GW - 294

MONITORING REPORTS

DATE: 2005-2000

2005 ANNUAL MONITORING REPORT

TEXACO SKELLY F SW ½ NW ½ SECTION 21, TOWNSHIP 20 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO PLAINS EMS NUMBER: 2002-11229 NMOCD Reference Number 1R-0420

Prepared For:

PLAINS MARKETING, L.P. 333 CLAY STREET, SUITE 1600 HOUSTON, TEXAS 77002

Prepared By:

NOVA Safety and Environmental 2057 Commerce Street Midland, Texas 79703

March, 2006

tenly Curt D. Stanley

Project Manager

Tort K hon

Todd K. Choban, P.G. Vice President Technical Services

Safety and environmental

2057 Commerce Drive | Midland, Texas 79703 | 432 520-7720 | 432 520-7701 fax

TABLE OF CONTENTS

INTRODUCTION1	
SITE DESCRIPTION AND BACKGROUND INFORMATION1	
FIELD ACTIVITIES1	
LABORATORY RESULTS2	
SUMMARY	
ANTICIPATED ACTIONS4	
LIMITATIONS	
DISTRIBUTION	

FIGURES

•

Figure 1 – Site Location Map

Figure 2A – Inferred Groundwater Gradient Map – March 18, 2005

- 2B Inferred Groundwater Gradient Map June 16, 2005
- 2C Inferred Groundwater Gradient Map September 13, 2005
- 2D Inferred Groundwater Gradient Map December 15, 2005

Figure 3A - Groundwater Concentration and Inferred PSH Extent Map - March 18, 2005

- 3B Groundwater Concentration and Inferred PSH Extent Map June 16, 2005
- 3C Groundwater Concentration and Inferred PSH Extent Map September 13, 2005
- 3D Groundwater Concentrations and Inferred PSH Extent Map December 15, 2005

TABLES

Table 1 – Groundwater Elevation Data Table 2 – Concentrations of Benzene and BTEX in Groundwater

APPENDICES

Appendix A – Release Notification and Corrective Action (Form C-141)

•

ENCLOSED ON DATA DISK 2005 Annual Monitoring Report 2005 Tables 1 and 2 - Groundwater Elevation, and BTEX Concentration 2005 Figures 1, 2A-2D, and 3A-3D Electronic Copies of Laboratory Reports Historic Tables 1 and 2 - Groundwater Elevation and BTEX Concentration Tables

INTRODUCTION

On behalf of Plains Marketing, L.P. (Plains), NOVA Safety and Environmental (NOVA) is pleased to submit this Annual Monitoring Report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1 of each year. Beginning on May 29, 2004, project management responsibilities for the Texaco Skelly F site (the site) were assumed by NOVA. The site was previously managed by Environmental Technology Group, Inc (ETGI). The site, which was formerly the responsibility of Enron Oil Trading and Transportation (EOTT), is now the responsibility of Plains. This report is intended to be viewed as a complete document with text, figures, tables and appendices. The report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2005 only. However, historic data tables as well as 2005 laboratory analytical reports are presented on the enclosed data disk. For reference, the Site Location Map is provided as Figure 1.

Groundwater monitoring was conducted during each quarter of 2005 to assess the levels and extent of dissolved phase constituents and Phase Separated Hydrocarbon (PSH). Each groundwater monitoring event consisted of measuring static water levels in monitor wells, checking for the presence of PSH on the water column and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 foot were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the site is SW ¼ NW ¼ Section 21, Township 20 South, Range 37 East. The release was discovered by the Texas-New Mexico Pipeline Company (TNM) on the fourinch crude oil transportation line. The pipeline was apparently repaired with a clamp. No information is currently available documenting the discovery date, release volume or nature of line failure. The Release Notification and Corrective Action Form (C-141) is provided as Appendix A. No site excavation activities have been conducted onsite regarding this release. A Geoprobe[®] Rig was utilized during the initial site investigation to delineate crude oil impacted soil. Laboratory analysis of soil samples collected during this initial stage of the investigation indicates that subsurface soil impacted by the crude oil release were limited to areas at and below the surface staining.

Six groundwater monitor wells (MW-1 through MW-6) and one product recovery well (RW-1) are currently onsite. Manual product recovery is now being conducted weekly from recovery well RW-1 and when present, from monitor well MW-4. All monitor and product recovery wells are sampled on a quarterly schedule.

FIELD ACTIVITIES

During each quarterly event, recovery well RW-1 displayed a measurable thickness of PSH and was not sampled. A maximum thickness of 2.63 feet of PSH was detected in RW-1 on July 13, 2005. Gauging data is provided as Table 1. Monitor well MW-4 exhibited a PSH thickness of 0.01 feet during the third and fourth quarters of 2005 and was not sampled. Approximately 302

gallons (approximately 7.2 barrels) of PSH has been recovered since project inception. Approximately 127 gallons (approximately 3 barrels) of PSH was recovered from the site during the 2005 reporting period.

Ł

Quarterly monitoring events for the reporting period were performed according to the following sampling schedule, which was approved by the NMOCD in correspondence dated April 28, 2004 and amended by NMOCD correspondence dated June 22, 2005.

NMOCD Approved Sampling Schedule						
MW-1	Annually					
MW-2	Annually					
MW-3	Annually					
MW-4	Annually					
MW-5	Quarterly					
MW-6	Annually					
RW-1	Quarterly					

The site monitor wells were gauged and sampled on the following dates in 2005: March 18, June 16, September 13, and December 15. During each sampling event, sampled monitor wells were purged of approximately three well volumes of water or until the wells failed to produce water using a PVC bailer or electric Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon samplers. Water samples were collected in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a polystyrene tank and disposed of by Key Energy of Hobbs, New Mexico utilizing a licensed disposal facility (NMOCD AO SWD-730).

Locations of the monitor wells and the inferred groundwater gradient, which were constructed from measurements collected during the four (4) quarterly events, are depicted on Figures 2A through 2D, the Inferred Groundwater Gradient Maps. Groundwater elevation data for 2005 is provided as Table 1. The most recent Groundwater Gradient Map, Figure 2D, indicates a general gradient of approximately 0.002 feet/foot to the south-southeast as measured between groundwater monitor wells MW-1 and MW-6. This is consistent with data presented on Figures 2A through 2C from earlier in the year. Corrected groundwater elevations ranged between 3496.94 and 3,493.85 feet above mean sea level, in MW-3 on March 18, 2005 and MW-4 on March 18, 2005, respectively.

LABORATORY RESULTS

Recovery well RW-1 contained measurable PSH throughout the reporting period and was not sampled. Monitor well MW-4 contained measurable PSH during the third and fourth quarter sampling event and was not sampled during these quarters.

Groundwater samples collected during the 2005 quarterly monitoring events were delivered to Trace Analysis, Inc., of Lubbock, Texas for determination of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) constituent concentrations by EPA Method SW846-8021b. A listing of BTEX constituent concentrations for 2005 is summarized in Table 2 and copies of the laboratory reports for 2005 are provided on the enclosed disk. The inferred extent of PSH and groundwater sampling results for benzene and total BTEX constituent concentrations are depicted on Figures

3A-3D, the Groundwater Concentration Maps. Review of the laboratory results generated from analysis of the groundwater samples obtained during this annual reporting period indicate a benzene concentration above the applicable NMOCD regulatory standards in monitor well MW-4 only. The total BTEX constituent concentration displayed by this sample was below the applicable NMOCD regulatory standard. Review of the laboratory analytical results of the groundwater samples obtained during this annual reporting period from monitor wells MW-1, MW-2, MW-3, MW-5 and MW-6 indicate both benzene and BTEX constituent concentrations remain below the applicable NMOCD regulatory standards. As mentioned above, recovery well RW-1 exhibited PSH during each sampling event of 2005 and was not sampled.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code.

1

SUMMARY

This report presents the results of monitoring activities for the 2005 annual monitoring period. Six groundwater monitor wells (MW-1 through MW-6) and one product recovery well (RW-1) are currently onsite. Manual product recovery is now being conducted weekly from recovery well RW-1 and, when present, from monitor well MW-4. The most recent Groundwater Gradient Map, Figure 2D, indicates a general gradient of approximately 0.002 ft./ft. to the south-southeast.

Recovery well RW-1 displayed measurable thicknesses of PSH during each gauging event of the reporting period. Monitor well MW-4 exhibited a PSH thickness of 0.01 feet during the third and fourth quarters of 2005 and was not sampled. Approximately 127 gallons (approximately 3 barrels) of PSH has been recovered from the site during the reporting period, with approximately 302 gallons (approximately 7.2 barrels) of PSH having been recovered from the site since project inception in January of 2003. At this time, PSH impact appears to be limited to RW-1.

Review of the laboratory analytical results of the groundwater samples obtained during this annual reporting period indicate benzene and total BTEX constituent concentrations are below the applicable NMOCD regulatory standards in five (5) of the seven (7) monitor and recovery wells on site. RW-1 consistently displayed measurable thicknesses of PSH during each sampling event and was not sampled. Additionally, the dissolved phase benzene concentration in MW-4 has been above the NMOCD regulatory standard.

Dissolved phase impact above the applicable NMOCD regulatory standard appears to be limited to the area bounded by monitor well MW-4 and recovery well RW-1 at this time. No trends with respect to changing dissolved phase impact are apparent from the analytical data.

ANTICIPATED ACTIONS

Quarterly groundwater gauging and sampling will continue in 2006.

Additional site delineation is required with respect to the occurrence of PSH and dissolved phase constituents in groundwater. A work plan is currently in place to further delineate the extent of impact to the southern portion of the site with the installation of one additional monitor well and one or possibly two additional recovery wells. In addition, Plains plans to advance three soil borings at the site to vertically delineate impact soil beneath the surface stain. It is anticipated that drilling will commence in the Spring of 2006.

LIMITATIONS

NOVA has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

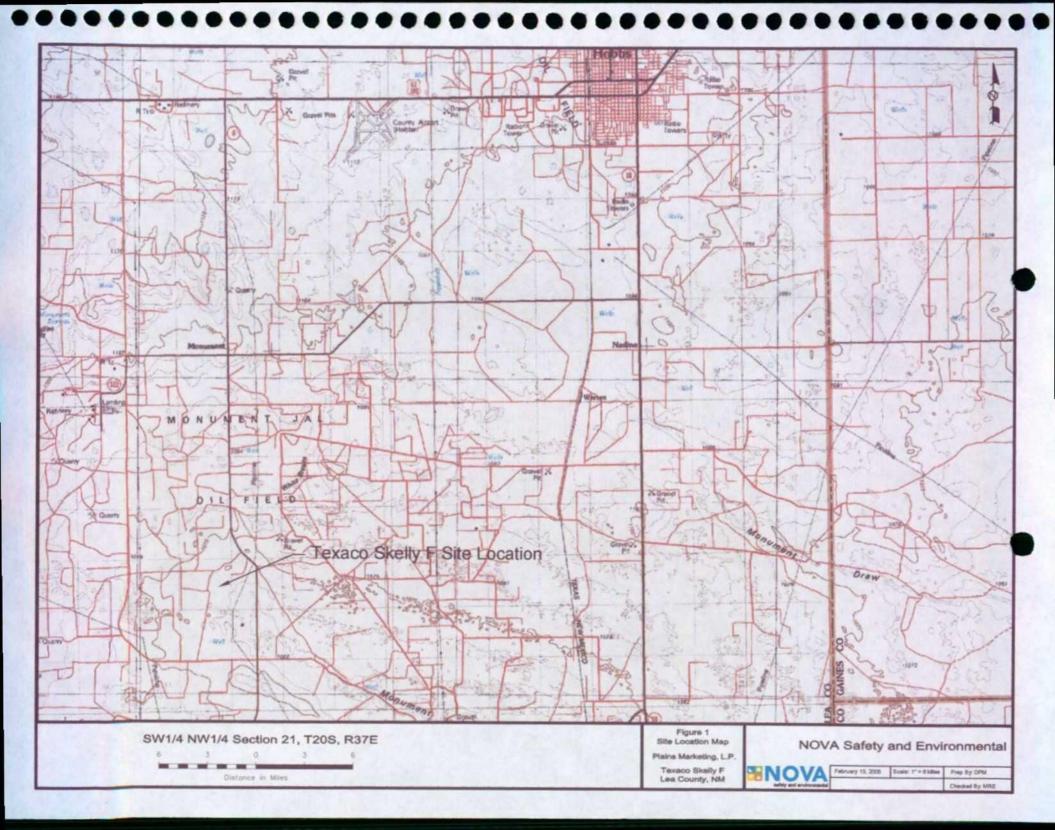
NOVA has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. NOVA has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. NOVA has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. NOVA also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

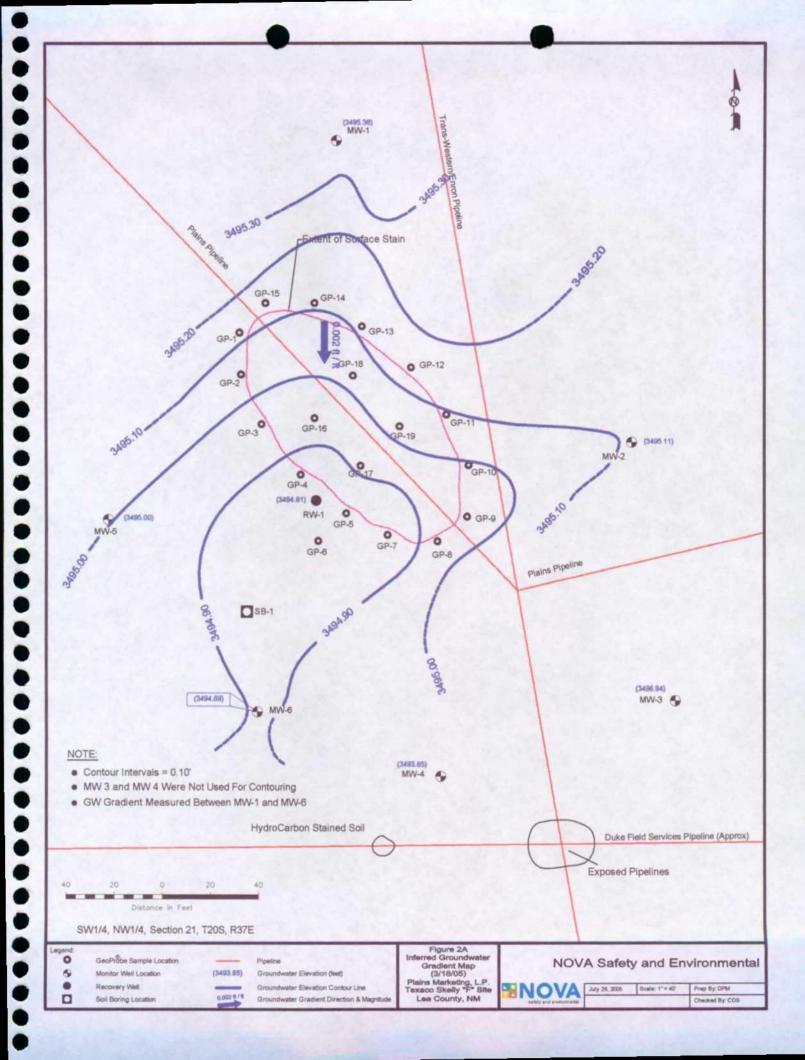
This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of NOVA and/or Plains.

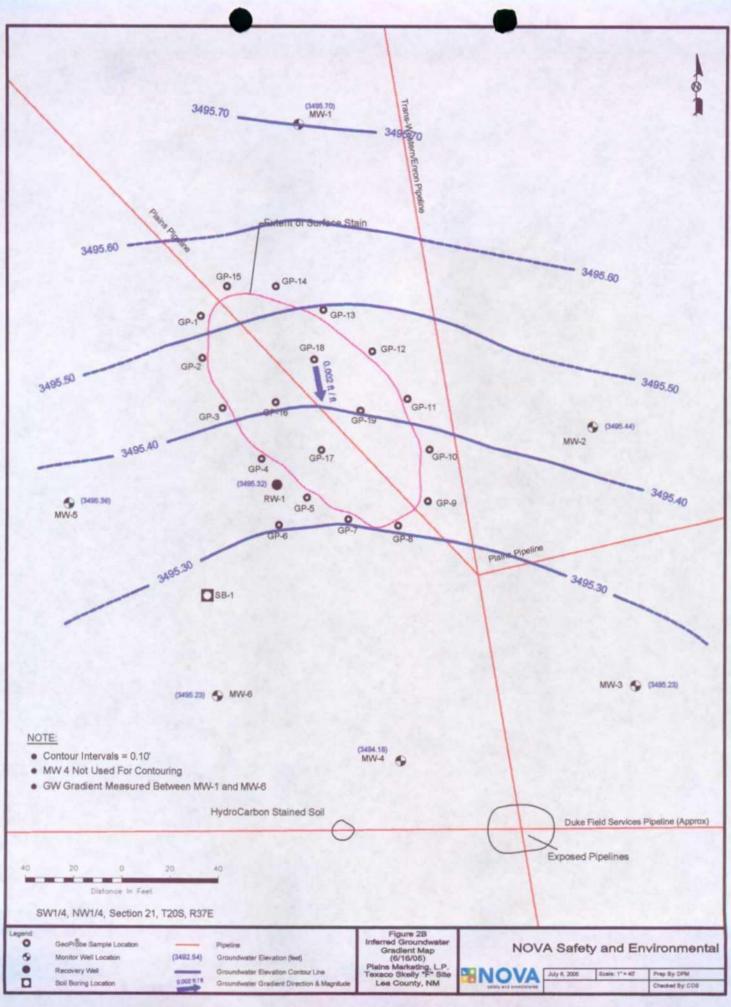
DISTRIBUTION

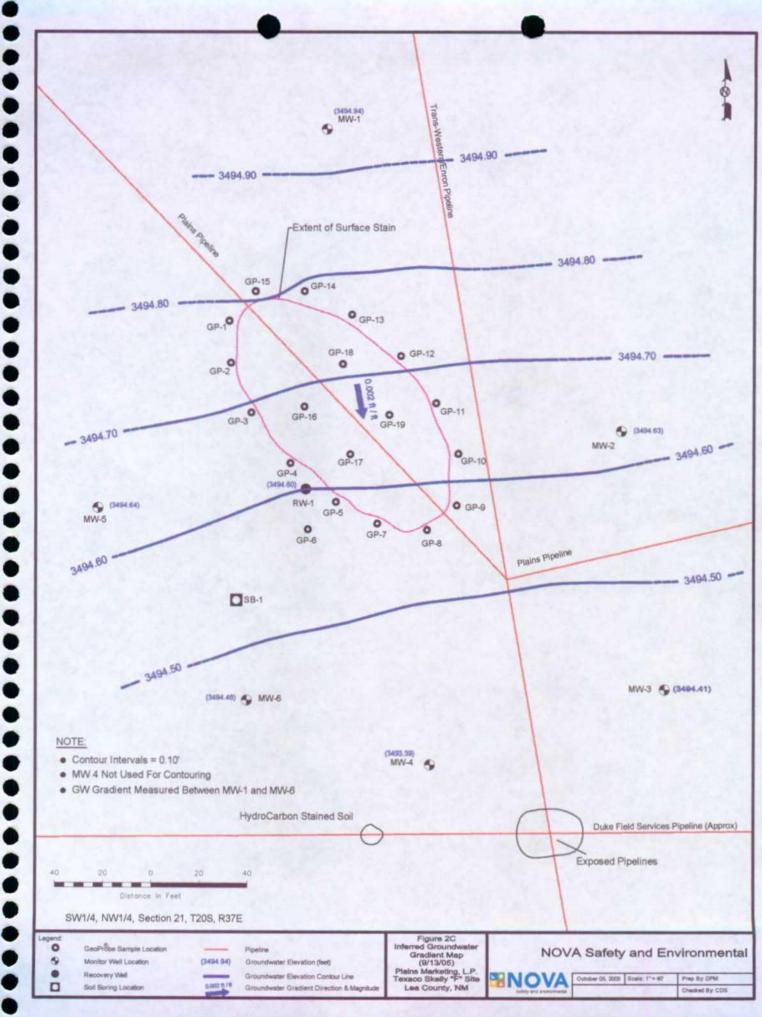
1

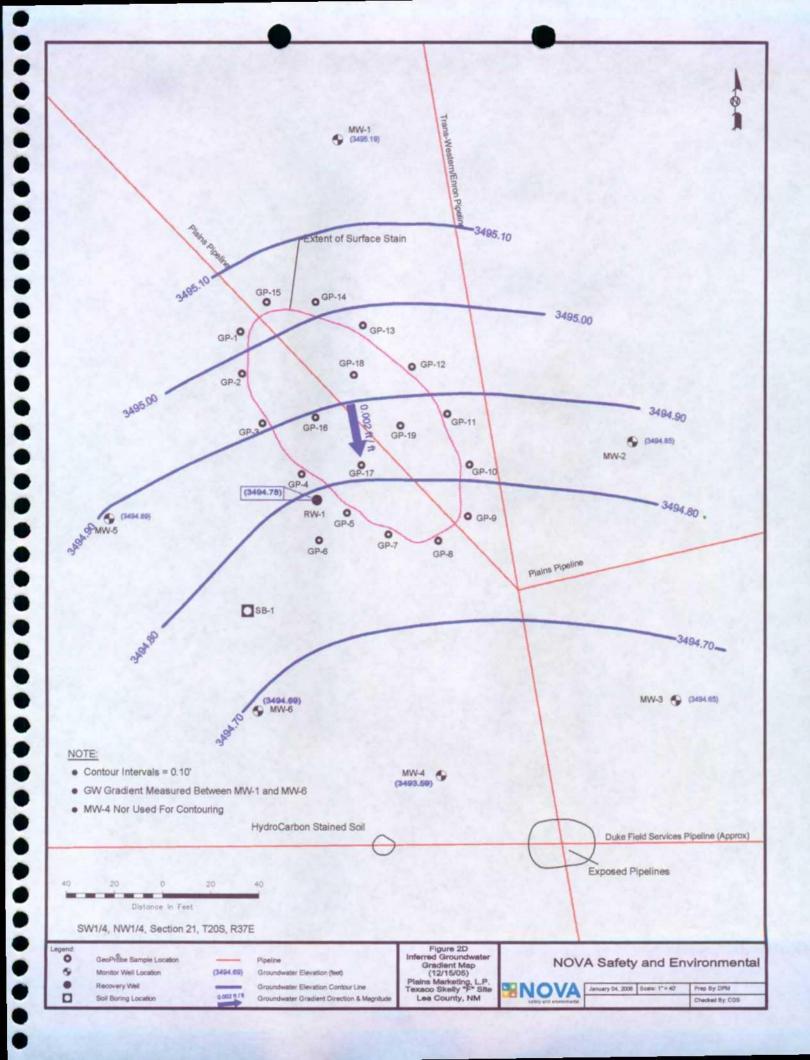
+ (

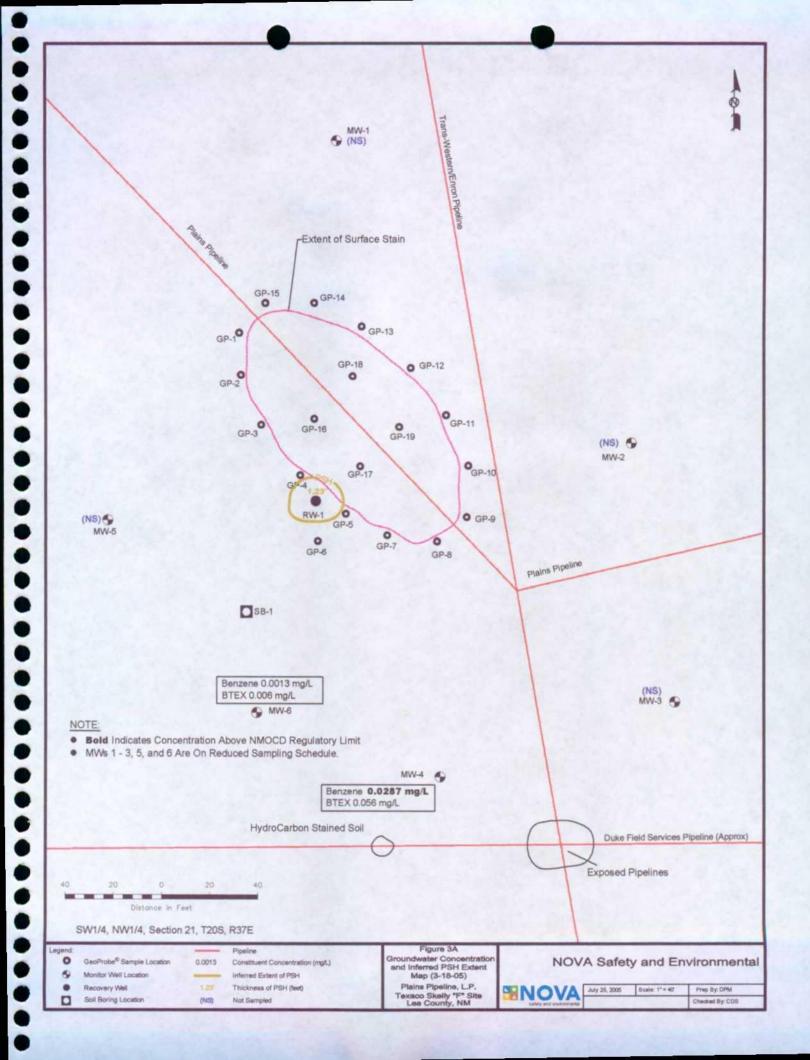

•

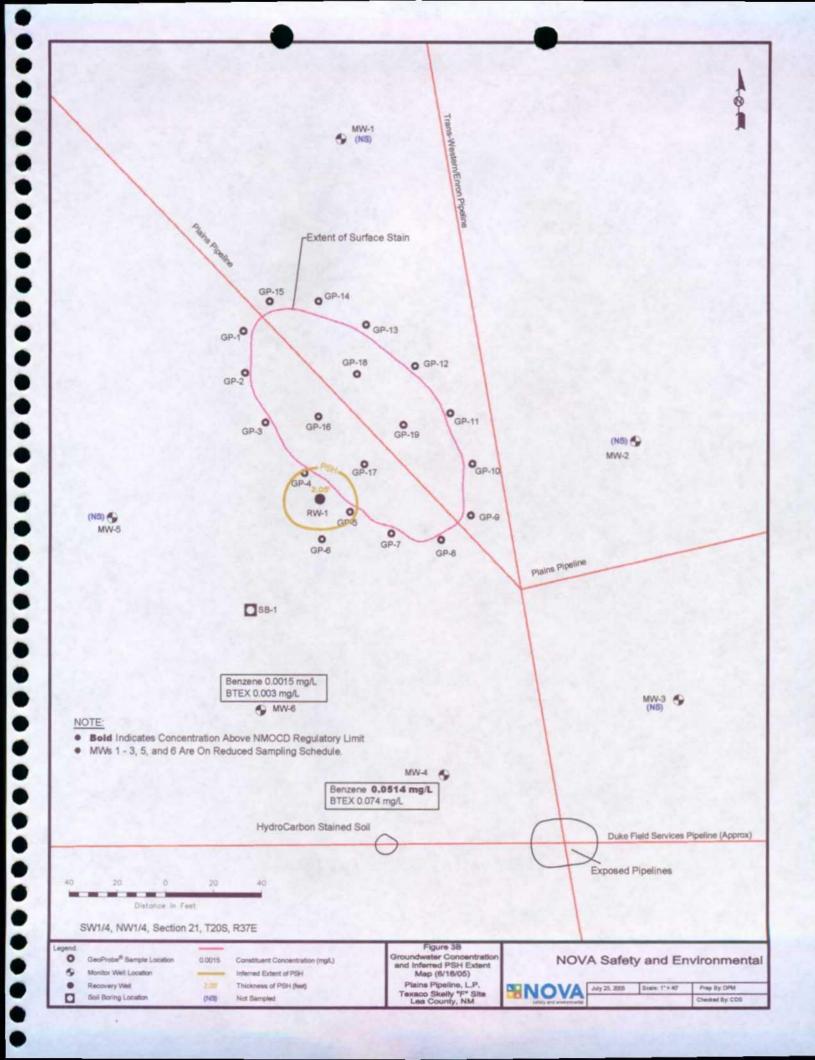

Copy 1	Ed Martin New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505
Copy 2:	Larry Johnson and Paul Sheeley New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 1 1625 French Drive Hobbs, NM 88240
Copy 3:	Camille Reynolds Plains Marketing, L.P. 3112 Highway 82 Lovington, NM cjreynolds@paalp.com
Copy 4:	Jeff Dann Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, TX 77002 jpdann@paalp.com
Copy 5:	NOVA Safety and Environmental 2057 Commerce Street Midland, TX 79703 cstanley@novatraining.cc

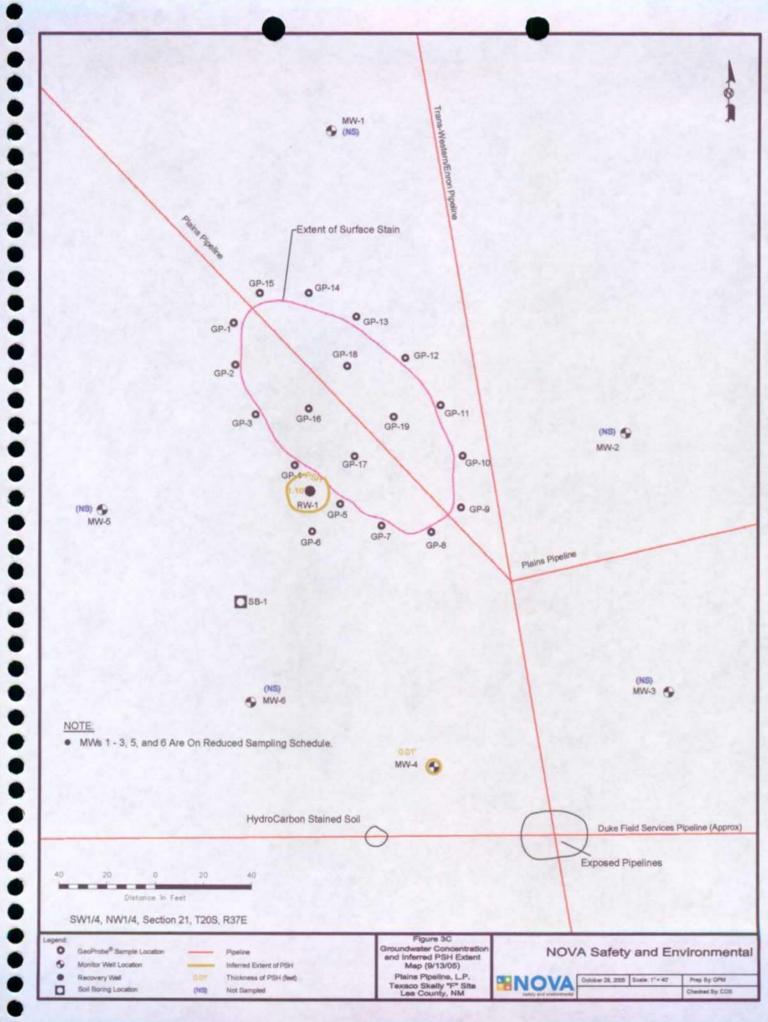

Figures


•

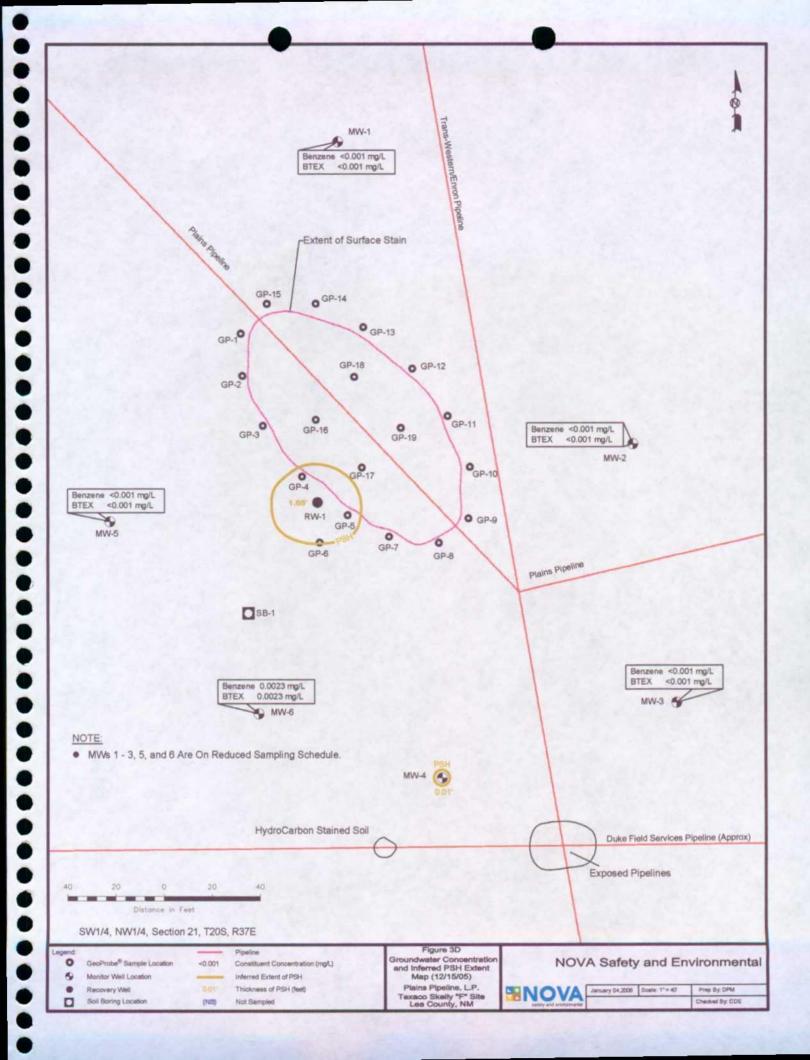








.



. .

Tables

TABLE 1

2005 GROUNDWATER ELEVATION TABLE

PLAINS MARKETING, L.P. TEXACO SKELLY F LEA COUNTY, NM

Well Number	Date Measured	Top of Casing Elevation	Depth to Product	Depth to Water	PSH Thickness	Corrected Groundwater Elevation
MW-1	03/18/05	3521.04	-	25.68	0.00	3495.36
	06/16/05	3521.04	-	25.34	0.00	3495.70
	09/13/05	3521.04	-	26.10	0.00	3494.94
	12/15/05	3521.04	-	25.85	0.00	3495.19
		í 				
MW-2	03/18/05	3518.80		23.69	0.00	3495.11
	06/16/05	3518.80	-	23.36	0.00	3495.44
	09/13/05	3518.80	-	24.17	0.00	3494.63
	12/15/05	3518.80		23.95	0.00	3494.85
MW-3	03/18/05	3520.52		23.58	0.00	3496.94
	06/16/05	3520.52		25.29	0.00	3495.23
	09/13/05	3520.52		26.11	0.00	3494.41
	12/15/05	3520.52		25.87	0.00	3494.65
	12/10/00	5020.52		20.07	0.00	
MW-4	03/18/05	3519.91	-	26.06	0.00	3493.85
	06/16/05	3519.91	-	25.73	0.00	3494.18
	08/10/05	3519.91	sheen	26.69	0.00	3493.22
	09/13/05	3519.91	26.52	26.53	0.01	3493.39
	12/15/05	3519.91	26.32	26.33	0.01	3493.59
	· ·					
MW-5	03/18/05	3519.62	-	24.62	0.00	3495.00
	06/16/05	3519.62	-	24.26	0.00	3495.36
	09/13/05	3519.62	-	24.98	0.00	3494.64
	12/15/05	3519.62	-	24.73	0.00	3494.89
NOU C	02/10/05	2520 71		25.92	0.00	2404.80
MW-6	03/18/05 06/16/05	3520.71 3520.71		<u>25.82</u> 25.48	0.00	3494.89 3495.23
	09/13/05	3520.71	├	25.48	0.00	3493.23
	12/15/05	3520.71		26.02	0.00	3494.69
	12/13/03	3320.71		20.02	0.00	3494.09
RW-1	01/05/05	3519.68	25.22	27.30	2.08	3494.15
	01/13/05	3519.68	25.10	27.11	2.01	3494.28
	01/18/05	3519.68	25.15	25.93	0.78	3494.41
	01/27/05	3519.68	25.01	25.68	0.67	3494.57
	02/03/05	3519.68	25.19	25.60	0.41	3494.43
	02/10/05	3519.68	24.99	25.43	0.44	3494.62
	02/17/05	3519.68	25.25	25.79	0.54	3494.35
	02/24/05	3519.68	24.75	25.98	1.23	3494.75
······································	03/03/05	3519.68	24.60	25.99	1.39	3494.87

į

TABLE 1

2005 GROUNDWATER ELEVATION TABLE

PLAINS MARKETING, L.P. TEXACO SKELLY F LEA COUNTY, NM

۲

•

•

•

0

Well Number	Date Measured	Top of CasingDepth to ProductElevation		Depth to Water	PSH Thickness	Corrected Groundwater Elevation
RW-1	03/10/05	3519.68	24.50	26.18	1.68	3494.93
	03/18/05	3519.68	24.69	25.92	1.23	3494.81
	03/18/05	3519.68	24.69	25.92	1.23	3494.81
	03/24/05	3519.68	24.79	25.78	0.99	3494.74
	03/31/05	3519.68	24.35	25.81	1.46	3495.11
	04/07/05	3519.68	24.32	25.86	1.54	3495.13
	04/15/05	3519.68	24.30	25.30	1.00	3495.23
	05/27/05	3519.68	24.08	25.60	1.52	3495.37
	06/02/05	3519.68	24.02	25.61	1.59	3495.42
	06/14/05	3519.68	24.05	26.10	2.05	3495.32
	06/16/05	3519.68	24.05	26.10	2.05	3495.32
	06/23/05	3519.68	24.11	26.70	2.59	3495.18
	06/28/05	3519.68	24.31	25.70	1.39	3495.16
	07/13/05	3519.68	24.50	27.13	2.63	3494.79
	07/19/05	3519.68	24.70	26.63	1.93	3494.69
	07/27/05	3519.68	24.78	27.02	2.24	3494.56
	08/01/05	3519.68	24.89	26.92	2.03	3494.49
	08/10/05	3519.68	24.90	27.34	2.44	3494.41
	08/16/05	3519.68	24.85	26.63	1.78	3494.56
	08/24/05	3519.68	24.88	27.29	2.41	3494.44
	08/30/05	3519.68	24.86	27.03	2.17	3494.49
	09/07/05	3519.68	24.76	26.88	2.12	3494.60
	09/13/05	3519.68	24.75	27.32	2.57	3494.54
	09/13/05	3519.68	24.92	26.02	1.10	3494.60
	09/20/05	3519.68	24.90	27.02	2.12	3494.46
	09/28/05	3519.68	24.80	27.15	2.35	3494.53
	10/07/05	3519.68	25.06	26.52	1.46	3494.40
	10/11/05	3519.68	25.15	25.29	0.14	3494.51
	10/18/05	3519.68	24.95	26.10	1.15	3494.56
	10/31/05	3519.68	25.18	26.22	1.04	3494.34
	11/10/05	3519.68	24.69	26.49	1.80	3494.72
	11/14/05	3519.68	24.76	26.35	1.59	3494.68
	11/23/05	3519.68	24.71	26.10	1.39	3494.76
	11/28/05	3519.68	24.66	26.17	1.51	3494.79
	12/07/05	3519.68	24.71	25.96	1.25	3494.78
	12/12/05	3519.68	24.57	26.38	1.81	3494.84
	12/15/05	3519.68	24.67	25.70	1.03	3494.86
	12/19/05	3519.68	24.65	26.33	1.68	3494.78
RW-1	12/28/05	3519.68	24.51	26.00	1.49	3494.95

Note : NM denotes parameter not measured due to site acess restrictions imposed by landowner. *Note: Elevations based on the North American Vertical Datum of 1929.*

TABLE 2

2005 CONCENTRATIONS OF BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. TEXACO SKELLY "F" LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/L

	GAMPLE	EPA Method SW 846-8021B							
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m - p XYLENES	0- XYLENE			
NMOCD Regul	atory Limit	0.01	0.75	0.75	0.62				
MW-1	03/18/05	Not Sampled	Due to Samp	le Reduction					
	06/16/05	Not Sampled	Due to Samp	le Reduction					
	09/13/05	Not Sampled	Due to Samp	le Reduction					
	12/15/05	< 0.001	< 0.001	< 0.001	<0.(001			
NUV 2	03/18/05	Not Courseled	Des to Comm	Deduction					
MW-2		Not Sampled							
	06/16/05 09/13/05	Not Sampled Not Sampled							
	12/22/05	<0.001	<0.001	< 0.001	<0.0				
	12/22/03	<0.001	<0.001	<0.001	<0.0	101			
MW-3	03/18/05	Not Sampled	Due to Samp	le Reduction					
	06/16/05	Not Sampled	Due to Samp	le Reduction					
· · · · · · · · · · · · · · · · · · ·	09/13/05	Not Sampled	Due to Samp	le Reduction					
	12/15/05	< 0.001	< 0.001	< 0.001	<0.0)01			
MW-4	03/18/05	0.0287	< 0.005	0.015	0.01				
	06/16/05	0.0514	< 0.005	0.0094	0.01	32			
	09/13/05		led Due to PS						
	12/15/05	Not Samp	led Due to PS	H in Well					
MIN 5	02/18/05	Net Sevenled	Due to Server	Deduction					
MW-5	03/18/05	Not Sampled Not Sampled							
	09/13/05	Not Sampled							
	12/15/05	< 0.001	< 0.001	< 0.001	<0.(201			
	12/15/05		~0.001			<u></u>			
MW-6	03/18/05	0.0013	< 0.001	0.0045	<0.(001			
	06/16/05	0.0015	< 0.001	0.0014	<0.0	001			
	09/13/05	Not Sampled	Due to Samp	le Reduction					
	12/15/05	0.0023	< 0.001	< 0.001	<0.(001			
DW/ 1	02/10/05		1 1 0 4 00	11 . 117 11		L <u></u> .			
RW-1	03/18/05		led Due to PS						
	06/16/05		led Due to PS						
	09/13/05		led Due to PS						
	12/15/05	Not Samp	led Due to PS	H in Well					

Concentrations in **BOLD** are above the applicable NMOCD Regulatory Standard.

ļ.

Appendices

• • •

Appendix A: Notification of Release and Corrective Action (Form C-141)

District I 1625 N. French District II 1301 W. Grand J District III 1000 Rio Brazos District IV 1220 S. St. France	Avenue, Arte Road, Azter	esia, NM 88210 c, NM 87410	nerals a Conser South inta Fe	vation Div St. France, NM 875 and Co	l Resources vision is Dr. 05 prrective A	ction	-	Submit 2 (District w	vised O Copies Office	Form C-141 ctober 10, 2003 to appropriate in accordance e 116 on back side of form		
Numerof		Distant	D:1:	T.D.		OPERA		L. D		al Report		Final Report
Name of Co Address:			Pipeline,	d, TX 79706		Contact: Telephone N		<u>le Reyn</u> 41-0965				
Facility Nar			Skelly F	u, 17 19700		Facility Typ		el Pipeli				
					^					T		
Surface Ow	ner:	Millard D	eck Estat	e Mineral C	Jwner				Lease N	10		
				LOCA	TION	OF REI	LEASE					
Unit Letter G	Section 21	Township 20S	Range 37E	Feet from the	North/	South Line	Feet from the	East/W	Vest Line	County Lea		
,			Latitud	e 32 degrees 33	<u>, 48.02</u>	<u>"</u> Longitud	e <u>103 degrees 1</u>	<u>5' 48.08</u>	<u>8"</u>			
				NAT	URE	OF REL						
Type of Relea Source of Re	lease: 4	Crude Oil 4" Steel Pipel	ine			Date and H 09/15/19	and the second se	ce	Date and	Recovered Hour of Dis 998 02:00	covery	
Was Immedia	ate Notice (es 🖾 N	Io 🔲 Not Requ	iired	If YES, To Whom? Donna Williams						-
By Whom?	Frank He	ernandez				Date and Hour 02/02/01 02:30 PM						
Was a Water	course Read	ched?	Yes 🛛	No		If YES, Volume Impacting the Watercourse.						
		pacted, Descri	-									
Describe Cau	se of Probl	em and Remed	lial Actior	n Taken.* Interna	al corrosi	ion of 4" stee	l pipeline. Forty	feet of tl	he line was	replaced.		
100'.	informatio	on was obtain		en.* Forty feet of								
regulations al public health should their of or the environ	l operators or the enviro perations hument. In a	are required to ronment. The nave failed to a	o report an acceptanc dequately CD accep	is true and comp d/or file certain r e of a C-141 repo investigate and r tance of a C-141	elease no ort by the emediate	otifications and NMOCD mage contaminati	nd perform correct arked as "Final R on that pose a thr	ctive acti eport" de reat to gre	ons for rele oes not reli ound water	eases which eve the open ; surface wa	may er rator of ater, hu	ndanger Ilability man health
							OIL CON	SERV	ATION	DIVISIO	DN	
Signature:												
Printed Name	: Ca	amille Reynold	s			Approved by	District Supervis	or:				
Title:	Re	mediation Coc	ordinator		1	Approval Dat	e:	E	Expiration	Date:		
E-mail Addre	ss: cjr	eynolds@paal	p.com		(Conditions of	Approval:			Attached		
Date: 3/21/20			Phone:	(505)441-096	5						·	
Attach Addit	ional Shee	US II NECESS	ıry									

. 1

ł

• • •

i L

, İ

ł

. –

ł

- -

September 23, 2005

Mr. Ed Martin New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains Pipeline – Plugging and Abandonment of Monitor Wells 8 Sites in Lea County, New Mexico

Dear Mr. Martin:

Please find attached for your review the Plugging and Abandonment of Monitor Wells Reports for the following Plains sites:

Bob Durham Darr Angeli #2 HDO 90-23 TNM Monument 17 TNM Monument 18 Cw-294/TNM 97-04 TNM 97-18 SPS-11 Section 32, Township 19 South, Range 37 East, Lea County Sections 11 and 14, Township 15 South, Range 37 East, LeaCounty Section 6, Township 20 South, Range 37 East, Lea County Section 29, Township 19 South, Range 37 East, Lea County Section 7, Township 20 South, Range 37 East, Lea County Section 11, Township 16 South, Range 35 East, Lea County Section 28, Township 20 South, Range 37 East, Lea County Section 28, Township 20 South, Range 37 East, Lea County Section 18, Township 18 South, Range 36 East, Lea County

If you have any questions or require further information, please contact me at (505) 441-0965.

Sincerely,

at to C.J.R.

Camille Reynolds Remediation Coordinator Plains Pipeline

Enclosures

September 16, 2005

Mr. Ed Martin New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

 Re: Notification of Plains Marketing, L.P. Plugging and Abandonment of Monitor Wells Plains TNM-97-04 (a.k.a. Townsend) SE ¼, SE ¼, Section 11, T-16-S, R-35-E Lea County, NM

Dear Mr. Martin,

NOVA Safety and Environmental (NOVA), on behalf of Plains Marketing, L.P. (Plains) respectfully submits the following notification of plugging and abandonment of monitor wells at the Plains TNM-97-04 leak site, located in the SE ¹/₄, SE ¹/₄, Section 11, T-16-S, R-35-E in Lea County, NM.

On September 14, 2005, two (2) monitor wells were plugged and abandoned at the TNM-97-04 site. Please reference your letter to Ms. Camille Reynolds of Plains Marketing L.P. dated June 22, 2005 regarding authorization to plug and abandon these wells.

The monitor wells were plugged and abandoned by Environmental Plus, Inc (EPI) of Eunice, New Mexico, a licensed water well driller in the State of New Mexico. The monitor wells were plugged utilizing guidelines set forth by the office of the New Mexico State Engineer. EPI removed and disposed of the monitor well cover, vault, and the remains of the concrete pad.

Monitor well MW-1 was filled with approximately two (2) bags of bentonite hole plug to a depth of approximately one (1) foot below ground surface (bgs) and properly hydrated with water. Topsoil was placed above the former monitor well to complete the procedure.

Monitor well MW-8 was filled with approximately eight (8) bags of bentonite hole plug to a depth of approximately one (1) bgs and hydrated with properly hydrated with water. Topsoil was placed above the former monitor well to complete the procedure.

The former monitor well locations are as follows:

- MW-1, 32 degrees, 55.925" N, 103 degrees, 25.195" W
- MW-8, 32 degrees, 55.943" N, 103 degrees, 25.222" W

Plains has completed the approved plugging and abandonment of the above referenced monitor wells as directed by the New Mexico Oil Conservation Division (NMOCD). Plains will continue to gauge and sample the remaining monitor wells at the site.

In the future, Plains may make addition requests to the NMOCD for plugging and abandonment of monitor well(s) at this site, if warranted.

Sincerely,

Cuto Stenley

Curt D. Stanley Project Manager NOVA Safety and Environmental

cc: Paul Sheeley / Larry Johnson, NMOCD, Hobbs, NM

Camille Reynolds, Plains Marketing, L.P., Lovington, NM cjreynolds@paalp.com Jeff Dann, Plains Marketing, L.P., Houston, TX jpdann@paalp.com NOVA Safety and Environmental, Midland, TX cstanley@novatraining.cc

Attachments: Attachment #1 – Form C-141 – Release Notification and Corrective Action

C. Box IS lobbe. NM <u>listrict II</u> - I I South I I South I I start. NM listrict III 000 Rio Br ELCC. NM I istrict IV	88241-15 (SOS) 741 Res. 1 28210 - (SOS) 33 mbor Rand 87410	9-1283 14-6178	En	erı din	2040 South Santa Fe, Ne	ration Di Pachece S	vision 🖄 treet	iment (7-04	FOITH L- 141 Originated 2/13/97 Submit 2 copies to Appropriate Distric Office in accordance with Fule 116 on back side of form	
				Release			ective Action	•			
	-				OP	ERATOR			nitial Report	Final Report	
Name Texa	s-New	Mexico F	vice L	ine Compar	עו		dwin H. Gri	סס			
Address	+					Tide	phone No.				
50X Fadiloy Nam		San Ang	elo,	X 76906			915) 947-90 Icy Type	00			
•	hering	line			•	1.	ipeline			1	
						P				J	
Larry	" Meger	t		•	Mincral Owner			Li	iaza No.		
correc	ted lo	cation)		÷	LOCATION	OF RELEA	SR				
Unit Letter		Township	Range	Feet from the				County			
	11	165	35E					Lea			
					NATURE C	FRELEAS	R				
ype of Relea						Volue	ne of Reisse (Ye	vised)	Volume Recover		
weet C							8 barrels	r	5 bar		
ourse of Relation		line		•		1	Unknown 4/16/97 4:00 p.r				
	te Notice C		Yes	No N	lot Required	If YES, To Whom?					
ly Wheen?		haara					ne Price		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
•	D. Ch	apman		`		4/2	5/97 9:00				
Was a Watch	course Read		Ya F	س [گ		IIYE	S. Volume impacting i	the Wateroon	BL.	,	
		ucord, Describ	-								
celb: Cau	ne of Problem	m and Remoth	li Action Ti		lly clampe	d off.		1 			
HIGT'SE AN	Alfacted a	nd Cleanup Act	ion Taken."	,							
pproxi	mately	1500 sq	.ft. p	asture la	nd. W117	remediati	e on site.				
lesaribe Gen	ení Conditi	ors Prevailing	Temperatu	re, Precipitation, 6	ne)."						
5 degre	ees; c	lear		·							
y knowledge gnatume	i and belief.		n above is	une and complete	to the best of	Approved by	OF.CON	SERVATIO	N DIVISION		
inted Name	LOWIN	H. Gri			<u>vv</u>	Dirule Supervi	iron	1			
		ict Mana	iger		1	Approval Data	•	Expira	tion Date		
Augu				Phone 915	947-9001	Conditions of	Approver		Albached		
TNM-97		BDC -	11479 T [*] # \$			State Corp. Com Pipe Line Divisi			s Waste Section romnental impro-	rement Div.	

NEW MEXICO ENERGY, MMERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary Mark E. Fesmire, P.E. Director Oil Conservation Division

June 22, 2005

Ms. Camille Reynolds Plains Pipeline 3112 West Highway 82 Lovington, NM 88260

Re: 2004 Annual Monitoring Report TNM 97-04 Release Site SE/4 SE/4 of Section 11, Township 16 South, Range 35 East Lea County, New Mexico Plains EMS Number: TNM 97-04 NMOCD Reference GW-0294

Dear Ms. Reynolds:

The New Mexico Oil Conservation Division (NMOCD) has received and reviewed the above report submitted on behalf of Plains Marketing, L.P. (Plains) by Nova Safety and Environmental and dated April 2005. This report is accepted with the following understandings and conditions:

1. Quarterly sampling and annual reporting will continue throughout 2005.

2. The report states that the automated recovery system "will be repaired and in service by the second quarter of 2005." Plains will respond via email or regular mail as to whether this re-activation of the system has occurred.

3. Plains may plug and abandon monitor wells MW-1 and MW-8 using a slurry of 3% - 5% bentonite.

NMOCD acceptance does not relieve Plains of responsibility should its operations at this site prove to have been harmful to public health or the environment. Nor does it relieve Plains of its responsibility to comply with the rules and regulations of any other federal, state, or local governmental entity.

If you have any questions, contact me at (505) 476-3492 or ed.martin@state.nm.us

NEW MEXICO OIL CONSERVATION DIVISION

Marto

Edwin E. Martin Environmental Bureau

Cc: NMOCD, Hobbs

 \Box 2004 **ANNUAL MONITORING REPORT** GW-294 **TNM 97-04** SE ¼ SE ¼ of SECTION 11, TOWNSHIP 16 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO PLAINS EMS NUMBER: TNM 97-04 **PREPARED FOR:** PLAINS MARKETING, L.P. 333 Clay Street, Suite 1600 Houston, Texas 77002 ► Q safety and environmental PREPARED BY: **NOVA Safety and Environmental** 2057 Commerce Street Midland, Texas 79703 April 2005 tenl for: Todd Choban Curt Stanley Project Manager Vice President Technical Services

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION AND BACKGROUND INFORMATION	1
FIELD ACTIVITIES	1
LABORATORY RESULTS	.2
SUMMARY	.3
ANTICIPATED ACTIONS	.4
LIMITATIONS	.4
DISTRIBUTION	.6

FIGURES

Figure 1 – Site Location Map

- Figure 2A Inferred Groundwater Gradient Map February 5, 2004
 - 2B Inferred Groundwater Gradient Map May 5, 2004
 - 2C Inferred Groundwater Gradient Map September 1, 2004
 - 2D Inferred Groundwater Gradient Map December 15, 2004
- Figure 3A Groundwater Concentration and Inferred PSH Extent Map February 5, 2004
 - 3B Groundwater Concentration and Inferred PSH Extent Map May 5, 2004
 - 3C Groundwater Concentration and Inferred PSH Extent Map September 1, 2004
 - 3D Groundwater Concentration and Inferred PSH Extent Map December 15, 2004

TABLES

- Table 1 Groundwater Elevation Data
- Table 2 Concentrations of BTEX in Groundwater
- Table 3 Concentrations of Metals in Groundwater
- Table 4 Concentrations of Semi-Volatiles in Groundwater

APPENDICES

Appendix A – Notification of Release and Corrective Action (Form C-141)

TABLE OF CONTENTS – Continued

ENCLOSED ON DATA DISK

•

2004 Annual Monitoring Report
2004 Tables 1 and 2 – Groundwater Elevation and BTEX Concentration Data
2004 Tables 3 and 4 – Concentrations of Metals in Groundwater and Concentrations of Semi-Volatiles in Groundwater
2004 Figures 1, 2A-2D, 3A-3D
Electronic Copies of Laboratory Reports
Historic Groundwater Elevation Data Tables
Historic BTEX Concentration Tables

INTRODUCTION

On behalf of Plains Marketing, L.P.(Plains), NOVA Safety and Environmental (NOVA) is pleased to submit this Annual Monitoring Report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1 of each year. Beginning on May 29, 2004, project management responsibilities were assumed by NOVA, having previously been managed by Environmental Technology Group, Inc (ETGI). The TNM 97-04 site, which was formally the responsibility of Texas New Mexico Pipeline Company (TNM) is now the responsibility of Plains. This report is intended to be viewed as a complete document with text, figures, tables and appendices. The report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2004 only. However, historic data tables as well as 2004 laboratory analytical reports are enclosed on the enclosed data disk. A Site Location Map is provided as Figure 1.

Groundwater monitoring was conducted during four quarterly events in calendar year 2004 to assess the levels and extent of dissolved phase and Phase-Separated Hydrocarbon (PSH) constituents. The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 foot were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The site is located in the SE 1/4 of the SE 1/4 of Section 11, Township 16 South, Range 35 East in Lea County, New Mexico. Initial site investigation activities were performed for TNM by other environmental consultants. The release date and volume of the release are not currently known since the release occurred while the pipeline was operated by TNM.

The initial environmental consultant installed fifteen (15) monitor wells and one (1) recovery well at the site. In December of 2002, ETGI installed two additional groundwater monitor wells (MW-16 and MW-17) to further delineate the impact of groundwater at the site.

FIELD ACTIVITIES

Quarterly monitoring events for the reporting period were performed according to the following sampling schedule, which was approved by the NMOCD in correspondence dated April 28, 2004.

NMOCD Approv	ed Sampling Schedule
MW-1	Annually
MW-2	Quarterly
MW-3	Quarterly
MW-4	Quarterly
MW-5	Quarterly
MW-6	Quarterly
MW-7	Annually
MW-8	Annually
MW-9	Quarterly

NMOCD Approved Samp	oling Schedule – Continued
MW-10	Annually
MW-11	Quarterly
MW-12	Annually
MW-13	Quarterly
MW-14	Quarterly
MW-15	Quarterly
MW-16	Quarterly
MW-17	Quarterly
RW-1	Quarterly

The site monitor wells were gauged and sampled on February 5, May 5, September 1, and December 15, 2004. During each sampling event, sampled monitor wells were purged of approximately three well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon samplers. Water samples were collected in clean glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a polystyrene tank and disposed of by Key Energy, Lovington, New Mexico utilizing a licensed disposal facility (NMOCD AO SWD-730).

Locations of the monitor wells and the inferred groundwater gradient, which were constructed from measurements collected during the four (4) quarterly monitoring events, are depicted on Figures 2A through 2D, the Inferred Groundwater Gradient Maps. Groundwater elevation data for 2004 is provided as Table 1 . Historic groundwater elevation data beginning at project inception is enclosed on the attached data disk.

The most recent Groundwater Gradient Map, Figure 2D, indicates a general gradient of approximately 0.003 ft./ft. to the southeast as measured between MW-10 and MW-13. This is consistent with data presented on Figures 2A through 2C from earlier in the year. The corrected groundwater elevation has ranged between 3920.56 and 3422.11 feet above mean sea level, MW-6 on February 6, 2004 and RW-1 on April 19, 2004, respectively.

A measurable thickness of PSH was detected in monitor wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-9, and RW-1, during the 2004 annual reporting period. A maximum PSH thickness of 4.02 feet in monitor well MW-6 was recorded on May 11, 2004 and is shown on Table 1. A pneumatic product recovery system operated on site throughout most of 2004, incorporating six of the monitor wells (MW-2, MW-3, MW-4, MW-5, MW-6 and MW-9 and one recovery well (RW-1). In late 2004, mechanical difficulties with the system forced the pneumatic product system to be temporarily curtailed and manual recovery was utilized. On August 26, 2004, MW-8 reported a measurable thickness of 1.58 feet. This appears to have been an equipment malfunction sine it has not been detected in gauging events either before or after this date.

LABORATORY RESULTS

Groundwater samples obtained during the February 5, May 5 and September 1, 2004 monitoring events were delivered to AnalySys, Inc. in Austin, Texas for determination of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) constituent concentrations by EPA Method 8021b. Groundwater samples obtained during the December 15, 2004 monitoring event was delivered to TraceAnalysis, Inc. in Lubbock, Texas for BTEX using EPA Method 2021b. A listing of BTEX

constituent concentrations for 2004 is summarized in Table 2. Copies of the laboratory reports generated for 2004 are provided on the attached data disk. The quarterly groundwater sample results for benzene and BTEX concentrations are depicted on Figures 3A-3D.

Review of laboratory analytical results generated from analysis of the groundwater samples obtained during the 2004 monitoring period indicate that the benzene and BTEX constituent concentrations are below NMOCD regulatory standards in monitor wells MW-1, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-16, and MW-17. The benzene and BTEX constituent concentrations in monitor wells MW-14 and MW-15 are above NMOCD regulatory standards of 0.01 mg/L and 2.13 mg/L, respectively. Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code.

In accordance with the NMOCD letter dated March 6, 2001, additional groundwater samples were collected during the December 2004 monitoring event and analyzed for concentrations of semi-volatiles and New Mexico Water Quality Control Commission (WQCC) metals.

Review of laboratory analytical results for semi-volatile constituents revealed that Naphthalene concentrations were above the NMOCD regulatory limit in monitor well MW-14. Semi-volatile constituents results for all well locations sampled can be found in Table 3.

Review of laboratory analytical results for WQCC metals constituents revealed concentrations above NMOCD regulatory limits as follows: aluminum in three (3) well locations, barium in one (1) well location, chromium in one (1) well location, iron in 7 (seven) locations, manganese in one (1) well locations, and boron in 6 (six) locations. Metal constituent results for all well locations sampled can be found in Table 4. Review of tables for metals analysis does not exhibit concentration trends or statistically consistent detections. The Southern High Plains, Permian Basin and the Trans Pecos geographical areas of southeastern New Mexico can contain naturally occurring concentrations of these metals in soil and groundwater above national averages. Based on the laboratory sample results, metals were detected (above WQCC standards) in both upgradient and downgradient monitor wells, indicating these metals are likely naturally occurring in the groundwater at concentrations above WQCC standards. Future groundwater sampling events for WQCC metals will involve filtering of samples upon arrival at the laboratory prior to analysis.

SUMMARY

This report presents the results of monitoring activities for the annual monitoring period of 2004. Currently, there are seventeen (17) groundwater monitor wells (MW-1 through MW-17) on-site and one (1) recovery wells (RW-1). The most recent Groundwater Gradient Map, Figure 2D indicates a general gradient of approximately 0.003 ft/ft to the southeast.

A measurable thickness of PSH was detected in monitor wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-9, and recovery well RW-1, during the 2004 annual reporting period. A maximum PSH thickness of 4.02 feet in monitor well MW-6 was recorded on May 11, 2004 and is shown on Table 1. Measurable PSH fluctuates in the monitor wells and recovery well containing PSH,

3

but in general appears to have decreased throughout 2004. Recovered PSH has declined at the site throughout the 2004 reporting period. Approximately 750 gallons of PSH was recovered from the site during the 2004 reported period. A total of approximately 5,375 gallons of PSH has been recovered since the inception of product recovery.

Review of laboratory analytical results generated from analysis of the groundwater samples obtained during the 2004 monitoring period indicate that the benzene and BTEX constituent concentrations are below NMOCD regulatory standards in 9 monitor wells. The benzene and BTEX constituent concentrations in 2 monitor wells are above NMOCD regulatory standards.

The Release Notification and Corrective Action (Form C-141) is provided as Appendix A.

ANTICIPATED ACTIONS

Groundwater monitoring and annual reporting will continue in 2005. Plains, requests approval to plug and abandon monitor wells MW-1, and MW-8. These wells have exhibited analytical results below NMOCD regulatory standards for benzene and BTEX during at least 18 consecutive sampling events. Plains, bases this request on the following considerations:

- Monitor well MW-1 and MW-8 have exhibited dissolved phase concentrations below the NMOCD regulatory standard for 18 consecutive sampling events and are redundant.
- Monitor well MW-8 is redundant to MW-7. Side gradient control is achieved by MW-12 and down gradient control is provided by MW-7.
- Monitor well MW-1 has exhibited dissolved phase concentrations below the NMOCD regulatory standard for 18 consecutive sampling events. MW-7 (up gradient from MW-1) has exhibited 12 consecutive sampling events below the NMOCD regulatory standard and provides down gradient control for the site.

The monitor wells will be plugged and abandoned by a licensed water well driller as pursuant to the State of New Mexico's monitor well plugging and abandonment regulations.

It is anticipated that the automated recovery system at TNM 97-04 will be repaired and in service by the second quarter of 2005.

LIMITATIONS

NOVA has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

NOVA has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. NOVA has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. NOVA has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. NOVA also notes that the facts and conditions referenced in this report may change over time and the conclusions and

i i i

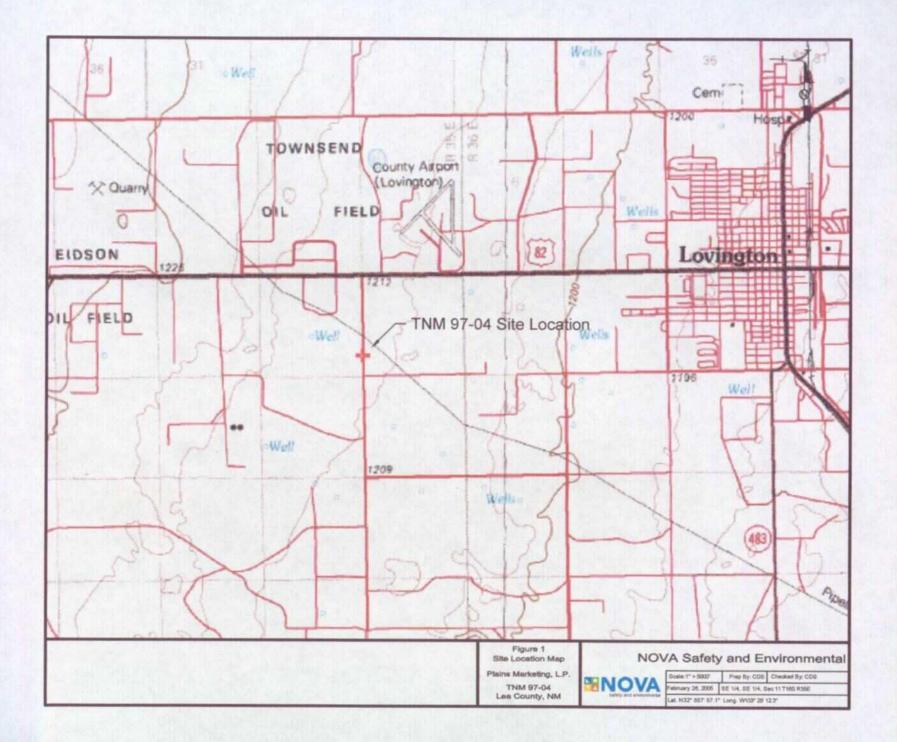
recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of NOVA and/or Plains.

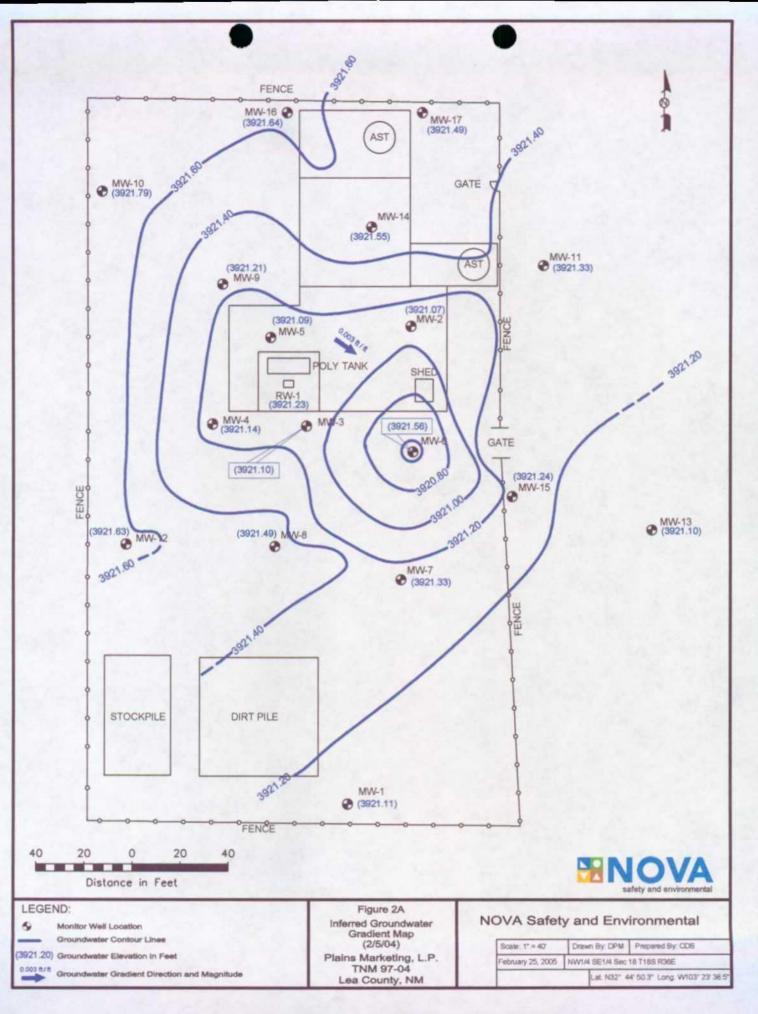
DISTRIBUTION

•

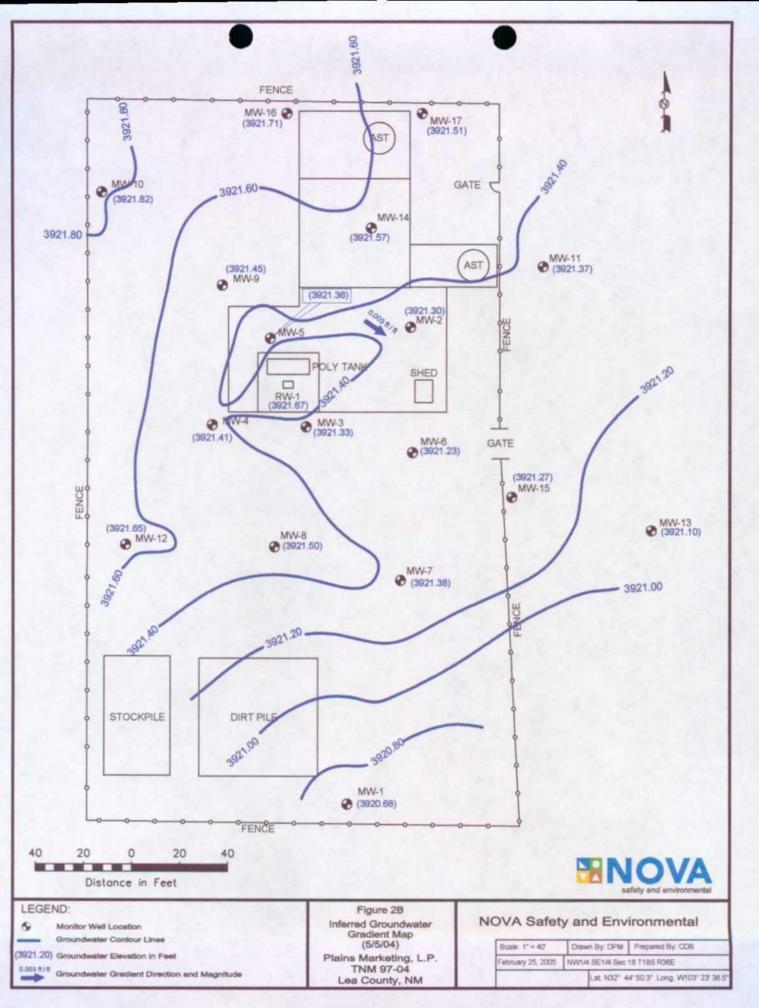
Copy 1	Ed Martin New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505
Copy 2:	Paul Sheeley and Larry Johnson New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 1 1625 French Drive Hobbs, NM 88240
Copy 3:	Camille Reynolds Plains Marketing, L.P. 3112 Highway 82 Lovington, NM cjreynolds@paalp.com
Copy 4:	Jeff Dann Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, TX 77002 jpdann@paalp.com
Copy 5:	NOVA Safety and Environmental 2057 Commerce Street Midland, TX 79703 cstanley@novatraining.cc

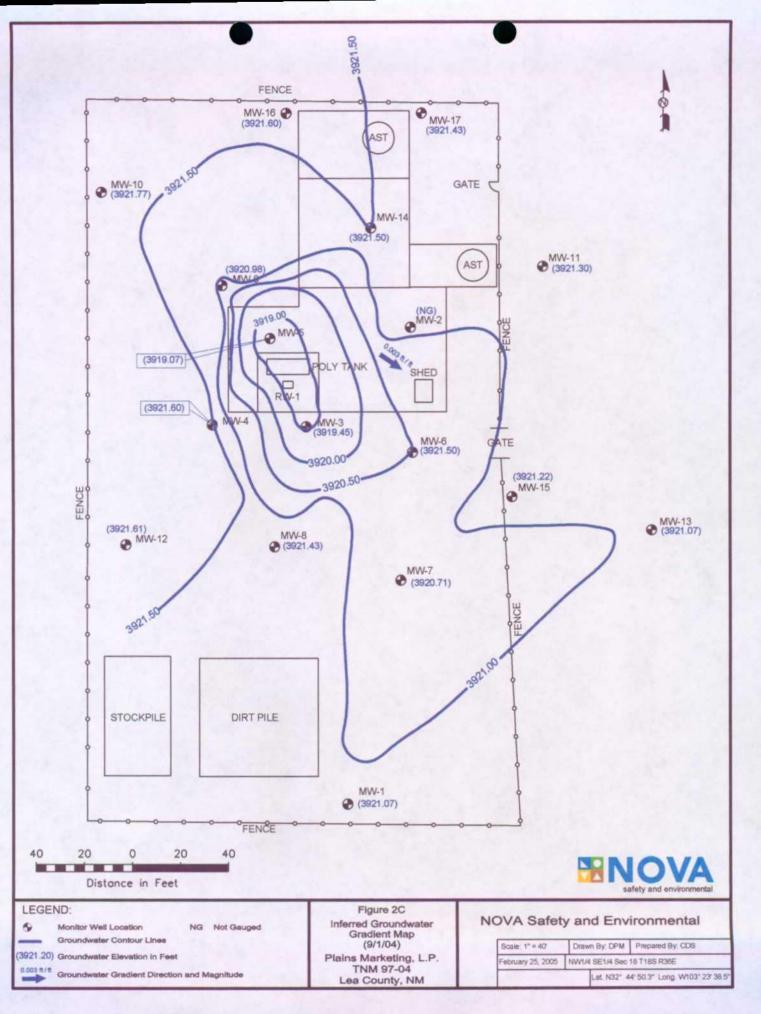

Copy Number: _____

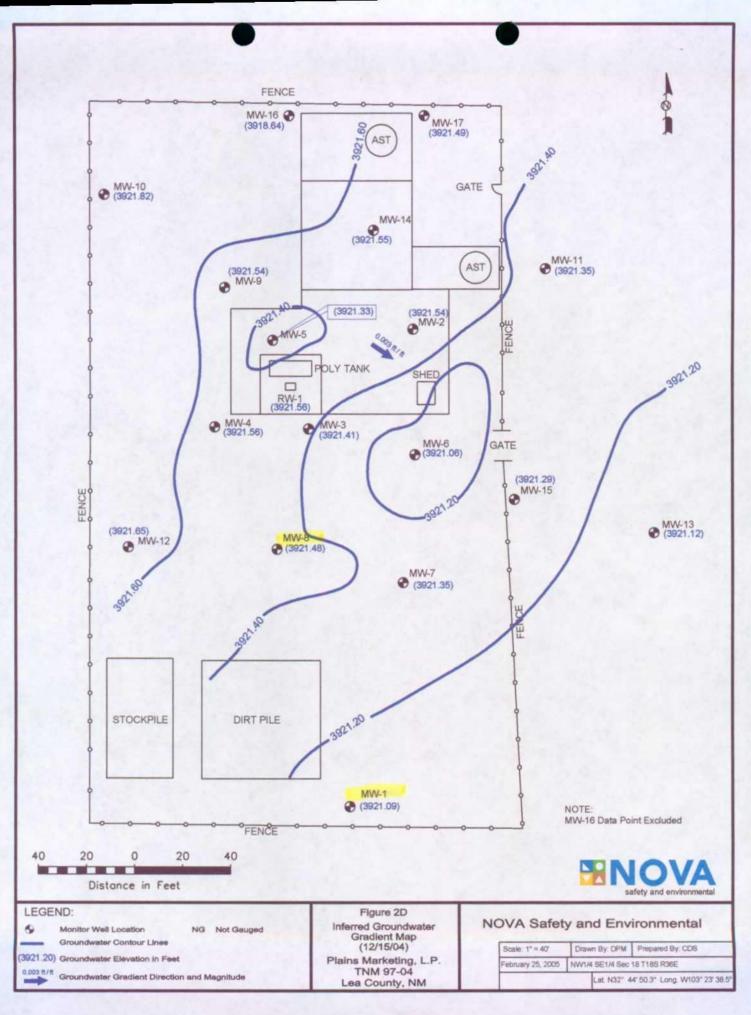
Figures


_

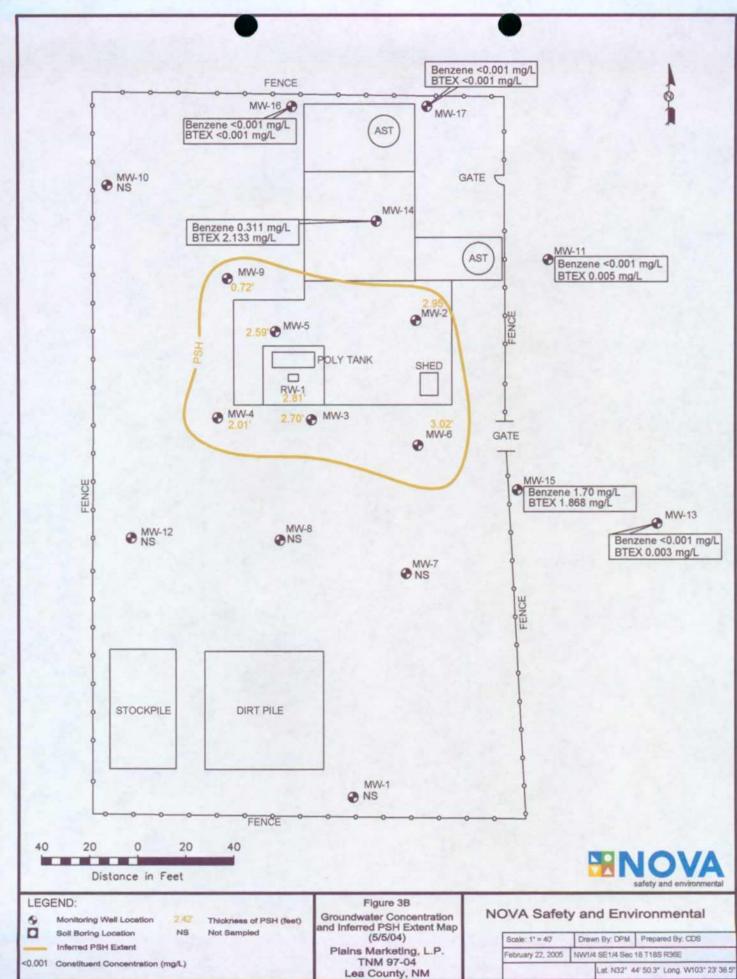
-


•

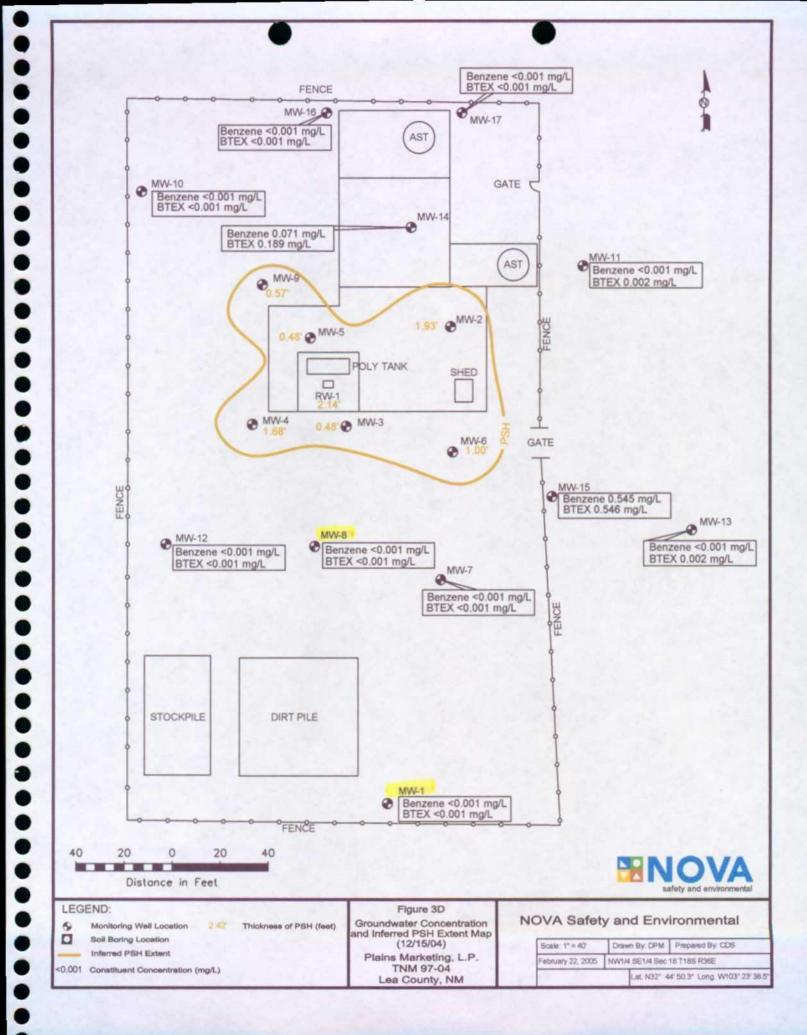








. . ((



.

. ě ě . • . . . (

(

Tables

- - --

GROUNDWATER ELEVATION DATA FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	02/05/04	3974.18	-	53.07	0.00	3921.11
	05/05/04	3974.18	- -	53.50	0.00	3920.68
	09/01/04	3974.18	-	53.11	0.00	3921.07
	12/15/04	3974.18	-	53.09	0.00	3921.09
	A.,					
MW - 2	02/05/04	3974.62	53.09	56.18	3.09	3921.07
	02/17/04	3974.62	52.78	53.51	0.73	3921.73
<u>.</u>	02/25/04	3974.62	53.06	56.03	2,97	3921.11
	03/09/04	3974.62	52.83	55.87	3.04	3921.33
	03/16/04	3974.62	52.85	55.80	2.95	3921.33
	03/22/04	3974.62	53.32	54.00	0.68	3921.20
	04/07/04	3974.62	52.88	53.14	0.26	3921.70
	04/12/04	3974.62	53.21	56.03	2.82	3920.99
	04/19/04	3974.62	52.88	53.98	1.10	3921.58
	05/05/04	3974.62	52.88	55,83	2.95	3921.30
	05/11/04	3974.62	52.98	55,95	2.97	3921.19
<u> </u>	06/07/04	3974.62	52.63	55.49	2.86	3921.56
	06/15/04	3974.62	52.57	Float in Well		
	06/20/04	3974.62	52.57	Float in Well		
	06/21/04	3974.62	52.58	Float in Well		
	06/28/04	3974.62	52.58	Float in Well		
	07/08/04	3974.62	52.58	Float in Well		
	07/12/04	3974.62	52.59	Float in Well		
	08/12/04	3974.62	52.59	Float in Well		
	08/17/04	3974.62	52.63	Float in Well		
	08/26/04	3974.62	52.62	Float in Well		
	09/01/04	3974.62	53.86	Float in Well		
	09/03/04	3974.62	53.86	Float in Well		
	09/08/04	3974.62	53.92	Float in Well		
	09/14/04	3974.62	52.90	Float in Well	·	
	09/22/04	3974.62	53.01		1.89	
	10/01/04	3974.62	52.88		2.02	
	10/08/04	3974.62	52.94	-	2.16	
	10/15/04	3974.62	53.10	-	2.00	
	10/22/04	3974.62	52.73	-	2.42	
	11/12/04	3974.62	52.68	55.65	2.97	3921.49
_	11/26/04	3974.62	52.70	54.60	1.90	3921.64
	12/02/04	3974.62	52.72	55.50	2.78	3921.48
	12/06/04	3974.62	52.99	55.31	2.32	3921.28
	12/13/04	3974.62	52.80	54.70	1.90	3921.54
	12/15/04	3974.62	52.80	54.70	1.90	3921.54
i	12/27/04	3974.62	52.80	55.20	2.40	3921.46

1

|

GROUNDWATER ELEVATION DATA FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION				
MW - 3	02/05/04	3974.60	53.04	56.11	3.07	3921.10				
	02/17/04	3974.60	52,80	55.64	2.84	3921.37				
	02/25/04	3974.60	53.03	56.08	3.05	3921.11				
	03/09/04	3974.60	52.83	55.86	3.03	3921.32				
	03/16/04	3974.60	52,79	55.81	3.02	3921.36				
	03/22/04	3974.60	52.85	54.16	1.31	3921.55				
	04/07/04	3974.60	52,87	53.18	0.31	3921.68				
	04/12/04	3974.60	52.97	55.02	2.05	3921.32				
	04/19/04	3974.60	52.80	53.06	0.26	3921.76				
	05/05/04	3974.60	52.87	55.57	2.70	3921.33				
	05/11/04	3974.60	53.02	55.68	2.66	3921.18				
	06/07/04	3974.60	52.62	55.29	2.67	3921.58				
	06/15/04	3974.60	52.65	55.27	2.62	3921.56				
	06/20/04	3974.60	52.65	55.27	2.62	3921.56				
	06/21/04	3974.60	52.61	55.32	2.71	3921.58				
	06/28/04	3974.60	52.62	55.34	2.72	3921.57				
	07/08/04	3974.60	52.60	55.31	2.71	3921.59				
	07/12/04	3974.60	52.57	55.33	2.76	3921.62				
	08/06/04	3974.60	52.69	55.36	2.67	3921.51				
	08/12/04	3974.60	52.68	55.37	2.69	3921.52				
	08/17/04	3974.60	52.63	55.30	2.67	3921.57				
	08/26/04	3974.60	52.63	55.79	3.16	3921,50				
	09/01/04	3974.60	52.74	55.15	2.41	3921.50				
	09/03/04	3974.60	52.83	55.22	2.39	3921.41				
	09/08/04	3974.60	52.78	55.42	2.64	3921.42				
	09/14/04	3974.60	52.76	55.05	2.29	3921.50				
	09/22/04	3974.60	52.86	55.05	2.19	3921.41				
	10/01/04	3974.60	52.73	55.30	2.57	3921.48				
	10/08/04	3974.60	52.78	55.16	2,38	3921.46				
	10/15/04	3974.60	52.65	54.80	2.15	3921.63				
	10/22/04	3974.60	52.66	55.20	2.54	3921.56				
	11/12/04	3974.60	53.11	53.44	0.33	3921.44				
	11/26/04	3974.60	53.10	53.60	0.50	3921.43				
	12/02/04	3974.60	53.25	53.50	0.25	3921.31				
	12/06/04	3974.60	53.09	53.59	0.50	3921.44				
	12/13/04	3974.60	53.12	53.60	0.48	3921.41				
	12/15/04	3974.60	53.12	53.60	0.48	3921.41				
	12/27/04	3974.60	52.87	54.20	1.33	3921.53				
· 14 · ·			······································							
MW - 4	02/05/04	02/05/04 3974.53 53.32 53.78		53.78	0.46	3921.14				
	02/17/04	3974.53	53.87	54.28	0.41	3920.60				
	02/25/04 3974.53 53.28			53.80	0.52	3921.17				
i	03/09/04	3974.53	52.84	54.59	1.75	3921.43				

2 of 8

I.

I.

i

i.

GROUNDWATER ELEVATION DATA FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
	03/16/04	3974.53	52.85	54.56	1.71	3921.42
	03/22/04	3974.53	52.84	53.14	0.30	3921.65
	04/07/04	3974.53	52.90	53.37	0.47	3921.56
	04/12/04	3974.53	52.83	54.74	1.91	3921.41
	04/19/04	3974.53	52.87	52.99	0.12	3921.64
	05/05/04	3974.53	52.82	54.83	2.01	3921.41
	05/11/04	3974.53	53.00	54,74	1.74	3921.27
	06/07/04	3974.53	52.58	54,57	1.99	3921.65
	06/15/04	3974.53	52.60	54.49	1.89	3921.65
	06/20/04	3974.53	52.60	54.49	1.89	3921.65
	06/21/04	3974.53	52.56	54.55	1.99	3921.67
	06/28/04	3974.53	52.57	54.51	1.94	3921.67
	07/08/04	3974.53	52.55	54.53	1.98	3921.68
· · ·	07/12/04	3974.53	52.54	54.52	1.98	3921.69
	08/06/04	3974.53	52.58	54.51	1.93	3921.66
	08/12/04	3974.53	52.60	54.59	1.99	3921.63
	08/17/04	3974.53	52.64	54.72	2.08	3921.58
_	08/26/04	3974.53	52,60	54.79	2.19	3921.60
	09/01/04	3974.53	52.67	54.40	1.73	3921.60
	09/03/04	3974.53	52.67	54,45	1.78	3921.59
	09/08/04	3974.53	52,66	54.63	1.97	3921.57
	09/14/04	3974.53	52.69	54.46	1,77	3921.57
	09/22/04	3974.53	52.81	54.39	1.58	3921.48
	10/01/04	3974.53	52,67	54.62	1.95	3921.57
	10/08/04	3974.53	52.69	54.44	1.75	3921.58
	10/15/04	3974.53	52.60	54.30	1.70	3921.68
	10/22/04	3974.53	52.62	54.56	1.94	3921.62
	11/12/04	3974.53	52.68	53.69	1.01	3921.70
	11/26/04	3974.53	52.65	54.55	1.90	3921.60
	12/02/04	3974.53	52.70	54.50	1.80	3921.56
	12/06/04	3974.53	52.77	54.21	1.44	3921.54
	12/13/04	3974.53	52.72	54.40	1.68	3921.56
	12/15/04	3974.53	52,72	54.40	1.68	3921.56
	12/27/04	3974.53	52.65	54.47	1.82	3921.61
MW - 5	02/05/04	3974.27	53.17	53.26	0.09	3921.09
	02/17/04	3974.27	52.44	53.69	1.25	3921.64
	02/25/04	3974.27	53.17	53.29	0.12	3921.08
	03/09/04	3974.27	52.53	55.09	2.56	3921.36
	03/16/04	3974.27	52.41	55.20	2.79	3921.44
	03/22/04	3974.27	53.00	53.68	0.68	3921.17
	04/07/04	3974.27	52.94	53.11	0.17	3921.30
	04/12/04	3974.27	52.55	55.00	2.45	3921.35

3 of 8

1

L

GROUNDWATER ELEVATION DATA FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION				
	04/19/04	3974.27	52.90	53.00	0.10	3921.36				
	05/05/04	3974.27	52.52	55.11	2.59	3921.36				
	05/11/04	3974.27	52.64	55.29	2.65	3921.23				
	06/07/04	3974.27	52.25	54.97	2.72	3921.61				
	06/15/04	3974.27	52.27	54.93	2.66	3921.60				
	06/20/04	3974.27	52.27	54.93	2.66	3921.60				
	06/21/04	3974.27	52.23	54.95	2.72	3921.63				
	06/28/04	3974.27	52.25	54.97	2.72	3921.61				
	07/08/04	3974.27	52.24	54.96	2.72	3921.62				
	07/12/04	3974.27	52.23	54.97	2.72	3921.63				
	08/12/04	3974.27	52.22	54.22	2.00	3921.75				
	08/17/04	3974.27	52.25	55.25	3.00	3921.57				
	08/26/04	3974.27	52.25	55.23	2.98	3921.57				
	09/01/04	3974.27	52.27	55.20	2.93	3921.56				
	09/03/04	3974.27	52.30	55.16	2.86	3921.54				
	09/08/04	3974.27	52.27	55.24	2.97	3921.55				
	09/14/04	3974.27	52.27	55.20	2.93	3921.56				
	09/22/04	3974.27	52.33	55.10	2.77	3921.52				
	10/01/04	3974.27	52.27	55.22	2.95	3921.56				
	10/08/04	3974.27	52.28	55.20	2.92	3921.55				
	10/15/04	3974.27	52.23	54.91	2.68	3921.64				
	10/22/04	3974.27	52.20	55.16	2.95	3921.62				
	11/12/04	3974.27	52.41	53.24	0.83	3921.74				
	11/26/04	3974.27	52.34	54.80	2.46	3921.56				
	12/02/04	3974.27	52.39	54.80	2.41	3921.52				
	12/06/04	3974.27	52.55	53.97	1.42	3921.51				
	12/13/04	3974.27	52.87	53.35	0.48	3921.33				
	12/15/04	3974.27	52.87	53.35	0.48	3921.33				
	12/27/04	3974.27	52.69	53.20	0.51	3921.50				
· •.	12/2/101	5714.27	52.07		0.51					
MW - 6	02/05/04	3974.72	53.63	57.18	3.55	3920.56				
	02/17/04	3974.72	52.89	56.34	3.45	3921.31				
	02/25/04	3974.72	53,60	57.13	3.53	3920.59				
	03/09/04	3974.72	52.91	56.40	3.49	3921.29				
	03/16/04	3974.72	53.14	54.19	1.05	3921.42				
	03/22/04	3974.72	53.04	55.22	2.18	3921.35				
	04/07/04	3974.72	53.14	53.69	0.55	3921.50				
	04/12/04	3974.72	53.50	56.43	2.93	3920.78				
	04/19/04	3974.72	53.10	53.49	0.39	3921.56				
	05/05/04	3974.72	53.04	56.06	3.02	3921.23				
	05/11/04	3974.72	52.19	56.21	4.02					
	06/07/04	3974.72	52.77	55.87	3.10	<u>3921.93</u> 3921.49				
	06/15/04	3974.72	52.78	55.90	3.10	3921.49				

GROUNDWATER ELEVATION DATA FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION				
	06/20/04	3974.72	52.78	55.90	3.12	3921.47				
	06/21/04	3974.72	52.77	55.77	3.00	3921.50				
	06/28/04	3974.72	52.77	55.91	3.14	3921.48				
	07/08/04	3974.72	52.75	55.87	3.12	3921.50				
	07/12/04	3974.72	52.76	55.90	3.14	3921.49				
	08/06/04	3974.72	52.83	55.80	2.97	3921.44				
	08/12/04	3974,72	52.85	55.82	2.97	3921.42				
	08/17/04	3974.72	52.77	55.94	3.17	3921.47				
··	08/26/04	3974.48	53.10	54.68	1.58	3921.14				
	09/01/04	3974.72	53.21	54.22	1.01	3921.36				
	09/03/04	3974.72	53.31	54.02	0.71	3921.30				
	09/08/04	3974.72	52.16	53.52	1.36	3922.36				
	09/14/04	3974.72	53.20	54.26	1.06	3921.36				
	09/22/04	3974.72	53.22	54.14	0.92	3921.36				
	10/01/04	3974.72	53.10	54.89	1.79	3921.35				
	10/08/04	3974.72	53.25	54.05	0.80	3921.35				
	10/15/04	3974.72	53.11	53.88	0.77	3921.49				
	10/22/04	3974.72	53.05	54.55	1.50	3921.45				
	11/12/04	3974.72	53.22	54.16	0.94	3921.36				
	11/26/04	3974.72	53.11	54.55	1.44	3921.39				
	12/02/04	3974.72	53.79	55.20	1.41	3920.72				
	12/06/04	3974.72	53.87	54.96	1.09	3920.69				
	12/13/04	3974.72	53.51	54.51	1.00	3921.06				
	12/15/04	3974,72	53.51	54.51	1.00	3921.06				
	12/27/04	3974.72	53.85	55.60	1.75	3920.61				
<u></u>										
MW - 7	02/05/04	3974.60	-	53.27	0.00	3921.33				
	05/05/04	3974.60	-	53.22	0.00	3921.38				
	09/01/04	3974.60	-	53.30	0.00	3921.30				
	12/15/04	3974.60	-	53.25	0.00	3921.35				
MW - 8	02/05/04	3974.48	-	52.99	0.00	3921.49				
	05/05/04	3974.48	_	52.98	0.00	3921.50				
	09/01/04	3974.48	-	53.05	0.00	3921.43				
	12/15/04	3974.48		53.00	0.00	3921.48				
MW - 9	02/05/04	3975.06	53.60	55.27	1.67	3921.21				
	02/17/04	3975.06	53,33	54.62	1.29	3921.54				
	02/25/04	3975.06	53.62	55.29	1.67	3921.19				
	03/09/04	3975.06	53.41	55.55	2.14	3921.33				
	03/16/04	3975.06	53.28	55.11	1.83	3921.51				
i	03/22/04	3975.06	53.41	53.89	0.48	3921.51				
	04/07/04	3975.06	53.73	53.81	0.08	3921.32				

5 of 8

i

ì.

i.

1

I.

GROUNDWATER ELEVATION DATA FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
	04/12/04	3975.06	53.55	53.96	0.41	3921.45
	04/19/04	3975.06	53.69	53.86	0.17	3921.34
	05/05/04	3975.06	53.50	54.22	0.72	3921.45
	05/11/04	3975.06	53.60	54.98	1.38	3921.25
	06/07/04	3975.06	53.10	54.64	1.54	3921.73
·	06/15/04	3975.06	53,11	54.69	1.58	3921.71
	06/20/04	3975.06	53.11	54.69	1.58	3921.71
	06/21/04	3975.06	53.08	54.57	1.49	3921.76
	06/28/04	3975.06	53.08	54.86	1.78	3921.71
	07/08/04	3975.06	53.09	54.79	1.70	3921,72
	07/12/04	3975.06	53.10	54.81	1.71	3921.70
	08/12/04	3975.06	53.26	54.66	1.40	3921.59
	08/17/04	3975.06	53.27	54.85	1.58	3921.55
	08/26/04	3975.06	53.38	54.30	0.92	3921.54
	09/01/04	3975.06	53.44	54.08	0.64	3921.52
	09/03/04	3975.06	53.44	53.99	0.55	3921.54
	09/08/04	3975.06	53.38	54.40	1.02	3921,53
	09/14/04	3975.06	53.44	54.13	0.69	3921.52
	09/22/04	3975.06	53.51	54.20	0.69	3921.45
	10/01/04	3975.06	53.36	54.50	1.14	3921.53
	10/08/04	3975.06	53.53	54.11	0.58	3921.44
	10/15/04	3975.06	53.35	54.36	1.01	3921.56
	10/22/04	3975.06	53.50	54.19	0.69	3921.46
	11/12/04	3975.06	53.62	54.40	0.78	3921.32
	11/26/04	3975.06	53.45	54.50	1.05	3921.45
	12/02/04	3975.06	53.43	54.39	0.96	3921.49
	12/06/04	3975.06	53.42	54.10	0.68	3921.54
	12/13/04	3975.06	53.43	54.00	0.57	3921.54
	12/15/04	3975.06	53.43	54.00	0.57	3921.54
	12/27/04	3975.06	53.40	54.30	0.90	3921.53
NG 17 10	02/05/04	0075.00				2021 50
MW - 10	02/05/04	3975.02		53.23	0.00	3921.79
·	05/05/04	3975.02	- <u>-</u>	53.20	0.00	3921.82
	09/01/04	3975.02		53.25	0.00	3921.77
	12/15/04	3975.02		53.20	0.00	3921.82
MW - 11	02/05/04	3975.30	-	53.97	0.00	3921.33
	05/05/04	3975.30	-	53.93	0.00	3921.37
	09/01/04	3975.30	-	54.00	0.00	3921.30
	12/15/04	3975.30	-	53.95	0.00	3921.35
• * • • • •	12/13/04					
MW - 12	02/05/04	3974.55	-	52.92	0.00	3921.63
	05/05/04	3974.55	-	52.90	0.00	3921.65

6 of 8

ł

ł

i.

ł

GROUNDWATER ELEVATION DATA FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
	09/01/04	3974.55	-	52.94	0.00	3921.61
	12/15/04	3974.55	-	52.90	0.00	3921.65
· ·						
MW - 13	02/05/04	3975.00	-	53.90	0.00	3921.10
	05/05/04	3975.00	-	53.90	0.00	3921.10
	09/01/04	3975.00	-	53. <u>9</u> 3	0.00	3921.07
	12/15/04	3975.00	-	53,88	0.00	3921.12
MW - 14	02/05/04	3976.15		54.60	0.00	3921.55
	05/05/04	3976.15	<u>-</u>	<u>54.58</u>	0.00	3921.57
	09/01/04	3976.15	<u> </u>	54.65	0.00	3921.50
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12/15/04	3976.15	-	54.60	0.00	3921.55
				1997 - Alexandria Alexandria		
<u>MW - 15</u>	02/05/04	3,974.69	<u> </u>	53.45	0.00	3921.24
	05/05/04	3,974.69	-	53.42	0.00	3921.27
	09/01/04	3,974.69		53.47	0.00	3921.22
	12/15/04	3,974.69	-	53.40	0.00	3921.29
	·				· · · · · · · · · · · · · · · · · · ·	
MW - 16	02/05/04	3,975.12		53.48	0.00	3921.64
	05/05/04	3,975.12		53.41	0.00	3921.71
	09/01/04	3,975.12		53.52	0.00	3921.60
	12/15/04	3,972.12		53.48	0.00	3918.64
MW - 17	02/05/04	3,975.93	-	54.44	0.00	3921.49
	05/05/04	3,975.93	-	54,42	0.00	3921.51
	09/01/04	3,975.93	-	54.50	0.00	3921.43
	12/15/04	3,975.93	-	54.44	0.00	3921.49
RW - 1	02/05/04	3970.79	49,18	51.71	2.53	3921.23
	02/17/04	3970.79	48.71	51.51	2.80	3921.66
	02/25/04	3970.79	49.15	51.67	2.52	3921.26
	03/09/04	3970.79	48.60	49.32	0.72	3922.08
	03/16/04	3970.79	48.62	50.13	1.51	3921.94
	03/22/04	3970.79	48.79	51.92	3.13	3921.53
	04/07/04	3970.79	48.70	49.22	0.52	3922.01
	04/12/04	3970.79	48.68	51.04	2.36	3921.76
	04/19/04	3970.79	48.61	49.10	0.49	3922.11
	05/05/04	3970.79	48.70	51.51	2.81	3921.67
	05/11/04	3970.79	48.83	51.77	2.94	3921.52
	06/07/04	3970.79	48.43	51.31	2.88	3921.93
	08/26/04	3970.79	48.51	51.29	2.78	3921.86
	09/03/04	3970.79	49.02	51.09	2.07	3921.46
	09/14/04	3970.79	48.61	50.86	2.25	3921.84

i.

i

•

••••••

Õ

ŏ

· · · – ··

GROUNDWATER ELEVATION DATA FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
	09/22/04	3970.79	48.56	50.80	2.24	3921.89
	10/01/04	3970.79	48.62	50.82	2.20	3921.84
	10/08/04	3970.79	48.75	50.28	1.53	3921.81
	10/15/04	3970.79	48.59	50.20	1.61	3921.96
	10/22/04	3970.79	48.49	51.20	2.71	3921.89
	11/12/04	3970.79	48.5	51.20	2.70	3921.89
	11/26/04	3970.79	48.5	51.30	2.80	3921.87
	12/02/04	3970.79	48.53	51.22	2.69	3921.86
	12/06/04	12/06/04 3970.79		51.03	2.31	3921.72
	12/13/04	3970.79	48.96	51.10	2.14	3921.51
	12/15/04	3970.79	48.96	51.10	2.14	3921.51
	12/27/04	3970.79	48.46	51.20	2.74	3921.92
. • *	and the second second					
IDW	06/07/04	3970.79	48.43	51.31	2.88	3921.93
	06/15/04	3970.79	48.46	51.42	2.96	3921.89
	06/20/04	3970.79	48.46	51.42	2.96	3921.89
	06/21/04	3970.79	48.46	50.44	1.98	3922.03
	06/28/04	3970.79	48.44	51.38	2.94	3921.91
	07/08/04	3970.79	48.45	51.08	2.63	3921.95
	07/12/04	3970.79	48.46	51.12	2.66	3921.93
	08/06/04	3970.79	48.47	51.48	3.01	3921.87
	08/12/04	3970.79	48.48	51.48	3.00	3921.86
~						

•

Ó

ĕ

Ŏ

Ű

CONCENTRATIONS OF BTEX IN GROUNDWATER FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 LEA COUNTY, NEW MEXICO

All Concentrations are reported in mg/L

			ions are reported in EPA	SW 846-8021B, 5	030				
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE		o - Xylenes			
MOCD REGI	LATORY LIMIT	0.01	0.01	0.75	TOTAL XYLENES				
MICCD REGU		0.01	0.01	0.75	0.	67			
MW - 1	02/05/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001			
	12/15/04	< 0.001	<0.001	<0.001	<0.	001			
	02/05/04	<0.001	<0.001	< 0.001	<0.002	<0.001			
	12/15/04	<0.001	<0.001	<0.001	<0.002				
we is			0.001	0.001					
MW - 8	02/05/04	<0.001	<0.001	<0.001	<0.002	<0.001			
	12/15/04	< 0.001	< 0.001	< 0.001	<0.	001			
MW - 10	02/05/04	< 0.001	<0.001	< 0.001	< 0.002	<0.001			
	12/15/04	< 0.001	<0.001	<0.001	<0.	001			
MW - 11	02/05/04	< 0.001	<0.001	< 0.001	0.017	< 0.001			
	05/05/04	< 0.001	<0.001	< 0.001	0.005	< 0.001			
	09/01/04	< 0.001	<0.001	< 0.001	0.006	< 0.001			
	12/15/04	<0.001	<0.001	< 0.001	0.0	002			
MW - 12	02/05/04	<0.001	<0.001	<0.001	<0.002	<0.001			
	12/15/04	<0.001	<0.001	<0.001	<0.	001			
	· · · · · · · · · · · · · · · · · · ·		a						
MW - 13	02/05/04	0.002	<0.001	0.001	0.053	<0.001			
	05/05/04	<0.001	<0.001	0.001	0.002	< 0.001			
	09/01/04	<0.001	<0.001	0.002	0.016	<0.001			
	12/15/04	<0.001	<0.001	<0.001	0.0	002			
	0.0.10.0.1								
MW - 14	02/05/04	0.763	0.819	0.226	0.492	0.218			
	05/05/04	0.811	0.234	0.233	0.580	0.275			
i di su di	12/15/04	0.071	0.019	0.021	0.0	078			
	00/05/04		0.016	<u> </u>					
MW - 15	02/05/04	3.680	0.016	0.191	0.043	0.016			
	05/05/04	1.700	0.026	0.085	0.030	0.027			
	12/15/04	0.545	<0.0200	<0.0200	<0.()200			
MW - 16	02/05/04	<0.001	<0.001	<0.001	<0.002	<0.001			
10100 - 10	05/05/04	<0.001	<0.001	<0.001	<0.002	<u><0.001</u> <0.001			
┟────┤-	12/15/04	<0.001	<0.001	<0.001		001			
<u> </u>	12/13/04	<u>\0.001</u>	<u>\0.001</u>	<u>0.001</u>	<u> </u>	100			

ļ.

CONCENTRATIONS OF BTEX IN GROUNDWATER FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 LEA COUNTY, NEW MEXICO

		EPA SW 846-8021B, 5030												
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENES								
MOCD REC		0.01	0.01	0.75	TOTAL XYLENES									
MOCD REGULATORY LIMI		0.01	0.01	0.75	0.67									
e de la companya de la			-											
MW - 17	02/05/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001								
	05/05/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001								
	09/01/04	< 0.001	<0.001	< 0.001	< 0.002	< 0.001								
	12/15/04	< 0.001	< 0.001	< 0.001	<0.0	001								
		ŀ	1.164			-								

All Concentrations are reported in mg/L

Table 3

CONCENTRATIONS OF METALS IN GROUND WATER FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 LEA COUNTY, NM

									All water	concentrat	ions are rep	orted In 1	ng/L										
1	l	L									EP.	A SW846	-6010B, 74	70									
SAMPLE LOCATION	SAMPLE DATE	Alaminum	Arsenic	Barium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	silica	Silver	Sodium	Zinc	Boron
WQCC S	tandard	5	0.1	1	0,01		0.05	0.05	1	1	0.05		0.2	0.002	1	0.2		0.05		0.05			0,75
MW-1	12/15/04	1.91	<0.0100	0.116	< 0.00500	113.0	<0.0100	< 0.0200	<0.0125	0.91	< 0.0100	19.3	<0.0250	<0.0002	<0.0500	< 0.0250	2.43	<0.0500	50,20	< 0.0125	34.8	<0.0250	1,38
	L	ļ									1												· · · · · · · · · · · · · · · · · · ·
MW-7	12/15/04	0.86	<0.0100	<0.0100	<0.00500	87.6	<0.0100	<0.0200	< 0.0125	0.5510	<0.0100	15	0.0420	<0.0002	<0.0500	< 0.0250	2.74	<0.0500	41.00	< 0.0125	32	<0.0250	1.1
		1								0.000					· · · · ·								
<u>MW-8</u>	12/15/04	1.250	<0.0100	0.1130	< 0.00500	99.1	<0.0100	<0.0200	<0.0125	0.930	<0.0100	16.8	<0.0250	< 0.0002	<0.0500	<0.0250	2.26	<0.0500	53.50	<0.0125	28.6	<0.0250	0,968
MW-10	12/15/04	13.10	<0.0100	0.561	<0.00500	140.0	0.02	<0.0200	<0.0125	8.07	< 0.0100	25.2	0.0820	<0.0002	<0.0500	<0.0250	4,31	<0.0500	89.60	<0.0125	41.9	0.039	<0.00500
MW-11	12/15/04	1.73	<0.0100	0.164	<0.00500	115	<0.0100	<0.0200	<0.0125	2.450	<0.0100	18.6	0.0250	0.00023	<0.0500	<0.0250	2.75	<0.0500	47.40	<0.0125	28.3	<0.0250	1.39
MW-12	12/15/04	4.81	<0.0100	0.1270	<0.00500	120.0	0.011	<0.0200	<0.0125	3.01	<0.0100	19.5	0.0390	<0.0002	<0.0500	<0.0250	3.04	<0.0500	60.60	<0.0125	35.1	0.027	1.06
MW-13	12/15/04	2.24	<0,0100	0.127	<0.00500	109.0	<0.0100	<0.0200	<0.0125	1.23	<0.0100	17.9	0.0350	0.00058	<0.0500	<0.0250	2.75	<0.0500	52.40	<0.0125	36.4	<0.0250	0.0905
MW-14	12/15/04	<0.100	<0.0100	0.123	<0.00500	97.2	<0.0100	<0.0200	<0.0125	0.08	<0.0100	17.0	<0.0250	<0.0002	<0.0500	<0.0250	3.04	<0.0500	42.60	<0.0125	47	<0.0250	0.685
MW-15	12/15/04	5.73	<0.0100	0.179	<0.00500	151	0.01	<0.0200	< 0.0125	4.950	<0.0100	15,20	0.1660	0.0004	<0.0500	<0.0250	4.74	<0.0500	66.20	<0.0125	27.3	<0.0250	0.693
MW-16	12/15/04	32.50	0.0500	1.340	<0.00500	743.0	0.087	<0.0200	0.047	20.60	0.03	39.1	0.2500	<0.0002	<0.0500	0.033	8.55	<0.0500	62.30	<0.0125	38.8	0.056	0.265
MW-17	12/15/2004	<10.0	<0.0100	0.3160	<0.00500	103	0.0180	<0.0200	<0.0125	4.11	<0.0100	23.70	0.0690	<0.0002	<0.0500	<0.0250	3.78	<0.0500	58.30	<0.0125	37.4	<0.0250	0.865

CONCENTRATIONS OF SEMI-VOLATILES IN GROUNDWATER FOR 2004

PLAINS MARKETING, L.P. TNM 97-04 LEA COUNTY, NEW MEXICO

All water concentrations are reported in mg/L

								EPA	SW846-8	270C, 35	10						
SAMPLE LOCATION	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[g,h,i] perylene	Benzo[k]fluoranthene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
WQCC S	tandard					0.0007									0.03		
MW-1	12/15/04	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002
MW-7	12/15/04	< 0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002
MW-8	12/15/04	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002
													· · · ·				
MW-10	12/15/04	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002
MW-11	12/15/04	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002
									-			[1				
MW-12	12/15/04	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002
MW-13	12/15/04	< 0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
													[:	
MW-14	12/15/04	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002	0.0026	<0.0002	< 0.0002	0.00271	<0.0002	0.0016	0.00263	0.0424	0.00123	<0.0002
	10/15/04			10 0000		<0.0002	<0.0000	<0.0002	<0.0002	-0.0000	10.0000	-0.0002	0.00112	-0.0002	0.0217		10.0000
MW-15	12/15/04	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.00113	<0.0002	0.0217	< 0.0002	<0.0002
MW-16	12/15/04	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002
N	12/15/04	<0.0000			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	-0.0002
MW-17	12/15/04	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002

Appendices

.

.

Appendix A Notification of Release and Corrective Action

bbb. NM 88241-1980 Encly Air als and Natural Resources De tment Originated 2/13/9 invict II - (505) 748-1283 Cil Conservation Division Tom-97-5 Cl			
	Resources De		Form C- 14
Initial (Stag 52-6172) Santa Fe, New Medica 97005 Other and each of the section (305) 627-7131 Release Noteffication and Corrective Action OPERATOR OPERATOR Release Noteffication and Corrective Action Initial Report Other and each of the section of the sectin of the section of the section of the section of the	Dividen '~		Outratec 2/12/9
Of No Basie Red with 201 (203) 227-7131 Office is manning over the 11 to beck dot of the set of dots Release Notification and Corrective Action OPERATOR Initial Report Texass-New Mexico Pipe Line Company Edwift M. Gripp Box 50026, San Angelo, TX 76905 Tender Texas displana Facing type Box 50026, San Angelo, TX 76905 Tender type displana Facing type Box 50026, San Angelo, TX 76905 Tender type displana Facing type Box 50026, San Angelo, TX 76905 Tender type displana Facing type Box 50026, San Angelo, TX 76905 Tender type displana Facing type displana Facing type displana Facing type displana Income the type displana Nature former table Texas former displana Nature former displana Marked former displana Devia displana type displana Marked former displana Marked former displana Marked former gisthering line Nattracte		7201-97-04	Substit 2 copies u
Market Note: Sector 1:0:0 Market 1:0:0 Release Notification and Corrective Action Disk die die fer OPERATOR Initial Report Initial Report Reference 1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0			Appropriate Distric
Release Notification and Corrective Action OPERATOR Initial Report Distance of the company Contract Box 50028, San Angelo, TX 76906 Box 50028, San Angelo, TX 76906 OPERATOR Contract Mater Source State Address San Angelo, TX 76906 OPERATOR Contract Address San Angelo, TX 76906 Address San Angelo, TX 76906 Contract San Angelo, TX 76906 Address San Angelo, TX 76906 Contract San Angelo, TX 76906 Address Angelo, TX 76906 Address Angelo, TX 76906 Address Angelo, TX 76900 Address Angelo,	***		with Fule 116 o
OPERATOR Distait Report Texas-New Mexico Pipe Line Company Center: Edwin H, Gripp Control Edwin H, Gripp Control Report KA Control Control Report KA Control Edwin H, Gripp Control Name Report Laws NA Control Owner Laws NA Control Owner Laws NA Control Owner Laws NA Control Owner Larry Megert Nontand Owner Laws NA Converted Converted <thconverted< th=""></thconverted<>			outer not of loss
Inter Contract Contract Texas-New Mexico Pipe Line Company Market N., Gripp Adder Box 50028, San Angelo, TX 75906 (915) 947-9000 Address Analytype The International States St			
demu Box 60028, San Angelo, TX 76906 (915) 947-9000 diay Nume A"mathering line Fediay Type 4"mathering line San for the second sec	Contact		LA FINE REPOR
Bax 60028, San Angelo, TX 76906 (915) 947-9000 diay Num. Facing Type "Inclusive results of the set of		рр	
4 th gethering line :bjpeline face Owner, Larry Megert Minesi Owner corrected location) LOCATION OF RELEASE in Lider Section Terminal Ange For from the Newboard Line For Section Secting Secting Section Section Secting Section Secting Sect		00	
The Converted Toresty Maggert Larry Maggert Lary Maggerty Maggerty Larry Maggerty Mag	Fadility Type		
Larry Megert Corrected location LocATION OF RELEASE In LocATION OF RELEASE In LocATION OF RELEASE In Lea Lea NATURE OF RELEASE NATURE OF REACE NATURE OF RELEASE NATURE NOT S	: "pipeline	····	
corrected location LOCATION OF RELEASE in Later Sector Remarks Reg Pet from the Nethdowsh Line Pet form the Service Less in Later Sector Remarks NATURE OF RELEASE in Carrow Control Contro Control Control Contro Control Control Control Contro Control Co		Lanze No.	
Beatern 11 Tennskip Runge Peer from the Nordedeath Line Peer from the Leas NATURE OF RELEASE Of Advance Date and How of Decentron gathering line Unknown UNKnown A/16/97 Barnellss Date and How of Decentron When? Wayne Price When? Wayne Price When? Mark Required Wiss Watcouver Redded? Ne Wiss Watcouver Redded? Ne Watcouver was Inpaced Decide Rulp* Ne Watcouver was Inpaced and County Action Takes.* Ne Watcouver was Inpaced and County Action Takes.* Ne Watcouver was Inpaced and County Action Takes.* Ne Proximately 1500 sq.ft. pasture land. Will' remediate on site. Market General Conducer Prevaiing (Tompenture, Propisistos, ec.i* d	*		
Nature Rest from the Network Line Net More definition to Network Line Conny 11 165 35E NATURE OF RELEASE Of a data gathering line Unknown Unknown Vision Descend Brew of Descend Per of Descend Descend Per of D	ELEASE		
NATURE OF RELEASE NATURE OF RELEASE NATURE OF RELEASE Where of Research get to find and 5 barrels get to find and Disc and How of Construction Date and How of Construction get to find and Disc and How of Construction Date and How of Construction get to find and Disc and How of Construction Date and How of Construction get to find and Disc and How of Construction Date and How of Construction When of Maximum Education Construction Maximum Education Date and How of Construction When of Maximum Education Construction Maximum Education Maximum Education When of Maximum Education Not Required When of Maximum Education When of Maximum Education Not Required When of Maximum Education When of Maximum Education Not Required When of Maximum Education When of Maximum Education Not Required When of Maximum Education When of Maximum Education Not Required YES. When of Maximum Education When of Maximum Education Not Required YES. When of Maximum Education <t< td=""><td></td><td>County</td><td></td></t<>		County	
ard Falsas: Witting of Release: (Pevised) Watting Recovered 5 barrels eet Crude 488 barrels barrels barrels gathering line Data and Have of Decombox Unknown Data and Have of Decombox 4/16/97 1:00 p.m. itematiste Notice Given? Xee No If YES, To Wheat Whem? No If YES, To Wheat A/16/97 1:00 p.m. Billy D. Chapman 4/25/97 9:00 a.m. If YES, No Wheat If YES, No Wheat Whem? Date and Have Date and Have 4/25/97 9:00 a.m. Witchourte Reached? Xee Xee If YES, Waterourte Cases of Problem and Remethal Action Takes.* waternal Corrosion. Leak successfully clamped off. If YES. waternal Conducers Prevailing (Tempersture. Prespiration, ec.).* Out Conservation Prevailing (Tempersture. Prespiration, ec.).* degrees; clear Approved by Diverse Supervision Approved by Diverse Supervision Approved by Diverse Supervision * District Manager Approved by Diverse Supervision Exelementarian * District Manager Approved by Diverse Supervision Exelementarian * District Manager Approved by Diverde Supervision Mashed []		Lea	••••••••••••••••••••••••••••••••••••••
reet Crude 488 barrels 5 barrels gathering line Discard Hew of Connerse Discard Hew of Connerse gathering line Unknown 4/16/97 4:00 p.m. ikonatise Green No Not Required Witts, 5 Witeen When No Not Required Witts, 5 Witeen When No Not Required Witts, 5 Witeen When Yes, 5 Witeen No No Billy D. Chapman 4/25/97 9:00 a.m. No Waterourse Readed Yes, 5 Witeen No Waterourse was impacted Denotes Ruby* No No Waterourse was impacted Action Taken* No Yes, 5 Witeen witeenaurse and Remethal Action Taken* No Yes, 5 Witeenaurse witeenaurse was impacted Denotes Ruby* No Yes, 5 Witeenaurse witeenaurse was impacted Action Taken* No Yes, 5 Witeenaurse witeenaurse and Concepton Line Remethal Action Taken* No Yes witeenaurse and Conduces Action Taken* No Yes proximately 1500 sq.ft. pasture land. Will? remediate on site. No witee Edwin H. Gripp Yes and Yes and Parenting Yes and Yes	EASE		
Inter of Referent gathering line Date and How of Occuments Unknown Date and How of Occuments (1/15, 70 % cm) Internative Notices Cirem? Yes No If YES, No Weath Wayne Price When? Date and How of Occuments (1/15, 70 % cm) Date and How of Occuments (1/15, 70 % cm) When? Date and How (2/25/97 9:00 a.m.) Date and How (2/25/97 9:00 a.m.) Wisconsulte Reacted No If YES, Watersulte Reacted (1/15, 70 % cm) Wisconsulte Reacted No If YES, Watersulte Reacted (1/15, 70 % cm) Wisconsulte Reacted No If YES, Watersulte Reacted (1/15, 70 % cm) Wisconsulte Reacted No If YES, Watersulte Reacted (1/15, 70 % cm) Wisconsulte Reacted No If YES, Watersulte Watersulte. Wisconsulte Reacted Decend How (1/15, 70 % cm) If YES, Watersulte Reacted. Wisconsulte Reacted Decend How (1/15, 70 % cm) If YES, Watersulte Reacted. Wisconsulte Reacted and Country Action Taken.* If YES, Watersulte Reacted and Country Action Taken.* Proximately 1500 sq.ft. pasture land. Will remediate on site. If YES (1/15, 70 % cm) Watersulte General Conducers Prevailing (Compensulte, Producters and complete to the best of Involves for the second try Conducers Prevailing (Tempensulte Taker and complete to the best of Involves Scond try Di	Volume of Reisare (re		
gathering line Unknown 4/16/97 4:00 p.m. a ferredske Notice Given? Yes No Wren? Wren? Wheen? Dite and How 4/25/97 9:00 a.m. Billy D. Chapman 4/25/97 9:00 a.m. Witcenute Reacted? Yes No Witcenute Reacted? Yes No Witcenute Reacted? Yes No Witcenute reacted. Describe Redy: If VES. Where impacting the Witerenute? Witcenute reacted. Describe Redy: If VES. Where impacting the Witerenute? Witcenute reacted. Describe Redy: If VES. Where impacting the Witerenute? Witcenute reacted. Describe Redy: If VES. Where impacting the Witerenute? Witcenute reacted. Describe Redy: If VES. Where impacting the Witerenute? Witcenute reacted. Describe Redy: If VES. Where impacting the Witerenute? Witcenute reacted. Describe Redy: If VES. Where impacting the Witerenute? Intervention of the successfully clamped off. If the successfully clamped off. Intervention Area Affected and Clemper Action Taken.* If the successfully clamped off. Intervention Conductors Prevising (Temperature. Prespisation, red.).* If the successfully clamped off. Intervention Conductors Prevising (Temperature. Prespisation, red.).* If the successfully clamped off. Intervention Conducto			
a Immediate Notice Given? Xer No If YES, To When? When? Display Price When? Display Price Billy D. Chapman 4/25/97 9:00 a.m. Wasterburne Reacted? Xer No Wasterburne was Impacted. Describe Paly: If YES. Whens: Impacting the Waterburnet. Wasterburne was Impacted. Describe Paly: No Wasterburne was Impacted. Describe Paly: If YES. Whens: Impacting the Waterburnet. Wasterburne was Impacted. Describe Paly: If YES. Whens: Impacting the Waterburnet. Waterburne was Impacted. Describe Paly: If YES. Whens: Impacting the Waterburnet. Waterburne was Impacted. Describe Paly: If YES. Waterburne was Impacted. Describe Paly: Waterburne was Impacted. Describe Paly: If YES. Waterburnet was Impacted. Describe Paly: waterburne was Impacted. Describe Paly: If YES. Waterburnet was Impacted. waterburne was Impacted. Action Taken.* If YES. Waterburnet was Impacted. provide and Change Action Taken.* If YES. Waterburnet was Impacted. provide and Change Action Taken.* If YES. Went was Impacted on Site. water General Conductors Prevaling (Temperature. Prophilation, etc.).* If YES. Went was Impacted on Site. water General Conductors Prevaling (Tempe		· · · · · · · · · · · · · · · · · · ·	
When? Date and Hour Billy D. Chapman 4/25/97 9:00 a.m. Billy D. Chapman 4/25/97 9:00 a.m. Billy D. Chapman 1/25. Where impacing the Wilderburge. Wilderburge wild impact and Remoth Action Taken.* * Arternal Corrosion. Leak successfully clamped off. * Browsing and State of Decide and Componenture. Will remediate on site. Proximately 1500 sq.ft. pasture land. Will remediate on site. * Browsing and State of Decide and Complete to the best of Milly the depletemation given above to use and complete to the best of Milly the depletemation given above to use and complete to the best of Milly the depletemation given above to use and complete to the best of Milly the depletemation given above to use and complete to the best of Milly the depletemation given above to use and complete to the best of Milly the depletemation given above to use and complete to the best of Milly the depletemation given above to use and complete to the best of Milly the depletemation given above to use and complete to t	If YES, To Wham?		
Billy D. Chapman 4/25/97 9:00 a.m. us Witchourse Readeds ymax Ymax Xmax Witchourse Readeds Ymax Ymax Xmax Witchourse Readeds Ymax Witchourse was (mpacting) Describe Ruly: witchourse and Remedial Action Taken.* proximately 1500 sq.ft. pasture land. Will: remediate on site. witchourse being (Conducord Prevailing (Componence, Prodpitation, ec.).* degrees; clear witch Supervision bistrict Manager Approved by District Manager August 12, 1997 Phane S15-947-9001 Conditions of Approval Data Equination Date August 12, 1997 Phane S15-947-9001 Conditions of Approval Data BDC TA S			
us a Watersource Reachesi?		a.m.	
a Maizzourse was Impacted. Describe Publy* arctice Cause of Problem and Remodal Action Taken.* xternal Commosion. Leak successfully clamped off. active Area Affected and Cleanup Action Taken.* proximately 1500 sq.ft. pasture land. Will remediate on site. arctive General Condutors Prevailing (Temperature. Prospitation, etc.).* degrees; clear arctive the information given above is use and complete to the best of answer Edwin H. Gripp bistrict Manager August 12, 1997 Phone S15-947-9001 Condution of Approval: Ausached Linear I Necessary BDC JAS			
areibe Cause of Problem and Remodul Action Taken." xternal Corrosion. Leak successfully clamped off. arcive Are Affected and Cleanup Action Taken." proximately 1500 sq.ft. pasture land. Will: remediate on site. araibe General Conduces Presuling (Componence Prospitation, e.c.)." degrees; clear and balled			,
xternal Corrosion. Leak successfully clamped off. active Area Affected and Cleanup Action Takes." proximately 1500 sq.ft. pasture land. Will remediate on site. state General Conditions Prevailing (Temperature. Prospitation, etc.)." degrees; clear meture Lood Name Edwin H. Gripp attach Additional Sheets If Necessary BDC JF A S			
xternal Corrosion. Leak successfully clamped off. active Area Affected and Cleanup Action Takes." proximately 1500 sq.ft. pasture land. Will remediate on site. state General Conditions Prevailing (Temperature. Prospitation, etc.)." degrees; clear meture Lood Name Edwin H. Gripp attach Additional Sheets If Necessary BDC JAR S			
xternal Corrosion. Leak successfully clamped off. active Area Affected and Cleanup Action Takes." proximately 1500 sq.ft. pasture land. Will remediate on site. state General Conditions Prevailing (Temperature. Prospitation, etc.)." degrees; clear meture Lood Name Edwin H. Gripp attach Additional Sheets If Necessary BDC JAR S			
active Area Affected and Cleanup Action Taken." proximately 1500 sq.ft. pasture land. Will' remediate on site. subtract on duors Prevailing (Temperature, Prespiration, etc.)." degrees; clear metry cartify that the information given above is use and complete to the best of provided e and build			
proximately 1500 sq.ft. pasture land. Will' remediate on site. suste General Condutors Prevailing (Temperature, Prodpitation, etc.): degrees; clear provide state information, given above is true and complete to the best of innoviding and build. provided state information, given above is true and complete to the best of innoviding and build. Approved by District Manager Approved by District Manager Approved by District Manager Approved Data Expiration Data Expiration Data Autached Attach Additional Sheets If Necessary BDC JAS	•		
proximately 1500 sq.ft. pasture land. Will' remediate on site. suste General Condutors Prevailing (Temperature, Prodpitation, etc.): degrees; clear provide state information, given above is true and complete to the best of innoviding and build. provided state information, given above is true and complete to the best of innoviding and build. Approved by District Manager Approved by District Manager Approved by District Manager Approved Data Expiration Data Expiration Data Autached Attach Additional Sheets If Necessary BDC JAS			
proximately 1500 sq.ft. pasture land. Will' remediate on site. sate General Condutors Prevailing (Temperature, Prodpitation, etc.): degrees; clear supervised build. sate of build. autor build.			
static General Conditions Prevailing (Temperature, Presipitation, e.c.)." degrees; clear proty certify that the information, given above is true and complete to the best of knowladge and build			
degrees; clear reby cardly that the information given above is true and complete to the best of incovingings and build. Off. CONSERVATION DIVISION hatter information given above is true and complete to the best of incoving and build. Approved by Division hatter information given above is true and complete to the best of incoving and build. Approved by Division hatter information given above is true and complete to the best of incoving and build. Approved by Division hatter information given above is true and complete to the best of incoving and build. Approved by Division bit of the grade is true and complete to the best of incoving and build. Approved by Division bit of the grade is true and complete to the best of incoving and build. Approved by Division bit of the grade is true and complete to the best of incoving and the grade is true and complete to the best of incoving and the grade is true and complete to the best of Division Approved by Division Date BDC JA S State Corp. Commission Pipe Line Division NM Environmental Improvement Div.	liate on site.		
degrees; clear reby cardly that the information given above is true and complete to the best of involving and build. Off. CONSERVATION DIVISION harmer atoms Approved by District Supervisor: Approved by District Supervisor: ted Name Edwin H. Gripp Approved by District Supervisor: Expiration Date * District Manager Approved by District Supervisor: Expiration Date * District Manager Approved Date Expiration Date * District Supervisor: August 12, 1997 Phone 915-947-9001 Conditions of Approved: * Additional Sheets If Necessary BDC State Corp. Commission Pipe Line Division Hezartous Wate Section NM Environmental Improvement Div.			
District Manager Approval by Direct Supervisor: Edwin H. Gripp Phone: 915-947-9001 Conditions of Approval: August 12, 1997 BDC JAS			
Intervision Approval by Direct Supervisor. acod Name Edwin H. Gripp acod Name Edwin H. Gripp acod Name Edwin H. Gripp bitrict Supervisor. Empiration Data acod Name Approval Data Empiration Data Empiration Data FAUgust 12, 1997 Phone: 915-947-9001 Conditions of Approval: Attach Additional Sheets If Necessary BDC JAS BDC JAS	an na Tanan an		
Intervision Approval by Direct Supervisor. acod Name Edwin H. Gripp acod Name Edwin H. Gripp acod Name Edwin H. Gripp bitrict Supervisor. Empiration Data acod Name Approval Data Empiration Data Empiration Data FAUgust 12, 1997 Phone: 915-947-9001 Conditions of Approval: Attach Additional Sheets If Necessary BDC JAS BDC JAS		an a	
Approved by Approved by Approved by District Manager Approved by District Manager Approved by Conditions of Approved by August 12, 1997 Phone 915-947-9001 Conditions of Approved Attach Additional Sheets If Necessary BDC JAS State Corp. Commission Pipe Line Division NM Environmental Improvement Div.	11		
Edwin H. Gripp Divide Subarvison District Manager Approval Data Expiration Data Expiration Data August 12, 1997 Phone 915-947-9001 Conditions of Approval: Autoched Attach Additional Sheets If Necessary State Corp. Commission BDC JAS	01.02	SERVATION DIVISION	
August 12, 1997 Phone: 915-947-9001 Conditions of Approval: Ausched Attach Additional Sheets If Necessary State Corp. Commission Hazardous Wade Section BDC JRS Pipe Line Division NM Bavironment Div.		SERVATION DIVISION	
Attach Additional Sheets If Necessary State Corp. Commission Hazardous Waste Section BDC, JAS Pipe Line Division NM Bavironsmental Improvement Div.		SERVATION DIVISION	
BDC JRS State Corp. Commission Hitzproversent Div.	l by upervisor. Data		
	l by upervisor. Data	Espiration Date:	
	l by upervisor. Data one of Approvai: p. Commission.	Expiration Date Attached Hazardous Waste Section	
	l by upervisor. Data one of Approvai: p. Commission.	Expiration Date Attached Hazardous Waste Section	vernent Div.
	l by upervisor. Data one of Approvai: p. Commission.	Expiration Date Attached Hazardous Waste Section	vernent Div.
suite General Conditions Prevailing (Remperature, Predipitation, etc.).* degrees; clear proby cartify that the information, given above is use and complete to the best of knowledge and build. Approved informations inded Name Edwin H. Gripp = District Manager FAugust 12, 1997 BDC JAS Prior Line Predipitation, etc.).*		A Division A Division A Division A Division A Division A Division A Division A Division A Division A Division Context Edwin H. Gri Receive Action OR Context Edwin H. Gri Telephone Na. (915) 947-90 Facility Type Pipeline ELEASE When at Receive (re 488 barrels Date and Hour at Action If YES, To Whent Wayne Price Date and Hour 4/25/97 9:00 If YES, Weissie Impactung	A Division TAM-97-04 acc Street acc Street acc 87505 131 Corrective Action OR Initial Report Contest Edwin H. Gripp Neptone Na. (915) 947-9000 Facility Type 1 pipeline Lasse No. ELEASE Nom the East/Wint Line County Lea Lease No. ELEASE Volume of Reisese (revised) Values Recond 488 barrels 5 bar Date and Hour of Occurrence Unknown 4/16/97 If YES, To Whean T Wayne Price Date and Hour 4/25/97 9:00 a.m. If YES, Volume Impactors the Watercourte.

I.

I.

ł

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor April 28, 2004 Joanna Prukop Cabinet Secretary Acting Director Oil Conservation Division

Mr. Robert B. Eidson Environmental Technology Group, Inc. 2540 West Marland Hobbs, NM 88240

RE: Your "Annual Sampling and Quarterly Gauging of Groundwater Monitor Wells Meeting Regulatory Cleanup Standards" letter dated March 25, 2004

Sampling of the below-listed monitor wells may be done in the timeframes indicated:

Darr Angell #1: MW-4, 11, 15, 16, 19, and 20 may be sampled annually; MW-7 may be sampled semiannually.

Darr Angell #2: MW-1, 5, 6, 7, 8, 9, and 10 may be sampled annually; MW-3, and 4 may be sampled semi-annually.

Darr Angell #4: MW-1, 2, 4, 5, 7, and 12 may be sampled annually; MW-9 may be sampled semi-annually.

HDO 90-23: MW-1, 7, and 8 may be sampled annually; MW-4, and 5 may be sampled semi-annually. LF-37: MW-1, 2, 5, 6, 7, 8, and 9 may be sampled annually; MW-4 may be sampled semi-annually.

LF-59: MW-3, 5, and 6 may be sampled annually; MW-7 may be sampled semi-annually.

Monument 2: MW-6, and 7 may be sampled annually; MW-4 may be sampled semi-annually.

Monument 10: MW-4 may be sampled annually; MW-6, and 7 may be sampled semi-annually.

Monument 11: MW-1, 2, and 3 may be sampled annually.

Monument 17: MW-5, and 8 may be sampled annually. MW-4, and 6 may be sampled semi-annually. Monument 18: MW-2, 6, 7, and 8 may be sampled annually. MW-5 may be sampled semi-annually. TNM 97-04: MW-1, 7, 8, 10, and 12 may be sampled annually.

TNM 97-17: MW-1, 3, 11, 12, 13, 16, 17, 18, and 28 may be sampled annually. MW-22, 23, 24, 25, and 27 may be sampled semi-annually.

<u>TNM 97-18</u>: MW-1, 8, 9, 11, 12, 13, 14, 15, 16, 19, 20, and 21 may be sampled annually. MW-22, 26, 28, 29, and 30 may be sampled semi-annually.

TNM 97-23: MW-1, 2, 3, and 5 may be sampled annually.

TNM 98-05: MW-3, and 4 may be sampled annually.

<u>TNM 98-05A</u>: MW-5, and 8 may be sampled annually. MW-6, and 7 may be sampled semi-annually. <u>SPS-11</u>: MW-2, 3, 13, 19, 20, 21, 22, 25, 27, 30, and 31 may be sampled annually. MW-10, and 18 may be sampled semi-annually.

Conditions:

- 1. Gauging of all monitor wells will continue on a quarterly basis.
- 2. A request for a change in sampling frequency for any other monitor wells must be made specifically for those wells. This approval of annual and semi-annual sampling for the above wells does not constitute a "blanket" approval for any other monitor well not shown above.

If you have any questions, do not hesitate to contact me.

NEW MEXICO OIL CONSERVATION DIVISION

Il Martino

Ed Martin Environmental Bureau

• DRAFT

March 25, 2004

Mr. Ed Martin New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Annual sampling and quarterly gauging of groundwater monitor wells meeting regulatory cleanup standards.

Mr. Martin:

Environmental Technology Group, Inc. (ETGI) for Link Energy is requesting that the groundwater sampling schedule of the wells listed below be changed from a quarterly to an annual sampling schedule. Quarterly gauging will continue on all site monitor wells during the regularly scheduled monitoring events. Benzene and total BTEX concentrations have been below regulatory standards in all of the monitor wells listed below for at least eight consecutive monitoring periods:

HDO 90-23: MW-1, 4, 5, 7 and 8; LF-37: MW-1, 2, 4, 5, 6, 7, 8 and 9; LF-59: MW-3, 5, 6 and 7; Monument 2: MW-4, 6 and 7; Monument 10: MW-1, 4, 5, 6 and 7; Monument 11: MW-1, 2 and 3; Monument 17: MW-4, 5, 6 and 8; Monument 18: MW-2, 5, 6, 7 and 8; TNM 97-04: MW-1, 7, 8, 10 and 12; TNM97-17: MW-1, 3, 11, 12, 13, 16, 17, 18, 22, 23, 24, 25, 27 and 28; TNM 97-18: MW-1; $+ E - m e^{j} + m e^{j}$ TNM 97-23: MW-1, 2, 3 and 5; TNM 98-05: MW-3 and 4; TNM 98-05A: MW-5, 6, 7 and 8; SPS-11: MW-2, 3, 13, 15, 18, 19, 20, 21, 22, 25, 27, 30 and 31. $+ E - m e^{j} + (d^{2}/0)$

As additional monitor wells meet the eight consecutive monitoring events requirement with concentrations below regulatory standards we will formally request that they too be sampled on an annual basis.

³ DRAFT

Please contact me with any questions you have concerning ETGI's proposed groundwater sampling schedule at these sites.

Sincerely;

Robert B. Edison Geologist / Senior Project Manager ETGI, Hobbs, New Mexico

(505) 397-4882 office phone (505) 631-2974 cell (505) 397-4701 fax From: Robert Eidson [reidson@etgi.cc] Sent: Tuesday, April 27, 2004 10:53 AM To: Ed Martin Subject: Groundwater sampling frequency letter Ed: The letter is attached for your reference.

Tabulated analytical results are included in all of the Annual Groundwater Monitoring reports. The Figure 3's should also be helpful in determining sampling frequency changes. Of those sites which show only seven consecutive quarters of acceptable groundwater sampling results, I checked the first quarter results of this year to meet the requirement (8). All wells will continue to be gauged during each sampling event.

At the Darr Angell 1 site (AP-07) we would like to sample monitor wells MW-4, 7, 11, 15, 16, 19 and 20 annually. At the Darr Angell 2 site (AP-07) we would like to sample monitor wells MW-1, 3, 4, 5, 6, 7, 8, 9 and 10 annually. At the Darr Angell 4 site (AP-07) we would like to sample monitor wells MW-1, 2, 4, 5, 7, 9 and 12 annually.

Additionally, we would like to add the following monitor wells to the list shown on the attached letter:

At TNM 97-18 (AP-13) monitor wells MW-8, 9, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 26, 28, 29 and 30. and SPS-11.
 At SPS-11 monitor wells MW-10 and MW-19.

I will send the corresponding maps in groups to speed transmission and delivery. Sincerely, Robert B. Eidson Geologist / Sr. Project Manager ETGI Hobbs, New Mexico 505-397-4882 office 505-397-4701 fax 505-631-2974 cell

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

ANNUAL MONITORING REPORT

GW7.294

TNM 97-04 LEA COUNTY, NEW MEXICO SE 1/4 of the SE 1/4 of SECTION 11, TOWNSHIP 16 SOUTH, RANGE 35 EAST LINK ENERGY LEAK NUMBER: TNM-97-04 ETGI PROJECT NUMBER: LI2016

PREPARED FOR:

LINK ENERGY 5805 EAST HIGHWAY 80 MIDLAND, TEXAS 79701

PREPARED BY:

ENVIRONMENTAL TECHNOLOGY GROUP, INC. 2540 WEST MARLAND HOBBS, NEW MEXICO 88240

April 2004

ANNUAL MONITORING REPORT

TNM 97-04

LEA COUNTY, NEW MEXICO SE 1/4 of the SE 1/4 of SECTION 11, TOWNSHIP 16 SOUTH, RANGE 35 EAST LINK ENERGY LEAK NUMBER: TNM-97-04 ETGI PROJECT NUMBER: LI 2016

PREPARED FOR:

LINK ENERGY 5805 EAST HIGHWAY 80 MIDLAND, TEXAS 79701

PREPARED BY:

ENVIRONMENTAL TECHNOLOGY GROUP, INC. 2540 WEST MARLAND HOBBS, NEW MEXICO 88240

penolds

Camille Reynolds Project Manager

April 2004

FORVOID HOBM

Todd Choban Regional Manager

TABLE OF CONTENTS

ļ

INTRODUCTION
FIELD ACTIVITIES
GROUNDWATER GRADIENT1
LABORATORY RESULTS
SUMMARY
DISTRUBUTION4
 FIGURES Figure 1 – Site Location Map Figure 2A – Inferred Groundwater Gradient Map February 5, 2003 2B – Inferred Groundwater Gradient Map May 7, 2003 2C – Inferred Groundwater Gradient Map August 18, 2003 2D – Inferred Groundwater Gradient Map December 1, 2003 Figure 3A – Groundwater Concentration Map February 6, 2003 3B – Groundwater Concentration Map May 7, 2003
 3C – Groundwater Concentration Map August 18, 2003 3D – Groundwater Concentration Map December 1, 2003
TABLESTable 1 – Groundwater Elevation DataTable 2 – Concentrations of BTEX in GroundwaterTable 3 – Concentrations of Metals in GroundwaterTable 4 – Concentrations of Semi-Volatiles in GroundwaterTable 5 – Concentrations of Anions and Cations in Groundwater
APPENDICES

Appendix A – Laboratory Reports

INTRODUCTION

Environmental Technology Group, Inc. (ETGI), on behalf of Link Energy (Link), has prepared this Annual Monitoring Report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1 of each year. This report is intended to be viewed as a complete document with figures, attachments, tables, and text. The report presents the results of the quarterly groundwater monitoring events conducted in 2003 only. For reference, the Site Location Map is provided as Figure 1.

Groundwater monitoring was conducted during four quarterly events in calendar year 2003 to assess the levels and extent of dissolved phase and Phase-Separated Hydrocarbon (PSH) constituents. The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 foot were not sampled.

FIELD ACTIVITIES

Two groundwater monitor wells (MW-16 and MW-17) were installed during the last week of December 2002 to further delineate the impact of groundwater at the site. Initial groundwater sampling of monitor wells MW-16 and MW-17 was conducted on January 10, 2003 consisted of analysis for Benzene, Toluene, Ethylbenzene and Xylene (BTEX) constituent concentrations, semi-volatile organic compounds (PAH), major cations and anions, Total Dissolved Solids (TDS) and New Mexico Water Quality Control Commission (WQCC) metals. The site monitor wells were gauged and sampled on February 5-6, May 7, August 18, and December 1, 2003. Monitor wells MW-16 and MW-17 were not resampled during the site monitoring event conducted on February 5 and 6, 2003. In accordance with the NMOCD letter dated January 12, 2000, additional groundwater samples were collected during the December monitoring event and analyzed for concentrations of PAH and WOCC metals. During each sampling event the monitor wells were purged of approximately three well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon samplers. Water samples were collected in clean glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a polystyrene tank and disposed of by Vista Trucking of Eunice, New Mexico from January through August and Lobo Trucking of Hobbs, New Mexico from September through December utilizing a licensed disposal facility (NMOCD AO SWD-730).

GROUNDWATER GRADIENT

Locations of the monitor wells and the inferred groundwater gradient, constructed from measurements collected during quarterly sampling events are depicted on Figures 2A-2D, the Inferred Groundwater Gradient Maps. Cumulative groundwater elevation data is provided as Table 1. Groundwater elevation contours generated from water level measurements acquired during the quarterly sampling events of 2003, indicated a general gradient of approximately

0.003 ft/ft to the southeast as measured between groundwater monitor wells MW-13 and MW-14. The depth to groundwater, as measured from the top of the well casing, ranged between 48.97 to 59.21 feet in the shallow alluvial aquifer.

Measurable thicknesses of PSH were detected in monitor wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-9 and recovery well RW-1 during the 2003 annual reporting period. Maximum thickness of 3.23 feet in monitor well MW-2, 3.51 feet in monitor well MW-3, 2.13 feet in monitor well MW-4, 3.88 feet in monitor well MW-5, 6.41 feet in monitor well MW-6, 4.69 feet in monitor well MW-9 and 3.00 in recovery well RW-1, were recorded and are shown in Table 1. Approximately 966 gallons of PSH was recovered from the site during the 2003 reporting period. A total of approximately 4,625 gallons of PSH has been recovered since the start of product recovery.

LABORATORY RESULTS

Groundwater samples collected during the 2003 monitoring events were delivered to AnalySys, Inc. in Austin, Texas for analysis of BTEX constituent concentrations by EPA Method SW846-8260b, TDS using EPA Method SW 846-160.1, WQCC metals using EPA Method SW 846-6010, 200.7, PAH using EPA Method SW 846-8270c, chlorides using EPA Method SW 846-9253, and major cations and anions using EPA Methods SW 846-375.4, 325.3 and 310. A cumulative listing of BTEX constituent concentrations is summarized in Table 2. Results of WQCC metals analysis on groundwater samples obtained during the 2003 reporting period are summarized in Table 3. Results of semi-volatile (PAH) constituent analysis on groundwater samples obtained during the 2003 reporting period are summarized in Table 4. Results of analysis for major cations and anions in groundwater samples obtained during the 2003 reporting period are summarized in Table 5. Copies of the laboratory reports generated during this reporting period are provided as Appendix A. The inferred extent of PSH and quarterly groundwater sample results for benzene and BTEX constituent concentrations are depicted on Figures 3A-3D, the Groundwater Concentration Maps.

Review of laboratory analytical results generated from analysis of the groundwater samples obtained during the 2003 monitoring period indicate that the benzene and BTEX concentrations are below NMOCD regulatory standards in monitor wells MW-1, MW-7, MW-8, MW-10, MW-12, MW-13 and MW-17. The benzene concentrations in monitor wells MW-11, MW-15 and MW-16 are above NMOCD regulatory standards, while the total BTEX concentrations are below NMOCD regulatory standards. The benzene and total BTEX concentrations in monitor well MW-14 exceeded NMOCD regulatory standards. However, measurable thicknesses of PSH were recorded in monitor wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-9 and recovery well RW-1 during the 2003 monitoring period. Review of analytical results of the initial groundwater sampling event on monitor wells MW-16 and MW-17 indicate constituent concentrations above NMOCD regulatory standards for aluminum, iron, benzo-a-pyrene and naphthalene as shown on Tables 3 and 4, respectively. Review of analytical results of the additional sampling conducted for concentrations of WQCC metals and semi-volatiles (PAH) indicate constituent constituent concentrations above NMOCD regulatory standards for aluminum, iron and naphthalene as shown on Tables 3 and 4, respectively.

SUMMARY

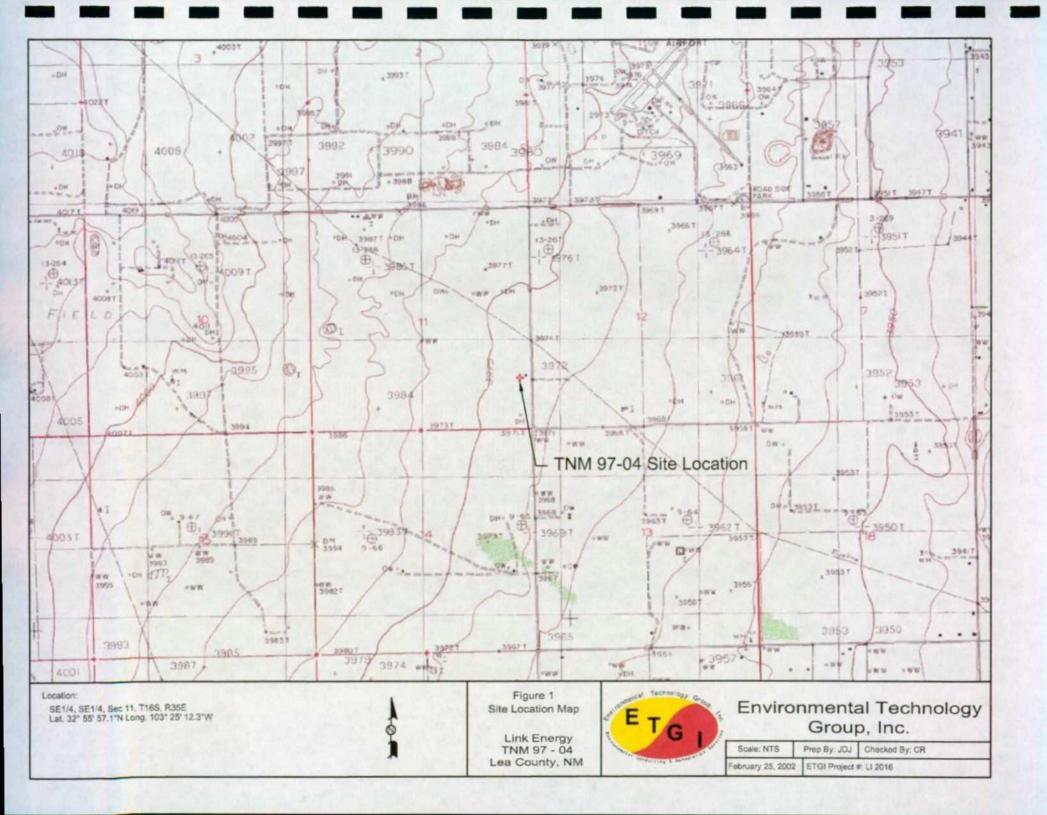
This report presents the results of groundwater monitoring activities for the annual monitoring period of calendar year 2003. Measurable thicknesses of PSH were detected in monitor wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-9 and recovery well RW-1 during the 2003 annual monitoring period. Maximum thicknesses of 3.23 feet in monitor well MW-2, 3.51 feet in monitor well MW-3, 2.13 feet in monitor well MW-4, 3.88 feet in monitor well MW-5, 6.41 feet in monitor well MW-6, 4.69 feet in monitor well MW-9 and 3.00 in recovery well RW-1, were measured during the 2003 reporting period. Approximately 966 gallons of PSH was recovered from the site during the 2003 reporting period. A total of approximately 4,625 gallons of PSH has been recovered since the start of product recovery. Recovered PSH was reintroduced into the Link transportation system at the Lea Station Facility, Monument, New Mexico.

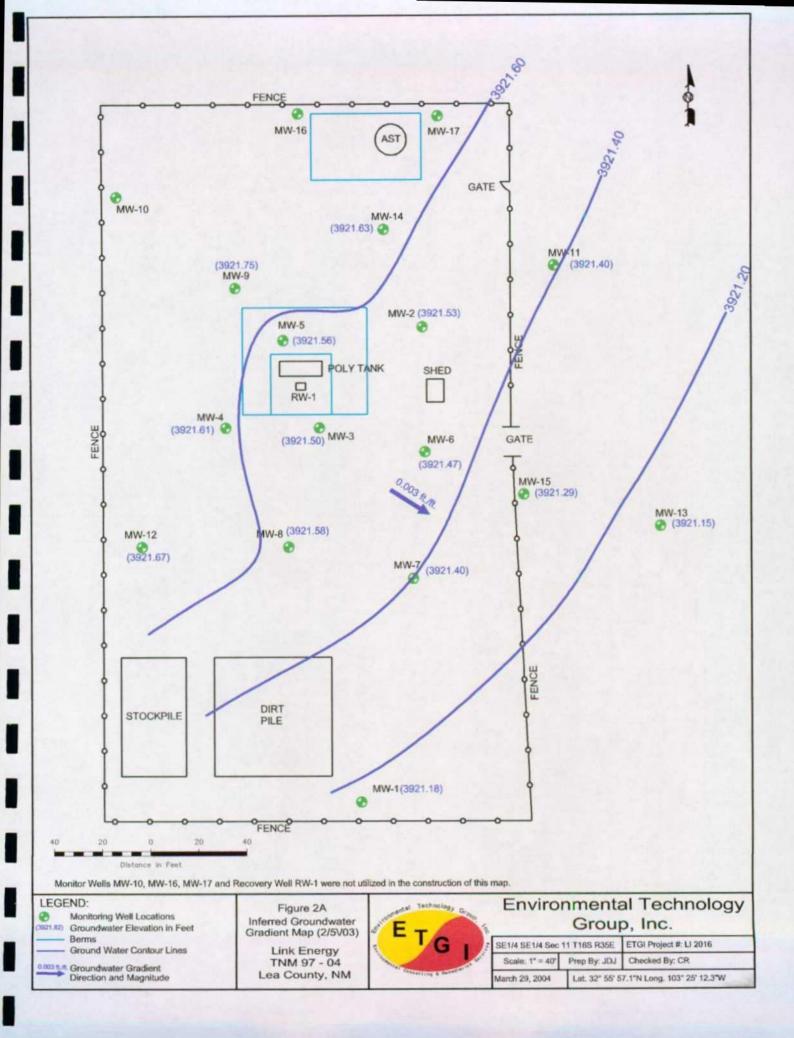
Groundwater elevation contours, generated from water level measurements acquired during the quarterly sampling events of 2003 indicated a general gradient of approximately 0.003 ft/ft to the southeast as measured between groundwater monitor wells MW-10 and MW-15.

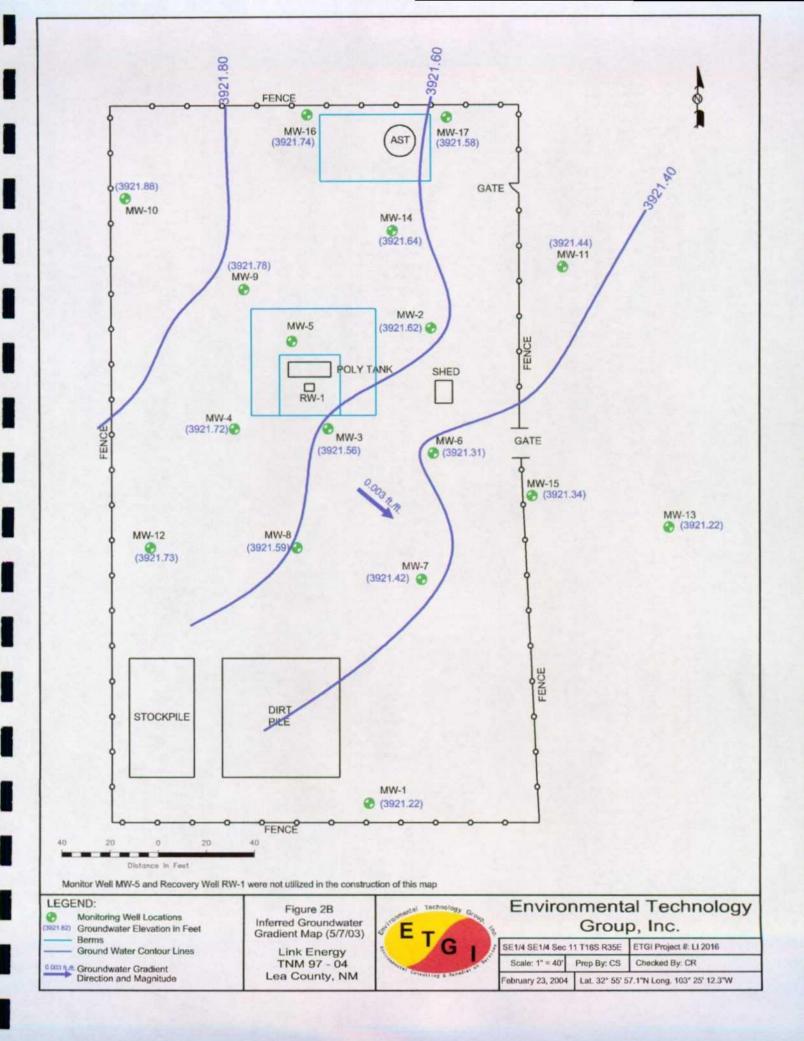
Review of laboratory analytical results generated from analysis of the groundwater samples obtained during the 2003 monitoring period indicate that the benzene and BTEX concentrations are below NMOCD regulatory standards in monitor wells MW-1, MW-7, MW-8, MW-10, MW-12, MW-13 and MW-17. The benzene concentrations in monitor wells MW-11, MW-15 and MW-16 are above NMOCD regulatory standards, while the total BTEX concentrations are below NMOCD regulatory standards. The benzene and total BTEX concentrations in monitor well MW-14 exceeded NMOCD regulatory standards. However, measurable thicknesses of PSH were recorded in monitor wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-9 and recovery well RW-1 during the 2003 monitoring period. Review of analytical results of the initial groundwater sampling event on monitor wells MW-16 and MW-17 indicate constituent concentrations above NMOCD regulatory standards for aluminum, iron, benzo-a-pyrene and naphthalene as shown on Tables 3 and 4, respectively. Review of analytical results of the additional sampling conducted for concentrations of WQCC metals and semi-volatiles (PAH) indicate constituent constituent constituent sampling event on Tables 3 and 4, respectively.

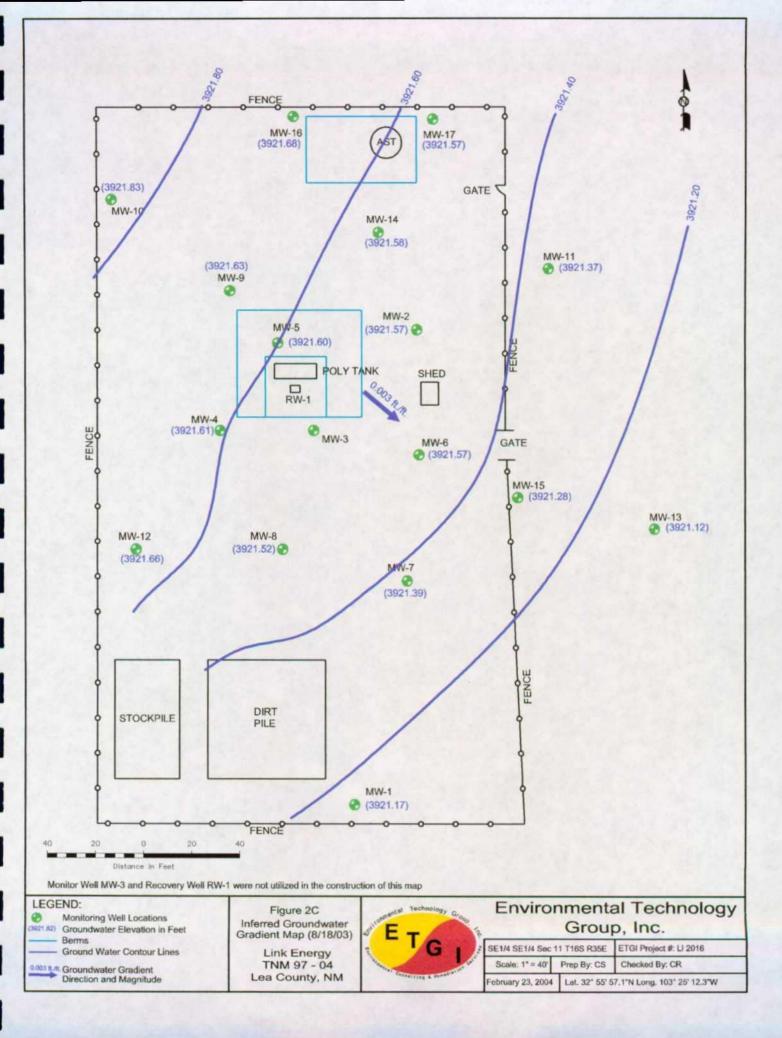
Groundwater sampling results from samples collected at monitor wells MW-1, MW-7, MW-8, MW-10 and MW-12 have not exceeded the NMOCD regulatory standards for benzene or total BTEX concentrations for at least eight consecutive monitoring events. At this time, we are requesting that the above referenced monitor wells be gauged quarterly but sampled annually, until conditions for site closure are met.

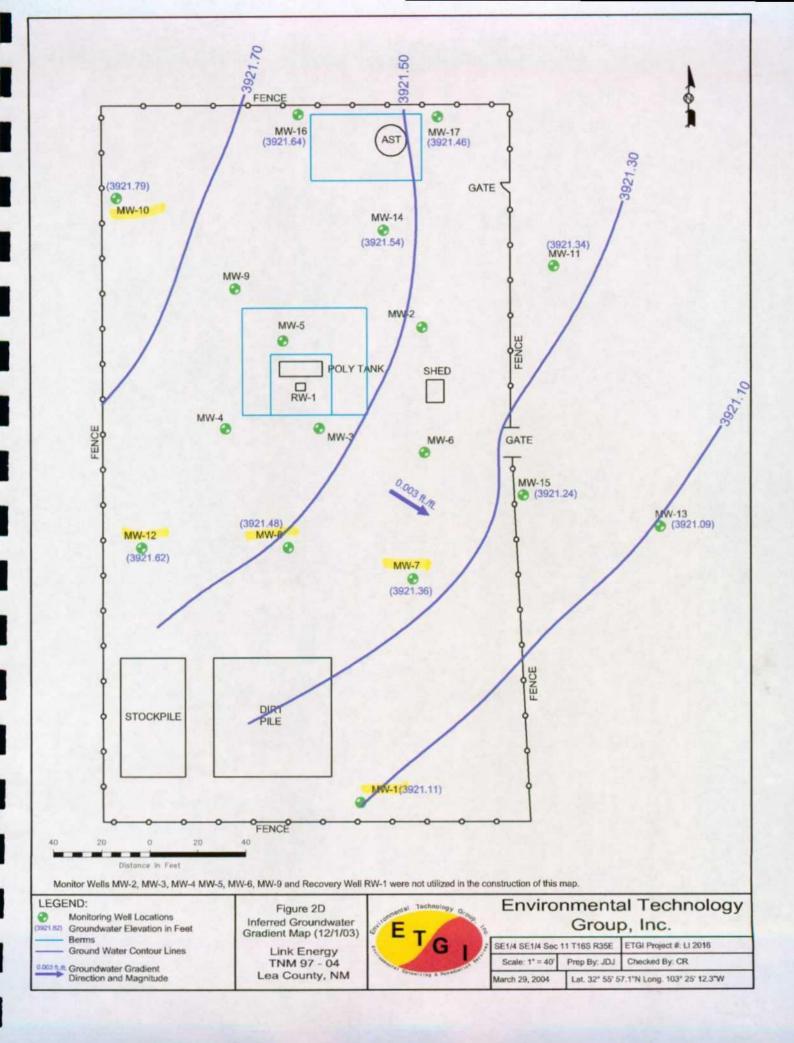
DISTRIBUTION

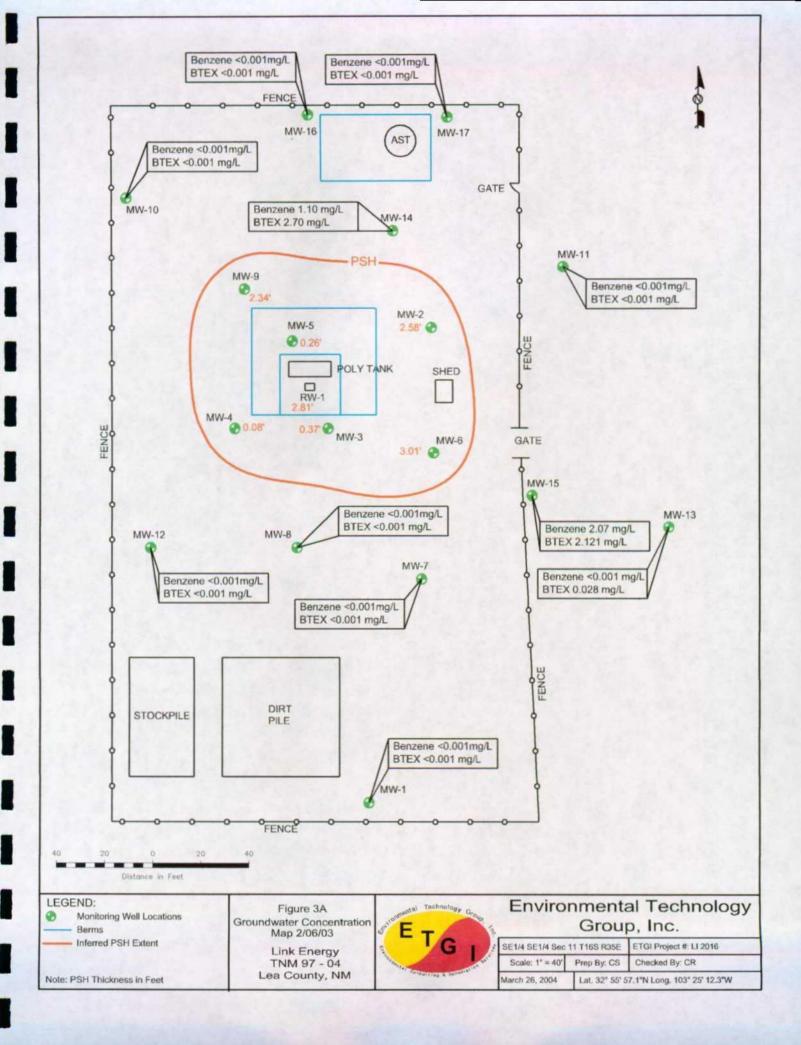

Copy 1 & 2:	William C. Olson and Ed Martin New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505
Copy 3:	Chris Williams New Mexico Oil Conservation Division (District 1) 1625 French Drive Hobbs, New Mexico 88240
Copy 4:	Jeff Dann Link Energy 2000 West Sam Houston Parkway Suite 400 Houston, Texas 77042
Copy 5:	Jimmy Bryant Link Energy 5805 Hwy 80 East Midland, Texas 79701
Copy 6:	Environmental Technology Group, Inc. 4600 W. Wall Midland, Texas 79703
Copy 7:	Environmental Technology Group, Inc. 2540 W. Marland Hobbs, New Mexico 88240
Copy Number	r

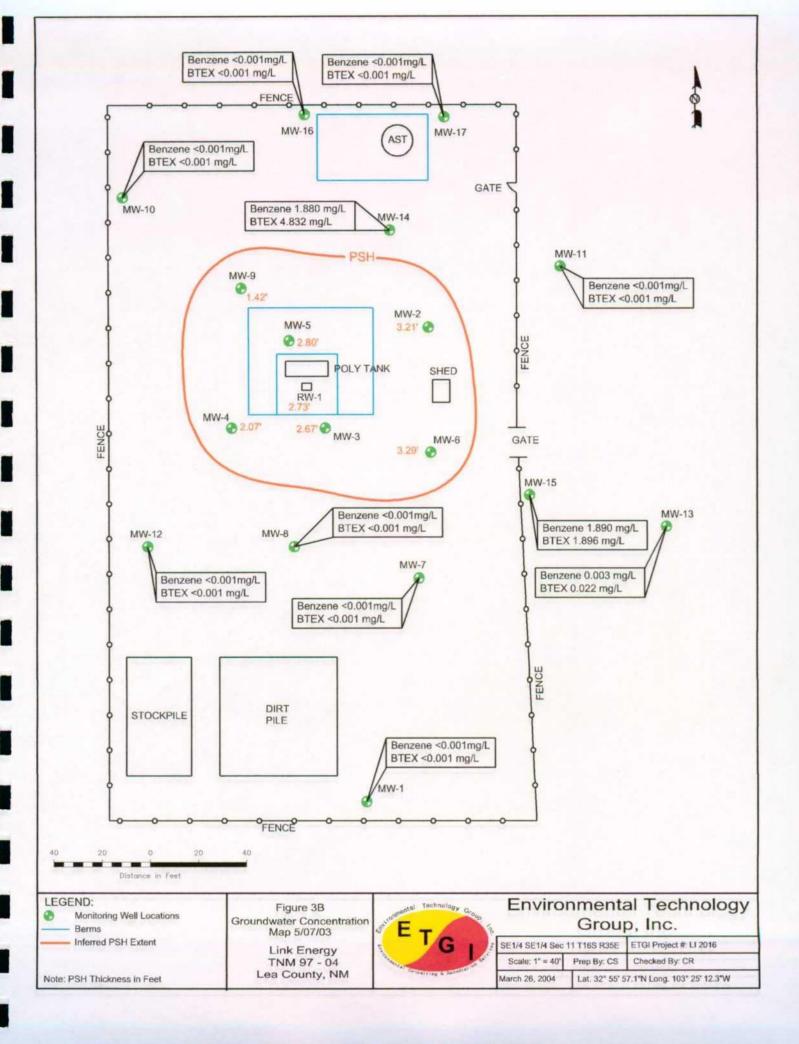

Ì.

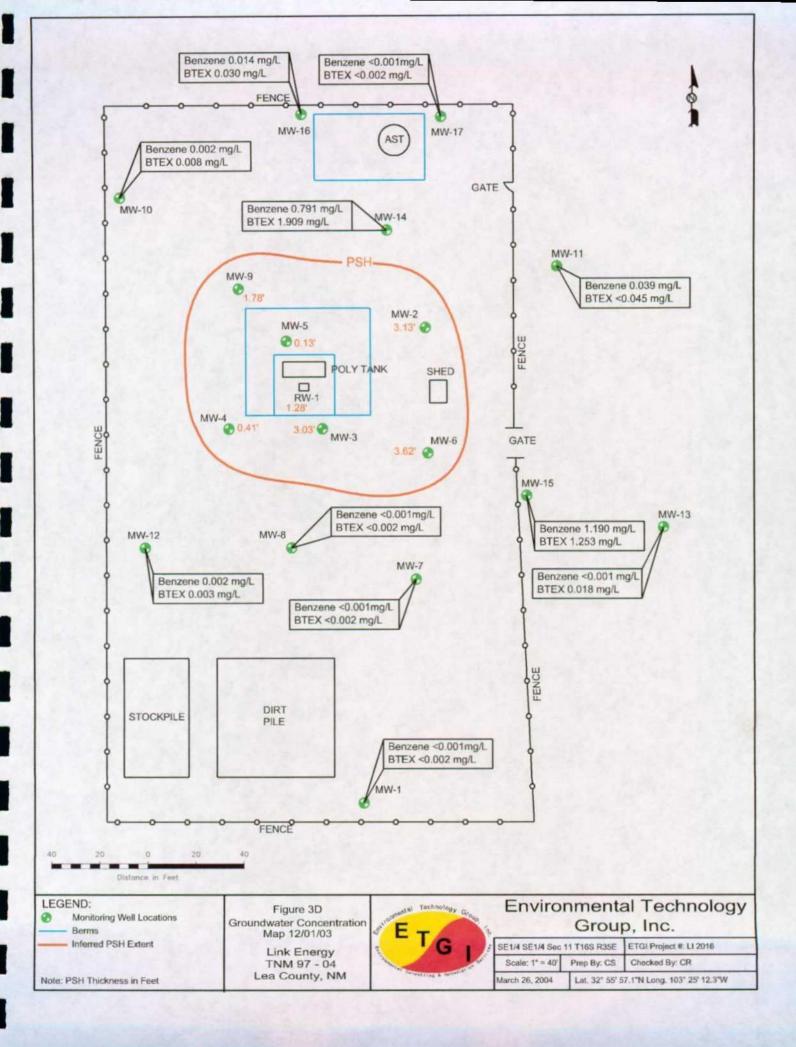

I.


Quality Control Review


FIGURES







GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

		TOP OF				CORRECTED
WELL	DATE	CASING	DEPTH TO	DEPTH TO	PSH	GROUNDWATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW-1	03/02/00	3,974.18	-	53.01	0.00	3921.17
	04/25/00	3,974.18	-	53.02	0.00	3,921.16
	09/06/00	3,974.18	-	53.07	0.00	3,921.11
	11/28/00	3,974.18	-	53.08	0.00	3,921.10
	02/21/01	3,974.18	<u> </u>	52.98	0.00	3,921.20
	05/31/01	3,974.18		52.94	0.00	3,921.24
	08/23/01	3,974.18	-	52.95	0.00	3,921.23
	11/21/01	3,974.18	-	52.99	0.00	3,921.19
	02/13/02	3,974.18	-	53.04	0.00	3,921.14
	06/12/02	3,974.18	-	52.99	0.00	3,921.19
	08/26/02	3,974.18	-	53.02	0.00	3,921.16
	11/21/02	3,974.18	-	53.07	0.00	3,921.11
	02/05/03	3,974.18	_	53.00	0.00	3,921.18
	05/07/03	3,974.18	_	52.96	0.00	3,921.22
	08/18/03	3,974.18	-	53.01	0.00	3,921.17
	12/01/03	3,974.18	-	53.07	0.00	3,921.11
MW - 2	03/02/00	3,974.62	52.49	55.38	2.89	3,921.70
	04/25/00	3,974.62	52.59	55.42	2.83	3,921.61
	09/05/00	3,974.62	52.58	55.71	3.13	3,921.57
	12/01/00	3,974.62	52.75	55.23	2.48	3,921.50
	02/21/01	3,974.62	52.52	55.75	3.23	3,921.62
	05/31/01	3,974.62	52.77	54.75	1.98	3,921.55
	08/23/01	3,974.62	52.40	55.83	3.35	3,921.64
	11/21/01	3,974.62	53.02	54.21	1.19	3,921.42
	02/13/02	3,974.62	52.48	56.14	3.66	3,921.59
	06/12/02	3,974.62	52.44	56.11	3.67	3,921.63
***	08/26/02	3,974.62	-	_	-	-
	11/08/02	3,974.62	52.59	55.99	3.40	3,921.52
	11/21/02	3,974.62	53.13	53.54	0.41	3,921.43
	12/27/02	3,974.62	52.64	55.65	3.01	3,921.53
	01/06/03	3,974.62	52.80	54.81	2.01	3,921.52
	01/08/03	3,974.62	52.95	54.14	1.19	3,921.49
	01/10/03	3,974.62	53.15	53.32	0.17	3,921.44
	01/13/03	3,974.62	53.14	53.32	0.18	3,921.45
	02/05/03	3,974.62	52.70	55.28	2.58	3,921.53

i i

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

		TOP OF				CORRECTED
WELL	DATE	CASING	DEPTH TO	DEPTH TO	PSH	GROUNDWATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 2	02/26/03	3,974.62	52.57	55.74	3.17	3,921.57
	03/04/03	3,974.62	52.58	55.75	3.17	3,921.56
	03/12/03	3,974.62	52.60	55.79	3.19	<u>3,921.54</u>
	03/18/03	3,974.62	52.61	55.71	3.10	<u>3,9</u> 21.55
	03/25/03	3,974.62	52.60	55.77	3.17	3,921.54
	03/31/03	3,974.62	52.59	55.71	3.12	3, <u>9</u> 21.56
	04/09/03	3,974.62	52.60	53.13	0.53	3,921.94
	04/14/03	3,974.62	52.64	52.89	0.25	3,921.94
	05/07/03	3,974.62	52.52	55.73	3.21	3,921.62
	05/08/03	3,974.62	52.60	55.81	3.21	3,921.54
	05/13/03	3,974.62	52.61	55.79	3.18	3,921.53
	05/21/03	3,974.62	52.62	55.83	3.21	3,921.52
	05/27/03	3,974.62	52.57	55.71	3.14	3,921.58
	05/28/03	3,974.62	52.63	55.83	3.20	3,921.51
	06/03/03	3,974.62	52.76	55.81	3.14	3,921.48
	06/09/03	3,974.62	52.62	55.79	3.17	3,921.52
	07/01/03	3,974.62	52.80	53.81	1.01	3,921.67
	07/08/03	3,974.62	52.69	55.92	3.23	3,921.45
	07/29/03	3,974.62	52.57	55.72	3.15	3,921.58
	08/04/03	3,974.62	52.76	55.91	3.15	3,921.39
	08/18/03	3,974.62	52.85	54.18	1.33	3,921.57
	08/25/03	3,974.62	52.86	56.04	3.18	3,921.28
	10/01/03	3,974.62	52.76	52.99	0.23	3,921.83
	10/06/03	3,974.62	52.63	55.69	3.06	3,921.53
	10/08/03	3,974.62	52.95	56.07	3.12	3,921.20
	10/15/03	3,974.62	52.93	56.08	3.15	3,921.22
	11/12/03	3,974.62	53.04	54.18	1.14	3,921.41
	11/19/03	3,974.62	53.03	56.18	3.15	3,921.12
	12/01/03	3,974.62	53.08	56.21	3.13	3,921.07
	12/10/03	3,974.62	52.74	55.82	3.08	3,921.42
MW - 3	03/02/00	3,974.60	52.71	55.03	2.38	3,921.59
	04/25/00	3,974.60	52.61	55.09	2.48	3,921.62
	09/06/00	3,974.60	52.54	55.66	3.12	3,921.59
	11/28/00	3,974.60	52.64	55.57	2.93	3,921.52
	02/21/01	3,974.60	52.94	53.50	0.56	3,921.58
	05/31/01	3,974.60	52.51	55.71	3.20	3,921.61

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

		TOP OF				CORRECTED
WELL	DATE	CASING	DEPTH TO	DEPTH TO	PSH	GROUNDWATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 3	08/23/01	3,974.60	52.46	55.80	3.34	3,921.64
	11/21/01	3,974.60	52.46	55.81	3.35	3,921.64
	02/13/02	3,974.60	52.51	55.78	3.27	3,921.60
	06/12/02	3,974.60	52.47	55.17	2.70	3,921.73
	08/26/02	3,974.60	55.74	52.49	3.25	3,924.87
	11/08/02	3,974.60	53.15	53.21	0.06	3,921.44
	11/21/02	3,974.60	53.15	53.21	0.06	3,921.44
	12/27/02	3,974.60	52.64	55.24	2.60	3,921.57
	01/06/03	3,974.60	52.87	54.47	1.60	3,921.49
	01/08/03	3,974.60	52.77	54.69	1.92	3,921.54
	01/10/03	3,974.60	53.04	53.46	0.42	3,921.50
	01/13/03	3,974.60	53.04	53.41	0.37	3,921.50
	02/05/03	3,974.60	53.04	53.41	0.37	3,921.50
	02/26/03	3,974.60	52.81	54.24	1.43	3,921.58
	03/04/03	3,974.60	52.84	54.25	1.41	3,921.55
	03/12/03	3,974.60	52.65	55.24	2.59	3,921.56
	03/18/03	3,974.60	52.72	55.30	2.58	3,921.49
	03/25/03	3,974.60	52.64	55.30	2.66	3,921.56
	03/31/03	3,974.60	52.95	53.74	0.79	3,921.53
	04/09/03	3,974.60	52.41	52.98	0.54	3,922.08
	04/14/03	3,974.60	52.68	52.91	0.23	3,921.89
	05/07/03	3,974.60	52.56	55.23	2.67	3,921.64
	05/08/03	3,974.60	52.64	55.30	2.66	3,921.56
	05/13/03	3,974.60	52.66	55.36	2.70	3,921.54
	05/21/03	3,974.60	52.65	55.40	2.75	3,921.54
	05/28/03	3,974.60	53.03	53.87	0.84	3,921.44
	06/03/03	3,974.60	52.72	55.12	2.40	3,921.52
	06/09/03	3,974.60	52.65	55.50	2.85	3,921.52
	07/01/03	3,974.60	52.68	55.81	3.13	3,921.45
	07/08/03	3,974.60	52.68	55.84	3.19	3,921.47
	07/29/03	3,974.60	52.53	55.71	3.18	3,921.59
	08/04/03	3,974.60	52.70	55.91	3.21	3,921.42
	08/18/03	3,974.60	52.81	56.01	3.20	3,921.31
	08/25/03	3,974.60	53.83	56.06	3.23	3,921.29
	10/01/03	3,974.60	52.60	54.81	2.21	3,921.67
	10/06/03	3,974.60	62.62	55.73	3.11	3,921.51
	10/08/03	3,974.60	52.90	56.09	3.19	3,921.22

L.

ī.

1

|

L

~---

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL	DATE	TOP OF CASING	DEPTH TO	DEPTH TO	PSH	CORRECTED GROUNDWATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 3	10/15/03	3,974.60	52.89	56.04	3.20	3,921.28
	11/12/03	3,974.60	53.21	56.72	3.51	3,920.86
	11/19/03	3,974.60	52.99	56.08	3.09	3,921.15
	12/01/03	3,974.60	53.05	56.08	3.03	3,921.10
	12/10/03	3,974.60	52.72	55.74	3.02	3,921.43
MW - 4	03/02/00	3,974.53	52.58	54.30	1.72	3,921.69
	04/25/00	3,974.53	52.59	54.38	1.79	3,921.67
	09/06/00	3,974.53	52.44	55.11	2.67	3,921.69
	11/28/00	3,974.53	52.48	55.25	2.77	3,921.63
	02/21/01	3,974.53	52.38	55.15	2.77	3,921.73
	05/31/01	3,974.53	52.43	55.22	2.79	3,921.68
	08/23/01	3,974.53	52.38	55.24	2.86	3,921.72
	11/21/01	3,974.53	52.37	55.15	2.78	3,921.74
	02/13/02	3,974.53	52.42	55.21	2.79	3,921.69
	06/12/02	3,974.53	52.31	55.44	3.13	3,921.75
	08/26/02	3,974.53	52.33	55.50	3.17	3,921.72
	11/08/02	3,974.53	52.94	53.18	0.24	3,921.55
	11/21/02	3,974.53	52.61	54.63	2.02	3,921.62
	12/27/02	3,974.53	52.53	54.86	2.33	3,921.65
	01/06/03	3,974.53	52.74	53.93	1.19	3,921.61
	01/08/03	3,974.53	52.77	53.81	1.04	3,921.60
	01/10/03	3,974.53	52.86	53.31	0.45	3,921.60
	01/13/03	3,974.53	52.87	53.26	0.39	3,921.60
	02/05/03	3,974.53	52.91	52.99	0.08	3,921.61
	02/26/03	3,974.53	52.72	53.86	1.14	3,921.64
	03/04/03	3,974.53	52.70	53.86	1.16	3,921.66
	03/12/03	3,974.53	52.78	53.69	0.91	3,921.61
	03/18/03	3,974.53	52.91	53,30	0.39	3,921.56
	03/25/03	3,974.53	52.85	53.32	0.47	3,921.61
	03/31/03	3,974.53	52.82	53.41	0.59	3,921.62
	04/09/03	3,974.53	52.81	53.33	0.52	3,921.64
	04/14/03	3,974.53	52.79	53.48	0.69	3,921.64
	05/07/03	3,974.53	52.50	54.57	2.07	3,921.72
	05/08/03	3,974.53	52.58	54.67	2.09	3,921.64
	05/13/03	3,974.53	52.57	54.66	2.09	3,921.65
	05/21/03	3,974.53	52.58	54.71	2.13	3,921.63
	05/27/03	3,974.53	52.73	53.62	0.89	3,921.67

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL	DATE	TOP OF CASING	DEPTH TO	DEPTH TO	PSH	CORRECTED GROUNDWATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 4	05/28/03	3,974.53	52.82	53.65	0.83	3,921.59
	06/03/03	3,974.53	52.68	54.35	1.67	3,921.60
	06/10/03	3,974.53	52.82	53.60	0.78	3,921.59
	07/01/03	3,974.53	52.91	53.66	0.75	3,921.51
	07/08/03	3,974.53	52.77	54.30	1.53	3,921.53
	07/29/03	3,974.53	52.57	54.38	1.81	3,921.69
	08/04/03	3,974.53	52.85	54.17	1.32	3,921.48
	08/18/03	3,974.53	52.84	53.39	0.55	3,921.61
	08/25/03	3,974.53	52.85	54.86	2.01	3,921.38
	10/06/03	3,974.53	52.91	53.17	0.26	3,921.58
	10/08/03	3,974.53	53.12	53.98	0.86	3,921.28
	10/15/03	3,974.53	53.14	53.88	0.74	3,921.28
	11/12/03	3,974.53	53.14	54.94	1.80	3,921.12
	11/19/03	3,974.53	53.10	54.58	1.48	3,921.21
	12/01/03	3,974.53	53.29	53.70	0.41	3,921.18
	12/10/03	3,974.53	52.96	53.50	0.54	3,921.49
MW - 5	03/02/00	3,974.28	52.09	55.50	3.41	3,921.68
	04/25/00	3,974.28	52.04	55.59	3.55	3,921.71
	09/06/00	3,974.28	52.11	55.48	3.37	3,921.66
	11/28/00	3,974.28	52.21	55.46	3.25	3,921.58
	02/21/01	3,974.28	52.07	55.40	3.33	3,921.71
	05/31/01	3,974.28	52.11	55.48	3.37	3,921.66
	08/23/01	3,974.28	52.08	55.45	3.37	3,921.69
	11/21/01	3,974.28	52.20	55.43	3.23	3,921.60
	02/13/02	3,974.28	52.14	55.43	3.29	3,921.65
	06/12/02	3,974.28	52.04	55.65	3.61	3,921.70
	08/26/02	3,974.28	52.04	55.68	3.64	3,921.69
	11/08/02	3,974.28	52.71	52.97	0.26	3,921.53
	11/21/02	3,974.28	52.73	53.01	0.28	3,921.51
	12/27/02	3,974.28	52.24	55.09	2.85	3,921.61
	01/06/03	3,974.28	52.30	54.80	2.50	3,921.61
	01/08/03	3,974.28	52.41	54.24	1.83	3,921.60
	01/10/03	3,974.28	52.71	52.96	0.25	3,921.53
	01/13/03	3,974.28	52.69	52.93	0.24	3,921.55
	02/05/03	3,974.28	52.68	52.94	0.26	3,921.56
	02/26/03	3,974.28	52.20	56.05	3.85	3,921.50
	03/04/03	3,974.28	52.19	56.07	3.88	3,921.51

I.

ļ

_

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

		TOP OF				CORRECTED
WELL	DATE	CASING	DEPTH TO	DEPTH TO	PSH	GROUNDWATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 5	03/12/03	3,974.28	52.22	55.12	2.90	3,921.63
	03/18/03	3,974.28	52.74	52.96	0.22	3,921.51
	03/25/03	3,974.28	52.68	53.04	0.36	3,921.55
	03/31/03	3,974.28	52.64	53.12	0.48	3,921.57
	04/09/03	3,974.28	52.68	52.91	0.23	3,921.57
	04/14/03	3,974.28	52.71	52.79	0.08	3,921.56
	05/07/03	3,974.28	52.17	54.47	2.80	3,922.19
	05/08/03	3,974.28	52.25	55.04	2.79	3,921.61
	05/13/03	3,974.28	52.32	55.04	2.72	3,921.55
	05/21/03	3,974.27	52.25	55.14	2.89	3,921.59
	05/27/03	3,974.27	52.22	54.96	2.74	3,921.64
	05/28/03	3,974.27	52.27	55.11	2.84	3,921.57
	06/03/03	3,974.27	52.77	52.84	0.07	3,921.49
	06/10/03	3,974.27	52.72	52.90	0.18	3,921.52
	07/01/03	3,974.27	52.79	52.93	0.14	3,921.46
	07/08/03	3,974.27	52.37	54.92	2.55	3,921.52
	07/29/03	3,974.27	52.25	54.83	2.58	3,921.63
	08/04/03	3,974.27	52.61	54.25	1.64	3,921.41
	08/18/03	3,974.27	52.47	53,81	1.34	3,921.60
	08/25/03	3,974.27	52.51	55.32	2.81	3,921.34
	10/01/03	3,974.27	52.72	53.19	0.47	3,921.48
	10/06/03	3,974.27	52.70	52.97	0.27	3,921.53
	10/08/03	3,974.27	52.72	54.74	2.02	3,921.25
	10/15/03	3,974.27	52.73	54.42	1.79	3,921.37
	11/12/03	3,974.27	52.75	55.30	2.55	3,921.14
	11/19/03	3,974.27	52.71	55.27	2.56	3,921.18
	12/01/03	3,974.27	53.19	53.32	0.13	3,921.06
	12/10/03	3,974.27	52.41	54.94	2.53	3,921.48
MW - 6	03/02/00	3,974.72	53.10	53.84	0.74	3,921.51
	04/25/00	3,974.72	53.14	53.91	0.77	3,921.46
	09/06/00	3,974.72	52.81	55.87	3.06	3,921.45
	11/28/00	3,974.72	52.91	55.62	2.71	3,921.40
	02/21/01	3,974.72	52.79	55.42	2.63	3,921.54
	05/31/01	3,974.72	52.95	54.83	1.88	3,921.49
	08/23/01	3,974.72	52.69	55.95	3.26	3,921.54
	11/21/01	3,974.72	53.42	55.42	2.31	3,921.26

ł

L

!

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL	DATE	TOP OF CASING	ДЕРТН ТО	ДЕРТН ТО	PSH	CORRECTED GROUNDWATER
NUMBER		ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 6	02/13/02	3,974.72	52.74	56.04	3.30	3,921.49
	06/12/02	3,974.72	52.63	56.16	3.53	3,921.56
	08/26/02	3,974.72	52.67	56.24	3.57	3,921.51
	11/08/02	3,974.72	53.03	55.06	2.03	3,921.39
	11/21/02	3,974.72	53.10	54.57	1.47	3,921.40
	12/27/02	3,974.72	52.95	54.97	2.02	3,921.47
	01/06/03	3,974.72	52.90	55.38	2.48	3,921.45
	01/08/03	3,974.72	52.88	55.42	2.54	3,921.46
	01/10/03	3,974.72	52.86	55.86	3.00	3,921.41
	01/13/03	3,974.72	52.85	55.55	2.70	3,921.47
	02/05/03	3,974.72	52.80	55.81	3.01	3,921.47
	02/26/03	3,974.72	52.71	56.09	3.38	3,921.50
	03/04/03	3,974.72	52.72	56.09	3.37	3,921.49
	03/12/03	3,974.72	52.73	56.18	3.45	3,921.47
	03/18/03	3,974.72	52.71	56.25	3.54	3,921.48
	03/25/03	3,974.72	52.71	56.18	3.47	3,921.49
	03/31/03	3,974.72	52.69	56.21	3.52	3,921.50
	04/09/03	3,974.72	52,73	53.02	0.29	3,921.95
	04/14/03	3,974.72	52.61	53.00	0.39	3,922.05
	05/07/03	3,974.72	52.92	56.21	3.29	3,921.31
	05/08/03	3,974.72	52.75	56.04	3.29	3,921.48
	05/13/03	3,974.72	52.80	59.21	6.41	3,920.96
	05/21/03	3,974.72	52,73	56.11	3.38	3,921.48
	05/27/03	3,974.72	53.12	56.50	3.38	3,921.09
	05/28/03	3,974.72	53.20	56.65	3.45	3,921.00
	06/03/03	3,974.72	53.19	56.68	3.49	3,921.01
	06/10/03	3,974.72	52.73	56.25	3.52	3,921.46
	07/01/03	3,974.72	52.77	<u>56.</u> 31	3.54	3,921.42
	07/08/03	3,974.72	52.77	56.40	3.63	3,921.41
	07/30/03	3,974.72	52.62	56.23	3.61	3,921.56
	08/04/03	3,974.72	52.40	56.45	3.61	3,921.34
	08/18/03	3,974.72	52.97	54.18	1.21	3,921.57
	08/25/03	3,974.72	53.40	57.02	3.62	3,920.78
	10/01/03	3,974.72	52.77	54.90	2.13	3,921.63
	10/06/03	3,974.72	52.72	56.26	3.54	3,921.47
	10/08/03	3,974.72	53.05	56.62	3.57	3,921.13
	10/15/03	3,974.72	53.47	57.10	3.63	3,920.71

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW - 6	11/12/03	3,974.72	53.11	55.91	2.80	3,921.19
	11/19/03	3,974.72	53.12	56.70	3.58	3,921.06
	12/01/03	3,974.72	53.08	56.70	3.62	3,921.10
	12/10/03	3,974.72	52.82	56.33	3.51	3,921.37
MW - 7	03/02/00	3,974.60	_	53.17	0.00	3,921.43
	04/25/00	3,974.60	-	53.23	0.00	3,921.37
	09/06/00	3,974.60		53.28	0.00	3,921.32
	11/28/00	3,974.60	-	53.28	0.00	3,921.32
	02/21/01	3,974.60	-	53.18	0.00	3,921.42
	05/31/01	3,974.60	-	53.15	0.00	3,921.45
	08/23/01	3,974.60	-	53.14	0.00	3,921.46
	11/21/01	3,974.60	-	53.19	0.00	3,921.41
	02/13/02	3,974.60	-	53.22	0.00	3,921.38
	06/12/02	3,974.60	-	53.18	0.00	3,921.42
	08/26/02	3,974.60	-	53.19	0.00	3,921.41
	11/21/02	3,974.60	-	53.23	0.00	3,921.37
	02/05/03	3,974.60	-	53.20	0.00	3,921.40
	05/07/03	3,974.60	-	53.18	0.00	3,921.42
	08/18/03	3,974.60	-	53.21	0.00	3,921.39
	12/01/03	3,974.60	-	53.24	0.00	3,921.36
MW - 8	03/02/00	3,974.48	_	52.89	0.00	3,921.59
	04/25/00	3,974.48	-	52.96	0.00	3,921.52
	09/06/00	3,974.48	_	53.00	0.00	3,921.48
	11/28/00	3,974.48	-	53.00	0.00	3,921.48
	02/21/01	3,974.48	-	52.90	0.00	3,921.58
	05/31/01	3,974.48	-	52.85	0.00	3,921.63
	08/23/01	3,974.48	_	52.87	0.00	3,921.61
	11/21/01	3, 974.48	-	52.92	0.00	3,921.56
	02/13/02	<u>3,</u> 974.48	-	52.96	0.00	3,921.52
	06/12/02	3,974.48	-	52.93	0.00	3,921.55
	08/26/02	3,974.48	-	52.92	0.00	3,921.56
	11/21/02	3,974.48	-	52.98	0.00	3,921.50
	02/05/03	3,974.48	-	52.90	0.00	3,921.58
	05/07/03	3,974.48	-	52.89	0.00	3,921.59
	08/18/03	<u>3,</u> 974.48	-	52.96	0.00	3,921.52
	12/01/03	3,974.48	-	53.00	0.00	3,921.48

ł

L

l

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW - 9	03/02/00	3,975.06	53.07	54.26	1.19	3,921.81
	04/25/00	3,975.06	53.11	54.34	1.23	3,921.77
	09/06/00	3,975.06	53.04	55.02	2.21	3,921.92
	11/28/00	3,975.06	53.13	54.90	1.77	3,921.66
	02/02/01	3,975.06	53.14	54.19	1.05	3,921.76
	05/31/01	3,975.06	53.08	54.81	1.73	3,921.72
	08/23/01	3,975.06	52.88	55.30	2.42	3,921.82
	11/21/01	3,975.06	53.15	54.20	1.05	3,921.75
	02/13/02	3,975.06	52.86	55.73	2.87	3,921.77
	06/12/02	3,975.06	52.82	55.67	2.85	3,921.81
	08/26/02	3,975.06	52.83	55.70	2.87	3,921.80
	11/08/02	3,975.06	52.90	55.81	2.91	3,921.72
	11/21/02	3,975.06	52.90	55.77	2.87	3,921.73
	12/27/02	3,975.06	53.13	54.68	1.55	3,921.70
	01/06/03	3,975.06	53.07	54.97	1.90	3,921.71
	01/08/03	3,975.06	53.04	55.02	1.98	3,921.72
	01/10/03	3,975.06	53.03	55.09	2.06	3,921.72
	01/13/03	3,975.06	53.03	55.09	2.06	3,921.72
	02/05/03	3,975.06	52.96	55.30	2.34	3,921.75
	02/26/03	3,975.06	52.96	55.52	2.56	3,921.72
	03/04/03	3,975.06	52.96	55.56	2.60	3,921.71
	03/12/03	3,975.06	52.94	55.46	2.52	3,921.74
	03/18/03	3,975.06	53.02	57.71	4.69	3,921.34
	03/25/03	3,975.06	53.37	53.40	0.03	3,921.69
	03/31/03	3,975.06	53.36	53.39	0.03	3,921.70
	04/09/03	3,975.06	53.31	53.72	0.41	3,921.69
	04/14/03	3,975.06	53.28	53.40	0.12	3,921.76
	05/07/03	3,975.06	53.07	54.49	1.42	3,921.78
	05/08/03	3,975.06	53.04	54.59	1.55	3,921.79
	05/13/03	3,975.06	53.18	54.84	1.66	3,921.63
	05/21/03	3,975.06	53.08	54.97	1.89	3,921.70
	05/27/03	3,975.06	53.07	55.10	2.03	3,921.69
	05/28/03	3,975.06	53.11	55.35	2.24	3,921.61
	06/03/03	3,975.06	53.34	54.20	0.86	3,921.59
	06/10/03	3,975.06	53.40	53.46	0.06	3,921.65
	07/01/03	3,975.06	53.48	53.97	0.49	3,921.51
	07/08/03	3,975.06	53.38	53.94	0.56	3,921.60

ļ

Į.

i.

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

		TOP OF				CORRECTED
WELL	DATE	CASING	DEPTH TO	DEPTH TO	PSH	GROUNDWATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 9	07/29/03	3,975.06	53.12	54.49	1.37	3,921.73
	08/04/03	3,975.06	53.32	54.96	1.64	3,921.49
	08/18/03	3,975.06	53.31	54.09	0.78	3,921.63
	08/25/03	3,975.06	53.29	55.42	2.13	3,921.45
	10/01/03	3,975.06	53.18	53.41	0.23	3,921.85
	10/06/03	3,975.06	53.30	53.86	0.56	3,921.68
	10/08/03	3,975.06	53.60	54.33	0.73	3,921.35
	10/15/03	3,975.06	53.64	54.02	0.38	3,921.36
	11/12/03	3,975.06	53.61	54.98	1.37	3,921.24
	11/19/03	3,975.06	53.51	55.20	1.69	3,921.30
	12/01/03	3,975.06	53.54	55.31	1.78	3,921.26
	12/10/03	3,975.06	53.21	54.93	1.72	3,921.59
MW - 10	03/02/00	3,975.02	-	53.10	0.00	3,921.92
	04/25/00	3,975.02	_	53.18	0.00	3,921.84
	09/06/00	3,975.02	-	53.22	0.00	3,921.80
	11/28/00	3,975.02	-	53.23	0.00	3,921.79
	02/21/01	3,975.02	÷	53.15	0.00	3,921.87
	05/31/01	3,975.02		53.08	0.00	3,921.94
	08/23/01	3,975.02	-	53.10	0.00	3,921.92
	11/21/01	3,975.02	-	53.13	0.00	3,921.89
	02/13/02	3,975.02	-	53.16	0.00	3,921.86
	06/12/02	3,975.02	_	53.14	0.00	3,921.88
	08/26/02	3,975.02	_	53.14	0.00	3,921.88
	11/21/02	3,975.02	-	53.20	0.00	3,921.82
	02/05/03	3,975.02	-	53.90	0.00	3,921.12
	05/07/03	3,975.02	-	53.14	0.00	3,921.88
	08/18/03	3,975.02	-	53.19	0.00	3,921.83
	12/01/03	3,975.02	-	53.23	0.00	3,921.79
MW - 11	03/02/00	3,975.30	_	53.84	0.00	3,921.46
	04/25/00	3,975.30		53.91	0.00	3,921.39
	09/06/00	3,975.30	-	53.95	0.00	3,921.35
	11/28/00	3,975.30	-	53.96	0.00	3,921.34
	02/21/01	3,975.30	-	53.79	0.00	3,921.51
	05/31/01	3,975.30	-	53.77	0.00	3,921.53
	08/23/01	3,975.30	-	53.83	0.00	3,921.47
	11/21/01	3,975.30	-	53.87	0.00	3,921.43

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL DATE CASING DEPTH TO PEPTH TO PENH GROUNDWATER NW-11 02/13/02 3,975.30 - 52.85 0.00 3,922.45 06/12/02 3,975.30 - 53.87 0.00 3,921.43 08/26/02 3,975.30 - 53.87 0.00 3,921.41 11/21/02 3,975.30 - 53.93 0.00 3,921.41 02/05/03 3,975.30 - 53.90 0.00 3,921.41 05/07/03 3,975.30 - 53.86 0.00 3,921.41 08/18/03 3,975.30 - 53.86 0.00 3,921.41 08/18/03 3,975.30 - 52.80 0.00 3,921.45 0/01/03 3,974.55 - 52.80 0.00 3,921.65 11/28/00 3,974.55 - 52.75 0.00 3,921.80 0/21/101 3,974.55 - 52.75 0.00 3,921.77 11/28/00 3,974.55			TOP OF				CORRECTED
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	WELL	DATE	CASING	DEPTH TO	DEPTH TO	PSH	GROUNDWATER
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW - 11	02/13/02	3,975.30	_	52.85	0.00	3,922.45
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		06/12/02	3,975.30	-	53.87	0.00	3,921.43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		08/26/02	3,975.30	_	53.89	0.00	3,921.41
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11/21/02	3,975.30	_	53.93	0.00	3,921.37
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		02/05/03	3,975.30	_	53.90	0.00	3,921.40
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		05/07/03	3,975.30		53.86	0.00	3,921.44
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		08/18/03	3,975.30	-	53.93	0.00	3,921.37
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		12/01/03	3,975.30	-	53.96	0.00	3,921.34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW - 12	03/02/00	3,974.55	-	52.80	0.00	3,921.75
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		04/25/00	3,974.55	-	52.86	0.00	3,921.69
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		09/06/00	3,974.55	1	52.90	0.00	3,921.65
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11/28/00	3,974.55	-	52.92	0.00	3,921.63
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		02/21/01	3,974.55	-	52.75	0.00	3,921.80
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		05/31/01	3,974.55	-	52.75	0.00	3,921.80
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		08/31/01	3,974.55	-	52.78	0.00	3,921.77
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			3,974.55	-	52.82	0.00	3,921.73
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			3,974.55	-	52.85	0.00	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					· · · · · · · · · · · · · · · · · · ·		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		08/26/02		-	52.83	0.00	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11/21/02		-	52.89	0.00	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		02/05/03		_	52.88	0.00	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		·····		-			
12/01/03 3,974.55 - 52.93 0.00 3,921.62 MW - 13 03/02/00 3,975.00 - 53.77 0.00 3,921.23 04/25/00 3,975.00 - 53.85 0.00 3,921.15 09/06/00 3,975.00 - 53.90 0.00 3,921.10 11/28/00 3,975.00 - 53.90 0.00 3,921.10 01/221/01 3,975.00 - 53.90 0.00 3,921.20 02/21/01 3,975.00 - 53.80 0.00 3,921.20 05/31/01 3,975.00 - 53.72 0.00 3,921.28 08/23/01 3,975.00 - 53.76 0.00 3,921.24 11/21/01 3,975.00 - 53.83 0.00 3,921.17 02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19				_			
MW - 13 03/02/00 3,975.00 - 53.77 0.00 3,921.23 04/25/00 3,975.00 - 53.85 0.00 3,921.15 09/06/00 3,975.00 - 53.90 0.00 3,921.10 11/28/00 3,975.00 - 53.91 0.00 3,921.09 02/21/01 3,975.00 - 53.80 0.00 3,921.20 05/31/01 3,975.00 - 53.72 0.00 3,921.28 08/23/01 3,975.00 - 53.76 0.00 3,921.24 11/21/01 3,975.00 - 53.83 0.00 3,921.24 02/13/02 3,975.00 - 53.83 0.00 3,921.17 02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19				_			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW - 13			-	· · · · · · · · · · · · · · · · · · ·		
09/06/00 3,975.00 - 53.90 0.00 3,921.10 11/28/00 3,975.00 - 53.91 0.00 3,921.09 02/21/01 3,975.00 - 53.80 0.00 3,921.20 05/31/01 3,975.00 - 53.72 0.00 3,921.28 08/23/01 3,975.00 - 53.76 0.00 3,921.24 11/21/01 3,975.00 - 53.83 0.00 3,921.17 02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19					·····	·····	
11/28/00 3,975.00 - 53.91 0.00 3,921.09 02/21/01 3,975.00 - 53.80 0.00 3,921.20 05/31/01 3,975.00 - 53.72 0.00 3,921.28 08/23/01 3,975.00 - 53.76 0.00 3,921.24 11/21/01 3,975.00 - 53.83 0.00 3,921.17 02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19							
02/21/01 3,975.00 - 53.80 0.00 3,921.20 05/31/01 3,975.00 - 53.72 0.00 3,921.28 08/23/01 3,975.00 - 53.76 0.00 3,921.24 11/21/01 3,975.00 - 53.83 0.00 3,921.17 02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19				-			
05/31/01 3,975.00 - 53.72 0.00 3,921.28 08/23/01 3,975.00 - 53.76 0.00 3,921.24 11/21/01 3,975.00 - 53.83 0.00 3,921.17 02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19				_			
08/23/01 3,975.00 - 53.76 0.00 3,921.24 11/21/01 3,975.00 - 53.83 0.00 3,921.17 02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19				-			
11/21/01 3,975.00 - 53.83 0.00 3,921.17 02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19							
02/13/02 3,975.00 - 53.86 0.00 3,921.14 06/12/02 3,975.00 - 53.81 0.00 3,921.19							
06/12/02 3,975.00 - 53.81 0.00 3,921.19							
							· · · · · · · · · · · · · · · · · · ·
<u>11/21/02</u> 3,975.00 - 53.89 0.00 3,921.11							

11 of 14

[

Į.

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
			PRODUCI			
MW - 13	02/05/03	3,975.00	-	53.85	0.00	3,921.15
	05/07/03	3,975.00	-	53.78	0.00	3,921.22
	08/18/03	3,975.00	-	53.88	0.00	3,921.12
	12/01/03	3,975.00	-	53.91	0.00	3,921.09
MW - 14	03/02/00	3,976.15	-	54.49	0.00	3,921.66
	04/25/00	3,976.15		54.55	0.00	3,921.60
	09/06/00	3,976.15	-	54.61	0.00	3,921.54
	11/28/00	3,976.15	-	54.61	0.00	3,921.54
	02/21/01	3,976.15	-	54.44	0.00	3,921.71
	05/31/01	3,976.15		54.45	0.00	3,921.70
	08/23/01	3,976.15	-	54.47	0.00	3,921.68
	11/21/01	3,976.15	<u>+</u>	54.50	0.00	3,921.65
	02/13/02	3,976.15	-	54.55	0.00	3,921.60
	06/12/02	3,976.15	-	54.52	0.00	3,921.63
	08/26/02	3,976.15		54.53	0.00	3,921.62
	11/21/02	3,976.15	-	54.57	0.00	3,921.58
	02/05/03	3,976.15	-	54.52	0.00	3,921.63
	05/07/03	3,976.15	_	54.51	0.00	3,921.64
	08/18/03	3,976.15	-	54.57	0.00	3,921.58
	12/01/03	3,976.15	_	54.61	0.00	3,921.54
MW - 15	03/02/00	3,974.69	-	53.31	0.00	3,921.38
	04/25/00	3,974.69	-	53.39	0.00	3,921.30
	09/06/00	3,974.69	-	53.45	0.00	3,921.24
	11/28/00	3,974.69	-	53.45	0.00	3,921.24
	02/21/01	3,974.69	_	53.35	0.00	3,921.34
	05/31/01	3,974.69	-	53.25	0.00	3,921.44
	08/23/01	3,974.69	-	53.32	0.00	3,921.37
	11/21/01	3,974.69	-	53.46	0.00	3,921.23
	02/13/02	3,974.69	-	53.39	0.00	3,921.30
	06/12/02	3,974.69	_	53.36	0.00	3,921.33
	08/26/02	3,974.69	_	53.45	0.00	3,921.24
	11/21/02	3,974.69	-	53.42	0.00	3,921.27
	02/05/03	3,974.69	-	53.40	0.00	3,921.29
	05/07/03	3,974.69	-	53.35	0.00	3,921.34
	08/18/03	3,974.69	-	53.41	0.00	3,921.28
	12/01/03	3,974.69	-	53.45	0.00	3,921.24

12 of 14

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION		
MW - 16	12/23/02	3,975.12	-	53.44	0.00	3,921.68		
	01/10/03	3,975.12	-	53.45	0.00	3,921.67		
	05/07/03	3,975.12	-	53.38	0.00	3,921.74		
	08/18/03	3,975.12	-	53.44	0.00	3,921.68		
	12/01/03	3,975.12	-	53.48 0.00		3,921.64		
MW - 17	12/23/02	3,975.93	-	54.41	0.00	3,921.52		
	01/10/03	3,975.93	-	54.35	0.00	3,921.58		
	05/07/03	3,975.93	-	54.35	0.00	3,921.58		
	08/18/03	3,975.93	-	54.36	0.00	3,921.57		
	12/01/03	3,975.93	-	54.47	0.00	3,921.46		
RW - 1	11/08/02	3970.79	48.44	51.55	3.11	3921,88		
	11/21/02	3970.79	49.01	49.04	0.03	3921.78		
	12/27/02	3970.79	48.48	51.37	2.89	3921.88		
	01/06/03	3970.79	49.48	51.13	1.65	3921.06		
	01/08/03	3970.79	48.46	51.20	2.74	3921.92		
	01/10/03	3970.79	48.95	48.97	0.02	3921.84		
	01/13/03	3970.79	48.65	50.36	1.71	3921.88		
	02/05/03	3970.79	48.51	51.32	2.81	3921.86		
	02/26/03	3970.79	48.41	51.34	2.93	3921.94		
	03/04/03	3970.79	48.41	51.34	2.93	3921.94		
	03/12/03	3970.79	48.44	51.41	2.97	3921.90		
	03/18/03	3970.79	48.51	51.51	3.00	3921.83		
	03/25/03	3970.79	48.85	49.04	0.19	3921.91		
	03/31/03	3970.79	48.92	49.07	0.15	3921.85		
	04/09/03	3970.79	48.97	49.00	0.03	3921.82		
	04/14/03	3970.79	48.99	48.99	Sheen	3921.80		
	05/07/03	3970.79	48.39	51.12	2.73	3921.99		
	05/08/03	3970.79	48.46	51.21	2.75	3921.92		
	05/13/03	3970.79	48.49	51.32	2.83	3921.88		
	05/21/03	3970.79	48.57	51.36	2.79	3921.80		
	05/27/03	3970.79	48.44	51.27	2.83	3921.93		
	05/28/03	3970.79	48.54	51.45	2.91	3921.81		
	06/03/03	3970.79	48.52	51.48	2.96	3921.83		
	06/09/03	3970.79	48.46	51.40	2.94	3921.89		
	07/01/03	3970.79	48.51	51.40	2.89	3921.85		
	07/08/03	3970.79	48.53	49.37	0.84	3922.13		
	07/29/03	3970.79	48.43	51.24	2.81	3921.94		

ļ

ŀ

GROUNDWATER ELEVATION DATA

LINK ENERGY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
RW - 1	08/04/03	3970.79	48.71	51.60	2.89	3921.65
	08/18/03	3970.79	48.69	49.08	0.39	3922.04
	08/25/03	3970.79	48.69	51.65	2.96	3921.66
	10/01/03	3970.79	48.6	49.12	0.52	3922.11
	10/06/03	3970.79	48.97	49.04	0.07	3921.81
	10/08/03	3970.79	49.14	50.18	1.04	3921.49
	10/15/03	3970.79	49.15	49.75	0.60	3921.55
	11/12/03	3970.79	48.12	51.02	2.90	3922.24
	11/19/03	3970.79	58.42	51.34	2.42	3921.51
	12/01/03	3970.79	49.21	50.49	1.28	3921.39
	12/10/03	3970.79	48.68	50.92	2.24	3921.77

Elevations based on the North American Vertical Datum of 1929.

CONCENTRATIONS OF BTEX IN GROUNDWATER

LINK ENERGY TNM 97-04 LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

All Concentrations are reported in mg/L

		l	EPA	SW 846-8021B, 50	030	
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	0 - XYLENE
MW - 1	03/02/00	<0.001	<0.001	< 0.001	< 0.001	< 0.001
	04/05/00	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
	09/06/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	11/28/00	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
	02/21/01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	05/31/01	<0.001	< 0.001	< 0.001	<0.0	
	08/23/01	< 0.001	< 0.001	< 0.001	<0.001	<0.001
	11/21/01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	02/13/02	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
	06/12/02	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	08/26/02	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
	11/21/02	<0.001	< 0.001	< 0.001	< 0.001	<0.001
	02/06/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	05/07/03	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
	08/18/03	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
	12/01/03	< 0.001	< 0,001	< 0.001	< 0.002	< 0.001
MW - 7	03/02/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	04/25/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	09/06/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	11/28/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	02/21/01	0.005	< 0.001	< 0.001	0.013	0.026
	05/31/01	0.033	0.015	< 0.001	0.1	the second se
	08/23/01	0.009	0.002	< 0.001	0.029	0.049
	11/21/01	0.007	0.002	< 0.001	0.022	0.037
	02/13/02	0.004	< 0.001	< 0.001	0.017	0.027
	06/12/02	0.002	< 0.001	< 0.001	0.009	0.001
	08/26/02	0.001	< 0.001	0.012	0.014	< 0.001
	11/21/02	< 0.001	< 0.001	< 0.001	0.003	< 0.001
	02/06/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	05/07/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	08/18/03	< 0.001	< 0.001	< 0.001	0.002	< 0.001
	12/01/03	<0.001	< 0.001	< 0.001	<0.002	<0.001
MW - 8	03/02/00	< 0.001	< 0.001	< 0.001	<0.001	<0.001
	04/25/00	< 0.001	< 0.001	< 0.001	<0.001	<0.001
	09/06/00	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
	11/28/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	02/21/01	< 0.001	< 0.001	< 0.001	<0.001	< 0.001

L

CONCENTRATIONS OF BTEX IN GROUNDWATER

LINK ENERGY TNM 97-04 LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

All Concentrations are reported in mg/L.

			EPA	SW 846-8021B, 50	030		
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	0- XYLENE	
MW - 8	05/31/01	< 0.001	< 0.001	< 0.001	<0.0	001	
	08/23/01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	11/21/01	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	
	02/13/02	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	06/12/02	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	08/26/02	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	
	11/21/02	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	02/06/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	05/07/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	08/18/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	12/01/03	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	
MW - 10	03/02/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	04/25/00	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	
	09/06/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	11/28/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	02/21/01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	05/31/01	< 0.001	< 0.001	< 0.001	<0.0	001	
	08/23/01	<0,001	< 0.001	< 0.001	< 0.001	< 0.001	
	11/21/01	<0,001	< 0.001	<0,001	< 0.001	<0.001	
	02/13/02	<0.001	< 0.001	<0.001	< 0.001	< 0.001	
	06/12/02	<0,001	< 0.001	< 0.001	< 0.001	< 0.001	
	08/26/02	<0.001	< 0.001	<0.001	< 0.001	< 0.001	
	11/21/02	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	
	02/06/03	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	05/07/03	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	08/18/03	0.005	0.002	< 0.001	0.001	< 0.001	
	12/01/03	0.002	0.001	< 0.001	< 0.002	< 0.001	
MW - 11	03/02/00	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	04/25/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	09/06/00	<0.001	<0.001	<0.001	<0.001	< 0.001	
	11/28/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	02/21/01	<0.001	<0.001	< 0.001	< 0.001	< 0.001	
	05/31/01	0.015	<0.001	<0.001	<0.0		
	08/23/01	0.005	< 0.001	< 0.001	< 0.001	< 0.001	
	11/21/01	<0.001	<0.001	<0.001	< 0.001	<0.001	
	02/13/02	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	06/12/02	<0.001	<0.001	<0.001	<0.001	< 0.001	

CONCENTRATIONS OF BTEX IN GROUNDWATER

LINK ENERGY TNM 97-04 LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

All Concentrations are reported in mg/L EPA SW 846-8021B, 5030 SAMPLE SAMPLE BENZENE TOLUENE ETHYLm, p -0 -BENZENE LOCATION DATE XYLENES **XYLENE** MW - 11 08/26/02 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 11/21/02 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 02/06/03 < 0.001 < 0.001 < 0.001 05/07/03 < 0.001 < 0.001 0.006 < 0.001 < 0.001 0.006 < 0.001 08/18/03 12/01/03 0.039 < 0.001 0.002 0.004 < 0.001 MW - 12 03/02/00 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 04/25/00 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 09/06/00 11/28/00 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 02/21/01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 05/31/01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 08/23/01 11/21/01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 02/13/02 06/12/02 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 08/26/02 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 11/21/02 < 0.001 < 0.001 < 0.001 < 0.001 02/06/03 < 0,001 < 0.001 < 0.001 < 0.001 < 0.001 05/07/03 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 08/18/03 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 12/01/03 0.002 0.001 < 0.001 < 0.002 < 0.001 **MW - 13** 03/02/00 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 04/25/00 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 09/06/00 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 11/28/00 0.004 < 0.001 < 0.001 < 0.001 02/21/01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 05/31/01 < 0.001 < 0.001 < 0.001 < 0.001 08/23/01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 11/21/01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 02/13/02 0.007 < 0.001 < 0.001 < 0.001 06/12/02 0.115 < 0.001 < 0.001 0.013 < 0.001 08/26/02 0.046 < 0.001 < 0.001 0.024 < 0.001 11/21/02 0.010 < 0.001 < 0.001 0.045 < 0.001 02/06/03 < 0.001 < 0.001 < 0.001 0.028 < 0.001 05/07/03 0.003 < 0.001 < 0.001 < 0.001 0.019

CONCENTRATIONS OF BTEX IN GROUNDWATER

LINK ENERGY TNM 97-04 LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

		All Concentr	rations are reporte	ed in mg/L				
			EPA	SW 846-8021B, 50)30			
SAMPLE	SAMPLE	BENZENE	TOLUENE	ETHYL-	m, p -	0 -		
LOCATION	DATE			BENZENE	XYLENES	XYLENE		
MW - 13	08/18/03	0.002	<0.001	< 0.001	0.035	< 0.001		
	12/01/03	< 0.001	<0.001	< 0.001	0.018	< 0.001		
MW - 14	03/02/00	0.141	0.032	0.056	0.038	0.008		
	04/25/00	0.368	0.045	0.106	0.061	0.017		
	09/06/00	0.609	0.015	0.124	0.024	0.020		
	11/28/00	0.691	0.022	0.107	0.038	0.034		
	02/21/01	0.921	0.061	0.194	0.114	0.088		
	05/31/01	1.030	0.223	0.172	0.3	39		
	08/23/01	1.780	0.865	0.315	0.491	0.235		
	11/21/01	0.623	0.301	0.131	0.162	0.068		
	02/13/02	0.572	0.414	0.142	0.213	0.093		
	06/12/02	0.718	0.470	0.144	0.187	0.087		
	08/26/02	0.606	0.355	0.147	0.188	0.089		
	11/21/02	0.850	0.666	0.178	0.350	0.175		
	02/06/03	1.100	0.651	0.256	0.450	0.243		
	05/07/03	1.880	1.180	0.463	0.839	0.470		
	08/18/03	0.833	0.242	0.235	0.366	0.213		
	12/01/03	0.791	0.319	0.211	0.397	0.191		
MW - 15	03/02/00	< 0.001	<0.001	<0.001	< 0.001	<0.001		
	04/25/00	0.649	<0.001	< 0.001	0.018	0.019		
	09/06/00	0.010	< 0.001	0.003	0.024	< 0.001		
	11/28/00	1.380	<0.010	<0.010	0.031	<0.010		
	02/21/01	2.870	<0.010	0.011	0.058	< 0.010		
	05/31/01	3.830	<0.001	0.049	0.1	01		
	08/23/01	4,600	0.001	0.077	0.075	0.009		
	11/21/01	4.000	0.012	0.117	0.084	0.039		
	02/13/02	2,910	0.020	0.128	0.063	0.060		
	06/12/02	5.430	0.004	0.216	0.032	0.057		
	08/26/02	4.590	0.002	0.183	0.230	0.300		
	11/21/02	8.130	0.002	0.384	0.009	<0.001		
	02/06/03	2.070	< 0.001	0.041	0.010	<0.001		
	05/07/03	1.890	< 0.001	0.006	< 0.001	<0.001		
	08/18/03	1.910	0.001	0.122	0.006	< 0.001		
	12/01/03	1.190	< 0.001	0.057	0.006	< 0.001		

CONCENTRATIONS OF BTEX IN GROUNDWATER

LINK ENERGY TNM 97-04 LEA COUNTY, NEW MEXICO ETGI PROJECT # LI 2016

All Concentrations are reported in mg/L													
			EPA	SW 846-8021B, 50)30								
SAMPLE	SAMPLE	BENZENE	TOLUENE	ETHYL-	m, p -	0 -							
LOCATION	DATE			BENZENE	XYLENES	XYLENE							
MW - 16	01/10/03	<0.001	< 0.001	< 0.001	< 0.001	< 0.001							
	05/07/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001							
	08/18/03	0.008	0.003	< 0.001	0.002	< 0.001							
	12/01/03	0.014	0.005	0.003	0.005	0.003							
MW - 17	01/10/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001							
······	05/07/03	<0.001	< 0.001	< 0.001	< 0.001	< 0.001							
	08/18/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001							
	12/01/03	< 0.001	< 0.001	<0.001	< 0.002	< 0.001							
EB - 1	09/06/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001							
	11/28/00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001							
	02/21/01	< 0.001	< 0.001	< 0.001	< 0.001	<0.001							
	05/31/01	< 0.001	< 0.001	< 0.001	<0.0	001							
	11/21/01	< 0.001	<0.001	< 0.001	<0.001	<0.001							
	02/13/02	< 0.001	<0.001	< 0.001	<0.001	< 0.001							
	06/12/02	< 0.001	< 0.001	< 0.001	<0.001	< 0.001							
	08/26/02	<0.001	< 0.001	< 0.001	< 0.001	< 0.001							
	11/21/02	< 0.001	< 0.001	< 0.001	< 0.001	<0.001							
	01/10/03	<0.001	< 0.001	< 0.001	< 0.001	< 0.001							

All Concentrations are reported in mg/L

Note: m, p and o Xylenes combined when analyzed by Trace Laboratories, Inc. only. EB denotes equipment blank collected during sampling event. L

Table 3

CONCENTRATIONS OF METALS IN GROUNDWATER

LINK ENERGY TNM 97-04 LEA COUNTY, NM ETGI Project # LI 2016

All water	concentrations a	re reported	i in mg/L

			EPA SW846-6010B, 7470																							
SAMPLE LOCATION	SAMPLE DATE	Aluminum	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Tin	Vanadium	Zinc	Boron	Strontium
MW - 1	11/21/02		<0.05	0.149		< 0.005		< 0.01				<0.02			< 0.0002				< 0.05	< 0.002						
	12/01/03	2.38	<0.01	0.125	< 0.002	< 0.002	93.8	0.0114	< 0.01	<0.01	1.06	<0.01	13.8	0.0113	< 0.0002	< 0.005	< 0.01	1.54	< 0.01	< 0.002	33.9	< 0.02	0.0553	0.0087	0.152	0.828
MW - 7	11/21/02		< 0.05	0.0815		< 0.005		<0.01				< 0.02			< 0.0002				< 0.05	< 0.002						
	12/01/03	<0.2	< 0.01	0.0733	<0.002		91.3	0.0258	< 0.01	<0.01	0.0856	<0.01	12	0.0053	< 0.0002	< 0.005	< 0.01	1.57	< 0.01	< 0.002	29	< 0.02	0.0583	0.0077	0.133	0.668
MW - 8	11/21/02		<0.05	0.0490		< 0.005		< 0.01				<0.02			< 0.0002				< 0.05	<0.002						
		0.258	<0.01	0.0739	< 0.002	< 0.002	86.8	< 0.005	< 0.01	<0.01	0.143	< 0.01	12.3	< 0.005	< 0.0002	< 0.005	< 0.01	1.42	<0.01	<0.002	23.7	<0.02	0.0485	0.0188	0.128	0.699
<u>MW - 10</u>	11/21/02		<0.05	0.572		< 0.005		0.0148				<0.02			< 0.0002				< 0.05	<0.002						
	12/01/03	6.47	<0.01	0.294	<0.002		89.1	0.0177	< 0.01	< 0.01	3.52	<0.01	14.3	0.0394	< 0.0002	0.0052	0.0125	1.87	< 0.01		32.2	<0.02	0.0487	0.0282	0.177	0.81
MW - 11	11/21/02		<0.05	0.218		<0.005		<0.01				<0.02			< 0.0002			ļ	< 0.05	< 0.002						L
	12/01/03	1.09	< 0.01	0.122	< 0.002	<0.002	80	< 0.005	< 0.01	<0.01	0.624	< 0.01	12.1	0.0104	< 0.0002	<0.005	<0.01	1.67	< 0.01		19.9	< 0.02	0.0312	0.0135	0.12	0.619
MW - 12	11/21/02		<0.05	0.115		<0.005		0.0104				<0.02			< 0.0002				< 0.05	<0.002						
	12/01/03	2.36	< 0.01	0.0903	<0.002	<0.002	79.2	0.0092	< 0.01	<0.01	1.44	<0.01	13.2	0.0187	< 0.0002	<0.005	0.0115	1.45		< 0.002	26.8	< 0.02	0.042	0.0347	0.12	0.582
MW - 13	11/21/02		< 0.05	0.156		< 0.005		< 0.01				<0.02			0.0012				< 0.05	0.0359						
	12/01/03	2.96	< 0.01	0.111	<0.002		83.4	<0.005	<0.01	<0.01	1.48	<0.01	11.7	0.0387	0.00047	<0.005	<0.01	1.75			30.3	<0.02	0.0512	0.0071	0.194	0.625
MW - 14	11/21/02		<0.05	0.137		< 0.005		<0.01				< 0.02			< 0.0002				< 0.05	< 0.002						0.001
	12/01/03	0.57	0.0162	0.159	< 0.002	< 0.002	82.1	0.0099	< 0.01	<0.01	1.11	<0.01	14.4	0.123	<0.0002	<0.005	<0.01	3.47	_	< 0.002	35	<0.02	0.0139	0.0177	0.13	0.604
MW - 15	11/21/02		<0.05	0.0972		< 0.005	-	< 0.01				<0.02			<0.0002		10.01		< 0.05	< 0.002			0.0011	0.0106	0.1.0	
	12/01/03		0.0129	0.077	< 0.002	< 0.002	67	< 0.005	< 0.01	< 0.01	0.216	< 0.01		0.0578	< 0.0002		< 0.01	1.41		< 0.002	22		0.0214	0.0136	_	0.443
<u>MW - 16</u>	01/10/03	3.79	<0.05	0.19	< 0.004	<0.005	81	< 0.01	< 0.02	<0.02	1.62	<0.02		0.0508	< 0.0002		< 0.02	3.64		< 0.002			· · · · · ·	<0.01		0.687
	12/01/03	5.03	< 0.01	0.204	<0.002	<0.002	87.3	0.0173	< 0.01	< 0.01	2.72	<0.01	14.2	0.0431	< 0.0002	0.0162	0.0147	_	< 0.01	<0.002	21.3		-		0.0877	0.602
<u>MW - 17</u>	01/10/03	13.1	<0.05	0.712	< 0.004	< 0.005	76.7	0.0209	< 0.02	< 0.02	5.42	<0.02	19.1	0.125	<0.0002	< 0.02	< 0.02		< 0.05	<0.002	51.4			0.0192	0.136	1.39
wocc	12/01/03	13.3	<0.01	0.683	<0.002	<0.002	101	0.037	<0.01	0.0156	7.54	<0.01	19.5	0.106	<0.0002	0.0225	0.0233	3.15	< 0.01	<0.002	44	< 0.02	0.0482	0.0345	0.129	1.06
Standards		5.0	0.1	1.0	-	0.01	-	0.05	0.05	1.0	0.01	0.05		0.2	0.002	0.2	0.2	<u> </u>	0.05	0.05	-	<u> </u>	-	10	0.75	<u> </u>

Note: - denotes no WQCC standard available.

TABLE 4

CONCENTRATIONS OF SEMI-VOLATILES IN GROUNDWATER

LINK ENERGY

TNM 97-04

LEA COUNTY, NEW MEXICO ETGI Project # Ll2016

All water co	oncentrations are	reported i	n me/L
--------------	-------------------	------------	--------

								EI	PA SW846-8	270C, 3510							
SAMPLE LOCATION	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[g,h,i]perylene	Benzo[k]fluoranthene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorenc	Indeno[1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
MW - 1	11/21/02	0.06	0.07	0.122	0.089	0.103	0.091	0.101	0.101	0.061	0.102	0.126	0.09	0.086	<0.05	0.111	0.106
	12/01/03	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
MW - 7	11/21/02	0.054	< 0.05	0.076	0.052	0.055	< 0.05	< 0.05	< 0.05	<0.05	0.054	0.083	0.175	<0.05	2.68	0.127	0.072
	12/01/03	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
MW - 8	11/21/02	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
	12/01/03	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05
MW - 10	11/21/02	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
	12/01/03	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
MW - 11	11/21/02	0.089	0.094	0.182	0.125	0.12	0.126	0.108	0.145	0.08	0.105	0.19	0.149	0.111	< 0.05	0.168	0.156
	12/01/03	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
MW - 12	11/21/02	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05
	12/01/03	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
MW - 13	11/21/02	0.075	0.054	0.065	< 0.05	< 0.05	< 0.05	< 0.05	0.054	<0.05	<0.05	0.068	0.373	<0.05	12.4	0.323	0.061
	12/01/03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	0.07	<0.05	1.5	0.066	<0.05
MW - 14	11/21/02	0.074	0.159	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.704	<0.05	14.1	0.641	<0.05
	12/01/03	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.432	<0.05	9.11	0.335	<0.05
MW - 15	11/21/02	0.179	<0.05	<0.05	0.089	<0.05	0.105	<0.05	0.15	0.081	<0,05	0.154	0.662	<0.05	21.3	0.564	0.145
	12/01/03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	0.129	<0.05	1.95	0.074	<0.05
MW - 16	01/10/03	<0.05	<0.05	0.05	0.064	0.062	0.058	0.059	0.068	0.061	<0.05	0.096	0.069	< 0.05	0.055	0.081	0.094
	12/01/03	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	0.129	<0.05	<0.05
MW - 17	01/10/03	0.07	0.079	2.48	3.25	3.52	2.74	3.13	3.34	3.2	2.37	3.05	0.648	2.43	0.078	1.77	3.41
	12/01/03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0,05
WQCC Standard		-	-	-	-	0.0007		-	-	-	-	-	-	-	0.03	-	-

Note: - denotes no WQCC standard available.

TABLE 5

CONCENTRATIONS OF ANIONS/CATIONS IN GROUNDWATER

LINK ENERGY TNM 97-04 LEA COUNTY, NEW MEXICO ETGI Project # LI2016

SAMPLE DATE	SAMPLE	SAMPLE		EPA	\$ W375.4, 325,3, 3 1	0, 160.1	
	LOCATION	TYPE	Sulfate	Chloride	Carbonate	Bicarbonate	TDS
01/10/03	MW - 16	WATER	145	61.6	<10	180	542
01/10/03	MW - 17	WATER	50.5	118	<10	230	555
WQCC Standard			600	250	-	-	1000

All water concentrations are reported in mg/L

Note: - denotes no WQCC standard available.

- -----

APPENDICES

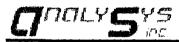
Appendix A

Laboratory Reports

<i><i>O</i>T</i><i>CCCCCCCC</i>							9 N. Padre Isl 2) 385-5886		Corpus C K (512) 3		1 78408
Client: Environmental Tech Group Attn: Ken Dutton]				Report#/Lab II Project ID: TN		-	rt Date: (01/24/03	
Address: 2540 W. Marland						Sample Name:		510			
Hobbs,	NM 88240	ł				Sample Matrix:					
10000,	1001 00240					Date Received:		Time:	15:00		
Phone: 505 397-4882 FAX: 505	397-47 01					Date Sampled:			14:20		
REPORT OF ANALYSIS		J				L	QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					01/15/03	3520					
Metals DigHg					01/16/03	7470&245.1]	
Metals DigHNO3					01/20/03	3015			-~-		
Metals DigHNO3*filtered					01/16/03	3005A					
Total dissolved solids	542	mg/L	1	<1	01/15/03	160.1		4.65	-NA-	-NA-	-NA-
Aluminum/ICP	3.79	mg/L	0.2	<0.2	01/22/03	6010 & 200.7		0.55	101.87	103.35	98.48
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	01/21/03	6010 & 2 00.7		12.55	118.4	98.88	97.52
Barium/ICP	0.19	mg/L	0.01	<0.01	01/21/03	6010 & 200.7		6.35	103.16	98.94	116.28
Beryllium/ICP	<0.004	mg/L	0.004	<0.004	01/21/03	6010 & 2 00.7		13.33	116.1	98.1	104.27
Boron/ICP	0.181	mg/L	0.02	<0.02	01/21/03	6010 & 200.7		8.33	76,76	97.83	98.81
Cadmium/ICP Calcium/ICP*filtered	<0.005	mg/L	0.005	<0.005	01/21/03	6010 & 200.7		0	92.26	101.92	84.19
Chromium/ICP	81 <0.01	mg/L	10	<10	01/21/03	6010 & 200.7 6010 & 200.7	 J	2.5	95.83 97.86	98.54 95.32	93.22 99.46
Cobalt/ICP	<0.01	mg/L mg/L	0.01 0.02	<0.01 <0.02	01/21/03	6010 & 200.7 6010 & 200.7		2.17	103.46	95.52	99.40
Copper/ICP	<0.02	mg/L mg/L	0.02	<0.02	01/21/03	6010 & 200.7 6010 & 200.7	J	0	96.01	97.04	101.35
Iron/ICP	1.62	mg/L	0.05	<0.02	01/21/03	6010 & 200.7		0.66	104.93	98.82	101.08
Lead/ICP	< 0.02	mg/L	0.02	<0.02	01/21/03	6010 & 200.7		0	108.45	101.48	
Magnesium/ICP*filtered	19.6	mg/L	5	<5	01/21/03	6010 & 200.7		5.04	99.53	101.16	96.31
Manganese/ICP	0.0508	mg/L	0.01	<0.01	01/21/03	6010 & 200.7		0	99.07	97.82	117.57
Mercury/CVAA	< 0.0002	mg/L	0.0002	<0.0002	01/16/03	245.1&7470		2.33	87	100	100
Molybdenum/ICP	0.0287	mg/L	0.02	<0.02	01/21/03	6010 & 2 00.7		3.14	97.01	98.04	88.14
	mowledge, the anal nce/Quality Contro ghts reserved. No	ytical results l Program. © part of this ans without the bimitted,	e (RQL) typical dilution associa	relative percent of red from a spike sed as the perce , typically at or ly denote USEP ns. 7. Data Qu ated method blan	(%) difference h ad sample. 4 nt (%) recovery above the Prace A procedures. alifiers are J = nk(s). S1 =MS sory limit. S3 =	mple batch which includ setween duplicate measu calibration Verification of analyte from a know stical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e MS and/or MSD and PI ference.	rements. 3. Rec n (CCV) and Lab n standard or mat (PQL) of the ana flect nominal qua nt between the PC sceed advisory lin	overy (Recorder) operatory Co rix. 5. Re- alytical met untitation lin QL and the nits. S2 = H	ov.) is the pentrol Sample porting Qua hod. 6. Me nits adjusted MDL. B = A Post digestio.	rcent (%) o (LCS) res ntitation Li thod numi for any re Analyte det n spike (PI	of analyte sults are imits bers quired ected in OS)

A naly S ys						220	2 Montopons 1 9 N. Padre Isla 2) 385-5886	nd Dr., (Corpus Ch	risti, TX	78408
Client: Environmental Tech Group Attn: Ken Dutton				D: TNM 97-0 ame: MW 16					#/Lab ID Matrix:		5
REPORT OF ANALYSIS-cont.			·			QUALITY	ASSUR	ANCE DA	TA1		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Nickel/ICP	< 0.02	mg/L	0.02	< 0.02	01/21/03	6010 & 200.7	J	4.08	110	95.51	96.81
Potassium/AA*filtered	3.64	mg/L	0.25	<0.25	01/21/03	258.1&7610		10.97	110.28	102.01	105.99
Selenium/ICP	< 0.05	mg/L	0.05	<0.05	01/21/03	6010 & 200.7		7.38	91.31	100.6	108.58
Silver/GFAA	<0.002	mg/L	0.002	<0.002	01/21/03	272.2&7761		3.28	113.76	87.5	116
Sodium/ICP*filtered	38.5	mg/L	25	<25	01/21/03	6010 & 200.7		4.29	99.35	99.2	100.09
Strontium/ICP	0.687	mg/L	0.05	<0.05	01/21/03	6010 & 200.7		0.76	103.44	98.58	103.87
Tin/ICP `	< 0.05	mg/L	0.05	<0.05	01/21/03	6010 & 200.7		9.6	111.38	95.6	99.14
Vanadium/ICP	< 0.02	mg/L	0.02	<0.02	01/21/03	6010 & 200.7		2.34	95.02	100.76	88.06
Zinc/ICP	<0.01	mg/L	0.01	<0.01	01/21/03	6010 & 2 00.7	III J	3.24	108.18	97.24	100.62
Alkalinity, bicarbonate	180	mg/L	10	<10	01/15/03	SM2320	ff	0	-NA-	-NA-	-NA-
Alkalinity, carbonate	<10	mg/L	10	<10	01/15/03	SM2320	//	0	-NA-	-NA-	-NA-
Chloride	61.6	mg/L	0.5	<0.5	01/15/03	325.2&9251		0.93	102.74	108.47	97.44
Sulfate	145	mg/L	10	<10	01/15/03	375.4&9038		0	100.7	101.15	102.67
Extractable organics-PAH			+		01/20/03	8270c	<u>+</u>		<u> </u>	<u> </u>	
Volatile organics-8260b/BTEX					01/17/03	8260b					
Benzene	<1	μg/L	1	<1	01/17/03	8260b		3.2	123.4	110.9	113.4
Ethylbenzene	<1	µg/L	1	<1	01/17/03	8260b		7.6	92.5	86.1	91.1
m,p-Xylenes	<1	μg/L	1	<1	01/17/03	8260b		6.8	93.2	84.8	90.2
o-Xylene	<1	µg/L	1	<1	01/17/03	8260b]]	7.5	97.4	86.4	93.5
Toluene	<1	µg/L	1	<1	01/17/03	8260b		3.4	98.3	88.1	90.9
Acenaphthene	< 0.05	µg/L	0.05	< 0.05	01/20/03	8270c	J	1.2	85.2	85.4	63.7
Acenaphthylene	< 0.05	µg/L	0.05	<0.05	01/20/03	8270c	J	1.6	88.4	91.6	66.9
Anthracene	0.05	µg/L	0.05	< 0.05	01/20/03	8270c		3.7	87.2	84.1	82.9
Benzo[a]anthracene	0.064	μg/L	0.05	<0.05	01/20/03	8270c		2.3	112.3	88	101.1
Benzo[a]pyrene	0.062	µg/L	0.05	<0.05	01/20/03	8270c		1.9	109.9	96.3	101.7
Benzo[b]fluoranthene	0.058	µg/L	0.05	<0.05	01/20/03	8270c		1.5	102.8	86.1	88.9
Benzo[g,h,i]perylene	0.059	μg/L	0.05	<0.05	01/20/03	8270c		1.9	103.6	90.1	96
Benzo[j,k]fluoranthene	0.068	μg/L	0.05	<0.05	01/20/03	8270c		5.6	87.5	82.5	83.9
Chrysene	0.061	μg/L	0.05	<0.05	01/20/03	8270c		0.8	111.6	89.6	111.3
Dibenz[a,h]anthracene	< 0.05	μg/L	0.05	< 0.05	01/20/03	8270c	J J	2.8	88.6	80.3	82.3
Fluoranthene	0.096	μg/L	0.05	< 0.05	01/20/03	8270c		3	101.1	101.6	101.6
Fluorene	0.069	μg/L	0.05	< 0.05	01/20/03	8270c		0.5	101.1	86.5	74.3
T 1001-1	1		1 0.05	1 10.05	1 20,000	02700	11	0.5	1 100.4	00.5	1 /4.5

Page#: 2 Report Date: 01/24/03


TENENT I LANDER LEEN

3512 Montopolis Drive, Austin, TX 78744 &

.

1

J

Pyrene

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

0.4

110

109

ł

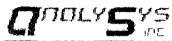
ſ

93.1

Client: Environmental Tech Group Attn: Ken Dutton			Project ID: TNM 97-04 EO 2016 Sample Name: MW 16						Report#/Lab ID#: 138326 Sample Matrix: water				
REPORT OF ANALYSIS-cont.							QUALITY	ASSUR	ANCE DA	ATA ¹			
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴		
Indeno[1,2,3-cd]pyrene	< 0.05	µg/L	0.05	< 0.05	01/20/03	8270c	J	1.6	85.6	81.3	79		
Naphthalene	0.055	µg/L	0.05	< 0.05	01/20/03	8270c		1.2	63.4	80.1	53.1		
Phenanthrene	0.081	µg/L	0.05	<0.05	01/20/03	8270c		0.2	104.6	88.6	91.9		
	((<i>i</i> 1				1		1		

< 0.05

01/20/03


8270c

μg/L

0.094

0.05

Page#: 3 Report Date: 01/24/03

1

Cli	ent:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 138326
Att	n:	Ken Dutton	Sample Name: MW 16	Sample Matrix: water

<u>REPORT OF SURROGATE RECOVERY</u>

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94.6	80-120	
Toluene-d8	8260b	102	88-110	
2-Fluorobiphenyl	8270c	49.9	43-116	
Nitrobenzene-d5	8270c	73.9	35-114	
Terphenyl-d14	8270c	63.8	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 4 Report Date: 01/24/03

Exceptions Report:

Report #/Lab ID#: 138326 Matrix: waterClient: Environmental Tech GroupAttn: Ken DuttonProject ID: TNM 97-04 EO 2016Sample Name: MW 16

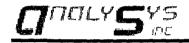
Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

- Sample received in appropriate container(s). State of sample preservation unknown.
- Sample received in inappropriate container(s) and/or with unknown state of preservation.


J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
Chromium/ICP	1	See J-flag discussion above.
Copper/ICP	J	See J-flag discussion above.
Nickel/ICP	J	See J-flag discussion above.
Zinc/ICP	J	See J-flag discussion above.
Acenaphthene	J	See J-flag discussion above.
Acenaphthylene	J	See J-flag discussion above.
Dibenz[a,h]anthracene	J	See J flag discussion above
Indeno[1,2,3-cd]pyrene	J	See J-flag discussion above.
Notes:		

Comments pertaining to Data Qualifiers and QC data:

Page#: 5 Report #/Lab ID#: 138326 Report Date: 1/24/200

Ken Dutton Address: 2540 W. Marland

Environmental Tech Group

Client:

Attn:

3512 Montopolis Drive. Austin. TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Report#/Lab ID#: 138327	Report Date: 01/24/03
Project ID: TNM 97-04 EO 20	016
Sample Name: MW 17	
Sample Matrix: water	
Date Received: 01/14/2003	Time: 15:00
Date Sampled: 01/10/2003	Time: 14:43

OUALITY ASSURANCE DATA1

DEPORT OF ANALVEIS

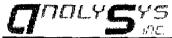
Phone: 505 397-4882

Hobbs.

<u>REPORT OF ANALYSIS</u>											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					01/15/03	3520					
Metals DigHg					01/16/03	7470&245.1					
Metals DigHNO3					01/20/03	3015					
Metals DigHNO3*filtered					01/16/03	3005A					
Total dissolved solids	555	mg/L	1	<1	01/15/03	160.1		4.65	-NA-	-NA-	-NA-
Aluminum/ICP	13.1	mg/L	0.2	<0.2	01/22/03	6010 & 200.7		0.55	101.87	103.35	98.48
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	01/21/03	6010 & 200.7	J	12.55	118.4	98.88	97.52
Barium/ICP	0.712	mg/L	0.01	< 0.01	01/21/03	6010 & 200.7		6.35	103.16	98.94	116.28
Beryllium/ICP	<0.004	mg/L	0.004	< 0.004	01/21/03	6010 & 200.7		13.33	116.1	98.1	104.27
Boron/ICP	0.136	mg/L	0.02	< 0.02	01/21/03	6010 & 200.7		8.33	76.76	97.83	98.81
Cadmium/ICP	<0.005	mg/L	0.005	< 0.005	01/21/03	6010 & 200.7		0	92.26	101.92	84.19
Calcium/ICP*filtered	76.7	mg/L	10	<10	01/21/03	6010 & 2 00.7		2.5	95.83	98.54	93.22
Chromium/ICP	0.0209	mg/L	0.01	< 0.01	01/21/03	6010 & 200.7		7.82	97.86	95.32	99.46
Cobalt/ICP	<0.02	mg/L	0.02	<0.02	01/21/03	6010 & 200.7		2.17	103.46	98.19	96.97
Copper/ICP	<0.02	mg/L	0.02	< 0.02	01/21/03	6010 & 200.7	J	0	96.01	97.04	101.35
Iron/ICP	5.42	mg/L	0.05	<0.05	01/21/03	6010 & 200.7		0.66	104.93	98.82	101.08
Lead/ICP	< 0.02	mg/L	0.02	<0.02	01/21/03	6010 & 200.7	J	0	108.45	101.48	107.16
Magnesium/ICP*filtered	19.1	mg/L	5	<5	01/21/03	6010 & 200.7		5.04	99.53	101.16	96.31
Manganese/ICP	0.125	mg/L	0.01	<0.01	01/21/03	6010 & 200.7		0	99.07	97.82	117.57
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	01/16/03	245.1&7470		2.33	87	100	100
Molybdenum/ICP	<0.02	mg/L	0.02	<0.02	01/21/03	6010 & 200.7	J	3.14	97.01	98.04	88.14

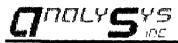
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. @ Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted.


NM 88240

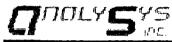
FAX: 505 397-4701

Richard Laster Richard Laster


1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are $J \approx$ analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report Date: 01/24/03 Page#: 1

Client: Environmental Tech Group Attn: Ken Dutton			J ~	D: TNM 97-(ame: MW 1					#/Lab ID; Matrix:		7
REPORT OF ANALYSIS-cont.			L	- <u></u>			QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷		Recov.3		LCS ⁴
Nickel/ICP	<0.02	mg/L	0.02	< 0.02	01/21/03	6010 & 200.7	J	4.08	110	95.51	96.81
Potassium/AA*filtered	3.69	mg/L	0.25	<0.25	01/21/03	258.1&7610		10.97	110.28	102.01	105.99
Selenium/ICP	<0.05	mg/L	0.05	<0.05	01/21/03	6010 & 200.7		7.38	91.31	100.6	108.58
Silver/GFAA	<0.002	mg/L	0.002	<0.002	01/21/03	272.2&7761		3.28	113.76	87.5	116
Sodium/ICP*filtered	51.4	mg/L	50	<50	01/21/03	6010 & 200.7		4.29	99.35	99.2	100.09
Strontium/ICP	1.39	mg/L	0.05	<0.05	01/21/03	6010 & 200.7		0.76	103.44	98.58	103.87
Tin/ICP	< 0.05	mg/L	0.05	<0.05	01/21/03	6010 & 200.7		9.6	111.38	95.6	99.14
Vanadium/ICP	0.0221	mg/L	0.02	<0.02	01/21/03	6010 & 200.7		2.34	95.02	100.76	88.06
Zinc/ICP	0.0192	mg/L	0.01	<0.01	01/21/03	6010 & 2 00.7		3.24	108.18	97.24	100.62
Alkalinity, bicarbonate	230	mg/L	10	<10	01/15/03	SM2320		0	-NA-	-NA-	-NA-
Alkalinity, carbonate	<10	mg/L	10	<10	01/15/03	SM2320		0	-NA-	-NA-	-NA-
Chloride	118	mg/L	5	<5	01/15/03	325.2&9251		0.93	102.74	108.47	97.44
Sulfate	50.5	mg/L	10	<10	01/15/03	375.4&9038		0	100.7	101.15	
Extractable organics-PAH		~			01/20/03	8270c					
Volatile organics-8260b/BTEX					01/17/03	8260b					
Benzene	<1	μg/L	1	<1	01/17/03	8260b		3.2	123.4	110.9	113.4
Ethylbenzene	<1	μg/L	1	<1	01/17/03	8260b		7.6	92.5	86.1	91.1
m,p-Xylenes	<1	μg/L	1	<1	01/17/03	8260b		6.8	93.2	84.8	90.2
o-Xylene	<1	μg/L	1	<1	01/17/03	8260b		7.5	97.4	86.4	93.5
Toluene	<1	μg/L	1	<1	01/17/03	8 2 60b		3.4	98.3	88.1	90.9
Acenaphthene	0.07	μg/L	0.05	<0.05	01/20/03	8270c		1.2	85.2	85.4	63.7
Acenaphthylene	0.079	μg/L	0.05	<0.05	01/20/03	8270c		1.6	88.4	91.6	66.9
Anthracene	2.48	µg/L	0.05	<0.05	01/20/03	8270c		3.7	87.2	84.1	82.9
Benzo[a]anthracene	3.25	μg/L	0.05	<0.05	01/20/03	8270c		2.3	112.3	88	101.1
Benzo[a]pyrene	3.52	μg/L	0.05	<0.05	01/20/03	8270c		1.9	109.9	96.3	101.7
Benzo[b]fluoranthene	2.74	μg/L	0.05	<0.05	01/20/03	8270c		1.5	102.8	86.1	88.9
Benzo[g,h,i]perylene	3.13	μg/L	0.05	<0.05	01/20/03	8270c		1.9	103.6	90.1	96
Benzo[j,k]fluoranthene	3.34	μg/L	0.05	<0.05	01/20/03	8270c		5.6	87.5	82.5	83.9
Chrysene	3.2	μg/L	0.05	< 0.05	01/20/03	8270c		0.8	111.6	89.6	111.3
Dibenz[a,h]anthracene	2.37	μg/L	0.05	<0.05	01/20/03	8270c		2.8	88.6	80.3	82.3
Fluoranthene	3.05	μg/L	0.05	< 0.05	01/20/03	8270c		3	101.1	101.6	101.6
Fluorene	0.648	μg/L	0.05	< 0.05	01/20/03	8270c		0.5	101.1	86.5	74.3


Page#: 2 Report Date: 01/24/03

ł

Client: Environmental Tech Group Attn: Ken Dutton					Project ID: TNM 97-04 EO 2016 Sample Name: MW 17						Report#/Lab ID#: 138327 Sample Matrix: water			
REPORT	T OF ANALYSIS-cont.				<u></u>		QUALITY	ASSUR	ANCE DA	ATA ¹				
Parameter Result Units		Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴			
Indeno[1,2	2,3-cd]pyrene	2.43	μg/L	0.05	< 0.05	01/20/03	8270c		1.6	85.6	81.3	79		
Naphthale	ene	0.078	μg/L	0.05	<0.05	01/20/03	8270c		1.2	63.4	80.1	53.1		
Phenanthr	rene	1.77	μg/L	0.05	<0.05	01/20/03	8270c		0.2	104.6	88.6	91.9		
Pyrene		3.41	μg/L,	0.05	<0.05	01/20/03	8270c		0.4	110	93.1	109		

Page#: 3 Report Date: 01/24/03

1

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 138327
Attn:	Ken Dutton	Sample Name: MW 17	Sample Matrix: water
L		/ k	/ <u> </u>

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	103	80-120	
Toluene-d8	8260b	99.5	88-110	
2-Fluorobiphenyl	8270c	71	43-116	
Nitrobenzene-d5	8270c	100	35-114	
Terphenyl-d14	8270c	91.5	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 4 Report Date: 01/24/03

Exceptions Report:

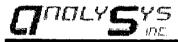
Report #/Lab ID#: 138327 Matrix: water	
Client: Environmental Tech Group	Attn: Ken Dutton
Project ID: TNM 97-04 EO 2016	
Sample Name: MW 17	

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

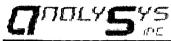
Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- Sample received in inappropriate container(s) and/or with unknown state of preservation.


J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:


Parameter	Qualif	Comment
Arsenic/ICP	1	See J-flag discussion above.
Copper/ICP	J	See J-flag discussion above.
Lead/ICP	J	See J-flag discussion above.
Molybdenum/ICP	J	See J-flag discussion above.
Nickel/ICP	J	See J-flag discussion above.
Notes:	<u></u>	

Page#: 5 Report #/Lab ID#: 138327 Report Date: 1/24/200

Client: Environmental Tech Group Attn: Ken Dutton						Report#/Lab II Project ID: TN		-	rt Date: (01/24/03]		
Address: 2540 W. Marland		1				Sample Name:		/10					
							Sample Matrix: water						
110003,	14141 00240					Date Received:							
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:							
REPORT OF ANALYSIS							QUALITY .	ASSUR	ANCE DA	TA ¹			
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴		
Volatile organics-8260b/BTEX					01/15/03	8260b							
Benzene	<1	μg/L	1	<1	01/15/03	8260b		10.4	93.4	82.9	89		
Ethylbenzene	<1	μg/L	1	<1	01/15/03	82 60b		11.6	97.6	99.1	99.5		
m,p-Xylenes	<1	μg/L	1	<1	01/15/03	8260b		11.8	98.5	98.2	100.9		
o-Xylene	<1	μg/L	1	<1	01/15/03	8260b		11.9	100.6	96.7	103.1		
Toluene	<1	μg/L	1	<1	01/15/03	8 2 60b		11	97.5	84.1	89.4		
This analytical report is respectfully submitted by Ana have been carefully reviewed and, to the best of my kno are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc.	e of the r recover express (RQL), typicall dilution associa recover	elative percent (red from a spike and as the percent typically at or by denote USEP. 18. 7. Data Qu ted method blar	%) difference l d sample. 4 nt (%) recovery above the Prace A procedures. alifiers are J = k(s). S1 =MS ory limit. S3 =	mple batch which include between duplicate measu 4. Calibration Verificatio 7 of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex =MS and/or MSD and PE ference.	rements. 3. Reco n (CCV) and Lab n standard or matu (PQL) of the ana flect nominal qua nt between the PQ cceed advisory lin	overy (Reco oratory Co rix. 5. Re lytical mether ntitation lin (L and the nits. S2 =F	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestior	cent (%) o (LCS) resultation Li thod numb for any rec nalyte dete spike (PD	f analyte ults are mits eers quired ected in PS)				

Page#: 1 Report Date: 01/24/03

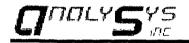
Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 138328
Attn:	Ken Dutton	Sample Name: EB 1	Sample Matrix: water
· · · · · · · · · · · · · · · · · · ·		Language and the second se	

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	99.5	80-120	
Toluene-d8	8260b	99.9	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 01/24/03


THAN AR CREPPOND

Send Reports To: Company Name $\underline{\mathcal{E}}$ The $\underline{\mathcal{L}}$ Address $\underline{\mathcal{A}}$ $\underline{\mathcal{G}}$ $\underline{\mathcal{G}}$ $\underline{\mathcal{G}}$ $\underline{\mathcal{G}}$ $\underline{\mathcal{G}}$ $\underline{\mathcal{G}}$ $\underline{\mathcal{G}}$ City $\underline{\mathcal{A}}$ $\underline{\mathcal{G}}$ $\mathcal{$		Com Addi ダ City ATT / Phor	Bill to (if diffe_at): COC: Oab Company Name Address City State Zip ATTN: Phone Fax						4221 Freidrich Lane, Suite 190, Austin, EX 7873. (512) 144 5896 Analyses Requested (1) Please attach explanatory information as required							
Project Name/PO#: <u>7 ptr. 1-9</u> <u>EO-201</u> Client Sample No. Description/Identification	<u>-) (34)</u> [.; Date	Samp Time Sampted	ler: <u>MA</u> No. of Containers				Lab I.D. #		X			X				Comments
$\frac{f(z, z) f(z)}{z(z, z)} = \frac{f(z) f(z)}{z(z, z)}$		1443 1545	6		Í V		138327 138327 138328	Ţ.	X	<u>X</u>	X	XŽ				. <i>,</i>
	·····														· · ·	·
								-								

(1)Dates specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all date will be expected to ASI's memory of a time limits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody. ASU: ill default to Universe to the operation of the second seco ASI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures. 20.0

				1emp: 3.3	C		
	Sample Relinquishe	ed By		, , , , , , , , , , , , , , , , , , ,	Sample Received	•	
Name	Affiliation	Date	Time	Name	Affiliation	Date	Lime
Mush Campel	1. T.G. I.	13/73	中多中国	Welanie He	mohun ASI	1/14/03	15:00
				., , , , , , , , , , , , , , , , , , ,			

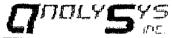
(Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys. Inc.'s standard terms]

Report#/Lab ID#: 139136	Report Date: 02/13/03								
Project ID: EO 2016									
Sample Name: WE97042603 MW-1									
Sample Matrix: water									
Date Received: 02/10/2003	Time: 08:00								
Date Sampled: 02/06/2003	Time: 08:00								

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs, NM 88240

QUALITY ASSURANCE DATA1

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/11/03	8260b					
Benzene	<1	μg/L	1	<1	02/11/03	8260b		2.1	83.3	86.8	97
Ethylbenzene	<1	μg/L	1	<1	02/11/03	8260b		4.2	103.8	101.8	103
m,p-Xylenes	<1	μg/L	1	<1	02/11/03	8260b		3.6	105.2	99.8	103.3
o-Xylene	<1	µg/L	1	<1	02/11/03	8260b		0.6	96.2	96.3	98.8
Toluene	<1	μg/L	1	<1	02/11/03	8260b		0.1	82.1	85.2	104.1


This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Laster

Richard Laster

1<1</td>02/11/038260b---0.182.185.2104.11. Quality assurance data is for the sample batch which included this sample.2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements.3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample.4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix.5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method.6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions.</td>7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceed advisory limit. M =Matrix interference.

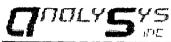
Page#: 1 Report Date: 02/13/03

Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 139136
Attn:	Ken Dutton	Sample Name: WE97042603 MW-1	Sample Matrix: water
			، ا ر میں میں میں میں میں میں میں میں میں م ال

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Dáta Qualifiers
1,2-Dichloroethane-d4	8260b	100	80-120	
Toluene-d8	82 60b	107	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.


<i>Analy</i>Sys						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,		aristi, T	
Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs,				Report#/Lab II Project ID: EO Sample Name: Sample Matrix Date Received:	2016 WE97042603 1 water	MW-7	ort Date: (02/13/03			
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	02/06/2003	Time:	10:30		
REPORT OF ANALYSIS	<i>u</i>				QUALITY						
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/11/03	8260b					
Benzene	<1	μg/L	1	<1	02/11/03	8260b		2.1	83.3	86.8	97
Ethylbenzene	<1	μg/L	1	<1	02/11/03	8260b		4.2	103.8	101.8	103
m,p-Xylenes	<1	µg/L	1	<1	02/11/03	8260b		3.6	105.2	99.8	103.3
o-Xylene	<1	μg/L	1	<1	02/11/03	8260b		0.6	96.2	96.3	98.8
Toluene	<1	μg/L	1	<1	02/11/03	8260b		0.1	82.1	85.2	104.1
Rie	wledge, the anal /Quality Control ts reserved. No	ytical results l Program. © part of this ans without the omitted,	e (RQL) typical dilution associa	elative percent (red from a spike sed as the percent , typically at or ly denote USEP. ns. 7. Data Qu ted method blar	(%) difference ad sample. (%) recovery above the Pra. A procedures. alifiers are J = nk(s). S1 =MS sory limit. S3 =	mple batch which inclue between duplicate measu 4. Calibration Verification y of analyte from a know ctical Quantitation Limit Less than ("<") values ro analyte potentially prese and/or MSD recovery e =MS and/or MSD and PI ference.	rements. 3. Recome (CCV) and Lab in standard or mat (PQL) of the ana effect nominal qua- ent between the PC exceed advisory lit	overy (Rec oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quan hod. 6. Me nits adjusted MDL. B = A Post digestion	rcent (%) c (LCS) res ntitation Li thod numb for any rea nalyte deta spike (PE	of analyte outs are mits oers quired ected in OS)

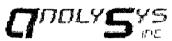
(

ł

1

Page#: 1 Report Date: 02/13/03

Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 139141
Attn:	Ken Dutton	Sample Name: WE97042603 MW-7	Sample Matrix: water

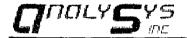

<u>REPORT OF SURROGATE RECOVERY</u>

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	82.4	80-120	
Toluene-d8	8260b	109	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

\boldsymbol{n}	Γ7	Ø	L	Y	C	Y5	
61						1 ^m E	

Client: Environmental Tech Group				الانتفاد والمتعادي والمتعاد	الفصيبيين فيافيهما	Report#/Lab II)#: 139137	Repo	rt Date: ()2/13/03	
Attn: Ken Dutton						Project ID: EO		•			İ
Address: 2540 W. Marland			Sample Name: WE97042603 MW-8								
Hobbs,	NM 88240	j	Sample Matrix: water								
			Date Received: 02/10/2003 Time: 08:00								
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	02/06/2003	Time:	08:30		
REPORT OF ANALYSIS						<u></u>	QUALITY	ASSUR	ANCE DA	<u>ATA</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/11/03	8260b					
Benzene	<1	μg/L	1	<1	02/11/03	8260b		2.1	83.3	86.8	97
Ethylbenzene	<1	μg/L	1	<1	02/11/03	8260b		4.2	103.8	101.8	103
m,p-Xylenes	<1	μg/L	1	<1	02/11/03	8260b		3.6	105.2	99.8	103.3
o-Xylene	<1	µg/L	1	<1	02/11/03	82 60b		0.6	96.2	96.3	98.8
Toluene	<1	μg/L	1	<1	02/11/03	82 60b		0.1	82.1	85.2	104.1
ſ	wledge, the anal Quality Control ts reserved. No	ytical results Program. © part of this ans without the omitted,	e of the r recover express (RQL) typical dilution associa recover	relative percent (red from a spike sed as the percent , typically at or ly denote USEP ns. 7. Data Qu tted method blar	(%) difference l ad sample. 2 ant (%) recovery above the Prace A procedures. alifiers are J = ak(s). S1 =MS sory limit. S3 =	mple batch which inclue between duplicate measu 4. Calibration Verification of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e. =MS and/or MSD and PI ference.	rements. 3. Recome (CCV) and Lab in standard or mat (PQL) of the ana effect nominal qua- ont between the PC acceed advisory lin	overy (Rec oratory Co rix. 5. Re lytical met antitation lin QL and the nits. S2 =H	ov.) is the per- ntrol Sample porting Quan hod. 6. Me mits adjusted MDL. B = A Post digestion	rcent (%) o (LCS) res ntitation Li thod numl for any re unalyte det n spike (PI	of analyte ults are mits pers quired ected in OS)



Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 139137
Attn:	Ken Dutton	Sample Name: WE97042603 MW-8	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	102	80-120	
Toluene-d8	82 60b	109	88-110	

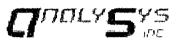
Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Environmental Tech Group Client: Attn: Ken Dutton Address: 2540 W. Marland Hobbs, NM 88240 505 397-4882 FAX: 505 397-4701 Phone:

DEDODT OF ANALYSIS

3512 Montonolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Report#/Lab ID#: 139138	Report Date: 02/13/03
Project ID: EO 2016	
Sample Name: WE97042603 M	VIW- 10
Sample Matrix: water	
Date Received: 02/10/2003	Time: 08:00
Date Sampled: 02/06/2003	Time: 09:00

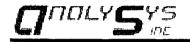

REPORT OF ANALYSIS	QUALITY ASSURANCE DATA ¹										
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX		1			02/11/03	8260b	~				
Benzene	<1	μg/L	1	<1	02/11/03	8260b		2.1	83.3	86.8	97
Ethylbenzene	<1	μg/L	1	<1	02/11/03	8260b	[]	4.2	103.8	101.8	103
m,p-Xylenes	<1	μg/L	1	<1	02/11/03	8260b		3.6	105.2	99.8	103.3
o-Xylene	<1	μg/L	1	<1	02/11/03	8260b		0.6	96.2	96.3	98.8
Toluene	<1	µg/L	1	<1	02/11/03	8260b		0.1	82.1	85.2	104.1

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. @ Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted.

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.



Client: Environmental Tech Group Project ID: EO 2016 Report#//	
	rt#/Lab ID#: 139138
Attn: Ken Dutton Sample Name: WE97042603 MW-10 Sample N	ole Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	93.4	80-120	
Toluene-d8	82 60b	109	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Ken Dutton Address: 2540 W. Marland Hobbs.

505 397-4882

Environmental Tech Group

Client:

Phone:

Attn:

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

97

103

103.3

98.8

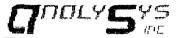
104.1

Report#/Lab ID#: 139139	Report Date: 02/13/03
Project ID: EO 2016	
Sample Name: WE97042603 1	MW-11
Sample Matrix: water	
Date Received: 02/10/2003	Time: 08:00
Date Sampled: 02/06/2003	Time: 09:30
-	

OUALITY ASSURANCE DATA¹ REPORT OF ANALYSIS Prec.² Recov.³ CCV⁴ LCS⁴ ROL⁵ Method 6 Data Oual⁷ Parameter Units Result Blank Date Volatile organics-8260b/BTEX 02/11/03 8260b -------------------02/11/03 83.3 Benzene 1 8260b 2.1 86.8 <1 μg/L <1 ---Ethylbenzene 02/11/03 8260b 4.2 103.8 101.8 <1 μg/L 1 <1 --m.p-Xylenes 1 02/11/03 8260b 3.6 105.2 99.8 <1 μg/L <1 --o-Xvlene 1 <1 02/11/03 8260b 0.6 96.2 96.3 <1 μg/L ----Toluene <1 1 <1 02/11/03 8260b 0.1 82.1 85.2 μg/L

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program, @ Copyright 2000, AnalySys, Inc., Austin, TX, All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted.


NM 88240

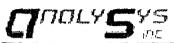
FAX: 505 397-4701

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are $J \approx$ analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1 **Report Date: 02/13/03**

Attn: Ken Dutton Sample Name: WE97042603 MW-11 Sample Matrix: water	Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 139139
	Attn:	Ken Dutton	Sample Name: WE97042603 MW-11	Sample Matrix: water

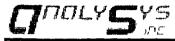

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94.4	80-120	
Toluene-d8	82 60b	107	88-110	

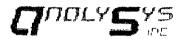
Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

							9 N. Padre Isl 2) 385-5886	• FA	X (512) 3	85-7411	X 78408
Client: Environmental Tech Group						Report#/Lab II		Repo	ort Date: ()2/13/03	
Attn: Ken Dutton						Project ID: EO					
Address: 2540 W. Marland						Sample Name:		MW-12			
Hobbs,	NM 88240					Sample Matrix:					
						Date Received:			08:00		
Phone: 505 397-4882 FAX: 505 3	397-4701					Date Sampled:	02/06/2003	Time:	10:00		
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/11/03	8260b					
Benzene	<1	μg/L	1	<1	02/11/03	8260b	~	2.1	83.3	86.8	97
Ethylbenzene	<1	μg/L	1	<1	02/11/03	82 60b		4.2	103.8	101.8	103
m,p-Xylenes	<1	µg/L	1	<1	02/11/03	8260b		3.6	105.2	99.8	103.3
o-Xylene	<1	μg/L	1	<1	02/11/03	8260b		0.6	96.2	96.3	98.8
Toluene	<1	μg/L	1	<1	02/11/03	8260b		0.1	82.1	85.2	104.1
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster Richard Laster					rcent (%) c (LCS) res uitation Li thod numb for any re nalyte det spike (PE	of analyte ults are mits oers quired ected in OS)					

 Page#: 1
 Report Date: 02/13/03



Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 139140			
Attn:	Ken Dutton	Sample Name: WE97042603 MW-12	Sample Matrix: water			


REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	106	80-120	
Toluene-d8	8260b	99.8	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Client: Environmental Tech Group						Report#/Lab II		Repo	rt Date: (02/13/03	
Attn: Ken Dutton						Project ID: EO	2016				
Address: 2540 W. Marland						Sample Name:	WE97042603 I	MW-13			
Hobbs,	NM 88240	1				Sample Matrix:	water				ļ
						Date Received:	02/10/2003	Time:	08:00		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	02/06/2003	Time:	11:00		
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/11/03	8260b					
Benzene	<1	µg/L	1	<1	02/11/03	8260b	J	2.1	83.3	86.8	97
Ethylbenzene	<1	μg/L	1	<1	02/11/03	82 60b		4.2	103.8	101.8	103
m,p-Xylenes	28.3	μg/L	1	<1	02/11/03	8260b		3.6	105.2	99.8	103.3
o-Xylene	<1	μg/L	1	<1	02/11/03	82 60b		0.6	96.2	96.3	98.8
Toluene	<1	µg/L	1	<1	02/11/03	8260b		0.1	82.1	85.2	104.1
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster				elative percent (ed from a spike ed as the percer typically at or y denote USEP as. 7. Data Qu ted method blar	%) difference l d sample. 4 at (%) recovery above the Prace A procedures. alifiers are J = pk(s). S1 =MS tory limit. S3 =	mple batch which include between duplicate measu 4. Calibration Verification y of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex =MS and/or MSD and PE ference.	rements. 3. Reco n (CCV) and Lab n standard or mata (PQL) of the ana flect nominal qua nt between the PQ kceed advisory lin	overy (Recovery Co oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestior	rcent (%) of (LCS) res ntitation Li thod numb for any re nalyte det a spike (PI	of analyte builts are imits bers quired ected in DS)

Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 139142
Attn:	Ken Dutton	Sample Name: WE97042603 MW-13	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	83.8	80-120	
Toluene-d8	8260b	103	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Report #/Lab ID#: 139142 Matrix: water Client: Environmental Tech Group Attn: Ken Dutton Project ID: EO 2016 Sample Name: WE97042603 MW-13

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

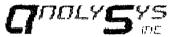
Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

I flag Discussion

A J flag data gualifier indicates (as required under TCEO-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (ROL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)


Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Benzene	J	See J-flag discussion above.
Notes:		

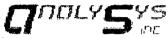
Page#: 3 Report #/Lab ID#: 139142 Report Date: 2/13/200

M	7AL	YC	YS
		and the second second second second second second second second second second second second second second second	INE

Client: Environmental Tech Group Attn: Ken Dutton						Report#/Lab II Project ID: EO		Repo	rt Date: ()2/13/03	
Address: 2540 W. Marland						Sample Name:		MW-14			
Hobbs, NM 88240					Sample Matrix: water						
						Date Received:		Time:	08:00		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	02/06/2003	Time:	11:30		
REPORT OF ANALYSIS						L	QUALITY .	ASSUR	ANCE DA	TA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/12/03	8260b					
Benzene	1100	μg/L	10	<10	02/12/03	8260b	~	11.7	95.5	90.5	81.8
Ethylbenzene	256	μg/L	10	<10	02/12/03	8260b		0.4	101.3	100.1	101.4
m,p-Xylenes	450	μg/L	10	<10	02/12/03	8260b		1	103.4	97.7	102.8
o-Xylene	243	μg/L	10	<10	02/12/03	8260b		3.4	101.9	95.2	102.6
Toluene	651	µg/L	10	<10	02/12/03	82 60b		10.8	98.9	91.1	105.8
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster				elative percent (red from a spike ed as the percen typically at or y denote USEP is. 7. Data Qui ted method blan	%) difference d sample. 4 nt (%) recovery above the Prace A procedures. alifiers are J = ik(s). S1 =MS ory limit. S3 =	mple batch which inclue between duplicate measu 4. Calibration Verification v of analyte from a know etical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e: =MS and/or MSD and PL forence	rements. 3. Reco n (CCV) and Labo n standard or matu (PQL) of the ana flect nominal qua nt between the PC sceed advisory lin	overy (Recovery Co oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quan hod. 6. Me nits adjusted MDL. B = A Post digestior	rcent (%) of (LCS) res ntitation Li thod numb for any re- analyte det a spike (PE	of analyte aults are imits pers quired ected in DS)

Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 139143
Attn:	Ken Dutton	Sample Name: WE97042603 MW-14	Sample Matrix: water
	· · · · · · · · · · · · · · · · · · ·		

REPORT OF SURROGATE RECOVERY


Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	100	80-120	
Toluene-d8	8260b	110	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

701	YC	¥5
		IDE.

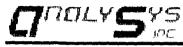
1

Client: Environmental Tech Group		1				Report#/Lab II)#: 139144	Repo	rt Date: ()2/13/03	
Attn: Ken Dutton						Project ID: EO	2016				[
Address: 2540 W. Marland				Sample Name: WE97042603 MW-15							
Hobbs,	NM 88240					Sample Matrix:	water				
						Date Received:	02/10/2003	Time:	08:00		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	02/06/2003	Time:	12:00		
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX			1		02/12/03	8260b					
Benzene	2070	μg/L	100	<100	02/12/03	8260b		11.7	95.5	90.5	81.8
Ethylbenzene	40.8	μg/L	1	<1	02/12/03	8260b		0.4	101.3	100.1	101.4
m,p-Xylenes	10	μg/L	1	<1	02/12/03	8260b		1	103.4	97.7	102.8
o-Xylene	<1	μg/L	1	<1	02/12/03	8260b		3.4	101.9	95.2	102.6
Toluene	<1	μg/L	1	<1	02/12/03	8260b		10.8	98.9	91.1	105.8
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster				elative percent (red from a spike sed as the percent typically at or ly denote USEP as. 7. Data Quited method blan	%) difference t d sample. 4 ht (%) recovery above the Prace A procedures. 7 alifiers are J = 4 k(s). S1 = MS ory limit. S3 =	mple batch which incluc etween duplicate measu . Calibration Verificatio of analyte from a know tical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e: MS and/or MSD and PE erence.	rements. 3. Reco n (CCV) and Lab n standard or matu (PQL) of the ana flect nominal qua nt between the PC acceed advisory lin	overy (Recovery Co oratory Co rix. 5. Re lytical met ntitation liu QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestion	(LCS) res (LCS) res ntitation Li thod numb for any re- nalyte det spike (PE	f analyte ults are mits ers quired ected in PS)

Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 139144				
Attn:	Ken Dutton	Sample Name: WE97042603 MW-15	Sample Matrix: water				
L							

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95.2	80-120	
Toluene-d8	82 60b	105	88-110	


Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

CHAIN-OF-CUSTO	W	WW.	ANA	LYS	YSINC.C	ом	-				1	7	n		LY		<u>15</u>		
Send Reports 3:			Bill	to (if	diffe	reh.,;				7# /4	4				· · · · 1	:n!	ا ۸	ula TV	70744
Company Name ETGT	· · · · · · · · · · · · · · · · · · ·		Com	Company Name 6044							3512 Montopolis Drive, Austin, TX 78744 Phone: (512) 385-5886 Fax: (512) 385-7411								
Address 2540 W. Malera	/			Address							2209 N.P.I.D., Ste K, Corpus Christi, TX 78408								
City Habbs State	. <u>n. m.</u> Zip	88290					State					I	Phone	e: (36)	1) 289	9-638	4 Fax	: (361) 2	89 0875
ATTN: Ken Dutton				`N:														iested	
ATTN: Ken Dutton Phone (505) 397-4582 Fax (505) 397-4701				1e			Fax						Pl	ease at	tach e	xplana	atory inf	ormation :	as required
Rush Status (must be confirm	ned with la	ıb mgr.):								/	0-/	/ /	/ /		/ /	/ /	/ /	//	
Rush Status (must be confirm Project Name/PO#: <u>£0</u> _201	16	Samp	ler: In	t. 7.	ti-1					~nal	¥ /	/ ,	/ ,	/ ,			/ /		
······································				r	1			1		7	/		/		/	/			
Client Sample No. Description/Identification	Date Sampled	Time Sampled	No. of Containers	Soll	Water	Waste	Lab I.D. # (Lab only)						\square	\square		\square	C	ommen	ıts
WE 97042603 mw-1	2-6-03	8:00	2		X	, ,	139136	\times											
<u> 4897042603mw - 8</u>	2-6-03	8.30	2		X		139137	X											
WE 97042603 MW-10	2-6-03	9:00	2		X		139138	X											
WE 97042603 mw-11	2-6-03	9:30	2		X		139139	X											
WE 9704 2603 MW - 12	2-6-03	10:00	2		X		139140	X											
WE 9704 2603 MW - 7	2-6-03	10:30	2		X		139141	X					 				<u> </u>		
WE 9704 2603 MW-13	2-6-03	11:00	2		X		139142	X									·		
WE 9704 2603 mw - 14	2-6-03	11.30	2		X		139143	X					, 						
WE9704 2603MW- 15	2-6-03	12:00	2		X		139144	X											
				{						·								·	

(1)Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting limits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or ASI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.

		······································	•		······································	T=	5.0°c			
Sample Relinquished By				Sample Received By						
Name	Affiliation	Date	Time	Name	Affiliation	Date	Time			
1 to find	ET GT	2-6-03		melonietur	whry ASI	2/10/03	0800			
0				, , , , , , , , , , , , , , , , , , , ,	/ 0					

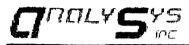
[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

Client:	Environmental Tech C	froup				
Attn:	Camille Reynolds	-				
Address:	2540 W. Marland					
	Hobbs			NM	88240	
Phone:	505 397-4882	FAX:	505 3	97-47	01	

Report#/Lab ID#: 142408	Report Date: 05/14/03
Project ID: EO 2016	
Sample Name: MW - 1	
Sample Matrix: water	
Date Received: 05/09/2003	Time: 12:00
Date Sampled: 05/07/2003	Time: 08:00

REPORT OF ANALYSIS

REPORT OF ANALYSIS									QUALITY ASSURANCE DATA ¹				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴		
Volatile organics-8260b/BTEX				***	05/12/03	8260b							
Benzene	<1	μg/L	1	<1	05/12/03	8260b		0.4	84.5	89.4	91.1		
Ethylbenzene	<1	μg/L	1	<1	05/12/03	8260b		3.4	99.6	100.9	104.4		
m,p-Xylenes	<1	μg/L	1	<1	05/12/03	8260b		3.8	103.6	100	114.6		
o-Xylene	<1	μg/L	1	<1	05/12/03	8260b		3.2	105.2	101.5	112.8		
Toluene	<1	μg/L	1	<1	05/12/03	8260b		0.2	96.1	97.8	106.1		

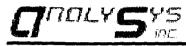

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method, 6, Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Report Date: 05/14/03 Page#: 1



Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142408
Attn:	Camille Reynolds	Sample Name: MW - 1	Sample Matrix: water

<u>REPORT</u> OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	99.1	80-120	
Toluene-d8	8260b	102	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Client:	Environmental Tech Group		
Attn:	Camille Reynolds		
Address:	2540 W. Marland		
	Hobbs	NM	88240

FAX: 505 397-4701

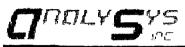
Report#/Lab ID#: 142409 Report Date: 05/14/03 Project ID: EO 2016 Sample Name: MW - 7 Sample Matrix: water Date Received: 05/09/2003 Time: 12:00 Date Sampled: 05/07/2003 Time: 09:00

REPORT OF ANALYSIS

Phone: 505 397-4882

OUALITY ASSURANCE DATA1

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴					
Volatile organics-8260b/BTEX					05/12/03	8260b										
Benzene	<1	μg/L	1	<1	05/12/03	8260b		0.4	84.5	89.4	91.1					
Ethylbenzene	<1	μg/L	1	1>	05/12/03	8260b		3.4	99.6	100.9	104.4					
m,p-Xylenes	<1	μg/L	1	<1	05/12/03	8260Ъ		3.8	103.6	100	114.6					
o-Xylene	<1	μg/L	1	<1	05/12/03	8260b		3.2	105.2	101.5	112.8					
Toluene	<1	μg/L	1	<1	05/12/03	8260b		0.2	96.1	97.8	106.1					

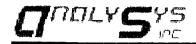

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.


0	Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142409
A	Attn:	Camille Reynolds	Sample Name: MW - 7	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers	
1,2-Dichloroethane-d4	8260b	97	80-120		
Toluene-d8	8260b	107	88-110		

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

 Page#: 2
 Report Date: 05/14/03

Client:	Environmental Tech Group		
Attn:	Camille Reynolds		
Address:	2540 W. Marland		
	Hobbs	NM	88240

 Report#/Lab ID#: 142410
 Report Date: 05/14/03

 Project ID: EO 2016
 Sample Name: MW - 8

 Sample Matrix: water
 Time: 12:00

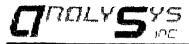
 Date Sampled: 05/07/2003
 Time: 09:30

REPORT OF ANALYSIS

Phone: 505 397-4882

QUALITY ASSURANCE DATA1

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b	~~-				
Benzene	<1	µg/L	1	<1	05/13/03	8260b		0.4	84.5	89.4	91.1
Ethylbenzene	<1	µg/L	1	<1	05/13/03	8260b		3.4	99.6	100.9	104.4
m,p-Xylenes	<1	µg/L	1	<1	05/13/03	8260b		3.8	103.6	100	114.6
o-Xylene	1>	μg/L	1	<1	05/13/03	8260b		3.2	105.2	101.5	112.8
Toluene	<1	μg/L	1	<1	05/13/03	8260b		0.2	96.1	97.8	106.1


This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

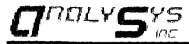
FAX: 505 397-4701

Respectfully Submitted,

Richard Laster **Richard** Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411


Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142410
Attn:	Camille Reynolds	Sample Name: MW - 8	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	97.4	80-120	
Toluene-d8	8260b	110	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 05/14/03 Page#: 2

3512 Montopolis Drive, Austin, TX 78744 2209 N. Padre Island Dr., Corpus Christi, TX 78408

(512) 385-5886 • FAX (512) 385-7411

Client:	Environmental Tech Group	
Attn:	Camille Reynolds	
Address:	2540 W. Marland	
	Hobbs	NM

 Report#/Lab ID#: 142411
 Report Date: 05/14/03

 Project ID: EO 2016
 Sample Name: MW - 10

 Sample Matrix: water
 Time: 12:00

 Date Received: 05/09/2003
 Time: 12:00

 Date Sampled: 05/07/2003
 Time: 10:00

REPORT OF ANALYSIS

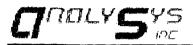
505 397-4882

Phone:

 TY ASSU		
PENS A GROUP	D A NUCLU	1 X A 'E' A 1
LEY ASSU	KANCE	$\mathbf{H}\mathbf{A} + \mathbf{A}^{\star}$

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b					
Benzene	<1	μg/L	1	<1	05/13/03	8260b		0.7	89.4	91.9	87.1
Ethylbenzene	<1	μg/L	1	<1	05/13/03	8260b		4.7	96.4	101.9	97.3
m,p-Xylenes	<1	μg/L	1	<1	05/13/03	8260b		3.1	99.5	102.5	100.3
o-Xylene	1>	μg/L	1	<1	05/13/03	8260b		8.1	102.4	100.3	104.9
Toluene	<1	μg/L	1	<1	05/13/03	8260b		0.5	96.6	104.3	104.2

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.


Respectfully Submitted,

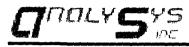
88240

FAX: 505 397-4701

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Client:	Environmental Tech Group	Pro
Attn:	Camille Reynolds	San


Project ID: EO 2016 Sample Name: MW - 10 Report#/Lab ID#: 142411 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	98.5	80-120	
Toluene-d8	8260Ъ	99.4	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 05/14/03

Client:	Environmental Tech Group			
Attn:	Camille Reynolds			
Address:	2540 W. Marland			
	Hobbs	NM	ł	88240

3512 Montopolis Drive, Austin, TX 7874 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 385-7411 (512) 385-5886 .

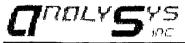
Report#/Lab ID#: 142412	Report Date: 05/14/03
Project ID: EO 2016	•
Sample Name: MW - 11	
Sample Matrix: water	
Date Received: 05/09/2003	Time: 12:00
Date Sampled: 05/07/2003	Time: 11:00

REPORT OF ANALYSIS

Phone: 505 397-4882

	QUALITY	ASSUR	ANCE	DATA ¹
--	---------	-------	------	-------------------

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b					
Benzene	<1	μg/L	1	<1	05/13/03	8260b		0.7	89.4	91.9	87.1
Ethylbenzene	<1	μg/L	1	<1	05/13/03	8260b		4.7	96.4	101.9	97.3
m,p-Xylenes	<1	µg/L	1	<1	05/13/03	8260b		3.1	99.5	102.5	100.3
o-Xylene	<1	µg/L	1	<1	05/13/03	8260b		8.1	102.4	100.3	104.9
Toluene	<1	μg/L	1	<1	05/13/03	8260b		0.5	96.6	104.3	104.2

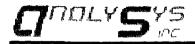

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program, @ Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

FAX: 505 397-4701

Respectfully Submitted,

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M =Matrix interference.


Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142412
Attn:	Camille Reynolds	Sample Name: MW - 11	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94.6	80-120	
Toluene-d8	8260b	105	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 05/14/03

Client:	Environmental Tech Group		
Attn:	Camille Reynolds		
ddress:	2540 W. Marland		
	Hobbs	NM	88240

Report#/Lab ID#: 142413 Report Date: 05/14/03 Project ID: EO 2016 Sample Name: MW - 12 Sample Matrix: water Time: 12:00 Date Received: 05/09/2003 Time: 12:00 Date Sampled: 05/07/2003 Time: 12:00

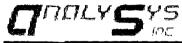
REPORT OF ANALYSIS

Phone:

505 397-4882

QUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b					
Benzene	<1	µg/L	1	<1	05/13/03	8260b		0.7	89.4	91.9	87.1
Ethylbenzene	<1	μg/L	1	<1	05/13/03	8260ь		4.7	96.4	101.9	97.3
m,p-Xylenes	<1	μg/L	1	<1	05/13/03	8260b		3.1	99.5	102.5	100.3
o-Xylene	<1	μg/L	1	<1	05/13/03	8260b		8.1	102.4	100.3	104.9
Toluene	<1	μg/L	1	<1	05/13/03	8260b		0.5	96.6	104.3	104.2
		1	1	1	1 1			1	1	,	1

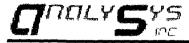

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

FAX: 505 397-4701

Respectfully Submitted,

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.



Client: E	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142413
Attn: C	Camille Reynolds	Sample Name: MW - 12	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	97.4	80-120	
Toluene-d8	8260b	99.3	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Client:	Environmental Tech Group		
Attn:	Camille Reynolds		
Address:	2540 W. Marland		
	Hobbs	NM	88240

FAX: 505 397-4701

Report#/Lab ID#: 142414 Report Date: 05/14/03 Project ID: EO 2016 Sample Name: MW - 13 Sample Matrix: water Time: 12:00 Date Sampled: 05/07/2003 Time: 13:00

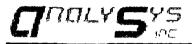
REPORT OF ANALYSIS

Phone:

505 397-4882

QUALITY	ASSURA	NCE	DATA ¹
---------	--------	-----	-------------------

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b					
Benzene	2.5	μg/L	1	<1	05/13/03	8260b		0.7	89.4	91.9	87.1
Ethylbenzene	<1	µg/L	1	<1	05/13/03	8260b		4.7	96.4	101.9	97.3
m,p-Xylenes	19.1	μg/L	1	<1	05/13/03	8260b		3.1	99.5	102.5	100.3
o-Xylene	<1	μg/L	1	<1	05/13/03	8260b		8.1	102.4	100.3	104.9
Toluene	<1	μg/L	1	<1	05/13/03	8260b		0.5	96.6	104.3	104.2


This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

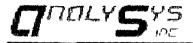
Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1 Report Date: 05/14/03

Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142414
Attn:	Camille Reynolds	Sample Name: MW - 13	Sample Matrix: water

REPORT OF SURROGATE RECOVERY


Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	100	80-120	
Toluene-d8	8260b	102	88-110	

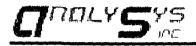
Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 05/14/03

<i>CINELYSYS</i>						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,		rristi, T	X 78408
Client:Environmental Tech GroupAttn:Camille ReynoldsAddress:2540 W. MarlandHobbsHobbsPhone:505 397-4882FAX:505 3				Report#/Lab II Project ID: EO Sample Name: Sample Matrix Date Received: Date Sampled:	2016 MW - 14 : water 05/09/2003 05/07/2003	Time: Time:	rt Date: (12:00 13:30				
REPORT OF ANALYSIS							QUALITY				······
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b					
Benzene	1880	μg/L	100	<100	05/13/03	8260b		0.7	89.4	91.9	87.1
Ethylbenzene	463	μg/L	100	<100	05/13/03	8260b		4.7	96.4	101.9	97.3
m,p-Xylenes	839	μg/L	100	<100	05/13/03	8260b		3.1	99.5	102.5	100.3
o-Xylene	470	μg/L	100	<100	05/13/03	8260b		8.1	102.4	100.3	104.9
Toluene	1180	μg/L	100	<100	05/13/03	8260Ъ		0.5	96.6	104.3	104.2
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster				elative percent (red from a spike sed as the percer , typically at or ly denote USEP, ns. 7. Data Qu ted method blan	%) difference f d sample. 4 nt (%) recovery above the Prac A procedures. alifiers are J = tk(s). S1 =MS ory limit. S3 =	mple batch which inclue between duplicate measu L Calibration Verification of analyte from a know stical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery es MS and/or MSD and PI erence.	rements. J. Recomends. J. Recomends. Recomendation of the communication of the second standard or mathematical standard or mathematication of the second standard sta	overy (Reco oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	by.) is the per- ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B =A Post digestion	cent (%) of (LCS) res utitation Li thod numb for any re- nalyte det spike (PE	of analyte oults are imits pers quired ected in DS)

1

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411


Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142415
Attn:	Camille Reynolds	Sample Name: MW - 14	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	93.6	80-120	
Toluene-d8	8260b	100	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 05/14/03

Client:

Attn:

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 FAX (512) 385-7411

Report#/Lab ID#: 142416	Report Date: 05/14/03
Project ID: EO 2016	
Sample Name: MW - 15	
Sample Matrix: water	
Date Received: 05/09/2003	Time: 12:00
Date Sampled: 05/07/2003	Time: 14:00

Phone: 505 397-4882 **FAX:** 505 397-4701

Environmental Tech Group

Camille Revnolds

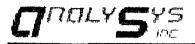
REPORT OF ANALYSIS

Address: 2540 W. Marland Hobbs

OUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b					
Benzene	1890	μg/L	100	<100	05/13/03	8260b		0.7	89.4	91.9	87.1
Ethylbenzene	6.29	μg/L	1	<1	05/13/03	8260b		4.7	96.4	101.9	97.3
m,p-Xylenes	<1	μg/L	1	<1	05/13/03	8260b		3.1	99.5	102.5	100.3
o-Xylene	<1	μg/L	1	<1	05/13/03	8260b		8.1	102.4	100.3	104.9
Toluene	<i< td=""><td>µg/L</td><td>1</td><td><1</td><td>05/13/03</td><td>8260b</td><td></td><td>0.5</td><td>96.6</td><td>104.3</td><td>104.2</td></i<>	µg/L	1	<1	05/13/03	8260b		0.5	96.6	104.3	104.2

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.


Respectfully Submitted,

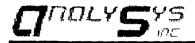
Richard Laster Richard Laster

NM

88240

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Client:	Environmental Tech Group	Project ID: EO 2016	
Attn:	Camille Reynolds	Sample Name: MW - 15	


Report#/Lab ID#: 142416 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	96.4	80-120	
Toluene-d8	8260b	95.6	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 05/14/03

Client:Environmental Tech GroupAttn:Camille ReynoldsAddress:2540 W. MarlandHobbsNM88240

 3512 Montopolis Drive, Austin, TX 78744 &

 2209 N. Padre Island Dr., Corpus Christi, TX 78408

 (512) 385-5886
 • FAX (512) 385-7411

Report#/Lab ID#: 142417	Report Date: 05/14/03
Project ID: EO 2016	
Sample Name: MW - 16	
Sample Matrix: water	
Date Received: 05/09/2003	Time: 12:00
Date Sampled: 05/07/2003	Time: 15:00

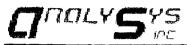
REPORT OF ANALYSIS

505 397-4882

Phone:

OUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b					
Benzene	<1	µg/L	1	<1	05/13/03	8260b		0.7	89.4	91.9	87.1
Ethylbenzene	<1	μg/L	1	<1	05/13/03	8260b		4.7	96.4	101.9	97.3
m,p-Xylenes	<1	μg/L	1	<1	05/13/03	8260b		3.1	99.5	102.5	100.3
o-Xylene	<1	μg/L	1	<1	05/13/03	8260b		8.1	102.4	100.3	104.9
Toluene	<1	μg/L	1	<1	05/13/03	8260b		0.5	96.6	104.3	104.2

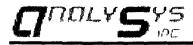

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

FAX: 505 397-4701

Respectfully Submitted,

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.


Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142417
Attn:	Camille Reynolds	Sample Name: MW - 16	Sample Matrix: water

<u>REPORT OF SURROGATE RECOVERY</u>

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	93.4	80-120	
Toluene-d8	8260b	98.4	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 05/14/03

Client:	Environmental Tech Group			
Attn:	Camille Reynolds			
Address:	2540 W. Marland			
	Hobbs	N	١M	88240

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 385-7411 (512) 385-5886 •

Report#/Lab ID#: 142418	Report Date: 05/14/03
Project ID: EO 2016	
Sample Name: MW - 17	
Sample Matrix: water	
Date Received: 05/09/2003	Time: 12:00
Date Sampled: 05/07/2003	Time: 16:00

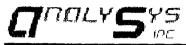
REPORT OF ANALYSIS

Phone: 505 397-4882

OUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					05/13/03	8260b					
Benzene	<1	μg/L	1	<1	05/13/03	8260b		0.7	89.4	91.9	87.1
Ethylbenzene	<1	μg/L	1	<1	05/13/03	8260b		4.7	96.4	101.9	97.3
m,p-Xylenes	<1	µg/L	1	<1	05/13/03	8260b		3.1	99.5	102.5	100.3
o-Xylene	<1	μg/L	1	<1	05/13/03	8260b		8.1	102.4	100.3	104.9
Toluene	<1	μg/L	1	<1	05/13/03	8260b	li	0.5	96.6	104.3	104.2

This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX, All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.


FAX: 505 397-4701

Respectfully Submitted,

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Ouantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal guantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Report Date: 05/14/03 Page#: 1

Client:	Environmental Tech Group	Project ID: EO 2016	Report#/Lab ID#: 142418
Attn:	Camille Reynolds	Sample Name: MW - 17	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

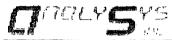
Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95	80-120	
Toluene-d8	8260b	106	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 05/14/03

Send Report. No: Company Name <u>E. T. G.</u> Address <u>2545 W. 1972</u> City <u>Hobles</u> State	iland		Com Add	to (if pany ress	Nam	e <u>Eo</u>		Zij)			221 Fr	eidric			190, Ai	Differ Istin, TX-78
ATTN: Ken Dutton			_ ATI	N:							~~~						sted (1) nation as requ
Phone 505 377-4382 Fax	505-37	7-470	/ Phor	ne			Fax					7	ease a	$\frac{1}{7}$	- <u>Spianau</u>	7 7	- Z
Rush Status (must be confirm Project Name/PO#: <u>60</u>		· · ·		usto	Erisk	·			80	210							1.
Client Sample No. Description/Identification	Date Sampled	Time Sampled	No. of Containers	Soil	Water	Waste	Lab I.D. # (Lab only)		Y			\square				Con	nments
Mw-1	5-7-03	8:00	2		\times		142408	X								en an an ann an 11 Million ann an A	after som at 10 - and 2 and 4 february 1 (b).
<u>mw-7</u>	5-7-03	9:00	2		X		142409	X									
mw-8	5-7-03	9:30	2		X		142410	$ \times $									
MW-10	5-7-03	10:00	2		X		142411	X		_							
<u>mw-11</u>	5-7-03	11.00	2		X		142412	$ \Sigma $									
111W-12	5-7-03	12:00	2		X	•••••••	142413	X.							· · · · · ·		
MW-13	5-7-03	1:00	2		$\sum_{i=1}^{n}$		142414	X.									
<u>Miw-14</u>	5-7-03	1:30	2		X		142415	X									
MW-15	5-7-03	2:00	2		\searrow		142416	X								• ,	
MW-16	9-7-03	3:00	2		X		142417	KI		_						ar 210 - 19 mm	

Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reports (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody. ASI will default to Priority Polluter it's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.


and a second second second second second second second second second second second second second second second	Sample Relinquishe	d By		Sample Received By							
Name	Affiliation	Date	Time	Name	Affiliation	Date	Time				
Suston Frisk	ETGI	5-7-03		Melanie Hun	phren ASI	5/9/03	12:0C				
				. ,	0						

endering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys. Inc.'s standard terms]

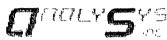
UTIALIY"UU"UUDEUJ	L / L												 /	-		I realized	"	, 199
Send Report. To:				to (if d								·				a		
Company Name <u>E. T.G.</u>	1,		Con	ipany N	lamo	e La	++						24 Fit	eidric		2) 4 14-58), Austin, 06	CX 78
Company Name <u>E. T.G.</u> Address <u>254ø w. 112</u>	land		Add	ress											()			
City <u>Hobbs</u> State	NM Zip	88211					State	Z	Lip			-	,					
ATTN: Ken Dutton				'N:								Analyses Re						
Phone 505 377-4382 Fax,			/ Pho	ne			Fax						rle 	ease a	itach ex	planatory i	nformation	as terlu
Rush Status (must be confirm Project Name/PO#: <u>Fo 70</u>	ed with la	ab mgr.):		istm E	n'sk	/	10-10-10-10-10			8421	2							
Client Sample No, Description/Identification	1 ^	1 -	No. of Containers	Soil W	ater	Waste	Lab I.D. # (Lab only)		<u>Blit</u>								Compre	nts
MW-17	5-7-03	4.00	2	· · · · ·	$\left \chi \right $		142418	X		۰ · ·				Free locations in the	-	1710777942 1471 11879 1189		
								<u> </u>										

							· · · · ·									*** ****************		
																		···· •
																· •·· •· =	·	
			•															
														•••••				• ••
										 				1. ·			······································	
														*****		ور مواد وروف و		
Unless specifically requested otherwise on t nits (MDL/PQL). For GC/MS volatiles and it's HSL list at ASI's option. Specific compo-	extractables, u	ntess specific	analytical pa	rameter lis														
Sample	Relinqui	shed By		####\$\$ <u>;;;};;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;</u>	***		• In • Magazine 12.00 Magazine and 10 Magazine (1 0.000)			Sa	mpl	e R	eceiv	ed	By		х тала — 2 1 41	
Name Affilia	tion	I	Date	Tin	1e		Name			Δſ	filiat	ion				Date	'1	lime
Justin Frisk STGT	** *******************************					24	laniet	in	npl	na	y		AS	1	5/	9/03	3 /2).' <i>O</i> (
'endering of above described samp	ples to Ana	lySys, Inc	for analy	tical test	ling	constit	utes agreeme	ent by	y buy	er/sa	mple	r to /	Analy	Sys	. The 's	standar	diernis	1

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs,					Report#/Lab II Project ID: EO Sample Name: Sample Matrix:	2016 Townsen MW-1	-	rt Date: (18/26/03		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Received: Date Sampled:	08/19/2003		11:45 11:00		
REPORT OF ANALYSIS	<u>_</u>						QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS
Volatile organics-8260b/BTEX					08/21/03	8260b					
Benzene	<1	μg/L	1	<1	08/21/03	8260b		8.4	85.9	81.1	102
Ethylbenzene	<1	µg/L	1	<1	08/21/03	8260b		6.6	114.6	107.6	114
m,p-Xylenes	<1	μg/L	1	<1	08/21/03	82 60b		6.8	112.3	101.8	111
o-Xylene	<1	μg/L	1	<1	08/21/03	8 2 60b)	7.3	116.4	106.2	114
Toluene	<1	µg/L	1	<1	08/21/03	8260b		4.4	105.3	102.5	12
This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys. Inc.'s Quality Assurance/Quality Control Program. © 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limits (RQL), typically at or above the Practical Quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are 1 = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.											

10-03-3

		الأنواك بمونوب فالتقاب ويتقاب والانتقاب والتكانية المتكري والتنوا التواكي والفاتية والتقري والفريبي والفراغ		
- [Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146275
	Attn:	Ken Dutton	Sample Name: MW-1	Sample Matrix: water
				, <u> </u>


REPORT OF SURROGATE RECOVERY

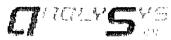
Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	119	80-120	
Toluene-d8	82 60b	109	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 08/26/03

D adey S						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,		hristi, T			
Client: Environmental Tech Group	· · · · · · · · · · · · · · · · · · ·	1					Report#/Lab ID#: 146276 Report Date: 08/26/03						
Attn: Ken Dutton						Project ID: EO		d					
Address: 2540 W. Marland						Sample Name:							
Hobbs,	NM 88240					Sample Matrix: Date Received:		Times	11:45		[
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:			11:45				
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	TA1			
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴		
Volatile organics-8260b/BTEX					08/21/03	82 60b							
Benzene	<1	μg/L	1	<1	08/21/03	8260b		8.4	85.9	81.1	102		
Ethylbenzene	<1	μg/L	1	<1	08/21/03	8260b		6.6	114.6	107.6	114.1		
m,p-Xylenes	1.74	μg/L	1	<1 -	08/21/03	8 2 60b		6.8	112.3	101.8	111.7		
o-Xylene	<1	μg/L	1	<1	08/21/03	8260b		7.3	116.4	106.2	114.1		
Toluene	<1	μg/L	1	<1	08/21/03	8260b		4.4	105.3	102.5	121		
InductImage: Control is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.I. Quality assurance data is for the sample batch which included this sample.2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements.3. Recovery (Recov.) is the percent (%) of analyte recovery famalyte from a known standard or matrix.5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method.6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required 													

_			
Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146276
Attn:	Ken Dutton	Sample Name: MW-7	Sample Matrix: water


REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	90.8	80-120	
Toluene-d8	82 60b	109	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

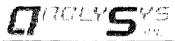
Page#: 2 Report Date: 08/26/03

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs,	NM 88240					Report#/Lab II Project ID: EO Sample Name: Sample Matrix:	2016 Townsen MW-8	-	rt Date: (08/26/03	
Phone: 505 397-4882 FAX: 505 3						Date Sample Chatrix. Date Sampled:	08/19/2003		11:45 12:00		
REPORT OF ANALYSIS					<u></u>		QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					08/22/03	8260b					
Benzene	<1	μg/L	1	<1	08/22/03	8260b		8.4	85.9	81.1	102
Ethylbenzene	<1	μg/L	1	<1	08/22/03	82 60b		6.6	114.6	107.6	114.1
m,p-Xylenes	<1	μg/L	1	<1	08/22/03	8260b		6.8	112.3	101.8	111.7
o-Xylene	<1	μg/L	1	<1	08/22/03	82 60b		7.3	116.4	106.2	114.1
Toluene	<l< td=""><td>μg/L</td><td>1</td><td><1</td><td>08/22/03</td><td>8260b</td><td></td><td>4.4</td><td>105.3</td><td>102.5</td><td>121</td></l<>	μg/L	1	<1	08/22/03	8260b		4.4	105.3	102.5	121
This analytical report is respectfully submitted by Anal have been carefully reviewed and, to the best of my kno are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc. Ref	e (RQL) typical dilutio associa	relative percent (red from a spike sed as the percent , typically at or ly denote USEP, ns. 7. Data Qu nted method blar	(%) difference l d sample. 4 ant (%) recovery above the Prace A procedures. alifiers are J = nk(s). S1 =MS	mple batch which includ between duplicate measu calibration Verificatio of analyte from a know stical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery es MS and/or MSD and PE	rements. 3. Reco n (CCV) and Lab n standard or matu (PQL) of the ana flect nominal qua nt between the PQ aceed advisory lin	overy (Reco oratory Co- rix. 5. Re lytical meti ntitation lir QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quan hod. 6. Met nits adjusted MDL. B = A cost digestion	cent (%) o (LCS) rest titation Li hod numb for any rec nalyte dete spike (PD	f analyte alts are mits ers juired ected in (S)		

1

1

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146277
Attn:	Ken Dutton	Sample Name: MW-8	Sample Matrix: water


REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	108	80-120	
Toluene-d8	8 2 60b	110	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

A haly s ys						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,	Corpus Cl	hristi, TX	
Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs, NM 88240 Phone: 505 397-4882 FAX: 505 397-4701						Report#/Lab II Project ID: EO Sample Name: I Sample Matrix: Date Received: Date Sampled:	2016 Townsen MW-10 water 08/19/2003	id Time:	11:45 12:30	08/26/03	
REPORT OF ANALYSIS						Date Sampled.	QUALITY			TA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					08/22/03	8260b					
Benzene	5.49	µg/L	1	<1	08/22/03	8260b		8.4	85.9	81.1	102
Ethylbenzene	<1	µg/L	1	<1	08/22/03	82 60b	J	6.6	114.6	107.6	114.1
m,p-Xylenes	1.06	µg/L	1	<1	08/22/03	82 60b		6.8	112.3	101.8	111.7
o-Xylene	<1	µg/L	1	<1	08/22/03	82 60b	J	7.3	116.4	106.2	114.1
Toluene	2.18	µg/L	1	<1	08/22/03	8260b		4.4	105.3	102.5	121
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster				elative percent (red from a spike sed as the percen , typically at or ly denote USEP ns. 7. Data Qu ted method blar	%) difference l d sample. 4 at (%) recovery above the Prace A procedures. alifiers are J = ak(s). S1 =MS ory limit. S3 =	mple batch which includ between duplicate measu 4. Calibration Verificatio 7 of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex =MS and/or MSD and PL ference.	rements. 3. Reco n (CCV) and Lab n standard or mata (PQL) of the ana flect nominal qua nt between the PQ cceed advisory lin	overy (Recovery Co oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestion	ccent (%) o (LCS) rest nitation Li thod numb for any rec nalyte dete spike (PD	of analyte ults are mits pers quired ected in OS)

 Page#: 1
 Report Date: 08/26/03

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146278
Attn:	Ken Dutton	Sample Name: MW-10	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	118	80-120	
Toluene-d8	8260b	110	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 08/26/03

Exceptions Report:

Report #/Lab ID#: 146278Matrix: waterClient: Environmental Tech GroupAttn: Ken DuttonProject ID: EO2016 TownsendSample Name: MW-10

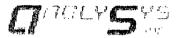
Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion


A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

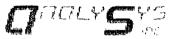
Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Ethylbenzene	J	See J-flag discussion above.
o-Xylene	J	See J-flag discussion above.
Notes:	a	

A haly 5 %			والمراجعة والمراجع والمراجع والمراجع			220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,	Corpus Cl	hristi, T	
Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs, NM 88240						Report#/Lab II Project ID: EO Sample Name: Sample Matrix: Date Received:	2016 Townsen MW-11 : water	d	rt Date: (08/26/03	
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	08/18/2003	Time:	13:00		
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX			~		08/22/03	8260b					
Benzene	5.61	μg/L	1	<1	08/22/03	8260b		8.4	85.9	81.1	102
Ethylbenzene	<1	μg/L	1	<1	08/22/03	8260b		6.6	114.6	107.6	114.1
m,p-Xylenes	5.78	μg/L	1	<1	08/22/03	82 60b		6.8	112.3	101.8	111.7
o-Xylene	<1	μg/L	1	<1	08/22/03	82 60b		7.3	116.4	106.2	114.1
Toluene	<1	μg/L	1	<1	08/22/03	8260b		4.4	105.3	102.5	121
This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © 1. Quality assurance data is for the sample batch which included this sample. 2. Prector for the relative percent (%) difference between duplicate measurements. 3. Recovery (I recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical repressed as the percent (%). S1 =MS and/or MSD recovery exceed advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advitoan advisory limit. M =Matrix interference.						overy (Reco oratory Co rix. 5. Re lytical mether ntitation lin QL and the nits. S2 =F	ov.) is the per- ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A 'ost digestion	cent (%) o (LCS) resu titation Li thod numb for any rec nalyte dete spike (PD	of analyte ults are mits eers quired ected in eS)		

Page#: 1 Report Date: 08/26/03

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146279
Attn:	Ken Dutton	Sample Name: MW-11	Sample Matrix: water
		│	<u></u>


REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	105	80-120	
Toluene-d8	82 60b	110	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 08/26/03

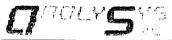
						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,		nristi, T	
,	NM 88240			Report#/Lab ID#: 146280Report Date: 08/26/03Project ID: EO2016 TownsendSample Name: MW-12Sample Matrix: waterDate Received: 08/19/2003Time: 11:45Date Sampled: 08/18/2003Time: 13:30							
Phone: 505 397-4882 FAX: 505 397-4701 Date Sampled: 08/18/2003 Time: 13:30 QUALITY ASSURANCE DATA ¹											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX		tt			08/22/03	8260b					
Benzene	<1	μg/L	1	<1	08/22/03	8260b		8.4	85.9	81.1	102
Ethylbenzene	<1	μg/L	1	<1	08/22/03	8260b		6.6	114.6	107.6	114.1
m,p-Xylenes	<1	μg/L	1	<1	08/22/03	8260b		6.8	112.3	101.8	111.7
o-Xylene	<1	µg/L	1	<1	08/22/03	8260b		7.3	116.4	106.2	114.1
Toluene	<1	μg/L	1	<1	08/22/03	8260b		4.4	105.3	102.5	121
	wledge, the anal Quality Contro ts reserved. No	enclosed results alytical results of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of anal of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of anal of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of anal of the relative percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits ecans without the abmitted, further the dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected associated method blank(s). S1 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher					of analyte ults are mits pers quired ected in DS)				

;

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146280
Attn:	Ken Dutton	Sample Name: MW-12	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	106	80-120	
Toluene-d8	8260b	110	88-110	


Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 08/26/03

Client:Environmental Tech GroupAttn:Ken Dutton			<u>, 1</u> 4			Report#/Lab II Project ID: EO	2016 Townsen	-	rt Date: ()8/26/03	
Address: 2540 W. Marland Hobbs.	NM 88240					Sample Name: Sample Matrix:					
110003,	14141 00240					Date Received:		Time:	11:45		
Phone: 505 397-4882 FAX: 505	397-4701					Date Sampled:	08/18/2003	Time:	14:00		
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	TA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS
Volatile organics-8260b/BTEX					08/22/03	82 60b					
Benzene	2.06	μg/L	1	<1	08/22/03	8260b		8.4	85.9	81.1	102
Ethylbenzene	<1	µg/L	1	< 1	08/22/03	82 60b		6.6	114.6	107.6	114.
m,p-Xylenes	34.6	µg/L	1	<1	08/22/03	82 60b		6.8	112.3	101.8	111.
o-Xylene	<1	μg/L	1	<1	08/22/03	82 60b		7.3	116.4	106.2	114.
Toluene	<1	µg/L	1	<1	08/22/03	8260b		4.4	105.3	102.5	121
	owledge, the ana e/Quality Contro hts reserved. No	lytical results I Program. © part of this ans without the bmitted,	e (RQL) typical dilution associa	elative percent (red from a spike sed as the perce , typically at or ly denote USEP ns. 7. Data Qu ted method blan	(%) difference ed sample. at (%) recovery above the Prace A procedures. alifiers are J = nk(s). S1 =MS	mple batch which include between duplicate measu 4. Calibration Verificatio 7 of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ep =MS and/or MSD and PE	rements. 3. Reco n (CCV) and Lab- n standard or matu (PQL) of the ana flect nominal qua nt between the PQ acceed advisory lin	overy (Reco oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quan hod. 6. Met nits adjusted MDL. B = A Post digestion	cent (%) o (LCS) rest titation Li thod numb for any rec nalyte dete spike (PD	f analyt ults are mits ers quired ected in 9S)

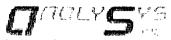
Page#: 1 Report

Report Date: 08/26/03

i

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab 1D#: 146281
Attn:	Ken Dutton	Sample Name: MW-13	Sample Matrix: water

REPORT OF SURROGATE RECOVERY


Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	113	80-120	
Toluene-d8	8260b	109	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

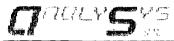
Page#: 2 Report Date: 08/26/03

Client: Environmental Tech Group						Report#/Lab II		-	rt Date: ()8/26/03	
Attn: Ken Dutton						Project ID: EO		d			
Address: 2540 W. Marland						Sample Name:					
Hobbs,	NM 88240					Sample Matrix:		-			
						Date Received:			11:45		
Phone: 505 397-4882 FAX: 505	397-4701					Date Sampled:	08/18/2003	Time:	14:30		
REPORT OF ANALYSIS							QUALITY.	ASSUR	ANCE DA	TA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS
Volatile organics-8260b/BTEX					08/22/03	8260b					
Benzene	833	μg/L	10	<10	08/22/03	8260b		8.4	85.9	81.1	102
Ethylbenzene	235	μg/L	10	<10	08/22/03	8260b		6.6	114.6	107.6	114.
m,p-Xylenes	366	μg/L	10	<10	08/22/03	8260b		6.8	112.3	101.8	111.
o-Xylene	213	μg/L	10	<10	08/22/03	82 60b		7.3	116.4	106.2	114.
Toluene	242	µg/L	10	<10	08/22/03	8260b		4.4	105.3	102.5	121
	nowledge, the ana ce/Quality Contro ghts reserved. No	lytical results of Program. © part of this cans without th bmitted, for the second	e (RQL). typicall dilutior associa	elative percent (red from a spike red as the perce typically at or y denote USEP ns. 7. Data Qu ted method blar	(%) difference l d sample. 4 nt (%) recovery above the Prav A procedures. alifiers are J = nk(s). S1 =MS sory limit. S3 =	mple batch which include between duplicate measure 4. Calibration Verification of analyte from a know etical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ep- emS and/or MSD and PE	rements. 3. Reco n (CCV) and Lab- n standard or matu (PQL) of the ana flect nominal qua nt between the PQ ceed advisory lin	overy (Reconstory Co oratory Co rix. 5. Re lytical met nutitation lin 2L and the nits. S2 = F	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestion	cent (%) o (LCS) res atitation Li thod numb for any rec nalyte deto spike (PD	of analy ults are imits oers quired ected in OS)

Report Date: 08/26/03 **Page#:** 1

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146282
Attn:	Ken Dutton	Sample Name: MW-14	Sample Matrix: water

REPORT OF SURROGATE RECOVERY


Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	82 60b	110	80-120	
Toluene-d8	82 60b	106	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

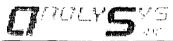
Page#: 2 Report Date: 08/26/03

Client:Environmental Tech GroupAttn:Ken DuttonAddress:2540 W. Marland						Report#/Lab II Project ID: EO Sample Name:	2016 Townsen MW-15	-	rt Date: ()8/26/03	
Hobbs, Phone: 505 397-4882 FAX: 505 3	NM 88240 97-4701					Sample Matrix: Date Received: Date Sampled:	08/19/2003	Time: Time:	11:45 15:00		
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					08/23/03	8260b					
Benzene	1910	μg/L	100	<100	08/25/03	8260b		2.3	93.2	89.6	88.6
Ethylbenzene	122	μg/L	1	<1	08/23/03	8260b		5.8	113.5	112.7	113.1
m,p-Xylenes	6.42	μg/L	1	<1	08/23/03	82 60b		5.4	111.3	111.4	111.4
o-Xylene	<1	μg/L	1	<1	08/23/03	82 60b		5.5	115.1	118.5	115.2
Toluene	1.03	μg/L	1	<1	08/23/03	8260b		9.9	11 2 .7	91.6	100.6
	owledge, the ana e/Quality Contro ats reserved. No	ytical results l Program. © part of this ans without th punitted,	e (RQL) typical dilution associa	elative percent (red from a spike sed as the percen , typically at or ly denote USEP. ns. 7. Data Qu tted method blar	(%) difference and sample. (%) recovery above the Pra- A procedures. alifiers are J = nk(s). S1 =MS	mple batch which include between duplicate measu 4. Calibration Verification of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex- MS and/or MSD and PI	rements. 3. Reco n (CCV) and Lab- n standard or matu (PQL) of the ana flect nominal qua nt between the PQ acceed advisory lin	overy (Reco oratory Con rix. 5. Re lytical mether ntitation lin QL and the 2 nits. S2 = P	ov.) is the per- ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestion	rcent (%) o (LCS) resuntitation Li thod numb for any reconstructed thalyte deten spike (PD	of analyte ults are imits cers quired ected in OS)

 Page#: 1
 Report Date: 08/26/03

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab 1D#: 146283
Attn:	Ken Dutton	Sample Name: MW-15	Sample Matrix: water

REPORT OF SURROGATE RECOVERY


Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	108	80-120	
Toluene-d8	8260b	106	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 08/26/03

amers ve					· · · · · · · · · · · · · · · · · · ·	220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,		hristi, T	
Client:Environmental Tech GroupAttn:Ken DuttonAddress:2540 W. Marland Hobbs,Phone:505 397-4882FAX: 505 3	NM 88240 97-4701					Report#/Lab II Project ID: EO Sample Name: Sample Matrix: Date Received: Date Sampled:	2016 Townsen MW-16 water 08/19/2003	d Time:	rt Date: (11:45 15:30	08/26/03	
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	TA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					08/22/03	8260b					
Benzene	7.74	μg/L	1	<1	08/22/03	8260b		2.3	93.2	89.6	88.6
Ethylbenzene	<1	μg/L	1	<1	08/22/03	82 60b	l 1	5.8	113.5	112.7	113.1
m,p-Xylenes	1.86	µg/L	1	<1	08/22/03	82 60b		5.4	111.3	111.4	111.4
o-Xylene	<1	µg/L	1	<1	08/22/03	8260b	J	5.5	115.1	118.5	115.2
Toluene	3.36	μg/L	1	<1	08/22/03	8260b		9.9	112.7	91.6	100.6
This analytical report is respectfully submitted by Anal have been carefully reviewed and, to the best of my knd are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc. Re	mple batch which includ between duplicate measu 4. Calibration Verificatio 7 of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex =MS and/or MSD and PE ference.	rements. 3. Reco n (CCV) and Lab n standard or matn (PQL) of the ana flect nominal qua: nt between the PQ acceed advisory lin	overy (Reco oratory Co tix. 5. Re lytical meti ntitation lin QL and the nits. S2 =P	ov.) is the per- ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A cost digestion	cent (%) o (LCS) res atitation Li thod numb for any rec nalyte dete spike (PD	f analyte ults are mits vers quired ected in VS)					

Page#: 1 Report Date: 08/26/03

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146284
Attn:	Ken Dutton	Sample Name: MW-16	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95.6	80-120	
Toluene-d8	8260b	108	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 08/26/03

Report #/Lab ID#: 146284Matrix: waterClient: Environmental Tech GroupAttn: Ken DuttonProject ID: EO2016 TownsendSample Name: MW-16

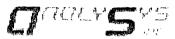
Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.


J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Ethylbenzene	J	See J-flag discussion above.
o-Xylene	J	See J-flag discussion above.
Notes:		

THALY 543						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,	Corpus Cl	nristi, T					
Client: Environmental Tech Group Attn: Ken Dutton				Report#/Lab ID#: 146285 Report Date: 08/26/03 Project ID: EO2016 Townsend											
Address: 2540 W. Marland Hobbs,	NM 88240					Sample Name: Sample Matrix:	water								
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Received: Date Sampled:			11:45 16:00						
REPORT OF ANALYSIS	······································			QUALITY ASSURANCE DATA ¹											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴				
Volatile organics-8260b/BTEX					08/22/03	8260b									
Benzene	<1	μg/L	1	<1	08/22/03	8260b		2.3	93.2	89.6	88.6				
Ethylbenzene	<1	μg/L	1	<1	08/22/03	8260b		5.8	113.5	112.7	113.1				
m,p-Xylenes	<1	μg/L	1	<1	08/22/03	8260b		5.4	111.3	111.4	111.4				
o-Xylene	<1	μg/L	1	<1	08/22/03	8260b		5.5	115.1	118.5	115.2				
Toluene	<1	μg/L	1	<1	08/22/03	8260b	J	9.9	112.7	91.6	100.6				
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster Richard Laster											f analyte ults are mits eers quired ected in eS)				

Client:	Environmental Tech Group	Project ID: EO2016 Townsend	Report#/Lab ID#: 146285
Attn:	Ken Dutton	Sample Name: MW-17	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	98.4	80-120	
Toluene-d8	82 60b	104	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 08/26/03

Report #/Lab ID#: 146285 Matrix: water Client: Environmental Tech Group Project ID: EO2016 Townsend Sample Name: MW-17

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown. □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

I flag Discussion

A J flag data qualifier indicates (as required under TCEO-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (ROL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and OC data:

Parameter	Qualif	Comment
Toluene	J	See J-flag discussion above.
Notes:	•	

Report #/Lab ID#: 146285 Report Date: 8/26/200 Page#: 3

CHAIN-OF-CUSTODY

Send Reports To;

Company Manic Cres	amonumi Technology theye Inc.
Address 27 40 44	
	State A.M. Zip 88240
ALTH: Kar Dutta	
	2 Fax (505) 397-4701

Company Name Loff

Bill to (if different):

WWW.ANALYSYSINC.COM

4	d	dr.	es	s
1	u		$\cup \cup$	3

ATTN:


City

State Zip

Fax

Phone

12

3512 Momopolis Drive, Austin, TX 7874. Phone: (512) 385-5886 Eax: (512) 385-74

2209 N.P.I.D., Ste K. Corpus Christi, TX 78-Phone: (361) 289-6384 [Fax: (361) 289-08

Analyses Requested (1)

Please attach explanatory information as requ

Rush Status (must be confirmed with lab mgr.): Project Mame, POH: EO 2016 Tomsend Sampler: Justin Frisk

Client Sample No. Description/Identification	Date Sampled	Time Sampled	No. of Containers	Soil	Water	Waste	Lab I.D. # (Lab only)		ALL'S	\square		\square			Comments
mw-l	8-18-03	11:00	2		7		146275	ĸ		 					 ويو و و و و و و و و و و و و و و و و و و
mw-7	5-18-07	11:30	2		$\left \right. \right. \times$		146276	x		 					
mw-8	8-1-07	12:00	2		x		1 462 77	X		 					
mw-10	8-18-03	12:30	2		X		146278	x		 					
mw-ll	8-18-03	1:00	2		X		146279	×		 					
mw-12	8-18-03	(:30	2		+		146280	x		 					
mw-13	8-17-03	2:00	2		7		146281	+		 		<u> </u>			
mw -14	8-18-07	2:30	2		x		146282	x							
mw-15	8-19-03	3:00	2		X		146283	x		 	<u> </u>				
mw-16	8-18-03	3:30	2		X		146284	x							

, i jUnices specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal report Italic, (MDI/PQL). For GC/MS volutiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutant AST HST list at ASPs option. Specific compound lists must be supplied for all GC procedures. 7= 4.60

Sample Refinquished By Sample Received By Affiliation Affiliation Date Time Name Date Time Name melanie ETBI 8-15-13 ASI 103 11:45

Trendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

CHAIN OF-CUSTODY Send Reports To: Company Name <u>Encirconnected Technology Chrsse Inc.</u> Address <u>30 % 44 123 refered</u> Cuy <u>Helpis</u> State <u>AM</u> Zip <u>88240</u> ATTH. Kon Dotton Phone (<u>28) 377-4582</u> Fax (<u>585) 397-4701</u> Rush Status (must be confirmed with lab mgr.):				City State Zip ATTN:								 2200 N.P.I.D., Ste K, Corpus Christi, 1X 78 Phone: (301) 289-6384 [Eax: (301) 289-68 								
Project Name/PO#: 20 2016				stin	Frig) z	0									
Client Sample No. Description/Identification	Date Sampled	Time Sampled	No. of Containers	Soil	Water	Waste	Lab I.D. # (Lab only)		BILY	842							(ommer	nts	
mw-17	8-18-03	4:00	2		8		146285	×												
	***		··								1									
															.					
	- and in the offention when the																			
(i)U dess apecifically requested otherwise on t limits (MD1/PQ1). For GC/MS volatiles and ASP, HSF list at ASPs option - Specific compo	extractables, u	inless specific	: analytical pai	rameter	lists are	L	will be conducted I on this chain-of	l using -custou	ASI's dy or a	metho ttached	d of e d to th	hoice a is chai	ind all n-of-c	data ustody	J will be g, ASI	teport will de	ted to A stault to	SI's norm Priority I	al report 'offutant.	
																7	-= 4.6	ົ້		

and the second second second second second second second second second second second second second second second

Service Carrier Control - Control

0

	Sample Relinqui	shed By		Sample Received By							
Name	Affiliation	Date	Time	Name	Affiliation	Date	Time				
1020	ETTEL	8-15-03		milanie Hu	mohrey ASI	8/19/03	11:45				

[Fundaring of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

	NM 88240 5) 397-4701					Report#/Lab II Project ID: EO Sample Name: Sample Matrix: Date Received: Date Sampled:	13:45 11:00				
REPORT OF ANALYSIS Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	QUALITY Data Qual ⁷		Recov.3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH			NQL		12/08/03	3520					
Metals DigHg					12/03/03	7470&245.1					
Metals DigHNO3					12/03/03	3015					
Metals DigHNO3*filtered					12/04/03	3005a					
АштіпшпЛСР	2.38	mg/L	0.2	<0.2	12/09/03	6010 & 200.7		1.07	88.71	96.59	85.52
Arsenic/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.84	96.93	97.32	85.52
Barium/ICP	0.125	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.74
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		2.91	94.59	97.2	87.04
Boron/ICP	0.152	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		0.67	97.99	99.52	83.15
Cadmiun/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		1.39	97.29	98.6	88
Calcium/ICP*filtered	93.8	mg/L	10	<10	12/09/03	6010 & 200.7		0.28	99.61	97.78	115.79
Chromium/ICP	0.0114	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		0.6	92.05	98.52	102.56
Cobalt/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		2.33	91.39	99.5	88.1
Copper/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.18	96.86	101.54	
Iron/ICP	1.06	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		3.22	96.93	97.26	91.12
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.01	92.02	98.78	86.43
Magnesium/ICP*filtered	13.8	mg/L	5	<5	12/09/03	6010 & 2 00.7		0.27	97.41	97.92	124.41
Manganese/ICP	0.0113	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.06	90.68	101.36	84.74
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	105
Molybdenum/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.64	101.66	99.64	92.1
Nickel/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.88	91.3	98.7	86.06

have been carefully reviewed and, to the best of my knowledge, the analytical results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

 $^{\prime}C$ Richard Elton

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PRFC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. M = Matrix interference.

						2209	Montopolis ; N. Padre Isla) 385-5886	and Dr., (Corpus Ch	risti, TX	78408
Client: Environmental Tech Group			Project ID: EO2016 97-04						#/Lab ID	#: 15024	.6
Attn: Jerry Brian		j		ame: MW-1			Sample Matrix: water				
REPORT OF ANALYSIS-cont.	<u> </u>		L		QUALITY ASSURANCE DAT					ATA ¹	n
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual 7		Recov.3		LCS ⁴
Potassium/AA*filtered	1.54	mg/L	0.05	<0.05	12/09/03	258.1&7610		1.22	81.03	91.15	100.34
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	2.52	94.9	98.82	84.69
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/05/03	272.2&7761		6.7	99.08	95	102
Sodium/ICP*filtered	33.9	mg/L	0.4	<0.4	12/11/03	6010 & 200.7		1.51	90.34	98.65	99.6
Strontium/ICP	0.828	mg/L	0.04	<0.04	12/09/03	6010 & 200.7		1.31	92.5	99	86.6
Tin/ICP	< 0.02	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		1.04	94.74	98.79	86.96
Vanadium/ICP	0.0553	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		3.58	89.37	98.06	92.88
Zinc/ICP	0.0087	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		3.63	90.32	100.76	86.3
Extractable organics-PAH					12/18/03	8270c					
Volatile organics-8260b/BTEX					12/08/03	8260b(5030/5035)					
Benzene	<1	μg/L	1	<1	12/08/03	8260b		0.4	105.3	95.9	105.9
Ethylbenzene	<1	μg/L	1	<1	12/08/03	8260b		2.5	102.2	109.8	108.8
m,p-Xylenes	<2	µg/L	2	<2	12/08/03	8260b		1.4	97.8	106.4	101.8
o-Xylene	<1	μg/L	1	<1	12/08/03	8260b		0.9	102.1	109	116.7
Toluene	<1	µg/L	1	<1	12/08/03	8260b		0.2	111.9	108.8	109.2
Acenaphthene	< 0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.1	33.4	97.5	42.1
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.4	32.2	97.1	41.8
Anthracene	<0.05	µg/L	0.05	<0.05	12/18/03	8270c		8.5	30.4	95	44.8
Benzo[a]anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.7	40.9	94.2	52.6
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.7	32.1	95.2	51.9
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.5	44.5	95.2	54.3
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.9	44.1	94.6	54.6
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.8	46.5	95.9	58.1
Chrysene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0.4	44.5	93.3	56.4
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.2	46.3	98.1	57.4
Fluoranthene	<0.05	µg/L	0.05	<0.05	12/18/03	8270c		1.9	46.9	97.5	51.4
Fluorene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.1	37.1	98	43.5
Indeno[1,2,3-cd]pyrene	<0.05	µg/L	0.05	<0.05	12/18/03	8270c		5.5	45.8	97.5	56.2
Naphthalene	<0.05	µg/L	0.05	<0.05	12/18/03	8270c		0	28	96.2	38.4
Phenanthrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0	41.5	95.5	43.6
Pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.8	43.8	92.1	48

Page#: 2 Report Date: 12/29/03

Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab ID#: 150246
Attn:	Jerry Brian	Sample Name: MW-1	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	91.5	80-120	
Toluene-d8	8260b	101	88-110	
2-Fluorobiphenyl	8270c	46	43-116	
Nitrobenzene-d5	8270c	51.6	35-114	
Terphenyl-d14	8270c	55.1	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Report #/Lab ID#: 150246 Matrix: waterClient: Environmental Tech GroupAttn: Jerry BrianProject ID: EO2016 97-04Sample Name: MW-1

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

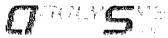
- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Selenium/ICP	J	See J-flag discussion above.
Notes:		


Page#: 4 Report #/Lab ID#: 150246 Report Date: 12/29/03

C AREA STR						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,	Corpus C	hristi, T	
Client: Environmental Tech Group Attn: Jerry Brian Address: 2540 W. Marland						Report#/Lab II Project ID: EO Sample Name:	2016 97-04 MW-7	Repo	rt Date: 1	12/29/03	
	e: (505) 397-4882 FAX: (505) 397-4701					Sample Matrix: Date Received: Date Sampled:	12/02/2003		13:45 11:30		
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					12/08/03	3520					
Metals DigHg					12/03/03	7470&245.1					
Metals DigHNO3					12/03/03	3015					
Metals DigHNO3*filtered					12/04/03	3005a					
Aluminum/ICP	<0.2	mg/L	0.2	<0.2	12/09/03	6010 & 200.7	J	1.07	88.71	96.59	85.52
Arsenic/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.84	96.93	97.32	85.52
Barium/ICP	0.0733	mg/L	0.005	< 0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.74
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		2.91	94.59	97.2	87.04
Boron/ICP	0.133	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		0.67	97.99	99.52	83.15
Cadmium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		1.39	97.29	98.6	88
Calcium/ICP*filtered	91.3	mg/L	10	<10	12/09/03	6010 & 2 00.7		0.28	99.61	97.78	115.79
Chromium/ICP	0.0258	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		0.6	92.05	98.52	102.56
Cobalt/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		2.33	91.39	99.5	88.1
Copper/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.18	96.86	101.54	87.17
Iron/ICP	0.0856	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		3.22	96.93	97.26	91.12
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.01	92.02	98.78	86.43
Magnesium/ICP*filtered	12	mg/L	5	<5	12/09/03	6010 & 200.7		0.27	97.41	97.92	124.41
Manganese/ICP	0.0053	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.06	90.68	101.36	84.74
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	105
Molybdenum/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7	J	1.64	101.66	99.64	92.1
Nickel/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.88	91.3	98.7	86.06
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Elton				elative percent (red from a spike sed as the percent , typically at or ly denote USEP ns. 7. Data Qu ted method blar	%) difference b d sample. 4 ant (%) recovery above the Prace A procedures. alifiers are J = a ak(s). S1 = MS cory limit. S3 =	mple batch which includ etween duplicate measur . Calibration Verificatio of analyte from a known tical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex MS and/or MSD and PE erence.	rements. 3. Reco n (CCV) and Lab- n standard or math (PQL) of the ana flect nominal qua- nt between the PQ acceed advisory lin	overy (Reco oratory Con ix. 5. Rep lytical mether ntitation lin DL and the lin its. S2 =P	by.) is the per- netrol Sample porting Quar- nod. 6. Me nits adjusted MDL. $B \approx A$ ost digestion	cent (%) o (LCS) res ntitation Li thod numb for any rec nalyte dete spike (PD	of analyte ults are mits pers quired ected in DS)

Report Date: 12/29/03 Page#: 1

						2209	Montopolis N. Padre Isl:) 385-5886	and Dr., (istin, TX Corpus Ch (512) 38	risti, TX	78408	
Client: Environmental Tech Group			Project II): EO20169	7-04			Report	#/Lab ID	#: 15024	7	
Attn: Jerry Brian			1 0	ame: MW-7			Sample Matrix: water					
REPORT OF ANALYSIS-cont.			L		<u></u>	<u></u>	QUALITY	ASSUR	ANCE DA	TA1		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual		Recov.3		LCS ⁴	
Potassium/AA*filtered	1.57	mg/L	0.05	< 0.05	12/09/03	258.1&7610		1.22	81.03	91.15	100.34	
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	2.52	94.9	98.82	84.69	
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/05/03	272.2&7761		6.7	99.08	95	102	
Sodium/ICP*filtered	29	mg/L	0.4	<0.4	12/11/03	6010 & 200.7		1.51	90.34	98.65	99.6	
Strontium/ICP	0.668	mg/L	0.04	<0.04	12/09/03	6010 & 200.7		1.31	92.5	99	86.6	
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		1.04	94.74	98.79	86.96	
Vanadium/ICP	0.0583	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		3.58	89.37	98.06	92.88	
Zinc/ICP	0.0077	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		3.63	90.32	100.76	86.3	
Extractable organics-PAH					12/19/03	8270c						
Volatile organics-8260b/BTEX					12/08/03	8260b(5030/5035)						
Benzene	<1	μg/L	1	<1	12/08/03	8260b		0.4	105.3	95,9	105.9	
Ethylbenzene	<1	μg/L	1	<1	12/08/03	8260b		2.5	102.2	109.8	108.8	
m,p-Xylenes	<2	μg/L	2	<2	12/08/03	8260b	J	1.4	97.8	106.4	101.8	
o-Xylene	<1	µg/L	1	<1	12/08/03	8260b		0.9	102.1	109	116.7	
Toluene	<1	µg/L	1	<1	12/08/03	8260b		0.2	111.9	108.8	109.2	
Acenaphthene	< 0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.1	33.4	97.5	42.1	
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		2.4	32.2	97.1	41.8	
Anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		8.5	30.4	95	44.8	
Benzo[a]anthracene	< 0.05	μg/L	0.05	<0.05	12/19/03	8270c		2.7	40.9	94.2	52.6	
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.7	32.1	95.2	51.9	
Benzo[b]fluoranthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		6.5	44.5	95.2	54.3	
Benzo[g.h,i]perylene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.9	44.1	94.6	54.6	
Benzo[j,k]fluoranthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		6.8	46.5	95.9	58.1	
Chrysene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		0.4	44.5	93.3	56.4	
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		6.2	46.3	98.1	57.4	
Fluoranthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		1.9	46.9	97.5	51.4	
Fluorene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		2.1	37.1	98	43.5	
Indeno[1,2,3-cd]pyrene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		5.5	45.8	97.5	56.2	
Naphthalene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c	J	0	28	96.2	38.4	
Phenanthrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		0	41.5	95.5	43.6	
Pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.8	43.8	92.1	48	

Page#: 2 Report Date: 12/29/03

Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab ID#: 150247
Attn:	Jerry Brian	Sample Name: MW-7	Sample Matrix: water
	·····		

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	92.7	80-120	
Toluene-d8	8260b	101	88-110	
2-Fluorobiphenyl	8270c	50.8	43-116	
Nitrobenzene-d5	8270c	0.9	35-114	X
Terphenyl-d14	8270c	57.9	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Report #/Lab ID#:150247 Matrix: water Client: Environmental Tech Group Project ID: EO2016 97-04 Sample Name: MW-7

Attn: Jerry Brian

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
Aluminum/ICP	J	See J-flag discussion above.
Molybdenum/ICP	J	See J-flag discussion above.
Sclenium/ICP	J	See J-flag discussion above.
m,p-Xylenes	J	See J-flag discussion above.
Naphthalene	J	See J-flag discussion above.
Nitrobenzene-d5 Nitrobenzene-d5	X X	Surrogate recovery outside advisory/acceptance limits. Typically verified by reanalysis or reextraction & reanalysis. In some well known matrices (sample sources with known interferences) and for some conditions, reextraction and/or reanalysis may be at analysis discretion.
recovery indi	_ re	cted and analyzed twice to try and get acceptable covery. Both extractions and analyses had extremely low in that something in the sample was inhibiting the analysis for this surrogate.

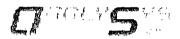
Comments pertaining to Data Qualifiers and QC data:

Client: Environmental Tech Group Attn: Jerry Brian						Report#/Lab ID#: 150248Report Date: 12/29/03Project ID: EO2016 97-04Sample Name: MW-8							
Address: 2540 W. Marland Hobbs	NM 88240					Sample Name:							
10003	1411 00210					Date Received:		Time:	13:45				
Phone: (505) 397-4882 FAX: (50	5) 397-4701		Date Sampled: 12/01/2003 Time: 12:00										
REPORT OF ANALYSIS QUALITY ASSURANCE DATA ¹													
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS		
A/BN Extraction-PAH					12/08/03	3520							
Metals DigHg]		12/03/03	7470&245.1							
Metals DigHNO3					12/03/03	3015							
Metals DigHNO3*filtered					12/04/03	3005a							
Aluminum/ICP	0.258	mg/L	0.2	<0.2	12/09/03	6010 & 200.7		1.07	88.71	96.59	85.5		
Arsenic/ICP	<0.01	mg/L	0.01	< 0.01	12/09/03	6010 & 200.7		1.84	96.93	97.32	85.5		
Barium/ICP	0.0739	mg/L	0.005	< 0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.7		
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		2.91	94.59	97.2	87.0		
Boron/ICP	0.128	mg/L	0.01	< 0.01	12/09/03	6010 & 200.7		0.67	97.99	99.52	83.1		
Cadmium/ICP	< 0.002	mg/L	0.002	< 0.002	12/09/03	6010 & 2 00.7		1.39	97.29	98.6	88		
Calcium/ICP*filtered	86.8	mg/L	10	<10	12/09/03	6010 & 2 00.7		0.28	99.61	97.78	115.7		
Chromium/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7	J	0.6	92.05	98.52	102.5		
Cobalt/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		2.33	91.39	99.5	88.		
Copper/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.18	96.86	101.54	87.1		
Iron/ICP	0.143	mg/L	0.02	< 0.02	12/09/03	6010 & 2 00.7		3.22	96.93	97.26	91.1		
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.01	92.02	98.78	86.4		
Magnesium/ICP*filtered	12.3	mg/L	5	<5	12/09/03	6010 & 2 00.7		0.27	97.41	97.92	124.		
Manganese/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7	J	1.06	90.68	101.36	84.7		
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	10		
Molybdenum/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 200.7	J	1.64	101.66	99.64	92.		
Nickel/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.88	91.3	98.7	86.0		

This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Elton

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.


Page#: 1 Report Date: 12/29/03

. .

6 7		5
Server 12		÷. *,

				ينديكان محتربي محد المستخر 			, 300-2000				
Client: Environmental Tech Group				D: EO2016 9	7-04				#/Lab ID#		8
Attn: Jerry Brian			Sample N	ame: MW-8				Sample	Matrix:	water	
REPORT OF ANALYSIS-cont.							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Potassium/AA*filtered	1.42	mg/L	0.05	<0.05	12/09/03	258.1&7610		1.22	81.03	91.15	100.34
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	2.52	94.9	98.82	84.69
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/05/03	272.2&7761	j	6.7	99.08	95	102
Sodium/ICP*filtered	23.7	mg/L	0.4	<0.4	12/11/03	6010 & 2 00.7		1.51	90.34	98.65	99.6
Strontium/ICP	0.699	mg/L	0.04	<0.04	12/09/03	6010 & 200.7		1.31	92.5	99	86.6
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		1.04	94.74	98.79	86.96
Vanadium/ICP	0.0485	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		3.58	89.37	98.06	92.88
Zinc/ICP	0.0188	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		3.63	90.32	100.76	86.3
Extractable organics-PAH		·			12/18/03	8270c					
Volatile organics-8260b/BTEX					12/08/03	8260b(5030/5035)]				
Benzene	<1	μg/L	1	<1	12/08/03	8260b		0.4	105.3	95.9	105.9
Ethylbenzene	<1	μg/L	1	<1	12/08/03	8260b		2.5	102.2	109.8	108.8
m,p-Xylenes	<2	μg/L	2	<2	12/08/03	8260b		1.4	97.8	106.4	101.8
o-Xylene	<1	μg/L	1	<1	12/08/03	8260b		0.9	102.1	109	116.7
Toluene	<1	μg/L	1	<1	12/08/03	8260b		0.2	111.9	108.8	109.2
Acenaphthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.1	33.4	97.5	42.1
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c]	2.4	32.2	97.1	41.8
Anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		8.5	30.4	95	44.8
Benzo[a]anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.7	40.9	94.2	52.6
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.7	32.1	95.2	51.9
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.5	44.5	95.2	54.3
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c	}	5.9	44.1	94.6	54.6
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.8	46.5	95.9	58.1
Chrysene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0.4	44.5	93.3	56.4
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.2	46.3	98.1	57.4
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.9	46.9	97.5	51.4
Fluorene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.1	37.1	98	43.5
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.5	45.8	97.5	56.2
Naphthalene	<0.05	µg/L	0.05	<0.05	12/18/03	8270c		0	28	96.2	38.4
Phenanthrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0	41.5	95.5	43.6
Pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.8	43.8	92.1	48

Page#: 2 Report Date: 12/29/03

T

Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab 1D#: 150248
Attn:	Jerry Brian	Sample Name: MW-8	Sample Matrix: water
L	·		L

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	92.6	80-120	
Toluene-d8	8260b	102	88-110	
2-Fluorobiphenyl	8270c	47.8	43-116	
Nitrobenzene-d5	8270c	54.9	35-114	
Terphenyl-d14	8270c	64.5	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

 Report #/Lab ID#: 150248
 Matrix: water

 Client: Environmental Tech Group
 Attn: Jerry Brian

 Project ID: EO2016 97-04
 Sample Name: MW-8

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Chromium/ICP	J	See J-flag discussion above.
Manganese/ICP	J	See J-flag discussion above.
Mołybdenum/ICP	J	Scc J-flag discussion above.
Selenium/ICP	J	See J-flag discussion above.
Notes:		

Page#: 4 Report #/Lab ID#: 150248 Report Date: 12/29/03

amers /s						220	2 Montopolis 9 N., Padre Isl 2) 385-5886	and Dr.,	Corpus Cl	iristi, T	
Client: Environmental Tech Group Attn: Jerry Brian Address: 2540 W. Marland						Report#/Lab II Project ID: EO Sample Name:	2016 97-04	Repo	rt Date:	2/29/03	
1	NM 88240					Sample Matrix: Date Received:	water	Time:	13:45		
Phone: (505) 397-4882 FAX: (505)	397-4701					Date Sampled:	12/01/2003	Time:	12:30		
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					12/08/03	3520					
Metals DigHg					12/03/03	7470&245.1					
Metals DigHNO3					12/03/03	3015					
Metals DigHNO3*filtered					12/04/03	3005a					
Aluminum/ICP	6.47	mg/L	0.2	<0.2	12/09/03	6010 & 2 00.7		1.07	88.71	96.59	85.52
Arsenic/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.84	96.93	97.32	85.52
Barium/ICP	0.294	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.74
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		2.91	94.59	97.2	87.04
Boron/ICP	0.177	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		0.67	97.99	99.52	83.15
Cadmiun/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		1.39	97.29	98.6	88
Calcium/ICP*filtered	89.1	mg/L	10	<10	12/09/03	6010 & 2 00.7		0.28	99.61	97.78	115.79
Chromium/ICP	0.0177	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		0.6	92.05	98.52	102.56
Cobalt/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		2.33	91.39	99.5	88.1
Copper/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	1.18	96.86	101.54	87.17
Iron/ICP	3.52	mg/L	0.02	< 0.02	12/09/03	6010 & 2 00.7		3.22	96.93	97.26	91.12
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.01	92.02	98.78	86.43
Magnesium/ICP*filtered	14.3	mg/L	5	<5	12/09/03	6010 & 2 00.7		0.27	97.41	97.92	124.41
Manganese/ICP	0.0394	mg/L	0.005	< 0.005	12/09/03	6010 & 2 00.7		1.06	90.68	101.36	84.74
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	105
Molybdenum/ICP	0.0052	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.64	101.66	99.64	92.1
Nickel/ICP	0.0125	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.88	91.3	98.7	86.06
This analytical report is respectfully submitted by Ana have been carefully reviewed and, to the best of my knu are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2003, AnalySys, Inc., Austin, TX. All right publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc.	owledge, the anal e/Quality Contro nts reserved. No	ytical results l Program. © part of this ans without th ubmitted,	ne (RQL) typical dilutio associa recove	relative percent (red from a spike sed as the perces , typically at or ly denote USEP ns. 7. Data Qu ated method blan	(%) difference b ed sample. 4 nt (%) recovery above the Prace A procedures. alifiers are J = nk(s). S1 =MS sory limit. S3 =	mple batch which incluc etween duplicate measu calibration Verification of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e: MS and/or MSD and PI erence.	rements. 3. Reco n (CCV) and Lab n standard or mat (PQL) of the ana flect nominal qua nt between the P(kceed advisory lin	overy (Recovery Co oratory Co rix. 5. Re alytical met ontitation lin QL and the nits. S2 =F	ov.) is the per- ntrol Sample porting Quan hod. 6. Me mits adjusted MDL. B = A Post digestion	rcent (%) o (LCS) res stitation Li thod numb for any rea malyte deta spike (PD	of analyte ults are imits oers quired ected in DS)

6 7	, *	1	2	4	ł	ŗ	6	١,	2	\sum_{i}
i de la compañía de							and the second	:		

1

						(312) 385-5886		(512) 38		
Client: Environmental Tech Group Attn: Jerry Brian				D: EO20169 ame: MW-10				Report#/Lab ID#: 150249 Sample Matrix: water			
REPORT OF ANALYSIS-cont.						<u> </u>	QUALITY.	ASSUR	ANCE DA	TA1	
Parameter	Result	Units	RQL ⁵	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴			
Potassium/AA*filtered	1.87	mg/L	0.05	<0.05	12/09/03	Method ⁶ 258.1&7610		1.22	81.03	91.15	100.34
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		2.52	94.9	98.82	84.69
Silver/GFAA	< 0.002	mg/L	0.002	<0.002	12/05/03	272.2&7761		6.7	99.08	95	102
Sodium/ICP*filtered	32.2	mg/L	0.4	<0.4	12/11/03	6010 & 200.7		1.51	90.34	98.65	99.6
Strontium/ICP	0.81	mg/L	0.04	<0.04	12/09/03	6010 & 200.7		1.31	92.5	99	86.6
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 2 00.7		1.04	94.74	98.79	86.96
Vanadium/ICP	0.0487	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		3.58	89.37	98.06	92.88
Zinc/ICP	0.0282	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		3.63	90.32	100.76	86.3
Extractable organics-PAH					12/18/03	8270c					
Volatile organics-8260b/BTEX					12/08/03	8260b(5030/5035)					
Benzene	2.45	µg/L	1	<1	12/08/03	8260b		0.4	105.3	95.9	105.9
Ethylbenzene	<1	μg/L	.1	<1	12/08/03	8260b		2.5	102.2	109.8	108.8
m,p-Xylenes	<2	μg/L	2	<2	12/08/03	8260b		1.4	97.8	106.4	101.8
o-Xylene	<1	μg/L	1	<1	12/08/03	82 60b		0.9	102.1	109	116.7
Toluene	1.12	μg/L	1	<1	12/08/03	8260b		0.2	111.9	108.8	109.2
Acenaphthene	< 0.05	µg/L	0.05	<0.05	12/18/03	8270c		1.1	33.4	97.5	42.1
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.4	32.2	97.1	41.8
Anthracene	< 0.05	μg/L	0.05	<0.05	12/18/03	8270c		8.5	30.4	95	44.8
Benzo[a]anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.7	40.9	94.2	52.6
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.7	32.1	95.2	51.9
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.5	44,5	95.2	54.3
Benzo[g,h,i]perylene	<0,05	µg/L	0.05	<0.05	12/18/03	8270c		5.9	44.1	94.6	54.6
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.8	46.5	95.9	58.1
Chrysene	< 0.05	μg/L	0.05	<0.05	12/18/03	8270c		0.4	44.5	93.3	56.4
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.2	46.3	98.1	57.4
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.9	46.9	97.5	51.4
Fluorene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.1	37.1	98	43.5
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.5	45.8	97.5	56.2
Naphthalene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0	28	96.2	38.4
Phenanthrene	<0.05	µg/L	0.05	<0.05	12/18/03	8270c		0	41.5	95.5	43.6
Pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.8	43.8	92.1	48

Page#: 2 Report Date: 12/29/03

ſ	Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab ID#: 150249
	Attn:	Jerry Brian	Sample Name: MW-10	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	86.3	80-120	
Toluene-d8	8260b	105	88-110	
2-Fluorobiphenyl	8270c	46.4	43-116	
Nitrobenzene-d5	8270c	39.4	35-114	
Terphenyl-d14	8270c	63.4	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Report #/Lab ID#: 150249Matrix: waterClient: Environmental Tech GroupAttn: Jerry BrianProject ID: EO2016 97-04Sample Name: MW-10

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

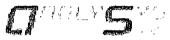
- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Copper/ICP	J	See J-flag discussion above.
Notes:	•	


Page#: 4 Report #/Lab ID#: 150249 Report Date: 12/29/03

Client: Environmental Tech Group Attn: Jerry Brian Address: 2540 W. Marland					<u></u>	Report#/Lab II Project ID: EO Sample Name:	2016 97-04	Repo	rt Date:	12/29/03	
Hobbs	NM 88240 5) 397-4701					Sample Matrix Date Received:	mple Matrix: water ite Received: 12/02/2003 Time: 13:45 ite Sampled: 12/01/2003 Time: 13:00				
	5) 597-4701					Date Sampleu:	QUALITY			ATA1	
REPORT OF ANALYSIS			DOL 5								LL CC4
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV*	LCS ⁴
A/BN Extraction-PAH					12/08/03	3520					
Metals DigHg					12/03/03	7470&245.1					
Metals DigHNO3					12/03/03	3015					
Metals DigHNO3*filtered					12/04/03	3005a					
Aluminum/ICP	1.09	mg/L	0.2	<0.2	12/09/03	6010 & 2 00.7		1.07	88.71	96.59	85.52
Arsenic/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.84	96.93	97.32	85.52
Barium/ICP	0.122	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.74
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		2.91	94.59	97.2	87.04
Boron/ICP	0.12	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		0.67	97.99	99.52	83.15
Cadmium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 200.7		1.39	97.29	98.6	88
Calcium/ICP*filtered	80	mg/L	10	<10	12/09/03	6010 & 200.7		0.28	99.61	97.78	115.79
Chromium/ICP	< 0.005	mg/L	0.005	<0.005	12/09/03	6010 & 200.7	J	0.6	92.05	98.52	102.56
Cobalt/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		2.33	91.39	99.5	88.1
Copper/ICP	< 0.01	mg/L	0.01	< 0.01	12/09/03	6010 & 200.7		1.18	96.86	101.54	87.17
Iron/ICP	0.624	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		3.22	96.93	97.26	91.12
Lead/ICP	< 0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.01	92.02	98.78	86.43
Magnesium/ICP*filtered	12.1	mg/L	5	<5	12/09/03	6010 & 2 00.7		0.27	97.41	97.92	124.41
Manganese/ICP	0.0104	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		1.06	90.68	101.36	84.74
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	105
Molybdenum/ICP	< 0.005	mg/L	0.005	<0.005	12/09/03	6010 & 200.7	1 1	1.64	101.66	99.64	92.1
Nickel/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	1.88	91.3	98.7	86.06
This analytical report is respectfully submitted by A have been carefully reviewed and, to the best of my are consistent with AnalySys, Inc.'s Quality Assura Copyright 2003, AnalySys, Inc., Austin, TX. All r publication may be reproduced or transmitted in any express written consent of AnalySys, Inc.	nowledge, the anal nce/Quality Contro ghts reserved. No	ytical results l Program. © part of this ans without th lbmitted,	e (RQL) typical dilution associa recover	elative percent (red from a spike sed as the percent typically at or ly denote USEP ns. 7. Data Qu ted method blar	%) difference b d sample. 4 ht (%) recovery above the Prace A procedures. alifiers are J = uk(s). S1 = MS ory limit. S3 =	mple batch which includ etween duplicate measu Calibration Verificatio of analyte from a know stical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery es MS and/or MSD and PE	rements. 3. Reco n (CCV) and Lab n standard or mat: (PQL) of the ana flect nominal qua nt between the PC (ceed advisory lin	overy (Reco oratory Co rix. 5. Rej lytical mether ntitation lin QL and the f nits. S2 =P	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestion	rcent (%) o (LCS) res ntitation Li thod numb for any rec nalyte deto a spike (PD	of analyte ults are mits oers quired ected in OS)

		Project II	D: EO20169	7-04	······································		Report	#/Lab ID#	#: 15025	0
Client: Environmental Tech Group Attn: Jerry Brian							Sample Matrix: water			
EPORT OF ANALYSIS-cont. QUALITY ASSURANCE DATA ¹										
Result	Units	ROL ⁵	Blank	Date	Method ⁶					LCS ⁴
1.67			<0.05	12/09/03			1.22	81.03	91.15	100.34
<0.01	•				6010 & 200.7		2.52	94.9	98.82	84.69
<0.002	-	0.002	<0.002	12/05/03	272.2&7761		6.7	99.08	95	102
19.9	-	0.4	<0.4	12/11/03			1.51	90.34	98.65	99.6
0.619		0.04	<0.04	12/09/03	6010 & 2 00.7		1.31	92.5	99	86.6
<0.02		0.02	<0.02	12/09/03	6010 & 200.7		1.04	94.74	98.79	86.96
0.0312		0.01	<0.01	12/09/03	6010 & 200.7		3.58	89.37	98.06	92.88
0.0135	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		3.63	90.32	100.76	86.3
				12/18/03	8270c					
				12/08/03	8260b(5030/5035)					
39.1	μg/L	1	<1	12/08/03	8260b		0.4	105.3	95.9	105.9
1.5.2	μg/L	1	<1	12/08/03	8260b		2.5	102.2	109.8	108.8
3.61	μg/L	2	<2	12/08/03	8260b		1.4	97.8	106.4	101.8
<1	μg/L	1	<1	12/08/03	8260b		0.9	102.1	109	116.7
<l< td=""><td>μg/L</td><td>1</td><td><1</td><td>12/08/03</td><td>8260b</td><td></td><td>0.2</td><td>111.9</td><td>108.8</td><td>109.2</td></l<>	μg/L	1	<1	12/08/03	8260b		0.2	111.9	108.8	109.2
<0.05	μg/L	0.05	< 0.05	12/18/03	8270c		1.1	33.4	97.5	42.1
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.4	32.2	97.1	41.8
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		8.5	30.4	95	44.8
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.7	40.9	94.2	52.6
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.7	32.1	95.2	51.9
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.5	44.5	95.2	54.3
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.9	44.1	94.6	54.6
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.8	46.5	95.9	58.1
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0.4	44.5	93.3	56.4
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.2	46.3	98.1	57.4
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.9	46.9	97.5	51.4
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.1	37.1	98	43.5
<0.05	µg/L	0.05	<0.05	12/18/03	8270c		5.5	45.8	97.5	56.2
<0.05	µg/L	0.05	<0.05	12/18/03	8270c	J	0	28	96.2	38.4
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0	41.5	95.5	43.6
<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.8	43.8	92.1	48
	<0.01 <0.002 19.9 0.619 <0.02 0.0312 0.0135 39.1 1.52 3.61 <1 <1 <1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	1.67 mg/L <0.01	ResultUnits RQL^5 1.67mg/L0.05<0.01	ResultUnits RQL^5 Blank1.67mg/L0.05<0.05	1.67 mg/L 0.05 <0.05 12/09/03 <0.01	ResultUnitsRQL 5BlankDateMethod 61. 6.7 mg/L0.05<0.05	Result Units RQL 5 Blank Date Method 6 Data Qual 7 1.07 mg/L 0.05 <0.05	Result Units RQL 5 Blank Date Method 6 Data Qual 7 Prec. 2 1. 6.7 mg/L 0.05 <0.05	Result Units RQL 5 Blank Date Method 6 Data Qual 7 Prec. 2 Recov. 3 1.6.7 mg/L 0.05 <0.05	CUALITY ASURANCE DATA Result Units RQL 5 Blank Date Method 6 Data Qual Prec.2 Recov.3 CCV4 1.67 mg/L 0.05 <0.05

Page#: 2 Report Date: 12/29/03

Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab ID#: 150250
Attn:	Jerry Brian	Sample Name: MW-11	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	92	80-120	
Toluene-d8	8260b	103	88-110	
2-Fluorobiphenyl	8270c	43.6	43-116	
Nitrobenzene-d5	8270c	53.1	35-114	
Terphenyl-d14	8270c	53.3	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Report #/Lab ID#: 150250 Matrix: water	
Client: Environmental Tech Group	Attn: Jerry Brian
Project ID: EO2016 97-04	
Sample Name: MW-11	

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}C$. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved. Sample received in appropriate container(s). State of sample preservation unknown.

Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

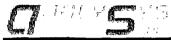
A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Chromium/ICP	J	See J-flag discussion above.
Molybdenum/ICP	1	See J-flag discussion above.
Nickel/ICP	J	See J-flag discussion above.
Naphthalene	1	See J-flag discussion above.
Notes:		

Page#: 4 Report #/Lab ID#:150250 Report Date: 12/29/03

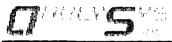
						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,	ustin, TX Corpus Cl X (512) 3	hristi, TX	& X 78408	
Client: Environmental Tech Group						Report#/Lab II	D#: 150251	Repo	rt Date:	2/29/03		
Attn: Jerry Brian						Project ID: EO2016 97-04						
Address: 2540 W. Marland						Sample Name:	MW-12					
Hobbs	NM 88240	ł				Sample Matrix:	water					
						Date Received:	12/02/2003	Time:	13:45			
Phone: (505) 397-4882 FAX: (505)	397-4701					Date Sampled:	12/01/2003	Time:	13:30			
REPORT OF ANALYSIS		······					QUALITY					
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
A/BN Extraction-PAH					12/08/03	3520						
Metals DigHg					12/03/03	7470&245.1						
Metals DigHNO3					12/03/03	3015						
Metals DigHNO3*filtered					12/04/03	3005a						
Aluminum/ICP	2.36	mg/L	0.2	<0.2	12/09/03	6010 & 2 00.7		1.07	88.71	96.59	85.52	
Arsenic/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.84	96.93	97.32	85.52	
Barium/ICP	0,0903	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.74	
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 200.7		2.91	94.59	97.2	87.04	
Boron/ICP	0.12	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		0.67	97.99	99.52	83.15	
Cadmium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		1.39	97.29	98.6	88	
Calcium/ICP*filtered	79.2	mg/L	10	<10	12/09/03	6010 & 200.7		0.28	99.61	97.78	115.79	
Chromium/ICP	0.0092	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		0.6	92.05	98.52	102.56	
Cobalt/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		2.33	91.39	99.5	88.1	
Copper/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	1.18	96.86	101.54	87.17	
Iron/ICP	1.44	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		3.22	96.93	97.26	91.12	
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	1.01	92.02	98.78	86.43	
Magnesium/ICP*filtered	13.2	mg/L	5	<5	12/09/03	6010 & 2 00.7		0.27	97.41	97.92	124.41	
Manganese/ICP	0.0187	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		1.06	90.68	101.36	84.74	
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	105	
Molybdenun/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.64	101.66	99.64	92.1	
Nickel/ICP	0.0115	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.88	91.3	98.7	86.06	


This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the

express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Elton

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.


Page#: 1

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group			Project II	D: EO2016 9	7-04]	Report#/Lab ID#: 150251				
Attn: Jerry Brian			Sample N	ame: MW-12	2			Sample	Matrix:	water		
REPORT OF ANALYSIS-cont.			•				QUALITY	ASSUR	ANCE DA	TA ¹		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Potassium/AA*filtered	1.45	mg/L	0.05	<0.05	12/09/03	258.1&7610		1.22	81.03	91.15	100.34	
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	2.52	94.9	98.82	84.69	
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/05/03	272.2&7761		6.7	99.08	95	102	
Sodium/ICP*filtered	26.8	mg/L	0.4	<0.4	12/11/03	6010 & 200.7		1.51	90.34	98.65	99.6	
Strontium/ICP	0.582	mg/L	0.04	<0.04	12/09/03	6010 & 200.7		1.31	92.5	99	86.6	
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 2 00.7		1.04	94.74	98.79	86.96	
Vanadium/ICP	0.042	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		3.58	89.37	98.06	92.88	
Zinc/ICP	0.0347	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		3.63	90.32	100.76	86.3	
Extractable organics-PAH					12/18/03	8270c						
Volatile organics-8260b/BTEX					12/08/03	8260b(5030/5035)						
Benzene	5.40	μg/L	1	<1	12/08/03	8260b		0.4	105.3	95.9	105.9	
Ethylbenzene	<1	μg/L		<1	12/08/03	8260b		2.5	102.2	109.8	108.8	
m,p-Xylenes	<2	μg/L	2	<2	12/08/03	8260b		1.4	97.8	106.4	101.8	
o-Xylene	<1	μg/L	1	<1	12/08/03	8260b		0.9	102.1	109	116.7	
Toluene	1.2.2	μg/L	1	<1	12/08/03	8260b		0.2	111.9	108.8	109.2	
Acenaphthene	< 0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.1	33.4	97.5	42.1	
Acenaphthylene	<0.05	µg/L	0.05	<0.05	12/18/03	8270c		2.4	32.2	97.1	41.8	
Anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		8.5	30.4	95	44.8	
Benzo[a]anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.7	40.9	94.2	52.6	
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.7	32.1	95.2	51.9	
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.5	44.5	95.2	54.3	
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.9	44.1	94.6	54.6	
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.8	46.5	95.9	58.1	
Chrysene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0.4	44.5	93.3	56.4	
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		6.2	46.3	98.1	57.4	
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.9	46.9	97.5	51.4	
Fluorene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		2.1	37.1	98	43.5	
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		5.5	45.8	97.5	56.2	
Naphthalene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0	28	96.2	38.4	
Phenanthrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		0	41.5	95.5	43.6	
Pyrene	<0.05	μg/L	0.05	<0.05	12/18/03	8270c		1.8	43.8	92.1	48	

Page#: 2 Report Date: 12/29/03

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Cli	ent:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab 1D#: 150251
Att	in:	Jerry Brian	Sample Name: MW-12	Sample Matrix: water

¢

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	91.7	80-120	
Toluene-d8	82 60b	102	88-110	
2-Fluorobiphenyl	8270c	45.8	43-116	
Nitrobenzene-d5	8270c	44.5	35-114	
Terphenyl-d14	8270c	50.7	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Exceptions Report:

Report #/Lab ID#: 150251 Matrix: water Client: Environmental Tech Group Project ID: EO2016 97-04 Sample Name: MW-12

Attn: Jerry Brian

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

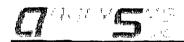
- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Copper/ICP	J	See J-flag discussion above.
Lead/ICP	J	See J-flag discussion above.
Selenium/ICP	J	See J-flag discussion above.
Notes:	1	

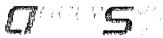

						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,		nristi, TY		
Client: Environmental Tech Group			Report#/Lab ID#: 150252 Report Date: 12/29/03									
Attn: Jerry Brian						Project ID: EO2016 97-04						
Address: 2540 W. Marland						Sample Name: MW-13						
Hobbs	NM 88240					Sample Matrix:	water					
1						Date Received:	12/02/2003	Time:	13:45			
Phone: (505) 397-4882 FAX: (505)	397-4701					Date Sampled:	12/01/2003	Time:	14:00			
REPORT OF ANALYSIS		QUALITY ASSURANCE DATA ¹										
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
A/BN Extraction-PAH	~				12/08/03	3520						
Metals DigHg					12/03/03	7470&245.1						
Metals DigHNO3	~				12/03/03	3015						
Metals DigHNO3*filtered					12/04/03	3005a						
Aluminum/ICP	2,96	mg/L	0.2	<0.2	12/09/03	6010 & 200.7		1.07	88.71	96.59	85.52	
Arsenic/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	1.84	96.93	97.32	85.52	
Barium/ICP	0.111	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.74	
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 200.7		2.91	94.59	97.2	87.04	
Boron/ICP	0.194	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		0.67	97.99	99.52	83.15	
Cadmium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 200.7		1.39	97.29	98.6	88	
Calcium/ICP*filtered	83.4	mg/L	10	<10	12/09/03	6010 & 200.7		0.28	99.61	97.78	115.79	
Chromium/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 200.7	J	0.6	92.05	98.52	102.56	
Cobalt/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		2.33	91.39	99.5	88.1	
Copper/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.18	96.86	101.54	87.17	
Iron/ICP	1.48	mg/L	0.02	<0.02	12/09/03	6010 & 2 00.7		3.22	96.93	97.26	91.12	
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	1.01	92.02	98.78	86.43	
Magnesium/ICP*filtered	11.7	mg/L	5	<5	12/09/03	6010 & 200.7		0.27	97.41	97.92	124.41	
Manganese/ICP	0.0387	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.06	90.68	101.36	84.74	
Mercury/CVAA	0.00047	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	105	
Molybdenum/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.64	101.66	99.64	92.1	
Nickel/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	1.88	91.3	98.7	86.06	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Elton

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M =Matrix interference.

Page#: 1 Report Date: 12/29/03



3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

1

Client: Environmental Tech Group Attn: Jerry Brian	<u></u>			D: EO2016 9 ame: MW-13				Report#/Lab ID#: 150252 Sample Matrix: water			
REPORT OF ANALYSIS-cont.		d					QUALITY	L			
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual ⁷		Recov.3		LCS ⁴
Potassium/AA*filtered	1.75	mg/L	0.05	<0.05	12/09/03	258.1&7610		1.22	81.03	91.15	100.34
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	2.52	94.9	98.82	84.69
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/05/03	272.2&7761		6.7	99.08	95	102
Sodium/ICP*filtered	30.3	mg/L	0.4	<0.4	12/11/03	6010 & 200.7		1.51	90.34	98.65	99.6
Strontium/ICP	0.625	mg/L	0.04	<0.04	12/09/03	6010 & 200.7		1.31	92.5	99	86.6
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 2 00.7		1.04	94.74	98.79	86.96
Vanadium/ICP	0.0512	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		3.58	89.37	98.06	92.88
Zinc/ICP	0.0071	mg/L	0.005	< 0.005	12/09/03	6010 & 2 00.7		3.63	90.32	100.76	86.3
Extractable organics-PAH		-=-			12/19/03	8270c					
Volatile organics-8260b/BTEX					12/08/03	8260b(5030/5035)					
Benzene	<1	μg/L	1	<1	12/08/03	8260b	J	0.4	105.3	95.9	105.9
Ethylbenzene	<1	μg/L	1	<1	12/08/03	8260b		2.5	102.2	109.8	108.8
m,p-Xylenes	17.8	μg/L	2	<2	12/08/03	8260b		1.4	97.8	106.4	101.8
o-Xylene	<1	μg/L	1	<1	12/08/03	8260b		0.9	102.1	109	116.7
Toluene	< l	μg/L	1	<1	12/08/03	8260b		0.2	111.9	108.8	109.2
Acenaphthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.1	33.4	97.5	42.1
Acenaphthylene	<0.05	μg/L	0.05	< 0.05	12/19/03	8270c		2.4	32.2	97.1	41.8
Anthracene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		8.5	30.4	95	44.8
Benzo[a]anthracene	<0.05	μg/L	0.05	< 0.05	12/19/03	8270c		2.7	40.9	94. 2	52.6
Benzo[a]pyrene	<0.05	μg/L	0.05	< 0.05	12/19/03	8270c		5.7	32.1	95.2	51.9
Benzo[b]fluoranthene	<0.05	µg/L	0.05	< 0.05	12/19/03	8270c		6.5	44.5	95.2	54.3
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.9	44.1	94.6	54.6
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	< 0.05	12/19/03	8270c		6.8	46.5	95.9	58.1
Chrysene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		0.4	44.5	93.3	56.4
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	< 0.05	12/19/03	8270c		6.2	46.3	98.1	57.4
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.9	46.9	97.5	51.4
Fluorene	0.07	μg/L	0.05	< 0.05	12/19/03	8270c		2.1	37.1	98	43.5
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.5	45.8	97.5	56.2
Naphthalene	1.5	μg/L	0.05	< 0.05	12/19/03	8270c		0	28	96.2	38.4
Phenanthrene	0.066	μg/L	0.05	<0.05	12/19/03	8270c		0	41.5	95.5	43.6
Pyrene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		1.8	43.8	92.1	48

 Page#: 2
 Report Date: 12/29/03

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab ID#: 150252
Attn:	Jerry Brian	Sample Name: MW-13	Sample Matrix: water

<u>REPORT OF SURROGATE RECOVERY</u>

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	90.4	80-120	
Toluene-d8	8260b	102	88-110	
2-Fluorobiphenyl	8270c	44.5	43-116	
Nitrobenzene-d5	8270c	41.2	35-114	
Terphenyl-d14	8270c	39.4	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Exceptions Report:

Report #/Lab ID#:150252 Matrix: water Client: Environmental Tech Group Project ID: EO2016 97-04 Sample Name: MW-13

Attn: Jerry Brian

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

g discussion above. g discussion above.
· · · · · ·
g discussion above.
z discussion above.
g discussion above.
g discussion above.
3 (

Comments pertaining to Data Qualifiers and QC data:

Page#: 4 Report #/Lab ID#: 150252 Report Date: 12/29/03

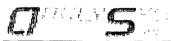
A THEY S						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,	ustin, TX Corpus Cl X (512) 3	hristi, TY	& X 78408	
Client: Environmental Tech Group Attn: Jerry Brian Address: 2540 W. Marland Hobbs Phone: (505) 397-4882 FAX: (505)	NM 88240 397-4701		Report#/Lab ID#: 150253Report Date:Project ID: EO2016 97-04Sample Name: MW-14Sample Matrix: waterDate Received: 12/02/2003Date Sampled: 12/01/2003Time: 13:45Date Sampled: 12/01/2003Time: 14:30									
REPORT OF ANALYSIS QUALITY ASSURANCE DATA ¹												
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
A/BN Extraction-PAH					12/08/03	3520						
Metals DigHg					12/03/03	7470&245.1						
Metals DigHNO3					12/03/03	3015						
Metals DigHNO3*filtered					12/04/03	3005a						
Aluminum/ICP	0.57	mg/L	0.2	<0.2	12/09/03	6010 & 200.7		1.07	88.71	96.59	85.52	
Arsenic/ICP	0.0162	mg/L	0.01	< 0.01	12/09/03	6010 & 2 00.7		1.84	96.93	97.32	85.52	
Barium/ICP	0.159	mg/L	0.005	< 0.005	12/09/03	6010 & 200.7		1.96	85.82	100.92	84.74	
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 200.7		2.91	94.59	97.2	87.04	
Boron/ICP	0.13	mg/L	0.01	< 0.01	12/09/03	6010 & 200.7		0.67	97.99	99.52	83.15	
Cadmium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 200.7		1.39	97.29	98.6	88	
Calcium/ICP*filtered	82.1	mg/L	10	<10	12/09/03	6010 & 200.7		0.28	99.61	97.78	115.79	
Chromium/ICP	0.0099	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		0.6	92.05	98.52	102.56	
Cobalt/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		2.33	91.39	99.5	88.1	
Copper/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.18	96.86	101.54	87.17	
Iron/ICP	1.11	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		3.22	96.93	97.26	91.12	
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	1.01	92.02	98.78	86.43	
Magnesium/ICP*filtered	1.41	mg/L	5	<5	12/09/03	6010 & 2 00.7		0.27	97.41	97.92	124.41	
Manganese/ICP	0.123	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.06	90.68	101.36	84.74	
Mercury/CVAA	<0.0002	mg/L	0.0002	< 0.0002	12/03/03	245.2 &7470		1.04	96	105	105	
Molybdenum/ICP	<0.005	mg/L	0.005	< 0.005	12/09/03	6010 & 2 00.7	J	1.64	101.66	99.64	92.1	
Nickel/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	1.88	91.3	98.7	86.06	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. @ Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Elton

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference,


ſ

Report Date: 12/29/03

Page#: 1

						2209	Montopolis N. Padre Isla) 385-5886	and Dr., C	istin, TX Corpus Ch (512) 38	risti, TX	78408			
Client: Environmental Tech Group Attn: Jerry Brian	<u> </u>			D: EO2016 9 ame: MW-14				Report#/Lab ID#: 150253 Sample Matrix: water						
REPORT OF ANALYSIS-cont.			L				QUALITY	ALITY ASSURANCE DATA ¹						
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴			
Potassium/AA*filtered	3.47	mg/L	0.25	<0.25	12/09/03	258.1&7610		1.22	81.03	91.15	100.34			
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		2.52	94.9	98.82	84.69			
Silver/GFAA	<0.002	mg/L	0.002	< 0.002	12/05/03	272.2&7761		6.7	99.08	95	102			
Sodium/ICP*filtered	35	mg/L	0.4	<0.4	12/11/03	6010 & 200.7		1.51	90.34	98.65	99.6			
Strontium/ICP	0.604	mg/L	0.04	<0.04	12/09/03	6010 & 200.7		1.31	92.5	99	86.6			
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		1.04	94.74	98.79	86.96			
Vanadium/ICP	0.0139	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		3.58	89.37	98.06	92.88			
Zinc/ICP	0.0177	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		3.63	90.32	100.76	86.3			
Extractable organics-PAH	1				12/19/03	8270c								
Volatile organics-8260b/BTEX					12/09/03	8260b(5030/5035)								
Benzene	791	μg/L	10	<10	12/09/03	8260b		0.4	105.3	95.9	105.9			
Ethylbenzene	211	μg/L	10	<10	12/09/03	8260b		2.5	102.2	109.8	108.8			
m,p-Xylenes	397	μg/L	20	<20	12/09/03	8260b		1.4	97.8	106.4	101.8			
o-Xylene	191	µg/L	10	<10	12/09/03	8260ъ		0.9	102.1	109	116.7			
Toluene	319	μg/L	10	<10	12/09/03	8260b		0.2	111.9	108.8	109.2			
Acenaphthene	<0.05	µg/L	0.05	< 0.05	12/19/03	8270c		1.1	33.4	97.5	42.1			
Acenaphthylene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		2.4	32.2	97.1	41.8			
Anthracene	< 0.05	μg/L	0.05	<0.05	12/19/03	8270c		8.5	30.4	95	44.8			
Benzo[a]anthracene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		2.7	40.9	94.2	52.6			
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.7	32.1	95.2	51.9			
Benzo[b]fluoranthene	<0.05	μg/L	0.05	< 0.05	12/19/03	8270c		6.5	44.5	95.2	54.3			
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.9	44.1	94.6	54.6			
Benzo[j,k]fluoranthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		6.8	46.5	95.9	58.1			
Chrysene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		0.4	44.5	93.3	56.4			
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		6.2	46.3	98.1	57.4			
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.9	46.9	97.5	51.4			
Fluorene	0.432	μg/L	0.05	<0.05	12/19/03	8270c		2.1	37.1	98	43.5			
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.5	45.8	97,5	56.2			
Naphthalene	9.11	μg/L	0.5	<0.5	12/19/03	8270c		0	28	96.2	38.4			
Phenanthrene	0.335	µg/L	0.05	<0.05	12/19/03	8270c		0	41.5	95.5	43.6			
Pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.8	43.8	92.1	48			

Report Date: 12/29/03 Page#: 2

 3512 Montopolis Drive, Austin, TX 78744 &

 2209 N. Padre Island Dr., Corpus Christi, TX 78408

 (512) 385-5886
 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab 1D#: 150253
Attn:	Jerry Brian	Sample Name: MW-14	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	97.6	80-120	
Toluene-d8	82 60b	101	88-110	
2-Fluorobiphenyl	8270c	48.2	43-116	
Nitrobenzene-d5	8270c	42	35-114	
Terphenyl-d14	8270c	54.8	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Exceptions Report:

Report #/Lab ID#: 150253 Matrix: water Client: Environmental Tech Group Project ID: EO2016 97-04 Sample Name: MW-14

Attn: Jerry Brian

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

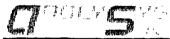
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Lead/ICP	J	See J-flag discussion above.
Molybdenum/ICP	J	See J-flag discussion above.
Nickel/ICP	J	See J-flag discussion above.
Notes:		


Client: Environmental Tech Group Attn: Jerry Brian Address: 2540 W. Marland Hobbs	NM 88240					Report#/Lab II Project ID: EO Sample Name: Sample Matrix:	2016 97-04 MW-15	Repo	rt Date: 1	2/29/03	
-						Date Received:	12/02/2003		13:45		
Phone: (505) 397-4882 FAX: (50	05) 397-4701					Date Sampled:	12/01/2003	Time:	15:00		<u></u>
REPORT OF ANALYSIS							QUALITY.				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS
A/BN Extraction-PAH					12/08/03	3520					
Metals DigHg					12/03/03	7470&245.1					
Metals DigHNO3					12/03/03	3015					
Metals DigHNO3*filtered					12/04/03	3005a					
Aluminum/ICP	<0.2	mg/L	0.2	<0.2	12/09/03	6010 & 2 00.7		1.07	88.71	96.59	85.5
Arsenic/ICP	0.0129	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.84	96.93	97.32	85.5
Barium/ICP	0.077	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		1.96	85.82	100.92	84.7
Beryllium/ICP	< 0.002	mg/L	0.002	< 0.002	12/09/03	6010 & 200.7		2.91	94.59	97.2	87.0
Boron/ICP	0.162	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		0.67	97.99	99.52	83.1
Cadmium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		1.39	97.29	98.6	88
Calcium/ICP*filtered	67	mg/L	10	<10	12/09/03	6010 & 2 00.7		0.28	99.61	97.78	115.
Chromium/ICP	< 0.005	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		0.6	92.05	98.52	102.
Cobalt/ICP	< 0.01	ıng/L	0.01	<0.01	12/09/03	6010 & 2 00.7		2.33	91.39	99.5	88.
Copper/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.18	96.86	101.54	87.1
Iron/ICP	0.216	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		3.22	96.93	97.26	91.1
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7	J	1.01	92.02	98.78	86.4
Magnesium/ICP*filtered	9.51	mg/L	5	<5	12/09/03	6010 & 2 00.7		0.27	97.41	97.92	124.
Manganese/ICP	0.0578	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.06	90.68	101.36	1
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	10
Molybdenum/ICP	<0.005	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7	J	1.64	101.66	99.64	92.
Nickel/ICP	< 0.01	mg/L	0.01	< 0.01	12/09/03	6010 & 200.7		1.88	91.3	98.7	86.0

have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted, Richard Elton

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1 Report Date: 12/29/03

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group				D: EO2016 9					#/Lab ID#		4	
Attn: Jerry Brian			Sample N	ame: MW-15) 			Sample Matrix: water				
REPORT OF ANALYSIS-cont.			QUALIT					Y ASSURANCE DATA ¹				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Potassiun/AA*filtered	1.41	mg/L	0.05	< 0.05	12/09/03	258.1&7610		1.22	81.03	91.15	100.34	
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		2.52	94.9	98.82	84.69	
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/05/03	272.2&7761		6.7	99.08	95	102	
Sodium/ICP*filtered	22	mg/L	0.4	<0.4	12/11/03	6010 & 2 00.7		1.51	90.34	98.65	99.6	
Strontium/ICP	0.443	mg/L	0.04	<0.04	12/09/03	6010 & 2 00.7		1.31	92.5	99	86.6	
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 2 00.7	j	1.04	94.74	98.79	86.96	
Vanadium/ICP	0.0214	mg/L	0.01	< 0.01	12/09/03	6010 & 2 00.7		3.58	89.37	98.06	92.88	
Zinc/ICP	0.0136	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		3.63	90.32	100.76	86.3	
Extractable organics-PAH					12/19/03	8270c						
Volatile organics-8260b/BTEX					12/08/03	8260b(5030/5035)						
Benzene	1190	μg/L	10	<10	12/09/03	8260b		0.4	105.3	95.9	105.9	
Ethylbenzene	57	μg/L	1 1	<1	12/08/03	8260b		2.5	102.2	109.8	108.8	
m,p-Xylenes	5.81	μg/L	2	<2	12/08/03	8260b		1.4	97.8	106.4	101.8	
o-Xylene	<1	μg/L	1	<1	12/08/03	8260b		0.9	102.1	109	116.7	
Toluene	<l< td=""><td>μg/L</td><td>1</td><td><1</td><td>12/08/03</td><td>8260b</td><td></td><td>0.2</td><td>111.9</td><td>108.8</td><td>109.2</td></l<>	μg/L	1	<1	12/08/03	8260b		0.2	111.9	108.8	109.2	
Acenaphthene	<0.05	µg/L	0.05	< 0.05	12/19/03	8270c		1.1	33.4	97.5	42.1	
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		2.4	32.2	97.1	41.8	
Anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		8.5	30.4	95	44.8	
Benzo[a]anthracene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		2.7	40.9	94.2	52.6	
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.7	32.1	95.2	51.9	
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		6.5	44.5	95.2	54.3	
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.9	44.1	94.6	54.6	
Benzo[j,k]fluoranthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		6.8	46.5	95.9	58.1	
Chrysene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		0.4	44.5	93.3	56.4	
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		6.2	46.3	98.1	57.4	
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.9	46.9	97.5	51.4	
Fluorene	0.129	μg/L	0.05	<0.05	12/19/03	8270c		2.1	37.1	98	43.5	
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.5	45.8	97.5	56.2	
Naphthalene	1.95	μg/L	0.05	<0.05	12/19/03	8270c		0	28	96.2	38.4	
Phenanthrene	0.074	μg/L	0.05	<0.05	12/19/03	8270c		0	41.5	95.5	43.6	
Pyrene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		1.8	43.8	92.1	48	

Page#: 2 Report Date: 12/29/03

 3512 Montopolis Drive, Austin, TX 78744 &

 2209 N. Padre Island Dr., Corpus Christi, TX 78408

 (512) 385-5886

 • FAX (512) 385-7411

والمتحدث والمتحدث			
Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab ID#: 150254
Attn:	Jerry Brian	Sample Name: MW-15	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	96.5	80-120	
Toluene-d8	8260b	103	88-110	
2-Fluorobiphenyl	8270c	47.2	43-116	
Nitrobenzene-d5	8270c	50.8	35-114	
Terphenyl-d14	8270c	44.8	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Exceptions Report:

Report #/Lab ID#: 150254Matrix: waterClient: Environmental Tech GroupAttn: Jerry BrianProject ID: E02016 97-04Sample Name: MW-15

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter Quali		Comment
Lead/ICP	J	See J-flag discussion above.
Molybdenum/ICP	J	See J-flag discussion above.
Notes:	A	

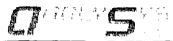
Page#: 4 Report #/Lab ID#: 150254 Report Date: 12/29/03

						220	2 Montopolis 9 N. Padre Isl: 2) 385-5886	and Dr.,	ustin, TX Corpus Cl X (512) 3	nristi, T	& X 78408
Client: Environmental Tech Group Attn: Jerry Brian Address: 2540 W. Marland						Report#/Lab II Project ID: EO Sample Name: I	2016 97-04	Repo	rt Date: 1	2/29/03	
Hobbs	NM 88240					Sample Matrix:					
10005	14101 00240					Date Received:		Time:	13:45		
Phone: (505) 397-4882 FAX: (505)	397-4701					Date Sampled:			15:30		
REPORT OF ANALYSIS							QUALITY.				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					12/08/03	3520					
Metals DigHg					12/03/03	7470 &245 .1					
Metals DigHNO3					12/03/03	3015					
Metals DigHNO3*filtered					12/04/03	3005a					
Aluminum/ICP	5.03	mg/L	0.2	<0.2	12/09/03	6010 & 200.7		1.07	88.71	96.59	85.52
Arsenic/ICP	<0.01	mg/L	0.01	< 0.01	12/09/03	6010 & 2 00.7		1.84	96.93	97.32	85.52
Barium/ICP	0.204	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.74
Beryllium/ICP	<0.002	mg/L	0.002	< 0.002	12/09/03	6010 & 2 00.7		2.91	94.59	97.2	87.04
Boron/ICP	0.0877	mg/L	0.01	< 0.01	12/09/03	6010 & 200.7		0.67	97.99	99.52	83.15
Cadmium/ICP	<0.002	mg/L	0.002	< 0.002	12/09/03	6010 & 200.7		1.39	97.29	98.6	88
Calcium/ICP*filtered	87.3	mg/L	10	<10	12/09/03	6010 & 2 00.7		0.14	80.08	101.72	99.94
Chromium/ICP	0.0173	mg/L	0.005	< 0.005	12/09/03	6010 & 2 00.7		0.6	92.05	98.52	102.56
Cobalt/ICP	<0.01	mg/L	0.01	< 0.01	12/09/03	6010 & 200.7		2.33	91.39	99.5	88.1
Copper/ICP	<0.01	mg/L	0.01	< 0.01	12/09/03	6010 & 200.7	J	1.18	96.86	101.54	1
Iron/ICP	2.72	mg/L	0.02	<0.02	12/09/03	6010 & 2 00.7		3.22	96.93	97.26	91.12
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	1.01	92.02	98.78	86.43
Magnesium/ICP*filtered	14.2	mg/L	5	<5	12/09/03	6010 & 2 00.7		2.65	104.61	101.28	
Manganese/ICP	0.0431	mg/L	0.005	< 0.005	12/09/03	6010 & 2 00.7		1.06	90.68	101.36	84.74
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	105
Molybdenum/ICP	0.0162	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		1.64	101.66	99.64	92.1
Nickel/ICP	0.0147	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.88	91.3	98.7	86.06

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Elton

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =:Precision higher than advisory limit. M =Matrix interference.


Report Date: 12/29/03 Page#: 1

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group Attn: Jerry Brian				D: EO2016 9 ame: MW-16					#/Lab ID# Matrix:		5	
REPORT OF ANALYSIS-cont.							QUALITY	QUALITY ASSURANCE DATA ¹				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Potassium/AA*filtered	2.44	mg/L	0.25	<0.25	12/09/03	258.1&7610		1.22	81.03	91.15	100.34	
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	2.52	94.9	98.82	84.69	
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/05/03	272.2&7761		6.7	99.08	95	102	
Sodium/ICP*filtered	21.3	mg/L	0.4	<0.4	12/11/03	6010 & 2 00.7		1.51	90.34	98.65	99.6	
Strontium/ICP	0.602	mg/L	0.04	<0.04	12/09/03	6010 & 2 00.7		1.31	92.5	99	86.6	
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 2 00.7		1.04	94.74	98.79	86.96	
Vanadium/ICP	0.0303	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		3.58	89.37	98.06	92.88	
Zinc/ICP	0.0198	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		3.63	90.32	100.76	86.3	
Extractable organics-PAH					12/19/03	8270c						
Volatile organics-8260b/BTEX					12/09/03	8260b(5030/5035)						
Benzene	13.6	μg/L	1	<1	12/09/03	8260b		0.4	105.3	95.9	105.9	
Ethylbenzene	2.74	μg/L	1	<1	12/09/03	8260b		2.5	102.2	109.8	108.8	
m.p-Xylenes	5.37	μg/L	2	<2	12/09/03	8260b		1.4	97.8	106.4	101.8	
o-Xylene	2.87	μg/L	1	<1	12/09/03	8260b		0.9	102.1	109	116.7	
Toluene	5.12	μg/L	1	<1	12/09/03	82 60b		0.2	111.9	108.8	109.2	
Acenaphthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		1.1	33.4	97.5	42.1	
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		2.4	32.2	97.1	41.8	
Anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		8.5	30.4	95	44.8	
Benzo[a]anthracene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		2.7	40.9	94.2	52.6	
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.7	32.1	95.2	51.9	
Benzo[b]fluoranthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		6.5	44.5	95.2	54.3	
Benzo[g,h,i]perylene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		5.9	44.1	94.6	54.6	
Benzo[j,k]fluoranthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		6.8	46.5	95.9	58.1	
Chrysene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		0.4	44.5	93.3	56.4	
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		6.2	46.3	98.1	57.4	
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.9	46.9	97.5	51.4	
Fluorene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		2.1	37.1	98	43.5	
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.5	45.8	97.5	56.2	
Naphthalene	0.129	μg/L	0.05	<0.05	12/19/03	8270c		0	28	96.2	38.4	
Phenanthrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		0	41.5	95.5	43.6	
Pyrene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		1.8	43.8	92.1	48	

Page#: 2 Report Date: 12/29/03

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

1				
	Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab ID#: 150255
	Attn:	Jerry Brian	Sample Name: MW-16	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95.1	80-120	
Toluene-d8	8 2 60b	102	88-110	
2-Fluorobiphenyl	8270c	45.4	43-116	
Nitrobenzene-d5	8270c	53.1	35-114	
Terphenyl-d14	8270c	50.5	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Exceptions Report:

Report #/Lab ID#: 150255Matrix: waterClient: Environmental Tech GroupAttn: Jerry BrianProject ID: EO2016 97-04Sample Name: MW-16

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

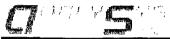
J flag Discussion

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Copper/ICP	J	See J-flag discussion above.
Lead/ICP	J	See J-flag discussion above.
Selenium/ICP	J	See J-flag discussion above.
Notes:	1	

Page#: 4 Report #/Lab ID#:150255 Report Date: 12/29/03

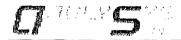

Client: Environmental Tech Group Attn: Jerry Brian Address: 2540 W. Marland Hobbs	NM 88240					Report#/Lab II Project ID: EO Sample Name: Sample Matrix: Date Received:	2016 97-04 MW-17 water	·	13:45	2/29/03				
Phone: (505) 397-4882 FAX: (50	5) 397-4701					Date Sampled:	12/01/2003	Time:	16:00					
REPORT OF ANALYSIS QUALITY ASSURANCE DATA 1														
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS			
A/BN Extraction-PAH					12/08/03	3520								
Metals DigHg					12/03/03	7470&245.1								
Metals DigHNO3					12/03/03	3015								
Metals DigHNO3*filtered					12/04/03	3005a								
Aluminum/ICP	13.3	mg/L	0.2	<0.2	12/09/03	6010 & 200.7		1.07	88.71	96.59	85.52			
Arsenic/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	1.84	96.93	97.32	85.52			
Barium/ICP	0.683	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.96	85.82	100.92	84.74			
Beryllium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		2.91	94.59	97.2	87.04			
Boron/ICP	0.129	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		0.67	97.99	99.52	83.15			
Cadmium/ICP	<0.002	mg/L	0.002	<0.002	12/09/03	6010 & 2 00.7		1.39	97.29	98.6	88			
Calcium/ICP*filtered	101	mg/L	10	<10	12/09/03	6010 & 200.7		0.14	80.08	101.72	99.94			
Chromium/ICP	0.037	mg/L	0.005	<0.005	12/09/03	6010 & 200.7]	0.6	92.05	98.52	102.5			
Cobalt/ICP	< 0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	2.33	91.39	99.5	88.1			
Copper/ICP	0.0156	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		1.18	96.86	101.54	87.17			
Iron/ICP	7.54	mg/L	2	<2	12/11/03	6010 & 2 00.7		5.19	83.03	98.71	106.9			
Lead/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7	J	1.01	92.02	98.78	86.43			
Magnesium/ICP*filtered	19.5	mg/L	5	<5	12/09/03	6010 & 2 00.7		2.65	104.61	101.28	100.8			
Manganese/ICP	0.106	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.06	90.68	101.36	84.74			
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	12/03/03	245.2&7470		1.04	96	105	105			
Molybdenum/ICP	0.0225	mg/L	0.005	<0.005	12/09/03	6010 & 2 00.7		1.64	101.66	99.64	92.1			
Nickel/ICP	0.0233	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		1.88	91.3	98.7	86.0			

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2003, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Elton

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1 Report Date: 12/29/03



1

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group Attn: Jerry Brian		Report#/Lab ID#: 150256 Sample Matrix: water														
REPORT OF ANALYSIS-cont.							QUALITY	Y ASSURANCE DATA ¹								
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec. ²	Recov.3	CCV ⁴	LCS ⁴					
Potassium/AA*filtered	3.15	mg/L	0.25	<0.25	12/09/03	258.1&7610		1.22	81.03	91.15	100.34					
Selenium/ICP	<0.01	mg/L	0.01	<0.01	12/09/03	6010 & 200.7		2.52	94.9	98.82	84.69					
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/08/03	272.2&7761		6.13	77.06	82.5	103					
Sodium/ICP*filtered	44	mg/L	0.4	<0.4	12/11/03	6010 & 2 00.7		1.51	90.34	98.65	99.6					
Strontium/ICP	1.06	mg/L	0.04	<0.04	12/09/03	6010 & 200.7		1.31	92.5	99	86.6					
Tin/ICP	<0.02	mg/L	0.02	<0.02	12/09/03	6010 & 200.7		1.04	94.74	98.79	86.96					
Vanadium/ICP	0.0482	mg/L	0.01	<0.01	12/09/03	6010 & 2 00.7		3.58	89.37	98.06	92.88					
Zinc/ICP	0.0345	mg/L	0.005	<0.005	12/09/03	6010 & 200.7		3.63	90.32	100.76	86.3					
Extractable organics-PAH					12/19/03	8270c										
Volatile organics-8260b/BTEX					12/08/03	8260b(5030/5035)										
Benzene	<1	μg/L	1	<1	12/08/03	8260b		3.3	106.5	98.9	103.7					
Ethylbenzene	<1	μg/L	1	<1	12/08/03	8260b		3.3	113.2	107.3	109.7					
m,p-Xylenes	<2	μg/L	2	<2	12/08/03	8260b		3.2	106.5	102.5	102.9					
o-Xylene	<1	μg/L	1	<1	12/08/03	8260b		4.1	110.6	117.6	117.2					
Toluene	<1	µg/L	1	<1	12/08/03	8260b		4.1	114.3	107.2	111.2					
Acenaphthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		1.1	33.4	97.5	42.1					
Acenaphthylene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		2.4	32.2	97.1	41.8					
Anthracene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		8.5	30.4	95	44.8					
Benzo[a]anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		2.7	40.9	94.2	52.6					
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.7	32.1	95.2	51.9					
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		6.5	44.5	95.2	54.3					
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.9	44.1	94.6	54.6					
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		6.8	46.5	95.9	58.1					
Chrysene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		0.4	44.5	93.3	56.4					
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		6.2	46.3	98.1	57.4					
Fluoranthene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		1.9	46.9	97.5	51.4					
Fluorene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		2.1	37.1	98	43.5					
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		5.5	45.8	97.5	56.2					
Naphthalene	<0.05	µg/L	0.05	< 0.05	12/19/03	8270c]	0	28	96.2	38.4					
Phenanthrene	<0.05	μg/L	0.05	<0.05	12/19/03	8270c		0	41.5	95.5	43.6					
Pyrene	<0.05	µg/L	0.05	<0.05	12/19/03	8270c		1.8	43.8	92.1	48					

Page#: 2 Report Date: 12/29/03

1

1

 3512 Montopolis Drive, Austin, TX 78744 &

 2209 N. Padre Island Dr., Corpus Christi, TX 78408

 (512) 385-5886

 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: EO2016 97-04	Report#/Lab ID#: 150256
Attn:	Jerry Brian	Sample Name: MW-17	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	91.9	80-120	
Toluene-d8	8260b	104	88-110	
2-Fluorobiphenyl	8270c	45.9	43-116	
Nitrobenzene-d5	8270c	38	35-114	
Terphenyl-d14	8270c	53.4	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/29/03

Exceptions Report:

Report #/Lab ID#: 150256 Matrix: water Client: Environmental Tech Group Project ID: EO2016 97-04 Sample Name: MW-17

Attn: Jerry Brian

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

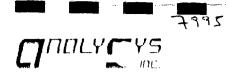
Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

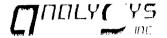
A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)


Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Arsenic/ICP	J	See J-flag discussion above.
Cobalt/ICP	J	See J-flag discussion above.
Lead/ICP	J	See J-flag discussion above.
Notes		

Notes:

CHAIN -CUSTODY


www.an sysinc.com

Send Reports To:	Bill To (if different): Company Name <u>Link Creegg</u>												Montopolis Th. (512) 385	5886 F;	orein, 1X av (512)			
Company Name Environ	mental Technolog	y Group I	πς.	_ Ce	mpany N	ame	_Lin	K	Cnes	J.g.							11	
Company Name Environ	Morland	٠ · ·		A	dress						-				Unist	: Fabie Islan i - UX 78408	Ph (361	1) 289 639
ity Holobs State	A.M. Zip	88240	۰۰۰ و د داده و ر د ده دو مرسومی و سر و در و	City State Zip											Fix: (364	720 D3	75	
ATTN: Jerry B																		
"hone (505) 397-488;	2Fax (505) 397-	4701		Բհ	me				Fax									
roject Name/PO#: 80 2016	97-04 Sampler	Justin	Frisk								T				• •			1
samples/projects intended for equirements and pricing. To dentified and discussed prior to instody under "special instructi	Be successfully comple preceipt and MUST BE I	ted such proje DENTHFIED c	cts should be	i	of Cont Presen RRP-13 N	vative.			Ma	trix			•••••••q. •	··· [·]	Analyze Fe	νr 1 Ι	1	
Client Sample No. Description/Identification	Date Sampled Time Sampled	No. of Containers Shipped Grab Composite	I ab I.D. # (Lab Ouly)	ltee HNO3	HCI. ZnAc/NaOH	H2SO4 Glass	None Other (Specify)	Water</td <td>Wastewater</td> <td>Soil</td> <td>()ther (Specify)</td> <td>4/0 CC Mahak</td> <td>PHH</td> <td>87EX 201 b</td> <td></td> <td></td> <td></td> <td>RUSH TAT (Pre-</td>	Wastewater	Soil	()ther (Specify)	4/0 CC Mahak	PHH	87EX 201 b				RUSH TAT (Pre-
mw-1	12-1-03 11:00	4	150246	X X	X			X				XX	$\langle i \rangle$					
$n\omega - 7$	12-1-03 11:30	4	150247	XX	X			X				$\langle x \rangle$	$\langle \rangle$	X!				
nu-8	12-1-03 12:00	4	150248	$ X \times$	X			X				XX	$\langle \rangle$					
MW-10	12-1-03 12:30		150249	X X	X			X				$\chi _{\lambda}$	$\langle \rangle$	<				
mw - 11	12-1-03 1:00	4	150250	$ \chi \chi$	X			X				$\mathbf{x} \mathbf{x}$	$\langle \rangle$	$\langle $				
nw -12	12-1-03 1:30	4	150251	XX	X			X				X	$\langle \rangle$	21 I				
	12-1-03 2:00	4	150252	$ X \chi$	X			X				$X \rangle$	$\langle \rangle$	Ϋ́́				
$m\omega - 14$	12-1-03 2:30	4	150253	XX	X	1		X				XX	$\langle \rangle$	Š I				
niv -15	12-1-03 3:00	4	150254	XX	X			X	3			X >	$\langle \rangle$	$\langle $				
MW -/lo pecial Instructions (such as spe	12-1-03 3:30 Social QC requirements, list	4 s. methods, etc.	150255	XX	X			X			[[X >	<u> </u>	<u> </u>				
DUnless specifically requested other SFs normal reporting limits (MDU) narody, ASI will default to Priority P	POLY For GC/MS volatiles a	ind extractables, u	nless specific ana	lytical par	ancter fis	is me si	recified a	ur this -	hod of c chain-of	hoice : custor	nd all r ly or at	fata wi taebed	it he to th	reported is chain a	a (Consi a (Consi a (Sopsi	priature Greccipt Stant with AC Grecci C D & Cr	τ::	390
	Sample Relinquised By		1 · · · · · · · · · · · · · · · · · · ·	P# 100-1 # 1			Sa	mple	Recrive	ed By				-	115			
Name	Affillation	Date	Time		Name				Blation	1	J	ate	1	Time		\checkmark		
Jon Contraction of the second	ETTAT.	12-1-05		mil	am,	Hen	soh	teg)	Asi		12/3	103	ん	345	Plex			

CHAIN	-CUSTODY

www.ar. sysinc.com

Send Reports To:	Bill To (if different):
Company Name Environmental Technology Group Inc.	Company Name
Address 2540 W. Morland	Address
City Hobbs State N.M. Zip 88240	City State
ATTN: Jerry Brian	ATTN:
ATTN: Jerry Brian Phone (505) 397-4882Fax (505) 397-4701	Phone
Project Name/POH: 20 2016 97-04 Sampler Justin Eisk	
Samples/projects intended for TCEQ-TRRP completion require special handling, QC requirements and pricing. To Be successfully completed such projects should be identified and discussed prior to receipt and MUST BE IDENTIFIED on this Chain-of	No. of Containers and Preservative (TRRP-13 Mandatory)

Bill To (if c	lifferent):		
Company N	lame Link En	cr94	
Address		· _ · · · · · · · · · · · · · · · · · ·	
City	State	Zip	
ATTN:			
Phone	F	nx	

Matrix

3512 Monopolis Drive, Austin, 1X 78744 Ph. (5) 27385 58564 av (512) 385 7314

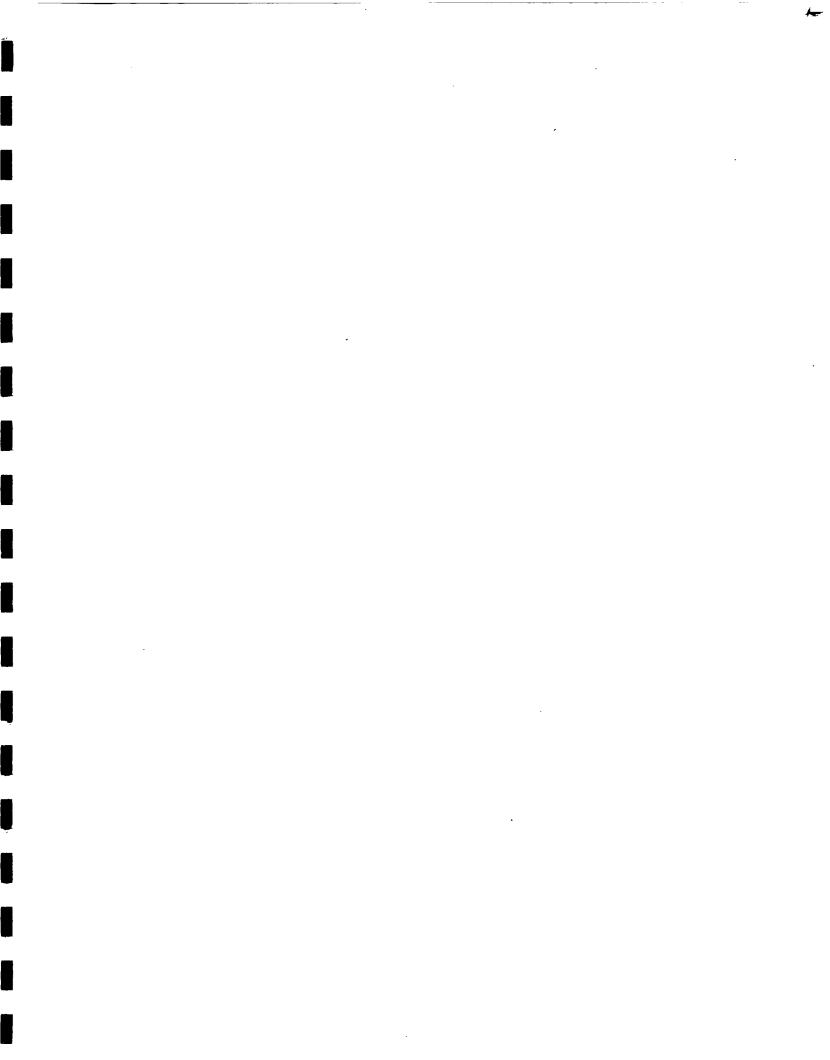
2209 8 Padre Island Dr., Ste R., Corp., Christi, J.X 78408 Ph. (361) 289-6384 Vec (361) 289-0875

t

Analyze For

1 . 1

210


1 . 1 1

Samples/projects intended for TCEQ-TRRP completion require special handling, QC	
requirements and pricing. To Be successfully completed such projects should be	
identified and discussed prior to receipt and MUST BE IDENTIFIED on this Chain-of	
Custody under "special instructions".	

Special Instructions (such as special QC requirements, lists, methods, etc) Cit (alces specifically requered otherwise on this Chain of custody and/ar attached desuccutation, all and/sess will be conduced using ASPs method of choice and all data will be reported to this chain of (ustody and/ar attached desuccutation, all and/sess will be conduced using ASPs method of choice and all data will be reported to this chain of (ustody and/ar attached desuccutation, all and/sess will be conduced using ASPs method of choice and all data will be reported to this chain of (ustody and/ar attached desuccutation, all and/sess will be conduced using ASPs method of choice and all data will be reported to this choice of (C on sister) of (C/SB) solatiles and executive and proving finits (ADI) P(t) - for (UC/SB) solatiles and executive anglicit proving field on this choice of the this choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of the choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of the choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of the choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of the choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of the choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of the choice of (C on sister) of (C/SB) solatiles and executive anglicit proving field on this choice of (C on sister) of (C/SB) solatiles and (C/SB) solatiles and executive anglicit proving field on this choice of (C/SB) solatiles and (C/SB) solatiles and (C/SB) solatiles and (C/SB) solatiles and (C/SB) solatiles and (C/SB) solatiles and (C/SB) solatiles and (C/SB) sola	Client Sample No. Description/Identification	Date Sampled	Time Sampled	. No. of Containers Shipped Grab	Composite	(Lab Only)	Ice	CHNO3	(HCL	ZnAc/NaOH	H2SO4 Glass	None	Other (Specify)	Water	Wastewater	Waste	Soil	Other (Specify)	V War Met I	HHH V	HIER JOSH					RUSH TAT ' Pre-	Viandard TAT
(AC) less specifically requested otherwise on this Chain-of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the operative proprotection (Cronsistant with SPs normal reporting limits (MDF 4201). For GCARS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of the custody or attached to this chain of the custody or attached to this chain of the custody or attached to the chain of the custody. ASI will default to Priority Pollutants or ASPs HSL list at ASPs option. Specific compound lists must be supplied for all GC procedures.	mw-17	12-1-03	4:0D	4		150256	X.,	<u>A</u>	Δ.	. . .				K.					X	X	X					l	
(AC) less specifically requested otherwise on this Chain-of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the operative proprotection (Cronsistant with SPs normal reporting limits (MDF 4201). For GCARS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of the custody or attached to this chain of the custody or attached to this chain of the custody or attached to the chain of the custody. ASI will default to Priority Pollutants or ASPs HSL list at ASPs option. Specific compound lists must be supplied for all GC procedures.									· ·-			. .					<i>"</i> .,										
(AChiless specifically requested otherwise on this Chain of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the operature of th				 .		,							••••			••••••					• •						
(1)Unless specifically requested otherwise on this Chain of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the other produces in the chain of COMS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of the chain of				·								 .	• • • • • •				• •		-11	-							
(1)Unless specifically requested otherwise on this Chain of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the other produces in the chain of COMS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of the chain of	, - м			; ·	· ·			· .								• •		-									
(1)Unless specifically requested otherwise on this Chain of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the other produces in the chain of COMS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of the chain of			· · · · · · · · · · · · · · · · · · ·					•••		••••						• •											
(AC) less specifically requested otherwise on this Chain-of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the operative proprotection (Cronsistant with SPs normal reporting limits (MDF 4201). For GCARS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of the custody or attached to this chain of the custody or attached to this chain of the custody or attached to the chain of the custody. ASI will default to Priority Pollutants or ASPs HSL list at ASPs option. Specific compound lists must be supplied for all GC procedures.										• · · ••	1																
(AC) less specifically requested otherwise on this Chain-of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the operative proprotection (Cronsistant with SPs normal reporting limits (MDF 4201). For GCARS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of the custody or attached to this chain of the custody or attached to this chain of the custody or attached to the chain of the custody. ASI will default to Priority Pollutants or ASPs HSL list at ASPs option. Specific compound lists must be supplied for all GC procedures.												••				an 11 11			•								
(AC) less specifically requested otherwise on this Chain-of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to the operative proprotection (Cronsistant with SPs normal reporting limits (MDF 4201). For GCARS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of the custody or attached to this chain of the custody or attached to this chain of the custody or attached to the chain of the custody. ASI will default to Priority Pollutants or ASPs HSL list at ASPs option. Specific compound lists must be supplied for all GC procedures.				 ;	m.u 17						•••••		.,														
(1) Puless specifically requested otherwise on this Chain of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to ASPs normal reporting limits (MDI 4901). For GCMS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of ASPs normal reporting limits (MDI 4901). For GCMS volatiles and extractables, unless specific compound lists must be applied for all GC procedures. Sample Relinquised By Sample Relinquised By	Special Instructions (such as spe	cial QC requi	rements, lists,	method	s. elc.)	.l	1	1	ا وو در هم وه	I I			1 1	I		•		. 1	,			{	,		,	•
(1) Piless specifically requested otherwise on this Chain of custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to ASPs normal reporting limits (MDI 4901). For BC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain of custody or attached to this chain of ASPs normal reporting limits (MDI 4901). For BC/MS volatiles and extractables, unless specific compound lists must be applied for all GC procedures. Custody, ASI will default to Priority Pollutants or ASPs HSL Bit at ASPs option. Specific compound lists must be applied for all GC procedures. Sample Refinquised By Sample Refinquised By										•••••		117-16 Aurol 12															
Sample Relinquised By Sample Received By	ASP, norm if reporting limits (MD17	1991) En GC78	MS volatiles and	Fexilatia	bles, n	mless specific ana	dytica	l pop	inclei	- fists	are s	necifi	ed or	r this	thod (chain	of che ref e	sice a nstod	nd all y or a	dəta ittəcli	witt ed to	w reported (this chain o	• (11 m • N	n áster EF A C	et vith e	T.	3.9	I C
		Sample Relin	quised By										San	uple	Rece	lved	By						:e				-

	ampe windused by				Sampe Received by			
	Name	Affiliation	Date	Time	Name	Affiliation	Date	Time
	LOC	876F	12-1-08		Welom Hungh	y 1451	12/2/03	1345
1								

Frendering of above described samples to AnalySys. Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys. Inc.'s standard terms

EOTT ENERGY LLC

P.O. BOX 4666 HOUSTON, TEXAS 77210-4666

March 31, 2003

Mr. Randolph Bayliss, P.E. Hydrologist Oil Conservation Division State of New Mexico 1220 Sout St. Francis Drive Santa Fe NM 87505

Dear Mr. Bayliss;

EOTT Energy, LLC is an Operator of crude oil pipelines and terminal facilities located in the state of New Mexico. EOTT actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and workplans developed in consultation with the New Mexico Oil Conservation Division. Consistent with the rules and regulations of the New Mexico OCD, EOTT hereby submits its annual monitoring reports for the following titled sites:

TNM 98-02	Section 31, Township 19 South, Range 37 East Lea County NM		
TNM 97-16	Section 12, Township 24 South, Range 37 East, Lea County NM		
Monument 1 9	Section 32, Township 19 South, Range 37 East, Lea County NM		
TNM SPS-11	Section 18, Township 18 South, Range 36 East, Lea County NM		
TNM 97-18	Section 28, Township 20 South, Range 37 East, Lea County NM		
HDO 90-23	Section 6, Township 20 South, Range 37 East, Lea County NM		
Monument 2	Section 06 & 07, Township 20 South, Range 38 East, Lea County NM		
Leo (Flap) Sims	Section 27, Township 19 South, Range 37 East, Lea County NM		
Monument 11	Section 30, Township 19 South, Range 37 East, Lea County NM		
Monument 17	Section 17, Township 19 South, Range 37 East, Lea County NM		
TNM 98-05A	Section 26, Township 21 South, Range 37 East, Lea County NM		
LF 37	Sections 19 & 20, Township 19 South, Range 37 East, Lea County NM		
TNM 97-04	Section 11, Township 16 South, Range 35 East, Lea County NM		
LF-59	Section 32, Township 19 South, Range 37 East, Lea County NM		
Monument Barber 10" Sour Section 32, Township 19 South, Range 37 East, Le			

ETGI prepared these documents and has vouched for their accuracy and completeness, and on behalf of EOTT Energy, I have personally reviewed the documents and interviewed ETGI in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that EOTT Energy submits these Annual Compliance Monitoring Reports for the above 15 facilities.

I look forward to scheduling a meeting with you in the second or third week of March as you schedule allows, which will allow for an opportunity to review and discuss the results of the monitoring. If you have questions in the interim, please contact me at (713) 993-5047.

Sincerely, Bill Von Dell

Bill Von Drehle Director Environmental EOTT ENERGY LLC

Cc: Frank Hernandez

MAR 2 5 2003

ANNUAL MONITORING REPORT

EOTT ENERGY, LLC TNM 97-04 LEA COUNTY, NEW MEXICO SE4 SE4 SECTION 11, TOWNSHIP 16 SOUTH, RANGE 35 EAST

PREPARED FOR:

EOTT ENERGY, LLC 5805 EAST HIGHWAY 80 MIDLAND, TEXAS 79701

PREPARED BY:

ENVIRONMENTAL TECHNOLOGY GROUP, INC. 2540 WEST MARLAND HOBBS, NEW MEXICO 88240

March 2003

Chance I. Johnson New Mexico Regional Manager

atton Ken Dutton

Project Manager

TABLE OF CONTENTS

INTRODUCTION

FIELD ACTIVITIES

GROUNDWATER GRADIENT

LABORATORY RESULTS

SUMMARY

FIGURES Figure 1 – Site Location Map Figure 2 – Site Groundwater Gradient Map Figure 3 - NMOCD Site Map

TABLES Table 1 – Groundwater Elevation Table 2 – Groundwater Chemistry

APPENDICES Appendix A – Laboratory Reports

INTRODUCTION

Environmental Technology Group, Inc. (ETGI), on behalf of EOTT Energy, LLC (EOTT), prepared this Annual Monitoring Report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1 of each year. This report is intended to be viewed as a complete document with figures, attachments, tables, and text. The report presents the results of the quarterly groundwater monitoring events only. For reference, the Site Location Map is provided as Figure 1.

Groundwater monitoring was conducted during four quarterly events in calendar year 2002 to assess the levels and extent of dissolved phase and phase-separated petroleum hydrocarbon (PSH) constituents. The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing measurable levels of PSH were not sampled.

FIELD ACTIVITIES

The site monitor wells were gauged and sampled on February 13, June 12, August 26, and November 21, 2002. During each sampling event, the monitor wells designated to be sampled were purged of approximately three well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon samplers. Water samples were stored in clean glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a polystyrene tank and disposed of by Pate Trucking, Hobbs, New Mexico or Vista Trucking, Eunice, New Mexico utilizing a licensed disposal facility (NMOCD AO SWD-730). Additionally, monitor wells MW-16 and MW-17 were installed during the last week of December 2002 to further delineate the site. Developing and sampling of the newly installed monitor wells was conducted in January 2003.

GROUNDWATER GRADIENT

Locations of the monitor wells and the inferred groundwater gradient, as measured on November 21, 2002 are depicted on Figure 2, the Site Groundwater Gradient Map. The groundwater elevation data is provided as Table 1. Groundwater elevation contours, generated from the final quarterly event of calendar year 2002 water level measurements, indicated a general gradient of approximately 0.003 ft/ft to the southeast as measured between groundwater monitor wells MW-10 and MW-15. The depth to groundwater, as measured from the top of the well casing, ranged between 52.49 to 56.24 feet in the shallow alluvial aquifer.

A measurable thickness of PSH was detected in monitor wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-9 and recovery well RW-1 during the annual monitoring period. Maximum thicknesses of 3.67 feet in monitor well MW-2, 3.27 feet in monitor well MW-3, 3.17 feet in monitor well MW-4, 3.64 feet in monitor well MW-5, 3.57 feet in monitor well MW-6, 2.91 feet in monitor well MW-9 and 3.11 in recovery well RW-1 was measured and is shown on Table 1.

LABORATORY RESULTS

Groundwater samples collected during the sampling events were delivered to AnalySys, Inc. in Austin, Texas for determination of Benzene, Toluene, Ethylbenzene and total Xylene (BTEX) constituent concentrations by EPA Method SW846-8260b. The groundwater chemistry data is provided as Table 2 and the Laboratory Reports are provided as Appendix A. Groundwater samples, which exceeded NMOCD regulatory standards for benzene and BTEX, are indicated on Figure 3, the NMOCD Site Map.

Laboratory results for groundwater samples collected during the calendar year 2002 indicated that benzene and BTEX concentrations were below NMOCD regulatory standards in monitor wells MW-1, MW-7, MW-8, MW-10, MW-11, and MW-12. The benzene concentrations were above NMOCD regulatory standards in monitor wells MW-13. The benzene and BTEX concentrations observed in the groundwater in monitor wells MW-14 and MW-15 exceeded NMOCD regulatory standards.

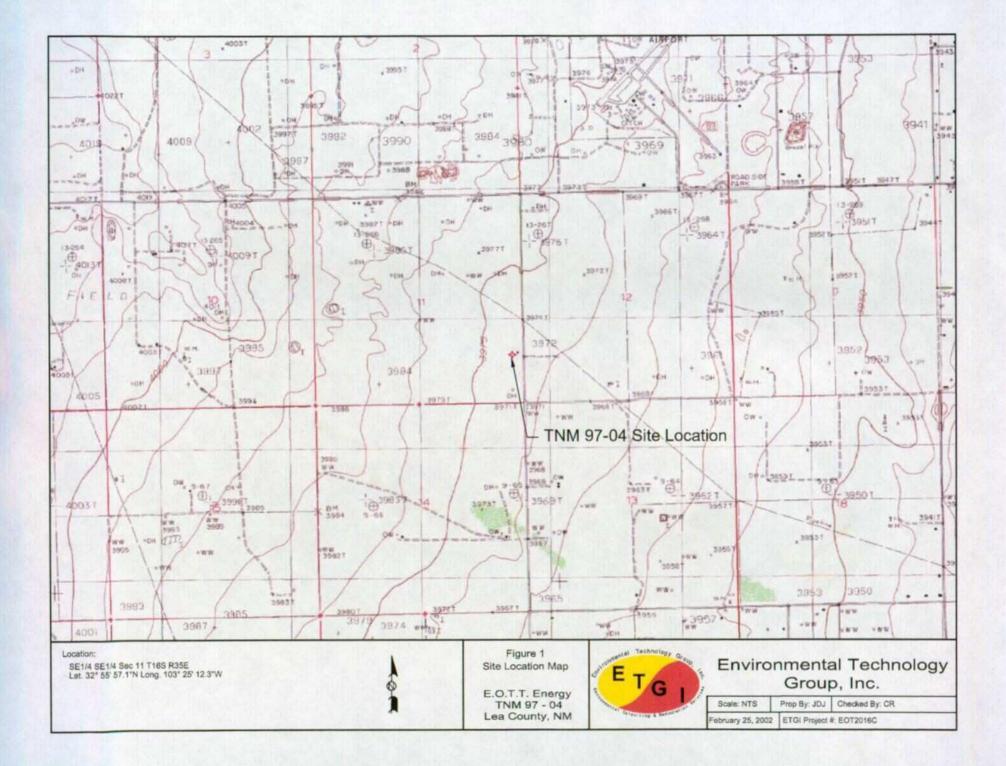
SUMMARY

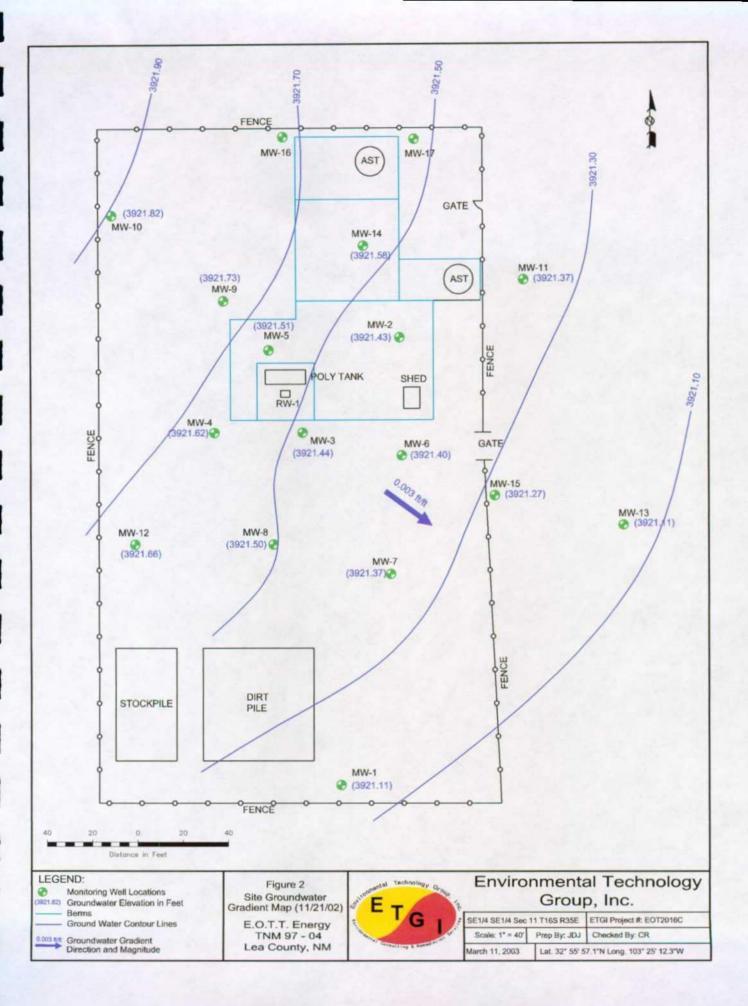
This report presents the results of monitoring activities for the annual monitoring period of calendar year 2002. A measurable thickness of PSH was detected in monitor wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-9 and recovery well RW-1 during the annual monitoring period. A maximum thickness of 3.67 feet in monitor well MW-2, 3.27 feet in monitor well MW-3, 3.17 feet in monitor well MW-4, 3.64 feet in monitor well MW-5, 3.57 feet in monitor well MW-6, 2.87 feet in monitor well MW-9 and 3.11 in recovery well RW-1 was measured and is shown on Table 1. During this reporting period, approximately 1,500 gallons of PSH was recovered from the aforementioned monitor wells. Recovered PSH was reintroduced into the EOTT transportation system at the Lea Station Facility, Monument, New Mexico. Additionally, monitor wells MW-16 and MW-17 were installed during the last week of December 2002 to further delineate the site. Developing and sampling of the monitor wells was conducted in January 2003.

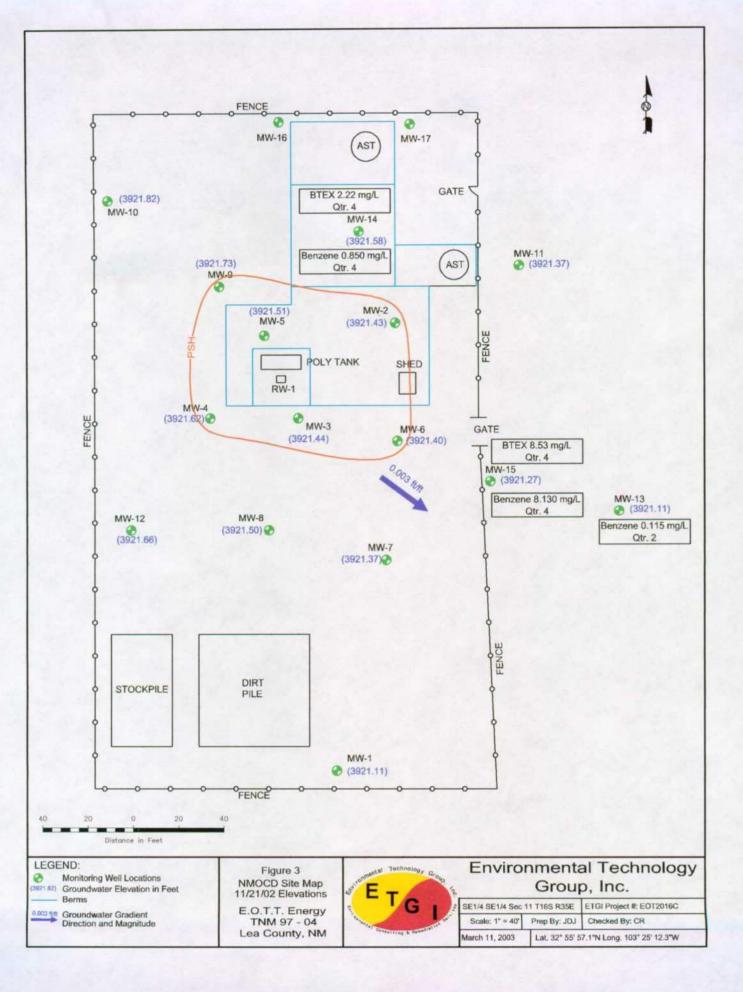
Groundwater elevation contours, generated from the final quarterly event of calendar year 2002 water level measurements, indicated a general gradient of approximately 0.003 ft/ft to the southeast as measured between groundwater monitor wells MW-10 and MW-15.

Laboratory results for groundwater samples collected during the calendar year 2002 indicated that benzene and BTEX concentrations were below NMOCD regulatory standards in monitor wells MW-1, MW-7, MW-8, MW-10, MW-11, and MW-12. The benzene concentrations were above NMOCD regulatory standards in monitor wells MW-13. The benzene and BTEX concentrations observed in the groundwater in monitor wells MW-14 and MW-15 exceeded NMOCD regulatory standards.

DISTRIBUTION


-


Copy 1 & 2:	William C. Olson/Randy Bayliss New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505		
Copy 3:	Chris Williams New Mexico Oil Conservation Division (District 1) 1625 French Drive Hobbs, New Mexico 88240		
Copy 4:	Frank Hernandez EOTT Energy, LLC P. O. Box 1660 Midland, Texas 79702		
Copy 5:	Jimmy Bryant EOTT Energy, LLC P. O. Box 1660 Midland, Texas 79702		
Сору 6:	Mike Kelly EOTT Energy, LLC P. O. Box 4666 Houston, Texas 77210-4666		
Copy 7:	Bill Vondrehle EOTT Energy, LLC P. O. Box 4666 Houston, Texas 77210-4666		
Copy 8:	Environmental Technology Group, Inc. 4600 W. Wall Midland, Texas 79703		
Copy 9:	Environmental Technology Group, Inc. 2540 W. Marland Hobbs, New Mexico 88240		
Copy Numbe	× 2		


ı.

Quality Control Review

FIGURES

GROUNDWATER ELEVATION

EOTT ENERGY, LLC TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # EO 2016

		TOP OF				CORRECTED
WELL	DATE	CASING	DEPTH TO	DEPTH TO	PSH	GROUND WATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW-1	03/02/00	3,974.18	-	53.01	0.00	3921.17
	04/25/00	3,974.18		53.02	0.00	3,921.16
	09/06/00	3,974.18	-	53.07	0.00	3,921.11
	11/28/00	3,974.18	-	53.08	0.00	3,921.10
	02/21/01	3,974.18	-	52,98	0.00	3,921.20
	05/31/01	3,974.18	-	52.94	0.00	3,921.24
	08/23/01	3,974.18	-	52.95	0.00	3,921.23
	11/21/01	3,974.18	-	52.99	0.00	3,921.19
	02/13/02	3,974.18	-	53.04	0.00	3,921.14
	06/12/02	3,974.18	-	52.99	0.00	3,921.19
	08/26/02	3,974.18	-	53.02	0.00	3,921.16
	11/21/02	3,974.18	-	53.07	0.00	3,921.11
MW - 2	03/02/00	3,974.62	52.49	55,38	2.89	3,921.70
	04/25/00	3,974.62	52,59	55.42	2.83	3,921.61
	09/05/00	3,974.62	52.58	55.71	3.13	3,921.57
	12/01/00	3,974.62	52.75	55.23	2.48	3,921.50
-	02/21/01	3,974.62	52.52	55.75	3.23	3,921.62
	05/31/01	3,974.62	52.77	54.75	1.98	3,921.55
	08/23/01	3,974.62	52.40	55.83	3.35	3,921.64
	11/21/01	3,974.62	53.02	54.21	1.19	3,921.42
	02/13/02	3,974.62	52.48	56.14	3.66	3,921.59
	06/12/02	3,974.62	52.44	56.11	3.67	3,921.63
***	08/26/02	3,974.62	-	<u> </u>	<u> </u>	-
	11/08/02	3,974.62	52.59	55,9 9	3.40	3,921.52
	11/21/02	3,974.62	53.13	53.54	0.41	3,921.43
	12/27/02	3,974.62	52.64	55.65	3.01	3,921.53
MW - 3	03/02/00	3,974.60	52.71	55.03	2.38	3,921.59
	04/25/00	3,974.60	52.61	55.09	2.48	3,921.62
	09/06/00	3,974.60	52.54	55.66	3.12	3,921.59
	11/28/00	3,974.60	52.64	55.57	2.93	3,921.52
	02/21/01	3,974.60	52.94	53.50	0.56	3,921.58
	05/31/01	3,974.60	52.51	55.71	3.20	3,921.61
L	08/23/01	3,974.60	52.46	55.80	3.34	3,921.64
L	11/21/01	3,974.60	52.46	55.81	3.35	3,921.64
	02/13/02	3,974.60	52.51	55,78	3.27	3,921.60
L	06/12/02	3,974.60	52.47	55.17	2.70	3,921.73
	08/26/02	3,974.60	55.74	52.49	3.25	3,924.87
L	11/08/02	3,974.60	53.15	53.21	0.06	3,921.44
L	11/21/02	3,974.60	53.15	53.21	0.06	3,921.44
L	12/27/02	3,974.60	52.64	55.24	2.60	3,921.57

į.

1

ļ.

ļ

_

GROUNDWATER ELEVATION

EOTT ENERGY, LLC TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # EO 2016

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUND WATER ELEVATION
MW - 4	03/02/00	3,974.53	52.58	54,30	1.72	3,921.69
	04/25/00	3.974.53	52.59	54.38	1.79	3,921.67
·	09/06/00	3,974,53	52.44	55.11	2.67	3,921.69
·	11/28/00	3,974.53	52.48	55.25	2.77	3,921.63
	02/21/01	3.974.53	52.38	55.15	2.77	3,921.73
	05/31/01	3,974.53	52.43	55.22	2.79	3,921.68
	08/23/01	3,974.53	52.38	55.24	2.86	3,921.72
·	11/21/01	3,974.53	52.37	55.15	2.78	3,921.74
	02/13/02	3,974.53	52.42	55.21	2.79	3,921.69
	06/12/02	3,974.53	52.31	55.44	3.13	3,921.75
- <u></u>	08/26/02	3,974.53	52.33	55.50	3.17	3,921.72
	11/08/02	3.974.53	52.94	53,18	0.24	3,921.55
	11/21/02	3,974.53	52.61	54.63	2.02	3,921.62
	12/27/02	3,974.53	52.53	54.86	2.33	3,921.65
MW - 5	03/02/00	3.974.28	52.09	55.50	3.41	3,921.68
	04/25/00	3.974.28	52.04	55.59	3.55	3,921.71
<u></u>	09/06/00	3,974.28	52.11	55.48	3.37	3,921.66
<u> </u>	11/28/00	3,974.28	52.21	55.46	3.25	3,921.58
	02/21/01	3,974.28	52.07	55.40	3.33	3,921.71
	05/31/01	3,974.28	52.11	55.48	3.37	3,921.66
	08/23/01	3,974.28	52.08	55.45	3.37	3,921.69
	11/21/01	3,974.28	52.20	55.43	3.23	3,921.60
	02/13/02	3,974.28	52.14	55.43	3.29	3,921.65
	06/12/02	3,974.28	52.04	55.65	3.61	3,921.70
	08/26/02	3,974.28	52.04	55,68	3.64	3,921.69
	11/08/02	3,974.28	52.71	52.97	0.26	3,921.53
	11/21/02	3,974.28	52.73	53.01	0.28	3,921.51
	12/27/02	3,974.28	52.24	55.09	2.85	3,921.61
MW - 6	03/02/00	3,974.72	53.10	53.84	0.74	3,921.51
	04/25/00	3,974.72	53.14	53.91	0.77	3,921.46
	09/06/00	3,974.72	52.81	55.87	3.06	3,921.45
	11/28/00	3,974.72	52.91	55.62	2.71	3,921.40
	02/21/01	3,974.72	52.79	55.42	2.63	3,921.54
	05/31/01	3,974.72	52.95	54.83	1.88	3,921.49
	08/23/01	3,974.72	52.69	55.95	3.26	3,921.54
	11/21/01	3,974.72	53.42	55.42	2.31	3,921.26
	02/13/02	3,974.72	52.74	56.04	3.30	3,921.49
	06/12/02	3,974.72	52.63	56.16	3.53	3,921.56
	08/26/02	3,974.72	52.67	56.24	3.57	3,921.51
	11/08/02	3,974.72	53.03	55.06	2.03	3,921.39
	11/21/02	3,974.72	53.10	54.57	1.47	3,921.40
	12/27/02	3,974.72	52.95	54.97	2.02	3,921.47

GROUNDWATER ELEVATION

EOTT ENERGY, LLC TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # EO 2016

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUND WATER ELEVATION
MW - 7	03/02/00	3,974.60	-	53.17	0,00	3,921.43
	04/25/00	3,974.60	<u> </u>	53.23	0.00	3,921.37
	09/06/00	3,974.60		53.28	0.00	3,921.32
	11/28/00	3,974.60	<u> </u>	53.28	0.00	3,921.32
	02/21/01	3,974.60		53.18	0.00	3,921.42
	05/31/01	3,974.60	-	53.15	0.00	3,921.45
	08/23/01	3,974.60	<u> </u>	53.14	0.00	3,921.46
	11/21/01	3,974.60		53,19	0.00	3,921.41
	02/13/02	3,974.60		53.22	0.00	3,921.38
	06/12/02	3.974.60		53.18	0.00	3,921.42
	08/26/02	3,974.60		53.19	0.00	3,921.41
	11/21/02	3,974.60		53.23	0.00	3,921.37
MW - 8	03/02/00	3,974.48		52.89	0.00	3,921.59
10100 - 0	04/25/00	3,974.48	<u>_</u>	52.96	0.00	3,921.52
	09/06/00	3,974.48	-	53.00	0.00	3,921.48
	11/28/00	3,974.48		53.00	0.00	3,921.48
	02/21/01	3,974.48		52.90	0.00	3,921.58
	05/31/01	3,974.48		52.85	0.00	3,921.63
	08/23/01	3,974.48	_	52.87	0.00	3,921.61
	11/21/01	3,974.48		52.92	0.00	3,921.56
	02/13/02	3,974.48		52.96	0.00	3,921.52
	06/12/02	3,974.48		52.93	0.00	3,921.55
	08/26/02	3,974.48		52.92	0.00	3,921.56
	11/21/02	3,974.48		52.98	0.00	3,921.50
MW - 9	03/02/00	3,975.06	53.07	54.26	1.19	3,921.81
INITY O	04/25/00	3,975.06	53.11	54.34	1.13	3,921.77
	09/06/00	3,975.06	53.04	55.02	2.21	3,921.92
	11/28/00	3,975.06	53.13	54.90	1.77	3,921.66
	02/02/01	3,975.06	53.14	54.19	1.05	3,921.76
	05/31/01	3,975.06	53.08	54.81	1.73	3,921.72
	08/23/01	3,975.06	52.88	55.30	2.42	3,921.82
	11/21/01	3,975.06	53.15	54.20	1.05	3,921.75
	02/13/02	3,975.06	52.86	55.73	2.87	3,921.77
	06/12/02	3,975.06	52.82	55.67	2.85	3.921.81
	08/26/02	3,975.06	52.83	55.70	2.87	3,921.80
	11/08/02	3,975.06	52.90	55.81	2.91	3,921.72
	11/21/02	3,975.06	52.90	55.77	2.87	3,921.73
	12/27/02	3,975.06	53.13	54.68	1.55	3,921.70
MW - 10	03/02/00	3,975.02		53.10	0.00	3,921.92
	04/25/00	3,975.02	-	53.18	0.00	3,921.84
	09/06/00	3,975.02		53.22	0.00	3,921.80
	11/28/00	3,975.02		53.23	0.00	3,921.79
	02/21/01	3,975.02		53.15	0.00	3,921.87
	05/31/01	3,975.02	-	53.08	0.00	3,921.94
	08/23/01	3,975.02	-	53.10	0.00	3,921.92
	11/21/01	3,975.02	-	53.13 0.00		3,921.89
	02/13/02	3,975.02	-	53.16 0.00		3,921.86
	06/12/02	3,975.02	-	53.14	0.00	3,921.88
	08/26/02	3,975.02	-	53.14	0.00	3,921.88
	11/21/02	3,975.02	-	53.20	0.00	3,921.82

ļ

ļ

ļ

i.

l

GROUNDWATER ELEVATION

EOTT ENERGY, LLC TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # EO 2016

ſ

1

I.

1

		TOD 05				CORPECTED
WELL	DATE	TOP OF CASING	DEPTH TO	DEPTH TO	PSH	CORRECTED GROUND WATER
NUMBER		ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
			TROBOOT			
MW - 11	03/02/00	3,975.30	<u>.</u>	53.84	0.00	3,921.46
	04/25/00	3,975.30		53.91	0.00	3,921.39
	09/06/00	3,975.30	-	53.95	0.00	3,921.35
	11/28/00	3,975.30		53.96	0.00	3,921.34
	02/21/01	3,975.30		53.79	0.00	3,921.51
	05/31/01	3,975.30		53.77	0.00	3,921.53
	08/23/01	3,975.30	<u>-</u>	53.83	0.00	3,921.47
	11/21/01	3,975.30		53.87	0.00	3,921.43
	02/13/02	3,975.30	<u> </u>	52.85	0.00	3,922.45
	06/12/02	3,975.30		53.87	0.00	3,921.43
	08/26/02	3,975.30	·	53.89	0.00	3,921.41
	11/21/02	3,975.30		53.93	0.00	3,921.37
MW - 12	03/02/00	3,974.55		52.80	0.00	3,921.75
	04/25/00	3,974.55	<u> </u>	52.86	0.00	3,921.69
	09/06/00	3,974.55	· ·	52.90	0.00	3,921.65
	11/28/00	3,974.55		52.92	0.00	3,921.63
	02/21/01	3,974.55		52.75	0.00	3,921.80
	05/31/01	3,974.55	-	52.75	0.00	3,921.80
	08/31/01	3,974.55		52.78	0.00	3,921.77
	11/21/01	3,974.55	-	52.82	0.00	3,921.73
	02/13/02	3,974.55		52.85	0.00	3,921.70
	06/12/02	3,974.55	-	52.83	0.00	3,921.72
	08/26/02	3,974.55		52.83	0.00	3,921.72
	11/21/02	3,974.55	-	52.89	0.00	3,921.66
<u>MW - 13</u>	03/02/00	3,975.00		53.77	0.00	3,921.23
	04/25/00	3,975.00	-	53.85	0.00	3,921.15
	09/06/00	3,975.00	-	53.90	0.00	3,921.10
	11/28/00	3,975.00	-	53.91	0.00	3,921.09
	02/21/01	3,975.00	-	53.80	0.00	3,921.20
	05/31/01	3,975.00		53.72	0.00	3,921.28
	08/23/01	3,975.00	-	53.76	0.00	3,921.24
	11/21/01	3,975.00	-	53.83	0.00	3,921.17
	02/13/02	3,975.00	-	53.86	0.00	3,921.14
	06/12/02	3,975.00	-	53.81	0.00	3,921.19
	08/26/02	3,975.00		53.82	0.00	3.921.18
	11/21/02	3,975.00	-	53.89	0.00	3,921.11
MW - 14	03/02/00	3,976.15		54.49	0.00	3,921.66
	04/25/00	3,976,15		54.55	0.00	3,921.60
	09/06/00	3,976.15		54.61	0.00	3,921.54
				54.61	0.00	3,921.54
	11/28/00 3,976.15			54.44	0.00	3,921.71
	02/21/01 3,976.15 05/31/01 3,976.15				0.00	
	05/31/01 3,976.15 08/23/01 3,976.15			54.45		3,921.70
			<u>-</u>	54.47	0.00	3,921.68
	11/21/01 3,976.15 02/13/02 3,976.15			54.50	0.00	3,921.65
				54.55	0.00	3,921.60
	06/12/02 3,97			54.52	0.00	3,921.63
	08/26/02	3,976.15		54.53	0.00	3,921.62
	11/21/02	3,976.15	L	54.57	0.00	3,921.58

Ĭ.

ļ

L

i

ł

GROUNDWATER ELEVATION

EOTT ENERGY, LLC TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # EO 2016

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUND WATER ELEVATION
MW - 15	03/02/00	3,974.69	-	53,31	0.00	3,921.38
	04/25/00	3,974.69	-	53.39	0.00	3,921.30
	09/06/00	3,974.69	-	53.45	0.00	3,921.24
	11/28/00	3,974.69		53.45	0.00	3,921.24
	02/21/01	3,974.69	-	53.35	0.00	3,921.34
	05/31/01	3,974.69	•	53.25	0.00	3,921.44
	08/23/01	3,974.69		53.32	0.00	3,921.37
	11/21/01	3,974.69	-	53.46	0.00	3,921.23
	02/13/02	3,974.69	-	53.3 9	0.00	3,921.30
	06/12/02	3,974.69	-	53.36	0.00	3,921.33
	08/26/02	3,974.69	_	53,45	0.00	3,921.24
	11/21/02	3,974.69	-	53.42	0.00	3,921.27
RW - 1	11/08/02	3970.79	48.44	51.55	3.11	3921.88
	11/21/02	3970.79	49.01	49.04	0.03	3921.78
	12/27/02	3970.79	48.48	51.37	2.89	3921.88

Could not gauge due to unknown obstruction in MW.

GROUNDWATER CHEMISTRY

EOTT ENERGY, LLC TNM 97-04 LEA COUNTY, NEW MEXICO ETGI PROJECT # EO 2016

		All Concentre	ations are in mg/l		
		[EPA SW 8	46-8021B, 5030	
SAMPLE	SAMPLE	BENZENE	TOLUENE	ETHYL-	TOTAL
LOCATION	DATE	1	I 1	BENZENE	XYLENES
MW - 1	03/02/00	< 0.001	< 0.001	<0.001	<0.001
	04/05/00	< 0.001	< 0.001	< 0.001	<0.001
	09/06/00	< 0.001	< 0.001	<0.001	<0.001
	11/28/00	< 0.001	< 0.001	<0.001	<0.001
	02/21/01	< 0.001	< 0.001	< 0.001	< 0.001
	05/31/01	< 0.001	< 0.001	<0.001	< 0.001
	08/23/01	< 0.001	<0.001	<0.001	<0.001
	11/21/01	< 0.001	< 0.001	< 0.001	< 0.001
	02/13/02	< 0.001	< 0.001	<0.001	<0.001
	06/12/02	<0.001	< 0.001	<0.001	<0.001
	08/26/02	< 0.001	< 0.001	<0.001	<0.001
	11/21/02	< 0.001	< 0.001	<0.001	<0.001
MW-7	03/02/00	< 0.001	< 0.001	<0.001	<0.001
	04/25/00	< 0.001	< 0.001	<0.001	<0.001
	09/06/00	< 0.001	< 0.001	<0.001	<0.001
	11/28/00	<0.001	< 0.001	<0.001	< 0.001
	02/21/01	0.005	< 0.001	<0.001	0.039
	05/31/01	0.033	0.015	<0.001	0.100
	08/23/01	0.009	0.002	<0.001	0.078
	11/21/01	0.007	0.002	<0.001	0.059
	02/13/02	0.004	< 0.001	<0.001	0.044
	06/12/02	0.002	< 0.001	<0.001	0.010
	08/26/02	0.001	< 0.001	0.012	0.014
	11/21/02	< 0.001	< 0.001	<0.001	0.003
MW-8	03/02/00	< 0.001	< 0.001	<0.001	<0.001
	04/25/00	< 0.001	<0.001	< 0.001	<0.001
	09/06/00	< 0.001	< 0.001	<0.001	<0.001
	11/28/00	<0.001	< 0.001	<0.001	<0.001
	02/21/01	<0.001	< 0.001	< 0.001	<0.001
	05/31/01	<0.001	< 0.001	< 0.001	<0.001
	08/23/01	<0.001	<0.001	<0.001	<0.001
	11/21/01	<0.001	< 0.001	<0.001	<0.001
	02/13/02	<0.001	< 0.001	< 0.001	<0.001
	06/12/02	<0.001	< 0.001	<0.001	< 0.001
	08/26/02	<0.001	< 0.001	<0.001	<0.001
	11/21/02	<0.001	< 0.001	<0.001	<0.001

ī

ſ

i

GROUNDWATER CHEMISTRY

EOTT ENERGY, LLC TNM 97-04 LEA COUNTY, NEW MEXICO ETGI PROJECT # EO 2016

		All Concentra	tions are in mg/L	· -	
		Ι	EPA SW 8	46-8021B, 5030	
SAMPLE	SAMPLE	BENZENE	TOLUENE	ETHYL-	TOTAL
LOCATION	DATE			BENZENE	XYLENES
MW-10	03/02/00	<0.001	<0.001	<0.001	<0.001
	04/25/00	<0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	< 0.001	<0.001	<0.001
	11/28/00	<0.001	<0.001	<0.001	<0.001
	02/21/01	<0.001	<0.001	<0.001	<0.001
	05/31/01	<0.001	<0.001	<0.001	<0.001
	08/23/01	<0.001	<0.001	<0.001	<0.001
	11/21/01	<0.001	<0.001	<0.001	<0.001
	02/13/02	<0.001	<0.001	<0.001	<0.001
	06/12/02	<0.001	<0.001	< 0.001	<0.001
	08/26/02	<0:001	<0.001	<0.001	<0.001
	11/21/02	<0.001	<0.001	<0.001	<0.001
MW-11	03/02/00	<0.001	<0.001	<0.001	<0.001
	04/25/00	< 0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	<0.001	<0.001	<0.001
	11/28/00	<0.001	< 0.001	<0.001	<0.001
	02/21/01	<0.001	<0.001	<0.001	<0.001
	05/31/01	0.015	<0.001	<0.001	<0.001
	08/23/01	0.005	<0.001	<0.001	<0.001
	11/21/01	<0.001	<0.001	<0.001	<0.001
	02/13/02	<0.001	<0.001	<0.001	<0.001
	06/12/02	<0.001	<0.001	<0.001	<0.001
	08/26/02	<0.001	<0.001	<0.001	<0.001
	11/21/02	<0.001	<0.001	<0.001	<0.001
MW-12	03/02/00	<0.001	<0.001	<0.001	<0.001
	04/25/00	<0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	<0.001	<0.001	<0.001
	11/28/00	<0.001	<0.001	<0.001	<0.001
	02/21/01	<0.001	<0.001	<0.001	<0.001
	05/31/01	<0.001	<0.001	<0.001	<0.001
	08/23/01	<0.001	<0.001	<0.001	<0.001
	11/21/01	<0.001	<0.001	<0.001	<0.001
	02/13/02	<0.001	<0.001	<0.001	<0.001
	06/12/02	<0.001	<0.001	<0.001	<0.001
	08/26/02	<0.001	<0.001	<0.001	<0.001
	11/21/02	<0.001	<0.001	<0.001	<0.001

· · · ·--

L

GROUNDWATER CHEMISTRY

EOTT ENERGY, LLC TNM 97-04 LEA COUNTY, NEW MEXICO ETGI PROJECT # EO 2016

		1	EDA SW 8	46-8021B, 5030	
SAMPLE		BENZENE	TOLUENE	ETHYL-	TOTAL
LOCATION	SAMPLE DATE	DENZENE	TOLUEINE	BENZENE	XYLENES
MW-13	03/02/00	<0.001	<0.001	<0.001	<0.001
	04/25/00	< 0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	<0.001	<0.001	<0.001
	11/28/00	0.004	<0.001	<0.001	< 0.001
	02/21/01	< 0.001	<0.001	<0.001	< 0.001
	05/31/01	< 0.001	<0.001	<0.001	< 0.001
	08/23/01	< 0.001	<0.001	<0.001	< 0.001
	11/21/01	< 0.001	<0.001	<0.001	< 0.001
	02/13/02	0.007	<0.001	<0.001	<0.001
	06/12/02	0.115	<0.001	<0.001	0.013
	08/26/02	0.046	<0.001	<0.001	0.024
	11/21/02	0.010	<0.001	<0.001	0.045
MW-14	03/02/00	0.141	0.032	0.056	0.046
	04/25/00	0.368	0.045	0.106	0.078
	09/06/00	0.609	0.015	0.124	0.044
	11/28/00	0.691	0.022	0.107	0.072
	02/21/01	0.921	0.061	0.194	0.202
	05/31/01	1.03	0.223	0.172	0.339
	08/23/01	1.78	0.865	0.315	0.726
	11/21/01	0.623	0.301	0.131	0.230
	02/13/02	0.572	0.414	0.142	0.306
	06/12/02	0.718	0.470	0.144	0.274
	08/26/02	0.606	0.355	0.147	0.277
	11/21/02	0.850	0.666	0.178	0.525
MW-15	03/02/00	< 0.001	< 0.001	< 0.001	<0.001
	04/25/00	0.649	< 0.001	< 0.001	0.027
	09/06/00	0.010	<0.001	0.003	0.024
	11/28/00	1.38	<0.010	<0.010	0.031
	02/21/01	2.87	< 0.010	0.011	0.058
	05/31/01	3.83	< 0.001	0.049	0.101
	08/23/01	4.60	0.001	0.077	0.084
	11/21/01	4.00	0.012	0.117	0.123
	02/13/02	2.91	0.020	0.128	0.123
	06/12/02	5.43	0.004	0.216	0.089
	08/26/02	4.59	0.002	0.183	0.053
	11/21/02	8.13	0.002	0.384	0.009
EB - 1	02/13/02	< 0.001	<0.001	< 0.001	<0.001
	06/12/02	< 0.001	<0.001	< 0.001	< 0.001
	08/26/02	< 0.001	<0.001	< 0.001	< 0.001
	11/21/02	< 0.001	< 0.001	< 0.001	< 0.001
		<u> </u>			

Table 2 (CONTINUED)

CONCENTRATIONS OF METALS IN GROUND WATER

EOTT ENERGY, LLC TNM 97-04 LEA COUNTY, NM ETGI Project # EO 2016

			14101 001	ncentratio						
SAMPLE LOCATION	SAMPLE DATE	SAMPLE TYPE	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
MW - 1	11/21/2002	WATER	< 0.05	0.149	<0.005	<0.01	<0.02	<0.0002	<0.05	<0.002
MW - 7	11/21/2002	WATER	< 0.05	0.0815	<0.005	<0.01	<0.02	<0.0002	<0.05	<0.002
MW - 8	11/21/2002	WATER	< 0.05	0.0490	<0.005	<0.01	<0.02	<0.0002	<0.05	<0.002
MW - 10	11/21/2002	WATER	<005	0.572	<0.005	0.0148	<0.02	<0.0002	<0.05	<0.002
MW - 11	11/21/2002	WATER	< 0.05	0.218	<0.005	<0.01	<0.02	<0.0002	<0.05	<0.002
MW - 12	11/21/2002	WATER	<0.05	0.115	<0.005	00104	<0.02	<0.0002	<0.05	<0.002
MW - 13	11/21/2002	WATER	<0.05	0.156	<0.005	<0.01	<0.02	0.0012	< 0.05	0.0359
MW - 14	11/21/2002	WATER	<0.05	0.137	<0.005	<0.01	<0.02	<0.0002	<0.05	<0.002
MW - 15	11/21/2002	WATER	<0.05	0.0972	<0.005	<0.01	<0.02	<0.0002	<0.05	<0.002

All water concentrations are in mg/L

TABLE 2 (CONTINUED)

CONCENTRATIONS OF SEMI-VOLATILES IN GROUNDWATER

EOTT ENERGY, LLC TNM 97-04 LEA COUNTY, NEW MEXICO ETGI Project # EO2016

All water concentrations are in $\mu g/L$

								<u> </u>	EP	A SW846-	8270C, 35	510						
SAMPLE LOCATION	SAMPLE DATE	SAMPLE TYPE	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[g,h,i]perylene	Benzo[k]fluoranthene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
MW - 1	11/21/02	WATER	0.06	0.07	0.122	0.089	0.103	0.091	0.101	0.101	0.061	0.102	0.126	0.09	0.086	<0.05	0.111	0.106
MW - 7	11/21/02	WATER	0.054	<0.05	0.076	0.052	0.055	<0.05	<0.05	<0.05	<0.05	0.054	0.083	0.175	<0.05	2.68	0.127	0.072
MW - 8	11/21/02	WATER	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
MW - 10	11/21/02	WATER	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
MW - 11	11/21/02	WATER	0.089	0.094	0.182	0.125	0.12	0.126	0.108	0.145	0.08	0.105	0.19	0.149	0.111	<0.05	0.168	0.156
MW - 12	11/21/02	WATER	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
MW - 13	11/21/02	WATER	0.075	0.054	0.065	<0.05	<0.05	<0.05	<0.05	0.054	<0.05	<0.05	0.068	0.373	<0.05	12.4	0.323	0.061
MW - 14	11/21/02	WATER	0.074	0.159	<0.05	<0.05	<0,05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.704	<0.05	14.1	0.641	<0.05
MW - 15	11/21/02	WATER	0.179	<0.05	<0.05	0.089	<0.05	0.105	<0.05	0.15	0.081	<0.05	0.154	0.662	<0.05	21.3	0.564	0.145
MW - 16	01/10/03		<0.05	<0.05	0.05	0.064	0.062	0.058	0.059	0.068	0.061	<0.05	0.096	0.069	<0.05	0.055	0.081	0.094
MW - 17	01/10/03	WATER	0.07	0.079	2.48	3.25	3.52	2.74	3.13	3.34	3.2	2,37	3.05	0.648	2.43	0.078	1.77	3.41
	l	I								L	<u>L</u>	L	L		L	L	l	

APPENDICES

Appendix A

Laboratory Reports

CIntal YSYS

 Client:
 Environmental Tech Group

 Attn:
 Ken Dutton

 Address:
 2540 W. Marland

 Hobbs
 Nm
 88240

Phone: 505 397-4882 FAX: 505 397-4701

REPORT OF ANALYSIS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OTAL TEN AGSTIDANCE DATA 1

Report#/Lab ID)#: 125719	Repo	rt Date: 02/22/02	
Project ID: TN	M 97-04 EOT 2	2016C		
Sample Name: l	MW 1			
Sample Matrix:				
Date Received:		Time:	09:53	
Date Sampled:		Time:	13:45	

REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/20/02	8260b					
Benzene	<1	μg/L	1	<1	02/20/02	8260b		2	89.7	90.3	85.8
Ethylbenzene	<1	μg/L	1	<1	02/20/02	8260b	¶	1.5	95.9	96.6	100.7
m,p-Xylenes	<1	μg/L	1	<1	02/20/02	8260b	J J	2.2	95.9	97.5	98.8
o-Xylene	<1	μg/L	1	<1	02/20/02	8260b		1.6	95.9	96.8	102.7
Toluene	<1 ·	μg/L	1	<1	02/20/02	8260b		3.9	95.7	98.8	91

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted.

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. M = Matrix interference.

Page#: 1 Report Date: 02/22/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125719
Attn:	Ken Dutton	Sample Name: MW 1	Sample Matrix: water
REPOR	T OF SUDDOCATE DECOVEDV		

<u>REPORT OF SURROGATE RECOVERY</u>

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95.7	80-120	
Toluene-d8	8260b	99.3	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 **Report Date: 02/22/02**

Exceptions Report:

Report #/Lab ID#: 125719Matrix: waterClient: Environmental Tech GroupAttn: Ken DuttonProject ID: TNM 97-04 EOT 2016CSample Name: MW 1

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s) and appear to be appropriately preserved □ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
m,p-Xylenes	J	See J-flag discussion above.
Notes:		

CI NCILY S YS						2209 N	reidrich Lane, . Padre Island 44-5896 •	Dr., Cor	pus Chris	ti, TX 7	
Attn: Ken Dutton F Address: 2540 W. Marland S Hobbs Nm 88240 S D D D						Report#/Lab ID#: 125720Report Date: 02/22/02Project ID: TNM 97-04 EOT 2016CSample Name: MW 7Sample Matrix: waterDate Received: 02/19/2002Time: 09:53Date Sampled: 02/13/2002Time: 12:02					
REPORT OF ANALYSIS							QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/20/02	8260b					
Benzene	3.73	μg/L	1	<1	02/20/02	8260b		2	89.7	90.3	85.8
Ethylbenzene	<1	μg/L	1	<1	02/20/02	8260b		1.5	95.9	96.6	100.7
m,p-Xylenes	16.8	μg/L	1	<1	02/20/02	8260b		2.2	95.9	97.5	98.8
o-Xylene	26.8	μg/L	1	<1	02/20/02	8260b		1.6	95.9	96.8	102.7
Toluene	<1 、	μg/L	1	<1	02/20/02	8260b	J	3.9	95.7	98.8	91
This analytical report is respectfully submitted by Anal have been carefully reviewed and, to the best of my kno are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc. Re	e (RQL) typical dilution associa recover	elative percent (red from a spike sed as the percen , typically at or ly denote USEP, ns. 7. Data Qu uted method blar	%) difference l d sample. 4 ht (%) recovery above the Prat A procedures. alifiers are J = hk(s). S1 = MS cory limit. S3 =	mple batch which includ between duplicate measu 4. Calibration Verificatio y of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex =MS and/or MSD and PI ference.	rements. 3. Reco m (CCV) and Labo n standard or matu (PQL) of the ana effect nominal qua nt between the PQ acceed advisory lin	overy (Reco oratory Con ix. 5. Re lytical met ntitation lir (L and the nits. S2 = P	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestior	ccent (%) o (LCS) res- ntitation Li thod numb for any red nalyte deto spike (PE	of analyte ults are mits pers quíred ected in DS)		

.

Page#: 1 Report Date: 02/22/02

Client: Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125720
Attn: Ken Dutton	Sample Name: MW 7	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95.9	80-120	
Toluene-d8	8260b	98.6	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

 Report #/Lab ID#: 125720
 Matrix: water

 Client: Environmental Tech Group
 Attn: Ken Dutton

 Project ID: TNM 97-04 EOT 2016C
 Sample Name: MW 7

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Toluene	J	See J-flag discussion above.
Notes:		

Page#: 3 Report #/Lab ID#: 125720 Report Date: 2/22/200

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs Nm

88240

Phone: 505 397-4882 FAX: 505 397-4701

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 · FAX (512) 447-4766

Report#/Lab ID#: 125721	Report Date: 02/22/02
Project ID: TNM 97-04 EOT	2016C
Sample Name: MW 8	
Sample Matrix: water	
Date Received: 02/19/2002	Time: 09:53
Date Sampled: 02/13/2002	Time: 12:18

REPORT OF ANALYSIS

<u>REPORT OF ANALYSIS</u>							QUALITY ASSURANCE DATA¹				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX	40-7				02/20/02	8260b					
Benzene	<1	μg/L	1	<1	02/20/02	8260b		2	89.7	90.3	85.8
Ethylbenzene	<1	μg/L	1	<1	02/20/02	8260b		1.5	95.9	96.6	100.7
m,p-Xylenes	<1	μg/L	1	<1	02/20/02	8260b	J	2.2	95.9	97.5	98.8
o-Xylene	<1	µg/L	1	<1	02/20/02	8260b		1.6	95.9	96.8	102.7
Toluene	<1	μg/L	1	<1	02/20/02	8260b		3.9	95.7	98.8	91

This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted.

> Richard Laster Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value

Page#: 1 **Report Date: 02/22/02**

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125721
Attn:	Ken Dutton	Sample Name: MW 8	Sample Matrix: water
DEPODT	OF SUBROCATE RECOVERY		· · · · · · · · · · · · · · · · · · ·

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	104	80-120	
Toluene-d8	8260b	97.9	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

 Report #/Lab ID#: 125721
 Matrix: water

 Client: Environmental Tech Group
 Attn: Ken Dutton

 Project ID: TNM 97-04 EOT 2016C
 Sample Name: MW 8

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

Sample received in appropriate container(s). State of sample preservation unknown.

Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
m,p-Xylenes	J	See J-flag discussion above.
Notasi		

Notes:

 Client:
 Environmental Tech Group

 Attn:
 Ken Dutton

 Address:
 2540 W. Marland

 Hobbs
 Nm

Nm 88240

Phone: 505 397-4882 FAX: 505 397-4701

REPORT OF ANALYSIS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OUALITY ASSURANCE DATA¹

Report#/Lab ID#: 125722	Report Date: 02/22/02
Project ID: TNM 97-04 EOT	2016C
Sample Name: MW 10	
Sample Matrix: water	
Date Received: 02/19/2002	Time: 09:53
Date Sampled: 02/13/2002	Time: 13:00

Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
				02/20/02	8260b					
<1	μg/L	1	<i< td=""><td>02/20/02</td><td>8260b</td><td></td><td>2</td><td>89.7</td><td>90.3</td><td>85.8</td></i<>	02/20/02	8260b		2	89.7	90.3	85.8
<1	μg/L	1	<1	02/20/02	8260b		1.5	95.9	96.6	100.7
<1	μg/L	1	<1	02/20/02	8260b		2.2	95.9	97.5	98.8
<1	µg/L	1	<1	02/20/02	8260b		1.6	95.9	96.8	102.7
<1 ·	μg/L	1	<1	02/20/02	8260b		3.9	95.7	98.8	91
		 <1 μg/L <1 μg/L <1 μg/L <1 μg/L <1 μg/L	<1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Result Units RQL ⁵ Blank Date Method ⁶ Data Qual ⁷ 02/20/02 8260b <1	Result Units RQL ⁵ Blank Date Method ⁶ Data Qual ⁷ Prec. ² 02/20/02 8260b 2 <1	Result Units RQL ⁵ Blank Date Method ⁶ Data Qual ⁷ Prec. ² Recov. ³ 02/20/02 8260b 2 89.7 <1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceed advisory limit. M =Matrix interference.

Page#: 1 Report Date: 02/22/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125722
Attn:	Ken Dutton	Sample Name: MW 10	Sample Matrix: water
the second second second second second second second second second second second second second second second se			

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95.5	80-120	
Toluene-d8	8260b	98.7	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 02/22/02

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs

Nm 88240

Respectfully Submitted,

Richard Laster

Richard Laster

Phone: 505 397-4882 FAX: 505 397-4701

publication may be reproduced or transmitted in any form or by any means without the

REPORT OF ANALYSIS

express written consent of AnalySvs. Inc.

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 125723	Report Date: 02/22/02
Project ID: TNM 97-04 EO	T 2016C
Sample Name: MW 11	
Sample Matrix: water	
Date Received: 02/19/2002	Time: 09:53
Date Sampled: 02/13/2002	

REPORT OF ANALYSIS		QUALITY ASSURANCE DA					ATA ¹				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/20/02	8260b					
Benzene	<1	µg/L	1	<1	02/20/02	8260b		2	89.7	90.3	85.8
Ethylbenzene	<1	μg/L	1	<1	02/20/02	8260b		1.5	95.9	96.6	100.7
m,p-Xylenes	<1	μg/L	1	<1	02/20/02	8260b		2.2	95.9	97.5	98.8
o-Xylene	<1	μg/L	1	<1	02/20/02	8260b		1.6	95.9	96.8	102.7
Toluene	<1 ·	μg/L	1	<1	02/20/02	8260b		3.9	95.7	98.8	91
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this								of analyte sults are			

expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit, S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Page#: 1 **Report Date: 02/22/02**

Client:	Environmental Tech Group	1	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125723
Attn:	Ken Dutton		Sample Name: MW 11	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	93.6	80-120	
Toluene-d8	8260b	99.2	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 02/22/02

nalygys

Client:	Environmental Tech Group	
Attn:	Ken Dutton	
Address:	2540 W. Marland	
	Hobbs	Nm

Phone: 505 397-4882 FAX: 505 397-4701

REPORT OF ANALYSIS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 125724	Report Date: 02/22/02
Project ID: TNM 97-04 EOT	2016C
Sample Name: MW 12	
	Time: 09:53
	Time: 12:40

REPORT OF ANALYSIS				QUALITY ASSURANCE					ANCE DA			
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					02/20/02	8260b						
Benzene	<1	μg/L	1	<1	02/20/02	8260b		2	89.7	90.3	85.8	
Ethylbenzene	<1	μg/L	1	<1	02/20/02	8260b	ji	1.5	95.9	96.6	100.7	
m,p-Xylenes	<1	µg/L	1	<1	02/20/02	8260b	li	2.2	95.9	97.5	98.8	
o-Xylene	<1	μg/L	1	<1	02/20/02	8260b	1	1.6	95.9	96.8	102.7	
Toluene	<1 ·	μg/L	1	<1	02/20/02	8260b	<u> </u>	3.9	95.7	98.8	91	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

88240

Richard Laster

Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference,

Page#: 1 Report Date: 02/22/02

Client:	Environmental Tech Group	7	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125724
Attn:	Ken Dutton		Sample Name: MW 12	Sample Matrix: water
DEDUD	LOE SUBBOCATE BECOVEDY	-		

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95.4	80-120	
Toluene-d8	8260b	98.5	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Client:	Environmental Tech Group Ken Dutton		_
Attn:	Ken Dutton		
Address:	2540 W. Marland		
	Hobbs	Nm	8
		•	

88240

Phone: 505 397-4882 FAX: 505 397-4701

REPORT OF ANALYSIS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 125725	Report Date: 02/22/02
Project ID: TNM 97-04 EOT	2016C
Sample Name: MW 13	
Sample Matrix: water	
Date Received: 02/19/2002	Time: 09:53
Date Sampled: 02/13/2002	Time: 11:45

OUALITY ASSURANCE DATA¹

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					02/20/02	8260b					
Benzene	6.91	μg/L	1	<1	02/20/02	8260b		2	89.7	90.3	85.8
Ethylbenzene	<1	µg/L	1	<1	02/20/02	8260b		1.5	95.9	96.6	100.7
m,p-Xylenes	<1	μg/L	1	<1	02/20/02	8260b	ll J	2.2	95.9	97.5	98.8
o-Xylene	<1	μg/L	1	<1	02/20/02	8260b		1.6	95.9	96.8	102.7
Toluene	<1	μg/L	1	<1	02/20/02	8260b		3.9	95.7	98.8	91
This analytical report is respectfully submitted by AnalySys Inc. The enclosed results 1 (mality assurance data is for the sample batch which included this sample 2 Precision (PREC) is the absolute value											

have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program, O Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

			 ······································
Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125725
Attn:	Ken Dutton	Sample Name: MW 13	Sample Matrix: water
		[]	

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94.4	80-120	
Toluene-d8	8260b	97.9	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 02/22/02

Exceptions Report:

Report #/Lab ID#: 125725 Matrix: waterClient: Environmental Tech GroupAttn: Ken DuttonProject ID: TNM 97-04 EOT 2016CSample Name: MW 13

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex, in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
m,p-Xylenes	J	See J-flag discussion above.
Notes:		

Page#: 3 Report #/Lab ID#: 125725 Report Date: 2/22/200

ימגץ**ק**יק

Client:	Environmental Tech Group		
Attn:	Ken Dutton		
	2540 W. Marland		
	Hobbs	Nm	88240

Phone: 505 397-4882 FAX: 505 397-4701

REPORT OF ANALYSIS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 · FAX (512) 447-4766

Report#/Lab ID#: 125726	Report Date: 02/22/02
Project ID: TNM 97-04 EOT	2016C
Sample Name: MW 14	
Sample Matrix: water	
Date Received: 02/19/2002	Time: 09:53
Date Sampled: 02/13/2002	Time: 11:00

REPORT OF ANALYSIS								QUALITY ASSURANCE DATA¹				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					02/21/02	8260b						
Benzene	572	µg/L	10	<10	02/21/02	8260b		3	89.1	90.5	88.8	
Ethylbenzene	142	μg/L	10	<10	02/21/02	8260b		1.5	101.7	100.4	100.7	
m,p-Xylenes	213	μg/L	10	<10	02/21/02	8260b	[[0.9	99.4	98.8	99.6	
o-Xylene	92.9	μg/L	10	<10	02/21/02	8260b		1.2	101.9	101.8	101.2	
Toluene	<u>414</u>	μg/L	10	<10	02/21/02	8260b		1.7	94.5	95.1	94.6	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. O Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys. Inc. Respectfully Submitted,

Richard Laster Richard Laster

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Page#: 1 **Report Date: 02/22/02**

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125726
Attn:	Ken Dutton	Sample Name: MW 14	Sample Matrix: water
L			

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	106	80-120	
Toluene-d8	8260b	100	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 02/22/02

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs	Nm 88240		Report#/Lab ID#: 125727 Project ID: TNM 97-04 EOT Sample Name: MW 15 Sample Matrix: water Date Received: 02/19/2002			Report Date: 02/22/02 2016C Time: 09:53 Time: 11:30					
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:					<u></u>
REPORT OF ANALYSIS Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	<u>QUALITY</u> Data Qual ⁷				LCS
Volatile organics-8260b/BTEX		Chits		Digit	02/21/02	8260b					
Benzene	2910	μg/L	100	<100	02/21/02	8260b		3	89.1	90.5	88.8
Ethylbenzene	128	μg/L	10	<10	02/21/02	8260b		1.5	101.7	100.4	100.
m,p-Xylenes	62.9	μg/L	10	<10	02/21/02	8260b		0.9	99.4	98.8	99.6
o-Xylene	60.3	μg/L	10	<10	02/21/02	8260b		1.2	101.9	101.8	101.:
Toluene	19.6	μg/L	10	<10	02/21/02	8260b		1.7	94.5	95.1	94.6
This analytical report is respectfully submitted by Ana have been carefully reviewed and, to the best of my km are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc.	owledge, the ana e/Quality Contro its reserved. No	lytical results l Program. © part of this eans without th	of the r recover express ne (RQL), typical	elative percent (red from a spike sed as the percent typically at or y denote USEP.	(%) difference t d sample. 4 nt (%) recovery above the Prace A procedures.	mple batch which incluc etween duplicate measu . Calibration Verificatio of analyte from a know tical Quantitation Limit Less than ("<") values re analyte potentially prese	rements. 3. Reco n (CCV) and Lab n standard or mat (PQL) of the ana flect nominal qua	overy (Reco oratory Con rix. 5. Re lytical metintitation lin	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted	rcent (%) o (LCS) result titation Li thod numb for any rec	of analy ults are mits cers quired

Page#: 1 Report Date: 02/22/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125727
Attn:	Ken Dutton	Sample Name: MW 15	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	105	80-120	
Toluene-d8	8260b	100	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group Attn: Ken Dutton						Report#/Lab II Project ID: TN		_	ort Date: ()2/22/02				
Address: 2540 W. Marland						Sample Name:								
Hobbs	Nm 88240					•	Sample Matrix: water							
						Date Received: 02/19/2002 Time: 09:53								
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	te Sampled: 02/13/2002 Time: 14:00							
REPORT OF ANALYSIS QUALITY ASSURANCE DATA ¹														
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴			
Volatile organics-8260b/BTEX					02/21/02	8260b								
Benzene	<1	μg/L	1	<1	02/21/02	8260b		3	89.1	90.5	88.8			
Ethylbenzene	<1	μg/L	1	<1	02/21/02	8260b		1.5	101.7	100.4	100.7			
m,p-Xylenes	<1	μg/L	1	<1	02/21/02	8260b	J	0.9	99.4	98.8	99.6			
o-Xylene	<1	μg/L	1	<1	02/21/02	8260b		1.2	101.9	101.8	101.2			
Toluene	<1 ·	μg/L	1	<1	02/21/02	8260b		1.7	94.5	95.1	94.6			
This analytical report is respectfully submitted by Ana have been carefully reviewed and, to the best of my km are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc. Re	e (RQL) typical dilution associa recover	elative percent (red from a spike sed as the percent typically at or by denote USEP ms. 7. Data Qu uted method blar	%) difference d sample. (%) recovery above the Pra A procedures. alifiers are J = hk(s). S1 =MS sory limit. S3	ample batch which includ between duplicate measu 4. Calibration Verification y of analyte from a know ctical Quantitation Limit Less than ("<") values re- analyte potentially prese and/or MSD recovery ex- =MS and/or MSD and PI ference.	rements. 3. Reco on (CCV) and Lab n standard or mat (PQL) of the ana effect nominal qua ent between the PC xceed advisory lir	overy (Rec oratory Co rix. 5. Re lytical met utitation li QL and the nits. S2 =1	ov.) is the per- mtrol Sample porting Quar- thod. 6. Me mits adjusted MDL. B = A Post digestion	teent (%) of (LCS) res natitation Li thod numb for any rea nalyte det spike (PL	of analyte ults are mits pers quired ected in DS)					

Page#: 1 Report Date: 02/22/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 125728
Attn:	Ken Dutton	Sample Name: EB 1	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	95.6	80-120	
Toluene-d8	8260b	98.5	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

 Page#: 2
 Report Date: 02/22/02

Exceptions Report:

Report #/Lab ID#: 125728Matrix: waterClient: Environmental Tech GroupAttn: Ken DuttonProject ID: TNM 97-04 EOT 2016CSample Name: EB 1

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
m,p-Xylenes	J	See J-flag discussion above.
Notes:		

Page#: 3 Report #/Lab ID#: 125728 Report Date: 2/22/200

have a second							•••••••••••							c	oc	: \$25	8
CHAIN-OF-CUSTO	ΟY												ſ				TY5
Send Reports To:				to (if a										.			JINC. stin, TX 78744
Company Name ETGT							EOTT						ZZI Fre		•	512) 444-589	
Address 2540 W MX			Add	ress								-			Fax: (5	12) 447-4760	•
City HoBES State Nn			City	·			State		Zip_	•		-					
ATTN: KEN PUTTON	<u> </u>		AT	ΓN:			State Fax					-/	Plas			s Reques	ited (1)
Phone (505) 797-4182 Fax(7		7 7		mon as required
Rush Status (must be confirm Project Name/PO#: <u>Twm 9</u>	ned with	lab mgr.):		<u> </u>						(B⁄		/ /	/			
Project Name/PO#: 7.014	+-04	Samp	ler:	non (A 5	<u>a 5</u>				\$ 09	7	/ /	/ /	/			
EBT - 2 Client Sample No.	Date	Time	No. of	rŕ	·	1	Lab 1.D. #		10	\bigvee	/ /	Ζ,	/ /	/ /	/ /		
Description/Identification				Soll V	Vater	Waste	(Lab only)		Ý	\square	\square	\angle				Com	ments
mwl	2-13-02	1345	2		X		125719	X	1								
mw7		1202				ļ	125720										
mw8		1218					125721		_								
mwlø		1360					125722					_,					,
mw ll		1115					125723										
mw/2		1240					125724								_		
mw13		1145					125725										
$m\omega 14$		1100					125726										
Inw15		1130					125727										
EBI	V	1400					125728		1							۰.	

(1) Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting limits (MDF/PQF). For GC/MIS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pallatants or ASI's HSI list at ASI's option. Specific compound lists must be supplied for all GC procedures.

1em 0 0.0°C

1605

	Sample Relingui	shed By		Sample Received By							
Name	Affiliation	Date	Time	Name	Affiliation	Date	Time				
Simon Casas	ETGI	2-18-02	1500	Welaniet	temphrue ASI	2/19/07	09:33				
				, , , ,							

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

þ.

FILE

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group Attn: Ken Dutton						Report#/Lab II Project ID: TN	M 97-04 EOT	•	ort Date: (06/28/02			
Address: 2540 W. Marland						Sample Name:							
Hobbs,	NM 88240					Sample Matrix:							
						Date Received:	06/21/2002		09:40				
Phone: 505 397-4882 FAX: 505 3	97-4701		Date Sampled: 06/12/2002 Time: 11:00										
REPORT OF ANALYSIS QUALITY ASSURANCE DATA ¹													
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴		
Volatile organics-8260b/BTEX					06/25/02	8260b							
Benzene	<1	μg/L	1	<1	06/25/02	8260b		6.6	84.9	83.1	85.1		
Ethylbenzene	<1	μg/L	1	<1	06/25/02	8260b		0.8	120.4	119	136.8		
m,p-Xylenes	<1	μg/L	1	<1	06/25/02	8260b		2	113.6	111.4	124.7		
o-Xylene	<1	μg/L	1	<1	06/25/02	8260b		2.4	110.9	106.8	117.1		
Toluene	<1	μg/L	1	<1	06/25/02	8260b		0.4	84.7	83.3	81.1		
This analytical report is respectfully submitted by Anal have been carefully reviewed and, to the best of my knd are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any fo express written consent of AnalySys, Inc. Re	e (RQL), typicall dilutior associa	elative percent (red from a spike sed as the percer , typically at or ly denote USEP is. 7. Data Qui ted method blan	%) difference d sample, nt (%) recover above the Pra A procedures. alifiers are J = uk(s). S1 =MS ory limit. S3	ample batch which incluc between duplicate measu 4. Calibration Verificatio y of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery er =MS and/or MSD and PE ference.	rements. 3. Reco n (CCV) and Lab n standard or mate (PQL) of the ana flect nominal qua nt between the PC acceed advisory lin	overy (Rec oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 = I	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B =A Post digestion	reent (%) of (LCS) res atitation Li thod numb for any red nalyte deto spike (PD	f analyte ults are mits ers quired ected in PS)				

 Page#: 1
 Report Date: 06/28/02

Client: Environmental Tech Group Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130742
Attn: Ken Dutton Sample Name: MW 1	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94.9	80-120	
Toluene-d8	8260b	98.8	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

naly**g**ys

	Environmental Tech Group		
Attn:	Ken Dutton		
Address:	2540 W. Mariand		
	Hobbs,	NM	88240

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 · FAX (512) 447-4766

Report#/Lab ID#: 130743	Report Date: 06/28/02
Project ID: TNM 97-04 EOT	2016C
Sample Name: MW 7	
Sample Matrix: water	
Date Received: 06/21/2002	Time: 09:40
Date Sampled: 06/12/2002	Time: 09:30

REPORT OF ANALYSIS

Phone: 505 397-4882

EPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹							
Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴				
				06/25/02	8260b									
1.97	μg/L	1	<1	06/25/02	8260b		2.1	85.9	98.3	86.1				
<1	μg/L	1	<1	06/25/02	8260b	II	1.2	127.9	110.3	119.7				
9.05	μg/L	1	<1	06/25/02	8260b		1.5	119.7	103.9	112.2				
1.19	μg/L	1	<1	06/25/02	8260b	ii	0.1	121	102.8	112.3				
<1	μg/L	1	<1	06/25/02	8260b	J	3.2	91.7	105.3	93.3				
	 1.97 <1 9.05 1.19	 1.97 μg/L <1 μg/L 9.05 μg/L 1.19 μg/L	1.97 μg/L 1 <1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Result Units RQL ⁵ Blank Date Method ⁶ Data Qual ⁷ 06/25/02 8260b 1.97 µg/L 1 <1	Result Units RQL ⁵ Blank Date Method ⁶ Data Qual ⁷ Prec. ² 06/25/02 8260b 1.97 μg/L 1 <1	Result Units RQL ⁵ Blank Date Method ⁶ Data Qual ⁷ Prec. ² Recov. ³ 06/25/02 8260b 1.2 127.9 1.1 1 -1 06/25/02 8260b 1.5 119.7 1.19 μg/L 1 <1	Result Units RQL ⁵ Blank Date Method ⁶ Data Qual ⁷ Prec. ² Recov. ³ CCV ⁴ 06/25/02 8260b 10.3 10.3 9.05 μg/L 1 <1				

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. O Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

FAX: 505 397-4701

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Respectfully Submitted, Richard Lester

Richard Laster

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab 1D#: 130743
Attn:	Ken Dutton	Sample Name: MW 7	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	118	80-120	
Toluene-d8	8260b	103	88-110	·

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

 Report #/Lab ID#: 130743
 Matrix: water

 Client: Environmental Tech Group
 Attn: Ken Dutton

 Project ID: TNM 97-04 EOT 2016C
 Sample Name: MW 7

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Toluene	J	See J-flag discussion above.
Notes:		

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs,	NM 88240					Report#/Lab II Project ID: TN Sample Name: Sample Matrix:	M 97-04 EOT MW 8	-	ort Date: (06/28/02	
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Received: Date Sampled:			09:40 10:00		
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	<u>TA</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					06/25/02	8260b					
Benzene	<1	μg/L	1	<1	06/25/02	8260b		2.1	85.9	98.3	86.1
Ethylbenzene	<1	μg/L	1	<1	06/25/02	8260b		1.2	127.9	110.3	119.7
m,p-Xylenes	<1	μg/L	1	<1	06/25/02	8260b		1.5	119.7	103.9	112.2
o-Xylene	<1	µg/L	1	<1	06/25/02	8260b		0.1	121	102.8	112.3
Toluene	<1	μg/L	1	<1	06/25/02	8260b		3.2	91.7	105.3	93.3
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster				elative percent (ed from a spike led as the percer typically at or y denote USEP is. 7. Data Qui ted method blan	%) difference d sample. at (%) recovery above the Pra- A procedures. alifiers are J = uk(s). S1 =MS ory limit. S3 =	umple batch which incluc between duplicate measu 4. Calibration Verificatio y of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e: =MS and/or MSD and PE ference.	rements. 3. Reco n (CCV) and Lab n standard or matr (PQL) of the ana flect nominal qua nt between the PQ cceed advisory lin	overy (Recovery Covers) oratory Coversion 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestion	cent (%) o (LCS) res titiation Li thod numb for any rec nalyte deto spike (PD	f analyte ults are mits ers puired ected in S)

Page#: 1 Report Date: 06/28/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130744
Attn:	Ken Dutton	Sample Name: MW 8	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers		
1,2-Dichloroethane-d4	8260b	97.9	80-120			
Toluene-d8	8260b	108	88-110			

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 06/28/02

CINCILYSYS	
-------------------	--

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs,

NM 88240

Richard Laster

Richard Laster

FAX: 505 397-4701 Phone: 505 397-4882

REPORT OF ANALYSIS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OUALITY ASSURANCE DATA¹

Report#/Lab ID#: 130745	Report Date: 06/28/02						
Project ID: TNM 97-04 EOT 2016C							
Sample Name: MW 10							
Sample Matrix: water							
Date Received: 06/21/2002	Time: 09:40						
Date Sampled: 06/12/2002	Time: 10:19						

NOT ON TOT ANALISID						VUILLI I MODULAILO DILLIX					
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					06/25/02	8260b					
Benzene	<1	μg/L	1	<1	06/25/02	8260b		2.1	85.9	98.3	86.1
Ethylbenzene	<1	μg/L	1	<1	06/25/02	8260b	l	1.2	127.9	110.3	119.7
m,p-Xylenes	<1	μg/L	1	<1	06/25/02	8260b		1.5	119.7	103.9	112.2
o-Xylene	<1	μg/L	1	<1	06/25/02	8260b		0.1	121	102.8	112.3
Toluene	<1 ·	μg/L	1	<1	06/25/02	8260b		3.2	91.7	105.3	93.3

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys. Inc. Respectfully Submitted.

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit, S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Page#: 1

Report Date: 06/28/02

	Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130745
•	Attn:	Ken Dutton	Sample Name: MW 10	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	91.4	80-120	
Toluene-d8	8260b	99.5	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

 Page#: 2
 Report Date: 06/28/02

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs. NM 88240 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OHALITY ASSURANCE DATA¹

Report#/Lab ID#: 130746	Report Date: 06/28/02	
Project ID: TNM 97-04 EOT 2	2016C	
Sample Name: MW 11		
Sample Matrix: water		
Date Received: 06/21/2002	Time: 09:40	
 Date Sampled: 06/12/2002	Time: 11:19	

REPORT OF ANALVSIS

505 397-4882

Phone:

MEIONI OF ANALISIS							VUIMAL	QUINTI I INDUCTION DITAIN				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					06/25/02	8260b						
Benzene	<1	μg/L	1	<1	06/25/02	8260b		2.1	85.9	98.3	86.1	
Ethylbenzene	<1	μg/L	1	<1	06/25/02	8260b		1.2	127.9	110.3	119.7	
m,p-Xylenes	1>	μg/L	1 1	<1	06/25/02	8260b		1.5	119.7	103.9	112.2	
o-Xylene	<1	μg/L	1	<1	06/25/02	8260b		0.1	121	102.8	112.3	
Toluene	<1	μg/L	1	<1	06/25/02	8260b		3.2	91.7	105.3	93.3	
This analytical report is respectfully submitted	hy AnalySys Inc. The	enclosed result		ity assurance d	ata is for the sar	nnle batch which incl	uded this sample	2 Precisio	on (PREC) is	the absolu	ate value	

This analytical report is respectfully submitted by AnalySys. Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys. Inc.'s Quality Assurance/Quality Control Program. @ Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

FAX: 505 397-4701

data is for the sample batch which included this sample. of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7, Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Richard ite Richard Laster

Report Date: 06/28/02 Page#: 1

Cli	ient:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130746
At	tn:	Ken Dutton	Sample Name: MW 11	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	93	80-120	
Toluene-d8	8260b	104	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 06/28/02

CINCLYSYS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group						Report#/Lab II	D#: 130747	Repo	ort Date:	06/28/02	
Attn: Ken Dutton						Project ID: TNM 97-04 EOT 2016C					
Address: 2540 W. Marland						Sample Name:	MW 12				
Hobbs,					Sample Matrix	: water					
						Date Received:	06/21/2002	Time	09:40		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	06/12/2002	Time	: 10:41		
REPORT OF ANALYSIS						B.,	QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					06/25/02	8260b					
Benzene	<1	μg/L	1	<1	06/25/02	8260b		2.1	85.9	98.3	86.1
Ethylbenzene	<1	μg/L	1	<1	06/25/02	8260b		1.2	127.9	110.3	119.7
m,p-Xylenes	<1	μg/L	1	<1	06/25/02	8260b		1.5	119.7	103.9	112.2
o-Xylene	<1	μg/L	1	<1	06/25/02	8260b		0.1	121	102.8	112.3
Toluene	<1	μg/L	1	<1	06/25/02	8260b		3.2	91.7	105.3	93.3
This analytical report is respectfully submitted by Anal have been carefully reviewed and, to the best of my kno are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc.	e (RQL), typicall dilutior associa recover	elative percent (red from a spike sed as the percen- typically at or ly denote USEP, is. 7. Data Qu ted method blan	%) difference l d sample. 4 nt (%) recovery above the Prac A procedures. alifiers are J = k(s). S1 = MS ory limit. S3 =	mple batch which include between duplicate measu 4. Calibration Verification 7 of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e: -MS and/or MSD and PI ference.	rements. 3. Recomer (CCV) and Lab n standard or mat (PQL) of the ana effect nominal qua ant between the PC acceed advisory lir	overy (Rec oratory Co rix. 5. Re lytical met ntitation li QL and the nits. S2 =1	ov.) is the per- porting Quan- thod. 6. Me mits adjusted MDL. B = A Post digestion	cent (%) of (LCS) res attitution Li thod numb for any red nalyte deto spike (PE	f analyte ults are mits ects quired ected in (S)		

Page#: 1 Report Date: 06/28/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130747
Attn:	Ken Dutton	Sample Name: MW 12	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94.2	80-120	
Toluene-d8	8260b	108	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 06/28/02

	•					2209 N	reidrich Lane. . Padre Island 44-5896 •	Dr., Con	rpus Chris	ti, TX 7	
Client:Environmental Tech GroupReport #/Lab ID#: 130748Report Date: 0Attn:Ken DuttonProject ID:TNM 97-04 EOT 2016CAddress:2540 W. MarlandSample Name: MW 13Hobbs,NM 88240Sample Matrix: waterDate Received:06/21/2002Time:Phone:505 397-4882FAX:505 397-4701Date Sampled:06/12/2002Time:11:37								06/28/02			
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					06/25/02	8260b					
Benzene	115	μg/L	1	<1	06/25/02	8260b		2.1	85.9	98.3	86.1
Ethylbenzene	<1	μg/L	1	<1	06/25/02	8260b		1.2	127.9	110.3	119.7
m,p-Xylenes	13	μg/L	1	<1	06/25/02	8260b		1.5	119.7	103.9	112.2
o-Xylene	<1	μg/L	1	<1	06/25/02	8260b	J	0.1	121	102.8	112.3
Toluene	<1	μg/L	1	<1	06/25/02	8260b		3.2	91.7	105.3	93.3
This analytical report is respectfully submitted by Anal have been carefully reviewed and, to the best of my kno are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All righ publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc. Reference	e (RQL) typical dilution associa	relative percent (red from a spike sed as the percer , typically at or ly denote USEP, ns. 7. Data Qua ted method blan	%) difference I d sample. 4 ht (%) recovery above the Prace A procedures. alifiers are J = k(s). S1 = MS ory limit. S3 =	mple batch which include between duplicate measu 4. Calibration Verification of analyte from a know trical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex- eMS and/or MSD and PE ference.	rements. 3. Reco m (CCV) and Lab n standard or matu (PQL) of the ana effect nominal qua nt between the PC acceed advisory lin	overy (Reco oratory Co rix. 5. Re lytical met ntitation lir QL and the nits. S2 =P	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestion	reent (%) of (LCS) res ntitation Li thod numb for any re- nalyte deto spike (PD	of analyte ults are mits pers quired ected in DS)		

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130748
Attn:	Ken Dutton	Sample Name: MW 13	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	98.5	80-120	
Toluene-d8	8260b	101	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

 Page#: 2
 Report Date: 06/28/02

Exceptions Report:

Report #/Lab ID#: 130748Matrix: waterClient: Environmental Tech GroupAttn: Ken DuttonProject ID: TNM 97-04 EOT 2016CSample Name: MW 13

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
o-Xylene	J	See J-flag discussion above.
Notes:		

CINCILY SYS

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs, NM 88240 4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

OUALITY ASSURANCE DATA1

Report#/Lab ID#: 130749	Report Date: 06/28/02
Project ID: TNM 97-04 EOT	2016C
Sample Name: MW 14	
Sample Matrix: water	
Date Received: 06/21/2002	Time: 09:40
Date Sampled: 06/12/2002	Time: 12:20

REPORT OF ANALYSIS

505 397-4882

Phone:

Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					06/26/02	8260b						
Benzene	718	μg/L	10	<10	06/26/02	8260b		2.1	85.9	98.3	86.1	
Ethylbenzene	144	μg/L	10	<10	06/26/02	8260b		1.2	127.9	110.3	119.7	
m,p-Xylenes	187	μg/L	· 10	<10	06/26/02	8260b		1.5	119.7	103.9	112.2	
o-Xylene	86.7	μg/L	10	<10	06/26/02	8260b		0.1	121	102.8	112.3	
Toluene	470	μg/L	10	<10	06/26/02	8260b		3.2	91.7	105.3	93.3	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

FAX: 505 397-4701

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher than advisory limit. M = Matrix interference.

Richard Latte

Richard Laster

Client: Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130749
Attn: Ken Dutton	Sample Name: MW 14	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	118	80-120	
Toluene-d8	8260b	102	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 06/28/02

naly**g**ys

Client:	Environmental Tech Group		
Attn:	Ken Dutton		
	2540 W. Marland		
	Hobbs,	NM	88240

Phone: 505 397-4882

REPORT OF ANALYSIS

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 · FAX (512) 447-4766

Report#/Lab ID#: 130750 Project ID: TNM 97-04 EOT	Report Date: 06/28/02
Project ID: TNM 97-04 EOT	2016C
Sample Name: MW 15	
Sample Name: MW 15 Sample Matrix: water	
Date Received: 06/21/2002	Time: 09:40
Date Sampled: 06/12/2002	Time: 12:00

REPORT OF ANALYSIS								QUALITY ASSURANCE DATA ¹				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					06/26/02	8260b						
Benzene	5430	μg/L	100	<100	06/26/02	8260b		2.1	85.9	98.3	86.1	
Ethylbenzene	216	μg/L	1	<1	06/26/02	8260b		1.2	127.9	110.3	119.7	
m,p-Xylenes	32.2 ·	µg/L	1	<1	06/26/02	8260b		1.5	119.7	103.9	112.2	
o-Xylene	56.9	μg/L	1	<1	06/26/02	8260b		0.1	121	102.8	112.3	
Toluene	4.17	μg/L	1	<1	06/26/02	8260b		3.2	91.7	105.3	93.3	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. O Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard L.

Richard Laster

FAX: 505 397-4701

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (POL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1 Report Date: 06/28/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130750
Attn:	Ken Dutton	Sample Name: MW 15	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	115	80-120	
Toluene-d8	8260b	106	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2

Report Date: 06/28/02

4221 Freidrich Lane, Suite 190, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group Attn: Ken Dutton							Report#/Lab ID#: 130751 Report Date: 06/28/02 Project ID: TNM 97-04 EOT 2016C					
Address: 2540 W. Marland						Sample Name:						
Hobbs,	NM 88240					Sample Matrix						
110000,	1002.0						ate Received: 06/21/2002 Time: 09:40					
Phone: 505 397-4882 FAX: 505 3	97-4701		Date Sampled: 06/12/2002 Time: 12:40									
<u>QUALITY ASSURANCE DATA</u> ¹												
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					06/26/02	8260b						
Benzene <1 µg/L 1			1	<1	06/26/02	8260b		2.1	85.9	98.3	86.1	
Ethylbenzene	<1	μg/L	1	<1	06/26/02	8260b		1.2	127.9	110.3	119.7	
m,p-Xylenes	<1	μg/L	1	<1	06/26/02	8260b		1.5	119.7	103.9	112.2	
o-Xylene	<1	μg/L	1	<1	06/26/02	8260b		0.1	121	102.8	112.3	
Toluene	<1	μg/L	1	<1	06/26/02	8260b		3.2	91.7	105.3	93.3	
This analytical report is respectfully submitted by Ana have been carefully reviewed and, to the best of my km are consistent with AnalySys, Inc.'s Quality Assurance Copyright 2000, AnalySys, Inc., Austin, TX. All rigl publication may be reproduced or transmitted in any for express written consent of AnalySys, Inc.	e (RQL) typical dilution associa	elative percent (red from a spike sed as the percent , typically at or ly denote USEP. ns. 7. Data Qu tted method blar	(%) difference is ad sample. 4 ant (%) recovery above the Prace A procedures. alifiers are J = nk(s). S1 =MS sory limit. S3 =	imple batch which includ between duplicate measu 4. Calibration Verificatio y of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e =MS and/or MSD and PI ference.	rements. 3. Rec on (CCV) and Lab en standard or mat t (PQL) of the ana effect nominal qua- ent between the PC acceed advisory lin	overy (Rec oratory Co rix. 5. Re alytical met untitation li QL and the nits. S2 =1	ov.) is the per- ontrol Sample eporting Quan- thod. 6. Me mits adjusted MDL. B = A Post digestion	reent (%) of (LCS) res ntitation Li thod numb for any re analyte det a spike (PE	of analyte ults are units pers quired ected in DS)			

Page#: 1 Report Date: 06/28/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EOT 2016C	Report#/Lab ID#: 130751
Attn:	Ken Dutton	Sample Name: EB 1	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	102	80-120	
Toluene-d8	8260b	105	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 06/28/02

1 Marcon													C	$\mathcal{O}_{\mathcal{T}}$	Ø93	5		
CHAIN-OF-CUSTO	DY					·••••	i -						ſ	1 11	CIL	۲5	Y5	
Send Reports To:				to (if		-						4221				90, Austin	n n	
Company Name ETGI		***	Con	npany	Nam	1e	EOTT							Plan	e: (512) 4 : (512) 44	44.5896		
Address 2540 W MA				iress_			State							Pax	(401214)	17-47-60		
City Hobes State Nm			СПУ 1 АТ ^и	rni,			Siate		qi			\square		4	vene De	equeste	a (1)]
ATTN: KEN DUTTON Phone 500, FP7-4182 Fax(v Pho	ne			State Fax				7		Please	attach e	xplanatory	Juliomystics	a ar requi	ined
										/	17	7	7	7	77	77		
Rush Status (must be confirm Project Name/PO#: TAM	1100 with 77-04	ao mgi. Samn). Ilei:	man	- (San	 			N		/ /	/ /		/ /			
EOT 2	0/60								NY	¥.			/ /	/ /				
Client Sample No. Description/Identification	Date Sampled	Time Sampled	No. of Containers	Snit	Water	Waste	Lab 1.1). # (Lab only)		J.							Comm	ents	
Mw /	6-12-07	1100	2		X		130742	Х										
MW 7		0930					130743									· · · · · · · · · · · · · · · · · · ·		.
Mw 8	<u> </u>	1000					130744										·	
MW 18		1019					1.30745							_				
Mas /1		1119			-		130746											
MW12		1041					130747	_										
Mw13		1137					130748						_					
MW 14		1220					130749											
MW 15		1200					130750											
EB 1	K	1240	V		\checkmark		130751	Y					_					

(1) Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to ASPs method for first of the conducted using ASPs method of choice and all data will be reported to ASPs method for first of the conducted using ASPs method of choice and all data will be reported to ASPs method for first of the conducted using ASPs method of choice and all data will be reported to ASPs method for first of the conducted using ASPs method of choice and all data will be reported to ASPs method for first of the conducted using ASPs method of choice and all data will be reported to ASPs method for first of the conducted using ASPs method of choice and all data will be reported to ASPs method for the conducted using ASPs method of this chain-of-custody of the conducted using ASPs and the conducted usin

				1emp:	9.0 C					
Α	Sample Relinquishe	ed By	·	Sample Received By						
Mame	Affiliation	Date ,	Time	Name	Affiliation	Date	Line			
Simo asa	ETGIT	6/20/02	1400	melonie	Humphrung ASI	4/21/02	0940			
				/		, , , , , , , , , , , , , , , , , , , ,				

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms]

z

							N. Padre Islan 385-5886		(512) 385	•	78408
Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs, Phone: 505 397-4882 FAX: 505 3	NM 88240 97-4701		Report#/Lab ID#: 133283Report Date: 09.Project ID: TNM 97-04 E0 2016CSample Name: MW-1Sample Matrix: waterDate Received: 09/04/2002Time: 09:45Date Sampled: 08/26/2002Time: 11:30						9/11/02		
REPORT OF ANALYSIS	-						QUALITY				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX	~~~				09/06/02	8260b					
Benzene	<1	μg/L	1	<1	09/06/02	8260b		0.2	74.4	80.8	88
Ethylbenzene	<1	μg/L	1	<1	09/06/02	8260b		5.4	119.6	93.6	99.1
m,p-Xylenes	<1	μg/L	1	<1	09/06/02	8260b		8.1	117	102.2	99.2
o-Xylene	<1	μg/L	1	<1	09/06/02	8260b		6.9	113.5	105.3	102
Toluene	<1	μg/L	1	<1	09/06/02	8260b		2.9	98.1	86.8	92.7
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Respectfully Submitted, Richard Laster Richard Laster							of analyte sults are limits pers quired ected in DS)				

FILE

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

	Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133283
	Attn:	Ken Dutton	Sample Name: MW-1	Sample Matrix: water
<u>د</u>				L

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	98.7	80-120	
Toluene-d8	8260b	102	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 09/11/02

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group						Report#/Lab IL		-	rt Date: ()9/11/02		
Attn: Ken Dutton						1 -	Project ID: TNM 97-04 E0 2016C					
Address: 2540 W. Marland						Sample Name:	MW-7					
Hobbs,	NM 88240					Sample Matrix:	water					
						Date Received:	09/04/2002	Time:	09:45		l	
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	08/26/2002	Time:	10:30			
REPORT OF ANALYSIS QUALITY ASSURANCE DATA ¹												
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	°CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					09/07/02	8260b						
Benzene	1.01	μg/L	1	<1	09/07/02	8260b		1.4	71.1	88	84.8	
Ethylbenzene	11.8	μg/L	1	<1	09/07/02	8260b		0.8	104.3	99.1	101.2	
m,p-Xylenes	14.1	μg/L	1	<1	09/07/02	8260b		4.3	107.4	99.2	96.3	
o-Xylene	<1	μg/L	1	<1	09/07/02	8260Ъ		3.2	110.9	102	96.2	
Toluene	<1 .	μg/L	1	<1	09/07/02	8260b	J	0.2	92	92.7	86.9	
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Respectfully Submitted, Richard Laster This analytical report is respectfully submitted by AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Richard Laster							of analyte ults are mits pers quired ected in DS)					

Page#: 1 Report Date: 09/11/02

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133284							
Attn:	Ken Dutton	Sample Name: MW-7	Sample Matrix: water							
			the second							

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	105	80-120	
Toluene-d8	8260b	101	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 09/11/02

Exceptions Report:

Report #/Lab ID#: 133284 Matrix: waterClient: Environmental Tech GroupAttn: Ken DuttonProject ID: TNM 97-04 E0 2016CSample Name: MW-7

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

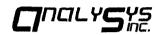
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Toluene	J	See J-flag discussion above.
Notes:	.	


Page#: 3 Report #/Lab ID#: 133284 Report Date: 9/11/200

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

المراجعة المراجع والمراجع المراجع		and the second division of the second divisio				the second second second second second second second second second second second second second second second s					
Client: Environmental Tech Group						Report#/Lab II)#: 133285	Repo	ort Date:	09/11/02	
Attn: Ken Dutton						Project ID: TNM 97-04 E0 2016C					
Address: 2540 W. Marland						Sample Name:	MW-8				
Hobbs,	NM 88240					Sample Matrix	water				
						Date Received:	09/04/2002	Time:	09:45		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	08/26/2002	Time:	10:00		
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					09/07/02	8260b					
Benzene	<1	μg/L	1	<1	09/07/02	8260b		1.4	71.1	88	84.8
Ethylbenzene	<1	μg/L	1	<1	09/07/02	8260b		0.8	104.3	99.1	101.2
m,p-Xylenes	<1	μg/L	1	<1	09/07/02	8260b	'	4.3	107.4	99.2	96.3
o-Xylene	<1	μg/L	1	<1	09/07/02	8260b		3.2	110.9	102	96.2
Toluene	<1 [°] ·	μg/L.	1	<1	09/07/02	8260b		0.2	92	92.7	86.9
	wledge, the anal Quality Contro ts reserved. No	ytical results Program. © part of this ans without the prnitted,	e (RQL), typical dilution associa	elative percent (red from a spike sed as the percer , typically at or ly denote USEP, as. 7. Data Qu- ted method blan	%) difference t d sample. 4 at (%) recovery above the Prace A procedures. alifiers are J = ak(s). S1 = MS	mple batch which includ etween duplicate measu calibration Verification of analyte from a know tical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex- MS and/or MSD and PI	rements. 3. Rec. n (CCV) and Lab n standard or mat (PQL) of the ana flect nominal qua nt between the PC aceed advisory lin	overy (Rec oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per nttol Sample porting Quar hod. 6. Me mits adjusted MDL. B = A Post digestion	reent (%) e (LCS) res ntitation Li thod numb for any re- nalyte det a spike (PL	of analyte sults are imits bers quired ected in DS)

Page#: 1 Report Date: 09/11/02

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133285							
Attn:	Ken Dutton	Sample Name: MW-8	Sample Matrix: water							

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	102	80-120	
Toluene-d8	8260b	101	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 09/11/02

CINCIL YSYS

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group						Report#/Lab II)#: 133292	Repo	rt Date: (09/11/02		
Attn: Ken Dutton						Project ID: TN	Project ID: TNM 97-04 E0 2016C					
Address: 2540 W. Marland						Sample Name:	MW-10				Ì	
Hobbs,	NM 88240					Sample Matrix:	water					
						Date Received:	09/04/2002	Time:	09:45			
Phone: 505 397-4882 FAX: 505 3	97-4701		Date Sampled: 08/26/2002 Time: 10:50									
REPORT OF ANALYSIS							QUALITY					
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					09/07/02	8260b						
Benzene	<1	μg/L	1	<1	09/07/02	8260b		1.4	71.1	88	84.8	
Ethylbenzene	<1	μg/L	1	<1	09/07/02	8260b		0.8	104.3	99.1	101.2	
m,p-Xylenes	<1	μg/L	1	<1	09/07/02	8260b		4.3	107.4	99.2	96.3	
o-Xylene	<1	μg/L	1	<1	09/07/02	8260b		3.2	110.9	102	96.2	
Toluene	<1 .	µg/L	1	<1	09/07/02	8260b		0.2	92	92.7	86.9	
his analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are been carefully reviewed and, to the best of my knowledge, the analytical results re consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this ublication may be reproduced or transmitted in any form or by any means without the xpress written consent of AnalySys, Inc. Respectfully Submitted, <i>Nichard Laster</i> Richard Laster												

Page#: 1 Report Date: 09/11/02

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

ويعتقدون كالمجمع فتبتغاذ										
Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133292							
Attn:	Ken Dutton	Sample Name: MW-10	Sample Matrix: water							

<u>REPORT OF SURROGATE RECOVERY</u>

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	106	80-120	
Toluene-d8	8260b	102	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 09/11/02

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group						Report#/Lab ID#: 133286 Report Date: 09/11/02						
Attn: Ken Dutton						Project ID: TNM 97-04 E0 2016C						
Address: 2540 W. Marland				Sample Name:	MW-11							
Hobbs,	NM 88240					Sample Matrix	: water					
						Date Received:	09/04/2002	Time:	09:45			
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	08/26/2002	Time:	12:40			
REPORT OF ANALYSIS							QUALITY					
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX	***				09/07/02	8260b				****		
Benzene	<1	μg/L	1	<1	09/07/02	8260b		1.4	71.1	88	84.8	
Ethylbenzene	<1	μg/L	1	<1	09/07/02	8260b		0.8	104.3	99.1	101.2	
m,p-Xylenes	<1	µg/L	1	<1	09/07/02	8260b		4.3	107.4	99.2	96.3	
o-Xylene	<1	μg/L	1	<1	09/07/02	8260b		3.2	110.9	102	96.2	
Toluene	<1' ·	μg/L	1	<1	09/07/02	8260b		0.2	92	92.7	86.9	
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analytical results of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analytical results of the relative percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Nethod numbers Cichard Laster Laster							of analyte ults are imits pers quired ected in DS)					

Page#: 1 Report Date: 09/11/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133286
Attn:	Ken Dutton	Sample Name: MW-11	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	107	80-120	
Toluene-d8	8260b	100	88-110	

• .

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 09/11/02

Ken Dutton Address: 2540 W. Marland

505 397-4882

express written consent of AnalySys, Inc.

Environmental Tech Group

NM 88240

Respectfully Submitted,

Richard Laster

Richard Laster

FAX: 505 397-4701

Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this

publication may be reproduced or transmitted in any form or by any means without the

Client:

Phone:

Attn:

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 · FAX (512) 385-7411

Report#/Lab ID#: 133287	Report Date: 09/11/02
Project ID: TNM 97-04 E0 20	016C
Sample Name: MW-12	
Sample Matrix: water	
Date Received: 09/04/2002	Time: 09:45
Date Sampled: 08/26/2002	Time: 11:10

REPORT OF ANALYSIS

Hobbs.

REPORT OF ANALYSIS QUALITY ASSURANCE DATA ¹											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					09/07/02	8260b					
Benzene	<1	μg/L	1	<1	09/07/02	8260b		1.4	71.1	88	84.8
Ethylbenzene	<1	μg/L	1	<1	09/07/02	8260b		0.8	104.3	99.1	101.2
m,p-Xylenes	<1	μg/L	1	<1	09/07/02	8260b		4.3	107.4	99.2	96.3
o-Xylene	<1	μg/L	1	<1	09/07/02	8260b		3.2	110.9	102	96.2
Toluene	<1	μg/L	1	<1	09/07/02	8260b		0.2	92	92.7	86.9
This analytical report is respectfully submitted by Ana have been carefully reviewed and, to the best of my kn are consistent with AnalySys, Inc.'s Quality Assuranc	owledge, the ana	lytical results	of the r		(%) difference b	nple batch which incl etween duplicate mea . Calibration Verifica	surements. 3. Reco	overy (Rec	ov.) is the pe	rcent (%) o	of analyte

recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the POL and the MDL. B = Analyte detected in associated method blank(s). S1 = MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Page#: 1 **Report Date: 09/11/02**

Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133287
Attn:	Ken Dutton	Sample Name: MW-12	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	108	80-120	
Toluene-d8	8260b	100	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Client: Environmental Tech Group						Report#/Lab II	D#: 133288	Rep	ort Date:	09/11/02	
Attn: Ken Dutton						Project ID: TNM 97-04 E0 2016C					
Address: 2540 W. Marland						Sample Name:	MW-13				
Hobbs,	NM 88240					Sample Matrix: water					
						Date Received:	09/04/2002	Time	: 09:45		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	08/26/2002	Time	: 13:00		
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE D	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					09/07/02	8260b					
Benzene	45.5	μg/L	1	<1	09/07/02	8260b		1.4	71.1	88	84.8
Ethylbenzene	<1	μg/L	1	<1	09/07/02	8260b		0.8	104.3	99.1	101.2
m,p-Xylenes	24.4	μg/L	1	<1	09/07/02	8260b		4.3	107.4	99.2	96.3
o-Xylene	<i< td=""><td>μg/L</td><td>1</td><td><1</td><td>09/07/02</td><td>8260b</td><td></td><td>3.2</td><td>110.9</td><td>102</td><td>96.2</td></i<>	μg/L	1	<1	09/07/02	8260b		3.2	110.9	102	96.2
Toluene	<1 .	μg/L	1	<1	09/07/02	8260b		0.2	92	92.7	86.9
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Respectfully Submitted, Richard Laster Richard Laster							of analyte ults are mits pers quired geted in DS)				

Client: Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133288								
Attn: Ken Dutton	Sample Name: MW-13	Sample Matrix: water								

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	119	80-120	
Toluene-d8	8260b	100	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

CINCILYSYS

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

ļ

Client: Environmental Tech Group	ent: Environmental Tech Group				Report#/Lab ID#: 133289 Report Date: 09/11/02						
Attn: Ken Dutton						Project ID: TNM 97-04 E0 2016C					
Address: 2540 W. Marland				Sample Name:	MW-14						
Hobbs,	NM 88240	1				Sample Matrix: water					
		ļ				Date Received:	09/04/2002	Time:	09:45		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	08/26/2002	Time:	13:40		
REPORT OF ANALYSIS							QUALITY	ASSUR	ANCE DA	ATA ¹	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					09/07/02	8260b					
Benzene	606	μg/L	10	<10	09/07/02	8260b		1.4	71.1	88	84.8
Ethylbenzene	147	μg/L	10	<10	09/07/02	8260b		0.8	104.3	99.1	101.2
m,p-Xylenes	188	μg/L	10	<10	09/07/02	8260b		4.3	107.4	99.2	96.3
o-Xylene	89.3	μg/L	10	<10	09/07/02	8260b		3.2	110.9	102	96.2
Toluene	355 -	μg/L	10	<10	09/07/02	8260b		0.2	92	92.7	86.9
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, <i>Lichard Laster</i> Richard Laster							of analyte wits are wits octs quired ected in OS)				

Page#: 1 Report Date: 09/11/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133289								
Attn:	Ken Dutton	Sample Name: MW-14	Sample Matrix: water								
1											

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	102	80-120	
Toluene-d8	8260b	103	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 09/11/02

Client: Environmental Tech Group						Report#/Lab II		-	rt Date: (09/11/02	
Attn: Ken Dutton		1				Project ID: TN	M 97-04 E0 20)16C			
Address: 2540 W. Marland						Sample Name:	MW-15				
Hobbs,	NM 88240					Sample Matrix	water				1
						Date Received:	09/04/2002	Time:	09:45		
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	08/26/2002	Time:	13:20		
REPORT OF ANALYSIS											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					09/07/02	8260b					
Benzene	4590	μg/L	100	<100	09/07/02	8260b		1.4	71.1	88	84.8
Ethylbenzene	183	μg/L	1	<1	09/07/02	8260b		0.8	104.3	99.1	101.2
m,p-Xylenes	23.4	μg/L	1	<1	09/07/02	8260b		4.3	107.4	99.2	96.3
o-Xylene	29.7	μg/L	1	<1	09/07/02	8260b		3.2	110.9	102	96.2
Toluene	1.65	μg/L	1	<1	09/07/02	8260b		0.2	92	92.7	86.9
have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Circleared Tertian					%) difference d sample. 4 at (%) recovery above the Prace A procedures. alifiers are J == k(s). S1 =MS ory limit. S3 =	mple batch which includ between duplicate measu 4. Calibration Verification of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery en- MS and/or MSD and PI ference.	rements. 3. Reco n (CCV) and Lab n standard or mate (PQL) of the ana flect nominal qua nt between the PC acceed advisory lin	overy (Rec oratory Co rix. 5. Re lytical met ntitation lis QL and the nits. S2 = F	ov.) is the per ntrol Sample porting Quar hod. 6. Me nits adjusted MDL. B = A Post digestior	ccent (%) of (LCS) res ntitation Li thod numb for any re- nalyte det spike (PE	of analyte ults are mits pers quired ected in DS)

Page#: 1 Report Date: 09/11/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133290
Attn:	Ken Dutton	Sample Name: MW-15	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	114	80-120	
Toluene-d8	8260b	99.3	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

3512 Montopolis Dr., Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group Attn: Ken Dutton						Report#/Lab II Project ID: TN	M 97-04 E0 20	-	ort Date:	09/11/02	
Address: 2540 W. Marland						Sample Name:					
Hobbs,	NM 88240					Sample Matrix	water				
						Date Received:	09/04/2002	Time:	09:45		ľ
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	08/26/2002	Time:	13:35]
REPORT OF ANALYSIS											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual ⁷	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Volatile organics-8260b/BTEX					09/07/02	8260b					
Benzene	<1	μg/L	1	<1	09/07/02	8260b		1.4	71.1	88	84.8
Ethylbenzene	<1	μg/L	1	<1	09/07/02	8260b		0.8	104.3	99.1	101.2
m,p-Xylenes	<1	μg/L	1	<1	09/07/02	8260b		4.3	107.4	99.2	96.3
o-Xylene	<1	μg/L	1	<1	09/07/02	8260b		3.2	110.9	102	96.2
Toluene	<1	μg/L	1	<1	09/07/02	8260b		0.2	92	92.7	86.9
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000. AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster				elative percent (red from a spike red as the percer typically at or y denote USEP as. 7. Data Qui ted method blan	%) difference f d sample. 4 at (%) recovery above the Prace A procedures. alifiers are J = ak(s). S1 =MS ory limit. S3 =	mple batch which includ between duplicate measu 4. Calibration Verificatio y of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e: =MS and/or MSD and PI ference.	rements. 3. Reco n (CCV) and Lab n standard or mate (PQL) of the ana flect nominal qua nt between the PC acceed advisory lin	overy (Rec oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =I	ov.) is the pe ntrol Sample porting Quan hod. 6. Me mits adjusted MDL. B = A Post digestion	reent (%) e (LCS) res ntitation Li thod numl for any ree nalyte det n spike (PE	of analyte uits are inits pers quircd ected in DS)

Page#: 1 Report Date: 09/11/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 E0 2016C	Report#/Lab ID#: 133291							
Attn:	Ken Dutton	Sample Name: EB 1	Sample Matrix: water							

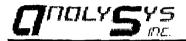
.

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	118	80-120	
Toluene-d8	8260b	101	88-110	

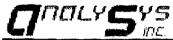
Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 2 Report Date: 09/11/02

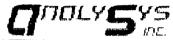

				Coc, / 90
CHAIN-OF-CUSTO	DDY			
Send Reports To:		Bill to (if differen	nt):	
Company Name ETGI		Company Name_	EOTT	4221 Freidrich Lane, Suite 190, Austin TX 18711 Phone (512):144-5896
Address 25 Ko W M.	MALAND	Address		Fax (512) 447-4766
('ily HoBRI State N.		City	State Zip	
ATTIN KEN DUTTO	N	ATTN:	Fax	Analyses Requested (1)
Phone Sac 797-418 Z Fax				Please attach explanatory information as required
Rush Status (must be confir Project Name/PO#	med with lab mgi.):	-1-A	A	
Project Name/PO#	<u>97-09</u> Sample	1: Simon (as	as s	
('hent Sample No	Date Time	No. of	Lab 1.D. # 0764	
Description/Identification		ontainers Soll Water Was	ste (Lab only)	Comments
MW /	8/26/02 /130	2 1	133283 X	
MW 7	1080		133284	
MW 8	1000		13.3285	
MW 11	1249		1.3.3286	
MW 12	1110		13.3287	
Mw 13	13200		133288	
MW 14	1340		133289	
MW,5	1320		133290	
EBI	1335	V V	1.3.291	
MW 18	V 1050		1.1.1292	

11) Daless spectful affy requested otherwise on this Chann-of custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be replated to ASI are not a parameter lists are specified on this chann-of-custody or attached to this chann-of-custody ASI are defined to the Parameter lists are specified on this chann-of-custody or attached to this chann-of-custody ASI are defined to the Parameter lists are specified on this chann-of-custody or attached to this chann-of-custody ASI are defined to the Parameter lists are specified on this chann-of-custody or attached to this chann-of-custody ASI are defined to the Parameter lists are specified on this chann-of-custody or attached to this chann-of-custody ASI are defined to the Parameter lists are specified on this chann-of-custody or attached to this chann-of-custody ASI are defined to the Parameter lists are specified on the Parameter lists are specified on the Channer of the parameter lists are specified on the custody or attached to the custody ASI are defined to the Parameter lists are specified on the custody of the custody ASI are defined to the parameter lists are specified on the custody of the cust

				_ Iemp.c			
Sample Relinquished By				Sample Received By			
Hame A	Affiliation	Date	Time	Name	Affiliation	Date	Lime
Armon das	is ETGI	9/3/02	1500	Mr me Ho	mohrey ASI	9/4/02	094.
		~ ~					


\$

Hendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms [


Client: Environmental Tech Group]				Report#/Lab ID			rt Date: 1	12/16/02		
Attn: Ken Dutton						Project ID: TN	M 97-04 EO 20	016				
Address: 2540 W. Marland		}				Sample Name:	MW 1					
Hobbs,	NM 88240					Sample Matrix:	water					
		Ì				Date Received:			08:00			
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	11/21/2002	Time:	08:55			
REPORT OF ANALYSIS						QUALITY A						
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴	
A/BN Extraction-PAH					11/27/02	3520						
Metals DigHg					11/27/02	7470&245.1						
Metals DigHNO3					11/26/02	3015						
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7		0.87	104.49	100.48	105.18	
Barium/ICP	0.149	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		3.58	101.99	98.26	101.76	
Cadmium/ICP	<0.005	mg/L	0.005	<0.005	12/11/02	6010 & 200.7		1.08	105.39	102	106.91	
Chromium/ICP	<0.01	mg/L	0.01	<0.01	12/11/02	6010 & 200.7	J	1.45	99.71	97.8	106.16	
Lead/ICP	<0.02	mg/L,	0.02	<0.02	12/11/02	6010 & 200.7		1.19	103.64	99.4	107.66	
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	11/27/02	245.1&7470		4.44	88.89	92	102.67	
Selenium/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7	J	0.95	104.18	100.16	105.65	
Silver/GFAA	<0.002	mg/L	0.002	<0.002	11/27/02	272.2&7761		1.68	108.26	92.5	119	
Extractable organics-PAH					12/12/02	8270c						
Volatile organics-8260b/BTEX					11/27/02	82 60b						
Benzene	<1	µg/L	1	<1	11/27/02	8260b	J	1.9	72	94.2	78.7	
Ethylbenzene	<1	μg/L	1	<1	11/27/02	8260b	J	2.1	113.1	110.3	111.5	
m,p-Xylenes	<1	μg/L	1	<i< td=""><td>11/27/02</td><td>8260b</td><td></td><td>1.7</td><td>110.7</td><td>104.4</td><td>106.5</td></i<>	11/27/02	82 60b		1.7	110.7	104.4	106.5	
o-Xylene	<1	μg/L	<u>`</u> 1	<1	11/27/02	8260b		0.6	116.1	109.4	113.5	
Toluene	<1	μg/L	1	<1	11/27/02	82 60b		0.2	96.1	104.8	99.8	
Acenaphthene	0.06	μg/L	0.05	<0.05	12/12/02	8270c		1.2	· 63.3	104.4	66.2	
Acenaphthylene	0.07	μg/L	0.05	<0.05	12/12/02	8270c		0.4	71.2	112.6	76.6	
Anthracene	0.122	μg/L	0.05	<0.05	12/12/02	8270c		8.3	77.4	111.2	73.4	
have been carefully reviewed and, to the best of my kno are consistent with AnalySys, Inc.'s Quality Assurance	This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. ©											
Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without												
express written consent of AnalySys, Inc. Re	mitted,	typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are $J =$ analyte potentially present between the POL and the MDL B = Analyte detected in										
Rie	hard J	aster	associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS					5)				
	Richard Laste	r				Richard Laster recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.						

Page#: 1 Report Date: 12/16/02

Client: Environmental Tech Group Attn: Ken Dutton	Project ID: TNM 97-04 EO 2016 Sample Name: MW 1							Report#/Lab ID#: 136769 Sample Matrix: water				
REPORT OF ANALYSIS-cont. QUALIT									Y ASSURANCE DATA 1			
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴	
Benzo[a]anthracene	0.089	μg/L	0.05	<0.05	12/12/02	8270c		9	85.4	101.1	80.8	
Benzo[a]pyrene	0.103	μg/L	0.05	<0.05	12/12/02	8270c		15.3	80.6	104.9	74.9	
Benzo[b]fluoranthene	0.091	μg/L	0.05	<0.05	12/12/02	8270c		25	87	108.2	73.4	
Benzo[g,h,i]perylene	0.101	μg/L	0.05	<0.05	12/12/02	8270c		16.4	74.8	88.6	71.1	
Benzo[j,k]fluoranthene	0.101	μg/L	0.05	<0.05	12/12/02	8270c		6	76.6	102.2	71.9	
Chrysene	0.061	μg/L	0.05	<0.05	12/12/02	8270c		10.2	84.9	99.1	84.9	
Dibenz[a,h]anthracene	0.102	μg/L	0.05	<0.05	12/12/02	8270c		16.9	79.3	93.1	70.7	
Fluoranthene	0.126	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5	
Fluorene	0.09	μg/L	0.05	<0.05	12/12/02	8270c		4.6	65.6	106	62	
Indeno[1,2,3-cd]pyrene	0.086	μg/L	0.05	<0.05	12/12/02	8270c		18.1	78.2	92.5	70.6	
Naphthalene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	2.8	61.5	104.2	52.5	
Phenanthrene	0.111	µg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7	
Pyrene	0.106	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1	

Page#: 2 Report Date: 12/16/02

in the second second second second second second second second second second second second second second second			
Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136769
Attn:	Ken Dutton	Sample Name: MW 1	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	81	80-120	
Toluene-d8	8260b	107	88-110	
2-Fluorobiphenyl	8270c	47.7	43-116	
Nitrobenzene-d5	8270c	74.5	35-114	
Terphenyl-d14	8270c	56.3	33-141	

۰.

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Report #/Lab ID#: 136769 Matrix: water	
Client: Environmental Tech Group	Attn: Ken Dutton
Project ID: TNM 97-04 EO 2016	
Sample Name: MW 1	

Sample Temperature/Condition: <=6°C

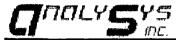
The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

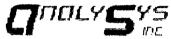
Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion:


A J flag data qualifier indicates (as required under TCEO-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure). GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
Chromium/ICP	1	See J-flag discussion above.
Selenium/ICP	J	See J-flag discussion above.
Benzene	J	See J-flag discussion above.
Ethylbenzene	J	See J-flag discussion above.
Naphthalene	J	See J-flag discussion above.
Notes:		


Comments pertaining to Data Qualifiers and QC data:

<i>Analy</i>s						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,		hristi, T	X 78408
Client: Environmental Tech Group						Report#/Lab ID			rt Date: 🗍	2/16/02	
Attn: Ken Dutton						Project ID: TN	M 97-04 EO 2	016			
Address: 2540 W. Marland						Sample Name:	MW 7				
Hobbs,	NM 88240					Sample Matrix:	water				
						Date Received:	11/25/2002	Time:	08 :00		
Phone: 505 397-4882 FAX: 505	397-4701					Date Sampled:	11/21/2002	Time:	12:18		
REPORT OF ANALYSIS							QUALITY A				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					11/27/02	3520					
Metals DigHg					11/27/02	7470&245.1					
Metals DigHNO3					11/26/02	3015					
Arsenic/ICP	<0.05	mg/L	0.05	< 0.05	12/11/02	6010 & 200.7		0.87	104.49	100.48	105.18
Barium/ICP	0.0815	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		3.58	101.99	98.26	101.76
Cadmium/ICP	< 0.005	mg/L	0.005	<0.005	12/11/02	6010 & 200.7		1.08	105.39	102	106.91
Chromium/ICP	<0.01	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		1.45	99.71	97.8	106.16
Lead/ICP	<0.02	mg/L	0.02	<0.02	12/11/02	6010 & 200.7		1.19	103.64	99.4	107.66
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	11/27/02	245.1&7470		4.44	88.89	92	102.67
Selenium/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7	J	0.95	104.18	100.16	
Silver/GFAA	<0.002	mg/L	0.002	<0.002	11/27/02	272.2&7761		1.68	108.26	92.5	119
Extractable organics-PAH					12/12/02	8270c					
Volatile organics-8260b/BTEX					11/27/02	8260b					
Benzene	<1	μg/L	1	<1	11/27/02	8260b	J	1.9	72	94.2	78.7
Ethylbenzene	<1	μg/L	1	<1	11/27/02	8260b		2.1	113.1	110.3	111.5
m,p-Xylenes	2.99	μg/L	1	<1	11/27/02	8260b		1.7	110.7	104.4	106.5
o-Xylene	<1	μg/L	1	<1	11/27/02	82 60b		0.6	116.1	109.4	113.5
Toluene	<1	μg/L	1	<1	11/27/02	8260b		0.2	96.1	104.8	99.8
Acenaplithene	0.054	µg/L	0.05	<0.05	12/12/02	8270c		1.2	* 63.3	104.4	66.2
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	0.4	71.2	112.6	76.6
Anthracene	0.076	μg/L	0.05	<0.05	12/12/02	8270c		8.3	77.4	111.2	73.4
	owledge, the anal e/Quality Control hts reserved. No	ytical results Program. © part of this ans without the omitted,	e (RQL), typicall dilution associa	elative percent (red from a spike sed as the percen , typically at or ly denote USEP as. 7. Data Qua ted method blan	%) difference t d sample. 4 nt (%) recovery above the Prace A procedures. alifiers are J = tk(s). S1 =MS ory limit. S3 =	mple batch which inclu- etween duplicate measu . Calibration Verificatio of analyte from a know tical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery e. MS and/or MSD and PI erence.	rements. 3. Reco n (CCV) and Lab n standard or mate (PQL) of the ana flect nominal qua nt between the PC (ceed advisory lin	overy (Reco oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the per ntrol Sample porting Quan hod. 6. Me mits adjusted MDL. B = A Post digestion	reent (%) c (LCS) res ntitation Li thod numb for any re- nalyte det a spike (PE	of analyte sults are imits bers quired ected in DS)

 Page#:
 1
 Report Date:
 12/16/02

Client: Environmental Tech Group Attn: Ken Dutton				Project ID: TNM 97-04 EO 2016 Sample Name: MW 7					Report#/Lab ID#: 136770 Sample Matrix: water				
REPORT OF ANALYSIS-cont. QUALITY								ASSURA	NCE DA'	<u>ra</u> 1			
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴		
Benzo[a]anthracene	0.052	µg/L	0.05	<0.05	12/12/02	8270c		9	85.4	101.1	80.8		
Benzo[a]pyrene	0.055	μg/L	0.05	<0.05	12/12/02	8270c		15.3	80.6	104.9	74.9		
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	25	87	108.2	73.4		
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	16.4	74.8	88.6	71.1		
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	6	76.6	102.2	71.9		
Chrysene	< 0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	10.2	84.9	99.1	84.9		
Dibenz[a,h]anthracene	0.054	μg/L	0.05	<0.05	12/12/02	8270c		16.9	79.3	93.1	70.7		
Fluoranthene	0.083	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5		
Fluorene	0.175	μg/L	0.05	<0.05	12/12/02	8270c		4.6	65.6	106	62		
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	18.1	78.2	92.5	70.6		
Naphthalene	2.68	μg/L	0.05	<0.05	12/12/02	8270c		2.8	61.5	104.2	52.5		
Phenanthrene	0.127	μg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7		
Pyrene	0.072	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1		

Client: Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136770
Attn: Ken Dutton	Sample Name: MW 7	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	84.1	80-120	
Toluene-d8	8260b	101	88-110	
2-Fluorobiphenyl	8270c	44.6	43-116	
Nitrobenzene-d5	8270c	61.9	35-114	
Terphenyl-d14	8270c	52.9	33-141	

• .

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/16/02

Exceptions Report:

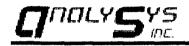
Report #/Lab ID#:136770Matrix: waterClient:Environmental Tech GroupAttn: Ken DuttonProject ID:TNM 97-04 EO 2016Sample Name:MW 7

Sample Temperature/Condition: <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.


J flag Discussion:

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
Selenium/ICP	J	See J-flag discussion above.
Benzene	J	See J-flag discussion above.
Acenaphthylene	J	See J-flag discussion above.
Benzo[b]fluoranthene	J	See J-flag discussion above.
Benzo[g,h,i]perylene	J	See J-flag discussion above.
Benzo[j,k]fluoranthene	J	See J-flag discussion above.
Chrysene	J	See J-flag discussion above.
Indeno[1,2,3-cd]pyrene	J	See J-flag discussion above.
Indeno[1,2,3-cd]pyrene	J	See J-flag discussion above.

Comments pertaining to Data Qualifiers and QC data:

Notes:

Ken Dutton Address: 2540 W. Marland Hobbs.

505 397-4882

Environmental Tech Group

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Report#/Lab ID	#: 136771	Report Date:	12/16/02
Project ID: TN	M 97-04 EO 20	16	
Sample Name:	MW 8		
Sample Matrix:	water		
Date Received:	11/25/2002	Time: 08:00	
Date Sampled:	11/21/2002	Time: 09:45	

REPORT OF ANALYSIS

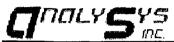
Client: Attn:

Phone:

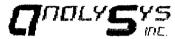
REPORT OF ANALYSIS							QUALITY A	SSURA	NCE DA'	<u>[A</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					11/27/02	3520					
Metals DigHg					11/27/02	7470&245.1					
Metals DigHNO3					11/26/02	3015					
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7		0.87	104.49	100.48	105.18
Barium/ICP	0.0849	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		3.58	101.99	98.26	101.76
Cadmium/ICP	<0.005	mg/L	0.005	<0.005	12/11/02	6010 & 200.7		1.08	105.39	102	106.91
Chromium/ICP	<0.01	mg/L	0.01	<0.01	12/11/02	6010 & 200.7	J	1.45	99.71	97.8	106.16
Lead/ICP	<0.02	mg/L	0.02	<0.02	12/11/02	6010 & 200.7		1.19	103.64	99.4	107.66
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	11/27/02	245.1&7470		4.44	88.89	92	102.67
Selenium/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7	J	0.95	104.18	100.16	105.65
Silver/GFAA	<0.002	mg/L	0.002	<0.002	11/27/02	272.2&7761		1.68	108.26	92.5	119
Extractable organics-PAH					12/12/02	8270c					
Volatile organics-8260b/BTEX					11/27/02	82 60b					
Benzene	<1	µg/L	1	<1	11/27/02	8260b		1.9	72	94.2	78.7
Ethylbenzene	<1	μg/L	1	<1	11/27/02	8260b		2.1	113.1	110.3	111.5
m,p-Xylenes	<l< td=""><td>µg/L</td><td>1</td><td><1</td><td>11/27/02</td><td>8260b</td><td></td><td>1.7</td><td>110.7</td><td>104.4</td><td>106.5</td></l<>	µg/L	1	<1	11/27/02	8260b		1.7	110.7	104.4	106.5
o-Xylene	<1	μg/L	`1	<1	11/27/02	8260b		0.6	116.1	109.4	113.5
Toluene	<1	μg/L	1	<1	11/27/02	8260b		0.2	96.1	104.8	99.8
Acenaphthene	< 0.05	µg/L	0.05	< 0.05	12/12/02	8270c		1.2	· 63.3	104.4	66.2
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		0.4	71.2	112.6	76.6
Anthracene	<0.05	µg/L	0.05	<0.05	12/12/02	8270c		8.3	77.4	111.2	73.4
This analytical report is respectfully submitted by Ana	L. The	nclosed result	1 010	ity assurance de	ta is for the s	ample batch which include	ed this sample	7 Precisio	un (PRE([°]) is	the absolu	te value

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. @ Convright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,


NM 88240

FAX: 505 397-4701


Richard Laster **Richard Laster**

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (ROL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions, 7. Data Qualifiers are J = analyte potentially present between the POL and the NDL. B = Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference.

Page#: 1

Client: Environmental Tech Group Attn: Ken Dutton	Project ID: TNM 97-04 EO 2016 Sample Name: MW 8					Report#/Lab ID#: 136771 Sample Matrix: water					
REPORT OF ANALYSIS-cont.			QUALITY ASSURANCE DATA 1								
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
Benzo[a]anthracene	< 0.05	μg/L	0.05	<0.05	12/12/02	8270c		9	85.4 ·	101.1	80.8
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		15.3	80.6	104.9	74.9
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		25	87	108.2	73.4
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		16.4	74.8	88.6	71.1
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		6	76.6	102.2	71.9
Chrysene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		10.2	84.9	99.1	84.9
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		16.9	79.3	93.1	70.7
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5
Fluorene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		4.6	65.6	106	62
Indeno[1,2,3-cd]pyrene	<0.05 ·	μg/L	0.05	<0.05	12/12/02	8270c		18.1	78.2	92.5	70.6
Naphthalene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		2.8	61.5	104.2	52.5
Phenanthrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7
Pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136771
Attn:	Ken Dutton	Sample Name: MW 8	Sample Matrix: water
Procession and the second			

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	90	80-120	
Toluene-d8	8260b	98.7	88-110	
2-Fluorobiphenyl	8270c	43.4	43-116	
Nitrobenzene-d5	8270c	76.7	35-114	
Terphenyl-d14	8270c	56.4	33-141	

۰.

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/16/02

Exceptions Report:

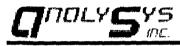
Report #/Lab ID#: 136771 Matrix: water	
Client: Environmental Tech Group	Attn: Ken Dutton
Project ID: TNM 97-04 EO 2016	
Sample Name: MW 8	

Sample Temperature/Condition: <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

Sample received in appropriate container(s) and appear to be appropriately preserved.


- □ Sample received in appropriate container(s). State of sample preservation unknown.
- \Box Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion:

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Chromium/ICP	J	See J-flag discussion above.
Selenium/ICP	J	See J-flag discussion above.
Notes:		

- - -1

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs, NM 88240

FAX: 505 397-4701

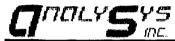
3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Report#/Lab ID#	#: 136772	Report Date:	12/16/02
Project ID: TN	M 97-04 EO 20	116	
Sample Name: 1	MW 10		
Sample Matrix:	water		
Date Received:	11/25/2002	Time: 08:00	
Date Sampled:	11/21/2002	Time: 10:22	

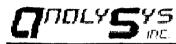
505 397-4882

Phone:

REPORT OF ANALYSIS							QUALITY A	SSURA	NCE DAT	<u>[A]</u>	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH		·			11/27/02	3520					
Metals DigHg					11/27/02	7470&245.1					
Metals DigHNO3					11/26/02	3015					
Arsenic/ICP	< 0.05	mg/L	0.05	< 0.05	12/11/02	6010 & 200.7		0.87	104.49	100.48	105.18
Barium/ICP	0.572	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		3.58	101.99	98.26	101.76
Cadmium/ICP	<0.005	mg/L	0.005	< 0.005	12/11/02	6010 & 2 00.7		1.08	105.39	102	106.91
Chromium/ICP	0.0148	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		1.45	99.71	97.8	106.16
Lead/ICP	<0.02	mg/L	0.02	<0.02	12/11/02	6010 & 200.7		1.19	103.64	99.4	107.66
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	11/27/02	245.1&7470	<u></u>	4.44	88.89	92	102.67
Selenium/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7	J	0.95	104.18	100.16	105.65
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/02/02	272.2&7761		0	100	85	118
Extractable organics-PAH					12/12/02	8270c					
Volatile organics-8260b/BTEX					11/27/02	82 60b					
Benzene	<1	μg/L	1	<1	11/27/02	8260b		1.9	72	94.2	78.7
Ethylbenzene	<1	μg/L	. 1	<1	11/27/02	8260b		2.1	113.1	110.3	111.5
m,p-Xylenes	<1	μg/L	1	<1	11/27/02	82 60b		1.7	110.7	104.4	106.5
o-Xylene	<1	μg/L	1	<1	11/27/02	8 260b		0.6	116.1	109.4	113.5
Tohuene	<1	μg/L	1	<1	11/27/02	82 60b		0.2	96.1	104.8	99.8
Acenaphthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		1.2	63.3	104.4	66.2
Acenaphthylene	<0.05	µg/L	0.05	<0.05	12/12/02	8270c		0.4	71.2	112.6	76.6
Antiracene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		8.3	77.4	111.2	73.4
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. O Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Latter				relative percent (red from a spike sed as the percent , typically at or ly denote USEP. ns. 7. Data Qu uted method blar	%) difference d sample. nt (%) recovery above the Pra A procedures. alifiers are J = k(s). S1 =MS ory limit. S3 :	imple batch which includ between duplicate measure 4. Calibration Verification of analyte from a known ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex =MS and/or MSD and PE	rements. 3. Reco n (CCV) and Lab u standard or matu (PQL) of the ana flect nominal qua nt between the PQ acceed advisory lin	overy (Reco pratory Co ix. 5. Re lytical met nutitation lin (L and the nits. S2 =F	ov.) is the per ntrol Sample porting Quan hod. 6. Me nits adjusted MDL. B = A cost digestion	reent (%) o (LCS) res ititation Li thod numb for any ree nalyte dete spike (PD	of analyte ults are mits ocrs quirce ected in DS)


than advisory limit. M =Matrix interference.

Richard Laster



Page#: 1 Report Date

Report Date: 12/16/02

Client: Environmental Tech Group Attn: Ken Dutton	Project ID: TNM 97-04 EO 2016 Sample Name: MW 10						Report#/Lab ID#: 136772 Sample Matrix: water				
REPORT OF ANALYSIS-cont. QUALITY											
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
Benzo[a]anthracene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		9	85.4	101.1	80.8
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		15.3	80.6	104.9	74.9
Benzo[b]fluoranthene	<0.05	µg/L	0.05	<0.05	12/12/02	8270c		25	87	108.2	73.4
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		16.4	74.8	88.6	71.1
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		6	76.6	102.2	71.9
Chrysene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		10.2	84.9	99.1	84.9
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		16.9	79.3	93.1	70.7
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5
Fluorene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		4.6	65.6	106	62
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		18.1	78.2	92.5	70.6
Naphthalene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		2.8	61.5	104.2	52.5
Phenanthrene	<0.05	µg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7
Pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136772
Attn:	Ken Dutton	Sample Name: MW 10	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	80.2	80-120	
Toluene-d8	8260b	97.6	88-110	
2-Fluorobiphenyl	8270c	48.9	43-116	
Nitrobenzene-d5	8270c	67.6	35-114	
Terphenyl-d14	8270c	55.4	33-141	

.

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

 Page#: 3
 Report Date: 12/16/02

Exceptions Report:

Report #/Lab ID#:136772Matrix: waterClient:Environmental Tech GroupAttn: Ken DuttonProject ID:TNM 97-04 EO 2016Sample Name:MW 10

Sample Temperature/Condition: <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

Sample received in appropriate container(s) and appear to be appropriately preserved.

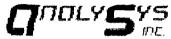
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion:

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Selenium/ICP	J	See J-flag discussion above.
Notes:		


						(51	9 N. Padre Isl 2) 385-5886	• FA	X (512) 3	85-7411	1 78408
Client: Environmental Tech Group						Report#/Lab ID			rt Date:	2/16/02	
Attn: Ken Dutton						Project ID: TN		016			
Address: 2540 W. Marland						Sample Name:					
Hobbs,	NM 88240					Sample Matrix:					
						Date Received:		Time:			
Phone: 505 397-4882 FAX: 50	5 397-4701					Date Sampled:	11/21/2002	Time:	11:03		
REPORT OF ANALYSIS							QUALITY A				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					11/27/02	3520					
Metals DigHg	J			ļ	11/27/02	7470&245.1]	
Metals DigHNO3					11/26/02	3015					
Arsenic/ICP	<0.05	mg/L	0.05	< 0.05	12/11/02	6010 & 200.7		0.87	104.49	100.48	105.18
Barium/ICP	0.218	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		3.58	101.99	98.26	101.76
Cadmium/ICP	<0.005	mg/L	0.005	<0.005	12/11/02	6010 & 200.7		1.08	105.39	102	106.91
Chromium/ICP	<0.01	mg/L	0.01	<0.01	12/11/02	6010 & 200.7	J	1.45	99.71	97.8	106.16
Lead/ICP	<0.02	mg/L	0.02	<0.02	12/11/02	6010 & 200.7		1.19	103.64	99.4	107.66
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	11/27/02	245.1&7470		4.44	88.89	92	102.67
Selenium/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7	J	0.95	104.18		105.65
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/02/02	272.2&7761		0	100	85	118
Extractable organics-PAH					12/12/02	8270c					
Volatile organics-8260b/BTEX					11/27/02	8260b					
Benzene	<1	μg/L	1	<1	11/27/02	8260b		1.9	72	94.2	78.7
Ethylbenzene	<1	μg/L	1	<1	11/27/02	8260b		2.1	113.1	110.3	111.5
m,p-Xylenes	<1	μg/L	1	<1	11/27/02	8260b		1.7	110.7	104.4	106.5
o-Xylene	<1	μg/L	1	<1	11/27/02	8260b		0.6	116.1	109.4	113.5
Toluene	<1	μg/L	1	<1	11/27/02	8260b		0.2	96.1	104.8	99.8
Acenaphthene	0.089	μg/L	0.05	<0.05	12/12/02	8270c		1.2	· 63.3	104.4	66.2
Acenaphthylene	0.094	μg/L	0.05	<0.05	12/12/02	8270c		0.4	71.2	112.6	76.6
Anthracene	0.182	μg/L	0.05	<0.05	12/12/02	8270c		8.3	77.4	111.2	73.4
This analytical report is respectfully submitted by A have been carefully reviewed and, to the best of my are consistent with AnalySys, Inc.'s Quality Assur- Copyright 2000, AnalySys, Inc., Austin, TX. All publication may be reproduced or transmitted in an express written consent of AnalySys, Inc.	e (RQL). typical dilution associa	elative percent (red from a spike sed as the percen , typically at or ly denote USEP 1s. 7. Data Qu ted method blan	%) difference 1 d sample. 4 at (%) recovery above the Prace A procedures. alifiers are $J =$ k(s). $S1 = MSory limit. S3 =$	mple batch which includ between duplicate measu 4. Calibration Verification 7 of analyte from a know ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex- MS and/or MSD and PI	rements. 3. Rec on (CCV) and Lab n standard or mat (PQL) of the ana effect nominal qua nt between the PC (cceed advisory lir	overy (Reco oratory Co rix. 5. Re lytical met ntitation lin QL and the nits. S2 =F	ov.) is the pe ntrol Sample porting Quan hod. 6. Me nits adjusted MDL. B = A 'ost digestion	rcent (%) o (LCS) res utitation L thod numb for any re unaly te det 1 spike (PL	of analyte sults are imits bers quired ected in OS)		

Page#: 1 Report Date: 12/16/02

	Inal	YC	YS
.			INC.

Client: Environmental Tech Group Attn: Ken Dutton	Project ID: TNM 97-04 EO 2016 Sample Name: MW 11								Report#/Lab ID#: 136773 Sample Matrix: water			
REPORT OF ANALYSIS-cont. QUALITY								ASSURA	NCE DAT	<u>FA</u> 1		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴	
Benzo[a]anthracene	0.125	µg/L	0.05	<0.05	12/12/02	8270c		9	85.4	101.1	80.8	
Benzo[a]pyrene	0.12	μg/L	0.05	<0.05	12/12/02	8270c		15.3	80.6	104.9	74.9	
Benzo[b]fluoranthene	0.126	μg/L	0.05	<0.05	12/12/02	8270c		25	87	108.2	73.4	
Benzo[g,h,i]perylene	0.108	μg/L	0.05	<0.05	12/12/02	8270c		16.4	74.8	88.6	71.1	
Benzo[j,k]fluoranthene	0.145	μg/L	0.05	<0.05	12/12/02	8270c		6	76.6	102.2	71.9	
Chrysene	0.08	μg/L	0.05	<0.05	12/12/02	8270c		10.2	84.9	99.1	84.9	
Dibenz[a,h]anthracene	0.105	μg/L	0.05	<0.05	12/12/02	8270c		16.9	79.3	93.1	70.7	
Fluoranthene	0.19	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5	
Fluorene	0.149	μg/L,	0.05	<0.05	12/12/02	8270c		4.6	65.6	106	62	
Indeno[1,2,3-cd]pyrene	0.111	μg/L	0.05	<0.05	12/12/02	8270c		18.1	78.2	92.5	70.6	
Naphthalene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		2.8	61.5	104.2	52.5	
Phenanthrene	0.168	μg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7	
Pyrene	0.156	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1	

Page#: 2 Report Date: 12/16/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136773
Attn:	Ken Dutton	Sample Name: MW 11	Sample Matrix: water
l			

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	82.9	80-120	
Toluene-d8	8260b	102	88-110	
2-Fluorobiphenyl	8270c	49.3	43-116	
Nitrobenzene-d5	8270c	70.5	35-114	
Terphenyl-d14	8270c	55.1	33-141	

• .

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/16/02

Exceptions Report:

Report #/Lab ID#: 136773 Matrix: water	· ·
Client: Environmental Tech Group	Attn: Ken Dutton
Project ID: TNM 97-04 EO 2016	
Sample Name: MW 11	

Sample Temperature/Condition: <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $<= 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

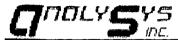
- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion:

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

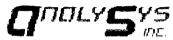
Parameter	Qualif	Comment
Chromium/ICP	J	See.J-flag discussion above.
Selenium/ICP	J	See J-flag discussion above.
Notes:		


Notes:

Client: Environmental Tech Group						Report#/Lab ID		-	rt Date:	12/16/02	
Attn: Ken Dutton						Project ID: TN		016			
Address: 2540 W. Marland						Sample Name:					
Hobbs,	NM 88240					Sample Matrix:					
						Date Received:			08:00		
Phone: 505 397-4882 FAX:	505 397-4701					Date Sampled:			11:42		
REPORT OF ANALYSIS							QUALITY /				
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. ³	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					11/27/02	3520					
Metals DigHg					11/27/02	7470&245.1					
Metals DigHNO3					11/26/02	3015					
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	12/12/02	6010 & 200.7		1.53	98.2	98.16	99.5
Barium/ICP	0.115	mg/L	0.01	<0.01	12/12/02	6010 & 200.7		1.29	82.91	102.26	84.91
Cadmium/ICP	< 0.005	mg/L	0.005	<0.005	12/12/02	6010 & 200.7		0.05	94.21	100.88	97.68
Chromium/ICP	0.0104	mg/L	0.01	<0.01	12/12/02	6010 & 200.7		0.77	83.63	96.98	87.39
Lead/ICP	<0.02	mg/L	0.02	<0.02	12/12/02	6010 & 200.7		0.52	96.7	98.64	101.4
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	11/27/02	245.1&7470		4.44	88.89	92	102.67
Selenium/ICP	<0.05	mg/L	0.05	<0.05	12/12/02	6010 & 200.7	J	1.93	97.8	98.16	99.89
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/02/02	272.2&7761	J	0	100	85	118
Extractable organics-PAH					12/12/02	8270c					
Volatile organics-8260b/BTEX					11/27/02	8260b					
Benzene	<1	μg/L	1	<1	11/27/02	8260b		1.9	72	94.2	78.7
Ethylbenzene	<1	μg/L	1	<1	11/27/02	8260b		2.1	113.1	110.3	111.5
m,p-Xylenes	<1	μg/L	1	<1	11/27/02	8260b		1.7	110.7	104.4	106.5
o-Xylene	<1	µg/L	· 1	<1	11/27/02	8260b		0.6	116.1	109.4	113.5
Toluene	<1	μg/L	1	<1	11/27/02	82 60b		0.2	96.1	104.8	99.8
Acenaphthene	< 0.05	µg/L	0.05	< 0.05	12/12/02	8270c		1.2	63.3	104.4	66.2
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		0.4	71.2	112.6	76.6
Anthracene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		8.3	77.4	111.2	73.4
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. \bigcirc Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster					rcent (%) o e (LCS) res ntitation Li ethod numi l for any re Analyte det n spike (PI	of analyte sults are imits bers quired ected in DS)					

Page#: 1 Report Date: 12/16/02

÷


-

1

Client: Environmental Tech Group Attn: Ken Dutton	- <u>-</u>	Project ID: TNM 97-04 EO 2016 Sample Name: MW 12			Report#/Lab ID#: 136774 Sample Matrix: water						
REPORT OF ANALYSIS-cont. QUALITY							QUALITY /	ASSURANCE DATA 1			
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
Benzo[a]anthracene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		9	85.4	101.1	80.8
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		15.3	80.6	104.9	74.9
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		25	87	108.2	73.4
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		16.4	74.8	88.6	71.1
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		6	76.6	102.2	71.9
Chrysene	<0.05	μg/L,	0.05	<0.05	12/12/02	8270c		10.2	84.9	99.1	84.9
Dibenz[a,h]anthracene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		16.9	79.3	93.1	70.7
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5
Fluorene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		4.6	65.6	106	62
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		18.1	78.2	92.5	70.6
Naphthalene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		2.8	61.5	104.2	52.5
Phenanthrene	<0.05	µg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7
Pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1

 Page#: 2
 Report Date: 12/16/02

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136774
Attn:	Ken Dutton	Sample Name: MW 12	Sample Matrix: water
		·	and the second second second second second second second second second second second second second second second

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	86	80-120	
Toluene-d8	8260b	98.5	88-110	
2-Fluorobiphenyl	8270c	43.2	43-116	
Nitrobenzene-d5	8270c	56.9	35-114	
Terphenyl-d14	8270c	50.6	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Report #/Lab ID#: 136774 Matrix: water Attn: Ken Dutton Client: Environmental Tech Group Project ID: TNM 97-04 EO 2016 Sample Name: MW 12

Sample Temperature/Condition: <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

X Sample received in appropriate container(s) and appear to be appropriately preserved.

- Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

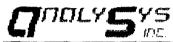
I flag Discussion:

A J flag data qualifier indicates (as required under TCEO-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (ROL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure). GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and OC data:

Parameter	Qualif	Comment
Selenium/ICP	J	See J-flag discussion above.
Silver/GFAA	J	See J-flag discussion above.
Notes:		

Report #/Lab ID#: 136774 Report Date: 12/16/02 Page#: 4


<i>O</i> <i>noly</i> 5 ^{YS}						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,	Corpus Cl	aristi, T	
Client: Environmental Tech Group		1				Report#/Lab ID	#: 136775	Repo	rt Date: 1	2/16/02	1
Attn: Ken Dutton		1				Project ID: TN					
Address: 2540 W. Marland						Sample Name:					
Hobbs,	NM 88240					Sample Matrix:					
,						Date Received:		Time:	08:00		
Phone: 505 397-4882 FAX: 505	397-4701					Date Sampled:			12:55		
REPORT OF ANALYSIS							QUALITY			<u>ra</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					11/27/02	3520					
Metals DigHg					11/27/02	7470&245.1					
Metals DigHNO3					11/26/02	3015					
Arsenic/ICP	< 0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7		0.87	104.49	100.48	105.18
Barium/ICP	0.156	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		3.58	101.99	98.26	101.76
Cadmium/ICP	<0.005	mg/L	0.005	<0.005	12/11/02	6010 & 200.7		1.08	105.39	102	106.91
Chromium/ICP	<0.01	mg/L	0.01	<0.01	12/11/02	6010 & 200.7	J	1.45	99.71	97.8	106.16
Lead/ICP	<0.02	mg/L	0.02	<0.02	12/11/02	6010 & 200.7		1.19	103.64	99.4	107.66
Mercury/CVAA	0.0012	mg/L	0.0002	<0.0002	11/27/02	245.1&7470		4.44	88.89	92	102.67
Selenium/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7	J	0.95	104.18	100.16	105.65
Silver/GFAA	0.0359	mg/L	0.01	<0.01	12/02/02	272.2&7761		0	100	85	118
Extractable organics-PAH					12/12/02	8270c					
Volatile organics-8260b/BTEX					11/27/02	82 60b					
Benzene	10.1	μg/L	1	<1	11/27/02	8260b		1.9	72	94.2	78.7
Ethylbenzene	<1	μg/L	1	<1	11/27/02	82 60b		2.1	113.1	110.3	111.5
m,p-Xylenes	44.6	μg/L	1	<1	11/27/02	82 60b		1.7	110.7	104.4	106.5
o-Xylene	<1	μg/L	1	<1	11/27/02	82 60b		0.6	116.1	109.4	113.5
Toluene	<1	μg/L	1	<1	11/27/02	8260b		0.2	96.1	104.8	99.8
Acenaphthene	0.075	µg/L	0.05	<0.05	12/12/02	8270c		1.2	63.3	104.4	66.2
Acenaphthylene	0.054	μg/L	0.05	<0.05	12/12/02	8270c		0.4	71.2	112.6	76.6
Anthracene	0.065	μg/L	0.05	<0.05	12/12/02	8270c		8.3	77.4	111.2	73.4
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. O Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted, Richard Laster				elative percent (ed from a spike led as the percen typically at or y denote USEP/ is. 7. Data Qua ted method blan	%) difference b d sample. 4 tt (%) recovery above the Prac A procedures. 1 alifiers are J = a k(s). S1 = MS ory limit. S3 =	mple batch which includ etween duplicate measu: . Calibration Verificatio of analyte from a know tical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex MS and/or MSD and PD erence.	rements. 3. Reco n (CCV) and Lab n standard or mati (PQL) of the ana flect nominal qua nt between the PQ acced advisory lin	overy (Reco oratory Con rix. 5. Rep lytical meth ntitation lin (L and the l nits. S2 =P	ov.) is the per- ntrol Sample porting Quan- nod. 6. Mel- nits adjusted MDL. B = A ost digestion	cent (%) o (LCS) rest titation Li hod numb for any rec nalyte deto spike (PD	f analyte alts are mits ers puired ected in S)

Page#: 1

Report Date: 12/16/02

					2209	N. Padre Isla	nd Dr., (Corpus Ch	risti, TX	
		(^w				}				5
		<u></u>				QUALITY A	ASSURA	NCE DA'	<u>FA</u> 1	
Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
< 0.05	µg/L	0.05	< 0.05	12/12/02	8270c	J	9	85.4.	101.1	80.8
<0.05	µg/L	0.05	<0.05	12/12/02	8270c	J	15.3	80.6	104.9	74.9
<0.05		0.05	<0.05	12/12/02	8270c	l J	25	87	108.2	73.4
<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	16.4	74.8	88.6	71.1
0.054	μg/L	0.05	<0.05	12/12/02	8270c		6	76.6	102.2	71.9
<0.05	μg/L	0.05	<0.05	12/12/02	8270c	∬ J	10.2	84.9	99.1	84.9
<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	16.9	79.3	93.1	70.7
0.068	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5
0.373	µg/L	0.05	< 0.05	12/12/02	8270c		4.6	65.6	106	62
<0.05	μg/L	0.05	<0.05	12/12/02	8270c	J	18.1	78.2	92.5	70.6
12.4	μg/L	0.05	<0.05	12/12/02	8270c		2.8	61.5	104.2	52.5
0.323	μg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7
0.061	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1
	<0.05 <0.05 <0.05 <0.05 0.054 <0.05 <0.05 0.068 0.373 <0.05 12.4 0.323	<0.05 μg/L <0.05	Result Units RQL 5 <0.05	Result Units RQL ⁵ Blank <0.05	Sample Name: MW 13 Result Units RQL ⁵ Blank Date <0.05	Result Units RQL ⁵ Blank Date Method ⁶ <0.05	Project ID: TNM 97-04 EO 2016 Sample Name: MW 13 Result Units RQL ⁵ Blank Date Method ⁶ Data Qual. ⁷ <0.05	Project ID: TNM 97-04 EO 2016 Sample Name: Report Sample Project ID: TNM 97-04 EO 2016 Sample Name: Report Sample Result Units RQL ⁵ Blank Date Method ⁶ Data Qual. ⁷ Prec. ² CO.05 µg/L 0.05 <0.05 12/12/02 8270c J 9 <0.05	2209 N. Padre Island Dr., Corpus Ch (512) 385-5886 · FAX (512) 38 Project ID: TNM 97-04 EO 2016 Sample Name: MW 13 Report#/Lab ID# Sample Mame: MW 13 QUALITY ASSURANCE DA OUALITY ASSURANCE DA QUALITY A RQL 5 Blank Date Method 6 Data Qual.7 Prec. 2 Recort 3 <0.05	Project ID: TNM 97-04 EO 2016 Sample Name: Report#/Lab ID#: 13677. Sample Matrix: Result Units RQL ⁵ Blank Date Method ⁶ Data Qual. ⁷ Prec. 2 Recov. ³ CCV ⁴ <0.05

Page#: 2 Report Date: 12/16/02

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136775
Attn:	Ken Dutton	Sample Name: MW 13	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	96.8	80-120	
Toluene-d8	8260b	97.9	88-110	
2-Fluorobiphenyl	8270c	43.3	43-116	
Nitrobenzene-d5	8270c	56.3	35-114	
Terphenyl-d14	8270c	57.7	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/16/02

Exceptions Report:

Report #/Lab ID#: 136775 Matrix: water	
Client: Environmental Tech Group	Attn: Ken Dutton
Project ID: TNM 97-04 EO 2016	
Sample Name: MW 13	

Sample Temperature/Condition: <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

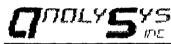
- Sample received in appropriate container(s) and appear to be appropriately preserved.
- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion:

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Parameter	Qualif	Comment
Chromium/ICP	J	See J-flag discussion above.
Selenium/ICP	l	See J-flag discussion above.
Benzo[a]anthracene	J	See J-flag discussion above.
Benzo[a]pyrene	J	See J-flag discussion above.
Benzo[b]fluoranthene	J	See J-flag discussion above.
Benzo[g,h,i]perylene	J	See J-flag discussion above.
Chrysene	J	See J-flag discussion above.
Dibenz[a,h]anthracene	J	See J-flag discussion above.
Indeno[1,2,3-cd]pyrene	1	See J-flag discussion above.
Notes:		

Comments pertaining to Data Qualifiers and QC data:


A naly S ys						220	2 Montopolis 9 N. Padre Isl 2) 385-5886	and Dr.,	Corpus Cl	ıristi, TX	
Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland						Report#/Lab ID Project ID: TN Sample Name:	M 97-04 EO 2		rt Date: 1	2/16/02	
Hobbs,	NM 88240					Sample Matrix:					
						Date Received:	11/25/2002	Time:			
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	11/21/2002	Time:	13:27		
REPORT OF ANALYSIS							QUALITY A			<u>ra</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					11/27/02	3520					
Metals DigHg					11/27/02	7470&245.1					
Metals DigHNO3					11/26/02	3015					
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7		0.87	104.49	1	105.18
Barium/ICP	0.137	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		3.58	101.99	98.26	101.76
Cadmium/ICP	<0.005	mg/L	0.005	<0.005	12/11/02	6010 & 200.7		1.08	105.39	102	106.91
Chromium/ICP	<0.01	mg/L	0.01	<0.01	12/11/02	6010 & 200.7	J	1.45	99.71	97.8	106.16
Lead/ICP	<0.02	mg/L	0.02	<0.02	12/11/02	6010 & 200.7		1.19	103.64	99.4	107.66
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	11/27/02	245.1&7470		4.44	88.89	92	102.67
Selenium/ICP	<0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7	J	0.95	104.18		105.65
Silver/GFAA	<0.002	mg/L	0.002	<0.002	12/02/02	272.2&7761		0	100	85	118
Extractable organics-PAH Volatile organics-8260b/BTEX					12/12/02 12/03/02	8270c 8260b					
Benzene	850	u~/t	10	<10	12/03/02	8260b	<u> </u>	1.9	72	94.2	78.7
Ethylbenzene	178	μg/L μg/L	10	<10 <10	12/03/02	8260b		2.1	113.1	110.3	111.5
m,p-Xylenes	350	μg/L μg/L	10	<10 <10	12/03/02	8260b		1.7	110.7	104.4	106.5
o-Xylene	175	μg/L μg/L	10	<10 <10	12/03/02	8260b		0.6	116.1	104.4	113.5
Tohuene	666	μg/L	10	<10	12/03/02	8260b		0.0	96.1	103.4	99.8
Acenaphthene	0.074	μg/L	0.05	<0.05	12/12/02	8270c		1.2	· 63.3	104.4	66.2
Acenaphthylene	0.159	μg/L	0.05	<0.05	12/12/02	827 0c		0.4	71.2	112.6	76.6
Anthracene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		8.3	77.4	111.2	73.4
Rie	ytical results l Program. © part of this	e (RQL), typicall dilution associa	elative percent (red from a spike sed as the percen typically at or ly denote USEP. ns. 7. Data Qui ted method blan	%) difference l d sample. 4 at (%) recovery above the Prace A procedures. alifiers are J = k(s). S1 = MS ory limit. S3 =	mple batch which includ between duplicate measu 4. Calibration Verificatio of analyte from a know. ctical Quantitation Limit Less than ("<") values re analyte potentially prese and/or MSD recovery ex MS and/or MSD and PD ference.	rements. 3. Rec n (CCV) and Lab n standard or mat (PQL) of the ana flect nominal qua nt between the PC aceed advisory lin	overy (Reco oratory Co rix, 5. Re dytical met untitation lin QL and the nits. S2 =P	ov.) is the per- ntrol Sample porting Quan- hod. 6. Me nits adjusted MDL. B = A 'ost digestion	rcent (%) c (LCS) res atitation Li thod numb for any re- analyte deta spike (PE	of analyte sults are imits bers quired ected in DS1	

Page#: 1 Report Date: 12/16/02

-- •

A naly S ys						2209	Montopolis I N. Padre Isla) 385-5886	nd Dr., C		risti, TX	
Client: Environmental Tech Group Attn: Ken Dutton			Project ID Sample N	: TNM 97-0 ame: MW 14	94 EO 2016			(·	#/Lab ID# Matrix:		6
REPORT OF ANALYSIS-cont.							QUALITY	ASSURA	NCE DA	<u>FA</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
Benzo[a]anthracene	< 0.05	μg/L	0.05	<0.05	12/12/02	8270c		9	85.4	101.1	80.8
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		15.3	80.6	104.9	74.9
Benzo[b]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		25	87	108.2	73.4
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		16.4	74.8	88.6	71.1
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		6	76.6	102.2	71.9
Chrysene	<0.05	µg/L	0.05	<0.05	12/12/02	8270c	J	10.2	84.9	99.1	84.9
Dibenz[a,h]antbracene	<0.05	µg/L	0.05	<0.05	12/12/02	8270c		16.9	79.3	93.1	70.7
Fluoranthene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5
Fluorene	0.704	μg/L	0.05	<0.05	12/12/02	8270c		4.6	65.6	106	62
Indeno[1,2,3-cd]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		18.1	78.2	92.5	70.6
Naphthalene	14.1	μg/L	0.05	<0.05	12/12/02	8270c		2.8	61.5	104.2	52.5
Phenanthrene	0.641	μg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7
Pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1

Page#: 2 Report Date: 12/16/02

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136776
Attn:	Ken Dutton	Sample Name: MW 14	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	90.5	80-120	
Toluene-d8	8260b	98.6	88-110	
2-Fluorobiphenyl	8270c	43.3	43-116	
Nitrobenzene-d5	8270c	65.6	35-114	
Terphenyl-d14	8270c	53.1	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/16/02

Exceptions Report:

Report #/Lab ID#: 136776 Matrix: water	
Client: Environmental Tech Group	Attn: Ken Dutton
Project ID: TNM 97-04 EO 2016	
Sample Name: MW 14	

Sample Temperature/Condition: <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion:

A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Chromium/ICP	J	See J-flag discussion above.
Selenium/ICP	1	See J-flag discussion above.
Chrysene	J	See J-flag discussion above.
Notes:		

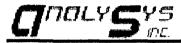
101L	YC	YS
		IDE.

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Report#/Lab ID#	136777	Report Date:	12/16/02
Project ID: TNN	197-04 EO 20	016	
Sample Name: M	IW 15		
Sample Matrix:	water		
Date Received:	11/25/2002	Time: 08:00	
Date Sampled:	11/21/2002	Time: 13:57	

Client: Environmental Tech Group Attn: Ken Dutton Address: 2540 W. Marland Hobbs,

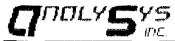
FAX: 505 397-4701


NM 88240

505 397-4882 Phone:

	QUALITY	ASSURANCE DATA	1
--	---------	----------------	---

REPORT OF ANALYSIS							QUALITY A			<u>ra</u> 1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴
A/BN Extraction-PAH					11/27/02	3520					
Metals DigHg					11/27/02	7470&245.1					
Metals DigHNO3					11/26/02	3015					
Arsenic/ICP	< 0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7		0.87	104.49	100.48	105.18
Barium/ICP	0.0972	mg/L	0.01	<0.01	12/11/02	6010 & 200.7		3.58	101.99	98.26	101.76
Cadmium/ICP	< 0.005	mg/L	0.005	<0.005	12/11/02	6010 & 200.7		1.08	105.39	102	106.91
Chromium/ICP	<0.01	mg/L	0.01	<0.01	12/11/02	6010 & 200.7	J	1.45	99.71	97.8	106.16
Lead/ICP	<0.02	mg/L	0.02	<0.02	12/11/02	6010 & 200.7		1.19	103.64	99.4	107.66
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	11/27/02	245.1&7470		4.44	88.89	92	102.67
Selenium/ICP	< 0.05	mg/L	0.05	<0.05	12/11/02	6010 & 200.7	J	0.95	104.18	100.16	105.65
Silver/GFAA	<0.002	mg/L	0.002	< 0.002	12/02/02	272.2&7761		0	100	85	118
Extractable organics-PAH					12/12/02	8270c					
Volatile organics-8260b/BTEX					11/27/02	82 60b					
Benzene	8130	μg/L	100	<100	12/03/02	8260b		0.8	70.6	92.2	79.4
Ethylbenzene	384	μg/L	100	<100	12/03/02	8260b		0.8	109.8	106.2	120.9
m,p-Xylenes	8.73	μg/L	1	<1	11/27/02	82 60b		0.8	106.4	-103.9	117.7
o-Xylene	<1	μg/L	1	<1	11/27/02	8260b	J	1.2	112.1	108.6	122.9
Toluene	1.62	μg/L	1	<1	11/27/02	8260b		1.2	91.4	104.7	101.5
Acenaphthene	0.179	μg/L	0.05	<0.05	12/12/02	8270c		1.2	63.3	104.4	66.2
Acenaphthylene	<0.05	μg/L	0.05	<0.05	12/12/02	827 0c		0.4	71.2	112.6	76.6
Anthracene	<0.05	μg/L	0.05	<0.05	12/12/02	82 70c		8.3	77.4	111.2	73.4
Initial control of the second seco											


Page#: 1 **Report Date: 12/16/02**

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client: Environmental Tech Group Attn: Ken Dutton				Project ID: TNM 97-04 EO 2016 Sample Name: MW 15					Report#/Lab ID#: 136777 Sample Matrix: water			
REPORT OF ANALYSIS-cont.							QUALITY	ASSURA	NCE DA	<u>FA</u> 1		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴	
Benzo[a]anthracene	0.089	μg/L	0.05	<0.05	12/12/02	8270c		9	85.4·	101.1	80.8	
Benzo[a]pyrene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		15.3	80.6	104.9	74.9	
Benzo[b]fluoranthene	0.105	μg/L	0.05	<0.05	12/12/02	8270c		25	87	108.2	73.4	
Benzo[g,h,i]perylene	<0.05	μg/L	0.05	<0.05	12/12/02	8270c		16.4	74.8	88.6	71.1	
Benzo[j,k]fluoranthene	0.15	μg/L	0.05	<0.05	12/12/02	8270c		6	76.6	102.2	71.9	
Chrysene	0.081	μg/L	0.05	<0.05	12/12/02	8270c		10.2	84.9	99.1	84.9	
Dibenz[a,h]anthracene	<0.05	µg/L	0.05	<0.05	12/12/02	8270c		16.9	79.3	93.1	70.7	
Fluoranthene	0.154	μg/L	0.05	<0.05	12/12/02	8270c		12.4	80.2	105.6	72.5	
Fluorene	0.662	μg/L	0.05	<0.05	12/12/02	8270c		4.6	65.6	106	62	
Indeno[1,2,3-cd]pyrene	< 0.05	μg/L	0.05	<0.05	12/12/02	8270c		18.1	78.2	92.5	70.6	
Naphthalene	21.3	μg/L	0.05	<0.05	12/12/02	8270c		2.8	61.5	104.2	52.5	
Phenanthrene	0.564	μg/L	0.05	<0.05	12/12/02	8270c		7.7	76.1	102.3	71.7	
Pyrene	0.145	μg/L	0.05	<0.05	12/12/02	8270c		8.4	68	87.8	68.1	

 Page#: 2
 Report Date: 12/16/02

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136777
Attn:	Ken Dutton	Sample Name: MW 15	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	81	80-120	
Toluene-d8	8260b	99.2	88-110	···
2-Fluorobiphenyl	8270c	43.4	43-116	
Nitrobenzene-d5	8270c	72.4	35-114	
Terphenyl-d14	8270c	54.4	33-141	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Page#: 3 Report Date: 12/16/02

Exceptions Report:

Report #/Lab ID#:136777Matrix: waterClient:Environmental Tech GroupAttn: Ken DuttonProject ID:TNM 97-04 EO 2016Sample Name:MW 15

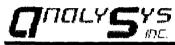
Sample Temperature/Condition: <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation:

Sample received in appropriate container(s) and appear to be appropriately preserved.

- □ Sample received in appropriate container(s). State of sample preservation unknown.
- □ Sample received in inappropriate container(s) and/or with unknown state of preservation.


J flag Discussion:

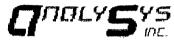
A J flag data qualifier indicates (as required under TCEQ-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Chromium/ICP	1	See J-flag discussion above.
Selenium/ICP	J	See J-flag discussion above.
o-Xylene	J	See J-flag discussion above.
Noto:		

Notes:

3512 Montopolis Drive, Austin, TX 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 385-5886 · FAX (512) 385-7411


Client: Environmental Tech Group		1				Report#/Lab ID	#: 136778	Repo	rt Date: 1	2/16/02		
Attn: Ken Dutton						Project ID: TN	Project ID: TNM 97-04 EO 2016					
Address: 2540 W. Marland						Sample Name:	EB 1					
Hobbs,	NM 88240					Sample Matrix:	water					
		1				Date Received:	11/25/2002	Time:	08:00			
Phone: 505 397-4882 FAX: 505 3	97-4701					Date Sampled:	11/21/2002	Time:	14:05			
REPORT OF ANALYSIS							QUALITY A	SSURA	NCE DA	<u>FA</u> 1		
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual. ⁷	Prec. ²	Recov. 3	CCV ⁴	LCS ⁴	
Volatile organics-8260b/BTEX					12/03/02	8260b						
Benzene	<1	μg/L	1	<1	12/03/02	8260b		1.9	72	94.2	78.7	
Ethylbenzene	<1	μg/L	1	<1	12/03/02	82 60b		2.1	113.1	110.3	111.5	
m.p-Xylenes	<1	μg/L	1	<1	12/03/02	82 60b		1.7	110.7	104.4	106.5	
o-Xylene	<1	μg/L	1	<1	12/03/02	82 60b		0.6	116.1	109.4	113.5	
Toluene	<1	μg/L	1	<1	12/03/02	82 60b		0.2	96.1	104.8	99.8	
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the					f analyte ults ar e mits eers							
express written consent of AnalySys, Inc. Re	spectfully Sub	mitted.	typical	ly denote USEP	A procedures.	Less than ("<") values re	flect nominal qua	ntitation li	mits adjusted	for any rec	juired	

Respectfully Submitted,

Richard Laster Richard Laster

USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in associated method blank(s), S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M = Matrix interference.

Page#: 1 **Report Date: 12/16/02**

 3512 Montopolis Drive, Austin, TX 78744 &

 2209 N. Padre Island Dr., Corpus Christi, TX 78408

 (512) 385-5886

 • FAX (512) 385-7411

Client:	Environmental Tech Group	Project ID: TNM 97-04 EO 2016	Report#/Lab ID#: 136778
Attn:	Ken Dutton	Sample Name: EB 1	Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limitse	Data Qualifiers
1,2-Dichloroethane-d4	8260b	80.9	80-120	
Toluene-d8	8260b	96.3	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

CHAIN-OT-CUSTOI	DY											• • •	. 7 (اللہ کر		7		ī	acyd	Y 5
Send Reports To:					Bill	to (if	diff	erent)	: CC	C	ی در	10	1	1						inc.
Company Name <u>E.T.G.T</u>	<u>د</u> ،				Com	pany	Nar	ne							42	221 Fr	reidric		ie, Suite 190, Aust	tin, TX 78744
Address 2540 W. Ma	rland	ł			Add	ress_												(:	512) 444-5896	
City Hobbs State	UM	Zip	8824B		City				State		Zip									
ATTN: Ken Dutton					ATT	'N:			<u></u>								Á	naly	ses Request	ed (1)
Phone 505-397-4882 Fax 5	505-5	397	-47¢]	Phor	1e			Fax						4	Pl	ease a	ttach e	xplanatory informat	ion as required
							<u>۱</u>							de la	12	Υ			////	
Rush Status (must be confirme Project Name/PO#: <u>TNM 9</u>	<u>7-</u> Ø	4	Samp	ler:	Ma	ul	Ca	npes					S.			¥,				
EO-2Ø. Client Sample No.	/ <u>6</u> Da	to	Time	No.	.		<u> </u>		Lab I.D. #	1	<i>k</i> i	+	08	X	Y					
Description/Identification						Soil	Wate	r Waste	(Lab only)		5)	G	X	Y_					Comm	nents
mw l	11/ 21	\$2	Ø855	5	$\langle \rangle$		X						ļ							
mw7			1218																	
mw 8			Ø945																	
mw 10			1022																	
mull			[1\$3																	
mw12			1142																	
mw 13			1255																	
mw 14			1327				\square													
mw15			1357		/					\mathbb{N}		<u>/</u>								
E.B1	V	/	14#5	2				/					• -						•	

(1)Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting limits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or ASI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.

	Sample Relinqu	ished By	_		Sample Receive	d By	
Name	Affiliation	Date	Time	Name	Affiliation	Date	Time
Marcelo Campo	E. T. G. I.	11/22/07	123φ				
			,				

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

· . . .

0 RB 11/5

ANNUAL MONITORING REPORT

EOTT PIPELINE COMPANY TNM 97-04 LEA COUNTY, NEW MEXICO

RECEIVED

MAY 0 9 2001

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

PREPARED FOR:

EOTT PIPELINE COMPANY 5805 EAST HIGHWAY 80 MIDLAND, TEXAS 79701

PREPARED BY:

ENVIRONMENTAL TECHNOLOGY GROUP, INC. 2540 WEST MARLAND HOBBS, NEW MEXICO 88240

April 2001

TABLE OF CONTENTS

INTRODUCTION

FIELD ACTIVITIES

GROUND WATER GRADIENT

LABORATORY RESULTS

SUMMARY

FIGURES Figure 1 – Site Location Map Figure 2 – Site Ground Water Gradient Map

TABLES Table 1 – Ground Water Elevation Table 2 – Ground Water Chemistry

APPENDICES Appendix A – Laboratory Reports

INTRODUCTION

Environmental Technology Group, Inc. (ETGI), on behalf of EOTT Energy Corp. (EOTT), prepared this annual report in compliance with the New Mexico Oil Conservation Division (OCD) letter of May 1998, requiring submittal of an annual report by April 1 of each year. The report presents the results of the quarterly ground water monitoring events only. For reference, the Site Location Map is provided as Figure 1.

Ground water monitoring was conducted during four quarterly events in calendar year 2000 to assess the levels and extent of dissolved phase and phase-separated petroleum hydrocarbon (PSH) constituents. The ground water monitoring events consisted of measuring static water levels in the monitoring wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Monitoring wells containing measurable levels of PSH were not sampled.

FIELD ACTIVITIES

The site monitoring wells were gauged and sampled on March 2, April 25, September 6, and November 28, 2000. During each sampling event, the monitoring wells, designated to be sampled, were purged of approximately 3 well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Ground water was allowed to recharge and samples were obtained using disposable Teflon samplers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a polystyrene tank and disposed of by Pate Trucking, Hobbs, New Mexico, utilizing a licensed disposal facility (OCD AO SWD-730).

GROUND WATER GRADIENT

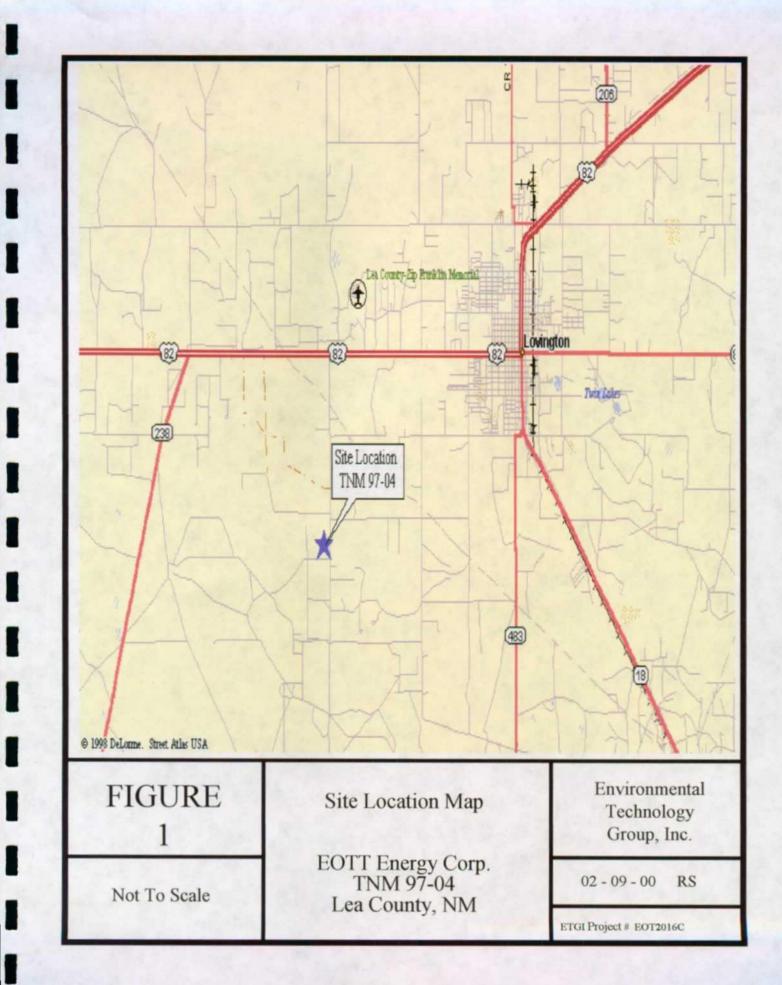
Locations of the monitoring wells and the inferred ground water gradient, as measured on November 28, 2000, are depicted on Figure 2, the Site Ground Water Gradient Map. The ground water elevation data are provided as Table 1. Ground water elevation contours, generated from the final quarterly event of calendar year 2000 water level measurements, indicated a general gradient of approximately 0.003 ft/ft to the southeast as measured between ground water monitoring wells MW-10 and MW-15. The depth to ground water, as measured from the top of the well casing, ranged between 52.80 to 55.87 feet for the shallow alluvial aquifer.

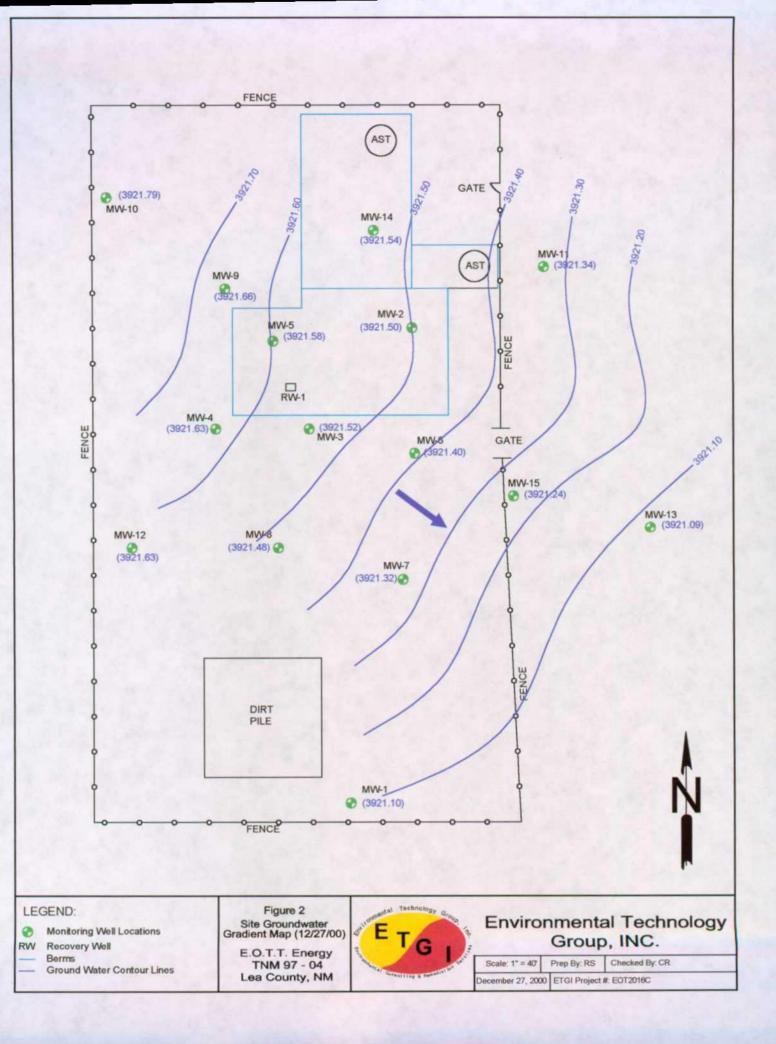
A measurable thickness of PSH was detected in monitoring wells MW-2, MW-3, MW-4, MW-5, MW-6, and MW-9 during the annual monitoring period. A maximum thickness of 3.13 feet in monitoring well MW-2, 3.12 feet in monitoring well MW-3, 2.77 feet in monitoring well MW-4, 3.55 feet in monitoring well MW-5, 3.06 feet in monitoring well MW-6, and 2.21 feet in monitoring well MW-9 was measured and is shown on Table 1.

LABORATORY RESULTS

Ground water samples collected during the sampling events were hand delivered to Environmental Laboratory of Texas, Midland, Texas for determination of benzene, toluene, ethyl benzene and total xylenes (BTEX) concentrations by EPA Method SW846-8021B. The ground water chemistry data are provided as Table 2 and the Laboratory Reports are provided as Appendix A.

Laboratory results for all of the site ground water samples, obtained during the calendar year 2000 monitoring period, indicated that Benzene concentrations were above regulatory standards for monitoring wells MW-14 and MW-15, while BTEX concentrations for these monitoring wells were below regulatory standards. The remaining on-site monitoring wells were either below method detection limits or below regulatory standards for concentrations of Benzene and BTEX in the ground water samples.


SUMMARY


This report presents the results of monitoring activities for the annual monitoring period of calendar year 2000. A measurable thickness of PSH was detected in monitoring wells MW-2, MW-3, MW-4, MW-5, MW-6, and MW-9 during the annual monitoring period. A maximum thickness of 3.13 feet in monitoring well MW-2, 3.12 feet in monitoring well MW-3, 2.77 feet in monitoring well MW-4, 3.55 feet in monitoring well MW-5, 3.06 feet in monitoring well MW-6, and 2.21 feet in monitoring well MW-9 was measured in the monitoring wells.

Ground water elevation contours, generated from the final quarterly event of calendar year 2000 water level measurements, indicated a general gradient of approximately 0.003 ft/ft to the southeast as measured between ground water monitoring wells MW-10 and MW-15.

Laboratory results for all of the site ground water samples, obtained during the calendar year 2000 monitoring period, indicated that Benzene concentrations were above regulatory standards for monitoring wells MW-14 and MW-15, while BTEX concentrations for these monitoring wells were below regulatory standards. The remaining on-site monitoring wells were either below method detection limits or below regulatory standards for concentrations of Benzene and BTEX in the ground water samples.

FIGURES

APPENDIX

1

Ι

TABLE 1

í.

]

) I

[

GROUND WATER ELEVATION ANNUAL REPORT

EOTT ENERGY CORPORATION TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO ETGI PROJECT # EOT2016C

		CASING				CORRECTED
WELL	DATE	WELL	DEPTH TO	DEPTH TO	PSH	GROUND WATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 1	03/02/00	3,974.18	-	53.01	0.00	3921.17
	04/25/00	3,974.18	-	53.02	0.00	3,921.16
	09/06/00	3,974.18	-	53.07	0.00	3,921.11
	11/28/00	3,974.18	-	53.08	0.00	3,921.10
MW - 2	03/02/00	3,974.62	52.49	55.38	2.89	3,921.70
	04/25/00	3,974.62	52.59	55.42	2.83	3,921.61
	09/05/00	3,974.62	52.58	55.71	3.13	3,921.57
	12/01/00	3,974.62	52.75	55.23	2.48	3,921.50
MW - 3	03/02/00	3,974.60	52.71	55.03	2.38	3,921.59
	04/25/00	3,974.60	52.61	55.09	2.48	3,921.62
	09/06/00	3,974.60	52.54	55.66	3.12	3,921.59
	11/28/00	3,974.60	52.64	55.57	2.93	3,921.52
MW - 4	03/02/00	3,974.53	52.58	54.30	1.72	3,921.69
	04/25/00	3,974.53	52.59	54.38	1.79	3,921.67
	09/06/00	3,974.53	52.44	55.11	2.67	3,921.69
	11/28/00	3,974.53	52.48	55.25	2.77	3,921.63
MW - 5	03/02/00	3,974.28	52.09	55.50	3.41	3,921.68
	04/25/00	3,974.28	52.04	55.59	3.55	3,921.71
	09/06/00	3,974.28	52.11	55.48	3.37	3,921.66
	11/28/00	3,974.28	52.21	55.46	3.25	3,921.58
<u>MW - 6</u>	03/02/00	3,974.72	53.10	53.84	0.74	3,921.51
	04/25/00	3,974.72	53.14	53.91	0.77	3,921.46
	09/06/00	3,974.72	52.81	55.87	3.06	3,921.45
	11/28/00	3,974.72	52.91	55.62	2.71	3,921.40
MW - 7	03/02/00	3,974.60		53.17	0.00	3,921.43
	04/25/00	3,974.60	-	53.23	0.00	3,921.37
	09/06/00	3,974.60	-	53.28	0.00	3,921.32
	11/28/00	3,974.60	-	53.28	0.00	3,921.32
MW - 8	03/02/00	3,974.48	-	52.89	0.00	3,921.59
	04/25/00	3,974.48	-	52.96	0.00	3,921.52
	09/06/00	3,974.48		53.00	0.00	3,921.48
	11/28/00	3,974.48	•	53.00	0.00	3,921.48

TABLE 1 (CON'T)

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUND WATER ELEVATION
MW - 9	03/02/00	3,975.06	53.07	54.26	1,19	3,921.81
	04/25/00	3,975.06	53.11	54.34	1.23	3,921.77
	09/06/00	3,975.06	53.04	55.02	2.21	3,921.92
	11/28/00	3,975.06	53.13	54.90	1.77	3,921.66
MW - 10	03/02/00	3,975.02	-	53.10	0.00	3,921.92
	04/25/00	3,975.02	-	53.18	0.00	3,921.84
	09/06/00	3,975.02	-	53.22	0.00	3,921.80
	11/28/00	3,975.02	-	53.23	0.00	3,921.79
MW - 11	03/02/00	3,975.30	-	53.84	0.00	3,921.46
	04/25/00	3,975.30	-	53.91	0.00	3,921.39
	09/06/00	3,975.30	-	53.95	0.00	3,921.35
1	11/28/00	3,975.30	-	53.96	0.00	3,921.34
MW - 12	03/02/00	3,974.55	-	52.80	0.00	3,921.75
	04/25/00	3,974.55	-	52.86	0.00	3,921.69
	09/06/00	3,974.55	-	52.90	0.00	3,921.65
	11/28/00	3,974.55	-	52.92	0.00	3,921.63
MW - 13	03/02/00	3,975.00	-	53.77	0.00	3,921.23
	04/25/00	3,975.00	-	53.85	0.00	3,921.15
	09/06/00	3,975.00	-	53.90	0.00	3,921.10
	11/28/00	3,975.00	-	53.91	0.00	3,921.09
MW - 14	03/02/00	3,976.15	-	54.49	0.00	3,921.66
	04/25/00	3,976.15	-	54.55	0.00	3,921.60
	09/06/00	3,976.15	-	54.61	0.00	3,921.54
	11/28/00	3,976.15	-	54.61	0.00	3,921.54
MW - 15	03/02/00	3,974.69	-	53.31	0.00	3,921.38
	04/25/00	3,974.69	-	53.39	0.00	3,921.30
	09/06/00	3,974.69	-	53.45	0.00	3,921.24
	11/28/00	3,974.69	-	53.45	0.00	3,921.24
			l			

TABLE 2

GROUND WATER CHEMISTRY ANNUAL REPORT

EOTT ENERGY CORPORATION TNM 97 - 04 LEA COUNTY, NEW MEXICO ETGI PROJECT # EOT 2016C

All concentrations are in mg/L

			SW	846-8021B,	5030]
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	M,P- XYLENES	O- XYLENES
MW - 1	03/02/00	<0.001	<0.001	<0.001	<0.001	<0.001
	04/05/00	<0.001	<0.001	<0.001	<0.001	<0.001
	09/06/00	< 0.001	<0.001	<0.001	<0.001	<0.001
	11/28/00	< 0.001	<0.001	<0.001	<0.001	<0.001
MW - 7	03/02/00	<0.001	<0.001	<0.001	<0.001	<0.001
	04/25/00	< 0.001	< 0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	<0.001	<0.001	<0.001	<0.001
	11/28/00	<0.001	<0.001	<0.001	<0.001	<0.001
MW - 8	03/02/00	<0.001	<0.001	<0.001	<0.001	<0.001
	04/25/00	<0.001	<0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	<0.001	<0.001	<0.001	<0.001
	11/28/00	<0.001	<0.001	<0.001	<0.001	<0.001
MW - 10	03/02/00	<0.001	< 0.001	<0.001	<0.001	<0.001
	04/25/00	<0.001	<0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	<0.001	<0.001	<0.001	<0.001
	11/28/00	<0.001	<0.001	<0.001	<0.001	<0.001
MW - 11	03/02/00	<0.001	<0.001	<0.001	<0.001	<0.001
	04/25/00	<0.001	<0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	<0.001	<0.001	<0.001	<0.001
	11/28/00	<0.001	<0.001	< 0.001	<0.001	<0.001
MW - 12	03/02/00	<0.001	<0.001	<0.001	<0.001	<0.001
	04/25/00	<0.001	<0.001	<0.001	<0.001	<0.001
	09/06/00	< 0.001	<0.001	<0.001	<0.001	<0.001
	11/28/00	<0.001	<0.001	<0.001	<0.001	<0.001
MW - 13	03/02/00	<0.001	<0.001	<0.001	<0.001	<0.001
	04/25/00	<0.001	<0.001	<0.001	<0.001	<0.001
	09/06/00	<0.001	<0.001	<0.001	<0.001	<0.001
	11/28/00	0.004	<0.001	<0.001	<0.001	<0.001
<u>MW - 14</u>	03/02/00	0.141	0.032	0.056	0.038	0.008
	04/25/00	0.368	0.045	0.106	0.061	0.017
	09/06/00	0.609	0.015	0.124	0.024	0.020
	11/28/00	0.691	0.022	0.107	0.038	0.034
MW - 15	03/02/00	<0.001	<0.001	<0.001	<0.001	<0.001
	04/25/00	0.649	<0.001	<0.001	0.018	0.009
	09/06/00	0.010	<0.001	0.003	0.024	<0.001
	11/28/00	1.380	<0.010	<0.010	0.031	<0.001
			<u> </u>		1	1

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 505-392-3760 FAX: 915-520-4310

SampleType: Water Sample Condition: Intact/ Iced/HCl Project #: EOT 1015C Project Name: TNM 97-04 Project Location: Lovington, N.M. Sampling Date: 03/02/00 Receiving Date: 03/03/00 Analysis Date: 03/07/00

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m,p-XYLENE mg/L	o-XYLENE mg/L
23980	MW-1	<0.001	<0.001	<0.001	<0.001	<0.001
23981	MW-7	<0.001	<0.001	<0.001	<0.001	<0.001
23982	MW-8	<0.001	<0.001	<0.001	<0.001	<0.001
23983	MW-10	<0.001	<0.001	<0.001	<0.001	<0.001
23984	MW-11	<0.001	<0.001	<0.001	<0.001	<0.001
23985	MW-12	< 0.001	<0.001	<0.001	<0.001	<0.001
23986	MW-13	<0.001	<0.001	<0.001	<0.001	<0.001
23987	MW-14	0.141	0.032	0.056	0.038	0.008
23988	MW-15	<0.001	<0.001	<0.001	<0.001	<0.001

% IA	97	94	92	93	91
% EA	100	96	94	96	94
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: SW 846-8021B,5030

alandk titel

Raland K. Tuttle

3-8-00 Date

·						-							5) 563-		CI							70				/SIS	REQ	UEST		
Project Manager Jess	e Trylor				1	Phone FAX #	"#:(` !: (9 i 7 a	- بح رسی	ン。) ś	66 9 Z	4	-91 376	66 0					A	NAL	YSI	S RE	QUE	ST						
Company Name & Address:	FTGIT OBNV 116US		11 /	101													e											T	Γ	T
Project#:	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	/		<u>v</u> i		Projec	et Nar	ne:									Hg S	fg Se												}
EOT 10	15C					7	tN_{i}	ja1	9	7	-0	4	/	,			Cr Pb Hg Se	Cr Pb Hg							ł			ł		
Project Location:						Samp	ler Sl	hat	ure:	2	1	· Æ			1		U PO											ł		
Louintiro	Nons					47	M	a	$\mathcal{T}_{\mathcal{L}}$	a	scm	s					Ba	Ba C		s										
	/	SS			MAT	TRIX]]			ZATI IOD	VE	SAM	PLING	MANE VIZINE		TCLP Meldis Ag As Ba	Total Metals Ag As Ba Cd		Seml Volatites										
		# CONTAINERS	Volume/Amount			1	1		1		1		100	1	A	418.1	etats /	als A	TCLP Volatiles	N E	ł									
	FIELD CODE	/TNC	me/A	TER			SLUDGE				щ	ER	μ	ω	X 8(ν.	PM	I Mel	Р 2				ļ							
(LAB USE ONLY		# C(Volu	WATER	soll	AIR	OTHER	HCL	HNO3	Щ Ц Ц	NONE	OTHER	DATE	TIME	BTE	TPH	IC	Tola	1 C	TCLP	TDS	RCI						Į	Į	
23980 MW/	9	2	V	'X			1	χ	;[`	1	:	1	3.2	124	410	'									1			1	\uparrow	T
239801 MW 7	· · · · · · · · · · · · · · · · · · ·			ÍT						\prod			1	1115	11										T		$\left \right $		\uparrow	T
23982 Mon 8			IT	\prod						11	T			114'	11				[+	1
23983 NW 10				T				11		1)	Τ		1	1725	-11										1			1	1	T
23984 201 11	••••••••••••••••••••••••••••••••••••••			11						11				1305	-11												\square	-	1	T
23985 MW 12	2		1	T			Ì				1			1205	7		1	1			}					1			T	1
23986 MW1			IT				\top				-			1345				1	1						1	T		1	T	1
23987 MW 1	4		T	11						11				1415	忊		1	1	1	1				1			\square		T	1
23988 MW 1		J	J	V				J	1		\overline{I}		V	1320		1	1	Ť					Ì			1		-	T	+
	*****				1			_ _					¥	1		T	\top	1	T	T			Ì			T			\uparrow	+
			1					- -		1			1	1		Ì	İ	Ť	1	1					1	1	$\left \right $		T	1
Reliquished by:	Date:		Time		<u> </u>		<u>:</u>	R	lecciv	red b			<u>.</u>	REM	ARK	s	N		 	l	2		~ {	- 1		テ		Ź		
Simon Cases	3-3-01	5		15	4	5	-	<	7	N	197	nu	ny		/]].	Å	12		0	52	A 1		,	A	6	2	41	20	2
Relinquished by:	Date:		Time	::				R	leten	red b				7																

Feb 16 01 12:27p

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310 FAX: 505-392-3760

SampleType: Water Sample Condition: Intact/ Iced/HCI/48 deg. C Project #: EOT 1015C Project Name: TNM 97-014/Townsend Project Location: Lovington.N.M. Sampling Date: 04/25/00 Receiving Date: 04/28/00 Analysis Date: 05/05/00

ELT#	FIELD CODE	BENZENE mg/l	TOLUENE	ETHYLBENZENE mg/L	m.p-XYLENE mg/L	o-XYLENE mg/L
25457	MW 1	<0.001	<0.001	<0.001	<0.001	<0.001
25458	MW 7	<0.001	<0.001	<0.001	<0.001	<0.001
25459	MW 8	<0.001	<0.001	<0.001	<0.001	<0.001
25460	MW 10	<0.001	<0.001	<0.001	<0.001	<0.001
25461	MW 11	<0.001	<0.001	<0.001	<0.001	<0.001
25462	MW 12	<0.001	<0.001	<0.001	<0.001	<0.001
25463	MW 13	<0.001	<0.001	<0.001	<0.001	<0.001
25464	MW 14	0.368	0.045	0.106	0.061	0.017
25465	MW 15	0.649	<0.001	<0.001	0.018	0.009

% IA	106	100	103	113	102
% EA	101	96	98	105	97
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: SW 846-8021B.5030

Kale de juit

Raland K. Tuttle

-9-00 Data

12600 West I-20 East • Odessa, Texas 79765 • (915) 563-1800 • Fav (915) 569-1710

Environmental Lab of 7	l'exas,	Inc	. 12	500 We (91:	est I- 5) 5 6	20 E 3-18	Cast () 100 I)dei 7AX	s == , (91	Texas 7 .5) 563-	9763 1713	a	u af	4C-P	-ຕາ	STO	-					NAL' 13		REC)UE:	5 T .	
roject Manager: JESSE TATLOR				Phone : FAX #:	7 4 6	75 205) <i>-</i>	66. 72	<i>\$1</i>	916 376	6		<u>.</u>			٨	NAL					<u> </u>	<u> </u>				1.20 C
Company Name & Address FTGT					-														T	Ţ	Τ				T	1	T
P.O. BOX 4845	m	DER	ND				700	1						່ທີ	e Se											1	
roject #:				Project									Í	H 4	문												
EOT 1015C					<u>V n</u>	19		00	<u>+</u>]]	FOLINS	ENIJ	-		Cr Pb Hg	Cr Pb Hg Se												
Project Location:				ುಷಿಗಾರಣ		naran	an							Ba Cd	Ba Cd	11							1				
LOVINGTON NM					im							6		1 8 4	8	*	88	ł		ł			1				
	su	Ę	N1.4	TREX			ESERV METT			SANI	PLING	R		AD As	A 0 A	88	/olati			Ì					-		
LAB # FIELD CODE	I CONTAINERS	Volume/Amount	WATER SOIL	AIR	OTHER	HCL	HNO3 ICE	NONE	OTHER	DATE 00	PLINC	GTEX BUZU	TPH 418.1	TCLP Metals	Tolal Metals Ag As	TCLP Volatiles	TCLP Semi Volalijes	TOS	lCI								
25457 MW/	2	V	X		1	X	X	1	1		1255	X	1		1			Ì	1	Ì	Ì	1		İ	Ť	-	
254 58 MW 7					İ	ÎTT	Î		1		1126	11	1					Í	Í	Ī	1	Ī	1				1
254 59 MW B					1	İlİ			1		1052	T	Ì				Ī	Ī		Ì	Ť	İ	Ì		-	-1-	-
254 60 MW 10				11		111		Τ	T		1325		1				1	Ì	İ	Ì		1	Ī		T	1	+
254 61 mw 11					1	TT		T	Ì		1340	T	1					Ī	Ì		╈	1	Ī		Ť		1
25462 MW 12		T		11	Ì			1	T		1310	ŤŤ						Ì	1		Í	1		Ì	1	+-	+
25463 MW13		1		T I	Ť		Î	Ì	1		17414	Ħ	İ					Ť	1	1	\uparrow					╈	+-
28464 mull4				11	1	111		Ì	1		1442	Π	1					-	1						1	-	-
25465 MW 15	-],	IL			Ī	tti					1400	11	1	İ				-†	-+	+	\uparrow	\uparrow	1		+	十	+
Cop 1	13	11	141		1	ţ	18	\uparrow	\uparrow	6		13	\uparrow					1	1	1	+	\uparrow			+	+	╈
	J	11		ti	1.	1	K	1		12	1	ŧ\$						-†	-†	\uparrow	+-	1			-+-	+-	+
Siman Casas 4/28	100		07	30		Rec	N/	Ż	"	·¥	REMA N	A I	11		s au	Г.	<u>, '</u>	·!	K.		ov	77	on			- I .	
Reliageithed by: Date: 4-23.02		Time	" /5	10			ctvied b		m	unez	1	* 4	18°C	•													
Relinquished by: Date:		Time		<u> </u>			erved b				In	1. /-									10						

p.2

Feb 16 01 12:27p

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: BETH ALDRICH P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310 FAX: 505-397-4701

SampleType: Water Sample Condition: Intact/ Iced/ HCI/ 0 deg. C Project #: EOT 2016C Project Name: TNM 97-04 (Townsend) Project Location: Lovington, N.M. Sampling Date: 09/06/00 Receiving Date: 09/08/00 Analysis Date: 09/13/00

FIELD CODE/ SAMPLE DATE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE	m.p-XYLENE mg/L	o-XYLENE mg/L	TOTAL BTEX mg/L
MW 1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW 7	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW 8	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW 10	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW 11	<0.001	<0.001	<0.001	<0.001	<0. 0 01	<0.001
MW 12	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW 13	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW 14	0.609	0.015	0.124	0.024	0.020	0.792
MW 15	0.010	<0,001	0.003	0.024	<0.001	0.037
EB 1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	MW 1 MW 7 MW 8 MW 10 MW 11 MW 12 MW 13 MW 14 MW 15	FIELD CODE/ SAMPLE DATE mg/L MW 1 <0.001	FIELD CODE/ SAMPLE DATE mg/L mg/L MW 1 <0.001	FIELD CODE/ SAMPLE DATE mg/L mg/L mg/L MW 1 <0.001	FIELD CODE/ SAMPLE DATE mg/L mg/L mg/L mg/L mg/L MW 1 <0.001	FIELD CODE/ SAMPLE DATE mg/L 0 0001 0001 00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 0001 0001 0001 0001 00001 00011 00001

% IA	98	99	101	105	97
% EA	96	100	98	102	97
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: SW 846-8021B,5030

- Cu. ex Jund

Raland K. Tuttle

<u>9-15-00</u> Date

Environmental Lab of T	exas,	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST $Coc \pm 223$																					
Project Maurett			Pho	be #; (§	05	39	7-4	1882	-					VEL	c 10 0	QUE			T				
BETH ALDRICH			FAN	H: 6	05,	397	- 4	701					~~~~		S RE	-000-	31						
Company Nixone & Address: ETGT																T					\square	T	
2548 W MARL	ANO	Ho	BRS	NI	n 8	824	ø				ŝ	Se										-	
Project #:	the state of the s		Pro	ert has	ne :						문	HOS											
EUT 2016 C			7	NI	n 9	7-0	4 ()	TOWN	SEND)		Cr Pb Hg	Pb Hg	Ì										
Project Location:			San	ipler Sie	mature	:					1 1	5 8								1			1
LOUINGTON, NM			1	in	on	Cas	20																
	3		MATRE		PR.	ESERVA	TIVE	7	PLING		*V 6V	Total Metals Ag As	Volaliles			•							
	CONTAINERS	Volume/Amount			11			andel	.1	TPH 418.1	Metals .	A sle	Semi Vol	{									ĺ
LAB# FIELD CODE	V1.11	ne/Ai ER		BOE EI				2004		×	PMe	I Mel									{		
(LAE USE)		Volume/A	SOIL	SLUDGE	EE,	HN03 ICE	NONF OTHER	UATE -	TIME	Hd I	tclp	Tota	TOLP	105	RCI								1
30532 MW 1	1	VY			XI	X	1		0825			-i-		<u></u>	1			1	11		1	\square	F
30533 MW 7	Ĩ				1T	11	- <u> </u> -		0833	TT		i				Ī		1	T			\square	T
3:534 MW 8			1		11	Ī	- <u>í</u> -	1-1-	\$840	TTT		Ī	1	1	i	11	Ì	1	Ī				F
30535 MW 10		itit	11	1		Τİİ	Ì		6900			Ì	Ī	Í	1	T	Ť	T	T	T	T		T
3(536 MW 11							1	+	075%	11,-			1	1	†		1	Ť		T	-		1
30537 MW 12			1	Tİ	T	Th	i	TT	1850	111	1		1	Ť	1	1		1.	11	\square			T
30538 MW 13			<u>i</u>	<u>;</u>					1898			\square	1	T	Ť	$\uparrow \uparrow$			1			\square	t
3153' MW 14		<u>;</u> ;;;;	i i	$\frac{1}{1}$			<u></u>		0 746	11-1-		$ \uparrow $	1	+	Ť					\Box	1		T
3.540 MW 15			$\dot{1}$	$\overline{1}$		-iti		11	\$815	113	Ì			+-	\uparrow	$\uparrow \uparrow$	\rightarrow	1	1		+		t
BESULEB 1		i L i L		ÌÌ		-iti			0915	111				Ť	Ť			1	1	H	+		T
				$\frac{1}{1}$	·		$-\frac{1}{1}$	×				†	1	+	\uparrow	11			1	\square		1	t
Reling Richerd by: Date:	· · · · · · · · · · · · · · · · · · ·	Times:	······	<u></u>	Rec	chyed by:	_ر ز	111	REM	RKS		 ~				f				t-		ـــــ	-h
Simon Casas 9-8-43	s	16	øy		1	la	p	alle	-	FΑY		لع	uc	TS	?	He	3B	B <i>5</i>	\mathcal{O}	FF	10(;	
Relingalished by: Limon Casas 7-8-49 Relingalished by: All Mulle 9-2-00		Times:			Rec	third by:			REMU) fr J.	NAN		es	uc.	rs!	2	<u>r</u> o	\overline{n}	-	à	~			
Alu Muhille 9-2-00	υ	1	740		1	lut	:.d/	t fires	4-				سو						\mathcal{O}		•		
Relinquished by: Date:		Time:			Rec	eived by	Labor:	itory:	71	NVOI	LE	(E	07	1 T								
		}	•						1														

1

f

ס • 4

Feb 16 01 12:19p

Feb 16 01 12:18p

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: BETH ALDRICH P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310 FAX: 505-397-4701

Sample Type: Water Sample Condition: Intact/ Iced/ HCI/ 0.5 deg. C Project #: EOT 2016C Project Name: TNM 97-04 / Townsend Project Location: Lovington, N.M. Sampling Date: 11/28/00 Receiving Date: 12/02/00 Analysis Date: 12/03/00

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBI:NZENE mg/L	m,p-XYLENE mg/L	o-XYLENE mg/L	
34588	MW 1	<0.001	<0.001	<0.001	<0.001	<0.001	
34589	MW 7	<0.001	<0.001	<0.001	<0.001	<0.001 0.001	
34590	MW 8	<0.001	<0.001	<0.001	< 0.001	<0.001	
34591	MW 10	< 0.001	<0.001	<0.001	<0.001	<0.001	
34592	MW 11	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
34593	MW 12	< 0.001	<0.001	<0.001	<0.001	< 0.001	
34594	MW 13	0.004	<0.001	<0.001	< 0.001	< 0.001	
34595	MW 14	0.691	0.022	0.107	0.038	0.034	
34596	MW 15	1.38	< 0.010	<0.010	0.031	<0.010	
34597	EB 1	<0.001	<0.001	< 0.001	<0.001	<0.001	

%1A	95	102	100	103	98
%EA	96	102	100	104	98
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

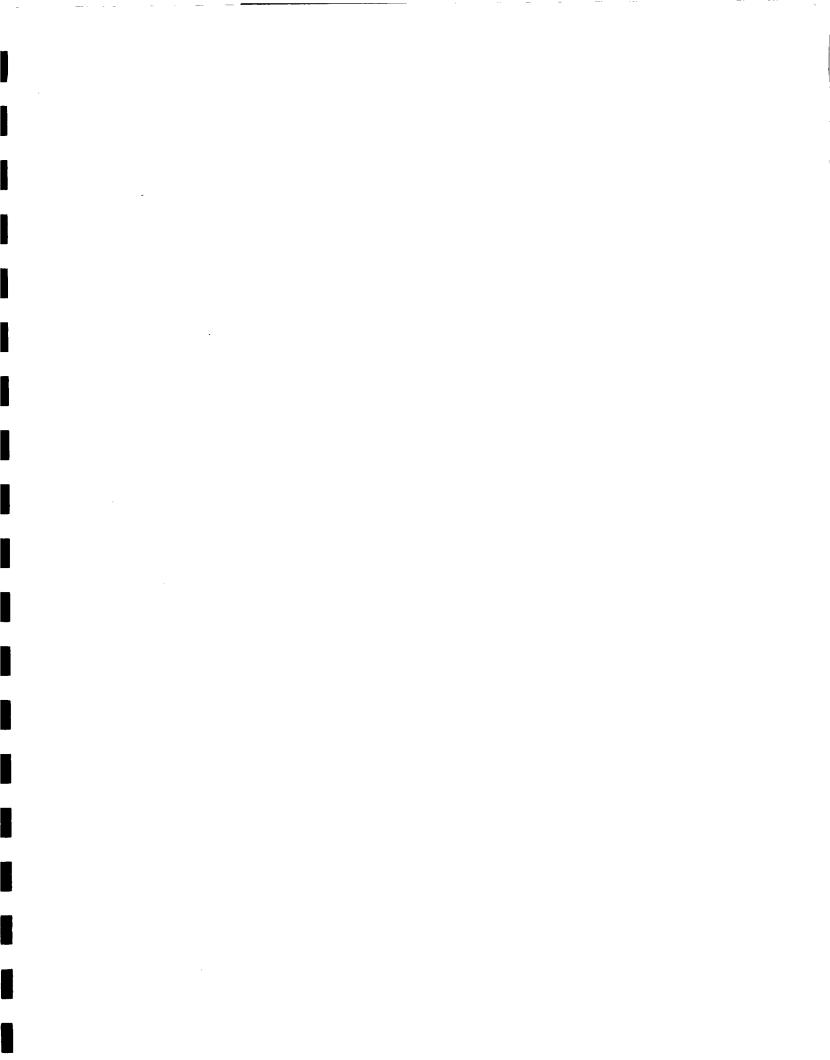
METHODS: EPA SW 846-8021B ,5030

Ple, CK Juick Raland K

<u>/2-4.00</u> Date

Ironmentel 7	echno) ogy Group	4600 We							GΥ	CC		Proj		iniy Y CORP.	,	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST														_	
	The C. Banstierine treat	4600 Wes Midland, TX Tel (915) 57 Fax (915) 57	797 2-11	33 39		2540 West Marland 5805 East Business 20 Hobbs, NM 85242 Midland, TX 79702 Tel (505) 397-4882 Tel (915) 687-3400 Fax (505) 397-4701 Fax (915) 582-2781							ANALYSIS REQUEST (Circle or Specify Method No.)																		
ject Manage	BETH ALDRIC	м															T			470		T	T	Ī			$\left[\right]$	T			
ject Name:	TNIM97-44/	CIUNISE	. <u>N</u> .	2	Project Number: ECT 2416 Sampler Signature:												6010B/7				ļ										
ect Location	CVINGTON N	m			Sa	mple	r Sigi		1	in	 L =	~ (a	1 15 A					(A)	Se Hg											
					М	ATF	RIX				RV/ THC	ATIC DD	N	SA	MPLING				Mexico only)	Total Metals Ag As Be Cd Cr Pb Se Hg 6010B/7470			ļ			25.3					
LA8#	FIELD CODE		21		T	Ţ	Π		Τ	Τ	T			144	1	-	505	OVDRO	PAH 8270C (8100 New	As De (PC SV I	alites		3270C		Cations/Anions 375.4/325.					
b Use (Inly)			# CONTAINERS				щ			d				pro l		0218/50	TPH 418.1/TX 1005	SM GR	70C (81	elais Ag	TCLP MERINA	TCI D Sami Volaliles	Volatiles 8260B	Semi Volaliles 8270C	1.0	Anions					
			Š -		SOIL	AIR	SLUDGE			NaHSO.	Ш	NONE		DATE	TIME	BTEX 80218/5030	TPH 41	TPH BOISM GROUDRO	PAH 82	Total M		S d L L	Volatile	Semi Vc	TDS 160.1	Cations					
HISES	mas 1		2 h	/ X				_	ł		Ŵ			11-28	\$745	- X	1													\Box	
45.89	MW 7														\$755																
<u>4590</u>	MW 8								$\left \right $						\$ 897	7										1		⊢_∔			
	TMIN 9 S.C.				+-	\vdash		-	扞	\pm	4		_		#873	= .	1							\downarrow	-	_					
<u>4591</u>	mw 10						┞─┧	_	\parallel	-	1				\$815	- -	4-	ļ					_		+	4_		i	4	┡╌┥	
4592	MW 11						┝╼┤	_	_	+	H				<i>\$837</i>		<u> </u>	 				-		+	+	+	╄	├			
<u>345 93.</u>	MW 12				+		$\left \right $			╇		$\left \right $			Ø97-	-11-				-+				+-	+		4	├-		┼╌┤	
<u>34594</u>	MWJ 13		$\left \right $	╢	+		$\left - \right $	-+-		+-	╬	$\left \right $		+	Ø 845	-11-	+			-+	-+-			╇	+-	+	$\downarrow \downarrow$	┝╌╄╸	<u>-</u>	$\left - \right $	-
<u> 34595</u>	MW14		$\left \right $	┈╫╴	+-	<u> </u>	$\left - \right $				╢	$\left - \right $	<u>.</u>		\$995	-11		. 				╇		+	+	╋	+	┝╍┼		$\left - \right $	-
<u>345 96</u> 345 97	IMW15		$\frac{1}{1}$		+		$\left - \right $	-	$\left\{ \right\}$	+-	+	$\left\{ - \right\}$			0854		+			-+	+	+		╋	╋	╋	┝┤	\vdash +		$\left - \right $	
<u>, n n n n</u>	EBI	<u></u>	놰	4	+-	┼╼	$\left - \right $	-	<u>v </u>	+-	4	$\left - \right $		V	0921		4_			-	╾┼╴	╋	-	╇	+-		$\left \right $	┝╌┼╴		$\left \right $	┝
			+-	+	+	+	╞─┤	\rightarrow	+	┼╴	+-	+			+		╉╾	+	┝╌┨	-+	-+-	╋		╉	+-	╀	+	$\left \right $		\vdash	\vdash
linguished	by: Date:	Time:			Re	scei	ved	by:		Da	ate:			Time		R	EM/	ARK	S:				_ <u></u> _				ليل	ll-a e		أسسا	-
Imer las	12-1-XJ	1600	r	(- 	\widetilde{m}	u Éb	ο¥)	<u>~``</u>	tic	5	12		nlik		9	-^A) 1		esu	27	r 7	ہر ج	10 <u>0</u> 107	883 51	> ~	シア	ر مرسر م	ce S°C		
linquished	by: Date:	Time:			Re	acei	ved	at La	a b b	¥.		Dat	e:	្តាំព		#								_ *		R	ec	O_{i}	s C	,	

- - - - --


_

~ ..

....

· -----

_

ANNUAL MONITORING REPORT

EOTT PIPELINE COMPANY TNM 97-04 (TOWNSEND) LEA COUNTY, NEW MEXICO

2

PREPARED FOR:

EOTT PIPELINE COMPANY P. O. BOX MIDLAND, TEXAS 79704

Ms. Lennah Frost

PREPARED BY:

ENVIRONMENTAL TECHNOLOGY GROUP, INC. 4600 WEST WALL STREET MIDLAND, TEXAS 79704

March 2000

TABLE OF CONTENTS

INTRODUCTION

FIELD ACTIVITIES

GROUND WATER GRADIENT

LABORATORY RESULTS

SUMMARY

FIGURES Figure 1 – Site Location Map Figure 2 – Inferred Ground Water Gradient Map

TABLES Table 1 – Ground Water Elevation Table 2 – Ground Water Chemistry

APPENDICES Appendix A – Laboratory Reports

INTRODUCTION

Environmental Technology Group, Inc. (ETGI), on behalf of EOTT Energy Corp. (EOTT), prepared this annual report in compliance with the New Mexico Oil Conservation Division (OCD) letter of May 1998, requiring submittal of an annual report by April 1 of each year. The report presents the results of the quarterly ground water monitoring events only. For reference, a site location map is provided as Figure 1.

Ground water r wonitoring was conducted during four quarterly events in 1999 to assess the levels and extent of dissolved phase and free phase petroleum hydrocarbon constituents. The groundwater monitoring events consisted of measuring static water levels in the monitoring wells, checking for the presence of phase-separated hydrocarbons (PSH), and purging and sampling of each well exhibiting sufficient recharge. Monitoring wells containing measurable levels of PSH were not sampled.

FIELD ACTIVITIES

The site monitoring wells were gauged and sampled on February 16, May 18, September 14, and December 18, 1999. During each sampling event, the monitoring wells, designated to be sampled, were purged of approximately 3 well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon samplers. Monitoring wells with a measurable presence of PSH were not sampled. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a polystyrene tank and disposed of by Pate Trucking, Hobbs, New Mexico, utilizing a licensed disposal facility (OCD AO SWD-730).

GROUNDWATER GRADIENT

Locations of the monitoring wells and the inferred ground water gradient, as measured on December 15, 1999, are depicted on Figure 2. The ground water elevation data are provided as Table 1. Groundwater elevation contours, generated from the final quarterly event of 1999 water level measurements, indicated a general gradient of approximately 0.003 ft/ft to the southeast. The depth to groundwater, as measured from the top of the well casing, ranged between 49.82 to 56.28 feet for the shallow alluvial aquifer.

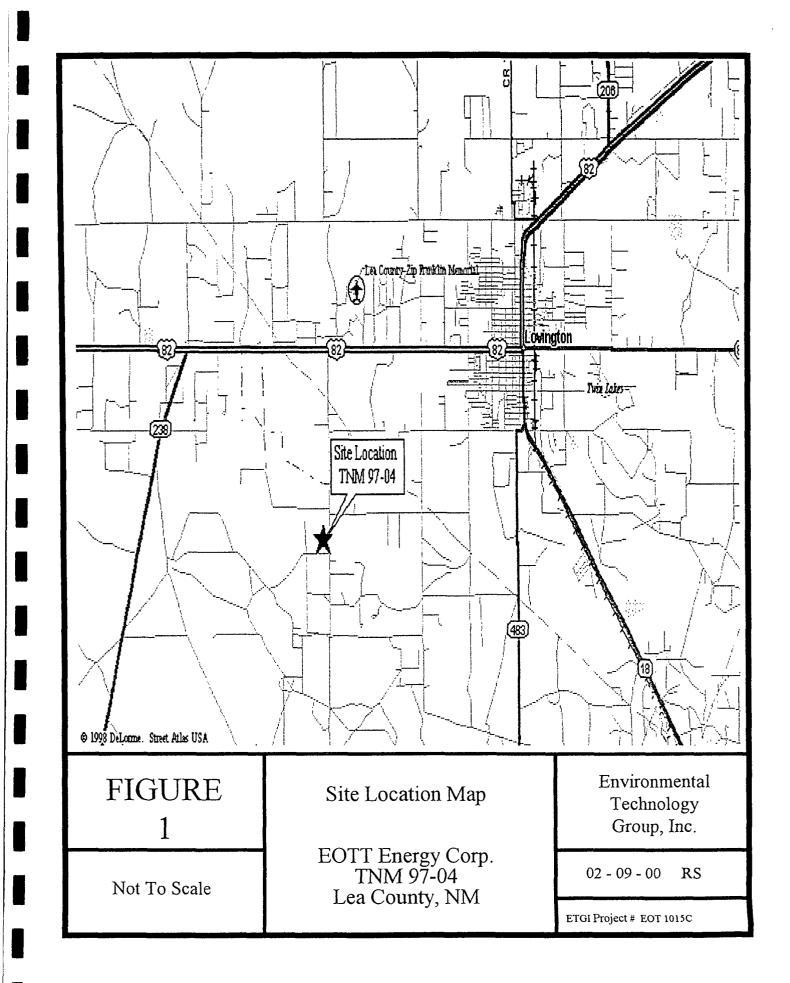
A measurable thickness of PSH was detected in MW-2, MW-3, MW-4, MW-5, MW-6, MW-9, and RW-1 during the quarterly sampling events. A maximum thickness of 3.70 in MW-2, 3.53 in MW-3, 3.07 in MW-4, 0.93 in MW-5, 3.62 in MW-6, 2.20 in MW-9 and 2.98 in RW-1 was measured and is shown on Table 1.

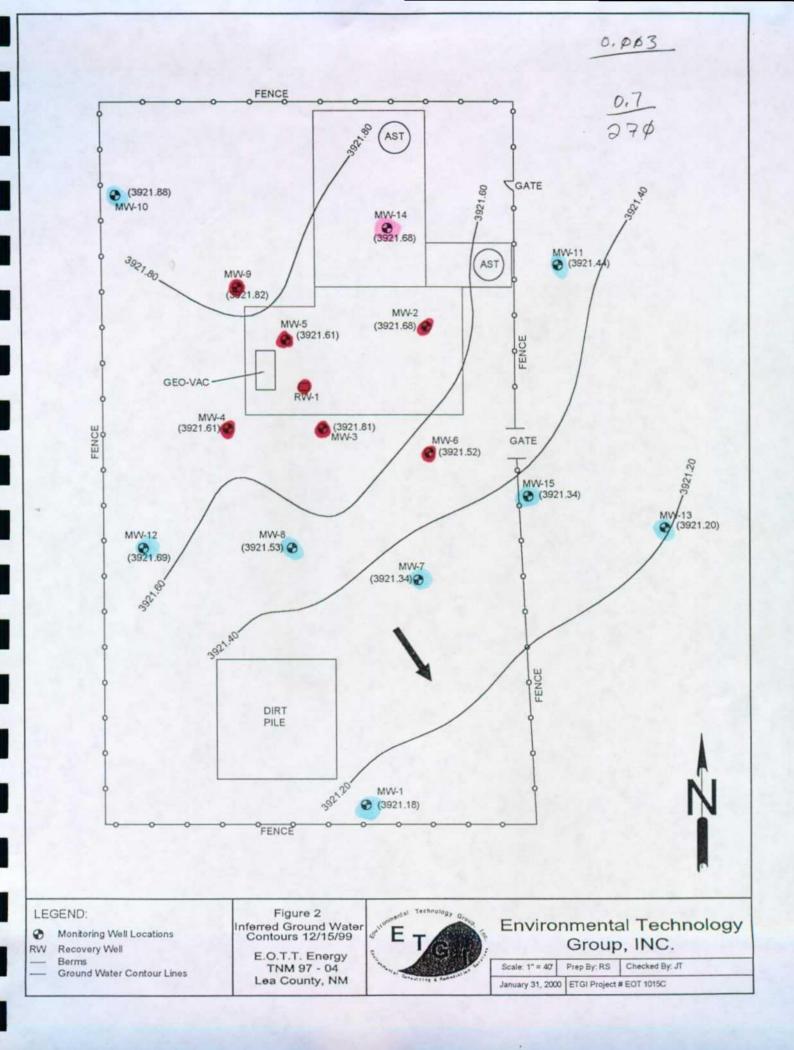
LABORATORY RESULTS

Ground water samples obtained during the first and second sampling events were mailed to Xenco Laboratories in San Antonio, Texas. Ground water samples collected during the third and fourth event were hand delivered to Environmental Laboratory of Texas, Midland, Texas for determination of benzene, toluene, ethyl benzene and total xylenes (BTEX) concentrations by EPA Method SW846-8020 and 8021B. The ground water chemistry data are provided as Table 2 and the Laboratory Reports are provided as Appendix A.

Laboratory res its for all of the site ground water samples, obtained during the 1999 annual period, indicated that BTEX concentrations were below detection limits for MW-1 MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, and MW-15. Dissolved phase benzene concentrations were detected in the sample collected from monitoring well MW-14 varied from 0.050 ml/L to 0.108 ml/L.

SUMMARY


This report presents the results of monitoring activities for the annual monitoring period of calendar year 1999. A measurable thickness of PSH was detected in MW-2, MW-3, MW-4, MW-5, MW-6, MW-9, and RW-1 during the quarterly sampling events.


Laboratory results for all of the site ground water samples, obtained during the 1999 annual period, indicated that BTEX concentrations were below detection limits for MW-1 MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, and MW-15. Dissolved phase benzene concentrations were detected in the sample collected from monitoring well MW-14 varied from 0.050 ml/L to 0.108 ml/L.

FIGURES

t

)

TABLES

)

·

TABLE 1 GROUNDWATER ELEVATION TABLE TNM 97-04 (TOWNSEND) LEA COUNTY, NM ETGI PROJECT# EOT1015C

---- --- ---

t

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	02/16/99	3,974.18	-	52.94	0.00	3,921.24
MW-1	05/17/99	3,974.18	-	52.94	0.00	3,921.24
MW-1	09/13/99	3,974.18	-	52.98	0.00	3,921.20
MW-1	12/15/99	3,974.18	-	53.00	0.00	3,921.18
MW-2	02/1(/99	3,974.62	50.55	53.76	3.21	3,923.59
MW-2	05/17/99	3,974.62	52.82	54.38	1.56	3,921.57
MW-2	09/13/99	3,974.62	52.47	56.31	3.84	3,921.57
MW-2	12/15/99	3,974.62	52.39	56.09	3.70	3,921.68
MW-3	02/16/99	3,974.60	52.30	55.83	3.53	3,921.77
MW-3	05/17/99	3,974.60	-	0.00	0.00	3,974.60
MW-3	09/13/99	3,974.60	52.83	52.83	0.00	3,921.77
MW-3	12/15/99	3,974.60	52.31	55.51	3.20	3.921.81
MW-4	02/16/99	3,974.53	52.77	52.80	0.03	3.921.76
MW-4	05/17/99	3,974.53	-	0.00	0.00	3,974.53
MW-4	09/13/99	3,974.53	52.92	52.92	0.00	3,921.61
MW-4	12/15/99	3,974.53	52.46	55.53	3.07	3,921.61
MW-5	02/16/99	3,974.28	-	0.00	0.00	3,974.28
MW-5	05/17/99	3,974.28	-	0.00	0.00	3,974.28
MW-5	09/13/99	3,974.28	52.47	53.40	0.93	3,921.67
MW-5	12/15/99	3,974.28	52.54	53.43	0.89	3,921.61
MW-6	02/16/99	3,974.72	53.06	53.77	0.71	3,921.55
MW-6	05/17/99	3,974.72	52.66	53.71	0.48	3,921.42
MW-6	09/13/99	3,974.72	52.85	56.02	3.17	3,921.39
MW-6	12/15/99	3,974.72	52.66	56.28	3.62	3,921.52
MW-7	02/16/99	3,974.60	-	53.12	0.00	3,921.48
MW-7	05/17/99	3,974.60	-	53.20	0.00	3,921.40
MW-7	09/13/99	3,974.60	-	53.25	0.00	3,921.35
MW-7	12/15/99	3,974.60	_	53.26	0.00	3,921.34
MW-8	02/16/99	3,974.48		52.86	0.00	3,921.62
MW-8	05/17/99	3,974.48	-	52.94	0.00	3,921.54
MW-8	09/13/99	3,974.48		52.97	0.00	3,921.51
MW-8	12/15/99	3,974.48	-	52.95	0.00	3,921.53
MW-9	02/16/99	3,975.06	52.96	54.06	1.10	3,921.94
MW-9	05/17/99	3,975.06	-	0.00	0.00	3,975.06
MW-9	09/13/99	3,975.06	52.91	55.00	2.09	3,921.84
MW-9	12/15/99	3,975.06	52.91	55.11	2.20	3,921.82
MW-10	02/16/99	3,975.02	-	53.04	0.00	3,921.98
MW-10	05/17/99	3,975.02	-	53.02	0.00	3,922.00
MW-10	09/13/99	3,975.02	-	53.08	0.00	3,921.94
MW-10	12/15/99	3,975.02	-	53.14	0.00	3,921.88
MW-11	02/16/99	3,975.30		53.80	0.00	3,921.50
MW-11	05/17/99	3,975.30	-	53.83	0.00	3,921.47
MW-11	09/13/99	3,975.30		53.83	0.00	3,921.47
MW-11	12/15/99	3,975.30		53.86	0.00	3,921.44
MW-12	02/16/99	3,974.55	-	52.75	0.00	3,921.80
MW-12	05/17/99	3,974.55	-	52.84	0.00	3,921.71

TABLE 1 GROUNDWATER ELEVATION TABLE TNM 97-04 (TOWNSEND) LEA COUNTY, NM ETGI PROJECT# EOT1015C

ì

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-12	09/13/99	3,974.55	-	52.82	0.00	3,921.73
MW-12	12/15/99	3,974.55	-	52.86	0.00	3,921.69
MW-13	09/13/99	3,975.00	-	53.80	0.00	3,921.20
MW-13	12/15/99	3,975.00	-	53.80	0.00	3,921.20
MW-14	09/12 99	3,976.15	-	54.49	0.00	3,921.66
MW-14	12/15/99	3,976.15	-	54.50	0.00	3,921.65
MW-15	09/13/99	3,974.69	-	53.34	0.00	3,921.35
MW-15	12/15/99	3,974.69	-	53.35	0.00	3,921.34
RW-1	02/16/99	3,970.79	-	0.00	0.00	3,970.79
RW-1	05/17/99	3,970.79	-	0.00	0.00	3,970.79
RW-1	09/13/99	3,970.79	48.50	49.82	1.32	3,922.09
RW-1	12/15/99	3,970.79	48.31	51.29	2.98	3,922.03

NM = NOT MEASURED

TABLE 2 GROUND WATER CHEMISTRY TNM 97-04, TOWNSEND LEA COUNTY, NEW MEXICO ETGI PROJECT # EOT1015C

SAMPLE	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYLBENZENE (mg/L)	mp-XYLENE (mg/L)	o-XYLENE (mg/L)
MW-1	02/16/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-1	05/18/99	<0.001	<0.001	<0.001	< 0.002	<0.001
MW-1	09/14/99	<0.001	<0.001	< 0.001	<0.001	< 0.001
MW-1	12/18/99	<0.001	<0.001	<0.001	< 0.001	<0.001
MW-7	02/16/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-7	05/18/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-7	09/14/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-7	12/18/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-8	02/16/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-8	05/18/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-8	09/14/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-8	12/18/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-10	02/16/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-10	05/18/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-10	09/14/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-10	12/18/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-11	02/16/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-11	05/18/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-11	09/14/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-11	12/18/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-12	02/16/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-12	05/18/99	<0.001	<0.001	<0.001	<0.002	<0.001
MW-12	09/14/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-12	12/18/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-13	09/14/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-13	12/18/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-14	09/14/99	0.019	0.016	0.003	0.008	0.004
MW-14	12/18/99	0.040	0.018	0.009	0.034	0.007
MW-15	09/14/99	<0.001	<0.001	<0.001	<0.001	<0.001
MW-15	12/18/99	<0.001	<0.001	<0.001	<0.001	<0.001

NOTE: Monitor Wells 13, 14, & 15 were installed 3Q99.

Methods: EPA SW 846-8020, 5030

APPENDIX A

:

)

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dallas - San Antonio - Latin America

February 19, 1999

Project Manager: S. Grover\T. Nix KEI Consultants, Inc. 5309 Wurzbach Rd. Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: -90667 Project Name: TNMPL-Townsend Project ID: 710016-1-0 Project Address: Lovington, New Mexico

Dear S. Grover\T. Nix:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number -90667.r All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. -90667r will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO operates under the A2LA guidelines. Our Quality System meets ISO/IEC Guide 25 requirements which is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

Eddie L. Clemons, II QA/QC Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

ANALYTICAL CHAIN C CUSTODY REPORT CHRONOLOGY OF SAMPLES

KEI Consultants, Inc.

Project Name: TNMPL-Townsend

XENCO COC#: -90667

Project ID: 710016-1-0 Project Manager: S. Grover\T. Nix Project Location: Lovington, New Mexico

Date Received in Lab: Feb 18, 1999 09:30 by JO xenco contact : Carlos Castro/Karen Olson

							· Dat	e and Time	
Field	ID Lab. ID	Method	Method	Units	Turn	Sample	Addition		a el establistados
		Name	ID		Around	Collected	Requested	Extraction	Analysis
1 MW-1	90667-001	BTEX	SW-846	ppm	10 days	Feb 16, 1999 12:00		Feb 18, 1999 by HL	Feb 19, 1999 05:14 by HL
2 MW-7	90667-002	BTEX	SW-846	ppm	10 days	Feb 16, 1999 12:30		Feb 18, 1999 by HL	Feb 19, 1999 05:32 by HL
3 MW-8	90667-003	BTEX	SW-846	ppm	10 days	Feb 16, 1999 13:00		Feb 18, 1999 by HL	Feb 19, 1999 05:50 by HL
4 MW-10	90667-004	BTEX	SW-846	ppm	10 days	Feb 16, 1999 13:30		Feb 19, 1999 by HL	Feb 19, 1999 12:22 by HL
5 MW-11	90667-005	втех	SW-846	ppm	10 days	Feb 16, 1999 14:00		Feb 19, 1999 by HL	Feb 19, 1999 12:39 by HL
6 MW-12	90667-006	BTEX	SW-846	ppm	10 days	Feb 16, 1999 14:30		Feb 19, 1999 by HL	Feb 19, 1999 12:57 by HL

KEI Consultants, Inc.

Project Name: TNMPL-Townsend

Project ID: 710016-1-0 Project Manager: S. Grover\T. Nix

Project Location: Lovington, New Mexico

Date Received in Lab : Feb 18, 1999 09:30 Date Report Faxed: Feb 19, 1999

ate Report Faxed. Feb 19, 1999

XENCO contact : Carlos Castro/Karen Olson

	Lab ID: Field ID: Depth:	90667 00 MW-1	/1	90667 MW-		1	667 003 MW-8		90667 00 MW-10		90667 00 MW-11	15	90667 00 MW-12	
Analysis Requested	Matrix: Sampled:	Liquid 02/16/99 12	2:00	Liqu 02/16/99		1	_iquid 5/99 13:0)0	Liquid 02/16/99 13	:30	Liquid 02/16/99 14	:00	Liquid 02/16/99 14	
BTEX	Analyzed:	02/19/99	R.L.	02/19/99	R.L.	02/19/99		R.L.	02/19/99	R.L.	02/19/99	R.L.	02/19/99	R.L
EPA 8021B	Units:	ppm	11.6.	ppm	11.4.	ppm		N.L.	ppm	N.L.	ррт	N.C.	ppm	1 1.14
Benzene		< 0.001	(0.001)	< 0.0	01 (0.001)	<	0.001 (0.001)	< 0.001	(0.001)	< 0.001	(0.001)	< 0.001	(0.001
Toluene		< 0.001	(0.001)	< 0.0	01 (0.001)	<	0.001 (0.001)	< 0.001	(0.001)	< 0.001	(0.001)	< 0.001	(0.001
Ethylbenzene		< 0.001	(0.001)	< 0.0	01 (0.001)	<	0.001 (0.001)	< 0.001	(0.001)	< 0.001	(0.001)	< 0.001	(0.001
m,p-Xylene		< 0.002	(0.002)	, < 0.0	02 (0.002)	<	0.002 (0.002)	< 0.002	(0.002)	< 0.002	(0.002)	< 0.002	? (0.002
o-Xylene		< 0.001	(0.001)) < 0.0	01 (0.001)	,<	0.001 (0.001)	< 0.001	(0.001)	, < 0.001	(0.001)	< 0.001	(0.001
Total BTEX		1	N.D.		N.D.			N.D.		N.D.		N.D.	.]	N.C

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of KEI Consultants, inc.. The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddie L. Clemons, I

QA/QC Manager

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch: 19A25A83

SW- 846 5030/8021B BTEX

Date Validated: Feb 19, 1999 11:30 Date Analyzed: Feb 18, 1999 22:27

Analyst: HL

Matrix: Liquid

			BLA	NK SPIKE /	BLANK SI		ICATE AND R	ECOVERY			
	[A]	[B]	[C]	[D]	[E]	Blank	[F]	[G]	[H]	[1]	[J]
	Blank	Blank Spike	Blank Spike	Blank		Limit	QC	QC	QC	Blank Spike	1
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	
Benzene	< 0.0010	0.0977	0.1030	0.1000	0.0010	20.0	5.3	97.7	103.0	65-135	, ,
Toluene	< 0.0010	0.0984	0.1030	0.1000	0.0010	20.0	4.6	98.4	103.0	65-135	; ;
Ethylbenzene	< 0.0010	0.0982	0.1030	0.1000	0.0010	20.0	4.8	98.2	103.0	65-135	j
m,p-Xylene	< 0.0020	0.2050	0.2130	0.2000	0.0020	20.0	3.8	102.5	106.5	65-135	
o-Xylene	< 0.0010	0.1030	0.1060	0.1000	0.0010	20.0	2.9	102.9	105.9	65-135	

Spike Relative Difference [F] = 200*(B-C)/(B+C) Blank Spike Recovery [G] = 100*(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100*(C-A)/[D] N D = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Eddie L. Clemons, II QA/QC Manager

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch: 19A25A84

antenderseken an eksen under albeiten geschen Hulter beiten sich sich wich wich eine der Berlahreitenster beit

SW- 846 5030/8021B BTEX

 Date Validated:
 Feb 19, 1999
 13:15

 Date Analyzed:
 Feb 19, 1999
 11:28

Analyst: HL

Matrix: Liquid

. .

			BLA	NK SPIKE /	BLANK SI	PIKE DUPL	ICATE AND R	ECOVERY	· · · · · · · · · · · · · · · · · · ·	۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	
	[A]	[B]	[C]	[D]	[E]	Blank	[F]	[G]	[H]	(1)	[J]
	Blank	Blank Spike	Blank Spike	Blank		Limlt	QC	QC	QC	Blank Spike	
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	
Benzene	< 0.0010	0.0907	0.0975	0.1000	0.0010	20.0	7.2	90.7	97.5	65-135	5
Toluene	< 0.0010	0.0939	0.1020	0.1000	0.0010	20.0	8.3	93.9	102.0	65-135	5
Ethylbenzene	< 0.0010	0.0941	0.1020	0.1000	0.0010	20.0	8.1	94.1	102.0	65-135	5
m,p-Xylene	< 0.0020	0.1950	0.2110	0.2000	0.0020	20.0	7.9	97.5	105.5	65-135	5
o-Xylene	< 0.0010	0.0962	0.1050	0.1000	0.0010	20.0	8.7	96.2	105.0	65-135	5

Spike Relative Difference [F] = 200*(B-C)/(B+C) Blank Spike Recovery [G] = 100*(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Eddie L. Clemons, II

Eddie L. Clemons, I QA/QC Manager

Houston - Dallas - San Antonio

Company /// ET Company // ET Compan	1		ab (ddi		
TMMPL - Townscr.N. TJ. (#016-1-6) unless otherwise ogreed in withing. But offen roported in 52 Working Days reside Manager (M) Project Diractor (PD) Remarks Remarks S. G.Rov (2), T. NDX	ing Days		T		T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $;;	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Гюл		From:	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	1			
Multi hove o P.O. Bill fo: mm H H + 6 + 2 O O<	20	Ä		Ä	
Much Nove α P.O. Bill to: P.O. No P.O.		Rcv	į	Rcv by:	
awate No. P.O.No.	, l				
packad DLs (RR II (RR II DW QAPP See Lab PM Call Proj. PM)	M				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ति				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	d e	1:	Date	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ă		۵	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	i	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	······ 1 ···· • • • • • •		╈		1
$\frac{13 \omega 4}{13 \omega 4}$ $\frac{13 \omega 4}{13 \omega 4}$ $\frac{13 \omega 4}{13 \omega 4}$ $\frac{13 \omega 4}{13 \omega 4}$ $\frac{13 \omega 4}{13 \omega 4}$ $\frac{13 \omega 4}{13 \omega 4}$ $\frac{13 \omega 4}{10 \omega 4}$			+		+
$\frac{160 - 170}{1400} = \frac{1330}{1400} = \frac{1400}$			╋		+
<u>иш-1</u> иш-12 иш-12 изф иш-12 изф иш-12 изф иш-12 изф иш-12 изф иш-12 изф иш-12 изф иш-12 изф иш-12 изф иш-12 и изф иш-12 и изф иш-12 и изф иш-12 и изф иш-12 и изф иш-12 и и и и и и и и и и и и и и и и и и и			+-		╉
<u>мш-12</u> V 1354 V V V V V V V V V V V V V V V V V V V			_		4
			\perp		
		<u> </u>			
		ļ			
					T
	E C	i -	+-		+
Relinguished by (Initials and Signature) Relinguished to (Initials and Signature) Date & Time (Total Containers per COC:			+-		╉
		L	1		1
17 FEB 99/1530 Rush TATs Fax Due: Final Fax Due:	ix Due:				
A Via V.P.S. Final Report Data Package Due Dalu:		•			

•

SIZE: 402 (4), 802 (8), 3202 (32), 40ml VOA (V), 11. (1), 50ml (.5), Tediar Bag (B), Wipo (W), Other ______ TYPE Glass Amb (GA), Glass Clear (GC), Plastic (P), Other (O) ______

11381 Meadowglen Suite L Houston, Texas 77082-2647 (281) 589-0692 Fax: (281) 589-0695 Houston - Dallas - San Antonio - Latin America

June 1, 1999

Project Manager: S. Grover/T. Nix KEI Consultants, Ltd. 5309 Wurzbach Rd. Suite 100 San Antonio, TX 78238

Reference: XENCO Report No.: -92014 Project Name: EOTT Project ID: 910039-1-0 Project Address: Lovington, NM

Dear S. Grover/T. Nix:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number -92014.r All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. -92014r will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO operates under the A2LA guidelines. Our Quality System meets ISO/IEC Guide 25 requirements which is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

Eddie L. Clemons, II QA/QC Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY!

ANALYTICAL CHAIN CUSTODY REPORT

KEI Consultants, Ltd.

Project Name: EOTT

XENCO COC#: -92014 Date Received in Lab: May 19, 1999 10:45 by JO

Project ID: 910039-1-0 Project Manager: S. Grover/T. Nix Project Location: Lovington, NM

XENCO CONTACT : Carlos Castro/Debbie Simmons

						同時的時間	Date	and Time	
Fleid ID	Lab. ID	Method (Name	Method ;	Units	Turn ; Around			Extraction	Y. T. Analysis T. S. S.
1 MW-1	92014-001	BTEX	SW-846	ppm		May 18, 1999 13:30	1	May 19, 1999 by HAL	May 19, 1999 15:19 by HA
2		PAHs	SW846-8270	mg/L	7 days	May 18, 1999 13:30		May 20, 1999 by MAM	May 21, 1999 11:07 by LC
3		Tot Metal MS	EPA	mg/L	7 days	May 18, 1999 13:30		May 21, 1999 by JOS	May 24, 1999 13:38 by MAB
4 MW-7	92014-002	втех	SW-846	ppm	7 days	May 18, 1999 12:50		May 19, 1999 by HAL	May 19, 1999 16:36 by HA
5		РАНь	SW846-8270	mg/L	7 days	May 18, 1999 12:50	•	May 20, 1999 by MAM	May 21, 1999 11:57 by LC
6		Tot Metal MS	ЕРА	mg/L	7 days	May 18, 1999 12:50		May 21, 1999 by JOS	May 24, 1999 13:58 by MAB
7 MW-8	92014-003	BTEX	SW-846	ppm	7 days	May 18, 1999 12:30		May 19, 1999 by HAL	May 19, 1999 16:54 by HA
8		PAHs	SW846-8270	mg/L	7 days	May 18, 1999 12:30		May 20, 1999 by MAM	May 21, 1999 12:48 by LC
9		Tot Metal MS	EPA	mg/L	7 days	May 18, 1999 12:30		May 21, 1999 by JOS	May 24, 1999 14:04 by MAB
0 MW-10	92014-004	BTEX	SW-846	քքո	7 days	May 18, 1999 14:25		May 19, 1999 by HAL	May 19, 1999 17:12 by HA
		PAHs	SW846-8270	nıg/L	7 days	May 18, 1999 14:25		May 20, 1999 by MAM	May 21, 1999 13:38 by LC
12		Tot Metal MS	EPA	mg/L	7 days	May 18, 1999 14:25		May 21, 1999 by JOS	May 24, 1999 14:11 by MAB
I3 MW-11	92014-005	втех	SW-846	ppm	7 days	May 18, 1999 13:40		May 19, 1999 by HAL	May 19, 1999 17:29 by HA
		PAHs	SW846-8270	mg/L	7 days	May 18, 1999 13:40		May 20, 1999 by MAM	May 21, 1999 17:19 by LC
		Tot Metal MS	EPA	mg/L	7 days	May 18, 1999 13:40		May 21, 1999 by JOS	May 24, 1999 14:37 by MAB
16 MW-12	92014-005	BTEX	SW-846	ppm	7 days	May 18, 1999 15:10		May 19, 1999 by HAL	May 19, 1999 17:47 by HA
17		PAHs	SW846-8270	mg/L	7 days	May 18, 1999 15:10		May 20, 1999 by MAM	May 21, 1999 18:09 by LC
18	l	Tot Metal MS	ЕРА	mg/L	7 days	May 18, 1999 15:10		May 21, 1999 by JOS	May 24, 1999 14:43 by MAB

KEI Consultants, Ltd.

Project Name: EOTT

Project ID: 910039-1-0 Project Manager: S. Grover/T. Nix

Project Location: Lovington, NM

Date Received in Lab: May 19, 1999 10:45 Date Report Faxed: Jun 1, 1999

XENCO contact : Carlos Castro/Debbie Simmons

1	Lab ID: Field ID: Deatly	92014 001 MW-1	T	92014 003 MW-7	2	92014 00 MW-8		92014 00 MW-10		92014 005 MW-11	5	92014 00 MW-12	- 1
Analysis Requested	Dopth: Matrix: Samplod:	Liquid 05/18/99 13:30		Liquid 05/18/99 12:	:50	Liquid 05/18/99 12		Liquid 05/18/99 14	1:25	Liquid 05/18/99 13:	:40	Liquid 05/18/99 15	5:10
Total Metals by ICP-MS		t: 05/24/99 R.L.	05/24	4/99	R.L.	05/24/99	R.L.	05/24/99	R.L.	05/24/99	R.L.	05/24/99	R.L.
Tot Metal MS	Units:	mg/L	" mg/L	-	IX.1	mg/L	IX, 64,	mg/L	N.L.	mg/L	11.44	mg/L	
Aluminum	·	< 0.500 (0.500	ō]	< 0.500			0.500)	·)	(0.500)) < 0.500	(0.500)	0.575	(0.500)
Arsenic		< 0.050 (0.050	0)	< 0.050			0 (0.050)		(0.050)) < 0.050	(0.050)	· · · · · · · · · · · · · · · · · · ·	0.050)
Barium		0.11 (0.10	0)		(0.10)	· .	0.10)	0.13	(0.10)	0.11	(0.10)	0.12	2 (0.10)
Beryllium		< 0.025 (0.02	5)	< 0.025	(0.025)) < 0.025	5 (0.025)) < 0.025	6 (0.025)) < 0.025	(0.025)) < 0.025	5 (0.025)
Boron		< 0.50 (0.5)	0)	< 0.50	(0.50)) < 0.50	0 (0.50)) < 0.50) (0.50)) < 0.50	(0.50)) < 0.50) (0.50)
Cadmium		< 0.010 (0.01	0)	< 0.010	(0.010)) < 0.010	0 (0.010)) < 0.010	0.010)) < 0.010	(0.010)) < 0.010	0.010)
Calcium		225 (0.	.5)	106	• •		5 (0.5	394	(0.5)	249	(0.5)	214	4 (0.5)
Chromium		< 0.025 (0.02	.5)	< 0.025	(0.025) < 0.025	5 (0.025) < 0.025	5 (0.025)	i) < 0.025	(0.025) < 0.025	5 (0.025)
Cobalt		< 0.05 (0.0	,5)	< 0.05	(0.05)) < 0.05	5 (0.05) < 0.05	5 (0.05)	6) < 0.05	(0.05)	6) < 0.05	5 (0.05)
Copper		< 0.15 (0.1	5)	< 0.15	(0.15)	< 0.15	5 (0.15	6) < 0.15	5 (0.15)	j) < 0.15	(0.15)	i) < 0.15	5 (0.15)
Iron		< 0.50 (0.5	,0)	< 0.50	(0.50)) < 0.50	0 (0.50)) < 0.50	0.50) < 0.50	(0.50))) < 0.50	0.50)
Lead		< 0.025 (0.02	.5)	< 0.025	(0.025	> < 0.025	5 (0.025) < 0.025	5 (0.025)	o) < 0.025	(0.025	·) < 0.025	5 (0.025)
Magnesium		19.0 (2.	1	16.2			•	1	3 (2.5)	i) 17.6	(2.5)	b) 20.5	5 (2.5)
Manganese		< 0.050 (0.05	1	< 0.050	(0.050) < 0.050	0 (0.050	n) 0.145	5 (0.050))) < 0.050	(0.050) 0.053	3 (0.050)
Mercury		< 0.002 (0.00	,2)	< 0.002	(0.002) < 0.00?	2 (0.002	() < 0.002	2 (0.002)	() < 0.002	(0.002) < 0.002	2 (0.002)
Molybdenum		< 0.500 (0.50		< 0.500			0 (0.500	n) < 0.500	0.500))) < 0.500	(0.500) < 0.500	0.500)
Nickel		< 0.050 (0.05	10)	< 0.050	(0.050) < 0.05(0 (0.050)) < 0.050	0.050)) < 0.050	(0.050	() < 0.050	0 (0.050)
Selenium		< 0.050 (0.05	· · ·	< 0.050	(0.050) < 0.050	0 (0.050		0.050	1	(0.050		0 (0.050)
Silicon		22.85 (1.0		21.65			0 (1.00		0 (1.00	21.10) (1.00	<i>i</i>) 23.45	5 (1.00)
Silver		< 0.025 (0.02		< 0.025			5 (0.025	1	5 (0.025	1	•		5 (0.025)
Strontium		< 0.050 (0.05		< 0.050		1	0 (0.050		0 (0.050	0) < 0.050	(0.050	v) < 0.050	0 (0.050)
Tin		< 0.50 (0.5	· 1	< 0.50	· ·	·)		-	0 (0.50	0) < 0.50) (0.50		•
Vanadium		0.053 (0.02			0.025	-	7 (0.025		4 (0.025		7 (0.025	j) 0.052	2 (0.025
Zinc		< 0.15 (0.1	,5)	< 0.15	5 (0.15	5) < 0.1	5 (0.15	5) 0.36	6 (0.15	5) < 0.15	5 (0.15	5) 0.17	7 (0.15

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of KEI Consultants, Ltd.. The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eddle L. Clemons. QA/QC Manager

Houston - Dallas - San Antonio

ANAL: 3 SUMMART -52014

Project ID: 910039-1-0 Project Manager: S. Grover/T. Ni Project Location: Lovington, NM	x				Consultar ct Name: EO	•			•	ort Fa	xed: Jun 1,	1999	0:45 ebbie Simmon	s
Analysis Requested	Lab ID: Field ID: Dopth: Matrix: Samplod:	92014 001 MW-1 Liquid 05/18/99 13:			2014 002 MW-7 Liquid 8/99 12:50	M	14 003 W-8 quid 99 12:3		92014 00 MW-10 Liquid 05/18/99 14		92014 (MW-1 Liquic 05/18/99 1	1	92014 00 MW-12 Liquid 05/18/99 1	
						·····								
BTEX	Analyzod:		R.L.	05/19/99	N.L. (05/19/99		R.L.	05/19/99	R.L.	05/19/99	R.L.	05/19/99	R.L.
EPA 8021B	Units:			ppm		ppm			ppm		ppm		ppm	
Benzene		< 0.001	•		< 0.001 (0.001)			(0.001)	1	• •	ł	1 (0.001)		•
Toluene		< 0.001	• •		< 0.001 (0.001)			(0.001)	1	(0.001)		0.001		(0.001)
Elhylbenzene		< 0.001			< 0.001 (0.001)			(0.001)	1	(0.001)	1	0.001		1 (0.001)
m,p-Xylene		< 0.002	• •		< 0.002 (0.002)			(0.002)		(0.002)		02 (0.002)		2 (0.002)
o-Xylene		< 0.001			< 0.001 (0.001)	< (0.001	(0.001)	< 0.001	(0.001)	< 0.00	0.001	1	1 (0.001)
Total BTEX			N.D.		N.D.	<u> </u>		N.D.		N.D.		N.D		N.D.
PAHs by GC-MS EPA 8270		05/21/99 mg/L	R.L.	05/21/99 mg/L	R.L.	05/21/99 mg/L		R.L.	05/21/99 mg/L	R.L.	05/21/99 mg/L	R.L.	05/21/99 mg/L	. R.L.
Acenaphthene	I	< 0.002	• •	· 1	< 0.002 (0.002)	1		(0.002)	1	(0.002)	< 0.00	0.002	·)	2 (0.002)
Acenaphthylene		< 0.002			< 0.002 (0.002)	•		(0.002)		(0.002)	1	0.002		2 (0.002)
Anthracene		< 0.002			< 0.002 (0.002)			(0.002)	1	(0.002)	4	0.002	·	2 (0.002)
Benz(a)anthracene		< 0.002	• •	1	< 0.002 (0.002)	1		(0.002)		2 (0.002))2 (0.002	1	2 (0.002)
Benzo(a)pyrene		< 0.002	•	· .	< 0.002 (0.002)			(0.002)		2 (0.002)	1	02 (0.002	·	2 (0.002)
Benzo(b)fluoranthene		< 0.002		· .	< 0.002 (0.002)			(0.002)		2 (0.002		02 (0.002	I	2 (0.002)
Benzo(g.h.i)perylene		< 0.002		·	< 0.002 (0.002)	1		(0.002)	·	2 (0.002		0.002	1	2 (0.002)
Benzo(k)fluoranthene		< 0.002			< 0.002 (0.002)			(0.002	1	2 (0.002		02 (0.002		2 (0.002)
Chrysene		< 0.002		1	< 0.002 (0.002)			(0.002	· ·	2 (0.002		02 (0.002	· 1	2 (0.002)
Dibenz(a,h)anthracene		< 0.002	· · · · · · · · · · · · · · · · · · ·		< 0.002 (0.002)			(0.002	- 1	2 (0.002	-	02 (0.002		2 (0.002)
Fluoranthene		< 0.002	-	-	< 0.002 (0.002)	1		(0.002	1	2 (0.002	1	02 (0.002	· .	2 (0.002)
Fluorene		< 0.002	(0.002	7	< 0.002 (0.002)	//	0.002	(0.002	< 0.00	2 (0.002	/ < 0.0	02 (0.002	() < 0.00)2 (0.002)

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of KEI Consultants, Ltd.. The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Eudle L. Clemons, II QAVQC Manager

Houston - Dallas - San Antonia

KEI Consultants, Ltd.

Project Name: EOTT

Project ID: 910039-1-0 Project Manager: S. Grover/T. Nix

Project Location: Lovington, NM

Date Received in Lab : May 19, 1999 10:45 Date Report Faxed: Jun 1, 1999

XENCO contact : Carlos Castro/Debbie Simmons

	Lab ID: Field ID:	92014 001 MW-1	92014 002 MW-7		92014 00 MW-8	3	92014 004 MW-10		92014 00 MW-11)5	92014 00 MW-12	
Analysis Requested	Dopth: Matrix: Samplod:	Liquid 05/18/99 13:30	Liquid 05/18/99 12:50		Liquid 05/18/99 12	:30	Liquid 05/18/99 14:2	5	Liquid 05/18/99 1	3:40	Llquid 05/18/99 15	:10
PAHs by GC-MS EPA 8270	Analyzod: Units:	05/21/99 R.L. mg/L	05/21/99 R mg/L	\.L.	05/21/99 mg/L	R.L.	05/21/99 mg/L	к.с. ј	05/21/99 mg/L	R.L.	05/21/99 mg/L	R.L.
Indeno(1,2,3-cd)pyrene		< 0.002 (0.002)	< 0.002 (0.	002)	< 0.002	(0.002)	< 0.002 (0	0.002)	< 0.002	(0.002)	< 0.002	(0.002
Naphthalene		< 0.002 (0.002)	< 0.002 (0.	002)	< 0.002	(0.002)	< 0.002 (0	0.002)	< 0.002	(0.002)	< 0.002	(0.002
Phenanthrene		< 0.002 (0.002)	< 0.002 (0.	002)	< 0.002	(0.002)	< 0.002 (0	0.002)	< 0.002	(0.002)	< 0.002	(0.002
Pyrene		< 0.002 (0.002)	< 0.002 (0.	002)	< 0.002	(0.002)	< 0.002 (0	0.002)	< 0.002	(0.002)	< 0.002	(0.002

This report summary, and the entire report it represents, has been made for the exclusive and confidential use of KEI Consultants, Ltd.. The Interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

zudie L. Clemons **QA/QC Manager**

Houston - Datlas - San Antonia

Certificate Of Quality Control for Batch : 19A48C52

EPA SW846/6020 Total Metals by ICP- MS

Date Validated: May 25, 1999 09:21

Date Analyzed: May 24, 1999 13:26

Analyst: MAB Matrix: Liquid

#			BLANK SPII	KE ANALYS	SIS		•
T	[A]	[8]	[C]	[D]	[E]	(F)	[G]
1	Blank	Blank Spike	Blank		QC	LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
T · · ·			Amount	Limit	Recovery	Range	
	mg/L	mg/L	· mg/L	mg/L	%	%	
Aluminum	< 0.5000	2.1815	2.0000	0.5000	109.1	70-125	
Arsenic	< 0.0250	2.2650	2.0000	0.0250	113.3	70-125	
Barium	< 0.100	1.027	1.000	0.100	102.7	70-125	
Seryllium	< 0.1000	0.4320	0.4000	0.1000	108.0	70-125	
Boron	< 0.50	2.31	2.00	0.50	115.5	70-125	
Cadmium	< 0.0040	0.4295	0.4000	0.0040	107.4	70-125	
Calcium	< 0.50	5.65	5.00	0.50	113.0	70-125	
omium	< 0.5000	1.0990	1.0000	0.5000	109.9	70-125	
Cobalt	• < 0.1000	1.0405	1.0000	0.1000	104.1	75-125	
Copper	< 0.150	1.067	1.000	0.150	106.7	70-125	
Iron	< 0.500	2.200	2.000	0.500	110.0	70-125	
Lead	< 0.5000	2.0873	2.0000	0.5000	104.4	75-125	
Magnesium	< 2.50	4.30	4.00	2.50	107.5	70-125	
Manganese	< 0.1250	1.9825	2.0000	0.1250	99.1	70-125	
Mercury	< 0.0025	0.0045	0.0050	0.0025	90.0	70-125	
Molybdenum	< 0.500	1.035	1.100	0.500	94.1	70-125	
Nicke!	< 0.5000	1.0610	1.1000	0.5000	96.5	70-125	
Selenium	< 0.0400	2.3530	2.2000	0.0400	107.0	70-125	
Silicon	< 1.000	2.000	2.000	1.000	100.0	70-125	
Silver	< 0.0250	0.9685	1.0000	0.0250	96.9	75-125	
Strontium	< 0.5000	2.0280	2.0000	0.5000	101.4	70-125	
Tin	< 0.500	1.950	2.000	0.500	97.5	70-125	

Spike Recovery [E] = 100*(B-A)/(C)

- Not calculated, data below detection limit

 $\omega_{\rm c}$ = Below detection limit

Il results are based on MDL and validated for QC purposes only

.

Eddie L. Clemons, II QA/QC Manager

Certificate Of Quality Control for Batch : ,19A48C52

EPA SW846/6020 Total Metals by ICP- MS

Date Validated: May 25, 1999 09:21

Date Analyzed: May 24, 1999 13:26

Analyst: MAB Matrix: Liquid

				BLANK SPI	KE ANALYS	SIS		
		[A]	(8)	[C]	[D]	(E)	(F)	[G]
5	i ,	Blank	Blank Spike	Blank		QC	LIMITS	
	Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
	ι.			Amount	Llmit	Recovery	Range	
٦		mg/L	mg/L	mg/L	mg/L	%	%	
ľ	Vanadium	< 0.1500	1.0730	1.0000	0.1500	107.3	75-125	
	Zinc	< 0.150	1.106	1.000	0.150	110.6	70-125	

Spike Recovery [E] = 100*(B-A)/(C) Not calculated, data below detection limit Below detection limit results are based on MOL and validated for QC purposes only

Eddie L. Clemons, II

ddie L. Clemons, II QA/QC Manager

.

Certificate Of Quality Control for Batch : 19A48C52

EPA SW846/6020 Total Metals by ICP- MS

 Date Validated:
 May 25, 1999
 09:21

 Date Analyzed:
 May 24, 1999
 13:38

Analyst: MAB

Matrix: Liquid

.

	No. 1997 N						MATRIX	SPIKE ANAL	rsis	
	[A]	[8]	[C]	[D]	(E)	[F]	[G]	[H]	[1]	[G]
Q.C. Sample ID	Sample	Duplicate		QC	LIMITS	Matrix Spike	Matrix	QC	LIMITS	
92014-001	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Spike	Recovery	Qualifier
	—		Limit	Difference	Difference		Amount	Recovery	Range	
Parameter	mg/L	mg/L	mg/L	%	%	mg/L	mg/L	%	%	
Aluminum	< 0.5000	< 0.5000	0.5000	N.C	25.0	2.5790	2.000	129.0	70-125	A
Arsenic	< 0.0250	< 0.0250	0.0250	N.C	25.0	2.3270	2.000	116.4	70-125	
Barium	0.114	0.115	0.100	0.9	25.0	1.207	1.00	109.3	70-125	
Beryllium	< 0.1000	< 0.1000	0.1000	N.C	25.0	0.4405	0.400	110.1	70-125	
Boron	< 0.500	< 0.500	0.500	N.C	25.0	2.474	2.00	123.7	70-125	
Cadmium	< 0.0040	< 0.0040	0.0040	N.C	25.0	0.4300	0.400	107.5	70-125	
Calcium	225	230	0.50	2.2	25.0	236	5.0	220.0	70-125	B,A
Chromium	< 0.5000	< 0.5000	0.5000	N.C	25.0	1.0770	1.000	107.7	70-125	
Cobalt	< 0.100	< 0.100	0.100	N.C	25.0	1.062	1.00	106.2	75-125	
Copper	< 0.150	< 0.150	0.150	N.C	25.0	1.048	1.00	104.8	70-125	
Iron	< 0.500	< 0.500	0.500	N.C	25.0	2.500	2.00	125.0	70-125	
Lead	< 0.5000	< 0.5000	0.5000	N.C	25.0	2.1895	2.000	109.5	75-125	
Magnesium	19.00	19.50	2.50	2.6	25.0	24.15	4.0	128.8	70-125	A
			4						l	

(A) Post-digestion spike/LCS within acceptance limits.

(B) High analyte concentration affects spike recovery.

Relative Difference [D] = 200*(B-A)/(B+A) Matrix Spike Recovery [H] = 100*(F-A)/[G]

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Eddie L. Clemons, II

QA/QC Manager

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch : 19A48C52

EPA SW846/6020 Total Metals by ICP- MS

Date Validated: May 25, 1999 09:21 Date Analyzed: May 24, 1999 13:38 Analyst: MAB

Matrix: Liquid

1

	M						MATRIX	SPIKE ANAL	(SIS	
	[A]	[B]	[C]	{D]	[E]	(F)	[G]	[H]	[1]	[G]
Q.C. Sample ID	Sample	Duplicate		QC	LIMITS	Matrix Spike	Matrix	QC	LIMITS	i
92014- 001	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Splke	Recovery	Qualifier
	-		Limit	Difference	Difference		Amount	Recovery	Range	
Parameter	mg/L	mg/L	mg/L	%	%	mg/L	mg/L	%	%	
Manganese	< 0.1250	< 0.1250	0.1250	N.C	25.0	2.0870	2.000	104.4	70-125	
Mercury	< 0.0025	< 0.0025	0.0025	N.C	20.0	0.0050	0.005	100.0	70-125	
Molybdenum	< 0.5000	< 0.5000	0.5000	N.C	25.0	1.0740	1.000	107.4	70-125	
Nickel	< 0.5000	< 0.5000	0.5000	N.C	25.0	1.0530	1.000	105.3	70-125	
Selenium	< 0.0400	< 0.0400	0.0400	N.C	25.0	2.2980	2.000	114.9	70-125	
Silicon	22.850	22.850	1.000	0.0	25.0	25.350	4.00	62.5	70-125	A
Silver	< 0.0250	< 0.0250	0.0250	N.C	25.0	0.0360	1.000	3.6	75-125	A
Strontium	< 0.5000	< 0.5000	0.5000	N.C	25.0	3.0010	2.000	150.1	70-125	A
Tin	< 0.500	< 0.500	0.500	N.C	25.0	2.000	2.00	100.0	70-125	
Vanadium	< 0.1500	< 0.1500	0.1500	N.C	25.0	1.1425	1.000	114.3	75-125	
Zinc	< 0.150	< 0.150	0.150	N.C	25.0	1.069	1.00	106.9	70-125	

(A) Post-digestion spike/LCS within acceptance limits.

(B) High analyte concentration affects spike recovery.

Relative Difference [D] = 200*(B-A)/(B+A)

Matrix Spike Recovery [H] = 100*(F-A)/[G]

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Eddie L. Clemons, II

QA/QC Manager

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch : 19A44A39

SW846- 8270 PAHs by GC- MS

 Date Validated:
 May 28, 1999
 13:00

 Date Analyzed:
 May 21, 1999
 07:46

Analyst: LC

Matrix: Liquid

			BLAI	NK SPIKE /	BLANK SF	IKE DUPL	ICATE AND R	ECOVERY			
	[A]	[B]	[C]	[D]	[E]	Blank	[F]	[G]	[H]	[1]	[J]
	Blank	Blank Spike	Blank Spike	Blank)	Limit	QC	QC	QC	Blank Spike	1
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
		1	Rosult	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	mg/L	mg/L	mg/L	mg/L	mg/L	%	%	%	%	%	
Acenaphlhene	< 0.0020	0.0427	0.0426	0.0500	0.0020	31.0	0.2	85.4	85.2	46-118	
4-Chloro-3-methylphenol	< 0.0020	0.0376	0.0383	0.0500	0.0020	42.0	1.8	75.2	76.6	23-110	1
2-Chlorophenol	< 0 0020	0.0342	0.0372	0.0500	0.0020	40.0	8.4	68.4	74.4	27-123	,
1,4-Dichlorobenzene	< 0.0020	0.0373	0.0403	0.0500	0.0020	28.0	7.7	74.6	80.6	36-97	/
2,4-Dinitrototuene	< 0.0020	0.0441	0.0430	0.0500	0.0020	38.0	2.5	88.2	86.0	24-108	3
N-Nitrosodi-n-propylamine	< 0.0040	0.0437	0.0462	0.0500	0.0040	38.0	5.6	87.4	92.4	41-116	اند
4-Nitrophenol	< 0.0040	0.0125	0.0131	0.0500	0.0040	50.5	4.7	25.0	26.2	10-80	,
Pentachlorophenol	< 0.0010	0.0390	0.0401	0.0500	0.0010	50.0	2.8	78.0	80.2	9-103	,
Phenol	< 0.0010	0.0142	0.0157	0.0500	0.0010	42.0	10.0	28.4	31.4	12-89	, ,
Pyrene	< 0.0020	0.0569	0.0558	0.0500	0.0020	31.0	2.0	113.8	111.6	26-127	,
1,2,4-Trichlorobenzene	< 0.0010	0.0389	0.0406	0.0500	0.0010	28.0	4.3	77.8	81.2	39-98	3

Spike Relative Difference [F] = 200°(B-C)/(B+C) Blank Spike Recovery [G] = 100°(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100°(C-A)/[D] N.D. = Below detection limit or not detected All resplits are based on MDL and validated for QC purposes

Eddie L. Clemons, II

QA/QC Manager

Houston - Dallas - San Antonio

Certificate Of Quality Control for Batch: 19A25C17

SW- 846 5030/8021B BTEX

 Date Validated:
 May 20, 1999
 12:00

 Date Analyzed:
 May 19, 1999
 14:15

Analyst: HA

Matrix: Liquid --

			BLA	NK SPIKE /	BLANK SI	PIKE DUPL	ICATE AND R	ECOVERY			
	[A]	[B]	[C]	[D]	[E]	Blank	(F)	[G]	[H]	[1]	[1]
	Blank	Blank Spike	Blank Spike	Blank		Llmit	QC	QC	QC	Blank Spike	
Parameter	Result	Result	Duplicate	Spiko	Detection	Relativo	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	
Benzene	< 0.0010	0.0964	0.0927	0.1000	0.0010	20.0	3.9	96.4	92.7	65-135	>
Toluene	< 0.0010	0.0995	0.0966	0.1000	0.0010	20.0	3.0	99.5	96.6	65-135	5
Ethylbenzene	< 0.0010	0.0923	0.0908	0.1000	0.0010	20.0	1.6	92.3	90.8	65-135	5
m,p-Xylene	< 0.0020	0.1869	0.1812	0.2000	0.0020	20.0	3.1	93.5	90.6	65-135	5
o-Xylene	< 0.0010	0.1064	0.1034	0.1000	0.0010	20.0	2.9	106.4	103.4	65-135	5

Spike Relative Difference [F] = 200*(B-C)/(B+C) Blank Spike Recovery [G] = 100*(B-A)/[D] B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100*(C-A)/[D] N.D. = Below detection limit or not detected All results are based on MDL and validated for QC purposes

Eddie L. Clemons, II QA/QC Manager

Houston - Dallas - San Antonia

Company				Phon	10					Lab	Only			/ CC					-	<u> </u>								Lc	ab O	nly
KEI		(`) (mic	680	Ø	37	67					C	19						\sum	A								A	ddillo	ons
kolool Namo – N	De la colorada a de activada de la dela de la dela dela dela dela	XENCO	n p	Proja	oct ID	, ,	d											5d But of									king Days		ł	
ocation / ov	TNGTON	NM		QP.	37	- 1-	-φ				333 01		<u>-</u>		ا ا								-1	1			narks	From:	From:	
rolect Manager (PM	l)	/.V_/_(.		Proje	oct Di	recto	r (PD)						See List	X	Call PM						ł		210	tH ts		L1		- 5	FIO	
S, GROI	IER T. NIX	!	/	4	HA	WTK	IUXN	15						Call PM	List C					[140	Highest		4	99			
roloct Manager (PM S, G R o ax Rosults 19 (2ιψ)	1010101 1181037631	E12) 37.1	Fax 1-	35	51					Other	8015JetF	25TAL		See L		ł			ł			8	l s		\sim	9	Rcv by:	RCV DY:	
voice lo DAcco	unting Include	Involce	with Fin	al Re	port	Alln F	PM	🗆 Inv	olce	Other			1322	See List	PPs								70	G/Kg		680-	1	1 No	5	
hust have a P.O. Bill	10:		<u></u> С Р.О No	- ø	\$39	<u> -</u> -	ø			-	8	0% D			1					· -		+	20	Ĕ		6	1			
pocial DLs (RR 1 RR						<u>ل</u> يا	Call	lor a l	J.O.	524	82	8015DRO	1CLP8	Sdd	1CL								30			ØIC	M			
pecifications										502	9		- La	MTBE	5N&A					ļ			ł	mg/L W.		6	5	0	0	
					/		,			8260	6021	8015GRO	5310 Tot	1 X	ł								487 C	Ē			S	Date	Date	
ampler Name	J Durt too	Sign	nature	R	(Ð,	The					1	SRCRA		5 PAHs			{		1		1	541	1	1	VER	$\left \right\rangle$			
<i>\ P</i>	U PATTON			مر ز	m_/			[802	8020	¢18.1		<u>ר</u> ור	625								2 2 2	cbove		Rov	Â			
	Sampling			P S W		ars	Size		/es	R	a	7X10C5	50 50	8260	6270								121		lysis	U	Z			
Sample ID	Date	Timo	E	4	osite	taine	liner		vativ	by 8	ATBE		۵ ۵	à	s by								5- L	PA :	And		N			
			Depti 11. 12.	Matrix	Composite	# Containers	Container Size	ype	Preservatives	21EX	BTEX-MTBE	Vd Hq1		VOAS	SVOAS								TAT	しお	Hold Analysis	G				
Ηω-Ι	18 11 199	1221		~		4	VYI	CD Lype	Hici	XX	<u></u>	<u>)-</u>		-1			·		-			- -		-		<u>-</u> 11	!!		-	-
		1254		$\frac{\mu}{1}$	-11		⊢{' ≀		_Q_ -	ťì			行行	·									-		-				-	-
<u>MW-7</u>				- - -		-				- - -										{				-[·				-	-
<u>4w-8</u>		123\$. -				{		- - -				.									-	-					-	-
<u>MW-19</u>		1423		- -						- - } .													-						-	
<u></u> <u>HW</u> - _	····	13.46			_ -			. }	-	-			.	-											.				-	-
<u>hw-12</u>	·	1510		↓			_¥_		+				*											_	-				-	
													_	_	.				_ -					-		<u> </u>			_	_
								<u> </u>		_				_								ן 11 1111	1	 	 1		. <u>.</u>			_
						<u> </u>				_				_		uns	I []									د سر				
/																C1:2				·		56 9 	1	.1	1					
Relinguisted	(Initials and Stanal	ure)	Rel	nqul	shed	to (1	nitials	and S	Ignat	ure			Date		-1			1 Con				COC:	2	[
Realler	б				0		ſ	\				<u> Y</u>	<u>4 Å 7</u>	<u>49</u>	116	<u>5ø</u>		TATS								Final F	ax Due:			-
			Lab:	Λ	Į	m	<u>-</u> (-	-}-x-	nu		{	71		<u>.</u>	10:4	- <u>r</u> -		Ropo												•••

GROUND WATER MONITORING AND SAMPLING DATA

JOBNO .: TOWNSLND-97-04 FIELD TECHNICIAN: KD

11

DATE: 13 SLP 79

WELL NO.	TIME WELL PURGED	TOTAL WELL DEPTH (feet) 1	DEPTH TO WATER (lect) 2	HEIGHT WATER COLUMN (feet) (1-2)=3	WELL FACTOR 2"=.16 4"=.65 6"=1.5 4	CALC. WELL VOLUME (gal) (3x4)=5	TOTAL WATER PURGED (gəl) 6	ESTIMATED NO. WELL VOLUMES PURGED 6/5	1999 TIME SAMPLE TAKEN/DATE	DEPTH TO PSH (feet)	PSH THICKHESS (feel)	SAMPLE CHARACTERISTIC
Mw-1	13¢¢	63,80	52.98	10.82	.16	1.73	5.19	3,10	9-14		T 19.5	C 814.645
CONDITION:	9-24	Cover:	Cap:	Casing	j: Lock:	Manv	vay/Pad:		1555	 	JH 7.34	0 141 mm
MW-7	\$980	66.35	53,25	13.10	.65	8.51	25,54	3. Ø	9- 🐺 16		T 18.4	C 833.443
CONDITION:	-9- 11 -16	Cover:	Сар:	Casing	g: Lock:	Many	vay/Pad:		0945		PN 7.58	0 96nV
MW-8	0950	64.60	52.47	11.63	• 6 5	7.55	22.67	3.00	9-116		T 18,5	C 7558 HS
CONDITION:	9-12	Cover:	Cap:	Casing		Manv	/ay/Pad:		1040		211-3.44	OSIM
MW-10	1220	64.3¢	53.08	11.22	.16	1,79	5.38	3.ø	9-14		T 21. Ø	C 1007HS
CONDITION.	9-13	Cover:	Cap:	Casing	j' Lock:	Малм	vay/Pad.	, , ,	1525		P/4 7.17	O LOGM
MW-11	13400	6380	53.83	9,97	16	4.160	4,78	3.0	9-14		F 19.3	C 743.5ms
CONDITION:	9-13	Cover:	Cap:	Casing			/ay/Pad:		1645		24 7,08	0 156 mm
MW-12	12.46	63.75	5282	10,93	•16:	1.74	5.24	3.4	9-19		T 24.1	C 784.149
CONDITION.	9-13	Cover:	Cap:	Casing			/ay/Pad:		· 1545		SH 7.85	0 134hv
MW-13	1330	64,15	53.8Ø	10,35	.16	1,65	4,96	3.ø	914		T 19.6	C 657,8MS
CONDITION.	9-13-	Cover.	Сар.	Casing	r Lock:	Ману	/ay/Pad.		1620		PH 7.57	0 156MY
HW-14	1355	64.05	54,49	9.56	•16	1,52	4.58	3. Ø	9-14	· · · · · · · · · · · · · · · · · · ·	+ 20.3	C 640,745
CONDITION:	9-13-	Cover.	Cap:	Casing	: Lock:	Manw	/əy/Pad:	,	1535		pH 7.29	0 128 MV
MW-15	1315	63.70	53.34	1\$,36	-16	1.65	4,97	3.ø	9-14		J 19.7	C 612.845
CONDITION:		Cover:	Cap:	Casing	: Luck:	Manw	/ay/Pad.	,	1610		DH 7.48	0 147 AV
					Total Removed.	83.2	>1	gal.				
				_	/		ala		-			
DRUMS ON SITE:					1	<u>COC:</u> q			~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·		
CARBON DRUM TR	AILER: (yes/no)		·····		Proo	11/0:	_66.	<u>3 16 SE</u>	יד_יז			
DISCHARGE SAMP	LE (lime/date):		······································									
ын								· · · · · · · · · · · · · · · · · · ·				
3gwmo.doc												August 2, 1996

GROUND WATER MONITORING AND SAMPLING DATA

JOBNO.: TOWNSLND-97-04 FIELD TECHNICIAN: KD

DATE: 13 SEP 79

TIME WI PURGE WELL NO. 9-1-3	D (feet) 1	DEPTH TO WATER (fcet) 2	HEIGHT WATER COLUMN (feel) (1-2)=3	WELL FACTOR 2"=.16 4"=.65 6"=1.5 4	CALC. WELL VOLUME (gal) (3x4)=5	TOTAL WATER PURGED (gal) 6	ESTIMATED NO.WELL VOLUMES PURGED G/S	1999 TIME SAMPLE TAKENIDATE	DEPTH TO PSH (feet)	PSH THICKNESS (feet)	SAMPLE CHARACTERISTIC
<u>Hw-1 130</u>				.16	1,73	5.19	3, ø	9-14		T 19.5	C 814.645
		Cap:	Casing:	Lock:	·····	way/Pad:		1555		PH 7.34	0 141 nv
MW-7 090	Ø 66.35	53,25	13.10	.65	8.51	25,54	3.Ø	9-116		T 18.4	C 833.443
CONDITION:	Cover:	Cap:	Casing;	Lock:	Manv	vay/Pad:		0945		PM 7.58	0 9611
MW-8 109	\$\$ 64.6¢	52.47	11.63	•65	7.55	22.67	3.00	9-16		T 18,5	C 755845
CONDITION:	Cover:	Сар:	Casing:	Lock:	Manv	vay/Pad:		1040		P11-3-44	O 31 m
MW-10 1224	64.3¢	53.08	11.22	.16	1,79	5.38	3.ø	9-14		Ţ 21. Ø	C 1007KS
CONDITION: 9-13	Cover:	Cap:	Casing:	Lock:	Manw	vəy/Pad:	, 	1525		PH 7.17	
MW-11 1340	6380	53.83	9,97	.16	Ø. 160	4,78	3.0	9-14		F 19.3	C 743.5ms
CONDITION: 9-13	Cover:	Cap:	Casing:	Lock:	Manw	vay/Pad:		1645		24 7.08	0 156 mv
MW-12 124	\$ 63.75	5282	10,93	•16	1.74	5.24	3.4	9-14		T 24.1	C 784.1ms
CONDITION: 9-13	Cover:	Сар:	Casing:	Lock:		vəy/Pad:		1545		2# 7.85	0 134nv
MW-13 1330	64,15	53.8Ø	10,35	.16	1,65	4,96	3.ø	9-14		T 19.6	C 657,8MS
CONDITION:	Cover:	Сар:	Casing:	Lock:		vay/Pad;	······································	1620		PH 757	0 156MV
MW-14 135	5 64.05	54.49	9.56	•16	1,52	4.58	3. Ø	9-14		+ 20.3	C 640,745
CONDITION:	Cover:	Сар:	Casing:	Lock:		ay/Pad:		1535		047.29	0128MV
HW-15 1315	- 63.70	53.34	14,36	- 17	11.5	4.97	3.Ø	9-14		T 19.7	C 612.845
CONDITION:	Cover:	Cap:	Casing:	Lock:		ray/Pad:	_	1610		DH 7.48	0 147 AV
<u>l</u>	<u></u>			olal Removed:	83.3	>\	gal.				
DRUMS ON SITE:					coc: ¢	5187 21			·····	····	
CARBON DRUM TRAILER: (yes/	0)	······		Proo	1110:	66.	3 16 SE	ዮጓና			
DISCHARGE SAMPLE (lime/date	: <u></u>										
рН:									· <u> </u>		
13gwmo.doc											August 2, 1996

									(915) 56.	3-18	00	FA	х (У	15) 2	1-60	713	~	~~				¢							REQ		-	
Project Manager			<u> </u>	· · · · · · · · · · · · · · · · · · ·				Pi	ione #	: (9	15)	60	64	- 91	66					- ** -									1				_
	JESSE	TA	YLOR					F	LX #:		•											A	NAL	Y51	SRE	QU.	EST						
Сотралу Нале																		1	1				1		1		T	Τ	T		Τ	Τ	Τ
• •				1845		нгλ	LAN	28.	Тх	Þ	17	q 4								e													
Project #:				1845				Pı	oject	Nam	::									Cr Pb Hg Se	SBH												
	T/	M	97-0	4				Ţ4	WN	'sE	NI	>								2 PP	8												
roject Location								Sa	mpler	Sign		"/	,							8	0 2												
	LER	COM	NTY	NM				\sum	Sas		Ð	đ	5							s Ba	Ba		s										
					RS	2	М	AT	xIX			ESEI MEI		TIVE D	S	ANIP	LING	(503)		Ag A	Ag As	8	'olalile										
LAB #		FIELD CI	ODE		# CONTAINERS	Volume/Amount	WATER	AIR	SLUDGE	OTHER	HCL	HNO3	ICE	OTHER	19	97	TIME	BTEX 8020/5030	трн 418.1	TCLP Metals Ag As Ba Cd	Total Metals Ag As Ba Cd Cr Pb Hg Se	TCLP Volatiles	TCLP Semi Volatiles	TDS	RCI								
ONLY /		~			1	<u>></u> 		<u> <</u>	: <u>5</u>	0	1		<u> </u>			i				<u> </u>	1-1				ř.		<u> </u>			╞╌┼		+	\dashv
2009	MW-	7_			2		<u>×!</u>		1	:	X		X		ł	1	Ø945	· 1								-		+	<u> </u>	$\left - \right $		╉	-
20017	MW-	8		··	2	<u> √</u>	_X _	<u> </u>		! 	X	-	x		9-	16	1\$4\$	X			-									┨──┼╴		╋	-
				- <u></u>		 			<u> </u>	<u> </u>															_				+	┝─┾		+	-
														_					-		_	_			-				+	┝─┼			\neg
									+			-														-+				┢─┼		╋	┦
			<u> </u>					_				+														_	-			┝─┼		╋	+
												_									-			_			-+		+	┝─┼	_	╋	-
	•										-		-					$\left - \right $							-+		-+	+-	+-	┝─╊	-	╇	4
									_								<u>.</u>				_			-		_				┝─╋		+	-
							-			<u> </u>		-+												_		-+	_		+-	$\left - \right $		╇	4
			Dete		L	Time				<u> </u>	P	eived			1		DEMAN													4			
elinquished by: Kan D	utta	•	Date: 9-/	7-99		}	" /50)O					•	dk	jid	A.	REMAI	UN 2	K 	ES	ω.	ד? הא	, TT	0	,								
elinquished by:		<u></u>	Date:			Time	:				Rece	ived	by:	- -	<u> </u>			, ,	(2) (2) (2)	N 16 13 B	، م 5	ر م. ر	CA N N	1	G P	54 82	R, HØ	AF - 4	07 I 297 8	3 'S			
elinquished by		<u></u>	Date:			Time	:				Rece	eived	by L	abora	tory:			4-	- 0		-,												

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water Sample Condition: Intact/Iced/HCI Project #: TNM 97-04 Project Name: Townsend Project Location: Lea County, N.M. Sample Date: 09/14/99 Receiving Date: 09/15/99 Analysis Date: 09/21/99 Analysis Date: Hg 9/17/99 Analysis Date: Mo,Sn,B,Sr 9/29/99

	MW-13	MW-14	MW-15	Reporting				
Analyte (mg/L)	20016	20017	20018	Limit	%IA	%EA	BLANK	RPD
Aluminum	0.6510	0.2960	10.70	0.0500	94	99	<0.0500	17.10
Arsenic	0.0060	ND	0.0070	0.0050	98	102	<0.0050	0.00
Barium	0.0840	0.0760	0.5530	0.0100	85	93	<0.0100	0.52
Beryllium	ND	ND	ND	0.0040	90	100	<0.0040	0.00
Cadmium	ND	ND	ND	0.0010	90	98	<0.0010	0.00
Calcium	81.40	89.20	282.0	1.000	*	*	<1.000	0.42
Chromium	ND	ND	0.0190	0.0050	92	101	<0.0050	0.49
Cobalt	ND	ND	ND	0.0200	88	95	<0.0200	0.21
Copper	ND	ND	ND	0.0100	86	92	<0.0100	0.00
Iron	0.3100	0.1430	6.370	0.0500	90	105	<0.0500	53.38
Lead	ND	ND	ND	0.0030	94	108	<0.0030	3.64
Magnesium	12.00	14.40	18.80	1.000	*	*	<1.000	0.90
Manganese	0.0320	0.0470	0.1680	0.0150	91	100	<0.0150	8.44
Mercury	ND	ND	ND	0.00020	102	108	<0.00020	5.71
Molybdenum	ND	ND	ND	0.050	101	*	<0.050	N/A
Nickel	ND	ND	0.0120	0.0100	91	98	<0.0100	0.41
Potassium	2.850	2.300	4.160	1.000	*	*	<1.000	N/A
Selenium	0.0070	0.0060	ND	0.0050	104	104	<0.0050	3.92
Silver	ND	ND	ND	0.0050	80	82	<0.0050	2.41
Sodium	52.90	29.60	42.70	1.000	*	*	<1.000	0.32
Tin	ND	ND	ND	0.0500	90	*	<0.0500	N/A
Vanadium	0.0310	0.0350	0.0740	0.0200	85	93	<0.0200	0.21
Zinc	ND	ND	0.0790	0.0200	91	96	<0.0200	3.15
Boron	0.154	0.124	0.237	0.050	97	*	<0.050	N/A
Strontium	0.439	0.622	0.709	0.050	89	*	<0.050	N/A

ND = Below Reporting Limit METHOD: EPA SW846-6010B, 7470

Ralm CK Jucob Raland K. Tuttle

9-30-99 Date

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water Sample Condition: Intact/ Iced Project #: TNM 97-04 Project Name: Townsend Project Location: Lea County, N.M. Field Code: MW-13 Sampling Date: 09/14/99 Receiving Date: 09/15/99 Extraction Date: 09/20/99 Analysis Date: 09/23/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	20016	RPD	%EA	%IA	
Namhthalana	0.005				00	
Naphthalene	0.005	ND			86	
Acenaphthylene	0.005	ND			88	
Acenaphthene	0.005	ND	5.41	36	86	
Fluorene	0.005	ND			86	
Phenanthrene	0.005	ND			88	
Anthracene	0.005	ND			86	
Fluoranthene	0.005	ND			90	
Pyrene	0.005	ND	3.08	32	82	
Benzo[a]anthracene	0.005	ND			86	
Chrysene	0.005	ND			90	
Benzo[b]fluoranthene	0.005	ND			80	
Benzo[k]fluoranthene	0.005	ND			88	
Benzo (a)pyrene	0.005	ND			86	
Indeno[1,2,3-cd]pyrene	0.005	ND			96	
Dibenz[a,h]anthracene	0.005	ND			108	
Benzo[g.h,i]perylene	0.005	ND			96	
		% RECOVERY				
Nitrobenzene-d5 SURR		46				
2-Fluorobiphenyl SURR		49				
Terphenyl-d14 SURR		42				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

lon ct Jul

<u>9-27-99</u> Date

ENVIRONMENTAL Lab of \checkmark , Inc.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water Sample Condition: Intact/ Iced Project #: TNM 97-04 Project Name: Townsend Project Location: Lea County, N.M. Field Code: MW-14

Sampling Date: 09/14/99 Receiving Date: 09/15/99 Extraction Date: 09/20/99 Analysis Date: 09/23/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	20017	RPD	%EA	%IA	
Naphthalene	0.005	ND			86	
Acenaphthylene	0.005	ND			88	
Acenaphthene	0.005	ND	5.41	36	86	
Fluorene	0.005	ND			86	
Phenanthrene	0.005	ND			88	
Anthracene	0.005	ND			86	
Fluoranthene	0.005	ND			90	
Pyrene	0.005	ND	3.08	32	82	
Benzo[a]anthracene	0.005	ND			86	
Chrysene	0.005	ND			90	
Benzo[b]fluoranthene	0.005	ND			80	
Benzo[k]fluoranthene	0.005	ND			88	
Benzo [a]pyrene	0.005	ND			86	
Indeno[1,2,3-cd]pyrene	0.005	ND			96	
Dibenz[a,h]anthracene	0.005	ND			108	
Benzo[g,h,i]perylene	0.005	ND			96	
		% RECOVERY				
Nitrobenzene-d5 SURR		55				
2-Fluorobiphenyl SURR		58				
Terphenyl-d14 SURR		36				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

<u>Raland K. Tuttle</u>

9-27-99 Date

ENVIRONMENTAL Lab of \checkmark , Inc.

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water Sample Condition: Intact/ Iced Project #: TNM 97-04 Project Name: Townsend Project Location: Lea County, N.M. Field Code: MW-15

Sampling Date: 09/14/99 Receiving Date: 09/15/99 Extraction Date: 09/20/99 Analysis Date: 09/23/99

	REPORT	ELT#			
EPA SW846 8270 (mg/l)	LIMIT	20018	RPD	%EA	%IA
Naphthalene	0.005	ND			86
Acenaphthylene	0.005	ND			88
Acenaphthene	0.005	ND	5.41	36	8 6
Fluorene	0.005	ND			86
Phenanthrene	0.005	ND			88
Anthracene	0.005	ND			86
Fluoranthene	0.005	ND			90
Pyrene	0.005	ND	3.08	32	82
Benzo[a]anthracene	0.005	ND			86
Chrysene	0.005	ND			90
Benzo[b]fluoranthene	0.005	ND			80
Benzo[k]fluoranthene	0.005	ND			88
Benzo [a]pyrene	0.005	ND			86
Indeno[1,2,3-cd]pyrene	0.005	ND			96
Dibenz[a,h]anthracene	0.005	ND			108
Benzo[g,h,i]perylene	0.005	ND			96
		% RECOVERY			
Nitrobenzene-d5 SURR		56			
2-Fluorobiphenyl SURR		59			
Terphenyl-d14 SURR		34			

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Ralan dt jurild Raland K. Tuttle

9-27-99 Date

ENVIRONMENTAL Lab of \checkmark , Inc.

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310 FAX: 970-461-1058

Sample Type: Water Sample Condition: Intact/ Iced/HCl Project #: TNM 97-04 Project Name: Townsend Project Location: Lea County, N.M. Sampling Date: 09/14/99 Receiving Date: 09/15/99 Analysis Date: 09/15/99

ELT#	FIELD CODE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYLBENZENE (mg/L)	m.p-XYLENE (mg/L)	o-XYLENE (mg/L)
20012	MW-1	<0.001	<0.001	<0.001	<0.001	<0.001
20013	MW-10	<0.001	<0.001	<0.001	<0.001	<0.001
20014	MW-11	<0.001	<0.001	<0.001	<0.001	<0.001
20015	MW-12	<0.001	<0.001	<0.001	<0.001	<0.001
20016	MW-13	<0.001	<0.001	<0.001	<0.001	<0.001
20017	MW-14	0.019	0.016	0.003	0.008	0.004
20018	MW-15	<0.001	<0.001	<0.001	<0.001	<0.001

% IA	96	92	92	90	91
% EA	99	93	94	94	94
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: EPA SW 846-8020,5030

lan OKTIon

Raland K. Tuttle

9-27-99

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water Sample Condition: Intact/ Iced/HCl Project #: TNM 97-04 Project Name: Townsend Project Location: Lea County, N.M.

;

Sampling Date: 09/16/99 Receiving Date: 09/17/99 Analysis Date: 09/17/99

ELT#	FIELD CODE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYLBENZENE (mg/L)	m,p-XYLENE (mg/L)	o-XYLENE (mg/L)	
20096	MW-7	<0.001	<0.001	<0.001	<0.001	<0.001	
20097	MW-8	<0.001	<0.001	<0.001	<0.001	<0.001	

% IA	101	95	96	95	94
% EA	94	90	91	90	89
BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: EPA SW 846-8020,5030

Ealanck Joul

Q-23-99 Date

Raland K. Tuttle

ENVIRONMENTAL LAB OF , INC.

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water Sample Condition: Inact/ Iced Project #: TNM 97-04 Project Name: Townsend Project Location: Lea County,N.M. Sampling Date: 09/14/99 Receiving Date: 09/15/99 Analysis Date: See Below

ELT#	FIELD CODE	Sulfate mg/L	Chloride mg/L	Carbonate mg/L	Bicarbonate mg/L	TDS mg/L	
20016	MW-13	120	53	0	150	451	
20017	MW-14	121	35	0	225	473	
20018	MW-15	134	53	0	175	458	

QUALITY CONTROL	55.1	5052	*	*	*
TRUE VALUE	50.0	5000	*	*	*
% PRECISION	110	101	*	*	*
ANALYSIS DATE	9/21/99	9/17/99	9/21/99	9/21/99	9/20/99

METHODS: EPA 375.4, 325.3, 310, 160.1

<u>lcla CK Juril</u> aland K. Tuttle

27- (Yg

ject Manager:	Phone #1	(aug) (14 9166	POC: Ø18.	
	FAX #:	(915) 664-9166	ANALYSIS REQUEST	
JESSE TAPLOR mpany Name & Address: ETGE				
	45 MIDLAND TX	Derau) Se Sa (ф) (ф) (ф) (ф)	
ject #:	73 MIDLAND /X Project N	<u></u>		
TNM 97-04	Τοωι	VELNS	27¢) 27¢) (3¢¢ (6¢1¢)	
Ject Location:	(Sumpler)			
LEA COUNTY NM	Ker	Sitta	S S Ba	
	MATRIX	PRESERVATIVE SAMPLING	BTEX 8112115111 TPH 418.1 TCLP Metals Ag As Ba TCLP Volatiles TCLP Volatiles TCLP Volatiles TCLP Volatiles TCLP Sent Volatiles TDS RCI RCI RCI RAZON S CATTON S CATTON S CATTON S	
	COLITAINERS Volume/Amount Volume/Amount SOIL AIR AIR AIR	1999	BTEX 81121)5 FPI1 418.1 TCLP Metals Ag Total Metals Ag Total Metals Ag TCLP Volatites TCLP Volatites TCLP Volatites TCLP Volatites TCLP Volatites TCLP Volatites TCLP Volatites TCLP Volatites TCLP Volatites CATZONS CATZONS CATZONS	
LAB # FIELD CODE	# C.OtilA Volume/Ar WATER SOIL AIR SLUDGE		EX 81121 HI 418. CLP Metals CLP Volatili CLP VOLAV CLP VO	
ONLY)	# C.Oti Volume WATE SOIL	OTHER HICL HINO3 HICE DATE DATE DATE	BTEN TCLI TCLI TOLA TOLA TCLI TCLI TCLI TCLI TCLI TCLI TCLI TCLI	
0012 1700-1	2 1 1	X X 9-14 155	s X	
0013 MW-10	211	1525	5	
0014 1700-11	211111	1111111111	5	
0015 MW-12	2 v	1545	5	
0016 MW-13	7 12.5	X 1620		
0017 MW-14		1535	5	
018 MW-15	744	1614	> ↓ ↓ ↓ ↓ ↓ ↓	
builshed by: Date:	Time:	Received by: REMA	KEN DUTTON KEN DUTTON 1604 W. CALLE SUR, APT HOBBS, NM 88240-098	
in Juttoo 15 SKO	259 1Ø45		KEN DUTION	ß
quished by: Date:	Times:	Received by:	1606 W. CM 88240-098:	5

GROUND WATER MONITORING AND SAMPLING DATA

JOB NO .: TNM 97-04

FIELD TECHNICIAN: SC/KD

DATE: 12-75-79

	WELL NO.	TIME WELL PURGED	TOTAL WELL DEPTH (feet) 1 63.70	DEPTH TO WATER (feet) 2 53.00	HEIGHT WATER COLUMN (feel) (1-2)=3	WELL FACTOR 2"=,16 4"=,65 6"=1.5 4 , / /	CALC. WELL VOLUME (gal) (Jx4)=5	TOTAL WATER PURGED (gal) 6	ESTIMATED NO. WELL VOLUMES PURGED G/5	1999 TIME SAMPLE TAKEN/DATE	DEPTH TO PSH (feet)	PSH THICKHESS (feet)	SAMPLE CHARACTERISTIC
	CONDITION:	1/100	Cover:	Cap:	Casin			vay/Pad:		0815			
	mw2			56.09					- <u></u>	/	52.39		
	CONDITION:		Cover:	Cap:	Cəsin	g: Lock;	Manv	vay/Pad:	•	1 }		3.76	
0	MW3			56,22	(55,51					}	53.02	3.20	
•	CONDITION:		Cover:	Сәр:	Casin	g: Lock:	Manv	vəy/Pəd:			(57,31)		
X	mw4	[56.60	(55.53)						53.53		
	CONDITION:		Cover:	Cap:	Casin		Many	vay/Pad:			(52,46)	3,07	
X	MWS	<u> </u>	l	59.80	(53,43)		L				53.91		
	CONDITION:	,	Cover:	Cap:	Casin	g: Lock:	Many	vay/Pad:	1		(52.54)	<i>\$</i> ,89	
	mw f	 	<u> </u>	56.28			<u> </u>			-	52.66	212	
	CONDITION:		Cover:	Cap:	Casin	-		vay/Pad:				3.62	
	mil 7	1245	66.35	53.26	13.09	.65		25.52	3.0	12-10	E E		
	CONDITION:		Cover:	Cap:	Casin			vay/Pad:		0820		 	
	NWB	1305	64.60	52.95	11.65	.65		22.71	3.0	12-16			
	CONDITION:		Cover:	Cap:	Casin	g: Lock:	Manv	vəy/Pad:		0842	<u> </u>		
	~ NW9	L	 	55.11			<u> </u>	l			52.91	224	
Į	CONDITION:		Cover:	Cap:	Casin	g: Lock:	Manv	vay/Pad:		<u> </u>	<u> </u>	2,2\$	<u> </u>
						Tolal Removed:			gal.				
	RUMS ON SITE:					COMMENTS:							
	ARBON DRUM TR									······································			
	ISCHARGE SAMP							-		·			
		22 ("""""""""""""""""""""""""""""""""""											
2									-				

GROUND WATER MONITORING AND SAMPLING DATA

JOB NO .: Trim 97-04

FIELD TECHNICIAN: SC/KD

DATE: 12-15-58

WELL NO.	TIME WELL PURGED	TOTAL WELL DEPTH (feet) 1	DEPTH TO WATER (feet) 2	HEIGHT WATER COLUMN (feel) (1-2)=3	WELL FACTOR 2"⊐.16 4"=.65 6"=1.5 4	CALC. WELL VOLUME (gal) (3x4)=5	TOTAL WATER PURGED (gal) 6	ESTIMATED NO. WELL VOLUMES PURGED 6/5	2969 TIME SAMPLE TAKEN/DATE	DEPTH TO PSH (feet)	PSH THICKNESS (feel)	SAMPLE CHARACTERISTIC
MWID	1350	63.40	53.14	10.26	.16	1.64	4.92	3.0	12-16			
CONDITION:		Cover:	Cap:	Casing	: Lock:	Many	vay/Pad:		0835			
MW 11	1430	63.85	53.86	9.99	.16	1.59	4.79	3.0	12-14		1	
CONDITION:		Cover:	Сар:	Casing	: Lock;		vay/Pad:		0905			
MW/2	1337	63.59	52.86	10.73	.16	1.71	5.15	3.0	12-16			
CONDITION		Cover:	Cap:	Casing	: Lock:	Manv	vay/Pad:		0827	<u></u>		
MW13	1410	64.15	53,80	10:35	,16	1,65	4.96	3.0	12-16			
CONDITION		Cover:	Cap:	Casing	Lock	Manv	vay/Pad:		0900			
MW14	1440	64.05	54.50	9.55	.16	1.52	4.58	3.0	12-16			
CONDITION:		Cover:	Cap:	Casing	Lock		vay/Pad:		0915			
MW15	1420	63.03	53,35	9.68	16	1.54	4.64	3.0	12-16			
CONDITION:		Cover:	Cap:	Casing	Lock:		/ay/Pad:	-	0850			
RWI			51.29							48,31	0	
CONDITION:		Cover:	Cap:	Casing	: Lock:	Manv	vay/Pad:				2.98	
CONDITION:		Cover:	Cap:	Casing:	Lock:	Manw	ray/Pad:		l	1		
									_			
CONDITION:		Cover:	Сар:	Casing:	Lock:	Marw	/ay/Pad:					
				Ĺ	Tolai Removed:			gal.				
RUMS ON SITE:					COMMENTS:							
ARBON DRUM TRAI	-				<u></u>	- <u></u>	<u></u>	·, · · · · · · · · · · · · · · · · · ·	·····			
SCHARGE SAMPLE	E (lime/date):								· · · · · · · · · · · · · · · · · · ·			

pH:_____

ENVIRONMENTAL LAB OF , INC.

"Dan't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 505-392-3760

Sample Type: Water Sample Condition: Intact/Iced/HCI Project #: EOT1015C Project Name: TNM 97-04 Project Location: Lovington, N.M.

Sampling Date: 12/16/99 Receiving Date: 12/17/99 Analysis Date: 12/19/99

ELTH	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mo/L	m.p-XYLENE mg/L	o-XYLENE mg/L	
22420	MW-1	<0.001	<0.001	<0.001	<0.001	<0.001	
22421	MW-7	<0.001	<0.001	<0.001	<0.001	<0.001	
22422	MW-8	<0.001	<0.001	<0.001	<0.001	<0.001	
22423	MW-10	<0.001	<0.001	<0.001	<0.001	< 0.001	
22424	MW-11	<0.001	<0.001	<0.001	<0.001	<0.001	
22425	MW-12	<0.001	<0.001	<0.001	<0.001	<0.001	
22426	MW-13	<0.001	<0.001	<0.001	<0.001	<0.001	
22427	MW-14	0.040	0.018	0.009	0.034	0.007	
22428	MW-15	<0.001	<0.001	<0.001	<0.001	<0.001	
% IA		95	92	93	93	93	
% EA		101	98	98	99	98	
BLAN		<0.001	<0.001	<0.001	<0.001	<0.001	

METHODS: EPA SW 846-80218,5030

Ralanck Juich Raland K. Tuttle

12-21-99 Date

12600 West I-20 East • Odessa, Texas 79765 • (915) 563-1800 • Fax (915) 563-1713

P.01

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: MR. JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 505-392-3760

Sample Type: Water Sample Condition: Intact/Iced/HCI Project #: EOT1015C Project Name: TNM 97-04 Project Location: Lovington, N.M.

Sampling Date: 12/16/99 Receiving Date: 12/17/99 Analysis Date: 12/19/99

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m.p-XYLENE mg/L	o-XYLENE mg/L	
22420	MW-1	<0.001	<0.001	<0.001	<0.001	<0.001	
22421	MW-7	<0.001	<0.001	<0.001	<0.001	<0.001	
22422	MW-8	<0.001	<0.001	<0.001	<0.001	<0.001	
22423	MW-10	<0.001	<0.001	<0.001	<0.001	<0.001	
22424	MW-11	<0.001	<0.001	<0.001	<0.001	<0.001	
22425	MW-12	<0.001	<0.001	<0.001	<0.001	<0.001	
22426	MW-13	<0.001	<0.001	<0.001	<0.001	<0.001	
22427	MW-14	0.040	0.018	0.009	0.034	0.007	
22428	MW-15	<0.001	<0.001	<0.001	<0.001	<0.001	
% IA		95	92	93	93	93	
% E		101	98	98	99	98	
BLA	NK	<0.001	<0.001	<0.001	<0.001	<0.001	

METHODS: EPA SW 846-8021B,5030

Raland K. Tuttle

12-21-99 Date

roject Manager: TESSE TALLOR Phone H: (9157 664 - 9166								COCUS 5 ANALYSIS REQUEST																		
				FAX 11: (505) 352-3760																				- -		
Company Nan	ne&Address: 67(1.				~		10		~													
Project #:	N.O. 1	30× 4845		1							/7	/04		-		g Se	S I						·			
	OT INS C					1.10	•	iame :		9	7-0) (L)				Cr Pb Hg	Cr Pb Hg									
Froject Locati						San	upler	Slenat	ure:/	2		7		-												
/>	UNIVGITON,	NIM					-	/	A	10-	a	ns.				Ba Cd	a Cd									
			5	Ī	M	ATRI	 X		PRES	ERV	ATTVE	SA	MPLING	181		As	l As Ba		Semi Volaliles							
		CONTAINERS olume/Amount ATER OIL IR UDGE						METHOD 1999					Sur Allanda	118.1	TCLP Metals Ag	Total Metals Ag	Volatites									
LAB #				/olume/Amounl	ER		ШЭC	En			3 2			le x		P Me	l Meta									
(LABUSE ONLY)			# CC	Volun	WATER	AIR	SLUDGE	OTHER .	HNO3	ШÜ	NONE	DATE	TIME	BTEX	TPH	12	Tota	TCLP	TCLP	NCI 2						
22420	MUU 1		2	IV	XI			X	(X		12-	6 0815	TX						1						1
	MIW 7			İ	Î								0820	,/[Ì				Ţ							1
22422				11	111					1		\mathbf{T}	084	z						i						T
	MW10									IT			0835	71												
22424	mw ii			T						11			0905	-11						1			1			1
	MULIZ			11						Π			082	7												
	MW13				111					Π			090	ΰ												
	HOT MWIY												091	5												T
22428	MUS		\checkmark	IV	V			Ň	/	1		$ \mathbf{v}$	085	0												
	 							•												<u> </u>						
Relinquished 1	by:	Date:	_	Tlme	:			R	leceiv		5		REM	ARK		11	_	Vr.	? {ii i	15		Ĺ].	ן ידד א	on)
Aino	asas_	12-16-99	; 						4	Ľ	A			/		470		~				7	24	() -		
Rellinguistical	b7:/	Date:	2	TIme				1	lecq1																	
1 fill 1 a	<u>F</u>	12-17-99	1	1340					growing										,				-			
Relinquished by: Date:		Times:					1	Received by Laboratory:							۷	,]	·	1113	4 /	i de	757				

