


REPORTS

YEAR(S):

DANIEL B. STEPHENS & ASSOCIATES, INC.

CONSULTANTS IN GROUND-WATER HYDROLOGY

ALBUQUERQUE, NEW MEXICO

HYDROGEOLOGY AT THE TRANSWESTERN PIPELINE COMPRESSOR STATION NO. 5 THOREAU, NEW MEXICO

VOLUME 2 APPENDICES

PREPARED FOR TRANSWESTERN PIPELINE COMPANY HOUSTON, TEXAS

FEBRUARY, 1990

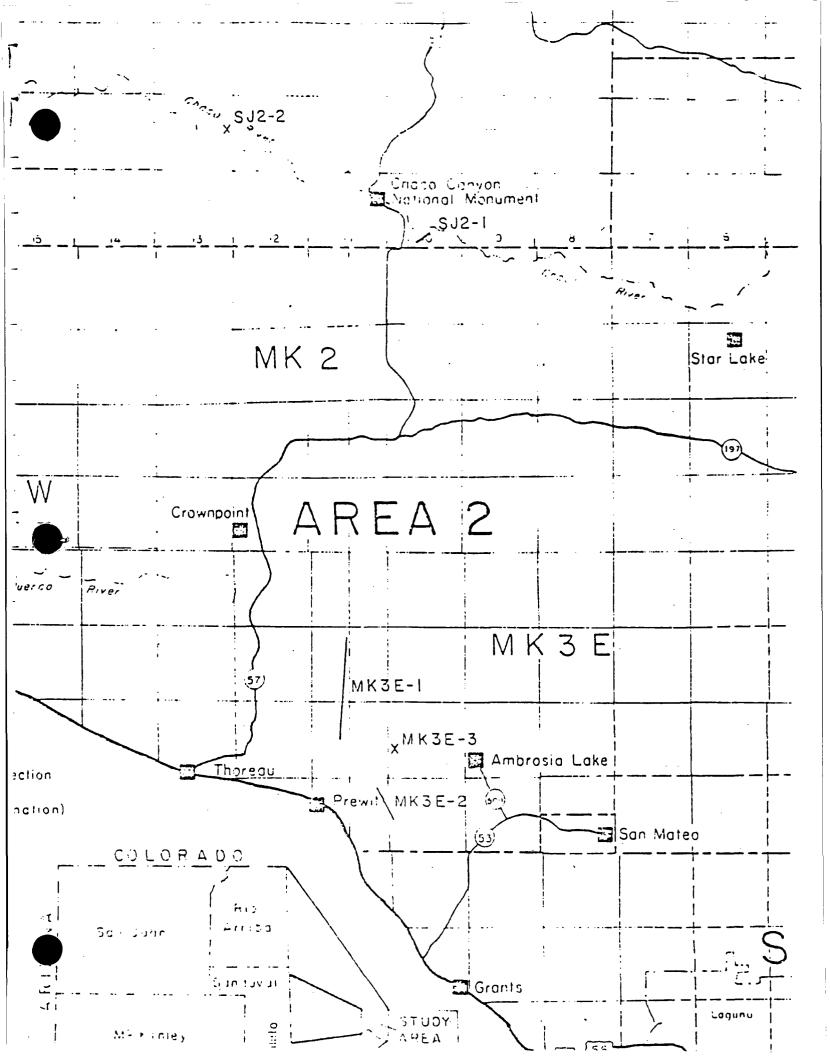
• GROUND-WATER CONTAMINATION • UNSATURATED ZONE INVESTIGATIONS • WATER SUPPLY DEVELOPMENT

VOLUME 2

LIST OF APPENDICES

- Appendix A: Measured Stratigraphic Sections
- Appendix B: Geologic Logs and Completion Records of Production Wells at the Thoreau Compressor Station
- Appendix C: Report on Aquifer Tests, Transwestern Pipeline Company, Thoreau New Mexico by J.W. Shomaker, June 1981
- Appendix D: Water Levels in On Site Wells During 1989
- Appendix E: Test Well and Soil Boring Completion Reports at the Thoreau Compressor Station
- Appendix F: Geologic and Geophysical Logs of Test Wells and Soil Borings at the Thoreau Compressor Station
- Appendix G: Surface Geophysical Data
- Appendix H: Slug Test Data
- Appendix I: Chemical Sampling Protocol and Documentation
- Appendix J: Analytical Chemistry Reports

Appendix A: Measured Stratigraphic Sections


New Mexico Bureau of Mines & Mineral Resources

Open-File Report 90

Descriptions of Sections Measured for Hydrogeologic Study of the San Juan Basin, Northwest New Mexico

William J. Stone, Hydrogeologist

June 1979

SECTION MK3E - 1, BORPEGO PASS (Casamero Lake and Borrego Pass 75' Quads.). Measured outcrops along road from Prewitt to Borrego Pass Trading Post; line of section (from south to north) involves exposures in sec's. 24, 20, and 17, T14N, R11W and sec's. 21, 9, and 4, T15N, R11W, McKinley County; section measured by Robert C. Brod, 23 June - 1 July 1977.

Unit

Lithology

Thickness: m(ft)

POINT LOOKOUT SANDSTONE HOSTA TONGUE

- 54 SANDSTONE--grayish orange (10 YR 7/4) 50.3 (166.0) weathered, very light gray (N8) fresh; beds medium - thick, regular, even with thin planar, discontinuous, parallel laminae; large-scale, tangential, low-angle, grouped, tabular-planar cross bedding; grains fine, well sorted, subrounded; composed mainly of quartz, clay matrix, not calcareous; caps mesa.
- 53 SANDY SHALE--very light gray (N8) weathered, 4.8 (15.8) light greenish gray (5 GY 8/1) fresh; beds thin - medium, irregular, uneven with thin, planar laminae, interval structure poorly shown; grains include fine sand - silt, very poorly sorted, angular; composed mainly of quartz in silt and clay matrix; similar to unit 51 below; contact with above gradational, coarsening upward(?).

CREVASSE CANYON FORMATION GIBSON COAL MEMBER

- 52 CARBONACEOUS SHALE AND COAL--light gray 19.2 (63.4) (N7) - brownish black (5 YR 2/1) weathered and fresh; mostly covered, COAL exposed at base; contact with above sharp(?).
- 51 SANDY SILTSTONE--grayish orange (10 YR 7/4) 8.0 (26.4) weathered, dark yellowish orange (10 YR 6/6) fresh; sand occurs in SILTSTONE and as SANDSTONE lenses up to 1 dcm thick; sand grains fine - very fine, like unit 44 below; contact with above poorly exposed.
- 50 SHALE--some noncarbonaceous, light gray 14.3 (47.2) (N7), some carbonaceous, brownish black (5 YR 2/1); clinker lag on slope; contact with above covered.

COVERED INTERVAL

4.8(15.8)

33.6 (110.9)

σC

CREVASSE CANYON FORMATION DALTON SANDSTONE MEMBER

48 SANDSTONE--grayish orange (10 YR 7/4) weathered, dusky yellow (5 Y 6/4) fresh; beds thick - very thick, regular, even with thin - medium, curved, discontinuous, parallel laminae; large-scale, tangential, low-angle, grouped, wedge-planar(?) cross bedding; grains fine sand and silt, very poorly sorted, angular; composed mainly of quartz with silt and clay matrix, not calcareous; contact with above sharp.

MANCOS SHALE MULATTO TONGUE

47

COVERED SLOPE--SHALE(?); measured from 3.5 (11.6) topo sheet.

17.6 (58.1)

CREVASSE CANYON FORMATION BORREGO PASS LENTIL (formerly "STRAY SANDSTONE")

46 SANDSTONE--grayish orange (10 YR 7/4) weathered and fresh; mottled with light brown (5 YR 5/6) on fresh surfaces; beds medium - thick, regular, even with thin, planar, continuous, parallel laminae; largescale, tangential - discordant, high-angle (some low-angle), grouped, tabular-planar (some trough) cross bedding displaying opposing dip directions in places; grains fine - medium, poorly sorted, subangular; composed mainly of quartz in silt - clay matrix, not calcareous; contact with above sharp.

CREVASSE CANYON FORMATION DILCO COAL MEMBER

45

CARBONACEOUS SHALE--like unit 37 below. 1.8 (5.9)

44	SANDSTONEgrayish orange (10 YR 7/4) weathered, dark yellowish orange (10 YR 6/6) fresh; beds thin - medium, irregular, uneven with thin - medium, wavy, discontinuous, convergent laminae; small-scale, tangential, low-angle, solitary, tabular-planar cross bedding; grains fine - medium, poorly sorted, subangular; composed mainly of quartz in silt and clay matrix, not calcareous; numerous carbonaceous plant fragments; thin shale lenses in upper half; contact with above gradational.	1.4	(4.6)
43	INTERBEDDED CARBONACECUS SHALE AND SANDSTONElike unit 38 below.	1.2	(4.0)
42	SANDSTONEgrayish orange (10 YR 7/4) weathered and fresh; beds thin - medium, irregular, uneven with thin, curved, discontinuous, convergent laminae; large- scale, tangential, low-angle, grouped, trough cross bedding displaying opposing dips locally; grains medium, moderately sorted, angular; composed mainly of quartz with silt matrix, not calcareous; contact with above sharp.	7.2	(23.8)
41	CARBONACEOUS SHALElike unit 37 below; contact with above gradational.	8.4	(27.7)
40	SANDSTONElike unit 36 below.	1.0	(3.3)
39	CARBONACEOUS SHALElike unit 37 below.	10.5	(34.7)
38	INTERBEDDED SANDSTONE AND SHALESHALE is like unit 37 below; SANDSTONE occurs as thin, irregular, uneven beds (up to 1 cm thick); forms cliff; contact with above sharp.	2.0	(6.6)
37	CARBONACEOUS SHALElight bluish gray (5 B 7/1) weathered and fresh with dark greenish gray (5 G 4/1) carbonaceous plant material on laminar surfaces; contact with above sharp.	8.0	(26.4)
36	SANDSTONE AND CARBONACEOUS SHALESANDSTONE like unit 31 below but thirly bedded, occurs as 2 ledges: 0.7 m and 1.0 m thick; SHALE like unit 32 below, occurs in 2 slope-forming intervals: 0.9 m and 0.3 m thick; contact with above concealed.	3.4	(11.2)

35			(0.0)
55	SANDSTONElike unit 27 below.	2.5	(8.3)
34	CLINKERforms thin parting and produces lag on top of unit 33 below.	0.1	(0.3)
33	SANDSTONElike unit 27 below.	1.5	(5.0)
32	CARBONACEOUS SHALEcolor not recorded; contains few lenses of SANDSTONE like unit 31 below; largest seen approximately .5 m thick and 50 m across; contact with above sharp.	6.4	(21.1)
_	SANDSTONE EGO SANDSTONE MEMBER(?)		
31	SANDSTONEgrayish orange (10 YR 7/4) weathered, white (N9) fresh; beds medium - very thick (thicker at top), regular, uneven with thin, planar, continuous, parallel laminae; large-scale, tangential, low- and high-angle (mostly high-angle), solitary, tabular-planar cross bedding;	26.7	(88.1)
	grains fine, well sorted, subangular; composed mainly of quartz, clay matrix, not calcareous; contact with above sharp.		
MANCOS D-CR	composed mainly of quartz, clay matrix, not calcareous; contact with above sharp.		
	composed mainly of quartz, clay matrix, not calcareous; contact with above sharp. SHALE	27.8	(91.7)
D-CR 30 GALLUP	composed mainly of quartz, clay matrix, not calcareous; contact with above sharp. SHALE OSS TONGUE(?) SHALEbrownish gray (5 YR 4/1) - light brownish gray (5 YR 6/1) - medium gray (N5) weathered and fresh; carbonaceous with very thin lenses of well sorted SANDSTONE at top; mostly covered except at base of overlying unit; contact with above	27.3	(91.7)

υ,

tangential, low-angle, solitary, trough cross bedding; some large-scale, high-angle, tabular-planar; in places opposing dips noted; grains fine, moderately sorted, angular; composed mainly of guartz, clay matrix, not calcareous; vertical burrows common, average diameter 1 cm; lower 2 m silty including thin, discontinuous lenses of siltstone; contact with above sharp.

MANCOS SHALE (main body)

28 SHALE--color not recorded; silty; contains 53.3 (175.9) lenses of SANDSTONE up to 1 dcm thick; contact with above gradational; thickness determined from topo sheet; Abney set at 3 3/4° for units 28 - 54.

DAKOTA SANDSTONE (undivided)

27 SANDSTONE--light red (10 R 6/6) weathered, 2.7(8.9)moderate orange pink (5 YR 8/4) fresh; beds medium, regular, even with obscure medium, wavy, discontinuous, convergent laminae; grains very fine, moderately sorted, angular; composed mainly of quartz, minor clay matrix(?), not calcareous; contact with above concealed. 26 COVERED SLOPE--SHALE(?) 6.4(21.1)25 SANDSTONE--like unit 23 below but cross 4.6 (15.2) bedding is high angle, discordant, grouped. 24 COVERED SLOPE--CARBONACEOUS SHALE(?) 3.5(11.6)23 SANDSTONE--moderate reddish orange 6.4 (21.1) (10 R 6/6) and moderate orange pink (10 R 7/4) weathered moderate orange pink (5 YR 8/4) fresh; beds medium - thick, irregular, uneven with thin, curved, continuous, parallel laminae; large-scale, tangential, low-angle, solitary, tabularplanar cross bedding; grains medium, well sorted, rounded; composed almost entirely of quartz, not calcareous; scattered wood fragments.

MORRISON FORMATION BRUSHY BASIN MEMBER

- 22 COVERED SLOPE--small exposure of green 30.1 (99.3) SHALE.
- 21 SANDSTONE--grayish orange (10 YR 7/4) 4.8 (15.8) weathered, white (N9) fresh; beds medium thick, irregular, uneven with thin - medium, planar, continuous, parallel laminae; largescale, discordant, low-angle, solitary, tabular-planar cross bedding; grains fine, moderately sorted, subangular - angular; composed largely of quartz with a minor amount of some mafic mineral, not calcareous.
- 20 VARIEGATED SHALE--various shades of red, 8.0 (26.4) green, purple, and yellow; contact with above sharp.

MORRISON FORMATION WESTWATER CANYON MEMBER

- 19 SANDSTONE--like unit 16 below; forms slope, 14.4 (47.5) mostly covered; contact with above sharp(?).
- 18 SANDSTONE--like unit 16 below; forms cliff; 10.4 (34.3) contact with above sharp.
- 17 SHALE--like unit 12 below; with SANDSTONE 13.8 (45.5) lenses up to .75 m thick.
- 16 SANDSTONE--moderate orange pink (10 R 7/4) 19.2 (63.4) weathered, pale reddish brown (10 R 5/4) fresh; beds medium - thick, irregular, uneven with medium, curved, discontinuous, convergent laminae; large-scale, tangential, low-angle, grouped, trough cross bedding; grains medium - coarse, poorly sorted, angular - rounded; composed of quartz and feldspar, not calcareous; arkosic gravel up to 1 cm in diameter associated with cross bed troughs; lenses of moderately sorted, medium, quartz SANDSTONE near top.
- 15 INTERBEDDED SANDSTONE, SILTSTONE, AND 34.1 (112.5) SHALE--colors as in units 12 and 14 below; all layers are discontinuous laterally; SANDSTONE beds range to 1 m in thickness, less abundant in middle 10 m of unit.

- SANDSTONE--moderate orange pink (10 R 7/4) 4.4 (14.5) mottled with light greenish gray (5 GY 8/1) weathered and fresh; beds thin - thick, irregular, uneven with thin planar, continuous, parallel laminae; grains very fine - fine, poorly sorted, angular; composed of guartz and approximately 53 unidentified mafic mineral, not calcareous; contact with above sharp.
- 13 SHALE--red; like in unit 12 below; also 1.1 (3.6) includes lenses of fine SANDSTONE.
- 12 SANDSTONE AND SHALE--very light gray (N8) 32.0 (105.6) weathered, light greenish gray (5 GY 8/1) fresh; SANDSTONE consists of fine - medium (fines upward ?), poorly sorted, subangular, quartz grains; SHALE is dark reddish brown (10 R 3/4), occurs as lenses approximately 1 m long and 0.1 m thick, especially common in upper 10 m of unit; forms slope, largely covered.

BLUFF SANDSTONE

10

14

11 SANDSTONE--white (N9) - light gray (N7) 3.0 (9.9) weathered, white (N9) fresh; beds thin, irregular, uneven with thin - medium, planar, discontinuous(?), parallel laminae; small-scale, tangential(?), low-angle, solitary(?), tabular-planar cross bedding; grains medium, moderately sorted, rounded; composed of quartz with trace of black and orange grains, not calcareous; similar to white bands at top of unit below but parallel bedding more distinct in this unit.

"BANDED" SANDSTONE--white bands white (N9) - 45.8 (151.1) light gray (N7) weathered white (N9) fresh; 0.3 - 1.0 m thick; red bands pale reddish brown (10 R 5/4) weathered, moderate reddish orange (10 R 6/6) fresh; 1.0 - 5.0 m thick; beds thick - very thick, regular, uneven with thin - medium, curved, continuous, parallel laminae; conspicuous, large-scale, discordant and tangential, high-angle, grouped, tabular-planar cross bedding; grains in white bands medium coarse, well sorted, subrounded - rounded; composed of quartz with trace of black and orange minerals, clay matrix, not calcareous, iron stained; small spherical concretions (average diameter 0.75 cm) form rough surface on uppermost red band; contact with above sharp.

9 SANDSTONE AND MUDSTONE--like unit 7 below.

2.4(7.9)SANDSTONE--moderate orange pink (10 R 7/4) pale yellowish orange (10 YR 8/6) weathered, moderate orange pink (5 YR 8/4) fresh; beds medium (regularity/eveness obscured) with thin - medium, planar, discontinuous, parallel or curved, discontinuous, convergent laminae; large-scale, tangential, high-angle, grouped, tabular(?)-planar cross bedding, dips opposed in places; grains fine, moderately sorted, subrounded; composed largely of guartz with trace of dark grains, no matrix, not calcareous; weathers like wrinkled skin; white chert nodules at basal contact; contact with above sharp.

SUMMERVILLE FORMATION

8

7

- SANDSTONE--moderate orange pink (10 R 7/4) 17.6 (58.1) weathered, moderate orange pink (5 RY 8/4) fresh; beds medium - very thick, irregular, uneven with obscure thin, wavy, discontinuous, convergent laminae; grains fine medium, well sorted, subangular - subrounded; composed of quartz with minor black grains(?), no matrix, not calcareous; high density of vertical joints and fine texture leads to Knobby weathering habit; contact with above sharp.
- 6 COVERED SLOPE

37.3 (123.1)

TODILTO LIMESTONE

5 LIMESTONE--light olive gray (5 Y 6/1) - 3.6 (11.9) medium light gray (N6) weathered, olive gray (5 Y 4/1) fresh; beds thin - medium, regular, uneven with thin planar, continuous, parallel or wavy discontinuous, convergent laminae; planar laminae occur between

91

7.7 (25.4)

massive beds in middle of unit, wavy laminae common at top and bottom of unit; microcrystalline with some silt; bioclastic fragments (?) associated with base of some beds locally. Abney set at 4.5° for units 5 - 27.

SILTSTONE--color not recorded; beds very thin - thin, irregular, uneven with thin, wavy, discontinuous, convergent laminae; symmetrical ripple marks (seen in cross section only); grains silt - fine sand, moderately sorted, subrounded; composed mainly of quartz, not calcareous; contact with above gradational. 1.6 (5.3)

ENTRADA SANDSTONE UPPER SANDSTONE MEMBER

Δ

T. Haberson Same

3 SANDSTONE--moderate orange pink (10 R 7/4) 41.1 (135.6) mottled with medium gray (N5) weathered, moderate reddish orange (10 R 6/6) moderate orange pink (10 R 7/4) fresh; beds very thick, regular, even with thin, curved - planar, continuous, parallel laminae; very-large-scale, tangential, high-angle, grouped, trough cross bedding; grains fine, well sorted, rounded; composed exclusively of guartz, no matrix, calcareous; contact with above gradational.

ENTRADA SANDSTONE MIDDLE SILTSTONE MEMBER

SILTSTONE--pale reddish brown (10 R 5/4) - 18.0 (59.4) moderate orange pink (10 R 7/4) weathered and fresh with some irregular blebs of light greenish gray (5 GY 8/1) fresh; beds medium - very thick, regular, uneven with some discernible thin laminae, mostly massive; grains silt, poorly sorted, angular; composed of quartz, calcareous; dense vertical joints yields Knobby weathering habit; contact with above sharp, irregular.

ENTRADA SANDSTONE LOWER SANDSTONE MEMBER

And the second second second

SANDSTONE--moderate reddish brown (10 R 4/6) weathered and fresh; beds very thick(?), with thin, planar, continuous, parallel laminae (regularity/eveness of beds indistinct); very-large-scale, tangential, high-angle, grouped trough cross bedding; grains medium, well sorted, well rounded; composed of quartz, iron stained, calcareous; base covered by talus; contact with above sharp, marked by relatively resistant white clay(?) zone at top of lower Entrada.

Total section thickness

718.8 (2,372.1)

Base is base of exposed lower Entrada. Section traversed parallel to dip as determined from Dakota Sandstone in sec. 31, T15N, R11W: 4^o, N48^oE. Abney set accordingly.

12.4 (40.9)

Stratigraphy and Origin of the Chinle Formation and Related Upper Triassic Strata in the Colorado Plateau Region

By J. H. STEWART, F. G. POOLE, and R. F. WILSON

With a section on SEDIMENTARY PETROLOGY By R. A. CADIGAN

and a section on CONGLOMERATE STUDIES By WILLIAM THORDARSON, H. F. ALBEE, and J. H. STEWART

GEOLOGICAL SURVEY PROFESSIONAL PAPER 690

Prepared on behalf of the U.S. Atomic Energy Commission

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972

San Andres Limestone—Continued Feet Limestone member—Continued to form vertical cliffs along sides of washUnmeasured	Entrada Sandstone (incomplete) — Continued Feet Medial silty member—Continued at base of cliff developed on Entrada Sandstone 44.2
Base of section; base of exposure. Base of section in wash bottom. NM-1b. CHAVEZ-PREWITT SECTION B	Total of medial silty member44.2Total of incomplete Entrada Sand- stone44.2
Units 1-10 measured starting at point about 2 miles west of Prewitt and 500 ft south of U.S. Highway 66 in central part of sec. 11, T. 13 N., R. 12 W., NMPM, continuing along a N. 30° W. line for 2 miles and ending on a prominent point on the cliffs about 1½ miles north of U.S. Highway 66 in éast-central part of sec. 34, T. 14 N., R. 12 W.; units 11-20 measured starting at point 2 miles northeast of Chavez in east-central part of sec. 30, T. 14 N., R. 12 W., continuing for 1½ miles northwest, and ending on promi- nent point about 4 miles east-northeast of Thoreau in south- western part of sec. 19, T. 14 N., R. 12 W., McKinley County [Measured by J. H. Stewart and R. F. Wilson, April and May 1956]	Contact of Entrada Sandstone and Wingate Sand- "tone sharp and placed at change from cross-strat- ified sandstone below to horizontally stratified siltstone above. Wingate Sandstone (Lukachukai Member): 18. Sandstone, light brown (5YR 6/4) to moderate reddish orange (10R 6/6), weathering same colors, fine grained, minor fine- to medium-grained parts, fair to well sorted; composed of sub- rounded to rounded reddish-stained quartz, sparse black accessory min- erals and white chert(?); poorly cemented calcareous; horizontally lam-
Top of section; top of accessible exposure. Top of Feet section is about 500 ft northeast of tip of promon- topy developed on Entrada Sandstone. Top of	inated in parts and composed of thick, possibly planar sets of low- and high-

section is about 500 ft northeast of tip of promontory developed on Entrada Sandstone. Top of section is N. 57° W. of oil refinery near Chavez and Prewitt and N. 65° E. of Thoreau.

Entrada Sandstone (incomplete):

Upper sandy member:

20. Sandstone, light brown (5YR 6/4) and moderate reddish orange $(10R \ 6/6)$, weathering same colors, very fine grained, sparse disseminated fine to medium grains; well sorted; composed of subrounded to rounded reddish-stained quartz and sparse black accessory mineral; poorly cemented, calcareous; horizontally laminated in basal 5 ft and composed of thin to very thick planar sets of medium- to large-scale cross-laminae in rest of unit; weathers to form vertical cliff. Basal 2 ft of unit is yellowish gray (5Y 8/1), and this lighter color forms continuous color band on the vertical cliff. Only basal 25 ft of unit examinedUnmeasured

Medial silty member:

19. Siltstone (80 percent) to silty sandstone (20 percent), pale reddish brown (10R 5/4), abundant light greenish gray (5GY 8/1) mottling, weathering same colors and light brown (5YR 6/4), grades from fine- to mediumgrained siltstone to silty very fine grained sandstone, in places sandstone contains a few fine to medium grains disseminated in the siltstone or silty sandstone; well cemented, calcareous; horizontally laminated to thick bedded, stratification has slight waviness; weathers to form vertical cliff continuous with that of overlying unit. Unit forms horizontally stratified and wavy bedded interval bedded in a few places..... Total of Wingate Sandstone (Lukachukai Member)

angle medium-scale cross-laminae in

other parts; weathers to form steep

slope. Sandstone contains common

medium to coarse rounded to sub-

rounded reddish-stained quartz grains

in a finer grained matrix. Basal 10

ft of unit contains minor amounts of

fine to coarse grains, locally very

coarse grains to granules, of white

chert(?). Cross-stratified parts of

unit are from 3 to 23 ft, 44 to 61 ft,

and 75 to 80 ft. Rest of unit is hori-

zontally laminated; possibly very thick

80.0

80.0

Contact of Wingate Sandstone and Chinle Formation sharp and marks change from purplish siltstone below to brownish sandstone above. In places, Wingate Sandstone fills clastic dikes extending as much as 5 ft down into the Chinle Formation. These clastic dikes are irregular in shape, and some are several feet wide.

Chinle Formation (incomplete):

Owl Rock Member:

17. Siltstone and limestone. Siltstone, pale red purple (5RP 6/2) to grayish red purple (5RP 4/2), weathering same colors, fine to medium silt; firmly cemented. calcareous: structureless. a few thin horizontal beds. Limestone, same colors as siltstone, dense; well cemented; present as limestone nodules and thin lenses in basal 9 ft and as thick horizontal bed from 4.1 to 7.1 ft. Thick bed of limestone contains abundant small masses of chert. Unit as whole weathers to form steep slope with persistent ledge developed on the limestone bed. Limestone bed

Chinle Formation (incomplete)—Continued Owl Rock Member—Continued	Feet	Chinle Fo Petri
forms conspicuous thin purplish band along exposure. Most of unit prob- ably does not contain swelling clays; locally, however, swelling clays may be present	30.7	Up
Total of Owl Rock Member Petrified Forest Member:	30.7	
Upper part:		
 16. Siltstone (80 percent) to silty claystone (20 percent), pale reddish brown (10R 5/4), sparse grayish red (5R 4/2), weathering same colors, probably swelling clays; firmly to well cemented, calcareous; dominantly structureless, minor horizontally laminated parts; weathers to form steep slope. Some of unit weathers with a frothy surface 	108.8	
 15. Limestone and siltstone. Limestone, light gray (N 7), weathering dark yellowish orange (10YR 6/6), dense; well cemented; present as two thin horizontal beds separated by 0.3-inthick horizontal bed of siltstone. Siltstone, light gray (N 7), weathering same color, firmly cemented, calcareous. Unit as whole weathers to form small ledge. Unit persistent along exposure and marks change from purplish rocks below to reddish rocks above 	1.3	
 14. Silty claystone and minor clayey siltstone and siltstone, very light gray (N 8) in basal 10 ft and grayish red (5R 4/2), pale red (5R 6/2), and minor grayish red purple (5RP 4/2) in rest of unit, weathering same colors, swelling clays, firmly to well cemented, calcareous; structureless; weathers to form steep frothy-surfaced slope. From a distance unit appears as purplish interval between 		
 reddish rocks above and below	55.8	

Chinle Formation (incomplete)—Continued Petrified Forest Member—Continued

Upper part-Continued

ple $(5RP \ 4/2)$, weathering same color, composed of coarse grains to cobbles of limestone or limy siltstone in a limy silty or clay matrix; poorly cemented; structureless, possibly some very thin horizontal beds. Limestone pebble conglomerate is present as a S-ft bed at base of unit and as 2-ft bed at top of unit. Basal bed is mostly composed of coarse grains to granules and minor pebbles. Top bed is composed mainly of granules and pebbles. Top bed contains cobbles as large as 6 in. in maximum diameter. Unit as whole weathers to form steep slope. Locally top limestone pebble conglomerate forms ledge. Position and amount of limestone pebble conglomerate in unit is highly variable along exposure.....

- 12. Siltstone to silty claystone, pale reddish brown (10R 5/4), minor grayish red (10R 4/2 and 5R 4/2), and sparse pale red (10R 6/2), weathering same colors, silt fraction is fine to medium silt, clay fraction is composed of swelling clay; firmly to well cemented, calcareous; structureless; weathers to form frothy-surfaced badlands. Contains many horizons and thin intervals of limestone nodules.....
- 11. Covered, forms ¾-mile-wide flat with minor hills and knolls.....
- Long offset in section so that overlying units measured about 2½ miles, N. 65° W. of underlying units.
- 10. Sandstone, pale red purple (5RP 6/2)and minor light greenish gray (5GY)8/1), weathering pale red $(5R \ 6/2)$ and pale brown (5YR 5/2), very fine to fine grained, fair sorted; composed of subangular milky quartz(?) and 20 percent dark-gray and sparse orange grains; firmly to well cemented, calcareous; composed of thin to thick tabular planar sets of smallto medium-scale cross-laminae; weathers to form prominent vertical cliff and underlies bench. Unit is most prominent cliff and bench-forming unit in the Chinle Formation above the Sonsela Sandstone Bed. Basal 3.3 ft of unit is limestone pebble conglomerate. Limestone pebble conglomerate, light greenish gray (5GY)8/1), composed of rounded coarse grains to pebbles as large as 2 in. in maximum diameter of gray limestone, limy silt matrix, firmly to well cemented; very low angle cross-strata; intertongues with rest of unit. Thick-

183

Fee:

23.0

69.7

92.1

184 CHINLE FORMATION AND RELATED UPPER TRIASSIC STRATA, COLORADO PLATEAU REGION

39.2

21.8

108.6

. - -

13.0

Chinle Forma	ation (incomplete)—Continued
Petrified	Forest Member—Continued
Upper	part—Continued

ness of unit appears to be maximum for local area. Units 6-10 measured up prominent point N. 50° W. of Prewitt

- 9. Sandstone, pale red purple (5RP 6/2), subordinate light-greenish-gray (5GY 8/1) mottling, weathering same colors, very fine grained, well sorted; composition mostly masked, 10 percent of rock is orange or black grains, common coarse-grained accessory white and dark mica; well indurated, noncalcareous; horizontally laminated and minor thin shallow trough sets of very low angle small- to mediumscale cross-laminae; weathers to form ledgy slope
- 8. Siltstone (70 percent), silty sandstone (20 percent), and silty claystone (10 percent), all lithologies intergrading, pale reddish brown (10R 5/4) and minor pale red $(10R \ 6/2)$, weathering same colors, silty sandstone is similar to that in unit 6, swelling clays in both the siltstone and silty claystone; firmly to well indurated. noncalcareous; mostly structureless, a few thin sets of horizontal laminae, many horizontal stratification planes; weathers to form steep slope, locally slope weathers with a frothy surface. Unit contains a few thin lenses of limestone-grain sandstone similar to that in unit 6 except that some are light greenish gray (5GY 8/1).....
- 7. Silty sandstone to sandy siltstone, pale red (10R 6/2 and 5R 6/2), weathering same colors, grades from silty, very fine grained sandstone to very fine grained sandy siltstone, sparse coarse-grained accessory white mica; well indurated, noncalcareous; horizontally laminated and minor amounts of thin to very thin shallow trough sets of very low angle small-scale cross-laminae; weathers to form ledge. Locally along exposure ledges similar in lithology to this one are found in the underlying unit and as high as 15 ft up in the overlying unit
- 6. Siltstone to silty sandstone, pale red (10R 6/2) and pale reddish brown (10R 5/4), weathering same colors, grades from siltstone to silty finegrained sandstone, all gradations of lithology, probably 60 percent of unit is silty sandstone, 30 percent sandy siltstone and 10 percent siltstone, composition masked; firmly to well cemented. noncalcareous to slightly calcareous; structureless (40 percent), horizontally laminated (30

- Feet | Chinle Formation (incomplete)—Continued Petrified Forest Member—Continued Upper part—Continued
 - percent), and medium- to large-scale very low angle cross-strata (30 percent). Cross-strata are in sets from a few feet to 20 ft thick. Probably both shallow trough sets and tabular planar sets are present. Unit as whole weathers to form steep slope. About 5 percent of unit is pale-red (10R)6/2) limestone-grain sandstone. The limestone-grain sandstone is coarse to very coarse grained and locally grades to limestone granule conglomerate. The limestone-grain sandstone and limestone granule conglomerate occur as thin to thick lenses interstratified with the rest of the unit.....
 - 5. Covered, weathers to form mile-wide flat. Measured along a N. 30° W. line
 - 4. Sandstone (70 percent) and siltstone (30 percent). Sandstone, pale red purple (5 RP 6/2), weathering same color, very fine grained, well sorted; composition mostly masked (about 20 percent of grains are either dark gray or orange); well cemented, slightly calcareous; composed of thin trough sets of very low angle smallto medium-scale cross-laminae, subordinate horizontal laminae. Siltstone, grayish red $(10R \ 4/2)$, weathering same color, about 20 percent of rock is coarse grains to granules of lightgray siltstone; poorly cemented, calcareous; structureless; present as thin to thick lenses interstratified with thin to thick sets or cosets of sandstone. Unit as whole weathers to form small irregular ledge and underlies bench
 - Clayey siltstone to sandy siltstone, grayish red (5R 4/2) and minor grayish purple (5P 4/2), common light-greenish-gray (5GY 8/1) mottling, weathering same colors, sandy (very fine grained) in part, probably swelling clays; firmly cemented, calcareous, structureless, exposed in roadcut

Sonsela Sandstone Bed:

1. Sandstone, same as that in unit 14 of Chavez-Prewitt section A. Contains a few scattered granules and pebbles of chert, quartzite, and quartz, stratification is not distinct but appears to be mostly low-angle medium-scale cross-laminae. Only 10 ft of unit exFeet

78.4

308.0

8.0±

16.8

STRATIGRAPHIC SECTIONS - NEW MEXICO

Chinle Formation (incomplete)—Continued Petrified Forest Member—Continued Sonsela Sandstone Bed—Continued

posed. Weathers to form lowest part of dip slope developed on Sonsela

Total of incomplete Chinle Forma-

Feet

Base of section; base of exposure. Base of section about 500 ft south of U.S. Highway 66 and about 2 miles west of Prewitt.

NM-2. FORT DEFIANCE SECTION

Measured on cliff about 5½ miles north-northeast of Fort Defiance, about 3 miles north of Clay Springs Wash, and about 1 mile south of Twin Buttes Wash, long 109°01'50" W., lat 35°49'25" N., McKinley County

[Measured by J. H. Stewart and R. F. Wilson, April 1956]

Top section; top of accessible exposure. Entrada Sandstone (incomplete):

Upper sandy member (unmeasured):

10. Sandstone, light brown (5YR 6/4) and pale reddish brown (10R 5/4), weathering same colors, very fine grained, common medium to coarse wellrounded quartz and minor chert(?) grains, well sorted; composed of subrounded reddish-stained quartz and 2 percent black minerals; poorly to firmly cemented, calcareous; composed dominantly of wedge and some tabular(?) planar sets of high-angle medium- to large-scale cross-laminae, but some trough sets of low-angle medium-scale cross-laminae are present in basal 10 ft of unit; weathers to form vertical cliff. Only basal 10 ft of unit examined. Unit about 300 ft thick. Basal contact distinct and is the only distinct contact in the section between the top of the medial ledge of the Rock Point Member to the top of the Entrada Sandstone.....Unmeasured

Medial silty member:

9. Sandy siltstone to silty sandstone, light brown (5YR 6/4) and pale reddish brown (10R 5/4), weathering same colors, composed of particles ranging from coarse silt to very fine sand: well sorted; composed of reddishstained quartz and 2 percent black grains; firmly cemented, slightly calcareous; horizontally laminated, slight waviness to laminae suggests ripple laminae in places, ripple laminae common in top 15 ft; sparse thin trough sets of low-angle small-scale crosslaminae; weathers to form vertical cliff. Locally a thin lens of white (N 9) sandstone is present away

Feet | Entrada Sandstone (incomplete)—Continued Medial silty member—Continued

from line of section, either at the base or in the basal 5 ft of the unit. This sandstone is composed of wellrounded coarse quartz grains. Basal 10 ft of unit contains a few percent of medium to coarse well-rounded clear quartz and white chert (?) grains. Unit weathers with a knobby or hoodoo appearance. Unit very similar to underlying unit but contains medium to coarse grains in basal 10 ft, weathers with a more hoodoo-type cliff, and possibly contains more ripple laminae than underlying unit. From a distance unit can be differentiated from one below by hoodoo weathering

> Total of medial silty member...... Total of incomplete Entrada Sand-

stone

54.0

54.0

54.0

Wingate Sandstone: Rock Point Member:

- 8. Sandstone, light brown (5YR 6/4) and minor pale reddish brown (10R 5/4), weathering same colors, very fine grained, well sorted; composed of subrounded amber-stained quartz and about 2 percent black minerals; poorly cemented, calcareous; horizontally laminated, some wavy laminae suggesting ripple laminae in places, sparse thin trough sets of low-angle small-scale cross-laminae; weathers to form steep slope or vertical cliff. Unit very similar to underlying unit but is somewhat coarser grained, contains better developed laminae, and contains some cross-strata.....
- 7. Sandstone to sandy siltstone, light brown (5YR 6/4) and a few light greenish gray (5GY 8/1) color bands, weathering same colors, grades from coarse silt to very fine grained sand, well sorted; composed of subrounded clear quartz and abundant black accessory minerals; horizontally laminated to thick bedded; weathers to form slope
- 6. Sandstone, light brown (5YR 6/4), weathering same color, very fine to fine grained, sparse disseminated coarse grai.is, fair sorted; composed of subrounded to rounded clear quartz and common black accessory minerals, coarse grains commonly white chert(?); poorly cemented, calcareous; composed of thin to very thick wedge planar sets of low- and high-angle medium- and possibly large-scale cross-laminae, abundant horizontally laminated sets in top 15

24.0

65.0

185 Feet TECHNICAL REPORT 35

New Mexico State Engineer Santa Fe, New Mexico

Geology and Ground-Water Occurrence in Southeastern McKinley County, New Mexico

By James B. Cooper & Edward C. John United States Geological Survey

REPRINTED 1978

TABLE 5 (continued) Thickness Depth (feet) (feet) Stratigraphic unit and material 14.11.3.334 Adrian Berryhill Casing record: 5-inch pipe to 645 feet; perforated 485 to 525 feet, 565 to 625 feet Stratigraphic correlation by: Kermac Nuclear Fuels Corp. UPPER CRETACEOUS: Mancos Shale 263 263 CRETACEOUS: 93 356 Dakota Sandstone **UPPER JURASSIC:** Morrison Formation: 461 Brushy Basin Member 105 Westwater Canyon Member 136 597 653 🗸 Recapture Member 56 14.12.14.142 Elkins Ranch, Inc.

Casing record: 8-inch pipe to 65 feet; record incomplete

Soil Clay, sandy	10 10	10 20
Chuy, Danay	10	20
UPPER JURASSIC:		
San Rafael Group:		
Todilto Limestone:		
Shale, sandy	10	30
Sand, tan	10	40
Shale, sandy	10	50
Entrada Sandstone:		
Quick sand	10	60
Rock, red	220	280
Sand, (water)	20	300
Shale, red, sandy	50	350
UPPER TRIASSIC:		
Glen Canyon Group:		
Wingate Sandstone:		
Sand, red	30	380
Sand, (water)	30	410
Sand, red	20	430

TABLE 5 (continued)		
Thic	kness	Depth
Stratigraphic unit and material (for	eet)	(feet)
14.13.20.414 Transwestern Pipeline Co. Compresser Station No. 5 Well 1		
Casing record: 8-inch pipe to 681 feet, cemented in feet of 10-inch pipe; 6-inch pipe 653 to 746 feet, s from 686 to 736 feet		
Hydrologic data: Pumped 22 hours at 20 gpm; pumping level, 666 feet	water	
Soil, sandy	60	60
UPPER TRIASSIC:		
Chinle Formation:		
Upper part:		•
Shale, red	194	254
Shale, red; hard ledges	24	278
Shale, red	262	540
Mudstone, brown	20	560
Shale, red	50	610
Mudstone, hard	25	635
Shale, red	34	669
Mudstone, hard	11	680
Middle part:		
Sand, white	15	695
Sand, brown	5	700
Sandstone	8	708
Sand, white	22	730
Sand; water	10	740
Lower(?) part:		
Shale, sandy	5	745
Shale, blue, sandy	5	750
onare, orac, banay	U	
14.13.27.342 (16T-352) U.S. Bureau of Indian Affa: Thoreau Chapter House	irs;	
Casing record: 8-inch pipe to 435 feet, perforated to 435 feet	1 400	
Hydrologic data: Bailed 1 hour at 50 gpm; bailing level, 270 feet	water	
Sand and red clay	30	30
UPPER TRIASSIC: Chinle Formation: Upper part:		
Shale, red	65	95
Sand and boulders	65	160
Shale, red	95	255

	ckness feet)	Depth (feet
14.13.27.342 (16T-352) U.S. Bureau of Indian Affa Thoreau Chapter House (concluded)	lrs;	
UPPER TRIASSIC (continued):		
Chinle Formation (continued):		
Middle part:		
Sand and rock	95	350
Rock, red, hard	10	360
Rock, brown and sandstone	50 25	410 435
Sandstone, gray, (water)	20	430
14.13.28.123 (16B-39) U.S. Bureau of Indian Affai:	rs	
Casing record: 12-inch pipe to 95 feet, 16-inch pipe feet, 7-inch liner pipe 625 to 730 feet	e to 63'	7
Hydrologic data: Bailed at 9 gpm; bailing water leve	el, 600	feet
UPPER TRIASSIC:		
Chinle Formation:		
Upper part:		
Shale, red	88	88
Shale, red, sandy	357 110	443 555
Shale, dark-red	110	569
Shale, red	36	605
Middle part:	00	000
Sand; water	27	632
Sand, fine, dry	19	651
Sand; water	45	696
Shale, dark, sticky	18	714
Shale, dark, sandy	16	730
14.13.33.124 (16K-302) U.S. Bureau of Indian Affa Thoreau Boarding School Well No. 1	irs;	
Casing record: 10-inch pipe to 365 feet, perforate to 363 feet	ed 343	
Hydrologic data: Pumped for 6 hours at 13 gpm; pur water level, 199 feet	nping	
QUARTERNARY: Alluvium:		
Blowsand	. 23	23

TABLE 5 (continued)-		
	Thickness	D ep th
Stratigraphic unit and material	(feet)	(feet)
14.13.33.124 (16K-302) U.S. Bureau of India	n Affairs;	
Thoreau Boarding School Well No. 1 (conc	•	
	•	
UPPER TRIASSIC:		
Chinle Formation:		
Upper part:		
Shale, dark-red		148
Shale, light-red		
Shale, light-gray		
Middle part:		257
-	5	242
Sand; water		
Shale, purple		
Sand, hard		
Shale, light-gray		
Sand; water		
Shale, brown		
Shale, gray, sandy		407
Lower part:		
Shale, dark-gray	68	475
Sand, hard	4	479
Shale, gray		505
14.13.33.124a (16K-302A) U.S. Bureau of Indi Thoreau Boarding School Well No. 3		
Casing record: 6-inch pipe to 1,080 feet, ce 1,079 feet; open hole 1,080 to 1,250		
Hydrologic data: Flows 6 gpm. Pumped for 1 gpm; pumping water level, 310 fee		
Samples described by: P. R. Stevens		
Stratigraphic correlation by: J. T. Callahar barger, and C. A. Repenning (Note: The termi the stratigraphers for divisions of the Chin] shown in parentheses on the following log ber nology as used in this report.)	nology used le Formation heath the te	by is
QUARTERNARY:		
Alluvium(?):		
Eolian sand, light-brown, coarse to very fine,		
silty, calcareous; poorly sorted quartz		20
Sand, light-brown, very coarse to very fine, s		
calcareous; poorly sorted quartz with limesto		
fragments		80
Sand, grayish-orange pink, very coarse to very	/ fine,	
silty color rouge populy control limostone for		120

silty, calcareous; poorly sorted limestone fragments 50

130

Depth Thickness (feet) (feet) Stratigraphic unit and material 14.13.33.124a (16K-302A) U.S. Bureau of Indian Affairs; Thoreau Boarding School Well No. 3 (continued) UPPER TRIASSIC: Chinle Formation: Upper part (Petrified Forest Member): Siltstone, pale-red (10R-6/2), sandy, calcareous with mudstone fragments 40 170 Sand, pale-red (5R-6/2), medium to fine, sorting 180 10 fair, quartz Sand, pale-red (5R-6/2), coarse to very fine, silty, calcareous; poorly sorted quartz with 200 limestone fragments 20 Siltstone, pale-red (10R-6/2), sandy, calcareous; limestone fragments 10 210 Sand, pale-red (10R-6/2), medium to very fine, silty, calcareous; poorly sorted quartz with limestone fragments 230 20 Siltstone, pale-red (10R-6/2), sandy, calcareous.. 30 260 Middle part (Sonsela Sandstone bed of Petrified Forest Member): Sand, pale-red (10R-6/2), medium to very fine, calcareous; quartz with limestone fragments 20 280 Sand, pale-red (10R-6/2), medium to very fine, calcareous; poorly sorted quartz with fragments of limestone and siltstone 320 40 Mudstone, pale-red (10R-6/2), silty, calcareous ... 10 330 Siltstone, pale-red (10R-6/2), sandy with mudstone 340 fragments 10 Sand, pale-red (10R-6/2), medium to fine, calcareous! fairly well sorted quartz with fragments of siltstone and limestone 20 360 Sand, pale-red, coarse to very fine, calcareous; poorly sorted quartz with limestone fragments ... 10 370 Siltstone, pale-red (10R-6/2), sandy; fragments of mudstone and limestone 10 380 Sand, pale-red (10R-6/2), very coarse to very fine, silty, calcareous, poorly sorted quartz with limestone fragments 10 390 Sand, pale-red (10R-6/2), very coarse to very fine, silty, calcareous; poorly sorted quartz with frag-420 ments of chert 30 Lower part (Sonsela Sandstone bed of Petrified Forest Member): Claystone, grayish-red to purple, calcareous 430 10 Siltstone, pale-red (10R-6/2), sandy, calcareous; limestone fragments 20 450 Mudstone, light-brownish-gray, silty, calcareous. 490 40 Sand, pale-red (10R-6/2), medium to fine, calcare-

ous; fairly well-sorted quartz with fragments of chert and limestone

500

10

بالاستعاد والمساور

.

TABLE 5 (continued)		
Thick	ness	Depth
Stratigraphic unit and material (fe	et)	(feet)
14.13.33.124a (16K-302A) U.S. Bureau of Indian Affa	irs;	
Thoreau Boarding School Well No. 3 (concluded)		
UPPER TRIASSIC (continued):		
Chinle Formation (continued):		
Lower part (Sonsela Sandstone bed of Petrified Fores: Member) (continued):	t	
Mudstone, pale-red (10R-6/2), silty, sandy,		
calcareous	30	530
Siltstone, grayish-red, calcareous	10	540
Mudstone, grayish-red-purple, silty, calcareous.	30	570
Siltstone, grayish-red (5R-4/2), calcareous	40	610
Lower part (Petrified Forest Member):		
Mudstone, pale-red (10R-6/2), silty, calcareous	50	660
Mudstone, and claystone, pale-red (5R-6/2), silty,		-
calcareous	40	700
Siltstone, pale-red (5R-6/2), sandy; claystone		
fragments	20	720
Mudstone and claystone, pale-red (5R-6/2), sandy.	110	830
Mudstone, pale-red (5R-6/2), silty, calcareous;		
muscovite and limestone fragments	50	880
Mudstone, pale-red (5R-6/2), silty, calcareous;		
fragments of claystone, limestone, sand, and		
gypsum	160	1,040
Lower part (Shinarump Member):*		•
Sand, very pale orange, fine to very fine; well-		
sorted quartz, calcareous	10	1,050
Mudstone and claystone, pale-red (5R-6/2), silty,		
calcareous with sand grains	30	1,080
PERMIAN:		
Glorieta Sandstone:		
Sand, very pale orange, medium to very fine; well-		
sorted quartz, calcareous	20	1,100
Sand, very pale orange, coarse to very fine; poorly		
sorted quartz, calcareous	10	1,110
Sand, very pale orange, medium to very fine; fairly	~~	
well-sorted quartz, calcareous	20	1,130
Siltstone, pale red (10R-6/2), sandy, calcareous	10	
with biotite	10	1,140
Sand, very pale orange, fine to very fine; fairly	e eo .	1 100
well-sorted quartz, silty, calcareous	20	1,160
Mudstone, grayish-orange-pink, silty with biotite	10	1,170
Yeso Formation:	10	1 190
Siltstone, pale-reddish-brown, sandy, calcareous	10	1,180
Siltstone, pale-red (10R-6/2), sandy, calcareous	10	1,190
with gypsum	60	1,190
		-
* The section from 1,040 to 1,080 feet may be a silty phase San Andres Limestone.	= OT C	ΠĊ

San Andres Limestone.

.

•

,

.

Stratigraphic unit and material	Thickness (feet)	Depth (feet
14.13.33.132a Elmer Bowman		
Casing record: 5-inch pipe to 280 feet, perforated feet; gravel packed in 8-inch hole 130 to 280)
Sand	80	80
UPPER TRIASSIC: Chimle Formation: Upper part:		
Sandstone with shale	85	165
Shale, red, sticky		180
Sandstone, blue and red shale		190
Sandstone, colored, and shale		227
Shale, red		268
Sandstone, colored, and shale	••• 12	280
Thoreau Boarding School Well No. 2 Casing record: 6-inch pipe to 420 feet, perfora 263 feet, 365 to 397 feet	ted 240 to	
Hydrologic data: Pumped for 5 hours at 12 gpm; water level, 360 feet	pumping	
Samples described by: Sally Schminke		
Stratigraphic correlation by: C. A. Repenning (terminology used by the stratigrapher for divis the Chinle Formation is shown in parentheses on ing log beneath the terminology as used in this	ions of the follow	; —
QUATERNARY :		
Alluvium:		
Sand, bright-brown, fine, poorly sorted, quartz,		
calcareous	50	50
calcareous	10	60
calcareous with limestone	40	100
UPPER TRIASSIC:		
Chinle Formation:		
Upper part (Petrified Forest Member):		
Claystone, pale-red, silty, calcareous		180
Siltstone, pale-red, clayey, calcareous		200
		010
Clay siltstone, grayish-red-purple, and limest		210
Clay siltstone, grayish-red-purple, and limest Siltstone, pale-red, clayey, and limestone Claystone, pale-red, silty, calcareous	20	210 230 250

TABLE 5 (Continued)		
	Thickness	Depth
Stratigraphic unit and material	(feet)	(feet)
14.13.33.211 (16K-326) U.S. Bureau of Indian	Affairs;	
Thoreau Boarding School Well No. 2 (conclu	ided)	
UPPER TRIASSIC (continued):		
Chinle Formation (continued):		
Middle part:		
Sand, pale-red, medium, fairly well sorted,		
calcareous, and claystone and limestone		
fragments	20	270
Sand, pale-red, fine, silty, fairly well sorte	ed,	
quartz, calcareous	10	280
Sand, pale-red-purple, medium, fairly well son	ted,	
quartz, calcareous, and claystone fragments		290
(Sonsela Sandstone bed of Petrified Forest Men	iber)	•
Sand, pale-red, coarse, poorly sorted, calcare	ous 10	300
Sand, light-gray, medium, poorly sorted, quart		
calcareous	30	330
Claystone and limestone, light-brown-gray,		
calcareous	20	350
Sand, pinkish-gray, fine, fairly well sorted,		
quartz, calcareous, and claystone	30	380
Sand, light-olive-gray, medium, silty, poorly		
sorted, quartz, calcareous	30	410
Lower part (Petrified Forest Member):		
Siltstone, medium-light-gray, sandy, calcareou	us 10	420
· · · · · · · · · · · · · · · · · · ·		

14.13.33.334 El Paso Natural Gas Co.; Bluewater Compressor Station Well No. 2

Casing record: 12-inch pipe cemented to 120 feet; 8-inch pipe cemented from 4 feet above ground to 616 feet

Hydrologic data: Flow 40 gpm; pumped at 120 gpm; pumping water level, 300 feet

Samples described by: El Paso Natural Gas Co. Geology Dept., Farmington, N. Mex

	hickness	Denth	
· ·		Depth	
Stratigraphic unit and material	(feet)	(feet)	
14.13.33.333 El Paso Natural Gas Co.; Bluewater Co Station Well No. 1 (concluded)	ompressor		
UPPER TRIASSIC (continued):			
Chinle Formation (continued):			
Middle part:			
Sand, white, coarse, frosted, subangular and			
subrounded with red, brown, and black chert			
(a few gpm of water between 155 and 161 feet).	•• 40	195	
Coal and medium sand	. 10	205	
Sand, medium	•• 20	22 5	
Lower part:			
Shale, grayish-red (5RP-4/2), and medium-gray (N4)		255	
Sand, medium, with streaks of grayish-red-purp			
(5RP3/2) shale		305	
Sand, medium and fine; trace mica		315	
Alternating beds of sand and shale; shales vary			
from red-purple (5RP3/2) to red-brown (10R4/4))		
to dusky grayish-red (10R3/2); sands are fine			
to coarse, white, subangular to subrounded,			
clear to milky, slightly calcareous with traces of siltstone	. 190	505	
Shale, dark-reddish-brown (10R3/4) to blackish-		303	
red (5R2/2) with trace of white sand		565	
Sand, fine to medium, subrounded to subangular,		000	
and blackish-red shale (5R2/2)		605	
Sand, very fine to coarse, slightly calcareous;			
streaks of grayish-red (10R4/2) shale		628	
PERMIAN:	_	-	
Glorieta(?) Sandstone:			
Sand, as above (water from 628 to 685 feet)	•• 67	695	
Glorieta Sandstone:			
Sand, well-rounded, fine to medium, slightly			
micaceous, and calcareous	. 120	815	
Yeso Formation:			
Sand, well-rounded, fine to medium, slightly	_	_	
micaceous and calcareous; trace of gypsum	•• 57	872	
15.5.4.411 Richfield Oil Corp. No. 1, Drought-Booth, oil-test well			

÷

Stratigraphic correlation: modified from log No. 5,028, N. Mex. School of Mines, State Bur. Mines and Mineral Res., Well-Log Division

Appendix B: Geologic Logs and Completion Records of Production Wells at the Thoreau Compressor Station

ļ

.GEM NO. 28		and a second of the second of			
	LAYNE TEXAS	COMFANY 50 8005-1-59			
	HOUSTON -:-	DALLAS PAGE			
	WELL LO	OG FILE NO. 2482 DATE 4-7-60			
C	USTOMER LOCATION	WELL DATA TH #2			
FOR GULF INTE	RSTATE CO. (AGENTS FOR TRANSWESTER)	NAME WELL STA.NO.5 WELL NO. 1 ELEVATION DATUM			
LOCATION WELL SW	L of Sec.20, T-14-N, R-13-W	RT C GR TEST HOLE SIZE 125"x10"TD 750"			
BURVEY	FIELD	DATE STARTED DRILLING 6-29-59 DATE FINISHED DRILLING 7-17-59			
COUNTY MCKINL	EY STATE NEW MEXICO	DRILLER OWEN PORTER RIG NO 28-L #1 TYPE MUD NAT. NO. SACKS			
OTHER LAND MARK	2.5 MILES NORTH OF HWY. 66 NEAR THOREAU, NEW MEXICO	ELECTRIC LOG NONE TYPE BURVEY , TYPE OTHER			

DEPTH EACH BTRATA BTRATUM	DESCRIPTION FORMATION	SAMPLES			
		DEPTH	TYPE	NUMBER	
0		SURFACE			1
60	60	SANDY SOIL	1		
254		RED SHALE	*		
254 278	195 24	RED SHALE WITH HARD LEDGES			
540 560 610	262	RED SHALE			
560	20	BROWN HUD STONE	1		
610	50 25 34 11	RED SHALE	- 1		, . ;
635 669 680	25	MUD STONE (HARD)			
680	34	RED SHALE Hard mud stone			:
695	11	WHITE SAND	. :		
700	15 5 8	BROWN SAND			
708	8	SANDSTONE	1		l.
	22	WHITE SAND	4		ł
730 740	10	WATER SAND	!		
745	55	SANDY SHALE			•
750	5	BLUE SHALE (SANDY)			
		TOTAL DEPTH 750'	1		• • •
					1
		NOTE: TH#1 ABANDONED AND PLUGGED	: .		
		WHEN 10" SURFACE CASING PARTED IN			2
		THE HOLE.			
	TH#2 WAS DRILLED ADJACENT TO #1.]	
)	
	8" pipe Hold 2	1 0	,		
	8 prpe flohd 2	I gel	por La		
				<i>Y'</i>	•
					: # -
•			1		
	•				۱ ۱
	-		1		1
		·			
					1
		· · · · ·			;
				• .	

WATER WELL #1 SUMMARY

•

• ·

July 1, 1974 - Tested 16.1 GPM and 2nd test was 16.09 G.P.M.

.

.

•

WATER WELL #1 SUMMARY

May 25, 1972 - Water level in well #1 (middle well) Shut in for 30 minutes 22psi X 2.309 = 50 ft. of water

Shut in for 1:30 minutes 40 psi X 2.309 = 92 ft. of water

WATER WELL #1 SUMMARY

June 18, 1971 - Installed low water shut off, tested June 28, 1971 - Tested flow after 30 minutes was 20 GPM

May 25, 1972 - Water level in well #1 (middle well)

Shut in for 30 minutes 22psi X 2.309 = 50 ft. of water

Shut in for 1:30 minutes 40 psi X 2.309 = 92 ft. of water

June 28, 1972 - Acidized started and finished July 2, 1972 Shut in with 100# pump discharge and delivered 15 G.P.M.

July 1, 1974 - Tested 16.1 GPM and 2nd test was 16.09 G.P.M.

March 29, 1979 - Removed 15 hp Reda Pump and installed 5 hp Grund. Water depth 729', Pump setting 680', Tube size 1½" and flowed 24.5 G.P.M. (see DMJ 2-79-18)

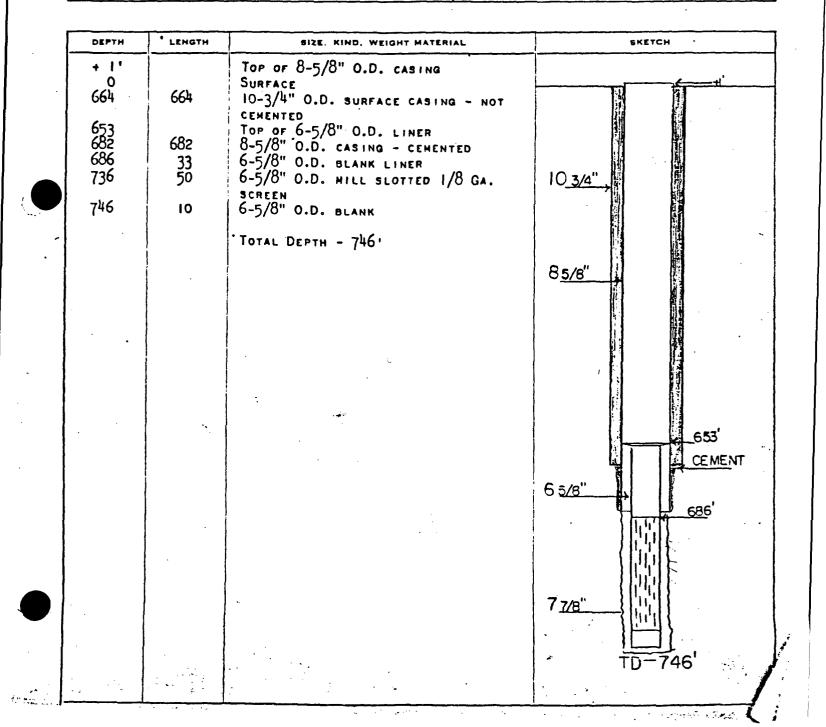
March 9, 1984 Removed 5 H.P. Grundfos and installed / 5 H.P. Franklin. Grundfos shorted out in motor and blew a hole in side of pump.

11/4 WATER Column

WATEr depth - 402.21 FT

					-			EPORT NO.
			LAYNI	E TEX	AS CO	OMPANY	1	s o 8005-59
			HOUST	ron	-:-	DALLAS		FILE NO 248
			WA	TER V	VELL	TEST		DATE 2-24-60
	CUST	TOMER L	OCATION	4			WELL C	DATA
TEST FOR	" GULF IN		C				OMPRESSOR	
					•	ELEVATION _	STATION NO.	· JATUM CI
LOCATIO	N OF WELL	COMPRESSO	R STATIC	No. 5		WELL SIZE	7310.33'	6.L. X
SURVEY		,	FIELD				-	OP SCREEN
COUNTY	MCKINLE	Y !	STATE NE	w Mexico	· 1	TOTAL DEPTH	,	OF SCREEN
DESCRIP	TION OF LAND	MARKS 2.	5 HILES	NORTH OF	Hvy.	GRAVEL WELL	STF	RAIGHT WELL
	R THOREAU					TYPE SCREEN		GAGE
						TEMPERATURE	OF WATER	
						WATER CONDIT	ION	
	WATER	MEASURI	ING DEV	ICE		-	TEST PUMP	
ORIFICE			LENGTH			DEPTH SETTING	TOP OF BOWL	679'
OTHER	BUCK	ET				LENGTH AIR LII TYPE BOWL	10P OF BOWL	NO STAGES 27
						ENGTH BOWL		ICTION LT MOTOR
SAND CO		OZ. PER			WATER SAMI	PLE TAKEN	YES NO	SAMPLES
	613 FT.	AFTER PUN 20 MIN.		,		GICAL SAMPLE		
		20 MIN. 1	<u>)</u> 47 FT.		DRAWDOWN		SPECIFIC CAPA	CITY
	-		ร้วน์					
10 MIN.	57 7 PT.	25 MIN.				·		
10 MIN.	57 7 PT.	25 MIN.						
10 MIN.	57 7 PT.	25 MIN.		HEAD ON ORIFICE INCHES	GPM	RPM	OPERATOR	REMARKS
DATE HOUR	577 PT. 558 PT. AIR LINE GAGE ON 15	25 MIN 30 MIN PUMPING LEVEL 664	522 FT.	ORIFICE		RPM LLONS 16 S	-	REMARKS
10 MIN. 15 MIN. HOUR T2:00 Not 1:00 P.N	577 PT. 558 PT. AIR LINE GAGE ON 15 1. 15	25 MIN 30 MIN LEVEL 664 664	DISCH PRESS	ORIFICE	5 GA	_	ECONDS	REMARKS
DATE HOUR 12:00 Not 1:00 P.N 2:00	577 PT. 558 PT. AIR LINE GAGE ON 15 1. 15 15	25 MIN. 30 MIN. PUMPING LEVEL 664 664 664	DISCH PRESS	ORIFICE	5 ga 5 gai 5 gai	LLONS 16 S LLONS 16 S LLONS 16 S	ECONDS ECONDS ECONDS ECONDS	REMARKS
DATE HOUR 12:00 Not 1:00 P.N 2:00 3:00	577 PT. 558 PT. AIR LINE GAGE ON 15 1. 15 15 15	23 MIN. 30 MIN. PUMPING LEVEL 664 664 664 664	522 FT. PRESS 17.5 17.5 17.5 17.5 17.5	ORIFICE	5 GA 5 GA 5 GA 5 GA	LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S	ECONDS ECONDS ECONDS ECONDS	REMARKS
DATE HOUR T2:00 Not 1:00 P.N 2:00 3:00 4:00	577 PT. 558 PT. AIR LINE GAGE ON 15 1. 15 15 15	23 MIN 30 MIN LEVEL 664 664 664 664 664	522 FT. DISCH PRESS 17.5 17.5 17.5 17.5 17.5 17.5 17.5	ORIFICE	5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S	ECONDS ECONDS ECONDS ECONDS ECONDS	REMARKS
DATE HOUR 13 MIN. 13 MIN. 13 MIN. 13 MIN. 13 MIN. 13 MIN. 12:00 Not 1:00 P.N 2:00 3:00 4:00 5:00	577 PT. 558 PT. AIR LINE GAGE ON 15 1. 15 15 15	25 MIN 30 MIN PUMPING LEVEL 664 664 664 664 664 664	DISCH PRESS 17.5 17.5 17.5 17.5 17.5 17.5	ORIFICE	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS	REMARKS
DATE HOUR 13 MIN. 13 MIN. 12 M	577 PT. 558 PT. AIR LINE GAGE ON 15 1. 15 15 15	23 MIN 30 MIN PUMPING LEVEL 664 664 664 664 664 664 664	DISCH PRESE 17.5 17.5 17.5 17.5 17.5 17.5 17.5	ORIFICE	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS	REMARKS
DATE HOUR 13 MIN. 13 MIN. 13 MIN. 13 MIN. 13 MIN. 13 MIN. 12:00 Not 1:00 P.N 2:00 3:00 4:00 5:00	577 PT. 558 PT. AIR LINE GAGE ON 15 1. 15 15 15	23 MIN 30 MIN LEVEL 664 664 664 664 664 664 664 664 664 66	DISCH PRESE 17.5 17.5 17.5 17.5 17.5 17.5 17.5	ORIFICE	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 S LLONS 16 S LLONS 16 S LLONS 16 S LONS 16 S LONS 16 S LONS 16 S LONS 16 S	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS	REMARKS
DATE HOUR 13 MIN. 13 MIN. 14 OO P.N 2:00 3:00 4:00 5:00 7:00 8:00 9:00 9:00 9:00	577 PT. 558 PT. AIR LINE GAGE 15 15 15 15 15 15 15 15 15 15	23 MIN. 30 MIN. PUMPING LEVEL 664 664 664 664 664 664 664 664 664 66	DISCH PRESS 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	ORIFICE	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 5 LLONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS	REMARKS
DATE HOUR T2:00 Not 1:00 P.N 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN PUMPING LEVEL 664 664 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	ORIFICE	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS	
10 MIN. 13 MIN. 13 MIN. 13 MIN. 12:00 Not 1:00 P.N 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12 HOUR	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN PUMPING LEVEL 664 664 664 664 664 664 664 664 664 66	DISCH PRESS 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	ORIFICE	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 S LLONS 16 S	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS	SHUT DOWN
10 MIN. 13 MIN. 10 P.N 2:00 3:00 14:00 5:00 6:00 7:00 8:00 9:00 10:00 12 HOUR 10:05	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN EVEL 664 664 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS TIME	SHUT DOWN W.L. 371
10 MIN. 15 MIN. 15 MIN. 12:00 Not 1:00 P.N 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12 HOUR 10:05 10:10	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN EVEL 664 664 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS TIME 4:00	SHUT DOWN W.L. 371
10 MIN. 15 MIN. 15 MIN. 12:00 Nod 1:00 P.N 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:05 10:10 10:15	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN EVEL 664 664 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME 11:30 11:40 11:50	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS TIME	SHUT DOWN W.L. 371 368
10 MIN. 15 MIN. 15 MIN. 12:00 Nod 1:00 P.N 2:00 3:00 4:00 5:00 5:00 6:00 7:00 8:00 9:00 10:05 10:05 10:10 10:15 10:20	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN EVEL 664 664 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30 II:40 II:50 I2:00	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS	SHUT DOWN W.L. 371 368
10 MIN. 15 MIN. 15 MIN. 12:00 Not 1:00 P.N 2:00 3:00 4:00 5:00 5:00 6:00 7:00 8:00 9:00 10:00 12 HOUR 10:05 10:10 10:15 10:20 10:25	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN EVEL 664 664 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30 II:40 II:50 I2:00 I2:15	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 43 43 43 42 42 42 42 42 42 42 42 42 42	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS TIME 4:00 4:30	SHUT DOWN W.L. 371 368
10 MIN 13 MIN 10 0 10 0 10 0 12 00 12 00 10 00 12 HOUR 10:05 10:10 10:25 10:30	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN PUMPING LEVEL 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30 II:40 II:50 I2:00 I2:15 I2:30	5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 5 GA 433 433 424 433 424 433 424 433 424 433 429	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS	SHUT DOWN W.L. 371 368
10 MIN 13 MIN 10 00 10 00 12 HOUR 10:05 10:10 10:25 10:20 10:25 10:30 10:35	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN PUMPING LEVEL 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30 II:40 II:50 I2:00 I2:15 I2:30 I2:45	5 GA 5 GA 433 433 419 414	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS	SHUT DOWN W.L. 371 368
10 MIN 13 MIN 10 0 10 0 10 0 12 HOUR 10:05 10:10 10:25 10:20 10:35 10:40	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN PUMPING LEVEL 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30 II:40 II:50 I2:00 I2:15 I2:30 I2:45 I:00	5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 454 433 424 433 419 414 409	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS TIME 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30	SHUT DOWN W.L. 371 368
10 MIN 13 MIN 10 MIN	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN PUMPING LEVEL 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME 11:30 11:40 11:50 12:15 12:30 12:45 1:00 1:20	5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 S L. 4548 4334 414 4334 414 4093	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS TIME 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00	SHUT DOWN W.L. 371 368 365 363 359 355 355 352 350 348
10 MIN 15 MIN 15 MIN 12:00 Not 1:00 P.N 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:05 10:05 10:15 10:20 10:25 10:20 10:35 10:40 10:45 10:50	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN PUMPING 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30 II:40 II:50 I2:15 I2:30 I2:45 I:00 I:20 I:40	5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 S GAI 5 S L. 4 4 3 3 4 9 4 9 3 3 4 4 9 4 9 3 3 5 3 6 4 1 4 9 3 3 5 3 6 4 1 4 9 3 5 5 3 6 4 1 4 9 3 5 5 3 6 4 1 4 9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS TIME 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00 8:30	SHUT DOWN W.L. 371 368 365 363 359 355 352 350 348 346.5
10 MIN 15 MIN 15 MIN 15 MIN 12:00 Nod 1:00 P.N 2:00 3:00 4:00 5:00 7:00 8:00 9:00 10:00 12 HOUR 10:05 10:10 10:15 10:20 10:35 10:35 10:40 10:50 10:55	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN. 30 MIN. PUMPING 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30 II:40 II:50 I2:00 I2:15 I2:30 I2:45 I:00 I:20 I:40 2:00	5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 5 GAI 5 5 GAI 5 5 L. 4 4 3 3 4 9 4 9 3 3 4 4 9 3 3 4 4 9 4 3 3 5 3 6 4 1 4 9 3 3 4 4 9 4 3 3 5 3 6 4 1 4 9 3 3 5 3 6 4 1 4 9 3 5 5 3 6 4 1 4 9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS EC	SHUT DOWN W.L. 371 368 365 363 359 355 352 350 348 346.5 345
10 MIN 15 MIN 15 MIN 12:00 Not 1:00 P.N 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:05 10:05 10:15 10:20 10:25 10:20 10:35 10:40 10:45 10:50	577 PT. 558 PT. AIR LINE GAGE AIR LINE GAGE AIR LINE IS IS IS IS IS IS IS IS IS IS	23 MIN 30 MIN PUMPING 664 664 664 664 664 664 664 66	17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	TIME II:30 II:40 II:50 I2:15 I2:30 I2:45 I:00 I:20 I:40	5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 GAI 5 S L. 4548 4334 414 4334 414 4093	LLONS 16 5 LLONS 16 5 LLONS 16 5 LLONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5 LONS 16 5	ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS ECONDS TIME 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00 8:30	SHUT DOWN W.L. 371 368 365 363 359 355 352 350 348 346.5

OBSERVERS


FOR OWNER

.

ļ

,

COMPANY B 0. 8005-1-59 DALLAS PAGE OF 1 FILE NO. 2482 ETTING DATE 4-7-60
WELL DATA NAME WELL STA. NO.5 WELL NO. 1 ELEVATION DATUM TYPE WELL STRAIGHT BURFACE CABING CEMENTED YES NO. BACKS 10 APPROX
BIZE HOLE UNDERREAMED 7-7/83EPTH 746' GRAVEL TYPE NONE NO. CU. YDB. TYPE SCREEN MILL SLOTTED GAGE 1/8" DRILLER E.W.DAVIS RIG NO. 18 OTHER V.E. MATUS

Acidized # 1(cont) started June 28-72 Well #1) dilivered 15 G.P. Min. Pump DuschargeP51 100 with well shot IN # 3 well (west) Acidized June 28-72- Finished June 7-7 3WELL Delivered 15 GPMIN. with A Pump Discharge PSITY. with well shot i de 2 wull (EAST) DeLivered 19 GP.N. with To The surface But would not Book the HEAd Press. Max P.S.I. 20th with well shot in. 495 ft water standing in The well. This well has To Be Pulled + Pury over Anuled. 2 one · · · 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -· · · ·

hater well #1 3-29-79 Removed 15 H.P. Reda pump Mod. 61546D31 Installed 5 HP Grund FOS #SP4-42 SHP 460V Water Dupth. From Top 347' Well Depth, 729 SiLt Depth 17' Pump setting 680 Origional well depth 746' Tuber Sizer 14 New cable 12/3 represe bonded Amp At start up 8.5 24'zgal per min.

T.P. Pump.

WATER WELL #1 SUMMARY

March 29, 1979 - Removed 15 hp Reda Pump and installed 5 hp Grund at 680 ft. on 1½" tubing, static depth 347 ft. in depth (from the top) and delivered 24½ gpm.

WATER WELL #1 SUMMARY

•

•

June 28, 1972 - Acidized started and finished July 2, 1972 Shut in with 100# pump discharge and delivered 15 G.P.M.

• .

WATER WELL #1 SUMMARY

28, 1971 - Tested flow after 30 minutes was 20 GPM

June 18, 1971 - Installed low water shut off, tested June

₹ 2	· -
LAYNE TEXAS HOUSTON -:-	COMPANY 5 0. 8005-2-59 DALLAS PAGE 1 FILE NO. 2482
WELL L	-OG DATE 4-7-60
CUSTOMER LOCATION	WELL DATA
FOR GULF INTERSTATE CO. (AGENTS FOR TPL)	NAME WELL STA. NO.5 WELL NO. 2-EAST ELEVATION DATUM
LOCATION WELL 400' EAST OF WELL NO. I	RT C GR 1/10/11
SURVEY FIELD	DATE STARTED DRILLING 1-21-60 DATE FINISHED DRILLING 2-1-60
COUNTY MCKINLEY STATE NEW MEXICO	DRILLER E.W. DAVIS RIG NO 18 TYPE MUD NAT & AQUAGELNO SACKS
OTHER LAND MARKS 500' EAST OF WATER TANK	ELECTRIC LOG NONE TYPE SURVEY TYPE OTHER V E MATUR

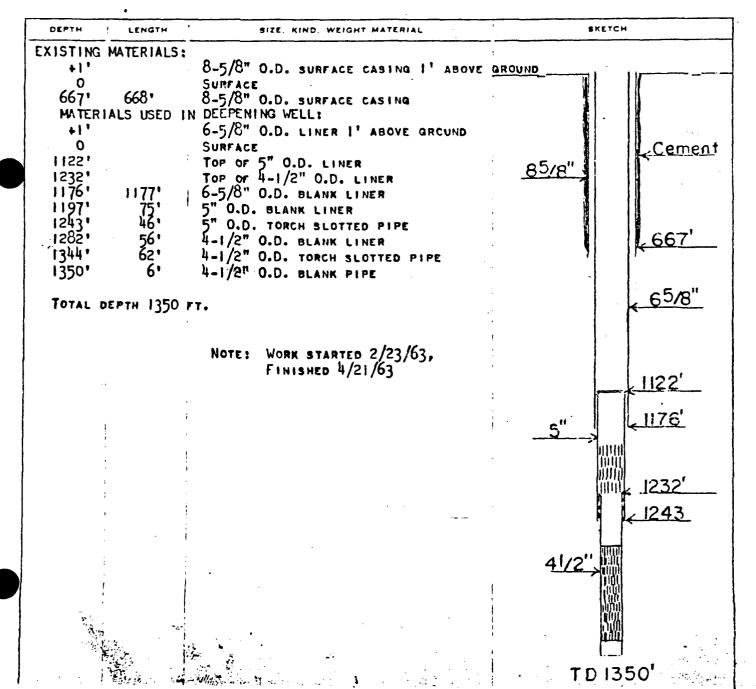
.

DEPTH	ЕЛСН	DESCRIPTION FORMATION		SAMPLES	
STRATA	STRATUM		DEPTH	TYPE	NUMBER
0 40 70 571 618 641 656 671 721 730	4 30 501 23 15 50 9	SURFACE SURFACE SOIL SAND, CLAY AND GRAVEL STREAKS RED SHALE AND GRAVEL RED SHALE AND BOULDERS ROCK AND SHALE STREAKS BOULDERS AND RED SHALE ROCK AND SHALE ROCK SAND AND BLUE SHALE SAND BLUE SANDY SHALE			
		TOTAL DEPTH - 730'			
				-	
			-		
				•	
	•				

WATER WELL #2 Summary

May 25, 1972 - Water in #2 (east well) level was 210 psi by 2.309 = 485 ft. of water in casing. Continuous flow of 15.7 gpm.

June 28, 1972 - Delivered 10 gpm to the surface but would not make head pressure (Max. psi of 20# with well shut in. 495 ft. of water standing in the well (overhaul needed).


July 9, 1972 - Checked well to find it was pumping 10 gpm with 10 psi at the well head, shut in pressure to 20 psi. Tubing and pump was pulled and a new pump, pipe, cable, wiring and test line installed. The pump hung up at 630 ft., it was pulled and checked and reset at 609 ft. 18 hrs. of pumping continuously tested 10 gpm.

September 19, 1973 - Layne Texas Co. pulled the pump and ran a sub scope into the well, fished out fish air line from the well and reinstalled the pump at 777 ft.

July 1 , 1974 - Well Tested out at 55 gpm.

- July 26, 1979 Removed inoperative Berkeley Pump, the bearing housing was missing and all check valves broken. July 27, 1979, a new 15 hp Reda Pump was installed with 2 new check valves and wiring on same 2" galvanized piping at 778 ft. and tested to 41 gpm with 302 ft. static pressure.
- July 12, 1985- Removed 15 HP Reda Pump, the bottom 7" of the motor was missing. the motor was replaced with a 15 HP Hitachi Motor. The pump after installation was pumping 38 gallons of water a minute. Meter reading at time if installation was: 19471.500.
- May 6, 1988 Pulled well for Skip Wassell. He had it logged on May 7, 1988. New pump and motor was installed May 9, 1988. Installed 15 H.P. Franklin motor with a Red Devil Liquid end. W.). 80469 paid for this work.

LAYNE TEXAS HOUSTON -:- MATERIAL SI	DALLAS PAGE 1 OF 1 FILE NO 2482
CUSTOMER LOCATION FOR GULF INTERSTATE COMPANY (AGENTS FOR TRANS- WESTERN PIPELINE COMPANY) LOGATION WELL 400' EAST OF WELL #1, STA. #5 BURVEY FIELD	WELL DATA NAME WELL STA. NO. 5 WELL NO 2 ELEVATION DATUM TYPE WELL STRAIGHT BURFACE CABING CEMENTED YES NO. BACKS 17 BIZE HOLE UNDERREAMED DEPTH GRAVEL TYPE NONE NO. CU. YDB
COUNTY MCKINLEY STATE NEW MEXICO OTHER LAND MAPKS 500" EAST OF WATER TANK	TYPE CREEN TORCH SLOTTED GAGE DRILLER R. BARBER RIG NO 28L #3 OTHER D. PARNELL & JOHN LANIER WELL ORIGINALLY 730' DEEP. NOW 1350' DEEP.

MICRUSIOLOGY SER	VICE LA	BORATORIE		41 5 5575 Amut ビー さイ・ゼ
analytical chemists	. microt	piologists		124 (Lugnd XX 102123, Texas
· · ·			30 05-2 .	-57
To: Layne Texas (Nouslon, Texa		• • • •		
Ptrallen Company	Refine with Lo 20. E.	y County, il une purc.	oratalo Co., agonto for Transmotorn ad Morleo. Taken 2-17-00 after 35 hro Static Monar 332°. Pumping Level: 6	30%.
				· .
• • • • • • • • • • • • • • • • • • •			ANALYSIS	· · ·
	results in	parts per millio	on (mg/1) except as noted	
Dissolved Residue at 105 °C		374	Conductance, micromhos/cm, 25°C	625
Total Dissolved Solids, actualt		505	Color, units	3
Total Dissolved Solids, calc.		505	Turbidity, units	0
Silica	SiO ₂	10	As Calcium Carbonate, CaCO3:	
and Aluminum Oxides	, R ₂ O ₃	. 0	Phenolhpthalein Alkalinity	24
Calcium	Ca	0.5	Total Alkalinity	260
Magnesium	Mg	0.5	Total Hardness	3
Sodium (diff.) Na+K as	Na	149	Free Carbon Dioxide CO2	0
Carbonate	CO3	29	рНЭ.О	•
Bicarbonate	нсо3	2 <i>5</i> Y	HYPOTHETICAL COMBINATIONS	
Sulfate	so₄	\$ 1	Calcium Biomrbonste	2
Chloride	CI	17	Magnosius Bicarbonats Sodius Carbonate	3 51
Total Iron	Fe	0.19	Sodium Dicarbonato Sodium Selfate	352 - 60
		•	Siler Chloride Silez + #z93	23 10
•		•	Total Discolved Solids, celc.	500
		• • • • •		

 \dagger Total Dissolved Solids, actual = Dissolved Residue + 50.8% of bicarbonate (HCO_{ii}) ion

Microbiology Service Laboratories By: Mina Jocki

Acidized # 1(cont) started June 28-72 Well #1) dilivered 15 G.P. Min. Pump DuschargePSI 100[#] with well shat In 3 mold (west) Acidized June 28-72- Finished June 7-7: 3 well Defivered 15 GP min. with A Pump Discharge PSITY: with well shot in. 2 UuLL (EAST) DeLivered 19 GPN, with To The surface But would Not Book the Head Press. Max P.S.I. 20# with well shot in. 495 ft water standing in The well. This well has To Be Pulled & Pung over Anuled. Done

7-11-13

WELL #2 -

EAST WELL

777'

Pump Serring

302' STATIC WATER LEVEL -

TOTAL DEPTH 1350'

2" GALVANIZED Pipe

	HCROBIOLOGY SERVICE L/	GORATORIE	ES		7-7271 7-9170-
	nalytical chemists microb	iologists	10 April 1963	5420 Calhour Houston 21,	
30	: Larno Tonas Company	;		4810 OF. Spi	25.5 Ta Ji
	Houston, Tours	•	50 8065		
· · ·		····] - //] //			
	ple marked: Noll No. 2, Ser N. Ker. Taken: Static Hend: 2 Turbi4. Ralph	4-3-63 aft 251. Filipin	er 12 hours pumping at 30 gr g Level: 630', Screened: 1	m with Layna	PIIP.
		• •			
LC	ccived: 4-C-63. Sample filt	WATER A	17329. NALYSIS	· · · · ·	
	results in		(mg/1) except as noted		
· · · · (H 2
	Dissolved Residue at 105°C	263	Conductance, micromhos/cm, 25°C	455	
	Total Dissolved Salids, actualt	395	Color, units	īD	
	Tctal Dissolved Solids, calc.	399	Turbidity, units	ND -	'`
	Silica SiO ₂	8	As Calcium Carbonate, CaCO ₃ :		
	Iron and Aluminum Oxides R2O3	2	Phenolhpthalein Alkalinity	O	
	Calcium	9.	Total Alkalinity	204	. X
	Magnesium Mg	3	Total Hardness	36	:
	Sodium (diff.) Na+K as Na	94	Free Carbon Dioxide CO ₂	5	-
	Carbonate CO3	0	pH · · · · 7.85		
	Bicerbonate HCO3	249	HYPOTHETICAL COMBINATIONS		
	Sulfate SO4	29 [·]	Calcium Bicerbonato	36	
	Chloride Cl	5	Econopium Bicarbonato	20 282	
•			Solium Sulfato	43	
	Total Iron Fe	0.38	Scdium Chloride	8	
			S102+R203	<u>10</u>	
	Iron, filtered sample Fe	< 0.05	Total Discolved Solids, cal	c. 377	· ·
			• • •		
•					1
					1

 \dagger Total Dissolved Solids, actual = Dissolved Residue + 50.8% of bicarbonate (HCO₈) ion

Microbiology Service Laboratories

¥ 22

The Her By:

Edna Hood

3223

analytical chamista -	niorobiologista		. 5400 (0 3) 5 -
analytical chemists n	meroniologists	25 April 1963	15420 Calboun Road Houston 21, Texas
		• • •	4320 GIA Speadele Ter
Layno Texas Company			
Houston, Texas			. · · ·
le marked: Well # 2, Sam	mla #2	50 8065-62	and the second
		ta. #5, Thoreau, McKinney	Ctv. N. Mex.
		60 gpm with Layne Pump.	
Pumping Level	L: 695'. Screer	ned: 1190-1350'.	• • •
d: 4-23-63. Sample filt			
d: 4-23-63. Sample filt	tered for analysi WATER	ANALYSIS	•
		on (mg/1) except as noted	•
		1	
Dissolved Residue at 105°C		Conductance, micromhos/cm, 2	5°C
	274		5°C 475
Total Dissolved Solids, actual†	410	Color, units	0
Total Dissolved Solids, calc.	413	Turbidity, units	140
Silica	SiO ₂	As Calcium Carbonate, CaCOs	
	SiO ₂ 8		
Iron and Aluminum Oxides	R ₂ O ₃	Phenolhpthalein Alkali	nity 0
Calcium	Ca 41	Total Alkalinity	220
Magnesium	Mg 17	Total Hardness	117
	Mg 11		147
Sodium (diff.) Na+K as	Na 50	Free Carbon Dioxide	CO ₂ 6
Carbon			
Carbonate	CO ⁸ 0.	PH · · · 7.85	
Bicarbonate		HYPOTHETICAL COMBINATIO	ONS
Sulfate	SO, 29	Calcium Bicarbonate	166.
Chloride		Magnesium Bicarbonate:	65
	CI 5	Scdium Bicarbonate	122
Dissolved Iron	Fe 0.06	Sodium Sulfate Sodium Chloride	43
	0.00	\$102+R203	9
Iron filtered sample	Fe (0.05	2 2 3	and the second
		Total Dissolved Solids,	calc. 413
	1		

 \dagger Total Dissolved Solids, actual = Dissolved Residue + 50.8% of bicarbonate (HCO_s) ion

Microbiology Service Laboratories

By: Eclina lateres

Edna Wood

5 8 8 8 A

3836

•

analytical chemists microbiologists 25 April 1963 e3429.Chilton from Houston I Term Houston, Tozas To: Layne Texas Company Houston, Tozas SO 6065-62 Emuple marked: Well # 2, Scaple #2 - Transvectorn Phpeline Co., Sta. #5, Therean, KcKinney Ctr, K. Max. Takon: 4-21-63; pumping at 60 gpm with Lyron Pump. Static Head: 125'. Funding Laval: 495'. Ecrcend: 1190-1350'. Roc'd: 4-23-63. Sample filtered for enalyrin. WATER ANALYSIS results in parts per million (mg/1) except as noted Dissolved Residue at 105°C 274 Total Dissolved Solids, ectual? 410 Logical Residue at 105°C 274 Total Dissolved Solids, calc. 8 Silice SiO2 Rec'dim Ca Magnesium Mg Sodium (diff.) Na+K es Na Sulfate Co. Sulfate So.	<u><</u> M	IGROBIOLOGY SERV	ICE LA	BORATORIE	S <u>PI 7-</u>		<u>.B1-7-9170</u>
 To: Layne Texas Company Houston, Toxas S0 8065-62 Example marked: Well # 2, Smaple #2 - Transvestorn Pipeline Co., Sta. #5, Thoran, McKinney Cty, N. Max. Taken: 4-21-63; pumping at 60 grm with Layne Pump. Static Head: 1051. Pumping Lavel: 6951. Screened: 1190-13501. Ree'd: 4-23-63. Sample filtered for evalvein AnALYSIS results in parts per million (mg/1) except as noted Dissolved Residue at 105°C 274 Conductance, micromhos/cm, 25°C 475. Total Dissolved Solids, calc. Silice Silice Silice Silice Silice Calcium Ca A1 Total Hardneis Total Hardneis Sodium (diff.) Na +K as Na Sulfate SO, 268 HYPOIHETICAL COMBINATIONS Sulfate SO, Silice Sodium Hearbonate Sodium Sulfate Sodium Sulfate Sodium Sulfate Sodium Sulfate Sodium Sulfate Sodium Bicarbonate Sodium Sulfate Sodium Sulfate Sodium Sulfate Sodium Sulfate Sodium Circle Sodium Sulfate Sodium Circle Sodium Sulfate Sodium Sulfate Sodium Circle Sodium Sulfate Sodium Circle Sodium Choride Sodium Sulfate Sodium Circle Sodium Sulfate Sodium Choride Sodium Circle Sodium Sulfate Sodium Choride Sodium Choride Sodium Choride Sodium Sulfate Sodium Choride Sodium Choride Sodium Choride Sodium Choride Sodium Choride Sodium Sulfate 	ar	nalytical chemists	microbi	ologists	25 April 1963		
Houston, Tozas S0 8065-62 Excepte marked: Woll # 2, Sample #2 - Transweatern Pipeline Co., Sta. #5, Thoraco, Kekinney Cty, N. Mex. Takent 4-21-63; pumping at 60 grm with Layno Pump. Static Head: 125'. Pumping Lavol: 695'. Ecreened: 1190-1350'. Rec'd: 4-23-63. Sample filtered for WAIERANALYSIS results in parts per million (mg/1) except as noted Dissolved Residue at 105°C Total Dissolved Solids, ectual? Total Dissolved Solids, ectal? Inon and Aluminum Oxides R20s Iron and Aluminum Oxides R20s Iron and Aluminum Oxides R20s Calcium Ca Magnesium Mg 11 Sodium (diff.) Na+K as Na Colos, 0 Carbonate COs, 0 Carbonate COs, 0 Carbonate HCOs Sulfate SO. Sulfate So							
SO 8065-62 Cample narked: Well # 2, Scaple #2 - Transvectorn Pipeline Co., Sta. #5, Thoraza, KcKinney Cty, N. Max. Taken: 4-21-63; pumping at 60 grm with Leyno Pump. Static Head: 125'. Pumping Lovel: 695'. Screened: 1190-1350'. Acc'd: 4-23-63. Sample filtered for analycin WAIER ANALYSIS results in parts per million (mg/!) except as noted Dissolved Residue at 105°C 274 Total Dissolved Solids, calc. 410 Silica SiO2 Iron and Aluminum Oxides R2Os Magnesium Mg Solium (diff.) Na +K as Na Sulfate SOs Sodium filearbonate 122 Sodium Sulfate Sodium Sulfate Sodium Licarbonate 122 Sodium Sulfate Sodium Sulfate Sulfate SOs Sulfate Sodium Sulfate Sulfate Sodium Sulfate Sodium Sulf						•	
Transwertern Pipeline Co., Sta. #5, Thorazs, Kelinney Coy, E. Hest. Takon: 4-21-63; pumping at 60 gym with Layno Pump. Static Hesd: 185'. Pumping Lovel: 695'. Screened: 1190-1350'. Ace'd: 4-23-63. Sample filtered for gunlyrin mesults in parts per million (mg/l) except as noted Dissolved Residue at 105°C 274 Conductance. micromhos/cm. 25°C 475 Total Dissolved Solids, estualt 410 Conductance. micromhos/cm. 25°C 475 Total Dissolved Solids, calc. 413 Turbidity, units 140 Silica SiO2 8 As Celcium Carbonate, CoCO3: 140 Calcium Ca 11 Total Alkalinity 220 Sodium (diff.) Na+K as Na 50 Free Carbon Dioxide CO2 Bicarbonate HCO3 268 HYPOTHETICAL COMBINATIONS 147 Sulfate SO4 29 Calcium Elcarbonate 166 Magnesium Fe 0.06 Sodium Elcarbonate 122 Sulfate SO4 29 Sodium Elcarbonate 165 Sulfate SO4 Sodium Elcarbonate 43 43 Sodium Sulfate Sodium Conate 43 43 <td></td> <td>and that the s</td> <td>tin An</td> <td></td> <td>·' SC 5065+62</td> <td>Ċ</td> <td></td>		and that the s	tin An		·' SC 5065+62	Ċ	
Pumping Lovoli 695 ¹ . Screened: 1190-1350 ¹ . Act 'd: 4-23-63. Sample filtered for analysin WATER ANALYSIS results in parts per million (mg/1) except as noted Dissolved Residue at 105 ^o C 274 Conductance, micromhos/cm, 25 ^o C 475 Total Dissolved Solids, actualf 410 Color, units 0 Total Dissolved Solids, calc. 413 Turbidity, units 140 Silica SiO ₂ 8 As Calcium Carbonate, CaCO ₃ : Iron and Aluminum Oxides R ₂ O ₂ 1 Phenolhpthalein Alkalinity 220 Calcium Ca 41 Total Alkalinity 220 Magnesium Mg 11 Total Alkalinity 220 Sodium (diff.) Na + K as Na 50 Phenolhpthalein Alkalinity 220 Bicarbonate CO ₂ 0 PH 7.85 Bicarbonate HCO ₃ 268 HYPOTHETICAL COMBINATIONS Sulfate SO ₄ 29 Calcium Bicarbonate 65 Solium Bicarbonate 122 Sodium Sulfate 50 Calcium Sulfate 50 Solium Chloride Fe 0.06 Solium Chloride 8	Sector 6	Transwester	1 Pipeli	ne Co., Sta	. #5, Thoreas, KcKinney Cty,	N. Mox.	1071
Lee'd: 4-23-63. Sample filtered for analyzin WATER ANALYSIS results in parts per million (mg/1) except as noted Dissolved Residue at 105°C 274 Conductance, micromhos/cm, 25°C 475 Total Dissolved Solids, extualf 410 Color, units 0 Total Dissolved Solids, calc. 413 Turbidity, units 140 Silica SiO2 8 As Celcium Carbonate, CaCO3: 140 Iron and Aluminum Oxides R3O2 1 Phenolhpthalein Alkelinity 200 Calcium Ca 41 Total Alkalinity 220 6 Sodium (diff.) Na + K as Na 50 Free Carbon Dioxide CO2 6 Sulfate SO4 268 HYPOTHETICAL COMBINATIONS 166 65 Sulfate SO4 29 Calcium Bicarbonate 65 65 Sulfate SO4 29 Calcium Bicarbonate 122 65 Sodium Sulfate 50 50 122 50 65 65 Sulfate SO4 29 Calcium Bicarbonate 65 65 65 Sulfate SO4 50		Takon: 4-2. Pumping Love	1-63; I 695	mping at 60	e Eller com en el	IC HOSA:	••• `Ç
WATER ANALTSIS results in parts per million (mg/l) except as noted Dissolved Residue at 105°C 274 Conductance, micromhos/cm, 25°C 475 Total Dissolved Solids, actual† 410 Color, units 0 Total Dissolved Solids, calc. 413 Turbidity, units 140 Silica SiO2 8 As Calcium Carbonate, CaCO3: 140 Iron and Aluminum Oxides R2O3 1 Phenolhpthaloin Alkalinity 200 Calcium Ca 41 Total Alkalinity 220 Magnesium Mg 11 Total Hardness 147. Sodium (diff.) Na+K as Na 50 Free Carbon Dioxide CO2 6. Carbonate HCO3 268 HYPOTHETICAL COMBINATIONS 147. Sulfate SO. 29 Calcium Bicarbonate 65 Natifie Cl 5 Sodium Bicarbonate 65 Disolved Iron Fe 0.06 Sodium Sulfate 65 Sodium Bicarbonate 65 122 50 65 Disolved Iron Fe				•			1
Dissolved Residue at 105°C274Conductance, micromhos/cm, 25°C475Total Dissolved Solids, actualf410Color, units0Total Dissolved Solids, calc.413Turbidity, units140SilicaSiO28As Calcium Carbonate, CaCO3:140Iron and Aluminum OxidesR3O31Phenolhpthalein Alkalinity100CalciumCa41Total Alkalinity220MagnesiumMg11Total Hardness147Sodium (diff.) Na+K asNa50Free Carbon DioxideCO2BicarbonateCO3,0pH 7.856BicarbonateHCO3268HYPOTHETICAL COMBINATIONS166SulfateSO429Calcium Bicarbonate65Sodium ChlorideCI5Sodium Bicarbonate122Discolved IronFe0.06Sodium Chloride122Sodium Shlartee655096	lec'd:		•	WAIEK AT	NALTSIS		41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Total Dissolved Solids, actualt410Color, units0Total Dissolved Solids, calc.413Turbidity, units140SilicaSiO28As Calcium Carbonate, CaCO3:140Iron and Aluminum OxidesR2O31Phenolhpthalein Alkalinity0CalciumCa41Total Alkalinity220MagnesiumMg11Total Alkalinity220Sodium (diff.) Na+K asNa50Free Carbon DioxideCO2CarbonateCO30pH 7.85BicarbonateHCO3268HYPOTHETICAL COMBINATIONSSulfateSO429Calcium Bicarbonate166ChlorideCI5Sodium Sodium Sod			esults in p	arts per million	(mg/l) except as noted		<u> </u>
Total Dissolved Solids, actual410Color, units0Total Dissolved Solids, calc.413Turbidity, units140SilicaSiO28As Calcium Carbonate, CaCO3:140Iron and Aluminum OxidesR2O31Phenolhpthalein Alkalinity0CalciumCa41Total Alkalinity220MagnesiumMg11Total Alkalinity220Sodium (diff.) Na+K asNa50Free Carbon DioxideCO2CarbonateCO30pH 7.85BicarbonateHCO3268HYPOTHETICAL COMBINATIONSSulfateSO429Calcium Bicarbonate166ChlorideCI5Sodium Sodium Sodium Sodium Sodium Sodium Sodium Sodium Sodium Sodium Solia122Nasolved IronFe0.06Sodium Sulfate122Sodium Solved IronFe0.06Sodium Sulfate43				-	Conductance micromhos/cm 25°C	175	
Total Dissolved Solids, calc.413Turbidity, units140SilicaSiO28As Calcium Carbonate, CaCO3:140Iron end Aluminum OxidesR2O31Phenolhpthalein Alkalinity10CalciumCa41Total Alkalinity220MagnesiumMg11Total Hardness147Sodium (diff.) Na+K asNa50Free Carbon DioxideCO2CarbonateCO3,0pH 7,85BicarbonateHCO3268HYPOTHETICAL COMBINATIONSSulfateSO429Calcium Bicarbonate65ChlorideCI5Sodium Sulfate122Discolved IronFe0.06Sodium Sulfate43SilattroneFe0.06Solium Sulfate43		Dissolved Kesidue at 105 C		, 274		412	
Silica SiO2 8 As Calcium Carbonate, CaCO3: Iron and Aluminum Oxides R2O3 1 Phenolhpthalein Alkalinity 0 Calcium Ca 41 Total Alkalinity 220 Magnesium Mg 11 Total Hardness 147. Sodium (diff.) Na+K as Na 50 Free Carbon Dioxide CO2 6. Carbonate CO3 0 pH 7.85 6. Bicarbonate HCO3 268 HYPOTHETICAL COMBINATIONS 6. Sulfate SO4 29 Calcium Bicarbonate 166 Chloride CI 5 Sodium Bicarbonate 65 Di scolvod Iron Fe 0.06 Sodium Calcoride 122 Stidit Hons Fe 0.06 Sodium Calcoride 8		Total Dissolved Solids, actua	l †	410	Color, units	0	
Iron and Aluminum Oxides R ₂ O ₈ 1 Phenolhpthalein Alkalinity 0 Calcium Ca 41 Total Alkalinity 220 Magnesium Mg 11 Total Alkalinity 220 Magnesium Mg 11 Total Alkalinity 220 Sodium (diff.) Na+K as Na 50 Free Carbon Dioxide CO ₂ Carbonate CO ₈ 0 pH 7.85 6 Bicarbonate HCO ₈ 268 HYPOTHETICAL COMBINATIONS 6 Sulfate SO ₄ 29 Calcium Bicarbonate 166 Chloride CI 5 Sodium Bicarbonate 122 Dirscolved Iron Fe 0.06 Sodium Chloride 13 Stolum Chloride Fe 0.06 Sodium Chloride 8		Total Dissolved Solids, calc.		413	Turbidity, units	140	
Iron and Aluminum OxidesR2Os1Phenolhpthalein Alkalinity0CalciumCa41Total Alkalinity220MagnesiumMg11Total Hardness147Sodium (diff.) Na+K asNa50Free Carbon DioxideCO2CarbonateCOs0pH 7.85BicarbonateHCOs268HYPOTHETICAL COMBINATIONSSulfateSO429Calcium BicarbonateChlorideCI5Sodium BicarbonateDirsolved IronFe0.06Sodium CulfateSilottromFe0.06Sodium CulfateSilottromFe0.06Sodium CulfateSilottromFe0.06Sodium Culfate		Silica	SiO2	Ŕ	As Calcium Carbonate, CaCO3:		
Calcium Ca 41 Total Alkalinity 220 Magnesium Mg 11 Total Hardness 147 Sodium (diff.) Na+K as Na 50 Free Carbon Dioxide CO2 6 Carbonate CO3 0 pH 7.85 6 6 Bicarbonate HCO3 268 HYPOTHETICAL COMBINATIONS 166 Sulfate SO4 29 Calcium Bicarbonate 166 Chloride CI 5 Sodium Bicarbonate 122 Dissolved Iron Fe 0.06 Sodium Chloride 13 Silationation Fe 0.06 Sodium Chloride 9			P.O.		Phonolibnthalain Alkalinity		
Magnesium Mg 11 Total Hardness 147 Sodium (diff.) Na + K as Na 50 Free Carbon Dioxide CO2 6 Carbonate CO3 0 pH 7.85 6 6 Bicarbonate HCO3 268 HYPOTHETICAL COMBINATIONS 6 Sulfate SO4 29 Calcium Bicarbonate 166 Chloride CI 5 Sodium Bicarbonate 122 Dirscolvod Iron Fe 0.06 Sodium Chloride 8		Iron and Atuminum Oxides	N208	1			
Sodium (diff.) Na+K as Na 50 Free Carbon Dioxide CO2 6 Carbonate CO3 0 pH 7.85 6 Bicarbonate HCO3 268 HYPOTHETICAL COMBINATIONS 166 Sulfate SO4 29 Calcium Bicarbonate 166 Chloride CI 5 Sodium Bicarbonate 65 Dissolved Iron Fe 0.06 Sodium Chloride 13 Sidettrome Fe 0.06 Sodium Chloride 8		Calcium	Ca	41	Total Alkalinity	220	
CarbonateCO, 00pH 7.85BicarbonateHCO, 268268HYPOTHETICAL COMBINATIONSSulfateSO, 2929Calcium Bicarbonate Magnesium Bicarbonate 65ChlorideCI5Sodium Bicarbonate 122Dissolved IronFe0.06Sodium Chloride Sio_+R_O, 9		Magnesium	Mg	11	Total Hardness	147	
CarbonateCO,0pH 7.85BicarbonateHCO,268HYPOTHETICAL COMBINATIONSSulfateSO,29Calcium BicarbonateChlorideCI5Sodium BicarbonateDissolved IronFe0.06Sodium ChlorideStolumFe0.06Sodium ChlorideStolumFe0.06Sodium Chloride		Sodium (diff.) Na+K as	Na	50	Free Carbon Dioxide CO ₂	• 6	
BicarbonateHCO,268HYPOTHETICAL COMBINATIONSSulfateSO.29Calcium Bicarbonate166ChlorideCI5Sodium Bicarbonate65Dissolved IronFe0.06Sodium Sulfate13Sodium SulfateSodium Chloride88					nH n at		
SulfateSO.29Calcium Bicarbonate166ChlorideCl5Sodium Bicarbonate65Dissolved IronFe0.06Sodium Sulfate13Heist HenneFe0.06Sodium Chloride8Silog+R_O39100100				0			
ChlorideCl5Magnesium Bicarbonate65Dissolved IronFe0.06Sodium Sulfate13Sodium SulfateSodium Chloride88Silog+R_O399		Bicarbonate	HCO3	268	HYPOTHETICAL COMBINATIONS		
ChlorideCl5Sodium Bicarbonate122Dissolved IronFe0.06Sodium Sulfate13detail fromFe0.06Sodium Chloride89		Sulfate	SO₄	29			
Dissolved Iron Fe 0.06 Sodium Sulfate Silog+R_O3		Chloride	CI	C C			
510 ₂ +B ₂ O ₂	•				Sodium Sulfate	- 1.3	
Iron filtered sample Fe (0.05		HCI9/aton=	re	0.06		8 9	
Total Dissolvei Solids, calc. 413		Iron filtered cample	Fe	0.05			
이번 수영감 이 가지 않고 있는 것은 것은 것은 것을 가지 않고 있는 것이 없다.						1	
김 씨는 사람을 다 가장 같은 것을 하는 것을 하는 것 같아요. 이렇게 나는 것을 했다. 것을 다 나는 것을 다.				,		_	

 \dagger Total Dissolved Solids, actual = Dissolved Residue + 50.8% of bicarbonate (HCO₃) ion

Microbiology Service Laboratories

By: Erling latered

FORM NO. 34 	デス LAYNE TEXAS HOUSTON -: WELL	DALLAS	REPORT NO 6347 S 0 8005-2-59 PAGE 1 OF 1 FILE NO 2482 DATE 4-7-63
CUSTO	MER LOCATION	WELL	DATA
TRANSWESTERN	TE COMPANY (AGENTS FOR PIPELINE COMPANY) CAST OF WELL #1, STA. 5	NAME WELL STA. NO. ELEVATION RT TEST HOLE SIZE 11" TO	5 WELL NO. 2 DATUM 70 GR 10 7-7/8" TO 730 T.D.
SURVEY	FIELD	DATE STARTED DRILLING DATE FINISHED DRILLING	1-21-60
	STATE NEW MEXICO EAST OF WATER TANK	DRILLER E.W. DAVIS TYPE MUD AQUAGEL ELECTRIC LOG NONE	RIG NO 18
	ENGL OF WATER TANK	SURVEY OTHER DRILLER: V.	TYPE

DEPTH	• EACH	DESCRIPTION FORMATION		SAMPLES	
STRATA	BTRATUM	DESCRIPTION FORMATION	DEPTH	TYPE	NUMBER
0		SURFACE			
4	4	SURFACE SOIL	<u>.</u>		-
40	36	SAND, CLAY & GRAVEL STREAKS		!	1
70	30 -	RED SHALE & GRAVEL			
	501	RED SHALE & BOULDERS		1	[
571 618	47	ROCK & SHALE STREAKS			İ
641		BOULDERS & RED SHALE		i .	1
656 671	15	ROCK & SHALE -	•		
671	15	ROCK SAND & BLUE SHALE -			1
721	23 15 15 50 9 79	SAND & BLUE SHALE	1		1
730	ġ l	BLUE SANDY SHALE - ORIGINAL DEPTH			1
608	79	GRAY SANDSTONE	معدم الموركة ومرضي ا	÷	
730 809 818	i á	PINK SHALE -	;	1	1
1080	9 262	CHINLE SHALE		1	
1080 1082	2	HARD RIB LIME LS	:		1
1171	89 59 3	CHINLE SHALE		•	1
1230	50		;	1 1	
1233	77	CHINLE SHALE (SANDY)	i 1	• .	i
1233	5	CHINLE SHALE (HARD)	1	1	:
1236 1240	ک ل	HARD GRAY SAND		1	
	4	HARD RIB LIME LS	:		
1243	3	CHINLE SHALE	i		
1244		HARD RIB LINE - LS	i r	1	
1247	3	SHALE	1	1	
1249	2.	HARD SANDSTONE	i		Ť.
1254	26	LIME AND SHALE STREAKS		1	
1280		SHALE	1	1	-
1350	70	SANDSTONE -			
T.D. 135	0 FT.		*		
			-	1	
NOTE: W	ELL WAS OR	GINALLY 730 FT. DEEP. PULLED LINER			
•	UT AND DRIN	LED WELL TO 1350 FT. WORK STARTED		}	-
2	/23/63 AND	FINISHED 4/9/63.)	1	
		1 * 1 * 3 *	ノ	1 1	}
			~	l	
			•	I	
	7 5		1		ł
- * +	a 57				
. ľ			1. 法注意	a second	
1	<u> </u>				7 .

RI 7-7271 MICROBIOLOGY SERVICE LABORATORIES RI7791703 analytical chemists ... microbiologists 5420 Calhoun Road_7 10 April 1963 Houston 21, Texas 4320 Old Socalch Tinth To: Layne Texas Convery SO 8065 Houston, Texas Sample marked: Well No. 2, Sample #1, Transwestern Pipeline Co., Thoreau, McKinney Cty, N. Mex. Taken: 4-3-63 after 12 hours pumping at 30 gpm with Layne Pump. Static Head: 225'. Pumping Level: 630'. Screened: 1190-1247'. Turbid. Halph Barber. Received: 4-8-63. Sample filtered for enalysis. WATER ANALYSIS results in parts per million (mg/1) except as noted 455 Dissolved Residue at 105°C 268 Conductance, micromhos/cm, 25°C ND Color. units Total Dissolved Solids, actualt 395 ND 399 Turbidity, units Total Dissolved Solids, calc. SiO₂ As Calcium Carbonate, CaCO3: Silica 8 0 Phenolhpthalein Alkalinity 2 R_2O_3 Iron and Aluminum Dxides 204 Ca 9 Total Alkalinity Calcium 36 **Total Hardness** 3 Magnesium Mg 5 Free Carbon Dioxide CO2 Sodium (diff.) Na+K as Na 94 CO3 0 pH . . 7.85 Carbonate HCO₁ HYPOTHETICAL COMBINATIONS -Bicarbonate 249 Sulfate SO. Calcium Bicarbonate 36 29

 \dagger Total Dissolved Solids, actual = Dissolved Residue + 50.8% of bicarbonate (HCO₂) ion

CI

Fe

Fe

5

0.38

< 0.05

Microbiology Service Laboratories

Total Dissolved Solids, calc. 399

20

43

8 10

282

Educ Nort

Magnesium Bicarbonate

Sodium Bicarbonate

Sodium Sulfate

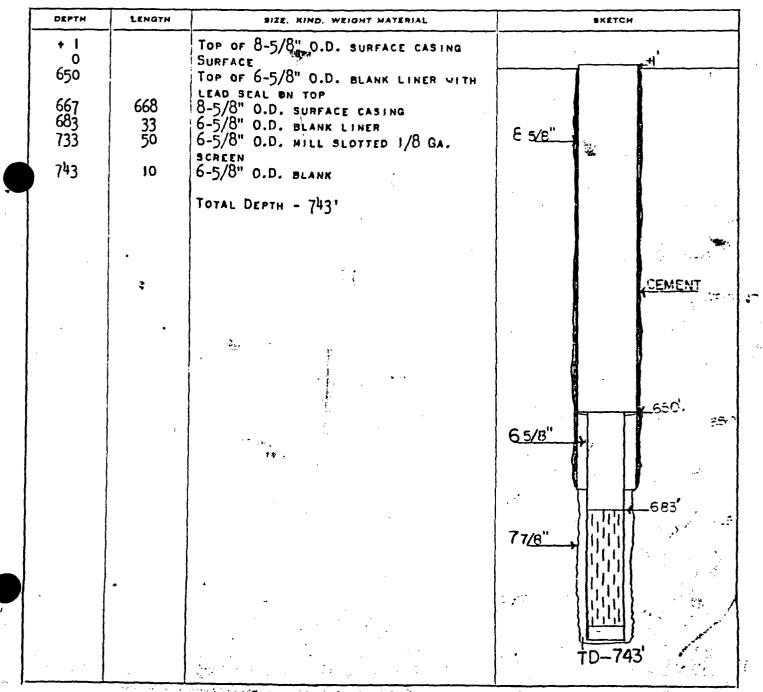
S10,+R,03

Sodium Chloride

3823

Chloride

Total Iron


Iron, filtered sample (

1. · · · ·			COMPANY.	63 BO65-
				PARAL 1 OF
		R WELL	DIREAS TENT	12482 https://www.
<u> </u>	••••••			15A/15 4/30/
	TOMER LOCATION		STA. No. 5	
	ERSTATE COMPANY (AGE	NT FOR	1 1.400 N	··· ··
TRANSWESTERN	OO' EAST OF WELL #1,	STA. #5		12n ธรรมเส
(Patie	FIEL C	· ·	-	
MCKINLEY	STATE NEW M	Exico	1350' ····	
EN REE SHOW SHO	MARK 500' EAST OF	WATER TANK	NONE	VES YES
			and the second sec	• (
			and the second	
			an an taon an t	
PERSONAL STR	MEASURING DEVICE	-	TIST FORM	786'-3"
tregan			i ti ve se tra statione tra statione de la composition de la composition de la composition de la composition de	- 7E
	·	: :	9'-3 "	an a
(a.,)) (S, 7 F) 7	12 FED 111 - 44	water -		
CTELE CTATO, HEAD T MIN FT	AFTER PEMP STOPPED	PLAN TH MIL	· · · · · · · ·	
 Mite F F 	agin tanan ang ang ang ang ang ang ang ang ang	198 8 872 -	a tap a cara a	
n na se	at way a se			
TATIC LEVEL BEF	DRE START 185 FT.		· · · · · · · · · · · · · · · · · · ·	
n n n n n n n n n n n n n n n n n n n	35 A+25 mg (inationalist potentialist potentialist	Sec. St. St. Market St	16++14K3
	PUMP AT 5:30 P.M.		 .	,., می د هید
5:45 PM 6:00	595 620	65 60	SHIT DOWN	PUMP FOR 20 MI
6125 RECOVERY	490		STARTED PU	
6145 7:00	615 640	60 60		
7:15	645	60		
7:30	645	60		
8:00 8:30	650 655	60 60		
9:00	655	60		
0:00	650 655 655 660 665 670	60		
1:00 2:00 AM	670	60 60	4/21/63	
t:00	670	60	4/21/05	
2:00	675	60		
3:00	680	60 60		
1:00	680	60		
+:00 5:00	70	60		
5:00 5:00	685 685	1.		
5:00 5:00 7:00	685 685 685	60		
5:00 5:00 7:00 5:00 7:00	685 685 685	60 60 60		
5:00 5:00 7:00 5:00	670 675 680 680 685 685 685 685 685 685	60 60		
5:00 5:00 7:00 5:00 7:00	685 685 685 685	60 60 60		
5:00 5:00 7:00 5:00 7:00 7:00 0:00	685 685 685 685	60 60 60		
5:00 5:00 7:00 5:00 7:00 7:00 7:00 7:00	685 685 685 685	60 60 60	RALPH BARBER & D. R. PAI	

	· · · · · · · · · · · · · · · · · · ·	
	•	
· L	LAVNE TE	XAS COMPANY 80
	HOUSTON	
		WELL TEST 4/3
CUS	STOMER LOCATION	WELL DATA
GULF IN TRANSWESTERN PIP	TERSTATE COMPANY (AGENT	S FOR
IRANSWESTERN TTP	400' EAST OF WELL 1, ST.	▲• #5 8=5/8" 6=5/8" 5" ×
• • • F	1 : ビュロ	1350' (197'
MCKINLE	Y NEW MEXI	CO Y WILL NONE CONTRACT YES
ng construction and and	500" EAST OF WAT	ER TANK
		(a) The second gradient of the second secon second second sec
· · · · · · · · · · · · · · · · · · ·		
•	MEASURING DEVICE	TEST PUMP DATA
onia non non son a terraria. Non non terraria	11444	E la construcción de la construcción E la construcción de la construcción E la construcción de la construcción
		9'-9"
······································	2 tree + 1 ce.	•
A THE STATE HEAD	DAFTER FEMPISIC PRED-	(a) A set of the se
та жела — — — — — — — — — — — — — — — — — — —		
11 M M M	LANK IN T	
	· · · · · · · · · · · · · · · · · · ·	•
دين ڪري کي کرد ان هي هي	A MERICAL CONTRACTOR AND	n Norden and an and an and the second s
4/21/63		
11:00 AM 12:00 N	685	60 60
1:00 PM	685	60
2:00	685	60
3:00 4:00	685 685	60 60
	-	
I HOUR PUMPING . WATER LEVEL 660	AT 30 LB. DISCHARGE PRES	ssure, 50 gallons per minute,
TAILS LEVEL UOU	7 1 .	
I HOUR PUMPING . WATER LEVEL 650	AT 40 LB. DISCHARGE PRES	SSURE, 42.5 GALLONS PER MINUTE,
WATER LEVEL 030	r 1.	
WELL RECOVERY	<u> </u>	
10:52 10:54	685 630	
10:56	575	
10:58	520	
11:05 11:30	395. 350	
-	JJ-	
		·

FOR OWNER

FORM NO. 1202	LAYNE TEXAS HOUSTON MATERIAL	COMPANY S. O. 8	NO 5468 205-2-59 2482 4-7-60
CUS	TOMER LOCATION	WELL DATA	
	TATE CO.(AGENTS FOR TPL)	NAME WELLSTA.NO.5 WELL NO. ELEVATION DATUM TYPE WELL STRAIGHT BURFACE CABING CEMENTED YES NO	2 · · · · · · · · · · · · · · · · · · ·
BURVEY	FIELD	SIZE HOLE UNDERREAMED 7-7/8 EPT GRAVEL TYPE NONE NO. CU. Y	•
COUNTY MCKINLE	EY STATE NEW MEXICO . 500' EAST OF WATER TANK	TYPE SCREEN MILL SLOTTED DRILLER E.W. DAVIS RIG NO. OTHER V.E. MATUS	aage 1/8" 18

and the second the second s

LOCATION SURVEY COUNTY DESCRIPT ORIFICE S OTHER SAND CON	GULF IN I OF WELL 4 MCKINLEY ION OF LAND WATER IZE BUCK	marks 500 MEASURI	WA DCATION COMPANY OF WELL FIELD STATE TE D'EAST O NG DEVI LENGTH	NO. I XAS F WATER	TANK TANK T T T T T T T T T T T T T	AME WELL LEVATION 7 VELL SIZE DTAL DEPTH RAVEL WELL VPE SCREEN EMPERATURE ATER CONDIT CATER CONDIT CONTH SETTING ENGTH SETTING CONTH SETTING CONTH SOWL CONTH BOWL	302.22 x 577 DF WATER 6 10N FEST PUMP TOP OF BOWL NE 715 9.20 YES NO.	WELL NO. 2 DATUM x pp screen aight well gage 9 ⁰ DATA 706' size 1/8" no. stages size 1/8" no. stages 31:00 samples
DATE	FT.	30 MIN. PUMPING LEVEL	FT. Disch Press	HEAD ON ORIFICE INCHES	GPM	RPM	OPERATOR	REMARKS
10:00 11:00 12:00 No 1:00 P. 2:00 3:00 4:00 5:00 6:00 7:00 8:00		680 680 680 680 680 680 680 680 680	63 63 63 63 63 63 63 63 63 63 63 63		15 15 15 15 15 15 15 15 15 15			

5

FOR MND. 28 - FOR MANNER FORM NO. 28 - FORM

•	•								REPORE NO.
	·		ļ	LAYNI	E TEX	AS CO	OMPANY	•	× • 8005-59
				HOUST	ron	-:-	DALLAS		PAGE J FILE NO. 2482
(WA	TER V	VELL	TEST		DATE 2-25-60
1		CUST	TOMER LO		۷		· · •	WELL C	
- 1	TEST FOR		NTERSTATE			1	NAME WELL 5	ANE	WELL NO. 2
			00' EAST				ELEVATION 7	302.22	DATUM
		OF WELL 4			NO. I		WELL SIZE	x	×
	SURVEY			FIELD			TOTAL DEPTH	T	OP SCREEN
ł	COUNTY	MCKINLE		-	EW MEXICO	2.	GRAVEL WELL	STR	AIGHT WELL
ł	DESCRIPT	ION OF LAND	MARKS 50	O' EAST	OF WATER	TANK	TYPE SCREEN		GAGE
							TEMPERATURE C	DF WATER 69	,°
							WATER CONDITI		
ſ		WATER	MEASURI	NG DEV	ICE			EST PUMP	P DATA
	ORIFICE S	IZE BUCK	ET	LENGTH			DEPTH SETTING		
	OTHER						LENGTH AIR LIN TYPE BOWL	131	SIZE 1/8" NO STAGES 31
-						I	LENGTH BOWL	9.20 su	CTION LT. MOTOR 3:0
	SAND CON	•	OZ. PER 1		· ·	WATER SAM BACTERIOLO	IPLE TAKEN Y DGICAL SAMPLE		SAMPLES
l	5 MIN.	· #T.	20 MIN.	FT.		DRAWDOWN		PECIFIC CAPA	city
	10 MIN. 15 MIN.	рт. рт.	25 MIN. 30 MIN.	FT. FT.					
			30 MIN.	r					
Í	DATE	AIR LINE GAGE	PUMPING LEVEL	DISCH. PRESS.	HEAD ON ORIFICE INCHES	GPM	RPM	OPERATOR	REMARKS
-	8:00 A.M	. STARTE	TEST 2-	16-60	S.L. BE	FORE STA	ART 338'	,	
	9:00 10:00	70	645 684	75#		20			
	11:00	31 29	686	60 61		20 15			
ļ	12:00 Nod	N 29	686	63		15			
ł	1:00 P.N 2:00	· 29 30	605	63 65		15			
1	3:00	35	680	63		15			
	4:00	35 36	680 679	63 63 63		15 15 15			
	4100 5:00 6:00	35 36 36 35	680 679 679 680	63 63 63 62		15 15 15			
	4100 5:00 6:00	35 36 35 35 35	680 679 679 680 680	6 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7		15 15 15 15 15			
	4100 5:00 6:00 7:00 8:00	35 35 35 35 35 35 35 35	680 679 679 680 680 680 680 680	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		15 15 15 15 15 15			
	4:00 5:00 6:00 7:00 8:00 9:00	35 36 35 35 35 35 35 35 35 35	680 679 679 680 680 680 680 680	56566666666666666666666666666666666666		15 15 15 15 15 15 15 15 15 15			
	4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00	35566 355355555555555555555555555555555	680 679 679 680 680 680 680 680 680 680 680	56666666666666666666666666666666666666		15 15 15 15 15 15 15 15 15 15 15 15 15 1			
	4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 Mid 1:00 A.M	355 356 355 355 355 355 355 354 33	680 679 679 680 680 680 680 680 681 681 682	6333328888888888 6488888888888888888888888888		15			2-17-60
	4100 5:00 6:00 7:00 9:00 10:00 11:00 12:00 Min 1:00 A.M 2:00	35566 35555555555 3555555 3555555555555	680 679 679 680 680 680 680 680 680 680 680 681 682 681 682	56999666666666666666666666666666666666					2-17-60
	4:00 5:00 6:00 7:00 9:00 10:00 11:00 12:00 Mid 1:00 A.M 2:00 3:00 4:00	35566655555555553333555555433355555554333555555	680 679 679 680 680 680 680 680 681 682 681 682 681 682 681 682 681 682 681 682 681 682 681 682	53333222222222222222222222222222222222		15			2-17-60
	4:00 5:00 6:00 7:00 8:00 9:00 10:00 10:00 11:00 12:00 Mid 12:00 10:000 10:00 1	355 366 355 355 355 355 355 355 355 355	680 679 679 680 680 680 680 680 680 681 682 681 682 681 682 681 682 680 680 680 680 680 680	ୖ ଌୄୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠ		055555555555555555555555555555555555555			2-17-60
	4:00 5:00 7:00 8:00 9:00 10:00 11:00 12:00 Mid 12:00 A.M 2:00 3:00 4:00 5:00 6:00	35566 355555555555555555555555555555555	680 679 679 680 680 680 680 680 680 680 681 682 681 680 680 680 680 680 680 680 680 680 680	୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦		055555555555555555555555555555555555555			2-17-60
	4:00 5:00 6:00 7:00 8:00 9:00 10:00 10:00 11:00 12:00 Mid 12:00 10:000 10:00 1	29 356 55 55 55 35 35 55 55 35 55 55 55 55 55	686 685 680 679 679 680 680 680 680 680 680 680 680 680 680	ଡ଼ୄୄୄଡ଼ୠୠୠୠ୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶		15			2-17-60

OBSERVERS

FOR OWNER

FOR LAYNE TEXAS CO..

FOR LAYNE TEXAS CO.

MICROBIOLOGY SERVICE LABORATORIES

analytical chemists . . . microbiologists

5420 Calhoun 2/22/60

NXXXXXXXXXXXXXXXX

Houston **21**8, Texas

8005-2-59

To: Layne Texas Company Houston, Texas

Sample Marked: Well No. 2, Gulf Interstate Co., agents for Transwestern Pipeline Company, McKinley County, New Mexico. Taken 2-17-60 after 35 hrs pumping at 15 gpm with Layne pump. Static Head! 338'. Pumpkng Level: 680'. Screened: 670 -720. E. W. Davis. Received: 2-20-60.

WATER ANALYSIS

بر المراجعية			on (mg/1) except as noted	
Dissolved Residue at 105°C		374	Conductance, micromhos/cm, 25°C	625
otal Dissolved Solids, actual†		506	Color, units	3
otal Dissolved Solids, calc.		506	Turbidity, units	0
ilica	SiO ₂	10	As Calcium Carbonate, CaCO3:	
and Aluminum Oxides	R ₂ O _a	0	Phenolhpthalein Alkalinity	24
Calcium	Ca	0.5	Total Alkalinity	26 0
lagnesium	Mg	0.5	Total Hardness	3
odium (diff.) Na+K as	Na	149	Free Carbon Dioxide CO2	0
arbonate .	CO ²	29	_{PH} 9.0	
icarbonate	нсо,	259	HYPOTHETICAL COMBINATIONS	
ulfate	SO,	41	Calcium Bicarbonate	2
hloride	СІ	17	Magnesium Bicarbonate Sodium Carbonate	51
otal Iron	Fe	0.10	Sodium Bicarbonate Sodium Sulfate	352 60
· .			Sodium Chloride SiO ₂ + R_2 Ø ₃	· 28 10
			Total Dissolved Solids, calc.	306
· · ·	1			
		. •		

otal Dissolved Solids, actual = Dissolved Residue -- 50.8% of bicarbonate (HCO3) ion

Microbiology Service Laboratories

By: Edna Wood

3	
HOUSTON	DALLAS PAGE 1 FILE NO 2482
CUSTOMER LOCATION	WELL DATA
FOR GULF INTERSTATE CO. (AGENTS FOR TPL)	NAME WELL STA.NO.5 WELL NO 3
LOCATION WELL STATION NO.5 - THOREAU SITE	RT C GR TEET HOLE SIZE 1 X7-5/8 TO 735
SURVEY FIELD	DATE STARTED DRILLING 3-1-60 DATE FINISHED DRILLING 3-14-60
COUNTY MCKINLEY STATE NEW MEXICO	DRILLER V.E. MATUS RIG NO 18 TYPE MUD JELL NO SACKS 10
OTHER LAND MARKE 600' SOUTHWEST OF WELL NO. 1	ELECTRIC LOG NONE TYPE SURVEY NONE TYPE OTHER

•

1

DEPTH EACH STRATA STRATUM		DESCRIPTION FORMATION		SAMPLES		
STRATA	STRATUM		DEPTH	TYPE	NUMBER	
0		SURFACE		1		
ŭ	ļ	SURFACE SOIL		t		
19	15	HARD SANDSTONE AND GRAVEL	i			
72	53	HARD SAND, GRAVEL AND ROCK	· ·			
103	31	RED SHALE AND BOULDERS Rock		į		
647	15 53 31 6 538	RED SHALE AND BOULDERS		ł		
654	1. 7	WHITE AND GRAY STICKY CLAY				
665	11	ROCK AND RED SHALE	1		1	
672	_7	ROCK AND HARD SAND	1	4 4 4		
19 72 103 109 647 654 665 672 730 735	7 58 5	HARD SAND	1			
(5)		WHITE AND BLUE SOFT SANDY CLAY	;			
		TOTAL DEPTH - 735'	1	5 2 8		
			1	• •		÷.,
					i	· · ·
		·		\$ •	. I	
				r F		2
. *						
-				1		
			}) 		
				1		
			1			
		· · ·	1			
		· .				
	ð .				1	· ·
	•.					
		· · · · ·			· · ·	l.
	· · ·					
				-		
				1 5.55	•	

-		1		/				VEPORI HO
		1	LAYNE	E TEX	as C	OMPANY.	,	3.0 8005-59
			HOUST	-	-:-	DALLAS		FILE NO 2482
			W A	TER V	VELL	TEST		DATE 2-24-60
	CUSTO	OMER LO	DCATION	1		_	WELL DA	
TEST FOR GUL	F INTE	ERSTATE			1	NAME WELL CO	ATION NO.	
LOCATION OF W	,			NO 5		ELEVATION 73	310.33'	G.L.
SURVEY	•••		TELD			WELL SIZE	×	×
COUNTY MC	LINLEY	s	STATE N	IEW MEXIC	a	TOTAL DEPTH	TOP	P SCREEN
DESCRIPTION OF		IARKS 2.				GRAVEL WELL	STRA	IGHT WELL
66 NEAR THE	DREĄU,	NEW MEX	100			TYPE SCREEN		GAGE
	•					TEMPERATURE O	F WATER	
·····					.	WATER CONDITIO	ON	
WA	TER N	IEASURI	NG DEV	ICE		-	EST PUMP	
ORIFICE SIZE	-	LON	LENGTH			DEPTH SETTING		679' ^{512E} 1/8"
	001	CKET				TYPE BOWL LENGTH BOWL	· 4**	NO. STAGES 27 TION LT. MOTOR
10 MIN. 577	₽Т. ₽Т. ₽Т.	20 MIN. 1 25 MIN. 1 30 MIN. 1	534 "		DRAWDOW			ΥΥ
10 MIN. 577 19 MIN. 558	FT.	25 MIN. 0	534 "	HEAD ON ORIFICE INCHES	GPM	RPM	OPERATOR	REMARKS
10 MIN. 577 15 MIN. 558	FT. FT. LINE AGE	25 MIN. 6 30 MIN. 6 PUMPING LEVEL S.L. BEI	534 FT 522 FT. 522 FT. DISCH. PRESS	HEAD ON ORIFICE INCHES			OPERATOR	
DATE AIR HOUR AIR -11-60 0:00 A.M. 5	FT. FT.	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	^{дрм} 20		OPERATOR	
DATE AIR HOUR AIR -11-60 0:00 A.M. 5	FT. FT.	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	срм 20 20		OPERATOR	
DATE AIR MOUR AIR HOUR AIR -11-60 2:00 A.M. 5 2:00 NOON 5 2:00 P.M. 4	FT. LINE AGE 5 5 5 2 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	срм 20 20 20 20		OPERATOR	
-11-60 10 NOON 55 10 NOON 55 100 P.M. 4 100 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	срм 20 20 20 20 20 20		OPERATOR	
-11-60 10 NOON 55 10 NOON 55 100 P.M. 4 100 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	срм 20 20 20 20 20 20 20 20		OPERATOR	
-11-60 :00 A.M. 55 :00 Noon 5 :00 P.M. 4 :00 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	срм 20 20 20 20 20 20 20 20 20 20		OPERATOR	
-11-60 10 NOON 55 10 NOON 55 100 P.M. 4 100 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624 624 627 632 632 639 644 645 645 645 647	DISCH. PRESS	HEAD ON ORIFICE INCHES	20 20 20 20 20 20 20 20 20 20 20 20		OPERATOR	
-11-60 :00 A.M. 55 :00 Noon 5 :00 P.M. 4 :00 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624 624 627 632 632 639 644 645 645 645 647	DISCH. PRESS	HEAD ON ORIFICE INCHES	СРМ 20 20 20 20 20 20 20 20 20 20 20 20 20		OPERATOR	
-11-60 10 NOON 55 10 NOON 55 100 P.M. 4 100 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624 627 632 639 644 645 645 645 645 645 645 645	DISCH. PRESS	HEAD ON ORIFICE INCHES	срм 20 20 20 20 20 20 20 20 20 20 20 20 20		OPERATOR	
-11-60 10 NOON 55 10 NOON 55 100 P.M. 4 100 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624 627 632 639 644 645 645 645 645 645 645 645	DISCH. PRESS	HEAD ON ORIFICE INCHES	срм 20 20 20 20 20 20 20 20 20 20 20 20 20		OPERATOR	
-11-60 :00 A.M. 55 :00 Noon 5 :00 P.M. 4 :00 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624 627 632 639 644 645 645 645 645 645 645 645	DISCH. PRESS	HEAD ON ORIFICE INCHES	20 20 20 20 20 20 20 20 20 20 20 20 20 2	RPM	OPERATOR	
-11-60 10 NOON 55 10 NOON 55 100 P.M. 4 100 4	FT. LINE AGE 55 55 52 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624 627 632 639 644 645 645 645 645 645 645 645	DISCH. PRESS	HEAD ON ORIFICE INCHES	20 20 20 20 20 20 20 20 20 20 20 20 20 2		OPERATOR	
DATE AIR HOUR AIR -11-60 2:00 A.M. 5 2:00 NOON 5 2:00 P.M. 4 2:00 4	FT. LINE AGE 55 55 52 7	23 MIN 30 MIN PUMPING EEVEL 5.L. BEI 624 624 624 624 624 624 624 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	20 20 20 20 20 20 20 20 20 20 20 20 20 2	RPM	OPERATOR	
DATE AIR HOUR AIR 10 MIN 558 	FT. LINE AGE 55 55 52 7	23 MIN 30 MIN PUMPING EEVEL 5.L. BEI 624 624 624 624 624 624 624 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	20 20 20 20 20 20 20 20 20 20 20 20 20 2	RPM	OPERATOR	
DATE AIR HOUR AIR 1.00 A.M. 558 1-11-60 2:00 A.M. 55 2:00 NOON 55 2:00 P.M. 4 2:00 4	FT. LINE AGE 55 55 52 7	23 MIN 30 MIN PUMPING EEVEL 5.L. BEI 624 624 624 624 624 624 624 624	DISCH. PRESS	HEAD ON ORIFICE INCHES	СРМ 20 20 20 20 20 20 20 20 20 20 20 20 20	RPM	OPERATOR	
DATE AIR HOUR AIR 10 MIN 558 	FT. LINE AGE 5 5 5 2 7	23 MIN. 30 MIN. PUMPING LEVEL S.L. BEI 624 624 624 624 624 624 624 624	DISCH PRESS FORE STA 34 32 30 30 27 26 26 22 18 18 18 18 18 18 18 18 18 18 18 18 18	HEAD ON ORIFICE INCHES	20 20 20 20 20 20 20 20 20 20 20 20 20 2	RPM	OPERATOR	

se. (

MICROBIOLOGY S	ERVICE LABORATORIES
----------------	---------------------

Telephone WADUT Str 7994

analytical chemists . . . microbiologists

5420 Calhoun Houston 21, Texas 1-19-60

54240 LOWARD A Houston 28, Texas

To: Leyne Texes Conceny Houston, Texas

Sample Warked: Well No. 1, Sta 5, Gulf Interstate Company agents for Transwestern Pipeline Company, Makinley County, New Mexico. Taken: 1-12-60 after 35 hours pumping at 20 gpm with Layne pump. Funding Level: 6661. Screenad: 686-736. Mater tenderatures as^oF. - Clear. V. E. Matus. Fedelved: 1-15-60

	results in	parts per millio	n (mg/l) except as noted	
Dissolved Residue at 105°C		340	Conductance, micromhos/cm, 25°C	540
Total Dissolved Solids, actual†	:	449	Color, units	0
Total Dissolved Solids, calc.		439	Turbidity, units	. • 0
Silica	SiO	1 F	As Calcium Carbonate, CaCO _a :	
Iron and Aluminum Oxides	R ₂ O ₃	1	Phenolhpthalein Alkalinity	(20)
alcium	Ca	< 0.05	Total Alkalinity	216
Magnesium	Mg	< 0.05	Total Hardness	< 0.05
Sodium (diff.) Na +K as	Na	(129)	Free Carbon Dioxide CO2	0
Carbonate	CO3	24	рН 9 . 2	
Bicarbonate	, нсо.	215	HYPOTHETICAL COMBINATIONS	•
Sulfate	SO1	48		
Chloride	CI	11	Sodium Carbonate Sodium Elearbonate	42 296
Total Iron	Fe	< : 0.05	Sodium Sulfate Sodium Chloride $SlO_2 \neq R_2O_3$	71 18 12
	1	:	Total Dissolved Solids, calc.	439
				,

WATER ANALYSIS

+ Total Dissolved Solids, actual = Dissolved Residue + 50.8% of bicarbonate (HCO;;) ion

Microbiology Service Laboratories By: Ecne Wood

2821

WATER WELL #3 (West well)

June 27, 1972 - No water level in #3 (west well), shut in time 6 hrs. The well was acidized thru July 2, 1972 and tested delivering 15 gpm at 43 psi shut in.

July 9, 1973 - pump was pulled, repaired and reinstalled

at 705 ft., 521 ft. static and delivering 34 gpm. July 1, 1974 - Tested at 35 and 37 gpm in seperate tests.

August 31, 1976 - Layne Well Co. pulled the well to replace the pump. The drilled depth was 735, bottom now 725 ft. and pump was reset at 713 ft., it then tested at 60 gpm with pressure of 160 lbs.

June 3, 1987 Frontier Drilling, Milan, New Mexico pulled and replaced pump and motor. The well was reset at 705 ft. The well was not tested for pulldown. We replaced 17 joints of pipe and replaced wire from pump house to well. The new pump is a Hitachi, 15 H.P.. The pump is a five stage RED JACKET.

Acidized # 1(cont) started June 28-72 Wull #1) dilivered 15 G.P. Min. Pump DuschargePSI 100# with well shot IN 3 mall (west) Acidized June 28-72- Finisked June 7.7) 3 well Delivered 15 GP win. with A Pump Discharge PSI 4.5 with well shot I No 2 wull (EAST) DeLivered 19 GP.N. to The SUNFACE But would not Book the HEAd Press. Max P.S.I. 20th with well shot in. 495 ft water standing in The well, This well has To Be Putted + Pump over Anuled. Done off state Records TOOK 3-4" Stilutized Distribution Line 5-26-83 RJUC

•				•	存 つ			
					<u>୍</u>			
	-	1			AS CO		,	s
•		i	LATNE		45 CU	MEANT	•	PAGE 1
			HOUST	ON	-:-	DALLAS		FILE NO. 2482
			WA	TER V	VELL T	EST		DATE 4-7-60
								1-1-00
	CUST	OMER LO	OCATION	J			WELL D	r
	. .			-	N	AME WELL	STA. No.5	WELL NO 3 WEST
TEST FOR	GULF INT	ERSTATE (.0. (AGE	NTS FOR I				DATUM *
LOCATION	OF WELL	STA.NO.5	- THORE	AU SITE	1			
BURVEY		-			~	ELL SIZE 0-	5/8" × 6·	-5/8" × 735'
BUNVET		•	TELD		тс	TAL DEPTH	735' то	DP SCREEN 665'
COUNTY	MCKINLEY	, s	TATE NE	W MEXICO				
DESCRIPT	ION OF LAND	MARKS 600	О' золтн	WEST OF V		RAVEL WELL	STR	AIGHT WELL YES
		No				PE SCREEN M	ILL SLOTTER	GAGE 1/8
			•				OF WATER	
						MERAIURE (U. WATER	
		•			w	ATER CONDIT	ION	
	WATER	MEASURI	NG DEV	ICE	Í	•	TEST PUMP	DATA No.40929
ORIFICE S	IZE		LENGTH		01		TOP OF BOWL	/ / /
	MEASURED			0.000	LE	ENGTH AIR LI	NE 70511".	SIZE 1/8" BRASS
•	DEMOUNTO	with a Dr	J GALLON	DKUM	TY	PE BOWL R	EKC 4"	NO. STAGES 31
					LE	NGTH BOWL		CTION LT.
SAND CON	TENT	OZ, PER 1	OO GAL.	1 .	WATER SAMPL	E TAKEN	NO.	SAMPLES
	ATIC HEAD	· · · ·			BACTERIOLOG	ICAL SAMPLE	TAKEN	
	55 FT.				DRAWDOWN		SPECIFIC CAPAC	СТТЎ
10 MIN. 5								
18 MIN. 5	11 рт.	30 MIN.	-{1 FT.		AIR LINE	+ I' ABO	VE GROUND LI	EVEL -
				1				
DATE	AIR LINE	PUMPING	DISCH.	HEAD ON	GPM	RPM	OPERATOR	REMARKS
DATE HOUR	GAGE	LEVEL	PRESS.	ORIFICE	GPM	RPM	OPERATOR	REMARKS
3-28-60	GAGE BEGAN TE	LEVEL	PRESS.	ORIFICE	DING 8:00		OPERATOR	
3-28-60 8:00 AM	gage Began te 145	LEVEL	PRESS. 0 AM - 1 50	ORIFICE	DING 8:00 40+			
3-28-60 8:00 AM 9:00	gage Began te 145 121	LEVEL	0 AM - 1 50 50	ORIFICE	101 Na 8:00 40+ 40-			
3-28-60 8:00 AM 9:00 10:00	gage Began te 145 121 120	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00	gage Began te 145 121 120	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo	GAGE BEGAN TE 145 121 120 115 N 112	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM	GAGE BEGAN TE 145 121 120 115 N 112 107	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00	GAGE 145 121 120 115 N 112 107 105	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 1:00 PM 2:00 3:00	GAGE 145 121 120 115 N 112 107 105 102	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 1:00 PM 2:00 3:00 4:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 1:00 PM 2:00 3:00 4:00 5:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 1:00 PM 2:00 3:00 4:00 5:00 6:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 1:00 PM 2:00 3:00 4:00 5:00 6:00 7:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 1:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Nool 1:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 Mit	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 11:00 11:00 Mib 1:00 AM 2:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 10:00 1	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 10:00 11:00 12:00 Mib 1:00 AM 2:00 3:00 4:00 5:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 Mib 1:00 AM 2:00 3:00 4:00 5:00 6:00 5:00 6:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 10:00 11:00 12:00 Mib 1:00 AM 2:00 3:00 4:00 5:00 6:00 7:00	GAGE 145 121 120 115 115 107 105 102 100	LEVEL STING 7:3 560 584 585	0 AM - 1 50 50 50	ORIFICE	40+ 40- 35+ 35+ 35- 35- 35- 35- 35- 34 30+ 30+ 30+ 30+			
3-28-60 8:00 AM 9:00 10:00 11:00 12:00 Noo 12:00 PM 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 MID 12:00 AM 2:00 3:00 4:00 5:00 6:00 5:00 6:00	GAGE BEGAN TE 145 121 120 115 107 105 102 100 99 99 99 99 99 99 99 99 99 99 99 99 9	LEVEL	0 AM - 1 50 50	ORIFICE	10 Na 8:00 40+ 40- 35+			

OBSERVERS

FOR OWNER

FOR LAYNE TEXAS CO..

.

FORM NO. 25 -

				-74	3				
			HOUS		-:-	D	ALLAS	•	REPORT NO 5471 5 0 8005-3-59 PAGE 2 FILE NO 2482
			WA	TER V	NELL	. TE	ST		DATE 4-7-60
1	CUST	OMER L	OCATION	4				WELL D	1
SURVEY COUNTY	MCKINLE	EY MARKS 60	- THORE FIELD STATE NE O' SOUTH	W MEXICO		ELEY WEL TOTA GRA TYPE TEMI	VEL WELL SCREEN PERATURE C ER CONDIT	5/8" × 6- 735' TO STR MILL SLOTT DF WATER	DATANO.40929
ORIFICE S	•	D WITH A	LENGTH	ON DRUN		LENC Type			705 SIZE 1/8" BRASS NO. STAGES 31 STION LT.
	ATIC HEAD 55 FT. 31 FT.		мр STOPP 05 гт. 82 гт.		DRAWDOV	NOGIC	AL SAMPLE	-	
DATE	AIR LINE GAGE	PUMPING LEVEL	DISCH. PRESS	HEAD ON ORIFICE	GPM		RPM	OPERATOR	REMARKS
10:00 AM 11:00 12:00 Noo 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 24 HOUR TIME 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45 8:55 8:50 8:55 9:10 9:20	88 87 87 86 85 88 88 88 88 88 88 78 77 79 77 79 77 77 79 79 77 79 77 79 79	617 618 619 620 622 623 624 626 627 628	50 50 50 50 50 50 50 50 50 50 50 50 50 5	WL 421 417 415 405 401 398 395 393 391 388 385 383	30 30 30 30 30 30 30 30 30		TIME 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00	WL 380 379 378 376 375 373 371 370 369 368 367 368	

OBSERVERS

FOR OWNER

MICROBIOLOGY SERVICE LABORATORIES

analytical chemists . . . microbiologists

Houston 23 Texas

5420 Calhoun April.4, 1960

To: Layne Texas Company Houston, Texas

Sample Marked: Gulf Interstate Co., agents for Transwestern Pipe Line Co. Well No. 3, Thoreau, New Mexico. Taken 3-29-60 after 36 hrs pumping at 30 gpm with Layne pump. Static Head: 317. Pumping Level: 628. Screened: 665 - 725. Clear. V. E. Martin. Received: 4-1-60.

WATER ANALYSIS

results in parts per million (mg/1) except as noted

Dissolved Residue at 105°C		397	Conductance, micromhos/cm, 25°C	680
Total Dissolved Solids, actual†	:	524	Color, units	ο
Total Dissolved Solids, calc.		516	Turbidity, units	0
Silica	SiO ₂	8	As Calcium Carbonate, CaCO3:	
'-on and Aluminum Oxides	R ₂ O ₃	1	Phenolhpthalein Alkalinity	30
cium	Ca	0	Total Alkalinity	265
Magnesium	Mg	ο	Total Hardness	0
Sodium (diff.) Na + K as	Na	157	Free Carbon Dioxide CO2	ο
Carbonate	CO:	36	_р н 9 . 2	
Bicarbonate	HCO ₃	250	HYPOTHETICAL COMBINATIONS	
Sulfate	SO,	58	Sodium Carbonate	64
Chloride	CI	26	Sodium Carbonate Sodium Bicarbonate Sodium Suifate	344 56
Total Iron	Fe	0.16	Sodium Chioride SiO ₂ + R_2O_3	43 9
			Total Dissolved Solids, caic.	516
			!	

* Total Dissolved Solids, actual = Dissolved Residue + 50.8% of bicarbonate (HCO...) ion

Microbiology Service Laboratories

. . . .

Sharp inte

By: Edna Wood

÷. .

Appendix C: Report on Aquifer Tests, Transwestern Pipeline Company, Thoreau, New Mexico by J.W. Shomaker, June 1981

REPORT ON AQUIFER TESTS TRANSWESTERN PIPELINE COMPANY Thoreau, New Mexico

by John W. Shomaker Consulting Geologist

prepared for

TRANSWESTERN PIPELINE COMPANY

June 1981

RECEIVED JUL ^{Q I 1981} TRANSWESTERN DIST U OFFICE

TABLE OF CONTENTS

\sim	page							
INTRODUCTION	1							
WELL 1	3							
Well Location and Construction	3							
Aquifer Test	4							
Present Capacity of Well	8							
Effects of Other Pumping	9							
WELL 2	9							
Well Location and Construction	9							
Aquifer Test	11							
Present Capacity of Well 2	11							
Effects of Other Pumping	18							
WELL 3	20							
Well Location and Construction								
Aquifer Test	20							
Present Capacity of Well 3	23							
Effects of Other Pumping	25							
ALTERNATIVES FOR AUGMENTING THE STATION'S WATER SUPPLY								

ILLUSTRATIONS

page

	Figure	1.	Index map of section 20, T. 14 N., R. 13 W., showing locations of Transwestern Pipeline Company water wells,	2
		_		4
	Figure	2.	Water level measurements during pumping, well 1	6
	Figure	З,	Water level measurements during recovery, well 1	7
	Figure	4.	Water level measurements during pumping, well 2	2
	Figure	5.	Water level measurements during recovery, well 2	
)	Figure	6.	Water level measurements in well 1 during pumping of well 2	4
	Figure	7.	Distance-drawdown plot, Sonsela Sandstone bed	7
	Figure	8.	Estimated pumping levels for various rates)
	Figure	9,	Water level measurements during pumping, well 3	L
	Figure	10.	Water level measurements during recovery, well 3	2
	Figure	11.	Water level measurements in well 1 during pumping of well 3	ł

REPORT OF AQUIFER TESTS, TRANSWESTERN PIPELINE COMPANY, Thoreau, New Mexico

by John W. Shomaker Consulting Geologist

INTRODUCTION

This report summarizes the results of aquifer tests of the three water-supply wells at Transwestern Pipeline Company Station 5, Thoreau, New Mexico. The location and construction of each of the wells is also described, based on information furnished by Transwestern. The purpose of the report is to provide basic information concerning the wells in their present condition, and to estimate their present production capacities.

The aquifer tests were requested by Mr. M. L. Reed, District Superintendent, Transwestern Pipeline Company. Mr. Robert Anderson, Station Superintendent, coordinated the work on behalf of Transwestern and arranged for company personnel to assist in data collection. Information as to well construction and locations were taken from company records.

The locations of the three wells are shown on Figure 1.

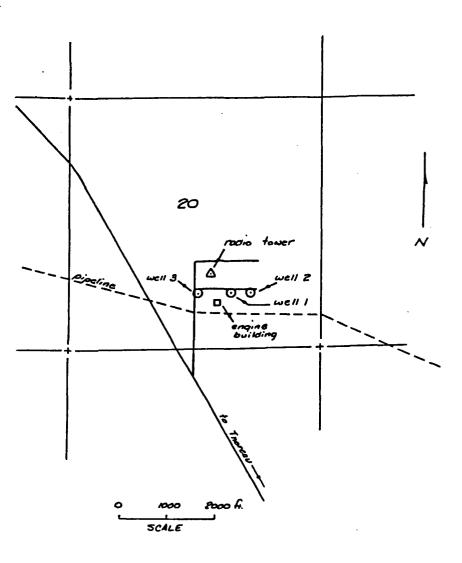


Figure 1. Index map of section 20 , T. 14N. , R. 13W. , showing locations of Transwestern Pipeline Company water wells

WELL 1

Well Location and Construction

Well 1 is located in the NW/4 NE/4 SW/4 SE/4 of section 20, T. 14 N., R. 13 W., NMPM, approximately 1150 feet from the south line and 1875 feet from the east line of the section. The landsurface elevation at the well is 7307.7 feet.

The well was drilled in 1959 to an original total depth of 746 feet; it seems to have been the second or possibly the third hole at the location, the first having been abandoned because the surface.casing parted. (A second test hole seems to have been drilled to 750 feet.) A 12-1/2-inch(?) hole was drilled to 664(?) feet; 10-3/4-inch surface casing was set but not cemented at 664 feet. Drilling was continued to 682 feet and 8-5/8-inch casing was set at 682 feet and carried to about 1. foot above ground level, and cemented. A 7-7/8-inch hole was drilled from 682 to total depth of 746 and a 6-5/8-inch liner installed from 653 to 746; the liner is mill-slotted with 1/8-inch slots from 686 to 736. The well is completed in the upper part of the Sonsela Sandstone bed of the Triassic-age Chinle Formation.

The log of a 750-foot test hole, which was drilled near the present well 1, shows a "blue shale" from 745 to 750; the logs of wells 2 and 3 indicate a similar unit at about the same depth, and the log of well 2, as deepened, shows 79 feet of "gray sandstone" below it. It appears that well 1 did not penetrate the Sonsela fully.

At the time the present production pump was installed, March 29, 1979, the depth of the well was measured at 729 feet. It thus appears that 17 feet of fill-up had occurred and that 7 feet of the slotted section is no longer producing.

-3-

Aquifer Test

All of the wells at the station were shut in at 13:00 hrs. on May 19, 1981, to allow water levels to recover. The aquifer test began at 9:44 on May 21, about 44 hours later. The pump used was the production pump, a 5 hp Grundfos submersible set at 680 on 1-1/4-inch tubing. Discharge was measured with an orifice tube and manometer, and water levels were measured by means of nitrogen pressure in an airline whose end is reported to be at 680. It was not possible to reach the pumping water level with an electric probe either in the airline or outside it.

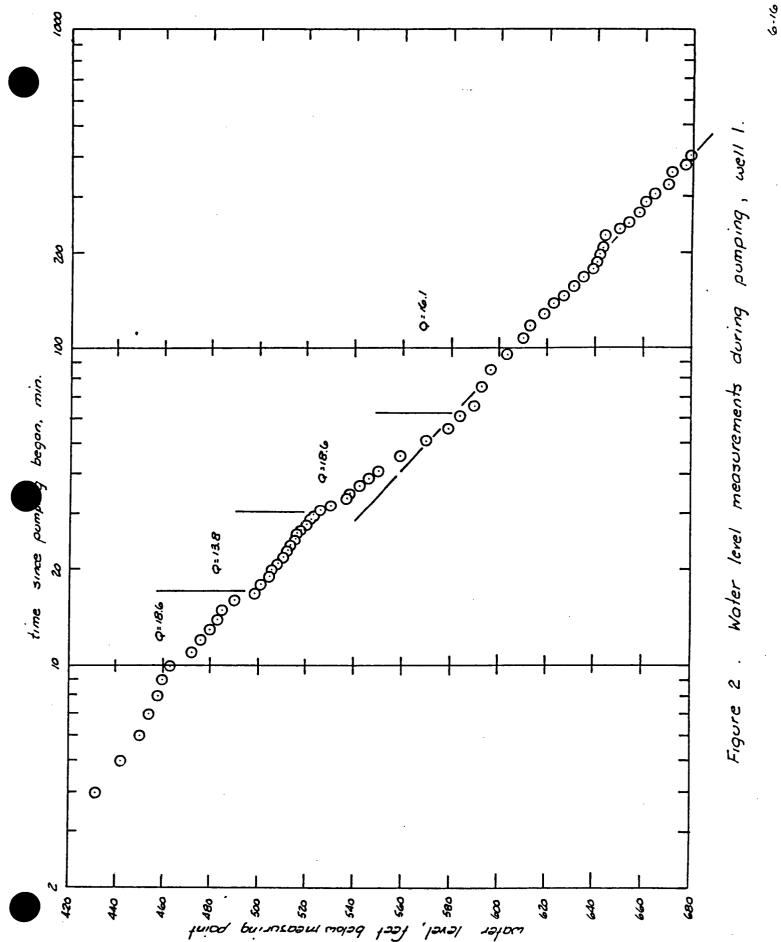
The pre-pumping water level was 397 feet, which was 53 feet below the level measured before the test of well 2 on April 25, about a month before. This disparity is probably partly the result of heavier pumping of all three wells during the interim than prior to April 25; because well 2 is open to both the Sonsela and the San Andres-Glorieta aquifer, which though deeper, contains water at higher head, well 2 feeds water from the San Andres-Glorieta into the Sonsela during periods when it is not pumping, and thus raises water levels in the Sonsela, and draws water from the Sonsela when pumping, lowering the levels.

Earlier water-level measurements seem to support this supposition. The earliest measurements found for well 1 was 309 feet in January 1960, before well 2 was drilled. In March 1979, again probably before summer water demand caused heavy pumping of the wells, the level in well 1 was measured at 347 feet.

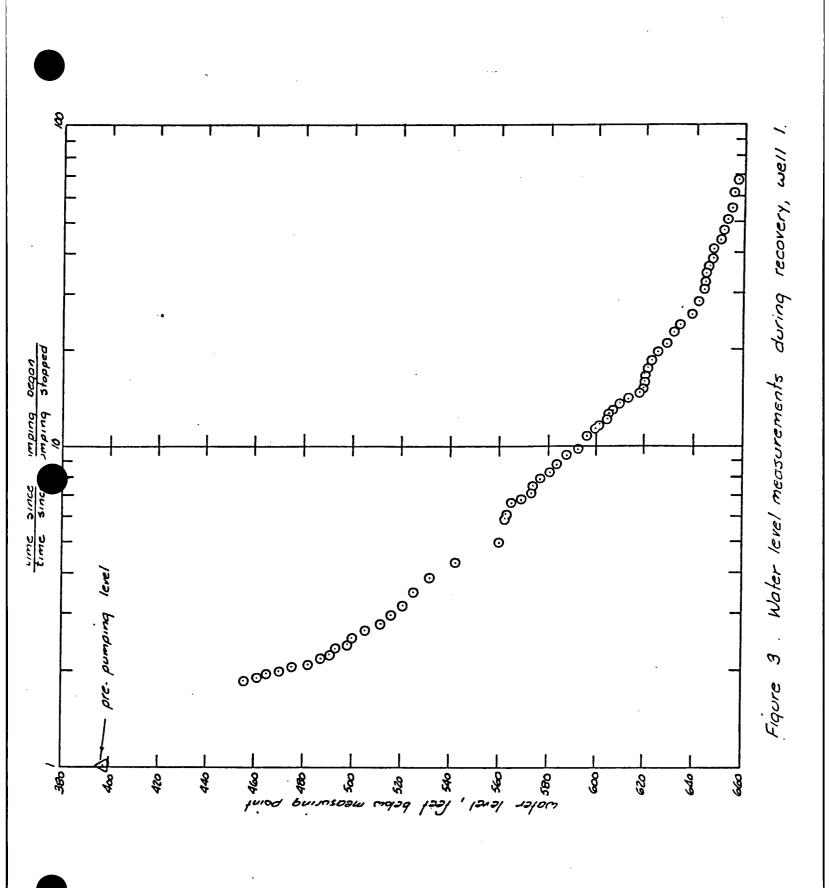
The unexpected low "static" level in well 1 may also reflect

-4-

some residual drawdown from pumping from other wells in and near Thoreau in the same aquifer. The "static" level in well 3 seems to have kept pace with well 1, and both may represent general lowering due to pumping of both the Transwestern wells and others in the vicinity, partly offset by movement of water into the aquifer from the Glorieta.


Well 1 was pumped for a total of 598 minutes. Great difficulty was experienced in regulating the discharge during the first hour because tubing pressures up to 150 psi were required to throttle the flow to the desired rate. The pumping level reached the pump bowls at about 400 minutes, so that the test data are not of good quality. Water level measurements are shown as Figure 2. Between 60 minutes and 406 minutes the discharge was regulated within about 0.2 gpm at a rate of 16.1 gpm; a straight-line-method approximation of transmissivity $\frac{1}{}$ indicates a value of about 34 gpd/ft,

Recovery measurements were taken for 692 minutes after pumping stopped; the measurements are shown on Figure 3. The transmissivity suggested by the latest plotted points (i.e., T/T' less than about 2.2) is on the order of 10 gpd/ft, but the position of the prepumping level seems to indicate that the curve would flatten, and that the transmissivity is somewhat greater.


Water levels were measured in wells 2 and 3 during the test. Well 3, also completed in the upper Sonsela only, varied erratically over a range of about 1.9 feet and it is believed that the effects

-5-

^{1/} Cooper, H. H., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing wellfield history: Transactions, Amer. Geophysical Union, v. 27, p. 526-534.

-6-

-7-

of pumping well 1 were superimposed on a pattern of rising levels in well 3 and did not provide useful data. The level in well 2 rose for about 2 hours, then drew down about 1. foot in response to pumping of well 1. The response of well 2 is also considered of little value since the test was so short.

Present Capacity of Well

It is difficult to draw conclusions about the performance of well 1. Several factors cause confusion, among them the apparent low permeability of the aquifer, the large and variable influence of leakage into (and from, during pumping) the Sonsela through well 2, and the fact that the pump presently in the well is much too large.

In order to conduct a satisfactory test of well 1 as it presently exists, a considerably smaller pump would be desirable so that a longer test could be done without either restricting the discharge excessively, and thus causing surging and erratic measurements, or pumping the well down to the pump intake. A pump designed for about 10 gpm from 680 feet would probably permit the well to produce almost continuously for a number of days, although it may be that the well has declined in productivity for reasons having nothing to do with the aquifer, and that rehabilitation would be in order rather than a change of pump.

Comparison with the test made by Layne Texas Company in January 1960 seems to show that not only the change in static level is influencing the well's performance. The apparent transmissivity of the aquifer, as interpreted from that test, was much higher, and

-8-

it seems probable that the well itself has also lost efficiency and that the effect is being seen as a decrease in transmissivity. Several possibilities suggest themselves.

The well was known to have lost about 7 feet of producing section by 1979 because of fill-up, and more may have occurred since. It is also possible that the fill-up is higher outside the casing than inside, particularly if the slots in the liner are extensively corroded or scaled. The short interval in which the casing is actually cemented in the hole, between 664 and 682 (recalling that the 8-5/8-inch casing is cemented inside the 10-3/4inch surface pipe, but that the 10-3/4-inch pipe, to 664, is not cemented) seems to provide a doubtful barrier to sloughing of shale from higher in the hole.

Effects of Other Pumping

The water level in well 1 seems to have declined in response to several factors, as suggested above, and will probably continue to do so. It will be most directly affected by pumping from wells in the Sonsela, but a large decline in the potentiometric surface associated with the Glorieta will affect it also by causing a larger share of well 2 production to be drawn from the Sonsela, and eventually by reversing the relationship of heads in the two aquifers so that water moves from the Sonsela into the Glorieta through well 2.

WELL 2

Well Location and Construction Well 2 is located in the NE/4 NE/4 SW/4 SE/4, section 20,

-9-

T. 14 N., R. 13 W., NMPM; it is about 1150 feet from the south line of section 20, and about 1475 feet from the east line, and is at an elevation of about 7302.2 feet.

The well was drilled in 1960 to an original depth of 743 feet2/; hole diameter was 11 inches to 670 feet, and 7-7/8 inches to total depth. Casing was 8-5/8 inches OD to 667 feet, and a 6-5/8-inch OD liner was set from 650 feet to total depth of 743 feet. The 8-5/8-inch casing was cemented. The original completion was in a part of the Triassic-age Sonsela sandstone bed of the Chinle Formation, which was open to the well between 657 and 743; the 6-5/8-inch liner was mill-slotted between 683 and 733.

In 1963, the 6-5/8-inch liner was pulled and the well was deepened to 1350 feet, probably a 7-7/8-inch hole at least in part. Three liners were then set, as follows:

6-5/8-inch	OD	+	0.5	1176.
5-inch	OD		1122. to	1243.
4-1/2-inch	OD		1122. to 1226. <u>3</u> /to	1350.

The liners were torch-slotted as follows:

5-inch liner 1197. to 1243. 5-1/2-inch liner 1282. to 1344.

The new completion is in the San Andres Limestone and Glorieta Sandstone of Permian age, and part of the basal Chinle Formation. There is no record that the 6-5/8-inch liner was cemented, and it was suspected that the entire section below 667, including the

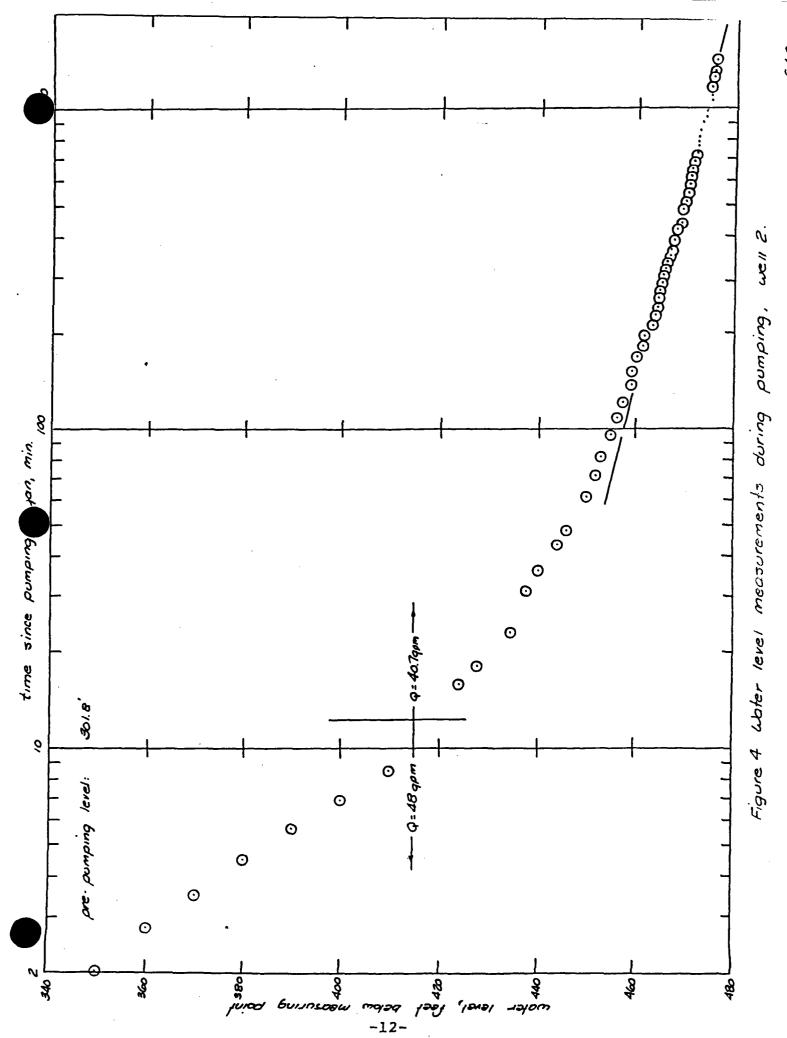
2/ There are conflicting records of total depth; the casing record gives 743 feet

3/ or 1232

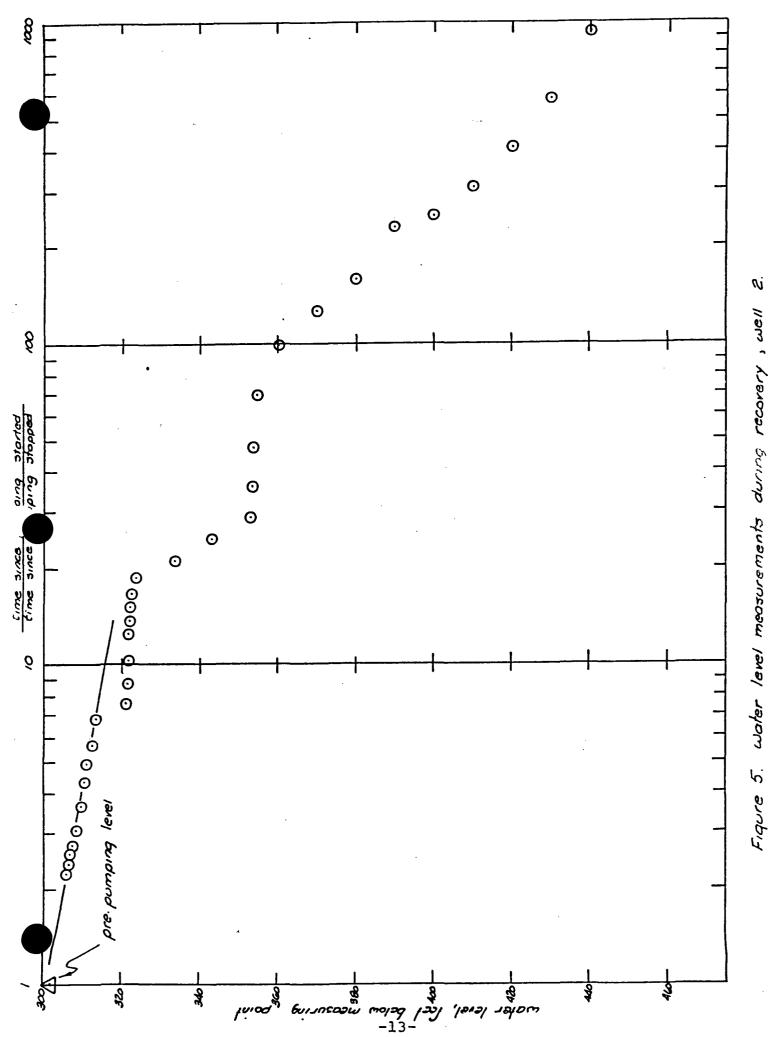
-10-

original completion in the Sonsela, remains open to the well. That was found to be the case by the response of a Sonsela well (well 1) which was measured from time to time during the test.

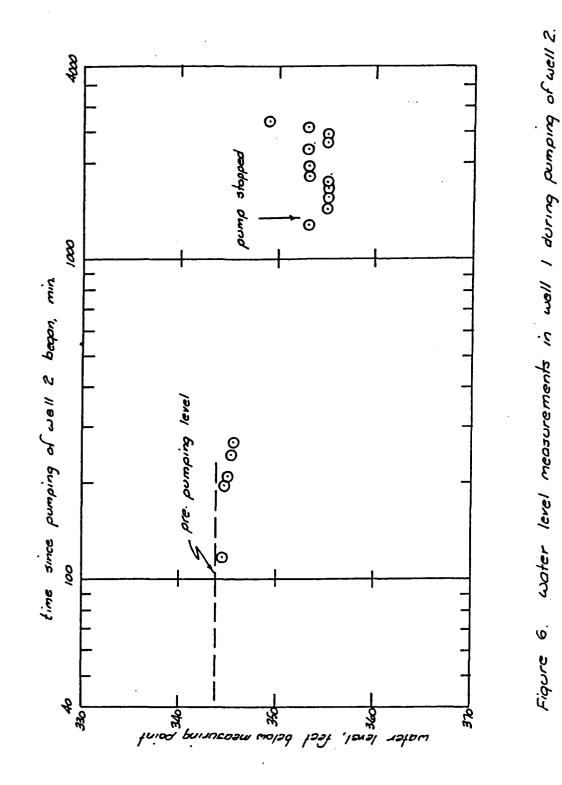
Aquifer Test


In preparation for the test of well 2, pumping of all the wells at the station was stopped at about 14:00 hrs on April 23, 1981. About 45 hours later, at 10:59 on April 25, a constantdischarge test was begun in well 2 with the production pump. The pump is a 15 hp Reda submersible set on 778 feet of 2-inch line pipe. Discharge was measured with an orifice tube and manometer, and was regulated to within about 2 percent of the nominal rate at all times. The test was begun at a rate of 48 gpm, but after about 12 minutes it was found that the pump was not capable of sustaining that rate; the discharge was adjusted to 40.7 gpm, and the test continued for a total pumping time of 1435 minutes. Recovery was then measured for 1146 minutes after the pump was stopped. The water level measurements during drawdown and recovery are shown on Figures 4 and 5.

The water level in well 1, 400 feet to the west of well 2 and completed in the upper Sonsela bed only, was measured at irregular intervals before, during, and after the pump test to determine whether well 2 produces in part from the Sonsela. The measurements are shown in Figure 6.


Present Capacity of Well 2

Because the well is open to two aquifers with water at considerably different heads, the "static" level in the well


-11-

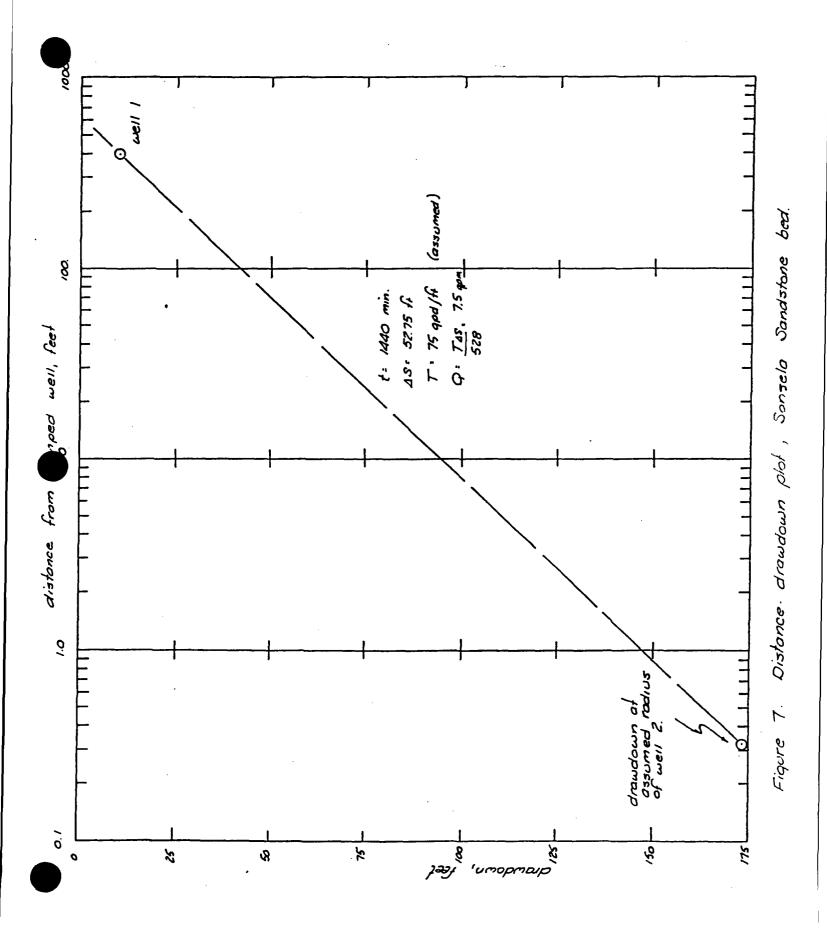
18-2.5

r Č

represents an equilibrium between them. The water levels in the upper zone, the Sonsela bed, are some 120 feet below those in the lower zone, the Glorieta, in Thoreau $\frac{4}{3}$; a well open to both zones would permit water to flow upward from the Glorieta into the Sonsela, causing a depression in the potentiometric surface for the Glorieta and a "mound" in the potentiometric surface for the Sonsela. Such appears to be the case for well 2. That the water level in the well is a sort of compromise between the original positions of the potentiometric surface is indicated by the fact that the level, at about 7000 feet elevation, is much below that for nearby wells finished in the Glorieta alone, yet at the time of the test was still some 38 feet above that of well 1, which is open to the Sonsela only. Wells in the Glorieta in Thoreau have water level elevations above 7100 feet, as does a well in section 19, T. 14 N., R, 13 W. (from U.S.G.S. Water Resources Division well records), and Transwestern well 2 lies between them. Further, the record of an aquifer test conducted in well 2 in 1963, just after it was deepened, gives a "static level" of 185 feet, or 117 feet above the present level. It does appear that the equilibrium has prevailed for a number of years; a depth-to-water of 302 feet was measured in 1973 and 1979, and was approximately that of the aquifer test described in this report.

During pumping, the well produces from both the Glorieta and the Sonsela. A distance-drawdown analysis based on the drawdown

4/ Geohydrology Associates, Inc., 1979, Hydrologic assessment of the Sonsela Sandstone, West-Central New Mexico: consulting report prepared for Phillips Uranium Co.


-15-

in well 1 at the end of 24 hours of pumping from well 2, and assuming a transmissivity of about 10 ft²/day or 75 gpd/ft (as suggested by Geohydrology Associates⁵/), and approximately the mean of values found for wells 1 and 3, indicates that at 40.7 gpm total production, about 7.5 gpm may be furnished by the Sonsela. Efficiency of 100 percent is also assumed for well 2; lower well efficiency would result in a smaller proportion furnished by the Sonsela. The distance-drawdown plot is shown as Figure 7. At greater pumping rates, the proportion of the total that would be furnished by the Sonsela also would be less, because of the considerably higher transmissivity of the Glorieta.

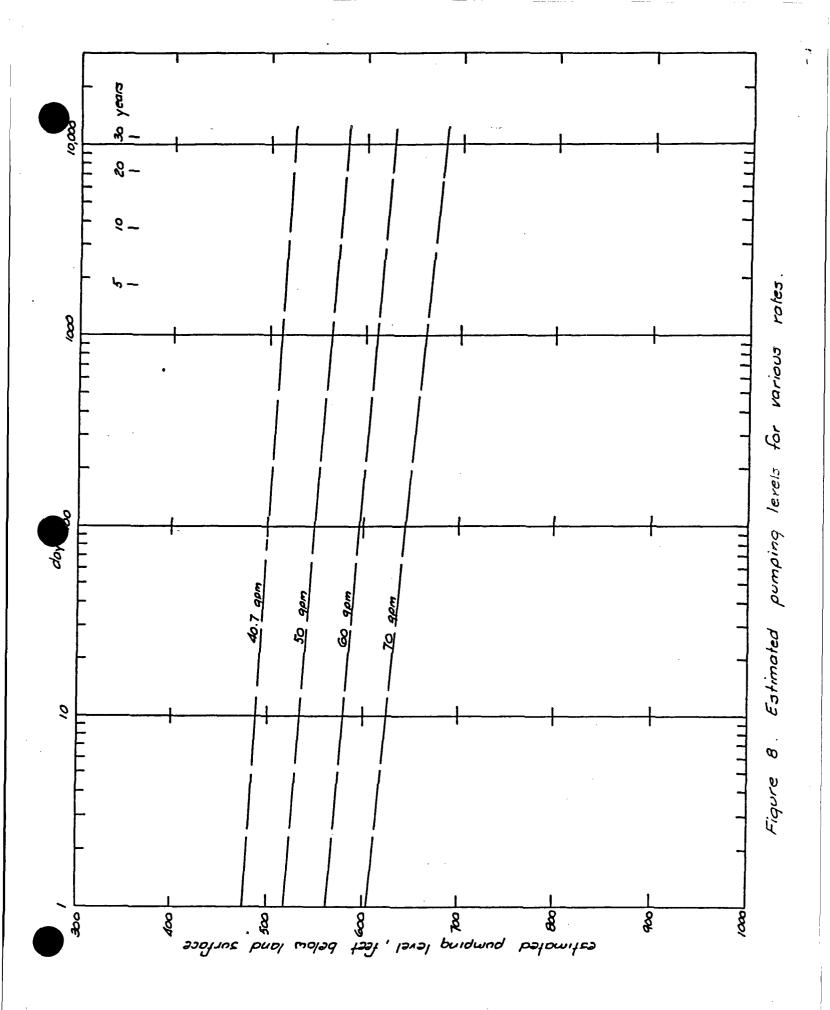
The transmissivity of the combined aquifers open to the well may be estimated in several ways. If it is assumed that leakage is so small as to be ignored, then the straight-line parts of the semilogarithmic water level vs. time plots for drawdown and recovery can be used to estimate transmissivity, following the methods of Jacob⁵/. The values derived in this way are about 895 gpd/ft for the late drawdown measurements and about 760 gpd/ft for the late recovery measurements. If leakage from the enclosing rocks is significant, as it probably is, then the values determined for the aquifers themselves are probably too high; on the other hand, a significant amount of leakage will cause the drawdown to stabilize at some level, rather than continue to increase. Thus, projections

5/ Cooper, H. H., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Transactions, Amer, Geophysical Union, v. 27, p. 526-534.

-16-

-17-

of future pumping levels which assume no leakage are to be considered conservative.


Effects of Other Pumping

At present, the rate at which well 2 can be produced is governed by the capacity of the pump. It was found during the early part of the test that a rate of 48 gpm could not be sustained beyond about 12 minutes; the pumping water level at that time was projected to be about 422 feet (see Fig. 4), which represents a drawdown of about 120 feet. The continuation of the test at 40.7 gpm produced a pumping level of 475.5 feet in 24 hours, or a drawdown of about 174 feet. The available drawdown to the top of the Glorieta aquifer is about 900 feet, representing a pumping level of about 1200 feet. Figure 8 gives estimates of pumping levels at various continuous production rates over time, based on a simple projection of the results of the drawdown test at 40.7 gpm, This procedure is thought to be conservative, since, with time, the effects of leakage from confining beds that enclose both the Sonsela and the Glorieta should result in flattening of the water level decline curves. Estimated pumping levels for rates up to 70 gpm are shown, although the greatest depth projected is less than 700 feet at the end of 30 years.

Clearly the decrease in production from the present rate that would result from a lowering of the Glorieta potentiometric surface of some 160 feet, as has been estimated for the year 2021, as a consequence of pumping by Plains Electric's Escalante $plant^{6/}$, could

6/ Geohydrology Associates, Inc., 1981, Hydrologic evaluation of the north flank of the Zuni Uplift, West-Central New Mexico; consulting teport for Plains Electric Generation and Transmission Cooperative, Inc., Figure 11.

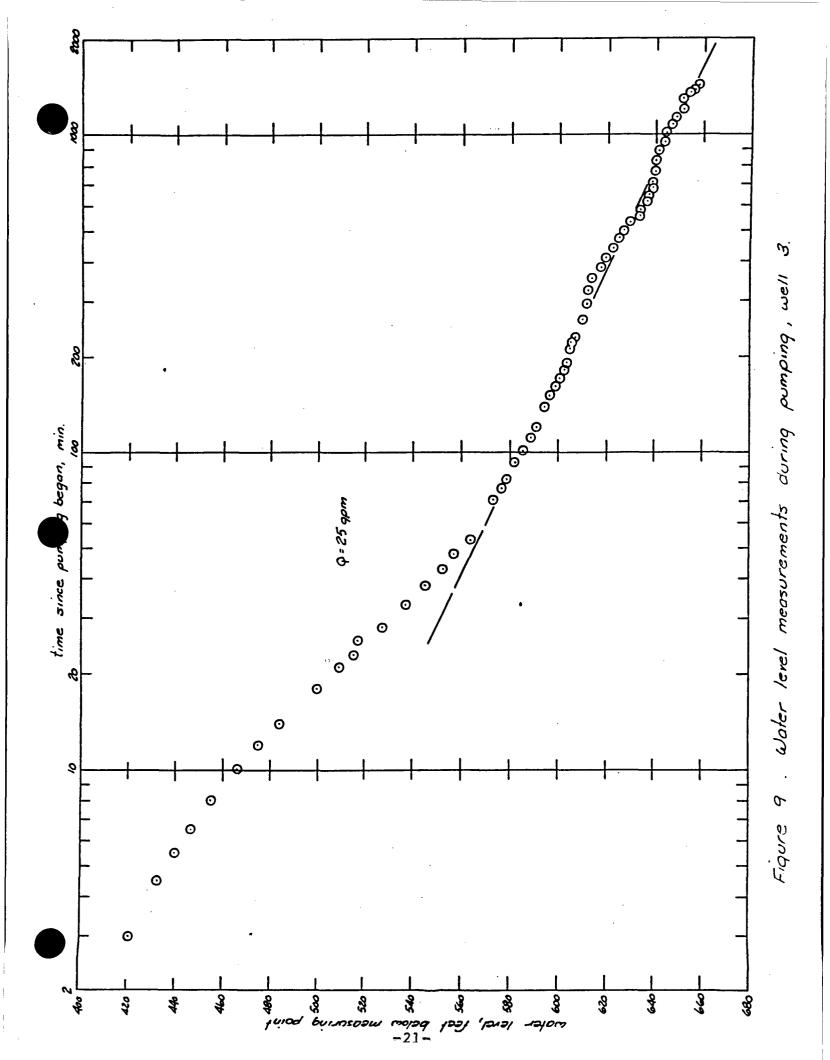
7187

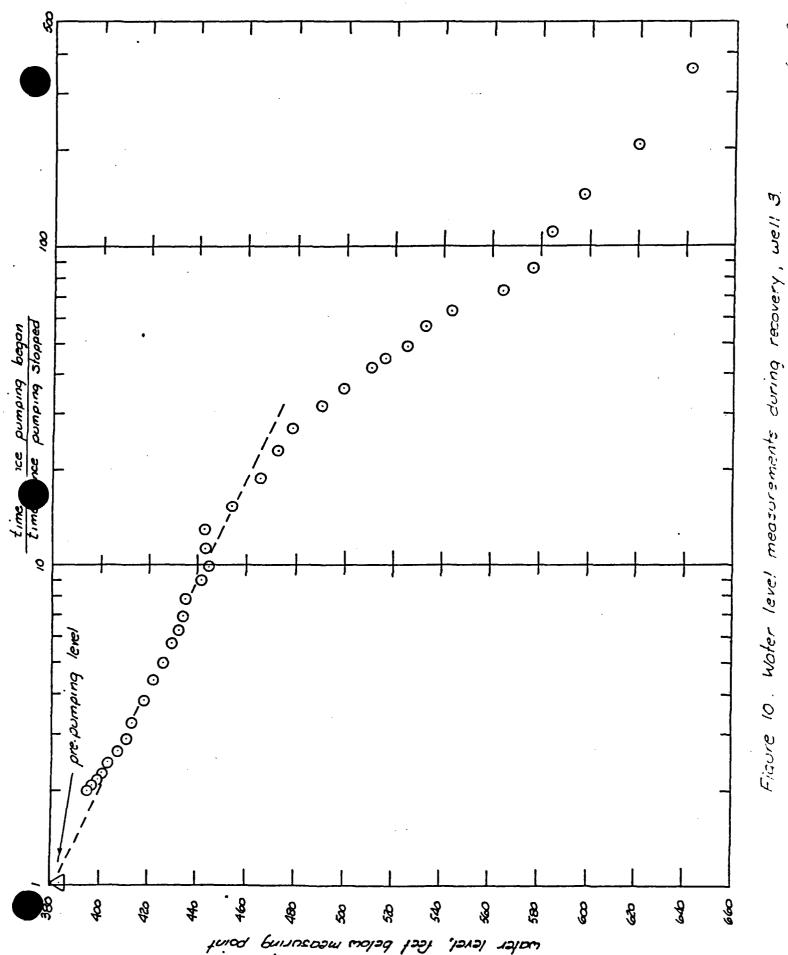
-19-

be offset by installing a larger pump at a deeper setting.

WELL 3

Well Location and Construction


Well 3 is located just inside the station gate, in the NW/4 NW/4 SW/4 SE/4 of section 20, T. 14 N., R. 13 W., about 1150 feet from the morth line and 2590 feet from the east line (see Fig. 1). Ground level elevation is about 7311.8 feet.


The well was drilled in 1960. An ll-inch hole was drilled to 665 feet, and 8-5/8-inch, 24-pound, pipe was set and cemented from 1 foot above ground level to 665. A 7-7/8-inch hole was drilled to 735, and a 6-5/8-inch liner set from 631 to 735. The liner is slotted with 1/8-inch mill-cut slots from 665 to 725 in about the same zone as well 1, the upper part of the Sonsela. It is probable that the sandstone described in well 2, below the position of the bottom of well 3, is also present at the location of well 3.

Aquifer Test

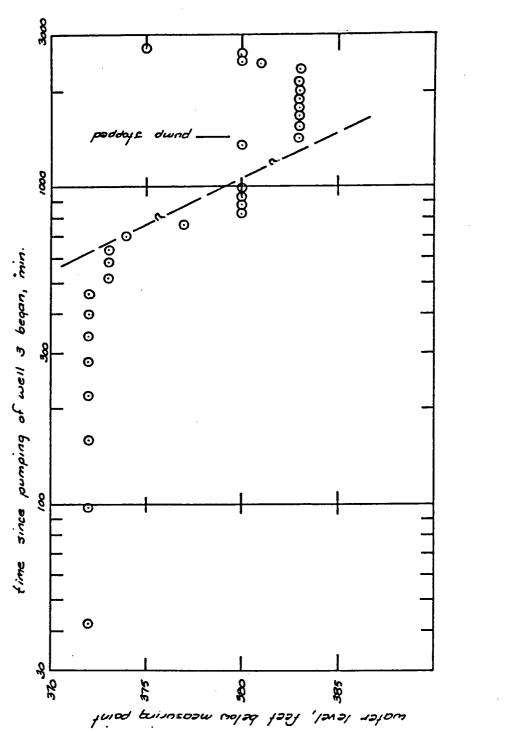
The aquifer test was begun May 2, 1981, after all three wells had been shut in about 24 hours. The well was tested with the production pump, a 15 hp Franklin submersible. Discharge was held at 25 gpm, as measured with an orifice weir and manometer, for 1433 minutes and recovery was measured for 1440 minutes after the pump was stopped. Water levels during pumping and recovery are shown on Figures 9 and 10. The pre-pumping level was 383,8 feet, again considerably deeper than earlier levels.

-20-

-22-

Present Capacity of Well 3

The specific capacity of the well, in gallons per minute per foot of drawdown, seems to have remained roughly constant since the well was completed, and transmissivity values are in fair agreement for the three known tests, as follows:


		Rate, gpm_	24-hr specific capacity, gpm/ft	<pre>https://www.apparent trans- missivity, gpd/ft</pre>
Layne-Texas	1960	30	0.10	80-93
Geohydrology Assoc,	1979	22	0.08	50-75 7/
Shomaker	1981	25	0.09	105 <u>+</u> -

The static level, however, has declined in about the same way as for well 1. The original level in 1960 was reported as 317 feet, which compares fairly well with the level of 338 feet for well 2 (before it was deepened) and 309 feet for well 1 at about the same time. The influence of well 2, the general heavy pumping from all the wells in the summer, and an area-wide lowering are probably all factors. Transmissivity, estimated by the straight-line method from both drawdown and recovery curves, seems to be near 105 gpd/ft.

Well 1 was observed during the test of well 3; the measurements taken in well 1 are shown on Figure 11. Although the data do not present a clear pattern of drawdown response, they do fit fairly well with the results given by Geohydrology Associates, and are commensurate with a transmissivity in the range 150 to 200 gpd/ft and a storativity of approximately 4×10^{-5} .

7/ late drawdown and recovery data; Geohydrology Associates, 1979, p. 10.

-23-

in well I during pumping of well 3. Woter level measurements Figure 11.

At present, the pump in well 3 seems to be appropriately sized, and a capacity of 25 gpm on an intermittent basis is reasonable. There seems little reason to believe that rehabilitation work on the well is needed.

Effects of Other Pumping

The comments made with respect to well 1 would apply also to well 3.

ALTERNATIVES FOR AUGMENTING THE STATION'S WATER SUPPLY

Several possibilities exist for increasing the supply available, or offsetting the effects of pumping from other wells. The withdrawal from well 2 could be raised considerably by installing a more powerful pump at a deeper setting, as mentioned above. The withdrawal could not be increased beyond the appropriation already declared (if any) without a permit from the State Engineer Office.

The capacity of well 1 could probably be increased, though perhaps not restored to its original value because of decline in the potentiometric surface, by cleaning out the well, acidizing, and jetting the perforations. Even so, the most straightforward way to augment production, if it should prove to be necessary because of much greater drawdown effects than anticipated in the Glorieta, or for other reasons, would be to deepen wells 1 and 3. Each well could be deepened about 85 feet to penetrate the lower Sonsela sandstone. If the 6-5/8-inch liners presently in the wells could be pulled, then the 7-7/8-inch hole could be continued to the new total depths and a longer 6-5/8-inch slotted liner installed.

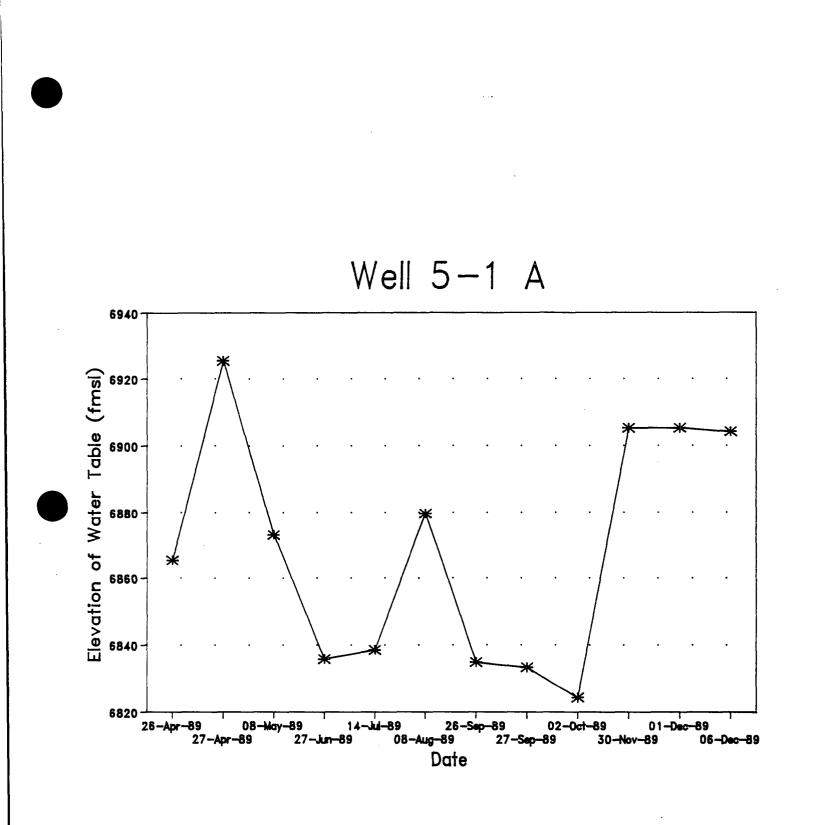
-25-

If the liners could not be pulled, the wells could be deepened with a 5-5/8 - or 5-7/8-inch bit and a 4-1/2-inch or 5-inch liner installed. The deepening could probably be done without a new permit to appropriate from the State Engineer.

If well 1 is to be deepened and the older liner is pulled, an effort should be made to cement the top of the new liner to shut off cavings from behind the 10-3/4-inch surface casing.

A part of the pressure in the Glorieta which has been lost because of movement of water into the Sonsela could be restored, in time, by cementing the 6-5/8-inch liner in well 2. This could be done by pulling the smaller liners, setting a retrievable bridge plug just below the 6-5/8-inch liner, and circulating cement to surface between the liner and the 8-5/8-inch casing. Thus the Sonsela would be sealed behind cemented casing. While this procedure would allow the potentiometric surface to rise, and thus offset some or all of the effect of other pumping in the Glorieta, it probably would not be worthwhile because the contribution to the well from the Sonsela would be cut off. At the low rates of production now in effect, the Sonsela contributes a significant proportion, perhaps 20 percent. There is also some question about the safety of such an extensive workover in a 21-year-old-well.

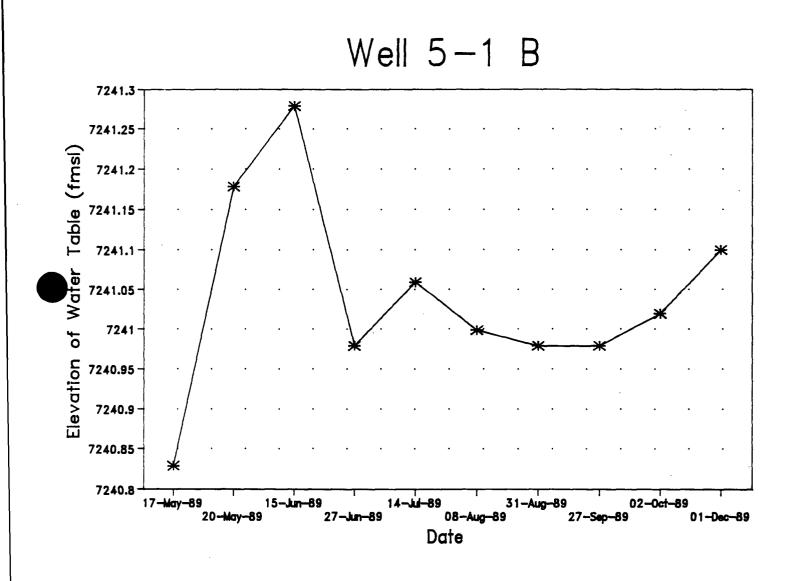
Consulting Geologist


-26-

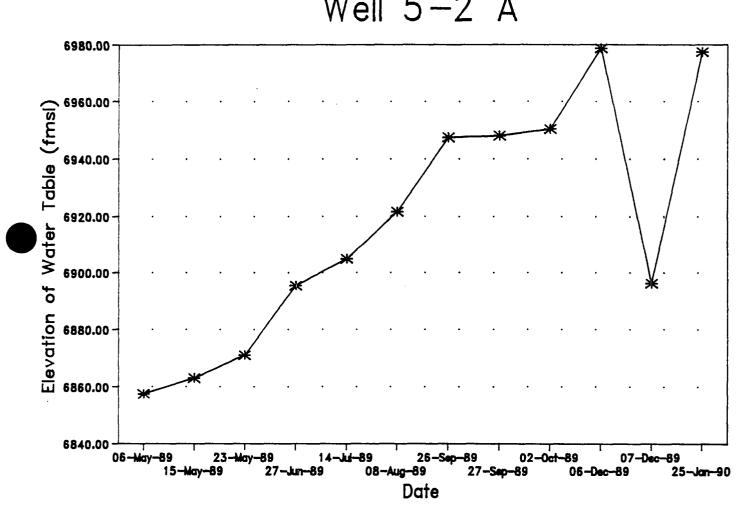
Appendix D: Water Levels in On Site Wells During 1989

Depth to Water			On S	Site Well	
Weil	Top of Casing * Elevation (fmsl)	Date	Time	Depth to Water (feet)	Elevation of Water Table (fmsi)
-1 A	7289.72	26-Apr-89	1730	424.23 +	6865.49
		27-Apr-89	920	364.21	6925.51
_		08-May-89		416.53	6873.19
		27-Jun-89		453.82	6835.90
		14-Jul-89	1628	451.08	6838.64
		08-Aug-89	1320	410.00 +	6879.72
		26-Sep-89	1445	454.63	6835.09
		27-Sep-89	1115	456.17	6833.55
		02-Oct-89	1829	465.25	6824.47
_		30-Nov-89		384.31	6905.47
		01-Dec-89	746	384.31	6905.41
		06-Dec-89		385.41	6904.31

+ Accuracy of Water Level and/or reference in question

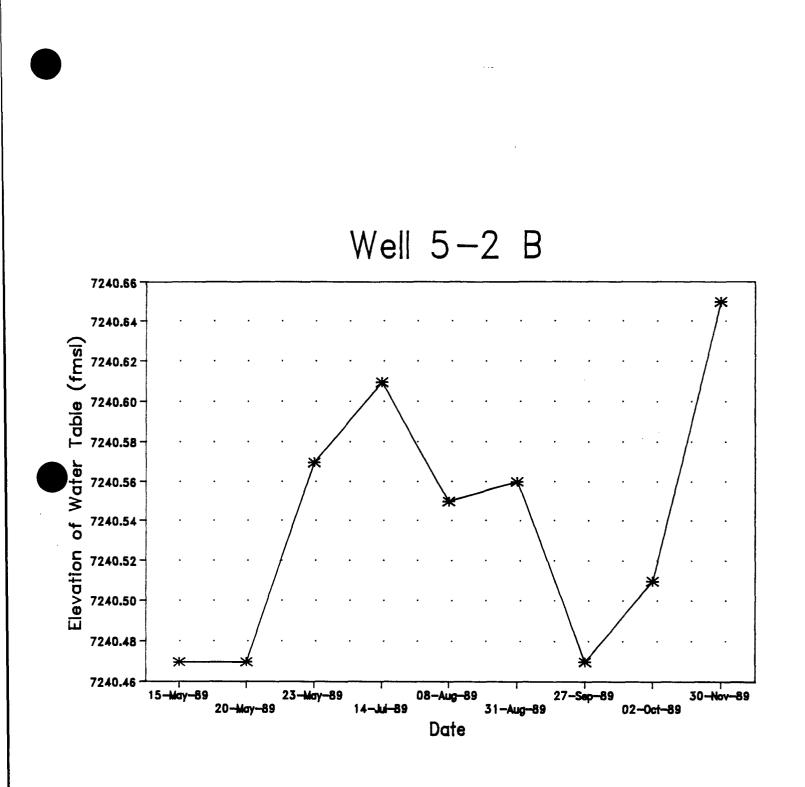


	Depth to	o Water	On Si		
Well	Top of Casing * Elevation (fmsl)	Date	Time	Depth To Water (feet)	Elevation of Water Table (fmsl)
5-1 B	7288.08	17-May-89	915	45.25	7240.83
		20-May-89	1617	44.90	7241.18
		15-jun-89	900	44.80	7241.28
		27-Jun-89		45.10	7240.98
		14-Jul-89	1640	45.02	7241.06
		08-Aug-89	1100	45.08	7241.00
		31-Aug-89	1353	45.10	7240.98
		27-Sep-89	1115	45.10	7240.98
		02-Oct-89	1741	45.06	7241.02
		01-Dec-69	1112	44,98	7241.10



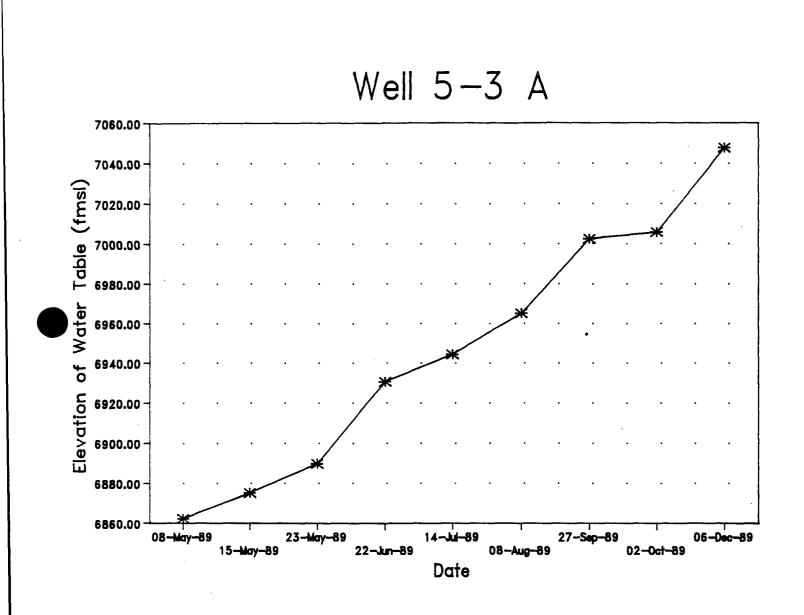
	Depth to	o Water	On Site Well		
Weil	Top of Casing = Elevation (fmsi)	Deste	Time	Depth to Water (feet)	Elevation of Water Table (fmsl)
5-2 A	7290.40	06-May-89		432.83	6857.57
		15-May-89	1909	427.30	6863.10
		23-May-89		419.40	6871.00
		27-Jun-89		394.90	6895.50
		14-jul-89	1535	385.16	6905.24
		08-Aug-89	1020	368.60	6921.80
		26-Sep-89	1430	342.74	6947.66
		27-Sep-89	1050	342.28	6948.14
		02-Oct-89	1816	339.98	6950.42
		06-Dec-89	1200	311.70	6978.70
		07-Dec-89	1321	393.88	6896.52
		25-Jan-90		313.00	6977.40

Well 5-2 A


Depth to W		o Water	On Site Well		
Well	Top of Casing * Elevation (fmsi)	Dealer	Time	Depth to Water (feet)	Elevation of Water Table (fmsl)
5-2 B	7288.47	15-May-89	1824	48.00	7240.47
		20-May-89	1658	48.00	7240.47
		23-May-89		47.90	7240.57
		14-Jul-89	1650	47.86	7240.61
		08-Aug-89	955	47.92	7240.55
		31-Aug-89	1735	47.91	7240.56
		27-Sep-89	1050	48.00	7240.47
		02-Oct-89	1726	47.96	7240.51
		30-Nov-89	1303	47.82	7240.65

* Based on 1989 Condor Survey. b- Series Wells corrected for 0.25 foot difference from TOC to Top of Vault

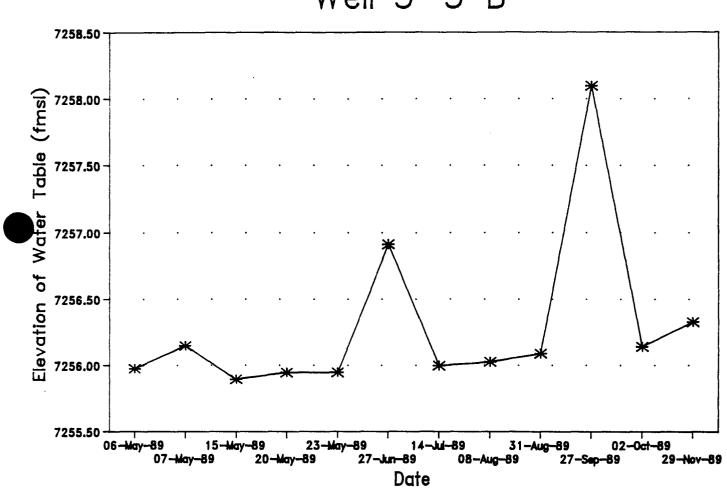
.

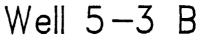


DANIEL B. ST

DANIEL B. STEPHENS & ASSOCIATES, INC.

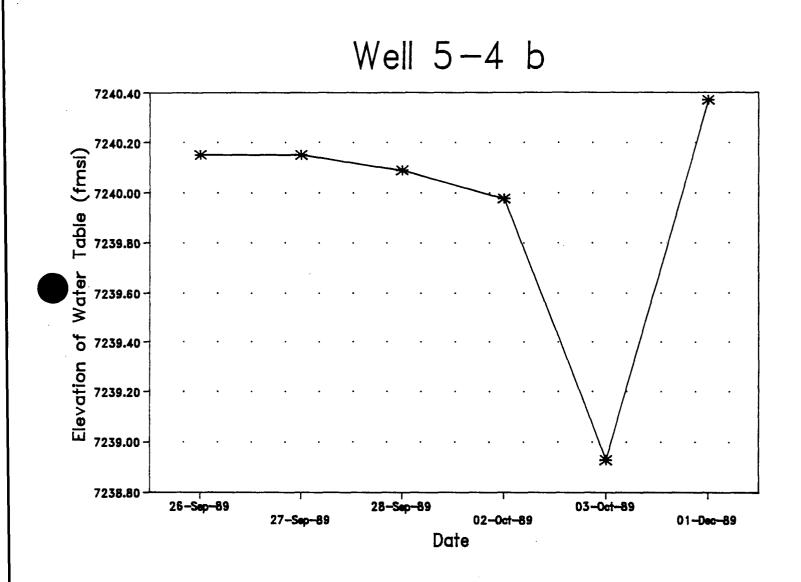
Depth to Water			On Site Well		
Well	Top of Casing * Elevation (fmsl)	Date	Тіте	Depth to Water (feet)	Elevation of Water Table (fmsl)
5-3 A	7301.84	08-May-89		439.37	6862.47
		15-May-89	1120	426.58	6875.26
		23-May-89		411.83	6890.01
		22-Jun-89		371.00	6930.84
		14-Jui-89	1505	357.66	6944,18
		08-Aug-89	1415	336.90	6964.94
		27-Sep-89	1020	299.52	7002.32
		02-Oct-89	1800	296.17	7005.67
		06-Dec-89	920	254.20	7047.64


DANIEL B. STEPHENS & ASSOCIATES, INC.


	Depth to Water On Site Well							
Well	Top of Casing * Elevation (fmsl)	Date	Time	Depth to Water (feet)	Elevation of Water Table (fmsi)			
5-3 B	7300.15	06-May-89	850	44.17 +	7255.98			
		07-May-89	1010	44.00 +	7256.15			
		15-May-89	1109	44.25	7255.90			
· ·		20-May-89	1453	44.20	7255.95			
		23-May-89		44.20	7255.95			
		27-Jun-89		43.24	7256.91			
		14-jul-89	1522	44.15	7256.00			
		08-Aug-89	1410	44.12	7256.03			
		31-Aug-89	1608	44.06	7256.09			
		27-Sep-89	1020	42.05 +	7258.10			
		02-Oct-89	1752	44.01	7256.14			
		29-Nov-89	1409	43.82	7256.33			

* Based on 1989 Condor Survey. b- Series Wells corrected for 0.25 foot difference from TOC to Top of Vault

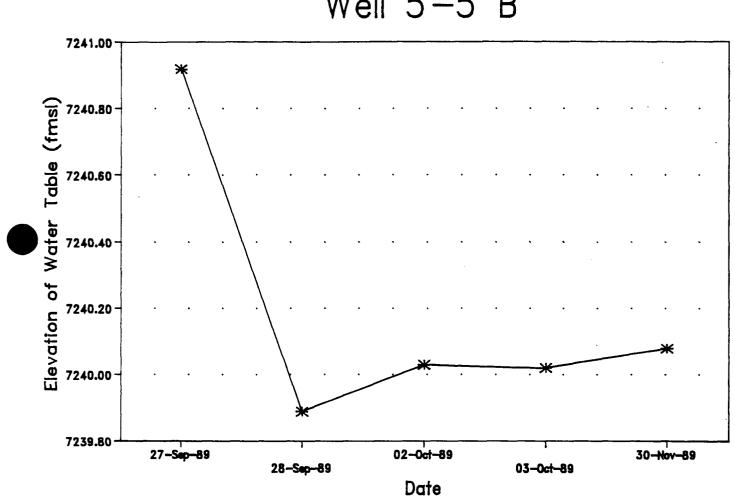
+ Accuracy of Water Level and/or reference in question



DANIEL B. STEPHENS & ASSOCIATES, INC.

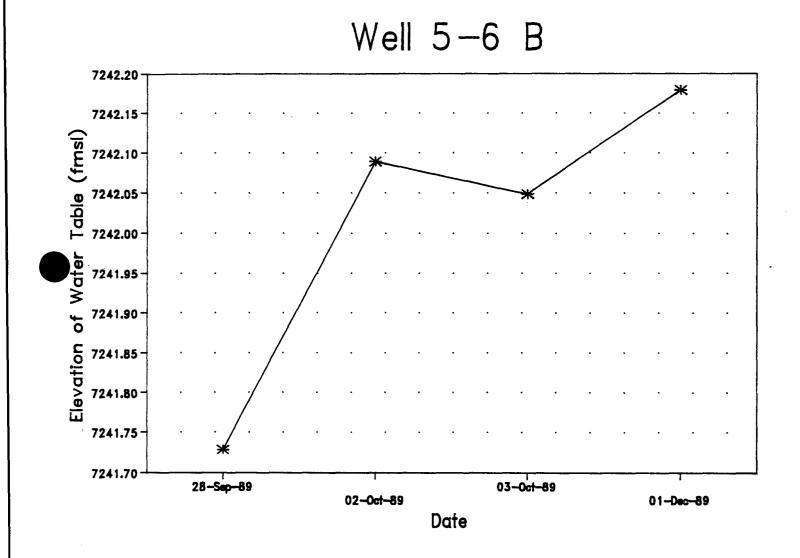
Depth to Water			On Site Well		
Well	I Top of Casing * Date Elevation (fmsl)		Time	Depth to Water (feet)	Elevation of Water Table (fmsl)
5-4 B	7288.79	26-Sep-69	1640	48.64	7240.15
		27-Sep-89	1200	48.64	7240.15
		28-Sep-89	800	48.70	7240.09
		02-Oct-89	1610	48.81	7239.98
_		03-Oct-89	854	49.86	7238.93
		01-Dec-89	1223	48.42	7240.37

* Based on 1989 Condor Survey. b- Series Wells corrected for 0.25 foot difference from TOC to Top of Vault



Depth to Water On Site Wells						
Weil	Top of Casing * Date Elevation (fmsi)		Time	Dapth to Water (feet)	Elevation of Waler Table (fmsl)	
5-5 B	7287.23	27-Sep-89	1220	48.31	7240.92	
		28-Sep-69	800	47.34	7239.89	
		02-Oct-89	1734	47.20	7240.03	
		03-Oct-89	1405	47.21	7240.02	
		30-Nov-89	904	47.15	7240.08	

* Based on 1989 Condor Survey. b- Series Wells corrected for 0.25 foot difference from TOC to Top of Vault


Well 5-5 B

Depth to Water			On Site Well		
Well	Top of Casing * Elevation (fmsl)	Date	Time	Depth to Water (feet)	Elevation of Water Table (fmsl)
5-6 B	7285.71	28-Sep-89	800	43.98	7241.73
		02-Oct-89	1837	43.62	7242.09
		03-Oct-89	1017	43.66	7242.05
		01-Dec-89	1249	43.53	7242.18

* Based on 1989 Condor Survey. b- Series Wells corrected for 0.25 foot difference from TOC to Top of Vault

Appendix E: Test Well and Soil Boring Completion Reports at the Thoreau Compressor Station

WELL COMPLETION SUMMARY

5-1A Well designation: ENRON Pumping Station No. 5 Location: Thoreau, New Mexico ENRON Client: Drilling contractor: Joe I. Salazar Drilling, Inc. Gardner Denver 2000 with 1500 cfm compressor Rig type: Drilling fluids: Water/Foam/Polymer Elevation of land surface: Elevation of measuring point: BOREHOLE DIAMETER SCHEDULE 14-inch Diam. borehole from 0' to 82' BLS (Below Land Surface) 8 3/4-inch Diam. borehole from 82' to 690' BLS Total depth drilled - 690' BLS _____ CASING SCHEDULE 10-inch nom. blank steel from 0' to 77.5' BLS inch nom. blank steel from 0' to 627.1' BLS 5-inch nom. well screen from 627.1' to 667.1' BLS (Johnson "Hi-Cap," wire-wrap, 0.060-inch slot opening) Note: All joints welded with Lincoln # 7018 rod SUMMARY OF CONSTRUCTION - 5-1A Time Date Action 4/11/89 14:30 Begin drilling 14-inch borehole with air 15:30Added foam at 25' BLS due to lack of returns 18:00Complete drilling to 82' BLS 4/12/89 07:30 Make wiper run to clean borehole and run 10-inch surface casing; attach centralizers at 75° and 35' BLS 14:30Cement casing in place by pumping through top of casing and chasing with water; Cement is Zia Type I & II without additives mixed at 50 sacks per 295 gals. of water 4/13/89 10:00Start drilling 8 3/4-inch diam. borehole Completed drilling to 500' BLS; Blow with air 19:00to clean borehole

Trip out rod and run geophysical logs

19:30

	23:00	Prepared to run casing but rejected casing
4/14/89	18:30	Bailed 5-1A
4/20/89	07:00	Measured water level at 402.87 BLS
	09:45	Measured water level at 401.97′ BLS
	13:42	Measured water level at 400.83' BLS
	16:30	Measured water level at 400.13' BLS
	19:20	Measured water level at 399.43' BLS
4/21/89	07:50	Measured water level at at 397.25' BLS
4/22/89	08:30	Determined that borehole has caved to 394.6 BLS and that previous water levels were probably affected by the caving situation and were probably not representative of the water level in the formation
4/23/89	13:30	Re-entered borehole to drill to 480' BLS
	16:20	Decided to drill borehole to 500° BLS to try and encounter water
	17:00	Finished drilling to 500' BLS, blowing hole to remove cuttings
	18:30	Begin running 6-inch casing, bottom three joints are two 20' joints of screen separated by 22.5' section of blank casing; Bottom of screen at 488.9'BLS
	23:30	Added 25 5-gal. buckets of #4-#12 gravel
4/24/89	09:40	Measured fluid level at 478.6 BLS
	10:30	Begin bailing well with 4-inch bailer; filled 50-gal. drum with water and foam
	11:12	Measured fluid level at 487.1° BLS
	11:36	Measured fluid level at 487.0° BLS
	12:05	Measured fluid level at 487.1 BLS
	13:10	Measured fluid level at 487.0° BLS
	14:13	Measured fluid level at 487.01 BLS Determined that borehole is in fact dry and the only fluid in the casing is residual drilling fluid; Decided to pull casing and deepen borehole to the Sonsela Sandstone

5.A z

- 16:00 Started pulling casing
- 18:00 Finished pulling casing
- 4/25/89 09:30

Start drilling to Sonsela Sandstone with 8 3/4 -inch bit

- 15:00 Encountered Sonsela Sandstone at approximately 640' to 650' BLS; Not producing much cuttings above Sonsela, only sporadic explosions of foam, after hitting Sonsela the borehole produced water continuously inducating that the water level was rising in the borehole, i.e. the water in the Sonsela is under considerable confining pressure; Stopped drilling at 675' BLS; Continued to blow air to clean hole until 15:40 without adding any water and borehole produced continuous 5 to 15 gpm
- 16:30 Start geophysics, Water encountered at 390° BLS but borehole was blocked at 652° BLS
- 4/26/89 07:15 Re-entered borehole; encountered some caving at 500'; Because of severe caving situation decided to overdrill borehole to 690' BLS to ensure that we would get screen set in the Sonsela interval
 - 10:15 Finished drilling to 690' BLS
 - 10:55 Run geophysics; Obstruction encountered at 675' BLS
 - 12:30 Begin running 6-inch casing with 40' of screen on bottom; Casing encountered bottom at 667.1' BLS; Decided not to push on casing to avoid collapsing screen
 - 16:30 Finnished running casing
 - 17:30 Measured water level at 421.85' BLS
 - 18:00 Begin air development with bottom of rod at 600' BLS; Continued air development until 18:45 with continuous discharge of 5-15 gpm

4/27/89 09:20 Measured water level at 361.33 BLS

- 09:30 Start air development; milky discharge; Discharged water to mudpit and pumped from mudpit to outside south fence
- 11:15 Took PCB sample from discharge using plastic jug

11:55 K = 1900 umhos, pH = 8.76, T = 12.3 deg. C.

5.A 3

12:30 Took PCB sample; Stopped air development, discharge still milky but continuous rate of 5-15 gpm

.

٩.

WELL COMPLETION SUMMARY

5-2A Well designation: Location: ENRON Pumping Station No. 5 Thoreau, New Mexico ENRON Client: Joe I. Salazar Drilling, Inc. Drilling contractor: Gardner Denver 1500 with 750 cfm compressor Drilling fluids: Rig type: Water/Foam/Polymer Elevation of land surface: ---Elevation of measuring point: BOREHOLE DIAMETER SCHEDULE 14-inch Diam. borehole from 0' to 80' BLS (Below Land Surface) 8 3/4-inch Diam. borehole from 80' to 450' BLS Total depth drilled - 450' BLS ____ CASING SCHEDULE 10-inch nom. blank steel from 0° to 78.4° BLS inch nom. blank steel from 0' to 415.2' BLS -inch nom. well screen from 415.2' to 435.2' BLS
 (Johnson "Hi-Cap," wire-wrap, 0.060-inch slot opening) Note: All joints welded with Lincoln # 7018 rod SUMMARY OF CONSTRUCTION - 5-2A Time Date Action 4/18/89 07:00 Start drilling 13 3/8-inch diam. borehole 4/19/89 12:30 Finish drilling to 80' BLS 14:00Begin running 10-inch casing, set centralizers at 40° and 75° BLS 15:20 Cement casing with Zia Type II mixed at 50 sacks per 7.25 barrels of water 4/20/89 07:00Top of cement is 10' BLS outside casing 07:30 Topped off cement to land surface outside casing 10:45Start drilling 8 3/4-inch diam. borehole 17:00Drilled to 402' BLS 17:40Start geophysical logging of unsaturated portion of 5.B but had problems with Century

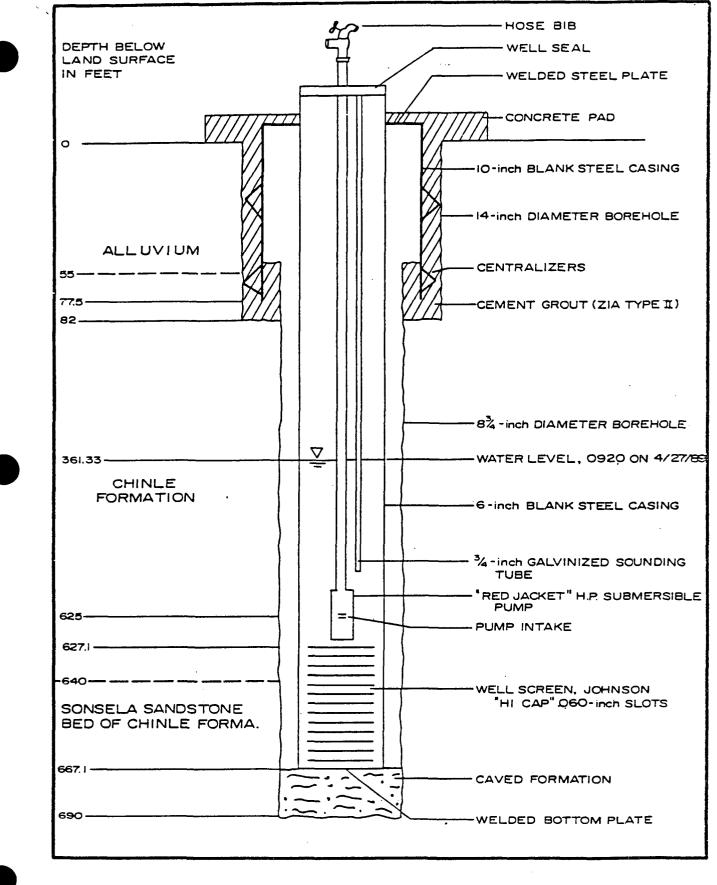
1. - J.A.

computer and left site at 20:00

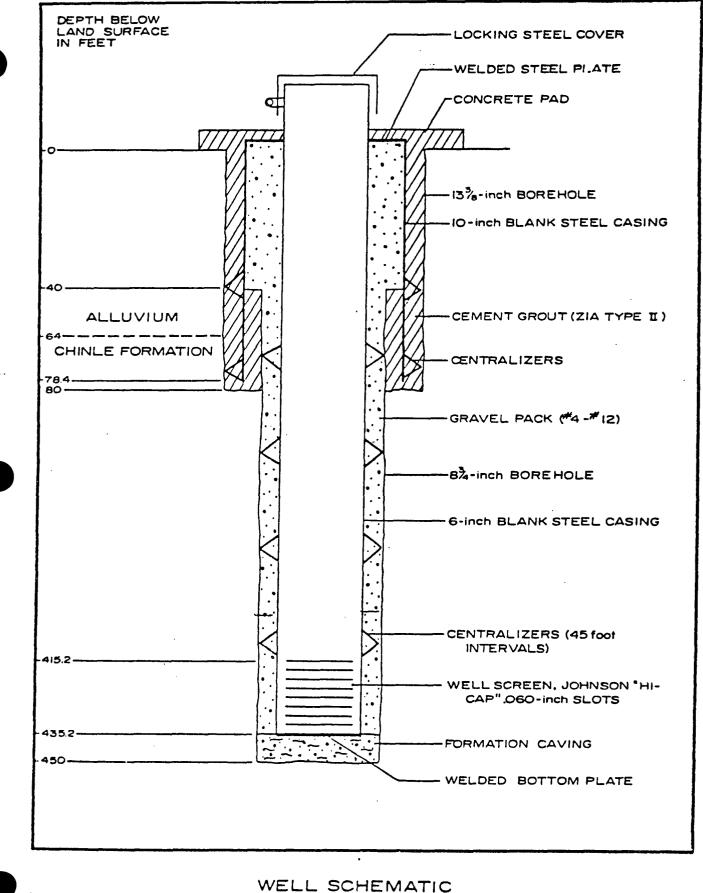
- 4/22/89 09:30 Geophysical tool indicates that borehole has caved to 332' BLS
 - 10:30 Finished geophysical logging of borehole
- 4/29/89 09:30 Begin drilling to 450 BLS
 - 10:30 Finished drilling to 450' BLS
 - 12:00 Start geophysics
 - 13:45 Begin running 6-inch casing with 20' screen on bottom and centralizers every 45'
 - 17:20 Poured gravel pack from surface, 44 5-gal buckets of #4-#12 gravel

WELL COMPLETION SUMMARY 5-3A Well designation: Location: ENRON Pumping Station No. 5 Thoreau, New Mexico ENRON Client: Drilling contractor: Joe I. Salazar Drilling, Inc. Gardner Denver 1500 with 750 cfm compressor Rig type: Water/Foam/Polymer Drilling fluids: Elevation of land surface: ----Elevation of measuring point: BOREHOLE DIAMETER SCHEDULE 14-inch Diam. borehole from 0' to 80' BLS (Below Land Surface) 8 3/4-inch Diam. borehole from 80' to 450' BLS Total depth drilled - 450' BLS _____ CASING SCHEDULE 10-inch nom. blank steel from 0' to 79.6' BLS A-inch nom. blank steel from 0° to 423.8° BLS inch nom. well screen from 423.87 to 443.87 BLS (Johnson "Hi-Cap," wire-wrap, 0.060-inch slot opening) Note: All joints welded with Lincoln # 7018 rod SUMMARY OF CONSTRUCTION - 5-3A Date Time Action 4/17/89 12:30 Begin drilling 14-inch diam. borehole Complete drilling 14-inch borehole, run 10-inch casing, centralizers at 75, and 35 $^{\circ}$ BLS 16:00 18:15Cement 14-inch casing with Zia Type I & II mixed at 50 sacks per 8 barrels of water 4/20/89 07:30 Cement is 6' BLS outside casing; topped off cement to land surface outside casing 4/21/89 12:30Begin drilling 8 3/4-inch diam. borehole 19:30 Finish drilling to 415' BLS 4/22/89 09:30Borehole has caved to 360' BLS Borehole has caved to 324' BLS, no water 23/89 09:20 4/27/89 15:30 Begin lowering rods to deepen borehole; Encountered

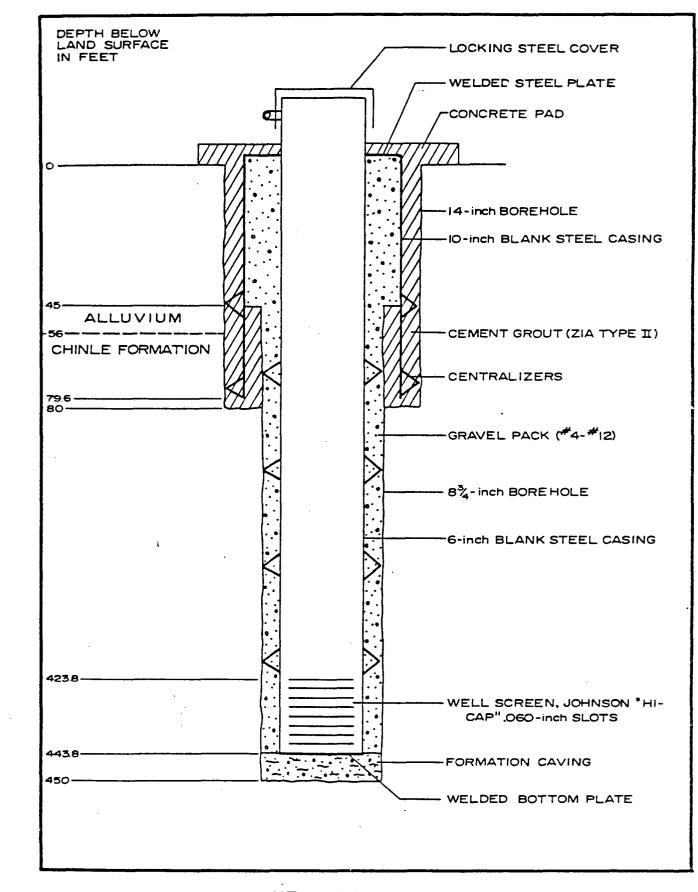
caving to approx. 350' BLS


5.5 1

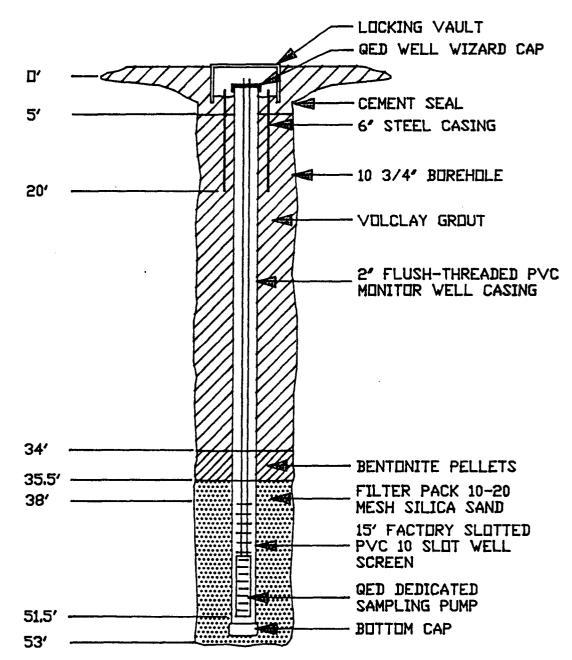
5-3-5

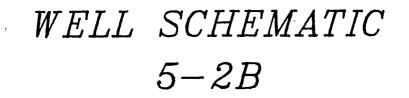

18:00 Finished drilling to 450' BLS

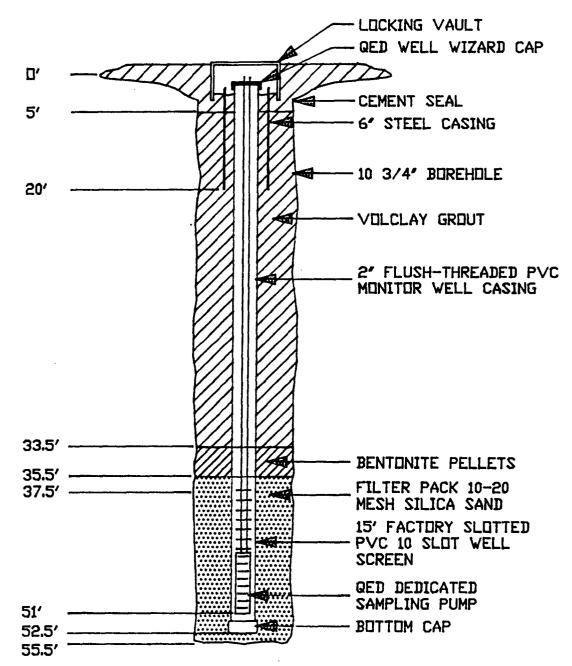
4/28/89 08:00 Re-entered borehole to clean it before geophysical logging and running casing; Encountered obstruction at 420' BLS


- 10:00 Run geophysics; got tool to 448' BLS
- 12:15 Set 6-inch casing to 443.8 BSL with 20 screen section on bottom and centralizers every 45
- 17:30 Poured gravel pack from surface, 51 5-gal. buckets of #4-#12 gravel

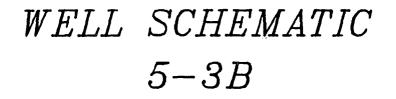
WELL SCHEMATIC WELL 5-IA THOREAU, NEW MEXICO

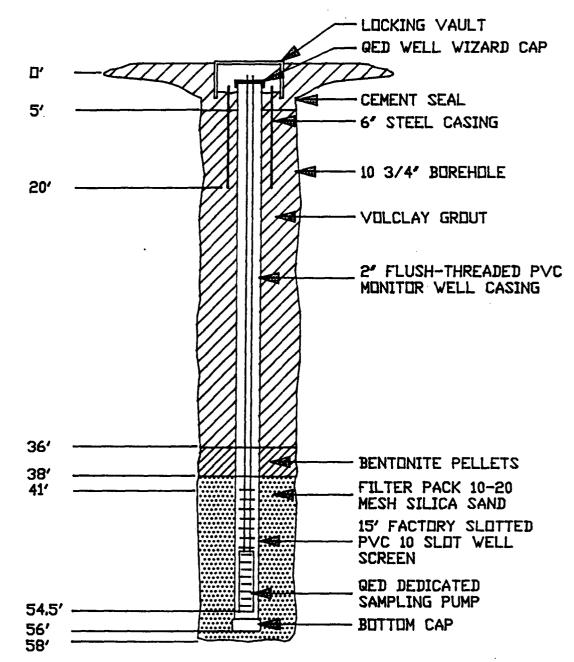


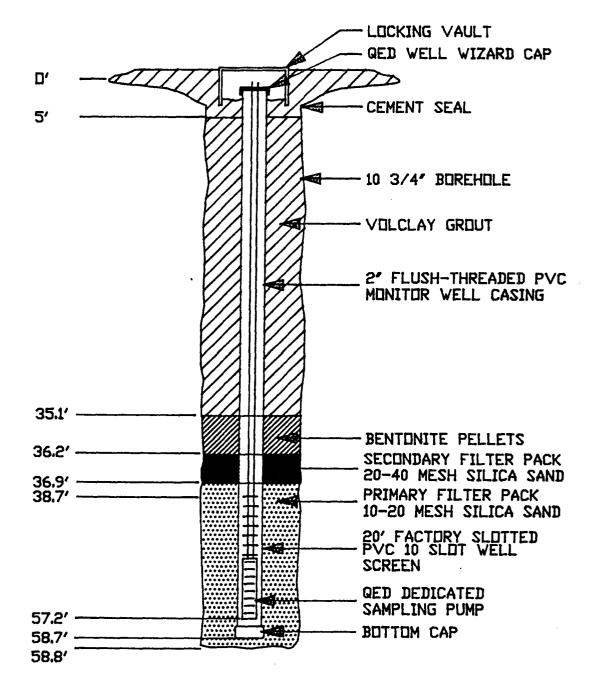

THOREAU, NEW MEXICO

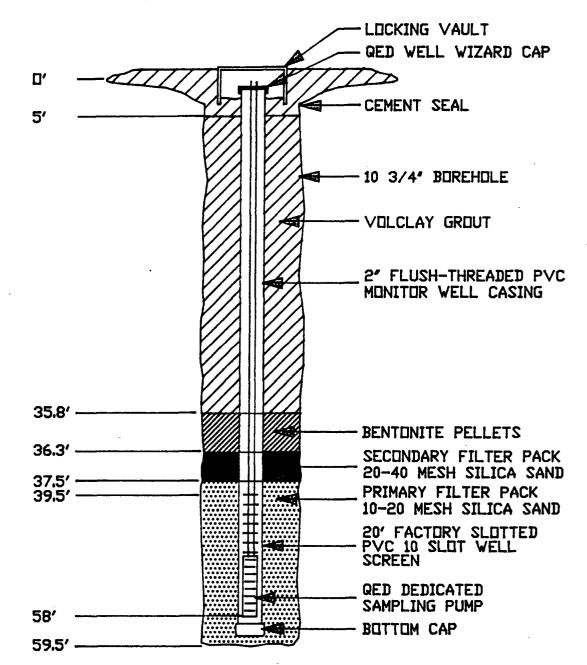


WELL SCHEMATIC WELL 5-3A THOREAU PUMPING STATION THOREAU, NEW MEXICO

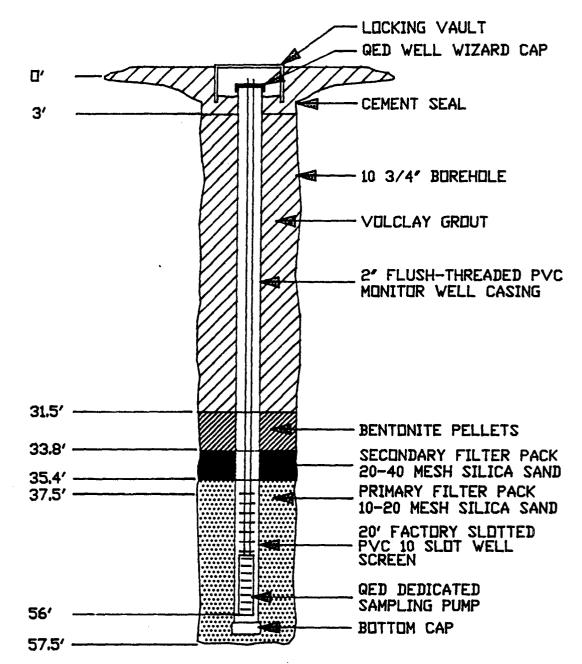

WELL SCHEMATIC 5–1B



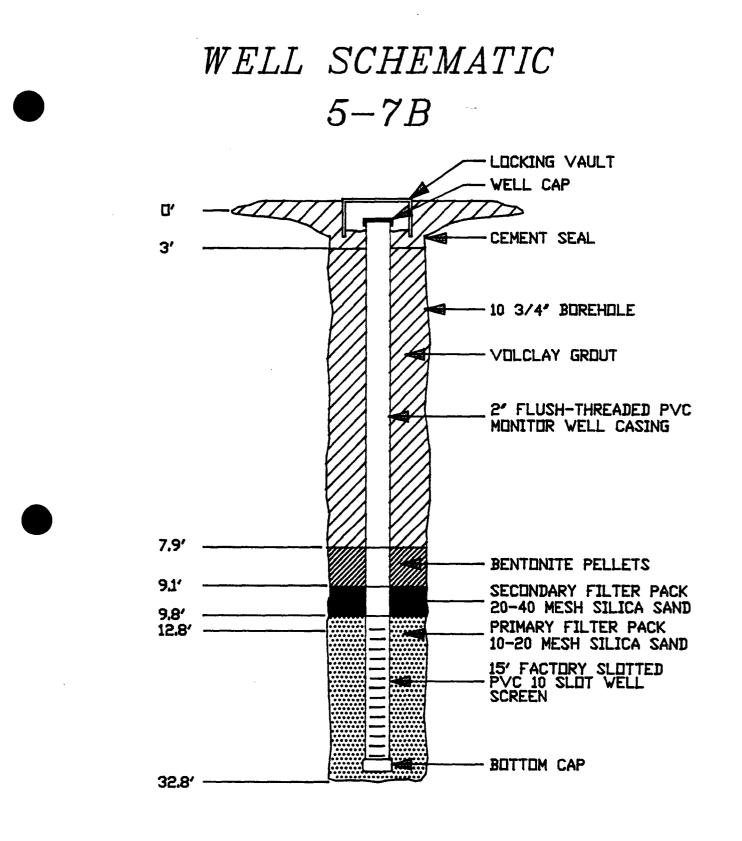


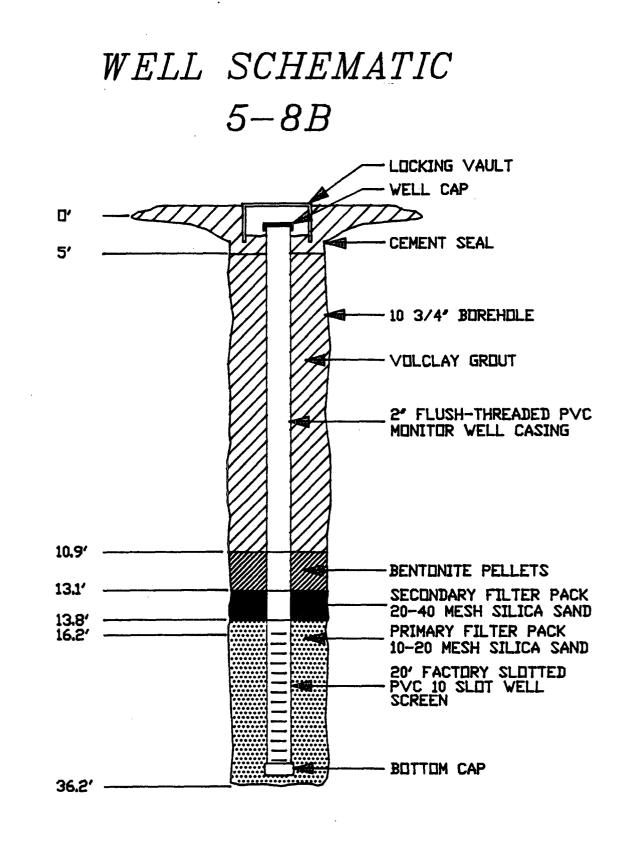


WELL SCHEMATIC 5-4B



WELL SCHEMATIC 5-5B




WELL SCHEMATIC 5-6B

Appendix F: Geologic and Geophysical Logs of Test Wells and Soil Borings at the Thoreau Compressor Station

TABLE

LITHOLOGIC LOG

Location:ENRON Pumping Station #5, Thoreau, N.M.Boring No.:5-1ADrilling Method: Air RotaryRig type:Gardner-Denver 2000 with dual 750 cfm air packDrilling fluids:Foam/water/polymerDate Started:04/11/89Date Finished: 04/26/89Total Depth Drilled:690 feetDrilling Contractor:Joe I. Salazar Drilling, Inc.

DEPTH INTER	/AL
-------------	-----

	(feet)	- <u></u>	DESCRIPTION OF MATERIAL
0	- 6	SANDY SILTY CLAY	Reddish brown, non-indurated.
б	- 55	SILTY SAND	Orange brown with some clay, non-indu- rated; some dampness at 8 feet; sand fraction is fine-grained.
			Drilled without foam to 25 feet; switched to foam at 25 feet.
			Clay content increases from 45 to 50 feet.
			CHINLE FORMATION
55	- 60	SILTSTONE AND MUDSTONE	Red, weakly cemented (WEATHERED CHINLE FORMATION).
60	- 82	SILTSTONE AND MUDSTONE	Red, moderately cemented.
		MODSTONE	Contains some sandstone interlayers.
82	- 94	MUDSTONE	Red, weakly cemented with some fine non- calcareous gravel.
94	- 162	SILTSTONE	Red, moderately cemented with some fine sandstone layers and some thin mudstone layers.
			Some bluish discoloration at 128 feet.
			Some subrounded limestone gravel encoun- tered from 142 to 147 feet.
162	- 188	MUDSTONE	Red, weakly cemented, non-calcareous with some fine sand and limestone gravel to 1/2 inches.

TABLE (continued) LITHOLOGIC LOG

. . .

Location: Boring No.:	ENRON Pumping Sta 5.1A	ation #5, Thoreau, N.M.
DEPTH INTERVAL (feet)		DESCRIPTION OF MATERIAL
188 - 208	SILTSTONE	Reddish brown, moderately cemented calcareous, with some sandstone and a trace of limestone gravel.
208 - 218	SILTY SANDSTONE	Reddish brown, weakly cemented sand fraction is very fine grained.
218 - 242	MUDSTONE	Red, weakly cemented, non-calcareous with some limestone gravel.
242 - 300	MUDSTONE AND SILTSTONE	Reddish brown interlayers of weakly cemented with some fine sand and trace of limestone gravel.
		Sandier interval from 258 feet to 260 feet.
300 - 322	SILTSTONE	Reddish brown, moderately cemented with some fine grained sandstone; contains very thin light blue layers.
322 - 428	MUDSTONE AND SILTSTONE	Reddish brown interlayers of weakly cemented with some fine-grained sand- stone.
		No returns from 360 feet to 400 feet.
		Mudstone predominates section below 400 feet.
428 - 522	SILTSTONE	Reddish brown with trace sandstone fragments below 450 feet.
		NOTE: Well was originally drilled to 495 feet and subsequently deepened to a total depth of 690 feet.
		Attempted to drill without foam or water but had no returns from 500 feet to 520 feet; added foam at 520 feet.
522 - 578	MUDSTONE	Reddish brown with some fine-grained sandstone; trace of light blue-grey mud-stone.

TABLE (continued) LITHOLOGIC LOG

. . .

DEPTH INTERVAL (feet)		DESCRIPTION OF MATERIAL
		No returns from 540 feet to 556 feet an from 560 feet to 576 feet.
578 - 634	SANDSTONE	Light greyish brown fine- to medium grained with reddish brown mudstone, som fragments are mottled blue.
		No returns from 582 feet to 596 feet, 60 feet to 606 feet, 612 feet to 616 feet and 620 feet to 626 feet.
634 - 650	CLAY	Brown with some fine to medium graine greyish brown sandstone; interior of cla balls appears unsaturated.
		No returns from 638 feet to 650 feet bu drilling is rapid indicating clay.
	,,	SONSELA SANDSTONE BED OF CHINLE FORMATIC
650 - 690	SANDSTONE	Cuttings are mixed but below 650 fee there is an increasing proportion of ver light grey, medium grained sandstone very friable.
		Continuous return of cuttings below 65 feet believed due to rise of water leve in borehole resulting from penetratir confined zone.

TOTAL DEPTH OF BOREHOLE: 690 FEET

TABLE

LITHOLOGIC LOG

Location:ENRON Pumping Station #5, Thoreau, N.M.Boring No.:5-2ADrilling Method: Air RotaryRig type:Gardner-Denver 1500 with 750 cfm compressorDrilling fluids:Foam/water/polymerDate Started:04/19/89Date Finished: 04/29/89Total Depth Drilled:450 feetDrilling Contractor:Joe I. Salazar Drilling, Inc.

		ITERVAL et)	<u></u>	DESCRIPTION OF MATERIAL ALLUVIUM
0	-	8	SILTY SAND/SANDY SILT	Brown, loose, sand fraction is fine to very fine grained.
8	-	64	SILTY SAND/SANDY SILT	Orange brown, loose, sand fraction is fine to very fine grained.
				Trace of sandstone and limestone gravel noted at 10 feet, 26 feet, 40 feet, and 60 feet, gravel fraction is fine and sub- angular.
				CHINLE FORMATION
64	**	86	SILTSTONE, MUD- STONE, AND SAND- STONE	Reddish grey, moderately cemented, sand- stone fraction is fine to very fine grained.
86	-	96	MUDSTONE	Reddish brown, weakly cemented.
96	-	112	SILTY SANDSTONE	Reddish brown with white mottling, moder- ately cemented.
				Trace of light grey limestone gravel.
112	-	146	MUDSTONE	Orange red, with some fine grained sand- stone, weakly to moderately cemented.
				No returns from 142 feet to 146 feet.
146	-	156	MUDSTONE AND SILT- STONE	Reddish brown, weakly cemented.
156	-	166	SILTY SANDSTONE	Reddish brown and grey, moderately to strongly cemented.
166	-	170	SANDSTONE	Reddish brown and grey, coarse-grained, strongly cemented.

TABLE (continued) LITHOLOGIC LOG

EPTH INTE (feet)		<u> </u>	DESCRIPTION OF MATERIAL
170 - 19	96	CLAY	Light reddish brown, uncemented, moder ately plasticity.
			Poor cuttings returns in this interval.
196 - 20	06	SILTY SANDSTONE AND CLAY	Light reddish brown sandstone is moder- ately cemented, clay is un-cemented ar moderately plastic.
206 - 22	26	SILTY SANDSTONE	Light reddish brown, with some siltstone strongly cemented.
226 - 25	56	SILTY SANDSTONE	Dark reddish brown, with some siltstone strongly cemented.
		· ·	Increasing proportion of uncemented highly plastic clay from 234 feet t bottom of interval.
			No returns from 248 feet to 253 feet.
256 - 29	92	MUDSTONE	Dark reddish brown, with silty sandstor and clay.
NOTE:	explosio returns.	ns of drilling f	92 feet were extremely sporadic consisted of oam and cuttings separated by intervals of ne criptions are given for the depth at which
300		MUDSTONE	Reddish brown, with clay and silty sand stone.
306		MUDSTONE AND SI STONE	LT- Reddish brown, with silty sandstone.
336		CLAY AND MUDSTO	NE Reddish brown, with silty sandstone.
352		MUDSTONE AND SI STONE	LT- Reddish brown.
386		SILTY SANDSTONE AND SILTSTONE	Reddish brown.
392		CLAY AND MUDSTO	NE Reddish brown.

TABLE (continued) LITHOLOGIC LOG

Location: Boring No.:	ENRON Pumping Station #5, Thoreau, N.M. 5-2A			
DEPTH INTERVAL (feet)		DESCRIPTION OF MATERIAL		
412	MUDSTONE AND SILTY SANDSTONE	Reddish grey and brown.		
432	MUDSTONE AND SILTY SANDSTONE	Reddish brown.		
446	MUDSTONE	Reddish brown, with silty sandstone.		

TOTAL DEPTH OF BOREHOLE: 450 FEET

· · · · · · · · · · · ·

LITHOLOGIC LOG

Location:ENRON Pumping Station #5, Thoreau, N.M.Boring No.:5-3ADrilling Method: Air RotaryRig type:Gardner-Denver 1500 with 750 cfm compressorDrilling fluids:Foam/water/polymerDate Started:04/17/89Date Finished: 04/28/89Total Depth Drilled:450 feetDrilling Contractor:Joe I. Salazar Drilling, Inc.

DEPTH INTERVAL

	(feet)			·	DESCRIPTION OF MATERIAL ALLUVIUM
	0	-	6	CLAYEY SAND WITH	Orange brown, loose.
				SILI	Contains concrete blocks and fill.
	6	-	38	SILTY SAND WITH SOME FINE GRAVEL	Orange brown, loose, sand is predomin- -ately fine-grained, gravel fraction is sub-angular.
					Becomes slightly coarser below 25 feet.
)	38	-	43	SANDY CLAY	Red brown, firm.
	43	-	56	CLAYEY SAND	Reddish brown, contains a trace of fine gravel, loose.
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CHINLE FORMATION
	56	-	67	MUDSTONE	Red, moderately cemented, friable (WEATHERED CHINLE FORMATION)
	67	-	100	MUDSTONE AND CLAY WITH SOME FINE- GRAINED SANDSTONE	Red brown, with some blue mottling, mud- mudstone and sandstone fractions are mod- erately to strongly cemented with calcareous cement, clay is dense and moderately plastic.
	100	-	120	SANDSTONE WITH MUDSTONE	Reddish-grey, with trace of clay (< 10%), strongly cemented, sandstone is fine to medium grained.
					Trace of limestone or limestone gravels at 112 feet.
	120	-	126	MUDSTONE WITH FINE- GRAINED SANDSTONE	Reddish grey, strongly cemented.

Location: Boring No.: ENRON Pumping Station #5, Thoreau, N.M. 5-3A

DEPTH INTERVAL (feet)		DESCRIPTION OF MATERIAL
126 - 146	SANDSTONE WITH MUDSTONE	Reddish-grey, strongly cemented, sand- stone fraction is fine to medium grained.
146 - 172	CLAY	Reddish orange, with some mudstone and fine-grained sandstone, clay is moderately to highly plastic.
172 - 180	SANDSTONE	Light reddish grey, fine to medium grained.
180 - 190	SILTY SANDSTONE	Dark chocolate brown, moderately cemented, thin fissile layers.
190 - 196	SANDSTONE WITH MUD- STONE AND CLAY	Reddish brown, strongly cemented.
196 - 226	CLAY AND MUDSTONE	Orange brown, with some fine-grained sandstone, mudstone and sandstone are strongly cemented.
226 - 252	SANDSTONE AND MUD- STONE	Light reddish brown, strongly cemented.
252 - 296	CLAYSTONE AND MUD- STONE	Orange brown.
		Poor cuttings returns in this interval.
296 - 306	CLAY AND MUDSTONE	Red, with some clay.
306 - 326	CLAY AND MUDSTONE	Orange brown.
326 - 446	SILTY SANDSTONE AND MUDSTONE	Light grey, red dish brown fissile layers, strongly cemented.
		No returns from 346 feet to 356 feet, 360 feet to 372 feet, 396 feet to 406 feet, and 426 feet to 446 feet.
446 - 450	CLAY	Red, moderately compact and plastic.

TOTAL DEPTH OF BOREHOLE: 450 FEET

LITHOLOGIC LOG

Location:	ENRON Pumping Station #5, Thoreau	1, N.M.
Boring No.:	5-1B	
Drilling Method:	Hollow Stem Auger	
Rig type:	CME 75	
Drilling fluids:	None	
Date Started:	5/15/89 Date Finished:	5/16/89
Total Depth Drilled:	53 feet	
Drilling Contractor:	Western Technologies Inc.	

DEPTH INTERVAL ____(feet)_____

DESCRIPTION OF MATERIAL

5	SILTY SAND	Fine to medium grained sand, with silt. Moderate Reddish Brown (10 R 4/6).
10	SAND	Fine to medium grained sand, minor silt. Moderate Reddish Brown (10 R 4/6).
15	GRAVELLY SAND	Damp sand and gravel. Moderate Reddish Brown (10 R 4/6).
20	SILTY SAND	Fine grained sand and silt. Bedding evident. Fine bands of clay. Moderate Reddish Brown (10 R 4/6).
25	SAND	Fine to medium grained sand. Some minor clay. Pale Reddish Brown (10 R 5/4).
30	CLAYEY SAND	Fine grained sand and clay. Moderate Reddish Brown (10 R 4/6).
35	SANDY CLAY	Fine grained sand, uniform texture. Moderate Reddish Brown (10 R 4/6).
40	SILTY SAND	Medium to coarse grained sands with silt and clay. Moist. Pale Reddish Brown (10 R 5/4).

45	SAND	Coarse sands with limestone fragments. Minor amounts of silt and clay. More gravel down to 49 feet. Moist. Pale Red (10 R 6/2).
50	CLAY	Stiff plastic clay. Just penetrated top of Chinle. Moist. Moderate Reddish Brown (10 R 4/6).

T.D. = 53 Feet.

LITHOLOGIC LOG

Location:ENRON Pumping Station #5, Thoreau, N.M.Boring No:5-2BDrilling Method:Hollow Stem AugerRig Type:CME75Drilling Fluids:NoneDate Started:5/12/89 Date Finished:5/12/89Total Depth Drilled:55.5 FeetDrilling Contractor:Western Technologies Inc.

Depth Interval

(feet)		DESCRIPTION OF MATERIAL
0 - 8	SILTY SAND	Reddish-brown; medium-grained; moist.
8 - 15.4	SILTY SAND	Reddish-brown; medium,-grained; Gravel up to 1" diameter; minor caliche seams; moist.
15.4 - 16.3	SANDY GRAVEL	Mottled reddish-brown and grayish yellow; coarse-grained sand and fine to medium-grained gravel; loose; damp.
16.3 - 17.5	SILTY SAND	Reddish-brown; medium-grained; moist.
17.5 - 18	SANDY CLAYEY SILT	Reddish-brown; minor caliche; damp.
18 - 20	SILTY SAND	Reddish-brown, medium to coarse- grained; damp.
20 - 22	SILTY SAND	Reddish-brown; medium-grained; some clay; damp.
22 - 24.5	SILTY SAND	Pale reddish-brown; medium-grained; damp.
24.5 - 28	CLAYEY TO SILTY SAND	Reddish-brown; medium-grained; more clayey and hard @ 27.8'; damp to moist.
	INTERLAYERED WITH: SAND	Light brown; medium to coarse- grained; damp to moist.

Location:

ENRON Pumping Station #5, Thoreau, N.M.

EPTH INTERVAL (feet)		DESCRIPTION OF MATERIAL
	SLIGHTLY SILTY SAND	Brown to reddish-brown; medium- grained; damp to moist.
28 - 30.5	SLIGHTLY SILTY SAND	Reddish-brown; medium to coarse- grained; moist.
30.5 - 31.8	GRAVELLY SAND	Reddish-brown; medium-grained, damp.
31.8 - 33.5	SANDY CLAY	Reddish-brown; sand is fine- grained; moist.
33.5 - 34	GRAVELLY CLAY	Moderate to dark reddish-brown; some sand; moist.
34 - 34.8	CLAYEY GRAVELLY SAND	Moderate to dark reddish-brown; medium-grained; damp.
34.8 - 41	SILTY SAND	Reddish-brown; fine-grained; some gravel from 37.4 to 38; moist.
41 - 41.5	CLAYEY SAND TO SANDY CLAY	Dark reddish-brown; with chips of light greenish-gray sand; hard; moist.
41.5 - 42.6	SANDY CLAY	Moderate to dark reddish-brown; minor caliche seams; very hard; damp.
42.6 - 43	SILTY SAND	Orange to reddish-brown; fine to medium-grained; moist.
43 - 44	CLAYEY SAND	Reddish-brown: fine to medium- grained; moist.
44 - 46	CLAYEY SAND	Reddish-brown; fine to medium- grained; some limestone and sandstone gravel and cobbles; harder drilling from 45' to 46'; wet.

Location:	ENRON Pumping Station #5, Thoreau, N.M. DESCRIPTION OF MATERIAL		
DEPTH INTERVAL (feet)			
46 - 48	CLAYEY SAND WITH GRAVEL	Reddish-brown; fine to medium- grained; saturated; soupy from 46' to 47'.	
48 - 55.1	CLAYEY SILTY SAND	Reddish-brown; fine-grained; 1" to 2" seam of coarse sand and fine gravel at 52'; saturated.	
55.1 - 55.5	CLAYEY SAND TO SANDY CLAY	Reddish-brown; minor caliche seams; saturated; refusal at 55.5'.	

LITHOLOGIC LOG

Location: Boring No.: Rig type: Drilling fluids: Date Started: Total Depth Drill Drilling Contract	5-3B Dri CME 75 None 5/10/89 Dat led: 58 feet	ng Station #5, Thoreau, N.M. lling Method: Hollow Stem Auger e Finished: 5/11/89 hnologies Inc.
DEPTH INTERVAL		DECONTRACTOR OF NAMEDIAL
(feet)	<u></u>	DESCRIPTION OF MATERIAL ALLUVIUM
0 - 2	SILTY SAND	Dark brown; fine-grained; with rootlets and brick rubble; damp.
2 - 4.5	SILTY SAND	Brown; fine-grained; with fine gravel; rootlets replaced by caliche; dry.
4.5 - 8.5	SAND	Reddish-brown; fine to medium grained sand with silt and cobbles; minor white caliche specks; dry.
8.5 - 9	GRAVELLY SAND	Reddish-brown; with chert cobbles; damp.
9 - 12	SAND	Reddish-brown; fine to coarse grained sand with silt and fine gravel; damp.
12 - 13.5	SILTY SAND	Light reddish-brown; fine-grained; with minor white caliche specks; damp.
13.5 - 18.5	SAND	Reddish brown; fine-grained sand with silt; well-sorted; with gravel below 18 ft.; damp.
18.5 - 29.5	SILTY SAND	Reddish brown; fine-grained; well- sorted; minor gravel 21.5-24 ft.; damp.
29.5 - 34.5	SAND	Light reddish-brown; fine sand with silt and yellowish sandstone cobbles; damp.

Location:

1

ENRON Pumping Station #5, Thoreau, N.M.

DEPTH INTERVAL (feet)		DESCRIPTION OF MATERIAL
34.5 - 38.5	SAND CLAY	Reddish-brown; with gravel and cobbles; damp.
38.5 - 42.5	CLAY	Dark reddish-brown; with sand and minor gravel; moist.
42.5 - 45	SANDY CLAY	Dark reddish-brown; sand is fine- grained; moist to wet.
45 - 47.5	CLAY	Reddish-brown; with sand and some cobbles; wet.
47.5 - 48	CLAY	Reddish-brown; with sand and gravel; saturated (soupy).
48 - 49.5	SANDY CLAY	Reddish-brown; sand is coarse; with fine gravel; wet.
49.5 - 51.5	GRAVELY CLAY	Reddish-brown; with sand; some gravel is purple mudstone; wet.
51.5 - 55.25	SILTY SAND	Light reddish-brown; fine-grained, well-sorted; saturated.
		CHINLE FORMATION
55.25 - 58	CLAY	Dark reddish-brown; with gray mottling; moist to damp.

LITHOLOGIC LOG

ENRON Pumping Station #5, Thoreau, N.M. Location: Boring No.: 5-4B Hollow Stem Auger Drilling Method: CME 75 Rig type: Drilling fluids: None 9/18/89 Date Finished: 9/18/89 Date Started: Total Depth Drilled: 58.75 feet Drilling Contractor: Western Technologies Inc.

DESCRIPTION OF MATERIAL

DEPTH INTERVAL (feet)

	······································	
5	SAND	Very fine grained sand, well sorted. Pale Red (10 R 6/2). BC = 3,4,3.
10	SAND	Very fine grained sand, minor silt. Moderate Reddish Brown (10 R 4/6). BC = 3,4,5.
15	SAND	Very fine grained sand. Moderate Reddish Brown (10 R 4/6). BC = 3,5,5.
20	SAND	Very fine and fine grained sand. Moderate Reddish Brown (10 R 4/6). BC = 3,4,6.
25	SAND	Very fine and fine grained sand. Some minor clay. Moderate Reddish Brown (10 R 4/6). BC = 3,4,6.
30	SILTY SAND	Silty very fine grained sand. Some minor clay. Moderate Reddish Brown (10 R 4/6). BC = 4,3,4.
35	SANDSTONE	Fine grained, not calcite cemented. Yellowish Grey (5 Y 7/12). BC = 22,14,18.
40	SILTY SAND	Medium to coarse grained sands in a silt and clay matrix. Calcite cemented. Pale Reddish Brown (10 R 5/4). BC = 2,12,18.

45	SAND	Calcite cemented sand, limestone fragments. Minor amounts of silt and clay. Pale Red (10 R 6/2). BC = 5,22,30.
50	SAND	Very fine grained sand and silt, very minor clay. Moist. Moderate Reddish Brown (10 R 4/6). BC = 10,27,54.
55	SAND	Fine grained sand, with less silt and clay than above. Moist. Moderate Reddish Brown (10 R 4/6). BC = 8,16,27.
58	CLAY	Clay with silt. Moderate Reddish Brown (10 R 4/6).

T.D. = 58 Feet 9 Inches.

LITHOLOGIC LOG

Location:ENRON Pumping Station #5, Thoreau, N.M.Boring No.:5-5BDrilling Method:Hollow Stem AugerRig type:CME 75Drilling fluids:NoneDate Started:9/19/89Date Finished:Ortal Depth Drilled:59.5 feetDrilling Contractor:Western Technologies Inc.

DEPTH INTERVAL (feet)

DESCRIPTION OF MATERIAL

30	SAND	Very fine to fine grained sand. Damp. Pale Reddish Brown (10 R 5/4). BC = 3,5,10.
35	SAND	Very fine grained sand and silt. Damp. Pale Reddish Brown (10 R 5/4). BC = 4,5,8.
40	SILTY CLAY	Silty clay with minor grains of limestone fragments. Damp. Pale Reddish Brown (10 R 5/4). BC = 2,3,8.
45	SAND	Very fine grained sand and minor silt. Moderate Reddish Brown (10 R 4/6). Saturated. BC = 4,7,15.
50	SAND	Very fine grained sand. Well sorted. Saturated. Moderate Reddish Brown (10 R 4/6). BC = 7,15,26.
55	SAND	Fine grained sand. Well sorted. Saturated. Moderate Reddish Brown (10 R 4/6). BC = 5,28,105.
59	CLAY	Dense massive clay. Moderate Reddish Brown (10 R 4/6). Damp. BC = 9,26,27. Chinle Fm. (?).

T.D. = 59.5 Feet.

LITHOLOGIC LOG

ENRON Pumping Station #5, Thoreau, N.M. Location: Boring No.: 5-6B Drilling Method: Hollow Stem Auger CME 75 Rig type: Drilling fluids: None Date Started: 9/18/89 Date Finished: 9/18/89 Total Depth Drilled: 57 feet Drilling Contractor: Western Technologies Inc.

DEPTH INTERVAL (feet)

DESCRIPTION OF MATERIAL

5	SAND	Very fine grained sand, well sorted. Not calcite cemented. Moderate Reddish Brown (10 R 4/6). BC = 2,3,3.
10	SAND	Fine grained sand. Moderate Reddish Brown (10 R 4/6). BC = 3,4,5.
15	SAND	Fine grained sand. Moderate Reddish Brown (10 R 4/6). BC = 3,3,4.
20	SAND	Very fine grained sand, minor silt. Moderate Reddish Brown (10 R 4/6). BC = 2,4,5.
25	SAND	Very fine and fine grained sand. Moderate Reddish Brown (10 R 4/6). Well-site logger reports limestone gravel in cuttings. BC = 3,8,6.
30	SILTY SAND	Silty very fine grained sand. Some minor clay. Moderate Reddish Brown (10 R 4/6). Calcite cement. BC = 8,11,17.
35	SILTY SAND	Very fine grained sand, some silt. Moderate Reddish Brown (10 R 4/6). BC = 8,7,12.

40	SILTY SAND	Very fine grained sand, with more silt and clay than above. Moderate Reddish Brown (10 R 4/6). BC = 6,8,11.
45	SILTY SAND	Very fine grained sand, with more silt and clay than above. Moderate Reddish Brown (10 R 4/6). Well-site logger reports limestone fragments in cuttings. BC = 5,10,18.
50	CLAY	Dense clay. Pale Reddish Brown (10 R 5/4). BC = $17,74,83$.
51	CLAY	Clay with some gravel and limestone. Pale Reddish Brown (10 R 5/4). BC = 15,42,0.
55	CLAY	Clay with fine grained sand, lumps of massive clay. Pale Reddish Brown (10 R 5/4). BC = 100 for 5 inches.
57	CLAY	Dense clay. Dark Reddish Brown (10 R $3/4$). BC = N.R.

T.D. = 57 Feet.

LITHOLOGIC LOG

Location:	ENRON Pumping Station #5, Thorea	u, N.M.
Boring No.:	5-7B	
Drilling Method:	Hollow Stem Auger	
Rig type:	CME 75	
Drilling fluids:	None	
Date Started:	9/27/89 Date Finished:	9/27/89
Total Depth Drilled:	32 feet	
Drilling Contractor:	Western Technologies Inc.	

DEPTH INTERVAL

<u>(feet)</u>	~RD	DESCRIPTION OF MATERIAL
5	SAND	Very fine grained sand, well sorted. Pale Red (10 R 6/2). BC = 4,3,5.
10	SAND	Fine grained sand, well sorted. Moderate Reddish Brown (10 R 4/6). BC = 2,10,12.
15	CLAYEY SAND	Very fine grained sand and silt with clay. Moderate Reddish Brown (10 R 4/6). BC = $4,10,10$.
20	SILTY SAND	Very fine grained sand with silt. Pale Reddish Brown (10 R 5/4). Drill-site logger reports caliche seams, hard drilling @ 17 & 22 feet. BC = 11,17,18.
25 .	SANDY SILT	Silt with very fine grained sand. Moderate Reddish Brown (10 R 4/6). BC = 10,16,27.
30	SAND	Calcite cemented fine to medium grained sand with minor silt and clay. Moderate Reddish Brown (10 R 4/6). BC = 12,22,35.
32	SILTY SAND	Fine grained to very fine grained sand, some minor coarse to medium grained sand. Calcite cement. Moderate Reddish Brown (10 R 4/6). BC = 6,8,10.

T.D. = 32 Feet.

LITHOLOGIC LOG

Location: ENRON Pumping Station #5, Thoreau, N.M. Boring No.: 5-8B Drilling Method: Hollow Stem Auger CME 75 Rig type: Drilling fluids: None Date Finished: 9/25/89 Date Started: 9/25/89 Total Depth Drilled: 37 feet Drilling Contractor: Western Technologies Inc. DEPTH INTERVAL DESCRIPTION OF MATERIAL (feet) 5 SILTY SAND Very fine grained sand and silt. Moderate Reddish Brown (10 R 4/6). BC = 3,7,8. Dry. 10 SILTY SAND Very fine grained sand and silt. Pale Reddish Brown (10 R 5/4). BC = 3, 9, 11. Dry. 15 SAND Very fine grained sand and minor silt. Calcite cement. Moderate Reddish Brown (10 R 4/6). Damp. BC = 9, 13, 11.20 SAND Very fine grained sand and occasional pebbles of grey limestone. Moist. Moderate Reddish Brown (10 R 4/6). BC = 5, 11, 18.24 SAND Very fine grained calcite cemented sand. Very hard drilling. Moderate Reddish Brown (10 R 4/6).25 SAND fine grained Very calcite cemented sand and silt. Separate grey limestone fragments. BC = 18,31,36. Moderate Reddish Brown (10 R 4/6). 30 CLAYEY SILT Calcite cemented clayey silt. Damp. Moderate Reddish Brown (10 R 4/6). BC = 7,18,30.

35	CLAYEY SILT	Clayey silt with occasional fragments of grey limestone. Moderate Red (5 R 4/6). Moist. BC = 18,57 for 5 inches.
37	CLAY	Dense clay, some calcite cement. Alteration spots. Damp. Pale Red (10 R 6/2). BC = 1.3.31.

T.D. = 37 Feet.

LITHOLOGIC LOG

ENRON Pumping Station #5, Thoreau, N.M. Location: Boring No.: 5SB-1 Drilling Method: Hollow Stem Auger CME 75 Rig type: Drilling fluids: None Date Started: 9/29/89 Date Finished: 9/29/89 Total Depth Drilled: 35 feet Drilling Contractor: Western Technologies Inc.

DESCRIPTION OF MATERIAL

DEPTH INTERVAL (feet)

5 SILTY SAND Sand is very fine grained and well sorted. Moderate Reddish Brown (10 R 4/6). BC = 3, 4, 4. 10 SAND Medium to fine grained sand, occasional calcareous fragments up to 3 cm. Moderate Reddish Brown (10 R 4/6). BC = 2,3,4. 15 SAND Medium to fine grained, less than 2% coarse sand and gravel. Damp. Moderate Reddish Brown $(10 R 4/6) \cdot BC = 5,9,14$. 20 SANDY SILT Very fine grained sand and silt. Minor clay. Well sorted. Damp. Moderate Reddish Brown (10 R 4/6). BC = 7,10,13. 25 SAND Graded sand from very coarse sand and small gravel to very fine grained sand and silt. Moist. Moderate Reddish Brown (10 R 4/6). BC = 6,7,8. 30 SAND Very coarse sand and gravel to fine grained sand. Moist. Moderate Reddish Brown (10 R 4/6). BC = 6,8,10. 35 SANDY SILT Medium to fine grained sandy silt with minor clay. Damp. Moderate Reddish Brown (10 R 4/6). BC = 10,27,32.

T.D. = 35 Feet.

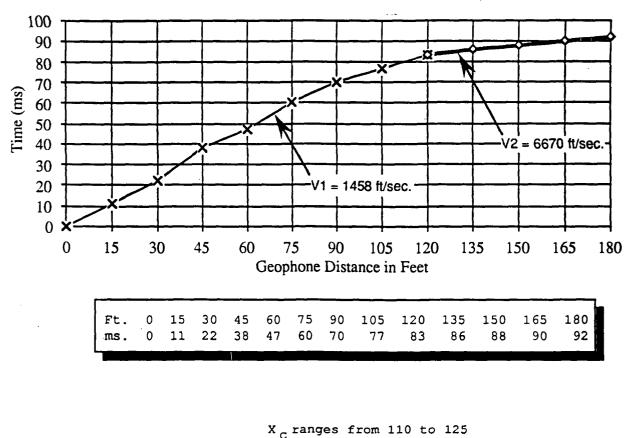
Borehole Geophysical Logs

Ą

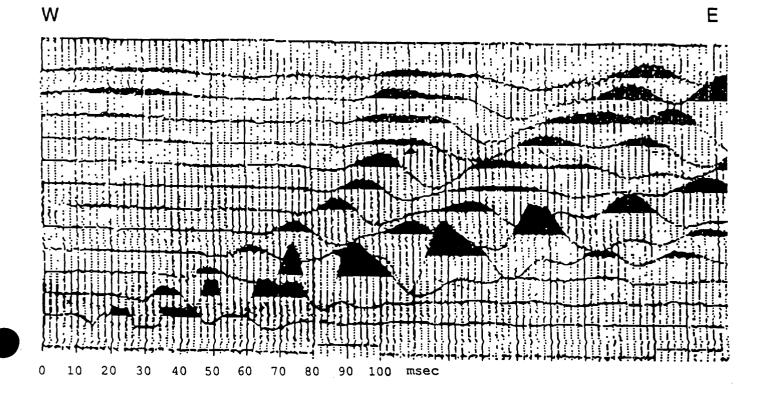
$$5-1 = 5-1A$$

 $5-2 = 5-2A$
 $5-3 = 5-3A$

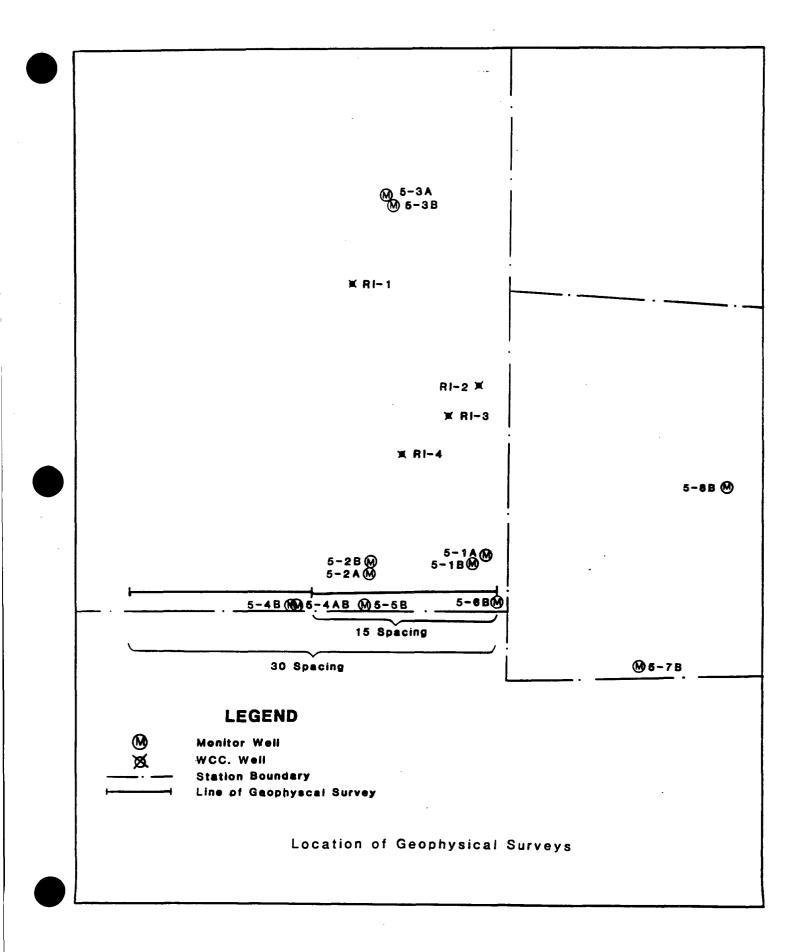
NM OIL CONSERVATION DEPT


WELLLOG # <u>5-1</u> REMOVED FROM FILE Gw-80 Reports 1990 V.2.BOX

NUMBER //


RETURNED TO CUSTOMER

Appendix G: Surface Geophysical Data


Representative Seismogram and Analysis

Depth =
$$\frac{X_{c}}{2} \left(\frac{6670 - 1458}{6670 + 1458} \right)^{1/2} = 44' \text{ to } 50'$$

Seismic Line W2S

Appendix H: Slug Test Data

DATE TIME CUM T BOREHOLE D to W H/Ho HEAD(FT) (FT) (MIN) (H:M:S)_____ 45.10 NA 31-Aug-89 13:53:00 0.00 0.00 0.17 -0.34 45.44 NA 31-Aug-89 13:53:10 1.00 0.33 1.03 44.07 31-Aug-89 13:53:20 0.83 0.50 0.85 44.25 31-Aug-89 13:53:30 0.84 44.26 0.82 31-Aug-89 13:53:40 0.67 0.83 44.27 0.81 31-Aug-89 13:53:50 0.83 0.80 1.00 0.82 44.28 31-Aug-89 13:54:00 44.28 0.80 31-Aug-89 13:54:10 1.17 0.82 44.29 0.79 31-Aug-89 13:54:20 1.33 0.81 31-Aug-89 13:54:30 1.50 0.81 44.29 0.79 31-Aug-89 1.67 0.80 44.30 0.78 13:54:40 44.31 0.77 31-Aug-89 1.83 0.79 13:54:50 44.32 0.76 31-Aug-89 13:55:00 2.00 0.78 31-Aug-89 13:55:10 2.17 0.78 44.32 0.76 31-Aug-89 2.33 0.77 44.33 0.75 13:55:20 31-Aug-89 2.50 0.77 44.33 0.75 13:55:30 0.74 31-Aug-89 13:55:40 2.67 0.76 44.34 31-Aug-89 13:55:50 2.83 0.76 44.34 0.74 3.00 0.75 44.35 0.73 31-Aug-89 13:56:00 0.74 31-Aug-89 13:56:20 3.33 44.36 0.72 31-Aug-89 13:56:40 3.67 0.74 44.36 0.72 31-Aug-89 13:57:00 4.00 0.74 44.36 0.72 0.72 44.38 0.70 31-Aug-89 13:57:30 4.50 31-Aug-89 13:58:00 5.00 0.71 44.39 0.69 5.50 31-Aug-89 13:58:30 0.70 44.40 0.68 0.70 31-Aug-89 13:59:00 6.00 44.40 0.68 31-Aug-89 13:59:30 6.50 0.70 44.40 0.68 31-Aug-89 14:00:00 7.00 0.69 44.41 0.67 31-Aug-89 14:01:00 8.00 0.68 44.42 0.66 31-Aug-89 9.00 44.45 0.63 14:02:00 0.65 31-Aug-89 14:04:00 11.00 0.64 44.46 0.62 31-Aug-89 0.59 14:06:00 13.00 0.61 44.49 31-Aug-89 0.59 44.51 0.57 14:08:00 15.00 31-Aug-89 14:10:00 17.00 0.56 44.54 0.54 31-Aug-89 14:15:00 22.00 0.50 44.60 0.49 31-Aug-89 27.00 0.46 44.64 0.45 14:20:00 31-Aug-89 14:25:00 32.00 0.40 44.70 0.39 31-Aug-89 14:30:00 37.00 0.36 44.74 0.35 31-Aug-89 14:40:00 47.00 0.28 44.82 0.27 31-Aug-89 14:50:00 57.00 0.20 44.90 0.19 67.00 31-Aug-89 15:00:00 0.20 44.90 0.19 31-Aug-89 15:20:00 87.00 0.14 44.96 0.14 31-Aug-89 16:00:00 127.00 0.10 45.00 0.10 0.10 31-Aug-89 16:30:00 157.00 0.10 45.00 31-Aug-89 17:30:00 217.00 0.10 45.00 0.10 0.09 31-Aug-89 19:00:00 307.00 45.01 0.09 31-Aug-89 22:00:00 487.00 0.07 45.03 0.07 01-Sep-89 07:10:00 917.00 0.00 45.10 0.00

5-1B(SHALLOW)

<	·				>
DATE	TIME	CUM T	BOREHOLE	D to W	Н/Но
01122	(H:M:S)	(MIN)	HEAD(FT)	(FT)	,
					=======
31-Aug-89	17:35:00	0.00	0.00	47.91	NA
31-Aug-89	17:35:05	0.08	-0.02	47.93	NA
31-Aug-89	17:35:10	0.17	0.38	47.53	1.00
31-Aug-89	17:35:15	0.25	0.29	47.62	0.76
31-Aug-89	17:35:20	0.33	0.26	47.65	0.68
31-Aug-89	17:35:25	0.42	0.23	47.68	0.61
31-Aug-89	17:35:30	0.50	0.22	47.69	0.58
31-Aug-89	17 :35: 35	0.58	0.20	47. 71	0.53
31-Aug-89	17:35:40	0.67	0.20	47.71	0.53
31-Aug-89	17:35:45	0.75	0.19	47.72	0.50
31-Aug-89	17:35:50	0.83	0.15	47.76	0.39
31-Aug-89	17:35:56	0.93	0.15	47.76	0.39
31-Aug-89	17:36:05	1.08	0.17	47.74	0.45
31-Aug-89	17:36:10	1.17	0.17	47.74	0.45
31-Aug-89	17:36:25	1.42	0.16	47.75	0.42
31-Aug-89	17:36:35	1.58	0.15	47.76	0.39
31-Aug-89	17:36:45	1.75	0.14	47.77	0.37
31-Aug-89	17:36:55	1.92	0.14	47.77	0.37
31-Aug-89	17:37:05	2.08	0.13	47.78	0.34
31-Aug-89	17:37:15	2.25 2.42	0.12	47.79	0.32
31-Aug-89	17:37:25 17:37:35	2.42	0.12 0.11	47.79 47.8 0	0.32
31-Aug-89 31-Aug-89	17:37:45	2.58	0.11	47.80	0.29 0.29
31-Aug-89	17:38:00	3.00	0.10	47.81	0.29
31-Aug-89	17:38:15	3.25	0.10	47.81	0.26
31-Aug-89	17:38:30	3.50	0.09	47.82	0.24
31-Aug-89	17:38:45	3.75	0.09	47.82	0.24
31-Aug-89	17:39:00	4.00	0.08	47.83	0.21
31-Aug-89	17:39:15	4.25	0.08	47.83	0.21
31-Aug-89	17:39:30	4.50	0.07	47.84	0.18
31-Aug-89	17:39:45	4.75	0.07	47.84	0.18
31-Aug-89	17:40:00	5.00	0.06	47.85	0.16
31-Aug-89	17:40:30	5.50	0.06	47.85	0.16
31-Aug-89	17:41:00	6.00	0.05	47.86	0.13
31-Aug-89	17:40:30	5.50	0.05	47.86	0.13
31-Aug-89	17:42:00	7.00	0.04	47.87	0.11
31-Aug-89	17:42:30	7.50	0.03	47.88	0.08
31-Aug-89	17:43:00	8.00	0.03	47.88	0.08
31-Aug-89	17:44:00	9.00	0.02	47.89	0.05
31-Aug-89	17:45:00	10.00	0.02	47.89	0.05
31-Aug-89	17:46:00	11.00	0.02	47.89	0.05
31-Aug-89	17:47:00	12.00	0.01	47.90	0.03
31-Aug-89	17:48:00	13.00	0.01	47.90	0.03
31-Aug-89	17:50:00	15.00	0.00	47.91	0.00
31-Aug-89	17:52:00	17.00	0.00	47.91	0.00
31-Aug-89	17:57:00	22.00	0.00	47.91	0.00
31-Aug-89	18:02:00	27.00 37.00	0.00 0.00	47.91 47.91	0.00 0.00
31-Aug-89	18:12:00	47.00	0.00	47.91	0.00
31-Aug-89	18:22:00	47.00	0.00	7/071	0.00

5-2B(SHALLOW)

5-3B(SHALLOW)

<	·				>
DATE	TIME	CUM T	BOREHOLE	D to W	H/Ho
	(H:M:S)	(MIN)	HEAD(FT)	(FT)	•
^					
31-Aug-89	16:08:00	0.00	0.00	44.06	NA
31-Aug-89	16:08:05	0.08	0.00	44.06	NA
31-Aug-89	16:08:10	0.17	-0.18	44.24	NA
31-Aug-89	16:08:15	0.25	0.46	43.60	NA
31-Aug-89	16:08:20	0.33	0.69	43.37	NA
31-Aug-89	16:08:25	0.42	0.90	43.16	1.00
31-Aug-89	16:08:30	0.50	0.79	43.27	0.88
31-Aug-89	16:08:37	0.62	0.83	43.23	0.92
31-Aug-89	16:08:42	0.70	0.71	43.35	0.79
31-Aug-89	16:08:50	0.83	0.64	43.42	0.71
31-Aug-89	16:08:55	0.92	0.61	43.45	0.68
31-Aug-89	16:09:00	1.00	0.57	43.49	0.63
31-Aug-89	16:09:10	1.17	0.47	43.59	0.52
31-Aug-89	16:09:20	1.33	0.47	43.59	0.52
31-Aug-89	16:09:30	1.50	0.43	43 .63	0.48
31-Aug-89	16:09:40	1.67	0.39	43.67	0.43
31-Aug-89	16:09:50	1.83	0.35	43.71	0.39
31-Aug-89	16:10:00	2.00	0.32	43.74	0.36
31-Aug-89	16:10:10	2.17	0.28	43.78	0.31
31-Aug-89	16:10:20	2.33	0.26	43.80	0.29
31-Aug-89	16:10:30	2.50	0.23	43.83	0.26
31-Aug-89	16:10:40	2.67	0.21	43.85	0.23
31-Aug-89	16:10:50	2.83	0.20	43.86	0.22
31-Aug-89	16:11:00	3.00	0.18	43.88	0.20
31-Aug-89	16:11:10	3.17	0.16	43.90	0.18
31-Aug-89	16:11:20	3.33	0.15	43.91	0.17
31-Aug-89	16:11:30	3.50	0.14	43.92	0.16
31-Aug-89	16:11:40	3.67	0.13	43 .93	0.14
31-Aug-89	16:11:50	3.83	0.12	43.94	0.13
31-Aug-89	16:12:00	4.00	0.11	43.95	0.12
31-Aug-89	16:12:10	4.17	0.10	43.96	0.11
31-Aug-89	16:12:20	4.33	0.09	43.97	0.10
31-Aug-89	16:12:30	4.50	0.08	43.98	0.09
31-Aug-89	16:12:40	4.67	0.07	43.99	0.08
31-Aug-89	16:12:50	4.83	0.07	43.99	0.08
31-Aug-89	16:13:00	5.00	0.06	44.00	0.07
31-Aug-89	16:13:20	5.33	0.05	44.01	0.06
31-Aug-89	16:13:40	5.67	0.04	44.02	0.04
31-Aug-89	16:14:00	6.00	0.04	44.02	0.04
31-Aug-89	16:14:20	6.33	0.03	44.03	0.03
31-Aug-89	16:14:40	6.67		44.03	0.03
31-Aug-89	16:15:00	7.00	0.02	44.04	0.02
31-Aug-89	16:15:30	7.50	0.02	44.04	0.02
31-Aug-89	16:16:00	8.00		44.05	0.01
31-Aug-89	16:16:30	8.50	0.01	44.05	0.01
31-Aug-89	16:17:00	9.00	0.00	44.06	0.00

Appendix I: Chemical Sampling Protocol and Documentation

Sampling Protocol Prepared by GWRC. Used Prior to September 27, 1989.

SAMPLE COLLECTION PROCEDURES

I.	Cont	<u>ainers</u>		Bottle Number
	Α.	PCBs:	Four 1-liter glass bottles with <u>no</u> preservative per sample	13 or Amber Glass
		NOTE:	ENRON has requested 100% splits on POB samples, thus 2 bottles/sample for GWRC, 2 bottles per sample for ENRON.	·
	В.	VOCs:	Three 40-ml VOA vials with preservative per sample	VOA vial
	с.	B/NAs:	Two 1-liter glass bottles with <u>no</u> preservative per sample	Amber Glass
	D.	Common Ic	ons: One 500 ml plastic bottle with <u>no</u> preservative per sample	lD
	Ε.	Nitrate:	One 16 oz glass bottle <u>with</u> preservative per sample	2T
	F.	Trace Met	als (Dissolved): One 500 ml plastic bottle with <u>no</u> preservative per sample	4D
II.	Samp	le Collect	ion - Individual Parameter Groups	
	Α.	POBs 1. Use caps	l liter unpreserved glass containers wit	h Teflon
		2. a.	Fill two containers for each GWRC sample (blanks and dups). NOTE: Second c requested by lab as backup. Fill two containers for each ENRON split se	ontainer
		4. Fill	<u>10T</u> prerinse containers I containers at least to neck of bottle lect one field blank (one set of four contail	ners) and
		Sect	field duplicates (two sets of four containe tion III, QC sampling procedures. NCTE: Pro sample splits for ENRON.	
·		 ENRC NOTE extinution with hour 	ON splits go in separate cooler E: Holding time for PCB samples is 72 hours raction, 40 days thereafter. Sample pH hin 5-9 range if samples not extracted w rs of collection. Please call the office fo tructions if groundwater pH exceeds this rang	must be ithin 72 r further

- B. VOCs
 - Use three 40 ml preserved VOA vials per sample (amount requested by lab)
 - Vials contain acid preservative (HCL), therefore do <u>NOT</u> prerinse vials and avoid contact with acid.
 - 3. Fill vials with no headspace
 - 4. Collect one trip blank, (prepared by lab), one field blank (one set of three containers), and two duplicates (two sets of two containers). See QC sample procedures.
- C. B/NAs
 - 1. Use two 1-liter unpreserved glass bottles per sample
 - 2. Do <u>NOT</u> prerinse bottles
 - Collect one field blank (one set of two containers) and two field duplicates (two sets of two containers)
- D. Common Ions
 - 1. Use one 500 ml unpreserved plastic bottle per sample
 - 2. Prerinse bottle with sample water
 - 3. Do <u>NOT</u> collect trip blank for common ions. Even if one has been prepared by lab, do not submit it for analyses.
- E. Nitrate
 - Use one 16 oz glass container preserved with Sulfuric Acid (2 mls) for each sample
 - 2. Do <u>NOT</u> prerinse bottle. Avoid contact with acid.
 - 3. Do <u>NOT</u> collect trip blank for nitrate
- F. Trace Metals
 - 1. Use one 500-ml **unpreserved** plastic bottle per sample
 - 2. Prerinse sample bottle
 - Indicate on sample label that analyses is for <u>DISSOLVED</u> metals
 - 4. Indicate on chain-of-custody and analytical request schedule that Dissolved Trace Metal samples be filtered and acidified upon receipt at the laboratory
- III. Sample Collection Quality Control Samples
 - A. Sample Splits
 - 1. Collect 100% splits (two containers per sample) of PCB samples for ENRON. This includes Field blank and duplicates collected for PCB analyses.
 - 2. Store ENRON samples in separate cooler
 - B. Trip Blanks
 - 1. Trip blanks for VOC analyses have been prepared by the laboratory
 - 2. Trip blanks must be kept in coolers with VOC samples at all times
 - Trip blanks must be labelled as "Trip Blank" and type of analyses (i.e., VOCs by 624). NOTE: Lab has prepared trip blanks for each type of analyses. Even so, do NOT

submit trip blank for PCBs, B/NAs, common ions, nitrate or trace metals.

- C. Field Blanks
 - Collect same number of containers for field blanks as for sample (i.e., three vials for VOC analysis)
 - Fill one field blank with distilled water at any well site (Note well site in field notes.) Field blank will be comprised of two 1-liter glass containers for PCB analyses, three 40-ml vials for VOC analyses and two 1liter glass containers for PCB analyses.
 - 3. Label "Field Blank," parameter and method
 - 4. Return to cooler with other like samples
- D. Duplicates
 - 1. Collect two sets of duplicates for organics
 - Collect duplicates in same number of containers as for samples, with sample water from two different wells. Duplicates will be comprised of containers for PCBs, VOCs and B/NAs.
 - 3. Fill containers after collecting primary samples at well
 - 4. Label duplicate samples with "A" after well number
- E. If <u>NOT</u> using dedicated pump or bailer, take one equipment blank for each group of organic parameters. (Distilled water rinseate collected after equipment has been cleaned between well sites.) Label "equipment blank," note time and location on field notes.

IV. Miscellaneous

- A. Sample labels have been provided by lab, please use them if adequate.
- B. Indicate lab bottle number on chain-of-custody and analytical request schedule forms
- C. For organics, indicate parameters and methods on sample labels and sample forms

VOCs method 624 B/NAs method 625 PCBs method 608

- D. Inorganics
 - 1. For Trace Metals, indicate <u>DISSOLVED</u> on all labels and forms
 - 2. On analytical request schedule indicate individual metals and request for lab filtration and acidification

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium (Tot), Copper, Iron, Lead, Manganese, Mercury,

Molybdenum, Nickel, Selenium, Silver, Strontium, Thallium, Zinc

3. For Common Ions, list individual ions on analytical request schedule

Calcium, Magnesium, Sodium, Potassium, Carbonate, Bicarbonate, Chloride, Sulfate, Fluoride, Boron, Silica, TDS

DISSOLVED TRACE METALS: PLEASE FILTER AND ACIDIFY UPON RECEIPT AT LABORATORY

PRATECT NO. 80310				REMARKS and/or additional analysis to be performed								GWRC 041
				OTHER (Method					.			
EDULE		0	***	OTHER (Method								
Laboratory request schedule	ORGANIC ANALYSES	ENRON - NEW MEXICO	******EPA ORGANIC PRIORITY POLLUTANTS******	BASE/NEUTRAL AND ACID ORGANICS (Method 625)								
LABORA	a	Ē	ANIC PRIORI	VOLATILE ORGANICS (Method 624)								
			****EPA OR	PCBs (Method 608)								
			**	DATE Sampled								
			·	SAMPLE Identifier								

· .

İ

ĺ

PROJECT NO. 89310			л								
E			REMARKS and/or additional analysis to be performed						Silica TDS Sulfate	Strontium Thallium Zinc	at laboratory.
LABORATORY REQUEST SCHEDULE	INORGANIC ANALYSES	ENRON - NEW MEXICO	NLTRATE						pH Sod1um	se Nickel Selentum num Silver	samples upon receipt at laboratory.
LABORATO	INOR	ENRO	DISSOLVED <u>2</u> / Trace Metals 1						ʻide Magnesium ʻide Potassium	Copper Manganese Iron Mercury Lead Molybdenum	metal
			COMMON ¹			•		•	Calcium Chloride Carbonate Fluoride	otal)	and acidify tr
			DATE Er sampled						ate	9	Please filter and acidify trace
			SAMPLE Identifier						1 COMMON IONS: B1carbon Boron	2 TRACE METALS Antfmony Arsenic Barium	* NOTE:

i

Standard Operating Procedures and Health and Safety Plan Prepared by and Used by DBS&A for all Sampling from September 27, 1989 Forward.

• GROUND-WATER CONTAMINATION • UNSATURATED ZONE INVESTIGATIONS • WATER SUPPLY DEVELOPMENT •

Standard Operating Procedure

For

Soil Sampling

prepared for

Transwestern Pipeline Company

Prepared By Reviewed By Approved By

9 27/29 Date Date Date 9/27/85

Standard Operating Procedure for Soil Sampling Prepared for Transwestern Pipeline Company

1. PURPOSE

The intent of this Standard Operating Procedure (SOP) is to provide technical guidance to Daniel B. Stephens & Associates, Inc. (DBS&A) field personnel for the collection and handling of soil samples. This document contains specific guidelines for

1) sampling equipment decontamination, preparation, and handling;

2) sample collection;

3) sample preservation, handling, and shipping;

4) chain of custody procedures.

2. Equipment Preparation

Care will be taken to ensure that all field equipment is clean and in proper operating condition prior to departure for the field. This requires that each piece of equipment be inspected, cleaned, calibrated (if necessary) at the DBS&A offices prior to the start of field activities. Any deficiencies will be reported immediately to the project manager.

2.1 Sampling Equipment Cleaning

2.1.1 Soil Sampling Equipment

The soil sampling equipment shall be thoroughly decontaminated before each use. The cleaning method shall include the following, at minimum:

- i) All sampling equipment (split spoons, drive shoes, sample rings, spatulae, etc.) will be scrubbed in a clean wash tub containing a non-phosphate detergent in distilled/deionized water solution. All scrub brushes and washing equipment will be clean and appropriate for such use; no wood handled washing brushes are to be used. Fresh vinyl or latex gloves will be worn during the entire washing and rinsing operation.
- ii) The equipment will be rinsed in distilled/deionized water.
- iii) The equipment will be thoroughly steam cleaned and placed in a clean protected area until use.

2.1.2 <u>Sampling Equipment Handling and Decontamination</u>

All down-hole sampling equipment will be cleaned between sampling events. The sampling equipment will be thoroughly washed in a LIQUINOX solution, followed by a tap water rinse, followed by a thorough steam cleaning. If considerable hydrocarbon contamination is encountered, it may be necessary to wipe the sampling equipment with an acetone-wetted cloth prior to the tap water rinse, or to steam-clean the equipment prior to the LIQUINOX wash.

3. SAMPLE COLLECTION

3.1 Soil Sample Collection and Logging Procedures

Two types of samples will be collected during the drilling operations:

- i) Soil-water chemistry samples
- ii) Geologic samples, for detailed geologic logging

All samples will be collected at 5 foot intervals to 35 feet below land surface using a modified California, ring-type sampler. The sampler will be driven into the borehole using a top mounted hammer. Blow counts will be recorded for all sampler driving events. The total depth of penetration of the sampling equipment will be noted in order to verify that the samples are representative of the indicated horizon.

Upon retrieval, the core barrel will be opened on a clean surface using clean vinyl or latex gloves and a decontaminated spatula. The individual samples will be collected according to the following scheme: i) The samples to be collected for chemical analysis will be collected first. These samples will be selected from an interior stainless steel ring, away from any possible sloughed or disturbed material at the ends of the core barrel. Geologic samples will be collected last, and have the lowest priority. If necessary, geologic samples may be collected from loose (obviously non-sloughed) material and from partially filled rings. All remaining loose, non-slough, material will be placed in a zip-lock baggie for geologic logging and possible headspace analysis.

3.2 Soil-Water Chemistry Sample Collection

Soil samples for later analysis of pore-fluid chemistry will be collected using a split-spoon sampler, a modified California ring-type sampler, or, in the event that either of these methods is inapplicable, an appropriate alternate method. Once the core barrel is opened, the soil-water chemistry sample ring will be removed from the sample collection device using a clean spatula. One end of the sample reing will be immediately covered with a teflon membrane and a plastic end cap. The other end will be covered in a like manner as quickly as possible. Once both ends are capped, the caps should be secured by wrapping with vinyl tape. If absolutely necessary, due to sample disturbance, insufficient

sample within the rings, etc., the soil samples may be removed from the ring or sampling device, and quickly packed into pre-cooled, 250 ml wide-mouth glass bottles with teflon liners. The soil will be packed tightly into the sample bottles, and headspace will be minimized. All scoops, spatulas, and sampling equipment will be cleaned according to the cleaning guidelines outlined previously. The immediate work area within the sample collection area will be cleaned between sampling events. Full sample rings and bottles will be shielded from direct sunlight and placed into a cooler as soon as possible after collection. Fresh latex gloves shall be worn during the sampling operations.

3.3 Geologic Samples

Upon retrieval, the geologic samples will be removed from the core barrel, and visually examined, logged, labeled, and placed in appropriate containers for storage. The following parameters should be noted on a log form:

- i) Approximate moisture content.
- ii) Sample description based on particle size.
- iii) Particle size gradation, or any trends in particle size distribution.
 - iv) Particle lithology, if evident in the hand sample.
 - v) Degree of sorting.
- vi) Sample color.
- vii) Organic vapor levels of the headspace over the samples within the sampling equipment, and within the sample bags once the samples have been placed in their appropriate containers, if measured.

Loose split-spoon geologic samples will be placed in Zip-Loc type bags, which have been labeled to indicate the project number, borehole name, depth increment, date and time of sample collection, sampling personnel present, and approximate sample description. Ring-type geologic samples will be wrapped in aluminum foil prior to being placed in labeled Zip-Loc bag. In addition, an orientation arrow will be marked on the rings, and on the aluminum wrap of the ring-type samples. After collection and geologic logging, all geologic samples will be stored in a fiberboard or other suitable box.

4. QA/QC AND CHAIN OF CUSTODY

The chain of custody program shall include the following elements:

1) Standardized sample labels, as provided by the analytical laboratory. Information to include: sample name/ID number, project ID number, parameters to be analyzed for, date and time of sample collection, and collectors name. The labels are to be permanently affixed to each bottle and vial, and shall be filled out prior to sample collection.

2) Cooler Seal. A chain of custody seal shall be placed across the gap between the cooler body and the lid in order to ensure that the samples have not been tampered with during transit. Each cooler seal shall be dated and initialed by the collector.

3) Chain of custody record. An appropriate chain of custody form shall be used.

4) Field logbook.

A field logbook shall be maintained which includes entries on:

* date and time of each activity

- * well ID
- * well depth
- * depth to samples interval and measurement method
- * presence of contamination
- * total blow count
- * approximate sample recovery
- * sample collection and drilling method
- * sequence of sample collection
- * sample ID numbers
- * analyses requested
- * preservatives and sample containers used
- * field personnel involved in sample collection
- * shipper and shipping date/time
- * calibration and testing of equipment
- * field observations
- * weather conditions

Standard Operating Procedure for Soil and Ground-Water Sampling

1. PURPOSE

The intent of this Standard Operating Procedure (SOP) is to provide technical guidance to Daniel B. Stephens & Associates, Inc. (DBS&A) field personnel for the collection and handling of ground-water quality samples. This document contains specific guidelines for

- 1) sampling equipment cleaning, preparation, and handling;
- 2) well and well-head preparation;
- 3) sample collection;
- 4) sample preservation, handling, and shipping;
- 5) quality control/quality assurance; and
- 6) chain of custody procedures.

2. DUTIES AND RESPONSIBILITIES

It is the direct responsibility of the DBS&A project manager to ensure that all requirements and procedures contained in this SOP are followed during the field program. In addition, the DBS&A project manager shall provide all DBS&A field personnel with copies of this SOP, which they are required to read and keep available at all times during the field work.

The following personnel will be involved in the sampling program:

Jeffrey A. Havlena

Project Manager/Health and Safety Officer

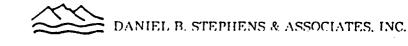
Greg Lewis Kevin Myers Andrew Orrell

Staff Hydrologist Staff Hydrologist Staff Geologist

2.1 Project Manager

The project manager is responsible for the completion of all field activities as specified in this SOP and in the Work Plan for Ground-Water Quality Sampling (WP). The project manager shall monitor daily manpower requirements and expenditures, and shall be responsible for compliance to preliminary budget estimates. The project manager shall approve and be responsible for the development and implementation of subcontractor contracts, work agreements, work plans, SOP's, and health and safety plans. The project manager shall be responsible for operational decisions necessary to implement the work plan, SOP's, and health and safety plan.

2.2 Project Hydrogeologist


The project hydrogeologist shall be responsible for implementation of the field program as specified in the WP and this SOP. These duties are to include, but shall not be limited to 1) equipment and supply purchase, rental, maintenance, calibration, and preparation; 2) scheduling and logistics; 3) supervision of field personnel to ensure proper use of equipment and correct implementation of quality assurance/quality control measures; 4) preparation of contracts, work agreements, work plans, SOP's, and Health and Safety plans, and 5) interpretation of data. The project hydrogeologist shall also provide assistance to the DBS&A field personnel when necessary.

2.3 Health and Safety Officer

The health and safety officer shall be responsible for strict adherence to the site and project specific health and safety plan (H&S). The health and safety officer or the appointed health and safety facilitator will monitor on site health and safety issues, advise field personnel and sub- contractors of site specific health and safety concerns, conduct daily tailgate health and safety meetings, conduct the initial team health and safety briefing, and shall report directly to the project manager.

2.4 Staff Hydrologist/Engineer /Geologist

The staff hydrologist/engineer shall be responsible for executing the assigned tasks according to the procedures and techniques outlined in the work plan, the health and safety plan, and this SOP. The staff hydrologist shall read each of the above plans, and shall be familiar with the material contained therein; the staff hydrologist is responsible for the safe and timely completion of all assigned tasks.

3. Equipment Preparation

Care will be taken to ensure that all field equipment is clean and in proper operating condition prior to departure for the field. This requires that each piece of equipment be inspected, cleaned, calibrated, and bench-tested in the DBS&A soil-water laboratory at least three days prior to the start of field activities. Any deficiencies will be reported immediately to the project manager.

Table 1 lists the equipment that shall be taken to the site.

3.1 Sampling Equipment Cleaning

3.1.1 <u>Soil Sampling Equipment</u>

The soil sampling equipment shall be thoroughly decontaminated before each use. The cleaning method shall include the following, at minimum:

- i) All sampling equipment (split spoons, drive shoes, sample rings, spatulae, etc.) will be scrubbed in a clean wash tub containing a non-phosphate detergent in distilled water solution. All scrub brushes and washing equipment will be clean and appropriate for such use; no wood handled washing brushes are to be used. Fresh latex gloves will be worn during the entire washing and rinsing operation.
- ii) The equipment will be rinsed in distilled deionized water.
- iii) The equipment will be thoroughly steam cleaned and placed in a clean protected area until use.

3.1.2 Ground-Water Sampling Equipment

All sampling equipment that may come in direct contact with ground water shall be cleaned prior to each use in order to reduce the possibility of introducing contaminants into the ground water or sample. The cleaning method used shall be 1) appropriate for the type of analysis to be performed on the sample, or, 2) according to the location of the well with respect to areas of known contamination, or, 3) according to the type of sampling equipment used, or, 4) according to the presence or absence of free product within the well.

For wells to be sampled for inorganics and/or metals, or wells outside of the area of known ground-water contamination, the following procedures shall be used:

i) Wash the equipment in non-phosphate detergent (LIQUINOX)

and tap water. All surfaces that may come in direct contact with ground water are to be washed. A clean NALGENE tub will be used to contain the wash solution. Latex gloves will be worn during the entire washing and rinsing process.

ii) The first rinse shall be dilute (0.1 N) hydrochloric acid.

iii) The final rinse shall be distilled/deionized water.

iv) The equipment will be dried before use, to the extent practical.

For sampling equipment to be used for collection of groundwater samples for organics analysis, the following cleaning procedures shall be followed:

i) The equipment is to be washed according to the procedures for inorganics and/or metals.

ii) The first rinse shall be clear tap water.

iii) The second rinse shall be distilled/deionized water.

iv) The third rinse shall be distilled/deionized water.

v) The final rinse shall be organic free water.

vi) The equipment shall be thoroughly dried before use, to the extent practical.

Care shall be taken to ensure that clean sampling equipment does not contact the ground or any other potentially contaminated surface. All wash and rinse water from potentially contaminated equipment shall be contained on site in approved sealed and labeled 55 gallon drums, pending the results of analytical testing. The wash and rinse water will be changed frequently; wash and rinse water will be changed after each use when cleaning obviously contaminated equipment. Latex gloves will be worn by all personnel directly involved in equipment cleaning. Fresh latex gloves shall be worn for each cleaning event, or more frequently, as conditions require.

All cleaned equipment shall be stored in clean, labeled boxes. In addition any equipment that may come in direct contact with ground water or water quality samples shall be wrapped in clean, aluminum foil or inert plastic.

DANIEL B. STEPHENS & ASSOCIATES, INC.

3.2 Equipment Calibration and Testing

All equipment shall be calibrated and bench-tested prior to departure for the field. The following equipment shall be calibrated, adjusted, and tested according to manufacturers instructions (enclosed in the individual equipment cases):

- * pH/MV meter
- * Temperature Meter
- * conductivity meter
- * pump controller/driver

All Calibration and Bench-testing shall be documented, in addition to the initial calibration and bench-testing, all meters shall be inspected daily for operation and calibration. All equipment shall be cleaned after each day of use, or more often, as necessary.

3.3 Soil Sample Collection and Logging Procedures

Four types of samples will be collected during the drilling operations:

- i) Soil-water chemistry samples
- ii) Geologic samples, for detailed geologic logging
- iii) Soil hydraulic properties samples, for determination of hydraulic conductivity and other properties by the DBS&A Hydrology Laboratory.
- iv) Initial moisture content, porosity, bulk density

All samples will be collected at 10 foot intervals using a modified California, ring-type sampler. The sampler will be driven into the borehole using a top mounted hammer. Blow counts will be recorded for all sampler driving events. The total depth of penetration of the sampling equipment will be noted in order to verify that the samples are representative of the indicated horizon.

Upon retrieval, the core barrel will be opened on a clean surface using clean latex gloves and a decontaminated spatula. The individual samples will be collected according to the following scheme: i) The samples to be collected for chemical analysis will be collected first. These samples will be selected from an interior stainless steel ring, away from any possible sloughed or disturbed material at the ends of the core barrel. The samples for initial moisture content determination are to be determined next. The samples for hydraulic properties analysis will be collected next. These samples will be selected from a suitable ring, according to the same criteria as the chemistry samples. Geologic samples will be collected last, and have the lowest priority. If

necessary, geologic samples may be collected from loose (obviously non-sloughed) material and from partially filled rings. All remaining loose, non-slough, material will be placed in a zip-lock baggie for geologic logging and headspace analysis.

3.3.1 Soil-Water Chemistry Sample Collection

Collection of soil samples for later analysis of pore-fluid chemistry will be conducted during the drilling portion of the program. Soil samples will be collected using a split-spoon sampler, a modified California sampler, or, in the event that either of these methods is inapplicable, an appropriate alternate method. The soil sample ring will be removed from the sample collection device, and the ends of the sampling ring will immediately be covered with teflon membrane, end caps placed over the teflon membrane, and wrapped thoroughly with vinyl tape. If absolutely necessary, due to sample disturbance, insufficient sample within the rings, etc., the soil samples may be removed from the ring or sampling device, and quickly packed into pre-cooled, pre-labeled 250 ml wide-mouth glass bottles with teflon liners. The soil will be packed tightly into the sample bottles, and headspace will be minimized. All scoops, spatulas, and sampling equipment will be cleaned according to the cleaning guidelines outlined previously. The immediate work area within the sample collection area will be cleaned between sampling events. Full sample rings and bottles will be shielded from direct sunlight and placed into a cooler as soon as possible after collection. Fresh latex gloves shall be worn during the sampling operations.

3.3.2 <u>Geologic Samples</u>

Upon retrieval, the geologic samples will be removed from the core barrel, and visually examined, logged, labeled, and placed in appropriate containers for storage. The following parameters should be noted on the DBS&A Boring Log form:

- i) Approximate moisture content.
- ii) Sample description based on particle size.
- iii) Particle size gradation, or any trends in particle size distribution.
- iv) Particle lithology, if evident in the hand sample.
- v) Degree of sorting.
- vi) Sample color.
- vii) Organic vapor levels of the headspace over the samples within the sampling equipment, and within the sample bags once the samples have been placed in their appropriate containers.

DANIEL B. STEPHENS & ASSOCIATES, INC.

Loose split-spoon geologic samples will be placed in Zip-Loc type bags, which have been labeled to indicate the project number, borehole name, depth increment, date and time of sample collection, sampling personnel present, and approximate sample description. Ring-type geologic samples will be wrapped in aluminum foil prior to being placed in labeled Zip-Loc bag. In addition, an orientation arrow will be marked on the rings, and on the aluminum wrap of the ring-type samples. After collection and geologic logging, all geologic samples will be stored in a fiberboard or other suitable box.

3.3.3 <u>Soil Hydraulic Properties</u>

In conjunction with geologic and chemistry sample collection, undisturbed samples will be collected at 10 foot intervals for laboratory analysis of hydraulic properties. These samples will be collected from adjacent to the chemistry sample within the same ring sampler device as the other samples. The ends of the sample will be visually checked for integrity; the sample should appear undisturbed, and shall occupy the entire ring volume, leaving no void space. If there is any question as to the integrity and suitability of the samples, an additional suite of samples will be collected from immediately below the sampled interval.

Immediately upon collection and verification of integrity, the sample ring will be marked and sealed. Sample ring marking shall include an up-down orientation arrow on the body of the ring, and borehole number depth interval, time and date, collector, and type of sample shall be indicated on the upper plastic end caps will be sealed tightly with at least three windings of vinyl tape. Samples will be stored in a cool, shaded area, within a cushioned container, and transported to the DBS&A Hydrology Lab for analysis.

3.3.4 <u>Sampling Equipment Handling and Decontamination</u>

All down-hole sampling equipment will be cleaned between sampling events. The sampling equipment will be thoroughly washed in ALCONOX solution, followed by a tap water rinse, followed by a thorough steam cleaning. If considerable contamination is encountered, it may be necessary to wipe the sampling equipment with an acetone-wetted cloth prior to the tap water rinse, or to steam-clean the equipment prior to the ALCONOX wash.

4. GROUND-WATER SAMPLING

4.1 Well and Wellhead Preparation

Prior to ground-water sample collection, the following shall be conducted:

i) The area around the wellhead shall be inspected for integrity, cleanliness, and signs of possible contamination.

ii) A clean plastic sheet shall be spread over the ground around the wellhead.

iii) The cap on the wellhead shall be removed. Any obvious odors within the wellbore should be noted.

iv) The static water level shall be measured to the nearest 0.01 foot using a chalked steel tape, or an appropriate water level sounder. The presence of any contamination on the tape after use shall be noted. The tape shall be cleaned after each use in order to prevent cross contamination.

v) In order to check for floating product, a bailer shall be used to extract a sample from the surface of the water within the well. After an initial visual inspection, the fluid from the bailer shall be slowly poured into a small tub or container in order to check for a sheen or any other sign of free product. Any obvious odors shall be also noted. If free product is detected, the bailer shall be used to remove as much free product as is possible from the wellbore. Whenever a bailer is used within the wellbore, it shall be lowered into the water slowly in order to prevent degassing. All recovered product shall be contained for proper disposal. After any free product has been removed from the wellbore, a fresh plastic sheet shall be emplaced around the wellhead, and all contaminated equipment shall be cleaned, or segregated from the other equipment.

vi) The well shall be purged at a flow rate equal to, or greater than the sampling rate. The following field parameters: temperature, pH, MV, conductivity,

shall be measured at the pump outlet and within a clean container every 0.5 casing volume pumped, or more frequently. Purging shall be considered complete when the above parameters are approximately stable over at least one casing volume. However, a minimum of three (3) casing volumes shall be purged from each well. All fluid from obviously contaminated wells shall be contained for later disposal; anomalous values for the above field parameters, odor, visible sheen, or the presence of free product may be taken as signs of contamination.

Careful notes shall be taken during all of the above activities in order to document all pertinent conditions during the sampling event. In addition, a well sampling form shall be used during well purging and sampling.

4.2 Ground-Water Sample Collection

Once the well has been sufficiently purged, the water quality samples shall be collected. The samples should be collected using a dedicated teflon bailer with a bottom emptying device or a teflon bladder pump as soon as is possible after purging is complete in order to reduce the possibility of volatilization within the wellbore. Under no circumstance should the well be allowed to stand for more than three hours between purging and sample withdrawal.

Samples shall be collected in decreasing order of volatility; volatile organics samples shall be collected first. The pumping rate during sample collection should never equal or exceed the rate at which the well was purged, or, as specified for each suite of analyses. Samples shall be collected only in approved containers, according to the analysis to be performed.

Samples for volatile organics analysis EPA 624 shall be collected in pre-cooled, pre-acidified, certified-clean, 40 ml, borosilicate vials with teflon septae supplied by the analytical laboratory. The pumping rate during collection shall be maintained at less than 100 ml per minute. The water stream shall be directed against the inside surface of the vial, and should be allowed to overflow at least 20 ml. A convex meniscus should be allowed to form across the mouth of the filled vial. The outlet of the sampling pump discharge tubing should never be allowed to come into direct contact with the sample vial or the water within the vial. The vial should then be carefully capped and checked for bubbles before being wrapped and placed into the cooler. If air bubbles are present, the vial shall be emptied, and the filling procedure repeated.

Samples to be analyzed for PCB (via EPA Method 608) and EPA 625 shall be collected in pre-cooled, certified-clean, 1 liter, narrow-mouth, amber, glass bottles with teflon lined cap. The flow rate shall not exceed that used during well purging. The outlet of the sampling pump discharge tubing shall not contact the sample bottle or the water within the sample bottle. The sample bottle shall be filled to approximately full by directing the sample stream down the inside surface of the bottle. The bottle shall be capped immediately after sample collection.

Samples to be analyzed for major ions/inorganics shall be collected in pre-cooled, clean, 1 liter, plastic bottles or cubitainers. The procedures to be followed during sampling shall be as listed above for polynuclear aromatic hydrocarbons. Samples

to be analyzed for metals shall also be collected according to the above procedures, however, the water sample shall be pressure filtered through a clean 0.45 micron filter, and the sample shall be acidified to a pH of <2 with nitric acid immediately upon collection.

After all water quality samples have been collected, the field parameters shall be measured for a final time to ensure that the samples are representative of the aquifer water. If the field parameters are significantly different from the pre-sampling measurement, then the well shall be repurged until the field parameters stabilize, and new samples shall be collected.

All full sample bottles and vials shall be wrapped (glass vials and bottles in bubble wrap) and placed immediately in a cooler. The cooler shall be kept at 4° C by placing at least 8 pounds of cube ice within leak-proof plastic baggies in the cooler. The bags of ice shall be placed in close contact the sample bottles and vials; both on the side of, and on top of, the bottles and vials. Sample bottles and vials shall be protected from direct sunlight during and after sample collection. Full coolers shall be sealed with strapping tape, and mailed VIA Federal Express to the analytical laboratory. Coolers shall be mailed within 24 hours of collection; sooner, if possible to:

> Rocky Mountain Analytical Laboratory Enesco Incorporated 4955 Yarrow Street Arvada, CO 80002 (303)421-6611.

Attn: Cindy Ingram

5. QUALITY ASSURANCE/QUALITY CONTROL

5. QUALITY ASSURANCE/QUALITY CONTROL

The key elements in the quality assurance/quality control (QA/QC) program are sample splits, replicates, blanks, spikes, and fictitious samples. Table 2 lists the types and frequency of QA/QC samples.

6. CHAIN OF CUSTODY

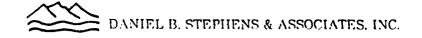
The chain of custody program shall include the following elements:

i) Standardized sample labels, as provided by the analytical laboratory. Information to include: sample name/ID number, project ID number, parameters to be analyzed for, date and time of sample collection, and collectors name. The labels are to be permanently affixed to each bottle and vial, and shall be filled out prior to sample collection.

2) Cooler Seal. A chain of custody seal shall be placed across the gap between the cooler body and the lid in order to ensure that the samples have not been tampered with during transit. Each cooler seal shall be dated and initialed by the collector.

3) Field Logbook

A field logbook shall be maintained which includes entries on:


* date and time of each activity * well ID * well depth * depth to water and measurement method * presence of free product * total purged volume * well purging method * purge pumping rate * approximate well yield * duration of purge pumping * sample collection and pumping method * sequence of sample collection * sample ID numbers * analyses requested * preservatives and sample containers used * field personnel involved in sample collection * field parameters * shipper and shipping date/time * calibration and testing of equipment * field observations * weather conditions

4) Chain of custody record. A chain of custody form shall be used.

7. REVISIONS TO THIS SOP

The methods and procedures contained within this SOP are to be followed rigorously by DBS&A field personnel during the field program. Any deviation from the guidelines contained herein shall not be allowed, unless authorized in writing by the project manager. All such deviations shall be thoroughly documented by the project manager, who has ultimate responsibility for any variance from this SOP. Such documentation shall include reference to the procedure to be revised, a description of the revised procedure, reason for the revision, anticipated effect of the revision (especially with respect to the QA/QC program), personnel involved in the procedure.

8. FIELD TEAM BRIEFINGS

Prior to departure to the field, the DBS&A field team shall meet to discuss the objectives and methods of the field program. The work plan, this SOP, and the health and safety plan shall be discussed in detail by the project manager during the briefing. All of the above plans and SOP's shall have been reviewed by the team members prior to the meeting; all aspects of the field program shall be familiar to all members of the team. In addition to the initial briefing, daily team meetings shall be conducted by the project hydrologist in conjunction with the tailgate health and safety meetings, in order to allow discussion on the anticipated activities of the day.

9. ACKNOWLEDGEMENT

The undersigned have read this SOP, and shall adhere to the methods and procedures described therein:


Name	Title	Date
······································	······	<u> </u>
		<u> </u>

DANIEL B. STEPHENS & ASSOCIATES, INC.

TABLE 1. FIELD EQUIPMENT

	Sample Bottles - 24 Aqueous PNA, 24 Aqueous VOA, 12
	Aqueous Inorganics, 12 Dissolved Metals, 5 VOA Trip
	Blanks, 48 250ml VOA Soil Jars
3	Coolers
1	3 foot Teflon Bailer with bottom emptying, VOA
	sampling device
1	Bailer Tripod
1	Bailer Reel
150ft	Teflon Coated Bailer Cord or natural twine
1	QED Pump Controller/Driver with Fittings
18	Sample Pro Filters
10	Hand Filters with Hand Pump
1	Conductivity Meter
1	pH/MV Meter
1	D.O./Temp Meter
24	Tyvek Suits
36 pr	Tyvek Boot Covers
2	North Medium Respirators
10	Organic Vapor Cartridges
10	Dusts/Mists Pre-Filters
200 pr	Latex Gloves
2 pr	Neoprene Gloves
2 pr	Leather Gloves
2 pr	Safety Goggles

TABLE 1. FIELD EQUIPMENT (continued)

l doz	Disposable Ear Plugs
3	Hard Hats
2 pr	Steel Toed Boots
2 pr	Steel Toed Swamp Boots
2	Plastic Cleaning Trays
1	32 gal Plastic Pail
2	2 gal Plastic Buckets
2	6 gal Plastic Water Jugs
1	Nalgene Dish Pan
1	Plastic Dish Pan
1	Roll Plastic Sheeting
1	Tarp
l	Roll 24" Aluminum Foil
1	gal Liquinox
10 packets	Alconox
5 rolls	Paper Towels
5 rolls	Bubble Wrap
1 roll	Duct Tape
1 rolls	Strapping Tape
2 rolls	Package Tape
≥l gal	Acetone
4 gal	Hexane
50 gal	Distilled/Deionized Water
1	Truck Tool Kit

TABLE 1. FIELD EQUIPMENT (continued)

1	M-Scope
1	Powers Electric Well Rounder
1	Steel Tape for Clean Wells
4	Carpenter Chalk
1	Field Log Book
10	Chain of Custody Forms (Organics)
10	Chain of Custody Forms (Inorganics)
10	Chain of Custody Seals
1	Miscellaneous Equipment Kit

TABLE 2.

SAMPLE TYPE	DESCRIPTION	FREQUENCY OF COLLECTION
Aqueous Primary	Primary Water Quality Sample	Each Well/Sampling Point
Soil Primary	Primary Soil Sample	Each Sampling Interval (10 feet)
Replicate	Replicate to be collected at the same time as the Primary Sample. To be labeled "Replicate"	Every 10th Primary
Trip Blank	Distilled/Deionized water. prepared by contract lab	One per cooler (VOA only)
Aqueous Equipment Blank	Distilled/Deionized water. to be run through field- cleaned sampling pumps	One per day
Fictitious Sample	Replicate sample labeled with fictitious sample name	Every 20th primary
Split	Replicate sample sent to different lab	Every 20th primary
Spike	Blank prepared with known concentration of desired analyate	Every 20th primary

DANIEL B. STEPHENS & ASSOCIATES, INC.

• GROUND-WATER CONTAMINATION • UNSATURATED ZONE INVESTIGATIONS • WATER SUPPLY DEVELOPMENT •

TRANSWESTERN PIPELINE COMPANY SOIL AND GROUND-WATER INVESTIGATION HEALTH AND SAFETY PLAN

FOR

SOIL BORING AND SOIL SAMPLING

Prepared	By:	Ally a. 4	_Date:	ulzıl#7
Reviewed	By:		 _Date:	
Approved	By:	Mrs	 Date:	9/23/89

TRANSWESTERN PIPELINE COMPANY

SOIL AND GROUND-WATER INVESTIGATION

HEALTH AND SAFETY PLAN

FOR

SOIL BORING AND SOIL SAMPLING

1. INTRODUCTION

The health and safety plan contains guidelines for worker safety during the drilling program. The purpose of this plan is to familiarize the field personnel with safe operating procedures, and to serve as a guideline for the implementation of these procedures. The proposed drill site for the soil boring is near the pig receiver, at a location to be selected in coordination with Enron personnel.

1.1 Potential Contamination

Low to moderate levels of polychlorinated biphenol have been documented within the soil 20 feet north of the proposed drill site. Benzene and toluene have been detected in water samples from a well tapping the perched water zone. This well is within 50 feet of the proposed drill site. There is a potential for these compounds to be encountered in low to moderate levels in the soil boring.

Based on currently available information, Level C decontamination, and Health and Safety procedures are to be followed.

2. DUTIES AND RESPONSIBILITIES

It is the direct responsibility of the DBS&A project manager to ensure that all requirements and procedures contained in this Health & Safety Plan are followed during the field program. In addition, the DBS&A project manager shall provide all DBS&A field personnel with copies of this SOP, which they are required to read and keep available at all times during the field work.

The following personnel will be involved in the sampling program:

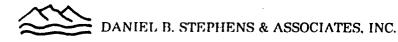
Jeffrey λ. Havlena	Project Manager/Hydrogeologist/ Health and Safety Officer
Earl Mattson	Staff Hydrologist
Stewart S. Smith	Staff Hydrologist
Lori Simpson	Staff Engineer

2.1 Project Manager

The project manager is responsible for the completion of all field activities as specified in this H&S plan and in the Work Plan for Ground-Water and. Soil Quality Sampling (WP). The project manager shall monitor daily manpower requirements and expenditures, and shall be responsible for compliance to preliminary budget estimates. The project manager shall approve and be responsible for the development and implementation of subcontractor contracts, work agreements, work plans, SOP's, and health and safety plans. The project manager shall be responsible for operational decisions necessary to implement the work plan, SOP's, and health and safety plan.

2.2 Project Hydrogeologist

The project hydrogeologist shall be responsible for implementation of the field program as specified in the WP and this H&S plan. These duties are to include, but shall not be limited to 1) equipment and supply purchase, rental, maintenance, calibration, and preparation; 2) scheduling and logistics; 3) supervision of field personnel to ensure proper use of equipment and correct implementation of quality assurance/quality control measures; 4) preparation of contracts, work agreements, work plans, SOP's, and Health and Safety plans, and 5) interpretation of data. The project hydrogeologist shall also provide assistance to the DBS&A field personnel when necessary.



2.3 Health and Safety Officer

The health and safety officer shall be responsible for strict adherence to the site and project specific health and safety plan (H&S). The health and safety officer or the appointed health and safety facilitator will monitor on site health and safety issues, advise field personnel and sub- contractors of site specific health and safety concerns, conduct daily tailgate health and safety meetings, conduct the initial team health and safety briefing, and shall report directly to the project manager.

2.4 Staff Hydrologist/Engineer

The staff hydrologist/engineer shall be responsible for executing the assigned tasks according to the procedures and techniques outlined in the work plan, the health and safety plan, and appropriate SOP. The staff hydrologist shall read each of the above plans, and shall be familiar with the material contained therein; the staff hydrologist is responsible for the safe and timely completion of all assigned tasks.

3. SAFETY GUIDELINES FOR DRILLING AND SAMPLE COLLECTION

The following guidelines are meant to cover operations by the Daniel B. Stephens and Associates, Inc. (DBS&A) field personnel during drilling. Safety guidelines for other activities are not included in this plan, nor are safety guidelines for the drill crew and support personnel under the employ of the drilling contractor. Health and safety issues for the drill crew and support personnel are the responsibility of the drilling contractor, not DBS&A.

Because of the limited scope of this plan, the only issues to be specifically addressed are personal safety issues and vapor monitoring.

3.1 Personal Health and Safety

All DBS&A field personnel are to maintain a safe distance from the area of most activity at the drill rig and all operating air compressors, generators, and similar heavy equipment. A 25 foot radius work area shall be designated around all heavy equipment. DBS&A personnel shall enter this work zone only when absolutely necessary for the performance of the task at hand. Under no circumstance shall DBS&A personnel become directly involved in drilling operations, other than that immediately required for sample collection and the performance of vapor monitoring and geologic logging.

DBS&A personnel shall refrain from direct contact with any recovered soil material. All samples shall be handled according to the guidelines set forth in the standard operating procedures (SOP) document.

3.1.1 <u>Heat Stress</u>

Heat-stress monitoring will be part of the daily regimen, and should include, at minimum, heart-rate monitoring, and/or bodytemperature monitoring. These heat-stress indicators should be observed at least once every hour. If the pulse rate exceeds 110 beats per minute (or the body termperature exceeds 99° F), then the length of the next work period shall be reduced by 10 minutes and the heat-stress parameters observed again at that time. If the pulse rate at the beginning of the next rest period exceeds 100, and the last reading was over 110 (or the body temperature exceeds 99.7° F and the last reading was over 99° F), the work cycle should be reduced by one-third. Whenever pluse-rate and/or body temperature are elevated, work should not be resumed until the pulse rate is below 100 beats per minute, and/or the body temperature is below 99° F. In order to ensure against heat-stress

related problems, loose-fitting clothing shall be worn, and at least 8 oz of fluid should be taken each hour.

3.1.2 <u>Eating and Drinking</u>

No eating, drinking, smoking, or gum or tobacco chewing is allowed within the 25 foot work zone.

3.1.3 Eye Protection

Approved protective eyewear will be worn at all times when within the 25 foot radius work zone. The minimum eyewear protection required will be shatter-proof glasses or goggles.

3.1.4 Dust Protection

When blowing dust makes it necessary to protect personnel, disposable-type dust masks and goggles will be worn. If a respirator is in use, dust/mists pre-filters will be worn.

3.1.5 <u>Noise Protection</u>

Ear plugs will be worn whenever the noise level approaches 80 db, or whenever conditions require.

3.1.6 Disposal of Contaminated Clothing and Equipment

All potentially contaminated clothing, Tyvek coveralls, gloves, paper towels, and other expendable items should be placed and sealed in a plastic bag. Enron station personnel should be consulted as to where to store this bag until later transport offsite. Fresh Tyvek coveralls and work gloves should be donned at the start of each work day, whenever required.

3.2 Vapor Monitoring

The DBS&A field hydrologist will be present near the drilling rig at all times to monitor the work area for organic vapors using a Foxboro-Century OVA-128 organic vapor meter (OVA), or equivalent. OVA readings in the survey will be taken every 5 foot of drillstring advancement, or every 15 minutes of drilling time, whichever occurs first. The headspace within the borehole, and the breathing zone within the work area will be monitored. The drilling supervisor will be notified of all OVA readings, and is responsible for decisions regarding their safety and the continuance of drilling operations.

3.3 Personal Protective Equipment

The following personal protective equipment should be worn at all times while working within the Exclusion Zone (see Section 3.4).

- i) One-piece, hooded, Saranex-coated Tyvek suits.
- ii) NIOSH approved, quarter-face respirator, with organic vapor cartridges.

- iii) Inner latex or vinyl gloves with outer chemical resistant gloves.
 - iv) Chemical resistant, steel toed safety boots, with boot covers.
 - v) Taped joints between gloves, boots, and suit.

vi) Hard Hat

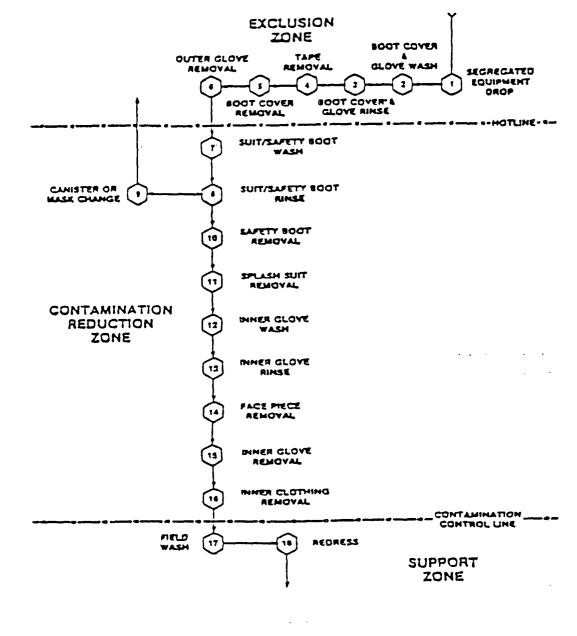
vii) Protective eyewear and ear plugs where necessary.

Because of the relatively low concentrations of contaminants expected within the soil, it is likely that the Saranex Suits, outer gloves, hard hats, eyewear, ear protection, and safety boots can be sufficiently decontaminated in the field to allow reuse during the project. These items are to be field decontaminated and reused wherever possible.

3.4 Site Access and Decontamination Zones

Access into the work area will be restricted according to the task to be performed and the level of PPE. Three zones will be set up around the work area:

1) The Exclusion Zone, defined by the extent of obvious contamination, or a radius 25 feet from the borehole. Level C PPE will be required of all personnel within the Exclusion Zone.


2) The Contamination Reduction Zone, just outside of the Exclusion Zone, which contains the bulk of the decontamination stations.

3) The Support Zone, which contains equipment and material storage.

A Hotline will be established between the Exclusion Zone and the Contamination Reduction Zone. All personnel and equipment within the Exclusion Zone must not cross the Hotline, unless the proper decontamination procedures are followed. A Contamination Control Line will be established between the Contamination Control Zone and the Support Zone. No potentially contaminated materials are to cross the Contamination Control Line unless properly packaged and labeled for disposal.

A total of 18 decontamination stations will be established: six within the Exclusion Zone; ten within the Contamination Control Zone; and two within the Support Zone. Figure 1 shows the different zones and associated stations.

. . .

3.5 Procedure for Decontamination

Station 1: Segregated Equipment Drop

All tools, equipment, and materials used within the Exclusion Zone are to be deposited on a plastic drop cloth or within different containers with plastic liners. All materials deposited at the segregated equipment drop must be thoroughly washed in a Liquinox solution followed by a clean tap water rinse before it can be removed through the Contamination Control Zone. Materials and equipment which cannot be washed, such as notebooks and delicate instruments, should be thoroughly wiped to remove as much potentially contaminated soil as is possible.

<u>Station 2:</u> Boot Cover and Glove Wash

Scrub outer boot covers and gloves with liquinox solution.

<u>Station 3:</u> Boot Cover and Glove Rinse

Rinse liquinox solution using clean tap water.

<u>Station 4:</u> Tape Removal

Remove tape from around gloves and boots and deposit into plastic lined container.

Station 5: Boot Cover Removal

Remove boot covers and deposit in the same plastic lined container as used at Station 4.

Station 6: Outer Glove Removal

Remove outer gloves and deposit in separate plastic lined container.

Station 7: Suit, Hard Hat, and Safety Boot Wash

Scrub Saranex suit, hard hat, and safety boots with liquinox solution.

Station 8: Suit, Hard Hat, and Safety Boot Rinse

Rinse off Liquinox solution.

Station 9: Cartridge or Mask Change

If worker only needs to change respirator cartridge or respirator, then this is the last station in the decon procedure. Worker to return to duty following this station. Cleaned outer gloves are donned, new tape and boot covers to be worn.

Station 10 Safety Boot Removal

Remove steel toed safety boots and deposit in plastic lined container for reuse.

Station 11: Saranex Suit and Hard Hat Removal

Remove Saranex Suit and hard hat, and deposit in plastic lined container. Suit and hard hat to be reused unless grossly contaminated.

Station 12: Inner Glove Wash

Wash inner gloves in Liquinox solution.

Station 13: Inner Glove Rinse

Rinse inner gloves in clean tap water.

Station 14: Respirator Removal

Remove respirator and deposit in plastic lined container for reuse.

Station 15: Inner Glove Removal

Remove inner gloves and deposit in plastic lined container.

Station 16: Inner Clothing Removal

Remove soiled and perspiration soaked inner clothing, where necessary.

Station 17: Field Wash

Wash hands and face with soap solution and rinse with clean tap water.

<u>Station 18:</u> Redress

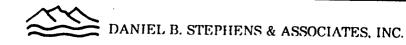
Don clean street clothes as necessary.

4. DAILY SAFETY MEETINGS

Prior to commencing each day's drilling activities, a "tailgate" safety meeting will be conducted by the designated DBS&A on-site safety facilitator. All personnel directly involved in the drilling operations will be required to attend. The meeting will address specific issues regarding on-site health and safety, including:

* Recommended personal safety equipment, as outlined in section 3.3 of this document.

* Discuss general contingency plan in case of an emergency, specifically where to go to get help and whom to call. All personnel should know locations of first aid kits and fire extinguishers.


* Appropriate site specific issues, such as, soil contamination levels, ambient air temperature, dust conditions, and weather conditions.

All attendees will be required to sign an attendance sheet.

5. EMERGENCY PROCEDURES

The Enron site manager (Mr. John Hendrick) is to be notified of all emergencies. Established Enron site emergency procedures are to be followed.

6. INITIAL HEALTH & SAFETY BRIEFING

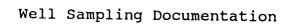
A health & safety briefing will be conducted before arriving on the site. The initial health and safety briefing will be conducted by the designated DBS&A task health & safety officer, and will be attended by all DBS&A personnel involved in the particular task. The health and safety plan and all pertinent health and safety issues will be discussed during the briefing. All attendees will initial the health & safety briefing form (Attachment A).

7. ACKNOWLEDGEMENT

The undersigned have read the Health & Safety Plan and pledge to adhere to the provisions contained therein:

NAME	TITLE	SIGNATURE	DATE	
PROJECT:				
TASK:				
·····	- <u> </u>		<u> </u>	

DANIEL B. STEPHENS & ASSOCIATES, INC.


DANIEL B. STEPHENS & ASSOCIATES, INC. FIELD INSTRUCTIONS AND PROCEDURES HEALTH & SAFETY BRIEFING

.....

- - -

Project Number: 89-030	Date: <u>9/29/89</u>
Field Location: THORENY	
Purpose of Work: 1 Soil Bocing	
Tasks to be Accomplished:	visie & suppliar
· · · · · · · · · · · · · · · · · · ·	
SOP's Required: Son Sumpline &	THE HAS SOP
· ·	
Health & Safety Issues Discussed: <u>All</u>	ISSUES IN THIS SOP
	· · · · · · · · · · · · · · · · · · ·
DBS&A Health & Safety Officer:	
Attendees : O Name Job Titl	<u>e Date</u>
Ray 19165on Driller	9-29-89
JASMIRTON ENGE	9/29/89
Inda M. haken ENTRI	× 9-29-89
Ray Hutiong Helper	9/29-97
<u> </u>	·

Project N	• <u>~~~~</u>	. 32		(Dette	:21,2129	
Project H Semple L	eme	THH	5	Th	. <u>~e</u> i.	HIGH School	
Oburras	Conditions _ ions/Commer /cctrer	111 <u>- 56</u>	z.m.pl	dat	<u>e.[]</u>	windy head before.	
Method Pump lir Method i Weter Levi	i to meeture a l to meeture a het or beiler ri of cleening Ba el (beiow MP)	valer level opes new o hiter/Pump fat start _	r cieened 3				
Time	Dikkarge Heironst	۶H	T	ym!	nducunce pi ′cm ∳ 75°C	REMARKS	-
050	20	637	14.3	1 59		× 1.2 gpm at well how	Ţ.1.
						9740	
Number	of dispose, of and size of se	discharged more cons	i water 🛄	15 11115	9:00	STEPHENS	

.

· · · · ·

		WELL						
Project N	. 59	- ೧	32.	(),/	2/12/8	9	•
		15 mm		·T .	has rea	•		•
Semple L		1.1		mill	50 0	t	Lute	Minteres
							percisis hatri	•
Weather (Conditions .	e train	; .la 1	5. Cumple	winds	-5313		-
00101111	ons/Comme			<u></u>	<u></u>			-
Semplin	is method	Di 14e	d Sur	Aple				
	to measure t							
Pumptin	es of Derief r	odes new o	i cittuta,				•	-
	of creaning B					A	= 7 30'	-
	I (below MP) Point (MP) _			_ end			= 750	
Time	O.K.hirge	p H	T	, to Cor	OUCLANCE DI CO	R	EMARKS	
	ا بهها: ۱۹۹۹ بر نظر	1 · · · · ·		F 1910				
[143]	54	8.72	13.5	0.558		2. 2)	pm flow ray	
				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
	İ			<u> </u>				
				I				
				•				
) 	1						
	1							
Total dis	charge	54 (PICE	_ Caune v	oivmes rem	>	Branny base	don Wind
Nethod	of discose, of	discher ged	weter	Deen	··/ c	w. freee	e crokad a	eij
Number	and size of w		mers filled	3-4	Oml	Vials	2-1 C glas	
2.	cubito	an er		DANI	EL R	STEPHEN & ASSO		
	. 1	<.m					CIATES, INC	

ł

٠

		WELL	SAN	APLINC			
2rawesh		-030			0+1+	12/7/89	
	In EN	UN TA	Ander				
	, 0601100	MILCA	<u>ں</u>		Tuo	nezu #	2
	, acation						
							والمواقية بالمراجع
	Conditions		Duni	0 -FF			
	Ioni/Comme		7				
	SED	<u> </u>	1 Prof				•
Semple	ny method _		57.60	17			
	10 meeture		·				
	nes or beiler r						
	of cleaning B						
	el Loeiow MP						
Meewing	Point (MP)						
Time	O Knorge	₽H	Time Pci		nductance ogi/cm	F	REMARKS
	igetions)	1	1 1.61		●75°C		
1220						START	POMP
1230	900 Sal	ļ		860*		SHALE	auern
							وهرابي برواني مراجع
	 	 					•
		<u> </u>					
	1 .			11			
		1.		<u> </u>			
* 10	SULED	12/0/65		1			
Total di		~ 90	05	Caung to	olumes remi	~~~	
Method	of disposel, of	discharged	water:	INYO	5-151	r M	
Number	end lize of ye	mpia opnua	ormers filled	ZXIR	(605) 3	x40.1(6	24) Il mine
il	nerus (n	wr Filte	in	DAN	=1 0	STEPHEI	
• • • •		i Levo		DANI			
Collected	by		<u> </u>		č	x ASSO	CIATES, IN

.

	١	WELL	SAN	IPLIN	g foi	RM			
Project N	. 89	- 030			Date	12/7	129		
	•m• <u></u>			VESTON	<u>م</u>				
					NTU	<u>A #2</u>			
	5-10 h					اجتنبي ويتقريب ويستعين			
Wed They	Conditions _	(J. 20)	A ALOT	20160	D. HA	0 Ber	ί υ <u>νι</u>	. e ~3	Oppm
000011011 1	Pricommen	<u> </u>	T . 16	Hours	lday .	ALA	い ごり	6930	
					······			•	
Semplur		2	P.60T						
	10 meenure w								
	es or bailer to								
	if cleaning Ba								
	I LOPION MPT								
	Point (MP)								
Time	Discharge		Time		nducuiner	1	REMAR	KS.	
	Leelonii	9 H	1°01		1000	1			
	30gpm		21.5	232	+	war	HAD	BOON	Punpin
	NCE 0930 7450	> 							
						1			
							•		
								يد البلايين عماليا ا	

		-							
									
	1								
····	· · · · · ·							م ال الأربي الأربية	
Total disc	snarga 🚬	450	<u> </u>	_ Caning v	owmes remo	<u>~~ ~</u>	< (ففركي وأراكر والمتحد والمتحد	
Method o	f dispose; of c	discharged	weter		71242				
Number	ind size of sen	-	inari fillea	ZXIL	648) 3	xyord	624) 1	l mon	بمسدن
<u>ll</u>	mus (NOT F.	timpo) r						
	64 <u>(</u> ,	_	F	UANI	EL B. S				
					-	& ASS			

.

.

Praject N	,	- 030			Dere	2/1/29	
Propert N	eme	10-21	TAMUNE	manl	ALTU	A II	
Sample L		TROLES	<u>~</u>		1410		میں میں میں میں میں میں میں میں میں میں
	Condition .						هاوالفي ويوري
00101781	ion1/Commer	<u>w</u>	EL 1	WT Po	<u> 1660 -</u>	HAD BEEN	ON
<u></u>	18 RP	<u> </u>				•	
	ne thad _	SP	160T	· · · · · · · · · · · · · · · · · · ·			
	10 meawie 1						
	ves or beiter t						
Meinod	of cleaning Ba	sier/Pump					
	ri (brign MP)		•	end	<u>,</u>		•
1	Point (MP) _		1 7100	Lo Cor	ancre .	·	
Time	Oischerge Gestonzi	g H	100		<u>91 ′c</u> m ♥ 75°C	REMARKS	
1010	IBGPM	7.3	ચ.૧	245		WOLL HAD FICK	Purplat
·							
			ļ				
	/ 					•	
			+				
						l	
			+				
					~		
			!		1		
Total dia							
	it disposel of				5457		
A	,			ZXIR(608) 3	x 40 L (624) 2	all inones
10	NOTALL (NUT FL	LTOMB).				
		<u> </u>		DANIE	LB.	STEPHENS	

•

·

.

.

		WELL	SA	MPLIN(g Foi	RM
	8	9 - 0			Date	12-6-89
Project N	•m•	and the second se	the second second second second second second second second second second second second second second second s	THOM	EAU	
Propert N	•m•	<u></u> 5	-/A			
Semple L		<u>ب</u>				
				<u> </u>		
Weather	Conditions .		COLL) 00	creas	Inis
Observeli	ons/Comme	nti:	~ 10	gem_	P	umpor 1015 unpoff 1250
					ου	my off 150
Method Pump lin Method a	is method to meesure - es or beiler r if cleening B. I libelow MP	water level opet new (hiler/Pymp	pr cleaned	, <u> </u>	500-61 21	Lindischarge land
1	l (briow MP) Ioint (MP) _		<u> </u>	1_ end		
Time	Discharge	рн	T	<u>ym</u>	novelanes ogi (em	REMARKS
1035		961	17.4	0.760	•75°C	
1144			+	0.741		
1229		9.43				
			18.0	0.728		
1253		9.26	17.8	0,707		
						•
1		·				
Total disci	/ S	550e, a	llors	- Caung vo	Humes remo	jarden hose to BLM land +-/lglass 1-500ml plastic
Method of	disposes of	discharged	##1#r: <u>(</u>	off 5	ite by	gradien hose to BLM land
Number er	nd size of sam	-	mers filled	3-40~	e Voris y	+ - Ilglase 1-500me plastic
/-5:	oml	plast	<u>c</u>			
	Kes			UANE		ASSOCIATES, INC

12-9-8

			WELL	SAN	APLIN(G FOF	RM	
	Propert N	. <u>*</u>		.030 7		Dete	12-6+7-89	
		Conditions .	w.	hdy .	c.o (d		L-6 (1/2, 4)	
		seot	briet ic tu	cly NE	slight	+ ode	dark (black)	-
			Baile d baile weter level oper new (<u>pon</u>	dec	sound	tween wells + whom n	
	Meinod c Waiar Leve	it cleaning Bi	eiler/Pump	dec	on tu	93.88'	(12-7-89) (1321)	Se
	Time	Discharge Gallonst	рн	T:	4	eren en REMARKS		
12-7-89	1350	256	8.08	14.3	24.0	CIOO ATO	Z.400 militar	
							· · · · · · · · · · · · · · · · · · ·	
	Tour disc Method o	narge <u>2</u> I disponal of r	discharged	<u>gallons</u>	STORY	ED IN	STOCK TANK CONTY	2
	Number + /- 50	eggel p	astic		JANIE	L B. S	TEPHENS ASSOCIATES, INC	
	Collected	by <u>rec</u> 1	m/110			&	ASSOCIATES, INC	

Properties BP - 0.30 Dir. 12-647-89 Properties Properties Brower - Thorean Summer Location S-3A Summer Location S-3A Weather Conditioni Cold Weather Conditioni Cold Weather Conditioni Cold Sumpling memory Cold Weather Conditioni Cold Sumpling memory Cold Method to memory Barled Method to memory Deconstructure Method to memory Deconstructure Network Conditioni Barled Method to memory Steam Clean , Inguines , Theple ringe D. F. Wather Weather Conditioni Deconstructure Weather Conditioni Deconstructure Weather Conditioni Deconstructure Weather Conditioni PH Vector Vector Weather Conditioni PH Vector PH Vector PH Vector PH Vector PH Vector PH Vector PH Vecto			,	WELL	SAN	IPLINO	G FO	RM	
Proper Norm <u>Enror</u> <u>Thorem</u> Sample Location <u>5</u> - 3A Sample Location <u>5</u> - 3A Weither Conditiont <u>Cold</u> windy Observation/Commenti: <u>Sampling memory Rig Bar. led dry</u> then Recovery crough to Scample Memory to beier tool in the or elevents <u>Decon blann wills they</u> . Pumb is not beier tool me or elevents <u>Decon blann wills they</u> . Mesnado is elevent both to set itended <u>Decon blann wills they</u> . Mesnado is elevent by <u>Steam cleans</u> <u>Journal</u> <u>Triple ringe D. J. Wahen</u> Weind of elevents <u>Bart 11110</u> <u>Home Steam cleans</u> <u>Journal</u> <u>11110</u> <u>112751</u> <u>Time</u> <u>Origin Map</u> <u>Tring to be conductioned</u> <u>Mesnado is elevents</u> <u>Decon blann wills they</u> <u>Tring to the standard</u> <u>Mesnado is elevents</u> <u>Bart 11110</u> <u>1120</u> <u>1120</u> <u>1120</u> <u>127-69</u> <u>Mesnado is the standard</u> <u>Deconductioned</u> <u>RENAPKS</u> <u>127-69</u> <u>Mesnado is 11100</u> <u>DH</u> <u>Tring to Conductioned</u> <u>RENAPKS</u> <u>127-69</u> <u>Mesnado is 1120</u> <u>DH</u> <u>Tring to Conductioned</u> <u>RENAPKS</u> <u>127-69</u> <u>Mesnado is 1120</u> <u>DH</u> <u>Tring to Conductioned</u> <u>RENAPKS</u> <u>127-69</u> <u>Mesnado is 1120</u> <u>DH</u> <u>Tring to Conductioned</u> <u>12055 - 400050</u> <u>127-59</u> <u>Mesnado is 1120</u> <u>DH</u> <u>Tring to Conductioned</u> <u>RENAPKS</u> <u>127-69</u> <u>Mesnado is 1120</u> <u>DH</u> <u>Tring to Conductioned</u> <u>RENAPKS</u> <u>127-69</u> <u>Mesnado is 12555</u> <u>120</u> <u>1242</u> <u>3780</u> <u>Arc</u> <u>127-69</u> <u>RENAPKS</u> <u>127-69</u> <u>Mesnado is 12555</u> <u>120</u> <u>1242</u> <u>3780</u> <u>Arc</u> <u>127-69</u> <u>RENAPKS</u> <u>127-69</u> <u>Mesnado</u> <u>12555 - 40005555555555</u>			89-	030			Dete	12-6+7-	89
Emple Location Cold _ windy Wester Condition: Coerision: Comment: Empling method Cing Bar. led dry, then Reverery crough to Sample. Method to method with level Burers So under Method to method with level De con blue wells t new. Pump lines or beins most stand De con blue Truple ringe D.F. water Westing Point Bases and Stand De con blue Truple ringe D.F. water Westing Point Bases and Stand De con blue Truple ringe D.F. water Westing Point Bases Trup Truple De the standar Westing Point Bases Trup Truple De the standar Method of the De the Trup REMARKS Trup De the REMARKS HEMARKS Trup De the REMARKS HEMARKS Trup De the REMARKS HEMARKS Trup HEMARKS HEMARKS HEMARKS Trup HEMARKS HEMARKS HEMARKS Trup HEMARKS		Properl N	10 <u> </u>	. / m.m.	- 7				
Wester Condition: Cold windy Observation:/Comment::		Propert A	lome		s A				
Obvirsion/Commenti 		Semple	,0681100	<u></u>					······
Obvirsion/Commenti 				Cola	l, w	indy			
Impling memod Rig Bailed dry, then Recovery crough to sample Nemod to memore water level. Burens Sounder Pump lines or beiter robert memore cleaned? De con blan wells t new. Nemod al elevening Baiter wing Steam clean. Water (2017 Baiter Mark) 25 4:00 Water (2017 Baiter					-				
Hermod to measure write level. <u>Bivers Sounder</u> Pump lines of builts robes new or cleaned? <u>De can blum wells & new</u> . Method of cleaning Basiler Rump <u>Steam clean</u> , <u>Iguinax</u> , <u>Triple ringe D. J.</u> Water Write Unit Basiler Rump <u>254:00 Hermodi</u> and <u>435:56'</u> Write Unit Mal at the <u>International Hermodi</u> and <u>435:56'</u> Write Unit Mal at the <u>International Hermodi</u> Time <u>Divenents</u> <u>Time Unit New</u> <u>International Mal at the <u>International Hermodi</u> <u>International Mal at the <u>International Mal at the International Hermodi</u> <u>International Mal at the International Hermodia Mal at the <u>International Mal at the International Hermodi</u> <u>International Mal at the International Hermodia Hermodia Hermodia Mal at the <u>International Mal at the International Hermodia</u> <u>International Mal at the International Hermodia </u></u></u></u></u></u></u></u></u></u></u></u></u></u>		Observel	10n1/Comm*			·			
Hermod to measure write level. <u>Bivers Sounder</u> Pump lines of builts robes new or cleaned? <u>De can blum wells & new</u> . Method of cleaning Basiler Rump <u>Steam clean</u> , <u>Iguinax</u> , <u>Triple ringe D. J.</u> Water Write Unit Basiler Rump <u>254:00 Hermodi</u> and <u>435:56'</u> Write Unit Mal at the <u>International Hermodi</u> and <u>435:56'</u> Write Unit Mal at the <u>International Hermodi</u> Time <u>Divenents</u> <u>Time Unit New</u> <u>International Mal at the <u>International Hermodi</u> <u>International Mal at the <u>International Mal at the International Hermodi</u> <u>International Mal at the International Hermodia Mal at the <u>International Mal at the International Hermodi</u> <u>International Mal at the International Hermodia Hermodia Hermodia Mal at the <u>International Mal at the International Hermodia</u> <u>International Mal at the International Hermodia </u></u></u></u></u></u></u></u></u></u></u></u></u></u>									
Pump lines of bailer 10001 new of cleaned <u>De can blun wells t new</u> . Meinod of cleaning Bailer Pump <u>Stean cleaning Jiguinax</u> , <u>Triple ringe D. J. Watter</u> Weiler (2017 Beilen MP) at 1101 <u>Time United 1000</u> <u>Time United 1000</u> <u>Time United 1000</u> <u>Time United 1000</u> <u>Time United 115</u> <u>Time United 115 <u>Time United 115</u> <u>Time United 115</u> <u>Time Uni</u></u>		Semplu	ng method <u>R</u>	ig Ba	led d	ry. th	en Reco	very crough	, to sample
Meinod of clining Baller Pring Stan Clian, 1/guinax, Triple Finge D. 1. Watter Weinod of clining Baller Pring Will Gold Brion MP1 254 20 Time Disk nerge PH Time Disk nerge PH Time Disk nerge PH Time Disk nerge PH Time Willowith PH Time Willowith PH Time Willowith PH Tome Willowith PH Tome Conductorer Tour discherge G2-1 G2-1 <		Method	i lo meeiure v	ester level.	Point	ers 50	L.		
Mesuring Point (MP) Time Disknarge pH Temo bo Conductance ymngglem REMARKS 12-769 850 620 7:15 14:2 3780: 472 12/6 wtr level 13:58 = 441,761 (233 = 449,751 (12/2 0330 = 443,551 (12/2 0330 = 443,551 (12/2 0330 = 443,551 (12/2 0330 = 443,551 (100 MC)		Pump <u>lir</u>	nes ar beiler ri	0041 MW 0	r cleaned?	Pe	Con DT	win webig of	N. F. Gada
Mesuring Point (MP) Time Disknarge pH Trime bo Conductances ymngglem REMARKS 12-769 850 620 7:15 1/4:2 3780 Arz) 12/6 wtr level 13:58 = 441,761 (233 = 449,751 (242 3780 4rz) 12/6 wtr level 13:58 = 441,761 (253 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (242 673 = 449,751 (243 673 = 449,751 (244 673 = 449,751 (244 673 = 449,751 (244 673 = 449,751 (244 673 = 449,751 (247 673 673 673 673 673 673 673 673 673 67		Meinod I	of cleaning Ba ZO	11+1 Avmo 254,20	Sifean C	lean 11	941.10×	Triple riv	102 13 4. waite
Тітя Тітя		Water Levi Meewring	el'Useiow MP) Point (MP)	at start		end	<u>, , , , , , , , , , , , , , , , , , , </u>	830 12-7-89	
$\frac{1}{127761} \frac{1}{1260} \frac{1}{12$			1		Temp			BEMAS	236
Tour divening <u>621 gallons</u> <u>Courgerowyment removed</u> <u>Ly</u> <u>Bailed</u> dry. <u>Recovered</u>		Timt	1					1	
Tour discharge <u>621 gallons</u> Course removed <u>Lig Bicked dry Recevered</u>	12-78	850	620	7.15	14:2	3780 A	ri)	12/6 wtr level	13:58 = 441.76' 1507 = 437.75' 1507 = 437.75'
Tow discharge 621 gallons course remarked Ling Briked day Recovered									
Town discourse		 						27.80 (100	MC)
Town discovery <u>G21 gallons</u> course removed <u>Fig Barbed day</u> . Receive reed									
Total discharge <u>G21 gallons</u> course romoved <u>Lig Bicked dry Recovered</u> Warmod of discharged water: <u>STORED</u> IN STOCK TANK									
Town discover of discovery red were: STORED Find STORE & TANK									
Total discherge <u>GZI gallons</u> course removed <u>Lig Balled</u> day Recevered Method of discover of discherger weter: <u>STORED</u> IN STOCK TANK								·	
Town discovery <u>621 gallons</u> course removed <u>Lig Bulled</u> day Recovered Mathod of discovery were: <u>STORED</u> IN STOCK TANK									
Total discharge <u>GZI gallons</u> course removed <u>Lig Balled</u> day Recovered Mathod of discover of discharger water: <u>STORED</u> IN STOCK TANK Strapping									
Town discovering <u>621 gallons</u> course removed <u>Lig Barbed</u> dry Recovered Mathod of discover of discovery water: <u>STORED</u> IN STOCK TANK Strongpring									
Town discovering <u>621 gallons</u> course rotumes removed <u>King Barbed</u> day Recovered Method of discover of discovery wetter: <u>STORED</u> IN STOCK TANK Strapping									
Total discharge <u>621 gallons</u> course rodumes removed <u>Fig Balled</u> day Recevered Method of discover of dischargers werter: <u>STORED</u> IN STOCK TANK Strapping								<u></u>	
Town discharge <u>621 gallons</u> course volumes removed <u>Lig Bulled</u> day Recevered Method of discover of dischargers weren: <u>STORED</u> IN STOCK TANK Some tor									
Town discharge <u>GZI gallons</u> course volumes removed <u>Rig Builed</u> dry Recovered Method of discouse of discharged water: <u>STORED</u> Ji STORK TANK <u>Simpling</u>				,					
Mothod of discoul of discharged water: STORED IN STOCK TANK Simpling		Total disc	inerge <u>6</u>	21 9	allons	. Coung to	iumes remo	Rig Buled	dry Recovered
Number and size of sempre concerners lilled 3 - 40me VON's #-IL globe 1-12 cubitainer		Number a	ind size of som	ofe contai	mers filled	3-40me	VON's #	Il gloss, 1-12	cubitainer
1- Sugal plastic DANIEL B. STEPHENS					ſ	DANIE	L B. 9	STEPHENS	
Collected by AO KCM & ASSOCIATES, INC		Collected	or AO	KCM					TES, INC

				IPLINC		2-6-89		7
Project N	&	9-030	<u> </u>					
Proper N		E.N	JRON	/ T/	norea	n EACT (S	SUPE)	
Semple L			Supp	SLYN	JELL	EAST (S		
				, w		2	وا در در در در در از مراز در از در از در از	
Westher (Conditions .	O.	ver ca	-s+, c.c	sld		at us EN	- In
Obverseli	oni/Commer		· Low y	rever	St/	HT 436829	00104-30 ENT	ine.
		FZ	ND	4-36	<u>73510</u>)		
		15		<u>~ 40</u>) gpr	n	B casing vol Removed	
Semplin	e method -	13,	min ji	N/A	o ling i		Removed	
Method	la meewre v	water lævef.						
Pump lin	42 OL D9+(41 1)	0041 144 0	cleaned)					
	it cleaning Ba			<u></u>			· · · · ·	
	i (below MP) foint (MP)			end				
			Trmp	Se Con	ductines			4
Time	Discharge Igailons I	₽ H	(°C1	Freid	<u>91 ′¢™</u> ● 25 °C	REMAR	-	
844	9200	7.85	22.4	0.567		LEAK	AT flow meter](
9853	9560	7.87	222	0.567		an hearth	y I" Aipe (2"	56
]
]
						•		
j						<u></u>		
			1	1				
								•
								1
Total dilet		· · · · · · · · · · · · · · · · · · ·	y a llon	5 Cause		> 3		
Total disci		·	y a llon	Stor	humes remo			
Method of	l disposal of a	discher ped -	weiter:	Store	dons	ite TANK	m (608)	
Method of Number si	l disposal of a	discherged i nolt contai	weiter:	5tore 3-40x	dons al Vons	te TANK (60)2-12 gl	m (608)	

.

		WELL	SA	MPLING		
Project N	108	9-030	<u> </u>		Date	12-1-89
Project A	10me	Envon	The	rean		
	ocation	5-1	A			
	Conditions		clea	r + c	old	
			6 "	casing	WETH ZO	off. who some casing ucl.
CUL	als 4	49.3 00	llons	pun	pwas	off prietly Rumping
rate	double	d affer	- gen	crator	wa	s warm
Semplu	ng method _	pur	ge +	1500		
Method	I to measure	weter ievel	Pou	ers So	under	
	nes or beiler r					
	of cleaning B		^	edicol.	ed pure	er
Nater Leve	el Ubelow MP) at start	384,31	end:		
Arowing	Point (MP) _	Tric	Prink	MA cap		
Time	Dikheret	DH	Temp		nductance	REMARKS
	igelions)			Freid	●25°C	
0746	32	10.00	12.3	0.501		3.831"/wtr level 45.30'
0758	100	9,78	14.2	0.87		4:19p futr level 409.43'
203	802	9.82	16.4	0.783		5,24 gpm
1059	1140 5 -	enant	er o	ut of	Gas	= 4.0 gpm
1104	1140			· ·		= 4.0 gpm Pump on, generator refi with gas, = 10gpm
1116		880	17,3			
1126	1363	9,04	·	0.748		
11:38	1465	9.05	17.4	0.748		2 Constant and and and a
47	1486	8.75	18,4	0.740		3 Some ACR BUBBLE @ the 7 row rote
Total due	narpe	1486		Conin		oved >3 vol.
						ground offsite South & vell
	l disposal of i					U U U U U U U U U U U U U U U U U U U
NUMBER 8	nd size of san	ndie contai	ners filled			
			[DANIE	L B.	STEPHENS
Collected I	by				2	& ASSOCIATES, INC

		WELL	SAN	JPLIN	G FO	RM	
Project N	10 <u> </u>	9-03	0		Dete	12-1-89	
Project h	ieme	ENRO		horea	<u>~</u>		
Semple	.ocation	5-1	ß				فالمجرية فتحمد يتفعرني
Weather	Conditions	Cle	ear d	Gold			
	ions/Comme		Low	produc	wing	well	
UUM.III							
······							
Semplu	ng method _	pur	geoty	- simpt	eJ		
Method	i to messure	water level	M	- 500	pe		
Pump lir	nes or barier r	opes new c	or cleaned?				
Method a	of cleaning B	ailer/Pump		dedic	ated	prop pH/s.c.	Tren weters hinge
	i lbeiow MP) et stert. 🗕	44.98		<u></u>		·
Messuring	Point (MP)				ndu clance		
Time	Discharge Igellons I	рн	reci	<u>ym!</u>	€25°C	REMARKS	
11:12				Freid		Pump ON	wto clear
1117	6.75	6.69	11.8	1,285			/
112R	1.5	6.92				İ	
1132	1.7	3.95 5		the second second second second second second second second second second second second second second second s		pumped de	-4
1352			Pump	ON		wtr. levci	
1412	0.25	7.29	12.1	1.320		`	1
1418		6.95		1,308		Runpolit	
	0 85	5" 1 pu	hard				
						· · · · · · · · · · · · · · · · · · ·	
Total dise	4	80 ga	 (.	Conin -		ved ~ Z fumpe	d dry 80% for
						ht on site	
						's EPA 624	
3 · 12	gloss -	EA 60	ners filled S	- 100		3 -111 664	
	-		[DANIE	L B. S	TEPHENS	
Collected b	AO/	<u>jc m</u>			8	ASSOCIATE	S, INC

٠

		WELL	SAI				
Project No	89	-030	2			12-1-89	
		6 m a	1.2 -	Tho-	ean		
Project No	•m•	5	LPPLI	, WEL	- WE	ST (SUPW)	<u>}</u>
Sample Li		<u> </u>	<u> </u>				
		<u> </u>		Cal	'd		
Waather C	Conditions .	((6	2 - 4	- Col	<u> </u>	L atrupper	L:00-9/10
Observatio	ons/Comme	nti:	Aum	pa u		DU BETWONT	
3	Casika	volu	mes_	21	500 9~1	on between	••••••
Samplin	method _	purge	<u> </u>	~p.cc			
Method	10 meanie	weter level.	-ried	power	s source	rs - no reading	
	ts or bailer r						
Method of	f cleaning B.	ailer/Pump	<u></u>	celicete	J pump		
Water Level	(below MP) et stert. 🗕	N/A	end:	· · · · · · · · · · · · · · · · · · ·		
Meswring P	oint (MP) _					-	
Time	Discherge Seellons I	рн	Teme (°C)		os /cm	REMARKS	
Z. S. R. LA	•			Freid	● 75°C		Autotin
7:50 8:40	2177					= 31 gpm	140.10 M.
0959	1					- pumpon	
10 09	·					pump press 82	
1010	<u> </u>			well h	ead	press 60	
1015	1. Sela	9.50	180	0.789		≈ 10 gpm atta	ucet
1033		9.57	18,3	0.784		U +	
1045	1652 -		<u>~p</u>	044			
						~ 31.1 gpm	
		•					
							<u> </u>

l_	2	177	15-			// / >	
Total disch	arga	rr + 1	632	Caung vo	turnes rema	4 + 3	
Method of	disposel of	discharged	weter: _	TANK	+ Disc	horged of wellhe	od with
Number en	id size of sar) nefe contai	40ml) nors Iilled	3 VOA	S-EPA	4 + 3 horge ch of wellhe 624, 2-11 gla	5 608
			1				
•	K'M	(A O		DANIE		STEPHENS	
Collected b	¥				ð	ASSOCIATES,	INC

		WELL	SAN	APLING	G FO	RM
Project N	. 89-	030			Dete	12-1-89
	iome	wRON	/	Tho	re.au	
	,ocalion	5-4B				
29mpra c						
	Conditions .	C	lear	+ col	d	
Westing		(2VA	200 ppr	~ with	Lover holt removed
00141141	COUA -	700	an is	itial at	- well co	op then dissopated
Semplar	ng method _	ρι	ingeo	1 1 40.	mpled w/	blodder pmy
	I la meewre :					·
Burne lue		0.041 84+	n cleaned)	det	Wtr. le	vel decon.
Mathod	ní cicanina R	uler/Pump	0	ledica	ated pu	-mp
Water Leve	I (below MP	l et stert	48145	end -		
Measuring	Point (MP) _		of pi	mpitt	Cap	
Time	Dikherte	рн	Temp PCI		oj /cm	REMARKS
10.7 -	igellansi			Freid	● 25°C	
1223	 	(10)				Pumpor, wtr. Ist dear
1227	Igal	6.73	12.9	1.369		
1229	2	6.78	12.4	1,385		
1234	.3		ļ			pumping Air
1240		- pu	mp c	(-		
1442						wtr level 50.69
1444			hp c			
1452	0.2.5	6.85	12.7	1.323	•	
1456	0.5	6.81	/2.9	1.304		
1458	0.75				Pu	MPED DRY
Total disc	nerpe - 2	,5			iumes remo	xx2.5 prinpdry 80% Pear
	f disposel of		w#1#/			ON-SITE TANK
	-	•				s EPA 624
2=1l	glass	EPA	608 -			
				DANIE	EL B. S	STEPHENS
Collected	AO	/ EN			8	ASSOCIATES, INC

		WELL	SAN			والمحاولة والمحاولة والمتحد والمتحد والمحاولة والمتحد والمحاوي والمحاوي والمحاوي والمحاوي والمحاولة
Promet N	89-	030			Dete/	12-189
Project N	6	Ron.	-Tho			
Fromein	,ocation	5-6	ß			
Semple C						
	Condition1 .	clea	-r +	cold		
West Tree			OVA =	Orom		
00007771	Re	ólic.	te s	ample s	tak	ien 5-613A
	0					
Samplin	ng mesthod _					
Method	10 meawles	water level.		1 - Sce		
Pump lin	ves or beiler r	opes new o	r cleaned?		con	wtr level
(i (below MP)		4353	end	50.15	· ·
Meawring	Point (MP) _	1	-	to Cor	ductoner	· · · · · · · · · · · · · · · · · · ·
Time	Discharge Igalionsi	рн	Temp PCI		01 ′cm ● 25 °C	REMARKS
1249	1	754	[<i>1.</i> g	1.447		
1257	3	7.36	12.1	1.292		
1302	5	7.38	12.2	1.293		
1305	7	7.45	12.3	1.356		
1307	8					WL. 49.3'
1315	10	7.40	11.9	1.410		
1319	11	7.41	12.2	1.390		
1323	12	7.43	12. Z	1.357		
1326	13	7:45	12.3	1.339		<u></u>
1335	15ga14,	5 7.37	12.3	1.302		· · · · · · · · · · · · · · · · · · ·
Total disc	:narge/	Sqa	٢.	Casine ve		73
	f disposel of	5		store	ed h	onsite Tank
	nd size of sar			3.40	me 1/0	ph's 6PA 624
-	L gloss					
	or <u>F</u> A			DANIE		STEPHENS
Collected	DY	-//10			5	ASSOCIATES, INC

Method to	neE sation inditions ns/Commer method p mesure v or beiler re	Well <u>Col</u>	5-3 d, sno Wiem	20 5 B 90 y 2	Dalle	11/30/89
Project Nen Semple Loc Weether Co Observation Sempling of Method to	neE sation inditions ns/Commer method p mesure v or beiler re	Well <u>Col</u>	5-3 d, sno Wiem	5B 		
Semple Loc Weether Co Observation Sempling of Method to	indition	Well <u>Col</u>	5-3 d, sno Wiem	5B 		
Weather Co Observation Sempling (Method to	method	Co/. n11: Wull	d, sno Witu			
Observation Sempling of Method to	method	Will	With	L		
Observation Sempling of Method to	method	Will	With	L		
Sempling in Method to	method > meesure v	[J				
Method to	or beiler ri	water level.				
Method to	or beiler ri	water level.				
	or beiler r		M			
Pump lines		• # T T T T T V	r cleaned?	<u></u>	1/4	
Method of	cleaning Ba	iler/Pump				
Water Level (
Arowring Por	int (MP)	hill.	<u> </u>	'	nductioner	1
Time	Discharge Igellons)	рH	Temp (°C)	ym!	101/cm	REMARKS
5904	1	6.71	12.4		•25°C	YSI S.C. MZATC
910	5	6.71	12.4		1,670	· · · · · · · · · · · · · · · · · · ·
0914	7.5	6.73	12.4		1.678	
· · · · ·		6.74			1,683	
2920	10 15	6,75	12.6			
<u>0930</u> 0941	20	6.75	12.5		1,686	Just before sampling
0948	21	6.74	12.4		1,679	Just after sampling
					110 .	
						· · · · · · · · · · · · · · · · · · ·
]			<u>}</u>			
		~				<u>> 3</u>
Method of d						
				3-4	Oml via	Lo EPA-624
3-12	bille	EPA 60	<u>07 </u> [DANI	EL B. S	STEPHENS
Collected by	10	KM				& ASSOCIATES, INC

WELL SAMPLING FORM

Project h	10				Dete	11/30/89
Project P	Nome <u>E</u>	hron	Moren	U		
Semple I	Location	SUPO	<u> </u>			
<u> </u>	poly W	IL Co	mter_			
Weather	Conditions	W;	ndy, co	12, 50	ow	میں ایر اور اور اور اور اور اور اور اور اور او
	uons/Comms	nts:				
	Avere	e Ps.	my rate		17,94	gpm
		,	-			V ·
Samplu	ng method					
Method	to measure	water leve	1. <u>Po-</u>	m 5.	worder	
Pump III	nes or beiler :	IOD41 New	or cleaned)			
	of cleaning B					
	ei (beiow MP				NR	
A a a a wring	Point (MP)					Y
Time	Discharge Geellons)	рн		ym!	101 /cm	REMARKS
3814	0	<u> </u>		r Held	●25°C	Pump ON
825	268	1	1			
916	1363	1	1			
034	2738					19.55 spm
203	4148					18.11 912
208		8.54	18.9		1584	42 gts bled out of tap
212	4288	8.90	18.7		.589	50973 11 11 11 11
214		8.95	18.4		1580	Sampling storted
216		9.00	18.4		.590	Sampling complete
223	4468					Pump off
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
Tarrent		468			<u>_</u>	3(7)
						3(?)
				,	• •	into tower fank.
					10 mk ri	ul BPA-624
	<u>IL boyt</u>		- 608	DANIE	L B. 9	STEPHENS
Collected	or <u>AC</u>	kм	[8	ASSOCIATES, INC

14736412

٢		WELL	SAN	APLIN		
Project h	10				Date	11/30/89
	10me	Enron	Thore	<u></u>		
Proper		well	5-2	B		
Sampia I	. ocation	<u></u>				
Westher	Conditions	Wi	ndy, co	<u>old, sn</u>	owing	
			*			
_		Strong	odor	of N	1ercap	YAN
		0				
Semplu	ne method _	- 18	<u> </u>			
Method	t to meesure	water level	<u></u>	Score		
	nes or bailer f					
	of cleaning B					
Water Levi	el (below MP) et stert	47,82	end		
	Point (MP)					
Time	Dikheree		Teme		nductioner	REMARKS
	igelionsi	рн	10°C1	FHID		
1303	,75	4.75	12.8	ļ	1.308	
1316	5	4.69	12.8		1.347	
1324	8	6.71	12.8		1.346	NO OVA = Open
1327	10	6.70	12.8		1.347	Providowa WL 49.0
1339	15	6.72	12,8		1.3.51	11 11 49.11
1343	18	6.74	12.8		1.352	Smaples Acres
348	20	4.74	12.8		1.357	Smpling and Busin
1355	21	4.73	12.8		1.355	Simply Done
						Drawlown WL = 490
,						
	1					
				·		
	:harge					> 3
Method o	f disposet of	discher ged	weter:	Ten	12 Trai	liz
Numbera	ind size of sa	mpie conta	iners filled	3-4	Oml U.	uls EPA 624
	1 bittles					
				DANIE		STEPHENS
Collected	or AD	12 M	\		8	ASSOCIATES, INC

		WELL	SAN	IPLIN	G FOI	
					Dete. /	1/29/89
Project N	10E	1	191-			
Project h	19m9	A ron	<u></u>	2 B		
Semple L	.ocalion	Will		<u> </u>		
			0	10		in a cont
Westher	Conditions .	Wi	ndy C	<u>-2(J, -</u>	show PI	tornes, overcast
Observes	ions/Comme	nii: <u>5</u>	1 and w	ell fo		st 30' N of 5.3B) is
lead	king 2	1 <u>9pm /</u>	ALL The	- CTOUR	a about	" 4" below ground tevel.
	ng method _					
	1 to messure :					
	nes or barler r				<i></i>	
	of cleaning Bi el (below MP:			end:		
	Point (MP)	-				
	Discharge	_	Teme		nductance	REMARKS
Time	ipelionsi	рН	Pci		•25°C	
1409	2	7.51	12.5		1.055	YSI SC. m 2 ATC
1915	3	7.60	12.6		1045	
1423	4	7.64	12.4		1.071	
1436	8	7.56	12.6		1,076	
1443	11	7.55	12.6		1.072	
1448	/3	7.55	12.6		1.076	
1584	19	7.51	12,7		1.081	- Just before Saynyling
1507	23	X	12.6		1.071	- Just after samisling
		·				
						· · · · · · · · · · · · · · · · · · ·
•	L					~ 7
		0		-		ved <u>> 3</u>
	t disposet of					
			-	3-1	Oml ji	uls (EPA 424)
2.1	2 bottles	(EPA	<u>- 608</u>)	DANIE	EL B. S	TEPHENS
Collected	by <u></u>	+ K-+1			8	ASSOCIATES, INC

		WELL	<u> </u>	MPLIN	IG FO	DRM	
2ropec	NO	89-0	30		Dete	10/1 (29	_
Project	Nome	Mary (TRAN	SWEITC	24		
Sample	Location	The	OREAU)		540	
Weathe	- Conditions	······					
001411	tions/Commy	كما: יויח	<u>u</u> ^L	Y Po	on Pro	porcen. Pro-per D.	<u>~ '/</u>
6	6945.						
		() -0			Pran ID	•	
	ing method _				(- (MACP)		
	d to measure :						
	nes or beiler r			·			
Meinod Vaiar I an	of cleaning Ba el (below MP)	Her/Pump .	10 71				
tewring	Point (MP)	TOC	IMA	_ end	······································		
Time	O. K. noror		Trmo		wucunce		
	instrons)	9 M	(°C)	<u>vm</u> r	€ 25°C	REMARKS	
200	≥4						-
		1					_
			_				
							_
							_
							_
	<u>></u>	<u> </u>	<u> </u>				
				Coung volv	1911 079	~ 2.4	
thod of a	lisonal of disc	har ged wet	•/				
m Der en (littofsampi	1 containeri	(illed	<u>Jxy</u>	0	(624)	
	·					EPHENS	
ected by	5.5700	6	_ [•]		0. 31	EFRENS	

	,	WELL	SAN	1PLINC	g FOI	RM	
	°6	9-031)		Dete	10/6/89	
FIOHELM	•m•	NEWN 1					
Propert N	ocalion	Th	And			5-4BA(REPLICAT
Semple L	سب ٥ ٤،١١٥٥						
Westiner (Condition1 .	 Ì	7 - 10 - 10	~~ .	Poor	Prove LGR >	26-
	scor my						
Semplin	g method _	G	50 6	val 1	112301	2	
	to meetice t						
	es or bailer fo						
	I steening Ba					· · ·	
	I LOPION MP)						·
Measuring P	oins (MP1 _	Τύς	. MA.	LK			
Time	Discharge	p M	Trop PCI		oucuner ou 'cm	REMARKS]
	40110m11			Freid	₹25°C		
~n°5	5						
		·					
						•	
							{
			<u>-</u>			·····	
				,			
Total disci	harge	-5		Cavina vo	ivmes remo	~ 3	
	disposei of d			T	_	· · · · · · · · · · · · · · · · · · ·	
	nd size of ser					~ (624)	
i i u ri i uni i ĝi	⇔u πεετ Ω† 64077						
	·····			DANIE		TEPHENS	
Collected t	<u>, S. S</u>	nuch]		8	ASSOCIATES, IN	10

•

• •

.

	١	NELL	SAN	1PLING	i foi	RM	
	. 89	- 030	\$		Dalle.	10/3/29	-
710461 *	Nome	onl T	hall we	a non N			-
Project	Nome	т. (5-6B	
Semple	Location						_
	Conditiont -				/		_
0014178	lions/Commer		WTR				_
				<u></u>		`	_
	ng method _	Qe	ω	n_	WITAN	<u>) </u>	
	d 10 m++w/0 +						
	nes or bailer re						
	of cleaning Ba						_
	et (below MP)			end			
Aeewring	Point (MP) _	TOL	MARK	<u> </u>			_
Time	O. Knarge	0 H	Time		ou cunce	REMARKS	
ي الحيد التحيين	Learons)		'''''''	Frid	● 75°C		
17 00	-58.5		1	<u> </u>		MOTER BASKS	
			}				
						·	
					<u></u>		
			 			•	
			! 				_
	(
							-
							يرعفا
		•					
Total dis	KENATA 57	+1.5				~ 22	
	of dispose, of						
	and size of ser					624)	
	1979 11 11 01 MM	1997 BORU	07973-10879 6				-
				DANIE	EL B.	STEPHENS	
Collecter	sor <u>5.9</u>	STOLLE	<u>n</u>		ä	& ASSOCIATES, INC	

.

	V	VELL	SAN				
Provest N	. 89-	030			Dete	1013189	
8	<u>E</u>	Leon	ST.	ANS we	stern		_
	, DC#1107	Th A	IN ERU			5-5B	-
20mbit F							
	Conditiont _						
	ions/Commen			LLEN	r		-
				فالشريف والمراجد		•	
Semplur	ne method	() ()	-D ω	al wi	240		
Method	10 meewre w	ater level	· <u> </u>				
Pump lin	ves or Dailer to	Del new	or citaned)				
Method	at cleaning Bai	ler/Pymp					
Water Leve	i (below MP)	et stert .	47.21	- end - 4	,40		
	Point (MP)		÷		WUCUNCI		
Time	Oricharge Gestionst	g H	Time Pci	vmr	01 ′cπ ● 75 °C	REMARKS	
1440	8		-			WATEL CLEAR. KET	MLS
	V		1	<u> </u>		Blokard	
	1		1				
	1		1				
	İ		1				
	T I		11			•	
	 		1				
	1						
·····	1						
	<u> </u>						
	<u> </u>		I				
Total disc	inerge	88		_ Coung to	ivmes rem	0100 <u>4.8</u>	
Method o	if discover, of d	ischarged	weter	TAN	د		
Number	and size of sem	04 conu	iners filled	<u> </u>	to an I	624)	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
			(DANIE		STEPHENS	

	Q (1-030				1012(89
rorect N	°					
roject N		MAUN	1 Innen	10 6310		5-5 BA (ROTLICATE)
iempie L	ocalion	THON	, eru			
					<u>.</u>	
Nosther (Conditions _					والمتعار والمتعارية البن والي والمتعاليات المتعاولات المتعاون والمساري
	ion1/Comment	N:	WAI			
						<u>محمد میں مرکب میں محمد میں محمد میں محمد میں محمد میں محمد میں محمد میں محمد میں محمد میں محمد میں محمد میں م</u>
Lempir	ny method	0.5	p we	n w	TARD	
	10 mesture w					
	1 01 Dailer 10					
	of cleaning Bai					
ater Leve	I Loriow MPT	et itert d	47.21	end 4	7.40	
rewring i	Paint (MP1	7041	hank -		<u> </u>	
Time	Discherge Heetight	p ⊨l	Time Pci	ymh	gi 'sm	REMARKS
				Firid	•75°C	
440	- 8					WATER CLOCK . MOTOS B.
						•
			1			
		ستنابير فيتتريب فكالها ويتبر	••••••••••••••••••••••••••••••••••••••			
		······································				
				-		
He thod o	of dispose, of d	lischer ged	weter	TAN	ik 7	xxxx 7.8 7.8
He thod o		lischer ged	weter	<u> </u>	40 m L (

- ----

.

			JAN		G FOI			
Browell NO	. 89.	- 030		(Dete	8 8 8 89		
		NRON	TLANS	6 27 101	N4			
10,000 110		TRONE	<u>م</u> برن		5-1B			
Semple Lo								
							المستورية في بن عن عن ال	مستبين
Westher C	Condition1 _	1.7/2		T EOL	NIPED.	wor A	10T	
Observatio		5 4 40 PL		I FLTE	h AJ	REGI	ar	
_TORG	J. CR	AB TREE		<u> </u>				
	e method							
	10 meeure 1							
	es or beiler r			<u> </u>	see S	07		
Markada	it cleening Bi		S		50 P			
Water Level	i below MP	Let stert _	15.08	. end				
	Point (MP)							
Time	Dikherge	p H	Time	So Cor	NOU CLANGE	REM	ARKS	_
	- Geronsi		ر ي ^{مي} ر		● 75°C	1		
1345	< 1					War NOT		SAA
		<u> </u>				COLLER	πD	
		 		·····				
	ļ							_
	 							ومانبصالاوم
	 +	1						
								_
								_
	<u> </u>						فالهج كالماج واخبت البطع والمتعاد المتعاد	
		 •						
	cnar ga					or od		
	cnar ge			T	ANE			
Method o		discharged	weter:	T	ANE (000 <u>~</u> <u>~</u>		
Method o	of dispose, of	discharged	weter:		ANK KIL(

- ----

•

¥.

		VELL - 030	SAN		FOF	81 8189
Project No Project Noi Somple Lo		ION T	LANS W	ESTORAL	5-2	BA(RIPULATE)
Westher C Observatio	anditions _		AFLCO	DAN ?	U90R	
) method	$Q \in \mathcal{O}$	WERL	WIZA	<i>I</i> D	
ì	10 11 1 1 1 1 1 1					
Pump fine	n or beiler r	opes new a	ir cleaned?			
Method al Water Level Meewring P	l cleening Ba (below MP) oint (MP)	et stert,	47.9			
Time	Discharge Igerionsi	p ∺	T:00	<u>ym</u> r	eren eren eren eren eren eren eren eren	REMARKS
1635	6	6.51		749		
1042	7	6.64		692		
1056	10	6.75		748		
1115	13	6-17		845		
1135	17	6.77		750		
1(45	19	 	 			5-28 SAMPLE COLLEZI
1200	22_		}			5-2BARCEPULATE CON
		Ì				· · · · · · · · · · · · · · · · · · ·
]		
Total disc	inar ya	22	\$	Carung r	olumes rem	30
4	f disposel, of and size of se	•			TANK 008/; 34	40_l(br); 2x1l(6251
Collected	0+ <u>S. St</u>	NLER		DANI		STEPHENS & ASSOCIATES, INC

.

Project Non		١	NELL	SAM	IPLINC	FOF	
Propert Neme	210 ms1 N	. 80	7-030			Dete	8889
Sample Location TUNCALOW WELL 5-2.5 Weather Conditioni			DIRUM	Than	<u> ৬ ল্য হেল</u>	un	والمستقدي والأروا فالمتراج والمتراج والتقوي والأكار والم
New There Conditions			TUO	LEAU	L	var_	5-2B
Observerience	Semple L						كوافا البغاية والانتياب والمتحدين
Observerience							
Lempling method QEO UPLL UPLARD Method to meabure with list!				ALAP	TAN" (200n	
Method 10 metawie weiter letti- Pump lines of builer robes new of cleaned? Method of cleaning Builer/Pump Method of cleaning Builer/Pump Method of cleaning Builer/Pump Time Discrete Weiler I on TD C AQ RK Time Discrete Weiler I on Pump 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 10 1035 17 1035 17 1035 17 1035 17 1135 17 1135 17 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 10	00141781	1971/Commer	htti:/				
Method 10 metawie weiter letti- Pump lines of builer robes new of cleaned? Method of cleaning Builer/Pump Method of cleaning Builer/Pump Method of cleaning Builer/Pump Time Discrete Weiler I on TD C AQ RK Time Discrete Weiler I on Pump 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 10 1035 17 1035 17 1035 17 1035 17 1135 17 1135 17 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 10							۰
Method 10 metawie weiter letti- Pump lines of builer robes new of cleaned? Method of cleaning Builer/Pump Method of cleaning Builer/Pump Method of cleaning Builer/Pump Time Discrete Weiler I on TD C AQ RK Time Discrete Weiler I on Pump 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 6 1035 10 1035 17 1035 17 1035 17 1035 17 1135 17 1135 17 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 19 1145 10	Semplin		QEC) wh	L W12	ALD	—
Method of cleaning Beiler Pump							
Material Level Le	Pump in	nes or bailer r	0.041 744 0	i cleaned)			
A securing Point (MP)	Meinod a	of cleaning Bi	nier/Pump				
Time Disknerge pit Time Disknerge pit Time Windowice REMARKS 1035 6 6.51 749 973°C 1001°C </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Meewing	Point (MP)		<u> </u>			
1035 6 6.51 749 1042 7 6.64 692 1056 10 6.75 748 1051 13 6.77 645 1135 17 677 750 1145 19 5844 PLE COLCETTED 1145 19 5844 PLE COLCETTED 1145 19 10 1145 19 5844 PLE COLCETTED 1145 19 10 1145 19 5844 PLE COLCETTED	Time	1	p ⊨		<u>ym</u> t	101 (CTT	REMARKS
1042 7 6.64 692 1056 10 6.75 748 1135 17 677 750 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 19 544 1145 10 10 1145 10 10 1145 10 10 1145 11 10 114 11 10 114 10 10 114 10 10 114 10 10 114 10 10 115 10 10 114 10 10 115 10 10	1075		1.51	1	1	₽75°C	
1656 10 6.75 748 11 15 13 6.77 845 11 17 677 750 11 19 SAA PLE COLLECTED 11 19 SAA PLE COLLECTED		<u>† – – – – – – – – – – – – – – – – – – –</u>	<u></u>				
11 13 6.77 845 11 13 17 6.77 750 11 19 SAM PLE COLLECTED 11 10 SAM PLE COLLECTED 11 11 SAM PLE COLLECTED 12 11 SAM PLE COLLECTED 13 14 14 SAM PLE COLLECTED 14 11 11 SAM PLE COLLECTED 15 11 SAM PLE COLLECTED 14		<u> </u>					
11 35 17 677 750 11 45 19 SAM PLE COLLECTED 11 45 19 SAM PLE COLLECTED		^		·			
Tour discharge IA GAL Course removed ZS Tour discharge IA GAL Course removed ZS Method of discouse of discharged water TALK Number and the of semple consumers tilled ZA (624); ZXIR(625) IL involumer IL NO3 [[Actals] (Field Filterier) DANIEL B. STEPHENS		1		 			
Town discharge 19 GAL Coung volumes removes 26 Method of discharged weter TAKK Number and size of semare containers tilled 24 (608); 3×40m2 (624); 2×18 (625) 12 inoclasus 12 NO3 12 AEALS DANIEL B. STEPHENS	ومحمد ومراجل		677_		150		CALLE CALLET DY
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS	11-		• 				·
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS							
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS							
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS			1				
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS		1			 		
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS							
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS	· — · — · — · · · · · · · · · · · · · ·	1	<u> </u>				
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS		1					
Number and size of semare conserved water TRAK Number and size of semare conservers tilled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMUS 12 NO3 12AERAS (FICLO FILTERED) DANIEL B. STEPHENS	1.	1	<u> </u>	ł			
Number and size of semare consumers filled 24 (608); 3×40ml (624); 2×18(625) 12 INORLAMIC 12 NO3 12AERIS (FICLO FILTERED) DANIEL B. STEPHENS	Total dis	cherge	19 61				26
(Fiero Filmero) DANIEL B. STEPHENS	Method	of disposel, of	discharged	wetter			
(Fice Filmener) DANIEL B. STEPHENS	-				246	8; 3×4	0~1 (624); ZXIR 625)
(rield ricible)			_	IL AEBUS	DANI	EL B.	STEPHENS
		+1121en	STOLLET	<u>ر</u>			& ASSOCIATES, INC

•

•

.

Appendix J: Analytical Chemistry Reports

Rocky Mountain Analytical Laboratory

RECEIVED JUN 2 2 1989

June 15, 1989

Mr. Gordon Wassell Enron 2223 Dodge Street Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for four aqueous samples we received at Enseco-Rocky Mountain Analytical Laboratory on May 10, 1989.

Included with the report is a quality control summary. Referenced at the end of the report are the analytical methodologies used for the various analyses performed.

Please call if you have any questions.

Sincerely,

Cindy Ingram Program Administrator

CI/CDM/lw Enclosures

RMAL #004839

Reviewed by: Charles D. Mamrak

Technical Manager

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Rocky Mountain Analytical Laboratory

ANALYTICAL RESULTS

FOR

ENRON

ENSECO-RMAL NO. 004839

JUNE 15, 1989

Reviewed by:

Unde ind Charles D. Mamrak

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 - Fax: 303/431-7171

Introduction

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- o Sample Description Information
- o Analytical Test Requests
- o Analytical Results
- o Quality Control Report
- o Description of Analytical Methodology

The reporting limit for bis(2-ethylhexyl)phthalate was raised to 15 ug/L from 10 ug/L for the semivolatile analysis due to the concentration of this analyte in the method blank.

Samples 004839-0001 and 0002 had poor recovery for the dibutylchlorendate surrogate for the 608 analysis. The Enseco Single Control Sample (SCS) as well as the client field blank had acceptable surrogate recoveries.

These two samples (004839-0001 and 0002) were reprepared and reanalyzed. The same sample results and surrogate recoveries were obtained. The laboratory logbook noted the formation of emulsions during sample preparation, possibly due to the samples matrices. The low surrogate recoveries may be attributed to this observation.

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Enseco

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

🖕 Enseco

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client ID	Matrix	Sampled R Date Time	eceived Date
004839-0001-SA 004839-0002-SA 004839-0003-SA 004839-0004-SA	5-1A Field Blank	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	08 MAY 89 14:20 1 08 MAY 89 14:20 1 08 MAY 89 14:20 1 08 MAY 89 14:00 1 08 MAY 89 14:00 1	0 MAY 89 0 MAY 89

Enseco

ANALYTICAL TEST REQUESTS for Enron

1.10

Lab ID: 004839	Groun Code	Analysis Description	Custom Test?
0001	Α	Priority Pollutant Organochlorine	N
		Pesticides/PCBs Prep - Organochlorine Pesticides/PCBs by GC	N
		Priority Pollutant Volatile Organics	N
		Prep-Volatile Organics by GC/MS	N
		Priority Pollutant Semivolatile Organics	N
•		Prep - Semivolatile Organics by GC/MS	N
		Alkalinity, Total/Carbonate/Bicarbonate/Hydroxide	Y Y
			N
		Nitrate, Ion Chromatography Chloride, Ion Chromatography	N
		Sulfate Ion Chromatography	Ň
		Sulfate, Ion Chromatography Fluoride, Electrode	N
		Total Dissolved Solids (TDS)	Ň
		hd Y	N
		ICP Metals (Dissolved)	Y
		Arsenic, Furnace AA (Dissolved)	N
		Lead, Furnace AA (Dissolved)	N
		Selenium, Furnace AA (Dissolved)	N
		Thallium, Furnace AA (Dissolved)	N
		Mercury, Cold Vapor AA (Dissolved)	N
		Prep - Mercury, Cold Vapor AA, (Dissolved)	N
0002 - 0003	В	Priority Pollutant Organochlorine	N
		Pesticides/PCBs	м
		Prep - Organochlorine Pesticides/PCBs by GC	N
		Priority Pollutant Volatile Organics	- N
		Prep-Volatile Organics by GC/MŠ Priority Pollutant Semivolatile Organics	N N
		Prep - Semivolatile Organics by GC/MS	Ň
004	С	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N N

Enseco

Analytical Results

The analytical results for this project are presented in the following data tables. Each data table include: sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content. All data is "blank corrected", i.e. the level of contamination, if any, found in the laboratory blank is subtracted from the analytical result before it is reported.

The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is provided subsequently.

Priority Pollutant Volatile Organics

Method 624

. -

Client Name: Enron Client ID: 5-1 Lab ID: 004839-0001-SA Matrix: AQUEOUS Authorized: 10 MAY 89	Enseco ID: 1037453 Sampled: 08 MAY 89 Prepared: 12 MAY 89		Received: 10 MAY 89 Analyzed: 18 MAY 89
Parameter	Result	Utits	Reporting Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 25 5.0 5.0
<pre>1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Toluene-d8 4-Bromofluorobenzene	101	%	
(BFB) 1,2-Dichloroethane-d4	101 103	% %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Monica Brinkman

Priority Pollutant Volatile Organics

Method 624

...

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-1A 004839-0002-SA AQUEOUS 10 MAY 89	Enseco ID: Sampled: Prepared:	1037454 08 MAY 89 12 MAY 89	9 9	Received: 10 M Analyzed: 18 M Reporting	
	Parameter			Result	Units	Limit	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene			ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 25 5.0 5.0		
	(cis/trar Chloroform 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrac Bromodichloro 1,2-Dichlorop trans-1,3-Dic	ns) ethane proethane chloride pmethane propane		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
	Trichloroethe Chlorodibromd 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform	ene omethane broethane loropropene l vinyl ether achloroethane thene		ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 10 5.0 5.0 5.0 5.0 5.0 5.0	
	Ethyl benzene			ND	ug/L	5.0	•
	Toluene-d8 4-Bromofluoro	benzene		101	%		
	(BFB) 1,2-Dichloroe	ethane-d4		99.0 102	% %		

N.D. = Not Detected N.A. = Not Applicable

Reported By: Monica Brinkman

t Enseco

Priority Pollutant Volatile Organics

Method 624

• •

Client Name: Enron Client ID: Field Blank Lab ID: 004839-0003-SA Matrix: AQUEOUS Authorized: 10 MAY 89	Enseco ID: 1037455 Sampled: 08 MAY 89 Prepared: 11 MAY 89	Received: 10 MAY Analyzed: 18 MAY	
Parameter	Result U	Reporting nits Limit	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene	ND U ND U ND U ND U ND U ND U	g/L 10 g/L 10 g/L 10 g/L 10 g/L 25 g/L 5.0 g/L 5.0	
(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene	ND U ND U ND U ND U ND U ND U ND U	g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0	
Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene	ND U ND U ND U ND U ND U ND U ND U ND U	g/L 5.0 g/L 5.0 g/L 5.0 g/L 5.0 g/L 10 g/L 5.0 g/L 5.0 g/L 5.0	
Toluene Chlorobenzene Ethyl benzene	ND u	g/L 5.0 g/L 5.0 g/L 5.0	
Toluene-d8 4-Bromofluorobenzene	100 %		
(BFB) 1,2-Dichloroethane-d4	100 % 104 %		

N.D. = Not Detected N.A. = Not Applicable

Reported By: Monica Brinkman

Priority Pollutant Volatile Organics

__......

· · •

Method 624

Client Name: Enron Client ID: Trip Blank Lab ID: 004839-0004-SA Matrix: AQUEOUS Authorized: 10 MAY 89	Enseco ID: 1037456 Sampled: 08 MAY 89 Prepared: 11 MAY 89		Received: 10 MAY 89 Analyzed: 18 MAY 89
Parameter	Result	Units	Reporting Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 25 \\ 5.0 $
Toluene-d8 4-Bromofluorobenzene (BFB) 1,2-Dichloroethane-d4	101 99.8 104	% % %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Monica Brinkman

Priority Pollutant Semivolatile Organics

......

Method 625

	Client Name: Client ID: Lab ID: Matrix: Authorized:	5-1 004839-0001-SA AQUEOUS	Enseco ID: Sampled: Prepared:	1037453 08 MAY 89 15 MAY 89		Received: 10 MAY Analyzed: 05 JUN	
	Parameter			Result	Units	Reporting Limit	
bi 2- 1, 1,	Phenol bis(2-Chlorod 2-Chloropheno 1,3-Dichlorod 1,4-Dichlorod 1,2-Dichlorod bis(2-Chlorod	ol benzene benzene benzene		ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10	
	ether N-Nitroso-di-	•		ND	ug/L	10	
	n-propyla Hexachloroeth Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylp	amine lane bhenol		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
	bis(2-Chloroe methane 2,4-Dichlorop 1,2,4-Trichlo Naphthalene Hexachlorobut	bhenol brobenzene tadiene		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
4-Chloro-3-		clopentadiene prophenol chalene nalate		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
	Acenaphthene 2,4-Dinitroph 4-Nitrophenol 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha	oluene Diuene Diate		ND ND ND ND ND ND	ug/l ug/L ug/L ug/L ug/L ug/L	10 50 50 10 10 10	
	4-Chloropheny phenyl et Fluorene			ND ND	ug/Ľ ug/L	10 10	
	4,6-Dinitro- 2-methylp 1,2-Diphenylh N-Nitrosodiph	bhenol hydrazine henylamine		ND ND ND	ug/L ug/L ug/L	50 10 10	

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bob Martin

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-1 004839-0001-SA AQUEOUS 10 MAY 89	Enseco ID: 1037453 Sampled: 08 MAY 89 Prepared: 15 MAY 89)	Received: 10 MAY 89 Analyzed: 05 JUN 89	
Parameter		Result	Units	Reporting Limit	
4-Bromopheny phenyl ef Hexachlorober Pentachloroph Phenanthrene Anthracene Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anthr bis(2-Ethylhe phthalate Chrysene Di-n-octyl ph Benzo(b)fluor Benzo(a)pyrer Indeno(1,2,3- Dibenz(a,h)ar Benzo(g,h,i)p	ther nzene nenol nthalate phthalate obenzidine racene exyl) thalate ranthene ranthene re c,d)pyrene thracene		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluoropheno 2,4,6-Tribrom	nyl 1	79.0 76.4 83.5 74.0 72.5 77.0	% 6 % % % % %	 	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bob Martin

Priority Pollutant Semivolatile Organics

Method 625

. . .

•		Enron 5-1A 004839-0002-SA AQUEOUS 10 MAY 89	Enseco ID: Sampled: Prepared:	1037454 08 MAY 89 15 MAY 89		Received: 1 Analyzed: 0	5 JUN	
	Parameter			Result	Units	Reportin Limit	9	
	Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene			ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10		
	bis(2-Chloro ether		·	ND	ug/L	10		
	N-Nitroso-di n-propyla Hexachloroetl Nitrobenzene Isophorone 2-Nitropheno 2,4-Dimethyly	amine hane henol		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10		
	bis(2-Chlorod methane 2,4-Dichlorod 1,2,4-Trichlo Naphthalene Hexachlorobut 4-Chloro-3-me	phenol probenzene tadiene ethylphenol		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10		
	Hexachlorocy 2,4,6-Trichlo 2-Chloronaph Dimethyl pht Acenaphthyler Acenaphthene 2,4-Dinitrop	thalene nalate ne		nd Nd Nd Nd Nd Nd Nd	ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 50		
	4-Nitropheno 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha 4-Chloropheny	oluene alate		ND ND ND ND	ug/L ug/L ug/L ug/L	50 10 10 10		
	phenyl et			ND ND	ug/L ug/L	10 10		
	4,6-Dinitro- 2-methyl 1,2-Diphenyl N-Nitrosodiph	ohenol nydrazine nenylamine		ND ND ND	ug/L ug/L ug/L	50 10 10		

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bob Martin

Enseco

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

Client Name: Enron Client ID: 5-1A Lab ID: 004839-0002-SA Matrix: AQUEOUS Authorized: 10 MAY 89	Enseco ID: 1037454 Sampled: 08 MAY 89 Prepared: 15 MAY 89	Received: 10 MAY 89 Analyzed: 05 JUN 89
Parameter	Result Unit	Reporting s Limit
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	10 10 50 10 10 10 10 10 10 20 10
Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	10 10 10 10 10 10 10 10
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	83.3 % 82.6 % 92.4 % 82.5 % 78.5 % 82.0 %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bob Martin

: Enseco

Priority Pollutant Semivolatile Organics

. . .

Method 625

	Client Name: Client ID: Lab ID: Matrix: Authorized: Parameter	Enron Field Blank 004839-0003-SA AQUEOUS 10 MAY 89	Prepared:	1037455 08 MAY 89 15 MAY 89 Result	Units	Received: 10 MA Analyzed: 05 JU Reporting Limit	
	Phenol bis(2-Chlorod 2-Chloropheno 1,3-Dichlorod 1,4-Dichlorod 1,2-Dichlorod bis(2-Chloro	ol benzene benzene benzene		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
	ether N-Nitroso-di	-		ND	ug/L	10	
-	n-propyla Hexachloroetl Nitrobenzene Isophorone 2-Nitropheno 2,4-Dimethylg bis(2-Chloroe	hane 1 phenol		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	·
	methane 2,4-Dichlorog 1,2,4-Trichlo Naphthalene Hexachlorobu	phenol probenzene tadiene		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
	4-Chloro-3-me Hexachlorocyc 2,4,6-Trichlo 2-Chloronaphi Dimethyl phth Acenaphthyler Acenaphthene	clopentadiene prophenol thalene nalate		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
	2,4-Dinitroph 4-Nitrophenol 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha 4-Chloropheny	l pluene alate	•	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	50 50 10 10 10	
	phenyl ei Fluorene			ND ND	ug/L ug/L	10 10	
	4,6-Dinitro- 2-methylp 1,2-Diphenyl N-Nitrosodiph	nydrazine		ND ND ND	ug/L ug/L ug/L	50 10 10	

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bob Martin

Enseco

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

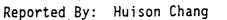
Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron Field Blank 004839-0003-SA AQUEOUS 10 MAY 89	Enseco ID: Sampled: Prepared:	08 MAY 89		Received: 10 Analyzed: 05	
Parameter		F	lesult	Units	Reporting Limit	
4-Bromophenyl phenyl et Hexachlorober Pentachloroph Phenanthrene Anthracene Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anthr bis(2-Ethylhe phthalate Chrysene Di-n-octyl ph Benzo(b)fluor Benzo(a)pyren Indeno(1,2,3- Dibenz(a,h)an Benzo(g,h,i)p	ther nzene nenol nthalate phthalate obenzidine racene exyl) nthalate ranthene ranthene ranthene re c,d)pyrene nthracene	·	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluoropheno 2,4,6-Tribrom	enyl 		73.1 71.9 74.0 72.5 69.0 69.5	% % % %	 	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bob Martin

🗄 Enseco

....


Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

. . .

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-1 004839-0001-SA AQUEOUS 10 MAY 89	Enseco ID: Sampled: Prepared:	08 MAY 89	·	Received: 10 MAY 89 Analyzed: 27 MAY 89	
Parameter		F	Result	Units	Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDT Endrin alden alpha-Chlord gamma-Chlord Toxaphene Aroclor-121 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1260	poxide I ulfate yde ane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.00\\ 0$	
Dibutylchlor	endate		19.4	%		

N.D. = Not Detected N.A. = Not Applicable

Priority Pollutant Organochlorine Pesticides/PCBs

- · - · · · · · · ·

. . .

Method 608

C1 La Ma	ient Name: ient ID: h ID: itrix: ithorized:	Enron 5-1A 004839-0002-SA AQUEOUS 10 MAY 89	Enseco ID: Sampled: Prepared:	08 MAY 8	9 9	Received: Analyzed:	10 27	MA Y MA Y	89 89
Da	arameter	· ·		Result	Units	Report Limi			
bee gae Heri, Eri, Er, Eri, Eri, Eri, Eri, An An An An An	pha-BHC eta-BHC elta-BHC amma-BHC (L eptachlor dosulfan I ieldrin dosulfan I ieldrin dosulfan I ndosulfan I dosulfan si d'-DDD ndosulfan si d'-DDT ndrin alden pha-Chlord amma-Chlord coclor-1221 roclor-1232 roclor-1248 roclor-1254 roclor-1260	poxide I ulfate yde ane	·	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.050 .050 .050 .050 .050 .10 .10 .10 .10 .10 .50 .50 .50 .50 .0		
Di	ibutylchlor	endate		2.00	%				

N.D. = Not Detected N.A. = Not Applicable

Reported By: Huison Chang

Approved By: Kim Zilis

: Enseco

Priority Pollutant Organochlorine Pesticides/PCBs

. . . .

Method 608

Client Name: Enron Client ID: Field Blank Lab ID: 004839-0003-SA Matrix: AQUEOUS Authorized: 10 MAY 89	Enseco ID: 1037455 Sampled: 08 MAY 89 Prepared: 12 MAY 89		Received: 10 MAY 89 Analyzed: 27 MAY 89
Parameter	Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane Joxaphene Aroclor-121 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 1.0\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.$
Dibutylchlorendate	88.5	%	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Huison Chang

Approved By: Kim Zilis

General Inorganics

Client Name: Enron Client ID: 5-1 Lab ID: 004839 Matrix: AQUEOU Authorized: 10 MAY			1037453 08 MAY 89 See Below		10 MAY 89 See Below	
Parameter	Result	: Units	Reporting Lim:	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Bicarb. CaCO3 at pH 4.5 Alkalinity, Carb. a CaCO3 at pH 8.3 Chloride Fluoride Nitrate as N	201 s		5 5 3 0.1 0.1	310.1 310.1 300.0 340.2 300.0	NA NA NA NA	10 MAY 89 10 MAY 89 11 MAY 89 23 MAY 89 11 MAY 89
pH Sulfate Total Dissolved Sol	8.7 48		0.01 5 10	150.1 300.0 160.1	NA NA NA	10 MAY 89 11 MAY 89 11 MAY 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Janice Collins

Approved By: Toni Stovall

Enseco

Metals

Dissolved Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-1 004839-0001-SA AQUEOUS 10 MAY 89		1037453 08 MAY 89 See Below		10 MAY 89 See Below	
Parameter	Resu	lt Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silica as Sil Silver Sodium Strontium Thallium Zinc	ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mg/L .006 mg/L mg/L .19 mg/L .8 mg/L mg/L .8 mg/L mg/L .004 mg/L .005 mg/L mg/L mg/L mg/L	0.05 0.003 0.005 0.001 0.01 0.005 0.1 0.005 0.002 0.1 0.005 0.002 0.1 0.005 0.002 0.1 0.005 0.002 0.1 0.005 0.05 0.05 0.02 0.004 0.01	200.7 206.2 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	20 MAY 89 02 JUN 89 20 MAY 89 20 <td< td=""></td<>

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bryan Anderson

Approved By: Tammy Bailey

Quality Control Results

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- 2) assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- provide a stancard set of reportables which assures the client of the quality of his data.

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of duplicate Laboratory Control Samples (LCS) at frequent, well-defined intervals. An LCS is a wellcharacterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the LCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control. Enseco

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate LCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For Organic analyses an additional control measure is taken in the form of a Surrogate Control Sample (SCS). The SCS is a control sample spiked with surrogate standards which is analyzed with every analytical lot. The recovery of the SCS is charted in exactly the same manner as described for the LCS, and provides a daily check on the performance of the method.

Accuracy for LCS and SCS is measured by Percent Recovery.

% Recovery = Actual Concentration
% Recovery = x 100
Actual Concentration

Precision for LCS is measured by Relative Percent Difference (RPD).

RPD = ______(Measured Concentration LCS1 - Measured Concentration LCS2)/2

, Enseco

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, LCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report. The test codes assigned are defined in Section VI., Analytical Methodology.

C LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
004839-0001-SA 004839-0002-SA 004839-0003-SA 004839-0004-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	624-A 624-A 624-A 624-A	17 MAY 89-Z 17 MAY 89-Z 17 MAY 89-Z 17 MAY 89-Z 17 MAY 89-Z	18 MAY 89-Z 18 MAY 89-Z 18 MAY 89-Z 18 MAY 89-Z 18 MAY 89-Z

4 Ensect

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Conc Spiked	entration DCS1	Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li) .
Category: 624-A Matrix: AQUEOUS QC Lot: 17 MAY 89-Z Concentration Units: ug/L								
l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50	41.9 56.1 54.9 52.9 53.9	41.6 60.1 59.0 52.1 53.2	41.8 58.1 57.0 52.5 53.6	84 116 114 105 107	61-145 71-120 76-127 76-125 75-130	0.7 6.9 7.2 1.5 1.3	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

🖞 Enseco

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Concentrati Spiked Mea		Accur: SCS	acy(%) Limits
Category: 624-A Matrix: AQUEOUS QC Lot: 17 MAY 89-Z QC Run: 18 MA Concentration Units: ug/L	Y 89-Z			
l,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0	48.3	97	76-114
(BFB) Toluene-d8	50.0 50.0	51.5 49.9	103 100	86-115 · 88-110

Calculations are performed before rounding to avoid round-off errors in calculated results.

- Enseco

METHOD BLANK REPORT Volatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 17 MAY 89-Z QC Run:	18 MAY 89-Z		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene hlorodibromomethane 1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 17 MAY 89-Z QC Run:	: 18 MAY 89-Z		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0

Enseco

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 17 MAY 89-Z QC Run: 18 M	1AY 89-Z		
<pre>1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane etrachloroethene oluene Chlorobenzene Ethyl benzene</pre>		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 17 MAY 89-Z QC Run: 18 M	1AY 89-Z		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

- 🖞 Enseco

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 17 MAY 89-Z QC Ru	un: 18 MAY 89-Z		
1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

OC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

ļ

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
004839-0001-SA	AQUEOUS	625-A	15 MAY 89-A	15 MAY 89-A
004839-0002-SA	AQUEOUS	625-A	15 MAY 89-A	15 MAY 89-A
004839-0003-SA	AQUEOUS	625-A	15 MAY 89-A	15 MAY 89-A

E Eirsener

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte	Cóno Spiked	centratio DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Preci (RPD DCS L)
Category: 625-A Matrix: AQUEOUS QC Lot: 15 MAY 89-A Concentration Units: ug/L								
Phenol 2-Chlorophenol 1,4-Dichlorobenzene	100 100 50	71.7 75.8 33.0	63.6 69.5 30.6	67.6 72.6 31.8	68 73 64	12- 89 27-123 36- 97	12 8.7 7.5	42 40 28
N-Nitroso-di- n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	50 50 100 50 100 50 100 50	35.1 35.2 77.4 37.2 30.6 33.3 38.7 41.2	31.1 34.1 72.6 34.8 24.4 31.9 42.3 38.4	33.1 34.6 75.0 36.0 27.5 32.6 40.5 39.8	66 69 75 28 66 41 80	41-116 39-98 23-97 46-118 10-80 24-96 9-103 26-127	12 3.2 6.4 6.7 23 4.3 8.9 7.0	38 28 42 31 50 38 50 31

alculations are performed before rounding to avoid round-off errors in calculated results.

ELEMAN

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 625-ム Matrix: AQUEOUS QC Lot: 15 Mご 89-A QC Run: Concentration Units: ug/L	15 MAY 89-A	
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-dl4 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	10060.510054.810058.6200117200123200112	60 35-114 55 43-116 59 33-141 58 21-100 62 10-94 56 10-123

Calculations are performed before rounding to avoid round-off errors in calculated results.

1 Lincol

METHOD BLANK REPORT Semivolatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 15 MAY 89-A QC F	Run: 15 MAY 89-A		
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl)	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10
ether N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10
bis(2-Chloroethoxy) methane 4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10 10 50 50 10 10
phenyl ether Fluorene 4,6-Dinitro-	ND ND	ug/L ug/L	10 10
2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether	ND ND ND	ug/L ug/L ug/L ug/L	50 10 10 10
. •			

Q Enserver

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units .	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 15 MAY 89-A QC Run:	15 MAY 89-A		
Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl)	ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 50 10 10 10 10 10 10 20 10
phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	13 ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 15 MAY 89-A QC Run:	15 MAY 89-A		
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl)	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
ether N-Nitroso-di-	ND	ug/L	10
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10

.

Depenting

Pro-

. .

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 15 MAY 89-A QC Run:	15 MAY 89-A	·	
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Aiethyl phthalate	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Chlorophenyl phenyl ether Fluorene	ND ND	ug/L ug/L	10 10
4,6-Dinitro- 2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND ND ND	ug/L ug/L ug/L	50 10 10
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl)	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 10 10 10 10 10 20 10
phthalate Chrysene Di-n-octyl phtnalate	13 ND ND	ug/L ug/L ug/L	10 10 10

t Lapon

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reportin <u>.</u> Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 15 MAY 89-A QC Run:	15 MAY 89-A		
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10

包Ensexte

- ---

LOT ASSIGNMENT REPORT semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
004839-0001-SA 004839-0002-SA	AQUEOUS AQUEOUS	608-A 608-A	04 MAY 89-A 04 MAY 89-A	12 MAY 89-A 12 MAY 89-A
004839-0003-SA	AQUEOUS	608-A	04 MAY 89-A	12 MAY 89-A

Enserv

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Con Spiked	centratio DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Preci (RPD DCS L)
Category: 608-A Matrix: AQUEOUS QC Lot: 04 MAY 89-A Concentration Units: ug/L gamma-BHC (Lindane) Heptachlor Aldrin	0.2 0.2 0.2	0.131 0.152 0.111	0.129 0.155 0.116	0.130 0.154 0.114	65 77 57	56-123 40-131 40-120	1.5 2.0 4.4	15 20 22
Dieldrin Endrin 4,4'-DDT	0.5 0.5 0.5	0.355 0.409 0.341	0.351 0.391 0.333	0.353 0.400 0.337	71 80 68	52 - 126 56 - 121 38 - 127	1.1 4.5 2.4	18 21 27

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enselo

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 628-A Matrix: AQUEOUS QC Lot: 04 MAY 89-A QC Run: 12 Concentration Units: ug/L	MAY 89-A	
Dibutylchlorendate	1.00 0.885	88 48-136

Calculations are performed before rounding to avoid round-off errors in calculated results.

i, Ensewe

METHOD BLANK REPORT Semivolatile Organics by GC

Analyte			Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 04 MAY 89-A	QC Run:	12 MAY 89	- A		
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane Jamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1248 Aroclor-1254 Aroclor-1260			ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.00\\ $
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 04 MAY 89-A	QC Run:	12 MAY 89-	- A		
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin			ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10

METHOD BLANK REPORT Semivolatile Organics by GC (cont.)

Analyte	Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 04 MAY 89-A QC Run: 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor-1016 Aroclor-1221 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	12 MAY 89-A ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.50\\$

OC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)
004839-0001-SA	AQUEOUS	ICP-AD	20 MAY 89-C
004839-0001-SA	AQUEOUS	AS-FAA-AD	02 JUN 89-A
004839-0001-SA	AQUEOUS	PB-FAA-AD	18 MAY 89-C
004839-0001-SA	AQUEOUS	SE-FAA-AD	07 JUN 89-A
004839-0001-SA	AQUEOUS	TL-FAA-AD	18 MAY 89-D
004839-0001-SA	AQUEOUS	HG-CVAA-AT	15 MAY 89-A

.

Enseco

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation

Analyte S	Conc piked	entration DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li	I.
Category: ICP-AD Matrix: AQUEOUS QC Lot: 20 MAY 89-C Concentration Units: mg/L								
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Tin Vanadium Zinc	$\begin{array}{c} 2.0\\ 0.5\\ 2.0\\ 2.0\\ 0.05\\ 0.05\\ 100\\ 0.2\\ 0.5\\ 1.0\\ 0.5\\ 0.5\\ 1.0\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 0.5\\ 100\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0$	1.97 0.50 1.89 2.02 0.050 0.059 99.0 0.20 0.47 0.25 1.00 0.49 48.7 0.49 96.1 NA 0.046 97.9 NA 0.38 0.50 0.48	1.97 0.49 1.91 2.02 0.050 0.060 99.2 0.20 0.48 0.25 1.00 0.50 48.9 0.50 0.49 96.2 NA 0.048 98.3 NA 0.40 0.51 0.48	1.97 0.50 1.90 2.02 0.050 0.060 99.1 0.20 0.48 0.25 1.00 0.50 43.8 0.50 0.49 95.2 V.047 98.1 V.047 98.1 V.047 98.1 V.047 0.39 0.50 0.48	98 99 95 101 100 199 100 95 100 99 98 99 98 98 98 98 98 98 98 98 98 98	75 - 125 75 -	0.0 2.0 1.1 0.0 0.0 1.7 0.2 0.0 2.1 0.0 2.0 0.0 2.0 0.4 2.0 0.0 0.4 2.0 0.1 NC 4.3 0.4 NC 5.1 2.0 0.0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Category: AS-FAA-AD Matrix: AQUEOUS QC Lot: O2 JUN 89-A Concentration Units: mg/L								
Arsenic	0.04	0.047	0.047	0.047	118	75-125	0.0	20
Category: PB-FAA-AD Matrix: AQUEOUS QC Lot: 18 MAY 89-C Concentration Units: mg/L								
Lead	0.02	0.020	0.021	0.021	103	75-125	3.9	20
ND = Not detected. NC = Not calculated; see discussion. NA = Not applicable.		•						

Calculations are performed before rounding to avoid round-off errors in calculated results.

🌐 👘 🖞 Enseco

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation (cont.)

		Co	ncentrati				uracy	Prec.	
Analyte		Spiked	DCS1	Measure DCS2			age(%) Limits	(RPD DCS L	
Category: SE-FAA-AD Matrix: AQUEOUS QC Lot: O7 JUN 89-A Concentration Units:	mg/L								
Selenium		0.01	0.012	0.011	0.012	115	75-125	8.7	20
Category: TL-FAA-AD Matrix: AQUEOUS QC Lot: 18 MAY 89-D Concentration Units:	mg/L								
Thallium		0.05	0.047	0.047	0.047	94	75-125	0.0	20
Category: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 15 MAY 89-A Concentration Units:	mg/L							·	
Mercury		0.0010	0.00112	0.00115	0.00114	114	75-125	2.6	20

Calculations are performed before rounding to avoid round-off errors in calculated results.

Ensto

QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)
004839-0001-SA	AQUEOUS	ALK-A	10 MAY 89-A
004839-0001-SA	AQUEOUS	NO3-A	11 MAY 89-B
004839-0001-SA	AQUEOUS	CL-A	11 MAY 89-A
004835-0001-SA	AQUEOUS	SO4-A	11 MAY 89-A
004839-0001-SA	AQUEOUS	F-A	23 MAY 89-A
004839-0001-SA	AQUEOUS	TDS-S	11 MAY 89-A
004839-0001-SA	AQUEOUS	PH-A	10 MAY 89-A

Ensèce

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

			centratio				uracy	Precis	
Analyte		Spiked	DCS1	Measured DCS2	AVG	Aver DCS	age(%) Limits	(RPD) DCS Li	
Category: ALK-A Matrix: AQUEOUS QC Lot: 10 MAY 89-A Concentration Units:	mg/L								
Alkalinity, Total as CaCO3 at pH 4.5		151	145	145	145	96	90-110	0.0	10
Category: NO3-A Matrix: AQUEOUS QC Lot: 11 MAY 89-B Concentration Units:	mg/L								
Nitrate as N		20	19.3	19.2	19.2	96	91-109	0.5	10
Category: CL-A Matrix: AQUEOUS QC Lot: 11 MAY 89-A Concentration Units:	mg/L								
Chloride		100	102	103	102	103	92-108	1.0	10
Category: SO4-A Matrix: AQUEOUS QC Lot: 11 MAY 89-A Concentration Units:	mg/L								
Sulfate		200	208	206	207	104	93-107	1.0	15
Category: F-A Matrix: AQUEOUS QC Lot: 23 MAY 89-A Concentration Units:	mg/L		•					•	
Fluoride		11.9	12.0	12.0	12.0	101	88-112	0.0	15

......

Calculations are performed before rounding to avoid round-off errors in calculated results.

Ensed

Analyte	Conc Spiked	centration DCS1	Measured DCS2	AVG		curacy rage(%) Limits	Precis (RPD) DCS L)
Category: TDS-S Matrix: AQUEOUS QC Lot: 11 MAY 89-A Concentration Units: mg/L								
Total Dissolved Solids	1070	1000	1030	1020	95	90-110	2.8	10
Category: PH-A Matrix: AQUEOUS QC Lot: 10 MAY 89-A Concentration Units: units								
pH	9. 1	9.01	9.02	9.02	99	98-102	0.1	5

DUPLICATE CONTROL SAMPLE REPORT

Calculations are performed before rounding to avoid round-off errors in calculated results.

Analytical Methodology

Enseco - Rocky Mountain Analytical Laboratory performs analytical services according to methods approved by EFA and other regulatory agencies, whenever possible.

Enseco

Methods for metals and organic compounds are primarily derived from three sources of EPA methods, 1) the methods promulgated in 40 CFR 136 for priority pollutants, 2) the methods published in SW-846 and 3) methods developed by the EPA-EMSL/LV for Superfund investigations, as well as several documents published by the EPA and Enseco - Rocky Mountain Analytical Laboratory in 1984 and 1985. These methods all use the same generic technology as summarized below:

- o Metals: acid cigestion followed by analyses by ICP supported by graphite furnace AA
- Volatile Organics: purge and trap GC/MS or purge and trap GC with a selective detector.
- Semivolatile (base/neutral and acid) organics: solvent extraction followed by capillary column GC/MS, and
- Pesticides/Herbicides: solvent extraction, followed by gas chromatography.

Exact method references are provided in the Analytical Methodology Tables.

ANALYTICAL METHODOLOGY - ORGANIC TESTS

Test	Description	Methodology	Reference
BNA	Volatile Organics Semivolatile Organics Dioxin	Purge & Trap, GC/MS Extraction, GC/MS Extraction, GC/MS	624(1)/8240(2) 625(1)/8270(2) 613(1)/8280(2)
THM 602 OCP 0PP 619 LC CARB PCB HRB 603 604 05 605 606 607 609 PNA 611 612 GD FID	Halogenated Volatile Organics Trihalomethanes Aromatic Volatile Organics Organochlorine Pesticides Organophosphate Pesticides Triazine Pesticides Carbamate and Urea Pesticides PCB's Phenoxyacid Herbicides Acrolein & Acrylonitrile Phenols Benzidines Phthalate Esters Nitrosamines Nitroaromatics & Cyclic Ketones Polynuclear Aromatic Hydrocarbons Haloethers Chlorinated Hydrocarbons Hydrocarbon Scan Boiling Point Determination	Purge & Trap GC/Hall Purge & Trap GC/Hall Purge & Trap GC/PID Extraction, GC/ECD Extraction, GC/FPD Extraction, GC/NPD Extraction, GC/ECD Extraction, GC/ECD Purge & Trap GC/FID Extraction, GC/FID Extraction, GC/FID Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/ECD Extraction, GC/ECD Extraction, GC/FID Extraction, GC/FID Extraction, GC/FID	601(1)/8010(2) 601(1)/8010(2) 602(1)/8020(2) 608(1)/8080(2) 614(1)/8140(2) 619(1) 632(1) 608(1)/8080(2) 615(1)/8150(2) 603(1)/8030(2) 604(1)/8040(2) 605(1)/8050(2) 606(1)/8060(2) 607(1) 609(1)/8090(2) 610(1)/8310(2) 611(1) 612(1)/8120(2) D3328-78(3) D2887-84(4)

References

Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 SW-846, 2nd Edition, 1984.
 "Annual Book of ASTM Standards", Volume 11.01, 1985.
 "Annual Book of ASTM Standards", Volume 05.02, 1984.

ANALYTICAL METHODOLOGY - INORGANIC TESTS

Test	Description	Methodology	Reference
ICP	Trace Metals	ICP Emission Spectroscopy	$2 \cup 0.7(1) / 6010(2)$
FSB	Antimony	Furnace Atomic Absorption	204.2(1)/7041(2)
FAS	Arsenic	Furnace Atomic Absorption	206.2(1)/7060(2)
FCD	Cadmium	Furnace Atomic Absorption	213.2(1)/7131(2)
FPB	Lead	Furnace Atomic Absorption	239.2(1)/7421(2)
FSE	Selenium	Furnace Atomic Absorption	270.2(1)/7740(2)
FAG	Silver	Furnace Atomic Absorption	272.2(1)/7761(2)
FTL	Thallium	Furnace Atomic Absorption	279.2(1)/7841(2)
CVHG	Mercury	Cold Vapor Atomic	245.1(1)/7471(2)
CR + 6	Chromium (VI)	Colorimetric	312B(3)
IC CL		Ion Chromatography	300.0(1)
	Chloride	Manual Titrimetric	325.3(1)
	Fluoride	Electrode	340.2(1)
	Sulfate	IC Magual Turkidizaturia	300.0(1)
	Sulfate	Manual Turbidimetric	375.4(1)
	Alkalinity, Total	Titrimetric	310.1(1)
METACK	Alkalinity, Forms	Titrimetric Cd. Paduation, Colonimatria	403(3)
TECNOXT	Nitrate+Nitrite as N	Cd Reduction Colorimetric	353.2(1)
METPH	pH Specific Conductores & 2500	Meter	150.1(1)/9045(2)
CELSP	Specific Conductance @ 25°C	Bridge	120.1(1)
	Total Dissolved Solids	Gravimetric, 180ºC Gravimetric, 105ºC Gravimetric, 105ºC	160.1(1)
ALTSS	Total Suspended Solids Total Solids	Gravimetric, 105°C	160.2(1) 160.3(1)
	Total Volatile Solids	Gravimetric, 550°C	160.4(1)
	Ortho-Phosphate as P	Two Reagent Colorimetric	365.3(1)
TECT P	Total Phosphorus as P	Digestion-Colorimetric	365.3(1)
ICP	Total Phosphorus as P	Digestion-ICP/AES	200.7(1)
ICP	Silica as SiO ₂	ICP/AES	200.7(1)
	Silica as SiO ₂	Colorimetric	370.1(1)
METBOD	Biochemical Oxygen Demand	Dilution Bottle-D.O. probe	405.1(1)
METCOD	Chemical Oxygen Demand	Micro Colorimetric	410.4(1)
TOCTOC	Total Organic Carbon	UV Oxidation-IR	415.2(1)
METNH3	Ammonia as N	Electrode	350.3(1)
TECNH3	Ammonia as N	Automated Colorimetric	350.1(1)
METTKN			351.4(1)
TECTKN	Total Kjeldahl Nitrogen as N	Digestion-Colorimetric	351.2(1)
TOXTOX	Total Organic Halogen	Combustion-Titrimetric	9020(2)
TONO1	Total Organic Nitrogen	Calculation (TKN-NH3)	-
BAL O&G	Oil and Grease	Freon Extraction-	
		Gravimetric	413.1(1)
IR AO&G	Oil and Grease	Freon Extraction-IR	413.2(1)
TECCN F	Cyanide Amendable to	Chlorination-Distillation-	• •
	Chlorination	Colorimetric	335.1(1)
TECCN W	Weak & Dissolved Cyanide	Distillation-Colorimetric	412H(3)
	Total Cyanide	Distillation-Colorimetric	335.2(1)/9010(2)
STEPHEN	Phenolics	Distillation-Colorimetric	420.1(1)
	Fecal Coliform	Membrane Filter	909C(3)
OLIF T	Total Coliform	Membrane Filter	909A(3)

ANALYTICAL METHODOLOGY - INORGANIC TESTS (CONT.)

Test	Description	<u>Methodology</u>	Reference
IC BR	Bromide	Ion Chromatography	300.0(1)
POTCL2R	Residual Chlorine	Amperometric	330.2(1)
NESCOLR	Color	Pt-Co Colorimetric	110.2(1)
ICPHAR	Hardness as CaCo3	Calculation	200.7(1)/314A(3)
TECNO2	Nitrite as N	Colorimetric	354.1(1)
SPES	Sulfide	Colorimetric	376.2(1)/9030(2)
BURSO3	Sulfite	Titrimetric	377.1(1)
SPEMBAS	MBAS (Surfactants)	Colorimetric	425.1(1)
SPETURB	Turbidity	Turbidimeter	180.1(1)
Gross Alph		Proportional Counter	703(3)
Gross Beta		Proportional Counter	703(3)
Radium 226		Separation - Counter	705(3)
Radium 228		Separation - Counter	707(3)
Uranium		Fluorimetric	D2907.75(4)

Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 SW-846, 2nd Edition, 1984.
 "Standard Methods for the Examination of Water and Wastewater", 15th Edition, 1980.
 "Annual Book of ASTM Standards", Part 31, Water, 1980.

🗐 Enseco

July 19, 1989

Mr. Gordon Wassell Enron 2223 Dodge Street Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for six samples we received at Enseco-Rocky Mountain Analytical Laboratory on May 25, 1989.

Included with the report is a quality control summary. Referenced at the end of the report are the analytical methodologies used for the various analyses performed.

Please call if you have any questions.

Sincerely,

Cindy Ingram 🥳 Program Administrator

CI/CDM/lw Enclosures

RMAL #005102

Reviewed by: Charles D. Mamrak

Technical Manager

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

коску моинтан Analytical Laboratory

ANALYTICAL RESULTS

FOR

ENRON

ENSECO-RMAL NO. 005102

JULY 19, 1989

Reviewed by:

Cindy ndv harles Mamrak

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

👍 Enseco

Introduction

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- o Sample Description Information
- o Analytical Test Requests
- o Analytical Results
- o Quality Control Report
- o Description of Analytical Methodology

Consistent with directives in the CLP protocol in SW-846 and other EPA methods, all GC/MS analyses were performed so that the maximum concentration of sample was analyzed. Some samples required dilutions to avoid saturation of the detector, to achieve linearity for a specific target compound or to reduce matrix interferences. As stated in Section 7.5.4 of Method 8270, 7.4.1.16 of Method 8240 and Exhibit E of the CLP protocol these dilutions <u>must</u> be performed. The reporting limits for these samples are therefore proportionate to the dilution required. Surrogate compounds may not be measurable in samples which have been diluted.

Sample 005102-0003-SA required a dilution for the volatile analysis due to non-target compounds. This sample also required a dilution for the semivolatile analysis due to non-target compounds.

The reporting limit for bis(2-ethylhexyl)phthalate for samples 005102-0001, 0003, and 0004 were raised due to the concentration of this analyte found in the method blank.

Due to matrix interference, the reporting limit for Aroclor 1221 was raised for sample 005102-0003 for the pesticide/PCB analysis.

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Enseco

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

SAMPLE DESCRIPTION INFORMATION for Enron

			Sample	ed	Received
Lab ID	Client ID	Matrix	Date	Time	Date
005102-0001-SA 005102-0002-SA 005102-0003-SA 005102-0004-SA 005102-0005-SA 005102-0006-SA	5-3BA 5-2BB Field Blank Trip Blank	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	23 MAY 89 23 MAY 89 23 MAY 89 23 MAY 89 24 MAY 89 24 MAY 89 24 MAY 89	11:00 15:00 12:45 07:00	25 MAY 89 25 MAY 89 25 MAY 89 25 MAY 89

🖆 Enseco

ANALYTICAL TEST REQUESTS for Enron

Lab ID: 005102	Group Code	Analysis Description	Custom Test?
0001,0003	Α	Priority Pollutant Organochlorine	- <u> </u>
		Pesticides/PCBs Prep - Organochlorine Pesticides/PCBs by GC	N
		Priority Pollutant Volatile Organics	Ň
		Prep-Volatile Organics by GC/MS	Ň
		Priority Pollutant Semivolatile Organics	Ň
		Prep - Semivolatile Organics by GC/MS	Ň
<u>.</u>		Alkalinity,	Ŷ
		Total/Carbonate/Bicarbonate/Hydroxide	Y
		Nitrate, Ion Chromatography	N
		Chloride, Ion Chromatography Sulfate, Ion Chromatography	N
		Sulfate, Ion Chromatography	N
		Fluoride, Electrode	N
		Total Dissolved Solids (TDS)	N
		pH	N
		ICP Metals (Dissolved)	Ŷ
		Arsenic, Furnace AA (Dissolved)	. N
		Lead, Furnace AA (Dissolved)	N
		Selenium, Furnace AA (Dissolved)	N
		Thallium, Furnace AA (Dissolved)	·N
		Mercury, Cold Vapor AA (Dissolved)	N
		Prep - Mercury, Cold Vapor AA, (Dissolved)	N
0002 , 0004	В	Priority Pollutant Organochlorine Pesticides/PCBs	N
		Prep - Organochlorine Pesticides/PCBs by GC	N
		Priority Pollutant Volatile Organics	Ň
		Prep-Volatile Organics by GC/MS	Ň
		Priority Pollutant Semivolatile Organics	Ň
		Prep - Semivolatile Organics by GC/MS	Ň
0005 - 0006	С	Priority Pollutant Volatile Organics	N
	-	Prep-Volatile Organics by GC/MS	Ň

Priority Pollutant Volatile Organics

Method 624

.....

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-38 005102-0001-SA AQUEOUS 25 MAY 89	Enseco ID: Sampled: Prepared:	23 MAY 8		Received: 25 Analyzed: 29	
Parameter		.	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chloric Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe 1,2-Dichloroe 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrac Bromodichloro 1,2-Dichlorop trans-1,3-Dic Trichloroethe Chlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethyl benzene	de loride ethene ethane ethene as) ethane proethane chloride propane hloropropene ene oropropene vinyl ether chloroethane hene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 25 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	
Toluene-d8 4-Bromofluoro (BFB) 1,2-Dichloroe	benzene		102 98.1 103	- 37 - % %		

N.D. = Not Detected N.A. = Not Applicable

Reported By: Tim Miller

Priority Pollutant Volatile Organics

Method 624

- - - ----

Client Name: Enron Client ID: 5-3BA Lab ID: 005102-0002-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039883 Sampled: 23 MAY 89 Prepared: 26 MAY 89		Received: 25 MAY 89 Analyzed: 29 MAY 89	
Parameter	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{r} 10 \\ 10 \\ 10 \\ 25 \\ 5.0 $	
2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 5.0 5.0 5.0 5.0 5.0 5.0	
Toluene-d8 4-Bromofluorobenzene (BFB) 1,2-Dichloroethane-d4	98.1	% % %	 , ,	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Tim Miller

Priority Pollutant Volatile Organics

Method 624

• • •

	Client Name: Enron Client ID: 5-2BB Lab ID: 005102-0003-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039884 Sampled: 23 MAY 89 Prepared: 26 MAY 89	Received: 25 M Analyzed: 29 M	
	Parameter	Result	Reporting Units Limit	
	Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene	ND ND ND ND ND	ug/L 400 ug/L 400 ug/L 400 ug/L 400 ug/L 1000 ug/L 200 ug/L 200	
	(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene	ND ND ND ND ND ND ND ND	ug/L 200 ug/L 200 ug/L 200 ug/L 200 ug/L 200 ug/L 200 ug/L 200 ug/L 200 ug/L 200 ug/L 200	
)	Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND 1800 ND ND ND ND 2000 ND	1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200 1g/L 200	
	Toluene-d8 4-Bromofluorobenzene (BFB) 1,2-Dichloroethane-d4	107 9 102 9 105 9	·	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Tim Miller

С.

🐐 Enseco

Priority Pollutant Volatile Organics

Method 624

Client Name: Enron Client ID: Field Blank Lab ID: 005102-0004-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039886 Sampled: 23 MAY 89 Prepared: 26 MAY 89	Received: 25 MAY 89 Analyzed: 29 MAY 89
Parameter	Result U	Reporting nits Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane	ND ug ND ug ND ug ND ug ND ug ND ug ND ug ND ug ND ug ND ug ND ug	10 11 10 11 10 11 10 11 11 12 12 12 13 14 15 15 16 17 18 19 10 10 10 11 12 13 14 15
1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene	ND ug ND ug ND ug ND ug ND ug ND ug ND ug ND ug ND ug ND ug ND ug	j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0 j/L 5.0
2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ug ND ug ND ug ND ug ND ug ND ug	/L 10 /L 5.0 /L 5.0 /L 5.0 /L 5.0 /L 5.0 /L 5.0
Toluene-d8 4-Bromofluorobenzene (BFB) 1,2-Dichloroethane-d4	105 % 99.4 % 105 %	

N.D. = Not Detected N.A. = Not Applicable

4 -

2

Reported By: Tim Miller

Priority Pollutant Volatile Organics

Method 624

....

ParameterResultUnitsReporting LimitChloromethaneNDug/L10BromomethaneNDug/L10Vinyl chlorideNDug/L10ChloroethaneNDug/L10Methylene chlorideNDug/L10Methylene chlorideNDug/L5.01,1-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,2-DichloropropaneNDug/L5.01,2-DichloropropaneNDug/L5.01,1,2-TrichloroethaneNDug/L5.01,1,2-TrichloroethaneNDug/L5.0ChlorodibromomethaneNDug/L5.0I,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.010ueneNDug/L5.0<	Client Name: Enron Client ID: Trip Blank Lab ID: 005102-0005-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039889 Sampled: 24 MAY 89 Prepared: 26 MAY 89	Received: 25 MAY 89 Analyzed: 29 MAY 89
BromomethaneNDug/L10Vinyl chlorideNDug/L10ChloroethaneNDug/L251,1-DichloroethaneNDug/L251,1-DichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.0(cis/trans)NDug/L5.01,1-TrichloroethaneNDug/L5.01,1-TrichloroethaneNDug/L5.01,1-TrichloroethaneNDug/L5.01,2-DichloroethaneNDug/L5.01,1-TrichloroethaneNDug/L5.0Carbon tetrachlorideNDug/L5.0BromodichloromethaneNDug/L5.01,2-DichloropropaneNDug/L5.01,2-DichloropropaneNDug/L5.01,1,2-TrichloroethaneNDug/L5.01,1,2-TrichloroethaneNDug/L5.01,1,2-TrichloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.01,1,2,2-TetrachloroethaneND </td <td>Parameter</td> <td>Result</td> <td></td>	Parameter	Result	
(cis/trans)NDug/L5.0ChloroformNDug/L5.01,2-DichloroethaneNDug/L5.01,1.TrichloroethaneNDug/L5.0Carbon tetrachlorideNDug/L5.0BromodichloromethaneNDug/L5.01,2-DichloropropaneNDug/L5.0trans-1,3-DichloropropeneNDug/L5.0TrichloroetheneNDug/L5.0ChlorodibromomethaneNDug/L5.01,1,2-TrichloroethaneNDug/L5.01,1,2-TrichloropropeneNDug/L5.0cis-1,3-DichloropropeneNDug/L5.0cis-1,3-DichloropropeneNDug/L5.0ChloroethaneNDug/L5.0BenzeneNDug/L5.0cis-1,3-DichloropropeneNDug/L5.0Chloroethyl vinyl etherNDug/L5.0BromoformNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.0TolueneNDug/L5.0ChlorobenzeneNDug/L5.0TolueneNDug/L5.0Toluene-d8106%4-Bromofluorobenzene106%	Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND	ug/L 10 ug/L 10 ug/L 10 ug/L 25 ug/L 5.0
trans-1,3-DichloropropeneNDug/L5.0TrichloroetheneNDug/L5.0ChlorodibromomethaneNDug/L5.01,1,2-TrichloroethaneNDug/L5.0BenzeneNDug/L5.0cis-1,3-DichloropropeneNDug/L5.02-Chloroethyl vinyl etherNDug/L5.0BromoformNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.0TetrachloroetheneNDug/L5.0TolueneNDug/L5.0TolueneNDug/L5.0Toluene-d8106%4-Bromofluorobenzene106%	(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	ND (ND (ND (ND (ND (ığ/L 5.0 ıg/L 5.0 ıg/L 5.0 ıg/L 5.0 ıg/L 5.0
BromoformNDug/L5.01,1,2,2-TetrachloroethaneNDug/L5.0TetrachloroetheneNDug/L5.0TolueneNDug/L5.0ChlorobenzeneNDug/L5.0Ethyl benzeneNDug/L5.0Toluene-d8106%4-Bromofluorobenzene106%	trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene	ND U ND U ND U ND U ND U ND U	ıg/L 5.0 ıg/L 5.0 ıg/L 5.0 ıg/L 5.0 ıg/L 5.0 ıg/L 5.0
4-Bromofluorobenzene	Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene	ND U ND U ND U ND U ND U	ig/L 5.0 ig/L 5.0 ig/L 5.0 ig/L 5.0 ig/L 5.0
1,2-Dichloroethane-d4 104 %	4-Bromofluorobenzene (BFB)	97.6 %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Tim Miller

Priority Pollutant Volatile Organics

Method 624

Client Name: Enron Client ID: Trip Blank Lab ID: 005102-0006-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039890 Sampled: 24 MAY 89 Prepared: 26 MAY 89		Received: 25 MAY 89 Analyzed: 29 MAY 89
Parameter	Result	Units	Reporting Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 25 \\ 5.0 $
Toluene-d8 4-Bromofluorobenzene	104	%	
(BFB) 1,2-Dichloroethane-d4	97.0 102	% %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Tim Miller

Priority Pollutant Semivolatile Organics

Method 625

Client Name: Enron Client ID: 5-3B Lab ID: 005102-0001-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039878 Sampled: 23 MAY 89 Prepared: 26 MAY 89	Received: 25 MAY 89 Analyzed: 05 JUN 89
Parameter	Result	Reporting Units Limit
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl)	ND ND ND ND ND	ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10
ether N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ND ND ND ND	ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene	ND ND ND ND ND	ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10
2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene	ND ND ND ND ND ND ND ND	ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 50 ug/L 50 ug/L 10
2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene 4,6-Dinitro-	ND ND ND	ug/L 10 ug/L 10 ug/L 10 ug/L 10
2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND	ug/L 50 ug/L 10 ug/L 10

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

Reported By: Angie Poturalski

💱 Ensecc

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

Client Name: Enron Client ID: 5-3B Lab ID: 005102-0001-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039878 Sampled: 23 MAY 89 Prepared: 26 MAY 89	Received: 25 MAY 89 Analyzed: 05 JUN 89
Parameter	Result Units	Reporting Limit
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl)	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	10 10 50 10 10 10 10 10 20 10
phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	40 10 10 10 10 10 10 10
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	94.6 % 79.8 % 85.9 % 81.0 % 74.5 %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Angie Poturalski

🔆 Enseco

Priority Pollutant Semivolatile Organics

Method 625

.....

Client Name: Enron Client ID: 5-3BA Lab ID: 005102-0002-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039883 Sampled: 23 MAY 89 Prepared: 30 MAY 89		Received: 25 Analyzed: 08 Reporting	MAY 89 JUN 89
Parameter	Result	Units	Limit	
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl)	ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
ether	ND	ug/L	10	
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene	ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10	
4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10	
Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 10	
Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene 4,6-Dinitro-	ND	ug/L ug/L ug/L	10 10 10	
2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND	ug/L ug/L ug/L	50 10 10	

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bob Martin

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

Client Name: Enron Client ID: 5-3BA Lab ID: 005102-0002-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039883 Sampled: 23 MAY 89 Prepared: 30 MAY 89	Received: 25 MAY 89 Analyzed: 08 JUN 89
Parameter	Result Units	Reporting Limit
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ug/L ND	10 10 50 10 10 10 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	75.9 % 77.4 % 97.2 % 17.2 % 58.0 % 75.0 %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bob Martin

Approved By: Jeff Lowry

🔄 Enseco

Priority Pollutant Semivolatile Organics

Method 625

Client Name: Enron Client ID: 5-288 Lab ID: 005102-0003-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039884 Sampled: 23 MAY 89 Prepared: 26 MAY 89	Received: 25 MAY 89 Analyzed: 05 JUN 89
Parameter	Result Units	Reporting s Limit
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	120 ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	100 100 100 100 100 100
bis(2-Chloroisopropyl) ether N-Nitroso-di-	ND ug/L	100
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	100 100 100 100 100 100
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	100 100 100 100 100
4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene	ND uğ/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	100 100 100 100 100 100
Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	100 500 500 100 100 100
4-Chlorophenyl phenyl ether Fluorene 4,6-Dinitro-	ND ug/L ND ug/L ND ug/L	100 100
2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND ug/L ND ug/L ND ug/L	500 100 100

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

Reported By: Angie Poturalski

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

Client Name: Enron Client ID: 5-2BB Lab ID: 005102-0003 Matrix: AQUEOUS Authorized: 25 MAY 89	-SA Enseco ID: 1039884 Sampled: 23 MAY 89 Prepared: 26 MAY 89		Received: 25 MAY 89 Analyzed: 05 JUN 89
Parameter	Result	Units	Reporting Limit
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 500 100 100 100 100 100 200 100 100 100 1
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	81.4 83.0 64.2 60.5 63.0 74.5	% % % % %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Angle Poturalski

🗇 Enseco

Priority Pollutant Semivolatile Organics

Method 625

Client Name: Enron Client ID: Field Blank Lab ID: 005102-0004-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039886 Sampled: 23 MAY 89 Prepared: 26 MAY 89	Received: 25 MAY 89 Analyzed: 05 JUN 89
Parameter	Result Un	Reporting its Limit
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene		/L 10 /L 10 /L 10 /L 10
bis(2-Chloroisopropyl) ether	ND ug	/L 10
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone	ND ug ND ug ND ug ND ug ND ug ND ug	/L 10 /L 10 /L 10
2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)	ND ug ND ug	
methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene	ND ug, ND ug, ND ug,	/L 10
Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ug, ND ug, ND ug,	/L 10 /L 10 /L 10
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene	ND ug, ND ug, ND ug,	/L 10 /L 10
Dimethyl phthalate Acenaphthylene Acenaphthene 2 A Dimitrophonol	ND uğ, ND ug, ND ug, ND ug, ND ug,	/L 10 /L 10
2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND ug, ND ug, ND ug, ND ug, ND ug,	/L 50 /L 10
Diethyl phthalate 4-Chlorophenyl phenyl ether	ND ug/ ND ug/	/L 10
Fluorene 4,6-Dinitro-	ND ug/	
2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND ug/ ND ug/ ND ug/	/L 10

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

Reported By: Angie Poturalski

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron Field Blank 005102-0004-SA AQUEOUS 25 MAY 89	Enseco ID: Sampled: Prepared:	23 MAY 8		Received: Analyzed:		
Parameter		F	Result	Units	Report Limit		
4-Bromophenyl phenyl et Hexachlorober Pentachlorober Phenanthrene Anthracene Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anthr bis(2-Ethylhe phthalate Chrysene Di-n-octyl ph Benzo(b)fluor Benzo(k)fluor Benzo(a)pyren Indeno(1,2,3- Dibenz(a,h)an Benzo(g,h,i)p	ther izene ienol thalate phthalate benzidine racene exyl) thalate anthene anthene c,d)pyrene thracene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 10 10 10 10 20 10 10 10 10 10 10 10 10		
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluoropheno 2,4,6-Tribrom	ny] 1		80.9 79.1 90.2 83.0 85.0 81.5	% % % %	 		

N.D. = Not Detected N.A. = Not Applicable

Reported By: Angie Poturalski

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Enron Client ID: 5-38 Lab ID: 005102-0001-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039878 Sampled: 23 MAY 89 Prepared: 26 MAY 89	1	Received: 25 MAY 89 Analyzed: 23 JUN 89
Parameter	Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260	nd Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.50\\ $
Dibutylchlorendate	81.2	%	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Huison Chang

Approved By: Kim Zilis

Ensecc

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Enron Client ID: 5-3BA Lab ID: 005102-0002-SA Matrix: AQUEOUS Authorized: 25 MAY 89	Enseco ID: 1039883 Sampled: 23 MAY 89 Prepared: 26 MAY 89		Received: 25 MAY 89 Analyzed: 23 JUN 89
Parameter	Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor-1016 Aroclor-1232 Aroclor-1248 Aroclor-1254	nd Nd Nd Nd Nd Nd Nd Nd	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.5$
Aroclor-1260 Dibutylchlorendate	ND 85.9	ug/L %	1.0

N.D. = Not Detected N.A. = Not Applicable

Reported By: Huison Chang

Approved By: Kim Zilis

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2BB 005102-0003-SA AQUEOUS 25 MAY 89	Enseco ID: 1039884 Sampled: 23 MAY & Prepared: 26 MAY &		Received: 25 MAY 89 Analyzed: 23 JUN 89
Parameter		Result	Units	· Reporting Limit
 alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDT Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlorda gamma-Chlorda Toxaphene Aroclor-121 Aroclor-1232 Aroclor-1248 Aroclor-1254	poxide I ulfate vde ane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 1.0\\ 0.50\\ 1.0\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.50$
Dibutylchlore	endate	75.1	%	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Huison Chang

Approved By: Kim Zilis

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron Field Blank 005102-0004-SA AQUEOUS 25 MAY 89	Enseco ID: 1039886 Sampled: 23 MAY 89 Prepared: 26 MAY 89		Received: 25 MAY 89 Analyzed: 23 JUN 89	
Parameter		Result	Units	Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor eg Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDT Endrin aldehy alpha-Chlorda gamma-Chlorda Toxaphene Aroclor-1212 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1260	poxide I ulfate Vde Ane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	
Dibutylchlore	endate	77.8	%		

N.D. = Not Detected N.A. = Not Applicable

Reported By: Huison Chang

Metals

Dissolved Metals

Client Name: Enron Client ID: 5-38 Lab ID: 005102-00 Matrix: AQUEOUS Authorized: 25 MAY 89			1039878 23 MAY 89 See Below	Received: Analyzed:	25 MAY 89 See Below	
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silica as SiO2 Silver Sodium Strontium Thallium Zinc	ND ND 0.15 ND 0.25 ND 50 ND ND ND ND ND ND ND ND ND 0.010 20 ND 285 0.98 ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 -0.02	200.7 206.2 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	21 JUN 89 21 JUN 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bryan Anderson

Metals

Dissolved Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2BB 005102-0003-S AQUEOUS 25 MAY 89	Sa	ampled:	1039884 23 MAY 89 See Below		25 MAY 89 See Below	
Parameter	R	esult	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silica as SiO Silver Sodium Strontium Thallium Zinc	2	ND ND 22 1.4 ND ND ND 24 ND 1.1 ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.05	279.2	NA NA NA NA NA NA NA NA NA NA NA NA NA N	21 JUN 89 21 JUN 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bryan Anderson

😓 Enseco

General Inorganics

Client Name: Enron Client ID: 5-38 Lab ID: 005102-0001 Matrix: AQUEOUS Authorized: 25 MAY 89	-SA	Enseco ID: Sampled: Prepared:	1039878 23 MAY 89 See Below		25 MAY 89 See Below	
Parameter	Result	t Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Bicarb. as CaCO3 at pH 4.5 Alkalinity, Carb. as CaCO3 at pH 8.3 Chloride Fluoride Nitrate as N pH Sulfate Total Dissolved Solids	588 ND 224 0.2 8.6 7.8 102 1010	5 mg/L	5 3 0.1 0.1 0.01 5 10	310.1 300.0 340.2 300.0 150.1 300.0 160.1	NA NA NA NA NA NA NA	25 MAY 89 25 MAY 89 25 MAY 89 15 JUN 89 25 MAY 89 25 MAY 89 25 MAY 89 30 MAY 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Stovall

General Inorganics

Client Name: Enron Client ID: 5-2BB Lab ID: 005102-0003 Matrix: AQUEOUS Authorized: 25 MAY 89	-SA	Enseco ID: Sampled: Prepared:	1039884 23 MAY 89 See Below	Received: Analyzed:	25 MAY 89 See Below	
Parameter	Result	t Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Bicarb. as CaCO3 at pH 4.5 Alkalinity, Carb. as CaCO3 at pH 8.3 Chloride Fluoride Nitrate as N pH Sulfate Total Dissolved Solids	1510 1510 17 0.2 0.6 7.4 7 910	5 mg/L	5 3 0.1 0.1 0.01 5 10	310.1 310.1 300.0 340.2 300.0 150.1 300.0 160.1	NA NA NA NA NA NA NA	25 MAY 89 25 MAY 89 25 MAY 89 15 JUN 89 25 MAY 89 25 MAY 89 25 MAY 89 30 MAY 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Stovall

Quality Control Results

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review. Enseco

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- 2) assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- 4) provide a standard set of reportables which assures the client of the quality of his data.

Enseco

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of Duplicate Control Samples (DCS) at frequent, well-defined intervals. Each DCS is a well-characterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the DCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For each batch of samples analyzed, an additional control measure is taken in the form of a Single Control Sample (SCS). The SCS consists of a control matrix that is spiked with either representative target compounds or surrogate compounds appropriate to the method being used. An SCS is prepared for each sample lot for which the DCS pair are not analyzed.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ Keasured Concentration
% Recovery = _____ X 100
Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

 $RPD = \frac{| Measured Concentration DCS1 - Measured Concentration DCS2 |}{(Measured Concentration DCS1 + Measured Concentration DCS2)/2} X 100$

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, DCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report. The test codes assigned are defined in Section V, Analytical Methodology.

🕻 Enseco

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

005102-0001-SAAQUEOUS624-A24 MAY89-B28 MAY89-B005102-0002-SAAQUEOUS624-A24 MAY89-B28 MAY89-B005102-0003-SAAQUEOUS624-A24 MAY89-B28 MAY89-B005102-0004-SAAQUEOUS624-A24 MAY89-B28 MAY89-B005102-0005-SAAQUEOUS624-A24 MAY89-B28 MAY89-B005102-0005-SAAQUEOUS624-A24 MAY89-B28 MAY89-B005102-0006-SAAQUEOUS624-A24 MAY89-B28 MAY89-B	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
	005102-0002-SA 005102-0003-SA 005102-0004-SA 005102-0005-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	624-A 624-A 624-A 624-A	24 MAY 89-B 24 May 89-B 24 May 89-B 24 May 89-B 24 May 89-B	28 MAY 89-8 28 MAY 89-8 28 MAY 89-8 28 MAY 89-8 28 MAY 89-8

Enseco

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Cone Spiked	centration DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Preci (RPD DCS L)
Category: 624-A Matrix: AQUEOUS QC Lot: 24 MAY 89-B Concentration Units: ug/L								
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50	45.3 51.1 52.7 49.5 51.0	48.2 51.0 51.2 50.3 50.9	46.8 51.0 52.0 49.9 51.0	94 102 104 100 102	61-145 71-120 76-127 76-125 75-130	6.2 0.2 2.9 1.6 0.2	14 14 11 13 13

🖞 Enseco

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 624-A Matrix: AQUEOUS QC Lot: 24 MAY 89-B QC Run: 2 Concentration Units: ug/L	28 MAY 89-B	
1,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0 50.4	101 76-114
4-Bromot Tubrobenzene (BFB) Toluene-d8	50.049.350.052.0	99 86-115 104 88-110

÷ Enseco

METHOD BLANK REPORT Volatile Organics by GC/MS

Analyte		Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 24 MAY 89-B QC	Run: 28 MAY	89-B		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Test: 624-PP-A Matrix: AQUEOUS QC Lot: 24 MAY 89-B QC	Run: 28 MAY 8	19-B	· · · · · ·	· ·
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/l	10 10 10 5.0 5.0 5.0

🖞 Enseco

Analyte	Result	Units	Reporting Limit
Test: 624-PP-A Matrix: AQUEOUS QC Lot: 24 MAY 89-B QC Run:	28 MAY 89-B		
1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Test: 624-PP-A Matrix: AQUEOUS QC Lot: 24 MAY 89-B QC Run:	28 MAY 89-B		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{r} 10 \\ 10 \\ 10 \\ 5.0$

Enseco

Analyte	Result	Units	Reporting Limit
Test: 624-PP-A Matrix: AQUEOUS QC Lot: 24 MAY 89-B QC	Run: 28 MAY 89-B		
1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
005102-0001-SA 005102-0002-SA 005102-0003-SA 005102-0004-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	625-A 625-A 625-A 625-A 625-A	26 MAY 89-A 26 MAY 89-A 26 MAY 89-A 26 MAY 89-A 26 MAY 89-A	26 MAY 89-A 30 MAY 89-A 26 MAY 89-A 26 MAY 89-A

🖗 Ensecc

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte	Cone Spiked	centratio DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Preci (RPD DCS L)
Category: 625-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A Concentration Units: ug/L								
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-	100 100 50	106 85.6 35.7	83.9 77.1 17.3	95.0 81.4 26.5	95 81 53	12- 89 27-123 36- 97	23 10 69	42 40 28
n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	50 50 100 50 100 50 100 50	45.6 39.6 107 50.0 93.0 43.7 91.2 65.0	21.6 19.5 85.7 23.1 49.0 19.4 70.7 23.2	33.6 29.6 96.4 36.6 71.0 31.6 81.0 44.1	67 59 96 73 71 63 81 88	41-116 39- 98 23- 97 46-118 10- 80 24- 96 9-103 26-127	71 68 22 74 62 77 25 95	38 28 42 31 50 38 50 31

---- 🐔 Enseco

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte			Concent Spiked	ration Measured	Accu SCS	racy(%) Limits
Category: 625-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A Concentration Units:	QC Run: ug/L	26 MAY	89-A			
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol			100 100 200 200 200	112 97.8 111 175 181 200	112 98 111 88 90 100	35-114 43-116 33-141 21-100 10- 94 10-123
Category: 625-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A Concentration Units:	QC Run: ug/L	30 MAY	89-A			
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol			100 100 200 200 200	84.4 82.1 93.2 160 173 167	84 82 93 80 86 84	35-114 43-116 33-141 21-100 10-94 10-123

🛬 Enseco

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A QC Run:	26 MAY 89-A		
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
ether	ND	ug/L	10
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10
Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 50 10 10
4-Chlorophenyl phenyl ether	ND	ug/L	10
Fluorene 4,6-Dinitro-	ND	ug/L	10
2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine 4-Bromophenyl	ND ND ND	ug/L ug/L ug/L	50 10 10
phenyl ether	ND	ug/L	10

🛓 Enseco

•--

Analyte	•		Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A	QC Run:	26 MAY	89-A		
Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene			ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 50 10 10 10 10 10 20 10
bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(a)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene			32 ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A (QC Run:	30 MAY	89-A		
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene			ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
bis(2-Chloroisopropyl) ether N-Nitroso-di-			ND	ug/L	10
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol			nd Nd Nd Nd Nd Nd	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10

👍 Enseco

Analyte	Result	Units .	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A QC Run:	30 MAY 89-A		
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10 10 10 1
4-Chlorophenyl phenyl ether Fluorene	ND ND	ug/L ug/L	10 10
4,6-Dinitro- 2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND ND ND	ug/L ug/L ug/L	. 50 10 10
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bio(2 Stevlboxyl)	ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 10 10 10 10 20 10
bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate	ND ND ND	ug/L ug/L ug/L	10 10 10

Enseco

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A QC Run: 3	0 MAY 89-A		
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A QC Run: 2	6 MAY 89-A		
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10
bis(2-Chloroisopropyl) ether N-Nitroso-di-	ND	ug/L	10
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10

Enseco

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 26 MAY 89-A	QC Run: 26 MAY 89-A		
4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate	ND ND NO ND	ug/L ug/L	50 10 10 10
4-Chlorophenyl phenyl ether Fluorene	ND DM		10 10
4,6-Dinitro- 2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND ND ND	ug/L	50 10 10
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 50 10 10
Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L	10 - 10 10 20 10
bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene	32 ND ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10 10
Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND		10 10 10 10

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
005102-0001-SA 005102-0002-SA 005102-0003-SA 005102-0004-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	608-A 608-A 608-A 608-A	21 MAY 89-A 21 MAY 89-A 21 MAY 89-A 21 MAY 89-A 21 MAY 89-A	26 MAY 89-A 26 MAY 89-A 26 MAY 89-A 26 MAY 89-A 26 MAY 89-A

🛓 Ensecc

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Con Spiked	centratio DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Preci (RPD DCS L	}
Category: 608-A Matrix: AQUEOUS QC Lot: 21 MAY 89-A Concentration Units: ug/L								
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	0.2 0.2 0.5 0.5 0.5	0.136 0.162 0.116 0.342 0.286 0.339	0.136 0.163 0.116 0.341 0.280 0.340	0.136 0.162 0.116 0.342 0.283 0.340	68 81 58 68 57 68	56-123 40-131 40-120 52-126 56-121 38-127	0.0 0.6 0.0 0.3 2.1 0.3	15 20 22 18 21 27

---- 🤄 Enseco

. . . .

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 608-A Matrix: AQUEOUS QC Lot: 21 MAY 89-A QC Run: 2 Concentration Units: ug/L	26 MAY 89-A	
Dibutylchlorendate	1.00 0.781	78 48-136

😳 Enseco

METHOD BLANK REPORT Semivolatile Organics by GC

Analyte		Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 21 MAY 89-A	QC Run: 2	6 MAY 89-A		
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor-1016 Aroclor-1221 Aroclor-1248 Aroclor-1254 Aroclor-1260		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 21 MAY 89-A	QC Run: 26	5 MAY 89-A		
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin		ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10

Enseco

Analyte	Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 21 MAY 89-A	QC Run: 26 MAY 89-A		
4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	$\begin{array}{c} 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ \end{array}$

Ensecc

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)
005102-0001-SA	AQUEOUS	ICP-AD	21 JUN 89-D
005102-0001-SA	AQUEOUS	AS-FAA-AD	21 JUN 89-A
005102-0001-SA	AQUEOUS	PB-FAA-AD	21 JUN 89-A
005102-0001-SA	AQUEOUS	SE-FAA-AD	21 JUN 89-A
005102-0001-SA	AQUEOUS	TL-FAA-AD	19 JUN 89-A
005102-0001-SA	AQUEOUS	HG-CVAA-AT	12 JUN 89-D
005102-0003-SA	AQUEOUS	ICP-AD	21 JUN 89-D
005102-0003-SA	AQUEOUS	AS-FAA-AD	21 JUN 89-A
005102-0003-SA	AQUEOUS	PB-FAA-AD	21 JUN 89-A
005102-0003-SA	AQUEOUS	SE-FAA-AD	21 JUN 89-A
005102-0003-SA	AQUEOUS	TL-FAA-AD	19 JUN 89-A
005102-0003-SA	ÂQUEOUS	HG-CVAA-AT	12 JUN 89-D

· Ensece

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation

Analyte			Cor Spiked	centratio DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Preci (RPD DCS L)
	ICP-AD UEOUS JUN 89-D on Units:	mg/L								
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Tin Vanadium Zinc			$\begin{array}{c} 2.0\\ 0.5\\ 2.0\\ 2.0\\ 0.05\\ 0.05\\ 100\\ 0.25\\ 1.0\\ 0.5\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.05\\ 100\\ 0.4\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5$	1.94 0.48 1.97 1.91 0.047 0.049 99.6 0.19 0.48 0.25 0.96 0.48 50.0 0.48 50.0 0.48 96.8 NA 0.046 100 NA 0.41 0.48 0.48	1.94 0.48 1.90 0.047 0.053 99.3 0.20 0.47 0.25 1.00 0.49 49.8 0.48 96.6 NA 0.046 100 NA 0.42 0.47 0.42	1.94 0.48 1.90 0.047 0.051 99.4 0.20 0.48 0.25 0.98 0.48 49.9 0.48 96.7 NC 0.046 100 NC 0.42 0.48 0.48	97 96 98 95 94 102 98 95 100 98 97 100 96 97 NC 96 97 NC 96 97 NC 95 96 96 97 95	75-125 75-125	0.0 0.0 1.5 0.5 0.7.8 0.7.8 5.1 2.1 0.0 4.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Matrix: AQU QC Lot: 21 Concentratio	AS-FAA-AD JEOUS JUN 89-A on Units:	mg/L								
Arsenic Category: F Matrix: AQU QC Lot: 21 Concentratic	JEOUS JUN 89-A	mg/l	0.04	0.044	0.046	0.045	113	75-125	4.4	20
Lead			0.02	0.018	0.018	0.018	90	75-125	0.0	20
ND = Not det NC = Not cal NA = Not app	culated, o	calculation n	ot applic	able						
Calculations are performed before rounding to avoid round-off errors in calculated results.										

🔄 Enseco

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation (cont.)

Analyte		Concentration Spiked Measured				curacy rage(%)	Precision (RPD)		
		opikeu	DCS1	DCS2	AVG	DCS	Limits	DCS L	
Category: SE-FAA-AD Matrix: AQUEOUS QC Lot: 21 JUN 89-A Concentration Units:	mg/L								
Selenium	·	0.01	0.011	0.011	0.011	110	75-125	0.0	20
Category: TL-FAA-AD Matrix: AQUEOUS QC Lot: 19 JUN 89-A Concentration Units:	mg/L							·	
Thallium		0.05	0.049	0.049	0.049	98	75-125	0.0	20
Category: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 12 JUN 89-D Concentration Units:	mg/L								
Mercury		0.0010 0.	.000950 0.	.000950 0.0	000950	95	75-125	0.0	20

🔆 Enseco

QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)
005102-0001-SA 005102-0001-SA 005102-0001-SA 005102-0001-SA 005102-0001-SA 005102-0001-SA 005102-0001-SA 005102-0003-SA 005102-0003-SA 005102-0003-SA 005102-0003-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	ALK-A NO3-A CL-A SO4-A F-A TDS-S PH-A ALK-A NO3-A CL-A SO4-A F-A TDS-S PH-A	25 MAY 89-A 25 MAY 89-C 25 MAY 89-C 25 MAY 89-C 15 JUN 89-A 30 MAY 89-A 25 MAY 89-A 25 MAY 89-A 25 MAY 89-C 25 MAY 89-C 15 JUN 89-A 30 MAY 89-A

Enseco

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

-	Analyte		Con Spiked	centratio DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Preci (RPD DCS L)
	Category: ALK-A Matrix: AQUEOUS QC Lot: 25 MAY 89-A Concentration Units:	mg/L								
	Alkalinity, Total as CaCO3 at pH 4.5		27.3	27.9	26.4	27.2	99	90-110	5.5	10
	Category: NO3-A Matrix: AQUEOUS QC Lot: 25 MAY 89-C Concentration Units:	mg/L								
	Nitrate as N		20	19.1	18.7	18.9	95	[.] 91-109	2.1	10
	Category: CL-A Matrix: AQUEOUS QC Lot: 25 MAY 89-C Concentration Units:	mg/L							·	
	Chloride		100	97.9	98.0	98.0	98	92-108	0.1	10
	Category: SO4-A Matrix: AQUEOUS QC Lot: 25 MAY 89-C Concentration Units:	mg/L								
	Sulfate		200	200	196	198	99	93-107	2.0	15
	Category: F-A Matrix: AQUEOUS QC Lot: 15 JUN 89-A Concentration Units:	mg/L								
	Fluoride		14.1	13.6	13.8	13.7	97	88-112	1.5	15
				•						

Ensecc

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation (cont.)

Analyte	Conc Spiked	centration DCS1	Measured DCS2	AVG		curacy rage(%) Limits	Precis (RPD) DCS Li)
Category: TDS-S Matrix: AQUEOUS QC Lot: 30 MAY 89-A Concentration Units: mg/L								
Total Dissolved Solids	1450	1390	1330	1360	94	90-110	4.4	10
Category: PH-A Matrix: AQUEOUS QC Lot: 25 MAY 89-A Concentration Units: units								
рН	9.1	8.99	9.01	9.00	99	98-102	0.2	5

Analytical Methodology

Enseco - Rocky Mountain Analytical Laboratory performs analytical services according to methods approved by EPA and other regulatory agencies, whenever possible.

Methods for metals and organic compounds are primarily derived from three sources of EPA methods, 1) the methods promulgated in 40 CFR 136 for priority pollutants, 2) the methods published in SW-846 and 3) methods developed by the EPA-EMSL/LV for Superfund investigations, as well as several documents published by the EPA and Enseco - Rocky Mountain Analytical Laboratory in 1984 and 1985. These methods all use the same generic technology as summarized below:

- o Metals: acid digestion followed by analyses by ICP supported by graphite furnace AA
- Volatile Organics: purge and trap GC/MS or purge and trap GC with a selective detector.
- o Semivolatile (base/neutral and acid) organics: solvent extraction followed by capillary column GC/MS, and
- Pesticides/Herbicides: solvent extraction, followed by gas chromatography.

Exact method references are provided in the Analytical Methodology Tables.

😓 Enseco

ANALYTICAL METHODOLOGY - ORGANIC TESTS

Test	Description	Methodology	Reference
VOA BNA DXN	Volatile Organics Semivolatile Organics Dioxin	Purge & Trap, GC/MS Extraction, GC/MS Extraction, GC/MS	624(1)/8240(2) 625(1)/8270(2) 613(1)/8280(2)
601 THM 602 OCP OPP 619 LC CARB PCB HRB 603 604 605 604 605 604 605 609 PNA 611 612 GD FID	Halogenated Volatile Organics Trihalomethanes Aromatic Volatile Organics Organochlorine Pesticides Organophosphate Pesticides Triazine Pesticides Carbamate and Urea Pesticides PCB's Phenoxyacid Herbicides Acrolein & Acrylonitrile Phenols Benzidines Phthalate Esters Nitrosamines Nitrosamines Nitrosamines Nitroaromatics & Cyclic Ketones Polynuclear Aromatic Hydrocarbons Haloethers Chlorinated Hydrocarbons Hydrocarbon Scan	Purge & Trap GC/Hall Purge & Trap GC/Hall Purge & Trap GC/PID Extraction, GC/ECD Extraction, GC/FPD Extraction, GC/NPD Extraction, GC/ECD Extraction, GC/ECD Purge & Trap GC/FID Extraction, GC/FID Extraction, GC/FID Extraction, GC/FID Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/ID Extraction, GC/ECD Extraction, GC/ECD Extraction, GC/ECD Extraction, GC/ECD	601(1)/8010(2) 601(1)/8010(2) 602(1)/8020(2) 608(1)/8080(2) 614(1)/8140(2) 619(1) 632(1) 608(1)/8080(2) 615(1)/8150(2) 603(1)/8030(2) 604(1)/8040(2) 605(1)/8050(2) 606(1)/8060(2) 607(1) 609(1)/8090(2) 610(1)/8310(2) 611(1) 612(1)/8120(2) D3328-78(3)
GC BPD	Boiling Point Determination	Extraction, GC/FID	D2887-84(4)

References

Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 SW-846, 3rd Edition, 1986.
 "Annual Book of ASTM Standards", Volume 11.01, 1985.
 "Annual Book of ASTM Standards", Volume 05.02, 1984.

------ Enseco

ANALYTICAL METHODOLOGY - INORGANIC TESTS

Description

<u>Methodology</u>

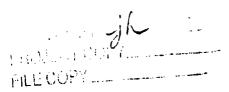
Reference

Test	Description	Methodology	Reference
ICP	Trace Metals	ICP Emission Spectroscopy	200.7(1)/6010(2)
FSB	Antimony	Furnace Atomic Absorption	204.2(1)/7041(2)
FAS	Arsenic	Furnace Atomic Absorption	206.2(1)/7060(2)
FCD	Cadmium	Furnace Atomic Absorption	213.2(1)/7131(2)
FPB	Lead	Furnace Atomic Absorption	239.2(1)/7421(2)
FSE	Selenium	Furnace Atomic Absorption	270.2(1)/7740(2)
FAG	Silver	Furnace Atomic Absorption	272.2(1)/7761(2)
FTL	Thallium	Furnace Atomic Absorption	279.2(1)/7841(2)
CVHG	Mercury	Cold Vapor Atomic	245.1(1)/7471(2)
CR + 6	Chromium (VI)	Colorimetric	312B(3)
IC CL	Chloride	Ion Chromatography	300.0(1)
BURCL	Chloride	Manual Titrimetric	325.3(1)
METF	Fluoride	Electrode	340.2(1)
IC SO4	Sulfate	IC	300.0(1)
SPES04	Sulfate	Manual Turbidimetric	375.4(1)
	Alkalinity, Total	Titrimetric	310.1(1)
METACK		Titrimetric	403(3)
TECNOXT	Nitrate+Nitrite as N	Cd Reduction Colorimetric	353.2(1)
METPH	рН	Meter	150.1(1)/9045(2)
CELSP	Specific Conductance at 25°C	Bridge	120.1(1)
BALTDS	Total Dissolved Solids	Gravimetric, 180ºC	160.1(1)
BALTSS	Total Suspended Solids	Gravimetric, 105°C	160.2(1)
BALTS	Total Solids	Gravimetric, 105°C	160.3(1)
BALTVS	Total Volatile Solids	Gravimetric, 550°C	160.4(1)
TECO P	Ortho-Phosphate as P	Two Reagent Colorimetric	365.3(1)
TECT P	Total Phosphorus as P	Digestion-Colorimetric	365.3(1)
ICP	Total Phosphorus as P	Digestion-ICP/AES	200.7(1)
ICP	Silica as SiO ₂	ICP/AES	200.7(1)
SPESI02		Colorimetric	370.1(1)
METBOD	Biochemical Oxygen Demand	Dilution Bottle-D.O. probe	405.1(1)
METCOD	Chemical Oxygen Demand	Micro Colorimetric	410.4(1)
TOCTOC	Total Organic Carbon	UV Oxidation-IR	415.2(1)
METNH3	Ammonia as N	Electrode	350.3(1)
TECNH3	Ammonia as N	Automated Colorimetric	350.1(1)
METTKN	Total Kjeldahl Nitrogen as N	Digestion-Electrode	351.4(1)
TECTKN	Total Kjeldahl Nitrogen as N	Digestion-Colorimetric	351.2(1)
TOXTOX	Total Organic Halogen	Combustion-Titrimetric	- 9020 (2)
TONO1	Total Organic Nitrogen	Calculation (TKN-NH ₃)	-
BAL O&G	Oil and Grease	Freon Extraction-	
		Gravimetric	413.1(1)
	Oil and Grease	Freon Extraction-IR	413.2(1)
TECCN F		Chlorination-Distillation-	
	Chlorination	Colorimetric	335.1(1)
TECCN W	Weak & Dissolved Cyanide	Distillation-Colorimetric	412H(3)
	Total Cyanide	Distillation-Colorimetric	335.2(1)/9010(2)
STEPHEN		Distillation-Colorimetric	420.1(1)
	Fecal Coliform	Membrane Filter	909C(3)
COLIF T	Total Coliform	Membrane Filter	909A(3)

🚝 Ensecc

ANALYTICAL METHODOLOGY - INORGANIC TESTS (CONT.)

Test	Description	Methodology	Reference
IC BR POTCL2R NESCOLR ICPHAR TECNO2 SPES BURSO3 SPEMBAS SPETURB	Bromide Residual Chlorine Color Hardness as CaCog Nitrite as N Sulfide Sulfite MBAS (Surfactants) Turbidity	Ion Chromatography Amperometric Pt-Co Colorimetric Calculation Colorimetric Colorimetric Titrimetric Colorimetric Turbidimeter	300.0(1) 330.2(1) 110.2(1) 200.7(1)/314A(3) 354.1(1) 376.2(1)/9030(2) 377.1(1) 425.1(1) 180.1(1)
Gross Alph Gross Beta Radium 220 Radium 228 Uranium	a 6	Proportional Counter Proportional Counter Separation - Counter Separation - Counter Fluorimetric	703(3) 703(3) 705(3) 707(3) D2907.75(4)


References

(1) Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 (2) SW-846, 3rd Edition, 1986.
 (3) "Standard Methods for the Examination of Water and Wastewater", 16th Edition, 1985.
 (4) "Annual Book of ASTM Standards", Part 31, Water, 1980.

· · · · ·

Rocky Mountain Analytical Laboratory Easeco Incorporated

RECEIVED ADD 7 1989

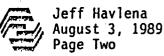
August 3, 1989

Mr. Jeff Havlena Dan Stephens and Associates 4415 Hawkins Albuguergue, NM 87109

Dear Mr. Havlena:

Enclosed are the Tentatively Identified Compounds for RMAL project 005102 sample 0003 for Enron. TICs were not present for 005102-0001 and 0002.

These data sheets present results for the "identification" of unknown compounds that were detected in the GC/MS analysis for sample 005102-0003. The results from this work are presented as "tentatively identified compounds" (TIC). The approach used for reporting TICs was based on the protocol established for this purpose in the EPA Superfund methods and on guidelines established by the American Chemical Society (ACS).


In summary, the mass spectrum of chromatographic peaks in concentrations in excess of 10% of the internal standard were obtained. For this project, the number of unknown compounds identified was limited to 10 compounds in the volatile fraction and 20 compounds in the semivolatile fraction. Each mass spectrum was then compared to a library of over 30,000 reference spectra in a computerized "library search." The three "best" matches obtained by the computer were hardcopied along with the mass spectrum of the unknown peak. This information was then reviewed by an analyst who "identified" the compound based on the available information.

All identifications were based on the "Guidelines for GC/MS Identification" developed by the American Chemical Society (<u>Environmental</u> <u>Science and Technology</u>, 1982, 16 143A). As recommended in these guidelines, identifications of unknown substances were reported with a level of confidence. The three levels of confidence cited in the ACS guidelines and used in this report are as follows:

Level 3: Confirmed Identification

The identification and quantitation are based on the analysis of an authentic standard.

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Facsimile: 303/431-7171

Level 2: Confident Identification

Good agreement was observed between the unknown compound and either a specific library spectrum or the ions characteristic of a class of compounds. Quantitation is based on the total ionization peak area relative to an internal standard, assuming a response factor of one.

Level 1: Tentative Identification

The unknown compound is only indicative of a specific library spectrum or the ions characteristic of a class of compounds. Quantitation is based on total ionization peak as in Level 2. If there were no library spectra similar to the unknown, and it could not be assigned to a particular class of compounds, the compound is reported as "unknown."

In addition, the following qualifiers may be used to clarify Level 1 and Level 2 identifications. If no qualifier is present, the identification refers to the specific compound listed. The two qualifiers used in this report are:

I - Isomer

The unknown may be this specific isomer or an isomer with the same molecular formula.

C - Class

The unknown compound contains ions characteristic of a particular class of compounds.

If you have any questions, please do not hesitate to call.

Sincerely. Cindy Ingram

Program Administrator

CI/lw Enclosures

cc: Gordon Wassell, Enron

RMAL #005102

TENTATIVELY IDENTIFIED COMPOUNDS

FOR

ENRON

SAMPLE NUMBER 005102-03

Compound Name	Fraction	Confidence Level	Estimated Concentration ug/L
Oxirane,2-Methy1-2-(1-Methylethyl)-	BNA	1	14 -
2-Hexanol,2-Methyl-	BNA	21	10
Oxygenated Hydrocarbon	BNA	2C	39
Oxygenated Hydrocarbon	BNA	2C	74
2-Hexanol,2,5-Dimethyl-,(S)-	BNA	21	25
Oxygenated Hydrocarbon	BNA	2C	25
Oxygenated Hydrocarbon	BNA	2C	11
Oxygenated Hydrocarbon	BNA	2C	22
Benzene,1,3,5-Trimethyl-	BNA	21	13
Oxygenated Hydrocarbon	BNA	2C	12
Benzene, 1, 2, 4-Trimethyl-	BNA	21	15
Alcohol	BNA	2C	10
Oxygenated Hydrocarbon	BNA	2C	10
Ethanone,1-Pheny1-	BNA	21	31
Oxygenated Hydrocarbon	BNA	2C	14
Ethanone, 1- (Methylphenyl) -	BNA	21	22
Oxygenated Hydrocarbon	BNA	2C	24
Oxygenated Hydrocarbon	BNA	2C	16
Oxygenated Hydrocarbon	BNA	2C	14
Oxygenated Hydrocarbon	BNA	2C	22
Oxygenated Hydrocarbon	BNA	2C	15
Oxygenated Hydrocarbon	BNA	2C	12

NOTES:

Confidence Levels

Level 3 - Confirmed Identification Level 2 - Confident Identification Level 1 - Tentative Identification

Qualifiers

B - Blank Contaminant

I - Isomer

C - Class

Please refer to the discussion for further details.

TENTATIVELY IDENTIFIED COMPOUNDS

FOR

ENRON

SAMPLE NUMBER 005102-03

Compound_Name	Fraction	Confidence Level	Estimated Concentration ug/L
1-Pentene, 2-Methyl-	VOA	21	200
1-Pentene, 2-Methyl-	VOA	21	760
Cyclohexane, Methyl-	VOA	2	370

NOTES:

Confidence Levels

Level 3 - Confirmed Identification Level 2 - Confident Identification Level 1 - Tentative Identification

Qualifiers

- B Blank Contaminant
- I Isomer C Class

Please refer to the discussion for further details.

Enseco Incorporated

RECEIVED AUG 2 5 1989

August 22, 1989

Gordon Wassell Enron 2223 Dodge Street Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the three aqueous samples received at Rocky Mountain Analytical Laboratory on August 10, 1989.

If you have any questions, the Technical Manager assigned to this project is Jeanne Howbert.

Sincerely, MAN Ramona Power

Data Control

Enclosures

cc: Jeanne Howbert, TM

RMAL #006099

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

Finseco

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989. uality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The QC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

Enseco

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

100

X 100

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ X
Actual Concentration

cision for DCS is measured by Relative Percent Difference (RPD).

RPD = ______ Measured Concentration DCS1 - Measured Concentration DCS2 |

(Measured Concentration DCS1 + Measured Concentration DCS2)/2

Data Quality Assessment

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

Enseco

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client ID	Matrix	Samp1 Date	ed Time	Received Date
006099-0001-SA 006099-0002-SA 006099-0003-SA	5-1B	AQUEOUS AQUEOUS AQUEOUS	08 AUG 89	13:45	10 AUG 89 10 AUG 89 10 AUG 89

ANALYTICAL TEST REQUESTS for Enron

- - -

Lab ID: 006099	Group Code	Analysis Description	Custom Test?
0001	A	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N
		Priority Pollutant Semivolatile Organics	N
		Prep - Semivolatile Organics by GC/MS	N
		Priority Pollutant Organochlorine Pesticides/PCBs	N
		Prep - Organochlorine Pesticides/PCBs by GC	N
		Alkalinity,	N
		Total/Carbonate/Bicarbonate/Hydroxide	N
		Nitrate, as Nitrogen	N
		Chloride, Ion Chromatography	N
		Sulfate, Ion Chromatography	N
		Fluoride, Electrode	N N
		Total Dissolved Solids (TDS) pH	N
		ICP Metals (Dissolved)	Y ·
		Arsenic, Furnace AA (Dissolved)	Ň
		Lead, Furnace AA (Dissolved)	Ň
		Selenium, Furnace AA (Dissolved)	N
•		Thallium, Furnace AA (Dissolved)	N
		Mercury, Cold Vapor AA (Dissolved)	N
		Prep - Mercury, Cold Vapor AA, (Dissolved)	N
0002	В	Priority Pollutant Organochlorine Pesticides/PCBs	N
		Prep - Organochlorine Pesticides/PCBs by GC	N
0003	C C	Priority Pollutant Volatile Organics	N
	-	Prep-Volatile Organics by GC/MS	Ň
		Priority Pollutant Semivolatile Organics	Ň
		Prep - Semivolatile Organics by GC/MS	N
		Priority Pollutant Organochlorine	· N
		Pesticides/PCBs	N
		Prep - Organochlorine Pesticides/PCBs by GC	N

Enseco

Priority Pollutant Volatile Organics

Method 624

Client Name: Enron Client ID: 5-2B Lab ID: 006099-0001-SA Matrix: AQUEOUS Authorized: 10 AUG 89	Enseco ID: 1048354 Sampled: 08 AUG 89 Prepared: 11 AUG 89		Received: 10 AUG 8 Analyzed: 15 AUG 8	
Parameter	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	1000 1000 1000 500 500 500	
(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 500 500 500 500	
Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND 2500 ND ND ND ND 4700 ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 1000 500 500 500 500 500	
Toluene-d8 4-Bromofluorobenzene (BFB) 1,2-Dichloroethane-d4	108 98:4 94.8	% % %		

N.D. = Not Detected N.A. = Not Applicable

Reported By: Steve Siegel

Enseco

Priority Pollutant Volatile Organics

Method 624

- - - - - -

Client Name: Enron Client ID: 5-2BA Lab ID: 006099-0003-SA Matrix: AQUEOUS Authorized: 10 AUG 89	Enseco ID: 1048356 Sampled: 08 AUG 89 Prepared: 11 AUG 89		Received: 10 Al Analyzed: 15 Al	
Parameter	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	1000 1000 1000 500 500 500	
(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 500 500 500 500	
Trichloroethene hlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform	ND ND ND 2700 ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 500 500 1000 500	
l,l,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND 5000 ND ND	ug/L ug/L ug/L ug/L ug/L	500 500 500 500 500 500	
Toluene-d8 4-Bromofluorobenzene (BFB) 1,2-Dichloroethane-d4	103 98.0 95.6	% %	 	

N.D. = Not Detected N.A. = Not Applicable

Réported By: Steve Siegel

DEnseco

Priority Pollutant Semivolatile Organics

Method 625

- ...

Client Name: Enron Client ID: 5-2B Lab ID: 006099-0001-SA Matrix: AQUEOUS Authorized: 10 AUG 89	Enseco ID: 1048354 Sampled: 08 AUG 89 Prepared: 14 AUG 89		Received: 10 AUG 89 Analyzed: 18 AUG 89 Reporting	
Parameter	Result	Units	Limit	
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl) ether	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100	
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100	
methane 4-Dichlorophenol ,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	100 - 100 100 100 100	
4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene	ND ND ND ND	ug/L ug/L ug/L ug/L	100 100 100 100	
Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol	ND ND ND	ug/L ug/L ug/L ug/L ug/L	100 100 100 500 500	
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND	ug/L ug/L ug/L	100 100 100	
phenyl ether Fluorene 4,6-Dinitro-		ug/L ug/L	100 100	
2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND	ug/L ug/L ug/L	500 100 100	

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

eported By: Michael Gallik

Enseco

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

....

Client Name: Enron Client ID: 5-2B Lab ID: 006099-0001-SA Matrix: AQUEOUS Authorized: 10 AUG 89	Enseco ID: 1048354 Sampled: 08 AUG 89 Prepared: 14 AUG 89		eceived: 10 AUG 89 alyzed: 18 AUG 89
Parameter	Result	Units	Reporting Limit
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene nzo(k)fluoranthene benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 500 100 100 100 100 100 200 100 100 100 1
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol		% % % %	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Michael Gallik

Priority Pollutant Semivolatile Organics

Method 625

Client Name: Enron Client ID: 5-2BA Lab ID: 006099-0003-SA Matrix: AQUEOUS Authorized: 10 AUG 89	Enseco ID: 1048356 Sampled: 08 AUG 89 Prepared: 14 AUG 89	Received: 10 Analyzed: 18	AUG 89 AUG 89
Parameter	Result	Reporting Inits Limit	
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND to ND to ND to ND to	ıg/L 100 ıg/L 100 ıg/L 100 ıg/L 100 ıg/L 100 ıg/L 100	
bis(2-Chloroisopropyl) ether	ND	ıg/L 100	
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND C ND C ND C ND C	ıg/L 100 ıg/L 100 ıg/L 100 ıg/L 100 ıg/L 100 ıg/L 100	
bis(2-Chloroethoxy) methane ,4-Dichlorophenol ,2,4-Trichlorobenzene	ND	1g/L 100 1g/L 100 1g/L 100	
Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ND ND ND ND ND	ığ/L 100 ıg/L 100 ıg/L 100	
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene	ND ND	19/L 100 19/L 100 19/L 100 19/L 100	
Dimethyl phthalate Acenaphthylene Acenaphthene	ND U ND U	19/L 100 19/L 100 19/L 100 19/L 500	
2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND U ND U	19/L 500 19/L 100 19/L 100	
Diethyl phthalate 4-Chlorophenyl phenyl ether	ND ND ND	1g/L 100	
Fluorene 4.6-Dinitro-		1g/L 100	
2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND	1g/L 500 1g/L 100 1g/L 100	

(continued on following page)

N.D. = Not Detected N.A. = Not Applicable

Reported By: Michael Gallik

Enseco

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

. . . .

Client Name: Enron Client ID: 5-2BA Lab ID: 006099-0003-SA Matrix: AQUEOUS Authorized: 10 AUG 89	Enseco ID: 1048356 Sampled: 08 AUG 89 Prepared: 14 AUG 89		Received: 10 AUG 89 Analyzed: 18 AUG 89
Parameter	Result	Units	Reporting Limit
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene enzo(k)fluoranthene enzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 500 100 100 100 100 100 100 100
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	57.6 63.3 61.8 ND ND ND	% % % % %	

N.D. = Not Detected N.A. = Not Applicable

Priority Pollutant Organochlorine Pesticides/PCBs

• • •

Method 608

Client Name: Enron Client ID: 5-2B Lab ID: 006099-0001-SA Matrix: AQUEOUS Authorized: 10 AUG 89	Enseco ID: 1048354 Sampled: 08 AUG 89 Prepared: 11 AUG 89		Received: 10 AUG 89 Analyzed: 17 AUG 89
Parameter	Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4'-DDT drin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor-1212 Aroclor-1248 Aroclor-1254 Aroclor-1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.50 0.50 1.0 0.50 0.50 1.0 0.50 0.50 1.0 0.50 0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.50 0.50 1.0 0.50 1.0
Dibutylchlorendate	74.0	%	

N.D. = Not Detected A. = Not Applicable

Reported By: Stephanie Boehnke

Approved By: Barbara Sullivan

]]Enseco

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-18 006099-0002-SA AQUEOUS 10 AUG 89	Prepared:	08 AUG 89 11 AUG 89	l	Received: 10 AUG 89 Analyzed: 17 AUG 89 Reporting
Parameter			Result	Units	Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlorda amma-Chlorda amma-Chlorda Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1260	poxide I ulfate vde ane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.0$
Dibutylchlore	endate		79.5	%	

N.D. = Not Detected N.A. = Not Applicable

Reported By: Stephanie Boehnke

Approved By: Barbara Sullivan

Enseco

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

....

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2BA 006099-0003-SA AQUEOUS 10 AUG 89	Enseco ID: Sampled: Prepared:	1048356 08 AUG 89 11 AUG 89		Received: 10 AUG Analyzed: 17 AUG	89 89
Parameter		i	Result	Units	Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor e Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD Endosulfan s 4,4'-DDT Endrin alden alpha-Chlord Aroclor-1016 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1254	poxide I ulfate yde ane ane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ \end{array}$	
Dibutylchlor	endate		57.3	%		

N.D. = Not Detected N.A. = Not Applicable

Reported By: Stephanie Boehnke

Approved By: Barbara Sullivan

Metals

Dissolved Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-28 006099-0001 AQUEOUS 10 AUG 89	S	eco ID: ampled: epared:	1048354 08 AUG 89 See Below		10 AUG 89 See Below	
Parameter		Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium elenium Silica as SiC Silver Sodium Strontium Thallium Zinc	02	ND 0.025 0.53 ND 0.84 ND 134 ND 2.8 ND 23 2.0 ND ND ND ND 23 ND 184 1.2 ND ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.05 0.005 0.01 0.002 0.02 0.005 0.2 0.01 0.01 0.005 0.2 0.01 0.0002 0.02 0.04 5 0.005 0.2 0.04 5 0.05 0.05 0.05 0.01	200.7 206.2 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	16AUG8914AUG8916AUG89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Harold Borquez

Approved By: Tammy Bailey

General Inorganics

Client Name: Enron Client ID: 5-2B Lab ID: 006099-0 Matrix: AQUEOUS Authorized: 10 AUG 8		Enseco ID: Sampled: Prepared:	1048354 08 AUG 89 See Below	Received: Analyzed:	10 AUG 89 See Below	
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Total as CaCO3 at pH 4.5 Alkalinity, Bicarb. a	774	mg/L	5	310.1	NA	11 AUG 89
CaCO3 at pH 4.5	774	mg/L	5	310.1	NA	11 AUG 89
Alkalinity, Carb. as CaCO3 at pH 8.3 Alkalinity, Hydrox.	ND	mg/L	5	310.1	NA	11 AUG 89
as CaCO3 Chloride Fluoride Nitrate as N pH Sulfate Total Dissolved Solic	ND 11 0.2 ND 7.1 ND is 827	mg/L	5 3 0.1 0.5 5 10	310.1 300.0 340.2 353.2 150.1 300.0 160.1	NA NA NA NA NA	11 AUG 89 16 AUG 89 16 AUG 89 18 AUG 89 11 AUG 89 16 AUG 89 15 AUG 89

- - -

N.D. = Not Detected N.A. = Not Applicable

Reported By: Jennifer Franzen

Approved By: Tammy Bailey

9

LOT ASSIGNMENT REPORT atile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006099-0001-SA	AQUEOUS	624-A	07 AUG 89-D	15 AUG 89-D
006099-0003-SA	AQUEOUS	624-A	07 AUG 89-D	15 AUG 89-D

3 Enseco

ICATE CONTROL SAMPLE REPORT atile Organics by GC/MS

Analyte	Conc Spiked	entratior DCS1	Measured DCS2	AVG		curacy age(%) Limits	Preci (RPD DCS L)
Category: 624-A Matrix: AQUEOUS QC Lot: 07 AUG 89-D Concentration Units: ug/L								
l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50	43.5 50.0 56.4 45.4 51.1	44.2 51.4 59.0 49.1 54.5	43.8 50.7 57.7 47.2 52.8	88 101 115 95 106	61-145 71-120 76-127 76-125 75-130	1.6 2.8 4.5 7.8 6.4	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

)) Enseco

LE CONTROL SAMPLE REPORT atile Organics by GC/MS

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 624-A Matrix: AQUEOUS QC Lot: 07 AUG 89-D QC Run: Concentration Units: ug/L	15 AUG 89-D	
1,2-Dichloroethane-d4	50.0 46.6	93 76-114
4-Bromofluorobenzene (BFB) Toluene-d8	50.0 49.3 50.0 49.8	99 86-115 100 88-110

Calculations are performed before rounding to avoid round-off errors in calculated results.

OD BLANK REPORT atile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 07 AUG 89-D QC Run: 15 AU	G 89-D	•	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene orodibromomethane ,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Ietrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 07 AUG 89-D QC Run: 15 AU	G 89-D		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0

THOD BLANK REPORT latile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 07 AUG 89-D QC Re 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1.1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane trachloroethene uene Chlorobenzene Ethyl benzene	In: 15 AUG 89-D ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

LOT ASSIGNMENT REPORT nivolatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006099-0001-SA	AQUEOUS	625-A	14 AUG 89-A	14 AUG 89-B
006099-0003-SA	AQUEOUS	625-A	14 AUG 89-A	14 AUG 89-B

NPLICATE CONTROL SAMPLE REPORT hivolatile Organics by GC/MS

Analyte	Cond Spiked	centratio DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Preci (RPD DCS L)
Category: 625-A Matrix: AQUEOUS QC Lot: 14 AUG 89-A Concentration Units: ug/L								
Phenol 2-Chlorophenol 1,4-Dichlorobenzene	100 100 50	50.3 50.9 17.8	53.8 53.3 16.7	52.0 52.1 17.2	52 52 35	12- 89 27-123 36- 97	6.7 4.6 6.4	42 40 28
N-Nitroso-di- n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	50 50 100 50 100 50 100 50	23.9 18.2 64.1 23.5 41.0 30.0 39.9 30.3	27.3 17.1 65.3 24.7 44.8 30.4 45.6 29.4	25.6 17.6 64.7 24.1 42.9 30.2 42.8 29.8	51 35 65 48 43 60 43 60	41-116 39-98 23-97 46-118 10-80 24-96 9-103 26-127	13 6.2 1.9 5.0 8.9 1.3 13 3.0	38 28 42 31 50 38 50 31

Exalculations are performed before rounding to avoid round-off errors in calculated results.

GLE CONTROL SAMPLE REPORT ivolatile Organics by GC/MS

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 625-A Matrix: AQUEOUS QC Lot: 14 AUG 89-A QC Run: 14 Concentration Units: ug/L	AUG 89-B	
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	10043.610042.710052.920083.920073.9200129	44 35-114 43 43-116 53 33-141 42 21-100 37 10-94 64 10-123

Calculations are performed before rounding to avoid round-off errors in calculated results.

OD BLANK REPORT volatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 14 AUG 89-A QC Run:	14 AUG 89-B		
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl) ether N-Nitroso-di- n-propylamine	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10
Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy) _methane	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
Dichlorophenol 4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 50 50 10
2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
4,6-Dinitro- 2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether	ND ND ND ND	ug/L ug/L ug/L ug/L	50 10 10 10

HOD BLANK REPORT ivolatile Organics by GC/MS (cont.)

Analyte		Resu	ilt (f Jnits	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 14 AUG 89-A QC	Run: 1	4 AUG 89-B			
Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene enz(a,h)anthracene Benzo(g,h,i)perylene		•	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 50 10 10 10 10 10 20 10 10 10 10 10 10 10 10 10
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 14 AUG 89-A QC	Run: 1	4 AUG 89-B			
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene			ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
bis(2-Chloroisopropyl) ether		•	ND	ug/L	10
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol			ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10

-- DEnseco

VOD BLANK REPORT volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 14 AUG 89-A QC Run:	14 AUG 89-B		
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene iathyl phthalate	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10 50 50 10 10
lorophenyl henyl ether Fluorene	ND ND	ug/L ug/L	10 10
4,6-Dinitro- 2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND ND	ug/L ug/L ug/L	50 10 10
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl)	ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 10 10 10 10 20 10
phthalate Chrysene Di-n-octyl phthalate	ND ND ND	ug/L ug/L ug/L	10 10 10

------ DEnseco

V OD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 14 AUG 89-A Q Benzo(b)fluoranthene Benzo(a)fluoranthene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	C Run: 14 AUG 89-B ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10

C ... OT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006099-0001-SA	AQUEOUS	608-A	11 AUG 89-A	11 AUG 89-A
006099-0002-SA	AQUEOUS	608-A	11 AUG 89-A	11 AUG 89-A
006099-0003-SA	AQUEOUS	608-A	11 AUG 89-A	11 AUG 89-A

.....

- Brseco

ICATE CONTROL SAMPLE REPORT ivolatile Organics by GC

Analyte	Con Spiked	centratio DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Precision (RPD) DCS Limit		
Category: 608-A Matrix: AQUEOUS QC Lot: 11 AUG 89-A Concentration Units: ug/L gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin	0.2 0.2 0.2 0.5	0.153 0.172 0.149 0.440	0.173 0.189 0.164 0.492	0.163 0.180 0.156 0.466	82 90 78 93	56-123 40-131 40-120 52-126	12 9.4 9.6 11	15 20 22 18	
Endrin 4,4'-DDT	. 0.5 0.5	0.420 0.413	0.468 0.469	0.444 0.441	89 88	56-121 38-127	11 13	21 27	

Calculations are performed before rounding to avoid round-off errors in calculated results.

LE CONTROL SAMPLE REPORT volatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 608-A Matrix: AQUEOUS QC Lot: 11 AUG 89-A QC Run: Concentration Units: ug/L	11 AUG 89-A	· · ·
Dibutylchlorendate	1.00 0.789	79 48-136

Enseco

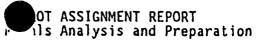
Calculations are performed before rounding to avoid round-off errors in calculated results.

- Enseco

OD BLANK REPORT volatile Organics by GC

Analyte	Re	sult	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 11 AUG 89-A	QC Run: 11 AUG 89-A			
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde Dha-Chlordane Nachlordane Nachlordane Aroclor-1016 Aroclor-1221 Aroclor-1242 Aroclor-1254 Aroclor-1254		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 11 AUG 89-A alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	QC Run: 11 AUG 89-A	ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10

OD BLANK REPORT S volatile Organics by GC (cont.)


Analyte		Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 11 AUG 89-A	QC Run: 11	AUG 89-A		
4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254 Clor-1260		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ \end{array}$
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 11 AUG 89-A	QC Run: 11	AUG 89-A		
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1

Enseco

VOLATILE Organics by GC (cont.)

Analyte	Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 11 AUG 89-A QC Run:	11 AUG 89-A		
Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260	nd Nd Nd Nd Nd Nd Nd	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	$ \begin{array}{r} 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0 \end{array} $

- Enseco

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)
006099-0001-SA	AQUEOUS	ICP-AD	16 AUG 89-A
006099-0001-SA	AQUEOUS	AS-FAA-AD	14 AUG 89-A
006099-0001-SA	AQUEOUS	PB-FAA-AD	14 AUG 89-D
006099-0001-SA	AQUEOUS	SE-FAA-AD	14 AUG 89-A
006099-0001-SA	AQUEOUS	TL-FAA-AD	16 AUG 89-A
006099-0001-SA	AQUEOUS	HG-CVAA-AT	15 AUG 89-A

ICATE CONTROL SAMPLE REPORT ils Analysis and Preparation

Analyte	Cor Spiked	ncentratio DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Preci (RPD DCS L)
Category: ICP-AD Matrix: AQUEOUS QC Lot: 16 AUG 89-A Concentration Units: mg/L								
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Vickel Magnesium Manganese Vickel Solium Thallium Tin Vanadium Zinc	$\begin{array}{c} 2.0\\ 0.5\\ 2.0\\ 2.0\\ 0.05\\ 0.05\\ 100\\ 0.2\\ 0.5\\ 1.0\\ 0.5\\ 1.0\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0$	2.04 0.52 2.00 1.98 0.050 0.054 103 0.21 0.48 0.26 1.04 0.50 51.6 0.50 0.50 101 NA 0.055 102 NA 0.44 0.50 0.53	1.98 0.52 2.00 2.00 0.050 0.050 104 0.21 0.49 0.26 1.04 0.52 51.9 0.50 0.50 101 NA 0.058 102 NA 0.44 0.50 0.53	2.01 0.52 2.00 1.99 0.050 0.052 104 0.21 0.48 0.26 1.04 0.51 51.8 0.50 0.50 101 NC 0.056 102 NC 0.44 0.53	101 104 100 100 104 104 105 97 104 104 102 104 100 100 101 NC 113 102 NC 110 100	75-125 75-125	3.0 0.0 1.0 0.0 7.7 1.0 0.0 2.1 0.0 2.1 0.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Category: AS-FAA-AD Matrix: AQUEOUS QC Lot: 14 AUG 89-A Concentration Units: mg/L								
Arsenic	0.04	0.036	0.039	0.038	94	75-125	8.0	20
Category: PB-FAA-AD Matrix: AQUEOUS QC Lot: 14 AUG 89-D Concentration Units: mg/L	•							
Lead	0.02	0.021	0.023	0.022	110	75-125	9.1	20
ND = Not detected								

• • • •

NC = Not calculated, calculation not applicable NA = Not applicable

culations are performed before rounding to avoid round-off errors in calculated results.

ICATE CONTROL SAMPLE REPORT als Analysis and Preparation (cont.)

Ľ

Analyte	Con Spiked	centrati DCS1	on Measured DCS2	AVG		curacy age(%) Limits	Preci (RPD DCS L)
Category: SE-FAA-AD Matrix: AQUEOUS QC Lot: 14 AUG 89-A Concentration Units: mg/L	·	5001						
Selenium	0.01	0.010	0.010	0.010	100	75-125	0.0	20
Category: TL-FAA-AD Matrix: AQUEOUS QC Lot: 16 AUG 89-A Concentration Units: mg/L		•.						
Thallium	0.05	0.055	0.054	0.054	109	75-125	1.8	20
Category: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 15 AUG 89-A Concentration Units: mg/L						•		
Cury	0.0010 0	.000980	0.00101 0.	000995	100	75-125	3.0	20

Calculations are performed before rounding to avoid round-off errors in calculated results.

🕑 Enseco

LOT ASSIGNMENT REPORT Chemistry Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006099-0001-SA	AQUEOUS	ALK-A	11 AUG 89-A	15 AUG 89-A
006099-0001-SA	AQUEOUS	NO3-A	18 AUG 89-A	
006099-0001-SA	AQUEOUS	CL-IC-A	16 AUG 89-B	
006099-0001-SA	AQUEOUS	SO4-IC-A	16 AUG 89-A	
006099-0001-SA	AQUEOUS	F-A	16 AUG 89-A	
006099-0001-SA	AQUEOUS	TDS-A	15 AUG 89-A	
006099-0001-SA	AQUEOUS	PH-A	11 AUG 89-A	

- . .

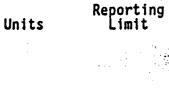
LICATE CONTROL SAMPLE REPORT Chemistry Analysis and Preparation

Analyte		Cond Spiked	centration DCS1	Measured	AVG		curacy rage(%) Limits	Preci (RPD DCS L)
Category: ALK-A Matrix: AQUEOUS QC Lot: 11 AUG 89-A Concentration Units:	mg/L								
Alkalinity, Total as CaCO3 at pH 4.5		125	118	119	118	95	90-110	0.8	10
Category: NO3-A Matrix: AQUEOUS QC Lot: 18 AUG 89-A Concentration Units:	mg/L		:			• • • •			
Nitrate as N		5.4	5.44	5.65	5.54	103	91-109	3.8	10
Category: CL-IC-A Matrix: AQUEOUS 9C Lot: 16 AUG 89-B Centration Units:	mg/L	• .							
chloride		100	103	104	104	104	75-125	1.0	20
Category: SO4-IC-A Matrix: AQUEOUS QC Lot: 16 AUG 89-A Concentration Units:	mg/L				•		•	•••	
Sulfate		200	209	210	210	105	75-125	0.5	20
Category: F-A Matrix: AQUEOUS QC Lot: 16 AUG 89-A Concentration Units:	mg/L							• .	
Fluoride		12	12.9	13.1	13.0	108	88-112	1.5	15

Calculations are performed before rounding to avoid round-off errors in calculated results.

HOD BLANK REPORT Chemistry Analysis and Preparation

Analyte


Test: TDS-BAL-A Matrix: AQUEOUS QC Lot: 15 AUG 89-A QC Run: 15 AUG 89-A mg/L

Total Dissolved Solids

ND

:

Result

10

Enseco

Adhere and a state on the state of the state	No. Containers Analysis Parameters Remarks	3 VOA EPA 1024	2 PUB EPA 608	Z ZHA EPA 625	N	PCR	Z- BHA EPO 625	1 VOA EPA 624 PERANED BY EMA	" PCB ER LOB "	- 1 BINA EPA 125 "	 SHIPPING DETAILS Belivered to Shipper by: SHIPPING DETAILS Method of Shipment: Arbtill # Method of Shipment: Arbtill # Method of Shipment: Arbtill # Received for Lab: Ehna A Signed: B 27 Jag U Do Project No. GO 29 O Lab Yellow to Sampler SS-001
CHAIN OF	Sample Type	2 Frank	WATER	NATER	WATER	10ATEP	WATER	WATER	LUATER	WATER	 Date Time Delive Methe Hecal Mothe Methe Methe Motite and Pink Copies to Lab
Ense - Rocky Mountain Analytical 4935 Yarrow Street Arvada, Colorado 80002 303/421-6611 Facsimile 303/431-7171 Attn: CINDY /NGRAM or JUYLE, HIATT Attn: CINDY /NGRAM or JUYLE, HIATT Attn: CINDY /NGRAM or JUYLE, HIATT Attn: CINDY /NGRAM or JUYLE, HIATT ect	Sample ID/Description	5-2BA	5-22A	5-28A	EQUIPMENT BLACK	EQUIPUTELT BLACK		TPIP BLANK	TEIP BIALK	TELO RIANK	CUSTODY TRANSFERS PRIOR TO SHIPPING (signed) Received by: (signed)
Enson Client Et Enson Street 4955 Yarrow Street Arvada, Colorado 8 303/421-6611 Fac Attn: CIMDY Attn: CIMDY Enseco Client Et Project Et Sampling Co. Et Sampling Site It Team Leader Stt	Date Time	23 88 89 1230	1,8889 12 ^{3°}	V 8889 1230	2 8 8 8 10 °°	86891000	U 0, 1000 1000				 CUST Relinquished by: (signed) 1 Mover 1. Tello 3

Enseco Incorporated

RECEIVED SEP 2 5 1989

September 8, 1989

Gordon Wassell Enron 2223 Dodge St. Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the two aqueous samples received at Rocky Mountain Analytical Laboratory on September 2, 1989.

If you have any questions, the Program Administrator assigned to this project is Cindy Ingram.

Sincerely, une.

Ramona Power Dáta Control

Enclosures

cc: Cindy Ingram, PA

RMAL #006385

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Eax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

Enseco

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989. Quality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The QC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ X 100 Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

| Measured Concentration DCS1 - Measured Concentration DCS2 |

X 100

™Enseco

(Measured Concentration DCS1 + Measured Concentration DCS2)/2

Data Quality Assessment

RPD =

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

3 Enseco

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client [,] ID	Matrix	Sampled Date Time	Received Date
006385-0001-SA 006385-0002-SA		AQUEOUS AQUEOUS	31 AUG 89 15:15 01 SEP 89 11:00	

🗐 Enseco

ANALYTICAL TEST REQUESTS for Enron

Lab ID:	Group	Analysis Description	Custom
006385	Code		Test?
0001 - 0002	A	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N N

Enseco

Priority Pollutant Volatile Organics

....

Method 624

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2A 006385-0001-SA AQUEOUS 02 SEP 89	1050929 31 AUG 89 06 SEP 89		Received: Analyzed:		
Parameter		Result	Units	Report Limit		
Chloromethane Bromomethane Vinyl chloric Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe (cis/trar Chloroform 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrac Bromodichloro 1,2-Dichloroe trans-1,3-Dic Hlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet	de loride ethene ethene ethene ethene soloride chloride omethane chloropropene ene omethane oropropene vinyl ether chloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		
Toluene Chlorobenzene Ethyl benzene		ND ND ND	ug/L ug/L ug/L	5. 5. 5.	0	
Toluene-d8 4-Bromofluoro	benzene	101	%			
(BFB) 1,2-Dichloroe		98.8 99.7	% %			
	-					

N.D. = Not Detected N.A. = Not Applicable

Reported By: Steve Siegel

Approved By: Jeff Lowry

Enseco

Priority Pollutant Volatile Organics

Method 624

Matrix: AOUEOUS	seco ID: 1050930 Sampled: 01 SEP 89 repared: 06 SEP 89	Received Analyzed	1: 02 SEP 89 1: 06 SEP 89
Parameter	Result	Repor Jnits Lim	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND U ND U ND U ND U ND U	ug/L 1 ug/L 1 ug/L 1 ug/L 1 ug/L	0 0 0 5.0 5.0 5.0
1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane	ND U ND U ND U ND U ND U ND U	19/L 19/L 19/L 19/L 19/L 19/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
trans-1,3-Dichloropropene Trichloroethene hlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether	ND U ND U ND U ND U ND U ND U	ığ/L ıg/L ıg/L ıg/L ıg/L 1	5.0 5.0 5.0 5.0 5.0 5.0 5.0 0
Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND U ND U ND U ND U	19/L 19/L 19/L 19/L	5.0 5.0 5.0 5.0 5.0 5.0
Toluene-d8 4-Bromofluorobenzene (BFB) 1,2-Dichloroethane-d4	102 2 99.0 2 94.4 2	6 -	- -

N.D. = Not Detected N.A. = Not Applicable

Reported By: Keith Beauvais

Approved By: Jeff Lowry

LOT ASSIGNMENT REPORT Jatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006385-0001-SA	AQUEOUS	624-A	25 AUG 89-H	06 SEP 89-H
006385-0002-SA	AQUEOUS	624-A	25 AUG 89-H	06 SEP 89-H

LOT ASSIGNMENT REPORT slatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006385-0001-SA	AQUEOUS	624-A	25 AUG 89-H	06 SEP 89-H
006385-0002-SA	AQUEOUS	624-A	25 AUG 89-H	06 SEP 89-H

PLICATE CONTROL SAMPLE REPORT Slatile Organics by GC/MS

Analyte	Conc Spiked	entration DCS1	Measured DCS2	AVG		curacy rage(%) Limits	Preci (RPD DCS L)
Category: 624-A Matrix: AQUEOUS QC Lot: 25 AUG 89-H Concentration Units: ug/L								
l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50	40.2 42.1 48.5 42.7 43.8	39.0 42.3 49.2 43.7 44.9	39.6 42.2 48.8 43.2 44.4	79 84 98 86 89	61-145 71-120 76-127 76-125 75-130	3.0 0.5 1.4 2.3 2.5	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

IGLE CONTROL SAMPLE REPORT atile Organics by GC/MS

Analyte	Concentra	tion	Accui	racy(%)
	Spiked Mo	easured	SCS	Limits
Category: 624-A Matrix: AQUEOUS QC Lot: 25 AUG 89-H QC Run: 06 SEP Concentration Units: ug/L	89-H			·
1,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0	48.3	97	76-114
(BFB)	50.0	49.7	99	86-115
Toluene-d8	50.0	50.4	101	88-110

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enseco

HOD BLANK REPORT atile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 624-PP-A Matrix: AQUEOUS QC Lot: 25 AUG 89-H QC	Run: 06 SEP 89-H		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethane 1,2-Dichloroethane (cis/trans) Chloroform 1,2-Dichloroethane (arbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene orodibromomethane ,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$

Rocky Mountain Analytical Laboratory

October 17, 1989

Gordon Wassell Enron 2223 Dodge Street Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the one aqueous and four soil samples received at Rocky Mountain Analytical Laboratory on September 22, 1989.

If you have any questions, the Program Administrator assigned to this project is Cindy Ingram.

Sincerely, Admental Source Ramona Power

Data Control

Enclosures

cc: Cindy Ingram, PA

RMAL #006689

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

Minseco.

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

Quality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The QC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ X 100 Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

| Measured Concentration DCS1 - Measured Concentration DCS2 |

X 100

:nseco

(Measured Concentration DCS1 + Measured Concentration DCS2)/2

Data Quality Assessment

RPD =

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

Enseco

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client ID	Matrix	Sampled Date Time	Date
006689-0001-SA 006689-0002-SA 006689-0003-SA 006689-0004-SA 006689-0005-SA	5-45 @ 52' 5-55 @ 30.5' 5-55 @ 52'	SOIL SOIL SOIL SOIL AQUEOUS	18 SEP 89 11:55 18 SEP 89 16:40 19 SEP 89 14:10 20 SEP 89 11:25 21 SEP 89 12:00	22 SEP 89 22 SEP 89 22 SEP 89 22 SEP 89

ANALYTICAL TEST REQUESTS for Enron

Lab ID: 006689	Group Code	Analysis Description	Custom Test?	
0001 - 0004	A	Aromatic Volatile Organics	N	
0005	В	Aromatic Volatile Organics	N	

Enseco

Method 8020

Client Name: Enron Client ID: 5-4b @ 30.5' Lab ID: 006689-0001-SA Matrix: SOIL Authorized: 22 SEP_89	Enseco ID: 1053602 Sampled: 18 SEP 89 Prepared: NA		Received: 22 Analyzed: 29	
Parameter	Result	Wet wt. Units	. Reporting Limit	
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 - 100 50 50 50 50	·

ND = Not detected NA = Not applicable

Reported By: Leewaphath Xaiyasang

Approved By: Barbara Sullivan

C1 +

C

Enseco

Method 8020

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-4b @ 52' 006689-0002-SA SOIL 22 SEP 89	Enseco ID: 1053603 Sampled: 18 SEP Prepared: NA	89 R	eceived: 22 nalyzed: 29	
Parameter		Result	Wet wt. Units	Reporting Limit	
Benzene Toluene Chlorobenzen Ethyl benzen Total xylene 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro	e s . benzene benzene	ND ND ND ND 410 ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	100 100 100 200 100 100 100	

ND = Not detected NA = Not applicable

Reported By: Leewaphath Xaiyasang

Enseco

.

Method 8020

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-5b @ 30.5' 006689-0003-SA SOIL 22 SEP 89	Enseco ID: Sampled: Prepared:	19 SEP 8	39	Received: 22 Analyzed: 29	
Parameter		ł	Result	Wet wt. Units	. Reporting Limit	
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene			nd Nd Nd Nd Nd Nd Nd	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 50 100 50 50 50	

ND = Not detected NA = Not applicable

Reported By: Leewaphath Xaiyasang

Enseco

Method 8020

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-5b @ 52' 006689-0004-SA SOIL 22 SEP 89	Enseco ID: Sampled: Prepared:	20 SEP 8	9	Received: 22 Analyzed: 29	
Parameter			Result	Wet wt. Units	. Reporting Limit	
Benzene Toluene Chlorobenzen Ethyl benzen Total xylene 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro	e s benzene benzene		nd Nd Nd Nd Nd Nd Nd Nd	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 100 50 50 50	

ND = Not detected NA = Not applicable

Reported By: Leewaphath Xaiyasang

Enseco 🗄

- - ---

Method 602

Lab ID: 00 Matrix: A0	rip blank	Enseco ID: Sampled: Prepared:	21 SEP 89		Received: 22 Analyzed: 28	
Parameter		1	Result	Units	Reporting Limit	
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorober 1,4-Dichlorober 1,2-Dichlorober	nzene		ND 0.77 ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 1.0 0.50 0.50 0.50	

ND = Not detected NA = Not applicable

Reported By: Leewaphath Xaiyasang

QC LOT ASSIGNMENT REPORT Volatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006689-0001-SA	SOIL	8020-S	28 SEP 89-H	28 SEP 89-H
006689-0002-SA	SOIL	8020-S	29 SEP 89-F	29 SEP 89-F
006689-0003-SA	SOIL	8020-S	28 SEP 89-H	28 SEP 89-H
006689-0004-SA	SOIL	8020-S	28 SEP 89-H	28 SEP 89-H
006689-0005-SA	AQUEOUS	602-A	28 SEP 89-H	28 SEP 89-H

OUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC

.

A		Concentration Spiked Measured				Accuracy Average(%)		Precision (RPD)	
Analyte		Spiked	DCS1	DCS2	AVG	DCS	Limits	DCSL	
Category: 8020-S Matrix: SOIL QC Lot: 28 SEP 89-H Concentration Units:	ug/kg								
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes l,3-Dichlorobenzene	•	500 500 500 500 500 500	503 508 547 516 530 519	495 499 533 507 520 512	499 504 540 512 525 516	100 101 108 102 105 103	77-123 77-123 77-123 77-123 77-123 77-123 77-123	1.6 1.8 2.6 1.8 1.9 1.4	20 20 20 20 20 20
Category: 8020-S Matrix: SOIL QC Lot: 29 SEP 89-F Concentration Units:	ug/kg								
Benzene Doluene hlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene		500 500 500 500 500 500	433 427 532 446 429 434	443 442 478 451 428 348	438 434 505 448 428 391	88 87 101 90 86 78	77-123 77-123 77-123 77-123 77-123 77-123 77-123	2.3 3.5 11 1.1 0.2 22	20 20 20 20 20 20
Category: 602-A Matrix: AQUEOUS QC Lot: 28 SEP 89-H Concentration Units:	ug/L								
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene	• •	5.0 5.0 5.0 5.0 5.0 5.0	5.04 5.06 5.36 5.14 5.19 4.93	4.93 4.95 5.29 4.99 5.09 4.84	4.98 5.00 5.32 5.06 5.14 4.88	100 100 107 101 103 98	75-115 75-115 75-115 75-115 75-115 75-115 75-115	2.2 2.2 1.3 3.0 1.9 1.8	20 20 20 20 20 20

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enseco

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 8020-S Matrix: SOIL QC Lot: 28 SEP 89-H QC Run: Concentration-Units: ug/kg	28 SEP 89-H	
a,a,a-Trifluorotoluene	500 608	122 20-160
Category: 8020-S Matrix: SOIL QC Lot: 29 SEP 89-F QC Run: Concentration Units: ug/kg	29 SEP 89-F	
a,a,a-Trifluorotoluene	3000 3110	104 20-160
Category: 602-A Matrix: AQUEOUS QC Lot: 28 SEP 89-H QC Run: Concentration Units: ug/L	28 SEP 89-H	
a,a-Trifluorotoluene	5.00 6.08	122 20-160

Calculations are performed before rounding to avoid round-off errors in calculated results.

- 🗐 Enseco

METHOD BLANK REPORT Volatile Organics by GC

Analyte	•	Re	sult	Units	Reporting Limit
Test: 8020-S Matrix: SOIL QC Lot: 28 SEP 89-H	QC Run:	28 SEP 89-H	I		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	. •		ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 100 50 50 50
Test: 8020-S Matrix: SOIL QC Lot: 29 SEP 89-F	QC Run:	29 SEP 89-F			
Benzene Toluene hlorobenzene thyl benzene lotal xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	;		ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 100 50 50 50
Test: 602-AP Matrix: AQUEOUS QC Lot: 28 SEP 89-H	QC Run:	28 SEP 89-H	l		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene			ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.50 \\ 0.50 \\ 0.50 \\ 1.0 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \end{array}$

Rocky Mountain Analytical Laboratory

October 17, 1989

Gordon Wassell Enron 2223 Dodge St. Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the two soil and one aqueous samples received at Rocky Mountain Analytical Laboratory on September 25, 1989.

If you have any questions, the Program Administrator assigned to this project is Cindy Ingram.

Sincerely,

mo

Ramona Power Data Control

Enclosures

cc: Cindy Ingram, PA

RMAL #006720

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

nseco

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

Quality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The QC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

-nseco

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ X 100 Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

RPD = (Measured Concentration DCS1 - Measured Concentration DCS2 | (Measured Concentration DCS1 + Measured Concentration DCS2)/2 X 100

Data Quality Assessment

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

Enseco

ا م ما

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client ID	Matrix	Date Time	Date
	5-6B @ 32.5-32.75' 5-6B @ 54.25-54.5' Trip Blank	SOIL SOIL AQUEOUS	21 SEP 89 19:0 22 SEP 89 11:3 23 SEP 89 13:3	0 25 SEP 89

Enseco

ANALYTICAL TEST REQUESTS for Enron

Lab ID: 006720	Group Code	Analysis Description	Custom Test?
0001 - 0002	Α	Aromatic Volatile Organics	 N
0003	В	Aromatic Volatile Organics	N

Enseco

Aromatic Volatile Organics

Method 8020

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-6B @ 32.5-32.75 006720-0001-SA SOIL 25 SEP 89	Enseco ID:	21 SEP 8	9	Received: 25 Analyzed: 28	
Parameter			Result	Wet wt. Units	. Reporting Limit	
Benzene Toluene Chlorobenzen Ethyl benzen Total xylene 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro	e . s . benzene benzene		nd Nd Nd Nd Nd Nd Nd	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 100 50 50 50	

ND = Not detected NA = Not applicable

Reported By: Leewaphath Xaiyasang

Approved By: Barbara Sullivan

Enseco

Aromatic Volatile Organics

Method 8020

Client ID: Lab ID: Matrix:		54.25-54.5 -0002-SA 89	Enseco ID:	22 SEP 8	9	Received: 25 Analyzed: 28	SEP SEP	89 89
Parameter .				Result	Wet wt. Units	. Reporting Limit		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorob 1,4-Dichlorob	enzene			ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 100 50 50 50	• •	:

ND = Not detected NA = Not applicable

Reported By: Leewaphath Xaiyasang

Approved By: Barbara Sullivan

Enseco

Aromatic Volatile Organics

Method 602

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron Trip Blank 006720-0003-SA AQUEOUS 25 SEP 89	Enseco ID: Sampled: Prepared:	23 SEP 89		Received: 25 S Analyzed: 28 S	
Parameter			Result	Units	Reporting Limit	
Benzene Toluene Chlorobenzen Ethyl benzen Total xylene 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro	e s benzene benzene		ND ND 0.50 ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 1.0 0.50 0.50 0.50	

ND = Not detected NA = Not applicable

Reported By: Leewaphath Xaiyasang

Approved By: Barbara Sullivan

QC LOT ASSIGNMENT REPORT Volatile Organics by GC Laboratory QC Lot Number QC Run Number Sample Number QC Matrix QC Category (DCS) (SCS/BLANK)

Sample Number	QC Matrix	QL Lategory	(DLS)	(JUS/ BLANK)
006720-0001-SA	SOIL	8020-S	28 SEP 89-H	28 SEP 89-H
006720-0002-SA	SOIL	8020-S	28 SEP 89-H	28 SEP 89-H
006720-0003-SA	AQUEOUS	602-A	28 SEP 89-H	28 SEP 89-H

🗐 Enseco

Enseco

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC

Analyte	·	Conco Spiked	entration DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS L)
			0031	DUJE	AVG	063	L111115	ULJ L	[L
Category: 8020-S Matrix: SOIL QC Lot: 28 SEP 89-H Concentration Units:	ug/kg								
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes l,3-Dichlorobenzene	•	500 500 500 500 500 500	503 508 547 516 530 519	495 499 533 507 520 512	499 504 540 512 525 516	100 101 108 102 105 103	77-123 77-123 77-123 77-123 77-123 77-123 77-123	1.6 1.8 2.6 1.8 1.9 1.4	20 20 20 20 20 20
Category: 602-A Matrix: AQUEOUS QC Lot: 28 SEP 89-H Concentration Units:	ug/L								
Benzene Joluene hlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene		5.0 5.0 5.0 5.0 5.0 5.0	5.04 5.06 5.36 5.14 5.19 4.93	4.93 4.95 5.29 4.99 5.09 4.84	4.98 5.00 5.32 5.06 5.14 4.88	100 100 107 101 103 98	75-115 75-115 75-115 75-115 75-115 75-115 75-115	2.2 2.2 1.3 3.0 1.9 1.8	20 20 20 20 20 20

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 8020-S Matrix: SOIL QC Lot: 28 SEP 89-H QC Run: 2 Concentration Units: ug/kg a,a,a-Trifluorotoluene	28 SEP 89-H 500 608	122 20-160
Category: 602-A Matrix: AQUEOUS QC Lot: 28 SEP 89-H QC Run: 2 Concentration Units: ug/L	28 SEP 89-H	
a,a,a-Trifluorotoluene	5.00 6.08	122 20-160

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enseco

- DEnseco

METHOD BLANK REPORT Volatile Organics by GC

Analyte		Res	sult	Units	Reporting Limit
Test: 8020-S Matrix: SOIL QC Lot: 28 SEP 89-H	QC Run:	28 SEP 89-H			
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	•		ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 100 50 50 50
Test: 602-AP Matrix: AQUEOUS QC Lot: 28 SEP 89-H	QC Run:	28 SEP 89-H			
Benzene Toluene Shlorobenzene Ithyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene			nd ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 1.0 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \end{bmatrix}$

RECEIVED GOT 2 5 1989

Rocky Mountain Analytical Laboratory

October 18, 1989

Gordon Wassell Enron 2223 Dodge St. Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the two soil samples received at Rocky Mountain Analytical Laboratory on September 29, 1989.

If you have any questions, the Program Administrator assigned to this project is Cindy Ingram.

Sincerely,

1 monai

Ramona Power Data Control

Enclosures

cc: Cindy Ingram, PA

RMAL #006801

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

Quality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The OC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

Accuracy for DCS and SCS is measured by Percent Recovery.

Measured Concentration 100 % Recovery = -X Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

| Measured Concentration DCS1 - Measured Concentration DCS2 | RPD

X 100

-inseco

(Measured Concentration DCS1 + Measured Concentration DCS2)/2

Data Quality Assessment

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

[€]Enseco

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client ID	Matrix	Sampled Date Time	Received Date
006801-0001-SA 006801-0002-SA		SOIL SOIL	25 SEP 89 14:25 27 SEP 89 15:35	

- 🕑 Enseco

ANALYTICAL TEST REQUESTS for Enron

- . .

Lab ID: 006801			÷		Custom Test?
0001 - 0002	A .	Aromatic Volatile Organics	<u></u>		N

Enseco 🗄

Aromatic Volatile Organics

- . -

Method 8020

Client ID: Lab ID: Matrix:	Enron 5-8b @ 30.5' 006801-0001-SA SOIL 29 SEP 89	Enseco ID: Sampled: Prepared:	: 25 SEP 8	9	Received: 29 Analyzed: 04		
Parameter			Result	Wet wt. Units	. Reporting Limit		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobe 1,4-Dichlorobe	enzene		ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 100 50 50 50 50	•	

ND = Not detected NA = Not applicable

Reported By: William Sullivan

Approved By: Kim Zilis

Enseco 🔄

Aromatic Volatile Organics

Method 8020

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-7b @ 30.5' 006801-0002-SA SOIL 29 SEP 89	Enseco ID: 1054 Sampled: 27 S Prepared: NA		Received: 29 Analyzed: 04	SEP OCT	89 89
Parameter		Resul	Wet wt. t Units	Reporting		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylene 1,3-Dichlorol 1,4-Dichlorol 1,2-Dichlorol	e s benzene • benzene	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 100 50 50 50		

ND = Not detected NA = Not applicable

Reported By: William Sullivan

Approved By: Kim Zilis

Enseco

•

OC LOT ASSIGNMENT REPORT Volatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006801-0001-SA	SOIL	8020-S	04 OCT 89-F	04 OCT 89-F
006801-0002-SA	SOIL	8020-S	04 OCT 89-F	04 OCT 89-F

Enseco

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC

Analyte			Concentration Spiked Measured DCS1 DCS2 AVG			AVC	Accuracy Average(%) AVG DCS Limits			Precision (RPD) DCS Limit		
	Category: 8020-S Matrix: SOIL QC Lot: 04 OCT 89-F Concentration Units:	ug/kg			DUSZ	AVG	DCS			111110		
	Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene	•	500 500 500 500 500 500	439 454 515 481 456 455	432 450 516 480 457 483	436 452 516 480 456 469	87 90 103 96 91 94	77-123 77-123 77-123 77-123 77-123 77-123 77-123	1.6 0.9 0.2 0.2 0.2 6.0	20 20 20 20 20 20		

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 8020-S Matrix: SOIL QC Lot: 04 OCT 89-F QC Run: 04 OC Concentration Units: ug/kg	T 89-F	
a,a,a-Trifluorotoluene	3000 3360	112 20-160

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enseco

Enseco

ETHOD BLANK REPORT

Analyte	Result	Units	Reporting Limit
Test: 8020-S Matrix: SOIL QC Lot: 04 OCT 89-F	QC Run: 04 OCT 89-F		
Benzene Toluene Chlorobenzene Ethyl benzene Total xylenes 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	50 50 50 50 100 50 50 50

Rocky Mountain Analytical Laboratory

Index to all the or 1 1848

October 24, 1989

Gordon Wassell Enron 2223 Dodge Street Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the five aqueous samples received at Rocky Mountain Analytical Laboratory on October 5, 1989.

If you have any questions, the Program Administrator assigned to this project is Cindy Ingram.

Sincerely,

Raínona Power Data Control

Enclosures

cc: Cindy Ingram, PA

RMAL #006865

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

Finseco

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

Quality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The QC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ X 100 Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

Measured Concentration DCS1 - Measured Concentration DCS2 | RPD = _______

X 100

≅#Enseco

(Measured Concentration DCS1 + Measured Concentration DCS2)/2

Data Quality Assessment

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

Enseco

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client ID	Matrix	Sampl Date	ed Time	Received Date
006865-0001-SA 006865-0002-SA 006865-0003-SA 006865-0004-SA 006865-0005-SA	5-5BA Field blank 5-5B 5-6B	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	03 OCT 89 03 OCT 89 03 OCT 89 03 OCT 89 03 OCT 89 04 OCT 89	14:40 12:30 14:30 17:00	05 OCT 89 05 OCT 89 05 OCT 89

€ Enseco

ANALYTICAL TEST REQUESTS for Enron

- . .

Lab ID:	Group	Analysis Description	Custom
006865	Code		Test?
0001 - 0005	A	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N N

Enseco

Method 624

.....

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-5BA 006865-0001-SA AQUEOUS 05 OCT 89	Enseco ID: Sampled: (Prepared: (03 OCT 89		Received: Analyzed:	05 13	OCT OCT	89 89
Parameter		Ri	esult	Units	Reporti Limit			
Chloromethane Bromomethane Vinyl chlorid Chloroethane Methylene ch 1,1-Dichlorod (,2-Dichlorod (,2-Dichlorod 1,2-Dichlorod 1,2-Dichlorod 1,2-Dichlorod 1,2-Dichlorod 1,2-Dichlorod trans-1,3-Dich Chlorodibromd 1,1,2-Trichlo Benzene cis-1,3-Dich 2-Chloroethy Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethyl benzene	de loride ethene ethane ethene hane oroethane chloride omethane oropane chloropropene ene omethane loropropene l vinyl ether achloroethane	•	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.			
Toluene-d8 4-Bromofluoro	obenzene	1	103	%				
(BFB) 1,2-Dichloroe	ethane-d4		99.2 105	% %				
					¢.			

ND = Not detected NA = Not applicable

Reported By: Steve Siegel

Approved By: Jeff Lowry

Enseco

Method 624

•••

Client Name: Enron Client ID: Field blank Lab ID: 006865-0002-SA Matrix: AQUEOUS Authorized: 05 OCT 89	Enseco ID: 1054966 Sampled: 03 OCT 89 Prepared: 06 OCT 89	Received: 05 OCT 89 Analyzed: 12 OCT 89
Parameter	Result Uni	Reporting ts Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (cis/trans)	ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/	L 10 L 10 L 5.0 L 5.0 L 5.0 L 5.0
Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene	ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/	L 5.0 L 5.0 L 5.0 L 5.0 L 5.0 L 5.0 L 5.0
Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane	ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/	L 5.0 L 5.0 L 5.0 L 5.0 L 10 L 5.0 L 5.0 L 5.0
Tétrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ug/l ND ug/l ND ug/l ND ug/l	L 5.0 L 5.0
Toluene-d8 4-Bromofluorobenzene (BFB) 1,2-Dichloroethane-d4	97.9 % 95.3 % 103 %	•- ••• ••

ND = Not detected NA = Not applicable

Reported By: Keith Beauvais

Approved By: Jeff Lowry

Enseco

Method 624

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-5B 006865-0003-SA AQUEOUS 05 OCT 89	Enseco ID: Sampled: Prepared:	1054967 03 OCT 89 06 OCT 89		Received: 05 00 Analyzed: 17 00	T 89 T 89
Parameter			Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chloric Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe	le oride ethene ethane		ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0	
(cis/trar Chloroform 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrac Bromodichloro 1,2-Dichlorop trans-1,3-Dic Trichloroethe	ns) ethane proethane hloride methane propane hloropropene		ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Chlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethyl benzene	methane roethane oropropene vinyl ether chloroethane hene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Toluene-d8 4-Bromofluoro (BFB) 1,2-Dichloroe			96.4 98.0 83.3	% % %		
1,2-010110100	CHUNG-U7					

ND = Not detected NA = Not applicable

Reported By: Lisa Traut

Approved By: Jeff Lowry

01-2

1 M

Enseco

....

Method 624

Client Name: Enron Client ID: 5-6B Lab ID: 006865-0004-SA Matrix: AQUEOUS Authorized: 05 OCT 89	Enseco ID: 1054968 Sampled: 03 OCT 89 Prepared: 06 OCT 89		Received: 05 00 Analyzed: 15 00	
Parameter	Result	Units	Reporting Limit	
Parameter Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene	Resurc ND ND ND ND ND ND ND ND ND ND ND ND ND	UNITS UG/L	10 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	
Toluene Chlorobenzene Ethyl benzene	ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0	
Toluene-d8 4-Bromofluorobenzene	108	%		
(BFB) 1,2-Dichloroethane-d4	101 96.3	°/ 0/ 10	 	

ND = Not detected NA = Not applicable

Reported By: Keith Beauvais

Approved By: Jeff Lowry

Enseco

Method 624

Clink Names	[
Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron Trip blank 006865-0005-SA AQUEOUS 05 OCT 89	Enseco ID: Sampled: Prepared:	1054969 04 OCT 89 10 OCT 89) -	Received: Analyzed:		
Parameter			Result	Units	Report Limi		
Trichloroethe Chlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene	de loride ethene ethane ethane oroethane chloride omethane oropane chloropropene ene omethane oroethane loropropene l vinyl ether achloroethane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Ethyl benzene Toluene-d8			100	ug/L %		•	
4-Bromofluoro (BFB) 1,2-Dichloroe			86.3 98.0	%			

ND = Not detected NA = Not applicable

Approved By: Jeff Lowry

Reported By: Keith Beauvais

/ Enseco

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006865-0001-SA	AQUEOUS	624-A	13 OCT 89-H1	13 OCT 89-H1
006865-0002-SA	AQUEOUS	624-A	13 OCT 89-B	12 OCT 89-B
006865-0003-SA	AQUEOUS	624-A	05 OCT 89-L	17 OCT 89-L
006865-0004-SA	AQUEOUS	624-A	13 OCT 89-B	15 OCT 89-B
006865-0005-SA	AQUEOUS	624-A	13 OCT 89-B	12 OCT 89-B

Enseco 🗟

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte		Conc Spiked	entration DCS1	n Measured DCS2	AVG		curacy age(%) Limits	Preci (RPD DCS L)
Category: 624-A Matrix: AQUEOUS QC Lot: 13 QCT 89-H1 Concentration Units:	ug/L								
l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	•	50 50 50 50 50	55.3 47.0 54.3 48.9 51.0	52.1 46.6 53.6 49.5 51.7	53.7 46.8 54.0 49.2 51.4	107 94 108 98 103	61-145 71-120 76-127 76-125 75-130	6.0 0.9 1.3 1.2 1.4	14 14 11 13 13
Category: 624-A Matrix: AQUEOUS QC Lot: 13 OCT 89-B Concentration Units:	ug/L					•			
1,1-Dichloroethene Trichloroethene Benzene oluene chlorobenzene		50 50 50 50 50	51.8 45.4 55.4 48.3 47.0	50.8 44.0 54.7 48.2 47.8	51.3 44.7 55.0 48.2 47.4	103 89 110 97 95	61-145 71-120 76-127 76-125 75-130	1.9 3.1 1.3 0.2 1.7	14 14 11 13 13
Category: 624-A Matrix: AQUEOUS QC Lot: 05 OCT 89-L Concentration Units:	ug/L								
l,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	50.5 42.3 54.0 47.4 50.6	52.1 42.3 51.7 50.3 53.9	51.3 42.3 52.8 48.8 52.2	103 85 106 98 105	61-145 71-120 76-127 76-125 75-130	3.1 0.0 4.4 5.9 6.3	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

🗐 Enseco

SINGLE CONTROL SAMPLE REPORT . Volatile Organics by GC/MS

Analyte	Concent Spiked	ration Measured	Accu SCS	racy(%) Limits
Category: 624-A Matrix: AQUEOUS QC Lot: 13 OCT 89-H1 QC Run: Concentration Units: ug/L	13 OCT 89-H1			
1,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0	47.1	94	76-114
(BFB) Toluene-d8	、 50.0 50.0	49.8 50.7	100 101	86-115 88-110
Category: 624-A Matrix: AQUEOUS QC Lot: 13 OCT 89-B QC Run: Concentration Units: ug/L	12 OCT 89-B		•	
1,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0	47.2	94	76-114
(BFB) Toluene-d8	50.0 50.0	46.4 48.5	93 97	86-115 88-110
Category: 624-A Matrix: AQUEOUS QC Lot: 05 OCT 89-L QC Run: Concentration Units: ug/L	17 OCT 89-L			
1,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0	49.0	98	76-114
(BFB) Toluene-d8	50.0 50.0	49.7 51.0	99 102	86-115 88-110
Category: 624-A Matrix: AQUEOUS QC Lot: 13 OCT 89-B QC Run: Concentration Units: ug/L	15 OCT 89-B			
1,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0	49.9	100	76-114
(BFB) Toluene-d8	50.0 50.0	51.0 51.8	102 104	86-115 88-110

Calculations are performed before rounding to avoid round-off errors in calculated results.

.

.

🔄 Enseco

METHOD BLANK REPORT olatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 13 OCT 89-H1 QC Run: 1	3 OCT 89-H1		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform	ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 10 5.0
1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 13 OCT 89-B QC Run: 12	2 OCT 89-B		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0

ETHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte Re	sult	Units	Reporting Limit
Test: 624-PP-AP Matrix: ÁQUEOUS QC Lot: 13 OCT 89-B QC Run: 12 OCT 89-B			
1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,2,2-Tetrachloroethane etrachlorpethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\$
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 05 OCT 89-L QC Run: 17 OCT 89-L			
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.

.

-

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 05 OCT 89-L QC Run:	17 OCT 89-L		
1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethyl benzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Test: 624-PP-AP Matrix: AQUEOUS C Lot: 13 OCT 89-B QC Run:	15 OCT 89-B		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
<pre>1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

ETHOD BLANK REPORT olatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 13 OCT 89-B QC Run: 1	5 OCT 89-B		
2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene . Ethyl benzene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0

Enseco 🖉

Rocky Mountain Analytical Laboratory

RECEIVED COT 0 1 1989

October 24, 1989

Gordon Wassell Enron 2223 Dodge Street Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the five aqueous samples received at Rocky Mountain Analytical Laboratory on October 7, 1989.

If you have any questions, the Program Administrator assigned to this project is Cindy Ingram.

Sincerely, MMMMa Sower

Data Control

Enclosures

cc: Cindy Ingram, PA

RMAL #006889

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421 6611 - Fax: 303/431-7171

: ### : :

2

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order: Finseco

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

Quality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The QC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ X 100 Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

RPD = _____ Measured Concentration DCS1 - Measured Concentration DCS2 |

X 100

LINSCCO

(Measured Concentration DCS1 + Measured Concentration DCS2)/2

Data Quality Assessment

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interferences or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

1

1.4

c

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client ID	Matrix	Date	ed Time	Date
006889-0001-SA 006889-0002-SA 006889-0003-SA 006889-0004-SA 006889-0005-SA	RI-Ì 5-4BB 5-4BBA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	05 OCT 89 06 OCT 89 06 OCT 89 06 OCT 89 06 OCT 89	11:00 12:00 12:10	07 OCT 89 07 OCT 89 07 OCT 89

۰.

ANALYTICAL TEST REQUESTS for Enron

:

Enseco

Lab ID:	Group	Analysis Description	Custom
006889	Code		Test?
0001 - 0005	A	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N N

.

Enseco

Method 624

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron Trip blank 006889-0001-SA AQUEOUS 09 OCT 89	1055375 05 OCT 89 10 OCT 89		Received: Analyzed:	
Parameter		Result	Únits	Report Limit	
Trichloroethe Chlorodibromd 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethyl benzene	de loride ethene ethane ethane oroethane chloride omethane propane chloropropene ene omethane loropropene l vinyl ether achloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Toluene-d8 4-Bromofluoro (BFB)	obenzene	101 103	% %		
1,2-Dichloroe	ethane-d4	103	/o %		

ND = Not detected NA = Not applicable

Reported By: Monica Brinkman

Approved By: Jeff Lowry

Priority Pollutant Volatile Organics ٠.

Method 624

--

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron RI-1 006889-0002-SA AQUEOUS 09 OCT 89	Enseco ID: Sampled: Prepared:	1055376 06 OCT 89 10 OCT 89		Received: 07 Analyzed: 16	
Parameter		I	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chlorid Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe 1,2-Dichloroe 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrad Bromodichloro 1,2-Dichloroe trans-1,3-Dich Chlorodibromd 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethyl benzene	de loride ethene ethane ethene s) ethane proethane chloride propane chloropropene ene pomethane oropropene vinyl ether echloroethane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	250 250 250 250 120 120 120 120 120 120 120 120 120 12	
4-Bromofluoro (BFB) 1,2-Dichloroe			100 102	% %		
	-					

ND = Not detected NA = Not applicable

Reported By: Monica Brinkman

-_

Approved By: Jeff Lowry

∃Enseco

Method 624

.....

:

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-488 006889-0003-SA AQUEOUS 09 OCT 89	1055377 06 OCT 89 10 OCT 89		Received: Analyzed:		
Parameter		Result	Units	Report Limit	•	
Chloromethane Bromomethane Vinyl chloric Chloroethane Methylene ch 1,1-Dichloroe 1,2-Dichloroe	de loride ethene : ethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	50 50 50 25 25 25	·	0
(cis/tran Chloroform 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrao Bromodichloro 1,2-Dichlorop	ns) ethane proethane chloride pmethane propane chloropropene	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	25 25 25 25 25 25 25 25 25 25 25		
Chlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethyl benzene	oroethane loropropene i vinyl ether achloroethane chene	nd Nd Nd Nd Nd Nd Nd Nd Nd Nd	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	25 25 25 25 25 25 25 25 25 25		
Toluene-d8 4-Bromofluoro	benzene	102	%			-
(BFB) 1,2-Dichloroe	thane-d4	99.3 103	% %			

.

ND = Not detected NA = Not applicable

....

Reported By: Steve Siegel

Approved By: Jeff Lowry

٠.

Priority Pollutant Volatile Organics

Method 624

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-4BBA 006889-0004-SA AQUEOUS 09 OCT 89	Enseco ID: Sampled: Prepared:	06 OCT 89		Received: 07 Analyzed: 16	OCT OCT	89 89
Parameter		l	Result	Units	Reporting . Limit		
Chloromethane Bromomethane Vinyl chloric Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe (cis/trar Chloroform 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrac Bromodichloro 1,2-Dichloroe trans-1,3-Dic Trichloroethe Chlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethyl benzene Toluene-d8 4-Bromofluoro (BFB) 1,2-Dichloroe	de loride ethene ethane ethane oroethane chloride omethane oropane chloropropene ene omethane oropropene vinyl ether chloroethane hene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50 50 50 25 25 25 25 25 25 25 25 25 25 25 25 25		•
			•				

. .

ζ.

•

ND = Not detected NA = Not applicable

Reported By: Steve Siegel

Approved By: Jeff Lowry

•

Enseco

Method 624

•

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron Field Blank 006889-0005-SA AQUEOUS 09 OCT 89	Enseco ID: 1055379 Sampled: 06 OCT 89 Prepared: 10 OCT 89		Received: 07 OCT 89 Analyzed: 16 OCT 89	
Parameter		Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chlorid Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe (cis/trar Chloroform 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrad Bromodichloro 1,2-Dichloroe trans-1,3-Dic Chlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene	de loride ethene ethane ethane ethane oroethane chloride omethane oropane chloropropene omethane oroethane oroethane oroethane oroethane chloropene vinyl ether achloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 5.0$	•
Chlorobenzene Ethyl benzene		ND ND	ug/L ug/L	5.0 5.0	
Toluene-d8 4-Bromofluoro	benzene	99.2	%		
(BFB) 1,2-Dichloroe	ethane-d4	99.9 103	% %	 ,	

ND = Not detected -NA = Not applicable

- not appricable

Reported By: Monica Brinkman

۰.

•••

Approved By: Jeff Lowry

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

:

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
006889-0001-SA	AQUEOUS	624-A	13 OCT 89-H1	15 OCT 89-H
006889-0002-SA	AQUEOUS	624-A	13 OCT 89-H1	15 OCT 89-H
006889-0003-SA	AQUEOUS	624-A	16 OCT 89-H	16 OCT 89-H
006889-0004-SA	AQUEOUS	624-A	16 OCT 89-H	16 OCT 89-H
006889-0005-SA	AQUEOUS	624-A	13 OCT 89-H1	15 OCT 89-H

· ·

⑤ Enseco

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte		Conc Spiked	entration DCS1	Measured DCS2	AVG		uracy age(%) Limits	Preci (RPD DCS L)
Category: 624-A Matrix: AQUEOUS QC Lot: 13 QCT 89-H1 Concentration Units:	ug/L								
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	1	50 50 50 50 50	55.3 47.0 54.3 48.9 51.0	52.1 46.6 53.6 49.5 51.7	53.7 46.8 54.0 49.2 51.4	107 94 108 98 103	61-145 71-120 76-127 76-125 75-130	6.0 0.9 1.3 1.2 1.4	14 14 11 13 13
Category: 624-A Matrix: AQUEOUS QC Lot: 16 OCT 89-H Concentration Units:	ug/L					•			•
1,1-Dichloroethene Trichloroethene Benzene oluene Chlorobenzene		50 50 50 50 50	53.3 51.8 54.4 50.5 54.5	52.4 50.2 53.9 50.0 52.9	52.8 51.0 54.2 50.2 53.7	106 102 108 101 107	61-145 71-120 76-127 76-125 75-130	1.7 3.1 0.9 1.0 3.0	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

• •

-

Έ.

:

SINGLE CONTROL SAMPLE REPORT . Volatile Organics by GC/MS

۲.

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 624-A Matrix: AQUEOUS QC Lot: 13 OCT 89-H1 QC Run: Concentration Units: ug/L	15 OCT 89-H	
1,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0 49.9	100 76-114
(BFB) Toluene-d8	50.0 50.1 50.0 49.7	100 86-115 99 88-110
Category: 624-A Matrix: AQUEOUS QC Lot: 16 OCT 89-H QC Run: Concentration Units: ug/L	16 OCT 89-H	
1,2-Dichloroethane-d4 4-Bromofluorobenzene	50.0 48.7	97 76-114
(BFB) Toluene-d8	50.049.150.049.7	98 86-115 99 88-110

Calculations are performed before rounding to avoid round-off errors in calculated results.

•

:

: =::

:

:

METHOD BLANK REPORT Volatile Organics by GC/MS

٠.

Analyte	Res	sult	Rep Units L	orting imit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 13 OCT 89-H1 QC	Run: 15 OCT 89-H			
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	•	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene		ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene	- - -	ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Chlorobenzene Ethyl benzene Test: 624-PP-AP Matrix: AQUEOUS		ND ND	ug/L ug/L	5.0 5.0
	Run: 16 OCT 89-H	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0

Enseco

٠.

•_

·.

۰.

- DEnseco

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 16 OCT 89-H QC Run 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1.1-Trichloroethane 1,2-Dichloropethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane etrachloroethene Toluene Chlorobenzene Ethyl benzene	: 16 OCT 89-H ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

÷.

٠.

-

Rocky Mountain Analytical Laboratory

RECEIVED JAN 1 5 1990

December 20, 1989

Gordon Wassell Enron 2223 Dodge Street Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the nine aqueous samples received at Rocky Mountain Analytical Laboratory on December 1, 1989.

If you have any questions, the Program Administrator assigned to this project is Cindy Ingram.

Sincerely,

Ramona Power Data Control

Enclosures

cc: Cindy Ingram, PA

RMAL #007674

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

nseco

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

Quality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The QC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

E Enseco

X 100

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ X 100 Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

RPD = _____ Measured Concentration DCS1 - Measured Concentration DCS2 |

(Measured Concentration DCS1 + Measured Concentration DCS2)/2

Data Quality Assessment

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

SAMPLE DESCRIPTION INFORMATION for Enron

					Received
Lab ID	Client ID	Matrix	Date	Time	Date
007674-0001-SA	5-38-1,5-38-2,5-38-3				01 DEC 89
007674-0002-SA 007674-0003-SA	5-5B-1,5-5B-2,5-5B-3 SUPC-1,SUPC-2,SUPC-3				01 DEC 89 01 DEC 89
007674-0004-SA	5-2B-1,5-2B-2,5-2B-3				01 DEC 89
007674-0005-SA 007674-0006-SA	Trip Blank 5-3B-4,5-3B-5		27 NOV 89 29 NOV 89		01 DEC 89 01 DEC 89
007674-0007-SA	5-58-4, 5-58-5				01 DEC 89
007674-0008-SA 007674-0009-SA	SUPC-4,SUPC-5 5-2B-4,5-2B-5				01 DEC 89 01 DEC 89

ANALYTICAL TEST REQUESTS for Enron

Lab ID: 007674	Group Code				
0001 - 0005	A	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N N		
0006 - 0009	B	Priority Pollutant Organochlorine Pesticides/PCBs	N		
		Prep - Organochlorine Pesticides/PCBs by GC	N		

Enseco 🗄

Method 624

·~ • •

	Client Name: Client ID: Lab ID: Matrix: Authorized:	5-3B-1,5-3B-2,5-3E 007674-0001-SA	Enseco ID: Sampled:	1061354 29 NOV 89 04 DEC 89		Received: 01 DE Analyzed: 05 DE	
	Parameter			Result	Units	Reporting Limit	
	Chloromethane Bromomethane Vinyl chlorid Chloroethane Methylene ch 1,1-Dichlorod 1,2-Dichlorod	de loride ethene ethane		ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0	
	(cis/tra Chloroform 1,2-Dichloro 1,1,1-Trichl Carbon tetra Bromodichloro 1,2-Dichloro	ns) ethane oroethane chloride omethane propane		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0	
)	Trichloroeth Chlorodibrom 1,1,2-Trichlo Benzene cis-1,3-Dich 2-Chloroethy Bromoform 1,1,2,2-Tetra Tetrachloroe	omethane oroethane loropropene l vinyl ether achloroethane		ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 10 5.0 5.0 5.0	
	Toluene Chlorobenzen Ethylbenzene	e		nd Nd Nd	ug/L ug/L ug/L	5.0 5.0 5.0	
	Toluene-d8 4-Bromofluore 1,2-Dichlore			94.4 93.1 108	% % %		

ND = Not detected NA = Not applicable

Reported By: Keith Beauvais

Enseco

Method 624

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-5B-1,5-5B-2,5-5E 007674-0002-SA AQUEOUS 01 DEC 89	Enseco ID: Sampled:	1061355 30 NOV 89 04 DEC 89		Received: 01 DEC 89 Analyzed: 05 DEC 89	
	Parameter			Result	Units	Reporting Limit	
	Chloromethane Bromomethane Vinyl chlorid Chloroethane Methylene ch 1,1-Dichlorod 1,2-Dichlorod	de loride ethene ethane		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0	
	(cis/tra Chloroform 1,2-Dichloroe 1,1,1-Trichle Carbon tetra Bromodichloro 1,2-Dichlorop trans-1,3-Dic	ns) ethane proethane chloride pmethane propane chloropropene		ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
•	Bromoform	omethane oroethane loropropene l vinyl ether achloroethane thene		ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
	Toluene-d8 4-Bromofluoro 1,2-Dichloro			93.0 93.8 102	% % %		

ND = Not detected NA = Not applicable

Reported By: Keith Beauvais

ma. Enwan

Clicht.

Ma

Enseco

Method 624

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron SUPC-1,SUPC-2,SUP 007674-0003-SA AQUEOUS 01 DEC 89	Enseco ID: Sampled:	1061356 30 NOV 89 04 DEC 89		Received: 01 DEC Analyzed: 06 DEC	
	Parameter			Result	Units	Reporting Limit	
)	Trichloroeth Chlorodibrom 1,1,2-Trichlo Benzene cis-1,3-Dich 2-Chloroethy Bromoform	de loride ethene ethane ethene ns) ethane proethane chloride propane chloropropene ene pomethane proethane loropropene l vinyl ether achloroethane	· · · · · · · · · · · · · · · · · · ·	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$	
	Toluene-d8 4-Bromofluoro 1,2-Dichloro			92.5 90.7 106	ug/L % % %	5.0 	

ND = Not detected NA = Not applicable

Reported By: Keith Beauvais

Enseco

Method 624

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2B-1,5-2B-2,5 007674-0004-SA AQUEOUS 01 DEC 89	Enseco ID: Sampled:	1061357 30 NOV 89 04 DEC 89		Received: Analyzed:		
Parameter			Result	Units	Reporti Limit		
Trichloroeth Chlorodibrom 1,1,2-Trichl Benzene cis-1,3-Dich 2-Chloroethy Bromoform	de loride ethene ethane ethene ns) ethane oroethane chloride omethane propane chloropropene ene omethane loropropene l vinyl ether achloroethane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 250 250 250 250 250 250 250		
Toluene-d8 4-Bromofluor 1,2-Dichloro			95.0 92.5 103	% % %			

ND = Not detected NA = Not applicable

Reported By: Keith Beauvais

Enseco

Method 624

	porting Limit 10	
ChloromethaneNDug/LBromomethaneNDug/LVinyl chlorideNDug/LChloroethaneNDug/LI.1-DichloroetheneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.2-DichloroethaneNDug/L1.1-TrichloroethaneNDug/L1.2-DichloropethaneNDug/L1.1.2-TrichloropopaneNDug/L1.1.2-TrichloropethaneNDug/L1.1.2-TrichloropethaneNDug/L1.1.2-TrichloropethaneNDug/L2-ChloroethaneNDug/L2-ChloroethaneNDug/L2-ChloroethaneNDug/L1.1.2-TrichloropethaneNDug/L2-ChloroethaneNDug/L2-ChloroethaneNDug/LBromoformNDug/L1.1.2.2-TetrachloroethaneNDug/L1.1.2.2-TetrachloroethaneNDug/L1.1.2.2-TetrachloroethaneNDug/L1.1.2.2-TetrachloroethaneNDug/L1.1.2.2-TetrachloroethaneNDug/L1.1.2.2-TetrachloroethaneND <td< td=""><th>$\begin{array}{c} 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$</th><td></td></td<>	$ \begin{array}{c} 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$	
Toluene-d8 97.9 % 4-Bromofluorobenzene 91.8 % 1,2-Dichloroethane-d4 100 %		

ND = Not detected NA = Not applicable

Reported By: Keith Beauvais

Approved By: Jeff Lowry

Enseco

Method 608

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-3B-4,5-3B-5 007674-0006-SA AQUEOUS 01 DEC 89	Enseco ID: Sampled: Prepared:	29 NOV 89		Received: 01 DEC 8 Analyzed: 10 DEC 8	
Parameter		F	Result	Units	Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlorda gamma-Chlorda Toxaphene Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260	poxide I ulfate yde ane ane	·	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1	
Dibutyl chlor	rendate		82.4	%		

ND = Not detected NA = Not applicable

Reported By: Todd Burgesser

Approved By: Stephanie Boehnke

Enseco

Method 608

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-58-4,5-58-5 007674-0007-SA AQUEOUS 01 DEC 89	Enseco ID: Sampled: Prepared: (30 NOV 89		Received: Analyzed:		
	Parameter		R	esult	Units	Reporti Limit		
•	alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD Endosulfan su 4,4'-DDT Endrin alden alpha-Chlord gamma-Chlord Toxaphene Aroclor 1016 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1254	poxide I ulfate yde ane	·	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		050 050 050 050 050 050 050 10 10 10 10 10 10 10 50 50 50 50 50 0 0 5 0 0 5 0 5 0 0 5 0 5 0 0 50 0 5 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Dibutyl chlo	rendate		82.0	%			

. ND = Not detected NA = Not applicable

Reported By: Todd Burgesser

Enseco

Method 608

Client Name: Enron Client ID: SUPC-4,SUPC-5 Lab ID: 007674-0008-SA Matrix: AQUEOUS Authorized: Ol DEC 89	Enseco ID: 1061361 Sampled: 30 NOV 89 Prepared: 02 DEC 89		Received: O1 DEC 89 Analyzed: 10 DEC 89
Parameter	Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor 1016 Aroclor 1232 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.50 0.50 0.50 0.50 0.50 1.0 0.50 0.50 1.0 0.50 1.0
Dibutyl chlorendate	84.6	%	

ND = Not detected NA = Not applicable

Reported By: Todd Burgesser

Enseco

Method 608

Client Name: Enron Client ID: 5-2B-4,5-2B-5 Lab ID: 007674-0009-SA Matrix: AQUEOUS Authorized: OI DEC 89	Enseco ID: 1061362 Sampled: 30 NOV 89 Prepared: 02 DEC 89		eceived: Ol DEC 89 Nalyzed: 11 DEC 89
Parameter	Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.$
Dibutyl chlorendate	52.0	%	

ND = Not detected NA = Not applicable

Reported By: Todd Burgesser

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007674-0001-SA 007674-0002-SA 007674-0003-SA 007674-0004-SA 007674-0005-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	624-A 624-A 624-A 624-A 624-A 624-A	04 DEC 89-L 04 DEC 89-L 04 DEC 89-L 04 DEC 89-L 04 DEC 89-L 04 DEC 89-L	05 DEC 89-L 05 DEC 89-L 05 DEC 89-L 05 DEC 89-L 05 DEC 89-L 05 DEC 89-L

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Conc Spiked	entration DCS1	Measured DCS2	AVG		curacy age(%) Limits	Preci (RPD DCS L)
Category: 624-A Matrix: AQUEOUS QC Lot: O4 DEC 89-L Concentration Units: ug/L								
l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50	51.5 52.7 58.4 56.7 55.2	49.4 52.0 60.7 57.4 54.9	50.4 52.4 59.6 57.0 55.0	101 105 119 114 110	61-145 71-120 76-127 76-125 75-130	4.2 1.3 3.9 1.2 0.5	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Concentration Spiked Measured	Accurac SCS L	cy(%) .imits
Category: 624-A Matrix: AQUEOUS QC Lot: 04 DEC 89-L QC Run: 0 Concentration Units: ug/L	05 DEC 89-L		
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	50.049.550.044.550.046.2	89 8	76-114 86-115 88-110

Calculations are performed before rounding to avoid round-off errors in calculated results.

n

METHOD BLANK REPORT Volatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 04 DEC 89-L QC	Run: 05 DEC 89-L		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethane 1,2-Dichloroethane (cis/trans) Chloroform 1,2-Dichloroethane (cis/trans) Chloroform 1,2-Dichloroethane (arbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$

🗟 Enseco

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007674-0006-SA 007674-0007-SA 007674-0008-SA 007674-0009-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	608-A 608-A 608-A 608-A	19 NOV 89-A 19 NOV 89-A 19 NOV 89-A 19 NOV 89-A 19 NOV 89-A	02 DEC 89-A 02 DEC 89-A 02 DEC 89-A 02 DEC 89-A 02 DEC 89-A

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Con Spiked	centration DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Preci (RPD DCS L)
Category: 608-A Matrix: AQUEOUS QC Lot: 19 NOV 89-A Concentration Units: ug/L							•	
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	0.2 0.2 0.5 0.5 0.5	0.186 0.198 0.189 0.494 0.435 0.434	0.192 0.214 0.204 0.516 0.463 0.460	0.189 0.206 0.196 0.505 0.449 0.447	95 103 98 101 90 89	56-123 40-131 40-120 52-126 56-121 38-127	3.2 7.8 7.6 4.4 6.2 5.8	15 20 22 18 21 27

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 608-A Matrix: AQUEOUS QC Lot: 19 NOV 89-A QC Run: 02 Concentration Units: ug/L	DEC 89-A	
Dibutyl chlorendate	1.00 0.758	76 48-136

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enseco

METHOD BLANK REPORT Semivolatile Organics by GC

Analyte _		Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 19 NOV 89-A	QC Run:	02 DEC 89-A		
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane Joxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.50\\ 0$

🗟 Enseco

Rocky Mountain Analytical Laboratory

RECEIVED JAN 1 6 1990

January 11, 1990

Gordon Wassell Enron 222<u>3</u> Dodge Street Omaha, NE 68102

Dear Mr. Wassell:

Enclosed is the report for the seven aqueous samples received at Rocky Mountain Analytical Laboratory on December 2, 1989.

If you have any questions, the Program Administrator assigned to this project is Cindy Ingram.

Sincerely,

amo Ramona Power

Data Control

Enclosures

cc: Cindy Ingram, PA

RMAL #007681

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Discussion

This report contains results and supporting quality control and sample identification information associated with analyses performed on this project. The results and supporting information are contained in tables following this section, arranged in the following order:

- Sample Description Information
- Analytical Test Requests
- Analytical Results
- Quality Control Report
- Data Quality Assessment

Analyses were performed in accordance with EPA methods and with Enseco's current Quality Assurance Program Plan for Environmental Chemical Monitoring. The specific analytical methods used are presented with each result. The first four sections below describes the format, content, and organization for the four corresponding separate components of this report. The fifth section provides an overall data quality assessment of the results.

Sample Description Information

The Sample Description Information lists all the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Analytical Results

The analytical results for this project are presented in data tables. Each data table includes sample identification information, and where available and appropriate, dates sampled, received, authorized, prepared, and analyzed.

Data sheets contain a listing of the parameters measured in each test, the analytical results, the analytical method, and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

Quality Control Reports

As documented in more detail in Enseco's QAPP, various internal quality control checks are performed to assure that the laboratory was in control during the time that samples on this project were analyzed. The QC checks include analysis of method blanks, duplicate control samples (DCS), and single control samples (SCS). Results from these analyses are presented along with the control limits.

Enseco.

X 100 ·

Method Blank Results: A method blank is a laboratory generated sample used to assess the degree to which laboratory operations and procedures cause false positive analytical results.

Duplicate Control Samples (DCS): Each DCS consists of a standard control matrix that is spiked with a group of target analytes representative of the method analytes. One Duplicate Control Sample is prepared for every twenty (20) samples.

Single Control Samples (SCS): An SCS is a spiked sample analyzed with each batch of samples.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = _____ X 100 Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

RPD = ______ Measured Concentration DCS1 - Measured Concentration DCS2 |

(Measured Concentration DCS1 + Measured Concentration DCS2)/2

Data Quality Assessment

The results contained in this report were reviewed relative to data acceptance criteria as specified in Enseco's Quality Assurance Project Plan for completeness, precision, accuracy, representativeness and defensibility of the data. Unless otherwise stated below, no quality control problems or technical difficulties were encountered.

Enseco

SAMPLE DESCRIPTION INFORMATION for Enron

		Sampled			кесетvea
Lab ID	Client ID	Matrix	Date	Time	Date
007681-0001-SA 007681-0002-SA 007681-0003-SA 007681-0004-SA 007681-0005-SA 007681-0006-SA 007681-0007-SA	5-6B-1 thru -5 5-6BA-1 thru -5 5-1B-1 thru -5 5-4B-1 thru -5	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	01 DEC 89 01 DEC 89 01 DEC 89 01 DEC 89 01 DEC 89 01 DEC 89	11:43 13:30 13:30 14:14 14:52	02 DEC 89 02 DEC 89 02 DEC 89 02 DEC 89 02 DEC 89 02 DEC 89 02 DEC 89 02 DEC 89

.

Enseco

ANALYTICAL TEST REQUESTS for Enron

.

Lab ID: 007681	Group Code	Analysis Description	Custom Test?
0001 - 0006	A	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS Priority Pollutant Organochlorine Pesticides/PCBs	N N N
		Prep - Organochlorine Pesticides/PCBs by GC	N
0007	В	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N N

Enseco

·~ · -

Method 624

Client Name: Enron Client ID: SUPW-1 thru -5 Lab ID: 007681-0001-SA Matrix: AQUEOUS Authorized: 02 DEC 89	Enseco ID: 1061543 Sampled: 01 DEC 89 Prepared: 06 DEC 89		Received: O2 DEC 89 Analyzed: O9 DEC 89
Parameter	Result	Units	Reporting Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1.1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{bmatrix} 10 \\ 10 \\ 10 \\ 5.0 \\ $
Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4	104 94.2 104	% % %	

ND = Not detected NA = Not applicable

Reported By: Lisa Traut

Enseco

Method 624

·· · --

	Client Name: Client ID: Lab ID: Matrix: Authorized:	5-1A-1 thru -5 007681-0002-SA AQUEOUS	Enseco ID: 1061544 Sampled: 01 DEC Prepared: 06 DEC	89	Received: 02 Analyzed: 09	DEC 8 DEC 8	19 19
	Parameter		Result	Units	Reporting Limit		
•	Trichloroeth Chlorodibrom 1,1,2-Trichlo Benzene cis-1,3-Dich 2-Chloroethy Bromoform	de loride ethene ethane ethane oroethane chloride omethane chloropropene ene omethane broethane loropropene l vinyl ether achloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 10\\ 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$		
	Toluene-d8 4-Bromofluoro 1,2-Dichloroo		98.7 91.2 101	2/0 2/0 2/0			

ND = Not detected NA = Not applicable

Reported By: Lisa Traut

Enseco

Method 624

Č L M	lient Name: lient ID: .ab ID: latrix: Authorized:	Enron 5-6B-1 thru -5 007681-0003-SA AQUEOUS 02 DEC 89	Enseco ID: 1061546 Sampled: 01 DEC 89 Prepared: 06 DEC 89		Received: 02 DEC 89 Analyzed: 13 DEC 89 Reporting	
P	Parameter		Result	Units	Limit	
B V C M 11 11 11 11 11 11 11 11 11 11 11 11 11	richloroethe hlorodibromo l,1,2-Trichlo Benzene cis-1,3-Dich 2-Chloroethy Bromoform	de loride ethene ethene ethene ethene oroethane chloride omethane oropane chloropropene ene omethane oroethane loropropene l vinyl ether achloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{bmatrix} 10 \\ 10 \\ 10 \\ 5.0 \\ $	
4	oluene-d8 -Bromofluoro ,2-Dichloroe		105 92.7 95.2	% % %		

ND = Not detected NA = Not applicable

Reported By: Deneen Miller

Enseco

Method 624

	IS Sampl	ID: 1061549 ed: 01 DEC 89 ed: 06 DEC 89		Received: 02 D Analyzed: 13 D	
Parameter	· .	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethane 1,2-Dichloroethane (cis/trans) Chloroform 1,2-Dichloroethane 1,1.1-Trichloroethan Carbon tetrachlorid Bromodichloropropane trans-1,3-Dichlorop Trichloroethene Chlorodibromomethan 1,1.2-Trichloroetha Benzene cis-1,3-Dichloropro 2-Chloroethyl vinyl Bromoform 1,1.2.2-Tetrachloro Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	e propene ne pene ether	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 5.0$	· · ·
Toluene-d8 4-Bromofluorobenzen 1,2-Dichloroethane-		99.9 97.1 103	% % %	 	

ND = Not detected NA = Not applicable

Reported By: Deneen Miller

Enseco

Method 624

. ...

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-1B-1 thru -5 007681-0005-SA AQUEOUS 02 DEC 89		1061551 01 DEC 89 06 DEC 89		Received: Analyzed:		
Parameter			Result	Units	Report Limit		
Trichloroethe Chlorodibromd 1,1,2-Trichlo Benzene cis-1,3-Dich 2-Chloroethy Bromoform	de loride ethene ethane ethene hane oroethane chloride omethane propane chloropropene ene omethane broethane loropropene l vinyl ether achloroethane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Toluene-d8 4-Bromofluoro 1,2-Dichloroe		-	97.2 97.5 101	% % %	 		

ND = Not detected NA = Not applicable

Reported By: Deneen Miller

Enseco

Method 624

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-4B-1 thru -5 007681-0006-SA AQUEOUS 02 DEC 89	Enseco ID: 1061552 Sampled: 01 DEC 89 Prepared: 06 DEC 89		Received: 02 DEC 89 Analyzed: 13 DEC 89 Reporting	
•	Parameter		Result	Units	Limit	
	Trichloroethe Chlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethylbenzene	de loride ethene ethane ethane ethane oroethane chloride omethane chloropropene ene omethane broethane loropropene l vinyl ether achloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{bmatrix} 10 \\ 10 \\ 10 \\ 5.0 \\ $	
	Toluene-d8 4-Bromofluoro 1,2-Dichloroe		102 104 103	% % %		

ND = Not detected NA = Not applicable

Reported By: Deneen Miller

₫/Enseco

Method 624

.-.-

Client Name: Enron Client ID: TRIP BLANK Lab ID: 007681-0007-SA Matrix: AQUEOUS Authorized: 02 DEC 89	Enseco ID: 1061553 Sampled: 01 DEC 89 Prepared: 06 DEC 89		Received: 02 DEC 89 Analyzed: 13 DEC 89 Reporting
Parameter	Result	Units	Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{bmatrix} 10 \\ 10 \\ 10 \\ 5.0 \\ $
Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4	103 101 97.9	% % %	

ND = Not detected NA = Not applicable

Reported By: Deneen Miller

]Enseco

Method 608

.

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron SUPW-1 thru -5 007681-0001-SA AQUEOUS 02 DEC 89	Enseco ID: Sampled: Prepared:	01 DEC 89		Received: O2 DEC 89 Analyzed: 14 DEC 89
Parameter		F	lesult	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlorda gamma-Chlorda Joxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	poxide I ulfate vde ane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.0$
Dibutyl chlor	rendate		89.2	%	

ND = Not detected NA = Not applicable

Reported By: Jim Rasmussen

• A \

Enseco

: .

Method 608

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-1A-1 thru -5 007681-0002-SA AQUEOUS 02 DEC 89		1061544 01 DEC 89 04 DEC 89		Received: Analyzed:		
	Parameter		1	Result	Units	Report Limit		
)	alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlorda gamma-Chlorda Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	poxide I ulfate yde ane ane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10 50 50 50 50 50 50 50 50 50	
	Dibutyl chlor	rendate		33.2	%			

ND = Not detected NA = Not applicable

Reported By: Jim Rasmussen

Enseco

Method 608

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-6B-1 thru -5 007681-0003-SA AQUEOUS 02 DEC 89	Enseco ID: 1 Sampled: 0 Prepared: 0	1 DEC 89		Received: O Analyzed: O		
Parameter		Re	sult	Units	Reportin Limit	g	
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor er Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlorda gamma-Chlorda Toxaphene Aroclor 121 Aroclor 1232 Aroclor 1248 Aroclor 1254 Aroclor 1260	poxide I ulfate yde ane	1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 10 10 10 10 10 10 10 10 50 50 50 50 50 100 100 50 50 50 50 50 50 50 100 100 50 70		
Dibutyl chlor	rendate	I	ND	%			H

Note H : Surrogate not detected because of required sample dilution.

ND = Not detected NA = Not applicable

Reported By: Jim Rasmussen

Approved By: Barbara Sullivan

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-6BA-1 thru -5 007681-0004-SA AQUEOUS 02 DEC 89	Enseco ID: 1061549 Sampled: Ol DEC 89 Prepared: O4 DEC 89		Received: O2 DEC Analyzed: O5 JAN	
Parameter		Result	Units	Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDT Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlorda Joxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1260	poxide I ulfate vde ane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\$	
Dibutyl chlor	rendate	ND	%		Н

Note H : Surrogate not detected because of required sample dilution.

ND = Not detected NA = Not applicable

Client Name.

Ennon

Reported By: Jim Rasmussen

• 7.

Approved By: Barbara Sullivan

Enseco

Method 608

.

Client Name: Enron Client ID: 5-1B-1 thru -5 Lab ID: 007681-0005-SA Matrix: AQUEOUS Authorized: 02 DEC 89	Enseco ID: 1061551 Sampled: 01 DEC 89 Prepared: 04 DEC 89		ived: 02 DEC 89 vzed: 15 DEC 89
Parameter	Result	Re Units	eporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.00\\ $
Dibutyl chlorendate	70.3	%	

ND = Not detected NA = Not applicable

Reported By: Jim Rasmussen

Enseco

Method 608

	Client Name: Enron Client ID: 5-48-1 thru -5 Lab ID: 007681-0006-SA Matrix: AQUEOUS Authorized: 02 DEC 89	Enseco ID: 1061552 Sampled: O1 DEC 89 Prepared: O4 DEC 89		Received: 02 DEC 89 Analyzed: 15 DEC 89
	Parameter	Result	Units	Reporting Limit
•	alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1
	Dibutyl chlorendate	70.6	%	

ND = Not detected NA = Not applicable

Reported By: Jim Rasmussen

Approved By: Barbara Sullivan

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007681-0001-SA 007681-0002-SA 007681-0003-SA 007681-0004-SA 007681-0005-SA 007681-0006-SA 007681-0006-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	624-A 624-A 624-A 624-A 624-A 624-A 624-A	03 DEC 89-B 03 DEC 89-B 14 DEC 89-L 14 DEC 89-L 14 DEC 89-L 14 DEC 89-L 14 DEC 89-L 14 DEC 89-L	09 DEC 89-B 09 DEC 89-B 13 DEC 89-L 13 DEC 89-L 13 DEC 89-L 13 DEC 89-L 13 DEC 89-L 13 DEC 89-L

•

UPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte		Conce Spiked	ntration DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li) .
Category: 624-A Matrix: AQUEOUS QC Lot: 03 DEC 89-B Concentration Units:	ug/L								
l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	52.7 49.0 56.1 52.9 50.5	52.0 48.7 56.4 52.1 50.4	52.4 48.8 56.2 52.5 50.4	105 98 113 105 101	61-145 71-120 76-127 76-125 75-130	1.3 0.6 0.5 1.5 0.2	14 14 11 13 13
Category: 624-A Matrix: AQUEOUS QC Lot: 14 DEC 89-L Concentration Units:	ug/L			·					
1,1-Dichloroethene Trichloroethene Benzene bluene chlorobenzene		50 50 50 50 50	44.6 47.2 52.2 50.9 53.5	47.4 47.7 52.3 51.3 53.5	46.0 47.4 52.2 51.1 53.5	92 95 105 102 107	61-145 71-120 76-127 76-125 75-130	6.1 1.1 0.2 0.8 0.0	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

INGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits	
Category: 624-A Matrix: AQUEOUS QC Lot: 03 DEC 89-B QC Run: Concentration Units: ug/L	09 DEC 89-B		
l,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	50.048.450.047.050.047.5	97 76-114 94 86-115 95 88-110	
Category: 624-A Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC Run: Concentration Units: ug/L	13 DEC 89-L		·
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	50.050.150.050.350.048.5	100 76-114 101 86-115 97 88-110	

alculations are performed before rounding to avoid round-off errors in calculated results.

ETHOD BLANK REPORT Volatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 03 DEC 89-B QC R	un: 09 DEC 89-B		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene richloroethene hlorodibromomethane	ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC R	un: 13 DEC 89-L		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC Run: 13 DEC 89	-L		
1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane etrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC Run: 13 DEC 89	-L		
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene	nd Nd Nd Nd Nd Nd	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC Run:	13 DEC 89-L		
1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

Enseco

OC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007681-0001-SA	AQUEOUS	608-A	04 DEC 89-A	04 DEC 89-A
007681-0002-SA	AQUEOUS	608-A	04 DEC 89-A	04 DEC 89-A
007681-0003-SA	AQUEOUS	608-A	04 DEC 89-A	04 DEC 89-A
007681-0004-SA	AQUEOUS	608-A	04 DEC 89-A	04 DEC 89-A
007681-0005-SA	AQUEOUS	608-A	04 DEC 89-A	04 DEC 89-A
007681-0006-SA	AQUEOUS	608-A	04 DEC 89-A	04 DEC 89-A

OUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Con Spiked	centratio DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Preci (RPD DCS L)
Category: 608-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A Concentration Units: ug/L								
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	0.2 0.2 0.5 0.5 0.5	0.161 0.172 0.146 0.392 0.383 0.416	0.173 0.187 0.158 0.428 0.417 0.461	0.167 0.180 0.152 0.410 0.400 0.438	84 90 76 82 80 88	56-123 40-131 40-120 52-126 56-121 38-127	7.2 8.4 7.9 8.8 8.5 10	15 20 22 18 21 27

Calculations are performed before rounding to avoid round-off errors in calculated results.

- Enseco

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 608-A Matrix: AQUEOUS QC Lot: O4 DEC 89-A QC Run: Concentration Units: ug/L	04 DEC 89-A	
Dibutyl chlorendate	1.00 0.767	77 48-136

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Semivolatile Organics by GC

Analyte	Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A	QC Run: 04 DEC 89-A		
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane amma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.50\\ $

Rocky Mountain Analytical Laboratory

" RECEIVED 111 1 6 C28

ANALYTICAL RESULTS

FOR

ENRON

ENSECO-RMAL NO. 007776

JANUARY 11, 1990

Reviewed by:

Jeanne

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Introduction

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order: Finseco

- o Sample Description Information
- o Analytical Test Requests
- o Analytical Results
- o Quality Control Report

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interferences or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Bis(2-ethylhexyl)phthalate is a common laboratory contaminant. Results should be considered suspect at levels close to the reporting limit.

Samples 007776-0007 and 0008 contained bis(2-ethylhexyl)phthalate at 31 and 580 ug/L respectively. Sample 007776-0008 was diluted due to this compound. Due to low acid surrogate recoveries, both samples were reprepared and reanalyzed outside of holding times. The surrogate recoveries were comparable with the initial results, indicating a matrix effect for both samples. The concentration of bis(2-ethylhexyl)phthalate in the reanalysis was 7.2 ug/L for sample 007776-0007 and 22 ug/L for sample 007776-0008 indicating probable laboratory contamination. The original data for sample 007776-0007 is reported. Due to laboratory contamination of bis(2-ethylhexyl) phthalate resulting in a required dilution, the original extract for sample 007776-0008 was reanalyzed within analysis holding times to achieve lower reporting limits.

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Finseco

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Enseco

- 1

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID		Client ID	Matrix	Sampi Date	ed Time	Date
				Dutt	1 1 1110	Dutt
	007776-0001-SA	SUPE	AQUEOUS	06 DEC 89	08:45	08 DEC 89
	007776-0002-SA		AQUEOUS	06 DEC 89	12:46	08 DEC 89
	007776-0003-SA	5-Tank				08 DEC 89
	007776-0004-SA					08 DEC 89
	007776-0005-SA	NTUA #1				08 DEC 89
	007776-0006-SA	Thoreau #2				08 DEC 89
	007776-0007-SA	5-3A				08 DEC 89
	007776-0008-SA	5-2A	AQUEOUS	U/ DEC 89	14:05	08 DEC 89

ANALYTICAL TEST REQUESTS for Enron Page 1 of 2

Enseco

	Lab ID: 007776	Group Code	Analysis Description	Custom Test?
	0001 , 0003	A	Priority Pollutant Organochlorine Pesticides/PCBs Prep - Organochlorine Pesticides/PCBs by GC Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N N N N
	0002	В	Priority Pollutant Semivolatile Organics Prep - Semivolatile Organics by GC/MS Alkalinity, Total/Carbonate/Bicarbonate/Hydroxide Nitrate, Ion Chromatography Chloride, Ion Chromatography Sulfate, Ion Chromatography Fluoride, Electrode Total Dissolved Solids (TDS) pH ICP Metals (Dissolved) Arsenic, Furnace AA (Dissolved) Lead, Furnace AA (Dissolved) Selenium, Furnace AA (Dissolved) Thallium, Furnace AA (Dissolved) Mercury, Cold Vapor AA (Dissolved) Prep - Mercury, Cold Vapor AA, (Dissolved)	N N Y Y N N N N N N N N N N N N N N N N
-	0004 - 0006	C	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS Sulfate, Ion Chromatography Alkalinity, Total/Carbonate/Bicarbonate/Hydroxide Chloride, Ion Chromatography Total Dissolved Solids (TDS) pH Nitrate, Ion Chromatography Arsenic, Furnace AA (Dissolved) ICP Metals (Dissolved) Priority Pollutant Organochlorine Pesticides/PCBs Prep - Organochlorine Pesticides/PCBs by GC	N N Y Y N N N N N N N
)	0007 - 0008	D	Priority Pollutant Organochlorine Pesticides/PCBs Prep - Organochlorine Pesticides/PCBs by GC Priority Pollutant Volatile Organics	N N

Enseco

ANALYTICAL TEST REQUESTS for Enron

Page 2 of 2

Enron	

Lab ID: 007776	Group Code	Analysis Description	Custom Test?
	• <u></u> ,=,=,=,=,=,	Prep-Volatile Organics by GC/MS Priority Pollutant Semivolatile Organics Prep - Semivolatile Organics by GC/MS Alkalinity,	N N N Y
		Total/Carbonate/Bicarbonate/Hydroxide Nitrate, Ion Chromatography Chloride, Ion Chromatography Sulfate, Ion Chromatography Fluoride, Electrode Total Dissolved Solids (TDS) pH Arsenic, Furnace AA (Dissolved)	Y N N N N N N
		Lead, Furnace AA (Dissolved) Selenium, Furnace AA (Dissolved) Thallium, Furnace AA (Dissolved) Mercury, Cold Vapor AA (Dissolved) Prep - Mercury, Cold Vapor AA, (Dissolved) ICP Metals (Dissolved)	N N N N Y

Analytical Results

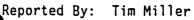
The analytical results for this project are presented in the following data tables. Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Enseco

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is provided subsequently.


Enseco

Method 624

·· · •

Client Name: Enron Client ID: SUPE Lab ID: 007776-0001-SA Matrix: AQUEOUS Authorized: 08 DEC 89	Enseco ID: 1062213 Sampled: 06 DEC 89 Prepared: 11 DEC 89		Received: 08 DEC 89 Analyzed: 20 DEC 89
Parameter	Result	Units	Reporting Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene hlorodibromomethane 1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$
Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4	104 104 99.1	% % %	

ND = Not detected NA = Not applicable

Approved By: Jeff Lowry

• 4 \

Enseco

O

Priority Pollutant Volatile Organics

Method 624

Client ID: Lab ID:	5-Tank 007776-0003-SA AQUEOUS 08 DEC 89	Enseco ID: Sampled: Prepared:	1062215 06 DEC 89 11 DEC 89	·	Received: 08 DEC Analyzed: 20 DEC	
Parameter		ł	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chlorid Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe 1,2-Dichloroe	e oride thene thane		ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0	
(cis/tran Chloroform 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrac Bromodichlorop trans-1,3-Dic Irichlorcethe lorodibromo 1,2-Trichlo Benzene cis-1,3-Dichlo 2-Chloroethyl Bromoform 1,1,2,2-Tetrat Tetrachloroet Toluene Chlorobenzene Ethylbenzene	s) thane roethane hloride methane ropane hloropropene methane roethane oropropene vinyl ether chloroethane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Toluene-d8 4-Bromofluoro 1,2-Dichloroe			2.00 98.8 92.0	% % %		

ND = Not detected NA = Not applicable

Client Name: Enron

Reported By: Phillip Tallarico

Priority Pollutant Volatile Organics

Method 624

•

(Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron NTUA #2 007776-0004-SA AQUEOUS 08 DEC 89		1062222 07 DEC 89 11 DEC 89		Received: Analyzed:		
l	Parameter			Result	Units	Report Limi		
	Irichloroethe Chlorodibromc 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform	de loride ethene ethane ethane ethane oroethane chloride omethane oropane chloropropene omethane oroethane oroethane oroethane oroethane oroethane chloropene vinyl ether achloroethane chene	· .	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5		
- 4	foluene-d8 -Bromofluoro ,2-Dichloroe		:	101 99.2 111	% % %	 		

ND = Not detected NA = Not applicable

•

Reported By: Shawn Kassner

≝/Enseco

·• • •

Method 624

Client Name: Enron Client ID: NTUA #1 Lab ID: 007776-0 Matrix: AQUEOUS Authorized: 08 DEC 8	Sampled: 07 D	EC 89 Rec	ceived: 08 DEC 89 alyzed: 20 DEC 89
Parameter	Result		Reporting Limit
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropane trans-1,3-Dichloropropane trans-1,3-Dichloropropane trans-1,3-Dichloroproper 2-Chloroethene Nlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloroproper 2-Chloroethyl vinyl e Bromoform 1,1,2,2-Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ne ND ND ND ther ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{bmatrix} 10 \\ 10 \\ 10 \\ 5.0 \\ $
Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4	100 94.6 103	% 5 % %	

ND = Not detected NA = Not applicable

Reported By: Shawn Kassner

Enseco

·- - #

Method 624

Lab ID: 0 Matrix: A	nron horeau #2 07776-0006-SA QUEOUS 8 DEC 89	Enseco ID: 1062 Sampled: 07 D Prepared: 11 D	EC 89	Received: 08 Analyzed: 20	
Parameter		Resul	t Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chlo 1,1-Dichloroet 1,2-Dichloroet 1,2-Dichloroet 1,2-Dichloroet 1,2-Dichloroet 1,1,1-Trichlor Carbon tetrach Bromodichlorom 1,2-Dichloropr trans-1,3-Dich Trichloroethen Chlorodibromom 1,1,2-Trichlor Benzene cis-1,3-Dichlo 2-Chloroethyl Bromoform 1,1,2,2-Tetrac Tetrachloroethen Chlorobenzene Ethylbenzene	ride hene hane hene) hane oethane loride ethane opane loropropene e ethane oethane oethane vinyl ether hloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 10\\ 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$	· .
Toluene-d8 4-Bromofluorob 1,2-Dichloroet		102 94. 105	% 8 % %	 	÷

ND = Not detected NA = Not applicable

Reported By: Shawn Kassner

) Enseco

- - - -

Method 624

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-3A 007776-0007-SA AQUEOUS 08 DEC 89	Enseco ID: 1062225 Sampled: 07 DEC 89 Prepared: 11 DEC 89		Received: Analyzed:		
	Parameter		Result	Units	Reporti Limit	ng	
	Chloromethane Bromomethane Vinyl chlorid Chloroethane Methylene ch 1,1-Dichlorod 1,2-Dichlorod (cis/trai Chloroform 1,2-Dichlorod 1,1,1-Trichlo Carbon tetrad Bromodichloro 1,2-Dichlorod trans-1,3-Dichlorod trans-1,3-Dichlorod chlorodibromd 1,1,2-Trichlo Benzene cis-1,3-Dichloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethylbenzene	de loride ethene ethene ethene ethene oroethane chloride omethane oropane chloropropene ene omethane oroethane loropropene vinyl ether ethene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.		· · · ·
-	Toluene-d8 4-Bromofluoro 1,2-Dichloroe		102 103 106	% % %			

ND = Not detected NA = Not applicable

Reported By: Deneen Miller

Priority Pollutant Volatile Organics

Method 624

Lab ID: Matrix:	Enron 5-2A 007776-0008-SA AQUEOUS 08 DEC 89	Enseco ID: Sampled: Prepared:	1062226 07 DEC 89 11 DEC 89		Received: 08 Analyzed: 14	DEC 89 DEC 89
Parameter		1	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chlorid Chloroethane Methylene chl 1,1-Dichloroe 1,2-Dichloroe (cis/tran Chloroform 1,2-Dichloroe 1,1,1-Trichlo Carbon tetrac Bromodichloro 1,2-Dichloroe trans-1,3-Dich Chlorodibromo 1,1,2-Trichlo Benzene cis-1,3-Dichl 2-Chloroethyl Bromoform 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethylbenzene	e oride thene thane thene s) thane roethane hloride methane ropane hloropropene ne methane roethane oropropene vinyl ether chloroethane hene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50 50 50 25 25 25 25 25 25 25 25 25 25 25 25 25	
Toluene-d8 4-Bromofluoro 1,2-Dichloroe			99.4 98.8 105	°/° % %		

ND = Not detected NA = Not applicable

Reported By: Deneen Miller

Priority Pollutant Semivolatile Organics

- . .

Method 625

Client Name: Client ID: Lab ID: Matrix: Authorized:	5-1A 007776-0002-SA AQUEOUS	1062214 06 DEC 89 11 DEC 89		Received: 08 Analyzed: 19 Reporting	DEC 89 DEC 89
Parameter		Result	Units	Limit	
Phenol bis(2-Chlorophenol 2-Chlorophenol 1,3-Dichlorol 1,2-Dichlorol bis(2-Chloro ether N-Nitroso-di n-propyl Hexachloroet Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethyl bis(2-Chloro methane 2,4-Dichloro 1,2,4-Trichlo Naphthalene Hexachlorobu 4-Chloro-3-mo	bl benzene benzene isopropyl)- amine hane } phenol ethoxy)- phenol orobenzene tadiene ethylphenol clopentadiene prophenol thalene halate ne henol l oluene oluene alate yl	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10	
Fluorene 4,6-Dinitro- 2-methyl 1,2-Diphenyl	phenol hydrazine	ND ND ND	ug/L ug/L ug/L	10 50 10	
N-Nitrosodipl	henylamine	ND	ug/L	10	-

(continued on following page)

ND = Not detected NA = Not applicable

1.

: **f**

Reported By: Marshall Tilbury

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

Client Name: Enron Client ID: 5-1A Lab ID: 007776-0002-SA Matrix: AQUEOUS Authorized: 08 DEC 89	Enseco ID: 1062214 Sampled: 06 DEC 89 Prepared: 11 DEC 89	Received: 08 DEC 89 Analyzed: 19 DEC 89
Parameter	Result U	Reporting nits Limit
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl)	ND u ND u ND u ND u ND u ND u ND u ND u	g/L 10 g/L 10 g/L 50 g/L 10 g/L 10
phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND u ND u ND u ND u ND u ND u ND u ND u	g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10 g/L 10
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	94.9 % 70.7 % 97.1 % 78.0 % 75.0 % 89.0 %	

ND = Not detected NA = Not applicable

Reported By: Marshall Tilbury

Priority Pollutant Semivolatile Organics

Method 625

Client Name: Enron Client ID: 5-3A Lab ID: 007776-0007-SA Matrix: AQUEOUS Authorized: 08 DEC 89	Enseco ID: 1062225 Sampled: 07 DEC 89 Prepared: 11 DEC 89	Re	eceived: 08 DEC 89 nalyzed: 19 DEC 89)
Parameter	Result	Units	Reporting Limit	
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl)-	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10	
ether N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)-	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10	
methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10	
2-Chloronaphthalene Dimethyl phthalate Acenaphthylene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate	ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 50 50 10 10 10	
4-Chlorophenyl phenyl ether Fluorene	ND ND	ug/L ug/L	10 10	
4,6-Dinitro- 2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND ND ND	ug/L ug/L ug/L	50 10 10	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Marshall Tilbury

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

Client Name: Enron Client ID: 5-3A Lab ID: 007776-00 Matrix: AQUEOUS Authorized: 08 DEC 89	Sampled: 07	DEC 89	Received: 08 Analyzed: 19	DEC 89 DEC 89
Parameter	Res	ult Units	Reporting Limit	
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	e e e e N N N N N N N N N N N N N N N N	ID ug/L ID ug/L	10 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	7 8 N N N	2.0 % 3.8 % 01.5 % 0 % 0 %	 	

ND = Not detected NA = Not applicable

Reported By: Marshall Tilbury

Approved By: Jeff Lowry

•

• :.

³/Enseco

Method 625

Client Name: Enron Client ID: 5-2A Lab ID: 007776-0008-SA Matrix: AQUEOUS Authorized: 08 DEC 89	Enseco ID: 1062226 Sampled: 07 DEC 89 Prepared: 11 DEC 89	Rec Ana	eived: 08 DEC 89 lyzed: 09 JAN 90	
Parameter	Result	Units	Reporting Limit	
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene bis(2-Chloroisopropyl)- ether N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)- methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10 10 10 10 1	-
Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene 4,6-Dinitro- 2-methylphenol 1,2-Diphenylhydrazine	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 50 50 10 10 10 10 10 10	
N-Nitrosodiphenylamine	ND	ug/L ug/L	10	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Bob Martin

) Enseco

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

. 9

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2A 007776-0008-SA AQUEOUS 08 DEC 89	Enseco ID: 1062226 Sampled: 07 DEC 89 Prepared: 11 DEC 89		Received: 08 DEC 89 Analyzed: 09 JAN 90	
Parameter		Result	Units	Reporting Limit	
4-Bromopheny phenyl ef Hexachlorober Pentachlorober Pentachloroph Phenanthrene Anthracene Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anthr bis(2-Ethylhe phthalate Chrysene Di-n-octyl ph Benzo(b)fluor enzo(k)fluor benzo(a)pyrer Indeno(1,2,3- Dibenz(a,h)ar	ther nzene henol hthalate phthalate pbenzidine racene exyl) e hthalate ranthene ranthene ranthene re	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	
Benzo(g,h,i)p Nitrobenzene- 2-Fluorobiphe Terphenyl-d14 Phenol-d5 2-Fluoropheno 2,4,6-Tribrom	perylene -d5 enyl 4 ol	ND 71.1 65.8 69.2 ND ND ND ND	ug/L % % % %	10 	

ND = Not detected NA = Not applicable

Reported By: Bob Martin

Enseco

Method 608

(Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron SUPE 007776-0001-SA AQUEOUS 08 DEC 89	Enseco ID: Sampled: Prepared:	06 DEC 89		Received: 08 DEC 89 Analyzed: 21 DEC 89
I	Parameter		R	esult	Units	Reporting Limit
	alpha-BHC beta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlord gamma-Chlord Gamma-Chlord Toxaphene Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Dibutul ablo	poxide I ulfate yde ane ane	· · · · · · · · · · · · · · · · · · ·	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.5$
1	Dibutyl chlou	rendate		91.8	%	

ND = Not detected NA = Not applicable

• .;

Reported By: Todd Burgesser

∄Enseco

Method 608

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-Tank 007776-0003-SA AQUEOUS 08 DEC 89	Enseco ID: Sampled: Prepared:	06 DEC 89		Received: 08 DEC 89 Analyzed: 21 DEC 89
Parameter		ſ	Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDT Endosulfan su 4,4'-DDT Endrin aldehy alpha-Chlord gamma-Chlord Toxaphene Aroclor 121 Aroclor 1232 Aroclor 1248 Aroclor 1254 Aroclor 1260	poxide I ulfate yde ane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1
Dibutyl chlor	rendate		73.4	%	

ND = Not detected NA = Not applicable

Reported By: Todd Burgesser

Enseco

Method 608

• • •	Lab ID: (Matrix: / Authorized: (Enron NTUA #2 D07776-0004-SA AQUEOUS D8 DEC 89	07 DEC 89 11 DEC 89		Received: (Analyzed: 2 Reportin	21 DEC 89
•	Parameter		Result	Units	Limit	
	alpha-BHC beta-BHC delta-BHC gamma-BHC (Lin Heptachlor Aldrin Heptachlor epo Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sul 4,4'-DDT Endrin aldehyo alpha-Chlordan gamma-Chlordan Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254	oxide lfate de ne	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.(0.(0.(0.(0.(250 250 250 250 250 250 20 20 20 20 20 20 20 20 20 20 20 20 20
-	Dibutyl chlore	endate	94.6	%		

ND = Not detected NA = Not applicable

Reported By: Todd Burgesser

Approved By: Stephanie Boehnke

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Enron Client ID: NTUA #1 Lab ID: 007776-0005-SA Matrix: AQUEOUS Authorized: 08 DEC 89	Enseco ID: 1062223 Sampled: 07 DEC 89 Prepared: 11 DEC 89		Received: 08 DEC 89 Analyzed: 21 DEC 89
Parameter	Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1
Dibutyl chlorendate	88.6	%	

ND = Not detected NA = Not applicable

Reported By: Todd Burgesser

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

- . .

Client Name: Enron Client ID: Thore Lab ID: 00777 Matrix: AQUEO Authorized: 08 DE	6-0006-SA Enseco ID: US Sampled:	1062224 07 DEC 89 11 DEC 89		eceived: 08 D nalyzed: 21 D	
Parameter		Result	Units	Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan Sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ \end{array}$	
Dibutyl chlorendat	2	76.2	%		

ND = Not detected NA = Not applicable

Reported By: Todd Burgesser

Enseco

Method 608

	Client Name: Enron Client ID: 5-3A Lab ID: 007776-0007-SA Matrix: AQUEOUS Authorized: 08 DEC 89	Enseco ID: 1062225 Sampled: 07 DEC 89 Prepared: 11 DEC 89		Received: 08 DEC 89 Analyzed: 21 DEC 89
•	Parameter	Result	Units	Reporting Limit
	alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan sulfate 4,4'-DDT Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Dibutyl chlorendate	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1

ND = Not detected NA = Not applicable

1

п

Reported By: Todd Burgesser

Approved By: Stephanie Boehnke

Enseco

Method 608

	Client Name: Enron Client ID: 5-2A Lab ID: 007776-0008-SA Matrix: AQUEOUS Authorized: 08 DEC 89	Enseco ID: 1062226 Sampled: 07 DEC 89 Prepared: 11 DEC 89		Received: 08 DEC 89 Analyzed: 21 DEC 89
	Parameter	Result	Units	Reporting Limit
-	alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane Joxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1260 Dibutyl chlorendate	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1
			•	

ND = Not detected NA = Not applicable

Names Enven

C1:0-+

Reported By: Todd Burgesser

Approved By: Stephanie Boehnke

Enseco

Metals

Dissolved Metals

Client ID: Lab ID: Matrix:	Enron 5-1A 007776-0002-SA AQUEOUS 08 DEC 89	Enseco ID: Sampled: Prepared:	06 DEC 8	9 Received w Analyzed	: 08 DEC 8 : See Belo	9 w
Parameter	Result	Re Units	porting Limit	Analytical Method	Prepared Date	Analyzed Date
Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silica as SiO Silver Sodium Strontium Thallium Zinc	ND ND 0.02 ND 0.15 ND 1.1 ND 0.6 0.006 ND 0.02 ND 0.02 ND ND ND ND 0.009 2 11 ND 172 ND 172 ND 1.5	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 0.005 0.01 0.02 0.02 0.05 0.2 0.01 0.01 0.005 0.2 0.01 0.002 0.02 0.04 5 0.005 0.2 0.01 5 0.05 0.01 5 0.01 0.01	200.7 206.2 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	04 JAN 90 04 JAN 90

ND = Not detected NA = Not applicable

Reported By: Harold Borquez

Enseco

Metals

Dissolved Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron NTUA #2 007776-0004-SA AQUEOUS 08 DEC 89	Sampled): 1062222 1: 07 DEC 8 1: See Belo	9 Recei w Analy:	ved: 08 DEC 8 zed: See Belo	39 W
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Arsenic Boron Calcium Iron Magnesium Manganese Potassium Sodium	ND 0.03 41 0.5 19 0.01 ND 23	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.02 0.2 0.1 0.2 0.01 5 5	206.2 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	NA NA NA NA NA NA	04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90

ND = Not detected NA = Not applicable

Reported By: Harold Borquez

Metals

Dissolved Metals

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron NTUA #1 007776-0005-SA AQUEOUS 08 DEC 89	Enseco ID Sampled Prepared	: 1062223 : 07 DEC 8 : See Belo	9 Received w Analyzed	: 08 DEC 8 : See Belo	
•	Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
•	Arsenic Boron Calcium Iron Magnesium Manganese Potassium Sodium	ND 0.03 42 2.3 19 0.02 ND 25	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.005 0.02 0.2 0.1 0.2 0.01 5 5	206.2 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	NA NA NA NA NA NA NA	04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90

ND = Not detected NA = Not applicable

.

Reported By: Harold Borquez

Approved By: Tammy Bailey

٠.

- DEnseco

Metals

Dissolved Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron Thoreau #2 007776-0006-SA AQUEOUS 08 DEC 89	Enseco ID: Sampled: Prepared:	07 DEC 8	9 Receiv w Analyz	ved: 08 DEC 8 zed: See Belo	9 w
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Arsenic Boron Calcium Iron Magnesium Manganese Potassium Sodium	ND 0.05 141 2.0 26 0.01 ND 10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.02 0.2 0.1 0.2 0.01 5 5	206.2 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	NA NA NA NA NA NA NA	04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90 04 JAN 90

ND = Not detected NA = Not applicable

Reported By: Harold Borquez

*****,4

Metals

Dissolved Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron . 5-3A 007776-0007-SA AQUEOUS 08 DEC 89	Enseco ID: Sampled: Prepared:	07 DEC 8		d: 08 DEC 89 d: See Below	9 M
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silica as Sil Silver Sodium Strontium Thallium Zinc	ND ND ND ND 1.4 ND 750 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/L mg/L mg/L	1 0.03 0.2 0.04 0.4 0.1 4 0.2 0.2 2 0.1 4 0.2 0.2 2 0.1 4 0.2 0.0002 0.4 0.8 100 0.05 4 0.2 100 1 0.5 0.2	200.7 206.2 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	04 JAN 90 04 JAN 90

ND = Not detected NA = Not applicable

]

Reported By: Harold Borquez

Enseco

Metals

Dissolved Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2A 007776-0008-SA AQUEOUS 08 DEC 89	Enseco ID Sampled Prepared		9 Received w Analyzed	: 08 DEC 8 : See Belo	9
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silica as Sit Silver Sodium Strontium Thallium Zinc	ND ND ND 1.7 ND 1300 ND 1300 ND 1300 ND 140 5.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 0.03 0.2 0.04 0.4 0.1 4 0.2 0.2 2 0.1 4 0.2 0.0002 0.4 0.8 100 0.05 4 0.2 100 1 0.5 0.2	200.7 206.2 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	04 JAN 90 04 JAN 90

ND = Not detected NA = Not applicable

Reported By: Harold Borquez

[™]Enseco

General Inorganics

Lab ID: C Matrix: A	nron -1A 007776-0002-SA QUEOUS 08 DEC 89	Sampl	ID: 1062214 ed: 06 DEC 8 ed: See Belo	9 Receiv w Analyz	ved: 08 DEC 8 zed: See Belo	
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Bi CaCO3 at p Alkalinity, Ca	0H 4.5 208	mg/L	5	310.1	NA	08 DEC 89
CaCO3 at p Chloride Fluoride Nitrate as N pH Sulfate	0H 8.3 42 37 0.4 0.8 8.9 48	mg/L mg/L mg/L mg/L units mg/L	5 3 0.1 0.1 5	310.1 300.0 340.2 300.0 150.1 300.0	NA NA NA NA NA	08 DEC 89 09 DEC 89 13 DEC 89 09 DEC 89 08 DEC 89 08 DEC 89 09 DEC 89
Total Dissolve Solids	d 400	mg/L	10	160.1	NA	11 DEC 89

ND = Not detected NA = Not applicable

Reported By: Blake Besser

General Inorganics

Enseco

ì	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron NTUA #2 007776-0004 AQUEOUS 08 DEC 89	Samp) ID: 1062222 led: 07 DEC 8 wred: See Belo	19 Recei	ved: 08 DEC 8 zed: See Belo	
45	Parameter	Resu	lt Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
`	Alkalinity, CaCO3 at Alkalinity,	pH 4.5 199	mg/L	5	310.1	NA	08 DEC 89
-	CaCO3 at Chloride	pH 8.3 ND 4	mg/L	5 3	310.1 300.0	NA	08 DEC 89 09 DEC 89
n,	Nitrate as N pH Sulfate Total Dissol	7 15	.7 mg/L .7 units mg/L	0.1 5	300.0 150.1 300.0	NA NA NA	09 DEC 89 08 DEC 89 09 DEC 89
'N	Solids	220	mg/L	10	160.1	NA	11 DEC 89

ND = Not detected NA = Not applicable

4

L

Reported By: Blake Besser

General Inorganics

Client Name: Enron Client ID: NTUA # Lab ID: 007776 Matrix: AQUEOL Authorized: 08 DEC	5-0005-SA JS	Sample	ID: 1062223 ed: 07 DEC 8 ed: See Belo	9 Receiv w Analyz	ved: 08 DEC 8 zed: See Belo	9 ₩
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Bicarb CaCO3 at pH 4.	5 186	mg/L	5	310.1	NA	08 DEC 89
Alkalinity, Carb. a CaCO3 at pH 8.3 Chloride Nitrate as N pH Sulfate	ND 16 ND 7.8 21	mg/L mg/L mg/L units mg/L	5 3 0.1 5	310.1 300.0 300.0 150.1 300.0	NA NA NA NA	08 DEC 89 09 DEC 89 09 DEC 89 08 DEC 89 09 DEC 89 09 DEC 89
Total Dissolved Solids	240	mg/L	10	160.1	NA	11 DEC 89

ND = Not detected NA = Not applicable

Reported By: Blake Besser

General Inorganics

Enseco

Lab ID: 007 Matrix: AQU	ron Dreau #2 7776-0006-SA JEOUS DEC 89	Sampl	ID: 1062224 ed: 07 DEC 8 ed: See Belo		ved: 08 DEC 8 zed: See Belo	
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Bica CaCO3 at pH Alkalinity, Cart	4.5 211	mg/L	5	310.1	NA	08 DEC 89
CaCO3 at pH Chloride Nitrate as N		mg/L mg/L mg/L	5 3 0.1	310.1 300.0 300.0	NA NA NA	08 DEC 89 09 DEC 89 09 DEC 89
pH Sulfate Total Dissolved	7.4 241	units mg/L	5	150.1 300.0	NA NA	08 DEC 89 09 DEC 89
Solids	550	mg/L	10	160.1	NA	11 DEC 89

ND = Not detected NA = Not applicable

1

Reported By: Blake Besser

ł

General Inorganics

Lab ID: 00 Matrix: AC	aron 3A 07776-0007-SA 0UEOUS 9 DEC 89	Sampl	ID: 1062225 ed: 07 DEC 8 ed: See Belo	9 Receiv w Analy:	ved: 08 DEC 8 zed: See Belo	
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Bic CaCO3 at pH Alkalinity, Car	14.5 31	mg/L	5	310.1	NA	08 DEC 89
CaCO3 at pH Chloride Fluoride Nitrate as N	18.3 ND 16000 0.2 3.8	mg/L mg/L mg/L mg/L	5 3 0.1 0.1	310.1 300.0 340.2 300.0	NA NA NA	08 DEC 89 09 DEC 89 13 DEC 89 09 DEC 89
pH Sulfate Total Dissolved Solids	6.5 796 I 26300	units mg/L mg/L	 5 10	150.1 300.0 160.1	NA NA NA	08 DEC 89 09 DEC 89 11 DEC 89

ND = Not detected NA = Not applicable

Reported By: Blake Besser

Approved By: Tammy Bailey

General Inorganics

Client ID: 5 Lab ID: 0 Matrix: A	nron 5-2A 007776-0008-SA AQUEOUS 08 DEC 89	Sample	ID: 1062226 ed: 07 DEC 8 ed: See Belo		ved: 08 DEC 8 zed: See Belo	9 W
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Bi CaCO3 at p Alkalinity, Ca	oH 4.5 28	mg/L	5	310.1	NA	08 DEC 89
CaCO3 at p Chloride Fluoride Nitrate as N pH Sulfate Total Dissolve	0H 8.3 ND 10700 0.4 3.7 6.9 1290	mg/L mg/L mg/L units mg/L	5 3 0.1 0.1 5	310.1 300.0 340.2 300.0 150.1 300.0	NA NA NA NA NA	08 DEC 89 09 DEC 89 13 DEC 89 09 DEC 89 08 DEC 89 09 DEC 89 09 DEC 89
Solids	20700	mg/L	10	160.1	NA	11 DEC 89

ND = Not detected NA = Not applicable

Reported By: Blake Besser

Approved By: Tammy Bailey

Quality Control Results

17

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

Finseco

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- 2) assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- 4) provide a standard set of reportables which assures the client of the quality of his data.

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of Duplicate Control Samples (DCS) at frequent, well-defined intervals. Each DCS is a well-characterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the DCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For each batch of samples analyzed, an additional control measure is taken in the form of a Single Control Sample (SCS). The SCS consists of a control matrix that is spiked with either representative target compounds or surrogate compounds appropriate to the method being used. An SCS is prepared for each sample lot for which the DCS pair are not analyzed.

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = -----

Measured Concentration X Actual Concentration

100

Precision for DCS is measured by Relative Percent Difference (RPD).

 $RPD = \frac{| Measured Concentration DCS1 - Measured Concentration DCS2 |}{(Measured Concentration DCS1 + Measured Concentration DCS2)/2} X 100$

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, DCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report.

C LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

-	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
•	007776-0001-SA 007776-0003-SA		624-A 624-A	03 DEC 89-H 22 NOV 89-D	19 DEC 89-H 20 DEC 89-D
•	007776-0004-SA	AQUEOUS	624-A	21 DEC 89-S	20 DEC 89-S
	007776-0005-SA	AQUEOUS	624-A	21 DEC 89-S	20 DEC 89-S
	007776-0006-SA	AQUEOUS	624-A	21 DEC 89-S	20 DEC 89-S
	007776-0007-SA	AQUEOUS	624-A	14 DEC 89-L	13 DEC 89-L
	007776-0008-SA	AQUEOUS	624-A	14 DEC 89-L	14 DEC 89-L

PLICATE CONTROL SAMPLE REPORT olatile Organics by GC/MS

.

•	Analyte		Conce Spiked	ntration M DCS1	leasured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Lin	
• •	Category: 624-A Matrix: AQUEOUS QC Lot: 03 DEC 89-H Concentration Units:	ug/L								
•	l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	52.5 50.9 61.2 54.9 54.0	52.3 50.5 59.8 55.7 55.2	52.4 50.7 60.5 55.3 54.6	105 101 121 111 109	61-145 71-120 76-127 76-125 75-130	0.4 0.8 2.3 1.4 2.2	14 14 11 13 13
•	Category: 624-A Matrix: AQUEOUS QC Lot: 22 NOV 89-D Concentration Units:	ug/L		·						
-	1,1-Dichloroethene Trichloroethene Renzene Iluene Ilorobenzene		50 50 50 50 50	59.5 53.6 59.3 57.1 56.0	52.5 53.5 56.8 54.7 57.7	56.0 53.6 58.0 55.9 56.8	112 107 116 112 114	61-145 71-120 76-127 76-125 75-130	12 0.2 4.3 4.3 3.0	14 14 11 13 13
-	Category: 624-A Matrix: AQUEOUS QC Lot: 21 DEC 89-S Concentration Units:	ug/L							-	
ļ	l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	· .	50 50 50 50 50	58.4 48.6 52.5 46.5 53.7	51.7 49.1 52.2 46.9 57.5	55.0 48.8 52.4 46.7 55.6	110 98 105 93 111	61-145 71-120 76-127 76-125 75-130	12 1.0 0.6 0.9 6.8	14 14 11 13 13
]	Category: 624-A Matrix: AQUEOUS QC Lot: 14 DEC 89-L Concentration Units:	ug/L				-				
- - -	l,l-Dichloroethene Trichloroethene Benzene Toluene		50 50 50 50	44.6 47.2 52.2 50.9	47.4 47.7 52.3 51.3	46.0 47.4 52.2 51.1	92 95 105 102	61-145 71-120 76-127 76-125	6.1 1.1 0.2 0.8	14 14 11 13

alculations are performed before rounding to avoid round-off errors in calculated results.

`,^

PLICATE CONTROL SAMPLE REPORT olatile Organics by GC/MS (cont.)

ł

	Analyte	Conc Spiked	entration DCS1	n Measured DCS2	AVG		curacy age(%) Limits	Precis (RPD) DCS Li	
I	Category: 624-A Matrix: AQUEOUS QC_Lot: 14 DEC 89-L Concentration Units: ug/L								
	Chlorobenzene	50	53.5	53.5	53.5	107	75-130	0.0	13

VINGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

	Analyte			oncentrati piked Mea		Accura SCS	acy(%) Limits
	Category: 624-A Matrix: AQUEOUS QC Lot: 03 DEC 89-H Concentration Units: 1,2-Dichloroethane-d4	QC Run: ug/L	19 DEC 89-	50.0	49.2	98	76-114
	4-Bromofluorobenzene Toluene-d8			50.0 50.0	51.0 51.2	102 102	86-115 88-110
1	Category: 624-A Matrix: AQUEOUS QC Lot: 22 NOV 89-D Concentration Units:	QC Run: ug/L	20 DEC 89-	D			
	1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8		•	50.0 50.0 50.0	46.1 49.7 50.6	92 99 101	76-114 86-115 88-110
	ategory: 624-A latrix: AQUEOUS QC Lot: 21 DEC 89-S Concentration Units:	QC Run: ug/L	20 DEC 89-	s			
	1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8			50.0 50.0 50.0	53.2 47.1 52.3	106 94 105	76-114 86-115 88-110
	Category: 624-A Matrix: AQUEOUS QC Lot: 14 DEC 89-L Concentration Units:	QC Run: ug/L	13 DEC 89-	L			
•	1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8			50.0 50.0 50.0	50.1 50.3 48.5	100 101 97	76-114 86-115 88-110

INGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS (cont.)

]

07

]

]

T

1

]	Analyte	Concent Spiked	ration Measured	Accuracy(%) SCS Limits
	Category: 624-A Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC Rur Concentration Units: ug/L	n: 14 DEC 89-L		
• •• •	l,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	50.0 50.0 50.0	55.7 50.0 50.1	111 76-114 100 86-115 100 88-110

ETHOD BLANK REPORT Volatile Organics by GC/MS

Ì	Analyte			Result	Units	Reporting Limit
	Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 03 DEC 89-H QC	Run:	19 DEC	89-H	. ·	
	Chloromethane Bromomethane Vinyl chloride Chloroethane		·	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10
1	Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene			ND ND ND	ug/L ug/L ug/L	5.0 5.0
•	(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride			ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0
	Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene			ND ND ND ND	ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0
	hlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether			ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0
•	Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene			ND ND ND ND	ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0
•	Chlorobenzene Ethylbenzene			ND ND	ug/L ug/L	
- - 	•	Run:	20 DEC			
•	Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride	•		ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0
•	l,l-Dichloroethene l,l-Dichloroethane			ND ND .	ug/L ug/L	5.0

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

-	Analyte	Result	Units	Reporting Limit
-	-			
,	Test: 624-PP-AP			
-	Matrix: AQUEOUS QC Lot: 22 NOV 89-D QC Run:	20 DEC 89-D		
-	1,2-Dichloroethene (cis/trans)	ND	ug/L	5.0
-	Chloroform	ND	ug/L	5.0
-	1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND	ug/L ug/L	5.0 5.0
	Carbon tetrachloride	- ND	ug/L	5.0
_	Bromodichloromethane 1,2-Dichloropropane	ND ND	ug/L ug/L	5.0 5.0
-	trans-1,3-Dichloropropene	ND	ug/L	5.0
	Trichloroethene Chlorodibromomethane	ND ND	ug/L ug/L	5.0 5.0
-	1,1,2-Trichloroethane	ND ND	ug/L	5.0
-	Benzene cis-1,3-Dichloropropene	ND	ug/L ug/L	5.0 5.0
	2-Chloroethyl vinyl ether Bromoform	ND ND	ug/L	10 5.0
-	1,1,2,2-Tetrachloroethane	ND	ug/L ug/L	5.0
	etrachloroethene oluene	ND ND	ug/L ug/L	5.0 5.0
~ ~	Chlorobenzene	ND	ug/L	5.0
7	Ethylbenzene	ND	ug/L	5.0
.				
-	Test: 624-PP-AP Matrix: AQUEOUS			
Į	QC Lot: 21 DEC 89-S QC Run:	20 DEC 89-S		
	Chloromethane	ND	ug/L	10
7	Bromomethane Vinyl chloride	ND ND	ug/L ug/L	10 10
ď	Chloroethane	ND	ug/L	10
7	Methylene chloride 1,1-Dichloroethene	ND ND	ug/L ug/L	5.0 5.0
1	1,1-Dichloroethane	ND	ug/L	5.0
•	1,2-Dichloroethene (cis/trans)	ND	ug/L	5.0
Į	Chloroform 1,2-Dichloroethane	ND ND	ug/L	· 5.0
•	1,1,1-Trichloroethane	ND ND	ug/L ug/L	5.0 5.0
1	Carbon tetrachloride Bromodichloromethane	ND ND	ug/L	5.0
1		NU .	ug/L	5.0

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

]

	Analyte	Result	Units	Reporting Limit
	Test: 624-PP-AP Matrix: AQUEOUS QC_Lot: 21 DEC 89-S QC Run:	20 DEC 89-S		
Annual Annual Annual A	1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
	Test: 624-PP-A Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC Run:	13 DEC 89-L		
	Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,2-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
للينيع الليانة المتنما	1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
	1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene	ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0

METHOD BLANK REPORT Nolatile Organics by GC/MS (cont.)

1

3

ļ

"Analyte Result Units	Limit
] Test: 624-PP-A Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC Run: 13 DEC 89-L	
2-Chloroethyl vinyl ether ND ug/L Bromoform ND ug/L	10 5.0
1,1,2,2-TetrachloroethaneNDug/LTetrachloroetheneNDug/LTolueneNDug/LChlorobenzeneNDug/L	5.0 5.0 5.0 5.0
Test: 624-PP-A ND ug/L	5.0
Matrix: AQUEOUS QC Lot: 14 DEC 89-L QC Run: 14 DEC 89-L _ Chloromethane ND ug/L	. 10
Chloromethane ND ug/L Bromomethane ND ug/L Vinyl chloride ND ug/L Chloroethane ND ug/L Methylene chloride ND ug/L	10 10 10 5.0
1,1-Dichloroethene ND ug/L 1,1-Dichloroethane ND ug/L 1,2-Dichloroethene	5.0 5.0 5.0
Chloroform ND ug/L 1,2-Dichloroethane ND ug/L 1.1.1-Trichloroethane ND ug/L	5.0 5.0 5.0 5.0
Bromodichloromethane ND ug/L 1,2-Dichloropropane ND ug/L trans-1,3-Dichloropropene ND ug/L	5.0 5.0 5.0
1,1,2-Trichloroethane ND ug/L Benzene ND ug/L	5.0 5.0 5.0 5.0
2-Chloroethyl vinyl etherNDug/LBromoformNDug/L1,1,2,2-TetrachloroethaneNDug/L	5.0 10 5.0 5.0
TetrachloroetheneNDug/LTolueneNDug/LChlorobenzeneNDug/LEthylbenzeneNDug/L	5.0 5.0 5.0 5.0

Enseco

OC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)	
007776-0002-SA	AQUEOUS	625-A	11 DEC 89-B	11 DEC 89-B	
007776-0007-SA	AQUEOUS	625-A	11 DEC 89-B	11 DEC 89-B	
007776-0008-SA	AQUEOUS	625-A	11 DEC 89-B	11 DEC 89-B	

OUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Ĩ

1	Analyte	. Conc Spiked	entratio DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS L)
1 15 1	Category: 625-A Matrix: AQUEOUS QC Lot: 11 DEC 89-B Concentration Units: ug/L								
•	Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-	100 100 50	67.1 77.9 20.4	50.7 55.5 11.6	58.9 66.7 16.0	59 67 32	12- 89 27-123 36- 97	28 34 55	42 40 28
•• • •	n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	50 50 100 50 100 50 100 50	32.8 21.7 77.9 29.4 73.6 35.3 77.8 38.7	29.2 12.8 70.3 22.5 82.2 36.5 78.5 42.3	31.0 17.2 74.1 26.0 77.9 35.9 78.2 40.5	62 35 74 52 78 72 78 81	41-116 39-98 23-97 46-118 10-80 24-96 9-103 26-127	12 52 10 27 11 3.3 0.9 8.9	38 28 42 31 50 38 50 31

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

١

Ì	Analyte			Concentration Spiked Measured			Accuracy(%) SCS Limits		
	Category: 625-A Matrix: AQUEOUS QC Lot: 11 DEC 89-B Concentration Units: Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	QC Run: ug/L	11 DEC 89-	B 100 100 200 200 200	56.7 48.3 74.7 97.5 105 126	57 48 75 49 52 63	35-114 43-116 33-141 21-100 10- 94 10-123		

ETHOD BLANK REPORT Semivolatile Organics by GC/MS

ŀ

1

]

	Analyte	Result	Units	Reporting Limit
1	Test: 625-PP-A Matrix: AQUEOUS QC Lot: 11 DEC 89-B QC Run:	11 DEC 89-B		
	Phenol bis(2-Chloroethyl) ether	ND ND	ug/L ug/L	10 10
	2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 . 10 10
	bis(2-Chloroisopropyl)- ether N-Nitroso-di-	ND	ug/L	10
	n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10
間上に	2,4-Dimethylphenol bis(2-Chloroethoxy)-	ND	ug/L	10
l	methane ,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene	ND ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10 10
	Hexachlorobutadiene 4-Chloro-3-methylphenol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene	ND ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10 10
	Dimethyl phthalate Acenaphthylene Acenaphthene	ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
Ĩ	2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotoluene	ND ND ND	ug/L ug/L ug/L	50 50 10
	2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND	ug/L ug/L	10 10
-	phenyl ether Fluorene 4,6-Dinitro-	ND ND	ug/L ug/L	10 10
]	2-methylphenol 1,2-Diphenylhydrazine	ND ND	ug/L ug/L	50 10
]	N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether	ND	ug/L ug/L	10 10

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.) j. Reporting Analyte Result Units Limit Test: 625-PP-A Matrix: AQUEOUS 11 DEC 89-B QC Run: 11 DEC 89-B QC Lot: ۱..., 1 **Hexachlorobenzene** ND ug/L 10 ug/L 50 Pentachlorophenol ND ug/L 10 Phenanthrene ND ug/L ND 10 Anthracene Di-n-butyl phthalate ND ug/L 10 Fluoranthene ND ug/L 10 ug/L 10 Pyrene ND , İ 10 Butyl benzyl phthalate ND ug/L ۶, 3,3'-Dichlorobenzidine ND 20 ug/L Benzo(a)anthracene bis(2-Ethylhexyl) ND 10 ug/L 1 10 ND phthalate ug/L ND 10 Chrysene ug/L Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene ND ug/L 10 10 ND ug/L ND 10 ug/L ND 10 Benzo(a)pyrene ug/L Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND 10 ug/L ND ug/L 10 ND Benzo(g,h,i)perylene ug/L 10 Test: 625-PP-A Matrix: AQUEOUS QC Lot: 11 DEC 89-B QC Run: 11 DEC 89-B Pheno1 ND ug/L 10 bis(2-Chloroethyl) ether ND ug/L 10 2-Chlorophenol ND uğ/L 10 3-Dichlorobenzene 1, ND 1 ug/L 10 1,4-Dichlorobenzene ND ug/L 10 1,2-Dichlorobenzene ND ug/L 10 bis(2-Chloroisopropyl)ether ND 10 ug/L N-Nitroso-din-propylamine ND ug/L 10 Hexachloroethane ND ug/L 10 Nitrobenzene ND ug/L 10 Isophorone ND ug/L 10 2-Nitrophenol 1 ND 10 ug/L 2,4-Dimethylphenol ND -10 ug/L

'H

1ETHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.) Reporting Analyte **Result** Units Limit Test: 625-PP-A Matrix: AQUEOUS 11 DEC 89-B QC Lot: QC Run: 11 DEC 89-B bis(2-Chloroethoxy)-ND 10 methane ug/L ND ug/L 10 2,4-Dichlorophenol ug/L 10 1,2,4-Trichlorobenzene ND uğ/L 10 ND Naphthalene ND uğ/L 10 Hexachlorobutadiene uğ/L 10 4-Chloro-3-methylphenol ND ug/L 10 Hexachlorocyclopentadiene ND j 2,4,6-Trichlorophenol ND ug/L 10 ug/L 2-Chloronaphthalene ND 10 Ъ Dimethyl phthalate Acenaphthylene ND 10 ug/L 10 ND ug/L á. ND ug/L 10 Acenaphthene 50 2,4-Dinitrophenol ND uq/L 50 ND uq/L 4-Nitrophenol 2,4-Dinitrotoluene ND 10 ug/L 10 2,6-Dinitrotoluene ND ug/L Diethyl phthalate ND 10 ug/L 4-Chlorophenyl ND 10 phenyl ether . ug/L Fluorene ND 10 ug/L 4,6-Dinitro-ND 50 2-methylphenol ug/L 1,2-Diphenylhydrazine ND 10 ug/L ND 10 N-Nitrosodiphenylamine ug/L 4-Bromophenyl phenyl ether ND ug/L 10 Hexachlorobenzene ND ug/L 10 Pentachlorophenol ND 50 ug/L ND Phenanthrene 10 uq/LAnthracene ND 10 ug/LDi-n-butyl phthalate ND 10 ug/L Fluoranthene ND 10 ug/L Pyrene ND 10 ug/L Butyl benzyl phthalate ND ug/L 10 3,3'-Dichlorobenzidine ND 20 ug/L Benzo(a)anthracene ND 10 ug/L bis(2-Ethylhexyl) phthalate ND ug/L 10 Chrysene ND 10 ug/L Di-n-octyl phthalate ND ug/L 10

1

سر

Ju

ų,

Finseco

ETHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

ų,

¥ł

Ņ

D

I Name

A

1

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 11 DEC 89-B QC Run	: 11 DEC 89-B		
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007776-0001-SA 007776-0003-SA 007776-0004-SA 007776-0005-SA 007776-0006-SA 007776-0007-SA 007776-0008-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	608-A 608-A 608-A 608-A 608-A 608-A 608-A	04 DEC 89-A 04 DEC 89-A 04 DEC 89-A 04 DEC 89-A 04 DEC 89-A 04 DEC 89-A 04 DEC 89-A 04 DEC 89-A	11 DEC 89-A 11 DEC 89-A 11 DEC 89-A 11 DEC 89-A 11 DEC 89-A 11 DEC 89-A 11 DEC 89-A 11 DEC 89-A

OUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

ž

Analyte	Conc Spiked	centration DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li)
Category: 608-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A Concentration Units: ug/L								
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	0.2 0.2 0.5 0.5 0.5	0.161 0.172 0.146 0.392 0.383 0.416	0.173 0.187 0.158 0.428 0.417 0.461	0.167 0.180 0.152 0.410 0.400 0.438	84 90 76 82 80 88	56-123 40-131 40-120 52-126 56-121 38-127	7.2 8.4 7.9 8.8 8.5 10	15 20 22 18 21 27

Enseco INGLE CONTROL SAMPLE REPORT • • • Semivolatile Organics by GC Concentration Accuracy(%) Analyte Spiked Measured SCS Limits Category: 608-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A QC Run: 11 DEC 89-A Concentration Units: ug/L i. Dibutyl chlorendate 1.00 0.921 92 48-136 Calculations are performed before rounding to avoid round-off errors in calculated results. !

्रि Enseco

METHOD BLANK REPORT Semivolatile Organics by GC

ĺĝ

-	Analyte		Res	sult	Units	Reporting Limit
: - -	Test: 608-PP-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A	QC Run:	11 DEC 89-A			
a Maria Arra Maria Maria Maria Maria	alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane Jamma-Chlordane			ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.50\\ 0$
1	Test: 608-PP-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A	QC Run:	11 DEC 89-A			
	alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	· ·		ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10

METHOD BLANK REPORT Semivolatile Organics by GC (cont.) Reporting Result Limit Units Analyte J Test: 608-PP-A AQUEOUS Matrix: 04 DEC 89-A QC Run: 11 DEC 89-A QC Lot: 4,4'-DDE ND 0.10 ug/L 0.10 ND ug/L Endrin Endosulfan II ND ug/L 0.10 ND ug/L 0.10 4.4'-DDD Endosulfan sulfate ND ug/L 0.10 4,4'-DDT ND 0.10 uğ/L ND Endrin aldehyde ug/L 0.10 alpha-Chlordane ND ug/L 0.50 gamma-Chlordane ND 0.50 ug/L ND 1.0 Toxaphene ug/L Aroclor 1016 ND ug/L 0.50 Aroclor 1221 ND ug/L 0.50 Aroclor 1232 ND ug/L 0.50 ND ug/L Aroclor 1242 0.50 **Justice** ND ug/L Aroclor 1248 0.50 Aroclor 1254 ND ug/L 1.0 Aroclor 1260 ND ug/L 1.0 608-PP-A Test: Matrix: AQUEOUS QC Lot: 04 DEC 89-A QC Run: 11 DEC 89-A alpha-BHC ND ug/L 0.050 beta-BHC ND ug/L 0.050 delta-BHC ND uq/L 0.050 gamma-BHC (Lindane) ND ug/L 0.050 Heptachlor ND ug/L 0.050 Aldrin ND uğ/L 0.050 Heptachlor epoxide ND ug/L 0.050 Endosulfan I ND ug/L 0.050 Dieldrin ND ug/L 0.10 4,4'-DDE ND ug/L 0.10 Endrin ND ug/L 0.10 Endosulfan II ND ug/L 0.10 4,4'-DDD ND ug/L 0.10 Endosulfan sulfate ND ug/L 0.10 4,4'-DDT ND ug/L 0.10 Endrin aldehyde ND ug/L 0.10 alpha-Chlordane ND ug/L 0.50 gamma-Chlordane ND ug/L 0.50

METHOD BLANK REPORT Semivolatile Organics by GC (cont.)

	Analyte	Result	Units	Reporting Limit
_) 	Test: 608-PP-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A QC Run	: 11 DEC 89-A		
	Toxaphene	ND	ug/L	1.0
	Aroclor 1016	ND	ug/L	0.50
-	Aroclor 1221	ND	ug/L	0.50
	Aroclor 1232	ND	ug/L	0.50
	Aroclor 1242	ND	ug/L	0.50
	Aroclor 1248	ND	ug/L	0.50
-	Aroclor 1254	ND	ug/L	1.0
	Aroclor 1260	ND	ug/L	1.0

]

- JEnseco

OC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

1

7

]

1

1

]

1

	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
	007776-0002-SA 007776-0002-SA	AQUEOUS AQUEOUS	ICP-AD AS-FAA-AD	04 JAN 90-A 04 JAN 90-D	- -
	007776-0002-SA 007776-0002-SA 007776-0002-SA 007776-0002-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	PB-FAA-AD SE-FAA-AD TL-FAA-AD HG-CVAA-AT	04 JAN 90-A 04 JAN 90-D 29 DEC 89-A 21 DEC 89-A	
]	007776-0004-SA 007776-0004-SA 007776-0005-SA 007776-0005-SA	AQUEOUS AQUEOUS AQUEOUS	AS-FAA-AD ICP-AD AS-FAA-AD ICP-AD	04 JAN 90-D 04 JAN 90-A 04 JAN 90-A	-
]	007776-0006-SA 007776-0006-SA 007776-0007-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	AS-FAA-AD ICP-AD AS-FAA-AD	04 JAN 90-A 04 JAN 90-A 04 JAN 90-D	-
]	007776-0007-SA 007776-0007-SA 007776-0007-SA 007776-0007-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	PB-FAA-AD SE-FAA-AD TL-FAA-AD HG-CVAA-AT	04 JAN 90-A 04 JAN 90-D 29 DEC 89-A 21 DEC 89-A	-
7	007776-0007-SA 007776-0008-SA 007776-0008-SA 007776-0008-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	ICP-AD AS-FAA-AD PB-FAA-AD SE-FAA-AD	04 JAN 90-A 04 JAN 90-D 04 JAN 90-A 04 JAN 90-A 04 JAN 90-D	· •
3	007776-0008-SA 007776-0008-SA 007776-0008-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	TL-FAA-AD HG-CVAA-AT ICP-AD	29 DEC 89-A 21 DEC 89-A 04 JAN 90-A	

ें J F	Enseco

Ĩ	DUPLICATE CONTROL SAM Metals Analysis and P				·			·		
]	Analyte		Cone Spiked	centratio	Measured		Aver	uracy age(%)	Precis (RPD)	I
]	C. Lawrence TCD AD			DCS1	DCS2	AVG	DCS	Limits	DCS Li	mıt
]	Category: ICP-AD Matrix: AQUEOUS QC Lot: O4 JAN 90-A Concentration Units:	mg/L								
	Aluminum Antimony Arsenic Barium		2.0 0.5 0.5 2.0	1.95 0.44 0.49 1.76	1.98 0.45 0.50 1.78	1.96 0.44 0.50 1.77	98 89 99 89	75-125 75-125 75-125 75-125 75-125	1.5 2.2 2.0 1.1	20 20 20 20
	Beryllium Cadmium Calcium		0.05 0.05 100 0.2	0.048 0.052 98.3 0.20	0.048 0.051 99.2 0.20	0.048 0.052 98.8 0.20	96 103 99 100	75-125 75-125 75-125 75-125 75-125	0.0 1.9 0.9 0.0	20 20 20 20
	Chromium Cobalt Copper Iron Lead		0.2 0.25 1.0 0.5	0.20 0.49 0.26 0.99 0.47	0.49 0.26 1.00 0.48	0.20 0.26 1.00 0.48	98 104 100 95	75-125 75-125 75-125 75-125 75-125	0.0 0.0 1.0 2.1	20 20 20 20
	Magnesium Manganese Nickel otassium		50 0.5 0.5 100	50.1 0.51 0.50 98.7	50.6 0.51 0.50 100	50.4 0.51 0.50 99.4	101 102 100 99	75-125 75-125 75-125 75-125 75-125	1.0 0.0 0.0 1.3	20 20 20 20
1	Silver Sodium Vanadium Zinc		0.05 100 0.5 0.5	0.047 92.3 0.47 0.51	0.047 93.4 0.47 0.51	0.047 92.8 0.47 0.51	94 93 94 102	75-125 75-125 75-125 75-125 75-125	0.0 1.2 0.0 0.0	20 20 20 20
]	Category: AS-FAA-AD Matrix: AQUEOUS QC Lot: 04 JAN 90-D								-	
	Concentration Units: Arsenic	mg/L	0.04	0.036	0.038	0.037	93	75-125	2.7	20
l	Category: PB-FAA-AD Matrix: AQUEOUS QC Lot: 04 JAN 90-A									
]	Concentration Units: Lead	mg/L	0.02	0.017	0.018	0.018	88	75-125	5.7	20

Calculations are performed before rounding to avoid round-off errors in calculated results.

1

PLICATE CONTROL SAMPLE REPORT

ģ

]

Metals	Analysis	and	Preparat	tion	(cont.))	
							•

	Analyte		Co Spiked	ncentratio DCS1	on Measured DCS2	d AVG		uracy age(%) Limits	Precis (RPD) DCS Li	
	Category: SE-FAA-AD Matrix: AQUEOUS QC Lot: O4 JAN 90-D Concentration Units:	mg/L		·						
t ;	Selenium	•	0.010	0.011	0.012	0.012	116	75-125	6.9	20
1	Category: TL-FAA-AD Matrix: AQUEOUS QC Lot: 29 DEC 89-A Concentration Units:	mg/L								•.
•	Thallium		0.05	0.051	0.050	0.050	101	75-125	2.0	20
	Category: HG-CVAA-AT Matrix: AQUEOUS OC Lot: 21 DEC 89-A ncentration Units: Mercury	mg/L	0.0010	0.00102	0.00104	0.00103	103	75-125	1.9	20
	Category: AS-FAA-AD Matrix: AQUEOUS QC Lot: 04 JAN 90-A Concentration Units:	mg/L								
}	Arsenic		0.04	0.039	0.040	0.040	99	75-125	2.5	20

∰Enseco

7

7

1

QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
-	Sample Hamsel	qu nau n		()	
•	007776-0002-SA	AQUEOUS	ALK-A	08 DEC 89-Q	• ·
	007776-0002-SA	AQUEOUS	NO3-IC-A	09 DEC 89-M	-
•	007776-0002-SA	AQUEOUS	CL-IC-A	09 DEC 89-M	-
:	007776-0002-SA	AQUEOUS	SO4-IC-A	09 DEC 89-M	-
•	007776-0002-SA	AQUEOUS	F-A	13 DEC 89-A	· –
	007776-0002-SA	AQUEOUS	TDS-A	11 DEC 89-A	11 DEC 89-A
-	007776-0002-SA	AQUEOUS	PH-A	08 DEC 89-Q	-
j.	007776-0004-SA	AQUEOUS	SO4-IC-A	09 DEC 89-M	-
	007776-0004-SA	AQUEOUS	ALK-A	08 DEC 89-Q	• –
-	007776-0004-SA	AQUEOUS	CL-IC-A	09 DEC 89-M	-
•	007776-0004-SA	AQUEOUS	TDS-A	11 DEC 89-A	11 DEC 89-A
4	007776-0004-SA	AQUEOUS	PH-A	08 DEC 89-0	-
	007776-0004-SA	AQUEOUS	NO3-IC-A	09 DEC 89-M	. –
-	007776-0005-SA	AQUEOUS	SO4-IC-A	09 DEC 89-M	-
	007776-0005-SA	AQUEOUS	ALK-A	08 DEC 89-0	-
ب_	007776-0005-SA	AQUEOUS	CL-IC-A	09 DEC 89-M	-
	007776-0005-SA	AQUEOUS	TDS-A	11 DEC 89-A	11 DEC 89-A
	007776-0005-SA	AQUEOUS	PH-A	08 DEC 89-Q	. –
1	007776-0005-SA	AQUEOUS	NO3-IC-A	09 DEC 89-M	-
	007776-0006-SA	AQUEOUS	SO4-IC-A	09 DEC 89-M	-
	07776-0006-SA	AQUEOUS	ALK-A	08 DEC 89-0	-
7	007776-0006-SA	AQUEOUS	CL-IC-A	09 DEC 89-M	-
. I	007776-0006-SA	AQUEOUS	TDS-A	11 DEC 89-A	11 DEC 89-A
	007776-0006-SA	AQUEOUS	PH-A	08 DEC 89-Q	- '
-	007776-0006-SA	AQUEOUS	NO3-IC-A	09 DEC 89-M	-
1	007776-0007-SA	AQUEOUS	ALK-A	08 DEC 89-Q	-
. 1	007776-0007-SA	AQUEOUS	NO3-IC-A	09 DEC 89-M	-
	007776-0007-SA	AQUEOUS	CL-IC-A	09 DEC 89-M	-
7	007776-0007-SA	AQUEOUS	SO4-IC-A	09 DEC 89-M	.=
1	007776-0007-SA	AQUEOUS	F-A	13 DEC 89-A	-
	007776-0007-SA	AQUEOUS	TDS-A	11 DEC 89-A	11 DEC 89-A
_	007776-0007-SA	AQUEOUS	PH-A	08 DEC 89-Q	-
7	007776-0008-SA	AQUEOUS	ALK-A	08 DEC 89-Q	-
	007776-0008-SA	AQUEOUS	NO3-IC-A	09 DEC 89-M	-
	007776-0008-SA	AQUEOUS	CL-IC-A	09 DEC 89-M	• •
-	007776-0008-SA	AQUEOUS	SO4-IC-A	09 DEC 89-M	· •
J	007776-0008-SA	AQUEOUS	F-A	13 DEC 89-A	-
2	007776-0008-SA	AQUEOUS	TDS-A	11 DEC 89-A	11 DEC 89-A
	007776-0008-SA	AQUEOUS	PH-A	08 DEC 89-0	• • • •
-					

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

	Analyte		Conce Spiked	ntration DCS1	Measured	AVG	Acc Aver DCS	uracy age(%) Limits	Precis (RPD) DCS Li)
	Category: ALK-A Matrix: AQUEOUS QC Lot: 08 DEC 89-Q Concentration Units:	mg/L								
]	Alkalinity, Total as CaCO3 at pH 4.5		· 184	184	185	184	100	90-110	0.5	10
	Category: NO3-IC-A Matrix: AQUEOUS QC Lot: O9 DEC 89-M Concentration Units:	mg/L	•							·
-	Nitrate as N		20	19.6	18.7	19.2	96	91-109	4.7	20
	Category: CL-IC-A Matrix: AQUEOUS IC Lot: 09 DEC 89-M Concentration Units: Chloride	mg/L	100	102	97.3	99.6	100	92-108	4.7	20
	Category: SO4-IC-A Matrix: AQUEOUS QC Lot: O9 DEC 89-M Concentration Units:	mg/L								
L	Sulfate Category: F-A		200	202	195	198	99	93-107	3.5	20
	Matrix: AQUEOUS QC Lot: 13 DEC 89-A Concentration Units:	mg/L							• .	·
]	Fluoride		6.7	6.71	6.80	6.76	101	88-112	1.3	15

......

Calculations are performed before rounding to avoid round-off errors in calculated results.

H)

OUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation (cont.)

1

	Analyte		Conc Spiked	entration DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Precis (RPD) DCS Li) .	
na hered	Category: TDS-A Matrix: AQUEOUS QC Lot: 11 DEC 89-A Concentration Units:	mg/L									
	Total Dissolved Solids		1140	1080	1120	1100	96	90-110	3.6	10	
]	Category: PH-A Matrix: AQUEOUS QC Lot: 08 DEC 89-Q			·						•.	
]	Concentration Units:	units	9.1	9.07	9.08	9.08	100	98-102	0.1	5	
٦											

METHOD BLANK REPORT Wet Chemistry Analysis and Preparation

"]

7

7

1

	Analyte	Res	ult	Units	Reporting Limit	
	Test: TDS-BAL-A Matrix: AQUEOUS QC Lot: 11 DEC 89-A	QC Run:	11 DEC 89-A			
) -1	Total Dissolved Solids			ND	mg/L	10
]	Test: TDS-BAL-A Matrix: AQUEOUS QC Lot: 11 DEC 89-A Total Dissolved Solids	QC Run:	11 DEC 89-A	ND	mg/L	10
	Test: TDS-BAL-A Matrix: AQUEOUS QC Lot: 11 DEC 89-A	QC Run:	11 DEC 89-A			· .
	otal Dissolved Solids			ND	mg/L	10

Rocky Mountain Analytical Laboratory

TRECEIVED JAN 1 6 1990

Enseco

ANALYTICAL RESULTS

FOR

ENRON

ENSECO-RMAL NO. 007827

JANUARY 11, 1990

Reviewed by:

Cindy Angum Cindy Ingram Cindy Ingram Cindy Ingram Jeanne B. Howbert

> Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Introduction

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

™Enseco

- o Sample Description Information
- o Analytical Test Requests
- o Analytical Results
- o Quality Control Report

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

Enseco

SAMPLE DESCRIPTION INFORMATION for Enron

Lab ID	Client ID	Matrix	Sampled Date Ti	Received ime Date
	TRIP BLANK THHS-1 THRU -7 WND-1 THRU -7	AQUEOUS AQUEOUS AQUEOUS	12 DEC 89 10	13 DEC 89 D:33 13 DEC 89 L:17 13 DEC 89

ANALYTICAL TEST REQUESTS for Enron

Lab ID: 007827	Group Code	Analysis Description	Custom Test?
0001	· A	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N 1
0002 - 0003	Β.	Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS Priority Pollutant Organochlorine Pesticides/PCBs Prep - Organochlorine Pesticides/PCBs by GC ICP Metals (Total) Prep - Total Metals, ICP Arsenic, Furnace AA (Total) Prep - Total Metals, Furnace AA Alkalinity, Total/Carbonate/Bicarbonate/Hydroxide Chloride, Ion Chromatography Total Dissolved Solids (TDS) pH Nitrate, Ion Chromatography Lead, Furnace AA (Total) Selenium, Furnace AA (Total) Mercury, Cold Vapor AA (Total) Prep - Mercury, Cold Vapor AA (Total)	

`,''

Analytical Results

j

The analytical results for this project are presented in the following data tables. Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Enseco

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.3, April, 1989.

The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is provided subsequently.

Enseco

Priority Pollutant Volatile Organics

Method 624

·- · •

Lab ID: Matrix:	Enron TRIP BLANK 007827-0001-SA AQUEOUS 13 DEC 89	Enseco ID: Sampled: Prepared:	1062658 Unknown 14 DEC 89		Received: 13 Analyzed: 20	
Parameter			Result	Units	Reporting Limit	
Trichloroeth Chlorodibrom 1,1,2-Trichl Benzene cis-1,3-Dich 2-Chloroethy Bromoform	de loride ethene ethane ethene ns) ethane oroethane chloride omethane propane chloropropene ene omethane loropropene l vinyl ether achloroethane thene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$	
Toluene-d8 4-Bromofluor 1,2-Dichloro			103 99.8 95.8	% % %		

ND = Not detected NA = Not applicable

1

2

Reported By: Shawn Kassner

proved by. Derit

Enseco

Priority Pollutant Volatile Organics

Method 624

÷.,,

i	Client Name: Enron Client ID: THHS-1 THRU -7 Lab ID: 007827-0002-SA Matrix: AQUEOUS Authorized: 13 DEC 89	Enseco ID: 1062660 Sampled: 12 DEC 89 Prepared: 14 DEC 89		Received: 13 DEC 89 Analyzed: 21 DEC 89
L	Parameter	Result	Units	Reporting Limit
	Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1.1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{bmatrix} 10 \\ 10 \\ 10 \\ 5.0 \\ $
1	Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4	102 103 97.8	er er % %	· ·· · · · · · · · · · · · · · · · · ·

ND = Not detected NA = Not applicable

Reported By: Michael Blades

Enseco

Priority Pollutant Volatile Organics

Method 624

-	Client Name: Enron Client ID: WND-1 THRU -7 Lab ID: 007827-0003-SA Matrix: AQUEOUS Authorized: 13 DEC 89	Enseco ID: 1062661 Sampled: 12 DEC 89 Prepared: 14 DEC 89		Received: 13 DEC 89 Analyzed: 21 DEC 89
a .	Parameter	Result	Units	Reporting Limit
	Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform i,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$
ы В	Toluene Chlorobenzene Ethylbenzene	ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0
	Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4	103 101 101	% % %	

ND = Not detected NA = Not applicable

-

]

Reported By: Michael Blades

Approved By: Jeff Lowry

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

1	Client Name: Enron Client ID: THHS-1 THRU -7 Lab ID: 007827-0002-SA Matrix: AQUEOUS Authorized: 13 DEC 89	Enseco ID: 1062660 Sampled: 12 DEC 89 Prepared: 15 DEC 89		eceived: 13 DEC 8 nalyzed: 04 JAN 9	
	Parameter	Result	Units	Reporting Limit	
	alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1	· ·
	Dibutyl chlorendate	97.0	%		

ND = Not detected NA = Not applicable

J

Reported By: Jim Rasmussen

Approved By: Barbara Sullivan

Enseco

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Enron Client ID: WND-1 THRU -7 Lab ID: 007827-0003-SA Matrix: AQUEOUS Authorized: 13 DEC 89	Enseco ID: 1062661 Sampled: 12 DEC 89 Prepared: 15 DEC 89		Received: 13 DEC Analyzed: 04 JAN	
Parameter	Result	Units	Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.50\\ 0$.)
Dibutyl chlorendate	99 , 0	%		

ND = Not detected NA = Not applicable

Reported By: Jim Rasmussen

Approved By: Barbara Sullivan

🔁 Enseco

Metals

Total Metals

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron THHS-1 THRU -7 007827-0002-SA AQUEOUS 13 DEC 89	Sampl	ID: 1062660 ed: 12 DEC 8 ed: See Belo	9 Recei w Analy	ved: 13 DEC 89 zed: See Below
	Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
	Arsenic Boron Calcium Iron Lead	ND 0.05 72 0.8 ND	mg/L mg/L mg/L mg/L mg/L	0.005 0.02 0.2 0.1 0.005	206.2 200.7 200.7 200.7 200.7 239.2	22 DEC 89 27 DEC 89 29 DEC 89 05 JAN 90 29 DEC 89 05 JAN 90 29 DEC 89 05 JAN 90 29 DEC 89 05 JAN 90 22 DEC 89 27 DEC 89
	Magnesium Manganese Mercury	19 9,02 ND	mg/L mg/L mg/L	0.2 0.01 0.0002	200.7 200.7 245.1	29 DEC 89 05 JAN 90 29 DEC 89 05 JAN 90 21 DEC 89 22 DEC 89
	Potassium Selenium Sodium Thallium	ND ND 16 ND	mg/L mg/L mg/L mg/L	5 0.005 5 0.005	200.7 270.2 200.7 279.2	29 DEC 89 05 JAN 90 22 DEC 89 02 JAN 90 29 DEC 89 05 JAN 90 22 DEC 89 29 DEC 89
]			-			· · · ·

ND = Not detected NA = Not applicable

]

Ĵ

]

J

]

]

Reported By: Dave Roberts

Approved By: Tammy Bailey

Metals

•

Total Metals

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron WND-1 THRU -7 007827-0003-SA AQUEOUS 13 DEC 89	Enseco ID Sampled Prepared	: 1062661 : 12 DEC 8 : See Belo		ed: 13 DEC 8 ed: See Belo	
i	Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
	Arsenic Boron Calcium Iron Lead Magnesium Manganese Mercury Potassium Selenium Solium Thallium	ND 0.16 0.7 0.3 ND ND ND ND ND ND ND 124 ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.005 0.02 0.2 0.1 0.005 0.2 0.01 0.0002 5 0.005 5 0.005	206.2 200.7 200.7 200.7 239.2 200.7 200.7 245.1 200.7 270.2 200.7 279.2	29 DEC 89 29 DEC 89 29 DEC 89 22 DEC 89 29 DEC 89 29 DEC 89 29 DEC 89 21 DEC 89 29 DEC 89 22 DEC 89 29 DEC 89 29 DEC 89	05 JAN 90 27 DEC 89 05 JAN 90 05 JAN 90 22 DEC 89 05 JAN 90 02 JAN 90
r i							

ND = Not detected NA = Not applicable

**• _____

ام ز

]

]

]

]

1

1

Reported By: Dave Roberts

Approved By: Tammy Bailey

General Inorganics

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron THHS-1 THRU -7 007827-0002-SA AQUEOUS 13 DEC 89	Sampl	ID: 1062660 ed: 12 DEC 8 ed: See Belo		ved: 13 DEC 8 zed; See Belo		
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date	
Alkalinity, 1 CaCO3 at Alkalinity, (pH 4.5 206	mg/L	5	310.1	NA	18 DEC 89	
CaCO3 at Chloride	pH 8.3 ND 14	mg/L mg/L	53	310.1 300.0	NA NA	18 DEC 89 14 DEC 89	
Nitrate as N pH Total Dissolv	0.7 7.8 ved	mg/L units	0.1	300.0 150.1	NA NA	14 DEC 89 18 DEC 89	• .
Solids	320	mg/L	10	160.1	NA	18 DEC 89	

ND = Not detected NA = Not applicable

]

1

Reported By: Pam Rosas

General Inorganics

•	Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron WND-1 TI 007827-0 AQUEOUS 13 DEC 4	0003-SA	Enseco ID Sampled Prepared	: 1062661 : 12 DEC 8 : See Belo	9 Rece w Anal	eived: 13 DEC 8 yzed: See Belo	9 W
	Parameter	· I	Result	Units	Reporting Limit	Analytica) Method	Prepared Date	Analyzed Date
	Alkalinity, CaCO3 at Alkalinity,	pH 4.5	as 190	mg/L	5	310.1	NA	18 DEC 89
	CaCO3 at Chloride Nitrate as N	pH 8.3	20 4 ND	mg/L mg/L mg/L	5 3 0.1	310.1 300.0 300.0	NA NA NA	18 DEC 89 14 DEC 89 14 DEC 89
	pH Total Dissol Solids	ved	8.6 330	units mg/L	 10	150.1 160.1	NA NA	18 DEC 89 18 DEC 89

ND = Not detected NA = Not applicable

ł

]

111.1

]

]

]

Reported By: Pam Rosas

Approved By: Tammy Bailey

•, **:**

Quality Control Results

1

1

1

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

≣#Enseco

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- 2) assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- 4) provide a standard set of reportables which assures the client of the quality of his data.

Enseco

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of Duplicate Control Samples (DCS) at frequent, well-defined intervals. Each DCS is a well-characterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the DCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For each batch of samples analyzed, an additional control measure is taken in the form of a Single Control Sample (SCS). The SCS consists of a control matrix that is spiked with either representative target compounds or surrogate compounds appropriate to the method being used. An SCS is prepared for each sample lot for which the DCS pair are not analyzed.

Accuracy for DCS and SCS is measured by Percent Recovery.

3

I

% Recovery = ______Actual Concentration

Precision for DCS is measured by Relative Percent Difference (RPD).

RPD = (Measured Concentration DCS1 - Measured Concentration DCS2 | X 100 (Measured Concentration DCS1 + Measured Concentration DCS2)/2

100

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, DCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report.

]

1 II

I

Enseco

OC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

.

]	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
1	007827-0001-SA	AQUEOUS	624-A	21 DEC 89-S	20 DEC 89-S
	007827-0002-SA	AQUEOUS	624-A	20 DEC 89-H	20 DEC 89-H
	007827-0003-SA	AQUEOUS	624-A	20 DEC 89-H	20 DEC 89-H

7

7

]

-1

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

	Analyte	·	Conce Spiked	ntration M DCS1	easured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li	
• • • •	Category: 624-A Matrix: AQUEOUS QC Lot: 21 DEC 89-S Concentration Units:	ug/L								
	l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	58.4 48.6 52.5 46.5 53.7	51.7 49.1 52.2 46.9 57.5	55.0 48.8 52.4 46.7 55.6	110 98 105 93 111	61-145 71-120 76-127 76-125 75-130	12 1.0 0.6 0.9 6.8	14 14 11 13 13
	Category: 624-A Matrix: AQUEOUS QC Lot: 20 DEC 89-H Concentration Units:	ug/L								
ی ۲	1,1-Dichloroethene Trichloroethene Benzene Ioluene Chlorobenzene		50 50 50 50 50	56.8 51.3 50.7 46.8 54.3	54.2 48.1 48.2 42.6 49.8	55.5 49.7 49.4 44.7 52.0	111 99 99 89 104	61-145 71-120 76-127 76-125 75-130	4.7 6.4 5.1 9.4 8.6	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

J

Distant St

Contraction of the local division of the loc

1							
1	Analyte		Concent Spiked	ration Measured	Accur SCS	acy(%) Limits	
]	Category: 624-A Matrix: AQUEOUS QC Lot: 21 DEC 89-S QC Concentration Units: ug/L	Run:	20 DEC 89-S				
	1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8		50.0 50.0 50.0	53.2 47.1 52.3	106 94 105	76-114 86-115 88-110	
	Category: 624-A Matrix: AQUEOUS QC Lot: 20 DEC 89-H QC	Run:	20 DEC 89-H				
]	Concentration Units: ug/L		20 DEC 89-11				
]	1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8		50.0 50.0 50.0	49.8 49.3 51.3	100 99 103	76-114 86-115 88-110	

alculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Volatile Organics by GC/MS

7

3	Analuta	Result	Units	Reporting Limit
	Analyte	Result	011103	2 110 1 0
	Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 21 DEC 89-S QC Run: 20 DEC 8	39-S	•	
	Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
	(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0
Ī	trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 10 5.0
	l,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0
Į	Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 20 DEC 89-H QC Run: 20 DEC 8	39-H		
Ĭ,	Chloromethane Bromomethane Vinyl chloride Chloroethane	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
I	Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

]

٦

]

ł

	Analyte	Result	Units	Reporting Limit
Ŋ	Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 20 DEC 89-H QC Run:	20 DEC 89-H		
	1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane	ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0
1	1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane	ND ND ND ND	ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0
	trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	ND ND ND ND	ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0
]	Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform	ND ND ND ND ND	ug/L ug/L ug/L ug/L	5.0 5.0 10 5.0 5.0
	1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0

- 🗄 Enseco

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

]

]

чĘ

•

1

Ĵ

]

Ĵ

]

]

]	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
	007827-0002-SA	AQUEOUS	608-A	04 DEC 89-A	15 DEC 89-A
	007827-0003-SA	AQUEOUS	608-A	04 DEC 89-A	15 DEC 89-A

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

7

Ĩ

I

	Analyte	Con Spiked	centratio DCS1	n Measured DCS2	AVG		curacy age(%) Limits	Preci (RPD DCS L)
	Category: 608-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A Concentration Units: ug/L								
•	gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	0.2 0.2 0.5 0.5 0.5	0.161 0.172 0.146 0.392 0.383 0.416	0.173 0.187 0.158 0.428 0.417 0.461	0.167 0.180 0.152 0.410 0.400 0.438	84 90 76 82 80 88	56-123 40-131 40-120 52-126 56-121 38-127	7.2 8.4 7.9 8.8 8.5 10	15 20 22 18 21 27

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enseco 3 SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC Concentration Accuracy(%) SCS Limits J Analyte Spiked Measured Category: 608-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A Concentration Units: F QC Run: 15 DEC 89-A ug/L 1.00 0.945 94 48-136 Dibutyl chlorendate 10.12 Calculations are performed before rounding to avoid round-off errors in calculated results.] i -----

.

METHOD BLANK REPORT Semivolatile Organics by GC

Į

1

Analyte		Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 04 DEC 89-A	QC Run:	15 DEC 89-A		
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane amma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50$

Enseco

OC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

`,^

Ţ

",

Y

J

]

1

<u>ן</u>

1

1

]

ľ

	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
	007827-0002-SA	AQUEOUS	ICP-AT	29 DEC 89-A	29 DEC 89-A
1	007827-0002-SA 007827-0002-SA	AQUEOUS AQUEOUS	AS-FAA-AT PB-FAA-AT	21 DEC 89-E 21 DEC 89-E	21 DEC 89-E 21 DEC 89-E
Щ	007827-0002-SA	AQUEOUS	SE-FAA-AT	21 DEC 89-E	21 DEC 89-E
	007827-0002-SA 007827-0002-SA	AQUEOUS AQUEOUS	TL-FAA-AT HG-CVAA-AT	21 DEC 89-E 21 DEC 89-B	21 DEC 89-E 21 DEC 89-B
	007827-0003-SA	AQUEOUS	ICP-AT	29 DEC 89-A	29 DEC 89-A
. ,	007827-0003-SA 007827-0003-SA	AQUEOUS AQUEOUS	AS-FAA-AT PB-FAA-AT	21 DEC 89-E 21 DEC 89-E	21 DEC 89-E 21 DEC 89-E
1	007827-0003-SA	AQUEOUS	SE-FAA-AT	21 DEC 89-E	21 DEC 89-E
ji i i	007827-0003-SA 007827-0003-SA	AQUEOUS AQUEOUS	TL-FAA-AT HG-CVAA-AT	21 DEC 89-E 21 DEC 89-B	21 DEC 89-E 21 DEC 89-B

.....

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation

L

		Concentration					Accuracy		sion
Analyte		Spiked	DCS1	Measured DCS2	AVG	Aver DCS	age(%) Limits	(RPD) DCS Li	
Category: ICP-AT Matrix: AQUEOUS QC Lot: 29 DEC 89-A Concentration Units:	mg/L								
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc		$\begin{array}{c} 2.0\\ 0.5\\ 0.5\\ 2.0\\ 0.05\\ 100\\ 0.2\\ 0.5\\ 1.0\\ 0.5\\ 1.0\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 100\\ 0.5\\ 0.5\\ 0.5\\ 100\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0$	1.98 0.47 0.48 1.79 0.049 0.048 96.4 0.19 0.48 0.25 0.97 0.47 49.7 0.49 98.8 0.049 98.8 0.049 92.8 0.47 0.52	1.960.470.491.760.0480.05195.20.190.470.240.990.4748.90.4995.40.04688.00.460.51	1.97 0.47 0.48 1.78 0.048 0.050 95.8 0.19 0.48 0.24 0.98 0.47 49.3 0.49 97.1 0.048 90.4 0.49 0.49	99 94 97 89 95 95 98 94 99 98 98 99 98 97 90 93 103	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	$\begin{array}{c} 1.0\\ 0.0\\ 2.1\\ 1.7\\ 2.1\\ 6.1\\ 1.3\\ 0.0\\ 2.1\\ 4.1\\ 2.0\\ 0.0\\ 5.3\\ 5.3\\ 2.2\\ 1.9\end{array}$	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Category: AS-FAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-E Concentration Units:	mg/L							-	
Arsenic		0.04	0.030	0.033	0.032	79	75-125	9.5	20
Category: PB-FAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-E Concentration Units:	mg/L								
Lead		0.02	0.019	0.019	0.019	95	75-125	0.0	20

Calculations are performed before rounding to avoid round-off errors in calculated results.

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation (cont.)

.

]′

Ľ

1

1

J

				ncentrati				uracy	Precis	
	Analýte		Spiked	DCS1	Measure DCS2	d AVG	Aver DCS	age(%) Limits	(RPD) DCS Li	
	Category: SE-FAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-E Concentration Units: m	ng/L								
	Selenium	- /5/	0.01	0.0096	0.0098	0.0097	97	75-125	2.1	20
Y	Category: TL-FAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-E Concentration Units: m Thallium	ng/L	0.05	0.046	0.046	0.046	92	75-125	0.0	20
	Category: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-B Concentration Units: m	ng/L							·	
]	Mercury		0.0010	0.00104	0.00106	0.00105	105	75-125	1.9	20

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Metals Analysis and Preparation

i

The second second second second second second second second second second second second second second second se

Ĵ

ŀ

Reporting Analyte Result Units Limit Test: ICP-AT Matrix: AQUEOUS QC Lot: 29 DEC 89-A QC Run: 29 DEC 89-A Boron ND 0.02 mg/L Calcium ND 0.2 mg/L ND 0.1 Iron mg/L Magnesium ND 0.2 mg/L Manganese ND 0.01 mg/L Potassium ND mg/L 5 Sodium ND 5 mg/L Test: AS-FAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-E QC Run: 21 DEC 89-E Arsenic ND mg/L 0.005 <u>, ></u> Test: PB-FAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-E QC Run: 21 DEC 89-E Lead ND mg/L 0.005 Test: SE-FAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-E QC Run: 21 DEC 89-E Selenium ND 0.005 mg/L Test: TL-FAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-E QC Run: 21 DEC 89-E Thallium ND mg/L 0.005

Enseco

METHOD BLANK REPORT Metals Analysis and Preparation (cont.)

Analyte		Result	Units	Reporting Limit	
Test: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 21 DEC 89-B	QC Run:	21 DEC 89-B			
Mercury		ND	ma/1	0.0002	

ļ

Í,

ľ

I

言言

1

ĺ

Enseco

QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

I

50

ľ

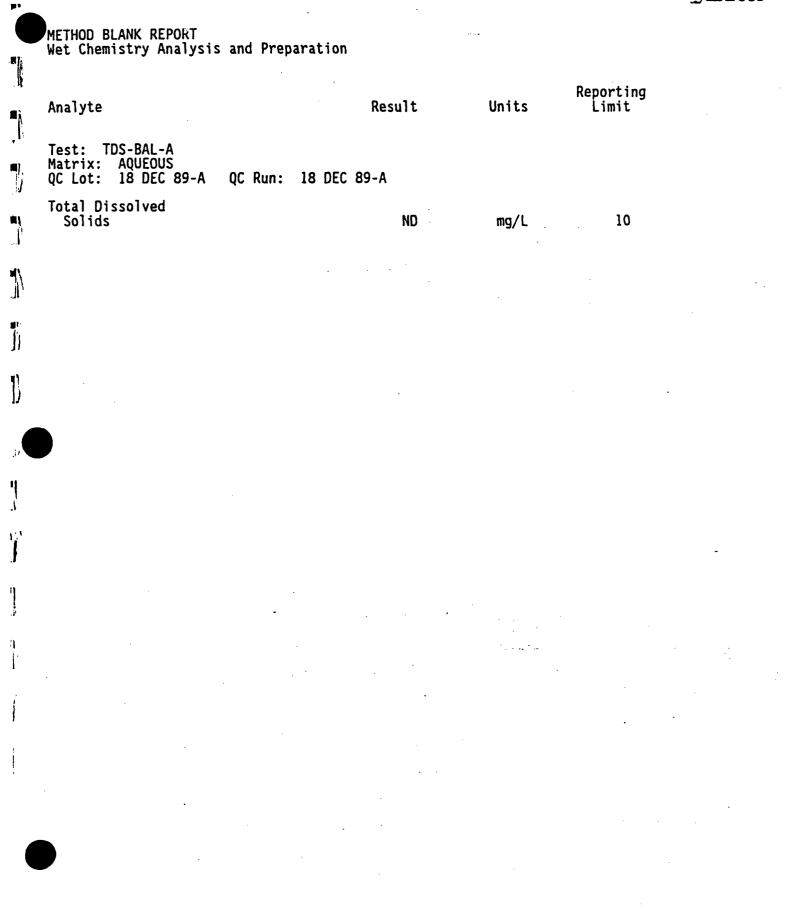
ľ

]

j,

Ì

j,


II.	Wet Chemistry Analysi				
R	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
	007827-0002-SA	AQUEOUS	ALK-A	18 DEC 89-A	-
1	007827-0002-SA 007827-0002-SA	AQUEOUS AQUEOUS	CL-IC-A TDS-A	14 DEC 89-M 18 DEC 89-A	18 DEC 89-A
	007827-0002-SA 007827-0002-SA	AQUEOUS AQUEOUS	PH-A NO3-IC-A	18 DEC 89-A 14 DEC 89-M	-
	007827-0003-SA	AQUEOUS	ALK-A	18 DEC 89-A	-
	007827-0003-SA 007827-0003-SA	AQUEOUS AQUEOUS	CL-IC-A TDS-A	14 DEC 89-M 18 DEC 89-A	- 18 DEC 89-A
N	007827-0003-SA 007827-0003-SA	AQUEOUS AQUEOUS	PH-A NO3-IC-A	18 DEC 89-A 14 DEC 89-M	-
퐥			•		

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

_]			Concentration			Accuracy		Precision		
	Analyte		Spiked		Measured DCS2	AVG		age(%) Limits	(RPD DCS L) .
	Category: ALK-A Matrix: AQUEOUS QC Lot: 18 DEC 89-A Concentration Units:	mg/L								
Ĺ.	Alkalinity, Total as CaCO3 at pH 4.5		180	187	186	186	104	90-110	0.5	10
	Category: CL-IC-A Matrix: AQUEOUS QC Lot: 14 DEC 89-M Concentration Units:	mg/L								• .
	Chloride		100	99.8	102	101	101	92-108	2.2	20
Y=	Category: TDS-A Matrix: AQUEOUS QC Lot: 18 DEC 89-A ioncentration Units:	mg/L								
	Total Dissolved Solids		1210	1170	1150	1160	96	90-110	1.7	10
r' -	Category: PH-A Matrix: AQUEOUS QC Lot: 18 DEC 89-A Concentration Units:	units							-	
-	рH		9.1	9.05	9.08	9.06	100	98-102	0.3	5
• •	Category: NO3-IC-A Matrix: AQUEOUS QC Lot: 14 DEC 89-M Concentration Units:	mg/L	· · ·							
i. I	Nitrate as N		20	19.2	19.6	19.4	97	91-109	2.1	-20

Calculations are performed before rounding to avoid round-off errors in calculated results.

- 📴 Enseco

14

Rocky Mountain Analytical Laboratory Enseco Incorporated

RECEIVED FEB 2 1 1990

ANALYTICAL RESULTS

FOR

ENRON

ENSECO-RMAL NO. 008151

FEBRUARY 13, 1990

Reviewed by:

Cindy

Cindy Ingram

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611

Facsimile: 303/431-7171

Introduction

1

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- o Sample Description Information
- o Analytical Test Requests
- o Analytical Results
- o Quality Control Report

Consistent with directives in the CLP protocol in SW-846 and other EPA methods, all GC/MS analyses were performed so that the maximum concentration of sample was analyzed. Some samples required dilutions to avoid saturation of the detector, to achieve linearity for a specific target compound or to reduce matrix interferences. As stated in Section 7.5.4 of Method 8270, 7.4.1.16 of Method 8240 and Exhibit E of the CLP protocol these dilutions <u>must</u> be performed. The reporting limits for these samples are therefore proportionate to the dilution required. Surrogate compounds may not be measurable in samples which have been diluted.

The Methods 8240 and 8270 analyses for sample 008151-0001 were analyzed at dilutions due to target compounds for the volatiles and non-target compounds for the semivolatiles.

The pesticide analysis for sample 008151-0003 was performed at a dilution due to the Aroclor 1221 concentration.

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number. Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

LINSECO

Analytical Test Requests

ģ

<u>'</u>j

j

]

1

4

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

			·· · •					
SAMPLE DESCRIPTION INFORMATION for Enron								
Lab ID	Client ID		Matrix	Sampled Date Time	Received Date			
008151-0001-SA 008151-0002-SA 008151-0003-SA	5-2A-1,2,3,4,5 5-4B-1,2 5-6B-1,2		AQUEOUS AQUEOUS AQUEOUS	26 JAN 90 14:49 26 JAN 90 15:39 26 JAN 90 13:10	5 27 JAN 90 5 27 JAN 90 3 27 JAN 90			
			• •					

.

: . |

ANALYTICAL TEST REQUESTS for Enron

"1 _1

1

1

L |

24

١.

Lab ID: 008151	Group Code	Analysis Description	Custom Test?
0001	A	Priority Pollutant Organochlorine Pesticides/PCBs Prep - Organochlorine Pesticides/PCBs by GC Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS Priority Pollutant Semivolatile Organics Prep - Semivolatile Organics by GC/MS Alkalinity, Total/Carbonate/Bicarbonate/Hydroxide Nitrate, Ion Chromatography pH	N N N N Y Y N N
0002 - 0003	В	Priority Pollutant Organochlorine Pesticides/PCBs Prep - Organochlorine Pesticides/PCBs by GC Priority Pollutant Volatile Organics Prep-Volatile Organics by GC/MS	N N N

Analytical Results

1

. 1

The analytical results for this project are presented in the following data tables. Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

inseco

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL is no longer routinely blank-correcting analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision.3.3, April, 1989.

The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is provided subsequently.

Priority Pollutant Volatile Organics

....

Enseco

Method 624

Client Name: Client ID: Lab ID: Matrix: Authorized:	5-2A-1,2,3,4,5 008151-0001-SA	Enseco ID: 1065318 Sampled: 26 JAN 9 Prepared: 31 JAN 9	90 90	Received: 27 Analyzed: 01	
Parameter		Result	Units	Reporting Limit	
Trichloroeth Chlorodibrom 1,1,2-Trichl Benzene cis-1,3-Dich 2-Chloroethy Bromoform	de loride ethene ethane ethene ns) ethane oroethane chloride omethane propane chloropropene ene omethane loropropene l vinyl ether achloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	30 30 30 15 15 15 15 15 15 15 15 15 15 15 15 15	
Toluene-d8 4-Bromofluor 1,2-Dichloro		97.4 97.0 96.4	% % %		

ND = Not detected NA = Not applicable

]

]

Ĵ

]

Approved By: Jeff Lowry

Reported By: Shawn Kassner

Priority Pollutant Volatile Organics

. . . .

Method 624

1	Client Name: Enron Client ID: 5-4B-1 Lab ID: 008151 Matrix: AQUEOU Authorized: 27 JAN	-0002-SA Enseco S Samp	ID: 1065319 led: 26 JAN 90 red: 31 JAN 90		Received: 27 Analyzed: 02	
3	Parameter		Result	Units	Reporting Limit	
	Chloromethane		ND ND	ug/L	10 10	
	Bromomethane Vinyl chloride Chloroethane Methylene chloride	•	ND ND 9.5	ug/L ug/L ug/L ug/L	10 10 5.0	
	1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene		ND ND	ug/L ug/L	5.0 5.0	
	(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroetha Carbon tetrachlorid		ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0	
	Bromodichloromethan 1,2-Dichloropropane trans-1,3-Dichlorop	e	ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0	
P	Trichloroethene Chlorodibromomethan 1,1,2-Trichloroetha Benzene	e	ND ND ND 21	ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0	
]	cis-1,3-Dichloropro 2-Chloroethyl vinyl Bromoform	ether	ND ND ND	ug/L ug/L ug/L	5.0 10 5.0	
	1,1,2,2-Tetrachloro Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	etnane	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0	
	Toluene-d8 4-Bromofluorobenzen		102 104	%	••	
]	1,2-Dichloroethane-	d4	99.2	%		

ND = Not detected NA = Not applicable

]

Reported By: Deneen Miller

Priority Pollutant Volatile Organics

Enseco

Method 624

Client Name: Enron Client ID: 5-6B-1,2			,	
Lab ID: 008151-0003-SA Matrix: AQUEOUS Authorized: 27 JAN 90	Enseco ID: 1065320 Sampled: 26 JAN 90 Prepared: 31 JAN 90		Received: 27 JAN 9 Analyzed: 02 FEB 9	
Parameter	Result	Units	Reporting Limit	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0	
(cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4	104 103 105	% % %		

ND = Not detected NA = Not applicable

[]

]

J

]

L

Reported By: Deneen Miller

Priority Pollutant Semivolatile Organics

Enseco

Method 625

Client Name: Enron Client ID: 5-2A-1,2,3,4,5 Lab ID: 008151-0001-SA Matrix: AQUEOUS Authorized: 27 JAN 90	Enseco ID: 1065318 Sampled: 26 JAN 90 Prepared: 01 FEB 90		Received: 27 JAN 90 Analyzed: 08 FEB 90 Reporting
Parameter	Result	Units	Limit
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene bis(2-Chloroisopropyl)- ether	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	26 26 26 26 26 26 26 26
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	26 26 26 26 26 26 26 26
bis(2-Chloroethoxy)- methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	26 26 26 26 26 26 26
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Dimethyl phthalate Acenaphthylene Acenaphthene 2,4-Dinitrophenol	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 26 26 26 26 26 130
4-Nitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene	ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	130 26 26 26 26 26 26
4,6-Dinitro- 2-methylphenol 1,2-Diphenylhydrazine N-Nitrosodiphenylamine	ND ND	ug/L ug/L ug/L ug/L	130 26 26

(continued on following page)

ND = Not detected NA = Not applicable

1

1

1

]

]

]

]

]

.[

]

[]

Reported By: Cheryl Jones

Approved By: Jeff Lowry

Priority Pollutant Semivolatile Organics (CONT.)

Method 625

. ...

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2A-1,2,3,4,5 008151-0001-SA AQUEOUS 27 JAN 90	Enseco ID: Sampled: Prepared:	26 JAN 90		Received: 27 Analyzed: 08	
Parameter		F	Result	Units	Reporting Limit]
4-Bromopheny phenyl e Hexachlorober Pentachlorober Phenanthrene Anthracene Di-n-butyl p Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anth bis(2-Ethylho phthalat	ther nzene henol hthalate phthalate obenzidine racene exyl)		ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 26 130 26 26 26 26 26 26 26 26 26 26	
Chrysene Di-n-octyl pl Benzo(b)fluo Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i)	ranthene ranthene ne -cd)pyrene nthracene perylene		ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	> 26 26 26 26 26 26 26 26	
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5 2-Fluorophen 2,4,6-Tribro	enyl 4 ol		77.0 82.0 78.2 21.5 20.8 33.0	°∕° °∕° °∕° °∕° °∕° °∕°		

ND = Not detected NA = Not applicable

٦

(House

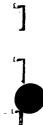
, in the second se

. .

tr

]

Reported By: Cheryl Jones


Priority Pollutant Organochlorine Pesticides/PCBs

Enseco

Method 608

Client Name: Enron Client ID: 5-2A-1,2,3,4,5 Lab ID: 008151-0001-SA Matrix: AQUEOUS Authorized: 27 JAN 90	Enseco ID: 1065318 Sampled: 26 JAN 90 Prepared: 29 JAN 90	
Parameter	Result	Reporting Units Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan sulfate 4,4'-DDT Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L 0.050 ug/L 0.050 ug/L 0.050 ug/L 0.050 ug/L 0.050 ug/L 0.050 ug/L 0.050 ug/L 0.050 ug/L 0.050 ug/L 0.10 ug/L 0.50 ug/L 1.0
Dibutyl chlorendate	87.0	%

ND = Not detected NA = Not applicable

Lange Lange

Ί

]

]

ĺ

J

1

<u>ار</u>

]

Reported By: Ann Steyert

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

Client Name: Enron Client ID: 5-4B-1,2 Lab ID: 008151-0002-SA Matrix: AQUEOUS Authorized: 27 JAN 90	Enseco ID: 1065319 Sampled: 26 JAN 90 Prepared: 29 JAN 90		ed: 27 JAN 90 ed: 05 FEB 90
Parameter	Result		orting imit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Ioxaphene Aroclor 1016 Aroclor 1221 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.50 0.50 0.50 0.50 0.50 1.0
Dibutyl chlorendate	94.1	%	

ND = Not detected NA = Not applicable

J

]

1

Reported By: Ann Steyert

Priority Pollutant Organochlorine Pesticides/PCBs

Method 608

· .-

9

	Client Name: Enron Client ID: 5-6B-1,2 Lab ID: 008151-0003-SA Matrix: AQUEOUS Authorized: 27 JAN 90	Enseco ID: 1065320 Sampled: 26 JAN 90 Prepared: 29 JAN 90		Received: 27 JAN Analyzed: 05 FEB	
4	Parameter	Result	Units	Reporting Limit	
_1	alpha-BHC	ND	ug/L	2.0	
4	beta-BHC delta-BHC	ND ND	ug/L ug/L	2.0 2.0	
	gamma-BHC (Lindane) Heptachlor	ND ND	ug/L ug/L	2.0 2.0	
'1	Aldrin Heptachlor epoxide Endosulfan I	ND ND ND	ug/L ug/L	2.0 2.0 2.0	
1	Dieldrin 4,4'-DDE	ND ND	ug/L ug/L ug/L	4.0 4.0	
	Endrin Endosulfan II	ND ND	ug/L ug/L	4.0 4.0	
1	4,4'-DDD Endosulfan sulfate	ND ND	ug/L ug/L	4.0	
	4,4'-DDT Endrin aldehyde	ND ND	ug/L ug/L	4.0	
	alpha-Chlordane gamma-Chlordane	ND ND	ug/L ug/L	20 20	
. 8	Toxaphene Aroclor 1016	ND ND	ug/L ug/L	40 20	
1	Aroclor 1221 Aroclor 1232	100 ND	ug/L ug/L	20 20	
. 1	Aroclor 1242 Aroclor 1248	ND ND	ug/L	20 20	
-1]	Aroclor 1254 Aroclor 1254 Aroclor 1260	ND ND	ug/L ug/L ug/L	20 40 40	
- · · ·	Dibutyl chlorendate	ND	%		н
2					

Note H : Surrogate not detected because of required sample dilution.

ND = Not detected NA = Not applicable

1

1

Reported By: Ann Steyert

Approved By: Stephanie Boehnke

ND = Not detected NA = Not applicable

]] _

ŧ

ALL LO

area.

L'HE H

Reported By: Mike Settell

Approved By: Kimberly Conroy

Client Name: Client ID: Lab ID: Matrix: Authorized:	Enron 5-2A-1,2,3 008151-000 AQUEOUS 27 JAN 90	I-SA Ensec Sam	o ID: 10653 pled: 26 JAI ared: See Be	190 Rece	ived: 27 JAN 9 yzed: See Belo	
Parameter	Resi	ult Units	Reporti Limit	ng Analytical Method	Prepared Date	Analyzed Date
Alkalinity, CaCO3 at Alkalinity,	pH 4.5 39	9 mg/L	5	310.1	NA	27 JAN 90
CaCO3 at Nitrate as N pH	pH 8.3 NI) mg/L 3.2 mg/L 7.2 units	5 0.1	310.1 300.0 9040	NA NA NA	27 JAN 90 07 FEB 90 27 JAN 90

General Inorganics

Quality Control Results

1000

a second

51.9T

diary.

in the second se

]

-]

-1

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

Enseco

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- provide a standard set of reportables which assures the client of the quality of his data.

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

]

ľ

Ĩ

Ĵ

]

]

]

]

1

1

Laboratory Sample Numbe	er	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
008151-0001-	-SA	AQUEOUS	624-A	02 JAN 90-F	01 FEB 90-F
008151-0002-		AQUEOUS	624-A	01 FEB 90-B	02 FEB 90-B
008151-0003-		AQUEOUS	624-A	01 FEB 90-B	02 FEB 90-B

. 1

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, DCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report.

Sum inter

أعتيما

and a second

-

Ĵ

inseco

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of Duplicate Control Samples (DCS) at frequent, well-defined intervals. Each DCS is a well-characterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the DCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For each batch of samples analyzed, an additional control measure is taken in the form of a Single Control Sample (SCS). The SCS consists of a control matrix that is spiked with either representative target compounds or surrogate compounds appropriate to the method being used. An SCS is prepared for each sample lot for which the DCS pair are not analyzed.

X

100

Accuracy for DCS and SCS is measured by Percent Recovery.

% Recovery = ______Actual Concentration

Ĩ

J

J

Ĩ

Ĩ

Ĵ

]

]

-7

Precision for DCS is measured by Relative Percent Difference (RPD).

RPD = (Measured Concentration DCS1 - Measured Concentration DCS2 | (Measured Concentration DCS1 + Measured Concentration DCS2)/2 X 100 All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, DCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report.

Enseco

Harris

Ĵ

I

Į.

J

4

, and the second s

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

đ

. ig

.

1

3

.

•

- _**L**I

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
008151-0001-SA	AQUEOUS	624-A	02 JAN 90-F	01 FEB 90-F
008151-0002-SA	AQUEOUS	624-A	01 FEB 90-B	02 FEB 90-B
008151-0003-SA	AQUEOUS	624-A	01 FEB 90-B	02 FEB 90-B

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	C Spiked	oncentratio DCS1	on Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li	
Category: 624-A Matrix: AQUEOUS QC Lot: 02 JAN 90-F Concentration Units: ug/	/L							
l,l-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50	50.5 56.8 49.1	49.2 52.8 57.9 50.2 51.8	49.6 51.6 57.4 49.6 52.0	99 103 115 99 104	61-145 71-120 76-127 76-125 75-130	1.6 4.5 1.9 2.2 0.8	14 14 11 13 13
Category: 624-A Matrix: AQUEOUS QC Lot: 01 FEB 90-B Concentration Units: ug/	/L							
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50	40.9 47.8 45.6	41.9 42.5 52.2 46.0 49.5	42.0 41.7 50.0 45.8 48.9	84 83 100 92 98	61-145 71-120 76-127 76-125 75-130	0.2 3.8 8.8 0.9 2.5	14 14 11 13 13

Calculations are performed before rounding to avoid round-off errors in calculated results.

INGLE CONTROL SAMPLE REPORT olatile Organics by GC/MS 2 Accuracy(%) Concentration Spiked Measured SCS Limits Analyte Category: 624-A Matrix: AQUEOUS QC Lot: 02 JAN 90-F QC Run: 01 FEB 90-F Concentration Units: ug/L 46.3 50.0 93 1,2-Dichloroethane-d4 4-Bromofluorobenzene 50.0 48.1 96 48.9 98 50.0 Toluene-d8 Category: 624-A Matrix: AQUEOUS QC Lot: 01 FEB 90-B QC Run: 02 FEB 90-B

Concentration Units: ug/L 102 76-114 50.0 50.8 1,2-Dichloroethane-d4 100 86-115 4-Bromofluorobenzene 50.0 49.8 Toluene-d8 50.0 50.4 101 88-110

falculations are performed before rounding to avoid round-off errors in calculated results.

Enseco

76-114

86-115

88-110

NETHOD BLANK REPORT Volatile Organics by GC/MS

1	Analyte	lesult	Units	Reporting Limit
	Test: 624-PP-A Matrix: AQUEOUS QC Lot: 02 JAN 90-F QC Run: 01 FEB 90-	·F		
	Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride 1,1-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
il and for the second se	1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
	Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene	ND ND ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
-]	Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 01 FEB 90-B QC Run: 02 FEB 90-	ND	ug/L	5.0
-] -]	Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride l,1-Dichloroethene l,1-Dichloroethane	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 5.0 5.0
-1				

. . .

Enseco

"

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

1

-

-]

-1

-1

Analyte	R	esult		porting Limit
Test: 624-PP-AP Matrix: AQUEOUS QC Lot: 01 FEB 90-B QC	Run: 02 FEB 90-	В		
1,2-Dichloroethene (cis/trans) Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.000000000000000000000000000000000000

OC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

Laboratory Sample Number 008151-0001-SA	QC Matrix AQUEOUS	QC Category 625-A	QC Lot Number (DCS) 31 JAN 90-B	QC Run Number (SCS/BLANK) 01 FEB 90-A

Enseco

]

Harris I.

]

]

UPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

	A		ntration				uracy	Precis	
1	Analyte	Spiked	DCS1	Measured DCS2	AVG	DCS	age(%) Limits	(RPD) DCS Li	
]	Category: 625-A Matrix: AQUEOUS QC Lot: 31 JAN 90-B Concentration Units: ug/L				·				
J	Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-	100 100 50	67.9 69.5 25.5	59.6 62.1 26.2	63.8 65.8 25.8	64 66 52	12- 89 27-123 36- 97	13 11 2.7	42 40 28
]	n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol	50 50 100	44.8 24.7 72.1	40.6 27.0 66.6	42.7 25.8 69.4	85 52 69	41-116 39- 98 23- 97	9.8 8.9 7.9	38 28 42
]	Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol	50 100 50 100	29.4 55.7 32.1 72.6	30.3 50.3 30.8 67.8	29.8 53.0 31.4 70.2	60 53 63 70	46-118 10- 80 24- 96 9-103	3.0 10 4.1 6.8	31 50 38 50
	Pyrene	50	38.3	36.2	37.2	75	26-127	5.6	31

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

11

Analyte	2			Concentra Spiked M	tion leasured	Accur SCS	racy(%) Limits
Categor Matrix: QC Lot: Concent	AQUEOUS	QC Run: ug/L	01 FEB	90-A	·		
2-Fluor Terpher 2-Fluor Phenol	enzene-d5 robiphenyl nyl-d14 rophenol -d5 [ribromophenol			100 100 200 200 200	69.5 67.8 80.0 114 121 124	70 68 80 57 60 62	35-114 43-116 33-141 21-100 10- 94 10-123

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Semivolatile Organics by GC/MS

-]

-1

	Analyte	Result	Units	Reporting Limit
)	Test: 625-PP-A Matrix: AQUEOUS QC Lot: 31 JAN 90-B QC Run:	01 FEB 90-A		
	Phenol bis(2-Chloroethyl) ether		ug/L ug/L	10 10
1	2-Chlorophenol 1,3-Dichlorobenzene	ND ND	ug/L ug/L	10 10
	1,4-Dichlorobenzene	ND	ug/L	10
	1,2-Dichlorobenzene	ND	ug/L	10
1	bis(2-Chloroisopropyl)- ether N-Nitroso-di-	ND	ug/L	10
	n-propylamine	ND	ug/L	10
	Hexachloroethane	ND	ug/L	10
	Nitrobenzene	ND	ug/L	10
	Isophorone	ND	ug/L	10
	2-Nitrophenol	ND	ug/L	10
	2,4-Dimethylphenol	ND	ug/L	10
	bis(2-Chloroethoxy)- methane	ND	ug /1	10
	2,4-Dichlorophenol	ND ND	ug/L ug/L	10 10
	1,2,4-Trichlorobenzene	ND	ug/L ug/L	10
	Naphthalene	ND	ug/L	10
	Hexachlorobutadiene	ND	ug/L	10
	4-Chloro-3-methylphenol	ND ND	ug/L	10
	Hexachlorocyclopentadiene	ND	ug/L	10
	2,4,6-Trichlorophenol	ND	ug/L	10
	2-Chloronaphthalene	ND	ug/L	10
	Dimethyl phthalate	ND ND	ug/L	10
	Acenaphthylene Acenaphthene	ND	ug/L	10 10
	2,4-Dinitrophenol	ND	ug/L ug/L	50
	4-Nitrophenol	ND	ug/L	50
	2,4-Dinitrotoluene	ND	ug/L	10
	2,6-Dinitrotoluene	ND	ug/L	10
	Diethyl phthalate	ND	ug/L	10
	4-Chlorophenyl			
	phenyl ether	ND	ug/L	10
	Fluorene 4,6-Dinitro-	ND	ug/L	10
	2-methylphenol	ND	ua /I	50
	1,2-Diphenylhydrazine	ND	ug/L ug/L	10
	N-Nitrosodiphenylamine	ND	ug/L	10
	4-Bromophenyl		-3/ -	4 -
	phenyl ether	ND	ug/L	10

. . .

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 625-PP-A Matrix: AQUEOUS QC Lot: 31 JAN 90-B QC Run:	01 FEB 90-A		
Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 50 10 10 10 10 10 10 20 10 10
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
008151-0001-SA	AQUEOUS	608-A	15 JAN 90-A	29 JAN 90-A
008151-0002-SA	AQUEOUS	608-A	15 JAN 90-A	29 JAN 90-A
008151-0003-SA	AQUEOUS	608-A	15 JAN 90-A	29 JAN 90-A

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Con Spiked	centratio DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Preci (RPD DCS L)
Category: 608-A Matrix: AQUEOUS QC Lot: 15 JAN 90-A Concentration Units: ug/L gamma-BHC (Lindane) Heptachlor Aldrin	0.2 0.2 0.2	0.160 0.180 0.160	0.159 0.174 0.154	0.160 0.177 0.157	80 89 79	56-123 40-131 40-120	0.6 3.4 3.8	15 20 22
Dieldrin Endrin 4,4'-DDT	0.5 0.5 0.5	0.455 0.456 0.478	0.452 0.453 0.455	0.454 0.454 0.466	91 91 93	52-126 56-121 38-127	0.7 0.7 4.9	18 21 27

.. ...

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 608-A Matrix: AQUEOUS QC Lot: 15 JAN 90-A QC Run: 2 Concentration Units: ug/L	9 JAN 90-A	
Dibutyl chlorendate	1.00 0.844	84 48-136

Calculations are performed before rounding to avoid round-off errors in calculated results.

. ...

METHOD BLANK REPORT Semivolatile Organics by GC Result Analyte Test: 608-PP-A Matrix: AQUEOUS QC Run: 29 JAN 90-A OC Lot: 15 JAN 90-A ND alpha-BHC ND beta-BHC ND delta-BHC gamma-BHC (Lindane) ND ND Heptachlor ND Aldrin ND Heptachlor epoxide Endosulfan I ND ND Dieldrin 4,4'-DDE ND ND Endrin ND Endosulfan II ND 4,4'-DDD Endosulfan sulfate ND ND 4,4'-DDT ND Endrin aldehyde alpha-Chlordane

gamma-Chlordane

Toxaphene

Aroclor 1016

Aroclor 1221

Aroclor 1232

Aroclor 1242

Aroclor 1248 Aroclor 1254

Aroclor 1260

alpha-BHC

delta-BHC

Heptachlor

Aldrin

Dieldrin

beta-BHC

Test: 608-PP-A

0.050 ug/L ug/L 0.050 uğ/L 0.050 0.050 ug/L 0.050 ug/L 0.050 ug/L 0.050 uġ/L 0.050 ug/L 0.10 ug/L 0.10 ug/L ug/L 0.10 ug/L 0.10 ug/L 0.10 ug/L 0.10 ug/L 0.10 0.10 ug/L ug/L 0.50 ND ug/L 0.50 ND ug/L 1.0 ND 0.50 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 0.50 ND ug/L ND ug/L 1.0 1.0 ND ug/L Matrix: AQUEOUS QC Lot: 15 JAN 90-A QC Run: 29 JAN 90-A 0.050 ND ug/L ug/L 0.050 ND 0.050 ND ug/L gamma-BHC (Lindane) ND ug/L 0.050 ND ug/L 0.050 ug/L 0.050 ND 0.050 Heptachlor epoxide Endosulfan I ND ug/L ug/L 0.050 ND ug/L 0.10 ND

Units

Enseco

Reporting

Limit

METHOD BLANK REPORT Semivolatile Organics by GC (cont.)

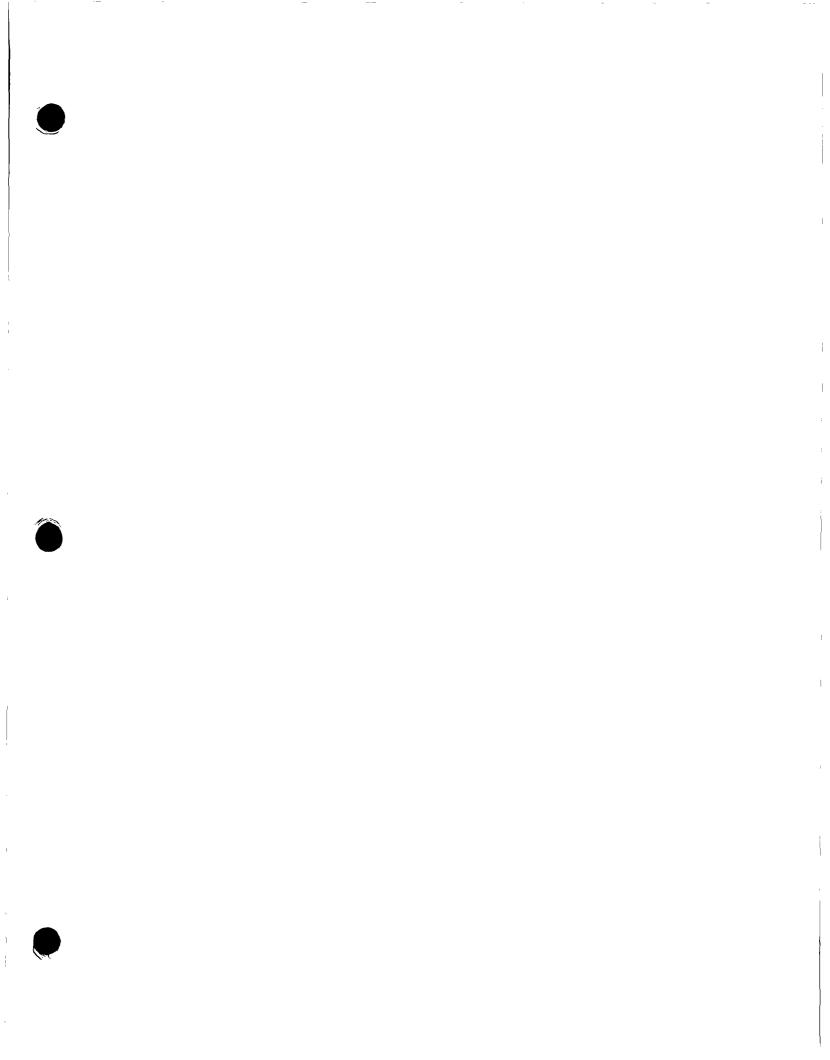
Analyte	Result	Units	Reporting Limit
Test: 608-PP-A Matrix: AQUEOUS QC Lot: 15 JAN 90-A	QC Run: 29 JAN 90-A		
4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\end{array}$

· ...

QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
008151-0001-SA	AOUEOUS	ALK-A	27 JAN 90-A	-
008151-0001-SA	AQUEOUS	NO3-IC-A	07 FEB 90-M	-
008151-0001-SA	AQUEOUS	PH-A	27 JAN 90-A	-

.....



- Enseco

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

Analyte		Conce Spiked	entration DCS1	n Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li)
Category: ALK-A Matrix: AQUEOUS QC Lot: 27 JAN 90-A Concentration Units:	mg/L								
Alkalinity, Total as CaCO3 at pH 4.5		157	157	159	158	101	90-110	1.3	10
Category: NO3-IC-A Matrix: AQUEOUS QC Lot: O7 FEB 90-M Concentration Units:	mg/L	00		10.0	10.0		01 100		
Nitrate as N		20	18.5	19.0	18.8	94	91-109	2.7	20
Category: PH-A Matrix: AQUEOUS QC Lot: 27 JAN 90-A Concentration Units:	units								
рН		9.1	9.09	9.11	9.10	100	98-102	0.2	5

Calculations are performed before rounding to avoid round-off errors in calculated results.

