1R - 124

GENERAL CORRESPONDENCE

YEAR(S):

2005-1997

September 16, 2005

Mr. Ed Martin New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Re: Notification of Plains Marketing, L.P. Plugging and Abandonment of Monitor Wells TNM-Monument 18
NW ¼, NW ¼, Section 7, T-20-S, R-37-E
Lea County, NM

Dear Mr. Martin,

NOVA Safety and Environmental (NOVA), on behalf of Plains Marketing, L.P. (Plains) respectfully submits the following notification of plugging and abandonment of monitor wells at the Plains TNM-Monument 18 leak site (the site), located in the SW ¼, NE ¼, Section 29, T-20-S, R-37-E in Lea County, NM.

On September 13, 2005, one (1) monitor well was plugged and abandoned at the site. Please reference your letter to Ms. Camille Reynolds of Plains Marketing L.P. dated June 22, 2005 regarding authorization to plug and abandon this well.

The monitor well was plugged and abandoned by Environmental Plus, Inc (EPI) of Eunice, New Mexico, a licensed water well driller in the State of New Mexico. The monitor wells were plugged utilizing guidelines set forth by the office of the New Mexico State Engineer. EPI removed and disposed of the monitor well cover, vault, and the remains of the concrete pad.

Monitor well MW-2 was filled with approximately three (3) bags of bentonite pellets to a depth of approximately one (1) foot below ground surface (bgs) and properly hydrated with water. Topsoil was placed above the former monitor well to complete the procedure.

The former monitor well location is as follows:

• MW-13, 32 degrees, 35.517" N, 103 degrees, 17.932" W

Plains has completed the approved plugging and abandonment of the above referenced monitor well as directed by the New Mexico Oil Conservation Division (NMOCD). Plains will continue to gauge and sample the remaining monitor wells at the site.

In the future, Plains may make additional requests to the NMOCD for plugging and abandonment of monitor well(s) at this site, as warranted.

Sincerely,

Curt D. Stanley

Project Manager

NOVA Safety and Environmental

Cut D. Stenly

cc:

Paul Sheeley / Larry Johnson, NMOCD, Hobbs, NM

Cody Morrow, New Mexico State Land Office, Santa Fe, NM

Myra Meyers, New Mexico State Land Office, Hobbs, NM

Camille Reynolds, Plains Marketing, L.P., Lovington, NM cjreynolds@paalp.com

Jeff Dann, Plains Marketing, L.P., Houston, TX jpdann@paalp.com

NOVA Safety and Environmental, Midland, TX cstanley@novatraining.cc

Attachments:

Attachment #1 – Form C-141 – Release Notification and Corrective Action

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

						OPER A	TOR	х	k Initia	ıl Report		Final Report
Name of Co			Pipeline,			Contact:		le Reynold	ls			
Address:		E. Hwy 158		d, TX 79	9706	Telephone N		11-0965				
Facility Nan	ne	Monum	ent # 18			Facility Typ	e: Pipelir	ne				
Surface Own	ner:			M	ineral Owner			I	Lease N	lo.		
	Jim B Co	oper										
]	LOCATIO	N OF REI	LEASE				_	
Unit Letter	Section	Township	Range	Feet fro	,	h/South Line	Feet from the	East/Wes	t Line	County		
D	7	20S	37E							Lea		
			Latitu	de 32 de	egrees 35' 30.	0" Longitud	e 103 degrees 1	7' 55.9"				
						° E OF RELI	-					
Type of Relea	ase:				111110111	Volume of		V	olume R	Recovered		
Source of Re							lour of Occurrence	e Da	ate and	Hour of Dis	covery	
337 I	. DT .: .	7. 0				Unknow			- Ov			
Was Immedia	ite Notice (es 🔲 N	lo 🔲 N	lot Required	If YES, To	Whom?					
By Whom?						Date and H	lour					
Was a Water	ourse Read					If YES, Vo	olume Impacting	the Waterco	ourse.			
			Yes 🗵] No								
Describe Cau	se of Probl	em and Remed	dial Action	n Taken.*	k							
		and Cleanup A xico Pipeline			erator of the p	ipeline systen	at the time of th	he release,	initial r	esponse inf	ormati	on is
regulations al public health should their or or the environ	of the envious or the envious for the envious formations for the envious forment. In a	are required to ronment. The nave failed to a	o report ar acceptand dequately CD accep	nd/or file ce of a C- investiga	certain release 141 report by tate and remedia	notifications a the NMOCD mate contamination	knowledge and und perform correctance as "Final Roon that pose a three the operator of	ctive actions Report" does reat to groun	s for rele s not reli nd water	eases which ieve the ope r, surface wa	may en rator of ater, hu	ndanger Hiability man health
							OIL CON	SERVA'	TION	DIVISIO	<u>)N</u>	
Signature:												
	· · · · · · · · · · · · · · · · · · ·					Approved by	District Supervis	sor:				
Printed Name	e: Ca	mille Reynold	ls			11 1 1 1 1 1	I - 3 · 1					,
Title:	Re	mediation Cod	ordinator			Approval Da	te:	Exp	piration	Date:		
E-mail Addre	ess: cji	eynolds@paal	p.com			Conditions o	f Approval:			Attached		
Date: 3/21/20	005		Phone:	(505)	441-0965					/ titacheu		
Attach Addi	damal Cha	ata If Nagara										

NEW MEXICO ENERGY, MERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON

Governor

Joanna Prukop

Cabinet Secretary

Mark E. Fesmire, P.E.
Director
Oil Conservation Division

June 22, 2005

Ms. Camille Reynolds Plains Pipeline 3112 West Highway 82 Lovington, NM 88260

Re:

2004 Annual Monitoring Report

Monument 18 Release Site

NW/4 NW/4 of Section 7, Township 20 South, Range 37 East

Lea County, New Mexico

Plains EMS Number: TNM Monument 18-Known

NMOCD Reference 1R-0124

Dear Ms. Reynolds:

The New Mexico Oil Conservation Division (NMOCD) has received and reviewed the above report submitted on behalf of Plains Marketing, L.P. (Plains) by Nova Safety and Environmental and dated April 2005. This report is accepted with the following understandings and conditions:

- 1. Quarterly sampling and annual reporting will continue throughout 2005.
- 2. Passive product recovery will continue on a weekly basis throughout 2005.
- 3. Plains may plug and abandon monitor well MW-2 using a slurry of 3% 5% bentonite.

NMOCD acceptance does not relieve Plains of responsibility should its operations at this site prove to have been harmful to public health or the environment. Nor does it relieve Plains of its responsibility to comply with the rules and regulations of any other federal, state, or local governmental entity.

If you have any questions, contact me at (505) 476-3492 or ed.martin@state.nm.us

NEW MEXICO OIL CONSERVATION DIVISION

Edwin E. Martin

Environmental Bureau

Cc:

NMOCD, Hobbs

& Martin

March 29, 2005

Mr. Ed Martin
New Mexico Oil Conservation Division
Environmental Bureau
1220 South St. Francis Drive
Santa Fe. New Mexico 87505

Re:

Plains All American - Annual Monitoring Reports

21 Sites in Lea County, New Mexico

Dear Mr. Martin:

Plains All American is an operator of crude oil pipelines and terminal facilities in the state of New Mexico. Plains All American actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and work plans developed in consultation with the New Mexico Oil Conservation Division (NMOCD). In accordance with the rules and regulations of the NMOCD, Plains All American hereby submits our Annual Monitoring reports for the following sites:

LF-59 TNM 97-04 HDO 90-23 Darr Angell 2 **SPS 11** TNM 97-17 TNM 97-18 TNM 98-05A Red Byrd # 1 **Bob Durham** Monument Site 11 Darr Angell 1 **TNM 98-05B** Monument Site 2 Monument Site 10 Monument Site 17 Monument Site 18 Monument Barber 10" PL Darr Angell 4 Monument to Lea 6" Texaco Skelly "F"

Section 32, Township 19 South, Range 37 East, Lea County Section 11, Township 16 South, Range 35 East, Lea County Section 06, Township 20 South, Range 37 East, Lea County Section 11,14, Township 15 South, Range 37 East, Lea County Section 18, Township 18 South, Range 36 East, Lea County Section 21, Township 20 South, Range 37 East, Lea County Section 28, Township 20 South, Range 37 East, Lea County Section 26, Township 21 South, Range 37 East, Lea County Section 01, Township 20 South, Range 36 East, Lea County Section 31, 32, Township 19 South, Range 37 East, Lea County Section 30, Township 19 South, Range 37 East, Lea County Section 11, Township 15 South, Range 37 East, Lea County Section 26, Township 21 South, Range 37 East, Lea County Section 6, 7, Township 20 South, Range 37 East, Lea County Section 32, Township 19 South, Range 37 East, Lea County Section 29, Township 19 South, Range 37 East, Lea County Section 07, Township 20 South, Range 37 East, Lea County Section 32, Township 19 South, Range 37 East, Lea County Section 11, 02, Township 15 South, Range 37 East, Lea County Section 05, Township 20 South, Range 37 East, Lea County Section 21, Township 20 South, Range 37 East, Lea County

Nova prepared these documents and has vouched for their accuracy and completeness, and on behalf of Plains All American, I have personally reviewed the documents and interviewed Nova in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that Plains All American submits the enclosed Annual Monitoring Reports for the above 21 facilities.

If you have any questions or require further information, please contact me at (505) 441-0965.

Sincerely,

Camille Reynolds

Remediation Coordinator

Plains All American

CC: Larry Johnson, NMOCD, Hobbs, NM

For CR

Enclosures

September 23, 2005

Mr. Ed Martin New Mexico Oil Conservation Division **Environmental Bureau** 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re:

Plains Pipeline - Plugging and Abandonment of Monitor Wells

8 Sites in Lea County, New Mexico

of GO.Z.R.

Dear Mr. Martin:

Please find attached for your review the Plugging and Abandonment of Monitor Wells Reports for the following Plains sites:

Bob Durham Darr Angell #2 HDO 90-23 **TNM Monument 17** /R-/24 TNM Monument 18 TNM 97-04 TNM 97-18

Section 32, Township 19 South, Range 37 East, Lea County Sections 11 and 14, Township 15 South, Range 37 East, LeaCounty Section 6, Township 20 South, Range 37 East, Lea County Section 29, Township 19 South, Range 37 East, Lea County Section 7, Township 20 South, Range 37 East, Lea County Section 11, Township 16 South, Range 35 East, Lea County Section 28, Township 20 South, Range 37 East, Lea County Section 18, Township 18 South, Range 36 East, Lea County

If you have any questions or require further information, please contact me at (505) 441-0965.

Sincerely,

SPS-11

Camille Revnoids

Remediation Coordinator

Plains Pipeline

Enclosures

K.E.I. Consultants, Inc.

Project Name: Monument

Project ID: 610057 Site #18

Project Manager: Ann Baker Project Location: Site #18 Date Received in Lab: May 6, 1997 10:00 by RT

Date Report Faxed: May 22, 1997

XENCO contact: Carlos Castro/Edward Yonemoto

Metals (ICP) Analyzed by EPA 6010 Aluminum		\	te Analyzed	- Analytica	Paculte	ppm (mg/L - r	114
Aluminum	·	10. 10. 1007			ricounto	ppm (mg/c - i	ng/Kg)
		May 13, 1997	May 13, 1997				
the state of the s		2.67	48.6				
Arsenic		< 0.05	< 0.05				
Barium		0.30	3.33				
Beryllium		< 0.005	< 0.005				
Cadmium		< 0.01	< 0.01				
Calcium		1000	3600				
Chromium		< 0.05	< 0.05				
Cobalt		< 0.10	< 0.10			·	
Iron	**	0.88	£26*7				
Lead		< 0.05	< 0.05				
Magnesium		627	1070				
Manganese		< 0.20	@1971				
Molybdenum		< 0.20	< 0.20				
Potassium		36.3	63.4				
Silver		< 0.02	< 0.02				
Sodium		2150	2390				
Tin		0.25	10.2				
Vanadium	*	< 0.05	0.35				
Zinc		< 0.25	< 0.25				
Nickel		< 0.10	< 0.10				
Copper		< 0.25	< 0.25				
Boron		0.57	0.70				
Silicon		26.0	8.24				
Strontium		16.0	16.0				

report summary, and the entire report it represents, has been made for the exclusive and confidential of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Edward H. Venemoto, Ph.D. QAVQC Manager

K.E.I. Consultants, Inc.

Project Name: Monument

Project ID: 610057 Site #18

Project Manager: Ann Baker Project Location: Site #18 Date Received in Lab: May 6, 1997 10:00 by RT

Date Report Faxed: May 22, 1997

XENCO contact: Carlos Castro/Edward Yonemoto

Analysis Requested	Lab (D: Field (D: Depth:	171050-001 MW-2	171050-002 MW-3				
Mercury, Tot Analyzed by EPA 7	470	Da	te Analyzed	- Analytica	l Resuits	ppm (mg/L	- mg/Kg)
		May 12, 1997	May 12, 1997				
Mercury		< 0.0010	< 0.0010				
BTEX Analyzed by EPA 8020		Da	te Analyzed	- Analytica	l Results	ppm (mg/L	- mg/Kg)
		May 9, 1997	May 9, 1997				
Benzene		0.010	0.006				
Toluene		< 0.001	< 0.001				
Ethylbenzene		0.060	< 0.001				
m,p-Xylenes		0.022	< 0.002				
o-Xylene		< 0.001	< 0.001			-	
Total BTEX		0.092	0.006				
PAH Analyzed by EPA 8100		Da	te Analyzed	- Analytica	Results	ppm (mg/L	- mg/Kg)
		May 15. 1997					
Acenaphthene		< 0.002					
Acenaphthylene		< 0.002			,	-	
Anthracene		< 0.002					
Benzo(a)anthracene		< 0.002		· · ·			
Benzo(a)pyrene		< 0.002					
Benzo(b)fluoranthene		< 0.002					
Benzo(g,h,i)perylene		< 0.002					
Benzo(k)fluoranthene		< 0.002			——		-
Chrysene		< 0.002					_
Dibenzo(a,e)pyrene		< 0.002					
Dibenzo(a,h)anthracene		< 0.002					
Dibenz(a,j)acridine		< 0.002					_
Fluoranthene		< 0.002					
Fluorene		< 0.002					
		1	i i	i	T .	1	1

s report summary, and the entire report it represents, has been made for the exclusive and confidential se of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

K.E.I. Consultants, Inc. *Project Name: Monument*

Project ID: 610057 Site #18

Project Manager: Ann Baker Project Location: Site #18

Date Received in Lab: May 6, 1997 10:00 by RT

Date Report Faxed: May 22, 1997

XENCO contact: Carlos Castro/Edward Yonemoto

A 1 - 1 - 5	Lab ID:	1	171050-002					
Analysis Requested	Field ID:	MW-2	MW-3					
	Depth:							
Indeno(1,2,3-cd)pyrene		< 0.002						
3-Methylcholanthrene		< 0.002						-
Naphthalene		< 0.002	1					
Phenanthrene		< 0.002						
Pyrene	•	< 0.002						
Dibenz(a,h)acridine		< 0.002						
Benzo(j)fluoranthene		< 0.002						
7H-Dibenzo(c,g)carbazole		< 0.002						
Dibenzo(a,h)pyrene		< 0.002		-				
Dibenzo(a,i)pyrene	-	< 0.002						
Bicarbonate Analyzed by SM 450	00CO2D	Da	te Analyzed	- Analytica	Results	ppm (r	ng/L - r	ng/Kg)
Bicarbonate Analyzed by SM 450	00CO2D	Da May 10, 1997	te Analyzed May 10, 1997	- Analytica	Results	ppm (r	ng/L - r	ng/Kg)
Bicarbonate Analyzed by SM 450	00CO2D		· · · · · · · · · · · · · · · · · · ·	- Analytica	Results	ppm (r	ng/L - r	ng/Kg)
Bicarbonate		May 10, 1997 271	May 10, 1997 279	AnalyticaAnalytica				ng/Kg)
Bicarbonate		May 10, 1997 271	May 10, 1997 279					
· · · · · · · · · · · · · · · · · · ·		May 10, 1997 271 Da	May 10, 1997 279 te Analyzed					
Bicarbonate Carbonate Analyzed by SM45000 Carbonate		May 10, 1997 271 Da May 10, 1997 < 1.0	May 10, 1997 279 te Analyzed May 10, 1997	- Analytica	Results		ng/L - r	ng/Kg)
Bicarbonate Carbonate Analyzed by SM45000 Carbonate	CO2D	May 10, 1997 271 Da May 10, 1997 < 1.0	May 10, 1997 279 te Analyzed May 10, 1997 < 1.0	- Analytica	Results	ppm (n	ng/L - r	ng/Kg)
Bicarbonate Carbonate Analyzed by SM45000	CO2D	May 10, 1997 271 Da May 10, 1997 < 1.0 Da	May 10, 1997 279 te Analyzed May 10, 1997 < 1.0 te Analyzed	- Analytica	Results	ppm (n	ng/L - r	ng/Kg)
Bicarbonate Carbonate Analyzed by SM45000 Carbonate TDS Analyzed by EPA 160.1 Total Dissolved Solids	CO2D	May 10, 1997 271 Da May 10, 1997 < 1.0 Da May 9, 1997 16300	May 10, 1997 279 te Analyzed May 10, 1997 < 1.0 te Analyzed May 9, 1997 17200	- Analytica	Results	ppm (n	ng/L - r ng/L - r	ng/Kg) ng/Kg)
Bicarbonate Carbonate Analyzed by SM45000 Carbonate TDS Analyzed by EPA 160.1 Total Dissolved Solids	CO2D	May 10, 1997 271 Da May 10, 1997 < 1.0 Da May 9, 1997 16300	May 10, 1997 279 te Analyzed May 10, 1997 < 1.0 te Analyzed May 9, 1997 17200	- Analytica - Analytica	Results	ppm (n	ng/L - r ng/L - r	ng/Kg) ng/Kg)
Bicarbonate Carbonate Analyzed by SM45000 Carbonate TDS Analyzed by EPA 160.1 Total Dissolved Solids	CO2D	May 10, 1997 271 Da May 10, 1997 < 1.0 Da May 9, 1997 16300 Da	May 10, 1997 279 te Analyzed May 10, 1997 < 1.0 te Analyzed May 9, 1997 17200 te Analyzed	- Analytica - Analytica	Results	ppm (n	ng/L - r ng/L - r	ng/Kg) ng/Kg)
Bicarbonate Carbonate Analyzed by SM45000 Carbonate TDS Analyzed by EPA 160.1 Total Dissolved Solids Anions Analyzed by EPA 300.0	CO2D	May 10, 1997 271 Da May 10, 1997 < 1.0 Da May 9, 1997 16300 Da May 8, 1997	May 10, 1997 279 te Analyzed May 10, 1997 < 1.0 te Analyzed May 9, 1997 17200 te Analyzed May 8, 1997 May 8, 1997	- Analytica - Analytica	Results	ppm (n	ng/L - r ng/L - r	ng/Kg) ng/Kg)
Bicarbonate Carbonate Analyzed by SM45000 Carbonate TDS Analyzed by EPA 160.1 Total Dissolved Solids Anions Analyzed by EPA 300.0 Sulfate	CO2D	May 10, 1997 271 Da May 10, 1997 < 1.0 Da May 9, 1997 16300 Da May 8, 1997 368 757	May 10, 1997 279 te Analyzed May 10, 1997 < 1.0 te Analyzed May 9, 1997 17200 te Analyzed May 8, 1997 May 8, 1997 356	- Analytica - Analytica	Results	ppm (n	ng/L - r	ng/Kg) ng/Kg) ng/Kg)

s report summary, and the entire report it represents, has been made for the exclusive and confidential se of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Edward H. Yonemoto, Ph.D. QA/QC Manager

K.E.I. Consultants, Inc.

Project Name: Monument

Project ID: 610057 Site #18

Project Manager: Ann Baker Project Location: Site #18 Date Received in Lab: May 6, 1997 10:00 by RT

Date Report Faxed: May 22, 1997

XENCO contact: Carlos Castro/Edward Yonemoto

Analysis Requested	Lab ID: Field ID: Depth:	171050-001 MW-2	171050-002 MW-3		
Total Inorganic Carbon		46.7	44.8		

report summary, and the entire report it represents, has been made for the exclusive and confidential of K.E.I. Consultants, Inc..

The interpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Edward Conemoto, Ph.D.

Metals by ICP **EPA 6010**

Date Validated: May 15, 1997 09:00

Analyst: SA

Date Analyzed: May 13, 1997 11:30

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

BLANK	SPIKE	ANAL	YSIS
-------	-------	------	------

Manual M		[A]	[B]	[C]	[D]	[E]	(F)	[G]
Manual M		Blank	Blank Spike	Blank	Method	QC	LIMITS	
Mg/L mg/L mg/L mg/L mg/L % % Aluminum < 0.01 0.72 1.00 0.01 72.0 70-125 Arsenic < 0.050 0.869 1.000 0.050 86.9 70-125 Barium < 0.002 0.429 0.500 0.002 85.8 70-125 Beryllium < 0.0050 0.1808 0.2000 0.0050 90.4 70-125 Boron < 0.03 1.20 1.56 0.03 76.9 70-125 Cadmium < 0.010 0.162 0.200 0.010 81.0 70-125 Calcium < 0.01 1.82 2.00 0.01 91.0 70-125 Calcium < 0.013 0.433 0.500 0.013 86.6 70-125 Calcium < 0.013 0.433 0.500 0.013 86.6 70-125 Calcium < 0.003 0.423 0.500 0.003 84.6 70-125 Cabalit <t< th=""><th>Parameter</th><th>Result</th><th>Result</th><th>Spike</th><th>Detection</th><th>Blank Spike</th><th>Recovery</th><th>Qualifier</th></t<>	Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
Aluminum				Amount	Limit	Recovery	Range	
Arsenic		mg/L	mg/L	mg/L	mg/L	%	%	
Barium	Aluminum	< 0.01	0.72	1.00	0.01	72.0	70-125	
Beryllium < 0.0050 0.1808 0.2000 0.0050 90.4 70-125 Boron < 0.03	Arsenic	< 0.050	0.869	1.000	0.050	86.9	70-125	
Soron Communication Comm	Barium	< 0.002	0.429	0.500	0.002	85.8	70-125	
Cadmium < 0.010 0.162 0.200 0.010 81.0 70-125 Calcium < 0.01 1.82 2.00 0.01 91.0 70-125 mium < 0.013 0.433 0.500 0.013 86.6 70-125 Cobalt < 0.003 0.423 0.500 0.003 84.6 70-125 Copper < 0.008 0.443 0.500 0.008 88.6 70-125 Iron < 0.006 0.814 1.000 0.006 81.4 70-125 Lead < 0.03 0.85 1.00 0.03 85.0 70-125 Magnesium < 0.01 1.79 2.00 0.01 89.5 70-125 Nickel < 0.03 0.46 0.50 0.03 92.0 70-125 Potassium < 0.0250 2.1275 2.0000 0.0250 106.4 70-125 Silver < 0.010 0.334 0.400 0.010 83.5 70-125 Sodium	Beryllium	< 0.0050	0.1808	0.2000	0.0050	90.4	70-125	
Calcium < 0.01 1.82 2.00 0.01 91.0 70-125 mium < 0.013 0.433 0.500 0.013 86.6 70-125 Cobalt < 0.003 0.423 0.500 0.003 84.6 70-125 Copper < 0.008 0.443 0.500 0.008 88.6 70-125 Iron < 0.006 0.814 1.000 0.006 81.4 70-125 Lead < 0.03 0.85 1.00 0.03 85.0 70-125 Magnesium < 0.01 1.79 2.00 0.01 89.5 70-125 Nickel < 0.03 0.46 0.50 0.03 92.0 70-125 Potassium < 0.0250 2.1275 2.0000 0.0250 106.4 70-125 Silver < 0.010 0.334 0.400 0.010 83.5 70-125 Sodium < 0.0250 1.8363 2.0000 0.0250 91.8 70-125 Strontium	Boron	< 0.03	1.20	1.56	0.03	76.9	70-125	
Magnesium	Cadmium	< 0.010	0.162	0.200	0.010	81.0	70-125	
Cobalt < 0.003 0.423 0.500 0.003 84.6 70-125 Copper < 0.008	Calcium	< 0.01	1.82	2.00	0.01	91.0	70-125	
Copper < 0.008 0.443 0.500 0.008 88.6 70-125 Iron < 0.006	mium	< 0.013	0.433	0.500	0.013	86.6	70-125	
Iron < 0.006 0.814 1.000 0.006 81.4 70-125 Lead < 0.03	Cobalt	< 0.003	0.423	0.500	0.003	84.6	70-125	
Lead < 0.03 0.85 1.00 0.03 85.0 70-125 Magnesium < 0.01	Copper	< 0.008	0.443	0.500	0.008	88.6	70-125	
Magnesium < 0.01 1.79 2.00 0.01 89.5 70-125 Nickel < 0.03	Iron	< 0.006	0.814	1.000	0.006	81.4	70-125	
Nickel < 0.03 0.46 0.50 0.03 92.0 70-125 Potassium < 0.0250	Lead	< 0.03	0.85	1.00	0.03	85.0	70-125	
Potassium < 0.0250 2.1275 2.0000 0.0250 106.4 70-125 Silver < 0.010	Magnesium	< 0.01	1.79	2.00	0.01	89.5	70-125	
Silver < 0.010 0.334 0.400 0.010 83.5 70-125 Sodium < 0.0250	Nickel	< 0.03	0.46	0.50	0.03	92.0	70-125	
Sodium < 0.0250 1.8363 2.0000 0.0250 91.8 70-125 Strontium < 0.025	Potassium	< 0.0250	2.1275	2.0000	0.0250	106.4	70-125	
Strontium < 0.025 1.171 1.560 0.025 75.1 70-125 Vanadium < 0.00	Silver	< 0.010	0.334	0.400	0.010	83.5	70-125	
Vanadium < 0.00 0.44 0.50 0.00 88.0 70-125	Sodium	< 0.0250	1.8363	2.0000	0.0250	91.8	70-125	
0.00 0.00 0.00 7,0-123	Strontium	< 0.025	1.171	1.560	0.025	75.1	70-125	
7000 0.000 0.000 0.000 0.000 0.000	Vanadium	< 0.00	0.44	0.50	0.00	88.0	70-125	
0.000 0.431 0.500 0.008 86.2 70-125	Zinc	< 0.008	0.431	0.500	0.008	86.2	70-125	

Blank Spike Recovery [E] = 100*(B-A)/(C)

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, P

∠∠XA/QC Manager

Houston - Dailas - San Antonio

Metals by ICP **EPA 6010**

Date Validated: May 15, 1997 09:00

Analyst: SA

Date Analyzed: May 13, 1997 19:46

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX	DUPLICATI	E ANALYS	SIS	
Q.C. Sample ID 171051- 001 Parameter	[A] Sample Result	[B] Duplicate Result mg/L	[C] Method Detection Limit mg/L	[D] QC Relative Difference	[E] LIMITS Relative Difference	[F] Qualifier
Aluminum	21.16	16.94	0.01	22.2	25.0	
Arsenic	< 0.050	< 0.050	0.050	N.C	25.0	
Barium	0.746	0.766	0.002	2.6	25.0	
Beryllium	< 0.0050	< 0.0050	0.0050	N.C	25.0	
Beron	0.148	0.139	0.025	6.3	25.0	
Cadmium	< 0.010	< 0.010	0.010	N.C	25.0	
Calcium	1170	1110	0.01	5.3	25.0	
Chromium	0.039	0.039	0.013	0.0	25.0	
Cobalt	0.011	0.013	0.003	16.7	25.0	
Copper	0.014	0.014	0.008	0.0	25.0	
Iron .	13.43	13.26	0.01	1.3	25.0	
Lead	< 0.025	< 0.025	0.025	N.C	25.0	
Magnesium	39.95	37.77	0.01	5.6	25.0	
Manganese	0.291	0.300	0.006	3.0	25.0	
Molybdenum	< 0.025	< 0.025	0.025	N.C	25.0	
Nickel	< 0.025	0.157	0.025	N.C	25.0	
Potassium	7.841	7.730	0.025	1.4	25.0	
Silicon	24.49	16.18	0.03	40.9	25.0	А
Silver	< 0.010	< 0.010	0.010	N.C	25.0	

(A) Variability in duplicate measurement attributed to sample non-homogeneity. Relative Difference [D] = 200*(B-A)/(B+A)

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

텀dward H. Yonemoto, 만LD.

∠QA/QC Manager

Page

EPA 6010 Metals by ICP

Date Validated: May 15, 1997 09:00

Analyst: SA

Date Analyzed: May 13, 1997 19:46

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX	DUPLICATI	E ANALYS	is	
Q.C. Sample ID 171051- 001	[A] Sample Result	[B] Duplicate Result	[C] Method Detection	[D] QC Relative	[E] LIMITS Relative	[F] Qualifier
Parameter	mg/L	mg/L	Limit mg/L	Difference %	Difference %	
Sodium	80.69	76.85	0.03	4.9	25.0	
Strontium	2.164	2.036	0.025	6.1	25.0	-
Tin	5.533	5.160	0.025	7.0	25.0	
Vanadium	0.054	0.058	0.003	7.1	25.0	
Zinc	0.090	0.087	0.008	3.4	25.0	

(A) Variability in duplicate measurement attributed to sample non-homogeneity. Relative Difference [D] = $200^{\circ}(B-A)/(B+A)$

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Pb.D.

QA/QC Manager

Elda (2010) Metals by ICP

Date Validated: May 15, 1997 09:00

Date Analyzed: May 13, 1997 11:30

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: SA

Matrix: Liquid

	2	MATRIX DUPI	LICATE ANALYSIS	VALYSIS			MATRIX	MATRIX SPIKE ANALYSIS	rsis	
	[A]	[8]	[5]	(a)	(E)	E	[9]	E	Ξ	[9]
	Sample	Duplicate	Method	သွ	LIMITS	Matrix Spike	Matrix	ОС	LIMITS	•
	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Spike	Recovery	Onalifier
Parameter			Limit	Difference	Difference		Amount	Recovery	Range	
	mg/L	mg/L	mg/L	%	%	mg/L	mg/L	%	· %	
Aluminum	30.68	30.75	0.01	0.2	25.0	40.7	12.5	8 62	70.125	
Arsenic	< 0.050	< 0.050	0.050	N.C	25.0	0.89	1.00	88.7	70-125	
Barium	1.031	1.233	0.002	17.8	25.0	1.25	0.50	44.6	70-125	a
Beryllium	< 0.0050	< 0.0050	0.0050	N.C	25.0	0.179	0.200	89.3	70-125	
Boron	0.173	0.178	0.025	2.8	25.0	2.51	3.13	74.8	70-125	
Cadmium	< 0.010	< 0.010	0.010	N.C	25.0	0.16	0.20	79.5	70.125	
Calcium	114	134	0.01	16.1	25.0	133	12.5	152.0	70-125	0
Chromium	0.031	0.030	0.013	3.3	25.0	0.44	0.50	81.0	70-123	a V
Cobalt	0.037	0.032	0.003	14.5	25.0	0.39	0.50	8 69	70-125	
Copper	0.026	0.030	0.008	14.3	25.0	0.46	0.50	86.8	70-125	3
Iron	38.92	37.58	0.01	3.5	25.0	45.1	12.5	49.5	70-125	8 4
Lead	< 0.025	< 0.025	0.025	N.C.	25.0	0.80	1.00	80.2	70-125	2
Magnesium	21.29	23.91	0.01	11.6	25.0	31.9	12.5	85.0	70-125	

(A) High analyte concentration affects spike recovery.

(B) Post-digestion spike within acceptance limits.

Relative Difference [D] = 200*(B-A)/(B+A) Matrix Spike Recovery [H] = 100*(F-A)/[G]

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.D.

Houston - Dallas - San Antonio

EIPA 6010 Medals by ICI

Date Validated: May 15, 1997 09:00

Date Analyzed: May 13, 1997 11:30

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: SA Matrix: Liquid

	2	MATRIX DUPL	ICATE ANALYSIS	ALYSIS			MATRIX	MATRIX SPIKE ANALYSIS	SIS	
	[A]	[8]	[0]	[0]	(E)	[6]	[0]	Œ	E	[0]
	Sample	Duplicate	Method	သွ	LIMITS	Matrix Spike	Matrix	OC	LIMITS	
	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Spike	Recovery	Qualifier
			Limit	Difference	Difference		Amount	Recovery	Range	
rarameter	mg/L	mg/L	mg/L	%	%	mg/L	mg/L	%	%	
Manganese	1.263	1.503	900.0	17.4	25.0	12.16	12.50	87.2	70-125	
Molybdenum	< 0.025	< 0.025	0.025	N.C	25.0	0.55	0.63	88.6	70-125	
Nickel	< 0.025	< 0.025	0.025	NC	25.0	0.40	0.50	80.2	70-125	
Potassium	7.715	8.064	0.025	4.4	25.0	19.08	12.50	6.06	70-125	
Silver	< 0.010	< 0.010	0.010	N.C.	25.0	0.33	0.40	81.3	70-125	
Sodium	56.80	67.17	0.03	16.7	25.0	72.3	12.5	123.7	70-125	
Strontium	0.921	1.095	0.025	17.3	25.0	3.05	3.13	68.1	70-125	æ
Vanadium	0.128	0.142	0.003	10.4	25.0	0.51	0.50	77.2	70-125	
Zinc	0.180	0.201	0.008	11.0	25.0	0.57	0.50	78.6	70-125	

(A) High analyte concentration affects spike recovery.

(B) Post-digestion spike within acceptance limits.

Relative Difference [D] = 200*(B-A)/(B+A) Matrix Spike Recovery [H] = 100*(F-A)/[G]

N.C. = Not calculated, data below detection limit

N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.D.

SWEEG- 7470 Total Mercury

Date Validated: May 15, 1997 14:15

Date Analyzed: May 12, 1997 13:22

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: EZ

Matrix: Liquid

		MATRIX DUPLICATE ANALYSIS	ICATE AN	ALYSIS		· •	MATRIX	MATRIX SPIKE ANALYSIS	SIS/	
	[Y]	<u>[8]</u>	[5]	[0]	[E]	E	[9]	H	E	[9]
	Sample	Duplicate	Method	ОС	LIMITS	Matrix Spike	Matrix	ЭÖ	LIMITS	
	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Spike	Recovery	Qualifier
			Limit	Difference	Difference	·	Amount	Recovery	Range	
רמומווי	mg/L	mg/L	mg/L	%	%	mg/L	mg/L	%	%	
Mercury	< 0.0010	< 0.0010	0.0010	N.C	25.0	0.0025	0.0025	100.0	70-125	

20x/QC Manager

Houston - Dallas - San Antonio

Matrix Spike Recovery [H] = 100*(F-A)/[G]
N.C. = Not calculated, data below detection limit
N.D. = Below detection limit
All results are based on MDL and validated for QC purposes only

Relative Difference [D] = 200*(B-A)/(B+A)

~

SWR46-7470 Total Merchiy

Date Validated: May 15, 1997 14:15

Date Analyzed: May 12, 1997 12:58

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: EZ Matrix: Liquid

	2	MATRIX DUPLICATE ANALYSIS	ICATE AN	ALYSIS			MATRIX	MATRIX SPIKE ANALYSIS	SIS	
	[A]	[8]	[0]	[0]	[3]	E	[9]	E	Ξ	[9]
de-d'-company	Sample	Duplicate	Method	သွ	LIMITS	Matrix Spike	Matrix	ac	LIMITS	
	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Spike	Recovery	Qualifier
			Limit	Difference	Difference		Amount	Recovery	Range	
rarameter	mg/L	mg/L	mg/L	%	%	mg/L	mg/L	%	%	
Мегсигу	< 0.0010	< 0.0010	0.0010	S.C.	25.0	0.0026	0.0025	104.0	70-125	

Haward H. Yohemoto Ph.D.

Houston - Dallas - San Antonio

N.C. = Not calculated, data below detection limit
N.D. = Below detection limit
All results are based on MDL and validated for QC purposes only

Relative Difference [D] = 200*(B-A)/(B+A) Matrix Spike Recovery [H] = 100*(F-A)/[G]

SW846-7470 Total Mercury

Date Validated: May 15, 1997 14:15

Analyst: EZ

Date Analyzed: May 12, 1997 12:55

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

			BLANK SPI	KE ANALYS	BIS		-
	[A]	[B]	[C]	[D]	[E]	[F]	[G]
	Blank	Blank Spike	Blank	Method	QC	LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
	ļ		Amount	Limit	Recovery	Range	
	mg/L	mg/L	mg/L	mg/L	%	%	
Mercury	< 0.0010	0.0022	0.0025	0.0010	88.0	70-125	

Blank Spike Recovery [E] = 100*(B-A)/(C)
Not calculated, data below detection limit
N.b. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.D.

SW- 846 5030/8020 BTEX

0.2410

0.1150

0.2000

0.1000

0.0020

0.0010

Date Validated: May 12, 1997 14:50

Analyst: IF

Date Analyzed: May 9, 1997 10:17

Parameter

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

[A]

Blank

Resuit

ppm

< 0.0010

< 0.0010

< 0.0010

< 0.0020

< 0.0010

	BLANK SPII	KE ANALYS	SIS		
(B)	[C]	[D]	[E]	[F]	[G]
Blank Spike	Blank	Method	QC	LIMITS	
Result	Spike	Detection	Blank Spike	Recovery	Qualifier
	Amount	Limit	Recovery	Range	
ppm	ppm	ppm	%	%	
0.1130	0.1000	0.0010	113.0	65-135	
0.1160	0.1000	0.0010	116.0	65-135	
0.1170	0.1000	0.0010	117.0	65-135	

120.5

115.0

65-135

65-135

Benzene

Toluene

Ethylbenzene

m,p-Xylenes

o-Xylene

Spike Recovery [E] = 100*(B-A)/(C) Not calculated, data below detection limit N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward H. Yonemoto, Ph.D. ∠QAVQC Manager

SW- 846 50:30/8020

Date Validated: May 12, 1997 14:50

Date Analyzed: May 9, 1997 13:42

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: IF

Matrix: Liquid

			MATR	IX SPIKE /	MATRIXS	PIKE DUPL	MATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY	RECOVERY			
	[v]	[8]	[0]	[<u>a</u>]	[=]	Matrix		[9]	[H]	[5]	5
	Sample	Matrix Spike	Matrix Spike	Matrix	Method	Limit	oc	ОС	သွ	Matrix Spike	
	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Matrix Spike	M.S.D.	Recovery	Qualifier
	-		Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
Farameter	mdd	mdd	mdd	mdd	mdd	*	%	%	%	%	
Benzene	< 0.0010	0.0868	0.0864	0.1000	0.0010	25.0	0.5	8.98	86.4	65-135	
Toluene	< 0.0010	0.1160	0.1120	0.1000	0.0010	25.0	3.5	116.0	112.0	65-135	
Ethylbenzene	< 0.0010	0.1180	0.1130	0.1000	0.0010	25.0	4.3	118.0	113.0	65-135	
m.p-Xylenes	< 0.0020	0.2420	0.2330	0.2000	0.0020	25.0	3.8	121.0	116.5	65-135	
o-Xylene	< 0.0010	0.1160	0.1120	0.1000	0.0010	25.0	3.5	116.0	112.0	65-135	

Edward Honemoto, Ph.D. QAVOC Manager

SW-846 8100 PAHs by GC-MS

Date Validated: May 15, 1997 17:56

Date Analyzed: May 14, 1997 22:20

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: MM

Matrix: Liquid

BLANK SPIKE / BLANK SPIKE DUPLICATE AND RECOVERY

	[V]	[8]	[5]	[a]	[E]	Blank	E	[6]	E	E	2
	Blank	Blank Spike	Blank Spike	Blank	Method	Limit	၁၀	သွ	တ္ထ	Blank Spike	<u>.</u> "
Parameter	Result	Result	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amonut	Limit	Difference	Difference	Recovery	Recovery	Range	
	mg/L	mg/L	mg/L	mg/L	mg/L	*	%	%	%	%	٠٠,
Acenaphthene	< 0.0020	0.0658	0.0670	0.1000	0.0020	31.0	1.8	65.8	0.79	46-118	
4-Chloro-3-Methylphenol	< 0.0020	0.0398	0.0332	0.1000	0.0020	42.0	18.1	39.8	33.2	23-97	
2-Chlorophenol	< 0.0020	0.0630	0.0644	0.1000	0.0020	40.0	2.2	63.0	64.4	27-123	
1,4-Dichlorobenzene	< 0.0020	0.0702	0.0724	0.1000	0.0020	28.0	3.1	70.2	72.4	36-97	
2,4-Dinitrotoluene	< 0.0020	0.0628	0.0632	0.1000	0.0020	38.0	9.0	62.8	63.2	24-96	
N-Nitroso-di-n-propylamine	< 0.0040	0.0742	0.0738	0.1000	0.0040	38.0	9.0	74.2	73.8	41-116	
4-Nitrophenol	< 0.0040	0.0250	0.0248	0.1000	0.0040	50.5	0.8	25.0	24.8	10-80	
Pentachlorophenol	< 0.0010	0.0738	0.0706	0.1000	0.0010	50.0	4.4	73.8	70.6	9-103	
Phenol	< 0.0010	0.0222	0.0224	0.1000	0.0010	42.0	6.0	22.2	22.4	12-89	
Pyrene	< 0.0020	0.0852	0.0840	0.1000	0.0020	31.0	1.4	85.2	84.0	26-127	
1,2,4-Trichlorobenzene	< 0.0010	0.0736	0.0714	0.1000	0.0010	28.0	3.0	73.6	71.4	39-98	

Spike Relative Difference [F] = 200*(B-C)/(B+C) Blank Spike Recovery [G] = 100*(B-A)/[D]

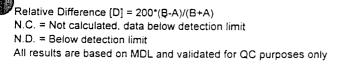
B.S.D. = Blank Spike Duplicate

B.S.D. Recovery [H] = 100*(C-A)/[D]
N.D. = Below detection limit or not detected
All results are based on MDL and validated for QC purposes

Edward H. Yonemoto, Ph.D. QA/QC Manager

Carbonate SM4500C02D

Date Validated: May 14, 1997 15:30


Analyst: CG

Date Analyzed: May 10, 1997 09:20

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX [OUPLICATI	E ANALYS	sis	
Q.C. Sample ID	[A]	[8]	(c)	[D]	E	[F]
	Sample	Duplicate	Method	QC	LIMITS	
171047- 001	Result	Result	Detection	Relative	Relative	Qualifier
Parameter	1		Limit	Difference	Difference	
Parameter	ppm	ppm	ppm	%	%	
Carbonate	< 1.00	< 1.00	1.00	N.C	25.0	

Edward H. Yonemoto, Ph.D. QA/QC Manager

SM 4500CO2D Bicarbonate

Date Validated: May 14, 1997 15:30

Analyst: CG

Date Analyzed: May 10, 1997 09:20

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX I	DUPLICATI	E ANALYS	IS	
Q.C. Sample ID	[A] Sample	[B] Duplicate	[C] Method	[D]	(E)	[F]
171047- 001	Result	Result	Detection Limit	Relative Difference	Relative Difference	Qualifier
Parameter	mg/L	mg/L	mg/L	%	%	
Bicarbonate	127	127	0.5	0.0	25.0	

Relative Difference [D] = 200*(B-A)/(B+A)

N.C. = Not calculated, data below detection limit

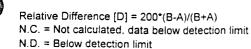
N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only

Edward Fr. Yonemoto, Ph.D. QA/QC Manager

EPA 160.1 Total Dissolved Solids

Date Validated: May 9, 1997 13:45


Analyst: CG

Date Analyzed: May 9, 1997 09:40

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		MATRIX	OUPLICATI	EANALYS	IS	
Q.C. Sample ID	[A]	[B]	[0]	[D]	[E]	[F]
	Sample	Duplicate	Method	QC	LIMITS	j
171046- 001	Result	Result	Detection	Relative	Relative	Qualifier
			Limit	Difference	Difference	
Parameter	mg/L	mg/L	mg/L	%	%	
Total Dissolved Solids	523	504	4.0	4.3	25.0	

All results are based on MDL and validated for QC purposes only

EPA 300.0 Anions by Ion Chromatography

Date Validated: May 9, 1997 12:00

Analyst: JS

Date Analyzed: May 8, 1997 12:55

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

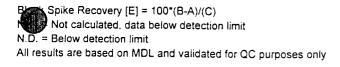
		MATRIX	UPLICATI	E ANALYS	IS	
Q.C. Sample ID	[A]	[B]	[C]	[0]	[E]	[F]
171046- 001	Sample Result	Duplicate Result	Method Detection	QC Relative	LIMITS Relative	Qualifier
Parameter	mg/L	mg/L	Limit mg/L	Difference %	Difference %	
Chloride	72.400	75.900	0.050	4.7	20.0	
Sulfate	59.60	62.30	0.10	4.4	20.0	

Relative Difference [D] = 200*(B-A)/(B+A)
N.C. = Not calculated, data below detection limit
N.D. = Below detection limit
All results are based on MDL and validated for QC purposes only

Edward Yonemoto, Ph.D. QA/QC Manager

MOD. 415.1 Total Inorganic Carbon

Date Validated: May 19, 1997 09:00


Analyst: IF

Date Analyzed: May 14, 1997 09:22

Matrix: Liquid

QA/QC Manager: Edward H. Yonemoto, Ph.D.

		I	BLANK SPIR	KE ANALYS	SIS		
	[A]	(B)	[C]	[D]	(E)	(F)	[G]
	Blank	Blank Spike	Blank	Method	QC	LIMITS	
Parameter	Result	Result	Spike	Detection	Blank Spike	Recovery	Qualifier
			Amount	Limit	Recovery	Range	
•	ppm	ppm	ppm	. ppm	%	%	
Total Inorganic Carbon	< 1.0	20.6	20.0	1.0	103.0	70-120	

Espa 3600.46 Anitoms by Ion Chremnedography

Date Validated: May 9, 1997 12:00

Date Analyzed: May 8, 1997 12:23

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: JS

Matrix: Liquid

BLANK SPIKE / BLANK SPIKE DUPLICATE AND RECOVERY

						•			-		
	X	181	[2]	2	<u> </u>						
	,	<u> </u>	Ξ	Ξ	<u> </u>	Blank	Ξ	<u></u>	Ξ	Ξ	Ξ
	Blank	Blank Spike	Blank Spike	Blank	Method	Limit	OC	သွ	OC	Blank Spike	
rafameter	Kesuit	Kesult	Duplicate	Spike	Detection	Relative	Spike Relative	Blank Spike	B.S.D.	Recovery	Qualifier
			Result	Amount	Limit	Difference	Difference	Recovery	Recovery	Range	
	mg/L	mg/L	mg/L	mg/L	mg/L	%	%	%	%	*	
Chloride	V 0 0 E	010			ĺ					2	
	00.00	0.0.0	2.090	2.000	0.050	20.0	4.0	101.4	101.8	70-125	
Sulfate	A 0 10	70 /	90 9	200	6,6						
		i.	90.0	00.0	0.0	20.0	 80	99.4	101.2	70-125	

Spike Relative Difference [F] = 200*(B-C)/(B+C) Blank Spike Recovery [G] = 100*(B-A)/[D]

B.S.D. = Blank Spike Duplicate B.S.D. Recovery [H] = 100*(C-A)/[D]

N.D. = Below detection limit or not detected

N.D. = Deriow defection fiffil of not defected All results are based on MDL and validated for QC purposes

Edward H. - Yonemoto, Ph.D. - QAVQC Manager

Total Encyclinate Carribon MOD. 415.1

Date Validated: May 19, 1997 09:00

Date Analyzed: May 14, 1997 11:41

QA/QC Manager: Edward H. Yonemoto, Ph.D.

Analyst: IF

Matrix: Liquid

	·	MATRIX DUPI	LICATE ANALYSIS	ALYSIS	,		MATRIX	MATRIX SPIKE ANALYSIS	'SIS	
	[A]	[8]	[0]	[a]	[E]	E	[0]	E	8	[9]
	Sample	Duplicate	Method	OG	LIMITS	Matrix Spike	Matrix	ОС	LIMITS	-
700 -6F01L	Result	Result	Detection	Relative	Relative	Result	Spike	Matrix Spike	Recovery	Qualifier
			Limit	Difference	Difference		Amount	Recovery	Range	-
rarameter	mdd	mdd	mdd	%	%	mdd	mdd	%	%	
Total Inorganic Carbon	56.61	55.44	1.00	2.1	20.0	74.6	20.0	0.06	70-120	

-DA/QC Manager

N.D. = Below detection limit
All results are based on MDL and validated for QC purposes only Relative Difference [D] = 200*(B-A)/(B+A)
Matrix Spike Recovery [H] = 100*(F-A)/[G]
N.C. = Not calculated, data below detection limit

Houston - Dallas - San Antonio

CUSTODY REPORT CHRONOLOGY OF SAMPLES ANALYTICAL CHAIN

K.E.I. Consultants, Inc.

Project ID: 610057 Site #18

Project Manager: Ann Baker Project Location: Site #18

Project Name: Monument

XENCO COC#: 1-71050

Date Received in Lab: May 6, 1997 10:00 by RT

XENCO Confact: Carlos Castro/Edward Yonemoto

	_		_																
		• .*				:	٠			1									
		Analysis	May 9, 1997 15:27 by IF	May 15, 1997 06:51 by MM	May 9, 1997 10:20 by CG	May 8, 1997 15:06 by JS	May 10, 1997 09:55 by CG	May 10, 1997 09:55 by CG	May 13, 1997 19:33 by SA	May 12, 1997 13:18 by EZ	May 14, 1997 12:38 by IF	May 9, 1997 15:46 by IF	May 9, 1997 10:25 by CG	May 8, 1997 15:30 by JS	May 10, 1997 10:00 by CG	May 10, 1997 10:00 by CG	May 13, 1997 19:40 by SA	May 12, 1997 13:19 by EZ	May 14, 1997 13:41 by IF
Date and Time		Extraction	May 9, 1997 by IF	May 9, 1997 by CY	May 8, 1997 by CG	May 8, 1997 by JS	May 10, 1997 by CG	May 10, 1997 by CG	May 9, 1997 by EZ	May 9, 1997 by EZ	May 14, 1997 by IF	May 9, 1997 by IF	May 8, 1997 by CG	May 8, 1997 by JS	May 10, 1997 by CG	May 10, 1997 by CG	May 9, 1997 by EZ	May 9, 1997 by EZ	May 14, 1997 by IF
Date	Addition	Requested																	
	Sample	Collected	May 2, 1997 18:45	May 2, 1997 18:45	May 2, 1997 18:45	May 2, 1997 18:45	May 2, 1997 18:45	May 2, 1997 18:45	May 2, 1997 18:45	May 2, 1997 18:45	May 2, 1997 18:45	May 2, 1997 18:05	May 2, 1997 18:05	May 2, 1997 18:05	May 2, 1997 18:05	May 2, 1997 18:05			
	Turn	Around	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard
	Hnite	3	wdd	mg/L	mg/L	mg/L	udd	mg/L	mg/L	mg/L	wdd	mdd	mg/L	mg/L	mdd	mg/L	mg/L	mg/L	undd
	Method	<u>o</u>	SW-846	SW-846 8100	EPA 160.1	EPA 300.0	SM4500CO2D	SM 4500CO2D	EPA 6010	SW846-7470	MOD. 415.1	SW-846	EPA 160.1	EPA 300.0	SM4500CO2D	SM 4500CO2D	EPA 6010	SW846-7470	MOD. 415.1
	Method	Name	втех	РАН	TDS	Anions	Carbonate	Bicarbonate	Metals (ICP)	Mercury, Tot	TIC Mod.	втех	TDS	Anions	Carbonate	Bicarbonate	Metals (ICP)	Mercury, Tot	TIC Mod.
	Lab. ID		171050-001 BTEX									171050-002 BTEX							
	Field ID		V-2									V-3							
L			1 MW-2	7	က	4	2	9	_	&	6	10 MW-3	=	12	13	4	15	16	17

11381 Meadowgen Suite L Houston, Texas 77082 (713) 589-0695 Fax (713) 589-0695

Page / o

			þ	< ₽	ONLY		*	-	N	6	4	3	9	_	8	æ	ρ				
Contractor COC #	Quote #:	P.O. No:			ASAP	Alo	H essett														
				57	VOINT	13	NO1[47											ā			
nent				<u> </u>	$\frac{1}{\sqrt{2}}$.09 00:	105 C											Remarks			
No coolers this shipment:	\langle	i		<u> </u>	5/1	9018 13/1) H##														•
ors this	5	S.		2000												·		TIME			9 <i>0</i> /
80 0	arrior.	Airbill No.		- and	0508	DEO.	a) XSTB B) HATT														75
2 2					-20			7	19									DATE			56.97 1000
	Γ		_				<u> </u>													-	- \$-~ <u>`</u>
Frans (600) 553-0575	1	SAN Antonio 1x	Project Checker Harthet	Project Marager Ann Baka	Froged No. 6/10057 51/4 #1/8	Preservative Unl Dies Ker Unknown	be Other PtT No: Tank No: Sample Description											Received by: (Signature)			Regived For Jacobs by
Æ		0	2	E.	P.		Contabrar Size Type P, G											TIME	9600		
		S.te 100				NOL	S											DATE TIB	25.47 00		
ant		Workland Drive	tro	#18		SAMPLE CHARACTERIZATION	Time P H	1845	1805									Spratured			
Consultants		37/26	Jonom	Site		AMPLE	Date	L5-2-S	5247						ļ			N			,
Contractor KET (c		4800 1	Project Name Monument	Project Location	Sempler Signature	S	Field ID	5 7-MW	MW-3			S	•		•	3	2	Relinquighed the		11	

Precision Analytical Services

September 20, 2004

Mr. Ed Martin New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains Marketing, L.P. (formerly Link Energy) Remediation Sites

Various Locations in Lea County

Dear Mr. Martin:

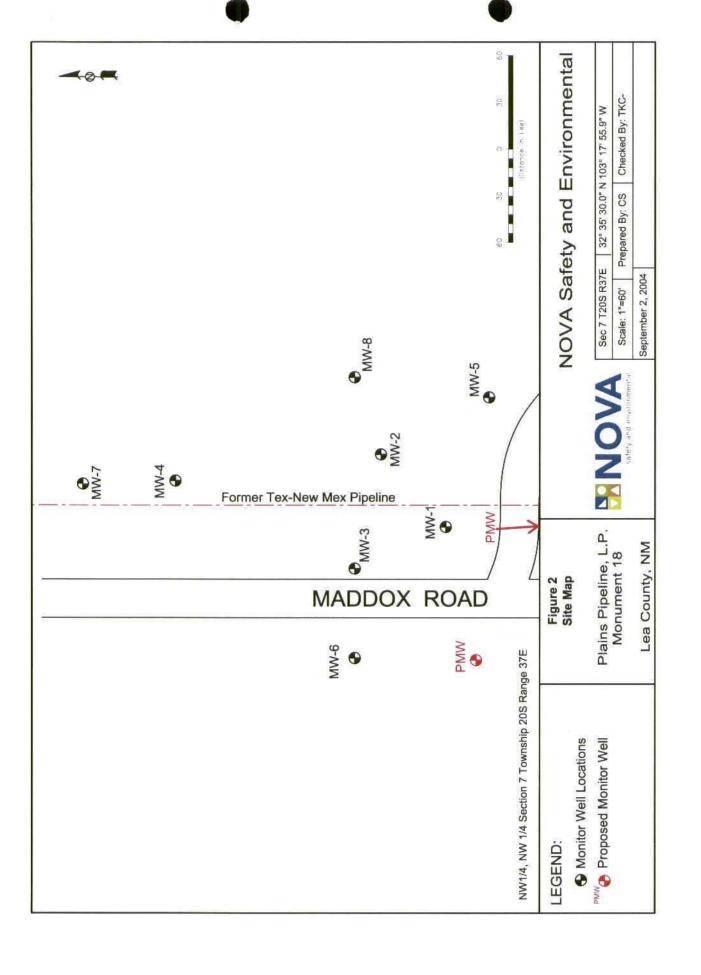
Based on the results of our ongoing groundwater monitoring and sampling program at several of our remediation and groundwater monitoring sites in Lea County, we have identified the need for additional groundwater monitor and/or recovery wells at the flowing sites.

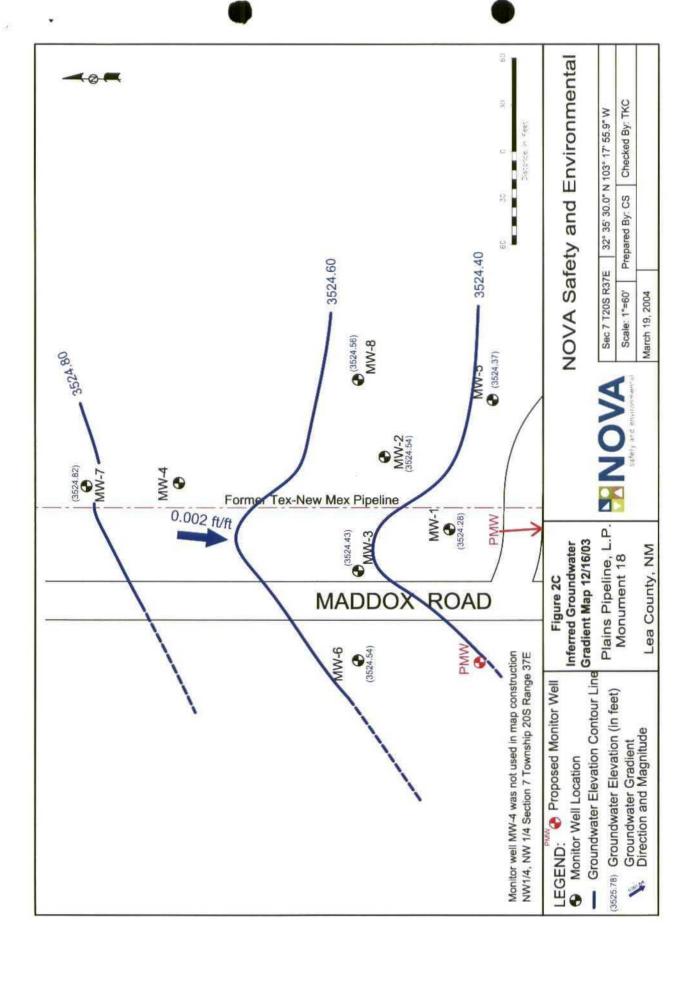
Site Name	Plains EMS No.	Site Location	Number of Wells				
Jct 34 to Lea	2002-10286	Section 21, T20S, R37E	3				
Livingston Line-Bob	2001-11043	Section 3, T21S, R37E	2				
McCasland		<u> </u>					
Hugh Gathering	2002-10235	Section 11, T21S, R37E	11				
C. S. Cayler	2002-10250	Section 6, T17S, R37E	5				
Lovington Deep 6-Inch	2002-1-312	Section 6, T21S, R36E	6				
Kimbrough Sweet	2000-10757	Section 3, T18S, R37E	2				
8" Moore to Jal #1	2002-10270	Section 16, T17S, R37E	3				
8" Moore to Jal #2	2002-10273	Section 16, T17S, R37E	3				
Darr Angell #1	Darr Angell #1	Section 11, T15S, R37E	1				
Darr Angell #4	2001-10876	Section 2/11, T15S, R37E	2				
Red Byrd #1	Red Byrd #1	Section 1, T19S, R36E	5				
HDO 90-23	HDO 90-23	Section 6, T20S, R37E	2				
Monument 6" Pipeline	2001-11056	Section 5, T20S, R37E	3				
Texaco Skelly F	2002-11229	Section 21, T20S, R37E	1 .				
SPS-11	SPS-11	Section 18, T18S, R36E	2				
Monument #11	TNM Mon #11	Section 30, T19S, R37E	2				
Monument #2	TNM Mon #2	Section 6, T20S, R37E	1				
Monument #17	TNM Mon #17	Section 29, T19S, R37E	1				
Monument #18	TNM Mon #18	Section 7, T20S, R37E	2				
98-05A	TNM 98-05A	Section 26, T21S, R37E	1				
LF-59	LF-59	Section 32, T19S, R37E	2				

The proposed well locations are illustrated on the attached site maps. Plains requests your approval of the proposed monitor well locations at the above-referenced sites. We anticipate commencement of drilling activities the week of October 4, 2004.

Should you have any questions or comments concerning this information, please contact me at (713) 646-4657.

Sincerely,


Seffrey P. Dann, P.G. Sr. Environmental Specialist


Plains All American

CC:

Larry Johnson, NMOCD, Hobbs, NM Camille Reynolds, Plains Todd Choban, Nova Pat McCasland, EPI

File: c/jeff-files/OCD-DrillingSchOct2004

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON

Governor April 28, 2004 Joanna Prukop
Cabinet Secretary
Acting Director
Oil Conservation Division

Mr. Robert B. Eidson Environmental Technology Group, Inc. 2540 West Marland Hobbs, NM 88240

RE: Your "Annual Sampling and Quarterly Gauging of Groundwater Monitor Wells Meeting Regulatory Cleanup Standards" letter dated March 25, 2004

Sampling of the below-listed monitor wells may be done in the timeframes indicated:

<u>Darr Angell #1:</u> MW-4, 11, 15, 16, 19, and 20 may be sampled annually; MW-7 may be sampled semi-annually.

<u>Darr Angell #2</u>: MW-1, 5, 6, 7, 8, 9, and 10 may be sampled annually; MW-3, and 4 may be sampled semi-annually.

<u>Darr Angell #4</u>: MW-1, 2, 4, 5, 7, and 12 may be sampled annually; MW-9 may be sampled semi-annually.

HDO 90-23: MW-1, 7, and 8 may be sampled annually; MW-4, and 5 may be sampled semi-annually.

<u>LF-37</u>: MW-1, 2, 5, 6, 7, 8, and 9 may be sampled annually; MW-4 may be sampled semi-annually.

LF-59: MW-3, 5, and 6 may be sampled annually; MW-7 may be sampled semi-annually.

Monument 2: MW-6, and 7 may be sampled annually; MW-4 may be sampled semi-annually.

Monument 10: MW-4 may be sampled annually; MW-6, and 7 may be sampled semi-annually.

Monument 11: MW-1, 2, and 3 may be sampled annually.

Monument 17: MW-5, and 8 may be sampled annually. MW-4, and 6 may be sampled semi-annually.

Monument 189 MW-2, 6, 7, and 8 may be sampled annually. MW-5 may be sampled semi-annually.

TNM 97-04: MW-1, 7, 8, 10, and 12 may be sampled annually.

TNM 97-17: MW-1, 3, 11, 12, 13, 16, 17, 18, and 28 may be sampled annually. MW-22, 23, 24, 25, and 27 may be sampled semi-annually.

<u>TNM 97-18</u>: MW-1, 8, 9, 11, 12, 13, 14, 15, 16, 19, 20, and 21 may be sampled annually. MW-22, 26, 28, 29, and 30 may be sampled semi-annually.

TNM 97-23: MW-1, 2, 3, and 5 may be sampled annually.

TNM 98-05: MW-3, and 4 may be sampled annually.

TNM 98-05A: MW-5, and 8 may be sampled annually. MW-6, and 7 may be sampled semi-annually.

<u>SPS-11</u>: MW-2, 3, 13, 19, 20, 21, 22, 25, 27, 30, and 31 may be sampled annually. MW-10, and 18 may be sampled semi-annually.

Conditions:

- 1. Gauging of all monitor wells will continue on a quarterly basis.
- 2. A request for a change in sampling frequency for any other monitor wells must be made specifically for those wells. This approval of annual and semi-annual sampling for the above wells does not constitute a "blanket" approval for any other monitor well not shown above.

If you have any questions, do not hesitate to contact me.

NEW MEXICO OIL CONSERVATION DIVISION

Ed Martin

Environmental Bureau

If Martin

March 25, 2004

Mr. Ed Martin
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

RE: Annual sampling and quarterly gauging of groundwater monitor wells meeting regulatory cleanup standards.

Mr. Martin:

Environmental Technology Group, Inc. (ETGI) for Link Energy is requesting that the groundwater sampling schedule of the wells listed below be changed from a quarterly to an annual sampling schedule. Quarterly gauging will continue on all site monitor wells during the regularly scheduled monitoring events. Benzene and total BTEX concentrations have been below regulatory standards in all of the monitor wells listed below for at least eight consecutive monitoring periods:

```
HDO 90-23: MW-1, 4, 5, 7 and 8;

LF-37: MW-1, 2, 4, 5, 6, 7, 8 and 9;

LF-59: MW-3, 5, 6 and 7;

Monument 2: MW-4, 6 and 7;

Monument 10: MW-1, 4, 5, 6 and 7;

Monument 17: MW-4, 5, 6 and 8;

Monument 18: MW-2, 5, 6, 7 and 8;

TNM 97-04: MW-1, 7, 8, 10 and 12;

TNM97-17: MW-1, 3, 11, 12, 13, 16, 17, 18, 22, 23, 24, 25, 27 and 28;

TNM 97-18: MW-1; + E-MAI

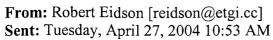
TNM 98-05: MW-3 and 4;

TNM 98-05A: MW-5, 6, 7 and 8;

SPS-11: MW-2, 3, 13, 15, 18, 19, 20, 21, 22, 25, 27, 30 and 31. + E-MAI

(#10)
```

As additional monitor wells meet the eight consecutive monitoring events requirement with concentrations below regulatory standards we will formally request that they too be sampled on an annual basis.


. DRAFT

Please contact me with any questions you have concerning ETGI's proposed groundwater sampling schedule at these sites.

Sincerely;

Robert B. Edison Geologist / Senior Project Manager ETGI, Hobbs, New Mexico

(505) 397-4882 office phone (505) 631-2974 cell (505) 397-4701 fax

To: Ed Martin

Subject: Groundwater sampling frequency letter

Ed

The letter is attached for your reference.

Tabulated analytical results are included in all of the Annual Groundwater Monitoring reports. The Figure 3's should also be helpful in determining sampling frequency changes. Of those sites which show only seven consecutive quarters of acceptable groundwater sampling results, I checked the first quarter results of this year to meet the requirement (8). All wells will continue to be gauged during each sampling event.

At the Darr Angell 1 site (AP-07) we would like to sample monitor wells MW-4, 7, 11, 15, 16, 19 and 20 annually. At the Darr Angell 2 site (AP-07) we would like to sample monitor wells MW-1, 3, 4, 5, 6, 7, 8, 9 and 10 annually. At the Darr Angell 4 site (AP-07) we would like to sample monitor wells MW-1, 2, 4, 5, 7, 9 and 12 annually.

Additionally, we would like to add the following monitor wells to the list shown on the attached letter:

At **TNM 97-18 (AP-13)** monitor wells MW-8, 9, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 26, 28, 29 and 30. and SPS-11.

At **SPS-11** monitor wells MW-10 and MW-19.

I will send the corresponding maps in groups to speed transmission and delivery. Sincerely,
Robert B. Eidson
Geologist / Sr. Project Manager
ETGI
Hobbs, New Mexico
505-397-4882 office
505-397-4701 fax
505-631-2974 cell

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

EOTT ENERGY LLC

P.O. BOX 4666 HOUSTON, TEXAS 77210-4666

March 31, 2003

Mr. Randolph Bayliss, P.E. Hydrologist Oil Conservation Division State of New Mexico 1220 South St. Francis Drive Santa Fe NM 87505

Dear Mr. Bayliss;

EOTT Energy, LLC is an Operator of crude oil pipelines and terminal facilities located in the state of New Mexico. EOTT actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and workplans developed in consultation with the New Mexico Oil Conservation Division. Consistent with the rules and regulations of the New Mexico OCD, EOTT hereby submits its annual monitoring reports for the following titled sites:

Red Byrd No. 1 Section 1, Township 20 South, Range 36 East, Lea County NM
Red Byrd No. 2 Section 1, Township 20 South, Range 36 East, Lea County NM
TNM 98-SO1 Section 20, Township 19 South, Range 37 East, Lea County NM
Section 14, Township 22 South, Range 37 East, Lea County NM
Monument 18 Section 7, Township 20 South, Range 37 East, Lea County NM
Section 26, Township 21 South, Range 37 East, Lea County NM
Lea Station to Monument 6 Section 5, Township 20 South, Range 37 East, Lea County NM

ETGI prepared these documents and has vouched for their accuracy and completeness, and on behalf of EOTT Energy, I have personally reviewed the documents and interviewed ETGI in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that EOTT Energy submits these Annual Compliance Monitoring Reports for the above 7 facilities.

I look forward to scheduling a meeting with you in the second or third week of March as you schedule allows, which will allow for an opportunity to review and discuss the results of the monitoring. If you have questions in the interim, please contact me at (713) 993-5047.

Sincerely,

Bill Von Drehle Director Environmental

Bile On Oull

EOTT ENERGY LLC

Cc: Frank Hernandez

EOTT ENERGY Pipeline Limited Partnership

P.O. BOX 1660 5805 E. BUSINESS 20 MIDLAND, TEXAS 79702 (915) 682-3761

FEDERAL EXPRESS AIR BILL # 8170 0342 3660

March 30, 2000

State of New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505 Attn: William Olson

RE: ANNUAL GROUND WATER MONITORING REPORTS

Dear Mr. Olson:

Attached please find the 2000 Annual Groundwater Monitoring Reports for the following sites:

Monument #18 Monument #10

Monument #17 TNM-97-16 (Becky Jo Doom site)

Monument #2 HDO-90-23

Monument #15 SPS-11

TNM-97-17. TNM-98-02 TNM-97-18 TNM-98-S01

TNM-98-05A TNM-97-23 TNM-96-16 TNM-95-10 (Saunders)

TNM-97-14 TNM-97-04 (Townsend)

I hope all meets with OCD requirements for closure of the site but if you have any questions, please don't hesitate to call me at 915/684-3467.

Sincerely.

Lennah Frost

Sr. Environmental Engineer

cc: Environmental File

March 19, 1999

Mr. William C. Olson STATE OF NEW MEXICO Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Job No. 610057-6-18

Re: Texas-New Mexico Pipe Line Company
Pipe Line Release Site No. 18
Section 7, Township 20 South, Range 37 East
Lea County, New Mexico

Dear Mr. Olson:

This letter is in response to your letter dated February 1, 1999, regarding the referenced site. Your letter required a ground water remediation and monitoring plan be submitted to your office by April 1, 1999. This letter constitutes our formal request for extension of this deadline until May 7, 1999, for which you provided verbal approval on a recent phone conversation with Mike Hawthorne concerning the site.

If you have any questions please contact me at (210) 680-3767.

Respectfully.

Theresa Nix Project Manager

cc: TNMPL, Tony Savoie Equilon, Marc Oler OCD Hobbs District Office

tnmpl\6100\$7\site18\correspon\cwpext2.doc

Theresa Nix

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

February 1, 1999

CERTIFIED MAIL RETURN RECEIPT NO: Z-274-520-611

Mr. Tony Savoie
Texas-New Mexico Pipe Line Company
P.O. Box 1030
Jal, New Mexico 88252

RE: GROUND WATER REMEDIATION MONUMENT SITE #18

Dear Mr. Savoie:

The New Mexico Oil Conservation Division (OCD) has reviewed the following Texas-New Mexico Pipe Line Company (TNMPLC) documents which were submitted on behalf of TNMPLC by their consultant KEI:

- December 28, 1998 "GROUNDWATER MONITORING EVENT, TEXAS NEW MEXICO PIPELINE COMPANY, MONUMENT SITE NO. 18, MONUMENT, NEW MEXICO, KEI JOB NO. 610057-6-18".
- October 29, 1998 "MONITORING WELLS MW 18-7 AND MW18-8, MONUMENT SITE NO. 18, UNIT D, SECTION 7, TOWNSHIP 20 SOUTH, RANGE 37 EAST, LEA COUNTY, NEW MEXICO, JOB NO. 610057-2-18".
- October 29, 1998 "GROUNDWATER MONITORING EVENT, TEXAS NEW MEXICO PIPELINE COMPANY, MONUMENT SITE NO. 18, MONUMENT, NEW MEXICO, KEI JOB NO. 610057-6-18".

These documents contain the results of TNMPLC's recent investigation of the extent of ground water contamination resulting from a crude oil pipeline spill at TNMPLC's Monument No. 18 Site.

A review of the OCD's file on this site shows that on June 19, 1998 the OCD required that TNMPLC submit a work plan for remediation of contaminated ground water to the OCD by July 31, 1998. To date the OCD has no record of receiving this work plan. To correct this deficiency, the OCD requires that TNMPLC submit a ground water remediation and monitoring work plan to the OCD by April 1, 1999. The work plan will be submitted to the OCD Santa Fe Office with a copy provided to the OCD Hobbs District Office.

Mr. Tony Savoie February 1, 1999 Page 2

If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson

Hydrologist

Environmental Bureau

xc: Chris Williams, OCD Hobbs District Office

Theresa Nix, KEI

Z 274 520 ዜጌጌ

Receipt for Certified Mail
No Insurance Coverage Provided.
Do not use for International Mail (See reverse)
Sent to

		S						\$
Street & Number	Post Office, State, & ZIP Code	Postage	Certified Fee	Special Delivery Fee	Restricted Delivery Fee	Return Receipt Showing to whom & Date Delivered	Return Receipt Showing to Whom, Date, & Addressee's Address	 Postmark or Date

PS Form 3800, April 1995

October 29, 1998

Mr. Tony Savoie
TEXAS - NEW MEXICO PIPE LINE COMPANY
P.O. Box 1030
Jal, New Mexico 88252

RECEIVED

NOV 0 9 1998

ENVIRONMENTAL BUREAU
OIL CONSERVATION DIVISION

Re: Monitoring Wells MW18-7 and MW18-8

Monument Site No. 18

Unit D, Section 7, Township 20 South, Range 37 East

Lea County, New Mexico Job No. 610057-2-18

Dear Mr. Savoie:

Transmitted with this letter is the final Subsurface Investigation Report for the installation of monitoring wells MW18-7 and MW18-8 at Monument Site No. 18.

Please contact me at (210) 680-3767 with your comments or suggested changes.

Respectfully,

Theresa Nix Project Manager

Enclosure

cc: Marc Oler; Equilon

Theresa Hix

William Olson, OCD Santa Fe Office,

OCD Hobbs Office

dos\p:\tnmpi\610057\site-18\assment3\rsubsin3.doc

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO

SANTA FE, NEW MEXICO 87505 (505) 827-7131

June 19, 1998

CERTIFIED MAIL RETURN RECEIPT NO: Z-235-437-300

Mr. Tony Savoie Texas-New Mexico Pipe Line Company P.O. Box 1030 Jal, New Mexico 88252

RE: **GROUND WATER INVESTIGATION REPORT MONUMENT SITE #18**

Dear Mr. Savoie:

The New Mexico Oil Conservation Division (OCD) has reviewed the following Texas-New Mexico Pipe Line Company (TNMPLC) documents which were submitted on behalf of TNMPLC by their consultant KEI:

- March 26, 1998 "WELLS MW18-4, MW18-5, MW18-6, BORINGS B18-A, B18-B, B18-C, MONUMENT SITE NO. 18, LEA COUNTY, NEW MEXICO, JOB NO. 610057-2-18".
- March 26, 1998 "SUBSURFACE INVESTIGATION REPORT, MONITORING WELLS MW18-4, MW18-5, MW18-6, SOIL BORINGS B18-A, B18-B, B18-C, TEXAS - NEW MEXICO PIPELINE COMPANY MONUMENT SITE NO. 18, LEA COUNTY, NEW MEXICO".

These documents contain the results of TNMPLC's recent investigation of the extent of soil and ground water contamination resulting from a crude oil pipeline spill at TNMPLC's Monument No. 18 Site located in Unit F, Section 29, Township 19 South, Range 37 East, Lea County, New Mexico.

Several pieces of information required by the OCD on January 20, 1998 were not included in the above referenced documents. Please provide the OCD with the following information by July 31, 1998:

- Please provide the OCD with a summary of all interim product recovery activities
- A summary of all laboratory analytic results of water quality sampling including copies of the 2: laboratory analyses and associated quality assurance/quality control data.

Mr. Tony Savoie June 19, 1998 Page 2

- 3. A water table elevation map using the water table elevation of the ground water in all site monitor wells.
- 4. A work plan for remediation of contaminated soil and ground water.

If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson

Hydrologist

Environmental Bureau

xc: Wayne Price, OCD Aztec Office

Michael Hawthorne, KEI

Z = 3 5 4 3 7 3 0 0
US Postal Service

Receipt for Certified Mail
No Insurance Coverage Provided.
Do not use for International Mail (See reverse)
Sent to
Street & Number
Post Office, State, & ZIP Code
Postage
Special Delivery Fee
Return Receipt Showing to Whom & Date Deliverred Whom & Date Deliverred State & Addresses Address
TOTAL Postage & Fees
Postmark or Date

May 28, 1998

Mr. Tony Savoie
TEXAS - NEW MEXICO PIPE LINE COMPANY
P. O. Box 1030
Jal, New Mexico 88252

Re: Groundwater Monitoring Event
Texas - New Mexico Pipe Line Company
Monument Site No. 18
Monument, New Mexico
KEI Job No. 610057-6-18

RECEIVED

JUN 0 8 1998

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Dear Mr. Savoie:

Transmitted with this letter is the ground water binder update packet for the second quarter of 1998 ground water monitoring event conducted at Monument Site No. 18, located near Monument, New Mexico. One copy has been submitted to OCD Hobbs and OCD Santa Fe.

The packet contains the following:

- · Updated gauging tables
- · Updated ground water laboratory results tables
- Updated figures
- A copy of the laboratory ground water results and chain-of-custody documentation
- A dated "tab" for the new event

Theresa ning

Please remove and replace the former tables. Add the new dated tab and place the updated figures, laboratory reports, and chain-of-custody documentation behind this tab.

Please call me at (210) 680-3767 if you have any questions or comments.

Respectfully,

Theresa Nix Project Manager

Enclosure

cc: Marc Oler, TTTI

J. Michael Hawthorne, KEI OCD Hobbs, Wayne Price

OCD Santa Fe, William Olson ~

 $tln\p:\lnmpl\610057\site18\lnmonitor\cgwb2q98.doc$

December 1, 1997

Mr. Tony Savoie
TEXAS - NEW MEXICO PIPE LINE COMPANY
P. O. Box 1030
Jal, New Mexico 88252

Re: Groundwater Monitoring Event
Texas - New Mexico Pipe Line Company
Monument Site No. 18
Monument, New Mexico
KEI Job No. 610057

RECEIVED

APR 1 5 1998

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Dear Mr. Savoie:

Transmitted with this letter is the ground water binder for all ground water monitoring events conducted at Monument Site No. 18, located near Monument, New Mexico.

After each ground water monitoring and sampling event, you will receive a packet containing the following:

- Updated gauging tables
- Updated ground water laboratory results tables
- Updated figures
- A copy of the laboratory ground water results and chain-of-custody documentation
- A dated "tab" for each new event

When you receive each packet, please remove and replace the former tables. Add the new dated tab and place the updated figures, laboratory reports, and chain-of-custody documentation behind this tab.

Please call me at (210) 680-3767 if you have any questions or comments.

Respectfully.

J. Michael Hawthorne, P.G., REM

Senior Geologist

Enclosure

tin\p:\tnmpi\610057\site18\rgwbindr.doc

March 26, 1998

Mr. William C. Olson STATE OF NEW MEXICO Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505 RECEIVED

MAR 2 7 1998

ENVIRONMENTAL BUREAU
OIL CONSERVATION DIVISION

Re: Wells MW18-4, MW18-5, MW18-6

Borings B18-A, B18-B, B18-C

Monument Site No. 18 Lea County, New Mexico Job No. 610057-2-18

Dear Mr. Olson:

Transmitted with this letter is the report for the installation of 3 additional monitoring wells and soil borings at the referenced site. This report satisfies the requirements of the OCD letter dated January 20, 1998.

Due to soil sample laboratory results and the presence of phase-separate hydrocarbons (PSH) in the upgradient wells, MW18-3 and MW18-4, it appears a third party may be responsible for ground water impact at the site. KEI recommends TNMPL excavate the stained release area to a sufficient depth in order to determine if groundwater impact at the site is related to the TNMPL release or a third party. The excavation depth will be determined in the field based on field observations and laboratory results.

Please contact Theresa Nix or me at (210) 680-3767 if you have any questions.

Respectfully,

Pat Bullinger, P.E.

Enclosure

cc: Marc Oler; TTTI

Tony Savoie, TNMPL

Wayne Price, OCD Hobbs District Office

July 9, 1998

Mr. Wayne Price STATE OF NEW MEXICO Oil Conservation Division P. O. Box 1980 Hobbs, New Mexico 88240

Re: Texas-New Mexico Pipe Line Company

Pipe Line Release Site No. 18

NW/4, Section 7, Township 20 South, Range 37 East

Lea County, New Mexico Job No. 610057-2-18

Dear Mr. Price:

This letter provides written notification of drilling activities scheduled at the above referenced site during the week of July 13, 1998. Drilling at Site 18 is currently scheduled for Thursday, July 16, 1998. This schedule, however, is dependent upon completion of drilling activities at Site 17 on Wednesday of next week. Two delineation wells will be installed at the site (1 lateral and 1 upgradient).

If you have any questions or would like to be on-site during drilling, please contact me at (210) 680-3767.

Respectfully,

Theresa Nix

Project Manager

cc: TNMPL, Tony Savoie

Theresa Nix

OCD Santa Fe Office, Bill Olson -

tnmpl\610057\site18\assment3\cdrilnot.doc

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

January 20, 1998

CERTIFIED MAIL RETURN RECEIPT NO: Z-235-437-220

Mr. Tony Savoie
Texas-New Mexico Pipe Line Company
P.O. Box 1030
Jal. New Mexico 88252

RE: GROUND WATER ABATEMENT MONUMENT SITE #18

Dear Mr. Savoie:

The New Mexico Oil Conservation Division (OCD) has reviewed the following Texas-New Mexico Pipe Line Company (TNMPLC) documents which were submitted on behalf of TNMPLC by their consultant KEI:

- September 24, 1997 "TEXAS-NEW MEXICO PIPE LINE COMPANY, PIPE LINE" RELEASE SITE NO. 18, LEA COUNTY, NEW MEXICO, JOB NO. 610057".
- September 9, 1997 "COMPREHENSIVE ASSESSMENT REPORT, TEXAS NEW MEXICO PIPELINE COMPANY MONUMENT SITE NO. 18, LEA COUNTY, NEW MEXICO"

These documents contain the results of TNMPLC's investigation of the extent of soil and ground water contamination resulting from a crude oil pipeline spill at TNMPLC's Monument No. 17 Site located in Unit F, Section 29, Township 19 South, Range 37 East, Lea County, New Mexico. The documents also contain recommendations for further characterization of the extent of contamination and interim product recovery from the existing monitor wells.

The OCD approves of the recommendations contained in the above referenced documents with the following conditions:

- 1. TNMPLC will completely define the extent of contamination related to TNMPLC's activities.
- All monitor wells will be constructed, developed and sampled according to OCD's August 16, 1996 site characterization plan approval.

Mr. Tony Savoie January 20, 1998 Page 2

- 3. TNMPLC will submit a report on the investigation and interim product recovery activities by April 1, 1998. The report will be submitted to the OCD Santa Fe Office with a copy provided to the OCD Hobbs District Office. The report will contain:
 - a. A description of all investigation and remediation activities which occurred including the procedures used during the investigation and conclusions and recommendations.
 - b. A site map showing the locations of all soil borings and monitor wells in relation to other pertinent site features.
 - c. A summary of all laboratory analytic results of soil and water quality sampling including copies of the laboratory analyses and associated quality assurance/quality control data.
 - d. A water table elevation map using the water table elevation of the ground water in all site monitor wells.
 - e. A geologic log and well completion diagram for each monitor well or borehole.
 - f. A work plan for remediation of contaminated soil and ground water.
- 4. TNMPLC will notify the OCD at least 48 hours in advance of scheduled activities such that the OCD has the opportunity to witness the events and split samples.

Please be advised that OCD approval does not relieve TNMPLC of liability if the investigation fails to adequately define the extent of contamination or, if contamination exists which is outside the scope of the work plan. In addition, OCD approval does not relieve TNMPLC of responsibility for compliance with any other federal, state or local laws and regulations

If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson

Hydrologist

Environmental Bureau

xc: Wayne Price, OCD Aztec Office

Michael Hawthorne, KEI

September 24, 1997

Mr. Roger Anderson
STATE OF NEW MEXICO
Oil Conservation Division
2040 South Pacheco
Santa Fe, New Mexico 87505

Re: Texas-New Mexico Pipe Line Company Pipe Line Release Site No. 18

Lea County, New Mexico

Job No. 610057

Dear Mr. Anderson:

This letter provides written notification of the discovery of Phase-Separate Hydrocarbon (PSH) on ground water at the above referenced site during subsurface investigation activities.

On March 9 and 14, 1997, KEI advanced exploratory holes at the referenced site, which is located in the NW/4, NW/4 Section 7, Township 20 South, Range 37 East in Lea County, New Mexico. Monitoring wells were installed at the site on April 7 and 8, 1997. The exploratory work had previously been approved by the New Mexico Oil Conservation Division. At an approximate depth of 32 feet below ground surface, PSH has been observed on the ground water.

KEI has already installed additional soil borings and monitoring wells at the site to further characterize the nature and extent of hydrocarbon impact to ground water. A report summarizing this additional work is in preparation and will be provided to OCD upon its completion.

If you have any questions please contact me at (210) 680-3767.

Respectfully,

J. Michael Hawthorne, P.G., REM

Senior Geologist

cc: TNMPL, Tony Savoie

OCD Hobbs District Office, Wayne Price