

PERMITS, RENEWALS, & MODS Application

ENERGY TRANSFER PARTNERS

11/11

June 14, 2011

Mr. Leonard Lowe Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87504

Re: Submittal of Discharge Plan Renewal Application, Transwestern Pipeline Company, Thoreau Compressor Station, McKinley County New Mexico, Discharge Plan GW-080

Dear Mr. Lowe:

By this letter, Transwestern Pipeline Company is submitting the attached discharge renewal application for the Thoreau Compressor Station.

Should you require any additional information concerning this renewal, contact the undersigned at our Roswell Technical Operations office at (575) 625-8022.

Sincerely,

Larry Campbell Sr. Environmental Specialist

xc:

envisions file no. 205.1.20 Laguna Team file

Transwestern Pipeline Company Thoreau Compressor Station (GW-080) Discharge Plan Renewal Application

1. Type of Operation

The facility is a mainline natural gas pipeline compressor station with the following site rated horsepower: three (3) 4500 hp Cooper Bessemer internal combustion engines and one (1) 333 hp Ingersoll Rand generator.

2. Name of Operator

The facility owner and operator is Transwestern Pipeline Company, 6381 North Main Street, Roswell, New Mexico, 88201. Facility contact is Larry Campbell. Contact phone number is (575) 625-8022.

3. Location of the Discharge Plan Facility

The facility is located in the SE /4 of section 20, T.14N, R.13W in McKinley County. GPS coordinates are N35 25 31 and W108 14 09. A USGS 7.5 minute map showing the location of the facility accompanies this submittal in **Attachment A**. The facility plot plan is presented in **Attachment B**.

4. Landowner

Refer to item no. 2 above.

5. Facility Description

A facility map and plot plan accompanies this submittal.

6. Materials Stored or Used at the Facility

The following chemicals and volumes represent the bulk storage capacities of the tanks at the facility. This may or may not represent the actual volume of liquids stored at the facility.

<u>Chemical</u>	<u>Solid/liquid</u>	<u>Container type</u>	Volume	Location
Lubrication oil	Liquid	Tank	13,443 gal.	central area of yard
Ethylene glycol	Liquid	Tanks	2,705 gal	central area of yard
Condensate	Liquid	Tanks	23,762 gal	east area of yard
Oily wastewater	Liquid	Tank	19,530 gal	west area of yard

Degreasers/solvents	Liquid	Drum	15 gal	drum storage area		
Used oil	Liquid	Tank	200 gal	south area of yard		
Soap	Liquid	Drum	110 gal	drum storage area		
Methanol	Liquid					
7A.Sources and Quantities of Effluent and Waste Solids Generated at the Facility						

Source	Mo. Generation Rate	Material
WASTES		
Scrubbers/mist extractor	5 gal	Pipeline condensate
Used oil filters	50 lb	Used filters
Pipeline sludge	1 lb	Waste sludge
Oily wastewater	50 gal	Oily wastewater
Sewage wastes	N/A	Onsite septic system
Office and domestic wastes	/ 100 lb	domestic solid waste
<u>CHEMICALS</u>		
Ethylene glycol	5 gal	Ethylene glycol
Solvent/degreasers	5 gal	Spent degreaser
Soap	2 gal	Spent soap
Lubrication oil	5 gal	Used oil

7B.(1-2) Quality Characteristics

Presented in Attachment C are the analytical reports for the waste streams which are at the facility. Due to the infrequent operation of this facility, the analytical reports may be historic in nature. In Attachment D find the MSDS for the above listed chemicals.

(3). Due to the infrequent operation of this facility, this compressor station generates extremely small quantities of the above listed used or spent materials. In addition, all chemicals and or waste materials are stored in segregated containers (drums and or tanks) with concrete secondary containments.

(4). Transwestern does not use chemicals that are defined as toxic or will generate a hazardous waste after use. In the Transwestern pipeline system, the pipeline liquids and pipeline sludge materials removed from the pipeline, may have the potential to contain very small concentrations of PCBs, arsenic, benzene and flashpoint. The concentrations and generation rates of these contaminants are very low (less than 20 ppm) and approximate less than 100 gallons per year,

respectively. Analytical testing of this waste stream is conducted each time these materials are removed from the pipeline and are managed and disposed based upon the analytical testing.

(5). Because Transwestern collects all waste materials in dedicated drums and or tanks, grab samples are the collection methodology Transwestern employs to characterize and dispose of the liquids and solids that are generated.

(6). Transwestern employs the grab method of sample collection, and assumes and understands that the normal variation of this sample methodology can be expected.

7C. All waste streams at this facility are segregated and contents are stored in dedicated drums and tanks.

8A.Description of Current Liquid and solid Waste Collection /Storage/Disposal Procedures

(B1). All new and used liquid chemicals and wastes are directed through underground piping and stored in dedicated above ground tanks. Pipeline liquids generated at pigging locations are collected in below grade sumps and transferred via underground piping to a dedicated above ground tank. All solid wastes are stored in above ground dedicated drums or containers. The transfer of liquids in the underground lines are completed via pressurized natural gas or air.

(B2). All drum and tanks at the facility which store chemicals or wastes are contained in impermeable concrete secondary containment.

(B3). For the current discharge plan issued in January 2007, testing of underground process and drainlines at the facility will be completed in 2011. The drainline testing methodology to be employed will be submitted to the OCD prior to completion of this testing requirement. Transwestern will employ two separate and different testing methodologies to test the low pressure and the high pressure drainlines. The methodologies to be employed for this testing have been approved by the OCD at other Transwestern facilities which are covered under OCD Discharge plans.

Transwestern has developed a schematic/plan presenting all underground drainlines and process lines to be tested as required by GW-080. In addition, an annual sump inspection is completed at the facility to determine sump integrity.

(C)1. Transwestern does not dispose of any industrial wastes onsite into a surface impoundment, leachfield, injection well, drying bed, pit or landfarm.

(C)2. Transwestern Pipeline Company incorporates the service of Gandy Corporation in Lovington, NM for all offsite non hazardous waste recycling and disposal activities. All waste materials are transported via truck to the disposal/recycling facility in Lovington. The facility address is:

Gandy Corporation P.O. Box 2140 Lovington, NM 88260

The Gandy Corporation disposal landfill and landfarm has all current permits and approvals required by the NMOCD to accept oil and gas wastes generated at the Thoreau Compressor Station.

9.(A-B). Non applicable.

+ ~-

10. Inspection, Maintenance and Reporting

10(A-B). Not applicable. Transwestern does not discharge industrial wastes into any surface impoundments or units that have leak detection systems or ground water monitoring. Domestic sewage wastes are directed to an onsite leachfield. There are two concrete impermeable evaporation ponds located southeast of the facility leachfield which are used to collect any sewage overflow from the leach field in the event the leach field capacity is exceeded. There has not been effluent received into the evaporation ponds in several years.

10(C). The direction of flow of surface water at the facility is south. The process equipment areas and tank and drum storage areas are located and positioned over the facility property. All bulk storage tanks are in concrete secondary containment. Concrete curbing, berms and asphalt driveways have been constructed at the facility to direct and contain surface runoff from precipitation events. During these events, water flows to the west and is intersected by the asphalt roads and curbs and prevented from traveling offsite. This storm water is then allowed to evaporate.

11. Spill/Leak Prevention and Reporting Procedures (Contingency Plans)

An SPCC (Spill Prevention Control and Countermeasure Plan) has been prepared for the Thoreau Compressor Station as the facility stores more than 1320 gallons of oil or liquid hydrocarbons. The plan has been activated and annual employee training is completed as required by this Plan. The Plan addresses notification, spill response and contingency's to be employed in the event a spill or release has occurred. The facility has spill cleanup kits at various locations around the facility to immediately respond to a spill or release of a hydrocarbons or chemical substances.

11.(A). In addition to compliance with the SPCC plan, Transwestern is also committed to the requirements of OCD Rule 116 and WQCC 1203 for notification reporting and mitigation of spills and releases. Refer to **Attachment E** for Transwestern's approach to compliance with Rule 116 and WQCC 120.

11(B). Transwestern has no below grade tanks at this facility. As an internal requirement, Transwestern conducts monthly visual tank and containment inspections for all tanks and containments that are storing chemical or hydrocarbon liquids at the facility. This applies to tanks other than domestic water. Should a leak or release occur to the area outside of the containment (failure of the SPCC plan), immediate measures are taken to stop the release and implement cleanup and rememdiation of the impacted soils. Liquids released into the containment area are transferred back into the original tank or transferred into a waste tank and properly disposed.

For the integrity of the underground piping, Transwestern conducts the five (5) year drainline testing program for all underground process and drain lines as required by the NMOCD in GW-080.

ς.

In the event chemical or hydrocarbon liquids contact the soil, Transwestern immediately excavates the contaminated soil and performs the appropriate analytical testing to determine disposition. The contamination soil is excavated and confirmation sampling/excavation is continued until the contamination in the soil has been removed. Transwestern employs the 1993 NMOCD document entitled "GUIDLEINES FOR REMEDIATION OF LEAKS, SPILLS AND RELEASES" (Attachment E) for sampling and cleanup guidelines of all chemical and hydrocarbon spills and releases which have occurred on Transwestern property. The contaminated soil is then taken to the Gandy Corporation commercial landfill in Tatum, NM for proper disposition.

11(C). Not applicable. Transwestern does not use an injection well for onsite effluent disposal.

12. Site characteristics

1 -

.

12(A)(1). There are no naturally occurring or intermittent small arroyos or drainage systems that occur on the facility. Several small and minor naturally occurring channels dissect area adjacent to the site which carry intermittent surface water events seasonally from the facility. Three (3) domestic wells are located onsite at the facility and provide domestic water to the facility and to the local residents. Current (5/2011) groundwater depth in these water wells is at approximately 310 feet.

According to a 1989 well inventory survey, 86 water wells exist within an approximate ten (10) miles radius of the facility and are screened in the Sonsela Aquifer including the three (3) water wells on the Transwestern property (see below for Regional groundwater description).

12(A)(2). The groundwater aquifer depth occurs at approximately 375 feet. Chemical characteristics of this groundwater is 21 mg/l chlorides and 380 mg/l TDS. The facility receives its drinking water from 3 onsite water wells. Refer to **Attachment F** for the last analytical report from the water wells.

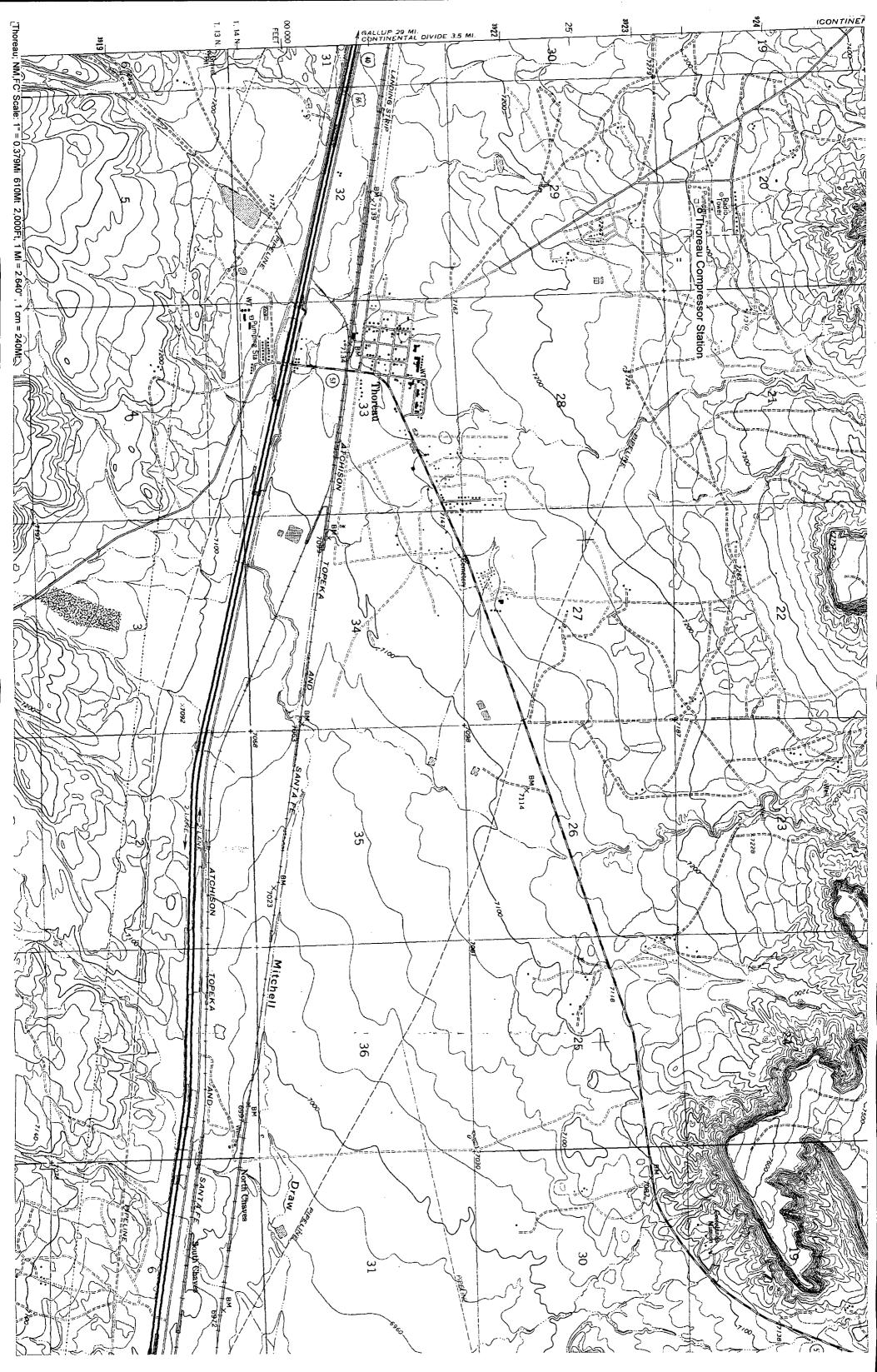
The regional groundwater flow direction is to the south. The principal water bearing aquifers are the Sonsela Sanstone, the Upper Chinle formation (650 ft) and the San Andres-Glorieta Aquifer (1200 ft). The deeper San Andres is the principal water bearing aquifer of the region supplying water for irrigation, industrial and domestic use.

A shallow perched water table is present at approximately 50 ft which flows in a southwesterly direction. Transwestern is currently performing a remediation and groundwater sampling program in this shallow aquifer to remove contaminants which have entered this aquifer from historic activities at the facility. This remediation program has been approved by the NMOCD.

12(A)(3). The soil types in and around the immediate vicinity of the facility are classified as fine loamy Aridic Haplastalfs of which shale and sandstone are the primary parent materials. These soils are deep (greater than 60 inches) and rated as having moderately high water holding capacities and moderately slow infiltration rates.

12(A)(4). There is no record of flooding on the 40 acres of this property. Flood protection is achieved by the use of curbs and berms at the facility and the natural dip in gradient to the south. There is approximately 40 feet of relief from the north property line to the south. There are no bodies of water located within the vicinity of the facility.

13. Other Compliance Information

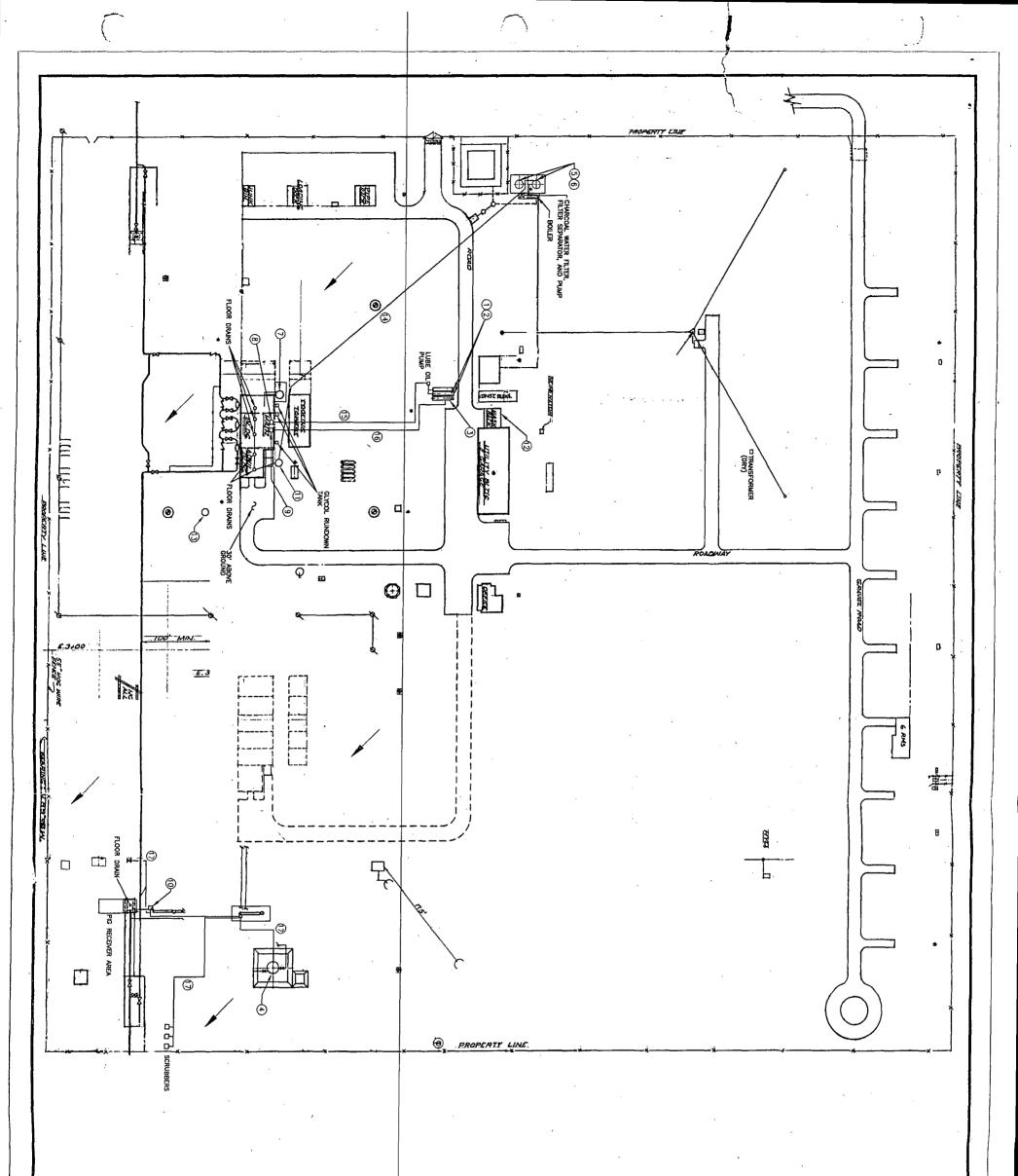

The Thoreau Compressor Station uses the documents presented in Attachments D through F and the Corporate Environmental Policy and Guidelines to demonstrate and ensure compliance with all applicable rules administrated by the NMOCD. The Thoreau Compressor Station is committed to complying with NMOCD Rule 116 and WQCC Section 1203 for reporting and remediating any spills, leaks and releases which might occur at the facility.

Upon facility closure, Rule 116 and WQCC Section 1203 will be employed to ensure that the abandonment and closure of the facility will not violate WQCC standards of Section 3103. Financial assurance is maintained by the construction bond Transwestern submitted to the State of New Mexico prior to facility construction in 1959. This bond money is designed to be used as needed for post closure activities related to site restoration which includes soil contamination sampling and excavation and post closure maintenance and monitoring.

Because it is impossible to predict and develop a future plan which will address all contingencies and requirements related to site closure at a future date, at such time

that the facility ceases operation, Transwestern will present to the NMOCD a post closure plan which addresses site abandonment and soil cleanup activities. This plan will include maintenance and monitoring of the site to ensure that all Rule 116 and Section 1203 standards have been achieved or that all future Rules and Sections to be implemented will be adhered to and followed.

ATTACHMENT A (7.5 Minute USGS Map of Facility)



ATTACHMENT B (Plot Plan of Facility)

.

. . . .

• • •

NATE 1/1: CO. MARCE 1/1: CO.	OIL -FILLED EQUIPMENT	BULK STORAGE CONTAINERS 1. LUBE OIL TANK NO. 1 2. LUBE OIL TANK NO. 2 3. GEAR OIL/GLYCOL TANK 4. FIPELINE LIQUIDS TANK 5. OIL'Y WASTE WATER TANK (NORTH) 6. OIL'Y WASTE WATER TANK (SOUTH) 7. USED OIL TANK 9. GEAR OIL DAY TANK 9. GEAR OIL DAY TANK 10. RECEIVER SUMP 11. ENGINE ROOM SUMP 12. DRUM STORAGE AREA	
TRANSWESTERN FIFELINE COMPANY SPIL PREVENTION CONTROL STATION # 5 THOREAU STATION # 5 THOREAU STATE BIOL DATE BIOL D			

ATTACHMENT C (Analytical Reports of Waste Streams at Facility)

COVER LETTER

Wednesday, May 21, 2008

Charlie Allen Transwestern Pipeline Co. P.O. Box 1019 Thoreau, NM 87323

TEL: (505) 862-7443 FAX (505) 862-7826

RE: STA 5 Mist Extractor

Dear Charlie Allen:

Order No.: 0804362

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 4/30/2008 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Transwestern Pipeline Co.Lab Order:0804362Project:STA 5 Mist ExtractorLab ID:0804362-01

Date: 21-May-08

Client Sample ID: STA. 5 Mist Extractor Collection Date: 4/30/2008 8:00:00 AM Date Received: 4/30/2008 Matrix: OIL

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8082: PCB'S	<u></u>				Analyst: JMP
Aroclor 1016	ND	9.9	mg/Kg	1	5/13/2008 12:55:20 PM
Aroclor 1221	ND	. 9.9	mg/Kg	1	5/13/2008 12:55:20 PM
Aroclor 1232	ND	9.9	mg/Kg	1	5/13/2008 12:65:20 PM
Aroclor 1242	19	9.9	mg/Kg	1	5/13/2008 12:55:20 PM
Aroclor 1248	ND	9.9	mg/Kg	1	5/13/2008 12:55:20 PM
Aroclor 1254	ND	9.9	mg/Kg	1	5/13/2008 12:55:20 PM
Aroclor 1260	ND	9.9	mg/Kg	• 1	5/13/2008 12:55:20 PM
Surr: Decachloroblphenyl	44.0	33.5-104	%REC	1	5/13/2008 12:55:20 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	2300	57	mg/Kg	50	5/1/2008 2:00:45 PM
Surr: 4-Bromofluorobenzene	96.3	80-120	%REC	50	5/1/2008 2:00:45 PM

Qualifiers:

* Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 1

ENERGY LABORATORIES, INC. • 2393 Sall Creëk Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

LABORATORY ANALYTICAL REPORT

Client:Hall EnvironmentalProject:0804362Lab ID:C08050089-001Client Sample ID:STA. 5 Mist Extractor

Report Date: 05/20/08 Collection Date: 04/30/08 DateReceived: 05/02/08 Matrix: Oil

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES							
Flash Point (Ignitability) - Flashpoint has been corrected for barome	<41 stric pressure,	۴F		60	140	SW1010	05/07/08 12:41 / cjs
METALS - TOTAL							
Arsenic	4.8	mg/kg	D	1.3		SW6010B	05/14/08 23:56 / cp
Lead	24.6	mg/kg	D	0.6		SW6010B	05/14/08 23:56 / cp

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 62602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

Client: Hall Environmental

Project: 0804362

Report Date: 05/20/08 Work Order: C08050089

Analyte	`	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW1010							Batch: 08	0507A-FLSH	IPNT-LIC
Flash Point (MBLK1_080507A Ignitability) as been corrected for barome	Method Blank ND tric pressure.	۴F			Run: PM_f	LASHPOINT	B_080507	05/07	7/08 15:10
Sample ID:	LCS1_080507A	Laboratory Co	ntrol Sample			Run: PM_F		B_080507	05/07	/08 08:24
Flash Point (I		90.0 tric pressure.	٦°	60	100	. 96	104			
Method:	SW6010B								Bate	ch: 18552
Sample ID:	MB-18552	Method Blank				Run: ICP2-	C_080514A		05/14	/08 23:28
Arsenic	•	ND	mg/kg	0.02						
Lead		ND	mg/kg	0.007						
Sample ID:	LCS-18552	Laboratory Col	ntrol Sample			Run: ICP2-	C_080514A		05/14	/08 23:32
Arsenic		0.50	mg/kg	5.0	100	85	115			
Lead		0.56	mg/kg	2.5	112	85	115			
Sample ID:	C08050022-002B MS	Sample Matrix	Spike			Run: ICP2-	C_080514A		05/14	/08 23:48
Arsenic		19	mg/kg	5.0	78	75	125			
Lead		24	mg/kg	2.5	92	75	125			
Sample ID:	C08050022-002B MSD	Sample Matrix	Spike Duplicate			Run: ICP2-	C_080514A		05/14	/08 23:52
Arsenic	······	23	mg/kg	5.0	92	75	- 125	16	20	
Lead		27	mg/kg	2.5	104	75	125	12	20	

Qualifiers: RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

QA/QC SUMMARY REPORT

	Transwestern Pipeline (STA 5 Mist Extractor	Co.					Work	Order: 0804362
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RP	DLimit Qual
Method: EPA Met	hod 8021B: Volatiles							
Sample ID: MB-158	05	MBLK			Batch	ID: 15805	Analysis Date:	5/1/2008 3:31:07 PM
Benzene Sample ID: LCS-15	ND 805	mg/Kg LCS	1.2		Batch	ID: 15805	Analysis Date:	5/1/2008 3:01:03 PM
Benzene	51.22	mg/Kg	1.2	102	77	122		
Method: EPA Meti	hod 8082: PCB's							~
Sample ID: MB-159	30	MBLK		ų.	Batch	ID: 15930	Analysis Date:	5/13/2008 11:16:22 AM
Aroclor 1016	ND	mg/Kg	10					
Aroclor 1221	ND	mg/Kg	10				·	
Aroclor 1232	ND	mg/Kg	10					
Arocior 1242	ND	mg/Kg	10					
Aroclor 1248	ND	mg/Kg	10					
Aroclor 1254	ND	mg/Kg	10					
Araclar 1260	ND	mg/Kg	10					
Sample ID: LCS-159	930	LCS			Batch	ID: 15930	Analysis Date:	5/13/2008 12:05:23 PM
Aroclor 1016	49.50	mg/Kg	10	99.0	73.3	147		
Aroclor 1260	49.42	mg/Kg	10	98.8	78.1	142		

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

~ H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

Hall Environmental Analysis Laboratory, Inc.

.

÷.

Sar	nple Receip	t Checklist				
Client Name TWP THOR STA 5		Date Re	eceived:		4/30/2008	
Work Order Number 0804362		Recei	ved by: AMF			
			le ID labels checked	l by:	A-	<u> </u>
Checklist completed by:		9/30/U Date	8		Initials	
· ·	, I ,					
Matrix: Carrier na	ame <u>Client d</u>	rop-off				
Shipping container/cooler in good condition?	Yes 🗹) No 🗌	Not Presen	t 🗆		
Custody seals intact on shipping container/cooler?	Yes [] No 🗌	Not Presen	t 🗆	Not Shipped	
Custody seals intact on sample bottles?	Yes 🗌] No 🗌	N/A	V		
Chain of custody present?	Yes 🔽	No 🗌				
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌				
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌				
Samples in proper container/bottle?	Yes 🗹	No 🗌				
Sample containers intact?	Yes 🗹) No 🗌				
Sufficient sample volume for indicated test?	Yes 🔽	No 🗌				
All samples received within holding time?	Yes 🗹	No 🗌				
Water - VOA vials have zero headspace? No VOA vials	submitted 🔽	Yes 🗋	No 🗆]		
Water - Preservation labels on bottle and cap match?	Yes 🗌	No 🗌	N/A 🗹]		
Water - pH acceptable upon receipt?	Yes 🗌	No 🗔	N/A 🗹]		
Container/Temp Blank temperature?	16°	<6° C Acc				
COMMENTS:		If given suf	ficient time to cool.			
					•	
				;	···· ··· ··· ··· ···	
Client contacted Date contacted:			Person contacted			
Contacted by: Regarding:						
Comments:						<u></u>
	<u></u>					
	••			<u> </u>		
Corrective Action						
				<u> </u>		
					······	

.

i.

ATTACHMENT D (MSDS of Bulk Chemicals at Facility)

602649 PAGE 1 OF 5

MOBIL OIL CORPORATION MATERIAL SAFETY DATA BULLETIN

REVISED: 12/08/89 MOBIL DTE 26 SUPPLIER: **HEALTH EMERGENCY TELEPHONE:** MOBIL OIL CORP. (609) 737-4411 CHEMICAL NAMES AND SYNONYMS: **TRANSPORT EMERGENCY TELEPHONE:** PET. HYDROCARBONS AND ADDITIVES (800) 424-9300 (CHEMTREC) USE OR DESCRIPTION: **PRODUCT TECHNICAL INFORMATION:** HYDRAULIC OIL (800) 662-4525 APPEARANCE: ASTM 4.0 LIOUID ODOR: MILD PH: NA VISCOSITY AT 100 F, SUS: 353.1 AT 40 C, CS: 68.0 VISCOSITY AT 210 F, SUS: 55.0 AT 100 C, CS: 8.5 FLASH POINT F(C): > 400(204) (ASTM D-92) MELTING POINT F(C): NA POUR POINT F(C): -10(-23)BOILING POINT F(C): > 600(316) RELATIVE DENSITY, 15/4 C: 0.89 SOLUBILITY IN WATER: NEGLIGIBLE VAPOR PRESSURE-MM HG 20C: < .1 NA=NOT APPLICABLE NE=NOT ESTABLISHED D=DECOMPOSES FOR FURTHER INFORMATION, CONTACT YOUR LOCAL MARKETING OFFICE. WT PCT EXPOSURE LIMITS SOURCES MG/M3 PPM (AND NOTES) (APPROX) POTENTIALLY HAZARDOUS INGREDIENTS: NONE **OTHER INGREDIENTS:** REFINED MINERAL OILS >95 ADDITIVES AND/OR OTHER INGREDS. < 5 SEE SECTION XII FOR COMPONENT REGULATORY INFORMATION. SOURCES: A=ACGIH-TLV, A*=SUGGESTED-TLV, M=MOBIL, O=OSHA, S=SUPPLIER NOTE: LIMITS SHOWN FOR GUIDANCE ONLY. FOLLOW APPLICABLE REGULATIONS. ******************************* IV. HEALTH HAZARD DATA ************************** --- INCLUDES AGGRAVATED MEDICAL CONDITIONS. IF ESTABLISHED ---THRESHOLD LIMIT VALUE: 5.00 MG/M3 SUGGESTED FOR OIL MIST EFFECTS OF OVEREXPOSURE: NOT EXPECTED TO BE A PROBLEM. --- FOR PRIMARY ROUTES OF ENTRY ---EYE CONTACT: FLUSH WITH WATER. SKIN CONTACT: WASH CONTACT AREAS WITH SOAP AND WATER. INHALATION: NOT EXPECTED TO BE A PROBLEM. INGESTION: NOT EXPECTED TO BE A PROBLEM. HOWEVER, IF GREATER THAN 1/2 LITER (PINT) INGESTED, IMMEDIATELY GIVE 1 TO 2 GLASSES OF WATER AND CALL A PHYSICIAN, HOSPITAL EMERGENCY ROOM OR POISON CONTROL CENTER FOR ASSISTANCE. DO NOT INDUCE VOMITING OR GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON.

Mobil

• .

**************** VI. FIRE AND EXPLOSION HAZARD DATA **************************** FLASH POINT F(C): > 400(204) (ASTM D-92) FLAMMABLE LIMITS. LEL: .6 UEL: 7.0 EXTINGUISHING MEDIA: CARBON DIOXIDE, FOAM, DRY CHEMICAL AND WATER FOG. SPECIAL FIRE FIGHTING PROCEDURES: FOR FIRES IN ENCLOSED AREAS, FIREFIGHTERS MUST USE SELF-CONTAINED BREATHING APPARATUS. PREVENT RUNOFF FROM FIRE CONTROL OR DILUTION FROM ENTERING STREAMS OR DRINKING WATER SUPPLY. WATER OR FOAM MAY CAUSE FROTHING. USE WATER TO KEEP FIRE EXPOSED CONTAINERS COOL. WATER SPRAY MAY BE USED TO FLUSH SPILLS AWAY FROM EXPOSURE. UNUSUAL FIRE AND EXPLOSION HAZARDS: NONE NFPA HAZARD ID: HEALTH: 0, FLAMMABILITY: 1, REACTIVITY: 0 STABILITY (THERMAL, LIGHT, ETC.): STABLE CONDITIONS TO AVOID: EXTREME HEAT INCOMPATIBILITY (MATERIALS TO AVOID): STRONG OXIDIZERS HAZARDOUS DECOMPOSITION PRODUCTS: CARBON MONOXIDE. HAZARDOUS POLYMERIZATION: WILL NOT OCCUR ENVIRONMENTAL IMPACT: REPORT SPILLS AS REQUIRED TO APPROPRIATE AUTHORITIES. U. S. COAST GUARD REGULATIONS REQUIRE IMMEDIATE REPORTING OF SPILLS THAT COULD REACH ANY WATERWAY INCLUDING INTERMITTENT DRY CREEKS. REPORT SPILL TO COAST GUARD TOLL FREE NUMBER 800-424-8802. IN CASE OF ACCIDENT OR ROAD SPILL NOTIFY CHEMTREC (800) 424-9300. PROCEDURES IF MATERIAL IS RELEASED OR SPILLED: ADSORB ON FIRE RETARDANT TREATED SAWDUST, DIATOMACEOUS EARTH, ETC. SHOVEL UP AND DISPOSE OF AT AN APPROPRIATE WASTE DISPOSAL FACILITY IN ACCORDANCE WITH CURRENT APPLICABLE LAWS AND REGULATIONS, AND PRODUCT CHARACTERISTICS AT TIME OF DISPOSAL. WASTE MANAGEMENT: PRODUCT IS SUITABLE FOR BURNING IN AN ENCLOSED, CONTROLLED BURNER FOR FUEL VALUE OR DISPOSAL BY SUPERVISED INCINERATION. SUCH BURNING MAY BE LIMITED PURSUANT TO THE RESOURCE CONSERVATION AND RECOVERY ACT. IN ADDITION, THE PRODUCT IS SUITABLE FOR PROCESSING BY AN APPROVED RECYCLING FACILITY OR CAN BE DISPOSED OF AT ANY GOVERNMENT APPROVED WASTE DISPOSAL FACILITY. USE OF THESE METHODS IS SUBJECT TO USER COMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS AND CONSIDERATION OF PRODUCT CHARACTERISTICS AT TIME OF DISPOSAL.

SKIN PROTECTION: NO SPECIAL EQUIPMENT REQUIRED. HOWEVER, GOOD PERSONAL HYGIENE PRACTICES SHOULD ALWAYS BE FOLLOWED.

RESPIRATORY PROTECTION: NO SPECIAL REQUIREMENTS UNDER ORDINARY CONDITIONS OF USE AND WITH ADEQUATE VENTILATION.

VENTILATION: NO SPECIAL REQUIREMENTS UNDER ORDINARY CONDITIONS OF USE AND WITH ADEQUATE VENTILATION.

Mobil

ORAL TOXICITY (RATS): LD50: > 5 G/KG 0/10 RATS DIED AT THIS DOSAGE LEVEL. SLIGHTLY TOXIC(ESTIMATED) ---BASED ON TESTING OF SIMILAR PRODUCTS AND/OR THE COMPONENTS.

DERMAL TOXICITY (RABBITS): LD50: > 2 G/KG 0/10 RABBITS DIED AT THIS DOSAGE LEVEL. SLIGHTLY TOXIC(ESTIMATED) ---BASED ON TESTING OF SIMILAR PRODUCTS AND/OR THE OMPONENTS.

INHALATION TOXICITY (RATS): NOT PPLICABLE ---HARMFUL CONCENTRATIONS OF MISTS AND/OR VAPORS ARE UNLIKELY TO BE ENCOUNTERED THROUGH ANY CUSTOMARY OR REASONABLY FORESEEABLE HANDLING, USE, OR MISUSE OF THIS PRODUCT.

EYE IRRITATION (RABBITS): EXPECTED TO BE NON-IRRITATING. ---BASED ON TESTING OF SIMILAR PRODUCTS AND/OR THE COMPONENTS.

SKIN IRRITATION (RABBITS): EXPECTED TO BE NON-IRRITATING. ---BASED ON TESTING OF SIMILAR PRODUCTS AND/OR THE COMPONENTS.

---SUBCHRONIC TOXICOLOGY (SUMMARY)---

SEVERELY SOLVENT REFINED AND SEVERELY HYDROTREATED MINERAL BASE OILS HAVE BEEN TESTED AT MOBIL ENVIRONMENTAL AND HEALTH SCIENCES LABORATORY BY DERMAL APPLICATION TO RATS 5 DAYS/WEEK FOR 90 DAYS AT DOSES SIGNIFICANTLY HIGHER THAN THOSE EXPECTED DURING NORMAL INDUSTRIAL EXPOSURE. EXTENSIVE EVALUATIONS INCLUDING MICROSCOPIC EXAMINATION OF INTERNAL ORGANS AND CLINICAL CHEMISTRY OF BODY FLUIDS, SHOWED NO ADVERSE EFFECTS.

---CHRONIC TOXICOLOGY (SUMMARY)---

THE BASE OILS IN THIS PRODUCT ARE SEVERELY SOLVENT REFINED AND/OR SEVERELY HYDROTREATED. TWO YEAR MOUSE SKIN PAINTING STUDIES OF SIMILAR OILS SHOWED NO EVIDENCE OF CARCINOGENIC EFFECTS.

Mobil

GOVERNMENTAL INVENTORY STATUS: ALL COMPONENTS REGISTERED IN ACCORDANCE WITH TSCA AND EINECS. D.O.T. SHIPPING NAME: NOT APPLICABLE D.O.T. HAZARD CLASS: NOT APPLICABLE US OSHA HAZARD COMMUNICATION STANDARD: PRODUCT ASSESSED IN ACCORDANCE WITH OSHA 29 CFR 1910.1200 AND DETERMINED NOT TO BE HAZARDOUS. RCRA INFORMATION: THE UNUSED PRODUCT, IN OUR OPINION, IS NOT SPECIFICALLY LISTED BY THE EPA AS A HAZARDOUS WASTE (40 CFR. PART 261D); DOES NOT EXHIBIT THE HAZARDOUS CHARACTERISTICS OF IGNITABILITY, CORROSIVITY, OR REACTIVITY, AND IS NOT FORMULATED WITH THE METALS CITED IN THE EP TOXICITY TEST. HOWEVER, USED PRODUCT MAY BE REGULATED. U.S. SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT (SARA) TITLE III: THIS PRODUCT CONTAINS NO "EXTREMELY HAZARDOUS SUBSTANCES". SARA (302) REPORTABLE HAZARD CATEGORIES: NONE THIS PRODUCT CONTAINS NO CHEMICALS REPORTABLE UNDER SARA (313) TOXIC RELEASE PROGRAM. THE FOLLOWING PRODUCT INGREDIENTS ARE CITED ON THE LISTS BELOW: CHEMICAL NAME CAS NUMBER LIST CITATIONS ZINC (ELEMENTAL ANALYSIS) (0.06%) 7440-66-6 15 --- KEY TO LIST CITATIONS ---

1 = OSHA Z, 2 = ACGIH, 3 = IARC, 4 = NTP, 5 = NCI, 6 = EPA CARC, 7 = NFPA 49, 8 = NFPA 325M, 9 = DOT HMT, 10 = CA RTK, 11 = IL RTK, 12 = MA RTK, 13 = MN RTK, 14 = NJ RTK, 15 = MI 293, 16 = FL RTK, 17 = PA RTK, 18 = CA P65. --- NTP, IARC, AND OSHA INCLUDE CARCINOGENIC LISTINGS ---

NOTE: MOBIL PRODUCTS ARE NOT FORMULATED TO CONTAIN PCBS.

1

Mobil

6058**8**1 I

PAGE 1 OF 5

MOBIL OIL CORPORATION MATERIAL SAFETY DATA BULLETIN REVISED: 12/08/89 MOBIL PEGASUS 490 SUPPLIER: HEALTH EMERGENCY TELEPHONE: MOBIL OIL CORP. (609) 737-4411 CHEMICAL NAMES AND SYNONYMS: TRANSPORT EMERGENCY TELEPHONE: PET. HYDROCARBONS AND ADDITIVES (800) 424-9300 (CHEMTREC) USE OR DESCRIPTION: PRODUCT TECHNICAL INFORMATION: GAS ENGINE OIL (800) 662-4525 APPEARANCE: ASTM 4.0 LIQUID ODOR: MILD PH: NA VISCOSITY AT 100 F, SUS: 694.0 AT 40 C, CS: 132.0 VISCOSITY AT 210 F, SUS: 72.0 AT 100 C, CS: 13.0 FLASH POINT F(C): > 425(218) (ASTM D-92) MELTING POINT F(C): NA POUR POINT F(C): 5(-15)BOILING POINT F(C): > 600(316) RELATIVE DENSITY, 15/4 C: 0.886 SOLUBILITY IN WATER: NEGLIGIBLE VAPOR PRESSURE-MM HG 20C: < .1 NA=NOT APPLICABLE NE=NOT ESTABLISHED D=DECOMPOSES FOR FURTHER INFORMATION, CONTACT YOUR LOCAL MARKETING OFFICE. WT PCT EXPOSURE LIMITS SOURCES (APPROX) MG/M3 PPM (AND NOTES) POTENTIALLY HAZARDOUS INGREDIENTS: NONE **OTHER INGREDIENTS:** RELINED MINERAL OILS >90 ADDITIVES AND/OR OTHER INGREDS. <10 SEE SECTION XII FOR COMPONENT REGULATORY INFORMATION. SOURCES: A=ACGIH-TLV, A*=SUGGESTED-TLV, M=MOBIL, O=OSHA, S=SUPPLIER NOTE: LIMITS SHOWN FOR GUIDANCE ONLY. FOLLOW APPLICABLE REGULATIONS. --- INCLUDES AGGRAVATED MEDICAL CONDITIONS, IF ESTABLISHED ---THRESHOLD LIMIT VALUE: 5.00 MG/M3 SUGGESTED FOR OIL MIST EFFECTS OF OVEREXPOSURE: NOT EXPECTED TO BE A PROBLEM. ************* V. EMERGENCY AND FIRST AID PROCEDURES --- FOR PRIMARY ROUTES OF ENTRY ---EYE CONTACT: FLUSH WITH WATER. SKIN CONTACT: WASH CONTACT AREAS WITH SOAP AND WATER. INHALATION: NOT EXPECTED TO BE A PROBLEM. INGESTION: NOT EXPECTED TO BE A PROBLEM. HOWEVER, IF GREATER THAN 1/2 LITER (PINT) INGESTED, IMMEDIATELY GIVE 1 TO 2 GLASSES OF WATER AND CALL A PHYSICIAN, HOSPITAL EMERGENCY ROOM OR POISON CONTROL CENTER FOR ASSISTANCE. DO NOT INDUCE VOMITING OR GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON.

MOBIL PEGASUS 490

lobil

ORAL TOXICITY (RATS): LD50: > 5 G/KG 0/10 RATS DIED AT THIS DOSAGE LEVEL. SLIGHTLY TOXIC(ESTIMATED) ---BASED ON TESTING OF SIMILAR PRODUCTS AND/OR THE COMPONENTS.

DERMAL TOXICITY (RABBITS): LD50: > 2 G/KG 0/10 RABBITS DIED AT THIS DOSAGE LEVEL. SLIGHTLY TOXIC(ESTIMATED) ---BASED ON TESTING OF SIMILAR PRODUCTS AND/OR THE COMPONENTS.

INHALATION TOXICITY (RATS): NOT APPLICABLE ---HARMFUL CONCENTRATIONS OF MISTS AND/OR VAPORS ARE UNLIKELY TO BE ENCOUNTERED THROUGH ANY CUSTOMARY OR REASONABLY FORESEEABLE HANDLING, USE, OR MISUSE OF THIS PRODUCT.

EYE IRRITATION (RABBITS): EXPECTED TO BE NON-IRRITATING. EYE IRRITATION SCORES: 0 AT 24 HOURS, 0 AT 48 HOURS, 0 AT 72 HOURS---BASED ON TESTING OF SIMILAR PRODUCTS AND/OR THE COMPONENTS.

SKIN IRRITATION (RABBITS): EXPECTED TO BE NON-IRRITATING. ---BASED ON TESTING OF SIMILAR PRODUCTS AND/OR THE COMPONENTS.

---SUBCHRONIC TOXICOLOGY (SUMMARY)---

SEVERELY SOLVENT REFINED AND SEVERELY HYDROTREATED MINERAL BASE OILS HAVE BEEN TESTED AT MOBIL ENVIRONMENTAL AND HEALTH SCIENCES LABORATORY BY DERMAL APPLICATION TO RATS 5 DAYS/WEEK FOR 90 DAYS AT DOSES SIGNIFICANTLY HIGHER THAN THOSE EXPECTED DURING NORMAL INDUSTRIAL EXPOSURE. EXTENSIVE EVALUATIONS INCLUDING MICROSCOPIC EXAMINATION OF INTERNAL ORGANS AND CLINICAL CHEMISTRY OF BODY FLUIDS, SHOWED NO ADVERSE EFFECTS.

---CHRONIC TOXICOLOGY (SUMMARY)---

THE BASE OILS IN THIS PRODUCT ARE SEVERELY SOLVENT REFINED AND/OR SEVERELY HYDROTREATED. TWO YEAR MOUSE SKIN PAINTING STUDIES OF SIMILAR OILS SHOWED NO EVIDENCE OF CARCINOGENIC EFFECTS. MOBIL PEGASUS 490

Mobil

.

******************** VI. FIRE AND EXPLOSION HAZARD DATA ******************* FLASH POINT F(C): > 425(218) (ASTM D-92) FLAMMABLE LIMITS. LEL: .6 UEL: 7.0 EXTINGUISHING MEDIA: CARBON DIOXIDE, FOAM, DRY CHEMICAL AND WATER FOG. SPECIAL FIRE FIGHTING PROCEDURES: WATER OR FOAM MAY CAUSE FROTHING. USE WATER TO KEEP FIRE EXPOSED CONTAINERS COOL. WATER SPRAY MAY BE USED TO FLUSH SPILLS AWAY FROM EXPOSURE. FOR FIRES IN ENCLOSED AREAS, FIREFIGHTERS MUST USE SELF-CONTAINED BREATHING APPARATUS. PREVENT RUNOFF FROM FIRE CONTROL OR DILUTION FROM ENTERING STREAMS OR DRINKING WATER SUPPLY. UNUSUAL FIRE AND EXPLOSION HAZARDS: NONE NFPA HAZARD ID: HEALTH: 0, FLAMMABILITY: 1, REACTIVITY: 0 STABILITY (THERMAL, LIGHT, ETC.): STABLE CONDITIONS TO AVOID: EXTREME HEAT INCOMPATIBILITY (MATERIALS TO AVOID): STRONG OXIDIZERS HAZARDOUS DECOMPOSITION PRODUCTS: CARBON MONOXIDE. HAZARDOUS POLYMERIZATION: WILL NOT OCCUR ENVIRONMENTAL IMPACT: REPORT SPILLS AS REQUIRED TO APPROPRIATE AUTHORITIES. U. S. COAST GUARD REGULATIONS REOUIRE IMMEDIATE REPORTING OF SPILLS THAT COULD REACH ANY WATERWAY INCLUDING INTERMITTENT DRY CREEKS. REPORT SPILL TO COAST GUARD TOLL FREE NUMBER 800-424-8802. PROCEDURES IF MATERIAL IS RELEASED OR SPILLED: ADSORB ON FIRE RETARDANT TREATED SAWDUST, DIATOMACEOUS EARTH, ETC. SHOVEL UP AND DISPOSE OF AT AN APPROPRIATE WASTE DISPOSAL FACILITY IN ACCORDANCE WITH CURRENT APPLICABLE LAWS AND REGULATIONS, AND PRODUCT CHARACTERISTICS AT TIME OF DISPOSAL. WASTE MANAGEMENT: PRODUCT IS SUITABLE FOR BURNING IN AN ENCLOSED. CONTROLLED BURNER FOR FUEL VALUE OR DISPOSAL BY SUPERVISED INCINERATION. SUCH BURNING MAY BE LIMITED PURSUANT TO THE RESOURCE CONSERVATION AND RECOVERY ACT. IN ADDITION, THE PRODUCT IS SUITABLE FOR PROCESSING BY AN APPROVED RECYCLING FACILITY OR CAN BE DISPOSED OF AT ANY GOVERNMENT APPROVED WASTE DISPOSAL FACILITY. USE OF THESE METHODS IS SUBJECT TO USER COMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS AND CONSIDERATION OF PRODUCT CHARACTERISTICS AT TIME OF DISPOSAL. EYE PROTECTION: NO SPECIAL EQUIPMENT REQUIRED. SKIN PROTECTION: NO SPECIAL EQUIPMENT REQUIRED. HOWEVER, GOOD PERSONAL HYGIENE PRACTICES SHOULD ALWAYS BE FOLLOWED. RESPIRATORY PROTECTION: NO SPECIAL REQUIREMENTS UNDER ORDINARY CONDITIONS OF USE AND WITH ADEQUATE VENTILATION. VENTILATION: NO SPECIAL REQUIREMENTS UNDER ORDINARY CONDITIONS OF USE AND WITH ADEQUATE VENTILATION.

NO SPECIAL PRECAUTIONS REQUIRED.

MOBIL PEGASUS 490

605881 PAGE 4 OF 5

D.O.T. SHIPPING NAME: NOT APPLICABLE

D.O.T. HAZARD CLASS: NOT APPLICABLE

Mobil

US OSHA HAZARD COMMUNICATION STANDARD: PRODUCT ASSESSED IN ACCORDANCE WITH OSHA 29 CFR 1910.1200 AND DETERMINED NOT TO BE HAZARDOUS.

RCRA INFORMATION: THE UNUSED PRODUCT, IN OUR OPINION, IS NOT SPECIFICALLY LISTED BY THE EPA AS A HAZARDOUS WASTE (40 CFR, PAR: 261D); DOES NOT EXHIBIT THE HAZARDOUS CHARACTERISTICS OF IGNITABILITY, CORROSIVITY, OR REACTIVITY, AND IS NOT FORMULATED WITH THE METALS CITED IN THE EP TOXICITY TEST. HOWEVER, USED PRODUCT MAY BE REGULATED.

U.S. SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT (SARA) TITLE III: THIS PRODUCT CONTAINS NO "EXTREMELY HAZARDOUS SUBSTANCES".

SARA (302) REPORTABLE HAZARD CATEGORIES: NONE

THIS PRODUCT CONTAINS NO CHEMICALS REPORTABLE UNDER SARA (313) TOXIC RELEASE PROGRAM.

THE FOLLOWING PRODUCT INGREDIENTS ARE CITED ON THE LISTS BELOW:

CHEMICAL NAMECAS NUMBERLIST CITATIONSZINC (ELEMENTAL ANALYSIS)(0.023%)7440-66-615

--- KEY TO LIST CITATIONS ---

1 = OSHA Z, 2 = ACGIH, 3 = IARC, 4 = NTP, 5 = NCI, 6 = EPA CARC, 7 = NFPA 49, 8 = NFPA 325M, 9 = DOT HMT, 10 = CA RTK, 11 = IL RTK, 12 = MA RTK, 13 = MN RTK, 14 = NJ RTK, 15 = MI 293, 16 = FL RTK, 17 = PA RTK, 18 = CA P65. --- NTP, IARC, AND OSHA INCLUDE CARCINOGENIC LISTINGS ---

NOTE: MOBIL PRODUCTS ARE NOT FORMULATED TO CONTAIN PCBS.

ENVIRONMENTAL AFFAIRS AND TOXICOLOGY DEPARTMENT, PRINCETON, NJ FOR FURTHER INFORMATION, CONTACT:

MOBIL OIL CORPORATION, PRODUCT FORMULATION AND QUALITY CONTROL3225 GALLOWS ROAD, FAIRFAX, VA22037(703) 849-3265

Mobil

. . .

· · · · · · ·

Diesel Fuel (All Types)

MSDS No. 9909

EMERGENCY OVERVIEW CAUTION! MBUSTIBLE LIQUID - SLIGHT TO MODER

OSHA/NFPA COMBUSTIBLE LIQUID - SLIGHT TO MODERATE IRRITANT EFFECTS CENTRAL NERVOUS SYSTEM HARMFUL OR FATAL IF SWALLOWED

Moderate fire hazard. Avoid breathing vapors or mists. May cause dizziness and drowsiness. May cause moderate eye irritation and skin irritation (rash). Long-term, repeated exposure may cause skin cancer. If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs).

NFPA 704 (Section 16)

1. CHEMICAL PRODUCT AND COMPANY INFORMATION

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER (24 hrs): CHEMTREC COMPANY CONTACT (business hours): Corporate Sa MSDS INTERNET WEBSITE: www.hess.co

CHEMTREC (800) 424-9300 Corporate Safety (732) 750-6000 www.hess.com (See Environment, Health, Safety & Social Responsibility)

SYNONYMS: Ultra Low Sulfur Diesel (ULSD); Low Sulfur Diesel; Motor Vehicle Diesel Fuel; Diesel Fuel #2; Dyed Diesel Fuel; Non-Road, Locomotive and Marine Diesel Fuel; Tax-exempt Diesel Fuel

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and CHEMICAL INFORMATION ON INGREDIENTS

INGREDIENT NAME (CAS No.)

Diesel Fuel (68476-34-6) Naphthalene (91-20-3) CONCENTRATION PERCENT BY WEIGHT 100 Typically < 0.01

A complex mixture of hydrocarbons with carbon numbers in the range C9 and higher. Diesel fuel may be dyed (red) for tax purposes. May contain a multifunctional additive.

3. HAZARDS IDENTIFICATION

EYES

Contact with liquid or vapor may cause mild irritation.

SKIN

May cause skin irritation with prolonged or repeated contact. Practically non-toxic if absorbed following acute (single) exposure. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are repeatedly exposed.

INGESTION

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Diesel Fuel (All Types)

MSDS No. 9909

INHALATION

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

WARNING: the burning of any hydrocarbon as a fuel in an area without adequate ventilation may result in hazardous levels of combustion products, including carbon monoxide, and inadequate oxygen levels, which may cause unconsciousness, suffocation, and death.

CHRONIC EFFECTS and CARCINOGENICITY

Similar products produced skin cancer and systemic toxicity in laboratory animals following repeated applications. The significance of these results to human exposures has not been determined - see Section 11 Toxicological Information.

IARC classifies whole diesel fuel exhaust particulates as probably carcinogenic to humans (Group 2A). NIOSH regards whole diesel fuel exhaust particulates as a potential cause of occupational lung cancer based on animal studies and limited evidence in humans.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash).

4. FIRST AID MEASURES

EYES

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold eyelids open to ensure adequate flushing. Seek medical attention.

<u>SKIN</u>

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops.

INGESTION

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

INHALATION

Remove person to fresh air. If person is not breathing provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

5. FIRE FIGHTING MEASURES

FLAMMABLE PROPERTIES:
FLASH POINT:
AUTOIGNITION POINT:
OSHA/NFPA FLAMMABILITY CLASS:
LOWER EXPLOSIVE LIMIT (%):
UPPER EXPLOSIVE LIMIT (%):

> 125 °F (> 52 °C) minimum PMCC 494 °F (257 °C) 2 (COMBUSTIBLE) 0.6 7.5

FIRE AND EXPLOSION HAZARDS

Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

Diesel Fuel (All Types)

MSDS No. 9909

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY'S SPILL CONTINGENCY OR EMERGENCY RESPONSE PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

7. HANDLING and STORAGE

HANDLING PRECAUTIONS

Handle as a combustible liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Diesel fuel, and in particular low and ultra low sulfur diesel fuel, has the capability of accumulating a static electrical charge of sufficient energy to cause a fire/explosion in the presence of lower flashpoint products such as gasoline. The accumulation of such a static charge occurs as the diesel flows through pipelines, filters, nozzles and various work tasks such as tank/container filling, splash loading, tank cleaning; product sampling; tank gauging; cleaning, mixing, vacuum truck operations, switch loading, and product agitation. There is a greater potential for static charge accumulation in cold temperature, low humidity conditions.

Documents such as 29 CFR OSHA 1910.106 "Flammable and Combustible Liquids, NFPA 77 Recommended Practice on Static Electricity, API 2003 "Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents and ASTM D4865 "Standard Guide for Generation and Dissipation of Static

Diesel Fuel (All Types)

MSDS No. 9909

Electricity in Petroleum Fuel Systems" address special precautions and design requirements involving loading rates, grounding, bonding, filter installation, conductivity additives and especially the hazards associated with "switch loading." ["Switch Loading" is when a higher flash point product (such as diesel) is loaded into tanks previously containing a low flash point product (such as gasoline) and the electrical charge generated during loading of the diesel results in a static ignition of the vapor from the previous cargo (gasoline).]

Note: When conductivity additives are used or are necessary the product should achieve 25 picosiemens/meter or greater at the handling temperature.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

8. EXPOSURE CONTROLS and PERSONAL PROTECTION

EXPOSURE LIMITS

	_	Exposure Limits	
Components (CAS No.)	Source	TWA/STEL	Note
	OSHA	5 mg/m, as mineral oil mist	
Diesel Fuel: (68476-34-6)	ACGIH	100 mg/m ³ (as totally hydrocarbon vapor) TWA	A3, skin
	OSHA	10 ppm TWA	
Naphthalene (91-20-3)	ACGIH	10 ppm TWA / 15 ppm STEL	A4, Skin

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Gloves constructed of nitrile, neoprene, or PVC are recommended. Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

MATERIAL SAFETY DATA SHEET

Diesel Fuel (All Types)

MSDS No. 9909

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134. NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

Clear, straw-yellow liquid. Dyed fuel oil will be red or reddish-colored.

ODOR

Mild, petroleum distillate odor

BASIC PHYSICAL PROPERTIES

ERIO ERIO ERIO	
BOILING RANGE:	320 to 690 oF (160 to 366 °C)
VAPOR PRESSURE:	0.009 psia @ 70 °F (21 °C)
VAPOR DENSITY (air = 1):	> 1.0
SPECIFIC GRAVITY $(H_2O = 1)$:	0.83 to 0.88 @ 60 °F (16 °C)
PERCENT VOLATILES:	100 %
EVAPORATION RATE:	Slow; varies with conditions
SOLUBILITY (H ₂ O):	Negligible

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources. Keep away from strong oxidizers; Viton ®; Fluorel ®

HAZARDOUS DECOMPOSITION PRODUCTS

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

11. **TOXICOLOGICAL PROPERTIES**

ACUTE TOXICITY

Acute dermal LD50 (rabbits): > 5 ml/kg Primary dermal irritation: extremely irritating (rabbits) Guinea pig sensitization: negative

Acute oral LD50 (rats): 9 ml/kg Draize eye irritation: non-irritating (rabbits)

CHRONIC EFFECTS AND CARCINOGENICITY NTP: NO

Carcinogenic: OSHA: NO IARC: NO ACGIH: A3

Studies have shown that similar products produce skin tumors in laboratory animals following repeated applications without washing or removal. The significance of this finding to human exposure has not been determined. Other studies with active skin carcinogens have shown that washing the animal's skin with soap and water between applications reduced tumor formation.

MUTAGENICITY (genetic effects)

This material has been positive in a mutagenicity study.

MATERIAL SAFETY DATA SHEET

Diesel Fuel (All Types)

MSDS No. 9909

12. ECOLOGICAL INFORMATION

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable, under Federal and State regulations.

13. DISPOSAL CONSIDERATIONS

Consult federal, state and local waste regulations to determine appropriate disposal options.

14. TRANSPORTATION INFORMATION

PROPER SHIPPING NAME: HAZARD CLASS and PACKING GROUP: DOT IDENTIFICATION NUMBER:

DOT SHIPPING LABEL:

Diesel Fuel F 3, PG III NA 1993 (Domestic) UN 1202 (International) None

Use Combustible Placard if shipping in bulk domestically

15. REGULATORY INFORMATION

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH CHRONIC HEALTH FIRE X X X X

SUDDEN RELEASE OF PRESSURE

REACTIVE

SARA SECTION 313 - SUPPLIER NOTIFICATION

This product may contain listed chemicals below the *de minimis* levels which therefore are not subject to the supplier notification requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372. If you may be required to report releases of chemicals listed in 40 CFR 372.28, you may contact Hess Corporate Safety if you require additional information regarding this product.

CALIFORNIA PROPOSITON 65 LIST OF CHEMICALS

This product contains the following chemicals that are included on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

INGREDIENT NAME (CAS NUMBER) Diesel Engine Exhaust (no CAS Number listed) Date Listed 10/01/1990

CANADIAN REGULATORY INFORMATION (WHMIS)

Class B, Division 3 (Combustible Liquid) and Class D, Division 2, Subdivision B (Toxic by other means)

MATERIAL SAFETY DATA SHEET

0 2 0

Diesel Fuel (All Types)

MSDS No. 9909

16. OTHER INFORMATION

NFPA® HAZARD RATING	HEALTH:
	FIRE:
	REACTIVITY:

Refer to NFPA 704 "Identification of the Fire Hazards of Materials" for further information

HMIS® HAZARD RATING	HEALTH:	1 *	* Chronic
	FIRE:	2	
	PHYSICAL:	0	

SUPERSEDES MSDS DATED: 02/28/2001

ABBREVIATIONS:

AP = Approximately	< = Less than	> = Greater than
N/A = Not Applicable	N/D = Not Determined	ppm = parts per million

ACRONYMS:

ACGIH	American Conference of Governmental	NTF
	Industrial Hygienists	OP/
AIHA	American Industrial Hygiene Association	OSI
ANSI	American National Standards Institute	
	(212) 642-4900	PEL
API	Àmerican Petroleum Institute	RCI
	(202) 682-8000	
CERCLA	Comprehensive Emergency Response,	REI
	Compensation, and Liability Act	SAF
DOT	U.S. Department of Transportation	••••
	[General info: (800) 467-4922]	SC
EPA	U.S. Environmental Protection Agency	SPO
HMIS	Hazardous Materials Information System	
IARC	International Agency For Research On	STE
	Cancer	
MSHA	Mine Safety and Health Administration	TLV
NFPA	National Fire Protection Association	TSC
	(617)770-3000	TW
NIOSH	National Institute of Occupational Safety	WE
	and Health	
NOIC	Notice of Intended Change (proposed	WН
11010	change to ACGIH TLV)	

NTP OPA OSHA	National Toxicology Program Oil Pollution Act of 1990 U.S. Occupational Safety & Health Administration
PEL	Permissible Exposure Limit (OSHA)
RCRA	Resource Conservation and Recovery Act
REL	Recommended Exposure Limit (NIOSH)
SARA	Superfund Amendments and
	Reauthorization Act of 1986 Title III
SCBA	Self-Contained Breathing Apparatus
SPCC	Spill Prevention, Control, and
	Countermeasures
STEL	Short-Term Exposure Limit (generally
	15 minutes)
TLV	Threshold Limit Value (ACGIH)
TSCA	Toxic Substances Control Act
TWA	Time Weighted Average (8 hr.)
WEEL	Workplace Environmental Exposure
	Level (AIHA)
WHMIS	Canadian Workplace Hazardous
	Materials Information System

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

.

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

. .

Material Safety Data Sheet: Crystal Simple Green[®] Industrial Cleaner/Degreaser

Simple Green[®] Safety Towels

Version No. 19128-11A Date of Issue: January 2011

Section 1: PRODUCT & COMPANY IDENTIFICATION

Product Name:Crystal Simple Green Industrial Cleaner and DegreaserAdditional Names:Simple Green Safety Towels (fluid only)

Manufacturer's Part Number: *Please refer to page 4

Company:	Sunshine Makers, Inc.		
	15922 Pacific Coast Highway		
	Huntington Beach, CA 92649 USA		
Telephone:	800-228-0709 • 562-795-6000	Fax:	562-592-3830
Emergency Phone:	e: Chem-Tel 24-Hour Emergency Service: 800-255-3924		

Section 2: HAZARDS IDENTIFICATION

Emergency Overview:

CAUTION. Irritant. This is a clear colored liquid with a chemical/detergent odor. Safety towels are infused with a diluted version of mixture.

<u>NFPA/HMIS Rating:</u> Health = 1 = slight Fire, Reactivity, and Special = 0 = minimal

Potential Health Effects

Eye Contact:Mildly irritating.Skin Contact:No adverse effects expected under typical use conditions. Prolonged exposure may cause dryness.
Chemically sensitive individuals may experience mild irritation.Ingestion:May cause stomach or intestinal irritation if swallowed.

Inhalation: No adverse effects expected under typical use conditions. Adequate ventilation should be present for prolonged usage in small enclosed areas.

Section 3: COMPOSITION/INFORMATION ON INGREDIENTS

Ingredient	CAS Number	Percent Range
Water	7732-18-5	≥ 78%
2-butoxyethanol	111-76-2	≤ 6%
Ethoxylated Alcohol Mixture	Proprietary	≤ 5%
Tetrapotassium Pyrophosphate	7320-34-5	≤ 5%
Sodium Citrate	68-04-2	≤ 5%
Fragrance	Proprietary	≤ 1%

ANSI-Z400.1-2003 Format

Material Safety Data Sheet: Crystal Simple Green[®] Industrial Cleaner/Degreaser

Simple Green[®] Safety Towels

Version No. 19128-11A Date of Issue: January 2011

Section 4: FIRST AID MEASURES

If inhaled:If adverse effect occurs, move to fresh air.If on skin:If adverse effect occurs, rinse skin with water.If in eyes:Flush with plenty of water. After 5 minutes of flushing, remove contact lenses, if present. Continue
flushing for at least 10 more minutes. If irritation persists seek medical attention.If ingested:Drink plenty of water to dilute.

Section 5: FIRE FIGHTING MEASURES

This formula is stable, non-flam	mable, and will not burn. No special procedures necessary
Flammability:	Non-flammable
Flash Point:	Non-flammable
Suitable Extinguishing Media:	Use Dry chemical, CO2, water spray or "alcohol" foam.
Extinguishing Media to Avoid	High volume jet water.
Special Exposure Hazards:	In event of fire created carbon oxides, oxides of phosphorus may be formed.
Special Protective Equipment:	Wear positive pressure self-contained breathing apparatus; Wear full protective clothing.

Section 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions: See section 8 – personal protection.

Environmental Precautions: Do not allow into open waterways and ground water systems.

Method for Clean Up: Dilute with water and rinse into sanitary sewer system or soak up with inert absorbent material.

Section 7: HANDLING AND STORAGE

Handling: Keep container tightly closed. Ensure adequate ventilation. Keep out of reach of children.

Storage: Keep in cool dry area.

Section 8: EXPOSURE CONTROLS / PERSONAL PROTECTION

 Exposure Limit Values:
 OSHA PEL
 ACGIH TLV

 2-butoxyethanol
 TWA 50 ppm (240 mg/m³)
 20 ppm (97 mg/m³)

 Tetrapotassium Pyrophosphate
 5 mg/m³

Exposure Controls:

Eye Contact:Use protective glasses if splashing or spray-back is likely.Respiratory:Use in well ventilated areas.Skin Contact:Prolonged exposure or dermal sensitive individuals should use protective gloves.

ANSI-Z400.1-2003 Format

Material Safety Data Sheet: Crystal Simple Green[®] Industrial Cleaner/Degreaser

Simple Green[®] Safety Towels Version No. 19128-11A Date of Issue: January 2011

ANSI-Z400.1-2003 Format

Section 9: PHYSICAL AND CHEMICAL PROPERTIES

Appearance:	Clear Liquid	Vapor F	Pressure:	18 mmHg @2	0°C; 23.5 mmHg @26°C
Odor:	No added odor; chemical/detergent	Density	1	8.5 lb/gal;	
Specific Gravity:	1.020 ± 0.010	Water S	Solubility:	100%	
pH:	9.0 – 9.9 (Crystal)	VOC co	C composite Partial Pressure: TBD		TBD
	8.0 – 8.9 (Safety Towel)	VOC:	CARB Method 310		5.8%*
Boiling Point:	~212°F (100.6 °C)		SCAQMD	Method 313	6.6%*
Freezing Point: ~ 16°F (-9 °C)			* prod	luct must be diluted	d to meet air quality regulations
Nutrient Content: Phosphorous: 0.28%		Sulfur: '	~180 ppm		
Chloride: ~110 ppm		Fluorine: ~90 ppm			

Section 10: STABILITY AND REACTIVITY

Stability: Materials to Avoid: Hazardous Decomposition Products: Stable None known Normal products of combustion - CO, CO2; Oxides of Phosphorous may occur.

Section 11: TOXICOLOGICAL INFORMATION

Acute Toxicity:	Oral LD ₅₀ (rat)
	Dermal LD ₅₀ (ra

> 5 g/kg body weight

Dermal LD₅₀ (rabbit) > 5 g/kg body weight

Toxicity calculated from ingredients using OECD SERIES ON TESTING AND ASSESSMENT Number 33

Carcinogens: No ingredients are listed by OSHA, IARC, or NTP as known or suspected carcinogens.

Section 12: ECOLOGICAL INFORMATION

Hazard to wild mammals:	Low, based on toxicology profile
Hazard to avian species:	Low, based on toxicology profile
Hazard to aquatic organisms:	Low, based on toxicology profile
Chemical Fate Information:	Readily Biodegradable based on biodegradability profile of ingredients

Section 13: DISPOSAL CONSIDERATIONS

Appropriate Method for Disposal:

Unused Product:	*Dilute with water to use concentration and dispose by sanitary sewer.
Used Product:	*This product can enter into clarifiers and oil/water separators. Used product may be hazardous depending on the cleaning application and resulting contaminants.
Empty Containers:	*Triple-rinse with water and offer for recycling if available in your area. Otherwise, dispose as non-hazardous waste.

*Dispose of used or unused product, and empty containers in accordance with the local, State, Provincial, and Federal regulations for your location. Never dispose of used degreasing rinsates into lakes, streams, and open bodies of water or storm drains.

Material Safety Data Sheet: Crystal Simple Green Industrial Cleaner/Degreaser

Simple Green[®] Safety Towels

Version No. 19128-11A Date of Issue: January 2011

ANSI-Z400.1-2003 Format

Section 14:	RANSPORT INFORMATION		
U.S. Department TDG:	of Transportation (DOT) / Canadian	Not Regulated	
IMO / IDMG: ICAO/ IATA: ADR/RID:	Not classified as Dangerous Not classified as Dangerous Not classified as Dangerous		
U.N. Number	Not Required	Proper Shipping Name:	Detergent Solution
Hazard Class:	Non-Hazardous	Marine Pollutant:	Νο
Section 15:	REGULATORY INFORMATION		
All components a		·	
No components	listed under: Clean Air Act Section 112	; Clean Water Act 307 & 311	
	-butoxyethanol is subject to the reporting mendments and Reauthorization Act of 1		
RCRA Status:	Not a hazardous waste	CERCLA Status :	No components listed
State Right To Kr	now Lists		
2	-butoxyethanol Illinois, M	assachusetts, New Jersey, Penns	ylvania, Rhode Island
WHMIS Classific	ation – Category D, subcategory 2B, eye	rritant	
Name	Toxic Substances List - (Canadian Environmei		NPRI Inventory
2-butoxyetha	anol Yes		Νο

This product has been classified according to the hazard criteria of the CPR and the MSDS contains all the information required by Canada's Controlled Products Regulation.

Section 16: OTHER INFORMATION

Questions about the information found on this MSDS should be directed to: SUNSHINE MAKERS, INC. – TECHNICAL DEPARTMENT 15922 Pacific Coast Hwy. Huntington Beach, CA 92649 *Phone:* 800/228-0709 [8am-5pm Pacific time, Mon-Fri] *Fax:* 562/592-3830 *Email:* infoweb@simplegreen.com.

National Stock Numbers & Industrial Numbers:

Crystal	Part Number	NSN	Size
	19024	7930-01-418-1151	24 oz. spray (12/cs)
	19128	7930-01-418-1152	1 Gal. (6/cs)
	19005	7930-01-418-1153	5 Gal.
	19055	7930-01-418-1155	55 Gal.
			· ·
Safety Towels	Part Number	Size	
	13353	5 count pouch (50/cs)	
	13351	75-count canister (6/cs)	

**International Part Numbers May Differ.

DISCLAIMER: The information provided with this MSDS is furnished in good faith and without warranty of any kind. Personnel handling this material must make independent determinations of the suitability and completeness of information from all sources to assure proper use and disposal of this material and the safety and health of employees and customers. Sunshine Makers, Inc. assumes no additional liability or responsibility resulting from the use of, or reliance on this information.

THROUGHO	OSS AMERICA AND DUT THE WORLD"			TY DATA S posal information	
ZEP MANUFACTURIN	IG COMPANY	SUPERSEDES:	06/20/94	Date printed	: 06/02
P.O. BOX 2015	20201	ZEP BIG ORANG			
ATLANTA, GEORGIA 1-877-I-BUY-ZEP (1-87		Product No:		ustrial Solvent Degrea	ser
			680 BETWEEN IGENCY: 0 NON OFFI 3 AND HOL 0 LOCAL P 6 8 9 0N EMERGENCY:	RGENCY CONTACTS 18:00 AM - 5:00 PM (EST) ICE HOURS, WEEKENDS IDAYS, PLEASE CALL YOU OISON CONTROL	
· · · · · · · · ·		(770) 922-092 CHEMTREC: (800) 424-93 DISTRICT OF CC	00 TOLL FR	EE - ALL CALLS RECO	RDED
· · · · · · · · · · · · · · · · · · ·	SECTION II - HAZARDOU	(202) 483-76	all CAL	LS RECORDED	~ ~ ~
DESIGNATIONS ** D-LIMONENE ** orange distillat		JINGREDIEN10	(PPM) N/D	. ,	% IN PROI > 90
cyclohexene, 1-methyl-4-(1-methylet		· . ·	NID	CBL SEN	> 90
5989-27-5; RTECS# GW6360000; O		· · · · ·	· ·	· ·	
This product can be an eye irritant. In itching. One of the ingredients in this product	flammation of eye tissue is c				· · · · ·
itching. One of the ingredients in this product population CHRONIC EFFECTS OF OVEREXI Contact, especially if prolonged of rep None of the hazardous ingredients are	iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI	ctions in a small perce ching, or irritation of RC, NTP, & OSHA	entage of the genera		
This product can be an eye irritant. In itching. One of the ingredients in this product population. CHRONIC EFFECTS OF OVEREXI Contact, especially if prolonged of rep None of the hazardous ingredients are	iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI PRIMARY ROUTES OF EN	ctions in a small perce ching, or irritation of RC, NTP, & OSHA VTRY: N/A	entage of the genera		
This product can be an eye irritant. In itching. One of the ingredients in this product population. CHRONIC EFFECTS OF OVEREXE Contact, especially if prolonged of rep None of the hazardous ingredients are EST'D PEL/TLV: Not established HMIS CODES: HEALTH 1; FLAM. FIRST AID PROCEDURES: SKIN: Wash contaminated skin thoro medical attention if irritation persists. EYES: Immediately flush eyes with p physician. INHALE: Move exposed person to fry INGEST: If this product is swallowed	iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI PRIMARY ROUTES OF EN .2; REACT. 0; PERS. PRO bughly with soap or a mild de plenty of water for at least 15 esh air. If irritation persists, f 1, do not induce vomiting. If	ctions in a small perce ching, or irritation of RC, NTP, & OSHA NTRY: N/A TECT. B ; CHRON tergent. Apply a skin minutes. If irritation get medical attention victim is conscious g	entage of the genera the skin. IC HAZ. NO cream with lanolin develops, consult a promptly. ive plenty of water t	l . Get l	
This product can be an eye irritant. In itching. One of the ingredients in this product population. CHRONIC EFFECTS OF OVEREXE Contact, especially if prolonged of rep None of the hazardous ingredients are EST'D PEL/TLV: Not established HMIS CODES: HEALTH 1; FLAM. FIRST AID PROCEDURES: SKIN: Wash contaminated skin thoro medical attention if irritation persists. EYES: Immediately flush eyes with p physician. INHALE: Move exposed person to fre INGEST: If this product is swallowed drink. Get medical attention at once.	iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI PRIMARY ROUTES OF EN .2; REACT. 0; PERS. PRO bughly with soap or a mild de blenty of water for at least 15 esh air. If irritation persists, f I, do not induce vomiting. If SECTION IV - SPECIAL P	ctions in a small perce ching, or irritation of RC, NTP, & OSHA NTRY: N/A TECT. B ; CHRON tergent. Apply a skin minutes. If irritation get medical attention victim is conscious g ROTECTION INFO	entage of the genera the skin. IC HAZ. NO cream with lanolin develops, consult a promptly. ive plenty of water to RMATION	l . Get to	
This product can be an eye irritant. In itching. One of the ingredients in this product population. CHRONIC EFFECTS OF OVEREXE Contact, especially if prolonged of rep None of the hazardous ingredients are EST'D PEL/TLV: Not established HMIS CODES: HEALTH 1; FLAM. FIRST AID PROCEDURES: SKIN: Wash contaminated skin thoro medical attention if irritation persists. EYES: Innmediately flush eyes with p physician. INHALE: Move exposed person to fre INGEST: If this product is swallowed drink. Get medical attention at once. PROTECTIVE CLOTHING: Wear ni in this product. EYE PROTECTION: Wear tight-fittin RESPIRATORY PROTECTION: No VENTILATION: Ventilation should t spaces.	Iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI PRIMARY ROUTES OF EN .2; REACT. 0; PERS. PRO .2; REACT. 0; PERS. PRO bughly with soap or a mild de olenty of water for at least 15 esh air. If irritation persists, f d, do not induce vomiting. If SECTION IV - SPECIAL P itrile gloves or use gloves with ng splash-proof safety glasse o special measures are require be equivalent to outdoors. Us	ching, or irritation of RC, NTP, & OSHA VTRY: N/A TECT. B ; CHRON tergent. Apply a skin minutes. If irritation yet medical attention victim is conscious g ROTECTION INFO th demonstrated resis s especially if contac d. e exhaust fans and op	entage of the general the skin. IC HAZ. NO cream with lanolin. develops, consult a promptly. ive plenty of water to RMATION tance to the ingredic t lenses are worn. pen windows in enc	l Get to ents losed	
This product can be an eye irritant. In itching. One of the ingredients in this product population. CHRONIC EFFECTS OF OVEREXE Contact, especially if prolonged of rep None of the hazardous ingredients are EST'D PEL/TLV: Not established HMIS CODES: HEALTH 1; FLAM. FIRST AID PROCEDURES: SKIN: Wash contaminated skin thoro medical attention if irritation persists. EYES: Immediately flush eyes with p physician. INHALE: Move exposed person to fre INGEST: If this product is swallowed drink. Get medical attention at once. PROTECTIVE CLOTHING: Wear ni in this product. EYE PROTECTION: Wear tight-fittin RESPIRATORY PROTECTION: No VENTILATION: Ventilation should t spaces.	iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI PRIMARY ROUTES OF EN .2; REACT. 0; PERS. PRO bughly with soap or a mild de blenty of water for at least 15 esh air. If irritation persists, a l, do not induce vomiting. If SECTION IV - SPECIAL P itrile gloves or use gloves with ng splash-proof safety glasse o special measures are require be equivalent to outdoors. Us	ching, or irritation of RC, NTP, & OSHA NTRY: N/A TECT. B ; CHRON tergent. Apply a skin minutes. If irritation yet medical attention victim is conscious g ROTECTION INFO th demonstrated resis s especially if contact d. we exhaust fans and op	entage of the general the skin. IC HAZ. NO cream with lanolin develops, consult a promptly. ive plenty of water to RMATION tance to the ingredie t lenses are worn. pen windows in enc	l Get to ents losed	
This product can be an eye irritant. In itching. One of the ingredients in this product population. CHRONIC EFFECTS OF OVEREXE Contact, especially if prolonged of rep None of the hazardous ingredients are EST'D PEL/TLV: Not established HMIS CODES: HEALTH 1; FLAM. FIRST AID PROCEDURES: SKIN: Wash contaminated skin thoro medical attention if irritation persists. EYES: Immediately flush eyes with p physician. INHALE: Move exposed person to fre INGEST: If this product is swallowed drink. Get medical attention at once. PROTECTIVE CLOTHING: Wear ni in this product. EYE PROTECTION: Wear tight-fittin RESPIRATORY PROTECTION: No VENTILATION: Ventilation should t spaces.	iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI PRIMARY ROUTES OF EN .2; REACT. 0; PERS. PRO bughly with soap or a mild de blenty of water for at least 15 esh air. If irritation persists, a l, do not induce vomiting. If SECTION IV - SPECIAL P itrile gloves or use gloves with ng splash-proof safety glasse o special measures are require be equivalent to outdoors. Us	ching, or irritation of RC, NTP, & OSHA NTRY: N/A TECT. B ; CHRON tergent. Apply a skin minutes. If irritation yet medical attention victim is conscious g ROTECTION INFO th demonstrated resis s especially if contact d. we exhaust fans and op	entage of the general the skin. IC HAZ. NO cream with lanolin develops, consult a promptly. ive plenty of water to RMATION tance to the ingredie t lenses are worn. pen windows in enc	l Get to ents losed	
This product can be an eye irritant. In itching. One of the ingredients in this product population. CHRONIC EFFECTS OF OVEREXE Contact, especially if prolonged of rep None of the hazardous ingredients are EST'D PEL/TLV: Not established 	iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI PRIMARY ROUTES OF EN .2; REACT. 0; PERS. PRO .2; REACT. 0; PERS. PRO bughly with soap or a mild de olenty of water for at least 15 esh air. If irritation persists, a l, do not induce vomiting. If SECTION IV - SPECIAL P itrile gloves or use gloves with ng splash-proof safety glasse o special measures are require be equivalent to outdoors. Us SECTION V - PHYSICAL 338-375 N/A N/A EMULSIFIES): 92.7% 6.58 lb/gl	ching, or irritation of RC, NTP, & OSHA NTRY: N/A TECT. B ; CHRON tergent. Apply a skin minutes. If irritation victim is conscious g ROTECTION INFO th demonstrated resis s especially if contact d. e exhaust fans and op DATA SPECIFIC GRA EVAPORATIO pH(CONCENT pH(USE DILUT	entage of the general the skin. IC HAZ. NO cream with lanolin develops, consult a promptly. ive plenty of water to RMATION tance to the ingredie t lenses are worn. pen windows in enc	l Get to ents losed	
This product can be an eye irritant. In itching. One of the ingredients in this product population. CHRONIC EFFECTS OF OVEREXE Contact, especially if prolonged of rep None of the hazardous ingredients are EST'D PEL/TLV: Not established HMIS CODES: HEALTH 1; FLAM. FIRST AID PROCEDURES: SKIN: Wash contaminated skin thoro medical attention if irritation persists. EYES: Immediately flush eyes with p physician. INHALE: Move exposed person to fre INGEST: If this product is swallowed drink. Get medical attention at once. PROTECTIVE CLOTHING: Wear ni in this product. EYE PROTECTION: Wear tight-fittin RESPIRATORY PROTECTION: No VENTILATION: Ventilation should t spaces. BOILING POINT (F): VAPOR PRESSURE(mmHg): VAPOR DENSITY(AIR=1): SOLUBILITY IN WATER: VOC CONTENT (CONCENTRATE)	iflammation of eye tissue is c has caused sensitization read POSURE: peated, may cause redness, it e listed as carcinogens by IAI PRIMARY ROUTES OF EN .2; REACT. 0; PERS. PRO .2; REACT. 0; PERS. PRO bughly with soap or a mild de olenty of water for at least 15 esh air. If irritation persists, a l, do not induce vomiting. If SECTION IV - SPECIAL P itrile gloves or use gloves with ng splash-proof safety glasse o special measures are require be equivalent to outdoors. Us SECTION V - PHYSICAL 338-375 N/A N/A EMULSIFIES): 92.7% 6.58 lb/gl	ching, or irritation of RC, NTP, & OSHA NTRY: N/A TECT. B ; CHRON tergent. Apply a skin minutes. If irritation victim is conscious g ROTECTION INFO th demonstrated resis s especially if contact d. e exhaust fans and op DATA SPECIFIC GRA EVAPORATIO pH(CONCENT pH(USE DILUT	entage of the general the skin. IC HAZ. NO cream with lanolin develops, consult a promptly. ive plenty of water to RMATION tance to the ingredie t lenses are worn. pen windows in enc	l Get to ents losed	

· · · ·		· · · · · · · · · · · · · · · · · · ·		
ep manufacturing con	IPANY MATER	BAL SAPETY DATA SHE	<u>a</u>	PACE
oduct No: 0415		ND EXPLOSION DATA		
ASH POINT(F) (METHOD) USED): 121 (*	TCC)		
LAMMABLE LÍMITS: LEL KTINGUISHING MEDIA: (l and foam.	· · · ·	
ECIAL FIRE FIGHTING: 1			iter.	
NUSUAL FIRE HAZARDS	: None		· . ·	
	SECTION VIL- RE	ACTIVITY DATA	· · ·	
ABILITY: Stable				,
ICOMPATIBLILITY(AVOI		ng acids and/or oxidizers.		
DLYMERIZATION: Will no				
AZARDOUS DECOMPOSI	TION: Carbon dioxide, carb	on monoxide, and other un	identified organic comp	ounds.
	SECTION VIII - SP	PILL AND DISPOSAL PR	OCEDURES	***********
TEPS TO BE TAKEN IN CA	ASE MATERIAL IS RELEA	ASED OR SPILLED:		
mediately eliminate all flam				
g. Zep-0-Zorb). Pick up and a thoroughly with a deterge			r for disposal. Wash	
ASTE DISPOSAL METHO	D:			
quids cannot be sent to land				
quire disposal as a hazardou				
quire treatment to meet the andfill. Consult local, state, a				
CRA HAZ. WASTE NOS.: 1		er disposar method in your	arca.	
		CIAL PRECAUTIONS		
RECAUTIONS TO BE TAK			lafa	
ombustible! Store and use av st "No Smoking" signs acco	rding to local regulations for	r combustible liquids	iuon.	
ep product away from skin		i compusitore inquites.		
ore tightly closed container i		en 40-120 degrees F		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lab	en. SECTION X - REG ME: INDUSTRIAL CLEA ies to larger package sizes o beling in accordance with pa	ULATORY INFORMATION NERS NOI LIQUID KEEP f affected products. For sor	FROM FREEZING ne products, DOT may	· · · · · · · · · · · · · · · · · · ·
PA TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	· · · · · · · · · · · · · · · · · · ·
OT PROPER SHIPPING NA OTE: DOT information appl quire alternate names and lat OT HAZARD CLASS: NA OT I.D. NUMBER: DO PA TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl quire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO PA TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl quire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO PA TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA OTE: DOT information appl quire alternate names and lat OT HAZARD CLASS: NA OT I.D. NUMBER: DO	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl quire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO PA TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl quire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO PA TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO PA TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl uire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl uire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl uire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl uire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl uire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl uire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ics to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl puire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	en. SECTION X - REG ME: INDUSTRIAL CLEA ies to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	
OT PROPER SHIPPING NA DTE: DOT information appl uire alternate names and lat DT HAZARD CLASS: NA DT I.D. NUMBER: DO A TSCA CHEMICAL INV	SECTION X - REG ME: INDUSTRIAL CLEA ies to larger package sizes o beling in accordance with pa DOT PA DT LABEL/PLACARD: ENTORY - ALL INGREDI SUBSTANCE(RQ IN A SI SUBSTANCE(RQ IN A SI	ULATORY INFORMATIC NERS NOI LIQUID KEEI f affected products. For sor ickaging group requirement ACKING GROUP: ENTS ARE LISTED	FROM FREEZING ne products, DOT may s.	

#### ZEP MANUFACTURING COMPANY MATERIAL SAFETY DATA SHEET Page 3 ----

N OT I C E Thank you for your interest in, and use of, Zep products. Zep Manufacturing Co. is pleased to be of service to you by supplying this Material Safety Data Sheet for your files. Zep Manufacturing is concerned for your health and safety. Zep products can be used safely with proper protective equipment and proper handling practices consistent with label instructions and the MSDS. Before using any Zep product, be sure to read the complete label and the Material Safety Data Sheet.

As a further word of caution, Zep wishes to advise that As a nimer word of califon, 2cp wisnes to advise that serious accidents have resulted from the misuse of "emptied" containers. "Empty" containers retain residue (liquid and/or vapor) and can be dangerous. DO NOT pressurize, cut, weld, braze, solder, drill, grind or expose such containers to heat, flame, or other sources of ignition; they may explode or develop harmful vapors and possibly cause injury or death. Clean empty containers by triple rinsing with water or an upper to the sources of the source appropriate solvent. Empty containers must be sent to a drum reconditioner before reuse.

# TERMS AND ABBREVIATIONS LISTED ALPHABETICALLY BY SECTION

#### SECTION II: HAZARDOUS INGREDIENTS

CAR: Carcinogen - A chemical listed by the National Toxicology Program (NTP), the International Agency for Research on Cancer (IARC) or OSHA as a definite or possible human cancer causing

(IARC) or OSHA as a definite or possible numan cancer causing agent. CAS #: Chemical Abstract Services Registry Number - A univers-ally accepted numbering system for chemical substances. CBL: Combustible - At temperatures between 100F and 200F chemical gives off enough vapor to ignite if a source of ignition is present as tested with a closed cup tester. CNS: Central Nervous System depressant which reduces the activity of the being and winch a circle activity.

COR: Corrosive - Causes inteversible injury to living

tissue (e.g. burns). DESIGNATIONS: Chemical and common names of hazardous

EIR: Eye Irritant Only - Causes reversible reddening and/or

EIR: Eye Initant Only - Causes reversible reddening and/or inflammation of eye tissues. EXPOSURE LIMITS: The time weighted average (TWA) airborne concentration at which most workers can be exposed without any expected adverse effects. Primary sources include ACGIH TLVs, and OSHA PELs (TWA, STEL and ceiling limits). ACGIH: American Conference of Governmental Industrial

ACGIH: American Conference of Governmental Industrial Hygienists. CEILING: The concentration that should not be exceeded in the workplace during any part of the working exposure. OSHA: Occupational Safety and Health Administration PEL: Permissible Exposure Limit - A set of time weighted average exposure values, established by OSHA, for a normal 8-hour day and a 40-hour work week. PPM: Parts per million - unit of measure for exposure limits. (S) SKIN: Skin contact with substance can contribute to overall exposure.

overall exposure.

overall exposure. STEL: Short Term Exposure Limit - Maximum concentration for a continuous 15-minute exposure period. TLV: Threshold Limit Value - A set of time weighted average exposure limits, established by the ACOIH, for a normal 8-hour day and a 40-hour work week. FBL: Flammable - At temperatures under 100F, chemical gives off

enough vapor to ignite if a source of ignition is present as tested with a closed cup tester. HAZARDOUS INGREDIENTS: Chemical substances determined to be potential health or physical hazards based on the criteria established in the OSHA Hazard Communication Standard - 29 CFR 1910.1200

HTX: Highly toxic - the probable lethal dose for a 70kg (150 lb.) man and may be approximated as less than 6 teaspoons (2 tablespoons).

IRR: Irritant - Causes reversible effects in living tissues

(e.g. inflammation) - primarily skin and eyes. N/A: Not Applicable - Category is not appropriate for this product. N/D: Not Determined - Insufficient information to make a

determination for this item. RTECS#: Registry of Toxic Effects of Chemical Substances - an unreviewed listing of published toxicology data on chemical substances.

SARA: Superfund Amendment and Reauthorization Act - Section 313 designates chemicals for possible reporting for the Toxics Release inventory. SEN: Sensitizer - Causes allergic reaction after repeated

exposure. TOX: Toxic - The probable lethal dose for a 70 kg (150 lb.) man is one ounce (2 tablespoons) or more.

(rev. 1/98)

SECTION III: HEALTH HAZARD DATA ACUTE EFFECT: An adverse effect on the human body from a single exposure with symptoms developing almost immediately after exposure or within a relatively short time. CHRONIC EFFECT: Adverse effects that are most likely to occur from repeated exposure over a long period of time. EST D PEL/TLV: This estimated, time-weighted average, exposure limit, developed by using a formula provided by the ACGIH, pertains to airborne concentrations from the product as a whole. This value should serve as guide for moviding safe pertains to airborne concentrations from the product as a whole. This value should serve as guide for providing safe workplace conditions to nearly all workers. HMIS CODES: Hazardous Material Identification System - a rating system developed by the National Paint and Coating Association for estimating the hazard potential of a chemical under normal workplace conditions. These risk estimates are indicated by a (Health/Flammability/Reactivity) ranging from a low of zero to a high of 4. The presence of a chronic hazard is indicated with a yes. Consult HMIS training guides for Personal Protection letter codes which indicate necessary protective equipment. PRIMARY ROUTE OF ENTRY: The way one or more hazardous ingredients may enter the body and cause a generalized-systemic ingredients may enter the body and cause a generalized-syst or specific-organ toxic effect.
 ING: Ingestion - A primary route of exposure through swallowing of material
 INH: Inhalation - A primary route of exposure through breathing of vapors.
 SKIN: A primary route of exposure through contact with the alternative set of exposure through breathing contact with the set of exposure through contac

the skin.

SECTION IV: SPECIAL PROTECTION INFORMATION Where respiratory protection is recommended, use only MSHA and NIOSH approved respirators and dust masks. MSHA: Mine Safety and Health Administration

NIOSH: National Institute for Occupational Safety and Health

SECTION V: PHYSICAL DATA EVAPORATION RATE: Refers to the rate of change from the liquid state to the vapor state at ambient temperature and pressure in comparison to a given substance (e.g. water). pH; A value representing the acidity or alkalimity of an aqueous solution (Acidic pH = 1; Neutral pH = 7; Alkaline pH = 14) VOC CONTENT: The percentage or amount in pounds per gallon of the product that is regulated as a Volatile Organic Compound under the Clean Air Act of 1990 and various state pursidictions jurisdictions. SOLUBILITY IN WATER: A description of the ability of the

product to dissolve in water.

SECTION VII: REACTIVITY DATA HAZARDOUS DECOMPOSITION: Breakdown products expected to be produced upon product decomposition by extreme heat or fire. INCOMPATIBILITY: Material contact by extreme heat and the conditions to avoid to prevent hazardous reactions. POLYMERIZATION: Indicates the tendency of the product's molecules to combine with themselves in a chemical reaction, spontaneously and dangerously decompose.

SECTION VIII: SPILL AND DISPOSAL PROCEDURES RCRA WASTE NOS: RCRA (Resource Conservation and Recovery Act) waste codes (40 CFR 261) applicable to the disposal of spilled or unusable product from the original container.

SECTION X: TRANSPORTATION DATA CWA: Clean Water Act- Federal Law which regulates chemical releases to bodies of water. RQ: Reportable Quantity - The amount of the specific ingredient that, when spilled to the ground and can enter a storm sewer or natural watershed, must be reported to the National Response Center and other completion of the specific and the specific of the specific and the spec

Center, and other regulatory agencies. TSCA: Toxic Substances Control Act - a federal law requiring all commercial chemical substances to appear on an inventory maintained by the EPA.

#### DISCLAIMER

All statements, technical information and recommendations contained herein are based on available scientific tests or data which we believe to be reliable. The accuracy and completeness of such data are not warranted or guaranteed. We cannot anticipate all conditions under which this information cannot and cipate all conditions under which this information and our products, or the products of other manufacturers in combination with our products, may be used. Zep assumes no liability or responsibility for loss or damage resulting from the improper use or handling of our products, from incompatible product combinations, or from the failure to follow instructions, warnings, and advisories in the products label and Material Safety Data Sheet.

SECTION III: HEALTH HAZARD DATA

# **SECTION 1 – CHEMICAL PRODUCT AND COMPANY IDENTIFICATION**

MSDS Name: Methanol MSDS Preparation Date: 06/19/2009 Synonyms or Generic ID for Methanol: Carbinol; Methyl alcohol; Methyl hydroxide: Monohydroxymethane; Wood alcohol; Wood naptha; Wood spirits; Columbian spirits; Methanol. Chemical Family: Methanol Family Formula: CH₃OH Molecular Weight: N/A PIN (UN#/ NA#): UN1230 Company Identification: Microbial ID. 125 Sandy Drive Newark, DE 19713 For Information, call: (800)276-8068, (302)737-4297 For Domestic CHEMTREC assistance, call: 800-424-9300

For International CHEMTREC assistance, call: 703-527-3887

# SECTION 2 – COMPOSITION, INFORMATION ON INGREDIENTS

67-56-1	Methanol	<99%	200-659-6	Irritant,
				Flammable

NFPA Rating: (estimated) Health: 1; Flammability: 3; Instability: 0

State: Liquid	Appearance: colorless		Odor: Alcohol-like, weak odor
Boiling Point:	pH: Not available		Specific Gravity:
64.7°C@760mmHg			7910g/cm3@20°C
Vapor Pressure (mm Hg): 128mmH	Ig @20°C	Vapor Density (A	AIR=1): 1.11
Flash Point: 12°C		Solubility in Wat	ter: miscible

# **SECTION 3 – HAZARDS IDENTIFICATION**

Appearance: Colorless liquid, Flash Point: 12°C, 53.6°F.

**Danger! Poison!** May be fatal or cause blindness if swallowed. Vapor harmful. **Flammable liquid and vapor.** Harmful if swallowed, inhaled, or absorbed through the skin. Causes eye, skin, and respiratory tract irritation. May cause central nervous system depression. Cannot be made non-poisonous. **Target Organs:** Eyes, nervous system, optic nerve.

#### **Potential Health Effects**

**Eye:** May cause painful sensitization to light. Methanol is a mild to moderate eye irritant. Inhalation, ingestion or skin absorption of methanol can cause significant disturbance in vision, including blindness. **Skin:** Causes moderate skin irritation. May be absorbed through the skin in harmful amounts. Prolonged and or repeated contact may cause defatting of skin and dermatitis. Methanol can be absorbed through the skin, producing systemic effects that include visual disturbances.

**Ingestion:** May be fatal or cause blindness if swallowed. Aspiration hazard. Cannot be made nonpoisonous. May cause gastrointestinal irritation with nausea, vomiting and diarrhea. May cause systematic toxicity with acidosis. May cause central nervous system depression, characterized by excitement, followed by headache, dizziness, drowsiness, and nausea. Advanced stages may cause collapse, unconsciousness, coma, and possible death due to failed respiratory failure. May cause cardiopulmonary system effects.

1

#### **MSDS Potassium Hydroxide Solution**

**Inhalation:** Methanol is toxic and can very readily form extremely high vapor concentrations at room temperature. Inhalation is the most common route of occupational exposure. At first, methanol causes CNS depression with nausea, headache, vomiting, dizziness and incoordination. A time period with no obvious symptoms follows (typically 8-24 hrs). This latent period is followed by metabolic acidosis and severe visual effects which may include reduced reactivity and/or increased sensitivity to light, blurred, doubl and/or snowy vision, and blindness. Depending on the severity of exposure and the promptness of treatment, survivors may recover completely or may have permanent blindness, vision disturbances and/or nervous system effects.

**Chronic:** Prolonged or repeated skin contact may cause dermatitis. Chronic exposure may cause effects similar to those of acute exposure. Methanol is only very slowly eliminated from the body. Because of this slow elimination, methanol should be regarded as a cumulative poison. Though a single exposure may cause no effect, daily exposures may result in the accumulation of a harmful amount. Methanol has produced fetotoxicity in rats and teratogenicity in mice exposed by inhalation to high concentrations that did not produce significant maternal toxicity.

# **SECTION 4 – FIRST AID MEASURES**

**Eyes:** In case of contact, immediately flush eyes with plenty of water for a t least 15 minutes. Get medical aid.

**Skin:** In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical aid immediately. Wash clothing before reuse. **Ingestion:** Potential for aspiration if swallowed. Get medical aid immediately. Do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If vomiting occurs naturally, have victim lean forward.

**Inhalation:** If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.

Notes to Physician: Effects may be delayed.

Antidote: Ethanol may inhibit methanol metabolism.

# **SECTION 5 – FIRE FIGHTING MEASURES**

**General Information:** Ethanol may inhibit methanol metabolism. As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion. Use water spray to keep fire-exposed containers cool. Water may be ineffective. Material is lighter than water and a fire may be spread by the use of water. Vapors are heavier than air and may travel to a source of ignition and flash back. Vapors can spread along the ground and collect in low or confined areas. **Extinguishing Media:** For small fires, use dry chemical, carbon dioxide, water spray or alcohol-resistant foam. Water may be ineffective. For large fires, use water spray, fog or alcohol-resistant foam. Do NOT use straight streams of water.

Flash Point: 12 deg C ( 53.60 deg F)

Autoignition Temperature: 455 deg C ( 851.00 deg F)

Explosion Limits, Lower: 6.0 vol %

Upper: 31.00 vol %

NFPA Rating: (estimated) Health: 1; Flammability: 3; Instability: 0

# SECTION 6 – ACCIDENTAL RELEASE MEASURES

**General Information:** Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Use water spray to disperse the gas/vapor. Remove all sources of ignition. Absorb spill using an absorbent, non-combustible material such as earth, sand, or vermiculite. Do not use combustible materials such as sawdust. Use a spark-proof tool. Provide ventilation. A vapor suppressing foam may be used to reduce vapors. Water spray may reduce vapor but may not prevent ignition in closed spaces.

**MSDS Potassium Hydroxide Solution** 

# SECTION 7-HANDLING AND STORAGE

**Handling:** Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Ground and bond containers when transferring material. Use spark-proof tools and explosion proof equipment. Avoid contact with eyes, skin, and clothing. Empty containers retain product residue, (liquid and/or vapor), and can be dangerous. Keep container tightly closed. Do not ingest or inhale. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames. Use only with adequate ventilation. Keep away from heat, sparks and flame. Avoid use in confined spaces. **Storage:** Keep away from heat, sparks, and flame. Keep away from sources of ignition. Store in a cool, dry, well-ventilated area away from incompatible substances. Flammables-area. Keep containers tightly closed.

# **SECTION 8 – EXPOSURE CONTROL/ PERSONAL PROTECTION**

**Engineering Controls:** Use explosion-proof ventilation equipment. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits.

Chemical Name	ACGIH	NIOSH	OSHA – Final PELs
Methanol	200 ppm TWA; 250 ppm STEL; Skin - potential significant contribution to overall exposure by the cutaneous route	200 ppm TWA; 260 mg/m3 TWA 6000 ppm IDLH	200 ppm TWA; 260 mg/m3 TWA

# OSHA Vacated PELs: Methanol: 200 ppm TWA; 260 mg/m3 TWA

# **Personal Protective Equipment**

Eyes: Wear chemical splash goggles.

Skin: Wear butyl rubber gloves, apron, and/or clothing.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

**Respirators:** Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

# **SECTION 9 – PHYSICAL AND CHEMICAL PROPERTIES**

Physical State: Clear liquid Appearance: clear, colorless - APHA: 10 max Odor: alcohol-like - weak odor pH: Not available. Vapor Pressure: 128 mm Hg @ 20 deg C Vapor Density: 1.11 (Air=1) Evaporation Rate:5.2 (Ether=1) Viscosity: 0.55 cP 20 deg C Boiling Point: 64.7 deg C @ 760 mmHg Freezing/Melting Point:-98 deg C Decomposition Temperature:Not available. Solubility: miscible Specific Gravity/Density:.7910 g/cm3 @ 20°C Molecular Formula:CH4O Molecular Weight:32.04

**Microbial ID Chemicals** 

# SECTON 10 - STABILITY AND REACTIVITY

Chemical Stability: Stable under normal temperatures and pressures.

Conditions to Avoid: High temperatures, ignition sources, confined spaces.

**Incompatibilities with Other Materials:** Oxidizing agents, reducing agents, acids, alkali metals, potassium, sodium, metals as powders (e.g. hafnium, raney nickel), acid anhydrides, acid chlorides, powdered aluminum, powdered magnesium.

Hazardous Decomposition Products: Carbon monoxide, irritating and toxic fumes and gases, carbon dioxide, formaldehyde.

Hazardous Polymerization: Will not occur.

# **SECTION 11 – TOXICOLOGICAL INFORMATION**

**RTECS#:** CAS# 67-56-1: PC1400000 LD50/LC50:

CAS# 67-56-1:

Draize test, rabbit, eye: 40 mg Moderate; Draize test, rabbit, eye: 100 mg/24H Moderate; Draize test, rabbit, skin: 20 mg/24H Moderate; Inhalation, rabbit: LC50 = 81000 mg/m3/14H; Inhalation, rat: LC50 = 64000 ppm/4H; Oral, mouse: LD50 = 7300 mg/kg; Oral, rabbit: LD50 = 14200 mg/kg; Oral, rat: LD50 = 5600 mg/kg; Skin, rabbit: LD50 = 15800 mg/kg;

Human LDLo Oral: 143 mg/kg; Human LDLo Oral: 428 mg/kg; Human TCLo Inhalation; 300 ppm caused visual field changes & headache; Monkey LDLo Skin: 393 mg/kg. Methanol is significantly less toxic to most experimental animals than humans, because most animal species metabolize methanol differently. Non-primate species do not ordinarily show symptoms of metabolic acidosis or the visual effects which have been observed in primates and humans.

#### Carcinogenicity:

CAS# 67-56-1: Not listed by ACGIH, IARC, NTP, or CA Prop 65.

**Epidemiology:** No information found

**Teratogenicity:** There is no human information available. Methanol is considered to be a potential developmental hazard based on animal data. In animal experiments, methanol has caused fetotoxic or teratogenic effects without maternal toxicity.

Reproductive Effects: See actual entry in RTECS for complete information.

Mutagenicity: See actual entry in RTECS for complete information.

Neurotoxicity: ACGIH cites neuropathy, vision and CNS under TLV basis.

# SECTION 12 – ECOLOGICAL INFORMATION

**Ecotoxicity:** Fish: Fathead Minnow: 29.4 g/L; 96 Hr; LC50 (unspecified)Fish: Goldfish: 250 ppm; 11 Hr; resulted in deathFish: Rainbow trout: 8000 mg/L; 48 Hr; LC50 (unspecified)Fish: Rainbow trout: LC50 = 13-68 mg/L; 96 Hr.; 12 degrees CFish: Fathead Minnow: LC50 = 29400 mg/L; 96 Hr.; 25 degrees C, pH 7.63Fish: Rainbow trout: LC50 = 8000 mg/L; 48 Hr.; UnspecifiedBacteria: Phytobacterium phosphoreum: EC50 = 51,000-320,000 mg/L; 30 minutes; Microtox test No data available.

**Environmental:** Dangerous to aquatic life in high concentrations. Aquatic toxicity rating: TLm 96>1000 ppm. May be dangerous if it enters water intakes. Methyl alcohol is expected to biodegrade in soil and water very rapidly. This product will show high soil mobility and will be degraded from the ambient atmosphere by the reaction with photochemically produced hyroxyl radicals with an estimated half-life of 17.8 days. Bioconcentration factor for fish (golden ide) < 10. Based on a log Kow of -0.77, the BCF value for methanol can be estimated to be 0.2.

**Physical:** No information available.

**Other:** No information available.

#### **Microbial ID Chemicals**

# **SECTION 13 – DISPOSAL CONSIDERATIONS**

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

#### **RCRA U-Series:**

CAS# 67-56-1: waste number U154 (Ignitable waste).

# SECTION 14 – TRANSPORT INFORMATION

	US DOT	CANADA TDG
Shipping Name:	Methanol	Methanol
Hazard Class:	3	3
UN Number:	UN1230	UN1230
Packing Group:	II	II
Additional Information		Flash Point 12°C

# **SECTION 15 – REGULATORY INFORMATION US FEDERAL**

#### **TSCA**

CAS# 67-56-1 is listed on the TSCA inventory. Health & Safety Reporting List None of the chemicals are on the Health & Safety Reporting List. **Chemical Test Rules** None of the chemicals in this product are under a Chemical Test Rule. Section 12b None of the chemicals are listed under TSCA Section 12b. **TSCA Significant New Use Rule** None of the chemicals in this material have a SNUR under TSCA. **CERCLA Hazardous Substances and corresponding RQs** CAS# 67-56-1: 5000 lb final RQ; 2270 kg final RQ SARA Section 302 Extremely Hazardous Substances None of the chemicals in this product have a TPQ. **SARA Codes** CAS # 67-56-1: immediate, fire. Section 313 This material contains Methanol (CAS# 67-56-1, > 99%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373. **Clean Air Act:** CAS# 67-56-1 is listed as a hazardous air pollutant (HAP). This material does not contain any Class 1 Ozone depletors. This material does not contain any Class 2 Ozone depletors. **Clean Water Act:** None of the chemicals in this product are listed as Hazardous Substances under the CWA. None of the chemicals in this product are listed as Priority Pollutants under the CWA. None of the chemicals in this product are listed as Toxic Pollutants under the CWA. **OSHA:** None of the chemicals in this product are considered highly hazardous by OSHA. STATE CAS# 67-56-1 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts. 5

**Microbial ID Chemicals** 

# California Prop 65

California No Significant Risk Level: None of the chemicals in this product are listed.

# **European/International Regulations**

European Labeling in Accordance with EC Directives Hazard Symbols:

#### T F Risk Phrases:

R 11 Highly flammable.
R 23/24/25 Toxic by inhalation, in contact with skin and if swallowed.
R 39/23/24/25 Toxic : danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed.

#### Safety Phrases:

S 16 Keep away from sources of ignition - No smoking.
S 36/37 Wear suitable protective clothing and gloves.
S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).
S 7 Keep container tightly closed.

#### WGK (Water Danger/Protection)

CAS# 67-56-1: 1

#### Canada - DSL/NDSL

CAS# 67-56-1 is listed on Canada's DSL List.

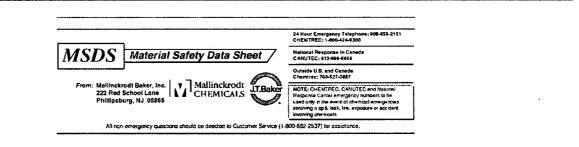
#### **Canada - WHMIS**

This product has a WHMIS classification of B2, D1B, D2B.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations.

#### **Canadian Ingredient Disclosure List**

CAS# 67-56-1 is listed on the Canadian Ingredient Disclosure List.


# **SECTION 16 – Other Information**

This Material Safety Data Sheet has been prepared in accordance with 29 CFR 1910.1200 and contains information believed to be accurate and complete at the date of preparation. The statements contained herein are offered for informational purposes only and are based upon technical data. MIDI Inc. believes them to be accurate but does not purport to be all-inclusive. The above-stated product is intended for use only by persons having the necessary technical skills and facilities for handling the product at their discretion and risk. Since conditions and manner of use are outside our control, we (MIDI Inc.) make no warranty of merchantability or any such warranty, express or implied with respect to information and we assume no liability resulting from the above product or its use. Users should make their own investigations to determine suitability of information and product for their particular purposes.

# **Microbial ID Chemicals**

6

MSDS Number: E5125 * * * * * Effective Date: 09/16/09 * * * * * Supercedes: 07/30/07



# **ETHYLENE GLYCOL**

#### **1. Product Identification**

ETHYLENE GLYCOL

Synonyms: 1,2-Ethanediol; glycol; 1,2-Dihydroxyethane: Ethylene Alcohol; Ethulene Dihydrate CAS No.: 107-21-1 Molecular Weight: 62.07 Chemical Formula: CH2OHCH2OH Product Codes: J.T. Baker: 5387, 5845, 9140, 9298, 9300, 9346, 9356, L715 Mallinckrodt: 5001, 5037

#### 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Ethylene Glycol	107-21-1	99 - 100%	Yes

#### 3. Hazards Identification

#### **Emergency Overview**

WARNING! HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF INHALED OR ABSORBED THROUGH SKIN. MAY CAUSE ALLERGIC SKIN REACTION. MAY CAUSE IRRITATION TO SKIN, EYES, AND RESPIRATORY TRACT. AFFECTS CENTRAL NERVOUS SYSTEM.

**SAF-T-DATA**^(tm) Ratings (Provided here for your convenience)

Health Rating: 2 - Moderate (Life) Flammability Rating: 1 - Slight Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe (Life) Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: Green (General Storage)

#### Potential Health Effects

#### Inhalation

Vapor inhalation is generally not a problem unless heated or misted. Exposure to vapors over an extended time period has caused throat irritation and headache. May cause nausea, vomiting, dizziness and drowsiness. Pulmonary edema and central nervous system depression may also develop. When heated or misted, has produced rapid, involuntary eye movement and coma.

Ingestion: Initial symptoms in massive dosage parallel alcohol intoxication, progressing to CNS depression, vomiting, headache, rapid respiratory and heart rate, lowered

blood pressure, stupor, collapse, and unconsciousness with convulsions. Death from respiratory arrest or cardiovascular collapse may follow. Lethal dose in humans: 100 ml (3-4 ounces).

Skin Contact:

Minor skin irritation and penetration may occur.

Eye Contact:

Splashes may cause irritation, pain, eye damage.

Chronic Exposure:

Repeated small exposures by any route can cause severe kidney problems. Brain damage may also occur. Skin allergy can develop. May damage the developing fetus.

Aggravation of Pre-existing Conditions:

Persons with pre-existing skin disorders, eye problems, or impaired liver, kidney, or respiratory function may be more susceptible to the effects of this substance.

# 4. First Aid Measures

ETHYLENE GLYCOL

#### Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician.

Ingestion: Induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. Get medical attention. Skin Contact:

Remove any contaminated clothing. Wash skin with soap and water for at least 15 minutes. Get medical attention if irritation develops or persists. Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

#### Note to Physician:

Give sodium bicarbonate intravenously to treat acidosis. Urinalysis may show low specific gravity, proteinuria, pyuria, cylindruria, hematuria, calcium oxide, and hippuric acid crystals. Ethanol can be used in antidotal treatment but monitor blood glucose when administering ethanol because it can cause hypoglycemia. Consider infusion of a diuretic such as mannitol to help prevent or control brain edema and hemodialysis to remove ethylene glycol from circulation.

#### 5. Fire Fighting Measures

#### Fire:

Flash point: 111C (232F) CC Autoignition temperature: 398C (748F) Flammable limits in air % by volume: lel: 3.2; uel: 15.3

Slight to moderate fire hazard when exposed to heat or flame.

Explosion: Above flash point, vapor-air mixtures are explosive within flammable limits noted above. Containers may explode when involved in a fire.

Fire Extinguishing Media:

Dry chemical, foam or carbon dioxide. Water or foam may cause frothing. Water spray may be used to extinguish surrounding fire and cool exposed containers. Water spray will also reduce fume and irritant gases.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Toxic gases and vapors may be released if involved in a fire.

#### 6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

# 7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Separate from acids and oxidizing materials. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

# 8. Exposure Controls/Personal Protection

Airborne Exposure Limits: Ethylene Glycol [107-21-1]:

-ACGIH Short-Term Exposure Limit (STEL):

100 mg/m3 Ceiling (aerosol only) Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded, a half-face respirator with an organic vapor cartridge and particulate filter (NIOSH type P95 or R95 filter) may be worn for up to ten times the exposure limit or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. A full-face piece respirator with an organic vapor cartridge and particulate filter (NIOSH P100 or R100 filter) may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. A full-face piece respirator supplier by the appropriate regulatory agency or respirator supplier, whichever is filters are not recommended for this material. For emergencies or instances where the exposure levels are not known, use a full-face piece positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

Skin Protection:

Wear protective gloves and clean body-covering clothing.

Eye Protection:

Use chemical safety goggles. Maintain eye wash fountain and quick-drench facilities in work area.

#### 9. Physical and Chemical Properties

Appearance: Clear oily liquid Odor: Odorless Solubility: Miscible in water. Specific Gravity: 1.1 @20C/4C pH: No information found. % Volatiles by volume @ 21C (70F): 100 **Boiling Point:** 197.6C (388F) **Melting Point:** -13C (9F) Vapor Density (Air=1): 2.14 Vapor Pressure (mm Hg): 0.06 @ 20C (68F) Evaporation Rate (BuAc=1): No information found.

#### 10. Stability and Reactivity

#### Stability:

Stable under ordinary conditions of use and storage. **Hazardous Decomposition Products:** Carbon dioxide and carbon monoxide may form when heated to decomposition. May produce acrid smoke and irritating fumes when heated to decomposition. **Hazardous Polymerization:** Will not occur. Incompatibilities: Strong oxidizing agents. Reacts violently with chlorosulfonic acid, oleum, sulfuric acid, perchloric acid. Causes ignition at room temperature with chromium trioxide, potassium permanganate and sodium peroxide; causes ignition at 212F(100C) with ammonium dichromate, silver chlorate, sodium chloride and uranyl nitrate **Conditions to Avoid:** Heat, flames, ignition sources, water (absorbs readily) and incompatibles

# **11. Toxicological Information**

**Toxicological Data:** Oral rat LD50: 4700 mg/kg: skin rabbit LD50: 9530 mg/kg. Irritation - skin rabbit: 555 mg(open), mild; eye rabbit: 500mg/24H, mild. Investigated as a tumorigen, mutagen, reproductive effector. **Reproductive Toxicity:** Has shown teratogenic effects in laboratory animals. -----\Cancer Lists\--------NTP Carcinogen---Ingredient Known IARC Category Anticipated ----Ethylene Glycol (107-21-1) No No

#### **12. Ecological Information**

#### **Environmental Fate:**

When released into the soil, this material is expected to readily biodegrade. When released into the soil, this material is expected to leach into groundwater. When released into the soil, this material is not expected to evaporate significantly. When released into water, this material is expected to readily biodegrade. When released into the water, this material is expected to have a half-life between 1 and 10 days. This material is not expected to significantly bioaccumulate. This material has a log octanol-water partition coefficient of less than 3.0. When released into water, this material is not expected to evaporate significantly. When released into the air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to have a half-life between 1 and 10 days

None

#### **Environmental Toxicity:**

The LC50/96-hour values for fish are over 100 mg/l.

#### 13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

# **14. Transport Information**

Not regulated

# **15. Regulatory Information**

\Chemical Inventory Status - Part 1\ Ingredient	TSCA	EC	Japan	Australia
Ethylene Glycol (107-21-1)				Yes
Ingredient		DSL		Phil.
Ethylene Glycol (107-21-1)			No	
Ingredient RQ	A 302- TPQ	Li:	SAR st Che	A 313 mical Catg
			s	
\Federal, State & International Regulat.		-RCRA	2\ T 3 8	SCA-
			 N	
emical Weapons Convention: No TSCA 12(b):		<b>6</b> 063	: No	

Chemical Weapons Convention:NoTSCA 12 (b):NoCDTA:NoSARA 311/312:Acute:YesChronic:YesFire:NoPressure:NoReactivity:No(Pure / Liquid)

Australian Hazchem Code: None allocated. Poison Schedule: None allocated. WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# 16. Other Information

NFPA Ratings: Health: 1 Flammability: 1 Reactivity: 0 Label Hazard Warning: WARNING! HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF INHALED OR ABSORBED THROUGH SKIN, MAY CAUSE ALLERGIC SKIN REACTION. MAY CAUSE IRRITATION TO SKIN, EYES, AND RESPIRATORY TRACT. AFFECTS CENTRAL NERVOUS SYSTEM. Label Precautions: Do not breathe vapor or mist. Use only with adequate ventilation. Keep container closed. Avoid contact with eyes, skin and clothing. Wash thoroughly after handling. Label First Aid: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush skin or eyes with plenty of water for at least 15 minutes. Call a physician if irritation develops or persists. If swallowed, give water or milk to drink and induce vomiting. Never give anything by mouth to an unconscious person. In all cases call a physician. **Product Use:** Laboratory Reagent. **Revision Information:** No Changes. Disclaimer: Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precaution ary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION. ****************** Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

· · · · · · ·

* * * * Effective Date: 07/09/08 * * * * * Supercedes: 05/19/08		•
	24 Hour Emergency Telephone; 908-859-2151 CKENTREC: 1-800-424-8300	<b>-</b> .
MSDS Material Safety Data Sheet	National Response in Canoda CANUTEC: 613-006-6655	-
	Outside U.S. and Canada Chemirec: 703-527-3887	
From: Mallinekrodt Beker, Inc. Mallinekrodt JT.Baker 222 Rod School Lane Phillipsburg, NJ 08865	NOTE: CHENTREC, CAPUTEC and Natural Response Center emergency numbers to be used only in the event of chemical emergencies involving a spit, leak, line, exposure or socident involving chemicals.	
All non-omergancy quoshans should be directed to Customer Service (1-6	900-692-2537) for assistance.	-

# **PROPYLENE GLYCOL**

# 1. Product Identification

PROPYLENE GLYCOL

<u>,</u>-.

> Synonyms: 1,2-propanediol; 1,2-dihdroxypropane; methyl glycol; methylethylene glycol CAS No.: 57-55-6 Molecular Weight: 76.09 Chemical Formula: CH3CHOHCH2OH **Product Codes:** J.T. Baker: 9402, 9403, U510 Mallinckrodt: 1925, 6263

# 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Propylene Glycol	57-55-6	99 - 100%	Yes

#### 3. Hazards Identification

**Emergency Overview** CAUTION! MAY CAUSE IRRITATION TO SKIN AND EYES.

**SAF-T-DATA**^(tm) Ratings (Provided here for your convenience)

Health Rating: 2 - Moderate (Life) Flammability Rating: 1 - Slight Reactivity Rating: 1 - Slight Contact Rating: 1 - Slight Lab Protective Equip: GOGGLES; LAB COAT; VENT HOOD; PROPER GLOVES Storage Color Code: Green (General Storage)

#### **Potential Health Effects**

#### Inhalation:

No adverse health effects via inhalation. Ingestion: Relatively non-toxic. Ingestion of sizable amount (over 100ml) may cause some gastrointestinal upset and temporary central nervous system depression. Effects appear more severe in individuals with kidney problems. Skin Contact: Mild irritant and defatting agent, especially on prolonged contact. **Eve Contact:** May cause transitory stinging and tearing. Chronic Exposure: Lactic acidosis, stupor and seizures have been reported following chronic ingestion. Aggravation of Pre-existing Conditions: Kidney disorders.

# 4. First Aid Measures

http://www.jtbaker.com/msds/englishhtml/p6928.htm

#### Inhalation:

Remove to fresh air. Not expected to require first aid measures.

Ingestion: Not expected to require first aid measures. Give several glasses of water to drink to dilute. If large amounts were swallowed, get medical advice.

Skin Contact: Remove any contaminated clothing. Wash skin with soap and water for at least 15 minutes. Get medical attention if irritation develops or persists.

Eye Contact: In case of contact, immediately flush eyes with plenty of water for at least 15 minutes, lifting upper and lower eyelids occasionally. Call a physician if irritation

persists.

Note to Physician:

In case of ingestion, monitor for acidosis and central nervous system changes. Exposed persons with previous kidney dysfunction may require special treatment.

#### 5. Fire Fighting Measures

#### Fire:

Flash point: 99C (210F) CC Autoignition temperature: 371C (700F) Flammable limits in air % by volume: lel: 2.6: uel: 12.5 Material can support combustion. **Explosion:** Containers may explode in heat or fire. **Fire Extinguishing Media:** Dry chemical, foam, water or carbon dioxide. **Special Information:** In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Move exposed containers from fire area, if it can be done without risk. Use water to keep fire-exposed containers cool.

# 6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer!

#### 7. Handling and Storage

Protect container from physical damage. Store in a cool, dry, ventilated area away from sources of heat, moisture, and incompatible substances. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid): observe all warnings and precautions listed for the product.

# 8. Exposure Controls/Personal Protection

**Airborne Exposure Limits:** 

AIHA Workplace Environmental Exposure Level (WEEL): TWA = 10mg/m3.

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details. **Personal Respirators (NIOSH Approved):** 

If the exposure limit is exceeded, a half-face respirator with an organic vapor cartridge and particulate filter (NIOSH type P95 or R95 filter) may be worn for up to ten times the exposure limit or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. A full-face piece respirator with an organic vapor cartridge and particulate filter (NIOSH P100 or R100 filter) may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or R95 filter) may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or R95 filter) may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or R95 filter) have been up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or R95 filter). For emergencies or instances where the exposure levels are not known, use a full-face piece positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

Skin Protection:

Wear protective gloves and clean body-covering clothing.

Eye Protection:

Use chemical safety goggles. Maintain eye wash fountain and quick-drench facilities in work area.

#### 9. Physical and Chemical Properties

Appearance: Clear oily liquid. Odor: Odorless. Solubility: Miscible in water. Specific Gravity: 1.0361 @ 20C/4C

http://www.jtbaker.com/msds/englishhtml/p6928.htm

·• ·

```
pH:
No information found.
% Volatiles by volume @ 21C (70F):
No information found.
Boiling Point:
188.2C (370F)
Melting Point:
-59C (-74F)
Vapor Density (Air=1):
2.6
Vapor Pressure (mm Hg):
0.129 @ 25C (77F)
Evaporation Rate (BuAc=1):
0.01
```

## 10. Stability and Reactivity

Stability: Stable under ordinary conditions of use and storage. Hazardous Decomposition Products: Carbon dioxide and carbon monoxide may form when heated to decomposition. Aldehydes or lactic, pyruvic or acetic acids may also be formed. Hazardous Polymerization: Will not occur. Incompatibilities: Strong oxidizing agents. Conditions to Avoid: Heat, flames, ignition sources and incompatibles.

# **11. Toxicological Information**

Oral rat LD50: 20g/kg. Skin rabbit LD50: 20.8g/kg. Irritation: Eye rabbit/Draize, 500 mg/24H mild. Investigated as a mutagen and reproductive effector.

\Cancer Lists\					
	NTP	Carcinogen			
Ingredient	Known	Anticipated	IARC Category		
Propylene Glycol (57-55-6)	No	No	None		

# 12. Ecological Information

#### **Environmental Fate:**

When released into the soil, this material is expected to readily biodegrade. When released into the soil, this material is expected to leach into groundwater. When released into the air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to have a half-life between 1 and 10 days. **Environmental Toxicity:** No information found.

#### 13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

#### **14. Transport Information**

Not regulated.

# **15. Regulatory Information**

\Chemical Inventory Status - Part 1\ Ingredient	TSCA			Australi	a
Propylene Glycol (57-55-6)	Yes	Yes	Yes	Yes	
\Chemical Inventory Status - Part 2\			anada		
Ingredient	Korea	-	NDSL	Phil.	
Propylene Glycol (57-55-6)	Yes	Yes	No	Yes	

 $\cdot$  :

\Federal, State & International   Ingredient	-SARJ RQ	A 302- TPQ.	List	SARA 313 Chemical Catg.
Propylene Glycol (57-55-6)	No		No	No
\Federal, State & International 1	Regulat	ions -		
Ingredient	CERCI	LA	261.33	
Propylene Glycol (57-55-6)	No		No	No

Australian Hazchem Code: None allocated. Poison Schedule: None allocated. WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

#### **16. Other Information**

NFPA Ratings: Health: 0 Flammability: 1 Reactivity: 0 Label Hazard Warning: CAUTION! MAY CAUSE IRRITATION TO SKIN AND EYES. Label Precautions: Avoid contact with eyes, skin and clothing. Wash thoroughly after handling. Label First Aid: In case of contact, immediately flush skin or eyes with plenty of water for at least 15 minutes. Call a physician if irritation develops or persists. **Product Use:** Laboratory Reagent. **Revision Information:** MSDS Section(s) changed since last revision of document include: 8. **Disclaimer:** Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product.

Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

**Prepared by:** Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

É

# ATTACHMENT **?** (OCD Guidelines for Remediation of Leaks, spills and Releases)

# GUIDELINES

# FOR

# REMEDIATION

# OF

# LEAKS, SPILLS AND RELEASES

(AUGUST 13, 1993)

New Mexico Oil Conservation Division State Land Office Building P.O. Box 2088 Santa Fe, New Mexico 87504-2088

# TABLE OF CONTENTS

# INTRODUCTION

# I.

IV.

# NOTICE OF LEAK, SPILL OR RELEASE

- A. RESPONSIBLE PARTY AND LOCAL CONTACT
- B. FACILITY
- C. TIME OF INCIDENT
- D. DISCHARGE EVENT
- E. TYPE OF DISCHARGE
- F. QUANTITY
- G. SITE CHARACTERISTICS
- H. IMMEDIATE CORRECTIVE ACTIONS

# II. <u>INITIAL RESPONSE ACTIONS</u>

- A. SOURCE ELIMINATION AND SITE SECURITY
- **B.** CONTAINMENT
- C. SITE STABILIZATION
- III. <u>SITE ASSESSMENT</u>
  - A. GENERAL SITE CHARACTERISTICS
    - 1. Depth To Ground Water
    - 2. Wellhead Protection Area
    - 3. Distance To Nearest Surface Water Body
  - B. SOIL/WASTE CHARACTERISTICS
    - 1. Highly Contaminated/Saturated Soils
    - 2. Unsaturated Contaminated Soils
  - C. GROUND WATER QUALITY
  - SOIL AND WATER REMEDIATION ACTION LEVELS
  - **A.** SOILS
    - 1. Highly Contaminated/Saturated Soils
    - 2. Unsaturated Contaminated Soils
      - a. <u>Ranking Criteria</u>
      - b. <u>Recommended Remediation Level</u>
  - **B.** GROUND WATER

ν.

# SOIL AND WATER SAMPLING PROCEDURES

- A. HIGHLY CONTAMINATED OR SATURATED SOILS
  - 1. Physical Observations
- B. UNSATURATED CONTAMINATED SOILS
  - 1. Soil Sampling Procedures for Headspace Analysis

î

- 2. Soil Sampling Procedures For Laboratory Analysis
  - a. <u>Sampling Procedures</u>
  - b. <u>Analytical methods</u>
- C. GROUND WATER SAMPLING
  - 1. Monitor Well Installation/Location
  - 2. Monitor Well Construction
  - 3. Monitor Well Development
  - 4. Sampling Procedures
  - 5. Ground Water laboratory Analysis
    - a. <u>Analytical Methods</u>

#### VI. <u>REMEDIATION</u>

- A. SOIL REMEDIATION
  - 1. Contaminated Soils
  - 2. Soil Management Options
    - a. <u>Disposal</u>
    - b. Soil Treatment and Remediation Techniques
      - i. Landfarming
      - ii. Insitu Soil Treatment
      - iii. Alternate Methods
- B. GROUND WATER REMEDIATION
  - 1. Remediation Requirements
    - a. Free Phase Contamination
    - b. <u>Dissolved Phase Contamination</u>
    - c. Alternate Methods
- VII. <u>TERMINATION OF REMEDIAL ACTION</u>
  - A. SOIL
  - B. GROUND WATER
- VIII. FINAL CLOSURE

# IX. FINAL REPORT

# INTRODUCTION

The following document is to be used as a <u>guide</u> on all federal, state and fee lands when remediating contaminants resulting from leaks, spills and releases of oilfield wastes or products. The New Mexico Oil Conservation Division (OCD) requires that corrective actions be taken for leaks, spills or releases of any material which has a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property. These guidelines are intended to provide direction for remediation of soils and fresh waters contaminated as a result of leaks, spills or releases of oilfield wastes and products in a manner that assures protection of fresh waters, public health and the environment.

Fresh waters (to be protected) includes the water in lakes, playas, surface waters of all streams regardless of the quality of the water within any given reach, and all underground waters containing 10,000 milligrams per liter (mg/l) or less of total dissolved solids (TDS) except for which, after notice and hearing, it is found that there is no present or reasonably foreseeable beneficial use which would be impaired by contamination of such waters. The water in lakes and playas shall be protected from contamination even though it may contain more than 10,000 mg/l of TDS unless it can be shown that hydrologically connected fresh ground water will not be adversely affected.

Procedures may deviate from the following guidelines if it can be shown that the proposed procedure will either remediate, remove, isolate or control contaminants in such a manner that fresh waters, public health and the environment will not be impacted. Specific constituents and/or requirements for soil and ground water analysis and/or remediation may vary depending on site specific conditions. Deviations from approved plans will require OCD notification and approval.

**** Note: Notification to OCD of leaks, spills and releases does not relieve an operator of responsibility for compliance with any other federal, state or local law and/or regulation regarding the incident. Other agencies (ie. BLM, Indian Tribes, etc) may also have guidelines or requirements for remediation of leaks spills and releases.

1

# I. NOTIFICATION OF LEAK, SPILL OR RELEASE

Leaks, spills and releases of any wastes or products from oilfield operations are required to be reported to the OCD pursuant to OCD Rule 116 (Appendix A) or New Mexico Water Quality Control Commission (WQCC) Regulation 1-203 (Appendix B). Appendix C contains the phone numbers and addresses for reporting incidents to the OCD district and Santa Fe offices. Notification will include all information required under the respective rule or regulation. Below is a description of some of the information required:

# A. RESPONSIBLE PARTY AND LOCAL CONTACT

The name, address and telephone number of the person/persons in charge of the facility/operation as well as the owner and/or operator of the facility/operation and a local contact.

# B. FACILITY

The name and address of the facility or operation where the incident took place and the legal location listed by quarterquarter, section, township and range, and by distance and direction from the nearest town or prominent landmark so that the exact site location can be readily located on the ground.

#### C. TIME OF INCIDENT

The date, time and duration of the incident.

# D. DISCHARGE EVENT

A description of the source and cause of the incident.

### E. TYPE OF DISCHARGE

A description of the nature or type of discharge. If the material leaked, spilled or released is anything other than crude oil, condensate or produced water include its chemical composition and physical characteristics.

# F. QUANTITY

The known or estimated volume of the discharge.

# G. SITE CHARACTERISTICS

The relevant general conditions prevailing at the site including precipitation, wind conditions, temperature, soil type, distance to nearest residence and population centers and proximity of fresh water wells or watercourse (ie. any river, lake, stream, playa, arroyo, draw, wash, gully or natural or man-made channel through which water flows or has flowed).

# H. IMMEDIATE CORRECTIVE ACTIONS

Any initial response actions taken to mitigate immediate threats to fresh waters, public health and the environment.

# II. INITIAL RESPONSE ACTIONS

 $( \cdot)$ 

Upon learning of a leak, spill or release of any material which has a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property, the responsible party (RP) should take the following immediate actions unless the actions could create a safety hazard which would result in a threat to personal or public injury:

## A. SOURCE ELIMINATION AND SITE SECURITY

The RP should take the appropriate measures to stop the source of the leak, spill or release and limit access to the site as necessary to reduce the possibility of public exposure.

# B. CONTAINMENT

Once the site is secure, the RP should take steps to contain the materials leaked, spilled or released by construction of berms or dikes, the use of absorbent pads or other containment actions to limit the area impacted by the event and prevent potential fresh water contaminants from migrating to watercourses or areas which could pose a threat to public health and safety.

# C. SITE STABILIZATION

After containment, the RP should recover any products or wastes which can be physically removed from the surface within the containment area. The disposition of all wastes or products removed from the site must be approved by the OCD.

#### III. SITE ASSESSMENT

Prior to final closure (Section VIII), soils into which nonrecoverable products or wastes have infiltrated and which have a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property should be assessed for their potential environmental impacts and remediated according to the procedures contained in the following sections. Assessment results form the basis of any required remediation. Sites will be assessed for severity of contamination and potential environmental and public health threats using a risk based ranking system.

The following characteristics should be determined in order to evaluate a sites potential risks, the need for remedial action and, if necessary, the level of cleanup required at the site:

# A. GENERAL SITE CHARACTERISTICS

#### 1. Depth To Ground Water

The operator should determine the depth to ground water at each site. The depth to ground water is defined as the vertical distance from the lowermost contaminants to the seasonal high water elevation of the ground water. If the exact depth to ground water is unknown, the ground water depth can be estimated using either local water well information, published regional ground water information, data on file with the New Mexico State Engineer Office or the vertical distance from adjacent ground water or surface water.

# 2. Wellhead Protection Area

.

The operator should determine the horizontal distance from all water sources including private and domestic water sources. Water sources are defined as wells, springs or other sources of fresh water extraction. Private and domestic water sources are those water sources used by less than five households for domestic or stock purposes.

# 3. Distance To Nearest Surface Water Body

The operator should determine the horizontal distance to all downgradient surface water bodies. Surface water bodies are defined as perennial rivers, streams, creeks, irrigation canals and ditches, lakes, ponds and playas.

# B. SOIL/WASTE CHARACTERISTICS

Soils/wastes within and beneath the area of the leak, spill or release should be evaluated to determine the type and extent of contamination at the site. In order to assess the level of contamination, observations should be made of the soils at the surface and samples of the impacted soils should be taken in the leak, spill or release area. Observations should note whether previous leaks, spills or releases have occurred at the site. Additional samples may be required to completely define the lateral and vertical extent of contamination. Soil samples should be obtained according to the sampling procedures in Sections V.A. and V.B. This may be accomplished using a backhoe, drill rig, hand auger, shovel or other means.

Initial assessment of soil contaminant levels is not required if an operator proposes to determine the final soil contaminant concentrations after a soil removal or remediation pursuant to section VI.A.

Varying degrees of contamination described below may co-exist at an individual site. The following sections describe the degrees of contamination that should be documented during the assessment of the level of soil contamination:

# 1. Highly Contaminated/Saturated Soils

Highly contaminated/saturated soils are defined as those soils which contain a free liquid phase or exhibit gross staining.

2.

Unsaturated contaminated soils are defined as soils which are not highly contaminated/saturated, as described above, but contain benzene, toluene, ethylbenzene and xylenes (BTEX) and total petroleum hydrocarbons (TPH) or other potential fresh water contaminants unique to the leak, spill or release. Action levels and sampling and analytical methods for determining contaminant concentrations are described in detail in Sections IV. and V.

(NOTE: Soils contaminated as a result of spills, leaks or releases of non-exempt wastes must be evaluated for all RCRA Subtitle C hazardous waste characteristics. The above definitions apply only to oilfield contaminated soils which are exempt from federal RCRA Subtitle C hazardous waste provisions and nonexempt oilfield contaminated soils which are characteristically nonhazardous according to RCRA Subtitle C regulations. Any nonexempt contaminated soils which are determined to be characteristically hazardous cannot be remediated using this guidance document and will be referred to the New Mexico Environment Department Hazardous Waste Program.)

# C. GROUND WATER QUALITY

If ground water is encountered during the soil/waste characterization of the impacted soils, a sample should be obtained to assess the incidents potential impact on ground water quality. Ground water samples should be obtained using the sampling procedures in Section V.C. Monitor wells may be required to assess potential impacts on ground water and the extent of ground water contamination, if there is a reasonable probability of ground water contamination based upon the extent and magnitude of soil contamination defined during remedial activities.

# IV. SOIL AND WATER REMEDIATION ACTION LEVELS

#### A. SOILS

The sections below describe the OCD's recommended remediation action levels for soils contaminated with petroleum hydrocarbons. Soils contaminated with substances other than petroleum hydrocarbons may be required to be remediated based upon the nature of the contaminant and it's potential to impact fresh waters, public health and the environment.

# 1. Highly Contaminated/Saturated Soils

All highly contaminated/saturated soils should be remediated insitu or excavated to the maximum extent practicable. These soils should be remediated using techniques described in Section VI.A to the contaminant specific level listed in Section IV.A.2.b. 2.

# Unsaturated Contaminated Soils

The general site characteristics obtained during the sit assessment (Section III.A.) will be used to determine the appropriate soil remediation action levels using a risk based approach. Soils which are contaminated by petroleum constituents will be scored according to the ranking criteria below to determine their relative threat to public health, fresh waters and the environment.

# a. <u>Ranking Criteria</u>

Depth To Ground Water	<u>Ranking Score</u>
<50 feet	20
50 - 99	10
>100	0

# Wellhead Protection Area

<1000 feet from a water source,or;				
<200 feet fr	om private domesti	c water source		
Yes		20		
No		0		

# Distance To Surface Water Body

<200 horizontal feet	20
200 - 1000 horizontal feet	10
>1000 horizontal feet	0

6

# b. Recommended Remediation Action Level

The total ranking score determines the degree of remediation that may be required at any given site. The total ranking score is the sum of all four individual ranking criteria listed in Section IV.A.2.a. The table below lists the remediation action level that may be required for the appropriate total ranking score.

(NOTE: The OCD retains the right to require remediation to more stringent levels than those proposed below if warranted by site specific conditions (ie. native soil type, location relative to population centers and future use of the site or other appropriate site specific conditions.)

	Total Ranking Score			
	<u>&gt;19</u>	<u>10 - 19</u>	0 - 9	
<u>Benzene(ppm)*</u>	10	10	10	
BTEX(ppm) *	50	50	50	
TPH(ppm) **	100	1000	5000	

- A field soil vapor headspace measurement (Section V.B.1) of 100 ppm may be substituted for a laboratory analysis of the Benzene and BTEX concentration limits.
- ** The contaminant concentration for TPH is the concentration above background levels.

#### B. GROUND WATER

į

Contaminated ground water is defined as ground water of a present or foreseeable beneficial use which contains free phase products, dissolved phase volatile organic constituents or other dissolved constituents in excess of the natural background water quality. Ground water contaminated in excess of the WQCC ground water standards or natural background water quality will require remediation.

# V. SOIL AND WATER SAMPLING PROCEDURES

Below are the sampling procedures for soil and ground water contaminant investigations of leaks, spills or releases of RCRA Subtitle C exempt oil field petroleum hydrocarbon wastes. Leaks, spills or releases of non-exempt RCRA wastes must be tested to demonstrate that the wastes are not characteristically hazardous according to RCRA regulations. Sampling for additional constituents may be required based upon the nature of the contaminant which was leaked, spilled or released.

# A. HIGHLY CONTAMINATED OR SATURATED SOILS

The following method is used to determine if soils are highly contaminated or saturated:

# 1. Physical Observations

Study a representative sample of the soil for observable free petroleum hydrocarbons or immiscible phases and gross staining. The immiscible phase may range from a free hydrocarbon to a sheen on any associated aqueous phase. A soil exhibiting any of these characteristics is considered highly contaminated or saturated.

# B. UNSATURATED CONTAMINATED SOILS

The following methods may be used for determining the magnitude of contamination in unsaturated soils:

# 1. Soil Sampling Procedures for Headspace Analysis

A headspace analysis may be used to determine the total volatile organic vapor concentrations in soils (ie. in lieu of a laboratory analysis for benzene and BTEX but not in lieu of a TPH analysis). Headspace analysis procedures should be conducted according to OCD approved industry standards or other OCD-approved procedures. Accepted OCD procedures are as follows:

- a) Fill a 0.5 liter or larger jar half full of sample and seal the top tightly with aluminum foil or fill a one quart zip-lock bag one-half full of sample and seal the top of the bag leaving the remainder of the bag filled with air.
- b) Ensure that the sample temperature is between 15 to 25 degrees Celsius (59-77 degrees Fahrenheit).
- c) Allow aromatic hydrocarbon vapors to develop within the headspace of the sample jar or bag for 5 to 10 minutes. During this period, the sample jar should be shaken vigorously for 1 minute or the contents of the bag should be gently massaged to break up soil clods.
- d) If using a jar, pierce the aluminum foil seal with the probe of either a PID or FID organic vapor meter (OVM), and then record the highest (peak) measurement. If using a bag, carefully open one end of the bag and insert the probe of the OVM into the bag and re-seal the bag around the probe as much as possible to prevent vapors from escaping. Record the peak measurement. The OVM must be calibrated to assume a benzene response factor.

### 2. Soil Sampling Procedures For Laboratory Analysis

#### a. <u>Sampling Procedures</u>

Soil sampling for laboratory analysis should be conducted according to OCD approved industry standards or other OCD-approved procedures. Accepted OCD soil sampling procedures and laboratory analytical methods are as follows:

- i) Collect samples in clean, air-tight glass jars supplied by the laboratory which will conduct the analysis or from a reliable laboratory equipment supplier.
- ii) Label the samples with a unique code for each sample.
- iii) Cool and store samples with cold packs or on ice.
- iv) Promptly ship sample to the lab for analysis following chain of custody procedures.
- v) All samples must be analyzed within the holding times for the laboratory analytical method specified by EPA.

#### b. Analytical Methods

All soil samples must be analyzed using EPA methods, or by other OCD approved methods and must be analyzed within the holding time specified by the method. Below are laboratory analytical methods commonly accepted by OCD for analysis of soil samples analyzed for petroleum related constituents. Additional analyses may be required if the substance leaked, spilled or released has been anything other than petroleum based fluids or wastes.

- i) Benzene, toluene, ethylbenzene and xylene
  - **EPA Method 602/8020**
- ii) Total Petroleum Hydrocarbons
  - EPA Method 418.1, or;
    - EPA Method Modified 8015

#### C. GROUND WATER SAMPLING

If an investigation of ground water quality is deemed necessary, it should be conducted according to OCD approved industry standards or other OCD-approved procedures. The following methods are standard OCD accepted methods which should be used to sample and analyze ground water at RCRA Subtitle C exempt sites (Note: The installation of monitor wells may not be required if the OCD approves of an alternate ground water investigation or sampling technique):

#### 1. Monitor Well Installation/Location

One monitor well should be installed adjacent to and hydrologically down-gradient from the area of the leak, spill or release to determine if protectable fresh water has been impacted by the disposal activities. Additional monitor wells, located up-gradient and down-gradient of the leak, spill or release, may be required to delineate the full extent of ground water contamination if ground water underlying the leak, spill or release has been found to be contaminated.

#### 2. Monitor Well Construction

.

- a) Monitor well construction materials should be:
  - i) selected according to industry standards;
  - ii) chemically resistant to the contaminants to be monitored; and
  - iii) installed without the use of glues/adhesives.
- b) Monitor wells should be constructed according to OCD approved industry standards to prevent migration of contaminants along the well casing.
   Monitor wells should be constructed with a minimum of fifteen (15) feet of well screen. At least five (5) feet of the well screen should be above the water table to accommodate seasonal fluctuations in the static water table.

#### 3. Monitor Well Development

When ground water is collected for analysis from monitoring wells, the wells should be developed prior to sampling. The objective of monitor well development is to repair damage done to the formation by the drilling operation so that the natural hydraulic properties of the formation are restored and to remove any fluids introduced into the formation that could compromise the integrity of the sample. Monitoring well development is accomplished by purging fluid from the well until the pH and specific conductivity have stabilized and turbidity has been reduced to the greatest extent possible.

#### 4. Sampling Procedures

Ground water should be sampled according to OCD accepted standards or other OCD approved methods. Samples should be collected in clean containers supplied by the laboratory which will conduct the analysis or from a reliable laboratory equipment supplier. Samples for different analyses require specific types of containers. The laboratory can provide information on the types of containers and preservatives required for sample collection. The following procedures are accepted by OCD as standard sampling procedures:

- a) Monitor wells should be purged of a minimum of three well volumes of ground water using a clean bailer prior to sampling to ensure that the sample represents the quality of the ground water in the formation and not stagnant water in the well bore.
- b) Collect samples in appropriate sample containers containing the appropriate preservative for the analysis required. No bubbles or headspace should remain in the sample container.
- c) Label the sample containers with a unique code for each sample.
- d) Cool and store samples with cold packs or on ice.
- e) Promptly ship sample to the lab for analysis following chain of custody procedures.
- f) All samples must be analyzed within the holding times for the laboratory analytical method specified by EPA.

#### 5. Ground Water Laboratory Analysis

Samples should be analyzed for potential ground water contaminants contained in the waste stream, as defined by the WQCC Regulations. All ground water samples must be analyzed using EPA methods, or by other OCD approved methods and must be analyzed within the holding time specified by the method. Below are OCD accepted laboratory analytical methods for analysis of ground water samples analyzed for petroleum related constituents. Additional analyses may be required if the substance leaked, spilled or release has been anything other than a petroleum based fluid or waste.

- a. <u>Analytical Methods</u>
  - i.) Benzene, Toluene, Ethylbenzene and Xylene
    - EPA Method 602/8020

ii.) Major Cations and Anions

- Various EPA or standard methods

- iii.) Heavy Metals
  - EPA Method 6010, or;
    - Various EPA 7000 series methods

EPA Method 8100

#### VI. <u>REMEDIATION</u>

The following discussion summarizes recommended techniques for remediation of contaminated soil and ground water as defined in Section IV.A. and IV.B. OCD approval for remediation of an individual leak, spill or release site is not required if the company is operating under an OCD approved spill containment plan. All procedures which deviate from the companies spill containment plan must be approved by OCD.

#### A. SOIL REMEDIATION

When RCRA Subtitle C exempt or RCRA nonhazardous petroleum contaminated soil requires remediation, it should be remediated and managed according to the criteria described below or by other OCD approved procedures which will remove, treat, or isolate contaminants in order to protect fresh waters, public health and the environment.

In lieu of remediation, OCD may accept an assessment of risk which demonstrates that the remaining contaminants will not pose a threat to present or foreseeable beneficial use of fresh waters, public health and the environment.

#### 1. Contaminated Soils

Highly contaminated/saturated soils and unsaturated contaminated soils exceeding the standards described in Section IV.A. should be either:

- a) Excavated from the ground until a representative sample from the walls and bottom of the excavation is below the contaminant specific remediation level listed in Section IV.A.2.b or an alternate approved remediation level, or;
- b) Excavated to the maximum depth and horizontal extent practicable. Upon reaching this limit a sample should be taken from the walls and bottom of the excavation to determine the remaining levels of soil contaminants, or;
- c) Treated in place, as described in Section VI.A.2.b.ii. - Treatment of Soil in Place, until a representative sample is below the contaminant specific remediation level listed in Section IV.A.2.b, or an alternate approved remediation level, or;
- d) Managed according to an approved alternate method.

í

All soil management options must be approved by OCD. The following is a list of options for either on-site treatment or off-site treatment and/or disposal of contaminated soils:

a. <u>Disposal</u>

Excavated soils may be disposed of at an off-site OCD approved or permitted facility.

b. Soil Treatment and Remediation Techniques

#### i. Landfarming

Onetime applications of contaminated soils may be landfarmed on location by spreading the soil in an approximately six inch lift within a bermed area. Only soils which do not contain free liquids can be landfarmed. The soils should be disced regularly to enhance biodegradation of the contaminants. If necessary, upon approval by OCD, moisture and nutrients may be added to the soil to enhance aerobic biodegradation.

In some high risk areas an impermeable liner may be required to prevent leaching of contaminants into the underlying soil.

Landfarming sites that will receive soils from more than one location are considered centralized sites and must be approved separately by the OCD prior to operation.

ii. Insitu Soil Treatment

Insitu treatment may be accomplished using vapor venting, bioremediation or other approved treatment systems.

### iii. Alternate Methods

The OCD encourages alternate methods of soil remediation including, but not limited to, active soil aeration, composting, bioremediation, solidification, and thermal treatment.

#### B. GROUND WATER REMEDIATION

#### 1. Remediation Requirements

Ground water remediation activities will be reviewed and approved by OCD on a case by case basis prior to commencement of remedial activities. When contaminated ground water exceeds WQCC ground water standards, it should be remediated according to the criteria described below.

#### a. <u>Free Phase Contamination</u>

Free phase floating product should be removed from ground water through the use of skimming devices, total-fluid type pumps, or other OCD-approved methods.

#### b. <u>Dissolved Phase Contamination</u>

Ground water contaminated with dissolved phase constituents in excess of WQCC ground water standards can be remediated by either removing and treating the ground water, or treating the ground water in place. If treated waters are to be disposed of onto or below the ground surface, a discharge plan must be submitted and approved by OCD.

#### c. Alternate Methods

The OCD encourages other methods of ground water remediation including, but not limited to, air sparging and bioremediation. Use of alternate methods must be approved by OCD prior to implementation.

#### VII. TERMINATION OF REMEDIAL ACTION

Remedial action may be terminated when the criteria described below have been met:

#### A. SOIL

-g >

Contaminated soils requiring remediation should be remediated so that residual contaminant concentrations are below the recommended soil remediation action level for a particular site as specified in Section IV.A.2.b.

If soil action levels cannot practicably be attained, an evaluation of risk may be performed and provided to OCD for approval showing that the remaining contaminants will not pose a threat to present or foreseeable beneficial use of fresh water, public health and the environment.

#### B. GROUND WATER

A ground water remedial action may be terminated if all recoverable free phase product has been removed, and the concentration of the remaining dissolved phase contaminants in the ground water does not exceed New Mexico WQCC water quality standards or background levels. Termination of remeatal action will be approved by OCD upon a demonstration of completion of remediation as described in above.

14

#### VIII.FINAL CLOSURE

Upon termination of any required remedial actions (Section VII.) the area of a leak, spill or release may be closed by backfilling any excavated areas, contouring to provide drainage away from the site, revegetating the area or other OCD approved methods.

#### IX. FINAL REPORT

ſ

Upon completion of remedial activities a final report summarizing all actions taken to mitigate environmental damage related to the leak, spill or release will be provided to OCD for approval.

# APPENDIX A

#### AND BLOHOUTS

4 4 4

3. The Division shall be notified of any fire, break, leak, spill, or blowout occurring at any injection or disposal facility or at any oil or gas drilling, producing, transporting, or processing facility in the State of New Maxico by the person operating or controlling such facility.

B. "Facility," for the purpose of this rule, shall include any oil or gas well, any injection or disposal well, and any drilling or workover well; any pipe line through which crude oil, condensate, casingheed or natural gas, or injection or disposal fluid (gaseous or liquid) is gathered, piped, or transported (including field flow-lines and lead-lines but not including natural gas distribution systems); any receiving tank, bolding tank, or storage tank, or receiving and storing receptacle into which crude oil, condensate, injection or disposal fluid, or casingheed or natural gas is produced, received, or stored; any injection or disposal pumping or compression station including related equipment; any processing or refining plant in which crude oil, condensate, or casingheed or natural gas is processed or refined; and any tank or drilling pit or slush pit associated with oil or gas well or injection or disposal well drilling operations or any tank, storage pit, or pood associated with oil or gas production or processing operations or with injection or disposal operations and containing hydrocarbons or hydrocarbon waste or residue, salt water, strong caustics or strong acids, or other deletarious chemicals or harmful contaminants.

C. Notification of such fire, break, leak, spill, or blowout shall be in accordance with the provisions set forth below:

(1) <u>Well Blowouts</u>. Notification of well blowouts and/or fires shall be "immediate notification" described below. ("Well blowout" is defined as being loss of control over and subsequent eruption of any drilling or workover well, or the rupture of the casing, casingheed, or wellbeed or any oil or gas well or injection or disposal well, whether active or inactive, accompanied by the sudden emission of fluids, gaseous or liquid, from the well.)

(2) <u>"Major" Breaks, Spills, or Leaks</u>. Notification of breaks, spills, or leaks of Z5 or more barrels of crude oil or condensate, or 100 barrels or more of salt water, none of which reaches a watercourse or enters a stream or lake; breaks, spills, or leaks in which one or more barrels of crude oil or condensate or 25 barrels or more of salt water does reach a watercourse or enters a stream or lake; and breaks, spills, or leaks of hydrocarbons or hydrocarbon waste or residue, salt water, strong constics or strong acids, gases, or other deletarious chemicals or harmful contaminants of any magnitude which may with reasonable probability endanger human bealth or result in substantial damage to property, shall be "immediate notification" described below.

(3) <u>"Minor" Breaks, Spills, or Leaks</u>. Notification of breaks, spills, or leaks of 5 barrels or more but less than 25 barrels of crude oil or condensate, or 25 barrels or more but less than 100 barrels of salt water, none of which reaches a watercourse or enters a stream or lake, shall be "subsequent notification" described below.

(4) <u>"Gas Lesks and Gas Line Breaks</u>. Notification of gas leaks from any source or of gas pipe line breaks in which natural or casingbeed gas of any quantity has escaped or is escaping which may with reasonable probability endanger human bealth or result in substantial damage to property shall be "immediate notification" described below. Notification of gas pipe line breaks or leaks in which the loss is estimated to be 1000 or more MCF of natural or casingbeed gas but in which there is no damage to human bealth nor of substantial damage to property shall be "subsequent notification" described below.

(5) <u>Tank Fires</u>. Notification of fires in tanks or other receptacles caused by lightning or any other cause, if the loss is, or it appears that the loss will be, 25 or more barrels of crude oil or coodensate, or fires which may with reasonable probability endanger human bealth or result in substantial damage to property, shall be "immediate notification" as described below. If the loss is, or it appears that the loss will be at least 5 barrels but less than 25 barrels, notification shall be "subsequent notification" described below.

(6) <u>Drilling Pits, Slush Pits, and Storage Pits and Ponds</u>. Notification of breaks and spills from any drilling pit, slush pit, or storage pit or pond in which any hydrocarbon or hydrocarbon waste or residue, strong caustic or strong acid, or other deleterious chemical or hermful contaminant endangers homen health or does substantial surface damage, or reaches a watercourse or enters a stream or lake in such quantity APPENDIX B

. .

.

í

(

1-203. NOTIFICATION OF DISCHARGE--REMOVAL.

A. With respect to any discharge from any facility of oil or other water contaminant, in such quantity as may with reasonable probability injure or be detrimental to human health, animal or plant life, or property, or unreasonably interfere with the public welfare or the use of property, the following notifications and corrective actions are required:

1. As soon as possible after learning of such a discharge, but in no event more than twenty-four (24) hours thereafter, any person in charge of the facility shall orally notify the Chief, Ground Water Bureau, Environmental Improvement Division, or his counterpart in any constituent agency delegated responsibility for enforcement of these rules as to any facility subject to such delegation. To the best of that person's knowledge, the following items of information shall be provided:

a. the name, address, and telephone number of the person or persons in charge of the facility, as well as of the owner and/or operator of the facility;

b. the name and address of the facility;

c. the date, time, location, and duration

of the discharge;

d. the source and cause of discharge;

e. a description of the discharge, including its chemical composition;

and

í

f. the estimated volume of the discharge;

g. any actions taken to mitigate immediate damage from the discharge.

2. When in doubt as to which agency to notify, the person in charge of the facility shall notify the Chief, Ground Water Bureau,

Environmental Improvement Division. If that division does not have authority pursuant to Commission delegation, the division shall notify the appropriate constituent agency.

3. Within one week after the discharger has learned of the discharge, the facility owner and/or operator shall send written notification to the same division official, verifying the prior oral notification as to each of the foregoing items and providing any appropriate additions or corrections to the information contained in the prior oral notification.

4. The oral and written notification and reporting requirements contained in the three preceding paragraphs and the paragraphs below are not intended to be duplicative of discharge notification and reporting requirements promulgated by the Oil Conservation Commission (OCC) or by the Oil Conservation Division (OCD); therefore, any facility which is subject to OCC or OCD discharge notification and reporting requirements need not additionally comply with the nofification/and reporting requirements herein.

5. As soon as possible after learning of such a discharge, the owner/operator of the facility shall take such corrective actions as are necessary or appropriate to contain and remove or mitigate the damage caused by the discharge.

F

Attachment (Analytical Report from Facility Water Wells)



# COVER LETTER

Wednesday, September 02, 2009

Charlie Allen Transwestern Pipeline Co. P.O. Box 1019 Thoreau, NM 87323

TEL: (505) 862-7443 FAX (505) 862-7826

RE: Sta. 5 Thoreau TWP Water SamplesNM3561817

Dear Charlie Allen:

Order No.: 0908415

Hall Environmental Analysis Laboratory, Inc. received 3 sample(s) on 8/24/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX



4901 Hawkins :NE Suite D Albuquerque, NM 87109 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com



4301 Masthead NE | Albuquerque, New Mexico 87109 505.344.3777 | 505.345.8964

	Explanation of codes
B	Analyte Detected in Method Blank
E	Result is Estimated
H	Analyzed Out of Hold Time
N	Tentatively Identified Compound
S	Subcontracted
1-9	See Footnote

TRANSWESTERN PIPELINE STA 5 altn ANDY FREEMAN 4901 HAWKINS NE, SUITE D ALBUQUERQUE NM 87109-4372

#### ARS Analytical, LLC

STANDARD

# Certificate of Analysis

All samples are reported on an "as received" basis, unless otherwise noted (i.e. - Dry Weight).

Client:	TRANSWESTER		E STA 5	10.		$\cdot \bigcirc$	- (	,		
Project: Order:	0908415 09080628 HA	L03	Receipt: 08-25-09	1.1.1	LAU Chavez: Presi	dent of ARS a	MUD alytical, LLC	)		
Sample:	0908415-01A ST	A S E. WEL	L HEAD	Collected: 08-24	1-09 11:15	:00 By:				
Matrix:	AQUEOUS			SR7269						
QC Group	Run Sequenc	e CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code		Run Date
09080628-	001A.	SM-9223B					By:	FAS		
BT09297	BT.2009.518.1	[	E. coli, MMO/MUG	Absent	N/A	1	0	<b></b>	08-25-09	08-28-09
BT09297	BT:2009.518.1		Total Coliform, MMO/MUG	Absent	N/A	1	0	[	08-25-09	08-28-09
Sample: Matrix:	0908415-02A \$1 AQUEOUS	A 5 CENTE	R	Collected: 08-24 WELL HEAD/SR	4-09 11:30. 7270	:00 By:				
QC Group	Run Sequenc	e CAS#	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Prep Date	Run Date
09080628-	002A	SM-9223B				,	By:	FAS		
BT09297	BT.2009.518:2		E. coli, MMO/MUG	Absent	N/A	1	0		08-25-09	08-26-09
BT09297	BT:2009.518.2		Total Coliform, MMO/MUG	Absent	N/A	1	0		08-25-09	08-28-09
Sample: Matrix:	0908415-03A ST AQUEOUS	A 5 W. WEL	.L HEAD	Collected: 08-24 SR7271	1-09 11:45	:00 By:				
QC Group	Run Sequenc	e CAS#	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Prep Date	Run Date
09080628-	003A	SM-9223B	·				By:	FAS		
BT09297	BT.2009.518.3		E. coli, MMO/MUG	Absent	N/A	1	0		08-25-09	
BT09297	BT.2009.518.3		Total Collform, MMO/MUG	Absent	N/A	1	0		08-25-09	08-28-09
BT09297 BT09297						1				

Report Date: 8/27/2009 3:24:39 PM

# Hall Environmental Analysis Laboratory, Inc.

.

9 4

	Sample Receipt Cl	necklist		
Client.Name TWP THOREAU		Date Received:		8/24/2009
Work Order Number 0908415		Received by:	TLS	٨
<b>~</b>	Ohu	Sample ID labels	checked by:	_IK
Checklist completed by:	X124 Date	104		initials
	ł			
Matrix: Ci	arrier name: <u>Client drop-c</u>	, <u>ff</u>		
Shipping container/cooler in good condition?	Yes 🗹	No 🗍 Not	Present	
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗌 Not	Present	Not Shipped
Custody seals intact on sample bottles?	Yes	No [N/A		
Chain of custody present?	Yes 🗹	No 🛄		
Chain of custody signed when relinquished and received	? Yes 🗹	No 🗔		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🗹	No 🗌		
Sample containers intact?	Yes 🔽	No		
Sufficient sample volume for indicated test?	Yes 🗔	No 🗹		
All samples received within holding time?	Yes 🗹	No 🗔		Number of preserved
	DA vials submitted	Yes	No 🗌	bottles checked for pH:
Water - Preservation labels on bottle and cap match?	Yes	No	N/A 🔽	
Water - pH acceptable upon receipt?	Yes	No	N/A 🗹	<2 >12 unless noted
Container/Temp Blank temperature?	10.8°	<6° C Acceptable		below. +
COMMENTS:		If given sufficient time	to cool.	
		ţ		
		·		
Client contacted Date con	ntacted:	Person co	ntacted	
Contacted by: Regardi	ng:			
	Фодерали и полити и п			
Comments:	######################################		<b>1999 A. 1999 A. 1999 A. 1999 A. 1999 A. 1999</b>	
Corrective Action				
	······			

1990 - 199 <b>1</b> - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19900 - 19900 - 19900 - 19900 - 1990 - 1990 - 1990 - 199	Air Bubbles (Y or N)	1		[		<u> </u>	T	1	T	Γ	1		, in the second s	
		1						<b> </b>		<u> </u>	÷			
HALL ENVIRONMENTAL ANALYSIS LABORATOR www.hallenvironmental.com kins NE - Albuquerque, NM 87109 45-3975 Fax 505-345-4107 Analysis Request	3:10/1401	×	×	X			1	t <del>i</del>		1	· ·			Com
25	Bact monot muc-	X	$\mathbf{x}$	X	. (	থ		ŝ	8				0	R.
	1107-7	×	×	X		9	Ř	ğ	0	Z				
	(AOV-im92) 0728		:		1 1 n 1	~	2	Vingano	Suit		0	3. 2 × 1 2 ≥ 1 × 1 2 × 1 × 1	6100	Se
	(AOV) 80928			·		ð	R	De la	ŝ	Ê	E		99	the second
HALL ENVIRONMENT.         ANALYSIS LABORATO         NNM Hallenvironmental com.         www.hallenvironmental.com.         ins NE - Albuquerque, NM 87109	2'839 Pesticides / 8082 PCB's	1				0	0	1100	Office Building, Suite 250	Molan School Hoad	Ø		N.	X
<b>SIS</b> buqu SSIS	( ¹ OS; ¹ OA, ² ON, ² ON, ¹ O, ¹ ) anoinA	1	[		· į	ŧ.	प्रि	da la		5			8	en Ceners)
L ENV LYSIS allenviron - Albuqu i Fax Analysis	RCRA 8 Metals	1				X	0	L	8	တ			S)	0
NE NE	(HA9 or AN9) 0168	ba				ŝ,	ÿ	anawestern	δ.	018 018	signe,		Š,	R I
HALI ANAI www.ha kins.NE i45-3975	EDB (Method 504.1)			-		N N	7	MO :	E .	L (	d d		N. I	
HALL ANA www.he Hawkins.NE 505-345-3975	TPH (Method 418.1)						Ann	L S L			Ş		kond and	16
HAL ANA www.h 4901 Hawking NE Tel. 505-345-397	(IeseiO\ss2) 83108 botteM H9T								0		K		<b>,</b> , ,	4 Contraction
	BTEX + MTBE + TPH (Gas only)						ļ	ļ					Remarks:	Charlie all
	BTEX + MTBE + TMB's (8021)	ļ					ļ						Rei	
				: : -		13	1.2.2.V	24 - 2 2 - 2 2 - 2	21 - 22 - 2 - 22 - 2 - 2	1 - 23 2 - 48	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1941 <b>1</b> 9
. v. v	a 2					10		$\sim$					Line C	Time
11. St.	CO.X HEALNO JSHIS		Ц	$\sim$		22		1					<u>م</u>	61: C
11.500	10 + 10 = 10 = 10 = 10 = 10 = 10 = 10 =				- H	- 2	:	18					Date	Date
The Market				:				16		1023 1023 1023				
Rush 55 Wey Der	2 A		a f	·		a Suc		#	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a di sa Abata		6 a.175 . 16%.		
Time 572 7.52 7.55 7.55 7.55 7.55 7.55 7.55	uger 11/2 41 12-Yes perature Preservative Type					1/2		La La	14 14 14	and the second se		an e sur a	્ર્વ	ited la
			1. 					27			5 	2		
Turn-Around Designation Tray in Seven Project # 51	Project Manage Mari Sampler: 26 On Ice 12 Sample Temper Sample and #	45	40	イ		m for		U.S				ð		
Turn-Aro	Project M Samplet: Sample T Contain Type an	19.51	1451	2/45		110		Z					Received by	Part Part
T BEN EN		18	4 2		·		ļ	Thorew			· 		ца Ца С	Receiv
	[D ]	ha	Her	Hea	J. A.	2 4		00					Ň	
20	- 262 -> 226 □ Level 4 (Full Validation Sample Request ID	116	hell	1/2		al L		14	.,		J		$(h_{i})$	A mark
	-> <u>821</u> (Full Vali	202	7	J.		State of	5 7 - 1 7	5					1HI I	
R 7 2 0 2	С- је F	454	242	Jr.		5 2		4)		くしょう 多ない			$\mathcal{NN}$	
	52 amp	55	5	5		1 20		K.	1. 1. BAR		200 200	Ì	M	
See Sto	Sa	512.	M	213	.: p	75		1	and a sub-	1. K.	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	la ana an'i Seograma da aona	MM	d by C
3 X Xa	<i>505-2</i> 62	$\overline{2}$	3	20					n de la composition de la composition de la la composition de la c	si s		2		uished
Chain-of-Custody Record Client 「バベリントントントントントント Mailing Address: アカ・アット・アクトント アカウアトルル エル あっる こう Phone #: 505- あっつ タイシン	email or Fax#: 505-262-2826	Birylog 11:15 Grad STR. 5 East Well Hood Plastic	Bizylog 11:30 Gruss M. 5 Centerwell Hand Plastic	11:45 6yra & 574,5 Westwell Head. Plus tic					1 1 1 82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			an sa Sha	Relinquiste	Time: Relinquished by Charlie and the second of the second
L Sa	#: 5 09e: Ne Ma	5	õ	10									S. 1	
Red Seddin	email or Fax#: 5 QA/QC Package: C Standard C Other C Other C D Other Date Time Ma	ni i	1183	11.1		* *			1993) 1993) 1993)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	i i i i i		Time.	Time:
Client: Client: バベ Mailing Addr Yhof	Date	36	50	56										1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Pho Clie		izylo	12-41	8/24/09								ļ	Bluffg	Date:
		CU .	- 00,	~ aci	-								6	

# **New Source Permit Application**

Thoreau Compressor Station Transwestern Pipeline Company McKinley County, New Mexico

Submitted to:

State of New Mexico Environment Department Air Pollution Control Bureau

Prepared by:

George C. Robinson, P.E., Environmental Engineer Cypress Engineering Services, Inc. 16300 Katy Freeway, Suite 105 Houston, Texas 77094-1609

&

Fenley "Ted" Ryther, Jr., P.E., Permits Group Manager ENRON Operations Corp., Group Technical Services Department of Environmental Affairs P.O. Box 1188 Houston, Texas 77251-1188

March 31, 1994

RECEIVED

JAN 1 7 1995

Environmental Bureau Oil Conservation Division

# **Table of Contents**

1.0	Introduction	. 1
2.0	<ul> <li>Description of Facility</li></ul>	.1 .1 .2 .2
3.0	Nature and Use of Surrounding Area	3
4.0	<ul> <li>Emission Calculations</li> <li>4.1 Phase I Emissions Estimate</li> <li>4.2 Phase II Emissions Estimate</li> <li>4.3 Phase III Emissions Estimate</li> <li>4.4 Total Annual Emissions Estimate</li> </ul>	4
5.0	Required Notices	.5

# Appendices:

Appendix A	Permit Application Form
Appendix B	Permit Application Checklist
Appendix C	Method for Estimation of Emissions and Calculation Results
Appendix D	SVE Pilot Test Information
Appendix E	Verification of Notifications
Appendix F	USGS Topographic Quadrangle Map

# **List of Figures:**

- Figure 1. Site Location Map
- Figure 2. Compressor Station No. 5 Site Map
- Figure 3. Phase I Initial SVE System
- Figure 4. Phase II Expanded SVE System
- Figure 5. Phase III Final SVE System

# New Source Permit Application

# Thoreau Compressor Station Transwestern Pipeline Company McKinley County, New Mexico

### 1.0 Introduction

Transwestern Pipeline Company (TPC) is filing an application for permit to install a soil vapor extraction system at TPC's Compressor Station No. 5 located near Thoreau, New Mexico (Figure 1). The soil vapor extraction system is to be installed as part of a proposed ground water remediation project at the site. The estimated emissions from the new source are below the levels required for a permit (AQCR 702) or a notice of intent (AQCR 703.1); however, the proposed new source is to be installed at a "grandfathered" facility. The soil vapor extraction system technically could be considered a modification to the existing facility which would require the submittal of an operating permit application for the entire facility. Therefore, representatives of TPC and the NMED Air Pollution Control Bureau met on February 10, 1994 to discuss this issue. As a result it was agreed that TPC would permit the soil vapor extraction system separate from the main facility with the understanding that an operating permit application would be submitted for the main facility in the near future as required by Title V of the 1990 Clean Air Act Amendments.

A completed permit application form is included in Appendix A. A completed permit application form checklist is included in Appendix B.

# 2.0 Description of Facility

#### 2.1 Main Facility

The function of the main facility is to compress natural gas that is transported westward via TPC's 30" natural gas pipeline. The facility was constructed in 1958 on a 40 acre site that is owned by TPC (Figure 2). The SIC code for the existing facility is 4922. The primary air emission sources of the main facility are three 4500 Hp Cooper-Bess reciprocating engines that drive the compressors.

#### 2.2 Proposed New Source Facility

The proposed soil vapor extraction system will be located in the southeast corner of the main facility as shown in Figure 2. The location of the proposed source is indicated by SVE-1 and SVE-2.

The proposed soil vapor extraction system will be implemented in three phases. A three phase approach was developed in order to limit the volatile organic compounds (VOC) emission rate from soil vapor extraction and to allow opportunities to optimize system components between

phases.

# 2.2.1 Phase I - Initial SVE System

The primary objective of the phase I system is to remove a limited volume of soil vapor to reduce the concentration of volatile organic compounds (VOC) from within the area to be remediated. This will be accomplished by extracting soil vapor from a single SVE well at a rate of 20-25 cfm (Figure 3). The purpose of the limited vapor extraction rate is to maintain the VOC emission rate below which emission control equipment is required. Typically, the VOC emissions from an SVE system are greatest at the start-up of the system and drop off rapidly to a much lower sustained rate. Therefore, rather than control VOC emissions with emission control equipment for such a short duration, the phase I system will maintain a low emission rate from a single SVE well for a longer duration. Once the concentration of VOCs have declined to lower levels, the phase II system will start-up without limitations imposed by VOC emission rates. The estimated duration of phase I is 30 days. After 30 days of operation, the phase II system is scheduled to start-up.

Monitor well 5-34B will be utilized as an extraction well during phase I. It was determined during an SVE pilot test that a sustainable extraction rate of approximately 21 cfm could be maintained from well 5-34B at a vacuum of 6" of H₂O. In the event the SVE equipment is not capable of limiting the vapor extraction rate from monitor well 5-34B to less than 25 cfm, then monitor well 5-35B will be used as the extraction well during phase I. It was determined during the SVE pilot test that a sustainable extraction rate of approximately 22 cfm could be maintained from well 5-35B at a vacuum of 27" of H₂O. The location of the emission source (SVE-1) during phase I will be adjacent to monitor well 5-34B as shown in Figure 3.

The surface equipment associated with the phase I vapor extraction system will consist of the following:

- 1 Regenerative blower with 1/3 Hp TEFC motor (460V/15A/3¢; Class 1 Div 2 Group D);
- 1 Vapor filter assembly;
- 1 Water knockout assembly;
- 2 Vacuum gauges
- 1 Vapor flowmeter, 5-50 cfm range;
- 1 Protective weather cover for blower; and
- 2 Orifice plate flanges and multiple size orifice plates.

The purpose of the orifice plate is to limit the vapor extraction rate, and likewise the "potential emission rate", of the equipment to less than 25 cfm. The orifice plate, if necessary, will be located between the extraction well and the SVE blower. Due to the short duration of phase I, the equipment skid will be placed directly on the ground surface and located adjacent to the extraction well.

#### 2.2.2 Phase II - Expanded SVE System

The purpose of the phase II system is to increase the soil vapor extraction rate to 88 cfm. The

estimated duration of phase II is six to twelve months. This time frame will allow sufficient time to evaluate the operation of the system and to make plans to optimize the system during installation of phase III if necessary.

Monitor wells 5-4B, 5-34B, and 5-35B will be utilized as extraction wells during phase II. In addition, a fourth extraction well will be drilled and completed just west of 5-34B to ensure containment of injected air (Figure 4). It is anticipated that a sustainable extraction rate of approximately 88 cfm will be maintained from the four wells with a vacuum of 20" of H₂O.

The surface equipment for the SVE system will be skid mounted and located in a storage shed just east of monitor well 5-2B as shown in Figure 4 (SVE-2). The blower discharge will be routed just outside the storage shed. The surface equipment associated with the vapor extraction system has been sized to accommodate the capacity requirements of both the phase II and phase III systems. This system will consist of the following:

- 1 Regenerative blower with 5 Hp motor (460V/30A/3¢; Class 1 Div 2 Group D);
- 1 Vapor filter assembly;
- 1 Water knockout assembly and 30 gallon reservoir tank;
- 2 Vacuum gauges;
- 1 Butterfly valve; and
- 1 Vapor flowmeter, 20-200 cfm range.

## 2.2.3 Phase III - Final SVE System

The purpose of the phase III addition to the phase II system is to increase the soil vapor extraction rate to 176 cfm. This will be accomplished by an expansion of the phase II system which, when complete, will extract soil vapor from five (5) SVE wells (Figure 5). The estimated duration of phase III is two to five years. This time frame should be sufficient to achieve the remediation objectives.

Monitor well 5-5B will be utilized as an extraction well in addition to the four wells utilized during phase II. It is anticipated that a sustainable extraction rate of approximately 132 - 176 cfm will be maintained from the five wells with a vacuum of  $30-40^{\prime\prime}$  of H₂O. If necessary, a sixth extraction well will be drilled and completed. Information obtained during phase II will determine whether a sixth extraction well would be necessary.

Assuming that no optimization of the SVE equipment is necessary, there would be no modification of the phase II equipment.

# 3.0 Nature and Use of Surrounding Area

The Thoreau compressor station is located approximately 1.5 miles north-northwest of Thoreau, New Mexico in McKinley County, as shown on Figure 1. The property adjacent to the TPC station site is owned by the Navajo Nation and the Bureau of Land Management. Inhabitation of the area in the immediate vicinity of the station site is sparse. The nearest residence to the proposed new source is located approximately 800 feet south of the south station boundary. The area immediately south of the station site is also used for livestock grazing.

The land surface at the station slopes gently to the south and is sparsely vegetated with native grasses, juniper, and piñon pine. The land surface elevation is about 7300 feet above mean sea level (fmsl). The station is located on the north side of a broad east-west trending valley just east of the continental divide. The Zuni Mountains to the south rise to about 9100 feet, and the prominent cliffs of the Owl Rock escarpment define the northern edge of the valley. No well defined surface drainages cross the station. A 7.5 minute topographic quadrangle map is included in Appendix F.

# 4.0 Emission Calculations

# 4.1 Phase I Emissions Estimate

An SVE pilot test was completed in November 1993 in order to gather information on potential emissions. The results of the pilot test is included in Appendix D. The estimated emission rates for phase I were calculated based on measurements and samples taken from monitor well 5-34B which exhibited the highest vapor concentrations of VOCs. The method for estimation of emissions is included in Appendix C. The various data and parameters used for each calculation and the results of each calculation are also included in Appendix C. The results for all regulated contaminants are also included in the permit application attached as Appendix A.

Based on the results of the SVE pilot test, the only regulated air contaminant that will approach either 10 pounds per hour or 10 tons per year is total non-methane hydrocarbons (NMHC). Total NMHC emissions is estimated to be 6.75 lb/hr at start-up of the system.

It is typical for emissions of VOCs from soil vapor extraction systems to drop off rapidly after start-up. Therefore, a conservative estimate of emissions during the first month of operation of the phase I system can be made by assuming an average emission rate of 75% of the initial emission rate. This assumption results in a total emission estimate for the first month of operation of 1.85 tons NMHC. The results of these calculations are also shown in the worksheet included in Appendix C.

# 4.2 Phase II Emissions Estimate

An estimate of the emission rates during phase II has been prepared by assuming an average extraction rate of 88 cfm for the duration of phase II and the VOC concentrations measured during the pilot test at the monitor well 5-4B location. The total emissions during operation of the phase II system was estimated assuming an average emission rate of 75% of the phase II initial emission rate. The results of these calculations are also included in Appendix C.

# 4.3 Phase III Emissions Estimate

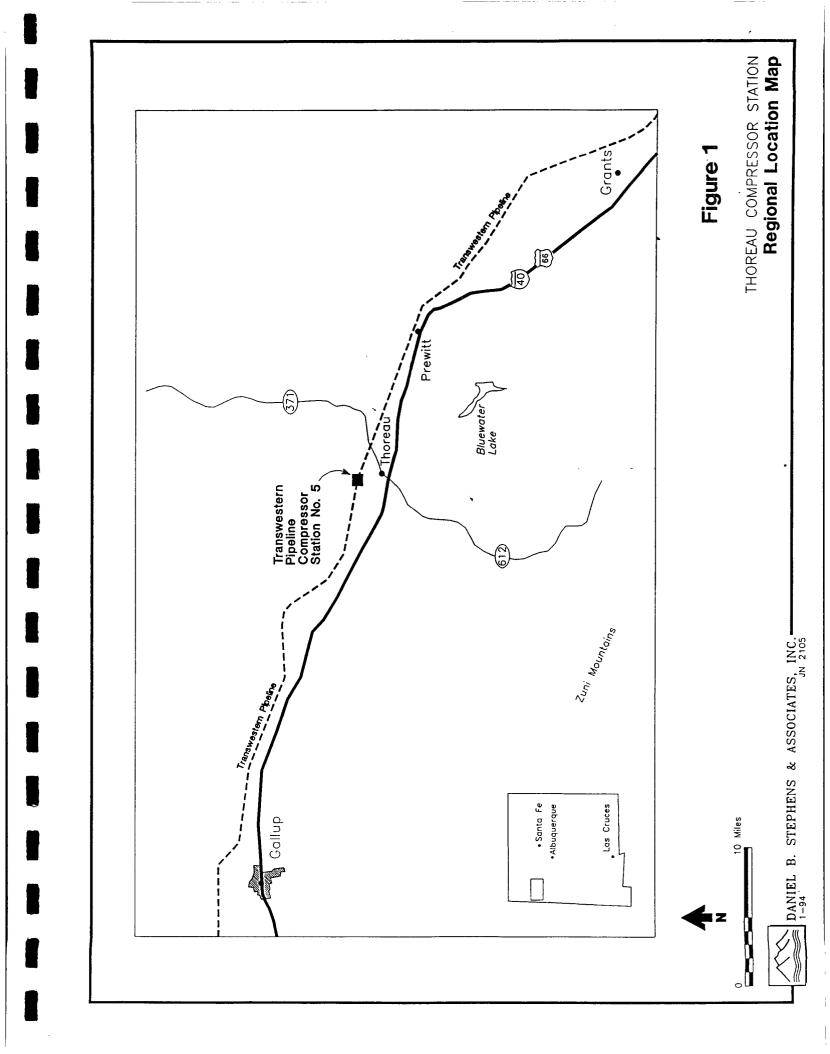
In a similar manner, an estimate for the emission rates during phase III has been prepared by assuming an average extraction rate of 176 cfm for the duration of phase III and the VOC concentrations measured during the pilot test at the monitor well 5-4B location. The total emissions during operation of the phase III system was estimated assuming an average emission rate of 50% of the phase III initial emission rate. The results of these calculations are also included in Appendix C.

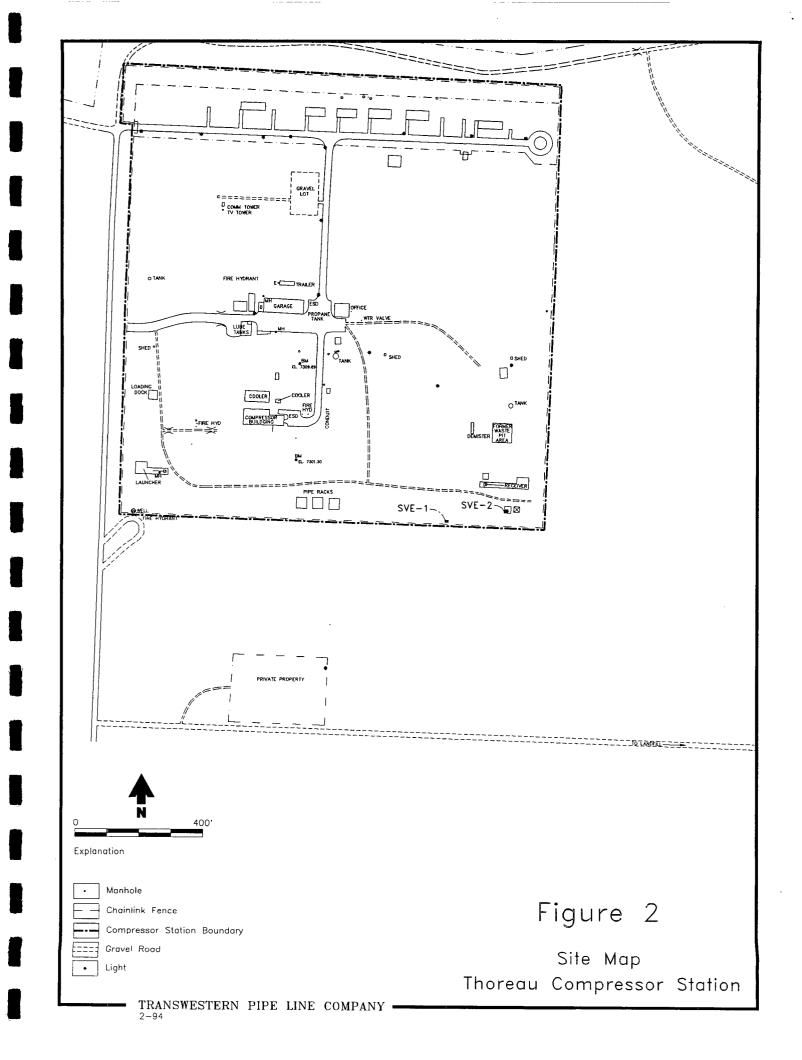
# 4.4 Total Annual Emissions Estimate

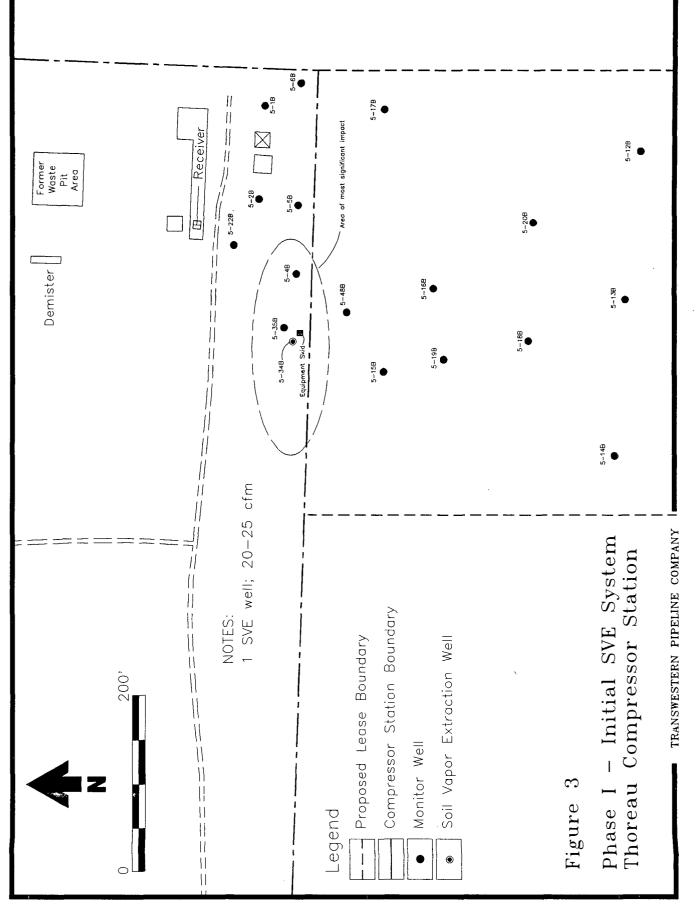
An estimate of maximum emissions anticipated during the first year of operation can be calculated assuming phase I operates for a period of one month, phase II operates for a period of six months, and phase III operates for the remaining five months. These assumptions result in an emission estimate of 4.33 tons NMHC during the first year of operation.

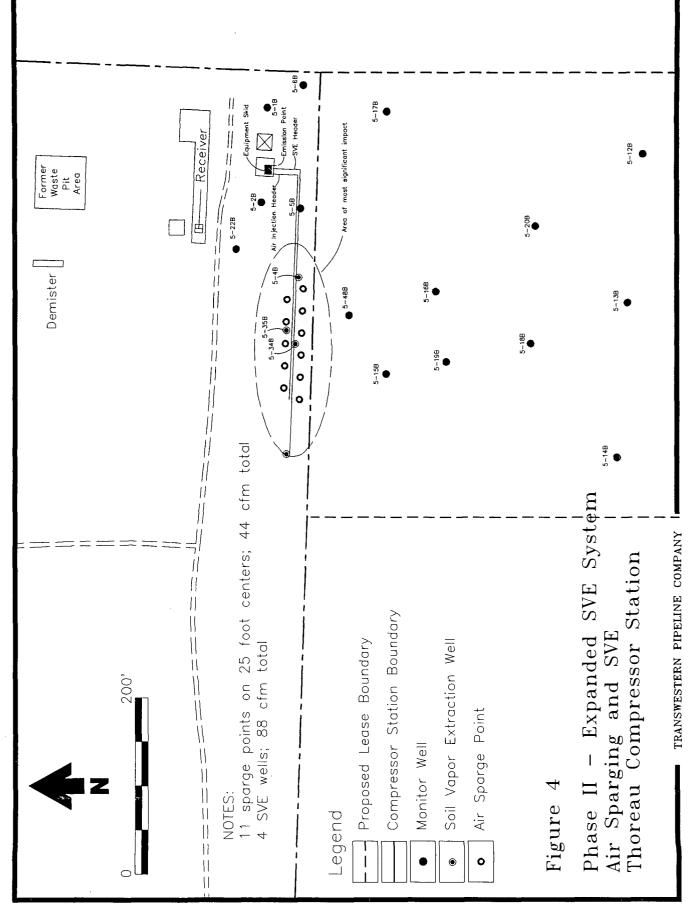
A conservative estimate of total emissions anticipated during the second year of operation can be calculated assuming phase III operates for a period of twelve months and an average emission rate of 50% of the phase III initial emission rate. These assumptions result in an emission estimate of 3.13 tons NMHC during the second year of operation.

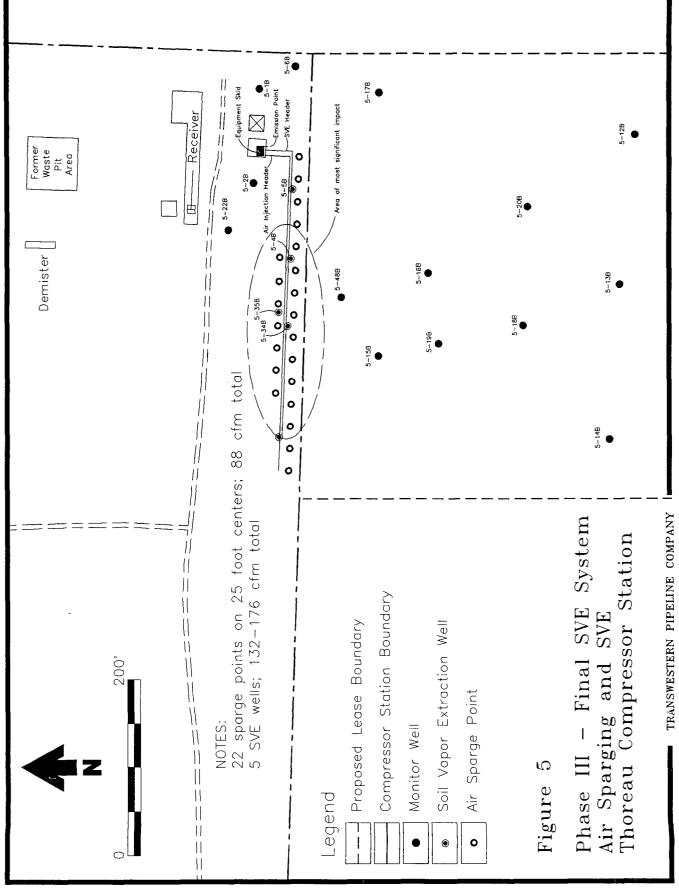
# 5.0 Required Notices


Public notice has been made as required by AQCR 702 and in accordance with the NMED "Guidelines for Public Notification Regarding Permit Application" dated June 1990. Specific details of the public notices are as follows:


- 1. A notice of permit application was sent by certified mail to adjacent landowners and nearby county officials. Adjacent landowners are the Navajo Nation and the Bureau of Land Management. County officials in McKinley and Cibola counties were notified. There are no known municipal officials to notify in the town of Thoreau, New Mexico. A copy of the letters and the returned receipts are included in Appendix E.
- 2. A notice of permit application was posted on March 10, 1994 in four "publicly accessible and conspicuous places". A copy is included in Appendix E. The posted locations were:
  - 1. Compressor station main gate,
  - 2. Thoreau Shopping Center,
  - 3. Thoreau post office,
  - 4. Gasoline service station next to the Thoreau Shopping Center, and
  - 5. St. Bonaventure Mission.
- 3. A notice of permit application was published in a newspaper of general circulation, The Gallup Independent. A copy of the affidavit of publication is included in Appendix E.


4. A notice of permit application was provided in a public service announcement by KXTC Radio in Gallup, New Mexico. A copy of the affidavit of announcement is included in Appendix E.


Figures


Ĩ











.

Appendix A

Permit Application Form

NMED - AIR QUALITY BUREAU       GENERAL AIR QUALITY PERMIT APPLICATION       Revised: November 4, 1992         P.O. BOX 26110       AND NOTICE OF INTENT       Revised: November 4, 1992         SANTA FE, NEW MEXICO 87502       AND NOTICE OF INTENT       FOR THE STATE         TELEPHONE: (505) 827-0070       OF NEW MEXICO       OF NEW MEXICO         Please answer all quentions applicable to your specific business, operation and products.       Please answer all quentions applicable to your specific business, operation and products.	SECTION 1 - GENERAL DATA	Company Name : Transwestern Pipeline Company 2. Application Date: 3-31-94	, Texas 77251 Phone:	r, Jr., P.E. _{Tide} Manager, Permits Group Envr. Aff.	Name and Address of new plant or modification: Name: SVE Vent; Address: Compre-	11101CGU, New PIEALCO 07.323 Is U.S.G.S. quadrangular map or equivalent attached? [2] Location of Plant: County: MCK1nley Range: 13W Township: 14N Section: 20	UTMH:751.4 km UTMV: 3,923.4	Approximate location (direction and distance from nearest town): 2.4 miles NNW of Thoreau, New Mexico		of subsurface vapors potentially containing volatile organic compounds (VOCs). Products: None	Is this a modification to an existing plant? Yes No X If yes, give the date of original construction:	Date of anticipated start of construction: 7/1/94 Date of anticipated Start of Operation: 7/1/94	Maximum Design Plant capacity (specify units) [4]: 176 CFM (Cubic Feet per minute)	Class of land at plant site (private, State, Federal, Indian, etc.): Private	Is this site permanent? <u>Yes</u> If not, how long is it expected to be occupied? NA Date of anticipated startup: 7/1/94	Normal operating schedule: 24 hours per day, 7 days per week, 4 weeks per month, 12 months per year.	Specify maximum operational periode: Continuous	Specify percent annual production by quarters: Dec Feb. <u>25</u> , Mar May <u>25</u> , June - Aug. <u>25</u> , Sep Nov. <u>25</u>	Capital Costs (Reconstruction) : (To include all depreciable components only) {5} Capital cost to build entirely new facility, including modification: <u>\$</u> Capital cost of modification : <u>NA</u>	Are cooling towers used at this facility? NO is water conditioner containing Chromium used in the water of the cooling tower? NA
P. C SA TE	SEC	-	ë.		4.	ف		ij	5. <b>n</b> .		غ	Ű	è.	٦.		6.	0	Ξ.	13.	13.

1

Percent Ash {10} (Use additional sheets if necessary) Percent Sulfur {10} FUEL DATA {5}, {6} Heating Value (State Units) {9} Amount Per Year {8} Electric Electric Fuel Type {7} Rated Capacity
{4} . Equipment Manufacturer • . Type of Equipment {3} Vacuum Blower Vacumm Blower Unit No. {2} SVE-1 SVE-2

SECTION 2 - FUEL USAGE {1}

SECTION 3 - MATERIALS PROCESSED AND PRODUCED

25 cfm (cubic ft per min) 176 cfm (cubic ft.per min) Quantity {4} Specify Units (Use additional sheets if necessary) B. MATERIALS PRODUCED (DO NOT INCLUDE EMISSIONS AND PRODUCTS LISTED IN SECTIONS 6, 7, 8 & 11) Condition {3} NA NA Composition {2} Attached Attached A. RAW MATERIALS PROCESSED 1 Type Soil Vapor Soil Vapor SVE-2 SVE-1 E So.

----

SECTION 4A - LIQUID STORAGE TANKS - MATERIAL DATA - NA

essary)	True Vapor Pressure @ Tm (psia)										
(Use additional sheets if necessary)	Max. Stor. Temp., Tm (°F)										
(Use addition	True Vapor Pressure @ Ta (psia)										
	Avg. Stor. Temp., Ta (°F)										
	Vapor Molecular Weight (lb/lb-mol)							-			
	Liquid Density (lb/gal)										
	Composition {2}										
	Material Name		•								
	Tank No. {1}										

.

÷

SECTION 4B - LIQUID STORAGE TANKS - TANK DATA- NA

۹

,

1		<u> </u>											 	
(y)	Turnovers per Year {9}											•		
(Use additional sheets if necessary)	Annual Throughput (gal/yr) {8}													
additional s	Paint Cond. {7}													
(Use	Roof/ Shell Color {6}													
	Vapor Space H (ft) {5}													
	Diameter (ft)													
	Capacity (bbl)					-	-			-				
	Seal Type {4}													
	Roof Type (3)		• • •											
	Material(s) Stored													
	Date Installed /modif {2}													
	Tank No. {1}													

. •

SECTION 5A - SOLIDS MATERIAL STORAGE - MATERIAL DATA - NA

cessary)	Date Installed or Modified											
(Use additional sheets if necessary)	Composition {4}											
	Storage Type {3}											
	Process Served {2}	-	•			-						
	Material Name											
	Unit No. {1}											

,

. .

.

ļ

SECTION 5B - MATERIAL STORAGE - STORAGE TYPE - NA

:

1

(Use additional sheets if necessary)	Dust Control (Storage or Transfer) {3}												
(Use additional	Annual Throughput												
	Max. Hourly Throughput (units)	: 	•	•									
	Transfer or Transport method {2}					•							
	Unit No. {1}												

SECTION 6 - HAZARDOUS, TOXIC AIR POLLUTANTS {1}, OTHER CHEMICALS, AND ODORS

(Use additional sheets if necessary) bescribe any hazardous air pollutants and toxic chemicals used or emitted in plant processes. See AQCR 702 Part Three list and 1990 CAAA Title III. You may need to expand the information and discussion with respect to compliance with AQCR 702 Part Three list and 1990 CAAA Title III compliance beyond this application form in the permit application package. {2}

Unit {3}	Description of Chemicals {4}	Quantity Emitted to Atmosphere {5}	How, Where Emitted {6}
SVE-1	Benzene	8:84 1b/hr *	Not listed on AQCR 702 Part III
SVE-1	Ethyl Benzene	0.03 15/hr* 0.01 ton.yr	Below AQRC 702 PartIII thresholds
SVE-1	Toluene	0.26 lb/hr* 0.07 ton/yr	Below AQRC 702 Part III Thresholds
SVE-1	Xylene (0-,m-,& p-)	0.17 1b/hr* 0.05 ton/yr	Below AORC 702 Part III Thresholds
SVE-1	Kexanes	1.07 1b/hr* 0.29 ton/yr	Below AQRC 702 Part III Thresholds
SVE-1	Octanes	3.00 lb/hr* 0.82 ton/yr	Below AQRC 702 Part III Thresholds
SVF-1	Nonanes	0.46 lb/hr* 0.12 ton/yr	Below AORC 702 Part III Thresholds
SVE-2	Benzene	0.002 1b/hr* 0.003 ton/yr	Not listed on AQCR 702 Part III
SVE-2	Ethyl Benzene	0.02 lb/hr * 0.02 ton/yr	Below AORC 702 Part III Thresholds
SVE-2	Toluene	0.09 1b/hr* 0.10 ton/vr	Below AORC 702 Part III Thresholds
SVE-2	Xvlene (0m-&p-)	0.25 1b/hr* 0.29 ton/vr	Below AORC 702 Part III Thresholds
SVE-2	Bexanes	0.00 lb/hr* 0.00 ton/yr	Below AORC 702 Part III Thresholds
SVF-2	Octanes	1.07 1b/hr* 1.24 ton/yr	Relow AORC 702 Part 111 Threeholds
SVE-2	Nonanes	0.40 Ib/hr* 0.46 ton/yr	Below AQRC 702 Part III Thresholds
	Mavimum setimated amindan wate		

* Maximum estimated emission rate

* Maximum estimated emission rate

۰,

		POL POLIDMENT			ILTANTC DA	UTTED TO CT				
	CON	CONTROL EQUIPMENT		- 1	LUIANIS EN	AIK PULLUIANIS EMILLED TU STACKS [3]	ACKS {3}			Control Efficiency
No.		Manifootinan	Pollutant	tant No. 1	Pollut	Pollutant No. 2	Polluta	Pollutant No. 3 {6}	% by Weicht	How Determined (7)
ŧ	Type {2}	and Model No.	Type {4}	Quantity {5}	Type {4}	Quantity {5}	Type {4}	Quantity {5}	weigun	
				*6.75 lb/hr		lb/hr		lb/hr		
SVE-1	NONE	1.	VOCB	1.85 tn/yr		tn/yr		tn/yr	0	
				lb/hr		lb/br		lb/hr		
		-		tn/yr		tn/yr		ta/yr		
				*2.15 lb/br		lb/hr		lb/br		
SVE-2	NONE		VOCs	2.48 tm/yr		ta/yr		to/yr	0	
				lb/hr		lb/hr		lb/hr		
				ta/yr		ta/yr		tn/yr		
				lb/hr		lb/br		lb/br		
				ta/yr		ta/yr		tn/yr		
				lb/hr		lb/hr		lb/hr		
		-		ta/yr		ta/yr		tn/yr		
				lb/hr		lb/hr		lb/br		
		-		tu/yr		tn/yr		tn/yr		
				lb/hr		lb/hr		lb/hr		
				tn/yr		ta/yr		tn/yr		
				lb/br		lb/hr		lb/hr		
				tn/yr	-	tn/yr		tn/yr		
				lb/hr		lb/hr		lb/hr		
<u> </u>				tu/yr	-	tn/yr		tn/yr		-
				lb/hr		lb/hr		lb/hr		1
<u> </u>				ta/yr	-	tn/yr		tn/yr		
				lb/hr		lb/br		lb/hr		
4=		. '	:	tn/yr		tn/yr		tn/hr		
				lb/hr		lb/hr		lb/hr		
						en/me				

1

,

*Maximum estimated emission rate

1

Location {5} NA NA SAMPLING PORTS (Use additional sheets if necessary) Size NA NA Number NA NA Moisture % by Volume 3.3% (est.) 3.3% (est.) . ---EXIT GAS CONDITIONS {4} Velocity fi/sec 19.1 19.1 . Temperature °F 70°F 70°F Stack Inside Exit Diameter (c) J NA NA Stack Height ft {2} No Stack No Stack E So. SVE-2 SVE-1

,

,

**SECTION 9 - STACK DATA** 

SECTION 10 - EMISSION MEASUREMENT EQUIPMENT - NA

(Use additional sheets if necessary)

_		 				
llocessary)	Accuracy					
	Sensitivity					
	Range {2}					
	Manufacturer - Model No.	-				
	Type of Instrument {1}					
	Pollutant					
	Unit No.					

-----

SECTION 11 - WASTE PRODUCT DISPOSAL (SOLID AND LIQUID WASTES, AND AUXILIARY INCINERATION, AND OTHER EMISSIONS NOT COVERED IN SECTIONS 4 OR 5) - NA

Auxiliary Incineration Operation: AQCR 2000 or AQCR 2020 may apply. INCINERATION OF HAZARDOUS MATERIALS IS NOT ALLOWED UNDER AQCR 702. Normal on-site combustion operating schedule: ______ hours per day ______ days per week ______ weeks per year
 Seasonal or peak combustion operating periods (specify): ______

B. Waste Pi	B. Waste Products or Emissions:	IS:				(Use	(Use additional sheets if necessary)	if necessary)
Unit No. {1}	Waste I	Waste Material	Method of Disposal {4}	Incinerator Capacity	Auxillary Fuel	Type and Efficiency of Air Cleaning	ESTIMAT	ESTIMATES OF AIR POLLUTANTS, IF ANY
	Type {2}	Amount [3]		Specify Units	Used {5}	Equipment {6}	Type {7}	Quantity Per Year {8}
		/br						/hr
		/ <b>y</b> r						/yr
		/hr						/hr
		/yr						lyr
		/br						/br
		/yr						lyr
		/Pr				-		. /hr
		/yr						/yr
		/hr						γµr
		/yr						/yr
		/hr						/br
4		lyr						/yr
		/br						/hr
		/yr						/yr
		/hr						/Jr
		/yr						/yr
		/hr						/hr
		/yr						/yr
		/hr						/hr
		/yr						/yr

### **SECTION 12 - CERTIFICATION**

2

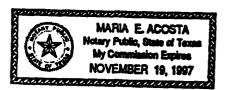
I. Fenley "Ted" Ryther, Jr., P.E. hereby certify that the information and data submitted in this application are completely true and as accurate as possible, to the best of my personal knowledge and professional expertise and experience.

Signed this <u>3154</u> day of <u>March</u>, 19<u>94</u>, upon my oath of affirmation, before a notary of the State of  $\underline{\neg exas}$ 

SIGNATURE (Authorized Company Representative)

March 31, 1994 DATE

Fenley "Ted" Ryther, Jr., P.E. Title: Manager, Permits Group, Envr. Aff. Enron Operations Corp. PRINTED NAME


Subscribed and sworn to before me on this 3154 day of March. 1994 .

My authorization as a Notary of the State of  $\underline{\neg} \underline{\neg} \underline{\epsilon} \times \underline{a} \underline{\varsigma}$  expires on the <u>1446</u> day of November, 1997.

1211 E. M.

A E HIRS 'S PRINTED NAM

-31-94



Appendix B

----

Permit Application Checklist



### State of New Mexico ENVIRONMENT DEPARTMENT

JUDITH M. ESPINOSA SECRETARY

RON CURRY

DEPUTY SECRETARY

AIR QUALITY BUREAU

BRUCE KING GOVERNOR Harold Runnels Building 1190 St. Francis Drive, P.O. Box 26110 Santa Fe, New Mexico 87502 (505) 827-0070

#### Air Quality Notice of Intent and Permit Application Checklist

This checklist is designed to help applicants to include the required elements under AQCR 703.1, <u>Notice of Intent</u>, AQCR 702, <u>Permits</u> and AQCR 707, <u>PSD</u>. Each application submitted shall contain the required items listed below, depending on the regulation under which the application is being submitted, before the Air Quality Bureau will rule the application complete under AQCR 702 or make a determination that no permit is required under AQCR 703.1. If each item on the appropriate checklist can not be checked prior to submitting the application, the application will be ruled incomplete. Applications which are ruled incomplete because of missing information will delay any determination or the issuance of the permit. The Department reserves the right to request additional relevant information prior to ruling the application complete in accordance with AQCR 702, Part Two D.1.i.

If an application is being submitted for a determination that no permit is required, complete SECTION A. If an application is being submitted for a permit, complete SECTION A and B. If any application is being submitted for a PSD permit under AQCR 707, complete SECTION A, B and C.

A copy of this checklist shall accompany the application.

SECTION A: AQCR 702, Permits, 703.1, Notice of Intent, and 707, PSD

Applications under this section shall:

- 1. [.] be made on a form provided by the Department. Additional text, tables, calculations or clarifying information may also be attached to the form.
- 2. [[] contain the applicant's name, address, and the names and addresses of all other owners or operators of the emission sources.
- 3. [-] contain the name, address, and phone number of a person to contact regarding questions about the facility.
- 4.  $[\nu]$  contain the date of application.

Page 1 of 6

EDRUG FREE

- 5. [/] contain the company name which identifies this particular site.
- 6. [-] contain a written description of the facility and/or modification including all operations affecting air emissions.
- 7. [/] contain the maximum and standard operating schedules for the source after completion of construction or modification in terms of hours per day, days per week, and weeks per year.
- 8. [>] contain a map, such as a 7.5 minute USGS topographic quadrangle, showing the exact location of the source.
- 9. [~] contain the Section, Range, Township.
- 10. [-] contain the UTM zone and UTM coordinates.
- 11. [-] include the four digit Standard Industrialized Code (SIC).
- 12. [-] contain the types and <u>potential uncontrolled</u> amounts of any regulated air contaminants the new source or modification will emit. Complete appropriate sections of the application; attachments can be used to supplement the application, but not replace it.

if the "potential emission rate" for any one criteria pollutant from a new facility is greater than 10 pounds per hour or 25 tons per year a permit is required - complete Section A and B. If as a result of a modification an existing facility's potential emission rate for any one pollutant is greater than 10 pounds per hour or 25 tons per year a permit is required - complete Section A and B. If the emission rate for a toxic pollutant exceeds the thresholds in AQCR 702 Part Three a permit is required - complete Section A and B.

- Potential emission rate" under AQCR 702 means the uncontrolled emission rate at maximum capacity, prior to or in the absence of pollution control equipment, for one hour or one full year (8760 hours per year).
- 13. [] contain the types and <u>controlled</u> amounts of any regulated air contaminants the new source or modification will emit. Complete appropriate sections of the application; attachments can be used to supplement the application, but not replace it.

Page <u>2</u> of <u>6</u>

if the "potential to emit" for any one criteria pollutant from a new facility exceeds 100 tons per year (major source) for one of the 28 sources listed in Table 1 of AQCR 707, or 250 tons per year (major source) for all other sources, a PSD permit is required - complete Section A, B, and C. If the source is an existing major source and a modification occurs which results in an actual increase above the threshold in Table 2 of AQCR 707 a PSD permit is required - complete Section A, B, and C.

"potential to emit" under AQCR 707 means the controlled emission rate at maximum capacity, after pollution control equipment, for one full year (8760 hours). "Actual increase" means the emission rate to the atmosphere after all offsets or reductions elsewhere at the plant have been considered.

- 14. [>] contain the basis or source for each emission rate (include the manufacturer's specification sheets when used as the source)
- 15. [/] contain all calculations used to estimate <u>potential</u> <u>uncontrolled</u> and <u>controlled</u> emissions.
- $_{t} \wedge A$  16. [] contain a description of any air pollution control device or control method to be utilized.
- pA 17. [] contain the basis for the estimated control efficiencies and sufficient engineering data for verification of the control equipment operation, including if necessary, design drawings, test reports, and factors which affect the normal operation (e.g. limits to normal operation).
- $\mathcal{N}^{A}$  18. [] contain fuel data for each existing and/or proposed piece of fuel burning equipment.
- pk20. [] contain the stack and exhaust gas parameters for all existing and proposed emission stacks.
  - 21. [~] be signed under oath or affirmation by the operator, the owner, or an authorized representative, certifying to the best of his or her knowledge the truth of all information submitted,

Page <u>3</u> of <u>6</u>

#### SECTION B: AQCR 702, Permits and 707, PSD

Applications under this section shall:

- 22. [>] contain all the elements in SECTION A of this checklist.
- 23. [-] consist of five copies of this entire application package, including five copies of the dispersion modelling <u>summary</u> <u>report</u> in each application. Only one complete copy of the dispersion modelling study, including computer disks with all input/output files, should be submitted.
- $N^{R}$  24. [] contain a regulatory compliance discussion demonstrating compliance with each applicable regulation (state & federal) and ambient air quality standard, PSD increments (if baseline triggered), and provisions of air toxics, if applicable.
- $_{NA}$  25. [] contain the required air quality modeling analysis.
- ^µ^A 26. [] the "Air Quality Modeling Checklist for Permit Applications" has been reviewed and the required information has been submitted with the application.
- NA 28. [] contain a process flow sheet, including a material balance, of all components of the facility which would be involved in routine operations and emissions.
- $\mu^{\hat{\beta}}$  29. [] contain a full description, including all calculations and the basis for all control efficiencies presented, of the equipment to be used for air pollution control. This shall include a process flow sheet or, if the Department so requires, layout and assembly drawings, design plans, test reports and factors which affect the normal equipment operation, including control and/or process equipment operating bounds.
- $\mathcal{N}^{\hat{K}}$  30. [] contain a description of the equipment or methods proposed by the applicant to be used for emission measurement.

contain the following public notice announcement documentation in accordance with AQCR 702, Part Two D.2;

- 31. [-] adjacent land owners have been notified of the proposed application,
- 32. [/] municipalities and counties have been notified,

Page 4 of  $\underline{6}$ 

- 33. [/] one classified or legal advertisement has been published in a local newspaper,
- 34. [/] one other advertisement has been published in a local newspaper,
- 35. [/] notice of the application has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (ie: post office, library, grocery store, etc.)
- 36. [[] a public service announcement has been made on at least one radio or television station which serves the municipality or county in which the source proposes to locate.

The public notice shall contain the following;

- 37. [/] the applicant's name, address and the names and addresses of all other owners or operators of the emission sources,
- 38. [-] the date of application submittal,
- 39. [_] a description of the plant or equipment process for which a permit is sought,
- 40. [...] an estimate of the maximum controlled emission rate for the entire facility in pounds per hour and tons per year for each pollutant, or in the case of a modification to an existing facility, the maximum controlled emission rates for both the modification and the entire facility after the modification,
- 41. [.] the maximum and standard operating schedules expected at the facility after completion of construction (hrs/day, days/wk, wks/yr),
- 42. [>] the current address of the Department to which comments and inquiries may be directed,

New Mexico Environment Department Air Quality Bureau - Technical Analysis & Permits Section 1190 St. Francis Dr., P.O. Box 26110 Santa Fe, New Mexico 87502 (505) 827-0070

43. [-] include the \$100.00 filing fee in accordance with AQCR 700.

Page <u>5</u> of <u>6</u>

____

SECTION C: AQCR 707, PSD

NK An applicant for a PSD permit shall:

- 44. [] arrange a pretest meeting to be held in Santa Fe, which includes the federal land managers, to discuss BACT, modeling, and items of particular interest.
- 45. [] submit the BACT analysis for review prior to submittal of the application (no application will be ruled complete until the final determination regarding BACT is made and this determination can ultimately affect information provided in the application),
- 46. [] submit a modeling protocol prior to submitting the permit application.
- 47. [] submit the monitoring exemption analysis prior to submittal of the application.

NA An application for a PSD permit shall:

- 48. [] contain all the elements in SECTION A and B of this checklist.
- 49. [ ] contain an analysis on the impact on visibility.
- 50. [] contain an analysis on the impact on soils.
- 51. [] contain an analysis on the impact on vegetation, including state and federal threatened and endangered species.

52. [] contain documentation that the federal land manager of a Class I area within 100 km of the site has been notified and provided a copy of the application, including the BACT analysis and modeling results.

53. [] contain a completed EPA PSD checklist.

Page  $\underline{6}$  of  $\underline{6}$ 

Appendix C

# Method for Estimation of Emissions and Calculation Results

### Method for Estimation of Uncontrolled Emissions from the SVE-1 & SVE-2 Proposed New Sources Transwestern Pipeline Company Compressor Station No. 5 Remediation

1. Vapor samples collected from monitor well 5-34B during an SVE pilot test were analyzed by two laboratories; Core Laboratories and Hall Environmental Analysis Laboratory (HEAL). The Core Lab results indicated higher Non-Methane Volatile Organic Compounds (NMVOC) concentrations than the HEAL results and were used for emission estimations. The concentrations of NMVOC reported by Core Lab are shown in Table 1.

Table 1. Estimated vapor concentrations and emission rates for NMVOC during phase I system operation.

Compound	Concentration ppmv	Concentration ug/L	Emission Rate lb/hr	Emissions tons
benzene	192	474	0.04	0.01
toluene	969	2821	0.26	0.07
ethybenzene	96	322	0.03	0.01
xylene (m-, p-, & o-)	552	1853	0.17	0.05
hexanes	4200	11445	1.07	0.29
heptanes	5500	17422	1.63	0.45
octanes	8900	32131	3.00	0.82
nonanes	1200	4867	0.46	0.12
decanes	200	900	0.08	0.02
undecanes	0	0	0.00	0.00
Total NMVOC	21809	72236	6.75	1.85

2. The following calculation was performed to convert concentrations from ppmv to ug/L:

$$C_{(ug / L)} = C_{(ppmv)} \times \frac{MW_x \times P}{R \times T}$$

where,	C(ppmv)	=	concentration of compound "x" in parts per million by volume;
	MWx	=	molecular weight of compound "x" in grams/mole;
	Р	=	atmospheric pressure in atmospheres (1.0 atm = 14.7 psia at sea level); this was
			estimated to be 0.76 atm at an elevation of 7300 feet above mean sea level;
	R	=	universal gas constant (0.08205 L-atm/°K-mole); and
	Т	=	temperature in degrees °K (assumed to be 293 °K or 68 °F).

3. The emission rates were calculated as follows:

$$M_{x} = C_{x} \times Q \times \frac{1 \text{ kg}}{1.0\text{E09 ug}} \times \frac{2.203 \text{ lb}}{1 \text{ kg}} \times \frac{28.32 \text{ L}}{1 \text{ ft}^{3}} \times \frac{60 \text{ min}}{1 \text{ hr}}$$

where,	Mx	= emission rate of compound "x" in lb./hour;
	Сх	= concentration of compound "x" in ug/L; and
	Q	= vapor flow rate in cubic feet per minute; the design flow rate for phase I of 25.0 cfm
		was used in the following calculations.

Method for Estimation of Uncontrolled Emissions from the SVE-1 & SVE-2 Proposed New Sources

4. The total emissions during the first month of operation of the phase I system were estimated as follows:

$$M_{x(tons)} = M_{x(lb./hr)} \times RF \times \frac{24 \text{ hr}}{1 \text{ day}} \times \frac{30 \text{ day}}{1 \text{ month}} \times \frac{1 \text{ ton}}{2000 \text{ lb}}$$

where, RF = an adjustment factor to account for a decline in vapor concentration with time; this was assumed to be 0.75 for the first month of operation of the phase I system.

- 5. A copy of a spreadsheet with the results of all calculations is attached. The calculations for the phase II and III systems were identical to the phase I calculations with the following exceptions:
  - The initial vapor concentrations for the phase II and III systems assumed the concentrations measured during the pilot test in monitor well 5-4B;
  - The vapor flow rate for the phase II and III systems was assumed to be the design flow rates of 88 cfm and 176 cfm, respectively;
  - The adjustment factor used to account for the decline in vapor concentration with time for the phase II and III systems was 0.75 and 0.50, respectively.

### Estimated Uncontrolled Emission Calculations for the SVE-1 & SVE-2 Proposed New Sources Transwestern Pipeline Company Compressor Station No. 5 Remediation

.

Note: Compound concentrations based on Core Lab analysis of pilot test samples.

	-	(SVE-1)					@ cfm 25.0000		1.0000
Compound	C(ppmv)	MW(gm/mole)	P(atm)	R(L-atm/K-mole)	T(K)	C(ug/L)	M(lb/hr)	Factor	M(tons)
benzene	192	78.1	0.76	0.08205	293	474.05	0.0443	0.7500	0.012
toluene	969	92.1	0.76	0.08205	293	2821.31	0.2637	0.7500	0.072
ethylbenzene	96	106.2	0.76	0.08205	293	322.30	0.0301	0.7500	0.008
xylene(m-, p-, &o-)	552	106.2	0.76	0.08205	293	1853.24	0.1732	0.7500	0.047
hexanes	4200	86.2	0.76	0.08205		11445.21	1.0699	0.7500	0.292
heptanes	5500	100.2	0.76	0.08205	293	17421.99	1.6287	0.7500	0.445
octanes	8900	114.2	0.76	0.08205	293	32130.94	3.0037	0.7500	0.822
	1200	128.3	0.76	0.08205	293	4867.16	0.4550	0.7500	0.124
nonanes	200	142.3	0.76	0.08205	293	899.71	0.0841	0.7500	0.023
decanes	200	142.3	0.76	0.08205	293	0.00	0.0000	0.7500	0.002
undecanes Total NMHC	21809	104.8	0.76	0.08205	293	72235.91	6.7529	0.7500	1.848
Phase II Emission	s Estimate	(SVF-2)					@ cfm		@ month
		(= + = =)					88.0000		6.0000
Compound	C(ppmv)	MW(gm/mole)	P(atm)	R(L-atm/K-mole)	T(K)	C(ug/L)	M(lb/hr)	Factor	M(tons)
benzene	1	78.1	0.76	0.08205	293	2.47	0.0008	0.7500	0.001
toluene	31	92.1	0.76	0.08205	293	90.26	0.0297	0.7500	0.048
ethylbenzene	6	106.2	0.76	0.08205	293	20.14	0.0066	0.7500	0.010
xylene(m-, p-, &o-)	76	106.2	0.76	0.08205	293	255.16	0.0840	0.7500	0.13
hexanes	0	86.2	0.76	0.08205	293	0.00	0.0000	0.7500	0.000
heptanes	100	100.2	0.76	0.08205	293	316.76	0.1042	0.7500	0.17
octanes	300	114.2	0.76	0.08205	293	1083.07	0.3564	0.7500	0.58
nonanes	100	128.3	0.76	0.08205	293	405.60	0.1335	0.7500	0.219
decanes	0	142.3	0.76	0.08205	293	0.00	0.0000	0.7500	0.00
undecanes	0	156.3	0.76	0.08205	293	0.00	0.0000	0.7500	0.00
Total NMHC	614	112.0	0.76	0.08205	293	2173.45	0.7152	0.7500	1.17
Phase III Emissior	ns Estimate	(SVE-2)					@ cfm		@ month 5.0000
							170.0000		
Compound	C(ppmv)	MW(gm/mole)	P(atm)	R(L-atm/K-mole)	T(K)	C(ug/L)	176.0000 M(lb/hr)	Factor	M(tons)
·	C(ppmv) 1	MW(gm/mole) 78.1	P(atm) 0.76	R(L-atm/K-mole) 0.08205	T(K) 293	C(ug/L) 2.47		Factor 0.5000	M(tons)
benzene	1	78.1	0.76	0.08205	293	2.47	M(lb/hr) 0.0016	0.5000	M(tons 0.00
benzene toluene	1 31	78.1 92.1	0.76 0.76	0.08205 0.08205	293 293	2.47 90.26	M(lb/hr) 0.0016 0.0594	0.5000 0.5000	M(tons 0.00 0.05
benzene toluene ethylbenzene	1 31 6	78.1 92.1 106.2	0.76 0.76 0.76	0.08205 0.08205 0.08205	293 293 293	2.47 90.26 20.14	M(lb/hr) 0.0016 0.0594 0.0133	0.5000 0.5000 0.5000	M(tons 0.00 0.054 0.01
benzene toluene ethylbenzene xylene(m-, p-, &o-)	1 31 6 76	78.1 92.1 106.2 106.2	0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205	293 293 293 293	2.47 90.26 20.14 255.16	M(lb/hr) 0.0016 0.0594 0.0133 0.1679	0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes	1 31 6 76 0	78.1 92.1 106.2 106.2 86.2	0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000	0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.15
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes	1 31 6 76 0 100	78.1 92.1 106.2 106.2 86.2 100.2	0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.00 0.19
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes	1 31 6 76 0 100 300	78.1 92.1 106.2 106.2 86.2 100.2 114.2	0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.007 0.054 0.013 0.153 0.000 0.190 0.650
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes	1 31 6 76 0 100	78.1 92.1 106.2 106.2 86.2 100.2	0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.007 0.054 0.013 0.153 0.000 0.190 0.650 0.243
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes nonanes	1 31 6 76 0 100 300	78.1 92.1 106.2 106.2 86.2 100.2 114.2	0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.007 0.054 0.013 0.153 0.000 0.190 0.650 0.243
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes nonanes decanes	1 31 6 76 0 100 300 100	78.1 92.1 106.2 106.2 86.2 100.2 114.2 128.3	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.005 0.015 0.155 0.000 0.190 0.656 0.244 0.000
benzene toluene ethylbenzene kylene(m-, p-, &o-) nexanes octanes nonanes decanes decanes	1 31 6 76 0 100 300 100 0	78.1 92.1 106.2 106.2 86.2 100.2 114.2 128.3 142.3	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.007 0.054 0.013 0.153 0.000 0.190 0.650 0.243 0.000
Compound benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes nonanes decanes undecanes Total NMHC Summation of Em	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.2085 0.2669 0.2669 0.0000 0.0000 1.4304 Second Year	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes nonanes decanes undecanes Total NMHC	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 0.0000 1.4304	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.000 0.190 0.650 0.24 0.000
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes nonanes decanes undecanes Total NMHC Summation of Em	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 0.0000 1.4304 Second Year Emissions	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.007 0.054 0.013 0.153 0.000 0.190 0.650 0.243 0.000
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes octanes octanes nonanes decanes undecanes Total NMHC <b>Summation of Em</b> Compound benzene	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.007 0.054 0.013 0.153 0.000 0.190 0.650 0.243 0.000
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes octanes octanes nonanes decanes undecanes Total NMHC <b>Summation of Em</b> Compound benzene toluene	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons 0.0036	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.000 0.190 0.650 0.24 0.000
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes nonanes decanes undecanes Total NMHC Summation of Em Compound	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons 0.0036 0.1301	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.000 0.190 0.650 0.24 0.000
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes octanes decanes undecanes Total NMHC <b>Summation of Em</b> Compound benzene toluene ethylbenzene xylene(m-, p-, &o-)	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons 0.0036 0.1301 0.0290	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.00 0.19 0.65 0.24 0.00 0.00
benzene toluene ethylbenzene kylene(m-, p-, &o-) nexanes beptanes octanes docanes docanes todecanes Total NMHC Summation of Em Compound benzene toluene ethylbenzene kylene(m-, p-, &o-) hexanes	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons 0.0036 0.1301 0.0290 0.3678	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.00 0.19 0.65 0.24 0.00 0.00
benzene toluene athylbenzene kylene(m-, p-, &o-) nexanes beptanes boctanes doctanes doctanes tolanes Total NMHC <b>Summation of Em</b> Compound benzene toluene athylbenzene kylene(m-, p-, &o-) hexanes	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons 0.0036 0.1301 0.0290 0.3678 0.0000 0.4566	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.00 0.19 0.65 0.24 0.00 0.00
benzene toluene athylbenzene kylene(m-, p-, &o-) nexanes heptanes octanes nonanes decanes undecanes Total NMHC Summation of Em Compound benzene toluene athylbenzene kylene(m-, p-, &o-) nexanes heptanes octanes	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 0.0000 1.4304 Second Year Emissions tons 0.0036 0.1301 0.0290 0.3678 0.0000 0.4566 1.5610	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.00 0.19 0.65 0.24 0.00 0.00
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes ootanes nonanes decanes undecanes Total NMHC Summation of Em Compound benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes ootanes	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons 0.0036 0.1301 0.0290 0.3678 0.0000 0.4566 1.5610 0.5846	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.00 0.19 0.65 0.24 0.00 0.00
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes nonanes decanes undecanes Total NMHC <b>Summation of Em</b> Compound benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes octanes nonanes decanes	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons 0.0036 0.1301 0.0290 0.3678 0.0000 0.4566 1.5610 0.5846 0.0000	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.00 0.19 0.65 0.24 0.00 0.00
benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes ootanes nonanes decanes undecanes Total NMHC Summation of Em Compound benzene toluene ethylbenzene xylene(m-, p-, &o-) hexanes heptanes ootanes	1 31 6 76 0 100 300 100 0 0 614	78.1 92.1 106.2 106.2 86.2 100.2 114.3 142.3 156.3 112.0	0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205 0.08205	293 293 293 293 293 293 293 293 293 293	2.47 90.26 20.14 255.16 0.00 316.76 1083.07 405.60 0.00 0.00 2173.45	M(lb/hr) 0.0016 0.0594 0.0133 0.1679 0.0000 0.2085 0.7128 0.2669 0.0000 1.4304 Second Year Emissions tons 0.0036 0.1301 0.0290 0.3678 0.0000 0.4566 1.5610 0.5846	0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	M(tons 0.00 0.05 0.01 0.15 0.00 0.19 0.65 0.24 0.00 0.00

Appendix D

· · · - · · · - -----

------

- ----

I

-

# **SVE Pilot Test Information**



9111 Katy Freeway Suite 303 Houston, TX 77024 (713) 468-6688: TEL (713) 468-6689: FAX *Manufacturers Distributor* RSI S.A.V.E. System

November 15, 1993

Ms JoAnn Hilton Hydrogeologist and Manager Daniel B. Stephens & Associates, Inc. 6020 Academy N.E. Ste 100 Albuquerque, NM 87109

### Dear Ms Hilton:

Enclosed is the report on Pilot Testing performed on November 3rd, 4th, and 5th, 1993 at DBS&A Project No. 2105, Enron Corporation, Transwestern Compressor Station #5, Thoreau, NM. During the tests, AcuVac used the S.A.V.E. Remediation System with various instrumentation including the Horiba Analyzer. The report is divided into six separate tests that were conducted over a three day period.

#### Project Scope:

Connect the S.A.V.E. System to observation wells B-35B, B-34B, B-4B, B-5B, B-2B and B-6B, and apply vacuum to these wells; record the vacuum and well flow and record all system data - including fuel flow (propane) - and estimate the fuel value from the well vapors. Install and observe the magnehelic gauges on the selected outer observation wells to determine vacuum radius of influence or if the selected recovery well is in vacuum communication with the outer observation wells. Take influent vapor samples to forward for laboratory analysis and provide on-site Horiba Analyzer data on HC ppmv,  $CO_2$  and CO, % by volume. Operate the S.A.V.E. System in a manner that all well vapors are passed through the engine to destruct the contaminants and exhausted to meet air emission standards and comply with applicable State and Federal laws and safety standards.

### Fuel Use Information:

When the S.A.V.E. System is running 100% on fuel from recovery well vapors at an altitude of 7,300 ft, the maximum contaminated fuel destruction or burn rate is approximately 9.3 lbs/hr or 1.4 gallons of gasoline per hour. Maximum propane flow at full load was 115 CFH at this altitude at ambient air temperatures from 30° to 50°F and engine speed at 2,700 RPM. Therefore, when the flow meter is on 60 CFH, the well vapors are contributing approximately 50% of the fuel value, or approximately 4.65 lbs/hr. Other percentages are calculated accordingly. Contaminant in the form of gasoline will produce approximately 125,000 BTU/hr. Therefore, the fuel requirement Ms JoAnn Hilton Page 2 of 4

for these tests are estimated to produce 175,000 BTU/hr. Propane requirements without fuel value from well flow is 1.81 gals/hr.

Summary of Data: 6 Tests See Exhibit A.

### **Discussion of Data:**

There will be variations in well distances compared to an accurate survey. Some well distances were measured while others were estimated from the scale plotted on a location map.

Test #1 was a 24 hour SVE test conducted from recovery well (RW) 5-35B. This well is constructed from 4" PVC pipe and screened from 31.3 to 61.3 ft bgs with a depth of groundwater at test time of 50.03 bmp. Prior to beginning the test, magnehelic gauges were used to check the static vacuum or pressure existing in the selected observation wells. With the exception of well 5-37I, all selected observation wells indicated a pressure under static conditions. From my experience in observing SVE test data, this is not uncommon. Observation wells 5-36E and 5-37I are reported to be screened below the groundwater level and erratic data may occur during SVE testing. Later, we found out during SVE Test #5, that 5-2B was a dead well (no well flow) and the observed vacuums /pressures were probably not influenced by the RW vacuum with the exception of groundwater level changes.

Prior to starting the test, the recovery well PVC connecter and boot were modified to accept transducers for sensing groundwater level changes. All S.A.V.E.'s systems were checked and magnehelic gauges set at "0".

The 24 hour test provided good steady data from observation wells 5-34B, 5-4B, 5-22B and 5-5B. This is presented in the Summary of Data. From this data, 5-34B and 5-4B should be considered within the radius of influence and it is highly probable that 5-22B and 5-5B will effectively be within the influence over time (see Figure 1). The HC,  $CO_2$  and CO concentrations from well vapors as provided by the HORIBA Analyzer were consistent throughout the test period. This is confirmed by the consistent propane flow.

Test #2 was a 3 hour SVE test conducted from recovery well (RW) 5-34B. This well is constructed from 4" PVC pipe and screened from 34 to 64 ft bgs with depth of groundwater at 47.68 ft at the time of the test. The interface probe indicated a PSH sheen on the groundwater. The test was a very typical SVE test in that the RW vacuum and flow was almost constant throughout the test time. The propane flow and the HORIBA analysis of well vapors were also consistent and the progress of vacuum in the

Ms JoAnn Hilton Page 3 of 4

observation wells was steady. This is confirmed as shown in the Summary of Data and Figure 1.

Test #3 was a 2 hour SVE test conducted from recovery well (RW) 5-4B. This well is constructed from 2" PVC pipe and screened from 38.7 to 58.7 ft bgs with depth of groundwater at time of test of 46.12 ft. Prior to beginning the test, magnehelic gauges were used to check the static vacuum/pressure existing in the selected observations wells. With the exception of well 5-2B, all wells indicated a vacuum at 0730 hours on 11/05/93 as compared to a pressure at 1155 hours on 11/03/93. This occurred after 27.9 hours of SVE testing. The recorded data was consistent throughout the test as indicated in the Summary of Data and Figure 1.

Test #4 was a 2 hour SVE test from recovery well (RW) 5-5B. This well is constructed from 2" PVC pipe and screened from 39.5 to 58 ft bgs with depth of groundwater of 45.0 ft at time of test. The operating data was consistent throughout the test. The HORIBA analysis indicates the well vapors contained small amounts of hydrocarbon vapors. Observation wells 5-35B and 5-34B were too far from the RW to provide meaningful data. Two additional wells, 5-1B and 5-6B were added as observation wells. The data is presented in the Summary and Figure 1.

Test #5 was scheduled to be a 2 hour SVE test. However, after the initial vapor evacuation from the well, no flow was observed at a well vacuum of 283"  $H_2O$ . The test was aborted. The well should not be included as a SVE recovery well.

Test #6 was a 1.3 hour SVE test conducted from recovery well (RW) 5-6B. This well is constructed from 2" PVC pipe and reported screened from 38.7 to 58.7 ft bgs with the depth of groundwater at 42.0 ft at the time of test. All operating data was consistent throughout the test. Vacuum was held at near 90"  $H_20$  to encourage well flow. Observation wells 5-1B and 5-5B responded to RW vacuum. HORIBA data indicates low hydrocarbon value from the well vapors. All other observation wells were dropped due to distances. The data was not included in the plot in Figure 1.

Figure 1 indicates the most conclusive data supporting a SVE system for this facility. As shown on the plot, a radius of influence from 40 to 60 ft could be incorporated in the design plan. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 0.3 to 0.5"  $H_20$ . It is assumed that beyond these points, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence may continue to increase 1 to 10 days.

Ms JoAnn Hilton Page 4 of 4

Additional Information (This should be read as vital part of the report):

- Summary of Operating Data
- Plot of observed Vacuum vs Distance at the Facility
- Field Operating Data and Notes
- Site Photographs

#### Conclusion:

The tests indicate that soil vacuum extraction (SVE) would be an effective method of remediation for this facility. Although the observed vacuum on the outer observation wells was relatively low, or in some cases pressure was recorded, the duration of the pilot tests #2 through #6 were short. However, the results give positive indication that the observed and reported wells were in vacuum communication with the selected SVE recovery wells. A properly installed SVE System should effectively remove contaminants from the soil.

The S.A.V.E. System performed as represented and should be considered a viable technology to use for the remediation of this location. We project it will take 1 to 5 days to establish a consistent vacuum and true radius of influence. The System is designed to consume heavy concentrations of vapors and meet air emission standards set by the NMED. The new S.A.V.E. II System which is presently being tested, can provide well flows of up to 250 cfm.

Once you have reviewed the report, please call me if you have any questions.

Sincerely, Jollo

James E. Sadler Product Engineer

·· -

DBS&A - Thoreau, NM Test #1

·····								
11/03/93	Initial Data Time 1230	Second Data Time 1315	Third Data Time 1330	Forth Data Time 143	Fiftl Data 50 Time 15		Sixth Data me 1630	Seventh Data Time 1730
% Well Vapors As Fuel	13	22	17	22	22		22	22
Horiba-HC PPM	-	15,530	-	19,430	20,49	0 1	7,120	23,950
Recovery Well Vacuum "H ₂ O Well 5-35B	24	26	26	26	26		26	26
Recovery Well Flow-CFM Well 5-35B	19	20	19.5	19	20		21	21
Well 5-34B Vacuum "H ₂ O Dist. ft.	.25	. 45	.48	.60	.64		.64	.70
Well 5-4B Vacuum "H ₂ O Dist. ft.	17	.30	.35	- 40	.52		.50	.48
Well 5-22B Vacuum "H ₂ O Dist. ft.	(.13)	0	.05	.05	.10		.10	.12
Well 5-2B Vacuum "H ₂ O Dist. ft.	(.41)	(1.00)	(1.00)	(.85)	(.70)		(.70)	(.54)
'L 5-5B _uum "H ₂ 0 _Dist. ft	(.10)	(.03)	(.01)	.03	.05		.04	.06
11/03/93 and 11/04/93	Eighth Data Time 1830	Ninth Data Time 1930	Tenth Data Time 2030	Eleventh Data Time 2130	Twelfth Data Time 2230	Thirtee Data Time 23		Fourteenth Data Time 0030
% Well Vapors As Fuel	26	17	17	17	17	17		17
Horiba-HC PPM	23,630	21,370		22,130	-	21,87	o	-
Recovery Well Vacuum "H ₂ O Well 5-358	26	27	27	27	27	27		27
Recovery Well Flow-CFM Well 5-35B	20	21	21	21	21	21		22
Well 5-34B Vacuum "H ₂ O Dist. ft.	.70	.78	.80	.83	. 85	.86		.88
Well 5-4B Vacuum "H ₂ O Dist. ft.	.52	.56	.60	.62	.60	.58		.60
Well 5-22B Vacuum "H ₂ O rist. ft.	.15	.18	. 18	.18	.18	.16		.14
JIL 5-2B Vacuum "H ₂ O Dist. ft.	(.48)	(.30)	(.28)	(.24)	(.30)	(.32)		(.38)
Well 5-5B Vacuum "H ₂ O Dist. ft.	.07	.13	.12	.12	.12	.14		. 14

(Test.pg1)

DBS&A - Thoreau, NM Test #1 - Continued

11/04/93	Fifteenth Data Time 0130	Sixteenth Data Time 0230	Seventeenth Data Time 0330	Eighteenth Data Time 0430	Nineteenth Data Time 0530	Twentieth Data Time 0630	Twenty-first Data Time 0730
% Weil Vapors As Fuel	17	17	17	22	22	17	17
Horiba-HC PPM	-	23,110	-	22,570	-	21,960	21,200
Recovery Well Vacuum "H ₂ O Well 5-35B	27	27	27	27	27	27	28
Recovery Well Flow-CFM Well 5-35B	22	22	21	22	22	22	26
Well 5-34B Vacuum "H ₂ O Dist. 21.6 ft.	. 90	.90	.90	.90	.92	.95	. 98
Well 5-4B Vacuum "H ₂ O Dist. 38.2 ft.	.62	.60	.64	.66	.66	.67	.70
Well 5-22B Vacuum "H ₂ O Dist. 80.3 ft.	. 15	.15	. 15	.16	.18	.20	.27
Well 5-2B Vacuum "H ₂ O Dist. 116.9 ft.	(.38)	(.34)	(.32)	(.30)	(.24)	(.20)	(.14)
Well 5-5B "scuum "H ₂ O <u>t. 118.8 ft.</u>	.15	.14	.12	.10	.12	.15	.15

	11/04/93	Twenty-second Data Time 0830	Twenty-third Data Time 0930	Twenty-forth Data Time 1030	Twenty-fifth Data Time 1130	Twenty-sixth Data Time 1235	Average Data 24:05 Hrs.	Maximum Data
	% Well Vapors As Fuel	17	17	17	17	17	18.54	26
	Horiba-HC PPM	-	20,398	21,394	22,470	21,860	21,205	23,950
	Recovery Well Vacuum "H ₂ O Well 5-35B	28	29	29	30	31	27.12	31
÷	Recovery Well Flow-CFM Well 5-358	27	29	29	30	30	22.64	30
	Well 5-348 Vacuum "H ₂ 0 [®] Dist. 21.6 ft.	.97	.98	1.00	1.00	1.10	.81	1.10
-	Well 5-48 Vacuum "H ₂ 0 Dist. 38.2 ft.	.74	. 68	.65	.72	.76	.57	.76
	Well 5-22B Vacuum "H ₂ O Dist. 80.3 ft.	.24	.17	.18	.24	.26	.15	.27
	Well 5-2B :uum "H ₂ 0 <i>s</i> t. 116.9 ft.	(.18)	(.22)	(.24)	(.30)	(.50)	(.42)	(.14)
	Well 5-58 Vacuum "H ₂ 0 Dist. 118.8 ft.	. 15	.08	. 10	.14	. 15	. 09	.15

,

### DBS&A - Thoreau, NM Test #2

and the second	T	T		<u></u>	T
11/04/93	Initial Data Time 1415	Second Data Time 1515	Third Data Time 1615	Average Data 2:12 Hrs.	Maximum Data
% Well Vapors As Fuel	35	30	35	33.3	35
Horiba-HC PPM	28,770	32,570	31,670	31,003	32,570
Recovery Well Vacuum "H ₂ O Well 5-348	6.0	6.0	6.2	6.07	6.2
Recovery Well Flow-CFM Well 5-34B	20	21	22	21	22
Well 5-358 Vacuum "H ₂ 0 Dist. 21.8 ft.	.80	.80	.85	.82	.85
Well 5-48 Vacuum "H ₂ 0 Dist. 54.0 ft.	.46	.48	.52	.49	.52
Well 5-22B Vacuum "H ₂ 0 Dist. 102.0 ft.	.12	.16	.20	.16	.20
Well 5-2B Vacuum "H ₂ O Dist. 134.0 ft.	(.66)	(.50)	(.36)	.51	(.36)
Well 5-5B Vacuum "H ₂ O <u>Dist. 133.5 ft.</u>	.10	.14	.18	.14	.18

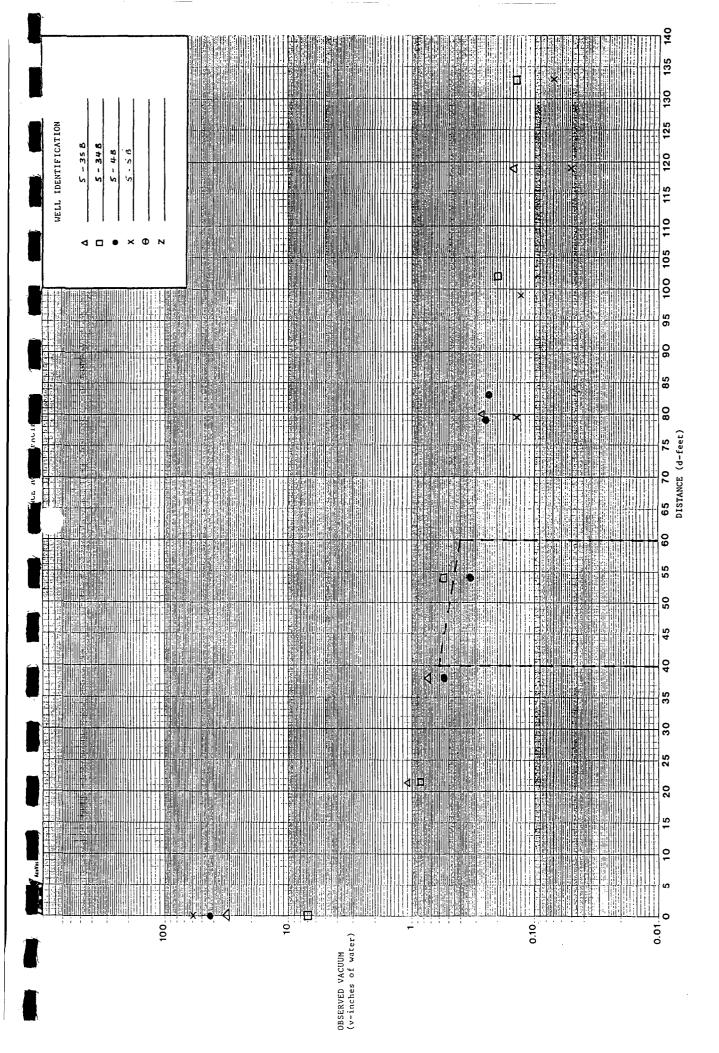
DBS&A - Thoreau, NM Test #3

11/05/93	Initial Data Time 0755	Second Data Time 0855	Third Data Time 1000	Average Data _2:05 Hrs.	Maximum Data
% Well Vapors As Fuel	0	0	0	0	0
Horiba-HC PPM	898	1,178	1,205	1,094	1,205
Recovery Well Vacuum "H ₂ O Well 5-48	42	42	43	42.33	43
Recovery Well Flow-CFM Well 5-4B	20	22	23	21.67	23
Well 5-35B Vacuum "H ₂ O Dist. 38.2 ft.	.38	.46	.52	.45	.52
Well 5- <b>34</b> B Vacuum "H ₂ O Dist. 54.0 ft	.22	.28	.34	.28	.34
Well 5-22B Vacuum "H ₂ O Dist. 83.0 ft.	. 14	.19	.24	.19	.24
Well 5-2B Vacuum "H ₂ O Dist. 88.5 ft.	(.06)	(.04)	(.02)	(.04)	(.02)
Well 5-5B Vacuum "H ₂ O Dist. 79.5 ft.	.04	.20	.26	.17	.26

Ì

,

....


### DBS&A - Thoreau, NM Test #4

11/05/93	Initial Data Time 1015	Second Data Time 1115	Third Data Time 1225	Average Data 2:10 Hrs.	Maximum Data
% Well Vapors As Fuel	0	0	0	0	0
Horiba-HC PPM	56	64	22	47.33	64
Recovery Well Vacuum "H ₂ O Well 5-5B	82	60	60	67.33	82
Recovery Well Flow-CFM Well 5-5B	20	18	18	.67	20
Well 5-35B Vacuum "H ₂ 0 Dist. 118.8 ft.	.05	.05	.05	.05	.05
Well 5-34B Vacuum "H ₂ 0 Dist. 133.5 ft	.07	.07	05	.06	.07
Well 5-4B Vacuum "H ₂ 0 Dist. 79.5 ft.	. 14	.16	.18	.16	.18
Well 5-22B Vacuum "H ₂ O Dist. 99.0 ft.	.14	.14	.16	.15	.16
l 5-2B ,.cuum "H ₂ 0 Dist. 46.0 ft.	(.02)	.05	.05	_03	.05
Well 5-1B Vacuum "H ₂ 0 Dist. 123.0 ft.	(.22)	(.04)	.05	(.07)	.05
Well 5-68 Vacuum "H ₂ 0 Dist. 142-5 ft.	(.10)	(.05)	.08	(.02)	.08

# DBS&A - Thoreau, NM Test #6

	11/05/93	Initial Data Time 1305	Second Data Time 1405	Third Data Time 1420	Average Data 1:15 Min	Maximum Data
	% Well Vapors <u>A</u> s fuel	0	0	0	0	0
	Horiba-HC PPM	20	108	_	64	108
	Recovery Well Vacuum "H ₂ O Well 5-68	92	95	96	94.33	%
	Recovery Well Flow-CFM Well 5-6B	4	8	9	7.0	9
-	Well 5-18 Vacuum "H ₂ 0 Dist. 49.5 ft.	0	. 18	.20	. 13	.20
	Well 5-5B Vacuum "H ₂ O Dist. 142-5 ft	.04	.15	.18	.12	.18

(Test.6P1)



	AcuVac Remediation		RATING DAT			•	S.A.V.'E. ^T System
age _	Location	ENRON COR		E STA #5	NM Proje	ect Engr. <u>J</u>	SADLER
	Date	11 3 93					Þ
	Parameter	Time STACT UP	1155 Hr. Meter	Time START 1230 Hr. Meter 536.5	Time 1315 Hr. Meter	Time 1330 Hr. Meter	Time 1430 Hr. Meter 538,6
	R.P.M.	535.0 2000	536.0 2000	338.3	537.2 2750	2700	33018
	Oil Press P.S.I.	60		55	50	50	50
ENGINE	Water Temp "F	120	170	190	190	190	190
Ű.	Volts	13,5	13,5	13.5	13,5	13,5	13,5
Ē	Intake Vac Hg	6	6	8	6	6	4
	Gas Flow Fuel/Propane cfh	60	60	100	90	95	90
AIR	Air Flow cfm	. 20	18	24	રુષ્ઠ	28	30
FUEL/AIR	Well Flow 5-35B cfm			19	20	19.5	19
	Recovery Well Vac 5~35 B "H ₂ 0			24	36	26	26
	Air Temp F	38	· 52	55	56	56	58
	Barometric Pressure "Hg						·
	5-36E "H20	-	(.90)	,05	.11	. 12	(.18)
	5-37 I "H20	*	0	. 40	.90	.90	.90
	5-34 B "H20	-	(.06)	.25	,45	. 48	. 60
	5.4 B "H20	~	(.10)	.17	.30	.35	. 40
Σ	5-22B "H20	<u> </u>	(,13)	(,13)	0	.05	.05
	5-2B "H20		(.16)	(.41)	(1.00)	(1.00)	(.85)
ר א הר	5-5B "H20		(, (0)	(,10)	(.03)	(.01)	,03
R WE	"H ₂ 0		<u></u>				
NITO	"H ₂ 0						·
Ŵ	"H ₂ 0		USELL PRESSURE D CUELL	()	ENDICATES	WELL PRE	scier.
	"H ₂ 0 "H ₂ 0						
	"2° "H ₂ 0						·
	"H ₂ 0		V ACA				
	Vapor Wells	 					
	0n/Off	OFF	ON	ON	ON	ON	ON
	Groundwater Wells On/Off	OFF	<u> </u>		4		>
	Discharge Flow Meter gals	OFF .					
	Samples				HORIBA Influent		HORIBA Influent
					~ IT TILleux		- intruence

**3107)** 

	Instrument		1	T •	reizza de la composición de la composicinde la composición de la composición de la composición de la c	I	
10		HORIBA	HORIBA	HORIBA			
TEST	Time	1310	1430	1545			
UENT	H-C	15,530	19,430		7		
VAPOR INFLUENT	с-о х	.04	.04				
VAP	^{co} 2	5.16	5.70			÷	
	H-C ppmv			18			
SNOISS	с-о х			.05			
SAVE EMISSIONS	^{co} 2 %			4.16		: • • • •	
Ŝ	Air/Fuel Ratio						
	%						

## OPERATING DATA AND NOTES

DATE	11/3/93 TEST NO. 1
0905	Arrived at location - Met with Robert Monley, Daniel
	B. Stephens & Associates
0915	Positioned S.AU.E. System near well 5-35B for recovery well (RW
<u></u>	and connected SAVE to RW via flex hose and boot and PVC well
0945	extention. Connected air/water separator and installed
	individual well plugs for magnehelic gages-Hz0 level 51.75
100 5	Started S.A.V.E. for worm-up and system check-Ran 9 hour
1100	Helpedremove monitoring well pamps and installing transducers in RW
1155	Recorded static pressures on outer wells - Restart for warm-up
1215	DBSEA recorded initial groundwater levels and set readings an transductor
12-30	START TEST - Initial well flow @ 18 cfm, well vocuum @ 22"Hio
	Recorded Data-All outer wells responding to vocuum X 5-2B & 5-5B
1315	Recorded Operating and HORIBA Data - All system functions
	normal = Vac. increase on outer wells × 5-2B, with press inc.
1330	Recorded Data - All normal - Slight increases on outer wells
1430	HORIBA Data - Recorded increase in HC value
1430	Recorded Data-Note that 5-36E changed from vacuum to press,
	Difficult to provide reason since well screened below H2O level.

933107-PAGE2)

.

	<b>y</b>
7.1.1	AcuVac Remediation

# OPERATING DATA - TEST NO _____

ENPON CORPORATION

Ige _ 2 Location TRANSWESTERN COMPRESSOR STA #5 N.M Project Engr. J. SABLER

		· · · · ·	1	1	1	I	I
<b></b>	Date	11/3/93					<del>D</del>
		Time	Time	Time	Time	Time	
	Parameter	1530 Hr. Meter	1630 Hr. Meter	Hr. Meter	1830 Hr. Meter	1930 Hr. Meter	DO30 Hr. Meter
		539.6	540,6	541.6	542.6	543.6	544.6
	R.P.M.	2700	2700	2700	2600	2700	2700
	Oil Press P.S.I.	50	50	50	50	50	50
ENGINE	Water Temp F	140	190 -	190	190	185	185
ŭ	Volts	13,5	13,5	i3 <u>,</u> 5	13,5	13,5	13.5
	Intake Vac Hg	4	4	4	4	5	5
	Gas Flow Fuel/Propane cfh	90	90	90	85	95	95
FUEL/AIR	Air Flow cfm	30	37	32	3み	35_	35
FUEL	Well Flow 5-358 cfm	20	21	21	20	21	21
<u> </u>	Recovery Well Vac 5-358 "H ₂ 0	26	26	26	26	27	27
	Air Temp	52	48	43	40	38	38
	Barometric Pressure "Hg						
	5-36E "H20	(.17)	(.12)	(.02)	.03	.15	.08
	5-37 <u>T</u> "H2O	, 90	.40	1,00	(1,2)	(.60)	(.60)
	5-34 B "H20	,64	.64	.70	.70	,78	.80
	5-48 "H20	.52	,50	,48	.52	.56	.60
₹	5-228 "H20	.10	.10	,12	.15	, 18	.18
LL VACUUM	5-2B "H20	(.70)	(,10	(,54)	(,48)	(.30)	(128)
۲۲ ×	5-5 g "H20	05	.04	.06	,07	.13	.12
R WE	"H ₂ 0-			·····			
MONITOR WEI	"H ₂ 0						
Q ₽	"H ₂ 0 "H_0			( ) IN(	ICATES WI	ELL PRESS	IRE
	"H ₂ 0 "H ₂ 0						
	"2 ⁰ "Н ₂ 0						
	н ₂ 0 "Н ₂ 0	·,					
ļ	Vapor Wells						
liFold	0n/0ff	ON	ON	00	ON	ON	010
	Groundwater Wells On/Off	OFF					>
	Discharge Flow Meter gals	OFF					₽
	Samples	HORIBA		HURIBA	HORIBA	HORIBA INFLUENT	
		EMISSIOUS	·	INFLUENT Emissions	TNELAENT		÷

(933107)

	Instrument	HODIBA	HORIBA	HORIBA	1100100	HORIBA	
TEST	Time	NUKIBH	HUKIBA	nukusm	HORIBA	HCILLISH	
7		1600	1700	1730	1850	1945	
JENT	Н-С	20, 490	17,120	23,450	23,630	21,370	
VAPOR INFLUENT	с-о %	.07	۵۵,	.07	,07	,06	
VAPC	^{CO} 2 x	6,24	5,20	5.95	5,81	5:60	
	н-с		ý				
EMISSIONS	с-о х		,03				
SAVE EMI	^{co} 2 x		3,22		···· _ ···	22 1414 A	
δ [	Air/Fuel Ratio					ه اسکار این	
	~ ~					· ·	

### OPERATING DATA AND NOTES

DATE	11 3 43 TEST NO. 1
1530	Recorded Data - All S.A.V.E functions normal - Outer wells
	indicating increased vacuum x 5-368,
l	NOTE: Observation wells 5-36E and 5-37I are
<u>.</u>	reported to be screened below the groundwater level
	and eratic data may occur during SVE testing
1600	HORIBA Data - Note increase in volume To of CO2.
1630	Recorded Data - All system functions normal
1645	Adjusted for slight increase in RW vocuum and flow
1730	Recorded Operating and Horeigh Data
1830	Recorded Data - System will not comsume on higher
	RW vapors, Fresh air flow must remain 30-35 cdm to
	provide proper ain fuel ratio - System can consume much
<u></u>	higher fuel concentrations therefore well vapors probably have low of
<u></u>	Note Well 5-37I has changed from . 90 Has vac to 1.2 Has pressure
1930	Recorded Operating & HORIBA Data - All outer wells
	indicating continued increased vacuum
1945	
2030	Recorded Data - SAVE System functions hormal.
<u> </u>	

933107-PAGE2)

<b>ў</b> ,
AcuVac Remediatio

age

OPERATING DATA - TEST NO ____

ENRON CORPORTION <u>3</u> Location TRANSWESTERN COMPRESSOR STA #5 NM, Project Engr. J. SADLER

<b></b>	Date	11/3/93			11/4/93		>
	Parameter	Time 2130	Time みみろの Hr. Meter	Time 2330 Hr. Meter	Time CO3O Hr. Meter	Time 0130 Hr. Meter	Time OJJO Hr. Meter
	rai ductei	Hr. Meter 545,5	546.5	547,5	548.5	549,5	550,5
	R.P.M.	2700	2700	2800	2700	2700	2700
	Oil Press P.S.I.	50	50	50	50	50	50
ENGINE	Water Temp *F	185	185	185	185	185	185
ĒŇ	Volts	13,5	13,5	13,5	13,5	13,5	13.5
	Intake Vac Hg	5	5	5	5	5	1-7-1
	Gas Flow Fuel/Propane cfh	95	95	95	95	95	95
AIR	Air Flow cfm	34	34	34	34	34	34
FUELAIR	Well Flow 5-358 cfm	21	21	21	22	22.	22
	Recovery Well Vac 5-35B "H ₂ 0	27	27	27	27	27	27
	Air Temp °F	37	37	36	36	36	35
	Barometric Pressure "Hg						
	5-36E"H20	.06	.08	.10	.12	12	. 10
Ĵ	5-37 I "H20	(, 70)	(,70)	(,75)	.(.80	(.80)	(,60)
	5-34B "H20	.83	.85	.86	.88	,90	. 90
	5-4B "H20	.62	.60	.58	.60	.62	.60
ž	5-22B "H20	.18	.18	.16	.14	,15	. 15
L VACUUM	5-2B "H20	(.24)	(.30)	(.32)	(.38)	(.38)	(,34)
	5-5B "H20	12	.12	.14	,14	.15	.14
R WE	"H ₂ 0						
MONITOR WEI	"H ₂ 0						·······
MOI	"H ₂ 0			() INDI	ATES WE	L PRESSU	2E
	"H ₂ 0						
	"H ₂ 0 "H 0						
	"H ₂ 0 "H ₂ 0			<u></u>			
	Vapor Wells				=		
	On/Off	60	40	ຽຍ	ON	010	ON
lFOLD	Groundwater Wells On/Off	OFF					>
	Discharge Flow Meter gals	OFF					$ \rightarrow $
	Samples	HORIBA INFLUENT		HORIBA INFLUENT			HORIBA INFLIENT

233107)

	Instrument			•		 ]
ST		HORIBA	HORIBA	HORIBA		
TEST	Time	2140	2345	0245		
UENT	H-C	22,130	21,870	73,110	Ŀ	
VAPOR INFLUENT	C-0 %	,06	,06	,07		
VAP	co ₂	5,78	5.64	6.08		   
	H−C ppmv					
SNOISS	с-о х					
SAVE EMISSIONS	^{co} 2 %					
้ง	Air/Fuel Ratio					
1	X					

## OPERATING DATA AND NOTES

DATE	11/3-4/93 TEST NO. 1
2130	Recorded Data - All S.A.V.E. System functions normal - Outer
· · ·	well vocuum steady.
2140	HORIBA DATA - HC in 20,000 ppm range throughout test
2230	Recorded Data - All steady
2245	Increased well vocuum slightly but well vapors at
	maximum flow, requiring high propane and fresh air flow
· · ·	to provide 120 to 140 thousand BTU (HR.
2330	Recorded Data - All systems normal - NOTE Very windy
	chill factor low - blowing sand
2345	HORIBA Data
	THURSDAY 11/4/93 - Recorded Data - All systems normal
	Checked calibration of magnehelic gages - Minion adjustments
	for temperature.
0130	Recorded Data - All steady - Slight variance in outer
	wells vacuum
0230	Recorded Data - Outer wells vocuum off slightly
.1	All system functions normal - Switchal to full
	propone tanks.

933107-PAGE2)

	AcuVac Remediation	-	ERATING DAT		· · · · · · · · · · · · · · · · · · ·	• ·	S.A.V.'E.' System			
age _	ge 4 Location TRANSWESTERN COMPRESSOR STATIS N.M. Project Engr. J.									
	Date	11/4/93					>			
ľ		Time C330	Time 0930	Time 0530	Time D630	Time 0730	Time 0830			
	Parameter	Hr. Meter 551.5	Hr. Meter 552.5	Hr. Meter 553.5	Hr. Meter 554.5	Hr. Meter 555:5	Hr. Meter 556,5			
	R.P.M.	2700	2700	2100	2700	2700	2700			
	Oil Press P.S.I.	50	50	50	50	50	50			
ENGINE	Water Temp 'F	185	185-	185	185	185	185			
Ŭ,	Volts	13.5	13.5	13.5	13,5	13,5	13.5			
T	Intake Vac Hg	5	5	5	5	_5	6			
	Gas Flow Fuel/Propane cfh	95	90	90	95	95	95			
AIR	Air Flow cfm	34	32	33	34	32	32			
FUELAIR	Well Flow 5-35B cfm	21	22	32	32	26	27			
	Recovery Well Vac 5-35B "H ₂ 0	<u></u> 77	27	21	27	28	28			
	Air Temp	34	33	32	34	35	36			
I	Barometric Pressure "Hg									
	5-36E "H20	.07	,08	. (0	.10	.12	.08			
	5-371 "H20	(,60)	(,50)	(,50)	(,50)	(,50)	(,60)			
	5-34 B "H20	,90	. 40	.42	.45	.48	.47			
	5-4 B "H20	.64	.66	.66	,67	,:10	.74			
	5-27B "H20	.15	, 16	.18	,20	.27	.24			
CUUN	5-2B "H20	(.32)	(.30)	(.24)	(.20)	(.14)	(.18)			
MONITOR WELL VACUUM	5-5B "H20	12	.10	.12	.15	.15	,15			
NEI (	"H ₂ 0									
ROT	"H2 ⁰									
NOM	" ^H 2 ⁰			() INON	CATES WE	LL PRESS	IRF			
	"H ₂ 0									
	" ^H 2 ⁰									
Γ	"H2 ⁰	······································								
	"H2 ⁰	· · · · · · · · · · · · · · · · · · ·								
	Vapor Wells	ON	ON	ON	000	ao	02			
ייאונ-סדם	On/Off Groundwater		0.0							
- utile	Wells On/Off Discharge	OFF					<b>D</b>			
	Flow Meter gals Samples	01=1-	HORIBA	·	HORIBA INFLUENT	ILORIBA IN FLUENT				

(933107)

7	1		<u> </u>		1		
TEST	Instrument	Horiba	(10P10A	14021BA			
1	Time	0450	00100	0745			
UENT	H-C ppmv	ƏƏ, 570	21,960	21,300	;		
VAPOR INFLUENT	с-о х	30,	.06	.05			
VAP	^{co} 2 ×	5,94	6.02	6.84		÷ .	
	H-C ppmv						
SSIONS	с-о %		<u>.</u>				
SAVE EMISSIONS	^{co} 2 %						
Ś	Air/Fuel Ratio						
	%						

### OPERATING DATA AND NOTES

11/4/93 DATE TEST NO. ( Recorded Data - All systems normal -Outer wells steady 0330 Recorded Data - No mojor changes - HORIBA Data 0430 Recorded Data - All SAVE System functions normal 0530 Very windy and cold erovded Data - All functions normal 0630 - CO2 continuing to increase ATAD 0200 HORIBA well flow to 27 csm and well vocaum to 28"Ho 0710 Increased Recorded Data - Outer wells responding to 0730 RW and flow increase. Jocuam SAVE engine experiences roughness - HORIBA Data 0745 incréased to 6.84% - Probable indicates CON is that increased vocuum and flow opened reason new zones - Also natural and induced bio-remediation produces CO2 0830 Recorded Data - All steady - Engine still little rough Adjusted propane and ain flain slightly

933107~PAGE2)

	AcuVac Remediation		ERATING DAT			-	S.A.V.'E. System
ge _	5 Location	TRANSWEST	eforation Ern comprese	OR STA#5	N.M. Proj	ect Engr. $\overline{\underline{\mathbf{J}}}$	SADLER
	Date	11/4/93			►Þ	•	
		Time 0930	Time 1030	Time (130	Time STOP	Time	Time
	Parameter	Hr. Meter 557,5	Hr. Meter 55815	Hr. Meter 559.5	Hr. Meter 560.6	Hr. Meter	Hr. Meter
	R.P.M.	<u> </u>	2700	2700	2700		
	Oil Press P.S.I.	50	50	50	50		
ENGINE	Water Temp F	190	(90 -	190	190		
Ē	Volts	13.5	13.5	13,5	13,5		
	Intake Vac Hg	5	5	5	5	<u> </u>	
	Gas Flow Fuel/Propane cfh	95	95	9.5	95		
AIR	Air Flow cfm	33	34	34	34		
FUELVAIR	Well Flow 5-35 B cfm	29	29	.30	30		
-	Recovery Well Vac 5~35 B "H ₂ 0	29	29	30	31		
	Air Temp	39	44	48	54		· ·
	Barometric Pressure "Hg	·····					_
	5-36 E "H20	.05	,05	,05	( .20)		
	5-37 I "H20	(.6)	(.65)	(.88)	(1.1)		
	5-34 B "H20	,98	1.00	1,00	1.10		
	5-4 B "H20	68	,65	, 72	.76		-
5	5- 72 B "H20	,17	.(8	, 24	.26	· · ·	
NNC	5-2B "H20	(.22)	(.24)	(.30)	(,50)		
r v	5-5B "H20	08	.10	.14	.15		
MEL	" ^H 2 ⁰					· · · · · · · · · · · · · · · · · · ·	
TOR	" ^H 2 ⁰				· · · · · · · · · · · · · · · · · · ·	· · · · ·	
MONITOR WELL VACUUM	"H2 ⁰						
_	" ^H 2 ⁰		()	INDIZATES	WELL PR	Essure	
	" ^H 2 ⁰						
	" ^H 2 ⁰	·····					
	"H ₂ 0						
<u>ר</u> ב	Vapor Wells On/Off	ON	02	ON	ow		
''IFOLD	Groundwater Wells On/Off	off					
:	Discharge Flow Meter gals	OFF			>	······	
	Samples	HORIBA	HORIBA	HORIBA INFLUENT	HORIBA INFLUENT		
Í			EMISSIONS				

.

(933107)

					<b>j</b>	<u>.</u>		····
TEST		rument	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA
ŭ H	Time		1340	1425	1435	i 500	1540	(6(5
UENT	H-C	ppmv	33,180	<u> </u>		32,590	૩૦, ૧૧ છ	31,670
VAPOR INFLUENT	с-о	%	,07	,07		.06	.06	.07
VAP	^{co} 2		6.51	5.82		6.43	5,80	6,12
	н-с	ppav			46			
SSIONS	C-0	*		A	.04			
SAVE EMISSIONS	°°2	x			3,87		A-6 - 1	
ΰ.	Air/Fu	uel Ratio						
	L <u></u>	%						J

# OPERATING DATA AND NOTES

DATE	1114(93 TEST NO. み
1250	Positioned SAVE System near well 5-34B for recovery well(R
	4" well screened from 34' to 64 ft bas - H2O @ 47.68
	Interface probe indicated PSit sheen on groundwater
1315	START TEST - Recorded Data - Initial Ruluce, @ 5,6"Had and
	flow @ 20 csm - Propose @ 90 ath - Initial voe. reading - 3 wells
1340	HORIBA Data- with proprie flow @ 75 to 80 cfh, HC
	level in ppmu expected to be 30,000 ppm +
1415	Recorded Data-All SAVE Sunctions normal - Good vocuum
	response on outer wells & pressure wells,
	NOTE-Outer wells 5-36EE 5-37I are reported to be screened
<u> </u>	below groundwarter level and erratic data may occur during SVP
1425	HORIBA INFLUENC Dolo - 1435 HORIBA Emissions Data
1500	HORIBA " Data - AC values steady within range
1515	Recorded Operative Data - System functions normal Outer wells
	indicating good response to steady vocuum and flow
15 40	HORIBA Influct Data
1615	Recorded Openitivy and HORIBA Data - RW VOCE flow up
1627	STOP TEST - HO level 47,38 - Increase 0,30 - Good Test

l.

'33107-PAGE2)

KD	Y
ZAN	AcuVac Remediation

age 🔢

## OPERATING DATA - TEST NO 3

LOCATION THOREAR LOCATION TRANSCESTERY COMPRESSOR STATIS NM Project Engr. J. SADLER

J	Date	ul-loo					
<u>`</u>		11593 Time warman	Time START	Time	Time STOP	Time	Time ·
<i>;</i>		0730	0755	0855	1000	1100	1105
	Parameter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter
		564.0	564.5	565.5	566.6		
	R.P.M.	1500	2.500	2750	2700		
, ш	Oil Press P.S.I.	60	55	50	50		
ENGINE	Water Temp F	120	· (80 ···	190	190		
ພົ	Volts	13.5	13,5	13,5	13,5		
	Intake Vac Hg	4	11	2	7		[
	Gas Flow Fuel/Propane cfh	60	115	115	115		
/AIR	Air Flow cfm	. 70	27	23	24		
FUEL/AIR	Well Flow 574B cfm	OFF	20	22	23		
	Recovery Well Vac 5 - 4 B "H ₂ 0	OFF	42	42	43		
N	Air Temp •F	33	34	36	39		
!	Barometric Pressure "Hg		· · · · · · · · · · · · · · · · · · ·				
1	5-35B "H20	.05	,38	.46	,52		
{	5-36E "H20	, 40	(,60)	(.60)	(.64)		
	5-37I "H20	,40	(.40)	(.44)	(,40)		
ľ	5-34B "H20	, 05	、ンン	,78	,34		
Σ	5-23,B "H20	. 10	.14	.19	,24		
-L VACUUM	5-2B "H20	(.2)	(,06)	(.04)	(.02)		· .
	5-5B "H20	. ,07	,04	,20	.26		
	"H ₂ 0						
MONITOR WEI	"H ₂ 0	25				•	
MOM	"H ₂ 0	Day TA Fau Flo					
	"H20	L O O O		() IN	DIGATES W	ELL PRESS	ere
	" ^H 2 ^O						
	"H ₂ 0	NI NI					
\	"H20	EDE H					
	Vapor Wells On/Off	OFF	40	061	001		
11FOLD	Groundwater Wells On/Off	OFF -	· · · · · · · · · · · · · · · · · · ·		Ð		
	Discharge Flow Meter gals	OFF -			>		·····
	Samples		HORIBA	HORIBA	HORIBA		<u></u>
			INFLUENT	INFLUENT EMISSIONS	INFLUENT		:

233107)

Instrument	HORIBA	140821 BA	(1001BA	HORIBA		
Time	୦୫୲୦	0905	0920	0955		
H-C ppmv	ଌ୶ଌ	1178		1205		
с-о х	~,03	·02		,02		
^{CO} 2	3,44	3,44		3,50		
H-C ppmv			34			
с-о %			00			
^{co} 2 %			2.74			
Air/Fuel Ratio	·					
	H-C ppmv C-O % CO2 % H-C ppmv C-O % CO2 %	Time     ОВІО       H-C     В98       c-o     x       x     x03       co2     x       3,94     H-C       ppmv     2       co2     x       x     3,94       H-C     2       y     2       x     3,94       H-C     2       y     2       x     3,94       H-C     2       y     2       X     3       Air/Fuel Ratio     3	Time     OSIO     O405       H-C     898     1178       c-o     .03     .02       x     .03     .02       co2     3.944     3.44       H-C	Time       OSIO       OAO5       OADO         H-C       BAB       1178       II78         c-o       X       XO3       XOA         co2       X       3.44       II78         H-C       JAG4       JAG4       JAG4         H-C       JAG4       JAG4       JAG4         C-O       X       JAG4       JAG4         K       JAG4       JAG4       JAG4         H-C       JAG4       JAG4       JAG4         C-O       X       JAG4       JAG4         Air/Fuel Ratio       IA       JAG4       JAG4	Time $Oglo         Oqos Oqso Oqss           H-C         gqg 1178 1205           C-O         x 003 002 x 003 002 002 x 003 002 002 x 3.44 3.50 002           H-C         34 3.50 000 roopmv 34 000 000 coopta         2.74 2.74 3.74           Air/Fuel Ratio         00 00 00 00 $	Time $O810$ $O405$ $O420$ $O455$ H-C $848$ $1178$ $1205$ c-o $x$ $x03$ $x0\lambda$ $x0\lambda$ $x^2$ $x03$ $x0\lambda$ $x0\lambda$ $x0\lambda$ $x^2$

# OPERATING DATA AND NOTES

DATE	11 5 43 TEST NO. 3
0700	Arrived at location - positioned SAVE new well 5-4B as
	recovery well (RW) - 2" well along fence line - Screened
	from 38.7 to 58.7 ft bys and water depth @ 46.12
0715	Set up SAVE System and plug outer wells for magnetilie gages
0730	SAVE System warm up - All Systems normal-Recorded static well data
	NOTE Outer wells 5-36E = 5-37 I are reported to be screened
· . ·	below groundwater level and ernatic data may occur during SUE tests
0755	START TEST - Recorded Initial Data - RW flow @ 20ctm voc @ 42"
	Good you way maker wells 5-35B and 5-34B
••••••••••••••••••••••••••••••••••••••	Note: Wells 5-36E and 5-37 I charged from vocuum to pressure
0810	HORIBA DATA - HE low - very little BTU value
0830	Increased RW flow to 22chm and vocuum to 43" 140
0855	Recorded Data - All systems normal-Good response on outer wells
0905	HORIBA Dato - Little change in HC-0920 HORIBA EMISSION DATA
0 9 5 5	HORIBA Influent Data - HZ low - Propose near max @ 115eth
1000	Recorded Data- All systems normal - Continuiral good response
	on outer wells 5-35B, 5-34B \$ 5-5B
1005	TEST COMPLETED - HOR 45.05 - Increase during test - 1.07

	AcuVac Remediation	ENRON CO	RATING DAT. 2000ATON		THOREAL	<b>.</b>	S.A.V.E.TH System
age _	Location	I TRANSWESTE	IN COMPRESE	OR SIH IS	<u>N.M.</u> Proje	ect Engr	······································
- -	Date	11/5/93		>			
		Time START	Time 11(5	Time STOP	Time	Time	Time
	Parameter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter	Hr. Meter
	R.P.M.	566.9	567,9	569.0		 	<u> </u>
	Oil Press	2500	2500	2500		·	
Ψų	P.S.I. Water Temp		50	50			
ENGINE	Volts	190	190	190			· · · · · · · · · · · · · · · · · · ·
ц Д	Intake Vac	13,5	13,5	13,5		 	
<u> </u>	HgHg	()	(\	11			
	Gas Flow Fuel/Propane cfh	115	115	115		 	
AIR /	Air Flow cfm	12	14	14			
FUELAIR	Well Flow 5-59 cfm	20	18	18			
	Recovery Well Vac 5-5B "H ₂ 0	82	60	60			
	Air Temp *F	40	43	47			
F	Barometric Pressure "Hg						
	5-358 "H20	,05	,05	.05			
	5-34B "H20	.07	,07	,05	· · · · · · · · · · · · · · · · · · ·		·
	5-4B "H20	.14	. 16	81.			
	5-22B "H20	.14	.14	,16			
	5-2B "H20	(.02)	,05	.05			
MUU	$5 - 1B^{"H_20}$	(.22)	(,04)	.05			
VAC	"H_O	. (.10)	(.05)				
VELL	<u>5-68</u> "2° "H ₂ 0	· ()	((0))	.08			
	"н ₂ 0						······
	" [#] 2 ⁰	· · · · · · · · · · · · · · · · · · ·					
2	"н ₂ 0			() IND		ELL PRESS	
	"H ₂ 0				icates w		
	"н ₂ 0						
	"н ₂ 0						
	Vapor Wells			l			
<u> </u>	On/Off	00	00	ON			
NIFOLD	Groundwater Wells On/Off	OFF		>			
	Discharge Flow Meter gals	OFF		⊳			
	Samples	HORIBA INFLUEWT	HORIBA JNFLUEWT	HORIBA		i	:

•

Ţ.

(933107)

F	Instrument	HORIBIA	HORIBA	(40121BIA			
TEST	Time	1040	1130	(225			
UENT	H-C ppmv	56	64	37			
VAPOR INFLUENT	с-о <u>х</u>	00	00	00			
VAPC	^{co} 2	2.16	1.96	3112		÷ • •	
	H-C ppmv				ч.		
ssions	с-о %						
SAVE EMISSIONS	^{co} 2 %					- and a constant	
้ง	Air/Fuel Ratio						
	%						

· .

,

li

Ì

# OPERATING DATA AND NOTES

DATE	11 5 93 TEST NO. 4
1010	Moved SAVE to well 5-5B as (Rw) recovery well
	2" well screened from 39,5 to 58' bas, H.O.C. 45.0
1015	START TEST - Recorded Data - Initial vocuum @ 82"Hro, flow
	@ 20 ctm - Held vocuum bebu 100"Hoo to encouver, e flow.
	Dropped wells 5-36 E and 5-37 I - Exand initial voc, vesponse
1030	RW vocación @ 130"Har - Sanging - Probably ground water
· •	rising above apport screened area.
1035	Reduced RW vocuum to 20'H20 and increased to 60'H20 @ 1040
1045	
1050	
	reset RW vacuum @ 60"Hr0 - Propone @ max.
1115	Recorded Data - All systems normal - Not much vocuum
<u></u>	response on outer wells - well vac, holding @ 60"Hau
1150	HORIBA Data - HE low
1225	Recorded Data - All systems normal - Limited response
	on outer wells
1227	HORIBA DATA - HE lower
1230	TEST COMPLETED - H20 level @ 44.05 - H20 level inc. 0.95'

933107-PAGE2)

				4			······································
	AcuVac Remediation		RATING DAT				S.A.V.E. System
ge _	Location	ENRON COR	PORATION 2N Compressor	- 514#5	Nim, Pro	ject Engr. 🗌	J. SADLER
	Date	11/5/93		>			
ſ		Time START	Time 1250	Time STOP	Time	Time	Time
	Parameter	Hr. Meter 569,3	Hr. Meter 569,4	Hr. Meter 569,5	Hr. Meter	Hr. Meter	Hr. Meter
	R.P.M.	2600	2700	2100			
2	Oil Press P.S.I.	50		-			
ENGINE	Water Temp 'F	190	· · · · · · · · · · · · · · · · · · ·	-			
Ξ	Volts Intake Vac	13,5		-	·		
	Hg	16					
	Gas Flow Fuel/Propane cfh	115	115	115			
AIR	Air Flow cfm	15	15	16	· ·		
FUELAIR	Well Flow 5-28 cfm	O	0	0			·
	Recovery Well Vac 5ースら "H ₂ 0	250	780	285			
	Air Temp °F	48	.49	49			
<b>-</b>	Barometric Pressure "Hg						
	5-35g "H20						
	5-39B "H20	A A A A A A A A A A A A A A A A A A A					
	5-4B "H20		~				
	5-22B "H20		Elect	·····		· · · · · · · · · · · · · · · · · · ·	
	5-5B "H20		10				
MONITOR WELL VACUUM	5-18 "H20	· · ·	No.	No.			
<	5-6B "H20			NY .			
MEL	"H ₂ 0·						
ITOR	"H ₂ 0						
MOM	"H ₂ 0				· .		
- -	"H ₂ 0						
	"H ₂ 0						
	"H ₂ 0						
2	"H20						
	Vapor Wells	ON	ON	001			
, AIFOLD	On/Off Groundwater Wells On/Off	OFF		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	Discharge Flow Meter gals	OFF		>			
	Samples						:

933107)

	Instru	ment						
TEST	Time				· ·			-
F	1100							
ţ	H-C		,	· · · · ·				
VAPOR INFLUENT	с <b>-</b> о	ppmv		·		:	· · · · · · · · · · · · · · · · · · ·	
POR II								
A)	со ₂	~%					÷	
	H-C							
SNC	C-0	Vmqq			•			
MISSI		%		· ·				
SAVE EMISSIONS							÷ 4.,	- 
ŝ	Air/Fue	el Ratio						
		%						
				ΟΡΕΡΔΨΙΝ	G DATA AND	NOTES		
נת	ATE	11/5	63	<u>OI BIAI IN</u>	<u>O DATA MO</u>	NOTED	TEST NO	5
	35			5 5 5	····· [] 5		ecovere we	
10							6280219 000 bgs-H20	
12	45						ely @	
			ial well		was evoer		· · · · · · · · · · · · · · · · · · ·	Svem .
		ew,	well flor					
129	50						1 How.	
123	55	RW	Vacuam	<u>e 285</u>	× H20 -	No wel	1 flow.	1
							rauld no	t be
···		USC	d as	a sue	rcover	y well		
						. <u></u>		e
						<u> </u>		
							<u></u>	
			·			********************************		
					· · · · · · · · · · · · · · · · · · ·			

933107-PAGE2)

AX	AcuVac Remediation		RATING DAT				s.a.v.:e system <u>J. Sadle</u> i
age	Location	TRANSWESTE	RN COMPRESS	012 STA, #5	N.M. Proje	ct Engr	J. SADLEI
	Date	11/5/93			D		
		Time START	Time	Time STOP	TimeSHUT ON	Time	Time
	Parameter	1305 Hr. Meter	1405 Hr. Meter	)420 Hr. Meter	1425 Hr. Meter	Hr. Meter	Hr. Meter
		569.7	570.7	570,9	571.0		
	R.P.M.	2500	2600	2600			
	Oil Press P.S.I.	50	50	50			
ENGINE	Water Temp •F	(40	· · · · · · · · · · · · · · · · · · ·	190			
ž U	Volts	13,5	13,5	13,5			
	Intake Vac Hg	13	13	13			
	Gas Flow Fuel/Propane cfh	115	115	115			
AIR	Air Flow cfm	18	18	90	· ·		
FUEL/AIR	Well Flow 5-68 cfm	4	8	9		<u> </u>	
<u>د</u>	Recovery Well Vac 5-63 "H ₂ 0	92	45	96			
	Air Temp	49	49	50			
	Barometric Pressure "Hg						
	5-1B "H20	0	,18	,20			
	<u>5</u> -5B "H20	.04	,15	,18			
	<u></u>						
	"H ₂ 0						
_	"н ₂ 0			· ·			
NNC	"н ₂ 0						
L VAC	"H ₂ 0					<u> </u>	
WEL	"H20						
тов	" ^H 2 ⁰						
MONITOR WELL VACUUM	" ^H 2 ⁰					;	
-	"H ₂ 0						
	"H ₂ 0						
	"H2 ⁰					····	
	" ^H 2 ^O						
9	Vapor Wells On/Off	00	00	00			
ANIFOLD	Groundwater Wells On/Off	OFF		Ð			
A	Discharge Flow Meter gals Samples	OFF		⊅			
							:

51	Instrument	HORIBA	HORBA			
TEST	Time	1320	1405			
UENT	H-C ppmv	20	108			
VAPOR INFLUENT	с-о х	00	00			
VAPC	^{CO} 2	.84	1,45		÷	
	Н-С					
SNOISS	с-о %					
SAVE EMISSIONS	^{co} 2 x					
7S	Air/Fuel Ratio					
	%					

٠

ł

### OPERATING DATA AND NOTES

DATE	11 5 43 TEST NO. 6
1300	Moved SAVE near well 5-6B as recovery well (Rw)
; 	7" well-Reported screened from 38.7 to 58.7 ft bas
	Groundwater level @ 42.00'
1305	START TEST - Recorded Data - Initial RW flow @ Actm
	and vocación at 92" Hao - Propone @ 115 cfh
1320	HORIBA Data - HC very low - Well almost clean
1405	Recordal Dater - All SAVE System Sunctions normal
1410	HORIBA Data - HE slighty higher
1470	Recorded Data - Outer wells indirative, vocuum response
	Hao level C 40.58 - Increase 1.42'
	TEST COMPLETED
1445	Cleaned and loaded all equipment -
1500	Reviewed test data
1545	Departed location

(933107-PAGE2)

ENRON CORPORATION, TRANSWESTERN COMPRESSOR STATION #5







CORE LABORATORIES ANALYTICAL REPORT Job Number: 935571 Prepared For: HALL ENVIRONMENTAL ANALYTICAL ****SCOTT HALLENBECK*** 2403 SAN MATEO N E ALBUQUERQUE, NM 87110 Date: 11/19/93

Signa

Name: Larry Scott

<u>11-19-93</u> Date:

CORE LABORATORIES P O BOX 34766 HOUSTON, TX 77234-4282

Title: Laboratory Supervisor



# LABORATORY TESTS RESULTS 11/19/93

# JOB NUMBER: 935571 CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL ATTN: **SCOTT HALLENBECK*

15.5

CLIENT I.D.....: 210522 DATE SAMPLED.....: 11/03/93 LIME SAMPLED.....: 14:40 DRK DESCRIPTION...: 5-35B

#### LABORATORY I.D...: 935571-0001 DATE RECEIVED....: 11/09/93 TIME RECEIVED....: 08:23 REMARKS.....

1

ST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHN
Wenzene, Toluene, Xylenes in Gas		*1			11/17/93	PKT
Benzene	30	1	ppm v/v			
Toluene	220	1	ppm v/v		1	
Ethyl Benzene	48	1	ppm v/v			
m+p-Xylenes	501	1	ppm v/v	lgc	1	
ortho-Xylene	21	1	ppm v/v			
efinery Gas Analysis, Extended		*1			11/17/93	PKT
Hydrogen	<0.01	0.01	Mol X	ASTM D-1945		
Oxygen	2.95	0.01	Mol X	ASTM D-1945	{	
"itrogen	84.29	0.01	Mol X	ASTM D-1945		
rbon Monoxide	<0.01	0.01	Mol X	ASTM D-1946	1	
Carbon Dioxide	11.55	0.01	Mol X	ASTH D-1945	1	
Hydrogen Sulfide	<0.01	0.01	Hol %	1	1	
Methane	<0.01	0.01	Hol X	ASTM D-1945		
Ethylene	<0.01	0.01	Mol X	ASTM D-1946		
Ethane	<0.01	0.01	Mol %	ASTM D-1945		
Propylene	<0.01	0.01	Mol X	ASTM D-2163		
Propane	<0.01	0.01	Mol %	ASTM D-1945	1	
Isobutane	<0.01	0.01	Mol 🕱	ASTM D-1945	[	
Isobutylene	<0.01	0.01	Mol X	ASTM D-2163		
1-Butene	<0.01	0.01	Mol X	ASTM D-2163		
n-Butane	<0.01	0.01	Mol %	ASTM D-1945	1	
trans-2-Butene	<0.01	0.01	Mol X	ASTM D-2163		
cis-2-Butene	<0.01	0.01	Mol %	ASTM D-2163	1	
Isopentane	<0.01	0.01	Mol X	ASTM D-2163	1	
n-Pentane	<0.01	0.01	Hol X	ASTM D-2163		
Hexanes	0.08	0.01	Mol X	1		
Heptanes	0.34	0.01	Mol X			
Octanes	0.33	0.01	Mol X			
Nonanes	0.06	0.01	Hol X			
Decanes	0.01	0.01	Mol X		ļ	
Undecanes	0	0	Mol X			
Dodecanes	0	Ō	Hol %			
Tridecanes	0	) o	Mol X			
Tetradecanes Plus	Ŏ	Ō	Nol X		[	
		1 -			1	
					1	
					1	
T			1			
				1	1	
	1				1	
		· · · · · · · · · · · · · · · · · · ·		DOV 7/7//		
1				BOX 34766		
				TON, TX 77234-4282		
			(712	\$) 943-9776		

PAGE:1



.

## CORE LABORATORIES

# LABORATORY TESTS RESULTS 11/19/93

JOB NUMBER: 935571 CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL ATTN: **SCOTT HALLENBECK*

LIENT I.D...... 210522 DATE SAMPLED...... 11/04/93 LIME SAMPLED...... 12:30 DRK DESCRIPTION...: 5-35B

#### LABORATORY I.D...: 935571-0002 DATE RECEIVED....: 11/09/93 TIME RECEIVED....: 08:23 REMARKS.....

ST DESCRIPTION	FINAL RESULT		UNITS OF MEASURE	TEST METHOD	DATE	TEC
nzene, Toluene, Xylenes in Gas		*1	f		11/17/93	PK
Benzene	38	1	ppm v/v			
Toluene	262	1	ppm v/v			
Ethyl Benzene	47	1	ppm v/v		1	
m+p-Xylenes	558	1	ppm v/v	GC		
ortho-Xylene	32	1	ppm v/v			
finery Gas Analysis, Extended		*1			11/17/93	PK
Hydrogen	<0.01	0.01	Mol X	ASTH D-1945		
Oxygen	3.69	0.01	Hol X	ASTM D-1945		
Nitrogen	85.31	0.01	Mol X	ASTM D-1945	1	
arbon Monoxide	<0.01	0.01	Mol X	ASTM D-1946		
Larbon Dioxide	9.85	0.01	Mol X	ASTM D-1945	[	
Hydrogen Sulfide	<0.01	0.01	Hol X			
Nethane	<0.01	0.01	MOL X	ASTH D-1945		
Ethylene	<0.01	0.01	Mol X	ASTM D-1946		
Ethane	<0.01	0.01	Mol X	ASTM D-1945		
Propylene	<0.01	0.01	Mol X	ASTM D-2163		
Propane	<0.01	0.01	Mol X	ASTM D-1945		
Isobutane	<0.01	0.01	Mol X	ASTM D-1945		
Isobutylene	<0.01	0.01	Mol X	ASTM D-2163		
1-Butene	<0.01	0.01	Mol X	ASTM D-2163		
n-Butane	<0.01	0.01	Mol X	ASTM D-1945		
trans-2-Butene	<0.01	0.01	Mol X	ASTM D-2163		
cis-2-Butene	<0.01	0.01	Mol X	ASTN D-2163		
Isopentane	<0.01	0.01	Hol X	ASTM D-2163		
n-Pentane	<0.01	0.01	Mol X	ASTH D-2163	]	
Hexanes	0.10	0.01	Mol X	ASTR D E105		
Heptanes	0.41	0.01	Mol X	1		
Octanes	0.38	0.01	Mol X		ł	
Nonanes	0.07	0.01	Mol X			
Decanes	0.01	0.01	Mol X			
Undecanes	0.01	0	Mot X			
Dodecanes	0	ů	Mol X			
Tridecanes	0	0	Mol X	1	ł	
Tetradecanes Plus	a	0	Mol X			
		5				
	·	• 	,  РО	BOX 34766		
				TON, TX 77234-4282		

The source of the metry and and the laws area to each and a pare a construction of the moder as the formation and the formation of the metry sources and the second sources of the metry sources and the sources of the metry sources of the sources of the



İ.

#### LABORATORY TESTS RESULTS 11/19/93

· .

JOB NUMBER: 935571 CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL ATTN: **SCOTT HALLENBECK*

LIENT I.D..... 210522 DATE SAMPLED..... 11/04/93 TIME SAMPLED ...... 16:10 DRK DESCRIPTION ...: 5-348

#### LABORATORY I.D...: 935571-0003 DATE RECEIVED....: 11/09/93 TIME RECEIVED....: 08:23 REMARKS.....

EST DESCRIPTION	FINAL RESULT	1. Andersenderscher Anderson	UNITS OF MEASURE	TEST METHOD	DATE	TECH
enzene, Toluene, Xylenes in Gas		*1			11/17/93	РКТ
Benzene	192	1	ppm v/v			
Toluene	969	1	ppm v/v			
Ethyl Benzene	96	1	ppm v/v			
m+p-Xylenes	435	1	ppm v/v	GC		
ortho-Xylene	117	1	ppm v/v			
efinery Gas Analysis, Extended		*1			11/17/93	PKT
Hydrogen	<0.01	0.01	Mol %	ASTM D-1945		
Oxygen	1.56	0.01	Mol X	ASTN D-1945		
Nitrogen	81.39	0.01	Mol X	ASTH D-1945		
arbon Monoxide	<0.01	0.01	Mol %	ASTH D-1946		
Jarbon Dioxide	14.44	0.01	Mol X	ASTM D-1945		
Hydrogen Sulfide	<0.01	0.01	Hol X			
_ Nethane	<0.01	0.01	Hol %	ASTM D-1945		
Ethylene	<0.01	0.01	Hol X	ASTM D-1946		
Ethane	<0.01	0.01	Mol X	ASTM D-1945	ļ	
Propylene	<0.01	0.01	Mol X	ASTM D-2163		
Propane	<0.01	0.01	Mol X	ASTM D-1945		
I Isobutane	<0.01	0.01	Mol X	ASTH D-1945		
	<0.01	0.01	Mol X	ASTM D-2163		
Isobutylene		0.01	Mol X	ASTM D-2163		
1-Butene	<0.01		Mol X	E Contraction of the second seco		
n-Butane	<0.01	0.01		ASTM D-1945		
trans-2-Butene	<0.01	0.01	Hol X	ASTH D-2163		
cis-2-Butene	<0.01	0.01	Mol X	ASTM D-2163		
Isopentane	<0.01	0.01	Hol X	ASTN D-2163		
n-Pentane	<0.01	0.01	Hol X	ASTM D-2163		
Hexanes	0.42	0.01	Mol X			
Heptanes	0.55	0.01	Hol X			
Octanes	0.89	0.01	Mol %			
Nonanes	0.12	0.01	Hol X			
Decanes	0.02	0.01	Hol X			
Undecanes	0	0	Mol X	1		
Dodecanes	0 *	0	Mol X			
Tridecanes	0	0	Mol X			
Tetradecanes Plus	0	0	Mol X			
					1	
	1		1		}	
					1	
					1	
			PC	) BOX 34766		
-				STON, TX 77234-4282		
				3) 943-9776		

PAGE:3



# LABORATORY TESTS RESULTS 11/19/93

.JOB NUMBER: 935571 CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL

ATTN: **SCOTT HALLENBECK*

LIENT I.D...... 210522 DATE SAMPLED...... 11/05/93 TIME SAMPLED...... 09:50 ORK DESCRIPTION...: 5-48

#### LABORATORY I.D...: 935571-0004 DATE RECEIVED...: 11/09/93 TIME RECEIVED...: 08:23 REMARKS.....

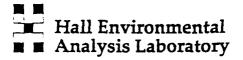
DESCRIPTION	FINAL RESULT	LIMINS/ UILUIION	UNITS OF MEASURE	TEST METHOD	DATE	TEC
ene, Toluene, Xylenes in Gas		*1			11/17/93	PK
Benzene	<1	1	ppm v/v			
Toluene	31	1	ppm v/v			
Ethyl Benzene	6	1	ppm v/v			
m+p-Xylenes	67	1	ppm v/v	GC		
ortho-Xylene	9	1	ppm v/v			
nery Gas Analysis, Extended		*1			11/17/93	PK
Hydrogen	<0.01	0.01	Mol X	ASTM D-1945		
Oxygen	15.31	0.01	Mol X	ASTH D-1945		
Nitrogen	78.92	0.01	Mol X	ASTM D-1945	1	
arbon Monoxide	<0.01	0.01	Mol X	ASTH D-1946		
Jarbon Dioxide	5.72	0.01	Hol X	ASTH D-1945		
Hydrogen Sulfide	<0.01	0.01	Mol %		1	
Nethane	<0.01	0.01	Mol X	ASTM D-1945		
Ethylene	<0.01	0.01	Mol X	ASTH D-1946	1	
Ethane	<0.01	0.01	Mol X	ASTM 0-1945		
Propylene	<0.01	0.01	Mol X	ASTM D-2163		
Propane	<0.01	0.01	Mol X	ASTM D-1945		
Isobutane	<0.01	0.01	Mol X	ASTM D-1945		
Isobutylene	<0.01	0.01	Mol X	ASTM D-2163		
1-Butene	<0.01	0.01	Mol X	ASTH 0-2163		
n-Butane	<0.01	0.01	Mol X	ASTM D-1945		
trans-2-Butene	<0.01	0.01	Mol X	ASTM D-1945		
cis-2-Butene	<0.01	0.01	Mol %			
				ASTH D-2163		
Isopentane	<0.01	0.01	Mol X	ASTH D-2163		
n-Pentane	<0.01	0.01	Mol X	ASTM D-2163		
Hexanes	<0.01	0.01	Mol X		1	
Heptanes	0.01	0.01	Mol X		1	
Octanes	0.03	0.01	Mol X			
Nonanes	0.01	0.01	Mol X		ł	
Decanes	<0.01	0.01	Mol X			
Undecanes	0	0	Mol X	1		
Dodecanes •	0	0	Mol %		1	
Tridecanes	0	0	Mol %			
Tetradecanes Plus	0	0	Mol X			
Tetradecanes Plus	0	0	Mol X			
				BOX 34766		
			HOU: (71)	STON, TX 77234-4282 3) 943-9776		

The provide second end of the report of the report of the based upon costenal on a roll material subbled by the direct tot index exclusive undicondental use this report that in the internal one of prioring expression tot in the material subbled by the direct tot index exclusive undicondental use this report to the internal one of prioring expression toter internal one of prioring expression tot index exclusive undicondental use this report to the internal one of prioring expression tot index exclusive undicondental use this report to the internal one of prioring expression expression and the second exclusion of the expression of prioring expression of the expression of the expression expression internal one of the expression of the expression expression expression expression of the expression expression of the expression exp



#### LABORATORY TESTS RESULTS 11/19/93

JOB NUMBER: 935571 CUSTOMER: HALL ENVIRONMENTAL ANALYTICAL ATTN: **SCOTT HALLENBECK*


LIENT I.D.....: 210522 DATE SAMPLED.....: 11/05/93 TIME SAMPLED.....: 12:15 ORK DESCRIPTION...: 5-5B

#### LABORATORY I.D...: 935571-0005 DATE RECEIVED....: 11/09/93 TIME RECEIVED....: 08:23 REMARKS.....

enzene, Toluene, Xylenes in Gas*1Benzene<11Toluene21Ethyl Benzene<11m+p-Xylenes61ortho-Xylene<11efinery Gas Analysis, Extended*1Hydrogen<0.010.01Oxygen12.700.01Nitrogen<0.010.01arbon Monoxide<0.010.01Jarbon Dioxide<0.010.01Hydrogen Sulfide<0.010.01Propylene<0.010.01Ethane<0.010.01Propylene<0.010.01Jsobutane<0.010.01	ppm v/v ppm v/v ppm v/v ppm v/v ppm v/v Mol X Mol X Mol X Mol X Mol X Mol X Mol X Mol X	GC ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945	11/17/93	РКТ
Toluene21Ethyl Benzene<11m+p-Xylenes61ortho-Xylene<11efinery Gas Analysis, Extended*1Nydrogen<0.010.01Oxygen12.700.01Nitrogen&2.470.01orbon Monoxide<0.010.01arbon Dioxide<0.010.01Hydrogen Sulfide<0.010.01Hydrogen Sulfide<0.010.01Propylene<0.010.01Propylene<0.010.01Isobutane<0.010.01	ppm v/v ppm v/v ppm v/v ppm v/v Mol X Mol X Mol X Mol X Mol X Mol X Mol X Mol X Mol X	ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945	11/17/93	PKT
Ethyl Benzene         <1         1           m+p-Xylenes         6         1           ortho-Xylene         <1	ppm v/v ppm v/v ppm v/v ppm v/v Mol X Mol X Mol X Mol X Mol X Mol X Mol X Mol X Mol X	ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945	11/17/93	PKT
m+p-Xylenes         6         1           ortho-Xylene         <1	ppm v/v ppm v/v ppm v/v Mol X Mol X Mol X Mol X Mol X Mol X Mol X Mol X	ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945	11/17/93	РКТ
m+p-Xylenes         6         1           ortho-Xylene         <1	ppm v/v ppm v/v Mol X Mol X Mol X Mol X Mol X Mol X Mol X Mol X	ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945	11/17/93	PKT
ortho-Xylene         <1         1           efinery Gas Analysis, Extended         *1         *1           Hydrogen         <0.01	ppm v/v Mol X Mol X Mol X Mol X Mol X Mol X Mol X Mol X	ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945 ASTM D-1945	11/17/93	PKT
Hydrogen         <0.01         0.01           Oxygen         12.70         0.01           Nitrogen         82.47         0.01           urbon Monoxide         <0.01	Mol X Mol X Mol X Mol X Mol X Mol X Mol X	ASTH D-1945 ASTH D-1945 ASTH D-1946 ASTH D-1945 ASTH D-1945	11/17/93	PK1
Oxygen         12.70         0.01           Nitrogen         82.47         0.01           Bron Monoxide         <0.01	Mol X Mol X Mol X Mol X Mol X Mol X Mol X	ASTH D-1945 ASTH D-1945 ASTH D-1946 ASTH D-1945 ASTH D-1945		
Nitrogen         82.47         0.01           arbon Monoxide         <0.01	Mol X Mol X Mol X Mol X Mol X Mol X Mol X	ASTM D-1945 ASTM D-1946 ASTM D-1945 ASTM D-1945		
arbon Monoxide         <0.01         0.01           arbon Dioxide         4.83         0.01           Hydrogen Sulfide         <0.01	Mol X Mol X Mol X Mol X Mol X Mol X	ASTH D-1946 ASTH D-1945 ASTH D-1945		
Jarbon Dioxide         4.83         0.01           Hydrogen Sulfide         <0.01	Mol X Mol X Mol X Nol X Mol X	ASTH D-1945 ASTH D-1945		
Hydrogen Sulfide         <0.01         0.01           Methane         <0.01	Mol X Mol X Mol X Mol X	ASTH D-1945 ASTH D-1945		
Hydrogen Sulfide         <0.01         0.01           Methane         <0.01	Mol X Mol X Mol X Mol X	ASTM D-1945		
Methane         <0.01         0.01           Ethylene         <0.01	Mol X Nol X Nol X			
Ethylene         <0.01         0.01           Ethane         <0.01	Mol X Mol X			
Ethane         <0.01         0.01           Propylene         <0.01	Mol X	ASTM D-1946		
Propylene         <0.01         0.01           Propane         <0.01		ASTH D-1945		
Propane         <0.01         0.01           Isobutane         <0.01	Mol %	ASTH D-2163		
Isobutane <0.01 0.01	Mol X	ASTH D-1945		
	Mol X	ASTM D-1945		
Isobutylene <a></a> <0.01	Mol X	ASTM D-2163		
1-Butene <0.01 0.01	Mol X			
n-Butane <0.01 0.01	Mol X	ASTM D-2163		
		ASTM D-1945		
	Mol %	ASTM D-2163		
cis-2-Butene <0.01 0.01	Mol X	ASTM D-2163		
Isopentane <0.01 0.01	Mol %	ASTM D-2163		
n-Pentane <0.01 0.01	Mol X	ASTM D-2163		
		·		
Decanes <0.01 0.01	Mol %			
Undecanes 0 0	Mol %			
	Hol X			
Tridecanes 0 0	Nol X			
Tetradecanes Plus 0 0	Mol X			
Decanes Undecanes Dodecanes Tridecanes	0 0 0 0	<0.01	<0.01	<0.01
<pre>&lt;0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	Mol % Mol % Mol % Nol %			

PAGE:5

The and CHALL OF MERCHANDRS CONTRACED AT A report are based uson COSEM to on whatenes successed texture exolusive and contractuluse this report has been mich. The mercinetations or pomons expressed repreent to the cost of succession of a report of succession and makes to warranty of herebest at the productivity procession or protableness of any deligability of a cost of the 
	Hall Environmental Analysis Laboratory 2403 Son Muteo NE, Suite P-13			(V 10 ^V ) {	oqsbace	5 OL He	zəiddu8 iiA	λ.									 	
	IS LAB	•		sossoch.	פרייני	ק גו	פצ קבייקב	$\times$	$\boldsymbol{\times}$	$\boldsymbol{\times}$	ス	$\times$					 	
	VALYS	Albuquerque, New Mexico 87110 505.880.1803	SI		()	HA9 10	AN9) 013											
	AL AI suite F	xico 8	ANALYSIS REQUEST	, <u></u> , <u></u> , <u></u> , <u></u> , <u></u> ,		_	EDC										 -	
	MENT NE, S	w Me	YSIS F			·	EDB (Weth											
	IRON) Mateo	le, Ne 803	ANAL				209/109										 4	
	Hall Environmental Analy 2403 Son Mateo NE, Suite P-13	Albuquerque, N 505.880.1803		(ləsəiQ + z			100 + X318											
	HALI 2403	Albud 505.		(vin0 enilosi				$\overline{\mathbf{X}}$	$\times$	$\times$	$\overline{\mathbf{x}}$	7						
				(l929i(]\209)		- <u>/</u>					-		 i				 -	
							IM + X318								+		 	
				(07	08/20	)9 poy	təM) X3T8										Remarks:	
		Project Name: En 2001 - 7240 reau	Project #. Z/05 2. 2	Project Manager:	Sumpler: Bob Marley	Samples Cold? La Yes No	Number/Volume Preservative HeAL No.	11/14005		<u>الم</u>	{r/	[v] \$					Received By: (Signature)	Received By: Rignapure - 11-4-4 3/1030
	CHAIN-OF-CUSTODY RECORD	Client Deniel B. Stephens & Assoc.	eny h	Albuquezue , NM 87/07	505 822 9400	228	e Matrix Sample 1.D. No.	Ar 5-35B	1		0 VIV	5 Air S-SB					e: Relinquished By: (Signoture)	Relinguished By
-	IO-N	enie	6020	41209	1'	505	Time	1440	1230	0/91	0350	1215					lime: 1745	
	CHAI	Client	Address:		Phone #	Fox # :	Date	11/3/93 1440	022126/11	11/4/93 16/0	11/5/93	11 [5 ] 93 1215		1			Dote: 11/5/93	Dote:



Hall Environmental Analysis Laboratory 2403 San Mateo N.E., Suite P-13 Albuquerque, N.M. 87110 (505) 880-1803 11/10/93

Daniel B. Stephens and Associates, Inc. 6020 Academy NE, Suite 100 Albuquerque, NM 87109

Dear Mr. Bob Marley:

Enclosed are the results for the analyses that were requested. These were done according to E.P.A. procedures or the equivalent.

Please don't hesitate to contact me for any additional information or clarifications.

Sincerely.

Hell

11/10/97

Scott Hallenbeck. Lab Manager

Project: Enron-Thoreau

2403 San Mateo N.E. Suite P-13 • Albuquerque, NM 87110

Results for sample : 5-35B (See date collected)

Date collected: 11/4/93 Date received: 11/5/93 Date extracted: NA Date injected: 11/3/93 Client: Daniel B. Stephens and Associates, Inc. Project Name: Enron-Thoreau HEAL #: 931119-2 Project Manager: Bob Marley Sampled by: B. Marley Matrix: Air

.

Method: EPA 602

. 1

<u>Compound</u>	Amount	<u>Units</u>
Benzene	67	UG/L
Toluene	450	UG/L
Ethylbenzene	21	UG/L
Total-Xylene	190	UG/L
BFB (Surrogate)	Recovery = 10	)0 %
Dilution Factor	= 100	

Method: EPA 8015 Modified

Compound	Amount	<u>Units</u>
Gasoline	53,000	UG/L
BFB (Surrogate)	Recovery =	108 %
Dilution Factor	= 100	

### Results for sample : 5-43

Date collected: 11/5/93 Date received: 11/5/93 Date extracted: NA Date injected: 11/8/93 Client: Daniel B. Stephens and Associates, Inc. Project Name: Enron-Thoreau HEAL #: 931119-4 Project Manager: Bob Marley Sampled by: B. Marley Matrix: Air

Method: EPA 602

Compound	Amount	Units
Benzene	4.8	UG/L
Toluene	44	UG/L
Ethylbenzene	6.2	UG/L
Total-Xylene	38	UG/L
BFB (Surrogate)	Recovery =	102 %
Dilution Factor	= 25	

Method: EPA 8015 Modified

Compound	Amount	<u>Units</u>
Gasoline	6,800	UG/L
BFB (Surrogate)	Recovery = 11	98
Dilution Factor	= 25	

### Results for QC: Air Blank

Date extracted: NA Date injected: 11/3/93 Client: Daniel B. Stephens and Associates, Inc. Project Name: Enron-Thoreau HEAL #: RB 11/8 Project Manager: Bob Marley Matrix: Air

Method: EPA 602

Compound A	Amount	<u>Units</u>
Benzene	<0.05	UG/L
Toluene	<0.05	UG/L
Ethylbenzene	<0.05	UG/L
Total-Xylene	<0.05	UG/L
BFB (Surrogate)	Recovery = 9	98

Method: EPA 8015 Modified

Compound	Amount	<u>Units</u>
Gasoline	<10	UG/L
BFB (Surrogate	) Recovery = 95	9

F			CITAINTOT + USTUDIT RECORD						2403	San Ma	eo NE,	114 State Nikewa kulangan 1 2403 San Mateo NE, Suite P-13	AL 41.	Aby	L MU	
(lient:	) in na	R.S.	Ment Duniel B. Stephens & Assoc.	Project Name:	Thoreau				Albuqi 505.8	Albuquerque, N 505.880.1803	New Me	Albuquerque, New Mexico 87110 505.880.1803	011			, <b>.</b>
Address:	6020	Acole	Address. 6020 Accodency NE Surk 100	Project #: Z105	5					AN	I SISAT	ANALYSIS REQUEST		50		S. A. S.
	nonait	かとう	Visidire d'un a l'un	Project Monager.	Marley			(ləcəiŪ\coð)	asoline Only) (lesel)	·				assocy h-		(Y or N) 9
Phone #	505		822 9400	Sumpler: Bol	ob Marce	La La		aow s		([.8				عربر		odspo
F (1x # :	Sas			Sumples Cold?	L Yes	T No		108 P		3[ <b>4</b> bo		· <u> </u>		ק הד		s or He
Date	Time	Matrix	Sample I.D. No.	Number/Volume	Preservative HgCl ₂ HCl Other	HEAL No.	19M) XJT8 BTEX (Met	ortiaM H9T		фэм) H9T	EDB (W6#) 709/109	EDC	AN9) 013	פא קמית ב		alddu8 iA
11 3/93 1440	144 0	A.	5-35B.	11116000		931119-01			X					$\times$	<u> </u>	
0221230	0221	Arr	5-3SB	rr/		20-			×				<u> </u>	X		,
11/4/93 16/0	1	Air	5-34R			-03			$\mathbf{X}$				- 、	$\overline{\lambda}$		
11/5/93	10	YIV VIV	5-4B			-04			$\mathbf{\lambda}$					X		
11/5/93/215	1215	41	S- 513	10/11		- 05			$\mathbf{x}$							
																1
																1
											_					
Dute: 11/5/93	Time: 1745 Time:	Relinquished By Relinquished By	Relinquished By: (Signature) Boy //lanley Relingenished By: (Signature)	Received	Received By: (Signature) Received By: (Signature)		Remarks:									

Appendix E

-----

. . ... .....

**Verification of Notifications** 

# ENRON **Transwestern Pipeline Company**

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

### **CERTIFIED MAIL -- RETURN RECEIPT REQUESTED**

March 11, 1994

Ms. Sadie Hoskie Director, Navajo EPA P.O. Box 308 Window Rock, AZ 86515 Dear Ms. Hoskie,

This is to let you know that Transwestern Pipeline Company (TPC) is preparing to apply to the New Mexico Environment Department, Air Pollution Control Bureau for a permit for construction of a soil vapor extraction system at its Compressor Station No. 5 facility. This notice is a requirement of the permitting process, under Air Quality Control Regulation 702 -Permits.

We expect to submit the permit application to the NMED Air Pollution Control Bureau on March 21, 1994. The TPC facility is located in Section 20 of Range 13W Township 14N, 2.4 miles NNW of Thoreau, New Mexico. The process for which we are seeking a permit is a soil vapor extraction system. The system is designed to extract subsurface soil vapor at a maximum rate of 176 cfm (cubic feet per minute). The estimated maximum emissions after construction is completed are listed in Table 1. The standard operating schedule of the new source after completion is 24 hours/day, 7 days/week, 52 weeks/year.

Compound	Maximum Estimated Emission Rate Ibs./hour	Maximum Estimated Annual Emissions tons/year
benzene	0.04	0.01
toluene	0.26	0.18
ethylbenzene	0.03	0.03
xylene (m-, p-, & o-)	0.17	0.34
hexanes	1.07	0.29
octanes	3.00	2.01
nonanes	0.46	0.59
Total NMHC	6.75	4.33

Table 1. Maximum estimated emission rates and annual emissions of regulated compounds.

Note: Total NMHC (non-methane hydrocarbons) includes the previously listed compounds.

The owner and operator of the facility is Transwestern Pipeline Company, a subsidiary of ENRON Operations Corp., P.O. Box 1188, Houston, TX 77251-1188.

## Air Quality Control Regulation 702 - Permit Notification

March 11, 1994 Page 2

Comments and inquiries regarding this permit application or the permitting process may be directed to:

Program Manager, Technical Analysis and Permits Section Environment Department Air Pollution Control Bureau, S2100 1190 St. Francis Drive, Runnels Building P.O. Box 26110 Santa Fe, New Mexico 87502

Sincerely,

Fenfey "Ted" Ryther, Jr., P.E. Manager, Permits Group

Address: Environmental Affairs, Rm. 3AC3137 ENRON Operations Corp. P.O. Box 1188 Houston, TX 77251-1188

# **ENRON** Transwestern Pipeline Company

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

### **CERTIFIED MAIL -- RETURN RECEIPT REQUESTED**

March 11, 1994

Area Manager, BLM Rio Puerco Resource Area 435 Montano NE Albuquerque, NM 87107

To whom it may concern:

This is to let you know that Transwestern Pipeline Company (TPC) is preparing to apply to the New Mexico Environment Department, Air Pollution Control Bureau for a permit for construction of a soil vapor extraction system at its Compressor Station No. 5 facility. This notice is a requirement of the permitting process, under Air Quality Control Regulation 702 - <u>Permits</u>.

We expect to submit the permit application to the NMED Air Pollution Control Bureau on March 21, 1994. The TPC facility is located in Section 20 of Range 13W Township 14N, 2.4 miles NNW of Thoreau, New Mexico. The process for which we are seeking a permit is a soil vapor extraction system. The system is designed to extract subsurface soil vapor at a maximum rate of 176 cfm (cubic feet per minute). The estimated maximum emissions after construction is completed are listed in Table 1. The standard operating schedule of the new source after completion is 24 hours/day, 7 days/week, 52 weeks/year.

Compound	Maximum Estimated Emission Rate Ibs./hour	Maximum Estimated Annual Emissions tons/year
benzene	0.04	0.01
toluene	0.26	0.18
ethylbenzene	0.03	0.03
xylene (m-, p-, & o-)	0.17	0.34
hexanes	1.07	0.29
octanes	3.00	2.01
nonanes	0.46	0.59
Total NMHC	6.75	4.33

Table 1. Maximum estimated emission rates and annual emissions of regulated compounds.

Note: Total NMHC (non-methane hydrocarbons) includes the previously listed compounds.

The owner and operator of the facility is Transwestern Pipeline Company, a subsidiary of ENRON Operations Corp., P.O. Box 1188, Houston, TX 77251-1188.

### Air Quality Control Regulation 702 - Permit Notification

March 11, 1994 Page 2

Comments and inquiries regarding this permit application or the permitting process may be directed to:

Program Manager, Technical Analysis and Permits Section Environment Department Air Pollution Control Bureau, S2100 1190 St. Francis Drive, Runnels Building P.O. Box 26110 Santa Fe, New Mexico 87502

Sincerely,

27

Fenley "Ted" Ryther, Jr., P.E. Manager, Permits Group

Address: Environmental Affairs, Rm. 3AC3137 ENRON Operations Corp. P.O. Box 1188 Houston, TX 77251-1188

# **ENRON** Transwestern Pipeline Company

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

### **CERTIFIED MAIL -- RETURN RECEIPT REQUESTED**

March 11, 1994

Mr. Milton Gabaldon McKinley County Clerk P.O. Box 1268 Gallup, NM 87305

Dear Mr. Gabaldon,

This is to let you know that Transwestern Pipeline Company (TPC) is preparing to apply to the New Mexico Environment Department, Air Pollution Control Bureau for a permit for construction of a soil vapor extraction system at its Compressor Station No. 5 facility. This notice is a requirement of the permitting process, under Air Quality Control Regulation 702 - <u>Permits</u>.

We expect to submit the permit application to the NMED Air Pollution Control Bureau on March 21, 1994. The TPC facility is located in Section 20 of Range 13W Township 14N, 2.4 miles NNW of Thoreau, New Mexico. The process for which we are seeking a permit is a soil vapor extraction system. The system is designed to extract subsurface soil vapor at a maximum rate of 176 cfm (cubic feet per minute). The estimated maximum emissions after construction is completed are listed in Table 1. The standard operating schedule of the new source after completion is 24 hours/day, 7 days/week, 52 weeks/year.

Compound	Maximum Estimated Emission Rate lbs./hour	Maximum Estimated Annual Emissions tons/year
benzene	0.04	0.01
toluene	0.26	0.18
ethylbenzene	0.03	0.03
xylene (m-, p-, & o-)	0.17	0.34
hexanes	1.07	0.29
octanes	3.00	2.01
nonanes	0.46	0.59
Total NMHC	6.75	4.33

Table 1. Maximum estimated emission rates and annual emissions of regulated compounds.

Note: Total NMHC (non-methane hydrocarbons) includes the previously listed compounds.

The owner and operator of the facility is Transwestern Pipeline Company, a subsidiary of ENRON Operations Corp., P.O. Box 1188, Houston, TX 77251-1188.

## Air Quality Control Regulation 702 - Permit Notification

Comments and inquiries regarding this permit application or the permitting process may be directed to:

Program Manager, Technical Analysis and Permits Section Environment Department Air Pollution Control Bureau, S2100 1190 St. Francis Drive, Runnels Building P.O. Box 26110 Santa Fe, New Mexico 87502

Sincerely,

1

Fenley "Ted" Ryther, Jr., P.E. Manager, Permits Group

Address: Environmental Affairs, Rm. 3AC3137 ENRON Operations Corp. P.O. Box 1188 Houston, TX 77251-1188

# **ENRON** Transwestern Pipeline Company

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

### **CERTIFIED MAIL -- RETURN RECEIPT REQUESTED**

March 11, 1994

Ms. Patricia A. Aragon Cibola County Clerk P.O. Box 190 Grants, NM 87020

Dear Ms. Aragon,

This is to let you know that Transwestern Pipeline Company (TPC) is preparing to apply to the New Mexico Environment Department, Air Pollution Control Bureau for a permit for construction of a soil vapor extraction system at its Compressor Station No. 5 facility. This notice is a requirement of the permitting process, under Air Quality Control Regulation 702 - <u>Permits</u>.

We expect to submit the permit application to the NMED Air Pollution Control Bureau on March 21, 1994. The TPC facility is located in Section 20 of Range 13W Township 14N, 2.4 miles NNW of Thoreau, New Mexico. The process for which we are seeking a permit is a soil vapor extraction system. The system is designed to extract subsurface soil vapor at a maximum rate of 176 cfm (cubic feet per minute). The estimated maximum emissions after construction is completed are listed in Table 1. The standard operating schedule of the new source after completion is 24 hours/day, 7 days/week, 52 weeks/year.

Compound	Maximum Estimated Emission Rate Ibs./hour	Maximum Estimated Annual Emissions tons/year
benzene	0.04	0.01
toluene	0.26	0.18
ethylbenzene	0.03	0.03
xylene (m-, p-, & o-)	0.17	0.34
hexanes	1.07	0.29
octanes	3.00	2.01
nonanes	0.46	0.59
Total NMHC	6.75	4.33

Table 1. Maximum estimated emission rates and annual emissions of regulated compounds.

Note: Total NMHC (non-methane hydrocarbons) includes the previously listed compounds.

The owner and operator of the facility is Transwestern Pipeline Company, a subsidiary of ENRON Operations Corp., P.O. Box 1188, Houston, TX 77251-1188.

## Air Quality Control Regulation 702 - Permit Notification

Comments and inquiries regarding this permit application or the permitting process may be directed to:

Program Manager, Technical Analysis and Permits Section Environment Department Air Pollution Control Bureau, S2100 1190 St. Francis Drive, Runnels Building P.O. Box 26110 Santa Fe, New Mexico 87502

Sincerely,

Fenley "Ted" Ryther, Jr., P.E. Manager, Permits Group

Address: Environmental Affairs, Rm. 3AC3137 ENRON Operations Corp. P.O. Box 1188 Houston, TX 77251-1188

I also wish to receive the following services (for an extra fee): 1.	4a. Article Number       4a. Article Number         P 468 149 120         4b. Service Type         1 Registered         1 Required         1 Express Mail         1 Express Mail         1 Merchandise         2 N 9 Y	Addressee's Address (Only if requested and fee is paid) DOMESTIC RETURN RECEIPT	I       also wish to receive the following services (for an extra twe can fee):         space       1. <ul> <li>Addressee's Address</li> <li>Behnumber</li> <li>Consult postmaster for fee.</li> <li>A. Article Number</li> <li>P 468 140 122</li> <li>Return Receipt Service</li> <li>Certified</li> <li>COD</li> <li>Express their</li> <li>Merchandise</li> <li>Addressee's Address</li> </ul> 4a. Article Number         2. <ul> <li>Restricted Delivery</li> <li>A. Article Number</li> <li>P 468 140 122</li> <li>Ab Service Type</li> <li>Return Receipt for fee.</li> </ul> 7. Date of Delivery           7. Date of Delivery             7. Date of Delivery             7. Date of Delivery         Denested for sold           8. Addressee's Address (Only if requested and fee is paid)
<ul> <li>SENDER:</li> <li>Complete items 1 and/or 2 for additional services.</li> <li>Complete items 3, and 4a &amp; b.</li> <li>Print your name and address on the reverse of this form so that we can return this card to you.</li> <li>Attent this form to the front of the mailpiece, or on the back if space does not permit.</li> <li>Write "Return Receipt Requested" on the anticle was delivered and the date delivered.</li> </ul>	A Article Addressed to: Area: Manager, BIM Rio Puerco Resource Area 435 Montano NE Albuquerque, NM 87107	5. Signature (Addressee)         8.           6. Signature (Adent)         8.           6. Signature (Adent)         8.           7.         7.           7.         7.           8.         9.           9.         9.           9.         9.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9.         7.           9. <t< td=""><td>SENDER:       • Complete items 1 and/or 2 for additional services.         • Complete items 3, and 4a &amp; b.       • Print your name and address on the reverse of this form so that we can return this card to you.         • Arth your name and address on the reverse of this form so that we can return this card to you.       • Attain the print of the maliplece, or on the back if space does not permit.         • Arth your name and address on the reverse of this form so that we can return this card to you.       • Attain the article was delivered and the date does not permit.         • This "Raturn Receipt Requested" on the maliplece, or on the back if space does not permit.       • Attain Receipt Requested" on the maliplece, or on the back if space does not permit.         • The article Addressed to:       • The string addressed to:       • Attain Receipt Will the complete addressed to:         • Mill toon Gabalidon       McKinley Country Clerk       P. 9.468         • Do. Box 1268       P. 0. Box 1268       P. 0. Box 1268         • P. 0. Box 1268       B. 0. 0.       To the fourth of the strict addressed to:         • Do. Box 1268       B. 0. 0.       To the fourth of the strict addressed to:         • Signature Addressed to:       0. 1268       To the strict addressed to:         • Signature Addressed to:       0. 1391 ± U.S.G.P.O.: 1992.307-530       D</td></t<>	SENDER:       • Complete items 1 and/or 2 for additional services.         • Complete items 3, and 4a & b.       • Print your name and address on the reverse of this form so that we can return this card to you.         • Arth your name and address on the reverse of this form so that we can return this card to you.       • Attain the print of the maliplece, or on the back if space does not permit.         • Arth your name and address on the reverse of this form so that we can return this card to you.       • Attain the article was delivered and the date does not permit.         • This "Raturn Receipt Requested" on the maliplece, or on the back if space does not permit.       • Attain Receipt Requested" on the maliplece, or on the back if space does not permit.         • The article Addressed to:       • The string addressed to:       • Attain Receipt Will the complete addressed to:         • Mill toon Gabalidon       McKinley Country Clerk       P. 9.468         • Do. Box 1268       P. 0. Box 1268       P. 0. Box 1268         • P. 0. Box 1268       B. 0. 0.       To the fourth of the strict addressed to:         • Do. Box 1268       B. 0. 0.       To the fourth of the strict addressed to:         • Signature Addressed to:       0. 1268       To the strict addressed to:         • Signature Addressed to:       0. 1391 ± U.S.G.P.O.: 1992.307-530       D
S X H			Image: Second
I also wish to rec following services (for fee): 1. □ Addressee's A 2. □ Restricted Del	4a. Article Number         P. 468 140 118         4b. Service Type         Certified       Insured         K2 Certified       COD         Express Mail       Raturn Recipients         7. Date of Delivery       All	see's Address'(Only if is paid) AESTIC RETURN F	I also wish to rection following services (for following services (for fee):         1. <ul> <li>Addressee's A</li> <li>1.              <li>Addressee's A</li> <li>2.              <li>Bestricted Delity</li> <li>2.              <li>Restricted Delity</li> <li>2.              <li>140 121</li> <li>140 121</li> <li>140 121</li> <li>140 121</li> <li>140 121</li> <li>140 121</li> <li>150</li> <li>160</li> <li>160</li> <li>160</li> <li>170</li> <li>180</li> <li>180</li> <li>190</li> <li>100</li> /li></li></li></li></ul>
rm so that we can he back if space w the article numbe	44. 14. 14. 14. 14. 14. 14. 14. 14. 14.	8. Ad and * USGP.0.: 1982-307-530	m so that we can be back if space w the article number livered and the date P 468 P 250 P 250 P 207-530 P 00
<b>ENDER:</b> Complete Items 1 and/or 2 for additional services. Complete Items 3, and 4a & b. Print your name and address on the reverse of this form so that we can turn this card to you. Attach this form to the front of the mailpiece, or on the back if space as not permit. Write "Return Receipt Requested" on the article was delivered and the date The Return Receipt will show to whom the article was delivered and the date	3. Article Addressed to: Ms. Sadie Hoskie Director, Navajo EPA P.O. Box 308 Window Rock, AZ 86515	Signature (Addressee) Signature (Agent) Form 3811, December 1991 & U.S.G.P.O.	SENDER: • Complete items 1 and/or 2 for additional services. • Print your name and address on the reverse of this form so that we can return this card to you. • Write 'fleatun flacent to the front of the mailpiece, or on the back if space does not permit. • Write 'fleatun flacent rout of the mailpiece, or on the back if space • Write 'fleatun flacent will show to whom the article was delivered and the date delivered and the date delivered. • Article Addressed to: • Article Addressed to: • The Return flacent will show to whom the article was delivered and the date delivered. • Article Addressed to: • The Return flacent will show to whom the article was delivered and the date delivered. • Article Addressed to: • The Return flacent will show to whom the article was delivered and the date • The Return flacent will show to whom the article was delivered and the date • The Return flacent will show to whom the article was delivered and the date • The Return flacent will show to whom the article was delivered and the date • The Return flacent will show to whom the article was delivered and the date • The Return flacent will show to whom the article was delivered and the date • The Return flacent will show to whom the article was delivered and the date • The Return flacent will show to whom the article was delivered and the date • Signature (Addressee) 8. Addressee • Signature (Addressee) 8. Addressee • Signature (Addressee) 8. Addressee • Signature (Addressee) 9. Corn 3811, December 1991 * U.S.G.D. 1992. 307-530 DO

ъ

#### NOTICE OF PERMIT APPLICATION

Pursuant to the requirements of New Mexico Air Quality Control Regulation 702 - <u>Permits</u>, Transwestern Pipeline Company (TPC) of P.O. Box 1188, Houston, TX 77251, hereby announces an intent to apply to the New Mexico Environment Department, Air Pollution Control Bureau for a permit to construct a facility which will cause emissions of the following regulated air contaminants: benzene, toluene, ethylbenzene, xylene, hexanes, octanes, and nonanes. The expected date of application submittal to the NMED is March 15, 1994. The TPC facility is located in Section 20 of Range 13W Township 14N, 2.4 miles NNW of Thoreau, New Mexico. The process for which TPC is seeking a permit is a soil vapor extraction system. The system is designed to extract subsurface soil vapor at a maximum rate of 176 cfm (cubic feet per minute).

The estimated maximum emissions after construction is completed are listed in Table 1. The maximum and standard operating schedule of the new source after completion is 24 hours/day, 7 days/week, 52 weeks/year.

	Maximum Estimated	Maximum Estimated
	Emission Rate	Annual Emissions
Compound	lbs./hour	tons/year
benzene	0.04	0.01
toluene	0.26	0.18
ethylbenzene	0.03	0.03
xylene (m-, p-, & o-)	0.17	0.34
hexanes	1.07	0.29
octanes	3.00	2.01
nonanes	0.46	0.59
Total NMHC	6.75	4.33

Table 1. Maximum estimated emission rates and annual emissions of regulated compounds.

Note: Total NMHC (non-methane hydrocarbons) includes the previously listed compounds.

The owner and operator of the facility is Transwestern Pipeline Company, a subsidiary of ENRON Operations Corp., P.O. Box 1188, Houston, TX 77251-1188.

Comments and inquires regarding this permit application or the permitting process may be directed to:

Program Manager, Technical Analysis and Permits Section Environment Department Air Pollution Control Bureau, S2100 1190 St. Francis Drive, Runnels Building P.O.Box 26110 Santa Fe, New Mexico 87502

# **Affidavit of Publication**

STATE OF NEW MEXICO

) SS

UNTY OF McKINLEY

#### HUBBARD, FREIDA

_ being duly sworn upon

oath, deposes and says:

29.

August

1997

As <u>Legal Clerk</u> of The Independent, a newspaper published in and having a general circulation in McKinley County, New Mexico and in the City of Gallup, New Mexico and having a general circulation in Cibola County, New Mexico and in the City of Grants, New Mexico and having a general circulation in Apache County, Arizona and in the City of St. Johns and in the City of Window Rock, Arizona therein: that this affiant makes this affidavit based upon personal knowledge of the facts herein sworn to. That the publication, a copy of which is hereto attached was published in said newspaper during the period and time of publication and said notice was published in the newspaper proper, and not in a supplement thereof,

21st	for <u>one time</u> ,	the first publication being on the
second publication being on the day of, 19 the third publication on the day of, 19 	day of	<u>ch</u> , 19 <u>_94</u> the
on the day of, 19		
and the last publication being on the day of	of	_, 19 the third publication
and the last publication being on the day of	on the day of _	
and the last publication being on the day of, 19 That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation. Multiple Mexico, 1941 compilation. Sworn and subscribed to before me this24th_ day of, A.D., 1994. March, A.D., 1994. Motary Public	<b>•</b>	
and the last publication being on the day of, 19 That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation. Multiple Mexico, 1941 compilation. Sworn and subscribed to before me this24th_ day of, A.D., 1994. March, A.D., 1994. Motary Public	, <b>1</b>	·
and the last publication being on the day of	•	
That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation. Meila Meila Meila Affiant. Sworn and subscribed to before me this <u>24 th</u> day of <u>March</u> , A.D., 19 <u>94</u> . Matay Mathian (Notary Public		
That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation. Meila Meila Meila Affiant. Sworn and subscribed to before me this <u>24 th</u> day of <u>March</u> , A.D., 19 <u>94</u> . Matay Mathian (Notary Public	······	
That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation. Meila Meila Meila Affiant. Sworn and subscribed to before me this <u>24 th</u> day of <u>March</u> , A.D., 19 <u>94</u> . Matay Mathian (Notary Public	· · · · · · · · · · · · · · · · · · ·	
That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation. Meila Meila Meila Affiant. Sworn and subscribed to before me this <u>24 th</u> day of <u>March</u> , A.D., 19 <u>94</u> . Matay Mathian (Notary Public		
That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation. Meila Meila Meila Affiant. Sworn and subscribed to before me this <u>24 th</u> day of <u>March</u> , A.D., 19 <u>94</u> . Matay Mathian (Notary Public	and the last publication bei	ng on the day of
That such newspaper, in which such notice or advertisement was published, is now and has been at all times material hereto, duly qualified for such purpose, and to publish legal notices and advertisements within the meaning of Chapter 12, of the statutes of the State of New Mexico, 1941 compilation.		
Affiant. / Sworn and subscribed to before me this <u>24th</u> day of <u>March</u> , A.D., 19 <u>94</u> .	That such newspaper, in was published, is now and ha duly qualified for such purpo advertisements within the me	which such notice or advertisement as been at all times material hereto, se, and to publish legal notices and eaning of Chapter 12, of the statutes
Affiant. / Sworn and subscribed to before me this <u>24th</u> day of <u>March</u> , A.D., 19 <u>94</u> .	· · · · · · · · · · · · · · · · · · ·	2. July
of March, A.D., 19_94.		Affiant.
of March, A.D., 19_94.	Sworn and subscribed	to before me this <u>24th</u> day
Notary Public		
My commission expires		$\mathbf{C}$
	My commission expires	Ingtary Public

#### LEGAL NOTICE Santa Fe County New Mexico

#### NOTICE OF PERMIT APPLICATION

E

Pursuant to the requirements of New Mexico Air Quality Control Regulation 702 -Permits, Transwestern Pipeline Company (TPC) of P.O. Box 1188, Houston, TX 77251, hereby announces an intent to apply to the New Mexico Environment Department, Air Pollution Control Bureau for a permit to construct a facility which will cause emissions of the following regulated air contaminants: benzene, toluene, ethylbenzene, xylene, hexanes, octanes, and nonanes. The expected date of application submittal to the NMED is March 21, 1994. The TPC facility is located in Section 20 of Range 13W Township 14N, 2.4 miles NNW of Thoreau, New Mexico. The process for which TPC is seeking a permit is a soil vapor extraction system. The system is designed to extract subsurface soil vapor at a maximum rate of 176 cfm (cutic for the remainants).

The estimated maximum emmissions after construction is completed are listed in Table 1. The maximum and standard operating schedule of the new source after completion is 24 bours/day,7 days/week, 52 weeks/year.

Table 1. Maximum estimated emission rates and annual emmissions of regulated compounds.

Compound	Maximum Estimated Emission Rate Lbs /Hour	Maximum Estimated Annual Emissions tons/year	
BENZENE	0.04	0.01	
TOLUENE	0.26	0.18	
ETHYLBENZENE	0.03	0.03	
XYLENE (M-P-& O-)	0.17	0.34	
HEXANES	1.07	0.29	
OCTANES	3.00	2.01	
NONANES	0.46	0.59	
TOTAL NMHC	6.75	4.33	

Note: Total NMHC (non-methane hydrocarbons) includes the previously listed compounds.

The owner and operator of the facility is Transwestern Pipeline Company, a subsidiary of ENRON Operations Corp., P.O. Box 1188, Houston, TX 77251-1188.

Comments and inquires regarding this permit application of the permitting process may be directed to:

Program Manager, Technical Analysis and Permits Section Environment Department Air Pollution Control Bureau, S2100 1190 St. Francis Drive, Runnels Building P.O. Box 26110 Santa Fe, New Mexico 87502

Legal No. 10492 Published in The Independent March 21, 1994.

dependent-Gallup NM-Monday, March 21, 1994-Page 11

# NOTICE OF PERMIT APPLICATION

Pursuant to the requirements of New Mexico Air Quality Control Regulation 702-Permits, Transwestern Pipeline Company (TPC) of P.O. Box 1188, Houston, TX 77251, hereby announces an intent to apply to the New Mexico Environment Department, Air Pollution Control Bureau for a permit to construct a facility which will cause emissions of the following regulated air contaminants: benzene, toluene, ethylbenzene, xylene, hexanes, octanes, and nonanes. The expected date of application submittal to the NMED is March 21, 1994. The TPC facility is located in Section 20 of Range 13W Township 14N, 2.4 miles NNW of Thoreau, New Mexico. The process for which TPC is seeking a permit is a soil vapor extraction system. The system is designed to extract subsurface soil vapor at a maximum rate pf 176 cfm (cubic feet per minute).

The estimated maximum emissions after construction is completed are listed in Table 1. The maximum and standard operating schedule of the new source after completion is 24 hours/day, 7 days/week, 52 weeks/year.

Table 1 Maximum estimated emission rates and annual emissions of regulated compounds.

Compound	Maximun Estimated Emission Rate Lbs/Hour	Maximum Estimated Annual Emissions tons/year	
BENZENE	0.04	0.01	
TOLUENE	0.26	0.18	
ETHYLBENZENE	0.03	0.03	
XYLENE (M-,P-, & O-)	0.17	0.34	
HEXANES	1.07	0.29	
OCTANES	<u>3.00</u>	2.01	
NONANES	0.46	0.59	
TOTAL NMHC	6.75	4.33	

Note: Total NMHC (non-methane hydrocarbons) includes the previously listed compounds.

The owner and operator of the facility is Transwestern Pipeline. Company, a subsidiary of ENRON Operations Corp., P.O. Box 1188, Houston, TX 77251-1188.

Comments and inquires regarding this permit application of the permitting process may be directed to:

Program Manager, Technical Analysis and Permits Section

Environment Department

Air Pollution Control Bureau, S2100

1190 St. Francis Drive, Runnels Building P.O. Box 26110

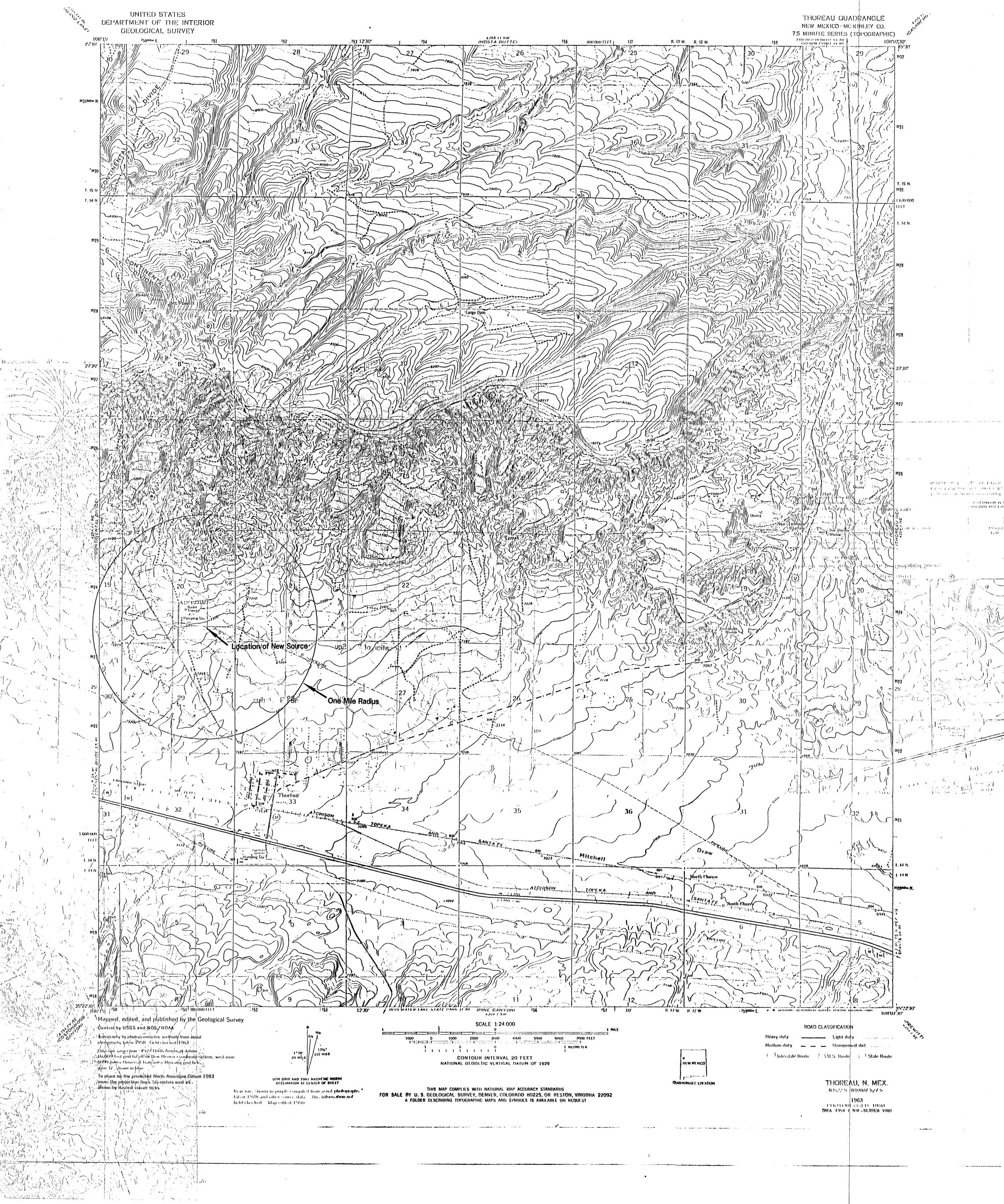
- .

Santa Fe, New Mexico 87502

ACCOUNT:	ENRON CORP.		PREPARI	ED BY:	JENNIFER SAUC
SPECIAL IN	NSTRUCTI(	ONS:			
	TIME	AND DATE SCH	SDULE		
3-19-94	10:20am				
			-		
	NCEMENT WAS	BROADCAST_ DATED_3-19-	1 TIMES, A	AS BILLING OST OF \$ _ OF \$ _19.60	TO THIS STATI 19.60 EACH

<u>.</u>

Gallup 87301	East Aztec 9, New Mexico 722 - 4442	(FM) (K X)	DATE: 3-31-94	]
ACCO	OUNT: ENRON OPP	RATIONS	PREPARED BY:	DO.
SPEC	LAL INSTRU	CTIONS:		
		NOTICE OF REPM.	T APPLICATION	
FOLLO SUBMI SECTI MEXIO	DWING REGULATE ITTAL TO THE N ION 20 OF RANG	D AIR CONTAMINANTS MED IS MARCH 21, E 13W TOWNSHIP 141	WHICH WILL CAUSE EMISSIONS O S: THE EXPECTED DATE OF APPLIC 1994 THE TPC FACILITY IS LOCAT 4, 2.4 MILES NNW OF THOREAU, N SEEKING A PERMIT IS A SOIL VA	ATIC ED : EW
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SAYEAR. Table 1 Maximus	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate	ER CONSTRUCTION IS COMPLETED A STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emussions of regulated compo Maximum Estimated Annual Emissions	RE THE
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. BOURCE AFTER CO BYYEAR. Table 1 Maximus Compound	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate bs hour	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo- Maximum Estimated Annual Emissions tons/year	RE THE
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SAYEAR. Table 1 Maximus	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo Maximum Estimated Annual Emissions	RE THE
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. BOURCE AFTER CO BYYEAR. Table 1 Maximus Compound benzene toluene ethylbenzene	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate 105 frour 0.04 0.03	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo- Maximum Estimated Annual Emissions tons/year 0.01	RE THE
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SYEAR. Table 1 Maximus Compound benzene toluene ethylbenzene tylene (m- p-, & s-)	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate bs-hour 0.04 0.03 0.03 0.17	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo- Maximum Estimated Annual Emissions tons/vear 0.01 0.18 0.03 0.34	RE THE
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SYEAR. Table 1 Maximus Compound benzene toluene ethy/benzene toluene ethy/benzene tylene (m- p- & o-) hexanes	THE MAXIMUM AND S OMPLETION IS 24 H0 m estimated emission rate Maximum Estimated - Emission Rate bs frour 0.04 0.05 0.03 0.05 0.05 0.07 1.07	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo Maximum Estimated Annual Emissions tons/year 001 0.18 0.03 0.34 0.29	RE THE
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SYEAR. Table 1 Maximus Compound benzene toluene ethylbenzene tylene (m- p-, & s-)	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate bs-hour 0.04 0.03 0.03 0.17	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emussions of regulated compo- Maximum Estimated Aanual Emissions tons/year 001 0.18 0.03 0.34 0.29 1 2.01	RE THE
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SYEAR. Table 1 Maximus Compound benzene toluene ethylbenzene tylene (m- p- & o-) hexanos octanes	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate 10:04 0:03 0:03 0:17 1:07 1:07 1:07	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo Maximum Estimated Annual Emissions tons/year 001 0.18 0.03 0.34 0.29	RE THE
THE E LISTE MEW S	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SYEAR. Table 1 Maximus Compound benzene toluene ethylbenzene tylene (m- p- 2 3-) hexanos octanes aonanes Total NMHC	THE MAXIMUM AND S DMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate 10.04 0.03 0.03 0.17 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo- Maximum Estimated Annual Emissions tons/year 0 01 0.18 0.03 0.34 0 29 1 2.01 0.59	RE TH
THE E LISTE MEW S WEEKS	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SYEAR. Table 1 Maximus Compound benzene toluene ethylbenzene tylene (m- p- 2 3-) hexanos octanes aonanes Total NMHC Note. Total NMHC ( ANNOUNCEMENT	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate 10.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.03 0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.03 0.07 0.04 0.05 0.03 0.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo- Maximum Estimated Annual Emissions tons/year 0 01 0.18 0.03 0.34 0 29 1 2.01 0.59 4.33	RE THE unds
THE E LISTE MEW S WEEKS THIS CLIE	ESTIMATED MAXIN ED IN TABLE 1. SOURCE AFTER CO SYEAR. Table 1 Maximus Compound benzene toluene ethylbenzene toluene ethylbenzene toluene ethylbenzene toluene ethylbenzene toluene stancs octanes aonanes Total NMHC Note. Total NMHC ( ANNOUNCEMENT ENTS, FOR THE PE	THE MAXIMUM AND S OMPLETION IS 24 HO m estimated emission rate Maximum Estimated Emission Rate 10.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.03 0.17 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1	STANDARD OPERATING SCHEDULE OF DURS/DAY, 7 DAYS/WEEK, 52 s and annual emissions of regulated compo- Maximum Estimated Annual Emissions 1001 0.18 0.03 0.34 1029 12.01 0.59 14.33 ncludes the previously listed compounds TIMES, AS BILLING TO THIS STAT 4 AT THE COST OF \$ 19.60 EACH	RE THE unds


ł

FUN 188 KHTC 2495 East Aztec Gallup, New Mexic 87301 (505) 722 - 4442		DATE:
ACCOUNT:		PREPARED BY:
SPECIAL INSTI	RUCTIONS:	•
COMPANY, A SUBSID HOUSTON, TX 77251- FOR THE ADDRESS T (505)-722-4442 THI PIPELINE COMPANY,	IARY OF ENRON OPERA -1188. TO MAIL COMMENTS ANI IS ANNOUNCEMENT BROU A SUBSIDIARY OF ENR	TY IS TRANWESTERN PIPELINE FIONS CORP., P.O. BOX 1188, INQUIRES PLEASE CALL KXTC AT IGHT AND PAID FOR BY TRANSWESTERN ON OPERATIONS CORP,. P.O. BOX
1188 HOUSTON, TX 7	7251-1188	- -
THIS ANNOUNCEM	ENT WAS BROADCAST	TIMES, AS BILLING TO THIS STATION
	ANNOUNCEMENTS	AT THE COST OF S EACH FOF FOR A TOTAL OF S
		OFFICIAL'S TITLE

ł

Appendix F

USGS Topographic Quadrangle Map



DODDAVIDON VE G

83 isg 8 84 ist