GW - 72

MONITORING REPORTS

1997 1997

FINAL

SEPTEMBER 1997 GROUNDWATER SAMPLING REPORT HOBBS, NEW MEXICO FACILITY

BJ SERVICES COMPANY, U.S.A.

JANUARY 8, 1998

FINAL SEPTEMBER 1997 GROUNDWATER SAMPLING REPORT HOBBS, NEW MEXICO FACILITY BJ SERVICES COMPANY, U.S.A.

Prepared for

BJ Services Company, U.S.A. 8701 New Trails Drive The Woodlands, Texas

BC Project Number: 2832.12

Richard L. Rexroad
Senior Geologist

January 5, 1998

Brown and Caldwell

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

[&]quot;This is a draft report and is not intended to be a final representation of the work done or recommendations made by Brown and Caldwell. It should not be relied upon; consult the final report."

CONTENTS

1.0	INTRODUCTION	. 1
2.0	GROUNDWATER SAMPLING AND ANALYSES 2.1 Groundwater Measurements and Sampling 2.2 Results of Groundwater Analyses	. 2
3.0	REMEDIATION SYSTEM	. 5
4.0	CONCLUSIONS AND RECOMMENDATIONS	. 8
DISTE	RIBUTION AND QA/QC REVIEWER'S SIGNATURE	
FIGU	RES	
1 2 3 4	Site Map Potentiometric Surface Map for September 11-12, 1997 Benzene Isoconcentration and Total BTEX Distribution Map for September 11-12, 1997 Total Petroleum Hydrocarbons Distribution Map for September 11-12, 1997) 7
TABL	ES	
1 2 3 4	Site Chronology Cumulative Groundwater Elevation Data Field Screening Results for Groundwater Samples Cumulative Analytical Results for Groundwater Samples	
APPE	NDICES	
A B	Groundwater Sampling Forms Laboratory Analytical Report for Groundwater Samples	

1.0 INTRODUCTION

Brown and Caldwell conducted field activities associated with the September 1997 quarterly groundwater sampling event at BJ Services Company, U.S.A. (BJ Services) facility located at 2708 West County Road, in Hobbs, New Mexico. The facility layout is shown in Figure 1.

The facility formerly operated an above-grade on-site fueling system. Subsurface impact near the fueling system from a diesel fuel release was first detected by the New Mexico Oil Conservation Division (OCD) during an on-site inspection on February 7, 1991. The fueling system was taken out of operation in July 1995. As the result of the diesel fuel release, the New Mexico OCD has required a quarterly groundwater monitoring program to assess the hydrocarbon constituents in the groundwater. A biosparging system was fully activated in November 1995 to remediate soil and groundwater at the facility. A site chronology detailing the history of the fueling system, the groundwater recovery system, and the previous sampling events is presented on Table 1.

During the September 1997 sampling event, groundwater samples were collected and analyzed for gasoline and diesel range total petroleum hydrocarbons (TPH), and for benzene, toluene, ethylbenzene, and total xylenes (BTEX). This report presents the results of the groundwater sampling event, a description of the field activities, and a summary of the analytical results. Also included is a groundwater potentiometric surface map, a benzene concentration map, and a hydrocarbon distribution map.

2.0 GROUNDWATER SAMPLING AND ANALYSES

Brown and Caldwell purged and sampled the groundwater monitoring wells at the facility on September 11-12, 1997 to determine concentrations of dissolved-phase hydrocarbons in groundwater. The following subsections describe the activities conducted during this sampling event and present the results of the groundwater analyses.

2.1 Groundwater Measurements and Sampling

Ten monitoring wells were sampled during the September 1997 sampling event. A site map depicting the locations of the monitoring wells is presented as Figure 1. As noted in previous sampling reports, monitoring well MW-2 can not be located and is assumed to have been destroyed during facility activities such as grading.

Groundwater level measurements were obtained from the monitoring wells prior to purging and sampling the wells. The groundwater levels were obtained with an oil/water interface probe and recorded to the nearest 0.01 foot. A cumulative table of groundwater elevation data is presented on Table 2. The groundwater elevation data indicates that the general groundwater flow direction is toward the east and northeast with a hydraulic gradient of 0.01 ft/ft. A potentiometric surface map is presented in Figure 2. Measurable thickness of phase-separated hydrocarbons was detected in monitoring wells MW-1 (0.51 ft) and MW-4 (0.15 ft) during this sampling event.

Groundwater samples were collected after purging the wells with a submersible pump to remove at least three well volumes of groundwater. Field parameter measurements for pH, conductivity, and temperature were collected after each well volume was purged. Two consecutive readings within five percent were used to indicate that groundwater had stabilized. The parameters in each monitoring well typically stabilized after two well volumes had been removed; however, at least three well volumes were removed from each well.

Additional groundwater parameters were measured during the purging and sampling activities to assess the potential for natural attenuation. These parameters were dissolved oxygen (DO), dissolved ferrous iron, and reduction-oxidation potential (redox). The field parameter readings were recorded in the field log book and are listed on the groundwater sampling forms included in Appendix A. The field screening results for groundwater samples are presented on Table 3.

Following recovery, groundwater samples were collected from each monitoring well using a new, 3-foot long, 1/2-inch I.D., disposable polyethylene bailer. Each sample was transferred to laboratory-prepared, clean glass or plastic containers sealed with Teflon®-lined lids, labeled, and placed on ice in an insulated cooler for shipment via overnight courier to the analytical laboratory. Each cooler was accompanied by completed chain-of-custody documentation.

The field measurement equipment was decontaminated prior to and after each use. Decontamination procedures consisted of washing with fresh water and a non-phosphate detergent and rinsing with deionized (DI) water. Purged water and excess water generated by equipment cleaning operations were placed into 55-gallon drums and transferred to the on-site drum staging area located in the northeast corner of the facility for classification and future disposal by BJ Services.

2.2 Results of Groundwater Analyses

Groundwater samples collected during this sampling event were analyzed for BTEX by EPA Method 5030/8020 and for TPH by EPA Method 8015 Modified for gasoline and diesel. Current and cumulative analytical results for BTEX and TPH gasoline and diesel are presented in Table 4.

BTEX constituent concentrations in excess of applicable laboratory detection limits were reported in 7 of the 10 groundwater samples obtained during this sampling event. Benzene concentrations were below the New Mexico Water Quality Control Commission Standard of 0.01 milligrams per liter (mg/L) in monitor wells MW-5, MW-7, MW-8, and MW-9. Figure 3 presents a benzene isoconcentration and total BTEX distribution map for the September 1997 sampling event. A total

petroleum hydrocarbons distribution map for the September 1997 sampling event is presented in Figure

4. The laboratory analytical report and chain of custody record for the groundwater samples are included in Appendix B.

It appears that natural attenuation of dissolved phase BTEX is occurring in the vicinity of monitor wells MW-10 and MW-11. The primary evidence of natural attenuation is plume behavior; concentrations of dissolved phase BTEX have stabilized subsequent to removal of a field waste tank (see Figure 1) in March 1997. Furthermore the following lines of geochemical evidence suggest that intrinsic bioremediation, an important natural attenuation mechanism, is occurring:

- 1. DO concentrations measured in monitor wells MW-10 and MW-11 are depressed relative to background. The respective DO concentrations of 0.65 mg/L and 1.80 mg/L measured in monitor wells MW-10 and MW-11 are less than the measured DO concentrations of 5.44 mg/L and 2.62 mg/L in monitor wells MW-5 and MW-8, respectively, which are upgradient or cross-gradient wells believed to exhibit background conditions.
- 2. Ferrous iron concentrations of 9.4 mg/L and 3.2 mg/L were recorded in monitor wells MW-10 and MW-11, respectively. Ferrous iron was not detected in any of the other monitor wells. When DO becomes depleted, anaerobic microbes which utilize other electron acceptors become active. Ferrous iron is the reduction product of ferric iron, a common electron acceptor.
- 3. Oxidation-reduction potential (E_h) measurements of -108.9 millivolts (mV) and -73.8 mV were observed in monitor wells MW-10 and MW-11, respectively. These values are slightly below the theoretical E_h of -50 mV for ferric iron reduction, which indicates that iron reduction is occurring.

It is recommended that monitoring continue in this area, and that other geochemical analyses be performed in subsequent sampling events. Specifically, nitrate, sulfate, dissolved methane, and alkalinity should be measured, in addition to the current suite of geochemical parameters.

3.0 REMEDIATION SYSTEM

Brown and Caldwell submitted a Remedial Action Plan (RAP) to the New Mexico OCD in May 1994. Based on the results of previous investigations conducted by Brown and Caldwell and Roberts/Schornick and Associates, Inc. (RSA), Brown and Caldwell recommended the installation of a biosparging system. The biosparging system simultaneously treats contaminants adsorbed directly to the soil (i.e., residual) as well as contaminants present in soil moisture (i.e., dissolved phase) within the capillary fringe and vadose zone. Additionally, the biosparging system removes volatile contaminants from the saturated zone. The biosparging system operates by injecting air into the saturated zone and extracting air from the vadose zone through a network of wells and piping. The continuous flushing of air through the saturated zone increases the dissolved oxygen concentration in the groundwater and in soil moisture present in the capillary fringe and vadose zone. The elevated dissolved oxygen content facilitates the activities of indigenous microorganisms to accelerate biodegradation of the contaminants. The flushing of the air also strips the volatile and semivolatile contaminants.

The New Mexico OCD approved the RAP on August 11, 1994. The installation of the biosparging system was conducted between August 2 through 24, 1995. Nineteen combined injection/extraction wells, three vacuum extraction wells, associated piping, and one extraction blower and one injection blower were installed. An additional vapor extraction well, VE-4, was installed and connected to the vapor extraction system in April 1997. The vapors recovered during the extraction process are discharged to the atmosphere in accordance with the State of New Mexico Air Quality Regulations.

During the system startup operations, effluent air samples were collected on a monthly basis from the recovered vapors to monitor the bioremediation process and emission rate. Upon receiving a determination from the State of New Mexico that an air permit is not required, effluent air samples have been collected voluntarily on a quarterly basis. The air samples were analyzed for TPH using EPA Method Modified 8015A (Air) and for total volatile aromatic hydrocarbons (BTEX) using EPA Method 5030/8020 (modified). The analytical results demonstrate a significant reduction in hydrocarbon vapor concentrations and emissions rates since November 1995. Total BTEX concentrations have decreased from 391 parts per million by volume (ppmv) in November 1995 to W:\BJSERV\2832\025R.DOC

17.3 ppmv in July 1997. The corresponding BTEX emissions have decreased from 0.77 lb/hour to 0.03 lb/hour. TPH concentrations have decreased from 1,870 ppmv in November 1995 to 65 ppmv in July 1997. The corresponding TPH - Volatile Organic Compound (VOC) emissions rates have decreased from 3.21 lb/hour to 0.08 lb/hour. These emission rates are well below the regulatory limit of 10 lb/hour for VOCs. Therefore, a field monitoring instrument utilizing a flame ionization detector (FID) was used during the September 1997 monitoring event to measure the VOC concentration in the vapors. The VOC measurements are equivalent to TPH concentrations previously determined in the analytical laboratory. The VOC concentration measured using the FID was 340 ppmv. A cumulative summary of analytical results for air emissions monitoring is included in Table 5. These results are based on both laboratory and field analyses.

Adjustments were made in air injection and extraction rates within the biosparging system following the March 1997 groundwater sampling event in order to direct air flow into recalcitrant areas of the subsurface. Specifically, vapor extraction well VE-4 was added, and flow rates were increased in the upgradient and central portions of the plume, in the area of monitor wells MW-4, MW-1, and MW-3. The vapor extraction system is currently operating at an average flow of 150 cubic feet per minute (cfm) at 120°F. The air injection system is operating at an average flow of 32 cfm at 5 pounds per square inch (psi) at 176°F. Total VOC emissions of 0.39 lb/hr were calculated for the September 1997 monitoring event.

Review of data presented in Table 4 indicates that concentrations of benzene and total BTEX have decreased in monitor wells MW-7, MW-8 and MW-10, located in the downgradient portion of the plume, during the time period from the start-up of the biosparging system in November 1995 to the present. Reductions in benzene, total BTEX, and TPH concentrations have occurred between June 1997 and September 1997 in monitor wells MW-1 and MW-3, which are located in the central portion of the plume. The increase in hydrocarbon concentrations observed in monitor well MW-4 during the period from June 1997 to September 1997 may be attributed to modifications to air injection and extraction rates made in March 1997 and to the addition of vapor extraction well VE-4, which was installed in April 1997. Such increases are anticipated during operation of the biosparging system, as

air flow is redirected into areas of the subsurface that were only minimally affected previously by the operation of the remedial system. Samples collected from monitor wells MW-9 and MW-11 exhibited increases in BTEX concentrations relative to the previous sampling event. Fluctuations in concentrations have been previously observed in site monitor wells over the course of remediation. These fluctuations may be attributed to the presence of PSH, which acts as a continuing source of dissolved phase BTEX. These fluctuations are likely to continue until the PSH is removed through a combination of passive recovery and volatilization by sparging and soil vapor extraction.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on information obtained during the September 1997 quarterly groundwater sampling event.

4.1 Conclusions

- Groundwater flow was to the east and northeast at an average hydraulic gradient of 0.01 ft/ft.
- Dissolved benzene concentrations monitor wells MW-1 and MW-3, which are located in the central portion of the plume, have not decreased since the biosparging system was activated in September 1995.
- Dissolved benzene concentrations have generally decreased in all remaining monitor wells since the biosparging system was activated in September 1995.
- Benzene concentrations in monitor wells MW-5, MW-7, MW-8, and MW-9 are below the New Mexico Water Quality Control Commission standard of 0.01 mg/L.
- Modifications to air injection and extraction rates were made in March 1997 to apply increased air flow to the central portion of the plume, and vapor extraction well VE-4 was installed upgradient of monitor well MW-4 in April 1997.
- Substantial reductions in hydrocarbon air emissions have been made during the period from November 1995 to September 1997. The current emissions rate is 0.39 lb/hr TPH.
- Phase separated hydrocarbons continue to be present in monitor wells MW-1 and MW-4. The
 thickness of phase separated hydrocarbons increased in monitor well MW-1 and decreased in
 monitor well MW-4 during the time period from June 1997 to September 1997.

4.2 Recommendations

- Continue the quarterly groundwater sampling program and the operation and maintenance of the biosparging system.
- Continue monitoring hydrocarbon emissions on a quarterly basis using a field FID and discontinue analysis of air emissions samples in an analytical laboratory.

- Nitrate, sulfate, dissolved methane, and alkalinity should be added to the current suite of geochemical parameters.
- Recommence free product recovery as needed in monitor wells MW-1 and MW-4.

DISTRIBUTION

Final September 1997 Groundwater Sampling Report BJ Services Company, U.S.A. Hobbs, New Mexico

January 5, 1998

1 copy to: State of New Mexico

Energy, Minerals, and Natural Resources Dept.

Oil Conservation Division

Post Office Box 2088, State Land Office Building

Santa Fe, New Mexico 87504

Attention: Mr. Mark Ashley

1 copy to: State of New Mexico

Oil Conservation Division, Hobbs District Office

Post Office Box 1980 Hobbs, New Mexico 88240

Attention: Mr. Wayne Price

1 copy to: BJ Services Company, U.S.A.

8701 New Trails Drive

The Woodlands, Texas 77381

Attention: Ms. Jo Ann Cobb

1 copy to: BJ Services Company, U.S.A.

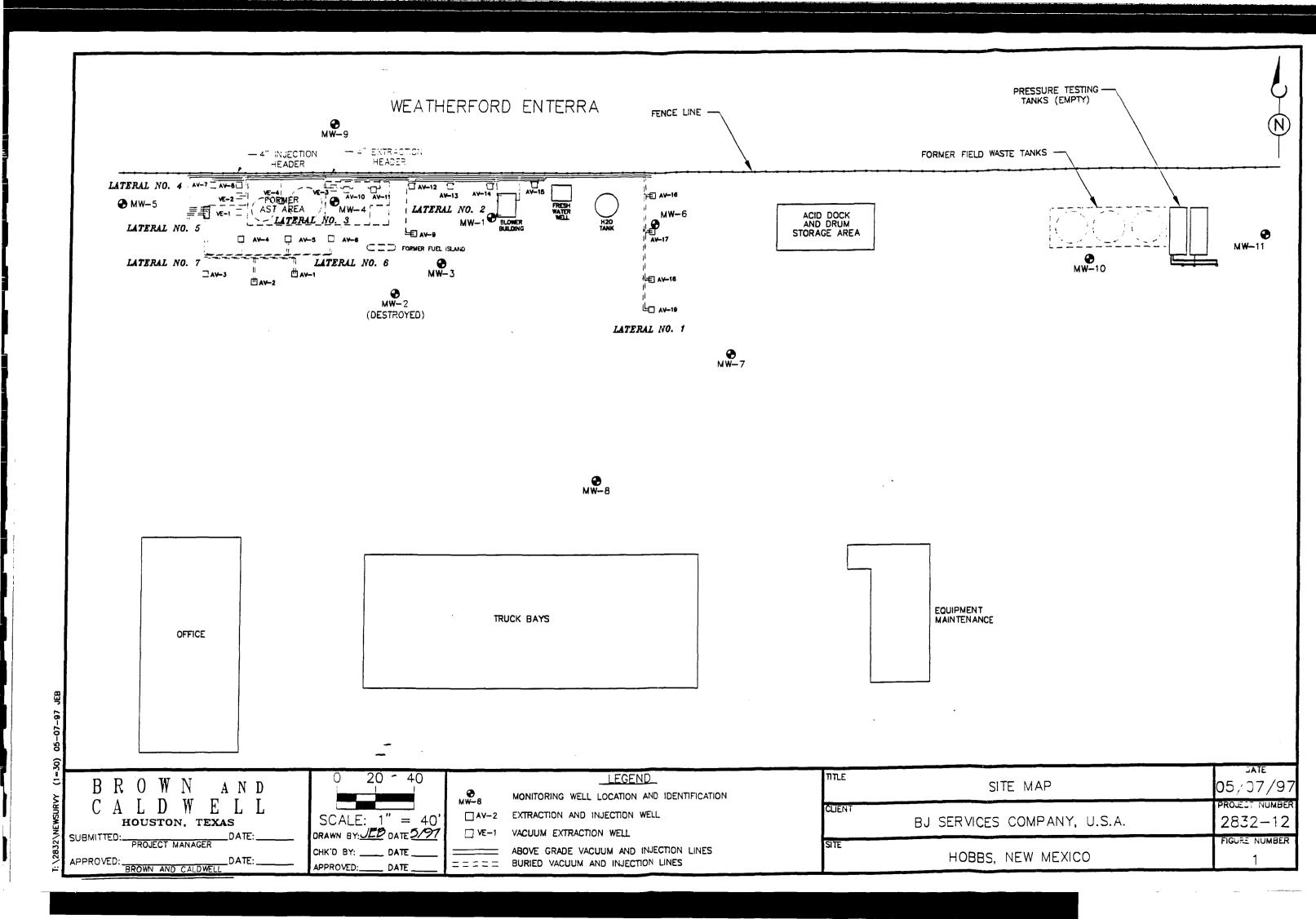
2708 West County Road Hobbs, New Mexico 88240

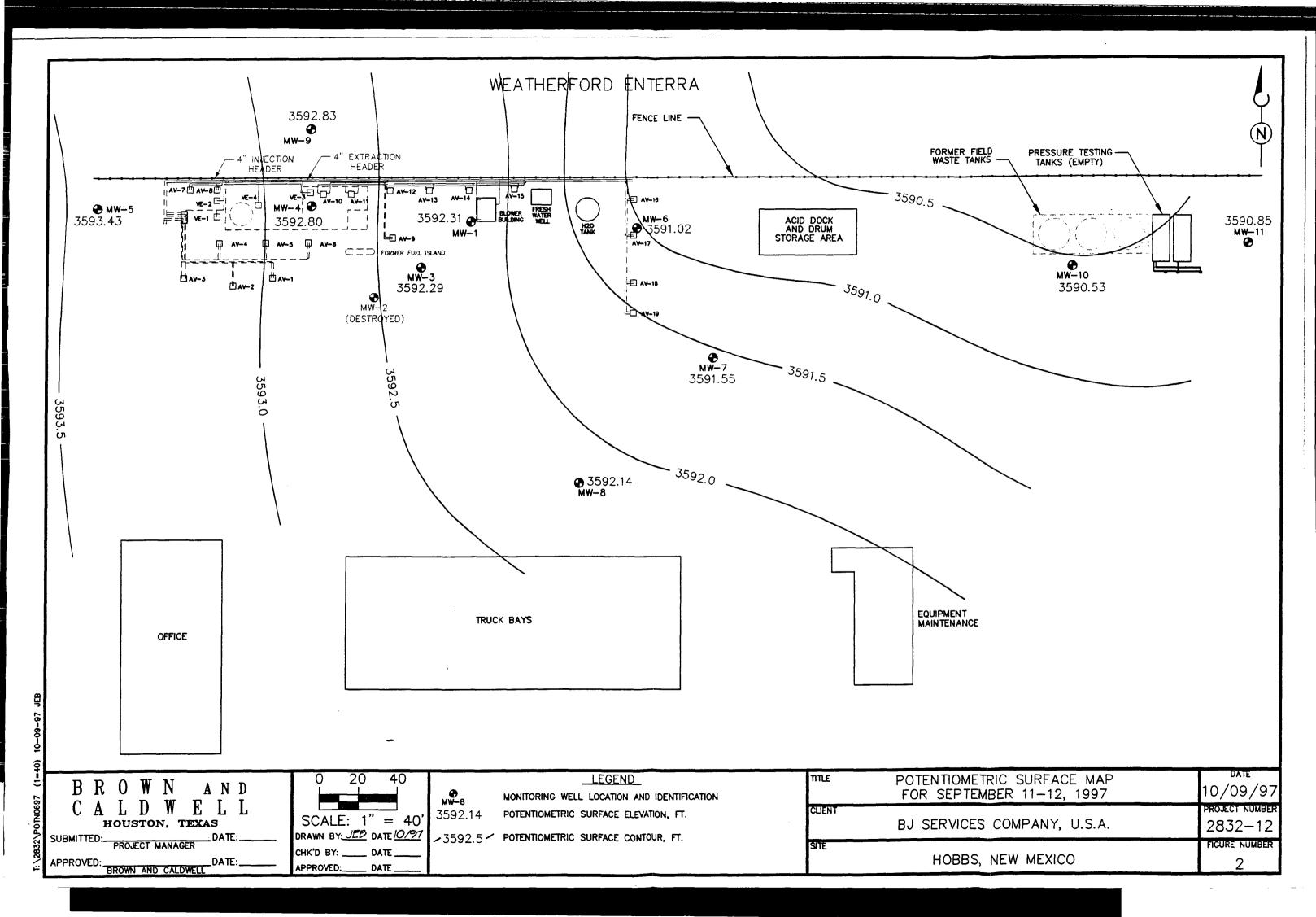
Attention: Mr. Clint Chamberlain

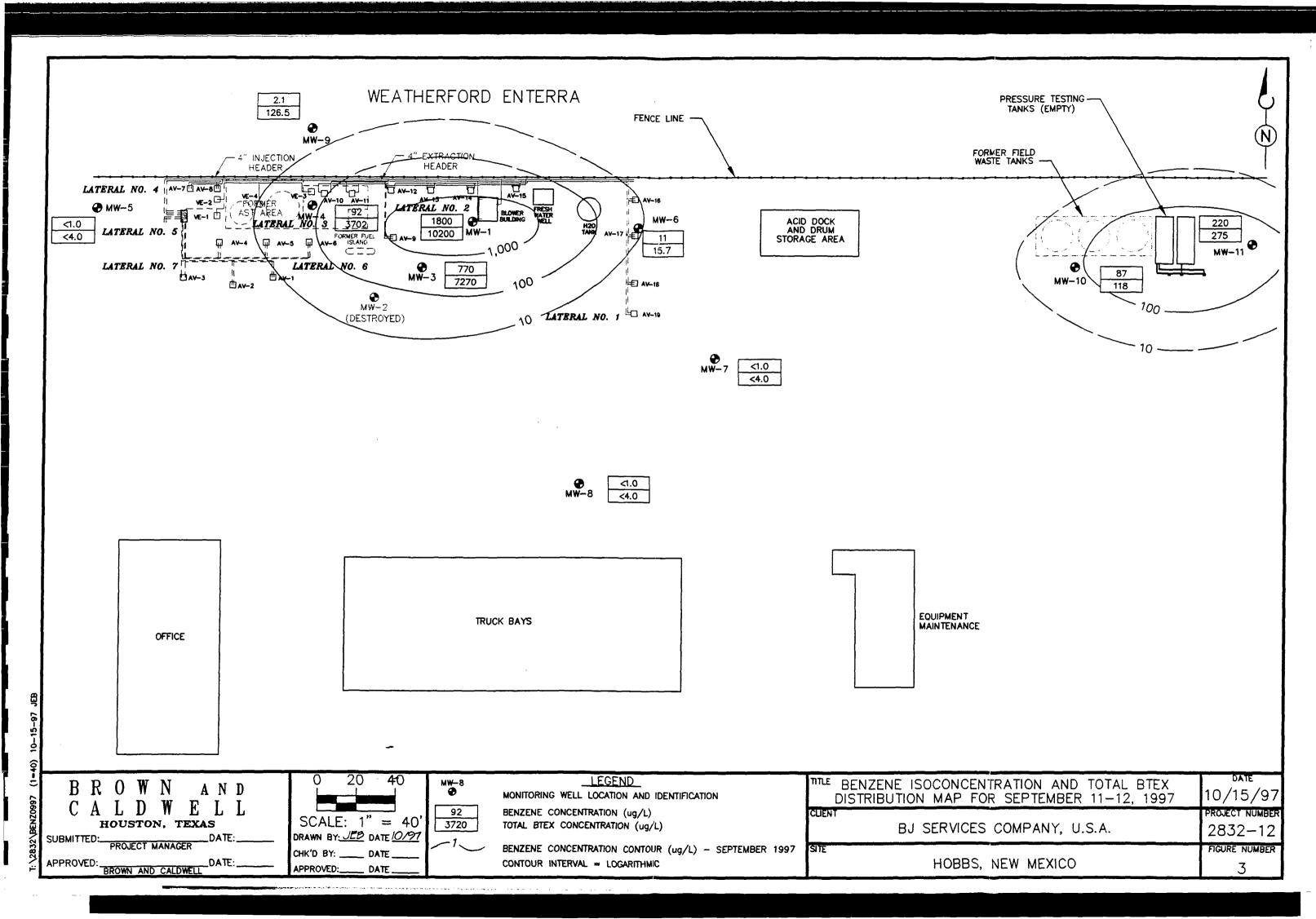
1 copy to: Brown and Caldwell, Project File

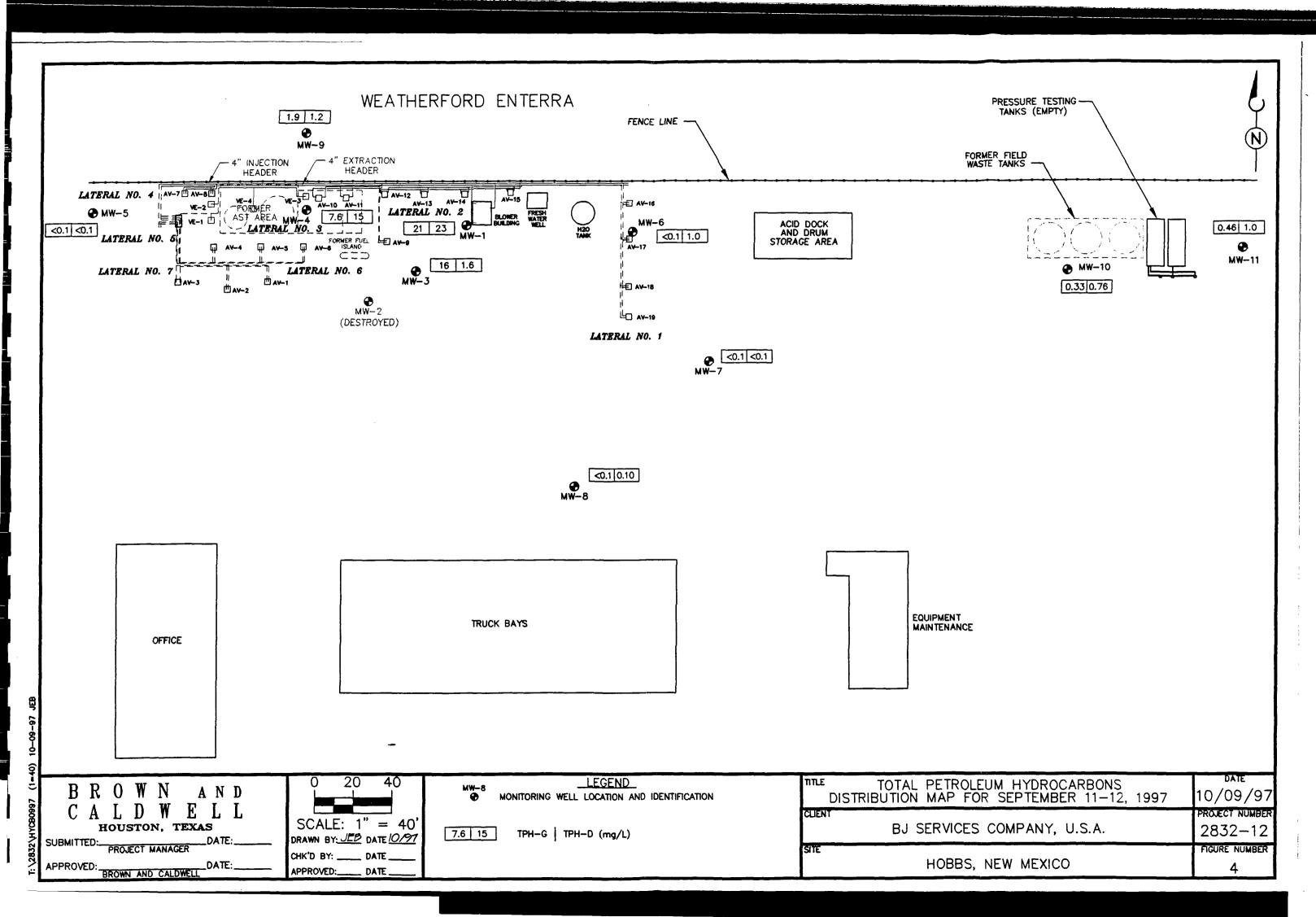
QUALITY CONTROL REVIEWER

Robert N. Jennings, P.E.


Vice President


RLR/uak


FIGURES


W:\BJSERV\2832\025R.DOC

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

TABLES

W:\BJSERV\2832\025R.DOC

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

Table 1 Site Chronolgy BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
February 7, 1991	The State of New Mexico Oil Conservation Division (OCD) conducted an on-site inspection, including sampling of the on-site fresh water well.
August 6, 1991	OCD requested submittal of an investigation work plan.
September 5, 1991	Roberts/Schornick and Associates, Inc. (RSA) submitted Technical Work Plan for soil and groundwater investigation to the OCD.
November 15, 1991	The OCD approved Technical Work Plan submitted by RSA.
December 16, 1991	RSA sampled the fresh water well. Analytical results were submitted to the OCD.
February 21, 1992	Western sampled the fresh water well. Analytical results were submitted to the OCD.
July 29 -	Brown and Caldwell conducted a soil and groundwater investigation
August 10, 1992	according to the approved Technical Work Plan. Investigation included drilling and sampling 9 soil borings, sampling 6 hand-augured soil borings, the installation and sampling of 5 monitoring wells, and the sampling of the fresh water well.
October 12, 1992	Brown and Caldwell submitted Soil and Groundwater Investigation Report to the OCD.
December 2, 1992	The OCD requested the installation and sampling of 4 additional monitoring wells, including a monitoring well on an adjacent property.
April 13, 1993	Brown and Caldwell conducted a vapor extraction pilot test on existing groundwater monitoring wells.
April 15, 1993	Brown and Caldwell installed off-site monitoring well.
April 22, 1993	Brown and Caldwell sampled off-site monitoring well.
May 27, 1993	Brown and Caldwell submitted a letter report documenting the installation and sampling of the off-site monitoring well to the OCD.
June 2, 1993	Brown and Caldwell conducted a short-term aquifer test using the fresh water well at the facility.
June 8, 1993	USTank Management, Inc. conducted a non-volumetric tank system tightness test on the diesel and unleaded gasoline aboveground storage tanks at the facility.
June 21, 1993	ENSR Consulting and Engineering (ENSR), the environmental consultant of the adjacent property owner on which the off-site well is located, submitted a request to sample the off-site monitoring well.

Table 1 (Continued) Site Chronolgy BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
July 15, 1993	ENSR split one groundwater sample, collected from the off-site monitoring well, with Brown and Caldwell.
July 30, 1993	USTank Management, Inc. submitted the tank tightness test report to Brown and Caldwell. The report indicated that both tanks and their associated piping passed.
August 16-19, 1993	Brown and Caldwell installed two additional downgradient monitoring wells. Brown and Caldwell sampled each of the existing monitoring and the newly installed monitoring wells.
January 26, 1994	Brown and Caldwell performed groundwater monitoring event; existing monitoring wells and the fresh water well were purged and sampled. Groundwater samples were analyzed for BTEX.
May 6, 1994	Remedial Action Plan (RAP) submitted to the OCD.
August 11, 1994	RAP approved by the OCD.
May 3, 1995	Brown and Caldwell conducted the May 1995 groundwater sampling event.
July 31, 1995	Brown and Caldwell conducted the July 1995 groundwater sampling event.
August 2-9, 1995	Installation of biosparging system was initiated. Nineteen combined injection/extraction wells and three vacuum extraction wells were installed.
August 14-26, 1995	Remedial Construction Services, Inc. (RCS) began construction of the biosparging system.
September 19, 1995	Began operation of the extraction portion of the biosparging system.
November 13, 1995	Began operation of the injection portion of the biosparging system.
November 14, 1995	Brown and Caldwell conducted the November 1995 groundwater sampling event.
February 23, 1996	Brown and Caldwell conducted the February 1996 groundwater sampling event.
May 31, 1996	Brown and Caldwell conducted the May 1996 groundwater sampling event.
August 23, 1996	Brown and Caldwell conducted the August 1996 groundwater sampling event.

Table 1 (Continued) Site Chronolgy BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
December 2, 1996	Brown and Caldwell conducted the December 1996 groundwater sampling event.
March 12, 1997	Brown and Caldwell conducted the March 1997 groundwater sampling event.
March 14, 1997	Vapor extraction well VE-4 installed.
April 1997	Vapor extraction well VE-4 connected to the vapor extraction system.
June 12, 1997	Brown and Caldwell conducted the June 1997 groundwater sampling event.
September 11-12, 1997	Brown and Caldwell conducted the September 1997 groundwater sampling event.

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-1			<u> </u>			
	3,647.53	8/10/92	53.22	0.00	3,594.31	(1)
	3,647.53	2/9/93	53.03	0.00	3,594.50	
	3,647.53	8/18/93	53.10	0.00	3,594.43	
	3,647 .53	1/26/94	53.31	0.00	3,594.22	
	3,647.53	5/3/95	54.64	0.20	3 ,59 3.05	(2)
	3,647.53	7/31/95	54.14	0.00	3,593.39	
	3,647.53	11/14/95	53.69	0.00	3,593.84	
	3,647.53	2/23/96	54.32	0.00	3,593.21	
	3,647.53	5/31/96	54.14	0.00	3,593.39	
	3,647.53	8/23/96	56.17	0.00	3,591.36	
	3,647.53	12/2/96	55.27	0.00	3,592.26	
	3,647.53	3/12/97	55.70	0.27	3,592.05	(3)
	3,647.53	6/12/97	55.08	0.02	3,592.47	
	3,647 .53	9/12/97	55.64	0.51	3,592.31	
MW-2						
_	3,647 .59	8/10/92	52.82	0.00	3,594.77	(1)
	3,644.84	2/9/93	49.60	0.00	3,595.24	
	3,644.84	8/18/93	49.71	0.00	3,595 .13	
	3,644.84	1/26/94	49.97	0.00	3 ,59 4.87	
		5/3/95				(4)
MW-3						
	3,647.68	8/10/92	52.99	0.00	3,594.69	(1)
	3,647.68	2/9/93	52.72	0.00	3,594.96	
	3,647.68	8/18/93	52.82	0.00	3,594.86	
	3 ,64 7.68	1/26/94	53.05	0.00	3,594.63	
	3,647.68	5/3/95	54.31	0.00	3,593.37	
	3,645.00	7/31/95	51.24	0.00	3,593.76	
	3,645.00	11/14/95	51.10	0.00	3,593.90	
	3,645.00	2/23/96	51.68	0.00	3,593.32	
	3,645.00	5/31/96	51.45	0.00	3 ,593 .55	
	3,645.00	8/23/96	51.55	0.00	3,593.45	
	3,645.00	12/2/96	52.23	0.00	3,592.77	
	3,645.00	3/12/97	52.67	0.00	3,592.33	(3)
	3,645.00	6/12/97	52.68	0.00	3,592.32	
	3,645.00	9/11/97	52.71	0.00	3,592.29	

Table printed: 16-Oct-97

Page 1 of 5

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-4		 				
	3,645.28	8/10/92	50.55	0.00	3,594.73	(1)
	3, 64 5.28	2/9/93	50.26	0.00	3,595.02	
	3,645.28	8/18/93	50.38	0.00	3,594.90	
	3,645.28	1/26/94	50.90	0.30	3,594.63	
	3,645.28	5/3/95	51.51	0.45	3,594.14	
	3,645.28	7/31/95	51.74	0.26	3,59 3.75	
	3,645.28	11/14/95	51.03	0.00	3,594.25	
	3,645.28	2/23/96	51.65	0.01	3,593.64	
	3,645.28	5/31/96	51.48	0.00	3,593.80	
	3,645.28	8/23/96	53.49	0.00	3,591.79	
	3,645.28	12/2/96	52.32	0.00	3,592.96	
	3,645.28	3/12/97	52.74	0.05	3,592.58	(3)
	3,645.28	6/12/97	53.08	0.44	3,592.56	
	3,645.28	9/12/97	52.60	0.15	3,592.80	
MW-5						
	3,647.72	8/10/92	52.38	0.00	3,595.34	(1)
	3,647.72	2/9/93	52.06	0.00	3,595.66	
	3,647.72	8/18/93	52.16	0.00	3,595.56	
	3,647.72	1/26/94	52.50	0.00	3,595.22	
	3,647.72	5/3/95	53.57	0.00	3, 594 .15	
	3,647.72	7/31/95	53.27	0.00	3,594.45	
	3,647.72	11/14/95	52.83	0.00	3,594.89	
	3,647.72	2/23/96	53.57	0.00	3 ,594 .15	
	3,647.72	5/31/96	53.16	0.00	3,594.56	
	3,647.72	8/23/96	53.41	0.00	3,594.31	
	3,647.72	12/2/96	53.98	0.00	3,593.74	
	3,647.72	3/12/97	54.44	0.00	3,593.28	(3)
	3,647.72	6/12/97	54.48	0.00	3,593.24	
	3,647.72	9/12/97	54.29	0.00	3,593.43	

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-6						
	3,644.74	2/9/93	50.58	0.00	3,594.16	(1)
	3,644.74	8/18/93	50.78	0.00	3,593.96	
	3,644.74	1/26/94	51.00	0.00	3,593.74	,
	3 ,644 .74	5/3/95	52.63	0.00	3,592.11	
	3,644.74	7/31/95	51.90	0.00	3,592.84	
	3,644.74	11/14/95	51.19	0.00	3,593.55	
	3,644.74	2/23/96	52.10	0.00	3,592.64	
	3,644.74	5/31/96	51.76	0.00	3,592.98	
	3,644.74	8/23/96	51.63	0.00	3,593.11	
	3,644.74	12/2/96	52.85	0.00	3,591.89	
	3,644.74	3/12/97	53.55	0.00	3,591.19	(3)
	3,644.74	6/12/97	52.08	0.00	3,592.66	
	3,644.74	9/11/97	53.72	0.00	3,591.02	
MW-7						
	3,644 .55	2/9/93	50.53	0.00	3,594.02	(1)
	3,644 .55	8/18/93	50.74	0.00	3,593.81	
	3,644.55	1/26/94	51.01	0.00	3, 5 93.54	
	3,644.55	5/3/95	52.25	0.00	3,592.30	
	3,644.55	7/31/95	51.92	0.00	3,592.63	
	3,644.55	11/14/95	51.48	0.00	3,593.07	
	3,644.55	2/23/96	52.15	0.00	3,592.40	
	3,644.55	5/31/96	51.78	0.00	3,592.77	
	3,644.55	8/23/96	52.02	0.00	3,592.53	
	3,644.55	12/2/96	52.52	0.00	3,592.03	
	3,644.55	3/12/97	52.99	0.00	3,591.56	(3)
	3,644.55	6/12/97	53.08	0.00	3,591.47	
	3,644.55	9/11/97	53.00	0.00	3,591.55	

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-8						
	3,644.87	2/9/93	50.48	0.00	3,594.39	(1)
	3,644.87	8/18/93	50.67	0.00	3,594.20	
	3,644.87	1/26/94	50.96	0.00	3,593.91	
	3,644.87	5/3/95	52.15	0.00	3,592.72	
	3,644.87	7/31/95	51.77	0.00	3,593.10	
	3,644.87	11/14/95	51.37	0.00	3 ,59 3.50	
	3,644.87	2/23/96	52.17	0.00	3,592.70	
	3,644.87	5/31/96	51.55	0.00	3,593.32	
	3,644.87	8/23/96	51.92	0.00	3,592.95	
	3,644.87	12/2/96	52.43	0.00	3,592.44	
	3,644.87	3/12/97	52.93	0.00	3,591.94	(3)
	3,644.87	6/12/97	53.96	0.00	3,590.91	
	3,644.87	9/11/97	52.73	0.00	3,592.14	
MW-9			· · · · · · · · · · · · · · · · · · ·			
	3, 644 .78	4/22/93	49.73	0.00	3,595.05	(1)
	3,644.78	7/15/93	49.65	0.00	3,595.13	
	3,644.78	8/18/93	49.85	0.00	3,594.93	
	3,644.78	1/26/94	50.02	0.00	3,594.76	
	3,644.78	5/3/95	51.35	0.00	3,593.43	
	3,644.78	7/31/95	50.97	0.00	3,593.81	
	3,644.78	11/14/95	50.43	0.00	3,594.35	
	3,644.78	2/23/96	51.12	0.00	3,593.66	
	3,644.78	5/31/96	50.89	0.00	3,593.89	
	3,644.78	8/23/96	50.98	0.00	3,593.80	
	3,644.78	12/2/96	51.58	0.00	3,593.20	
	3,644.78	3/12/97	52.21	0.05	3,592.61	(3)
	3,644.78	6/12/97	52.10	0.00	3,592.68	PSH sheen
	3,644.78	9/12/97	51.95	0.00	3,592.83	PSH Sheen

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-10						
	3,644.47	8/18/93	51.54	0.00	3,592.93	(1)
	3,644.47	1/26/94	51.90	0.00	3,592.57	
	3,644.47	5/3/95	52.97	0.00	3,591.50	
	3,644.47	7/31/95	52.87	0.00	3,591.60	
	3,644.47	11/14/95	52.51	0.00	3,591.96	
	3,644.47	2/23/96	53.05	0.00	3,591.42	
	3,644.47	5/31/96	52.79	0.00	3,591.68	
	3,644.47	8/23/96	53.03	0.00	3,591.44	
	3,644.47	12/2/96	53.41	0.00	3,591.06	
	3,644.47	3/12/97	54.21	0.00	3,590.26	(3)
	3,644.47	6/12/97	53.99	0.00	3,590.48	
	3,644.47	9/12/97	53.94	0.00	3,590.53	
MW-11						
	3,643 .78	8/18/93	51.92	0.00	3,591.86	(1)
	3,643 .78	1/26/94	52.32	0.00	3,591.46	
	3,643 .78	5/3/95	53.38	0.00	3,590.40	
	3,643.78	7/31/95	53.35	0.00	3,590.43	
	3,643.78	11/14/95	52.96	0.00	3,590.82	
	3 ,643 .78	2/23/96	53.50	0.00	3,590.28	
	3,643.78	5/31/96	53.25	0.00	3,590.53	
	3,643.78	8/23/96	53.49	0.00	3,590.29	
	3,643.78	12/2/96	53.79	0.00	3,589.99	
	3,643.78	3/12/97	53.81	0.00	3,589.97	(3)
	3,643.78	6/12/97	53.96	0.00	3,589.82	
	3,643.78	9/12/97	52.93	0.00	3,590.85	

⁽¹⁾ Top of casing elevations and groundwater elevations of all monitor wells were relative to an arbitary datum of 100.00 feet prior to March 1997 and have been converted to Mean Sea Level (MSL).

⁽²⁾ For wells with a hydrocarbon layer the groundwater elevation was calculated as follows:

Groundwater Elevation = (TOC elevation) - (Depth to groundwater) + [(Free product thickness) X (SG of free product)]

Note: The specific gravity (SG) for the free product was 0.82.

⁽³⁾ Top of casing elevations and groundwater elevations relative to MSL after March 1997.

⁽⁴⁾ MW-2 could not be located and is assumed detroyed after January, 1994.

Table 3
Field Screening Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	Date Measured	Well Volume	рH	Conductivity (µmhos)	Temperature (°C)	Redox (mV)	Dissolved Oxygen (mg/L)	Ferrous Iror (mg/L)
MW-3								
	9/11/97	0	7.18	1,208	19.3	11	5.37	
		1	7.16	1,216	19.1	-50.4	5.00	
		2	7.17	1,221	19.1	-83	4.85	
		2	7.20	1,220	19.1	-89.9	5.70	
		3	7.17	1,223	19.2	-90.8	4.97	
		3	7.17	1,223	19.2	-91.7	4.96	0.0
MW-5								
	9/12/97	1	7.52	1,127	18.8	35.2	6.42	
	i	2	7.22	1,105	18.8	43.2	5.75	
		2	7.21	1,107	18.8	49.8	5.50	
		3	7.20	1,109	18.8	54.1	5.44	0.0
MW-6				_				
	9/11/97	1	8.14	1,653	20.0	51	7.85	
		2	8.03	1,375	19.9	61.1	7.51	
		2	8.04	1,317	20.9	55.1	7.50	
		2	7.99	1,286	22.1	65.7	6.91	
		3	7.97	1,183	20.5	72.8	7.54	0.0
MW-7								
	9/11/97	1	6.68	1,664	20.4	57.9	3.49	
		1	6.69	1,661	20.1	67.5	3.03	
		2	6.69	1,601	20.1	74	2.96	
		3	6.70	1,574	19.9	80.6	3.03	
		3	6.70	1,574	20.1	83.2	3.06	0.0

Table printed: 14-Oct-97

Page 1 of 2

Table 3
Field Screening Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	Date Measured	Well Volume	pН	Conductivity (µmhos)	Temperature (°C)	Redox (mV)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)
MW-8								
	9/11/97	1	6.82	1,747	19.4	30.9	3.22	
		1	6.81	1,732	19.4	36.6	3.02	
		2	6.81	1,724	19.4	39.7	2.79	
		2	6.81	1,715	19.3	45.9	2.52	
		3	6.81	1,716	19.3	48.3	2.62	0.0
MW-10								
	9/12/97	1	6.77	7,450	19.5	-99.5	1.16	
		1	6.78	7,680	19.5	-104.2	0.91	
		2	6.79	7,651	19.6	-102.4	1.98	
		2	6.80	7,542	19.6	-105.6	0.85	
		3	6.81	7,548	19.7	-108.9	0.65	9.4
MW-11								
	9/12/97	1	6.99	7,513	19.8	-65.5	5.40	
		2	6.95	7,444	19.8	-76.8	2.26	
		3	6.94	7,351	19.6	-71.7	2.40	
		3	6.93	7,352	19.6	-73.8	1.80	3.2

MW-2 could not be located and assumed destroyed after January, 1994.

NR = No Reading

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

	Onmail Det	0	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgran	ns per liter, µg/L		milligrams ;	per liter, mg/
MW-1								
	8/10/92	Regular	5550	12090	2160	7370	NA	NA
	2/9/93	Regular	2100	6500	1300	7400	NA	NA
	8/19/93	Regular	3200	7300	1200	3700	NA	NA
	1/27/94	Regular	1930	4580	672	2390	NA	NA
	5/3/95	Regular	NSP	NSP	NSP	NSP	NA	NSP
	8/1/95	Regular	390	1300	230	800	NA	5.7
	11/15/95	Regular	880	1800	300	970	NA	6.8
	2/23/96	Regular	1500	3700	620	2200	NA	21
	5/31/96	Regular	1100	1700	380	990	NA	7.5
	8/23/96	Regular	1800	3300	570	2100	NA	17
	12/2/96	Regular	5600	9600	2100	9600	100	64
	3/12/97	Regular	5500	9700	2600	8200	22	62
	6/12/97	Regular	5300	34000	7500	27000	180	160
	9/12/97	Regular	1800	4400	1000	3000	23	21
MW-2								
	8/10/92	Regular	14.9	< 4	< 4	< 4	NA	NA
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	100	12	3	13	NA	NA
	1/27/94	Regular	< 1	1.2	2	2.5	NA	NA
W-3								
	8/10/92	Regular	304.9	2099	6760	1586	NA	NA
	2/9/93	Regular	130	< 10	< 10	190	NA	NA
	8/19/93	Regular	560	3100	630	1900	NA	NA
	1/27/94	Regular	1070	5380	510	3120	NA	NA
	5/4/95	Regular	770	3300	470	1800	NA	NA
	8/1/95	Regular	490	2900	890	1600	NA	14
	11/15/95	Regular	250	1000	180	440	NA	2.9
	2/23/96	Regular	120	810	170	560	NA	4
	5/31/96	Regular	670	3900	1200	2300	NA	15
	8/23/96	Regular	330	2200	590	1500	NA	12
	12/2/96	Regular	220	1800	670	1000	0.89	7.4
	3/12/97	Regular	370	2000	960	1400	1.8	11
	6/12/97	Regular	860	4800	1700	2600	1.9	20
	9/11/97	Regular	770	3000	1600	1900	1.6	16

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

	0	C	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgram	ns per liter, µg/L	<u> </u>	milligrams	per liter, mg/l
MW-4								
	8/10/92	Regular	2594	10360	2160	6740	NA	NA
	2/9/93	Regular	5200	15000	2200	10000	NA	NA
	8/19/93	Regular	3000	12000	< 2000	7000	NA	NA
	1/27/94	Regular	NSP	NSP	NSP	NSP	NA	NSP
	5/3/95	Regular	NSP	NSP	NSP	NSP	NA	NSP
	8/1/95	Regular	5700	17000	3500	13000	NA	120
	11/15/95	Regular	490	1600	310	1100	NA	5.2
	2/23/96	Regular	360	2800	560	2500	NA	18
	5/31/96	Regular	84	830	280	1100	NA	6.2
	8/23/96	Regular	110	1400	430	1800	NA	9.8
	12/2/96	Regular	190	2000	1800	7200	56	43
	3/12/97	Regular	220	1500	1500	4400	27	27
	6/12/97	Regular	47	270	360	950	2.5	6.2
	9/12/97	Regular	92	840	670	2100	15	7.6
MW-5								
	8/10/92	Regular	< 4	< 4	< 4	< 4	NA NA	N A
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/10/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	1/27/94	Regular	8.7	29.9	4	11.3	NA	NA
	5/3/95	Regular	3.7	5. 3	0.92	4.6	NA	NA
	8/1/95	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	11/15/95	Regular	< 0.3	1.2	< 0.3	, 1.5	NA	NA
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	5/31/96	Regular	31	86	10	20	NA	NA
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	9/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

	_		Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgran	ns per liter, µg/L		milligrams	per liter, mg/L
MW-6								
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	7000	19000	3100	7200	NA	NA
	8/19/93	Regular	8100	19000	3500	6400	NA	NA
	1/27/94	Regular	7960	20200	3830	6150	NA	NA
	5/4/95	Regular	11000	17000	2900	6000	NA	NA
	8/1/95	Regular	8300	12000	2500	5100	NA	60
	11/15/95	Regular	8900	17000	2900	5500	NA	57
	2/23/96	Regular	8100	10000	2300	4000	NA	58
	5/31/96	Regular	83	150	15	51	NA	0.57
	5/31/96	Duplicate	87	160	13	47	NA	0.52
	8/23/96	Regular	31	28	9.4	7.9	NA	0.46
	12/2/96	Regular	<1	< 1	< 1	1.7	5.6	< 0.1
	3/12/97	Regular	12	< 5	6.8	18	12	< 0.5
	6/12/97	Regular	1900	1400	410	310	7.8	7.4
	9/11/97	Regular	11	1.3	3.4	< 1	1	< 0.1
MW-7								-
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA.
	8/19/93	Regular	< 2	3	< 2	< 2	NA	NA
	1/27/94	Regular	1.1	< 1	<1	< 1	NA	NA
	5/3/95	Regular	52	3.4	0.67	2.8	NA	N A
	8/1/95	Regular	22	2.2	0.85	2.8	NA	< 0.1
	11/15/95	Regular	8.4	0.77	< 0.3	0.93	NA	< 0.1
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	2/23/96	Duplicate	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	5/31/96	Regular	29	83	10	21	NA	0.25
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	9/11/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

	Comul- D-1	Comple Tire	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgran	ns per liter, µg/L		milligrams	per liter, mg/
MW-8								
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	< 2	< 2	< 2	< 2	NA	NA
	1/27/94	Regular	< 1	< 1	< 1	< 1	NA	NA
	5/3/9 5	Regular	3	4.9	0.75	3.7	NA	NA
	8/1/95	Regular	3.1	1.2	0.47	1.6	NA	< 0.001
	8/1/95	Duplicate	3.6	1.5	0.51	1.5	NA	. < 0.1
	11/15/95	Regular	< 0.3	0.52	< 0.3	< 0.6	NA	< 0.1
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	5/31/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	<1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	1.8	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	9/11/97	Regular	< 1	< 1	< 1	< 1	0.1	< 0.1
NW-9								
	4/22/93	Regular	570	380	< 50	870	NA	NA
	7/15/93	Regular	121	7.3	3	458	NA	NA
	8/19/93	Regular	390	290	40	250	NA	NA
	1/27/94	Regular	327	357	51.1	293	NA	NA
	5/3/95	Regular	380	110	19	120	NA	NA
	8/1/95	Regular	660	410	91	310	NA	6.2
	11/15/95	Regular	240	24	11	140	NA	1.5
	11/15/95	Duplicate	170	18	10	120	NA	1.9
	2/23/96	Regular	170	18	2.3	160	NA	4.3
	5/31/96	Regular	120	16	3	200	NA	NA
	8/23/96	Regular	82	13	6	270	NA	4
	8/23/96	Duplicate	76	14	4.8	250	NA	4.4
	12/2/96	Regular	61	< 25	< 25	210	2.6	2.8
	12/2/96	Duplicate	86	13	2.4	270	3.7	2.9
	3/12/97	Regular	30	48	420	880	8.2	19
	6/12/97	Regular	4.7	2.1	11	97	2.6	2.2
	6/12/97	Duplicate	< 5	< 5	6.6	69	5.2	1.9
	9/12/97	Regular	2.1	2.3	2.1	120	1.2	1.9

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

	0		Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgram	s per liter, µg/L	L 	milligrams	per liter, mg/
MW-10								
	8/19/93	Regular	190	460	< 200	240	NA	NA.
	1/27/94	Regular	13.4	4	5.5	33.6	NA	NA
	5/4/95	Regular	980	15	11	84	NA	NA
	8/1/95	Regular	1300	32	32	100	NA	3.6
	11/15/95	Regular	1000	24	15	36	NA	1.7
	2/23/96	Regular	810	23	27	44	NA	2.4
	5/31/96	Regular	700	24	34	28	NA	2
	8/23/96	Regular	290	3.4	6.4	13	NA	1.4
	12/2/96	Regular	280	1.3	17	8	0.94	0.97
	3/12/97	Regular	110	< 5	17	< 5	0.61	0.57
	6/12/97	Regular	150	12	30	< 5	0.68	< 0.5
	9/12/97	Regular	87	2.3	26	2.7	0.76	0.33
	9/12/97	Duplicate	87	2.4	26	2.8	0.79	0.33
AW-11								
	8/19/93	Regular	< 2	< 2	< 2	< 2	NA	NA
	1/27/94	Regular	< 1	< 1	< 1	< 1	NA	NA
	5/4/95	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	8/1/95	Regular	44	29	5.5	13	NA	0.2
	11/15/95	Regular	190	2.8	6.2	11	NA	0.4
	2/23/96	Regular	49	1.2	0.51	4	NA	0.25
	5/31/96	Regular	300	83	12	28	NA	8 .0
	8/23/96	Regular	100	1.2	0.3	4.7	NA	0.26
	12/2/96	Regular	970	< 5	6	8.1	2	1.3
	3/12/97	Regular	130	< 5	13	5.8	0.42	< 0.5
	3/12/97	Duplicate	100	< 5	10	5.1	0.43	< 0.5
	6/12/97	Regular	150	23	19	< 5	1.1	0.55
	9/12/97	Regular	220	15	27	13	1	0.46

MW-2 destroyed after January, 1994 NA = Not Analysed

NS = Not Sampled

NSP = Not Sampled due to Phase Separated Hydrocarbons

Table 5
Summary of Analytical Results for Air Emissions
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

		Benzene	Tolliene	Ethylbenzene	Yydonoe	TOT		L		
Sample Samp Number	Sample Date		parts per n	parts per million by volume, ppmv			Rate, scfm	penzene Emission Rate, Ib/hr	Total BTEX Emission Rate, Ib/hr	7PH Emission Rate, Ib/hr
Extraction-1	9/19/95	790	1100	340	920	9700	132.47	1.24	5.94	16.31
Effluent-1	9/20/95	066	2500	260	1600	16000	135.76	1.58	10.94	27.37
Effluent-2	9/28/95	13	28	9	8	2533	123.56	0.02	0.11	3.89
Effluent-4	11/7/95	15	58	12	36	1500	131.10	0.02	0.24	2.59
Effluent111595-01 11/15/95	11/15/95	39	180	42	130	1870	133.33	90.0	0.77	3.21
Effluent121995-01 12/19/95	12/19/95	10	45	=	33	530	129.64	0.02	0.19	0.89
Effluent012996-01	1/29/96	12	61	17	53	1200	128.45	0.05	0.27	1.95
Effluent032296-01	3/22/96	9	44	12	40	066	124.68	0.01	0.19	1.56
Effluent042496-01	4/25/96	4	37	10	36	006	118.34	0.01	0.15	1.29
Effluent053196-01	5/31/96	3.7	40	10	33	670	124.11	0.01	0.16	1.04
Effluent082396-01	8/23/96	۸ ک	12	۸5	۸ ئ	200	126.18	0.01	0.05	0.31
Effluent120296-01	12/2/96	۲ _۷	<u>^</u>	<u>.</u>	<u>^</u>	۸ 5	129.04	00:00	0.01	0.01
Eff-31297-1	3/12/97	2.1	15	4.6	15	250	110.56	00.00	90.0	0.33
Effluent070297-01	712/97	<u>~</u>	6.3	2.4	9.6	65	109.90	00:00	0.03	0.08
Monitor970912	9/12/97	¥ X	A N	A N	A A	340	105.40	V V	Ϋ́	0.39

Emission rates reported for 12/02/96 sampling event were calculated using the detection limits. The actual emissions are Benzene <0.001 lb/hr, BTEX: <0.01 lb/hr and TPH: <0.01 lb/hr. e printed: 10/15/97 Table printed: 10/15/97

APPENDIX A

Groundwater Sampling Forms

W:\BJSERV\2832\025R.DOC

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

WELL ID: MW-/

Project i	Number:	28	32_	_	Task Number	:_12		Date:	9/12/9
Casing D	ismeter.		Purge Equ	ioment	· · · · · · · · · · · · · · · · · · ·		Equipment (Calibration - Time	
Journey C			I digo Edo		11.				
1.	2	inches	1 /)7500°	sable Bailer		1	NA	
Total Dep	th of Well fro	m TOC	1 0	ر مامور ا	1		рH	= at	**
1 .			j		Soiler	1	j		
64	142	feet	ļ		$\mathcal{M}(\mathcal{A})$		_		
Static Wa	ter from TOC	,	Sample Ed	uipment /	CIY Ethi	VIENE	pH	æ at	°
100	-111		\cap		OIY EHA,				
	.64		<i>D(</i>	SP05¢	1616				
Product L	evei from TO	C		1			Conductivity	111	
1	12			1.5aile	W		Conductance	NA	
	7/3	feet					Standard:	µm	hos/om at 25°C
Length of	Water Colum	חר	Analytical 6	Equipment (pi	H, DO, Redox, filtr	ation, etc.)	į.		
01 -) (1	_			f.,		
181	0	feet	1 No	one			Measured Value:	µm	hos/om at 25° C
Well Volum	ne		1 '						
'''	11/		}				1	NA	
<u> </u>	1.45	gei					Dissolved Oxyger	INT	
Screened	Interval (from	GS)	1				1 001	Meter Calibrated to:	mg/L
l U	5		1				ļ		
	<u> </u>	feet	<u> </u>				<u> </u>		
T	Weli	Galions	-44	T	Committee	Bodov	Dissolved	Marial Dos	
Time	Volume	Removed	pН	Temp	Conductivity	Redox	Oxygen	Visual Des	enpuon
		ĺ	ĺ		1 1		1	_	
ĺ		[١,	1 /		٠. ٠	Wat		
			4	1		.00	Wal		
				7	J				_
			\ ' '] '	}]		
		j .							
]			1]		
}									
							}		1
				<u> </u>	 				
	1				1				
ľ									Ì
									ľ
							·		
ĺ		{							{
]	j	ĺ						
Geochem	icai Parame	eters		Comments:					
					4.5		_	\sim $^{\prime}$	1
F	errous fron:	NA	}	<i></i>	leta	110		13/10	a 1
	_	$-\nu$	mgt		Kela	176	Wou	TI / TEX	
	•						·		
Dissolv	ed Oxygen:	NA	ŀ						1
	_	<u> </u>	mg/L						
	Allama.	Λ.							i
	Nitrate:	NA							1
	-		mg/L						
	Sulfate:	NA	- [[
			mg/L						
PPE Worn:		vel D		Samplare S	ionature:				
	la Zhe	1/1		Sam pier's S	iynatur u .		~ 1		1
Niki			ves				///	Λ	<u> </u>
Disposition of	of Purge Wat	er:	1	_	1/	//	11/	U. /	_
7		1	- 1		1 win	<u>a</u> (/	·Va		}
[]R	ummec	<i>X</i>		_				0	

WELL ID: MW-3

Project	Number:	283	12_		Task Numbe	r: <u>/2</u>	<u>. </u>	Date: 09/1//		
Casing £	Diameter		Purge Equ	uipment		<u> </u>	Equipment	Calibration - Time		
1	2_	lankas	FR	Luis	lobone	mble		Factory		
Total De	pth of Well fro	inches im TOC	┪				pH	= at *c		
	4.31		1 .	Pump	•					
	ater from TOC	feet	Sample Ed				pH	≖ at °C		
1		•			11 0	1	 			
	1.7/	leat	1 0	isposa	ble Ba	iler				
Product	evel from TO	C		•			Conductativity Conductance	tactory		
N	/A	feet				· · · · · · · · · · · · · · · · · · ·	Standard:	μmhos/cm at 25° C		
Length of	Water Colum	n	Analytical I	Equipment (pl	H, DO, Redox, filt	tration, etc.)				
1/10	6	feet	6	820			Measured Value:	μπίλοε/cm at 25° C		
Well Volu	me		7		1.	_	ļ			
1,9	1	gel	Mu	(fi pan	ame ter	_	Dissolved Oxyge	2760 mm Hy		
	Interval (from		4	•				Meter Calibrated to: mg/		
	UZ		$\rho_{H/}$	NU, Kel	dox, TRB	/				
L	12	feet	L				<u> </u>			
Time	Weil Volume	Gallons	рН	Temp	Conductivity	Redox	Dissolved	Visual Description		
2002			mine	8				TRB		
0.00	1	/ 00.5								
2007	0.52		7.18	19.31	1208	11,0	5,37	140,6		
2010	 	,	7.16	19.08	1216	-50.4	5,0	230.8		
0.0,0	1.05	2,	1116	17,00						
2012		_		, ,	1221	>07A	سد ت ارا	(120)		
2012		3	7.17	19.07	1221	\83.0	4.85	428, Z		
7 ((2.09	4	7 7 6	19.10	1220	-89.9	5,70	- % (7)		
2017	2.01	7	7.20	1 1110	1220	0 (1)	3110	280		
2 018	2.62	5	7,17	19.17	17.23	-90.8	4.97	27.6		
		6	7,17	19.17 19.17	1223	-917	496			
2018	3.14			1 175 1		1, 1	1.10	27.5		
			7.17							
Geocnem	ical Parame	eters		Comments:				j		
F	Ferrous Iron:	\bigcirc	m o/L	11/0	te n	-	ins E Durck	Black		
	-	. /	,		100	nged	700			
Disaoly	red Oxygen:	4,	6 mon	low	t Clo	, ''///////////////////////////////////	Durck	L.,		
	-				<u> </u>			7		
	Nitrate:	NA	m g/L				V			
	 ب									
	Sulfate:	NA	mg/L		_					
			a-l							
PPE Worn:	Leve	1D		Sampler's S	ignature:		7	1		
Disposition (of Purge Wate				-17		1/ / L	//		
_	_	1)	ļ		1 hon	all	. Wa	h_		
URU	immeo	<u> </u>					U	/		

WELL ID: MW-4

Project Number:	28	32	~	Task Numbe	r: <u>/2</u>	_	Date:	9/12/9
Casing Diameter		Purae Ea	uipment	01. 11. 1		Equipment (Calibration - Time)
γ			/) /	Polyethyle 2054 ble	ne		.10	
	inches	-	Disp	054614			NA	
Total Depth of Well from	om TOC			Bailer)	PH	=	<u>. </u>
52.614	3100t	1		_	_			
Static Water from TOC	>	Sample E	quipment	Polyethyll sable	PN12	рн	= a	٠ ٩
m 1		1 1)	0,72, 71		ļ		
52,6 Product Level from TO	feet	1 4	115pos	30,610				
_	_	1	1	ilen		Conductivity Conductance	NA	
52.45	feet	1	194	111ex	•	Standard:	•	nhos/om at 25° C
Length of Water Colum	חר	Analytical	Equipment (pi	H, DO, Redox, filt	ration, etc.)	7		
8.83		[
Well Volume	feet	┥				Messured Value:		nhos/om at 25° C
		Į.	A)	1 11		} 		
1.45	gai	1	//	L 1		Dissolved Oxyger	. NA	
Screened Interval (from		7				1	Meter Calibrated to:	m
45-360	•	1					·	
75-560	feet	<u> </u>				<u> </u>		
Time Weli	Gallons	pH	Temp	Conductivity	Redox	Dissolved	Visual De	scription
Volume	Removed				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Oxygen	,	Somption
1	1.20		11			1		
\wedge \wedge	11/4		1 H	1 - On	1 1	later.	Ρ	
		-	 ' 			101/21		 -
		1				1		
 		1						
			[[
	,			1				
			<u></u>			[[
j]				
j								
}			'	}		}		
eochemical Parame	eters		Comments:					
	٨		De	,	,	- 1 1		
Ferrous Iron:	NA	m g/L	New	toon &	1 7 5 /201	_ Wate	_ '\'	lace
•							7207	
Dissolved Oxygen:	NA		•				•	
-		mg/L						
Nitrate:	NA	Í						
_	701	mg/L		<u></u>				
Sulfate:	NA	j						
Sunare:	NH	mg/L						
E Wom:	7		Sampler's S	ignature:		1		
level.	<u>U</u>						17	;
position of Purge Wate	эг.			7/	//	Wa	Q	
Dan	1	1	_	1 com	<u>~ U.</u>	<u> </u>	the -	
1 1/1 11 -	^	1	_			7	,	

WELL ID: MW-5

Project	Number:	28.	32	_	Task Numbe	r: / d	_	Dat	te: <u>09/12</u>		
Casing C)iameter		Purge Equ	ipment	0 .	- <i>-</i>	Equipment	Calibration - T	īm e		
1	2	inches	EX	ectric	Seebmen	rible	F	actory			
Total De	pth of Well fro		1 /	ump	_		pH	= /	at		
64	160	feet	/-	unge			1				
Static Wa	ater from TOC		Sample Ed	tuipment /	Polyethy,	leve	рн	=	et		
5	1.239	feet		upor	able						
Product L	evel from TO		1 "		1.1		Conductivity	Factory	,		
1	JA	feet	1	E	July	٠ .	Conductance Standard:	7	μmhos/cm at 25° (
Length of	Water Colum	าก	Analytical (Equipment (pl	l, DO, Redox, filt	ration, etc.)	1				
10.3	3/	feet	680	20			Measured Value	:	μmhos/cm at 25* (
Well Volu			M	16 Par	a meter	1					
1-	7	gel	1114	[11]	a merer		Dissolved Oxyge	ua.			
Screened	interval (from		1					 Meter Calibrated to	5 : 1		
45	560	1						74	OmmHg		
_/	200	1000				 	<u> </u>		Juning		
Time	Well Volume	Galions	ρН	Temp	Conductivity	Redox	Dissolved Oxygen	Visua	Description		
0808			palla	evy 2.	minestr	- 0.75		TRK			
		1.]	"	1		}				
0810	0,59		7,52	18,82	112)	35.2	6.42	52			
							1				
0812	147	2.5	7.27	1883	1105	43.7	5,75	40			
2012	111	0.1.7	7122	(810)	1100	15,0	12.77				
0814	2.35	4.0	7,21	18.83	1107	49.8	5,50	35,4			
		اسرسو						,			
0816	3,24	212	7 70	1882	1109	541	5.44	328			
0816	3007	TAN	1.00	/010_)	1101	J 11	3/17	J. 2. 0			
					-		J				
3eochem	ical Parame	eters		Comments:				 			
ŗ	errous iron:	~ ^		,)							
·	-	$\underline{}$	mort	No	ne						
Dissolv	red Oxygen:	3 /									
	-	Jic) mg/L								
	Nitrate:	NA	m o/L								
									·		
	Sulfate:	NA	mg/L					·			
PE Worn:	160 5	unical (3/oras	Sampler's Signature:							
	of Purge Wate	,	-1000)			~ a.l	-) 17				
	umed		1		1 hom	<u>и U. (</u>	vag				
1101	um of ch		i	_			- :				

WELL ID: MW-6

						Task Numbe			Date: <u>09/11/</u>
	Casing D	iameter		Purge Eq	uipment			Equipment	Calibration - Time
		1	lasta-	Flectric Sabmersible				I to	
Ì	Total Dep	oth of Well fro	inches om TOC	7 -				pH	= at
	(oC	—			Run	P			
1		ter from TOC	loct	Sample Equipment				 pH	≖ et •
1		72_				11 0	- 1		
ł		evel from TO	feet IC	1 12	espor	able Be Iglene	alle	Conductivity	7
	NI	1 -			lu o The	uleno		Conductance	Factory jumbos/cm at 25°C
ŀ		Water Colum	feet			I, DO, Redox, filt		Standard:	μπhos/cm at 25° C
ľ	6,4				20	,, 50, 1.000x,		-	•
k	Well Volum		feet	n	1 H.	Raramet		Measured Value	μπhos/cm at 25°C
ľ				1 ///	uu,	mamer	· .		7/20 man He
-	1.0		gei					Dissolved Oxyge	-
1		Interval (from	n GS)	ł				00	Meter Calibrated to:m
	45 -	760	feet	<u> </u>					
٢	Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved	Visual Description
F	1825	Volume	Hemoved	'				Oxygen	CTO A
				1	}			7 000	TRB
L	1830	0.94		8.14	20.02	1653	31.0	1.85	316,4
								ĺ	
	1000	1 1/2	سي ا	047	10.011	127-	11	201	7.7.
۷	1838	1.42	1,5	0.00	19.94	1375	61.1	7.51	7.5%. 2
1	855	1.89	2	8.04	20.90	1317	55.1	7,50	322./
	859			<u> </u>					
ו	' ' ' ' '	2	7	-00		100/	1	10	
4	837	2.35	23	1,77	22.14	1286	65,7	6.91	139.9
			}						·
1	907	3.0	3,2	797	20.53	1183	728	7.54	437.3
<u>-</u>		<u> </u>		1. 1 1	<i>y</i> (3, 4, 5)	1100	10.0	(1) 7	1945
G	eo chemi	cal Parame	eters .		Comments:	"-"			
	F	errous Iron:	\wedge						
		-	<u> </u>	mart					
	Dissolve	ed Oxygen:	16	/					
		-	6,8	mg/L		······································			
		Nitrate:		. [
		-		mg/L					
	Sulfate:								
				mg/L					
PP	E Worn:		0 1	18	S am pler's Si	ignature:			·
_		Lev	l D		Sampler's Si	ignature:) 11
_		Lu f Purge Wate	L D		Sampler's Si	ignature:	me (2 a)ah_/

WELL ID:

mW-7

Groundwater Sampling Field Data Sheet

NA

Sampler's Signature:

Sulfate:

PPE Wom:

Disposition of Purge Water:

Project	Number:	28	32	_	Task Numbe	r: <u>12</u>		Date:	09/11/9
Casing (Diameter		Purge Eq	uipment			Equipment	Calibration - Time	
	2	inches			Subm	neible		Factory	/
	pth of Well fro ,46	-	,	Reim	a e		pH	<u>=at′</u>	€
Static Wa	ater from TOC	feet ;	Sample E	quipment		1	pH	= 4(ত
5.	3.00 evel from TO	feet IC		spora	ble Ba	ila	Conductivity		,
N	14	feet				•	Conductance Standard:	1-actory	/ v/cm at 25° C
Length of	Water Colum	าก	1 '		H, DO, Redox, fil	tration, etc.)			
8,4	46	feet	-	82C		,	Measured Value	µmhos	/cm at 25° C
1,4	0	gal	Mo	ulti Pa	iramet	ere	Dissolved Oxyge	760mm	the
Screened	intervai (from	GS)	1				DO	Meter Calibrated to:	mg
45-	760	foat	<u> </u>						
	1 144 11						Disast sal		
Time	Volume	Gallons Removed	pH	Temp	Conductivity	Redox	Oxygen	Visual Descri	ption
16.56	1708	Start	Jump	20.45	1		3,49	TRB	
17/(071		6.68	16.6	1664	57.9	3149	33.8	
.7 (1.112	7	1.9	201	1001	17-	7.7	2/2	
1714	1.43	2	6.69	2015	1661	67.5	3,03	3/2	
(2/2	2,14	3	619	20 1	1601	740	2.96 2.97m	パフ マ	
[_//_/			0.01	20113	1601	17.0	Q:/~/IA	W 2 . J	
172	2.86	4	6.70	19.89	1574	80.6	3.03	33.2	
1703	3.3.1	45	6.70	20.05	1574	837	3.06	334/	
1.18-3	(1	775			1011	00,00	0,00	<u> </u>	
Geochem	ical Parame	eters		Comments:					
F	errous Iron:	0	m g/L						
Dissolv	ed Oxygen:	2.0	/						
	Nitrate:	NA	m g/L						

WELL ID: MW-8

Project	Number:	283	32	_	Task Number	:_/2		Date: 9/11/9
Casing C)iameter		Purge Equ	ioment			Equipment	Calibration - Time
J.	pth of Well fro	inches		•	Submers	ble	pH	Factory = at 00
1	,37	feet		Pump				
Static Wa	ł '			quipment	<u>Λ</u>	, ,	рн	<u>=</u> at ℃
	. 7 <u>.</u> 3	feet C	13	allr	- Diagn	rable	Conductivity	
N	I/A	feet			·	•	Conductance Standard:	Jacky umhos/cm at 25°C
	Water Colum	ın	Analytical E	Equipment (pl	H, DO, Redox, filt	ation, etc.)	1	
Well Volu	64 me	feet	6	820	1		Measured Value	:µmhos/cm at 25° C
1.5	59	gai	M	ultipa	ranet	5	Dissolved Oxyge	760mm Hg.
1	interval (from	GS)					00	Meter Calibrated to: mgt
45 -	760	feet				·	<u> </u>	
Time	Well Volume	Gallons Removed	pH	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
1559	Start	Pumpin	~ /	pal er	ey 2 m	inuta		TRS
1604	0,63		6.82	19.45	1747	30.9	3.22	/2,7
1606	1,26	2	6.81	19.35	1732	36.6	3.02	6.9
1608	1.89	3	6.81	19.35	1724			2.7
	2.52	4	6.81	19.30			2.52	1.1
1612	3.14	5					2.62	
Geochem	ical Parame	eters		Comments:				
ı	errous Iron:	0	m g/L					
Dissolv	red Oxygen:	3	mg/L					
	Nitrate:	NA	m g/L					
	Sulfate:	NA	mg/L					
PPE Wom:	Ü i].	Sampler's S	ignature:			
Disposition	Level of Purge Wate						$(\Delta)_{\alpha}$	2
ſ) rum	Λ		-	1 Com	<u>~ ().</u>	Wa	gu

WELLID: MW-9

Project I	Number:	28.	32	_	Task Number	12		Date: 9/12/97
Casina O			lo	·	21 41		Fauinment C	alibration - Time
Casing Di	ameter		Purge Equ	ipment	Polyethyl Sailer Polyetly Sable	ine	Edaibueur	aubiauon - ime
1 /		inches)			1	1/4
Total Car	th of Well fro	TOD	1 / ,	15000	GHE		рн	- 10/1
Total Dep	th of well tro	m IOC	<i>'</i> -/	1 Speci	1 1 -	-	Ipn	= / at °C
160	60,27				Backer			
		feet	 		1 // 2/	,	⊢	
Static Wa	ter from TOC		Sample Eq	uipment	elyetty	lenc	pH	= at °C
15/	95	feet	<i>i</i>):	26/10		1	
		feet	\cup	15/20.	50,500		J	7111
Product Le	evel from TO	C		1	1		Conductivity	1/4
She	2 V 1. 9.5 Water Colum			130	iler		Conductance	7071
1	<u>. 75</u>	feet	ļ				Standard:	μmhos/cm at 25° C
Length of	Water Colum	п	Analytical E	quipment (pl	H, DO, Redox, filtr	ation, etc.)	Ì	
1.4	32		1				1.	•
		feet	l		1		Measured Value:	µmhos/cm at 25° C
Well Volum	ne			NH)		ļ	
, ,	7 7]	11) #	r		1	1
1 /.	37	gal		10 1			Dissolved Oxygen	NA
	Interval (from						DO M	leter Calibrated to: mg/L
		,					1	THE COLUMN TWO IS NOT
-		feet					1	
L		1001	<u> </u>					
				·			Dia-alisad	····
Time	Well	Gallons	pН	Temp	Conductivity	Redox	Dissolved	Visual Description
	Volume	Removed					Oxygen	
				ļ]))	
		1/0						
 \		()/ <u>/</u> /	\mathcal{U}		water	0		
		NIT	//	Con	Ware	<u>′</u>		
		, '		}	1			
							1	
							<u> </u>	
[[\						ĺ
i i					1		1 1	
							1	
	1				1			
		V]	
		ſ	\					
			7					
ĺ		1			1			ľ
1							1	i
	1	ł]			1
Gaaabam	ical Parame	ntom.		Comments:				
Geochem	ivai Parailie	1015		Commens.		_)
	errous Iron:	10			110	-	1	<i>'</i>
ŗ	enous iron.	NA	mg/L		H(-	1 1	man ph	are in
	-		95					
Dicento	ed Oxygen:	. 12/			B 17	//	en-	i
Dissolv	od Oxygen.	NA	mg/L	1	well	ーっん	een	l
	-							
	Nitrate:	1						
		NA	mg/L					
	-							
	Sulfate:	N)A	ĺ					į
		/VP	mg/L					
	 							
PPE Worn:			1	Sampler's S	Signature:			
FFE WORN:	V	1 D	ļ	Janipidi S S	ngriatur o .			1
	reve	11			\nearrow		. 1	Į.
Disposition	of Purge Wat	er:	Ī	-	-1/		•) //	İ
	_	Λ	ļ		1 homa	$\mathcal{O}(\mathcal{A})$	1/1 Kin	
	1	(/	i				1~ 1°	

WELL ID: MW-10

Project (Number:	28	32_	~	Task Numbe	r: <u>12</u>	_	Date: 09/12/97
Casing Di	iameter		Purge Equ	ioment			Equipment (Calibration - Time
Justing Di	77)		Tongo Eq.	/echei	<u>`</u>			
		inches		Submersible				Factory
Total Dep	Total Depth of Well from TOC			Subm	ersible	-	рH	= <u>at</u> *c
	63,60 100				Pump		_	
Static Wa	ter from TOC	;	Sample Ed	quipment //	lyettel	en	pH	≖ at °C
53	1,94	foot	1 D	Sposa	ble			
	evel from TO		┤ ′				Conductivity	\mathcal{L}
1	11		i	Bai	ler		Conductance	Factory
N		feet	<u> </u>				Standard:	
Length of	Water Colum	חח	Analytical I	Equipment (pl	H, DO, Redox, filt	tration, etc.)		
9.6	olo	feet	6	820			Measured Value:	μπιλου/om at 25° C
Well Volum			7 -	U				
J			N	1. Hi.	saram	A.		7/0 //
1,5	59	gai	/'	inny	man		Dissolved Oxyge	, 760mm Hg.
Screened	Interval (from	GS)		1.	107		00	Meter Calibrated to:mgf
46	262		1 -	m Y	15I			
		foot						
)Atail	0-4					l Dissolved	
Time	Well Volume	Gallons Removed	ρH	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
	Volumo	I	 					TOP
			[ĺ		TRB
لودديا		1	())	10-	7/100	-90-	111	19/ 4
1029			6.11	17156	7450	17.5	1116	196,4
				j		ł		
			ـ	_				3-13
1032		2	6.78	19,52	7680	104,2	0.91	251.0
					1			
						}		
1034		3	6.79	19.60	7651	702.4	Q1.98	34.7
,,,,				7.1.				
į]	
1036		4	68/2	19/3	7547	1056	0.85	23 ()
1036			<i>6,00</i>	11.60	1316	1030	0.00	55.0
1020	1	_	1.81	1916	7548	1/18 9	0,65	33.7
1038	<u> </u>	<u> </u>	6001	11.00	1370	1001	0,0)	99.7
								
G <i>eo</i> chemi	ical Parame	eters		Comments:				1
F	errous iron:	0.0	/		-//	0		. //
·		9,9	m g/L		9/66	2 con	-0-12	maget TAW
					1)	7	
Dissolv	ed Oxygen:	\mathcal{O}	mg/L	حليد	Jas TI	AW		1
	-					-3		
	Nitrate:	1)[1
	-	<u> </u>	\ mg/L					
	Sulfate:	110)					ł
		101	mg/L					
			=======================================					
PE Worn:	0	lD	Ţ.	Sampler's S	ignature:		\wedge	1
	tul	K 1)			سر	1		11
isposition c	i Purge Wat	er:]		<u> </u>	_	111	/a(/, - /
D		1)	1	_	10	voma 1	<u> </u>	in

WELL ID: MW-11

Project	Number:	28	32		Task Numbe	r. 12	-	Date: <u>29/12/9</u>
Casing C	iameter		Purge Equ	ioment			Equipment	Calibration - Time
Journa L	7		1 -	•	•			
	4	inches	1 61	Electric				Factory
	oth of Well fro	m TOC	ł	Submersible				= ∕at ℃
15%	7,78	feet	}		Rump			
				quipment			рн	≖ at °C
100	.93		1 0	ispusa	hlp		j	
	evel from TO	feet	1 0				Conductivity	
			İ	Bai	lere		Conductance	Factory
10116	185 TA	feet	<u> </u>			<u> </u>	Standard:	amhos/cm at 25° C
Length of	Water Colum	10	3		t, DO, Redox, filt	` /	1	
1.6.	85	feet	6	820	Multer	paaret	Measured Value	μπhos/om at 25° C
Well Volu			7	¥ -	,			
,	/2		1	m Y	SI			760 mm Hg
1.1		gel	JYU	m i			Dissolved Oxyge	<i>v</i>
Screened	Interval (from	GS)					, DO	Meter Calibrated to: mg/L
		1eet						
								
Time	Well	Gallons	pH	Temp	Conductivity	Redox	Dissolved	Visual Description
0906	Volume	Removed		<u> </u>			Oxygen	1700
UILLE	1	[7512			TRB
ma 11	0.89	,	1.99	100	TOY CO	-65.5	54	663,5
0911	0101	<u> </u>	6.11	17.75	75112	2313	3/7	(GC 3,)
			ĺ	}	[
1617	1.77	2	100	10.79	7/1///	-76.8	27/	827 /
0917	1. / /	×	675	17.71	1999	16.0	2,26	82./
mG13	216	-	1011	1957	7201	-71.7	7 4/	35,4
<u> </u>	2.65	<u> </u>	6.94	11,360	1007	77.	2,10	3317
كدوهم	214	سبر د	1.93	10.11	7257	-72 8	10	22
0924	SUC	2,5	wir_)	17.69	1332	-73,8	110	33/3
								i
					j			
					<u> </u>			
Geochem	ical Parame	eters	<u> </u>	Comments:				
F	errous Iron:	3.7						
	-	<u> </u>	mg/L					
Dissolv	red Oxygen:	19 1	_					
	-	Vil	m g/L					
	Nitrate:	411	1					
	-	IVF	mg/L					
	Sulfate:	NI	۱ ۱					
		10 1	X mg/L					
PE Wom:	1	$I \wedge$	ŀ	Sampler's Si	ignature:		^	ļ
	Mul	<u> </u>					1	_λ /
isposition (of Purge Wate	er: A			1 /m	(]	(1/2)	
	Rumm	o X	İ		1 0000	<u> </u>		y
ノ	へんれながい	CUL						·

APPENDIX B

Laboratory Analytical Report for Groundwater Samples

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

September 25, 1997

Mr. Rick Rexroad BROWN and CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for samples received at Southern Petroleum Laboratories (SPL) on September 13, 1997. The samples were assigned to Certificate of Analysis No.(s) 9709645 and analyzed for all parameters as listed on the chain of custody.

There were no analytical problems encountered with this group of samples and all quality control data was within acceptance limits.

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette A. Fini Project Manager

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SOUTHERN PETROLEUM LABORATORIES, INC.

Certificate of Analysis Number: 97-09-645

Approved for Release by:

Bernadette A. Fini, Project Manager

Date:

Greg Grandits Laboratory Director

Idelis Williams
Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER
SAMPLED BY: Brown & Caldwell DATE SAMPLED: 09/11/97 15:42:00

SAMPLE ID: MW-8 DATE RECEIVED: 09/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μ g/L
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene Method 8020A *** Analyzed by: VHZ Date: 09/18/97	83		
Petroleum Hydrocarbons - Gasoline	ND	0.1 P	mg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: VHZ Date: 09/18/97	% Recovery 107 73		
Total Petroleum Hydrocarbons-Diesel	0.10	0.1 P	mg/L
<pre>Surrogate n-Pentacosane Modified 8015A - Diesel *** Analyzed by: RR</pre>	% Recovery 94		

ND - Not detected.

Date: 09/19/97 01:13:00

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c15 that do not resemble a diesel pattern.(C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 09/11/97 15:42:00

DATE RECEIVED: 09/13/97

09/18/97

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-8

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION

LIMIT

UNITS

Liquid-liquid extraction

Method 3510B ***
Analyzed by: PC

Date: 09/18/97 08:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c15

that do not resemble a diesel pattern. (C10-C24) RR

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

MATRIX: WATER

SITE: Hobbs, NM MATRIX: WATER
SAMPLED BY: Brown & Caldwell DATE SAMPLED: 09/11/97 16:30:00

SAMPLE ID: MW-7 DATE RECEIVED: 09/13/97

ANALYTICAL	ከልሞል		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μ g/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene Method 8020A *** Analyzed by: VHZ Date: 09/18/97	87		
Petroleum Hydrocarbons - Gasoline	ND	0.1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	103		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: VHZ Date: 09/18/97	73		
Total Petroleum Hydrocarbons-Diesel	ND	0.1 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel *** Analyzed by: RR	% Recovery 96		

ND - Not detected.

Date: 09/19/97 01:51:00

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 09/11/97 16:30:00

DATE RECEIVED: 09/13/97

09/18/97

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-7

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION LIMIT UNITS

Liquid-liquid extraction

Method 3510B ***
Analyzed by: PC

Date: 09/18/97 08:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

PROJECT: Hobbs-BJ Services
SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/12/97 07:25:00

SAMPLE ID: MW-5

DATE RECEIVED: 09/13/97

RESULTS ND ND ND ND ND ND ND		UNITS μg/L μg/L
ND ND ND	1.0 P	
ND ND		
ND	1.0 P	
		μg/L
S ND	1.0 P	μg/L
ND ND		μg/L
% Recovery		
93		
87		
ND	0.1 P	mg/L
% Recovery		
113		
73		
ND	0.1 P	mg/L
% Recovery		
90		
	ND % Recovery 113 73 ND % Recovery	ND 0.1 P % Recovery 113 73 ND 0.1 P % Recovery

ND - Not detected.

Date: 09/19/97 02:29:00

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-5

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 09/12/97 07:25:00

DATE RECEIVED: 09/13/97

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION LIMIT UNITS

Liquid-liquid extraction

Method 3510B ***
Analyzed by: PC

Date: 09/18/97 08:00:00

09/18/97

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-04

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 09/11/97 18:15:00

SAMPLE ID: MW-6 DATE RECEIVED: 09/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	11	1.0 P	μg/L
TOLUENE	1.3	1.0 P	μg/L
ETHYLBENZENE	3.4	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	15.7		μ g/L
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene	87		
Method 8020A ***			
Analyzed by: VHZ			
Date: 09/18/97			
Petroleum Hydrocarbons - Gasoline	ND	0.1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	103		
4-Bromofluorobenzene	80		
Modified 8015A - Gasoline***			
Analyzed by: VHZ			
Date: 09/18/97			
Total Petroleum Hydrocarbons-Diesel	1.0	0.1 P	mg/L
Surrogate	% Recovery		
n-Pentacosane	96		
Modified 8015A - Diesel ***			
Analyzed by: RR			

(P) - Practical Quantitation Limit ND - Not detected.

Date: 09/19/97 04:24:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24 that do not resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance

with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-04

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-6

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 09/11/97 18:15:00

DATE RECEIVED: 09/13/97

09/18/97

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

Liquid-liquid extraction

Method 3510B ***
Analyzed by: PC

Date: 09/18/97 08:00:00

ed by. DC

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24

that do not resemble a diesel pattern. (C10-C24) RR

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-05

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 09/11/97 19:30:00

SAMPLE ID: MW-3 DATE RECEIVED: 09/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	770	10 P	μg/L
TOLUENE	3000	10 P	μg/L
ETHYLBENZENE	1600	10 P	μg/L
TOTAL XYLENE	1900	10 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	7270		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	113		
4-Bromofluorobenzene Method 8020A *** Analyzed by: TB	113		
Date: 09/21/97			
Petroleum Hydrocarbons - Gasoline	16	1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	137		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: TB Date: 09/21/97	120		
Total Petroleum Hydrocarbons-Diesel	1.6	0.5 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel *** Analyzed by: RR	% Recovery 70		

(P) - Practical Quantitation Limit

Date: 09/19/97 02:46:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c18 that do not resemble a diesel pattern.(C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-05

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT: Hobbs-BJ Services

PROJECT NO: 2832.12 SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/11/97 19:30:00 DATE RECEIVED: 09/13/97

SAMPLE ID: MW-3

ANALYTICAL DATA

PARAMETER

RESULTS

DETECTION

UNITS

09/18/97

LIMIT

Liquid-liquid extraction

Method 3510B *** Analyzed by: PC

Date: 09/18/97 08:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c18

that do not resemble a diesel pattern.(C10-C24) RR

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-06

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 09/12/97 09:35:00

SAMPLE ID: MW-11 DATE RECEIVED: 09/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	220	1.0 P	μg/L
TOLUENE	15	1.0 P	μg/L
ETHYLBENZENE	27	1.0 P	μg/L
TOTAL XYLENE	13	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	275		μ g/L
Surrogate	% Recovery		
1,4-Difluorobenzene	140MI		
4-Bromofluorobenzene Method 8020A *** Analyzed by: VHZ	123		
Date: 09/19/97			
Petroleum Hydrocarbons - Gasoline	0.46	0.1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	120		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: fab Date: 09/23/97	100		
Total Petroleum Hydrocarbons-Diesel	1.0	0.1 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel *** Analyzed by: RR	% Recovery 96		

⁽P) - Practical Quantitation Limit MI - Matrix interference.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24 that do not resemble a diesel pattern. (C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance

with EPA guidelines for quality assurance.

Date: 09/19/97 03:24:00

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-06

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT: Hobbs-BJ Services

PROJECT NO: 2832.12

SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/12/97 09:35:00

SAMPLE ID: MW-11

DATE RECEIVED: 09/13/97

ANALYTICAL DATA

PARAMETER

RESULTS

DETECTION

UNITS

Liquid-liquid extraction

09/18/97

LIMIT

Method 3510B ***

Analyzed by: PC

Date: 09/18/97 08:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24

that do not resemble a diesel pattern.(C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-07

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-D

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 09/12/97

DATE RECEIVED: 09/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	87	1.0 P	μ g/L
TOLUENE	2.4	1.0 P	μg/L
ETHYLBENZENE	26	1.0 P	$\mu g/L$
TOTAL XYLENE	2.8	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	118.2		μ g/L
Surrogate	% Recovery		
1,4-Difluorobenzene	110		
4-Bromofluorobenzene Method 8020A *** Analyzed by: VHZ Date: 09/18/97	110		
Petroleum Hydrocarbons - Gasoline	0.33	0.1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	127		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: VHZ Date: 09/18/97	110		
Total Petroleum Hydrocarbons-Diesel	0.79	0.1 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel *** Analyzed by: RR Date: 09/19/97 04:03:00	% Recovery		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24 that do not resemble a diesel pattern.(C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance

with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-07

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-D

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 09/12/97

DATE RECEIVED: 09/13/97

09/18/97

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS LIMIT

Liquid-liquid extraction

Method 3510B ***

Date: 09/18/97 08:00:00

Analyzed by: PC

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24

that do not resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-08

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

MATRIX: WATER

SITE: Hobbs, NM

PROJECT: Hobbs-BJ Services

MATKIX:

DATE SAMPLED: 09/12/97 09:35:00

SAMPLED BY: Brown & Caldwell SAMPLE TD: MW-10

SAMPLE ID: MW-10 DATE RECEIVED: 09/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	87	1.0 P	μg/L
TOLUENE	2.3		μg/L
ETHYLBENZENE	26	1.0 P	μg/L
TOTAL XYLENE	2.7	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	118.0		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	110		
4-Bromofluorobenzene Method 8020A *** Analyzed by: VHZ Date: 09/18/97	110		
Petroleum Hydrocarbons - Gasoline	0.33	0.1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	123		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: VHZ Date: 09/18/97	113		
Total Petroleum Hydrocarbons-Diesel	0.76	0.1 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel *** Analyzed by: RR Date: 09/19/97 04:41:00	% Recovery 78		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24 that do not resemble a diesel pattern.(C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-08

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT: Hobbs-BJ Services

PROJECT NO: 2832.12

SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/12/97 09:35:00

SAMPLE ID: MW-10

DATE RECEIVED: 09/13/97

ANALYTICAL DATA

PARAMETER

RESULTS

DETECTION

UNITS

Liquid-liquid extraction

LIMIT

09/18/97

Method 3510B *** Analyzed by: PC

Date: 09/18/97 08:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24

that do not resemble a diesel pattern.(C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-09

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

Analyzed by: RR

PROJECT: Hobbs-BJ Services PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 09/12/97 13:00:00

SAMPLE ID: MW-9 DATE RECEIVED: 09/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	2.1		μg/L
TOLUENE	2.3	1.0 P	$\mu g/L$
ETHYLBENZENE	2.1		μ g/L
TOTAL XYLENE	120	1.0 P	μ g/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	126.5		μ g/L
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene Method 8020A ***	170MI		
Analyzed by: MF Date: 09/19/97			
Petroleum Hydrocarbons - Gasoline	1.9	0.1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	130		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: TB Date: 09/20/97	220MI		
Total Petroleum Hydrocarbons-Diesel	1.2	0.5 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel ***	% Recovery 86		

(P) - Practical Quantitation Limit MI - Matrix interference.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c17 that do not resemble a diesel pattern.(C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance

with EPA guidelines for quality assurance.

Date: 09/19/97 05:20:00

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-09

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-9

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 09/12/97 13:00:00

DATE RECEIVED: 09/13/97

09/18/97

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION LIMIT UNITS

Liquid-liquid extraction

Method 3510B ***
Analyzed by: PC

Date: 09/18/97 08:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c17

that do not resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-10

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT: Hobbs-BJ Services

PROJECT NO: 2832.12 MATRIX: WATER

SITE: Hobbs, NM

DATE SAMPLED: 09/12/97 13:30:00

SAMPLED BY: Brown & Caldwell SAMPLE ID: MW-1

DATE RECEIVED: 09/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	1800	25 P	μg/L
TOLUENE	4400	25 P	μg/L
ETHYLBENZENE	1000	25 P	μg/I
TOTAL XYLENE	3000	25 P	μg/I
TOTAL VOLATILE AROMATIC HYDROCARBONS	10200		μg/I
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene	112		
Method 8020A ***			
Analyzed by: TB			
Date: 09/21/97			
Petroleum Hydrocarbons - Gasoline	21	2 P	mg/I
Surrogate	% Recovery		
1,4-Difluorobenzene	112		
4-Bromofluorobenzene	104		
Modified 8015A - Gasoline***			
Analyzed by: TB			
Date: 09/21/97			
Total Petroleum Hydrocarbons-Diesel	23	10 P	mg/L
Surrogate	% Recovery		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c17 that do not resemble a diesel pattern.(C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-10

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT: Hobbs-BJ Services

SITE: Hobbs, NM

MATRIX: WATER

PROJECT NO: 2832.12

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/12/97 13:30:00

SAMPLE ID: MW-1

DATE RECEIVED: 09/13/97

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS LIMIT

D

n-Pentacosane

Modified 8015A - Diesel ***

Analyzed by: RR

Date: 09/22/97 03:35:00

Liquid-liquid extraction

09/18/97

Method 3510B ***
Analyzed by: PC

Date: 09/18/97 08:00:00

D - Diluted, limits not applicable.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c17

that do not resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA quidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 09/26/97

Certificate of Analysis No. H9-9709645-11

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs-BJ Services
SITE: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 09/12/97 13:15:00

SAMPLE ID: MW-4 DATE RECEIVED: 09/13/97

RESULTS 92 840 670	DETECTION LIMIT 5.0 P 5.0 P	UNITS μg/L
840		μ g/L
	5.0 P	
670		μg/L
	5.0 P	μg/L
2100	5.0 P	μg/L
3702		μg/L
% Recovery		
93		
140MI		
7.6	0.5 P	mg/L
% Recovery		
107		
147		
15	0.5 P	mg/L
% Recovery		
90		
	2100 3702 % Recovery 93 140MI 7.6 % Recovery 107 147	2100 5.0 P 3702 % Recovery 93 140MI 7.6 0.5 P % Recovery 107 147 15 0.5 P % Recovery

(P) - Practical Quantitation Limit MI - Matrix interference.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24

that do resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance

with EPA guidelines for quality assurance.

Date: 09/23/97 01:58:00

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-11

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT: Hobbs-BJ Services

PROJECT NO: 2832.12

SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/12/97 13:15:00

SAMPLE ID: MW-4

DATE RECEIVED: 09/13/97

ANALYTICAL DATA

PARAMETER

RESULTS

DETECTION

UNITS

Liquid-liquid extraction

09/19/97

LIMIT

Method 3510B ***

Analyzed by: PC

Date: 09/21/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from c10-c24

that do resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9709645-12

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 09/26/97

PROJECT NO: 2832.12 PROJECT: Hobbs-BJ Services SITE: Hobbs, NM SAMPLED BY: Provided By SPL **SAMPLE ID:** Trip Blank

DATE SAMPLED: 09/11/97 DATE RECEIVED: 09/13/97

MATRIX: WATER

ANALYTICAI	L DATA				
PARAMETER		RESULTS		ECTION	UNITS
BENZENE		ND	LIM: 1.0		μg/L
TOLUENE		ND	1.0	_	μg/L
ETHYLBENZENE		ND	1.0		μg/L
TOTAL XYLENE		ND	1.0	P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	S	ND			$\mu g/L$
Surrogate	% ;	Recovery			
1,4-Difluorobenzene		93			
4-Bromofluorobenzene		77			
Method 8020A ***					
Analyzed by: MF					
Date: 09/20/97					
Petroleum Hydrocarbons - Gasoline		ND	0.1	P	mg/L
Surrogate	% :	Recovery			
1,4-Difluorobenzene		110			
4-Bromofluorobenzene		67			

ND - Not detected.

Analyzed by: TB

Modified 8015A - Gasoline***

Date: 09/20/97

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

QUALITY CONTROL DOCUMENTATION

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous µg/L Batch Id: HP_U970918052900

LABORATORY CONTROL SAMPLE

SPIKE	PIKE Method Spike		Blani	C Spike	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range		
3enzene	ND	50	43	86.0	62 - 121		
Toluene	ND	50	45	90.0	66 - 136		
EthylBenzene	ND	50	45	90.0	70 - 136		
) Xylene	ND I	50	45	90.0	74 - 134		
M & P Xylene	ND	100	89	89.0	77 - 140		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %		imits(***) Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
BENZENE	87	20	110	NC	110	NC	NC	25	39 - 150
TOLUENE	2.4	20	21	93.0	21	93.0	0	26	56 - 134
ETHYLBENZENE	26	20	46	100	48	110	9.52	38	61 - 128
O XYLENE	ND	20	19	95.0	20	100	5.13	29	40 - 130
M & P XYLENE	2.8	40	40	93.0	41	95.5	2.65	20	43 - 152

Analyst: VHZ

Sequence Date: 09/18/97

SPL ID of sample spiked: 9709645-07A

Sample File ID: U_I7525.TX0

Method Blank File ID:

Blank Spike File ID: U_I7515.TX0 Matrix Spike File ID: U_I7520.TX0

Matrix Spike Duplicate File ID: U_I7521.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (4th Q 194)

SAMPLES IN BATCH(SPL ID):

9709604-03A 9709645-01A 9709645-02A 9709645-03A 9709645-04A 9709645-05A 9709809-01A 9709809-04A

9709809-06A 9709604-04A 9709809-08A 9709809-10A 9709809-07A 9709809-09A 9709645-08A 9709604-05A

9709645-07A

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous µg/L Batch Id:

HP_U970921091200

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range		
Benzene	ND	50	50	100	62 - 121		
Toluene	ND	50	50	100	66 - 136		
EthylBenzene	ND	50	44	88.0	70 - 136		
O Xylene	ND	50	41	82.0	74 - 134		
M & P Xylene	ND	100	83	83.0	77 - 140		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	1	imits(***) (Advisory)	
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Ra	nge
BENZENE	11	20	27	80.0	27	80.0	0	25	39 -	150
TOLUENE	ND	20	18	90.0	17	85.0	5.71	26	56 -	134
ETHYLBENZENE	ND	20	18	90.0	15	75.0	18.2	38	61 -	128
O XYLENE	ND	20	17	85.0	15	75.0	12.5	29	40 -	130
M & P XYLENE	ND	40	33	82.5	29	72.5	12.9	20	43 -	152

Analyst: TB

Sequence Date: 09/21/97

SPL ID of sample spiked: 9709643-02A

Sample File ID: U_I7645.TX0

Method Blank File ID:

Blank Spike File ID: U_I7641.TX0
Matrix Spike File ID: U_I7638.TX0

Matrix Spike Duplicate File ID: U_I7639.TXO

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (3rd Q 195)

(***) = Source: SPL-Houston Historical Data (4th Q '94)

SAMPLES IN BATCH(SPL ID):

9709856-08A 9709856-07A 9709643-05A 9709645-05A

9709645-10A 9709643-03A 9709643-02A

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous µg/L Batch Id: HP_U970919101800

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	1	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range		
Benzene	ND	50	42	84.0	62 - 121		
Toluene	ND	50	45	90.0	66 - 136		
EthylBenzene	ND	50	45	90.0	70 - 136		
O Xylene	ND	50	45	90.0	74 - 134		
M & P Xylene	ND	100	91	91.0	77 - 140		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		imits(***) Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
BENZENE	ND	20.0	18	90.0	18	90.0	0	25	39 - 150
TOLUENE	ND	20.0	18	90.0	19	95.0	5.41	26	56 - 134
ETHYLBENZENE	ND	20.0	18	90.0	18	90.0	0	38	61 - 128
O XYLENE	ND	20.0	17	85.0	19	95.0	11.1	29	40 - 130
M & P XYLENE	ND	40.0	35	87.5	37	92.5	5.56	20	43 - 152

Analyst: MF

Sequence Date: 09/19/97

SPL ID of sample spiked: 9709809-11A

Sample File ID: U_I7561.TX0

Method Blank File ID:

Blank Spike File ID: U_I7559.TX0

Matrix Spike File ID: U_I7567.TX0

Matrix Spike Duplicate File ID: U_I7568.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (4th Q '94)

SAMPLES IN BATCH(SPL ID):

 9709928-01A
 9709929-01A
 9709930-01A
 9709862-01B

 9709862-03B
 9709862-04B
 9709862-05B
 9709645-09A

 9709645-11A
 9709645-10A
 9709856-01A
 9709856-02A

 9709856-03A
 9709856-04A
 9709862-02B
 9709809-03A

 9709809-01A
 9709809-07A
 9709809-02A
 9709645-06A

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous µg/L Batch Id: HP_U970920030200

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)			
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range			
Benzene	ND	50	38	76.0	62 - 121			
Toluene	ND	50	41	82.0	66 - 136			
EthylBenzene	ND	50	40	80.0	70 - 136			
O Xylene	ND	50	40	80.0	74 - 134			
M & P Xylene	ND	100	80	80.0	77 - 140			

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		.imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
BENZENE	4.7	20	20	76.5	22	86.5	12.3	25	39 - 150
TOLUENE	1.4	20	18	83.0	19	88.0	5.85	26	56 - 134
ETHYLBENZENE	ND	20	16	80.0	17	85.0	6.06	38	61 - 128
O XYLENE	ND	20	17	85.0	19	95.0	11.1	29	40 - 130
M & P XYLENE	ND	40	33	82.5	36	90.0	8.70	20	43 - 152

Analyst: TB

Sequence Date: 09/20/97

SPL ID of sample spiked: 9709856-06A

Sample File ID: U_17609.TX0

Method Blank File ID:

Blank Spike File ID: U_I7599.TX0

Matrix Spike File ID: U_17603.TX0

Matrix Spike Duplicate File ID: U_I7604.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (4th Q '94)

SAMPLES IN BATCH(SPL ID):

9709645-12A 9709856-05A 9709643-04A 9709856-06A

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous mg/L

Batch Id:

HP_U970918061800

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery %	QC Limits(**) (Mandatory) % Recovery Range
Gasoline Petr. Hydrocarbon	ND	0.9	0.84	93.3	56 - 130

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE PETR. HYDROCARBON	0.33	0.9	1.3	108	1.3	108	0	22	37 - 169

Analyst: VHZ

Sequence Date: 09/18/97

SPL ID of sample spiked: 9709645-08A

Sample File ID: UUI7526.TX0

Method Blank File ID:

Blank Spike File ID: UUI7517.TX0

Matrix Spike File ID: UUI7522.TX0

Matrix Spike Duplicate File ID: UUI7523.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical data (3rd Q 195)

(***) = Source: SPL-Houston Historical Data (3rd Q '95)

SAMPLES IN BATCH(SPL ID):

9709645-07A 9709645-08A 9709645-01A 9709645-02A

9709645-03A 9709645-04A

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous mg/L

Batch Id: HP_U970921093500

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery	QC Limits(**) (Mandatory) % Recovery Range
Gasoline Petr. Hydrocarbon	ND	1.0	0.68	68.0	56 - 130

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE PETR. HYDROCARBON	ND	0.9	0.92	102	0.94	104	1.94	22	37 - 169

Analyst: TB

Sequence Date: 09/21/97

SPL ID of sample spiked: 9709643-03A

Sample File ID: UUI7644.TXO

Method Blank File ID:

Blank Spike File ID: UUI7640.TX0 Matrix Spike File ID: UUI7636.TX0

Matrix Spike Duplicate File ID: UUI7637.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical data (3rd Q '95) (***) = Source: SPL-Houston Historical Data (3rd Q '95)

SAMPLES IN BATCH(SPL ID):

9709862-018 9709643-05A 9709645-05A 9709645-10A 9709818-01A 9709820-04A 9709818-04A 9709818-05A 9709820-03A 9709818-06A 9709820-02A 9709818-07A 9709643-03A 9709643-02A 9709862-03B

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous mg/L

Batch Id:

HP U970923110800

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	S Blank Result Added Result <2> <3> <1>		Spike Recovery	QC Limits(**) (Mandatory) % Recovery Range	
Gasoline Petr. Hydrocarbon	ND	1.0	0.73	73.0	56 - 130

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE PETR. HYDROCARBON	ND	0.9	0.78	86.7	0.83	92.2	6.15	22	37 - 169

Analyst: fab

Sequence Date: 09/23/97

SPL ID of sample spiked: 9709643-01A

Sample File ID: UUI7709.TX0

Method Blank File ID:

Blank Spike File ID: UU17703.TX0

Matrix Spike File ID: UUI7706.TX0

Matrix Spike Duplicate File ID: UUI7707.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (3rd Q '95)

SAMPLES IN BATCH(SPL ID):

9709916-02A 9709916-03A 9709645-11A 9709643-01A

9709645-06A 9709914-01A

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous mg/L Batch Id: HP_U970920130800

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
Gasoline Petr. Hydrocarbon	ND	1.0	0.77	77.0	56 - 130

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %		_imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE PETR. HYDROCARBON	ND	0.9	0.67	74.4	0.61	67.8	9.28	22	37 - 169

Analyst: TB

Sequence Date: 09/20/97

SPL ID of sample spiked: 9709643-04A

Sample File ID: UU17608.TX0

Method Blank File ID:

Blank Spike File ID: UUI7593.TX0

Matrix Spike File ID: UUI7605.TX0

Matrix Spike Duplicate File ID: UUI7606.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical data (3rd Q '95) (***) = Source: SPL-Houston Historical Data (3rd Q '95)

SAMPLES IN BATCH(SPL ID):

9709645-12A 9709643-04A 9709862-05B 9709645-09A

9709862-04B

SPL BATCH QUALITY CONTROL REPORT **

Modified 8015A - Diesel ***

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous mg/L Batch Id: HP_T970918045900

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery	QC Limits(**) (Mandatory) % Recovery Range
Diesel	ND	5.0	4.76	95.2	60 - 139

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %		_imits(***) (Advisory)
	<2>	<3>	Result	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
DIESEL	0.25	5.0	5.4	103	5.1	97.0	6.00	43	20 - 177

Analyst: RR

Sequence Date: 09/18/97

SPL ID of sample spiked: 9709582-02B

Sample File ID: T_I7168.TX0

Method Blank File ID:

Blank Spike File ID: T_I7165.TX0

Matrix Spike File ID: T_17185.TX0

Matrix Spike Duplicate File ID: T_I7186.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '96) (***) = Source: SPL-Houston Historical Data (2nd Q '94)

SAMPLES IN BATCH(SPL ID):

 9709582-01B
 9709624-01B
 9709624-02B
 9709624-03B

 9709624-04B
 9709624-05B
 9709624-06B
 9709624-08B

 9709645-05B
 9709645-06B
 9709645-07B
 9709645-08B

 9709645-01B
 9709645-01B
 9709645-01B
 9709645-01B

 9709645-01B
 9709645-02B
 9709645-04B

CHAIN OF CUSTODY

AND

SAMPLE RECEIPT CHECKLIST

SPL Houston Environmental Laboratory

Sample Login Checklist

Da	te: 9/13/97 Time:	1515			
SP	L Sample ID:				
	9709645				
				Yes	No
1	Chain-of-Custody (COC) form is pre	esent.			
2	COC is properly completed.				
3	If no, Non-Conformance Worksheet	has been comp	leted.		
4	Custody seals are present on the ship	oping container.		1	
5	If yes, custody seals are intact.			L	
6	All samples are tagged or labeled.			W	
7	If no, Non-Conformance Worksheet	has been compl	eted.		
8	Sample containers arrived intact				
9	Temperature of samples upon arrival	:			$\psi_{\mathbf{C}}$
10	Method of sample delivery to SPL:	SPL Delivery		·	
		Client Delivery			
		FedEx Delivery	(airbill #)	9698	09886
		Other:			
11	Method of sample disposal:	SPL Disposal		L	
,		HOLD			
		Return to Clie	nt		
				·*	
Nai	ne: Aulen Ett		Date:	>	

Analysis Request & Chain of Custody Record Analysis Request & Chain of Custody Record Analysis Request & Chain of Custody Record Analysis Request & Chain of Custody Record Analysis Request & Chain of Custody Record Analysis Request & Chain of Custody Record Analysis Request & Chain of Custody Record Analysis Request & Chain of Custody Record Analysis Request Request Request Request Register Register Requested Analysis Request Request Register Regist	15440									Intact?	Temp: C PM review (initial):	485763575 L 9/13/4500	70583 (318) 237-4775
SPL, Inc. Analysis Request & Chain of Custody Matrix bottle size Analysis Request & Chain of Custody Matrix bottle size Social Reporting Requirements Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 3 & Livel 4 & 912 Standard & Livel 4 & 9	SPL Workorder No:	Requested	5108079								on Limits (specify):	1 💙	6. Received by Laboratory:
S. UNIE Special Representation, France City	dv Record	pres.	2=HNO3 O=other: Containers	1 = HCl 3 = H2SO4 Number of	7 1.	200 m	1 4 3	1 9 3				2/97 1700 time	500 Ambassador C
S. UNIE Special Representation, Frances City	OL, Inc.	matrix bottle size	O=other: A=amber glass V=vial i=402 40=vial	SL=sludge P=plastic G=glass I=1 liter	96	073	500	M C W			esults 🔲	date	3
Remarks: & Extra 1 Standard And Special Recognitions Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Standard A Staing Staing Standard A Staing Staing	SI Analysis Request &	duell	Services	TIME comp		0935	(330	1315	1 1 1 1	lolume fox CANC	eporting Requirements Fax R Standard QC	uished by Sampler. Mushed by:	n, TX 77054 (713) 660-09
		saw and Ca	115 Louisiana Rick Reximal Hobbs - 85 2832,12	7	8		1/2/18			rks:	TAT	口及	terchange Drive, Houston

SPL Workonder No:	Chain of Custody Record U (U) (O)	quested Analys	\$10 \$10 \$12	08	2 <i>08</i> uoo	75 3 X 30 1	upe HS2	dL 79 InN I=E	1 2 1	7	1 4 3 1.	7 3	1 4 3 1 .	1 6 7 1	23		1104004	Tem. 6	CUSTOMER PLOCKEE TRACKING NUMBER. PULL DE PUPPLE PAR		100 (70) Leadon by: 1 Cares 4995 76 3976	5 × 1 0/2	time 6. Received by Laboratory:	500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775
	Custod	e size	lsiv=C	₽ Z(- 19	ı lite		BE	_				×	Via (rks:		Raw Data	Level 4 QC	date	date	date	
L, Inc.	in of	matrix bottle	er glass		= V	Di.	selc	C=1	0	9	9	<u></u>	S	0	0		aboratory remarks:							
SPL,	& Ch	matri	133	lios:		ter dge	nis=	= M	3	3	3	3	3	3	3		Labora		Fax Results	Level 3 QC				1060
	quest		8	5)				comp grab	X	×	X	×		_	×		-			<u>3</u>	0			3) 660-(
	Analysis Request &	alduell	#25	eviles			!	TIME	1542	1630	0725	5181	1930	0935	1				Special Reporting Requirements	Standard (CC	d by Sampler.	d by:	d by:	X 77054 (71)
N	Y	andalle	2 5		12	NN		DATE	11/1/67	1/11/87	6/11/87	9/11/97	9/11/97	1/2/97				2062	Special Repor	rıs	1. Relinquished by Sampl	3. Relinquished by:	5. Relinquished by:	Houston, T
		Client Name: Bown 6	Address/Phone: 1415 Loui	16665	Project Number: 2832,	Project Location: Hobbs,	Invoice To:	SAMPLE ID	MW-8	MW-7	MW-5	MW-6	MW-3	MW-11	ANG - THIS TRID CHOUSE		Client/Consultant Remarks:	ICE chest 20	H		24hr 🔲 72hr 🔲	48hr 🔲 Standard 📋	Other 🔲	8880 Interchange Drive, Houston, TX 77054 (713) 660-0901

į

	<u> </u>		SPL	SPL, Inc.				S	SPL Workorder No:	der No:	\		15440
	Analys	Analysis Request & Chain of Custody Record	t & C	hain o	Custo	dy Rec	ord		(1/	04645	4>	page	Jo
Client Name: Stark and	1 Cal	Ø	ma	matrix bottle	tle size	pres.				Requested		Analysis	
Address/Phone: 1915 Louis	iang	A # 2500 759-0901	122	glass	lsiv		L	-5	_5,				
Client Contact: KICK Re	Rexum			ner: ber	=01	103		70.	02				
Project Name: H6665	8	ukes	ios=	=0tl		NH:		8 20.	30				
Project Number: 2832	2.72)	=S	= O	[=9 ===================================		TOD.	02	74		<i></i>	10 14	
Project Location: HCbbS	NM		ler.	egbi oij	- 19]		ワ 火	H				
Invoice To:			ew=	uls=	il l	HCI		H.	Ίď.			-	
SAMPLE ID	DATE TIME	comp	grab √	SL:	8=8 1= 1=	[=[-	L V					
MW-D	4/12/1/		X	7	000 ta	1 30 0	4	3					
MU-10®	1/12/97 0935		ン ス	16		_	e	3					
MW-9	9/12/17 1300	00	ス X	7		_	To the second	3			_		
MW-1		330	X	16		_	7	8					
MW-4	15/19/13	1315	スメ) C	K	_	6	3					
								,					
									 			_	
Client/Consultant Remarks: & EKTKA Volume FOK	extra Volume	17	And Tab	Laboratory remarks:	narks:						- L	Intact?	JY UN
Ice Chest 10f	10f2	1	7								<u> </u>	Temp:	
Requested TAT	Special Reporting Req		Fax Results	<u> </u>	Raw Data	ata	Special E	etection	Special Detection Limits (specify)	cify):		PM rev	PM review (initial):
	Standard QC	- 1	Level 3 QC		Level 4 (C	8							
		C. C. L. L. L. L. L. L. L. L. L. L. L. L. L.	\ \ \	\	date //	167	Time 2	0 0	2. Received by	by: al Exne	255	4805	4857689X
48hr Standard		7			date		time	4	Reconved	1 3 S	7	9/1	100/2/000
Other	5. Relinquished by:				date		time	9	6. Received by	by Laboratory			
B880 Interchange Drive, Houston, TX 77054 (713) 660-0901	e, Houston, TX 770	54 (713) 660	1060-0			500 A	mbassad	or Caff	ery Park	500 Ambassador Caffery Parkway. Scott. LA 70583 (318) 237-4775	LA 705	83 (318)	237-4775
459 Hughes Drive. Traverse City. MI 49684 (616) 947-5777	werse City, MI 4968	4 (616) 947-	5777			1511	2,000	let hours	August	E. III art		(21.67) 55	447 6060
		. (0.10))	1101	C. Ciang	dioina	a Averiuc	, runertor	1, CA 92	031 (714)	1311 E. Orangethorpe Avenue, Fullerton, CA 92631 (714) 447-6868

				SPL	SPL, Inc.				s	P.L. Work	SPL Workorder No:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	15439	39
®	Ar	Analysis Request & Chain of Custody Record	equest	& Cl	nain of	Custo	dy Rec	ord				くてのけ	<u> </u>	page of	
Client Name: Bown Garo	2/	alfuell		mat	matrix bottle	le size	pres.			Q	Of Requested	1	Analysis	S	
Address/Phone: 1415 Louis,	7	#	005		8135	lsiv			3		(1) N (V)				
Client Contact: Rick Res	XIOad			- 1	per [=0ŧ	103		510	105					
Project Name: 16665 - 6	85 S	らんじ	t S	ios=	}0= ms= siv=	, ZO	H>		B 27	3 6					
Project Number: 2832,	12				= Y				90	780				<u></u>	
Project Location: Hobbs, N	11/1				əgbi sis	er 4		10 19	19 X	7					
Invoice To:			ļ	ew=	sela		HCI		He	Ha					
SAMPLE ID	DATE	TIME	comp gr		=d	8=1 1= C=	= [11	1					
MW-8	9/11/97	1542		ح ×	5	D Can	1 2	7	\sim	1					
MW-7	16/11/6	1630		メ	91		_	7	8						
MW-5	C6/21/3	0725		ン ス)		_	7	5						
MW-6	4/11/97	5/81		ડ પ્ર	5)	,		7-	8						
MW-3	9/11/97	1930		<u>ک</u>	9/		_	4	3						
MU -11	912/97	0935		3 X	9 1	オ		7	3	-					
ALL - The TRIDGENE	1	ſ		3 ×	76	Via (7	N						
Client Consultant Remarks							_								
Cuciny Consultants remains.	(× × × × × × × × × × × × × × × × × × ×	Laboratory remarks:	arks:		Fed x 969	969	8098	864		Intact?	<u></u>	z 7
40	Special Reporting Requirements	ne Requireme		۔ ا	_	6		CUSTOMER PA	OKAGE TRACKING	CUSTOMER PACKAGE TRACKING NUMBER - PULL UP PURPLE TAE	UP PURPLE TAB		Temp:	7 7	4
Kequested TAT		merumban 9		rax Kesults] (Kaw Data	គ្ន 	Jacora I	X (EC (10))	s) smiller	ecuiy):			ivi review (inii	(lai):
	Stat	Standard OC	_ _	Level 3 QC	ןכ	Level 4 (XC	□ 8								
	1. Kelinquished by Sample	by Sampler:	Jel Se			<i>6</i>	18/2	Lime //		2. Received by:	d by:	xores,	3864	5763975	12
48hr Standard 3	3. Relinquished by:	by:	6			date		time		Receive	ed by:	1	9	12/67/00	(33)
Other	5. Relinquished by:	l by:				date		time	19	. Receive	6. Received by Laboratory	atory:		2	3
B880 Interchange Drive, Houston, TX 77054 (713) 660-0901	Houston, T	77054 (7	13) 660	-0901			500 A	mbassac	lor Cafi	ery Par	kway, Sc	ott, LA 7	0583 (3	500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775	775
(1 459 Hughes Drive, Traverse City, MI 49684 (616) 947-5777	rse City, MI	49684 (61	6) 947-	5777		J	1511	E. Oranı	gethorp	e Aveni	ıe, Fulleı	ton, CA	92631 (1511 E. Orangethorpe Avenue, Fullerton, CA 92631 (714) 447-6868	8989

SPL Houston Environmental Laboratory

Sample Login Checklist

Da	te: 9/13/97 Time:	1515			
SPI	L Sample ID: 4709645				
				<u>Yes</u>	<u>No</u>
l	Chain-of-Custody (COC) form is pre	esent.			
2	COC is properly completed.				
3	If no, Non-Conformance Worksheet	has been compl	eted.		
4	Custody seals are present on the ship	pping container.			
5	If yes, custody seals are intact.				
6	All samples are tagged or labeled.				
7	If no, Non-Conformance Worksheet	has been compl	eted.		
8	Sample containers arrived intact				
9	Temperature of samples upon arrival	;			$\psi_{\mathbf{C}}$
10	Method of sample delivery to SPL:	SPL Delivery			
		Client Delivery			
		FedEx Delivery	(airbill #)	9698	09886
		Other:	,		
11	Method of sample disposal:	SPL Disposal		4	
		HOLD			
		Return to Clie	nt		
Na	me: Aulen Estit		Date: 9 9 9 9 9 9 9 9 9		

4. The state of th

BROWN AND CALDWELL

FINAL

DECEMBER 1997 GROUNDWATER SAMPLING REPORT HOBBS, NEW MEXICO FACILITY

BJ SERVICES COMPANY, U.S.A.

MARCH 23, 1998

FINAL
DECEMBER 1997 GROUNDWATER SAMPLING REPORT
HOBBS, NEW MEXICO FACILITY
BJ SERVICES COMPANY, U.S.A.

Prepared for

BJ Services Company, U.S.A. 8701 New Trails Drive The Woodlands, Texas

BC Project Number: 2832.13

Richard L. Rexroad Senior Geologist

March 23, 1998

Brown and Caldwell

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

Richard Rexion

[&]quot;This is a draft report and is not intended to be a final representation of the work done or recommendations made by Brown and Caldwell. It should not be relied upon; consult the final report."

CONTENTS

1.0	INTRODUCTION
2.0	GROUNDWATER SAMPLING AND ANALYSES
	2.1 Groundwater Measurements and Sampling
	2.2 Results of Groundwater Analyses
3.0	REMEDIATION SYSTEM
4.0	CONCLUSIONS AND RECOMMENDATIONS
	4.1 Conclusions
	4.2 Recommendations
DIST	RIBUTION AND QA/QC REVIEWER'S SIGNATURE
FIGU	RES
1 2 3 4	Site Map Potentiometric Surface Map for December 10, 1997 Benzene Isoconcentration and Total BTEX Distribution Map for December 10, 1997 Total Petroleum Hydrocarbons Distribution Map for December 10, 1997
TABL	ES
1	Site Chronology
2	Cumulative Groundwater Elevation Data
3	Field Screening Results for Groundwater Samples
4	Cumulative Analytical Results for Groundwater Samples
5	Summary of Analytical Results for Air Emissions
APPE	NDICES
A	Groundwater Sampling Forms
В	Laboratory Analytical Report for Groundwater Samples

1.0 INTRODUCTION

Brown and Caldwell conducted field activities associated with the December 1997 quarterly groundwater sampling event at BJ Services Company, U.S.A. (BJ Services) facility located at 2708 West County Road, in Hobbs, New Mexico. The facility layout is shown in Figure 1.

The facility formerly operated an above-grade on-site fueling system. Subsurface impact near the fueling system from a diesel fuel release was first detected by the New Mexico Oil Conservation Division (OCD) during an on-site inspection on February 7, 1991. The fueling system was taken out of operation in July 1995. As the result of the diesel fuel release, the New Mexico OCD has required a quarterly groundwater monitoring program to assess the hydrocarbon constituents in the groundwater. A biosparging system was fully activated in November 1995 to remediate soil and groundwater at the facility. A site chronology detailing the history of the fueling system, the groundwater recovery system, and the previous sampling events is presented on Table 1.

During the December 1997 sampling event, groundwater samples were collected and analyzed for gasoline and diesel range total petroleum hydrocarbons (TPH), and for benzene, toluene, ethylbenzene, and total xylenes (BTEX). This report presents the results of the groundwater sampling event, a description of the field activities, and a summary of the analytical results. Also included is a groundwater potentiometric surface map, a benzene concentration map, and a hydrocarbon distribution map.

2.0 GROUNDWATER SAMPLING AND ANALYSES

Brown and Caldwell purged and sampled the groundwater monitoring wells at the facility on December 10, 1997 to determine concentrations of dissolved-phase hydrocarbons in groundwater. The following subsections describe the activities conducted during this sampling event and present the results of the groundwater analyses.

2.1 Groundwater Measurements and Sampling

Nine monitoring wells were sampled during the December 1997 sampling event. A site map depicting the locations of the monitoring wells is presented as Figure 1. As noted in previous sampling reports, monitoring well MW-2 can not be located and is assumed to have been destroyed during facility activities such as grading. Monitoring well MW-11 could not be located during the December 1997 sampling event and is believed to have been destroyed during the course of construction activities at the site between September 12, 1997 and December 10, 1997.

Groundwater level measurements were obtained from the monitoring wells prior to purging and sampling the wells. The groundwater levels were obtained with an oil/water interface probe and recorded to the nearest 0.01 foot. A cumulative table of groundwater elevation data is presented on Table 2. The groundwater elevation data indicates that the general groundwater flow direction is toward the east northeast at a typical hydraulic gradient of 0.005 ft/ft. A potentiometric surface map is presented in Figure 2. No measurable thicknesses of phase-separated hydrocarbons were detected in any monitoring wells at the site during this sampling event; hydrocarbon sheens were observed in MW-1, MW-4, and MW-9, however.

Groundwater samples were collected after purging the wells with a submersible pump to remove at least three well volumes of groundwater. Field parameter measurements for pH, conductivity, and temperature were collected after each well volume was purged. Two consecutive readings within five percent were used to indicate that groundwater had stabilized. The parameters in each

monitoring well typically stabilized after two well volumes had been removed; however, at least three well volumes were removed from each well.

Additional groundwater parameters were measured during the purging and sampling activities to assess the potential for natural attenuation. These parameters were dissolved oxygen, dissolved ferrous iron, and reduction-oxidation potential (redox). The field parameter readings were recorded in the field log book and are listed on the groundwater sampling forms included in Appendix A. The field screening results for groundwater samples are presented on Table 3. To further assess the potential for natural attenuation at the site, the concentrations of nitrate and sulfate in monitoring well MW-10, which is located downgradient of the biosparging system, were determined at the analytical laboratory.

Following recovery, groundwater samples were collected from each monitoring well using a new, 3-foot long, 1/2-inch I.D., disposable polyethylene bailer. Each sample was transferred to laboratory-prepared, clean glass or plastic containers sealed with Teflon®-lined lids, labeled, and placed on ice in an insulated cooler for shipment via overnight courier to the analytical laboratory. Each cooler was accompanied by completed chain-of-custody documentation.

The field measurement equipment was decontaminated prior to and after each use. Decontamination procedures consisted of washing with fresh water and a non-phosphate detergent and rinsing with deionized (DI) water. Purged water and excess water generated by equipment cleaning operations were placed into 55-gallon drums and transferred to the on-site drum staging area located in the northeast corner of the facility for classification and future disposal by BJ Services.

2.2 Results of Groundwater Analyses

Groundwater samples collected during this sampling event were analyzed for BTEX by EPA Method 5030/8020 and for TPH by EPA Method 8015 Modified for gasoline and diesel. The sample from monitoring well MW-10 was also analyzed for nitrate by EPA Method 353.3 and for

\\StreetTalk\FS DATA@Homer@Servers\WP\BJSERV\2832\031R.DOC

sulfate by Method 375.4. Current and cumulative analytical results for BTEX and TPH gasoline and diesel are presented in Table 4.

BTEX constituent concentrations in excess of applicable laboratory detection limits were reported in six of the nine groundwater samples obtained during this sampling event. Benzene concentrations were below the New Mexico Water Quality Control Commission Standard of 0.01 milligrams per liter (mg/L) in monitor wells MW-5, MW-6, MW-7, MW-8, and MW-9. Figure 3 presents a benzene isoconcentration and total BTEX distribution map for the December 1997 sampling event. A total petroleum hydrocarbons distribution map for the December 1997 sampling event is presented in Figure 4. The laboratory analytical report and chain of custody record for the groundwater samples are included in Appendix B.

It appears that natural attenuation of dissolved phase BTEX is occurring in the vicinity of monitor well MW-10. The primary evidence of natural attenuation is plume behavior; concentrations of dissolved phase BTEX have stabilized subsequent to removal of a field waste tank (see Figure 1) in March 1997. Furthermore, the following lines of geochemical evidence suggest that intrinsic bioremediation, an important natural attenuation mechanism, is occurring:

- 1. The DO concentration measured in monitor well MW-10 is depressed relative to background. The DO concentration of 0.33 mg/L measured in monitor well MW-10 is less than the measured DO concentrations of 4.73 mg/L, 2.89 mg/L, and 2.33 mg/L in monitor wells MW-5, MW-7, and MW-8, respectively, which are upgradient or cross-gradient wells believed to exhibit background conditions.
- 2. Ferrous iron was detected at a concentration of 9.4 mg/L in monitor well MW-10. Ferrous iron was not detected in any of the other monitor wells. When DO becomes depleted, anaerobic microbes which utilize other electron acceptors become active. Ferrous iron is the reduction product of ferric iron, a common electron acceptor.
- 3. An oxidation-reduction potential (E_h) measurement of -115.2 millivolts (mV) was observed in monitor well MW-10. This value is slightly below the theoretical E_h of -50 mV for ferric iron reduction, which indicates that iron reduction is occurring.

It is recommended that monitoring continue in this area, and that other geochemical analyses be performed in subsequent sampling events. Specifically, nitrate, sulfate, dissolved methane, and alkalinity should be measured, in addition to the current suite of geochemical parameters, for wells in the vicinity of monitoring well MW-10.

3

A

3.0 REMEDIATION SYSTEM

Brown and Caldwell submitted a Remedial Action Plan (RAP) to the New Mexico OCD in May 1994. Based on the results of previous investigations conducted by Brown and Caldwell and Roberts/Schornick and Associates, Inc. (RSA), Brown and Caldwell recommended the installation of a biosparging system. The biosparging system simultaneously treats contaminants adsorbed directly to the soil (i.e., residual) as well as contaminants present in soil moisture (i.e., dissolved phase) within the capillary fringe and vadose zone. Additionally, the biosparging system removes volatile contaminants from the saturated zone. The biosparging system operates by injecting air into the saturated zone and extracting air from the vadose zone through a network of wells and piping. The continuous flushing of air through the saturated zone increases the dissolved oxygen concentration in the groundwater and in soil moisture present in the capillary fringe and vadose zone. The elevated dissolved oxygen content facilitates the activities of indigenous microorganisms to accelerate biodegradation of the contaminants. The flushing of the air also strips the volatile and semivolatile contaminants.

The New Mexico OCD approved the RAP on August 11, 1994. The installation of the biosparging system was conducted between August 2 through 24, 1995. Nineteen combined injection/extraction wells, three vacuum extraction wells, associated piping, and one extraction blower and one injection blower were installed. An additional vapor extraction well, VE-4, was installed and connected to the vapor extraction system in April 1997. The vapors recovered during the extraction process are discharged to the atmosphere in accordance with the State of New Mexico Air Quality Regulations.

During the system startup operations, effluent air samples were collected on a monthly basis from the recovered vapors to monitor the bioremediation process and emission rate. Upon receiving a determination from the State of New Mexico that an air permit is not required, effluent air samples have been collected voluntarily on a quarterly basis. The air samples were analyzed for TPH using EPA Method Modified 8015A (Air) and for total volatile aromatic hydrocarbons (BTEX) using EPA Method 5030/8020 (modified).

 $\verb|\StreetTalk|FS DATA@Homer@Servers|WP|BJSERV|2832|031R.DOC|$

The analytical results demonstrate a significant reduction in hydrocarbon vapor concentrations and emissions rates since November 1995. Total BTEX concentrations have decreased from 391 parts per million by volume (ppmv) in November 1995 to 17.3 ppmv in July 1997. The corresponding BTEX emissions have decreased from 0.77 lb/hour to 0.03 lb/hour. TPH concentrations have decreased from 1,870 ppmv in November 1995 to 65 ppmv in July 1997. The corresponding TPH - Volatile Organic Compound (VOC) emissions rates have decreased from 3.21 lb/hour to 0.08 lb/hour. These emission rates were well below the regulatory limit of 10 lb/hour for VOCs. Therefore, a field monitoring instrument utilizing a flame ionization detector (FID) was used during the September 1997 monitoring event to measure the VOC concentration in the vapors. The VOC measurements collected during the September 1997 sampling event correspond to TPH concentrations previously determined in the analytical laboratory. The VOC concentration measured using the FID during the September 1997 sampling event was 340 ppmv.

An effluent air sample was collected during the December 1997 sampling event because the FID used during the sampling event could not be properly calibrated within the range of the effluent air to be sampled. The air sample collected during the November 1997 sampling event was analyzed for TPH using EPA Method Modified 8015A (Air) and for total volatile aromatic hydrocarbons (BTEX) using EPA Method 5030/8020 (modified). The total BTEX concentration decreased to 0.503 parts per million by volume (ppmv) in the December 1997 sampling event. The corresponding BTEX emissions rate was less than 0.01 lb/hour. The TPH concentration of 210 ppmv measured during the December 1997 sampling event is comparable to TPH concentrations measured during the time period from August 1996 through September 1997. The TPH - Volatile Organic Compound (VOC) emissions rate calculated for the December 1997 sampling event was 0.28 lb/hour. These emission rates were well below the regulatory limit of 10 lb/hour for VOCs. A cumulative summary of analytical results for air emissions monitoring is included in Table 5. These results are based on both laboratory and field analyses.

Adjustments were made in air injection and extraction rates within the biosparging system following the March 1997 groundwater sampling event in order to direct air flow into recalcitrant areas of the subsurface. Specifically, vapor extraction well VE-4 was added, and flow rates were increased in the upgradient and central portions of the plume, in the area of monitor wells MW-4, MW-1, and MW-3. During the December 1997 sampling event, the biosparging system was temporarily shut down in order to effect repair of a cracked fitting. The system was brought back on-line after the repairs were completed. The system was gauged after it was adjusted to optimal flow rates and stabilization occurred. The vapor extraction system was operating at 32 inches H₂O vacuum with an average flow of 140 cubic feet per minute (cfm) at 85°F during the December 1997 sampling event. The air injection system was operating at an average flow of 40 cfm at 10 pounds per square inch (psi) at 145°F during the December 1997 sampling event. Total VOC emissions of 0.28 lb/hr were calculated for the December 1997 monitoring event.

Review of data presented in Table 4 indicates that concentrations of benzene and total BTEX have decreased in monitor wells MW-7, MW-8 and MW-10, located in the downgradient portion of the plume, during the time period from the start-up of the biosparging system in November 1995 to the present. Reduction in benzene and total BTEX concentrations in monitor well MW-4, which is located in the upgradient portion of the plume, has occurred during the period in which the biosparging system has been operational. The recent increase in hydrocarbon concentrations observed in monitor well MW-4 during the period from June 1997 to December 1997 may be attributed to modifications to air injection and extraction rates made in March 1997 and to the addition of vapor extraction well VE-4, which was installed in April 1997. Such increases may occur during operation of the biosparging system, as air flow is redirected into areas of the subsurface that were less directly affected during previous operation of the remedial system. Benzene and total BTEX concentrations in samples collected from monitor wells MW-1 and MW-3 have not decreased since startup of the biosparging system, however. A modification to the biosparging system that would result in increased air flow to this portion of the plume is recommended.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on information obtained during the December 1997 quarterly groundwater sampling event.

4.1 Conclusions

- Groundwater flow was to the east northeast at an average hydraulic gradient of 0.005 ft/ft.
- Dissolved benzene concentrations have not decreased in monitor wells MW-1 and MW-3, which are located in the central portion of the plume, since activation of the biosparging system in September 1995.
- Dissolved benzene concentrations have generally decreased in the remaining monitor wells during operation of the biosparging system.
- Benzene concentrations in monitor wells MW-5, MW-6, MW-7, MW-8, and MW-9 are below the New Mexico Water Quality Control Commission standard of 0.01 mg/L.
- Hydrocarbon air emissions have decreased substantially during the period from November 1995 to December 1997. The current emissions rate is 0.28 lb/hr TPH.
- No measurable thickness of phase separated hydrocarbons was observed in any of the monitor wells at the site during the December 1997 sampling event.

4.2 Recommendations

- Perform modifications to the biosparging system to increase air flow in the central portion of the plume.
- Replace monitor well MW-11, which was destroyed between September 1997 and December 1997, with a monitor well located approximately 100 to 150 feet downgradient of the former field waste tank.
- Continue the quarterly groundwater sampling program and the operation and maintenance of the biosparging system.
- Continue monitoring hydrocarbon emissions on a quarterly basis using a calibrated field FID and discontinue analysis of air emissions samples in an analytical laboratory.
- Continue free product recovery, if needed, in monitor wells MW-1 and MW-4.

DISTRIBUTION

Final December 1997 Groundwater Sampling Report BJ Services Company, U.S.A. Hobbs, New Mexico

March 23, 1998

1 copy to: State of New Mexico

Energy, Minerals, and Natural Resources Dept.

Oil Conservation Division

2040 South Pacheco Street, State Land Office Building

Santa Fe, New Mexico 87505

Attention: Mr. Mark Ashley

1 copy to: State of New Mexico

Oil Conservation Division, Hobbs District Office

Post Office Box 1980 Hobbs, New Mexico 88240

Attention: Mr. Wayne Price

1 copy to: BJ Services Company, U.S.A.

8701 New Trails Drive

The Woodlands, Texas 77381

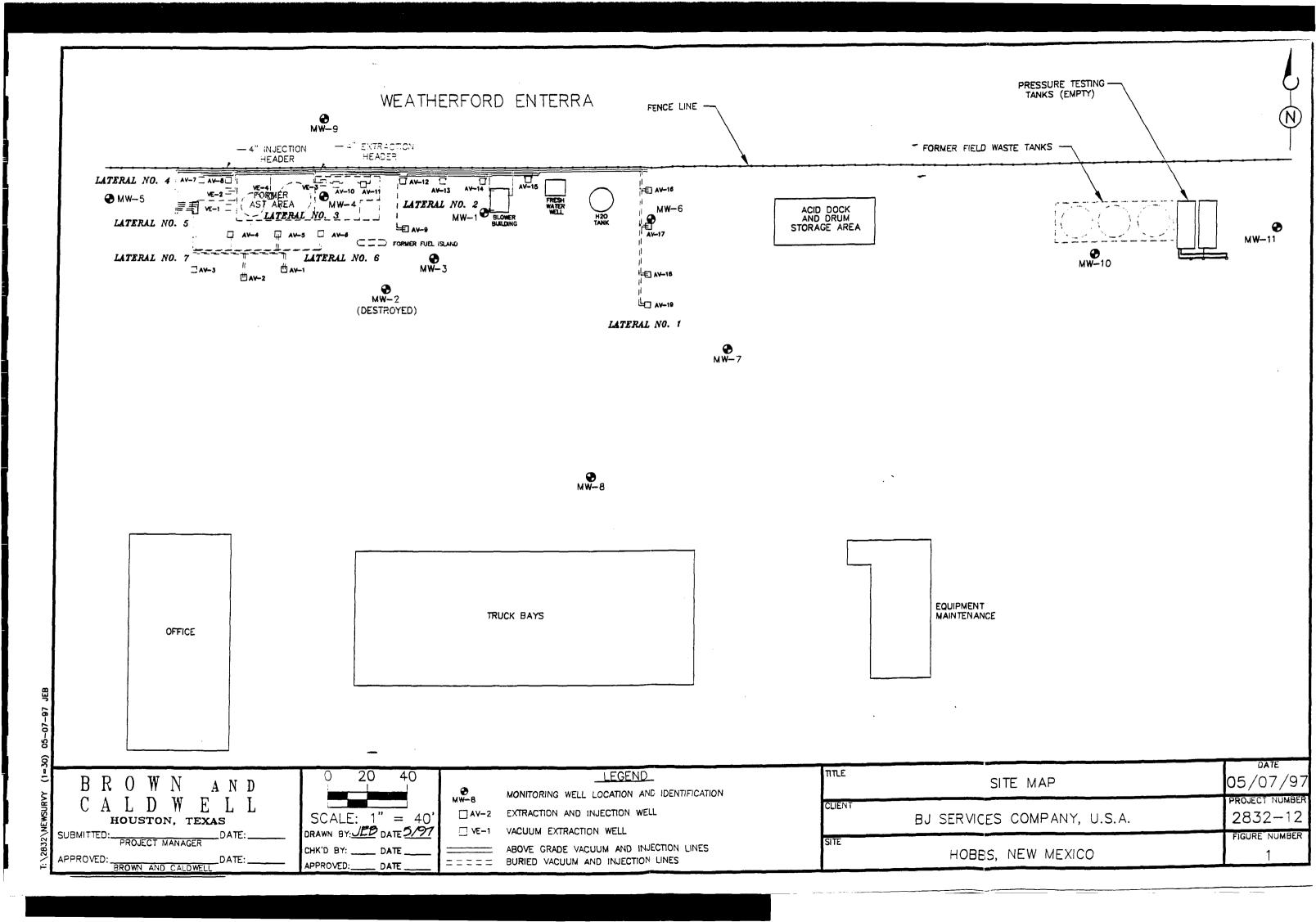
Attention: Ms. Jo Ann Cobb

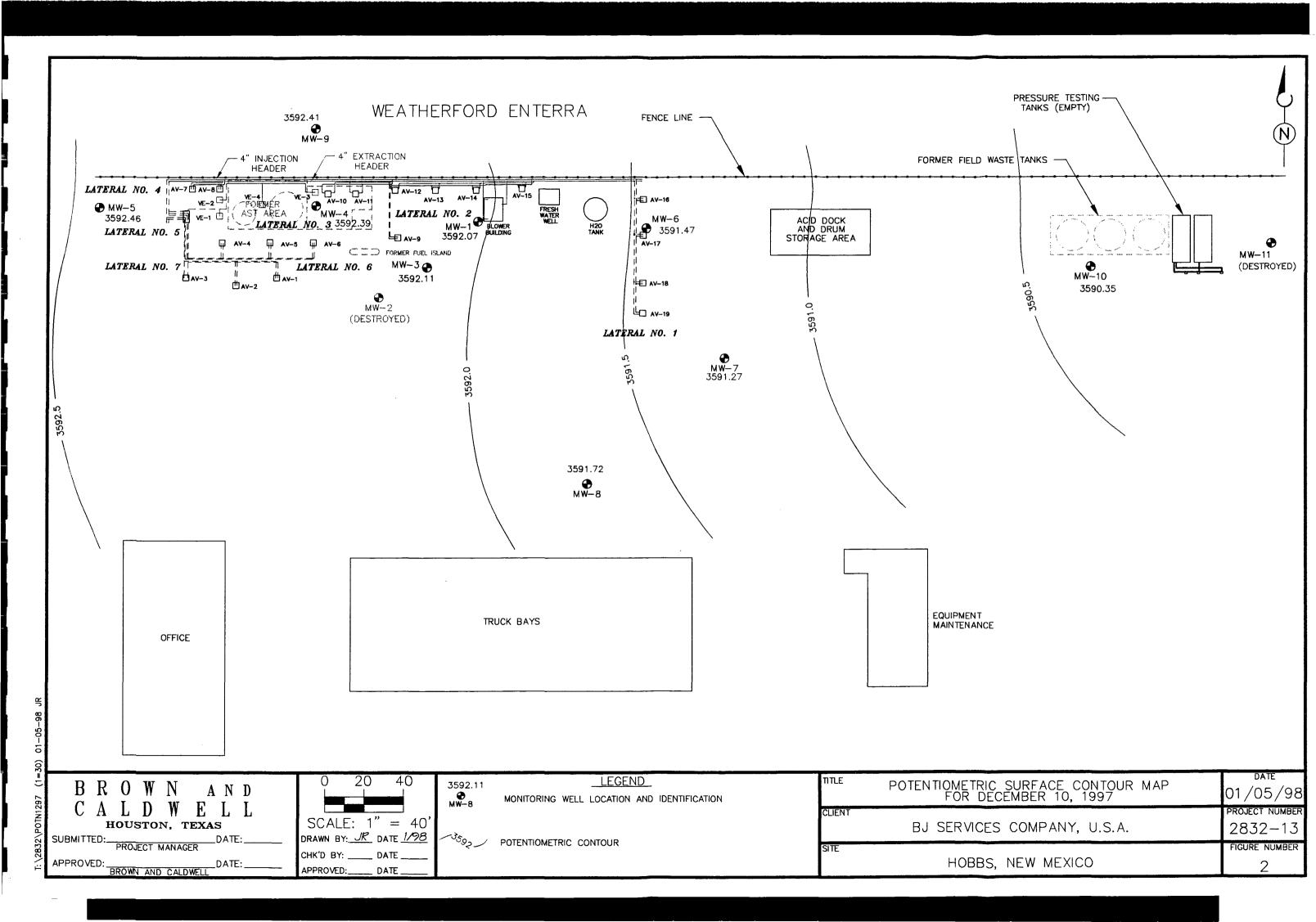
1 copy to: BJ Services Company, U.S.A.

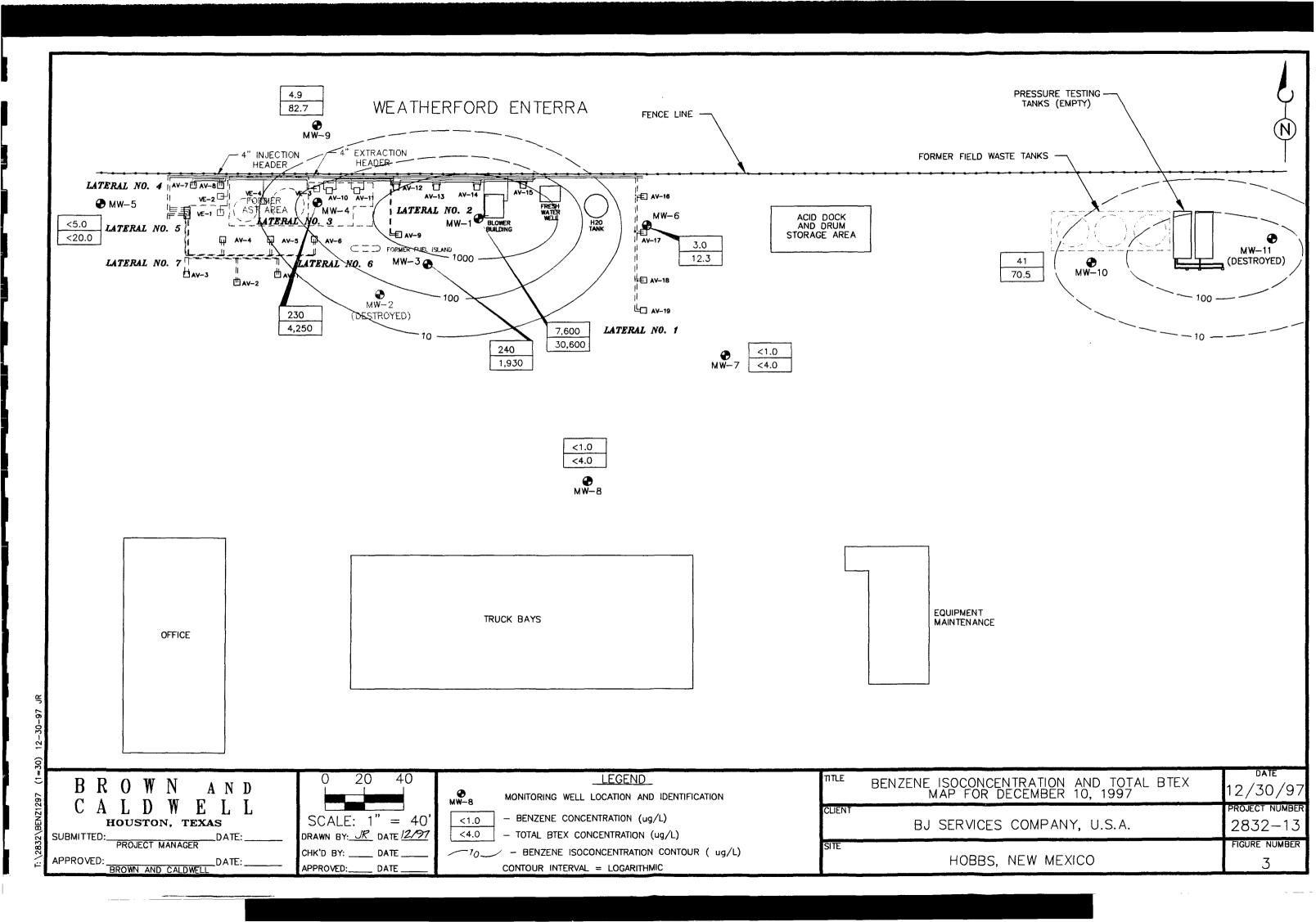
2708 West County Road Hobbs, New Mexico 88240

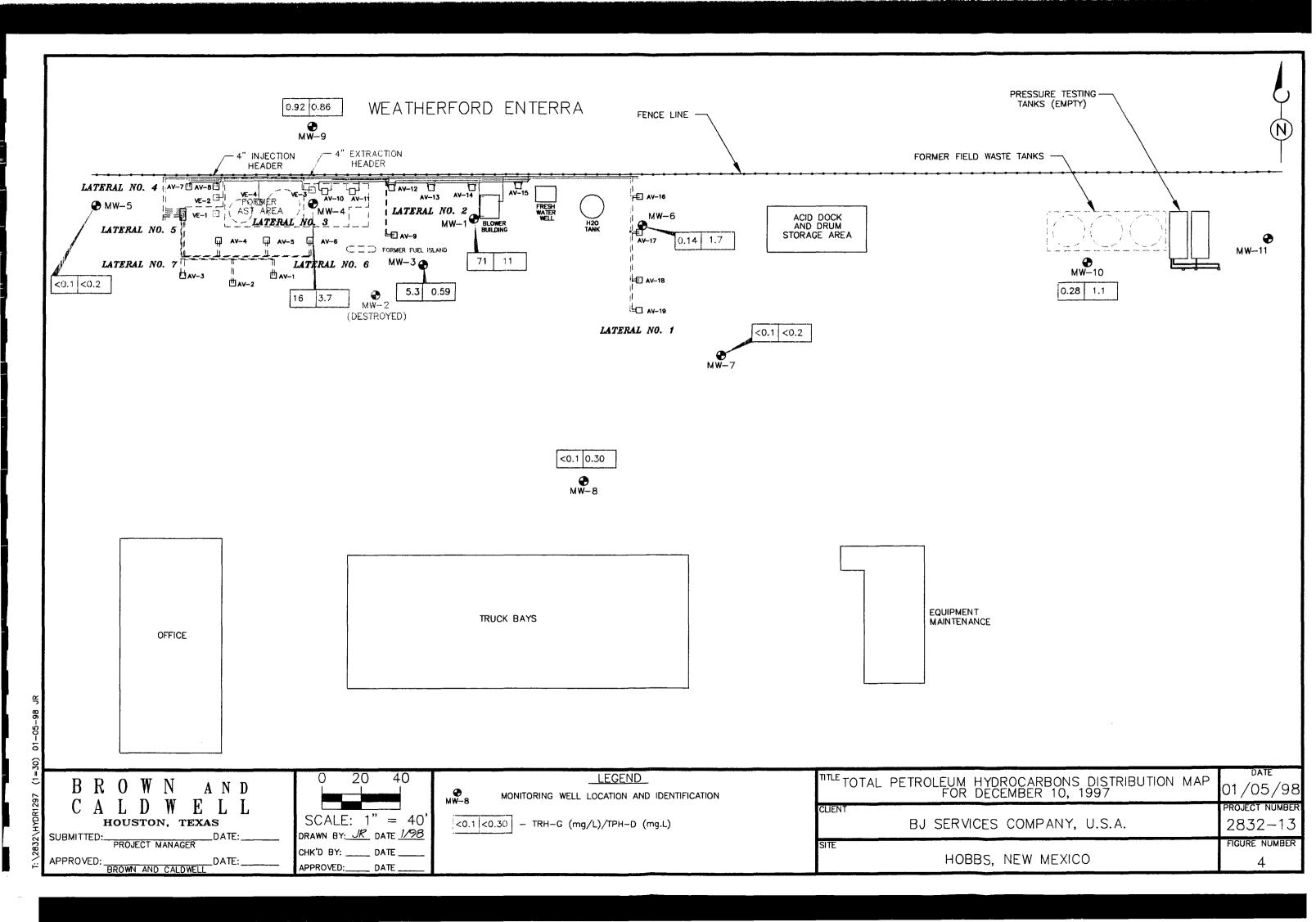
Attention: Mr. Clint Chamberlain

1 copy to: Brown and Caldwell, Project File


QUALITY CONTROL REVIEWER


Robert N. Jennings, P.E.


Vice President


RLR/uak

FIGURES

TABLES

Table 1 Site Chronolgy BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
February 7, 1991	The State of New Mexico Oil Conservation Division (OCD) conducted an on-site inspection, including sampling of the on-site fresh water well.
August 6, 1991	OCD requested submittal of an investigation work plan.
September 5, 1991	Roberts/Schornick and Associates, Inc. (RSA) submitted Technical Work Plan for soil and groundwater investigation to the OCD.
November 15, 1991	The OCD approved Technical Work Plan submitted by RSA.
December 16, 1991	RSA sampled the fresh water well. Analytical results were submitted to the OCD.
February 21, 1992	Western sampled the fresh water well. Analytical results were submitted to the OCD.
July 29 - August 10, 1992	Brown and Caldwell conducted a soil and groundwater investigation according to the approved Technical Work Plan. Investigation included drilling and sampling 9 soil borings, sampling 6 handaugured soil borings, the installation and sampling of 5 monitoring wells, and the sampling of the fresh water well.
October 12, 1992	Brown and Caldwell submitted Soil and Groundwater Investigation Report to the OCD.
December 2, 1992	The OCD requested the installation and sampling of 4 additional monitoring wells, including a monitoring well on an adjacent property.
April 13, 1993	Brown and Caldwell conducted a vapor extraction pilot test on existing groundwater monitoring wells.
April 15, 1993	Brown and Caldwell installed off-site monitoring well.
April 22, 1993	Brown and Caldwell sampled off-site monitoring well.
May 27, 1993	Brown and Caldwell submitted a letter report documenting the installation and sampling of the off-site monitoring well to the OCD.
June 2, 1993	Brown and Caldwell conducted a short-term aquifer test using the fresh water well at the facility.
June 8, 1993	USTank Management, Inc. conducted a non-volumetric tank system tightness test on the diesel and unleaded gasoline aboveground storage tanks at the facility.

Table 1 (Continued) Site Chronolgy BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
June 21, 1993	ENSR Consulting and Engineering (ENSR), the environmental consultant of the adjacent property owner on which the off-site well is located, submitted a request to sample the off-site monitoring well.
July 15, 1993	ENSR split one groundwater sample, collected from the off-site monitoring well, with Brown and Caldwell.
July 30, 1993	USTank Management, Inc. submitted the tank tightness test report to Brown and Caldwell. The report indicated that both tanks and their associated piping passed.
August 16-19, 1993	Brown and Caldwell installed two additional downgradient monitoring wells. Brown and Caldwell sampled each of the existing monitoring and the newly installed monitoring wells.
January 26, 1994	Brown and Caldwell performed groundwater monitoring event; existing monitoring wells and the fresh water well were purged and sampled. Groundwater samples were analyzed for BTEX.
May 6, 1994	Remedial Action Plan (RAP) submitted to the OCD.
August 11, 1994	RAP approved by the OCD.
May 3, 1995	Brown and Caldwell conducted the May 1995 groundwater sampling event.
July 31, 1995	Brown and Caldwell conducted the July 1995 groundwater sampling event.
August 2-9, 1995	Installation of biosparging system was initiated. Nineteen combined injection/extraction wells and three vacuum extraction wells were installed.
August 14-26, 1995	Remedial Construction Services, Inc. (RCS) began construction of the biosparging system.
September 19, 1995	Began operation of the extraction portion of the biosparging system.
November 13, 1995	Began operation of the injection portion of the biosparging system.
November 14, 1995	Brown and Caldwell conducted the November 1995 groundwater sampling event.
February 23, 1996	Brown and Caldwell conducted the February 1996 groundwater sampling event.
May 31, 1996	Brown and Caldwell conducted the May 1996 groundwater sampling event.

Table 1 (Continued) Site Chronolgy BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
August 23, 1996	Brown and Caldwell conducted the August 1996 groundwater sampling event.
December 2, 1996	Brown and Caldwell conducted the December 1996 groundwater sampling event.
March 12, 1997	Brown and Caldwell conducted the March 1997 groundwater sampling event.
March 14, 1997	Vapor extraction well VE-4 installed.
April 1997	Vapor extraction well VE-4 connected to the vapor extraction system.
June 12, 1997	Brown and Caldwell conducted the June 1997 groundwater sampling event.
September 11-12, 1997	Brown and Caldwell conducted the September 1997 groundwater sampling event.
December 10, 1997	Brown and Caldwell conducted the December 1997 groundwater sampling event.

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	TOC Elevation Date Depth Measured GW (Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments	
MW-1							
	3,647.53	8/10/92	53.22	0.00	3,594.31	(1)	
	3,647.53	2/9/93	53.03	0.00	3,594.50		
	3,647.53	8/18/93	53.10	0.00	3,594.43		
	3,647.53	1/26/94	53.31	0.00	3,594.22		
	3,647.53	5/3/95	54.64	0.20	3,593.05	(2)	
	3,647.53	7/31/95	54.14	0.00	3,593.39		
	3,647.53	11/14/95	53.69	0.00	3,593.84		
	3,647.53	2/23/96	54.32	0.00	3,593.21		
	3,647.53	5/31/96	54.14	0.00	3,593.39		
	3,647.53	8/23/96	56.17	0.00	3,591.36		
	3,647.53	12/2/96	55.27	0.00	3,592.26		
	3,647.53	3/12/97	55.70	0.27	3,592.05	(3)	
	3,647.53	6/12/97	55.08	0.02	3,592.47		
	3,647.53	9/12/97	55.64	0.51	3,592.31		
	3,647.53	12/10/97	55.46	0.00	3,592.07	PSH Sheen	
MW-2					· · · · · · · · · · · · · · · · · · ·		
	3,647.59	8/10/92	52.82	0.00	3,594.77	(1)	
	3,644.84	2/9/93	49.60	0.00	3,595.24		
	3,644.84	8/18/93	49.71	0.00	3,595.13		
	3,644.84	1/26/94	49.97	0.00	3,594.87		
		5/3/95				(4)	

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

TOC Elevation		Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-3						
	3,647.68	8/10/92	52.99	0.00	3,594.69	(1)
	3,647.68	2/9/93	52.72	0.00	3,594.96	
	3,647.68	8/18/93	52.82	0.00	3,594.86	
	3,647.68	1/26/94	53.05	0.00	3,594.63	
	3,647.68	5/3/95	54.31	0.00	3,593.37	
	3,645.00	7/31/95	51.24	0.00	3,593.76	
	3,645.00	11/14/95	51.10	0.00	3,593.90	
	3,645.00	2/23/96	51.68	0.00	3,593.32	
	3,645.00	5/31/96	51.45	0.00	3,593.55	
	3,645.00	8/23/96	51.55	0.00	3,593.45	
	3,645.00	12/2/96	52.23	0.00	3,592.77	
	3,645.00	3/12/97	52.67	0.00	3,592.33	(3)
	3,645.00	6/12/97	52.68	0.00	3,592.32	
	3,645.00	9/11/97	52.71	0.00	3,592.29	
	3,645.00	12/10/97	52.89	0.00	3,592.11	
MW-4						
	3,645.28	8/10/92	50.55	0.00	3,594.73	(1)
	3,645.28	2/9/93	50.26	0.00	3,595.02	
	3,645.28	8/18/93	50.38	0.00	3,594.90	
	3,645.28	1/26/94	50.90	0.30	3,594.63	
	3,645.28	5/3/95	51.51	0.45	3,594.14	
	3,645.28	7/31/95	51.74	0.26	3,593.75	
	3,645.28	11/14/95	51.03	0.00	3,594.25	
	3,645.28	2/23/96	51.65	0.01	3,593.64	
	3,645.28	5/31/96	51.48	0.00	3,593.80	
	3,645.28	8/23/96	53.49	0.00	3,591.79	
	3,645.28	12/2/96	52.32	0.00	3,592.96	
	3,645.28	3/12/97	52.74	0.05	3,592.58	(3)
	3,645.28	6/12/97	53.08	0.44	3,592.56	
	3,645.28	9/12/97	52.60	0.15	3,592.80	
	3,645.28	12/10/97	52.89	0.00	3,592.39	PSH Sheen

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well			Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-5						
	3,647.72	8/10/92	52.38	0.00	3,595.34	(1)
	3,647.72	2/9/93	52.06	0.00	3,595.66	
	3,647.72	8/18/93	52.16	0.00	3,595.56	
	3,647.72	1/26/94	52.50	0.00	3,595.22	
	3,647.72	5/3/95	53.57	0.00	3,594.15	
	3,647.72	7/31/95	53.27	0.00	3,594.45	
	3,647.72	11/14/95	52.83	0.00	3,594.89	
	3,647.72	2/23/96	53.57	0.00	3,594.15	
	3,647.72	5/31/96	53.16	0.00	3,594.56	
	3,647.72	8/23/96	53.41	0.00	3,594.31	
	3,647.72	12/2/96	53.98	0.00	3,593.74	
	3,647.72	3/12/97	54.44	0.00	3,593.28	(3)
	3,647.72	6/12/97	54.48	0.00	3,593.24	
	3,647.72	9/12/97	54.29	0.00	3,593.43	
	3,647.12	12/10/97	54.66	0.00	3,592.46	
MW-6						
	3,644.74	2/9/93	50.58	0.00	3,594.16	(1)
	3,644.74	8/18/93	50.78	0.00	3,593.96	
	3,644.74	1/26/94	51.00	0.00	3,593.74	
	3,644.74	5/3/95	52.63	0.00	3,592.11	
	3,644.74	7/31/95	51.90	0.00	3,592.84	
	3,644.74	11/14/95	51.19	0.00	3,593.55	
	3,644.74	2/23/96	52.10	0.00	3,592.64	
	3,644.74	5/31/96	51.76	0.00	3,592.98	
	3,644.74	8/23/96	51.63	0.00	3,593.11	
	3,644.74	12/2/96	52.85	0.00	3,591.89	
	3,644.74	3/12/97	53.55	0.00	3,591.19	(3)
	3,644.74	6/12/97	52.08	0.00	3,592.66	
	3,644.74	9/11/97	53.72	0.00	3,591.02	
	3,644.74	12/10/97	53.27	0.00	3,591.47	

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation		Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-7			· · · - · ·		-	
	3,644.55	2/9/93	50.53	0.00	3,594.02	(1)
	3,644.55	8/18/93	50.74	0.00	3,593.81	
	3,644.55	1/26/94	51.01	0.00	3,593.54	
	3,644.55	5/3/95	52.25	0.00	3,592.30	
	3,644.55	7/31/95	51.92	0.00	3,592.63	
	3,644.55	11/14/95	51.48	0.00	3,593.07	
	3,644.55	2/23/96	52.15	0.00	3,592.40	
	3,644.55	5/31/96	51.78	0.00	3,592.77	
	3,644.55	8/23/96	52.02	0.00	3,592.53	
	3,644.55	12/2/96	52.52	0.00	3,592.03	
	3,644.55	3/12/97	52.99	0.00	3,591.56	(3)
	3,644.55	6/12/97	53.08	0.00	3,591.47	
	3,644.55	9/11/97	53.00	0.00	3,591.55	
	3,644.55	12/10/97	53.28	0.00	3,591.27	
MW-8						
	3,644.87	2/9/93	50.48	0.00	3,594.39	(1)
	3,644.87	8/18/93	50.67	0.00	3,594.20	
	3,644.87	1/26/94	50.96	0.00	3,593.91	
	3,644.87	5/3/95	52.15	0.00	3,592.72	
	3,644.87	7/31/95	51.77	0.00	3,593.10	
	3,644.87	11/14/95	51.37	0.00	3,593.50	
	3,644.87	2/23/96	52.17	0.00	3,592.70	
	3,644.87	5/31/96	51.55	0.00	3,593.32	
	3,644.87	8/23/96	51.92	0.00	3,592.95	
	3,644.87	12/2/96	52.43	0.00	3,592.44	
	3,644.87	3/12/97	52.93	0.00	3,591.94	(3)
	3,644.87	6/12/97	53.96	0.00	3,590.91	•
	3,644.87	9/11/97	52.73	0.00	3,592.14	
	3,644.87	12/10/97	53.15	0.00	3,591.72	

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation		Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-9						
	3,644.78	4/22/93	49.73	0.00	3,595.05	(1)
	3,644.78	7/15/93	49.65	0.00	3,595.13	
	3,644.78	8/18/93	49.85	0.00	3,594.93	
	3,644.78	1/26/94	50.02	0.00	3,594.76	
	3,644.78	5/3/95	51.35	0.00	3,593.43	
	3,644.78	7/31/95	50.97	0.00	3,593.81	
	3,644.78	11/14/95	50.43	0.00	3,594.35	
	3,644.78	2/23/96	51.12	0.00	3,593.66	
	3,644.78	5/31/96	50.89	0.00	3,593.89	
	3,644.78	8/23/96	50.98	0.00	3,593.80	
	3,644.78	12/2/96	51.58	0.00	3,593.20	
	3,644.78	3/12/97	52.21	0.05	3,592.61	(3)
	3,644.78	6/12/97	52.10	0.00	3,592.68	PSH sheen
	3,644.78	9/12/97	51.95	0.00	3,592.83	PSH Sheen
	3,644.78	12/10/97	52.37	0.00	3,592.41	slight sheen
MW-10						
	3,644.47	8/18/93	51.54	0.00	3,592.93	(1)
	3,644.47	1/26/94	51.90	0.00	3,592.57	
	3,644.47	5/3/95	52.97	0.00	3,591.50	
	3,644.47	7/31/95	52.87	0.00	3,591.60	
	3,644.47	11/14/95	52.51	0.00	3,591.96	
	3,644.47	2/23/96	53.05	0.00	3,591.42	
	3,644.47	5/31/96	52.79	0.00	3,591.68	
	3,644.47	8/23/96	53.03	0.00	3,591.44	
	3,644.47	12/2/96	53.41	0.00	3,591.06	
	3,644.47	3/12/97	54.21	0.00	3,590.26	(3)
	3,644.47	6/12/97	53.99	0.00	3,590.48	
	3,644.47	9/12/97	53.94	0.00	3,590.53	
	3,644.47	12/10/97	54.12	0.00	3,590.35	

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation onitoring Well		Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments	
MW-11							
	3,643.78	8/18/93	51.92	0.00	3,591.86	(1)	
	3,643.78	1/26/94	52.32	0.00	3,591.46		
	3,643.78	5/3/95	53.38	0.00	3,590.40		
	3,643.78	7/31/95	53.35	0.00	3,590.43		
	3,643.78	11/14/95	52.96	0.00	3,590.82		
	3,643.78	2/23/96	53.50	0.00	3,590.28		
	3,643.78	5/31/96	53.25	0.00	3,590.53		
	3,643.78	8/23/96	53.49	0.00	3,590.29		
	3,643.78	12/2/96	53.79	0.00	3,589.99		
	3,643.78	3/12/97	53.81	0.00	3,589.97	(3)	
	3,643.78	6/12/97	53.96	0.00	3,589.82		
	3,643.78	9/12/97	52.93	0.00	3,590.85		
		12/10/97				(5)	
						• •	

- (1) Top of casing elevations and groundwater elevations of all monitor wells were relative to an arbitary datum of 100.00 feet prior to March 1997 and have been converted to Mean Sea Level (MSL).
- (2) For wells with a hydrocarbon layer the groundwater elevation was calculated as follows:

 Groundwater Elevation = (TOC elevation) (Depth to groundwater) + [(Free product thickness) X (SG of free product)]

 Note: The specific gravity (SG) for the free product was 0.82.
- (3) Top of casing elevations and groundwater elevations relative to MSL after March 1997.
- (4) MW-2 could not be located and is assumed detroyed after January, 1994.
- (5) MW-11 could not be located and is assumed detroyed after September 12, 1997.

Table 3
Field Screening Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	Date Measured	Well Volume	рН	Conductivity (µmhos)	Temperature (°C)	Redox (mV)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)
MW-3								
	12/10/97	1	7.23	1,167	17.7	-56.2	5.87	
		2	7.23	1,195	17.9	-52.7	5.85	
		3	7.20	1,202	18.1	-52.1	5.74	
		4	7.19	1,212	18.2	-55.4	5.38	0.0
MW-5								
	12/10/97	0	7.56	1,126	15.1	-31.1	7.34	
		1	7.23	1,146	17.8	-5	5.67	
		2	7.18	1,125	18.0	1.2	5.03	
		3	7.16	1,115	18.0	4.6	4.73	0.0
MW-6								
	12/10/97	o	7.79	1,040	19.8	-37	8.66	
		1	7.82	990	14.3	-3.8	7.32	
		2	7.88	1,090	14.2	-3.2	6.89	
		3	7.83	1,100	14.0	-6.4	6.29	0.0
MW-7								
	12/10/97	0	7.43	1,790	16.4	38	6.55	
		1	6.96	1,780	16.5	61	4.57	
		2	6.78	1,740	18.4	-13	3.81	
		3	6.82	1,760	18.6	-12	2.89	0.0
MW-8								
	12/10/97	o	7.19	1,970	16.8	31.8	5.32	
		1	6.92	1,950	17.9	46.7	2.91	
		2	6.93	1,930	18.3	54.3	2.10	
		3	6.93	1,940	18.3	58.1	2.33	0.0

Table printed: 02-Jan-98

Table 3
Field Screening Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	Date Measured	Well Volume	рН	Conductivity (µmhos)	Temperature (°C)	Redox (mV)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)
MW-9	· · · · · · · · · · · · · · · · · · ·							
	12/10/97	0	7.41	1,253	15.2	-63.5	2.46	
		1	7.03	1,270	18.0	-34.6	0.81	
		2	6.98	1,283	17.8	-27.7	1.08	
		3	7.02	1,255	18.4	-15.1	3,41	0.0
MW-10								
	12/10/97	0	7.06	4,852	15.3	-60.4	5.73	
		1	6.83	5,617	18.7	-105.7	0.54	
		2	6.82	5,692	18.7	-109.2	0.43	
		3	6.82	5,791	18.7	-115.2	0.33	9.4

MW-2 could not be located and assumed destroyed after January, 1994.

NR = No Reading

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

	0	0	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G		
Well ID	Sample Date	Sample Type	Sample Type micrograms per liter, µg/L							
MW-1										
	8/10/92	Regular	5550	12090	2160	7370	NA	NA		
	2/9/93	Regular	2100	6500	1300	7400	NA	NA		
	8/19/93	Regular	3200	7300	1200	3700	NA	NA		
	1/27/94	Regular	1930	4580	672	2390	NA	NA		
	5/3/95	Regular	NSP	NSP	NSP	NSP	NA	NSP		
	8/1/95	Regular	390	1300	230	800	NA	5.7		
	11/15/95	Regular	880	1800	300	970	NA	6.8		
	2/23/96	Regular	1500	3700	620	2200	NA	21		
	5/31/96	Regular	1100	1700	380	990	NA	7.5		
	8/23/96	Regular	1800	3300	570	2100	NA	17		
	12/2/96	Regular	5600	9600	2100	9600	100	64		
	3/12/97	Regular	5500	9700	2600	8200	22	62		
	6/12/97	Regular	5300	34000	7500	27000	180	160		
	9/12/97	Regular	1800	4400	1000	3000	23	21		
	12/10/97	Regular	7600	12000	2800	8200	11	71		
MW-2										
	8/10/92	Regular	14.9	< 4	< 4	< 4	NA	NA		
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA		
	8/19/93	Regular	100	12	3	13	NA	NA		
	1/27/94	Regular	< 1	1.2	2	2.5	NA	NA		
MW-3										
	8/10/92	Regular	304.9	2099	6760	1586	NA	NA		
	2/9/93	Regular	130	< 10	< 10	190	NA	NA		
	8/19/93	Regular	560	3100	630	1900	NA	NA		
	1/27/94	Regular	1070	5380	510	3120	NA	NA		
	5/4/95	Regular	770	3300	470	1800	NA	NA		
	8/1/95	Regular	490	2900	890	1600	NA	14		
	11/15/95	Regular	250	1000	180	440	NA	2.9		
	2/23/96	Regular	120	810	170	560	NA	4		
	5/31/96	Regular	670	3900	1200	2300	NA	15		
	8/23/96	Regular	330	2200	590	1500	NA	12		
	12/2/96	Regular	220	1800	670	1000	0.89	7.4		
	3/12/97	Regular	370	2000	960	1400	1.8	11		
	6/12/97	Regular	860	4800	1700	2600	1.9	20		
	9/11/97	Regular	770	3000	1600	1900	1.6	16		
	12/10/97	Regular	240	740	500	450	0.59	5.3		

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

	0	0	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgram	4	milligrams per liter, mg/		
MW-4								
	8/10/92	Regular	2594	10360	2160	6740	NA	NA
	2/9/93	Regular	5200	15000	2200	10000	NA	NA
	8/19/93	Regular	3000	12000	< 2000	7000	NA	NA
	1/27/94	Regular	NSP	NSP	NSP	NSP	NA	NSP
	5/3/95	Regular	NSP	NSP	NSP	NSP	NA	NSP
	8/1/95	Regular	5700	17000	3500	13000	NA	120
	11/15/95	Regular	490	1600	310	1100	NA	5.2
	2/23/96	Regular	360	2800	560	2500	NA	18
	5/31/96	Regular	84	830	280	1100	NA	6.2
	8/23/96	Regular	110	1400	430	1800	NA	9.8
	12/2/96	Regular	190	2000	1800	7200	56	43
	3/12/97	Regular	220	1500	1500	4400	27	27
	6/12/97	Regular	47	270	360	950	2.5	6.2
	9/12/97	Regular	92	840	670	2100	15	7.6
	12/10/97	Regular	230	750	970	2300	3.7	16
MW-5								
	8/10/92	Regular	< 4	< 4	< 4	< 4	NA	NA
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/10/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	1/27/94	Regular	8.7	29.9	4	11.3	NA	NA
	5/3/95	Regular	3.7	5.3	0.92	4.6	NA	NA
	8/1/95	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	11/15/95	Regular	< 0.3	1.2	< 0.3	1.5	NA	NA
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	5/31/96	Regular	31	86	10	20	NA	NA
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	9/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	12/10/97	Regular	< 5	< 5	< 5	< 5	< 0.2	< 0.1

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

			Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgram		milligrams per liter, mg/L		
MW-6								
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	7000	19000	3100	7200	NA	NA
	8/19/93	Regular	8100	19000	3500	6400	NA	NA
	1/27/94	Regular	7960	20200	3830	6150	NA	NA
	5/4/95	Regular	11000	17000	2900	6000	NA	NA
	8/1/95	Regular	8300	12000	2500	5100	NA	60
	11/15/95	Regular	8900	17000	2900	5500	NA	57
	2/23/96	Regular	8100	10000	2300	4000	NA	58
	5/31/96	Regular	83	150	15	51	NA	0.57
	5/31/96	Duplicate	87	160	13	47	NA	0.52
	8/23/96	Regular	31	28	9.4	7.9	NA	0.46
	12/2/96	Regular	< 1	< 1	< 1	1.7	5.6	< 0.1
	3/12/97	Regular	12	< 5	6.8	18	12	< 0.5
	6/12/97	Regular	1900	1400	410	310	7.8	7.4
	9/11/97	Regular	11	1.3	3.4	< 1	1	< 0.1
	12/10/97	Regular	3	4.2	1.2	3.9	1.7	0.14
MW-7	1. 19. 3.11.11.1							
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	< 2	3	< 2	< 2	NA	NA
	1/27/94	Regular	1.1	< 1	< 1	< 1	NA	NA
	5/3/95	Regular	52	3.4	0.67	2.8	NA	NA
	8/1/95	Regular	22	2.2	0.85	2.8	NA	< 0.1
	11/15/95	Regular	8.4	0.77	< 0.3	0.93	NA	< 0.1
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	2/23/96	Duplicate	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	5/31/96	Regular	29	83	10	21	NA	0.25
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	<1	< 1	< 1	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	9/11/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	12/10/97	Regular	< 1	< 1	< 1	< 1	< 0.2	< 0.1

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Well ID	Sample Date	Sample Type	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
				milligrams per liter, mg/l				
MW-8								
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	< 2	< 2	< 2	< 2	NA	NA
	1/27/94	Regular	< 1	< 1	< 1	< 1	NA	NA
	5/3/95	Regular	3	4.9	0.75	3.7	NA	NA
	8/1/95	Regular	3.1	1.2	0.47	1.6	NA	< 0.001
	8/1/95	Duplicate	3.6	1.5	0.51	1.5	NA	< 0.1
	11/15/95	Regular	< 0.3	0.52	< 0.3	< 0.6	NA	< 0.1
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	5/31/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	1.8	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	9/11/97	Regular	< 1	< 1	< 1	< 1	0.1	< 0.1
	12/10/97	Regular	< 1	< 1	< 1	< 1	0.3	< 0.1
MW-9								
	4/22/93	Regular	570	380	< 50	870	NA	NA
	7/15/93	Regular	121	7.3	3	458	NA	NA
	8/19/93	Regular	390	290	40	250	NA	NA
	1/27/94	Regular	327	357	51.1	293	NA	NA
	5/3/95	Regular	380	110	19	120	NA	NA
	8/1/95	Regular	660	410	91	310	NA	6.2
	11/15/95	Regular	240	24	11	140	NA	1.5
	11/15/95	Duplicate	170	18	10	120	NA	1.9
	2/23/96	Regular	170	18	2.3	160	NA	4.3
	5/31/96	Regular	120	16	3	200	NA	NA
	8/23/96	Regular	82	13	6	270	NA	4
	8/23/96	Duplicate	76	14	4.8	250	NA	4.4
	12/2/96	Regular	61	< 25	< 25	210	2.6	2.8
	12/2/96	Duplicate	86	13	2.4	270	3.7	2.9
	3/12/97	Regular	30	48	420	880	8.2	19
	6/12/97	Regular	4.7	2.1	11	97	2.6	2.2
	6/12/97	Duplicate	< 5	< 5	6.6	69	5.2	1.9
	9/12/97	Regular	2.1	2.3	2.1	120	1.2	1.9
	12/10/97	Regular	4.9	9	6.8	62	0.86	0.92

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

-			Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Ol lleW	Sample Date	Sample Type		microgran	ns per liter, µg/L		milligrams	per liter, mg/L
MW-10								
	8/19/93	Regular	190	460	< 200	240	NA	NA
	1/27/94	Regular	13.4	4	5.5	33.6	NA	NA
	5/4/95	Regular	980	15	11	84	NA	NA
	8/1/95	Regular	1300	32	32	100	NA	3.6
	11/15/95	Regular	1000	24	15	36	NA	1.7
	2/23/96	Regular	810	23	27	44	NA	2.4
	5/31/96	Regular	700	24	34	28	NA	2
	8/23/96	Regular	290	3.4	6.4	13	NA	1.4
	12/2/96	Regular	280	1.3	17	8	0.94	0.97
	3/12/97	Regular	110	< 5	17	< 5	0.61	0.57
	6/12/97	Regular	150	12	30	< 5	0.68	< 0.5
	9/12/97	Regular	87	2.3	26	2.7	0.76	0.33
	9/12/97	Duplicate	87	2.4	26	2.8	0.79	0.33
	12/10/97	Regular	41	9.8	12	7.7	1.1	0.28
	12/10/97	Duplicate	36	8.5	10	6.7	1.2	0.24
MW-11							 	
	8/19/93	Regular	< 2	< 2	< 2	< 2	NA	NA
	1/27/94	Regular	< 1	< 1	< 1	< 1	NA	NA
	5/4/95	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	8/1/95	Regular	44	29	5.5	13	NA	0.2
	11/15/95	Regular	190	2.8	6.2	11	NA	0.4
	2/23/96	Regular	49	1.2	0.51	4	NA	0.25
	5/31/96	Regular	300	83	12	28	NA	0.8
	8/23/96	Regular	100	1.2	0.3	4.7	NA	0.26
	12/2/96	Regular	970	< 5	6	8.1	2	1.3
	3/12/97	Regular	130	< 5	13	5.8	0.42	< 0.5
	3/12/97	Duplicate	100	< 5	10	5.1	0.43	< 0.5
	6/12/97	Regular	150	23	19	< 5	1.1	0.55
	9/12/97	Regular	220	15	27	13	1	0.46

MW-2 destroyed after January, 1994 MW-11 destroyed after September, 1997

NA = Not Analysed NS = Not Sampled

NSP = Not Sampled due to Phase Separated Hydrocarbons

Summary of Analytical Results for Air Emissions BJ Services Company, U.S.A. Hobbs, New Mexico Facility Table 5

Sample	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	Discharge	Benzene	Total BTEX Emission	TPH Emission
	pic Date		parts per n	per million by volume, ppmv	۸۲		scfm	Rate, Ib/hr	Rate, Ib/hr	Rate, Ib/hr
Extraction-1	9/19/95	062	1100	340	920	9700	132.47	1.24	5.94	16.31
Effluent-1	9/20/95	066	2500	560	1600	16000	135.76	1.58	10.94	27.37
Effluent-2	9/28/95	13	28	ø	18	2533	123.56	0.02	0.11	3.89
Effluent-4	11/7/95	15	58	12	36	1500	131.10	0.02	0.24	2.59
Effluent111595-01 11/15/95	11/15/95	39	180	42	130	1870	133.33	90.0	0.77	3.21
Effluent121995-01 12/19/95	12/19/95	10	45	-	33	530	129.64	0.02	0.19	0.89
Effluent012996-01	1/29/96	7	61	17	53	1200	128.45	0.02	0.27	1.95
Effluent032296-01	3/22/96	9	44	12	40	066	124.68	0.01	0.19	1.56
Effluent042496-01	4/25/96	4	37	10	36	006	118.34	0.01	0.15	1.29
Effluent053196-01	5/31/96	3.7	40	10	33	029	124.11	0.01	0.16	1.04
Effluent082396-01	8/23/96	< 5	12	< 5	< ₂	200	126.18	0.01	0.05	0.31
Effluent120296-01	12/2/96	<u>,</u>	<u>^</u>	~		۸ ئ	129.04	0.00	0.01	0.01
Eff-31297-1	3/12/97	2.1	15	4.6	15	250	110.56	0.00	90.0	0.33
Effluent070297-01	7/2/97	^	6.3	2.4	8.6	65	109.90	0.00	0.03	0.08
Monitor970912	9/12/97	Ą Z	NA	Ϋ́	Ϋ́	340	105.40	Ϋ́	۷ Z	0.39
EFF-1-2832	12/10/97	< 0.001	0.013	0.009	0.031	210	106.27	0.00	0.00	0.28

Emission rates reported for 12/02/96 sampling event were calculated using the detection limits. The actual emissions are Benzene <0.001 lb/hr, BTEX: <0.01 lb/hr and TPH: <0.01 lb/hr. Table printed: 1/9/98 NA = Not analyzed

(1) All analyses on September 12, 1997 based on field FID readings.

APPENDICES

 $W:\ \ bjserv\ 2832\ \ 031R.DOC$

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

APPENDIX A

Groundwater Sampling Forms

Casing Diameter		Purge Eq	uipment			Equipment	Calibration - Time
Total Depth of Well from	inches TOC	1	Baile	R		ρΗ	zo ta π
Static Water from TOC 55,46	/eet	Sample E	quipment			pH	as at "C
roduct Level from TOC		,	HATAL	Bailera	2	Conductivity Conductance Standard:	μπήου/cm at 25° C
ingth of Water Column fi Bil Volume	• 4		/ .	H, DO, Redox, filtr	ation, etc.)	Messured Value:	μπήσο/cm at 25° C
g Creened Interval (from G			NA			Dissolved Oxygar DO 1	2 Heter Calibrated to: <u>mg</u>
Time Well	Gallons Removed	pН	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
105 No 1	Read	J55 (Sheen				Sheen
		/					
ocnemical Paramete	rs		Comments:				
Ferrous Iron: Dissolved Oxygen:		толь	143	5 - Sa	implE	,	
Nitrate:		mg/L mg/L					
Alkalinity		m q/L					
Wom: 9loves + 6la	10000	s	ampier's Sig			(Va)	7

Ferrous Iron:

Nitrate:

Alkalinity

Dissolved Oxygen:

Disposition of Purge Water:

ON-Sita

PPE Wom:

mg/L

mg/L

mg/L

mg/L

dram

Sampler's Signature:

	undwate	•						
Projec	t Number:	28	32		Task Numb	er: <u>12</u>		Date: 12/10/9
Casing	Diameter		Purge Ed	uipment		 	Equipment	Calibration - Time
	2			ab Pu	aD			
1 - "	epth of Well In	om TOC	- >	ub.	<i>F</i>		pH 7.03	=7.01 4 25 8
6	1.31	feet						
	ater from TO		Sample E	quipment	-,,,,,,,,,,		pr 40	= 4.0/ as 25 %
1	53.4) 	<	6 Pum	P			
	Level from TO		1 24	0 , 44	/		Conductivity	·
1	0 -	lest					Conductance Standard:	µmhos/cm at 25° C
Length o	of Water Colu	mn	1 '		H, DO, Redox. fi		7	
11.	,42 ume	feat	1 45	I G	600 X		Measured Value	: 9,939 µmhoe/cm at 25°C
1			1 '					
1,5	& /	98 5.41	HAC	·41)	D Fo		Dissorred Oxyge	
Screened	interval (from	n GS)	7 ' ' '		Offe		00	Meter Calibrated to: (UV.O mg
foot								
		-						
Time								
Time	Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Oxygen Oxygen	Visual Description
03 o	Volume	Hemoved	7.23	17.68	1.167		Oxygen	Visual Description
03 o	Volume	Hemoved	7.23	17.68	1.167		Oxvgen 5.87	1 6 181
03 0	Volume	3,8194 3,74	7.23	17.68	1.197	-56.2	5.87 5.87	1 6 181
03 0	Volume 1.87 3.2 2.2	3.972 3.972 3.77 5.61	7.23 7.33 7.20	17.69 17.95 18.06	1.197	-56.2	5.87 5.87 5.74	1 6 181
03 0 1035 1089	Volume 1.87 3.2 2.2	3.979 3.979 3.74 5.71m	7.23 7.33 7.20	17.69 17.95 18.06	1.197	-56.2 -52.7 `52.1	5.87 5.87 5.74	1 6 181
1035 1039 1042	Volume 1.87 2.2 3	1.9 3.979 3.77 5.77 7	7.23 7.33 7.20 7.19	17.69 17.95 18.06	1.197	-56.2 -52.7 `52.1	5.87 5.87 5.74	1 6 181

RKUMN AND CHEDITLE

WELL ID: 1100

Project	t Number:	28	32		Task Numbe	r: <u>/</u> 2_	- 	Date: (2/10/
Casina	Diameter		Purge Eq	uioment	 		Equipment	Calibration - Time
	7							
		inches		, 1	1	1	}	
Total De	pth of Well Iro	om TOC	Sie	3-Ham	P Ba	100	ρH	= at
1				Jon	, ,	107	1	
		leet				· · · · · · · · · · · · · · · · · · ·		_
Static W.	ater from TOC	3	Sample E	quipment	Dump B	,	pH	ss at 4
15	189		j	σ	$a_{n,l}$ /3	ciles/	ļ	
	··· <u>/ </u>	loct	ے ا	- , 1/		-ir ic.y		
Product i	Level from TO	C) & 	- 1.1 stafeed		Conductivity	
i			1		•		Conductance Standard:	µmhos/cm at 25° C
1 00000	+14/24-2- Calve	feet	1		N. 00 D-4 41		-	printod an et 23 C
Length of	r Water Colum	nn	Ansiytical	Equipment (pi	H. DO. Redox. fill	nation, etc.;	1	
1		lane.	}	. 1	A		Messured Value	μmhos/cm at 25° C
Well Volu		1001	₹	^ /	/ }			риносия 23 С
AAAM AOIN	me		1	- 1V/ <i>I</i>	4			
ł	()		i	-iU	•		N	_
<u> </u>	<u></u>	gas		•			Olssowed Oxyde	-
Screened	interval (from	(GS)	}				001	Meter Calibrated to: m
1							1	
L		feet					<u> </u>	
				,				
Time	Well	Gallons	pН	Temp	Conductivity	Redox	Dissolved	Visual Description
	Volume	Removed			1		Oxygen	
				1			1 -	
j	1 . 1	\mathcal{L}	17	/	λ	1	<i>\/</i> /	1 - 0 1
1435	1 1/0	Kon	11-11	1< 5	een /	course tec	0,50	of flowcell
1 (1)	120	165	arrog.		16610 1	0000	use	
	1							
	j	j						
								
	i	- 1			1			•
}	1	1				ļ		•
		1		,		j	ţ	
-	- 1			ſ			[
i	1	ł	Ì	ļ	Ī	j	1	
	1	1	1	j	İ	1	1	
1	1			ł	}	ĺ		
1	į	1	ļ	1	}		1	
				<u>!</u>	<u> </u>		·	<u></u>
Зео спеті	cal Parame	ters		Comments:			1	
					5-50	/		/ 1
F	errous Iron:			145	5- 5	3110	- W211	′
	~		mg/L	• • • •	$\frac{\mathcal{I}}{\mathcal{I}}$	ang ic	- 01	
O:seet	and Owners		- 1			/		j
OISSIDIA	ed Oxygen:		mark					1
	-							
	Nitrate:		1					ł
			mg/L					
	_							
	Alkalinity		1					
			mg/L					
E Wom:		' /	S	ampier's Sig	gnature:			
9/10	1451 (=	ola se 5	1		-	,	γ . I	l_{ij} .
					/	/	/ / : /	
	Purge Water		1		1 hon	- U	. Ol	
ON-	site di	rum	. 1			<u> </u>		
U / •		•	. 1					

Project	Number:	28	32		Task Numbe	ar: <i>17</i> 2		Date: 12/10/
Casing (Diameter	-	Purge Ec	luipment			Equipment	Calibrauon - Time
12	· ·	inches	Suk	's pump	•			1 101 -
	pth of Well fro	om TOC	7	- / /			pH 7.03	3 = 7.01 at 25
	4,60		<u> </u>				10	# 401 at 25
	ater from TO	3	Sample E	quipment			pH 9.0	# 1° 1 C5
	lib	feet	Su	ib pirm	T			
Product L	evel from TC	oc .					Conductance Conductance	10
ength of	Water Colum	leet nn	Analytical	Fouinment (D	H, DO, Redox, fil	Imition, etc.)	Standard:	μmhos/cm at 25° C
-	. 94		1				Adapanyan Value	. 9.939 µmhoe/cm et 25° C
/ Well Volu		feet	- Y	SI	600 XL	_		
1.6	,	g a i	1.1	NO IN	DO, F.	2	Dissolved Oxyge	98.8
	Interval (Iron		17	MCI				Meter Calibrated to: 100 m
		!eat						
					·	·····		
Time	Volume	Gallons Removed	ρH	Temp	Conductivity	Redox	Dissolved Oxvgen	Visual Description
1141	 							
1141	Ø.\	0,5	154	1511	1.126	-311	7.34	Clia
190		913	1130	13111	11120	270	1121	Cush
1144	4						4	
HA		1.6	7.23	17,8/	1.146	5.0	5,67	
	İ			•				
146	2	3,2	7.18	17,97	1.125	1,2	5,03	
149	3	48	716	18.02	1,115	4.6	4.73	
		-11	11.7			7,70		
11	Smara loi	1		ĺ	j			
11 p	31.9 121	- · · · · · · · · · · · · · · · · · · ·		!		· · · · · · · · · · · · · · · · · · ·		
ochemi	cal Parame	eters		Comments:		 		
F	errous Iron:	r:B						
	-	$\overline{\varphi}$	т 91 .				 	
Dissolve	ed Oxygen:	Ø	mark					!
								
	Nitrate:		mg/L	·				
	Alkalinity							
			mg/L					
Wom:	<u> </u>		3	Sampier's Si	gnature:		0	10
rloves		SUN					///	
	Purge Water			-	/ hu	ma (1. W	Ofe 1
N-50	10 /X/u	m	1	-				

Project Numb	per: 28)	32		Task Numbe	: <u>12</u>	-	Da	te: No la	, 12
Casing Diamete	er inches	Purge Equipm	Tent Vom P				Calibration - T		
Total Depth of V	•					ph 7.07	= 1.01	a 25 °c	
Static Water from	_	Sample Equip					= 4,01	at 25 %	
Product Level In	leet					Conductivity Conductance Standard:	10-0	μπιhos/cm at 25° C	
Length of Water		Analytical Equip 151 600 14ACH D		H. DO, Redox. filti	ration. etc.;	Measured Value:	9.439	μπ hoe/cm a t 25° C	
1.17	g ei	MACH D	<i>O</i> , ·			Dissolved Oxygen	atine Calibrated to	98.8 100.0 mar	
Screened Interva	leat								
Time	ell Gallons ume Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Visuai	Description	
	1 0								

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
0937	P	P	7.79	19.79	1.04	-37	8.66	Cle W
0936	1	15	7.82	143	0.49	-3.8	7.32	//
0943	2	15	7.98	14.2	1.09	-3.2	6.89	// ·
0948	3	1.5	7.83	14.0	1.10	-6.4	6.29	//

Geochemical Param	eters		Comments:				
Ferrous iron:	þ	mg/L	0.	950	SAM FLE	MW-6	
Dissolved Oxygen:	4.0	mg/L					
Nitrate:		mgA					
Alkalinity		mg/L					

PPE Worm: Ams duss	Sampler's Signature:
Disposition of Purge Water:	
in gill from	

WELLID: Me-1

Project	Number:		332		Task Numbe	nr:		Date: /2/10/4
Casing (Diameter رسن		Purge Eq	suipment Sub R	`		Equipment	Calibration - Time
Total De	pun of Well In	inches om TOC	_	SUP PL	inf		on 7.03	= 7.61 at 25.
	1.40 ater from TO	le et	Sample E	quipment	· · · · · · · · · · · · · · · · · · ·		pH 4.6	= 4.01 as 25 a
	3.28	feet	5 v	6. Ruf				
Product L	Level from TO	OC lest					Conductance Standard:	10.0 µmhos/om at 25°C
_	Water Colur		1516	will.	H, DO, Redox. fil	tration, etc.)	Messured Value	9.539 µmhos/cm et 25°C
Well Volu	1.33	gal	Mail	m, k			Dissolved Oxyge	a 98.8
Screened	Interval (from	n GS)					00	Meter Calibrated to: /W.O m
Time	Well	Gallons Removed	рH	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
1900	P	P	7.43	164	1.79	38	4.55	llar
203	1	1.5	646	145	1.18	41	4.57	//
790b	Z	1.5	4.78	18.4	1.74	-13	3.81	duly
1909	10		1 00	14 /6	1.76	-12	1 00	

Geocnemical Parame	ters	Comments:			
Ferrous Iron:	mon.	0910	SAMPLÉ	mw-7	
Dis sol ved Oxygen:	3.5 mgs.				
Nitrate:	mg/L;				
Alkalinity	m o rt.				

PPE Worm	Sampler's Signature:
Disposition of Purge Water:	
work ann	l

Project	Number:	76	32		Task Numbe	er: <u>12</u>		Date: 12/10/9	
Casing (Diameter		Purge Eq			 	Equipment	Calibration - Time	
	z	inches	1 5	ib from	12				
Total De	pth of Well fro		-				pH 7.12	= 7.01 = 25	
ر ن	2.37	icet						. (
	ater from TO		Sample E	quipment			pH 4 C	= 4.01 m 25 m	
	53.15	loca	306	King			'		
Product L	evel from TC	oc	1	. ,			Conductivity		
	•	feet	Ì				Conductance Standard:	JO. C µmhos/cm et 25°C	
Length of	Water Colum		Analytical	Equipment (p	H, DO, Redox. fil	tration, etc.)	7		
7	122	lest	156 6	00 XC			Measured Value:	9.434 umhoe/om at 25°C	
Well Volu			imail	DO, P	2				
1	.50	g au	1 ///	,			Dissolved Oxyge	48.8	
Screened	interval (from	·	1					Meter Calibrated to: 122 C) m	
	-	t							
		feet		-,					
Time	Volume	Gallons	Hq	Temp	Conductivity	Redox	Dissolved Oxygen	Vieual Description	
les?	<i>f</i>	P	7.19	16.8	1.97	31.8	532	iliev	
0835	/	1.5	6.92	17.9	1.95	467	2.91	//	
1838	2	1.5	6.93	18.2	193	54.3	2.10	;/ ·	
841	3	1.5	6.43	183	194	55.1	2.33	//	
eocnemi	cal Parame	ters]	Comments:					
F	errous Iron:	4	4 man 0842 SAMFLE MW-8						
Dissolve	ed Oxygen:	2.5							
	Nitrate:								
	Alkalinity		mg*.						
			mg/L			-77			
	MG (4)	4585	S	am pier's Si	gnature:	-/,			
osition of	Purge Wate /	r;	}		/			1	
(m 4)	ik du	yi4	1	_	/	/			

Croundwater Sampling Field Data Sheet

Project Number:	
-----------------	--

2832 Task Number: 12

WELL ID: 12/10/57

Casing Diameter	Purge Equipment	Equipment	Calibration - T	ime
Z inches	Sub Pump	7.03	- 701	as 25 °c
Total Depth of Well from TOC	July ramp	pH	= 7.07	a
60,27 feet Static Water from TOC	Sample Equipment	H 4.0	= 4.01	11 25°c
52.37				
Product Level from TOC L 0.01' Hizle	Sub Pump	Conductance Standaro:	/()	µmhos/cm at 25° C
Length of Water Column	Analytical Equipment (pH, DO, Redox, tiltration, etc.)	- 345,0470.		Thursday ou et 52. C
7.90 1000		Measured Value:	9.939	μ mhos/cm at 25° C
Well Volume	YSI GOOVC	ļ 		988
	1	Dissolved Oxyge		
Screened Interval (from GS)	Hach DO, Fe	001	Meter Calibrated to	: 100. () mgs.
loot	1 100-1907	<u> </u>		

Time	Well Volume	Gallons Removed	рH	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
1405 P	P	10	7.41	15,17	1,253	43,5	2.46	19nder Ele
1407	1	1.3	7.03	17.98	1.270	34.6 74.0	0.81	Clecis
1409	2	2.6	6.98	17.84	1.283		1.08	
1416	3	3.9	7.02	18.43	1,257	75./	3,4/	

Geocnemical Parami	eiers		Comments:	6.	Flack . Lay com	
Ferrous iron:	Ø	mg/L	1420		+ (4)11.0 (4) CV=	
Dis solve d Oxygen:	3.0	mg/L				
Nitrate:		mg/L				
Alkalinity		mg/L				

PPE Wom:	Sampier's Signature:
Cloves, Slasses Disposition of Purge Water.	Thoma allager
ON-SITE Orum	

WELLID: -1C

Groundwater Sampling Field Data Sheet

Project	Number:
L IOIACI	Number:

7	\bigcirc	2	_	
\prec	δ.	\supset	L	

Task Number: 12

Date: 14/0/97

Casing Diameter	Purge Equipment	Equipment Calibration - Time
Total Depth of Well from TOC	- Sub Pump	pm 7.03 = 7.01 at 25 %
63,60 feet Static Water from TOC	Garage Four-	on 400 = 4.01 at 25 %
54,17 feet	Sample Equipment	7.0
Product Level from TOC TAY leet	Surp Dump	Conductance Conductance Standard: µmhos/cm at 25° C
Length of Water Column 9,46 STylundent Well Volume	Analytical Equipment (pH, DO, Redox. filtration, etc.) YST 600 VC	Measured Value: 9-939 µmhos/cm at 25°C
/, 55 gu	Hach DO, Fe	Olssanred Oxygen DO Meter Calibrated to: 100.0 mg/L
feet		1

emiT	Volume	Gallons Removed	pH	Temp	Conductivity	Fledox	Dissolved Oxygen	Visual Description
1238	P	ρ	7.06	15.26	4.852	60.4	5,73	
12.4/		15	693	18.68	5.617	105.74	0.54	
1244	2	3.0	6.82	18.69	5.692	-109.2	0.43	
1249	3	4.5	6.82	18.70	5.791	-115.2	0.33	
125	1							

Geochemical Parame	eters		Comments:	,
Ferrous iron:	9,4	m g/L	Dup-	Ex vol for TPH
Di sso lved Oxygen:	Ø	m g/L		
Nitrate:	, , , , , , , , , , , , , , , , , , ,	m g/L		
Alkalinity	,	ma/L		·

PPE Wom:	Sampler's Signature:
gloves, glasses	$\frac{1}{2}$
Disposition of Purge Water:	
1 2 1 1	1 Mma M. Wille
ON-Site arum	

APPENDIX B

Laboratory Analytical Report for Groundwater Samples

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

December 29, 1997

Mr. Rick Rexroad BROWN AND CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for samples received at Southern Petroleum Laboratories (SPL) on December 11, 1997. The samples were assigned to Certificate of Analysis No.(s) 9712590 and analyzed for all parameters as listed on the chain of custody.

Any data flag or quality control exception associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette A. Fini

Project Manager

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SOUTHERN PETROLEUM LABORATORIES, INC.

Certificate of Analysis Number: 97-12-590

Approved for Release by:

Bernadette A. Fini, Project Manager

Date:

Greg Grandits
Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

PROJECT: BJS Hobbs
SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 12/10/97 08:42:00

SAMPLE ID: MW-8

DATE RECEIVED: 12/11/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	ND	0.1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method Modified 8015A*** for Gasoline Analyzed by: MF Date: 12/21/97	% Recovery 107 73		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND	1.0 P 1.0 P 1.0 P 1.0 P	μg/L μg/L μg/L μg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: MF Date: 12/21/97	% Recovery 100 100		
Total Petroleum Hydrocarbons-Diesel	0.30	0.2 P	mg/L
Surrogate n-Pentacosane Method Modified 8015A*** for Diesel Analyzed by: RR Date: 12/16/97 07:03:00	% Recovery 112		

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern.(C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: BJS Hobbs
PROJECT NO: 2832.12
SITE: Hobbs, NM
MATRIX: WATER

SITE: Hobbs, NM MATRIX: WATER
SAMPLED BY: Brown & Caldwell DATE SAMPLED: 12/10/97 09:10:00

SAMPLE ID: MW-7 DATE RECEIVED: 12/11/97

ANALYTICAL I	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	ND	0.1 P	mg/L
Surrogate	% Recovery		
4-Bromofluorobenzene	100		
1,4-Difluorobenzene	73		
Method Modified 8015A*** for Gasoline Analyzed by: MF			
Date: 12/21/97			
BENZENE	ND	1.0 P	μ g/L
TOLUENE	ND	1.0 P	μ g/L
ETHYLBENZENE	ND	1.0 P	μ g/L
TOTAL XYLENE	ND	1.0 P	μ g/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene	97		
Method 8020A ***			
Analyzed by: MF			
Date: 12/21/97			
Total Petroleum Hydrocarbons-Diesel	ND	0.2 P	mg/L
Surrogate	% Recovery		
n-Pentacosane	62		
Method Modified 8015A*** for Diesel			
Analyzed by: RR			
Date: 12/16/97 07:48:00			

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9712590-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 12/29/97

PROJECT: BJS Hobbs

SITE: Hobbs, NM

PROJECT NO: 2832.12

MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 12/10/97 09:50:00

SAMPLE ID: MW-6 DATE RECEIVED: 12/11/97

ANALYTICAL I	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	0.14	0.1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method Modified 8015A*** for Gasoline Analyzed by: MF Date: 12/21/97	% Recovery 107 87		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	3.0 4.2 1.2 3.9 12.3	1.0 P	μg/L μg/L μg/L μg/L μg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: MF Date: 12/21/97	% Recovery 110 93		
Total Petroleum Hydrocarbons-Diesel	1.7	1.0 P	mg/L
Surrogate n-Pentacosane Method Modified 8015A*** for Diesel Analyzed by: RR Date: 12/16/97 08:34:00	% Recovery 90		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern.(C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance with EPA quidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-04

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

PROJECT: BJS Hobbs MATRIX: WATER SITE: Hobbs, NM

DATE SAMPLED: 12/10/97 10:45:00 **SAMPLED BY:** Brown & Caldwell

SAMPLE ID: MW-3 DATE RECEIVED: 12/11/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	5.3	1.0 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method Modified 8015A*** for Gasoline Analyzed by: MF Date: 12/22/97	% Recovery 97 77		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	240 740 500 450 1930	10.0 P 10.0 P	μg/L μg/L μg/L μg/L μg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: MF Date: 12/22/97	% Recovery 103 93		
Total Petroleum Hydrocarbons-Diesel	0.59	0.2 P	mg/L
Surrogate n-Pentacosane Method Modified 8015A*** for Diesel Analyzed by: RR Date: 12/17/97 01:42:00	% Recovery 98		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern. (C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-05

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: BJS Hobbs

PROJECT NO: 2832.12

SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 12/10/97 11:51:00

SAMPLE ID: MW-5

DATE RECEIVED: 12/11/97

ANALYTICAL DATA			
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	ND	0.1 P	mg/I
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method Modified 8015A*** for Gasoline Analyzed by: MF Date: 12/21/97	% Recovery 100 73		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND	5.0 P 5.0 P 5.0 P 5.0 P	μα/Ι μα/Ι μα/Ι μα/Ι
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 12/23/97	% Recovery 100 100		
Total Petroleum Hydrocarbons-Diesel	ND	0.2 P	mg/L
Surrogate n-Pentacosane Method Modified 8015A*** for Diesel Analyzed by: RR Date: 12/16/97 10:06:00	% Recovery 102		

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA
**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

⁽P) - Practical Quantitation Limit

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-06

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: BJS Hobbs

SAMPLED BY: Brown & Caldwell

SITE: Hobbs, NM

SAMPLE ID: MW-10

DROTTOM NO. 2022 12

PROJECT NO: 2832.12
MATRIX: WATER

DATE SAMPLED: 12/10/97 12:51:00

DATE RECEIVED: 12/11/97

ANALYTICAL DATA				
PARAMETER ANALYTICAL D	RESULTS	DETECTION LIMIT	UNITS	
Gasoline Range Organics	0.28	0.1 P	mg/I	
Surrogate	% Recovery			
4-Bromofluorobenzene	103			
1,4-Difluorobenzene	80			
Method Modified 8015A*** for Gasoline Analyzed by: MF				
Date: 12/21/97				
BENZENE	41	1.0 P	μg/I	
TOLUENE	9.8	1.0 P	μg/1	
ETHYLBENZENE	12	1.0 P	μg/I	
TOTAL XYLENE	7.7	1.0 P	μg/1	
TOTAL VOLATILE AROMATIC HYDROCARBONS	70.5		μg/I	
Surrogate	% Recovery			
1,4-Difluorobenzene	107			
4-Bromofluorobenzene	97			
Method 8020A ***				
Analyzed by: MF				
Date: 12/21/97				
Total Petroleum Hydrocarbons-Diesel	1.1	1.0 P	mg/L	
Surrogate	% Recovery			

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-06

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 12/10/97 12:51:00

DATE RECEIVED: 12/11/97

PROJECT: BJS Hobbs SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-10

ANALYTICAL DATA **PARAMETER** RESULTS DETECTION UNITS LIMIT n-Pentacosane 120 « Method Modified 8015A*** for Diesel Analyzed by: RR Date: 12/16/97 10:52:00 ND 0.05 Nitrate nitrogen(as N) mq/L Method 353.3 * Analyzed by: EM Date: 12/12/97 Sulfate 229 25 mg/L Method 375.4 * Analyzed by: EM Date: 12/23/97

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

^{« -} Recovery beyond control limits. ND - Not detected.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-07

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

PROJECT: BJS Hobbs MATRIX: WATER **SITE:** Hobbs, NM

DATE SAMPLED: 12/10/97 14:20:00 **SAMPLED BY:** Brown & Caldwell

SAMPLE ID: MW-9 DATE RECEIVED: 12/11/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	0.92	0.1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method Modified 8015A*** for Gasoline Analyzed by: MF Date: 12/21/97	% Recovery 103 83		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	4.9 9.0 6.8 62 82.7	1.0 P 1.0 P	μg/L μg/L μg/L μg/L μg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: MF Date: 12/21/97	% Recovery 103 97		
Total Petroleum Hydrocarbons-Diesel	0.86	0.2 P	mg/L
Surrogate n-Pentacosane Method Modified 8015A*** for Diesel Analyzed by: RR Date: 12/16/97 11:38:00	% Recovery 56		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern. (C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9712590-08

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 12/29/97

PROJECT: BJS Hobbs

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-2832

PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 12/10/97

DATE RECEIVED: 12/11/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	0.24	0.1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method Modified 8015A*** for Gasoline Analyzed by: MF Date: 12/21/97	% Recovery 107 80		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	36 8.5 10 6.7 61.2	1.0 P 1.0 P	μg/L μg/L μg/L μg/L μg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: MF Date: 12/21/97	% Recovery 103 97		
Total Petroleum Hydrocarbons-Diesel	1.2	1.0 P	mg/L
Surrogate n-Pentacosane Method Modified 8015A*** for Diesel Analyzed by: RR Date: 12/16/97 12:23:00	% Recovery 112		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C16 that do not resemble a diesel pattern.(C10-C24) RR QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-09

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: BJS Hobbs

PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER
SAMPLED BY: Brown & Caldwell DATE SAMPLED: 12/10/97 14:25:00

SAMPLE ID: MW-1 DATE RECEIVED: 12/11/97

ANALYTICAL	ANALYTICAL DATA				
PARAMETER	RESULTS	DETECTION LIMIT	UNITS		
Gasoline Range Organics	71	10 P	mg/L		
Surrogate	% Recovery				
4-Bromofluorobenzene	153				
1,4-Difluorobenzene	80				
Method Modified 8015A*** for Gasoline Analyzed by: MF Date: 12/22/97					
BENZENE	7600	100 P	$\mu { m g}/{ m L}$		
TOLUENE	12000	100 P	μg/L		
ETHYLBENZENE	2800	100 P	μg/L		
TOTAL XYLENE	8200	100 P	$\mu g/L$		
TOTAL VOLATILE AROMATIC HYDROCARBONS	30600		μ g/L		
Surrogate	% Recovery				
1,4-Difluorobenzene	107				
4-Bromofluorobenzene Method 8020A *** Analyzed by: MF Date: 12/22/97	97				
Total Petroleum Hydrocarbons-Diesel	11	1.0 P	mg/L		
Surrogate n-Pentacosane	% Recovery				

(P) - Practical Quantitation Limit

Date: 12/16/97 01:09:00

Analyzed by: RR

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24

that resemble a diesel pattern. (C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance

with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-10

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: BJS Hobbs

SITE: Hobbs, NM

PROJECT NO: 2832.12

MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 12/10/97 14:55:00

SAMPLE ID: MW-4 DATE RECEIVED: 12/11/97

ANALUMTORI DRMR				
PARAMETER ANALYTICAL 1	RESULTS	DETECTION LIMIT	UNITS	
Gasoline Range Organics	16	5 P	mg/L	
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method Modified 8015A*** for Gasoline Analyzed by: MF Date: 12/21/97	% Recovery 100 73			
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	230 750 970 2300 4250	50 P	μg/L μg/L μg/L μg/L	
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: MF Date: 12/21/97	% Recovery 100 100			
Total Petroleum Hydrocarbons-Diesel	3.7	0.2 P	mg/L	
Surrogate n-Pentacosane Method Modified 8015A*** for Diesel Analyzed by: RR Date: 12/16/97 01:54:00	% Recovery 110	,		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24

that resemble a diesel pattern.(C10-C24) RR

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/29/97

Certificate of Analysis No. H9-9712590-11

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: BJS Hobbs

SITE: Hobbs, NM

PROJECT NO: 2832.12

MATRIX: AIR

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 12/10/97 15:05:00

SAMPLE ID: EFF-1-2832 DATE RECEIVED: 12/11/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
		LIMIT	
BENZENE	ND	0.001 P	PPMV
TOLUENE	0.013	0.001 P	PPMV
ETHYLBENZENE	0.009	0.001 P	PPMV
TOTAL XYLENE	0.031	0.001 P	PPMV
TOTAL VOLATILE AROMATIC HYDROCARBONS	0.053		PPMV
Method Modified 5030/8020A***			
Analyzed by: RL			
Date: 12/12/97			
Total Petroleum Hydrocarbons	210	5	mqq
Method Modified 8015A Air ***	210	3	PP
Analyzed by: RL			
Date: 12/12/97 04:10:00			

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA quidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9712590-12

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 12/29/97

PROJECT: BJS Hobbs SITE: Hobbs, NM SAMPLED BY: Provided By SPL SAMPLE ID: Trip Blank PROJECT NO: 2832.12

MATRIX: WATER

DATE SAMPLED: 12/10/97

DATE RECEIVED: 12/11/97

ANALYTICAL DATA									
PARAMETER	RESULTS	DETECTION LIMIT	UNITS						
Gasoline Range Organics	ND	0.1 P	mg/L						
Surrogate	% Recovery								
4-Bromofluorobenzene	103								
1,4-Difluorobenzene	73								
Method Modified 8015A*** for Gasoli	ne								
Analyzed by: MF									
Date: 12/21/97									
BENZENE	ND	1.0 P	μg/L						
TOLUENE	ND	1.0 P	μg/L						
ETHYLBENZENE	ND	1.0 P	μg/L						
TOTAL XYLENE	ND	1.0 P	μg/L						
TOTAL VOLATILE AROMATIC HYDROCARBON	NS ND		μg/L						
Surrogate	% Recovery								
1,4-Difluorobenzene	100								
4-Bromofluorobenzene	100								
Method 8020A ***									

ND - Not detected.

Analyzed by: MF

Date: 12/21/97

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

QUALITY CONTROL

DOCUMENTATION

mg/L

SPL BATCH QUALITY CONTROL REPORT **

Method Modified 8015A*** for Gasoline

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: HP_\$971220180900

LABORATORY CONTROL SAMPLE

SPIKE	Method 5		Blank	Spike	QC Limits(**)
СОМРОИНОЅ	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
Gasoline Range Organics	ND	1.0	0.97	97.0	64 - 131

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike Matrix Spike MS/MSD Duplicate Relative		MS/MSD Relative %	QC Limits(***) ((Advisory)		
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE RANGE ORGANICS	0.15	0.9	1.05	100	1.04	98.9	1.11	36	36 - 160

Analyst: MF

Units:

Sequence Date: 12/20/97

SPL ID of sample spiked: 9712676-06A

Sample File ID: SSL3625.TX0

Method Blank File ID:

Blank Spike File ID: SSL3616.TX0

Matrix Spike File ID: SSL3620.TX0

Matrix Spike Duplicate File ID: SSL3621.TXO

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical data (1st Q '97) (***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9712590-01A 9712590-02A 9712590-03A 9712676-04A 9712676-01A 9712676-06A 9712482-28A 9712482-29A

mg/L

Units:

SPL BATCH QUALITY CONTROL REPORT **

Method Modified 8015A*** for Gasoline

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: HP_S971221154900

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery	QC Limits(**) (Mandatory) % Recovery Range
Gasoline Range Organics	ND	1.0	1.1	110	64 - 131

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		.imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE RANGE ORGANICS	ND	0.9	1.1	122	1.1	122	0	36	36 - 160

Analyst: MF

Sequence Date: 12/21/97

SPL ID of sample spiked: 9712717-05C

Sample File ID: SSL3673A.TX0

Method Blank File ID:

Blank Spike File ID: SSL3649.TX0

Matrix Spike File ID: SSL4007.TX0

Matrix Spike Duplicate File ID: SSL4008.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical data (1st Q '97) (***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9712590-07A 9712590-10A 9712590-09A 9712717-01C

9712717-02C 9712717-03C 9712717-05C 9712717-06C

9712717-10C 9712717-09C 9712590-05A 9712590-12A

9712674-01A 9712590-06A 9712590-08A

mg/L

SPL BATCH QUALITY CONTROL REPORT ** Method Modified 8015A*** for Gasoline **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: HP_S971222090700

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
Gasoline Range Organics	ND	1.0	0.96	96.0	64 - 131

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		.imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE RANGE ORGANICS	ND	0.9	1.08	120	0.97	108	10.5	36	36 - 160

Analyst: MF

Units:

Sequence Date: 12/22/97

SPL ID of sample spiked: 9712717-08C

Sample File ID: SSL4015.TX0

Method Blank File ID:

Blank Spike File ID: SSL4004.TX0

Matrix Spike File ID: SSL4012.TX0

Matrix Spike Duplicate File ID: SSL4013.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical data (1st Q '97) (***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9712717-04C 9712717-07C 9712590-04A 9712482-27A

9712719-17C 9712719-18C 9712719-20C 9712719-21C

9712717-08C 9712676-05A 9712676-07A 9712676-08A

SPL BATCH QUALITY CONTROL REPORT **
METHOD 8020/602

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: HP_S971220174200

Matrix: Aqueous Units: μg/L

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blani	k Spike	QC Limits(**)			
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range			
MTBE	ND	50	41	82.0	72 - 128			
Benzene	ND	50	45	90.0	61 - 119			
Toluene	ND	50	44	88.0	65 - 125			
EthylBenzene	ND	50	43	86.0	70 - 118			
0 Xylene	ND	50	44	88.0	72 - 117			
M & P Xylene	ND	100	88	88.0	72 - 116			

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %	ì	.imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
MTBE	870	20	780	NC	790	NC	NC	20	39 - 150
8ENZENE	ND	20	18	90.0	19	95.0	5.41	21	32 - 164
TOLUENE	ND	20	18	90.0	18	90.0	0	20	38 - 159
ETHYLBENZENE	ND	20	17	85.0	16	80.0	6.06	19	52 - 142
O XYLENE	NO	20	18	90.0	18:	90.0	0	18	53 - 143
M & P XYLENE	ND:	40	35	87.5	35	87.5	0	17	53 - 144

Analyst: MF

Sequence Date: 12/20/97

SPL ID of sample spiked: 9712676-05A

Sample File ID: S_L3624.TX0

Method Blank File ID:

Blank Spike File ID: S_L3615.TX0 Matrix Spike File ID: S_L3618.TX0

Matrix Spike Duplicate File ID: S_L3619.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97) (***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9712482-27A 9712482-28A 9712482-29A 9712590-01A 9712590-02A 9712590-03A 9712676-04A 9712676-07A 9712676-08A 9712676-01A 9712674-02A 9712437-03A 9712676-05A 9712676-06A 9712676-07A 9712676-08A

SPL BATCH QUALITY CONTROL REPORT **
METHOD 8020/602

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: HP_S971221144000

Matrix: Aqueous Units: μ g/L

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blani	Spike	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range		
MTBE	ND	50	44	88.0	72 - 128		
Benzene	ND	50	43	86.0	61 - 119		
Toluene	ND	50	43	86.0	65 - 125		
EthylBenzene	ND	50	43	86.0	70 - 118		
O Xylene	ND	50	44	88.0	72 - 117		
M & P Xylene	ND	100	88	88.0	72 - 116		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		imits(***) Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
мтве	ND	20	22	110	19	95.0	14.6	20	39 - 150
BENZENE	3.5	20	28	122	20	82.5	38.6 *	21	32 - 164
TOLUENE	15	20	37	110	28	65.0	51.4 *	20	38 - 159
ETHYLBENZENE	8.9	20	31	110	23	70.5	43.8 *	19	52 - 142
O XYLENE	4.0	20	28	120	21	85.0	34.1 *	18	53 - 143
M & P XYLENE	3.4	40	52	122	38	86.5	34.1 *	17	53 - 144

Analyst: MF

Sequence Date: 12/21/97

SPL ID of sample spiked: 9712590-05A

Sample File ID: S_L3663A.TX0

Method Blank File ID:

Blank Spike File ID: S_L3647.TX0
Matrix Spike File ID: S_L3651.TX0

Matrix Spike Duplicate File ID: S_L3652.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97) (***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9712590-10A 9712590-09A 9712590-12A 9712674-01A 9712590-06A 9712590-08A 9712590-07A 9712590-04A

SPL BATCH QUALITY CONTROL REPORT **
METHOD 8020/602

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: HP_S971222093300

Units: µg/L

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)			
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range			
мтве	ND	50	42	84.0	72 - 128			
Benzene	ND	50	45	90.0	61 - 119			
Toluene	ND	50	44	88.0	65 - 125			
EthylBenzene	ND	50	43	86.0	70 - 118			
O Xylene	ND	50	46	92.0	72 - 117			
M & P Xylene	l ND	100	89	89.0	72 - 116			

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		Limits(***) (Advisory)	
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery	Range
MTBE	2.1	20	20	89.5	20	89.5	0	20	39 -	150
BENZENE	ND	20	19	95.0	19	95.0	0	21	32 -	164
TOLUENE	ND	20	19	95.0	19	95.0	0	20	38 -	159
ETHYLBENZENE	ND	20	19	95.0	18	90.0	5.41	19	52 -	142
O XYLENE	ND	20	19	95.0	19	95.0	0	18	53 -	143
M & P XYLENE	ND	40	38	95.0	38	95.0	0	17	53 -	144

Analyst: MF

Sequence Date: 12/22/97

SPL ID of sample spiked: 9712778-04A

Sample File ID: S_L4016.TX0

Method Blank File ID:

Blank Spike File ID: S_L4003.TX0 Matrix Spike File ID: S_L4010.TX0

Matrix Spike Duplicate File ID: S_L4011.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9712778-02A 9712778-01A 9712778-04A 9712674-03A

9712590-04A

μg/L

Units:

SPL BATCH QUALITY CONTROL REPORT ** METHOD 8020/602

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: HP_S971223163000

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blan	C Spike	QC Limits(**)			
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range			
MTBE	ND	50	52	104	72 - 128			
Benzene	ND	50	53	106	61 - 119			
Toluene	ND	50	52	104	65 - 125			
EthylBenzene	ND	50	51	102	70 - 118			
0 Xylene	ND	50	53	106	72 - 117			
M & P Xylene	ND	100	100	100	72 - 116			

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %	•	imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
MTBE	21000	20	4100	NC	4100	NC	NC	20	39 - 150
BENZENE	ND	20	21	105	19	95.0	10.0	21	32 - 164
TOLUENE	ND ND	20	20	100	20	100	0	20	38 - 159
ETHYLBENZENE	ND	20	19	95.0	19	95.0	0	19	52 - 142
O XYLENE	ND	20	20	100	21	105	4.88	18	53 - 143
M & P XYLENE	ND	40	. 39	97.5	39	97.5	0	17	53 - 144

Analyst: LJ

Sequence Date: 12/23/97

SPL ID of sample spiked: 9712778-06A

Sample File ID: S_L4053.TX0

Method Blank File ID:

Blank Spike File ID: S_L4041.TX0 Matrix Spike File ID: S L4061.TX0

Matrix Spike Duplicate File ID: S_L4062.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9712991-01A 9712991-02A 9712991-05A 9712991-06A

9712991-03A 9712778-06A 9712590-05A 9712778-01A

9712778-03A 9712778-05A

SPL BATCH QUALITY CONTROL REPORT **

Method Modified 8015A*** for Diesel

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Aqueous Units: mg/L

Batch Id: HPVV971215065200

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
Diesel	ND	5.0	4.9	98.0	53 - 148

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
DIESEL	ND	5.0	4.9	98.0	5.0	100	2.02	39	21 - 175

Analyst: RR

Sequence Date: 12/15/97

SPL ID of sample spiked: 9712548-02D

Sample File ID: VVL2107.TX0

Method Blank File ID:

Blank Spike File ID: VVL2104.TX0

Matrix Spike File ID: VVL2108.TX0

Matrix Spike Duplicate File ID: VVL2109.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (4th Q '97) (***) = Source: SPL-Houston Historical Data (4th Q '97)

SAMPLES IN BATCH(SPL ID):

 9712548-070
 9712548-090
 9712548-100
 9712548-110

 9712590-018
 9712590-028
 9712590-038
 9712590-058

 9712590-068
 9712590-078
 9712590-088
 9712590-098

 9712590-108
 9712590-048
 9712548-020
 9712548-010

9712548-03D 9712548-04D 9712548-06D

** SPL BATCH QUALITY CONTROL REPORT **
METHOD 5030/8020 (Modified)

PAGE

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Air ppm Batch Id: HP_P971212121900

BLANK SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		Limits(**) (Advisory)	
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery	Range
BENZENE	ND	20	19.4	97.0	19.0	95.0	2.08	30	37 -	117
TOLUENE	ND	20	19.2	96.0	19.0	95.0	1.05	30	25 -	113
ETHYLBENZENE	ND	20	18.1	90.5	17.5	87.5	3.37	30	25 -	106
O XYLENE	ND	20	18.0	90.0	17.0	85.0	5.71	30	15 -	109
M & P XYLENE	ND	20	18.2	91.0	17.1	85.5	6.23	30	12 -	114

Analyst: fab

Sequence Date: 12/12/97 Method Blank File ID:

Sample File ID:

Blank Spike File ID: P_L7103.TX0

Matrix Spike File ID:

Matrix Spike Duplicate File ID:

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: Tempo. Limits & SPL-Houston Hist. Data(1st Qtr'97)

** SPL BATCH QUALITY CONTROL REPORT **
METHOD 8015 (Modified)

PAGE

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Air Units: ppm

Batch Id: HP_P971212153100

BLANK SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		Limits(**) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
TPHAIR	ND	200	100	50.0	94	47.0	6.19	30	20 - 150

Analyst: fab

Sequence Date: 12/12/97 Method Blank File ID:

Sample File ID:

Blank Spike File ID: PPL7103.TX0

Matrix Spike File ID:

Matrix Spike Duplicate File ID:

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit % Recovery = [(<1> - <2>) / <3>] x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: Temporary limits

SAMPLES IN BATCH(SPL ID):

9712590-11A 9712618-01A 9712620-01A

8880 INTERCHANGE DRIVE HOUSTON. TEXAS 77054 PHONE (713) 660-0901

* SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 12/12/97 Analyzed on: 12/12/97

Analyst: EM

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Nitrate nitrogen(as N)
Method 353.3 *

SPL Sample ID Number	Blank Value mg/L		Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	ND	2.00	1.84	92.0	92 - 113

-9712516

Samples in batch:

9712590-06C

9712647-01H

9712647-02H

9712647-03H

9712647-04H

COMMENTS:

SPL LCS#: 95535142-26

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous Reported on: 12/12/97 Analyzed on: 12/12/97 Analyst: EM

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Nitrate nitrogen(as N) Method 353.3 *

SPL Sample	Method	Sample	Spike	Matri	ix Spike		ix Spike Licate	RPD		QC LIMITS Advisory)
ID Number	Blank mg/L	Result mg/L	Added mg/L	Result mg/L	Recovery %	Result mg/L	Recovery %	(%)	RPD Max	% REC
9712590-06C	ND	ND	0.40	0.38	95.0	0.38	95.0	0	12	84 -125

-9712515

Samples in batch:

9712590-06C 9712647-01H 9712647-02H 9712647-03H 9712647-04H

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 12/23/97

Analyzed on: 12/23/97

Analyst: EM

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample ID Number	Blank Value mg/L	LCS Concentration mg/L	Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	ND	10.15	11.12	110	82 - 111

-9712928

Samples in batch:

9712590-06C	9712839-01A	9712868-03E	9712868-04E
9712868-05E	9712947-01E	9712947-02E	9712947-03E
9712947-04E	9712947-05E	9712957-01E	9712957-02E
9712957-03E	9712957-04E	9712957-05E	9712957-06E
9712957-07E	9712957-08E	9712A06-01A	9712A06-02A
COMMENTS:			

SPL LCS#: 95535154-3

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 12/23/97 Analyzed on: 12/23/97

Analyst:

EM

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample	Method	Sample	Spike	Matr	ix Spike		ix Spike Licate	RPD	I	QC LIMITS Advisory)
ID Number	1	Result mg/L	Added mg/L	Result mg/L	Recovery %	Result mg/L	Recovery %	(%)	RPD Max	% REC
9712590-06C	ND	9.17	10.00	19.34	102	19.14	99.7	2.3	9.5	84 -120

-9712927

Samples in batch:

9712590-06C 9712839-01A 9712868-03E 9712868-04E 9712868-05E 9712947-01E 9712947-02E 9712947-03E 9712947-05E

COMMENTS:

CHAIN OF CUSTODY AND SAMPLE RECEIPT CHECKLIST

SPL Houston Environmental Laboratory

Sample Login Checklist

Da	te: 12/11/97 Time:	1300		
SPI	L Sample ID:			
J1 1	9712590			
			Yes	<u>No</u>
1	Chain-of-Custody (COC) form is pre	esent.		
2	COC is properly completed.			-
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the ship	oping container.		
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.			
7 If no, Non-Conformance Worksheet has been completed.				
8 Sample containers arrived intact				^
9	Temperature of samples upon arrival	l:	,	4 c
10	Method of sample delivery to SPL:	SPL Delivery		
		Client Delivery		
		FedEx Delivery (airbill #)	800816	7028
		Other:		
11	Method of sample disposal:	SPL Disposal		
		HOLD		
		Return to Client		

Name:	Date:
Milien Estrado	12/11/97

			S	SPL, Inc.	1c.				SPL Workorder No:	rder No:		
(8)	Ā	Analysis Request &	quest &		of Ct	Chain of Custody Record	Recor	p	14	112590		pageof
Client Name: BROWN and	Caldwe]]=(matrix bottle		zc	pres.			Requested	Analys	is
Address/Phone: 14/5 Lou. 518 24 St	0257#											
Client Contact: Rick Rexitue	and a	713 759-0999	25.50					J.O.	0			
5	4665			io s = 130 =	eiv=	VH= 2091	110=	ristr ——	70			
Project Number: 2832/	7				<u>-</u> -Λ	[=9		102 -	28			
Project Location: 170665 18	KEN M			ler idge	S	ĭ		10 1: 	X,			
Invoice To: Bl				n[s=				agui	<i>31.</i>			
SAMPLE ID	DATE	TIME	comp grab			3=8		inN	G			
EM-1-2832 1	L6/1/11	15051	×	0	d			× ,				
TESP WARK	//	1		E				12	*			
							-					U
Client/Consultant Remarks:				Laborator	laboratory remarks:						Intact?	CY UN
Requested TAT Sp	pecial Report	Special Reporting Requirements		Fax Results		Raw Data	-Sp	ecial Detec	Special Detection Limits (specify):	ecify):	:	PM review (initial):
	Sta	Standard OC	Level	[rvel 3 QC		Level 4 ()C						
24hr 72hr 1.	Relipquishe	1. Relipquished by Sampler.	12.00		5	date 12/1/97	1.5	time 16.06	2. Received by	by:	1	
48hr Standard 3	3. Relinquished by:	d by:				date	4 5	time	4. Received by:	by:	165	
Other 5	5. Relinquished by:	d by:				date	Ţ <u>i</u>	time	6. Received	Received by Labopatory:	1	00/1/
	T Conston T	X 77054 (7)	3) 660.03	150	1	-	- 4 ²⁰ V) - oposoo	1/4/2/2017 2017	4n 7/1	77	12/1/92
459 Hughes Drive, Traverse City, MI 49684 (616) 947-577	se City, M	1 49684 (616	3) 000-03 5) 947-57	77		· 	00 AME 511 E. (oassador I Orangeth	Janery Park orpe Avenu	cway, Scott, L e, Fullerton, C	A 70583 (2A 92631	 Jou Ambassador Callery Farkway, Scott, LA 70583 (318) 237-4775 1511 E. Orangethorpe Avenue, Fullerton, CA 92631 (714) 447-6868

1001	\			SPL,	Inc.				SPL	kog [S. S.		2001	C.
®	A	Analysis Request &	quest		ain of	Chain of Custody Record	, Reco	p.)	11/17	71557		page of	
Client Name: BROWN CIND	Calderell			matı	natrix bottle	size	pres.			Re	queste	Requested Analysis	S	
	Theret S	Sat 2500			glass	lsiv			3					
Client Contact: Rick Rexisted		713-759-0589	683		per				10,	CII	* 1			
Project Name: BJS H	50			lios:		209 5 20	-01µ НИ	של		28				
7	7/				<u>-</u> ∀				Q K Q					
Project Location: H665	UM			ier	oi:	₽ 15		10 T) K	a4 4"				
Invoice To: Brown and C	A. Jel			EM=	uls= olasi glas	l lite	HCI	H X <u>J</u> squ						
SAMPLE ID	DATE	TIME	comp grab	= M	ь=I				dl -11		 .			
MW-8	12/1997	0842	7	3	200	1-1.15	- -	5 4	_					
M J	12/10/21	0110	7	3	9	13	=	2 4						
MW-6	12/10/57	0550	7	N /	5	11	=	5 4						
MW-3	12/10/21	1045	7	3	9	17	13	7	_					
MW-S	12/10/57	1151	7	3	<u></u>	- 1	=	5 4				U	I.	
MW-10	15/10/21	1251	7	1	9	3/2/2	14.7	7 4	3	_		3	3	
MW-09	15/01/21	1430	7	3	9	(+)O(+)	141	5 4	_					
MW-2832	17/10/27		7	3	9	11	٤	5.	/					
MW-1	13/01/71	1425	7	3	9	11	-	5 4	,	-				
MW-4	12/10/91	1455	7	3	0	Ĺ	٤	5 9	/	_			(
Client/Consultant Remarks:				Labor	altoratory remarks:	ks:				6		Intact? Temp:		
Requested TAT	Special Repor	Special Reporting Requirements		Fax Results		Raw Data	J	Special Detection Limits (specify).	ction Lin	its (specify	<u></u>		PM review (initial):	
[Sta	Standard 🔍 📋	¥1	Level 3 QC		Level 4 (XC								
24hr 🔲 72hr 🔲	1. Relinquishe	1. Relinquished by Sampler:	7	\		date 12/1.19	6	time	2. Re	2. Received by: Feed	1 - 1	l d		
48hr 🔲 Standard 📋	3. Relinquished by:	d by:	3					time	4. Re	4. Received by:	70/9	10.8		
Other 🔲	5. Relinquished by:	d by:				date		time	9/ Rc	Wecewed by Laboratory	aboratory:	1	12/11/6	at a
 8880 Interchange Drive, Houston, TX 77054 (713) 660-0901 459 Hughes Drive, Traverse City, MI 49684 (616) 947-5777 	Houston, T erse City, M	X 77054 (71 1 49684 (610	3) 660	0901		00	500 Am	bassador Orangetl	Caffery	Parkwa venue, F	v. Scott, I ullerton,	A 70583 (3 CA 92631 (500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775 1511 E. Orangethorpe Avenue, Fullerton, CA 92631 (714) 447-6868	2 88

FINAL

JUNE 1997 GROUNDWATER SAMPLING REPORT HOBBS, NEW MEXICO FACILITY

BJ SERVICES COMPANY, U.S.A.

DECEMBER 31, 1997

FINAL
JUNE 1997 GROUNDWATER SAMPLING REPORT
HOBBS, NEW MEXICO FACILITY
BJ SERVICES COMPANY, U.S.A.

Prepared for

BJ Services Company, U.S.A. 8701 New Trails Drive The Woodlands, Texas

BC Project Number: 2832.12

William E. Rodgers, Jr.

Associate Engineer

December 31, 1997

Brown and Caldwell

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

"This report was prepared in accordance with the standards of the environmental consulting industry at the time it was prepared. It should not be relied upon by parties other than those for whom it was prepared, and then only to the extent of the scope of work which was authorized. This report does not guarantee that no additional environmental contamination beyond that described in this report exists at this site."

CONTENTS

1.0	INTRODUCTION1				
2.0	GROUNDWATER SAMPLING AND ANALYSES2				
2.0	2.1 Groundwater Measurements and Sampling2				
	2.2 Results of Groundwater Analyses				
	2.2 Results of Glouid water Mary ses				
3.0	REMEDIATION SYSTEM5				
4.0	CONCLUSIONS AND RECOMMENDATIONS8				
	4.1 Conclusions				
	4.2 Recommendations8				
DIST	RIBUTION AND QA/QC REVIEWER'S SIGNATURE				
FIGU	RES				
1	Site Map				
2	Potentiometric Surface Map for June 12, 1997				
3	Benzene Isoconcentration and Total BTEX Distribution Map for June 12, 1997				
4	Total Petroleum Hydrocarbons Distribution Map for June 12, 1997				
TABL	ES				
1	Site Chronology				
2	Cumulative Groundwater Elevation Data				
3	Field Screening Results for Groundwater Samples				
4	Cumulative Analytical Results for Groundwater Samples				
5	Summary of Analytical Results for Air Emissions				
APPE	NDICES				
A	Groundwater Sampling Forms				
В	Laboratory Analytical Report for Groundwater Samples				
С	Laboratory Analytical Report for Air Sample				

1.0 INTRODUCTION

Brown and Caldwell conducted field activities associated with the June 1997 quarterly groundwater sampling event at BJ Services Company, U.S.A. (BJ Services) facility located at 2708 West County Road, in Hobbs, New Mexico. The facility layout is shown in Figure 1.

The facility formerly operated an above-grade on-site fueling system. Subsurface impact near the fueling system from a diesel fuel release was first detected by the New Mexico Oil Conservation Division (OCD) during an on-site inspection on February 7, 1991. The fueling system was taken out of operation in July 1995. As the result of the diesel fuel release, the New Mexico OCD has required a quarterly groundwater monitoring program to assess the hydrocarbon constituents in the groundwater. A biosparging system was fully activated in November 1995 to remediate soil and groundwater at the facility. A site chronology detailing the history of the fueling system, the groundwater recovery system, and the previous sampling events is presented on Table 1.

During the June 1997 sampling event, groundwater samples were collected and analyzed for gasoline and diesel range total petroleum hydrocarbons (TPH) and for benzene, toluene, ethylbenzene, and total xylenes (BTEX). This report presents the results of the groundwater sampling event, a description of the field activities, and a summary of the analytical results. Also included is a groundwater potentiometric surface map, a benzene concentration map, and a hydrocarbon distribution map. On April 10, 1997, a survey was conducted to determine the top of casing elevations relative to mean sea level (MSL) and the state plane coordinates of the ten monitor wells at the site. The survey data has been used to update the applicable maps and tables presented in this report.

2.0 GROUNDWATER SAMPLING AND ANALYSES

On June 12, 1997 Brown and Caldwell purged and sampled the groundwater monitoring wells to determine concentrations of dissolved-phase hydrocarbons in groundwater at the facility. The following subsection describes the field activities conducted during this sampling event.

2.1 Groundwater Measurements and Sampling

Ten monitoring wells were sampled during the June 1997 sampling event. A site map depicting the locations of the monitoring wells is presented as Figure 1. As noted in previous sampling reports, monitoring well MW-2 can not be located and is assumed to have been destroyed during facility activities such as grading.

Groundwater level measurements were obtained from the monitoring wells prior to purging and sampling the wells. The groundwater levels were obtained with an oil/water interface probe and recorded to the nearest 0.01 foot. A cumulative table of groundwater elevation data is presented on Table 2. The groundwater elevation data indicates that the general groundwater flow direction is towards the southeast with a hydraulic gradient of 0.01 ft/ft. A potentiometric surface map is presented in Figure 2. Phase-separated hydrocarbons were detected in monitoring wells MW-1 (0.02 ft), MW-4 (0.44 ft), and MW-9 (0.05 ft) during this sampling event.

Groundwater samples were collected from the monitoring wells on June 12, 1997. The samples were collected after purging the wells with a submersible pump to remove at least three well volumes of groundwater. Field parameter measurements for pH, conductivity, and temperature were collected after each well volume was purged. Two consecutive readings within five percent were used to indicate that groundwater had stabilized. The parameters in each monitoring well typically stabilized after two well volumes had been removed; however, at least three well volumes were removed from each well.

Additional groundwater parameters were measured during the purging and sampling activities to assess the potential for natural attenuation. These parameters were dissolved oxygen, dissolved ferrous iron, and reduction-oxidation potential (redox). The field parameter readings were recorded in the field log book and are listed on the groundwater sampling forms included in Appendix A. The field screening results for groundwater samples are presented on Table 3.

Following recovery, groundwater samples were collected from each monitoring well using a new, 3-foot long, 1/2-inch I.D., disposable polyethylene bailer. Each sample was transferred to laboratory-prepared, clean glass or plastic containers sealed with Teflon®-lined lids, labeled, and placed on ice in an insulated cooler for shipment via overnight courier to the analytical laboratory. Each cooler was accompanied by completed chain-of-custody documentation.

The field measurement equipment was decontaminated prior to and after each use. Decontamination procedures consisted of washing with fresh water and a non-phosphate detergent and rinsing with deionized (DI) water. Purged water and excess water generated by equipment cleaning operations were placed into 55-gallon drums and transferred to the on-site drum staging area located in the northeast corner of the facility for classification and future disposal by BJ Services.

2.2 Results of Groundwater Analyses

Groundwater samples collected during this sampling event were analyzed for BTEX by EPA Method 5030/8020 and for TPH by EPA Method 8015 Modified for gasoline and diesel.

BTEX constituent concentrations in excess of applicable laboratory detection limits were reported in seven of the 10 groundwater samples obtained during this sampling event. Current and cumulative analytical results for BTEX and TPH gasoline and diesel are presented in Table 4. Benzene concentrations are below the New Mexico Water Quality Control Commission Standard of 0.01 mg/L in monitor wells MW-5, MW-7, MW-8, and MW-9. Figure 3 presents a benzene isoconcentration and total BTEX distribution map for the June 1997 sampling event. A total

petroleum hydrocarbons distribution map for the June 1997 sampling event is presented in Figure 4. The laboratory analytical reports and chain of custody record for the groundwater samples are included in Appendix B.

A total BTEX assimilative capacity for the site of 35,760 micrograms per liter (µg/L) was calculated based on background levels of electron acceptors measured at the facility during the August 1996 sampling event. This assimilative capacity is less than the maximum BTEX concentration measured during the June 1997 sampling event of 73,800 µg/L in MW-1. Therefore, the data from the June 1997 sampling event indicates the site lacks sufficient capacity to intrinsically bioremediate the highest dissolved BTEX levels measured in the groundwater. However, expressed assimilative capacity is generally considered to be a conservative estimate of an aquifer's geochemical ability to fully support intrinsic bioremediation. Expressed assimilative capacity calculations assume that the only electron acceptor available is that currently measured in site groundwater. At this site, an additional electron acceptor (dissolved oxygen) is being added to the site groundwater through the biosparging system. In addition, the expressed assimilative capacity does not consider other important mechanisms which naturally attenuate dissolved-phase groundwater contaminants. The other mechanisms, which include dilution, dispersion, diffusion, adsorption, and volatilization, can be significant mechanisms for natural attenuation.

3.0 REMEDIATION SYSTEM

Brown and Caldwell submitted a Remedial Action Plan (RAP) to the New Mexico OCD in May 1994. Based on the results of previous investigations conducted by Brown and Caldwell and Roberts/Schornick and Associates, Inc. (RSA), Brown and Caldwell recommended the installation of a biosparging system. The biosparging system simultaneously treats contaminants adsorbed directly to the soil (i.e., residual) as well as contaminants present in soil moisture (i.e., dissolved phase) within the capillary fringe and vadose zone. Additionally, the biosparging system removes volatile contaminants from the saturated zone. The biosparging system operates by injecting air into the saturated zone and extracting air from the vadose zone through a network of wells and piping. The continuous flushing of air through the saturated zone increases the dissolved oxygen concentration in the groundwater and in soil moisture present in the capillary fringe and vadose zone. The elevated dissolved oxygen content facilitates the activities of indigenous microorganisms to accelerate biodegradation of contaminants. The flushing of the air also strips volatile and semivolatile contaminants.

The New Mexico OCD approved the RAP on August 11, 1994. The installation of the biosparging system was conducted between August 2 through 24, 1995. Nineteen combined injection/extraction wells, three vacuum extraction wells, associated piping, and one extraction blower and one injection blower were installed. An additional vapor extraction well, VE-4, was installed and connected to the vapor extraction system in April 1997. The vapors recovered during the extraction process are discharged to the atmosphere in accordance with the State of New Mexico Air Quality Regulations.

During the system startup operations, effluent air samples were collected on a monthly basis from the recovered vapors to monitor the bioremediation process and emission rate. Upon receiving a determination from the State of New Mexico that an air permit is not required, effluent air samples have been collected on a quarterly basis. The air samples are analyzed for TPH using EPA Method Modified 8015A (Air) and for total volatile aromatic hydrocarbons (BTEX) using EPA Method 5030/8020 (modified). The analytical results demonstrate a significant reduction in hydrocarbon \\StreetTalk\FS DATA@Homer@Servers\WP\bjserv\2832\024r.doc 5

[&]quot;Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

vapor concentrations since November 1995. Total BTEX concentrations have decreased from 391 parts per million by volume (ppmv) to 17.3 ppmv. TPH concentrations have decreased from 1,870 ppmv to 65 ppmv. A cumulative summary of analytical results for air emissions testing is included on Table 5. The laboratory analytical report and chain-of-custody documentation for the air sample are included in Appendix C.

Adjustments were made in air injection and extraction rates within the biosparging system following the March 1997 groundwater sampling event in order to direct air flow into recalcitrant areas of the subsurface. Specifically, vapor extraction well VE-4 was added, and flow rates were increased in the upgradient and central portions of the plume, in the area of monitor wells MW-4, MW-1, and MW-3. The vapor extraction system is currently operating at an average flow of 150 cubic feet per minute (cfm) at 125°F. The air injection system is operating at an average flow of 40 cfm at 5 pounds per square inch (psi) at 188°F. Total BTEX emissions of 0.03 pounds per hour (lb/hr) and TPH emissions of 0.08 lb/hr were calculated for the June 1997 monitoring event.

Review of data presented in Table 4 indicates that concentrations of benzene and total BTEX have decreased in monitor wells MW-7, MW-8 and MW-10, located in the downgradient portion of the plume, during the time period from the start-up of the biosparging system in November 1995 to the present. Substantial reductions in benzene, total BTEX, and TPH concentrations have occurred between March 1997 and June 1997 in monitor wells MW-4 and MW-9, which are located in the generally upgradient portion of the plume. Increases in hydrocarbon concentrations such as those observed in monitor wells MW-1 and MW-3 during the period from March 1997 to June 1997 are anticipated during operation of the biosparging system, as air flow is redirected into areas of the subsurface that were only minimally affected previously by the operation of the remedial system. Samples collected from MW-1, MW-3, MW-6, MW-10 and MW-11 exhibited increases in BTEX concentrations relative to the previous sampling event. Fluctuations in concentrations have been previously observed in site monitor wells over the course of remediation. These fluctuations may be attributed to the presence of PSH, which acts as a continuing source of dissolved phase BTEX. These fluctuations are likely to continue until the PSH is removed

through a combination of passive recovery and volatilization by sparging and soil vapor extraction.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on information obtained during the June 1997 quarterly groundwater sampling event.

4.1 Conclusions

- Groundwater flow was to the southeast with an average hydraulic gradient of 0.01 ft/ft.
- Dissolved BTEX constituent concentrations have generally decreased in monitor wells MW-4 and MW-9 during the time period from March 1997 to June 1997.
- BTEX constituent concentrations have generally increased in monitor wells MW-1, MW-3, MW-6, MW-10, and MW-11 during the March 1997 to June 1997 time period. These short term variations in BTEX concentrations are anticipated during operation of the biosparging system.
- An additional vapor extraction well, VE-4, was installed and connected to the vapor extraction system in April 1997.
- Modifications to air injection and extraction rates have been made to apply increased air flow to the central portion of the plume.
- Substantial reductions in the thickness of phase separated hydrocarbons in monitor wells MW-9 and MW-1 were observed during the period from March 1997 to June 1997.
- Benzene concentrations in monitor wells MW-5, MW-7, MW-8, and MW-9 are below the New Mexico Water Quality Control Commission standard of 0.01 mg/L.

4.2 Recommendations

• Continue the quarterly groundwater sampling program and the operation and maintenance of the biosparging system.

DISTRIBUTION

Final June 1997 Groundwater Sampling Report Hobbs, New Mexico

December 31, 1997

1 copy to: State of New Mexico

Energy, Minerals, and Natural Resources Dept.

Oil Conservation Division

Post Office Box 2088, State Land Office Building

Santa Fe, New Mexico 87504

Attention: Mr. Mark Ashley

1 copy to: State of New Mexico

Oil Conservation Division, Hobbs District Office

Post Office Box 1980 Hobbs, New Mexico 88240

Attention: Mr. Wayne Price

1 copy to: BJ Services Company, U.S.A.

8701 New Trails Drive

The Woodlands, Texas 77381

Attention: Ms. Jo Ann Cobb

1 copy to: BJ Services Company, U.S.A.

2708 West County Road Hobbs, New Mexico 88240

Attention: Mr. Clint Chamberlain

1 copy to: Brown and Caldwell

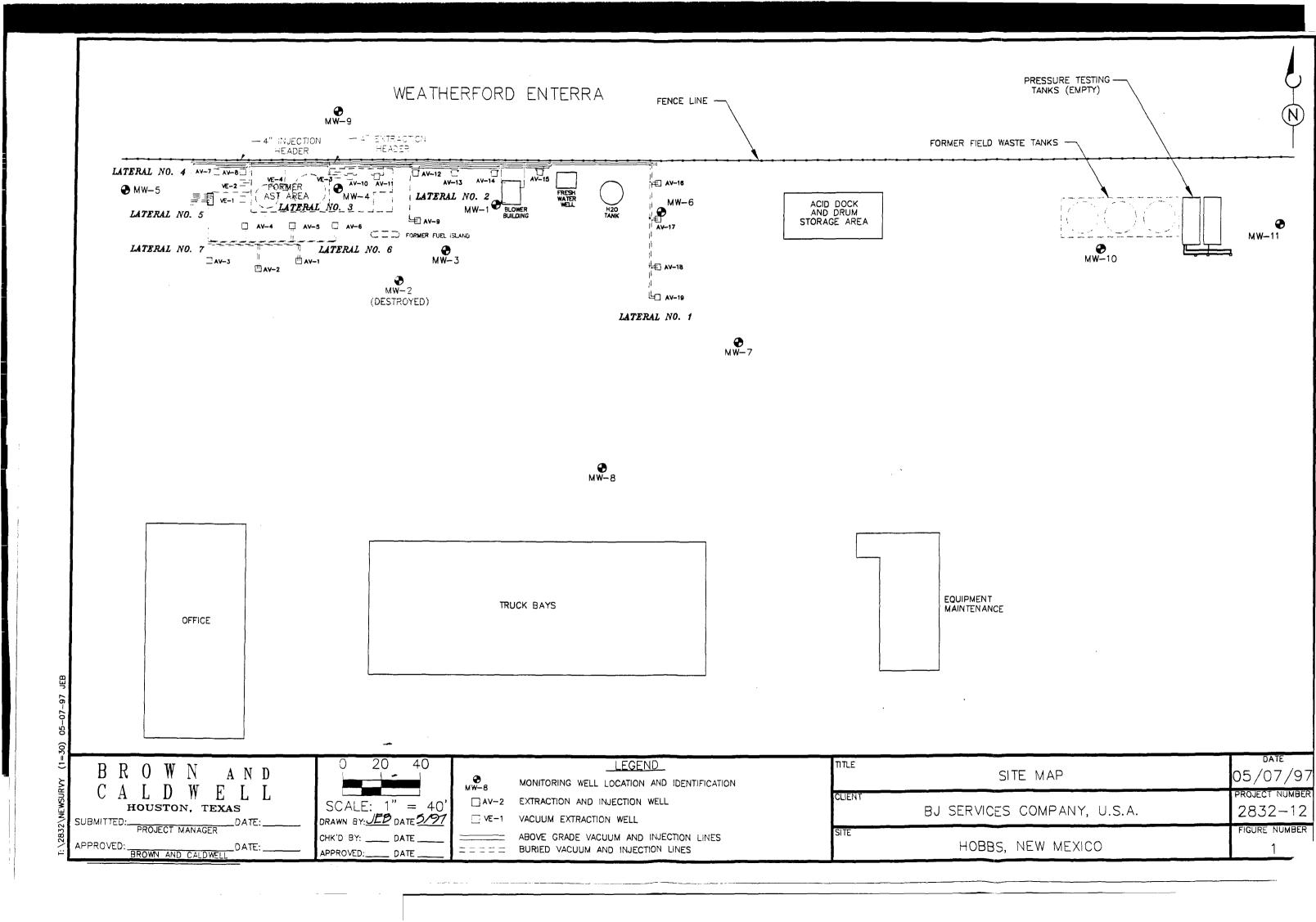
Project File

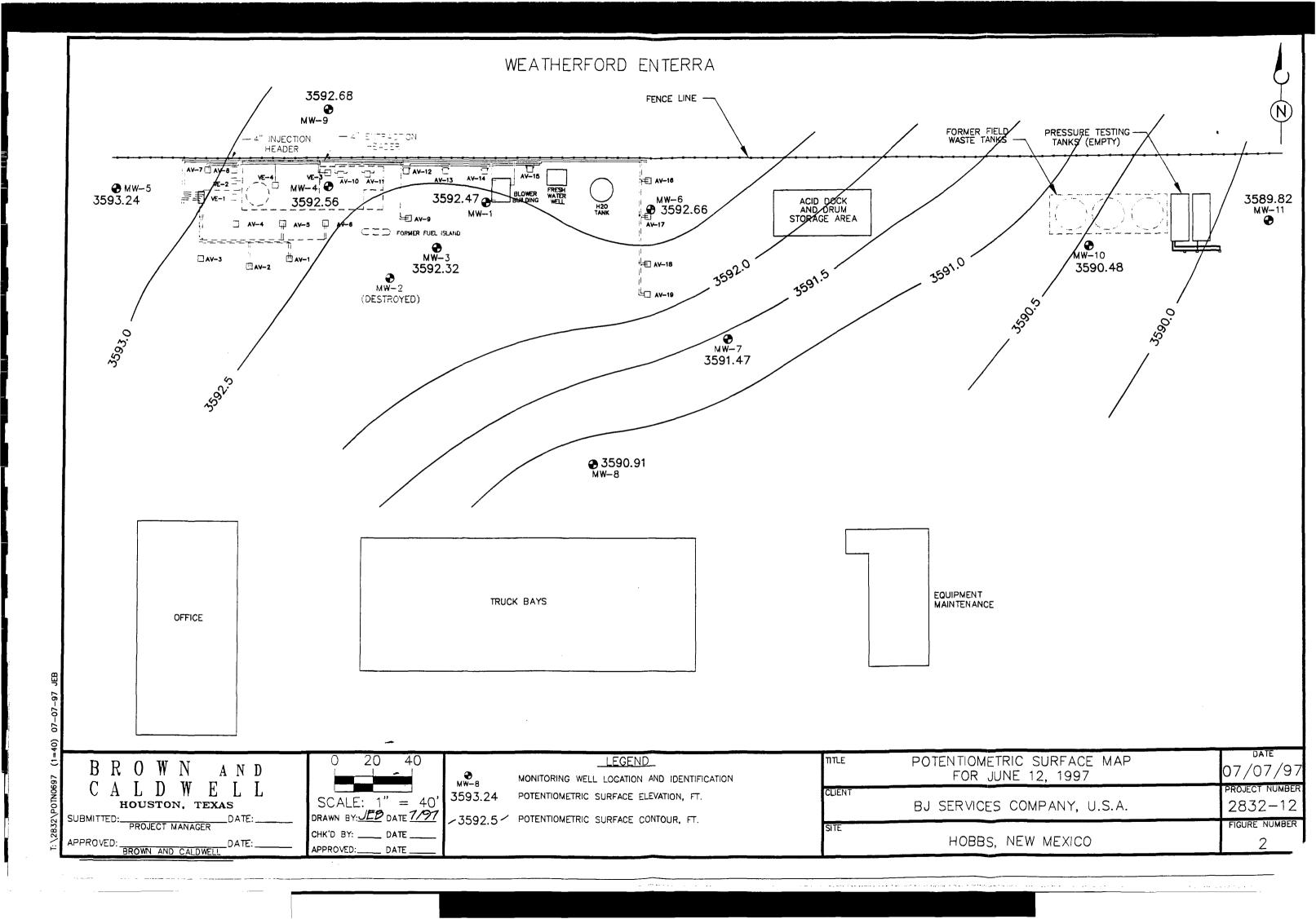
QUALITY CONTROL REVIEWER

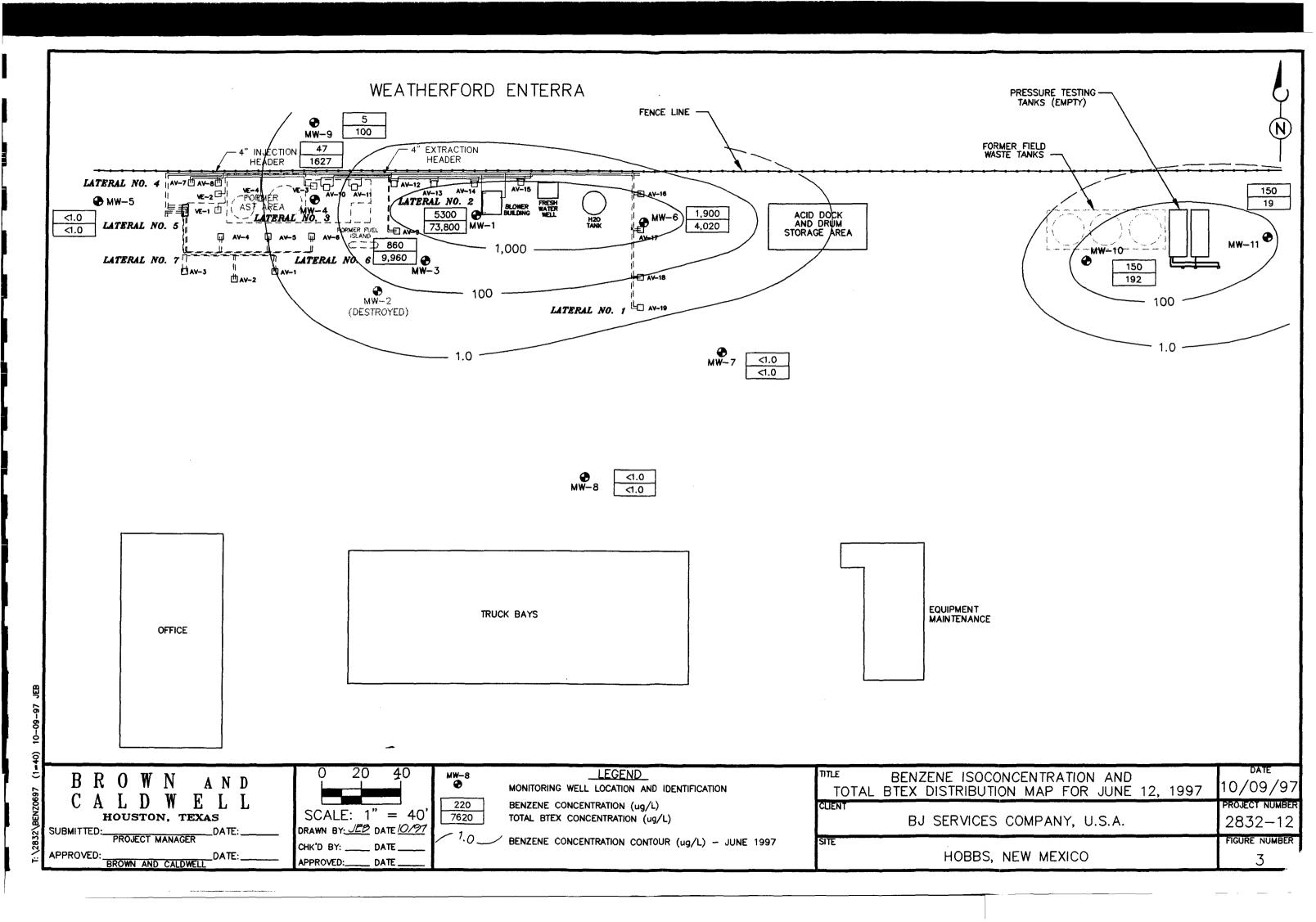
Robert N. Jennings, P.E.

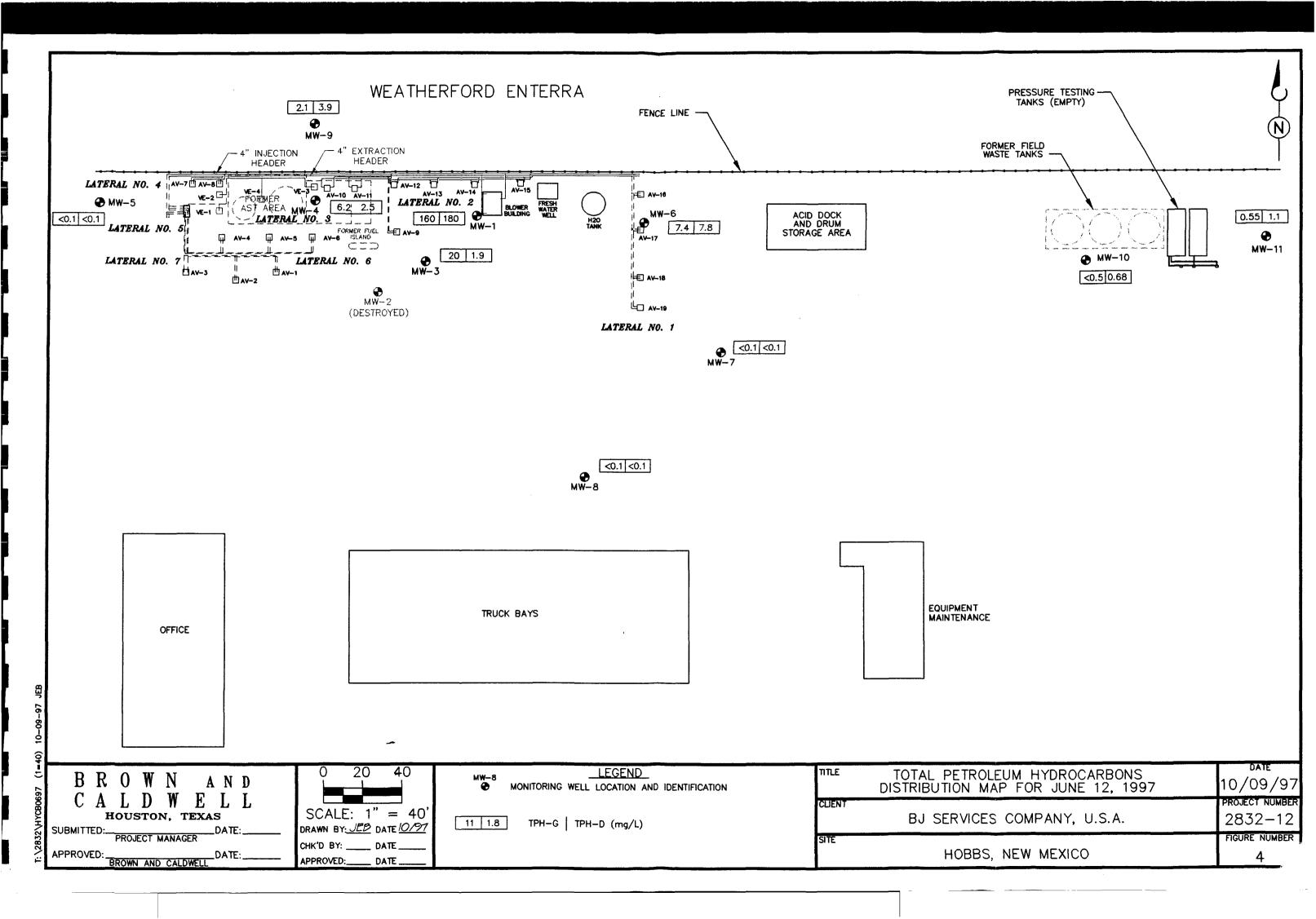
Vice President

WER/RLR/uak


\\StreetTalk\FS DATA@Homer@Servers\WP\bjserv\2832\024r.doc


"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."


FIGURES


W:\BJSERV\2832\022R.DOC

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

TABLES

W:\BJSERV\2832\022R.DOC

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

Table 1 Site Chronology BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
February 7, 1991	The State of New Mexico Oil Conservation Division (OCD) conducted an on-site inspection, including sampling of the on-site fresh water well.
August 6, 1991	OCD requested submittal of an investigation work plan.
September 5, 1991	Roberts/Schornick and Associates, Inc. (RSA) submitted Technical Work Plan for soil and groundwater investigation to the OCD.
November 15, 1991	The OCD approved Technical Work Plan submitted by RSA.
December 16, 1991	RSA sampled the fresh water well. Analytical results were submitted to the OCD.
February 21, 1992	Western sampled the fresh water well. Analytical results were submitted to the OCD.
July 29 -	Brown and Caldwell conducted a soil and groundwater investigation
August 10, 1992	according to the approved Technical Work Plan. Investigation included drilling and sampling 9 soil borings, sampling 6 hand-augured soil borings, the installation and sampling of 5 monitoring wells, and the sampling of the fresh water well.
October 12, 1992	Brown and Caldwell submitted Soil and Groundwater Investigation Report to the OCD.
December 2, 1992	The OCD requested the installation and sampling of 4 additional monitoring wells, including a monitoring well on an adjacent property.
April 13, 1993	Brown and Caldwell conducted a vapor extraction pilot test on existing groundwater monitoring wells.
April 15, 1993	Brown and Caldwell installed off-site monitoring well.
April 22, 1993	Brown and Caldwell sampled off-site monitoring well.
May 27, 1993	Brown and Caldwell submitted a letter report documenting the installation and sampling of the off-site monitoring well to the OCD.
June 2, 1993	Brown and Caldwell conducted a short-term aquifer test using the fresh water well at the facility.
June 8, 1993	USTank Management, Inc. conducted a non-volumetric tank system tightness test on the diesel and unleaded gasoline aboveground storage tanks at the facility.
June 21, 1993	ENSR Consulting and Engineering (ENSR), the environmental consultant of the adjacent property owner on which the off-site well is located, submitted a request to sample the off-site monitoring well.
July 15, 1993	ENSR split one groundwater sample, collected from the off-site monitoring well, with Brown and Caldwell.

Table 1 (Continued) Site Chronology BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
July 30, 1993	USTank Management, Inc. submitted the tank tightness test report to Brown and Caldwell. The report indicated that both tanks and their associated piping passed.
August 16-19, 1993	Brown and Caldwell installed two additional downgradient monitoring wells. Brown and Caldwell sampled each of the existing monitoring and the newly installed monitoring wells.
January 26, 1994	Brown and Caldwell performed groundwater monitoring event; existing monitoring wells and the fresh water well were purged and sampled. Groundwater samples were analyzed for BTEX.
Ma y 6, 1994	Remedial Action Plan (RAP) submitted to the OCD.
August 11, 1994	RAP approved by the OCD.
May 3, 1995	Brown and Caldwell conducted the May 1995 groundwater sampling event.
July 31, 1995	Brown and Caldwell conducted the July 1995 groundwater sampling event.
August 2-9, 1995	Installation of biosparging system was initiated. Nineteen combined injection/extraction wells and three vacuum extraction wells were installed.
August 14-26, 1995	Remedial Construction Services, Inc. (RCS) began construction of the biosparging system.
September 19, 1995	Began operation of the extraction portion of the biosparging system.
November 13, 1995	Began operation of the injection portion of the biosparging system.
November 14, 1995	Brown and Caldwell conducted the November 1995 groundwater sampling event.
February 23, 1996	Brown and Caldwell conducted the February 1996 groundwater sampling event.
May 31, 1996	Brown and Caldwell conducted the May 1996 groundwater sampling event.
August 23, 1996	Brown and Caldwell conducted the August 1996 groundwater sampling event.
December 2, 1996	Brown and Caldwell conducted the December 1996 groundwater sampling event.
March 12, 1997	Brown and Caldwell conducted the March 1997 groundwater sampling event.
March 14, 1997	Vapor extraction well VE-4 installed.
April 1997	Vapor extraction well VE-4 connected to the vapor extraction system.
June 12, 1997	Brown and Caldwell conducted the June 1997 groundwater sampling event.

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-1						
	3,647.53	8/10/92	53.22	0.00	3,594.31	(1)
	3,647.53	2/9/93	53.03	0.00	3,594.50	
	3,647.53	8/18/93	53.10	0.00	3,594.43	
	3,647.53	1/26/94	53.31	0.00	3,594.22	
	3,647.53	5/3/95	54.64	0.20	3,593.05	
	3,647.53	7/31/95	54.14	0.00	3,593.39	
	3,647.53	11/14/95	53.69	0.00	3,593.84	
	3,647.53	2/23/96	54.32	0.00	3,593.21	
	3,647.53	5/31/96	54.14	0.00	3,593.39	
	3,647.53	8/23/96	56.17	0.00	3,591.36	
	3,647.53	12/2/96	55.27	0.00	3,592.26	
	3,647.53	3/12/97	55.70	0.27	3,592.05	(2)
	3,647.53	6/12/97	55.08	0.02	3,592.47	
MW-2	·					
	3,647.59	8/10/92	52.82	0.00	3,594.77	(1)
	3,644.84	2/9/93	49.60	0.00	3,595.24	
	3,644 .84	8/18/93	49.71	0.00	3,595.13	
	3,644.84	1/26/94	49.97	0.00	3,594.87	
		5/3/95			Мо	onitor well destroye
MW-3						
	3,647.68	8/10/92	52.99	0.00	3,594.69	(1)
	3,647.68	2/9/93	52.72	0.00	3,594.96	
	3,647.68	8/18/93	52.82	0.00	3,594.86	
	3,647.68	1/26/94	53.05	0.00	3,594.63	
	3,647.68	5/3/95	54.31	0.00	3,593.37	
	3,645.00	7/31/95	51.24	0.00	3,593.76	
	3,645.00	11/14/95	51.10	0.00	3,593.90	
	3,645.00	2/23/96	51.68	0.00	3,593.32	
	3,645.00	5/31/96	51.45	0.00	3,593.55	
	3,645.00	8/23/96	51.55	0.00	3,593.45	
	3,645.00	12/2/96	52.23	0.00	3,592.77	
	3,645.00	3/12/97	52.67	0.00	3,592.33	(2)
	3,645.00	6/12/97	52.68	0.00	3,592.32	

Table printed: 01-Aug-97

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-4				,	<u> </u>	
	3,645.28	8/10/92	50.55	0.00	3,594.73	(1)
	3,645.28	2/9/93	50.26	0.00	3,595.02	
	3,645.28	8/18/93	50.38	0.00	3,594.90	
	3,645.28	1/26/94	50.90	0.30	3,594.63	
	3,645.28	5/3/95	51.51	0.45	3,594.14	
	3, 64 5.28	7/31/95	51.74	0.26	3,593 .75	
	3,645.28	11/14/95	51.03	0.00	3,594.25	
	3,645.28	2/23/96	51.65	0.01	3,593.64	
	3,645.28	5/31/96	51.48	0.00	3,593.80	
	3,645.28	8/23/96	53.49	0.00	3,591.79	
	3,645.28	12/2/96	52.32	0.00	3,592.96	
	3,645.28	3/12/97	52.74	0.05	3,592.58	(2)
	3,64 5.28	6/12/97	53.08	0.44	3,592.56	
MW-5						
	3,647.72	8/10/92	52.38	0.00	3,595.34	(1)
	3,647.72	2/9/93	52.06	0.00	3,595.66	
	3,647.72	8/18/93	52.16	0.00	3,595.56	
	3,647.72	1/26/94	52.50	0.00	3,595.22	
	3,647.72	5/3/95	53.57	0.00	3 ,5 94.15	
	3,647.72	7/31/95	53.27	0.00	3,594.45	
	3,647.72	11/14/95	52.83	0.00	3,594.89	
	3,647.72	2/23/96	53.57	0.00	3,594.15	
	3,647.72	5/31/96	53.16	0.00	3,594.56	
	3,647.72	8/23/96	53.41	0.00	3,594.31	
	3,647.72	12/2/96	53.98	0.00	3,593.74	
	3,647.72	3/12/97	54.44	0.00	3,593.28	(2)
	3,647.72	6/12/97	54.48	0.00	3,593.24	

Table printed: 01-Aug-97

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-6			············			
	3,644.74	2/9/93	50.58	0.00	3,594.16	(1)
	3, 644 .74	8/18/93	50.78	0.00	3,593.96	
	3,644.74	1/26/94	51.00	0.00	3,593.74	
	3,644.74	5/3/95	52.63	0.00	3,592.11	
	3,644.74	7/31/95	51.90	0.00	3,592.84	
	3,644.74	11/14/95	51.19	0.00	3,593.55	
	3,644.74	2/23/96	52.10	0.00	3,592.64	
	3,644.74	5/31/96	51.76	0.00	3,592.98	
	3,644.74	8/23/96	51.63	0.00	3,593.11	
	3,644.74	12/2/96	52.85	0.00	3,591.89	
	3,644.74	3/12/97	53.55	0.00	3,591.19	(2)
	3,644.74	6/12/97	52.08	0.00	3,592.66	
MW-7		·				
	3,644 .55	2/9/93	50.53	0.00	3,594.02	(1)
	3,644.55	8/18/93	50.74	0.00	3,593.81	
	3,644.55	1/26/94	51.01	0.00	3,593.54	
	3,644.55	5/3/95	52.25	0.00	3,592.30	
	3,644.55	7/31/95	51.92	0.00	3,592.63	
	3,644.55	11/14/95	51.48	0.00	3,593.07	
	3,644.55	2/23/96	52.15	0.00	3,592.40	
	3,644.55	5/31/96	51.78	0.00	3,592.77	
	3,644.55	8/23/96	52.02	0.00	3,592.53	
	3,644.55	12/2/96	52.52	0.00	3,592.03	
	3,644.55	3/12/97	52.99	0.00	3,591.56	(2)
	3,644.55	6/12/97	53.08	0.00	3,591.47	

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-8		· · · · · · · · · · · · · · · · · · ·				
	3,644.87	2/9/93	50.48	0.00	3,594.39	(1)
	3 ,644 .87	8/18/93	50.67	0.00	3,594.20	
	3,644.87	1/26/94	50.96	0.00	3,593.91	
	3,644.87	5/3/95	52.15	0.00	3,592.72	
	3,644.87	7/31/95	51.77	0.00	3,593.10	
	3,644.87	11/14/95	51.37	0.00	3, 5 93.50	
	3,644.87	2/23/96	52.17	0.00	3,592.70	
	3,644.87	5/31/96	51.55	0.00	3,593.32	
	3,644.87	8/23/96	51.92	0.00	3,592.95	
	3,644.87	12/2/96	52.43	0.00	3,592.44	
	3,644.87	3/12/97	52.93	0.00	3,591.94	(2)
	3,644.87	6/12/97	53.96	0.00	3,590.91	
MW-9						
	3,644.78	4/22/93	49.73	0.00	3,595.05	(1)
	3,644.78	7/15/93	49.65	0.00	3 ,59 5.13	
	3,644.78	8/18/93	49.85	0.00	3,594.93	
	3,644.78	1/26/94	50.02	0.00	3,594.76	
	3,644.78	5/3/95	51.35	0.00	3,593.43	
	3,644.78	7/31/95	50.97	0.00	3,593.81	
	3,644.78	11/14/95	50.43	0.00	3,594.35	
	3,644.78	2/23/96	51.12	0.00	3,593.66	
	3,644.78	5/31/96	50.89	0.00	3,593.89	
	3,644.78	8/23/96	50.98	0.00	3,593.80	
	3,644.78	12/2/96	51.58	0.00	3,593.20	
	3,644.78	3/12/97	52.21	0.05	3,592.61	(2)
	3,644.78	6/12/97	52.10	0.00	3,592.68	PSH sheen
					•	

Table 2
Cumulative Groundwater Elevation Data
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-10				-		
	3,644.47	8/18/93	51.54	0.00	3,592.93	(1)
	3,644.47	1/26/94	51.90	0.00	3,592.57	
	3,644.47	5/3/95	52.97	0.00	3 ,59 1.50	
•	3,644.47	7/31/95	52.87	0.00	3,591.60	
	3,644.47	11/14/95	52.51	0.00	3,591.96	
	3,644.47	2/23/96	53.05	0.00	3,591.42	
	3,644.47	5/31/96	52.79	0.00	3,591.68	
	3,644.47	8/23/96	53.03	0.00	3,591.44	
	3,644.47	12/2/96	53.41	0.00	3,591.06	
	3,644.47	3/12/97	54.21	0.00	3,590.26	(2)
	3,644.47	6/12/97	53.99	0.00	3,590.48	
MW-11						
	3,643.78	8/18/93	51.92	0.00	3,591.86	(1)
	3,643.78	1/26/94	52.32	0.00	3,591.46	
	3,64 3.78	5/3/95	53.38	0.00	3,590.40	
	3,643.78	7/31/95	53.35	0.00	3,590.43	
	3,643 .78	11/14/95	52.96	0.00	3,590.82	
	3,643.78	2/23/96	53.50	0.00	3,590.28	
	3,643.78	5/31/96	53.25	0.00	3,590.53	
	3,643.78	8/23/96	53.49	0.00	3,590.29	
	3,643.78	12/2/96	53.79	0.00	3,589.99	
	3,643.78	3/12/97	53.81	0.00	3,589.97	(2)
	3,643.78	6/12/97	53.96	0.00	3,589.82	

⁽¹⁾ Top of casing elevations and groundwater elevations of all monitor wells were relative to an arbitary datum of 100.00 feet prior to March 1997 and have been converted to Mean Sea Level (MSL).

⁽²⁾ Top of casing elevations and groundwater elevations relative to MSL after March 1997.

⁽³⁾ MW-2 could not be located and is assumed detroyed after January, 1994.

Table 3
Field Screening Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

Monitoring Well	Date Measured	Well Volume	рН	Conductivity (µmhos)	Temperature (°C)	Redox (mV)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)
MW-3								
	6/12/97	1	7.12	1,340	19.2	-54	3.80	
		2	7.12	1,350	19.2	-62	3.70	
		3	7.11	1,350	19.2	-68	3.70	0.0
MW-5								
	6/12/97	1	7.17	1,270	18.9	118	4.99	
		2	7.12	1,240	18.8	117	4.48	
		3	7.17	1,220	18.9	113	4.11	0.0
M W- 6	-							
	6/12/97	1	7.47	1,120	19.1	136	5. 83	
		2	7.34	1,230	19.4	112	5.86	
		3	7.33	1,240	19.4	109	5.01	0.0
AW-7								
	6/12/97	1	6.68	1,840	19.8	114	3.16	
		2	6.6 6	1,790	19.9	108	2.48	
		3	6.67	1,760	19.8	103	2.78	0.0
/W-8								
	6/12/97	1	6.96	1,940	19.0	71	2.84	
		2	6.86	1,920	19.1	84	2.68	
		3	6.84	1,910	19.1	78	2.65	0.0
1W-1 0					-			
	6/12/97	1	6.87	5,800	19.6	-109	0.78	
		2	6.90	5,700	19.6	-106	0.68	
		3	6.89	5,600	19.6	-111	0.58	7.0
AW-11	····							
	6/12/97	1	7.33	1,240	19.4	109	3.01	
		2	7.07	8,870	19.4	-70	2.59	
		3	7.13	8,830	19.3	-69	2.70	2.0

MW-2 could not be located and assumed destroyed after January, 1994.

NR = No Reading

Table printed: 18-Jul-97

Page 1 of 1

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

		1	 	1			TPH-D	TPUC
Well ID	Sample Date	Sample Type	Benzene	Toluene	Ethylbenzene	Xylenes		TPH-G
		Sample Type		microgran	ns per liter, µg/L		milligrams	oer liter, mg
MW-1								
	8/10/92	Regular	5550	12090	2160	73 7 0	NA	NA.
	2/9/93	Regular	2100	6 50 0	1300	7400	NA	NA.
	8/19/93	Regular	3200	7300	1200	3700	NA	NA
	1/27/94	Regular	1930	4580	672	2390	NA	NA
	5/3/95	Regular	NSP	NSP	NSP	NSP	NA.	NSP
	8/1/95	Regular	390	1300	230	800	NA	5.7
	11/15/95	Regular	880	1800	300	970	NA	6. 8
	2/23/96	Regular	1500	3700	620	2200	NA	21
	5/31/96	Regular	1100	1700	380	990	NA	7.5
	8/23/96	Regular	1800	3300	570	2100	NA	17
	12/2/96	Regular	5600	9600	2100	9600	100	64
	3/12/97	Regular	5500	9 70 0	2600	8200	22	62
	6/12/97	Regular	5300	34000	7500	27000	180	160
IW-2								
	8/10/92	Regular	14.9	< 4	< 4	< 4	NA	NA
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	100	12	3	13	NA	NA
	1/27/94	Regular	< 1	1.2	2	2.5	NA	NA
IW-3								
	8/10/92	Regular	304.9	2099	6760	1586	NA	NA
	2/9/93	Regular	130	< 10	< 10	190	NA	NA
	8/19/93	Regular	560	3100	630	1900	NA NA	NA
	1/27/94	Regular	1070	5 38 0	510	3120	NA	NA
	5/4/95	Regular	770	3300	470	1800	NA	NA
	8/1/95	Regular	490	2900	890	1600	NA	14
	11/15/95	Regular	250	1000	180	440	NA	2.9
	2/23/96	Regular	120	810	170	5 60	NA	4
	5/31/96	Regular	670	3900	1200	2300	NA	15
	8/23/96	Regular	330	2200	590	1500	NA	12
	12/2/96	Regular	220	1800	670	1000	0.89	7.4
	3/12/97	Regular	370	2000	960	1400	1.8	11
	6/12/97	Regular	860	4800	1700	2600	1.9	20

Table printed: 7/25/97

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

			Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgran		milligrams	per liter, mg/	
MW-4	· · · · · · · · · · · · · · · · · · ·					······		
	8/10/92	Regular	2594	10360	2160	6740	N A	NA
	2/9/93	Regular	5200	15 00 0	2200	10000	N A	NA
	8/19/93	Regular	3000	12000	< 2000	7000	NA	NA
	1/27/94	Regular	NSP	NSP	NSP	NSP	NA	NSP
	5/3/9 5	Regular	NSP	NSP	NSP	NSP	NA	NSP
	8/1/95	Regular	5700	17000	3500	13000	NA	120
	11/15/95	Regular	490	1600	310	1100	NA	5.2
	2/23/96	Regular	360	2800	560	2500	NA	18
	5/ 31 /96	Regular	84	830	280	1100	NA	6.2
	8/23/96	Regular	110	1400	430	1800	N A	9. 8
	12/2/96	Regular	190	2000	1800	7200	56	43
	3/12/97	Regular	220	1500	1500	4400	27	27
	6/12/97	Regular	47	270	360	9 50	2.5	6.2
AW-5								
	8/10/92	Regular	< 4	< 4	< 4	< 4	NA	NA
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/10/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	1/27/94	Regular	8.7	29.9	4	11.3	NA	NA
	5/3/95	Regular	3.7	5. 3	0.92	4.6	NA	NA
	8/1/95	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	11/15/95	Regular	< 0.3	1.2	< 0.3	1.5	NA	NA
	2/ 23 /96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	5/ 31 /96	Regular	31	86	10	20	NA	NA
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

			Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgran		milligrams per liter, mg/		
MW-6								
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	7000	19 0 00	3100	7200	NA	NA
	8/19/93	Regular	8100	19000	3500	6400	NA	NA
	1/27/94	Regular	7960	20200	3830	6150	NA	NA
	5/4/95	Regular	11000	17000	2900	6000	NA	NA
	8/1/95	Regular	8300	12000	2500	5100	NA	60
	11/15/95	Regular	8900	17000	2900	5500	NA	57
	2/23/96	Regular	8100	10000	2300	4000	NA	58
	5/31/96	Regular	83	150	15	51	NA.	0.57
	5/31/96	Duplicate	87	160	13	47	NA	0.52
	8/23/96	Regular	31	28	9.4	7.9	NA	0.46
	12/2/96	Regular	< 1	< 1	< 1	1.7	5.6	< 0.1
	3/12/97	Regular	12	< 5	6.8	18	12	< 0.5
	6/12/97	Regular	1900	1400	410	310	7.8	7.4
1W-7								
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	< 2	3	< 2	< 2	NA	NA
	1/27/94	Regular	1.1	< 1	< 1	< 1	NA	NA
	5/3/95	Regular	52	3.4	0.67	2.8	NA	N A
	8/1/95	Regular	22	2. 2	0.85	2.8	NA	< 0.1
	11/15/95	Regular	8.4	0.77	< 0.3	0.93	NA	< 0.1
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	2/ 23 /96	Duplicate	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	5/31/96	Regular	29	83	10	21	NA	0.25
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1

Table printed: 7/25/97

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

144	Commis Date	Communica To	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		microgran	ns per liter, µg/L	-	milligrams	per liter, mg/l
MW-8								
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	< 2	< 2	< 2	< 2	NA	NA.
	1/27/94	Regular	< 1	< 1	< 1	< 1	NA	NA
	5/ 3/9 5	Regular	3	4.9	0.75	3.7	NA	NA
	8/1/95	Regular	3.1	1.2	0.47	1.6	NA.	< 0.001
	8/1/95	Duplicate	3.6	1.5	0.51	1.5	NA	< 0.1
	11/15/95	Regular	< 0.3	0.52	< 0.3	< 0.6	NA	< 0.1
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	5/31/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	1.8	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
4W-9								
	4/22/93	Regular	570	380	< 50	870	NA	NA
	7/15/93	Regular	121	7.3	3	458	NA	NA
	8/19/93	Regular	390	290	40	250	NA	NA
	1/27/94	Regular	327	357	51.1	293	NA	NA
	5/ 3 /95	Regular	380	110	19	120	NA	NA
	8/1/95	Regular	660	410	91	310	NA	6.2
	11/15/95	Regular	240	24	11	140	NA	1.5
	11/15/95	Duplicate	170	18	10	120	NA	1.9
	2/23/96	Regular	170	18	2.3	160	NA	4.3
	5/31/96	Regular	120	16	3	200	NA	NA
	8/23/96	Regular	82	13	6	270	NA	4
	8/23/96	Duplicate	76	14	4.8	250	NA	4.4
	12/2/96	Regular	61	< 25	< 25	210	2.6	2.8
	12/2/96	Duplicate	86	13	2.4	270	3.7	2.9
	3/12/97	Regular	30	48	420	880	8.2	19
	6/12/97	Regular	4.7	2.1	11	97	2.6	2. 2
	6/12/97	Duplicate	< 5	< 5	6.6	69	5.2	1.9

Table printed: 7/25/97

Table 4
Cumulative Analytical Results for Groundwater Samples
Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

			Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well ID	Sample Date	Sample Type		milligrams	per liter, mg			
MW-10								
	8/19/93	Regular	190	460	< 200	240	NA	NA
	1/27/94	Regular	13.4	4	5. 5	33.6	NA	NA
	5/4/95	Regular	980	15	11	84	NA	NA
	8/1/95	Regular	1300	32	32	100	NA	3.6
	11/15/95	Regular	1000	24	15	36	NA	1.7
	2/23/96	Regular	810	23	27	44	NA	2.4
	5/31/96	Regular	700	24	34	28	NA	2
	8/23/96	Regular	290	3.4	6.4	13	NA	1.4
	12/2/96	Regular	280	1.3	17	8	0.94	0.97
	3/12/97	Regular	110	< 5	17	< 5	0.61	0.57
	6/12/97	Regular	150	12	30	< 5	0.68	< 0.5
MW-11	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
	8/19/93	Regular	< 2	< 2	< 2	< 2	NA	NA
	1/27/94	Regular	< 1	< 1	< 1	< 1	NA	NA
	5/4/95	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	8/1/95	Regular	44	29	5.5	13	NA	0.2
	11/15/95	R eg ular	190	2.8	6.2	11	NA	0.4
	2/23/96	Regular	49	1.2	0.51	4	NA	0.25
	5/31/96	Regular	300	83	12	28	NA	0.8
	8/23/96	Regular	100	1.2	0.3	4.7	NA	0.26
	12/2/96	Regular	970	< 5	6	8.1	2	1.3
	3/12/97	Regular	130	< 5	13	5.8	0.42	< 0.5
	3/12/97	Duplicate	100	< 5	10	5.1	0.43	< 0.5
	6/12/97	Regular	150	23	19	< 5	1.1	0.55

MW-2 destroyed after January, 1994 NA = Not Analysed

NS = Not Sampled

NSP = Not Sampled due to Phase Separated Hydrocarbons

Summary of Analytical Results for Air Emissions Hobbs, New Mexico Facility
BJ Services Company, U.S.A.

	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	Discharge	Benzene Emission	Total BTEX	TPH Emission
Number			parts per n	per million by volume, ppmv	mv.		Rate, scfm	Rate, Ib/hr	Emission Rate, lb/hr	Rate, (b/hr
Extraction-1	9/19/95	790	1100	340	920	9700	132.47	1.24	5.94	16.31
Effluent-1	9/20/95	066	2500	260	1600	16000	135.76 .	1.58	10.94	27.37
Effluent-2	9/28/95	13	28	9	18	2533	123.56	0.02	0.11	3.89
Effluent-4	11/7/95	15	58	12	36	1500	131.10	0.02	0.24	2.59
Effluent111595-01 11/15/95	11/15/95	39	180	42	130	1870	133.33	90:0	0.77	3.21
Effluent121995-01 12/19/95	12/19/95	10	45	1	33	530	129.64	0.02	0.19	0.89
Effluent012996-01	1/29/96	12	61	17	53	1200	128.45	0.02	0.27	1.95
Effluent032296-01	3/22/96	9	4	12	40	066	124.68	0.01	0.19	1.56
Effluent042496-01	4/25/96	4	37	10	36	006	118.34	0.01	0.15	1.29
Effluent053196-01	5/31/96	3.7	40	10	33	029	124.11	0.01	0.16	1.04
Effluent082396-01	8/23/96	\ ئ	12	، 5	< 5	200	126.18	0.01	0.05	0.31
Effluent120296-01	12/2/96	~	<u>^</u>	.	Ÿ	۸ ب	129.04	00:00	0.01	0.01
Eff-31297-1	3/12/97	2.1	15	4.6	15	250	110.56	00:0	0.06	0.33
Effluent070297-01	7/2/97	~	6.3	2.4	8.6	99	109.90	0.00	0.03	0.08

Emission rates reported for 12/02/96 sampling event were calculated using the detection limits. The actual emissions are Benzene <0.001 lb/hr, BTEX: <0.01 lb/hr and TPH: <0.01 lb/hr. Table printed: 7/18/97

APPENDIX A GROUNDWATER SAMPLING FORMS

W:\BJSERV\2832\022R.DOC

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

=

dum

WELL ID: MW-3

Project Number: 28.	Task Number: 12	Date: 4/11/97
Casing Diameter inches Total Depth of Well from TOC 44.3/	Purge Equipment Submersible pump	Equipment Calibration - Time ph 7.10 = 7.01 at 20 %
Static Water from TOC 52.08 feet Product Level from TOC feet	Sample Equipment DIS posable basiles	pM 4.05 = 4.01 at 20 °C 9.93 = 10.01 C Z0 °C Genductantx 10.04 => Conductance Standard: 10.0 µmhos/cm at 25°C
Length of Water Column //- U 3 feet Well Volume /- 8 9 gel Screened Interval (from GS)	Analytical Equipment (pH, DO, Redox, filtration, etc.) 451 600 KL Flaw Cell (PH, SC, Ne, Do, Temp) IMCH EITS E, DO	Measured Value: 0.0 µmhos/cm at 25° C Dissolved Oxogen 18.5 % => DO Meter Calibrated to: 18.5 % => mg/c

Time	Well Volume	Gallons Removed	ρΗ	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
1729	P	_	7.21	19.5	1.33	-65	4.0	clear
1735	1	2	7.12	19.2	1.34	-54	3.8	//
1739	2	2	7.12	19.2	1.35	-62	3.7	h
1743	3	2	7.11	19.2	1.35	-68	3.7	,,

Geochemical Parame	eters		Comments:		
Ferrous iron:	Ø	mg/L	6/12/97	Sample	@ 1058
Dissolved Oxygen:	3.0	mg/L			
Nitrate:		mg/L			
Sulfate:		mg/L			

PPE Worn:	Sampler's Signature:
gloves, glasses	
Disposition of Purge Water:	
alasas.	
dum	<u> </u>

Sampler's Signature:

Gloves, glasses
Disposition of Purge Water.

dum

=

Project Number: 2832 Task Number: 12 Date: 6/	///	91

Coning Diameter	Purge Equipment	Equipment Calibration - Time
Casing Diameter inches	Submissible pump	oh 7.10 = 7.01 at 20 °C
Total Depth of Well from TOC		<u> </u>
4.60 tool		4.05 4.01 at 20 %
Static Water from TOC	Sample Equipment Disposable bailer	9.93 = 10.01 @ 20°C
Product Level from TOC		Conductance Standard: 10.04 => umhos/cm at 25° C
Length of Water Column	Analytical Equipment (pH, DO, Redox, filtration, etc.)	
9. 8 teet	YSI GOOXL Plance!	Measured Value: 10.0 µmhos/cm at 25° C
Well Volume	(PH, SC, Re, Do, Temp)	
1.59 pm	HACH KITS FE, DO	Dissolved Oxygen DO Meter Calibrated to: 100% mg/s
Screened Interval (from GS)		DO Meter Calibrated to: / / / / / -mg/
foot		

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
1649	P	_	7.5	19.le	1.31	114	6.67	clear
1652	1	1.5	7.17	18.9	1.27	118	4.99	//
1453	2	1.5	7.12	18.8	1.24	117	4.98	11
1656			}	}	1.22	113	4.11	r!

Geochemical Parame	nters		Comments:	
Ferrous iron:	4	mg/L	6/12/97	Sample @ 1040
Dissolved Oxygen:	10	ng/L		
Nitrate:		mg/L		
Sulfate:		mg/L		

IPPE WOITI.	Sampler's Signature:
Disposition of Purge Water:	Toplan
dom	

WELLID: MW G

Project Number: 28.	32 Task Number: 12	Date: 6/12/97
Casing Diameter	Purge Equipment Submissible pump	Equipment Calibration - Time
Total Depth of Well from TOC		ph 7.10 = 7.01 at $20 c$
Static Water from TOC 52.08	Sample Equipment Disposable bailer	9.93 = 10.01 @ 20°C
Product Level from TOC		Conductantix 0.04 => Conductance Standard: 0.0 umhos/om at 25° C
Length of Water Column 8.09	Analytical Equipment (pH, DO, Redox, filtration, etc.) 45 I 600 KL Flaw Ce//	Messured Value: /0.0 µmhos/cm at 25° C
Well Volume /- 3 Z gel	(PH, SC, Na, DO, TEMP) IMACH KITS FE, DO	Dissolved Oxygen 18.5 % =>
Screened Interval (from GS)		DO Meter Calibrated to:

Time	Well Volume	Gailons Removed	pH	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
0658	ρ	_	8.33	18.3	0.653	105	8.3	Clea
0707	1	1.5	7.47	19.1	1-12	136	5-83	1r
0712	2	1.5	7.34	19.4	1.23	112	5.84	y
0720	3	1.5	2.33	19.4	1-24	109	5.01	"

Geochemical Parame	eters		Comments:		
Ferrous iron:	ø	m g/L	6/12/97	Sample @ 1050	
Dis s olved Oxygen:	6.0	mg/L			
Nitrate:		mg/L			
Sulfate:		m g/1 _			

PPE Worn:	Sampler's Signature:
gloves, glasses	
Disposition of Purge Water:	
daya	
dum	

B K O W N AND C A L D W L L L

Dissolved Oxygen:

PPE Worn:

Nitrate:

Sulfate:

Disposition of Purge Water:

dum

mg/L

mg/L

Sampler's Signature:

WELL ID: MW-7

	Number:	283	_		Task Numbe	r:_/2	<u></u>	Date: 4/11/9		
.	th of Well fro	inches	Purge Equ Subj	aipment MVS16	le pum	0		= 7.0/ at 20 %		
Static Wa	ter from TOC 3.08 evel from TO	feet	Sample Equipment Disposable bailer					10.07		
Well Volum	Water Colum 8.38 me 1.34	feet nn feet	45I (PH, 5	Analytical Equipment (pH, DO, Redox, filtration, etc.) 451 600 KL Flaw Cell (PH, SC, Re, De, Temp)				10.0 µmhos/cm at 25° С 10.0 µmhos/cm at 25° С		
Screened Interval (from GS)			1HACH	KITS	E, D	0	001	Meter Calibrated to: 100% and		
Time	Well Volume	Gallons Removed	рH	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description		
1417	P	_	6.87	21.6	1.89	109	4.99	clear		
1621	1	1.5	6.68	19.8	1.84	114	3.16	//		
1625	1625 2 1.5		6.66	19.9	1. 19	108	2.48	Clady		
1630 3 1.5 6.67			6.67	19.8	1.76	103	2.78	, /		
						· · · · · · · · · · · · · · · · · · ·				
Za sab see	inal Para			Commercia						
aeocnem	ical Parame	718/3		Comments:						

WELL ID: MW-8

Project Number: 28	Task Number: 12	Date:
Casing Diameter	Purge Equipment	Equipment Calibration - Time
Z inches	Submissible pump	210 701 00
Total Depth of Well from TOC		pH $7.10 = 7.01$ at $20 {}_{\circ}$
42.52 leat		U15 Upi 20
Static Water from TOC	Sample Equipment	pH = 7.07 at 20 %
53.96 feet	Sample Equipment Disposable bailer	9.93 = 10.01 @ 20°C
Product Level from TOC		Conductivity 10.04 =>
feet		Conductance Standard: 10.0 µmhos/cm at 25° C
Length of Water Column	Analytical Equipment (pH, DO, Redox, filtration, etc.)	
8.500 foot	455 600 XL Flan cell	Measured Value: /0. 0 μmhos/cm at 25° C
Weil Volume	(PH, SC, Re, DO, TEMP)	
/.40 gai	HACH KITS FE, DO	Dissolved Oxygen 18.5 % =>
Screened Interval (from GS)		DO Meter Calibrated to: 100/0 mg/c

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Disygen	Visual Description
1548	P	<i>t</i>	7.52	20.9	2.03	52	4.65	Clear
1551	1	1.5	6.96	19.0	1.94	71	2-84	//
1554	2	1.5	6.86	19.1	1-92	84	2.68	"
1557	3	1.5	6.84	19.1	1.91	78	2.65	,1

Geochemical Parame	Comments:		- · · -		· · · · · · · · · · · · · · · · · · ·			
Ferrous Iron:	ø	mg/L		Sample	e	6/12	1022	
Dis s olved Oxygen:	3.0	m g/L		,				
Nitrate:		mg/L						
Sulfate:		mg/L						

PPE Worn: GIONES, GIASSES	Sampler's Signature:
Disposition of Purge Water:	1-pm
dum	

Sampler's Signature:

PPE Wom:

gloves, glasses
Disposition of Purge Water:

dum

Ξ

Sampler's Signature:

gloves, glasses

Disposition of Purge Water:

dum

roject Number:	2832	Task Number:	12

Project Number: 283	Task Number: 12	Date: 4/12/47
Casing Diameter	Purge Equipment Submivsible pump	Equipment Calibration - Time ph 7.10 = 7.01 at 20 °C
Static Water from TOC 53.99 feet Product Level from TOC	Sample Equipment Disposable bailer	pH 4.05 = 4.01 at 20 °C 9.93 = 10.01 @ Z0 °C Conductants 10.04 ⇒ Conductance Standard: 10.0 µmhos/cm at 25° C
Length of Water Column 9.5/ feet Well Volume /-5C/ gai Screened Interval (from GS)	Analytical Equipment (pH, DO, Redox, filtration, etc.) YSI GOOKL Flaw Cell (PH, SC, Re, Do, Temp) IMCH KITS FE, DO	Measured Value: // . 0 umhoe/cm at 25° C Diasolved Oxygen DO Meter Calibrated to: // // mg/c

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description
0814	P		6.92	19.2	5.4	-87	0.70	Clear
0819	1	1.5	6.87	19.6	5.8	-109	0.78	//
0823	2	1.5	6.90	19.6	5.7	-106	0.68	
<i>6</i> 827	3	1.5	6.89	19.6	5.6	-111	0.58	11

Geochemical Parame	oters		Comments:		
Ferrous iron:	7.0	m g/L	6/12/97	Samo 6	@ 1118
Dissolved Oxygen:	1.0	mg/L			
Nitrate:		mgc			
		mg/L			
Sulfate:		m g/L			

	Sampler's Signature:
Sloves, glasses	
Disposition of Purge Water:	120
dum	
art	

BROWN AND CALDWELL

WELL ID: MW-11

Project I	Number:	283	32		Task Number	12	_	Date: 4/12/9		
Casing Diameter			Purge Equipment				Equipment Calibration - Time			
Z inches			Sib point				ph 710 = 7.01 at 20 °c			
i '	oth of Well from			,						
Static Wa	Static Water from TOC			Sample Equipment				$_{\rm ph}$ 9.43 = 10.01 at 20 $_{\circ c}$		
53.96 foot			disp bailir				4.05 = 4.01 @ 20 °C			
Product Level from TOC										
J	feet					,	Conductance Standard: // µmhos/cm at 25° C			
Length of	Water Colum		Analytical i	Equipment (pl	H, DO, Redox, filt	ration, etc.)	Measured Value: 10, 0 µmhos/cm at 25°C			
1	5.82				'L Alaw					
L		feet	172	<i>y</i> - <i>n</i>	- , , , , ,	U 1,				
	Well Volume						Dissolved Oxygen 78.5 ->			
Screened	Interval (from	GS)]				Dissolved Oxogen 78.5 > DO Meter Calibrated to: 100 /mg/			
1		fact								
L		feet					I			
Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Visual Description		
0142	P		7.33	19.4	1-24	109	5.01	Cla		
0747	, ,	1	7.33	19.4	1-24	109	3.01	clady		
0752	2	1	7.07	19.4	8.87	-70	2.59	//		
0755	3	1	7.13	19.3	8.83	-69	2-70	J/		
Geochen	nical Param	eters		Comments:						
Ferrous iron:		0 mon 6/12/91 sample mu -1/ @ 1107								
Dissolved Oxygen:										
Nitrate:		mg/L								
		mg/L								
Sulfate: —			mg/L				· · · · · · · · · · · · · · · · · · ·			
						·				
PPE Worn	1/200	0/43	~~~	Sampler's	Signature:	//	1			
S	Of Pures Was		>>e >			//				
Disposition	of Purge Wat	ler:			/	Je	しし			
	do m									

APPENDIX B

LABORATORY ANALYTICAL REPORT FOR GROUNDWATER SAMPLES

W:\BJSERV\2832\022R.DOC

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

File 2831.12

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

June 26, 1997

Mr. Rick Rexroad Brown and Caldwell 1415 Louisiana Houston, TX 77002

The following report contains analytical results for samples received at Southern Petroleum Laboratories (SPL) on June 13, 1997. The samples were assigned to Certificate of Analysis No(s).9706643 and analyzed for the parameters specified on the chain of custody.

There were no analytical problems encountered with this group of samples and all quality control data was within acceptance limits.

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis Number(s) during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

a. Juni

Bernadette A.Fini

Project Manager

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SOUTHERN PETROLEUM LABORATORIES, INC.

Certificate of Analysis Number: 97-06-643

Approved for Release by:

Bernadette A. Fini, Project Manager

6.26.77

Date

Greg Grandits
Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs **PROJECT NO: 2832.12**

SITE: Hobbs, NM MATRIX: WATER

SAMPLED BY: Brown & Caldwell **DATE SAMPLED:** 06/12/97 10:22:00 SAMPLE ID: MW-8 DATE RECEIVED: 06/13/97

ANALYTICAL DATA										
PARAMETER	RESULTS	DETECTION LIMIT	UNITS							
BENZENE	ND	1.0 P	μg/L							
TOLUENE	ND	1.0 P	μg/L							
ETHYLBENZENE	ND	1.0 P	μg/L							
TOTAL XYLENE	ND	1.0 P	$\mu g/L$							
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μ g/L							
Surrogate	% Recovery									
1,4-Difluorobenzene	97									
4-Bromofluorobenzene Method 8020A *** Analyzed by: JN Date: 06/24/97	97									
Petroleum Hydrocarbons - Gasoline	ND	0.1 P	mg/L							
Surrogate	% Recovery									
1,4-Difluorobenzene	100									
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: JN Date: 06/24/97	90									
Total Petroleum Hydrocarbons-Diesel	ND	0.1 P	mg/L							
Surrogate n-Pentacosane Modified 8015A - Diesel ***	% Recovery 58									

ND - Not detected.

Analyzed by: RR

Date: 06/19/97 03:54:00

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs
SITE: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 10:22:00

LIMIT

SAMPLE ID: MW-8

DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER

RESULTS

DETECTION

UNITS

Liquid-liquid extraction

06/18/97

Method 3510B ***

Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs

PROJECT NO: 2832.12

MATRIX: WATER SITE: Hobbs, NM **DATE SAMPLED:** 06/12/97 10:30:00 SAMPLED BY: Brown & Caldwell

DATE RECEIVED: 06/13/97 SAMPLE ID: MW-7

ANALYTICAL		DEMEGRACIA	HNTMC
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μ g/L
Surrogate	% Recovery		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene Method 8020A *** Analyzed by: JN Date: 06/24/97	100		
Petroleum Hydrocarbons - Gasoline	ND	0.1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: JN Date: 06/24/97	90		
Total Petroleum Hydrocarbons-Diesel	ND	0.1 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel ***	% Recovery 66		

ND - Not detected.

Analyzed by: RR

Date: 06/19/97 04:41:00

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 06/12/97 10:30:00

DATE RECEIVED: 06/13/97

SITE: Hobbs, NM SAMPLED BY: Brow SAMPLE ID: MW-7

PROJECT: Hobbs

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS LIMIT

Liquid-liquid extraction

traction 06/18/97

Method 3510B ***
Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 10:40:00

SAMPLE ID: MW-5 DATE RECEIVED: 06/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μ g/I
TOTAL XYLENE	ND	1.0 P	μg/I
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/I
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene Method 8020A *** Analyzed by: JN	97		
Date: 06/24/97 Petroleum Hydrocarbons - Gasoline	ND	0.1 P	mg/I
recrotedii nydrocarbons - Gasotine	ND	0.1 F	mg/ r
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: JN Date: 06/24/97	80		
Total Petroleum Hydrocarbons-Diesel	ND	0.1 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel ***	% Recovery		

ND - Not detected.

Analyzed by: RR

Date: 06/19/97 05:27:00

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs

PROJECT NO: 2832.12

SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 10:40:00

SAMPLE ID: MW-5

DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER

RESULTS

DETECTION

UNITS

Liquid-liquid extraction

06/18/97

LIMIT

Method 3510B ***
Analyzed by: VN

d by: VN Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9706643-04 HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Houston, TX 77002

ATTN: Rick Rexroad DATE: 06/26/97

PROJECT: Hobbs PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER
SAMPLED BY: Brown & Caldwell DATE SAMPLED: 06/12/97 10:50:00

SAMPLE ID: MW-6 DATE RECEIVED: 06/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	1900	10 P	$\mu g/L$
TOLUENE	1400	10 P	$\mu g/L$
ETHYLBENZENE	410	10 P	μ g/L
TOTAL XYLENE	310	10 P	$\mu g/L$
TOTAL VOLATILE AROMATIC HYDROCARBONS	4020		μ g/L
Surrogate	% Recovery		
1,4-Difluorobenzene	110		
4-Bromofluorobenzene Method 8020A *** Analyzed by: JN Date: 06/24/97	110		
· ·	7.4	1 P	ma /T
Petroleum Hydrocarbons - Gasoline	7.4	1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	110		
4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: JN Date: 06/24/97	123		
Total Petroleum Hydrocarbons-Diesel	7.8	0.55 P	mg/L
Surrogate n-Pentacosane	% Recovery 66		

(P) - Practical Quantitation Limit

Date: 06/19/97 12:47:00

Modified 8015A - Diesel ***

Analyzed by: RR

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-04

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs PROJECT NO: 2832.12

SITE: Hobbs, NM MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 06/12/97 10:50:00

SAMPLE ID: MW-6 DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS LIMIT

Liquid-liquid extraction 06/18/97

Method 3510B ***
Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-05

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs
SITE: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 06/12/97 10:58:00

SAMPLE ID: MW-3 DATE RECEIVED: 06/13/97

ANALYTICA	L DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	860	100 P	μg/L
TOLUENE	4800		μg/L
ETHYLBENZENE	1700		μg/L
TOTAL XYLENE	2600		μg/L
TOTAL VOLATILE AROMATIC HYDROCARBON	S 9960		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene	103		
Method 8020A ***			
Analyzed by: JN			
Date: 06/24/97			
Petroleum Hydrocarbons - Gasoline	20	10 P	mg/L
Surrogate 1,4-Difluorobenzene	% Recovery		
4-Bromofluorobenzene	100		
Modified 8015A - Gasoline***	100		
Analyzed by: JN			
Date: 06/24/97			
Total Petroleum Hydrocarbons-Diesel	1.9	0.55 P	mg/L
Surrogate	% Recovery		
n-Pentacosane	74		
Modified 8015A - Diesel ***			
Analyzed by: RR			
Date: 06/19/97 01:33:00			

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

""" Rel: lest Methods for Evaluating Solid Waste, EPA SW646, 31d Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-05

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs **PROJECT NO: 2832.12** MATRIX: WATER SITE: Hobbs, NM

DATE SAMPLED: 06/12/97 10:58:00

SAMPLED BY: Brown & Caldwell SAMPLE ID: MW-3 DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

06/18/97

LIMIT

Liquid-liquid extraction

Method 3510B *** Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-06

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

Analyzed by: RR

PROJECT: Hobbs

PROJECT NO: 2832.12

MATRIX: WATER

SITE: Hobbs, NM DATE SAMPLED: 06/12/97 11:07:00 SAMPLED BY: Brown & Caldwell

DATE RECEIVED: 06/13/97 SAMPLE ID: MW-11

		DATA	ANALYTICAL
UNITS	ETECTION IMIT	RESULTS	PARAMETER
μg/L	.0 P	150	BENZENE
μg/L	.0 P	23	TOLUENE
μ g/L	.0 P	19	ETHYLBENZENE
$\mu { t g}/{ t L}$.0 P	ND	TOTAL XYLENE
μ g/L		192	TOTAL VOLATILE AROMATIC HYDROCARBONS
		% Recovery	Surrogate
		100	1,4-Difluorobenzene
		100	4-Bromofluorobenzene
			Method 8020A ***
			Analyzed by: JN
			Date: 06/24/97
mg/L	.5 P	0.55	Petroleum Hydrocarbons - Gasoline
		% Recovery	Surrogate
		107	1,4-Difluorobenzene
		100	4-Bromofluorobenzene
			Modified 8015A - Gasoline***
			Analyzed by: JN
			Date: 06/24/97
mg/L	.1 P	1.1	Total Petroleum Hydrocarbons-Diesel
		% Recovery	Surrogate
		60	n-Pentacosane
			Modified 8015A - Diesel ***
	.1 P	107 100 1.1 % Recovery	1,4-Difluorobenzene 4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: JN Date: 06/24/97 Total Petroleum Hydrocarbons-Diesel Surrogate n-Pentacosane

⁽P) - Practical Quantitation Limit ND - Not detected.

Date: 06/19/97 08:33:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-06

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

AMDIY. WAMED

MATRIX: WATER

06/18/97

DATE SAMPLED: 06/12/97 11:07:00

DATE RECEIVED: 06/13/97

PROJECT: Hobbs

SITE: Hobbs, NM

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-11

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION LIMIT UNITS

Liquid-liquid extraction

Method 3510B ***
Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-07

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT: Hobbs

PROJECT NO: 2832.12

MATRIX: WATER

SITE: Hobbs, NM SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 11:18:00

SAMPLE ID: MW-10

Analyzed by: RR

DATE RECEIVED: 06/13/97

ANALYTICAL	DATA	A		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
BENZENE		150		μ g/L
TOLUENE		12		$\mu { m g}/{ m L}$
ETHYLBENZENE		30		$\mu { t g}/{ t L}$
TOTAL XYLENE		ND	5.0 P	μ g/L
TOTAL VOLATILE AROMATIC HYDROCARBONS		192		μ g/L
Surrogate	%	Recovery		
1,4-Difluorobenzene		100		
4-Bromofluorobenzene Method 8020A *** Analyzed by: JN Date: 06/24/97		100		
Petroleum Hydrocarbons - Gasoline		ND	0.5 P	mg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Modified 8015A - Gasoline*** Analyzed by: JN Date: 06/24/97	%	Recovery 107 93		
Total Petroleum Hydrocarbons-Diesel		0.68	0.1 P	mg/L
Surrogate n-Pentacosane Modified 8015A - Diesel ***	%	Recovery 74		

(P) - Practical Quantitation Limit ND - Not detected.

Date: 06/19/97 03:08:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-07 PHONE (713) 660-0901

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs
SITE: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 11:18:00

SAMPLE ID: MW-10

DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER

RESULTS

DETECTION

UNITS

Liquid-liquid extraction

06/18/97

LIMIT

Method 3510B ***
Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

® Certificate of Analysis No. H9-9706643-08

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs
SITE: Hobbs, NM

PROJECT NO: 2832.12

MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 06/12/97 11:33:00

SAMPLE ID: MW-9 DATE RECEIVED: 06/13/97

ANALYTICAL DATA				
PARAMETER	RESULTS	DETECTION LIMIT	UNITS	
BENZENE	4.7	1.0 P	μg/L	
TOLUENE	2.1	1.0 P	μg/L	
ETHYLBENZENE	11	1.0 P	μ g/L	
TOTAL XYLENE	97	1.0 P	μg/L	
TOTAL VOLATILE AROMATIC HYDROCARBONS	114.8		μ g/L	
Surrogate	% Recovery			
1,4-Difluorobenzene	110			
4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 06/24/97	157MI			
Petroleum Hydrocarbons - Gasoline	2.2	1 P	mg/L	
Surrogate	% Recovery			
1,4-Difluorobenzene	103			
4-Bromofluorobenzene	103			
Modified 8015A - Gasoline***				
Analyzed by: JN				
Date: 06/24/97				
Total Petroleum Hydrocarbons-Diesel	2.6	0.1 P	mg/L	
Surrogate	% Recovery			
n-Pentacosane	96			
Modified 8015A - Diesel ***				
Analyzed by: RR				
Date: 06/19/97 09:19:00				

(P) - Practical Quantitation Limit MI - Matrix interference.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9706643-08

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs SITE: Hobbs, NM **PROJECT NO: 2832.12** MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 11:33:00

SAMPLE ID: MW-9

DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER RESULTS DETECTION UNITS

LIMIT

Liquid-liquid extraction

06/18/97

Method 3510B *** Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-09

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs
SITE: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 12:05:00

SAMPLE ID: MW-4 DATE RECEIVED: 06/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
		LIMIT	
BENZENE	47	5.0 P	μg/L
TOLUENE	270	5.0 P	μg/L
ETHYLBENZENE	360		μg/L
TOTAL XYLENE	950	5.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	1627		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene	120		
Method 8020A ***			
Analyzed by: LJ			
Date: 06/24/97			
Petroleum Hydrocarbons - Gasoline	6.2	0.5 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	107		
4-Bromofluorobenzene	140		
Modified 8015A - Gasoline***			
Analyzed by: LJ			
Date: 06/24/97			
Total Petroleum Hydrocarbons-Diesel	2.5	0.1 P	mg/L
Guaran a wa ka	9. Damasas		
Surrogate	% Recovery		
n-Pentacosane	90		
Modified 8015A - Diesel ***			

(P) - Practical Quantitation Limit

Date: 06/19/97 10:06:00

Analyzed by: RR

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON. TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-09

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs SITE: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 12:05:00

SAMPLE ID: MW-4

DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER

RESULTS

DETECTION

UNITS

Liquid-liquid extraction

06/18/97

LIMIT

Method 3510B ***
Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-10

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs

PROJECT NO: 2832.12

SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 11:55:00

SAMPLE ID: MW-1

DATE RECEIVED: 06/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
		LIMIT	
BENZENE	5300	250 P	μg/I
TOLUENE	34000		μg/I
ETHYLBENZENE	7500		μg/I
TOTAL XYLENE	27000	250 P	μg/I
TOTAL VOLATILE AROMATIC HYDROCARBONS	73800		μg/I
Surrogate	% Recovery		
1,4-Difluorobenzene	96		
4-Bromofluorobenzene	107		
Method 8020A ***			
Analyzed by: LJ			
Date: 06/24/97			
Petroleum Hydrocarbons - Gasoline	160	20 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	101		
4-Bromofluorobenzene	116		
Modified 8015A - Gasoline***			
Analyzed by: LJ			
Date: 06/24/97			
Total Petroleum Hydrocarbons-Diesel	180	11 P	mg/L
Surrogate	% Recovery		
n-Pentacosane	52		
Modified 8015A - Diesel ***			

(P) - Practical Quantitation Limit

Date: 06/20/97 10:32:00

Analyzed by: RR

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-10

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs
SITE: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97 11:55:00

SAMPLE ID: MW-1

DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER RESULTS

DETECTION

LIMIT

UNITS

Liquid-liquid extraction

06/18/97

Method 3510B ***
Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 06/26/97

Certificate of Analysis No. H9-9706643-11

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

PROJECT NO: 2832.12

PROJECT: Hobbs SITE: Hobbs, NM

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97

SAMPLE ID: MW-2832

DATE RECEIVED: 06/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
IN TORKE OF TORKE IN	ND	LIMIT 5.0 P	ua/I.
BENZENE TOLUENE	ND ND		μ g/L μ g/L
ETHYLBENZENE	6.6		μg/L
TOTAL XYLENE	69		μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	75.6		$\mu g/L$
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene Method 8020A ***	107		
Analyzed by: JN			
Date: 06/24/97			
Petroleum Hydrocarbons - Gasoline	1.9	0.5 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	107		
4-Bromofluorobenzene	113		
Modified 8015A - Gasoline***			
Analyzed by: JN			
Date: 06/24/97			
Total Petroleum Hydrocarbons-Diesel	5.2	0.11 P	mg/L
Surrogate	% Recovery		
n-Pentacosane	120		
Modified 8015A - Diesel ***			

ND - Not detected.

Analyzed by: RR

Date: 06/19/97 10:52:00

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-11

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 06/12/97

SAMPLE ID: MW-2832

DATE RECEIVED: 06/13/97

ANALYTICAL DATA

PARAMETER

RESULTS DETECTION

LIMIT

UNITS

Liquid-liquid extraction

06/18/97

Method 3510B ***
Analyzed by: VN

Date: 06/18/97 10:00:00

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9706643-12

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 06/26/97

PROJECT: Hobbs
SITE: Hobbs, NM

PROJECT NO: 2832.12
MATRIX: WATER

SAMPLED BY: Provided By SPL

DATE SAMPLED: 06/12/97

SAMPLE ID: Trip Blank

DATE RECEIVED: 06/13/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
		LIMIT	
BENZENE	ND	1.0 P	μ g/L
TOLUENE	ND	1.0 P	μ g/L
ETHYLBENZENE	ND	1.0 P	$\mu { t g}/{ t L}$
TOTAL XYLENE	ND	1.0 P	$\mu {\sf g}/{ m L}$
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		$\mu {\sf g}/{ m L}$
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene	97		
Method 8020A ***			
Analyzed by: JN			
Date: 06/24/97			
Petroleum Hydrocarbons - Gasoline	ND	0.1 P	mg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene	83		
4-DIOMOLIGOLODENZENE	0.3		

ND - Not detected.

Analyzed by: JN

Modified 8015A - Gasoline***

Date: 06/24/97

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

⁽P) - Practical Quantitation Limit

QUALITY CONTROL DOCUMENTATION

SPL BATCH QUALITY CONTROL REPORT **
METHOD 8020/602

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous µg/L

Batch Id:

HP_W970623185600

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
MTBE	ND	50	42	84.0	63 - 120
Benzene	ND	50	43	86.0	62 - 121
Toluene	ND	50	48	96.0	66 - 136
EthylBenzene	ND	50	49	98.0	70 - 136
O Xylene	ND	50	49	98.0	74 - 134
M & P Xylene	ND	100	97	97.0	77 - 140

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %		_imits(***) (Advisory)	
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery	Range
MTBE	ND	20	24	120	23	115	4.26	20	39 -	150
BENZENE	ND	20	24	120	24	120	0	25	39 -	150
TOLUENE	ND	20	24	120	24	120	0	26	56 -	134
ETHYLBENZENE	ND	20	24	120	24	120	0	38	61 -	128
O XYLENE	ND	20	23	115	23	115	0	29	40 -	130
M & P XYLENE	ND	40	47	118	47	118	a	20	43 -	152

Analyst: JN

Sequence Date: 06/23/97

SPL ID of sample spiked: 9706897-04A

Sample File ID: W_F7697.TX0

Method Blank File ID:

Blank Spike File ID: W_F7691.TX0

Matrix Spike File ID: W F7693.TX0

Matrix Spike Duplicate File ID: W_F7694.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (2nd Q '95)

SAMPLES IN BATCH(SPL ID):

9706643-04A 9706643-05A 9706643-06A 9706643-07A

9706643-11A 9706643-12A 9706697-01A 9706804-05A

9706804-04A 9706897-04A 9706643-01A 9706643-02A

9706643-03A

SPL BATCH QUALITY CONTROL REPORT ** METHOD 8020/602

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units:

Aqueous μg/L

Batch Id: HP_W970624170000

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blani	k Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
MTBE	ND	50	36	72.0	63 - 120
Benzene	ND	50	42	84.0	62 - 121
Toluene	ND	50	49	98.0	66 - 136
EthylBenzene	ND	50	49	98.0	70 - 136
O Xylene	ND	50	50	100	74 - 134
M & P Xylene	ND	100	99	99.0	77 - 140

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplio	Spike cate	MS/MSD Relative %		imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
мтве	ND	20	20	100	20	100	0	20	39 - 150
BENZENE	ND	20	21	105	20	100	4.88	25	39 - 150
TOLUENE	ND	20	20	100	20	100	0	26	56 - 134
ETHYLBENZENE	ND	20	20	100	20	100	0	38	61 - 128
O XYLENE	ND	20	20	100	20	100	0	29	40 - 130
M & P XYLENE	ND	40	40	100	39	97.5	2.53	20	43 - 152

Analyst: LJ

Sequence Date: 06/24/97

SPL ID of sample spiked: 9706897-05A

Sample File ID: W_F7733.TXO

Method Blank File ID:

Blank Spike File ID: W_F7726.TX0 Matrix Spike File ID: W_F7728.TX0

Matrix Spike Duplicate File ID: W_F7729.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (2nd Q '95)

SAMPLES IN BATCH(SPL ID):

9706643-10A 9706813-01A 9706813-02A 9706813-03A

9706813-04A 9706813-05A 9706817-06A 9706817-01A

9706817-02A 9706817-05A 9706981-01A 9706A38-01A

9706A39-01A 9706897-05A 9706897-06A 9706643-08A

9706643-09A

SPL BATCH QUALITY CONTROL REPORT **

CA LUFT

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous

Batch Id:

HP W970623192300

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery %	QC Limits(**) (Mandatory) % Recovery Range
Petroleum Hydrocarbons-Gas	ND	1.0	1.0	100	50 - 150

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike	MS/MSD Relative %		Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
PETROLEUM HYDROCARBONS-GAS	ND	0.9	0.81	90.0	0.77	85.6	5.01	50	50 - 150

Analyst: JN

Sequence Date: 06/23/97

SPL ID of sample spiked: 9706622-01B

Sample File ID: WWF7698.TX0

Method Blank File ID:

Blank Spike File ID: WWF7692.TX0

Matrix Spike File ID: WWF7695.TX0
Matrix Spike Duplicate File ID: WWF7696.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] \times 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: Temporary Limits

(***) = Source: Temporary Limits

SAMPLES IN BATCH(SPL ID):

9706643-02A 9706643-03A 9706643-04A 9706643-05A

9706643-06A 9706643-07A 9706643-08A 9706643-11A

9706643-12A 9706804-04A 9706622-01B 9706622-02B

9706622-03B 9706643-01A

SPL BATCH QUALITY CONTROL REPORT **

Modified 8015 - Gasoline

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous mg/L Batch Id: HP W970624172800

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result	Spike Added	<u>Blank</u> Result	Spike Recovery	QC Limits(**) (Mandatory)
	<2>	<3>	<1>	%	% Recovery Range
Gasoline Petr. Hydrocarbon	ND	1.0	0.92	92.0	56 - 130

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %		imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE PETR. HYDROCARBON	ND	0.9	0.73	81.1	0.72	80.0	1.37	22	37 - 169

Analyst: LJ

Sequence Date: 06/24/97

SPL ID of sample spiked: 9706897-06A

Sample File ID: WWF7734.TX0

Method Blank File ID:

Blank Spike File ID: WWF7727.TX0

Matrix Spike File ID: WWF7730.TX0

Matrix Spike Duplicate File ID: WWF7731.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>) / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (3rd Q '95)

SAMPLES IN BATCH(SPL ID):

9706643-09A 9706643-10A

** SPL BATCH QUALITY CONTROL REPORT **
Mod. 8015 - Diesel

PAGE

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Units: Aqueous mg/L Batch Id:

HP T970619102600

BLANK SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike	MS/MSD Relative %		_imits(**) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
DIESEL PETR. HYDROCARBONS	ND	5.0	5.24	104	5.21	104	0	43	60 - 139

Analyst: RR

Sequence Date: 06/19/97 Method Blank File ID: Sample File ID:

Blank Spike File ID: TTF7283.TX0

Matrix Spike File ID:

Matrix Spike Duplicate File ID:

 \star = Values Outside QC Range. \ll = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit
% Recovery = [(<1> - <2>) / <3>] x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (2nd Q '97)

SAMPLES IN BATCH(SPL ID):

9706643-01B 9706643-02B 9706643-03B 9706643-06B 9706643-08B 9706643-09B 9706643-10B 9706774-01B

9706666-02B 9706643-04B 9706643-05B 9706643-07B

CHAIN OF CUSTODY

AND

SAMPLE RECEIPT CHECKLIST

	_		S	SPL, Inc	nc.				SPL W	SPL Workorder No:		11211	
8	A	Analysis Request & Chain of Custody Record	quest	k Chai	n of C	astody	Recor	p	d	CHOIDN, h		pageof	
Client Name: Prouv (Md	Coldwell	112		matrix		size	pres.		The state of the s	No Requested	ted Analysis	ysis	
Address/Phone: 1415 Louis	LousinnA	57 25	2500		Sjass	lsiv	-			M			
Client Contact: RICK REX	DEXPORD				per {	:		ıers	51	151	-		
Project Name: //bbb5				lios: 130=	lms: siv=	z09	=01µ		99 	08			
Project Number: 2832.12					= \ = \	[=9			00	03			
Project Location: 14665, UM	N	:			oi:	Ţ			11)	11.			-
36				n [s =	olast glass		H72	ХД әqш	1/	- H			
SAMPLE ID	DATE	TIME	comp grab	= M	L=I	3=8			10	dL			
8- MW	16/2/97	7201	×	3	B	1,4	_	× ×	×	×			
mw. 7		1030								-			
MW-5		Oh ol								4			T
MW-6		0501											<u> </u>
MW - 2		8501								J			
11 - MW		107											T
MW-10		8///					-						Ī
MW - 9		1193								·			
MW - 4		1205											1
MW - /	- Þ	1155	→		->	>			-	-			Ī
Client/Consultant Remarks:	ANAL	Analy 51 /15	Por	Inbonato	Eaboratory remarks:	•	INC	INCIUDED		,	Intact?	ct? ZY DN	
MW-2832 (ada	$()$ a_{i}	above.		1/2/	BLANK	0	7EX 8820		ANAL4515	(5/5)	Temp:	818	
Requested TAT	Special Repor	pecial Reporting Requirements	its Fax R	Results		Raw Data	S	Special Detection	lion I	3ALA 936		PM review (initial):	T
	Sta	Standard QC	Level	13 QC		Level 4 (C		MPS	MPS (767) EUR				
24hr 🔲 72hr 🔲	1. Relinquishe	1. Relinquished by Sampler:				date	,n	time	2	Thecewood of	6 113 197	an 10 0745	T
48hr 🔲 Standard 🔲	3. Relinquished by:	d by:				date	is .	time	4. Received	ived by:		4	
Other 🔲	5. Relinquished by:	d by:				date	S	time	6. Rece	6. Received by Laboratory:	ory:		1
 8880 Interchange Drive, Houston, TX 77054 (713) 660-0901 459 Hughes Drive, Traverse City, MI 49684 (616) 947-5777 	Houston, T erse City, M	X 77054 (71 I 49684 (610	(3) 660-(901			00 Aml	bassador (Orangeth	Caffery I orpe Av	arkway, Scornue, Fullerto	tt, LA 7058:	500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775 1511 E. Orangethorpe Avenue, Fullerton, CA 92631 (714) 447-6868	7

SPL Houston Environmental Laboratory

Sample Login Checklist

Dat	te: 6/13/97 Time:	0945			
SPI	L Sample ID:				
	9706643				
				Yes	<u>No</u>
l	Chain-of-Custody (COC) form is pro	esent.		V	
2	COC is properly completed.				
3	If no, Non-Conformance Worksheet	has been compl	eted.		
4	Custody seals are present on the shi	pping container.			
5	If yes, custody seals are intact.			V	
6	All samples are tagged or labeled.				
7	If no, Non-Conformance Worksheet	has been compl	eted.		
8	Sample containers arrived intact			V	
9	Temperature of samples upon arriva	1:		4	о С
10	Method of sample delivery to SPL:	SPL Delivery			
		Client Delivery			
		FedEx Delivery	(airbill #)	96928	68936
		Other:			
11	Method of sample disposal:	SPL Disposal			
		HOLD			
L		Return to Clie	nt		
r	A		y		
Na	me: Alleute Salas		Date: le/13	3/97	_

APPENDIX C

LABORATORY ANALYTICAL REPORT FOR AIR SAMPLE

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

July, 10 1997

Mr. Rick Rexroad Brown and Caldwell 1415 Louisiana Houston, TX 77002

The following report contains analytical results for samples received at Southern Petroleum Laboratories (SPL) on July 3, 1997. The samples were assigned to Certificate of Analysis No(s).9707125 and analyzed for the parameters specified on the chain of custody.

There were no analytical problems encountered with this group of samples and all quality control data was within acceptance limits.

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis Number(s) during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette A. Fini

Project Manager

SOUTHERN PETROLEUM LABORATORIES, INC.

Certificate of Analysis Number: 97-07-125

Approved for Release by:

Bernadette A. Fini, Project Manager

Date

Greg Grandits Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

ORIESCertificate of Analysis No. H9-9707125-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/97

PROJECT: BJ Services

SITE: Hobbs, NM

MATRIX: AIR **DATE SAMPLED:** 07/02/97 14:30:00 SAMPLED BY: BJ Services

SAMPLE ID: Effluent 070297-01 DATE RECEIVED: 07/03/97

ANALYTICAL I	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE ·	ND	1.0 P	ppm
TOLUENE	6.3	1.0 P	ppm
ETHYLBENZENE	2.4	1.0 P	ppm
TOTAL XYLENE	8.6	1.0 P	ppm
TOTAL VOLATILE AROMATIC HYDROCARBONS Method Modified 5030/8020A*** Analyzed by: LJ Date: 07/05/97	17.3		ppm
Total Petroleum Hydrocarbons Method Modified 8015A Air *** Analyzed by: LJ Date: 07/05/97 06:29:00	65	5	ppm

ND - Not detected.

(P) - Practical Quantitation Limit

PROJECT NO:

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance

with EPA guidelines for quality assurance. 500 AMBASSADOR CAFFERY PKWY.

SCOTT, LA 70583-8544 (318) 237-4SPL

459 HUGHES DRIVE TRAVERSE CITY, MI 49684 (616) 947-5777

1511 E. ORANGETHORPE AVE. **FULLERTON, CA 92631** (714) 447-6868

QUALITY CONTROL DOCUMENTATION

PAGE

Units:

ppm

Batch Id: HP_P970705110200

BLANK SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spi ke	MS/MSD Relative %	_	Limits(**) (Advisory)
	<2>•	<3>	Result	Recovery	Result	Recovery <5>	Difference	RPD Max.	Recovery Range
TPHAIR .	ND	200	56	28.0	51	25.5	9.35	30	20 - 150

Analyst: LJ

Sequence Date: 07/05/97 Method Blank File ID:

Sample File ID:

Blank Spike File ID: PPG7064.TX0

Matrix Spike File ID:

Matrix Spike Duplicate File ID:

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: Temporary limits

SAMPLES IN BATCH (SPL ID):

9707146-01A 9707146-02A 9707125-01A 9707128-01A 9707148-01A 9707130-01A 9707131-01A

PAGE

Units:

ppm

Batch Id: HP P970705134700

BLANK SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	MatrixDuplie	Spike	MS/MSD Relative %	_	Limits(**) (Advisory)
	<2>	<3>	Result	Recovery	Result	Recovery	Difference	RPD Max.	Recovery Range
BENZENE	ND	20.0	12	60.0	9.6	48.0	22.2	30	37 - 117
TOLUENE	ND	20.0	11	54.0	9.3	45.5	17.1	30	25 - 113
ETHYLBENZENE	ND	20.0	8.8	44.0	8.0	40.0	9.52	30	25 - 106
O XYLENE	ИD	20.0	8.6	42.5	7.9	39.0	8.59	30	15 - 109
M & P XYLENE	ND	20.0	8.9	44.5	7.9	39.5	11.9	30	12 - 114

Analyst: LJ

Sequence Date: 07/05/97 Method Blank File ID:

Sample File ID:

Blank Spike File ID: P_G7064.TX0

Matrix Spike File ID:

Matrix Spike Duplicate File ID:

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: Tempo. Limits & SPL-Houston Hist. Data(1st Qtr'97)

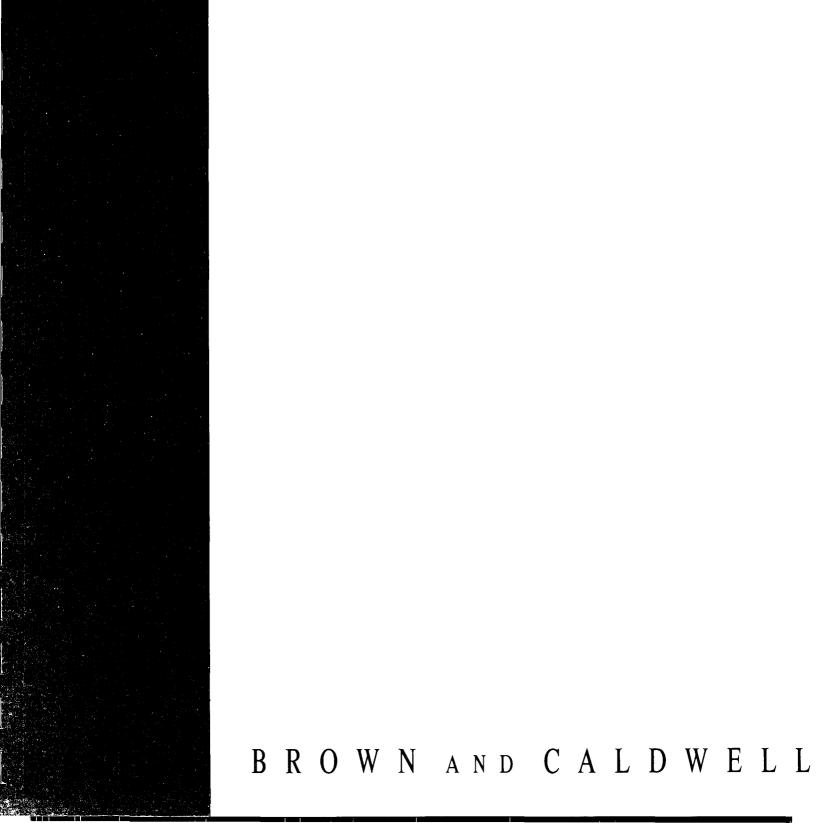
SAMPLES IN BATCH (SPL ID):

9707131-01A 9707125-01A 9707128-01A 9707130-01A

CHAIN OF CUSTODY

AND

SAMPLE RECEIPT CHECKLIST


	\			SPL	SPL, Inc.	•				SPL Wo	korder No	SPL Workorder No:		, 	16150
	A	Analysis Request	eduesi		hain o	f Custo	& Chain of Custody Record	cord		٦-	1/1/	こるじ	•	page /	J jo
Client Name: Brown + Calduse	aldwe	_		<u>B</u>	matrix bottle	ttle size	e pres.				Requ	Requested Analysis	nalysi		
Address/Phone: 1415/001518na	ilaina, t	Houstor			Slass	 [siv:								_	
Client Contact:					per Jet:	†0= 	EO1								
Project Name: BJ Sevying	385			lios=	110= ms=	hiv=	VН= 209 [ntain	7	7					
Project Number:				= S 	• O	b= -Λ	- 7		リセ	IIH					
Project Location: HODDS , A	NM			ter	egb Sic	s 19		···	_	<i>'</i> -	<u> </u>				
Invoice To: By-C				EW:	uls=	glass	ICI		ra —	Ho					
SAMPLE ID	DATE	TIME	comp g	= M qeg	-TS	1 = 1 C = {	8=8 H=1 H=E		18	Ц.					
E++ 1me+	- AND -	12.33			S Te	Alak B	1	_	×	7					
	1-2-97							•							
							-								
							-								
							-								
							-								
				-											
					-		-								
Client/Consultant Remarks:				12	Laboratory remarks:	marks:							124 2004 2	^^	
				<u></u>									Temp:	j	<u>z</u>
Requested TAT	Special Repor	Special Reporting Requirements		Fax Results	C sı	Raw	Raw Data	Specia	Detection	Special Detection Limits (specify):	(specify):			PM review (initial):	initial):
•	St	Standard (CC		Level 3 OC	п	Level	Level 4 🌣 📋			•					
24hr 🔲 72hr 🔲		1. Relinquished by Sampler.		_		dale .	rp- 6-	time			S Tall	Sullas	Jas 7/2/2	600	
48hr 🔲 Standard 📉		3. Relinquisted by:	X X X X	ä		date	2	time		4. Received by:	ed by:		7	ļ	
Other 🔲	5. Relinquished by:	ed by:				date		time		6. Recein	6. Received by Laboratory	oratory:			
						_		_					,		
(J 8880 Interchange Drive, Houston, TX 77054 (713) 660-	, Houston, T	X 77054 (7	13) 660	0-0001			1 500	Ambass	ador Ce	affery Pa	arkway, 🤄	500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775	0583 (3	18) 237	-4775
459 Hughes Drive, Traverse City, MI 49684 (616) 947-5777	rerse City, M	II 49684 (6.	16) 947.	-5777			1511	E. Ora	ngethoi	pe Ave	nue, Full	1511 E. Orangethorpe Avenue, Fullerton, CA 92631 (714) 447-6868	92631 (714) 44	8989-2

SPL Houston Environmental Laboratory

Sample Login Checklist

Dat	te: 7/3/97 Time:	1000			
SPI	L Sample ID: 9707125				
				<u>Yes</u>	<u>No</u>
l	Chain-of-Custody (COC) form is pre	esent.			
2	COC is properly completed.				
3	If no, Non-Conformance Worksheet	has been compl	eted.		
4	Custody seals are present on the ship	oping container.			
5	If yes, custody seals are intact.				
6	All samples are tagged or labeled.				
7	If no, Non-Conformance Worksheet	has been compl	eted.		
8	Sample containers arrived intact				
9	Temperature of samples upon arrival	l:			C
10	Method of sample delivery to SPL:	SPL Delivery			
		Client Delivery			
		FedEx Delivery	(airbill #)	49957	77617
		Other:			
11	Method of sample disposal:	SPL Disposal			
		HOLD			
		Return to Clie	nt		
Nai	me: Muui Alas		Date: 7/3	47	

·		

FINAL SEPTEMBER 1997 GROUNDWATER SAMPLING REPORT

ARTESIA, NEW MEXICO

BJ SERVICES COMPANY, U.S.A. APRIL 8, 1998

FINAL
SEPTEMBER 1997 GROUNDWATER SAMPLING REPORT
ARTESIA, NEW MEXICO
BJ SERVICES COMPANY, U.S.A.

Prepared for

BJ Services Company, U.S.A. 8701 New Trials Drive The Woodlands, Texas 77381

BC Project Number: 2988-09

Timothy L. Jenkins Associate Engineer

April 8, 1998

Brown and Caldwell

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

"This report was prepared in accordance with the standards of the environmental consulting industry at the time it was prepared. It should not be relied upon by parties other than those for whom it was prepared, and then only to the extent of the scope of work which was authorized. This report does not guarantee that no additional environmental contamination beyond that described in this report exists at this site."

(3)

CONTENTS

1.0	INTI	RODUCTION	1
2.0	GRO	DUNDWATER SAMPLING AND ANALYSES	2
	2.1	Groundwater Measurements and Flow Direction	
	2.2	Monitoring Well Purging and Sampling	
	2.3	Results of Groundwater Sample Analyses	
3.0	CON	ICLUSIONS AND RECOMMENDATIONS	4
	3.1	Conclusions	
	3.2	Recommendations	4
	TRIBUT	TION AND QA/QC REVIEWER'S SIGNATURE	
1	Site I	Location Map	
2	Site F	Plan	
3	Moni	itor Well Locations	
4	Grou	ndwater Gradient Map - September 1, 1997	
TAB	LES		
1	Grou	ndwater Elevation – September 1, 1997	
2	Grou	ndwater Sampling – September 2, 1997 - Analytical Results	
3	Cum 1997	ulative Analytical Results – Groundwater Sampling - April 1993 through Sept	tember
APP	ENDIC	ES	

A Laboratory Analytical Reports

iii

1.0 INTRODUCTION

Brown and Caldwell conducted a soil and groundwater assessment at the BJ Services Company, U.S.A. (BJ Services) district facility in Artesia, New Mexico from September 1-2, 1997. The BJ Services Artesia District Facility is located in Eddy County, in the SE/4, Section 32, Township 16 South, Range 26 East. The facility address is 2401 Sivley, Artesia, New Mexico, 88210. A site location map and site plan are attached as Figures 1 and 2, respectively.

This groundwater sampling event was conducted at the request of the New Mexico Oil Conservation Division, and was performed in conjunction with demolition activities and a site assessment for the former acid dock area (Acid Dock). The monitor wells sampled during this event were installed under the supervision of Brown and Caldwell in April 1993.

This report documents and presents the results of the September 1997 groundwater sampling event. The September 1997 event is the fourth round of sampling in the monitoring program that was initiated at this site in April 1993.

2.0 GROUNDWATER SAMPLING AND ANALYSES

Beginning on September 1, 1997, Brown and Caldwell purged and sampled the four groundwater monitoring wells located at the BJ Services' Artesia District Facility. This section describes the activities conducted during this sampling event.

2.1 Groundwater Measurements and Flow Direction

A monitoring well location map for the wells sampled during the September 1997 groundwater sampling event is presented as Figure 3. Prior to well purging, static water levels were measured in all monitoring wells. Groundwater levels were measured to the nearest 0.01 foot with an electronic groundwater level meter and recorded. Groundwater elevation data for September 1, 1997 is presented in Table 1.

A groundwater gradient map constructed from data obtained on September 1, 1997 is presented as Figure 4. Groundwater elevation data indicates that the groundwater flow is generally to the east in the area near the former Acid Dock.

2.2 Monitoring Well Purging and Sampling

Each of the four monitor wells was purged on September 1, 1997. At each well location, a designated bailer was used for both purging and sampling. The wells were purged by hand, removing at least three well volumes. Purge water was placed in drums and set aside for proper management.

Groundwater samples were collected on September 2, 1997 after allowing the water level in each well to recover overnight. The disposable polyethylene bailers, one designated per well, were decontaminated with deionized water prior to sampling. Sampled groundwater was transferred into laboratory-supplied glass containers, labeled, and immediately placed on ice in an insulated cooler

for shipment. At the conclusion of sampling, the samples were delivered to the analytical laboratory and were accompanied by completed chain-of-custody documentation. Laboratory reports are included in Appendix A. Purge water and excess water generated by equipment cleaning operations were placed in labeled drums located within the barricaded area near the acid dock excavation for future treatment/disposalby BJ Services.

2.3 Results of Groundwater Sample Analyses

Groundwater samples collected during this sampling event were analyzed for benzene, toluene ethylbenzene, and xylenes (BTEX) and semivolatiles by EPA Methods 8020 and 8270, respectively.

Samples from monitor wells MW-2, MW-3, and MW-4 displayed concentrations of volatiles and semivolatiles below detection limits for each method. The sample from MW-1 displayed detectable concentrations of several volatile and semivolatile constituents. The total BTEX concentration for the groundwater sample from monitor well MW-1 was 0.719 milligrams per liter (mg/L). Groundwater results for the September 1997 sampling event are summarized in Table 2.

2.4 Demolition of MW-1 during Soil Excavation Activities

Monitor well MW-1 was demolished during the recent remediation activities performed in the former acid dock area. The portion of the well present below the excavation was plugged in place and sealed with bentonite. Currently, there are no plans to replace this well.

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

The groundwater analytical results for the September 1997 sampling event indicate that the only chemical detected at a concentration in excess of the New Mexico Water Quality Control Commission (NMWQCC) groundwater standards was naphthalene, which was detected in monitor well MW-1 at a concentration of 0.032 mg/L, versus the NMWQCC groundwater standard of 0.030 mg/L.

To reduce the potential for further groundwater impact, the acid dock was removed and the residual impacted soils were excavated. These soils may have acted as a source for the observed volatile and semivolatile concentrations in previous groundwater sampling events, as shown in Table 3. The excavated soils were disposed off site, and the excavation backfilled with clean imported fill and graded.

Based on the information contained herein, Brown and Caldwell concludes the following:

- Groundwater flow is east-northeast, which indicates flow onto the property from an adjacent railroad easement (see Figure 4).
- Groundwater sampling indicated non-detectable concentrations of BTEX and semivolatiles in monitor well MW-3, which is downgradient of the former Acid Dock.

3.2 Recommendations

Based on the findings of the September 1997 groundwater sampling event, the following activities are recommended:

• Purge and sample the monitor well downgradient of the former Acid Dock area, MW-3, in September 1998 as directed by NMOCD, and analyze the sample for BTEX (Method 8020) and semivolatiles (Method 8270).

W:\BJSERV\2988\048R.DOC 4

• If the sample to be collected from MW-3 in September 1998 displays no impact by BTEX or semivolatiles in excess of NMWQCC Standards, Brown and Caldwell recommends that existing monitor wells MW-2, MW-3, and MW-4 be plugged and abandoned, and that no further remedial action be required at the former acid dock. If the MW-3 sample to be collected in September 1998 displays concentrations of constituents above the NMWQCC standards, additional sampling of MW-3 or replacement of MW-1 may be required.

DISTRIBUTION

Final
September 1997 Groundwater Sampling Report
Artesia, New Mexico
BJ Services Company, U.S.A.

April 8, 1998

1 copy to:

New Mexico Oil Conservation Division

2040 South Pacheco Street Santa Fe, New Mexico 87505

Attention:

Mr. Mark Ashley

1 copy to:

New Mexico Oil Conservation Division

811 South 1st Street

Artesia, New Mexico 88211

Attention:

Mr. Tim W. Gum

1 copy to:

BJ Services Company, U.S.A.

8701 New Trails Drive

The Woodlands, Texas 77381

Attention:

Ms. Jo Ann Cobb

1 copy to:

BJ Services Company, U.S.A.

2401 Sivley

Artesia, New Mexico 88210

Attention:

Mr. Mike Wiggins

1 copy to:

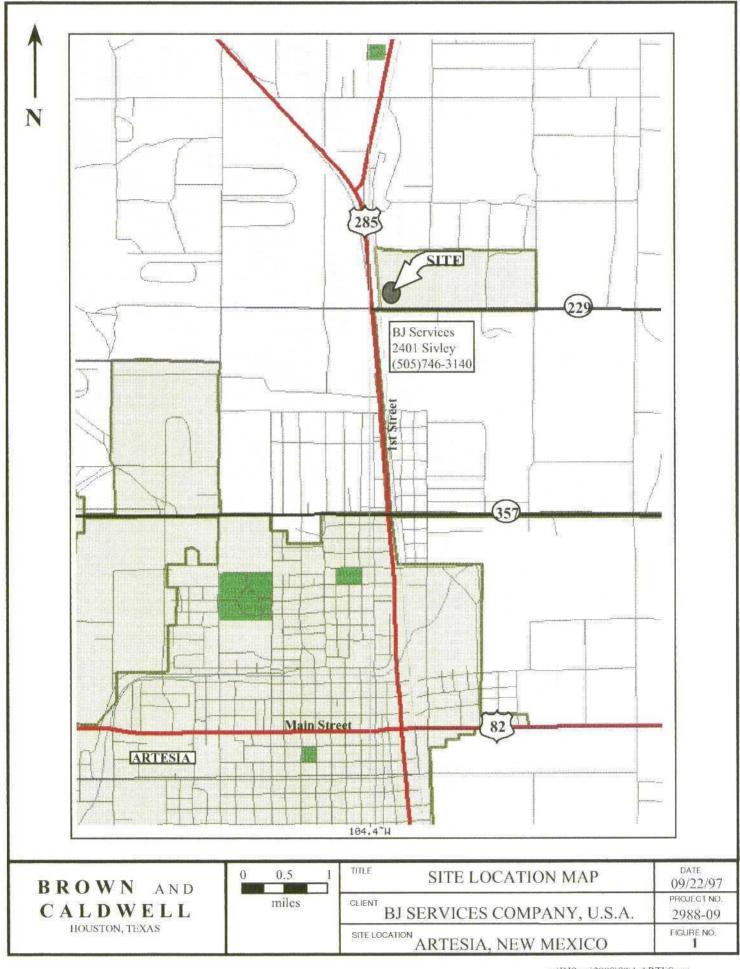
Brown and Caldwell

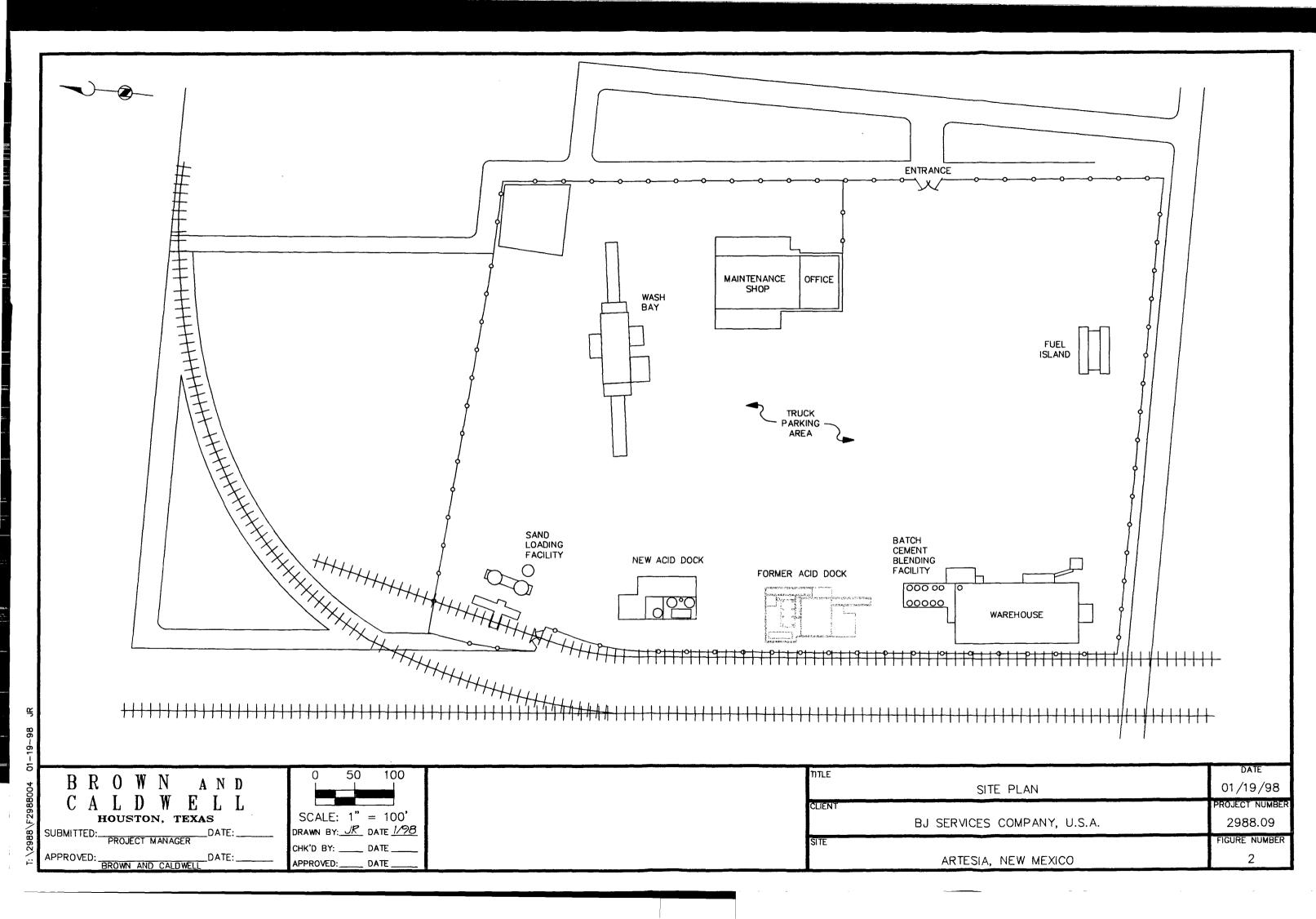
File

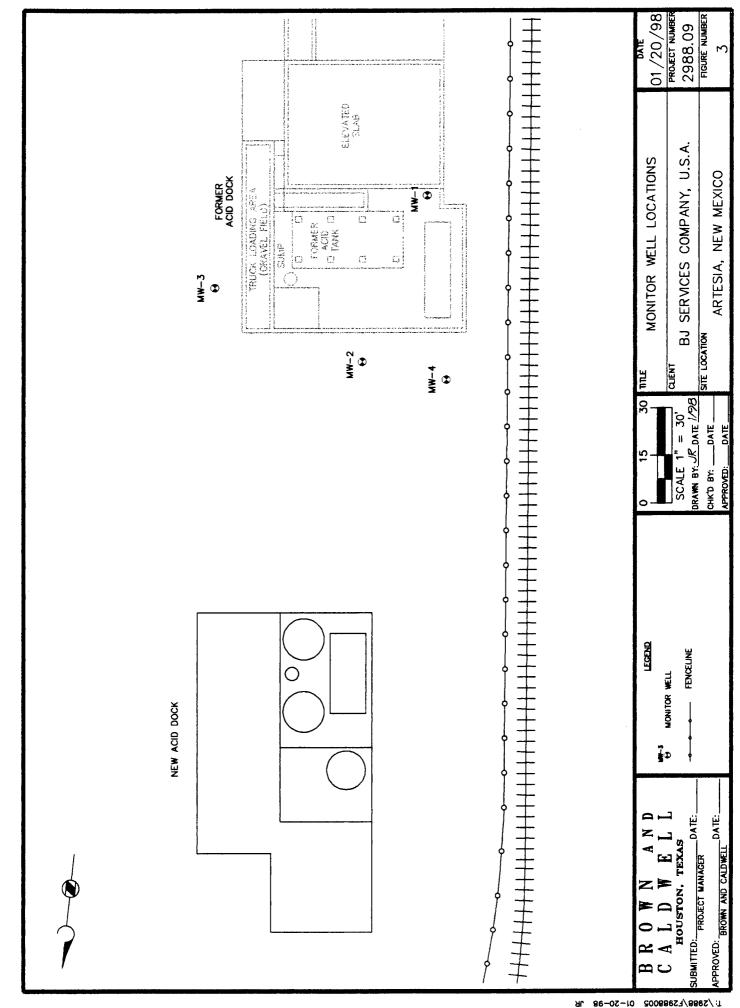
QUALITY CONTROL REVIEWER:

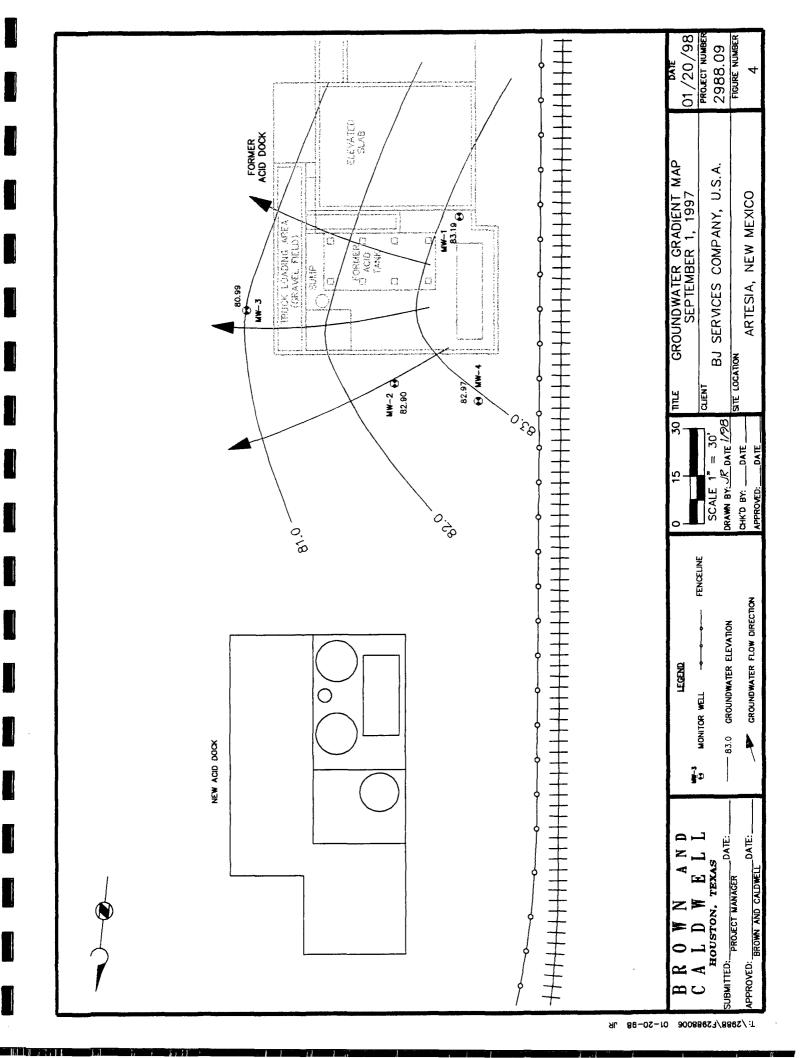
Robert N. Jennings, PE

Vice President


TLJ:uak


 $W:\bjserv\2988\048r.doc$


FIGURES


W:\bjserv\2988\048r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

TABLES

W:\bjserv\2988\048r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

Table 1 Groundwater Elevation- September 1, 1997 BJ Services Company, U.S.A. Artesia, New Mexico

Monitor Well	Top of Casing (Relative Elevation)	Depth to Water (feet)	Groundwater Elevation ⁽¹⁾
MW-1	95.82	12.63	83.19
MW-2	96.40	13.50	82.90
MW-3	96.09	15.10	80.99
MW-4	96.07	13.10	82.97

(1) Elevation of Well casings was established relative to nearby drum storage slab, which was assigned an arbitrary elevation of 100 feet.

Table 2 Groundwater Sampling - September 2, 1997 Analytical Results BJ Services Company, U.S.A. Artesia, New Mexico

						NMWQCC ^(a)
						Groundwater
MONITOR WELL	MW-1	MW-2	MW-3	MW-4	Field Blank	Standards
VOLATILES by Method 802	20 (mg/L)					
Benzene	<0.0050	<0.0010	<0.0050	<0.0010	<0.0010	0.01
Toluene	0.470	<0.0010	<0.0050	<0.0010	<0.0010	0.75
Ethylbenzene	0.059	<0.0010	<0.0050	<0.0010	<0.0010	0.75
Total Xylenes	0.190	<0.0010	<0.0050	<0.0010	<0.0010	0.62
SEMIVOLATILES by Metho	od 8270 (mg/L)	(b)				
Dibenzofuran	0.012	<0.005	<0.005	< 0.005	< 0.005	NL
2-Methylnaphthalene	0.024	<0.005	<0.005	< 0.005	<0.005	NL
4-Methyphenol	0.059	<0.005	<0.005	<0.005	<0.005	NL
Naphthalene	0.032	< 0.005	< 0.005	< 0.005	< 0.005	0.03 ^(c)

⁽a) NMWQCC = New Mexico Water Quality Control Commission

⁽b) Chemicals with concentrations below Practical Quantitation Limit (PQL) are not listed in this table

⁽c) Value is for PAHs: total napthalene plus monomethylnaphthalenes.

Table 3 Cumulative Analytical Results Groundwater Sampling – April 1993 through September 1997 BJ Services Company, U.S.A. Artesia, New Mexico

Monitor Well	MW-1	MW-2	MW-3	MW-4	Field Blank	NMWQCC ^(a) Groundwater Standards
VOLATILES by Method	d 8020 (mg/L)					
Benzene						0.01
April 21, 1993	0.0041	<0.0005	< 0.0005	< 0.0005	NA	
July 18, 1993	0.0033	<0.0005	0.00067	< 0.0005	NA	
January 28, 1994	0.0018	< 0.0010	< 0.0010	< 0.001	NA	
September 2, 1997	< 0.0050	< 0.0010	< 0.0050	< 0.0010	< 0.0010	
Toluene						0.75
April 21, 1993	< 0.0005	< 0.0005	< 0.0005	0.0017	NA	
July 18, 1993	<0.0005	< 0.0005	< 0.0005	< 0.0005	NA	
January 28, 1994	0.0010	0.0026	0.0011	0.0297	NA	
September 2, 1997	0.470	< 0.0010	<0.0050	<0.0010	< 0.0010	
Ethylbenzene						0.75
April 21, 1993	<0.0005	< 0.0005	< 0.0005	<0.0005	NA	
July 18, 1993	<0.0005	<0.0005	<0.0005	<0.0005	NA	
January 28, 1994	0.0045	< 0.0010	<0.0010	0.0064	NA	
September 2, 1997	0.059	<0.0010	<0.0050	<0.0010	<0.0010	
Total Xylenes						0.62
April 21, 1993	0.032	< 0.0010	< 0.0010	<0.0010	NA	
July 18, 1993	<0.0010	<0.0010	<0.0010	<0.0010	NA	
January 28, 1994	0.0026	0.0020	<0.0010	0.0091	NA	
September 2, 1997	0.19	< 0.0010	<0.0050	<0.0010	< 0.0010	
SEMIVOLATILES by M	1ethod 8270 (mg/L) (b)				
Dibenzofuran						NL
September 2, 1997	0.012	< 0.005	< 0.005	< 0.005	< 0.005	
2-Methylnaphthalene						NL
April 21, 1993	NA	NA	NA	NA	NA	
July 18, 1993	0.030	< 0.0050	<0.0050	<0.0050	NA	
January 28, 1994	NA	NA	NA	NA	NA	
September 2, 1997	0.024	< 0.005	< 0.005	< 0.005	<0.005	
4-Methyphenol						NL
September 2, 1997	0.059	< 0.005	<0.005	< 0.005	<0.005	
Naphthalene						0.03 ^(c)
April 21, 1993	NA	NA	NA	NA	NA	
July 18, 1993	<0.0050	< 0.0050	< 0.0050	< 0.0050	NA	
January 28, 1994	<0.0060	< 0.0060	< 0.0060	<0.0060	NA	
September 2, 1997	0.032	< 0.005	< 0.005	< 0.005	<0.005	

- (a) NMWQCC = New Mexico Water Quality Control Commission.
- (b) Chemicals with concentrations below Practical Quantitation Limit (PQL) are not listed in this table.
- (c) Value is for PAHs: total naphthalene plus monomethylnaphthalenes.

APPENDIX A

Laboratory Analytical Reports

W:\bjserv\2988\048r.doc

Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

September 12, 1997

Mr. Tim Jenkins BROWN AND CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for samples received at Southern Petroleum Laboratories (SPL) on September 3, 1997. The samples were assigned to Certificate of Analysis No.(s) 9709069 and analyzed for all parameters as listed on the chain of custody.

There were no analytical problems encountered with this group of samples and all quality control data was within acceptance limits.

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette A. Fini Project Manager

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

SOUTHERN PETROLEUM LABORATORIES, INC.

Certificate of Analysis Number: 97-09-069

Approved for Release by:

Bernadette A. Fini, Project Manager

Date

Date:

Greg Grandits
Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

DATE: 09/12/97

Certificate of Analysis No. H9-9709069-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT: BJ-Artesia

PROJECT NO: 2988-09

MATRIX: WATER

SITE: Artesia, New Mexico DATE SAMPLED: 09/02/97 13:20:00 SAMPLED BY: Brown & Caldwell

DATE RECEIVED: 09/03/97 SAMPLE ID: MW-1

ANALYTICAL PARAMETER	DATA RESULTS	DETECTION	UNITS
IAMMIIIIK	N2D 021D	LIMIT	
BENZENE	ND	5.0 P	μ g/L
TOLUENE	470	5.0 P	$\mu g/L$
ETHYLBENZENE	59	5.0 P	μg/L
TOTAL XYLENE	190	5.0 P	$\mu g/L$
TOTAL VOLATILE AROMATIC HYDROCARBONS	719		$\mu { t g}/{ t L}$
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene	67		

Method 8020A *** Analyzed by: fab

Date: 09/05/97

Liquid-liquid extraction SEMIVOLATILES 09/04/97

Method 3520B *** Analyzed by: PC

Date: 09/04/97 08:00:00

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

09/12/97

PROJECT: BJ-Artesia

SITE: Artesia, New Mexico

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-1

PROJECT NO: 2988-09

MATRIX: WATER

DATE SAMPLED: 09/02/97 13:20:00

DATE RECEIVED: 09/03/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acenaphthene	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
Aniline	ND	10	${ t ug/L}$
Anthracene	ND	10	ug/L
Benzo(a)Anthracene	ND	10	ug/L
Benzo(b)Fluoranthene	ND	10	${ t ug/L}$
Benzo(k)Fluoranthene	ND	10	ug/L
Benzo(a)Pyrene	ND	10	ug/L
Benzoic Acid	ND	50	${ t ug/L}$
Benzo(g,h,i)Perylene	ND	10	ug/L
Benzyl alcohol	ND	10	${ t ug/L}$
4-Bromophenylphenyl ether	ND	10	ug/L
Butylbenzylphthalate	ND	10	ug/L
di-n-Butyl phthalate	ND	10	ug/L
Carbazole	ND	10	ug/L
4-Chloroaniline	ND	10	ug/L
bis(2-Chloroethoxy)Methane	ND	10	ug/L
bis(2-Chloroethyl)Ether	ND	10	ug/L
bis(2-Chloroisopropyl)Ether	ND	10	ug/L
4-Chloro-3-Methylphenol	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Chlorophenol	ND	10	ug/L
4-Chlorophenylphenyl ether	ND	10	ug/L
Chrysene	ND	10	ug/L
Dibenz(a,h)Anthracene	ND	10	ug/L
Dibenzofuran	12	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	${\tt ug/L}$
3,3'-Dichlorobenzidine	ND	20	ug/L
2,4-Dichlorophenol	ND	10	\mathtt{ug}/\mathtt{L}
Diethylphthalate	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
Dimethyl Phthalate	ND	10	ug/L
4,6-Dinitro-2-Methylphenol	ND	50	ug/L
2,4-Dinitrophenol	ND	50	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
			_

METHOD: 8270, Semivolatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-01

Brown and Caldwell

SAMPLE ID: MW-1

ANALYTICA	L DATA (cont	inued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2-Diphenylhydrazine	ND	10	ug/L
bis(2-Ethylhexyl)Phthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Fluorene	ND	10	\mathtt{ug}/\mathtt{L}
Hexachlorobenzene	ND	10	ug/L
Hexachlorobutadiene	ND	10	ug/L
Hexachloroethane	ND	10	ug/L
Hexachlorocyclopentadiene	ND	10	ug/L
Indeno(1,2,3-cd)Pyrene	ND	10	ug/L
Isophorone	ND	10	ug/L
2-Methylnaphthalene	24	10	ug/L
2-Methylphenol	ND	10	ug/L
4-Methylphenol	59	10	ug/L
Naphthalene	32	10	ug/L
2-Nitroaniline	ND	50	ug/L
3-Nitroaniline	ND	50	ug/L
4-Nitroaniline	ND	50	ug/L
Nitrobenzene	ND	10	ug/L
2-Nitrophenol	ND	10	ug/L
4-Nitrophenol	ND	50	ug/L
N-Nitrosodiphenylamine	ND	10	ug/L
N-Nitroso-Di-n-Propylamine	ND	10	ug/L
Di-n-Octyl Phthalate	ND	10	ug/L
Pentachlorophenol	ND	50	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L
Pyridine	ND	10	ug/L
1,2,4-Trichlorobenzene	ND	10	ug/L
2,4,5-Trichlorophenol	ND	20	ug/L
2,4,6-Trichlorophenol	ND	10	ug/L

METHOD: 8270, Semivolatile Organics - Water (continued on next page)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-01

Brown and Caldwell

SAMPLE ID: MW-1

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	76	35	114
2-Fluorobiphenyl	50 ug/L	81	43	116
Terphenyl-d14	50 ug/L	62	33	141
Phenol-d5	75 ug/L	17	10	110
2-Fluorophenol	75 ug/L	23	21	110
2,4,6-Tribromophenol	75 ug/L	96	10	123
-				

ANALYZED BY: LH DATE/TIME: 09/06/97 02:38:00 EXTRACTED BY: PC DATE/TIME: 09/04/97 08:00:00

METHOD: 8270, Semivolatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

DATE: 09/12/97

Certificate of Analysis No. H9-9709069-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT NO: 2988-09

PROJECT: BJ-Artesia MATRIX: WATER SITE: Artesia, New Mexico

DATE SAMPLED: 09/02/97 14:00:00 SAMPLED BY: Brown & Caldwell

DATE RECEIVED: 09/03/97 SAMPLE ID: MW-2

ANALYTICAL DAY	TA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	$\mu { t g}/{ t L}$
TOLUENE	ND	1.0 P	$\mu g/L$
ETHYLBENZENE	ND	1.0 P	$\mu { m g}/{ m L}$
TOTAL XYLENE	ND	1.0 P	$\mu g/L$
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		$\mu { m g}/{ m L}$

Surrogate % Recovery 1,4-Difluorobenzene 103 63 4-Bromofluorobenzene

Method 8020A *** Analyzed by: fab

Date: 09/04/97

Liquid-liquid extraction SEMIVOLATILES 09/04/97

Method 3520B *** Analyzed by: PC

Date: 09/04/97 08:00:00

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

09/12/97

PROJECT: BJ-Artesia

SITE: Artesia, New Mexico

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-2

PROJECT NO: 2988-09

MATRIX: WATER

DATE SAMPLED: 09/02/97 14:00:00

DATE RECEIVED: 09/03/97

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Acenaphthene	ND	5	${ t ug/L}$		
Acenaphthylene	ND	5	${ t ug/L}$		
Aniline	ND	5	${ t ug/L}$		
Anthracene	ND	5	\mathtt{ug}/\mathtt{L}		
Benzo(a)Anthracene	ND	5	ug/L		
Benzo(b)Fluoranthene	ND	5	${ t ug/L}$		
Benzo(k)Fluoranthene	ND	5	ug/L		
Benzo(a)Pyrene	ND	5	${ t ug/L}$		
Benzoic Acid	ND	25	\mathtt{ug}/\mathtt{L}		
Benzo(g,h,i)Perylene	ND	5	\mathtt{ug}/\mathtt{L}		
Benzyl alcohol	ND	5	ug/L		
4-Bromophenylphenyl ether	ND	5 5	ug/L		
Butylbenzylphthalate	ND	5	ug/L		
di-n-Butyl phthalate	ND	5	ug/L		
Carbazole	ND	5	ug/L		
4-Chloroaniline	ND	5	ug/L		
bis(2-Chloroethoxy)Methane	ND	5	ug/L		
bis(2-Chloroethyl)Ether	ND	5	ug/L		
bis(2-Chloroisopropyl)Ether	ND	5 .	${ t ug/L}$		
4-Chloro-3-Methylphenol	ND	5	ug/L		
2-Chloronaphthalene	ND	5	ug/L		
2-Chlorophenol	ND	5	${ m ug/L}$		
4-Chlorophenylphenyl ether	ND	5	ug/L		
Chrysene	ND	5	${ t ug/L}$		
Dibenz(a,h)Anthracene	ND	5	ug/L		
Dibenzofuran	ND	5	ug/L		
1,2-Dichlorobenzene	ND	5	ug/L		
1,3-Dichlorobenzene	ND.	5	ug/L		
1,4-Dichlorobenzene	ND	5	ug/L		
3,3'-Dichlorobenzidine	ND	10	ug/L		
2,4-Dichlorophenol	ND	5	${\tt ug/L}$		
Diethylphthalate	ND	5	ug/L		
2,4-Dimethylphenol	ND	5	ug/L		
Dimethyl Phthalate	ND	5	ug/L		
4,6-Dinitro-2-Methylphenol	ND	25	ug/L		
2,4-Dinitrophenol	ND	25	ug/L		
2,4-Dinitrotoluene	ND	5	ug/L		
2,6-Dinitrotoluene	ND	5	ug/L		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-02

Brown and Caldwell

SAMPLE ID: MW-2

ANALYTI	CAL DATA (cont	tinued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2-Diphenylhydrazine	ND	5	ug/L
bis(2-Ethylhexyl)Phthalate	ND	5	ug/L
Fluoranthene	ND	5	ug/L
Fluorene	ND	5 5	ug/L
Hexachlorobenzene	ND -		ug/L
Hexachlorobutadiene	ND	5	ug/L
Hexachloroethane '	ND	5	ug/L
Hexachlorocyclopentadiene	ND	5	ug/L
Indeno(1,2,3-cd)Pyrene	ND	5	ug/L
Isophorone	ND	5	ug/L
2-Methylnaphthalene	ND	5	ug/L
2-Methylphenol	ND	5	ug/L
4-Methylphenol	ND	5	ug/L
Naphthalene	ND	5	ug/L
2-Nitroaniline	ND	25	ug/L
3-Nitroaniline	ND	25	ug/L
4-Nitroaniline	ND	25	ug/L
Nitrobenzene	ND	5	ug/L
2-Nitrophenol	ND	5	ug/L
4-Nitrophenol	ND	25	ug/L
N-Nitrosodiphenylamine	ND	5	ug/L
N-Nitroso-Di-n-Propylamine	ND	5	ug/L
Di-n-Octyl Phthalate	ND	5	ug/L
Pentachlorophenol	ND	25	ug/L
Phenanthrene	ND	5	ug/L
Phenol	ND	5	ug/L
Pyrene	ND	5	ug/L
Pyridine	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	5	ug/L

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-02

Brown and Caldwell

SAMPLE ID: MW-2

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	65	35	114
2-Fluorobiphenyl	50 ug/L	66	43	116
Terphenyl-d14	50 ug/L	96	33	141
Phenol-d5	75 ug/L	15	10	110
2-Fluorophenol	75 ug/L	24	21	110
2,4,6-Tribromophenol	75 ug/L	94	10	123

ANALYZED BY: LH DATE/TIME: 09/06/97 01:37:00 EXTRACTED BY: PC DATE/TIME: 09/04/97 08:00:00

METHOD: 8270, Semivolatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

DATE: 09/12/97

Certificate of Analysis No. H9-9709069-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT: BJ-Artesia PROJECT NO: 2988-09

SITE: Artesia, New Mexico MATRIX: WATER

SAMPLED BY: Brown & Caldwell DATE SAMPLED: 09/02/97 14:20:00

SAMPLE ID: MW-3 DATE RECEIVED: 09/03/97

	ANALYTICAL D	ATA		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
BENZENE		ND	5.0 P	μ g/L
TOLUENE		ND	5.0 P	μ g/L
ETHYLBENZENE		ND	5.0 P	μ g/L
TOTAL XYLENE		ND	5.0 P	$\mu { t g}/{ t L}$
TOTAL VOLATILE AROMATIC H	HYDROCARBONS	ND		μ g/L

Method 8020A ***
Analyzed by: fab

Date: 09/04/97

Liquid-liquid extraction SEMIVOLATILES 09/04/97

Method 3520B ***
Analyzed by: PC

Date: 09/04/97 08:00:00

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-03

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

09/12/97

PROJECT: BJ-Artesia

SITE: Artesia, New Mexico

SAMPLED BY: Brown & Caldwell

SAMPLE ID: MW-3

PROJECT NO: 2988-09

MATRIX: WATER

DATE SAMPLED: 09/02/97 14:20:00

DATE RECEIVED: 09/03/97

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Acenaphthene	ND	5	ug/L		
Acenaphthylene	ND	5	ug/L		
Aniline	ND	5	ug/L		
Anthracene	ND	5	ug/L		
Benzo(a)Anthracene	ND	5	ug/L		
Benzo(b)Fluoranthene	ND	5	ug/L		
Benzo(k)Fluoranthene	ND	5	ug/L		
Benzo(a)Pyrene	ND	5	ug/L		
Benzoic Acid	ND	25	\mathtt{ug}/\mathtt{L}		
Benzo(g,h,i)Perylene	ND	5	ug/L		
Benzyl alcohol	ND	5	ug/L		
4-Bromophenylphenyl ether	ND	5	ug/L		
Butylbenzylphthalate	ND	5	${\tt ug/L}$		
di-n-Butyl phthalate	ND	5	ug/L		
Carbazole	ND	5	ug/L		
4-Chloroaniline	ND	5	ug/L		
bis(2-Chloroethoxy)Methane	ND	5	ug/L		
bis(2-Chloroethyl)Ether	ND	5	ug/L		
bis(2-Chloroisopropyl)Ether	ND	5	ug/L		
4-Chloro-3-Methylphenol	ND	5	ug/L		
2-Chloronaphthalene	ND	5	ug/L		
2-Chlorophenol	ND	5	ug/L		
4-Chlorophenylphenyl ether	ND	5	ug/L		
Chrysene	ND	5	ug/L		
Dibenz(a,h)Anthracene	ND	5	ug/L		
Dibenzofuran	ND	5	ug/L		
1,2-Dichlorobenzene	ND	5	ug/L		
1,3-Dichlorobenzene	ND	5	ug/L		
1,4-Dichlorobenzene	ND	5	ug/L		
3,3'-Dichlorobenzidine	ND	10	ug/L		
2,4-Dichlorophenol	ND	5	ug/L		
Diethylphthalate	ND	5	ug/L		
2,4-Dimethylphenol	ND	5	ug/L		
Dimethyl Phthalate	ND	5	ug/L		
4,6-Dinitro-2-Methylphenol	ND	25	ug/L		
2,4-Dinitrophenol	ND	25	ug/L		
2,4-Dinitrotoluene	ND	5	uq/L		
2,6-Dinitrotoluene	ND	5	ug/L		
			٠, -		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-03

Brown and Caldwell

SAMPLE ID: MW-3

ANALYTIC	AL DATA	(con	tinued)	
PARAMETER	RESULTS		PQL*	UNITS
1,2-Diphenylhydrazine		ND	5	ug/L
bis(2-Ethylhexyl)Phthalate		ND	5	ug/L
Fluoranthene		ND	5	ug/L
Fluorene		ND	5	ug/L
Hexachlorobenzene		ND	5	ug/L
Hexachlorobutadiene		ND	5	ug/L
Hexachloroethane		ND	5	ug/L
Hexachlorocyclopentadiene		ND	5	ug/L
Indeno(1,2,3-cd)Pyrene		ND	5	ug/L
Isophorone		ND	5	ug/L
2-Methylnaphthalene		ND	5 5 5 5	ug/L
2-Methylphenol		ND	5	${ m ug/L}$
4-Methylphenol		ND	5	ug/L
Naphthalene		ND	5	ug/L
2-Nitroaniline		ND	25	ug/L
3-Nitroaniline		ND	25	ug/L
4-Nitroaniline		ND	25	ug/L
Nitrobenzene		ND	5	ug/L
2-Nitrophenol		ND	5	ug/L
4-Nitrophenol		ND	25	${\tt ug/L}$
N-Nitrosodiphenylamine		ND	5	ug/L
N-Nitroso-Di-n-Propylamine		ND	5	ug/L
Di-n-Octyl Phthalate		ND	5	ug/L
Pentachlorophenol		ND	25	ug/L
Phenanthrene		ND	5	${\tt ug/L}$
Phenol		ND	5	ug/L
Pyrene		ND	5	ug/L
Pyridine		ND	5	ug/L
1,2,4-Trichlorobenzene		ND	5	ug/L
2,4,5-Trichlorophenol		ND	10	ug/L
2,4,6-Trichlorophenol		ND	5	ug/L

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-03

Brown and Caldwell

SAMPLE ID: MW-3

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	62	35	114
2-Fluorobiphenyl	50 ug/L	72	43	116
Terphenyl-d14	50 ug/L	82	33	141
Phenol-d5	75 ug/L	14	10	110
2-Fluorophenol	75 ug/L	22	21	110
2,4,6-Tribromophenol	75 ug/L	91	10	123

ANALYZED BY: LH DATE/TIME: 09/06/97 02:08:00 EXTRACTED BY: PC DATE/TIME: 09/04/97 08:00:00

METHOD: 8270, Semivolatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-04

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

Tim Jenkins DATE: 09/12/97

PROJECT: BJ-Artesia PROJECT NO: 2988-09

SITE: Artesia, New Mexico

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/02/97 13:40:00

SAMPLE ID: MW-4 DATE RECEIVED: 09/03/97

ANALYTICAL DA	TA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	$\mu { m g}/{ m L}$
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μq/L

Method 8020A ***
Analyzed by: fab

Date: 09/04/97

Liquid-liquid extraction SEMIVOLATILES 09/04/97

Method 3520B ***
Analyzed by: PC

Date: 09/04/97 08:00:00

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

DATE SAMPLED: 09/02/97 13:40:00

Certificate of Analysis No. H9-9709069-04

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

SAMPLED BY: Brown & Caldwell

09/12/97

PROJECT: BJ-Artesia PROJECT NO: 2988-09

SITE: Artesia, New Mexico MATRIX: WATER

SAMPLE ID: MW-4 DATE RECEIVED: 09/03/97

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Acenaphthene	ND	5	ug/L		
Acenaphthylene	ND	5	\mathtt{ug}/\mathtt{L}		
Aniline	ND	5	${\tt ug/L}$		
Anthracene	ND	5	ug/L		
Benzo(a)Anthracene	ND	5	ug/L		
Benzo(b) Fluoranthene	ND	5 5	${\tt ug/L}$		
Benzo(k)Fluoranthene	ND		ug/L		
Benzo(a) Pyrene	ND	5	ug/L		
Benzoic Acid	ND	25	${ t ug/L}$		
Benzo(g,h,i)Perylene	ND	5	\mathtt{ug}/\mathtt{L}		
Benzyl alcohol	ND	5	ug/L		
4-Bromophenylphenyl ether	ND	5 5 5 5	${ t ug/L}$		
Butylbenzylphthalate	ND	5	\mathtt{ug}/\mathtt{L}		
di-n-Butyl phthalate	ND	5	ug/L		
Carbazole	ND	5	ug/L		
4-Chloroaniline	ND	5	ug/L		
bis(2-Chloroethoxy)Methane	ND	5	ug/L		
bis(2-Chloroethyl)Ether	ND	5	ug/L		
bis(2-Chloroisopropyl)Ether	ND	5	ug/L		
4-Chloro-3-Methylphenol	ND	5 5 5 5	ug/L		
2-Chloronaphthalene	ND	5	ug/L		
2-Chlorophenol	ND	5	ug/L		
4-Chlorophenylphenyl ether	ND	5	ug/L		
Chrysene	ND	5	ug/L		
Dibenz(a,h)Anthracene	ND	5 5	ug/L		
Dibenzofuran	ND	5	ug/L		
1,2-Dichlorobenzene	ND	5	ug/L		
1,3-Dichlorobenzene	ND	5	${ m ug/L}$		
1,4-Dichlorobenzene	ND	5	ug/L		
3,3'-Dichlorobenzidine	ND	10	ug/L		
2,4-Dichlorophenol	ND	5	ug/L		
Diethylphthalate	ND	5	ug/L		
2,4-Dimethylphenol	ND	5	ug/L		
Dimethyl Phthalate	ND	5	ug/L		
4,6-Dinitro-2-Methylphenol	ND	25	ug/L		
2,4-Dinitrophenol	ND	25	ug/L		
2,4-Dinitrotoluene	ND	5	ug/L		
2,6-Dinitrotoluene	ND	5	ug/L		
			J.		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-04

Brown and Caldwell

SAMPLE ID: MW-4

ANALYTI	CAL DATA (cont	inued)	
PARAMETER	RESULTS	PQL*	UNITS
1,2-Diphenylhydrazine	ND	5	ug/L
bis(2-Ethylhexyl)Phthalate	ND	5	ug/L
Fluoranthene	ND	5	ug/L
Fluorene	ND	5	ug/L
Hexachlorobenzene	ND	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
Hexachloroethane	ND	5	ug/L
Hexachlorocyclopentadiene	ND	5	ug/L
Indeno(1,2,3-cd)Pyrene	ND	5	ug/L
Isophorone	ND	5	ug/L
2-Methylnaphthalene	ND	5	ug/L
2-Methylphenol	ND	5	ug/L
4-Methylphenol	ND	5	ug/L
Naphthalene	ND	5	ug/L
2-Nitroaniline	ND	25	ug/L
3-Nitroaniline	ND	25	ug/L
4-Nitroaniline	ND	25	ug/L
Nitrobenzene	ND	5 5	ug/L
2-Nitrophenol	ND		ug/L
4-Nitrophenol	ND	25	ug/L
N-Nitrosodiphenylamine	ND	5	ug/L
N-Nitroso-Di-n-Propylamine	ND	5 5	ug/L
Di-n-Octyl Phthalate	ND		ug/L
Pentachlorophenol	ND	25	ug/L
Phenanthrene	ND	5	ug/L
Phenol	ND	5	ug/L
Pyrene	ND	5 5 5	ug/L
Pyridine	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2,4,6-Trichlorophenol	ND	5	ug/L

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-04

Brown and Caldwell

SAMPLE ID: MW-4

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	84	35	114
2-Fluorobiphenyl	50 ug/L	90	43	116
Terphenyl-d14	50 ug/L	100	33	141
Phenol-d5	75 ug/L	19	10	110
2-Fluorophenol	75 ug/L	30	21	110
2,4,6-Tribromophenol	75 ug/L	98	10	123
Terphenyl-d14 Phenol-d5 2-Fluorophenol	50 ug/L 75 ug/L 75 ug/L	100 19 30	33 10 21	141 110 110

ANALYZED BY: LH DATE/TIME: 09/06/97 00:36:00 EXTRACTED BY: PC DATE/TIME: 09/04/97 08:00:00

METHOD: 8270, Semivolatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-05

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 09/12/97

PROJECT: BJ-Artesia

PROJECT NO: 2988-09

SITE: Artesia, New Mexico

MATRIX: WATER

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/02/97 14:10:00

SAMPLE ID: FB-MW1

DATE RECEIVED: 09/03/97

Al	NALYTICAL DATA			
PARAMETER	RESU	LTS DET: LIM		NITS
BENZENE		ND 1.0	P	$\mu g/L$
TOLUENE		ND 1.0	P	μ g/L
ETHYLBENZENE		ND 1.0	P	μg/L
TOTAL XYLENE		ND 1.0	P	μg/L
TOTAL VOLATILE AROMATIC HYDE	ROCARBONS	ND		μg/L

Method 8020A ***
Analyzed by: fab

Date: 09/04/97

Liquid-liquid extraction SEMIVOLATILES 09/04/97

Method 3520B ***
Analyzed by: PC

Date: 09/04/97 08:00:00

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-05

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

09/12/97

PROJECT: BJ-Artesia

SITE: Artesia, New Mexico

SAMPLED BY: Brown & Caldwell

SAMPLE ID: FB-MW1

PROJECT NO: 2988-09

MATRIX: WATER

DATE SAMPLED: 09/02/97 14:10:00

DATE RECEIVED: 09/03/97

ANALYTICAL DATA				
PARAMETER	RESULTS	PQL*	UNITS	
Acenaphthene	ND	5	ug/L	
Acenaphthylene	ND	5	ug/L	
Aniline	ND	5	ug/L	
Anthracene	ND	5	ug/L	
Benzo(a)Anthracene	ND	5	ug/L	
Benzo(b) Fluoranthene	ND	5	${ t ug/L}$	
Benzo(k)Fluoranthene	ND	5 5	ug/L	
Benzo(a) Pyrene	ND		${ t ug/L}$	
Benzoic Acid	ND	25	ug/L	
Benzo(q,h,i)Perylene	ND	5	${\tt ug/L}$	
Benzyl alcohol	ND	5	ug/L	
4-Bromophenylphenyl ether	ND	5	ug/L	
Butylbenzylphthalate	ND	5	ug/L	
di-n-Butyl phthalate	ND	5	ug/L	
Carbazole	ND	5	ug/L	
4-Chloroaniline	ND	5	${ t ug/L}$	
bis(2-Chloroethoxy)Methane	ND	5	ug/L	
bis(2-Chloroethyl)Ether	ND	5 5	ug/L	
bis(2-Chloroisopropyl)Ether	ND	5	ug/L	
4-Chloro-3-Methylphenol	ND	5	\mathtt{ug}/\mathtt{L}	
2-Chloronaphthalene	ND	5	ug/L	
2-Chlorophenol	ND	5	ug/L	
4-Chlorophenylphenyl ether	ND	5 5	ug/L	
Chrysene	ND	5	ug/L	
Dibenz(a,h)Anthracene	ND	5	ug/L	
Dibenzofuran	ND	5	ug/L	
1,2-Dichlorobenzene	ND	5	ug/L	
1,3-Dichlorobenzene	ND	5	ug/L	
1,4-Dichlorobenzene	ND	5	${\tt ug/L}$	
3,3'-Dichlorobenzidine	ND	10	ug/L	
2,4-Dichlorophenol	ND	5	ug/L	
Diethylphthalate	ND	5	ug/L	
2,4-Dimethylphenol	ND	5	ug/L	
Dimethyl Phthalate	ND	5	ug/L	
4,6-Dinitro-2-Methylphenol	ND	25	ug/L	
2,4-Dinitrophenol	ND	25	ug/L	
2,4-Dinitrotoluene	ND	5	ug/L	
2,6-Dinitrotoluene	ND	5	ug/L	

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-05

Brown and Caldwell

SAMPLE ID: FB-MW1

ANALYTICAL DATA (continued)					
PARAMETER	RESULTS	PQL*	UNITS		
1,2-Diphenylhydrazine	ND	5	ug/L		
bis(2-Ethylhexyl)Phthalate	ND	5	ug/L		
Fluoranthene	ND	5 5 5	ug/L		
Fluorene	ND	5	ug/L		
Hexachlorobenzene	ND	5	ug/L		
Hexachlorobutadiene	ND	5	ug/L		
Hexachloroethane	ND	5	ug/L		
Hexachlorocyclopentadiene	ND	5	ug/L		
Indeno(1,2,3-cd)Pyrene	ND	5	ug/L		
Isophorone	ND	5	ug/L		
2-Methylnaphthalene	ND	5 5	ug/L		
2-Methylphenol	ND	5	ug/L		
4-Methylphenol	ND	5	ug/L		
Naphthalene	ND	5	ug/L		
2-Nitroaniline	ND	25	ug/L		
3-Nitroaniline	ND	25	ug/L		
4-Nitroaniline	ND	25	ug/L		
Nitrobenzene	ND	5	ug/L		
2-Nitrophenol	ND	5	ug/L		
4-Nitrophenol	ND	25	ug/L		
N-Nitrosodiphenylamine	ND	5	ug/L		
N-Nitroso-Di-n-Propylamine	ND	5	ug/L		
Di-n-Octyl Phthalate	ND	5	ug/L		
Pentachlorophenol	ND	25	ug/L		
Phenanthrene	ND	5	ug/L		
Phenol	ND	5	ug/L		
Pyrene	ND	5	ug/L		
Pyridine	ND	5	ug/L		
1,2,4-Trichlorobenzene	ND	5	ug/L		
2,4,5-Trichlorophenol	ND	10	ug/L		
2,4,6-Trichlorophenol	ND	5	ug/L		

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-05

Brown and Caldwell.

SAMPLE ID: FB-MW1

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	88	35	114
2-Fluorobiphenyl	50 ug/L	94	43	116
Terphenyl-d14	. 50 ug/L	106	33	141
Phenol-d5	75 ug/L	20 .	10	110
2-Fluorophenol	75 ug/L	32	21	110
2,4,6-Tribromophenol	75 ug/L	96	10	123

ANALYZED BY: LH DATE/TIME: 09/06/97 01:07:00 EXTRACTED BY: PC DATE/TIME: 09/04/97 08:00:00

METHOD: 8270, Semivolatile Organics - Water

NOTES: * - Practical Quantitation Limit ND - Not Detected

NA - Not Analyzed

COMMENTS:

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

DATE: 09/12/97

Certificate of Analysis No. H9-9709069-06

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

PROJECT: BJ-Artesia PROJECT NO: 2988-09

PROJECT: BJ-Artesia PROJECT NO: 2988-0
SITE: Artesia, New Mexico MATRIX: SOIL

SAMPLED BY: Brown & Caldwell

SAMPLE ID: SE-CONF-SDWL

DATE SAMPLED: 09/01/97

DATE RECEIVED: 09/03/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	5.0 P	μg/Kg
TOLUENE	ND	5.0 P	μg/Kg
ETHYLBENZENE	ND	5.0 P	μg/Kg
TOTAL XYLENE	ND	5.0 P	μg/Kg
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/Kg
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene	100		
Method 8020A ***			
Analyzed by: MF			
Date: 09/09/97			
Total Petroleum Hydrocarbons-Diesel	ND	8.0 P	mg/Kg
Surrogate	% Recovery		
n-Pentacosane	95		
Modified 8015A***			
Analyzed by: RR			
Date: 09/09/97 12:08:00			
Sonication Extraction	09/05/97		
Method 3550A ***			
Analyzed by: DL			
Date: 09/05/97 07:00:00			

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-07

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 09/12/97

PROJECT: BJ-Artesia
SITE: Artesia, New Mexico

PROJECT NO: 2988-09
MATRIX: SOIL

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/01/97

SAMPLE ID: SE-CONF-FLR

DATE RECEIVED: 09/03/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/Kg
TOLUENE	ND	1.0 P	μg/Kg
ETHYLBENZENE	ND	1.0 P	μg/Kg
TOTAL XYLENE	ND	1.0 P	μg/Kg
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/Kg
Surrogate	% Recovery		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene	97		
Method 8020A ***			
Analyzed by: MF			
Date: 09/08/97			
otal Petroleum Hydrocarbons-Diesel	ND	8.0 P	mg/Kg
Surrogate	% Recovery		
n-Pentacosane	93		
Modified 8015A***			
Analyzed by: RR			
Date: 09/09/97 12:47:00			
Sonication Extraction	09/05/97		
Method 3550A ***	, ,		
Analyzed by: DL			
Date: 09/05/97 07:00:00			

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-08

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 09/12/97

PROJECT: BJ-Artesia

PROJECT NO: 2988-09

SITE: Artesia, New Mexico

MATRIX: SOIL

SAMPLED BY: Brown & Caldwell

DATE SAMPLED: 09/02/97 15:00:00

SAMPLE ID: NW-CONF-TOE

DATE RECEIVED: 09/03/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/Kg
TOLUENE	ND	1.0 P	μg/Kg
ETHYLBENZENE	ND	1.0 P	μg/Kg
TOTAL XYLENE	ND	1.0 P	μg/Kg
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/Kg
Surrogate	% Recovery		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene	100		
Method 8020A ***			
Analyzed by: MF			
Date: 09/08/97			
Cotal Petroleum Hydrocarbons-Diesel	ND	8.0 P	mg/Kg
Surrogate	% Recovery		
n-Pentacosane	91		
Modified 8015A***			
Analyzed by: RR			
Date: 09/09/97 01:27:00			

ND - Not detected.

Sonication Extraction Method 3550A *** Analyzed by: DL

Date: 09/05/97 07:00:00

(P) - Practical Quantitation Limit

09/05/97

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Certificate of Analysis No. H9-9709069-09

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Tim Jenkins

DATE: 09/12/97

PROJECT: BJ-Artesia

SITE: Artesia, New Mexico

SAMPLED BY: Provided By SPL

SAMPLE ID: Trip Blank

PROJECT NO: 2988-09

MATRIX: WATER

DATE SAMPLED: 09/02/97 **DATE RECEIVED:** 09/03/97

	ANALYTICAL DATA			
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
BENZENE		ND	1.0 P	μ g/L
TOLUENE		ND	1.0 P	μ g/L
ETHYLBENZENE		ND	1.0 P	μ g/L
TOTAL XYLENE		ND	1.0 P	$\mu { t g}/{ t L}$
TOTAL VOLATILE AROMATIC	HYDROCARBONS	ND		μ g/L

Method 8020A ***
Analyzed by: fab

Date: 09/04/97

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY CONTROL

DOCUMENTATION

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SPL

Contract:

Lab Code:

Case No.: 9709091 SAS No.:

SDG No.:

Matrix Spike - EPA Sample No.: well 307

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	왕	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
	========	==========	=========	=====	=====
Phenol	89	0	26	29	12-110
2-Chlorophenol	89	0	55	62	27-123
1,4-Dichlorobenzene	60	0	43	72	36- 97
N-Nitroso-di-n-prop.(1)	60	0	39	65	41-116
1,2,4-Trichlorobenzene	60	0	49	82	39- 98
4-Chloro-3-methylphenol	89	0	78	88	23 - 97
Acenaphthene	60	0	53	88	46-118
4-Nitrophenol	89	0	50	56	30-150
2,4-Dinitrotoluene	60	0	58	97	50-150
Pentachlorophenol	89	5	83	88	9-103
Pyrene	60	0	57	95	26-127

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC #	% RPD #	QC LI RPD	IMITS REC.
=======================================	=======		=====	======	=====	=====
Phenol	89	28	31	7	42	12-110
2-Chlorophenol	89	59	66	6	40	27-123
1,4-Dichlorobenzene	60	44	73	1	28	36- 97
N-Nitroso-di-n-prop.(1)	60	41	68	5	38	41-116
1,2,4-Trichlorobenzene	60	51	85	4	28	39- 98
4-Chloro-3-methylphenol	89	84	94	7	42	23 - 97
Acenaphthene	60	55	92	4	31	46-118
4-Nitrophenol	89	53	60	7	50	30-150
2,4-Dinitrotoluene	60	61	102	5	50	50-150
Pentachlorophenol	89	89	94	7	50	9-103
Pyrene	60	60	100	5	31	26-127
						l

⁽¹⁾ N-Nitroso-di-n-propylamine

RPD: 0 out of 11 outside limits

Spike Recovery: 0 out of 22 outside limits

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Data File: /chem/h.i/h970904.b/h247tl3.d

Report Date: 05-Sep-1997 09:18

SPL Houston Labs

RECOVERY REPORT

Client Name:

Client SDG: h970904

Sample Matrix: LIQUID

Fraction: SV

Lab Smp Id: LCS

Operator: LH

Level: LOW Data Type: MS DATA

SampleType: MS

SpikeList File: 8270w.spk

Quant Type: ISTD

Method File: /chem/h.i/h970904.b/h8270wQ.m Misc Info: E247F1/H247B03/H247CC1

SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
5 Phenol 9 2-Chloropheno 12 1,4-Dichlorob 21 N-Nitroso-di- 31 1,2,4-Trichlo 36 4-Chloro-3-me 49 Acenaphthene 51 4-Nitrophenol 53 2,4-Dinitroto 64 Pentachloroph 71 Pyrene	enzen 5 n-pro 5 roben 5 thylp 7 luene 5	5 48 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	63.86 69.48 74.57 78.04 9 78.71 1 82.99 3 44.30 7 94.94 4 71.89	12-110 27-123 36-97 41-116 39-98 23-97 46-118 30-150 50-150 9-103 26-127

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 23 Nitrobenzene-d5	50	37	74.76	35-114
\$ 41 2-Fluorobiphenyl	50	40	80.76	43-116
\$ 72 Terphenyl-d14	50	53	105.47	33-141
\$ 3 2-Fluorophenol	75	30	39.54	21-110
\$ 4 Phenol-d5	75	22	28.91	10-110
\$ 61 2,4,6-Tribromophen	75	66	87.82	10-123

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

SPL Blank QC Report

page

 Matrix: Aqueous
 Reported on: 09/11/97 10:50

 Sample ID: BLANK
 Analyzed on: 09/04/97 19:43

Batch: E970904042249 Analyst: LH

METHOD 8270 BLANK H247B03

Compound	Result	Detection Limit	Units
Pyridine	ND	5	ug/L
Phenol	ND	5	ug/L
Aniline	ND	5	ug/L
bis(2-Chloroethyl)ether	ND	5	ug/L
2-Chlorophenol	ND	5 5 5 5 5 5	ug/L
1,3-Dichlorobenzene	ND	5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
Benzyl alcohol	ND	5	ug/L
1,2-Dichlorobenzene	ND	5	ug/L
2-Methylphenol	ND	5	ug/L
bis(2-chloroisopropyl)ethe	ND	5	ug/L
4-Methylphenol	ND	5	ug/L
N-Nitroso-di-n-propylamine	ND	5 5 5 5 5 5	ug/L
Hexachloroethane	ND	5	ug/L
Nitrobenzene	ND	5	ug/L
Isophorone	ND	5	ug/L
2-Nitrophenol	ND	5	ug/L
2,4-Dimethylphenol	ND		ug/L
Benzoic acid	ND	25	ug/L
bis(2-Chloroethoxy)methane	ND	5	ug/L
2,4-Dichlorophenol	ND	5	ug/L
1,2,4-Trichlorobenzene	ND	5	ug/L
Naphthalene	ND	5	ug/L
4-Chloroaniline	ND	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
4-Chloro-3-methylphenol	ND	5	ug/L
2-Methylnaphthalene	ND	5	ug/L
Hexachlorocyclopentadiene	ND	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/L
2,4,6-Trichlorophenol	ND		ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2-Chloronaphthalene	ND	5	ug/L
2-Nitroaniline	ND	25	ug/L
Dimethylphthalate	ND	5 5	ug/L
2,6-Dinitrotoluene	ND	[5	ug/L

<u>Notes</u>

ND - Not detected.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

SPL Blank QC Report

page

Matrix: Aqueous Sample ID: BLANK

Batch: E970904042249

Reported on: 09/11/97 10:50 Analyzed on: 09/04/97 19:43

Analyst: LH

METHOD 8270 BLANK H247B03

Compound	Result	Detection Limit	Units
Acenaphthylene 3-Nitroaniline	ND ND	5 25	ug/L ug/L
Acenaphthene	ND	5	ug/L
2,4-Dinitrophenol	ND	25	ug/L
4-Nitrophenol	ND	25	ug/L
Dibenzofuran	ND	5	ug/L
2,4-Dinitrotoluene Diethylphthalate	ND ND	5 5 5	ug/L ug/L
4-Chlorophenyl-phenylether	ND	5	ug/L
Fluorene	ND	5	ug/L
4-Nitroaniline	ND	25	ug/L
4,6-Dinitro-2-methylphenol	ND	25	ug/L
n-Nitrosodiphenylamine	ND	5	ug/L
1,2-Diphenylhydrazine	ND	5	ug/L
4-Bromophenyl-phenylether	ND	5 5 5	ug/L
Hexachlorobenzene	ND	l I	ug/L
Pentachlorophenol	ND	25	ug/L
Phenanthrene	ND	5	ug/L
Anthracene	ND	5 5 5	ug/L
Carbazole	ND	5	ug/L
Di-n-butylphthalate	ND	ي ا	ug/L
Fluoranthene	ND	5	ug/L
Pyrene	ND ND	5	ug/L ug/L
Butylbenzylphthalate 3,3'-Dichlorobenzidine	ND	10	ug/L
Benzo[a] anthracene	ND	5	ug/L
Chrysene	ND	5	ug/L
bis(2-Ethylhexyl)phthalate	ND	5	ug/L
Di-n-octylphthalate	ND	5	ug/L
Benzo[b] fluoranthene	ND	5	ug/L
Benzo[k] fluoranthene	ND	5	ug/L
Benzo[a]pyrene	ND	5	ug/L
Indeno[1,2,3-cd]pyrene	ND	5	ug/L
Dibenz[a,h]anthracene	ND	5	ug/L

<u>Notes</u>

ND - Not detected.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

SPL Blank QC Report

page

3

Matrix: Aqueous

Sample ID: BLANK

Batch: E970904042249

Reported on: 09/11/97 10:50 Analyzed on: 09/04/97 19:43

Analyst: LH

METHOD 8270 BLANK H247B03

Compound	Result	Detection Limit	
Benzo[g,h,i]perylene	ND	5	ug/L

Surrogate	Result	QC Criteria	Units
2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	42 30 84 79 84 100	10-110 10-123 35-114 43-116	% Recovery % Recovery % Recovery % Recovery % Recovery

Samples in Batch 9709069-01 9709069-02 9709069-03 9709069-04 9709069-05

Notes

ND - Not detected.

* SPL BATCH QUALITY CONTROL REPORT **
METHOD 8020***

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Matrix:

Aqueous

Units: µg/L

Batch Id: HP_R970904202400

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Spike Result Recovery <1> %		QC Limits(**) (Mandatory) % Recovery Range
Benzene	ND	50	43	86.0	62 - 121
Toluene	ND	50	43	86.0	66 - 136
EthylBenzene	ND	50	43	86.0	70 - 136
O Xylene	ND	50	44	88.0	74 - 134
M & P Xylene	ND	100	88	88.0	77 - 140

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike	MS/MSD Relative %	_	Limits(***) (Advisory)
			Result	Recovery	Result	Recovery	Difference	RPD	
	<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
BENZENE	ND	20	15	75.0	15	75.0	0	25	39 - 150
TOLUENE	ND	20	. 16	80.0	15	75.0	6.45	26	56 - 134
ETHYLBENZENE	ND	20	15	75.0	14	70.0	6.90	38	61 - 128
O XYLENE	ND	20	16	80.0	15	75.0	6.45	29	40 - 130
M & P XYLENE	ND	40	31	77.5	30	75.0	3.28	20	43 - 152

Analyst: fab

Sequence Date: 09/04/97

SPL ID of sample spiked: 9709096-02A

Sample File ID: R_I7111.TX0

Method Blank File ID:

Blank Spike File ID: R_I7106.TX0

Matrix Spike File ID: R_I7107.TX0

Matrix Spike Duplicate File ID: R_I7108.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (4th Q '94)

SAMPLES IN BATCH (SPL ID):

9709095-01A 9709095-02A 9709095-03A 9709095-04A 9709095-05A 9709110-01A 9709095-06A 9709118-23A

9709085-04A 9709085-05A 9709085-06A 9709069-01A

9709086-02A 9709086-03A 9709086-01A 9709095-07A

9709096-02A 9709096-01A

SPL BATCH QUALITY CONTROL REPORT **
METHOD 8020***

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Matrix: Units: Aqueous

μg/L

Batch Id: HP_R970904010100

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**) (Mandatory) % Recovery Range		
COMPOUNDS	Blank Result	Added <3>	Result	Recovery			
Benzene	ND	50	45	90.0	62 - 121		
Toluene	ND	50	47	94.0	66 - 136		
EthylBenzene	ND	50	46	92.0	70 - 136		
) Xylene	ND	50	47	94.0	74 - 134 -		
4 & P Xylene	ND	100	93	93.0	77 - 140		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	_	Simits(***) (Advisory)
	<2>	<3>	Result	Recovery	Result	Recovery <5>	Difference	RPD Max.	Recovery Range
BENZENE TOLUENE ETHYLBENZENE O XYLENE M & P XYLENE	ND ND ND ND		18 19 19 19 19	95.0 95.0 95.0	18 19 18 18	95.0 90.0 90.0	0 0 5.41 5.41 5.26	25 26 38 29 20	39 - 150 56 - 134 61 - 128 40 - 130 43 - 152

Analyst: fab

Sequence Date: 09/04/97

SPL ID of sample spiked: 9708C74-10A

Sample File ID: R_I7082.TX0

Method Blank File ID:

Blank Spike File ID: R_I7078.TX0

Matrix Spike File ID: R_I7091.TX0

Matrix Spike Duplicate File ID: R_I7092.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (4th Q '94)

SAMPLES IN BATCH (SPL ID):

 9708C95-01A
 9708C74-01A
 9708C74-03A
 9709069-09A

 9709069-02A
 9709069-04A
 9709069-05A
 9709069-03A

 9709085-03A
 9708C74-14A
 9708C74-13A
 9708C74-09A

 9708C74-10A
 9708C74-11A
 9708C74-12A
 9708A44-02A

* SPL BATCH QUALITY CONTROL REPORT **
METHOD 8020***

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Matrix: Units: Soil

μg/Kg

Batch Id: VARD970909091600

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Spike Result Recovery <1> %		QC Limits(**) (Mandatory) % Recovery Range
Benzene	ND	100	90	90.0	66 - 123
Toluene	ND	100	90	90.0	74 - 125
EthylBenzene	ND	100	90	90.0	84 - 125
O Xylene	ND	100	90	90.0	76 - 137
M & P Xylene	ND	200	180	90.0	81 - 131

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplie	Spike	MS/MSD Relative %		Limits(***) (Advisory)
	<2>	<3>	Result	Recovery	Result	Recovery	Difference	RPD Max.	Recovery Range
BENZENE	ND:	100.0	96	96.0	100	100	4.08	33	47 - 143
TOLUENE	36	100.0	120	84.0	120	84.0	0	35	46 - 148
ETHYLBENZENE	ND	100.0	86	86.0	90	90.0	4.55	40	32 - 151
O XYLENE	2.5	100.0	81	78.5	84	81.5	3.75	24	35 - 143
M & P XYLENE	1.7	200.0	170	84.2	180	89.2	5.77	38	25 - 139

Analyst: MF

Sequence Date: 09/09/97

SPL ID of sample spiked: 9709079-07A

Sample File ID: D_I7255.TX0

Method Blank File ID:

Blank Spike File ID: D_I7258.TX0
Matrix Spike File ID: D_I7252.TX0

Matrix Spike Duplicate File ID: D_I7253.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (4th Q '95)

(***) = Source: SPL-Houston Historical Data (4th Q '95)

SAMPLES IN BATCH (SPL ID):

9709079-01A 9709079-04A 9709079-05A 9709079-02A 9709079-03A 9709079-06A 9709377-01A 9709377-02A 9709118-02A 9709386-01A 9709386-04A 9709386-02A

9709378-01A 9709386-04A 9709386-02A 9709378-01A 9709118-22A 9709079-07A 9709069-06A

9708C76-03A

* SPL BATCH QUALITY CONTROL REPORT **
METHOD 8020***

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Matrix: Units: Soil µg/Kg Batch Id: VARD970908001010

LABORATORY CONTROL SAMPLE

SPIKE COMPOUNDS	Method Blank Result <2>	Spike Added <3>	Blank Spike Result Recovery <1> %		QC Limits(**) (Mandatory) % Recovery Range
Benzene	ND	50	41	82.0	66 - 123
Toluene	ND	50	41	82.0	74 - 125
EthylBenzene	ND	50	43	86.0	84 - 125
O Xylene	ND	50	43	86.0	76 - 137
M & P Xylene	ND	100	86	86.0	81 - 131

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Duplie	Spi ke	MS/MSD Relative %	-	Simits(***) (Advisory)
			Result	Recovery	Result	Recovery	Difference	RPD	
	<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
BENZENE	ND	20.0	15	75.0	16.5	82.5	9.52	33	47 - 143
TOLUENE	ND	20.0	15	75.0	16.6	83.0	10.1	35	46 - 148
ETHYLBENZENE	ND	20.0	15	75.0	15.7	78.5	4.56	40	32 - 151
O XYLENE	ND	20.0	15	75.0	16.0	80.0	6.45	24	35 - 143
M & P XYLENE	2.2	40.0	29	67.0	32.2	75.0	11.3	38	25 - 139

Analyst: HS

Sequence Date: 09/08/97

SPL ID of sample spiked: 9709089-03A

Sample File ID: D_I7197.TX0

Method Blank File ID:

Blank Spike File ID: D_I7193.TX0

Matrix Spike File ID: D_I7194.TX0

Matrix Spike Duplicate File ID: D_I7212.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)|/[(<4> + <5>)| x 0.5]| x 100

(**) = Source: SPL-Houston Historical Data (4th Q '95)

(***) = Source: SPL-Houston Historical Data (4th Q '95)

SAMPLES IN BATCH (SPL ID):

9709069-07A 9709069-08A 9709118-06A 9709144-01A 9709089-03A 9709240-18A 9709089-07A 9709118-03A

* SPL BATCH QUALITY CONTROL REPORT **

Mod. 8015 - Diesel

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713)660-0901

Matrix: Units: Soil

mg/Kg

Batch Id: HPVV970908192300

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
Diesel	ND	167	140	83.8	82 - 128

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike	MS/MSD Relative %		Limits(***) (Advisory)
:	<2>	<3>	Result	Recovery	Result	Recovery	Difference	RPD Max.	Recovery Range
DIESEL	ND	167	138	82.6	141	84.4	2.16	11	32 - 162

Analyst: RR

Sequence Date: 09/08/97

SPL ID of sample spiked: 9709069-08B

Sample File ID: VVI7013.TX0

Method Blank File ID:

Blank Spike File ID: VVI7006.TX0 Matrix Spike File ID: VVI7015.TX0

Matrix Spike Duplicate File ID: VVI7014.TX0

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

Recovery = ((<1> - <2>) / <3>) x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = $|(4 - 45)|/[(4 + 5)] \times 0.5] \times 100$

(**) = Source: SPL-Houston Historical Data (3rd Q '95)

(***) = Source: SPL-Houston Historical Data (1st Q '94)

SAMPLES IN BATCH (SPL ID) :

9709069-08B 9709084-01B 9709069-06B 9709069-07B

CHAIN OF CUSTODY

AND

SAMPLE RECEIPT CHECKLIST

		S)	SPL, D	Inc.				SPL W	Workorder N	- <u>ن</u> <u>ن</u>	<		15216
(1)	Analysis	Analysis Request &	Chair	n of C	Chain of Custody Record	Recor	q)		h θ h θ h)ر(page	Jo T
Client Name: 2) SELVE	SELVEES / BROWN + CALDWELL matrix bottle	CALOWELL STATES	matrix	bottle	size	pres.		i	Rec	queste	Requested Analysis	ysis	
Address/Phone: 415 Lou	LOUGHANA			sselg	[siv					2			
Client Contact: TIM JEN	JENKINS			Jec §						164	0		
Project Name: BJ-ARTE	STESTA		lios = d10 =	lms: [siv:	z09	orp HN	nisti	17		0	<u>_</u>		
Project Number: 2988-7	29			= \ = \	[=9					OK.	18-		
Project Location: ACTEST	A NM		ter dge	oii s	ī		10 1	7		<u>t-1</u>	- χ		
Invoice To: BC				glas	zog	ISZH	əqu	11		Hd	JE		
SAMPLE ID	DATE TIME	E comp grab	= M	L=F	3=8	I=1	In _N	0	. 	L	9		
MW-1	9/2/97 1320		%	S	1,40	(S) I	A	X					
M W -2	9/2/97 1400		*	B	04'(2	1 2	Z Z			<u> </u>		
MW-3	9/2/9-11420		3	M	3,1	2	7	X					
3 X -C	9/2/97 1340	.5	3	46	1,40	3	7	X					
FB-MWI	12/67 1415	3	⋛	4	1,40	3	1	スメ					
SE-CONF-SOWL	9/1/97	7	S	9	ω	1	N			V	×		
SE-CONF- FIR	41/97	. 7	S	8	8	1	N			X	メ		
SELLONEN 39				B									
NW-CONF-TO'E	9/2/97 1500	7	S	$ \mathcal{D} $	ω	1	2			X	 		
Client/Consultant Remarks				-									
			1.4001410	aboratory remarks:	:2						Intact?	्रे टिंड	N DN
Requested TAT	Special Reporting Requirements		Fax Results		Raw Data	-S	ecial Dete	Special Detection Limits (specify):	(specify):				PM review (initial):
(Standard (XC	lcvel 3	3 oc		Level 4 QC								
24hr 🔲 72hr	1. Relinquisted by Sampler	oler:			12/2	Z (Li	17.7	2. Recei	2. Received by:	A	プで		
48hr 🔲 Standard 🔲	3. Relinquished Øy:				10/10		time	4. Beceive	word by:		i	1	
Other 🔲	5. Relinquished by:				date 2	24 1 1 1	time	6. Rece	Received by La	boratory:	7		
8880 Interchange Drive	U TY 77054	0 077 (612)	-					_ ;					
	Houston, 1A //U)4	(/13) 000-0	106		, J (000 Am	assador	Caffery P	arkway,	Scott,	500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775	3 (318) 2	37-4775
459 Hughes Drive, Traverse City, MI 49684 (616) 947-5777	rse City, MI 49684	(616) 947-57	77		J	1511 E.	Oranget	orpe Ave	nue, Fu	llerton,	CA 9263	31 (714)	1511 E. Orangethorpe Avenue, Fullerton, CA 92631 (714) 447-6868

SPL Houston Environmental Laboratory

Sample Login Checklist

	- 1	8		
Da	te: 9/3/97 Time:	410		
SP	L Sample ID:			
	9709069			
			Yes	<u>No</u>
l	Chain-of-Custody (COC) form is pre	esent.		
2	COC is properly completed.			
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the shi	pping container.		
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.			
7	If no, Non-Conformance Worksheet	has been completed.		
8	Sample containers arrived intact			,
9	Temperature of samples upon arrival	l:		$\forall_{\mathbf{C}}$
10	Method of sample delivery to SPL:	SPL Delivery		
		Client Delivery		
		FedEx Delivery (airbill #)	4995	76460
		Other:		
11	Method of sample disposal:	SPL Disposal		
		HOLD		
		Return to Client		
Nai	/	Date:		
	M_{i}	9/2/0	7 7	