

REPORTS

YEAR(S): 1992

R-48-09-2-003H

RECEIVED

DEC 17 1992

OIL CONSERVATION DIV. SANTA FE

FINAL REPORT

MONITOR WELL INSTALLATION

TRANSWESTERN PIPELINE COMPANY

COMPRESSOR STATION NO. 9

ROSWELL, NEW MEXICO

PREPARED BY

HALLIBURTON NUS ENVIRONMENTAL CORPORATION

ENVIRONMENTAL SERVICES

SOUTHWEST REGION

OCTOBER 1992

HALLIBURTON NUS PROJECT NUMBER 6250

Environmental Technologies Group 16360 PARK TEN PLACE SUITE 300 HOUSTON. TEXAS 77084 (713) 492-1888 (713) 492-0504 FAX

R-48-09-2-003H

FINAL REPORT

MONITOR WELL INSTALLATION

TRANSWESTERN PIPELINE COMPANY

COMPRESSOR STATION NO. 9

ROSWELL, NEW MEXICO

PREPARED BY

HALLIBURTON NUS ENVIRONMENTAL CORPORATION ENVIRONMENTAL SERVICES SOUTHWEST REGION

OCTOBER 1992

HALLIBURTON NUS PROJECT NUMBER 6250

PREPARED BY:

SUSANNE RICHARD, R.E.P. PROJECT MANAGER

REVIEWED AND APPROVED BY:

Mular

DONALD R. BRENNEMAN VICE PRESIDENT HALLIBURTON SERVICES DIVISION SOUTHWEST REGION

QA REPRESENTATIVE CHECK:

Lee

BURT LEE, P.E. QA MANAGER

technologies and services for a cleaner and safer world

TABLE OF CONTENTS

SECTION

PAGE

1.0	BACKGROUND REVIEW	1-1
2.0	SUMMARY OF FIELD ACTIVITIES	2-1
3.0	ANALYTICAL RESULTS	3-1

APPENDICES

- A HEALTH AND SAFETY PLAN
- B BORING LOG
- C SAMPLE LOG SHEET
- D CHAIN-OF-CUSTODY FORM
- E ANALYTICAL LABORATORY REPORTS

LIST OF TABLES

.....

1

TABLE	PAGE
3-1	VOLATILE ORGANICS, ANALYTICAL DATA
3-2	SEMIVOLATILE ORGANICS, ANALYTICAL DATA
3-3	TPH, ANALYTICAL DATA
3-4	METALS, ANALYTICAL DATA

LIST OF FIGURES

FIGURE	<u>ا</u>	PAGE
1-1	SITE LOCATION	1-2

.

1.0 BACKGROUND REVIEW

HALLIBURTON NUS Environmental Corporation (HALLIBURTON NUS) was requested by Transwestern Pipeline Company (Transwestern) to install one monitor well at Transwestern Compressor Station No. 9 located in Roswell, New Mexico. The facility is an active natural gas pipeline compressor station located on the north side of the city of Roswell. The location of the site is shown in Figure 1-1.

The well was installed within an area that contained three abandoned pits used to collect pipeline and other liquid wastes. Through time, the liquid wastes were deposited, burned, and then backfilled repeatedly in the pits. The pits were taken out of service in 1986.

A previous investigation (Metric Corporation, 1991) determined that the pit area was situated above a natural topographic basin. The basin contains a perched liquid zone within alluvial deposits of sands and gravels. The perched water zone is contained within red clay layers which act as an aquitard. The major source of liquids comprising the perched zone is from the introduction of natural gas pipeline liquids which are removed from the transporation of natural gas. Based upon the Metric Corporation (Metric) investigation, groundwater conditions were not impacted.

This investigation also concluded that the subsurface soils within the basin have been impacted by the pipeline liquid waste pit activities.

1-1

2.0 FIELD ACTIVITIES

This section describes the field activities undertaken on July 21, 22, and September 21, 1992, by HALLIBURTON NUS. A monitor well, Station 9 Pit, was installed and developed. Prior to mobilization, a Site-Specific Health and Safety Plan, presented in Appendix A, was developed.

The location of the well was selected by Transwestern personnel and was near a previous boring location (Metric, 1991).

The drilling was completed using a CME-55 drill rig. The boring was drilled with 6-5/8 in. O.D. hollow-stem augers to 60 feet without sampling. Beginning at 60 feet, continuous samples were collected, using split-spoon samplers, until reaching the red clay aquitard containing very hard white sulfate lenses at 68 feet. The boring was then overdrilled with 10-inch O.D. hollow-stem augers to install the well. The perched liquid level was measured at 35 feet below the ground surface within the sands and gravels of the perched zone. (See boring log contained in Appendix B for additional details.) A 3-inch PVC bailer was used to develop the well. Development of the well produced 110 gallons of perched liquids, which were collected in two drums.

The well, consisting of 28 feet of Schedule 40 PVC riser and 40 feet of 0.010 slotted Schedule 40 PVC screen, was installed inside the augers. The screen was set between 68 feet and 28 feet below ground surface. The filter pack consisted of 12/20 grade packsand and installed to 25.2 feet below the surface. A layer of one-half inch bentonite pellets was added to 24.4 feet below the surface. A cement mixture of Portland cement and Super Gel X was used to grout the well from the top of the bentonite seal to the ground surface.

The Station 9 Pit monitor well was purged and sampled on September 21, 1992. The static perched liquid level was measured at 26.08 feet below the ground surface. A 3-inch teflon bailer was used to purge the well. An oil layer was encountered when purging the well. The oil layer vanished prior to withdrawing the first well volume. After purging, the perched liquid was sampled with a 2-inch teflon bailer. The sample log sheet presented in Appendix C includes additional information. The perched liquid sample was placed in sample bottles and

2-1

stored on ice in a cooler prior to shipping to HALLIBURTON NUS Environmental Laboratory in Houston, Texas. The chain-of-custody form is included in Appendix D.

1

3.0 ANALYTICAL RESULTS

The sample obtained on September 21, 1992, was analyzed for Appendix IX volatile and semivolatile organics, total petroleum hydrocarbons (TPH), and total metals. EPA Methods 624/SW 8240, 625/SW 8270, and 418.1 for organics, and SW Test Method 846/7000 series for the metals, respectively, were utilized for those analyses. The analytical results are presented in Tables 3-1 through 3-4. The analytical laboratory reports and associated quality control reports are contained in Appendix E.

The perched liquid in the Station 9 Pit monitor well was found to contain aromatic hydrocarbons, halogenated hydrocarbons, and methyl ethyl ketone (MEK) as well as a few semivolatile organic constituents. Table 3-1 presents analytical results for volatile organic analyses. The following positive detections were reported:

benzene	0.370 ppm
toluene	0.061 ppm
ethylbenzene	0.110 ppm
total xylenes	0.940 ppm
1,1,1 - Trichloroethane	0.180 ppm
1,1 - Dichloroethane	0.560 ppm
2 - Butanone (MEK)	0.220 ppm

Table 3-2 presents analytical results for semivolatile organic analyses. The following positive detections were reported:

2 - Methylnaphthalene	0.051 ppm
4 - Methylphenol	0.250 ppm
naphthalene	0.034 ppm

TPH concentration, as shown on Table 3-3, was detected at 37 ppm in the perched liquid sample.

Arsenic, barium, and chromium, as presented in Table 3-4, were also detected in the sample. The inorganic analytes were detected in concentrations of 0.19 ppm, 4.4 ppm, and 0.01 ppm, respectively.

TABLE 3-1

VOLATILE ORGANICS ANALYTICAL DATA IN μG/L TRANSWESTERN COMPRESSOR STATION NO. 9 ROSWELL, NEW MEXICO

İ.

ANALYTE	RESULT
1,1,1-Trichloroethane	180
1,1,2,2-Tetrachloroethane	< 30
1,1,2-Trichloroethane	< 30
1,1-Dichloroethane	560
1,1-Dichloroethene	< 30
1,2,3-Trichloropropane	< 30
1,2-Dichloroethane	< 30
1,2-Dichloropropane	< 30
1,4-Dichloro-2-butene	< 60
2-Butanone (MEK)	220
2-Chloroethylvinyl Ether	< 60
2-Hexanone	< 60
4-Methyl-2-Pentanone (MIBK)	< 60
Acetone	< 60
Acrolein	< 600
Acrylonitrile	< 600
Benzene	370
Bromodichloromethane	< 30
Bromoform	< 30
Bromomethane	< 60
Carbon disulfide	< 30
Carbon tetrachloride	< 30
Chlorobenzene	< 30
Chlorodibromomethane	< 30
Chloroethane	< 60

TABLE 3-1 (Continued) VOLATILE ORGANICS ANALYTICAL DATA IN μ g/L TRANSWESTERN COMPRESSOR STATION NO. 9 ROSWELL, NEW MEXICO

ANALYTE	RESULT
Chloroform	< 30
Chloromethane	< 60
Dibromomethane	< 30
Dichlorodifluoromethane	< 120
Ethanol	*
Ethyl methacrylate	< 60
Ethylbenzene	110
lodomethane (Methyl iodide)	< 60
Methylene chloride	< 60
P/M xylene	820
Styrene	< 30
Tetrachloroethene	< 30
Toluene	61
Trichloroethene	< 30
Trichlorofluoromethane	< 30
Vinyl acetate	< 60
Vinyl chloride	< 60
cis-1,2-Dichloroethene	< 30
cis-1,3-Dichloropropane	< 30
o-Xylene	120
trans-1,2-Dichloroethene	< 30
trans-1,3-Dichloropropene	< 30

NOTE: * This analyte was not detected by a computerized search of the chromatogram.

3-3

TABLE 3-2

SEMI-VOLATILE ORGANICS ANALYTICAL DATA IN μ G/L TRANSWESTERN COMPRESSOR STATION NO. 9 ROSWELL, NEW MEXICO

ANALYTE	RESULT
1,2,4-Trichlorobenzene	< 33
1,2-Dichlorobenzene	< 33
1,3-Dichlorobenzene	< 33
1,4-Dichlorobenzene	< 33
2,4,5-Trichlorophenol	< 66
2,4,6-Trichlorophenol	< 33
2,4-Dichlorophenol	< 33
2,4-Dimethylphenol	< 33
2,4-Dinitrophenol	< 160
2,4-Dinitrotoluene	< 33
2,6-Dinitrotoluene	< 33
2-Chloronaphthalene	< 33
2-Chlorophenol	< 33
2-Methylnaphthalene	51
2-Methylphenol (o-Cresol)	< 33
2-Nitroaniline	< 160
2-Nitrophenol	< 33
3,3'-Dichlorobenzidine	< 66
3-Methylphenol	< 33
3-Nitroaniline	< 160
4,6-Dinitro-2-methylphenol	< 160
4-Bromophenyl phenyl ether	< 33
4-Chloro-3-methylphenol	< 33
4-Chloroaniline	< 33
4-Chlorophenyl phenyl ether	< 33

3-4

TABLE 3-2 (Continued) SEMI-VOLATILE ORGANICS ANALYTICAL DATA IN μ G/L TRANSWESTERN COMPRESSOR STATION NO. 9 ROSWELL, NEW MEXICO

ANALYTE	RESULT
4-Methylphenol	250
4-Nitroaniline	< 160
4-Nitrophenol	< 160
Acenaphthene	< 33
Acenaphthylene	< 33
Acetophenone	< 33
Aniline	< 33
Anthracene	< 160
Benzidine	< 33
Benzo(a)anthracene	< 33
Benzo(a)pyrene	< 33
Benzo(b)fluoranthene	< 33
Benzo(ghi)perylene	< 33
Benzo(k)fluoranthene	< 160
Benzoic Acid	< 33
Benzyl alcohol	< 33
Benzyl butyl phthalate	< 33
Bis(2-Chloroethoxy)methane	< 33
Bis(2-Chloroethyl)ether	< 33
Bis(2-Chloroisopropyl)ether	< 33
Bis(2-Ethylhexyl)phthalate	< 33
Chrysene	< 33
Di-n-butyl phthalate	< 33
Di-n-octyl phthalate	< 33
Dibenzofuran	< 33

TABLE 3-2 (Continued) SEMI-VOLATILE ORGANICS ANALYTICAL DATA IN μ G/L TRANSWESTERN COMPRESSOR STATION NO. 9 ROSWELL, NEW MEXICO

ANALYTE	RESULT
Diethyl phthalate	< 33
Dimethyl phthalate	< 33
Fluoranthene	< 33
Fluorene	< 33
Hexachlorobenzene	< 33
Hexachlorobutadiene	< 33
Hexachlorocyclopentadiene	< 33
Hexachloroethane	< 33
Indeno(1,2,3-cd)pyrene	< 33
Isophorone	< 33
N-Nitrosodimethylamine	< 33
N-Nitrosodiphenylamine	< 33
Naphthalene	34
Nitrobenzene	< 33
Pentachlorophenol	< 160
Phenanthrene	< 33
Phenol	< 33
Pyrene	< 33
Pyridine	< 66
n-Nitroso-di-n-propylamine	< 33

3-6

TABLE 3-3

TOTAL PETROLEUM HYDROCARBONS ANALYTICAL DATA IN MG/L TRANSWESTERN COMPRESSOR STATION NO. 9 ROSWELL, NEW MEXICO

ANALYTE	RESULT
Total Petroleum Hydrocarbons	37

TABLE 3-4

METALS ANALYTICAL DATA IN MG/L TRANSWESTERN COMPRESSOR STATION NO. 9 ROSWELL, NEW MEXICO

i i

L

ANALYTE	RESULT
Arsenic	0.19
Barium	4.4
Cadmium	< 0.005
Chromium	0.01
Mercury	< 0.0002
Silver	< 0.01
Lead	< 0.05
Selenium	< 0.003

3-8

APPENDIX A

t

ļ.

HEALTH AND SAFETY PLAN

R-48-09-2-003H

R-48-10-2-011H

SITE-SPECIFIC

HEALTH AND SAFETY PLAN

PREPARED FOR

TRANSWESTERN GAS PIPELINE COMPANY

COMPRESSOR STATION NO. 9, ROSWELL, NEW MEXICO

PREPARED BY

HALLIBURTON NUS ENVIRONMENTAL CORPORATION

ENVIRONMENTAL SERVICES

SOUTHWEST REGION

JULY 1992

HALLIBURTON NUS PROJECT NUMBER 6250

	Well Installation and Subsurface Investigations	Project No.:	6250
Scope of Work and I	Purpose of Visit:		
Roswell Compressor	Station No. 9 - Install 4-in. monito	or well in the bac	kfilled pipeline liquids pit.
Well is to be used as	s an extraction well at a later time.		
·····			<u></u>
		· · · · · · · · · · · · · · · · · · ·	
Site	Visit Personnel		Responsibility:
Site	Visit Personnel:	Goologist & S	Responsibility:
Site Larry Basilio	Visit Personnel:	Geologist & S	Responsibility:
Site	Visit Personnel:	Geologist & S	Responsibility:
Site	Visit Personnel:	Geologist & S	Responsibility: SO
Site Larry Basilio	Visit Personnel:	Geologist & S	Responsibility: SO
Site Larry Basilio	Visit Personnel:	Geologist & S	Responsibility:
Site	Visit Personnel:	Geologist & S	Responsibility: SO
Site	Visit Personnel:	Geologist & S	Responsibility: SO
Site Larry Basilio Othe	Visit Personnel:	Geologist & S	Responsibility: SO Phone Nos.:
Site Larry Basilio Othe S. Richard - HALLIBI	Visit Personnel:	<u>Geologist & S</u>	Responsibility: SO Phone Nos.: 3
Site Larry Basilio Othe S. Richard - HALLIBI Larry Campbell - Tra	Visit Personnel:	<u>Geologist & S</u>	Responsibility: SO Phone Nos.: 3
Site Larry Basilio Othe S. Richard - HALLIBI Larry Campbell - Tra Earl Chandly - Trans	Visit Personnel:	Geologist & S 	Responsibility: SO Phone Nos.: 3 2 1
Site Larry Basilio Othe S. Richard - HALLIBI Larry Campbell - Tra Earl Chandly - Trans Dave Tanner - SH&E	Visit Personnel:	Geologist & S 	Responsibility: SO Phone Nos.: 3 2 1

L.

i

1

R-48-10-2-011H

1 of 7

Emergency Information: Roswell Compressor Station No. 9; Roswell, New Mexico

Туре	Name	Phone Nos.
Sheriff		911
Ambulance		911
Hospital	Eastern New Mexico Medical Center North	(505) 622-8170
Rescue Service		911
Poison Control Center		1-800-432-6866
Site Manager	Susanne Richard	(713) 492-1888
PMHS	Tom Samson	713-561-1564

Hospital Route:

Eastern New Mexico Medical Center North

405 W. Country Club Rd.

Roswell, New Mexico

Directions from the Site:

Take HWY 285 south (left) to Country Club Rd. (4-5 miles), turn right (go west) 1/2 - 1 mile.

Inclement Weather Procedures:

No working during electrical storm, extremely high ambient heat loads, or other extreme weather conditions as determined by the SSO.

Site Background/Overall Information:

Roswell Compressor Station No. 9 - Site was a backfilled burn pit. Previous investigations have determined that the pit lies above a natural subsurface depression which contains perched groundwater. Activities associated with pit usage have impacted underlying sediments. This well will be used to monitor contamination and may in the future be used as an extraction well.

WT-1 - Carlsbad Compressor Station - Previous investigations have determined that activities associated with the former oil pit, burn pit, and trash pit had impacted the sediments below these structures. Soils in borings were found impacted by total petroleum hydrocarbons (TPH) down to 30 feet, TD of borings.

WT-2 - Kermit Compressor Station - Site has not been investigated. Facility houses a compressor station and a dehydrator. Pits have not been used for a number of years. Drums may have been dumped in trash pits.

Hazard Assessment:

Hazards expected to be present include:

1. - Fire and explosion from flammable/combustible materials

2. - Moving machinery

3. - Animal hazards - i.e., snakes, and ticks

5. - Manual lifting and slip/trip hazards

6. - Heat stress

7. - Underground utilities, underground gas pipelines

<u>Standard Operating Procedures</u>: (i.e., basic hygiene, buddy system, no hand-to-mouth activities when working on site, etc.)

Other: SSO will perform air monitoring during drilling and sampling activities.

PPE Requirements: Level D

Minimum - Steel toe/shank shoes or boots, standard field clothes. (If hard hats and safety glasses not worn, indicate why.)

Other: <u>Hard hat and safety glass to be worn in vicinity of drilling operations.</u> Rubber gloves to be worn during sampling activities.

Modified Level CPPE will be available on site and used if so determined by the SSO.

PPE Selection Criteria:

Upgrade to modified Level C PPE if HNU reading in the breathing zone is greater than 60 ppm.

PPE Decon/Disposal (if applicable):

Inspection - generated waste will be placed in plastic bags and disposed of properly.

Monitoring Equipment and Calibration Information:

HNU - Calibrate daily with known calibration gas.

OVA - Factor calibrated. Check for positive response with a marking pen.

Monitoring Equipment Selection Criteria:

HNU - 10.2 eV probe to scan for organic and inorganic vapor concentrations.

OVA - Used to monitor organic vapor concentrations.

Action Levels for Upgrading of PPE and/or Site Withdrawal:

Begin work in Level D and upgrade PPE as site conditions warrant.

Level D - <60 ppm reading on HNU in breathing zone.

Modified Level C - >60 ppm reading on HNU/OVA in breathing zone or if workers are affected by vapors.

ł

Note:

Incident Report, Site Safety Follow-up Report, and Site Map must be attached.

APPENDIX B

1

ĺ.

ł

1

i

BORING LOG

COORDINATES SURFACE ELEVATION	LIBURTON NUS onmental Corporation		BORI PRO. LOCA PRO. LOGO	NG/WELI IECT ATION I IECT NUI GED BY I	L NUMBE Franswe Roswell, MBER Basilio	R N Istern F New M 6250	1W-1 Pipeline (Mexico	Compar	SHE IY DAT	ET 1 OF 1
NOLT STREAM	SOIL DESCRIPTION	STRATA	Depth Feet	SAMF Sample Type	Sample	ORMA Inches Adv. / Inches Rec.	ATION Penetr- o <u>mete</u> r Blow Counts	PID/ FID (ppm)	~~~~~	WELL CONSTRUCTION DETAIL & REMARKS
CLAY - red, s less than 1/4- 6 inches, mos sewer odor CLAY - red, s moist, hole sl sanitary sewer CLAY - brick n occasionally h base CLAY - red w	andy, firm, occasional gravel inch, saturated red sand in top st likely hole slough, sanitary andy to silty, moderately firm, ough at top is saturated, red to brownish, firm to hard, silty to sandy, gypsum at ith hard gypsum nodules		5 10 15 20 30 35 40 45 55 60 65	SPT SPT SPT SPT SPT		18/18 18/18 18/ 0 18/ 0 12/12 12 12				
DRILLING CONTRACT DRILLER:	OR: SH & B Ed Adams	(\ F	DIAMET VELL SO FILTER F	ER, TYPE CREEN/IN PACK-INT	E & INTE ITERVAL ERVAL/	RVAL C : QUANT	OF CASIN	G: 4-i 0.(25	nch Sch)10 slot .2-68 ft	edule 40 PVC /28-68 ft BLS BLS/22 sacks
DRILLING METHOD: DRILLING EQUIPMENT	Hollow Stem Auger	١	VELL SI	EAL-INTE	RVAL/Q	JANTIT	Y:	24	.4-25.2	ft BLS

i.

İ.

\

APPENDIX C

GROUNDWATER SAMPLE LOG SHEET

R-48-09-2-003H

GROUND WATER SAMPLE LOG SHEET

MONITORING WELL DATA DOMESTIC WELL DATA OTHER

PROJECT NAME Transwestern, Roswell New Mexico PROJECT NUMBER 6250

NUS SAMPLE NO. ST.9 PIT

SOURCE Monitor Well Station 9 Pit

TOTAL WELL DEPTH: 6	8.16	PURGE DATA								
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. (* C)	TDS	COLOR & TURBIDITY			
4 inch casing (0.6	6) 68.16									
STATIC WATER LEVEL:	25.42									
ONE CASING VOLUME:	28.2									
START PURGE (HRS.):	1300									
END PURGE (HRS.):	1350]						
TOTAL PURGE TIME (M	IN.): 50 min									
TOTAL AMOUNT PURGED	(GAL.): 84.2									
MONITOR READING:				[
PURGE METHOD: Hand	Bailed									
SAMPLE METHOD:										
DEPTH METHOD:	_									
SAMPLE DATE & TIME:				Ş	SAMPLE DATA)				
09/21/92 1405		PH	S. C.	TEM	P.(*C)	TDS	COLOR & TURBIDITY			
SAMPLED BY:							Cloudy Yellow			
John Altieri		6.92		21 (c		Low Turbidity			
SI GNATURE(S):		OBSERVA	TI ONS/NOTE	S:						
		Upon	Upon measuring water it was observed to have a heavy							
			yer. Du	ring the	e purge of	this	well the oil			
TYPE OF	SAMPLE	taken	. For th	e rest	of the pu	rge th	e water had low			
	TION	turbi	dity with	a clou	dy blacki	sh yel	low color and a			
	(A I I UN	stron	g petrole	um odor	•					
COMPOSI TE										
GRAB - COMPOS										
ANALYSI S:	PRESERVATIVE									
		_								
		1								
		1								
		4								
		1								
		4								
		4								

APPENDIX D

i

CHAIN-OF-CUSTODY FORM

R-48-09-2-003H

											(CH	A	N O	F	ះបះ	ST	OD	Y					-	•
HA	LLIB	IR	TO	N NUS			14 L P	्ट्रस्ट				<u>_</u> 42		P No. 1		14 - E	3. P. S	Art v		150	00	1(42)			
En	vironme	nta	ĒČ	rporation	COLE	wr Ta	205	her	terns				COM	MMY											
					ADDR	\$ 281	N	Mai	N				ADDI	ess										EPOR	T TO ADDRESS ARE SA
-	DLEQE		œa	Y	CITY	Rasi	sell		SUTE N/	n ZP (36	14	CITY					510	E		ZIP		P	· /	250 DA
84840		2796			SI			Ŧ	PHONE #				ATT						PHON	E 4			R	LEASE	1
CT HALLE	ASTRE NAME				CLEN	COMMENT	s								Н	ALLIEC	FITCH	NUS C	ONBIE	NTS &	SAMPL	EIS			
alk	<u>Ics</u>	mo	آند	1=K												Ju.	,	A.A	Hi	er	ŝ				
201	Be:	ie.m	11	<u>></u>	A	. د.	n.M	leve	85 -	rorR	an	ile	he	J		T									
	-		5			بدا	KR11	nete	22		· · ·														
	x - X		÷.				2		WARRANTY	AND LI	ΠŴ	KOI	жu	BILT	Ŷ			<u>i</u> se estas			<u>स्ट</u> ाइट				
ervice o	r work perk	xmed	by H	LLIEURIRON MUS	AWA	MARENTAL	CORP	ORATION	is expressly a	ubject to (the folio	owing	provisi	on and	HALL	RIRR	W NU	Sidoe	s not a	igree i	to any	provisi	isai ac	isina	artict.
19UKKU Mance	IN NUS was of this cont	act a	inatiw Na ba	alifiated company	id in ac dicacto	cordance u L'officer au	ith sour Iokune	nd laborati accent or :	iory practice a subcontractor	ad accepts of HALLIE	ed anai Kentoi	lylical N NUS	proced Sishali	lunes, bi Jame ar	ut angle Milanai vi	85 h0 i 18500	n verdte resibili	vancao Iv basi	ly, eq under	neis c : whet	x impl heria	contrac	LUBU torio	TTON I 1. or ot	405 is solely responsible herwise. Liability for injur
getope	rsons or pro	porty	rising	out of this work (at	er than	for professio	onal en	COL COMESS	ions, or other j	noisession	al nogli	gence	which	SEB COM	ered b	(the n	50f 50f	dence	sial	bo lim	ited to	thé am	iunt co	vered b	y the general comprehen
ance car al ás cui	mind by HAL	LIBUE	CCON LITER	HUS, in the available INTOXENESS dealed	l'entor,	omission, o other i-shift	r ober p howieste	profession	al negligence	or any bra Hauf Bark	ach oli ach oli	the ab	CVB WR	intently, i whethe	he sol	and i tract	incicsi A sure	284 BM	ponsit	ility of	HALL	JBUR ()	DN HU	S shall Incide	be to reperions the defic vision of the second deficiency special demonstrations include
ot limite	d to, damaç	es in .	any w	by connected with	96 T28	or interpret	ation of	informatic	n or analysis	provided a	y HAL	LIBUS	TON I	USor	uith po	tion re	and i	o suct	1468 (edicii ho	rprotat	ion.			
		C								L S			as a	e	5	3		REO	EST	D AN	WYS	S - B	MIE	TYPE	
	ł	H	G		•					UT		/	47	R		71	/ /		/ /	[]			//	[]	
DATE	TME	0	8 A	SA	IPLE (OURCE &	DESCR	IPTION		B I		15	1	\mathcal{P}	/ 3	У.	/ /	[]		/ /	//	//	//	//	
	l I	Ĩ	в							EN		S.	Â	\$ /s	7/	//	/		//					//	//
									•	" A		۶, Y	19	1.9			/ /		/ /	/ /		/ /			REMARKS
		-		· · · · · · · · · · · · · · · · · · ·		_				S	<u>V 2</u>	<u> </u>	<u>~</u>	<u> </u>		<u> </u>		L_{-1}	\underline{L}				1_1		1
61h	145	-	xt.	monsita	<u>Ř</u>	Inel	1 11	H. 1!	"	8	X	- (7	Ĭ,	$\overline{\mathbf{x}}$	ÍÍ	\uparrow	ſ	ff	\uparrow	f	ſſ	Í	ſſ	\uparrow	(
51h	145	-	X	munito	<u></u>	wel	/ 11	Hill.		8	X	1	Ĩ	र्	Í		Í	$\left(\right)$	1	Ĺ	Ĥ		Ĥ	Í	FC apple
bih:	145		X	munito	Ř_	wel	/ n	Hill.		8	X	7		₹ Ţ				$\left[\right]$						Í	The applie
51h3	145		X	Murvita	×	wel	/ n	Hill .		8	X			₹ 											FC applie
Бір; —	145			Munita	8	wel	/ n	· Hī I!		8															to suple
	145			Murvita	8	wel.	/ n	<i>H</i> ill		<u>s</u>	X														FC apple to Suple
	145			inurite	×	wel.	/ 11	· #i!!		s s															FC apple to Suple
	1405			Murita	× 	we/.	/ "	<u> </u>		<u>s</u> <u>8</u>															Fee angle to suple yes no
				inurite	8	wel.	/ **	· #11		8															FC apple to Suple
				munite		wel.	/ *			\$ 8															FC apple to suple get nos
				inunita		isel.	/ N	· #11		\$ 8															FC apple to Suple
				Mureite	×	6.2el.	/ **																		FC apple to Suple
				<i>mu</i> vita		6	/ **																		The apple to suple yes no
				inunita		wel	/ **			s 8															FC apple to suple

T

APPENDIX E

ANALYTICAL LABORATORY REPORTS

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

CLIENT DUPLICATE

(A)	HALLIBURTON	NUS
	Environmental Corpe	ranon

and the

Environmental Laboratories

				October 01 Report No.: Section A	• 1992 00020808 Page 1
-			LABORATORY ANALYSIS REPORT		
	CLIE	NT NAME: ADDRESS:	ENRON GAS PIPELINE/TRANSMESTERN P.O. BOX 1717 ROSHELL, NH 88201-	NUS CLIENT NO: HORK ORDER NO: VENDOR NO:	0065 0044 55 580
	AT	TENTION:	LARRY CAMPBELL		
_	SA NEIS CA	WPLE ID:	STATION 9 - PIT	DATE SATPLED:	21-567-92
	ноз эн Р.	O. NO.:	E51201	APPROVED BY:	L Beyer
[LN	TEST Code	DETERMINATION	RESULT	UNIT
	1	OCUTVU			
	T	USATVN	ATTENDIA IA SERIVULALILES IN MALER	(73	ua/i
			1.2-Dichlorobenzene	< 33	ug/L
			1.3-Dichlorobenzene	< 33	ug/L
			1,4-Dichlorobenzene	< 33	ug/L
			2,4,5-Trichlorophenol	< 66	ug/L
			2:4:6-Trichlorophenol	< 33	ug/L
			2.4-Dichlorophenol	< 33	ug/L
-			2,4-Dimethylphenol	< 33	ug/L
			2.4-Dinitrophenol	< 160	ug/L
			2.4-Dinitrotoluene	< 33	ug/L
			2,6-Dinitrotoluene	< 33	ug/L
			2-Chloronaphthalene	< 33	ug/L
			2-Chiorophenoi	< 33 E1	ug/L
				10	ug/L
			2-methysphenos (0-tresos/	< 180	ug/L
			2-hitronhoo i	< 33	ug/L
			2-71 clopienti 3-31-Dichlorohenzidine	< 33 < 88	ug/L
			3-liethuinhenni	(33	
			3-Nitroaniline	< 160	ug/L
			4.6-Dinitro-2-methylohenol	< 160	ug/L
			4-Browophenvi phenvi ether	< 33	ug/L
			4-Chloro-3-methylphenol	< 33	ug/L
_			4-Chloroaniline	< 33	ug/L
			4-Chlorophenyl phenyl ether	< 33	ug/L
			4-Hethylphenol	250	ug/L
			4-Nitroaniline	< 160	uğ/L
			4-Nitrophenol	< 160	ug/L
			Acenaphthene	< 33	ug/L
			Acenaphthylene	< 33	ug/L

CLIENT DUPLICATE

HALLIBURTON NUS Environmental Corporation

Environmental Laboratories

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section A Page 2

LABORATORY ANALYSIS REPORT

CLIENT NAME:	ENRON GAS PIPELINE/TRANSMESTERN
SAMPLE ID:	STATION 9 - PIT
NUS SAMPLE NO:	H0219130

	TEST			
LN	CODE	DETERMINATION	RESULT	UNITS
			<i>.</i>	
		Acetophenone	C 33 (33	Ug/L
			(33)	ug/L
		Panzidina Danzidina	 33 180 	ug/L
			(33)	
		Ranzo (a) purene	 33 33 	ug/L
•		Ranzo(h)fluoranthana	(3) (3)	und
		Benzo (chi) berviene	< 33	ug/L
		Benzo(k)fluoranthene	(33)	ug/L
)		Benzoic Acid	< 160	ug/L
		Benzvi alcohol	< 33	ug/L
		Benzyl butyl phthalate	< 33	
l		Bis(2-Chloroethoxy)methane	< 33	ua/L
		Bis(2-Chloroethyl)ether	< 33	ug/L
		Bis(2-Chloroisopropyl)ether	< 33	ug/L
		Bis(2-Ethylhexyl)phthalate	< 33	ug/L
		Chrysene	< 33	ug/L
		Di-n-buthyl phthalate	< 33	ug/L
		Di-n-octyl phthalate	< 33	ug/L
		Dibenzofuran	< 33	ug/L
		Diethyl phthalate	< 33	ug/L
		Dimethyl phthalate	 < 33 	ug/L
		Fluoranthene	< 33	ug/L
		Fluorene	< 33	ug/L
		Hexachlorobenzene	< 33	ug/L
ļ		Hexachlorobutadiene	< 33	ug/L
		Hexachlorocyclopentadlene	< 33	ug/L
		Hexachloroethane	< 33	ug/L
		Indeno(1,2,3-cd)pyrene	< 33	ug/L
		Isophorone	< 33	ug/L
		N-Nitrosodimethylamine	< 33	ug/L
		N-Nitrosodiphenylamine	< 33	ug/L
•		Naphthalene	34	ug/L
		Nitrobenzene	< 33	ug/L
		Pentachlorophenol	< 160	ug/L
		Phenanthrene	< 33	ug/L
		Prienol.	< 33	ug/L
		Pyrene Sundata a	< 33	ug/L
1		ryriaine	· < 65	ug/L
CLEVEL	AND	• HOUSTON	•	PITTSBURG
(216) 891	1-4700	(713) 488-1810		(412) 747-25

ص د د

PITTSBURGH (412) 747-2580 Environmental Laboratories

CLIENT NAME: ENRON GAS PIPELINE/TRANSMESTERN

HALLIBURTON NUS Environmental Corporation

1.1.1

°c

(216) 891-4700

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

(412) 747-2580

.

CLIENT DUPLICATE

i.

i.

October 01, 1992 Report No.: 00020808 Section A Page 3

LABORATORY ANALYSIS REPORT

sai Nus sai	PLE ID: PLE NO:	STATION 9 - PIT H0219130		
LN	TEST Code	DETERMINATION	RESULT	UNITS
		n-Nitroso-di-n-neogu) 20100	(33	u n/ 1
3	OUTXU	APPENDIX IX UCLATTIES IN MATER		uyr c
•		1.1.1-Trichloroethane	180	ua/L
		1,1,2,2-Tetrachloroethane	< 30	ua/L
		1,1,2-Trichloroethane	< 30	uq/L
		1,1-Dichloroethane	560	ug/L
		1,1-Dichloroethene	< 30	ug/L
		1,2,3-Trichloropropane	< 30	ug/L
		1.2-Dichloroethane	< 30	ug/L
		1,2-Dichloropropane	< 30	ug/L
		1,4-Dichloro-2-butene	< 60	ug/L
		2-Butanone (MEK)	220	ug/L
		2-Chloroethylvinyi Ether	< 60	ug/L
		2-Hexanone	< 60	ug/L
		4-Hethyl-2-Pentanone (MIBK)	< 60	ug/L
		Acetone	< 60	ug/L
		Acrolein	< 600	ug/L
		Acrylonitrile	< 600	ug/L
		Benzene	370	ug/L
		Bromodichloromethane	< 30	ug/L
		Browoform	< 30	ug/L
		Bromomethane	< 60	ug/L
		Carbon disulfide	< 30	ug/L
		Carbon tetrachloride	< 30	ug/L
		Chlorobenzene	< 30	ug/L
		Chlorodibromomethane	< 30	ug/L
		Chloroethane	< 60	ug/L
		Chloroform	< 30	ug/L
		Chloromethane	< 60	ug/L
		Dibromomethane	< 30	ug/L
		Dichlorodifluoromethane	< 120	ug/L
		Ethanol	¥	ug/L
		Ethyl methacrylate	< 60	ug/L
		Ethylbenzene	110	ug/L
		Iodomethane (Methyl iodide)	< 60	ug/L
		Methylene chloride	< 30	ug/L
		P/N Xylene	820	ug/L
		Styrene	< 30	ug/L
		Tetrachloroethene	< 30	ug/L
CLEVEI	AND	• HOUSTON	•	PITTSBURG

(713) 488-1810

5350 Campbells Run Road 90 Pittsburgh, PA 15205 Ho

900 Gemini Avenue Houston, TX 77058

UNITS

CLIENT DUPLICATE

Ľ.

October 01, 1992 Report No.: 00020808 Section A Page 4

LABORATORY ANALYSIS REPORT

clie Sa NUS Sa	NT NAME: MPLE ID: MPLE NO:	ENRON GAS PIPELINE/TRANSMESTI STATION 9 - PIT H0219130	JRN	
LN	TEST CODE	[DETERMINATION	RESULT
		Toluene		61
		iricnioroethene		< 30

HALLIBURTON NUS Environmental Corporation

Environmental Laboratories

		Toluene	61	ug/L
		Trichloroethene	< 30	ug/L
		Trichlorofluoromethane	< 30	ug/L
		Vinyl acetate	< 60	ug/L
		Vinyl chloride	< 60	ug/L
		cis-1,2-Dichloroethene	< 30	ug/L
		cis-1,3-Dichloropropene	< 30	ug/L
		o-Xylene	120	ug/L
		trans-1,2-Dichloroethene	< 30	ug/L
		trans-1,3-Dichloropropene	< 30	ug/L
5	AASH	Arsenic, Total (As)	0.19	ng/L
6	ABAH	Barium, Total (Ba)	4.4	ng/L
7	ACDH	Cadmium, Total (Cd)	< 0.005	ng/L
8	ACRH	Chromium, Total (Cr)	0.01	∎g∕L
9	AHGH	Mercury, Total (Hg)	< 0.0002	ng/L
10	AAGH	Silver, Total (Ag)	< 0.01	ng/l .
11	APBN	Lead, Total (Pb)	< 0.05	ng/L
12	ASEN	Selenium, Total (Se)	< 0.003	ilg/L
13	16 85	Petroleum Hydrocarbons	37	IIG/L

COMMENTS: * This analyte was not detected by a computerized search of the chromatogram.

۰.

13. 18

٠

۰.

.

•

HALLIBURTON NUS Environmental Corporation **Environmental Laboratories**

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section B Page 1

NUS SAMPLE NO: H0219130

GUALITY CONTROL REPORT SUPPLEMENTAL INFORMATION

				SAMPLE	PREPARATION		SAMP	LE ANALYSIS	·
	TEST	PREP	LR-			LR-		AN	LS
. N	CODE	BATCH	METHOD	DATE/TIME	ANALYST	METHOD	ATE/TIME	analyst ba	TCH INSTRUMENT

APPLE ID: STATION 9 - PIT

,, ••

•。

	OSVIXH	26261	19-3520	23-SEP-92 0400 RD9	19-8270 25-5EP-92 1205 GNN 26145 GCNS
}	OVIXH	26366	NA		19-8240 25-SEP-92 1615 GBF 26278 GCMS
·	AASH	26313	19-7060	23-SEP-92 0930 TH	19-7060 24-SEP-92 2224 CMG 405M
	ABAN	26312	19-3010		19-6010 24-SEP-92 1215 JSP 400
·	ACDH	26312	19-3010	23-SEP-92 0900 TM	19-7130 24-SEP-92 1942 PBA 300M
	ACRH	26312	19-3010		19-6010 24-SEP-92 1405 JSP 400
•	AHGH	26333	NA		19-7470 24-SEP-92 1000 RAS 124
.0	AAGH	26313	19-7050		19-7760 26-SEP-92 1004 CHG 300M
1	APBN	26312	19-3010		19-6010 24-SEP-92 1405 JSP 400
2	ASEN	26313	19-7740		19-7740 24-SEP-92 1837 CMG 3058
3	1685	26286	02-418.1		02-418,1 22-SEP-92 1159 LJH 302

Method Literature Reference

<u>R</u> 2 EPA-Methods for Chemical Analysis of Water & Wastes, 1984.

EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986 9

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

October 01,	1992
Report No.:	00020808
Section C Pa	age 1

QUALITY CONTROL REPORT SURROGATE STANDARD RECOVERY

	LN	TEST Code	Surrogate Compound	PERCENT RECOVERY	ACCEPTANCE LINITS	ref Ln
SAMPLE	ID:	STATI	N 9 - PIT	NUS SAMPLE NO:	H0219130	
	2	\$BNAH	GC/MS BNA SURROGATES 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5	83 87 28 53 28	- - - -	1
	4	svoan	GC/MS VOLATILES SURROGATES 1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	53 102 109 98	-	3

٠

•

a* , 9 . **

HALLIBURTON NUS Environmental Corporation Environmental Laboratories

.....

25

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

October 01. 1992 Report No.: 00020808 Section D Page 1

<u>GUALITY CONTROL REPORT</u>

TEST CODE DETERMINATION	PERCENT RECOVERY	ACCEPTANCE LIMITS	
BATCH: 26286 SAMPLE ID: Lab Control Sample		NUS SAMPLE NO:	H0219864
1685 Petroleum Hydrocarbons	94.0	-	
1685 Petroleum Hydrocarbons	94.0	-	
BATCH: 26312 SAMPLE ID: Lab Control Sample		NUS SAMPLE NO:	H0219893
ABAM Barium, Total (Ba)	90.0	-	
ACDM Cadmium, Total (Cd)	106.0	-	
ACRH Chromium, Total (Cr)	95.0	-	
APBN Lead, Total (Pb)	96.0	-	
BATCH: 20313 SAMPLE ID: Lab Control Sample		NUS SAMPLE NO:	H0219895
AAGN Silver, Total (Ag)	105.0	-	
AASH Arsenic, Total (As)	115.0	-	
ASEM Selenium, Total (Se)	110.0	-	
BATCH: 26333 SAMPLE ID: Lab Control Sample		NUS SAMPLE NO:	H0219924
AHGH Hercury, Total (Hg)	95.0	-	

CLIENT DUPLICA

HALLIBURTON NUS Environmental Corporation Environmental Laboratories

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section E Page 1

QUALITY CONTROL REPORT METHOD BLANK DATA

	TEST				
	CODE	Determination		RESULT	UNITS
		-			
BAICH: 26261	SAMPLE	ID: Method Blank		NUS SAMPL	E NO: H0219836
	OSVIXH	APPENDIX IX SENIVOLATILES IN	I WATER		
		Di-n-buthyl phthalate		< 10	ug/L
		Di-n-octyl phthalate		< 10	ug/L
		Dibenzofuran		< 10	ug/L
		Diethyl phthalate		< 10	ug/L
		Dimethyl phthalate		< 10	ug/L
		Fluoranthene		< 10	ug/L
		Fluorene		< 10	ug/L
		Hexach1orobenzene		< 10	ug/L
		Hexachlorobutadiene		< 10	ug/L
		Hexachlorocyclopentadiene		< 10	ug/L
		Hexachloroethane		< 10	ug/L
		Indeno(1,2,3-cd)pyrene		< 10	ua/L
		1,2,4-Trichlorobenzene		< 10	ua/L
		1,2-Dichlorobenzene		< 10	ua/L
		1,3-Dichlorobenzene		< 10	ug/L
		1,4-Dichlorobenzene		< 10	ug/L
		2,4,5-Trichlorophenol		< 50	ua/L
		2.4.6-Trichlorophenol		< 10	ug/L
		2.4-Dichlorophenol		< 10	ug/L
		2.4-Dimethylphenol		< 10	um/1.
		2.4-Dinitroppenol		< 50	ug/L
		2.4-Dinitrotoluene		C 10	10/1
		2.8-Dinitrotoluene		C 10	un/l
		2-Chloronanhthalene		< 10	
		2-Chloconhenol	.•	1010	und
				 10 10 	
		2-Hettwindereie		< 10	
				< 5 0	
				< 10	ug/L
				< 10	ug/L
		4 The bity spice of the state o		< 10	ug/L
		2-Nitropolica		< 20 < 50	ug/L
		J-MILFUGHIIINE A-6-Dinitea-J-Mattulabasal		< 50	ug/L
				< 50 < 10	ugrt.
				< 10 < 10	ug/L
		Teophorone		< 10 C 10	
		A DUR NI VIIC Neditrocodimettrilariaa		< 10	un/l
		H HILL VOULECUIVIGENC		< 10	
		Hambers I and		× 10 2 10	ungr L.
		udit i pi i pi falla		< 10	
CLEVE		•	HOUSTON	•	PITTSBURGH

(216) 891-4700

(713) 488-1810

(412) 747-2580

** • > ...

CLIENT DUPLICATE

i.

1

i.

900 Gemini Avenue Houston, TX 77058

HALLIBURTON NUS Environmental Corporation Environmental Laboratories

44 . . .

5350 Campbells Run Road Pittsburgh, PA 15205

Octo	ber	01		19	2
Report	No.:		¢	000	20808
Sect	10 n	E	Pa	ige	2

QUALITY CONTROL	REPORT
METHOD BLANK	DATA

T	EST				
C	ODE	Determination		RESULT U	NITS
		Nitrobenzene		< 10 U	g/L
		Pentachlorophenol		< 50 u	ġ/L
		Phenanthrene		< 10 u	g/L
		Phenol		< 10 u	g/L
		Pyrene		< 10 u	g/L
		Pyridine		< 20 U	g/L
		n-Nitroso-di-n-propylamine		< 10 ບ	g/L
		3-Hethylphenol		< 10 u	g/L
		4-Chloroaniline		< 10 u	g/L
		4-Chlorophenyl phenyl ether		< 10 u	ğ ⁄۱ .
		4-Nitroaniline		< 50 U	g/L
		4-Nitrophenol		< 50 u	ġ⁄۱.
		Acenaphthene		< 10 u	g/L
		Acenaphthylene		< 10 u	g/L
		Acetophenone		< 10 u	g/L
		Aniline		< 10 u	g/L
		Anthracene		< 10 u	g/L
		8 e nzidin e		< 50 u	g/L
		Benzo(a)anthracene		< 10 u	g/L
		Benzo(a)pyrene		< 10 u	g/L
		Benzo(b)fluoranthene		< 10 u	g/L
		Benzo(ahi)perviene		< 10 u	g/L
		Benzo(k)fluoranthene		< 10 u	q/L
		Benzoic Acid		< 50 u	a/L
		Benzvi alcohol		< 10 u	م م/ل
		Benzvi butvi ohthalate		< 10 u	م/L
		Bis(2-Chloroethoxy)methane		< 10 u	g/L
		Bis(2-Chloroethyl)ether		< 10 u	a/L
		Bis(2-Chloroisopropyl)ether		< 10 u	a/L
		Bis(2-Ethvinexvi)phthalate		< 10 u	a/L
		Chrysene		< 10 u	g/L
TCH: 26 286	SAMPLE ID	: Method Blank		NUS SAMPLE NO	: H0219865
I	685	Petroleum Hydrocarbons		< 0.2	g/L
I	685	Petroleum Hydrocarbons		< 0.2	g/L
TCH: 26312	SAMPLE ID	: Method Blank		NUS SAMPLE NO	: H0219894
A	BAN	Barium, Total (Ba)		< 0.1	g/L
A	CDW	Cadmium, Total (Cd)		< 0.005	g/L
A	CRM	Chromium: Total (Cr)		< 0.01	g/L
A	PBN	Lead, Total (Pb)		< 0.05	g/L
CLEVELA	ND	•	HOUSTON	• PIT	TSBURGH

(216) 891-4700

HOUSTON (713) 488-1810

PITTSBURGH (412) 747-2580

i.

HALLIBURTON NUS Environmental Corporation Environmental Laboratories

.

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

Octo	xber	01	1, 19)92
Report	No.:	:	000	120808
Sect	100	Ε	Page	3

	TEST	Determination	RESULT	UNITS
BATCH: 26313	SAMPLE	ID: Method Blank	NUS SAMP	LE NO: H0219896
	AAGM	Silver, Total (Ag)	< 0.01	sg/L
	AASH	Arsenic, Total (As)	< 0.003	ng/L
	ASEM	Selenium, Total (Se)	< 0.003	ng/L
Batch: 26366	SAMPLE	ID: Method Blank	NUS SAMP	LE NO: H0219963
	OVIXH	APPENDIX IX VOLATILES IN WATER		
		1,1,1-Trichloroethane	< 5	ug/L
		1,1,2,2-Tetrachloroethane	< 5	u g/L
		1,1,2-Trichloroethane	< 5	ug/L
		1,1-Dichloroethane	< 5	ug/L
		1,1-Dichloroethene	< 5	ug/L
		1,2,3-Trichloropropane	< 5	ug/L
		1,2-Dichloroethane	< 5	ug/L
		1,2-Dichloropropane	< 5	ug/L
		1.4-Dichloro-2-butene	< 10	ug/L
		2-Butanone (MEK)	< 10	ug/L
		2-Chloroethylvinyl Ether	< 10	ug/L
		2-Hexanone	< 10	ug/L
		4-Methyl-2-Pentanone (MIBK)	< 10	ug/L
		Acetone	< 10	ug/L
		Acrolein	< 100	ug/L
		Acrylonitrile	< 100	ug/L
		Benzene	< 5	ug/L
		Bromodichioromethane	< 5	ug/L
		Bromoform	< 5	ug/L
		Browoaethane	< 10	ug/L
		Carbon disulfide	< 5	ug/L
		Carbon tetrachloride	< 5	ug/L
		Chlorobenzene	< 5	ug/L
		Chlorodibromomethane	< 5	ug/L
		Chloroethane	< 10	ug/L
		Chloroform	< 5	ug/L
		Chloromethane	< 10	ug/L
		Dibromomethane	< 5	ug/L
		Dichlorodifluoromethane	< 20	ug/L
		Ethanol	×	ug/L
		Ethyl methacrylate	< 10	ug/L
		Ethylbenzene	< 5	ug/L
		Iodomethane (Methyl iodide)	< 10	ug/L
CLEVE		HOUSTON	•	PITTSBURGH

QUALITY CONTROL REPORT METHOD BLANK DATA

•• • • •

(216) 891-4700

HOUSTON (713) 488-1810 PITTSBURGH (412) 747-2580

Ì.

** ** * *5

HALLIBURTON NUS Environmental Corporation Environmental Laboratories

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section E Page 4

GUALITY CONTROL REPORT METHOD BLANK DATA

TEST	Determination	REGIL T	INTTS
	₽₽₽₽₩₩₩₩₩₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		
	Methylene chloride	< 5	ug/L
	P/N Xylene	< 5	ug/L
	Styrene	< 5	ug/L
	Tetrachloroethene	< 5	ug/L
	Toluene	< 5	ug/L
	Trichloroethene	< 5	ug/L
	Trichlorofluoromethane	< 5	ug/L
	Vinyl acetate	< 10	ug/L
	Vinyl chloride	< 10	ug/L
	cis-1,2-Dichioroethene	< 5	ug/L
	c1s-1,3-Dichloropropene	< 5	ug/L
	o-Xylene	< 5	ug/L
	trans-1,2-Dichloroethene	< 5	ug/L
	trans-1.3-Dichloropropene	< 5	ug/L
* This analyte was not	detected by a computerized search of the chromatogram.		-

CLIENT DUPLICATE

HALLIBURTON NUS Environmental Corporation Environmental Laboratories 5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section F Page 1

NUS SAMPLE NO: H0219130

QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE DATA

BATCH: 26313

0.20	*
0.04	20.0
< 0.003¥	
	0.20 0.04 < 0.003*

BATCH: 26312

NUS SAMPLE NO: H0219127

TEST Abah Acdh * Reco	DETERMINATION Barium, Total (Ba) Cadmium, Total (Cd) Every of the spike indicates the press	ORIGINAL <u>RESULT</u> < 0.1 < 0.005 Mice of a mat	DUPLICATE RESULT < 0.1 < 0.005 trix interferen	UNITS Ng/L Ng/L ence.	Range / <u>RPD</u> 	UNITS Mg/L Mg/L	MS <u>RESULT</u> 1.9 0.027 *	HS Z <u>RCVRY</u> 95.0 54.0
inis s	mould be considered in evaluating the	e data.						
ACRN	Chromium, Total (Cr)	0.01	0.01	∎g/L	0.0	ng/L	0.20	95.0
APBN	Lead, Total (Pb)	< 0.05	< 0.05	ng/L		Ng/L	0.48	96.0

BATCH:	26333						NUS SAMP	LE NO: H021	9127
<u>test</u> Ahgh	<u>DETERMINATION</u> Mercury, Total	(Hg)	ORIGINAL <u>RESULT</u> < 0.0002	DUPLICATE <u>RESULT</u> < 0.0002	UNITS Ng/L	RANGE / <u>RPD</u>	UNITS Ng/L	HS <u>RESULT</u> 0.0037	MS Z <u>RCVRY</u> 92.5

CLEVELAND (216) 891-4700 HOUSTON (713) 488-1810 PITTSBURGH (412) 747-2580

.....