

GENERAL CORRESPONDENCE

YEAR(S):

GAS PIPELINE GROUP REL (ED

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

May 22, 1991

Ms. Donna Mullins USEPA Region VI 1445 Ross Avenue, Suite 1200 Dallas, Texas 75202

RE: PRELIMINARY DATA ON PERCHED GROUNDWATER FOR LAGUNA STATION 6

Dear Donna:

Enclosed please find the preliminary groundwater data relative to the perched water at Laguna Station 6, as requested by Jeff Robinson. Although this is not an officially required submittal under the consent decree, we are sending copies to Ed Wise at Entrix and Tom McGraw at EID for their information.

In addition, since we will ultimately have to obtain permission from New Mexico OCD for closure of the wells, we are sending a copy of these data to Dave Boyer at the OCD in New Mexico.

As further site information is gathered, or when a final report is complete, we will forward it to you at that time.

In the meantime, should you have any questions, please call me at (713) 853-3219, or Ted Ryther at (713) 853-5634.

Yours very truly,

Junea C. Alexander

James C. Alexander Manager, Special Projects Environmental Affairs

JCA:sb

Enclosure

cc: Tom McGraw, EID Ed Wise, Entrix Dave Boyer, OCD

LAGUNA6

OHL GONSER - ON DIVISION REPORTED

'S1 MAY 23 MM 11 23

May 17, 1991

Mr. Ted Ryther Environmental Affairs E-2575 ENRON Corporation 1400 Smith Street P.O. Box 1188 Houston, TX 77002

Dear Ted:

Per your instructions, enclosed are two copies of draft preliminary data concerning the shallow perched water system at Transwestern Pipeline Co.'s Compressor Station No. 6 in Laguna, New Mexico. We are presently working on the analysis and interprepation of this data and plan to deliver to you a preliminary draft of a report covering the hydrogeology of this shallow system during the first week in June.

If you have any questions concerning the enclosed preliminary data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Del Hannemerter

Dale Hammermeister Manager, Hydrogeological Services Group

dh

Enclosures

CONTENTS OF ENCLOSURE

Data Concerning Shallow Perched Water At Transwestern Pipeline Co. Compressor Station No. 6 Laguna, NM

1.0 MAP SHOWING THE LOCATION OF SHALLOW PERCHED WATER BOREHOLES

2.0 DRILLING AND COMPLETION LOGS (WHERE APPROPRIATE) FOR BOREHOLES

- 2.1 Corehole Logs (6-CH-Series)
- 2.2 Exploratory Well Logs (6-PW-Series)
- 2.3 Monitor Well Logs (6-Series)

3.0 WATER TABLE ELEVATIONS IN SHALLOW PERCHED WATER BOREHOLES

- 3.1 Map of Shallow Perched Water Table Elevations
- 3.2 Corehole Tabular Water Table Elevation Data
- 3.3 Exploratory Well Tabular Water Table Elevation Data
- 3.4 Monitor Well Tabular Water Table Elevation Data

4.0 HYDRAULIC PARAMETER DATA FROM CORE SAMPLES COLLECTED FROM EXPLORATORY WELLS (6-PW-SERIES)

- 4.1 Water Content, Bulk Density, and Porosity Data
- 4.2 Fracture Density Data

5.0 WATER QUALITY DATA FROM SHALLOW PERCHED WATER BOREHOLES

- 5.1 Inorganic Geochemical Signature Data, Phase I (1/90)
- 5.2 Inorganic Geochemical Signature Data, Phase II (3/90)
- 5.3 Inorganic Geochemical Signature Data, Phase III (4/90)
- 5.4 PCB and BTEX Data From Monitor Wells (6-Series)

6.0 RADIO ISOTOPE DATING RESULTS

- 6.1 Summary of Analyses
- 6.2 Raw Laboratory Data

7:0 OTHER DATA POSSIBLY RELATED TO THE SHALLOW PERCHED SYSTEM

- 7.1 Lineament Orientations Near Compressor Station No. 6
- 7.2 Location of Possible Ground Water Discharge Points Along the Rio Gypsum Based on the Presence of Phreatophytes
- 7.3 Water Use Data for Compressor Station No. 6

SECTION 1.0

MAP SHOWING THE LOCATION

OF

SHALLOW PERCHED WATER BOREHOLES

SECTION 2.0

DRILLING AND COMPLETION LOGS (WHERE APPROPRIATE)

FOR BOREHOLES

2.1 Corehole Logs (6-CH-Series)

Transwestern Pipeline

Laguna, NM

Sample Type

89-030L

6-CH1

10/3/91

10/5/91

100 ft

Compressor Station No. 6

Client:

Project No.: Boring No.:

Date Started:

Date Completed:

Total Depth Drilled:

-	

Drilling Contractor: Stewart Brothers Grants, NM Drilling Method: Rotary Coring

PRELIMINARY Subject to revision

Depth Interval Interval (ft) (ft) Recovery (%) **Material Type** Description 0 - 8 Grab Silty Sand Very fine to fine grained, dry 0 - 8 8 - 15 Grab Sandstone Very fine to fine grained, quartz well rounded, lithified, white, no fractures 15 - 25 Rotary Cored Sandstone Same as above except light bluish 15 - 25 grey (5 B 7/1). At 22 ft, dark 100% yellowish orange (10 YR 6/6) 25 - 35 Rotary Cored Sandstone Fine grained, well cemented, 25 - 35 damp, light blue (5 B 7/1), no 100% fractures. At 34.4 to 35 ft, medium grained, moderately cemented, yellow orange (10 YR 6/6) 35 - 45 Rotary Cored Sandstone Same as 25 to 34.4 ft 35 - 45 100% 45 - 55 Rotary Cored Sandstone Same as 25 to 34.4 ft 45 - 55 100% 55 - 60 **Rotary Cored** Sandstone Same as 25 to 34.4 ft 55 - 60 100% 60 - 70 Rotary Cored Sandstone Same as 25 to 34.4 ft 60 - 70 100% 70 - 80 Rotary Cored Sandstone 70 to 72 ft, same as 25 to 34.4 ft; 70 - 80 72 to 80 ft, fine grained, 100% moderately cemented quartz sandstone (5 YR 4/4) to (5 YR 3/4)

Boring No.: 6-CH1 (continued)

Depth Interval	Sample Type Interval (ft)		
(11)	Recovery (%)	Material Type	Description
80 - 90	Rotary Cored 70 - 80 100%	Sandstone	80 to 83 ft, same as above; 83 to 90 ft, color change to light blue gray (5 B 7/1)
90 - 100	Rotary Cored 90 - 100 100%	Sandstone	93.0 to 93.7 ft, medium to coarse grained, wet; rest of core same as above (5 YR 4/4) to (5 YR 3/4)

Client: Project No.: Boring No.: Date Started: Date Completed: Total Depth Drilled:	Transwestern P Compressor Station Laguna, NM 89-030L 6-CH2 10/8/91 10/10/91 100 ft	ipeline Drilling Cont No. 6 Drilling Meth	ractor: Stewart Brothers Grants, NM od: Rotary Coring
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
0 - 10	Grab	Sand	Aeolian, minor silt, damp
10 - 15	Grab	Sandstone	Very fine to fine grained, well sorted, well indurated at 12.5 ft, damp, tan white, no fractures
15 - 20	Rotary Cored 15 - 20 100%	Sandstone	Fine to medium grained, well indurated, damp, dark yellowish orange (10 YR 6/6), no fractures
20 - 30	Rotary Cored 20 - 30 100%	Sandstone	20 to 22 ft, same as above; 22 to 30 ft, very fine grained, indurated, damp, light blue grey (5 B 7/1), no fractures
30 - 40	Rotary Cored 30 - 40 100%	Sandstone	Same as 22 to 30 ft
40 - 50	Rotary Cored 40 - 50 100%	Sandstone	Same as above
50 - 60	Rotary Cored 50 - 60 100%	Sandstone	Very fine grained, well indurated, damp, (5 B 7/1)
60 - 70	Rotary Cored 60 - 70 100%	Sandstone	Same as above
70 - 80	Rotary Cored 70 - 80 100%	Sandstone	70 to 72 ft, same as above; 72 to 80 ft, pale yellowish brown (10 YR 6/2), very fine grained, not as well sorted as above, damp, pale yellowish brown (10 YR 6/2), no fractures

:

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
90 - 100	Rotary Cored 90 - 100 100%	Sandstone	90 to 95.3 ft, same as above; 95.3 to 100 ft, very fine grained, well indurated, damp, light brown to moderate brown (5 YR 5/6) to (5 YR 4/4)

j -

Client:	Transwestern Pipeline Compressor Station No. 6	Drilling Contractor:	Stewart Brothers Grants, NM
	Laguna, NM	Drilling Method:	Rotary Coring
Project No .:	89-030L		
Boring No .:	6-CH3		
Date Started:	10/10/91		
Date Completed:	10/11/91		
Total Depth Drilled:	20 ft		

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
0 - 10	Grab	Sand	Aeolian sand
10 - 15	Grab	Sandstone	Very fine to fine grained sandstone, very pale orange (10 YR 8/2)
15 - 18	Rotary Core	Sandstone	Wet, no fractures
18 - 20	Rotary Core	Sandstone	Same as above

Client:	Transwestern Pipeline Compressor Station No. 6	Drilling Contractor:	Stewart Brothers Grants, NM
	Laguna, NM	Drilling Method:	Rotary Coring
Project No.:	89-030L		
Boring No .:	6-CH4		
Date Started:	10/11/91		
Date Completed:	10/15/91		
Total Depth Drilled:	23 ft		
	Sample Type		

Depth Interval (ft)	Interval (ft) Recovery (%)	Material Type	Description
0 - 10	None	Aeolian	
10 - 20	Rotary Core 10 - 20 90%	Sandstone	Wet, fractured
20 - 23	Rotary Core 20 - 23 84%	Sandstone	Fine grained, indurated, well cemented, quartz, slightly calcareous, fractures

PRELIMINARY Subject to revision

:

Client:	Transwestern Pipeline Compressor Station No. 6	Drilling Contractor:	Stewart Brothers Grants, NM
	Laguna, NM	Drilling Method:	Rotary Coring
Project No.:	89-030L		
Boring No.:	6-CH5		
Date Started:	10/16/91		
Date Completed:	10/17/91		
Total Depth Drilled:	100 ft		

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
0 - 2	Grab	Silty Sand	Red brown
2 - 4	Grab	Sand	Red brown
4 - 7	Grab	Silty Clay	Damp
7 - 8.5	Grab	Silty Sand	Red brown
8.5 - 10	Grab	Sandstone -	Fractured
10 - 20	Rotary Core 10 - 20 86%	Sandstone	Wet at 14 ft, heavily fractured
20 - 28.5	Rotary Core 20 - 28.5 100%	Sandstone	Light grey with limonitic stains, fractured
28.5 - 35	Rotary Core 28.5 - 35 100%	Sandstone	Same as above
35 - 40	Rotary Core 35 - 40 73%	Sandstone	Cross bedded, clayey interbeds, moderate sorting, weak calcite reaction, dry, limonitic stains, minor fractures
40 - 50	Rotary Core 40 - 50 90%	Sandstone	Fractured
50 - 60	Rotary Core 50 - 60 100%	Sandstone	No fractures
60 - 70	Rotary Core 60 - 70 100%	Sandstone	Fine to medium grained, round to subrounded, moderate to well sorted, moderate induration, damp, light grey, fractured

Boring No.: 6-CH5 (continued)

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
70 - 80	Rotary Core 70 - 80 100%	Sandstone	Same as above
80 - 90	Rotary Core 80 – 90 100%	Sandstone	Fine to medium grained, rounded to subangular, moderate to well sorted, clayey matrix, fractured
90 - 100	Rotary Core 90 – 100 100%	Sandstone	Same as above except wet at 93 to 95 ft

PRELIMINARY Subject to revision

,

2.2 Exploratory Well Logs (6-PW-Series)

Client: Project No.: Boring No.: Date Started: Date Completed: Total Depth Drilled:	Transwestern Pipeline Compressor Station N Laguna, NM 89-030L 6-PW1 3/14/91 27.1 ft	e o. 6	Drilling Contra Rig Type: Drilling Method	cto r. I:	Stewart Brothers Grants, NM Chicago Pnumatic 650SS Rotary Coring
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material	Туре	Des	cription
0 - 5	Drive Core 0 - 5 100%	Silty San	d	Fine brov	e grained, no gravel, damp, wn (7.5 YR 4.5/4), no roots
5 - 6	Drive Core 5 - 6 100%	Silty San	d	Fine brov	e grained, caliche, damp, wn
6 - 6.5	Drive Core 6 - 6.5 100%	Sandston	e	Fine wea yelle	e to medium grained, heavily thered, very damp, greyish ow. At 6.3 ft, (5 Y 8/4).
6.5 - 7	Drive Core 6.5 - 7 100%	Sandston	e	Har	d, wet
7 - 14	Rotary Core 7 - 14 100%	Sandston	e	At 7 9.5 1 ft, d	7.1 ft, horizontal fractures*; at ft and below, Fe stained; at 10 kries out; at 14 ft, dry?
14 - 20	Rotary Core 14 - 20 100%	Sandston	9	Diss cont	eminated Fe stained-bed rolled, very damp
20 - 27.1	Rotary Core 20 - 27 80%	Sandstone	e	Slig	ntly damp, no fractures*

PRELIMINARY Subject to revision

*See fracture density chart/plot

.

Client: Project No.: Boring No.: Date Started: Date Completed: Total Depth Drilled:	Transwestern Pi Compressor Station N Laguna, NM 89-030L 6-PW2 3/14/91 19.42 ft	peline Io. 6	Drilling Contra Rig Type: Drilling Method	ctor: Stewart Brothers Grants, NM Chicago Pnumatic 650SS Rotary Coring
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material	Туре	Description
0 - 2	Drive Core 0 - 2 100%	Silty Sand	i	Fine grained, damp, brown, root fragments
2 - 3.5	Drive Core 2 - 3.5 100%	Silty Sand	i	Fine grained, dry, brown
3.5 - 4.8	Drive Core 3.5 - 4.8 100%	Silty Sanc	1	Trace very fine gravels, caliche, damp, brown
4.8 - 5.5	Drive Core 4.8 - 5.5 100%	Sandy Sil	t	Trace caliche, damp, brown
5.5 - 7	Drive Core 5.5 - 7 100%	Silty Sand	1	Fine grained, trace caliche, unconsolidated, slightly damp, reddish brown, trace roots
7 - 12	Rotary Core 7 - 12 50%	Sandstone	•	Fine grained, soft, damp, Fe stained, fractures* at 11.7 ft
12 - 13.55	Rotary Core 12 – 17 100%	At 12.2 stain; at 1 stain	ft, black 3.4 ft, Fe	13.55 - 19.42
13.55 - 19.42		Sandstone		Fine grained, well cemented, stringers of moisture along fractures* and as 1-inch zones in unfractured sandstone, medium grey

*See fracture density graph for 6-PW2

.

	•				
Client: Project No.:	Transwestern F Compressor Station Laguna, NM 89-030L	Pipeline No. 6	Drilling Contr Rig Type: Drilling Metho	actor: od:	Stewart Brothers Grants, NM Chicago Pnumatic 650SS Rotary Coring
Boring No.: Date Started: Data Completed:	6-PW3 3/15/91				
Total Depth Drilled:	20 ft				
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material	Туре	Des	scription
0 - 1	Drive Core 0 - 1 100%	Soil			
1 - 4.3	Drive Core 1 - 4.3 100%	Silty San	đ	Fin bro	e grained, well sorted, damp, wn (7.5 YR 5/4), trace roots
4.3 - 5.3	Drive Core 4.3 - 5.3 100%	Sandy Si	lt	Dar	np, brown (7.5 YR 5/4)
5.3 - 8	Rotary Cored 5.3 - 8 100%	Sandston	e	Fine grey sand	e grained, soft, slightly damp, yish yellow, Fe stain, fractures* 1-filled
8 - 9	Rotary Cored 8 - 9 100%	Sandston	e	Find grey Fe s	e grained, saturated, yellowish v (7 Y 5/2), trace disseminated stained
9 - 9.7	Rotary Cored 9 - 9.7 100%	Sandston	e	Trac ligh	ce limonite residue, Fe stained, t brown (5 YR 5/6)
9.7 - 10.75	Rotary Cored 9.7 - 10.75 100%	Sandstone	9	Wet	
10.75 - 11.2	Rotary Cored 10.75 - 11.2 100%	Sandstone	9		
11.2 - 12.15	Rotary Cored 11.2 - 12.15 100%	Sandstone	•	Wet	
12.15 - 15	Rotary Cored 12.15 - 15 100%	Sandstone	•		
-See tracture dens	ity graph for 6-PW3				

L

L

PRELIMINARY Subject to revision

ļ

Boring No.: 6-PW3 (continued)

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
15 - 20	Rotary Cored 15 - 20 100%	Sandstone	Limonite concretions, saturated, no fractures

Client: Project No.: Boring No.: Date Started: Date Completed: Total Depth Drilled:	Transwestern Pip Compressor Station N Laguna, NM 89-030L 6-PW4 3/15/91 20 ft	peline o.6	Drilling Contrac Rig Type: Drilling Method	tor: Stewart Brothers Grants, NM Chicago Pnumatic 650SS : Rotary Coring
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material	Туре	Description
0 - 4.6	Drive Core 0 - 4.6 100%	Silty San	d	Fine grained, slightly damp to dry, reddish brown (5 YR 4/4), roots
4.6 - 9	Drive Core 4.6 - 9 100%	Silty San	d	Gravely, caliche
9 - 11.75	Drive Core 9 - 11 100% Rotary Core 11 - 11.75 90%	Sandston	e	Fine grained, soft, damp, light grey, heavily weathered
11.75 - 12.3	Rotary Core 11.75 - 12.3 90%	Sandston	e	Purple stained, fractures*
12.3 - 13.2	Rotary Core 12.3 - 13.2 90%	Sandston	e	Fe stained, black stained, heavily fractured*
13.2 - 15	Rotary Core 13.2 - 15 90%	Sandston	e	Wet, disseminated Fe stained, bedding plane fractures
15 - 16.6	Rotary Core 15 - 15.5 90% 15.5 - 16.6 100%	Sandston	e	Damp, Fe stained, fractures*
16.6 - 20	Rotary Core 16.6 - 20 100%	Sandstone	e	

*See fracture density graph for 6-PW4

Client: Project No.: Boring No.: Date Started: Date Completed: Total Depth Drilled:	Transwestern Pig Compressor Station N Laguna, NM 89-030L 6-PW5 3/15/91 20 ft	peline r o. 6 F)rilling Contractor Rig Type:)rilling Method:	r: Stewart Brothers Grants, NM Chicago Pnumatic 650SS Rotary Coring
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material T	`уре D	escription
0 - 2.5	Drive Core 0 - 2.5 100%	Sand	F	ine grained, trace silt, damp, eddish brown, roots
2.5 - 3.5	Drive Core 2.5 - 3.5 100%	Silty Sand	F	ine grained, unconsolidated, oist, reddish brown, roots
3.5 - 5.7	Drive Core 3.5 - 5.7 100%	Sand	F ui bi	ine grained, trace silt, nconsolidated, damp, reddish rown
5.7 - 7.3	Drive Core 5.7 - 7 100% Rotary Core 7 - 7.3 100%	Sandstone	M cc w or Y	ledium to fine grained, poorly onsolidated, friable, heavily eathered, damp, pale yellow range, disseminated Fe stain (10 R 8/6)
7.3 - 8	Rotary Core 7.3 - 8 100%	Sandstone	F	ractures*
8 - 9.5	Rotary Core 8 - 9.5 100%	Sandstone	Lo	ow angle fractures*
9.5 - 9.6	Rotary Core 9.5 - 9.6 100%	Sandstone	V	ery heavily fractured*
9.6 - 10.95	Rotary Core 9.6 - 10.95 100%	Sandstone		

*See fracture density graph for 6-PW5

Boring No.: 6-PW5 (continued)

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
11.1 - 11.15	Rotary Core 11.1 - 11.15 100%	Sandstone	Fractured*
11.15 - 11.65	Rotary Core 11.15 - 11.65 100%	Sandstone	Dry
12.2 - 16.2	Rotary Core 12.2 - 16.2 100%	Sandstone	Fe stained
16.2 - 20	Rotary Core 16.2 - 20 100%	Sandstone	

PRELIMINARY Subject to revision

*See fracture density graph for 6-PW5

,

	•				
Client: Project No.: Boring No.: Date Started: Date Completed: Total Depth Drilled:	Transwestern Pi Compressor Station N Laguna, NM 89-030L 6-PW6 3/16/91 20 ft	peline No. 6	Drilling Contra Rig Type: Drilling Metho	actor: d:	Stewart Brothers Grants, NM Chicago Pnumatic 650SS Rotary Coring
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material	Туре	Des	cription
0 - 2.5	Drive Core 0 - 2.5 100%	Silty San	d	Fin unc	e grained, trace fine gravels, consolidated, damp
2.5 - 3.7	Drive Core 2.5 - 3.7 100%	Sand		Fir unc (10	ne grained, no gravel, onsolidated, brownish yellow YR 6/6), roots
3.7 - 6.7	Drive Core 3.7 - 6.7 100%	Silty San	d	Fin unc	e grained, Trace caliche streaks, onsolidated
6.7 - 7	Drive Core 6.7 - 7 100%	Sandston	e	Me con dan	dium to fine grained, semi- solidated, heavily weathered, np, greyish orange (10 YR 7/4)
7 - 7.4	Rotary Core 7.0 - 14 100%	Sandston	e	Fra	ctures*
8.4 - 8.7	Rotary Core 8.4 – 8.7 100%	Sandston	e	Bed stai	ding plane shale, wet, Fe ned
8.7 - 9.6	Rotary Core 8.7 – 9.6 100%	Sandston	e		
9.6 - 9.7	Rotary Core 9.6 - 9.7 100%	Sandston	e	Wet	
9.7 - 11.8	Rotary Core 9.7 - 11.8 100%	Sandston	e		

*See fracture density graph for 6-PW6

•

.

Boring No.: 6-PW6 (continued)

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
11.8 - 12.2	Rotary Core 11.8 - 12.2 100%	Sandstone	Wet
12.2 - 18	Rotary Core 12.2 - 18 100%	Sandstone	
18 - 20	Rotary Core 18 - 20 100%	Sandstone	Well indurated, grey

PRELIMINARY Subject to revision

*See fracture density graph for 6-PW6

,

,		

Client: Project No.: Boring No.: Date Started: Date Completed: Total Depth Drilled:	Transwestern Pi Compressor Station N Laguna, NM 89-030L 6-PW7 3/26/91 30 ft	ipeline Drilling Cou No.6 Rig Type: Drilling Me	htractor: Stewart Brothers Grants, NM Chicago Pnumatic 650SS shod: Rotary Coring
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
0 - 3	Drive Core 0 - 3 100%	Silty Sand	Fine to very fine grained, trace sandstone gravel, caliche, slightly damp, reddish yellow (7.5 YR 6/6), roots
3 - 7.5	Drive Core 3 - 7.5 100%	Silty Sand	Fine to very fine grained, slightly damp, light reddish yellow
7.5 - 7.8	Drive Core 7.5 - 7.8 100%	Sand	Medium to coarse grained, slightly damp, pale brown (10 YR 6/4)
7.8 - 8	Drive Core 7.8 - 8 100%	Sandstone	Medium to fine grained, heavily fractured, friable, slightly damp, Fe stained, yellowish grey (10 YR 6/5)
8 - 11.3	Rotary Core 8 - 11.3 100%	Sandstone	Moist, yellowish grey to pale yellow orange (5 Y 7/2)
11.3 - 18	Rotary Core 11.3 - 18 100%	Sandstone	Well sorted, well indurated, limonite nodules, saturated, Fe stained, pale yellow orange, fractured*
18 - 22	Rotary Core 18 - 22 100%	Sandstone	Saturated, light grey
22 - 26	Rotary Core 22 - 26 100%	Sandstone	Well indurated, Fe stains

*See fracture density graph for 6-PW7

,

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
26 - 28	Rotary Core 26 - 28 100%	Sandstone	
28 - 30	Rotary Core 28 - 30 100%	Sandstone	Trace dampness, no fractures

Client: Project No.: Boring No.: Date Started: Date Completed: Total Depth Drilled:	Transwestern Pip Compressor Station No Laguna, NM 89-030L 6-PW8 3/26/91 25 ft	oeline o. 6	Drilling Contrac Rig Type: Drilling Method	tor: Stewart Brothers Grants, NM Chicago Pnumatic 650SS Rotary Coring
Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material	Туре	Description
0 - 3.8	Drive Core 0 - 3.8 100%	Silty San	đ	Fine grained, no gravel, unconsolidated, damp, dark brown (7.5 YR 4/2), roots
3.8 - 4	Drive Core 3.8 - 4 100%	Sandston	e	Fine grained, heavily weathered, dark yellow orange (10 YR 6/6)
4 - 5.7	Rotary Core 4 - 5.7 100%	Sandston	e	As above, saturated
5.7 - 7.4	Rotary Core 5.7 - 7.4 100%	Sandston	e	As above, sand-filled fractures*
7.4 - 9.9	Rotary Core 7.4 - 9.9 100%	Sandston	e	As above, Fe stain
9.9 - 11.4	Rotary Core 9.9 - 11.4 100%	Sandston	e	No Fe stain
11.4 - 11.5	Rotary Core 11.4 - 11.5 100%	Sandston	le	Fe stain
11.5 - 11.7	Rotary Core 11.5 - 11.7 100%	Sandston	e	
11.7 - 11.8	Rotary Core 11.7 - 11.8 100%	Sandston	e	Fe stain

*See fracture density graph for 6-PW8

Boring No.: 6-PW8 (continued)

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
11.8 - 12	Rotary Core 11.8 - 12 100%	Sandstone	
12 - 12.2	Rotary Core 12 - 12.2 100%	Sandstone	Fe stain
12.2 - 12.55	Rotary Core 12.2 - 12.55 100%	Sandstone	
12.55 - 18.7	Rotary Core 12.55 - 13 100% 13 - 18.7 50%	Sandstone	Fe stain
18.7 - 25	Rotary Core 18.7 - 20 50% 18.7 - 25 100%	Sandstone	

PRELIMINARY Subject to revision

*See fracture density graph for 6-PW8

.

2.3 Monitor Well Logs (6-Series)

Drilling Contractor: Western Technologies, Inc. Albuquerque, NM Drilling Method:

I.

Client: Transwestern Pipeline Compressor Station No. 6 Laguna, NM Project No.: 89-030L Boring No.: Monitor Well 6-6 Date Started: 4/8/91 Date Completed: Total Depth Drilled: 25 ft

1

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
0 - 2	Shovel 100%	Soil	Moist, brown
2 - 4	Auger	Alluvium	Fine grained, well sorted, some clay, moist, brown
4 - 6	Auger	Alluvium	Fine grained, well sorted, some clay, moist, brown
6 - 8	Auger	Alluvium	Fine grained, well sorted, more clay, more moisture, brown
8 - 9	Auger	Silty Sand	Very fine grained, very well sorted, greyish brown
9 - 11	Auger	Sandstone	Weathered, wet, grey
11 - 15	Tri-Cone	Sandstone	As above
15 - 21	Tri-Cone	Sandstone	Very moist
21 - 23	Tri-Cone	Sandstone	Dry, yellowish
23 - 25	Tri-Cone	Sandstone	Slightly moist

Drilling Contractor: Western Technologies, Inc. Albuquerque, NM

Drilling Method:

Project No.: Boring No .: Date Started: Date Completed: Total Depth Drilled:

Client:

Transwestern Pipeline Compressor Station No. 6 Laguna, NM 89-030L Monitor Well 6-7 4/9/91 23 ft

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
0 - 2	Shovel	Soil	
2 - 4	Auger	Silty Clay	Fine grained, moist, reddish brown
4 - 8.5	Auger	Silty Clay	Fine grained, moist, grey
8.5 - 9	Auger	Silty Clay	As above, weathered
9 - 10	Auger	Silty Clay	As above
10 - 11	Tri-Cone	Sandstone	As above, dry
11 - 13	Tri-Cone	Sandstone	Light buff grey
13 - 16	Tri-Cone	Sandstone	Limonite stringer, soft, yellowish
16 - 17	Tri-Cone	Sandstone	Light buff grey
17 - 23	Tri-Cone	Sandstone	Fine grained, trace moisture, light buff grey

Drilling Contractor: Western Technologies, Inc. Albuquerque, NM Drilling Method:

Client:Transwestern Pipeline
Compressor Station No. 6
Laguna, NMProject No.:89-030LBoring No.:Monitor Well 6-8
3/9/91Date Started:3/9/91Date Completed:23 ft

Depth Interval (ft)	Sample Type Interval (ft) Recovery (%)	Material Type	Description
0 - 2	Shovel	Soil	
2 - 4	Auger	Clayey Silt	Moist, dark reddish brown
4 - 6	Auger	Clayey Silt	Slightly lighter
6 - 7	Auger	Clayey Silt	Weathered, yellowish
7 - 8	Auger	Sandstone	Very fine grained, 1" cobbles, well sorted, damp
8 - 10	Auger	Sandstone	Very fine grained, well sorted, damp
10 - 14	Auger	Sandstone	Grey
14 - 15	Tri-Cone	Sandstone	Sandy bluff, drier
15 - 17	Tri-Cone	Sandstone	Dry
17 - 21	Tri-Cone	Sandstone	Very dry, very fine
21 - 25	Tri-Cone	Sandstone	Very hard

Client <u>El</u>	NRON / TRANSWESTERN 6-PW-1 Location Compressor Station 6	Project No. <u>89030-L</u> Date installed 3-\5-9\
Formation of	Completion 3 b	
DBS&A Pers	onnel <u>C.CULVER</u> Driller _	Stewart bothers
	Well Casing Diameter (inches)	Casing Type edule 40_PVC
	57/8in	Height Above Ground (feet) 2.4
<u></u>	Ground Surface	
Total Depth (feet) 2.5.0	Seal Type Bentonite Seal Length (feet) 2.8	Backfull Length <u>0.0</u> Casing Length (feet) <u>27.4</u> Slot Opening 0.020 in
Comments	Filter Pack Type 10-20 Silico Sand Filter Pack Length (feet) 22.2 PRELIMINARY Subject to revision	Open or Slotted Length (feet) Blank Length (feet)

WELL COMPLETION RECORD DANIEL B. STEPHENS & ASSOCIATES, INC. ENVIRONMENTAL SCIENTISTS AND ENGINEERS ENRON / TRANWESTERN 89-0306 Project No. _ Client_ Location COMPRESSOR Station Well No. 6- PW6 6 _ Date Installed 3-16-91 2^P Formation of Completion _ Stewart Brothers C. Colver Driller _ DBS&A Personnel Well Casing Diameter (inches) Well Casing Type <u>Schedule 40</u> PVC 2.0 Hole Dra. Height Above Ground (feet) 57/8 ┢ 2.5 ⊁ Ground Surface Backfull Length 0.0 Seal Type Bentonite Casing Length (feet) 22.5 Total Depth Seal Length (feet) (feet) ¥ 20.0 3.5 Slot Opening 0.020M. Filter Pack Type 10-20 Silica Open or Slotted Length (feet) Sand 15.0 Filter Pack Length (feet) 16.50 Blank Length 'RELIMINARY (feet) 0.0 bject to revision Comments

SECTION 3.0

WATER TABLE ELEVATIONS IN SHALLOW PERCHED WATER BOREHOLES

3.1 Map of Shallow Perched Water Table

Elevations

3.2 Corehole Tabular Water Table Elevation Data

89-030L ENRO	N						
LAGUNA COMPI	RESSOR STATI	ON #6					
	COREHOLES						
DATE	CH-1	CH-2	CH-3	CH-4	CH-5		
	DEPTH TO	WATER (Fee	t below TOC)				
10/08/00	02.44						
10/00/90	99. 44 93.10						
10/17/90	01 01	48 50	11 14	22 35	DRY		
12/27/90	84 12	40.00		22.00	93.30		
01/23/91	81.76	51.46	11.00	15.91	91.72		
01/28/91	00	•	11.00	16.64	92.42		
01/30/91				16.58	92.44		
02/25/91			11.55	20.47	93.39		
02/28/91	77.40	49.29	11.30	20.29	92.91		
03/04/91	76.94	49.24	11.55	20.16	92.24		
03/26/91	77.62	53.23	15.92	14.91	99.22		
04/02/91			14.90				
04/16/91			15.03				
04/26/91	75.16	52.68	14.95	20.93	99.31		
05/01/91	74.71	52.74	15.19	20.72	98.29		
05/08/91	74.24	52.9	15.22	20.49	97.09		
	**casing ext	ended on all	coreholes by	y			
	2.5 to 3.0	feet in mid-m	narch				
!	STATIC MAA		(Foot above				
	STATIC WA	IEN LEVELO	(Feel above	msŋ	ſ		
10/08/90	5818.58						
10/10/90	5818.92						
10/17/90	5820.11	5864.05	5902.21	5891.46			
12/27/90	5827.90				5820.15		
01/23/91	5830.26	5861.09	5902.35	5897.90	5821.73		
01/28/91			5902.35	5897.17	5821.03		
01/30/91				5897.23	5821.01		
02/25/91			5901.80	5893.34	5820.06		
02/28/91	5834.62	5863.26	5902.05	5893.52	5820.54		
03/04/91	5835.08	5863.31	5901.80	5893.65	5821.21		
03/26/91	5837.48	5862.23	5900.29	5901.84	5816.98		
04/02/91			5901.31		1		
04/16/91			5901.18				
04/26/91	5839.94	5862.78	5901.26	5895.82	5816.89		
05/01/91	5840.39	5862.72	5901.02	5896.03	5817.91		
05/08/91	5840.86	5862.56	5900.99	5896.26	5819.11		

3.3 Exploratory Well Tabular Water Table Elevation Data

89-030L ENRON

LAGUNA COMPRESSOR STATION #6 PERCHED WATER SERIES WELLS DATE 6-PW1 6-PW2 6-PW3 6-PW4 6-PW5 6-PW6 6-PW7 6-PW8 DEPTH TO WATER (Feet below TOC) DRY 19.02 03/15/91 18.68 03/18/91 25.89 11.07 15.17 13.86 13.63 13.80 13.62 03/19/91 25.52 18.46 10.52 15.12 03/20/91 11.06 15.24 13.82 13.64 23.77 17.52 10.96 03/26/91 15.29 13.84 13.56 5.30 11.80 03/27/91 04/02/91 22.34 16.56 11.28 15.54 14.15 13.99 24.34 12.96 12.92 22.72 17.30 20.80 14.21 27.96 04/04/91 15.27 14.11 04/10/91 24.48 10.99 13.62 13.86 26.49 12.72 17.27 14.43 04/16/91 28.75 16.19 11.23 14.62 14.06 14.04 22.10 12.85 22.66 16.12 14.04 20.68 12.83 04/17/91 14.65 13.98 12.86 05/01/91 23.70 16.14 11.31 15.20 14.07 14.22 20.19 05/08/91 21.96 16.13 11.31 15.29 14.11 14.38 17.34 12.90 STATIC WATER LEVEL (Feet above msl) 03/15/91 5903.21 03/18/91 5892.12 5903.55 5914.97 5903.92 5919.98 5911.78 03/19/91 5892.49 5903.77 5915.52 5903.97 5920.04 5911.79 03/20/91 5914.98 5903.85 5920.02 5911.77 03/26/91 5894.24 5904.71 5915.08 5903.80 5920.00 5911.85 03/27/91 5919.14 5927.12 04/02/91 5895.67 5905.67 5919.69 5906.60 5919.46 5914.76 5903.55 5911.42 5905.24 04/04/91 5895.29 5904.93 5903.82 5919.73 5911.20 5902.98 5919.50 04/10/91 5893.53 5904.96 5915.05 5904.66 5920.22 5911.55 5904.45 5919.70 5906.04 04/16/91 5889.26 5914.81 5904.47 5919.78 5911.37 5908.84 5919.57 5919.59 04/17/91 5895.35 5906.11 5904.44 5919.86 5911.37 5910.26 05/01/91 5894.31 5906.09 5914.73 5903.89 5919.77 5911.19 5910.75 5919.56 05/08/91 5896.05 5906.10 5914.73 5903.80 5919.73 5911.03 5913.60 5919.52

3.4 Monitor Well Tabular Water Table Elevation Data

89-030L ENRON LAGUNA COMPRESSOR STATION #6							
MONITOR	WELLS SAMPLED MONTHLY						
DATE	6-6	6-7	6-8				
DEPTH TO WATER (East below TOC)							
	(
04/11/91	11.92	dry	10.70				
04/16/91	12.24	22.38	10.72				
04/17/91	12.25		10.70				
05/01/91	12.47	21.59	10.65				
05/08/91	12.57	18.94	10.65				
STATIC WATER LEVELS (Feet above msi)							
04/11/91	5899.85		5887.61				
04/16/91	5899.53	5879.58	5887.59				
04/17/91	5899.52		5887.61				
05/01/91	5899.30	5880.37	5887.66				
05/08/31	5899.20	5883.02	5887.66				

SECTION 4.0

HYDRAULIC PARAMETER DATA FROM CORE SAMPLES COLLECTED FROM EXPLORATORY WELLS (6-PW-SERIES)

Water Content, Bulk Density, and Porosity Data

4.1

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SUMMARY OF INITIAL MOISTURE CONTENT, DRY BULK DENSITY, AND POROSITY

Well #6-Pw-1

	INITIAL MOISTURE CONTENT		DBY BULK		DEGREE OF
SAMPLE NUMBER	GRAVIMETRIC (%, g/g)	VOLUMETRIC (%, cm ³ /cm ³)	DENSITY (g/cm ³)	POROSITY (%)	SATURATION (%)
5.5-6.0	14.21	25.08	1.76	33.4	75.0
6.5-7.0	10.70	19.02	1.78	32.9	57.8
7.5-8.0*	6.06	10.79	1.78	32.8	32.9
8.5-9.0*	5.19	9.23	1.78	32.8	28.1
9.5-10.0	4.63	10.38	2.24	15.3	67.9
10.5-11.0	4.84	10.64	2.20	17.2	62.0
14.5-15.0	5.02	10.69	2.13	19.6	54.6
15.5-16.0	5.86	11.14	1.90	28.3	39.3
16.5-17.0	5.37	11.52	2.14	19.0	60.6
17.5-18.0	5.90	12.73	2.16	18.6	68.4
18.5-19.0	5.21	11.48	2.0	16.8	68.3
19.5-20.0	4.84	10.93	2.26	14.8	73.7
20.5-21.0	4.96	11.11	2.24	15.4	72.2
21.5-22.0	4.75	10.02	2.11	20.4	49.2
22.5-23.0	4.59	9.98	2.17	18.0	55.5
23.5-24.0	4.04	8.80	2.18	17.8	49.5

PRELIMINARY Subject to revision

* Bulk density from adjacent interval; unable to measure volume.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SUMMARY OF INITIAL MOISTURE CONTENT, DRY BULK DENSITY, AND POROSITY

Well #6-Pw-2

	INITIAL MOISTURE CONTENT				
SAMPLE NUMBER	GRAVIMETRIC (%, g/g)	VOLUMETRIC (%, cm³/cm³)	DENSITY (g/cm ³)	POROSITY (%)	SATURATION (%)
5.5-6.0	10.10	14.97	1.48	44.0	34.0
6.5-7.0	8.79	14.79	1.68	36.5	40.6
9.5-10.0*	9.46	15.92	1.68	36.5	43.6
10.5-11.0*	4.06	6.84	1.68	36.5	18.7
11.5-12.0	4.88	11.22	2.30	13.3	84.2
12.5-13.0	3.14	7.22	2.30	13.3	54.3
13.5-14.0	4.52	10.39	2.30	13.3	78.4
14.5-15.0	1.83	4.48	2.45	7.6	58.7
15.5-16.0	4.36	10.81	2.48	6.4	169.1
16.5-17.0	4.38	9.85	2.25	15.2	65.0

^{*} Bulk density from adjacent interval; unable to measure volume.

DANIEL B. STEPHENS & ASSOCIATES. INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Saturation Vs Depth for 6-PW-2

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SUMMARY OF INITIAL MOISTURE CONTENT, DRY BULK DENSITY, AND POROSITY

Well #6-Pw-3

	INITIAL MOISTURE CONTENT				
SAMPLE NUMBER	GRAVIMETRIC (%, g/g)	VOLUMETRIC (%, cm ³ /cm ³)	DENSITY (g/cm ³)	POROSITY (%)	SATURATION (%)
5.0-5.3*	11.89	26.75	2.25	15.1	56.5
5.5-6.0*	4.87	11.04	2.27	14.5	76.2
6.5-7.0*	3.54	8.02	2.27	14.5	55.3
7.5-8.0	3.16	7.12	2.25	14.9	48.0
9.5-10.0	4.33	9.80	2.26	14.5	67.7
10.5-11.0*	4.15	9.41	2.27	14.5	64.9
11.5-12.0	1.64	3.71	2.26	14.5	25.5
13.5-14.0	5.27	10.95	2.10	21.5	50.9
14.5-15.0	4.34	9.79	2.26	14.9	65.8
15.5-16.0	4.70	10.44	2.22	16.1	64.9
16.5-17.0	5.51	12.29	2.23	15.9	77.6
17.5-18.0	5.58	11.85	2.12	19.9	59.5
18.5-19.0	5.52	11.66	2.11	20.2	57.7
19.5-20.0	5.21	11.38	2.18	17.6	64.7

^{*} Bulk density from adjacent interval; unable to measure volume.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Saturation Vs Depth for 6-PW-3

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SUMMARY OF INITIAL MOISTURE CONTENT, DRY BULK DENSITY, AND POROSITY

Well #6-Pw-4

	INITIAL MOISTURE CONTENT				
SAMPLE NUMBER	GRAVIMETRIC (%, g/g)	VOLUMETRIC (%, cm³/cm³)	DENSITY (g/cm ³)	POROSITY (%)	SATURATION (%)
5.5-6.0	3.38	5.11	1.51	42.9	11.9
6.5-7.0	4.18	6.72	1.61	39.4	17.0
7.5-8.0	5.75	8.99	1.56	41.0	21.9
8.5-9.0	10.83	19.49	1.80	32.1	60.7
9.5-10.0	13.51	21.23	1.57	40.7	52.1
10.5-11.0	18.64	28.90	1.55	41.5	69.6
11.5-12.0*	4.74	7.35	1.55	41.5	17.7
12.5-13.0*	5.10	10.66	2.10	21.1	50.4
13.5-14.0*	4.15	8.67	2.09	21.1	41.0
14.5-15.0	5.67	11.87	2.09	21.0	56.6
15.5-16.0*	4.60	9.97	2.17	18.1	55.0
16.5-17.0	5.85	12.71	2.17	18.0	70.7
17.5-18.0	5.07	10.80	2.13	19.6	55.0
18.5-19.0	5.45	11.78	2.16	18.4	64.0
19.5-20.0*	5.75	10.41	1.81	31.7	32.8

PRELIMINARY Subject to revision

* Bulk density from adjacent interval; unable to measure volume.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Saturation Vs Depth for 6-PW-4

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SUMMARY OF INITIAL MOISTURE CONTENT, DRY BULK DENSITY, AND POROSITY

Well #6-Pw-5

	INITIAL MOISTURE CONTENT		DBY BULK		DEGREE OF
SAMPLE NUMBER	GRAVIMETRIC (%, g/g)	VOLUMETRIC (%, cm ³ /cm ³)	DENSITY (g/cm ³)	POROSITY (%)	SATURATION (%)
5.5-6.0	10.46	17.33	1.66	37.4	146.0
6.5-7.0	8.59	15.66	1.82	31.2	50.7
7.5-8.0*	5.69	9.44	1.66	37.4	25.3
8.5-9.0*	6.38	10.59	1.66	37.4	28.3
9.5-10.0*	6.79	11.27	1.66	37.4	30.2
10.5-11.0*	6.26	10.39	1.66	37.4	27.8
11.5-12.0	3.60	8.02	2.23	15.8	50.8
12.5-13.0	5.77	12.52	2.17	18.1	69.0
13.5-14.0	5.89	12.67	2.15	18.9	67.1
14.5-15.0	4.87	10.25	2.10	20.7	49.6
15.5-16.0	5.37	11.34	2.11	20.4	55.7
16.5-17.0	5.81	12.69	2.18	17.6	72.1
17.5-18.0	5.46	11.72	2.15	19.0	61.8
18.5-19.0	5.65	11.80	2.10	21.2	55.6
19.5-20.0	5.23	11.41	2.18	17.8	64.3

^{*} Bulk density from adjacent interval; unable to measure volume.

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Saturation Vs Depth for 6-PW-5

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SUMMARY OF INITIAL MOISTURE CONTENT, DRY BULK DENSITY, AND POROSITY

Well #6-Pw-6

	INITIAL MOISTURE CONTENT				
SAMPLE NUMBER	GRAVIMETRIC (%, g/g)	VOLUMETRIC (%, cm ³ /cm ³)	DENSITY (g/cm ³)	POROSITY (%)	SATURATION (%)
5.5-6.0	9.42	1.62	1.54	42.0	34.5
6.5-7.0	5.40	1.04	1.73	34.8	26.8
7.5-8.0	1.54	3.74	2.43	8.5	43.9
8.5-9.0	3.98	9.08	2.28	14.0	65.0
9.5-10.0*	3.51	8.00	2.28	14.0	57.3
10.5-11.0	0.82	1.97	2.40	9.0	21.8
11.5-12.0*	3.29	6.79	2.06	22.3	30.5
12.5-13.0*	6.51	13.41	2.06	22.3	60.2
13.5-14.0	5.97	12.32	2.06	22.0	55.8
14.5-15.0	4.40	9.80	2.23	15.9	61.5
15.5-16.0	4.51	9.68	2.15	19.0	50.8
16.5-17.0	4.77	10.55	2.21	16.9	63.8
17.5-18.0	4.16	9.45	2.27	14.3	65.9
18.5-19.0	3.34	7.21	2.16	18.4	39.0
19.5-20.0	2.57	6.16	2.40	9.4	65.5

* Bulk density from adjacent interval; unable to measure volume.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Saturation Vs Depth for 6-PW-6

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SUMMARY OF INITIAL MOISTURE CONTENT, DRY BULK DENSITY, AND POROSITY

	INITIAL MOISTURE CONTENT				
SAMPLE NUMBER	GRAVIMETRIC (%, g/g)	VOLUMETRIC (%, cm³/cm³)	DENSITY (g/cm ³)	POROSITY (%)	SATURATION (%)
5.5-6.0	8.68	13.11	1.51	43.0	30.5
6.5-7.0	5.23	8.03	1.53	42.0	19.1
7.5-8.0	3.89	6.22	1.60	39.6	15.7
8.5-9.0	2.32	4.87	2.10	20.6	23.6
9.5-10.0	2.63	5.74	2.18	17.7	32.4
10.5-11.0	2.39	5.56	2.33	12.1	46.0
11.5-12.0	4.03	8.24	2.05	22.8	36.1
12.5-13.0	5.44	9.60	1.77	33.4	28.7
13.5-14.0	5.49	11.37	2.07	21.8	52.0
14.5-15.0	5.81	11.89	2.05	22.8	52.2
15.5-16.0	5.83	12.09	2.07	21.8	55.6
16.5-17.0	5.51	11.60	2.10	20.6	56.6
17.5-18.0	5.58	11.73	2.10	20.8	56.4
18.5-19.0	5.89	12.46	2.11	20.2	61.7
19.5-20.0	6.09	12.61	2.07	21.8	57.8
20.5-21.0	6.16	13.55	2.20	17.0	79.8
21.5-22.0*	5.31	12.21	2.30	13.4	91.1
22.5-23.0	4.24	9.74	2.30	13.4	72.5
23.5-24.0	3.97	9.24	2.33	12.2	75.7
24.5-25.0	4.43	9.91	2.24	15.6	63.4
25.5-26.0	5.62	12.92	2.32	12.5	103.7
26.5-27.0	5.12	11.25	2.20	17.1	65.6
27.5-28.0	5.11	11.71	2.29	13.6	86.4
28.5-29.0	5.40	11.98	2.22	16.2	73.9
29.5-30.0	5.95	13.11	2.20	16.9	77.5

Well #6-Pw-7

* Bulk density from adjacent interval; unable to measure volume.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Saturation Vs Depth for 6-PW-7

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SUMMARY OF INITIAL MOISTURE CONTENT, DRY BULK DENSITY, AND POROSITY

Well #6-Pw-8

INITIAL MOISTURE CONTENT			DBY BULK		DEGREE OF
SAMPLE N1WEER	GRAVIMETRIC (%, g/g)	VOLUMETRIC (%, cm ³ /cm ³)	DENSITY (g/cm ³)	POROSITY (%)	SATURATION (%)
4.5-5.0	4.3	8.4	1.95	25.8	32.4
5.5-6.0	5.8	11.7	2.02	23.8	49.3
6.5-7.0*	5.9	11.8	2.02	23.8	49.6
7.5-8.0	6.5	12.2	1.88	29.1	42.1
8.5-9.0	6.3	12.5	1.98	24.4	51.3
9.5-10.0	6.9	13.4	1.94	24.3	56.5
10.5-11.0	6.7	14.4	2.15	18.2	79.4
11.5-12.0	6.6	13.9	2.11	21.1	65.7
12.5-13.0	7.5	15.9	2.12	20.2	78.7
13.5-14.0	5.8	12.9	2.22	15.9	80.9
14.5-15.0	5.8	12.5	2.16	18.4	67.7
15.5-16.0	5.2	11.5	2.21	16.2	71.0
16.5-17.0	5.6	12.0	2.14	19.9	60.2
17.5-18.0	4.7	10.5	2.23	16.1	65.2
18.5-19.0	6.0	13.7	2.28	13.6	100
19.5-20.0	6.2	13.6	2.20	17.6	77.1
20.5-21.0	5.9	12.7	2.15	18.1	70.5
21.5-22.0	5.3	11.5	2.17	18.0	63.7
22.5-23.0	5.7	12.8	2.25	15.3	83.8
23.5-24.0	5.5	11.6	2.11	19.9	58.2
24.5-25.0	4.9	10.9	2.22	16.2	67.4

* Bulk density from adjacent interval; unable to measure volume.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

4.2 Fracture Density Data

SECTION 5.0

WATER QUALITY DATA FROM SHALLOW PERCHED WATER BOREHOLES

5.1 Inorganic Geochemical Signature Data, Phase I (1/90)

Client Name:	Applied Energy C 6-CH-3	ompany				
Lab ID:	000804-0001-SA					
Matrix:	AOUEOUS	Sampled:	23 JAN 9	1	Received: 24 JAN 9	91
Authorized:	25 JAN 91	Prepared:	See Belo	W	Analyzed: See Belo	W
Parameter	Result	R Units	eporting Limit	Analyti Metho	cal Prepared d Date	Analyzed Date
• • • • • •	_					
Alkalinity,	Total as					<u></u>
CaCO3 at	pH 4.5 207	mg/L	5.0	310.1	NA	31 JAN 91
Alkalinity, I	Bicarb. as	. //	F 0	210 1	N 0	23 144 01
CaCO3 at	pH 4.5 20/	mg/L	5.0	310.1	na na	ST DAM ST
Alkalinity, (ard. as	mg /1	5 0	310 1	NΔ	31 JAN 91
Alkalinity I		ilig/ L	5.0	510.1		JI UNN JI
	ND	ma/l	5.0	310.1	NA	31 JAN 91
Coliform. Fe	cal ND	Co1/100	2.0	909C	NA	25 JAN 91
Fluoride	2.4	mg/L	0.10	340.2	NA	29 JAN 91
Ammonia as N	3.6	mg/L	0.10	350.1	NA	04 FEB 91
Nitrate as N	0.73	mg/L	0.10	353.2	NA	02 FEB 91
рН	7.1	units		9040	NA	24 JAN 91
Sulfate	200	mg/L	100	9038	NA	29 JAN 91
Specific Con	ductance	• • •		100 1		05 341 01
at_25 de	g.C 1700	umhos/cm	1.0	120.1	NA	25 JAN 91
Total Dissol	ved		10.0	160 1	NΛ	21 1AN 01
201102	223	mg/L	10.0	100.1	INA	21 OMU 21

\$

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable Reported By: Bose Lawal Enseco

Client Name: Applied Energy Company Client ID: 6-CH-3 Lab ID: 000804-0001-SA AQUEOUS 25 JAN 91 Sampled: 23 JAN 91 Prepared: See Below Received: 24 JAN 91 Analyzed: See Below Matrix: Authorized: Reporting Analytical Limit Method Prepared Analyzed Date Date Result Units Parameter 353.2 Nitrite as N 0.038 mg/L 0.010 NA 25 JAN 91 9252 31 JAN 91 Chloride 101 mg/L 3.0 NA

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Bose Lawal

Approved By: David Bravo

LINSECO

Metals

Total Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 6-CH-3 000806-0004-SA AQUEOUS 25 JAN 91	Company Sampled: Prepared:	: 24 JAN 9 : See Belo	l Rece w Anal	eived: 25 JAN 9 yzed: See Belo	1 w
Parameter	Result	F Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Calcium Iron Magnesium Manganese Potassium Sodium	49.6 6.7 15.9 0:31 ND 257	mg/L mg/L mg/L mg/L mg/L mg/L	0.20 0.10 0.20 0.010 5.0 5.0	6010 6010 6010 6010 6010 6010	05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91	07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91

PRELIMINARY Subject to revision

1

ND = Not detected NA = Not applicable

Reported By: David Bravo

Approved By: Kurt Ill

Client Name: Client ID:	Applied Energy (6-CH-4	Company				
Matrix.	000800-0001-3A	· bolome2	24 JAN 9	1	Pacaivade 25 JAN C	17
Authorizod.	25 1AN 01	Dronarod.		1	Applyzod: Soo Bolo	1
Author izeu.	LJ UAN JI	riepareu.	See Deito	n	Analyzed. See Dert	W
Parameter	Result	R Units	eporting Limit	Analyti Metho	cal Prepared d Date	Analyzed Date
Alkalinity, T	otal as					
CaCO3 at	pH 4.5 1210	mg/L	5.0	310.1	NA	31 JAN 91
Alkalinity, E	Bicarb. as	•				
CaCO3 at	pH 4.5 ND.	mg/L	5.0	310.1	NA	31 JAN 91
Alkalinity, C	Carb. as					
CaCO3 at	pH 8.3 140	mg/L	5.0	310.1	NA	31 JAN 91
Alkalinity, H	iydrox.					
as LaLUS		mg/L	5.0	310.1	NA	31 JAN 91
Colliform, Fed	al ND		2.0	9090	NA	26 JAN 91
Ammonia an N	0.40	mg/L	0.10	340.2		29 JAN 91
Ammonia as N	0.35	mg/L	0.10	350.1		04 FEB 91
Orthophocobot		mg/L	0.50	353.2	NA NA	02 FEB 91
of chophosphat	easr ND 122	mg/L upite	0.050	305.5	NA NA	25 JAN 91
yn Sulfata	200		50 0	9040	NA NA	20 JAN 01
Specific Cond	luctance	mg/ L	50.0	5050	114	ZJ UAN JI
at 25 dec		umbos/cm	10	120 1	NΔ	02 FFR 01
Total Dissolv	,.c 0100		1.0	160.1	NA NA	
Solids	2510	mg/L	10.0	160.1	NA	31 JAN 91

f

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Bose Lawal

Approved By: David Bravo

Enseco

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 6-CH-4 000806-0001-SA AQUEOUS 25 JAN 91	Company Sampled: Prepared:	24 JAN 91 See Below	Received Analyzed	: 25 JAN 9 : See Below	1 ~
Parameter.	Result	R. Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Nitrite as N Chloride	0.032 372	2 mg/L mg/L	0.010 30.0	353.2 9252	NA NA	25 JAN 91 31 JAN 91

Enseco

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Bose Lawal

Approved By: David Bravo

≣ Enseco

Metals

Total Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 6-CH-4 000806-0001-SA AQUEOUS 25 JAN 91	Company Sampled: Prepared:	24 JAN 9 See Belo	1 Rece w Anal	ived: 25 JAN 9 yzed: See Belo	1 ~
Parameter.	Result	F Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Calcium Iron Magnesium Manganese Potassium Sodium	211 ND ND 208 566	mg/L mg/L mg/L mg/L mg/L mg/L	0.20 0.10 0.20 0.010 5.0 5.0	6010 6010 6010 6010 6010 6010	05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91	07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91

PRELIMINARY Subject to revision

ş

ND = Not detected NA = Not applicable

Reported By: David Bravo

Approved By: Kurt Ill

Client Name: Client ID:	Applied 6-CH-5	I Energy Co	ompany							
Lau IV. Matriv:		-0003-3A	Sampled	24 JAN 9	1	Received	25 JAN 01	ł		
Authorizod.	25 .10N	, 01	Drenared	· See Relo	⊥ ພ	Analyzed.		J		
Author izeu.	2J UAN	, 71	riepareu.	. See Delo	**	Analyzeu.	Jee Delu	,		
Parameter [,]		Result	F Units	Reporting Limit	Analyt Metho	ical od	Prepared Date	Ana [alyze Date	ed
Alkalinity, 1	lotal as							• •	• • • •	
CaCO3 at	pH 4.5	521	mg/L	5.0	310.1		NA	31	JAN	91
Alkalinity, E	Bicarb.	as						~ .		~ 1
CaCO3 at	pH 4.5	521 ~	mg/L	5.0	310.1		NA	31	JAN	91
Alkalinity, U	arb. as			5 0	210 1		NA	21	7.6.11	01
Lacus at	pH 8.3	NU	mg/L	5.0	310.1		NA	31	JAN	91
Alkalinity, r	iyarox.	ND	ma / I	5 0	310 1		NΔ	21	1AN	01
Coliform For	- 21		$\frac{119}{100}$	2.0			NΔ	26	.10N	01
Fluoride	241	0 58	ma/l	0 10	340 2		NA	29	JAN	q 1
Ammonia as N		0.61	mg/L	0.10	350.1		NA	04	FFR	91
Nitrate as N		ND	ma/L	0.10	353.2		NA	02	FEB	91
Orthophosphat	te as P	0.22	mg/L	0.050	365.3		NA	25	JAN	91
рН		7.9	units		9040		NA	25	JAN	91
Sulfate		1350	mg/L	300	9038		NA	29	JAN	91
Specific Cond	ductance	2	0,							
i at 25 dec	a.C	5240	umhos/cm	1.0	120.1		NA	25	JAN	91
Total Dissol	ved	2520	, ma /l	10.0	160 1		NΛ	21	IAN	01
201102		5520	шу/ с	10.0	100.1			21	UAN	21

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Bose Lawal

Approved By: David Bravo

Enseco

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 6-CH-5 000806-0003-SA AQUEOUS 25 JAN 91	Company Sampled: Prepared:	: 24 JAN 9 : See Belo	l Rec w Ana	ceived: 25 JAN 91 alyzed: See Below	
Parameter.	Result	F Units	Reporting Limit	Analytical Method	l Prepared Date	Analyzed Date
Nitrite as N Chloride	ND 397	mg/L mg/L	0.010 200	353.2 9252	NA NA	25 JAN 91 31 JAN 91

ND = Not detected NA = Not applicable

Reported By: Bose Lawal

Approved By: David Bravo

Enseco

General Inorganics

Metals

Total Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 6-CH-5 000806-0003-SA AQUEOUS 25 JAN 91	Company Sampled: Prepared:	24 JAN 9 See Belon	l Receiv w Analyz	ed: 25 JAN 9 ed: See Below	1 W
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Calcium Iron Magnesium Manganese Potassium Sodium	86.4 ND 27.1 0.056 ND 1010	mg/L mg/L mg/L 5 mg/L mg/L mg/L	0.40 0.20 0.40 0.020 10.0 10.0	6010 6010 6010 6010 6010 6010	05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91	07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91

PRELIMINARY Subject to revision

\$ 1

ND = Not detected NA = Not applicable

ł

Reported By: David Bravo

Approved By: Kurt Ill

Enseco

General Inorganics

Client Name: Applied Energy Company Water Tank 000806-0002-SA Client ID: Lab ID: Sampled: 24 JAN 91 Prepared: See Below Received: 25 JAN 91 Analyzed: See Below AQUEOUS Matrix: 25 JAN 91 Authorized: Reporting Analytical Prepared Analyzed Parameter Result Units Limit Method Date Date Alkalinity, Total as 5.0 310.1 NA 31 JAN 91 CaCO3 at pH 4.5 121 mg/L Alkalinity, Bicarb. as 31 JAN 91 5.0 310.1 NA mg/L CaCO3 at pH 4.5 121 Alkalinity, Carb. as CaCO3 at pH 8.3 ND 5.0 310.1 NA 31 JAN 91 mg/L Alkalinity, Hydrox. as CaCO3 31 JAN 91 310.1 ND mg/L 5.0 NA 26 JAN 91 Coliform, Fecal Cõ1/100 909C NA ND 2.0 29 JAN 91 0.34 0.10 340.2 NA Fluoride mg/L Ammonia as N ND 0.10 NA 04 FEB 91 mg/L 350.1 1.5 02 FEB 91 353.2 Nitrate as N mg/L 0.10 NA 0.050 365.3 25 JAN 91 Orthophosphate as P ND mg/L NA pН 7.7 units 9040 NA 25 JAN 91 Sulfate 31.0 mg/L 5.0 9038 NA 29 JAN 91 Specific Conductance at 25 deg.C 362 120.1 NA 25 JAN 91 umhos/cm 1.0 Total Dissolved Solids 211 mq/L 10.0 160.1 NA 31 JAN 91

> PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

.

-

مہ ،

......

Reported By: Bose Lawal

Approved By: David Bravo

Client Name: Applied Energy Company Client ID: Water Tank 000806-0002-SA AQUEOUS 25 JAN 91 Lab ID: Sampled: 24 JAN 91 Prepared: See Below Received: 25 JAN 91 Analyzed: See Below Matrix: Authorized: Reporting Analytical Limit Method Prepared Date Analyze Parameter Result Units Date 25 JAN 5 31 JAN 5 Nitrite as N ND mg/L 0.010 353.2 NA Chloride 10.9 mg/L 3.0 9252 NA

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable Reported By: Bose Lawal

ANN BURN SAME

Approved By: David Bravo

E En

Ensec

Metals

Total Metals

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy Water Tank 000806-0002-SA AQUEOUS 25 JAN 91	Company Sample Prepare	ed: 24 JAN 9 ed: See Belo	1 Rece ⁺ w Analy	ived: 25 JAN 9 /zed: See Belo	l w
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Calcium Iron Magnesium Manganese Potassium Sodium	41.1 ND 8.9 ND ND 21.2	mg/L mg/L mg/L mg/L mg/L	0.20 0.10 0.20 0.010 5.0 5.0	6010 6010 6010 6010 6010 6010	05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91 05 FEB 91	07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91 07 FEB 91

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable Reported By: David Bravo

5.2 Inorganic Geochemical Signature Data, Phase II (3/90)

				•		
Client Name: Appl Client ID: PW 6 Lab ID: 0009 Matrix: AQUE Authorized: 21 M	ied Energy C 5-3 995-0005-SA EOUS 1AR 91	ompany Sampled: Prepared:	: 20 MAR 9 : See Belo	1 Recei w Analy:	ved: 21 MAR 9 zed: See Belo	1 ₩
Parameter	Result	F Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Alkalinity, Tota CaCO3 at pH Alkalinity, Bican	l as 4.5 524 rb. as	mg/L	5.0	310.1	NA	02 APR 91
Alkalinity, Carb CaCO3 at pH & Alkalinity, Hydro	as 3.3 ND 5x.	mg/L	5.0	310.1	NA	02 APR 91 02 APR 91
as CaCO3 Coliform, Total Fluoride Ammonia as N	ND ND 3.3 ND	mg/L Col/100 mg/L mg/L	5.0 2.0 0.10 0.10	310.1 9132 <u></u> 340.2 350.1	NA NA NA NA	02 APR 91 22 MAR 91 01 APR 91 27 MAR 91
Nitrate as N pH Sulfate Specific Conduct	0.88 7.1 115	mg/L units mg/L	0.50 30.0	353.2 9040 9038	NA NA NA	29 MAR 91 21 MAR 91 04 APR 91
at 25 deg.C Total Dissolved Solids	1230 838	umhos/cm mg/L	1.0 10.0	120.1 160.1	NA NA	21 MAR 91 26 MAR 91

A Corning Comp

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable Reported By: Bose Lawal

1

Approved By: Karen Helgerson

···

ICP METALS

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy PW 6-3 000995-0005-SA AQUEOUS 21 MAR 91	Company Sampled: Prepared:	20 MAR 9 See Below	1 F W A	Received: 2 Analyzed: 5	21 MAR 9 See Belo'	1 W
Parameter	Result	R(Units	eporting Limit	Analytic Method	cal Pr 1	repared Date	Analyzed Date
Aluminum Antimony Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Potassium Silver Sodium Vanadium Zinc	0.35 ND 0.14 ND 89.8 ND ND 0.21 ND 51.2 0.26 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$\begin{array}{c} 0.10\\ 0.060\\ 0.010\\ 0.0020\\ 0.0050\\ 0.20\\ 0.010\\ 0.010\\ 0.020\\ 0.10\\ 0.050\\ 0.20\\ 0.010\\ 0.020\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.020\\ \end{array}$	6010 6010 6010 6010 6010 6010 6010 6010		<pre>/ MAR 91 / MAR 91</pre>	29 MAR 91 29 MAR 91

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

.

Reported By: David Bravo

Approved By: Bose Lawal

Enseco

		General	Inorganics		A Corning Company		
Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy PW 6-3 000995-0005-SA AQUEOUS 21 MAR 91	Company Samp] Prepar	ved: 21 MAR 9 red: See Belo	1 w			
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date	
Nitrite as N Chloride	ND ND	mg/L mg/L	0.010 3.0	354.1 9252	NA NA	22 MAR 91 25 MAR 91	

ş

ND = Not detected NA = Not applicable Reported By: Bose Lawal

.

.'

Approved By: Karen Helgerson

ICP METALS

ISECO

Client Name: Client ID:	Applied Energy PW 6-4	Company								
LaD IU:	000995-0004-SA	Complade	20 440 0	1		. 01	n 0	1		
matrix:	AUUEUUS	Sampred:	ZU MAR 9	1	keceived:		K 9	1		
Authorized:	21 MAR 91	Prepareo:	See pero	w /	ana iyzeo:	see b	ero	W		
Demomentem		R	eporting	Analyti	çal .	Prepar	ed	Ana	ilyze	eđ
Parameter	Kesult	UNICS		riechoo	2	Dale		L	Jale	
∆ີໄມຫາ໋ກມຫ	0.51	ma /1	0 10	6010		27 MAR	91	29	MAR	91
Antimony	D.DI NN	mg/L	0 060	6010		27 MAR	91	29	MAR	91
Barium		mg/L	0.010	6010		27 MAR	91	29	MAR	91
Bervllium	ND	mg/1	0.0020	6010		27 MAR	91	29	MAR	91
Cadmium	ND-	ma/l	0.0050	6010	•	27 MAR	91	29	MAR	<u>9</u> 1
Calcium	99.7	mg/L	0.20	6010	-	27 MAR	91	29	MAR	9 1
Chromium	ND	ma/L	0.010	6010	-	27 MAR	91	29	MAR	91
Cobalt	ND	ma/L	0.010	6010	_	27 MAR	91	29	MAR	91
Copper	ND	mg/L	0.020	6010 -		27 MAR	91	29	MAR	91
Iron	0.30	mg/L	0.10	6010		27 MAR	91	29	MAR	91
Lead	ND	ma/L	0.050	6010		27 MAR	91	29	MAR	91
Magnesium	30.9	mg/L	0.20	6010		27 MAR	91	29	MAR	91
Manganese	0.11	mg/L	0.010	6010		27 MAR	91	29	MAR	91
Molvbdenum	ND	mg/L	0.020	6010		27 MAR	91	29	MAR	91
Nickel	ND	mg/L	0.040	6010		27 MAR	91	29	MAR	91
Potassium	ND	mg/L	5.0	6010		27 MAR	91	29	MAR	91
Silver	ND	mg/L	0.010	6010		27 MAR	91	29	MAR	91
Sodium	113	mg/L	5.0	6010		27 MAR	91	29	MAR	91
Vanadium	ND	mg/L	0.010	6010		27 MAR	91	29	MAR	91
Zinc	ND	ma/L	0.020	6010		27 MAR	91	29	MAR	91

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

.

Reported By: David Bravo

CO

Client Name: Client ID:	Applied PW 6-4	Energy Co	ompany					
Lau IV. Matrix:		J004-3A	balame2	20 MAR 9	1	Received	· 21 MAR 9	ר
Authorized.	21 MAR (a 1	Prenared	See Belo	± W	Analyzed	: See Belo	1 W
Additor izeai	EI IVat a	~ _	i i cpui cu.			/		
Parameter	1	Result	F Units	Reporting Limit	Analyti Metho	ical od	Prepared Date	Analyzed Date
Alkalinity, 1	Total as	·						
CaCO3 at	pH 4.5	424	mg/L	5.0	310.1		NA	02 APR 91
Alkalinity, I	Bicarb.	as		-				
CaCO3 at	pH 4.5	424	mg/L	5.0	310.1		NA	02 APR 91
Alkalinity, (larb. as			5.0	210.1	2	A) A	00 400 01
Lalus at	pH 8.3	UИ	mg/L	5.0	310.1	-	NA	02 APK 91
Alkalinity, I	Hydrox.	ND	ma /1	50	210 1		ΝΛ	02 ADD 01
as Lalus	+-7		1119/L	2.0	0122			22 MAD 01
Eluorido	Lai	1 3		0 10	340 2	- <u>-</u>	NΔ	
Ammonia as N			mg/L	0.10	350 1		NΔ	27 MAR 91
Nitrate as N		27 0	ma/l	1.0	353.2		NA	29 MAR 91
nH		7.3	units		9040		NA	21 MAR 91
Sulfate	.*	16.0	ma/L	5.0	9038		NA	03 APR 91
Specific Con	ductance				:			
at 25 de	q.C	1180	umhos/cm	1.0	120.1		NA	21 MAR 91
Total Dissol	ved			_				
Solids		804	mg/L	10.0	160.1		NA	26 MAR 91
			-					

PRELIMINARY Subject to revision

1

ND = Not detected NA = Not applicable

Reported By: Bose Lawal

Approved By: Karen Helgerson

		General	Inorganics	•		A Corning Com) F
Client Name: Client ID: Lab ID: Matrix:	Applied Energy PW 6-4 000995-0004-SA AQUEOUS	Company Sample	ed: 20 MAR 9	1 Recei	ved: 21 MAR S	91	
Parameter	Result	Units	Reporting Limit	Analytical Method	zed: See Beld Prepared Date	Analyzed Date	
Nitrite as N Chloride	ND ND	mg/L mg/L	0.010 3.0	354.1 9252	NA NA	22 MAR 91 25 MAR 91	

ND = Not detected NA = Not applicable Reported By: Bose Lawal

5 **

Approved By: Karen Helgerson

=

= :

z.

ICP METALS

h nseco

e Company

Client Name: Client ID:	Applied Energy Com PW 6-5	mpany						
Lab ID: Matrix: Authorized:	000995-0007-SA AQUEOUS 21 MAR 91	Sampled: Prepared:	20 MAR 9 See Belo	1 w	Received: Analyzed:	: 21 MAR See Be	8 91 10w	
Parameter	Result	Ro Units	eporting Limit	Analyti Metho	cal d	Prepare Date	d Analyzed Date	
Aluminum Antimony Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Potassium Silver Sodium Vanadium Zinc	0.25 ND 0.059 ND ND- 338 ND ND ND 0.15 ND 78.5 0.19 ND ND ND 5.2 ND S88 ND ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.10 0.060 0.010 0.0020 0.0050 0.20 0.010 0.020 0.10 0.050 0.20 0.010 0.020 0.010 5.0 0.010 5.0 0.010 5.0 0.010 0.020	6010 6010 6010 6010 6010 6010 6010 6010	· · · · · · · · · · · · · · · · · · ·	27 MAR 27 MAR	91 29 MAR 91 91 29 MAR 91	

PRELIMINARY Subject to revision

7

ND = Not detected NA = Not applicable

.

τ.

Reported By: David Bravo

Client Name: Client ID:	Applied Ene PW 6-5	rgy Company				
Lab ID: Matrix:	000995-0007 AQUEQUS	-SA Sam	pled: 20 MAR	91 Re	ceived: 21	MAR 91
Authorized:	21 MAR 91	Prep	ared: See Be	low An	alyzed: See	Below
Parameter	Resu	lt Units	Reportin Limit	g Analytica Method	l Prep Da	ared Analyzed ite Date
Alkalinity, T	otal as					
CaCO3 at	pH 4.5 416	mg/L	5.0	310.1	. NA	02 APR 91
Alkalinity, E	Bicarb. as		. .	<u></u>		00 400 01
CaCO3 at	pH 4.5 416	mg/L	5.0	310.1	NA	UZ APK 91
Alkalinity, $($	ard. as	ma //	5.0	210 1	► NA	02 ADD 01
Alkalinity k	pro.s nu lvdrov	ilig/ L	3.0	510.1	INA .	UZ APR JI
	ND	ma/i	5.0	310.1	"NA	02 APR 91
Coliform. Tot		$.0 C_0 1/1$	00 2.0	9132 ===	= NA	22 MAR 91
Fluoride	ů. Č	.44 mg/L	0.10	340.2	NA	01 APR 91
Ammonia as N	ND	mg/L	0.10	350.1	NA	27 MAR 91
Nitrate as N	8	.2 mg/L	0.50	353.2	NA	29 MAR 91
pH	7	.3 units		9040	NA	21 MAR 91
Sulfate	1650	mg/L	250	9038	.NA	26 MAR 91
Specific Cond	luctance	-	· · ·	•		
at 25 dec	J.C. 4080	umhos	s/cm 1.0	120.1	NA	21 MAR 91
IOTAL DISSOLV	/ed		50.0	100 1	11	OC NAD AL
201102 ·	3480	mg/L	50.0	100.1	NA	20 MAR 91

PRELIMINARY Subject to revision

Ŧ

ND = Not detected NA = Not applicable

Reported By: Bose Lawal

		General	Inorganics	•		
Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy PW 6-5 000995-0007-SA AQUEOUS 21 MAR 91	Company Samp1 Prepar	ed: 20 MAR 9 ed: See Belo	l Receiv w Analyz	ved: 21 MAR 9 zed: See Belo	1
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Nitrite as N Chloride	ND 238	mg/L mg/L	0.010 60.0	354.1 9252	NA NA	22 MAR 91 25 MAR 91

ND = Not detected NA = Not applicable

਼

Reported By: Bose Lawal

Approved By: Karen Helgerson

ICP METALS

.

Enseco A Corning Company

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy PW 6-6 000995-0006-SA AQUEOUS 21 MAR 91	Company Sampled: Prepared:	20 MAR 9 See Belo	1 F w A	Received: Analyzed:	: 21 MAI : See Bo	? 9] ≥]ow	
Parameter	Result	R Units	eporting Limit	Analytic Method	al I	Prepare Date	ed	Analyzed Date
Aluminum Antimony Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Potassium Silver Sodium Vanadium Zinc	0.54 ND 0.11 ND 83.8 ND ND ND 0.31 ND 26.5 0.42 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$\begin{array}{c} 0.10\\ 0.060\\ 0.010\\ 0.0020\\ 0.0050\\ 0.20\\ 0.010\\ 0.010\\ 0.020\\ 0.10\\ 0.050\\ 0.20\\ 0.010\\ 0.020\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.020\\ \end{array}$	6010 6010 6010 6010 6010 6010 6010 6010	• •	27 MAR 27 MAR	91 91 91 91 91 91 91 91 91 91 91 91 91 9	29 MAR 91 29 MAR 91

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: David Bravo

•

Seco

pany

Client Name: Client ID: Lab ID:	Applied PW 6-6 000995-	Energy (0006-SA	Company					
Matrix:	AQUEOUS		Sampled	: 20 MAR 9	1 Re	eceived	: 21 MAR 9	1
Authorized:	21 MAR	91	Prepared	: See Belo	w Ar	nalyzed:	: See Belo	W
Parameter		Result	Units	Reporting Limit	Analytica Method	1	Prepared Date	Analyzed Date
Alkalinity, 1	lotal as							
CaCO3 at	pH 4.5	443	mg/L	5.0	310.1		NA	02 APR 91
Alkalinity, E	Bicarb.	as	•••			•		
CaCO3 at	pH 4.5	443	mg/L	5.0	310,1		NA	02 APR 91
Alkalinity, C	Carb. as	-				-		
CaCO3 at	pH 8.3	ND	mg/L	5.0	310.1		NA	02 APR 91
Alkalinity, r	iyarox.	ND	ma /1	5.0	210 1	÷.	NA	02 400 01
Coliform Tot	ta]		[0]/100	2 0	9132	-	NΔ	22 MAD 91
Fluoride	ra i	1.9	ma/l	0.10	340.2	-	NA	01 APR 91
Ammonia as N		ND	ma/L	0.10	350.1		NA	27 MAR 91
Nitrate as N		1.3	mg/L	0.10	353.2		NA	29 MAR 91
pН		7.1	units		9040		NA	21 MAR 91
Sulfate		105	mg/L	30.0	9038		,NA	04 APR 91
Specific Cond	ductance				-			
at 25 deg	g.Ç	1110	umhos/cm	1.0	120.1		NA	21 MAR 91
Solids	Ved	779	mg/L	10.0	160.1		NA	26 MAR 91

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

•

Reported By: Bose Lawal

Approved By: Karen Helgerson

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy PW 6-6 000995-0006-SA AQUEOUS 21 MAR 91	Company Sample Prepare	d: 20 MAR 9 d: See Belo	1 Receiv W Analyz	ed: 21 MAR 9 ed: See Belo	1 w
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Nitrite as N Chloride	0.022 31.8	2 mg/L mg/L	0.010 3.0	354.1 9252	NA NA	22 MAR 91 25 MAR 91

۲.

==

Ξ

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

2

Reported By: Bose Lawal

Approved By: Karen Helgerson
Inorganic Geochemical Signature Data, Phase III (4/90)

5.3

CLIENT	:	D.B. STEPHENS & ASSOCIATES	DATE RECEIVED	:	04/22/9
PROJECT # PROJECT NAME	::	ENRON LAGUNA	REPORT DATE	:	05/15/9
		ATI I.D. : 104784			

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTE
01 02 03 04 05 06 07	SUPPLY WELL. 6-PW-5 6-PW-4 6-6 6-8 6-PW-8 6-PW-8 6-PW-7	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	04/17/9 04/18/9 04/17/9 04/17/9 04/17/9 04/17/9 04/18/9 04/18/9

PRELIMINARY Subject to revision

FLLE223655FLLE325555ABB4652255568LL522225558#BB44353255588BB48444444555558888

---- TOTALS -----

MATRIX # SAMPLES AQUECUS 7

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please control our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

AT1 I.D. : 104784

CLIENT : D PROJECT # : 8	.B. STEPHENS & 9-030-L	ASSOCIA	TES	I	DATE RECE	CIVED : (04/22 /9
PROJECT NAME : E	NRON LAGUNA			F	REPORT DA	TE : (05/15/9
PARAMETER		UNITS	01	02	03	04	05
CARBONATE (CACO3 BICARBONATE (CAC) HYDROXIDE (CACO3 TOTAL ALKALINITY CHLORIDE CONDUCTIVITY, (U FLUORIDE AMMONIA AS NITRO NITRATE AS NITRO PH SULFATE TOTAL DISSOLVED) O3)) (AS CACO3) MHOS/CM) GEN GEN SOLIDS	MC/I. MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	<1 166 <1 166 13 386 0.25 - - 8.1 30 240	<1 475 <1 475 132 3250 0.42 - 7.4 1300 2600	<1 279 <1 279 68 1150 1.29 0.03 42 7.7 130 790	<1 343 <1 343 39 1050 1.30 <0.03 15 7.6 120 660	<1 680 <1 680 111 2030 3.50 0.03 0.33 7.5 340 1300

PRELIMINARY Subject to revision

GENERAL CHEMISTRY RESULTS

0.559

200.0

⊏.⊍⊸

ŀ

. . . .

				AT1 I.D. : 104	784
CLIENT : D.B. STEPHENS PROJECT # : 89-030-L	& ASSOCIATES			DATE RECEIVED	: 04/22/9
PROJECT NAME : ENRON LAGUNA				REPORT DATE	: 05/15/9
Parameter	UNITS	06	07		
CARBONATE (CACO3) BICARBONATE (CACO3) HYDROXIDE (CACO3) TOTAL ALKALINITY (AS CACO3) CHLORIDE CONDUCTIVITY, (UMHOS/CM) FLUORIDE PH SULFATE TOTAL DISSOLVED SOLIDS	MG/L MG/L MG/L MG/L MG/L UNITS MG/L MG/L	<1 296 29 1640 0.38 7.4 460 1300	<1 171 <1 171 480 2990 0.75 7.5 770 2000		

PRELIMINARY Subject to revision

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : D.B. STE PROJECT # : 89-030-1 PROJECT NAME : ENRON LA	PHENS & GUNA	ASSOCIAT	ES	ATI	I.D.	: 1047	84	
			SAMPLE	DUP.		SPIKED	SPIKE	 8;
PARAMETER	UNITS	ATI I.D.	RESULT	RESULT	rpd	SAMPLE	CONC	RE
CARBONATE	MG/L	10478403	<1	<1	NA	NA	 NA	N.2
BICARBONATE	MG/L		279	284	2	NA	NA	N.A.
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	N.ª
TOTAL ALKALINITY .	MG/L		279	284	2	NA	NA	NA
CARBONATE	MG/L	10563801	<1	<1	NA	NA	NA	Nž
BICARBONATE	MG/L		205	206	0.5	NA	NA	NE
HYDROXIDE	MG/L		<1	<1	NA	NA	NA	N.S
TOTAL ALKALINITY	MG/L		205	206	0.5	NA	NA	NA
CHLORIDE	MG/L	10478407	480	490	2	1250	750	10
CONDUCTIVITY (UMHOS/CM)	·····	10478407	2990	2960	1	NA	NA	N
FLUORIDE	MG/L	10474104	0.31	0.32	3	0.62	0.30	10
FLUORIDE	MG/L	10478403	1.29	1.28	1	2.64	1.30	10
AMMONIA AS NITROGEN	MG/L	10474101	0.22	0.20	10	0.48	0.25	10
NITRATE AS NITROGEN	MG/L	10479003	0.19	0.18	5	2.18	2.00	1i
PH	UNITS	10478403	7.7	7.7	0	NA	NΛ	N2
SULFATE	MG/L	10479003	3900	3900	0	7900	4000	10
TOTAL DISSOLVED SCLIDS	MG/L	10479002	1960	1920	2	NA	NA	NA.

PRELIMINARY Subject to revision

% Recovery = (Spike Sample Result - Sample Result) X 100 Spike Concentration RPD (Relative Percent Difference) = (Sample Result - Duplicate Result)

_ _ _ Average Result

Х

i

METALS RESULTS

CLIENT PROJECT # PROJECT NAME	:	D.B. STEPHENS 89-030-L ENRON LAGUNA	& ASSOCI	ATES		DATE REC	EIVED : ATE :	04/22/5 05/15/9
PARAMETER			UNITS	01	02	03	04	05
CALCIUM COPPER IRON HARDNESS ION BALANCE POTASSIUM MAGNESIUM MANGANESE SODIUM ZINC			MG/L MG/L MG/L MG/L MG/L MG/L MG/L	52.1 <0.010 <0.020 169 - 1.7 9.5 <0.010 22.6 0.033	276 <0.010 <0.020 914 - 4.4 54.6 0.011 546 <0.010	113 <0.010 <0.020 421 (INC) 5.4 33.7 <0.010 104 <0.010	67.3 <0.010 <0.020 265 2.6 23.5 0.037 133 <0.010	76.6 <0.010 <0.020 390 1.2 48.4 0.156 358 <0.010

ATI I.D. : 104784

PRELIMINARY Subject to revision

METALS RESULTS

				ATI I.I	0.:104	178	34
CLIENT : D.B. STEPHENS PROJECT # : 89-030-1.	& ASSOCI	ATES		DATE RI	ECEIVED _.	:	04/22/9
PROJECT NAME : ENRON LAGUNA				REPORT	DATE	:	05/15/9
PARAMETER	UNITS	06	07				
CALCIUM COPPER IRON HARDNESS POTASSIUM MAGNESIUM MANGANESE SODIUM ZINC	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	254 <0.010 <0.020 823 3.2 45.9 0.082 72.2 <0.010	187 <0.010 <0.020 678 8.6 51.3 0.059 430 <0.010				

PRELIMINARY Subject to revision

98 97 11

88 11 97

Į.

METALS - QUALITY CONTROL

CLIENT PROJECT # PROJECT NAME	D.B. STEPHENS & 89-030-L ENRON LAGUNA	ASSOCIATES	ATI I.D. : 104784
PARAMETER	UNITS	SAMPLE ATI I.D. RESULT	DUP. SPIKED SPIKE RESULT RPD SAMPLE CONC
CALCIUM COPPER IRON HARDNESS POTASSIUM MAGNESIUM MANGANESE SODIUM SODIUM ZINC	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	10478403 113 10479001 <0.010 10479001 44.2 10478403 421 10478403 5.4 10478403 33.7 10479001 1.06 10478403 104 10478402 546 10479001 0.027	114 1 162 50.0 <0.010

· · · -----

PRELIMINARY Subject to revision

<pre>% Recovery =</pre>	(Spike S	ample Result	-	Sample	Result)	x	100			
	Spike Con	ncentration								
RPD (Relative	e Percent	Difference)	=	(Sample	Result	-	Duplicate	Result)	v	16
					Ave	caç	je Røsult		Λ	÷ C

5.4 PCB and BTEX Data From Monitor Wells (6-Series)

Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX)

LINSECO

Method 8020

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 91-4-24-6-6 001128-0003-SA AQUEOUS 26 APR 91	Company Sampled: Prepared:	24 APR 91 NA		Received: Analyzed:	26 30	APR APR	91 91
Parameter			Result	Units	Reporti Limit	ng		
Benzene Toluene Ethylbenzene Xylenes (tota	1)		ND 1.5 ND ND	ug/L ug/L ug/L ug/L	0. 0. 1.	50 50 50		
Surrogate			Recovery					
a,a,a-Trifluc	protoluene		100	%				

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Lisa Armstrong

Approved By: Karen Helgerson

Enseco

e mare a cola

PCBs

Method 8080

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 91-4-24-6-6 001128-0003-SA AQUEOUS 26 APR 91	Company Sampled: 24 AP Prepared: 26 AP	R 91 R 91	Received: 26 Analyzed: 26	APR 91 APR 91
Parameter		Result	Units	Reporting S Limit	
Aroclar 1016 Aroclar 1221 Aroclar 1232 Aroclar 1232 Aroclar 1248 Aroclar 1254 Aroclar 1254		ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 1.0 1.0	

PRELIMINARY Subject to revision

ND = Not detectedNA = Not applicableReported By: Craig McKenna

Approved By:

H.E. MINARY DAL

	Benzene, Tol	uene, Ethyl Benzene and	Xylene	s (BTEX)	
•		Method 8020			
Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 91-4-26-6-7 001132-0004-SA AQUEOUS 29 APR 91	Company Sampled: 27 APR 91 Prepared: NA		Received: 29 Analyzed: 01	APR 91 May 91
Parameter		Result	Units	Reporting Limit	
Benzene Toluene Ethylbenzene Xylenes (tota	۱])	ND 0.80 ND ND	ug/L ug/L ug/L ug/L	0.50 0.50 0.50 1.0	
Surrogate		Recovery			
a,a,a-Trifluo	orotoluene	99.0	%		

nseco

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Lisa Armstrong

Approved By: Karen Helgerson

nseco

PCBs

Method 8080

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 91-4-26-6-7 001132-0004-SA AQUEOUS 29 APR 91	Company Sampled: Prepared:	27 APR 91 29 APR 91		Received: 29 APR Analyzed: 29 APR	91 91
Parameter		I	Result	Units	Reporting Limit	
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260			ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 0.50 0.50 0.50 0.50 1.0	

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Janet Mathews

Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX)

Method 8020

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 91-4-26-6-8 001132-0002-SA AQUEOUS 29 APR 91	Company Sampled: Prepared:	26 APR 91		Received: Analyzed:	29 01	APR MAY	91 91
Parameter			Result	Units	Report Limit	ing		
Benzene Toluene Ethylbenzene Xylenes (tota	a1)		ND 0.97 ND ND	ug/L ug/L ug/L ug/L	0. 0. 1.	50 50 50		
Surrogate			Recovery					
a,a,a-Trifluc	protoluene		125	%				

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Lisa Armstrong

Approved By: Karen Helgerson

PC8s

Method 8080

Client Name: Client ID: Lab ID: Matrix: Authorized:	Applied Energy 91-4-26-6-8 001132-0002-SA AQUEOUS 29 APR 91	Sampled: Prepared:	26 APR 29 APR	91 91		Received: Analyzed:	29 29	APR APR	91 91
Parameter			Result		Units	Report Limi	ing t		
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254			ND ND ND ND ND ND		ug/L ug/L ug/L ug/L ug/L ug/L		. 50 . 50 . 50 . 50 . 50 . 0		

PRELIMINARY Subject to revision

ND = Not detected NA = Not applicable

Reported By: Janet Mathews

Approved By: Karen Helgerson

SECTION 6.0

RADIO ISOTOPE DATING RESULTS

6.1 Summary of Analyses

				CARBON-14	TRITIUN	л DATA
(Well or Location ID)	DATE SAMPLED	AQUIFER	FLOW ¹ RELATIONSHIP	AGE (Years)	TRITIUM UNITS	TRITIUM AGE (Years)
6-РМ-2 8-РМ-2	4/4/91 4/4/91	Shallow Perched	Up-gradient	5650 ± 190 8345 + 145		
6-Tank-C	3/19/91	Bluff/Entrada	N/A	2800 ± 85	2.8 ± 2.2	> 30
6-CH-3-C 6-PW-4	3/19/91 4/4/91	Shallow Perched Shallow Perched	Down-gradient Down-gradient	3545 ± 90 3385 ± 150	7.1 ± 2.3	> 30
6-CH-5-C	3/19/91	Bluff	Down-gradient	> 42,000	2.8 ± 2.2	> 30
6-5D	4/4/91	Bluff	Cross-gradient	30,400 ± 3900		

SUMMARY OF RADIO ISOTOPE DATING OF GROUND WATER AT LAGUNA

¹Flow relationship referenced to location of tank

PRELIMINARY Subject to revision

I

i

i

6.2 Raw Laboratory Data

KRUEGER ENTERPRISES, INC. GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 876-3691

RADIOCARBON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No. GX-16681-Priority

Your Reference: letter of 04/05/91

Date Received: 04/08/91 Date Reported: 04/14/91

Submitted by: Dale Hammermeister Daniel B. Stephens & Assoc., Inc. 4415 Hawking, N.E. Albuquerque, NM 87109

Sample Name: 6-PW-8. Barium carbonate.

AGE = 5650 +/- 190 C-14 years BP (C-13 corrected). (49.5 +/- 1.2) % of the modern (1950) C-14 activity.

Description: Sample of barium salts from water sample.

Pretreatment: The barium salt precipitate was rapidly vacuum filtered and immediately hydrolyzed, under vacuum, to recover carbon dioxide from the barium carbonates for the analysis. C-13 analysis was made on a small portion of the same evolved gas.

> PRELIMINARY. Subject to revision

Comment:

 $\delta^{13}C_{PDB} = -16.7 \%$

Notes: This date is based upon the Libby half life (5570 years) for ¹⁴C. The error stated is ±1σ as judged by the analytical data alone. Our modern standard is 95% of the activity of N.B.S. Oxalic Acid. The age is referenced to the year A.D. 1950.

_ _ _ _ _ _ _ _ _ _

KRUEGER ENTERPRISES, INC. GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET · CAMBRIDGE. MASSACHUSETTS 02139 · (617) 876-3691

RADIOCARBON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

04/08/91

04/14/91

Date Received:

Date Reported:

Our Sample No. GX-16678-Priority

Your Reference: letter of 04/05/91

Submitted by: Dale Hammermeister Daniel B. S. & Assoc., Inc. 4415 Hawking, N.E. Albuquerque, NM 87109

Sample Name: 6-PW-5. Barium carbonate.

AGE = 8345 + - 145 - 144 years BP (C-13 corrected). (35.4 + - 0.6) % of the modern (1950) C-14 activity.

Description: Sample of barium salts from water sample.

Pretreatment: The barium salt precipitate was rapidly vacuum filtered and immediately hydrolyzed, under vacuum, to recover carbon dioxide from the barium carbonates for the analysis. C-13 analysis was made on a small portion of the same evolved gas.

> PRELIMINARY Subject to revision

Comment:

 $\delta^{13}C_{PDB} = -14.6 \%$

Notes: This date is based upon the Libby half life (5570 years) for ¹⁴C. The error stated is ±1σ as judged by the analytical data alone. Our modern standard is 95% of the activity of N.B.S. Oxalic Acid. The age is referenced to the year A.D. 1950.

GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET · CAMBRIDGE, MASSACHUSETTS 02139 · (617) 876-3691

RADIOCARBON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Date Reported:

03/28/91

Our Sample No.	GX-16650-Priority	Date Received:	03/22/91

Your Reference: letter of 03/21/91

Submitted by: Dale Hammermeister Daniel B. S. & Assoc., Inc. 4415 Hawking, N.E. Albuquerque, NM 87109

Sample Name: 6-Tank-C. Water Sample.

AGE = 2800 + - 85 C - 14 years BP (C-13 corrected). (70.6 + - 0.7)% of the modern (1950) C-14 activity

Description: Sample of water.

Pretreatment: The barium salt precipitate was rapidly vacuum filtered and immediately hydrolyzed, under vacuum, to recover carbon dioxide from the barium carbonates for the analysis. C-13 analysis was made on a small portion of the same evolved gas.

PRELIMINARY Subject to revision

Comment:

- 8.8 , $\delta^{13}C_{PDB} =$

Notes: This date is based upon the Libby half life (5570 years) for ¹⁴C. The error stated is $\pm 1\sigma$ as judged by the analytical data alone. Our modern standard is 95% of the activity of N.B.S. Oxalic Acid. The age is referenced to the year A.D. 1950.

KRUEGER ENTERPRISES, INC. GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET . CAMBRIDGE. MASSACHUSETTS 02139 . (617) 876-3691

RADIOCARBON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No.	GX-16682-Priority	Date Received:	04/08/91
Your Reference:	letter of 04/05/91	Date Reported:	04/14/91

Submitted by: Dale Hammermeister Daniel B. Stephens & Assoc., Inc. 4415 Hawking, N.E. Albuquerque, NM 87109

Sample Name: Supply Well. Barium carbonate.

AGE = 2670 +/- 90 C-14 years BP (C-13 corrected). (71.7 +/- 0.8) % of the modern (1950) C-14 activity.

Description: Sample of barium salts from water sample.

Pretreatment: The barium salt precipitate was rapidly vacuum filtered and immediately hydrolyzed, under vacuum, to recover carbon dioxide from the barium carbonates for the analysis. C-13 analysis was made on a small portion of the same evolved gas.

PRELIM Subject to revision

Comment:

 $\delta^{13}C_{PDB} = -8.4 \%$

Notes: This date is based upon the Libby half life (5570 years) for ¹⁴C. The error stated is ±1σ as judged by the analytical data alone. Our modern standard is 95% of the activity of N.B.S. Oxalic Acid. The age is referenced to the year A.D. 1950.

GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET · CAMBRIDGE, MASSACHUSETTS 02139 · (617) 876-3691

RADIOCARBON	AGE DETERMINATION	REPORT OF ANALYTICAL WORK		
Our Sample No.	GX-16651-Priority	Date Received:	03/22/91	
Your Reference:	letter of 03/21/91	Date Reported:	03/28/91	
Submitted by:	Dale Hammermeister Daniel B. S. & Assoc., Inc. 4415 Hawking, N.E. Albuquerque, NM 87109			

6-CH-3-C. Sample Name: Water Sample.

3545 +/- 90 C-14 years BP (C-13 corrected). AGE =(64.3 +/- 0.7)% of the modern (1950) C-14 activity

Sample of water. Description:

Pretreatment: The barium salt precipitate was rapidly vacuum filtered and immediately hydrolyzed, under vacuum, to recover carbon dioxide from the barium carbonates for the analysis. C-13 analysis was made on a small portion of the same evolved gas.

PRELIVIN Subject to revision

Comment:

 $\delta^{13}C_{POB} = -12.1 q_{-12}$

Notes: This date is based upon the Libby half life (5570 years) for ¹⁴C. The error stated is $\pm 1\sigma$ as judged by the analytical data alone. Our modern standard is 95% of the activity of N.B.S. Oxalic Acid. The age is referenced to the year A.D. 1950.

GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 876-3691

RADIOCARBON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

04/08/91

Our Sample No. GX-16679-Priority

Date Reported: 04/14/91

Date Received:

Your Reference: letter of 04/05/91

Submitted by: Dale Hammermeister Daniel B. Stephens & Assoc., Inc. 4415 Hawking, N.E. Albuquerque, NM 87109

Sample Name: 6-PW-4. Barium carbonate.

AGE = 3385 +/- 150 C-14 years BP (C-13 corrected). (65.6 +/- 1.2) % of the modern (1950) C-14 activity.

Description: Sample of barium salts from water sample.

Pretreatment: The barium salt precipitate was rapidly vacuum filtered and immediately hydrolyzed, under vacuum, to recover carbon dioxide from the barium carbonates for the analysis. C-13 analysis was made on a small portion of the same evolved gas.

PRELIMINA Subject to revision

Comment:

 $\delta^{13}C_{PDB} = -10.8 \ \gamma_{-}$

Notes: This date is based upon the Libby half life (5570 years) for ¹⁴C. The error stated is ±1₀ as judged by the analytical data alone. Our modern standard is 95% of the activity of N.B.S. Oxalic Acid. The age is referenced to the year A.D. 1950.

GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET · CAMBRIDGE, MASSACHUSETTS 02139 · (617) 876-3691

RADIOCARBON AGE DETERMINATION		REPORT OF ANALYTICAL WOR		
Our Sample No.	GX-16652-Priority	Date Received:	03/22/91	
Your Reference:	letter of 03/21/91	Date Reported:	03/28/91	
Submitted by:	Dale Hammermeister Daniel B. S. & Assoc., Inc. 4415 Hawking, N.E. Albuquerque, NM 87109			
Sample Name:	6-CH-5-C. Water Sample.			

Greater than 42,000 C-14 years BP (C-13 corrected). AGE =(0.0 + - 0.4)% of the modern (1950) C-14 activity

Sample of water. Description:

The barium salt precipitate was rapidly vacuum filtered Pretreatment: and immediately hydrolyzed, under vacuum, to recover carbon dioxide from the barium carbonates for the analysis. C-13 analysis was made on a small portion of the same evolved gas.

PRELIMIN Subject to revision

Comment: No C-14 activity detected.

5.8 $\delta^{13}C_{PDB} =$

Notes: This date is based upon the Libby half life (5570 years) for ¹⁴C. The error stated is $\pm 1\sigma$ as judged by the analytical data alone. Our modern standard is 95% of the activity of N.B.S. Oxalic Acid. The age is referenced to the year A.D. 1950.

GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 876-3691

RADIOCARBON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

04/08/91

04/14/91

Date Received:

Date Reported:

Our Sample No. GX-16680-Priority

Your Reference: letter of 04/05/91

Submitted by: Dale Hammermeister Daniel B. Stephens & Assoc., Inc. 4415 Hawking, N.E. Albuquerque, NM 87109

Sample Name: 6-5D. Barium carbonate.

AGE = 30,400 +/- 3900 C-14 years BP (C-13 corrected). (2.3 +/- 1.0) % of the modern (1950) C-14 activity.

Description: Sample of barium salts from water sample.

Pretreatment: The barium salt precipitate was rapidly vacuum filtered and immediately hydrolyzed, under vacuum, to recover carbon dioxide from the barium carbonates for the analysis. C-13 analysis was made on a small portion of the same evolved gas.

PRELIMINARY Subject to revision

Comment:

 $\delta^{13}C_{PDB} = -7.4 \%$

Notes: This date is based upon the Libby half life (5570 years) for ¹⁴C. The error stated is ±1σ as judged by the analytical data alone. Our modern standard is 95% of the activity of N.B.S. Oxalic Acid. The age is referenced to the year A.D. 1950.

GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 876-3691

Dale Hammermeister Daniel B. Stephens & Assoc., Inc. 4415 Hawkins, N.E. Albuquerque, NM 87109 Date Received: 3/22/91 Date Reported: 3/28/91 Reference: Project #89-030L

REPORT OF TRITIUM ANALYSES

<u>Our Sample No.</u>	Your Sample No.	<u>Tritium Units</u>
T-4356	6-TANK-T	2.8 +/- 2.2
T-4357	6-CH-3-T	7.1 +/- 2.3
T-4358	6-CH-5-T	2.8 +/- 2.2

PRELIMINA Subject to revision

SECTION 7.0

OTHER DATA POSSIBLY RELATED TO THE SHALLOW PERCHED SYSTEM

7.1 Lineament Orientations Near Compressor Station No. 6

Location of Possible Ground Water Discharge Points Along the Rio Gypsum

7.2

Based on the Presence of Phreatophytes

7.3 Water Use Data for Compressor Station No. 6

MONTHLY WATE USEAGE LAGUNA STOCK TANK

3/87 0 77500 4/87 77500 2 118900 5/87 196400 3 186600 6/87 383000 4 282000 7/87 665000 5 336000 9/87 1249000 7 234000 10/87 1483000 8 152000 11/87 1635000 9 63000 12/87 1698000 10 63000 1/88 1752000 12 40000 2/88 1846000 13 54000 4/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STDCK 6/88 2267000 16 193000 20 131000 11/88 325600 21 57000 11 148000 10/88 319900 22 61000 FILLED STDCK TANK 1/89 3626000 23 78000 24	MO/YR	METER	0	GALLONS	REMARKS
3/87 77500 1 1/1000 5/87 196400 3 185600 6/87 383000 4 282000 7/87 6655000 5 336000 8/87 1001000 6 248000 9/87 1249000 7 234000 10/87 1483000 8 152000 11/87 1635000 9 63000 12/87 1698000 10 653000 1/88 1752000 11 54000 1/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STDCK TANK 6/88 2851000 17 324000 FILLED STDCK TANK 8/88 2891000 18 30000 1/88 3256000 21 57000 12/89 343600 25 54000 1/89 3255000 21 57000 1/89 325000 27 273000 2/89 348600 25 54000 5/89 3899000 <td>2/07</td> <td>0</td> <td>1</td> <td>77500</td> <td></td>	2/07	0	1	77500	
47/87 19/800 2 118900 5/87 196400 3 185600 6/87 383000 4 282000 7/87 665000 5 336000 8/87 1001000 6 248000 9/87 1249000 7 234000 10/87 1483000 8 152000 11/88 1752000 11 54000 1/88 1752000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 5488 2/88 2074000 15 142000 FILLED STDCK TANK 6/88 2267000 16 193000 7/88 7/88 2591000 17 324000 FILLED STDCK TANK 6/88 2267000 18 30000 11/88 319900 10/88 3199000 20 131000 11/88 325600 21 5700 12/88 3317000 22 61000 FILLED STDCK TANK 6/89 4176000 28 277000 7/89	3/8/	77500	1	119900	
37.87 195400 3 18800 67.87 365000 5 336000 8/87 1001000 6 248000 9/87 1249000 7 234000 10/87 1483000 8 152000 11/87 1635000 9 63000 12/87 1698000 10 63000 12/88 1792000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 5488 2074000 15 142000 FILLED STDCK TANK 6/88 2267000 16 193000 7788 2591000 17 324000 FILLED STDCK TANK 8/88 2891000 18 300000 788 3068000 19 177000 10/88 3199000 20 131000 11/88 325000 21 57000 12/89 3434000 24 39000 3493 348000 25 54000 3/89 3488000 25 54000 7273000 FILLED STDCK TANK <td>4/0/</td> <td>195400</td> <td>2</td> <td>195500</td> <td></td>	4/0/	195400	2	195500	
B/B/ 383000 4 22000 7/87 665000 5 336000 9/87 1249000 7 234000 10/87 1483000 8 152000 11/87 1635000 9 63000 12/87 1698000 10 63000 1/88 1752000 12 40000 FILLED STDCK 2/88 1792000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 FILLED STDCK TANK 5/88 2074000 15 142000 FILLED STDCK TANK 6/88 2267000 16 193000 7 324000 FILLED STDCK TANK 8/88 2891000 19 177000 10/88 319900 20 131000 11/88 3256000 21 57000 57000 2/89 3434000 24 39000 2/89 3434000 24 39000 338000 5/89 3999000 27 273000	3/8/	196400	د م	100000	
7/87 EBS000 5 335000 9/87 1249000 7 234000 10/87 1483000 8 152000 11/87 1635000 9 63000 12/87 1698000 10 63000 1/88 1752000 11 54000 2/88 1846000 13 54000 3/88 1846000 13 54000 4/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STUCK TANK 6/88 2267000 16 193000 7 248000 7/88 2591000 17 324000 FILLED STUCK TANK 8/88 2891000 18 300000 7 12/88 3157000 20 131000 11/88 12/88 3199000 22 61000 FILLED STUCK TANK 1/89 3395000 27 73000 12/88 3/89 3488000 25 54000 4/89 3626000 26 138000	6/8/	383000	4	282000	
B/B/ 1001000 B 248000 9/87 1248000 7 234000 10/87 1483000 B 152000 11/87 1635000 9 63000 12/87 1636000 10 63000 1/88 1752000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 FILLED STDCK TANK 4/88 1932000 14 86000 FILLED STDCK TANK 6/88 2267000 16 193000 FILLED STDCK TANK 8/88 2891000 18 30000 FILLED STDCK TANK 8/88 3058000 21 57000 57000 12/83 317000 22 61000 FILLED STDCK TANK 1/83 2355000 21 57000 57400 489 439000 24 39000 2/89 3434000 24 39000 37800 FILLED STDCK TANK 6/89 4176000 28 277000 FILLED STDCK TANK <tr< td=""><td>//8/</td><td>665000</td><td>5</td><td>336000</td><td></td></tr<>	//8/	665000	5	336000	
9/8/ 1249000 7 234000 10/87 1483000 8 152000 11/87 1635000 9 63000 12/88 1752000 11 54000 2/88 1752000 12 40000 FILLED STDCK 2/88 1846000 13 54000 4/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STDCK 6/88 2267000 16 193000 7 324000 FILLED STDCK 6/88 2267000 18 300000 7 324000 FILLED STDCK TANK 8/88 2891000 18 300000 131000 11/88 3199000 22 61000 FILLED STDCK TANK 1/83 3235000 23 78000 3488000 25 54000 3/89 3438000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STDCK <td>8/8/</td> <td>1001000</td> <td>6</td> <td>248000</td> <td></td>	8/8/	1001000	6	248000	
10/87 1483000 B 152000 11/87 1635000 9 63000 1/88 1752000 12 40000 FILLED STDCK TANK 2/88 1792000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 4/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STDCK TANK 6/88 2257000 16 193000 7/88 2591000 17 324000 FILLED STDCK TANK 8/88 2831000 18 300000 9 9/88 3068000 21 57000 11/88 10/88 3179000 22 61000 FILLED STDCK TANK 1/89 3355000 23 78000 2/89 2/89 3434000 24 39000 2/89 3/89 3488000 25 54000 5400 5/89 3899000 27 273000 FILLED STDCK TANK 6/89 4176000 28 277000 718	9/87	1249000	7	234000	
11/87 1635000 9 63000 12/87 1698000 10 63000 2/88 1752000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 FILLED STDCK TANK 3/88 1846000 15 142000 FILLED STDCK TANK 6/88 2267000 16 193000 FILLED STDCK TANK 8/88 2891000 18 300000 FILLED STDCK TANK 8/88 2891000 18 300000 9/88 3068000 19 177000 10/88 3199000 20 131000 11/88 3255000 21 57000 12/88 317000 22 61000 FILLED STDCK TANK 1/89 3235000 23 78000 2/89 3434000 24 39000 3/89 3488000 25 54000 4/89 362600 25 54000 5/89 399000 37 395000 FILLED STDCK TANK 8/89 4909000 <td>10/87</td> <td>1483000</td> <td>8</td> <td>152000</td> <td></td>	10/87	1483000	8	152000	
12/87 1698000 10 63000 1/88 1752000 11 54000 2/88 1792000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 4/88 1932000 14 86000 4/88 267000 16 193000 7/88 2267000 16 193000 7/88 2891000 18 300000 9/88 3068000 19 177000 10/88 3199000 20 131000 12/89 3317000 22 61000 FILLED STDCK TANK 1/89 2395000 23 78000 24 39000 2/89 3434000 24 39000 37800 2789 348000 25 54000 5499 3/89 348000 25 54000 5499 392000 338000 11/89 537500 31 466000 1/89 4375000 32 74000 374000 274000 274000 274000 274000 274000 274000<	11/87	1635000	9	63000	
1/88 1752000 11 54000 2/88 1792000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 4/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STDCK TANK 6/88 2267000 16 193000 7/88 2591000 17 324000 FILLED STDCK TANK 8/88 2891000 18 300000 9 9/88 3068000 19 177000 10/88 3199000 20 131000 11 11/89 3255000 21 57000 12 2/89 3434000 24 39000 3/89 3488000 25 54000 3/89 3488000 25 54000 138000 5/89 3939000 27 273000 FILLED STDCK TANK 6/89 407600 28 277000 7/89 4571000 29 395000 FILLED STDCK TANK 8/89 4909000 32 74000 11/89 57	12/87	1698000	10	63000	
2/88 1792000 12 40000 FILLED STDCK TANK 3/88 1846000 13 54000 4/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STDCK TANK 6/88 2267000 16 193000 7/88 2591000 18 30000 9/88 3068000 19 177000 10/88 3199000 20 131000 11/89 3256000 21 57000 12/88 317000 22 61000 FILLED STDCK TANK 1/89 3255000 23 78000 24 2/89 3434000 25 54000 25 4/89 3626000 26 138000 25 5/89 3999000 27 273000 FILLED STDCK TANK 6/89 4176000 28 277000 1 1/89 3575000 31 466000 1 1/90 5519000 32 74000 1 1/90 5549000 32	1/88	1752000	11	54000	
3/88 1846000 13 54000 4/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STOCK TANK 6/88 2267000 16 193000 7/88 2591000 17 324000 FILLED STOCK TANK 8/88 2891000 18 30000 9/88 3068000 19 177000 10/88 3199000 20 131000 11/89 3255000 21 57000 12/89 3434000 24 39000 2/89 3434000 24 39000 3/89 3488000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 7 7/89 4571000 29 395000 FILLED STOCK TANK 8/89 4909000 30 338000 11/89 1/90 5519000 33 70000 2/90	2/88	1792000	12	40000	FILLED STOCK TANK
4/88 1932000 14 86000 5/88 2074000 15 142000 FILLED STDCK TANK 6/88 2267000 16 193000 7/88 2591000 17 324000 FILLED STDCK TANK 8/88 2891000 18 300000 9/88 3068000 19 177000 10/88 3199000 20 131000 11/89 3256000 21 57000 12/88 317000 22 61000 FILLED STDCK TANK 1/89 3395000 23 78000 24 39000 2/89 3434000 24 39000 24 3900 3/89 3488000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STDCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STDCK TANK 6/89 338000 11/89 5375000 31 466000 34 69000 <td< td=""><td>3/88</td><td>1846000</td><td>13</td><td>54000</td><td></td></td<>	3/88	1846000	13	54000	
5/88 2074000 15 142000 FILLED STDCK TANK 6/88 2257000 16 193000 FILLED STDCK TANK 8/88 2591000 18 300000 FILLED STDCK TANK 9/88 3068000 19 177000 131000 11/88 3256000 21 57000 12/88 3317000 22 61000 FILLED STDCK TANK 1/89 3256000 23 78000 24 39000 27 273000 FILLED STDCK TANK 1/89 3434000 24 39000 25 54000 4/89 426900 25 54000 5000 5/89 3899000 27 273000 FILLED STDCK TANK 6/89 4176000 28 277000 7/89 4571000 33 38000 11/89 3375000 31 466000 39 354000 32 74000 37000 35 69000 37000 35 69000 3790 5656000 35 69000 <td>4/88</td> <td>1932000</td> <td>14</td> <td>86000</td> <td></td>	4/88	1932000	14	86000	
6/88 2267000 16 193000 7/88 2591000 17 324000 FILLED STDCK TANK 8/88 2891000 18 30000 9/88 3068000 19 177000 10/88 3199000 20 131000 11/88 3256000 21 57000 12/89 3317000 22 61000 FILLED STDCK TANK 1/89 3395000 23 78000 2/89 3434000 24 39000 3/89 3488000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STDCK TANK 8/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STDCK TANK 8/89 4909000 30 338000 11/89 5375000 1/90 5519000 33 70000 2/90 587000 34 68000 3/90 5656000 35 69000 4/90 577500 36 <td>5/88</td> <td>2074000</td> <td>15</td> <td>142000</td> <td>FILLED STOCK TANK</td>	5/88	2074000	15	142000	FILLED STOCK TANK
7/88 2591000 17 324000 FILLED STOCK TANK 8/88 2891000 18 300000 9/88 3068000 19 177000 10/88 3199000 20 131000 11/89 3256000 21 57000 12/88 3317000 22 61000 FILLED STOCK TANK 1/89 3395000 23 78000 24 2/89 3434000 24 39000 24 3/89 3488000 25 54000 4/89 4/89 3626000 26 138000 57 5/89 3899000 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 749 7/89 4571000 32 74000 17400 1/89 5375000 31 466000 12/89 1/90 5519000 32 74000 4900 1/90 5519000 37 40000 METER BROKEN 6/90 130000 38 130000 FILLED STOCK TANK	6/88	2267000	16	193000	
8/88 2891000 18 300000 9/88 3068000 19 177000 10/88 3199000 20 131000 11/88 3256000 21 57000 12/89 3317000 22 61000 FILLED STDCK TANK 1/89 3395000 23 78000 2/89 3434000 24 39000 2/89 3434000 24 39000 37800 2/89 38900 25 54000 4/89 3626000 26 138000 578700 54900 32 77000 7/89 4571000 29 395000 FILLED STDCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 12/89 5449000 33 70000 1/90 5519000 35 69000 6900 690 690 690 690 690 690 690 690 690 690 690 690 690 <td>7/88</td> <td>2591000</td> <td>17</td> <td>324000</td> <td>FILLED STOCK TANK</td>	7/88	2591000	17	324000	FILLED STOCK TANK
9/88 3068000 19 177000 10/88 3199000 20 131000 11/89 3256000 21 57000 12/88 3317000 22 61000 FILLED STOCK TANK 1/89 3395000 23 78000 3/89 3434000 24 39000 3/89 3488000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STOCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 11/89 5375000 31 466000 33 70000 11/89 5375000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 6/90 130000 38<	8/88	2891000	18	300000	
10/88 3199000 20 131000 11/88 3256000 21 57000 12/88 3317000 22 61000 FILLED STOCK TANK 1/89 3395000 23 78000 2/89 3434000 24 39000 3/89 3488000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STOCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 74000 12/89 5449000 35 69000 1/90 5519000 33 70000 8119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BRDKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90	9/88	3068000	19	177000	
11/88 3256000 21 57000 12/88 3317000 22 61000 FILLED STOCK TANK 1/89 3395000 23 78000 2/89 3434000 24 39000 3/89 348000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STOCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 12/89 5449000 32 74000 1/90 5519000 33 70000 34 68000 3/90 69000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BR0KEN 6/90 130000 8	10/88	3199000	20	131000	
12/88 3317000 22 61000 FILLED STOCK TANK 1/89 3395000 23 78000 2/89 3434000 24 39000 3/89 3488000 25 54000 4/89 3626000 26 138000 5/89 389900 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STOCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000	11/88	3256000	. 21	57000	
1/89 3395000 23 78000 2/89 3434000 24 39000 3/89 3488000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STDCK 6/89 4176000 28 277000 FILLED STDCK TANK 6/89 4571000 29 395000 FILLED STDCK TANK 8/89 4909000 30 338000 11/89 ST5000 31 466000 12/89 5449000 32 74000 11/89 ST5000 34 68000 2/90 5587000 36 119000 FILLED STDCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 NEW METER INSTALLED 7/90 685000 40 201000 114000 1209000 <t< td=""><td>12/88</td><td>3317000</td><td>22</td><td>61000</td><td>FILLED STOCK TANK</td></t<>	12/88	3317000	22	61000	FILLED STOCK TANK
2/89 3434000 24 35000 2/89 3488000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STOCK TANK 8/89 4909000 30 338000 11/89 11/89 5375000 31 466000 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 36 119000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 89 90 8/90 685000 40 201000 91 146000 1209000 1/910<	1/89	3395000	22	78000	
2/50 540000 24 55000 3/89 3488000 25 54000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STDCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STDCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 1/90 519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STDCK TANK 5/90 5815000 37 40000 METER BRDKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 84900 1049000 42 155000 9/90 685000 40 201000 914 </td <td>2/89</td> <td>3434000</td> <td>24</td> <td>39000</td> <td></td>	2/89	3434000	24	39000	
3/30 348000 25 34000 4/89 3626000 26 138000 5/89 3899000 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STOCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 10/900 9/90 685000 40 201000 11/90 9/90 146000 43 97000 12/90 1200000 1/91 1248000 <td< td=""><td>2/89</td><td>2488000</td><td>27</td><td>54000</td><td></td></td<>	2/89	2488000	27	54000	
7/85 3829000 27 273000 FILLED STOCK TANK 6/89 4176000 28 277000 7/89 4571000 29 395000 FILLED STOCK TANK 8/89 4909000 30 338000 11/89 11/89 5375000 31 466000 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 89400 89 8/90 685000 40 201000 999 999 990 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000	4/09	3400000	24	129000	
3/33 3835000 27 273000 FILLED STUCK TANK 6/89 4176000 29 395000 FILLED STUCK TANK 8/89 4909000 30 338000 FILLED STUCK TANK 8/89 4909000 30 338000 FILLED STUCK TANK 8/89 4909000 30 338000 FILLED STUCK TANK 8/89 5375000 31 466000 12/89 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STUCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 894000 41 209000 8/90 685000 40 201000 11/90 1146000 43 97000 12/90 1200000 44 548	5/00	200000	20	272000	FILLED STOCK TANK
8/89 4178000 28 277000 7/89 4571000 29 395000 FILLED STDCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STDCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 894000 41 209000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STDCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 <td< td=""><td>5/83</td><td>4175000</td><td>2/</td><td>273000</td><td>FILLED STOCK TANK</td></td<>	5/83	4175000	2/	273000	FILLED STOCK TANK
7/39 43/1000 29 393000 FILLED STUCK TANK 8/89 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STUCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STUCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 45 57000 3/91 1355000 47 50000	7/00	4176000	28	277000	ETHER CTOCK TANK
8789 4909000 30 338000 11/89 5375000 31 466000 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 3/91 1355000 48 85000	7789	43/1000	23	393000	FILLED STUCK TANK
11789 5375000 31 466000 12/89 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 685000 40 201000 9/90 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 45 57000 3/91 1355000 47 50000 3/91 1355000 47	8/89	4909000	30	338000	
12789 5449000 32 74000 1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STDCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8990 685000 40 201000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STDCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 45 57000 3/91 1355000 47 50000 3/91 1355000 47 50000 4/91 1440000 48 85000 </td <td>11/89</td> <td>5375000</td> <td>31</td> <td>466000</td> <td></td>	11/89	5375000	31	466000	
1/90 5519000 33 70000 2/90 5587000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	12/89	5449000	32	74000	
2/90 558/000 34 68000 3/90 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 9/90 894000 42 155000 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	1/90	5519000	33	/0000	
3790 5656000 35 69000 4/90 5775000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 9/90 894000 42 155000 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 2/91 1305000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	2790	5587000	34	68000	
4/90 57/5000 36 119000 FILLED STOCK TANK 5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 2/91 1305000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	3790	5656000	35	69000	
5/90 5815000 37 40000 METER BROKEN 6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 2/91 1305000 45 48000 2/91 1305000 47 50000 3/91 1355000 47 50000 4/91 1440000 48 85000	4/90	5775000	36	119000	FILLED STOCK TANK
6/90 130000 38 130000 NEW METER INSTALLED 7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	5/90	5815000	37	40000	METER BROKEN
7/90 484000 39 354000 8/90 685000 40 201000 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	6/90	130000	38	130000	NEW METER INSTALLED
8/90 685000 40 201000 9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	7/90	484000	39	354000	
9/90 894000 41 209000 FILLED STOCK TANK 10/90 1049000 42 155000 11/90 1146000 43 97000 12/90 1200000 44 54000 1/91 1248000 45 48000 2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	8/90	685000	40	201000	
10/9010490004215500011/901146000439700012/90120000044540001/91124800045480002/91130500046570003/91135500047500004/9114400004885000	9790	894000	41	209000	FILLED STOCK TANK
11/901146000439700012/90120000044540001/91124800045480002/91130500046570003/91135500047500004/9114400004885000	10/90	1049000	42	155000	
12/90120000044540001/91124800045480002/91130500046570003/91135500047500004/9114400004885000	11/90	1146000	43	97000	
1/91124800045480002/91130500046570003/91135500047500004/9114400004885000	12/90	1200000	44	54000	
2/91 1305000 46 57000 3/91 1355000 47 50000 4/91 1440000 48 85000	1/91	1248000	45	48000	
3/91 1355000 47 50000 4/91 1440000 48 85000	2/91	1305000	46	57000	
4/91 1440000 48 85000	3/91	1355000	47	50000	
	4/91	1440000	48	85000	

PRELIMINARY Subject to revision

Transwestern Pipeline Company DIVISION

TECHNICAL OPERATIONS

P. O. Box 1717 • Roswell, New Mexico 88202-1717 33

December 18, 1991

Mr. Roger Anderson New Mexico Oil Conservation Division P.O. Box 1188 Santa Fe, New Mexico

Gus- 95

Re: Discharge Plan Application Transwestern Pipeline Company Laguna Compressor Station No. 6 Valencia County, New Mexico

Dear Mr. Anderson:

The discharge plan application for the above referenced facility is being presented to your agency on behalf of Transwestern Pipeline Company. If you require any additional information or clarification, please contact me at (505) 625-8022.

- General Information Τ.
- Α. Discharger/Leagally Responsible Party

Transwestern Pipeline Company Name: Laguna Compressor Station Attn: Roger LaLonde

- Belen District Office Address: P.O.Box 1249 Belen, New Mexico 87002 (505) 864-7461
- Β. Local Representative or Contact Person

Mr. Scott Stone, Compression Supervesor

Location of Discharge c.

> Legal Description: Township 9 North, Range 5 West, Northeast 1/4 Section 18 and Southeast 1/4 Section 7, Valencia County, New Mexico.

A state of New Mexico map of the immediate site vacinity and a plot plan showing location of discharge, compressor station equipment and other site information required below are attached in APPENDIX A.

Note: All onsite routine operational discharges are to sumps or an above-ground tank with subsequent transfer offsite by an appropriate disposal company. No onsite discharges are intentionally allowed to enter surface waters or groundwater.

D. Type of Natural Gas Operation

This mainline compressor station provides compression for the transmission of natural gas in the Transwestern system. It receives natural gas through 30" transmission lines and compresses the gas west to Transwestern Pipeline Compressor Station 5, Thoreau, New Mexico.

E. <u>Copies</u>

Three copies of the discharge plan application are enclosed.

F. Affirmation

I hereby certify that I am familiar with the information contained in and submitted with the application and that such information is true, accurate and complete to the best of my knowledge and belief.

Sincerely,

Larry T. Campbell Compliance Environmentalist

LTC/EEC

3 copies

cc: Scott Stone w/attach Roger LaLonde w/o attach Doc Alpers w/o attach

- II. Plant Facilities
- A. <u>Sources and Quantities of Effluent and Plant Fluids:</u> For each source, primary quality type (e.g., high TDS water, hydrocarbons, washwater, sewage), estimated quantities, and major additives, if any are provided.
 - 1. Scrubbers: The incoming gas stream to this facility does contain few liquids in the form of natural gas pipeline liquids. These entrained liquids are then removed by the operation of the two (2) onsite inlet scrubbers and collected in the mist extractor and then pumped to a 500 bbl. pipeline liquids tank. Liquids which are received during pigging operations are temporarily collected in a 400 gallon sump and transferred to the 500 bbl. pipeline liquids tank.
 - 2. Engines and cooling waters: The engine and cooling water stream is collected and reclaimed for reuse.
 - 3. Domestic Sewage: Sewage is directed to the onsite septic tanks. The effluent from the tanks is then directed to distribution boxes and then to the leech fields. There are three leech fields located on the station property. A small leech fields services one domestic residences while a larger leech field services four domestic residences. The third leech field services the toilet and shower located in the warehouse. These septic systems are completely separate from the operational practices at this facility.
 - Engine Wash Down Water and Floor Drains: Wastewater 4. collected from cleaning and washdown operations are directed to a series of floor drains and collected into a 400 gallon sump. The effluent is then pumped to a 210 bbl. oily waste water tank. Only approved biodegradable solvents (i.e. epa 2000) are used in this process. The liquids stored in the 210 bbl. tank are tested for H.W. characterization prior to being removed by a wastewater hauler for proper disposal. Truck washing operations are performed at this facility and the waste water is collected in a sump and also goes to the 210 bbl. oily waste water tank. The compressor packing housing drains, oil tank and glycol tank overflow lines are tied into this sump and oily waste water tank.

5. Waste engines Oils: Lubricative oil changeouts from the three Clark compressors and the two auxiliary generators are collected into a 65 bbl. used oil tank. Prior to removal from this facility samples are analyzed from the tank for proper recycling or recovered as boiler fuel makeup.

Chemical materials stored onsite in excess of 55 gallons may include: gear and engine oil, ethylene glycol, methanol, gasoline, diesel, biodegradable soap and solvent, steam cleaner degreaser.

B: Quality Characteristics

Characteristics of the individual waste streams are as follows: All waste streams have been separated and are segregated into dedicated sumps and tanks.

- 1. Pipeline Liquids: The natural gas pipeline condensate annual sampling results are presented in APPENDIX B. This material is marketed for burner fuel or incinerated as a hazardous waste dependant upon results of the sampling performed.
- 2. Engine Cooling Water: Coolant consists of a pre-mixed solution of ambitrol and water. This stream is recovered and recondition unless contaminated to the point it can't be recycled. MSDS information is attached in APPENDIX C.
- 3. Used Engine Oil: Prior to removal from the facility for recycling, this material is sampled as per 40 CFR 266.
- 4. Floor Drains: Floor drains which collect washdown cleaning water and engine or engine parts degreasing is directed to a steel sump inside the containment area of the oily waste water storage tank. From there, the wastewater is directed to the 210 bbl. oily waste water tank where the tank liquids are sampled and appropriately disposed. (see APPENDIX D.)

C. Transfer and Storage of Fluids and Effluent

 Water and wastewater plan schematics are not applicable because no individual water treatment units exist. Liquid wastes are not discharged onsite. All liquid wastes are temporarily stored in sumps and tanks until they are transferred offsite.

- 2. Potential surface and groundwater contaminants, which may be discharged within the compressor station would be associated with sumps, above ground storage tanks and connecting ground pipes. Sumps and tanks are inspected weekly and monthly. All tanks have been engineered to be usually inspected for tank leakage and contained in concrete secondary containment which complies with the OCD requirement for 130 % containment storage.
 - Pipeline liquids tank 210 bbl. capacity, steel walled; contains liquids received from scrubber, mist extractor and pig receiver. Liquids are removed from the tank at each 90 day interval for offsite disposal dependant upon characteristic sampling of the liquids collected.
 - b. Oily wastewater tank 65 bbl. capacity, steel walled; contains liquids received from sumps associated with engine washdown, parts cleaning. Liquids are sampled prior to removal.
 - c. Used lubrication oil storage tank- 210 bbl. capacity, steel walled; contains used crankcase and gear oil. Liquids are sampled prior to removal.
 - d. Oil storage tanks Two tanks, each 210 bbl. capacity containing Mobil Pegasus 490 oil.
 - e. Ambitrol tank 65 bbl. capacity, steel walled.
 - f. Underground gasoline storage tank Capacity 2000 gallons. Cathodically protected.
 - g. Underground diesel storage tank Capacity 1000 gallons. Cathodically protected.
 - h. Oil rundown tank 65 bbl. capacity, steel walled. Tank is used to hold engine oil during maintenance of unit.
 - i. Glycol rundown tanks 65 bbl. capacity each, steel walled. Tank is use to hold glycol while maintenance is be done on unit.

- 3. Underground wastewater pipes, their age and specification (i.e., wall thickness, fabrication material), are:
 - a. All underground pipes are designed and constructed according to Transwestern's specification They are made of coated steel and connected to the facility rectifier system for corrosion control. The existing underground pipes were installed in 1966.

1.3.1

- D. Spill/Leak Prevention and Housekeeping Procedures
 - 1. SPCC Plan; Procedures addressing spill containment and cleanup, including proposed schedule for OCD notification of spills will be described in the facility's contingency plan (SPCC). This document is in preparation and will be submitted to the OCD as it is finalized. Disposition of the liquid materials is as follows:
 - a. Pipeline liquids and rainwater:

Enron Oil Trading and Transportation (EOTT) P.O. Box 2297 Midland, Texas 79702 (915) 687-0783

Rollins Environmental Services P.O. Box 609 Deer Park, Texas 77536 (713) 930-2300

b. Oily wastewater:

Mesa Oil Co. 4701 Broadway SE Albuquerque, New Mexico 87105 (505) 877-8855

c. Used lubrication and gear oil:

Mesa Oil Co. 4701 Broadway SE Albuquerque, New Mexico 87105 (505) 877-8855

d. Used filters:

Filters are drained of liquid at the station and the liquid transferred to the 65 bbl. used oil tank. The drained filter are hauled to the laguna Landfill.

e. Other solid waste:

Solid waste is hauled by Transwestern to the landfill at the town of Laguna.

- 2. Housekeeping: Precipitation runoff is directed from the station facility. Cleanup and remediation of minor oil releases is addressed in section IIb1. Information on curbs, berms, drains and secondary containment are discussed in section IIC2, IVC2 and IID1, respectively.
- 3. Leak Detection: All aboveground tank systems are visually inspected weekly to detect leaks and ensure tank integrity. Visual sump inspections are performed on an annual basis. Tank tightness testing for 1991 was preformed 3-11-91, for the regulated underground storage tanks (UST) present. (The results are presented in APPENDIX E)
- 4. Well System: The compressor station presently leases one (1) well which is used as a potable water source. This well is located 1 mile west of the compressor station site. Drinking water depth is currently at 120 feet. Sampling is conducted to determine water quality and characteristics. There previously were 20 monitor wells onsite for remediation and cleanup activities that previously occurred at site. With the completion of the remediation activities at this facilities, the monitor wells were formally closed.

IV. SITE CHARACTERISTICS

a. <u>Site Features</u>

The approximate forty acre site is presently fenced and lighted for security measures. There is approximately 35 feet of relief across the extent of the property, sloping towards the northeast. Major buildings present on the site include five (5) company residential houses, office, maintenance and workshop, compressor building, product and storage tanks and containment.

The closest existing residential development is the village of Laguna, New Mexico located $1\backslash2$ mile to the north.

- 1. Geology: Quaternary alluvium is the surface formation at the facility site, comprised mainly of valley-fill sediments and some wind deposited sediments. Jurassic Bluff Sandstone crops out in bands adjacent to the site. This formation consists of 200 to 400 feet of very fine to medium fine sandstone.
- 2. Soils: The compressor station site is principally comprised of the Hagerman-Bond association, 1 to 10 percent slopes, and the Mespun-Palma association, 1 to 12 percent slopes. This unit is 55 percent Hagerman fine sandy loam, 2 to 10 percent slopes. Hagerman soil is moderately deep and formed in eolian and alluvium derived principally from sandstone. The surface is fine sandy loam with a 28 inch subsoil of sand clay loam and sandy loam. Sandstone is at a depth of 34 inches. Permeability of the Hagerman soil is moderate, with low available water capacity. The Bond soil is shallow and formed from eolian derived primarily from sandstone. The 5 inch surface layer is underlain by a sandy clay loam subsoil of about 19 inches thickness and a sandy clay loam substratum of 3 inches thickness. Hard sandstone is at a depth of 18 inches. Permeability of the Bond soil is moderate, with very low available water capacity.

The Mespum-Polma unit is 45 percent Mespun fine sand, 3 to 12 percent slopes, and 40 percent Palma loamy fine sand, 1 to 7 percent slopes. Mespun soil is deep and found in eolian derived dominantly from sandstone. The surface layer is about 2 inches thick, with 60 inches of loamy fine sand and fine sand subsoil. Premeability of the Mespun soil is rapid with low available water capacity. Plama soil also found in eolian derived from sandstone. Typically, the surface layer is 4 inches thick, with 72 inches of fine sandy loam subsoil. Permeability is moderately rapid with moderate available water capacity.

3. Vegetation: The vegetation of the area is typical for the climate and site aspect present at the facility. The potential natural vegetation on the association is characterized by blue grama, western wheatgrass sideoats grama, fourwing saltbrush, and spike muhly.

A. <u>Hydrologic features</u>

- 1. Bodies of Water: There are no bodies of water located within the vacinity of the facility.
- 2. Depth to Groundwater: The principal aquifers locally are the Bluff Sandstone and the Quaternary Alluvium. Water in the alluvium is recharged by infiltration through streambed of the Rio San Jose to the north and by seepage from tributary streams. Depth to water in the alluvium near the site is about 25 to 35 feet. Most wells deriving water from the Bluff Sandstone are used for stock watering. Depth to water in the sandstone varies from about 30 feet to 125 feet locally. Within an approximate 10 mile radius of the facility site, 58 wells exist which are completed in either the alluvial or Bluff Sandstone aquifers.
- 3. Water Chemistry: APPENDIX F.

C. Flood Protection

- 1. Flood Potential: There is no known record or indication of flooding onsite.
- 2. Flood Protection: Curbs, berms and culverts have been constructed.

V. ADDITIONAL INFORMATION

To be provided as requested.

APPENDIX A

APPENDIX B

SAMPLE IDENTIFICATION 8080 I 01 590-0423 500 BBL TNK 1GNT PH C PH C TCLP N TCLP C TOX TOX	P.O. # INVOICE <u>under separate cover</u>	TAKEN 11/19/90 TRANS TYPE PIPELINE LIQUIDS	AK ID 500 BBL TANK - PIPELINE LIO.	CLIENT <u>ENRON GAS 7</u> SAMPLES <u>1</u> COMPANY <u>ENRON GAS OPERATING COMPANY</u> FACILITY <u>LAGUNA, NM</u>	ATTEN RODGER LALONDE	REPORT ENRON GAS OPERATING COMPANY TO P. O. BOX 1249 BELEN, NM 87002	Pagé 1 ENRECO LI Received: 11/20/90	LABORATORIES GROUP 6661-A Canyon
TEST CODES and NAMES used on this workorder PCB SERIES IGNITABILITY/FLASH POINT CORROSIVITY PH TCLP METAL ANALYSIS TOTAL ORGANIC HALOGENS		P. O. BOX 2018 ROSWELL, NM 88201 ATTN: LARRY CAMPBELL	IS REQUIRED. ***** SEND SECOND REPORT TO: ENRON GAS PIPELINE OP, CO.	WE ARE PLEASED TO PROVIDE THIS CERTIFIED REPORT OF ANALYSIS FEEL FREE TO TELEPHONE CUSTOMER SERVICES IF FURTHER ASSISTANCE	ATTEN <u>CUSTOMER SERVICES</u> PHONE <u>(806) 353-4425</u> CONTACT PATRICK MOON	PREPARED ENRECO LABORATORIES GROUP BY 6661-A CANYON DRIVE AMARILLO, TEXAS 79110	AB REPORT Work Order # 90-11-117 12/12/90 17:15:06	Drive • Amarillo, Texas 79110 • Telephone (806) 353-4425 • Facsimile (806) 352-6454

FLASH 1390F

.

).....

i.

.

. . . .

|

!

Ι

IGNT 139 PH_C DEGREES F	SAMPLE ID 890-0423 500 B	Page 2 Received: 11/20/90
5.89 TOX 201 UNITS MG/L	BL TNK SAMPLE # 01 FRACTIONS: A,B,C Date & Time Collected 11/19/90	6661-A Canyon Drive • Amarillo, Texas 79110 • Telephone (806) 353-442 ENRECO LAB REPORT Results by Sample
	Category	 Facsimile (806) 352-6454 Work Order # 90-11-117

- ..

. __ . . .

	PCB-1260	PCB-1254	PCB-1248	PCB-1242	PCB-1232	PCB-1221	PCB-1016		SAMPLE ID 890-0423 500 B	LABORATORIES GROUP Page 3 Received: 11/20/90
Notes and Definitions for	<20	<20	<20	<20	<20	<20	<20	RESULT DET L	BL TNK FRACTION <u>01B</u> T Date & Time Colle	6661-A Canyon Drive • Amarillo, Texas 79 ENRECO LAB Results by Sa
this Report:	20MG/L	20MG/L		20MG/L	20MG/L	20 MG/L	20MG/L	JMIT UNITS	EST CODE 8080 P NAME PCB cted 11/19/90	9110 • Telephone (806) 353-4425 • Facs REPORT Work
		8							SERIES Category	simile (806) 352-6454 Order # 90-11-117

DATE RUN <u>11/19/90</u> ANALYST <u>AI</u>

Page 4 Received:	LABORATO	RIES GROUP 6661-A	Canyon Drive • Amarillo, Texas 79110 • Telephone (806) 353-4425 • Facsimile (806) 352-6454 O LAB REPORT Work Order # 90-11-117 Results by Sample
SAMPLE ID	890-0423	500 BBL TNK	FRACTION <u>01C</u> TEST CODE <u>TCLP M</u> NAME <u>TCLP METAL ANALYSIS</u> Date & Time Collected <u>11/19/90</u> Category
		PARAMETER	RESULT LIMIT UNITS
1		ARSENIC BARIUM CADMIUM CHROMIUM	4.75 0.02 MG/L 1.90 0.03 MG/L 0.08 0.01 MG/L <0.02
•		LEAD MERCURY SELENIUM SILVER	0.20 0.04 MG/L 0.026 0.003 MG/L <0.05
			Notes and Definitions for this Report:
			DATE RUN <u>11/26/90</u> ANALYST <u>MC</u>

)

5

5 st 15 m.

17. 17

and free such

1	LABORATORIES GROUP 6661-A Canyon Drive A	Amarillo, Texas 79110 • Telephone (806) 35	3-4425 • Facsimile (806) 352-6454
Page 5 Received: 11/2(0/90 ENRECO LAB Resul	REPORT ts by Sample	Work Order # 90-11-117
SAMPLE ID 890-(0423 500 BBL TNK FRACTION Date & Ti	01B TEST CODE TCLP O	NAME TCLP ORGANICS Category
	PARAMETER	RESULT LIMIT	UNITS
	BENZENE	430.5	
	CHLORDANE	<30 3	
	CHLOROFORM	^ თ	
	CREOSOL(O,M,P)		
	1.4-DICHLOROBENZENE	5> 0T 00T>	
	1,2-DICHLOROETHANE	<u>^5</u>	
	2,4-DINITROTOLUENE	< 2 < 10 1	
	ENDRIN UPDMACUT OD		
	HEXACHLOROBENZENE		
	HEXACHLOROBUTADIENE HEXACHLOROETHANE	<10 1	
	LINDANE		
	METHYL ETHYL KETONE	50 5	
	NITROBENZENE	<10 1	
	PENTACHLOROPHENOL PYRIDINE	<50	
	TETRACHLOROETHY LENE	< <u>5</u>	5 UG/L
	TOXAPHENE TRICHLOROETHVLENE	10010	
	2,4,5-TRICHLOROPHENOL	<10 1	0 UG/L
	2,4,6-TRICHLOROPHENOL		
	Z,4,3 ⁻¹ F(SILVEA) VINYL CHLORIDE	1 01>	

EXTRACTED

)

1

-

1.00

Notes and Definitions for this Report:

12/04/90

١	•		SAMPLE ID 890	Page 6 Received: 11/
			-0423 500 BBL	LABORATORIES GROUP
		Date D <i>I</i> AN	TINK FRAC	6661-A Canyon Dri ENRECO LAB
		» & Time Collect ATE RUN VALYST <u>WRW</u>	TTION 01B TES	/e • Amarillo, Texas 79110 R Results by Samp
		ed 11/19/90 12/07/90	T CODE TCLP O) ・ Telephone (806) 353-4 BPORT 1 e
		Category .	VAME TCLP ORGANICS	1425 • Facsimile (806) 352-6454 Work Order # 90 - Continued From <i>1</i>
				-11-117 Above

APPENDIX C

MATERIAL SAFETY DATA SHEET

DOW CHEMICAL U.S.A. MIDLAND, MICHIGAN 48674 EMERGENCY (517) • 636 • 4400

	Product Code: ()7666 Page: 1
PRODUCT NAME: AMBITROL (R) FL 50 CC	OLANT	
Effective Date: 06/08/90 Date Pr	inted: 06/27/90	MSDS:000584

1. INGREDIENTS: (% w/w, unless otherwise noted)

Ethylene Glycol	CAS# 000107-21-1	47-55%
Diethylene Glycol	CAS# 000111-46-6	<3%
water	CAS# 007732-18-5	<50%
Dipotassium phosphate	CAS# 007758-11-4	<5%

This document is prepared pursuant to the OSHA Hazard Communication Standard (29 CFR 1910.1200). In addition, other substances not 'Hazardous' per this OSHA Standard may be listed. Where proprietary ingredient shows, the identity may be made available as provided in this standard.

2. PHYSICAL DATA:

BOILING POINT: 229F, 109C VAP. PRESS: Approx. 2.5 mmHg @ 20C VAP. DENSITY: Not applicable SOL. IN WATER: Completely miscible SP. GRAVITY: 1.084 @ 60/60F, 16C APPEARANCE: Red liquid. ODOR: Information not available.

3. FIRE AND EXPLOSION HAZARD DATA:

FLASH POINT: None METHOD USED: PMCC

FLAMMABLE LIMITS LFL: Not applicable. UFL: Not applicable.

EXTINGUISHING MEDIA: Water fog, carbon dioxide, dry chemical.

FIRE & EXPLOSION HAZARDS: After 50% of the initial volume has

(Continued on Page 2) (R) Indicates a Trademark of The Dow Chemical Company

MATERIAL SAFETY DATA SHEET

Dow Chemical U.S.A.* Midland, MI 48674 Emergency Phone: 517-636-4400

Product Code: 07666 Page: 2.

PRODUCT NAME: AMBITROL (R) FL 50 COOLANT

Effective Date: 06/08/90 Date Printed: 06/27/90

MSDS:000584

1. in the second second

3. FIRE AND EXPLOSION HAZARD DATA: (CONTINUED)

evaporated, the residual solution will burn at temperatures above 290F when exposed to an ignition source.

FIRE-FIGHTING EQUIPMENT: Wear positive-pressure, self-contained breathing apparatus.

4. **REACTIVITY DATA:**

STABILITY: (CONDITIONS TO AVOID) Not considered to be a problem under normal storage conditions.

INCOMPATIBILITY: (SPECIFIC MATERIALS TO AVOID) Oxidizing material

HAZARDOUS DECOMPOSITION PRODUCTS: After water has volatilized, burning will produce carbon monoxide, carbon dioxide, and water.

HAZARDOUS POLYMERIZATION: Will not occur.

5. ENVIRONMENTAL AND DISPOSAL INFORMATION:

ACTION TO TAKE FOR SPILLS/LEAKS: Small spills: Cover with absorbent material, soak up and sweep into drums for disposal. Large spills: Dike around spill and pump into suitable containers for disposal or reprocessing.

DISPOSAL METHOD: Burn in approved incinerator in accordance with local, state, and federal regulations.

(Continued on Page 3) (R) Indicates a Trademark of The Dow Chemical Company

MATERIAL SAFETY DATA SHEET

Dow Chemical U.S.A.* Midland, MI 48674 Emergency Phone: 517-636-4400

Product Code: 07666 Page: 3

PRODUCT NAME: AMBITROL (R) FL 50 COOLANT

Effective Date: 06/08/90 Date Printed: 06/27/90 MS

MSDS:000584

10 M

- 6. HEALTH HAZARD DATA:
 - EYE: Essentially nonirritating to eyes. Vapors or mists may irritate eyes.
 - SKIN CONTACT: Prolonged or repeated exposure not likely to cause significant skin irritation. May cause more severe response if skin is abraded (scratched or cut).
 - SKIN ABSORPTION: A single prolonged exposure is not likely to result in the material being absorbed through skin in harmful amounts. The dermal LD50 has not been determined. Repeated skin exposure to large quantities may result in absorption of harmful amounts.
 - INGESTION: Excessive exposure may cause central nervous system effects, cardiopulmonary effects (metabolic acidosis), and kidney failure. Amounts ingested incidental to industrial handling are not likely to cause injury; however, ingestion of larger amounts could cause serious injury, even death. The oral LD50 for rats is 8200 mg/kg. Single oral dose toxicity is expected to be moderate to humans even though tests with animals show a lower degree of toxicity.
 - INHALATION: At room temperature, exposures to vapors are minimal due to low vapor pressure. If heated or sprayed as an aerosol, concentrations may be attained that are sufficient to cause irritation and other effects.
 - SYSTEMIC 5 OTHER EFFECTS: Excessive exposure may cause irritation to upper respiratory tract. Observations in animals include formation of bladder stones after repeated oral coses of diethylene glycol. Observations in animals include kidney and liver effects and deposition of calcium salts in various tissues after long-term dietary intake of ethylene glycol. Based on data from long-term animal studies, diethylene glycol is not believed to pose a carcinogenic risk to man. Ethylene glycol did not cause

(Continued on Page 4) (R) Indicates a Trademark of The Dow Chemical Company

Dow Chemical U.S.A.* Midland, MI 48674 Emergency Phone: 517-636-4400

Product Code: 07666 Page: 4

PRODUCT NAME: AMBITROL (R) FL 50- COOLANT

Effective Date: 06/08/90 Date Printed: 06/27/90

1 and 1

MSDS:000584

6. HEALTH HAZARD DATA: (CONTINUED)

cancer in long-term animal studies. Based on animal studies, ingestion of very large amounts of ethylene glycol appears to be the major and possibly only route of exposure to produce birth defects. Exposures by inhalation (tested nose-only in animals to prevent ingestion). or skin contact, the primary routes of occupational exposure, had minimal or essentially no effect on the fetus. Birth defects are unlikely from exposure to diethylene glycol. Exposures having no adverse effects on the mother should have no effect on the fetus. Diethylene glycol has not interfered with reproduction in animal studies. In studies on rats, ethylene glycol has been shown not to interfere with reproduction. In studies on mice, ingestion of ethylene glycol in large amounts caused a small decrease in the number of litters/pair, live pups/litter, and in live pup weight. Results of in vitro (test_tube) mutagenicity tests have been negative. ÷ ...

7. FIRST AID:

EYES: Irrigate immediately with water for at least 5 minutes.

SKIN: Wash off in flowing water or shower.

INGESTION: If swallowed, induce vomiting immediately as directed by medical personnel. Never give anything to an unconscious person.

INHALATION: Remove to fresh air if effects occur. Consult a physician.

NOTE TO PHYSICIAN: Consult standard literature. Supportive care. Treatment based on judgment of the physician in response to reactions of the patient. In the treatment of intoxication by ethylene glycol, the use of ethanol, hemodialysis and

(Continued on Page 5) (R) Indicates a Trademark of The Dow Chemical Company

MATERIAL SAFETY DATA SHEET _____

Dow Chemical U.S.A.*--- Midland, MI 48674 Emergency Phone: 517-636-4400 ---

Product Code: 07666

Page: 5

.....

PRODUCT NAME: AMBITROL (R) FL 50 COOLANT

Effective Date: 06/08/90 Date Printed: 06/27/90 MSDS:000584

100

7. FIRST AID: (CONTINUED)

intravenous fluids to control acidosis should be considered. N. Eng. J. Med. 304:21 1981. If burn is present, treat as any thermal burn, after decontamination.

.

8. HANDLING PRECAUTIONS:

EXPOSURE GUIDELINE (S): ACGIH TLV is 50 ppm ceiling for ethylene glycol.

VENTILATION: Good general ventilation should be sufficient for most conditions. Local exhaust ventilation may be necessary for some operations.

RESPIRATORY PROTECTION: Atmospheric levels should be maintained below the exposure guideline. When respiratory protection is required for certain operations, use an approved air-purifying respirator.

SKIN PROTECTION: Use impervious gloves when prolonged or frequently repeated contact could occur.

EYE PROTECTION: Use safety glasses. If vapor exposure causes eye discomfort, use a full-face respirator.

9. ADDITIONAL INFORMATION:

SPECIAL PRECAUTIONS TO BE TAKEN IN HANDLING AND STORAGE: Avoid skin and eye contact. Avoid ingestion. Avoid breathing vapors or mists.

Trace quantities of ethylene oxide (EO) may be present in this product. While these trace quantities could accumulate in headspace areas of storage and transport vessels, they are not

(Continued on Page 6) (R) Indicates a Trademark of The Dow Chemical Company

-							
LL	Jow Chemical U.S.A.* Midi	and, IVI 48674	Emergency Phor	16: 517	-636-441	UU	
		Proc	luct Code: 07	666	Pa	ige: 6	
P	PRODUCT NAME: AMBITROL (R)	FL 50 COOLANT					
٤	Effective Date: 06/08/90	Date Printed:	06/27/90		MSDS:00	0584	
		20 and 1					
9	ADDITIONAL INFORMATION:	(CONTINUED)			1714		
	8 hr TWA for EQ.	Code of Feder	al Regulation	s Part	1910.10	47	
M	8 hr TWA for EO. (of Title 29) NSDS STATUS: Revised sect	Code of Feder	al Regulations	s Part	1910.10	47 47	
м	8 hr TWA for EO. (of Title 29) NSDS STATUS: Revised sect SARA 313 INFORMATION: This product conta reporting requirem Superfund Amendmen 40 CFR Part 372:	ion 9 and reg ins the follo ents of sections and Reauth	wing substance on 313 of Titl orization Act	s Part le III of 198	1910.10 of the 36 and	47 the	
M. Cł	8 hr TWA for EO. (of Title 29) NSDS STATUS: Revised sect SARA 313 INFORMATION: This product conta reporting requirem Superfund Amendmen 40 CFR Part 372:	Code of Feder (Code of Feder ion 9 and reg ins the follo ents of sections ts and Reauth	al Regulations sheet. wing substance on 313 of Titl orization Act CAS NUMBER	s Part le III of 198	1910.10 of the 36 and	47 the	
	8 hr TWA for EO. (of Title 29) NSDS STATUS: Revised sect SARA 313 INFORMATION: This product conta reporting requirem Superfund Amendmen 40 CFR Part 372: HEMICAL NAME THYLENE GLYCOL	Code of Feder (Code of Feder ins the follo ents of sections ts and Reauth	al Regulations sheet. wing substance on 313 of Titl orization Act CAS NUMBER 000107-21-1	s Part le III of 198 CONCE	1910.10 of the 36 and NTRATION -55	47 the N%	
M. CF ET CF	8 hr TWA for EO. (of Title 29) NSDS STATUS: Revised sect SARA 313 INFORMATION: This product conta reporting requirem Superfund Amendmen 40 CFR Part 372: HEMICAL NAME THYLENE GLYCOL	Code of Feder (Code of Feder ion 9 and reg ins the follo ents of sections ts and Reauth	al Regulations sheet. wing substance on 313 of Titl orization Act CAS NUMBER 000107-21-1 CAS NUMBER	es sub le III of 198 CONCE 47 CONCE	1910.10 of the 36 and NTRATION -55	the N &	···

(R) Indicates a Trademark of The Dow Chemical Company The Information Herein Is Given In Good Faith, But No Warranty, Express Or Implied, Is Made. Consult The Dow Chemical Company For Further Information.

* An Operating Unit of The Dow Chemical Company

APPENDIX D

L

Master America Consol et Balgement Laboration Br		SAMPLE IDENTIFICATION 01 91-5113-OWW OILY WW TANK 02 91-5113-OIL USED OIL TANK	WORK ID LAGUNA, NM TAKEN 03/13/91 TRANS CLIENT TYPE SOIL/LIOUID/ASBESTOS P.O. # INVOICE under separate cover	ATTEN <u>SCOTT STONE</u> CLIENT <u>ENRO4</u> COMPANY <u>ENRON/TRANSWESTERN</u> P FACILITY <u>STATION 6</u> BELEN, NEW MEXICO	Page 1 , Received: 03/13/91 REPORT <u>ENRON/TRANSWESTERN P</u> TO <u>STATION 6</u> <u>P.O. BOX 61</u> IAGINA NEW MEXTCO 87
		BENZ BENZENE FLSH P FLASHPOINT TCLP F TCLP F SERIES ENRON LIST TCLP M TCLP METALS ENRON LIST TCLP O TCLP ORGANICS ENRON LIST	O, M, & P CRESOLS REPORTED AS TOTAL O	ATTEN THOMAS C. DYE PHONE (505)345-8964 IPELINE OUESTIONS ABOUT THIS REPORT SHOUDESTIONS ABOUT THIS REPORT SHOUDED DIRECTOR OF LABORATORIES/ASSI 7300 JEFFERSON N.E., ALBUQUED	REPORT WC 04/03/91 17:03:14 IPELINE PREPARED Assaigai Analytical Labs BY 7300 Jefferson NE Albuquerque, NM 87109
		this workorder	K M-CRESOL RESULT	CONTACT TOM DYE ILD BE ADDRESSED TO: IGAI ANALYTICAL OUE.N.M. 87109	CERTYFYED AV

| · | ·

:

:

1.**

Results by Sample PARAMETER FRACTION 01A Date & Time Collected 03/13/91 0 PARAMETER FRACTION 01A Date & Time Collected 03/13/91 0 METHYLENE CHLORIDE TRAICHLORO-TRIFLUOROETHANE OSCHORO-DICHLOROETHANE DETHYL ACETATE ETHYL ACETATE ETHYL ACETATE ETHYL ACCHOR METHYL SENZENE TRAICHLOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROMETHANE OSCHOROFLUOROFLUOROMETHANE OSCHOROFLUOROFLUOROMETHANE OSCHOROFLUOROFLUOROMETHANE OSCHOROFLUOROFLUOROMETHANE COLO DATE SUBURANOL 2-ETHYL SENZENE 1,2-DICHLOROFLUOROALE YOLUENE-d8 RESULT OSCHOROFLOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUCA OSCHOROFLUCA 2-NITROPROFLOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUOROFLUCA TOLUENE-d8 105 1, 2-DICHLOROFLANE 105 105 1111111 Notes and Definitions for this EXTRACTED 03/19/91	REFORE REFORE REFORE TEST CODE TEST CODE <thtest cod<="" th=""><th></th><th></th><th>MPLE ID 91-5113-0W</th><th>38 2 * 391764: 03/13/91</th></thtest>			MPLE ID 91-5113-0W	38 2 * 391764: 03/13/91
REPORT RESULT DET L3 RESULT 0.05 0 <0.05	REPORT WORK OF CODE TOTAL F NAME TOTAL F SERVIER A TEST CODE TOTAL F NAME TOTAL F SERVIER Collected 03/13/91 08:10:00 0.05 0.05 0.05	EXTRACTE	METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE TRICHLOROFTRUOROETHANE ORTHO-DICHLOROFLUOROMETHANE ACETONE ETHYL ACETATE ETHYL BENZENE ETHYL BENZENE ETHYL BENZENE ETHYL STHER METHYL ISOBUTYL KETONE n-BUTYL ALCOHOL CRESYLIC ACID TOLUENE CARBON DISULFIDE ISOBUTANOL 2-ETHOXYETHANOL 2-ETHOXYETHANOL 2-NITROPROPANE 4-BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-d4 TOLUENE-d8	FOILY WW TANK FRACTION 01 Date & Time PARAMETER	Results
	Report: Rep	03/19/91	$\begin{array}{c} <0.05 \\ 0.69 \\ 0.69 \\ <0.05 \\ <0.05 \\ 0.36 \\ 0.36 \\ 0.36 \\ 0.36 \\ 0.36 \\ 0.05 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 \\ 0.83 \\ <0.5 \\ 0.83 \\ <0.5 \\ 0.83 \\ <0.5 \\ 0.83 \\ <0.5 \\ 0.83 \\ <0.5 \\ 0.83 \\ <0.5 \\ 0.83 \\ <0.5 \\ 0.83 \\$	A TEST CODE TCLP F Collected 03/13/91 0 RESULT DET LI	RZPORT by Sample

Master American Council Deleptodes Laboratoria, V	<u> </u>		·		<u>.</u>					SAMPLE ID	Page 4 Received:
					· .					91-5113-OW	13/13/91
· · · · · · · · · · · · · · · · · · ·							BARLUM CADMIUM CHROMIUM LEAD MERCURY SELENIUM SILVER	ARSENIC	PARAMETER	W OILY WW TANK	
					EXTRACTED DATE RUN ANALYST UNITS	Notes and		• • •	· · · · · · · · · · · · · · · · · · ·	FRACTION 01B Date & Time 1	Results]
			•		03/1 JB MG/L	Definitions fo	<0.003 <0.003 <0.10 <0.0002 <0.005 <0.01	600 • 0	PRSUL'L	TEST CODE Collected <u>03/</u> j	REPORT by Sample
		:			<u>15/91</u> 9/9 <u>1</u>	or this Repor	0.003 0.02 0.02 0.002 0.002 0.005	0.005	DET LINIT	<u>TCLP K</u> NAME 13/91 06:10:0	
	•								•	<u>0</u> Category	Work Order # 9
										NRON LIST	1-03-118

PARAMETER FRACTION <u>01A</u> TEST CODE <u>TCLP</u> PARAMETER FRACTION <u>01A</u> TEST CODE <u>TCLP</u> Date & Time Collected <u>03/13/21</u> Date & Time Collected <u>03/13/21</u> PENTRACHLOROETHANE 1, 2-DICHLOROETHALENE 1, 2-DICHLOROETHANE 1, 2-DICHLOROPHENOL 2, 4, 5-TRICHLOROPHENOL 2, 4, 5-TRICHLOROPHENOL 3, 2-DICHOROETHANE-43 101 2, 4, 5-TRICHLOROPHENOL 3, 2-DICHOROETHANE-43 3, 3-CONCENTER 4, 5-TRICHOROETHANE-43 3, 3-CONCENTER 4, 5-TRICHOROETHANE-43 3, 3-CONCENTER 4, 5-TRICHOROETHANE-43 3, 3-CONCENTER 4, 5-TRICHOROETHANE-43 3, 3-CONCENTER 4, 5-TRICHOROETHANE-43 3, 3-CONCENTER 4, 5-TRICHOROETHANE-43 3, 3-CONCENTER 4, 5-TRICHOROETHANE-43 4, 5-TRICHOROETHANE-43 4, 5-TRICHOROETHANE-43 4, 5-TRICHOROETHANE-43 4, 5-TRICHOROETHANE-43 4, 5-TRICHOROETHANE-43 4, 5-TRICHOROETHANE-43 4, 5-TRICHOROETHANE-43 4, 5-T	POILY WE TANK. FRACTION 01A PRESSUR TEST CODE FCLP 0 Inte 4 Time Collected 03/13/21 08:110:00 NAME TOLE Date 4 Time Collected 03/13/21 08:110:00 PARAMETER PRESSUR C0.05 CLUORONETRIANE 1,1-DICHLORONETRIVLENE FRICHLORONETRIVLENE FRICHLORONETRIVLENE A-DECRICIONONETRIVLENE FRICHLORONENTRINE 1,2-DICHLORONENZENE 2,4-DINITROTOLUENE HEXACHLORONENZENE 2,4-DINITROTOLUENE HEXACHLORONENZENE 2,4-DINITROTOLUENE HEXACHLORONENZENE 2,4,5-TREICHLOROPHENOL 2,5,5,5,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,	POILT FR TAX Rescutte by Sample NEFFORT FRACTION 011A TEST COLE FILL ON COLE FRACTION 011A TEST COLE FILL O NAME CTLP 0 NAME NAME NAME NAME NAME NAME NAME NAME					SAMPLE 1D 91-5113-08	Page 5 . Received: 03/13/91
Results by Sample FRACTION 01A TEST CODE TCLE pate & Trime Collected 03/13/91 Date & Trime Collected 03/13/91 NE <0.05	REPORT PRACTION 01A Date & Time Collected 03/13/91 08:10:00 WORK TOLE NAME TOLE ON AND TOLE STATE NAME TOLE ON ADDITION 01A SECURT DET LINIT RIDE C0.05 C0.01 C0.0	REPORT REPORT FORM OTA TEST CODE TCLP O NAME TCLP ORGANICE FUNCT PRACTION 01A TEST CODE TCLP O NAME TCLP ORGANICE FUNCT Category Catego	PYRIDINE 2,4,5-TRICHLOROF 2,4,6-TRICHLOROF SURROG 4-BROMOFLUOROBEN 1,2-DICHLOROETHAN TOLUEN	1,4-DICHLOROBENZ 1,4-DICHLOROBENZ 2,4-DINITROTOLUE HEXACHLOROBENZEN HEXACHLORO-1,3-D HEXACHLOROETHANE NITROBENZENE PENTACHLOROPHENC	1,1-DICHLOROETHY METHYL ETHYL KET TETRACHLOROETHYL TRICHLOROETHYLEN VINYL CHLORIDE 0-CRESOL M-CRESOL	PARAMETER BENZENE CARBON TETRACHLO CHLOROBENZENE CHLOROFORM 1, 2-DICHLOROETHA	W OILY WW TANK	
REPORT Fample TEST CODE TCLP lected 03/13/91 lected 03/13/91 Sected 03/13/91 CO.05 CO.05 CO.05 CO.05 CO.05 CO.05 CO.01 CO.	REPORT WORK Sample TEST CODE TCLP O NAME TCLP PRESULT DET LIMIT CO.05 0.05 0.05 CO.01 0.01 0.01 B6 115 114 88 110 <td>REPORT NOTE TELL O NAME TELL ORGANICS ENRO TEST CODE TELL O NAME TELL ORGANICS ENRO lected 03/13/91 08:10:00 Category Category CO.05 0.05 0.05 CO.05 0.05 0.05 CO.05 0.05 CO.05 CO.05 0.05 CO.05 CO.05 0.05 CO.05 CO.05 0.05 CO.05 C</td> <td>PHENOL PHENOL HENOL ATE ATE RECOV (ZENE LO VE-d4 LO VE-d4 LO</td> <td>JENE IE SUTADIENE J</td> <td>LENE ONE E</td> <td></td> <td>FRACTION 01A Date & Time Col</td> <td>Results by</td>	REPORT NOTE TELL O NAME TELL ORGANICS ENRO TEST CODE TELL O NAME TELL ORGANICS ENRO lected 03/13/91 08:10:00 Category Category CO.05 0.05 0.05 CO.05 0.05 0.05 CO.05 0.05 CO.05 CO.05 0.05 CO.05 CO.05 0.05 CO.05 CO.05 0.05 CO.05 C	PHENOL PHENOL HENOL ATE ATE RECOV (ZENE LO VE-d4 LO VE-d4 LO	JENE IE SUTADIENE J	LENE ONE E		FRACTION 01A Date & Time Col	Results by
	WOIK 0.05 0.01 0.01 115 114	Nork order # 91-03- 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05 0.05 0.01 0.05 0.05 0.01 0.01 0.01 1115 1115 1114 1114	 <0.01 <0.01 /ERY LIM 05 86 01 88	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.10 <0.05 <0.05 ********	RESULT DET	TEST CODE TCLI lected 03/13/91	REPORT Sample

				i
				·
		a Chanal		
			•	•
			tana tanàna Alimina	
	THUS NOT			• • • •
	AWK LIND			
	NOT 38			•
	SPROQU		:	
				• •
	2008		•	
	NOT ME		•	• '
	HOUT BE			
	DOPLET			
	S WRITE			
	N CONTRE		. '	
	NI OLI			
	- LUOR		· . · .	· · · ·
	TORY		•	• .
	•		• • • •	
				•
ŗ				
				,

ł

ANALYTICAL LABORATORIES, INC. + 7300 Jefferman, N.E. + Alberguerque, New Manico \$7109 Results by Sample REPORT

Continued From Above Work Order # 91-03-118

SAMPLE ID 91-5113-OWN

OILY WW TANK

Received: 03/13/91

Page 6

FRACTION 01A TEST CODE TCLP C HAME TCLP ORGANICS ENRON LIST Date & Time Collected 03/13/91 08:10:00 Category

Notes and Definitions for this Report:

ANALYST DATE RUN EXTRACTED B 03/19/91

UNITS

MG/L

APPENDIX E

EARTH SCIENCE TECHNOLOGY

TEST CERTIFICATE

TANK OWNER TRANSWESTERN PIPELINE COMPANY							
CONTACT PERSON ROGER LALONDE							
ADDRESS	DDRESS P.O. BOX 1249						
CITY, STATE	ITY STATE BELEN, NEW MEXICO 87002						
TELEPHONE	1-505-864-7461		111501-00-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-				
TANK ADDRESS							
CITY, STATE LAGUNA, NEW MEXICO							
TEST METHOD HORNER EZY-CHEK							
TEST DATE	03-11-91						
TANK	CAPACITY PRO	DUCT	HIGH TEST	LOW TEST			
#3	<u>1,034 GAL.</u> DIE	SEL	+.0025	N/A			
#4 .	2,005 GAL. NO L	EAD	0020	N/A			
							
			<u></u>				
			. <u> </u>	·····			
		<u> </u>					
REMARKS <u>THE A</u>	BOVE TANKS PASSED	THE FULL S	SYSTEMS TEST.	THE PRODUCT			
LINES TESTED	TIGHT. THE ABOVE	TANKS MEE	ET ALL OF STAT	E, LOCAL,			
AND FEDERAL	REGULATIONS.						
APPROVAL JOHN	MCCONEGHEY	_ SIGNATURE	Juhn m C	nigher.			

HORNER EZY-CHEK

)

	Crange	а П с	100	フィイン	2000 -		00	1007			30	7	int.		emation	Q	, De re	a =		100+	1 00 1	18.4	C	- 000							Deviation	20	Ĭ			Ţ	Y
	S S S														Standard D	000	81														Standard	100	2 2 2				1 E O H
		- Contraction	10014	7-0014	1-2014	F. 0014	1.00	100.	Ċ.				NAC 1	2	ndicated	940		+futurer	2	þ	tar	5	C	+00H							Indicated	00			R	. < \	NOT
	<u>a</u>	X Factor E	26	-+		F 				-	F				Leakage I	00	9	X Factor B	35	<											Leakage	00				2) (2
7			t-a01 1	100-	100	181	100.7	-001	C	5	13	100 2	+ +17:	C.	,		aure Combernatio	ĮĮ	162.	0	1,00;+	0	-0-	t. 001		4) 2017 11	1							N N	dicated	H Q K	た ン ィ
1) Jun		End	- 217	H 81	+ 511	1001	171	12.0	000	000			122	22		RESULT	Leonej	Enc	1221	. 21.	5 4	521	17,3	124 -								RESUL	Tank No.	Ticht	Leakaoe In	Technician	
ST		à	16	17 11	119	1611	(201	121	10,01	0.0				127		HOLIN		j.	1221	1221	127	12.3	1231.	.1231.								TEET					2 2 2 2 2 2 2 2 2 2 7 2 7 2 7 2 7 7 7 7
IESS TE		Connor			-	~		-				1				ži		-Emerant																			3
TIGHTN		X Factor E																X Factor E												-	ļ				3		101 0 1)
VSTEM	• (ser	Ĭ															e Compension A	- 10%														5	49	۲. ۲	00 i <i>o</i> 7		Coefficent x Exnansion
IANK S	-	Erc															horner														HRS			л н 8			2005
FOR LOR	-																	Ř		_											1		ATURE		XPANSIC		ize oʻ Tank
IA CHA		š	0		272	212	220	2	\sim	6	0	$\left \right $	0				UN OF	j iš	0	7	0	2100	_	212	+	+				-	TPOP		TEMPER	TC GRAV			
A L	Ţ	7 40	2		40(40	÷ +)								ł	1 40		T		4		t						-	TOG /	ASURET	DDUCT	I SPECIF		FACT	
1		Xia	00/0						_	2				_			E.	J.X.	00-									_	-		C		8	. € 	8		lines =
			·.)	2	47	t Z	+		0	1	9 6	9 Ñ	0 6)		D Montoring on L		2		2			+		+	_		-	-	5	1	0				21.67
- Loon-		: الله - -	0	1 11	M	2	ñ	2-3	5	1 M	5-1-2	ñ	(1)				T I I) Ľ	20	7	7	70		5			_	_	-	$- \ $	1/1	2110	2010	0			
		- Star) n	7	M	Ń	2	3		1	10	, V	100	- 2				Ř	11	R	フ		<u> </u>	>							Brayon		T O h				on Rod - U
216	NE S			20	5	() N	2 1	с, Г,	5	5	<i>.n</i>	ic N	2	でう			Ĕ		01000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01	50	11	1							BEGIN			END			Calibrati
Ē		2	7		0'	IS	С Т Т		77	E		E		9	10	21	h	1	2	7 2		50	ม 0	IOT	IN O	NO NO	/ Ţ	É	77	e e		ĩ,	Ţ	00	<u>n</u>	-	
		ר קיין קיין	-+	202 22 7 x02	241 X 00.		0		יז <i>א</i> <u>77</u> ש	272	7	(2 (5)		2 75 104		07 28 (MB)	い ろ い	-	C	ノ フ 	+	¥ κα	жіх 0.	(() ブ	+	/ ? ¿ pur		1 0	2 2 8 8 8	-	- I I	+		172		
L	pu ud				T	1 NO	DNR		01	-	1 640 10	NU.S	ат : - е										T	NO		CT INC	m T;		₩4 DN	us	1		<u>يد ا</u>	<u>23</u>	289 289		
										-					W	7	λ	~		V,	$\overline{\mathcal{N}}$	n	94	4-	7	S	SI	ษต	٩D								
				'0	5	t.u	<i>]</i> /	ν/ -	7	Ð,	J.	J		~	213	Ð	5	31	から	5.1	Ð	U	Ţ	2	III	<u>s</u> 7	T M	<u>41</u> ,	<u>TD</u>								

		Trent																																							
		0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				1	Ŧ	_1				7	4			+		n metret			8					~							T			Siandard	1012				でえる
Поличий страниции и стра			+Expansion			trad	2002	- aont	1000	10C1		1000	Lans.	2	1000-	, ,		dicated S			-farmer	-Common			C	<i>ე</i>	1000	2		┢						Olicated	72-				PNE
Порта и страниции и стра	į	Ð	X Factor E			4		-				r]_ +						Leakage In	510 +			X HERO B								$\left \right $				╈		reavage in	10-4			, C O	N WI
Политически		re Compensation				100	8	100	100	100		100	1000	3	YCACY.								101		2	0	100	Q.		19) 194 194 194	1-5-5-5					S		1	1/1	icated 1	-7 MII
Политически		remperetu	Ęve	e i	6	1 1 1 1	11 万 丁	1 FK -	1-22	111.			<u>-121 -</u>	MF	443 -	511	100		RESULT					121	11/2	5	-171	1/1/2					+			RESULT		lank No.	거편	askage Ind	fechnician _
Политически			à	- 181	1011		110 -	7 63 1	· Xi				1 J J J	5' 1 ' .) 5	1 120	1617	1231.		NITOR 1			127			K K	22	12/2	181						}		TEET					CTDR B
ИТЕЯТ ЗИ ГОСОНА ПОДАТИТИКАТИЧЕСКИ ПОДАТИТИКАТИТИКАТИЧЕСКИ ПОДАТИТИКАТИТИТИКАТИТИКАТИТИКАТИТИТИКАТИТИКАТИТИТИКАТИТИТИТИ			A DELINO		. 			-	-				7	-					ହା						╡		-							$\left \right $	1						EA .
MULTINUE MULTINUE MULTINUE MULTINUE MULTINUE MULINUE MULINUE MULINUE <td< td=""><th></th><td></td><td>Factor F - C</td><td></td><td></td><td>╇</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>u u</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>┝</td><td></td><td>C</td><td>2</td><td></td><td>4</td><td>τ, τ,</td><td></td></td<>			Factor F - C			╇	+						+								u u													┝		C	2		4	τ, τ,	
Арадиана и продакти и	Y'S I EM		×			-	_ .				 									Compensation A	+ Gair: - Lan: -				╉											2	000				
Поличина и полич	IANK S		End			-														Inter-un	l g															HRS	FINA				
Полиции <	FOR FOR	-																							+	-+-										7					
Image: Image	ACHA	2	ž	C						\sim	6				Ci	3		•			3 8									-						DROP_	API SPE			0 5 2	
ВВ С<		Į.	1 1 1	100 F			-}` 			\mathcal{O}						/			I	ž	10. F	S A		»\ 								_				1SI 7	ASURED		トラルトの一		FACTO
$\frac{1}{10000000000000000000000000000000000$	1		X	<u> </u>	(7		h				2				LA	J. X.	ao C						$\frac{1}{1}$					-			0	¥£ 	E	} 	3	
	C Norong or			0	5			7 7	2	2 2	- 	 			2	2	7			CI MONIDING CH L	• •		2	,		11		2		-+	-		_		PC		nr Nr			•	
$\frac{1}{10000000000000000000000000000000000$	4		E	767	2			6 1	オイ	7 1	7 10.			1	11	27	217		1	Ĩ	Er Er	2 1 7 2	, 0,	1	14	11		1-1-1-							p U		10 10	2 0	6	ρ	Ŋ
Арадия и и и и и и и и и и и и и и и и и и			Å.	2	5) [)	0			0-1-5		of C	しし					<u>_</u>				Ŕ	010-	シレン	، ر ر								_			ALIBRATION						
ADDRESS ADDRES			5	27	22	23	10		7	7	5	1	16		6	2	ne -			<u> </u>		í M	22	しそう	2		4	0							TEST C	BEGIN	 	Q.	•		,
ADDRESS LADOW AND			ショフ			.00	- T	SE (14 19	-2		1 14	60		9	_	<u>C-</u> Ck	Ч. Л			() () ()			£00 £00	- <u>ม</u> วา วา	10 OT	IN D D		76 5	てて	7. 7.	57		E	;	0.0	Ch Tr		
PRODUCT THE TESTING			ר קר קר קר קר קר קר		A x S	.00 1944	X T1 () 1 1 1 1 1				-7 -9 1000			<u>ک</u> ۹۶	- 0	N N	8	C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	7 m) 1				- + 	-	£00	у. ЧХ П	NO	7 19+		ри ри 311 1	, 7 3 3000		УČ лаs		-7 5up		00			
															15	ц.:	· 4		na 7	ou V			-6	7	2	57	D.	Ð	7	Ś	SE	ษิอิ	AG V D		EL	NE	ц 1	ວຸດ	ŨŎF	id	

APPENDIX F

KRAMER & ASSOCIATES

LABORATORY: 125 EUBANK N.E. ALBUQUERQUE, NM 87123 505-292-4084

GROUND WATER SAMPLE ANALYSIS REPORT

TRANSWESTERN FIFELINE COMPANY

SAMPLE IS WELL #24 **** ALL UNITS ARE MG/L ****

DATE SAMPLED: 2 / 14 / 85

DATE ANALYSED: 2 / 19 / 85

TOTAL DISS. SOLIDS = 335 CONDUCTIVITY(UMHOS) = 400 HARDNESS AS CACO3 = 164 CALCIUM = 51.2 MAGNESIUM = 8.74 SODIUM = 27

FOTASSIUM = 2.2

TOTAL IRON = $\langle 0.01 \rangle$

TOTAL MANGANESE = 0.02

ALKALINITY = 164 F.ALKALINITY = 2 SULFATE = 30 PHOSPHATE = <0.05 NITRATE AS N = 1.1 CHLORIDE = 15 FLUORIDE = .4

BICARBONATE = 200

PH = 8.36

CARBONATE = 1.218

READY.

RECEIVED

MAR - 1 1985

IRANSWESTERN DIST II OFFICE

1

ENRON Transwestern Pipeline Company

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

December 10, 1991

DEC 1 6 1991

OIL CONSERVATION DIV. SANTA FE

Mr. Dave Boyer Oil Conservation Division Energy and Minerals Department State of New Mexico 310 Old Santa Fe Trail State Land Office Building, Room 206 Santa Fe, New Mexico 87501

Re: Closure of Monitor Wells Under EPA Consent Decree, Laguna Station

Dear Mr. Boyer:

On behalf of Transwestern Pipeline Company (Transwestern), five pairs of monitor wells were originally operated for PCBs at Station 6, Laguna under the Consent Decree with EPA. These consisted of two depths of monitor wells in five clusters; one well at each location with completion at 125 to 138 feet (denoted as S), and one well at each location with completion at 215 to 341 feet (denoted as D). The locations of these wells are shown as numbers 6-1 through 6-5 on Figure 1 which is Attachment 1 to this letter.

Under the Consent Decree with EPA, only monitoring of the upper ground water is required. Earlier this year a thin shallow ground water perched on the rock at around ten feet was found for the first time. Monitor wells have been established in this perched groundwater and EPA has agreed to the closure of the initial 10 wells.

For these ten wells, details on the background and configuration of the installations and proposed procedures for closure are provided in the letter report from Daniel B. Stephens & Associates, dated January 7, 1991 which is Attachment 2 to this letter. The historic analytical data for these wells is shown in Attachment 3, "Summary Of Analytical Results", ENRON Laguna Monitor Wells, July 9, 1991.

Since the wells are not necessary and are not being monitored, Transwestern believes that they should be closed so that they cannot become a pathway for potential transport to these greater depths. Since these wells have not been sampled since April, we are in the process of sampling 6-1S, 6-3S and 6-5S to confirm that there is no change in conditions before implementation of closure process. Mr. Dave Boyer December 10, 1991 Page Two

Transwestern would like to close these wells as soon as possible. To expedite this, Ted Ryther will call you with the results of the recent confirmation tests and, hopefully, having revied this letter and the tests giving expected results, the wells may be closed.

In the meantime, should you have any questions please call me at (713) 853-3219 or Ted Ryther at (713) 853-5634.

Yours very truly,

Jan C. Alyach

James C. Alexander Manager of Projects, Environmental Affairs

Attachments (3)

cc: Ms. Donna Mullins, USEPA Region VI, Dallas Mr. Thomas H. McGraw, New Mexico Dept. Of Environment, Santa Fe Mr. Ed Wise, Entrix, Houston ATTACHMENT 1

ś

à

į.

FIGURE 1

ATTACHMENT 2

ŝ

DANIEL B. STEPHENS & ASSOCIATES LETTER

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

September 25, 1991

Mr. Ted Ryther Environmental Affairs E-2575 ENRON Corporation 1400 Smith Street P.O. Box 1188 Houston, TX 77002

RE: Closure of Monitor Wells 6-1 thorough 6-5 at Compressor Station #6, Laguna, New Mexico

Dear Mr. Ryther:

The purpose of this letter is to propose detailed closure (abandonment) plans for the subject monitor wells at Laguna. These plans have been designed to permanently eliminate potential pathways for contaminant migration from the land surface, to underlying water-bearing formations (Bluff, Summerville, and Todilto). These water-bearing bedrock units all have very low permeability. Daniel B. Stephens & Associates, Inc. (DBS&A) has designed these closure plans to ensure that all parties concerned will have a high level of confidence that potential contaminant pathways will be eliminated. Draft ASTM procedures for decommissioning wells (new Standard Practice for the Decommissioning of Ground Water Wells, Vadose Monitoring Devices, Boreholes, and Other Devices for Environmental Activities, ASTM D-18.21.06) and State of New Mexico's regulations have been consulted prior to developing these plans. The proposed closure plan in all cases meets or exceeds the requirements specified in these guidance documents.

DBS&A has used pertinent well completion, drilling, and geologic data to develop the closure plan for the wells described in the following paragraphs. Well schematics for each well are included in Attachment 1.

It is expected that drilling and grouting operations should take approximately two to three working days for each well.

Test Wells 6-1, 6-2, 6-3, 6-4, and 6-5

The five subject monitor wells are nested wells consisting of multiple single-riser/limited interval wells that are constructed in a single borehole. Each borehole contains one deep and one shallow PVC monitor well. The shallow monitor wells range in depth from 130 feet to 160 feet and the deep monitor wells range in depth from 220 feet to 341 feet (Attachment 1). The general approach for eliminating contaminant migration pathways from the ground surface to underlying aquifers involves cement grouting each borehole from total depth to the ground surface. It should be possible to remove all PVC screen and casing, the Volclay grout seal separating the wells and all filter pack by re-drilling the borehole using an 8¾-inch tri-cone rock bit. Minor amounts of a surfactant foam may be used to facilitate removal of cuttings from the borehole. The borehole will be grouted from the bottom to the surface using a 2‰ steel tremie pipe. The cohesive nature of the formations involved suggest that it will be possible to grout all regions of each borehole.

SOIL AND GROUND-WATER INVESTIGATIONS • REMEDIAL ACTION • LITIGATION SUPPORT • VADOSE ZONE HYDROLOGY

6020 ACADEMY NE - SUITE 100 - ALBUQUERQUE, NM 87109 - (505) 822-9400 - FAX (505) 822-8877

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Mr. Ted Ryther September 25, 1991 Page 2

However, if when implementing the well closure procedures described below the formation takes excessive amounts of grout (e.g. more than three times the amount calculated), DBS&A recommends an alternative method for sealing off the upper portion of the borehole. The procedure involves setting a cement basket (plug) above the zone taking excessive amounts of grout. The plug is allowed to set overnight and grouting operations resume the following day. This procedure has been previously implemented by DBS&A for closure of monitor wells at the Mountainair and Corona compressor stations. The existing 10-inch diameter by 20 foot long steel surface casing will be cut off at the surface. A steel cap with the well number and abandonment date will then be welded to the top of the steel surface casing.

If you should have any questions or concerns, please do not hesitate to call me.

Regards,

DANIEL B. STEPHENS & ASSOCIATES, INC.

mogori

K.C. Thompson Geologist

Attachments: As stated KCT/fg

9

3

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

.

COST ESTIMATE

Monitor Well Abandonment 89-033-L Laguna, New Mexico

TASK 1. WORK PLAN PREPARATION

Professional Services			
Project Manager	6 hours @ \$72/hr	\$	432.00
Health and Safety Officer	4 hours @ \$72/hr	\$	288.00
Project Geologist	8 hours @ \$45/hr	\$	360.00
Clerical	5 hours @ \$25/hr	<u>\$</u>	125.00
	Subtotal	\$	1,205.00
Expenses Office Expenses		¢	100.00
(computer, phone, xerox, postage, etc.)		<u>*</u>	100.00
	Subtotal	<u>\$</u>	100.00
	TASK 1 TOTAL	\$	1,305.00
TASK 2. MONITOR WELL ABANDONMENT			
Professional Services			
Project Manager	15 hours @ \$72/hr	\$	1,080.00
Project Geologist	158 hours @ \$45/hr	\$	7,110.00
Staff Hydrologist	10 hours @ \$50/hr	\$	500.00
Technician	16 hours @ \$30/hr	<u>\$</u>	480.00
	Subtotal	\$	9,170.00
Expenses			
Estimated based on abandonment of five de	eep monitor wells at three day	s pe	r well.
Stewart Brothers Drilling Co.		\$	31,473.00
Field Supplies (gloves, Tyvek, plastic, etc.)		\$	200.00
Instrument Rental (TE 5BOB OVM)	3 weeks @ \$260/week	\$	780.00
Maintenance and Calibration Fee	2 ·	\$	150.00
Instrument Shipping	2 shipments @ \$30/each	\$	60.00
Lodging and Per Diem	19 overnight days	\$	1,425.00
Travel	21 round trips @		
	65 mi x .40/mile	<u>\$</u>	546.00
	Subtotal	\$	34.634.00
		_	

Task 2 Subtotal \$ 43,804.00

â

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

COST ESTIMATE (CONTINUED)

TASK 3. REPORT PREPARATION

Professional Services Principal Hydrologist Project Manager Project Hydrogeologist Drafting Clerical	3 hours @ \$125/hr 12 hours @ \$72/hr 16 hours @ \$45/hr 30 hours @ \$30/hr 8 hours @ \$25/hr	\$\$ \$} \$\$ \$}	375.00 864.00 720.00 900.00 200.00
Expenses			·
Office Expenses (computer, telephone, xerox, postage)		<u>\$</u>	200.00
	TASK 3 SUBTOTAL	<u>\$</u>	3,259.00
	Project Subtotal	<u>\$</u>	48,368.00
New Mexico	State Gross Receipts Sales Tax	<u>\$</u>	2,781.16
	TOTAL	\$	51,149.16

ATTACHMENT 1

. :

WELL SCHEMATIC 6-1 LAGUNA, NEW MEXICO

[...

WELL SCHEMATIC 6-2 LAGUNA, NEW MEXICO

6-3 LAGUNA, NEW MEXICO

WELL SCHEMATIC 6-4 LAGUNA, NEW MEXICO

WELL SCHEMATIC 6-5 LAGUNA, NEW MEXICO

SUMMARY OF ANALYTICAL RESULTS

SUMMARY OF ANALYTICAL RESULTS ENRON LAGUNA MONITOR WELLS JULY 9, 1991

1

WELL	DATE	Total	Benzene	Toulene	Ethyl-	Xylene
		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
6-1D	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND	ND	ND	ND
	11/90	ND ₁				
	11/90	ND	ND	1.1	ND	ND
	01/91	ND	ND	ND	ND	ND
6-1S	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND .	ND	ND	ND
	09/90	ND ₁				
	12/90	ND	ND	ND	ND	ND
	01/91	ND	ND	ND	ND	ND
	02/91	ND	ND	0.9	ND	ND
	03/91	ND	ND	ND	ND	ND
	04/91	ND	ND	ND	ND	ND
	05/91	ND	ND	ND	ND	ND
6-2D	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND	ND	ND	ND
	10/90	ND ₁				
	01/91	ND	ND	ND	ND	ND
6-2S	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND	ND	ND	ND
	09/90	ND ₁				
	12/90	ND	ND	ND	ND	ND
	01/91	ND	ND	ND	ND	ND
·	02/91	ND	ND	ND	ND	ND
•	03/91	ND	ND	ND	ND	ND

SUMMARY OF ANALYTICAL RESULTS ENRON LAGUNA MONITOR WELLS

WELL	DATE	Total	Benzene	Toulene	Ethyl-	Xylene
		(ppb)	(ppb)	(ppb)	benzene (ppb)	(ppb)
	04/91	ND	ND	ND	ND	ND
	05/91	ND	ND	ND	ND	ND
6-3D	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND	ND	ND	ND
	10/90	ND,	ND ₁	ND ₁	ND ₁	ND ₁
	01/90	ND	ND	0.92	ND	ND
6-3S	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND ·	ND	ND	ND
	11/90	ND ₁	ND ₁	ND ₁	ND ₁	ND ₁
	12/90	ND	0.55	0.80	0.5	ND
	01/91	ND	ND	ND	ND	ND
	02/91	ND	ND	0.64	ND	ND
	04/91	ND	ND	ND,	ND	ND
	05/91	ND	ND	ND	ND	ND
6-4D	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND	ND	ND	ND
	10/90	3.4ª ₁	ND ₁	ND ₁	ND ₁	ND ₁
	10/90	ND	ND	ND	ND	ND
	01/90	ND	ND	ND	ND	ND
6-4S	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND	ND	ND	ND
	09/90	ND,	ND ₁	ND ₁	ND ₁	ND ₁
	10/90	ND ₁	ND ₁	ND ₁	ND ₁	ND ₁
	12/90	ND	ND	ND	ND	ND
	01/91	ND	ND	ND	ND	ND

ł

SUMMARY OF ANALYTICAL RESULTS ENRON LAGUNA MONITOR WELLS

ŝ

WELL	DATE	Total	Benzene	Toulene	Ethyl-	Xylene
		PCB* (ppb)	(ppb)	(ppb)	benzene (ppb)	(ppb)
	02/91	ND	ND	ND	ND	ND
	03/91	ND	ND	0.70	ND	ND
	04/91	ND	ND	ND	ND	ND
	05/91	ND	ND	ND	ND	ND
6-5D	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND	ND	ND	ND
	09/90	ND ₁	ND ₁	ND ₁	ND ₁	ND ₁
	10/90	ND ₁	ND ₁ ·	ND ₁	ND ₁	ND ₁
	01/91	ND	ND	ND	ND	ND
6-5S	07/90	ND	ND	ND	ND	ND
	08/90	ND	ND	ND	ND	ND
	10/90	0.23 ^b 1	ND ₁	ND ₁	ND ₁	ND,
	12/90	ND	**	**	**	**
	01/91	ND	ND	ND	ND	ND
	02/91	ND	ND	ND	ND	ND
	03/91	ND	ND	ND	ND	ND
	04/91	ND	ND	ND	1.7	1.5
	05/91	ND	ND	ND	ND	ND
6-6	04/91	ND	ND	1.5	ND	ND
	05/91	ND	ND	ND	ND	ND
	06/91	ND	ND	ND	ND	ND
6-7	04/91	ND	ND	0.80	ND	ND
	05/91	ND	ND	ND	ND	ND
	06/91	ND	ND	0.55	ND	ND
6-8	04/91	ND	ND	0.97	ND	ND

SUMMARY OF ANALYTICAL RESULTS ENRON LAGUNA MONITOR WELLS

WELL	DATE	Total PCB* (ppb)	Benzene (ppb)	Toulene (ppb)	Ethyl- benzene (ppb)	Xylene (ppb)
	05/91	ND	0.55	0.59	ND	ND
	06/91	ND	0.77	2.0	ND	1.1

NOTES:

- **Sample bottles were received broken at the lab. No BTEX results available for 12/90.
- ND = Not detected at or above the reporting limit.

Unless noted all chemistry was analyzed at ENSECO's Houston Laboratory.

Standard reporting limit from ENSECO's Houston Laboratory:PCB = 1.0 (ppb)Benzene = 0.50 (ppb)Toluene = 0.50 (ppb)Ethylbenzene = 0.50 (ppb)Xylene = 0.50 (ppb)

Samples analyzed at Assaigai Analytical Laboratories Standard Reporting Limit = 1.0

*Total PCB includes

Aroclor	1016	Aroclor	1248
Aroclor	1221	Aroclor	1254
Aroclor	1232	Aroclor	1260
Aroclor	1242		

^a Aroclor 1254

```
<sup>b</sup> Aroclor 1248
```

New Mexico Water Quality Control Commission (NM WQCC) standards:PCB = 1 (ppb)Benzene = 10 (ppb)Toulene = 750 (ppb)Ethylbenzene = 750 (ppb)Xylene = 620 (ppb)Ethylbenzene = 750 (ppb)

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

November 6, 1991

NOV 1 2 1991

Ms. Donna Mullins USEPA Region VI 1445 Ross Avenue, Suite 1200 Dallas, Texas 75202

OIL CONSERVATION DIV. SANTA FE

Reference: Submittal of Initial Groundwater Assessment Report, Laguna Station

Dear Donna:

The enclosed report, "Plan for Ground-water Assessment Report for Compressor Station No. 6, Laguna New Mexico", dated November 4, 1991 by Daniel B. Stephans & Associates, constitutes the initial report of groundwater assessment in accordance with Section IV.D.2. of Appendix A to the Consent Decree. The report summarizes the results of the previously submitted Hydrogeology report, discussess the physical and chemical characteristics of the recently discovered perched ground water, provides the results of ground water monitoring and proposes a plan and schedule for additional investigations needed to prepare the final Ground water assessment Report.

Copies of this letter and the attached report have been forwarded directly to Mr. Thomas McGraw at the New Mexico EID and to Mr. Ed Wise of ENTRIX. In addition, the attached report has been sent to Mr. Dave Boyer of the New Mexico OCD.

Should you have any questions please call me at (713) 853-3219 or Ted Ryther at (713) 853-5634.

Yours very truly

James C. Alefander

James C. Alexander Manager of Projects Environmental Affairs

Attachments

cc: Mr. Thomas H. McGraw, New Mexico EID Mr. Ed Wise, ENTRIX

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 6 1445 ROSS AVENUE SUITE 1200 DALLAS. TEXAS 75202-2733

July 23, 1991

Mr. Jim Alexander Project Manager Enron Gas Pipeline Group P.O. Box 1188 Houston, Texas 77254-1188

Transwestern Pipeline Consent Decree Re: Cleanup Levels for Rio Grande Receiver and Launcher Sites

Dear Jim:

This letter is in response to our meetings on June 17, 1991, and June 24, 1991, at which time we discussed the appropriate cleanup levels for the Rio Grande River Pig Receiver and Pig Launcher sites. According to the Consent Decree, page 40, paragraph B, part "EPA reserves the right to require more stringent cleanup 2, standards based on site specific conditions, including but not limited to shallow depth to groundwater, proximity to grazing lands or vegetable gardens. If upon review of the Site Remediation Work Plan the EPA Project Contact determines that a particular site requires more stringent cleanup levels, the EPA Project Contact will make a written finding based upon the specific facts of the site, to support its conclusion that a more stringent cleanup level is necessary to prevent unreasonable risk."

Based upon the site-specific factors for the two sites in question, EPA has determined that 1 ppm PCB should be the appropriate cleanup level for soils at the two sites. In addition, according to the Consent Decree, page 34, Section IV., groundwater sampling and monitoring shall be conducted at any other sites so determined by the EPA Project Contact. This determination is based upon several factors, which will be expanded upon in this letter.

The sites in question are small ancillary sites, located along the Transwestern Pipeline "right of way". The Rio Grande Pig Receiver is located at the Nicolas de Duran Chaves Grant, 6 miles south of Rio Communities, Valencia County.

- The site is 200 yards from the Rio Grande River, located in 1. the eastern floodplain of the Rio Grande River.
- 2. The site is restricted by a fence and it is surrounded by croplands.

groundwater appears to have been reached in split-spoon sample RGC-3-004. Sample RGC-3-004 was collected from a depth of 5.0 feet to 5 feet 6 inches. This indicates that PCBs greater than 1.0 ppm have potentially been detected at less than 1 foot above the water. It appears that from other photos submitted from drill hole sampling at the site, that groundwater is at a depth of approximately 5 to 6 feet across the site.

The Rio Grande Pig Launcher is located at the Nicolas de Churan Chaves Grant, 6 miles south of Rio Communities, west side of the Rio Grande River, Valencia County.

- 1. The site is 200 yards from the Rio Grande River, located within the western floodplain of the River.
- 2. The area adjacent to the site is utilized for cattle and horse grazing and agricultural purposes.
- 3. Several residences are within close proximity to the site.
- 4. The primary function of this site is to launch a pigging device into the pipeline.

At the time of the soil sampling mission in December, 1990, the concrete slabs beneath the pig launchers were heavily stained and provided no containment for liquids. At the time of the wipe sampling mission in April, 1991, the pad had been resurfaced with fresh concrete and containment capacity had been added. In addition, from pictures taken during the April, 1991, wipe sampling mission, it appears that the area directly adjacent to the site was flooded for purposes of irrigation.

At the Rio Grande River Crossing Launcher, groundwater at the site appears to be at a depth of approximately four to six feet in In drill hole #2 at the site, PCBs were detected at a depth. concentration of 8.2 ppm in sample RGCL-2-002 which was collected from a depth of 2.0 feet to 2 feet 6 inches. Based on a photo of split-spoon sample RGCL-2-003 which was collected from a depth of 3 feet 9 inches to 4 feet 3 inches, it appears that the soil material is moist to damp at that depth. This could indicate that PCBs greater than 1.0 ppm have potentially been detected at less than 2 feet above water. It appears that from other photos submitted from drill hole sampling at the site that groundwater was found at a depth of approximately 4 to 6 feet at the site. A photo of sample RGCL-1-003 which was collected at a depth of 4.0 feet to 4 feet 6 inches from drill hole #1 at the site appears to be quite Drill hole #1 is approximately 12.5 feet from drill saturated. hole #2.

3. The site is also within the boundaries of a protected area for migratory birds.

ŕ

j

4. The primary function of this site is the receipt of pig launchers and PCB-contaminated condensate from within the pipeline.

At this time, the PCB-contaminated condensate is removed from the pipeline and stored in a 500 bbl. tank on-site. However, from 1968-1972, PCB lubricating oil was used in the gas turbine at Transwestern Pipeline's Corona, New Mexico compressor station. Seal failures led to the entry of PCB lubricating oil into the pipeline, contaminating downstream facilities. Up until as late as 1984, condensate from the pigging operations was placed into open pits or sumps at the compressor stations and pig receivers. The tank that is presently at the receiver site was not placed there until 1981. Based on past condensate storage records from the Rio Grande Pig Receiver tank from November, 1985 to February, 1987, 7935 gallons of PCB-contaminated condensate was collected during that time period. Before the tank was placed on-site, condensate was collected in a sump. The maximum amount of condensate that the sump could have contained would have been 10 bbls., or 420 gallons. The disposition of the PCB-contaminated condensate, before placement of the 500 bbl tank, is not known by EPA. Furthermore, the integrity of the catch basins underneath the two pig receivers, the piping to the sump and the sump itself (i.e. whether the sump bottom is cracked) is not known. Condensate sampling at the Rio Grande Pig Receiver and downstream at the Laguna Compressor Station indicates that PCBs at a maximum concentration of 3481 ppm PCB, as of January 26, 1984, were still being encountered. A spill cleanup was conducted at the Receiver site during January, 1990, after a 100-gallon spill of pipeline condensate. The area cleaned up was northwest of the northernmost pig receiver, between the pig receiver and the demister. This is the only cleanup at the site that EPA is aware of. It is not known whether any historical cleanup or hauling and filling at the site has occurred.

Selected core sampling was conducted at these sites during December, 1990. Samples were collected from four core holes per site and samples were obtained and analyzed at surface, two, four and six foot depth intervals. At the Rio Grande River Crossing Receiver, groundwater appears to be at a depth of approximately five to six feet in depth. In drill hole #3 at the site, PCBs were detected at a concentration of 7.3 ppm in sample RGC-3-003 which was collected at depth of 4.0 feet to 4 feet 6 inches. Based on another photo of a split-spoon sample from this drill hole, Groundwater flow conditions have not been studied at either site, and data has not been presented documenting the direction of groundwater flow, hydraulic conductivity and/or transmissivity of the shallow aquifer material, and water quality data has not been presented to EPA Region 6. In addition, lithologic descriptions have not been documented for either site. Additional sampling or groundwater characterization may be necessary to study the potential presence of BTEX and its potential for increasing the presence and solubility of PCBs in groundwater below the site. In addition, documentation has not been provided detailing how the Rio Grande River affects hydraulic or groundwater flow conditions in the area.

To date no sampling for the presence of other constituents, such as Benzene, Toluene and Xylene (BTEX), has been conducted at either site. From circumstances encountered at the four compressor stations remediated under this Consent Decree, BTEX has been encountered at all these sites and it has increased the solubility and the mobility in the soil of the PCBs.

Therefore, based on the shallow depth to groundwater, the predominant agricultural use within the area at both sites, the lack of characterization of groundwater conditions and potential BTEX contamination and EPA's lack of knowledge of past waste handling practices at these sites, a cleanup level of 1 ppm PCB will be required to prevent unreasonable risk to human health and/or the environment.

If you have any questions concerning this response, please call me at (214) 655-7244.

Sincerely,

Donna S. Mullins EPA Project Contact

cc: Tom McGraw, NMEID David Boyer, NMOCD Ed Wise, Entrix