiphenyl	<3,300	<3,300	<330	<330				
Aniline	<3,300	<3,300	<330	<330				
Anthracene	<3,300	<3,300	<330	<330				
Benzidine	<16,500	<16,500	<1,650	<1,650				
Benzoic acid	<16,500	<16,500	<1,650	<1,650				
Benzo(a)anthracene	<3,300	<3,300	<330	<330				
Benzo(b)fluoranthene	<3,300	<3,300	<330	<330				
Benzo(j)fluoranthene	<3,300	<3,300	<330	330				
Benzo(k)fluoranthene	<3,300	<3,300	<330	<330				
Benzo(g,h,i)perylene	<3,300	<3,300	<330	<330				
Benzo(a)pyrene	<3,300	<3,300	<330	<330				
Benzyl alcohol (phenyl methanol)	<6,600	<6,600	<660	<660				
Bis(2-chloroethoxy)methane	<3,300	<3,300	<330	<330				
Bis(2-chloroethyl)ether	<3,300	<3,300	<330	<330				
Bis(2-chloroisopropyl)ether	<3,300	<3,300	<330	<330				
Bis(2-ethylhexyl)phthalate	4,800	<3,300	<330	<330				
4-Bromophenyl phenyl ether	<3,300	<3,300	<330	<330				
Butyl benzyl phthalate	<3,300	<3,300	<330	<330				
4-Chloroaniline	<3,300	<3,300	<330	<330				
Chlorobenzilate	<3,300	<3,300	<330	<330				
1-Chloronaphthalene	<3,300	<3,300	<330	<330				
2-Chloronaphthalene	<3,300	<3,300	<330	<330				
4-Chloro-3-methylphenol	<3,300	<3,300	<330	<330				
2-Chlorophenol	<3,300	<3,300	<330	<330				
4-Chlorophenyl phenyl ether	<3,300	<3,300	<330	<330				
Chrysene	<3,300	<3,300	<330	330				

Table 3. Summary of Analytical Results for Pit Soil Samples
Roswell Compressor Station No. 9
Page 4 of 7

	Sample No. (Sample Date)							
Analyte	Pit 1 NW Boring (08/18/95)	Pit 1 SE Boring (08/18/95)	Pit 2 NE Boring (08/17/95)	Pit 2 SW Boring (08/18/95)				
Diallate	<3,300	<3,300	<330	<330				
Dibenz(a,j)acridine	<3,300	<3,300	<330	<330				
Dibenz(a,h)anthracene	<3,300	<3,300	<330	<330				
Dibenzofuran	<3,300	<3,300	<330	<330				
Di-n-butyl phthalate	<3,300	<3,300	<330	<330				
1,2-Dichlorobenzene	<3,300	<3,300	<330	<330				
1,3-Dichlorobenzene	<3,300	<3,300	<330	<330				
1,4-Dichlorobenzene	<3,300	<3,300	<330	<330				
3,3-Dichlorobenzidine	<3,300	<3,300	<330	<330				
2,4-Dichlorophenol	<3,300	<3,300	<330	<330				
2,6-Dichlorophenol	<3,300	<3,300	<330	<330				
Diethyl phthalate	<3,300	<3,300	<330	<330				
p-Dimethylaminoazobenzene	<3,300	<3,300	<330	<330				
Phosphorodithionic acid (Dimethoate)	<6,600	<6,600	<660	<660				
7,12-Dimethylbenz(a)anthracene	<3,300	<3,300	<330	<330				
α -, α -Dimethylphenethylamine	<3,300	<3,300	<330	<330				
2,4-Dimethylphenol	<3,300	<3,300	<330	<330				
Dimethyl phthalate	<3,300	<3,300	<330	<330				
2-Methyl-4,6-dinitrophenol	<16,500	<16,500	<1,650	<1,650				
2,4-Dinitrophenol	<16,500	<16,500	<1,650	<1,650				
2,4-Dinitrotoluene	<3,300	<3,300	<330	<330				
2,6-Dinitrotoluene	<3,300	<3,300	<330	<330				
Dinoseb (DNBP)	<3,300	<3,300	<330	<330				
Di-n-octyl phthalate	<3,300	<3,300	<330	<330				
Diphenylamine	<3,300	<3,300	<330	<330				
1,2-Diphenylhydrazine	<3,300	<3,300	<330	<330				
Disulfoton	<3,300	<3,300	<330	<330				
Ethyl methane sulfonate	<3,300	<3,300	<330	<330				
Fluoranthene	<3,300	<3,300	<330	760				
Fluorene	<3,300	<3,300	<330	<330				

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3. Summary of Analytical Results for Pit Soil Samples
Roswell Compressor Station No. 9
Page 5 of 7

	Sample No. (Sample Date)			
Analyte	Pit 1 NW Boring (08/18/95)	Pit 1 SE Boring (08/18/95)	Pit 2 NE Boring (08/17/95)	Pit 2 SW Boring (08/18/95)
Hexachlorobenzene	<3,300	<3,300	<330	<330
Hexachlorobutadiene	<3,300	<3,300	<330	<330
Hexachlorocyclopentadiene	<3,300	<3,300	<330	<330
Hexachloroethane (perchloroethane)	<3,300	<3,300	<330	<330
Hexachlorophene	<3,300	<3,300	<330	<330
Hexachloropropene	<3,300	<3,300	<330	<330
Indeno(1,2,3-cd)pyrene	<3,300	<3,300	<330	<330
Isodrin	<3,300	<3,300	<330	<330
Isophorone	<3,300	<3,300	<330	<330
Isosafrole	<3,300	<3,300	<330	<330
Kepone	<16,500	<16,500	<1,650	<1,650
Methapyrilene	<3,300	<3,300	<330	<330
3-Methylcholanthrene	<3,300	<3,300	<330	<330
Methyl methane sulfonate	<3,300	<3,300	<330	<330
2-Methylnaphthalene	4,800	<3,300	460	<330
3&4-Methylphenol (m&p-cresol)	<3,300	<3,300	<330	<330
2-Methylphenol (o-cresol)	<3,300	<3,300	<330	<330
Naphthalene	<3,300	<3,300	<330	<330
1,4-Naphthoquinone	<3,300	<3,300	<330	<330
1-Naphthylamine	<3,300	<3,300	<330	<330
2-Naphthylamine	<3,300	<3,300	<330	<330
2-Nitroaniline (o-Nitroaniline)	<16,500	<16,500	<1,650	<1,650
3-Nitroaniline (m-Nitroaniline)	<16,500	<16,500	<1,650	<1,650
4-Nitroaniline (p-Nitroaniline)	<16,500	<16,500	<1,650	<1,650
Nitrobenzene	<3,300	<3,300	<330	<330
2-Nitrophenol	<3,300	<3,300	<330	<330
4-Nitrophenol	<16,500	<16,500	<1,650	<1,650
4-Nitroquinoline-1-oxide	<3,300	<3,300	<330	<330
n-Nitrosodi-n-butylamine	<3,300	<3,300	<330	<330
n-Nitrosodiethylamine	<3,300	<3,300	<330	<330

Table 3. Summary of Analytical Results for Pit Soil Samples
Roswell Compressor Station No. 9
Page 6 of 7

	Sample No. (Sample Date)			
Analyte	Pit 1 NW Boring (08/18/95)	Pit 1 SE Boring (08/18/95)	Pit 2 NE Boring (08/17/95)	Pit 2 SW Boring (08/18/95)
n-Nitrosomethylethylamine	<3,300	<3,300	<330	<330
n-Nitrosomorpholine	<3,300	<3,300	<330	<330
n-Nitrosodimethylamine	<3,300	<3,300	<330	<330
n-Nitrosodiphenylamine	<3,300	<3,300	<330	<330
n-Nitrosodi-n-propylamine	<3,300	<3,300	<330	<330
n-Nitrosopiperidine	<3,300	<3,300	<330	<330
n-Nitrosopyrolidine	<3,300	<3,300	<330	<330
5-Nitro-o-toluidine	<3,300	<3,300	<330	<330
Ethyl parathion	<3,300	<3,300	<330	<330
Pentachlorobenzene	<3,300	<3,300	<330	<330
Pentachloronitrobenzene	<3,300	<3,300	<330	<330
Pentachlorophenol	<16,500	<16,500	<1,650	<1,650
Phenacetin	<3,300	<3,300	<330	<330
Phenanthrene	5,600	5,000	<330	450
Phenol (carbolic acid)	30,000	200,000	<330	<330
p-Phenylenediamine	<3,300	<3,300	<330	<330
Phorate	<3,300	<3,300	<330	<330
2-Picoline	<3,300	<3,300	<330	<330
Pronamide	<3,300	<3,300	<330	<330
Pyridine (azabenzene)	<3,300	<3,300	<330	<330
Pyrene	<3,300	<3,300	<330	890
Safrole	<3,300	<3,300	<330	<330
1,2,4,5-Tetrachlorobenzene	<3,300	<3,300	_. <330	<330
2,3,4,6-Tetrachlorophenol	<3,300	<3,300	<330	<330
o-Toluidine	<3,300	<3,300	<330	<330
1,2,4-Trichlorobenzene	<3,300	<3,300	<330	<330
2,4,5-Trichlorophenol	<3,300	<3,300	<330	<330
2,4,6-Trichlorophenol	<3,300	<3,300	<330	<330
0,0,0-Triethyl phosphorothioate	<3,300	<3,300	<330	<330
1,3,5-Trinitrobenzene	<3,300	<3,300	<330	<330

Table 3. Summary of Analytical Results for Pit Soil Samples
Roswell Compressor Station No. 9
Page 7 of 7

	Sample No. (Sample Date)						
	Pit 1	Pit 1	Pit 2	Pit 2			
A -1.4-	NW Boring	SE Boring	NE Boring	SW Boring			
Analyte	(08/18/95)	(08/18/95)	(08/17/95)	(08/18/95)			
PCBs (μg/kg) by EPA Method 8080							
PCB-1016 (Aroclor-1016)	<1,700	<1,700	<1,700	<17			
PCB-1221 (Aroclor-1221)	<1,700	<1,700	<1,700	<17			
PCB-1232 (Aroclor-1232)	<1,700	<1,700	<1,700	<17			
PCB-1242 (Aroclor-1242)	<1,700	<1,700	. <1,700	<17			
PCB-1248 (Aroclor-1248)	<1,700	<1,700	<1,700	<17			
PCB-1254 (Aroclor-1254)	<1,700	<1,700	<1,700	<17			
PCB-1260 (Aroclor-1260)	<1,700	<1,700	<1,700	<17			
PCB-1262 (Aroclor-1262)	<1,700	<1,700	<1,700	<17			
PCB-1268 (Aroclor-1268)	<1,700	<1,700	<1,700	<17			
Metals (mg/kg) by EPA Methods 6010 and 7471 (for Mercury)							
Aluminum (Al)	5,950	1,690	1,430	1,630			
Antimony (Sb)	10	<10	<10	<10			
Arsenic (As)	9	17	6	<5			
Barium (Ba)	415	171	233	734			
Beryllium (Be)	<0.5	<0.5	0.5	<0.5			
Cadmium (Cd)	<0.5	<0.5	<0.5	<0.5			
Chromium (Cr)	9	9	8	7			
Cobalt (Co)	<3	<3	<3	<3			
Copper (Cu)	144	337	56	18			
Lead (Pb)	<5	11	< 5	<5			
Mercury (Hg)	0.59	1.36	<0.10	<0.10			
Nickel (Ni)	9	5	5	<4			
Selenium (Se)	<10	<10	<10	10			
Silver (Ag)	<1	<1	<1	<1			
Thallium (TI)	<10	<10	<10	<10			
Tin (Sn)	<5	6	5	<5			
Vanadium (V)	14	10	21	11			
Zinc (Zn)	97	282	45	34			
Miscellaneous (mg/kg) by EPA Methods 9010, 9030, and 418.1, respectively							
Total cyanide	1.1	1.4	<0.4	<0.4			
Total sulfide	1,800	940	530	370			
Total petroleum hydrocarbons	4,700	26,000	5,300	<50			

ENRONOPERATIONS CORP.

105 00 14 HI 8 52

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

October 20, 1995

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

RE: Phase I Soil and Ground Water Assessment Report
Roswell Compressor Station
Transwestern Pipeline Company

Dear Bill,

The purpose of this letter is to inform your office that the subject report will be submitted to your office for review by November 10, 1995.

Please contact me at (713) 646-7644 or George Robinson at (713) 646-7327 if this schedule presents a problem.

Sincerely,

Bill Kendrick

Manager, Projects Group

Bell Kenchh

gcr/BK

xc: Barbara Hoditschek

NMED HRMB

Santa Fe, NM

TAICHERT, WIGGINS, VIRTUE & NAJJAR

A PARTNERSHIP OF PROFESSIONAL CORPORATIONS

H COUSEN: OR SIVISION LAWYERS

7 E (

ROBERT D. TAICHERT
BRUCE E. WIGGINS
LORNA M. WIGGINS
RICHARD L.C. VIRTUE
DANIEL A. NAJJAR
CHARLOTTE LAMONT
THOMAS E. BROWN III
NANETTE M. LANDERS

OF COUNSEL BOB D. BARBEROUSSE ALBUQUEROUE OFFICE
20 FIRST PLAZA
SUITE 710 (87102)
P.O. 80X 1308
ALBUQUEROUE, NEW MEXICO
87103-1308
(505) 764-8400
FAX: (505) 764-8585

SANTA FE OFFICE:

II9 EAST MARCY STREET
SUITE 100 (87501)
P.O. BOX 4265
SANTA FE, NEW MEXICO
87502-4265
(505) 983-6101
FAX. (505) 983-8304

TOLL FREE: (505) 867-0960 (ALBUOUEROUE TO SANTA FE)

October 11, 1995

BY HAND-DELIVERY

Tracy Hughes, Esq.
General Counsel
New Mexico Environment Department
Harold Runnels Building
1190 St. Francis Drive
P. O. Box 26110
Santa Fe, NM 87502

Transwestern Pipeline Company
("TW"), Roswell Compressor Station
("Roswell Station")

Dear Ms. Hughes:

This letter follows the August, 1995 meeting between representatives of TW and representatives of the New Mexico Environment Department ("NMED") concerning TW's Roswell Compressor Station. This confirms the information provided orally by TW to NMED at the meeting, and provides additional information as requested by the NMED.

Summary of TW's Analysis

For legal, technical and policy reasons, the proper regulatory path for the closure of this site is through the New Mexico Oil Conservation Division ("OCD") rather than NMED. TW remains committed to remedial goals that are fully protective of human health and the environment. Closure under the OCD authority will expedite the remediation and avoid the difficulties inherent under a RCRA Subtitle C closure, which is ill-suited for this type of facility. Moreover, closure under the OCD will not only achieve the same remediation goals as those prescribed under RCRA, but also place oversight authority with the state agency that has primary authority and expertise over remediation of soil and groundwater contaminated with petroleum hydrocarbons which comprise nearly all of the contaminants at the Roswell Station.

Since the meeting held between TW and NMED in March, 1995, TW has conducted a comprehensive review and analysis of the status of

Tracy Hughes, Esq. October 11, 1995
Page -2-

the Roswell Station and the regulatory approach imposed upon this facility. The results of TW's analysis show that the Part A application filed by TW in 1993 at the request of NMED contained fundamentally erroneous information and should be withdrawn. TW's investigation of its past practices at both the Roswell Station and other sites indicates that the wastes generated at the Roswell Station were never "hazardous" waste within the meaning of RCRA for a number of reasons. First, the wastes were in insufficient amounts or concentrations to qualify as hazardous under the regulations then in effect. Second, some of the materials released were not even classified as hazardous wastes under the then existing regulations. Finally, the application assumed the presence of certain wastes for which no evidence has been found to exist. Moreover, facility wastes were released during the time period prior to clarification of the "petroleum" exemption and were generally considered to be exempt pursuant to the petroleum exemption at the time of disposal.

Although the OCD is the appropriate oversight authority, TW can provide NMED with copies of documentation related to the OCD remediation process so that NMED may assure itself that the process is adequate to protect human health and the environment.

General Description of Roswell Station Operations and Potential Waste Streams

The Roswell Station is located on approximately 80 acres of land just north of the City of Roswell. The natural gas compressor station has been in operation since 1960, and the station operates subject to a discharge plan issued by the OCD. TW filed a RCRA Part A application in January, 1993, at the request of NMED for the purpose of gathering information concerning closure of former surface impoundments at the facility.

TW's investigation indicates that two surface impoundments were used at the facility from 1960 through 1983. One of these surface impoundments was backfilled before February, 1977, and the second was closed in 1983 and backfilled in June, 1986. These surface impoundments were used by TW to contain pipeline condensate. The surface impoundments have been replaced by above-ground storage tanks. All wastes generated from operations are now stored in the surface tanks and then removed from the site and handled in such a manner so that no treatment, storage or disposal facility ("TSDF") status is triggered. Thus, the surface impoundments that are the subject of the Part A application and subsequent negotiations with NMED have not been in use since at least 1983 and have been replaced by above-ground storage facilities.

Tracy Hughes, Esq. October 11, 1995
Page -3-

TW's Roswell Station, like hundreds of similar facilities located within the State of New Mexico, serves the function of compressing natural gas for transportation through a pipeline. A secondary function of the Roswell Station is to serve as a location where pipeline liquids are removed from the pipeline. These liquids collect in low spots in the pipeline or in flow-through vessels designed to knock out the liquids ("scrubbers"). Liquids are also periodically removed from the pipeline during "pigging" operations. During pigging operations, plugs or "pigs" are shoved through the pipeline to push out the liquids. The liquids collected at a compressor station from "pigging" operations and the scrubbers are called pipeline liquids or "condensate".

In general, pipeline liquids are a mixture of produced water and petroleum hydrocarbons. The petroleum hydrocarbons are a mixture of predominantly aliphatic hydrocarbon compounds in the C6 to C14 range and a much smaller fraction (on the order of 10%) of aromatic hydrocarbon compounds. Historically, pipeline liquids were either placed in surface impoundments where the water and petroleum hydrocarbons presumably would evaporate, or the liquids were sold as a product where they would be blended with crude oil or fuel oil. Today, pipeline liquids are almost exclusively sold as a product and therefore are not classified as a waste.

In general, the only other potential waste streams which are of any significance at natural gas compressor stations are those generally associated with the operation and maintenance of internal combustion engines: used lube oil, oil filters, and wash water. The management of wastes produced at these facilities is regulated by the OCD, with the exception of hazardous wastes which are regulated by NMED. However, very little hazardous wastes, if any, are produced at natural gas compressor stations and therefore most compressor stations qualify as conditionally exempt small quantity generators under 40 C.F.R. §261.5.

<u>Description of Contaminants Used in the Past at the Roswell Station</u>

The vast majority of the contaminants (greater than 99.9%) present at the former Roswell Station surface impoundments are petroleum hydrocarbons. For example, the attached lab data shows chlorinated compounds to be present in concentrations that total less than 20 mg/kg (ppm). See Laboratory Analysis and Summary (Attachment A). In the past, these contaminants were inadvertently released into soil and groundwater as a result of waste management practices for pipeline liquids which were common at the time. However, the contaminants which have confused the issue of regulatory oversight at this site are the cleaning solutions (chlorinated solvent compounds) which were once used

Tracy Hughes, Esq. October 11, 1995
Page -4-

during maintenance activities but are no longer used at the Roswell Station. These compounds represent a small fraction of the contaminants present in soil and groundwater. The use of these small amounts of diluted chlorinated solvents prior to the present solvent rule which was adopted on December 31, 1985 does not give rise to RCRA jurisdiction.

Prior to the adoption of the present solvent rule in 1985, the waste generated by chlorinated solvent products containing less than 100% of a specific listed solvent were not "hazardous" within the meaning of RCRA. See 50 Fed. Reg. 53315. Solutions containing 100% solvent concentrations were not used at the Roswell Facility prior to the adoption of the solvent rule, so the rule does not apply to the generation of those wastes. After the adoption of the present solvent rule, there were no releases to the surface impoundments.

In a recent sample collected from the recovered hydrocarbon liquids tank, the concentration of chlorinated compounds was not even above laboratory detection levels. See Attachment A. In order to put this into perspective, if we were to assume that all potentially identifiable chlorinated volatile organic compounds were present at their respective detection levels, then the total concentration of these compounds in the recovered hydrocarbon liquid would be less than 0.000000023% of the liquid sample. Furthermore, during prior investigation activities conducted at the site, the highest concentration measured of 1,1,1-trichloroethane, the most prevalent solvent detected at the site, was just 19.0 mg/kg (or ppm). See Attachment A. This concentration is far below the RCRA 40 C.F.R 264 proposed Subpart S action level of 7000 mg/kg. 55 Fed. Reg. 30867

Thus, remediation efforts at this site will focus almost exclusively on the reduction of hydrocarbons in the form of total petroleum hydrocarbon ("TPH") concentrations in soil, the removal of phase separated hydrocarbon from above the uppermost aquifer, and a reduction in the concentration of BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) present in groundwater. These objectives are typical of other oil and gas related remediation activities which the OCD staff work with on a daily basis. As NMED has no action level or cleanup criteria for TPH, NMED has already indicated to TW that the establishment of this criteria would be coordinated with the OCD.

Analysis of Applicability of RCRA to TW's Roswell Station

When TW originally submitted its RCRA Part A application at the request of NMED, both TW and NMED were under a series of erroneous assumptions with regard to the use of the former surface impoundments and the applicability of RCRA regulations.

Tracy Hughes, Esq. October 11, 1995
Page -5-

First, it was assumed that F-listed and D-listed wastes were placed in the surface impoundment. (These are wastes listed as hazardous under 40 C.F.R. §§261.24 and 261.31(a)).

There were five F-listed and D-listed waste codes listed in the RCRA Part A application. The inapplicability of RCRA regulations to each of these wastes is discussed below.

1. F001 (halogenated solvents) - Prior to the solvent rule which was finalized December 31, 1985, the F001 listing applied only to commercially pure grades of spent halogenated solvents used in degreasing (e.g. 100% trichloroethane). The 1985 solvent rule modified this definition to include spent solvent mixtures containing 10% or greater by volume of one or more of those solvents listed in F001, F002, F004, and F005.

The last remaining surface impoundment at the Roswell Station was taken out of service well before the 1985 solvent rule. See attached aerial photo dated June 19, 1983 showing surface impoundments no longer in use and storage tanks in place (Attachment B). Once storage tanks were placed into service, the surface impoundments were no longer used.

Furthermore, TW has conducted an investigation of past practices at the Roswell Station and similar facilities and has found no indication that a commercially pure grade spent halogenated solvent was either used at this facility during the applicable time frame or released to the impoundment, nor is it even likely that a commercially pure grade spent halogenated solvent would have been in use at the facility due to cost. mixture of chlorinated solvents and non-chlorinated solvents (e.g., mineral spirits) is equally effective and much less costly. Laboratory reports of liquid solvent samples collected at other TW stations in 1989 show chlorinated solution concentrations of less than 100%. See the attached laboratory results (Attachment All available information shows no F001 wastes were ever disposed of at the Roswell Station.

TW has identified only two past uses of halogenated solvents at the Roswell Station. The first involved placing the solvents on rags for cleaning parts where the solvents were completely used or the unused portion(s) were allowed to evaporate. The second identified use was for cleaning compressor engine crankcases during oil changes. In this case, some residual solvent may have remained in the crankcase

Tracy Hughes, Esq. October 11, 1995
Page -6-

entrained in residual lube oil (it is generally accepted that one can not remove 100% of the lube oil within an engine during an oil change). When new lube oil would be added to the crankcase, a solvent/oil mixture should result. Therefore, during subsequent oil changes the lube oil removed from the engine would contain very low concentrations of solvents. This is the likely mechanism by which solvent compounds were released to the former surface impoundments. Because the surface impoundments were removed from service prior to adoption of the present solvent rule, the pre-1985 releases of the solvents to these surface impoundments are not subject to RCRA jurisdiction.

- 2. F005 (non-halogenated solvents) Prior to the December 31, 1985 solvent rule, the F005 listing applied only to commercially pure grades of spent non-halogenated solvents (e.g., 100% toluene, methyl ethyl ketone, benzene, etc.). Again, TW's investigation of past practices found no information that these solvents, or their associated wastes, were used, stored, or disposed of at the Roswell Station. The available evidence suggests that the source of most of these types of compounds is the petroleum substances in the pipeline. Therefore, the F005 waste code should not have been included in the Part A application.
- D004 (arsenic) A small amount of arsenic (as 3. trimethylarsine) is produced with natural gas from the Abo formation located just north of the Roswell Station. As a result, a small concentration of arsenic is occasionally present in pipeline liquid samples collected at the Roswell Station. Although production from this formation began in 1979, arsenic was not identified as a natural contaminant of the gas until 1987. Nor would TW or any other pipeline have any reason to suspect arsenic might be present in the gas since this is a very rare occurrence. The pipeline liquids tank was installed at the Roswell Station in 1983, therefore, the duration in which pipeline liquids potentially containing arsenic were released to the former surface impoundment was limited (approximately four years). The duration in which pipeline liquids may have been subject to evaluation by the EP Toxicity procedure for arsenic was even shorter, less than 3 years. Therefore, the evidence available to TW indicates that the EP Toxicity procedure was never used to assess the toxicity characteristic of the waste for arsenic since the presence of arsenic was unknown to TW. Even if the EP toxicity test had been conducted

Tracy Hughes, Esq. October 11, 1995
Page -7-

for arsenic, the results would most certainly have been below threshold levels.

Moreover, the concentrations currently measured are well below those levels at which the waste stream might fail the former EP Toxicity procedure used at the time in question. See Attachment A. Based on this information, TW has no information that wastes placed in the former surface impoundment at the Roswell Station were characteristically hazardous due to arsenic. Therefore, RCRA does not apply and the D004 waste code should not have been included on the Part A application.

- 4. D005 (barium) Although a small concentration of barium can be present in used engine oil collected at the Roswell Station, the concentration present is well below those levels where one might expect the waste stream to fail the former EP Toxicity procedure. 40 C.F.R. §261.24. Furthermore, TW has no information that wastes placed in the former surface impoundment at the Roswell Station would have failed the EP Toxicity procedure for barium. Therefore, RCRA does not apply and the D005 waste code should not have been included on the Part A application. Finally, the level of barium at the surface impoundments is within the range of background levels.
- 5. D018 (benzene) Prior to the TC Rule effective March 29, 1990, benzene was not listed as a "Characteristic of EP Toxicity" contaminant. 55 Fed. Reg. 11798. Therefore, during the time frame that the surface impoundment was in use, there was no such thing as a D018 waste, and thus, RCRA does not apply and this waste code should not have been listed on the Part A application. Based upon all available evidence, the source of benzene was the petroleum substances in the pipeline.

The Part A Application and associated information also omitted information critical to a correct analysis of RCRA jurisdiction. For example, the "Treatment Process Design Capacity" indicated on the Part A application is 3,061,487 gallons. This figure was not based on the design capacity of the surface impoundment but rather on an inaccurate estimate of the volume of potentially affected groundwater. The estimated capacity of the surface impoundment now referred to as "Pit 1" (the only surface impoundment at the facility operated after November 19, 1980) is only 202,000 gallons. This revised estimate is based on more accurate information: dimensions obtained from historic air

Tracy Hughes, Esq. October 11, 1995
Page -8-

photos of the facility.

Information submitted with the application indicated that only a single surface impoundment was in use from August 1960 through June 1986. Information obtained from historic air photos and facility diagrams indicates that two impoundments were used at the facility between mid-1960 and December 1983. From a closer review of the information, it appears that the first impoundment at the facility was replaced by the second impoundment sometime prior to October 1972. Therefore, only the second impoundment was operated post RCRA. Furthermore, although the second impoundment was not back-filled until June 1986, wastes were not received by this impoundment after November 1983 when the final above ground storage tanks ("ASTs") were placed in service to collect the station's waste streams. See the attached chronology of events for a more detailed description of the time frame for installation of ASTs. (Attachment D). Completion reports dated June 25, 1982, November 18, 1983 and January 25, 1984 show that the final storage tank was installed and operational by November 11, 1983. See Attachment E. Aerial photos dated June 19, 1983 show surface impoundments and in-place storage tanks. See Attachment B.

RCRA Does Not Apply Retroactively to Newly Classified Hazardous Wastes

As discussed above, the type of wastes found at the Roswell Station are almost solely petroleum hydrocarbons which do not fall under the definition of "hazardous" so as to invoke RCRA. All of the wastes listed on TW's RCRA Part A application should never have been listed: they were insufficient amounts or concentrations (e.g. arsenic, barium), the solvent products used were in diluted solutions of much less than 100% concentration, (e.g. F001 and F005 wastes), the waste category did not exist at the time the wastes were released, or they were not classified as wastes under RCRA at the time they were released (e.g., Benzene).

Any wastes that were not defined as hazardous when released do not fall under RCRA, unless characteristically hazardous and actively managed after the date the rule changed to classifying the waste as hazardous. See 54 Fed. Reg. 36592, 36597 (in narrowing the exemption for mineral processing wastes, the EPA stated that the new, narrower, definition would "not impose Subtitle C requirements on . . . wastes that were released prior to the effective date of today's rule, unless they are actively managed after the effective date"). EPA has a longstanding policy of not regulating wastes under RCRA that were released prior to the effective date of the rule governing those wastes. Id. EPA took the same position in 1992 when it added new wastes

Tracy Hughes, Esq. October 11, 1995
Page -9-

to the hazardous list. 57 Fed. Reg. 372841.

Inapplicability of RCRA Closure Requirements to Natural Gas Compressor Stations

Finally, TW and the NMED have also seen several examples which indicate the RCRA closure process simply does not apply to this type of location. One example is the provisions for "waste characterization" and volume estimates of remaining waste. 40 C.F.R. §264.552(e)(4)(iii). Because the last remaining surface impoundment was backfilled nearly ten years ago, there is no "waste" remaining to characterize.

Another example is that NMED required TW to analyze impacted soil samples for constituents listed under the "petroleum refining" category found within the RCRA Facility Investigation guidance documents. This list was selected for identifying potential waste constituents of concern because, of all the categories contained within the guidance, "petroleum refining" was the only category that was even remotely related to the operations at a natural gas compressor station. However, the operations at a natural gas compressor station, in particular a mainline transmission station such as the Roswell Station, are completely different from the operations at a petroleum refinery in both the types of activities involved and the materials utilized. petroleum refining, crude oil is refined into various fractions of petroleum, including gasoline, through the use of chemical and physical processes. By contrast, the operation of a natural gas compressor station is simple. At a compressor station, the pressure within a natural gas pipeline is increased so that natural gas may move though the pipeline. No chemical reactions are involved in the process, and far fewer waste streams are generated than at petroleum refineries. Most natural gas compressor stations are classified as either small quantity generators or conditionally exempt small quantity generators of hazardous waste.

¹Much of TW's waste was also exempt from RCRA under the exemption for oil and gas set forth in 42 U.S.C. §6921(b)(2)(A)(1983) (wastes associated with the exploration, development, or production of crude oil or natural gas). Before July 6, 1988, the scope of this exemption was unclear. At that point, the EPA finally issued guidelines for the exemption. 53 Fed. Reg. 25446. As TW used its last surface impoundment in 1983, the waste should fall under the exemption for oil and gas wastes. Any narrowing of that exemption as set forth on July 6, 1988, would not be retroactively applied to wastes deposited before that date unless they were actively managed. 54 Fed. Reg. at 36597.

Tracy Hughes, Esq. October 11, 1995
Page -10-

OCD Oversight is Fully Protective of NMED and New Mexico Standards

Remediation activities at the Roswell Station can proceed much more rapidly and cost effectively for the state and TW with oversight authority by the OCD. This is true primarily because the OCD is not bound by the lengthy procedural requirements typical of RCRA closures. Attached to this letter are flow charts which depict two process scenarios for assessment and cleanup at the Roswell Station. See Attachment F. The first chart was prepared by NMED Hazardous Radioactive Materials Bureau ("HRMB") and presented to TW during a March, 1995 meeting with TW. The second chart illustrates the process TW has undergone for assessment and clean-up under the OCD oversight. The charts demonstrate the efficiency and relative straight forwardness of a clean-up plan pursuant to the OCD system as compared to the NMED system.

As the NMED has no action level or clean up criteria for total petroleum hydrocarbons (nearly 100% of the contaminants of concern) and is establishing this criteria in coordination with the OCD, there will be no difference between clean up criteria for soil established by NMED versus that under the OCD oversight. With respect to groundwater contamination, the OCD enforces the New Mexico Water Quality Control Commission ("NMWQCC") standards. The NMED HRMB uses the lower of the NMWQCC standards, the federal Safe Drinking Water Act MCLS, or the RCRA action level. The NMWQCC standards are as a rule the lowest, so cleanup under the OCD should satisfy NMED. The SDWA MCL standard for benzene is Sug/l which is lower than that used by the OCD. The NMWQCC standard is 10ug/1 but, considering the limited potential use of affected groundwater at the Roswell Station, from a practical standpoint, clean up to either standard is equally protective of human health and the environment.

Clean Up Under OCD Authority is Consistent With Proposed EPA Regulations

There is new proposed authority for allowing remediation activities to proceed under the authority and oversight of the OCD. The EPA drafted new proposed regulations entitled the Hazardous Waste Identification Rule-Media ("the Proposed Rule") to be published in the Federal Register later this year. The Proposed Rule addresses the need to focus on results instead of inflexible compliance with rules. The Proposed Rule recognizes that one-time cleanup of contaminated media is best accomplished with a plan tailored to cleanup. Under the Proposed Rule, a Remediation Management Plan ("RMP") will take the place of the current post-closure permitting requirements. See Proposed Rule at 63 et. seq. It will achieve closure in a much shorter time

Tracy Hughes, Esq. October 11, 1995
Page -11-

frame and avoid difficulties that arise in attempting to work within the framework of RCRA Subtitle C closure.

The closure requirements contained in 40 C.F.R. Part 265 Subpart G were developed with the clear intention that they would apply to closure of waste management units of operational TSDFs where hazardous wastes were intentionally treated, stored, or disposed (not a site such as Roswell which was never operated as a TSDF). This problem is well recognized by EPA as evidenced by their recent efforts to create a distinction between management of contaminated media during remediation activities and "as generated" hazardous wastes. Proposed Rule at 7. In the proposed rule, the EPA recognizes that current regulations are not tailored toward purely remedial activity which is what is involved at the Roswell Station. Proposed Rule at 7. recognizes that there are fundamental differences in the objectives and incentives of prevention oriented programs like RCRA and remediation oriented programs like the proposed rule. Proposed Rule at 6. Remediation activity is highly site-specific and not as amenable to stringent, inflexible standards. Id. at 8.

TW's Proposed Regulatory Path

Although it is obvious that a compressor station was never intended nor contemplated to be a TSDF, much time and energy has been spent in an attempt to apply TSDF standards to the Roswell Station. It is unfortunate that both TW and NMED have devoted almost all of their efforts to the closure of the location rather than scrutinizing the circumstances under which these substances of concern were released and the regulatory framework that was in effect at the time of the releases. The Proposed Rule provides a solution, and should be used by NMED as a guide to resolving the regulatory issues presented in this situation.

Remediation activities at the Roswell Station must proceed under the authority of the OCD for three reasons. First and most significantly, the waste should never have been classified as hazardous under RCRA; therefore, RCRA simply does not apply. Second, the OCD is experienced in overseeing the cleanup of sites with similar petroleum hydrocarbon contamination and the OCD and TW have a proven history of cooperation in accomplishing efficient, timely cleanup. Third, allowing remediation activities to proceed under the authority of the OCD is the best regulatory policy because RCRA is prevention oriented not remediation oriented.

Within this framework, TW proposes to withdraw its Part A application, and negotiate an appropriate procedure with NMED and the OCD to keep NMED informed about the OCD remediation.

Tracy Hughes, Esq. October 11, 1995 Page -12-

If you have any questions or need additional information, please contact me at (505) 983-6101.

Very truly yours,

TAICHERT, WIGGINS, VIRTUE & NAJJAR

Richard L. C. Virtue

Santa Fe Office

RLCV:mm laura\hughes3.ltr

cc by hand-delivery:

Mark E. Weidler

Ed Kelley

Benito Garcia

Susan McMichael, Esq.

Secretary of the New Mexico

Environment Department

Director, Water & Waste Management

Division of the New Mexico

Environment Department

Chief, Hazardous & Radioactive

Material Bureau of the New Mexico

Environment Department

Official General Counsel, New

Mexico Environment Department

cc by mail:

Lou Soldano, Esq. Frank Smith, Esq. Dave Nutt, Esq. Bill Kendrick

Rodger Anderson

ENRON Operations Corp. Legal

ENRON Corp. Legal ENRON Corp. Legal

ENRON Operations Corp.

Environmental Affairs

Oil Conservation Division of the New Mexico Energy, Minerals and

Natural Resources Division

EXHIBIT A

ROSWELL STATION

Summary of analytical results for hydrocarbon liquid sample collected from the remediation system recovery tank and analytical results for the most heavily affected soil sample collected during recent soil assessment activities.

Liquid Sample

The only organic compounds detected are the four BTEX compounds.

No halogenated organics were detected (detection limits are somewhat elevated due to maxtric interference but this is to be expected when analyzing a hydrocarbon sample)

Soil Sample

In regard to the soil sample collected from the former surface impoundment area, note that the following non-naturally occurring organic hydrocarbons were detected:

Compound	Result(mg/kg)	Detection Lim	it <u>Comments</u>
phenol	200.000	33.000	most likely a lab artifact
carbon disulfide	0.060	0.020	
1,1-dichloroethane	1.200	0.600	
1,1-dichloroethene	0.040	0.020	
2-hexanone	0.460	0.020	
methylene chloride	0.160	0.020	most likely a
-			lab contaminant
tetrachloroethane	0.040	0.020	
1,1,1-trichloroethan	ne 19.000	0.600	
vinyl acetaté	7.000	6.000	most likely a lab artifact
TOTAL	227.960	(20.800 w/o artifacts)	contaminants &

The TPH result was 26,000 mg/kg, therefore, 227.96/26,000 = 0.0088 = 0.88% and therefore 99.12% or greater is petroleum hydrocarbons.

Not including the lab artifacts and contaminants, 20.8/26,000 = 0.00080 = 0.08% and therefore 99.92% is petroleum hydrocarbons.

The other organic compounds detected are naturally occurring petroleum hydrocarbons, those are: phenanthrene, benzene, ethylbenzene, toluene, and xylenes.

enron\exhibit.a

Dallas Division 1548 Valwood Parkway Suite 118 Carrollton, TX 75006

Tel: (214) 406-8100 Fax: (214) 484-2969

ANALYTICAL AND QUALITY CONTROL REPORT

Larry Campbell TRANSWESTERN PIPELINE 6381 N. Main St. Roswell, NM 88202

06/19/1995

NET Job Number: 95.03823

Enclosed is the Analytical and Quality Control report for the following samples submitted to the Dallas Division of NET, Inc. for analysis. Reproduction of this analytical report is permitted only in its entirety.

Sample	Sample Description	Date	Date
<u>Number</u>		<u>Taken</u>	<u>Received</u>
264681	RECOVERY TANK REMEDIATION ROSWE	06/12/1995	06/13/1995

National Environmental Testing, Inc. certifies that the analytical results contained herein apply only to the specific samples analyzed.

Holding Times: All holding times were within method criteria.

Method Blanks: All method blanks were within quality control criteria.

Instrument calibration: All calibrations were within method quality control criteria.

Analysis Comments: No Unusual Comments

Gregory K. Horton Project Coordinator

Larry Campbell TRANSWESTERN PIPELINE 6381 N. Main St. Roswell, NM 88202

06/19/1995 Job No.: 95.03823

Page: 2

Project Name:

ROSWELL STATION

Date Received:

06/13/1995

264681

RECOVERY TANK REMEDIATION ROSWELL

Taken: 06/12/1995 15:00

TCLP-Arsenic, ICP TCLP-Barium, ICP TCLP-Cadmium, ICP TCLP-Chromium, ICP TCLP-Lead, ICP TCLP-Mercury, CVAA TCLP-Selenium, ICP TCLP-Silver, ICP Flash Point	0.35 1.1 <0.01 <0.01 <0.03 <0.0002 <0.04 <0.01		mg/L mg/L mg/L mg/L mg/L mg/L mg/L
ACID EXT8270 AQUEOUS Benzoic acid Benzyl alcohol 4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Methylphenol (o-Cresol) 4-Methylphenol (p-Cresol) 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol	<2,000 <500 <500 <500 <500 <2,000 <2,000 <500 <500 <500 <2,000 <500 <2,000 <500 <500		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol SURR: 2-Fluorophenol SURR: Phenol-d5 SURR: 2,4,6-Tribromophenol	<500 N/A N/A N/A	D D D	ug/kg ug/kg % ;
BASE/NEUTRALS - 8270 AQUEOUS Acenaphthene Acenaphthylene Aniline Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene	<500 <500 <500 <500 <1,000 <500 <500 <500 <500 <500		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg

D - Surrogate diluted out.

Larry Campbell
TRANSWESTERN PIPELINE 6381 N. Main St. Roswell, NM 88202

06/19/1995

Job No.: 95.03823

Page: 3

Project Name:

ROSWELL STATION

Date Received: 06/13/1995

264681

RECOVERY TANK REMEDIATION ROSWELL

Taken: 06/12/1995 15:00

Benzyl butyl phthalate	<500	ug/kg
Bis(2-chloroethoxy)methane	<500	ug/kg
Bis(2-chloroethyl)ether	<500	ug/kg
Bis(2-chloroisopropyl)ether	<500	ug/kg
Bis(2-ethylhexyl)phthalate	<500	ug/kg
4-Bromophenyl phenyl ether	<500	ug/kg
4-Chloroaniline	<500	ug/kg
2-Chloronaphthalene	<500	ug/kg
4-Chlorophenyl phenyl ether	<500	ug/kg
Chrysene	<500	ug/kg
Dibenzo(a,h)anthracene	<500	ug/kg
Dibenzofuran	<500	ug/kg
Di-n-butyl phthalate	<500 .	ug/kg
1,2-Dichlorobenzene	<500	ug/kg
1,3-Dichlorobenzene	<500	ug/kg
1,4-Dichlorobenzene	<500	ug/kg
3,3'-Dichlorobenzidine	<1,000	ug/kg
Diethyl phthalate	<500	ug/kg
Dimethyl phthalate	<500	ug/kg
2,4-Dinitrotoluene	<500	ug/kg
2,6-Dinitrotoluene	<500	ug/kg
Di-n-octyl phthalate	<500	ug/kg
Fluoranthene	<500	ug/kg
Fluorene	<500	ug/kg
Hexachlorobenzene	<500	ug/kg
Hexachlorobutadiene	<500	ug/kg
Hexachlorocyclopentadiene	<500	ug/kg
Hexachloroethane	<500	ug/kg
Indeno(1,2,3-cd)pyrene	<500	ug/kg
Isophorone	<500	ug/kg
2-Methylnaphthalene	<500	ug/kg
Naphthalene	<500	ug/kg
2-Nitroaniline	<2,000	ug/kg
3-Nitroaniline	<2,000	ug/kg
4-Nitroaniline	<2,000	ug/kg
Nitrobenzene	<500	ug/kg
N-Nitrosodimethylamine	<500	ug/kg
N-Nitrosodi-n-propylamine	<500	ug/kg
N-Nitrosodiphenylamine	<500	ug/kg
Phenanthrene	<500	ug/kg

Larry Campbell TRANSWESTERN PIPELINE 6381 N. Main St. Roswell, NM 88202

06/19/1995

Job No.: 95.03823

Page: 4

Project Name: ROSWELL STATION

Date Received: 06/13/1995

264681

RECOVERY TANK REMEDIATION ROSWELL

Taken: 06/12/1995 15:00

Pyrene 1,2,4-Trichlorobenzene SURR: 2-Fluorobiphenyl SURR: Nitrobenzene-d5 SURR: Terphenyl-d14 VOA 8240 NONAQ.	<500 <500 N/A N/A N/A	D D D	ug/kg ug/kg % %
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	<100 9800 <50 <50 <100 <200 <50		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane	<50 <100 <200 <50 <100 <50 <50		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl benzene	<50 <50 <50 <50 <50 <50 170000		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene	<200 <50 <50 <50 <50 <50 30000 <50		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride D - Surrogate diluted out.	<50 <50 <50 <100		ug/kg ug/kg ug/kg ug/kg

Larry Campbell TRANSWESTERN PIPELINE 6381 N. Main St. Roswell, NM 88202

06/19/1995

Job No.: 95.03823

Page: 5

Project Name:

ROSWELL STATION

Date Received: 06/13/1995

264681

RECOVERY TANK REMEDIATION ROSWELL

Taken: 06/12/1995 15:00

Xylenes, Total
SURR: 1,2-Dichloroethane-d4
SURR: Toluene-d8
SURR: 4-Bromofluorobenzene ug/kg 164000 % Rec % Rec 99 101 100 % Rec

LABORATORY RESULTS TESTS

Report Date: 09/20/95

CUSTOMER: Daniel B. Stevens & Associates

ATTN: Jeff Forbes

JOB NUMBER: 954165

Customer Sample ID.: PIT 1, SE BORING Sample Date......: 08/18/95

Sample Time....: 10:00 Sample Matrix....: Soil

Laboratory Sample ID.: 954165-10 Date Received.....: 08/22/95

Time Received.....: 10:15

TEST DESCRIPTION	TEST MATRIX	FINAL RESULT	DETECTION LIMIT	UNITS OF MEASURE	TEST METHOD	DATE ANALYZED	TECHNICIAN
Sulfide	Solid	940	50	mg/Kg	SW-846 9030	09/05/95 0800	* cc
Acid Digestion: Solids		completed	0	Not Applicable	SW-846 3050	08/30/95 1000	lmt
Mercury (Hg)	Solid	1.36	0.10	mg/Kg	SW-846 7471	09/01/95 1132	lmt
Aluminum (Al)	Solid	1690	5	mg/Kg	SW-846 6010	09/06/95 2127	gef
Antimony (Sb)	Solid	<10	10	mg/Kg	SW-846 6010	09/06/95 2127	gef
Arsenic (As)	Solid	17	5	mg/Kg	SW-846 6010	09/06/95 2127	gef
Barium (Ba)	Solid	171	1	mg/Kg	SW-846 6010	09/06/95 2127	gef
Beryllium (Be)	Solid	<0.5	0.5	тд/Кд	SW-846 6010	09/06/95 2127	gef
Cadmium (Cd)	Solid	<0.5	0.5	mg/Kg	SW-846 6010	09/06/95 2127	gef
Chromium (Cr)	Solid	9	1	mg/Kg	SW-846 6010	09/06/95 2127	gef
Cobalt (Co)	Solid	<3	3	mg/Kg	SW-846 6010	09/06/95 2127	gef
Copper (Cu)	Solid	337	1	mg/Kg	SW-846 6010	09/06/95 2127	gef
Lead (Pb)	Solid	11	5	mg/Kg	SW-846 6010	09/06/95 2127	gef
Nickel (Ni)	Solid	5	4	mg/Kg	sw-846 6010	09/06/95 2127	gef
Selenium (Se)	Solid	<10	10	mg/Kg	SW-846 6010	09/06/95 2127	gef
Silver (Ag)	Solid	<1	1	mg/Kg	SW-846 6010	09/06/95 2127	gef

JOB NUMBER: 954165

CORE LABORATORIES

LABORATORY TESTS RESULTS
Report Date: 09/20/95

CUSTOMER: Daniel B. Stevens & Associates

ATTN: Jeff Forbes

Customer Sample ID .: PIT 1, SE BORING

Sample Date.....: 08/18/95 Sample Time.....: 10:00 Sample Matrix....: Soil Laboratory Sample ID.: 954165-10 Date Received.....: 08/22/95 Time Received.....: 10:15

TEST DESCRIPTION	TEST MATRIX	FINAL RESULT	DETECTION LIMIT	UNITS OF MEASURE	TEST METHOD	DATE ANALYZED	TECHNICIAN
Thallium (Tl)	Solid	<10	10	mg/Kg	SW-846 6010	09/06/95 2127	gef
Tin (Sn)	Solid	6	5	mg/Kg	sw-846 6010	09/06/95 2127	gef
Vanadium (V)	Solid	10	5	mg/Kg	SW-846 6010	09/06/95 2127	gef
Zinc (Zn)	Solid	282	1	mg/Kg	SW-846 6010	09/06/95 2127	gef
Ultrasonic Extraction		completed		Not Applicable	SW-846 3550	08/30/95	mla
Ultrasonic Extraction		completed	0	Not Applicable	SW-846 3550	08/28/95 0000	mla
Total Recoverable Petroleum Hydrocarbons	Solid	26000	1000	mg/Kg	EPA 418.1	09/11/95 0915	jbd
Cyanide (Colorimetric, Manual) Cyanide (CN)	Solid	1.4	0:4	mg/Kg	SW-846 9010	08/28/95 1000	kds
PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	Solid Solid Solid Solid Solid Solid Solid Solid	ND ND ND ND ND ND ND	1700 1700 1700 1700 1700 1700 1700 1700	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	SW-846 8080	09/13/95 0137 09/13/95 0137 09/13/95 0137 09/13/95 0137 09/13/95 0137 09/13/95 0137 09/13/95 0137 09/13/95 0137 09/13/95 0137	lb
Semivolatile Organics (Client List) Acenaphthene Acenaphthylene	Solid Solid	ND ND	3300 3300	ug/Kg ug/Kg	SW-846 8270	09/11/95 1946 09/11/95 1946	mla

ATTN: Jeff Forbes

LABORATORY TESTS RESULTS

Report Date: 09/20/95

CUSTOMER: Daniel B. Stevens & Associates

Sample Date.....: 08/18/95
Sample Time.....: 10:00
Sample Matrix....: Soil

JOB NUMBER: 954165

Customer Sample ID .: PIT 1, SE BORING

BORING Laboratory Sample ID.: 954165-10
Date Received......: 08/22/95
Time Received......: 10:15

Acetophenone G-Aminobiphenyl Aniline	Solid Solid	ND					
Aniline	l solid	1	3300	ug/Kg	ļ	09/11/95 1946	
		ND	3300	ug/Kg	Į.	09/11/95 1946	
	Solid) ND	3300	ug/Kg	1	09/11/95 1946	
Anthracene Anthracene	Solid	ND	3300	ug/Kg		09/11/95 1946	
Benzidine	Solid) ND	16500	ug/Kg	1	09/11/95 1946	Ì
Benzo(a)anthracene	Solid	ND ND	3300	ug/Kg	1	09/11/95 1946	
Benzo(b)fluoranthene	Solid	ND	3300	ug/Kg		09/11/95 1946	
Benzo(j)fluoranthene	Solid	ND	3300	ug/Kg	į	09/11/95 1946	!
Benzo(k)fluoranthene	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
Benzo(ghi)perylene	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
Benzo(a)pyrene	Solid	ND	3300	ug/Kg		09/11/95 1946	
Benzyl alcohol	Solid	ND	6600	ug/Kg		09/11/95 1946	i
Butyl benzyl phthalate	Solid	ND	3300	ug/Kg		09/11/95 1946	
Bis(2-chloroethoxy)methane	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
Bis(2-chloroethyl)ether	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
Bis(2-chloroisopropyl)ether	Solid	ND	3300	ug/Kg		09/11/95 1946	
Bis(2-ethylhexyl)phthalate	Solid	ND	3300	ug/Kg	Į.	09/11/95 1946	ļ
4-Bromophenyl phenyl ether	Solid	ND	3300	ug/Kg		09/11/95 1946	
4-Chloroaniline	Solid	ND	3300	ug/Kg		09/11/95 1946	
Chlorobenzilate	Solid	ND	3300	ug/Kg		09/11/95 1946	
1-Chloronaphthalene	Solid	ND	3300	ug/Kg	⋠	09/11/95 1946	
2-Chloronaphthalene	Solid) ND	3300	ug/Kg	ļ.	09/11/95 1946	
4-Chlorophenyl phenyl ether	Solid) ND	3300	ug/Kg		09/11/95 1946	
Chrysene	Solid	ND	3300	ug/Kg		09/11/95 1946	
Diallate	Solid	ND	3300	ug/Kg	1	09/11/95 1946	}
Dibenzo(a,j)acridine	solid	ND	3300	ug/Kg	Į.	09/15/95 0246	
Dibenzo(a,h)anthracene	Solid	ND	3300	ug/Kg		09/11/95 1946	1
Dibenzofuran	Solid	ND	3300	ug/Kg		09/11/95 1946	1
1,2-Dichlorobenzene	Solid	ND	3300	ug/Kg		09/11/95 1946	1
1,3-Dichlorobenzene	Solid	ND	3300	ug/Kg		09/11/95 1946	1
1,4-Dichlorobenzene	Solid	ND	3300	ug/Kg		09/11/95 1946	1

LABORATORY TESTS RESULTS

Report Date: 09/20/95

JOB NUMBER: 954165

CUSTOMER: Daniel B. Stevens & Associates

ATTN: Jeff Forbes

Customer Sample ID.: PIT 1. SE BORING

Sample Date...... 08/18/95 Sample Time..... 10:00 Sample Matrix....: Soil

Laboratory Sample ID.: 954165-10 Date Received..... 08/22/95

Time Received.....: 10:15

TEST DESCRIPTION	TEST MATRIX	FINAL RESULT	DETECTION LIMIT	UNITS OF MEASURE	TEST METHOD	DATE ANALYZED	TECHNICIAN
3,3-Dichlorobenzidine	Solid	ND	3300	ug/Kg		09/11/95 1946	
Diethyl phthalate	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
p-Dimethylaminoazobenzene	Solid	ND	3300	ug/Kg	Ì	09/11/95 1946	
Dimethoate	Solid	ND	6600	ug/Kg	1	09/11/95 1946	
7,12-Dimethylbenz(a)anthracene	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
alpha, alpha-Dimethylphenethylamine	Solid	ND	3300	ug/Kg	l	09/11/95 1946	
Dimethyl phthalate	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
Di-n-butyl phthalate	Solid	ND	330D	ug/Kg		09/11/95 1946	1
Di-n-octyl phthalate	Solid	ND	3300	ug/Kg		09/11/95 1946	
2,4-Dinitrotoluene	Solid	ND	3300	ug/Kg	,	09/11/95 1946	1
2,6-Dinitrotoluene	Solid	ND	3300	ug/Kg		09/11/95 1946	
Dinoseb (DNBP)	Solid	ND	3300	ug/Kg	1	09/11/95 1946	1
Diphenylamine	Solid	ND	3300	ug/Kg		09/11/95 1946	
1,2-Diphenythydrazine	Solid	ND	3300	ug/Kg		09/11/95 1946	
Disulfoton	Solid	ND	3300	ug/Kg		09/11/95 1946	
Ethyl methane sulfonate	Solid	ND	3300	ug/Kg		09/11/95 1946	1
Fluoranthene	Solid	ND	3300	ug/Kg		09/11/95 1946	
Fluorene	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
Hexach Lorobenzene	Solid	ND	3300	ug/Kg	1	09/11/95 1946	
Hexach Lorobutadiene	Solid	ND	3300	ug/Kg		09/11/95 1946	
Hexachlorocyclopentadiene	Solid	ND	3300	ug/Kg		09/11/95 1946	
Hexachloroethane	Solid	ND	3300	ug/Kg		09/11/95 1946	
Hexachlorophene	Solid	ND	3300	ug/Kg		09/15/95 0246	
Hexach Loropropene	Solid	ND	3300	ug/Kg	İ	09/11/95 1946	
Indeno(1,2,3-cd)pyrene	Solid	ND	3300	ug/Kg		09/11/95 1946	Ì
Isodrin	Solid	ND	3300	ug/Kg	1	09/11/95 1946	Ì
Isophorone	Solid 🔧	ND	3300	ug/Kg		09/11/95 1946	
Isosafrole	Solid	ND	3300	ug/Kg	l .	09/11/95 1946	
Kepone	Solid	ND	16500	ug/Kg		09/15/95 0246	
Methapyrilene	Solid	ND	3300	ug/Kg		09/11/95 1946	1
3-Methylcholanthrene	Solid	ND	3300	ug/Kg		09/11/95 1946	

LABORATORY TESTS RESULTS

Report Date: 09/20/95

JOB NUMBER: 954165 CUSTOMER: Daniel B. Stevens & Associates

ATTN: Jeff Forbes

Customer Sample ID.: PIT 1, SE BORING

Laboratory Sample ID.: 954165-10 Date Received..... 08/22/95

Sample Date..... 08/18/95 Sample Time....: 10:00

Sample Matrix....: Soil

Time Received.....: 10:15

ND 3300 ND 3300 ND 3300 ND 3300 ND 3300 ND 3300 ND 3300 ND 16500	ug/Kg ug/Kg ug/Kg	09/11/95 09/11/95 09/11/95	1946 1946 1946 1946	
ND 3300 ND 3300 ND 3300 ND 3300 ND 3300 ND 16500	ug/Kg ug/Kg	09/11/95 09/11/95	1946	
ND 3300 ND 3300 ND 3300 ND 16500	ug/Kg	09/11/95		
ND 3300 ND 3300 ND 16500	1 0		1946	
ND 3300 ND 16500	ug/Kg	1 00444.05	1/70	
ND 16500		09/11/95	1946	
			1946	
			1946	
ND 16500		1	1946	
ND 16500	(1	1946	
ND 3300		09/11/95	1946	
ND 3300		09/11/95	1946	
ND 3300		09/11/95	1946	
ND 3300		09/11/95	1946	
ND 3300	5	09/11/95	1946	
ND 3300	_5,	09/11/95	1946	
ND 3300	-55	09/11/95	1946	
ND 3300	9	09/11/95	1946	
ND 3300		09/11/95	1946	
ND 3300		09/11/95	1946	_
ND 3300	3	09/11/95	1946	
ND 3300	-00	09/11/95	1946	
ND 3300	-55	09/11/95	1946	
ND 3300	10	09/11/95	1946	
ND 3300	-55	09/11/95	1946	
ND 3300		09/11/95	1946	
00 3300	1	09/11/95	1946	
ND 3300		09/11/95	1946	
	, -35			
	-30			
) ug/Kg	09/11/95	1946	
N	D 3300 D 3300	3300 ug/kg D 3300 ug/kg	D 3300 ug/Kg 09/11/95 D 3300 ug/Kg 09/11/95	D 3300 ug/kg 09/11/95 1946 09/11/95 1946 09/11/95 1946

LABORATORY TESTS RESULTS
Report Date: 09/20/95

JOB NUMBER: 954165

CUSTOMER: Daniel B. Stevens & Associates

ATTN: Jeff Forbes

Customer Sample ID.: PIT 1, SE BORING

Laboratory Sample ID.: 954165-10
Date Received.....: 08/22/95
Time Received.....: 10:15

TECHNICIAN TEST DESCRIPTION TEST MATRIX FINAL RESULT DETECTION LIMIT UNITS OF MEASURE TEST METHOD DATE ANALYZED Solid ND 3300 ug/Kg 09/11/95 1946 Pyridine 09/11/95 1946 3300 Safrole Solid ND uq/Kq Solid ND 3300 ug/Kg 09/11/95 1946 1.2.4.5-Tetrachlorobenzene 3300 09/11/95 1946 ND o-Toluidine Solid ug/Kg 09/11/95 1946 1.2.4-Trichlorobenzene Solid ND 3300 ug/Kg Solid ND 3300 ug/Kg 09/11/95 1946 D.O.O-Triethyl phosphorothicate 09/11/95 1.3.5-Trinitrobenzene Solid ND 3300 ug/Kg 1946 16500 09/11/95 1946 Renzoic acid Solid ND ug/Kg 4-Chloro-3-methylphenol Solid ND 3300 ug/Kg 09/11/95 1946 Solid ND 3300 D9/11/95 1946 ug/Kg 2-Chlorophenol 3300 09/11/95 Solid ND ug/Kg 1946 2.4-Dichlorophenol Solid ND 3300 ug/Kg 09/11/95 1946 2.6-Dichlorophenol 3300 ND 09/11/95 2.4-Dimethylphenol Solid ug/Kg 1946 2.4-Dinitrophenol Solid ND 16500 ug/Ka 09/11/95 1946 Solid ND 16500 ug/Kg 09/11/95 1946 2-Methyl-4,6-dinitrophenol Solid ND 3300 ug/Kg 09/11/95 1946 2-Methylphenol (o-cresol) 3300 ug/Kg 09/11/95 1946 3 & 4 Methylphenol (m&p cresol) Solid ND Solid ND 3300 ug/Kg 09/11/95 1946 2-Nitrophenol Solid ND 16500 ug/Kg 09/11/95 1946 4-Nitrophenol Solid ND 16500 ug/Kg 09/11/95 1946 Pentachlorophenol 200000 33000 Solid ug/Kg 09/13/95 0041 Phenol 2.3.4.6-Tetrachlorophenol Solid ND 3300 ug/Kg 09/11/95 1946 Solid 3300 09/11/95 1946 ND ug/Kg 2,4,5-Trichtorophenol 09/11/95 1946 Solid ND 3300 ug/Kg 2.4.6-Trichlorophenol SW-846 8240 Volatile Organics (Client Requested) bfr -1 Acetonitrile Solid ND 500 ug/Kg 08/28/95 1341 200 08/28/95 1341 Solid ND ug/Kg Acrolein Solid 100 ND ug/Kg 08/28/95 1341 Acrylonitrile Solid ND 500 ug/Kg 08/28/95 1341 Acetone Solid ND 100 ug/Kg 08/28/95 1341 Allyl chloride

LABORATORY TESTS RESULTS

Report Date: 09/20/95

JOB NUMBER: 954165 CUSTOMER: Daniel B. Stevens & Associates

ATTN: Jeff Forbes

Customer Sample ID .: PIT 1, SE BORING

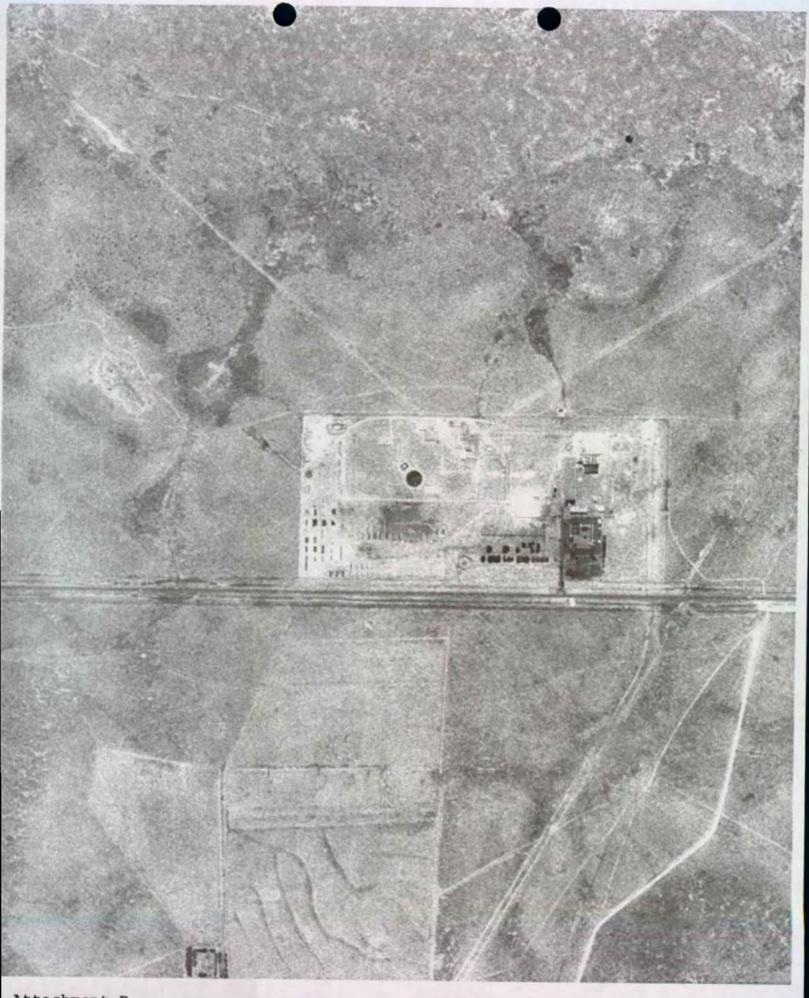
Sample Date......: 08/18/95 Sample Time.....: 10:00 Sample Matrix....: Soil Laboratory Sample ID.: 954165-10
Date Received.....: 08/22/95
Time Received.....: 10:15

EST DESCRIPTION	TEST MATRIX	FINAL RESULT	DETECTION LIMIT	UNITS OF MEASURE	TEST METHOD	DATE ANALYZED	TECHNICIAN
Benzene	Solid	850	20	ug/Kg		08/28/95 1341	
Benzyl chloride	Solid	ND	20	ug/Kg		08/28/95 1341	
Promobenzene	Solid	ND	20	ug/Kg)	08/28/95 1341	
Promochloromethane	Solid	ND	20	ug/Kg	}	08/28/95 1341	
Bromodichloromethane	Solid	ND	20	ug/Kg		08/28/95 1341	
3romoform	Solid	ND	20	ug/Kg		08/28/95 1341	
3romomethane	Solid	ND	. 50	ug/Kg		08/28/95 1341	
tethyl ethyl ketone (2-Butanone)	Solid	ND	j 500	ug/Kg	}	08/28/95 1341	
Carbon disulfide	Solid	60	20	ug/Kg	}	08/28/95 1341	
Carbon tetrachloride	Solid	ND] 20	ug/Kg		08/28/95 1341	}
Chlorobenzene	Solid	ND	20	ug/Kg		08/28/95 1341	
Chloroethane	Solid	ND	j 50	ug/Kg	}	08/28/95 1341	1
2-Chloroethylvinyl ether	Solid	ND	20	ug/Kg	1	08/28/95 1341)
Chloroform	Solid	ND	20	ug/Kg	[08/28/95 1341	
Chloromethane	Solid	ND	20	ug/Kg	Ĺ	08/28/95 1341	}
2-Chloro-1.3-butadiene (chloroprene)	Solid	ND ND	20	ug/Kg	}	08/28/95 1341	İ
ibromochloromethane	Solid	ND	20	ug/Kg	1	08/28/95 1341	
1,2-Dibromoethane (EDB)	Solid	ND	20	ug/Kg	ł	08/28/95 1341	
1,2-Dibromo-3-chloropropane	Solid	l HD	20	ug/Kg	(08/28/95 1341	_
Dibromomethane	Solid	ND	20	ug/Kg	1	08/28/95 1341	
trans-1,4-Dichloro-2-butene	Solid) ND	200	ug/Kg	l	08/28/95 1341	
Dichlorodifluoromethane	Solid	ND	} 50	ug/Kg	\$	08/28/95 1341	į –
1.1-Dichloroethane	Solid	1200	600	ug/Kg	}	08/31/95 1305	
1,2-Dichloroethane	Solid	ND ND	20	ug/Kg	1	08/28/95 1341	ì
1.1-Dichloroethene	Solid	40	20	ug/Kg	(08/28/95 1341	
cis-1,2-Dichloroethene	Solid	I ND	20	ug/Kg	\$	08/28/95 1341	
trans-1,2-Dichloroethene	Solid '	ND	20	ug/Kg	1	08/28/95 1341	}
1,2-Dichloropropane	Solid	ND ND	20	ug/Kg	1	08/28/95 1341	į.
cis-1.3-Dichloropropene	Solid	ND	20	ug/Kg		08/28/95 1341	1
trans-1,3-Dichloropropene	Solid	l ND	20	ug/Kg	1	08/28/95 1341	}
Ethylbenzene	Solid	370	20	ug/Kg	{	08/28/95 1341	l

LABORATORY TESTS RESULTS

Report Date: 09/20/95

CUSTOMER: Daniel B. Stevens & Associates


Customer Sample ID.: PIT 1, SE BORING

JOB NUMBER: 954165

ATTN: Jeff Forbes

Laboratory Sample 1D.: 954165-10 Date Received.....: 08/22/95 Time Received.....: 10:15

TEST DESCRIPTION	TEST MATRIX	FINAL RESULT	DETECTION LIMIT	UNITS OF MEASURE	TEST METHOD	DATE ANALYZED	TECHNICIAN
Ethyl methacrylate 2-Hexanone Iodomethane Isobutyl alcohol Methylacrylonitrile Methylene chloride Methyl methacrylate 4-Methyl-2-pentanone (MIBK) Pentachloroethane Propionitrile Styrene 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Trichlorofluoromethane 1,2,3-Trichloropropane Vinyl acetate Vinyl chloride Xylenes (total)	Solid Solid	ND 460 ND ND ND 160 ND ND ND ND ND ND ND ND ND ND ND ND ND	20 20 20 200 200 20 20 20 20 20 20 600 60	ug/Kg ug/Kg		08/28/95 1341 08/28/95 1341	

Attachment B

LABORATORY REPORT LAGUNA, NEW MEXICO

Site No. 3

Drum 2

<u>Parameter</u>	<u>Result</u>
F-Listed Solvents (mg/kg)	are and the second seco
Tetrachloroethylene Trichloroethylene Dichloromethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane o-Dichlorobenzene Xylene Ethylacetate Ethylbenzene Ethylether Benzene	1.7 21.2 33.7 23.40% 29.0 1.6 285.0 11.8 52.1 3.8 14.8
Heating Value (BTU/lb)	17,463.0
TOX (%)	9.9
Barium (mg/kg)	28.0
Cadmium (mg/kg)	0.03
Selenium (mg/kg)	3.20

ENVIRONMENTAL TESTING SPECIALISTS

WQS ID 1224 Page 1 of 4 Client Confidential Attorney Work Product

March 27, 1989

Stephen J. Frost Harding Lawson Associates 6220 Westpark Drive Suite 100 Houston, TX 77057

LABORATORY REPORT

Project: Job 18996,001.12 Jaffe/Site No. 3

Sample Type:

Sample Date:

Cresols, total

Solvent Sample ID: Drum 2 03/09/89 Date Received: 03/13/89

WQS ID:

1224

Parameter Re	sult	MDL	Date	Analyst
		•		
TPH, % 66	.9	1	3/22/89	AF
PCB, mg/l <1	0.0	10.0	3/14/89	TW
Dichloromethane 33 1,1,1-Trichloroethane 23 1,1,2-Trichloroethane 29 Carbon Tetrachloride <1 1,1,2-Trichloro-1,2,2- <1 Trifluoroethane	.2 .7 .40% .0 .0 .0 .0 .0 .8 .1 .8 0.0 .0	·	.	

<50

ENVIRONMENTAL TESTING SPECIALISTS

WQS ID 1224 Page 2 of 4

Client Confidential Attorney Work Product

March 27, 1989

LABORATORY REPORT

Project: Job 18996,001.12 Jaffe/Site No. 3

Sample Type: Solvent Sample ID: Drum 2

Sample Date: 03/09/89 Date Received: 03/13/89

1224 WQS ID:

Result Analyst Parameter MDL Date

F-Listed Solvents (cont'd) Nitrobenzene ND~ Methyl Ethyl Ketone <5.0 ≥ <1.0 Carbon Disulfide Isobutanol <10.0 Pyridine <5.0 Benzene 14.8 2-Ethoxyethanol ND

ND = None Detected * Interference

Quality Assurance: These analyses are performed in accordance with EPA guidelines for quality assurance. These procedures include the following as a minimum requirement: one in ten sample duplicates, method blank, and quarterly method performance against known samples. Analyses were performed using EPA 418.1, 624, 625, and SW846 3540,3550, and 8080.

ENVIRONMENTAL TESTING SPECIALISTS

WQS ID 1224 Page 3 of 4 Client Confidential Attorney Work Product

Date

Analyst

March 27, 1989

Stephen J. Frost Harding Lawson Associates 6220 Westpark Drive Suite 100 Houston, TX 77057

LABORATORY REPORT

Project: Job 18996,001.12 Jaffe/Site No. 3

Sample Type:

Solvent

Sample ID: Drum 2

Sample Date:

03/09/89 Date Received: 03/13/89

MDL

WQS ID:

Parameter

1224

рн	96
Flashpoint, ^O F	96
Heating Value, BTU/lb	17,463
TOX, %	9.9
Ash, wt. %	0.50
Specific Gravity, @ 60°F	0.9273
Kinematic Viscosity, @ 64°	F 32.5
Sediment & Water, Vol. %	3.0/2.0
Sulphur, %	0.947

Result

Quality Assurance: These analyses are performed in accordance with EPA guidelines for quality assurance. These procedures include the following as a minimum requirement: one in ten sample duplicates, method blank, and quarterly method performance against known samples. Analyses were performed using

ENVIRONMENTAL TESTING SPECIALISTS

WQS ID 1224 Page 4 of 4 Client Confidential Attorney Work Product

March 27, 1989

Stephen J. Frost Harding Lawson Associates 6220 Westpark Drive Suite 100 Houston, TX 77057

LABORATORY REPORT

Project: Job 18996,001.12 Jaffe/Site No. 3

Sample Type:

Solvent

Sample ID: Drum 2

Sample Date:

03/09/89

Date Received: 03/13/89

WQS ID:

1224

Parameter	Results	MDL	Date	Time	Analyst
			•		
Arsenic, mg/kg	<1.05	1.05			
Barium, mg/kg	28.0	0.24			
Cadmium, mg/kg	0.03	0.02			• :
Chromium, mg/kg	<0.10	0.10			
Lead, mg/kg	<0.10	0.10			
Mercury, mg/kg	<0.096	0.096		7	
Selenium, mg/kg	3.20	2.10			
Silver, mg/kg	<0.009	0.009			
Zinc, mg/kg	0.56	0.02			

Quality Assurance: These analyses are performed in accordance with EPA guidelines for quality assurance. These procedures include the following as a minimum requirement: one in ten sample duplicates, method blank, and quarterly method performance against known samples. Analyses were performed using EPA SW-846 1310, 3010, 3040, 7061, 7080, 7130, 7191, 7420, 7470, 7741, and 7760.

WATER QUALITY SERVICES

Anne Fidelman General Manager

cc: Mr. James L. Jaffe
Attorney at Law

LABORATORY REPORT MOUNTAINAIR, NEW MEXICO

Site No. 2

3 Drums Trichloroethane

Parameter	Result		
F-Listed Solvents (mg/kg)			
Tetrachloroethylene Trichloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Carbon Tetrachloride Chlorobenzene Xylene Ethylacetate Ethylacetate Ethylbenzene Ethylether Cyclohexanone Methanol Methyl Ethyl Ketone Carbon Disulfide Isobutanol Benzene	4.4 0.99% 55.09% 17.1 9.4 3.4 1.06% 566.0 29.6 343.0 41.1 3.7 859.0 134.0 701.0 0.49%		
Heating Value (BTU/lb)	14,015.0		
TOX (ppm)	30.8		
Cadmium (mg/kg)	0.04		
Lead (mg/kg)	0.41		
Selenium (mg/kg)	0.39		

ENVIRONMENTAL TESTING SPECIALISTS

WQS ID 1216 Page 1 of 4 Client Confidential Attorney Work Product

March 27, 1989

Stephen J. Frost Harding Lawson Associates 6220 Westpark Drive Suite 100 Houston, TX 77057

LABORATORY REPORT

Project: Job 18996,001.12 Jaffe/Site No. 2

Sample Type:

Solvent Sample ID: 3 Drums Trichloroethane 03/08/89 Date Received: 03/13/89

Analyst

Date

Sample Date:

03/08/89

MDL

WQS ID:

Parameter

1216

TPH, %	45.3	1	3/22/89	AF	
PCB, mg/l	(1) (5×10.0	10	3/21/89	TW	
F-Listed Solvents, mg/kg Tetrachloroethylene Trichloroethylene Dichloromethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Carbon Tetrachloride 1,1,2-Trichloro-1,2,2- Trifluoroethane Chlorobenzene o-Dichlorobenzene Xylene Acetone Ethylacetate Ethylbenzene Ethylether	4.4 0.99% 294 55.09% 17.1 9.4 <1.0 3.4 <1.0 1.06% 5.5 566 29.6 343		.		
Methyl Isobutyl Ketone	<1.0				
n-Butyl Alcohol Cyclohexanone Methanol	<1.0 41.1 3.7				
Cresols, total	<50				

Result

ENVIRONMENTAL TESTING SPECIALISTS

WQS ID 1216 Page 2 of 4

Client Confidential Attorney Work Product

March 27, 1989

LABORATORY REPORT

Project: Job 18996,001.12 Jaffe/Site No. 2

Sample Type:

Solvent

Sample ID: 3 Drums Trichloroethane Date Received: 03/13/89

Sample Date:

03/08/89

WQS ID:

1216

Parameter

Result

MDL

Date

Analyst

F-Listed Solvents (cont'd)

Nitrobenzene

Methyl Ethyl Ketone

Carbon Disulfide

Isobutanol

Pyridine

Benzene

2-Ethoxyethanol

701 -

<10.0

0.49%

ND

ND = None Detected * Interference

Quality Assurance: These analyses are performed in accordance with EPA quidelines for quality assurance. These procedures include the following as a minimum requirement: one in ten sample duplicates, method blank, and quarterly method performance against known samples. Analyses were performed using EPA 418.1, 624, 625, and SW846 3540,3550, and 8080.

17459 VILLS GE GREEN DRIVE HOUSTON, TEXAS 77040 (713) 466-0958

ENVIRONMENTAL TESTING SPECIALISTS

WQS ID 1216 Page 3 of 4 Client Confidential Attorney Work Product

March 27, 1989

Stephen J. Frost Harding Lawson Associates 6220 Westpark Drive Suite 100 Houston, TX 77057

LABORATORY REPORT

Project: Job 18996,001.12 Jaffe/Site No. 2

Sample Type:

Solvent 03/08/89

Sample ID: 3 Drums Trichloroethane

Date Received: 03/13/89

Sample Date: WQS ID:

1216

Parameter Result MDL Date Analyst

Нq

Flashpoint, OF

Heating Value, BTU/lb 14,015

TOX, ppm 30.8

Ash, wt. % 0.0008

Specific Gravity, @ 60°F 0.9729

Kinematic Viscosity, @ 64^OF 10.0

Sediment & Water, Vol. % .05/0

Sulphur, % 1.979

Quality Assurance: These analyses are performed in accordance with EPA guidelines for quality assurance. These procedures include the following as a minimum requirement: one in ten sample duplicates, method blank, and quarterly method performance against known samples. Analyses were performed using

17459 VILLAGE GREEN DRIVE HOUSTON, TEXAS 77040 (713) 466-0958

ENVIRONMENTAL TESTING SPECIALISTS

WQS ID 1216 Page 4 of 4

Client Confidential Attorney Work Product

March 27, 1989

Stephen J. Frost Harding Lawson Associates 6220 Westpark Drive Suite 100 Houston, TX 77057

LABORATORY REPORT

Project: Job 18996,001.12 Jaffe/Site No. 2

Sample Type:

Solvent Sample ID: 3 Drums Trichloroehtane 03/08/89 Date Received: 03/13/89

Sample Date:

WQS ID:

1216

Parameter	Results	MDL	Date	Time	Analyst
			•		
Arsenic, mg/kg	<0.98	0.98			
Barium, mg/kg	<0.98 <0.22	0.22			
Cadmium, mg/kg	0.04	0.02			
Chromium, mg/kg	<0.10	0.10			
Lead, mg/kg	0.41	0.10			
Mercury, mg/kg	<0.074	0.074			
Selenium, mg/kg	0.39	0.39			
Silver, mg/kg	<0.008	0.008			
Zinc, mg/kg	<0.02	0.02			

Quality Assurance: These analyses are performed in accordance with EPA guidelines for quality assurance. These procedures include the following as a minimum requirement: one in ten sample duplicates, method blank, and quarterly method performance against known samples. Analyses weré performed using EPA SW-846 1310, 3010, 3040, 7061, 7080, 7130, 7191, 7420, 7470, 7741, and 7760.

WATER QUALITY SERVICES

Anne Fidelman General Manager

cc: Mr. James L. Jaffe Attorney at Law

Events And Correspondence Chronology Roswell Station Remediation Project Transwestern Pipeline Company

Revised 8/24/95 (most recent revisions are in bold type)

8/60	Compressor station begins operations.
Prior to 10/72	Pit 1 is constructed to replace Pit 2.
6/73-4/81	Period during which Pit 2 and Pit 3 (if Pit 3 existed) are back-filled. The timeframe is based on a review of air photos.
6/82	The 210 bbl. waste lube oil tank is placed in service. No releases of waste lube oil after this date.
11/83	The 500 bbl. pipeline liquids tank is placed in service. No releases of pipeline liquids after this date. In addition, the scrubbers, the wash rack, and the engine room floor drains are tied into the 500 bbl pipeline liquids tank at this time.
11/83	Last use of surface impoundments. No releases to surface impoundments after this date.
12/31/85	F001, F002, F004, & F005 wastes redefined to include mixtures & blends of listed wastes.
6/86	Pit 1 back-filled.
4/90	Transwestern requests permission from the State of New Mexico Office of the Commissioner of Public Lands to drill exploratory borings on State Trust land in order to collect soil samples to assess soil contamination.
4/2/90	State of New Mexico Office of the Commissioner of Public Lands (Surface Water Resources Division) authorizes Transwestern to drill exploratory borings on State Trust land for the purpose of obtaining soil samples to be tested for contamination.
6/20/91	Harding Lawson Associates completes shallow soil vapor investigation at Compressor Station No. 9.
7/17/91	Transwestern requests authorization to drill additional soil borings on State Trust land northeast of the compressor station.
7/22/91	State of New Mexico Office of the Commissioner of Public Lands (Surface Water Resources Division) authorizes Transwestern to drill approximately 15 soil borings to allow collection of soil samples.
12/91	Metric Corporation completes report on a shallow subsurface investigation at the compressor station.
2/14/92	Larry Campbell (Transwestern) meets with Coby Muckelroy and Bruce Swanton (New Mexico Environment Department [NMED]) to discuss closure of surface impoundment at Compressor Station No. 9.
2/14/92	Larry Campbell (Transwestern) meets with Roger Anderson (Oil Conservation Division [OCD]) to discuss closure of surface impoundment at Compressor Station No. 9.
4/29/92	Bruce Swanton (NMED) calls Larry Campbell (Transwestern) to request additional information regarding the former surface impoundments.

Events And	Revised 8/24/95
5/6/92	Joint meeting attended by Transwestern, NMED and OCD. Transwestern states intention to hire Halliburton-NUS Corporation to install a monitor well in the center of the former pit to remove and test liquids to determine their status as hazardous or non-hazardous waste. Field work scheduled to begin July 20, 1992.
7/92	Monitor well MW-1 installed by Halliburton-NUS Environmental Corporation.
10/92	Halliburton NUS completes report on monitor well installation at the compressor station.
10/15/92	Joint meeting attended by Transwestern, NMED and OCD. Transwestern presents the results of sampling and analysis of the new monitor well. Options for closure of the site are discussed.
11/30/92	Transwestern submits duplicate copies of a RCRA Part A permit application to NMED and OCD.
12/10/92	Joint meeting attended by Transwestern, NMED and OCD to discuss remediation and closure activities at former surface impoundments. NMED requests that the RCRA Part A permit application submitted previously be resubmitted using the proper EPA forms. The schedule for submittal of other documents and information is also discussed.
1/5/93	Transwestern resubmits RCRA Part A permit application using the EPA forms.
1/25/93	Transwestern notifies NMED that monitor wells will be installed to determine ground-water quality beneath the former surface impoundments.
2/7/93	Transwestern provides NMED with historical information on the use of the former surface impoundments.
2/17/93	Transwestern meets with NMED to discuss remediation and closure of the surface impoundment.
2/17/93	Transwestern requests permission from the State of New Mexico Office of the Commissioner of Public Lands to install two monitor wells on State Trust land in order to collect ground-water samples.
2/17/93	NMED requests that Transwestern submit a closure plan in accordance with the New Mexico Hazardous Waste Management Regulations, Part VI, Section 40 CFR 265.112(a). NMED also provides Transwestern with a list of Deficiency Comments related to NMED review of the RCRA Part A permit application previously submitted and requests that a new or amended Part A application be submitted within 30 days.
3/10/93	Transwestern requests NMED to grant a 60-day extension (until July 1, 1993) for filing the closure plan.
3/16/93	George Robinson (Cypress Engineering Services) meets with Larry Campbell (Transwestern) to discuss conclusions of Metric Report.
4/6/93	NMED grants extension for filing of closure plan.
4/7/93	Transwestern submits amended RCRA Part A permit application to NMED, along with a list of responses to NMED review comments on the previous permit application.
5/19/93	Larry Campbell and Lou Soldano (Transwestern) meet with NMED to discuss NMED request for closure plan for the surface impoundments. NMED requests information regarding the proposed installation of a product recovery pump.
5/21/93	Product recovery pump installed in MW-1. Interim corrective action begins by pumping product from MW-1 into aboveground storage tank.
6/11/93	Transwestern notifies the State of New Mexico Office of the Commissioner of Public Lands that

remediation operations are in progress at the compressor station.

6/22/93	Brown & Root Environmental completes a report for Transwestern describing a ground-water assessment at the compressor station.
7/1/93	Larry Campbell (Transwestern) delivers closure plan to NMED. Transwestern begins free product recovery from recovery wells MW-1B, MW-2, and RW-1.
9/7/93	Transwestern notifies OCD of the installation of product recovery pumps in three monitor wells as part of ground-water cleanup and requests associated modifications to Discharge Plan GW-52.
9/22/93	OCD requests additional information regarding the design of the product recovery system prior to approving modifications to Discharge Plan GW-52.
10/25/93	Transwestern responds to comments from OCD regarding the product recovery system.
11/18/93	OCD approves Transwestern's proposed modifications to Discharge Plan GW-52 in accordance with ongoing remedial activities.
3/7/94	Transwestern receives a letter from NMED rejecting closure plan previously submitted on July 1, 1993, on the grounds that it is incomplete. NMED includes Notice of Deficiency listing items to be included in the closure plan.
3/23/94	Cypress Engineering Services removes inoperative product recovery pump from MW-1 and collects ground-water samples from MW-3 and MW-5.
4/5/94	George Robinson (Cypress Engineering Services) prepares letter report to Bill Kendrick (Enron Operations Corporation) discussing soil and ground-water quality at the Roswell compressor station.
4/8/94	Larry Campbell (Transwestern), Bill Kendrick (Enron Operations Corporation), and George Robinson (Cypress Engineering Services) meet with NMED to discuss Notice of Deficiency. NMED requests that another closure plan be submitted by June 1, 1994.
4/15/94	Brown & Caldwell installs new product recovery pump in MW-1 and measures depth to PSH and depth to ground water in MW-1, MW-1B, MW-2, and RW-1.
5/18/94	George Robinson (Cypress Engineering Services) and Jeffrey Forbes (DBS&A) meet with Marc Sides (NMED) to discuss closure plan format.
5/31/94	Closure Plan for Roswell Compressor Station Surface Impoundments submitted to NMED Hazardous and Radioactive Materials Bureau (HRMB).
8/4/94	Terry Davis, Marc Sides, and Cornelius Amindyas of the NMED meet with Larry Campbell (Transwestern), Bill Kendrick (Enron Operations Corporation), and George Robinson (Cypress Engineering Services) at the Roswell Station site to gather information for a RCRA Facility Assessment.
9/9/94	NMED HRMB delivers a copy of the RCRA Facility Assessment to David Neleigh, RCRA Permits Section Chief, EPA Region VI.
9/28/94	NMED HRMB issues Notice of Deficiency (NOD) to Transwestern for closure plan dated May 31, 1994, including a list of NMED comments and requests for additional information. NMED gives Transwestern 30 days to revise the closure plan in response to their comments.
11/1/94	Bill Kendrick (Enron Operations Corporation) and George Robinson (Cypress Engineering Services) meet with NMED to discuss Notice of Deficiency dated September 28, 1994. NMED requests that Transwestern (1) submit request for extension of the closure plan due date, (2) evaluate the potential to collect and analyze ground-water samples from off-site wells and the deep on-site well (TW-1), and (3) revise the closure plan in accordance with NMED comments.

(3) revise the closure plan in accordance with NMED comments.

5/1/95

11/9/94	Transwestern requests a 75-day extension of the due date for the revised closure plan. Included with the letter is an attachment describing the procedure and method for installation of an upgradient monitor well.
11/16/94	Transwestern submits to the NMED HRMB the first status report of interim corrective measures covering the month of October 1994.
11/28/94	Transwestern presents arguments for the continued use of the MW-1 phase separated hydrocarbon recovery well.
12/1/94	Transwestern installs upgradient monitor well MW-6 approximately 500 feet southwest of the former surface impoundments. A ground-water sample collected by DBS&A from this well is submitted for laboratory analysis in accordance with procedures outlined in Transwestern's letter dated November 9, 1994. All existing on-site monitor wells are resurveyed.
12/2/94	Clayton Barnhill and George Robinson accurately locate off-site wells using Magellen GPS Satellite Navigator.
12/16/94	Transwestern receives letter from NMED dated December 8, 1994, granting a 75-day extension of closure plan due date until January 16, 1995. Also included are NMED's comments on Transwestern's procedures and methods for installation of the upgradient monitor well.
12/20/94	Transwestern sends letter to NMED HRMB describing proposed ground-water sampling and analysis for off-site wells.
12/22/94	Ground-water samples are collected by DBS&A from on-site deep well TW-1 and off-site Well #5 for laboratory analysis of Appendix IX constituents.
1/3/95	NMED HRMB accepts Transwestern's arguments for the continued use of recovery well MW-1.
1/1 1/94	Transwestern submits to the NMED HRMB status report of interim corrective measures covering the fourth quarter 1994.
1/16/95	Transwestern submits revised closure plan to NMED HRMB.
2/21/95	NMED HRMB delivers a copy of the RCRA Facility Assessment to Larry Campbell (Transwestern).
3/30/95	Bill Kendrick (Enron Operations Corporation), George Robinson (Cypress Engineering Services), Jeff Forbes (Daniel B. Stephens & Associates), and Kathleen O'Rielly (an independent consultant) meet with Barbara Hoditschek, Ron Kern, Terry Davis, and Cornelius Amindyas of the NMED HRMB to discuss the technical deficiencies of the most recent closure plan. The NMED requests Transwestern to submit additional information regarding waste characterization. The NMED also indicates to Transwestern that the NMED will modify other parts of the closure plan the NMED finds deficient and then submit the modified closure plan for public notice.
3/31/95	Bill Kendrick (Enron Operations Corporation), and George Robinson (Cypress Engineering Services) meet with Roger Anderson (NMOCD) and Bill Olson (NMOCD) to discuss several ongoing investigation and remediation projects at Transwestern facilities including the Roswell Station. Mr. Anderson indicates that the NMED HRMB is not copying the NMOCD on correspondence.
4/28/95	Barbara Hoditschek (NMED) sends a letter to Larry Campbell (Transwestern) requesting additional information is provided for inclusion into the closure within seven days of receipt of the request.

Transwestern obtains the assistance of outside legal counsel to assist in an evaluation of the regulatory

status of the Roswell Station facility and remediation activities.

8/24/95

date of September 15, 1995.

Events And	Correspondence Chronology Revised 8/24/95
5/10/95	Bill Kendrick (Enron Operations Corporation) in a letter to Barbara Hoditschek (NMED), responds to the NMED's 4/28/95 request.
5/30/95	Bill Kendrick (Enron Operations Corporation) in a letter to Barbara Hoditschek (NMED), presents a summary of the issues discussed during the 3/30/95 meeting.
6/1/95	Richard Virtue (Transwestern's outside legal counsel) in a letter to Tracy Hughes (NMED General Counsel), requests that the NMED General Counsel review the NMED HRMB's decision to require a RCRA permit for closure activities at the site.
6/20/95	Benito Garcia (NMED HRMB) in a letter to Larry Campbell (Transwestern), responds to Transwestern's 6/1/95 request for a review of NMED's decision to require a RCRA permit.
6/30/95	Bill Kendrick (Enron Operations Corporation) in a letter to Barbara Hoditschek (NMED), informs the NMED of Transwestern's intent to implement a self-directed Phase I Soil and Ground Water Assessment.
7/13/95	Barbara Hoditschek (NMED) sends a letter to Bill Kendrick (Enron Operations Corporation) transmitting a copy of the NMED modified closure plan. Comments are requested by 7/27/95.
7/26/95	Bill Kendrick (Enron Operations Corporation) in a letter to Barbara Hoditschek (NMED), transmits Transwestern's comments to the modified closure plan.
8/8/95	Bill Kendrick (Enron Operations Corporation), Lou Soldano (EOC Legal), Richard Virtue (EOC Outside Counsel), and George Robinson (CES) meet with Tracy Hughes (NMED General Counsel), Bonito Garcia (HRMB Bureau Chief), Ron Kern (HRMB Technical Compliance Program Manager), Teri Davis (NMED HRMB Technical Compliance), and Cornelius Amindyas (HRMB Permits) of the NMED to discuss TW's re-evaluation of regulatory status of the remediation activities. Transwestern agrees to provide a written statement and supporting information for TW's position that the former surface impoundments were not, nor ever were, hazardous waste management units.
8/23/95	Daniel B. Stephens & Associates completes the Phase I Soil and Ground Water Assessment field activities in which soil samples were collected from the area of the former surface impoundments, three ground water monitor wells were installed downgradient of the former surface impoundments, and ground water samples were collected from three on-site and the three newly installed off-site monitor wells.

Cornelius Amindyas (HRMB Permits) of the NMED calls Bill Kendrick (Enron Operations

Corporation) to request a target date for submittal of TW's written statement regarding regulatory status of the former surface impoundments. Bill Kendrick informs him that TW has set a target

TEXAS EASTERN TRANSMISSION CORPORATION AND SUBSIDIARIES

COMPLETION REPORT

E. E. No.	Transwestern	Pipeline Company	AFE No	23018
Prelim. Ref. No. <u>567-586</u> Docket/Proj. No. <u>82-110</u>	COI:	mpany Mame	Company N	lo. <u>09</u>
Code No. 1-0	Gas Western - App	rop. #10/23/81-04		
Property Preliminary Investigation	Research & Othe	r Work Property Retirement	Other (Specify)	
TITLE Install 500 Bbl.	Pipeline Waste Tan	k & Related Equipm	ent	
LOCATION Compressor Statio	on No. 9 - Roswell,	N. M. 30-1-7119	District	III
Date Started 11-4-82	Date in Service	11-11-83 Date	Completed 11-	11-83
Related AFE No.				
Drawings Attached To BES	DATE LEY			· · · · · · · · · · · · · · · · · · ·
Other Ref. Swg's (Not Attached)				
	MATERIAL OR RECE	IVING REPORTS ISSU	ED	
See TW-112				
:				
			DRIGINAL MAIL	.ED
REMARKS:	, 6		FEB - 2 1984	
		10	HOUSTON OF	FICE
	• .			
ENGINEERIÑG SI	ERVICES	, o	PERATIONS	
Prepared by:	Date:	Prepared by: <i>因 天 8</i> B. Frank Smith		Date: 1-25-84
Verified by:	Date:	Verified by: Francis M. Cox	m Con	Date: 1-25-84
Manager Plant Records	Date:	Approvedov:	2	Date: Q-2-84
Manager Materials Management:	Date:	Approved by:		Date:

1203

Texas Eastern Transmission Corporation and Subsidiaries

Preliminary Completion Report

E. E. No.	TRANSWESTERN PIPELINE COMPANY	AFE No23018
Prelim. Ref. No. 567-586	Company Name	
Docket/Proj. No. 82-110 Code No.	GAS WESTERN - APPROP. #10/23/81-04	Company No. 09
	Profit or Cost Center	_
XX Property Property Retirement		
TITLE		CNT
	BBL. PIPELINE WASTE TANK & RELATED EQUIPM	IENI
LOCATION COMPRESSOR ST	ATION NO. 9 - ROSWELL, N. M. 30-1-711	9 DISTRICT III
Date Work Started		
Date Work Completed (See Not	e A) '11-4-82	
Date Work Placed in Service (S	ee Note A) 11-11-83	
NOTE A — Only one date is neces	sary, either date all work is completed or date work is placed	d in service, whichever is earlier.
On "Property Retirem	ent" date last part of line lifted or equipment dismantled wi	il be date work completed.
	•	
NOTE-Briefly outline work nec	essary to complete. ESTIMATED FINAL COMPLETI	ON DATE
REMARKS:		
÷		
·		•
	141	MAILED
	T ORIGINA.	
	l vov 1	1 1982 /
		CTON OFFICE
	TO HOU	7 1983 STON OFFICE
<u> </u>		
Construction Foreman	Date:	
FRANCIS M. COX + M. Cof Division Engineer	11-14-83 Date: Diritiph Manager /	Date:

TEXAS EASTERN OR SUBSIDIARIES INVOICE IN TRIPLICATE TO: TRANSUESTERN PIPELINE CO. ACCOUNTING DEPARTMENT P.O. BOX 2521 HOUSTON, TEXAS 77001					H F R	SHIP TO: 09-35-40 TRANSWESTERN PIPELINE COMPANY HWY 285 NORTH P. O. BOX 2018 ROSWELL, NEW MEXICO 88201 CARE OF: J.V. HENDRICKS VENDOR: 451912 PATTERSON WELDING WORKS, INC. 1803 BRISCOE ARTESIA; NEW MEXICO 88210					PURCHASE ORDER NO 09-048152 A THIS PURCHASE ORDER NUMBER MUST BE SHOWN CONVOICE, TAG, BOX, BILL OF LADING OR EXPRESS RECEIF DATE OF ORDER DATE REQUIRED 12-13-82 12-01-82 STATE SALES/USE TAX INSTRUCTIONS X TAXABLE-STATE OF NM TAX EXEMPT-SEE NOTE BELOW SERVICES-NONTAXABLE					DNS CCT. PRR NO			
SHIP PREPAID	AND ALLOV	ν, _{VI}	Δ	VENDO	מר			-		F.O.B.	TINATION	1		. 1	TERMS	30 D	ΔΥ R	_	
A.F.E. NO.				CRIPTION	317					106.0	1 11111 1 101	<u> </u>		PROJECT N		JOB N		M&S AC	CT.
PO. BM	CATAL	OG NO.	au	JAN. REC'D	QUANTIT	Υ	UNIT			0(SCRIPTION			<u> </u>	UNIT	PRICE	SCHEDUL SHIPPING	ED DATE	PRR NO
O 1				1		11		INSTAL MATER! 12' DI STEEL SIDE, COMPLE ACCESS THIEF OUTSII THREE (REGIN	L 1 EA IALB TO IANETER PLATE UALLB, ETE UIT BORIEB HATCH, DE LADD LINE, BECTION NING 4 FO ED P	TANK: INCLUI X 25* BOTTOM: & TOP: H STANI INCLUDI 24" X ER, 4" I" ROLI N8 OF ! " FROM	HIGH, 1	3 / 82 - 12-	THICK ICK STEE DECK TIONS. ROUND OUT, NSI 2" OTIONS. 3				12-20	7-62	
9-82-23	18-5	Ai	<u>.</u>				1	"H" CC			JI		L.S	VIA: RE	D LAKE		KING-		
COPY No. 6	re sta	RAGE		GENERAL	ACCOUNT MAJOR		EI	23018 INOR	COST ELEM.	DEBIT	CREDIT		IF NO EXCEPTIONS SO INDICATE		T PREPAID COLLECT BY	片	IF COLLECT,	HOW P	
						-							NONE	J W APPRÔVA	BRANG	lyh_		14-83	₹

1135 Rev. 12-81

TEXAS EASTERN CORPORATION AND SUBSIDIARIES

AUTHORIZATION FOR EXPENDITURES

E. E. No.
Preliminary Project No.
Docket/Project No.
Code No.

567-586
82-110
1-0

Transwestern Pipeline Company
Company Name

AFE No. 23018

Company No. _____

09

-110 -0 Gas Western - Approp. #10/23/81-04

		Profit	or Cost Center a	nd Appr	opriat	tion Reference	e No.		
Property Addition	Other Work	Research Develop		erty rement		Other (Specify)			
TITLE Ins	tall 500 Bb1	. Pipelir	ne Waste Tan	nk & R	elat	ed Equipm	ent	Roswe	11 Manager
Con	pressor Stat	ion No. 9	- Roswell	, N. M	•	30-1-	7119	Distr	ict III
DESCRIPTION Install 500 bbl. pipeline waste tank with vent, flame arrestor & sight gauge on 6" concrete pad. Install ramp, curb & drain on existing concrete slab at pig receiver & install 10 bbl. fabricated collection tank with pump to transfer waste from collection tank to 500 bbl. tank. Fabricate & install pig trap muffle to separate waste from pig trap blowdown gas. Install pump at pig trap muffler to transfer waste from muffler to 500 bbl. waste storage tank. (See attached drawings). FERC 1-12 - 4									
In 1982 Bu		25	-						
Related Pr Related AF	elim. No.: E Number:	None None	•			: OPER	ATIONS A	F. F	
PURPOSE & N							11110110 11		
·	fe handling			Frank	Smith	h		7	•
Work to Begin Work to be Comple	$\frac{7/0}{12/3}$					Work to B	e Done by:	Com Con	pany Personnel ractor
Material Costs Installation Costs		s <u>23,</u> s <u>17,</u>	925 300		Status	99 For Comp s of Appropriat Total Appropria Deduct: Previou	ion: ition	s <u>12</u>	,360,000 ,567,549
AUTHORIZE	ED AMOUNT		225		Rema	This Al	FE		41,225
Prepared by:		UE	Date:						Date:
of consist	m G	1	5-3-8	2					
Verified by:	Opto		Date:	Tax D	SU	ent Review by:	<u> </u>		Date: 1/14/87
	es Division Approval: T REQUIRED		Øate: /	Accdu	inting C	Department Rep	men by:		7-19-87
Group or Division	Authorization:	on K	Date: 7/14/8	Comp	roller I	Division Appro	val:	-	7/20/52

TEXAS EASTERN CORPORATION AND SUBSIDIARIES

AUTH E. E. No		Pipeline Company	AFE No. 23018
Preliminary Project No. 567-586		pany Name	A1 L 140.
Docket/Project No.	Gas Western	- Approp. #10/23/81-04	Company No09
Code No. ———————————————————————————————————		d Appropriation Reference No.	
Property Other Work Research	ch & Proper		
71715			
TITLE Install 500 Bbl. Pipeli	ne Waste Tank	c & Related Equipment	Roswell Manager
LOCATION Compressor Station No.	9 - Roswell	N. M.	District III
DECCRIPTION		e tank with vent, flame	
gauge on 6" concrete pad. Ins pig receiver & install 10 bbl. from collection tank to 500 bb separate waste from pig trap b transfer waste from muffler to	stall ramp, cu fabricated col. tank. Fab lowdown gas.	orb & drain on existing collection tank with pur pricate & install pig to Install pump at pig to	concrete slab at mp to transfer waste rap muffle to rap muffler to
In 1982 Budget: No Budgeted Amount: None Related Prelim. No.: None Related AFE Number: None PURPOSE & NECESSITY		OPERATIONS	S A. F. E.
Provide safe handling for pipe		rank Smith	
Work to Begin 7 / 01 / 82 Work to be Completed 12 / 31 / 82		Work to Be Done by	y: T Company Personnel Contractor
Material Costs \$23	,925	For Comptroller Di	vision Use Only
	,300	Status of Appropriation: Total Appropriation	s
/1	,225	Deduct: Previous AFE's	
AUTHORIZED AMOUNT\$ 41	<u>, 225</u>	ORIGINAL MAIL Remaining Appropriation	ED s
Prepared by:	Date: 5-3-82	JUN - 3 1982	Date:
Verified by:	Date: 10/2/82	Tax Department Reviews by OF	FICE Date:
Engineering Services Division Approval:	Pate:	Accounting Department Review by:	Date:
Group or Division Authorization:	Date:	Comptroller Division Approval:	Date:

Date:

Group or Division Authorization:

Comptroller Division Approval:

ESTIMATED TIMING OF EXPENDITURES

E. No.		Trans		eline Compa	ny AFE	No
5	í. No. 567–586		Company N	lame	_	
elim. Ref	I. No. 301-300		ostorn - An	prop. #10/2	Com:	pany No09
		Profit or Cost C				
		From or Cost C	enter and App	ropration nete	Tence No.	
Property Addition	Preliminary Investigation	Research &	Other Work	Advances For Gas	Property Retirement	Other (Specify)
Addition	Investigation	Development		For Gas	Retirement	
	YEAR1982					
					•	11
	January		\$		_	
11	February					
1.1	March				_	
- []	April					11
	May					11
	June	_	_			
	July	•	_	5,000		
	August			7,245		
	September			7,245		
	October		_	7,245		
	November			7,245		ļļ
	December	.1		7,245		
	Total for	the year			\$ 41,225	- []
	YEAR					
	TEAR	_				
11	January		\$.			
	February					[]
- }}	March		_			
	April					
	May					11
	June		_			
- 11	July					
	August		<u></u>			
	September		_			
	October					
-	November		-	 	.	
	December					
	Total for	the year			s	- []
	YEAR					
	January		\$			
-	February		₩			
	March		سعيبت			
	April					
	May					
	June -					
	July				·	
- { }	August					
11	September					
-11	October					
	November					11
	December					
	Total for t	the year			\$	
	Grand To	tal (Authorized Ar	nount)		s 41.225	

ESTIMATE OF PROPERTY ADDITIONS

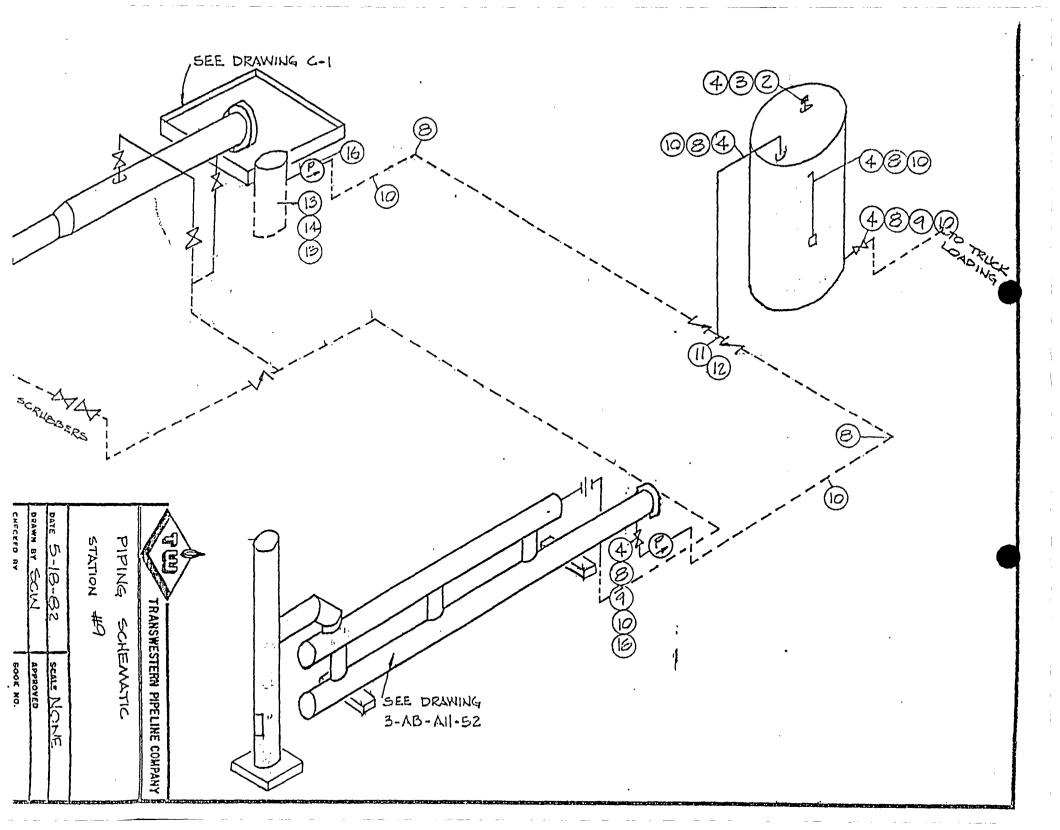
E. E. No. 567-586

Prepared By Francis M. Cox		Checked By	· · · · · · · · · · · · · · · · · · ·	
DESCRIPTION	MATERIAL	INSTALLATION	SUB-TOTALS	TOTALS
05 - Site Improvements 107 Dikes	1,200	1,300	2,500	
TOTAL FEATURE 05				2,500
26 - Major Gas Piping 101 Foundations 123 Drain Lines Tanks	1,200 13,525 8,000	900 13,100 2,000	2,100 26,625 10,000	
TOTAL FEATURE 26				38,725
ESTIMATE TOTAL	23,925	17,300	41,225	41,225

DISTRICT III WASTE STORAGE PROJECT

A. F. E. #

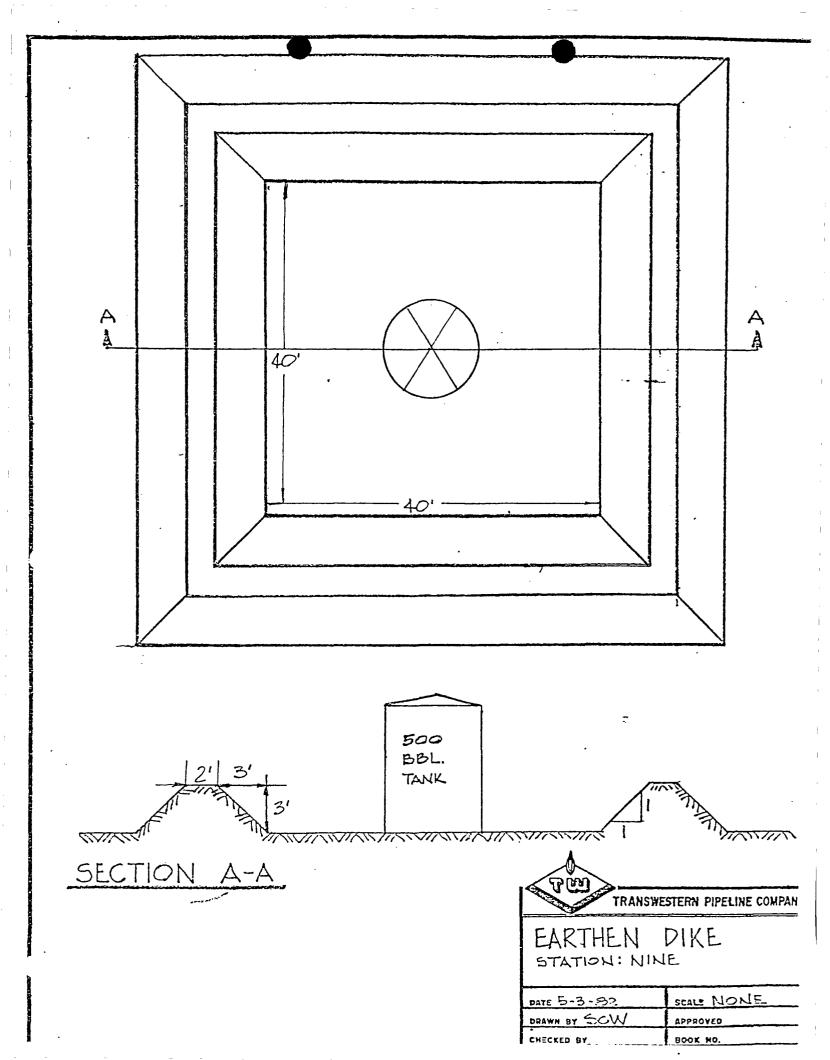
JOB #

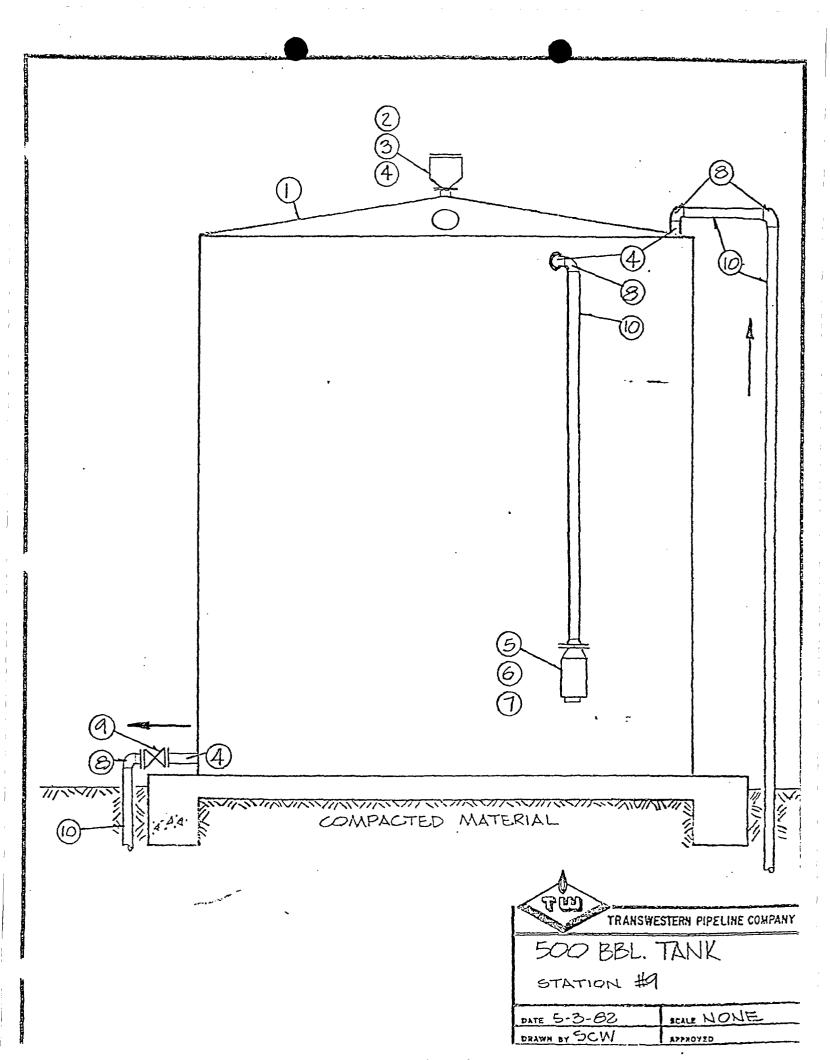

FEATURE & SHEET A-1

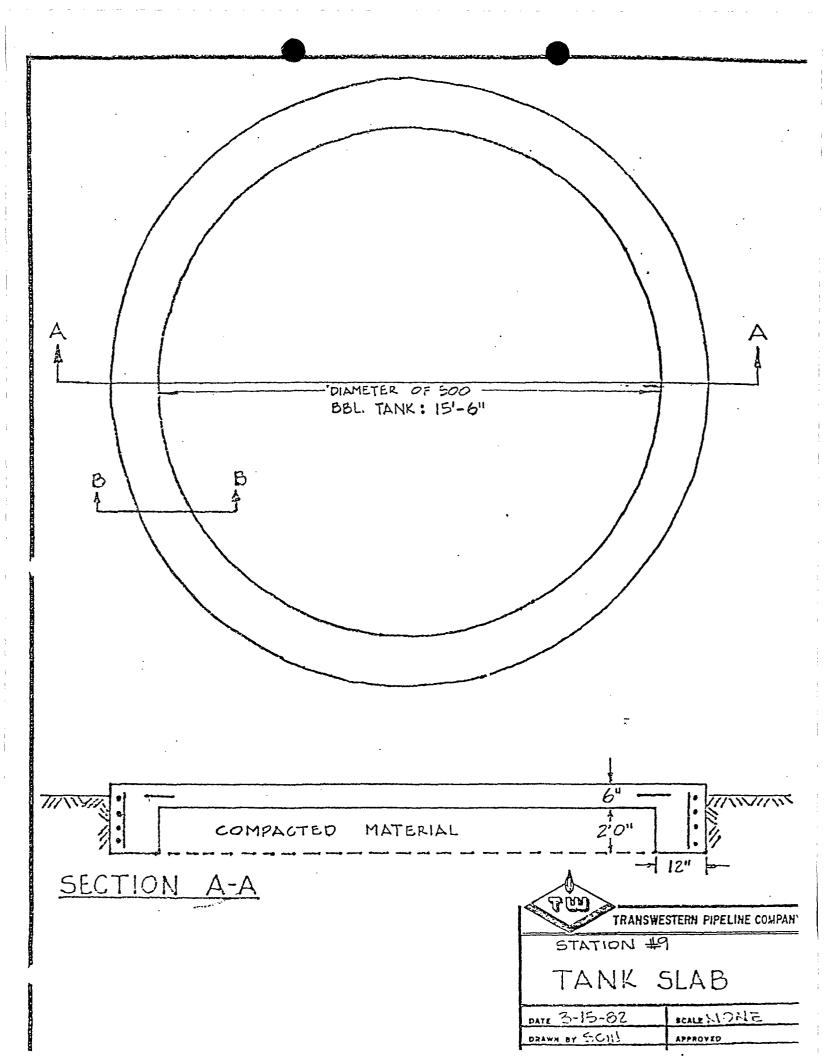
BY

DATE

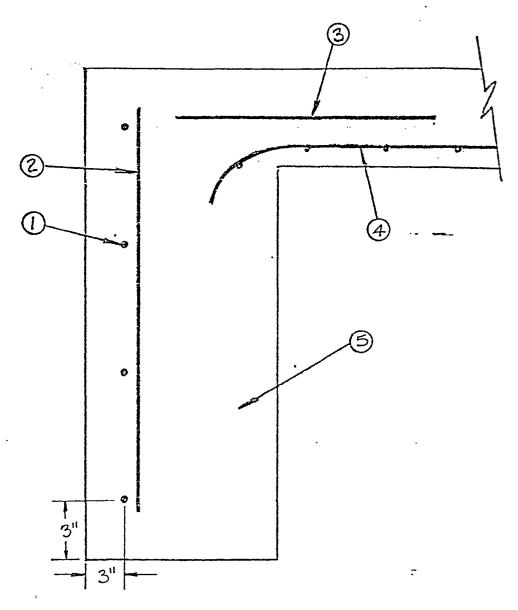
STATION	HEW/EXISTING	ITEM	LOCATION: N	1/5 E/W
24 " P. H. 24" W.T. 24" W.T.L.	EXISTING EXISTING EXISTING NEW NEW	PIG TRAP PIG TRAP PIG TRAP MUFFLER TANK	N8+10 N9+30 N9+30 N1+00 N11+00	E 1+10 E 2+10 E 2+30 E 2+00 E 1+00
WT-l	EXISTING EXISTING EXISTING NEW NEW	PIG TRAP PIG TRAP PIG TRAP MUFFLER TANK	56+20 56+90 57+20 57+00 56+50	W1+50 W3+04 W3+29 O+00 E1+00

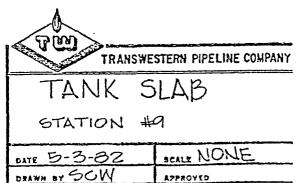

BILL OF MATERIAL


No. Reqd.	Siro	Description	llom No.	Re
1	500 BBL.	Tank, 15'-6" diameter x 16' high, 1/4" thick steel	1	
		plate bottom, 3/16" thick steel side walls & top,		•
		shell & deck complete with standard connections,		
		accessories included are: outside ladder, 8" round		
		thief hatch, 24" x 36" clean-out, 4" connections;		
	· · · · · · · · · · · · · · · · · · ·	2" drain line, 1" rolline connection, 2 sections of		
		36" sight glass (beginning 4" from bottom)		
1	2"	Vent, ANSI 150#, Groth Model 7613	2	
				•
1	2"	Flange, RF, ANSI 150#, threaded	3	
4	2" x 6"	Nipple standard threaded	14	
٠,				
1	6" · =	Flame arrestor, ANSI 150#, Groth Model 7618	5	
	6"	Flange, RF ANSI 150#, threaded	6.	
1	2" x 6"	Reducer, standard, concentric, threaded	. 7	
12	2"	ELL, 90° LR, standard, threaded	8	
1	2"	Valve, gate, ANSI 150#, threaded	9	,
• •		•••••••••••••••••••••••••••••••••••••••		
rox. 250'	2"	Pipe, 2.375" O.D. x 0.154 W.T., SCH 40, threaded	10	
1	2!'	Tee, straight, standard, threaded :	11	
				·
_2	2"	Valve, check, swing, ANSI 150#, threaded	12	

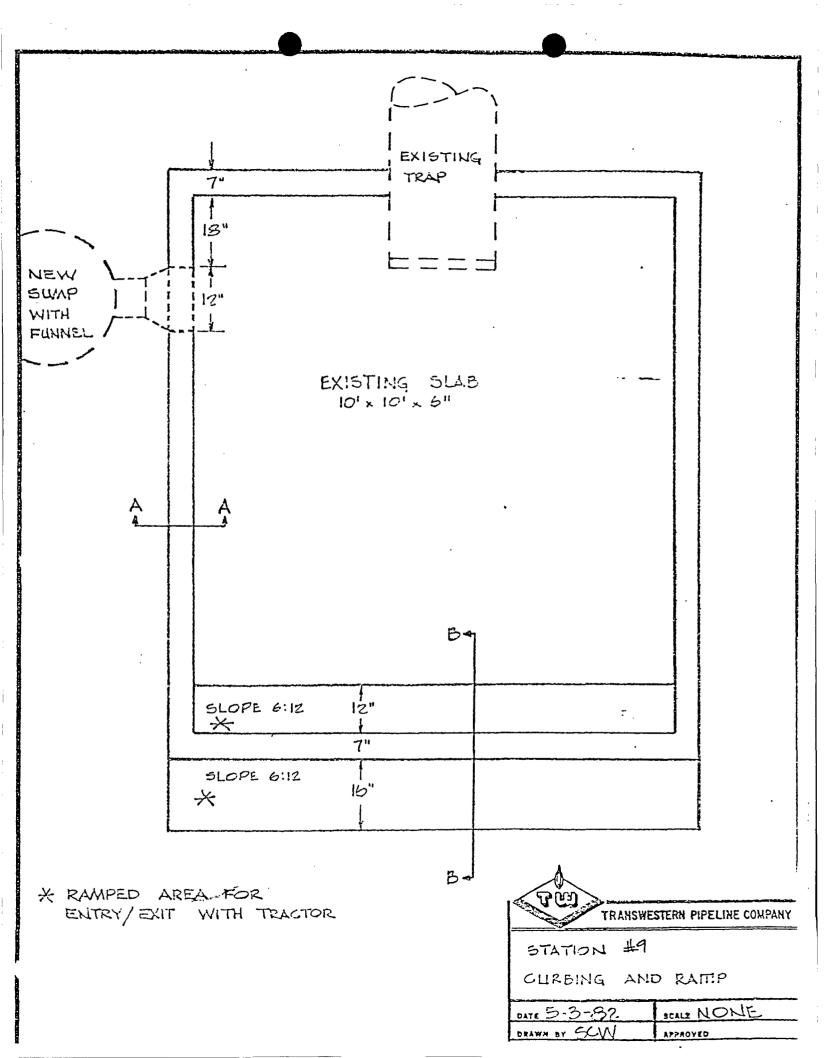

*SHOP FABRICATED FOR FIELD FIT .

BILL OF MATERIAL

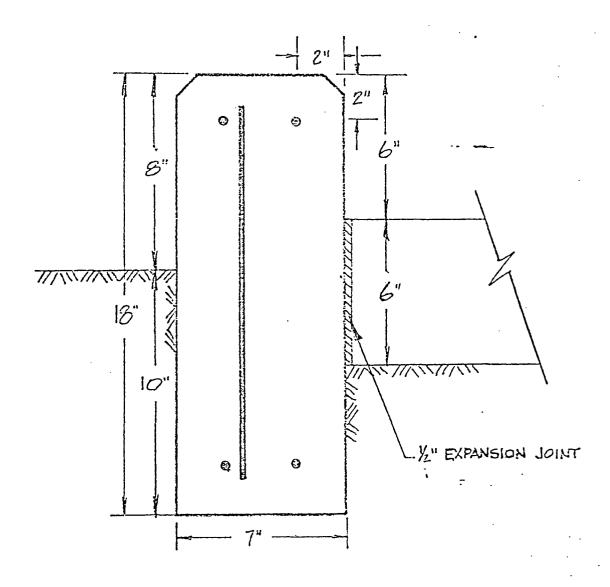

No. Regd.	Siro	Description	Itom No.	A-5
1	10 BBL.	Sump, used steel pipe, 42" O.D. x 0.500 W.T., 84" high	13	Shop
		with 72" below grade, 1/4" steel plate bottom, inlet		Fab.
		opening: welded to part 'C' on funnel channel (4" H x		
		6" W x 10" L welded together), outlet opening: to fit		
		2.375" pipe .		<u>·</u>
1	43" Dia.	Cover, 1/4" steel plate, 1" welded edge, #4 smooth bar	14	Shop
	•	handles . •		Fab.
			·	
1 *	See Drawing	Funnel channel with cover 1/4" steel plate, welded	15	Shop
		joints.		Fab.
				180.
		Part A: Top & bottom 7" x 12"		
		. Sides 6" x 7"		
·		Part B: Moving Clockwise		
		. Slanted top 12" x 6.3" x 6" x 6.3"	•	
	·	Flat bottom 12" x 6" x 6" x 6"		
		Sides 6" x 6.3" x 4" x 6"		
				-
.		Part C: Top & bottom 6" x 10"	1	
·		Sides 4" x 10"		
	·			
• •		Part D: Front - 6" x 20"	·	
		Straps 2" x 7" & 2" x 3 [*]		
		: - Handles Bent #h Smooth Bar		•
				·
2	2"	Pump, Double-Diaphragm	16	



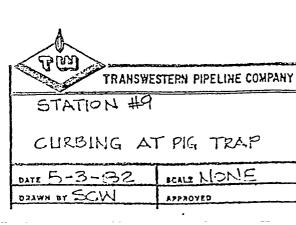
SECTION B-B



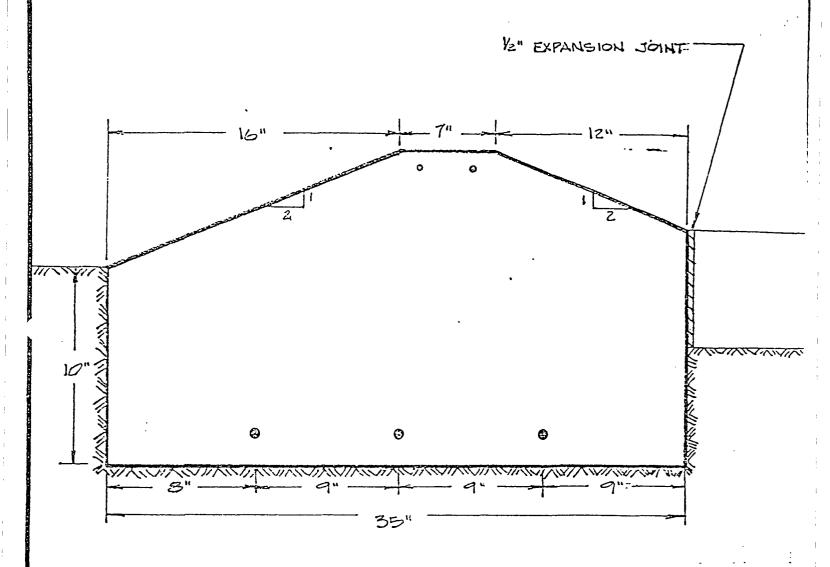
MK DESCRIPTION


- 1 4 #4 REBAR PLACED 8" ON CENTER, HORIZONTAL
- 2 #4 REBAR PLACED 12" ON CENTER, VERTICAL
- 3 #4 REBAR PLACED 24" ON CENTER, HORIZONTAL, 18"LONG
- 4 6x6x % WELDED WIRE FABRIC
- 5 3000 PSI CONCRETE

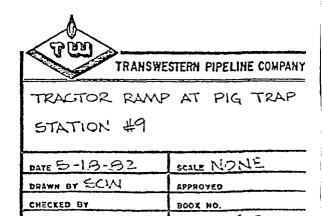
No. Read.	Siro	Description	liom No.	
1	500 BBL.	Tank, 15'-6" diameter x 16' high, 1/4" thick steel	1	
		plate bottom, 3/16" thick steel side walls & top,		
		shell & deck complete with standard connections,		
		accessories included are: outside ladder, 8" round		
		thief hatch, 24" x 36" clean-out, 4" connections,		
	·	2" drain line, 1" rolline connection, 2 sections of		
		36" sight glass (beginning 4" from bottom)		
		•		
1	. 2"	Vent, ANSI 150#, Groth Model 7613	5	
1	2"	Flange, RF, ANSI 150#, threaded	3	
L	2" x 6"	Nipple, standard, threaded	,	
	······································			
1	6"	Flame arrestor; ANSI 150#, Groth Model 7618	5	
. 1				
1 .	6"	Flange, RF, ANSI 150#, threaded	6	
	· . · · ·		·	
1	2" x 6"	Reducer, standard, concentric, threaded	7	
4 .	2"	ELL, 90° LR, standard, threaded	8	
1	. 2"	Valve, gate, ANSI 150#, threaded	9	
			·	
e awing	2"	Pina 2 375" O.D. v. O.15h W.T. SCH hO. threaded	10	
		÷ •		
		•	:	

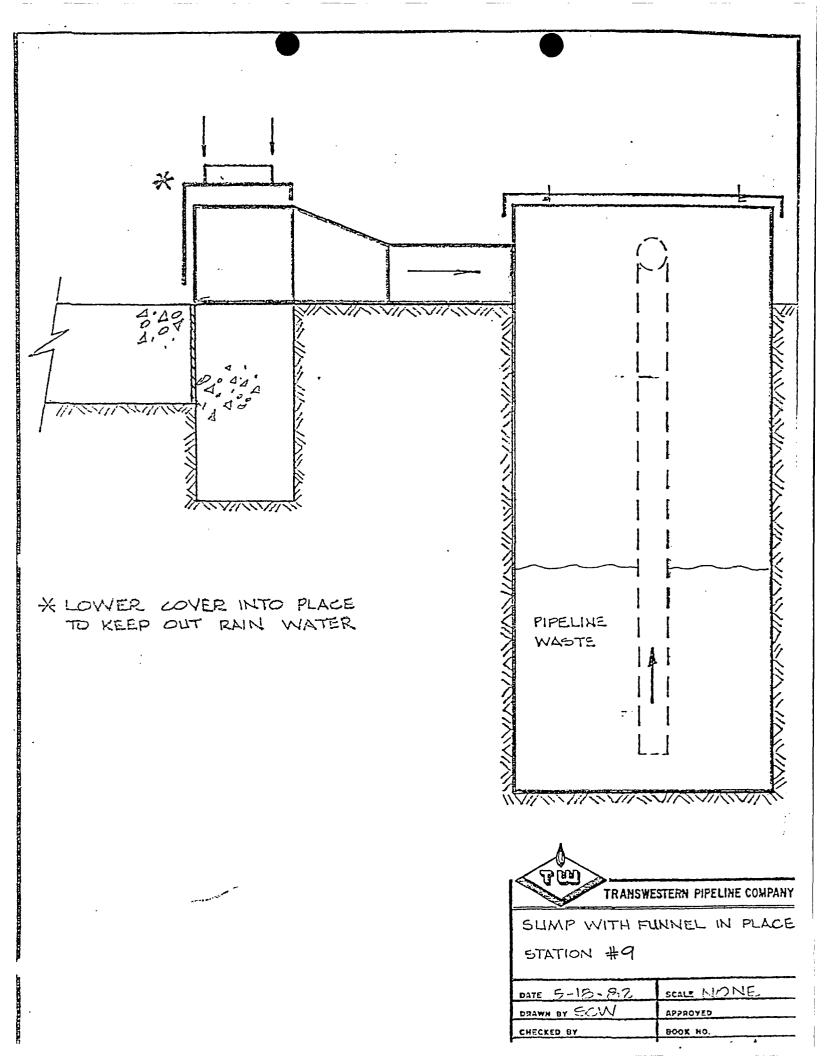


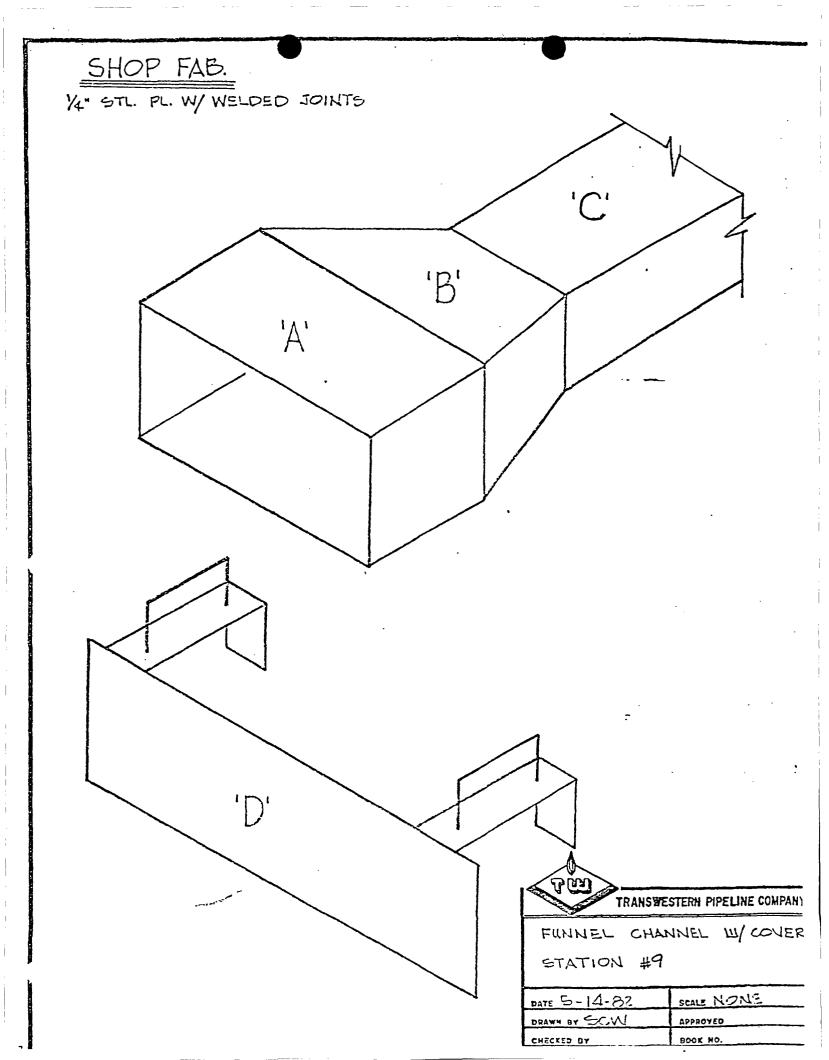
SECTION A-A

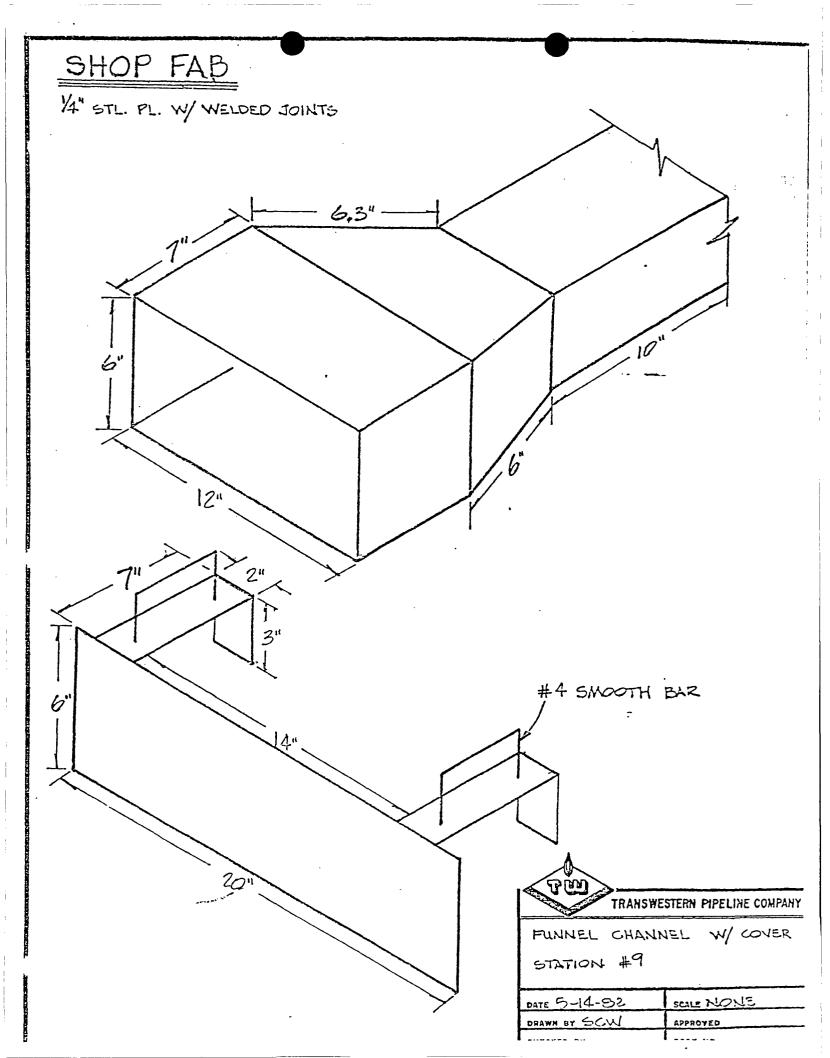


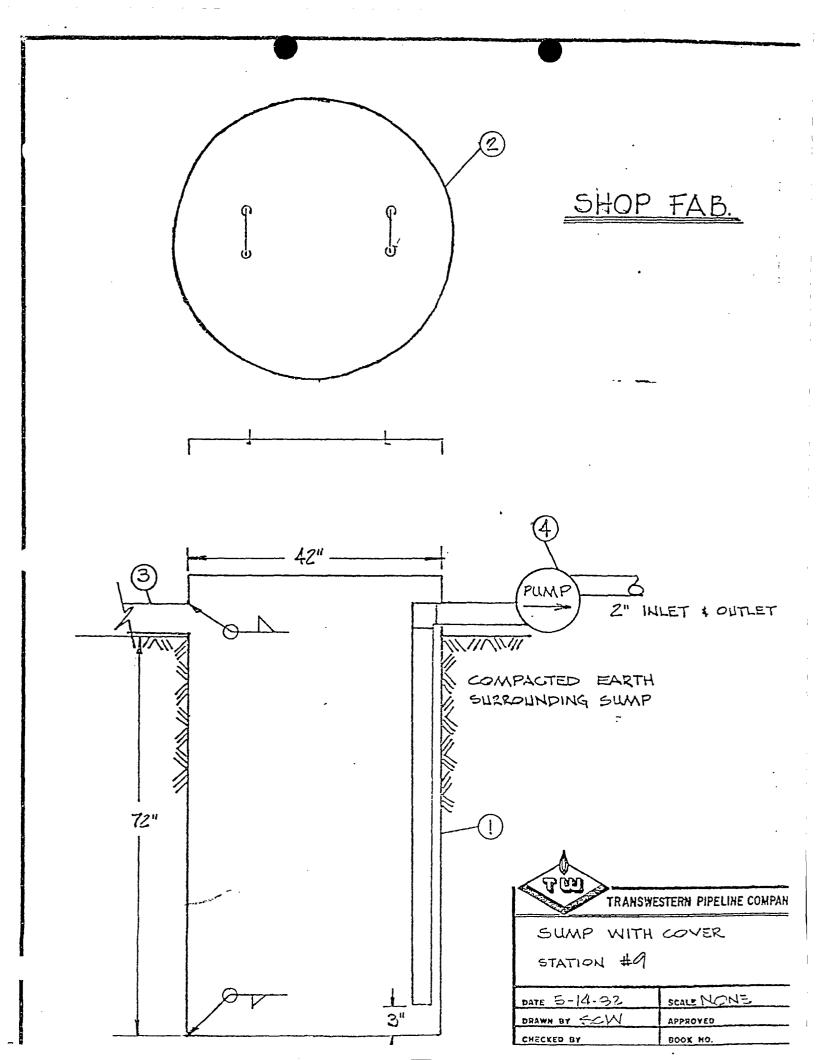
4-#4 REBAR PLACED AS SHOWN, HORIZONTAL #4 REBAR PLACED VERTICALLY 24"
ON CENTER, ATTACHED TO ALTERNATING SIDES

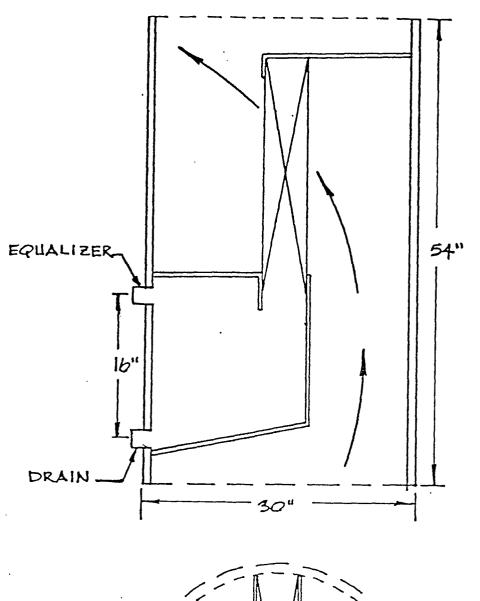

3000 PSI CONCRETE

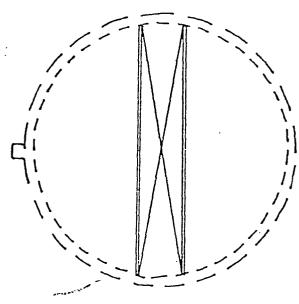



SECTION B-B




2 #4 REBAR PLACED IN TOP AS SHOWN 3 #6 REBAR PLACED IN BOTTOM AS SHOWN 3000 PSI CONCRETE



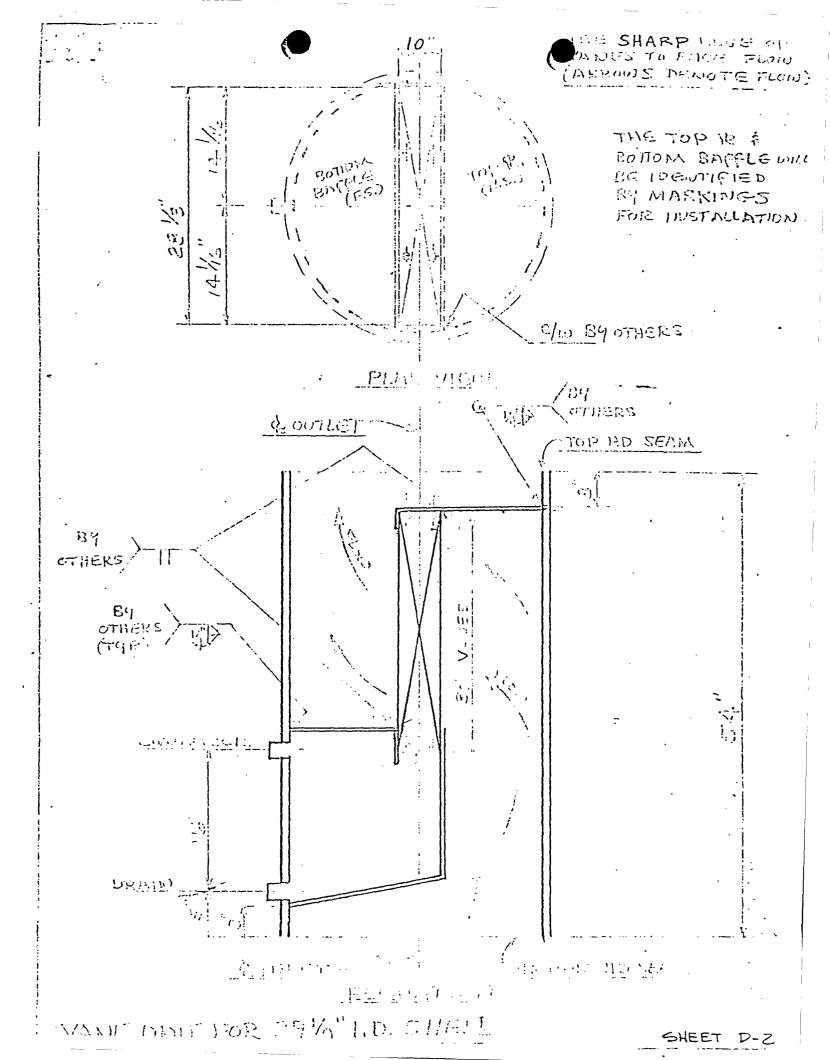


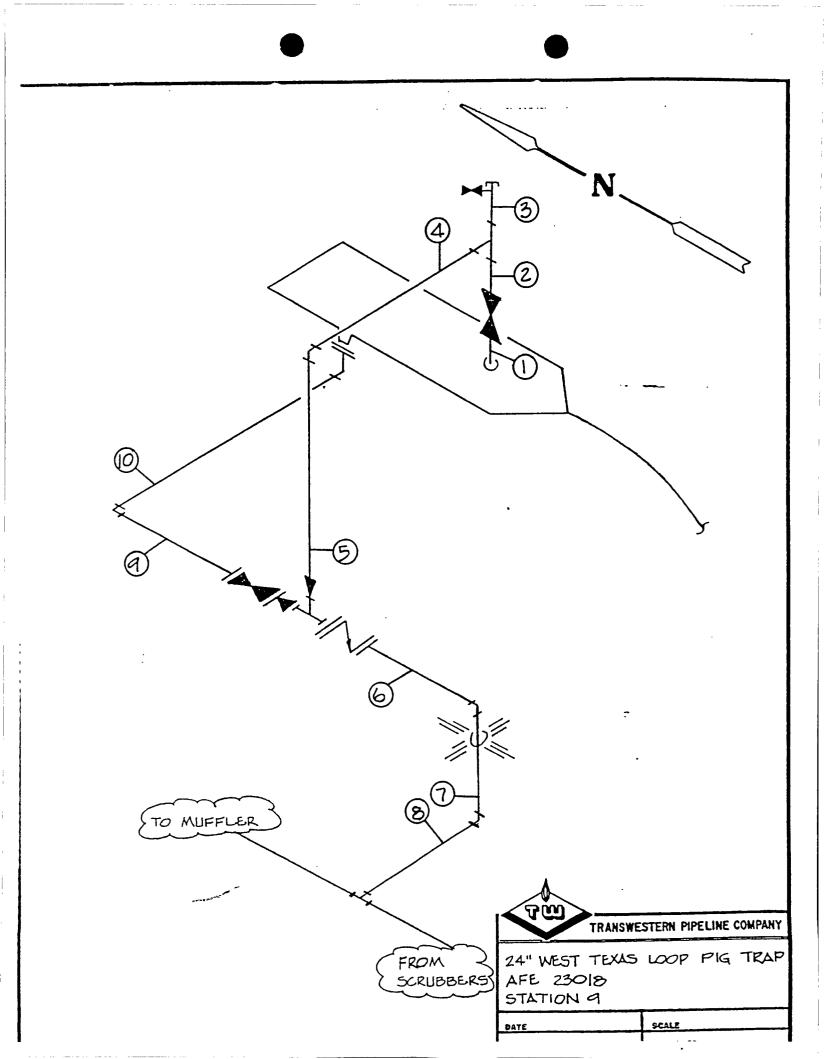
*SHOP FABRICATED FOR FIELD FIT -

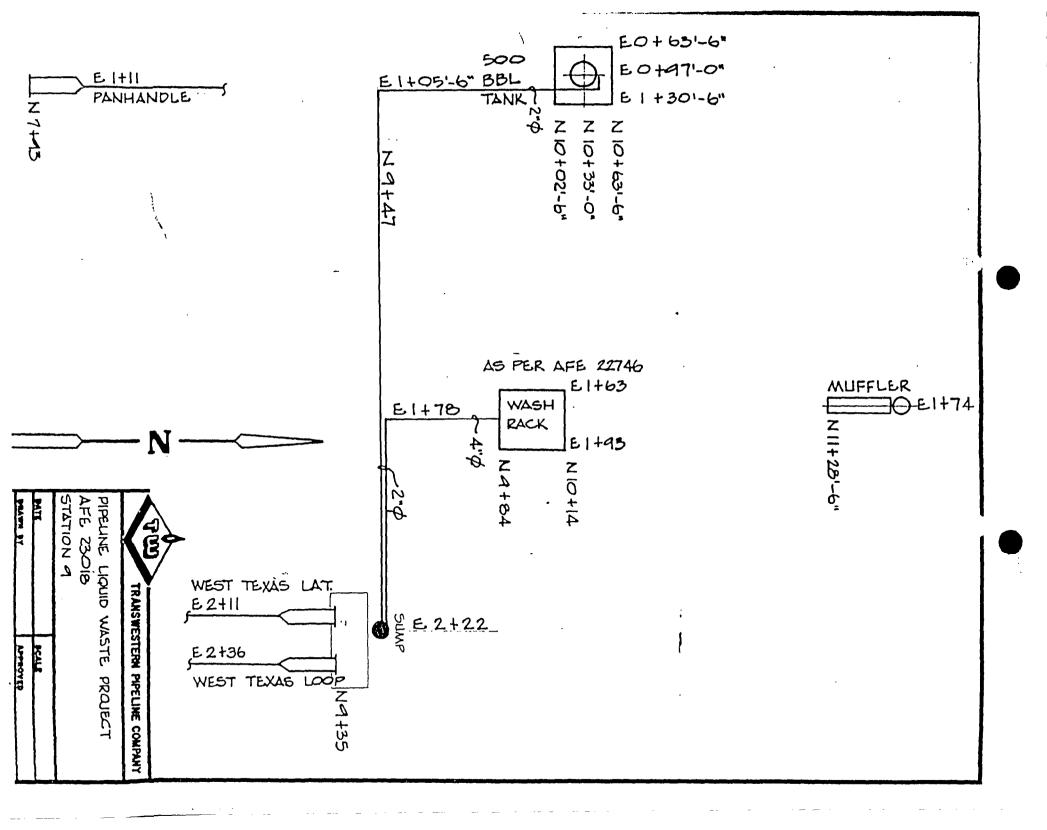
BIL	. L	0	F.	М.	Α'	۲ ۱	FI	? 1	A	ŧ

No. Reqd.	Sizo	Description	liom No.	Rer
1	10 BBL	Sump, used steel pipe, 42" O.D. x O.500 W.T., 84" high	1	Shop
		with 72" below grade, 1/4" steel plate bottom, inlet		Fab.
		opening: welded to part 'C' on funnel channel (4" н х		
		6"W x 10"L welded together), outlet opening: to fit		
		2.375" pipė		
1	43" Dia.	Cover, 1/4" steel plate, 1" welded edge, #4 smooth bar	2	Shop
	·	handles		Fab.
				<u>.</u>
<u></u> *	See Drawing	Funnel channel with cover 174" steel plate, welded	3	Shop
		ioints.		Fab.
			•	
		Part A: Top & bottom 7" x 12"		
• •		: Sides : 6" x 7"		
	·			
		Part B: Moving Clockwise		
		Slanted top 12" x 6.3" x 6" x 6.3"	•	
		Flat bottom 12" x 6" x 6" x 6"		
		Sides 6" x 6.3" x 4" x 6"		
		Part C: Top & bottom 6" x 10"		
		· Sides 4" x 10"		
		Part D: Front 6" x 20"		
		Straps 2" x 7" & 2" x 3"		
·		Handles Bent #4 Smooth Bar	· ·	
1	2"	Pump, Double-Diaphragm	: 4	

PER BEAL EQUIP. CO.


TRANSWESTER


TRANSWESTERN PIPELINE COMPANY


STATION 9

MIST EXTRACTOR

DATE 3-10-82	SCALE NONE
DRAWN BY SCIL	APPROYED
CHECKED BY	BGOK NO.

TEXAS EASTERN TRANSMISSION CORPORATION OPERATING DEPARTMENT MAINTENANCE JOB COMPLETION REPORT

	District A TTT	Easter . Wester	
Field Office	District III Roswell, N.M.	Date of Report 11-18-83 Maintenance Job No. 3-83	-24
Title:		ilding & Main Engine Room Building Roof Drains	
	Install New Roof Coat	ing on Auxiliary & Main Engine Room Building Ro	ofs
Location:	Compressor Station No	. 9 - Roswell, New Mexico	
Date Started	10-25-83	Date Completed 11-9-83	
Performed by	Jack Whisler, Inc.		
Remarks:			
Inventory by:	: Frank Smith	Date11-18-83	
		EX, S	
	•	- 707	
	ch drawings with bill of material ring removals, installations, reloca		
	and other alterations as approved		
unde	er this job n umber.	1	
		Signed: Francis M. Cox	
		Supervisor Ch. /	/ ₁
		Signed: L. G. Langston J. Lifern	pto
		· · · · · · · · · · · · · · · · · · ·	Y
Distribution:	Orig. Alan Bond		
orstriogtion.	A.B. Jarnagin	ORE MAL MAILED	
	Larry Langston John Kotarski		
	Lowell Davina	DEC - 6 1983	
	Francis Cox	TO HOUSYLM OFFIC	CE

Form 306 PL (Rev. 12-75)

TEXAS EASTERN TRANSMISSION CORPORATION OPERATING DEPARTMENT MAINTENANCE JOB

Eastern □ Western XX

Field Office District III - Roswell, New Mexico .	Maintenance Job No. 3-83-24
Title: Re-route Auxiliary Building & Main Engi	ne Room Building Roof Drains &
Install New Roof Coating on Auxiliary & Main	Engine Room Building Roofs
Location: Compressor Station No. 9 - Roswell, New	Mexico
Description of Work (Including "Purpose and Necessity"): Re-route e	xisting roof drains from the
sump tanks in the auxiliary building & the main en spout to the ground to prevent rain water from bei	gine room building and down-
waste storage tank. New downspouts to be 4" dia., auxiliary building & 6" dia., Sch. 80, PVC pipe on	Sch. 80, PVC pipe on the
Install concrete curb to prevent water from spilli & piping. Apply new roof coating to the auxiliary	ng against existing equipment building roof & the main
engine room building roof to repair existing leaks	•
Estimated Starting Date Oct. 15, 1983 Estimated	Completion Date Nov. 15, 1983
Estimated Costs: Material \$ Co	o. Installation \$
Contract Services and Rental Equipment \$ 9,700.00	Total \$ 9,700.00
Budgeted: Yes □ No Ø Bud	dget Estimate \$O-
Drawing Number N/A wa	
Requested by: francis m. 5/ Date	10-10-83
Approved: Approved: Date	10-17-83
Approved:Date	
Authorized: Date	
Remarks: Request a "DMJ" Number for the above ment	oned work.
In 1983 Budget: No	
Distribution: Orige/ Larry Langston	
A B Jarnagin	
Francis Cox Lowell Davina	
LOVELL DAVIDA	

1204 Rev. 3-81

TEXAS EASTERN TRANSMISSION CORPORATION AND SUBSIDIARIES

COMPLETION REPORT

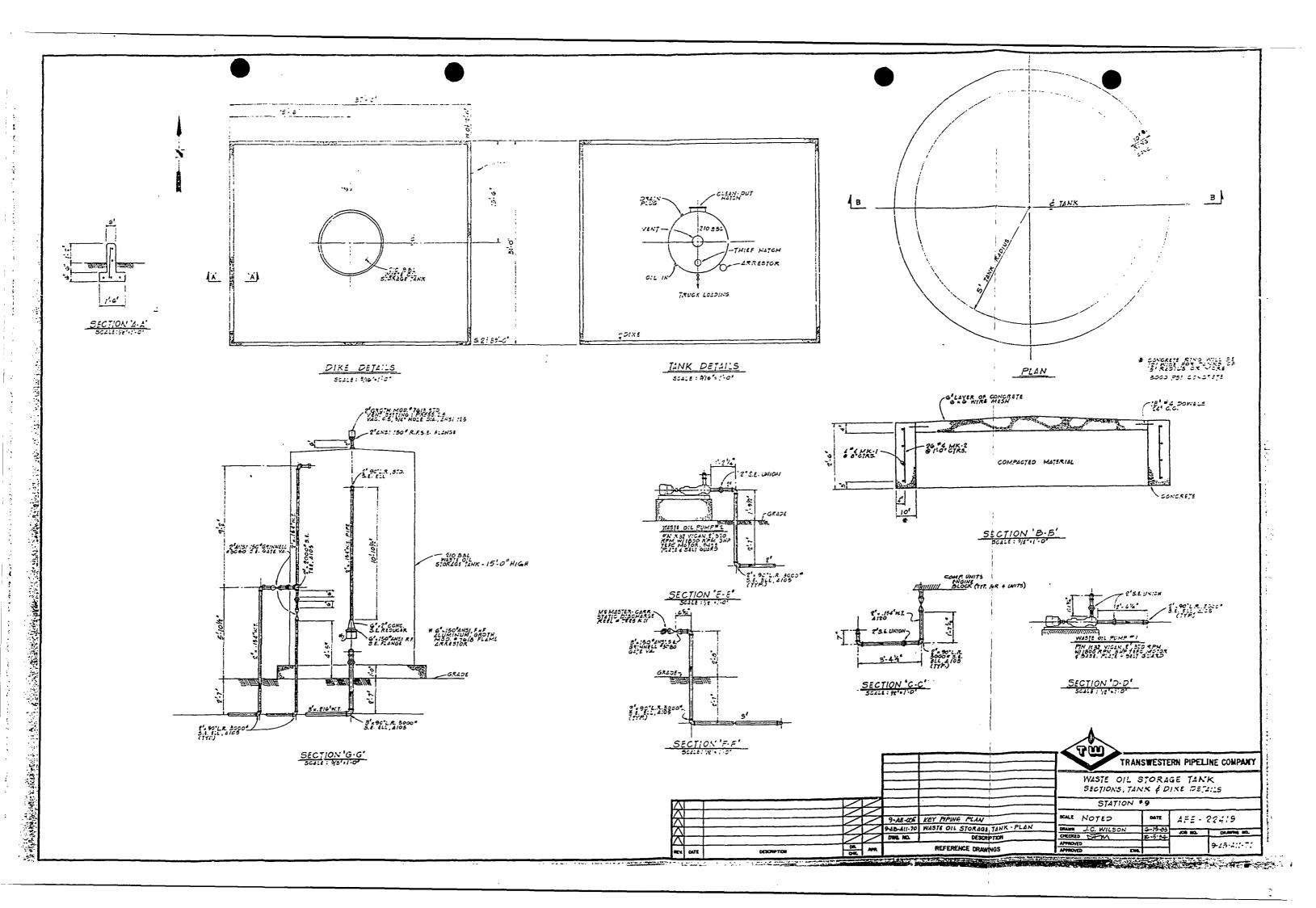
	1-01-109		n ripeline com Impany Name	Dany AFE No	22419
7 (0), (10),	567-544 NONE	Co	impany ivame		00
Docket/Proj. No. Code No.	NOIN!	Gas Western	10/14/80	Company -05	No. <u>D9</u>
Code No.			t or Cost Center		
[X] Property		Research & Duh	er Work Proper	1	
noitichA	Investigation D	evelopment	Retirem	ent	l
TITLE					
I.	nstall Waste Oil	Storage Tank		Rosue	ll Manager
LOCATION					į
L	ompressor Statio	n No. 9 - Rasi	Jell, N.H. G.P	.L.Loc 30-1-7991	District III
_	9-26-81		6-19-92	6	-18-82
Date Started	7 20 01	Date in Service	0-10-02	Date Completed6	-10-02
Related AFE No.	None				
•					
Drawings Attached	d NOIE;				
: :	TO BE SENT A	AT A LATE	DATE.		
Other Ref. Swg's I	(Not Attached) <u>N/A</u>				
	,		•		
					
	MAT	ERIAL OR REC	EIVING REPORTS	3 ISSUED	
					P
See TW-	112				
Jee Tw	-1.12				
					4 100
REMARKS:				₹	1
*	···				
			Ī	ORIGINAL MAILS	D \
			1	JUL 2 6 1982	
					1
				TO HOUSTON OF	FICE
				TO HOUSTON	i
Ε	NGINEEHMO SERVIC	CES		OPERATIONS	
Prepared by:		Date:	Prepared by:	6 Saist	Date:
			Erank_Smi	III.	6-25-82
Verified by:		Date:	Verified by:	LeCover	Date: 6-25-82
Manager hant Record		Date:	Francis I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date:
marking or result (100010	•	1	1 光次为	ETT S	7-23-82
Manager Materials Ma	nagement:	Date:	Approved by:		Date:
				- · · · · · · · · · · · · · · · · · · ·	1
George & Common Actor	reaction that said as each	11	Fibris second fi		Deter.

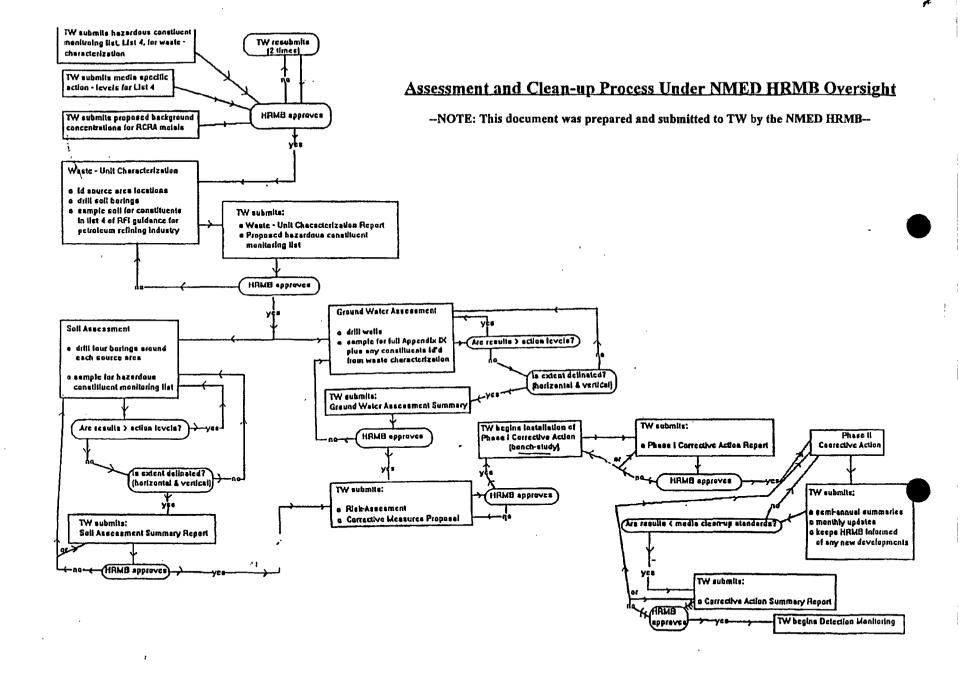
EASTERN OR SUBSIDIARIES INVOICE IN TRIPLICATE TO TRANSUESTERN PIPELINE C ACCOUNTING DEPARTMENT P 0 BOX 2521	TRANSUESTERN PIPELINE COMPANDE P.O. BOX 2018 HUY 285 NORTH ROSUELL, NEW MEXICO 88201 CARE OF FRANCIS COX VENDOR 243900 DOUGH TANK & MANUFACTURING COMPAND 1235 P.O. BOX 1235 TATUM, NH 88247	NO 09-007517)) THIS PURCHASE ORDER NUMBER MUST BE SHOWN ON INVOICE, TAG, BOX, BILL OF LADING OR EXPRESS RECEIF DATE OF ORDER: DATE REQUIRED
SHIP PREPAID AND ADD X ALLOW VIA AFEI NO. PROJECT DESCRIPTION TO I BM		PROJECT NO. JOB NO. M&S ACCT.
	DESCRIPTION DESCRIPTION TANK, - 10 FT. DIA. X 18 FT 1/4" STEEL PLATE BOTTOH, 3/ SXDE WALLS AND TOP DECK CONSTANDARD CONNECTIONS. ONE EACH TO BE DELIVERED TO STA BTATION NO. 9 AND STATION I CHARGE AS FOLLOWS: 1 EA - 367.9 107-8 224-1-5 5-41 1 EA - 567.9 107-8 224-1-9 5-41	7. HIGH, 2614.00 05-07-01 1 716" STEEL PLETE UITH (1) TANK ATION NO. 8, 10. UT-1 49.12-9
REQUISITION NO. THE CONTROL OF THE C	PRANCIS MATOOX JBUYER VIECLATHING AT STA NO. 38.5 AND UT-11	S NACE OF THE STATE
ACCPANOSES AND ACCOUNT DIVINGENERAL UNIT DIVINGE	ACCOUNT NUMBER MAJOR MANORICE COST & DEBITY & CREDITY ELEMA TO THE TOTAL OF THE	APPROVALS IF COLLECT ROW PAID IF COLLEC

Three No. 1135

Texas Lastern Transmission Corporation and Subsidiaries

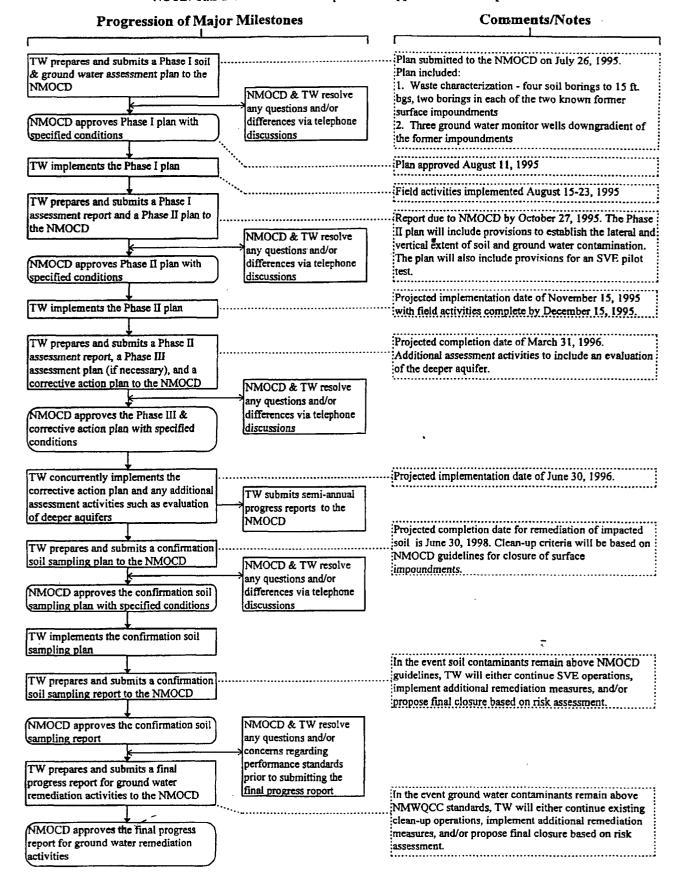
AUTHORIZATION FOR EXPENDITURES


E. E. No.	T-81-1	.09 <u>Tra</u>	nswestern	Pipeline Comp	any AFE	No. 22419
Prelim. Ref. No	o. <u>567–544</u>	4	Company	Name		
Docket/Proj. N	o. <u>NONE</u>	- ·	. Western	10/14/80	Com	npany No09
Code No.				Appropriation Re		
	Dealinian.	Research &				7 Oth (C 1)
X Property Addition	Preliminary Investigation	Development	Other Work	Advances For Gas	Property Retirement	Other (Specify)
TITLE	Install W	aste Oil Sto	race Tank		Postra	ll Operations
LOCATION	INSTALL W	asce off ste	G G	. P. L. Loc.	30-1-7119	TI OPERACIONS
LOCATION	Compresso	r Station No		ell, New Mexi		ict III
DESCRIPTIO	N					
and fi		used oil for			to include postation No.	
FERC 1	-12 ANALYSIS	5 04				
Relate	d A. F. E. I	Number			NONE	
Budget	"Job Repor	t" Item No.	238	•	OPERATIONS A.	F. E.
PURPOSE &						
in Dis	trict III.			poses at Stat Frank Smith	ion 9 and fie:	Ld locations
Work to Begin		4 /81				Company Personnel
		4 /01		Work	to be Done by:	
Work to be Com	pleted	5 / 81	_			Contractor ☐
Material Costs		s <u>12,500</u>	A		r Compiraller Division	Use Only
Installation Costs		$\frac{s}{s} = \frac{7,500}{20,000}$		Status of Appr		F 000 000
Sub Total Deduct: Interest		·		Total App	ropriation revious AFE's	s 5,882,000 s 1,357,630
Jodani. Imerest		\$			his AFE	s 20,000
AUTHORIZE	TNUOMA C	s 20,000		Remaining App	· · · · · ·	3 4,504,370
Prepared by:		bad o	ate:			Date:
-1 Dolan	1 1	10	2/5/82			
Verified by:	O H	J.T D.	ale:	Tax Dept. Review by	(: ;	Date:
1 //16	Total V	, ,	8.81	KATITA	110100	3-23-81
Engineering Appr	musi.	mil	- 12. 0/	Accounting Dept, Re-	Wandley AV	
Chilmond Appr	and Elen	e de la constitución de la const	1249	Daniel (Inak It	PR 3-24-41
Group er Division	n Authorization:	June Di	ile:	Comptroller Division	Approval:	Date:


m No. 1135

Texas Dastern Transmission Corporation and Sub-idiaries

AUTHORIZATION FOR EXPENDITURES


E. E. No.		Tra	nswestern	Pipeline Compa	any	AFE N	10. 224	119
Prelim. Ref. No	o. <u>567–544</u>	L	Compar	y Name				
Docket/Proj. N	o	_	••	10/1//00	٥٢	Compa	any No	09
Code No.		· 	Western	10/14/80-				
		Profit or Cos	t Center and	Appropriation Re	eterence No	·.		
Property Addition	Preliminary Investigation	Research &	Other Wo	rk Advances For Gas	Propert Retirem		Other (Specify)
71ddilloll	mreanganen	1 351515						=====
TITLE								====
TITEL	Install Wa	ste Oil Sto	rage Tank		R	oswell	Operat:	ions
LOCATION	Compressor	Station No	0 - Door	all Non Monie	, D	istric	+ TTT	
DESCRIPTION		Station No	. 9 - ROSV	vell, New Mexic	10 D	ISLFIC	r iii	
DESCRIPTION	, V							
and fir		sed oil for		storage tank g purposes at				
Related	i A. F. E. N	umber		N	IONE			
Budget PURPOSE &	"Job Report NECESSITY	" Item No.	238	. 0	PERATIONS	5 A. F.	. E.	
in Dist	rict III.			poses at Stati Frank Smíth	on 9 and	field	locatio	n s
Work to Begin					 		<u> </u>	
		4 /81	_	Work	to be Done by		Company Pe	gradime.
Work to be Comp	pleted	5 / 81					Contractor	ij
Material Costs		\$ 15,000		For	Comptroller D			—— <u>i</u> i
installation Costs		s 5,000		Status of Appro			<u>c 0,7</u>	
Sub Total		\$ 20,000		Total Appro	priation	s		
Deduct: Interest		s		Deduct: Pre	evious AFE's	s		
		00.000		Thi	is AFE	s		
AUTHORIZED	AMOUNT	s <u>20,000</u>		Remaining Appr	optiation	3		
Prepared by:		Dat Dat	e:				Date:	
1106		1	1-1-					
J. F. Thus	the state of the s	12	113/80			RIGINA	MAILE	D
Verified by:	7	Dat	e:	Tax Dept. Review by:	I OF	(IGIIAA	Date:	\ ;
D. 1 + FRET	oplor		8-8/			18N -	9 1980	
Engineering Appro	vål:	Dat	e:	Accounting Dept. Review	ew,by:	JHII	Date:	
							ON OF	FICE
Group er Division	Authorization:	Date	9: :	Comptroller Division A	pprova : TO	HOUS	Date:	
							1	

Assessmen and Clean-up Process Under NMO Oversight

-NOTE: This document does not represent an approved NMOCD process-

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe , New Mexico 87505

September 26, 1995

Mr. Bill Kendrick
ENRON Operations Corp.
P.O. Box 1188
Houston, Texas 77251-1188

RE: MONITOR WELL SAMPLING ROSWELL COMPRESSOR STATION TRANSWESTERN PIPELINE CO.

Dear Mr. Kendrick:

Enclosed you will find the laboratory analytical results of the New Mexico Oil Conservation Division's (OCD) August 22, 1995 monitor well sampling at the ENRON Roswell Compressor Station.

If you have any questions, please call me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist

Environmental Bureau

xc w/enclosure:

Tim Gum, OCD Artesia District Supervisor George Robinson, Cypress Engineering Services Benito Garcia, NMED Hazardous and Radioactive

Materials Bureau

CS SE > 111 8 52

nalytical **Technologies,** Inc.

2709-D Pan American Freeway, NE Albuquerque. NM 87107 Phone (505) 344-3777 FAX (505) 344-4413

ATI I.D. 508434

August 30, 1995

New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505

Project Name/Number: ENRON ROSWELL

Attention: Bill Olsen

On 08/23/95, Analytical Technologies, Inc., (ADHS License No. AZ0015), received a request to analyze aqueous samples. samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to

contact us at (505) 344-3777.

Kimberly D. McNeill

Project Manager

MR:jt

Enclosure

Laboratory Manager

Mitchell Rubenstein, Ph.D.

Analytical **Technologies,** Inc.

CLIENT

: NMOCD

DATE RECEIVED

:08/23/95

PROJECT #

: (NONE)

PROJECT NAME

: ENRON ROSWELL

REPORT DATE

:08/30/95

ATI ID: 508434

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	MW-3	AQUEOUS	08/22/95
02	MW-6	AQUEOUS	08/22/95
03	MW-5	AQUEOUS	08/22/95
04	MW-8	AQUEOUS	08/22/95

---TOTALS---

MATRIX AQUEOUS #SAMPLES

4

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GAS CHROMATOGRAPHY RESULTS

TEST

: PURGEABLE HALOCARBONS/AROMATICS (EPA 601/602)

CLIENT

: NMOCD

ATI I.D.: 508434

PROJECT #

: (NONE)

PROJECT NAME : ENRON ROSWELL

SAMPLE ID. #	CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
	MW-3	AQUEOUS	08/22/95	NA	08/30/95	1
	MW-6	AQUEOUS	08/22/95	NA	08/30/95	1
	MW-5	AQUEOUS	08/22/95	NA	08/30/95	1
PARAMET			UNITS	01	02	03
BENZENE			UG/L	<0.5	<0.5	<0.5
BROMODI	CHLOROMETHANE		UG/L	<0.2	<0.2	<0.2
BROMOFO	RM		UG/L	<0.5	<0.5	<0.5
BROMOME	THANE		UG/L	<1.0	<1.0	<1.0
CARBON	TETRACHLORIDE		UG/L	<0.2	<0.2	<0.2
CHLOROB	ENZENE		UG/L	<0.5	<0.5	<0.5
CHLOROE	THANE		UG/L	<0.5	<0.5	<0.5
CHLOROF			UG/L	<0.5	<0.5	<0.5
CHLOROM			UG/L	<1.0	<1.0	<1.0
DIBROMO	CHLOROMETHANE		UG/L	<0.2	<0.2	<0.2
1,2-DIB	ROMOETHANE (EDB)		UG/L	<0.2	<0.2	<0.2
-	HLOROBENZENE		UG/L	<0.5	<0.5	<0.5
	HLOROBENZENE		UG/L	<0.5	<0.5	<0.5
	HLOROBENZENE		UG/L	<0.5	<0.5	<0.5
	HLOROETHANE		UG/L	<0.2	<0.2	<0.2
	HLOROETHANE (EDC)		UG/L	<0.5	<0.5	<0.5
	HLOROETHENE		UG/L	<0.2	<0.2	<0.2
CIS-1,2	-DICHLOROETHENE		UG/L	<0.2	<0.2	<0.2
TRANS-1	, 2-DICHLOROETHENE		UG/L	<1.0	<1.0	<1.0
1,2-DIC	HLOROPROPANE		UG/L	<0.2	<0.2	<0.2
	-DICHLOROPROPENE		UG/L	<0.2	<0.2	<0.2
TRANS-1	,3-DICHLOROPROPENE		UG/L	<0.2	<0.2	<0.2
ETHYLBE	•		UG/L	<0.5	<0.5	<0.5
METHYL-	t-BUTYL ETHER		UG/L	<2.5	<2.5	<2.5
METHYLE	NE CHLORIDE		UG/L	<2.0	<2.0	<2.0
1,1,2,2	-TETRACHLOROETHANE		UG/L	<0.2	<0.2 D(1)	<0.2
TETRACH:	LOROETHENE		UG/L	<0.5	<0.5	<0.5
TOLUENE			UG/L	<0.5	<0.5	<0.5
1,1,1-T	RICHLOROETHANE		UG/L	<1.0	<1.0	<1.0
	RICHLOROETHANE		UG/L	<0.2	<0.2	<0.2
TRICHLO	ROETHENE		UG/L	<0.2	<0.2	<0.2
TRICHLO!	ROFLUOROMETHANE		UG/L	<0.2	<0.2	<0.2
VINYL C	HLORIDE		UG/L	<0.5	<0.5	<0.5
TOTAL X	YLENES		UG/L	<0.5	<0.5	<0.5
SURROGA'	TES:					
	LOROMETHANE (%)			95	92	96
	ROTOLUENE (%)			102	109	103

D(1)=DILUTED 1X, ANALYZED 08/29/95

GAS CHROMATOGRAPHY RESULTS

TEST

: PURGEABLE HALOCARBONS/AROMATICS (EPA 601/602)

CLIENT

: NMOCD

ATI I.D.: 508434

PROJECT #

: (NONE)

PROJECT NAME : ENRON ROSWELL

ID. # CLIENT I.D. MATRIX SAMPLED EXTRACTED ANALYZED FACTO	SAMPLE : ENRON ROS	METT	DATE	DATE	DATE	DIL.
Quency Q		MATRIX				FACTOR
PARAMETER UNITS BENZENE BENZENE BENGMODICHLOROMETHANE UG/L BEROMODICHLOROMETHANE UG/L BEROMODICHLOROMETHANE UG/L BEROMOFORM UG/L COLO CARBON TETRACHLORIDE UG/L CARBON TETRACHLORIDE UG/L CARBON TETRACHLORIDE UG/L COLO CARBON TETRACHLORIDE UG/L COLO CARBON TETRACHLORIDE UG/L COLO CHLOROFTHANE UG/L COLO CHLOROFORM UG/L COLO CHLOROFORM UG/L COLO CHLOROFORM UG/L COLO CHLOROMETHANE UG/L COLO UG/L COLO CHLOROMETHANE UG/L COLO UG/L UG/L COLO						
BROMODICHLOROMETHANE BROMOMFORM UG/L CARBON TETRACHLORIDE UG/L CARBON TETRACHLORIDE UG/L CARBON TETRACHLORIDE UG/L CALCROBENZENE UG/L CHLOROFORM UG/L CO.5 CHLOROFORM UG/L CHLOROFORM UG/L CHLOROMETHANE	PARAMETER			04	· · ·	
BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE UG/L CHLOROBENZENE UG/L CHLOROETHANE CHLOROFORM UG/L CHLOROFORM UG/L CHLOROFORM UG/L CHLOROMETHANE UG/L CHLOROBENZENE UG/L CHLOROMETHANE	BENZENE		UG/L	4.6		
BROMOMETHANE	BROMODICHLOROMETHANE		UG/L	<0.2		
CARBON TETRACHLORIDE	BROMOFORM		UG/L	<0.5		
CHLOROBENZENE UG/L <0.5 CHLOROETHANE UG/L <0.5 CHLOROFORM UG/L <0.5 CHLOROFORM UG/L <0.5 CHLOROMETHANE UG/L <1.0 DIBROMOCHLOROMETHANE UG/L <0.2 1,2-DIBROMOCHLOROMETHANE UG/L <0.2 1,2-DICHLOROBENZENE UG/L <0.5 1,3-DICHLOROBENZENE UG/L <0.5 1,4-DICHLOROBENZENE UG/L <0.5 1,4-DICHLOROBENZENE UG/L <0.5 1,4-DICHLOROBENZENE UG/L <0.5 1,1-DICHLOROBENZENE UG/L <0.5 1,1-DICHLOROFTHANE UG/L <0.2 1,1-DICHLOROFTHANE UG/L <0.2 1,1-DICHLOROFTHENE UG/L <0.2 CIS-1,2-DICHLOROFTHENE UG/L <0.2 CIS-1,2-DICHLOROFTHENE UG/L <0.2 CIS-1,3-DICHLOROFTHENE UG/L <0.2 CIS-1,3-DICHLOROPROPANE UG/L <0.2 CIS-1,3-DICHLOROPROPENE UG/L <0.2 CIS-1,3-DICHLOROPROPENE UG/L <0.2 CIS-1,3-DICHLOROPROPENE UG/L <0.2 CIS-1,3-DICHLOROFOPENE UG/L <0.2 CIS-1,3-DICHLOROPROPENE UG/L <0.2 CIS-1,3-DICHLOROPROPENE UG/L <0.5 CISTYLBENZENE UG/L <0.5 CHTHYLENE CHLORIDE UG/L <0.5 CISTRACHLOROFTHENE UG/L <0.5 CISTRACHLOROFTHANE UG/L <0.5 CISTRACHLOROFTHANE UG/L <0.5 CISTRACHLOROFTHONE UG/	BROMOMETHANE		UG/L	<1.0		
CHLOROETHANE CHLOROFORM UG/L CHLOROFORM UG/L CHLOROMETHANE UG/L CHLOROMETHANE UG/L CHLOROMETHANE UG/L CHLOROMETHANE UG/L CHLOROMETHANE UG/L CHLOROMETHANE UG/L CHLOROBENZENE UG/L CHLOROBENZENE UG/L CHLOROBENZENE UG/L CHLOROBENZENE UG/L CHLOROBENZENE UG/L CHLOROBENZENE UG/L CHLOROMETHANE UG/L CHLORO	CARBON TETRACHLORIDE		UG/L	<0.2		
CHLOROFORM CHLOROMETHANE CHLOROMETHANE UG/L 1,2-DIBROMOCHLOROMETHANE 1,2-DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,3-DICHLOROETHENE 1,1-DICHLOROETHENE 1,1-DICHLOROETHENE 1,1-DICHLOROETHENE 1,1-DICHLOROPROPANE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPENE 1,2-DICHLOROPROPENE 1,2-DICHLOROPROPENE 1,1,2-DICHLOROPROPENE 1,1,2-DICHLOROPROPENE 1,1,2-DICHLOROPROPENE 1,1,2-DICHLOROPROPENE 1,1,2-DICHLOROPROPENE 1,1,2-DICHLOROPROPENE 1,1,2-DICHLOROPROPENE 1,1,1-TRICHLOROETHANE 1,1,2-TETTRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,2-TRICHLOROETHANE 1,2-TRICHLOROETHANE 1,2-TRICHLOROETHANE 1,2-TRICHLOROETHANE 1,2-TRICHLOROETHAN	CHLOROBENZENE		UG/L	<0.5		
CHLOROMETHANE	CHLOROETHANE		UG/L	<0.5		
DIBROMOCHLOROMETHANE	CHLOROFORM		UG/L	<0.5		
1,2-DIBROMOETHANE (EDB)	CHLOROMETHANE		UG/L	<1.0		
1,2-DICHLOROBENZENE	DIBROMOCHLOROMETHANE		UG/L	<0.2		
1,3-DICHLOROBENZENE	1,2-DIBROMOETHANE (EDB)		UG/L	<0.2		
1,4-DICHLOROBENZENE	1,2-DICHLOROBENZENE		UG/L	<0.5		
1,1-DICHLOROETHANE	1,3-DICHLOROBENZENE		UG/L	<0.5		
1,2-DICHLOROETHANE (EDC)	1,4-DICHLOROBENZENE		UG/L	<0.5		
1,1-DICHLOROETHENE	1,1-DICHLOROETHANE		UG/L	<0.2		
CIS-1,2-DICHLOROETHENE	1,2-DICHLOROETHANE (EDC)		UG/L	<0.5		
### PRANS-1,2-DICHLOROETHENE			UG/L	<0.2		
1,2-DICHLOROPROPANE	CIS-1,2-DICHLOROETHENE		UG/L	<0.2		
CIS-1,3-DICHLOROPROPENE UG/L <0.2 FRANS-1,3-DICHLOROPROPENE UG/L <0.2 ETHYLBENZENE UG/L <0.5 METHYL-t-BUTYL ETHER UG/L <2.5 METHYLENE CHLORIDE UG/L <2.0 L,1,2,2-TETRACHLOROETHANE UG/L <0.2 FETRACHLOROETHENE UG/L <0.5 L,1,1-TRICHLOROETHANE UG/L <0.5 L,1,2-TRICHLOROETHANE UG/L <0.2 FRICHLOROETHENE UG/L <0.2 FRICHLOROETHENE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.5 FOTAL XYLENES UG/L <0.5	TRANS-1,2-DICHLOROETHENE		UG/L	<1.0		
### TRANS-1,3-DICHLOROPROPENE UG/L	1,2-DICHLOROPROPANE		UG/L	<0.2		
######################################	CIS-1,3-DICHLOROPROPENE		UG/L	<0.2		
METHYL-t-BUTYL ETHER UG/L <2.5	TRANS-1,3-DICHLOROPROPENE		UG/L	<0.2		
METHYLENE CHLORIDE L,1,2,2-TETRACHLOROETHANE UG/L PETRACHLOROETHENE UG/L POLUENE UG/L L,1,1-TRICHLOROETHANE UG/L L,1,2-TRICHLOROETHANE UG/L PRICHLOROETHANE UG/L PRICHLOROETHANE UG/L PRICHLOROFLUOROMETHANE UG/L PRICHLOROFLUOROM	ETHYLBENZENE		UG/L	<0.5		
METHYLENE CHLORIDE UG/L <2.0 L,1,2,2-TETRACHLOROETHANE UG/L <0.2 FETRACHLOROETHENE UG/L <0.5 FOLUENE UG/L <0.5 L,1,1-TRICHLOROETHANE UG/L <1.0 L,1,2-TRICHLOROETHANE UG/L <0.2 FRICHLOROETHENE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.2 FRICHLOROETHENE UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5	METHYL-t-BUTYL ETHER		UG/L	<2.5		
TETRACHLOROETHENE UG/L <0.5 TOLUENE UG/L <0.5 L,1,1-TRICHLOROETHANE UG/L <1.0 L,1,2-TRICHLOROETHANE UG/L <0.2 TRICHLOROETHENE UG/L <0.2 TRICHLOROFLUOROMETHANE UG/L <0.2 VINYL CHLORIDE UG/L <0.5 TOTAL XYLENES UG/L <0.5 UG/L <0.5 SURROGATES: SROMOCHLOROMETHANE (%) 97	METHYLENE CHLORIDE		UG/L	<2.0		
TETRACHLOROETHENE UG/L O.5 L,1,1-TRICHLOROETHANE UG/L UG/L O.2 TRICHLOROETHANE UG/L TRICHLOROETHANE UG/L UG/L O.2 TRICHLOROETHANE UG/L O.2 TRICHLOROFLUOROMETHANE UG/L O.5 TOTAL XYLENES UG/L O.5 UG/L O.7 O.7 O.7 O.7 O.7 O.7 O.7 O.	1,1,2,2-TETRACHLOROETHANE		UG/L	<0.2		
UG/L <1.0 L,1,2-TRICHLOROETHANE UG/L <0.2 FRICHLOROETHENE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.2 FRICHLORIDE UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5	TETRACHLOROETHENE		UG/L	<0.5		
UG/L <0.2 FRICHLOROETHANE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.2 FRICHLOROFLUOROMETHANE UG/L <0.2 FRICHLORIDE UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5 FOTAL XYLENES UG/L <0.5	FOLUENE		UG/L	<0.5		
TRICHLOROETHENE UG/L <0.2 TRICHLOROFLUOROMETHANE UG/L <0.2 TINYL CHLORIDE UG/L <0.5 TOTAL XYLENES UG/L <0.5 SURROGATES: BROMOCHLOROMETHANE (%) 97	1,1,1-TRICHLOROETHANE		UG/L	<1.0		
TRICHLOROETHENE UG/L <0.2 TRICHLOROFLUOROMETHANE UG/L <0.2 TINYL CHLORIDE UG/L <0.5 TOTAL XYLENES UG/L <0.5 SURROGATES: BROMOCHLOROMETHANE (%) 97	1,1,2-TRICHLOROETHANE			<0.2		
TRICHLOROFLUOROMETHANE VINYL CHLORIDE VINYL CO.2 VINYL CHLORIDE VINYL CO.2 VINYL CHLORIDE VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CO.2 VINYL CHLORIDE VINYL CO.2 VINYL CHLORIDE VINYL CO.2 VINYL CHLORIDE VINYL CO.2 VINYL CHLORIDE VINYL CO.2 VINYL CHLORIDE VINYL CO.3 VINYL CHLORIDE VINYL CO.3 VINYL CHLORIDE VINYL CO.3 VINYL CHLORIDE VINYL CO.3 VINYL CHLORIDE VINYL CO.3 VINYL CHLORIDE VINYL CHLORI	TRICHLOROETHENE			<0.2		
COTAL XYLENES UG/L <0.5 GURROGATES: BROMOCHLOROMETHANE (%) 97	TRICHLOROFLUOROMETHANE					
SURROGATES: BROMOCHLOROMETHANE (%) 97	VINYL CHLORIDE		UG/L	<0.5		
ROMOCHLOROMETHANE (%) 97	TOTAL XYLENES		•	<0.5		
ROMOCHLOROMETHANE (%) 97	SURROGATES:					
· ·				97		
	TRIFLUOROTOLUENE (%)			104		

GAS CHROMATOGRAPHY RESULTS - QUALITY CONTROL

REAGENT BLANK

TEST : EPA 601/602 BLANK I.D. : 082995 CLIENT : NMOCD PROJECT # : (NONE) PROJECT NAME : ENRON ROSWELL PARAMETER	UNITS	ATI I.D. MATRIX DATE EXTRACTED DATE ANALYZED DIL. FACTOR	: 508434 : AQUEOUS : NA : 08/29/95 : 1
BENZENE	UG/L	<0.5	
BROMODICHLOROMETHANE	UG/L	<0.2	
BROMOFORM	UG/L	<0.5	
BROMOMETHANE	UG/L	<1.0	
CARBON TETRACHLORIDE	UG/L	<0.2	
CHLOROBENZENE	UG/L	<0.5	
CHLOROETHANE	UG/L	<0.5	
CHLOROFORM	UG/L	<0.5	
CHLOROMETHANE	UG/L	<1.0	
DIBROMOCHLOROMETHANE	UG/L	<0.2	
1,2-DIBROMOETHANE (EDB)	UG/L	<0.2	
1,2-DICHLOROBENZENE	UG/L	<0.5	
1,3-DICHLOROBENZENE	UG/L	<0.5	
1,4-DICHLOROBENZENE	UG/L	<0.5	
1,1-DICHLOROETHANE	UG/L	<0.2	
1,2-DICHLOROETHANE (EDC)	UG/L	<0.5	
1,1-DICHLOROETHENE	UG/L	<0.2	
CIS-1,2-DICHLOROETHENE	UG/L	<0.2	
TRANS-1,2-DICHLOROETHENE	UG/L	<1.0	
1,2-DICHLOROPROPANE	UG/L	<0.2	
CIS-1,3-DICHLOROPROPENE	UG/L	<0.2	
TRANS-1,3-DICHLOROPROPENE	UG/L	<0.2	
ETHYLBENZENE	UG/L	<0.5	
METHYL-t-BUTYL ETHER	UG/L	<2.5	
METHYLENE CHLORIDE	UG/L	<2.0	
1,1,2,2-TETRACHLOROETHANE	UG/L	<0.2	
TETRACHLOROETHENE	UG/L	<0.5	
TOLUENE	UG/L	<0.5	
1,1,1-TRICHLOROETHANE	UG/L	<1.0	
1,1,2-TRICHLOROETHANE	UG/L	<0.2	
TRICHLOROETHENE	UG/L	<0.2	
TRICHLOROFLUOROMETHANE	UG/L	<0.2	
VINYL CHLORIDE	UG/L	<0.5	
TOTAL XYLENES	UG/L	<0.5	
SURROGATES:			
BROMOCHLOROMETHANE (%)		107	
TRIFLUOROTOLUENE (%)		108	

GAS CHROMATOGRAPHY - QUALITY CONTROL

MSMSD

: PURGEABLE HALOCARBONS/AROMATICS (EPA 601/602) TEST

: 50843401

MSMSD # : 50843401 ATI I.D. : 508434

CLIENT : NMOCD DATE EXTRACTED : NA

PROJECT # : (NONE) DATE ANALYZED : 08/30/95

PROJECT NAME: ENRON ROSWELL SAMPLE MATRIX : AQUEOUS

REF. I.D. : UG/L DUP SAMPLE CONC SPIKED 왕 DUP PARAMETER SPIKE % REC RESULT SPIKE SAMPLE REC RPD BENZENE <0.5 10 9.3 93 9.5 95 CHLOROBENZENE <0.5 10 9.7 97 10 100 1,1-DICHLOROETHENE <0.2 10 7.5 75 7.9 79 9.7 TOLUENE <0.5 10 9.5 95 97 TRICHLOROETHENE <0.2 10 9.6 96 9.4 94 2

UNITS

(Spike Sample Result - Sample Result) % Recovery = Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = Average Result

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Contract # 96-521.07-040

OIL CONSERVATION DIVISION

LABORATORY SAMPLE RECORD

01 950822 1200 02 950822 1330 03 950822 1445 04 950822 1600	MW-3 NW-6 MW-5 MW-8	22	2	<u>Y</u> /			/	
02 950822 1330		2_	2	1				
03 95082-2 1445	MW-6 MW-5 MW-8							
	MW-5 MW-8	1 -7 1	2					
04 950822 /600	MW-8		2	_ _		_		
		2	2	_		_	ļ	•
							··	
1				_				والمتالة والمراسي المستشفرة والمستورات والمستورة والمستورة والمتالة والمستورة والمستورة والمستورة والمستورة
		, 				 -		
			-		 -			
	,				╂╼┼	 -		
					11-			
				_	1-1		·	
				_	1-1			•
				_				
Relinquished by: (5-pressure)	Date / Time Received by: (Signature)		,	SE	ALS I	NTACT	ØYES □ NO	: [Signature]
Relinquished by: (Signature)	Date / Time Received by: (Signature)							: (Signature)
	Date / Time Received for Laboratory 193 1500 Anchowsorka	1	8/2	Date /Tin	u/¢	Remark	old=Y nact=Y /	

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

September 25, 1995

Mr. Bill Olson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

RE: Roswell Compressor Station Transwestern Pipeline Company

Dear Bill,

Enclosed for your review is a copy of the laboratory results for soil and ground water samples collected during implementation of the Phase I Soil and Ground Water Assessment Plan at the Roswell Station. Transwestern's consultant, Daniel B. Stephens & Associates, is preparing a summary report of assessment activities which will also include a summary table of the laboratory results. The summary report will be delivered to your office for review by October 27, 1995.

If you have any questions or comments regarding the enclosed reports, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

EOC Environmental Affairs Manager, Projects Group

gcr/BK

Larry Campbell xc:

TW Operations Technical Support George Robinson Cypress Engineering Services

Roswell, NM 3AC3142

RECEIVED SEP 2 6 1995

Environmental Sureau

Oil Conservation Division

P. O. Box 1188

Houston, Texas 77251-1188

(713) 853-6161

25 8E 119 8 52

Mr. Cornelius Amindyas New Mexico Environment Department Hazardous & Radioactive Materials Bureau 2444 Galisteo St., Bldg. A Santa Fe, NM 87505

RE: Transwestern Pipeline Company Roswell Compressor Station

Dear Mr. Amindyas,

As we discussed during our telephone conversation last week, Transwestern has set a target date of September 15, 1995 to deliver to the NMED HRMB and NMED General Counsel a letter and supporting information for Transwestern's position on the regulatory status of the former surface impoundments at the subject facility.

If you have any questions or comments regarding this issue, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

Projects Group Manager **EOC Environmental Affairs**

gcr/BK

xc: Lou Soldano

ENRON Operations Corp. Legal

EB4779

Frank Smith

ENRON Corp. Legal

EB4844

David Nutt

ENRON Corp. Legal

EB4848

Richard Virtue

Taichert, Wiggins, Virtue, & Najjar

(via fax @ 505-983-8304)

Roger Anderson

NMOCD

2040 S. Pacheco St., Santa Fe, NM 87505

Tracy Hughes

P.O. Box 26110, Santa Fe, NM 87502

NMED General Counsel

P.O. Box 26110, Santa Fe, NM 87502

Teri Davis

NMED HRMB

bc:

Mike Terraso	EOC/OTS/EAD	3AC3119
Bill Janacek	TPC	EB4001
Dave Owen	TPC Technical Operations	Roswell, NM
Laura Kunkel	TPC Technical Operations	Roswell, NM
Larry Campbell	TPC Technical Operations	Roswell, NM
George Robinson	Cypress Engineering Services	3AC3142

OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe , New Mexico 87505

August 11, 1995

CERTIFIED MAIL RETURN RECEIPT NO: Z-765-962-391

Mr. Bill Kendrick
ENRON Operations Corp.
P.O. Box 1188
Pluston, Texas 77251-1188

RE: PHASE I INVESTIGATION WORK PLAN ROSWELL COMPRESSOR STATION TRANSWESTERN PIPELINE CO.

Dear Mr. Kendrick:

The New Mexico Oil Conservation Division (OCD) has completed a review of Transwestern Pipeline Company's (TPC) July 26, 1995 correspondence and July 10, 1995 "PHASE I SOIL AND GROUND WATER ASSESSMENT PLAN FOR ROSWELL COMPRESSOR STATION SURFACE IMPOUNDMENTS". These documents contain TPC's proposed work plan for additional soil and ground water contamination investigations at the Roswell Compressor Station.

The above referenced work plan is approved with the following conditions:

- 1. All monitor wells will be constructed with a minimum of 15 feet of well screen and will be installed with at least 10 feet of well screen below the water table and 5 feet of well screen above the water table.
- 2. All wastes generated will be disposed of only at sites approved by the OCD.
- 3. TPC will submit a report on the investigation to the OCD by October 27, 1995. The report will contain:
 - a. A description of all activities which occurred during the investigation, conclusions and recommendations.
 - b. A summary of the laboratory analytic results of soil samples from the boreholes and water quality sampling of the monitor wells.

Mr. Bill Kendrick August 11, 1995 Page 2

- c. A water table elevation map using the water table elevation of the ground water in all monitor wells.
- d. A geologic log for each borehole and monitor well and as built well completion diagrams for each monitor well.
- 4. The OCD defers comment at this time on modifying the ground water monitoring schedule from quarterly to annual after a one year period.
- 5. TPC will notify the OCD at least 48 hours in advance of all scheduled activities such that the OCD has the opportunity to witness the events and/or split samples.
- 6. All original documents submitted for approval will be submitted to the OCD Santa Fe Office with copies provided to the OCD Artesia District Office.

Please be advised that OCD approval does not relieve TPC of liability should the investigation activities determine that contamination exists which is beyond the scope of the work plan, or, if the activities fail to adequately determine the extent of contamination related to TPC's activities. In addition, OCD approval does not relieve TPC of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please call me at (505) 827-7154.

Sincerely,

William C. Olson

Hydrogeologist

Environmental Bureau

xc: Tim Gum, OCD Artesia District Supervisor George Robinson, Cypress Engineering Services, Inc. Benito Garcia, NMED Hazardous and Radioactive Materials Bureau

٠,

Z 765 962 391

Receipt for
Certified Mail
No insurance Coverage Provided
Do not use for International Mail
(See Reverse)

(266 Menerae)			
	Sent to		
	Street and No.		
	P.O., State and ZIP Code		
	Postage	\$	
	Certified Fee		_
	Special Delivery Fee		
	Restricted Delivery Fee		
	Return Receipt Showing to Whom & Date Delivered		
	Return Receipt Showing to Whom, Date, and Addressee's Address		
	TOTAL Postage & Fees	\$	
	Postmark or Date		
Ē			
5			
Ĺ			

Fold at line over top of envelope to the right of the return address

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

July 26, 1995

Mr. Roger Anderson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505 RECEIVED

JUL 3 1 1995

Environmental Bureau Oil Conservation Division

RE: Roswell Compressor Station
Transwestern Pipeline Company

Dear Roger,

Enclosed for your review is a copy of the Phase I Soil and Ground Water Assessment Plan for the subject facility. Transwestern has tentatively scheduled to initiate field activities on July 31, 1995.

If you have any questions regarding this work plan, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

EOC Environmental Affairs Manager, Projects Group

gcr/BK

are ochseat — un division

P. O. Box 1188

Houston, Texas 77251-1188

(713) 853-616[75] 111 31 1111 8 52

July 26, 1995

Ms. Barbara Hoditschek New Mexico Environment Department Hazardous & Radioactive Materials Bureau 525 Camino de Los Marquez P.O. Box 26110 Santa Fe, NM 87502

Comments to the HRMB Modified Closure Plan for the Former Surface Impoundments at the Transwestern Pipeline Company Roswell Compressor Station

Dear Ms. Hoditschek,

Enclosed is the HRMB modified version of the closure plan dated July 13, 1995 with Transwestern's comments marked on the plan in blue ink.

These comments were prepared and submitted as requested by the HRMB in a cooperative effort to continue to move forward with the assessment and remediation of subsurface impacts at the Roswell Station. However, Transwestern continues to maintain that there is considerable uncertainty regarding the regulatory status of the former surface impoundments. In an effort to resolve this issue, Transwestern has obtained the services of outside legal counsel located in Santa Fe. Transwestern's counsel is currently involved in discussions with the NMED's General Counsel regarding this issue. In light of the ongoing discussions, Transwestern strongly urges the HRMB to postpone the public comment period until after this issue is resolved. In the meantime, Transwestern will move forward with plans to implement most aspects of the "Waste and Unit Characterization" portion of the modified closure plan in order to avoid any more delays in assessment activities. These activities are tentatively scheduled to start August 7, 1995. As stated in the July 24, 1995 letter from Transwestern's counsel to NMED's General Counsel, Transwestern representatives are available to meet with NMED to discuss Transwestern's ongoing investigation of the site.

If you have any questions regarding the comments presented in this letter, please contact me at (713) 646-7644, and for questions regarding comments made to the modified closure plan, please contact George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

Projects Group Manager **EOC Environmental Affairs**

gcr/BK

xc: Lou Soldano Frank Smith

ENRON Operations Corp. Legal

Houston, TX

David Nutt

ENRON Corp. Legal

Houston, TX

ENRON Corp. Legal

Houston, TX

Richard Virtue Roger Anderson Taichert, Wiggins, Virtue, & Najjar **NMOCD**

Santa Fe, NM

Tracy Hughes

NMED General Counsel

Santa Fe, NM Santa Fe, NM

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

July 12, 1995

Mr. Roger Anderson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505 JUL 1 4 1995

Environmental Bureau
Oil Conservation Division

RE: Roswell Compressor Station
Transwestern Pipeline Company

Dear Roger,

Enclosed for your review is a copy of the Phase I Soil and Ground Water Assessment Plan for the subject facility. Transwestern has tentatively scheduled to initiate field activities on July 31, 1995.

If you have any questions regarding this work plan, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

EOC Environmental Affairs Manager, Projects Group

gcr/BK

xc: Barbara Hoditschek

NMED HRMB

Santa Fe, NM

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

June 30, 1995

Ms. Barbara Hoditschek New Mexico Environment Department Hazardous & Radioactive Materials Bureau 525 Camino de Los Marquez P.O. Box 26110 Santa Fe, NM 87502

RECEIVED

JUL 0 3 1995

Environmental Bureau Oil Conservation Division

Notice of Soil and Ground Water Sampling Activities

Transwestern Pipeline Company Roswell Compressor Station

Dear Ms. Hoditschek,

The purpose of this letter is to notify the NMED HRMB that Transwestern Pipeline Company will implement a self-directed soil and ground water assessment plan at the subject facility as indicated in our previous correspondence. Field activities are currently scheduled to start on Monday, July 17, 1995. Representatives of the NMED HRMB are welcome at the site during these activities to witness sample collection procedures and/or to collect split samples.

The objective of the soil and ground water assessment plan is to identify waste constituents of concern and their respective maximum concentrations in both soil and shallow ground water. This will be accomplished by the collection and analysis of soil samples collected from within the areas of the two former surface impoundments and the collection and analysis of ground water samples collected from the uppermost aquifer.

In regard to the collection of soil samples, four soil borings will be advanced within the boundaries of the two former impoundments to a total depth of about 15 feet below ground surface. Two borings will be located within the boundary of each impoundment (diagram attached). One soil sample will be collected from near the bottom of each soil boring.

In regard to the collection of shallow ground water samples, three soil borings will be drilled at a location hydraulically downgradient of the former impoundments as indicated on the attached diagram. Each boring will be drilled to a depth of approximately 65 feet below ground surface. Each soil boring will subsequently be completed as a two inch diameter monitor well.

Field activities are anticipated to be completed within six working days.

Sincerely,

Bill Kendrick

Projects Group Manager **EOC Environmental Affairs**

xc: Lou Soldano Frank Smith

David Nutt

Richard Virtue Roger Anderson ENRON Operations Corp. Legal

ENRON Corp. Legal

ENRON Corp. Legal

Taichert, Wiggins, Virtue, & Najjar NMOCD

Houston, TX

Houston, TX Houston, TX

Santa Fe, NM

Santa Fe, NM

Metal Storage Building W 4+00 • MW-6 Fire Fire W 2+00 Areo House North Looding MW-5 Dock Storage Area • SG-09-358 Note: These areas 04-00 Condensate Bldg. SG 91 P9 GS-349 SG 349 MW-2 BH-10 • BH-11 • Wosh Rock SG 360 SG-09-360 P RB-6 E 2+00 West Texas SB-1A-RW-1 MW-1 (Moin Line) Pig Receiver MW-1B S**997**61 P9/OS-370 . OS BH-5 E 4+00 0S BH-6 OS BH-8 • SC-09+337 OS BH-7 1 6100 Note: Due to uncertainty regarding the existence of potential source area, P9-0\$-377 soil borings will be arilled on a grid pattern as shown and soil samples selected from the two most highly imported borings for Idboratory analysis. Explanation Proposed Soil Boring _acations ROSWELL COMPRESSOR STATION Proposed Phase I Soil Boring Locations Previous Soil Baring Locations

100 K-100

DANIEL B. STEPHENS & ASSOCIATES, INC.

Figure 4—1

RECE VED OPERATIONS CORP.

105 JUV 15 1117 8 52 P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

May 30, 1995

VIA FEDERAL EXPRESS - PROOF OF DELIVERY REQUESTED

Ms. Barbara Hoditschek
New Mexico Environment Department
Hazardous & Radioactive Materials Bureau
525 Camino de Los Marquez
P.O. Box 26110
Santa Fe, NM 87502

RE: Summary for the March 30, 1995 meeting between TPC and the NMED HRMB - Transwestern Pipeline Company (TPC) Compressor Station No. 9, Roswell, New Mexico

Dear Ms. Hoditschek,

The purpose of this letter is twofold: 1) to summarize TPCs current understanding of what was discussed and/or resolved during our March 30, 1995 meeting, and 2) to present additional comments relevant to these issues.

Present at the meeting were the following:

Representing TPC:

Bill Kendrick ENRON Operations Corp. (TPC's parent company)

George C. Robinson Cypress Engineering Services
Kathleen OReilly Cypress Engineering Services

Jeff Forbes Daniel B. Stephens & Associates

Representing NMED HRMB:

Barbara Hoditschek NMED HRMB Ron Kern NMED HRMB Teri Davis NMED HRMB

Cornelius Amindyas NMED HRMB

The following is a summary of each issue discussed along with any other pertinent comments made during the discussion. In addition to the summary of what was discussed during our meeting, we have included additional comments relevant to each issue.

1. Constituent monitoring list and analytical methods for waste characterization

Discussion Summary

Teri Davis has requested that the monitoring list include those constituents listed for petroleum refining in List 4 of RFI guidance. George Robinson and Jeff Forbes suggested the list include the volatile organic compounds normally reported for analysis by EPA Method 8240, semi-volatile organic compounds normally reported for analysis by Method 8270, PCB compounds by Method 8080, the seventeen Appendix IX metals, cyanide, and sulfide. It was agreed that TPC would submit a table of constituents comparing each suggested monitoring list and the rationale for inclusion or exclusion of each constituent.

Additional TPC Comments

TPC is in receipt of the NMED's letter dated April 28, 1995, requesting, among other items, a waste unit characterization constituent monitoring list. This list has been prepared and submitted to the NMED attached to a transmittal letter dated May 10, 1995. This list includes all constituents listed in the RFI guidance "List 4" with the exception of three volatile organic compounds. An explanation for the exclusion of these three compounds is presented in the transmittal letter.

2. Media specific action levels for waste characterization constituent monitoring list

Discussion Summary

George Robinson suggested development of action levels subsequent to completion of waste characterization. This would allow TPC to develop action levels only for those constituents detected and their degradation products. Teri Davis reiterated that the NMED will require action levels developed prior to waste characterization. George Robinson commented that published action levels or toxicity data may not be available for all constituents on the monitoring list. Ron Kern commented that he would like to see the algorithms and assumptions used in calculating action levels reprinted as supporting data to whatever TPC prepares for submittal. George Robinson asked about action levels for total petroleum hydrocarbon (TPH) concentrations. The NMED responded that this will be coordinated with the NMOCD.

Additional TPC Comments

TPC is in receipt of the NMEDs letter dated April 28, 1995 requesting, among other items, action levels developed subsequent to waste unit characterization. However, TPC was also requested to supply action levels for those constituents listed in selected tables from the closure plan within a week of receipt of the April 28th letter. These tables were revised and submitted to the NMED attached to a transmittal letter dated May 10, 1995. However, rather than provide "action levels", TPC provided reference concentration levels in the modified tables. An explanation for this response is presented

in the transmittal letter.

3. Background concentrations for metals

Discussion Summary

Jeff Forbes presented the information he obtained from a USGS study for all but three of the metals included in List 4 of the RFI guidance. This information represents background concentrations of metals based on soil samples collected within the United States. Teri Davis said she would prefer more local data. Kathleen OReilly asked how many samples were necessary to adequately establish background concentrations. Teri Davis replied it would be up to TPC to demonstrate that a statistically significant number of samples were collected and analyzed. George Robinson suggested that the three metals for which background data were not available (cadmium, silver, and thallium) be eliminated from the constituent monitoring list since they have not been constituents of concern at other ENRON facilities nor are expected to be constituents of concern at this facility. Ron Kern responded that the NMED could require that background concentrations be assumed equal to zero. Jeff Forbes said that he will continue to look for other sources of information for background concentrations of the three metals in question.

Additional TPC Comments

TPC is in receipt of the NMED's letter dated April 28, 1995 requesting, among other items, background concentrations of metals in soil to be submitted subsequent to waste unit characterization. Jeff Forbes (DBS) is continuing to work on this issue.

4. Assessment plan for storm water runoff areas

Discussion Summary

Teri Davis indicated that the NMED will request an assessment plan for sample collection and analysis of potential releases to storm water runoff areas.

Additional TPC Comments

TPC is in receipt of the NMED's letter dated April 28, 1995, requesting, among other items, a sampling and analysis plan to address potential releases to storm water runoff areas. The NMED has requested that this plan is submitted subsequent to waste unit characterization.

5. Compliance schedule

Discussion Summary

Teri Davis indicated that the NMED will request a compliance schedule for implementation of the closure plan. Barbara Hoditschek suggested a 90 day compliance

time frame for submittal of the waste characterization report.

Additional TPC Comments

TPC is in receipt of the NMED's letter dated April 28, 1995, requesting, among other items, a compliance schedule for implementation of the closure plan. The NMED has requested that this schedule is submitted within a week of receipt of the April 28th letter. This was submitted to the NMED attached to a transmittal letter dated May 10, 1995.

6. Response time for items 1-5 above

Discussion Summary

Barbara Hoditschek indicated that TPC would have 30 days to respond, from the date of receipt, to a letter from the NMED requesting items 1-5 above.

Additional TPC Comments

TPC is in receipt of the NMED's letter dated April 28, 1995, requesting a response to seven items. TPC was requested to respond to the first four items within a week of receipt of the letter and the remaining three items within thirty days of completion of the waste unit characterization. A response to the first four items requested was submitted to the NMED attached to a transmittal letter dated May 10, 1995.

7. Waste characterization prior to public notice

Discussion Summary

George Robinson suggested implementation of the waste characterization plan prior to finalizing the Phase I soil assessment plan. This information could be used to limit the development of action levels to only those constituents detected during waste characterization. This information could also be used to establish indicator parameters and/or constituents and the most effective analysis methods to be used during the soil assessment. Bill Kendrick indicated that, regardless of whether or not there is an approved closure plan, TPC will complete its own waste characterization prior to a closure plan going to public notice. This would be required in order for TPC to answer questions the public may potentially ask.

Additional TPC Comments

The letter received from the NMED dated April 28, 1995, indicates that the NMED does not wish to consider completing the waste unit characterization plan prior to submitting the modified closure plan to public notice. In order to be in a position to respond to any inquires that the notice may generate as well as to further develop information which is relevant to the redemption of the site, TPC may implement a self directed waste characterization program which will include collection of soil samples from locations within the two confirmed former surface impoundment areas and the installation and

sampling of two downgradient ground water monitor wells. TPC will notify the NMED at least two weeks prior to field activities so that the NMED has the opportunity to split samples if the NMED should so desire.

8. Scope for delineation during soil assessment

Discussion Summary

Teri Davis presented a conceptual plan for the lateral delineation of affected soil. Teri Davis and Ron Kern suggested TPC provide input into final development of the soil assessment plan. George Robinson is to contact Teri Davis to discuss this issue further. Teri Davis asked that TPC present QA/QC information for a mobile lab prior to implementation of field work. Teri Davis and Ron Kern asked that TPC present information supporting a correlation between TPH concentration and potential constituents of concern.

Additional TPC Comments

TPC is in receipt of the NMED's letter dated April 28, 1995, requesting, among other items, a Standard Operating Procedure and QA/QC information for use of a mobile laboratory during implementation of the soil assessment program. This information was obtained from Analytical Technologies Inc. (ATI) of Phoenix, Arizona and submitted to the NMED attached to a transmittal letter dated May 10, 1995.

9. Scope for delineation during ground water assessment

Discussion Summary

This issue was not discussed in much detail, although, Teri Davis did express her opinion that ground water contaminants have likely migrated a distance of 1.5 miles from the site. George Robinson responded with his opinion that ground water contaminants have likely migrated a distance of less than 900 feet from the site.

Additional TPC Comments

We believe it is in the best interest of both TPC and the NMED that any discussions regarding the distance to which contaminants may have migrated off-site be limited to discussions between TPC, the NMED, and the NMOCD until confirmation of such information is available.

10. Permit status

Discussion Summary

Bill Kendrick inquired about the status of the Part A permit application which TPC has on file with the NMED. Barbara Hoditschek and Cornelius Amindyas indicated that they were not aware that a Part A permit application was on file. Bill Kendrick pointed out

that the Part A permit application was specifically discussed in previous meetings between TPC and the NMED. Barbara Hoditschek indicated that she would look into this issue. George Robinson asked where does the RFA fit into the process if the facility is not a permitted facility. Teri Davis responded that it was to assess other areas of concern. TPC was still not clear on this issue.

Barbara Hoditschek made it clear that the NMED intended to modify the most recent closure plan submitted by TPC and to submit the modified plan for public notice. Initially, it was indicated that TPC would not be allowed to review the modified closure plan prior to public notice. However, after further discussion, it was indicated that the NMED would consider making the modified plan available to TPC for review prior to public notice. Barbara Hoditschek and Cornelius Amindyas indicated that a modified plan would be ready for public notice no later than June 1995.

Additional TPC Comments

From the discussion at the March 30, 1995 meeting and the history of this matter, it is apparent to TPC that the regulatory status of the facility is unclear and subject to debate as to the applicable law and regulations. Subsequent to the March 30, 1995 meeting, TPC has received the April 10, 1995 letter from NMED addressing the status of the facility. That letter indicates that NMED believes that 40 CFR Section 265 applies to the facility. NMED indicates that that section cites the "minimum standards for acceptable hazardous waste management until certification of a final closure". However, the April 10, 1995 letter does not cite any underlying facts upon which to base the conclusion that 40 CFR part 265 applies to this facility. TPC is continuing to conduct its analysis of the appropriate regulatory treatment for this facility, and requests that NMED provide it with the underlying factual basis for its proposed regulatory treatment of the facility.

Because of the uncertainty of the regulatory status of the facility, TPC requests that NMED postpone its current plan to submit a modified closure plan for public notice no later than June, 1995, so that NMED and TPC can attempt to arrive at a mutually acceptable regulatory treatment of the facility.

If you have any questions and/or comments regarding the information presented in this document, please contact me at (713) 646-7644.

Sincerely,

Bill Kendrick

Projects Group Manager EOC Environmental Affairs

Zill Klindrick (KMT)

Page 7

xc: Lou Soldano

ENRON Operations Corp. Legal, Houston, TX

Frank Smith

ENRON Corp. Legal, Houston, TX

David Nutt

ENRON Corp. Legal, Houston, TX

Richard Virtue

Taichert, Wiggins, Virtue, & Najjar Santa Fe, NM

Roger Anderson

NMOCD, Santa Fe, NM

October 5, 1995

Transwestern Pipeline Company

TECHNICAL OPERATIONS
6381 North Main • Roswell, New Mexico 88201

Mr. Roger Anderson
Oil Conservation Division
2040 South Pacheco
Santa Fe. New Mexico 87505

RECEIVED

OCT 1 1 1995

Re:

Site Inspection Sta. 9, Roswell

Environmental Bureau
Oil Conservation Division

Dear Mr. Anderson:

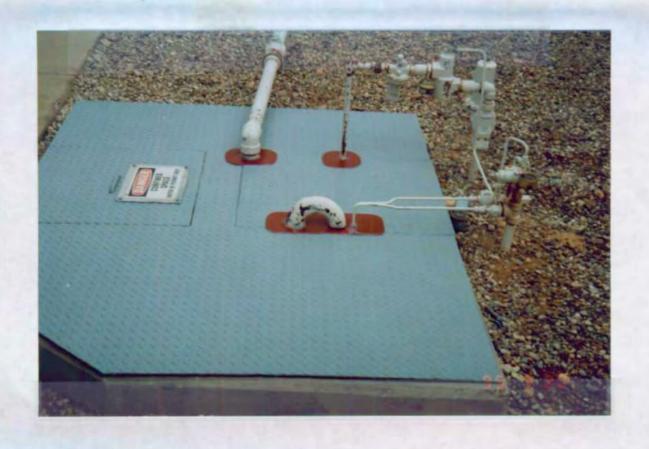
As a result of the Oil Conservation Division's (OCD) September 11, 1995 inspection of Transwestern Pipeline Company's Compressor Station No. 9 Roswell, presented below are responses to address concerns brought about by Pat Sanchez and Mark Ashley of your staff:

- 1. Rainwater collection in the oily wastewater sump and secondary containment.

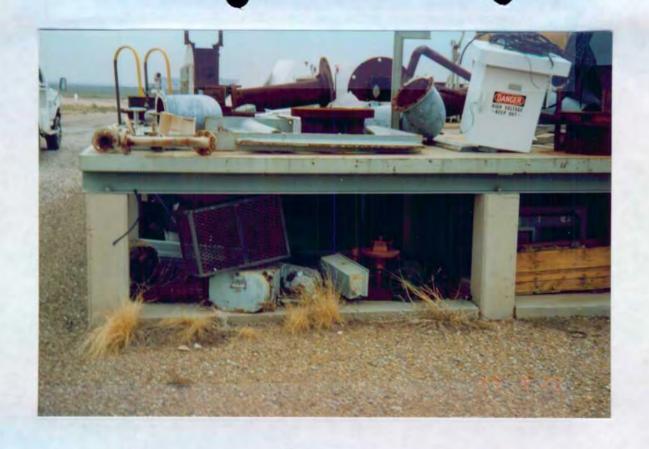
 Due to the recent heavy rains which had occurred at he facility, rainwater had infiltrated into the annular space between the below grade sump through the openings in the sump cover for the above ground piping. Transwestern has sealed this space with silicone caulking to eliminate future rainwater or snow melt from entering into this area. The attached photograph verifies completion of this task.
- 2. Disposal of regulated liquids into the sink at the PCB laboratory.

 In conversations with the laboratory personnel at the facility, they have stated that under no circumstances have any laboratory reagents, cleaning liquids or wash water been directed into that sink. The purpose of the faucet is to provide potable water to gas quality measurement operations in the building. All laboratory wastes generated at this location are collected and transferred to the laboratory waste tank for sampling and proper disposal.
- 3. <u>Miscellaneous 5 and 50 gallon buckets and drums under the drum storage dock.</u>
 The materials contained in the drums and buckets identified during the OCD's inspection have been properly labeled and stored according to DOT requirements. The drums have also been removed from the location. Photographs of the area around and under the drum dock substantiates their removal from this area.
- 4. The presence of oil stained soil around the oil loading tank pump.

 The contaminated soil in this area has been remediated with an inorganic fertilizer to enhance bioremediation of the hydrocarbon contamination in the soil. Refer to the photographs presenting the fertilizer on the soil stained area.


Should you require additional information concerning the above responses, contact our Roswell Technical Operations at (505) 625-8022.

Sincerely,


Larry Campbell

Division Environmental Specialist

xc: Dave Owen
Joe Hulscher
Arnie Bailey
Butch Russell
Capitan Team
file

OIL CONSERVATION DIVISION

September 29, 1995

CERTIFIED MAIL RETURN RECEIPT NO. Z-765-963-073

Mr. Larry Campbell Transwestern Pipeline Company P.O. Box 1717 Roswell, NM 88202-1717

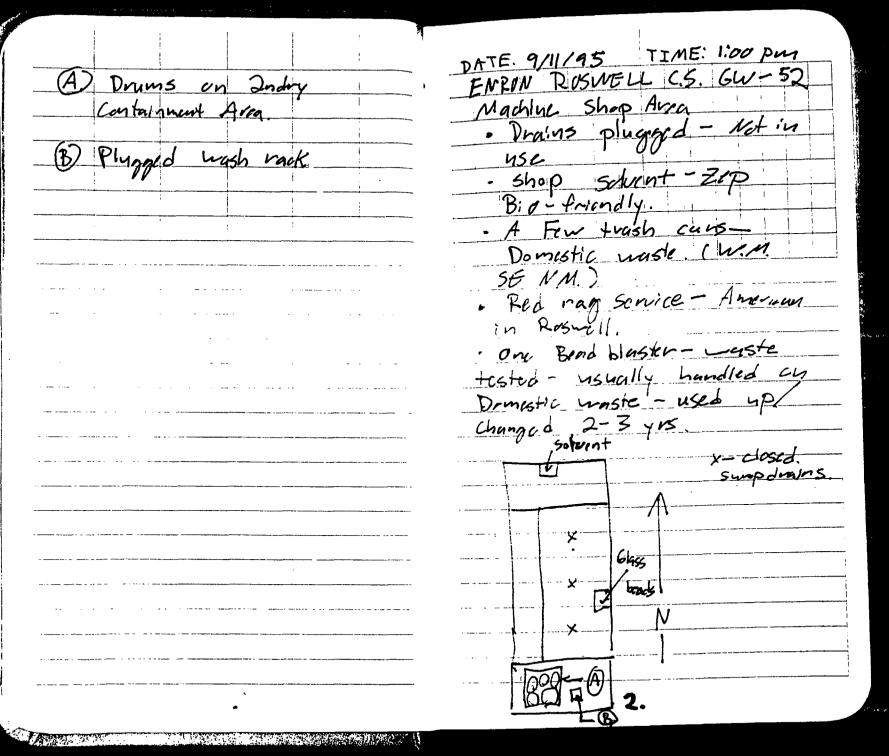
RE: Discharge Plan GW-52

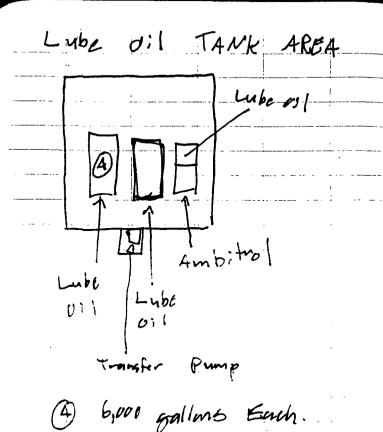
Roswell Compressor Station-Inspection notes/report

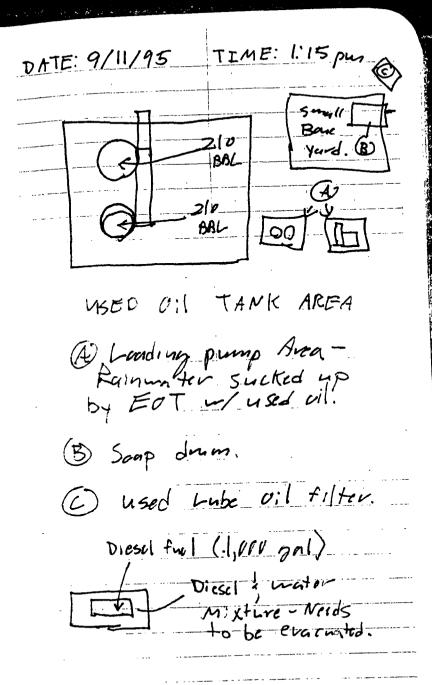
Chaves County, New Mexico

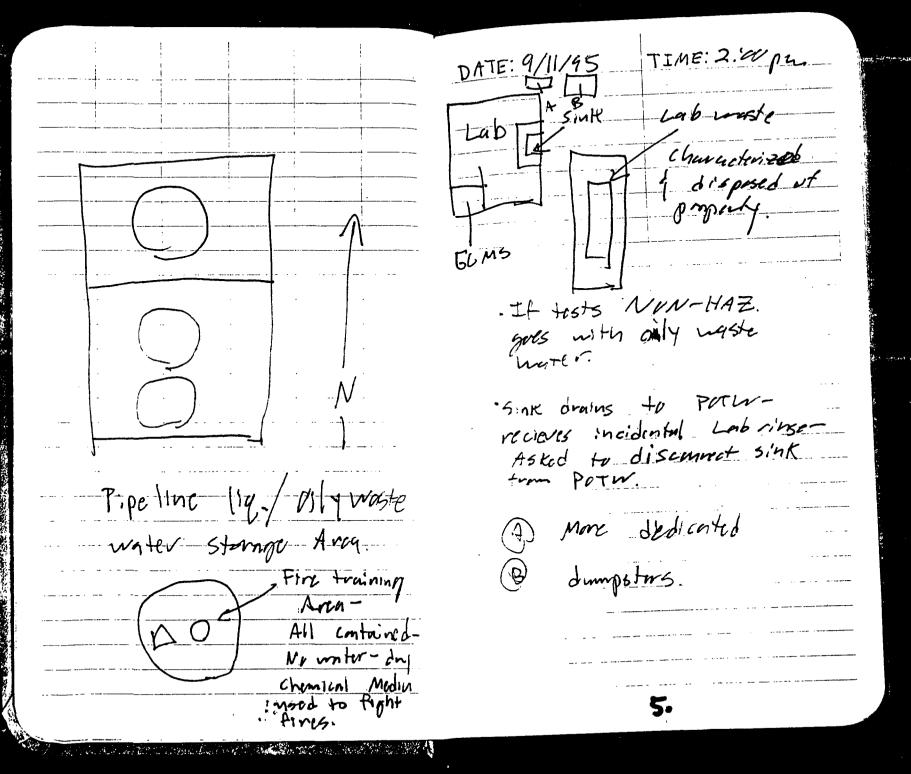
Dear Mr. Campbell:

The NMOCD has prepared the following inspection report and attached the inspection notes from the September 11, 1995 Roswell Compressor Station discharge plan renewal inspection for the facility located in SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico.


- 1. GW-52 appears to be in general compliance with the discharge plan and was renewed based on this inspection and the additional information and comments/clarifications as submitted by Mr. Campbell on September 21, 1995.
- 2. A few problems with labelling and empty drums were observed, Mr. Campbell made the commitment to address these issues.
- 3. It was requested that the lab sink be disconnected from the POTW Mr. Campbell will follow up on this request.


If you have any questions, please feel free to call me at (505)-827-7156.


Sincerely,


Patricio W. Sanchez Petroleum Engineer

xc: Environmental Representative District II

OIL CONSERVATION DIVISION

September 26, 1995

CERTIFIED MAIL RETURN RECEIPT NO. Z-765-963-062

Mr. Larry Campbell Division Environmental Specialist Transwestern Pipeline Company 6381 North Main Roswell, NM 88201

RE: Approval of Discharge Plan GW-52
Renewal
Roswell Compressor Station
Eddy County, New Mexico

Dear Mr. Campbell:

The discharge plan renewal GW-52 for the Transwestern Pipeline Company Roswell Compressor Station located in SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico, is hereby approved under the conditions contained in the enclosed attachment. The discharge plan renewal consists of the application and its contents dated May 8, 1995 and subsequent additional information dated September 21, 1995 as signed and submitted by Mr. Larry Campbell with Transwestern Pipeline Company.

The discharge plan renewal application was submitted pursuant to Section 3-106 of the New Mexico Water Quality Control Commission Regulations. Please note Sections 3-109.E and 3-109.F which provide for possible future amendments or modifications of the plan. Please be advised that the approval of this plan does not relieve Transwestern Pipeline Company of liability should the operations associated with this facility result in pollution of surface water, ground water, or the environment.

Please be advised that all exposed pits, including lined pits and open top tanks (tanks exceeding 16 feet in diameter), shall be screened, netted, or otherwise rendered nonhazardous to wildlife including migratory birds.

Mr. Larry Campbell Page 2 September 26, 1995

Please note that Section 3-104 of the regulations requires that "When a plan has been approved, discharges must be consistent with the terms and conditions of the plan." Pursuant to Section 3-107.C you are required to notify the Director of any facility expansion, production increase, or process modification that would result in any change in the discharge of water quality or volume.

Pursuant to Section 3-109.G.4, this plan is for a period of five (5) years. This approval will expire November 9, 2000, and you should submit an application for renewal six (6) months before this date.

The discharge plan renewal for the Roswell Compressor Station GW-52 is subject to the WQCC Regulation 3-114 discharge plan fee. Every billable facility submitting a discharge plan will be assessed a fee equal to the filing fee of fifty dollars (\$50) plus the flat fee of six-hundred and ninety dollars (\$690) for Compressor stations exceeding 3,000 horsepower filing for renewal of existing discharge plans.

The \$50 filing fee has been received by the OCD. The flat fee for an approved discharge plan has not been received by the OCD. The flat fee check should be submitted to the NMED - Water Quality Management through the NMOCD office in Santa Fe, New Mexico.

On behalf of the staff of the Oil Conservation Division, I wish to thank you and your staff for your cooperation during this discharge plan review.

Sincerely,

William J. LeMay Director

WJL/pws Attachment Mr. Larry Campbell Page 3 September 26, 1995

ATTACHMENT TO DISCHARGE PLAN GW-52 RENEWAL Transwestern Pipeline Company - Roswell Compressor Station DISCHARGE PLAN REQUIREMENTS

(September 26, 1995)

- 1. <u>Tank Berming</u>: All tanks that contain materials other than fresh water that, if released, could contaminate surface or ground water or the environment will be bermed to contain 1 1/3 times the capacity of the tank or 1 1/3 times the volume of all interconnected tanks.
- 2. <u>Drum Storage</u>: All drums will be stored on pad and curb type containment.
- 3. <u>Spills</u>: All spills and/or leaks will be reported to the OCD district office pursuant to WQCC Rule 1-203 and OCD Rule 116.
- 4. <u>Modifications</u>: All proposed modifications that include the construction of any below grade facilities or the excavation and disposal of wastes or contaminated soils will have OCD approval prior to excavation, construction or disposal.
- 5. Payment of Discharge Plan Fees: The six-hundred and ninety dollar (\$690.00) flat fee shall be submitted upon receipt of this approval. The flat fee may be paid in a single payment due at the time of approval, or in equal annual installments over the five (5) year duration of the plan, with the first payment due upon receipt of this approval.

Transwestern Pipeline Company

TECHNICAL OPERATIONS
6381 North Main • Roswell, New Mexico 88201

September 21, 1995

RECEIVED

· 1 / 6 52

SEP 2 5 1995

Mr. Patricio Sanchez
Oil Conservation Division
2040 South Pacheco
Santa Fe, New Mexico 87505

Environmental Bureau
Oil Conservation Division

Re:

Dear Mr. Sanchez:

In response to the Oil conservation Division's (OCD) August 3, 1995 letter, informing Transwestern Pipeline Company (Transwestern), of additional information to be included with the discharge plan renewal application for the Roswell Compressor Station., Presented below are responses to those concerns. Each response follows the sequence of the items addressed in your letter:

Discharge Plan Renewal Roswell Compressor Station, GW-52

- I. Transwestern requests that the October 31, 1990 supplement to the OCD be included in the 1995 permit application.
- II. Transwestern is in compliance with the OCD's disposal regulations for exempt and non exempt wastes.
- III. Transwestern does not dispose of any liquid waste streams at the Roswell Compressor Station. All liquid streams are either recycled, recovered or collected at the facility and transferred to the owner of the liquids. This last process is directed under contract obligations with a local producer. Presented as an attachment are the liquid waste stream and volumes which are generated at the facility, and the vendor and process which is used for each stream
- IV. The secondary containment provided for the above ground tank in the May 8, 1995 renewal application has a containment capacity of greater than 1.3x the volume of the tank, and is also in compliance with the regulations set forth under 40 CFR 112 for Spill Prevention Control and Countermeasures.

Should you require any additional information concerning approval of the submitted discharge application, contact our Roswell Technical Operations at (505) 625-8022.

Sincerely,

Larry Campbell

Division Environmental Specialist

xc:

Dave Owen Joe Hulscher Arnie Bailey Capitan Team Butch Russell file

WASTE STREAM APPROXIMATES FOR STATION 9

Used Oil Tank

1992		Gallons Gallons Gallons
TOTAL	13500	Gallons
Yearly Average Over	5 Years2700	Gallons
	Oily Waste Water Tank	
1993		Barrels Barrels Barrels Barrels
	11100	
Yearly Average Over	5 Years2220	Barrels
	Pipeline Liquids Tank	
1993		Barrels Barrels Barrels Barrels
	5 Years2220	
_		

Selexol Oily Waste Water Tank

1991 .N/A 1992 .N/A 1993 .N/A 1994 .N/A 1995 .150 Barrels				
Total150 Barrels				
Yearly Average Over 5 Years				
Selexol Pipeline Liquids Tank				
1991				
1992				

Phone (505),629-2761

195 SE 122 AM 8 52

Transwestern Pipeline Company

TECHNICAL OPERATIONS
6381 North Main • Roswell, New Mexico 88201

September 21, 1995

RECEIVED

SEP 2 5 1995

Mr. Patricio Sanchez
Oil Conservation Division
2040 South Pacheco
Santa Fe, New Mexico 87505

Environmental Bureau
Oil Conservation Division

Re:

Discharge Plan Renewal Roswell Compressor Station, GW-52

Dear Mr. Sanchez:

In response to the Oil conservation Division's (OCD) August 3, 1995 letter, informing Transwestern Pipeline Company (Transwestern), of additional information to be included with the discharge plan renewal application for the Roswell Compressor Station., Presented below are responses to those concerns. Each response follows the sequence of the items addressed in your letter:

- I. Transwestern requests that the October 31, 1990 supplement to the OCD be included in the 1995 permit application.
- II. Transwestern is in compliance with the OCD's disposal regulations for exempt and non exempt wastes.
- III. Transwestern does not dispose of any liquid waste streams at the Roswell Compressor Station. All liquid streams are either recycled, recovered or collected at the facility and transferred to the owner of the liquids. This last process is directed under contract obligations with a local producer. Presented as an attachment are the liquid waste stream and volumes which are generated at the facility, and the vendor and process which is used for each stream
- IV. The secondary containment provided for the above ground tank in the May 8, 1995 renewal application has a containment capacity of greater than 1.3x the volume of the tank, and is also in compliance with the regulations set forth under 40 CFR 112 for Spill Prevention Control and Countermeasures.

Should you require any additional information concerning approval of the submitted discharge application, contact our Roswell Technical Operations at (505) 625-8022.

Sincerely,

Larry Campbell

Division Environmental Specialist

xc:

Dave Owen Joe Hulscher Arnie Bailey Capitan Team Butch Russell file

P.O. BOX 1897 Roswell, New Mexico 88202-1897

Address Correction Requested

Energy, Minerals & Natural 80 Box 6429 State of MM Santa Fe NM 87505-5472

.. Conservation E

AFFIDAVIT OF PUBLICATION

County of Chaves State of New Mexico

I, Jean M. Pettit, Bus. Manager,

Of the Roswell Daily Record, a daily newspaper published at Roswell, New Mexico, do solemnly swear that the clipping hereto attached was published once a week in the regular and entire issue of said paper and not in a supplement thereof for a period

one time weeks of: beginning with issue dated , 1995 July 17th and ending with the issue dated , 1995 July 17th

Manager

Sworn and subscribed to before me

this 17th

(SEAL)

day of

July

,1995

Notary Public

My Commission expires

Publish July 17, 1995

NOTICE OF PUBLICATION

STATE OF NEW MEXICO : ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan and renewal applications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

> (GW-52)-TRANSWESTERN PIPELINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 88202-Campbell, 505-625-8022, P.O. BOX 1717, Hoswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Roswell Compressor Station located in the SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico. Approximately 1000 gallons per day of wastewater will be transferred to an offsite livestock watering tank. The wastewater has a total dissolved solids concentration of about 1250 mg/l. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surfact is at a depth of approximately 240 feet with a total dissolved solids concentration of approximately 1,551 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

> (GW-53)-TRANSWESTERN PIPELINE COMPANY, Mr. Larry (GW-53)-I HANSWESTEHN PIPELINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Yates Plant located in the SW/4, Section 25, Township 18 South, Range 25 East, NMPM, Eddy County, New Mexico. Approximately 1000 gallons per day of wastewater is stored in closed top tanks and is transferred offsite to an OCD approved facility; Groundwater most lively to be affected approved lability, Glothic water lively to be allected by a spill, leak, or accidental discharge to the surfact is at a depth of approximately 120 feet with a total dissolved solids concentration of approximately 850 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

> (GW-210)-WILLIAMS FIELD SERVICE, Ms. Leigh Gooding, 801-584-6543, P.O. BOX 58900, M.S. 2G1, Salt Lake City, Utah 84158-0900 has submitted a discharge plan application for their Hampton Straddle Compressor station located in the SW/4 SE/4, Section 11, Township 30 North, Range 11, West NMPM, San Juan County, New Mexico. The total wastewater discharge will be about 138 gallons/day, this water will be collected in a closed top tank and transported offsite for disposal at an incomplete of the control of the control of the collected in a closed top tank and transported offsite for disposal at an incomplete of the collected in the collected in a closed top tank and transported offsite for disposal at an incomplete of the collected in the SW/4 SE/4. OCD approved facility; Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surfact is at a depth of approximately 50 feet with a total dissolved solids concentration of approximately 2,000 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surfact will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. phan application may be viewed at the above address between 5.00 a.m., and 4:00 p.m., Monday through Friday. Prior to the ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Requests for public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Sante Fe, New Mexico, on this 10th day of July, 1995.

> STATE OF NEW MEXICO OIL CONSERVATION DIVISION /S/ william j lemay,

SEAL

WILLIAM J. LEMAY, Director

NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION Notice is hereby given that pursuant to the New Mexico Water Quality Control Commission Regulations, the following discharge plan applications have been submitted to the Director nave been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

(GW-52)-TRANSWESTERN PIPE-LINE COMPANY, Mr. Larry Camp-bell, 505-625-8022, P.O. BOX 1717, bell, 505-625-8022, P.O. BÓX 1717, Roswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Roswell Compressor Station loated in the SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NIMPM, Chaves County, New Mexico. Approximately 1000 gallons per day of wastewater will be transferred to an offsite livestock watering tank. The wastewater has a total dissolved solids concentration of rine wastewater has a total dis-solved solids concentration of about 1250 mg/L. Groundwater most lilely to be affected by a spill, leak, or accidental discharge to the leak, or accidental discharge to the surface is at a depth of approxi-mately 240 feet with a total dis-solved solids concentration of ap-proximately 1,551 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

discharges to the surface will be managed. (GW-53) - TRANSWESTERN PIPE-LINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 99202-1717 has submitted a Renewal discharge plan application for their Yatas Plant located in the SW/4, Section 25, Township 18 South, Range 25 East, NMPM, Eddy County, New Mexico. Approximately 1000 gallons per day of wastewater is stored in closed top tanks and is transferred offsite to an OCD approved facility; Groundwater most likely to be affected by a splif, leak, or accidental discharge to the surface is at a depth of approximate. leak, or accidental discharge to the surface is at a depth of approximatly 120 feet with a total dissolved solids concentration of approximately 850 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed. (GW-210) - WILLIAMS FIELD SER-

(GW-210) - WILLIAMS FIELD SER-VICE, Ms. Leigh Godding, 801-584-6543, P.O. BOX 56900, M.S. 261, Sait Lake City, Utah, 84158-9900 has submitted a discharge plan application for their Hampton Straddle Compressor station lo-cated in the SW/4 SE/4, Section 11, Township 30 North, Range 11 West, NMPM, San Juan County, New Mexico. The total wastewater New Mexico. The total wastewater discharge will be about 138 gallons/day, this water will be collected in a closed top tank and collected in a closed top tank and trasported offsite to an OCD approved facility; Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of 50 leet with a total dissolved solids concentration of approximately 2,000 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Coservation Division and may sul written comments to the Director the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday, Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30). Director of the Uil Conservation Divi-sion shall allow at least thirty (30)-days after the date of publication of this notice during which comments may be submitted to him and public nearing may be requested by any interested person. Requests for public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is a significant public interest

public interest.
If no public hearing is held, the public interest. If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing. GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 10th day of July, 1995

STATE OF NEW MEXICO OIL CONSERVATION DIVISION SWILLIAM J. LEMAY, Director Journal: July 15, 1995

STATE OF NEW MEXICO

County of Bernalillo

Advertising mana is duly qualified to of Section 3, Cha	ng duly sworn declares and says that he is Classified ager of The Albuquerque Journal, and that this newspaper of publish legal notices or advertisements within the meaning apter 167, Session Laws of 1937, and that payment therefore of assessed as court cost; that the notice, copy of which is was published in said paper in the regular daily edition, times, the first publication being of the day
	Sworn and subscribed to before me, a notar Public of and for the County of Bernalillo and State of New Mexico, this day of 1995
Janes	PRICE Statement to come at end of month.

CLA-22-A (R-1/93) ACCOUNT NUMBER

OIL CONSERVATION DIVISION

July 31, 1995

CERTIFIED MAIL
RETURN RECEIPT NO. Z-765-963-100

Mr. Larry Campbell Transwestern Pipeline Company P.O. Box 1717 Roswell, NM 88202-1717

RE: Discharge Plan GW-52

Roswell Compressor Station-Renewal

Chaves County, New Mexico

Dear Mr. Campbell:

The NMOCD has received the proposed Roswell Compressor Station discharge plan renewal application for the facility located in SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico. The application filing fee in the amount of \$50 was received by the NMOCD along with the discharge plan renewal application. The NMOCD has prepared and sent out the public notice for the Roswell Compressor Station facility as stated in WQCC section 3-108. NMOCD has conducted a preliminary review of the proposed discharge plan renewal as received from Transwestern Pipeline Company on May 12, 1995.

The following comments and request for additional information are based on the review of the Transwestern Renewal application. Please note that unless otherwise stated, response to all comments shall be received and reviewed by the OCD prior to approval of the discharge plan application. The response shall be sent to the NMOCD thirty (30) after receipt of this letter.

I. In the renewal letter dated May 8, 1995 Mr. Campbell requested that the permit be renewed based on the permit that was issued November 9,1990 by the NMOCD.

Comment: The permit shall include the November 9, 1990 permit as well as the November 18, 1993 Modification by NMOCD.

NOTE: The November 9, 1990 approval included the April 9, August 16, and September 26, 1990 supplements from Transwestern. The Approval should have also included the October 31, 1990 supplement from Transwestern - This Supplement shall also

Mr. Larry Campbell July 31, 1995 Page 2

become part of the 1995 permit renewal.

- II. The Roswell Compressor Station is a mainline compressor therefore very few if any of the waste streams at this facility are Exempt from RCRA. Streams that contain non-exempt wastes cannot not be injected in NMOCD approved class II injection wells These wastes if they are non-hazardous by characteristics (TCLP) maybe disposed of at an approved NMOCD surface waste management facility.
- III. All handlers of waste streams for offsite disposal need to listed. All liquid waste stream volumes on a gallons per month basis need to be listed in terms of an average.

NOTE: Transwestern Pipeline Company should be able to provide this information based on operating knowledge gained over the last five years of the permit.

IV. The above ground tank that is referenced in the May 8, 1995 renewal application shall comply with NMOCD secondary containment volume requirements of 1 1/3 times the volume of the tank.

Example: If the tanks internal volume is 100 bbl, the secondary containment shall be able to hold at least 133 bbl.

Submittal of the requested information and commitments within thirty (30) days of receipt of this letter will expedite the final review of the application and approval of the discharge plan.

If you have any questions, please feel free to call me at (505)-827-7156.

Sincerely.

Patricio W. Sanchez

Petroleum Engineer

xc: Environmental Representative District II

AFFIDAVIT OF PUBLICATION

No. 35064

STATE OF NEW MEXICO County of San Juan:

ROBERT LOVETT being duly sworn says: That he is the Classified Manager of THE DAILY TIMES, a daily newspaper of general circulation published in English at Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication on the following day(s):

Tuesday, July 18, 1995

and the cost of publication was: \$90.26

On 1/2/25 ROBERT LOVETT

appeared before me, whom I know personally to be the person who signed the above document.

ent Lovets

My Commission Expires March 21, 1998

COPY OF PUBLICATION

His.

mak Catality

NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulation the following discharge plan and renewal applications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (50 827-7131:

(GW-52) - TRANSWESTERN PIPELINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Roswell Compressor Station located in the SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico. Approximately 1000 gallons per day of wastewater will be transferred to an offsite five-stock watering tank. The wastewater has a total dissolved soilds concentration of about 1250 mg/L Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 240 feet with- a total dissolved soilds concentration of approximately 1,551 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

(GW-53) - TRANSWESTERN PIPELINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 88202-1717 has submitted a Renewel discharge plan application for their Yates Plant located in the SW/4, Section 25, Township 18 South, Range 25 East, NMPM, Eddy County, New Mexico. Approximately 1000 gallons per day of wastewater is stored in closed top tanks and is transferred offsite to an

OCD approved facility; Groundwater most likely to be affected by a split, leak, or accidental discharge to the surface is at a depth of approximately 120 feet with a total dissolved solids concentration of approximately 850 mg/L. The discharge plan addresses how splits, leaks, and other accidental discharges to the surface will be managed.

(GW-210): WILLIAMS FIELD SERVICE, Ms. Leigh Gooding, 801-584-6543, P.O. BOX 58900, M.S. 2G1, Salt Lake City, Utah, 84158-0900 has submitted a discharge plan application for their Hampton Straddle Compressor station located in the SW/4 SE/4, Section 11, Township 30 North, Range 11 West, NMPM, San Juan County, New Mexico. The total wastewater discharge will be about 138 gallonsiday, this water will be collected in a closed top tank and transported offsite for disposal at an OCD approved facility; Groundwater most likely to be affected by a spill, leak, or accidental

discharge to the surface is at a depth of approximately 50 feet with a total dissolved solids concentration of approximately 2,000 mg/L. The discharge plan addresses how epilis, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and mount written comments to the Director of the Oil Conservation Division at the address give above. The discharge plan application may be viewed at the above address between 8:00 a. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its moccation, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the deformable of this notice during which comments may be submitted to him and public hearing have requested by any interested person. Requests for public hearing shall set forth the reascantly a hearing should be held. A hearing will be held if the Director determines there is significently public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on formation available. If a public hearing is held, the director will approve or disapprove the propos plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, this 10th day of July, 1995.

STATE OF NEW MEXIC OIL CONSERVATION DIVISIO

/s/ William J Let/ WILLIAM J. LEMAY, Direct

HEGALS

ECALC

Publish July 17, 1995

A-

eres

ì

ant

0

the

10∨€ the

this g to lice,

erse

who

lew

-002

trary

p.m

afid

NOTICE OF PUBLICATION

STATE OF NEW MEXICO
ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT
OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan and renewal applications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone

(GW-52)-TRANSWESTERN PIPELINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 88202-Campoeii, 503-525-5022, P.O. BOX 1717, Hoswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Roswell Compressor Station located in the SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico. Approximately 1000 gallons per day of wastewater will be transferred to an offsite livestock watering tank. The wastewater has a total dissolved solids concentration of about 1250 mg/l. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surfact is at a depth of approximately 240 feet with a total dissolved solids concentration of approximately 1,551 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

(GW-53)-TRANSWESTERN PIPELINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Yates Plant located in the SW/4, Section 25, Township 18 South, Range 25 East, NMPM, Eddy County, New Mexico. Approximately 1000 gallons per day of wastewater is stored in closed top tanks and is transferred offsite to an OCD approved facility; Groundwater most lifely to be affected by a spill, leak, or accidental discharge to the surfact) at a depth of approximately 120 feet with a total dissolved solids concentration of approximately 850 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

(GW-210)-WILLIAMS FIELD SERVICE, Ms. Leigh Gooding, 801-584-6543, P.O. BOX 58900, M.S. 2G1, Salt Lake City, Utah 84158-0900 has submitted a discharge plan application for their Hampton Straddle Compressor station located in the SW/4 SE/4. Section 11, Township 30 North, Range 15, West NMPM, San Juan County, New Mexico. The total wastewater discharge will be about 138 gallons/day, this water will be collected in a closed top tank and transported offsite for disposal at an OCD approved facility: Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surfactive at a depth of approximately 50 feet with a total dissofted solids concentration of approximately 2 000 mol. The solids concentration of approximately 2,000 mg/l. The discharge plan addresses how spills, leaks, and other accidental discharges to the surfact will be managed.

Any interested person may obtain further information from the Oli Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Moriday through Friday. Prior to the ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Requests for public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Sante Fe, New Mexico, on this 10th day of July, 1995.

> STATE OF NEW MEXICO OIL CONSERVATION DIVISION /S/ william | lemay,

SEAL

WILLIAM J. LEMAY, Director

FIFTH JUDICIAL DISTRICT COUNTY OF CHAVES STATE OF NEW MEXICO

IN THE MATTER OF THE ESTATE OF

KENNETH C. DENNIS, Deceased.

No. PB-94-79

1 LEGALS

Publish July 17, 24, 1995

N THE PROBATE COURT COUNTY OF CHAVES STATE OF NEW MEXICO

N THE MATTER OF THE

NO. 7996

ARTHUR T. FREUDENBERGER, DECEASED.

NOTICE TO CREDITORS

The undersigned has been ppointed Personal Representative of Arthur T. Freudenberger, deceased, All persons having claims against this estate are Freudenberger required to present their claims (i) within two months after the date of the first publication of this notice, or (ii) within two months after the mailing or delivery of this notice, whichever is later, or be forever

> /s/llima e freudenberger Llima E. Freudenberger 700 East Vista Parkway Roswell, NM 88201

Publish July 13, 14, 16, 17, 1995

BID NOTICE

JANITORIAL SERVICE: The Chaves County Community Action Program is currently accepting bids for janitorial services for it's facility located at 209 E. Hendricks, Roswell. Deadline for blds is July 20, 1995. Interested bidders may obtain bid information by contacting Sam Parker at 209 E. Hendricks or calling 623-1782 in Roswell.

> DON'T THROW GOOD MONEY AWAY.

Sell "DON'T NEEDS"

For cash with a CLASSIFIED AD!

Special Notices

WITNESS WANTED! If you witessed the accident at Lea and econd on Thursday 8/29/95 at 38PM, please call 623-3799

15. Personals Special Notice

BANKRUPTCY

ree consultation, prompt filing, payment terms, call for estimate. Harry G. W. Griffith

Albuquerque 1-800-894-1018

MASSAGE THERAPY A NEW YOU

Great for stress-insomnia. Gift certificates available. Appointment only. 625-9420

HERBS REALLY WORK Natures remedy for every disease. Weight loss, no chemicals, income opportunity, 622-5999.

DIVORCE, BANKRUPTCY, case preparation, reasonable rates. 625-0059.

25. Lost and

45. Jobs of Interest Male - Female

SECURITY FINANCE DUE TO RAPID EXPANSION MANAGER TRAINEE'S NEEDED

WE OFFER:

Competitive salary Rapid Advancement Opportunities in Eleven States Paid Medical and Life Insurance Paid Sick Days Paid Holidays and Vacation Days Optional Dental and Disability Insurance Profit sharing Plan Exceptional Employee Savings

SEND RESUMES TO: ATTN: JERRY TREVINO 810 TRAILING HEART ROAD ROSWELL, NM 88210

The values you can find in the classified pages.

JOURNEYMAN ELECTRICIAN. We want an individual who wants a career, not just a job. License, Experience and tools a must. Need a self-starting individual who loves to work. Call Angelos Electric at 622-6637

POSITION OPEN for a professional person as Sales/Marketing Representative in Roswell and in surrounding area. Sales and service experience required. Must be willing to travel. Professional appearance and attitude a must.Send resume

> Record Reply Box 19599 **Attention Sales** P.O. Box 1897 Roswell, NM 88202

EARN UP TO \$1,000 weekly stuffing envelopes at home. Start now, no experience, free supplies, IN-FORMATION, no obligation, Send self addressed stamped envelope to: BUCKS, Dept.15, 8407 Bandera Road, Suite 133-217, San Antonia. TX 78250.

DOMINO'S PIZZA

Accepting applications for drivers and manager trainees. Have more fun and make more money (\$5-\$10 hourly) working for the leader in the pizza delivery business! Must have car, insurance and be at least 18. EOE. Apply in person:

1124 South Union 2417 North Main,

RN OR LPN, 25 hour per week for disabled 18 year old. Artesia loca-

any

195

CTTO

DOBOTHY O DENNIS ANNA GALLUP LAURA GALLUP

Affidavit of Puslication

No. 15183 STATE OF NEW MEXICO. County of Eddy: Gary D. Scott ____being duly sworn, says: That he is the____Publisher of The Artesia Daily Press, a daily newspaper of general circulation, published in English at Artesia, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said Artesia Daily Press, a daily newspaper duly qualified for that purpose within the meaning of Chapter 167 of the 1937 Session Laws of the state of New Mexico for 1 ____consecutive weeks on the same day as follows: First Publication July 18, 1995 Second Publication_____ Third Publication_ Fourth Publication Subscribed and sworn to before me this_ 20th day of_ 19 95 Notary Public, Eddy County, New Mexico

My Commission expires September 23, 1996

C y of Publication

TRANSWESTERN PIPE-LINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. Box 1717, Roswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Yates Plant located in the SW/4, Section 25, Township 18 South, Range 25 East, NMPM, Eddy County, New Mexico. Approximately 1000 gallons per day of wastewater is stored in closed top tanks and is transferred offsite to an OCD approved facility; Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approxi-mately 120 feet with a total dissolved solids concentration of approximately 850 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

LEGAL NOTICE

NOTICE OF PUBLICATION STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION

DIVISION
Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan and renewal applications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131.

(GW-52)TRANSWESTERN PIPE-LINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. Box 1717, Roswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Roswell Compressor Station located in the SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico. Approximately 1000 gallons per day of wastewater will be transferred to an offsite livestock watering tank. The wastewater has a total dissolved solids concentration of about 1250 mg/1. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 1,551 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 10th day of July, 1995.

STATE OF NEW MEXICO
OIL CONSERVATION
DIVISION
s-William J. LeMay
WILLIAM J. LEMAY
Director

SEAL
Published in the Artesia Daily
Press, Artesia, New Mexico
July 18, 1995.

Legal 15183 (UV-210) - Wighlam'S FIELD SERVICE, Ms. Leigh Gooding, 801-584-6543, P.O. Box 58900, M.S. 2G1, Salt Lake City, Utah, 84158-0900 has submitted a discharge plan application for their Hampton Straddle Compressor station located in the SW/4 SE/4, Section 11, Township 30 North, Range 11 West, NMPM, San Juan County, New Mexico. The total wastewater discharge will be about 138 gallons/day, this water will be collected in a closed top tank and transported offsite for disposal at an OCD approved facility; Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 50 feet with a total dissolved solids concentration of approximately 2,000 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thrity (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be rquested by any interested person. Requests for public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan and renewal applications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

(GW-52) - TRANSWESTERN PIPELINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Roswell Compressor Station located in the SW/4 SW/4, Section 21, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico. Approximately 1000 gallons per day of wastewater will be transferred to an effsite livestock watering tank. The wastewater has a total dissolved solids concentration of about 1250 mg/l. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 240 feet with a total dissolved solids concentration of approximately 1,551 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

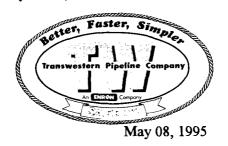
(GW-53) - TRANSWESTERN PIPELINE COMPANY, Mr. Larry Campbell, 505-625-8022, P.O. BOX 1717, Roswell, NM, 88202-1717 has submitted a Renewal discharge plan application for their Yates Plant located in the SW/4, Section 25, Township 18 South, Range 25 East, NMPM, Eddy County, New Mexico. Approximately 1000 gallons per day of wastewater is stored in closed top tanks and is transferred offsite to an OCD approved facility; Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 120 feet with a total dissolved solids concentration of approximately 850 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

(GW-210)-WILLIAMS FIELD SERVICE, Ms. Leigh Gooding, 801-584-6543, P.O. BOX 58900, M.S. 2G1, Salt Lake City, Utah, 84158-0900 has submitted a discharge plan application for their Hampton Straddie Compressor station located in the SW/4 SE/4, Section 11, Township 30 North, Range 11 West, NMPM, San Juan County, New Mexico. The total wastewater discharge will be about 138 gallons/day, this water will be collected in a closed top tank and transported offsite for disposal at an OCD approved facility; Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface is at a depth of approximately 50 feet with a total dissolved solids concentration of approximately 2,000 mg/L. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through

Friday. Prior to ruling on any oposed discharge plan or its moderation, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Requests for public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.


GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 10th day of July, 1995.

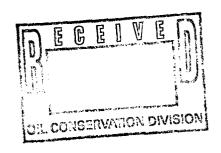
STATE OF NEW MEXICO

OIL CONSERVATION DIVISION

SEAL

WILLIAM J. ZEMAY, Director

Transwestern Pipeline Company


TECHNICAL OPERATIONS

P. O. Box 1717 • Roswell, New Mexico 88202-1717

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, New Mexico 87505

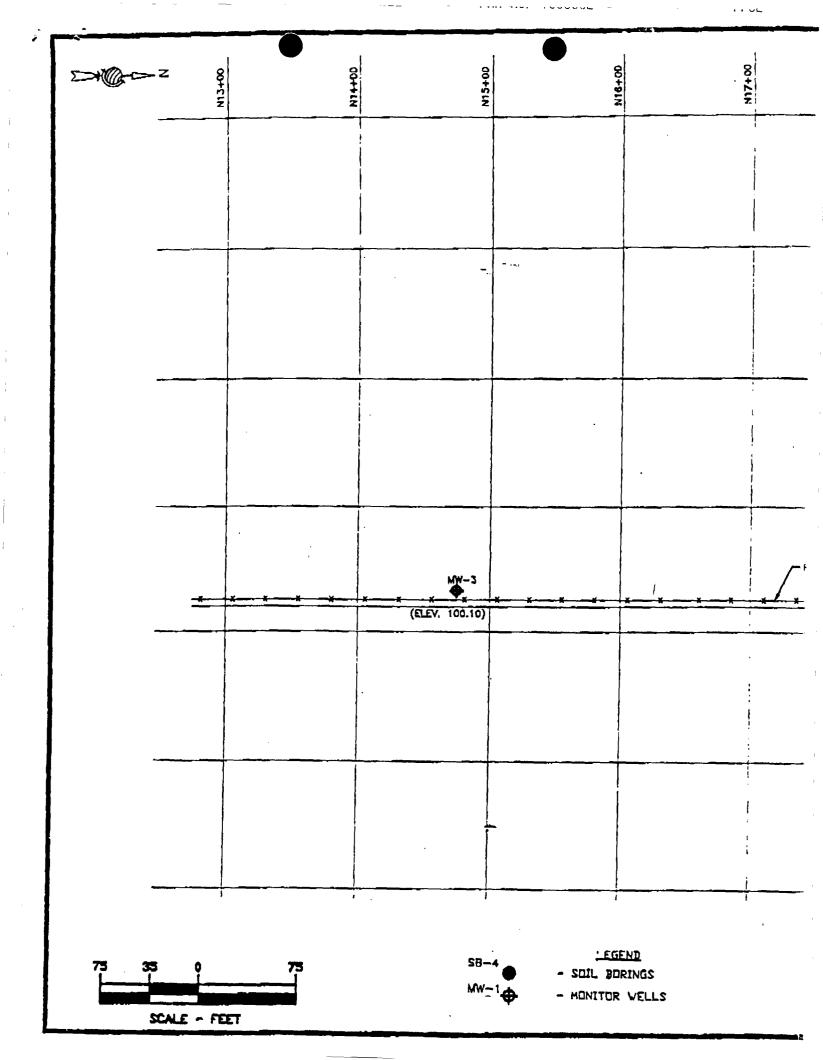
Re:

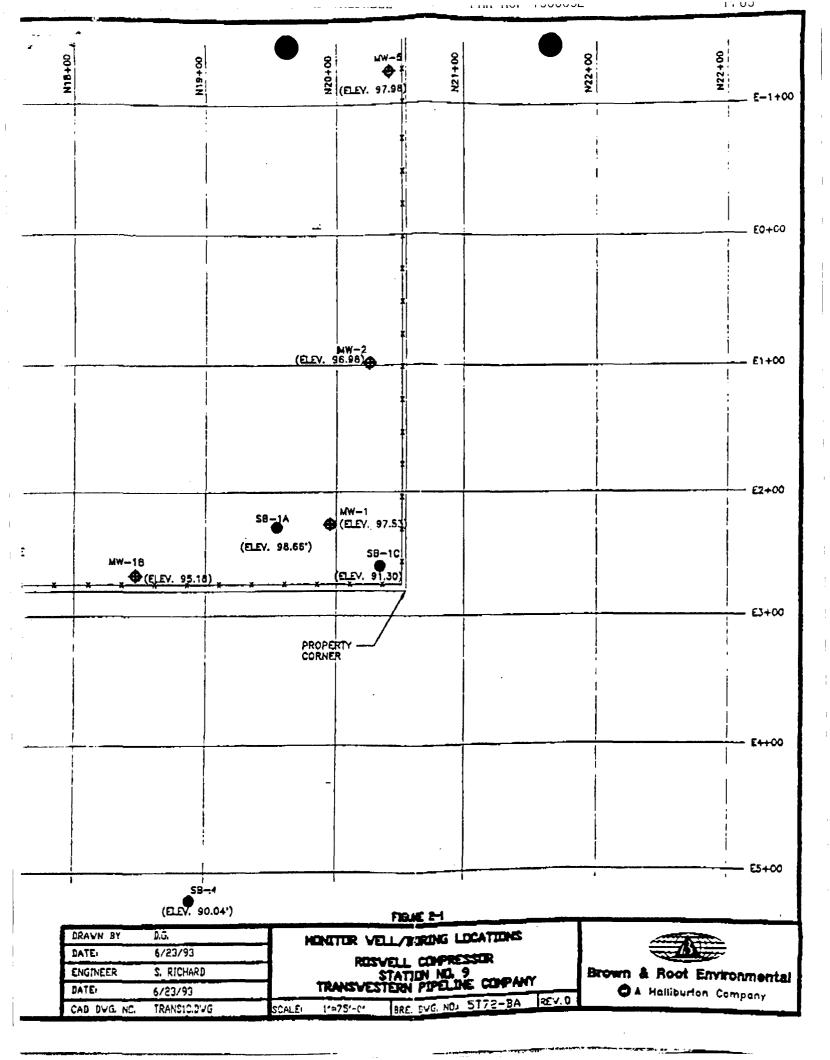
Renewal of Discharge Plan GW-052

Dear Mr. Anderson:

Transwestern Pipeline Company (Transwestern), owner and operator of the Roswell Compressor Station, is in receipt of the Oil Conservation Division's (OCD) March 21, 1995 letter, requesting renewal of the above referenced discharge plan. By this letter, Transwestern requests renewal of the discharge plan for the Roswell Compressor Station. Under the original application, Transwestern provided all necessary and accurate information and was issued a plan by the OCD on November 9, 1990.

During the five (5) year operating period of this approved plan, the activities at the facility which are covered under this plan have remained essentially consistent. The only information not addressed under the plan, and is presently ongoing, is a remediation activity in the northeast portion of the facility where hydrocarbon materials are being removed from the underlying groundwater. Transwestern has installed a series of monitor and production wells to address removal of the hydrocarbon constituents present. In addition, Transwestern has constructed an above ground tank for temporary storage of the liquids removed from the surface of the groundwater. Secondary containment has also been provided for this tank which complies with the regulations for SPCC. The attached diagram depicts the monitor and production well.


Also, as required under 3-114 of the Water Quality Control Regulations, enclosed find a \$50.00 nonrefundable filing fee for this renewal application.


If you should require any additional information concerning this renewal application, contact our Roswell Technical Operations at (505) 625-8022.

Sincerely,

Larry Campbell

Division Environmental Specialist

ACKNOWLEDGEMENT OF RECEIPT OF CHECK/CASH

I hereby acknowledge receipt of che	eck No. dated <u>5/8/95</u> ,
or cash received on $\frac{5/12/95}{}$	in the amount of \$ 50.00
From Transwestern Pup.	e line Co
sor Roswell C.S	G.W.052
Submitted by:	Date:
Submitted to ASD by: Roger al	enden Date: 5/12/95
Received in ASD by:	Date:
Filing Fee X New Facility	y Renewal
Modification Other	
To be deposited in the Water Qual. Full Payment or Annua.	
THE NO.	
TRANSWESTERN PIPELINE COMP P. O. BOX 1188 HOUSTON, TEXAS 77251-1188	
p n RNX 1188	

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

March 21, 1995

CERTIFIED MAIL RETURN RECEIPT NO. Z-765-962-651

Mr. Larry Campbell Transwestern Pipeline Company P.O. Box 1717 Roswell, New Mexico 88202-1717

RE: Discharge Plan GW-052 Renewal Roswell Compressor Station Chavez County, New Mexico

Dear Mr. Campbell:

On November 9, 1990, the groundwater discharge plan, GW-052, for the Roswell Compressor Station located in the SW/4 SW/4, Sections 21, Township 9 South, Range 24 East, NMPM, Chavez County, New Mexico, was approved by the Director of the New Mexico Oil Conservation Division (OCD). This discharge plan was required and submitted pursuant to Water Quality Control Commission (WQCC) regulations and was approved for a period of five years. The approval will expire on November 9, 1995.

If your facility continues to have potential or actual effluent or leachate discharges and you wish to continue operation, you must renew your discharge plan. The OCD is reviewing discharge plan submittals and renewals carefully and the review time can extend for several months. Please indicate whether you have made, or intend to make, any changes in your system, and if so, please include these modifications in your application for renewal.

To assist you in preparation of your application, I have enclosed an application form and a copy of the OCD's Guidelines for the Preparation of Ground Water Discharge Plans at Natural Gas Plants and a copy of the WQCC Regulations. Please submit the original and one copy to the OCD Santa Fe Office and one copy to the OCD Artesia District Office. Note that the completed and signed application form must be submitted with your discharge plan renewal request.

7

Mr. Larry Campbell March 21, 1995 * Page 2

The discharge plan renewal application for the Roswell Compressor Station is subject to the WQCC Regulations 3-114 discharge plan fee. Every billable facility submitting a discharge plan renewal will be assessed a fee equal to the filing fee of fifty (50) dollars plus one-half of the flat fee for compressor stations based on the combined horsepower at the facility.

The (50) dollar filing fee is to be submitted with discharge plan renewal application and is nonrefundable. The flat fee for an approved discharge plan renewal may be paid in a single payment due at the time of approval, or in equal annual installments over the duration of the discharge plan.

Please make all checks payable to: NMED-Water Quality Management and addressed to the OCD Santa Fe Office.

If you no longer have any actual or potential discharges a discharge plan is not needed, please notify this office. If you have any questions regarding this matter, please do not hesitate to contact Patricio Sanchez at (505) 827-7156.

Sincerely,

Roger C. Anderson

Environmental Bureau Chief

xc: OCD Artesia Office

Z 765 962 651

Receipt for Certified Mail

No Insurance Coverage Provided Do not use for International Mail

P	(See Reverse)	
S	ent to	
s	treet and No.	
P	O., State and ZIP Code	······································
P	ostage	\$
0	ertified Fee	
s	pecial Delivery Fee	
- 1	estricted Delivery Fee	
	eturn Receipt Showing Whom & Date Delivered	
R	eturn Receipt Showing to Whom, bate, and Addressee's Address	
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OTAL Postage Fees	\$
P	ostmark or Date	
5		

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY

November 18, 1993

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-111-334-282

Mr. Larry Campbell Transwestern Pipeline Company P.O. Box 1717 Roswell, New Mexico 88202-1717

RE: Discharge Plan GW-52 Modifications
Roswell Compressor Station No.9

Chaves County, New Mexico

Dear Mr. Campbell:

The Oil Conservation Division (OCD) has completed a review of Transwestern Pipeline Company's October 25, 1993 correspondence detailing modifications to the above referenced discharge plan as a part of the RCRA cleanup of contaminated ground water at the facility.

These modifications consist of the disposing of product pumped from the underlying perched zone and aquifer, an inspection schedule for the underground piping used for the product recovery and the specifics on the product recovery storage tank.

The above referenced requested modification of the previously approved discharge plan, GW-52, for the Roswell Compressor Station located in the SW/4 SW/4 of Section 25, Township 9 South, Range 24 East, NMPM, Chaves County, New Mexico is hereby approved.

The discharge plan (GW-52) was originally approved on November 9, 1990. The modification does not significantly alter the discharge streams, therefore, public notice was not issued and the discharge plan fees have been waived.

Mr. Larry Campbell November 18, 1993 Page 2

The application for modification was submitted pursuant to Water Quality Control Commission (WQCC) Regulation 3-107.C and is approved pursuant to WQCC Regulation 3-109.

Please note that Section 3-104 of the WQCC regulations requires that "when a plan has been approved, discharges must be consistent with the terms and conditions of the plan". Pursuant to Section 3-107.C, you are required to notify the Director of any facility expansion, production increase or process modification that would result in a significant modification in the discharge of potential ground water contaminants.

Please be advised that OCD approval does not relieve you of liability should your operation result in actual pollution of surface waters, ground waters or the environment which may be actionable under other laws and/or regulations. In addition, this approval does not relieve you of responsibility for compliance with other city, state and federal laws and/or regulations.

for William J. Le May.

If you have any questions call Chris Eustice at (505) 827-5824.

Sincerely

William J/LeMay

Director

xc: OCD Artesia Office

ENRONOPERATIONS CORP.

TIME 1/ 61/8/52

P. O. Box 1188

Houston, Texas 77251-1188

(713) 853-6161

May 10, 1995

Ms. Barbara Hoditschek
New Mexico Environment Department
Hazardous & Radioactive Materials Bureau
525 Camino de Los Marquez
Santa Fe, NM 87502

RE: Transmittal of Additional Information

Dear Ms. Hoditschek,

Enclosed are Submittals 1-4 as requested by your letter dated April 28, 1995. These submittals generally comply with the specific requests for information with only a few minor exceptions which are described below.

- The listing of hazardous constituents for waste characterization includes all constituents found in the
 petroleum refining category of "List 4" of the RFI Guidance with the exception of three volatile organic
 compounds (chloracetaldehyde, chloral, and ethanol). These three compounds cannot be analyzed by EPA
 Method 8240. Based on process knowledge, none of these three compounds can reasonably be considered
 potential contaminants of concern. Therefore, TPC has excluded these compounds from the listing of
 hazardous constituents for waste characterization.
- 2. The project schedule has been prepared as requested by the NMED with no known exceptions.
- 3. Tables 3-2 through 3-5 have been modified to include reference concentrations rather than "action levels" since action levels will not be developed until after waste characterization. This exception to the original request for "applicable action levels" has been discussed with Teri Davis and conditionally found acceptable pending a final review by the NMED.
- 4. A standard operating procedure (SOP) and QA/QC information for mobile laboratory operations was obtained from Analytical Technologies Inc. (ATI) of Phoenix, Arizona. TPC has utilized ATI's mobile lab services in the past and would likely utilize their services during soil assessment activities at the Roswell Station. However, TPC reserves the right to evaluate other mobile laboratory service providers for use at the Roswell Station. In the event another mobile laboratory service provider is selected, TPC would obtain the necessary SOP and QA/QC information and provide this to the NMED prior to field activities.

Also included with this submittal is a corrected Figure 2-1 for inclusion into the closure plan.

If you have any questions or comments regarding this information, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely

Bill Kendrick

Projects Group Manager EOC Environmental Affairs

gcr/BK/attachments

xc: Roger Anderson

NMOCD

Santa Fe, NM

ROSWELL COMPRESSOR STATION

Proposed Schedule for Closure Activities,

OSWELL COMPRESSOR STATI	ION												r I O	pus	eu	JUI	ieu	uie	101	CIO	Sui		CLIV	LIC
TASK	<u> </u>		Follow	<u> </u>						`		T 46	1 40	1 44	145	1 42	1 7-	. 1	1.6	1 60	1 6	22	23	24
		2	3	4	5	6	7	8	9	10	11	12	13	14_	15	16	17	18	19	20	21	22	23	1 24
Waste Characterization Soil Sampling	9			l	I							<u> </u>	<u> </u>	<u> </u>	<u> </u>			_i_			ــــــــــــــــــــــــــــــــــــــ	l	L	
Laboratory Analysis of Soil Samples		1			I,	\perp											T.							工
Waste Characterization Report Preparation		Т	<u> T</u>	Ι	1		T	1	1	J	L	1											<u> </u>	
Develop Hazardous Constituent Monitoring List			<u> </u>			1		1		T	Ι	1	1											
Waste Characterization Report Submitted to NMED		I			T	Ι	Ι	Ι	1	I		<u> </u>	Ι	I	Γ	Ι					•	J.		I
PSH Product Recovery		. 4.1		MED .		1 -6				4			· · · · · ·				•							
Implement Soil Assessment Plan	wee	KS TOIL	owing N	мер а	pprov	al of wa	aste ur	iit char	acteriza	tion rep	on L		T		L	I	工							
Implement Ground Water Assessment Plan			1	Ι							Ι	Τ	1	I	Τ	1		工						工
Laboratory Analysis of Soil and Ground Water Samples			1	T	1			I							<u> L</u>					1				
Soil Assessment Summary Report Preparation		1		1	1																	I_		
Ground Water Assessment Report Preparation		1		1	1		_I	1			•							ı.	·I					
Soil Assessment Summary Report Submitted to NMED				Ι				1			I	Т		Т	1	•					1_			
Ground Water Assessment Summary Report Submitted to NMED	D Wee	ks fol	lowing N	IMED a	approv	al of so	oil & a	round	water a	ssessme	nt sun	nmarv	reports	1	<u> </u>	•				<u> </u>				工
Risk Assessment Preparation			Ţ								Ι.	Ĺ	Ĺ	T	T						Ί			工
Corrective Measures Proposal Preparation										1	1				T									
Risk Assessment and Corrective Measures Proposal Submitted to NM	иED	1		1					•					1	1						_1_			工
Implement Phase I Corrective Action (bench study)		ks fol	lowing N	MED 6	approv	al of ris	sk ass	essmer	nt & co	rective	neasu	res pro	posal	1	1									
Phase I Corrective Action Report Preparation				1		П	1																	
Phase I Corrective Action Report Submitted to NMED	Mon	ths fo	lowing 1	MED	approv	val of F	Phase I	correc	ctive ac	tion repo	T ort	Τ		T	•	Ι	П	Т						二
Implement Phase II Corrective Action												•											.?	工
Semi-annual Summaries Submitted to NMED	ļ			<u> </u>					•	Ι	I.	1		1	•						•			
Perform Confirmation Sampling	Wee	ks fol	lowing a	ttainme	nt of	clean-u	p stan	dards		-T	T													
Laboratory Analysis of Conformation Samples				T							L			<u> </u>	<u> </u>									
Corrective Action Summary Report Preparation				T	Т	1									1								1	
Corrective Action Summary Report Submitted to NMED										-1				·	<u> </u>									工
District Control																		5						

Notes: Project 4115

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples Roswell Compressor Station No. 9 Page 1 of 8

								Con	centration ¹						
Sample ID	Source²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon-113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH
Subpart S Standare	d³	7,000	70 ⁵	8,000	2,000	100	40 ⁴	10	1,000,000 ⁵	90	24 ⁵	20,000	8,000	200,000	NS
SB9-6 @ 8-11'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB9-6 @ 18-20'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB9-6 @ 20-23'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	120
SB9-6 @ 26-28'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB9-6 @ 26-28' Tube #5	HLA	<0.005	ND	<0.01	<0.005	ND	0.005	ND	0.006	0.016	ND	ND	<0.005	<0.005	<20
SB9-6 @ 26-28' Tube #6	HLA	<0.007	ND	<0.014	<0.007	ND	0.007	ND	0.023*	0.009*	ND	ND	<0.007	<0.007	<20
SB9-7 @ 9-12'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1100
SB9-7 @ 21.5-24'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2000
SB9-7 @ 25.5-28'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2500
SB9-7 @ 29-32'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11000
SB9-7 @ 29-32' Tube #7	HLA	<1.3	ND	<2.6	<1.3	ND	<1.3	ND	5.1	<1.3	ND	ND	0.72	1.8	5000
SB9-7 @ 35-37'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4600
SB9-7 @ 35-37' Tube #8	HLA	<0.64	ND	<1.3	<0.64	ND	<0.64	ND	<0.64	<0.64	ND	ND	1.8	4.2	13000
SB9-7 @ 35-37' Tube #9	HLA	2	ND	<1.3	<0.67	ND	2.1	ND	<0.67	<0.67	ND	ND	2.8	6.5	30000

¹ All concentrations are in mg/kg

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

1.1-DCA = 1.1-Dichloroethane **PCA** = Tetrachloroethane

1,1,1-TCA = 1,1,1-Trichloroethane

PCE = Tetrachtoroethene

Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons NA = Not analyzed

ND = Not detected

NS = No standard; New Mexico OCD TPH standard for soil ranges from 100 mg/kg to 5000 mg/kg, depending on site conditions

= Compound was also detected in the QC blanks

² HLA = Harding Lawson Associates (1991a)

³ Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

⁴ Standard for 1,1,2,2 - PCA shown; standard for 1,1,1,2-PCA is 300 mg/kg

⁵ Calculated using methodology in Appendix D - RCRA 40 CFR Part 264 subpart S proposed rule; reference doses from TWC Risk Reduction Rules or EPA Risk Based Concentration Table

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples Roswell Compressor Station No. 9 Page 2 of 8

								Con	centration ¹						
Sample ID	Source²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon-113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH
Subpart S Standar	d³	7,000	70 5	8,000	2,000	100	40 ⁴	10	1,000,000 ⁵	90	245	20,000	8,000	200,000	NS
P9-OS-349 @ 5'	HLA	<0.005	ND	<0.011	<0.005	ND	<0.005	ND	0.026*	0.006*	ND	ND	<0.005	<0.005	<20
P9-OS-349 @ 10'	HLA	<0.006	ND	<0.011	<0.006	ND	<0.006	ND	0.018	0.009	ND	ND	<0.006	<0.006	100
P9-OS-349 @ 20'	HLA	<0.005	ND	<0.011	<0.005	ND	<0.005	ND	0.045*	<0.005*	ND	ND	<0.005	<0.005	<20
P9-OS-349 @ 25'	HLA	<0.005	ND	<0.011	<0.005	ND	<0.005	ND	0.021	0.010	ND	ND	<0.005	<0.005	100
P9-OS-349 @ 30'	HLA	<0.007	ND	<0.014	<0.007	ND	<0.007	ND	0.045*	<0.007	ND	ND	<0.007	<0.007	<20
P9-OS-349 @ 35'	HLA	<0.007	ND	<0.014	<0.007	ND	<0.007	ND	0.039	0.015	ND	ND	<0.007	<0.007	<20
P9-OS-349 @ 40'	HLA	<0.005	ND	<0.010	<0.005	ND	<0.005	ND	0.040	0.008	ND	ND	<0.005	<0.005	<20
P9-OS-377 @ 5'	HLA	<0.006	ND	0.034*	<0.006	ND	<0.006	ND	<0.006	<0.006	ND	ND	<0.006	<0.006	200
P9-OS-377 @ 10'	HLA	<0.006	ND	0.027*	<0.006	ND	<0.006	ND	<0.006	<0.006	ND	ND	<0.006	<0.006	<20
P9-OS-377 @ 15'	HLA	<0.006	ND	0.027*	<0.006	ND	<0.006	ND	<0.006	0.011	ND	ND	<0.006	<0.006	<20
P9-OS-377 @ 20'	HLA	<0.007	ND	0.037*	<0.007	ND	<0.007	ND	<0.007	0.007	ND	ND	<0.007	<0.007	<20
P9-OS-377 @ 25'	HLA	<0.006	ND	<0.012	<0.006	ND	<0.006	ND	0.046	0.036	ND	ND	<0.006	<0.006	<20
P9-OS-377 @ 30'	HLA	<0.007	ND	<0.013	<0.007	ND	<0.007	ND	0.069	0.023	ND	ND	<0.007	<0.007	<20

¹ All concentrations are in mg/kg

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

1,1,1-TCA = 1,1,1-Trichloroethane 1.1-DCA = 1,1-Dichloroethane = Tetrachloroethane PCA PCE = Tetrachloroethene

Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons NA = Not analyzed

ND = Not detected

NS = No standard; New Mexico OCD TPH standard for soil ranges from 100 mg/kg to 5000 mg/kg, depending on site conditions

= Compound was also detected in the QC blanks

Note: All HLA analyses performed in on-site mobile laboratory

J:\4115\CLOS-PLN.595\SO-V&SV.595

² HLA = Harding Lawson Associates (1991a)

³ Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

⁴ Standard for 1,1,2,2 - PCA shown; standard for 1,1,1,2-PCA is 300 mg/kg

⁵ Calculated using methodology in Appendix D - RCRA 40 CFR Part 264 subpart S proposed rule; reference doses from TWC Risk Reduction Rules or EPA Risk Based Concentration Table

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples Roswell Compressor Station No. 9 Page 3 of 8

								Con	centration ¹						
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon-113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH
Subpart S Standar	d³	7,000	70 ⁵	8,000	2,000	100	401	10	1,000,0005	90	245	20,000	8,000	200,000	NS
Pit 1 @ 2.8-3.0'	Metric	3.2	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	25000
Pit 1 @ 9.2-9.4'	Metric	19	ND	NA	ND	ND	ND	0.26	NA	ND	NA	NA	NA	NA	39000
Pit 1 @ 13.5-13.7'	Metric	18	0.59	NA	ND	0.20	ND	0.33	NA	ND	NA	NA	NA	NA	55000
Pit 1 @ 18.8-19.0'	Metric	0.33	ND	NA	ND	ND	ND	0.87	NA	ND	NA	NA	NA	NA	20000
Pit 1 @ 26.8-27.0'	Metric	ND	ND	NA	ND	ND	ND	0.16	NA	ND	NA	NA	NA	NA	11000
Pit 1 @ 30.6-30.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
Pit 1 @ 41.6-41.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	16
Pit 1 @ 43.5-43.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	56
Pit 2 #1 @ 18.7-18.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
Pit 2 #2 @ 18.7-18.9'	Metric	0.37	ND	NA	ND	ND	ND	0.65	NA	ND	NA	NA	NA	NA	13000
Pit 2 @ 26.0-26.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	170
Pit 2 @ 29.1-29.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
Pit 2 @ 39.8-39.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	2600
Pit 2 @ 44.1-44.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	44

¹ All concentrations are in mg/kg

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

1,1,1-TCA = 1,1,1-Trichloroethane 1,1-DCA = 1,1-Dichloroethane

PCA = Tetrachloroethane PCE = Tetrachloroethene

Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

= Total petroleum hydrocarbons TPH

NA = Not analyzed ND = Not detected

NS = No standard; New Mexico OCD TPH standard for soil ranges from 100 mg/kg to 5000 mg/kg, depending on site conditions

= Compound was also detected in the QC blanks

Note: All HLA analyses performed in on-site mobile laboratory

J:\4115\CLOS-PLN.595\SO-V&SV.595

² HLA = Harding Lawson Associates (1991a)

Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

⁴ Standard for 1,1,2,2 - PCA shown; standard for 1,1,1,2-PCA is 300 mg/kg

⁵ Calculated using methodology in Appendix D - RCRA 40 CFR Part 264 subpart S proposed rule; reference doses from TWC Risk Reduction Rules or EPA Risk Based Concentration Table

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples Roswell Compressor Station No. 9 Page 4 of 8

							<u></u>	Con	centration ¹						
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon-113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	ТРН
Subpart S Standard	d³	7,000	70 ⁵	8,000	2,000	100	40 ⁴	10	1,000,0005	90	24 ⁵	20,000	8,000	200,000	NS
Pit 2 @ 57.5-57.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	250
Pit 2 @ 69.9-70.1'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Pit 3 BH-1 @ 30.7-30.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Pit 3 BH-2 @ 25.0-25.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
SG 86 @ 13.5-13.7'	Metric	0.24	ND	NA	ND	ND	ND	1.9	NA	ND	NA	NA	NA	NA	18000
SG 86 @ 18.7-18.9'	Metric	ND	ND	NA	ND	ND	ND	0.23	NA	ND	NA	NA	NA	NA	5200
SG 86 @ 24.9-25.1'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 86 @ 35.0-35.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	8.0
SG 86 @ 40.5-40.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
SG 91 @ 28.6-28.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
SG 349 @ 0.0-1.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 349 @ 2.9-4.6'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND .
SG 349 @ 9.0-10.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 349 @ 14.0-14.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND

¹ All concentrations are in mg/kg

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

= Tetrachloroethane

= Tetrachloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

1,1-DCA = 1,1-Dichloroethane

PCA

PCE

NA = Not analyzed

ND = Not detected

NS = No standard; New Mexico OCD TPH standard for soil ranges from 100 mg/kg to 5000 mg/kg, depending on site conditions

= Compound was also detected in the QC blanks

² HLA = Harding Lawson Associates (1991a)

Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

⁴ Standard for 1,1,2,2 - PCA shown; standard for 1,1,1,2-PCA is 300 mg/kg

⁵ Calculated using methodology in Appendix D - RCRA 40 CFR Part 264 subpart S proposed rule: reference doses from TWC Risk Reduction Rules or EPA Risk Based Concentration Table

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples
Roswell Compressor Station No. 9
Page 5 of 8

								Con	centration ¹			<u> </u>			
Sample ID	Source²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon-113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH
Subpart S Standar	·d³	7,000	70 ⁵	8,000	2,000	100	404	10	1,000,000 ⁵	90	245	20,000	8,000	200,000	NS
SG 349 @ 20.3-21.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 349 @ 5.3-26.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	, ND
SG 349 @ 29.7-30.4'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
SG 360 @ 0.0-2.5'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 4.0-5.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 9.0-9.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 14.0-14.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 19.0-20.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 24.0-25.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 29.0-29.4'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	2.0
SG 361 @ 0.0-2.5'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 4.0-5.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 9.0-10.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 16.0-16.4'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND

¹ All concentrations are in mg/kg

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

1,1,1-TCA = 1,1,1-Trichloroethane 1,1-DCA = 1,1-Dichloroethane

PCA = Tetrachloroethane PCE = Tetrachloroethene

Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

NA = Not analyzed

ND = Not detected

NS = No standard; New Mexico OCD TPH standard for soil ranges from 100 mg/kg to 5000 mg/kg, depending on site conditions

Compound was also detected in the QC blanks

² HLA = Harding Lawson Associates (1991a)

³ Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

⁴ Standard for 1,1,2,2 - PCA shown; standard for 1,1,1,2-PCA is 300 mg/kg

⁵ Calculated using methodology in Appendix D - RCRA 40 CFR Part 264 subpart S proposed rule; reference doses from TWC Risk Reduction Rules or EPA Risk Based Concentration Table

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples
Roswell Compressor Station No. 9
Page 6 of 8

								Cor	ncentration ¹						
Sample ID	Source²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon-113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH
Subpart S Standar	rd³	7,000	70⁵	8,000	2,000	100	40 ⁴	10	1,000,000⁵	90	24 ⁵	20,000	8,000	200,000	NS
SG 361 @ 19.5-19.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 24.0-25.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 38.0-39.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-1 @ 18.9-19.1'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	12
OS BH-1 @ 34.3-34.5'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-2 @ 9.9-10.1'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-2 @ 22.5-22.6'	Metric	. ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-2 @ 31.1-31.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	68
OS BH-2 @ 41.8-42.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	24
OS BH-2 @ 55.2-55.4'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
OS BH-2 @ 69.0-69.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
OS BH-3 @ 21.0-21.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
OS BH-3 @ 44.1-44.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
OS BH-3 @ 54.7-55.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	16

¹ All concentrations are in mg/kg

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

1,1,1-TCA = 1,1,1-Trichloroethane

1.1-DCA = 1.1-Dichloroethane

PCA = Tetrachloroethane

PCE = Tetrachloroethene

Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

NA = Not analyzed

ND = Not detected

NS = No standard; New Mexico OCD TPH standard for soil ranges from 100 mg/kg to 5000 mg/kg, depending on site conditions

= Compound was also detected in the QC blanks

² HLA = Harding Lawson Associates (1991a)

Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

Standard for 1,1,2,2 - PCA shown; standard for 1,1,1,2-PCA is 300 mg/kg

⁵ Calculated using methodology in Appendix D - RCRA 40 CFR Part 264 subpart S proposed rule; reference doses from TWC Risk Reduction Rules or EPA Risk Based Concentration Table

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples
Roswell Compressor Station No. 9
Page 7 of 8

								Con	centration1						
Sample ID	Source²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon-113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH
Subpart S Standard	d³	7,000	70°	8,000	2,000	100	404	10	1,000,000	90	245	20,000	8,000	200,000	NS
OS BH-4 @ 27.5-27.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
OS BH-5 @ 14.0-14.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-5 @ 19.6-19.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
OS BH-5 @ 23.4-23.6'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	12
OS BH-6 @ 13.6-13.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	12
OS BH-6 @ 47.0-47.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-6 @ 52.6-52.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-6 @ 70.0-71.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
OS BH-7 @ 22.1-22.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
OS BH-7 @ 33.5-33.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-7 @ 37.0-37.2'	Metric	ND	ND	NA	ND	ND	ND	0.17	NA	ND	ND	ND	0.19	0.44	12
OS BH-8 @ 4.6-4.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	12
OS BH-8 @ 33.9-34.1'	Metric	ND	ND	NA	0.12	ND	ND	0.16	NA	ND	NA	NA	NA	NA	ND
OS BH-8 @ 49.7-49.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	0.14	0.3	12

¹ All concentrations are in mg/kg

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

Note: All HLA analyses performed in on-site mobile laboratory

1,1,1-TCA = 1,1,1-Trichloroethane

1.1-DCA = 1.1-Dichloroethane

PCA = Tetrachloroethane

PCE = Tetrachloroethene

Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

NA = Not analyzed

ND = Not detected

NS = No standard; New Mexico OCD TPH standard for soil ranges from 100 mg/kg to 5000 mg/kg, depending on site conditions

= Compound was also detected in the QC blanks

² HLA = Harding Lawson Associates (1991a)

³ Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

⁴ Standard for 1,1,2,2 - PCA shown; standard for 1,1,1,2-PCA is 300 mg/kg

⁵ Calculated using methodology in Appendix D - RCRA 40 CFR Part 264 subpart S proposed rule; reference doses from TWC Risk Reduction Rules or EPA Risk Based Concentration Table

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples Roswell Compressor Station No. 9 Page 8 of 8

								Cor	ncentration ¹						
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon-113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH
Subpart S Standar	'd³	7,000	70 ⁵	8,000	2,000	100	40 ⁴	10	1,000,0005	90	245	20,000	8,000	200,000	NS
OS BH-9 @ 4.5-4.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	8
OS BH-9 @ 32.0-32.5'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	150
OS BH-9 @ 49.5-49.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	8
BH-10 @ 37.3-37.6'	Metric	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND
BH-11 @ 36.3-36.7'	Metric	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	8
SB-1C @ 25-26'	B&R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB-5 @ 19-21'	B&R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB-5 @ 64-66'	B&R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

1,1,1-TCA = 1,1,1-Trichloroethane

1,1-DCA = 1,1-Dichloroethane
PCA = Tetrachloroethane

PCE = Tetrachloroethene

Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

NA = Not analyzed

ND = Not detected

NS = No standard; New Mexico OCD TPH standard for soil ranges from 100 mg/kg to 5000 mg/kg, depending on site conditions

Compound was also detected in the QC blanks

¹ All concentrations are in mg/kg

² HLA = Harding Lawson Associates (1991a)

Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

⁴ Standard for 1,1,2,2 - PCA shown; standard for 1,1,1,2-PCA is 300 mg/kg

Secure designs of the Secure y Secure Secure Secure Security Secure Secure Security Securi

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-3. Summary of TCLP Inorganic Constituents Detected in Soil Samples Roswell Compressor Station No. 9 Page 1 of 2

					Concentrat	ion (mg/L)			
Sample ID	Source ¹	Arsenic (TCLP Extract)	Barium (TCLP Extract)	Cadmium (TCLP Extract)	Chromium (TCLP Extract)	Lead (TCLP Extract)	Mercury (TCLP Extract)	Selenium (TCLP Extract)	Silver (TCLP Extract)
TCLP Limit ²		5.0	100.0	1.0	5.0	5.0	0.2	1.0	5.0
SB9-6 @ 8-11'	HLA	0.004	0.63	0.0010	<0.006	<0.002	<0.0002	<0.003	<0.0005
SB9-6 @ 18-20'	HLA	<0.003	1.21	<0.0005	<0.006	<0.002	<0.0002	<0.003	<0.0005
SB9-6 @ 20-23'	HLA	<0.003	0.7	<0.0005	0.011	<0.002	<0.0002	<0.003	0.0026
SB9-6 @ 26-28'	HLA	<0.003	1.22	0.0006	0.006	0.008	<0.0002	<0.003	<0.0005
SB9-6 @ 26-28' Tube #5	HLA	<0.003	1.3	0.0012	0.007	0.002	<0.0002	<0.003	<0.0005
SB9-6 @ 26-28' Tube #6	HLA	0.009	0.010	0.0008	0.011	<0.002	<0.0002	<0.003	<0.0005
SB9-7 @ 9-12'	HLA	<0.003	0.75	0.0005	0.007	0.003	<0.0002	<0.003	<0.0005
SB9-7 @ 21.5-24'	HLA	0.004	2.22	0.0010	<0.006	<0.002	<0.0002	<0.003	<0.0005
SB9-7 @ 25.5-28'	HLA	<0.003	1.81	<0.0005	0.009	<0.002	<0.0002	<0.003	<0.0005
SB9-7 @ 29-32'	HLA	0.008	3.59	0.0011	0.009	<0.002	<0.0002	<0.003	<0.0005
SB9-7 @ 29-32' Tube #7	HLA	0.008	1.81	0.0012	0.006	<0.002	<0.0002	<0.003	<0.0005
SB9-7 @ 35-37'	HLA	0.008	1.72	0.0007	0.007	<0.002	<0.0002	<0.003	<0.0005
SB9-7 @ 35-37' Tube #8	HLA	0.005	1.84	0.0006	<0.006	<0.002	<0.0002	<0.003	<0.0005
SB9-7 @ 35-37' Tube #9	HLA	0.004	3.12	0.0006	0.01	<0.002	<0.0002	<0.003	<0.0005
P9-OS-349 @ 5'	HLA	0.007	1.21	0.0009	0.012	0.012	<0.0002	<0.003	<0.0006
P9-OS-349 @ 10'	HLA	0.005	0.4	<0.0006	0.013	0.011	<0.0002	<0.01	<0.0006

HLA = Harding Lawson Associates (1991a)
 TCLP limits provided for reference only and should not be construed as proposed action levels

Table 3-3. Summary of TCLP Inorganic Constituents Detected in Soil Samples
Roswell Compressor Station No. 9
Page 2 of 2

·					Concentrat	ion (mg/L)			
Sample ID	Source ¹	Arsenic (TCLP Extract)	Barium (TCLP Extract)	Cadmium (TCLP Extract)	Chromium (TCLP Extract)	Lead (TCLP Extract)	Mercury (TCLP Extract)	Selenium (TCLP Extract)	Silver (TCLP Extract)
TCLP Limit ²		5.0	100.0	1.0	5.0	5.0	0.2	1.0	5.0
P9-OS-349 @ 20'	HLA	<0.003	0.77	<0.0006	0.009	0.004	<0.0002	<0.003	<0.0006
P9-OS-349 @ 30'	HLA	<0.003	1.48	<0.0006	0.009	0.007	<0.0002	<0.003	<0.0006
P9-OS-349 @ 35'	HLA	<0.003	1.36	<0.0006	0.011	0.005	<0.0002	<0.003	<0.0006
P9-OS-349 @ 40'	HLA	0.005	0.23	0.0013	<0.007	<0.002	<0.0002	<0.003	<0.0006
P9-OS-377 @ 5'	HLA	0.004	1.05	<0.0006	0.009	0.003	<0.0002	<0.003	<0.0006
P9-OS-377 @ 10'	HLA	0.01	0.19	0.0018	0.007	0.004	<0.0002	<0.01	<0.0006
P9-OS-377 @ 15'	HLA	<0.003	0.15	0.003	0.011	0.009	<0.0002	<0.003	<0.0006
P9-OS-377 @ 20'	HLA	0.003	0.16	0.0010	0.011	0.003	<0.0002	<0.01	<0.0006
P9-OS-377 @ 25'	HLA	0.006	0.06	0.0009	<0.007	<0.002	<0.0002	<0.02	<0.0006
P9-OS-377 @ 30'	HLA	0.011	0.32	<0.0006	<0.007	<0.002	<0.0002	<0.003	<0.0006

HLA = Harding Lawson Associates (1991a)
 TCLP limits provided for reference only and should not be construed as proposed action levels

Table 3-4. Summary of Organic Compounds Detected in Ground-Water Samples Roswell Compressor Station No. 9

									Concentra	tion ¹				
Sample ID	Source ²	Date	Benzene	Toluene	Ethyl- benzene	o-Xylene	p-Xylene, m-Xylene	1,1,1-TCA	1,1-DCA	2-Butanone (MEK)	Naphthalene	2-Methyl- naphthalene	4-Methyl- phenol	Petroleum Hydrocarbons (mg/L)
NM Ground	l-Water St	andard 3	10	750	750	62	204	60	NS	NS	NS	30 ⁵	NS	NS
Subpar	t S standa	ard ⁶	5	10,000	4,000	70,	0001	3,000	3,500 ⁷	2,000	1407	NS	2,000	NS
E	PA MCL [®]		5	1,000	700	10,	000 4	200	NS	NS	NS	NS	NS	NS
MW-1	НВ	09/21/92	370	61	110	120	820	180	560	220	34	51	250	37
MW-2	B&R	10/09/93	6,500	15,000	2,100	13,	000⁴	<300	<300	NA	NA	NA	NA	NA
MW-3	B&R	04/30/93	<5	<5	<5	NA	NA	<5	<5	NA	NA	NA	NA	<0.2
MW-5	B&R	04/30/93	<5	<5	<5	NA	NA	<5	<5	NA	NA	NA	NA	<0.2
MW-6	DBS&A	12/02/94	<0.5	<0.5	<0.5	<(0.5⁴	<0.2	<0.2	NA	NA	NA	NA	<2.5
TW-1	DBS&A	12/22/94	<1	<5	<5		<5	<5	<5	<100	<10	<10	<10	NA
Well #59	DBS&A	12/22/94	<1	<5	<5		<5	<5	<5	<100	NA	NA	NA	NA

¹ Concentrations are in µg/L unless otherwise noted

B&R = Brown and Root Environmental (1993)

DBS&A = Daniel B. Stephens & Associates, Inc. (1994)

Off-site water supply well; see Figure 2-5 for location

1,1,1-TCA = 1,1,1-Trichloroethane NA = Not analyzed
1,1-DCA = 1,1-Dichloroethane ND = Not detected
MEK = Methyl ethyl ketone NS = No standard

² HB = Halliburton NUS Environmental Corp. (1992)

³ New Mexico Ground Water Standards - New Mexico Environment Department, Ground Water Protection and Remediation Bureau; standards are provided for reference only and should not be construed as proposed action levels

⁴ Total xylenes

⁵ Sum of naphthalene and methylnaphthalene

⁶ RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

Calculated using methodology in Appendix D - RCRA 40 CFR Part 264 Subpart S proposed rule reference doses obtained from TWC Risk Reduction Rules, EPA Risk Based Concentration Tables, or Safe Drinking Water Hotline

EPA Drinking Water maximum concentration levels (MCL); standards are provided for reference only and should not construed as proposed action levels

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-5. Summary of Inorganic Constituents Detected in Ground-Water Samples
Roswell Compressor Station No. 9

				Concentration (mg/L)															
			Arse	enic	Bai	ium	Cadn	nium	Chro	mium	Lea	ad	Merc	cury	Seler	nium	Silv	/er	
Sample ID	Source ¹	Date	T	D	T	D	Т	D	T	D	T	D	Τ	D	Т	D	T	D	TDS
NM Ground	-Water St	andards²	NS	0.1	NS	1.0	NS	0.01	NS	0.05	NS	0.05	0.002	NS	NS	0.05	NS	0.05	1000
Subpar	t S stanc	lard ³	0.05	NS	2.0	NS	0.05	NS	0.1	NS	0.015	NS	0.002	NS	0.05	NS	0.1	NS	NS
Ei	PA MCL ⁴		0.05	NS	2.0	NS	0.05	NS	0.1	NS	0.015	NS	0.002	NS	0.05	NS	0.1	NS	NS
MW-1	НВ	09/21/92	0.19 ⁶	NA	4.4 ⁶	NA	<0.005	NA	0.01	NA	<0.05	NA	<0.0002	NA	<0.003	NA	<0.01	NA	NA
MW-3	B&R	04/30/93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,400
	CES	03/23/94	<0.03	<0.03	0.09	0.02	<0.01	<0.01	<0.01	<0.01	0.04	<0.03	<0.0002	<0.0002	<0.04	<0.04	<0.01	<0.01	NA
MW-5	B&R	04/30/93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,800
	CES	03/23/94	<0.03	<0.03	0.38	0.01	<0.01	<0.01	0.03	<0.01	0.04	<0.03	<0.0002	<0.0002	<0.04	<0.04	<0.01	<0.01	NA
TW-1	DBS&A	12/22/94	<0.05	NA	0.14	NA	<0.005	NA	<0.01	NA	0.06	NA	<0.0002	NA	<0.1	NA	<0.01	NA	1,290
Well #5 ⁵	DBS&A	12/22/94	<0.05	NA	0.02	NA	<0.005	NA	<0.01	NA	<0.05	NA	<0.0002	NA	<0.1	NA	<0.01	NA	2,420

¹ HB = Halliburton NUS Environmental Corp. (1992)

B&R = Brown and Root Environmental (1993)

CES = Cypress Engineering Services (1994)

DBS&A = Daniel B. Stephens & Associates, Inc. (1994)

TDS = Total dissolved solids

= Total metals concentrations determined on unfiltered samples

D = Dissolved metals concentrations determined on samples filtered in the laboratory prior to analysis

NA = Not analyzed

NS = Not standard

Note: New Mexico Water Quality Control Commission (NMWQCC) ground-water standards pertain to dissolved constituents, except mercury; the mercury standard applies to the total (unfiltered) mercury concentration.

New Mexico Ground Water Standards - New Mexico Environment Department, Ground Water Protection and Remediation Bureau; standards are provided for reference only and should not be construed as proposed action levels

Proposed RCRA 40 CFR Part 264 Subpart S Appendix A - standards are provided for reference only and should not be construed as proposed action levels

⁴ EPA Drinking Water maximum contaminant levels (MCL); standards are provided for reference only and should not be construed as proposed action levels

⁵ Off-site water supply well; see Figure 2-5 for location

⁶ Unfiltered ground-water sample was turbid; concentration includes suspended sediment

Table 6-1b. Analyte List for Waste Characterization Page 1 of 15

	Laboratory				Cont	tential aminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance ^b	Appendix IX°	Soils	Ground Water
Volatile Organic Compounds					1000	- Traici
Acetone	3520(L)/3550(S)	8240	2-14	324		
Acetonitrile	3520(L)/3550(S)	8240 ^e	2-13	324		
Acrolein (Propenal)	3520(L)/3550(S)	8240 ^e	2-13, 2-14	324		
Acrylonitrile	3520(L)/3550(S)	8240	2-13, 2-14	324		
Allyl chloride	3520(L)/3550(S)	8240		324		
Benzene	3520(L)/3550(S)	8240	2-12,2-14	324	Х	Х
Benzyl chloride	3520(L)/3550(S)	8240	2-10			
Bromobenzene	3520(L)/3550(S)	8240	2-10			
Bromochloromethane	3520(L)/3550(S)	8240 ^f	2-14			
Bromodichloromethane	3520(L)/3550(S)	8240	2-10,2-14	325		
4-Bromofluorobenzene	3520(L)/3550(S)	8240 ⁹	2-14			
Bromoform (tribromomethane)	3520(L)/3550(S)	8240	2-10,2-14	325		
Bromomethane	3520(L)/3550(S)	8240	2-10,2-14	328		
2-Butanone (MEK)	3520(L)/3550(S)	8240	2-14	328	X	Х
Carbon disulfide	3520(L)/3550(S)	8240	2-14	325		
Carbon tetrachloride	3520(L)/3550(S)	8240	2-10,2-14	325	Х	Х
Chloracetaldehyde	3520(L)/3550(S)	h	2-10			
Chloral (trichloroacetaldehyde)	3520(L)/3550(S)	h	2-10			

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^{° 40} CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

Ompound not on 1994 8240 list, but can be quantified by this method

Compound used as internal standard

g Compound used as surrogate

Constituent is not a contaminant of concern and cannot be analyzed by method 8240, so it will not be included on the target analyte list

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 2 of 15

	Laboratory				Cont	tential aminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a		Appendix IX°	Soils	Ground Water
Chlorobenzene	3520(L)/3550(S)	8240	2-10,2-12,2-14	325		Х
Chloroethane	3520(L)/3550(S)	8240	2-10,2-14	325		Х
2-Chloroethyl vinyl ether	3520(L)/3550(S)	8240	2-10,2-14			
Chloroform (trichloromethane)	3520(L)/3550(S)	8240	2-10,2-14	325		Х
1-Chlorohexane	3520(L)/3550(S)	8240°	2-10			
Chloromethane (methyl chloride)	3520(L)/3550(S)	8240	2-10,2-14	328		Х
Chloromethyl methyl ether (CMME)	3520(L)/3550(S)	8240°	2-10			
Chloroprene	3520(L)/3550(S)	8240		325		
Dibromochloromethane (chlorodibromomethane)	3520(L)/3550(S)	8240	2-10	325		
1,2-Dibromo-3-chloropropane (DBCP)	3520(L)/3550(S)	8240		325		
1,2-Dibromoethane (ethylene dibromide)	3520(L)/3550(S)	8240		326		
Dibromomethane (methylene bromide)	3520(L)/3550(S)	8240	2-10,2-14	328		
1,4-Dichloro-2-butene	3520(L)/3550(S)	8240		326		
Dichlorodifluoromethane (Freon 12)	3520(L)/3550(S)	8240	2-10,2-14	326		
1,1-Dichloroethane (1,1-DCA)	3520(L)/3550(S)	8240	2-10,2-14	326	Х	Х
1,2-Dichloroethane (ethylene chloride)	3520(L)/3550(S)	8240	2-10,2-14	326		Х
1,1-Dichloroethylene (vinylidene chloride)	3520(L)/3550(S)	8240	2-10,2-14	326		Х
cis-1,2-dichloroethene	3520(L)/3550(S)	8240	2-10,2-14	326		Х
trans-1,2-Dichloroethylene	3520(L)/3550(S)	8240	2-10,2-14	326		Х

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^a SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^c 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

^{*} Compound not on 1994 8240 list, but can be quantified by this method

Compound used as internal standard

^g Compound used as surrogate

h Constituent is not a contaminant of concern and cannot be analyzed by method 8240, so it will not be included on the target analyte list

Table 6-1b. Analyte List for Waste Characterization Page 3 of 15

	Laboratory				Cont	tential aminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
1,2-Dichloropropane (propylene chloride)	3520(L)/3550(S)	8240	2-10	326		
cis-1,3-Dichloropropylene	3520(L)/3550(S)	8240	2-14	326		
trans-1,3-Dichloropropylene	3520(L)/3550(S)	8240	2-14	326		
1,4-Difluorobenzene	3520(L)/3550(S)	8240 ⁹	2-14			
Ethanol	3520(L)/3550(S)	h	2-14			
Ethylbenzene	3520(L)/3550(S)	8240	2-12,2-14	327	Х	X
Ethyl methacrylate	3520(L)/3550(S)	8240	2-14	327		
2-Hexanone	3520(L)/3550(S)	8240	2-14	327		
lodomethane	3520(L)/3550(S)	8240	2-14			
Isobutyl alcohol	3520(L)/3550(S)	8240		327		
Methacrylonitrile	3520(L)/3550(S)	8240		327		
Methylene chloride (dichloromethane)	3520(L)/3550(S)	8240	2-14	328		Х
Methyl iodide	3520(L)/3550(S)	8240		328		
Methyl methacrylate	3520(L)/3550(S)	8240	2-6	328		
4-Methyl-2-pentanone (MIBK)	3520(L)/3550(S)	8240	2-14	328		
Pentachloroethane	3520(L)/3550(S)	8240		328		
Propionitrile	3520(L)/3550(S)	8240		329	·	
Styrene	3520(L)/3550(S)	8240	2-14	329		
1,1,1,2-Tetrachloroethane (1,1,1,2-PCA)	3520(L)/3550(S)	8240	2-10	329	Х	Х

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

^b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^c 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

^{*} Compound not on 1994 8240 list, but can be quantified by this method

¹ Compound used as internal standard

⁹ Compound used as surrogate

h Constituent is not a contaminant of concern and cannot be analyzed by method 8240, so it will not be included on the target analyte list

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 4 of 15

Analtye	Laboratory Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Cont	tential aminant oncern ^d Ground Water
1,1,2,2-Tetrachloroethane (1,1,2,2-PCA)	3520(L)/3550(S)	8240	2-10,2-14	329	Х	Х
Tetrachloroethylene (PCE)	3520(L)/3550(S)	8240	2-10	329	Х	Х
Toluene	3520(L)/3550(S)	8240	2-12,2-14	329	Х	Х
1,1,1-Trichloroethane (1,1,1-TCA)	3520(L)/3550(S)	8240	2-10,2-14	329	Х	Х
1,1,2-Trichloroethane	3520(L)/3550(S)	8240	2-10,2-14	329	Х	Х
Trichloroethylene (TCE)	3520(L)/3550(S)	8240	2-10,2-14	329	Х	Х
Trichlorofluoromethane (Freon 11)	3520(L)/3550(S)	8240°	2-10,2-14	329		
1,2,3-Trichloropropane	3520(L)/3550(S)	8240	2-14	329		
Vinyl acetate	3520(L)/3550(S)	8240	2-14	329		
Vinyl chloride	3520(L)/3550(S)	8240	2-10,2-14	330		Х
Xylene(s)	3520(L)/3550(S)	8240	2-12,2-14	330	Х	Х

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^a SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^e 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

Compound not on 1994 8240 list, but can be quantified by this method

Compound used as internal standard

Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 5 of 15

	Laboratory				Cont	etential taminant concern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance ^b	Appendix IX°	Soils	Ground Water
Semivolatile Organic Compounds						
Acenaphthene	3520(L)/3550(S)	8270	2-4,2-6	324	Х	X
Acenaphthylene	3520(L)/3550(S)	8270	2-4,2-6	324		
Acetophenone (methyl phenyl ketone)	3520(L)/3550(S)	8270	2-6	324		
4-Aminobiphenyl	3520(L)/3550(S)	8270	2-6	324		
Aniline	3520(L)/3550(S)	8270°	2-6	324		
Anthracene	3520(L)/3550(S)	8270	2-4,2-6	324		
Aramite	3520(L)/3550(S)	8270		324		
Benzidine	3520(L)/3550(S)	8270°	2-6			
Benzoic acid	3520(L)/3550(S)	8270	2-1			
Benzo(a) anthracene	3520(L)/3550(S)	8270	2-4,2-6	324		
Benzo(b)fluoranthene	3520(L)/3550(S)	8270	2-4,2-6	324		
Benzo(j)fluoranthene	3520(L)/3550(S)	8270°	2-4			
Benzo(k)fluoranthene	3520(L)/3550(S)	8270	2-4,2-6	324		
Benzo(g,h,i)perylene	3520(L)/3550(S)	8270	2-4,2-6	324		
Benzo(a)pyrene	3520(L)/3550(S)	8270	2-4,2-6	324		
Benzyl alcohol (phenyl methanol)	3520(L)/3550(S)	8270	2-1	324		
Bis(2-chloroethoxy)methane	3520(L)/3550(S)	8270	2-6,2-10	324		
Bis(2-chloroethyl)ether	3520(L)/3550(S)	8270	2-6	324		
Bis(2-chloroisopropyl)ether	3520(L)/3550(S)	8270	2-6,2-10			
Bis(2-ethylhexyl)phthalate	3520(L)/3550(S)	8270	2-2,2-6	325		

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^{° 40} CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

^{*} Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 6 of 15

	Laboratory				Cont	tential aminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
4-Bromophenyl phenyl ether	3520(L)/3550(S)	8270	2-6	325		
Butyl benzyl phthalate	3520(L)/3550(S)	8270	2-2,2-6	325		
4-Chloroaniline	3520(L)/3550(S)	8270	2-6	325		
Chlorobenzilate	3520(L)/3550(S)	8270		325		
1-Chloronaphthalene	3520(L)/3550(S)	8270°	2-6			
2-Chioronaphthalene	3520(L)/3550(S)	8270	2-6	325		
4-Chloro-3-methylphenol	3520(L)/3550(S)	8270	2-1	325		
2-Chlorophenol	3520(L)/3550(S)	8270	2-6	325		
4-Chlorophenyl phenyl ether	3520(L)/3550(S)	8270		325		
Chrysene	3520(L)/3550(S)	8270	2-4,2-6	325		
2-Cyclohexyl-4,6-dinitrophenol	3520(L)/3550(S)	8270	2-1			
Diallate	3520(L)/3550(S)	8270		325		
Dibenz(a,h)acridine	3520(L)/3550(S)	8270°	2-4			
Dibenz(a,j)acridine	3520(L)/3550(S)	8270	2-4,2-6			
Dibenz(a,h)anthracene	3520(L)/3550(S)	8270	2-4,2-6	325		
7H-Dibenzo(c,g)carbazole	3520(L)/3550(S)	8270°	2-4			
Dibenzo(a,e)pyrene	3520(L)/3550(S)	8270	2-4			
Dibenzo(a,h)pyrene	3520(L)/3550(S)	8270°	2-4			
Dibenzo(a,i)pyrene	3520(L)/3550(S)	8270°	2-4			
Dibenzofuran	3520(L)/3550(S)	8270	2-6	325		
Di-n-butyl phthalate	3520(L)/3550(S)	8270	2-2,2-6	326		

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^a SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^c 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

⁹ Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 7 of 15

	Laboratory				Cont	otential taminant concern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
1,2-Dichlorobenzene	3520(L)/3550(S)	8270	2-10,2-12	326	Х	Х
1,3-Dichlorobenzene	3520(L)/3550(S)	8270	2-10,2-12	326	Х	×
1,4-Dichlorobenzene	3520(L)/3550(S)	8270	2-10,2-12	326	X	X
3,3'-Dichlorobenzidine	3520(L)/3550(S)	8270	2-6	326		
2,4-Dichlorophenol	3520(L)/3550(S)	8270	2-1	326		
2,6-Dichlorophenol	3520(L)/3550(S)	8270	2-1	326		
Diethyl phthalate	3520(L)/3550(S)	8270	2-2,2-6	326		i
p-(Dimethylamino)azobenzene	3520(L)/3550(S)	8270	2-6	326		
Phosphorodithionic acid (Dimethoate)	3520(L)/3550(S)	8270	2-7	326		
7,12-Dimethylbenz(a)anthracene	3520(L)/3550(S)	8270	2-6	326		
α -, α -Dimethylphenethylamine	3520(L)/3550(S)	8270	2-6	326		
2,4-Dimethylphenol	3520(L)/3550(S)	8270	2-1	326		
Dimethyl phthalate	3520(L)/3550(S)	8270	2-2,2-6	326		
4,6-Dinitro-2-methylphenol	3520(L)/3550(S)	8270	2-1	326		
2,4-Dinitrophenol	3520(L)/3550(S)	8270	2-1	326		
2,4-Dinitrotoluene	3520(L)/3550(S)	8270	2-6	326	-	
2,6-Dinitrotoluene	3520(L)/3550(S)	8270	2-6	326		
Dinoseb (DNBP)	3520(L)/3550(S)	8270	2-1, 2-9	326		
Di-n-octyl phthalate	3520(L)/3550(S)	8270	2-2, 2-6	326	7	
Diphenylamine	3520(L)/3550(S)	8270°	2-6	327		
1,2-Diphenylhydrazine	3520(L)/3550(S)	8270°	2-6			

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^e 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

⁹ Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 8 of 15

	Laboratory				Cont	tential aminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
Disulfoton	3520(L)/3550(S)	8270	2-7	327		
Ethyl methanesulfonate	3520(L)/3550(S)	8270	2-6	327		
Fluoranthene	3520(L)/3550(S)	8270	2-4,2-6	327		
Fluorene	3520(L)/3550(S)	8270	2-4,2-6	327	Х	Х
2-Fluorobiphenyl	3520(L)/3550(S)	8270 ^{e,f}	2-6			
Hexachlorobenzene	3520(L)/3550(S)	8270	2-5, 2-6	327		
Hexachlorobutadiene	3520(L)/3550(S)	8270	2-5, 2-6	327		
Hexachlorocyclopentadiene	3520(L)/3550(S)	8270	2-5, 2-6	327		
Hexachloroethane (perchloroethane)	3520(L)/3550(S)	8270	2-5, 2-6	327		
Hexachlorophene	3520(L)/3550(S)	8270		327		
Hexachloropropene	3520(L)/3550(S)	8270		327		
Indeno(1,2,3-cd)pyrene	3520(L)/3550(S)	8270	2-4,2-6	327		
Isodrin	3520(L)/3550(S)	8270		327		
Isophorone	3520(L)/3550(S)	8270	2-6	327		
Isosafrole	3520(L)/3550(S)	8270		327		
Methapyrilene	3520(L)/3550(S)	8270		327		
3-Methylcholanthrene	3520(L)/3550(S)	8270	2-4,2-6	328		
Methyl methanesulfonate	3520(L)/3550(S)	8270		328		
2-Methylnaphthalene	3520(L)/3550(S)	8270	2-6	328	Х	Х
3-Methylphenol (m-cresol)	3520(L)/3550(S)	8270		325		
2-Methylphenol (o-cresol)	3520(L)/3550(S)	8270	2-1	325		

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

⁵ 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 9 of 15

	Laboratory				Cont	tential aminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
4-Methylphenol (p-cresol)	3520(L)/3550(S)	8270	2-1	325		Х
Naphthalene .	3520(L)/3550(S)	8270	2-4,2-6	328	Х	Х
1,4-Naphthoquinone	3520(L)/3550(S)	8270		328		
1-Naphthylamine	3520(L)/3550(S)	8270	2-6	328		
2-Naphthylamine	3520(L)/3550(S)	8270	2-6	328		
2-Nitroaniline (o-Nitroaniline)	3520(L)/3550(S)	8270	2-6	328		
3-Nitroaniline (m-Nitroaniline)	3520(L)/3550(S)	8270	2-6	328		
4-Nitroaniline (p-Nitroaniline)	3520(L)/3550(S)	8270	2-6	328		
Nitrobenzene	3520(L)/3550(S)	8270	2-6	328		
2-Nitrophenol	3520(L)/3550(S)	8270	2-1	328		
4-Nitrophenol	3520(L)/3550(S)	8270	2-1	328		
4-Nitroquinoline 1-oxide	3520(L)/3550(S)	8270		328		
N-Nitrosodi-n-butylamine	3520(L)/3550(S)	8270	2-6	328		
N-Nitrosodiethylamine	3520(L)/3550(S)	8270		328		
N-Nitrosomethylethylamine	3520(L)/3550(S)	8270°		328		
N-Nitrosomorpholine	3520(L)/3550(S)	8270°		328		
N-Nitrosodimethylamine	3520(L)/3550(S)	8270°	2-6	328		
N-Nitrosodiphenylamine	3520(L)/3550(S)	8270	2-6	328		
N-Nitrosodi-n-propylamine	3520(L)/3550(S)	8270	2-6	328		
N-Nitrosopiperidine	3520(L)/3550(S)	8270	2-6	328		
N-Nitrosopyrrolidine	3520(L)/3550(S)	8270		328		

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^{° 40} CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 10 of 15

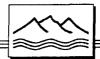
	Laboratory				Cont	tential taminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
5-Nitro-o-toluidine	3520(L)/3550(S)	8270		328		
Parathion	3520(L)/3550(S)	8270	2-7	328		
Pentachlorobenzene	3520(L)/3550(S)	8270	2-6	328		
Pentachloronitrobenzene	3520(L)/3550(S)	8270	2-6	328		
Pentachlorophenol	3520(L)/3550(S)	8270	2-1	328		
Phenacetin	3520(L)/3550(S)	8270	2-6	328		
Phenanthrene	3520(L)/3550(S)	8270	2-4,2-6	328		
Phenol (carbolic acid)	3520(L)/3550(S)	8270	2-1	329		
p-Phenylenediamine	3520(L)/3550(S)	8270		329		
Phorate	3520(L)/3550(S)	8270		329		
2-Picoline	3520(L)/3550(S)	8270	2-6	329		
Pronamide	3520(L)/3550(S)	8270	2-6	329		
Pyridine (azabenzene)	3520(L)/3550(S)	8270		329		
Pyrene	3520(L)/3550(S)	8270	2-4,2-6	329	Х	Х
Safrole	3520(L)/3550(S)	8270		329		
Terphenyl	3520(L)/3550(S)	8270 ^{e,f}		329		
1,2,4,5-Tetrachlorobenzene	3520(L)/3550(S)	8270	2-6	329		
2,3,4,6-Tetrachlorophenoi	3520(L)/3550(S)	8270	2-1	329		
Tetraethyl dithiopyrophosphate	3520(L)/3550(S)	8270°		329		
o-Toluidine	3520(L)/3550(S)	8270		329		
1,2,4-Trichlorobenzene	3520(L)/3550(S)	8270	2-6	329		

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters


^{° 40} CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

⁴ These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

^{*} Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

⁹ Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 11 of 15

	Laboratory				Cont	tential aminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
2,4,5-Trichlorophenol	3520(L)/3550(S)	8270	2-1	329		
2,4,6-Trichlorophenol	3520(L)/3550(S)	8270	2-1	329		
0,0,0-Triethyl phosphorothioate	3520(L)/3550(S)	8270		329		
sym-Trinitrobenzene	3520(L)/3550(S)	8270		329		
Organochlorine Pesticides/PCBs						
Aldrin	3520(L)/3550(S)	8080	2-6,2-8	324		
α-BHC (benzene hexachloride)	3520(L)/3550(S)	8080	2-6,2-8	324		
β-BHC (benzene hexachloride)	3520(L)/3550(S)	8080	2-6,2-8	324		
δ-BHC (benzene hexachloride)	3520(L)/3550(S)	8080	2-6,2-8	324		
γ-BHC (benzene hexachloride)(Lindane)	3520(L)/3550(S)	8080	2-6,2-8	324		
Chlordane	3520(L)/3550(S)	8080	2-6,2-8	325		
4,4'-DDD	3520(L)/3550(S)	8080	2-6,2-8	325		
4,4'-DDE	3520(L)/3550(S)	8080	2-6,2-8	325		
4,4'-DDT	3520(L)/3550(S)	8080	2-6,2-8	325		
Dieldrin	3520(L)/3550(S)	8080	2-6,2-8	325		
Endosulfan I	3520(L)/3550(S)	8080	2-6,2-8	326		
Endosulfan II	3520(L)/3550(S)	8080	2-6,2-8	327		
Endosulfan sulfate	3520(L)/3550(S)	8080	2-6,2-8	327		
Endrin	3520(L)/3550(S)	8080	2-6,2-8	327		
Endrin aldehyde	3520(L)/3550(S)	8080	2-6,2-8	327		

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^{° 40} CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

^{*} Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 12 of 15

	Laboratory				Cont	tential aminant oncern ^d
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
Endrin ketone	3520(L)/3550(S)	8080°	2-6			
Heptachlor	3520(L)/3550(S)	8080	2-6,2-8	327		
Heptachlor epoxide	3520(L)/3550(S)	8080	2-6,2-8	327		
Kepone	3520(L)/3550(S)	8080°	2-8	327		
Methoxychlor	3520(L)/3550(S)	8080	2-6,2-8	328		i
Toxaphene	3520(L)/3550(S)	8080	2 - 6,2-8	329		
PCB-1016 (Aroclor-1016)	3520(L)/3550(S)	8080	2-6,2-8	328	Х	Х
PCB-1221 (Aroclor-1221)	3520(L)/3550(S)	8080	2-6,2-8	328	Х	Х
PCB-1232 (Aroclor-1232)	3520(L)/3550(S)	8080	2-6,2-8	328	Х	Х
PCB-1242 (Aroclor-1242)	3520(L)/3550(S)	8080	2-6,2-8	328	Х	X
PCB-1248 (Aroclor-1248)	3520(L)/3550(S)	8080	2-6,2-8	328	Х	Х
PCB-1254 (Aroclor-1254)	3520(L)/3550(S)	8080	2-6,2-8	328	Х	Х
PCB-1260 (Aroclor-1260)	3520(L)/3550(S)	8080	2-6,2-8	328	Х	Х

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^a SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^{° 40} CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 13 of 15

	Laboratory				Potential Contaminant of Concern ^d	
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance	Appendix IX°	Soils	Ground Water
Metals		L				1
Aluminum (Al)	3010(L)/3050(S)	6010	2-15			
Antimony (Sb)	3010(L)/3050(S)	6010	2-15	324		
Arsenic (As)	3010(L)/3050(S)	6010	2-15	324	Х	Х
Barium (Ba)	3010(L)/3050(S)	6010	2-15	324	Х	Х
Beryllium (Be)	3010(L)/3050(S)	6010	2-15	324		
Cadmium (Cd)	3010(L)/3050(S)	6010	2-15	325		
Chromium (Cr)	3010(L)/3050(S)	6010	2-15	325	Х	Х
Cobalt (Co)	3010(L)/3050(S)	6010	2-15	325		
Copper (Cu)	3010(L)/3050(S)	6010	2-15	325		
Lead (Pb)	3010(L)/3050(S)	6010	2-15	327		
Mercury (Hg)	3020(L)/3050(S)	7000	2-15	327	Х	Х
Nickel (Ni)	3010(L)/3050(S)	6010	2-15	328		
Selenium (Se)	3010(L)/3050(S)	6010	2-15	329		
Silver (Ag)	3010(L)/3050(S)	6010	2-15	329		
Thallium (Tl)	3010(L)/3050(S)	6010	2-15	329		
Tin (Sn)	3020(L)/3050(S)	7000		329		
Vanadium (V)	3010(L)/3050(S)	6010	2-15	329		
Zinc (Zn)	3010(L)/3050(S)	6010	2-15	330		

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^e 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

^{*} Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

⁹ Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 14 of 15

	Laboratory				Potential Contaminant of Concern ^d	
Analtye	Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Soils	Ground Water
Miscellaneous						
Total cyanide		9012		325		
Total sulfide		9030		329		
Total petroleum hydrocarbons		418.1			Х	Х

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

^c 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

^d These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

Compound used as surrogate

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1b. Analyte List for Waste Characterization Page 15 of 15

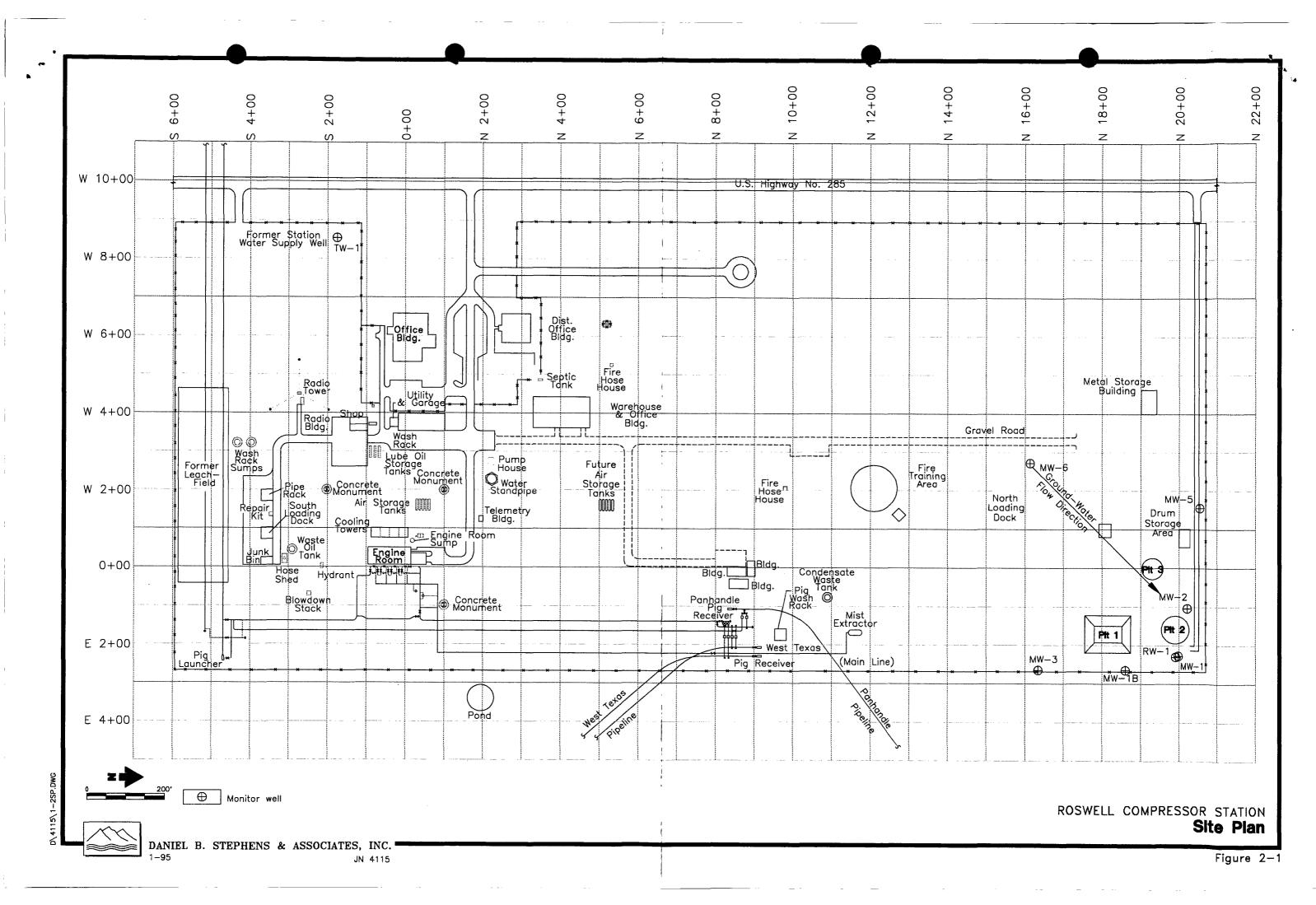
Analyte	Laboratory Preparation Method ^a	Analysis Method ^a	RFI Guidance⁵	Appendix IX°	Potential Contaminant of Concern		
Indicator Parameters (Ground Water Only)							
Calcium (Ca)	3010	6010	List 1				
Chloride	None	9250	List 1, 2-15		X		
Iron (Fe)	3010	6010	List 1, 2-15				
Magnesium (Mg)	3010	6010	List 1, 2-15				
Manganese (Mn)	3010	6010	List 1, 2-15				
Nitrate and nitrite	None	9200	List 1				
Potassium (K)	3010	6010	2-15				
Sodium (Na)	3010	6010	2-15				
Sulfate	None	9038	List 1				
Total alkalinity	None	310.1	List 1				
TDS	None	160.1			Х		

L = Liquid samples (e.g., ground water)

S = Solid samples (e.g., soil)

^{*} SW 846 Test Methods for Evaluating Solid Waste, Revision 2, September 1994

b Interim Final RCRA Facility Investigation Guidance, Volume I of IV, Appendix B - Monitoring Constituents and Indicator Parameters, List 4 - Industry-Specific Monitoring Constituents, Table 2-X or List 1 - Indicator Parameters

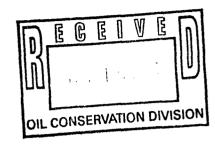

^e 40 CFR, Part 264, Appendix IX, Ground-Water Monitoring List, July 1, 1992 edition, page number listed

⁴ These compounds are potential constituents of concern based on Enron's experience at similar gas transmission facilities

Compound not on 1994 8270 list, but can be quantified by this method

Compound used as internal standard

⁹ Compound used as surrogate



Transwestern Pipeline Company

TECHNICAL OPERATIONS
P. O. Box 1717 • Roswell, New Mexico 88202-1717

Mr. Roger Anderson New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, New Mexico 87505

Re: Renewal of Discharge Plan GW-052

Dear Mr. Anderson:

Transwestern Pipeline Company (Transwestern), owner and operator of the Roswell Compressor Station, is in receipt of the Oil Conservation Division's (OCD) March 21, 1995 letter, requesting renewal of the above referenced discharge plan. By this letter, Transwestern requests renewal of the discharge plan for the Roswell Compressor Station. Under the original application, Transwestern provided all necessary and accurate information and was issued a plan by the OCD on November 9, 1990.

During the five (5) year operating period of this approved plan, the activities at the facility which are covered under this plan have remained essentially consistent. The only information not addressed under the plan, and is presently ongoing, is a remediation activity in the northeast portion of the facility where hydrocarbon materials are being removed from the underlying groundwater. Transwestern has installed a series of monitor and production wells to address removal of the hydrocarbon constituents present. In addition, Transwestern has constructed an above ground tank for temporary storage of the liquids removed from the surface of the groundwater. Secondary containment has also been provided for this tank which complies with the regulations for SPCC. The attached diagram depicts the monitor and production well.

Also, as required under 3-114 of the Water Quality Control Regulations, enclosed find a \$50.00 nonrefundable filing fee for this renewal application.

If you should require any additional information concerning this renewal application, contact our Roswell Technical Operations at (505) 625-8022.

Sincerely,

Larry Campbell

Division Environmental Specialist

ENRONOPERATIONS CORP.

P. O. Box 1188

Houston, Texas 77251-1188

(713) 853-6161

TEN THE 8 52

May 4, 1995

î

Mr. Roger Anderson Environmental Bureau New Mexico Oil Conservation Division 2040 S. Pacheco St. Santa Fe, New Mexico 87505

RE: Transwestern Pipeline Company Roswell Compressor Station

Dear Roger,

During our last meeting you indicated that your office was interested in staying informed with the progress of closure activities for the former surface impoundment at the subject facility. Therefore, for your review and files, we have enclosed a copy of two letters Transwestern recently received from the State of New Mexico Environment Department, Hazardous and Radioactive Materials Bureau.

Transwestern will continue to copy your office on all correspondence originating from our office. We can also prepare a copy of all prior correspondence originating from the NMED if you need. Just contact me at (713) 646-7644 or George Robinson at (713) 646-7327 and we can gather this information and mail it to your office.

Sincerely.

Bill Kendrick

EOC Environmental Affairs Manager, Projects Group

gcr/BK

attachments

xc: Bill Olson

NMOCD

Santa Fe, NM

State of New Mexico

ENVIRONMENT DEPARTMENT

Hazardous & Radioactive Materials Bureau
525 Camino De Los Marquez
P.O. Box 26110
Santa Fe, New Mexico 87502
(505) 827-4358
Fax (505) 827-4389

MARK E. WEIDLER SECRETARY

EDGAR T. THORNTON, III
DEPUTY SECRETARY

CERTIFIED MAIL RETURN RECEIPT REQUESTED

April 10, 1995

Mr. Larry Campbell, Director Transwestern Pipeline Company Technical Operations P.O. Box 1717 Roswell, New Mexico 88202-1717

RE: EPA Part A Permit Application

This letter is written to respond to Transwestern Pipeline Company's (TPC) question of March 30, 1995 as to why TPC was asked by the New Mexico Environment Department, Hazardous and Radioactive Materials Bureau (HRMB) to provide a Part A Environmental Protection Agency (EPA) permit Application. The reasons for that include:

- (1) The need for the HRMB to register TPC in the Resource Conservation and Recovery Act Information System (RCRIS). This enables the EPA to keep track of HRMB projects and commitments, and also the status of the activities of regulated facilities in the State of New Mexico.
- (2) The Part A application is an official EPA form that the State of New Mexico has adopted. It contains the information necessary to register facilities on RCRIS. The Part A application has no bearing on which hazardous waste regulations apply to TPC. Applicability of regulations to TPC is found at 20 NMAC 4.1, Subpart VI 40 CFR Section 265.1(b). These regulations apply to facilities that provided timely notification of hazardous waste activity and submitted Part A application; as well as to those facilities that did not notify of hazardous waste activity and did not submit Part A application. The regulations of 20 NMAC 4.1 Section 265 define the minimum standards for acceptable hazardous waste management until certification of final closure, or if the facility is subject to post-closure requirements, until post-closure responsibilities are fulfilled.

Mr. Campbell, TPC Page 2 April 10, 1995

If you have further questions on the above explanation you may call Cornelius Amindyas of my staff at (505) 827-4308.

Sincerely,

Stephanie Kruse

Barbara Hoditschek, Manager RCRA Permits Program Hazardous and Radioactive materials Bureau

cc: Benito Garcia, HRMB File Red, 95 File Reading, 95

State of New Mexico

ENVIRONMENT DEPARTMENT

Hazardous & Radioactive Materials Bureau
525 Camino De Los Marquez
P.O. Box 26110
Santa Fe, New Mexico 87502
(505) 827-4358
Fax (505) 827-4389

MARK E. WEIDLER SECRETARY

EDGAR T. THORNTON, III

CERTIFIED MAIL RETURN RECEIPT REQUESTED

April 28, 1995

Mr. Larry Campbell
Division Environmental Specialist
Transwestern Pipeline Company
Roswell, New Mexico 88202-1717

RE: Request for Additional Information

Dear Mr. Campbell:

During the meeting of March 30, 1995 between Hazardous and Radioactive Materials Bureau (HRMB) officials and representatives of Transwestern Pipeline Company (TW) in Santa Fe TW made a commitment to provide additional information to HRMB. It was also agreed that after HRMB has re-written the (TW) Closure Plan, a copy will be sent to TW. Transwestern Pipeline Company will then peruse the document and submit comments to HRMB within seven (7) days after the receipt of the document. TW comments will be considered for incorporation into the subject plan. The finalized plan will be Public Noticed for a period of thirty (30) days. During this period members of the public can send in written comments to HRMB regarding the proposed Closure Plan.

In order to expedite the development of the subject plan, the Hazardous and Radioactive Materials Bureau requests Submittals 1-4 below from Transwestern Pipeline Company within one week upon receiving this letter. Submittals 1-4 will be incorporated into TW's modified Closure Plan for Roswell Compressor Station RCRA Surface Impoundments. Submittals 5-7 below will be due within thirty (30) days following completion of work for waste unit characterization. Submittals 5-7 will be included as an amendment to the modified Closure Plan.

Submittal 1: TW shall develop a listing of petroleum refining hazardous constituents found in List 4 (Industry Specific Monitoring Constituents) of U.S. EPA, May 1989, RCRA Facility Investigation (RFI) Guidance. This listing will be used for the waste-unit characterization of hazardous constituent monitoring list. The listing should include appropriate analytical methods and preparation techniques per hazardous constituent (EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, Update II).

Mr. Campbell, Transwestern Pipeline Company Page 2 April 28, 1995

Submittal 2: TW shall develop a flow chart specifying activities and time-lines as discussed in our March 30, 1995 meeting. This project schedule will be submitted to HRMB for approval within 30 days of receipt of this notification. The approved schedule will be included in the modified closure plan in the appropriate section (e.g., Figure 7-1).

Submittal 3: The standards cited in the January 15, 1995 Closure Plan, Tables 3-2 through 3-5, either do not apply to action levels for RCRA regulated units (e.g., TCLP Limit) or are not representative of the lower applicable standard (e.g., in some cases U.S. EPA Drinking Water Standards are lower than Subpart S or NMWQCC standards and *vice versa*). The standards included in the tables shall be revised to reflect the lowest applicable action levels. As stated in a previous Notice of Deficiency (NOD) dated September 28, 1994, and at a meeting held between TW and HRMB on November 8, 1994, acceptable ground-water protection standards for RCRA units are derived not only using guidance from the New Mexico Water Quality Control Commission (NMWQCC) but also considering U.S. EPA Drinking Water Standards, as well as 40 CFR Subpart S guidance (Appendix A[Examples of Concentrations Meeting Criteria for Action Levels], Appendix B[Maximum Contaminant Levels], and Appendix C[Range of Concentrations for Establishing Media Protection Standards for Carcinogens] or other acceptable methodology. Soil action levels for RCRA units are derived with guidance from 40 CFR Subpart S or other acceptable methodology.

Submittal 4: TW shall submit a standard operating procedure (SOP) for the use of a mobile laboratory to be utilized during the soil assessment phase of corrective action for the analysis of total petroleum hydrocarbons (TPH). This SOP should include a section describing associated quality assurance and quality control (QA/QC) to be expected by the mobile laboratory for analysis of TPH. This submittal will be included in the SOP section of Appendix F within the modified Closure Plan.

Submittal 5: TW shall develop a listing of media-specific action levels, per Subpart S guidance or some other acceptable methodology (e.g. EPA Region 3 guidance), for all hazardous constituents found in Appendix IX of 40 CFR Part 264 and in List 4 (Industry Specific Monitoring Constituents) of U.S. EPA, May 1989, RCRA Facility Investigation (RFI) Guidance which are detected from waste-unit characterization. The algorithms employed should be clearly stated with all assumptions and input parameters listed with reference.

Submittal 6: TW shall develop a table of expected background concentrations for all hazardous metals presented in List 4 based on a literature review of similar environmental settings. Defendable statistical analysis of the data must be presented as well as the methodology employed during the background investigations and all appropriate references. The concentrations should be presented in constant units of measurement.

Submittal 7: TW shall develop a surface sediment/soil drainage sampling and analysis plan (SAP) to investigate the extent of contamination via this pathway. Based on the results of soil boring PS-OS-377, it appears that TPH extends well beyond the facility boundary migrating off-site by surface drainage transport. The SAP will be included in the approved modified Closure Plan as an amendment.

Mr. Campbell, Transwestern Pipeline Company Page 3 April 28, 1995

Should you have any questions concerning this matter please contact Ms. Teri Davis of the Technical Compliance Program at 827-4308.

Sincerely,

Barbara Hoditschek, Manager RCRA Permitting Program

Hazardous and Radioactive Materials Bureau

cc: Ronald Kern, HRMB

Teri Davis, HRMB

Cornelius Amindyas, HRMB

Marc Sides, EPA

FILE TW RED94

Bill Kendrick, ENRON

George Robinson, ENRON

ENRONOPERATIONS CORP.

ROPENS A DESCRIPTION OF THE PROPERTY OF THE PR

185 199 1 119 8 52

80 days

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

April 19, 1995

Ms. Barbara Hoditschek New Mexico Environment Department Hazardous & Radioactive Materials Bureau 525 Camino de Los Marquez P.O. Box 26110 Santa Fe, NM 87502

RE:

Report of Interim Corrective Measures

3. Accumulation time to last day of reporting period

Transwestern Pipeline Company Roswell Compressor Station Reporting Period: January 1, 1995 through March 31, 1995

Dear Ms. Hoditschek,

This letter report of interim corrective measures at the Roswell Station covers the calendar quarter of January 1995 through March 1995. In December 1994, Transwestern Pipeline Company (TPC) obtained the services of a local contractor, Clayton M. Barnhill, to provide routine operations and maintenance services beginning January 1, 1995. Each month, Mr. Barnhill prepares and submits a spreadsheet report which details various information associated with the interim corrective measures system. A copy of Mr. Barnhill's reports, for each month within the reporting period, are attached.

I.	Volume of Liquids Recovered (gallons)	During Reporting Period	To Date
1.	Phase Separated Hydrocarbons (PSH)	423	6,677
2.	Ground Water	314	5,971
3.	PSH and Ground Water Combined	737	12,648
П.	Accumulation Time for Recovered Liquids		
1.	Date liquids last removed from recovery tank	Januar	y 10, 1995
2.	Last day of reporting period	Marc	h 31, 1995

III. General Comments

On January 4, 1995, TPC removed the PSH skimmers from the recovery pumps set in wells MW-1 and RW-1. The primary objective of this action was to substantially reduce the thickness of PSH collected in these two recovery wells. It was previously reported, that as a result of removing the skimmers, a significant volume of PSH and water were recovered within the five day period immediately following their removal. However, it has since been determined that the initial elevated recovery rate was not sustained for any significant duration and the volume measurements were in error. The measurement problem which resulted in this error has been corrected and the estimated volume of liquids recovered presented in this report are believed to be accurate.

On January 8, 1995, the operations and maintenance contractor noted a hydrocarbon odor during inspection of the secondary containment system for pump #2 (recovery well MW-1B). Pump #2 was therefore shut off until the problem could be identified and resolved. Subsequently, it was discovered that an elbow in the discharge line had failed (cracked) and recovered liquid had leaked into the secondary containment line. The failed part was replaced and the system placed back in service. During the repair of the discharge line, the contractor looked for evidence of a discharge (such as soil staining) from the secondary containment to the ground and no such evidence was found. Also, during the repair operation, the air supply line which operates the recovery pumps was inadvertently ruptured. This resulted in a complete system shut down of fourteen days while the air line was repaired.

The following comment is in regard to an event which occurred outside the reporting period but is significant enough to warrant noting at this time. The effectiveness of the preceding January 4, 1995 actions to reduce the thickness of PSH collected in the MW-1 recovery well was limited by the depth the pump was set in the well. Therefore, in order to remove this limitation, on April 1, 1995, TPC replaced the discharge tubing on the pump set in MW-1 with a greater length of new tubing. This effectively lowers the depth at which the pump is set. Subsequent measurements taken to evaluate the effectiveness of this action are as follows:

	Depth to	Depth to	PSH Thickness
Date of Measurement at MW-1	Water (ft.)	PSH (ft.)	(ft.)
March 31, 1995 (Prior to action)	60.22	49.12	11.1
April 19, 1995 (Subsequent to action)	63.79	63.75	0.04

Based on the measurements presented above, this action was effective in reducing the thickness of PSH collected in recovery well MW-1. More information regarding this issue, including sustained recovery rates, will be available and presented in the next quarterly reporting period report.

If you have any questions regarding the content or format of this report, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely

Bill Kendrick

Projects Group Manager EOC Environmental Affairs

gcr/BK

cp w/enclosures:

Teri Davis

NMED HRMB

Santa Fe, NM

Roger Anderson

NMOCD

Santa Fe, NM

Transwettern Pipline Facility Remediation System Maintenant Roswell, New Matico

Recovery Well Log Sheet	Month:	Day:	Wels	Product Level	Water Level	Pump # / MW #	Flow Rate	Cycle Time	Tank Recovered Fluid Level	Product	Weter	Remarks:	Inspector	Time
Enron Roswell Remediation System Maintenance	Jan-95	1-Jan	RW-1/p1	38' 10°	38, 11,	Pump 1/RW-1	125ML/60 Sec.		2.32	0.70	1.62	Pumpe 1,2,3,4 On, No spills or leaks	CMB	5:30-6:45 p.m.
Transwestern Pipeline Facility		2-Jan	MW-1B/p2	59' 1"	59' 1.5"	Pump 2/MW-1B	10 MU 120 eec					Pumps 1,2,2,4 On, No spills or leaks	CMB	9:30-9:45 a.m.
6381 North Main Street		3-Jen	MW-2/p3	No Product	59'	Pump 3/MW-2	100/ 60 eec.	i				Pumps 1,2,3,4 On, No spills or leaks	CMB	3:15-3:30 p.m
Roswell, New Mexico 88201		4-Jan	MW-1/p4	48' 6.5"	59' 1"	Pump 4/MW-1	150/ 60seq					Pumpe 1,2,3,4 On, No spills or leaks	CMB	10:00-10:15 a.m.
		6-Jan				 						Pumpe 1,2,3,4 On, No spille or leaks	CMB	2:00-2:15 p.m.
Prepared By:		6-Jan				T						Pumps 1,2,3,4 On, No spills or leaks	CMB	4:45-5:00 p.m.
Clayton M. Barnhill		7-Jan	1			1			<u> </u>	 		Pumps 1,2,3,4 On, No spills or leaks	CMB	9:30-9:48 a.m.
Consulting Geologist		8-Jan				†			Pump 2 Shut off due to leakage			Pumps 1, 3, 4, On, No Spills or Leaks	CMB	9:45-10:10 a.m.
PO Box 2304		9-Jan	i			Pump 1/RW-1	Trace/ 60 Sec.		2.32	0.70*		Pumps 1, 3, 4, On, No Spills or Leaks	CMB	2:15-3:00 p.m.
Roswell, New Mexico 88202-2304		10-Jan				Pump 2/MW-1B	Off		Tank Emptied	****		Pumps 1, 3, 4, On, No Spills or Leaks	CMB	10:00-10:15a.m.
(505) 622-2012		11-Jan	1			Pump 3/MW-2	100 ML/ 120 m	r.	1			Pumpe 1, 3, 4, On, No Spille or Leaks	CMB	8:00-8:20 a.m.
		12-Jan	1			Pump 4/MW-1	10 ML/ 60eea.	<u> </u>				Pumps 1, 3, 4, On, No Spills or Lasks	CMB	7:16-7:30 a.m.
		13-Jan	1 1			1	1.0 1.1.0		 			Pumps 1, 3, 4, On, No Spills or Lenks	CMB	3:30-3:40 a.m.
<u> </u>		14-Jan	+			 			 			Pumps 1, 3, 4, On, No Spills or Leaks	CMB	2:20-2:40 p.m.
		15-Jan	+			 						Pumpe 1, 3, 4, On, No Spills or Leaks	CMB	6:15-6:30 p.m.
		16-Jan	 			 	 		 			Pumps 1, 3, 4, On, No Spills or Leaks	CMB	9:00-9:15 a.m.
		17-Jan				Pump 1/RW-1	Trace/ 60 Sec.		0.3'	0.2	-	Pumpe 1, 3, 4, On, No Spills or Leaks	CMB	11:30-a.m12p.m.
		18-Jan	+			Pump 2/MW-1B	Off			0.0		Pumps 1, 3, 4, On, No Spille or Leaks	CMB	5:10-5:20 a.m.
		19-Jan	 			Pump 3/MW-2	50 ML/ 120 pm	<u> </u>				Pumpe 1, 3, 4, On, No Spille or Leaks	CMB	9:10-9:20 a.m.
		20-Jan	1			Pump 4/MW-1	10 ML/ 60eec.	·				Pumps 1, 3, 4, On, No Spills or Leaks	CMB	2:45-3:00 p.m.
		21-Jan	 			Fump stravel	TO ML OURE.		· 			Pumps 1, 3, 4, On, No Spille or Leaks	CMB	12:30-12:45 p.m.
		22-Jan	 			 	 					Pumps 1, 3, 4, On, No Spille or Leaks	CMB	5:30-5:45 a.m.
		23-Jan							<u> </u>				CMB	4:30-4:50 p.m.
		24-Jan							<u> </u>	ļ		Pumpe 1, 3, 4, On, No Spills or Leaks	CMB	6:30-5:45 a.m.
		25-Jan	+				ļ			<u> </u>	L	Pumps 1, 2, 4, On, No Spills or Leaks		
			 			 	ļ			ļ <u>-</u> _		Pumps 1, 3, 4, On, No Spills or Leaks	ST	4:30-4:45 p.m.
		26-Jan 27-Jan					ļ		<u>. </u>		Ĺ	Pumps 1, 3, 4, On, No Spills or Leaks	ST	4:30-4:45 p.m.
			ļ									Pumps 1, 3, 4, On, No Spills or Leaks	ST	5:15-5:30 p.m.
		28-Jan										Pumpe 1, 3, 4, On, No Spille or Leaks	CMB	4:30-4:45 p.m.
		29-Jan	1			<u> </u>			<u> </u>		<u> </u>	Pumps 1, 3, 4, On, No Spills or Leaks	CMB	3:30-3:45 p.m.
<u> </u>		30-Jan	1						.1			Pumpe 1, 3, 4, On, No Spille or Leaks	CMB	4:45-5:00 p.m.
		31-Jan	RW-1/p1	38.80	39.15	Pump 1/RW-1	Trace/ 60 Sec.	L	1.08*	0.96*	0.12	Pumps 1, 3, 4, On, No Spille or Leaks	CM8	10:00a.m12:p.m.
			MW-18/p2	58.24	61.0"	Pump 2/MW-18	Off	L						
			MW-2/p3	58.94*	59.0	Pump 3/MW-2	50 MU 120 000				- ·			I
			MW-1/p4	48.58	59.40	Pump 4/MW-1	Trace/ 60eec.							
			11			1							i	
			1 . 1							1.				
			11					Totale:						I
			1			1				 	1		1	
					I	T	T		T	— —.	1	 		1
			1			1	1		<u> </u>	 		 		
			7 1			 	<u> </u>		31.5 gallons / inch of tank volume	52.29 gallone	54.Soutore	 		
			+			 	 		107.79 gallons/3.45 gallons per day	1.68gal/day				
									1 101110 Saucras or 40 Statute her net.	i i vojatusy	11.70 02/037	<u> 1</u>		

Transvestern Piptine Facility Remediation System Maintenano Reswell, New Maxico

Recovery Well Log Sheet	Month:	Day:	Well #	Product Level	Water Level	Pump#/MW#	Flow Rate	Cycle Time	Tank Recovered Fluid Level	Product	Weter	Remarks:	Mepecter	Time
nron Roswell Remediation System Maintenance	Feb-95	1-Feb				Pump 1/RW-1	Trace/ 60 Sec.		1.08	0.96	0.12	Pumpe 1, 3, 4, On, No Spille or Leaks	СМВ	4:30-4:45 p.n
Transwestern Pipeline Facility		2-Feb				Pump 2/MW-18	Off					Pumps 1, 2, 4, On, No Spills or Lasks	CMB	10 am - 12 pr
6381 North Main Street		3-Feb	1			Pump 3/MW-2	50 ML/ 120 sec					Pumps 1, 3, 4, On, No Spills or Leaks	CMB	10 am - 2 рп
Roswell, New Mexico 88201		4-Feb				Pump 4/MW-1	Trace/ 60eec.		-T			Pumps 1, 3, 4, On, No Spills or Leaks	CMB	1:15 - 1:30 p
		5-Feb										Pumps 1, 3, 4, On, No Spills or Leaks	CMB	2:30-2:45 p.n
Prepared By:		6-Feb				T						Pumps 1, 3, 4, On, No Spille or Leaks	CMB	9 am - 12 pc
Clayton M. Barnhill		7-Feb										Cut Air Line, Shut Down System	CMB	10 am - 4 pm
Consulting Geologist		8-Feb	1							1		Cut Air Line, Shut Down System	CMB	7:30 am - 3 s
PO Box 2304		9-Feb										Repaired Airline Did not Hold, Broke	CMB	5:30 - 5:45 p
Roswell, New Mexico 88202-2304		10-Feb							<u> </u>	T		System Shut Down, Air Line Broken	CMB	Shut Down
(505) 622-2012		11-Feb					T					System Shut Down, Air Line Broken	CMB	Shut Down
		12-Feb										System Stut Down, Air Line Broken	CMB	5 - 8 pm
		13-Feb					T			_		System Shut Down, Air Line Broken	CMB	Shut Down
		14-Feb	1				 			1		System Shut Down, Air Line Broken	CMB	Shut Down
		15-Feb					 					System Shut Down, Air Line Broken	CMB	Shut Down
		16-Feb	1			T	T			1		System Shut Down, Air Line Broken	CMB	Shut Down
		17-Feb	1			· · · · · · · · · · · · · · · · · · ·	<u> </u>		- 	1		System Shut Down, Air Line Broken	CMB	Shut Down
- ··· · · · · · · · · · · · · · · · · ·		18-Feb								-		System Shut Down, Air Line Broken	СМВ	11 am -12:30
		19-Feb										System Shut Down, Air Line Broken	CMB	Shut Down
		20-Feb	RW-1/p1	28.82	39.20	Pump 1/RW-1	Trece/ 60 Sec.		1.08	0.98	0.10*	System Shut Down, Air Line Broken	CMB	10 am -12:30
		21-Feb	MW-1B/p2	58.79	61.45	Pump 2/MW-1B	Off			1		Pumps 1, 2, 4, On, No Spille or Leaks	CMB	10 am - 4 pa
		22-Feb	MW-2/p3	58.30"	60.62	Pump 2/MW-2	25 ML/ 120 sec		· · · · · · · · · · · · · · · · · · ·	 		Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	9 am - 4 pm
		23-Feb	MW-1/p4	48.58"	69.40	Pump 4/MW-1	Trace/ 60eec.	i				Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	8:30 - 9:00 a
		24-Feb	1	•					· · · · · · · · · · · · · · · · · · ·			Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	4:30 pm -5 p
		25-Feb	1 1									Pumpe 1,2, 3, 4, On, No Spills or Legks	CMB	7:00 -7:15 a
		26-Feb	1						<u> </u>	-		Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	12:30 - 12:45
		27-Feb	1									Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	5:15-5:30 p.n
		28-Feb	1			Pump 1/RW-1	Trace/ 60 Sec.		1,08*	0.98*	0.10	Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	7:30 -8 am
			1			Pump 2/MW-1B	10 ML/80 Sec							
· · · · · · · · · · · · · · · · · · ·			1			Pump 3/MW-2	25 ML/ 120 eec			-			1	
			 			Pump 4/MW-1	Trace/ 60eep.	<u> </u>					 	
			11						<u> </u>			- 	1	
	1		1			1	1						1	
						1	1		· · · · · · · · · · · · · · · · · · ·				1	
	··		1			1				1		 	·	
· · · · · · · · · · · · · · · · · · ·			1			1							1	
			1			1	 	Totals:	31.5 gallons / inch of tank volume	0.3 gallone	٥		1	
					† · · · · · · · · · · · · · · · · · · ·	<u> </u>	 	 	6.3 gallors/ 14 days = 0.45gal/day	0.45gal/day			 	

Transvestern Pipline Feolity Remediation System Maintenano Roswell, New Mexico

Recovery Well Log Sheet	Month:	Day:	Wels	Product Level	Water Level	Pump#/MW#	Flow Rate	Cycle Time	Tank Recovered Fluid Level	Product	Weter	Remerks:	inspector	Time
Erron Roswell Remediation System Maintenance	Mar-95	1-M=				Pump 1/RW-1	Trace/ 60 Sec.	3 Cycle	1.08	0.98*	0.10	Pumps 1,2, 3, 4, On, No Spille or Leaks	CMB	6:30-6:45 s.m.
Transwestern Pipeline Facility		2-M#				Pump 2/MW-1B	25ML/60 Sec					Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	6 am - 6:15 am
6381 North Main Street		3-M#	1		T	Pump 3/MW-2	50 ML/ 120 sec.					Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	6 p.m6:15 p.m
Roswell, New Maxico 88201		4-Mar	1		7	Pump 4/MW-1	Trace/ 80sec.					Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	8:15 · 8:30 a.m
		5-M#				1						Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	0:30-6:45 p.m.
Prepared By:		6-Mar										Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	6:30-6:45 p.m.
Clayton M. Barnhill		7-Mer	1									Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	8am 8:15 am.
Consulting Geologist		8-M#	1									Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	7:30 pm - 7:45 p
PO Box 2304		9-Mar						1				Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	4:30 - 4:45 pm
Roswell, New Mexico 88202-2304		10-Mar	1									Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	4:30 - 4:45 pm
(505) 622-2012		11-May	1		T	1	1					Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	7:45 - 8 a.m.
		12-Mar	1 1		T		1	T				Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	7 - 7:15 p.m.
	1	13-Mar	1		T -	Pump 1/RW-1	Trace/ 60 Sec.	3 Cycle	1.51'	1.04	0.47	Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	5:45 - 6 p.m.
		14-Mar			1	Pump 2/MW-1B	25ML/60 Sec					Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	6:45 - 7 p.m.
		15-Mar	1 1		T	Pump 3/MW-2	50 ML/ 120 sec.	 		†		Pumpe 1,2, 3, 4, On, No Spille or Leaks	CMB	6:45 - 7 p.m.
		16-Mar	1		T	Pump 4/MW-1	Trece/ 60sec.					Pumps 1.2. 3. 4. On, No Spills or Leaks	CMB	6 -6:15 a.m.
		17-Mar	1			1	1774-0000	 	· · · · · · · · · · · · · · · · · · ·			Pumos 1.2, 3, 4, On, No Scille or Leaks	CMB	2:45 -3 p.m.
		18-M#)		 		 	 	 			Pumps 1,2, 3, 4, On, No Spille or Leake	CMB	10:30 a.m4:30 a
		19-Mer	1		1							Pumpe 1,2, 3, 4, On, No Spile or Leaks	СМВ	2 -4 p.m.
		20-Mar	1									Pumps 1,2, 3, 4, On, No Spits or Leaks	CMB	7 -7:26 p.m.
		21-Mar			T	T	†	 				Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB ·	7 -7:16 p.m.
		22-Mer			1		1	1				Pumps 1.2. 3. 4. On, No Spills or Leaks	CM8	7 -7:15 p.m.
·		23-Mar				Pump 1/RW-1	Trace/ 60 Sec.	3 Cycle	1.76"	1.12	0.64	Pumpe 1,2, 3, 4, On, No Spills or Leaks	CMB	6 -6:15 a.m.
		24-M#				Pump 2/MW-1B	10 ML/60 Sec	1			9,51	Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	6:20-6:40 p.m.
		25-Mar	 		1	Pump 2/MW-2	26 ML/ 120 sec.					Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	3:00 -3:15 p.m
		26-M#	1		T	Pump 4/MW-1	Trace/ 60sec.					Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	8 -10 a.m.
		27-Mar	1		1	1	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	3 -4 o.m.
		28-Mar			† 	 	· · · · · · · · · · · · · · · · · · ·	•				Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	4:30 -4:45 p.m
		29-Mar	1		Ť	<u> </u>	+	 	· 	 		Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	6:15 -6:30 p.m
		30-Mar	1		†	 			 			Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	6:30 -6:45 p.m.
		31-Mar	RW-1/p1	38.84"	39.32	Pump 1/RW-1	Trace/ 60 Sec.	3 Cycle	1.95'	1.12	0.83	Pumps 1,2, 3, 4, On, No Spills or Leaks	CMB	6:30 -6:45 p.m.
			MW-18/02	59.10*	59.12	Pump 2/MW-1B	10 ML/60 Sec				0,00	1 dige 1/2, 0/ 1/ 0/4 to open di 2000	1	- C.OC 10.40 p.m.
		<u> </u>	MW-2/p3	59.00	59.06	Pump 3/MW-2	25 ML/ 120 sec.		 	-		 	+	
		1	MW-1/p4	49.12	80.22	Pump 4/MW-1	Trace/ 60eeg.	1	 	 			 	
			1		1	T	1	Recovery:	0.87	0.14	0.73	 		
			1		· ·		· · · · · · · · · · · · · · · · · · ·	 		 	5.76	 	 	
		T	1		†	T		Totale:	31.5 gallons / inch of tank volume	4,41	22.99	 	$\overline{}$	
	1	1			1	T	1	1	27.40 gallone/ 31 days = 0.88gal/day			 	1	$\overline{}$

ENRONOPERATIONS CORP.

P. O. Box 1188

Houston, Texas 77251-1188

(713) 853-6161

RECEIVED

January 16, 1995

Ms. Barbara Hoditschek New Mexico Environment Department Hazardous & Radioactive Materials Bureau 525 Camino de Los Marquez P.O. Box 26110 Santa Fe, NM 87502 JAN 1 7 1995
OIL CONSERVATION DIV.

RE:

Closure Plan for the Former Surface Impoundments at the Roswell Station Transwestern Pipeline Company Compressor Station No. 9, Roswell, New Mexico

Dear Ms. Hoditschek,

Transwestern Pipeline Company (TPC) submits the enclosed modified closure plan for the former surface impoundments located at the Roswell Compressor Station. As requested, two hard copies of the closure plan and one copy on disk in WordPerfect 5.2 format are enclosed. The closure plan was prepared by our outside consultant, Daniel B. Stephens & Associates (DBS&A) of Albuquerque, New Mexico. DBS&A prepared the plan at my direction and with the assistance of our internal consultants, George C. Robinson, P.E. and Kathleen O'Rielly, Cypress Engineering Services.

Also enclosed are a copy of a site specific health and safety plan prepared by DBS&A and a list of responses to the NMED comments contained in the NOD dated September 28, 1994.

A sincere effort has been made to prepare a closure plan that will satisfy both the administrative and technical requirements of the NMED as well as provide assurance that both human health and the environment will be protected.

If you have any questions regarding this submittal, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,

Bill Kendrick

Projects Group Manager EOC Environmental Affairs

gcr/BK

cp w/ enclosures:

Roger Anderson

NMOCD

Santa Fe, NM

HEALTH AND SAFETY PLAN for Field Activities at **Transwestern Pipeline Company Roswell Compressor Station**

ROSWELL, NEW MEXICO

Prepared for **Enron Environmental Affairs**

Prepared by Daniel B. Stephens & Associates, Inc.

January 12, 1995

Prepared by: Jeffrey Forbes

Hydrogeochemist

Date: 01/12/95

Reviewed by: <u>Irin Starems for K. Mayor</u> Health & Safety Coordinator

Date: 1-/2-95

Approved by: Sefful Fiorlies

Date: /-/6-95

SITE SAFETY PLAN

1. INTRODUCTION

This health and safety plan contains guidelines for Daniel B. Stephens & Associates, Inc. (DBS&A) worker safety during drilling and soil sampling during the field activities associated with closure of former surface impoundments at Transwestern Pipeline Company's Roswell Compressor Station. The purpose of this plan is to familiarize the field personnel with safe operating procedures.

1.1 General Information

Project number:

4115

Project name:

ENRON-Roswell

Site name:

Transwestern Roswell Compressor Station No. 9

Site address:

6381 North Main Street

P.O. Box 2018

Roswell, NM 88201

Work description:

Drilling using hollow stem auger drilling methods; soil sampling using split spoon samplers, field headspace analysis for volatile organic compounds, collection of soil and ground-water samples, aquifer

testing

Project Manager:

Jeffrey Forbes

DBS&A Site Safety

Officer:

Bill Casadevall

Plan prepared by:

Jeffrey Forbes

Date:

01/12/95

Work start date:

Spring 1995

Work Hours: no restrictions

Client contact:

George Robinson

Telephone #: (713) 646-7327

Alternate contact:

Larry Campbell

Telephone #: (505) 625-8022

Describe special site entry procedures, if any:

Work will be performed on secured property belonging to Transwestern Pipeline Company. Field personnel will sign in at the office upon arrival.

Warning/method signal for site evacuation: Ve

Verba

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Presence of hazardous materials: (X) F

(X) Potential

() Confirmed

The exact location of hazardous materials is:

() Known

(X) Assumed

() Unknown

Distance, location and number of nearest phone:

On-site cellular phone (DBS&A) or

Transwestern office

Nearest public road:

U.S. Highway 285 immediately west of office

Nearest water:

Transwestern office

Nearest fire extinguisher:

DBS&A Vehicle

Nearest first aid kit:

DBS&A Vehicle

1.2 Potential Contamination

The subsurface soil and/or ground water may contain pipeline condensate, a petroleum hydrocarbon liquid similar to gasoline, but consisting primarily of saturated hydrocarbons in the C7-C11 range. The hydrocarbon contamination may be in liquid and/or gaseous (vapor) phase. Compounds such as n-octane, n-nonane, and n-decane are the most abundant components of pipeline condensate. Benzene, a major gasoline component, is generally only a minor constituent of pipeline condensate. However, benzene is a recognized carcinogen, and thus is given special consideration.

A previous soil vapor survey revealed the presence of small quantities of chlorinated VOCs, most notably 1,1,1-trichloroethane (TCA) and its degradation products.

Polychlorinated biphenyls (PCBs) are not expected at this site. As occupational carcinogens, however, precautions will be taken in case they are encountered.

<u>Material</u>	Route to Body Entry	Characterization
Hydrocarbons	Inhalation, ingestion, and physical contact	Irritant, asphyxiant, possible carcinogen
1,1,1-TCA	Inhalation, ingestion, and physical contact	Irritant, asphyxiant
n-octane	Inhalation, ingestion, and physical contact	Irritant, asphyxiant
PCBs	Physical contact (skin, eyes)	Irritant, carcinogen

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Potential materials hazards to worker: Contact with pipeline condensate hydrocarbons and/or PCBs may result in dermal irritation due to desiccation. Inhalation of hydrocarbon and other organic vapors may result in oxygen deficiency and/or mucus membrane irritation. Mixtures of air and hydrocarbon vapors may reach explosive concentrations, thus creating an explosive hazard. Equally important are all of the physical hazards commonly associated with drilling activities, including pinch and trap hazards, back injuries, burns, excessive noise, and highpressure hazards.

First Aid: VOCs and PCBs Eyes:

Rinse immediately and thoroughly

Skin:

Soap wash immediately and thoroughly

Inhalation:

Fresh air

Ingestion:

Medical attention

Flammability limits: The flammable range for pipeline condensate vapors is variable and generally unknown. The following ranges are provided for comparison:

> Diesel Fuel LEL = 0.7%, UEL = 5.0%, 7,000 - 50,000 ppmv LEL = 1.3%, UEL = 6.0%, 13,000 - 60,000 ppmv Gasoline 1.1.1-TCA LEL = 7.5%, UEL = 12.5%, 75,000 - 125,000 ppmv n-octane LEL = 1.0%, UEL = 6.5%, 10,000 - 65,000 ppmv

Aroclors

LEL/UEL = nonflammable

Flashpoint: Gasoline: 100° F @ 100% LEL

Hazard type: Liquid (X)

Solid (X)

Sludge ()

Vapor/Gas (X)

Hazard Level: High ()

Moderate (X)

Low ()

Unknown ()

Characteristics: Corrosive () Ignitible (X)

Toxic (X)

Reactive ()

Volatile (X) Radioactive ()

Biological Agent ()

Field Monitoring: A portable photoionization detector (PID) or flame ionization detector (FID) will be used to monitor the breathing zone, as well as the area around and within the borehole. Concentrations within the breathing zone are not expected to be above background during the field investigation. If a PID meter is used, the high energy (11.7 eV) lamp will be used to ensure that VOCs with high ionization potentials, such as 1,1,1-TCA, are detected.

Compound	<u>STEL</u>	<u>IDLH</u>	OSHA PEL
Benzene	1 ppm	3,000 ppm	1 ppm
1,1,1-TCA	450 ppm	1,000 ppm	350 ppm
n-Octane	75 ppm	5000 ppm	300 ppm
Aroclor 1242	0.09 ppm	data not available	1 mg/m³ (skin)

⁽¹⁾ STEL = Short-Term Exposure Limit (15 minutes)

Source: NIOSH Pocket Guide to Chemical Hazards (1990).

⁽²⁾ IDLH = Immediately Dangerous to Life and Health

⁽³⁾ PEL = Permissible Exposure Limit

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

In addition to potential chemical contamination, the following hazards may be present during drilling and sampling:

- Vehicular Traffic
- Electrical Shock
- Rotating machinery
- Uneven surfaces that could cause slips and falls
- Overhead equipment
- Airborne Dust
- Explosion and fire
- Excessive Noise
- Overhead and buried utilities
- Hypothermia and/or frostbite

2. SAFETY GUIDELINES FOR DRILLING AND SAMPLING ACTIVITIES

The following guidelines are meant to cover operations by the DBS&A field staff during drilling and collection of soil and ground-water samples. Safety guidelines for the drill crew and support personnel under the employ of the drilling contractor are not included in this plan. Health and safety issues for the contractor personnel working on site are the responsibility of the drilling contractor, not DBS&A.

2.1 Personal Health and Safety

The following DBS&A personnel will be involved in the project:

Jeffrey Forbes

Project Manager

Bill Casadevall*

Staff Geologist/On-site H&S Officer

Terry Deeds

Technician

2.1.1 Protective Equipment

The following personal protective equipment (PPE) shall be used whenever the field personnel are within the 25-foot work zone:

- Steel-toed work boots
- Hard hat
- Protective eyewear
- Hearing protection (if needed)

In addition, a half-face respirator with organic vapor cartridges and dust/mist prefilters, Tyvek coveralls, and work gloves shall be available for use whenever conditions require. The half-face respirator will be worn whenever organic vapors concentrations exceed levels outlined

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

in Section 2.2 of this plan. Tyvek coveralls and work gloves will be worn whenever conditions require the DBS&A field personnel to come in direct contact with potentially contaminated materials. Work areas will be established upwind of drilling activities to avoid unnecessary exposure to dust and/or organic vapors.

2.1.2 Hypothermia and/or Frostbite

Hypothermia and frostbite can result from exposure to low temperatures, high winds, long duration of exposure, and high humidity. When working out of doors during cold weather, the best prevention is to dress appropriately, minimize skin exposure, observe and be observed by coworkers, and take warmup breaks periodically. If conditions are extremely cold, body temperature and heart rate should be monitored hourly.

2.1.3 Eating and Drinking

No eating, drinking, smoking, or gum or tobacco chewing is allowed within the 25 foot work zone.

2.1.4 Eye Protection

Approved protective eyewear will be worn at all times when within the 25 foot radius work zone. The minimum eyewear protection required will be shatter-proof glasses, goggles, or face shields.

2.1.5 Dust Protection

When blowing dust makes it necessary to protect personnel, disposable-type dust masks will be worn, or the dust/mist prefilter will be used, if the half-face respirator is being worn.

2.1.6 Disposal of Contaminated Clothing or Equipment

All potentially contaminated clothing, Tyvek coveralls, gloves, paper towels, and other expendable items should be placed in garbage bags for disposal. As necessary, fresh Tyvek coveralls and work gloves should be donned to prevent accidental contact with potentially contaminated soil material.

2.2 Vapor Monitoring

The DBS&A health & safety officer will be present near the drilling rig at all times to monitor the work area for the presence of organic vapors using a PID or FID. Readings will be taken at a minimum of once every 5 feet of drilling advancement, or every 15 minutes of drilling, whichever occurs first. The headspace within the borehole and the breathing zone within the work area will be monitored. If the readings exceed or are anticipated to exceed 5 ppm above background in the breathing zone for 5 minutes, continuous monitoring will begin, and the half-face respirator will be worn by all DBS&A personnel within the work zone until vapor levels dissipate. If sustained organic vapor levels ever exceed 200 ppm within the hollow stem, borehole, or within the breathing space, all DBS&A personnel will evacuate the work

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

zone until vapor levels dissipate. If the reading remains greater than 20 ppm above background within the breathing zone for one hour, drilling operations will be temporarily halted, and the on-site DBS&A health and safety officer should contact the DBS&A project manager for further instructions. The drilling supervisor will be notified of all readings, and is responsible for decisions regarding drilling contractor personnel safety.

If monitoring with the PID/FID meters indicate a potential explosive hazard, a combustible gas meter will also be used to monitor the atmosphere within the boreholes and/or monitor wells. If the values exceed 10% LEL, continuous monitoring will begin. If the meter exceeds 25% of the LEL, work will cease immediately and the area will be evacuated until the vapors dissipate, or provisions are made to "inert" the borehole using carbon dioxide.

2.3 Drilling Activities

All DBS&A field personnel are to maintain a safe distance from the immediate area of the drill rig. A 25-foot radius work area around the drill rig shall be designated. DBS&A personnel shall enter this work zone only when necessary for the performance of the task at hand. DBS&A personnel will avoid overhead equipment and will work cautiously to avoid slips and falls. Caution will be maintained and loose clothing will not be worn near rotating machinery. Under no circumstance shall DBS&A personnel become directly involved in drilling operations, other than that immediately required for sample collection and for performance of vapor monitoring and geologic logging. All kill switches and safety devices on the drill rig shall be located and tested prior to drilling.

If the equipment is owned by a contractor, DBS&A's supervisor in charge of the job should properly and thoroughly instruct the contractor on exactly what results are to be accomplished and point out all known safety hazards. Personnel should be sure they have eye contact with mechanical equipment operator before approaching the equipment. Never approach heavy equipment from an operator's blind spots.

3. INITIAL H&S BRIEFING

A H&S briefing will be conducted before arriving on the site. The initial H&S briefing will be conducted by the DBS&A on-site H&S officer, and will be attended by all DBS&A personnel involved. The H&S plan and all pertinent H&S issues will be discussed during the briefing. All attendees will initial the H&S briefing form.

4. DAILY SAFETY MEETINGS

Prior to commencing each day's work activities, a "tailgate" safety meeting will be conducted by the DBS&A on-site safety officer. All personnel directly involved in the work operations will be required to attend. The meeting will address specific issues regarding on-site health and safety, including: recent problems, near-misses, work planned for the day and associated hazards, etc.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

5. ACKNOWLEDGEMENTS

NAME	TITLE	SIGNATURE	DATE
400			

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

DANIEL B. STEPHENS & ASSOCIATES, INC HEALTH & SAFETY BRIEFING FORM

Project Number:	4115	Date:	
Field Location:			
Task to be Accompl	lished:		
SOPs Required:			
DBS&A Health and	Safety Officer:		
We the undersigned by the regulations co		fety Plan and will institute	the provisions and abide
NAME	TITLE	SIGNATURE	DATE

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

EMERGENCY PLANNING

AMBULANCE:

911

FIRE DEPARTMENT: 911

POLICE:

911

AIR EVACUATION: Call Hospital

LOCAL HOSPITAL (ATTACHED MAP ILLUSTRATES ROUTE TO THIS HOSPITAL)

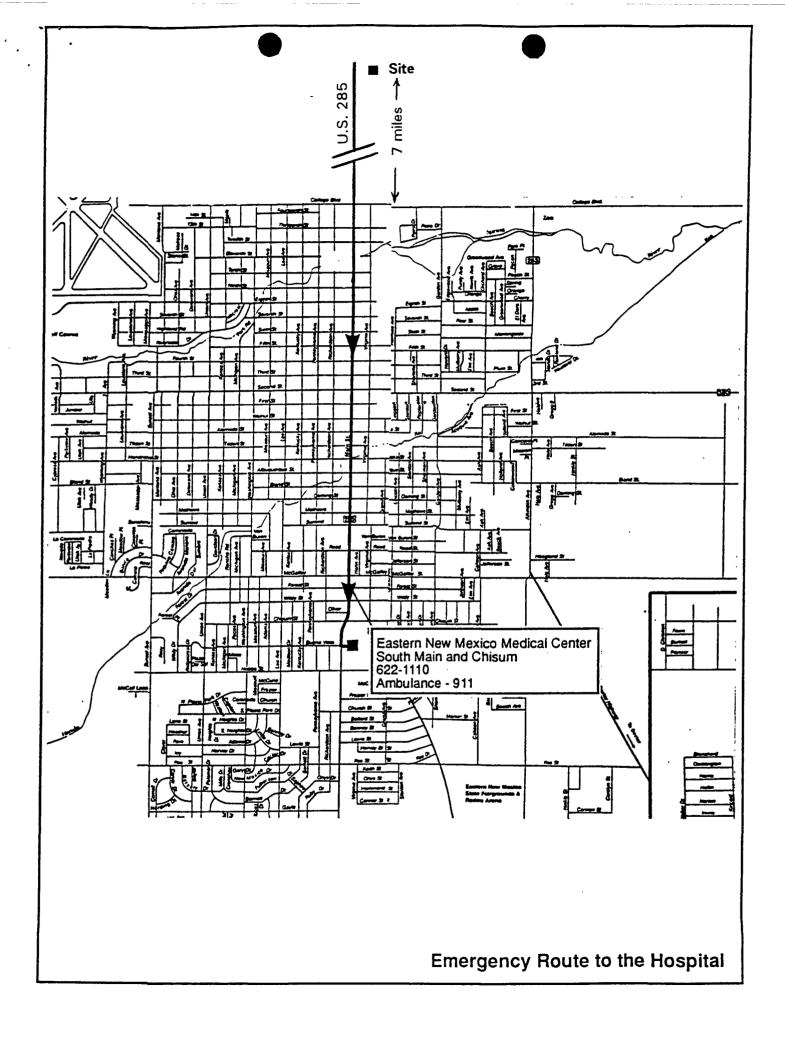
NAME:

Eastern New Mexico Medical Center

ADDRESS:

South Main & Chisum, Roswell NM

TELEPHONE:


(505) 622-1110

EMERGENCY ROOM #: (505) 622-1110

NEAREST PHONE:

On-site cellular phone (DBS&A)

Transwestern main office

RESPONSES TO NMED COMMENTS ON CLOSURE PLAN FOR ROSWELL COMPRESSOR STATION SURFACE IMPOUNDMENTS

Transwestern Pipeline Company (Transwestern), a wholly owned subsidiary of ENRON Operations Corporation, submitted a closure plan dated May 31, 1994 to the New Mexico Environment Department (NMED) for closure of several former surface impoundments located at Transwestern's Compressor Station No. 9 near Roswell, New Mexico. The closure plan was prepared for Transwestern by Daniel B. Stephens & Associates (DBS&A) for submission to the NMED Hazardous and Radioactive Materials Bureau (HRMB) in order to satisfy the requirements of the New Mexico Hazardous Waste Management Regulations (20 NMAC 4.1).

NMED reviewed the closure plan and responded with a letter from the chief of the HRMB dated September 28, 1994, stating that the closure plan was technically deficient. As an attachment to the Notice of Technical Deficiency (NOD), NMED included 31 specific comments on the closure plan.

On November 1, 1994, Bill Kendrick and George Robinson attended a meeting with HRMB staff to discuss NMED's concerns. As a result of this meeting, as well as the comments received with the NOD, a revised closure plan has been prepared and submitted to NMED for review.

In addition to the revised closure plan, the following are Transwestem's responses to each of NMED's comments included with the NOD. In order to facilitate review, Transwestern's responses are numbered to correspond with NMED's comments, and references to the pertinent section(s) of the revised closure plan are included.

Responses to NMED Comments

1. Performance Standards: 20 NMAC 4.1, Subpart VI, 40 CFR, §265.112

Transwestern agrees with NMED's comment. Although TCLP metals analyses of soil samples have been performed in the past (see Table 3-3), TCLP analyses are not proposed in the closure plan for future sampling of soil or ground-water (see Section 6.1, Table 6-1).

It is well known that volatile organic compounds (VOCs) pose the greatest threat to ground-water quality at sites where pipeline condensate wastes have been stored and released. Although VOCs are believed to be the primary contaminants of concern at this site, Phase I samples will be analyzed for additional constituents as well. In order to ensure that no contaminants of concern have been missed, the initial round of ground-water and soil sampling will include analysis of RCRA Appendix IX VOCs, SVOCs, PCBs, metals, cyanide, and sulfide. The proposed Appendix IX suite will include the following analytical methods:

Appendix IX Analytes and Methods

Analyte Class	EPA SW-846 Method					
VOCs	8240					
SVOCs	8270					
PCBs	8080					
Cyanide	9010					
Sulfide	9030					
Appendix IX Metals	6000/7000 series					

RCRA metals include Ag, As, Ba, Be, Cd, Cr, Co, Cu, Hg, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn.

The analysis of soil and ground-water samples for Appendix IX constituents should serve to corroborate the determination, based on site history and previous investigations, that VOCs are the principal contaminants of concern at this site.

2. Corrective Action Plan: 20 NMAC 4.1, Subpart V, 40 CFR, §264.97 and 264.112

Transwestern agrees that it has been demonstrated that the uppermost aquifer has been impacted by hydrocarbons released from the former impoundments. However, the extent of ground-water contamination appears to be limited to the area immediately beneath and adjacent to the former impoundments, and interim corrective measures have been in progress since May 1993, as described in Section 3.5 of the closure plan. The ground-water assessment plan for investigation of the nature and extent of hydrocarbon impacts is included in Section 5 of the closure plan. As agreed upon in a meeting between NMED and Transwestern in Santa Fe, a ground water remediation plan will be submitted to NMED following completion of the field work

associated with the soil and ground-water assessment plans. Therefore, the remediation plan has not been included in the closure plan, but rather will be submitted as an amendment to the closure plan at a later date.

3. Location of Surface Impoundments

The exact locations of the former surface impoundments is not precisely known. However, the best available estimate of the latitude and longitude of the center of each of the impoundments is provided in Section 2.1 of the closure plan.

4. Hazardous Waste Inventory (Section 2.2)

Everything that is known regarding operation of the former impoundments is included in the revised Section 2.2 of the closure plan. As discussed in that section, there is little information available about past disposal practices, waste volumes, and periods of operation of the impoundments. However, it has been determined that the last impoundment in service was Pit 1 and that this impoundment was apparently not used after mid-1984. Furthermore, it has been determined that the principal chlorinated solvent used was 1,1,1-TCA. The prior investigations at the site are discussed in comprehensive detail in Sections 2 and 3 of the modified closure plan.

5. Releases from Surface Impoundments: 20 NMAC 4.1, Subpart V, 40 CFR, §264 Subpart F

As discussed in the response to comment #1 above, Appendix IX analyses are proposed for the initial round of ground-water sampling to be performed as Phase I of the implementation of the closure plan.

With regard to the statistical evaluation of background ground-water quality, the proposed statistical techniques have been added to Section 6.11 of the closure plan. Statistical methods will follow the EPA guidance document *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities* (1989), which describes several recommended parametric and nonparametric methods to determine background constituent concentrations. These include Analysis of Variance (ANOVA) and development of tolerance intervals based on the normal distribution of values within a population. Such techniques will generally only be applied for inorganic constituents (e.g.,

metals), as the background concentration for organic compounds in ground water is essentially zero.

On December 1, 1994, an upgradient monitor well (MW-6) was installed approximately 500 feet southwest of the former location of Pit 1. The location of the new upgradient monitor well is shown on Figure 2-1 of the closure plan. Static water levels measured in monitor wells MW-3, MW-5, and MW-6 indicate that MW-6 is indeed upgradient of the former impoundments. Groundwater samples collected from this well, as well as soil samples collected during drilling, have shown that the well is outside the zone of hydrocarbon contamination beneath the former impoundments. Therefore, for statistical purposes ground-water samples collected from new upgradient well MW-6 should be representative of "background" ground-water quality.

6. Ground-Water Elevations

Transwestem agrees that ground-water elevation measurements are essential in establishing the direction of ground-water flow beneath the former impoundments. Depths to ground-water were measured in the on-site monitor wells during December 1994, along with the water level in the former deep on-site water supply well located in the southwest comer of the facility. In addition, the coordinates and elevations of each monitor well were established by resurveying each of the wells relative to the compressor station datum. The results of these activities are discussed in Section 3.6 of the closure plan.

Static water levels measured on December 22, 1994 in monitor wells MW-3, MW-5, and MW-6 indicate an east-northeast ground-water flow direction in the shallow alluvium, along a bearing of about N72E, and a dimensionless gradient of approximately 0.009. The flow direction is shown graphically in Figure 2-1 of the closure plan. The calculated ground-water flow direction and gradient are reasonable, based on the site topography and nature of subsurface sediments encountered during drilling.

7. Ground-Water Impacts (Section 3.6.3)

Section 3.6.3 has been revised to include a description of ground-water impacts.

12. Laboratory Analysis: 20 NMAC 4.1, Subpart V, 40 CFR, §264 Appendix IX

The closure plan has been revised to include Appendix IX analysis for soil and ground-water samples. Table 6-1 of the closure plan includes the complete list of proposed analytes. The suite of proposed analytes includes Appendix IX VOCs, SVOCs, PCBs, metals, cyanide, and sulfide. All pertinent sections of the closure plan have been revised accordingly.

13. Ground-Water Assessment Plan: (Section 5.1)

All ground-water monitor wells will be constructed in accordance with the EPA RCRA *Technical Enforcement Guidance Document* (TEGD, 1986), with updates in the EPA document entitled *RCRA Ground-Water Monitoring: Draft Technical Guidance* (1992). As described in Section 5.1 of the closure plan, the screened interval within the saturated zone will not exceed 15 feet. However, following a telephone discussion between Terri Davis (NMED-HRMB) and George Robinson (ENRON), provision has been made to install up to an additional 10 feet of screen within the unsaturated (vadose) zone, for a maximum total screen length of 25 feet. Total screen lengths longer than 15 feet will only be used if the well intercepts soils highly impacted with petroleum hydrocarbons, such that subsequent conversion of the monitor well to a soil-vapor extraction well may be required.

14. (Section 5.1)

The latitude and longitude of all existing monitor wells are provided in Table 3-6 of the revised closure plan. The horizontal coordinate system used to locate the wells and borings is consistent with the on-site grid and station datum, as shown in Figure 2-1 of the closure plan.

15. (Section 5.1.1)

The closure plan has been revised to include a phased approach, whereby the analytical results for soil borings drilled during Phase I will be used to locate borings to be drilled during subsequent phases. The locations of the Phase I borings and monitor wells are shown in Figure 4-1 and 5-1.

16. (Section 5.1.1)

Sections 4.1 and 4.2 of the revised closure plan provide the rationale for the Phase I soil sampling program, along with the number, location, and depth of soil samples to be collected. The rationale for the on-site boring locations is based on historical records and examination of aerial photographs. The rationale for the Phase I off-site monitor well locations is based on the direction and gradient of ground-water flow as calculated from water levels measured in existing monitor wells.

Transwestern recognizes that a phased approach is required, and Section 4.7 outlines the expected Phase II activities.

17. (Section 5.1.2)

Ground-water samples from existing deep wells TW-1 and Well #5, completed in the bedrock aquifer, have been collected and analyzed, as described in Section 3.6. The need for a downgradient deep monitor well will be determined based on the results of the Phase I ground-water assessment. If required, the deep monitor well will be installed during the Phase II investigation.

18. (Section 5.3)

The ground-water assessment plan has been revised accordingly.

19. (Section 5.4)

As discussed above in the response to comment #1, Appendix IX analyses will be performed on the soil and ground-water samples collected during Phase I. In addition, Transwestem proposes to analyze ground-water samples for major inorganic constituents and for TDS in order to characterize overall water chemistry. Following submittal of the Phase I report, Transwestem proposes to meet with NMED to discuss the selection of target analytes for the Phase II investigation.

20. (Section 5.3)

An interface meter will be used to detect PSH that may be floating on the water table. The use of the interface meter is discussed in Sections 5.3 and 6.6 of the revised closure plan, and is consistent with EPA guidance documents.

21. (Section 6.1)

The list of analytical parameters and methods has been revised as requested.

22. (Section 6.2)

Detection limits will be determined by the analytical laboratory as described in the individual analytical methods references (EPA, 1986).

23. Interim Measures (Section 7.1)

Regarding the status of monitor well MW-1, Transwestern has received a letter from NMED dated January 3, 1995 authorizing the continued use of MW-1 as a hydrocarbon recovery well. Therefore, MW-1 will not be plugged and abandoned at this time.

24. Remedial Options (Section 7.3)

No response needed.

25. (Section 7.5)

Given the phased approach proposed for closure of the former impoundments, it is premature to discuss ground-water or soil cleanup criteria at this time. Therefore, references to cleanup criteria have been deleted from the closure plan. A risk assessment may indeed be performed following the collection of additional quantitative data regarding the distribution of hazardous constituents; however, this will not be proposed until a subsequent phase.

26. (Table 3.1)

The elevations of all existing monitor wells were determined in December 1994 by a licensed professional surveyor. These data are provided in Table 3-6 of the revised closure plan.

27. (All Tables)

For comparison with the analytical chemistry results, the New Mexico Water Quality Control Commission (NMWQCC) ground-water standards have been added to the relevant tables.

28. (Figure 3-5)

Pit 2 was incorrectly labeled as Pit 3. This error has been corrected in the revised closure plan.

29. (All Figures)

The correct locations of all monitor wells are shown on Figure 2-1 and subsequent figures. The locations of the wells were determined by a licensed professional surveyor in December 1994. These locations supersede all previous maps or well coordinates.

30. Appendix E

The laboratory results for ground-water samples collected from monitor well MW-2 have been added to Appendix E as requested.

31. Health & Safety Documentation

A site-specific health and safety plan prepared by DBS&A is being submitted with this list of responses to NMED comments. All DBS&A field personnel have received the requisite 40-hour health and safety training and annual updates, as required by OSHA regulations contained in 29 CFR 1910.120. In addition, DBS&A maintains a thorough medical monitoring program for all field personnel. Documentation of training for individual field staff is available upon request.