

WORK PLANS 2001

Transwestern Pipeline Company P. O. Box 1188 Houston, TX 77251-1188

October 22, 2001

Mr. William C. Olson Environmental Bureau New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Mr. David Cobrain Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Dr. East, Bldg. 1 Santa Fe, New Mexico 87505

RE: Work Plan for Excavation of Affected Soil Roswell Compressor Station Transwestern Pipeline Company

RECEIVED

NOV 01 2001

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

The enclosed work plan is submitted for your review and approval. Transwestern is ready to proceed with implementing the work plan upon approval from the NMOCD and the NMED HWB. Please call George Robinson at (713) 646-7327 if you have any questions or comments regarding the work plan.

Sincerely,

William A. Kendrick Director, Environmental Affairs

xc: (with attachments) Larry Campbell George Robinson Tim Gum

Transwestern Pipeline Co. Cypress Engineering OCD Artesia Office

Natural gas. Electricity. Endless possibilities.TM

Work Plan for Excavation and Removal of Affected Soil in the Former Surface Impoundment Areas

Transwestern Pipeline Company Roswell Compressor Station Chaves County, New Mexico

RECEIVED

NOV 01 2001

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Submitted to: New Mexico Oil Conservation Division and New Mexico Environment Department Hazardous and Radioactive Materials Bureau

October 18, 2001

Prepared For: Transwestern Pipeline Company 6381 North Main Street Roswell, NM 88201

Prepared by: Cypress Engineering Services, Inc. 10235 West Little York Road, Suite 256 Houston, Texas 77040

TABLE OF CONTENTS

Secti	Page Page
1.	Work Plan Objectives1
2.	Site Background1
3.	Waste Characterization Activities
3.1	Waste Characterization Objective
3.2	Pit Area Delineation2
3.3	Trenching Activities for Sampling2
3.4	Sample Collection and Analysis
4.	Proposed Excavation Activities
4.1	General Approach
4.2	Pit 1 Excavation
4.3	Pit 2 Excavation
4.4	Bottom and Sidewall Soil Sampling
5.	Off-Site Disposal Activities
5.1	Off-Site Disposal Facility7
5.2	Means of Transportation7
6.	Management of Stockpiled Soil7
6.1	Blended Soil7
6.2	Backfill Soil
7.	Backfill Activities
7.1	Preparation of Excavation Areas8
7.2	Placement of Plastic Liner
7.3	Placement of Backfill
8.	Reporting9

LIST OF FIGURES

Figure

- 1 Facility Site Map
- 2 Trench Locations and TPH Profile
- **3** Proposed Pit Excavation Areas
- 4 Monitor Well and Soil Boring Locations

LIST OF TABLES

Table

1 Summary of Analytical Results for RCRA Waste Characterization of the Pit 1 and Pit 2 Areas

LIST OF ATTACHMENTS

- 1 Photos of Waste Characterization Activities
- 2 Laboratory Reports for Trench Soil Samples
- 3 Soil Boring Logs for Selected Soil Borings (copied from prior site assessment reports); and Summary of Detected Compounds for Pit Soil Samples (copied from the Phase I Assessment Report dated November 8, 1995)

Work Plan for Excavation and Removal of Affected Soil in the Former Surface Impoundment Areas

1. Work Plan Objectives

The subject of this work plan are two former surface impoundments located at the Transwestern Pipeline Company (Transwestern) Roswell, New Mexico, Compressor Station No. 9. This work plan is the first stage of active remediation measures designed to achieve a broader objective to remediate soil and groundwater affected by a release from the former impoundments.

The objectives of the proposed excavation activities are: 1) To reduce the health risk from potential future contact with affected soil to an acceptable level; and 2) To remove the potential for continued groundwater contamination from a residual source of petroleum hydrocarbons contained in affected soil. These objectives will be met by the excavation and removal of near-surface soil located in the immediate vicinity of the former impoundments.

This work plan will be implemented upon approval by the New Mexico Oil Conservation Division (OCD) and the New Mexico Environment Department Hazardous and Radioactive Materials Bureau (NMED HRMB).

2. Site Background

A thorough description of the facility and the history and operation of the former surface impoundments was provided in a previous report submitted to the OCD and the NMED HRMB. This report was titled "Corrective Action Plan for Roswell Compressor Station No. 9 Surface Impoundments", dated January 31, 1997. The location of the two impoundments relative to other facility features is indicated in Figure 1.

A brief physical description of the two former surface impoundments is presented as follows:

Impoundment	Approximate Dimensions	Date Constructed	Date Backfilled
Pit 1	40' x 70' (rectangular)	Between 7/61 & 10/72	6/86
Pit 2	70' diameter (circular)	Before 7/61	Before 2/77

It is estimated that the impoundments were at most 10 feet deep.

3. Waste Characterization Activities

3.1 <u>Waste Characterization Objective</u>

Waste characterization samples were collected on September 6, 2001, for the purpose of confirming that affected soil from within two former pit areas could be managed as non-hazardous oil and gas field waste. This was accomplished by collecting 22 soil samples from trenches excavated in the former pit areas. The soil samples were delivered to a laboratory for analysis for RCRA hazardous waste characteristics. Laboratory results indicate that affected soil may be managed as non-hazardous waste.

3.2 <u>Pit Area Delineation</u>

Prior to sampling activities, on September 5, 2001, two trenches were excavated across the length and width of each former pit area in an effort to confirm the location of the former pits. The Pit 2 area was found to be slightly smaller than what was indicated by aerial photographs and centered about 10 feet east of the location shown in previous figures. The Pit 1 area was found to have the anticipated dimensions and location. As a result, the location of sample trenches in the Pit 2 area were relocated so that they were centered over the actual pit area and the location of sample trenches in the Pit 1 area were located as planned.

3.3 Trenching Activities for Sampling

Three trenches were excavated within each former pit area in order to collect samples for RCRA waste characterization (six trenches total). The trenches were excavated using a trackhoe. Each trench was approximately 15 feet in length and excavated to a maximum depth of 12-14 feet bgs. The trenches in the Pit 1 area were oriented east-west and spaced equally along the long axis of the former pit area as indicated in Figure 2. The trenches in the Pit 2 area were oriented north-south and spaced equally within the former pit area.

In general, the soil profile encountered in all six trenches was very similar and consisted primarily of a loose sandy soil. Debris was encountered in all six trenches but was much more prevalent in the southernmost trench in the former Pit 1 area. The type of debris encountered included scrap metal pipe, crushed metal drums, rubber tires, rubber gaskets, wood products, and other similar waste materials. Based on observations of hydrocarbon staining and hydrocarbon odor, the soil profile encountered in the former Pit 1 area appeared to be most heavily affected from near ground surface to about 12-14 feet bgs. The soil profile in the former Pit 2 area appeared to be most heavily affected from about 4 feet bgs to 10-12 feet bgs.

At the conclusion of sampling activities, excavated soil was pushed back into the trench from where the soil originated.

3.4 Sample Collection and Analysis

At least one sample was obtained from each trench at depths of 4 feet bgs, 8 feet bgs, and 12 feet bgs (that is, at least 3 samples from each trench). The sample depths were based upon prior assessment borings that indicate the base of the former impoundments was no more than 14 feet bgs. Based upon field observations, an attempt was made to obtain the most heavily affected material for characterization. In addition, several blind duplicate samples were collected for quality assurance purposes. This activity generated a total of 22 samples for waste characterization.

Laboratory analysis for RCRA waste characterization included TCLP volatiles, TCLP semivolatiles, TCLP metals, and ignitability. In addition, the sample analysis plan included Total Petroleum Hydrocarbons (TPH) by method 8015mod (GRO & DRO). Laboratory analysis confirmed that samples collected in the course of this activity do not trigger RCRA hazardous waste criteria. A summary table of laboratory results is included as Table 1. Results for TPH analysis are also presented graphically in Figure 2.

4. Proposed Excavation Activities

4.1 General Approach

The general approach to the excavation activities is to excavate affected soil in the immediate vicinity of the former pit areas, remove the most heavily affected soil for off-site disposal, blend the less affected soil on-site prior to reuse as backfill material, and to backfill the remaining excavated area with clean soil from off-site.

Work Plan for Excavation and Removal Activities Transwestern Pipeline Company – Roswell Compressor Station The lateral limits of excavation in both former pit areas is divided into two areas. This is indicated in Figure 3 by the innermost dashed line to indicate the area that will be excavated for off-site disposal and the outermost dashed line to indicate the additional area that will be excavated and managed on-site. The area proposed for off-site disposal was determined by the lateral limits of the interior walls of the former impoundments. The intent is to include the most heavily affected soil for off-site disposal.

The area in Figure 3 that is bounded by the innermost dashed line and the solid line represents an area where excavated soil will consist mostly of relatively clean overburden soil. The lateral limit of excavation in this area was determined by establishing a perimeter that is 10 feet outside the area that will be removed for off-site disposal. Furthermore, the area in Figure 3 that is bounded by the solid line and the outermost dashed line represents an additional area where excavated soil will consist mostly of relatively clean overburden soil. This area will be excavated for excavation safety purposes in order to provide a sufficient sidewall slope down to the bottom of the excavation. Excavated soil from these areas will be stockpiled on-site around the perimeter of the excavation, blended in order to reduce the overall TPH concentration, and then utilized for backfill material. The criteria for blended soil used for backfill are a TPH concentration below 1000 mg/kg and a total BTEX concentration below 50 mg/kg. [Note: The final TPH and BTEX concentrations after blending are anticipated to be well below these criteria.]

4.2 Pit 1 Excavation

The anticipated lateral and vertical limit of excavation in the Pit 1 area is based upon information obtained from the recent waste characterization activities and from previous soil borings. For convenience, soil boring logs are attached for borings PIT 1 NW, PIT 1 SE, SVE-1A, SVE-2A, SVE-3, MW-1B, and MW-13. The location of these borings relative to the former impoundments is shown in Figure 4. It was determined from inspection of the boring logs that the outermost limit of excavation will be sufficient to ensure that all near-surface impacted soil has been removed and/or remediated to levels that are protective of human health.

Three areas are indicated in Figure 3 around the former Pit 1 location. The innermost area defines the lateral limit of excavation to a depth of 16 feet bgs that will be removed for off-site disposal at an OCD permitted landfarm facility. The purpose of this excavation is to remove any remaining contents of the former impoundment and the most heavily affected soil beneath the former impoundment to the maximum depth practicable. All soil and debris removed from this area will be loaded into trucks for off-site disposal at an OCD permitted landfarm facility.

The area between the innermost dashed line and solid line defines the area of excavation to a depth of 16 feet bgs that will be removed, blended on-site, and then used for backfill material. The area between the solid line and the outermost dashed line defines the area of excavation that will provide for a sufficient sidewall slope from ground surface to the bottom of the excavation area. The purpose here is to remove affected soil from around the perimeter of the former impoundment to the maximum depth practicable. Much of the soil removed in the course of this excavation will be relatively clean overburden soil. Soil removed from this area will be stockpiled around the perimeter of the excavation. A procedure for managing stockpiled soil is presented in a subsequent section of this work plan.

The proposed depth of excavation is based upon two factors. First, the soil boring log for boring Pit 1 SE indicates that native soil was encountered at a depth of 14 feet bgs. The proposed depth of the excavation is two feet below the depth to native soil. Second, the proposed depth of excavation is limited to the maximum depth that can be safely achieved using conventional excavation equipment.

The total volume of soil to be excavated from the Pit 1 area is estimated at 4,800 cubic yards of soil in-place (6,700 yards excavated). It is anticipated that approximately 1,700 cubic yards (2,300 yards excavated) will be transported off-site for disposal and approximately 3,100 cubic yards (4,400 yards excavated) will be stockpiled around the perimeter of the excavation, blended, and utilized for backfill material.

4.3 <u>Pit 2 Excavation</u>

The anticipated lateral and vertical limit of excavation in the Pit 2 area is based upon information obtained from the recent waste characterization activities and from previous soil borings. For convenience, soil boring logs are attached for borings PIT 2 NE, PIT 2 SW, and MW-2.

Three areas are indicated in Figure 3 around the former Pit 2 location. The innermost area defines the lateral limit of excavation to a depth of 12 feet bgs that will be removed for off-site disposal

at an OCD permitted landfarm facility. Soil removed in this area from ground surface to a depth of 4 feet bgs has been determined to be relatively unaffected and therefore will be stockpiled around the perimeter of the excavation for blending and reuse. Soil from a depth of 4 feet bgs to 12 feet bgs will be removed for off-site disposal at an OCD permitted landfarm facility. The purpose of this excavation is to remove any remaining contents of the former impoundment and the most heavily affected soil beneath the former impoundment to the maximum depth practicable. All soil and debris removed from this area will be loaded into trucks for off-site disposal at an OCD permitted landfarm facility.

The area between the innermost dashed line and solid line defines the area of excavation to a depth of 12 feet bgs that will be removed, blended on-site, and then used for backfill material. The area between the solid line and the outermost dashed line defines the area of excavation that will provide for a sufficient sidewall slope from ground surface to the bottom of the excavation area. The purpose here is to remove affected soil from around the perimeter of the former impoundment to the maximum depth practicable. Much of the soil removed in the course of this excavation will be relatively clean overburden soil. Soil removed from this area will be stockpiled around the perimeter of the excavation. A procedure for managing stockpiled soil is presented in a subsequent section of this work plan.

The proposed depth of excavation is based upon two factors. First, soil boring logs for borings Pit 2 NE and Pit 2 SW appear to indicate that native soil was encountered at a depth less than 10 feet bgs. Second, waste characterization results indicate that soil beneath the Pit 2 area at a depth of 12 feet bgs is not as heavily affected as that beneath the Pit 1 area.

The total volume of soil to be excavated from the Pit 2 area is estimated at 2,700 cubic yards of soil in-place (3,700 yards excavated). It is anticipated that approximately 600 cubic yards (800 yards excavated) will be transported off-site for disposal and approximately 2,100 cubic yards (2,900 yards excavated) will be stockpiled around the perimeter of the excavation, blended, and utilized for backfill material.

4.4 Bottom and Sidewall Soil Sampling

Soil samples will be collected from the bottom and sidewalls of the excavated areas for the purpose of assessing the level of contamination remaining beneath the excavated areas. This

information will be useful in the development of subsequent remediation efforts to address remaining soil and ground water contamination. At a minimum, 12 samples will be collected from the bottom of each excavation area. Similarly, at a minimum, 12 samples will be collected from the sidewalls (@ 6-8 feet bgs) of each excavation area. Sample locations will be randomly spaced across the open excavation areas.

Bottom and sidewall soil samples will be submitted to a laboratory for analysis for VOCs by method 8260 and TPH by method 8015mod (GRO & DRO).

5. Off-Site Disposal Activities

5.1 Off-Site Disposal Facility

Approximately 3,200 cubic yards of excavated soil will by loaded into trucks and transported offsite for disposal. Soil will be transported to the Gandy Marley Inc. landfarm facility (OCD permit No. NM-01-0019) located 33 miles west of Tatum, New Mexico. This facility is approximately 60 miles by road from the remediation site.

5.2 Means of Transportation

Excavated soil will be transported to the disposal facility by dump truck. Information from prior assessment activities indicate that some of the most heavily affected material in the Pit 1 area has a sludge-like consistency. When soil/waste material of this sort is encountered during excavation, plastic liners or other appropriate means will be utilized in order to keep waste material contained during transport.

6. Management of Stockpiled Soil

6.1 Blended Soil

It is anticipated that approximately 7,200 cubic yards of clean overburden soil and less affected soil from the perimeter of the former impoundments will be stockpiled in the course of excavation activities. This material will be stockpiled and blended on-site around the perimeter of the excavations. The soil will be blended in order to further reduce the concentration of

petroleum hydrocarbons in soil prior to reuse as backfill material. This soil will be characterized by laboratory analysis prior to using the soil as backfill material.

One composite soil sample will be prepared per 100 cubic yards of blended soil. Each composite sample will be submitted to a laboratory for analysis for BTEX by method 8021 and TPH by method 8015mod (GRO & DRO). This activity will generate approximately 72 soil samples for analysis.

Based upon laboratory results, stockpiled soil that exceeds OCD guideline concentrations for benzene of 10 mg/kg, total BTEX of 50 mg/kg, or TPH of 1000 mg/kg will not be used for backfill material.

6.2 Backfill Soil

Trucks used to haul affected soil to the landfarm facility for disposal will backhaul clean soil to the site for use as backfill material. This soil will be staged in the "backfill soil staging" area indicated in Figure 1 until needed. It is anticipated that approximately 3200 cubic yards of clean soil will be brought on-site for use as backfill material. A grab sample will be collected for every 500 cubic yards of clean soil brought on-site to confirm that the backfill soil is clean. The confirmation samples will be submitted to a laboratory for analysis for BTEX by method 8021 and TPH by method 8015mod (GRO & DRO). This activity will generate approximately 7 soil samples for analysis.

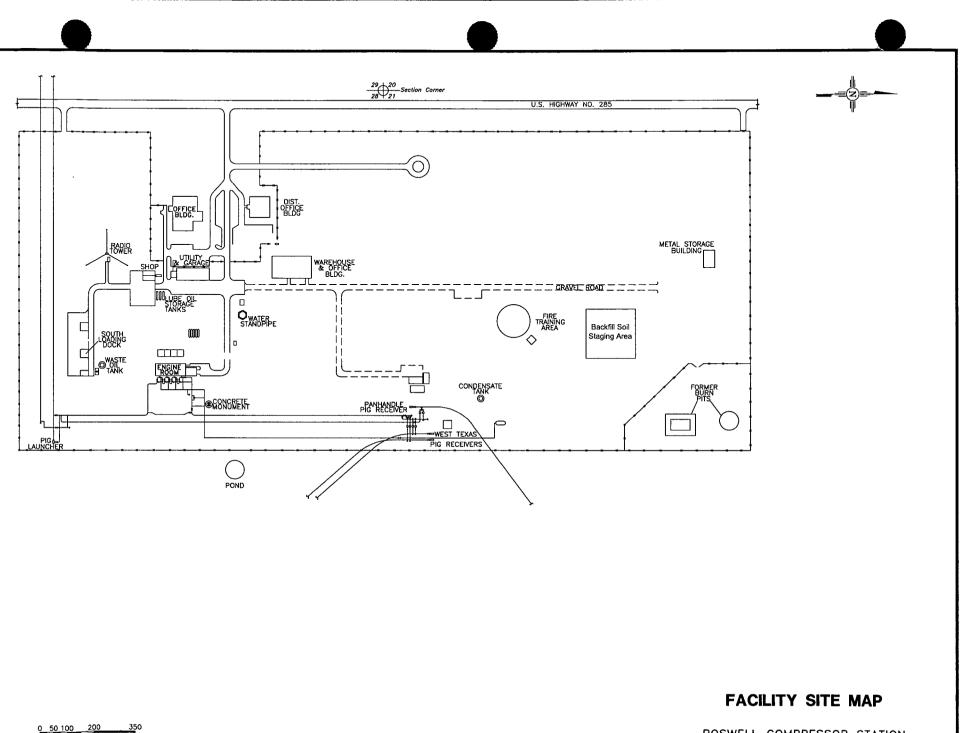
7. Backfill Activities

7.1 Preparation of Excavation Areas

Subsequent to excavation and final sampling activities, the open excavations will be prepared in a manner to facilitate the placement of a plastic liner near the bottom of the excavated areas. The purpose of the liner is twofold. First, the liner will minimize the infiltration of stormwater through contaminated soil remaining below the maximum depth of excavation. Second, the liner will facilitate subsequent remediation measures designed to address deeper soil. Subsequent remediation measures will include soil vapor extraction (SVE). The liner will provide a soil vapor barrier between the deeper affected soil and the clean backfill above. Without the barrier soil vapor might "short circuit" through the clean backfill material above rather than pass through hydrocarbon affected regions of soil and thereby reduce the efficiency of the SVE system.

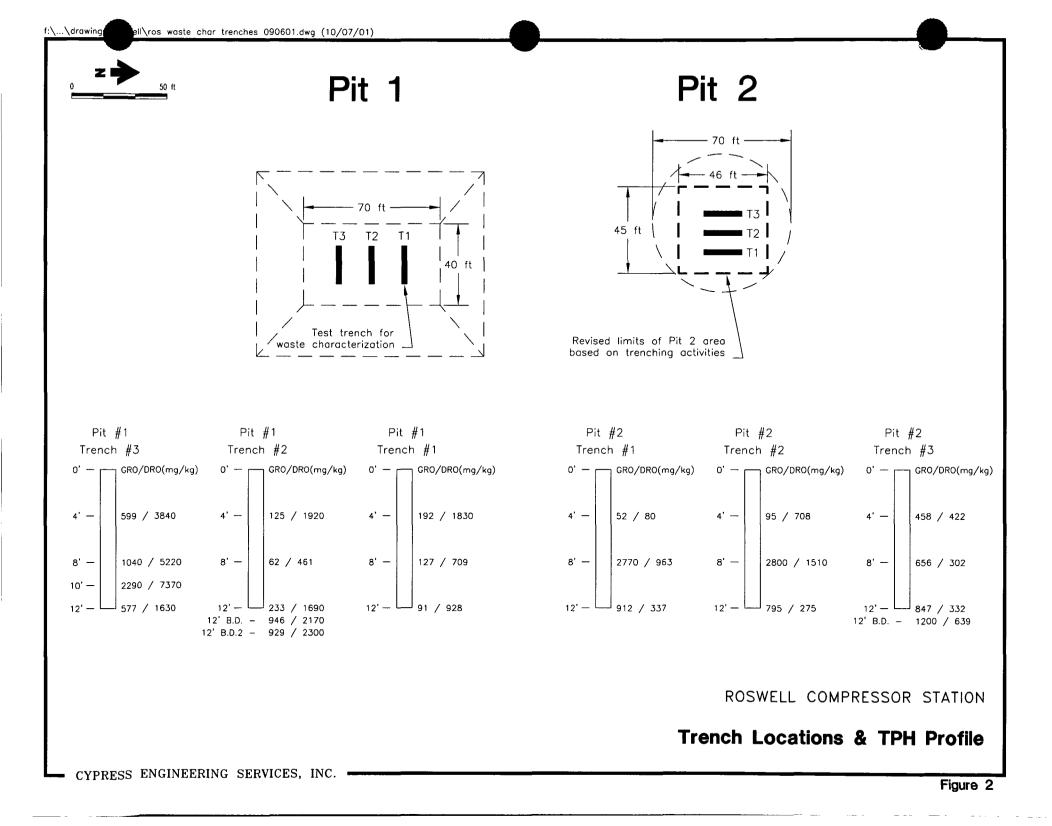
In the course of excavation activities, the sides of the excavation will be sloped toward the center of the excavation in order to create a safe work area at the bottom of the excavation. In addition, backfill material will be used to bring the bottom of the Pit 1 area excavation up to 14 feet bgs. Backfill material will be used to bring the bottom of the Pit 2 area excavation up to 10 feet bgs. Similarly, this will be done in order to create a safe work area within the excavation. The "new" bottom surface of each excavation will then be graded to slope toward the east. This direction is consistent with the natural grade of the ground surface.

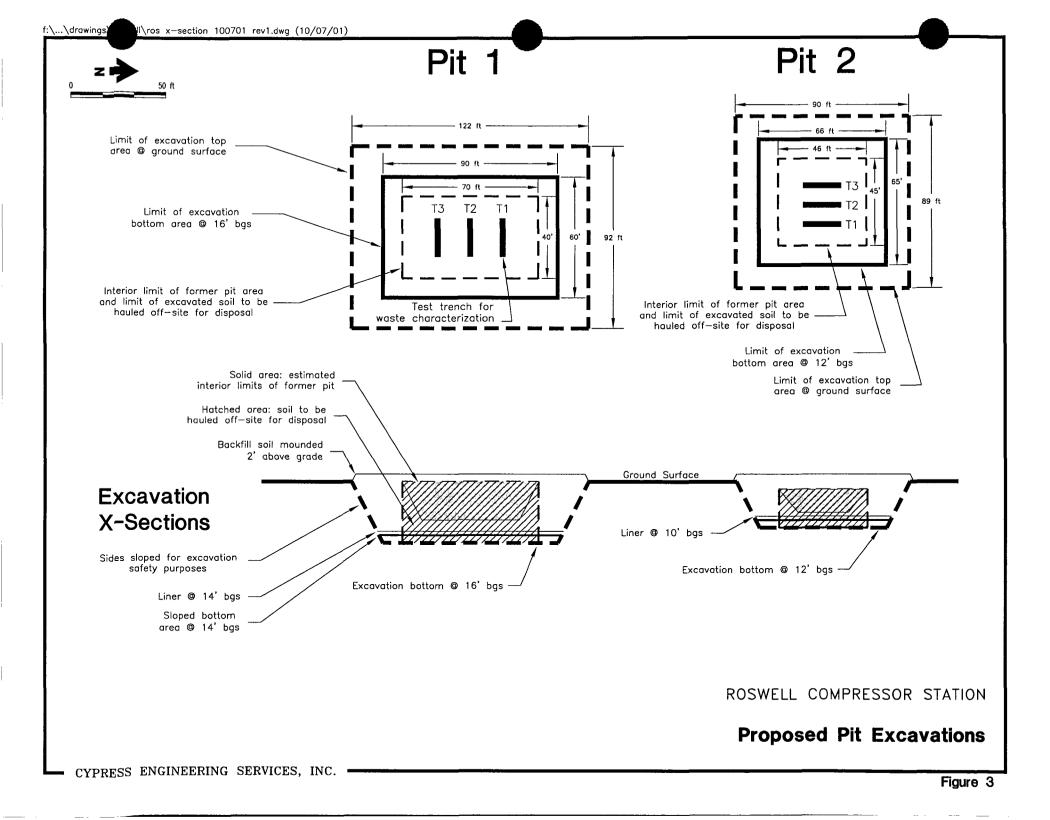
7.2 Placement of Plastic Liner

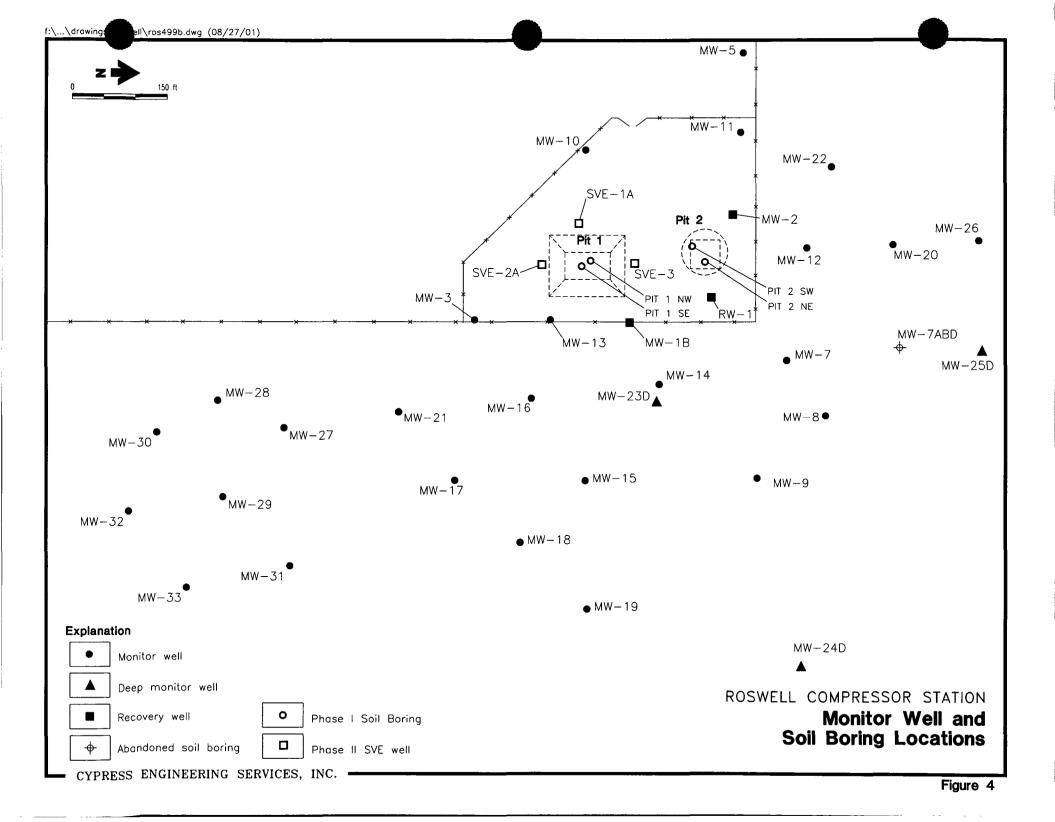

A plastic liner material will be placed across the entire flat surface area created at the bottom of the excavations. An attempt will be made to minimize the number of seams between individual sheets of plastic liner. In addition, the length of the liner material will be oriented east-west in order that overlapping edges of the liner will run down grade and thereby minimize water escaping through the liner. Overlapping edges of the liner will not be sealed.

7.3 Placement of Backfill

Backfill material will be placed into the excavation in order to bring the ground surface to a level slightly above natural grade. Blended stockpiled soil generated in the course of excavation activities will be utilized first. Backfill material brought in from off-site will then be used to complete this activity.


8. Reporting


A completion report will be generated and submitted to the OCD and the NMED HRMB within 60 days of completion of excavation activities. The report will describe the activities completed and will present the results of all confirmatory soil sampling.



Scale in Feet

ROSWELL COMPRESSOR STATION TRANSWESTERN PIPELINE COMPANY

TW Roswell Station Surface Impoundment Sampling - September 6, 2001

Excavating trench #3 in the former Pit #2 area.

Collecting a sample for lab analysis from a trench in the Pit #1 area.

TW Roswell Station Surface Impoundment Sampling - September 6, 2001

Collecting a sample for lab analysis from a trench in the Pit #1 area.

Soil and debris excavated from the east trench in the former Pit #1 area.

Client:	Cypress Engineering		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
	Houston	Тх	7

7040

Result

Units

FAX: 713 646-7867

Phone: 713 646-7252

A/BN extraction-TC

Parameter

REPORT OF ANALYSIS

4221 Freidrich Lane. Suite 190. Austin. TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119076	Report Date: 09/17/01
Project ID: CES/ENRON/TV	
Sample Name: PIT #2 TREN	CH 1 @ 4'
Sample Matrix: soil	
Date Received: 09/07/2001	Time: 14:38
Date Sampled: 09/06/2001	Time: 08:52

OUALITY ASSURANCE DATA¹ RQL⁵ Data Qual⁷ Prec.² Recov.³ CCV⁴ LCS⁴ Method⁶ Blank Date 09/13/01 3550 ---

					07/15/01	5550				r	
Ignitability	not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/15/01	3005a					
pH	7.4	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	79.5	mg/Kg	5	<5	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	51.9	mg/Kg	5	<5	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7	J	0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		2.63	118.5	100.75	92.3
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	109.3	66	-NA-
Extractable organics-TC					09/15/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster Richard Laster

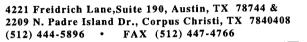
1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M =Matrix interference.

Page#: 1

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

~~~	
Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 1 @ 4'


Report#/Lab ID#: 119076 Sample Matrix: soil

### **REPORT OF ANALYSIS-cont.**

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/14/01	8260b		5.8	113.8	118.7	106.5
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		3.3	103.7	105.8	104.1
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b '		1.9	109.3	109.6	105.8
TCLP-2-Butanone (MEK)	<5000	µg/L	5000	<5000	09/14/01	8260b		15.1	67.5	110.4	105.1
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		2.2	107.5	106.1	102.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/14/01	8260b		2.8	103.5	106.6	105.1
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		2.2	107.5	106.1	102.1
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/14/01	8260b		8.3	115.6	116.1	111.2
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/14/01	8260b		3.3	103.6	101.4	96.7
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		6.5	102.8	112.8	112.3
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		5.3	105.1	112.7	99.4
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/15/01	8270c		21.9	84.9	85.8	109.7
TCLP-2,4,6-Trichlorophenol	<1000	μg/L	1000	<1000	09/15/01	8270c		18.7	100.5	114.7	112.9
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/15/01	8270c		29.4	77.6	98.7	95.6
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/15/01	8270c		9	74.1	109.2	75.5
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/15/01	8270c		0.3	132.7	108.6	131.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/15/01	8270c		14.6	100.2	111	107.4
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/15/01	8270c		7.6	115	116.6	115.3
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/15/01	8270c		14	86.8	98.2	136.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/15/01	8270c		4.3	138.3	104.9	137
TCLP-Pentachlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		2.3	113.6	113.5	65.9
TCLP-Pyridine	<1000	μg/L	1000	<1000	09/15/01	8270c		8	91.4	104.9	113.4





# Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #2 TRENCH 1 @ 4' Report#/Lab ID#: 119076 Sample Matrix: soil

### **<u>REPORT</u> OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	95.5	50-150	
p-Terpheny]	8015 mod.	122	50-150	
TCLP-1,2-Dichloroethane-d4	8260b	98.7	80-120	
TCLP-4-Bromofluorobenzene	8260b	98.4	86-115	
TCLP-Toluene-d8	8260b	95.8	88-110	
TCLP-2,4,6-Tribromophenol	8270c	94	10-123	
TCLP-2-Fluorobiphenyl	8270c	79.6	43-116	
TCLP-2-Fluorophenol	8270c	65	21-100	
TCLP-Nitrobenzene-d5	8270c	74.9	35-114	
TCLP-Phenol-d5	8270c	75.1	10-94	
TCLP-Terphenyl-d14	8270c	99.3	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

### **Exceptions Report:**

 Report #/Lab ID#: 119076
 Matrix: soil

 Client: Cypress Engineering
 Attn: George Robinson

 Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.

 Sample Name: PIT #2 TRENCH 1 @ 4'

### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

### Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

### Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Barium/ICP	J	See J-flag discussion above.
Notes:	······	

110103



Client:	Cypress Engineering		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
	Houston	Тх	77040

FAX: 713 646-7867

# Phone: 713 646-7252 REPORT OF ANALYSIS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report Date: 09/17/01
WP Roswell Sta. #9 Pit Samp.
VCH 1 @ 8'
<b>Time:</b> 14:38
<b>Time:</b> 09:00

### **QUALITY ASSURANCE DATA**¹

<u>REFORT OF ANALISIS</u>							VUALITT ASSURANCE DATA				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/14/01	NA					
Ignitability	not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/15/01	3005a					
рН	7.1	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	963	mg/Kg	50	<50	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	2770	mg/Kg	50	<50	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	< 0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		2.63	118.5	100.75	92.3
Reactivity sulfide	160	mg/Kg	20	<20	09/11/01	376.1&9030		0	109.3	66	-NA-
Extractable organics-TC					09/15/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Laster

**Richard Laster** 

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1 Repo

**Report Date: 09/17/01** 



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 1 @ 8' Report#/Lab ID#: 119077 Sample Matrix: soil

### **REPORT OF ANALYSIS-cont.**

### **QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	µg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	μg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	82605		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	µg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/15/01	8270c	÷==	9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/15/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/15/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/15/01	8270c	·	3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/15/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/15/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	µg/L	1000	<1000	09/15/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/15/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/15/01	8270c		6.3	59.9	102.6	67.5





4221 Freidrich Lane,Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 1 @ 8' Report#/Lab ID#: 119077 Sample Matrix: soil

### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 10X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 10X	D
TCLP-1,2-Dichloroethane-d4	8260b	87.9	80-120	
TCLP-4-Bromofluorobenzene	8260b	98.4	86-115	
TCLP-Toluene-d8	8260b	93.4	88-110	
TCLP-2,4,6-Tribromophenol	8270c	72.7	10-123	
TCLP-2-Fluorobiphenyl	8270c	54.8	43-116	
TCLP-2-Fluorophenol	8270c	42	21-100	
TCLP-Nitrobenzene-d5	8270c	47.3	35-114	
TCLP-Phenol-d5	8270c	50	10-94	
TCLP-Terphenyl-d14	8270c	81	33-141	
		1	1	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.



### **Exceptions Report:**

Report #/Lab ID#: 119077Matrix: soilClient: Cypress EngineeringAttn: George RobinsonProject ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.Sample Name: PIT #2 TRENCH 1 @ 8'

### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
Nitrobenzene-d5 Nitrobenzene-d5	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
Notes:		

### Comments pertaining to Data Qualifiers and QC data:





Client:	Cypress Engineering		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
	Houston	Тх	77040

FAX: 713 646-7867

### **Phone:** 713 646-7252

### **REPORT OF ANALYSIS**

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OTAL ITY ASSUDANCE DATA 1

Report#/Lab ID#: 119078	Report Date: 09/17/01
Project ID: CES/ENRON/TV	
Sample Name: PIT #2 TREN	CH 1 @ 12'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 09:09

REPORT OF ANALYSIS						QUALITY A					
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/14/01	NA					
Ignitability	not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/15/01	3005a					
pH	7.1	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	337	mg/Kg	50	<50	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	912	mg/Kg	50	<50	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	< 0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7	J	0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		2.63	118.5	100.75	92.3
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	109.3	66	-NA-
Extractable organics-TC					09/15/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster Richard Laster 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 1 @ 12'

### Report#/Lab ID#: 119078 Sample Matrix: soil

### **REPORT OF ANALYSIS-cont.**

**QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	μg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	µg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/15/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/15/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/15/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	µg/L	1000	<1000	09/15/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/15/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/15/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/15/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/15/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/15/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	μg/L	1000	<1000	09/15/01	8270c		6.3	59.9	102.6	67.5





4221 Freidrich Lane,Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

# Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #2 TRENCH 1 @ 12' Report#/Lab ID#: 119078 Sample Matrix: soil

### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 10X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 10X	D
TCLP-1,2-Dichloroethane-d4	8260b	89.8	80-120	
TCLP-4-Bromofluorobenzene	8260b	93.7	86-115	
TCLP-Toluene-d8	8260b	96.3	88-110	
TCLP-2,4,6-Tribromophenol	8270c	82.4	10-123	
TCLP-2-Fluorobiphenyl	8270c	73	43-116	
TCLP-2-Fluorophenol	8270c	60.9	21-100	
TCLP-Nitrobenzene-d5	8270c	70.1	35-114	
TCLP-Phenol-d5	8270c	68.7	10-94	
TCLP-Terphenyl-d14	8270c	90.5	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.



### **Exceptions Report:**

Report #/Lab ID#: 119078 Matrix: soil

Client: Cypress EngineeringAttn: George RobinsonProject ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.Sample Name: PIT #2 TRENCH 1 @ 12'

### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $<= 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Selenium/ICP	J	See J-flag discussion above.
Nitrobenzene-d5 Nitrobenzene-d5	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

### Comments pertaining to Data Qualifiers and QC data:

Notes:



Client:	Cypress Engineering		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
ļ	Houston	Тх	77040

FAX: 713 646-7867

### **Phone:** 713 646-7252

### DEPODT OF ANALVEIS

Report#/Lab ID#: 119	079 Report Date: 09/17/01					
Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.						
Sample Name: PIT #2	TRENCH 2 @ 4'					
Sample Matrix: soil						
Date Received: 09/07/	2001 <b>Time:</b> 14:38					
Date Sampled: 09/06/	2001 <b>Time:</b> 09:44					

REPORT OF ANALYSIS					QUALITY ASSURANCE DATA ¹						
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/15/01	NA					
Ignitability	not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/15/01	3005a					
pH	7.2	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	708	mg/Kg	5	<5	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	95.3	mg/Kg	5	<5	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	< 0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7	J	0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		2.63	118.5	100.75	92.3
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	109.3	66	-NA-
Extractable organics-TC					09/15/01	8270c					

This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Respectfully Submitted,

Richard Laster Richard Laster

**Report Date: 09/17/01** Page#: 1



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 @ 4'

# Sample Matrix: soil

Report#/Lab ID#: 119079

### **REPORT OF ANALYSIS-cont.**

**QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	µg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	µg/L	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	µg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/15/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/15/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/15/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	µg/L	1000	<1000	09/15/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/15/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/15/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/15/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/15/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/15/01	8270c		6.3	59.9	102.6	67.5



4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 @ 4' Report#/Lab ID#: 119079 Sample Matrix: soil

### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Method Recovery		Data Qualifiers	
Nitrobenzene-d5	8015 mod.	111	50-150		
p-Terphenyl	8015 mod.	82.7	50-150		
TCLP-1,2-Dichloroethane-d4	8260b	89.7	80-120		
TCLP-4-Bromofluorobenzene	8260b	98.1	86-115		
TCLP-Toluene-d8	8260b	99	88-110		
TCLP-2,4,6-Tribromophenol	8270c	66.5	10-123		
TCLP-2-Fluorobiphenyl	8270c	54.3	43-116		
TCLP-2-Fluorophenol	8270c	44.5	21-100		
TCLP-Nitrobenzene-d5	8270c	49.9	35-114		
TCLP-Phenol-d5	8270c	51.3	10-94		
TCLP-Terphenyl-d14	8270c	78.8	33-141		

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

### **Exceptions Report:**

Report #/Lab ID#: 119079 Matrix: soil **Client:** Cypress Engineering Attn: George Robinson Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 @ 4'

### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (ROL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

### Comments pertaining to Data Qualifiers and OC data:

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Selenium/ICP	J	See J-flag discussion above.
Notes:		

Report #/Lab ID#: 119079 Report Date: 9/17/200 Page#: 4





#### Client: Cypress Engineering Attn: George Robinson Address: 10235 West Little York, Ste. 256 Houston Тx

77040

FAX: 713 646-7867

#### 713 646-7252 Phone:

#### DEDODT OF ANALVOID

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119080	
Project ID: CES/ENRON/TW	P Roswell Sta. #9 Pit Samp.
Sample Name: PIT #2 TREN	CH 2 @ 8'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 09:54

REPORT OF ANALYSIS						<b></b>	QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/16/01	NA					
Ignitability	not ignitable	۴			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/15/01	3005a					
pH	7.6	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	1510	mg/Kg	50	<50	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	2800	mg/Kg	50	<50	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7	J	0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	< 0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	< 0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7	J	0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		2.63	118.5	100.75	92.3
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	109.3	66	-NA-
Extractable organics-TC					09/15/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Richard Laster

Richard Laster

Page#: 1 Report Date: 09/17/01



Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #2 TRENCH 2 @ 8'

#### Report#/Lab ID#: 119080 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

**QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	826 <mark>0</mark> b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	µg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	μg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	µg/L	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/15/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/15/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/15/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/15/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/15/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/15/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/15/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/15/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/15/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/15/01	8270c		6.3	59.9	102.6	67.5





Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 @ 8' Report#/Lab ID#: 119080 Sample Matrix: soil

#### **<u>REPORT OF SURROGATE RECOVERY</u>**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 10X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 10X	D
TCLP-1,2-Dichloroethane-d4	8260b	95.2	80-120	
TCLP-4-Bromofluorobenzene	8260b	97.5	86-115	
TCLP-Toluene-d8	8260b	93.5	88-110	
TCLP-2,4,6-Tribromophenol	8270c	74.8	10-123	
TCLP-2-Fluorobiphenyl	8270c	67.3	43-116	
TCLP-2-Fluorophenol	8270c	53.2	21-100	
TCLP-Nitrobenzene-d5	8270c	62.9	35-114	
TCLP-Phenol-d5	8270c	66.6	10-94	
TCLP-Terphenyl-d14	8270c	89.6	33-141	

#### Report #/Lab ID#: 119080 Matrix: soil

Client: Cypress Engineering Attn: George Robinson Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 @ 8'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Arsenic/ICP	J	See J-flag discussion above.
TCLP-Selenium/ICP	J	See J-flag discussion above.
Nitrobenzene-d5 Nitrobenzene-d5	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg, high non-target organic levels). Surrogate recoveries not accurately quantifiable.
Notes:		

#### Comments pertaining to Data Qualifiers and QC data:



# ThalySys

**Cypress Engineering** 

George Robinson Address: 10235 West Little York, Ste. 256

Client:

Attn:

Phone:



4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119081	Report Date: 09/17/01
Project ID: CES/ENRON/TV	VP Roswell Sta. #9 Pit Samp.
Sample Name: PIT #2 TREN	CH 2 @ 12'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 10:10

#### DEDODT OF ANALVEIS

Houston

713 646-7252

REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	<u>TA</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/17/01	NA					
Ignitability	not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/15/01	3005a					
рН	7.8	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	275	mg/Kg	5	<5	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	795	mg/Kg	5	<5	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7	J	0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		2.63	118.5	100.75	92.3
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/15/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Laster

Τх

FAX: 713 646-7867

77040

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M =Matrix interference.

**Richard Laster** 

Page#: 1



Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 @ 12'

#### Report#/Lab ID#: 119081 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

**QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	µg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/15/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/15/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/15/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/15/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/15/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/15/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/15/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/15/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/15/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/15/01	8270c		6.3	59.9	102.6	67.5



Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 @ 12' Report#/Lab ID#: 119081 Sample Matrix: soil

#### **<u>REPORT OF SURROGATE RECOVERY</u>**

Surrogate Compound	Method	Recovery	<b>Recovery</b> Limit	Data Qualifiers
Nitrobenzene-d5	8015 mod.	85.8	50-150	
p-Terphenyl	8015 mod.	102	50-150	
TCLP-1,2-Dichloroethane-d4	8260b	91.2	80-120	
TCLP-4-Bromofluorobenzene	8260b	100.2	86-115	
TCLP-Toluene-d8	8260b	98.5	88-110	
TCLP-2,4,6-Tribromophenol	8270c	69.6	10-123	
TCLP-2-Fluorobiphenyl	8270c	61.2	43-116	
TCLP-2-Fluorophenol	8270c	54.2	21-100	
TCLP-Nitrobenzene-d5	8270c	61.5	35-114	
TCLP-Phenol-d5	8270c	57.6	10-94	
TCLP-Terphenyl-d14	8270c	83.4	33-141	

 Report #/Lab ID#: 119081
 Matrix: soil

 Client: Cypress Engineering
 Attn: George Robinson

 Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.

 Sample Name: PIT #2 TRENCH 2 @ 12'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

 $\Box$  Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

#### Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	1	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Selenium/ICP	J	See J-flag discussion above.
Notes:		



#### Client: Cypress Engineering George Robinson Affn: Address: 10235 West Little York, Ste. 256 Houston Тx

77040

FAX: 713 646-7867

### **Phone:** 713 646-7252

Parameter

Ignitability

TCLP-Lead/ICP

TCLP-Silver/ICP

Reactivity cyanide

Reactivity sulfide

Extractable organics-TC

pН

#### **REPORT OF ANALYSIS**

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Cornus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119082	
Project ID: CES/ENRON/TV	VP Roswell Sta. #9 Pit Samp.
Sample Name: PIT #2 TREN	CH 3 @ 4'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 10:20

#### **OUALITY ASSURANCE DATA1** Prec.² Recov.³ CCV⁴ Method⁶ Data Qual⁷ LCS⁴ Result Units ROL⁵ Blank Date A/BN extraction-TC ---09/18/01 NA ____ ____ ___ ___ ------_ ٩ not ignitable 09/07/01 1010 0 -NA--NA--NA----------Metals Dig.-Hg/TCLP 09/14/01 7470&245.1 ------____ ____ ------____ ____ Metals Dig.-HNO3/TCLP 09/15/01 3005a ------___ ____ ---_ ------____ 7.4 **pH** units 09/13/01 9045 0 -NA--NA--NA----------TCLP extraction-ABN/metals 09/12/01 1311 ------___ ____ ----____ ---_ _ _ ____ TCLP extraction-ZHE 1311 09/11/01 ____ ____ ---____ ____ ____ ---____ ____ TPH by GC (as diesel) Р 92.3 422 50 <50 09/11/01 8015 mod. 33.1 112.6 82.6 mg/Kg TPH by GC (as diesel-ext) 09/10/01 3540 ------___ ---___ ------------TPH by GC (as gasoline) 458 mg/Kg 50 <50 09/11/01 8015 mod. 8.4 114.1 81 118 ____ TCLP-Arsenic/ICP 0.5 104.3 107.7 < 0.5 mg/L < 0.5 09/14/01 6010 & 200.7 0.35 100.12 ---TCLP-Barium/ICP 5 108.25 103.8 <5 <5 09/14/01 6010 & 200.7 0.61 97.78 mg/L ---TCLP-Cadmium/ICP <0.1 0.1 < 0.1 09/14/01 0.08 98.13 104.75 104.35 mg/L 6010 & 200.7 ---TCLP-Chromium/ICP < 0.5 mg/L 0.5 < 0.5 09/14/01 6010 & 200.7 97.21 108.63 103.5 ---0.2 < 0.2 0.2 < 0.2 09/14/01 6010 & 200.7 97.99 100.1 102.7 mg/L 0.66 ---< 0.04 TCLP-Mercury/CVAA mg/L 0.04 < 0.04 09/14/01 245.2&7471 1.11 108.19 100 100.67 ___ TCLP-Selenium/ICP < 0.1 mg/L 0.1 < 0.1 09/14/01 6010 & 200.7 0.65 99.92 101.95 106.68 ---< 0.2 mg/L 0.2 < 0.2 09/14/01 6010 & 200.7 0.88 97.4 101.5 105.1

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

<10

<20

---

mg/Kg

mg/Kg

____

10

20

---

<10

<20

---

09/11/01

09/11/01

09/15/01

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value. of the relative percent (%) difference between duplicate measurements. 3, Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits, S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M =Matrix interference.

9010

376.1&9030

8270c

---

---

---

----

2.63

0

---

118.5

102.01

100.75

66

---

92.3

-NA-

---

Page#: 1



Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #2 TRENCH 3 @ 4'

#### Report#/Lab ID#: 119082 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

**QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	µg/L	50	<50	09/14/01	8260b		4.2	110.1	101.5	105.6
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/15/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/15/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/15/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/15/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/15/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	µg/L	100	<100	09/15/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/15/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/15/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/15/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/15/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	μg/L	1000	<1000	09/15/01	8270c		6.3	59.9	102.6	67.5



Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #2 TRENCH 3 @ 4' Report#/Lab ID#: 119082 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 10X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 10X	D
TCLP-1,2-Dichloroethane-d4	8260b	92.9	80-120	
TCLP-4-Bromofluorobenzene	8260b	95.4	86-115	
TCLP-Toluene-d8	8260b	95.9	88-110	
TCLP-2,4,6-Tribromophenol	8270c	63.3	10-123	
TCLP-2-Fluorobiphenyl	8270c	52.1	43-116	
TCLP-2-Fluorophenol	8270c	45.4	21-100	
TCLP-Nitrobenzene-d5	8270c	50.3	35-114	
TCLP-Phenol-d5	8270c	55.7	10-94	
TCLP-Terphenyl-d14	8270c	74.8	33-141	



Report #/Lab ID#: 119082 Matrix: soil

Client: Cypress EngineeringAttn: George RobinsonProject ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.Sample Name: PIT #2 TRENCH 3 @ 4'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
Nitrobenzene-d5 Nitrobenzene-d5	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:



**Cypress Engineering** 

George Robinson Address: 10235 West Little York, Ste. 256

Client:

Attn:



4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119083	Report Date: 09/17/01									
Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.										
Sample Name: PIT #2 TREN	CH 3 @ 8'									
Sample Matrix: soil										
Date Received: 09/07/2001	<b>Time:</b> 14:38									
Date Sampled: 09/06/2001	<b>Time:</b> 10:27									

#### REPORT OF ANALYSIS

**Phone:** 713 646-7252

Houston

REPORT OF ANALYSIS	<b>QUALITY ASSURANCE DATA</b> ¹										
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/19/01	NA					
Ignitability	not ignitable	۴			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/15/01	3005a					
pH	7.5	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	302	mg/Kg	50	<50	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	656	mg/Kg	50	<50	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/17/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Τх

FAX: 713 646-7867

77040

Richard Laster Richard Laster

1. Ouality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1



Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 3 @ 8'

Sample Matrix: soil

Report#/Lab ID#: 119083

#### **REPORT OF ANALYSIS-cont.**

**QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	µg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	µg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		4.2	i i 0. i	104.5	105.6
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	µg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	µg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/17/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/17/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/17/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/17/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	µg/L	1000	<1000	09/17/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/17/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/17/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	µg/L	1000	<1000	09/17/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/17/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/17/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/17/01	8270c		6.3	59.9	102.6	67.5





Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #2 TRENCH 3 @ 8' Report#/Lab ID#: 119083 Sample Matrix: soil

#### **<u>REPORT OF SURROGATE RECOVERY</u>**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 10X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 10X	D
TCLP-1,2-Dichloroethane-d4	8260b	93.5	80-120	
TCLP-4-Bromofluorobenzene	8260b	96.3	86-115	
TCLP-Toluene-d8	8260b	96	88-110	
TCLP-2,4,6-Tribromophenol	8270c	98.4	10-123	
TCLP-2-Fluorobiphenyl	8270c	81.2	43-116	
TCLP-2-Fluorophenol	8270c	54.9	21-100	
TCLP-Nitrobenzene-d5	8270c	76.9	35-114	
TCLP-Phenol-d5	8270c	64.2	10-94	
TCLP-Terphenyl-d14	8270c	78.2	33-141	



 Report #/Lab ID#: 119083
 Matrix: soil

 Client: Cypress Engineering
 Attn: George Robinson

 Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.
 Sample Name: PIT #2 TRENCH 3 @ 8'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### **Sample Bottles & Preservation**

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

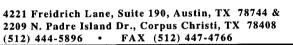
A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
Nitrobenzene-d5 Nitrobenzene-d5	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:



Client: Cypress Engineering


Houston

713 646-7252

George Robinson Address: 10235 West Little York, Ste. 256

Attn:

Phone:



OUALITY ASSUDANCE DATA1

084 <b>Report Date:</b> 09/17/01									
ON/TWP Roswell Sta. #9 Pit Samp.									
Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 3 @ 12' Sample Matrix: soil Date Received: 09/07/2001 Time: 14:38									
2001 <b>Time:</b> 14:38									
2001 <b>Time:</b> 10:38									

#### DEPORT OF ANALVEIS

<u>REPORT OF ANALYSIS</u>										
Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
				09/20/01	NA					
not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
				09/14/01	7470&245.1					
				09/17/01	3005a					
7.7	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
				09/12/01	1311					
				09/11/01	1311					
332	mg/Kg	50	<50	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
				09/10/01	3540					
847	mg/Kg	50	<50	09/11/01	8015 mod.		8.4	114.1	81	118
<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7	J	0.65	99.92	101.95	106.68
<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
<10	mg/Kg	10	<10	09/17/01	9010		0.66	119.25	96.8	98.58
<20	mg/Kg	20	<20	09/17/01	376.1&9030		0	102.01	66	-NA-
				09/17/01	8270c					
	 not ignitable  7.7  332  847 <0.5 <5 <0.1 <0.5 <0.2 <0.04 <0.1 <0.2 <10 <20	not ignitable         °F                   7.7         pH units               332         mg/Kg               332         mg/Kg               847         mg/Kg           <0.5	not ignitable       °F                         7.7       pH units               332       mg/Kg       50              332       mg/Kg       50              847       mg/Kg       50         <0.5	not ignitable $^{\circ}$ F                                   7.7         pH units                     332         mg/Kg         50         <50	09/20/01not ignitable°F $09/07/01$ 09/14/01 $09/14/01$ $09/17/01$ 7.7pH units09/13/01 $09/12/01$ $09/12/01$ $09/11/01$ 332mg/Kg50<50	09/20/01NAnot ignitable $^{\circ}$ F09/07/01101009/14/017470&245.109/17/013005a7.7pH units09/13/01904509/11/01131109/11/01131109/11/018015 mod09/10/013540847mg/Kg50<50	ResultUnits $RQL^5$ BlankDateMethod 6Data Qual709/20/01NAnot ignitable $\ensuremath{\mathbb{F}}$ 09/07/01101009/14/017470&245.109/17/013005a09/17/013005a09/13/01904509/11/01131109/11/01131109/11/018015 mod.P09/11/018015 mod332mg/Kg50<50	ResultUnits $RQL^5$ BlankDateMethod 6 $Data Qual^7$ Prec.2not ignitable $^{\circ}F$ $09/20/01$ NAnot ignitable $^{\circ}F$ $09/07/01$ $1010$ 0 $09/07/01$ $1010$ 0 $09/17/01$ $3005a$ 09/13/0190450 $09/12/01$ $1311$ $09/11/01$ $8015$ mod.P $33.1$ $09/11/01$ $8015$ mod $0.5$ $847$ mg/Kg $50$ $<50$ $09/11/01$ $8015$ mod $0.35$ $< 5$ mg/L0.5 $<0.5$ $09/14/01$ $6010 \& 200.7$ $0.66$ $<0.1$ mg/L0.1 $<0.1$ $09/14/01$ $6010 \& 200.7$ $0.66$ $<0.2$ mg/L0.2 $<0.2$ $09/14/01$ $6010 \& 200.7$ </td <td>ResultUnits$RQL^5$BlankDateMethod 6Data Qual 7Prec.2Recov.3not ignitable$^{\circ}F$09/20/01NA0-NA09/07/0110100-NA09/14/017470&amp;245.10-NA09/17/013005a0-NA09/13/0190450-NA09/12/01131109/11/01131109/11/018015 mod.P33.1112.609/11/0135408.4114.1&lt;0.5</td> mg/Kg50<50	ResultUnits $RQL^5$ BlankDateMethod 6Data Qual 7Prec.2Recov.3not ignitable $^{\circ}F$ 09/20/01NA0-NA09/07/0110100-NA09/14/017470&245.10-NA09/17/013005a0-NA09/13/0190450-NA09/12/01131109/11/01131109/11/018015 mod.P33.1112.609/11/0135408.4114.1<0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

1. Ouality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Richard Laster

Тх

FAX: 713 646-7867

77040

Richard Laster

Page#: 1



Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 3 @ 12'

### Sample Matrix: soil

Report#/Lab ID#: 119084

#### **REPORT OF ANALYSIS-cont.**

**QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	µg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	µg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/17/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	μg/L	1000	<1000	09/17/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/17/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/17/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	µg/L	1000	<1000	09/17/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/17/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/17/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/17/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/17/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/17/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	μg/L	1000	<1000	09/17/01	8270c		6.3	59.9	102.6	67.5





Client: Cypress Engineering Attn: George Robinson **Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #2 TRENCH 3 @ 12' Report#/Lab ID#: 119084 Sample Matrix: soil

#### **<u>REPORT OF SURROGATE RECOVERY</u>**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 10X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 10X	D
TCLP-1,2-Dichloroethane-d4	8260b	91.1	80-120	
TCLP-4-Bromofluorobenzene	8260b	100.4	86-115	
TCLP-Toluene-d8	8260b	97.2	88-110	
TCLP-2,4,6-Tribromophenol	8270c	91.1	10-123	
TCLP-2-Fluorobiphenyl	8270c	69.6	43-116	
TCLP-2-Fluorophenol	8270c	42.8	21-100	
TCLP-Nitrobenzene-d5	8270c	63.7	35-114	
TCLP-Phenol-d5	8270c	54.1	10-94	
TCLP-Terphenyl-d14	8270c	74.2	33-141	



Report #/Lab ID#: 119084 Matrix: soil

Client: Cypress Engineering Attn: George Robinson Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 3 @ 12

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $<= 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Qualif	Comment
P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
J	See J-flag discussion above.
	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
	P P J D D

#### Comments pertaining to Data Qualifiers and QC data:

Notes:



#### Client: Cypress Engineering Attn: George Robinson Address: 10235 West Little York, Ste. 256 Houston Тx 77040

Phone: 713 646-7252 FAX: 713 646-7867

#### REPORT OF ANALYSIS

4221 Freidrich Lane. Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 119085	Report Date: 09/17/01
Project ID: CES/ENRON/TV	
Sample Name: PIT #2 TREN	CH 2 B.D.
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 10:50

REPORT OF ANALYSIS	QUALITY ASSURANCE DATA ¹										
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/21/01	NA					
Ignitability	not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
рН	7.6	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	639	mg/Kg	5	<5	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	1200	mg/Kg	5	<5	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7	J	0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7	J	0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/17/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M =Matrix interference.

Respectfully Submitted, Richard Laster

Richard Laster



Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 B.D.

## QUALITY ASSURANCE DATA¹

Report#/Lab ID#: 119085

REPORT OF ANALYSIS-cont.							<b>QUALITY</b>				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	µg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	μg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/17/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/17/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/17/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/17/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	µg/L	1000	<1000	09/17/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/17/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/17/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/17/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/17/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/17/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	μg/L	1000	<1000	09/17/01	8270c		6.3	59.9	102.6	67.5



Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #2 TRENCH 2 B.D. Report#/Lab ID#: 119085 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	109	50-150	
p-Terphenyl	8015 mod.	85.8	50-150	
TCLP-1,2-Dichloroethane-d4	8260b	90.6	80-120	
TCLP-4-Bromofluorobenzene	8260b	96.8	86-115	
TCLP-Toluene-d8	8260b	97.3	88-110	
TCLP-2,4,6-Tribromophenol	8270c	65.2	10-123	
TCLP-2-Fluorobiphenyl	8270c	56.8	43-116	
TCLP-2-Fluorophenol	8270c	39.4	21-100	
TCLP-Nitrobenzene-d5	8270c	54.5	35-114	
TCLP-Phenol-d5	8270c	46.6	10-94	
TCLP-Terphenyl-d14	8270c	64	33-141	

Report #/Lab ID#: 119085 Matrix: soil **Client:** Cypress Engineering Attn: George Robinson

Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #2 TRENCH 2 B.D.

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (ROL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Barium/ICP	J	See J-flag discussion above.
TCLP-Selenium/ICP	J	See J-flag discussion above.

#### Comments pertaining to Data Qualifiers and OC data:



Client:	Cypress Engineering		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
	Houston	Тx	77040

FAX: 713 646-7867

### **Phone:** 713 646-7252

#### **<u>REPORT OF ANALYSIS</u>**

OUAT ITY ASSUDANCE DATA 1

Report#/Lab ID#: 119086								
Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.								
Sample Name: PIT #1 TREN	CH 1 @ 4'							
Sample Matrix: soil								
Date Received: 09/07/2001	<b>Time:</b> 14:38							
Date Sampled: 09/06/2001	<b>Time:</b> 11:20							

<u>REPORT OF ANALYSIS</u>							QUALITY ASSURANCE DATA ¹				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/22/01	NA					
Ignitability	not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	7.2	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	1830	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	192	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M = Matrix interference.

Respectfully Submitted, Richard Laster

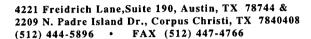
Richard Laster

Page#: 1 Report Date: 09/17/01



Client:	Cypress Engineering	
Attn:	George Robinson	

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 1 @ 4'


#### Report#/Lab ID#: 119086 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	µg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	µg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	µg/Ľ	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	µg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5





Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 1 @ 4' Report#/Lab ID#: 119086 Sample Matrix: soil

#### **<u>REPORT OF SURROGATE RECOVERY</u>**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 2X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 2X	D
TCLP-1,2-Dichloroethane-d4	8260b	97.2	80-120	
TCLP-4-Bromofluorobenzene	8260b	99.6	86-115	
TCLP-Toluene-d8	8260b	96.8	88-110	
TCLP-2,4,6-Tribromophenol	8270c	78	10-123	
TCLP-2-Fluorobiphenyl	8270c	76.2	43-116	
TCLP-2-Fluorophenol	8270c	64.8	21-100	
TCLP-Nitrobenzene-d5	8270c	76.4	35-114	
TCLP-Phenol-d5	8270c	74.8	10-94	
TCLP-Terphenyl-d14	8270c	104	33-141	

 Report #/Lab ID#: 119086
 Matrix: soil

 Client: Cypress Engineering
 Attn: George Robinson

 Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.
 Sample Name: PIT #1 TRENCH 1 @ 4'

#### **Sample Temperature/Condition <=6°C**

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

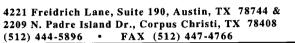
 $\Box$  Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (ROL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	The precision of the MS & MSD (or sample and sample duplicate for those analyses where MS/MSD are not run) is outside advisory/acceptance limits.
Nitrobenzene-d5 Nitrobenzene-d5	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:


# 

Client:	Cypress Engineering		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
	Houston	Тх	77040

**Phone:** 713 646-7252

**FAX:** 713 646-7867

#### **REPORT OF ANALYSIS**



OTAL TWO ACCURANCE DATA 1

Report#/Lab ID#: 119087	Report Date: 09/17/01							
<b>Project ID:</b> CES/ENRON/TWP Roswell Sta. #9 Pit Samp.								
Sample Name: PIT #1 TREN	CH 1 @ 8'							
Sample Matrix: soil								
Date Received: 09/07/2001	<b>Time:</b> 14:38							
Date Sampled: 09/06/2001	<b>Time:</b> 11:27							

							<b>QUALITY</b>				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/23/01	NA					
Ignitability	not ignitable	°F			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	7.4	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	709	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	127	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	< 0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030	J	0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Laster 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

**Richard Laster** 

Page#: 1



Client:Cypress EngineeringAttn:George Robinson				: CES/ENR ame: PIT #1		oswell Sta. #9 Pit Sa @ 8'	mp.		#/Lab ID# Matrix: s		7
<b>REPORT OF ANALYSIS-cont.</b>							QUALITY	ASSUR	ANCE DA	TA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	μg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	µg/Ľ	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5





### Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #1 TRENCH 1 @ 8' Report#/Lab ID#: 119087 Sample Matrix: soil

#### **<u>REPORT OF SURROGATE RECOVERY</u>**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 2X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 2X	D
TCLP-1,2-Dichloroethane-d4	8260b	92.9	80-120	
TCLP-4-Bromofluorobenzene	8260b	98.1	86-115	
TCLP-Toluene-d8	8260b	96.9	88-110	
TCLP-2,4,6-Tribromophenol	8270c	68.5	10-123	
TCLP-2-Fluorobiphenyl	8270c	65	43-116	
TCLP-2-Fluorophenol	8270c	54.5	21-100	
TCLP-Nitrobenzene-d5	8270c	65.6	35-114	
TCLP-Phenol-d5	8270c	62.6	10-94	
TCLP-Terphenyl-d14	8270c	101	33-141	

Report #/Lab ID#: 119087Matrix: soilClient: Cypress EngineeringAttn: George RobinsonProject ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.Sample Name: PIT #1 TRENCH 1 @ 8'

#### **Sample Temperature/Condition <=6°C**

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $<= 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Qualif	Comment
P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
J	See J-flag discussion above.
	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
	P P J D D

#### Comments pertaining to Data Qualifiers and QC data:

Notes:



Client:	Cypress Engineering		
Attn:	Cypress Engineering George Robinson		
	10235 West Little York, Ste. 256		
	Houston	Тх	77040

FAX: 713 646-7867

### **Phone:** 713 646-7252

#### PEPOPT OF ANALVSIS

Report#/Lab ID#: 119088	Report Date: 09/17/01
Project ID: CES/ENRON/TV	
Sample Name: PIT #1 TREN	
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 11:35

REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	TA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/24/01	NA					
Ignitability	not ignitable	۴			09/07/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
рН	7.2	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	928	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	90.8	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. @ Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Laster

**Richard Laster** 

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M =Matrix interference.

Page#: 1



Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #1 TRENCH 1 @ 12'

### Sample Matrix: soil

Report#/Lab ID#: 119088

#### **REPORT OF ANALYSIS-cont.**

**QUALITY ASSURANCE DATA**¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	μg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260Ե		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	μg/L	.1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	µg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	µg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	µg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5





Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #1 TRENCH 1 @ 12' Report#/Lab ID#: 119088 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 2X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 2X	D
TCLP-1,2-Dichloroethane-d4	8260b	94.2	80-120	
TCLP-4-Bromofluorobenzene	8260b	97.3	86-115	
TCLP-Toluene-d8	8260b	98.1	88-110	
TCLP-2,4,6-Tribromophenol	8270c	60.6	10-123	
TCLP-2-Fluorobiphenyl	8270c	51.6	43-116	
TCLP-2-Fluorophenol	8270c	45.2	21-100	
TCLP-Nitrobenzene-d5	8270c	52.5	35-114	
TCLP-Phenol-d5	8270c	52	10-94	
TCLP-Terphenyl-d14	8270c	84.1	33-141	

Report #/Lab ID#: 119088 Matrix: soil

Client: Cypress EngineeringAttn: George RobinsonProject ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.Sample Name: PIT #1 TRENCH 1 @ 12'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

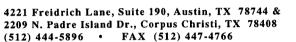
□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Р	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptanc limits.
	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
	_


#### Comments pertaining to Data Qualifiers and QC data:



Client:	Cypress Engineering George Robinson		
Attn:	George Robinson		
	10235 West Little York, Ste. 256		
	Houston	Тх	77040

FAX: 713 646-7867

#### **Phone:** 713 646-7252 REPORT OF ANALVSIS



OUALITY ASSUDANCE DATA 1

Report#/Lab ID#: 119089	Report Date: 09/17/01
Project ID: CES/ENRON/TV	VP Roswell Sta. #9 Pit Samp.
Sample Name: PIT #1 TREN	CH 2 @ 4'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 11:45

								ABBUILT	ANCE DA		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/25/01	NA					
Ignitability	not ignitable	۴			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	7.5	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	1920	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	125	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030	J	0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Page#: 1



### 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Attn: George Robinson Sample Name: PIT #1 TRENCH 2 @ 4 Sample Matrix: soil	Client: Attn:	Cypress Engineering George Robinson		Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 2 @ 4'		Report#/Lab ID#: 119089 Sample Matrix: soil
----------------------------------------------------------------------------	------------------	----------------------------------------	--	------------------------------------------------------------------------------------------	--	------------------------------------------------

#### **REPORT OF ANALYSIS-cont.**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/14/01	8260b		2.9	110	105.9	99.6
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		0.2	110.6	110.9	104.6
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		3	109	106.5	107.5
TCLP-2-Butanone (MEK)	<5000	µg/L	5000	<5000	09/14/01	8260b		7.2	61.8	104.6	103.6
TCLP-Benzene	<200	μg/L	200	<200	09/14/01	8260b		1.1	104.5	105.9	99.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		1.5	110.6	105.8	103
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		4.2	110.1	104.5	105.6
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		5.5	111.2	107.4	105.7
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/14/01	8260b		1.8	103.5	102.2	103.5
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		1	107.8	112.4	109.6
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		2.7	99.5	102.7	95.7
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	µg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	μg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5



4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 2 @ 4' Report#/Lab ID#: 119089 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
8015 mod.	none/diluted	diluted @ 2X	D
8015 mod.	none/diluted	diluted @ 2X	D
8260b	102.6	80-120	
8260b	106	86-115	
8260b	98.1	88-110	
8270c	92.7	10-123	
8270c	75.6	43-116	
8270c	62.4	21-100	
8270c	73	35-114	
8270c	75.8	10-94	
8270c	111	33-141	
	8015 mod. 8015 mod. 8260b 8260b 8260b 8260b 8270c 8270c 8270c 8270c 8270c 8270c 8270c	8015 mod.         none/diluted           8015 mod.         none/diluted           8015 mod.         none/diluted           8260b         102.6           8260b         106           8260b         98.1           8270c         92.7           8270c         75.6           8270c         73           8270c         75.8	8015 mod.         none/diluted         diluted @ 2X           8015 mod.         none/diluted         diluted @ 2X           8260b         102.6         80-120           8260b         106         86-115           8260b         98.1         88-110           8270c         92.7         10-123           8270c         75.6         43-116           8270c         73         35-114           8270c         75.8         10-94

 Report #/Lab ID#: 119089
 Matrix: soil

 Client: Cypress Engineering
 Attn: George Robinson

 Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.

 Sample Name: PIT #1 TRENCH 2 @ 4'

#### **Sample Temperature/Condition** <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
Reactivity sulfide	J	See J-flag discussion above.
Nitrobenzene-d5 Nitrobenzene-d5		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:

Notes:

# **O**nalysys

Client:	Cypress Engineering George Robinson		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
	Houston	Тх	77040

FAX: 713 646-7867

## **Phone:** 713 646-7252

#### **REPORT OF ANALYSIS**

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OUALITY ASSUDANCE DATA1

Report#/Lab ID#: 119090	
Project ID: CES/ENRON/TW	P Roswell Sta. #9 Pit Samp.
Sample Name: PIT #1 TREN	CH 2 @ 8'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 11:52

									ANCE DA		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/26/01	NA					
Ignitability	not ignitable	°F			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	7.1	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					·
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	461	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	61.6	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7	J	0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Paspactfully Submitted

Respectfully Submitted, Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1

## **CINCLYSYS**

# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 2 @ 8'

#### Report#/Lab ID#: 119090 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/14/01	8260b		5.8	113.8	118.7	106.5
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		3.3	103.7	105.8	104.1
TCLP-1,4-Dichlorobenzene	<1000	µg/L	1000	<1000	09/14/01	8260b		1.9	109.3	109.6	105.8
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		15.1	67.5	110.4	105.1
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		2.2	107.5	106.1	102.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/14/01	8260b		2.8	103.5	106.6	105.1
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		2.2	107.5	106.1	102.1
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/14/01	8260b		8.3	115.6	116.1	111.2
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/14/01	8260b		3.3	103.6	101.4	96.7
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		6.5	102.8	112.8	112.3
TCLP-Vinyl chloride	<100	µg/L	100	<100	09/14/01	8260b		5.3	105.1	112.7	99.4
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5





4221 Freidrich Lane,Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 2 @ 8' Report#/Lab ID#: 119090 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 2X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 2X	D
TCLP-1,2-Dichloroethane-d4	8260b	100.8	80-120	
TCLP-4-Bromofluorobenzene	8260b	103.8	86-115	
TCLP-Toluene-d8	8260b	98	88-110	
TCLP-2,4,6-Tribromophenol	8270c	83.3	10-123	
TCLP-2-Fluorobiphenyl	8270c	75.1	43-116	
TCLP-2-Fluorophenol	8270c	63.5	21-100	
TCLP-Nitrobenzene-d5	8270c	73.7	35-114	
TCLP-Phenol-d5	8270c	72.7	10-94	
TCLP-Terphenyl-d14	8270c	98.9	33-141	

Report #/Lab ID#: 119090 Matrix: soil

Client: Cypress Engineering Attn: George Robinson Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 2 @ 8'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyses where MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Selenium/ICP	J	See J-flag discussion above.
Nitrobenzene-d5 Nitrobenzene-d5	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:

Notes:



Client:	Cypress Engineering George Robinson		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
	Houston	Тx	77040

FAX: 713 646-7867

### **Phone:** 713 646-7252

#### REPORT OF ANALVSIS

Report#/Lab ID#: 119091	
Project ID: CES/ENRON/TW	VP Roswell Sta. #9 Pit Samp.
Sample Name: PIT #1 TREN	CH 2 @ 12'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 11:58

REPORT OF ANALYSIS						QUALITY ASSURANCE DATA ¹					
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/27/01	NA					
Ignitability	not ignitable	۴			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
рН	7	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	1690	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	233	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	< 0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results

have been carefully reviewed and, to the best of my knowledge, the analytical results

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 2 @ 12'

Report#/Lab ID#: 119091 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/14/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/14/01	8260b		5.8	113.8	118.7	106.5
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/14/01	8260b		3.3	103.7	105.8	104.1
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/14/01	8260b		1.9	109.3	109.6	105.8
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/14/01	8260b		15.1	67.5	110.4	105.1
TCLP-Benzene	<200	µg/L	200	<200	09/14/01	8260b		2.2	107.5	106.1	102.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/14/01	8260b		2.8	103.5	106.6	105.1
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/14/01	8260b		2.2	107.5	106.1	102.1
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/14/01	8260b		8.3	115.6	116.1	111.2
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/14/01	8260b		3.3	103.6	101.4	96.7
TCLP-Trichloroethene	<200	μg/L	200	<200	09/14/01	8260b		6.5	102.8	112.8	112.3
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/14/01	8260b		5.3	105.1	112.7	99.4
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	µg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	µg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5





4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #1 TRENCH 2 @ 12' Report#/Lab ID#: 119091 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 2X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 2X	D
TCLP-1,2-Dichloroethane-d4	8260b	100.7	80-120	
TCLP-4-Bromofluorobenzene	8260b	100.8	86-115	
TCLP-Toluene-d8	8260b	100.8	88-110	
TCLP-2,4,6-Tribromophenol	8270c	69.9	10-123	
TCLP-2-Fluorobiphenyl	8270c	60.3	43-116	
TCLP-2-Fluorophenol	8270c	51.9	21-100	
TCLP-Nitrobenzene-d5	8270c	58.1	35-114	
TCLP-Phenol-d5	8270c	58.5	10-94	
TCLP-Terphenyl-d14	8270c	80.8	33-141	



Report #/Lab ID#: 119091 Matrix: soil

Client: Cypress EngineeringAttn: George RobinsonProject ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.Sample Name: PIT #1 TRENCH 2 @ 12'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### **Sample Bottles & Preservation**

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Qualif	Comment
1 1	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
	P P D D D

#### Comments pertaining to Data Qualifiers and QC data:





# Client:Cypress EngineeringAttn:George RobinsonAddress:10235 West Little York, Ste. 256

Houston

Tx 77040

FAX: 713 646-7867

## **Phone:** 713 646-7252

#### **REPORT OF ANALYSIS**

OUAL ITY ASSUDANCE DATA1

Report#/Lab ID#: 119092	
Project ID: CES/ENRON/TV	VP Roswell Sta. #9 Pit Samp.
Sample Name: PIT #1 TREN	CH 2 @ B.D.
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 12:00

<u>REPORT OF ANALYSIS</u>									ANCE DA		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/28/01	NA					
Ignitability	not ignitable	۴			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	7	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	2170	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	946	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7	J	0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). SI =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 2 @ B.D.

### Report#/Lab ID#: 119092 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/15/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/15/01	8260b		5.8	113.8	118.7	106.5
TCLP-1,2-Dichloroethane	<200	µg/L	200	<200	09/15/01	8260b		3.3	103.7	105.8	104.1
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/15/01	8260b		1.9	109.3	109.6	105.8
TCLP-2-Butanone (MEK)	<5000	µg/L	5000	<5000	09/15/01	8260b		15.1	67.5	110.4	105.1
TCLP-Benzene	<200	μg/L	200	<200	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/15/01	8260b		2.8	103.5	106.6	105.1
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/15/01	8260b		8.3	115.6	116.1	111.2
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/15/01	8260b		3.3	103.6	101.4	96.7
TCLP-Trichloroethene	<200	µg/L	200	<200	09/15/01	8260b		6.5	102.8	112.8	112.3
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/15/01	8260b		5.3	105.1	112.7	99.4
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	µg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	µg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5





4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Cypress Engineering Attn: George Robinson **Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #1 TRENCH 2 @ B.D. Report#/Lab ID#: 119092 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 2X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 2X	D
TCLP-1,2-Dichloroethane-d4	8260b	97.4	80-120	
TCLP-4-Bromofluorobenzene	8260b	98.1	86-115	
TCLP-Toluene-d8	8260b	99.1	88-110	
TCLP-2,4,6-Tribromophenol	8270c	54.5	10-123	
TCLP-2-Fluorobiphenyl	8270c	72.9	43-116	
TCLP-2-Fluorophenol	8270c	49.5	21-100	
TCLP-Nitrobenzene-d5	8270c	73	35-114	
TCLP-Phenol-d5	8270c	55.1	10-94	
TCLP-Terphenyl-d14	8270c	88.7	33-141	

Report #/Lab ID#: 119092 Matrix: soil

Client: Cypress EngineeringAttn: George RobinsonProject ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.Sample Name: PIT #1 TRENCH 2 @ B.D.

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $<= 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Qualif	Comment
	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
J	See J-flag discussion above.
	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
	P P J D D D

#### Comments pertaining to Data Qualifiers and QC data:





Client:	Cypress Engineering		
Attn:	George Robinson		
Address:	Address: 10235 West Little York, Ste. 256		
	Houston	Тх	77040

FAX: 713 646-7867

## **Phone:** 713 646-7252

#### **REPORT OF ANALYSIS**

Report#/Lab ID#: 119093									
Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.									
Sample Name: PIT #1 TRENCH 2 B.D. #2									
Sample Matrix: soil									
Date Received: 09/07/2001	<b>Time:</b> 14:38								
Date Sampled: 09/06/2001	<b>Time:</b> 12:12								

#### **QUALITY ASSURANCE DATA¹**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/29/01	NA					
Ignitability	not ignitable	°F			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	6.9	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	2300	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	929	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7	J	0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471	'	1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1

express written consent of AnalySys, Inc.



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #1 TRENCH 2 B.D. #2

## Sample Matrix: soil

Report#/Lab ID#: 119093

#### **REPORT OF ANALYSIS-cont.**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/15/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/15/01	8260b		5.8	113.8	118.7	106.5
TCLP-1,2-Dichloroethane	<200	µg/L	200	<200	09/15/01	8260b		3.3	103.7	105.8	104.1
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/15/01	8260b		1.9	109.3	109.6	105.8
TCLP-2-Butanone (MEK)	<5000	µg/L	5000	<5000	09/15/01	8260b		15.1	67.5	110.4	105.1
TCLP-Benzene	<200	µg/L	200	<200	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/15/01	8260b		2.8	103.5	106.6	105.1
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/15/01	8260b		8.3	115.6	116.1	111.2
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/15/01	8260b		3.3	103.6	101.4	96.7
TCLP-Trichloroethene	<200	µg/L	200	<200	09/15/01	8260b		6.5	102.8	112.8	112.3
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/15/01	8260b		5.3	105.1	112.7	99.4
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	µg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5





4221 Freidrich Lane,Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Cypress Engineering Attn: George Robinson **Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 2 B.D. #2 Report#/Lab ID#: 119093 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 2X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 2X	D
TCLP-1,2-Dichloroethane-d4	8260b	99.2	80-120	
TCLP-4-Bromofluorobenzene	8260b	101.3	86-115	
TCLP-Toluene-d8	8260b	96.5	88-110	
TCLP-2,4,6-Tribromophenol	8270c	50.3	10-123	
TCLP-2-Fluorobiphenyl	8270c	61.1	43-116	
TCLP-2-Fluorophenol	8270c	40.9	21-100	
TCLP-Nitrobenzene-d5	8270c	60.7	35-114	
TCLP-Phenol-d5	8270c	48.1	10-94	
TCLP-Terphenyl-d14	8270c	83.4	33-141	
		1		

 Report #/Lab ID#: 119093
 Matrix: soil

 Client: Cypress Engineering
 Attn: George Robinson

 Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.
 Sample Name: PIT #1 TRENCH 2 B.D. #2

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (ROL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Arsenic/ICP	J	See J-flag discussion above.
Nitrobenzene-d5 Nitrobenzene-d5		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:

Notes:



# Client:Cypress EngineeringAttn:George RobinsonAddress:10235 West Little York, Ste. 256HoustonTx

**Phone:** 713 646-7252

FAX: 713 646-7867

77040

#### Thone: 713 040-7232

#### **REPORT OF ANALYSIS**

Report#/Lab ID#: 11909	4 Report Date: 09/17/01
Project ID: CES/ENRON	V/TWP Roswell Sta. #9 Pit Samp.
Sample Name: PIT #1 TI	RENCH 3 @ 4'
Sample Matrix: soil	
Date Received: 09/07/20	01 <b>Time:</b> 14:30
Date Sampled: 09/06/20	01 <b>Time:</b> 14:05

OTAL TWO ACCUDANCE DATA 1

(512) 444-5896 • FAX (512) 447-4766

<u>REPORT OF ANALYSIS</u>	QUALITY .										
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/13/01	3550					
Ignitability	not ignitable	°F			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	7.5	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	3840	mg/Kg	50	<50	09/12/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/11/01	3540					
TPH by GC (as gasoline)	599	mg/Kg	50	<50	09/12/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		1.87	110.32	104.65	108.95
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		1.47	105.75	100.75	108.58
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		1.6	105.67	102	105.55
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.21	102.72	94.88	105.13
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.39	103.83	100.35	107.55
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		1.16	108.8	105.9	109.03
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		2.42	104.37	101.3	105.25
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		2.63	118.5	100.75	92.3
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	109.3	66	-NA-
Extractable organics-TC					09/15/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1 Report Dat



## 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**REPORT OF ANALYSIS-cont.** 

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 3 @ 4'

## OUALITY ASSURANCE DATA¹

Report#/Lab ID#: 119094

#### Units ROL⁵ Method⁶ Data Qual⁷ Prec.² Recov.³ CCV⁴ Parameter Result Blank Date LCS⁴ Volatile organics-TC 09/15/01 8260b ----------------------------TCLP-1.1-Dichloroethene <500 ug/L 500 <500 09/15/01 8260b 5.8 113.8 118.7 106.5 ---TCLP-1.2-Dichloroethane <200 μg/L 200 <200 09/15/01 8260b 3.3 103.7 105.8 104.1 ---<1000 09/15/01 8260b TCLP-1.4-Dichlorobenzene <1000 1000 1.9 109.6 105.8 μg/L 1093 ---TCLP-2-Butanone (MEK) <5000 5000 <5000 09/15/01 8260b 15.1 110.4 105.1 ug/L 67.5 ---<200 09/15/01 8260b 102.1 TCLP-Benzene <200 ug/L 200 2.2 107.5 106.1 ---TCLP-Carbon tetrachloride 09/15/01 105.1 <200 µg/L 200 <200 8260b 2.8 103.5 106.6 102.1 TCLP-Chlorobenzene <50 ug/L 50 <50 09/15/01 8260b 2.2 107.5 106.1 ____ TCLP-Chloroform <1000 <1000 09/15/01 8260b 111.2 μg/L 1000 ----8.3 115.6 116.1 TCLP-Tetrachloroethene <500 μg/L 500 <500 09/15/01 8260b 3.3 103.6 101.4 96.7 ____ TCLP-Trichloroethene <200 200 <200 09/15/01 8260b 6.5 102.8 112.8 112.3 µg/L ---<100 100 <100 09/15/01 8260b 112.7 99.4 TCLP-Vinvl chloride µg/L 5.3 105.1 ____ TCLP-2.4.5-Trichlorophenol <5000 5000 <5000 09/15/01 8270c 21.9 84.9 85.8 109.7 μg/L ---8270c 112.9 TCLP-2,4,6-Trichlorophenol <1000 µg/L 1000 <1000 09/15/01 ---18.7 100.5 114.7 μg/L 09/15/01 8270c 77.6 98.7 95.6 TCLP-2.4-Dinitrotoluene <100 100 <100 29.4 ---1000 <1000 09/15/01 8270c 9 74.1 109.2 75.5 TCLP-2-Methylphenol (o-Cresol) <1000 μg/L ---131.9 TCLP-3&4-Methylphenol 1000 <1000 09/15/01 8270c 0.3 132.7 108.6 <1000 μg/L ____ TCLP-Hexachlorobenzene <100 μg/L 100 <100 09/15/01 8270c 14.6 100.2 111 107.4 ---TCLP-Hexachlorobutadiene 200 <200 09/15/01 8270c 7.6 115 116.6 115.3 <200 µg/L ---TCLP-Hexachloroethane <1000 1000 <1000 09/15/01 8270c 86.8 98.2 136.6 14 µg/L ---104.9 **TCLP-Nitrobenzene** <1000 μg/L 1000 <1000 09/15/01 8270c 4.3 138.3 137 ---**TCLP-Pentachlorophenol** <1000 1000 <1000 09/15/01 8270c 2.3 113.6 113.5 65.9 μg/L ---8 91.4 104.9 TCLP-Pyridine <1000 1000 <1000 09/15/01 8270c 113.4 µg/L ---





4221 Freidrich Lane,Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Cypress Engineering Attn: George Robinson **Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 3 @ 4' Report#/Lab ID#: 119094 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
8015 mod.	none/diluted	diluted @ 5X	D
8015 mod.	none/diluted	diluted @ 5X	D
8260b	100.4	80-120	
8260b	102.1	86-115	
8260b	101.9	88-110	
8270c	85.3	10-123	
8270c	71	43-116	
8270c	62.7	21-100	
8270c	72.1	35-114	
8270c	72.2	10-94	
8270c	93.3	33-141	
	8015 mod. 8015 mod. 8260b 8260b 8260b 8270c 8270c 8270c 8270c 8270c 8270c 8270c	8015 mod.         none/diluted           8015 mod.         none/diluted           8015 mod.         none/diluted           8260b         100.4           8260b         102.1           8260b         101.9           8270c         85.3           8270c         71           8270c         62.7           8270c         72.1           8270c         72.2	8015 mod.         none/diluted         diluted @ 5X           8015 mod.         none/diluted         diluted @ 5X           8260b         100.4         80-120           8260b         102.1         86-115           8260b         101.9         88-110           8270c         85.3         10-123           8270c         62.7         21-100           8270c         72.1         35-114           8270c         72.2         10-94

Report #/Lab ID#: 119094 Matrix: soil

Client: Cypress Engineering Attn: George Robinson Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 3 @ 4'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
Nitrobenzene-d5 Nitrobenzene-d5		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:



Client:	Cypress Engineering		
Attn:	George Robinson		
Address:	10235 West Little York, Ste. 256		
	Houston	Тх	77040

FAX: 713 646-7867

## Phone: 713 646-7252

#### **REPORT** OF ANALYSIS

OTAL PRV ACCEDANCE DATA 1

Report#/Lab ID#: 119095	Report Date: 09/17/01
Project ID: CES/ENRON/TW	P Roswell Sta. #9 Pit Samp.
Sample Name: PIT #1 TREN	CH 3 @ 8'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 14:11

<u>QUALITY ASSURANCE DATA</u>											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN extraction-TC					09/30/01	NA					
Ignitability	not ignitable	°F			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	9.1	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	5220	mg/Kg	50	<50	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	1040	mg/Kg	50	<50	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	1.41	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	<0.04	09/14/01	245.2&7471		1.11	108.19	100	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster

Richard Laster

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 3 @ 8'

#### Report#/Lab ID#: 119095 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/15/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/15/01	8260b		5.8	113.8	118.7	106.5
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/15/01	8260b		3.3	103.7	105.8	104.1
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/15/01	8260b		1.9	109.3	109.6	105.8
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/15/01	8260b		15.1	67.5	110.4	105.1
TCLP-Benzene	<200	μg/L	200	<200	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/15/01	8260b		2.8	103.5	106.6	105.1
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/15/01	8260b		8.3	115.6	116.1	111.2
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/15/01	8260b		3.3	103.6	101.4	96.7
TCLP-Trichloroethene	<200	μg/L	200	<200	09/15/01	8260b		6.5	102.8	112.8	112.3
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/15/01	8260b		5.3	105.1	112.7	99.4
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	µg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	μg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	µg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5



4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 3 @ 8' Report#/Lab ID#: 119095 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 10X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 10X	D
TCLP-1,2-Dichloroethane-d4	8260b	100.6	80-120	
TCLP-4-Bromofluorobenzene	8260b	104.1	86-115	
TCLP-Toluene-d8	8260b	97.9	88-110	
TCLP-2,4,6-Tribromophenol	8270c	51.7	10-123	
TCLP-2-Fluorobiphenyl	8270c	66	43-116	
TCLP-2-Fluorophenol	8270c	45.3	21-100	
TCLP-Nitrobenzene-d5	8270c	64.4	35-114	
TCLP-Phenol-d5	8270c	53.7	10-94	
TCLP-Terphenyl-d14	8270c	85.9	33-141	



 Report #/Lab ID#: 119095
 Matrix: soil

 Client: Cypress Engineering
 Attn: George Robinson

 Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.

 Sample Name: PIT #1 TRENCH 3 @ 8'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
Nitrobenzene-d5 Nitrobenzene-d5	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
Notes:	<b>_</b>	

#### Comments pertaining to Data Qualifiers and QC data:





Client:	Cypress Engineering George Robinson	
Attn:	George Robinson	
Address:	10235 West Little York, Ste. 256	
	Houston	Тх

**Phone:** 713 646-7252

#### **REPORT OF ANALYSIS**

OTAL TON A SOLD ANOT DATA 1

Report#/Lab ID#: 119096	Report Date: 09/17/01
Project ID: CES/ENRON/TV	VP Roswell Sta. #9 Pit Samp.
Sample Name: PIT #1 TREN	CH 3 @ 12'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 14:34

<u>REPORT OF ANALYSIS</u>							QUALITY .				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					10/01/01	NA					
Ignitability	not ignitable	۴			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
pH	7.5	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	1630	mg/Kg	10	<10	09/11/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/10/01	3540					
TPH by GC (as gasoline)	577	mg/Kg	10	<10	09/11/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7	J	0.35	100.12	104.3	107.7
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		0.61	97.78	108.25	103.8
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.08	98.13	104.75	104.35
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.2	97.21	108.63	103.5
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.66	97.99	100.1	102.7
TCLP-Mercury/CVAA	<0.04	mg/L	0.04	< 0.04	08/14/01	245.2&7471		5	109.37	99	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		0.65	99.92	101.95	106.68
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.88	97.4	101.5	105.1
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/16/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

77040

FAX: 713 646-7867

Richard Laster **Richard Laster** 

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceed advisory limit. M =Matrix interference.

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value

Page#: 1



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client: Cypress Engineering Attn: George Robinson **Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 3 @ 12' Report#/Lab ID#: 119096 Sample Matrix: soil

#### **REPORT OF ANALYSIS-cont.**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-TC					09/15/01	8260b					
TCLP-1,1-Dichloroethene	<500	µg/L	500	<500	09/15/01	8260b		5.8	113.8	118.7	106.5
TCLP-1,2-Dichloroethane	<200	µg/L	200	<200	09/15/01	8260b		3.3	103.7	105.8	104.1
TCLP-1,4-Dichlorobenzene	<1000	µg/L	1000	<1000	09/15/01	8260b		1.9	109.3	109.6	105.8
TCLP-2-Butanone (MEK)	<5000	µg/L	5000	<5000	09/15/01	8260b		15.1	67.5	110.4	105.1
TCLP-Benzene	<200	μg/L	200	<200	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Carbon tetrachloride	<200	µg/L	200	<200	09/15/01	8260b		2.8	103.5	106.6	105.1
TCLP-Chlorobenzene	<50	μg/L	50	<50	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Chloroform	<1000	μg/L	1000	<1000	09/15/01	8260b		8.3	115.6	116.1	111.2
TCLP-Tetrachloroethene	<500	µg/L	500	<500	09/15/01	8260b		3.3	103.6	101.4	96.7
TCLP-Trichloroethene	<200	µg/L	200	<200	09/15/01	8260b		6.5	102.8	112.8	112.3
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/15/01	8260b		5.3	105.1	112.7	99.4
TCLP-2,4,5-Trichlorophenol	<5000	µg/L	5000	<5000	09/16/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/16/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	µg/L	100	<100	09/16/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	µg/L	1000	<1000	09/16/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	μg/L	1000	<1000	09/16/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	µg/L	100	<100	09/16/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	μg/L	200	<200	09/16/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	µg/L	1000	<1000	09/16/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/16/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/16/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	μg/L	1000	<1000	09/16/01	8270c		6.3	59.9	102.6	67.5



4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client:Cypress EngineeringAttn:George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 3 @ 12' Report#/Lab ID#: 119096 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 2X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 2X	D
TCLP-1,2-Dichloroethane-d4	8260b	98.3	80-120	
TCLP-4-Bromofluorobenzene	8260b	100.2	86-115	
TCLP-Toluene-d8	8260b	99	88-110	
TCLP-2,4,6-Tribromophenol	8270c	91.9	10-123	
TCLP-2-Fluorobiphenyl	8270c	86.5	43-116	
TCLP-2-Fluorophenol	8270c	80.2	21-100	
TCLP-Nitrobenzene-d5	8270c	85.1	35-114	
TCLP-Phenol-d5	8270c	86.6	10-94	
TCLP-Terphenyl-d14	8270c	106	33-141	

Report #/Lab ID#: 119096 Matrix: soil

Client: Cypress EngineeringAttn: George RobinsonProject ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.Sample Name: PIT #1 TRENCH 3 @ 12'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

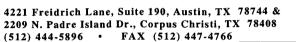
#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)	P P	The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Arsenic/ICP	J	See J-flag discussion above.
Nitrobenzene-d5 Nitrobenzene-d5	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl	D D	Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:

Notes:




# Client: Cypress Engineering Attn: George Robinson Address: 10235 West Little York, Ste. 256 Houston Tx 77040

FAX: 713 646-7867

#### **Phone:** 713 646-7252

REPORT OF ANAL VSIS



OTALIEN ASSUDANCE DATA 1

Report#/Lab ID#: 119097	Report Date: 09/17/01
Project ID: CES/ENRON/TV	VP Roswell Sta. #9 Pit Samp.
Sample Name: PIT #1 TREN	CH 3 @ 10'
Sample Matrix: soil	
Date Received: 09/07/2001	<b>Time:</b> 14:38
Date Sampled: 09/06/2001	<b>Time:</b> 14:20

<u>REPORT OF ANALYSIS</u>							<b>QUALITY</b>	ASSUR.	ANCE DA	<u> </u>	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN extraction-TC					10/02/01	NA					
Ignitability	not ignitable	°F			09/11/01	1010		0	-NA-	-NA-	-NA-
Metals DigHg/TCLP					09/14/01	7470&245.1					
Metals DigHNO3/TCLP					09/14/01	3005a					
рН	8	pH units			09/13/01	9045		0	-NA-	-NA-	-NA-
TCLP extraction-ABN/metals					09/12/01	1311					
TCLP extraction-ZHE					09/11/01	1311					
TPH by GC (as diesel)	7370	mg/Kg	50	<50	09/12/01	8015 mod.	Р	33.1	112.6	92.3	82.6
TPH by GC (as diesel-ext)					09/11/01	3540					
TPH by GC (as gasoline)	2290	mg/Kg	50	<50	09/12/01	8015 mod.		8.4	114.1	81	118
TCLP-Arsenic/ICP	2.18	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		1.87	110.32	104.65	108.95
TCLP-Barium/ICP	<5	mg/L	5	<5	09/14/01	6010 & 200.7		1.47	105.75	100.75	108.58
TCLP-Cadmium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7		1.6	105.67	102	105.55
TCLP-Chromium/ICP	<0.5	mg/L	0.5	<0.5	09/14/01	6010 & 200.7		0.21	102.72	94.88	105.13
TCLP-Lead/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		0.39	103.83	100.35	107.55
TCLP-Mercury/CVAA	< 0.04	mg/L	0.04	<0.04	08/14/01	245.2&7471		5	109.37	99	100.67
TCLP-Selenium/ICP	<0.1	mg/L	0.1	<0.1	09/14/01	6010 & 200.7	J	1.16	108.8	105.9	109.03
TCLP-Silver/ICP	<0.2	mg/L	0.2	<0.2	09/14/01	6010 & 200.7		2.42	104.37	101.3	105.25
Reactivity cyanide	<10	mg/Kg	10	<10	09/11/01	9010		0.66	119.25	96.8	98.58
Reactivity sulfide	<20	mg/Kg	20	<20	09/11/01	376.1&9030		0	102.01	66	-NA-
Extractable organics-TC					09/17/01	8270c					

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Laster

**Richard Laster** 

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1



# 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Cypress Engineering
Attn:	George Robinson

**Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. Sample Name: PIT #1 TRENCH 3 @ 10'

## Sample Matrix: soil

Report#/Lab ID#: 119097

#### **REPORT OF ANALYSIS-cont.**

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-TC					09/15/01	8260b					
TCLP-1,1-Dichloroethene	<500	μg/L	500	<500	09/15/01	8260b		5.8	113.8	118.7	106.5
TCLP-1,2-Dichloroethane	<200	μg/L	200	<200	09/15/01	8260b		3.3	103.7	105.8	104.1
TCLP-1,4-Dichlorobenzene	<1000	μg/L	1000	<1000	09/15/01	8260b		1.9	109.3	109.6	105.8
TCLP-2-Butanone (MEK)	<5000	μg/L	5000	<5000	09/15/01	8260b		15.1	67.5	110.4	105.1
TCLP-Benzene	<200	μg/L	200	<200	09/15/01	8260b		2.2	107.5	106.1	102.1
TCLP-Carbon tetrachloride	<200	μg/L	200	<200	09/15/01	8260b		2.8	103.5	106.6	105.1
TCLP-Chlorobenzene	<50	μg/Ľ	50	<50	09/15/01	8260Ь		2.2	107.5	106.1	102.1
TCLP-Chloroform	<1000	µg/L	1000	<1000	09/15/01	8260b		8.3	115.6	116.1	111.2
TCLP-Tetrachloroethene	<500	μg/L	500	<500	09/15/01	8260b		3.3	103.6	101.4	96.7
TCLP-Trichloroethene	<200	μg/L	200	<200	09/15/01	8260b		6.5	102.8	112.8	112.3
TCLP-Vinyl chloride	<100	μg/L	100	<100	09/15/01	8260b		5.3	105.1	112.7	99.4
TCLP-2,4,5-Trichlorophenol	<5000	μg/L	5000	<5000	09/17/01	8270c		9.1	74.4	95.3	65.6
TCLP-2,4,6-Trichlorophenol	<1000	µg/L	1000	<1000	09/17/01	8270c		10.5	73.6	95.9	64.8
TCLP-2,4-Dinitrotoluene	<100	μg/L	100	<100	09/17/01	8270c		11.9	79.9	108.5	69
TCLP-2-Methylphenol (o-Cresol)	<1000	μg/L	1000	<1000	09/17/01	8270c		0.4	65.5	107.1	66.2
TCLP-3&4-Methylphenol	<1000	µg/L	1000	<1000	09/17/01	8270c		3.7	72.7	113.4	70.9
TCLP-Hexachlorobenzene	<100	μg/L	100	<100	09/17/01	8270c		8.7	72.6	88.2	63.1
TCLP-Hexachlorobutadiene	<200	µg/L	200	<200	09/17/01	8270c		5.4	53.4	86	56.9
TCLP-Hexachloroethane	<1000	μg/L	1000	<1000	09/17/01	8270c		4.1	59.5	91.6	62.6
TCLP-Nitrobenzene	<1000	µg/L	1000	<1000	09/17/01	8270c		4.2	57.5	97.7	60.7
TCLP-Pentachlorophenol	<1000	μg/L	1000	<1000	09/17/01	8270c		11.8	109.8	105.2	91.9
TCLP-Pyridine	<1000	μg/L	1000	<1000	09/17/01	8270c		6.3	59.9	102.6	67.5



4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Cypress Engineering Attn: George Robinson **Project ID:** CES/ENRON/TWP Roswell Sta. #9 Pit Samp. **Sample Name:** PIT #1 TRENCH 3 @ 10' Report#/Lab ID#: 119097 Sample Matrix: soil

#### **REPORT OF SURROGATE RECOVERY**

Surrogate Compound	Method	Recovery	<b>Recovery Limit</b>	Data Qualifiers
Nitrobenzene-d5	8015 mod.	none/diluted	diluted @ 5X	D
p-Terphenyl	8015 mod.	none/diluted	diluted @ 5X	D
TCLP-1,2-Dichloroethane-d4	8260b	100.1	80-120	
TCLP-4-Bromofluorobenzene	8260b	102	86-115	
TCLP-Toluene-d8	8260b	99	88-110	
TCLP-2,4,6-Tribromophenol	8270c	95.1	10-123	
TCLP-2-Fluorobiphenyl	8270c	84.9	43-116	
TCLP-2-Fluorophenol	8270c	85.8	21-100	
TCLP-Nitrobenzene-d5	8270c	85.6	35-114	
TCLP-Phenol-d5	8270c	93.1	10-94	
TCLP-Terphenyl-d14	8270c	102	33-141	



 Report #/Lab ID#: 119097
 Matrix: soil

 Client: Cypress Engineering
 Attn: George Robinson

 Project ID: CES/ENRON/TWP Roswell Sta. #9 Pit Samp.
 Sample Name: PIT #1 TRENCH 3 @ 10'

#### Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is  $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

#### Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

#### J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
TPH by GC (as diesel) TPH by GC (as diesel)		The precision of the MS & MSD (or sample and sample duplicate for those analyseswhere MS/MSD are not run) is outside advisory/acceptance limits.
TCLP-Selenium/ICP	J	See J-flag discussion above.
Nitrobenzene-d5 Nitrobenzene-d5		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.
p-Terphenyl p-Terphenyl		Sample diluted to assure quantitation within calibration range or due to Matrix interferences or other matrix effects (eg. high non-target organic levels). Surrogate recoveries not accurately quantifiable.

#### Comments pertaining to Data Qualifiers and QC data:

Notes:

CHAIN- CUSTOR	ЭY		# Acr	5,	iof												5
Send Reports 10:			Bill	to (if	diffe	rent)	i									Linc	
Company Name Cypress #	Enginee	ing	Con	ipany	Nam	le	<u></u>					42	21 Fr	eidricl		e, Suite 190, Austin, TX	78744
Address 10235 West L City Houston State ATTN: George Robins	:++/e-1	Crit Re	🔄 Add	ress			•					_			()	512) 444-5896	
City Houston State	TX Zip	5127 77040-	Sity City				State	Z	ip_			_					
ATTN: George Robins	on Pr	E.		'N:								-				ses Requested (1)	
Phone 7/36467327 Fax													Ple	asejati	tach ex	xplanatory information as re	quired
Rush Status (must be confirme	ed with la	ab mgr.):	,								5			X /			
Project Name/PO#: CES En	ray / Tu	🖉 Samp	ler: <u><i>Ch</i></u>	1,B	arnh	$\mathcal{U}$	P6			m	Y	9	Y,	/ /			
	STATION	n#97	1-521	no/	<u>7</u>	· / /			R	Y,							
Client Sample No. Description/Identification	Date Sampled	Time Sampled	No. of Containers	Soil	Water	Waste	Lab I.D. # (Lab only)			ý,	Ŷ					Comments	
Pir #2 Trench 104	9/4/6/	8:52	.1/en/	Х			119076	X	$\mathbf{X}$	X							
Pit#2 Trench 108'							11 <b>9077</b>	•		T							
Pit #2 Trench 100							11 <b>9078</b>	I									
Pit #2 Trends 204	1.41	9:44					119079	i									
Oit#2 Trende 208		9:54					119080	1	$\square$								
P; + # 2 Trench 20/2	· / /						119081	1									
21/# 1 Trend 30 4							119082	1									
Q: f# 2 Trench 308	777	10:21		$\Box$			119083	1									
0:1+#2 Trench 30H	9/6/01	10:38					119084	١		T							
P. f#2 Trench 2 B.D.				$\nabla$			119085	Ń	$\checkmark$		1						

)Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting nits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or SI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.

T=0.0°c

	Sample Relinquished	d By			Sample Receive	ed By	
Name	Affiliation	Date	Time	Name	Affiliation	Date	Time
Vatra M Barn	11 Ceological Sources The	9/6/01	16:40	Malanie Hear	dury ASI	9/7/01	1438
		-					

[endering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

CHAIN-OF CUSTOD	Y	1 Al		OF	-3	<del>.</del> (							ſ				1
Send Reports 10:	_	<b>a</b> ,	Bill	to (if	diffe	rent):										L INC.	
Company Name Cypress	nsime.	ing										42	21 Fre	idric		ne, Suite 190, Austin, TX 78 512) 444-5896	8744
Address 10235 W. Little	Vorke	Rodd-S	Add	ress _											(•	12) 444-5050	
Address 10235 W. Liffle City Hours State	Te Zip	17040-	322 City				State		ip _			-	_				
ATTN: MR. Bearje Rol	1 1 ms 04 .	PE.	_ ATI	'N: _								-				ses Requested (1)	
Phone <u>7/3-646-7337</u> Fax 2	713-68	46-786	🛃 Phoi	ne			Fax						Plea	ase att	ach e	xplanatory information as req	uired
Rush Status (must be confirme	ed with la	ab mgr.):			_					/	b)		6 PPF	/			
Project Name/PO#: CES/Fin	n/Tur	Samp	ler: <u>C</u>	<u>m L</u>	Barn	hill	fft -			MY	Y,	8013	/ /				
hosnell S	Date	Time			Γ	<b></b>	Lab I.D. #		ß	X	// W	, cV					
	Sampled	Sampled		Soil	Water	Waste				Ý						Comments	
Pit #   Treater 1 C 41	9/10/	11:20	1/202/0	Х			119086	Х	imes	Έ.							
Pit#1 Trench 1081	9/6/01	11:27		$\prod$			119087			1							
Pit # 1 Trench 1012'	9/1/01	11:35	r				119088					-					
Pitt 1 Trench 2041	9/4/01	11:45	$\sim$				119089										
Pitt 1 Treach 208'	9/6/01	11:52	-				119090										
0, + # 1 Trend 2012							119091	1									
Pit #   Trench 20.B.D.	9/6/01	12:00					11 <b>9092</b>										
P. f # Trench 2 8. D.#			-				11 <b>9093</b>										
Pit # 1 Trench 3841	1 171		-	$\square \backslash$			119094										
P. + # / Trench 308			V	V			119095	V		$\mathbf{V}$	ſ					·	

)Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting nits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or SI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.

	Sample Relinquishe	d By			Sample Receiv	ved By	
Name	Affiliation	Dațe	Time	Name ,	Affiliation	Date	Time
Mayton M Bin A	VI CMB ENVIRONAL	9/5/01	16:40	Melanie Hu	Johny ASI	9/7/01	1438
7	? Ged a gicil Sexue			, , , ,			

[endering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standarditerms.]

CHAIN-C	USTODY	x	t e	HOE.	20		5								Inc	7L <b>(</b>	
Send Reports To:	0		Bill	to (if	differ	ent											Vinc.
Company Name (	VPress Ensine	ern	Con	ipany	Name							42	221 Fi	eidric			, Austin, TX 7874
Company Name ( Address/0235-h	Little Vicke	Rd 25	🗧 🖉												(512	) 444-589	6
City Houston	State To Zip	77040-	322 Lity				State	Z	Zip								
ATTN: MR. Ge	Vie Rolanson	PE.	AT	<u>ГN:</u>					1 -			-	/	A	nalvse	s Rea	uested (1)
Phone 7/3-646-			 F/ Pho:	ne —			Fax					- /	PI	ease at	tach expl	anatory inf	formation as require
Rush Status (must b											14			7	77	77	
Project Name/PO#	ES/Enion /The	Samr	oler: C	MA	Sara	[.://	Ph.								//		
Project Name/PO#	Roswell station	#9	P.F.S.	ndn	<u>ar n</u>	<u>,,,,,</u>	<u> </u>	_					/			//	
Client Sample Description/Identi	No. Date	Time	No. of				Lab I.D. # (Lab only)		JU I							_ c	omments
Pit #   Trench	3e 12' 9/10/01	14:34	1/802/6	$\mathbf{X}$			11 <b>9096</b>	$\mathbf{X}$	$\mathbf{X}$	K							
& Please Not	tet.																
There are No	Trip																····
Blanks - the																	
Blanks Provid	ted .																
By Analysis,	Fuc																
vere Smished	(dre																
to sloppy pack	Ling																
2 Analyis In	īc																
Prin to shipA		14:20	1/802/6	X			119097	X	X	X							AS per SHARP
)Unless specifically requested nits (MDL/PQL). For GC/MS SI's HSL list at ASI's option. $P_T + \# 1$ Treach 3	S volatiles and extractables, Specific compound lists mus	unless specific	r attached doc c analytical pa	umentati rameter l	ists are sp	alyses ecified	will be conducted I on this chain-of	l using custod	ASI's dy or a	metho	d of cl i to thi	noice a s chai	and all n-of-c	data w istody,	ASI will	orted to A	SI's normal reporting Priority Pollutants of
	Sample Relinqui	ished By	7							Sa	mpl	e Ro	eceiv	ved 🛛	By		
Name	Affiliation		Date		me		Name			Af	filiat	lon			Da	ite	Time
Japan MBnh II C	MB EAVIN MON	Fal 91	6/0/	16	:40	74	lane He	ing	ehi	ur -	AS	<u>.(</u>			9/7	101	1438
Fendering of above des	edural Serving						·	"	l	/							

### Work Plan for Excavation and Removal of Affected Soil in the Former Surface Impoundment Areas

Transwestern Pipeline Company Roswell Compressor Station Chaves County, New Mexico

### Attachment

Selected Soil Boring Logs and Summary of Lab Results for Pit Area Soil Samples 4115\4115PINW.DWG

____ ·

_

_ -

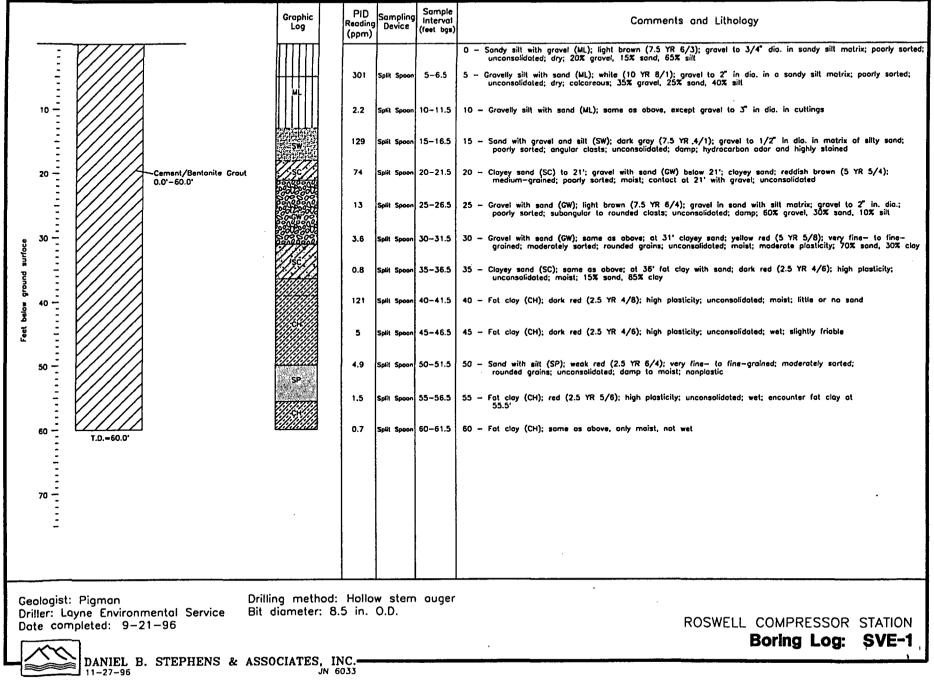
		Ground Surface	Graphic Log	PID Reading (ppm)	Sampling Device	Comments and Lithology
		Ground Sundee	SW/SM	1.3 1.3 13.6 19.1	Split spoon Split spoon Split spoon Split spoon	0-4 - Gravelly sill sand 1 - Light brown (7.5 YR 6/4); well-graded, dry, gravel (approximately 20%), silt (approximately 20%) 2 - Caliche caating of gravels common; na naticeable petraleum odor 4-8 - Same as above; very maist; naticeable hydrocarbon odor; may be backfill over pit contents
. 10	- 5% Cem Surfa	Bentonite/ ent Grout ace to 12.0°		20.4	Split spoon	8—12 — Gravelly sand/sludge; saturated, oil, stained (black) sand; very strang odor; noticeably oily
-	- T.D.= 12.0*					
- 20	-					
-	-					
urface -	-					
ground surface	-					
	-					
Feet below	-					
-	-					
- - 50	-					
-	-					
-	-					
60 <del>-</del>	-					
-	-					
- 70 —	-		,			
-	-					
•	-					
. 80						·
Hydrolo	gists: J. Kirby Harrison Environme	Drilli Bit I	ng Method Diameter:	l: Hollo 8.5 in	w stem o O.D.	uger
Date Co	ompleted: 8/18/95					ROSWELL COMPRESSOR STATION Boring Log: Pit 1, NW

.

· – ·

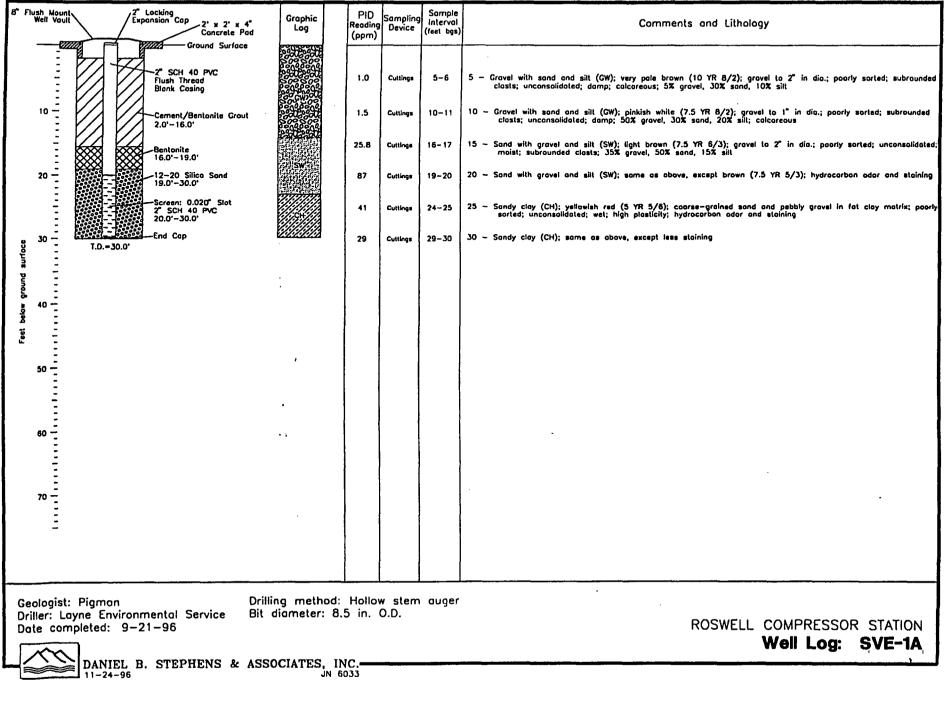
_ _

DANIEL B. STEPHENS & ASSOCIATES, INC.-10-19-95


-

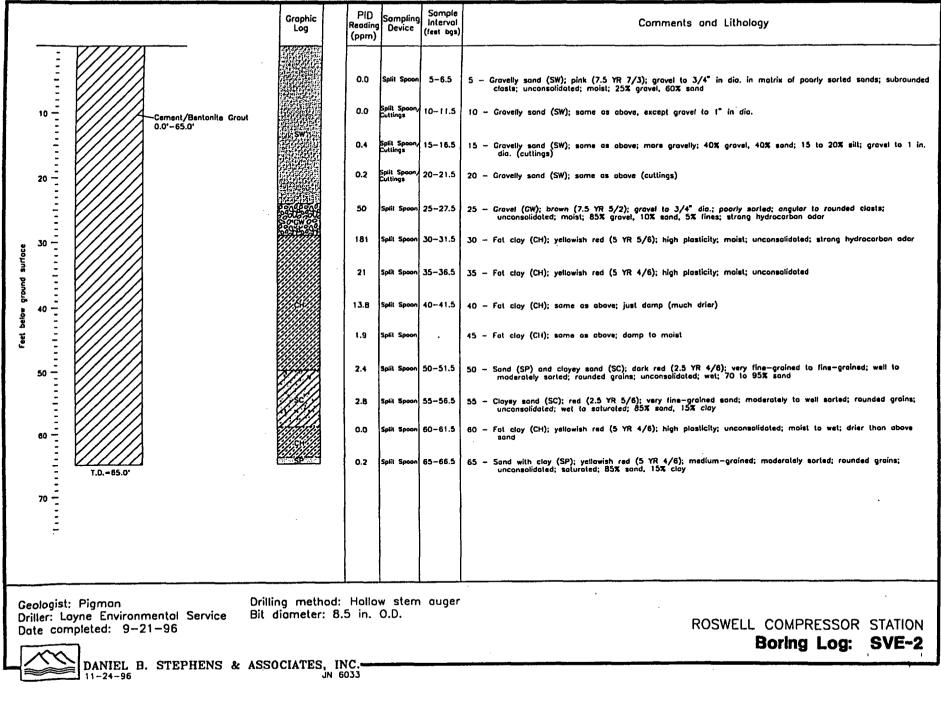
4115\4115PISE DWG

TIS TISCOND	_			
	Graphic Log	PID Reading (ppm)	Sampling Device	Comments and Lithology
Ground Surface	GM/SW SW GC/GM	75 253 293 326 225 132 NA	Split spoon Split spoon Split spoon Split spoon Split spoon Split spoon	<ul> <li>0-2 - Gravelly sand; light brown (7.5 YR 6/4); poorly sorted; approximately 40% gravel size); sand-silt-gravel backtill; dry; strong petroleum odor</li> <li>2-4 - Gravelly sand; as above (approximately 20% gravels); slightly maist; strong odor</li> <li>4-6 - As above; wood fragments common; very moist; strong petroleum odor</li> <li>6-8 - Cloyey gravel; pit backtill; no wood present; saturated with a water/oil sludge 'mixture; very strong odor</li> <li>8-10 - Same as above</li> <li>10-12 - Same as obove</li> <li>12-14 - Split spoon sample with brass rings; same as above; encounter notive soil at 14*</li> </ul>
T.D.= 14.0'  20				
ground surface				
- - -				
50 - - -				
- 60 - -				
Hydrologists: J. Kirby Drilli Driller: Harrison Environmental Bit Date Completed: 8/18/95	ng Methoc Diameter:	l: Hollo 8.5 in.	w stem c O.D.	ROSWELL COMPRESSOR STATION Boring Log: Pit 1, SE
DANIEL B. STEPHENS & AS	SSOCIATES	5, INC. JN 4115		

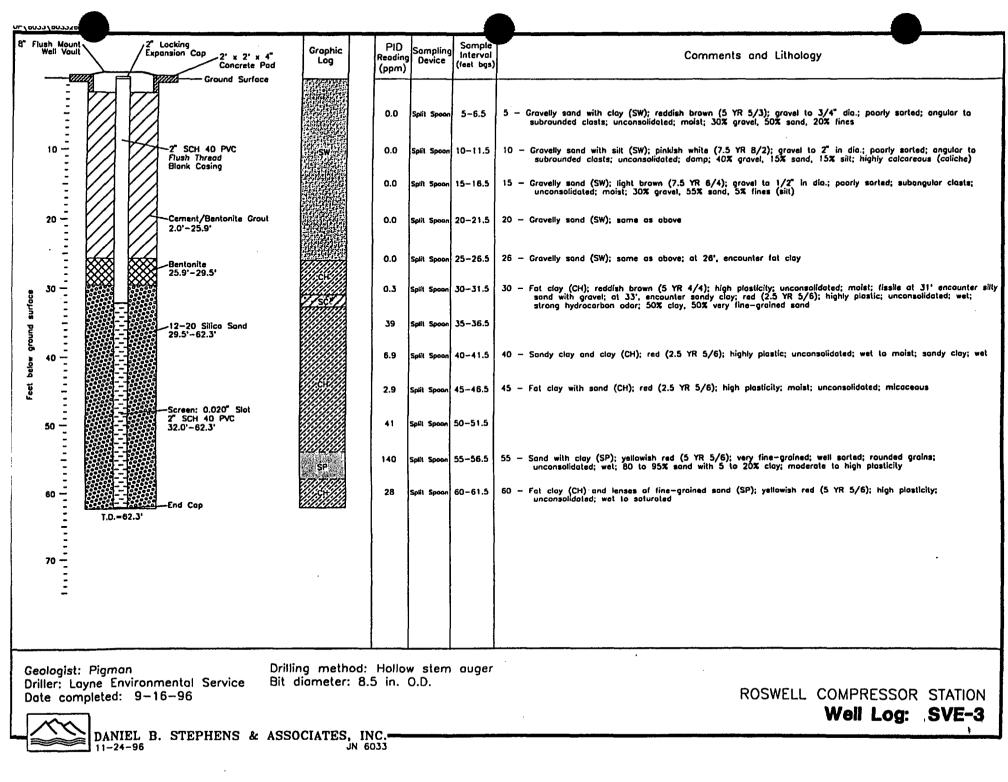



#### OP\6033\603327R.DWG






#### OP\ 6033\ 603323R.DWG



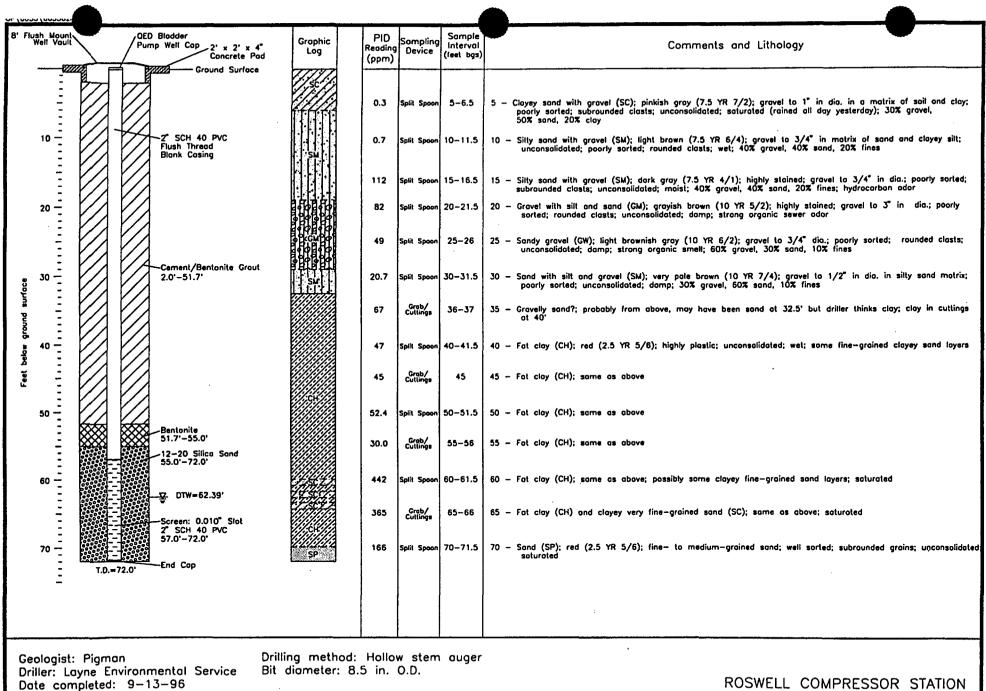



#### OP\ 6033\ 6033248. DWG



8" Flush Mount 8" Flush Mount 10	Z [*] Locking Expansion Cap Ground Surface Cancrete Pad Ground Surface Z [*] SCH 40 PVC Flush Thread Blank Casing Cernent/Bentonite Grout 2.0'-13.6' Bentonite 13.6'-17.5' 12-20 Silica Sand 17.5'-30.0' Screen: 0.020' Slot Z [*] SCH 40 PVC 20.0'-30.0' End Cap 30.0'	Log Rd (() SW SW SW SW SW SW SW SW SW SW SW SW SW	PID sading ppm)     Samplin Device       0.0     Cuttings       3.0     Cuttings       2.0     Cuttings       37     Cuttings       203     Cuttings	9 Somple Interval (feet bgs) 0-5 5-10 10-15 15-20 20-25 25-30	<ul> <li>Comments and Lithology</li> <li>5 - Gravelly sond (SW); pink (7.5 YR 8/3); gravel to 3/4° dia. in matrix of poorly sorted line to medium sonds; softward (SW); pink (7.5 YR 8/3); gravel to 1 inch in dia. in matrix of poorly sorted line to medium sonds; some as above</li> <li>15 - Gravelly sond (SW); pink (7.5 YR 8/3); gravel to 1 inch in dia. in matrix of poorly sorted line to medium sonds; some as above</li> <li>15 - Gravelly sond (SW); pink (7.5 YR 8/3); gravel to 1 inch in dia. in matrix of poorly sorted line to medium sonds; some as above</li> <li>15 - Gravelly sond (SW); pink (7.5 YR 6/3); gravel to 1' in dia: poorly sorted; angular gravels; unconsolidated; moist; 60X gravel, 10X sond; hydrocarbon adar</li> <li>20 - Sandy gravel (OW); some as above, except 75% gravel, 25% sond; strong hydrocarbon adar</li> <li>25 - Sandy gravel (CW); some as above, except wel</li> <li>30 - Sondy gravel (CW); some as above, except wel</li> </ul>
	vironmental Service Bit 9–20–96 IEL B. STEPHENS & ASS	ling method: H diameter: 8.5 SOCIATES, INC JN 603.	in. 0.D.	n auger	ROSWELL COMPRESSOR STATION Well Log: SVE-2A




____

DRILLI	DRILLER:	DRILLING				- 65		, ,	, , , , , , , , , , , , , , , , , , ,	1 -1	-75	· · ·		80	т т	1	85	, <u>,</u>		- 90	11	•	• I	EL	EVAT FEE		SURFA	COOR		
DRILLING METHOD: Holiow Stem	R: Russ Deike	CONTRACTOR:	Black gravel and coarse sand	SILI - brown, organic odor		Silts and Clays, little gravel							Silts and Clays with Gravels			Hit large rock	with split spoon sampler.	Hitting rook - No second	Hitting rock - No recovery				Silts and Clays with Gravel	GROUND SURFACE	DESCRIPTION	801	SURFACE ELEVATION 95.2	COORDINATES		Environmental Corporation
Auger		Layne Environmental D					•				•								•						STRAT	Γ <b>Α</b>	DATUM GRADE		•	Corporation
WEIL SEAL INTERVALIOUANTITY.	WELL SCREEN/INTERVAL: FILTER PACK-INTERVAL/QUANTITY:	DIAMETER, TYPE & INTERVAL OF CASING:	<u>sts</u>	~		30 	<u> </u>	; ;	¦	<u>- N</u>	- 20 -	<u>- M</u>	<b>I</b>	- 5 	<u> </u>		- 10 	<u> </u>		ர ப		L		Feet	-		LOGGE	PROJE	LOCATION	BORINGN
	REEN/IN	R, TYPE	-	Ê,	SPT		SPT	Ids		SPT		SPT			SPT			SPT						Туре	œ	SAMP	D BY S	PROJECT NUMBER		Ē
	TERVAL	& INTE	,																					ō	Sample	SAMPLE INFORMATION	LOGGED BY S. Richard		Roswell Compressor Station No	BORING/WELL NUMBER MW-18 PROJECT Transwestern Pineline Company
	L: IQUANT	RVAL		24/24	2 - 1		- <u>3</u> `0	~ ~ 0		~ 0		6/2			- 3 0	····		· · · 0						Inches Rec.	Adv.	ORM	rđ	5T72	Compr	ER N
	NTY:	OF CAS	9 9 9	1 <u>1</u> 9						50		50			50			50							Penetr-	ATION			essor S	MW-18 Pipeline
1			, Z	/ 1000	40 0	0	<u> </u>																	-					tation	Comp
	20" 20 s																									<b></b>	DATE		Vo. 9	INV SHE
	slot, 55' to 65' ilica sand, 53'																							T.O.C. Elev. 95.18	DETAIL &	WELL	TE DRILLED			EET 1 OF

____

	30			·····		40	·····	45		-50		້ 5 5	<del></del>			FE	ATION	SURFAC	COORDINATES		
	Total depth = 65.5 feet BLS	6 inches of black sand	Fine sand - wet	SAND with PSH	SAND - organic odor CLAY	CLAY - stiff	CLAY - stiff	1	Interbedded Sands and Clays					No odor	CONTINUED FROM PREVIOUS PAGE CLAY - organic odor	DESCRIPTION	SOIL	SURFACE ELEVATION 95.2 DATUM GRADE	VATES		HALLIBURTON NUS Environmental Corporation
								]]]]			]]]]]		M	M		STRA	ATA	Ē			
	י סי טי	, , , ,, ,	· · ·			ເກ ເກ		50		· · · · · · · · · · · · · · · · · · ·		40 				Depth		1060	PRO.		BORING/V PROJECT
	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT					SPT	., PC	Sample	SAM	SED BY	<u> </u>	Z	Ě
	· · · · · · · · · · · · · · · · · · ·						<u> </u>						· · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	;	Sample		LOGGED BY S. Richard	IMBER	Roswel	BORING/WELL NUMBER
	24/18	24/18	24/18	24/20	24/24	24/24	24/24	24/24	24/24		•		```	24/24	Inches Rec. 24 /24		FORM	ard	5772	Comp	estern
<u>.</u>	2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				11 19	127 5772	1,6 27 g		10 35				18 25 37				SAMPLE INFORMATION			Roswell Compressor Station No.	L NUMBER MW-18 Transwestern Pipeline Compan
	> 1000	> 1000	> 1000	> 1000	>1000	> 1000	> 1000	> 1000	> 1000						> 1000					tation P	Compa
	і: Щ																***. <u>** -</u> ,,,,,,,	p		Vo. 9	<
	<u>i::::</u> :	₩ater level at 62.1 feet BLS at 1700 hr on 4/22/93	feet BLS at 0900 hr on 4/23/93		• • • • • • •	<u></u>			, ,							DETAIL & REMARKS	WELL CONSTRUCTION	DATE DRILLED 4/21/93			SHEET 2 OF 2

ł



Well Log: MW-13

DANIEL B. STEPHENS & ASSOCIATES, INC. 11-27-96 JN 6033



PiD Graphic Sampling Comments and Lithology Reading Log Device (ppm) Ground Surface Ш 14 152.8 4 - Sand; brown (7.5 YR 5/4); well sorted, silly sand; caliche casted gravels to 4 cm diam.; no hydrocarbon odor Split Spoon 159.7 Split Spoon 6 - Gravelly sand; mixture of above (50%) and a fuel/oil stained, black, gravel to sand (approximately 50%); strong -5% Bentonite/ Cement Grout Surface to 20.0' fuel-like odor 245.1 Split Spoon я 10 - Sand; approximately 80%, brown (7.5 YR 1 5/4), well sorted sand;
 20%, caliche clasts; strong fuel odor
 12-14 - Same as above; caliche-coated rounded gypsum clasts to 4 cm diameter 341.2 Split Spoon 10 GM/GC 180.4 Split Spoon 319.5 Split Spoon 14-16 - Same as above 249.8 Split Spoon 16-18 - Sand: pinkish grav (7.5 YR 7/2); moderately sorted: sand (approximately 80%), 20% black (stained) soil; fuel-like odor 244.0 20 Split Spoon 18-20 - Gravelly sand; same as above T.D.= 20.0" surface 30 ----Э 3 eet 40 50 60 -70 80 Drilling Method: Hollow stem auger Hydrologists: J. Kirby . Driller: Harrison Environmental Bit Diameter: 8.5 in. O.D. ROSWELL COMPRESSOR STATION Date Completed: 8/17/95 Boring Log: Pit 2, NE DANIEL B. STEPHENS & ASSOCIATES, INC.

JN 4115

10-13-95

4115\4115P2NF DWG

4115\4115P2SW.DWG

Ground Surface	Graphic PID Log Readi (ppr	Sampling Device	Comments and Lithology
- 5% Bentonite/ Cement Grout Surface to 6.0'	CM/CC CM/CC 12.0 19.1	Split Spoon Split Spoon Split Spoon	<ul> <li>0-2 ~ Sand; brawn (7.5 YR 5/4); well sorted, silty sand; caliche-coated gravels to 4 cm diam. (approximately 30%); noticeable petroleum odor</li> <li>2-4 ~ Gravelly sand; stained black; former pit cantents; strong petroleum odor</li> <li>4-6 ~ Sand to gravely sand; same as 0-2'; black staining present; noticeable petroleum odor</li> </ul>
10 — . — _ — _			
20 			
Mo			
 50 			
- - 60			•
- - - 70			
  80			
Hydrologists: J. Kirby Drilli Driller: Harrison Environmental Bit Date Completed: 8/18/95	ng Method: Hol Diameter: 8.5 in	ow stem c . O.D.	nuger ROSWELL COMPRESSOR STATION
DANIEL B. STEPHENS & AS	SSOCIATES, INC	5	Boring Log: Pit 2, SW

1

.

.



DATUM GRADE

BORING/WELL NUMBER MW-2

PROJECT Transwestern Pipeline Company LOCATION Roswell Compressor Station No. 9

SHEET 1 OF 2

COORDINATES

SURFACE ELEVATION 97.0

PROJECT NUMBER 5T72 LOGGED BY S. Richard

DATE DRILLED 4/21/93

N		A		SAMF	LE INF		TION		WELL	
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Adv.	Penetr- ometer Blow	PID/ FID	CONSTRUC DETAIL & REMARKS	HUN
	GROUND SURFACE Silt and Clay with Gravel and Pebbles		<u> </u>			Inches Rec.	Counts	(ppm)	T.O.C. Elev. 9	6.98
-95										
-90			- 5 -	SPT		18/18	37 34 29	1		
-85			- 10 -	SPT		6 / 3	50	2		
			- 15 -	SPT		6 / 0	50	2		
-80	More Gravel		- 20 -	SPT		6 / 2	50	1		
-75 -70	3-inch dark brown sandy clay layer, sand is well sorted and medium grained		- 25 -	Z SPT		4 / 2	50	2		
	Small layer (1 foot) of black coarse gravel, organic odor CLAY		- 30 -	SPT		18/15	14 14 14	>100	o ₩	
-65				↓ ∭ SPT		18/18	5 9 10	700		
DRILLI	ING CONTRACTOR: Layne Environmental			TER, TYP			OF CASI		" PVC	
DRILLE	ER: Russ Deike			SCREEN/I PACK-IN			TITY:		.020" slot PVC, 55' to 0/20 silica sand, 53' t	
	ING METHOD: Hollow Stem Auger		WELL S	SEAL-INT	ERVAL/Q	UANTI	TY:	5	0' to 53', bentonite pe	ellets



# HALLIBURTON NUS Environmental Corporation

DATUM GRADE

BORING/WELL NUMBER MW-2 SHEET 2 OF 2

PROJECT Transwestern Pipeline Company

LOCATION Roswell Compressor Station No. 9

#### COORDINATES

SURFACE ELEVATION 97.0

PROJECT NUMBER 5T72 LOGGED BY S. Richard

DATE DRILLED 4/21/93

NO I		-		SAMPLE INFORMATION WELL						
ELEVATION FEET		STRATA	Depth Feet	Sample Type	Sample ID	/ Inches	Blow	PID/ FID (ppm)		CONSTRUCTION DETAIL & REMARKS
·60	CONTINUED FROM PREVIOUS PAGE			SPT		Rec. 18/18 18/18	5 9 10	50 45		
			- 40 -	SPT		18/18	4	20		
-55	CLAY with Silt and Gravel layers									
	CLAY with Gravel layers		- 45 -	Х SPT		18/18	4 5 6	1		
-50				SPT		18/14	3 5 6	2		· ·
	Clay only		- 50 -	SPT		18/18	10 12 21	2		
-45	Clay			SPT		18/18	2 3 6	3		
	Clay - hard		- 55 -	SPT		18/18				
-40	SAND - fine grained, well sorted, with clay,			SPT		18/8	4 6 14	> 100		
	organic odor		- 60 -	SPT		18/17	7	> 100		
				AUGEF		42/0				
	Total depth = 65.0 feet BLS									
			-							
				!!	<u>  </u>	-		1		



DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

		Fage 1 01 2									
			Sample No. (Sample Date)								
Analyte	Soil Screening Level ^a	Risk-Based Concentration ^b	Pit 1 NW Boring (08/18/95)	Pit 1 SE Boring (08/18/95)	Pit 2 NE Boring (08/17/95)	Pit 2 SW Boring (08/18/95)					
Volatile Organic Compounds (mg/kg) by EPA Method 8240											
Acetone	8	7,800	1.4	<0.50	<0.50	<0.10					
Benzene	0.02	22	0.21	0.85	0.14	<0.005					
Carbon disulfide	14	7,800	<0.02	0.06	<0.02	<0.005					
1,1-Dichloroethane (1,1-DCA)	11	7,800	1.0 1.20		<0.02	<0.005					
1,1-Dichloroethene (1,1-DCE)	0.03	1.1	0.04	0.04	<0.02	<0.005					
Ethylbenzene	5	7,800	0.04	0.37	0.9	<0.005					
2-Hexanone	NA	NA	<0.02	0.46	<0.02	<0.005					
Methylene chloride (dichloromethane)	0.01	85	<0.02	0.16	<0.02	<0.005					
Tetrachloroethene (PCE)	0.04	12	<0.02	0.04	<0.02	0.009					
Toluene	5	16,000	0.5	9.1	1.9	<0.005					
1,1,1-Trichloroethane (1,1,1-TCA)	0.9	7,000	1.9	16.0	<0.02	0.017					
Vinyl acetate	84	78,000	0.2	7.0	<6.0	<0.05					
Xylene(s)°	74	160,000	0.27	2.4	16.0	<0.005					
Semivolatile Organic Compounds (m	g/kg) by EP/	A Method 8270									
Benzo(j)fluoranthene	NA	NA	<3.3	<3.3	<0.33	0.33					
Bis(2-ethylhexyl)phthalate	11	46	4.8	<3.3	<0.33	<0.33					
Chrysene	1	88	<3.3	<3.3	<0.33	0.33					
Fluoranthene	980	5,100	<3.3	<3.3	< 0.33	0.76					
2-Methylnaphthalene	NA	NA	4.8	<3.3	0.46	<0.33					
Phenanthrene	NA	NA	5.6	5.0	<0.33	0.45					
Phenol (carbolic acid)	49	47,000	30.0	200	<0.33	<0.33					
Pyrene	1,400	2,300	<3.30	<3.3	<0.33	0.89					

## Table 1. Summary of Detected Compounds for Pit Soil SamplesRoswell Compressor Station No. 9Page 1 of 2



Notes: This table lists only those analytes that were detected in at least one of the pit soil samples. Bold values highlight concentrations above reporting limits. Core Laboratories results for VOCs and SVOCs converted from μg/kg to mg/kg.

* Soil screening level for protection of ground water based on a dilution-attenuation factor of 10 (EPA, 1994)

^b Risk-based concentration for soil ingestion at residential sites (EPA, 1995)

^c Soil screening level for mixed xylene



DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

### Table 1. Summary of Detected Compounds for Pit Soil SamplesRoswell Compressor Station No. 9Page 2 of 2

			Sample No. (Sample Date)								
Analyte	Soil Screening Level ^a	Risk-B sed Concentration⁵	Pit 1 NW Boring (08/18/95)	Pit 1 SE Boring (08/18/95)	Pit 2 NE Boring (08/17/95)	Pit 2 SW Boring (08/18/95)					
PCBs (µg/kg) by EPA Method 8080 (No analytes detected)											
Metals (mg/kg) by EPA Methods 6010 and 7471 (for Mercury)											
Aluminum (AI)	NA	78,000	5,950	1,690	1,430	1,63					
Antimony (Sb)	NA	31	10	<10	<10	_<10					
Arsenic (As)	15	23	9	17	6	<5					
Barium (Ba)	32	5,500	415	171	233 "	734					
Beryllium (Be)	180	0.15	<0.5	<0.5	0.5	<0.5					
Chromium (Cr) ^d	19	390	9	9	8	7					
Copper (Cu)	NA	2,900	144	337	56	18					
Lead (Pb)	NA	NA	<5	11	<5	<5					
Mercury (Hg)	3	23	0.59	1.36	<0.10	<0.10					
Nickel (Ni)	21	1,600	9	5	5	<4					
Selenium (Se)	3	390	<10	<10	<10	10					
Tin (Sn)	NA	47,000	<5	6	5	_<5					
Vanadium (V)	NA	550	14	10	21	11					
Zinc (Zn)	42,000	23,000	97	282	45	34					
Miscellaneous (mg/kg) by EPA Methods 9010, 9030, and 418.1, respectively											
Total cyanide [®]	NA	11.290	1.1	1.4	<0.4	<0.4					
Total sulfide	NA	NA	1,800	940	530	370					
Total petroleum hydrocarbons	NA	NA	4,700	26,000	5,300	<50					

Notes: This table lists only those analytes that were detected in at least one of the pit soil samples. Bold values highlight concentrations above reporting limits.

^d Concentrations based on chromium VI

• Includes barium/calcium/copper cyanide

NA = Not available