GW - 72

MONITORING REPORTS

DATE: Oct 1998

BROWN AND CALDWELL

Suite 2500, 1415 Louisiana, Houston, TX 77002 (713) 759-0952 • (713) 308-3886			Τ	RANSMITTA	L MEMORANDUM	
	·			Date: 10/20/9	98	Job No: 12832
To: Wayn	e Price			Subject:	Hobbs, New Mexico	Facility
State of New Mexico			Contract No:			
Energy, Minerals and Natural Resources Dept.			Equipment N	lo:		
Oil Conservation Division			Spec. Ref:			
2040 South Pacheco Street, State Land Off. Bld.			Submittal No	:	· · · · · · · · · · · · · · · · · · ·	
Santa	Fe, New Mexic	o 8 7505				
WE ARE SE	ENDING:	Attache	d 🗌 Ur	nder separate o	cover via 1 st Class M	fail the following items:
Shop Drawings			ans	Samples		
Copy of let	ter			ther: Final Re	eport	
					-	
THESE ARE TRANSMITTED AS CHECKED BELOW: SUBMITTAL REVIEW ACTIONS:						
For approval					s taken	
					S	
As requested					Bomorko	
With submittal review action noted					Remarks	
Copies	Date	No.			Description	
1	10/19/98		Final June 199	98 Groundwate	r Sampling Report	

Hobbs, New Mexico Facility

REMARKS

00T 2 3 - ---

cc: Chris Williams, State of New Mexico Jo Ann Cobb, BJ Services Company, U.S.A. Roger Sullivan, BJ Services Company, U.S.A. Brown and Caldwell File Transmittal File w/o attachment Client File w/o attachment

Ruhund Reprove

Richard Rexroad

BROWN AND CALDWELL

FINAL JUNE 1998 GROUNDWATER SAMPLING REPORT HOBBS, NEW MEXICO FACILITY

BJ SERVICES COMPANY, U.S.A.

OCTOBER 19, 1998

JUL II I

1. 1

161

ŧ ì

FINAL JUNE 1998 GROUNDWATER SAMPLING REPORT HOBBS, NEW MEXICO FACILITY BJ SERVICES COMPANY, U.S.A.

Prepared for

BJ Services Company, U.S.A. 8701 New Trails Drive The Woodlands, Texas

BC Project Number: 2832.13

Mus

Christopher E. Angel, R.G. Assistant Geologist

October 19, 1998

Brown and Caldwell 1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

"This report was prepared in accordance with the standards of the environmental consulting industry at the time it was prepared. It should not be relied upon by parties other than those for whom it was prepared, and then only to the extent of the scope of work which was authorized. This report does not guarantee that no additional environmental contamination beyond that described in this report exists at this site."

P:\Wp\BJSERV\2832\040R.DOC

Contents

CONTENTS

1.0	INT	RODUCTION	1
2.0	GRC	2	
	2.1	Groundwater Measurements And Sampling	2
	2.2	Results Of Groundwater Analyses	3
	2.3	Natural Attenuation Evaluation	4
3.0	REN	IEDIATION SYSTEM	7
4.0	FEB	RUARY 1998 SOIL SAMPLING AND ANALYSIS	11
5.0	CON	NCLUSIONS AND RECOMMENDATIONS	13
	5.1	Conclusions	13
	5.2	Recommendations	13

DISTRIBUTION AND QA/QC REVIEWER'S SIGNATURE

FIGURES

- 2 Potentiometric Surface Map for June 23, 1998
- 3 Benzene Isoconcentration and Total BTEX Distribution Map for June 23, 1998
- 4 Total Petroleum Hydrocarbons Distribution Map for June 23, 1998

TABLES

- 1 Site Chronology
- 2 Cumulative Groundwater Elevation Data
- 3 Field Screening Results for Groundwater Samples
- 4 Cumulative Analytical Results for Groundwater Samples
- 5 Laboratory Analytical Results for Natural Attenuation Evaluation Parameters
- 6 Summary of Analytical Results for Air Emissions
- 7 Analytical Results for February 1998 Soil Sampling

P:\Wp\BJSERV\2832\040R.DOC

APPENDICES

- A Groundwater Sampling Forms
- B Laboratory Analytical Report for Groundwater Samples
- C Soil Boring Logs and Monitor Well Construction Diagrams
- D Laboratory Analytical Report for Soil Samples

P:\Wp\BJSERV\2832\040R.DOC

1.0 INTRODUCTION

Brown and Caldwell conducted field activities associated with the June 1998 quarterly groundwater sampling event at BJ Services Company, U.S.A. (BJ Services) facility located at 2708 West County Road, in Hobbs, New Mexico. The facility layout is shown in Figure 1.

The facility formerly operated an above-grade on-site fueling system. Subsurface impact near a diesel fueling system was first detected by the New Mexico Oil Conservation Division (NMOCD) during an on-site inspection on February 7, 1991. The fueling system was taken out of operation in July 1995. As the result of the diesel fuel release, the NMOCD has required a quarterly groundwater monitoring program to assess the hydrocarbon constituents in the groundwater. A biosparging system was activated in November 1995 to remediate soil and groundwater at the facility. A site chronology detailing the history of the fueling system, the groundwater remediation system, and previous sampling events is presented on Table 1. Expansions of the biosparging system were performed in March/April 1997 and February/March 1998.

During the June 1998 sampling event, groundwater samples collected from all monitor wells were analyzed for gasoline and diesel range total petroleum hydrocarbons (TPH-G and TPH-D) and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Additionally, samples from downgradient wells MW-10, MW-11A, and MW-12 were analyzed for sulfate, nitrate, and dissolved methane This report presents the results of the groundwater sampling event, a description of the field activities, and a summary of the analytical results. A groundwater potentiometric surface map, a benzene concentration map, and a hydrocarbon distribution map are included. A presentation of the results of soil sampling conducted in conjunction with the biosparging system expansion in February/March 1998 is also included.

P:\Wp\BJSERV\2832\040R.DOC

2

2.0 GROUNDWATER SAMPLING AND ANALYSES

Brown and Caldwell purged and sampled the groundwater monitoring wells at the facility on June 23, 1998 to determine concentrations of dissolved-phase hydrocarbons in groundwater. The following subsections describe the activities conducted during this sampling event and present the results of the groundwater analyses.

2.1 Groundwater Measurements and Sampling

Eleven monitor wells were sampled during the June 1998 sampling event. A site map depicting the locations of the monitor wells is presented as Figure 1. As noted in previous sampling reports, monitor well MW-2 can not be located and is assumed destroyed by facility activities such as grading.

Groundwater level measurements were obtained from the monitor wells prior to purging and sampling the wells. The groundwater levels were obtained with an oil/water interface probe and recorded to the nearest 0.01 foot. A cumulative table of groundwater elevation data is presented on Table 2. The groundwater elevation data indicates that the general groundwater flow direction is to the east with a hydraulic gradient of approximately 0.005 foot/foot (ft/ft). A potentiometric surface map is presented in Figure 2. Approximately 0.22 feet of phase-separated hydrocarbons was observed in monitor well MW-4 and 0.06 feet in MW-1 during this sampling event; a hydrocarbon sheen was observed in monitor well MW-9.

Groundwater samples were collected after purging the wells with a submersible pump to remove at least three well volumes of groundwater. Field parameter measurements for pH, conductivity and temperature were collected after each well volume was purged. Two consecutive readings within five percent were used to indicate that groundwater had stabilized. The parameters in each monitor well typically stabilized after two well volumes had been removed; however, at least three well volumes were removed from each well.

P:\Wp\BJSERV\2832\040R.DOC

Additional groundwater parameters were measured during the purging and sampling activities to assess the potential for natural attenuation. These parameters were dissolved oxygen (DO), dissolved ferrous iron, alkalinity, and reduction-oxidation potential (redox). The field parameter readings were recorded in the field log book and are listed on the groundwater sampling forms included in Appendix A. The field screening results for groundwater samples are presented on Table 3.

A pump was utilized to perform micro-purging of the wells. Typically, groundwater levels were maintained at approximately 90% or more of the static water level in wells. Groundwater samples were collected directly from the pump discharge after completion of purging operations. Each sample was transferred to laboratory-prepared, clean glass or plastic containers sealed with Teflon[®]-lined lids, labeled, and placed on ice in an insulated cooler for shipment via overnight courier to the analytical laboratory. Each cooler was accompanied by completed chain-of-custody documentation.

Field measurement equipment was decontaminated prior to and after each use. Decontamination procedures consisted of washing with fresh water and a non-phosphate detergent and rinsing with deionized (DI) water. Purged water and excess water generated by equipment cleaning operations were discharged to the wastewater storage facility at the site for disposal by BJ Services.

2.2 **Results of Groundwater Analyses**

Groundwater samples collected during this sampling event were analyzed for diesel- and gasolinerange total petroleum hydrocarbons (TPH-D and TPH-G) gasoline range by EPA Method 8015 Modified and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method 8020. Additionally, three monitor wells (MW-10, MW-11A and MW-12) and one duplicate sample from MW-12 were sampled for methane, nitrate, and sulfate.

P:\Wp\BJSERV\2832\040R.DOC

Current and cumulative analytical results for BTEX, TPH-D, and TPH-G are presented in Table 4. The June 1998 analytical results for nitrate, sulfate, and dissolved methane analyses performed on groundwater samples from monitor wells MW-10, MW-11A, and MW-12 are presented in table 5.

BTEX constituent concentrations in excess of applicable laboratory detection limits were reported in eight of the 11 groundwater samples collected during this sampling event. Benzene concentrations were below the New Mexico Water Quality Control Commission Standard of 10 micrograms per liter (ug/L) in monitor wells MW-5, MW-7, MW-8, MW-9, and MW-11A. Figure 3 presents a benzene isoconcentration and total BTEX distribution map for the June 1998 sampling event. A total petroleum hydrocarbon distribution map for the June 1998 sampling event is presented in Figure 4. The laboratory analytical report and chain of custody record for the groundwater samples are included in Appendix B.

Benzene concentrations in monitor wells generally decreased or remained stable. Benzene concentrations in the off-site monitor well, MW-9, have generally stabilized at a concentration below the New Mexico Water Quality Control Commission standard of 0.01 mg/L. Benzene concentrations in on-site wells have generally decreased or stabilized at low concentrations since the original start-up of the bio-sparging system in August 1995 and modifications to the system in March 1998.

2.3 Natural Attenuation Evaluation

It appears that natural attenuation of dissolved phase BTEX is occurring in the vicinity of monitor wells MW-10, MW-11A, and MW-12. The primary evidence of natural attenuation is plume behavior. Concentrations of dissolved phase BTEX have stabilized or decreased in the area of monitor wells MW-10, MW-11A, and MW-12 subsequent to removal of a field waste tank (see Figure 1) in March 1997. Furthermore, the following lines of geochemical evidence suggest that intrinsic bioremediation, an important natural attenuation mechanism, is occurring:

P:\Wp\BJSERV\2832\040R.DOC

- Dissolved oxygen (DO) concentrations measured in monitor wells MW-10, MW-11A, and MW-12 are depressed relative to background. DO concentrations of 1.13 milligrams per liter (mg/L), 0.35 mg/L, and 0.45 mg/L were measured in monitor wells MW-10, MW-11A, and MW-12, respectively. These concentrations are less than the measured DO concentrations of 1.98 mg/L, 2.52 mg/L, and 1.54 mg/L in monitor wells MW-5, MW-7, and MW-8, respectively, which are upgradient or cross-gradient wells believed to exhibit background conditions. DO is utilized during intrinsic bioremediation, and therefore DO concentrations should be depressed in areas where intrinsic bioremediation is occurring.
- 2. Nitrate concentrations were measured at less than 0.01 mg/L in monitor wells MW-10, MW-11A and MW-12. These concentrations are less than the nitrate concentrations of 3.87 mg/L, 3.92 mg/L, and 1.84 mg/L measured in March 1998 in monitor wells MW-5, MW-7, and MW-8, respectively, which are believed to exhibit background conditions. Nitrate is utilized during intrinsic bioremediation after DO is depleted, and therefore nitrate concentrations should be depressed in areas where intrinsic bioremediation is occurring.
- 3. Ferrous iron was measured at concentrations of 9.8 mg/L, 5.6 mg/L, and 9.2 mg/L in monitor wells MW-10, MW-11A, and MW-12, respectively. Ferrous iron was not detected in any of the other monitor wells at the site, including the background wells MW-5, MW-7, and MW-8. When DO and nitrate are depleted, anaerobic microbes which utilize other electron acceptors become active. Ferrous iron is the reduction product of ferric iron, a common electron acceptor. Therefore, ferrous iron concentrations should increase in areas where intrinsic bioremediation is occurring.

Methane is a reaction product generated during utilization of carbon dioxide as an electron acceptor, and its concentration should therefore increase in areas where depletion of DO, nitrate, and ferric iron has occurred. The concentration of methane is elevated in monitor well MW-10, suggesting that utilization of carbon dioxide may be occurring locally in that area.

Sulfate concentrations in monitor wells MW-10, MW-11A, and MW-12 measured in June 1998 are comparable to those observed in monitor wells MW-5, MW-7, and MW-8 in March 1998. It therefore appears that sulfate is not being utilized during intrinsic bioremediation, and that DO, nitrate, and ferric iron are supplying adequate electron acceptors to facilitate natural attenuation. In addition, carbon dioxide is apparently acting as an electron acceptor in the vicinity of monitor well MW-10, as indicated by elevated dissolved methane concentrations. Data regarding alkalinity, which is expected to increase during the course of bioremediation processes, is inconclusive.

P:\wp\bjserv\2832\040r.doc

It is recommended that monitoring for natural attenuation evaluation parameters continue in this area.

P:\Wp\BJSERV\2832\040R.DOC

1 1

Î. Î.

i i i

1

"Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

3

 $\textcircled{\black}$

3.0 REMEDIATION SYSTEM

Brown and Caldwell submitted a Remedial Action Plan (RAP) to the New Mexico OCD in May 1994. Based on the results of previous investigations conducted by Brown and Caldwell and Roberts/Schornick and Associates, Inc. (RSA), Brown and Caldwell recommended the installation of a biosparging system. The biosparging system simultaneously treats volatile and semivolatile contaminants adsorbed directly to the soil (i.e., residual) as well as contaminants present in soil moisture (i.e., dissolved phase) within the capillary fringe and vadose zone. Additionally, the biosparging system removes volatile and semivolatile contaminants from the saturated zone. The biosparging system operates by injecting air into the saturated zone and extracting air from the vadose zone through a network of wells and piping. The continuous flushing of air through the saturated zone increases the dissolved oxygen concentration in the groundwater and in soil moisture present in the capillary fringe and vadose zone. The elevated dissolved oxygen content facilitates the activities of indigenous microorganisms to accelerate biodegradation of the contaminants. The flushing of the air also strips the volatile and semivolatile contaminants.

The New Mexico OCD approved the RAP on August 11, 1994. Installation activities for the biosparging system were conducted between August 2 through 24, 1995. Nineteen combined injection/extraction wells, three vacuum extraction wells, associated piping, and one extraction blower and one injection blower were installed. An additional vapor extraction well, VE-4, was installed and connected to the vapor extraction system in April 1997. Five additional injection wells, AI-20 through AI-24, were installed in February 1998. Injection wells AI-20 through AI-24, were installed in February 1998. Injection wells AI-20 through AI-24, were constructed such that a 10-foot screen submergence was achieved, thereby providing treatment to an expanded vertical interval of the aquifer in the central portion of the plume. Injection wells AI-20 through AI-24 are supplied by a separate blower than the one used to supply injection wells AI-10 through AI-19 in order to avoid short-circuiting to wells with less screen submergence. Three additional vapor extraction wells, VE-5 through VE-7, were also installed in February 1998. The new injection and extraction wells were brought on-line on March 10, 1998, and operation of

P:\Wp\BJSERV\2832\040R.DOC

injection wells AI-1 through AI-19, which had been suspended on February 19, 1998, was resumed on March 24, 1998.

At the direction of the New Mexico OCD, monitor wells MW-11A and MW-12 were also installed in February 1998 as replacements for monitor well MW-11, which had apparently been destroyed in 1997. Monitor wells MW-11A and MW-12 are remote from and not related to the biosparging system. A discussion of soil sampling and analysis conducted at the site in February 1998 is presented in Section 4.0. Discussions pertaining to the effects of the remediation system on groundwater and air at the site are presented below.

Concentrations of benzene and total BTEX in monitor well MW-1 measured during the June 1998 groundwater sampling event have decreased relative to those observed during the March 1998 sampling event. Benzene concentrations dropped from 4,800 μ g/L to 53 μ g/L, and total BTEX concentrations dropped from 15,600 µg/L to 2,713 µg/L between March 1998 and June 1998. During this same time period, benzene concentrations decreased from 140 μ g/L to 100 μ g/L in monitor well MW-3. These decreases are likely attributable to increased air flow being applied to the aquifer through air injection wells AI-20 through AI-24.

The presence of 0.22 feet of phase-separated hydrocarbons (PSH) in monitor well MW-4 and 0.06 feet of PSH in MW-1 was noted during the June 1998 groundwater sampling event. Operation of the new sparging and extraction wells in the central portion of the hydrocarbon plume since early March 1998 may have mobilized free product, resulting in its appearance in monitor wells MW-1 and MW-4. It is believed that application of additional remediation stress and continued PSH recovery operations from monitor wells near the center of the hydrocarbon plume will ultimately result in removal of PSH from the subsurface.

The vapors recovered during the extraction process are discharged to the atmosphere in accordance with the State of New Mexico Air Quality Regulations. Following initial system startup operations, effluent air samples were collected on a monthly basis from the recovered vapors to monitor the bioremediation process and emission rate. Upon receiving a determination from the State of New P:\Wp\BJSERV\2832\040R.DOC 8

Mexico that an air permit is not required, effluent air samples were collected and analyzed voluntarily on a quarterly basis through July 1997. The air samples were analyzed for TPH using EPA Method Modified 8015A (Air) and for total volatile aromatic hydrocarbons (BTEX) using EPA Method 5030/8020 (modified).

The analytical results demonstrated a significant reduction in hydrocarbon vapor concentrations and emissions rates between November 1995 and July 1997. Total BTEX concentrations decreased from 391 parts per million by volume (ppmv) in November 1995 to 17.3 ppmv in July 1997. The corresponding BTEX emissions decreased from 0.77 lb/hour to 0.03 lb/hour. TPH concentrations decreased from 1,870 ppmv in November 1995 to 65 ppmv in July 1997. The corresponding TPH - Volatile Organic Compound (VOC) emissions rates decreased from 3.21 lb/hour to 0.08 lb/hour. These emission rates were well below the regulatory limit of 10 lb/hour for VOCs. Therefore, use of a field monitoring instrument utilizing a flame ionization detector (FID) to measure the VOC concentration in the vapors commenced in September 1997. An effluent air sample was collected during the December 1997 sampling event, however, because the FID used during the sampling event could not be properly calibrated within the range of the effluent air to be sampled. The VOC measurements collected using the FID correspond to TPH concentrations previously determined in the analytical laboratory. The VOC concentration measured using the FID during the June 1998 sampling event was 190 ppmv.

The TPH concentration of 190 ppmv measured during the June 1998 sampling event shows a substantial drop from the 1500 ppmv TPH discharge rate observed during the March 24, 1998 groundwater sampling event. The June 1998 TPH discharge rate of 190 ppmv is comparable to TPH concentrations measured during the time period from March 1997 through December 1997, prior to the system modifications performed in February and March 1998. The increased TPH concentration observed in the March 1998 event relative to the time period from March 1997 through December 1997 is believed to be a result of the addition of air injection wells AI-20 through AI-24 to the biosparging system, but discharge rates have returned to more typical levels during the June 1998 groundwater sampling event.

P:\Wp\BJSERV\2832\040R.DOC

The VOC emissions rate calculated for the June 1998 groundwater sampling event was 0.24 lb/hour. This emission rate is below the regulatory limit of 10 lb/hour for VOCs. The June 1998 VOC emissions rate is typical of VOC emissions rates during the time period of March 1997 through December 1997, and represents a substantial drop from the 1.91 lb/hour VOC emissions rate calculated for the March 1998 sampling event.

A cumulative summary of analytical results for air emissions monitoring is included in Table 5. These results are based on both laboratory and field analyses.

The vapor extraction system was operating at 21.5 inches H_2O vacuum with an average flow of 124 cubic feet per minute (cfm) at 153°F during the June 1998 sampling event. The air injection system for the new injection wells, AI-20 through AI-24, was operating at an average flow of 35 cfm at 3 pounds per square inch (psi) at a temperature greater than 200°F during the June 1998 sampling event. The air injection system for the old injection wells was simultaneously operating at an average flow of 40 cfm at 7 psi at a temperature greater than 200°F.

P:\Wp\BJSERV\2832\040R.DOC

 (\mathbf{R})

4.0 FEBRUARY 1998 SOIL SAMPLING AND ANALYSIS

Soil samples were collected during the installation of air injection, vacuum extraction, and monitor wells at the site in February 1998, as previously discussed in Section 3.0. The borings for these wells were completed using a combination of air rotary and hollow stem auger drilling techniques. Air rotary drilling techniques were used to advance the borings from the surface to the top of the interval to be sampled. Hollow stem auger drilling techniques were used to collect soil samples and to advance the boreholes through the saturated zone.

A decontaminated split spoon sampler was used to collect soil cores from the subsurface. Cuttings and recovered cores were characterized lithologically and classified in accordance with the Unified Soil Classification System. The boring logs and well completion diagrams for air injection wells AI-20 through AI-24, vacuum extraction wells VE-5 through VE-7, and monitor wells MW-11A and MW-12 are contained within Appendix C.

Recovered soil cores were scanned with a photoionization detector (PID). Soil cores were collected from the first boring, AI-24, at 5-foot intervals from 40 feet to 50 feet below grade and continuously from 50 feet to 55.5 feet. No PID response was noted in the 40- to 41.5-foot and 45- to 46.5-foot intervals of the AI-24 soil boring, but PID readings of greater than 2000 parts per million were observed throughout the 50- to 55-foot interval. A similar distribution of hydrocarbons in the vadose zone is inferred at the AI-21 through AI-23 locations, based on olfactory and PID evidence in soil cuttings and recovered cores from these borings. At the AI-20 location, however, olfactory evidence of hydrocarbon impact to soil was observed from approximately 15 feet below grade to the top of the saturated zone. The AI-20 injection well is located immediately downgradient of the former above-grade on-site fueling system. No olfactory or PID evidence of hydrocarbon impact to soil was observed in the VE-5 through VE-7 or MW-11A and MW-12 borings.

Soil samples were submitted for laboratory analysis from the interval immediately overlying the top of the saturated zone in each of the soil borings completed in February 1998. Soil samples were

P:\Wp\BJSERV\2832\040R.DOC

also submitted for laboratory analysis from the top of the saturated zone and from 10 feet below the top of the saturated zone in the AI-21 soil boring.

The soil samples were analyzed for BTEX by Method 8020 and TPH-D by Method 8015. The analytical results are summarized in Table 7. The analytical reports for February 1998 soil samples are presented in Appendix D.

Impact by BTEX constituents was limited to the AI-20 through AI-24 locations. Benzene and total BTEX impact to soils was greatest at the AI-20 location. It appears that hydrocarbon impact to soil within the saturated zone is limited primarily to only the upper portion of the saturated zone, based on the results of soil samples recovered at the AI-21 location.

P:\Wp\BJSERV\2832\040R.DOC

5.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on information obtained during the February 1998 soil sampling activities and the June 1998 quarterly groundwater sampling event at the BJ Services Hobbs, New Mexico facility.

5.1 Conclusions

- Where present, hydrocarbon impact to soil is generally limited to the lower 5 to 7 feet of the vadose zone and the uppermost portion of the saturated zone. Vadose zone soil impact is more vertically widespread in the immediate area of the former on-site fueling system, however.
- Groundwater flow was to the east at an average hydraulic gradient of 0.005 ft/ft.
- Dissolved benzene and total BTEX concentrations have decreased in monitor well MW-1, which is located near the central portion of the plume, during the time period between March 1998 and June 1998.
- Dissolved benzene concentrations have generally decreased in the remaining monitor wells during operation of the biosparging system.
- Benzene concentrations in monitor wells MW-5, MW-7, MW-8, MW-9, and MW-11A are below the New Mexico Water Quality Control Commission standard of 0.01 mg/L.
- Hydrocarbon air emissions have decreased substantially since March 1998. The current emissions rate of 0.24 lb/hour TPH is below the regulatory limit of 10 lb/hour for VOCs.

5.2 **Recommendations**

- Continue the quarterly groundwater sampling program and the operation and maintenance of the biosparging system.
- Continue monitoring hydrocarbon emissions on a quarterly basis using a calibrated field FID.
- Continue free product recovery operations in monitor wells MW-1 and MW-4.
- Continue monitoring for natural attenuation parameters in monitor wells MW-10, MW-11A, and MW-12.

P:\Wp\BJSERV\2832\040R.DOC

DISTRIBUTION

Final June 1998 Groundwater Sampling Report BJ Services Company, U.S.A. Hobbs, New Mexico

October 19, 1998

 1 copy to: State of New Mexico Energy, Minerals, and Natural Resources Dept. Oil Conservation Division
2040 South Pacheco Street, State Land Office Building Santa Fe, New Mexico 87505

Attention: Mr. Wayne Price

1 copy to: State of New Mexico Oil Conservation Division, Hobbs District Office Post Office Box 1980 Hobbs, New Mexico 88240

Attention: Mr. Chris Williams

1 copy to: BJ Services Company, U.S.A. 8701 New Trails Drive The Woodlands, Texas 77381

Attention: Ms. Jo Ann Cobb

1 copy to: BJ Services Company, U.S.A. 2708 West County Road Hobbs, New Mexico 88240

Attention: Mr. Roger Sullivan

1 copy to: Brown and Caldwell, Project File

QUALITY CONTROL REVIEWER

Robert N. Lennings, P.E.

Vice President

RLR/uak P:\Wp\BJSERV\2832\040R.DOC

FIGURES

.

\\StreetTalk\FS DATA@Homer@Servers\WP\bjserv\2832\039r.DOC "Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

ų.

02-25-98 \2832\NEWSURVY

	DATE
SITE MAP	02/25/98
	PROJECT NUMBER
CES COMPANY, U.S.A.	2832.12
	FIGURE NUMBER
BS, NEW MEXICO	1

ENTRATION AND TOTAL BTEX MAP FOR JUNE 23, 1998	DATE 07/24/98
CES COMPANY, U.S.A.	PROJECT NUMBER 2832.13
BS, NEW MEXICO	FIGURE NUMBER

:\2832\13\28321304

98 08-11-9

RBONS DISTRIBUTION MAP 23, 1998	DATE 07/24/98
MPANY, U.S.A.	PROJECT NUMBER 2832.13
V MEXICO	FIGURE NUMBER 4

Tables

TABLES

.

AND REPORT AND ADDRESS

\\StreetTalk\FS DATA@Homer@Servers\WP\bjserv\2832\039r.DOC "Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

Table 1Site ChronologyBJ Services Company, U.S.A.Hobbs, New Mexico

Date	Activity
February 7, 1991	The State of New Mexico Oil Conservation Division (OCD) conducted an on-site inspection, including sampling of the on-site fresh water well.
August 6, 1991	OCD requested submittal of an investigation work plan.
September 5, 1991	Roberts/Schornick and Associates, Inc. (RSA) submitted Technical Work Plan for soil and groundwater investigation to the OCD.
November 15, 1991	The OCD approved Technical Work Plan submitted by RSA.
December 16, 1991	RSA sampled the fresh water well. Analytical results were submitted to the OCD.
February 21, 1992	Western sampled the fresh water well. Analytical results were submitted to the OCD.
July 29 - August 10, 1992	Brown and Caldwell conducted a soil and groundwater investigation according to the approved Technical Work Plan. Investigation included drilling and sampling 9 soil borings, sampling 6 hand- augured soil borings, the installation and sampling of 5 monitoring wells, and the sampling of the fresh water well.
October 12, 1992	Brown and Caldwell submitted Soil and Groundwater Investigation Report to the OCD.
December 2, 1992	The OCD requested the installation and sampling of 4 additional monitoring wells, including a monitoring well on an adjacent property.
April 13, 1993	Brown and Caldwell conducted a vapor extraction pilot test on existing groundwater monitoring wells.
April 15, 1993	Brown and Caldwell installed off-site monitoring well.
April 22, 1993	Brown and Caldwell sampled off-site monitoring well.
May 27, 1993	Brown and Caldwell submitted a letter report documenting the installation and sampling of the off-site monitoring well to the OCD.
June 2, 1993	Brown and Caldwell conducted a short-term aquifer test using the fresh water well at the facility.
June 8, 1993	USTank Management, Inc. conducted a non-volumetric tank system tightness test on the diesel and unleaded gasoline aboveground storage tanks at the facility.

14

. . It ikhi
Table 1 (Continued) Site Chronology BJ Services Company, U.S.A. Hobbs, New Mexico

.

Date	Activity
June 21, 1993	ENSR Consulting and Engineering (ENSR), the environmental consultant of the adjacent property owner on which the off-site well is located, submitted a request to sample the off-site monitoring well.
July 15, 1993	ENSR split one groundwater sample, collected from the off-site monitoring well, with Brown and Caldwell.
July 30, 1993	USTank Management, Inc. submitted the tank tightness test report to Brown and Caldwell. The report indicated that both tanks and their associated piping passed.
August 16-19, 1993	Brown and Caldwell installed two additional downgradient monitoring wells. Brown and Caldwell sampled each of the existing monitoring and the newly installed monitoring wells.
January 26, 1994	Brown and Caldwell performed groundwater monitoring event; existing monitoring wells and the fresh water well were purged and sampled. Groundwater samples were analyzed for BTEX.
May 6, 1994	Remedial Action Plan (RAP) submitted to the OCD.
August 11, 1994	RAP approved by the OCD.
May 3, 1995	Brown and Caldwell conducted the May 1995 groundwater sampling event.
July 31, 1995	Brown and Caldwell conducted the July 1995 groundwater sampling event.
August 2-9, 1995	Installation of biosparging system was initiated. Nineteen combined injection/extraction wells and three vacuum extraction wells were installed.
August 14-26, 1995	Remedial Construction Services, Inc. (RCS) began construction of the biosparging system.
September 19, 1995	Began operation of the extraction portion of the biosparging system.
November 13, 1995	Began operation of the injection portion of the biosparging system.
November 14, 1995	Brown and Caldwell conducted the November 1995 groundwater sampling event.
February 23, 1996	Brown and Caldwell conducted the February 1996 groundwater sampling event.
May 31, 1996	Brown and Caldwell conducted the May 1996 groundwater sampling event.

i la ille

THE REPORT OF A

Table 1 (Continued) Site Chronology BJ Services Company, U.S.A. Hobbs, New Mexico

Date	Activity
August 23, 1996	Brown and Caldwell conducted the August 1996 groundwater sampling event.
December 2, 1996	Brown and Caldwell conducted the December 1996 groundwater sampling event.
March 12, 1997	Brown and Caldwell conducted the March 1997 groundwater sampling event.
March 14, 1997	Vapor extraction well VE-4 installed.
April 1997	Vapor extraction well VE-4 connected to the vapor extraction system.
June 12, 1997	Brown and Caldwell conducted the June 1997 groundwater sampling event.
September 11-12, 1997	Brown and Caldwell conducted the September 1997 groundwater sampling event.
December 10, 1997	Brown and Caldwell conducted the December 1997 groundwater sampling event.
February 3-14, 1998	Air injection wells AI-20 through AI-24, vapor extraction wells VE-5 though VE-7, and monitor wells MW-11A and MW-12 were installed.
February 19, 1998	Operation of previously existing injection wells suspended in preparation for start-up of injection wells AI-20 through AI-24.
March 10, 1998	Operation of air injection wells AI-20 through AI-24 commenced.
March 23-24, 1998	Brown and Caldwell conducted the March 1998 groundwater sampling event.
March 24, 1998	Operation of previously existing injection wells resumed.
June 23, 1998	Brown and Caldwell conducted the June 1998 groundwater sampling event.

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-1						
	3,647.53	8/10/92	53.22	0.00	3,594.31	(1)
	3,647.53	2/9/93	53.03	0.00	3,594.50	
	3,647.53	8/18/93	53.10	0.00	3,594.43	
	3,647.53	1/26/94	53.31	0.00	3,594.22	
	3,647.53	5/3/95	54.64	0.20	3,593.05	(2)
	3,647.53	7/31/95	54.14	0.00	3,593.39	
	3,647.53	11/14/95	53.69	0.00	3,593.84	
	3,647.53	2/23/96	54.32	0.00	3,593.21	
	3,647.53	5/31/96	54.14	0.00	3,593.39	
	3,647.53	8/23/96	56.17	0.00	3,591.36	
	3,647.53	12/2/96	55.27	0.00	3,592.26	
	3,647.53	3/12/97	55.70	0.27	3,592.05	(3)
	3,647.53	6/12/97	55.08	0.02	3,592.47	
	3,647.53	9/12/97	55.64	0.51	3,592.31	
	3,647.53	12/10/97	55.46	0.00	3,592.07	PSH Sheen
	3,647.53	3/24/98	55.81	0.00	3,591.72	PSH Sheen
	3,647.53	6/23/98	56.38	0.06	3,591.20	
MW-2						
	3,647.59	8/10/92	52.82	0.00	3,594.77	(1)
	3,644.84	2/9/93	49.60	0.00	3,595.24	
	3,644.84	8/18/93	49.71	0.00	3,595.13	
	3,644.84	1/26/94	49.97	0.00	3,594.87	
		5/3/95				(4)
MW-3			· · · · · · · · · · · · · · · · · · ·			
	3,647.68	8/10/92	52.99	0.00	3,594.69	(1)
	3,647.68	2/9/93	52.72	0.00	3,594.96	
	3,647.68	8/18/93	52.82	0.00	3,594.86	
	3,647.68	1/26/94	53.05	0.00	3,594.63	
	3,647.68	5/3/95	54.31	0.00	3,593.37	
	3,645.00	7/31/95	51.24	0.00	3,593.76	
	3,645.00	11/14/95	51.10	0.00	3,593.90	
	3,645.00	2/23/96	51.68	0.00	3,593.32	
	3,645.00	5/31/96	51.45	0.00	3,593.55	
	3,645.00	8/23/96	51.55	0.00	3,593.45	
	3,645.00	12/2/96	52.23	0.00	3,592.77	
	3,645.00	3/12/97	52.67	0.00	3,592.33	(3)
	3,645.00	6/12/97	52.68	0.00	3,592.32	
	3,645.00	9/11/97	52.71	0.00	3,592.29	
	3,645.00	12/10/97	52.89	0.00	3,592.11	
	3,645.00	3/23/98	53.22	0.00	3,591.78	
	3,645.00	6/23/98	53.66	0.00	3,591.34	

Table printed: 24-Aug-98

110

- dal 18 16

1.1

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-4						· · · · ·
	3,645.28	8/10/92	50.55	0.00	3,594.73	(1)
	3,645.28	2/9/93	50.26	0.00	3,595.02	
	3,645.28	8/18/93	50.38	0.00	3,594.90	
	3,645.28	1/26/94	50.90	0.30	3,594.63	
	3,645.28	5/3/95	51.51	0.45	3,594.14	
	3,645.28	7/31/95	51.74	0.26	3,593.75	
	3,645.28	11/14/95	51.03	0.00	3,594.25	
	3,645.28	2/23/96	51.65	0.01	3,593.64	
	3,645.28	5/31/96	51.48	0.00	3,593.80	
	3,645.28	8/23/96	53.49	0.00	3,591.79	
	3,645.28	12/2/96	52.32	0.00	3,592.96	
	3,645.28	3/12/97	52.74	0.05	3,592.58	(3)
	3,645.28	6/12/97	53.08	0.44	3,592.56	
	3,645.28	9/12/97	52.60	0.15	3,592.80	
	3,645.28	12/10/97	52.89	0.00	3,592.39	PSH Sheen
	3,645.28	3/24/98	53.20	0.25	3,592.29	
	3,645.28	6/23/98	53.82	0.22	3,591.64	
MW-5						
	3,647.72	8/10/92	52.38	0.00	3,595.34	(1)
	3,647.72	2/9/93	52.06	0.00	3,595.66	
	3,647.72	8/18/93	52.16	0.00	3,595.56	
	3.647.72	1/26/94	52.50	0.00	3,595,22	
	3,647.72	5/3/95	53.57	0.00	3,594.15	
	3,647.72	7/31/95	53.27	0.00	3,594.45	
	3,647.72	11/14/95	52.83	0.00	3,594.89	
	3,647.72	2/23/96	53.57	0.00	3,594.15	
	3,647.72	5/31/96	53.16	0.00	3,594.56	
	3,647.72	8/23/96	53.41	0.00	3,594.31	
	3,647.72	12/2/96	53.98	0.00	3,593.74	
	3,647.72	3/12/97	54.44	0.00	3,593.28	(3)
	3,647.72	6/12/97	54.48	0.00	3,593.24	· · /
	3,647.72	9/12/97	54.29	0.00	3,593.43	
	3,647.72	12/10/97	54.66	0.00	3,593.06	
	3,647.72	3/23/98	55.05	0.00	3,592.67	
	3,647.72	6/23/98	55.44	0.00	3,592.28	
	-,				-,	

1 ă

1

11 A H

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-6			· · ·			
	3,644.74	2/9/93	50.58	0.00	3,594.16	(1)
	3,644.74	8/18/93	50.78	0.00	3,593.96	
	3,644.74	1/26/94	51.00	0.00	3,593.74	
	3,644.74	5/3/95	52.63	0.00	3,592.11	
	3,644.74	7/31/95	51.90	0.00	3,592.84	
	3,644.74	11/14/95	51.19	0.00	3,593.55	
	3,644.74	2/23/96	52.10	0.00	3,592.64	
	3,644.74	5/31/96	51.76	0.00	3,592.98	
	3,644.74	8/23/96	51.63	0.00	3,593.11	
	3,644.74	12/2/96	52.85	0.00	3,591.89	
	3,644.74	3/12/97	53.55	0.00	3,591.19	(3)
	3,644.74	6/12/97	52.08	0.00	3,592.66	
	3,644.74	9/11/97	53.72	0.00	3,591.02	
	3,644.74	12/10/97	53.27	0.00	3,591.47	
	3,644.74	3/23/98	53.56	0.00	3,591.18	
	3,644.74	6/23/98	52.88	0.00	3,591.86	
MW-7						
	3,644.55	2/9/93	50.53	0.00	3,594.02	(1)
	3,644.55	8/18/93	50,74	0.00	3,593.81	ζ,
	3,644.55	1/26/94	51.01	0.00	3,593.54	
	3,644.55	5/3/95	52.25	0.00	3,592.30	
	3,644,55	7/31/95	51.92	0.00	3,592.63	
	3,644.55	11/14/95	51.48	0.00	3,593.07	
	3,644.55	2/23/96	52.15	0.00	3,592.40	
	3,644.55	5/31/96	51.78	0.00	3,592.77	
	3,644.55	8/23/96	52.02	0.00	3,592.53	
	3,644.55	12/2/96	52.52	0.00	3,592.03	
	3,644.55	3/12/97	52.99	0.00	3,591.56	(3)
	3,644.55	6/12/97	53.08	0.00	3,591.47	. ,
	3,644.55	9/11/97	53.00	0.00	3,591.55	
	3,644.55	12/10/97	53.28	0.00	3,591.27	
	3,644.55	3/23/98	53.59	0.00	3,590.96	
	0 044 55	0/00/00	54.00	0.00	0,500,05	

15

1.1

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-8						
	3,644.87	2/9/93	50.48	0.00	3,594.39	(1)
	3,644.87	8/18/93	50.67	0.00	3,594.20	
	3,644.87	1/26/94	50.96	0.00	3,593.91	
	3,644.87	5/3/95	52.15	0.00	3,592.72	
	3,644.87	7/31/95	51.77	0.00	3,593.10	
	3,644.87	11/14/95	51.37	0.00	3,593.50	
	3,644.87	2/23/96	52.17	0.00	3,592.70	
	3,644.87	5/31/96	51.55	0.00	3,593.32	
	3,644.87	8/23/96	51.92	0.00	3,592.95	
	3,644.87	12/2/96	52.43	0.00	3,592.44	
	3,644.87	3/12/97	52.93	0.00	3,591.94	(3)
	3,644.87	6/12/97	53.96	0.00	3,590.91	
	3,644.87	9/11/97	52.73	0.00	3,592.14	
	3,644.87	12/10/97	53.15	0.00	3,591.72	
	3,644.87	3/23/98	53.51	0.00	3,591.36	
	3,644.87	6/23/98	54.01	0.00	3,590.86	
MW-9						
	3,644.78	4/22/93	49.73	0.00	3,595.05	(1)
	3,644.78	7/15/93	49.65	0.00	3,595.13	
	3,644.78	8/18/93	49.85	0.00	3,594.93	
	3,644.78	1/26/94	50.02	0.00	3,594.76	
	3,644.78	5/3/95	51.35	0.00	3,593.43	
	3,644.78	7/31/95	50.97	0.00	3,593.81	
	3,644.78	11/14/95	50.43	0.00	3,594.35	
	3,644.78	2/23/96	51.12	0.00	3,593.66	
	3,644.78	5/31/96	50.89	0.00	3,593.89	
	3,644.78	8/23/96	50.98	0.00	3,593.80	
	3,644.78	12/2/96	51.58	0.00	3,593.20	
	3,644.78	3/12/97	52.21	0.05	3,592.61	(3)
	3,644.78	6/12/97	52.10	0.00	3,592.68	PSH Sheen
	3,644.78	9/12/97	51.95	0.00	3,592.83	PSH Sheen
	3,644.78	12/10/97	52.37	0.00	3,592.41	Slight Sheen
	3,644.78	3/23/98	52.68	0.00	3,592.10	Slight Sheen
	3,644.78	6/23/98	53.08	0.00	3,591.70	PSH Sheen

101

Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Free Product Thickness (ft)	GW Elevation (ft MSL)	Comments
MW-10						
	3,644.47	8/18/93	51.54	0.00	3,592.93	(1)
	3,644.47	1/26/94	51.90	0.00	3,592.57	
	3,644.47	5/3/95	52.97	0.00	3,591.50	
	3,644.47	7/31/95	52.87	0.00	3,591.60	
	3,644.47	11/14/95	52.51	0.00	3,591.96	
	3,644.47	2/23/96	53.05	0.00	3,591.42	
	3,644.47	5/31/96	52.79	0.00	3,591.68	
	3,644.47	8/23/96	53.03	0.00	3,591.44	
	3,644.47	12/2/96	53.41	0.00	3,591.06	
	3,644.47	3/12/97	54.21	0.00	3,590.26	(3)
	3,644.47	6/12/97	53.99	0.00	3,590.48	. ,
	3,644.47	9/12/97	53.94	0.00	3,590.53	
	3,644.47	12/10/97	54.12	0.00	3,590.35	
	3,644.47	3/23/98	54.51	0.00	3,589.96	
	3,644.47	6/23/98	55.12	0.00	3,589.35	
MW-11						
	3,643.78	8/18/93	51.92	0.00	3,591.86	(1)
	3,643.78	1/26/94	52.32	0.00	3,591.46	
	3,643.78	5/3/95	53.38	0.00	3,590.40	
	3,643.78	7/31/95	53.35	0.00	3,590.43	
	3,643.78	11/14/95	52.96	0.00	3,590.82	
	3,643.78	2/23/96	53.50	0.00	3,590.28	
	3,643.78	5/31/96	53.25	0.00	3,590.53	
	3,643.78	8/23/96	53.49	0.00	3,590.29	
	3,643.78	12/2/96	53.79	0.00	3,589.99	
	3,643.78	3/12/97	53.81	0.00	3,589.97	(3)
	3,643.78	6/12/97	53.96	0.00	3,589.82	
	3,643.78	9/12/97	52.93	0.00	3,590.85	
		12/10/97				(5)
MW-11A				· · ·		·····
	3,644.24	3/23/98	54.79	0.00	3,589.45	(6)
	3,644.24	6/23/98	55.43	0.00	3,588.81	· ·
MW-12						
	3,644.29	3/23/98	54.72	0.00	3,589.57	(6)
	3,644.29	6/23/98	55.48	0.00	3,588.81	. ,

Table 2 Cumulative Groundwater Elevation Data Hobbs, New Mexico Facility BJ Services Company, U.S.A.

4 181

.

ř |

				Free Product			
Monitoring Well	TOC Elevation	Date Measured	Depth to GW (ft)	Thickness (ft)	GW Elevation (ft MSL)	Comments	
			· · · · · · · · · · · · · · · · · · ·				

(1) Top of casing elevations and groundwater elevations of all monitor wells were relative to an arbitary datum of 100.00 feet prior to March 1997 and have been converted to Mean Sea Level (MSL).

 (2) For wells with a hydrocarbon layer the groundwater elevation was calculated as follows: Groundwater Elevation = (TOC elevation) - (Depth to groundwater) + [(Free product thickness) X (SG of free product)] Note: The specific gravity (SG) for the free product was 0.82.

(3) Top of casing elevations and groundwater elevations relative to MSL after March 1997.

(4) MW-2 could not be located and is assumed detroyed after January, 1994

(5) MW-11 could not be located and is assumed detroyed after September 12, 1997.

(6) TOC elevations for MW-11A and MW-12 estimated relative to TOC elevation for MW-10.

Table 3Field Screening Results for Groundwater SamplesHobbs, New Mexico FacilityBJ Services Company, U.S.A.

Monitor Well	Date Measured	Well Volume	рН	Temperature oC	Conductivity (umhos)	Redox (mV)	Dissolved Oxygen (mg/L)	Ferrous Iron (mg/L)	Alkalinity (mg/L)
MW-I	(122/00								
MW 2	6/23/98	3		NK	NK			0	NA
101 00 -3	6/23/08	0	7 / 8	20.01	1257	61.8	0.55		
	0/25/78	1	7.40	20.91	1175	60.2	0.55		
		2	7.13	19.98	1181	-22.2	0.89	1	
(3	7.14	19.90	1185	-56.1	0.98	0	NA
MW-4									
	6/23/98	3	NR	NR	NR	NR	NR	0	NA
MW-5									
	6/23/98	0	7.31	19.36	1079	108.5	2.01		
		1	7.20	19.43	1059	109.9	2.20		
		2	7.18	19.43	1060	112.4	1.92		
		3	7.17	19.43	1059	114	1.98	0	NA
MW-6									
	6/23/98	0	8.10	24.16	1472	122.0	1.82		
		1	8.05	22.64	1353	112.6	2.55		
		2	7.67	22.76	1410	113.5	2.49		
		3	7.62	23.35	1479	111.7	2.48	0	NA
MW-7									
	6/23/98	0	7.04	20.45	1495.0	104.4	3.75		
		1	6.94	20.34	1489.0	108.9	3.47		
		2	6.84	20.16	1466	114.5	2.83		
		3	6.81	20.16	1459	119.4	2.52	0	NA
MW-8									
	6/23/98	0	7.10	20.21	1689	58.8	2.10		
		1	6.91	19.55	1646	75	1.37		
		2	6.87	19.59	1641	79.7	1.34		
		3	6.87	20.18	1661	80.6	1.54	0	NA
MW-9	(17210)	2	ND	ND			ND	0.0	
NAW 10	6/23/98	3	NR	NR			NK	9.8	NA
MW-10	(122,108	0	((5	22.41	0212	08.1	1 70		
	0/23/98	0	0.00	22.41	9213	-98.1	1.78		
		2	0.03	21.30	8338	-103	0.97		
		2	672	21.38	8454	105.1	1.13	0.8	NΔ
/W-11A			0.72	21.57		102.1		7.0	
	6/23/98	0	6.87	20.96	2747	-37.1	0.68		
	0.20170	1	6.87	20.59	2806	-56.3	0.56		
		2	6.81	20.29	2849	-82.2	0.47		
		3	6.82	20.32	2865	-91.0	0.35	5.6	440
4W-12									
-	6/23/98	0	6.91	21.83	3793	-108.7	1.77		
	0.20190	1	6.76	21.00	3286	-93.9	0.83		
		2	6.75	21.76	3245	-99.7	0.54]	
[3	6.75	21.48	3190	-99.5	0.45	92	500

MW-2 could not be located and is assumed destroyed after January, 1994.

MW-11 could not be located and is assumed destroyed after September, 1997.

NR = No Readings, electronic instrument not used due to presence of PSH which could damage the detector.

111

W:\BJSERV\2832\038ta.xls

Monitor	Sample	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well	Date	Туре		microgram	ns per liter, ug/L		milligrams p	er liter, mg/L
MW-1	1	[•	
	8/10/92	Regular	5550	12090	2160	7370	NA	NA
	2/9/93	Regular	2100	6500	1300	7400	NA	NA
	8/19/93	Regular	3200	7300	1200	3700	NA	NA
	1/27/94	Regular	1930	4580	672	2390	NA	NA
	5/3/95	Regular	NSP	NSP	NSP	NSP	NA	NSP
	8/1/95	Regular	390	1300	230	800	NA	5.7
	11/15/95	Regular	880	1800	300	970	NA	6.8
	2/23/96	Regular	1500	3700	620	2200	NA	21
	5/31/96	Regular	1100	1700	380	990	NA	7.5
	8/23/96	Regular	1800	3300	570	2100	NA	17
	12/2/96	Regular	5600	9600	2100	9600	100	64
	3/12/97	Regular	5500	9700	2600	8200	22	62
	6/12/97	Regular	5300	34000	7500	27000	180	160
	9/12/97	Regular	1800	4400	1000	3000	23	21
	12/10/97	Regular	7600	12000	2800	8200	11	71
	3/24/98	Regular	4800	7200	1200	2400	4.2	38
	6/23/98	Regular	53	680	580	1400	1.4	9.2
MW-2								
	8/10/92	Regular	14.9	< 4	< 4	< 4	NA	NA
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	100	12	3	13	NA	NA
	1/27/94	Regular	< 1	1.2	2	2.5	NA	NA
MW-3								
	8/10/92	Regular	304.9	2099	6760	1586	NA	NA
	2/9/93	Regular	130	< 10	< 10	190	NA	NA
	8/19/93	Regular	560	3100	630	1900	NA	NA
	1/27/94	Regular	1070	5380	510	3120	NA	NA
	5/4/95	Regular	770	3300	470	1800	NA	NA
	8/1/95	Regular	490	2900	890	1600	NA	14
	11/15/95	Regular	250	1000	180	440	NA	2.9
	2/23/96	Regular	120	810	170	560	NA	4
	5/31/96	Regular	670	3900	1200	2300	NA	15
	8/23/96	Regular	330	2200	590	1500	NA	12
	12/2/96	Regular	220	1800	670	1000	0.89	7.4
	3/12/97	Regular	370	2000	960	1400	1.8	11
	6/12/97	Regular	860	4800	1700	2600	1.9	20
	9/11/97	Regular	770	3000	1600	1900	1.6	16
	12/10/97	Regular	240	740	500	450	0.59	5.3
	3/24/98	Regular	140	630	360	310	0.56	3.9
	6/23/98	Regular	100	720	350	490	0.40	4.9
MW-4								
	8/10/92	Regular	2594	10360	2160	6740	NA	NA
	2/9/93	Regular	5200	15000	2200	10000	NA	NA

Ìa

- Di

Monitor	Sample	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Well	Date	Туре		microgram	ns per liter, ug/L		milligrams p	er liter, mg/L
MW-4	8/19/93	Regular	3000	12000	< 2000	7000	NA	NA
	1/27/94	Regular	NSP	NSP	NSP	NSP	NA	NSP
	5/3/95	Regular	NSP	NSP	NSP	NSP	NA	NSP
	8/1/95	Regular	5700	17000	3500	13000	NA	120
	11/15/95	Regular	490	1600	310	1100	NA	5.2
	2/23/96	Regular	360	2800	560	2500	NA	18
	5/31/96	Regular	84	830	280	1100	NA	6.2
	8/23/96	Regular	110	1400	430	1800	NA	9.8
	12/2/96	Regular	190	2000	1800	7200	56	43
	3/12/97	Regular	220	1500	1500	4400	27	27
	6/12/97	Regular	47	270	360	950	2.5	6.2
	9/12/97	Regular	92	840	670	2100	15	7.6
	12/10/97	Regular	230	750	970	2300	3.7	16
	3/24/98	Regular	150	510	270	620	1.2	5.6
	6/23/98	Regular	160	890	590	1600	0.69	10
MW-5								
	8/10/92	Regular	< 4	< 4	< 4	< 4	NA	NA
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/10/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	1/27/94	Regular	8.7	29.9	4	11.3	NA	NA
	5/3/95	Regular	3.7	5.3	0.92	4.6	NA	NA
	8/1/95	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	11/15/95	Regular	< 0.3	1.2	< 0.3	1.5	NA	NA
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	5/31/96	Regular	31	86	10	20	NA	NA
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	6/12/97	Regular	<1	< 1	< 1	< 1	< 0.1	< 0.1
	9/12/97	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	12/10/97	Regular	< 5	< 5	< 5	< 5	< 0.2	< 0.1
	3/23/98	Regular	< 1	< 1	< 1	< 1	< 0.2	< 0.1
	6/23/98	Regular	< 1	< 1	< 1	< 1	< 0.2	< 0.1
MW-6								
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	7000	19000	3100	7200	NA	NA
	8/19/93	Regular	8100	19000	3500	6400	NA	NA
	1/27/94	Regular	7960	20200	3830	6150	NA	NA
	5/4/95	Regular	11000	17000	2900	6000	NA	NA
	8/1/95	Regular	8300	12000	2500	5100	NA	60
	11/15/95	Regular	8900	17000	2900	5500	NA	57
	2/23/96	Regular	8100	10000	2300	4000	NA	58
	5/31/96	Regular	83	150	15	51	NA	0.57
	5/31/96	Duplicate	87	160	13	47	NA	0.52

- La

114

4

1.1.

6. 0. 1 . 18

11 11

1 8

.

n F

Monitor	Sample	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Wəll	Date	Туре		microgran	ns per liter, ug/L		milligrams p	er liter, mg/L
MW-6	8/23/96	Regular	31	28	9.4	7.9	NA	0.46
	12/2/96	Regular	< 1	< 1	< 1	1.7	5.6	< 0.1
	3/12/97	Regular	12	< 5	6.8	18	12	< 0.5
	6/12/97	Regular	1900	1400	410	310	7.8	7.4
	9/11/97	Regular	11	1.3	3.4	< 1	1	< 0.1
	12/10/97	Regular	3	4.2	1.2	3.9	1.7	0.14
	3/23/98	Regular	3.6	< 1	4	< 1	< 0.2	< 0.1
	6/23/98	Regular	170	4.1	15	7.2	1.2	0.51
MW-7	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	< 2	3	< 2	< 2	NA	NA
	1/27/94	Regular	1.1	<1	< 1	< 1	NA	NA
	5/3/95	Regular	52	3.4	0.67	2.8	NA	NA
	8/1/95	Regular	22	2.2	0.85	2.8	NA	< 0.1
	11/15/95	Regular	8.4	0.77	< 0.3	0.93	NA	< 0.1
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	2/23/96	Duplicate	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	5/31/96	Regular	29	83	10	21	NA	0.25
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
	3/12/97	Regular	<1	<1	< 1	< 1	< 0.1	< 0.1
	6/12/97	Regular	< 1	< 1	< 1	<1	< 0.1	< 0.1
	9/11/97	Regular	< 1	<1	< 1	< 1	< 0.1	< 0.1
	12/10/97	Regular	< 1	< 1	< 1	< 1	< 0.2	< 0.1
	3/23/98	Regular	< 1	< 1	< 1	< 1	< 0.2	< 0.1
	6/23/98	Regular	< 1	<1	< 1	< 1	< 0.2	< 0.1
MW-8		Ŭ						
	8/10/92	Regular	NS	NS	NS	NS	NA	NS
	2/9/93	Regular	< 2	< 2	< 2	< 6	NA	NA
	8/19/93	Regular	< 2	< 2	< 2	< 2	NA	NA
	1/27/94	Regular	< 1	<1	< 1	< 1	NA	NA
	5/3/95	Regular	3	4.9	0.75	3.7	NA	NA
	8/1/95	Regular	3.1	1.2	0.47	1.6	NA	< 0.001
	8/1/95	Duplicate	3.6	1.5	0.51	1.5	NA	< 0.1
	11/15/95	Regular	< 0.3	0.52	< 0.3	< 0.6	NA	< 0.1
	2/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	5/31/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	8/23/96	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	< 0.1
	12/2/96	Regular	< 1	< 1	< 1	< 1	< 0.1	< 0.1
-	3/12/97	Regular	< 1	< 1	< 1	1.8	< 0.1	< 0.1
	6/12/97	Regular	< 1	<1	< 1	<1	< 0.1	< 0.1
	9/11/97	Regular	< 1	<1	< 1	<1	0.1	< 0.1
	12/10/97	Regular	< 1	< 1	< 1	< 1	0.3	< 0.1

HE KI

1911

· 1

Monitor	Sample	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Weli	Date	Турө		microgran	ns per liter, ug/L		milligrams p	er liter, mg/L
MW-8	3/23/98	Regular	< 1	< 1	< 1	< 1	< 0.2	< 0.1
	6/23/98	Regular	< 1	< 1	< 1	<1	< 0.2	< 0.1
MW-9								
	4/22/93	Regular	570	380	< 50	870	NA	NA
	7/15/93	Regular	121	7.3	3	458	NA	NA
	8/19/93	Regular	390	290	40	250	NA	NA
	1/27/94	Regular	327	357	51.1	293	NA	NA
	5/3/95	Regular	380	110	19	120	NA	NA
	8/1/95	Regular	660	410	91	310	NA	6.2
	11/15/95	Regular	240	24	11	140	NA	1.5
	11/15/95	Duplicate	170	18	10	120	NA	1.9
	2/23/96	Regular	170	18	2.3	160	NA	4.3
	5/31/96	Regular	120	16	3	200	NA	NA
	8/23/96	Regular	82	13	6	270	NA	4
	8/23/96	Duplicate	76	14	4.8	250	NA	4.4
	12/2/96	Regular	61	< 25	< 25	210	2.6	2.8
	12/2/96	Duplicate	86	13	2.4	270	3.7	2.9
	3/12/97	Regular	30	48	420	880	8.2	19
	6/12/97	Regular	4.7	2.1	11	97	2.6	2.2
	6/12/97	Duplicate	< 5	< 5	6.6	69	5.2	1.9
	9/12/97	Regular	2.1	2.3	2.1	120	1.2	1.9
	12/10/97	Regular	4.9	9	6.8	62	0.86	0.92
	3/24/98	Regular	< 1	< 1	< 1	26	0.9	1
	6/23/98	Regular	2.4	22	10	36	< 0.2	0.25
MW-10								
	8/19/93	Regular	190	460	< 200	240	NA	NA
	1/27/94	Regular	13.4	4	5.5	33.6	NA	NA
	5/4/95	Regular	980	15	11	84	NA	NA
	8/1/95	Regular	1300	32	32	100	NA	3.6
	11/15/95	Regular	1000	24	15	36	NA	1.7
	2/23/96	Regular	810	23	27	44	NA	2.4
	5/31/96	Regular	700	24	34	28	NA	2
	8/23/96	Hegular	290	3.4	6.4	13	NA	1.4
	12/2/96	Regular	280	1.3	1/	8	0.94	0.97
	3/12/97	Regular	110	< 5	17	< 5	0.61	0.57
	6/12/97	Regular	150	12	30	< 5	0.68	< 0.5
	9/12/97	Regular	87	2.3	26	2.7	0.76	0.33
	9/12/97	Duplicate	87	2.4	26	2.8	0.79	0.33
	12/10/97	Hegular	41	9.8	12	1.1	1.1	0.28
	12/10/97	Duplicate	36	8.5	10	b./	1.2	0.24
	3/23/98	Regular	36	< 5	5.9	< 5	1.0	< 0.5
	3/23/98		36	<1	5.3	1.3	1.7	0.18
	6/23/98	Hegular	37	< 5	< 5	< 5	2.1	< 0.5

w:\bjserv\2832\034ta.xls

uł.

ьŁі

.

Monitor	Sample	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	TPH-D	TPH-G
Wəli	Date	Туре		microgran	ns per liter, ug/L		milligrams p	er liter, mg/L
MW-11								
	8/19/93	Regular	< 2	< 2	< 2	< 2	NA	NA
	1/27/94	Regular	<1	<1	< 1	< 1	NA	NA
	5/4/95	Regular	< 0.3	< 0.3	< 0.3	< 0.6	NA	NA
	8/1/95	Regular	44	29	5.5	13	NA	0.2
	11/15/95	Regular	190	2.8	6.2	11	NA	0.4
	2/23/96	Regular	49	1.2	0.51	4	NA	0.25
	5/31/96	Regular	300	83	12	28	NA	0.8
	8/23/96	Regular	100	1.2	0.3	4.7	NA	0.26
	12/2/96	Regular	970	< 5	6	8.1	2	1.3
	3/12/97	Regular	130	< 5	13	5.8	0.42	< 0.5
	3/12/97	Duplicate	100	< 5	10	5.1	0.43	< 0.5
	6/12/97	Regular	150	23	19	< 5	1.1	0.55
	9/12/97	Regular	220	15	27	13	1	0.46
MW-11A								
	3/24/98	Regular	24	5	< 5	< 5	0.28	0.14
	6/23/98	Regular	9.9	< 5	< 5	< 5	< 0.2	< 0.5
MW-12								
	3/24/98	Regular	100	11	6	8	0.29	0.41
	6/23/98	Regular	88	< 5	< 5	< 5	< 0.2	< 0.5
	6/23/98	Duplicate	89	< 5	< 5	< 5	0.31	< 0.5

MW-2 destroyed after January, 1994 MW-11 destroyed after September, 1997

NS=Not Sampled

NA=Not Analyzed

NSP=Not Sampled due to Phase Separated Hydrocarbons

4

11

Table 5Laboratory Analytical Results for Natural Attenuation EvaluationParametersBJ Services Company, U.S.A.Hobbs, New Mexico

	Nitrate (mg/L)	Sulfate (mg/L)	Dissolved Methane (ppm)
MW-10	<0.1	325	0.55
MW-11A	<0.1	225	0.11
MW-12	<0.1	240	< 0.0012

ŤŤ

Table 6 Summary of Analytical Results for Air Emissions Hobbs, New Mexico Facilty BJ Services Company, U.S.A.

14

i g

							Discharge	Benzene	Total BTEX	TPH
Sample	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	HdT	Rate,	Emission	Emission	Emission
Number	Date		parts pei	r million by volum	e, ppmv		scfm	Rate, Ib/hr	Rate, lb/hr	Rate, lb/hr
Extraction-1	9/19/95	062	1100	340	920	9700	132.47	1.235	5.943	16.31
Effluent-1	9/20/95	066	2500	560	1600	16000	135.76	1.575	10.939	27.37
Effluent-2	9/28/95	13	28	6	18	2533	123.56	0.019	0.112	3.89
Effluent-4	11/7/95	15	58	12	36	1500	131.10	0.024	0.239	2.59
Effluent 111595-01	11/15/95	39	180	42	130	1870	133.33	0.062	0.773	3.21
Effluent 121995-01	12/19/95	10	45	11	33	530	129.64	0.016	0.191	0.89
Effluent 12996-01	1/29/96	12	61	17	53	1200	128.45	0.018	0.271	1.95
Effluent 032296-01	3/22/96	9	44	12	40	066	124.68	0.009	0.189	1.56
Effluent 042496-01	4/25/96	4	37	10	36	006	118.34	0.005	0.147	1.29
Effluent 053196-01	5/31/96	3.7	40	10	33	670	124.11	0.005	0.158	1.04
Effluent 082396-01	8/23/96	Ŷ	12	Ŷ	Ŷ	200	126.18	0.007	0.047	0.31
Effluent 120296-01	12/2/96	~	~	⊽	ī	Ŷ	129.04	0.002	0.008	0.01
Eff-31297-1	3/12/97	2.1	15	4.6	15	250	110.56	0.003	0.057	0.33
Effluent 070297-01	712/97	~	6.3	2.4	8.6	65	109.90	0.001	0.028	0.08
Monitor 970912 (1)	9/12/97	NA	ΝA	NA	ΝA	340	105.40	NA	NA	0.39
Eff-1-2832	12/10/97	<0.001	0.013	0.009	0.031	210	106.27	0.000	0.000	0.28
Monitor 980324 (1)	3/24/98	ΝA	ΝA	NA	NA	1500	108.97	NA	NA	1.91
Monitor 980622 (1)	6/22/98	NA	NA	NA	NA	190	108.16	NA	NA	0.24
Emmission rates reported	d for 12/02/96 s	sampling event	were calculate	d using the detection	limits. The actu	al emissions w	ere Benzene <0.00	01 lb/hr. BTEX. <	0.01 lb/hr and TPH	<0.01 lb/hr.

0 , grundr 3

NA = Not Analyzed (1) All analysis based on field FID readings

w:\bjserv\2832\040ta.xls

Table 7 Analytical Results for February 1998 Soil Sampling BJ Services Company, U.S.A. Hobbs, New Mexico

Wall	Company 1	Comple Double							
Identification	Identification	Geet below grade)	Description	(ug/kg)	(ug/kg)	LunyiDenzene (ug/kg)	Ayienes (ug/kg)	(ug/kg)	(mg/kg)
AI-20	A120-30-51	50-51	2.5' to 3.5' above top of saturated zone	1,200	120,000	170,000	620,000	911,200	1,700
AI-21	AI21-50-50.8	50-50.8	3.2' to 4' above top of saturated zone	< 10	011	1,100	6,300	7,510	250
AI-21	Al21-53.5-54.5	53.5-54.5	At top of saturated zone	51	450	570	1,800	2,871	86
AI-21	A121-64-65	64-65	10 to 11 feet below top of saturated zone	v	V	v	1.5	1.5	< 10
AI-22	A122-50-51	50-51	2.75' to 3.25' above top of saturated zone	< 50	130	740	4,200	5,070	062
AI-23	AI23-49-50.5	49-50.5	3' to 4.5' above top of saturated zone	< 250	650	1,900	13,000	15,550	280
AI-24	A124-50-51.5	50-51.5	2' to 3.5' above top of saturated zone	< 500	2,200	17,000	81,000	100,200	570
VE-5	VE5-50-51.5	50-51.5	2' to 3.5' above top of saturated zone	v	v	v	v	^ 4	Ξ
VE-6	VE6-50-50.6	50-50.6	2.9' to 3.5' above top of saturated zone	v	v	v	v	∧ 4	160
VE-7	VE7-50-51	50-51	2.5' to 3.5' above top of saturated zone	v	v	v	v	A 4	16
MW-11A	MW-11A-53.5-54.25	53.5-54.25	0.25' to 1' above top of saturated zone	v	v	v	v	4 >	14
MW-12	MW12-53.5-54.5	53.5-54.5	0' to 0.75' above top of saturated zone	v	~	v	v	4 >	< 10

w:\bjserv\2832\040ta.xls

1

. . ALL L

1 t í

. .

. , ,

. .

Appendices

 \circledast

APPENDICES

14 151

1.1

\\StreetTalk\FS DATA@Homer@Servers\WP\bjserv\2832\039r.DOC "Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

A

IN L LINE M

oli

į

i a

114

.

APPENDIX A

.

ļ

Groundwater Sampling Forms

\\StreetTalk\FS DATA@Homer@Servers\WP\bjserv\2832\039r.DOC "Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

B	R	0	W	N	AND	C	А	L	D	W	\mathbf{E}	L	\mathbf{L}
---	---	---	---	---	-----	---	---	---	---	---	--------------	---	--------------

Groundwater Sampling Field Data Sheet

W County	Pood	Hobbe	ым
w.County	Hoad.	modos,	INIVI

1

Project Number: 28	32 Task Number:13		Da	ite: <u>6/2</u>	3/98 -
Casing Diameter	Purge Equipment	Equipment	Calibration -	- Time	
2 inches	Submersible pump		-	-	-
Total Depth of Well from TOC		рН	=	at	°C
64.42 feet			-	-	
Static Water from TOC	Sample Equipment	 рН	=	at	°C
5-5- 56.38 feet	Submersible pump				
Product Level from TOC		Conductivity			
56.10 57 32 feet		Conductance Standard:		- µmhos/cr	n at 25° C
Length of Water Column	Analytical Equipment (pH, DO, Redox, filtration, etc.)	1			
94 7 8.1 feet	YSI 600 XL	Measured Value	e:	μmhos/cn	n at 25° C
			<u> </u>		
1.36 gai	Hach Kits for DO, Ferrous Iron, Alkalinit	y Dissolved Oxyg	<u>ien</u>		
Screened Interval (from GS)		DO	Meter Calibrated	i to:	mg/l
feet					-

Time	Well Volume	Gallons Removed	pН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
	0								
20 40	1	1,3	NM				\rightarrow	56.87	Slightly Cloudy
2043	2	2,6						56.9	Clean
2046	3	3,9						56.9	Clean
	4								

Geochemical Paramet	ters		Comments:
Ferrous Iron:	Ø	mg/L	NM = not measured due to presence
Dissolved Oxygen:	Ø	mg/L	of PSIt in well.
Nitrate:	1	mg/L	
Alkalinity		mg/L	

PPE Worn:	Sampler's Signature/
Nitrile Gloves	
Disposition of Purge Water:	
Drummed and placed in drum storage	/ the man

4

ł i

B	R	0	W	N	A	N	D	С	Α	L	D	W	Е	\mathbf{L}	\mathbf{L}	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	--------------	--------------	--

Groundwater Sampling Field Data Sheet

W.County Road, Hobbs, NM

Project Number: 28	332 Task Number: 13		Date	: 1,/23/8	8 -
Casing Diameter	Purge Equipment	Equipment C	alibration - T	ime	
2 inches	Submersible pump		-		-
Total Depth of Well from TOC		рН	=	at	°C
64.31 feet			-		-
Static Water from TOC	Sample Equipment	рН	=	at	°C
582488 53,66 feet	Submersible pump				
Product Level from TOC		Conductivity			
feet		Conductance Standard:	-	µmhos/cm at 25°	с
Length of Water Column	Analytical Equipment (pH, DO, Redox, filtration, etc.)			_	
1778 0,65 feet	YSI 600 XL	Measured Value:	-	_µmhos/cm at 25°	с
Well Volume					
1,73 gai	Hach Kits for DO, Ferrous Iron, Alkalini	ty Dissolved Oxygei	1		
Screened Interval (from GS)		DO M	eter Calibrated to	:	mg/L
feet					-

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
(918	0	6.2	7.48	20,91	1257	61.8	0.55	54,11	
1922	1	1.7	7.15	Zo,q	1725	60.Z	0.66	54,06	
1926	2	3.4	7.13	19.98	1181	-72.2	०.४९	54.07	
·930	3	5,1	7, 14	19.97	1185	~56.1	0.98	54,1	
	4								

Geochemical Parame	ters	Comments:
Ferrous Iron:	Ø mg/	
Dissolved Oxygen:	l mg/	L
Nitrate:	mg/	
Alkalinity	maj	

PPE Wom:	Sampler's Signature:	1			
Nitrile Gloves		/			
Disposition of Purge Water:	ע/ ר	. 1			
Drummed and placed in drum storage		han 1	X	 	
				 _	
	V				

ãi i i

. ï ta itu.

В	R	0	W	N	A	N	D	С	Α	L	D	W	\mathbf{E}	L	\mathbf{L}
---	---	---	---	---	---	---	---	---	---	---	---	---	--------------	---	--------------

Groundwater Sampling Field Data Sheet

W.County Road, Hobbs, NM

Project Number:	2832	Task Number: 13	-	Date:	6/23/	' 98 -
Casing Diameter		Purge Equipment	Equipment C	Calibration - Ti	ime	
2	inches	Submersible pump	-	-		-
Total Depth of Well from	TOC	1 .	рН	#	at	°C
61.43	feet		-	-		-
Static Water from TOC		Sample Equipment	рН	=	at	°C
53.08 53-82	feet	Submersible pump				
Product Level from TOC		1	Conductivity			
52.64 73.60	feet		Conductance Standard:	-	µmhos/cm at 25°	°C
Length of Water Column		Analytical Equipment (pH, DO, Redox, filtration, etc.)			-	
8.79 7,61	feet	YSI 600 XL	Measured Value:	-	_µmhos/cm at 25°	,c
Well Volume						.
1.43 1.24	gal	Hach Kits for DO, Ferrous Iron, A dvettini ty	Dissolved Oxyge	ם		
Screened Interval (from (GS)		DO M	eter Calibrated to:		mg/L
.	feet					-

Time	Well Volume	Gallons Removed	pН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
	0								Dier Kgiray
20.10	1	1,15	NM					54.56	gray : Cloudy
2012	2	J 5						Fil.56	i car
2014	3	3,75						54.56	Clian
	4								

Geochemical Parameter	rs	Comments:
Ferrous Iron:	Ø mg/L	NM= not measured due to presence
Dissolved Oxygen:	3.4 mg/L	of PSH in well.
Nitrate:	, mg/L	
Alkalinity	mg/L	

PPE Wom:	Sampler's Signature		ก			Â	<u> </u>
Nitrile Gloves	/	- 1	1	1	1		
Disposition of Purge Water:	│ │			1			1
Drummed and placed in drum storage		X	Im		~	Y	1
		7		$\overline{\mathbf{\nabla}}$		1	<u> </u>

eh

1.

BROWN AND CALDWELL

WELL ID: ______MW-0

Groundwater Sampling Field Data Sheet

W.County	Road.	Hobbs.	NM

Project Number:	2832	Task Number: 13		Date:	6/23	1%-
Casing Diameter		Purge Equipment	Equipment (Calibration - Ti	me	
2 in Total Depth of Well from	nches TOC	Submersible pump	- рН	-	at	- °C
60.27 te	eet		-	-		-
Static Water from TOC 52.10 55, Y 4 fe	eet	Sample Equipment Submersible pump	рН	=	at	°C
Product Level from TOC	et		<u>Conductivity</u> Conductance Standard:	-	µmhos/cm at 25° (c
Length of Water Column		Analytical Equipment (pH, DO, Redox, filtration, etc.)			-	
8 .17	eet	YSI 600 XL	Measured Value	- 	µmhos/cm at 25° (-	C
1.33 0,86 g	al	Hach Kits for DO, Ferrous Iron, Alkalinity	Dissolved Oxyge	na -	i	
Screened Interval (from G	iS) æt		DON	leter Calibrated to:		

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
0943	0	0.5	7,31	19, 36	1079	108,5-	2,01		C/eer
0948	1	1.6	7,20	(9, ys	1059	109.9	220		Clear
0951	2	2, 6	2,18	19,43	1060]12,4	İ,92		clear
0953	3	3.6	21)	19.43	1059	114	1,98		clear
	4								

Geochemical Parame	ters		Comments:
Ferrous Iron:	Ø	mg/L	Samp/0955-
Dissolved Oxygen:	Ø	mg/L	
Nitrate:	1	mg/L	
Alkalinity		mg/L	

PPE Worn:	Sampler's Signature:	~	
Nitrile Gloves			
Disposition of Purge Water:	ן/∖∥		
Drummed and placed in drum storage		and have	
	V V	0	

Fds-hob1.xls (9)

ALC REAL TIME

i li tit.

10

THE REP

BROWN AND CALDWELL

WELLID: MW-06

Groundwater Sampling Field Data Sheet

W.County Road, Hobbs, NM

Project Number:	2832	Task Number: 13	-	Date:		-
Casing Diameter		Purge Equipment	Equipment C	alibration - Ti	me	
2	inches	Submersible pump		-		-
Total Depth of Well from	m TOC	1 • •	рН	=	at °(с
60.17	feet		_			-
Static Water from TOC	;	Sample Equipment	рН	=	at °C	с
52.88	feet	Submersible pump				
Product Level from TO	C		Conductivity			
52.78 NA	feet		Conductance Standard:	-	µmhos/cm at 25° C	;
Length of Water Colum	nn	Analytical Equipment (pH, DO, Redox, filtration, etc.)	1		-	
···· 7,29	feet	YSI 600 XL	Measured Value:		_µmhos/cm at 25° C	;
Well Volume						
1.32 1.19	gal	Hach Kits for DO, Ferrous Iron, Alkalinity	Dissolved Oxvae	۵		
Screened Interval (from	n GS)		DO M	eter Calibrated to:		mg/L
	feet					_

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
0	0	0.2	8,10	24,16	1472	122,0	1.82		Cloudy
13;07	1	1.2	8,65	22.69	1353	11276	Z,55		clear
13,22	2	z.4	7.67	22.76	1410	113,5	2,49		Clear
1337	3	3.6	7.62	23.35	1479	7.11	2.44		Clear
	4								

Geochemical Parame	ters		Comments:
Ferrous Iron:	Ũ	mg/L	water level below top of the pump
Dissolved Oxygen:	6.0*	mg/L	* questionable reading due to elapsed
Nitrate:		mg/L	time before measurement
Alkalinity		mg/L	

PPE Worn:	Sampler's Signature: 1	\sim
Nitrile Gloves		·
Disposition of Purge Water:] / [.~ /	
Drummed and placed in drum storage		

187

В	R	0	W	N	A	N	D	С	A	L	D	W	E	L	\mathbf{L}
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--------------

Groundwater Sampling Field Data Sheet

W.County Road, Hobbs, NM

Project N	lumber:	2832		_	Task Number:	13		Date):
Casing Dia	ameter		Purge Equi	pment			Equipment C	Calibration - 1	ĩime
	2	inches		Subme	rsible pu	mp	_	•	
Total Dept	h of Well from	n TOC	-	000000			рН	=	at °C
	61.46	feet					_	-	
Static Wat	er from TOC		Sample Equ	uipment				=	at °C
53.08	-42	feet		Subme	rsible pu	mp			
Product Le	vel from TO				· - · - · - · - ·	P	Conductivity		
17	26 '	V/A teet					Conductance Standard:		umhos/cm at 25° C
Length of V	Water Colum	n	Analytical E	quipment (pH	l, DO, Redox, filtr	ration, etc.)	-		
8.38	7.26	feet		YS	1 600 XL		Measured Value:	-	umbos/cm at 25° C
Well Volun	ne		-						_
1.37 1.18 gal			Hach Ki	Hach Kits for DO, Ferrous Iron, Alkalinity <u>Dissolved Oxygen</u>					
Screened	interval (non	(10)						eler Canbraled li	
L		feet	I		· ·		16 802	=55.15	-
Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Descriptior
0815	0	0,25	7.04	20.45	1495.0	104.4	3.75		Cloudy.
0823	1	1.2	6.94	20.34	1489.0	108.9	3:47		
0827	2	2.4	6.84	Z0, (6	1466	114.5	2.83		Clear
083	3	3,6	6.81	20.16	1459	119.4	2.52		clear
	Λ								

Geochemical Parame	ters		Comments:
Ferrous Iron:	Ø	mg/L	
Dissolved Oxygen:	Ø	mg/L	
Nitrate:	,	mg/L	
Alkalinity		ma/L	

PPE Worn:	Sampler's Signature;
Nitrile Gloves	
Disposition of Purge Water:	
Drummed and placed in drum storage	1 the land

Fds-hob1.xls (7)

BROWN AND CALDWEL

Groundwater Sampling Field Data Sheet

W.County	Road.	Hobbs.	NM

Project Number:	2832	Task Number: 13		Date:	:/23/98	-
Casing Diameter	<u>_</u>	Purge Equipment	Equipment C	alibration - Ti	me	
2	inches	Submersible pump	-	-		-
Total Depth of Well fro	om TOC		рН	=	at °C	
62.52	2 feet		-	-		-
Static Water from TOC	C	Sample Equipment	рН	=	at °C	
53.06 5-4.01	feet	Submersible pump				
Product Level from TC	DC DC		Conductivity			
N/A	feet		Conductance Standard:	-	µmhos/cm at 25° C	
Length of Water Colur	nn	Analytical Equipment (pH, DO, Redox, filtration, etc.)			-	
8.51	feet	YSI 600 XL	Measured Value:	-	µmhos/cm at 25° C	
Well Volume						
1.39	gal	Hach Kits for DO, Ferrous Iron, Alkalinity	Dissolved Oxyger	1		
Screened Interval (from	m GS)		DO Me	eter Calibrated to:	m	.g/L
	feet					-

Time	Well Volume	Gallons Removed	pН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
७१०४	0	0.25	7,10	20,21	1689	58.8	2,10	5-4,01	Brown Cloudy
0913	1	1.3	6.91	19,55	1646	75	1.37	57,45-	Clear
0916	2	2.6	6.87	19,59	1641	79,7	1.34	58,3	char
0919	3	4,0	6.87	Z0.18	1661	80.L	1.54	54,9	Clear
	4								

Geochemical Paramete	Geochemical Parameters					
Ferrous Iron:	NM	mg/L	NM:	not	measured	
Dissolved Oxygen:	NM	mg/L				
Nitrate:		mg/L				
Alkalinity		ma/L				

PPE Worn:	Sampler's Signature	1		
Nitrile Gloves				
Disposition of Purge Water:	1 /	/	/ . ()	
Drummed and placed in drum storage	/	the	Ind	
				-

17

1 K C

B R O W N AND C A L D W E L L

WELL ID: MW-09

Groundwater Sampling Field Data Sheet

W.County Road, Hobbs, NM

Project Number: 2	2832	Task Number	. 13	-	Date	6/23	198 -
Casing Diameter	Purge Ec	luipment		Equipment C	Calibration - T	ïme	
2 inch	es	Submersible pu	mp		-		-
Total Depth of Well from TO	с	•	•	рН	=	at	°C
60.27 feet				-	-		-
Static Water from TOC	Sample E	Equipment		рН	=	at	°C
52.10 5 3.08 feet		Submersible pu	mp				
Product Level from TOC		•	•	<u>Conductivity</u>			
Fet feet				Conductance Standard:	-	µmhos/cm at 2	25° C
Length of Water Column	Analytica	I Equipment (pH, DO, Redox, filt	ration, etc.)			-	
8.17 7.19 feet		YSI 600 XL		Measured Value:	;	µmhos/cm at 2	25° C
Well Volume							
1.83 1.17 gai	Hach	Kits for DO, Ferrous Iro	on, Alkalinity	Dissolved Oxyae	a		
Screened Interval (from GS)				DO M	eter Calibrated to	:	mg/L
feet							-

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
	0							53.08	
1816	1	1.2	NM				->	58.9	
1825	2	2.4						57.03	
1834	3	3,6	V					56,64	
	4								

Geochemical Parame	ters	Comments;
Ferrous Iron:	mg/L	Pressure of PSH noted on outside of Builder
Dissolved Oxygen:	Ø mg/L	ally I Bail (NM = not measured)
Nitrate:	l' mg/L	
Alkalinity	ma/L	

PPE Wom:	Sampler's Signature	1	~	۸	
Nitrile Gloves		//	/'	()	
Disposition of Purge Water:	7 /	V. ·	/	V	
Drummed and placed in drum storage		m	l	Ľ.	
			<u> </u>		

1 11

BROWN AND CALDWELL

WELL ID: MW-10

Groundwater Sampling Field Data Sheet

W.Countv	Road.	Hobbs.	NM

Project Number:	2832	Task Number: 13	-	Date:		-
Casing Diameter		Purge Equipment	Equipment C	alibration - Ti	me	
2	inches	Submersible pump	-	-		-
Total Depth of Well fro	om TOC	-	рН	=	at	°C
63.60) _{feet}			-		-
Static Water from TOC	0	Sample Equipment	рН	=	at	°C
5209 55,12	feet	Submersible pump				
Product Level from TC	DC	- · · ·	Conductivity			
U/4	feet		Conductance Standard:		µmhos/cm at 25° (5
Length of Water Colur	mn	Analytical Equipment (pH, DO, Redox, filtration, etc.)			-	
9.61- ♀. ५४ Well Volume	feet	YSI 600 XL	Measured Value:		µmhos/cm at 25° (C
Screened Interval (from	gai m GS)	Hach Kits for DO, Ferrous Iron, Alkalinity	<u>Dissolved Oxvael</u> DO Mi	2 eter Calibrated to:		mg/L
	feet					-

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
1608	0	915	6,65	22.41	9213	-981 x	1.78		cloudy
16:17	1	14		21.50	7658	-103	0,97		clear
1620	2	2.8	6.69	21.38	8422	- 103,4	698		Clar
1626	3	4,2	6.2	21.37	8454	1057 j	1,13		Clear
	4								

Geochemical Paramet	ters		Comments;
Ferrous Iron:	2.8	mg/L	
Dissolved Oxygen:	Ø	mg/L	_
Nitrate:		mg/L	
Alkalinity		ma/L	

PPE Wom: Nitrile Gloves	Sampler's Signature:
Disposition of Purge Water:	
Drummed and placed in drum storage	_ / the land

В	R	0	W	N	A	N	D	С	А	\mathbf{L}	D	W	\mathbf{E}	L	L
---	---	---	---	---	---	---	---	---	---	--------------	---	---	--------------	---	---

Groundwater Sampling Field Data Sheet

WELL ID: MW-11A W.County Road, Hobbs, NM

Project Number: 28	32 Task Number: 13		Date	:	
Casing Diameter	Purge Equipment	Equipment C	alibration - T	ime	
2 inches	Submersible pump		-		_
Total Depth of Well from TOC		рН	=	at	°C
64.16 feet			-		_
Static Water from TOC	Sample Equipment	рН	=	at	°C
54.79 5.5.43 feet	Submersible pump				
Product Level from TOC		Conductivity			
feet		Conductance Standard:	-	µmhos/cm at 25°	С
Length of Water Column	Analytical Equipment (pH, DO, Redox, filtration, etc.)			-	
9:22 8176 feet	YSI 600 XL	Measured Value:		_µmhos/cm at 25°	с
Well Volume	J		·····		
1.53 1.43 gai	Hach Kits for DO, Ferrous Iron, Alkalinit	y <u>Dissolved Oxvae</u>	n		
Screened Interval (from GS)		DO M	eter Calibrated to:		mg/L
(eet					-

Time	Well Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
רואי	0	0.5	6.87	20,96	2747	-37.1	0.68	55.9	Very Cloudy
1419	1	1.4	6.52	20.59	2906	-56,3	0.56	55,92	slightly Cloudy
1424	2	2.8	6.81	20,28	2849	-82.2	0,47	55.93	Clear
1427	3	4.2	6.82	20,32	Č865-	-91,0	0.35	55.53	Clear
	4								

Geochemical Parame	eters		Comments:
Ferrous Iron:	5.6	mg/L	
Dissolved Oxygen:	0	mg/L	
Nítrate:		mg/L	
Alkalinity	440	mg/L	

PPE Wom:	Sampler's Signature:
Nitrile Gloves	
Disposition of Purge Water:	
Drummed and placed in drum storage	Min Jamak

i li ibi

1.1

11

-

BROWN AND CALDWELL

Groundwater Sampling Field Data Sheet

1

W.County Road,	Hobbs, NM

WELL ID: MW-12

. . .

. 8

Project Number:	2832	Task Number: 13	-	Date:		-
Casing Diameter		Purge Equipment	Equipment C	alibration - Ti	me	
2	inches	Submersible pump	- 1	-		-
Total Depth of Well fr	om TOC	- · ·	рН	=	at	°C
55.4863.7	5 feet		-	-		-
Static Water from TO	с	Sample Equipment	рH	=	at	°C
34.72 641	feet	Submersible pump				
Product Level from TO	oc		Conductivity			
	feet		Conductance Standard:	-	µmhos/cm at 25	,c
Length of Water Colu	mn	Analytical Equipment (pH, DO, Redox, filtration, etc.)		,	-	
9783 8,52	< feet	YSI 600 XL	Measured Value:		_µmhos/cm at 25	°C
Screened Interval (fro	gal m GS)	Hach Kits for DO, Ferrous Iron, Alkalinity	Dissolved Oxvae DO M	0 eter Calibrated to:		mg/L
	leet					-

Time	Weli Volume	Gallons Removed	рН	Temp	Conductivity	Redox	Dissolved Oxygen	Water Levels	Visual Description
1504	0	<i>0,5</i>	6.91	21.83	3793	-108,7	1.77	57.9	Singlety
1508	1	1.4	6.76	2(70	3286	-93,9	0,83	55.71	Clear
1517	2	2.8	6.75	-21.76	32.45	-99.7	0.54	55.75	clear
152	3	4.2	6.75	21,48	3190	-99,5	0,45	55.75	
	4								

Geochemical Parame	ters		Comments:
Ferrous Iron:	9.2	mg/L	MW-2832 A. D. D. D. blicate
Dissolved Oxygen:	Ø	mg/L	
Nitrate:		mg/L	
Alkalinity	500	mg/L	

PPE Worn:	Sampler's Signature:
Nitrile Gloves	
Disposition of Purge Water:	
Drummed and placed in drum storage	1 Am 1. U

the state of the s

HI I

. . .

В

APPENDIX B

of High

1 a

Laboratory Analytical Report for Groundwater Samples

\\StreetTalk\FS DATA@Homer@Servers\WP\bjserv\2832\039r.DOC "Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

July 13, 1998

Mr. Rick Rexroad BROWN AND CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on June 25, 1998. The sample(s) was assigned to Certificate of Analysis No.(s) 9806C06 and analyzed for all parameters as listed on the chain of custody.

Any data flag or quality control exception associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette A. Fini Senior Project Manager

11 1 11

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 98-06-C06

Approved for Release by:

Bernadette A. Fini, Senior Project Manager

7-1.3-48 Date

Greg Grandits Laboratory Director

Cynthia Schreiner Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

I I I I I I I

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO: 2832.13
SITE: Hobbs, NM	MATRIX: WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED: 06/23/98 18:34:00
SAMPLE ID: MW-09	DATE RECEIVED: 06/25/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	0.25	0.1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: LJ Date: 07/07/98	% Recovery 103 127		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	2.4 22 10 36 70.4	1.0 P 1.0 P 1.0 P 1.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 07/07/98	% Recovery 90 107		
Total Petroleum Hydrocarbons-Diesel	ND	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 09:06:00	% Recovery 70		

(P) - Practical Quantitation Limit ND - Not detected.Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. *Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13	
SITE: Hobbs, NM	MATRIX:	WATER	
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98	19:30:00
SAMPLE ID: MW-03	DATE RECEIVED:	06/25/98	

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Gasoline Range Organics	4.9	1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: AA Date: 07/07/98	% Recovery 97 97		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	100 720 350 490 1660	10 P 10 P 10 P 10 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: AA Date: 07/07/98	% Recovery 103 90		
Total Petroleum Hydrocarbons-Diesel	0.40	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 12:58:00	% Recovery 64		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98 20:14:00
SAMPLE ID: MW-04	DATE RECEIVED:	06/25/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Gasoline Range Organics	10	1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: AA Date: 07/07/98	% Recovery 103 100		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	160 890 590 1600 3240	10 P 10 P 10 P 10 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: AA Date: 07/07/98	% Recovery 107 93		
Total Petroleum Hydrocarbons-Diesel	0.69	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 10:23:00	% Recovery 64		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24
 that do not resemble a diesel pattern.(C10-C24) RR
QUALITY ASSURANCE: These analyses are performed in accordance
 with EPA guidelines for quality assurance.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98 20:46:00
SAMPLE ID: MW-01	DATE RECEIVED:	06/25/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Gasoline Range Organics	9.2	0.5 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: AA Date: 07/07/98	% Recovery 113 107		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	53 680 580 1400 2713	5.0 P 5.0 P 5.0 P 5.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: AA Date: 07/07/98	% Recovery 107 93		
Total Petroleum Hydrocarbons-Diesel	1.4	1.00 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 11:02:00	% Recovery 68		

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY CONTROL DOCUMENTATION

¥

1.1

SPL BATCH QUALITY CONTROL REPORT ** Method Modified 8015B*** for Gasoline

Batch Id: VARD980707084600

* = Values outside QC Range due to Matrix Interference (except RPD)

Units: mg/L

13 - 111

1.4

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	e <u>Blank Spike</u> d Result Recovery <1> %		QC Limits(**) (Mandatory) % Recovery Range
Gasoline Range Organics	ND	1.0	1.0	100	64 - 131

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix Spike		Matrix Spike ! Duplicate Re		x Spike Matrix Spike MS/MSD QC Limit. Duplicate Relative % (Advi	Limits(***) (Advisory)	
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE RANGE ORGANICS	ND	0.9	0.67	74.4	0.69	76.7	3.04	36	36 - 160

Analyst: LJ « = Data outside Method Specification limits. Sequence Date: 07/07/98 NC = Not Calculated (Sample exceeds spike by factor of 4 or more) SPL ID of sample spiked: 9806A93-03A ND = Not Detected/Below Detection Limit Sample File ID: DDG1026.TX0 % Recovery = {(<1> - <2>) / <3>] x 100 Method Blank File ID: LCS % Recovery = $(<1> / <3>) \times 100$ Blank Spike File ID: DDG1023.TX0 Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100 Matrix Spike File ID: DDG1033.TX0 (**) = Source: SPL-Houston Historical data (1st Q '97) Matrix Spike Duplicate File ID: DDG1034.TX0 (***) = Source: SPL-Houston Historical Data (1st Q '97) SAMPLES IN BATCH (SPL ID) : 9806A93-04A 9806C06-01A 9806A93-09A 9806A93-03A

9806A93-05A 9806A93-06A 9806A93-07A 9806A93-08A

SPL BATCH QUALITY CONTROL REPORT ** Method Modified 8015B*** for Gasoline

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units: mg/L

Batch Id: VARE980706211100

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	e <u>Blank Spike</u> d Result Recovery <1> %		QC Limits(**) (Mandatory) % Recovery Range
Gasoline Range Organics	ND	1.0	1.1	110	64 - 131

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix Spike		Matrix Spike Duplicate I		ce Matrix Spike MS/MSD QC Limits(Duplicate Relative % (Adviso)	Limits(***) (Advisory)	
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE RANGE ORGANICS	ND	0.9	0.70	77.8	0.74	82.2	5.50	36	36 - 160

* = Values outside QC Range due to Matrix Interference (except RPD) « = Data outside Method Specification limits. Analyst: AA NC = Not Calculated (Sample exceeds spike by factor of 4 or more) Sequence Date: 07/06/98 SPL ID of sample spiked: 9806A93-02A ND = Not Detected/Below Detection Limit Sample File ID: EEG1026.TX0 % Recovery = {(<1> - <2>) / <3> } x 100 Method Blank File ID: LCS % Recovery = $(<1> / <3>) \times 100$ Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100 Blank Spike File ID: EEG1018.TX0 Matrix Spike File ID: EEG1022.TX0 (**) = Source: SPL-Houston Historical data (1st Q '97) Matrix Spike Duplicate File ID: EEG1023.TX0 (***) = Source: SPL-Houston Historical Data (1st Q '97) SAMPLES IN BATCH (SPL ID) : 9806A93-01A 9806A93-02A 9806A71-14C 9806A71-02C 9806C07-02A 9806A71-01C 9806A71-13C 9806C06-04A 9806C06-02A 9806C06-03A 9806C07-01A 9806C07-03A 9806C07-05A 9806C07-06A 9806C05-01A 9806C05-02A 9806C05-03A

Batch Id: VARD980706153401

ug/L Units:

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range		
Benzene	ND	100	99	99.0	61 - 119		
Toluene	ND	100	97	97.0	65 - 125		
EthylBenzene	ND	100	98	98.0	70 - 118		
O Xylene	ND	100	99	99.0	72 - 117		
M & P Xylene	ND	200	190	95.0	72 - 116		

MATRIX SPIKES

Sample Results	Spike Added	Matrix Spike M		Matrix Spike		MS/MSD Relative %	MSD QC Limits(***) ive % (Advisory)	
		Result	Recovery	Result	Recovery	Difference	RPD	
<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
ND	20	21	105	20	100	4.88	21	32 - 164
ND	20	22	110	20	100	9.52	20	38 - 159
ND	20	22	110	20	100	9.52	19	52 - 142
ND	20	22	110	19	95.0	14.6	18	53 - 143
ND	40	44	110	39	97.5	12.0	17	53 - 144
	Sample Results <2> ND ND ND ND ND	Sample Spike Added <2> <3> ND 20 ND 20 ND 20 ND 20 ND 20 ND 20 ND 20 ND 20	Sample ResultsSpike AddedMatrix Result<2><3><1>ND2021ND2022ND2022ND2022ND4044	Sample ResultsSpike AddedMatrixSpike Spike<2><3>Result <1>Recovery <4><2><3><1>105ND2022110ND2022110ND2022110ND2022110ND4044110	Sample ResultsSpikeMatrixSpikeMatrix DuplicAddedResultRecoveryResult<2><3><1><4>ND202110520ND2022110200ND2022110200ND2022110200ND404411039	Sample ResultsSpike AddedMatrixSpike SpikeMatrixSpike DuplicateResult <2>ResultRecovery <1>ResultRecovery <1>ResultRecovery <5><2><3><1><4>><1><5>ND2022110520100100ND2022211020100ND2022211010995.0ND40441103997.5	Sample ResultsSpikeMatrixSpikeMatrixSpikeMatrixSpikeMs/MSD Relative % Duplizer<2>AddedResultRecoveryResultRecoveryResultRecoveryCov	Sample ResultsSpike AddedMatrixSpike SpikeMatrixSpike SpikeMs/MSD Relative % DupliateQC 1 Relative % Relative %<2><3>Result <1>Recovery <4>Result <1>Recovery <5>Result Max.Recovery Max.<2><3><1><105

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100 (**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

Sequence Date: 07/06/98

Method Blank File ID:

Sample File ID: D_G1008.TX0

SPL ID of sample spiked: 9806C65-04B

Blank Spike File ID: D_G1004.TX0

Matrix Spike File ID: D_G1005.TX0

Matrix Spike Duplicate File ID: D_G1006.TX0

THE HE WILL

116

Analyst: LJ

an an tribuil a di san

9806A93-05A 9806A93-06A 9806A93-07A 9806A93-08A

9806A93-04A 9806C06-01A 9806A93-09A 9806A93-03A

Units: ug/L

Batch Id: VARE980706213700

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
MTBE	ND	50	43	86.0	72 - 128
Benzene	ND	50	51	102	61 - 119
Toluene	ND	50	51	102	65 - 125
EthylBenzene	ND	50	50	100	70 - 118
O Xylene	ND	50	51	102	72 - 117
M & P Xylene	ND .	100	100	100	72 - 116
	-		-		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	QC :	Limits(***) (Advisory)
			Result	Recovery	Result	Recovery	Difference	RPD	
	<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
MTBE	ND	100	93	93.0	78	78.0	17.5	20	39 - 150
BENZENE	ND	100	95	95.0	80	80.0	17.1	21	32 - 164
TOLUENE	ND	100	95	95.0	81	81.0	15.9	20	38 - 159
ETHYLBENZENE	ND	100	91	91.0	77	77.0	16.7	19	52 - 142
O XYLENE	ND	100	97	97.0	82	82.0	16.8	18	53 - 143
M & P XYLENE	ND	200	190	95.0	160	80.0	17.1 *	17	53 - 144

Analyst: AA Sequence Date: 07/06/98 SPL ID of sample spiked: 9806A93-01A Sample File ID: E_G1025.TX0 Method Blank File ID: Blank Spike File ID: E_G1014R.TX0 Matrix Spike File ID: E_G1016.TX0 Matrix Spike Duplicate File ID: E_G1017.TX0

4 14.1

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = $(<1> / <3>) \times 100$

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH (SPL ID) :

 9806A84-02A
 9806A84-01A
 9806A93-01A
 9806A93-02A

 9806C07-02A
 9806C06-04A
 9806C06-02A
 9806C06-03A

 9806C07-01A
 9806C07-03A
 9806C07-05A
 9806C07-06A

 9806C05-01A
 9806C05-02A
 9806C05-03A

9 İİ

CHAIN OF CUSTODY

į

AND

SAMPLE RECEIPT CHECKLIST

SPL BATCH QUALITY CONTROL REPORT **

PAGE

Units: mg/L

Batch Id: HP_T980710063100

	2	т	x	N	v	c	D	т	v	F	c
- 1	•	11	n	14	r.		r	- L	n.	Б.	0

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix Spike		Matrix Spike MS/M 		MS/MSD Relative %	QC Limits(**) (Advisory)	
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
DIESEL	ND	5.0	2.9	58.0	4.0	80.0	31.9	39	21 - 175

Analyst: RR

L III

Sequence Date: 07/10/98 Method Blank File ID: Sample File ID: Blank Spike File ID: T_F4308.TX0 Matrix Spike File ID:

ND = Not Detected/Below Detection Limit
% Recovery = [(<1> - <2>) / <3>] x 100
Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100
(**) = Source: SPL-Houston Historical Data (4th Q '97)

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

* = Values Outside QC Range. « = Data outside Method Specification limits.

Matrix Spike Duplicate File ID:

SAMPLES IN BATCH (SPL ID) :

ID): 980

The factorial data of the factorial data and the second second second second second second second second second

9806C06-01B 9806C06-03B 9806C06-04B 9806C06-02B

11

d ĥ.

SPL Houston Environmental Laboratory

Sample Login Checklist

	Q-25-98 1/0)		
SPI	_ Sample ID:			
	9806006			
			<u>Yes</u>	<u>No</u>
1	Chain-of-Custody (COC) form is pre	esent.		
2	COC is properly completed.			
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the ship			
5 If yes, custody seals are intact.				
6 All samples are tagged or labeled.				
7	If no, Non-Conformance Worksheet	has been completed.		
8	Sample containers arrived intact			
9	Temperature of samples upon arrival	:	3	С
10	Method of sample delivery to SPL:	SPL Delivery		
		Client Delivery		
		FedEx Delivery (airbill #)	806479	79540
		Other:		
11	Method of sample disposal:	SPL Disposal		
		HOLD		
		Return to Client		

July 13, 1998

Mr. Rick Rexroad BROWN AND CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on June 24, 1998. The sample(s) was assigned to Certificate of Analysis No.(s) 9806A93 and analyzed for all parameters as listed on the chain of custody.

Any data flag or quality control exception associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

1.1-

Bernadette A. Fini Senior Project Manager

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 98-06-A93

Approved for Release by:

Bernadette A. Fini, Senior Project Manager

Date

Greg Grandits Laboratory Director

Cynthia Schreiner Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98 08:35:00
SAMPLE ID: MW-7	DATE RECEIVED:	06/24/98

ANALYTICA) PARAMETER	L DATA RESULTS	DETECTION	UNITS
Gasoline Range Organics	ND	limit 0.1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: AA Date: 07/07/98	% Recovery 90 93	ι	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND S ND	1.0 P 1.0 P 1.0 P 1.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: AA Date: 07/07/98	% Recovery 100 93		
Total Petroleum Hydrocarbons-Diesel	ND	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/09/98 11:24:00	% Recovery 140MI		
ND - Not detected.	(P) - Practical	Quantitation	Limit

ND - Not detected. MI - Matrix interference.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

ND - Not detected.

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd SITE: Hobbs, NM SAMPLED BY: Brown & Caldwell SAMPLE ID: MW-8

PROJECT NO:	2832.13	
MATRIX:	WATER	
DATE SAMPLED:	06/23/98	09:20:00
DATE RECEIVED:	06/24/98	

(P) - Practical Quantitation Limit

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Gasoline Range Organics	ND	0.1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: AA Date: 07/07/98	% Recovery 90 93		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND	1.0 P 1.0 P 1.0 P 1.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: AA Date: 07/07/98	% Recovery 97 90		
Total Petroleum Hydrocarbons-Diesel	ND	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 12:03:00	% Recovery 72		

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

11 160

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98 09:55:00
SAMPLE ID: MW-5	DATE RECEIVED:	06/24/98

ANALYTICA	L DATA RESULTS	DETECTION	UNITS
Casalina Banga Organing			 ma / I
Gasoline kange organics	ND	U.1 P	шg/ц
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: LJ Date: 07/07/98	% Recovery 103 117		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBON	ND ND ND S ND	1.0 P 1.0 P 1.0 P 1.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 07/07/98	% Recovery 90 103		
Total Petroleum Hydrocarbons-Diesel	ND	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 05:52:00	<pre>% Recovery 170MI</pre>		
ND - Not detected. MI - Matrix interference.	(P) - Practical	Quantitation	Limit
tes: *Ref: Methods for Chemical Analy:	sis of Water and	l Wastes, 1983,	EPA

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell SAMPLE ID: MW-6	DATE SAMPLED: DATE RECEIVED:	06/23/98 13:37:00 06/24/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	0.51	0.1 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: LJ Date: 07/07/98	% Recovery 103 133		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	170 4.1 15 7.2 196.3	1.0 P 1.0 P 1.0 P 1.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 07/07/98	% Recovery 137 103		
Total Petroleum Hydrocarbons-Diesel	1.2	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 03:55:00	% Recovery 148MI		

(P) - Practical Quantitation Limit MI - Matrix interference.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98 14:27:00
SAMPLE ID: MW-11A	DATE RECEIVED:	06/24/98

ANALYTICA	L DATA		INITTO
PARAMETER	RESOLTS	LIMIT	UNITS
Gasoline Range Organics	ND	0.5 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: LJ Date: 07/07/98	% Recovery 100 120		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	9.9 ND ND 5 9.9	5.0 P 5.0 P 5.0 P 5.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 07/07/98	% Recovery 87 107		
Total Petroleum Hydrocarbons-Diesel	ND	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 02:00:00	% Recovery 84		
ND - Not detected.	(P) - Practical	l Quantitation	Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

1.1

1.1

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO: 2832.13
SITE: Hobbs, NM	MATRIX: WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED: 06/23/98 14:27:0
SAMPLE ID: MW-11A	DATE RECEIVED: 06/24/98

		ANALY	FICAL	DATA			
PARAMETER					RESULTS	DETEC: LIMIT	TION UNITS
Methane RSKSOP-147 Analyzed by: Date:	JDR 07/08/98	05:14:00			0.11	0.0060 P	ppm
Nitrate nitro Method 353.3 Analyzed by: Date:	gen(as N) * DAM 06/25/98	11:00:00			ND	0.1	mg/L
Sulfate Method 375.4 Analyzed by: Date:	* TW 07/07/98	11:00:00			225	25	mg/L

(P) - Practical Quantitation Limit ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

ៅផ

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98 15:21:00
SAMPLE ID: MW-12	DATE RECEIVED:	06/24/98

ANALYTICA	L DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Gasoline Range Organics	ND	0.5 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: LJ Date: 07/07/98	% Recovery 87 127		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	88 ND ND S 88	5.0 P 5.0 P 5.0 P 5.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 07/07/98	% Recovery 100 100		
Total Petroleum Hydrocarbons-Diesel	ND	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 02:38:00	% Recovery 98		
ND - Not detected.	(P) - Practical	Quantitation	Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	Р
SITE: Hobbs, NM	
SAMPLED BY: Brown & Caldwell	DAT
SAMPLE ID: MW-12	DATE

PROJECT NO:	2832.13	
MATRIX:	WATER	
DATE SAMPLED:	06/23/98	15:21:00
DATE RECEIVED:	06/24/98	

		ANALYTICAL	DATA			
PARAMETER				RESULTS	DETECTION LIMIT	UNITS
Methane RSKSOP-147 Analyzed by: Date:	JDR 07/08/98	04:59:00		ND	0.0012 P	mqq
Nitrate nitro Method 353.3 Analyzed by: Date:	gen(as N) * DAM 06/25/98	11:00:00		ND	0.1	mg/L
Sulfate Method 375.4 Analyzed by: Date:	* TW 07/07/98	11:00:00		240	25	mg/L

ND - Not detected.

i (() (

1:1

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

i li

1.0

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98
SAMPLE ID: MW-2832	DATE RECEIVED:	06/24/98

ANALYTICA	L DATA RESULTS	DETECTION	UNITS
Gasoline Range Organics	ND	LIMIT 0.5 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: LJ Date: 07/07/98	% Recovery 93 127		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	89 ND ND S 89	5.0 P 5.0 P 5.0 P 5.0 P	ug/L ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 07/07/98	<pre>% Recovery 100 107</pre>		
Total Petroleum Hydrocarbons-Diesel	0.31	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 03:17:00	% Recovery 156MI		
ND - Not detected. MI - Matrix interference.	(P) - Practical	Quantitation	Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98
SAMPLE ID: MW-2832	DATE RECEIVED:	06/24/98

		ANALYTICAL	DATA			
PARAMETER				RESULTS	DETECT	ION UNITS
					LIMIT	
Methane RSKSOP-147				0.0072	0.0012 P	mqq
Analyzed by:	JDR					
Date:	07/08/98	04:48:00				
Nitrate nitro Method 353.3 Analyzed by:	gen(as N) * DAM			ND	0.1	mg/L
Date:	06/25/98	11:00:00				
Sulfate Method 375.4 Analyzed by:	* TW			250	25	mg/L
Date:	07/07/98	11:00:00				

(P) - Practical Quantitation Limit ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 07/10/98

PROJECT: BJS Hobbs County Rd	PROJECT NO:	2832.13
SITE: Hobbs, NM	MATRIX:	WATER
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	06/23/98 16:26:00
SAMPLE ID: MW-10	DATE RECEIVED:	06/24/98

ANALYTICA	L DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Gasoline Range Organics	ND	0.5 P	mg/L
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: LJ Date: 07/07/98	% Recovery 107 127		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	37 ND ND 537	5.0 P 5.0 P 5.0 P 5.0 P	ug/L ug/L ug/L ug/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 07/07/98	% Recovery 93 100		
Total Petroleum Hydrocarbons-Diesel	2.1	0.20 P	mg/L
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 07/10/98 05:13:00	% Recovery 130		
ND - Not detected.	(P) - Practical	Quantitation	. Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

ertificate of Analysis No. H9-9806A93-08

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

1 1 1 2 3.

DATE: 07/10/98

PROJECT: BJS Hobbs County RdPROJECT NO: 2832.13SITE: Hobbs, NMMATRIX: WATERSAMPLED BY: Brown & CaldwellDATE SAMPLED: 06/23/98 16:26:00SAMPLE ID: MW-10DATE RECEIVED: 06/24/98

		ANALYTICAL	DATA			
PARAMETER				RESULTS	DETECTION LIMIT	UNITS
Methane RSKSOP-147 Analyzed by:	JDR			0.55	0.060 P	ppm
Date:	07/08/98	04:29:00				
Nitrate nitro Method 353.3 Analyzed by:	gen(as N) * DAM			ND	0.1	mg/L
Date:	06/25/98	11:00:00				
Sulfate Method 375.4 Analyzed by:	* TW			325	25	mg/L
Date:	07/07/98	11:00:00				

(P) - Practical Quantitation Limit ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

PROJECT: BJS Hobbs County Rd SITE: Hobbs, NM SAMPLED BY: Provided by SPL SAMPLE ID: Trip Blank 6/16/98	PROJECT NO: 2832.13 MATRIX: WATER DATE SAMPLED: 06/23/98 DATE RECEIVED: 06/24/98					
ANALYTICAL I	DATA					
PARAMETER	RESULTS	DETECTION LIMIT	UNITS			
Gasoline Range Organics	ND	0.1 P	mg/L			
Surrogate 4-Bromofluorobenzene 1,4-Difluorobenzene Method 8015B *** for Gasoline Analyzed by: LJ Date: 07/07/98	% Recovery 93 110					
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND	1.0 P 1.0 P 1.0 P 1.0 P	ug/I ug/I ug/I ug/I ug/I			
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: LJ Date: 07/07/98	% Recovery 87 100					
ND - Not detected. (F tes: *Ref: Methods for Chemical Analysis **Ref: Standard Methods for Examinat ***Ref: Test Methods for Evaluating S) - Practical of Water and ion of Water olid Waste, E	Quantitation Wastes, 1983 & Wastewater, PA SW846, 3rd	Limit , EPA 18th ed. Ed.			

QUALITY CONTROL DOCUMENTATION

÷

11 111

1.1

1

11

SPL BATCH QUALITY CONTROL REPORT ** Method Modified 8015B*** for Gasoline

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units: mg/L

б Ц

11 111

Batch Id: VARE980706211100

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Spike Blank Result Added <2> <3>		Blank Result <1>	Spike Recovery %	QC Limits(**) (Mandatory) % Recovery Range		
Gasoline Range Organics	ND	1.0	1.1	110	64 - 131		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplie	Spike	MS/MSD Relative %	QC 1	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE RANGE ORGANICS	ND	0.9	0.70	77.8	0.74	82.2	5.50	36	36 - 160

* = Values outside QC Range due to Matrix Interference (except RPD) Analyst: AA « = Data outside Method Specification limits. Sequence Date: 07/06/98 NC = Not Calculated (Sample exceeds spike by factor of 4 or more) SPL ID of sample spiked: 9806A93-02A ND = Not Detected/Below Detection Limit Sample File ID: EEG1026.TX0 % Recovery = [(<1> - <2>) / <3>] x 100 Method Blank File ID: LCS % Recovery = (<1> / <3>) x 100 Blank Spike File ID: EEG1018.TX0 Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100 Matrix Spike File ID: EEG1022.TX0 (**) = Source: SPL-Houston Historical data (1st Q '97) Matrix Spike Duplicate File ID: EEG1023.TX0 (***) = Source: SPL-Houston Historical Data (1st Q '97) SAMPLES IN BATCH(SPL ID): 9806A93-01A 9806A93-02A 9806A71-14C 9806A71-02C 9806C07-02A 9806A71-01C 9806A71-13C 9806C06-04A 9806C06-02A 9806C06-03A 9806C07-01A 9806C07-03A 9806C07-05A 9806C07-06A 9806C05-01A 9806C05-02A 9806C05-03A

SPL BATCH QUALITY CONTROL REPORT ** Method Modified 8015B*** for Gasoline

Batch Id: VARD980707084600

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units: mg/L

QC Limits(**) SPIKE Spike Method Blank Spike COMPOUNDS Blank Result Added (Mandatory) Result Recovery % Recovery Range <2> <3> <1> ¥ 64 -131 100 Gasoline Range Organics ND 1.0 1.0

MATRIX SPIKES

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike	MS/MSD Relative %	QC I	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
GASOLINE RANGE ORGANICS	ND	0.9	0.67	74.4	0.69	76. 7	3.04	36	36 - 160

* = Values outside QC Range due to Matrix Interference (except RPD) « = Data outside Method Specification limits. Analyst: LJ Sequence Date: 07/07/98 NC = Not Calculated (Sample exceeds spike by factor of 4 or more) SPL ID of sample spiked: 9806A93-03A ND = Not Detected/Below Detection Limit Sample File ID: DDG1026.TX0 % Recovery = [(<1> - <2>) / <3>] x 100 Method Blank File ID: LCS $\$ Recovery = (<1> / <3>) x 100 Blank Spike File ID: DDG1023.TX0 Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100 Matrix Spike File ID: DDG1033.TX0 (**) = Source: SPL-Houston Historical data (1st Q '97) Matrix Spike Duplicate File ID: DDG1034.TX0 (***) = Source: SPL-Houston Historical Data (1st Q '97) SAMPLES IN BATCH (SPL ID) : 9806A93-04A 9806C06-01A 9806A93-09A 9806A93-03A 9806A93-05A 9806A93-06A 9806A93-07A 9806A93-08A

H i

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: VARE980706213700

Units:

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range		
MTBE	ND	50	43	86.0	72 - 128		
Benzene	ND	50	51	102	61 - 119		
Toluene	ND	50	51	102	65 - 125		
EthylBenzene	ND	50	50	100	70 - 118		
O Xylene	ND	50	51	102	72 - 117		
M & P Xylene	ND	100	100	100	7 2 - 116		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplie	Spike	MS/MSD Relative %	QC 1	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
MTBE	ND	100	93	93.0	78	78.0	17.5	20	39 - 150
BENZENE	ND	100	95	95.0	80	80.0	17.1	21	32 - 164
TOLUENE	ND	100	95	95.0	81	81.0	15.9	20	38 - 159
ETHYLBENZENE	ND	100	91	91.0	77	77.0	16.7	19	52 - 142
O XYLENE	ND	100	97	97.0	82	82.0	16.8	18	53 - 143
M & P XYLENE	ND	200	190	95.0	160	80.0	17.1 *	17	53 - 144

Analyst: AA Sequence Date: 07/06/98 SPL ID of sample spiked: 9806A93-01A Sample File ID: E G1025.TX0 Method Blank File ID: Blank Spike File ID: E G1014R.TX0 Matrix Spike File ID: E_G1016.TX0 Matrix Spike Duplicate File ID: E_G1017.TX0

11 .11

1:3:1

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100 LCS % Recovery = $(<1> / <3>) \times 100$

Relative Percent Difference = |(<4> - <5>) | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9806A84-02A 9806A84-01A 9806A93-01A 9806A93-02A 9806C07-02A 9806C06-04A 9806C06-02A 9806C06-03A 9806C07-01A 9806C07-03A 9806C07-05A 9806C07-06A 9806C05-01A 9806C05-02A 9806C05-03A

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units:

Batch Id: VARD980706153401

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery ¥	(Mandatory) % Recovery Range		
Benzene	ND	100	99	99.0	61 - 119		
Toluene	ND	100	97	97.0	65 - 125		
EthylBenzene	ND	100	98	98.0	70 - 118		
O Xylene	ND	100	99	99.0	72 - 117		
M & P Xylene	ND	200	190	95.0	72 - 116		
	1			1			

MATRIX SPIKES

Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	QC 1	Limits(***) (Advisory)
		Result	Recovery	Result	Recovery	Difference	RPD	
<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
ND	20	21	105	20	100	4.88	21	32 - 164
ND	20	22	110	20	100	9.52	20	38 - 159
ND	20	22	110	20	100	9.52	19	52 - 142
ND	20	22	110	19	95.0	14.6	18	53 - 143
ND	40	44	110	39	97.5	12.0	17	53 - 144
	Sample Results <2> ND ND ND ND	Sample Spike Added <2> <3> ND 20 ND 20 ND 20 ND 20 ND 20 ND 20 ND 20	Sample ResultsSpike AddedMatrixAddedResult<2><3>ND20ND20ND20ND20ND20ND20ND40	Sample ResultsSpike AddedMatrixSpike<2><3>Result <1>Recovery <4><2><3><1>105ND2022110ND2022110ND2022110ND2022110ND404110	Sample ResultsSpikeMatrixSpikeMatrix Duplie Duplie <2>AddedResultRecoveryResult<2><3><1><4><1><2><3><1>10520ND2020110200ND2022110200ND2022110105ND2022110200ND404410039	Sample ResultsSpike AddedMatrixSpike SpikeMatrixSpike Duplicate <2><3>Result <1>Recovery <4>Result <5>Recovery <5> <2><3><1><4>10520100ND202211020100100ND202211020100ND202211020100ND20221103995.0ND40441103997.5	Sample ResultsSpike MatrixMatrixSpike SpikeMatrixSpike SpikeMs/MSD Relative % Duplicate AddedResult CouplicateRecovery Couplicate<	Sample ResultsSpike MatrixMatrixSpike SpikeMatrixSpike SpikeMs/MSDQC 1 Relative 3AddedMatrixSpike ResultResult SpikeResult SpikeRecovery Spi

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = $(<1> / <3>) \times 100$

Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100 (**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH (SPL ID) :

Sequence Date: 07/06/98

Method Blank File ID:

Sample File ID: D_G1008.TX0

SPL ID of sample spiked: 9806C65-04B

Blank Spike File ID: D_G1004.TX0

Matrix Spike File ID: D G1005.TX0

Matrix Spike Duplicate File ID: D_G1006.TX0

Analyst: LJ

9806A93-05A 9806A93-06A 9806A93-07A 9806A93-08A 9806A93-04A 9806C06-01A 9806A93-09A 9806A93-03A

SPL BATCH QUALITY CONTROL REPORT **

PAGE

HP_T980701115500

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units: mg/L

Batch Id:

BLANK SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplie	Spike	MS/MSD Relative %	QC 1	Limits(**) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
DIESEL	ND	5.0	3.6	72.0	4.0	80.0	10.5	175	21 - 175

Analyst: APR

Sequence Date: 07/02/98 Method Blank File ID: Sample File ID: Blank Spike File ID: T_F4196.TX0 Matrix Spike File ID: Matrix Spike Duplicate File ID: * = Values Outside QC Range. « = Data outside Method Specification limits. NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL Historical limits 4th Qtr.'97

SAMPLES IN BATCH (SPL ID) :

يرط

10 B F

and the state of the state of the state of the state of the state of the state of the state of the state of the

9806A93-04B 9806A93-08B 9806A93-03B 9806A57-03B 9806A93-01B 9806A93-02B 9806A93-05B 9806A93-06B 9806A93-07B

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 07/06/98 Analyzed on: 06/25/98 Analyst: DAM

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Nitrate nitrogen(as N) Method 353.3 *

SPL Sample ID Number	Blank Value mg/L	LCS Concentration mg/L	Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	ND	2.77	2.78	100	92 - 113

-9807153

Samples in batch:

9806A84-01C	9806A84-02C	9806A84-03C	9806A84-04C
9806A84-05C	9806A93-05D	9806A93-06D	9806A93-07D
9806A93-08D	9806B95-01C	9806B95-02C	

COMMENTS:

LCS = SPL ID#:95535172-26

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 07/06/98 Analyzed on: 06/25/98 Analyst: DAM

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Nitrate nitrogen(as N) Method 353.3 *

 SPL Sample	Method	Sample	Spike	Matr:	ix Spike	Matr: Dup	ix Spike licate	RPD) (i	QC LIMITS Advisory)
 ID Number 	Blank mg/L	 Result mg/L	Added mg/L	Result mg/L	Recovery %	Result mg/L	Recovery %	(%)	RPD Max	% REC
9806A93-07D	ND	ND	5.00	4.88	97.6	4.88	97.6	0	12	84 -125

-9807152

Samples in batch:

9806A93-05D 9806A93-06D 9806A93-07D 9806A93-08D

ari f

COMMENTS:

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 07/08/98 Analyzed on: 07/07/98 Analyst: TW

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample ID Number	Blank Value mg/L	LCS Concentration mg/L	Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	ND	4.52	3.96	87.6	82 - 111

-9807236

Samples in batch:

_	9806A93-05D	9806A93-06D	9806A93-07D	9806A93-08D
	9806C37-01A	9806C37-03A	9806C44-02G	9806D79-01E
	9806D79-02E	9806D79-03E	9806E11-01A	9806E11-02A
	9806E11-03A	9806E11-04A	9807002-01E	9807002-02E
	9807094-02A	9807110-01B	9807110-02B	9807110-03B
	COMMENTS:			

LCS#94453193-1

11 11 1k

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 07/08/98 Analyzed on: 07/07/98 Analyst: TW

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample	Method	Sample	Spike	Matr:	ix Spike	Matr: Dup	ix Spike licate	 RPD) ((1	QC LIMITS Advisory)
ID Number	Blank mg/L	Result mg/L	Added mg/L	Result	Recovery	Result mg/L	Recovery	। (%)	RPD Max	% REC
9806A93-07D	ND	9.87	10.00	21.12	112	20.80	109	2.7	9.5	84 -120

-9807233

Samples in batch:

9806 A93- 05D	9806A93-06D	9806A93-07D	9806A93-08D
9806D79-01E	9806D79-02E	9807094-02A	9807110-01B
9807110-02B	9807110-03B		

111

COMMENTS :

CHAIN OF CUSTODY

AND

SAMPLE RECEIPT CHECKLIST

				IdS	, In						SPL Wo	korder	ÿ					
N	Ar	alysis Re	quest	t & C	hain	of Cu	stody	r Reco	brd			986	10 49	3	1 0	bage _		
and C	e la un	1		m3	utrix b	ottle	size	pres.				Re	quest	ted Ar	nalysi	50		
Cexicus Sh 14046	2 Co	# 3520 13)646-	-112 acl	lios=2	⊖=other: A=amber glass	leiv=V	16iv=04 204=	O=other: 2=HNO3	Containers	X = 19 070	7-Hall	ЭN	ey.					
N M				Water	sludge	ssel Signal	liter 4 Si zo	15204 ICI	lo 19dr	28 H	79+0 	unya	2044 april		<u></u>			
D	VIE	TIME	comp g	= M	=75	C=8	1=1 8=8	H=1 1=H	μnΝ	Ð	1 0.\$	4	V 75			4 <u></u>		
6/:	86/20	B35		$\overline{)}$	5	L C	(1)		4	3								
-	1	520	-					-	4	m					14			
		955		7				1	4	M	-				1	Ç.		
		1337		7				()	У	M	~			1		Ŋ		
		1427		7				40-1 (1)	e	M			~					
		1521		1					Q	ŝ	-	~	-	B.	-#		87	
2)		7					9	\sim	/	~)				1	
		1626	3						200	e								
4/1	te			>			Z		2	2								
Tce	crer	3			xoratory -	remarks:									Intact?		Ę	
-														•	Temp:	5	03 1	2
2beci	al Keporti Star	ng Kequirencen dand QC	ม แก่ 11	ax Resul evel 3 Q	لا ل ب کم		law Data Evel 4 Q		Special	Detectio	n Limits	(specify)				PM revie	w'(initial	
	linquished Brun (Inquished	by Sampler. A.C. Cal		(n)			alc 6/23/9	9¢	time 1 23	Jest	2 Read	T D T	8	20.81	62	404	Q.	
5. Re	linquished	py:					latc		time		A Bear	JUN L	portor		N	N,	124 1	120
ive, Hou Traverse	tston, T. Citv. M	X 77054 (7) I 49684 (6)	(3) 660 (947	-5777			00	500 A1 1501 F	nbasse	idor C	affery The Av	Parkw	ay, So Fullert	ott, LA	70583	(318) (714)	237-47	2 22 83
		~~	rev In				ļ			Reutivi	N N	בווחכי	LULICI		1 72001	ギーン・		ž

119

SPL Houston Environmental Laboratory

Sample Login Checklist

Da	te: Tii	me:		
	6-24-18	1000		
SP	L Sample ID:	· · · · · · · · · · · · · · · · · · ·		
	4806A	43		
		·	Yes	N
1	Chain-of-Custody (COC) form is	present.		
2	COC is properly completed.			
3	If no, Non-Conformance Worksh	eet has been completed.		
4	Custody seals are present on the	shipping container.	\checkmark	
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.			
7	If no, Non-Conformance Worksh	leet has been completed.		
8	Sample containers arrived intact			
9	Temperature of samples upon arr	ival:	5.	3"
10	Method of sample delivery to SPI	L: SPL Delivery		
		Client Delivery		
		FedEx Delivery (airbill #)	950 81454	6410
		Other:		
11	Method of sample disposal:	SPL Disposal		\checkmark
		HOLD		
		Return to Client		

	A	
Name:		Date:
{		L OK KY
		12-12-70
L		

2.-, . L

-

. . .

13

С

APPENDIX C

1

Soil Boring Logs and Monitor Well Construction Diagrams

\\StreetTalk\FS Data2@Homer@Servers\BJSERV\2832-HOB\TASK-13\JUN98RPT.DOC "Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

1 1

<u>AI-20</u>

Proje	ct N	lame:	E	BJ Services Company, U.S.A.				P	roject Nu	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	32	Sheet <u>1</u> of <u>2</u>
Proje	ct L	ocati	on: 1	Hobbs, New Mexico					Logged 1	By: R. Rex i	road	Approved: R. Rexroad
Drilli	ng (Contr	actor	r: Geo Projects, Inc.					Date Sta	rted: 2/8/9	8	Date Finished: 2/10/98
Drilli	ing E	Equip	men	t: Mobile B-61	Driller: A. Hin	ojosa			Total Bo Depth: (feet) 67.0		Depth to Static Water: (feet) 53.5
Drilli	ng N	Metho	od:	Air Rot./Hol. Stem	Borehole Diameter	: 8"			TOC Ele	evation: N	R	Ground Elevation: NR
Samp	ling	Met	nod:	2-foot split spoon					Diameter of Well (r and Type Casing:	2-inc	ch PVC
Com	ment	:s: ,							Slot Size Develop	:: 0.020 " ment Method	Filte	er Material: 8-16 silica sand r surging and bailing
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Description		Readings	Sampled Interval	Recovery (feet)	Sample ID			Remarks
_			\bigotimes	Fill - Gravel, sand, and silt.							S	
2-		GC		Medium brown, clayey gravel (C sandstone fragments.	GC), with angular						Ň	
			· · ·	Medium brown sandstone (SS).								
-			· · ·								X	
6-	-	ML										
8				Caliche-cemented, light brown cl indurated in upper section, gra cemented whitish clayey silt at feet.	layey silt (ML); wel des to moderately approximately 8							
10	ĺ	CL		Medium brown sandy clay (CL);	soft; slightly moist.							
12		ML		Medium brown sandy clay with c pebbles up to 3/4-inch in diame	caliche (ML), with eter.							
14-	Ī		, , , , , , , , , , , , , , , , , , ,	Medium brown sandstone (SS); v	vell cemented.							Comparison of the second
		CL		Whitish slightly silty clay (CL) w	ith caliche; dry.							Cement-bentonite grout.
16 - - - 18 - -				As above with rounded sandstone in diameter.	e pebbles to 1/2-incl							
20				Layer with rounded sandstone pe diameter at 20 feet.	bbles to 1/2-inch in							
22	-	SM		Very light brown, very fine grair dry to very slightly moist.	ned silty sand (SM);	-						
24 _						1						
26				Medium brown, lithified sandstor	ne layer at 26 feet.							
28		SP		Medium brown sandstone with ro 3/4-inch in diameter at 27.5 to	28 feet.							
30				slightly moist. Layer of rounded sandstone pebb	les to 1-inch in	ļ						
32 -			· · · · · · · · · · · · · · · · · · ·	diameter. Medium brown, well cemented sa	andstone; low							

DO NU KI

AI-20

1

1 11

AI-21

-	me: <u>D</u>	J Services Company, U.S.A.					Pı	roject Nu	mber:28	32	$\underline{\qquad} Sheet \underline{1} of \underline{2}$
Project Loca	cation: H	lobbs, New Mexico						Logged I	By: R. Rexr	oad	Approved: R. Rexroad
Drilling Cor	ontractor:	Geo Projects, Inc.	1				_	Date Star	rted: 2/7/98	8	Date Finished: 2/8/98
Drilling Equ	uipment:	Mobile B-61	Driller: A	A. Hinoj	osa			Total Bo Depth: (1	ring feet) 67.5		Depth to Static Water: (feet) 54.0
Drilling Met	ethod:	Air Rot./Hol. Stem	Borehole D	iameter:	8"			TOC Ele	vation: NF	2	Ground Elevation: NR
Sampling M	Aethod:	2-foot split spoon						of Well (Casing:	2-inc	h PVC
Comments:								Slot Size Developi	: 0.020 " ment Method	Filter : Air	r Material: 8-16 silica sand • surging and bailing
Depth (feet) Depth to Water 11SC Soil Tyme	USC Soil Type Lithology	Description			Readings	Sampled Interval	Recovery (feet)	Sample ID			Remarks
2 - Cl 2 - M 4 - M 6 - M 6 - M 8 - M 10 - Cl 12 - M 14 - Cl 16 - Sl 20 - Cl 22 - Sl 24 - Sl 22 - Cl 24 - Sl 22 - Sl 24 - Sl 28 - S		 Fill. Dark gray silty clay (CL), gradir medium gray at approximately moist. Light pinkish-brown clayey silt (dry. Scattered subrounded pebbles pro- Medium brown sandstone layer (Whitish clayey silt (ML); dry. Medium brown sandstone (SS); 1 permeability. Whitish silty clay (CL), with cali Very fine grained to fine grained sand (SP); well sorted; dry. Color change to light pinkish-bro grained to fine grained sand (S rounded pebbles to 1/4-inch in Pebble rich layer; rounded pebbl diameter. Pebble rich layer; rounded sands 3/4-inch in diameter. 	ng in color to 3 feet; slight ML), with ca esent. SS); well cer ow porosity a che; dry. , very light b pwn, very fin P), with scatt diameter. es up to 1-ind tone pebbles	nented. and prown e tered ch in to							Cement-bentonite grout.

AI-21

Sheet 2 of 2Project Number: 2832 Project Name: BJ Services Company, U.S.A. _____ Sampled Interval Recovery (feet) Readings Depth to Water USC Soil Type Depth (feet) Sample ID Lithology Description Remarks 34 ---36 38 Fine grained sand (SP); slightly moist. Pebble layer; rounded pebbles up to 1-inch in diameter. 40-42 Cement-bentonite grout. Thin stringers containing rounded pebbles from 1/4 to 1/2-inch in diameter in 40 to 46-foot interval. 44 46 48 50 30**9** 8. 🟹 Α A = Sample AI21-50-50.852 53.5 В > 2000 Ţ 1 B = Sample A21-53.5-54.554 ---Black staining present in 53.5 to 54.5-foot interval; saturated. 56 58 Hydrated bentonite seal. 60 62 63.5_ 64.0 8-16 graded silica sand filter 64 8 1 С pack. C = Sample A21-64-65 0.020-inch slotted well screen. 66 66.5 66.8-Bottom cap. 67.5-Total depth = 67.5 feet.

A N E L

CL /

SP

SM

dry.

14

Medium brown sandstone (SS); well cemented; dry.

Whitish caliche-cemented silty clay (CL); dry.

sand (SP); very slightly moist.

(weathered sandstone).

Medium brown, very fine grained to fine grained

Whitish weathered sandstone (SS); pebbles present;

Thin layer of very light brown silty sand (SM); dry. Light to medium brown sandstone pebbles

Medium brown sandstone (SS); well cemented; dry.

24 -

26 -

28-

30-

32 ---

_

BR CA	0 L	W D	N W	and ELL					<u>AI-2</u>	2		
Proj	ect N	lame	B	J Services Company, U.S.A	·			Pr	oject Nu	umber: <u>28</u>	32	Sheet <u>1</u> of <u>2</u>
Proj	ect L	ocati	on: I	Hobbs, New Mexico					Logged	By: R. Rex	road	Approved: R. Rexroad
Drill	ing	Contr	actor	Geo Projects, Inc.				1	Date Sta	rted: 2/10/	98	Date Finished: 2/11/98
Drill	ing	Equip	oment	: Mobile B-61	Driller: A. Hinoj	osa		1	Total Bo Depth: (oring (feet) 67.0		Depth to Static Water: (feet) 53.5
Drill	ing	Meth	od:	Air Rot./Hol. Stem	Borehole Diameter:	8"		-	TOC El	evation: NI	R	Ground Elevation: NR
Sam	pling	Met	hod:	2-foot split spoon					Diamete of Well	r and Type Casing:	2-inc	h PVC
Com	men	ts:		· · ·			~~~~~	2	Slot Size Develop	e: 0.020 " ment Method	Filte	r Material: 8-16 silica sand r surging and bailing
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Descriptior		Readings	Sampled Interval	Recovery (feet)	Sample ID			Remarks
		CI	×	Fill - pebbles, silt, clay.							S	
2 -	-			Dark brown silty clay (CL); slig	htly moist.							
4-			<i>41777</i>	Medium to light brown sandston cemented; dry.	e (SS); well							
6 -	-	CL ML		Caliche - light brown silty clay (approximately 6 feet to off wh (ML), with caliche cement; dr	CL); grades at itish clayey silt y.	4						
8	-			Carbonate-rich (crystalline) belo	w 8 feet; dry.							
10 	-			Sandstone pebbles present below Medium brown sandstone (SS),	v 10 feet. well cemented; dry.							
12-			: .	Thin caliche layer present at 12	feet.							
14		CL		Whitish silty clay (CL) with cali	che cementation.				a a manager a manager a			Cement-bentonite grout.
16-		SM CL		Light brown thin layer of silty sa Light to medium reddish-brown	nd (SM); dry. silty clay (CL); soft;	-						
18				Whitish caliche-cemented silty c soft; slightly moist.	lay (CL) at 17 feet;							
20-												
22 —	•											

11

AI-22

11

AI-23

Proje	ct N	lame	: <u>B</u>	J Services Company, U.S.A.				Pı	oject Nu	mber: 28.	32	Sheet <u>1</u> of
Proje	ct L	ocat	ion: I	Hobbs, New Mexico					Logged	By: R. Rexr	oad	Approved: R. Rexroad
Drilli	ng (Cont	ractor	Geo Projects, Inc.					Date Sta	rted: 2/5/98	8	Date Finished: 2/7/98
Drilli	ng l	Equij	oment	: Mobile B-61	Driller: A. Hinoj	osa			Depth: (feet) 67.0		Water: (feet) 53.4
Drilli	ng l	Meth	od:	Air Rot./Hol. Stem	Borehole Diameter:	8"		_	TOC Ele	vation: NF	2	Ground Elevation: NR
Samp	ling	Mei	hod:	2-foot split spoon				-	of Well (Casing:	2-inch	PVC
									Slot Size Develop	:: 0.020 " ment Method	Filter : Air	Material: 8-16 silica sand surging and bailing
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Description		Readings	Sampled Interval	Recovery (feet)	Sample ID			Remarks
		CL CL ML SM		 Fill - boulder to clay sized. Dark gray to medium gray silty of moisture content. Light brown silty clay (CL), with moderate moisture content. Carbonate - cemented gravel preeding of medium brown sandstone (SS). Silty clay (CL). Medium brown sandstone, as about the sandstone (SS). Silty clay (CL). Medium brown clayey sandy silt (Mathematication of the sandstone) sandstone, as about the sandstone (SS). Increasing sand content with increasing sand content with increasing sand content with increasing sand content with increasing sand content silty sandstone (SS). Medium pinkish-brown clayey silt (Mathematication of the sandstone) silty sandstone (SS). 	clay (CL); low a caliche; low to sent; very dry. a, very fine grained ove. IL); dry; with gravel reasing depth. I (SM); dry. It (ML); dry. rained sand (SP);							Cement-bentonite grout.
32 - -				Drilling break at 32 feet.	ſ							

fath the figure is

AI-23

Sheet 2 of 2Project Name: BJ Services Company, U.S.A. Project Number: 2832 Sampled Interval Readings Recovery (feet) Depth to Water USC Soil Type Depth (feet) Sample ID Lithology Description Remarks Medium brown sandstone (SS); well indurated. 34-SP Light pinkish-brown, very fine grained sand (SP) with scattered gravel-bearing lenses to 40 feet. 36 38 40 Very well sorted, very fine grained sand (SP) with 0 ∇ scattered whitish calcareous zones; no odor; slightly moist. 42 44 Well cemented sandstone cobble (3-inches in 2 1 diameter) recovered in 45- to 46-foot interval. 46 8 .6 48 Scattered cemented sandstone cobbles present in 49-A = Sample AI23-49-50.5> 2000 1.5 A to 50.5-foot interval; moist. 50 52 53.0 1574 15 Black staining present. 54 457 1.5 56 58 Hydrated bentonite seal. Layer of sandstone cobbles present at 59.5 feet. 60 62 Layer of sandstone cobbles present at 62 feet. 63.0 8-16 graded silica sand filter 63.5_ pack. 64 0.020-inch slotted well screen. 66.0 66 -66.3-67.0-Bottom cap. Total depth = 67 feet.

C A	Ľ	D	W	ELL					AI-2	4				
Proje	ct N	ame	<u> </u>	3J Services Company, U.S.A	•			Pr	oject Nu	mber: <u>28</u>	32	Sheet of		
Proje	ct L	ocati	on:	Hobbs, New Mexico	······································			Logged By: R. Rexroad				Approved: R. Rexroad		
Drilli	ng C	Contr	actor	r: Geo Projects, Inc.			-	Date Started: 2/4/98 Date Finished: 2/5/98						
Drilli	ng E	Equip	omen	t: Mobile B-61	Driller: A. Hinoj	osa			Total Bo Depth: (1	ring feet) 67.5		Depth to Static Water: (feet) 53.5		
Drilli	ng N	Aeth	od:	Air Rot./Hol. Stem	Borehole Diameter:	meter: 8" TOC Elevation: NR Ground Elevation: NR								
Samp	ling	Met	hod:	2-foot split spoon					Diameter of Well (neter and Type /ell Casing: 2-inch PVC				
Comr	Comments: 10 feet south and 6 feet west of MW-1								Slot Size: 0.020 " Filter Material: 8-16 silica sand Development Method: Air surging and bailing					
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Descriptior		Readings	Sampled Interval	Recovery (feet)	Sample ID			Remarks		
		CL		Fill: light reddish-brown clayey gravel; dry. Dark gray silty clay (CL); no od Medium grayish-brown silty clay Light pinkish-brown clayey sand calcareous cement (caliche).	sandy silt, with or. / at 3 feet. y silt (ML), with									
8				Light brown clayey silt (ML), w gravel becomes more abundan depth to 12.5 feet; dry. Decreased gravel content below	ith limestone gravel; t with increased 12.5 feet.									
.6 		CL		Light pinkish-brown slighty silty	clay (CL); dry.									
20		SM		Light pinkish-brown slightly silt fine grained.	y sand (SM); very									
22 — — 24 —		SP		Light pinkish-brown, very fine g grained sand (SP); no odor; sl	rained to fine ghtly moist.							Comont hoptonite and		
- 26				One-inch thick layer with rounde up to 3/4-inch in diameter at 2	ed sandstone gravel 5 feet.							zement-bentonite grout.		
28-														
30 <u>-</u> 				Drilling break at 29.7 feet - laye to 1-inch in diameter.	r of rounded gravel									

RROWN AND

Ì

- T.

16

AI-24

Project Number: 2832 Project Name: BJ Services Company, U.S.A. Sheet 2 of 2Readings Sampled Interval Recovery (feet) Depth to Water USC Soil Type Depth (feet) Sample ID Lithology Description Remarks Drilling break 33.5 feet. 34 Light pinkish-brown, very fine grained to fine SP grained sandstone (SS). SW Light pinkish-brown, very fine grained to fine 36 SP grained sand (SP). Sand with gravel (SW). Light pinkish-brown, very fine grained to fine 38 grained sand (SP); angular; slightly moist. Abundant rounded sandstone gravel to 1-inch in diameter present in 38-39 foot interval. 40 Light slightly pinkish-brown, very fine grained to 0 1.5 fine grained well sorted sand (SP); no odor; slighty moist. 42 44 Light slightly pinkish-brown, very fine grained to 0 1.5 fine grained sand (SP); with scattered rounded 46 sandstone gravel to 3/4-inch in diameter; earthy odor; slighty moist. 48 50 Light slightly pinkish-brown, very fine grained to Þ2000√ A = Sample AI24-50-51.51.5 A fine grained sand (SP). > 2000 1.5 52 53.0 Very moist. > 2000 1.5 54 Saturated at 55 feet. 156 4 56 58 Hydrated bentonite seal. 60 62 63.0 8-16 graded silica sand filter 63.5 pack. 64 Drilling break. 0.020-inch slotted well screen. Light pinkish-brown, very fine grained to fine grained, non-cemented to moderately well х 66.0 66 cemented interbedded sandstone (SS) and sand 66.3-Bottom cap. (SP). 67.5 Total depth = 67.5 feet.

В	R	0	W	Ν	A	N	D
С	А	L	D	W	Е	L	L

Î

111

i łľ

at ii

VE-5

Proje	Project Name: BJ Services Company, U.S.A.							Pro	oject Nu	mber: 28.	Project Number: 2832 Sheet 1					
Proje	ect L	.ocati	on: H	lobbs, New Mexico			Logged By: R. Rexroad Approved: R. Rexro									
Drill	ing (Conti	actor	Geo Projects, Inc.			Date Started: 2/11/98 Date Finished: 2/12/9									
Drill	ing I	Equip	oment	Mobile B-61	Driller: A. Hinoj	osa		Total Boring Depth: (feet) 51.5				Depth to Static Water: (feet)				
Drill	ing l	Meth	od:	Air Rot./Hol. Stem	Borehole Diameter:	8"		-	TOC Ele	vation: NF	ł	Ground Elevation: NR				
Samr	 oling	Met	hod ·	2-foot split spoon	I		Diameter and Type of Well Casing 2-inch PVC					h PVC				
Com	men	ts:							Slot Size	· 0.020 "	Filter	r Material: 8-16 silica sand				
									Develop	ment Method	Air	surging and bailing				
Depth (feet)	Depth to Water USC Soil Type Lithology Describtion Readings						Sampled Interval	Recovery (feet)	Sample ID			Remarks				
			\otimes	Fill - gravel, silt, sand, and clay						- IS	1					
		CL		Dark grayish-brown silty clay (C Tan silty clay (CL), with caliche dry.	L); slightly moist. cementation; hard:											
8				 Hard layer at 8 feet with a highe carbonate cementation. 	r degree of											
12 — 		SM SW		Light brown silty sand (SM); dry Medium reddish-brown, fine gra grained sand (SW), with round 3/4-inch in diameter; very slig	n. ined to very fine ed pebbles to htly moist.											
-		CL	7772	Medium brown sandstone (SS) a	Iternating with:											
- 01		GP		Subangular to angular caliche/sa	ndstone fragments to											
18 — 20 —		SW SC		Medium light reddish-brown clay subrounded sandstone pebbles diameter (SW).	yey sand (SC), with to 1/2-inch in							Cement-bentonite grout.				
22 —	1	SW		Color change to tan at 22 feet.	ned slightly slaver -						Ň					
24]	SW	•••••	sand (SW).	and singitity clayby]										
		GP SW		Tan, fine grained slightly silty gr	ravel-bearing sand											
26				 (SW). Rounded sandstone gravels to 1/ with very fine grained whitish sands (GP). Tan medium to fine grained sand sandstone gravels (SW); very 1 content. Subangular sandstone fragments diameter in 27 to 28-foot interv 	2-inch in diameter to very light tan with subrounded ow moisture to 1-inch in											
32				Rounded gravels to 1-inch in dia to 29-foot interval. Angular gr	meter present in 28- avels present in 29-											

<u>VE-5</u>

I I

18.1

VE-6

Proje	Project Name: BJ Services Company, U.S.A.							Pr	oject Nu	mber: <u>28</u>	32	Sheet <u>1</u> of <u>2</u>
Proje	ect L	ocati	on: F	lobbs, New Mexico					Logged I	Approved: R. Rexroad		
Drill	ing	Contr	actor	Geo Projects, Inc.					Date Star	rted: 2/12/9	98	Date Finished: 2/12/98
Drill	ing	Equip	ment	: Mobile B-61	Driller: A. Hinoj	osa			Total Bo Depth: (1	Depth to Static Water: (feet)		
Drill	ing	Metho	od:	Air Rot./Hol. Stem	Borehole Diameter:	8"			TOC Ele	vation: NI	2	Ground Elevation: NR
Sam	oling	, Met	hod:	2-foot split spoon					Diameter of Well (and Type Casing:	2-inch	PVC
Com	Comments:								Slot Size	: 0.020 "	Filter	Material: 8-16 silica sand
									Developi	ment Method	: Air	surging and bailing
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Description		Readings Sampled Interval Sample ID Sample ID					Remarks	
			\bigotimes	Fill - gravel, sand, silt, and clay							K	
2-	-	CL		Dark grayish-brown silty clay (C	L); moist.							
		SM		Medium brown silty clay (CL) w Off white silty clay (CL); more i 10.5 feet than above. Off-whitish silty sand with calich nodules; dry. Well indurated, hard siltstone an sandstone (SS); dry. Medium brown silty clay (CL) w siltstone and sandstone layers;	ith caliche; hard. ndurated at 5 feet to e-cemented d very fine grained ith interbedded soft; low moisture							Cement-bentonite grout.
		SM		Light brown silty sand (SM); sof moist.	t; very slightly							
24		GP		Subrounded sandstone gravels, to	3/4-inch in							
26		SW		diameter, with very fine grained Light brown, fine grained sand (subrounded gravels to 1-inch i moist. As above, with interbedded siltst to 29.8 feet.	d sand (GP); dry. SW) with n diameter; slightly one layers from 29							
32 -				Moderately cemented sandstone vugs.	(SS) with caliche							

. 114

VE-6

Proje	ect N	ame:	B	J Services Company, U.S.A.			Pro	oject Nu	mber: <u>2832</u> Sheet <u>2</u> of <u>2</u>
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Description	Readings	Sampled Interval	Recovery (feet)	Sample ID	Remarks
34		SP		Well cemented sandstone (SS) with interbedded sand. Well cemented sandstone at 34 feet; massive. Light pinkish-brown, fine grained sand (SP) with intermittent layers of rounded sandstone pebbles; slightly moist.	0		.6	A	 38.5 39.5 39.5 40.0 6.16 graded silica sand filter pack. 0.020-inch slotted well screen. 0.020-inch slotted well screen. 50.0 50.3 50.6 Bottom cap. A = Sample VE6-50-50.6

B R C A	0 L	W D	N ₩	AND ELL					VE-7	,				
Proje	et N	lame	<u> </u>	3J Services Company, U.S.A				Pı	roject Nu	mber: 28	32	Sheet <u>1</u> of <u>2</u>		
Proje	ct L	ocati	on:	Hobbs, New Mexico					Logged I	By: R. Rexi	road	Approved: R. Rexroad		
Drilli	ng (Conti	actor	r: Geo Projects, Inc.					Date Star	rted: 2/12/	98	Date Finished: 2/13/98		
Drilli	ng I	Equip	omen	t: Mobile B-61	Driller: A. Hino	osa			Total Bo Depth: (1	Water: (feet)				
Drilli	ng N	Meth	od:	Air Rot./Hol. Stem	Borehole Diameter:	8"			TOC Elevation: NR Ground Elevation: NR					
Samp	Sampling Method: 2-foot split spoon Comments:								of Well Casing: 2-inch PVC					
									Slot Size Developr	: 0.020 " nent Method	Filter : Air	Material: 8-16 silica sand surging and bailing		
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Descriptio	n	Readings	Sampled Interval	Recovery (feet)	Sample ID			Remarks		
2 2 4 6 8 10 12 14 14 16 16		CL		 Fill - gravel, silt, sand, clay. Dark grayish-brown silty clay (moderately moist. Color char and lithology change to sandy Caliche-cemented light brown s grained sandstone. Layer of subrounded sandstone (to 3/4-inch in diameter) with 5.75-feet; dry. Off-white sandy silt (ML) with indurated than siltstone above Siltstone layers present below 1 	CL); slightly to ge to medium gray clay at 3 feet. iltstone to very fine and siltstone pebbles sand (GP) at 5.5- to caliche cement; less e; dry. 4 feet.							Cement-bentonite grout.		
18- 		GM SP		Rounded sandstone and siltstom in diameter with silty matrix (Light pinkish-brown sand (SP) rounded sandstone pebbles to slightly moist. As above with color change to r pinkish-brown. Layer of subrounded sandstone to 3/4-inch in diameter preser Layer of subrounded sandstone to 1-inch in diameter present a	e pebbles to 3/4-inch GM). with scattered 1/2 inch in diameter; nedium and silstone pebbles at 25 feet. and silstone pebbles at 29.5 feet.									

12 81 15 6 4 1 1

VE-7

Project Name: BJ Services Company, U.S.A. Project Number: 2832 Sheet <u>2</u> of <u>2</u> Sampled Interval Readings Recovery (feet) Depth to Water USC Soil Type Depth (feet) Description Sample ID Remarks Lithology Layer of subrounded pebbles to 1/2-inch in diameter 34 below 33.5 feet. Medium brown, fine grained to very fine grained SP sandstone (SS); well cemented. 36 Very fine grained to fine grained sand (SP) with scattered sandstone pebbles; very slightly moist. Hydrated bentonite seal. 38 38.5 8-16 graded silica sand filter 39.5 pack. 40.0 40 -42-0.020-inch slotted well screen. 44 46-48-Bottom cap. 50.0 50-272 1 ۸ 50.3-A = Sample VE7-50-5151.0-Total depth = 51 feet.

B R C A	0 L	W D	N W	AND ELL					MW	-11A		-
Proje	ct N	lame	B	J Services Company, U.S.A	•			Pr	oject Nu	mber: 28	32	Sheet <u>1</u> of
Proje	ct L	ocati	on: I	Hobbs, New Mexico				Logged By: R. Rexroad				Approved: R. Rexroad
Drilli	ing (Contr	actor	Geo Projects, Inc.					Date Sta	rted: 2/14/9	98	Date Finished: 2/15/98
Drilli	ing E	Equip	oment	: Mobile B-61	Driller: A. Hinoj	osa			Total Bo Depth: (feet) 65.5		Depth to Static Water: (feet) 53.0
Drilli	ling Method: Air Rot./Hol. Stem Borehole Diameter: 8" TOC Elevation: NR Ground Elevation								Ground Elevation: NR			
Samp	oling	Met	hod:	2-foot split spoon					Diameter of Well (r and Type Casing:	2-incl	1 PVC
Com	ment	ts:							Slot Size Develop	:: 0.020 " ment Method	Filter : Air	Material: 8-16 silica sand surging and bailing
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Description)	Readings	Sampled Interval	Recovery (feet)	Sample ID			Remarks
2		CL		Fill - cobbles, gravel, cement, s Dark brown silty clay (CL); soft	ilt, etc. ;; slightly moist.							
4		ML		 Whitish clayey silt (ML) with ca indurated; dry. Whitish clayey silt (ML); well in interbedded with siltstones and fine grained sandstone. 	liche cement; poorly ndurated; i fine grained to very							
0 		SW		Soft clayey silt (ML) with calich hard siltstones and sandstone. Whitish, fine grained slightly sil sandstone and siltstone pebble diameter; dry.	ty sand with rounded s (SW) to 1/2-inch in							
6		GP		Increasing pebble content with d Grades at approximately 17 fee Whitish gravel with sand (GP)	lepth.							
20				diameter; dry.								
2		SP		Light pinkish-brown, fine graine scattered rounded pebbles to 1 very slightly moist.	ed sand (SP) with /2-inch in diameter;							Cement-bentonite grout.
!6 !8												
30				Layer of subrounded, loosely ce pebbles to 1/2-inch in diamete Scattered pebbles, as above, at 2	mented sandstone r at 29 feet. 31.5 feet.							

I

:

1

1

14

a Brith I Brith

MW-11A

BR CA	0 L	W D	N W	AND ELL					<u>MW</u> -	-12		-				
Projec	et N	ame:	B	J Services Company, U.S.A.				Pt	roject Nu	mber: <u>28</u>	32	Sheet of				
Projec	et L	ocatio	on: H	Hobbs, New Mexico					Logged I	By: R. Rexi	oad	Approved: R. Rexroad				
Drillin	ng C	Contr	actor	: Geo Projects, Inc.				-	Date Star Total Bo	ring	98	Depth to Static				
Drillin	ng E	Equip	ment	: Mobile B-61	Driller: A. Hinoj	osa		Depth: (feet) 66.5 Water: (feet) 54.				Water: (feet) 54.3				
Drillin	ng N	Metho	od:	Air Rot./Hol. Stem	Borehole Diameter:	8"			TOC Ele Diameter	r and Type	NR Ground Elevation: NR					
Sampl Comm	nent	Meti	100:	2-foot split spoon					Slot Size Develop	Casing: 2-inch PVC e: 0.020 " Filter Material: 8-16 silica sand oment Method: Air surging and bailing						
Depth (feet) Depth to Water USC Soil Type Lithology						Readings	Sampled Interval	Recovery (feet)	Sample ID			Remarks				
$ \begin{array}{c} 2 \\ 2 \\ - \\ 4 \\ - \\ 4 \\ - \\ - \\ 4 \\ - \\ - \\ - \\ 10 \\ - \\ 12 \\ - \\ 10 \\ - \\ 12 \\ - \\ 14 \\ - \\ 16 \\ - \\ - \\ 18 \\ - \\ 20 \\ - \\ 22 \\ - \\ 24 \\ - \\ 22 \\ - \\ 24 \\ - \\ 22 \\ - \\ 22 \\ - \\ 23 \\ - \\ 30 \\ - \\ 30 \\ - \\ 30 \\ - \\ - \\ 30 \\ - \\$		CL GP GP SP		 Fill - sand with gravel. Dark grayish-brown silty clay (C Grades at approximately 2 feet to Light grayish-brown sandy clay Whitish sandy silty clay (CL) wi feet; soft; slightly moist. Siltstone and very fine grained sa 5.5 feet; semi-indurated. Increased sand content in 8 to 10 (stringers of interlayered with siltstones). Whitish fine grained sands with 1 pebbles (GP) to 1/2-inch in dia content. Medium brown, very fine grained Increased amount of pebbles at 1 sand. Pebbles up to 1-inch in diameter feet. Hard layer of very fine grained sands with 1 pebbles (GP), with a higher sand. Medium pinkish-brown sand (SP rounded gravels to 3/4-inch in diameter for a sand sands with 1 pebbles (GP). 	 2L); slightly moist. (CL). th caliche at 3.5 andstone present at andstone present at andstone present at andstone; low moisture d sandstone; dry. rounded sandstone meter; low moisture d sandstone; dry. rounded sandstone meter. 8 feet with less present below 20 andstone (SS) rounded sandstone mod content than in) with scattered diameter. 							Cement-bentonite grout.				

Ţ

a là ili

1411

j,

MW-12

, , D .

 $\textcircled{\blue}{\blue}$

APPENDIX D

1 3

Laboratory Analytical Report for Soil Samples

\\StreetTalk\FS Data2@Homer@Servers\BJSERV\2832-HOB\TASK-13\JUN98RPT.DOC "Use or disclosure of data contained on this sheet is subject to the restriction specified at the beginning of this document."

March 2, 1998

Mr. K. Saravanan BROWN AND CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on February 13,1998. The sample(s) was assigned to Certificate of Analysis No.(s) 9802639 and analyzed for all parameters as listed on the chain of custody.

Any data flag or quality control exception associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette Fini Project Manager

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 98-02-639

Approved for Release by:

Bernadette A. Fini, Project Manager

<u>3-2-98</u> Date

Greg Grandits Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

February 23, 1998

Mr. Rick Rexroad BROWN AND CALDWELL 1415 Louisiana Houston, TX 77002

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on February 7, 1998. The sample(s) was assigned to Certificate of Analysis No.(s) 9802342 and analyzed for all parameters as listed on the chain of custody.

Your sample "AI24-50-51.5" (SPL ID:9802342-01) was randomly selected for the use in SPL's Quality Control program for the Diesel Range Organics analysis by method 8015B. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) recoveries were outside of advisable QC limits, due to matrix interference (Batch ID:HP_V980216093800). A Laboratory Control Sample (LCS) was analyzed as a Quality Control check for the analytical batch and its recovery was within acceptable limits.

Any other data flag or quality control exception associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Bernadette A. Fini Project Manager

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 98-02-342

Approved for Release by:

Bernadette A. Fini, Project Manager

Date

Greg Grandits Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

ereificate of Analysis No. H9-9802639-05 HOUSTON LABORATORY PHONE (713) 660-0901

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

1.

. f - f - 1

DATE: 03/02/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Brown & Caldwell
SAMPLE ID: AI22-50-51

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/10/98	17:38:00
DATE RECEIVED:	02/13/98	

ANALYTICAI	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	50 P	μg/Kg
TOLUENE	130	50 P	μg/Kg
ETHYLBENZENE	740	50 P	$\mu g/Kg$
TOTAL XYLENE	4200	50 P	µg∕Kg
TOTAL VOLATILE AROMATIC HYDROCARBONS	5070		µg∕Kg
Surrogate	% Recovery		
1,4-Difluorobenzene	107		
4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/17/98	MI 173		
Total Petroleum Hydrocarbons-Diesel	790	200 P	mg/kg
Surrogate n-Pentacosane Method Modified 8015B *** for Diesel Analyzed by: RR Date: 02/26/98 05:15:00	% Recovery D		
ND - Not detected. MI - Matrix interference.	(P) - Practical D - Diluted, li	Quantitation mits not appl:	Limit icable.
Notes: *Ref: Methods for Chemical Analys **Ref: Standard Methods for Examin ***Ref: Test Methods for Evaluating	sis of Water and Nation of Water 9 Solid Waste, B	l Wastes, 1983 & Wastewater, EPA SW846, 3rd	, EPA 18th ed. Ed.
COMMENTS: Sample contains petroleum hy that do not resemble a diese	drocarbons from el pattern.(C10-	n C10-C24 ·C24) RR	

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

DATE: 03/02/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Brown & Caldwell
SAMPLE ID: AI22-50-51

PROJECT NO:	2832.34	
MAIKIA:	SOLL	
DATE SAMPLED:	02/10/98	17:38:00
DATE RECEIVED:	02/13/98	

A	NALYTICAL DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Sonication Extraction Method 3550B *** Analyzed by: TC Date: 02/19/98 09:00	02/19/98	LIMIT	

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern.(C10-C24) RR

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

DATE: 03/02/98

PROJECT: BJ Hobbs **SITE:** Hobbs, NM **SAMPLED BY:** Brown & Caldwell **SAMPLE ID:** VE6-50-50.6

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/12/98	11:30:00
DATE RECEIVED:	02/13/98	

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	µg∕Kg
TOLUENE	ND	1.0 P	µg∕Kg
ETHYLBENZENE	ND	1.0 P	μg/Kg
TOTAL XYLENE	ND	1.0 P	μg/Kg
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		µg/kg
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromoiluorobenzene	100		
Analyzed by: SB			
Date: 02/17/98			
Total Petroleum Hydrocarbons-Diesel	160	10 P	mg/kg
Surrogate	% Recovery		
n-Pentacosane	MI 176		
Method Modified 8015B *** for Diesel			
Analyzed by: RR			
Date: 02/25/98 06:03:00			
ND - Not detected. MI - Matrix interference	(P) - Practical	Quantitation	Limit
Notes: *Ref: Methods for Chemical Analys:	is of Water and	Wastes, 1983,	EPA
**Ref: Standard Methods for Examination	ation of Water	& Wastewater,	18th ed.
***Ref: Test Methods for Evaluating	Solid Waste, E	PA SW846, 3rd	Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern.(C10-C24) RR

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

DATE: 03/02/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Brown & Caldwell
SAMPLE ID: VE6-50-50.6

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/12/98	11:30:00
DATE RECEIVED:	02/13/98	

ANALYTICA	L DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Sonication Extraction Method 3550B *** Analyzed by: TC Date: 02/19/98 09:00:00	02/19/98	LIMIT	

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that do not resemble a diesel pattern.(C10-C24) RR

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

111

DATE: 03/02/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Brown & Caldwell
SAMPLE ID: AI21-50-50.8

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/07/98	18:07:00
DATE RECEIVED:	02/13/98	

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND 110 1100 6300 7510	10 P 10 P 10 P 10 P 10 P	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/17/98	% Recovery 103 MI 293		
Total Petroleum Hydrocarbons-Diesel	250	100 P	mg/kg
Surrogate n-Pentacosane Method Modified 8015B *** for Diesel Analyzed by: RR Date: 02/21/98 05:54:00	% Recovery MI 148		
ND - Not detected. MI - Matrix interference.	(P) - Practical	Quantitation	Limit
Notes: *Ref: Methods for Chemical Analysi **Ref: Standard Methods for Examina ***Ref: Test Methods for Evaluating	s of Water and tion of Water Solid Waste, E	Wastes, 1983, & Wastewater, PA SW846, 3rd	EPA 18th ed. Ed.
COMMENTS: Sample contains petroleum hyd that resemble a diesel patter	lrocarbons from m.(C10-C24) RR	C10-C24	

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

DATE: 03/02/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Brown & Caldwell
SAMPLE ID: AI21-50-50.8

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/07/98	18:07:00
DATE RECEIVED:	02/13/98	

ANAI	YTICAL DATA		
PARAMETER	RESULTS	DETECTION	UNITS
Sonication Extraction Method 3550B *** Analyzed by: TC Date: 02/19/98 09:00:00	02/19/98	LIMIT	

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that resemble a diesel pattern.(C10-C24) RR

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

DATE: 03/02/98

PROJECT: BJ Hobbs SITE: Hobbs, NM SAMPLED BY: Provided by SPL SAMPLE ID: Trip Blank 1/30/98

PROJECT NO:	2832.34
MATRIX:	WATER
DATE SAMPLED:	02/07/98
DATE RECEIVED:	02/13/98

	ANALYTICAL DAT	ra		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
BENZENE		ND	1.0 P	μg/L
TOLUENE		ND	1.0 P	μg/L
ETHYLBENZENE		ND	1.0 P	μg/L
TOTAL XYLENE		ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC H	IYDROCARBONS	ND		μg/L
Surrogate	9	& Recovery		
1,4-Difluorobenzene		97		
4-Bromofluorobenzene		97		
Method 8020A ***				
Analyzed by: VHZ				
Date: 02/16/98				

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

DATE: 03/02/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Brown & Caldwell
SAMPLE ID: AI21-64-65

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/08/98	12:50:00
DATE RECEIVED:	02/13/98	

ANALYTICAI	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND 1.5 5 1.5	1.0 P 1.0 P 1.0 P 1.0 P 1.0 P	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/17/98	% Recovery 100 117		
Total Petroleum Hydrocarbons-Diesel	ND	10 P	mg/kg
Surrogate n-Pentacosane Method Modified 8015B *** for Diese Analyzed by: RR Date: 02/25/98 02:13:00	% Recovery 96		
Sonication Extraction Method 3550B *** Analyzed by: TC Date: 02/19/98 09:00:00	02/19/98		
ND - Not detected.	(P) - Practical	Quantitation	Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

1

DATE: 03/02/98

PROJECT: BJ Hobbs **SITE:** Hobbs, NM **SAMPLED BY:** Brown & Caldwell **SAMPLE ID:** AI21-53.5-54.5

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/08/98	07:30:00
DATE RECEIVED:	02/13/98	

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	51	10 P	µq/Kq
TOLUENE	450	10 P	μq/Kq
ETHYLBENZENE	570	10 P	μq/Kq
TOTAL XYLENE	1800	10 P	μq/Kq
TOTAL VOLATILE AROMATIC HYDROCARBONS	2871		μg/Kg
Surrogate	<pre>% Recovery</pre>		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/18/98	MI 213		
Total Petroleum Hydrocarbons-Diesel	98	50 P	mg/kg
Surrogate	% Recoverv		
n-Pentacosane	106		
Method Modified 8015B *** for Diesel			
Analyzed by: RR			
Date: 02/25/98 01:34:00			
Sonication Extraction	02/19/98		
Method 3550B ***			
Analyzed by: TC			
Date: 02/19/98 09:00:00			
(P) - Practical Quantitation Limit N	MI - Matrix int	erference.	
Notes: *Ref: Methods for Chemical Analys: **Ref: Standard Methods for Examina ***Ref: Test Methods for Evaluating	is of Water and ation of Water Solid Waste, E	Wastes, 1983, & Wastewater, PA SW846, 3rd	EPA 18th ed. Ed.
COMMENTS: Sample contains petroleum hyo that resemble a diesel patter	drocarbons from rn.(C10-C24) RR	C10-C24	

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

DATE: 03/02/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Brown & Caldwell
SAMPLE ID: AI20-50-51

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/09/98	07:30:00
DATE RECEIVED:	02/13/98	

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	1200 120000 170000 620000 911200	1000 P 1000 P 1000 P 1000 P	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/17/98	% Recovery 97 MI 223		
Total Petroleum Hydrocarbons-Diesel	1700	100 P	mg/kg
Surrogate n-Pentacosane Method Modified 8015B *** for Diesel Analyzed by: RR Date: 02/25/98 02:50:00	% Recovery MI 144		
Sonication Extraction Method 3550B *** Analyzed by: TC Date: 02/19/98 09:00:00	02/19/98		
(P) - Practical Quantitation Limit	4I - Matrix int	cerference.	

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

COMMENTS: Sample contains petroleum hydrocarbons from C10-C24 that resemble a diesel pattern.(C10-C24) RR

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: K. Saravanan

The fight for the fight

DATE: 03/02/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Brown & Caldwell
SAMPLE ID: VE5-50-51.5

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/12/98	07:40:00
DATE RECEIVED:	02/13/98	

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND	1.0 P 1.0 P 1.0 P 1.0 P 1.0 P	μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/17/98	% Recovery 103 110		
Total Petroleum Hydrocarbons-Diesel	11	10 P	mg/kg
Surrogate n-Pentacosane Method Modified 8015B *** for Diesel Analyzed by: RR Date: 02/25/98 04:08:00	% Recovery 100		
Sonication Extraction Method 3550B *** Analyzed by: TC Date: 02/19/98 09:00:00	02/19/98		
ND - Not detected.	(P) - Practical	Quantitation	Limit
otes: *Ref: Methods for Chemical Analys **Ref: Standard Methods for Examin ***Ref: Test Methods for Evaluating	is of Water and ation of Water Solid Waste, E	Wastes, 1983, & Wastewater, SPA SW846, 3rd	EPA 18th ed. Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

that do not resemble a diesel pattern. (C10-C24) RR

Certificate of Analysis No. H9-9802342-01

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

IN THE LET I

DATE: 02/20/98

PROJECT: BJ Hobbs		
SITE: Hobbs, NM		
SAMPLED BY: Brown	&	Caldwell
SAMPLE ID: AI24-5	0-5	51.5

PROJECT NO:	2832.34	
MATRIX:	SOIL	
DATE SAMPLED:	02/04/98	14:20:00
DATE RECEIVED:	02/07/98	

ANALYTICA	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	500 P	µg∕Kg
TOLUENE	2200	500 P	μg/Kg
ETHYLBENZENE	17000	500 P	μg/Kg
TOTAL XYLENE	81000	500 P	µg∕Kg
TOTAL VOLATILE AROMATIC HYDROCARBONS	5 100200		μ g /Kg
Surrogate	۶ Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene Method 8020A *** Analyzed by: SB	173MI		
Total Petroleum Hydrocarbons-Diesel	570	50.0 P	mg/kg
Surrogate	<pre>% Recovery</pre>		
n-Pentacosane	58		
Method Modified 8015B *** for Diesel Analyzed by: RR	1		
Date: 02/16/98 10:22:00			
Sonication Extraction Method 3550B ***	02/11/98		
Analyzed by: DL Date: 02/11/98 14:00:00			
ND - Not detected. MI - Matrix interference.	(P) - Practical	Quantitation	Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9802342-02

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

THE REPAIR AND REPAIR OF THE

DATE: 02/20/98

PROJECT: BJ Hobbs **SITE:** Hobbs, NM **SAMPLED BY:** Brown & Caldwell **SAMPLE ID:** AI23-49-50.5 PROJECT NO: 2832.34 MATRIX: SOIL DATE SAMPLED: 02/06/98 07:35:00 DATE RECEIVED: 02/07/98

ANALYTICAI	L DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	250 P	µg/Kg
TOLUENE	650	250 P	μg/Kg
ETHYLBENZENE	1900	250 P	µg∕Kg
TOTAL XYLENE	13000	250 P	µg∕Kg
TOTAL VOLATILE AROMATIC HYDROCARBONS	5 15550		μ g /Kg
Surrogate	% Recovery		
1,4-Difluorobenzene	96		
4-Bromofluorobenzene	147		
Method 8020A ***			
Analyzed by: SB			
Date: 02/10/98			
Total Petroleum Hydrocarbons-Diesel	280	50.0 P	mg/kg
Surrogate	<pre>% Recovery</pre>		
n-Pentacosane	44		
Method Modified 8015B *** for Diese Analyzed by: RR	L		
Date: 02/17/98 12:37:00			
Sonication Extraction	02/11/98		
Method 3550B ***			
Analyzed by: DL			
Date: 02/11/98 14:00:00			
ND - Not detected.	(P) - Practical	Quantitation	1 Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

, ,

.

QUALITY CONTROL DOCUMENTATION

Ì

Į

Units: µg/Kg

HP_R980210022700 Batch Id:

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	<u>Spike</u>	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery X	(Mandatory) % Recovery Range		
Benzene	ND	50	48	96.0	60 - 116		
Toluene	ND	50	47	94.0	64 - 122		
EthylBenzene	ND	50	49	98.0	68 - 127		
0 Xylene	ND	50	50	100	68 - 127		
M & P Xylene	ND	100	97	97.0	68 - 129		

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative X	90 1	.imits(***) (Advisory)
			Result	Recovery	Result	Recovery	Difference	RPD	
	<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
BENZENE	ND	20	18	90.0	18	90.0	0	33	35 - 139
TOLUENE	1.0	20	18	85.0	18	85.0	0	35	31 - 137
ETHYLBENZENE	ND	20	18	90.0	16	80.0	11.8	40	21 - 141
O XYLENE	1.2	20	17	79.0	16	74.0	6.54	24	25 - 139
M & P XYLENE	2.4	40	33	76.5	30	69.0	10.3	38	19 - 144

Analyst: SB Sequence Date: 02/10/98 SPL ID of sample spiked: 9802238-07A Sample File ID: R_B2027.TX0 Method Blank File ID: Blank Spike File ID: R_B2024.TX0 Matrix Spike File ID: R_B2025.TX0 Matrix Spike Duplicate File ID: R_B2026.TX0 * = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

9802342-02A 9802342-01A 9802275-07A 9802238-07A 9802280-13A 9802378-01A 9802308-01A

SPL BATCH QUALITY CONTROL REPORT ** Method Modified 8015B***

Matrix: Soil Units:

mg/kg

Batch Id: HP V980216093800

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery X	(Mandatory) % Recovery Range		
Diesel	ND	166	160	96.4	77 - 145		

LABORATORY CONTROL SAMPLE

M	A	T	R	1	х	S	Ρ	I	K	E	S
			_	-	_	_	_			_	<u> </u>

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike cate	MS/MSD Relative %	90 1	.imits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
DIESEL	570	830.0	730	19.3 *	700	15.7 *	20.6	50	21 - 175

Analyst: RR Sequence Date: 02/16/98 SPL ID of sample spiked: 9802342-018 Sample File ID: V_B3058.TX0 Method Blank File ID: Blank Spike File ID: V_B3057.TX0 Matrix Spike File ID: V_B3059.TX0 Matrix Spike Duplicate File ID: V_B3060.TX0 * = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS X Recovery = $(<1> / <3>) \times 100$

Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (4TH Q '97)

(***) = Source: SPL-Houston Historical Data (4th Q '97)

SAMPLES IN BATCH(SPL ID):

16

9802342-01B 9802342-02B

mg/kg

Units:

13 166

.111

Batch Id: HP_T980224125910

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery ¥	(Mandatory) % Recovery Range
Diesel	ND	166	170	102	77 - 145

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike	MS/MSD Relative %	QC 1	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
DIESEL	ND	166.0	160	96.4	150	90.4	6.42	50	21 - 175

* = Values outside QC Range due to Matrix Interference (except RPD) Analyst: RR « = Data outside Method Specification limits. Sequence Date: 02/24/98 NC = Not Calculated (Sample exceeds spike by factor of 4 or more) SPL ID of sample spiked: 9802684-03A ND = Not Detected/Below Detection Limit Sample File ID: T_B4062.TX0 Recovery = [(<1> - <2>) / <3>] x 100Method Blank File ID: LCS $\$ Recovery = (<1> / <3>) x 100 Blank Spike File ID: T_B4059.TX0 Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100 Matrix Spike File ID: T_B4063.TX0 (**) = Source: SPL-Houston Historical Data (4TH Q '97) Matrix Spike Duplicate File ID: T_B4064.TX0 (***) = Source: SPL-Houston Historical Data (4th Q '97) SAMPLES IN BATCH (SPL ID) : 9802639-05B 9802639-04B 9802639-06B 9802639-07B

9802639-01B 9802684-03A 9802639-02B 9802639-03B

SPL BATCH QUALITY CONTROL REPORT ** METHOD 8020A***

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

μg/L

Units:

HP_U980216130700 Batch Id:

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery X	(Mandatory) % Recovery Range		
Benzene	ND	50	51	102	61 - 119		
Toluene	ND	50	51	102	65 - 125		
Ethyl Benzene	ND	50	51	102	70 - 118		
0 Xylene	ND	50	51	102	72 - 117		
M & P Xylene	ND	100	103	103	72 - 116		

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %	QC I	Limits(***) (Advisory)
			Result	Recovery	Result	Recovery	Difference	RPD	
	<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
BENZENE	ND	20	15	75.0	20	100	28.6 *	21	32 - 164
TOLUENE	ND	20	15	75.0	20	100	28.6 *	20	38 - 159
ETHYLBENZENE	ND	20	15	75.0	21	105	33.3 *	19	52 - 142
O XYLENE	ND	20	15	75.0	20	100	28.6 *	18	53 - 143
M & P XYLENE	ND	40	31	77.5	42	105	30.1 *	17	53 - 144

Analyst: VHZ Sequence Date: 02/16/98 SPL ID of sample spiked: 9802576-04B Sample File ID: U_B3011.TX0 Method Blank File ID: Blank Spike File ID: U_B2197.TX0 Matrix Spike File ID: U_B3043.TX0 Matrix Spike Duplicate File ID: U_B3044.TX0

SAMPLES IN BATCH(SPL ID):

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = {(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

9802576-04B 9802639-08A 9802605-10B 9802576-02B 9802676-09A 9802676-13A

** SPL BATCH QUALITY CONTROL REPORT ** METHOD 8020A*** HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Soil Units: µg/Kg Batch Id: HP_R980217031500

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**) (Mandatory) % Recovery Range		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery X			
Benzene	ND	50.0	48	96.0	60 - 116		
Toluene	ND	50.0	49	98.0	64 - 122		
EthylBenzene	ND	50.0	50	100	68 - 127		
0 Xylene	ND	50.0	51	102	68 - 127		
M & P Xylene	ND	100.0	100	100	68 - 129		

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %	9C	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
BENZENE	ND	20.0	17	85.0	17	85.0	0	33	35 - 139
TOLUENE	1.2	20.0	18	84.0	17	79.0	6.13	35	31 - 137
ETHYLBENZENE	ND	20.0	17	85.0	16	80.0	6.06	40	21 - 141
O XYLENE	ND	20.0	16	80.0	16	80.0	0	24	25 - 139
M & P XYLENE	1.3	40.0	34	81.8	32	76.8	6.31	38	19 - 144

Analyst: SB«Sequence Date: 02/17/98NCSPL ID of sample spiked: 9802534-07ANDSample File ID: R_B3038.TX0%Method Blank File ID:LCBlank Spike File ID: R_B3035.TX0ReMatrix Spike File ID: R_B3036.TX0(*Matrix Spike Duplicate File ID: R_B3037.TX0(*

SAMPLES IN BATCH(SPL ID):

* = Values outside QC Range due to Matrix Interference (except RPD)
« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

9802639-04A 9802639-05A 9802555-01A 9802639-07A 9802707-04A 9802706-04A 9802707-01A 9802707-02A 9802671-01A 9802671-02A 9802671-03A 9802534-07A 9802534-08A 9802534-04A 9802534-06A

SPL BATCH QUALITY CONTROL REPORT ** METHOD 8020A***

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units: μg/Kg

HP_R980217074210 Batch Id:

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	_ QC Limits(**) (Mandatory) % Recovery Range		
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery X			
Benzene	ND	50	46	92.0	60 - 116		
Toluene	ND	50	47	94.0	64 - 122		
EthylBenzene	ND	50	48	96.0	68 - 127		
0 Xylene	ND	50	49	98.0	68 - 127		
M & P Xylene	ND	100	98	98.0	68 - 129		

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %	90 1	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
BENZENE	ND	20	14	70.0	14	70.0	0	33	35 - 139
TOLUENE	ND	20	12	60.0	13	65.0	8.00	35	31 - 137
ETHYLBENZENE	ND	20	10	50.0	11	55.0	9.52	40	21 - 141
O XYLENE	ND	20	9.0	45.0	10	50.0	10.5	24	25 - 139
M & P XYLENE	ND	40	20	50.0	23	57.5	14.0	38	19 - 144

* = Values outside QC Range due to Matrix Interference (except RPD) « = Data outside Method Specification limits. NC = Not Calculated (Sample exceeds spike by factor of 4 or more) SPL ID of sample spiked: 9802740-06A ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = $(<1> / <3>) \times 100$

Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID):

Sequence Date: 02/17/98

Method Blank File ID:

Sample File ID: R_B3067.TX0

Blank Spike File ID: R_B3064.TX0

Matrix Spike File ID: R_B3065.TX0

Matrix Spike Duplicate File ID: R_B3066.TX0

Analyst: SB

9802740-04A 9802740-05A 9802742-01B 9802742-02B 9802321-05A 9802639-02A 9802556-01A 9802706-01A 9802740-06A 9802740-01A 9802740-02A 9802740-03A

Batch Id: HP_R980216101000

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery	(Mandatory) % Recovery Range
MTBE	ND	50	50	100	64 - 126
Benzene	ND	50	47	94.0	60 - 116
Toluene	ND	50	48	96.0	64 - 122
EthylBenzene	ND	50	48	96.0	68 - 127
O Xylene	ND	50	48	96.0	68 - 127
M & P Xylene	ND	100	96	96.0	68 - 129
	1			1	

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	QC	Limits(***) (Advisory)
	<2>	<3>	Result	Recovery	Result	Recovery	Difference	RPD Max.	Recovery Range
MTBE	ND	20	16	80.0	12	60.0	28.6 *	22	27 - 196
BENZENE	1.5	20	17	77.5	16	72.5	6.67	33	35 - 139
TOLUENE	4.1	20	20	79.5	18	69.5	13.4	35	31 - 137
ETHYLBENZENE	1.5	20	13	57.5	9.6	40.5	34.7	40	21 - 141
O XYLENE	1.6	20	12	52.0	9.3	38.5	29.8 *	24	25 - 139
M & P XYLENE	4.2	40	28	59.5	22	44.5	28.8	38	19 - 144

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = {(<1> - <2>) / <3> } x 100
LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = | (<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH (SPL ID) :

Sequence Date: 02/16/98

Method Blank File ID:

Sample File ID: R_B3011.TX0

Blank Spike File ID: R_B3008.TX0

Matrix Spike File ID: R_B3009.TX0

Matrix Spike Duplicate File ID: R_B3010.TX0

SPL ID of sample spiked: 9802534-02A

Analyst: SB

 9802688-01A
 9802688-03A
 9802510-01A
 9802510-03A

 9802706-02A
 9802707-03A
 9802706-01A
 9802639-03A

 9802639-06A
 9802688-02A
 9802688-01A
 9802639-01A

 9802534-02A
 9802553-01A
 9802570-02A
 9802570-03A

CHAIN OF CUSTODY

AND

SAMPLE RECEIPT CHECKLIST

	$t \rightarrow 1 + t$ page $f \rightarrow 0 + t$ muested Analysis														Intact? DY DN	Temp: S	PM review (initial):				2000 2/7 / AV 100 0	
SPL Workorder N	Rec		1.51	08		Ĩ- /	40	4	x								tion Limits (specify):		2. Received by:	4. Received by:	Horne the	
	ord	(sreni	istnc C.Y.	יי <u>ר</u> אכי	10 12 51 01	zr g	n _N	X	6							Special Deter		time 11. CC	time	time	
	ustody Reco size pres.	siv	трег: NO3 z 40=	20f 09[= 1H= 10=(5 7 9 7=9	۶0۶ ا ر	H25 HCl 802	3 == [] = 8	4 Acit	4 4					ä		Raw Data	Level 4 QC	date 6 95	date	date	
PL, Inc.	Chain of C matrix bottle	81ass 	al nber iler: il	ios= jo=(ms=, siv='	∧ ∀ S	ter idge tic s	selg selg uls= ew=	C= b= TS M	5 6	5 6		 			Laboratory remark		esults	3 QC				
SI	Request &	77002						comp grab	×	×						879	ments Fax R	K Level	r. ward			
	nalysis	the TX						TIME	1420	0 735						10 - 706	ting Require	Indard QC	d by Sample	d by:	:d by:	
	A	42500 Hb	ari '			1,		DATE	SG1 /2	2/6/16	2.2					80081	Special Repor	Su	1. Relinguish	3. Relinquishe	5. Relinquishe	
		Iress Phone: 14 15 2001 514196.7	ent Contact: K, Saraval	ject Name: 13J . Hcbbs	ject Number $333, 34$	ject Location: Hobbs N.N	oice To: R. REXISING	SAMPLE ID	AT 34 - 50-51.5	75 23 - 49-50.5					ent/Consultant Remarks:	FedEx Trukin #	Requested TAT	4	24hr 🔲 72hr 🔲	48hr 🔲 Standard 🕅	Other	· · · · · · · · · · · ·

ł

É 18

SPL Houston Environmental Laboratory

Sample Login Checklist

Da	te: Time	e:		
	2-7-18	[000		
SPI	L Sample ID:	·····		
	98023	542		
			Yes	<u>No</u>
1	Chain-of-Custody (COC) form is p	resent.	~	
2	COC is properly completed.			
3	If no, Non-Conformance Workshee	et has been completed.		
4	Custody seals are present on the sh	lipping container.		
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.			
7	If no, Non-Conformance Workshee	et has been completed.		
8	Sample containers arrived intact		1	
9	Temperature of samples upon arriv	al:	5	ъ С
10	Method of sample delivery to SPL:	SPL Delivery		
		Client Delivery		
		FedEx Delivery (airbill #)	800816	,706879
		Other:		,
11	Method of sample disposal:	SPL Disposal	v	/
		HOLD		
<u> </u>		Return to Client		

Name:

Date:

98 J

CHAIN OF CUSTODY

E

AND

SAMPLE RECEIPT CHECKLIST

ň....

19

SPL Houston Environmental Laboratory

Sample Login Checklist

Dat	te: $2/13/98$ Time:	ICCC		
SPI	L Sample ID: AXD2639			
			Yes	<u>No</u>
1	Chain-of-Custody (COC) form is pre	esent.		
2	COC is properly completed.			
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the ship	oping container.		
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.	L	- 	
7	If no, Non-Conformance Worksheet	has been completed.		
8	Sample containers arrived intact		L	
9	Temperature of samples upon arrival	l:		5 c
10	Method of sample delivery to SPL:	SPL Delivery		
		Client Delivery		
		FedEx Delivery (airbill #)	8008	16766
		Other:		
11	Method of sample disposal:	SPL Disposal	L	
		HOLD		1
		Return to Client		

Name:		Date: /
MirCA	ATA	2/13/4/

March 4, 1998

Mr. Rick Rexroad BROWN AND CALDWELL 1415 Lousiana Houston, TX 77002

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on February 17, 1998. The sample(s) was assigned to Certificate of Analysis No.(s) 9802751 and analyzed for all parameters as listed on the chain of custody.

Any data flag or quality control exception associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

141, (1, 1

Bernadette Fini Project Manager

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 98-02-751

Approved for Release by:

Bernadette A. Fini, Project Manager

3-4-48 Date

Greg Grandits Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 03/04/98

PROJECT: BJ Hobbs	PROJECT NO:	2832.34
SITE: Hobbs, NM	MATRIX:	SOIL
SAMPLED BY: Brown & Caldwell	DATE SAMPLED:	02/13/98 07:25:00
SAMPLE ID: VE 7-50-51	DATE RECEIVED:	02/17/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Total Petroleum Hydrocarbons-Diesel	16	10 P	mg/kg
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 02/27/98 04:19:00	% Recovery MI 176		
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND	1.0 P 1.0 P 1.0 P 1.0 P	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/19/98	% Recovery 100 110		
Sonication Extraction of DRO by 8015A Method 3550B *** Analyzed by: TC Date: 02/18/98 08:00:00	02/18/98		

(P) - Practical Quantitation Limit MI - Matrix interference.

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 03/04/98

PROJECT: BJ Hobbs	PROJECT NO: 2832.34
SITE: Hobbs, NM	MATRIX: SOIL
SAMPLED BY: Brown & Caldwell	DATE SAMPLED: 02/13/98 11:03:00
SAMPLE ID: MW 12-53.5-54.5	DATE RECEIVED: 02/17/98

ANALYTICAL DATA					
PARAMETER	RESULTS	DETECTION	UNITS		
Total Petroleum Hydrocarbons-Diesel	ND	10 P	mg/kg		
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 02/27/98 03:40:00	% Recovery 116				
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND S ND	1.0 P 1.0 P 1.0 P 1.0 P	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/19/98	% Recovery 100 113				
Sonication Extraction of DRO by 80152 Method 3550B *** Analyzed by: TC Date: 02/18/98 08:00:00	A 02/18/98				
ND - Not detected.	(P) - Practical	Quantitation	Limit		

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 03/04/98

PROJECT: BJ Hobbs	PROJECT NO: 2832.34
SITE: Hobbs, NM	MATRIX: SOIL
SAMPLED BY: Brown & Caldwell	DATE SAMPLED: 02/14/98 10:30:00
SAMPLE ID: MW 11A-53.5-54.25	DATE RECEIVED: 02/17/98

ANALYTICAL DATA					
PARAMETER	RESULTS	DETECTION LIMIT	UNITS		
Total Petroleum Hydrocarbons-Diesel	14	10 P	mg/kg		
Surrogate n-Pentacosane Method 8015B *** for Diesel Analyzed by: RR Date: 02/27/98 03:01:00	% Recovery MI 136				
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND	1.0 P 1.0 P 1.0 P 1.0 P	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg		
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: SB Date: 02/19/98	% Recovery 103 110				
Sonication Extraction of DRO by 8015A Method 3550B *** Analyzed by: TC Date: 02/18/98 08:00:00	02/18/98				

(P) - Practical Quantitation Limit MI - Matrix interference. ND - Not detected.

ND - NOL deletted.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Brown and Caldwell 1415 Louisiana Houston, TX 77002 ATTN: Rick Rexroad

DATE: 03/04/98

PROJECT: BJ Hobbs
SITE: Hobbs, NM
SAMPLED BY: Provided By SPL
SAMPLE ID: Trip Blank 1/30/98

2832.34
VATER
02/14/98
02/17/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene	97		
Method 8020A ***			
Analyzed by: VHZ			
Date: 02/19/98			

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY CONTROL DOCUMENTATION

•

1 1

La la n

SPL BATCH QUALITY CONTROL REPORT **

State of Tennessee Method for Diesel

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units: mg/kg

1.1

Batch Id: HP_V980218074100

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery %	QC Limits(**) (Mandatory) % Recovery Range
Diesel	ND	166	158.67	95.6	77 - 145

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike	MS/MSD Relative %	QC 1	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
DIESEL	ND	166	216.09	17.3 *	1536.59	813 *	192 *	50	21 ~ 175

* = Values outside QC Range due to Matrix Interference (except RPD) « = Data outside Method Specification limits. Analyst: RR Sequence Date: 02/18/98 NC = Not Calculated (Sample exceeds spike by factor of 4 or more) SPL ID of sample spiked: 9802770-05A ND = Not Detected/Below Detection Limit Sample File ID: V_B3114.TX0 % Recovery = [(<1> - <2>) / <3>] x 100 LCS % Recovery = $(<1> / <3>) \times 100$ Method Blank File ID: Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100Blank Spike File ID: V_B3109.TX0 (**) = Source: SPL Historical Limits 1st Qtr'97 Matrix Spike File ID: V B3115.TX0 Matrix Spike Duplicate File ID: V_B3116.TX0 (***) = Source: SPL Historical Limits 1st Qtr'97 9802682-07A 9802682-01A 9802682-03A 9802682-08A SAMPLES IN BATCH(SPL ID): 9802682-09A 9802682-10A 9802682-11A 9802751-03A 9802751-02A 9802751-01A 9802770-05A 9802682-02A

9802682-04A 9802682-05A 9802682-06A

PL BATCH QUALITY CONTROL REPORT ** Method 8020A ***

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units: ug/kg

Batch Id: HP_R980219184700

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery %	QC Limits(**) (Mandatory) % Recovery Range
MTRE	ND	50	44	88.0	64 - 126
Benzene	ND	50	46	92.0	60 - 116
Toluene	ND	50	49	98.0	64 - 122
EthylBenzene	ND	50	50	100	68 - 127
O Xylene	ND	50	51	102	68 - 127
M & P Xylene	ND	100	100	100	68 - 129

MATRIX SPIKES

S P I K E C O M P O U N D S	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike	MS/MSD Relative %	QC 1	Limits(***) (Advisory)
	<2>	<3>	Result <1>	Recovery <4>	Result <1>	Recovery <5>	Difference	RPD Max.	Recovery Range
MTBE	30	20	50	100	39	45.0	75.9 *	22	27 - 196
BENZENE	1.0	20	17	80.0	17	80.0	0	33	35 - 139
TOLUENE	ND	20	17	85.0	17	85.0	0	35	31 - 137
ETHYLBENZENE	ND	20	19	95.0	22	110	14.6	40	21 - 141
O XYLENE	ND	20	20	100	19	95.0	5.13	24	25 - 139
M & P XYLENE	1.5	40	41	98.8	39	93.8	5.19	38	19 - 144

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100 LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100 (**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH(SPL ID) :

Sequence Date: 02/19/98

Method Blank File ID:

Sample File ID: R_B3149.TX0

Blank Spike File ID: R_B3146.TX0

Matrix Spike File ID: R_B3147.TX0

Matrix Spike Duplicate File ID: R B3148.TX0

SPL ID of sample spiked: 9802753-12A

Analyst: SB

3 1

 9802751-03A
 9802841-02A
 9802750-01A
 9802570-01A

 9802841-03A
 9802841-04A
 9802841-05A
 9802841-06A

 9802753-06A
 9802753-08A
 9802753-10A
 9802753-12A

 9802750-03A
 9802751-01A
 9802751-02A

1 1

SPL BATCH QUALITY CONTROL REPORT ** METHOD 8020

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Units: µg/L

Batch Id: HP_U980218220700

LABORATORY CONTROL SAMPLE

SPIKE	Method	Spike	Blank	Spike	QC Limits(**)
COMPOUNDS	Blank Result <2>	Added <3>	Result <1>	Recovery %	(Mandatory) % Recovery Range
Benzene	ND	50.0	40	80.0	61 - 119
Toluene	ND	50.0	41	82.0	65 - 125
EthylBenzene	ND	50.0	41	82.0	70 - 118
O Xylene	ND	50.0	41	82.0	72 - 117
M & P Xylene	ND	100.0	83	83.0	72 - 116

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Duplis	Spike	MS/MSD Relative %	QC	Limits(***) (Advisory)
			Result	Recovery	Result	Recovery	Difference	RPD	
	<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
BENZENE	ND	20	20	100	19	95.0	5.13	21	32 - 164
TOLUENE	ND	20	20	100	18	90.0	10.5	20	38 - 159
ETHYLBENZENE	ND	20	20	100	18	90.0	10.5	19	52 - 142
O XYLENE	ND	20	20	100	18	90.0	10.5	18	53 - 143
M & P XYLENE	ND	40	38	95.0	33	82.5	14.1	17	53 - 144

* = Values outside QC Range due to Matrix Interference (except RPD)

Analyst: VHZ« = Data ouSequence Date: 02/18/98NC = Not CaSPL ID of sample spiked: 9802833-06AND = Not DeSample File ID: U_B3097.TX0% RecoveryMethod Blank File ID:LCS % RecovBlank Spike File ID: U_B3094.TX0Relative PeMatrix Spike File ID: U_B3095.TX0(**) = SouMatrix Spike Duplicate File ID: U_B3096.TX0(***) = Sou

SAMPLES IN BATCH(SPL ID):

1.1

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5> | / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

9802833-02A 9802833-03A 9802833-04A 9802833-05A 9802751-04A 9802718-04A 9802718-02A 9802718-03A 9802396-01A 9802803-01A 9802833-06A 9802849-04A 9802849-05A 9802833-01A

CHAIN OF CUSTODY

AND

SAMPLE RECEIPT CHECKLIST

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 Analysis Request & Clusin of Custody Record 70.0, 1.0 page / of / Lubic list restrict Analysis Lulisis and the state of the					PL,]	lnc.				S V	PL Workon				8-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	®	Analysi	is Requ	Jest &	k Cha	in of (Custod	ly Rec	ord)	7001			pag	e / of	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Caldwell ((713) 755	.600-6	6	matri	x bottle	e size	pres.				Reque	sted An	alysis		
\mathcal{B} \mathcal{B}	$2 \times a \wedge a \wedge b \wedge b$ $2 \times a \wedge b \wedge b \wedge b$ $2 \times a \wedge b \wedge b \wedge b \wedge b$ $2 \times 3 \times b \wedge b \wedge b \wedge b \wedge b \wedge b \wedge b \wedge b \wedge b \wedge b$	UISiana	· # 2500	thoust of	KT ra	d 7700	selg:	lsiv=	: 2	S	(0	(5					
2.34 2.34 2.34 $M.M.$ $D.NTE$ TME TME $DNTE$ TME TME $DNTE$ TME TME $DNTE$ TME TME $2.13.96$ 0.725 $X \le 6$ 4 $2.13.96$ 0.725 $X \le 6$ 4 $Number of Con 2.13.96 0.725 X \le 6 4 Number of Con 2.5 2.44.96 10.30 X = 18.860.125 X = 7.60.125 2.5 2.44.96 10.30 X = 1.42.125 1.46.125 2.5 2.44.96 10.30 X = 1.42.125 1.10.125 2.66 4.10.100 2.5 X = 1.00.125 X = 1.00.125 2.5 2.44.96 10.20 X = 1.00.125 X = 1.00.125 2.5 2.44.06 10.200 X = 1.00.125 X = 1.00.125 3.000Mc 702.0680 1.00.200 1.00.10.06 1.00.10.06 3.000Mc 706.0880 1.00.00.06 1.00.00.06 1.00.00.06 3.000Mc 706.0880 1.00.00.06 1.00.00.06 1.00.00.06 3.000Mc 70.00.00.00.00.00.00.00.00.00.00.00.0$	7.34 3.34 5.34 5.60 5.70 5.70 2.1 $M.M.$ 5.50 5.70 5.70 5.70 2.1 $M.M.$ 5.50 5.70 5.70 5.70 2.1 3.75 5.70 5.70 5.70 5.70 2.13 0.125 X V 0.86 5.70 2.5 2.74 0.025 X V 0.86 2.5 2.74 0.85 3.7 X N 2.5 2.74 0.925 X V 0.925 X N 2.5 2.44 10.92 X V 0.925 X N N 2.5 2.44 0.925 X V 0.925 X N 2.5 0.026 0.026 0.026 0.026 0.026 0.026 2.5 0.026 0.026 0.026 0.026 0.026 0.026 2.5 0.026 0.026 0.026 0.026 0.026 0.026 2.6 0.026 0.026 0.026 0.026 0.026	avanar				soil soil	ıədma Iaiv	zo9 =0₽ zo	otyst HNO	tainet	TOS	198					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S. M. M. M. M. M. M. M. M. M. M. M. M. DATE TIME omp geb Sd = 5 geb adds M. M. M. M. M. M. 2/15 D. M. E. TIME omp geb Sd = 5 geb adds M. M. M. M. M. M. 2/15 U. M. M. M. M. M. M. M. M. M. M. M. M. M. M. 2/15 W. M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. 2/15 M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. 2/15 M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. M. 2/15 M. M. M. 3606/L M. M. M. 3754.475 M. M. M. 3764.11 M. M. M. M. M. M. M. M. M.<	2.34				=0 =S	=V =A	1=9 07=	=0 =7	uoJ	<u>/</u>)(
Mathematical State Time Comp grad Text	Mathematical State Time	s, N.M	1.			ıdge iter ıter	<u>دارد</u> دراد	19. 19.	\$05]	10 19	X	1.	<u> </u>		<u> </u>		
DATE TIME comp gub Z $\frac{1}{n}$ Z $\frac{1}{n}$ Z $\frac{1}{n}$ Z Z <thz< th=""> Z <thz< th=""> Z <t< td=""><td>DATE TIME comp gab $Z = Z_1^{-1}$ Z_1^{-1} <</td><td>al .</td><td></td><td></td><td>ļ</td><td></td><td>selg=</td><td>ril I</td><td>CH CH</td><td>nup</td><td>718</td><td>Hd</td><td></td><td></td><td></td><td></td><td></td></t<></thz<></thz<>	DATE TIME comp gab $Z = Z_1^{-1}$ Z_1^{-1} <	al .			ļ		selg=	ril I	CH CH	nup	718	Hd					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.VO	TE TIN	АЕ соп	np grab	TS M	С= Ь=	=8 = [3= 5	N	<u>?</u>	L					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-13	3-98 07:	25	X	5	9	J	JNO11	ત	\star	×					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{bmatrix} 7.25 \\ 2.14 - 70 \\ 1.6 \\ $	54,5 4	1/10	3	\times					6	×	-X					
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,25 2-14	20/ 361	30	\times	->	~>		\rightarrow	ત	\star	\times					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
Special Reporting Requirements Intact? T N Special Reporting Requirements Eav Data Special Detection Limits (specify): Intact? T Special Reporting Requirements Eaver 14 cc Internet: S ^o C ⁻ Internet: S ^o C ⁻ Special Reporting Requirements Eaver 14 cc Internet: S ^o C ⁻ Internet: S ^o C ⁻ Special Reporting Requirements Eaver 14 cc Internet: Internet: S ^o C ⁻ Special Reporting Requirements Eaver 14 cc Internet: Internet: S ^o C ⁻ Shelinquished by: Internet: Internet: Internet: Internet: S. Relinquished by: Aarc Internet: Internet: Internet:	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Special Reporting Requirements Fax Results Raw Data Special Detection Limits (specify): Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Second Poisson Image: Houston, TX 77054 (713) 660-0901 Image: Second Caffery Parkway, Scott, LA 70583 (318) 237-4775 Image: Second Poisson Image: Second Poisson																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					Laborat	tory rema	rks:						1	ntact?		z
Contract Reporting Requirements Fax Results Raw Data Special Detection Limits (specify): PM review (initial): Standard QC Level 3 QC Level 4 QC Level 4 QC PM review (initial): I. Relinquiched by Sampler Level 3 QC Level 4 QC Level 4 QC PM review (initial): I. Relinquiched by: $\mathcal{L}_{LL}[1, \mathcal{L}_{L}]$ $\mathcal{L}_{LL}[1, \mathcal{L}_{L}]$ \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} 3. Relinquiched by: $\mathcal{L}_{LL}[1, \mathcal{L}_{L}]$ \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} 5. Relinquiched by: \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} \mathcal{L}_{L} 5. Relinquiched by: \mathcal{L}_{L} <td>ΓSpecial Reporting RequirementsFax ResultsRaw DataSpecial Detection Limits (specify):PM review (initial):\BoxStandard QCLevel 3 QCLevel 4 QCLevel 4 QCPM review (initial):\Box1. Relinquished by:Level 3 QCLevel 4 QCLevel 4 QC\Box3. Relinquished by:$\Box$$\Box$$\Box$$\Box$5. Relinquished by:$\Delta$$\Delta$$\Delta$$\Delta$$\Delta$Drive, Houston, TX 77054 (713) 660-0901$\Box$$\Sigma$$\Delta$$\Delta$Drive, Houston, TX 77054 (713) 660-0901$\Box$$\Sigma$$\Delta$$\Delta$</td> <td>300016</td> <td>706886</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td>lemp:</td> <td>700</td> <td></td>	Γ Special Reporting RequirementsFax ResultsRaw DataSpecial Detection Limits (specify):PM review (initial): \Box Standard QCLevel 3 QCLevel 4 QCLevel 4 QCPM review (initial): \Box 1. Relinquished by:Level 3 QCLevel 4 QCLevel 4 QC \Box 3. Relinquished by: \Box \Box \Box \Box 5. Relinquished by: Δ Δ Δ Δ Δ Drive, Houston, TX 77054 (713) 660-0901 \Box Σ Δ Δ Drive, Houston, TX 77054 (713) 660-0901 \Box Σ Δ Δ	300016	706886	5										L	lemp:	700	
Standard QC \mathbb{K} Level 3 QC Level 4 QC Level 4 QC 1. Relinquished by: \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) 3. Relinquished by: \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) 3. Relinquished by: \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) 3. Relinquished by: \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) 5. Relinquished by: \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.) \mathcal{L} Ul (U.U.)	$\square X = \operatorname{Relinquished} Y = \operatorname{Rech} Y = \operatorname{Level} 3 \times \operatorname{Level} 4 \times \operatorname{Level} 4 \times \operatorname{Level} 4 \times \operatorname{Level} 4 \times \operatorname{Level} 4 \times \operatorname{Level} 4 \times \operatorname{Level} 4 \times \operatorname{Level} 4 \times \operatorname{Level} 4 \times \operatorname{Leved} 4 \times Le$	T Special	Reporting Requ	uirements	Fax	Results	Ø	Raw Da		Special I	Detection	Limits (spe	cify):		Md	review (initia	:(1)
$ \boxed{ 1. Relinquished by Sampler } 1. Relinquished by Sampler } \\ \hline 1. Relinquished by: \\ \hline 3. Relinquished by: \\ \hline 5. Relinqb$	$\begin{bmatrix} 1. \text{ Relinquished by:} \\ \hline 1. \text{ Relinquished by:} \\ \hline 2. \text{ Recived by:} \\ \hline 3. \text{ Relinquished by:} \\ \hline 3. \text{ Relinquished by:} \\ \hline 5. \text{ Relinquished by:} \\ \hline 3. \text{ Relinquished by:} \\ \hline 5. \text{ Relinquished by:} \\ \hline 3. \text{ Relinquished by:} \\ \hline 5. $: 	Standard Q	Ø	Leve.	13 QC		Level 4	8								
A 3. Relinquished by: date time 4. Received by: 5. Relinquished by: $2 - 17 - 38$ time 6. Received by Laboratory:	13. Relinquiched by:datetime4. Received by:5. Relinquiched by: $2 \cdot 17 \cdot 38$ $\frac{1}{100}$ 6. Received by Laboratory:5. Relinquiched by: $2 \cdot 17 \cdot 38$ 100 100 Drive, Houston, TX 77054 (713) 660-0901 0 500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775	1. Reli	nquiched by Sar	Police Con	/ AML	X		date Q-	1°-9	time 1207	7	Received	Ä				
5. Relinquished by: $\frac{date}{2} - 17 - 38$ time 6. Received by Laboratory: $\frac{2}{2} - 17 - 38$ 1000 6. Received by Laboratory:	5. Relinquished by:datedate $2 - 17 - 2R$ time6. Received by Laboratory:Drive, Houston, TX 77054 (713) 660-0901 \Box 500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775	a. Relu	nquished by:					date		time	4	. Received	:ha				
	Drive, Houston, TX 77054 (713) 660-0901 D 500 Ambassador Caffery Parkway, Scott, LA 70583 (318) 237-4775	5. Relin	nquished by:					date 2-1	7-78	1000	•	Received	andel yd	でく い い			1
c, Traverse City, MI 49684 (616) 947-5777 U 1501 E. Orangethorpe Avenue, Fullerton, CA 92631 (714) 447-6868																	

1.0.

19 181 1

l i

SPL Houston Environmental Laboratory

Sample Login Checklist

Yes

No

Time: Date: 2-17-98 1230 SPL Sample ID: 9BOZ 751 Chain-of-Custody (COC) form is present. l 2 COC is properly completed. If no, Non-Conformance Worksheet has been completed. 3 Custody seals are present on the shipping container. 4 If yes, custody seals are intact. 5 All samples are tagged or labeled. 6 If no, Non-Conformance Worksheet has been completed. 7 Sample containers arrived intact 8

 9
 Temperature of samples upon arrival:
 3
 C

 10
 Method of sample delivery to SPL:
 SPL Delivery
 Client Delivery

 10
 Method of sample delivery to SPL:
 SPL Delivery
 Client Delivery

 11
 Method of sample disposal:
 SPL Disposal
 800% 16 706% %

 11
 Method of sample disposal:
 SPL Disposal
 HOLD

 Return to Client
 Return to Client
 Return to Client

Name:		Date:
	A s	2-17-98