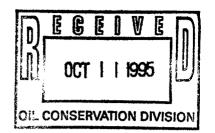
1R145

MISC.


O 刀 刀 S 02 Z

Consulting • Engineering • Remediation

October 5, 1995

Mr. William C. Olson Hydrogeologist Oil Conservation Division Environmental Bureau

3000 Richmond Avenue Houston, TX 77098 (713) 520-9900 FAX (713) 520-6802

RE: Completion of Well Abandonment at the Former Exxon Service Facility Located at 1715 Dal Paso Street in Hobbs, New Mexico

Dear Mr. Olson,

The monitor well located at the above referenced facility has been plugged and abandoned (P and A). The P and A activities were carried out under the direct supervision of ENSR Consulting and Engineering on EXXON's behalf. The plugging activities were performed on Tuesday, September 26, 1995 by Harrison Drilling and Environmental Services Inc. of Hobbs, New Mexico. The P and A process was carried out as a result of the New Mexico Oil Conservation Division's (OCD) written approval in their letter dated August 9, 1995. Approval to abandon the well was granted due to a lack of contaminant concentrations in excess of the New Mexico Water Quality Control Commission ground water standards. The procedures used to plug the well are discussed below.

The initial step in the P and A process was to remove the metal protective casing which surrounds the portion of the well pipe extending above ground and the concrete pad at the base of the well. This procedure was done by pulling out the metal casing with the use of a back hoe and chain. While removing the protective casing and pad, the top pvc well pipe broke off approximately 2.5 feet below ground surface.

Bentonite pellets were then placed into the well to fill the screen at the bottom of the well. The placement of bentonite continued in the well until the top of the bentonite was above the water table. This action was performed in order to avoid the possibility of contaminating the aquifer with the grout that was used to complete the plugging procedure.

A concrete slurry consisting of approximately 5% bentonite gel was then placed in the well. The slurry was brought to a level six inches above the top of the exposed well pipe, which put the top of the slurry at 2 feet below ground surface.

The remaining hole was then backfilled with local soil and compacted down by repeatedly crossing the area with the back hoe.

ENSR

EXXON/ENSR request's closure of this facility, as all monitoring activities have been succesfully concluded as per the OCD's requirements.

If you have any questions or concerns regarding the activities discussed in this letter please call me at (713) 520-9900 or Herman Brown of EXXON at (713) 425-1200.

Sincerely yours,

Shawn Eubanks

Project Manager/ Sr. Geologist

Gil Long

Department Manager

XC:

Herman Brown, EXXON Chemical Americas Wayne Price, OCD Hobbs District Office

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe, New Mexico

Z 765 962 386

No Insurance Coverage Provided

Do not use for International Mail

\$

Receipt for

(See Reverse)

Sent to

Postage

Certified Fee

Special Delivery Fee

Street and No.

P.O., State and ZIP Code

Certified Mail

August 9, 1995

CERTIFIED MAIL RETURN RECEIPT NO. Z-765-962-386

Mr. Herman Brown Environmental Project Coordinator Exxon Chemical Americas P.O. Box 4004 Baytown, Texas 77522-4004

MONITOR WELL ABANDONMENT RE: FORMER EXXON DAL PASO FACILITY

Dear Mr. Brown:

The New Mexico Oil Conservation Division (OCD) has completed a review of Exxon's June 28, 1995 "QUARTERLY SAMPLING, FORMER EXXON DAL PASO SERVICE FACILITY, HOBBS, NEW MEXICO". This document contains the results of Exxon's quarterly sampling of ground water related to remedial actions at Exxon's Dal Paso service facility in Hobbs, New Mexico. The document also requests approval of a work plan to plug and abandon (P&A) the site monitor well based upon a lack of contaminants in excess of New Mexico Water Quality Control Commission ground water standards.

The above P&A work plan is approved with the following conditions:

- Exxon will provide the OCD with a final P&A report upon completion 1. of the P&A actions.
- All original documents submitted to the OCD for approval will be 2. submitted to the OCD Santa Fe Office with copies provided to the OCD Hobbs District Office.

Please be advised that OCD approval does not relieve Exxon of responsibility for compliance with any other federal, state or local laws and/or regulations. If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist

Environmental Bureau

Jerry Sexton, OCD Hobbs District Supervisor

EXXON CHEMICAL AMERICAS

Baytown Chemical Plant Raymond C. Floyd SITE MANAGER

June 28, 1995

Mr. William C. Olson Hydrogeologist - Environmental Bureau New Mexico Oil Conservation District Post Office Box 2088 Santa Fe, New Mexico 87504

RECEIVED

JUL 0 3 1995

Environmental Bureau Oil Conservation Division

RE: Quarterly Sampling

Former Exxon Dal Paso Service Facility

Hobbs, New Mexico

Dear Mr. Olson:

ENSR Consulting and Engineering (ENSR), on behalf of Exxon Chemical Company (Exxon) has completed the fourth quarterly sampling event of monitor well DP-1 on Exxon's facility located at 1715 Dal Paso Street, in Hobbs, New Mexico. The sampling was performed in accordance with the New Mexico Oil Conservation Division (OCD) letter dated June 17, 1994. The OCD directed that the groundwater be sampled and analyzed on a quarterly basis for aromatic volatile organics, halogenated volatile organics, polynuclear aromatic hydrocarbons (PAHs), and manganese. The fourth quarterly sampling event was conducted on May 31, 1995.

Prior to collecting the groundwater samples, three well volumes were removed from the well using a PVC bailer. Groundwater was then retrieved with a disposable bailer and poured directly from the bailer into the appropriate sample containers. The samples were properly preserved, labeled, and placed on ice. Chain-of-custody documentation was filled out and sent with the samples to ENVIRON EXPRESS Laboratories in La Porte, Texas for analysis.

As outlined in item 1 of the OCD letter, groundwater was analyzed for aromatic volatile organics, halogenated volatile organics, polynuclear aromatic hydrocarbons (PAHs), and manganese. The analytical results are summarized in Table 1. The complete laboratory report and chain-of-custody documentation for the fourth quarter event are provided as Attachment A.

Mr. W.C. Olson June 28, 1995 Page 2

TABLE 1. Groundwater Analytical Results
Fourth Sampling Event

Constituent	Analytical Results DP-1 (mg/L)	New Mexico Groundwater Standard (mg/L)
Manganese	0.24	0.2
Benzene	<0.005	0.01
Chloroform	0.013	0.1
1,1,-Dichloroethane	<0.005	0.025
Ethylbenzene	<0.005	0.75
Xylenes	<0.015	0.62

All these results are below the New Mexico Water Quality Control Commission ground water standards except for manganese, which appears to be asymptotically approaching the standard value of 0.20 mg/l.

This completes the requirements for quarterly monitoring as provided in the letter of June 17, 1994. The results of the monitoring are summarized as follows:

Table 2. Groundwater Analytical Results
Four Quarters Summary

Constituent	First Quarter Results (mg/L)	Second Quarter Results (mg/l)	Third Quarter Results (mg/l)	Fourth Quarter Results (mg/l)
Manganese	0.7	0.5	0.25	0.24
Benzene	0.005	0.005	< 0.005	<0.005
Chloroform	0.009	0.012	0.016	0.013
1,1,-Dichloroethane	0.019	0.017	< 0.005	< 0.005
Ethylbenzene	0.008	0.010	< 0.005	< 0.005
Xylenes	0.065	0.029	< 0.015	< 0.015

Mr. W.C. Olson June 28, 1995 Page 2

Based on these results, Exxon proposes to plug and abandon Well DP-1 at the site in accordance with the following procedures:

- Remove the flush mount well protector.
- Grout the well from the bottom to the ground surface.
- Dispose of all waste material associated with well DP-1.

Before grouting the well, the flush mount well protector will be removed from the ground. The concrete surrounding the flush mount will be broken up using either a sledge hammer or other means of loosening the flush mount before it can be removed.

The well will then be grouted in place. Grouting will consist of pumping a bentonite/cement slurry into the well. The slurry will contain 5 to 10% bentomite mixed with Type 1 Portland cement and will be tremied from the bottom of the well up to the ground surface.

After completion of the well plugging activities, all soil cuttings and wastewater produced from the well installation and abandonment will be disposed of. Since the only compound detected at levels above the ground water st andards was manganese, we propose to dispose of the materials along the back of the property.

The New Mexico OCD will be notified at least 7 days prior to initiation of the P&A activities. Please notify me as soon as practical as to whether this plan is approved so that these activities can be scheduled.

I am transferring to another Exxon Chemical facility on July 1, 1995. Mr. Herman Brown will take over my role on this project. Mr. Brown's phone number is (713) 425-1200. If there are any questions or if further assistance is needed, please feel free to call Mr. Brown or Gil Long of ENSR at (713) 520-9900.

Sincerely.

Paul Reed

Environmental Projects Coordinator

(713) 425-1237

Attachment

cc: Wayne Price, OCD Hobbs District Office
Trish Carls, Brown McCarroll and Oaks Hartline
Gil Long, ENSR Consulting and Engineering

Master File

ATTACHMENT A

LABORATORY RESULTS

Express Laboratories, Inc.

401 North 11th

La Porte, Texas 77571

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Environ ID: 36159

Customer:	ENSR C &	E		Attn:	DAVID BAHNER
Sample ID:	MW-1			Matrix:	LIQUID
Prj. Info:	EXXON H HOBBS, N			Prj No:	1009-006-105
Sampled:	05-31-95	Received:	06-01-95	Reported	l: 06-06-95

Analysis Report

EPA SW846	Results	Detection	Date
3051/6010 (Total)	mg/l	Limit mg/l	Analyzed
Dissolved Manganese (Mn)	0.24	0.02	06-02-95

OHN E. KELLER, Ph.D. Laboratory Director

401 North 11th

La Porte, Texas 77571

Express Laboratories, Inc.

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer:

ENSR

Sample ID: MW - 1

Environ ID: 36159

Project:

Exxon Hobbs, Hobbs NM, Proj. # 1009-006-105

Matrix: Liquid

Date Sampled: 5/31/95

Date Received: 6/1/95

Date/Time Analyzed: 6/2/95 17:05

EPA SW-846 Method 8240 - Total Volatiles

COMPOUNDS	CONCENTRATION	PQL	CAS#
	(ug/l)	(ug/l)	
Acetone	< 50	50	67-64-1
Benzene	< 5	5	71-43-2
Bromodichloromethane	< 5	5	75-27-4
Bromoform	< 5	5	75-25-2
Bromomethane	< 10	10	75-83-9
2-Butanone	< 50	50	78-93-3
Carbon disulfide	< 5	5	75-15-0
Carbon Tetrachloride	< 5	5	56-23-5
Chlorobenzene	< 5	5	108-90-7
Chloroethane	< 10	10	75-00-3
2-Chloroethyl vinyl ether	< 10	10	110-75-8
Chloroform	13	5	67-66-3
Chloromethane	< 10	10	74-87-3
Dibromochloromethane	< 5	5	124-48-1
1,1-Dichloroethane	< 5	5	75-34-3
1,2-Dichloroethane	< 5	5	107-06-2
1,1-Dichloroethene	< 5	5	75-35-4
1,2-Dichloroethene (total)	< 5	5	540-59-0
1,2-Dichloropropane	< 5	5	78-87-5
cis-1,3-Dichloropropene	< 5	5	10061-01-5
trans-1,3-Dichloropropene	< 5	5	10061-02-6
Ethylbenzene	< 5	5	100-41-4
2-Hexanone	< 25	25	591-78-6
4-Methyl-2-Pentanone	< 25	25	108-10-1
Methylene Chloride	< 10	10	75-09-2
Styrene	< 5	5	100-42-5
1,1,2,2-Tetrachloroethane	< 5	5	79-34-5
Tetrachloroethene	< 5	5	127-18-4
Toluene	< 5	5	108-88-3
1,1,1-Trichloroethane	< 5	5	71-55-6
1,1,2-Trichloroethane	< 5	5	79-00-5
Trichloroethene	< 5	5	79-01-6
Vinyl acetate	< 10	10	108-05-4
Vinyl chloride	< 10	10	75-01-4
m&p-Xylene	< 10	10	1330-20-7
o-Xylene	< 5	5	1330-20-7
	SURROGATE REC	OVERIES	
SURROGATE	CONCENTRATION	% RECOVERY	RANGE
1,2-Dichloroethane-d4 (surr)	46	92	76-114
Toluene-d8 (surr)	48	96	88-110
4-Bromofluorobenzene (surr)	46	92	86-115

Carl Degner, Ge/MS Analyst

John Keler, Laboratory Director

401 North 11th

La Porte, Texas 77571

Express Laboratories, Inc.

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer:

ENSR

Sample ID: MW - 1

Environ ID: 36159

Project:

Exxon Hobbs, Hobbs NM, Proj. # 1009-006-105

Matrix: Soil

Date Sampled: 5/31/95

Date Received: 6/1/95

Date Extracted: 6/1/95

Concentration Factor: 30/1

Date/Time Analyzed: 6/2/95 17:57

EPA SW-846 Method 8270 - PAHs

COMPOUNDS	CONCENTRATION (ug/Kg)	PQL (ug/Kg)	CAS#
Acenaphthene	< 6.6	6.6	83-32-9
Acenaphthylene	< 6.6	6.6	208-96-8
Anthracene	< 6.6	6.6	120-12-7
Benzo(a)anthracene	< 6.6	6.6	56-55-3
Benzo(b)fluoranthene	< 6.6	6.6	205-99-2
Benzo(k)fluoranthene	< 6.6	6.6	207-08-9
Benzo(g,h,i)perylene	< 6.6	6.6	191-24-2
Benzo(a)pyrene	< 6.6	6.6	50-32-8
Chrysene	< 6.6	6.6	218-01-9
Dibenz(a,h)anthracene	< 6.6	6.6	53-70-3
Fluoranthene	< 6.6	6.6	206-44-0
Fluorene	< 6.6	6.6	86-73-7
Indeno(1,2,3-cd)pyrene	< 6.6	6.6	193-39-5
Naphthalene	< 6.6	6.6	91-20-3
Phenanthrene	< 6.6	6.6	85-01-8
Pyrene	< 6.6	6.6	129-00-0
	SURROGATE REC	OVERIES	
SURROGATE	CONCENTRATION	% RECOVERY	RANGE
Nitrobenzene-d5	36	72	35-114
2-Fluorobiphenyl	41	82	43-116
Terphenyl-d14	42	84	33-141

ENVIRON EXPRESS QUALITY CONTROL REPORT

ANALYSIS: METALS - TOTAL | METHOD: EPA SW846 3015/6010/7470 | MATRIX: LIQUID

ANALYSTS: A.R. DATE: 06/02/95 UNITS: PPM (mg/l) NO.SAMPLES: 7

SAMPLES: 36146 - 36151, 36159

MATRIX SPIKE & MATRIX SPIKE DUPLICATE ANALYSIS

SAMPLE	SAMPLE	SPIKE	SPIKE	RECOVERY	RECOVERY	RELATIVE	CONT.	QC LI	MITS
36151	RESULTS	ADDED	RESULTS	%	DUP. %	DIFF.	CALIB.	REC. RANGE	REL. DIF.
ARSENIC	0.00	5	5.44	109	112	3	102	75 - 125	20
BARIUM	0.00	5	4.91	98	100	2	102	75 - 125	20
CADMIUM	0.00	5	4.89	98	99	1	100	75 - 125	20
CHROMIUM	0.00	5	4.91	98	100	2	103	75 - 125	20
LEAD	0.00	5	4.81	96	98	2	101	75 - 125	20
MERCURY	0.000	0.200	0.19	94	94	0	94	75 - 125	20
SELENIUM	0.00	5	6.00	120	122	2	101	75 - 125	20
SILVER	0.00	5	4.53	91	92	2	96	75 - 125	20

OHN KELLER, Ph.D Laboratory Director

CHAIN OF CUSTODY RECORD

₽

Page

ENVIRON EXPRESS LABORATORIES 401 North 11th, La Porte, Texas 77571 (713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821

Project No. Project Name		Projec	Project Location		ΤĹ	rn Ar	Turn Around Time: Check One	Time:	Chec	ik On	Ф			
1009-006-105 EXXX	n Hobbs	140	565 NN	1]1 day		2 days		∃3 days	ays	15 days	ays	
Sampler's Affiliation:	Samp	Samper's Name (PRINT): Sampler's: (Signature)	Town I	Schne				Z,	30R. Refere	ATO nce	RY / EPA	LABORATORY ANALYSIS Reference EPA Method #	YSIS	
Results to: Duild Babbe tax 520	1.990 -4802 Sar	Sampler Remarks:										2520		
Address: 3000 Richmand Ho						S		ES		SET	2=	07-		
City: Houston TX	77098 Lab R	b Remarks:						IITA		IIIA.	IIT∆			
Invoice to: Day Bhn on No. (70/		۸۵۲	ЮЛ	חנק	5#1	
Field Sample No./ Identification	Date and Time Grab	Sample Container (Size/Mat,I)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative	X3T8	FPH 4	AJOV	SEMI	ТСГР	TCLP	TCLP-	1055.0	Ðd	
30159 /26-1	5-3145 X	J. W. W.	Lianid	なった			\geq							
1461-1		802 Ans	10	4 °						_	_	X		
J-(1)/		32.02 Anh	7	4°C									X	
														į
,														
	_				_									
J.														
Relinquished by: (Signatury) (A. 1964)	Date: 5.3/95 Time: 2:45		410	U S	7	ر-	Date: Time:	7	76	Da	= /	Intact R N		0
Relinquished by: (Signature)	Date:	Received By: (Signature)	· .				Date: Time:			,	=	Intact	Ì	
Relinquished by: (Signature)	Date:	Received By: (Signature)					Date: Time:	.; je ;			= 17	Intact #	17	2

EXXON CHEMICAL AMERICAS

Baytown Chemical Plant Raymond C. Floyd SITE MANAGER

March 17, 1995

Mr. William C. Olson Hydrogeologist - Environmental Bureau New Mexicico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico

RECEIVED

MAR 21 1995

Environmental Bureau
Oil Conservation Division

RE: Quarterly Sampling

Former Exxon Service Facility - Dal Paso

Hobbs, New Mexico

Dear Mr. Olson:

ENSR Consulting and Engineering(ENSR), on behalf of Exxon Chemical Company (Exxon) has completed the third quarterly sampling event of monitor well DP-1 on Exxon's facilty located at 1715 Dal Paso Street in Hobbs, New Mexico. The sampling was performed in accordance with the The Mexico Oil Conservation Division (OCD) letter dated June 17, 1994. The OCD directed that the groundwater be sampled and analyzed on a quarterly basis for aromatic volatile organics, halogenated volatile organics, and polynuclear aromatic hydrocarbons (PAH), and dissolved manganese. The quarterly sampling event was conducted on March 1, 1995.

Proir to collecting the groundwater samples, three well volumes were removed from the well using a PVC bailer. Groundwater was then retrieved with a disposable bailer and poured directly from the bailer into the appropriate sample containers. The samples were properly preserved, labeled, and placed in a cooler of ice. Chain-of-custody documentation was filled out and sent with the samples to ENVIRON EXPRESS Laboratories in La Porte, Texas for analysis.

The analytical results are outlined in Table 1, and a complete laboratory report along with chainof-custody documentation are provided as Attachment A.

All organic constituent concentrations are below the New Mexico Water Quality Standards. Dissolved manganese concentration is slightly above the standard at 0.025 mg/l.

TABLE 1. Groundwater Analytical Results

Constituent	Analytical Results DP-1 (mg/l)	New Mexico Groundwater Standard (mg/l)
Manganese	0.25	0.2
Benzene	< 0.005	0.01
Chloroform	0.016	0.1
1,1-Dichloroethane	< 0.005	0.025
Ethylbenzene	< 0.005	0.75
Xylenes	< 0.015	0.62

Quarterly sampling will continue as outlined in the OCD letter dated June 17, 1994.

If you have any questions or if I can be of further assistance, please call me at (713) 425-1237 or Shawn Eubanks of ENSR at (713) 520-9900.

Very Truly Yours,

Paul Reed

Environmental Projects Coordinator Environmental Affairs Department

Paul Reed / STE

Attachment

xc: Wayne Price, OCD Hobbs District Office

Shawn Eubanks, ENSR Consulting and Engineering

ATTACHMENT A

Laboratory Report

ANALYTICAL RESULTS

PREPARED FOR:

SHAWN EUBANKS

OF

ENSR

3000 Richmond Houston, Texas 77098

PRESENTED BY:

ENVIRON EXPRESS LABORATORIES 401 N. 11th ST. LA PORTE, TEXAS 77571-3115

1-713-471-0951 1-800-880-0156 (FAX): 1-713-471-5821

2620-155-300 DP-1 PAGE 1 OF 1

401 North 11th

La Porte, Texas 77571

Express Laboratories

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer: ENSR	Sample ID: DP-1	Attn: <u>S. EUBANKS</u>
Client: <u>EXXON-DAL PASO</u>		Proj. No: <u>2620-155-300</u>
Proj. Location: <u>HOBBS, NM</u>		Environ ID: 34354
Sample Matrix: WATER	Sample Depth:	Sampled: <u>03/01/95</u>
Received: <u>03/ 02 / 95</u>	Reported: <u>03/ 08 / 95</u>	Invoice No.: 6937

TOTAL PAH (EPA 8100)

Compounds	Results mg/l	Detection Limit mg/l
Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(ghi) perylene Chrysene Dibenzo(a,h) anthracene Fluoranthene Fluorene Indeno(1,2,3-cd) pyrene	<pre></pre>	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Naphthalene Phenanthrene Pyrene	< 1.0 < 1.0 < 1.0	1.0 1.0 1.0

Analyst: J.M. Date Extracted: 03/02/95 Date Analyzed: 03/02/95 @ 13:50

John £. Keller, Ph.D.

401 North 11th

La Porte, Texas 77571

Express Laboratories Customer:

1 (800) 880-0156

FAX (713) 471-5821

ENSR

(713) 471-0951 • 1 Sample ID: **DP-1**

Environ ID: 34354

Project:

Exxon - DAI PASO, Hobbs NM, Proj. # 2620-155-300

Matrix: Liquid

Date Sampled: 3/1/95

Date Received: 3/2/95

Date/Time Analyzed: 3/2/95 14:18

EPA SW-846 Method 8240 - Total Volatiles

COMPOUNDS	CONCENTRATION (ug/l)	PQL (ug/l)	CAS#
	(ug/i)	(ug/i)	
Acetone	< 50	50	67-64-1
Benzene	< 5	5	71-43-2
Bromodichloromethane	< 5	5	75-27-4
Bromoform	< 5	5	75-25-2
Bromomethane	< 10	10	75-83-9
2-Butanone	< 50	50	78-93-3
Carbon disulfide	< 5	. 5	75-15-0
Carbon Tetrachloride	< 5	5	56-23-5
Chlorobenzene	< 5	5	108-90-7
Chloroethane	< 10	10	75-00-3
2-Chloroethyl vinyl ether	< 10	10	110-75-8
Chloroform	16	5	67-66-3
Chloromethane	< 10	10	74-87-3
Dibromochloromethane	< 5	5	124-48-1
1,1-Dichloroethane	< 5	5	75-34-3
1,2-Dichloroethane	< 5	5	107-06-2
1,1-Dichloroethene	< 5	5	75-35-4
1,2-Dichloroethene (total)	< 5	5	540-59-0
1,2-Dichloropropane	< 5	5	78-87-5
cis-1,3-Dichloropropene	< 5	5	10061-01-5
trans-1,3-Dichloropropene	< 5	5	10061-02-6
Ethylbenzene	< 5	5	100-41-4
2-Hexanone	< 25	25	591-78-6
4-Methyl-2-Pentanone	< 25	25	108-10-1
Methylene Chloride	< 5	5	75-09-2
Styrene	< 5	5	100-42-5
1,1,2,2-Tetrachloroethane	< 5	5	79-34-5
Tetrachloroethene	< 5	5	127-18-4
Toluene	< 5	5	108-88-3
1,1,1-Trichloroethane	< 5	5	71-55-6
1,1,2-Trichloroethane	< 5	5	79-00-5
Trichloroethene	< 5	5	79-01-6
Vinyl acetate	< 10	10	108-05-4
Vinyl chloride	< 10	10	75-01-4
m&p-Xylene	< 10	10	1330-20-7
o-Xylene	< 5	5	1330-20-7
	SURROGATE REC	OVERIES	
SURROGATE	CONCENTRATION	% RECOVERY	RANGE
1,2-Dichloroethane-d4 (surr)	47	94	76-114
Toluene-d8 (surr)	47	94	88-110

53 4-Bromofluorobenzene (surr) 106 86-115

Carl Degner, GC/MS Analyst

John Ke**y**er,

401 North 11th

La Porte, Texas 77571

Express Laboratories

(713) 471-0951

• 1 (800) 880-0156 • FAX (713) 471-5821

Customer: <u>ENSR</u>	Sample ID: <u>DP-1</u>	Attn: S. EUBANKS
Client: <u>EXXON - DAL PASO</u>		Proj. No: <u>12620155300</u>
Proj. Location: HOBBS, NEW M	EXICO	Environ ID: 34354
Sample Matrix: LIQUID	Sample Depth:	Sampled: 03/01/95
Received: <u>03/ 02 / 95</u>	Reported: 03/ 08 / 95	Invoice No.: 6937

TOTAL METALS (EPA SW846)

Metals	Method	Results	Detection
Dissolved	3015/	mg/l	Limit mg/l
Manganese	6010	0.25	0.02

Analyst: A.R. Date Extracted: 03/03/95 Date Analyzed: 03/03/95 @ 13:20

ENVIRON EXPRESS QUALITY CONTROL REPORT

ANALYSIS: METALS - TOTAL METHOD: EPA SW846 3015/6010/7470 | MATRIX: LIQUID

ANALYSTS: A.R./J.L. DATE: 03/03/95 UNITS: PPM (mg/l) NO.SAMPLES: 6

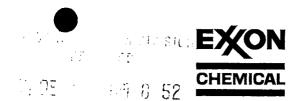
SAMPLES: 34338 - 34342, 34354

MATRIX SPIKE & MATRIX SPIKE DUPLICATE ANALYSIS

SAMPLE	SAMPLE	SPIKE	SPIKE	RECOVERY	RECOVERY	RELATIVE	CONT.	QC LI	MITS
34342	RESULTS	ADDED	RESULTS	%	DUP. %	DIFF.	CALIB.	REC. RANGE	REL. DIF.
ARSENIC	0.0	5	4.89	98	94	4	99	75 - 125	20
BARIUM	0.0	5	4.46	89	86	4	97	75 - 125	20
CADMIUM	0.0	5	4.44	89	85	4	97	75 - 125	20
CHROMIUM	0.0	5	4.49	90	86	4	96	75 - 125	20
LEAD	0.0	5	4.43	89	85	4	97	75 - 125	20
MERCURY	0.00	0.20	0.19	95	95	0	100	75 - 125	20
SELENIUM	0.0	5	5.33	107	103	3	98	75 - 125	20
SILVER	0.0	5	4.45	89	85	5	95	75 - 125	20

OHN KELLER, Ph.D Laboratory Director

CHAIN OF CUSTODY RECORD


5

Page

ENVIRON EXPRESS LABORATORIES 401 North 11th, La Porte, Texas 77571 (713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821

Project No. Project Name			Proj	Project Location		Turn A	rounc	Time:	Turn Around Time: Check One)ne			
2620-155-300 EXXON -1	-041 11950	^	7-1	140 Hz. 1117	,	1 day	ب]2 day	☐2 days ☐3 days	days	[] 5 days	ays	
Sampler's Affiliation:		Sam	Samper's Name (PRINT): Surph	NEIL	Sark			ΙΫ́	30RAT	ORY	ANAL	/SIS	
ENSR		Sam	Sampler's: (Signature)	re) Alanon G	M			1	Reference EPA Method #	EPA	Method	#	
Results to: SHAWN FUBANCS tax S.	phone 520-9900	Samp	Sampler Remarks: F,	1/4/2 3	Pisene								
			M	METALS !				S∃			SH	NU	
City:		Lab F	Lab Remarks:								111A.	///	
Invoice to: No. ((1.811					5H	الاط	
Field Sample No./ Identification	Date and Time	Grab	Sample Container (Size/Mat,I)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative	X3T8 PH9T	RCRA AJOV	SEMI	TCLP TCLP	470T	Hd IW3S	299 IJ	
34354 DP-1	3-1-95	1	Home XX	(lamp)									<u> </u>
140		<u>,</u>	3202	1							Z		
1.00	\rightarrow	7	802	7								Z	
							-						
												-	
N												-	
Signature)	Date: 3.00 Time: 3.00	3:00	Received By (Signature)					Date:	37.7	<u> </u>	Intact	4	٥,
Relinquished by: (Signature)	Date:		Received By: (Signature)				0 -	Date: Time:			ntact		
Relinquished by: (Signature)	Date:		Received By: (Signature)	By:			O F	Date:			Intact 2	200	

EXXON CHEMICAL AMERICAS

Baytown Chemical Plant Raymond C. Floyd SITE MANAGER

December 19, 1994

Mr. William C. Olson Hydrogeologist - Environmental Bureau New Mexico Oil Conservation District Post Office Box 2088 Santa Fe, New Mexico 87504

RE: Quarterly Sampling

Former Exxon Dal Paso Service Facility

Hobbs, New Mexico

Dear Mr. Olson:

ENSR Consulting and Engineering (ENSR), on behalf of Exxon Chemical Company (Exxon) has completed the second quarterly sampling event of monitor well DP-1 on Exxon's facility located at 1715 Dal Paso Street, in Hobbs, New Mexico. The sampling was performed in accordance with the New Mexico Oil Conservation Division (OCD) letter dated June 17, 1994. The OCD directed that the groundwater be sampled and analyzed on a quarterly basis for aromatic volatile organics, halogenated volatile organics, polynuclear aromatic hydrocarbons (PAHs), and manganese. The quarterly sampling event was conducted on November 23, 1994.

Prior to collecting the groundwater samples, three well volumes were removed from the well using a PVC bailer. Groundwater was then retrieved with a disposable bailer and poured directly from the bailer into the appropriate sample containers. The samples were properly preserved, labeled, and placed on ice. Chain-of-custody documentation was filled out and sent with the samples to ENVIRON EXPRESS Laboratories in La Porte, Texas for analysis.

As outlined in item 1 of the OCD letter, groundwater was analyzed for aromatic volatile organics, halogenated volatile organics, polynuclear aromatic hydrocarbons (PAHs), and manganese. The analytical results are summarized in Table 1. The complete laboratory report and chain-of-custody documentation are provided as Attachment A.

All of the results are below the New Mexico Water Quality Control Commission ground water standards except for manganese.

Mr. W.C. Olson December 19, 1994 Page 2

TABLE 1. Groundwater Analytical Results

Constituent	Analytical Results DP-1 (mg/L)	New Mexico Groundwater Standard (mg/L)
Manganese	0.5	0.2
Benzene	0.005	0.01
Chloroform	0.012	0.1
1,1,-Dichloroethane	0.017	0.025
Ethylbenzene	0.010	0.75
Xylenes	0.029	0.62

Quarterly sampling will continue as outlined in the OCD letter dated June 17, 1994.

If there are any questions or if I can be of further assistance, please feel free to call me at (713) 425-1237 or Gil Long of ENSR at (713) 520-9900.

Sincerely,

Paul Reed

Environmental Projects Coordinator Environmental Affairs Department

PR:gml

Attachment

cc: Wavı

Wayne Price, OCD Hobbs District Office Trish Carls, Brown McCarroll and Oaks Hartline Gil Long, ENSR Consulting and Engineering Master File ATTACHMENT A

LABORATORY RESULTS

1009-005-105 DP-1 PAGE 1 OF 1

401 North 11th

La Porte, Texas 77571

Express Laboratories

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer: ENSR	Sample ID: <u>DP-1</u>	Attn: S. EUBANKS
Client: <u>EXXON - HOBBS</u>		Proj. No: <u>1009005105</u>
Proj. Location: <u>HOBBS, NEW M</u>	EXICO	Environ ID: 31919
Sample Matrix: LIQUID	Sample Depth:	Sampled: <u>11/23 / 94</u>
Received: <u>11/ 28 / 94</u>	Reported: 12/02/94	Invoice No.: 6378
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

### TOTAL METALS (EPA SW846)

Metals	Method	Results	Detection
Dissolved	3015/	mg/l	Limit mg/l
Manganese	6010	0.5	0.1

Analyst: A.R. Date Extracted: 11/30/94 Date Analyzed: 11/30/94 @ 10:20

John E. Keller, Ph.D.

1009-005-105 DP-1 PAGE 1 OF 1



401 North 11th

La Porte, Texas 77571

**Express Laboratories** 

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer: ENSR	Sample ID: DP-1	Attn: S. EUBANKS
Client: <u>EXXON-HOBBS</u>		Proj. No: 1009005105
Proj. Location: <u>HOBBS, NEW M</u>	EXICO	Environ ID: 31919
Sample Matrix: <u>SOIL</u>	Sample Depth:	Sampled: <u>11/23 / 94</u>
Received: <u>11/ 28 / 94</u>	Reported: <u>12/02/94</u>	Invoice No.: <u>6378</u>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TOTAL PAH (EPA 8100)

Compounds	Results mg/kg	Detection Limit mg/kg
Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(ghi) perylene Chrysene Dibenzo(a,h) anthracene	<pre></pre>	1.0 1.0 1.0 1.0 1.0 1.0 1.0
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.0 1.0 1.0 1.0 1.0

Analyst: J.K. Date Extracted: 12/02/94 Date Analyzed: 12/02/94 @ 05:23

John E. Keller, Ph.D.

401 North 11th

La Porte, Texas 77571

Express Laboratories

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer:

ENSR

Sample ID: DP-1

Date Received: 11/28/94

Environ ID: 31919

Project:

Date Sampled: 11/23/94

Exxon, Hobbs, New Mexico, Proj. # 1009-005-105

Matrix: Liquid

Date/Time Analyzed: 11/29/94 4:46

EPA SW-846 Method 8240 - Total Volatiles

COMPOUNDS	CONCENTRATION	PQL	CAS#
<u> </u>	(ug/l)	(ug/l)	
Acetone	< 25	25	67-64-1
Benzene	5	5	71-43-2
Bromodichloromethane	< 5	5	75-27-4
Bromoform	< 5	5	75-25-2
Bromomethane	< 10	10	75-83-9
2-Butanone	< 10	10	78-93-3
Carbon disulfide	< 5	5	75-15-0
Carbon Tetrachloride	< 5	5	56-23-5
Chlorobenzene	< 5	5	108-90-7
Chloroethane	< 10	10	75-00-3
2-Chloroethyl vinyl ether	< 10	10	110-75-8
Chloroform	12	5	67-66-3
Chloromethane	< 10	10	74-87-3
Dibromochloromethane	< 5	5	124-48-1
1,1-Dichloroethane	17	5	75-34-3
1,2-Dichloroethane	< 5	5	107-06-2
1,1-Dichloroethene	< 5	5	75-35-4
1,2-Dichloroethene (total)	< 5	5	540-59-0
1,2-Dichloropropane	< 5	5	78-87-5
cis-1,3-Dichloropropene	< 5	5	10061-01-5
trans-1,3-Dichloropropene	< 5	5	10061-01-5
Ethylbenzene	10	5	100-41-4
2-Hexanone	< 10	10	591-78-6
4-Methyl-2-Pentanone	< 10	10	108-10-1
Methylene Chloride	< 5	5	75-09-2
Styrene	< 5	5	100-42-5
1,1,2,2-Tetrachloroethane	< 5	5	79-34-5
Tetrachloroethene	< 5	5	127-18-4
Toluene	< 5	5	108-88-3
1,1,1-Trichloroethane	< 5	5	71-55-6
1,1,2-Trichloroethane	< 5	5	79-00-5
Trichloroethene	< 5	5	79-00-5 79-01-6
Vinyl acetate	< 10	10	108-05-4
Vinyl acetate Vinyl chloride	< 10	10	75-01-4
m&p-Xylene	10	10	1330-20-7
o-Xylene	19	5	1330-20-7
- Vyicho	SURROGATE REC		1330-20-7
SURROGATE	CONCENTRATION	% RECOVERY	RANGE
1,2-Dichloroethane-d4 (surr)	51	102	70-121
Toluene-d8 (surr)	51	102	81-117
4-Bromofluorobenzene (surr)	53	106	74-121

Carl Degner, Ge/MS Analyst

ENVIRON EXPRESS QUALITY CONTROL REPORT

ANALYSIS: METALS - TOTAL METHOD: EPA SW846 3015/6010/7470 MATRIX: LIQUID

ANALYSTS: A.R./J.L. | DATE: 11/30/94 | UNITS: PPM (mg/l) | NO.SAMPLES: 6

SAMPLES: 31919 - 31924, 31952

MATRIX SPIKE & MATRIX SPIKE DUPLICATE ANALYSIS

SAMPLE	SAMPLE	SPIKE	SPIKE	RECOVERY	RECOVERY	RELATIVE	CONT.	QC LI	MITS
MATRIX	RESULTS	ADDED	RESULTS	%	DUP. %	DIFF.	CALIB.	REC. RANGE	REL. DIF.
ARSENIC	0.0	5	5.0	100	101	1	102	80 - 120	20
BARIUM	0.0	5	5.0	101	102	1	98	80 - 120	20
CADMIUM	0.0	5	5.1	101	102	1	98	80 - 120	20
CHROMIUM	0.0	5	5.1	102	103	1	99	80 - 120	20
LEAD	0.0	5	5.1	102	101	1	99	80 - 120	20
MERCURY	0.00	0.10	0.10	100	90	11	90	80 - 120	20
SELENIUM	0.0	5	5.2	103	102	1	102	80 - 120	20
SILVER	0.0	5	4.9	98	101	3	95	80 - 120	20

John E. Keller
JOHN KELLER, Ph.D
Laboratory Director

ENVIROR

Express Laboratories

ENVIRON EXPRESS LABORATORIES 401 North 11th, La Porte, Texas 77571 (713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821

Intact 11-30-04 #631B LABORATORY ANALYSIS
Reference EPA Method # ☐5 days 421105510 Intact Intact SEMI-VOLATILES 2 days 3 days TCLP Turn Around Time: Check One TCLP VOLATILES TCLP METALS SEMI-VOLATILES Date: Date: Time: Time: VOLATILES _ ☐1 day **BCRA METALS** 1.814 H9T BTEX 8020 Preser-vative Total MEN 55 4/1/KID MELIO Sample Type (Liquid, Sludge, Etc.) L/50, Project Location L1861D Sampler Remarks: Filth Plasoyve Sampler's: (Signature) Samper's Name (PRINT): Habbs. Received By:\ Received By: (Signature) Received By: (Signature) LO 21 Sample Container (Size/Mat,1) 32,02 HALDER 1001/2 HOWE Lab Remarks: Dry Dry Date: 11 -28-97 48.37 Comp Time: Ofce Grab tax 520-6802 Date: // phone *520-950* 3:30 Time: Date: Time: Date and Time EXXON-16665 AK Project Name Ku Amores) S Results to: SHAUN KUB ANKS Field Sample No./ Identification 501-500-401 3000 DP-1 -da thereson ロアー Sampler's Affiliation: Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) ENSA Lab Number Project No. Invoice to: Address: <u>で</u>

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION HOBBS DISTRICT OFFICE

BRUCE KING

NMOCD Inter-Correspondence

POST OFFICE BOX 1980 HOBBS, NEW MEXICO 88241-1980 (505) 393-6161

To:

Bill Olson-Hydrogeologist Environmental Bureau

From:

Wayne Price-Environmental Engineer District I

Date:

November 23, 1994

Reference:

Former Exxon Dal Paso Service Facility

Subject:

Quarterly Sampling of Monitor Well

Comments:

Dear Bill,

On November 23, 1994, I witnessed the sampling of the monitor well at the facility listed above in Hobbs, NM. Shawn Eubanks of the ENSR Co. performed the sampling. Please note there is a considerable difference in the olfactory smells of the monitor well this time than from last time. Mr. Eubanks also noticed a change. The water has a significate increased hydrocarbon smell. I checked it using a 40ml vol headspace method above the liquid level with my The PID read over 150 ppm of volatiles. The water has about .5 % of solids or less. The solids will settle out after a period of time. From a field observation it appears that the hydrocarbon is attached more so to the solids than in the water phase, which might effect the results if only the water phase is tested.

I recommend that if the analytical results do not reflect an increase in volatiles, then we should ask for a spilt sample next time to verify the results.

If you need any further information please don't hesitate to call or write.

Thanks!

Jerry Sexton-District I Supervisor .cc:

Roger Anderson-Environmenta H. Bureau Chief

EXXON CHEMICAL AMERICAS

Baytown Chemical Plant Raymond C. Floyd SITE MANAGER

September 27, 1994

Mr. William C. Olson Hydrogeologist - Environmental Bureau New Mexico Oil Conservation District Post Office Box 2088 Santa Fe, New Mexico 87504

RE: Quarterly Sampling

Former Exxon Dal Paso Service Facility

Hobbs, New Mexico

Dear Mr. Olson:

ENSR Consulting and Engineering (ENSR), on behalf of Exxon Chemical Company (Exxon) has completed the first quarterly sampling event of monitor well DP-1 on Exxon's facility located at 1715 Dal Paso Street, in Hobbs, New Mexico. The sampling was performed in accordance with the New Mexico Oil Conservation Division (OCD) letter dated June 17, 1994. The OCD directed that the groundwater be sampled and analyzed on a quarterly basis for aromatic volatile organics, halogenated volatile organics, polynuclear aromatic hydrocarbons (PAHs), and manganese. The first quarterly sampling event was conducted on August 30, 1994.

Prior to collecting the groundwater samples, three well volumes were removed from the well using a PVC bailer. Groundwater was then retrieved with a disposable bailer and poured directly from the bailer into the appropriate sample containers. The samples were properly preserved, labeled, and placed on ice. Chain-of-custody documentation was filled out and sent with the samples to ENVIRON EXPRESS Laboratories in La Porte, Texas for analysis.

As outlined in item 1 of the OCD letter, groundwater was analyzed for aromatic volatile organics, halogenated volatile organics, polynuclear aromatic hydrocarbons (PAHs), and manganese. The analytical results are summarized in Table 1. The complete laboratory report and chain-of-custody documentation are provided as Attachment A.

Mr. W.C. Olson September 27, 1994 Page 2

TABLE 1. Groundwater Analytical Results

Constituent	Analytical Results DP-1 (mg/L)	New Mexico Groundwater Standard (mg/L)
Manganese	0.7	0.2
Benzene	0.005	0.01
Chloroform	0.009	0.1
1,1,-Dichloroethane	0.019	0.025
Ethylbenzene	0.008	0.75
Xylenes	0.065	0.62

All these results are below the New Mexico Water Quality Control Commission ground water standards except for manganese.

Quarterly sampling will continue as outlined in the OCD letter dated June 17, 1994.

If there are any questions or if I can be of further assistance, please feel free to call me or Jay Swindle of ENSR at (713) 520-9900.

Sincerely,

Paul Reed

Environmental Projects Coordinator

(713) 425-1237

PR:wah

Attachment

cc: Wayne Price, OCD Hobbs District Office

Trish Carls, Brown McCarroll and Oaks Hartline Jay Swindle, ENSR Consulting and Engineering

Master File

ATTACHMENT A

LABORATORY RESULTS

401 North 11th

La Porte, Texas 77571

Express Laboratories

(713) 471-0951

1 (800) 880-(156

FAX (713) 471-5821

Customer:

ENSR

Sample ID: DP - 1

Environ ID: 29556

Project:

ENSR - Exxon, Hobbs, NM, Proj. # 1009-005-105

Matrix: Liquid

Date Sampled: 8/30/94

Date Received: 8/31/94

Date/Time Analyzed: 8/31/94 17:31

EPA Method 624 - Priority Pollutants + Xylenes

COMPOUNDS	CONCENTRATION	PQL	CAS#	
John John John John John John John John	(ug/l)	(ug/l)	CA3#	
Acrolein	< 50	50	107-02-8	
Acrylonitrile	< 20	20	107-13-1	
Benzene	< 5	5	71-43-2	
Bromodichloromethane	< 5	5	75-27-4	
Bromoform	< 5	5	75-25-2	
Bromomethane	< 10	10	75-83-9	
Carbon Tetrachloride	< 5	5	58-23 - 5	
Chlorobenzene	< 5	5	108-90-7	
Chloroethane	< .10	10	75-00-3	
2-Chloroethyl vinyl ether	< 10	10	110-75-8	
Chloroform	9	5	67-68-3	
Chloromethane	< 10	10	74-87-3	
Dibromochloromethane	< 5	5	124-48-1	
Dichlorodifluoromethane	< 10	10	75-71-8	
1,1-Dichloroethane	19	5	75-34-3	
1,2-Dichloroethane	< 5	5	107-06-2	
1,1-Dichloroethene	< 5	5	75-35-4	
trans-1,2-Dichloroethene	< 5	5	540-59-0	
1,2-Dichloropropane	< 5	5	78-87-5	
cis-1,3-Dichloropropene	< 5	5	10061-01-5	
trans-1,3-Dichloropropene	< 5	5	10061-02-8	
Ethylbenzene	8	5	100-41-4	
Methylene Chloride	< 5	5	75-09-2	
1.1.2.2-Tetrachioroethane	< 5	5	79-34-5	
Tetrachloroethene	< 5	5	127-18-4	
Toluene	< 5	5	108-88-3	
1.1.1-Trichloroethane	< 5	5	71-55-6	
1.1.2-Trichlorgethane	< 5	5	79-00-5	
Trichloroethene	< 5	5	79-01-8	
Vinyl chloride	< 10	10	75-01-4	
m&p-Xylene	< 10	10	1330-20-7	
o-Xviene	22	5	1330-20-7	
SURROGATE RECOVERIES				
SURROGATE	CONCENTRATION	% RECOVERY	RANGE	
1,2-Dichloroethane-d4 (surr)	43	86	70-121	
Toluene-d8 (surr)	52	104	81-117	
4-Bromofluorobenzene (surr)	50	100	74-121	

Carl Degner, GETMS Analyst

John Keller, Laboratory Director

1009-005-105 DP-1 PAGE 1 OF 1

401 North 11th

La Porte, Texas 77571

Express Laboratories

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer: <u>ENSR</u>	Sample ID: DP-1	Attn: S. EUBANKS
Client: <u>ENSR-EXXON</u>		Proj. No: <u>1009005105</u>
Proj. Location: <u>HOBBS, NM</u>		Environ ID: 29556
Sample Matrix: <u>LIQUID</u>	Sample Depth:	Sampled: <u>08/30/94</u>
Received: <u>08/31/94</u>	Reported: 09/06/94	Invoice No.: 5840

TOTAL PAH (EPA 8100)

Compounds	Results mg/l	Detection Limit mg/l
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	< 0.5 < 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Analyst: J.K. Date Extracted: 08/30/94 Date Analyzed: 08/30/94 @ 17:27

John E. Keller, Ph.D.

1009-005-105 DP-2 PAGE 1 OF 1

401 North 11th

La Porte, Texas 77571

Express Laboratories

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer: ENSR	Sample ID: DP-2	Attn: S. EUBANKS
Client: EXXON		Proj. No: 1009005105
Proj. Location: HOBBS, N.M.		Environ ID: <u>29556</u>
Sample Matrix: <u>WATER</u>	Sample Depth:	Sampled: <u>08/30/94</u>
Received: <u>08/30/94</u>	Reported: <u>09/ 07 / 94</u>	Invoice No.: <u>5840</u>

TOTAL METAL

Metals	Method	Results mg/l	Detection Limit mg/l
Dissolved Manganese	6010	0.7	0.1

Analyst: A.R. Date Extracted: 09/06/94 Date Analyzed: 09/06/94 @ 15:01

John E. Keller, Ph.D.

ENVIRON EXPRESS QUALITY CONTROL REPORT

ANALYSIS: METALS - TOTAL METHOD: EPA SW846 3015/6010/7470 | MATRIX: LIQUID

ANALYSTS: A.R./J.L. | DATE: 09/06/94 | UNITS: PPM (mg/l) | NO.SAMPLES: 5

SAMPLES: 29556, 29586 - 29587, 29709, 29719

MATRIX SPIKE & MATRIX SPIKE DUPLICATE ANALYSIS

SAMPLE	SAMPLE	SPIKE	SPIKE	RECOVERY	DUPLICATE	RELATIVE	CONT.	QC LI	MITS
MATRIX	RESULTS	ADDED	RESULTS	%	RESULTS	DIFF.	CALIB.	REC. RANGE	REL DIF.
ARSENIC	0.0	5	4.6	92	4.5	1	98	80 - 120	20
CHROMIUM	0.0	5	4.6	92	4.5	2	98	80 - 120	20
MANGANESE	0.0	5	4.6	92	4.6	0	97	80 - 120	20
ZINC	0.0	5	4.6	92	4.5	1	96	80 - 120	20

John E. Keller

JOHN KELLER, Ph.D

Laboratory Director

CHAIN OF CUSTODY RECORD

Page

ENVIRON EXPRESS LABORATORIES 401 North 11th, La Porte, Texas 77571 (713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821

Project No.	Project Name				Projec	Project Location			Tum Around Time: Check One	ne: Check One
1009-0	- 205-105 EXSR -	EXXDR	3		9/	665 M	M		1 day 2	2 days 5 days
Sampler's Affiliation:			Sa	mple	Sampler's Name (PRINT):	INT): 5/49621	N FUB	SZÁNY	LABORATOF	ABORATORY ANALYSIS
E415R	Je		Sa	mple	Sampler's: (Signature)	selmin		Mack	Reference E	Reference EPA Method #
Results to:	4.W EUBANKS lax	13 520-980 520-6901	Sa	mple	Sampler Remarks: ${\cal F}$	F./tena	11/2 14	144		
Address:	3000 Richman Alle	3							QZ,	
City:]	8601.1	ā	b Re	Lab Remarks:				EL DE	
Invoice to:	No. ()				:		1.81 208	7 0 0 0 0 0 0 0	12:71
Lab Number	Fleid Sample No./ Identification	Date and Time	danĐ	Comp	Sample Container (Size/Mat.f)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative	ARTERIA POPULAR	10/10/10/10/10/10/10/10/10/10/10/10/10/1	
29556	7.00	8.30W	×		3 x yom1	619413	Jan H		7	
			\rightarrow		125 mg	$\theta_{\mathbf{j}}$	1 your		\	
			く		Jul 521		5N.H		7	
		•			-					,*
	•									
										409-b
	1/1								, i	#840
Relinquished by: (Signature)	Sound Culuit	(.,)	Date: Time:	.	Received By: (Signature)	11 6 1	B	X X	Date Date O	Intact
Relinquished by: (Signature)	V	ľ	Date: Time:		Received By: (Signature)	·			Date: Time:	Intact

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY

June 17, 1994

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-111-334-133

Mr. J. Paul Reed Environmental Project Coordinator Baytown Chemical Plant Exxon Chemical P.O. Box 4004 Baytown, Texas 77522-4004

RE: GROUND WATER INVESTIGATION

FORMER DAL PASO SERVICE FACILITY

HOBBS, NEW MEXICO

Dear Mr. Reed:

The New Mexico Oil Conservation Division (OCD) has completed a review of Exxon Chemical Americas' May 1994 "INITIAL GROUNDWATER ASSESSMENT REPORT, FORMER EXXON CHEMICAL FACILITY 1715 DAL PASO STREET, HOBBS, NEW MEXICO" which was received by the OCD on May 25, 1994. This report presents the results of Exxon's ground water investigation at Exxon's former Dal Paso service facility located in Hobbs, New Mexico.

The investigation activities performed are satisfactory. However, the sampling results show that elevated levels of 1,1 dichloroethane, xylene, napthalene and manganese are present in the dissolved phase in ground water from the site monitor well. Since these contaminants are at or below the New Mexico Water Quality Control Commission ground water standards, the OCD defers comment on the need for additional investigations at this time. Instead, the OCD requires that Exxon:

1. Sample the ground water from the monitor well for aromatic volatile organics, halogenated volatile organics, polynuclear aromatic hydrocarbons and manganese on a quarterly basis.

Mr. J. Paul Reed June 17, 1994 Page 2

- 2. Submit reports to the OCD Santa Fe Office with copies sent to the OCD Hobbs Office which contain the results of the quarterly sampling by October 1, January 1, April 1 and July 1 of each respective year. The first quarterly report will be due on October 1, 1994.
- 3. Notify the OCD at least one week in advance of all scheduled sampling events such that the OCD has the opportunity to witness the events and/or split samples.

If you have any questions, please contact me at (505) 827-5885.

Sincerely,

William C. Olson Hydrogeologist

Environmental Bureau

xc: Jerry Sexton, OCD Hobbs District Supervisor

Wayne Price, OCD Hobbs District Office

Jay Swindle, ENSR

Fold at l	PS Form 380			991 to Who	Restricted	Special	Certified Fee	Postage	P O , SI	Street and No.	Sent to	STATE CHANGE AND CONTRACT OF THE CHANGE OF T
line over top of envelope right of the return address	Postmark or Date	TOTAL Postage & Fees	Return Receipt Showing to Whom, Date, and Addressee's Address	Return Receipt Showing to Whom & Date Delivered	ed Delivery Fee	Special Delivery Fee	Fee	,	State and ZIP Code	nd No.		Receipt f Certified No Insurance Do not use fo (See Reverse)
envelope to the n address	·	\$						\$				Vail Coverage Provided r International Mail

EET HEE TIT d

EXXON CHEMICAL AMERICAS

Baytown Chemical Plant Raymond C. Floyd SITE MANAGER

VIA OVERNIGHT MAIL

RECEIVED

May 24, 1994

MAK 2 5 1994

OIL CONSERVATION DIV. SANTA FE

Monitor Well Installation and Sampling Results - Former Exxon Dal Paso and West Marland Service Facilities Hobbs, New Mexico

Mr. William C. Olson State of New Mexico Energy, Minerals and Natural Resources Dept. Oil Conservation Division State Land Office Building Santa Fe. New Mexico 87504

Dear Mr. Olson:

As per the Monitor Well Installation Work Plan approved by your office on January 31, 1994, please find attached the Well Installation and Sampling Reports for the above mentioned sites. Groundwater samples from the West Marland facility were collected in March and April 1994, and no contamination above the New Mexico groundwater cleanup standards was detected. However, the Dal Paso facility samples, also collected in March and April 1994, indicated a manganese concentration ranging from 0.3 ppm to 0.5 ppm which is slightly above the New Mexico standards of 0.2 ppm.

In order to ensure adequate reporting, the initial Dal Paso sampling data was sent to Roger Anderson at OCD via telefax on March 31, 1994. The wells at both facilities were sampled again on April 25, 1994. The Dal Paso results were sent to you via telefax on May 5, 1994.

To the best of Exxon's knowledge, neither Exxon nor the previous owner used or managed products containing manganese. Exxon believes that the manganese may be native to the area soils. Therefore, Exxon recommends that the background concentrations of manganese be determined to confirm that operational activities have not impacted the groundwater.

Please let me know your thoughts regarding this recommendation. Please feel free to call if you have questions regarding the reports.

Paul Reed by Shown Pabonks

Env. Projects Coordinator

(713) 425-1237

Enclosures

TO: Bill Olson

Company: New Mexico OCD

FAX Number: (505) 827 5741

Date: May 5, 1994

No. of Pages: 1

Urgent: Yes

From: Paul Reed

Exxon Chemical Americas

(713) 425 1237

(713) 425 5788 FAX

Notes:

Bill.

We resampled the monitor wells at both the Marland Street and Dal Paso Street sites in Hobbs and analyzed the metals on a dissolved metals basis. The Marland Street sample was clean again. The Dal Paso Street sample showed the folio...ng for Manganese - 0.3 ppm. The New Mexico standard for Manganese is 0.2 ppm. We are putting together our formal report and have it to you by June 1.

Please call me if you have questions. I look forward to discussing the Manganese issue with you after you have read the report or earlier if you wish. Thanks.

EXXON CHEMICAL AMERICAS

Baytown Chemical Plant Raymond C. Floyd SITE MANAGER

VIA TELEFAX

March 31, 1994

Notification of Potential Ground Water Contamination - Exxon Chemical Facility 1715 Dal Paso in Hobbs, New Mexico

Mr. Roger Anderson State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

Dear Mr. Anderson:

As per the Oil Conservation Division (OCD) approved monitor well installation plan at the above facility, the monitor well was installed, developed and sampled during the week of March 14, 1994. The ground water sample analytical data is attached for your review. As you can see the sample contained elevated levels of iron, manganese, and uranium.

Over the past two days Exxon's consultant, ENSR Consulting & Engineering, and I have been in telephone contact with your office regarding this data. Please note that the data is based on total metals rather than dissolved metals. We are following OCD's guidance and re-running the analysis for the metals on a dissolved metals basis. Exxon has asked the laboratory to re-run the sample and will provide your office with this data as soon as it is available. If the "re-run" sample cannot be adequately analyzed then Exxon will resample the well and notify OCD.

This letter serves as notice that the ground water at this site is potentially contaminated with the above metals. Please call Mr. Jay Swindle of ENSR at (713) 520 9900 or me if you have questions.

Vergitruly you

Paul Reed

Env. Projects Coordinator

(713) 425 1237

JPR1015

1009-003-105 DP-100

401 North 11th . La Porte, Torus 77571

Express Laboratories

(713) 471-0951 1 (800) 880-0156 • FAX (713) 471-5821

Customer: ENER	Sample ID:	Attn: 8. FURANTE
Client:	,	Proj. No: 1004005105
Proj. Location: HOBBS. NM		Environ ID: 15305
Sample Matrix: <u>LICOID</u>	Sample Depth:	Sampled: 61/18/94
Received: 03/ 21 / 94	Reported: 01/28 / 04	Invoice Re-1 4888

TOTAL ROLL METALS

Metals	Method	Results mg/l	Detection Limit mg/l
Aluminum	6010	92.0	0.1
Arsenic	4010	< 0.1	0.1
Barium	6010	0.6.	0.1
Požon	6010	0.4	0.1
Cadatus	6010	< 0.1	0.1
cpicaitms .	6010	< 0.1	0.1
Cobalt	€010	< 0.1	0.1
capper	6010	< 0.1	0.1
Iron	6010	57.1	0.1
Lead	6010	< 0.1	0,1
Hanganese	7470	0.9	0.01
Nergury	7470	< 0.01	0.01
Nickel Nickel	6018	< 0.1	0.1
Selenium	5010	< 0,1	0.1
Silver	6010	< 0.1	0,1
<u> </u>	6010	24.1	0.1
Zing	4010	0.7	0.1

Analyst: A.R. Date Extracted; 03/25/94 Date Analysed: 07/25/94 8 14:12

* OUPLICATE OF DP-1

ENSE ESSE HOU.TX.Ph(713)520-8800 P.05/03

MAR-28-84 18:08 PROM: EMVIRON EXPRESS LASS

ID: 712 471

401 North 11th . La Porte, Toxas 77571

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5831

Customer: INSE Sample ID: DP-1 Attn: S. FURANCE Client: FXXON - DAL PASO Proj. No: 1009005105 Environ ID: 25304 Sample Matrix: LIGUTD Sample Depth: _____ Sampled: _03/_18 / 94 Received: 03/ 21 / 94 Reported: 07/ 28 / 94 Invoice No.: 4889

TOTAL RORA METALS

Metals	Method	Results BY/l	Detection Limit mg/l
Aluminum Arsenic Berium Beron Cedmium Chromium Cobelt Copper Iren Leed Hanganese Mercury Nickel Selenium Silver Uranium	6010 6010 6010 6010 6010 6010 6010 7470 7470 7470 6010 6010 6010 6010	88.2 0.3 0.5 0.4 0.1 0.6 0.1 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Analyst: A.R. Date Extracted: 03/25/94 Date Analysed: 03/25/94 & 14:12

ENSR ES&E HOU.TX.Ph(713)520-8900 P.02/03

113 255 481E

62-21-1884 12:18

EXXON CHEMICAL AMERICAS

P.02

Baytown Chemical Plant Raymond C. Floyd SITÉ MANAGER

March 4, 1994

Monitor Well Installation and Sampling Exxon Chemical Facilities Dal Paso & West Marland Streets, Hobbs, NM

Mr. William C. Olson Hvdrogeologist - Environmental Bureau New Mexico OII Conservation Division Post Office Box 2088 State Land Office Building Santa Fe, New Mexico 67504

Dear Mr. Olson:

The purpose of this letter is to notify the New Mexico Oil Conservation Division (OCD) of upcoming field activities at the above-referenced facilities. Scheduled activities include the installation of one monitor well at each site and subsequent groundwater sampling as described in the "Monitor Well Installation and Sampling Work Plans" submitted to the OCD in January 1994.

The work will be performed by a state-licensed drilling subcontractor under the supervision of Exxon Chemical Americas (Exxon) and ENSR Consulting and Engineering (ENSR) personnel. The work is scheduled to begin at the West Marland Street facility on Tuesday March 15, 1994. You or any of your staff are welcome to observe the field activities and to take split samples.

If you have any questions concerning this matter, please contact me at your convenience.

Sincerely.

EmcHugh for J. Paul Reed

Environmental Project Coordinator Baytown Chemical Plant - W435

Safety and Environmental Department

(713) 425-1237

CC:

Patricia Carls - Brown McCarroll & Oaks Hartline Jay Swindle - ENSR Consulting and Engineering Master File

AEM\B:hobbmw.itr

TOTAL P.02

EXXON CHEMICAL AMERICAS

Baytown Chemical Plant Raymond C. Floyd SITE MANAGER

January 21, 1994

Former Exxon Chemical Facilities
Dal Paso and West Marland Sites, Hobbs, NM

Mr. William C. Olson
State of New Mexico
Energy, Minerals and Natural Resources Department
Oil Conservation Division
State Land Office Building
Santa Fe, New Mexico 87504

RECEIVED

JAN 2 6 1994

OIL CONSERVATION TO SANTA FE

VIA OVERNIGHT DELIVERY

Dear Mr. Olson:

As requested in your November 18, 1993 letter, enclosed for your review and approval are two copies each of the Monitor Well Installation and Sampling Draft Work Plans for the former Exxon facilities located in Hobbs, New Mexico.

If you have any questions or comments concerning this matter, please call me at any time.

Sincerely,

J. Paul Reed

Environmental Project Coordinator

(713) 425-1237

Enclosures

cc: Ms. Trish Carls - Brown McCarroll & Oaks Hartline

Mr. Jay Swindle - ENSR Consulting and Engineering

Master File

AEM\B:hobbs\hobbspln.ltr

RECEIVED

APR 29 1993

April 28, 1993

OIL CONSERVATION DIV.

ENSR Consulting and Engineering 3000 Richmond Avenue Houston, Texas 77098 (713) 520-9900 (713) 520-6802 (FAX)

Mr. William C. Olson Hydrogeologist - Environmental Bureau Oil Conservation Division Land Office Building, State of New Mexico P. O. Box 2088 Santa Fe, New Mexico 87504-2088

Re:

Response to Comments, Removal Action Workplans Former Exxon Dal Paso and West Marland Service Facilities Hobbs. New Mexico

Dear Mr. Olson,

On behalf of Exxon Chemical Company, ENSR Consulting and Engineering (ENSR) is submitting this response to your letter dated March 29, 1993. The responses to your individual comments are as follows:

COMMENT 1

"The hazardous waste characteristics for contaminated soils from both facilities, with the exception of soils around the septic tank at the Dal Paso facility, were composites of different source areas. The OCD requires that composite samples for determining hazardous waste characteristics be taken of representative contaminated soils from each individual source area. Please sample representative contaminated soils from each source area, analyze the soils for hazardous waste characteristics and provide the results to OCD."

RESPONSE

Dal Paso Street Location:

The area of contaminated soil at the Dal Paso facility is restricted to one small area in the facility yard. This area was the former waste oil storage area and is shown on the attached figure taken from the Phase II Site Inspection Report (Figure 2-3). The contaminated area represents less than 100 cubic yards of soil and was sampled as a discrete sample during the Phase II Investigation and later as a composite sample for waste disposal analysis.

The discrete sample (Sample MBA-2A, Figure 3-2) was analyzed for Target Compound List (TCL) volatile and semi-volatile organic compounds and total metals. As reported in the Phase II report, the analytical results did not reveal the presence of any toxic constituents at levels that would require regulation under RCRA's Toxicity Characteristic (TC) Rule (ie. hazardous). The analytical laboratory report for the discrete sample collected from the waste oil storage area, sample MBA-2A, is attached along with a summary table taken from the Phase II report.

Page 2 Mr. William C. Olson April 28, 1993

A composite sample was collected from the same area for waste classification. As reported in our letter dated February 4, 1993, the laboratory analytical results did not indicate the presence of TC constituents at levels that would render the soil as hazardous waste upon disposal and confirms the earlier sampling. A summary of the previously submitted waste characterization analytical results is also attached for your review.

Based on analytical results from both discrete and composite samples, the soil which is to be removed from the facility is classified as non-hazardous. After careful review, it appears that existing analytical data is sufficient to properly classify the waste soils as non-hazardous.

West Marland Street Location:

The contamination at the inactive West Marland Street facility appears to have resulted from spilled diesel fuel from a former above ground diesel storage tank and from leaking diesel fuel from heavy construction equipment parked on site. A site plan is provided on the attached figure taken from the Phase II Site Inspection Report (Figure 2-2).

Discrete soil sampling of the site revealed three areas of contamination which include the former diesel storage tank area (Samples DT-1A, DT-2A, DT-2B), the septic tank area (Sample TR-1A) and in the yard area directly south of the tanks (Sample YS-4A). The sample locations are provided in Figure 3-1. The three areas of contamination on site represent less than 100 cubic yards of soil in total. The physical and analytical characteristics of the contamination at each of the three contaminated areas are very similar and all appear to be the result of diesel fuel contamination.

As reported in the Phase II Report, laboratory analysis indicated that all three areas contain elevated total petroleum hydrocarbon concentrations. In addition, TCL volatile and semi-volatile compounds detected in grab samples collected at the former location of the above ground diesel tank and in the initial trenching activities near the septic tank are nearly identical and do not indicate the presence of TC constituents that would require regulation under RCRA. The third petroleum contaminated area, sample YS-4A, was not sampled for volatile, semi-volatile or metals because it appears to be a small surface stain which will account for less than two cubic yards of contaminated soil. The analytical laboratory reports for the discrete samples collected from the three area of contamination are attached along with a summary table taken from the Phase II report.

A composite sample was collected from the three areas for waste classification. As reported in our letter dated February 4, 1993, the laboratory analytical results did not indicate the presence of TC constituents at levels that would render the soil as hazardous waste upon disposal and confirms the earlier sampling. A summary of the previously submitted waste characterization analytical results is also attached for your review.

Page 3 Mr. William C. Olson April 28, 1993

No physical or analytical evidence exists from discrete or composite samples collected from these three areas that would indicate disposal as a hazardous waste. In addition, it appears that existing analytical data is sufficient to properly classify the waste soils as non-hazardous.

COMMENT 2

"The total lead concentrations in some of the contaminated soils samples were relatively high. However, the TCLP lead analyses for these areas show concentrations at the detection limit for the analysis. Please explain these discrepancies in the analytical results."

RESPONSE

Total lead contamination was shown by grab sample analysis to exist in the waste oil storage area and the truck washing area at the Dal Paso facility (lead contamination was not found at the West Marland facility). TCLP metals sampling of the same areas did not indicate the presence of lead contamination. The discrepancy between the total lead concentrations and the TCLP concentrations from the samples collected at the Dal Paso facility is most likely due to a lead source that is not leachable under TCLP analytical methods. Although the nature of the lead source is not known, ENSR does not believe that additional sampling for this area should be required.

ENSR understands your concerns over the possibility of sending hazardous waste to an inappropriate facility. However, we believe that the existing analytical data is sufficient to properly classify the waste soils as non-hazardous. Based on the information provided in this letter and our letter dated February 4, 1993, ENSR is requesting (on behalf of EXXON) authorization for disposal of the contaminated soils in the CRI landfill near Hobbs. New Mexico.

If you have any questions or comments, please contact us at (713) 520-9900.

Sincerely,

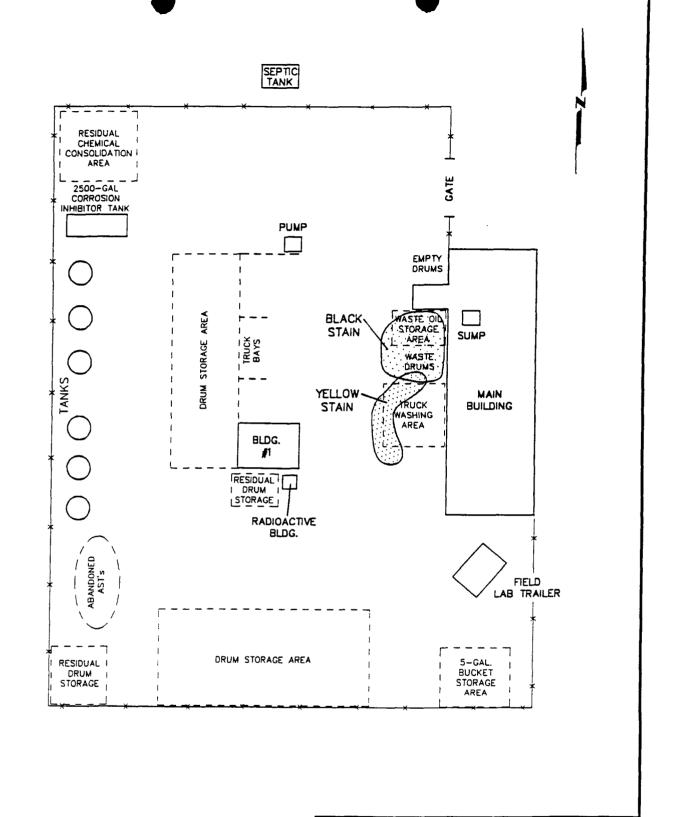
J. Scott Kuykendall

Staff Geologist

Yay L. Swindle. P.E.

Project Manager

Attachments


CC:

Paul Reed - Exxon Chemical Company

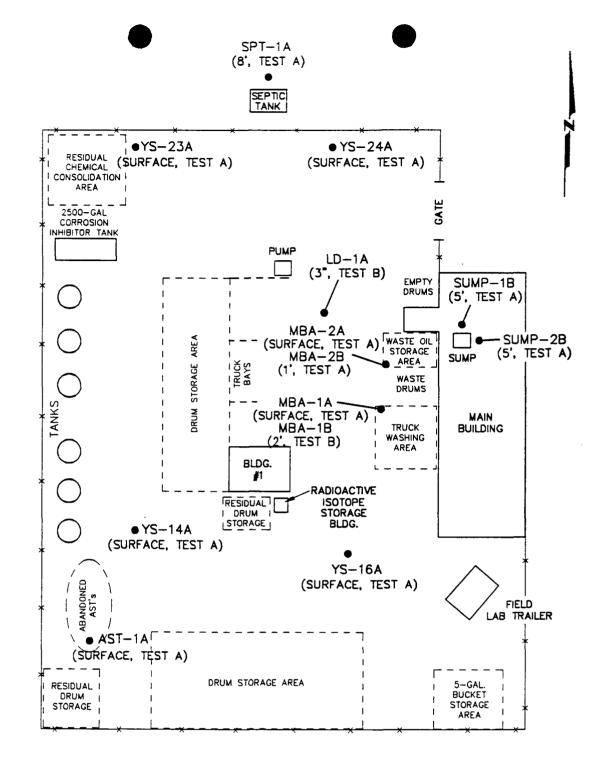
Keith Hopson - Brown McCarroll and Oaks Hartline

AEM\B:ocd.2

FIGURES AND TABLES
FORMER EXXON CHEMICAL FACILITY
DAL PASO STREET, HOBBS NEW MEXICO

ENSR

ENSR CONSULTING & ENGINEERING


FIGURE 2-3

FENCED YARD AREA PLOT PLAN
CHEMICAL DISTRIBUTION FACILITY
HOBBS, NEW MEXICO

 DRAWN:
 SJF
 DATE:
 6-9-92
 PROJECT NUMBER:

 APPV0:
 REVISED:
 1009-001-150

NOT TO SCALE

LEGEND

SAMPLE LOCATION

NOTE: SURFACE SAMPLES COLLECTED BENEATH CALICHE PAD.

TEST A — TPH, ph, RCRA METALS.

TEST B — TPH, ph, RCRA METALS, TOTAL VOLATILES, TOTAL SEMI-VOLATILES.

NOT TO SCALE

ENSR CONSULTING & ENGINEERING

FIGURE 3-2
FENCED YARD SAMPLE LOCATIONS
CHEMICAL DISTRIBUTION FACILITY
HOBBS, NEW MEXICO

DRAWN:	SJF	DATE:	3-10-92	PROJECT NUMBER:
APPV'D:		REVISED);	1009-001-150

CE100910

I

Exxon Chemical Americas Hobbs, NM Dal Paso Site Analytical Test Results Site Inspection Table 6.1

LEGEND BDL = Below analytical detection limit Blank cells indicate that the sample was not analyzed for that parameter.

COMPOUND CODE FOR VOLATILES

- 1) Acetone
 2) Methylene Chloride
 3) Xylene (total)
 4) Bromoform
 5) 4 methyl 2 pentanone

Summary of Analytical Results Exxon Chemical Company Facility 1715 Dal Paso Street Hobbs, New Mexico Date Sampled: 9-3-92

Analytical Parameters	Regulatory Threshold Limit	Sample II Depth:	D: DP-1 0'-2'	Sample ID: DP-2 Depth: 6'-8'		
TCLP Metals (mg/l)		Level Detected	Detection Limit	Level Detected	Detection Limit	
Arsenic	5.0	<0.2	0.2	<0.2	0.2	
Barium	100.0	1.2	0.5	1.2	0.5	
Cadmium	1.0	<0.010	0.010	< 0.010	0.010	
Chromium	5.0	< 0.05	0.05	< 0.05	0.05	
Lead	5.0	0.1	0.02	0.02	0.02	
Mercury	0.2	< 0.001	0.001	< 0.001	0.001	
Selenium	1.0	<0.2	0.2	< 0.2	0.2	
Silver	5.0	<0.01	0.01	< 0.01	0.01	
TCLP Volatiles (μg/l)					,	
Pyridine	5,000	<13	13	< 10	10	
Vinyl Chloride	200	<10	10	<10	10	
1.1-Dichloroethene	700	<5	5	<5	5	
Chloroform	6.000	<5	5	<5	5	
1,2-Dichloroethane	500	<5	5	<5	5	
Methyl Ethyl Ketone	200.000	<10	10	< 10	10	
Carbon Tetrachloride	500	<5	5	<5	5	
Trichloroethene	500	<5	5	<5	5	
Benzene	500	<5	5	<5	5	
Tetrachloroethene	700	<5	5	<5	5	
Chlorobenzene	100,000	<5	5	<5	5	
TCLP Semivolatiles (µg/l)		Level Detected	Detection Limit	Level Detected	Detection Limit	
1.4-Dichlorobenzene	7,500	<13	13	< 10	10	
2-Methylphenol	200,000	< 13	13	< 10	10	
4-Methylphenol	200.000	<13	13	< 10	10	
3-Methylphenol	200,000	<13	13	< 10	10	

Summary of Analytical Results Exxon Chemical Company Facility 1715 Dal Paso Street Hobbs, New Mexico Date Sampled: 9-3-92

Analytical Parameters	Regulatory Threshold Limit	Sample II Depth:		Sample I Depth	
Hexachloroethane	3,000	<13	13	<10	10
Nitrobenzene	2,000	<13	13	< 10	10
Hexachlorobuta- diene	500	<13	13	<10	10
2.4,6-Trichlorophenol	2,000	<13	13	<10	10
2,4,5-Trichlorophenol	400,000	<66	6 6	<50	50
2,4-Dinitrotoluene	130	<13	13	<10	10
Hexachlorobenzene	130	<13	13	<10	10
Pentachlorophenol	100,000	<66	66	< 50	50
RCRA Characteristics					
рН	2 <ph<12.5< td=""><td>8.57 units</td><td>0.01 units</td><td>8.13 units</td><td>0.01 units</td></ph<12.5<>	8.57 units	0.01 units	8.13 units	0. 01 units
Corrosivity	>6.35 MMPY	Unable to analyze due to matrix		Unable to analyze due to matrix	
Ignitability	<140°F	Unable to analyze due to matrix		Unable to analyze due to matrix	
Reactivity - HCN - H ₂ S	250 mg/kg 500 mg/kg	<0.40 mg/kg 245 mg/kg	0.40 mg/kg 20 mg/kg	<0.40 mg/kg 146 mg/kg	0.40 mg/kg 20 mg/kg

LABORATORY REPORTS FORMER EXXON CHEMICAL FACILITY DAL PASO STREET, HOBBS, NEW MEXICO

401 North 11th

La Porte, Texas 77571

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

omer: ENSR	s	Sample ID:	MBA-2A	Attn: <u>C. OVERTON</u>
nt: BROWN	MARONEY (EXXON)			Proj. No: 1009001154
Location: _	HOBBS - DAL P	ASO	 	Environ ID: <u>09805</u>
le Matrix:	SOIL S	ample Dep	th:	Sampled: <u>01/ 28 / 92</u>
ived: 01/ 30	<u>) / 92</u> R	Reported:	02/ 05 / 92	Invoice No.: 2118
Test Method 8015(M) Petroleum Extractables lyst: J.M. dard: DIESEI	PPM (mg/kg *191 Date Extract) PPM	(mg/kg) < 25	Detection Limit PPM (mg/kg)

*This sample contains some heavy material that may not be suitable for analysis by Method 8015M. (TPH by G.C.)

AnalytiKEM-Houston

Analytical Report 02/14/92 13:42

n Maroney-Hobbs-Dal Paso Field ID: MBA-2A Date Sampled: 01/28/92 No.: 1009-001-154 Time Sampled: 1145 Lab ID: 33 A7864 Date Received: 01/30/92 No.: Matrix: SOIL (GRAB) (Test Code) Method Date/Time meter (Test Name) Concen-Detection Analysis (Test Method) Limit Performed tration Units -S--HOU <1.1 MG/KG 1.1 02/05/92 TER ON SOLID 915 **SW-846: 3050, 7760, AA** 0.3 02/05/92 -S-GFA-HOU 4.4 MG/KG ENIC ON SOLID 645 SW-846: 7060, GRAPHITE FURNACE Ext.: 02/10/92 -S--HOU ATTACHED UG/KG *****1 IVOLATILE ORGANICS/SOLID Anal.:02/11/92 SW-846: 3550,8270, SON.,GC/MS 2.2 -S-ICP-HOU 350 MG/KG 02/04/92 RIUM ON SOLID 659 **SW-846:** 3050,6010, ICP -S-ICP-HOU 2.3 MG/KG 2.2 02/04/92 DMIUM ON SOLID 659 **3 SW-846:** 3050,6010, ICP -S-ICP-HOU 32 2.2 02/04/92 MG/KG AROMIUM ON SOLID 659 A SW-846: 3050,6010, ICP -s--HOU 0.09 MG/KG 0.05 02/06/92 RCURY ON SOLID 1040 **PA** SW-846: 7471, COLD VAPOR -S-ICP-HOU 1300 MG/KG 5.4 02/04/92 LEAD ON SOLID 659 PA SW-846: 3050,6010, ICP -S-GFA-HOU <0.3 MG/KG 0.3 02/05/92 SELENIUM ON SOLID 634 EPA SW-846: 7740, GRAPHITE FURNACE

SEE ANALYTIKEM ID #A7864-33

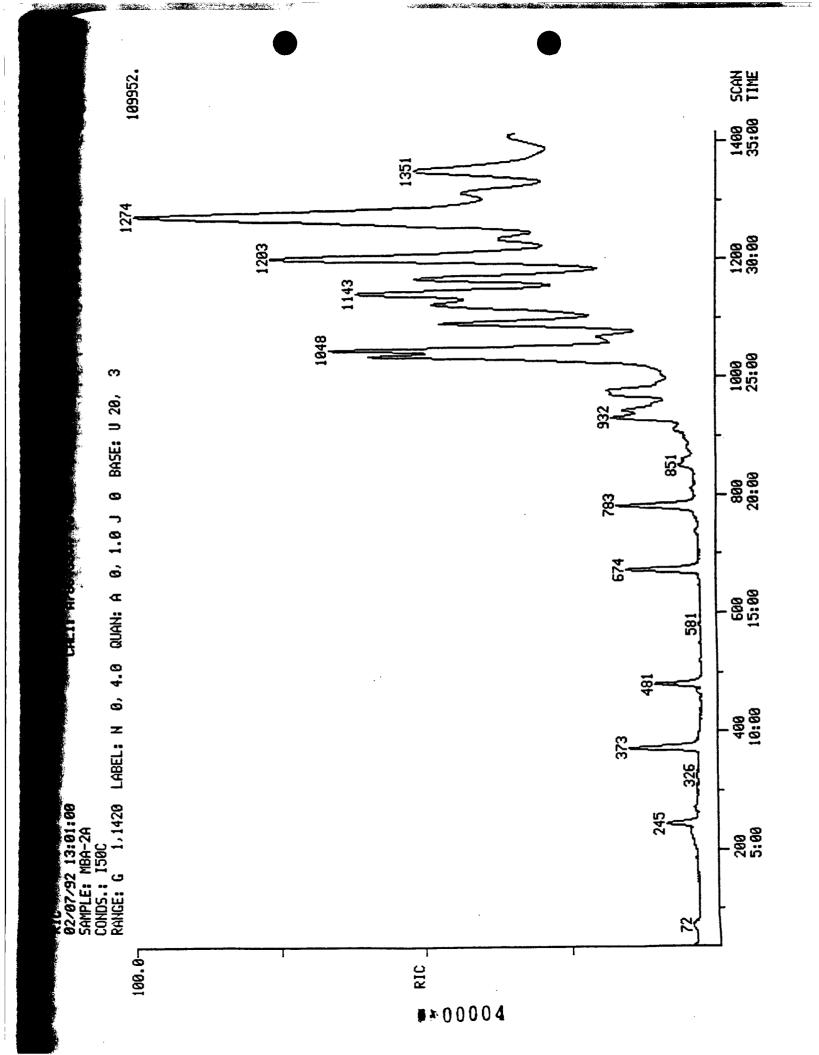
AnalytiKEM-Houston

Analytical Report 02/14/92 13:42

m Maroney-Hobbs-Dal Paso i. No.: 1009-001-154 No.: A7864	Field ID: MBA-24 Lab ID: 33 Matrix: SOIL	(GRAB)	Date Sampled: 01/28/92 Time Sampled: 1145 Date Received:01/30/92			
(Test Code) meter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed		
SHOU TILE ORGANICS ON SOLID SW-846: 8240, GC/MS	ATTACHED *1	UG/KG		02/07/92		
-SHOU ON SOLID ESW-846: 9045	8.71	UNITS	0.01	01/31/92 935		

VOLATILE ORGANICS ANALYSIS DATA SHEET

ory Name:	AnalytiKEM-Hou	Concentration:	LOW	Date Extracted:	02/07/92
mple ID:	A7864-33	Sample Matrix:	SOIL	Date Analyzed:	02/07/92
Sample ID:	MBA-2A	Percent Moisture:	<u> 5.8</u>	Dilution Factor:	1.0


VOLATILE COMPOUNDS

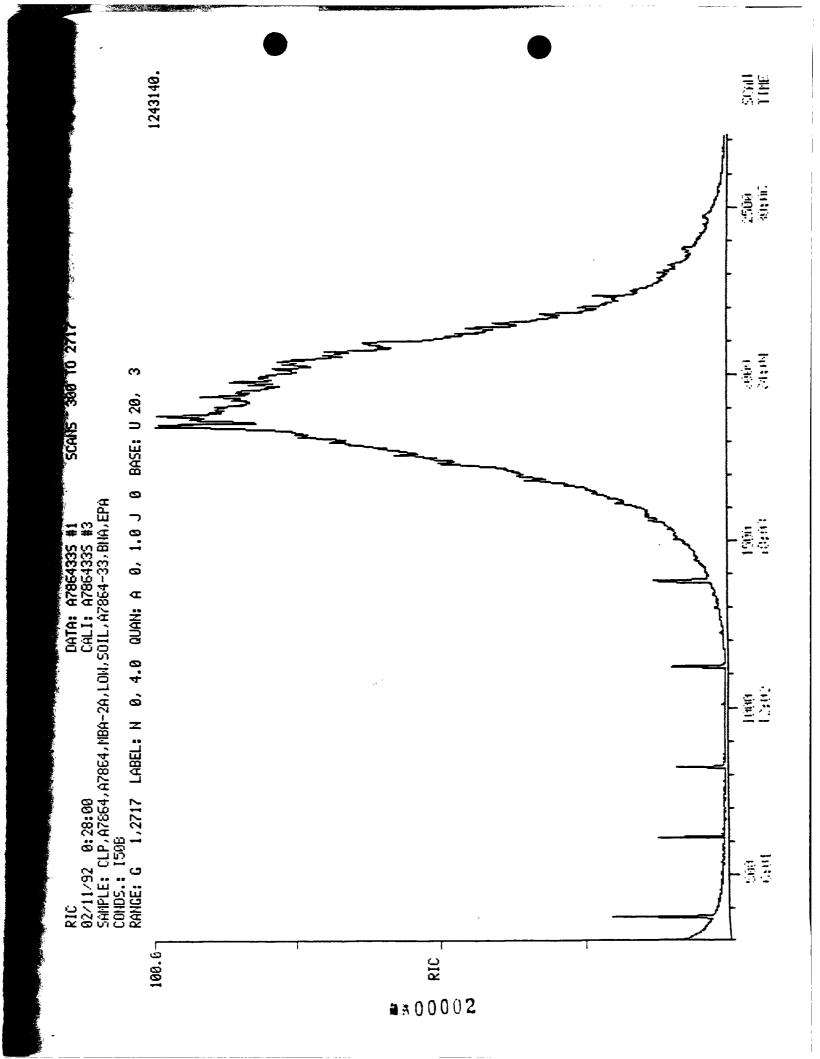
umber		ua	/Kq		CAS Number		uq/K	a .
-3	Chloromethane			-	78-87-5	1,2-Dichloropropane	5	<
-9	Bromomethane		1 .	<	10061-01-5		5	<
-4	Vinyl Chloride	1	1 .	<	79-01-6	Trichloroethene	5	<
-3	Chloroethane		1 .	<	124-48-1	Dibromochloromethane	5	<
-2	Methylene Chloride	1	6		79-00-5	1,1,2-Trichloroethane	5	<
-1	Acetone	3	0	В	71-43-2	Benzene	5	<
-0	Carbon Disulfide		5 .	<	10061-02-6	Trans-1,3-Dichloropropene	5	<
-4	1,1-Dichloroethene		5 .	<	110-75-8	2-Chloroethylvinyl ether .	11	<
-3	1,1-Dichloroethane		5	<	75-25-2	Bromoform	5	<
0-5	trans-1,2-Dichloroethene .		5 .	<	108-10-1	4-Methyl-2-Pentanone	18	
- 3	Chloroform		5 .	<	591-78-6	2-Hexanone	11	<
6-2	1,2-Dichloroethane		5	<	127-18-4	Tetrachloroethene	5	<
-3	2-Butanone	1	1 .	<	79-34-5	1,1,2,2-Tetrachloroethane	5	<
- 6	1,1,1-Trichloroethane		5 .	<	108-88-3	Toluene	5	<
- 5	Carbon Tetrachloride		5 .	<	108-90-7	Chlorobenzene	5	` <
5-4	Vinyl Acetate	1	1 .	<	100-41-4	Ethylbenzene	5	<
-4	Bromodichloromethane		5 •	<	100-42-5	Styrene	5	<
					1330-20-7	<pre>Xylene (total)</pre>	34	

he Lab ID for data on this page is A786433VA.

⁻ Compound was detected in the QC blank.

⁻ Compound was detected in the 20 stand.
- Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

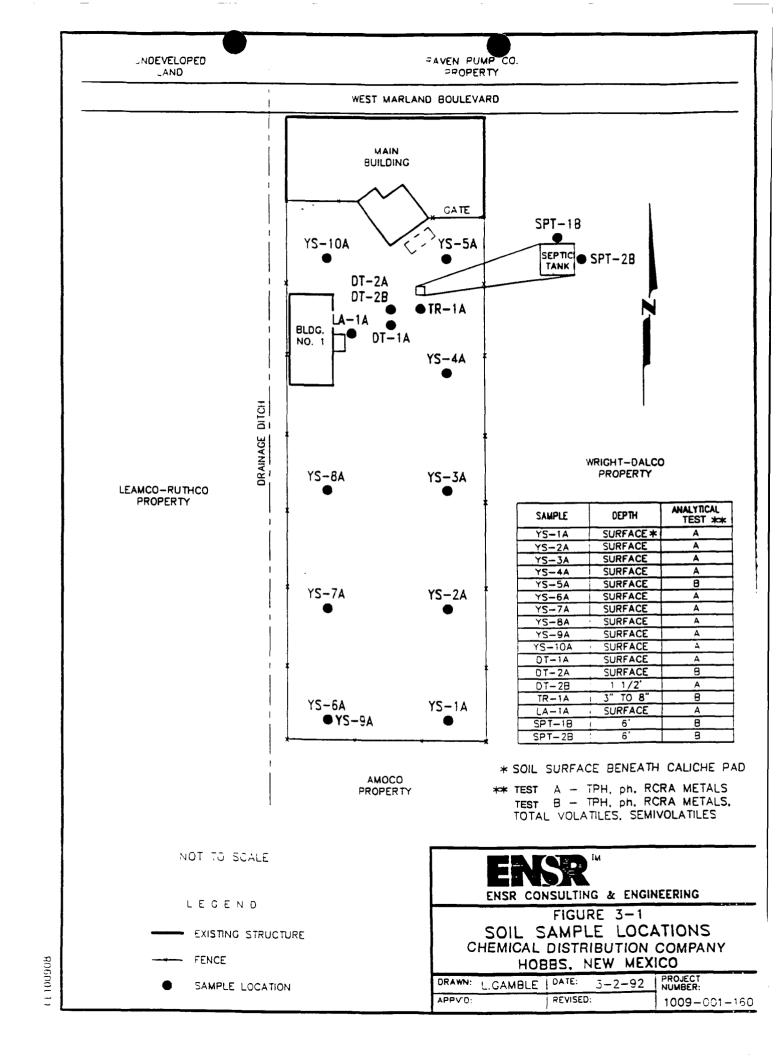
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET


tory Name: Analytikem-Hou Concentration: LOW Date Extracted: 02/10/92 ample ID: A7864-33 Sample Matrix: SOIL Date Analyzed: 02/11/92 ample ID: MBA-2A Percent Moisture: 6.0 Dilution Factor: 20

SEMIVOLATILE COMPOUNDS

umber		ug/Ko		CAS Number		ug/K	g
5-2	Phenol	7000	-	606-20-2	2,6-Dinitrotoluene	7000	•
- 3	Aniline	7000	<	99-09-2	3-Nitroaniline	34000	4
4-4	bis(2-Chloroethyl)Ether .	7000	<	83-32-9	Acenaphthene	7000	<
- 8	2-Chlorophenol	7000	<	51-28-5	2,4-Dinitrophenol	34000	•
3 - 1	1,3-Dichlorobenzene	7000	<	100-02-7	4-Nitrophenol	34000	
6-7	1,4-Dichlorobenzene	7000	<	132-64-9	Dibenzofuran	7000	
1-6	Benzyl Alcohol	7000	<	121-14-2	2,4-Dinitrotoluene	7000	
- 1	1,2-Dichlorobenzene	7000	<	84-66-2	Diethylphthalate	7000	
- 7	2-Methylphenol	7000	<	7005-72-3	4-Chlorophenyl phenyl ether	7000	
-32-9	bis(2-Chloroisopropyl)Ether	7000	<	86-73-7	Fluorene	7000	
4 - 5	4-Methylphenol	7000	<	100-01-6	4-Nitroaniline	34000	
4 - 7	N-Nitroso-Di-n-Propylamine	7000	<	534-52-1	4,6-Dinitro-2-Methylphenol	34000	
- 1	Hexachloroethane	7000	<	86-30-6	N-Nitrosodiphenylamine (1)	7000	
- 3	Nitrobenzene	7000	<	101-55-3	4-Bromophenyl phenyl ether	7000	
- 1	Isophorone	7000	<	118-74-1	Hexachlorobenzene	7000	
- 5	2-Nitrophenol	7000	<	87-86-5	Pentachiorophenol	34000	
7-9	2,4-Dimethylphenol	7000	<	85-01-8	Phenanthrene	7000	
- 0	Benzoic Acid	34000	<	120-12-7	Anthracene	7000	
1 - 1	bis(2-Chloroethoxy)Methane	7000	<	84-74-2	Di-n-Butylphthalate	7000	
3 - 2	2,4-Dichlorophenol	7000	<	206-44-0	Fluoranthene	7000	
2 - 1	1,2,4-Trichlorobenzene	7000	<	129-00-0	Pyrene	7000	
- 3	Naphthalene	7000	<	85-68-7	Butylbenzylphthalate	7000	
7-8	4-Chloroaniline	7000	<	91-94-1	3,3'-Dichlorobenzidine	14000	
- 3	Hexachlorobutadiene	7000	<	56-55-3	Benzo(a)Anthracene	7000	
- 7	4-Chloro-3-Methylphenol .	7000	<	117-81-7	bis(2-Ethylhexyl)Phthalate	7000	
- 6	2-Methylnaphthalene	7000	<	218-01-9	Chrysene	7000	
- 4	Hexachlorocyclopentadiene	7000	<	117-84-0	Di-n-Octyl Phthalate	7000	
2	2,4,6-Trichlorophenol	7000	<	205-99-2	Benzo(b)Fluoranthene	7000	
- 4	2,4,5-Trichlorophenol	34000	<	207-08-9	Benzo(k)Fluoranthene	7000	
- 7	2-Chloronaphthalene	7000	<	50-32-8	Benzo(a)Pyrene	7000	
- 4	2-Nitroaniline	34000	<	193-39-5	Indeno(1,2,3-cd)Pyrene	7000	
1 - 3	Dimethyl Phthalate	7000	<	53-70-3	Dibenz(a,h)Anthracene	7000	
6 - 8	Acenaphthylene	7000	<	191-24-2	Benzo(g,h,i)Perylene		

The Lab ID for data on this page is A786433S.


 Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

FIGURES AND TABLES
FORMER EXXON CHEMICAL FACILITY
WEST MARLAND STREET, HOBBS NEW MEXICO

UNDEVELOPED RAVEN PUMP CO. LAND PROPERTY WEST MARLAND BOULEVARD MAIN BUILDING **FORMER** GATE 5 GALLON BUCKET STORAGE AREA SEPTIC TANK FORMER DIESEL BLDG. NO. 1 TANK FORMER 750 GALLON ASTs FIG **FORMER** TRUCK DRAINAGE **PARKING** AREA LEAMCO-RUTHCO WRIGHT-DALCO PROPERTY PROPERTY FORMER DRUM STORAGE AREAS FORMER EMPTY DRUM STORAGE AREA **AMOCO** PROPERTY NOT TO SCALE LEGEND EXISTING STRUCTURE ENSR CONSULTING & ENGINEERING FIGURE 2-2 FENCE SITE PLOT PLAN CHEMICAL DISTRIBUTION COMPANY · · GAS PIPELINE HOBBS, NEW MEXICO PROJECT NUMBER: DATE: 3-2-92 L.GAMBLE APPV'D: REVISED: 1009-001-160

CE100907

Exxon Chemical Americas Analytical Test Results West Marland Site Site Inspection Hobbs, NM Table 6.1

						ι-	_	_							<u> </u>			_	, , ,	_		
Detected	Total Semivolatiles	Code(ug/kg)					None Detected								None Detected		1(100,000)				2(13)(B)	
Detected	Total Volatiles	Code(ug/kg)					1(14)(B)								1(75), 2(730), 3(670), 4(720), 5(220), 6(2400)		2(7900), 3(33,000), 4(13,000), 5(11,000), 6(370,000)	10)		None Detected	7(12)	
		Ŧ	8.62	7.94	7.87	8	8.45	8.05	77.0	8.22	78.7	8.12	8.03	8.51	8.24	6.20	7.40	7.35	7.37			
		8	B DL	BOL	BOL	BOL	901	BDL	BOL	BOL	BDL	BOL	BDL	901	BOL	B DL	BOL	BOL	BOL		B 01	
		2	150	12	Ξ	9	12	170	12	14	160	48	16	8.8	13	9.2	2	40	14		BDL	
		Ē	0.1	B 0F	B DF	B DL	100	0.2	B 01	B DL	0.2	BOL	0.2	BOL	BOL	BDL	BDL	0.3	0.1		BDL	
(mg/kg		ర	12	3.6	9	8.8	5.6	5	8.5	2	14	4.6	7.3	2.8	52	2.4	4.8	6.2	11		BDL	
Total Metals (mg/kg)		B	BDL	BDL	BOL	BOL	BD 1	B DL	BOL	BDL	BDL	BDL	HOE	BDL	BOL	BOL	BDL	3.2	BDL		BDL	
Tote		8	470	250	230	220	210	540	280	120	470	300	180	250	500	300	210	8	140		BOL.	
		?	5.4	2.8	2.5	3.1	3.6	5.6	8.	2.6	5.2	3.6	2.9	3.5	3.5	4.6	3.1	1.5	1.6		BOL	
		٧٥	BOL	108	BDL	BOL	BOL	BDL	BDL	B DL	BDL	B 01	BOL	108	B DL	BOL	108	B	BOL		BOL	
ТРН	8015 (M)	(mg/kg)	108	108	B DL	1,710	BDL BDL	BDL	BDL	BDL	BOL	80F	BDL	100	90	9	9,558	BDL	HOF			
		Depth	Surface	Surface	Surface	Surface	Surface	Surface	38.	:0												
		Location	Yard Grid Sample	Duplicate of YS-6A	Yard Grid Sample	Loading Area	Former Diesel Tank Area		Former Diesel Tank Area	Septic Tank Area (trench)	Septic Tank Area	Septic Tank Area	OA/QC Sample	QA/QC Sample								
		Sample I.D.	YS-1A	YS-2A	YS-3A	YS-4A	YS-5A	YS-6A	YS-7A	YS-8A	YS-9A	YS-10A	LA-1A			DT-28	TR-1A	SPT-18	SPT-28	Trio Blank	Equipment Blank	LEGEND

BDL = Below analytical detection limit Blank cells indicate that the sample was not analyzed for that parameter.

COMPOUND CODE FOR VOLATILES

1) Acetone
2) 4 – Methyl – 2 – Pentanone
3) 2 – Hexanaone
4) Toluene
5) Ethylbenzene
6) Xylene (total)
7) Bromoform

COMPOUND CODE FOR SEMIVOLATILES 1) Napthalene 2) Di-n-Butylpthalete

Summary of Analytical Results Former Exxon Chemical Company Facility 2607/2609 West Marland Facility Hobbs, New Mexico

Date	Sampled:	9-3-92
------	----------	--------

Analytical Parameters	Regulatory Threshold Limit	Sample ID: MR-1 Depth: 0'-3'				
TCLP Metals (mg/l)		Level Detected	Detection Limit			
Arsenic	5.0	<0.2	0.2			
Barium	100.0	1.2	0.5			
Cadmium	1.0	<0.010	0.010			
Chromium	5.0	< 0.05	0.05			
Lead	5.0	< 0.02	0.02			
Mercury	0.2	< 0.001	0.001			
Selenium	1.0	<0.2	0.2			
. Silver	5.0	< 0.01	0.01			
TCLP Volatiles (µg/l)						
Pyridine	5,000	<11	11			
Vinyl Chloride	200	<10	10			
1,1-Dichloroethene	700	<5	5			
Chloroform	6,000	<5	5			
1,2-Dichloroethane	500	< 5	5			
Methyl Ethyl Ketone	200,000	<10	10			
Carbon Tetrachloride	500	<5	5			
Trichloroethene	500	<5	5			
Benzene	500	<5	5			
Tetrachloroethene	700	<5	5			
Chlorobenzene	100,000	<5	5			
TCLP Semivolatiles (μg/l)		Level Detected	Detection Limit			
1,4-Dichlorobenzene	7,500	<11	11			
2-Methylphenol	200,000	<11	11			
4-Methylphenol	200,000	<11	11			
3-Methylphenoi	200,000	<11	11			

Summary of Analytical Results Former Exxon Chemical Company Facility 2607/2609 West Marland Facility Hobbs, New Mexico Date Sampled: 9-3-92

Analytical Parameters	Regulatory Threshold Limit	Sample ID: MR-1 Depth: 0'-3'				
Hexachloroethane	3,000	<11	11			
Nitrobenzene	2,000	<11	11			
Hexachlorobuta- diene	500	<11	11			
2,4,6-Trichlorophenol	2,000	<11	11			
2,4,5-Trichlorophenol	400,000	<54	54			
2,4-Dinitrotoluene	130	<11	11			
Hexachlorobenzene	130	<11	11			
Pentachlorophenol	100,000	<54	54			
RCRA Characteristics						
рН	2 <ph<12.5< td=""><td>8.06 units</td><td>0.01 units</td></ph<12.5<>	8.06 units	0.01 units			
Corrosivity	>6.35 MMPY	Unable to analyze due to matrix	Unable to analyze due to matrix			
Ignitability	<140°F	Unable to analyze due to matrix	Unable to analyze due to matrix			
Reactivity - HCN - H ₂ S	250 mg/kg 500 mg/kg	<0.40 mg/kg 241 mg/kg	0.40 mg/kg 20 mg/kg			
8 - Below Method Detection Limit						

LABORATORY REPORTS FORMER EXXON CHEMICAL FACILITY WEST MARLAND STREET, HOBBS, NEW MEXICO

401 North 11th

La Porte, Texas 77571

Express Laboratories

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

John E. Keller, Ph.D.

Customer: ENSR	Sample ID: TR-1A	Attn: <u>C. OVERTON</u>
Client: <u>BROWN MARONEY (EXXO</u>	N)	Proj. No: <u>1009001164</u>
Proj. Location: HOBBS - MAR	LAND	Environ ID: 09809
Sample Matrix: SOIL	Sample Depth:	Sampled: 01/28 / 92
Received: <u>01/30/92</u>	Reported: 02/ 05 / 92	Invoice No.: 2119
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Test Method Result 8015(M) PPM (mg/		tection Limit PPM (mg/kg)
Petroleum Extractables9,558	< 25	25
Analyst: <u>J.M.</u> Date Extra Standard : <u>DIESEL</u>	cted: <u>02/02/92</u> Date Analyze	ed: <u>02/03/92 @ 19:15</u>
		•
<b>T</b>	John	r E. Keller



401 North 11th

La Porte, Texas 77571

**Express Laboratories** 

Standard : DIESEL

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer: _	ENSR	<del></del>	Sample II	): <u>Ys</u> -	-4A	_ Attn:	<u>c.</u> c	VERTON
Client:	EXXON					_ Proj.	No: 1	1009001164
Proj. Locat	tion: <u>HO</u>	BBS-MARLAN	1D			_ Enviro	n ID:	09596
Sample Mati	rix: <u>SOIL</u>		Sample De	epth: _		_ Sample	ed: _C	01/21/9
Received: _	01/ 24 / 92	<u>2</u>	Reported	01/2	29 / 92	Invoic	e No.	: 2098
~ 40 %,		· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~.	~~		~~~~~~	.~~~	,
		Result PPM (mg/)		Blank PM (mg/)		Detection PPM (n		- <del>-</del>
Petrole Extract		1,710		< 25		25	5	

'Analyst: J.M. Date Extracted: 01/28/92 Date Analyzed: 01/28/92 @ 23:32

John E. Keller, Ph.D.



401 North 11th • La Porte, Texas 77571

**Express Laboratories** 

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

٦					•	
J	Customer:	ENSR	Sample	ID: DT-1A	Attn:	C. OVERTON
1	Client:	EXXON			Proj.	No: <u>1009001164</u>
_	Proj. Loca	tion: <u>HOB</u>	BS-MARLAND		Enviro	on ID: <u>09603</u>
	Sample Mat	rix: <u>SOIL</u>	Sample	Depth:	Sample	ed: <u>01/21/92</u>
-	Received:	01/ 24 / 92	Reporte	d: <u>01/29/</u>	92 Invoid	ce No.: 2098
_		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	au a		w aw	w au
_						
	1					
_	Test 1	Method	Result	Blank	Detection	n Limit
_	8015		PPM (mg/kg)	PPM (mg/kg)	PPM_(1	mg/kg)
-	Petrol Extrac		100	< 25	2	5
	Analyst: Standard :		te Extracted: <u>01/</u>	<u>29/92</u> Date Ai	nalyzed: <u>01/2</u>	9/92 @ 11:17
-	]		·			
•	]					
•	- •					
-	]			_		
•	1			Q	ohn E. +	Keller
-	1			——————————————————————————————————————	ohn E. Kelle	r, Ph.D.



401 North 11th

La Porte, Texas 77571

**Express Laboratories** 

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

Customer: ENSR	Sample	e ID: DT-2A	Attn: <u>C. OVERTON</u>
Client: EXXON	Jump 2		Proj. No: 1009001164
Proj. Location: <u>H</u>	DBBS-MARLAND		Environ ID: 09604
Sample Matrix:SOII	ient: EXXON  oj. Location: HOBBS-MARLAND  mple Matrix: SOIL Sample Depth:	Sampled: 01/21/9	
Received: 01/24/	Report	ted: <u>01/ 29 / 92</u>	Invoice No.: 2098
}	ن من الله على الله على الله الله على الله على الله الله على الله على الله الله الله الله الله الله الله ال	من م	امن هند امن
1			
			Detection Limit PPM (mg/kg)
	406	< 25	25
Analyst: J.M. I	Date Extracted: 0	<u>1/29/92</u> Date Anal	yzed: <u>01/29/92 @ 10:53</u>
	•		
1			
1			



La Porte, Texas 77571

Express Laboratories

(713) 471-0951

1 (800) 880-0156

FAX (713) 471-5821

<b>{</b>								
Customer:	ENSR		Sample I	D: <u>D1</u>	r-2B	_ Attn:	c. ov	ERTON
Client:	EXXON		<del></del>			_ Proj.	No: 10	09001164
Proj. Loca	tion: HOP	BS-MARLAN	ND			_ Enviro	n ID:	09605
Sample Mat	rix: SOIL	···- <del>-</del> .	Sample D	epth: _		_ Sample	ed: <u>01</u>	/ 21 / 9
Received:	01/ 24 / 92	2	Reported	: 01/	29 / 92	Invoid	e No.:	2098
~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ .	~~~~~~	~~~~~			.~~~~	,
J								
		Result PPM (mg/)				Detection PPM (n		
Petrol								
Extrac	table	100		< 25		25	5	
Analyst: Standard :	J.M. Da	ate Extra	cted: <u>01/2</u>	9/92 Da	ate Analy	zed: <u>01/29</u>) /92 0	11:41

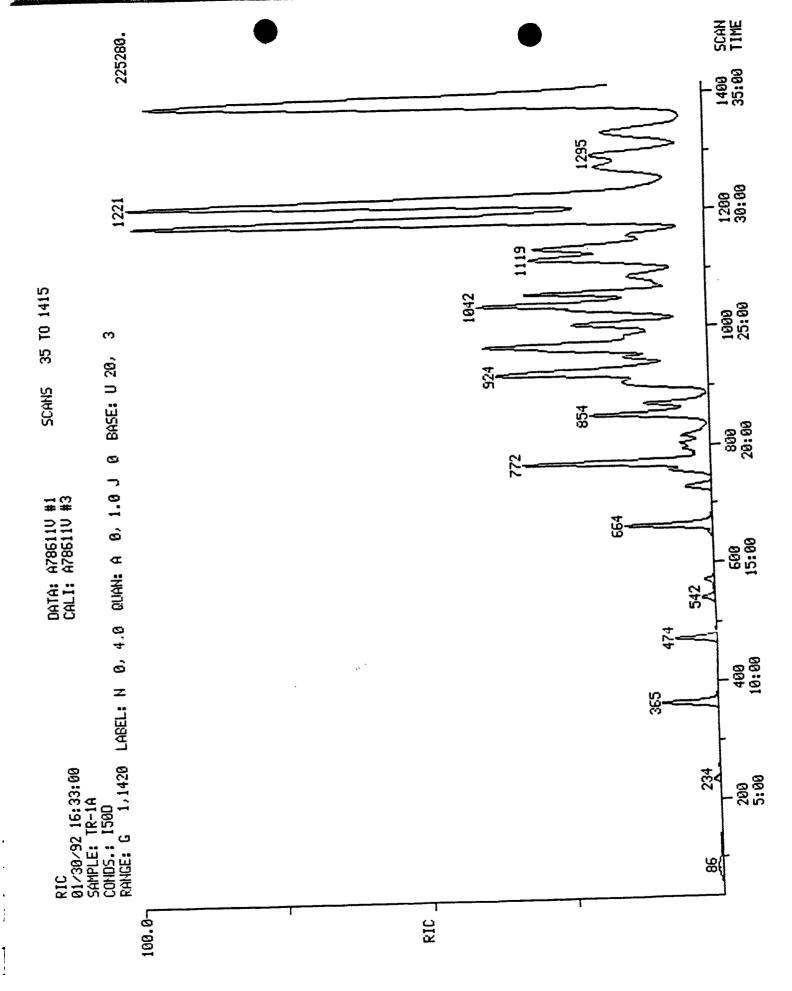
401 North 11th

John E. Keller, Ph.D.

Analytical Report 02/13/92 09:12

Brown Maroney Hobbs-Marland Proj. No.: 1009-001-164 Lab No.: A7861	Field ID: TR-1A Lab ID: 1 Matrix: SOIL	(GRAB)	Date Sampled: 01/28/92 Time Sampled: 900 Date Received:01/30/92			
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed		
Ag -SHOU SILVER ON SOLID EPA SW-846: 3050, 7760, AA	<1.1	MG/KG	1.1	02/05/92 915		
As -S-GFA-HOU ARSENIC ON SOLID EPA SW-846: 7060, GRAPHITE FURNACE	3.1	MG/KG	0.3	02/05/92 645		
BNA -SHOU SEMIVOLATILE ORGANICS/SOLID EPA SW-846: 3550,8270, SON.,GC/MS	ATTACHED *1	UG/KG		Ext.: 02/02/92 Anal.:02/11/92		
Ba -S-ICP-HOU BARIUM ON SOLID EPA SW-846: 3050,6010, ICP	210	MG/KG	2.2	02/03/92 858		
Cd -S-ICP-HOU CADMIUM ON SOLID EPA SW-846: 3050,6010, ICP	<2.2	MG/KG	2.2	02/03/92 858		
Cr -S-ICP-HOU CHROMIUM ON SOLID EPA SW-846: 3050,6010, ICP	4.8	MG/KG	2.2	02/03/92 858		
Hg -SHOU MERCURY ON SOLID EPA SW-846: 7471, COLD VAPOR	<0.05	MG/KG	0.05	02/03/92 825		
Pb -S-ICP-HOU LEAD ON SOLID EPA SW-846: 3050,6010, ICP	70	MG/KG	5.4	02/03/92 858		
Se -S-GFA-HOU SELENIUM ON SOLID EPA SW-846: 7740, GRAPHITE FURNACE	<0.3	MG/KG	0.3	02/04/92 650		

VOLATILE ORGANICS ANALYSIS DATA SHEET


Laboratory Name: AnalytikeM-Hou Concentration: MED Date Extracted: 01/30/92
Lab Sample ID: A7861-1 Sample Matrix: SOIL Date Analyzed: 01/30/92
Client Sample ID: TR-1A Percent Moisture: 10.4 Dilution Factor: 4.0

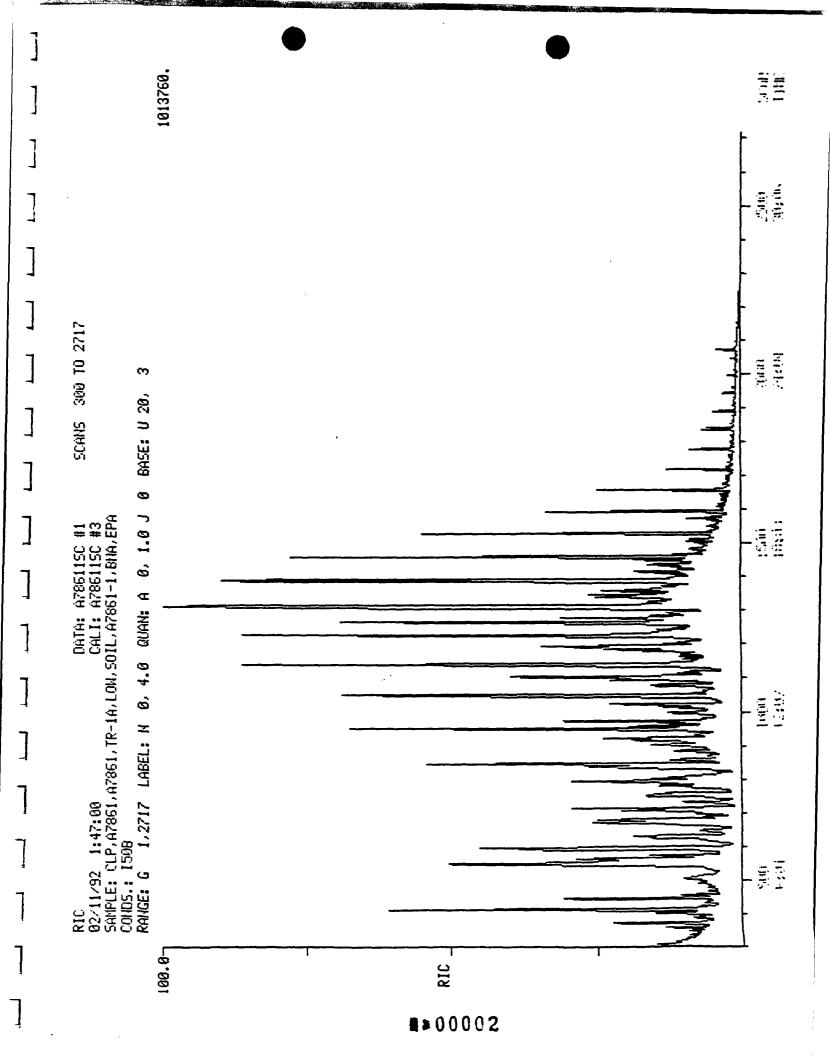
VOLATILE COMPOUNDS

CAS Number		ug/K	<u> </u>	CAS Number		uq/K	<u>a</u>
74-87-3	Chloromethane	5600	<	78-87-5	1,2-Dichloropropane	2800	<
74-83-9	Bromomethane	5600	<	10061-01-5	cis-1,3-Dichloropropene .	2800	<
75-01-4	Vinyl Chloride	5600	<	79~01-6	Trichloroethene	2800	<
75-00-3	Chloroethane	5600	<	124-48-1	Dibromochloromethane	2800	<
75-09-2	Methylene Chloride	2800	<	79-00-5	1,1,2-Trichloroethane	2800	<
67-64-1	Acetone	5600	<	71-43-2	Benzene	2800	<
75-15-0	Carbon Disulfide	2800	<	10061-02-6	Trans-1,3-Dichloropropene	2800	<
75-35-4	1,1-Dichloroethene	2800	<	110-75-8	2-Chloroethylvinyl ether .	5600	<
75-34-3	1,1-Dichloroethane	2800	<	75-25-2	Bromoform	2800	<
156-60-5	trans-1,2-Dichloroethene .	2800	<	108-10-1	4-Methyl-2-Pentanone	7900	
67-66-3	Chloroform	2800	<	591-78-6	2-Hexanone	33000	
107-06-2	1,2-Dichloroethane	2800	<	127-18-4	Tetrachloroethene	2800	<
78-93-3	2-Butanone	5600	<	79-34-5	1,1,2,2-Tetrachloroethane	2800	<
71-55-6	1,1,1-Trichloroethane	2800	<	108-88-3	Toluene	13000	
56-23-5	Carbon Tetrachloride	2800	<	108-90-7	Chlorobenzene	2800	<
108-05-4	Vinyl Acetate	5600	<	100-41-4	Ethylbenzene	11000	
75-27-4	Bromodichloromethane	2800	<	100-42-5	Styrene		<
		•		1330-20-7	<pre>Xylene (total)</pre>	37000	0

The Lab ID for data on this page is A78611V.

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET


lab Sample ID: A7861-1 Sample Matrix: SOIL Date Analyzed: 02/11/92
Client Sample ID: TR-1A Percent Moisture: 10.0 Dilution Factor: 20

SENIVOLATILE COMPOUNDS

-GAS Number		ug/Kg		CAS Number	pu	/Kg	
08-95-2	Phenol 7	7300	-	606-20-2	2,6-Dinitrotoluene 730	3 .	<
d2-53-3	Aniline	7300	<	99-09-2	3-Nitroaniline 350	00	<
111-44-4	bis(2-Chloroethyl)Ether . 7	7300	<	83-32-9	Acenaphthene 730)	<
5-57-8	2-Chiorophenol	7300	<	51-28-5	2,4-Dinitrophenol 350	00	<
41-73-1	1,3-Dichlorobenzene ?	7300	<	100-02-7	4-Nitrophenol 350	00	<
106-46-7	1,4-Dichlorobenzene	7300	<	132-64-9	Dibenzofuran 440	0 1	%
-100-51-6	Benzyl Alcohol	7300	<	121-14-2	2,4-Dinitrotoluene 730		<
5-50-1	1,2-Dichlorobenzene	7300	<	84-66-2	Diethylphthalate 730	0	<
75-48-7	2-Methylphenol	7300	<	7005-72-3	4-Chlorophenyl phenyl ether730	9	<
39638-32-9	bis(2-Chloroisopropyl)Ether	7300	<	86-73-7	Fluorene 730	0	<
706-44-5	4-Methylphenol	7300	<	100-01-6	4-Nitroaniline 350	00	<
21-64-7	N-Nitroso-Di-n-Propylamine	7300	<	534-52-1	4,6-Dinitro-2-Methylphenol 350	00	<
67-72-1	Hexachloroethane		<	86-30-6	N-Nitrosodiphenylamine (1) 730	0	<
_98-95-3	Nitrobenzene	7300	<	101-55-3	4-Bromophenyl phenyl ether 730	0	<
8-59-1	Isophorone	7300	<	118-74-1	Hexachlorobenzene 730	0	<
8-75-5	2-Nitrophenol	7300	<	87-86-5	Pentachlorophenol 350	00	<
105-67-9	2,4-Dimethylphenol	7300	<	85-01-8	Phenanthrene 730	0	<
765-85-0	Benzoic Acid	35000	<	120-12-7	Anthracene 730	0	<
111-91-1	bis(2-Chloroethoxy)Methane	7300	<	84-74-2	Di-n-Butylphthalate 730	0	<
120-83-2	2,4-Dichlorophenol	7300	<	206-44-0	Fluoranthene 730	0	<
_120-82-1	1,2,4-Trichlorobenzene	7300	<	129-00-0	Pyrene 730	0	<
91-20-3	Naphthalene	100000)	85-68-7	Butylbenzylphthalate 730	0	<
-h06-47-8	4-Chloroaniline	7300	<	91-94-1	3,3'-Dichlorobenzidine 150	00	<
87-68-3	Nexachlorobutadiene	7300	<	56-55-3	Benzo(a)Anthracene 730	0	<
759-50-7	4-Chloro-3-Methylphenol .	7300	<	117-81-7	bis(2-Ethylhexyl)Phthalate 730	0	<
91-57-6	2-Methylnaphthalene	7300	<	218-01-9	Chrysene 730	0	<
77-47-4		7300	<	117-84-0	Di-n-Octyl Phthalate 730	0	<
_88-06-2	2,4,6-Trichlorophenol	7300	<	205-99-2	Benzo(b)Fluoranthene 730	0	<
95-95-4	2,4,5-Trichtorophenol	35000	<	207-08-9	Benzo(k)Fluoranthene 730		<
91-58-7	2-Chloronaphthalene		<	50-32-8	Benzo(a)Pyrene 730	0	<
88-74-4	2-Nitroaniline		<	193-39-5	Indeno(1,2,3·cd)Pyrene 730		<
7131-11-3	Dimethyl Phthalate		<	53-70-3	Dibenz(a,h)Anthracene 730		<
208-96-8	Acenaphthylene		<	191-24-2	Benzo(g,h,i)Perylene 730		<

The Lab ID for data on this page is A78611SC.

- $\ensuremath{\mathtt{W}}$ Reported value is less than the detection limit.
- < Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

Analytical Report 02/10/92 12:19

Date Sampled: 01/21/92 Brown Maroney Hobbs-Marland Field ID: YS-4A Proj. No.: 1009-001-164 Time Sampled: 1115 Lab ID: 4 Lab No.: Date Received: 01/24/92 A7846 Matrix: SOIL (GRAB) Method Date/Time (Test Code) Parameter (Test Name) Detection Analysis Concen-(Test Method) tration Units Limit Performed 01/30/92 -S--HOU <1.1 MG/KG 1.1 SILVER ON SOLID 1630 EPA SW-846: 3050, 7760, AA -S-GFA-HOU 3.1 MG/KG 0.3 01/30/92 As ARSENIC ON SOLID 650 EPA SW-846: 7060, GRAPHITE FURNACE 220 2.2 01/30/92 Вa -S-ICP-HOU MG/KG BARIUM ON SOLID 752 EPA SW-846: 3050,6010, ICP 2.2 01/30/92 -S-ICP-HOU <2.2 MG/KG Cd CADMIUM ON SOLID 752 EPA SW-846: 3050,6010, ICP -S-ICP-HOU 6.8 MG/KG 2.2 01/30/92 CHROMIUM ON SOLID 752 EPA SW-846: 3050,6010, ICP -s-<0.06 02/03/92 Hg -HOU MG/KG 0.06 MERCURY ON SOLID 825 EPA SW-846: 7471, COLD VAPOR Рb -S-ICP-HOU 18 MG/KG 5.6 01/30/92 LEAD ON SOLID 752 EPA SW-846: 3050,6010, ICP -S-GFA-HOU <0.3 01/30/92 MG/KG 0.3 SELENIUM ON SOLID 650 EPA SW-846: 7740, GRAPHITE FURNACE pН -S- -HOU 8.06 01/28/92 0.01 UNITS pH ON SOLID 800 EPA SW-846: 9045

the state of the s

Analytical Report 02/10/92 12:21

Field ID: DT-1A Date Sampled: 01/22/92 Brown Maroney Hobbs-Marland Proj. No.: 1009-001-164 Lab ID: 11 Time Sampled: 900 Lab No.: Matrix: SOIL (GRAB) Date Received: 01/24/92 A7846 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed -S-<1.1 1.1 01/30/92 -HOU MG/KG SILVER ON SOLID 1630 EPA SW-846: 3050, 7760, AA -S-GFA-HOU 3.5 MG/KG 0.3 01/30/92 As ARSENIC ON SOLID 650 EPA SW-846: 7060, GRAPHITE FURNACE 2.2 01/30/92 -S-ICP-HOU 250 MG/KG 752 BARIUM ON SOLID EPA SW-846: 3050,6010, ICP <2.2 2.2 MG/KG 01/30/92 -S-ICP-HOU CADMIUM ON SOLID 752 EPA SW-846: 3050,6010, ICP -S-ICP-HOU 2.8 MG/KG 2.2 01/30/92 CHROMIUM ON SOLID 752 EPA SW-846: 3050,6010, ICP -s--HOU 0.05 02/03/92 Hg <0.05 MG/KG MERCURY ON SOLID 825 EPA SW-846: 7471, COLD VAPOR -S-ICP-HOU 01/30/92 Рb 6.8 MG/KG 5.4 752 LEAD ON SOLID EPA SW-846: 3050,6010, ICP Se <0.3 MG/KG 0.3 01/30/92 -S-GFA-HOU SELENIUM ON SOLID 650 EPA SW-846: 7740, GRAPHITE FURNACE -S-0.01 01/28/92 pН -HOU 8.51 UNITS pH ON SOLID 800 EPA SW-846: 9045

Analytical Report 02/10/92 12:21

Date Sampled: 01/22/92 Brown Maroney Hobbs-Marland Field ID: DT-2A Time Sampled: 1000 Proj. No.: 1009-001-164 Lab ID: 12 SOIL Date Received: 01/24/92 Lab No.: A7846 Matrix: (GRAB) Date/Time (Test Code) Method Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed 01/30/92 1.1 -S--HOU <1.1 MG/KG Ag 1630 SILVER ON SOLID EPA SW-846: 3050, 7760, AA 0.3 -S-GFA-HOU 3.5 MG/KG 01/30/92 As 650 ARSENIC ON SOLID EPA SW-846: 7060, GRAPHITE FURNACE Ext.: 01/31/92 BNA -S--HOU ATTACHED UG/KG SEMIVOLATILE ORGANICS/SOLID ***1** Anal.:02/04/92 EPA SW-846: 3550,8270, SON.,GC/MS 2.2 01/30/92 -S-ICP-HOU 200 MG/KG 752 BARIUM ON SOLID EPA SW-846: 3050,6010, ICP -S-ICP-HOU <2.2 MG/KG 2.2 01/30/92 752 CADMIUM ON SOLID EPA SW-846: 3050,6010, ICP Cr -S-ICP-HOU 5.2 MG/KG 2.2 01/30/92 752 CHROMIUM ON SOLID EPA SW-846: 3050,6010, ICP Hg 02/03/92 -S-<0.05 0.05 -HOU MG/KG MERCURY ON SOLID 825 EPA SW-846: 7471, COLD VAPOR Pb 01/30/92 -S-ICP-HOU 13 MG/KG 5.4 LEAD ON SOLID 752 EPA SW-846: 3050,6010, ICP 01/30/92 Se -S-GFA-HOU <0.3 MG/KG 0.3 SELENIUM ON SOLID 650 EPA SW-846: 7740, GRAPHITE FURNACE

^{*1} SEE ANALYTIKEM ID #A7846-12

Analytical Report 02/10/92 12:21

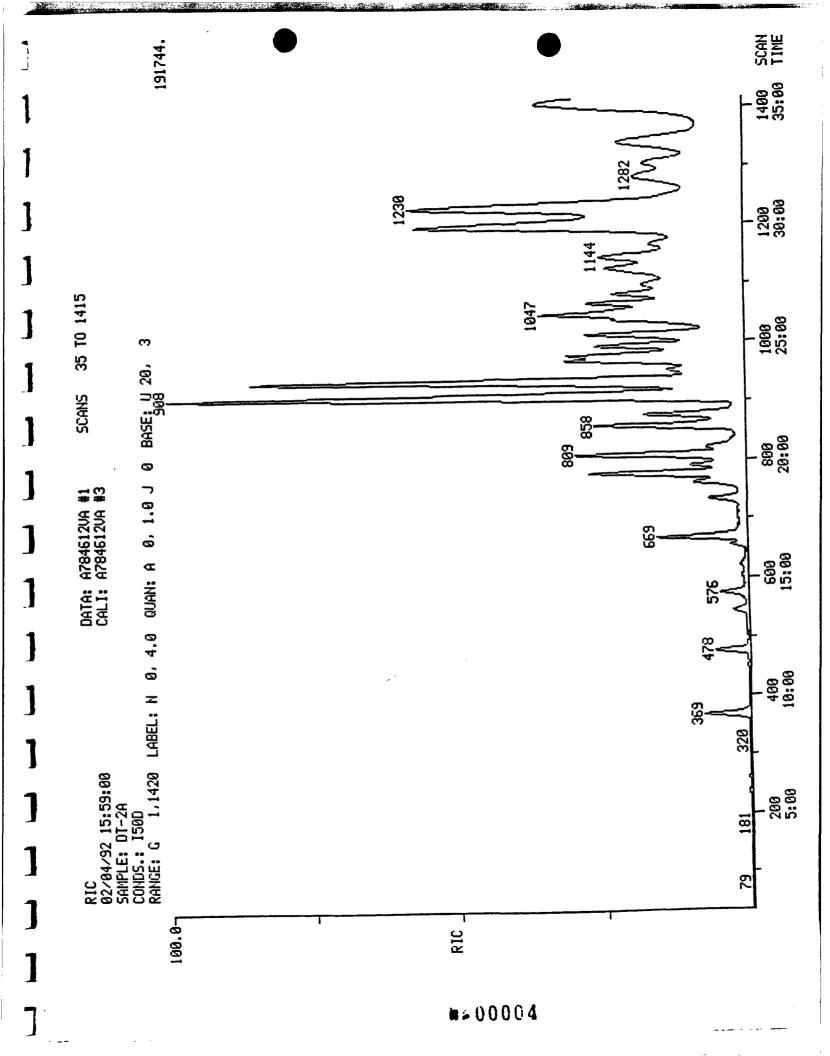
Brown Maroney Hobbs-Marland Field ID: DT-2A Date Sampled: 01/22/92 12 Time Sampled: 1000 Proj. No.: 1009-001-164 Lab ID: Date Received: 01/24/92 Lab No.: A7846 Matrix: SOIL (GRAB) (Test Code) Method Date/Time Detection Parameter (Test Name) Analysis Concen-(Test Method) tration Units Limit Performed VOA -S--HOU ATTACHED UG/KG Ext.: 02/04/92 Anal.:02/04/92 VOLATILE ORGANICS ON SOLID ***1** EPA SW-846: 8240, GC/MS pH -S--HOU UNITS 0.01 01/28/92 8.24 800 pH ON SOLID EPA SW-846: 9045

^{*1} SEE ANALYTIKEM ID #A7846-12

Analytical Report 02/10/92 12:21

Brown Maroney Hobbs-Marland Proj. No.: 1009-001-164 Lab No.: A7846	Field ID: DT- Lab ID: 13 Matrix: SOI		Date Sampled: 01/22/92 Time Sampled: 1145 Date Received:01/24/92		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Ag -SHOU SILVER ON SOLID EPA SW-846: 3050, 7760, AA	<1.1	MG/KG	1.1	01/30/92 1630	
As -S-GFA-HOU ARSENIC ON SOLID EPA SW-846: 7060, GRAPHITE FURNACE	4.6	MG/KG	0.3	01/30/92 650	
Ba -S-ICP-HOU BARIUM ON SOLID EPA SW-846: 3050,6010, ICP	300	MG/KG	2.2	01/30/92 752	
Cd -S-ICP-HOU CADMIUM ON SOLID EPA SW-846: 3050,6010, ICP	<2.2	MG/KG	2.2	01/30/92 752	
Cr -S-ICP-HOU CHROMIUM ON SOLID EPA SW-846: 3050,6010, ICP	2.4	MG/KG	2.2	01/30/92 752	
Hg -SHOU MERCURY ON SOLID EPA SW-846: 7471, COLD VAPOR	<0.05	MG/KG	0.05	02/03/92 825	
Pb -S-ICP-HOU LEAD ON SOLID EPA SW-846: 3050,6010, ICP	9.2	MG/KG	5.4	01/30/92 752	
Se -S-GFA-HOU SELENIUM ON SOLID EPA SW-846: 7740, GRAPHITE FURNACE	<0.3	MG/KG	0.3	01/30/92 650	
pH -SHOU pH ON SOLID EPA SW-846: 9045	8.29	UNITS	0.01	01/28/92 800	

VOLATILE ORGANICS ANALYSIS DATA SHERT


Laboratory Name:	AnalytiKEM-Hou	Concentration:	LOW	Date Extracted:	
Lab Sample ID:	A7846-12	Sample Matrix:	<u>SOIL</u>	Date Analyzed:	
Client Sample ID:	DT-2A	Percent Moisture:	<u> 3.0 </u>	Dilution Factor:	5.0

VOLATILE COMPOUNDS

CAS Number		ug/R	(a _	CAS Number		ug/K	<u>a</u>
74-87-3	Chloromethane	52	_<	78-87-5	1,2-Dichloropropane	26	<
74~83-9	Bromomethane	52	<	10061-01-5	cis-1,3-Dichloropropene .	26	<
_ 75-01-4	Vinyl Chloride	52	<	79-01-6	Trichloroethene	26	<
75~00-3	Chloroethane	52	<	124-48-1	Dibromochloromethane	26	<
J 75-09-2	Methylene Chloride	26	<	79-00-5	1,1,2-Trichloroethane	26	<
67-64-1	Acetone	75		71-43-2	Benzene	26	<
75-15-0	Carbon Disulfide	26	<	10061-02-6	Trans-1,3-Dichloropropene	26	<
75-35-4	1,1-Dichloroethene	26	<	110-75-8	2-Chloroethylvinyl ether .	52	<
75-34-3	1,1-Dichloroethane	26	<	75-25-2	Bromoform	26	<
156-60-5	trans-1,2-Dichloroethene .	26	<	108-10-1	4-Methyl-2-Pentanone	730	
67~66-3	Chloroform	26	<	591-78-6	2-Hexanone	670	
107-06-2	1,2-Dichloroethane	26	<	127-18-4	Tetrachloroethene	26	<
78-93-3	2-Butanone	52	<	79-34-5	1,1,2,2-Tetrachloroethane	26	<
71-55-6	1,1,1-Trichloroethane	26	<	108-88-3	Toluene	720	
56~23-5	Carbon Tetrachloride	26	<	108-90-7	Chlorobenzene	26	<
108-05-4	Vinyl Acetate	52	<	100-41-4	Ethylbenzene	220	
75-27-4	Bromodichloromethane	26	<	100-42-5	Styrene	26	<
1				1330-20-7	<pre>Xylene (total)</pre>	2400	

The Lab ID for data on this page is A784612VA.

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

and the state of t


boratory Name: Analytikem-Hou Concentration: LOW Date Extracted: 01/31/92 b Sample ID: A7846-12 Sample Matrix: SOIL Date Analyzed: 02/04/92 Client Sample ID: DT-2A Percent Moisture: 5.0 Dilution factor: 25

SEMIVOLATILE COMPOUNDS

CAS Number		ug/Kg		CAS_Number		ug/Kg	9
108-95-2	Phenol	8600	₹	606-20-2	2,6-Dinitrotoluene	8600	<
2 - 53 - 3	Aniline	8600	<	99-09-2	3-Nitroaniline	42000	<
111-44-4	bis(2-Chloroethyl)Ether .	8600	<	83-32-9	Acenaphthene	8600	<
<u> 2</u> 5 - 5 7 - 8	2-Chlorophenol	8600	<	51-28-5	2,4.Dinitrophenol	42000	<
41-73-1	1,3-Dichlorobenzene	8600	<	100-02-7	4-Nitrophenol	42000	•
06-46-7	1,4-Dichlorobenzene	8600	<	132-64-9	Dibenzofuran	8600	<
100-51-6	Benzyl Alcohol	8600	<	121-14-2	2,4-Dinitrotoluene	8600	<
1 5-50-1	1,2-Dichlorobenzene	8600	<	84-66-2	Diethylphthalate	8600	<
5-48-7	2-Methylphenol	8600	<	7005-72-3	4-Chlorophenyl phenyl ether	8600	<
39638-32-9	bis(2-Chloroisopropyl)Ether	r8600	<	86-73-7	fluorene	8600	<
106-44-5	4-Methylphenol	8600	<	100-01-6	4-Nitroaniline	42000	4
21-64-7	N-Nitroso-Di-n-Propylamine	8600	<	534-52-1	4,6-Dinitro-2-Methylphenol	42000	<
7-72-1	Hexachioroethane	8600	<	86-30-6	N-Nitrosodiphenylamine (1)	8600	•
9 8-95-3	Nitrobenzene	8600	<	101-55-3	4-Bromophenyl phenyl ether	8600	
8-59-1	Isophorone	8600	<	118-74-1	Hexachlorobenzene	8600	,
8-75-5	2-Nitrophenol	8600	<	87-86-5	Pentachlorophenol	42000	
105-67-9	2,4-Dimethylphenol	8600	<	85-01-8	Phenanthrene	8600	
<u>6</u> 5-85-0	Benzoic Acid	42000	<	120-12-7	Anthracene	8600	
11-91-1	bis(2-Chloroethoxy)Methane	8600	<	84-74-2	Di-n-Butylphthalate	8600	
20-83-2	2,4-Dichlorophenol	8600	<	206-44-0	fluoranthene	8600	
120-82-1	1,2,4-Trichlorobenzene	8600	<	129-00-0	Pyrene	8600	
1 1-20-3	Naphthalene	8600	<	85-68-7	Butylbenzylphthalate	8600	•
06-47-8	4-Chloroaniline	8600	<	91-94-1	3,3'-Dichlorobenzidine	17000	
87-68-3	Hexachlorobutadiene	8600	<	56-55-3	Benzo(a)Anthracene	8600	
59-50-7	4-Chloro-3-Methylphenol .	8600	<	117-81-7	bis(2-Ethylhexyl)Phthalate	8600	
1-57-6	2-Methylnaphthalene	8600	<	218-01-9	Chrysene	8600	
7-47-4	Hexachlorocyclopentadiene	8600	<	117-84-0	Di-n-Octyl Phthalate	8600	
88-06-2	2,4,6-Trichtorophenot	8600	<	205-99-2	Benzo(b)Fluoranthene	8600	
65-95-4	2,4,5-Trichlorophenol	42000	<	207-08-9	Benzo(k) Fluoranthene	8600	
1-58-7	2-Chloronaphthalene	8600	<	50-32-8	Benzo(a)Pyrene	8600	
38-74-4	2-Nitroaniline	42000	<	193-39-5	Indeno(1,2,3-cd)Pyrene	8600	
131-11-3	Dimethyl Phthalate	8600	<	53-70-3	Dibenz(a,h)Anthracene		
08-96-8	Acenaphthylene	8600	<	191-24-2	Benzo(g,h,i)Perylene		
=							

The Lab ID for data on this page is A784612SA.

Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY

March 29, 1993

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-329

Mr. J.P. Reed Env. Tech. Services Section-CN-461 Baytown Chemical Plant Exxon Chemical Baytown, Texas 77522

RE: REMOVAL ACTION WORKPLAN

EXXON DAL PASO AND WEST MARLAND SERVICE FACILITIES

HOBBS, NEW MEXICO

Dear Mr. Reed:

The New Mexico Oil Conservation Division (OCD) is in the process of reviewing Exxon's February 1993 "REMOVAL ACTION WORKPLAN FOR FACILITY OWNED BY EXXON CHEMICAL COMPANY IN HOBBS, NEW MEXICO (1715 DAL PASO STREET) and Exxon's February 1993 "REMOVAL ACTION WORKPLAN FOR FACILITY FORMERLY LEASED BY EXXON CHEMICAL COMPANY IN HOBBS, NEW MEXICO (2607/2609 WEST MARLAND BOULEVARD). These documents were submitted to OCD on Exxon's behalf by Exxon's consultant ENSR Consulting and Engineering.

The OCD needs to receive the following information in order to complete a review of the proposed removal actions:

1. The hazardous waste characteristics for contaminated soils from both facilities, with the exception of soils around the septic tank at the Dal Paso facility, were composites of different source areas. The OCD requires that composite samples for determining hazardous waste characteristics be taken of representative contaminated soils from each individual source area. Please sample representative contaminated soils from each source area, analyze the soils for hazardous waste characteristics and provide the results to OCD.

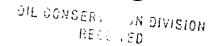
Mr. J.P. Reed March 29, 1993 Page 2

2. The total lead concentrations in some of the contaminated soils samples were relatively high. However, the TCLP lead analyses for these areas show concentrations at the detection limit for the analysis. Please explain these discrepancies in the analytic results.

Receipt of this information will allow OCD to complete a review of these workplans. If you have any questions, please contact me at (505) 827-5885.

Sincerely,

William C. Olson


Hydrogeologist

Environmental Bureau

xc: Jerry Sexton, OCD Hobbs District Supervisor

Jay Swindle, ENSR

EXXON CHEMICAL AMERICAS

'93 MB + 19 AM 9 00

Baytown Chemical Plant Raymond C. Floyd

March 15, 1993

Change of Mailing Address and Phones

Mr. Roger C. Anderson Bureau Chief, Environmental Bureau Oil Conservation Division Land Office Building, State of New Mexico P.O. Box 2088 Santa Fe, New Mexico 87504-2088

Dear Mr. Anderson:

My role at Exxon Chemical has changed recently. I am now associated with the Environmental Affairs Department at Exxon Chemical's Baytown, Texas facility. I am still working on the various site closures around the country associated with Exxon's acquisition of NL Treating Chemicals in 1987. I ask that you direct your correspondence to Exxon Chemical regarding the clean up activities at the two Hobbs, New Mexico sites to me at the following address:

J. P. Reed Env. Tech. Services Section - CN-461 Baytown Chemical Plant Exxon Chemical P.O. Box 4004 Baytown, Texas 77522

Phone: (713) 425 1237 FAX: (713) 425 5788 Beeper: (713) 841 0386

Beeper Instructions:

- 1. Dial number and listen for 3 beeps.
- 2. Punch in your phone number followed by # sign.
- 3. Listen for 5 beeps.
- 4. Hang up.

Thank you for bearing with me as I make this transition to Baytown.

Very truly yours

Paul Reed

JPR705

cc: Ms. Jo-Christy Brown - BMOH

Mr. David Sigman - ECA Legal

Mr. Jay Swindle - ENSR C&E

February 4, 1993

RECEIVED

FEB 1 6 1993

OIL CONSERVATION DIV. SANTA FE

Mr. Roger C. Anderson
Bureau Chief
Environmental Bureau
Oil Conservation Division
Land Office Building, State of New Mexico
P.O. Box 2088
Santa Fe. New Mexico 87504-2088

Re:

Waste Classification of Contaminated Soils from the former Exxon Chemical Company Facility at 2607/2609 West Marland Boulevard and Exxon Chemical Company Facility at 1715 Dal Paso, Hobbs, New Mexico

Dear Mr. Anderson:

The purpose of this letter is to:

- Notify the New Mexico Oil Conservation Division (OCD) that the requested samples have been collected and that the contaminated soils from the Exxon Chemical facilities referenced above, should be classified as non-hazardous based on the attached data.
- Submit work plans for the clean up of contaminated soils at the two sites, and
- Request authorization for disposal of the contaminated soils in the Controlled Recovery Incorporated (CRI) landfill near Hobbs, New Mexico.

Waste Classification

As discussed in our meeting on July 31, 1992 OCD requested that a waste classification of the contaminated soils at each of the two Hobbs sites be made prior to submittal of the removal action work plans to OCD. Pursuant to this request, three composite samples were collected from the areas of concern at the sites as discussed in our meeting. Each sample was composited from at least five sample points within known or suspected areas of soil contamination. Samples DP-1 (from the Dal Paso site) and MR-1 (from the Marland site) were collected from trenches through areas of known hydrocarbon and/or lead soil contamination. These contaminated areas had been identified through previous sampling conducted by ENSR in January 1992. In addition, sample DP-2 (from the Dal Paso site) was collected from a trench at the base of the collapsed septic tank as ODC requested. The soil surrounding the septic tank was suspected to have contained oily wastes prior to the tanks decommissioning in 1984. As shown by the attached analytical data, as well as past analytical data, the soils from the septic tank area at the Dal Paso site do not appear to be contaminated with metals or hydrocarbons and therefore are not addressed in the removal action work plan.

ENSR Consulting and Engineering

3000 Richmond Avenue Houston, Texas 77098 (713) 520-9900 (713) 520-6802 (FAX)

February 4, 1993 Mr. Roger C. Anderson Page 2

The sample results indicate that the soils at the Dal Paso and Marland Street sites are not characteristically hazardous, so the soil can be disposed of as non-hazardous waste.

The volume of contaminated soil from the two sites has been estimated to be approximately 100-200 cubic yards.

Work Plans

Work plans are attached for your review and approval. After obtaining OCD approval, ENSR expects to begin field work within 60 days, weather permitting.

Disposal Authorization Request

Exxon is requesting authorization from the OCD for disposal of the non-hazardous contaminated waste soils at the following waste management facility:

Controlled Recovery Inc., Landfill P.O. Box 369
Hobbs, New Mexico 88241

Attached is the generator certificate and analytical data stating that the contaminated material described in this letter is not listed as a RCRA hazardous waste in 40 CFR 261.31, nor is it characteristically toxic.

We appreciate your prompt review of the attached work plans and issuance of the disposal authorization. Please return a copy of the written authorization to me at the address below.

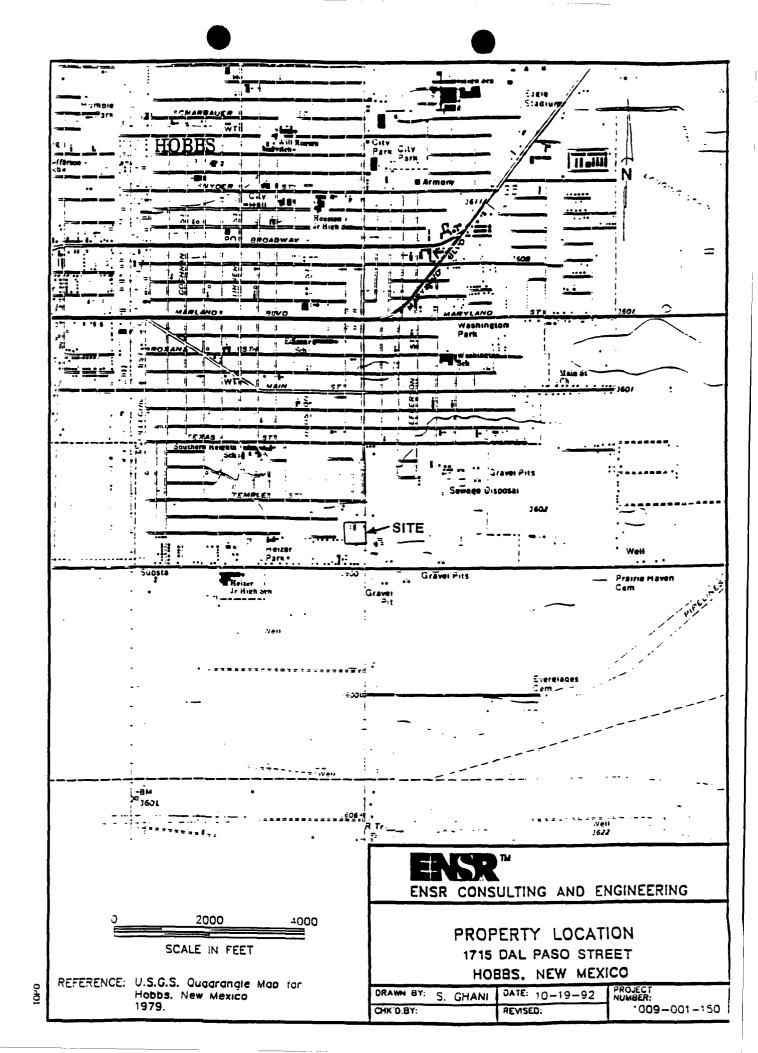
If you have any comments or require additional information, please contact me or Scott Kuykendall at 713/520-9900.

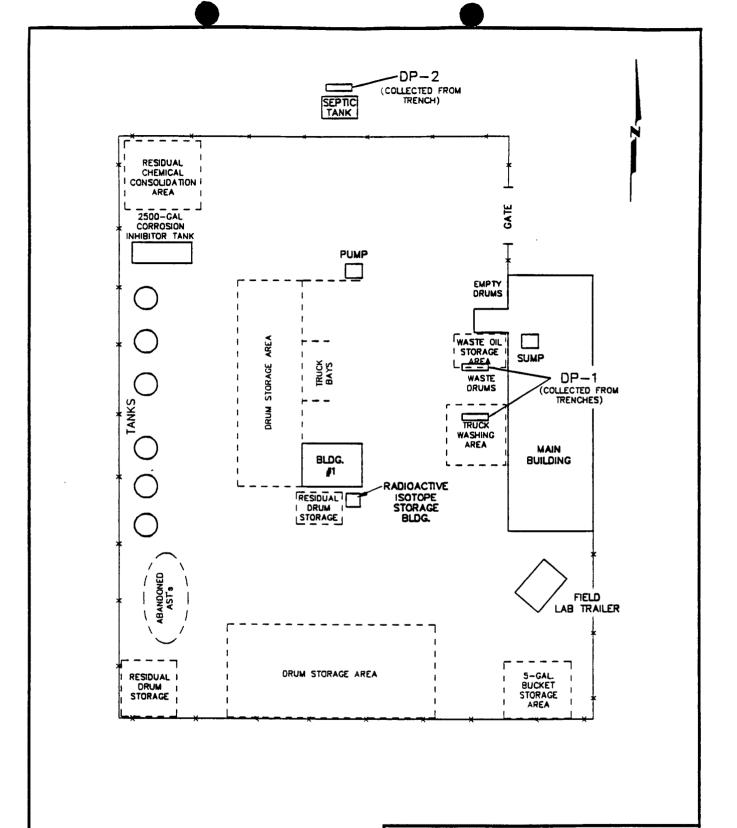
Sincerely,

Jay Swindle, P.E. Project Manager

JS:JSK/db

J. Scott Kuykendall Staff Geologist


J. Seow Trykelall


Reference No. 1009-006-120

cc: Keith Hopson, Brown McCarroll and Oaks Hartline

Paul Reed, Exxon

A.lle

ENSR[™]

ENSR CONSULTING & ENGINEERING

SITE PLOT PLAN
WITH SAMPLE LOCATIONS
1715 DAL PASO STREET
HOBBS, NEW MEXICO

 DRAWN:
 SJF/SG
 DATE:
 11-12-92
 PROJECT NUMBER:

 APPYD:
 REVISED:
 1009-001-150

GENERATORS CERTIFICATE PREPARED FOR THE STATE OF NEW MEDICO, OIL CONSERVATION DIVISION

"I certify that the waste described in this and attached documents is not a lieted hazardous waste as described by 40 CFR 261 Subpart D and that the waste described is not contaminated with a listed hazardous wasts. I further cartify under penalty of law that I have personally examined and am familiar with the information submitted in this and all attached documents, and that based upon my inquiry of those includuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that these are algorithmat penalties for submitting take information, including the possibility of fine and imprisonment."

grave Paul Lud-

Date Signed: 1-26-93

Name and Official Title (Type or Print):

Paul Reed Environmental Coordinator Econ Chemical Company 8290 Stedman Houston, Texas 77029

Generators Name and Locations

Econ Chemical Co. 1715 Del Paso St. Hobbs, New Mexico

Eccon Chemical Co. 2607/2809 W. Martand Blvd. Hobbs, New Medco

Type and Quantity of Waste:

There are approximately 50 to 100 cubic yards of non-hazardous contaminated soils at the Del Paso street location and approximately 50 to 100 cubic yards at the West Mariand Street location.

Summary of Analytical Results Exxon Chemical Company Facility 1715 Dal Paso Street Hobbs, New Mexico

Date Sampled: 9-3-92

Analytical Parameters	Regulatory Threshold Limit	Sample ID: DP-1 Depth: 0'-2'		Sample ID: DP-2 Depth: 6'-8'		
TCLP Metals (mg/l)		Level Detected	Detection Limit	Level Detected	Detection Limit	
Arsenic	5.0	<0.2	0.2	<0.2	0.2	
Barium	100.0	1.2	0.5	1.2	0.5	
Cadmium	1.0	< 0.010	0.010	<0.010	0.010	
Chromium	5.0	<0.05	0.05	< 0.05	0.05	
Lead	5.0	0.1	0.02	0.02	0.02	
Mercury	0.2	< 0.001	0.001	< 0.001	0.001	
Selenium	1.0	<0.2	0.2	<0.2	0.2	
Silver	5.0	<0.01	0.01	<0.01	0.01	
TCLP Volatiles (μg/l)						
Pyridine	5,000	<13	13	<10	10	
Vinyi Chloride	200	<10	10	<10	10	
1,1-Dichloroethene	700	<5	5	<5	5	
Chloroform	6,000	<5	5	<5	5	
1,2-Dichloroethane	500	<5	5	<5	5	
Methyl Ethyl Ketone	200,000	<10	10	<10	10	
Carbon Tetrachloride	500	<5	5	<5	5	
Trichloroethene	500	<5	5	<5	5	
Benzene	500	<5	5	<5	5	
Tetrachloroethene	700	<5	5	<5	5	
Chlorobenzene	100,000	<5	5	<5	5	
TCLP Semivolatiles (µg/l)		Level Detected	Detection Limit	Level Detected	Detection Limit	
1,4-Dichlorobenzene	7,500	<13	13	<10	10	
2-Methylphenol	200,000	<13	13	<10	10	
4-Methylphenol	200,000	<13	13	<10	10	
3-Methylphenol	200,000	<13	13	<10	10	

Summary of Analytical Results Exxon Chemical Company Facility 1715 Dal Paso Street Hobbs, New Mexico Date Sampled: 9-3-92

Analytical Parameters	Regulatory Threshold Limit	Sample ID: DP-1 Depth: 0'-2'		Sample ID: DP-2 Depth: 6'-8'		
Hexachloroethane	3,000	<13	13	<10	10	
Nitrobenzene	2,000	<13	13	<10	10	
Hexachlorobuta- diene	500	<13	13	<10	10	
2,4,6-Trichlorophenol	2,000	<13	13	<10	10	
2,4,5-Trichlorophenol	400,000	<66	66	<50	50	
2,4-Dinitrotoluene	130	<13	13	<10	10	
Hexachlorobenzene	130	<13	13	<10	10	
Pentachlorophenol	100,000	<66	66	<50	50	
RCRA Characteristics						
рН	2 <ph<12.5< td=""><td>8.57 units</td><td>0.01 units</td><td>8.13 units</td><td>0.01 units</td></ph<12.5<>	8.57 units	0.01 units	8.13 units	0.01 units	
Corrosivity	>6.35 MMPY	Unable to analyze due to matrix		Unable to analyze due to matrix		
Ignitability	<140°F	Unable to analyze due to matrix		Unable to analyze due to matrix		
Reactivity - HCN - H ₂ S	250 mg/kg 500 mg/kg	<0.40 mg/kg 245 mg/kg	0.40 mg/kg 20 mg/kg	<0.40 mg/kg 146 mg/kg	0.40 mg/kg 20 mg/kg	

AnalytiKEM An American NuKEM Company

AnalytiKEM Inc. 2925 Richmond Avenue Houston, TX 77098 713/520-1495 713/520-9900 Fax: 713/523-7107

Octuber 2, 1992

ENSR 3000 Richmond Houston, TX 77098

Attention: Scott Kuykendall

Attached are reports of chemical analyses of samples received September 9, 1992. These analyses are:

Count	ount Test Code		Test Name Test Method			Matrix
3	Ag	TCL-HOU	TCLP SILVER	EPA SW-846: 7760, ATOMIC ABSORPTION		TCLP_EXT
3	As	TCI-HOU	TCLP ARSENIC	EPA SW-846: 6010, ICP		TCLP_EXT
3	BNA	HOU	SEMIVOLATILE ORGANICS	EPA SW-846: 3520,8270, LLE,GC/MS		TCLP EXT
3	8a	TCL-HOU	TCLP BARIUM	EPA SW-846: 6010, ICP		TCLP_EXT
3	CORR	-SHOU	CORROSIVITY ON SOLID	EPA SW-846: 1110, NACE STEEL COUPON	09/03/92	SOIL
3	Cd	TCL-HOU	TCLP CADMIUM	EPA SW-846: 6010, ICP		TCLP_EXT
3	Cr	TCL-HOU	TCLP CHROMIUM	EPA SW-846: 6010, ICP		TCLP_EXT
3	FP	-SHOU	IGNITABILITY ON SOLID	EPA SW-846: 1010, PENSKY MARTIN	09/03/92	SOIL
3	H2S	-S-REA-SWL	HYDROGEN SULFIDE, REACTIVE/SLD	EPA SW-846: 7.3.4.2, 9030	09/03/92	1102
3	HCN	-S-REA-SWL			09/03/92	SOIL
3	На	TCL-HOU	TCLP MERCURY	EPA SW-846: 7470, COLD VAPOR		TCLP_EXT
3	Рb	TCL-HOU	TCLP LEAD	EPA SH-846: 6010, ICP		TCLP EXT
3	Se	TCI-HOU	TCLP SELENIUM	EPA SH-846: 6010, ICP		TCLP EXT
3	VOA	HOU	VOLATILE ORGANIC ANALYSES	EPA SH-846: 8240, GC/MS		TCLP EXT
3	рH		pH CORROSION ON SOLID	EPA SW-846: 9045	09/03/92	SOIL

Data contained in this report reflect a full quality control review and have met all applicable standards established by AnalytiKEM. AnalytiKEM quality assurance protocols are in accordance with EPA guidelines.

Should you have any questions, do not hesitate to contact me at (713) 520-1495.

LAB NO. A8972 CONT.

Very Truly Yours,

Analynike

Larry Frantz
Lab Director

LF/lis

Enclosures: Analytical Summary, Analytical Report, Chain of

Custody, Sample Receipt Checklist, Quality Control

Logs, ANALYTIKEM ID #A8972-1T, ANALYTIKEM ID #A8972-2T, ANALYTIKEM ID #A8972-3T, SWL CERT. #92-09-118-02, SWL CERT.

#92-09-118-03

LAB NO. A8972

PROJECT 1009-001-150 EXXON

AnalytikEM An American NuKEM Company

SAMPLE DISPOSAL LETTER

AnalytiKEM Inc. 2925 Richmond Avenue Houston, TX 77098 713/520-1495 713/520-9900 Fax: 713/523-7107

DATE: 10/02/92

TO: Scott Kuykendall

FROM: Larry Frantz, Lab Director

PROJ. NO.: 1009-001-150 LAB NO.: A8972 RECEIVED:09/09/92

EXXON

It is the policy of AnalytikEM Laboratories to dispose of unanalyzed portions of samples thirty days following submittal of the hard copy data package. Samples from lab number A8972 are due for disposal on November 6, 1992.

Please indicate your preference for disposal below and return this form to Lab Receiving personnel by October 23, 1992. No response will be interpreted as permission to dispose of the samples on November 6, 1992 and charge your project accordingly.

- ()A. AnalytikEM's preferred policy for disposal is to dispose of unused samples, including samples not analyzed, by drumming and transporting by a federally licensed hazardous waste transportation firm at a cost of \$6.50/Field ID. In an effort to present all relative charges in a timely manner, disposal charges will appear upon this project's billing summary unless this letter is returned with instructions indicating otherwise.
- ()B. AnalytikEM will return remaining samples. including samples not authorized for analysis to the originating site at our expense.

 ADDRESS OF THE ORIGINATING SITE:
- ()C. AnalytikEM will hold your sample at a cost of \$20.00/Field ID per quarter for refrigerated storage or \$6.50/Field ID per quarter for ambient storage. The project will be billed in advance each quarter based upon the number of samples in storage at the beginning of the quarter. The minimum storage fee per project will be \$50.00 to cover administrative costs.
 - () Refrigerated () Ambient ____ Number of Samples or ALL

Should you have any questions, do not hesitate to contact me at (713) 520-1495.
SIGNATURE:

LF/lis

LAB NO. A8972 PROJECT 1009-001-150 EXXON

48800 LABORATORY (REMARKS Analysis Request and Chain of Custody Record 2-Laboratory No. COC Seal No 5 Date: 9. 9. (Mach Phoner Flashpoint 26 Time: 5.0 Project Location

DAI POSO MARILANG Date Time Time. Dale TELP Volorilas JCLP Semi La TCLB METALS TCLP Semi TCLP MOTOL ANALYSIS REQUESTED Received by Laboratory (Signature) 57 Data Results To: Received by: (Signature) Received by: (Signature) イのノ Dale: 9-7 ى تارىخى :eme Time: Dale: 2925 RICHMOND AVENUE HOUSTON, TX 77098 (713) 520-1495 FAX: (713) 523-7107 Date: Time: $\overline{\mathcal{E}}$ Preser-Type (Liquid Sludge, Etc.) Sample 700 ô Só ò 0 Ssum 40-1 rally2 Sistem Client/Project Name 61700 10 % Container (Size/Mat'l) 55KV 85 cm Hor 1602 1602 Relinquished by: (Signature) 16 or SSE Relinquished by (Signature) Relinquished by (Signature) And 87 60031A3R13 Comp An American NuKLM Company 25.50 25-5-5 25.50 1009-001-100-160 がだった。 2-2-92 2-3-92 930 AnalytiKEM 9-3-9 0830 rand Fine Sample No./ Identification Project no REMARKS:

Lade Co

Second 4°C 1°C 1
Signature Time: 19-5-32 Received by: Time: 19-0-19-0-19-0-19-0-19-0-19-0-19-0-19-0
Time: (Signature) Time: (Signature) Time: (Signature) Date Results To: 2 O Received Time: 4 of the time of time

ANAL TIKEM LABORATORIES SAMPLE RECEIPT CHECKLIST

Client E	ion	Number <u>005-0</u>	001-150,160	Number 785)
1	_ _Shipped		Notes: = ed	En #946353133
	_Hand Delivered		Doterk	et
2	COC Present on	Receipt	Notes:	
	_No COC	-		
	_COC Tape on Shi _Container		Notes:	
	No COC Tape on Container		Notes:	.1
4	_Samples Broken,	/Leaking	Notes:	Below
	Sample Intact	on Receipt	Rosto	Jan 100
	_Other (See Note	es)	<u> </u>	
5	_Ambient on Rece	eipt	Notes:	Bolon
	_Chilled on Rece	eipt		
6	_Samples Preser Correctly	ved	Notes:	
	_Improper Prese:	rvatives		
	_N/A (None Reco	mmended)		
	_Other (See Note	es)		
7	Received Within	-	Notes:	
	_Not Received W Holding Time _N/A (None Reco			
	Other (See Not	es)		
	_COC Tapes on S		Notes:	
	_No COC Tapes o	n Samples		
9	_Discrepancies and Sample Lab _No Discrepanci	els	Notes: <u>See</u>	Boon
	_N/A (No COC Re	ceived)		
Inspected	and Logged in	by: <u>\$</u>	2 <u> </u>	9-5-52 se/Time <u> </u>
		,	- 1	_
_		Canales !	2handa k	a 2 Carpinace
+ and	$-\frac{G-U-G}{T}$	- 7 2	genode	1 2 La Trans
Luca			ni latel	b scott &
<u>Calla</u>	4	. /	and the	Den son work
1.2/			Zunian	L'e Vie
The	12 7 2/1 3	a TCLP) still land	des not have

Analytical Summary 10/13/92 11:12

Lab Number: A8972

EXXO	· · · · · · · · · · · · · · · · · · ·						
	Lab ID	1	2	3	1 T	2 T	3 T
	Field ID	DP-1	DP-2	MR-1			MR-1/
					,	TCLP	TCLP
Tes	st Matrix	SOIL	SOIL	SOIL	TCLP_EXT	TCLP_EXT	TCLP_EXT
Ag	TCL-HOU				<0.01*	<0.01*	<0.01*
					MG/L	MG/L	MG/L
	(MDL)				(0.01)*	(0.01)*	(0.01)*
As	TCI-HOU				<0.2*	<0.2*	<0.2*
					MG/L	MG/L	MG/L
	(MDL)				(0.2)*	(0.2)*	(0.2)*
BNA	ной				ATTACHED	ATTACHED	ATTACHED
		ĺ			UG/L	UG/L	UG/L
	(MDL)				()*	<i>()</i> *	()*
Ва	TCL-HOU				1.2*	1.2*	1.2*
		į	İ	İ	MG/L	MG/L	MG/L
	(MDL)	 			(0.5)*	(0.5)*	(0.5)*
CORR	-SHOU	SEE REM*	SEE REM*	SEE REM*			
	(MDL)	()*	()*	()*			
Cd	TCL-HOU				<0.010*	<0.010*	<0.010*
		1	l	İ	MG/L	MG/L	MG/L
	(MDL)		<u> </u>	 	(0.010)*	(0.010)*	(0.010)*
Cr	TCL-HOU				<0.05*	<0.05*	<0.05*
		1			MG/L	MG/L	MG/L
	(MDL)	1			(0.05)*	(0.05)*	(0.05)*
FP	-SHOU	SEE REM*	SEE REM*	SEE REM*			
	(MDL)	•	() *	<i>()</i> *	İ	ļ	
H2S	-S-REA-SWL	ATTACHED	ATTACHED	ATTACHED			
		PPM	PPM	PPM	İ	İ	ĺ
	(MDL)	•	() *	()*	į	į	į
-			T		1	1	†

^{*} Please see attached Analytical Report for remarks.

	•	•				
Signatures of approvaresults, billing and Approvals:	enclosed docum	entation.,		control verifi	ij	1 j
		**** CONT	INUED ****	<i>/</i> /		

Analytical Summary 10/13/92 11:12

Lab Number: A8972 Project: 1009-001-150 **EXXON** Lab ID 2 3 1T 2**T** 3 T Field ID | DP-1 DP-2 MR-1 DP-1/ DP-2/ MR-1/ TCLP TCLP TCLP Test | Matrix | SOIL SOIL SOIL TCLP_EXT | TCLP_EXT | TCLP_EXT HCN -S-REA-SWL ATTACHED ATTACHED ATTACHED PPM PPM PPM (MDL) | ()* ()* ()* - -TCL-HOU <0.001* |<0.001* |<0.001* Hg MG/L MG/L MG/L (MDL) |(0.001)*|(0.001)*|(0.001)*| Рb - -TCL-HOU! 0.02 --0.1* 0.02 MG/L MG/L MG/L (MDL) (0.02)* |(0.02)* |(0.02)* - -TCI-HOU! <0.2* <0.2* <0.2* Se MG/L MG/L MG/L (MDL) (0.2)*(0.2)*(0.2)* TPH -S-GC -HOU|34 <25 270J* MG/KG MG/KG MG/KG (MDL) | (25) (25) (460)* VOA - -ATTACHED | ATTACHED | ATTACHED | -HOU UG/L UG/L UG/L (MDL) ()* ()* ()* -S-COR-HOU|8.57 pН 8.13 8.06 UNITS UNITS UNITS (MDL) \ (0.01) (0.01) (0.01)

Signatures	of approva	ıl indicat	e quality	assurance-qu	ality	control veris	ation o	of analytical
results, b	illing and	enclosed	documenta	tion.		1/1/2-		. 1
Annrovals:	(1)00	X) .	D	10/13/93-		bond	1	NB/92
ADDTOVALS:	/ \1 / X X	LA TITALIA	Date:	13 11 117 2-	1 /	//// / / / / / / / / / / / / / / /	/ !)At	:e:

^{*} Please see attached Analytical Report for remarks.

Analytical Report

10/13/92 11:10

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: DP-1 Lab ID: 1 Matrix: SOIL		Time Sam	Date Sampled: 09/03/92 Time Sampled: 830 E) Date Received:09/09/92			
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed			
CORR -SHOU CORROSIVITY ON SOLID EPA SW-846: 1110, NACE STEEL COUPON	SEE REM*			1 1			
FP -SHOU IGNITABILITY ON SOLID EPA SW-846: 1010, PENSKY MARTIN	SEE REM* *2,3						
H2S -S-REA-SWL HYDROGEN SULFIDE, REACTIVE/SLD EPA SW-846: 7.3.4.2, 9030	ATTACHED *4	PPM		09/14/92			
HCN -S-REA-SWL HYDROCYANIC ACID, REACTIVE/SLD EPA SW-846: 7.3.3.2, 9010	ATTACHED *4	PPM		09/14/92			
TPH -S-GC -HOU PETROLEUM HYDROCARBON BY GC EPA SW-846: 8015 MOD, GC	34	MG/KG 	25	Ext.: 09/15/92 Anal.:09/16/92			
pH -S-COR-HOU pH CORROSION ON SOLID EPA SW-846: 9045	8.57	UNITS	0.01	09/16/92 1620			

^{*1 *}UNABLE TO ANALYZE DUE TO SOLID MATRIX *2 ABSORPTION OF WATER OR MANUAL FRICTION

^{*3} FLASHPOINT N/A, NON-LIQUID MATRIX NO FIRE CAUSED BY IGNITION *4 SEE SWL CERT. #92-09-118-01

Analytical Report 10/13/92 11:11

EXXON Field ID: DP-2 Date Sampled: 09/03/92 Time Sampled: 930 |Proj. No.: 1009-001-150 Lab ID: 2 (COMPOSITE) Date Received:09/09/92 Lab No.: A8972 Matrix: SOIL (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed CORR -S--HOU SEE REM* 1 1 CORROSIVITY ON SOLID *1 EPA SW-846: 1110, NACE STEEL COUPON SEE REM* -S--HOU 1 1 IGNITABILITY ON SOLID *2,3 EPA SW-846: 1010. PENSKY MARTIN H2S -S-REA-SWL ATTACHED PPM 09/14/92 HYDROGEN SULFIDE, REACTIVE/SLD *4 EPA SW-846: 7.3.4.2, 9030 HCN -S-REA-SWL ATTACHED PPM 09/14/92 HYDROCYANIC ACID, REACTIVE/SLD *4 EPA SW-846: 7.3.3.2, 9010 TPH -S-GC -HOU <25 MG/KG 25 Ext.: 09/15/92 PETROLEUM HYDROCARBON BY GC Anal.:09/16/92| EPA SW-846: 8015 MOD, GC UNITS 0.01 pH -S-COR-HOU 8.13 09/16/92 pH CORROSION ON SOLID 1620 EPA SW-846: 9045

^{*1 *}UNABLE TO ANALYZE DUE TO SOLID MATRIX

^{*2} ABSORPTION OF WATER OR MANUAL FRICTION

^{*3} FLASHPOINT N/A, NON-LIQUID MATRIX NO FIRE CAUSED BY IGNITION

^{*4} SEE SWL CERT. #92-09-118-02

Analytical Report 10/13/92 11:11

Field ID: MR-1 Date Sampled: 09/03/92 EXXON Time Sampled: 1100 Proj. No.: 1009-001-150 Lab ID: 3 (COMPOSITE) Date Received:09/09/92 | |Lab No.: A8972 Matrix: SOIL (Test Code) Method Date/Time Detection Analysis Parameter (Test Name) Concen-(Test Method) tration Units Limit Performed I = ISEE REM* CORR -S--HOU CORROSIVITY ON SOLID *1 EPA SW-846: 1110, NACE STEEL COUPON SEE REM* I = IFP -S--HOU | IGNITABILITY ON SOLID *2.3 EPA SW-846: 1010, PENSKY MARTIN PPM H2S -S-REA-SWL ATTACHED 09/14/92 HYDROGEN SULFIDE, REACTIVE/SLD *4 EPA SW-846: 7.3.4.2, 9030 HCN -S-REA-SWL ATTACHED PPM 09/14/92 HYDROCYANIC ACID, REACTIVE/SLD *4 EPA SW-846: 7.3.3.2, 9010 TPH -S-GC -HOU 270J* MG/KG 460 Ext.: 09/15/92| PETROLEUM HYDROCARBON BY GC *5 Anal.:09/16/92| EPA SW-846: 8015 MOD, GC 8.06 UNITS 0.01 09/16/92 -S-COR-HOU DH CORROSION ON SOLID 1620 EPA SW-846: 9045

^{*1 *}UNABLE TO ANALYZE DUE TO SOLID MATRIX

^{*2} ABSORPTION OF WATER OR MANUAL FRICTION

^{*3} FLASHPOINT N/A, NON-LIQUID MATRIX NO FIRE CAUSED BY IGNITION

^{*4} SEE SWL CERT. #92-09-118-03

^{*5} RESULT DETECTED BELOW MDL

Analytical Report 10/13/92 11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: DP-1/TLab ID: 1T Matrix: TCLP_1		Date Sampled: / / Time Sampled: Date Received:09/09/92		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
AgTCL-HOU TCLP SILVER EPA SW-846: 7760, ATOMIC ABSORPTION	<0.01* *1	MG/L	0.01	09/21/92 1350	
AsTCI-HOU TCLP ARSENIC EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853	
BNAHOU SEMIVOLATILE ORGANICS EPA SW-846: 3520,8270, LLE,GC/MS	ATTACHED *2,1	UG/L		Ext.: 09/18/92 Anal.:09/23/92	
BaTCL-HOU TCLP BARIUM EPA SW-846: 6010, ICP	1.2*	MG/L 	0.5	09/24/92	
CdTCL-HOU TCLP CADMIUM EPA SW-846: 6010, ICP	<0.010* *1	MG/L	0.010	09/24/92	
CrTCL-HOU TCLP CHROMIUM EPA SW-846: 6010, ICP	<0.05* *1	MG/L	0.05	09/24/92	
HgTCL-HOU TCLP MERCURY EPA SW-846: 7470, COLD VAPOR	<0.001* *1	MG/L	0.001	09/22/92 1600	
PbTCL-HOU TCLP LEAD EPA SW-846: 6010, ICP	0.1*	MG/L	0.02	09/24/92 853	
				 	

^{*1 *}RESULT IS NOT SPIKE CORRECTED

^{*2} SEE ANALYTIKEM ID #A8972-1T

Analytical Report 10/13/92 11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	j. No.: 1009-001-150 Lab ID: 1T			oled: / / oled: eived:09/09/92
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
SeTCI-HOU TCLP SELENIUM EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853
VOAHOU VOLATILE ORGANIC ANALYSES EPA SW-846: 8240, GC/MS	ATTACHED +2,1	UG/L	•	Ext.: 09/17/92 Anal.:09/17/92

^{*1 *}RESULT IS NOT SPIKE CORRECTED *2 SEE ANALYTIKEM ID #A8972-1T

Analytical Report 10/13/92 11:11

EXXON Field ID: DP-2/TCLP Date Sampled: 1 1 Proj. No.: 1009-001-150 Lab ID: 2T Time Sampled: Date Received:09/09/92 Lab No.: A8972 Matrix: TCLP_EXT Method (Test Code) Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed - -TCL-HOU <0.01* MG/L 0.01 09/21/92 Ag TCLP SILVER *1 1350 EPA SW-846: 7760, ATOMIC ABSORPTION - -TCI-HOU <0.2* As MG/L 0.2 09/24/92 TCLP ARSENIC *1 853 EPA SW-846: 6010, ICP BNA - --HOU ATTACHED UG/L Ext.: 09/18/92| |SEMIVOLATILE ORGANICS *2,1 Anal.:09/23/92| EPA SW-846: 3520,8270, LLE,GC/MS 1.2* - -TCL-HOU Ba MG/L 0.5 09/24/92 TCLP BARIUM *1 853 EPA SW-846: 6010, ICP Cd - -TCL-HOU <0.010* MG/L 0.010 09/24/92 TCLP CADMIUM *1 853 EPA SW-846: 6010, ICP - -TCL-HOU <0.05* Cr MG/L 0.05 09/24/92 TCLP CHROMIUM *1 853 EPA SW-846: 6010, ICP Hg - -TCL-HOU <0.001* MG/L 0.001 09/22/92 TCLP MERCURY *1 1600 EPA SW-846: 7470, COLD VAPOR Pb - -TCL-HOU 0.02 MG/L 0.02 09/24/92 TCLP LEAD *1 853 EPA SW-846: 6010, ICP

^{*1 *}RESULT IS NOT SPIKE CORRECTED

^{*2} SEE ANALYTIKEM ID #A8972-2T

Analytical Report 10/13/92 11:11

Field ID: DP-2/TCLP EXXON Date Sampled: Proj. No.: 1009-001-150 Lab ID: Time Sampled: Lab No.: Date Received: 09/09/92 A8972 Matrix: TCLP EXT (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed Se - -TCI-HOU <0.2* MG/L 0.2 09/24/92 TCLP SELENIUM *1 853 EPA SW-846: 6010, ICP VOA - --HOU ATTACHED UG/L Ext.: 09/17/92 VOLATILE ORGANIC ANALYSES *2,1 |Anal.:09/17/92| EPA SW-846: 8240, GC/MS

^{*1 *}RESULT IS NOT SPIKE CORRECTED

^{*2} SEE ANALYTIKEM ID #A8972-2T

Analytical Report 10/13/92 11:11

EXXON Field ID: MR-1/TCLP Date Sampled: Proj. No.: 1009-001-150 Lab ID: 3 T Time Sampled: Lab No.: Matrix: Date Received: 09/09/92 | A8972 TCLP_EXT (Test Code) Method | Date/Time Parameter (Test Name) Concen-Detection Analysis Units Limit (Test Method) tration Performed Ag - TCL-HOU <0.01* MG/L 0.01 09/21/92 TCLP SILVER *1 1350 EPA SW-846: 7760, ATOMIC ABSORPTION - -TCI-HOU <0.2* MG/L 0.2 09/24/92 TCLP ARSENIC *1 853 EPA SW-846: 6010. ICP ATTACHED | BNA - --HOU UG/L Ext.: 09/18/92| SEMIVOLATILE ORGANICS *2,1 Anal.:09/23/92| EPA SW-846: 3520,8270, LLE,GC/MS Ba - - TCL-HOU 1.2* MG/L 0.5 09/24/92 TCLP BARIUM *1 853 EPA SW-846: 6010, ICP Cd - TCL-HOU <0.010* MG/L 0.010 09/24/92 TCLP CADMIUM *1 853 EPA SW-846: 6010, ICP MG/L - -TCL-HOU <0.05* 0.05 09/24/92 TCLP CHROMIUM *1 853 EPA SW-846: 6010, ICP Hg - -TCL-HOU <0.001* MG/L 0.001 09/22/92 TCLP MERCURY *1 1600 EPA SW-846: 7470, COLD VAPOR . - -TCL-HOU 0.02 09/24/92 Pb 0.02 MG/L TCLP LEAD *1 853 EPA SW-846: 6010, ICP

^{*1 *}RESULT IS NOT SPIKE CORRECTED

^{*2} SEE ANALYTIKEM ID #A8972-3T

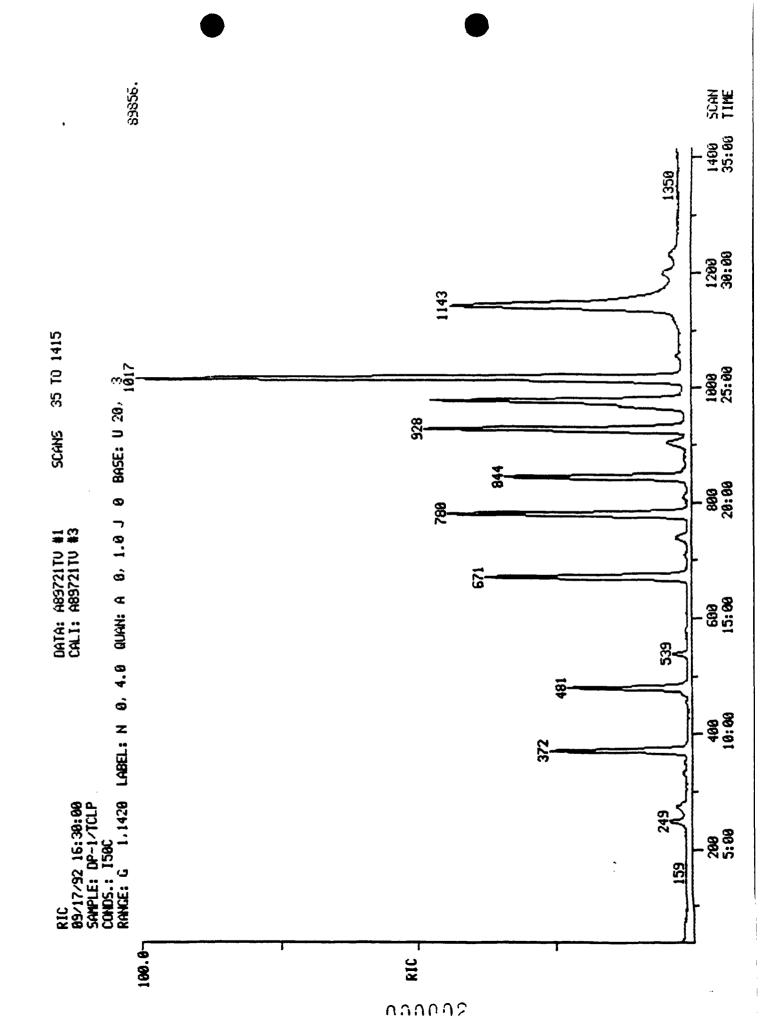
Analytical Report 10/13/92 11:12

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: MR-1/T Lab ID: 3T Matrix: TCLP_E	Date Sampled: / / Time Sampled: Date Received:09/09/92		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
SeTCI-HOU TCLP SELENIUM EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853
VOAHOU VOLATILE ORGANIC ANALYSES EPA SW-846: 8240, GC/MS	ATTACHED *2,1	UG/L		Ext.: 09/17/92 Anal.:09/17/92

^{*1 *}RESULT IS NOT SPIKE CORRECTED *2 SEE ANALYTIKEM ID #A8972-3T

ORGANICS ANALYSIS DATA SHRET

Laboratory Name:	AnalytiKEM-Hou	Concentration:	LUW	Date Extracted:	09/17/92
Lab Sample ID:	A8972-1T	Sample Matrix:	WATER	Date Analyzed:	09/17/92
Client Sample ID:	DP-1-TCLP	Percent Moisture:	100.0	Dilution Factor:	1.0


TCLP VOLATILE COMPOUNDS

CAS Number	c	uq	/L	CAS Numbe	r	uq/L
75-01-4	Vinyl Chloride	10	<		Trichloroethene	
75-35-4	1,1-Dichloroethene	5	<	71-43-2	Benzene	5 <
67-66-3	Chloroform	5	<	127-18-4	Tetrachloroethene	5 <
107-06-2	1,2-Dichloroethane	5	<	108-90-7	Chlorobenzene	5 <
78-93-3	2-Butanone	10	<			
56-23-5	Carbon Tetrachloride	5	<			

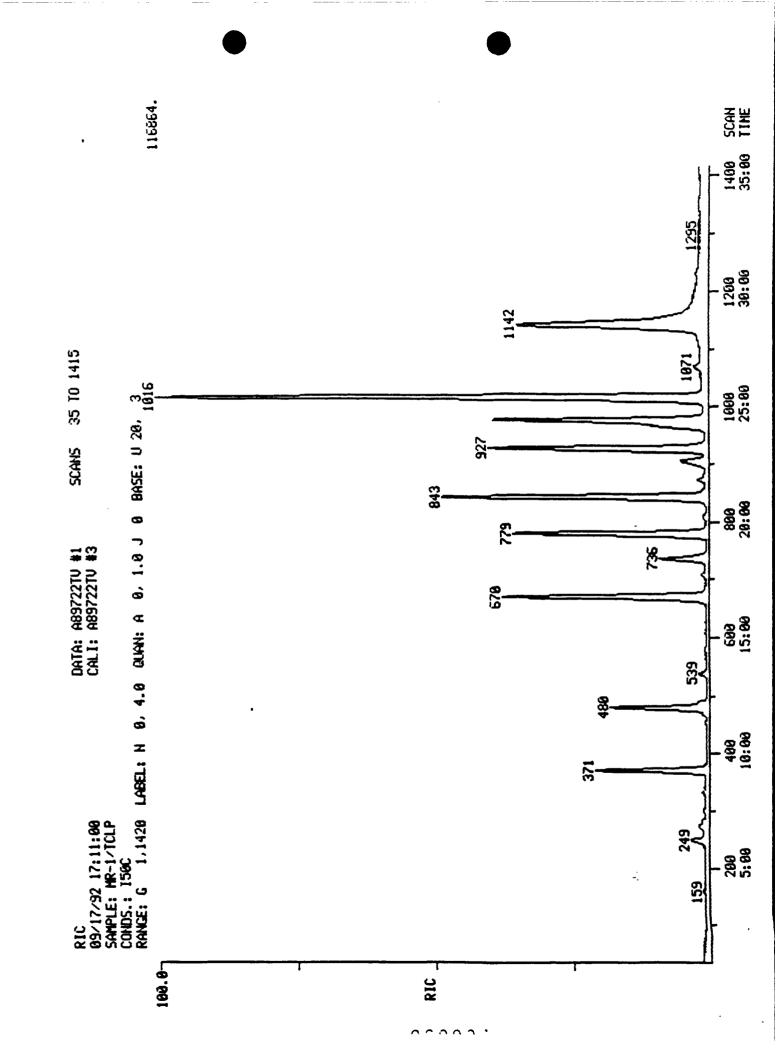
The Lab ID for data on this page is A89721TV.

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

Data not spike corrected.

ORGANICS ANALYSIS DATA SHEET

Laboratory Name:	AnalytiKEM-H-u	Concentration:	LOW	Date Extracted:	09/17/92
Lab Sample ID:	A8972-2T	Sample Matrix:	WATER	Date Analyzed:	09/17/92
Client Sample ID:	MR-1-TCLP	Percent Moisture:	100.0	Dilution Factor:	1.0


TCLP VOLATILE COMPOUNDS

CAS Number	r	u	q/L	CAS Numbe	r	uq	/ <u>L</u>
75-01-4	Vinyl Chloride	1	.0 <	79-01-6	Trichloroethene	5	<
75-35-4	1,1-Dichloroethene		5 <	71-43-2	Benzene	5	<
67-66-3	Chloroform		5 <	127-18-4	Tetrachloroethene	5	<
107-06-2	1,2-Dichloroethane		5 <	108-90-7	Chlorobenzene	5	<
78-93-3	2-Butanone	1	.0 <				
56-23-5	Carbon Tetrachloride		5 <				

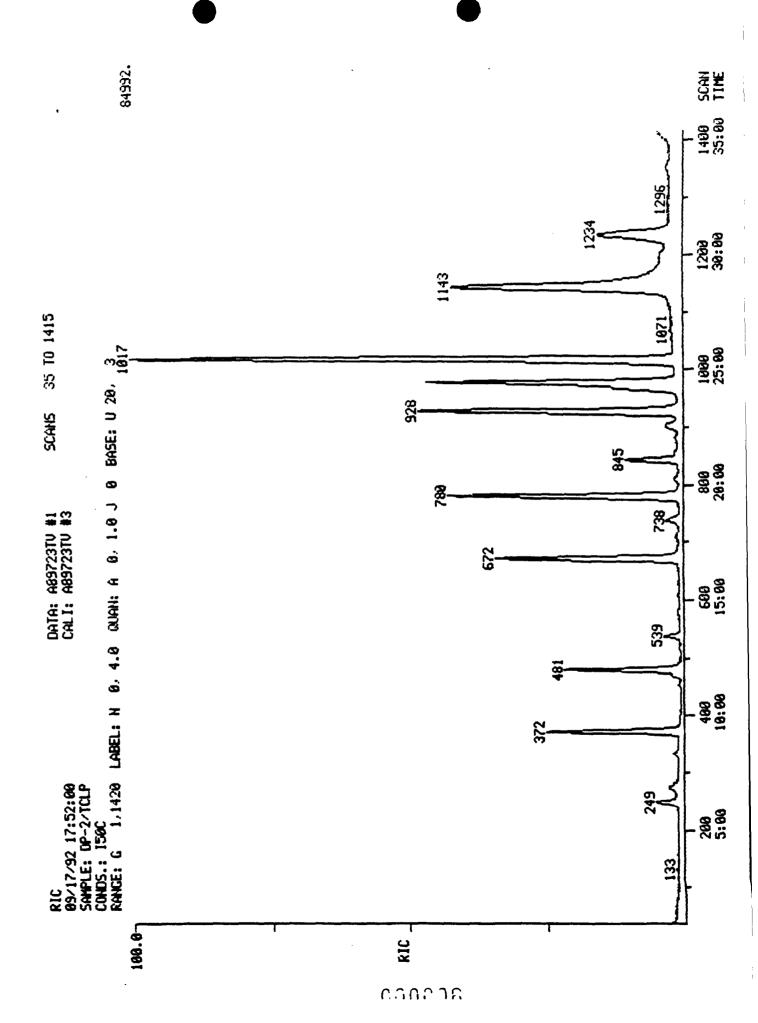
The Lab ID for data on this page is A89722TV.

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

Data not spike corrected.

ORGANICS ANALYSIS DATA SHRET

Laboratory Name:	AnalytiKEM-Hou	Concentration:	LOW	Date Extracted:	09/17/92
Lab Sample ID:	A8972-3T	Sample Matrix:	WATER	Date Analyzed:	09/17/92
Client Sample ID:	DP-2-TCLP	Percent Moisture:	100.0	Dilution Factor:	


TCLP VOLATILE COMPOUNDS

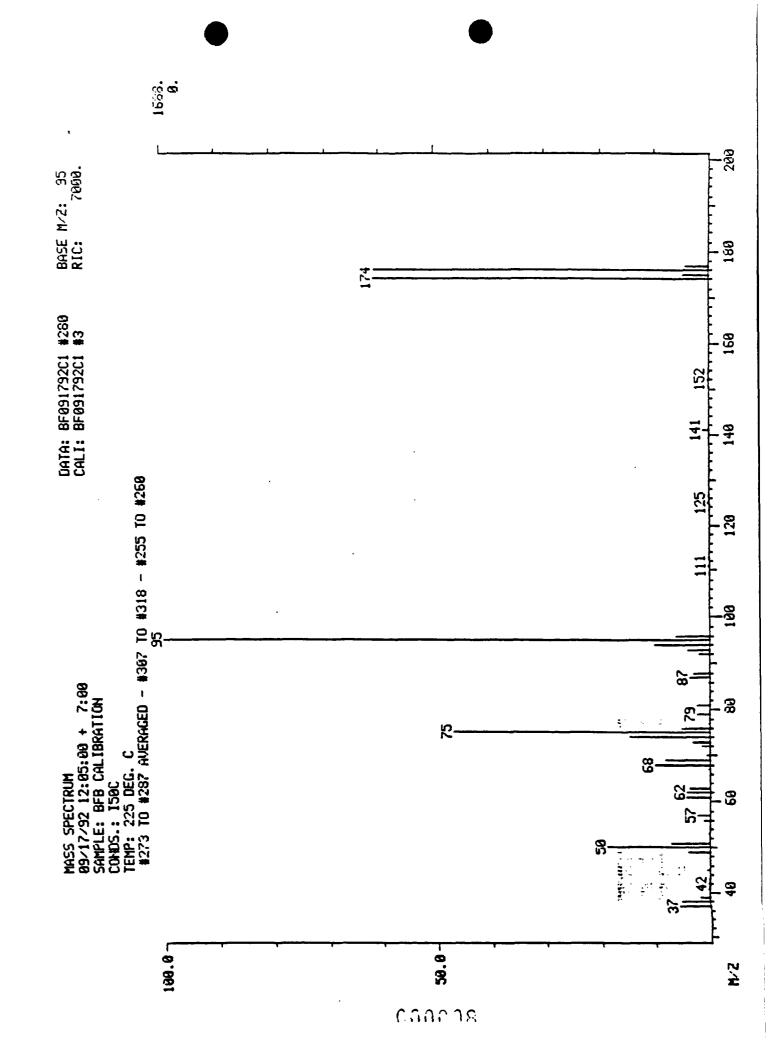
CAS Number	r	u	I/L	CAS Numbe	r	ug/	т.
75-01-4	Vinyl Chloride				Trichloroethene		- -
75-35-4	1,1-Dichloroethene	, !	5 <	71-43-2	Benzene	-	`
67-66-3	Chloroform	. !	5 <	127-18-4	Tetrachloroethene		-
107-06-2	1,2-Dichloroethane	. :	5 <	108-90-7	Chlorobenzene		
78-93-3	2-Butanone	. 10) <			,	•
56-23-5	Carbon Tetrachloride	. !	5 <				

The Lab ID for data on this page is A89723TV.

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

Data not spike corrected.

BROMOFLUOROBENZENE


Tuning Report Data: BF091792C1 # 280 Base m/1: 95 09/17/92 12:05:00 + 7:00 Cali: BF091792C1 # 3 RIC: 7000.

Instrument: ISOC Analyst: BPB Acct. No.: 8506-090

#273 to #287 averaged - #307 to #318 - #255 to #260

Case Number: E Laboratory: Z Contract: Z

m/z	Intensity	% RA	Ion Abu Min %	ndance Max %	Criteria Mass	Actual	Status
50	317.	18. 8	15.0	40. 0	95	18.8	PASS
75	[*] 7 95 .	47. 1	30. 0	60. 0	95	47. 1	PASS
95	1688.	100. 0	100.0			100. 0	PASS
96	104.	6. 2	5. O	9. 0	95	6. 2	PASS
173	0.	0. 0		2. 0	174	0. 0	PASS
174	1032.	61.1	50. 0		95	61.1	PASS
175	81.	4. 8	5 . 0	9. 0	174	7.8	PASS
176	1024.	60. 7	95 . 0	101.0	174	99. 2	PASS
177	71.	4. 2	5. 0	9. 0	176	6. 9	PASS

Mass List Data: BF091792C1 # 280 Base m/z: 95 09/17/92 12:05:00 + 7:00 Cali: BF091792C1 # 3 RIC: 7000.

Sample: BFB CALIBRATION Conds.: 150C

#273 to #287 averaged - #307 to #318 - #255 to #260

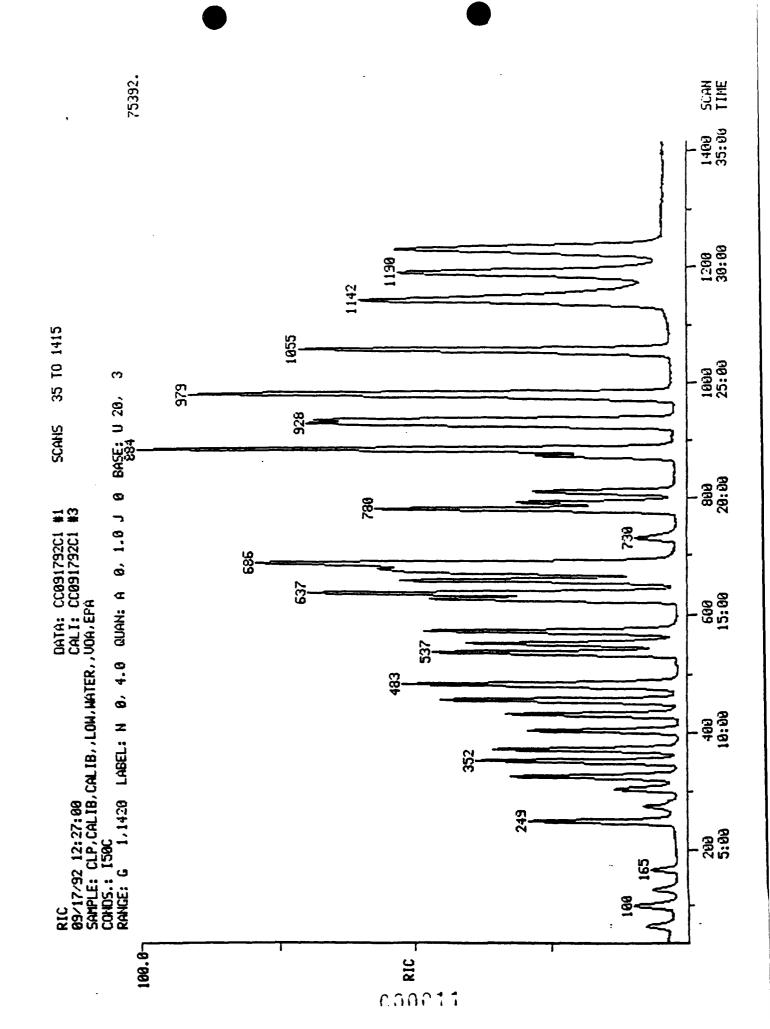
36		0. 00	0.	Minima		Inten:	٥.
Mass		% RA	Inten.	maxima	#	O	
175 3339??????????????????????????????????		7. RA 0. 121 97 18 6. 18	Inten. 2. 93. 86. 28. 3. 10. 66. 317. 117. 3. 19. 36. 1. 68. 68. 59. 3. 169. 137. 11. 23. 246. 795. 82. 45. 34. 67. 166. 1688. 104. 4. 1. 3. 1. 17.	Minima Maxima	Min #	Inten: O	0.
152	S	0.18	3.				
155 174	S	0. 12 61. 14	2. 10 32 .				
175	5 S	4. 80	1032. 81.				
176	S	60.66	1024.				
177	S	4. 21	71.				

CONTINUING CALIBRATION CHECK VOLATILE HSL COMPOUNDS

Case No: STAND Region Contractor: AnalytiKEM-Hou Contract No:		Tim Lab	oratory I	D:	09/17/92 12:27 CC)91792C
Instrument ID: <u>I50C</u>		Ini	tial Cali	. Date:	09/15/92
Minimum RF for SPCC is	0.300 (1)	Maxim	um %D for	CCC is	25%
Compound	AVE RF	RF(50)	% D	CCC	SPCC
Chloromethane	0.985	0.770	21.8		* *
Bromomethane	0.988	0.840	15.0		
Vinyl Chloride	0.998	0.777	22.1	*	
Chloroethane		0.474	25.9		
Methylene Chloride	1.380	1.168	15.4		
Acetone	0.279	0.714	-155.9		
Carbon Disulfide	1 050	2.150	-9.7		
1,1-Dichloroethene	1.425	1.316	7.6	*	
1,1-Dichioroethane	3.633	3.118	14.2		* *
trans-1,2-Dichloroethene		1.447	13.0		
Chloroform	4.353	3.833	11.9	*	
1,2-Dichloroethane	3.140	2.821	10.2		
2-Butanone	0.026	0.057	-119.2		
1,1,1-Trichloroethane	0.694	0.671	3.3		
Carbon Tetrachloride	0.522	0.496	5.0		
Vinyl Acetate	0.090	0.091	-1.1		
Bromodichloromethane	0.717	0.706	1.5		
1,2-Dichloropropane	0.439	0.413	5.9	*	
cis-1,3-Dichloropropene	0.588	0.578	1.7		
Trichloroethene	0.394	0.377	4.3		
Dibromochloromethane	0.512	0.505	1.4		
1,1,2-Trichloroethane	0.335	0.319	4.8		
Benzene	0.934	0.906	3.0		
Trans-1,3-Dichloropropene	0.523	0.498	4.8		
Bromoform	0.348	0.333	4.3		* *
4-Methyl-2-Pentanone		0.548	-16.8		
2-Hexanone	0.332	0.572	-72.3		
Tetrachloroethene	0.376	0.363	3.5		
1,1,2,2-Tetrachloroethane	0.654	0.657	-0.5		
Toluene	0.785	0.744	5.2	*	~ ~
Chlorobenzene	0.974	0.897	7.9	•	
Ethylbenzene	0.542	0.525	3.1	*	~ **
Styrene	0.921	1.046	-13.6	~	
Xylene (total)	0.581	0.651	-12.0		
.,	0.301	0.037	-12.0		

RF(50) - Response Factor from daily standard file at 50 ug/l

AVE RF - Average Response Factor from initial calibration Form VI


\$D - - - Percent Difference

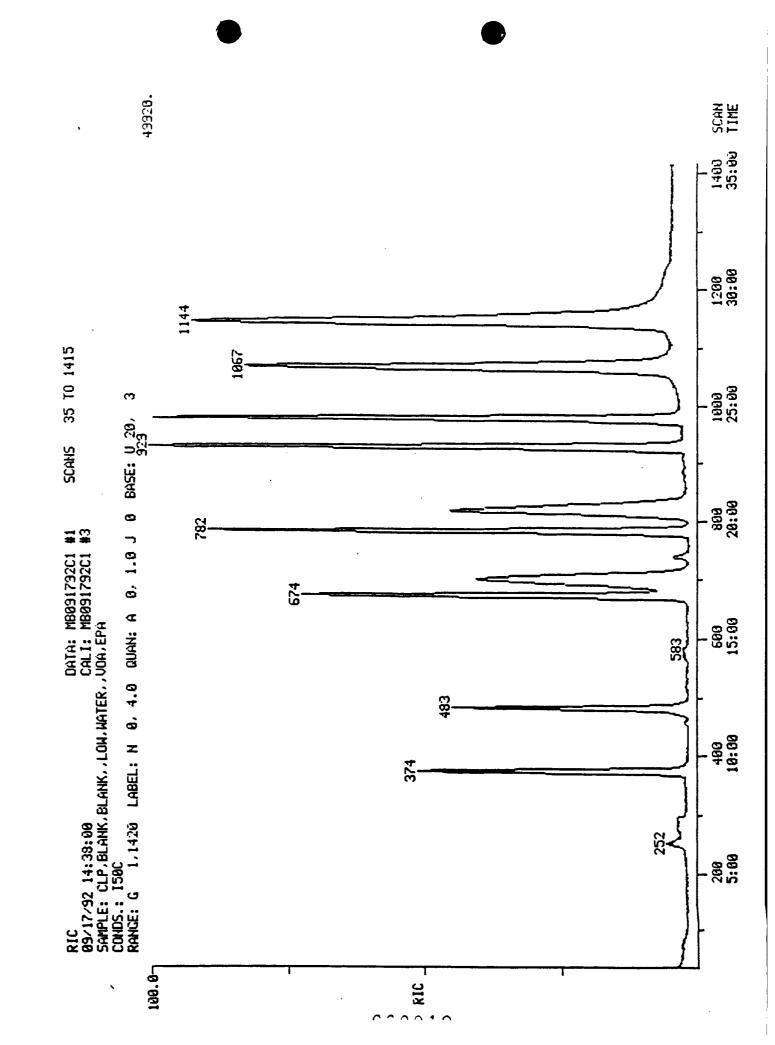
CCC - - Calibration Check Compounds (*)

SPCC - - System Performance Check Compounds (**)

(1) - - Mininum RF for Bromoform is 0.250

Form VII

VOLATILE ORGANICS ANALYSIS DATA SHEET


Laboratory Name: Analytikem-Hou Concentration: LOW Date Extracted: 09/17/92
Lab Sample ID: MB091792C1 Sample Matrix: WATER Date Analyzed: 09/17/92
Client Sample ID: MB091792C1 Percent Moisture: 100.0 Dilution Factor: 1.0

VOLATILE COMPOUNDS

CAS Number		uq/	L_	CAS Number		uq/	<u>'L</u>
74-87-3	Chloromethane	10	<	78-87-5	1,2-Dichloropropane	5	<
74-83-9	Bromomethane	10	<	10061-01-5	cis-1,3-Dichloropropene .	5	<
75-01-4	Vinyl Chloride	10	<	79-01-6	Trichloroethene	5	<
75-00-3	Chloroethane	10	<	124-48-1	Dibromochloromethane	5	<
75-09-2	Methylene Chloride	6		79-00-5	1,1,2-Trichloroethane	5	<
67-64-1	Acetone	5	*	71-43-2	Benzene	5	<
75-15-0	Carbon Disulfide	5	<	10061-02-6	Trans-1,3-Dichloropropene	5	<
75-35-4	1,1-Dichloroethene	5	<	110-75-8	2-Chloroethylvinyl ether .	10	<
75-34-3	1,1-Dichloroethane	5	<	75-25-2	Bromoform	5	<
156-60-5	trans-1,2-Dichloroethene .	5	<	108-10-1	4-Methyl-2-Pentanone	10	<
67-66-3	Chloroform	5	<	591-78-6	2-Hexanone	10	<
107-06-2	1,2-Dichloroethane	5	<	127-18-4	Tetrachloroethene	5	<
78-93-3	2-Butanone	10	<	79-34-5	1,1,2,2-Tetrachloroethane	5	<
71-55-6	1,1,1-Trichloroethane	5	<	108-88-3	Toluene	5	<
56-23-5	Carbon Tetrachloride	5	<	108-90-7	Chlorobenzene	5	<
108-05-4	Vinyl Acetate	5	<	100-41-4	Ethylbenzene	5	<
75-27-4	Bromodichloromethane	5	<	100-42-5	Styrene	5	<
				1330-20-7	Xylene (total)	5	<

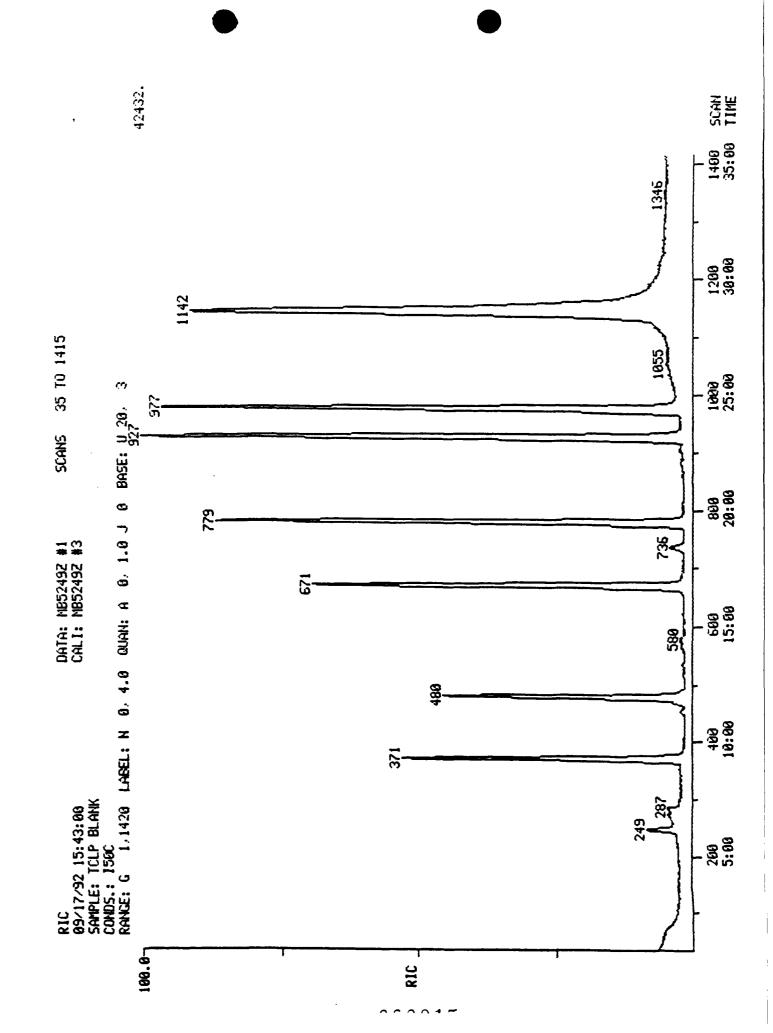
The Lab ID for data on this page is MB091792C1.

- = Reported value is less than the detection limit.
- < Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

ORGANICS AMALYSIS DATA SHRET

Laboratory Name:	AnalytiKEM-Hou	Concentration:	LOW	Date Extracted:	09/17/92
Lab Sample ID:	MB5249Z	Sample Matrix:	WATER	Date Analyzed:	09/17/92
Client Sample ID:	TCLP BLANK	Percent Moisture:	100.0	Dilution Factor:	1.0

TCLP VOLATILE COMPOUNDS


CAS Number		uq/	L_	CAS Numbe	<u> </u>	uq	/L
75-01-4	Vinyl Chloride	10	<	79-01-6	Trichloroethene	5	<
75-35-4	1,1-Dichloroethene	5	<	71-43-2	Benzene	5	<
67-66-3	Chloroform	5	<	127-18-4	Tetrachloroethene	5	<
107-06-2	1,2-Dichloroethane	5	<	108-90-7	Chlorobenzene	5	<
78-93-3	2-Butanone	10	<				
56-23-5	Carbon Tetrachloride	5	<				

The Lab ID for data on this page is MB5249%.

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

Data not spike corrected.

.

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: ANALYTIKEM-HOU Cont	ract:
-------------------------------	-------

Lab Code: HOUSTON Case No.: A8972 SAS No.: SDG No.: A8972

	EPA SAMPLE NO.	SMC1 (TOL)#	SMC2 (BFB)#	SMC3 (DCE)#	OTHER	TOT
	========	=====	=====	=====	=====	===
01	DP-1-TCLP	101	101	112	109	0
02	DP-1-TCLP-MS	100	103	112	103	0
03	DP-2-TCLP	102	100	110	106	0
04	MR-1-TCLP	96	97	113	109	0
05	TCLP_BLANK	102	98	109	109	0
06	MB091792C1	100	98	111	111	0

QC LIMITS

SMC1 (TOL) = Toluene-d8 (88-110) SMC2 (BFB) = Bromofluorobenzene (86-115) SMC3 (DCE) = 1,2-Dichloroethane-d4 (76-114)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

ORGANICS AMALYSIS DATA SERET

Laboratory Name: Analytikem-Hou Concentration: Low Date Extracted: 09/17/92
Lab Sample ID: A8972-1TMS Sample Matrix: WATER Date Analyzed: 09/17/92
Client Sample ID: DP-1-TCLP-MS Percent Moisture: 100.0 Dilution Factor: 1.0

TCLP VOLATILE COMPOUNDS

CAS Number		 ug/L%R	CAS Number	5	ug/L &R
75-01-4	Vinyl Chloride		79-01-6	Trichloroethene	49 98
75-35-4	1,1-Dichloroethene	 43 86	71-43-2	Benzene	49 93
67-66-3	Chloroform	 47 94	127-18-4	Tetrachloroethene	54 103
107-06-2	1,2-Dichloroethane	 48 96	108-90-7	Chlorobenzene	50 /00
78 -9 3-3	2-Butanone	 57 114			BAR
56-23-5	Carbon Tetrachloride .	 54 103			

The Lab ID for data on this page is A89721TVMS. Data not spike corrected.

INITIAL CALIBRATION DATA VOLATILE HSL COMPOUNDS

Case No:	STAND	Region:	Instrument ID:	150c
Contractor:	AnalytiKEM-Hou		Calibration Date:	09/15/92
Contract No:				

Min AVE RF for SPCC is 0.300 (1) Max %RSD for CCC is 30%

Laboratory ID	IC0915020C1		915100C1		915200C1	}		
		<u>091592C1</u>		915150C1				CCC*
Compound	RF(20)			RF(150)		AVE RF		SPCC**
Chloromethane		1.110	0.718	0.832	0.983	0.985	22.6	* *
Bromomethane	•	1.036	1.054	0.835	0.781	0.988	18.4	
Vinyl Chloride		0.985	0.953	0.912	0.895	0.998	14.2	•
Chloroethane		0.636		0.572		0.640	11.8	
Methylene Chloride		1.292		1.308		1.380	12.1	
Acetone				0.136	0.120	0.279	72.7	
Carbon Disulfide		1.164		2.579	2.284	1.959	33.5	
1,1-Dichloroethene		1.420		1.365	1.259	1.425	12.2	*
1,1-Dichloroethane			3.670	3.519	3.370	3.633	8.4	* *
trans-1,2-Dichloroethene				1.544	1.458	1.663	13.2	
Chloroform						4.353	10.1	*
1,2-Dichloroethane				2.945		3.140	9.9	
2-Butanone				0.017		0.026	49.1	
1,1,1-Trichloroethane .				0.660	0.598	0.694	10.9	
Carbon Tetrachloride		0.543	0.504	0.519	0.483	0.522	6.0	
Vinyl Acetate			0.129	0.120	0.087	0.090	40.2	
Bromodichloromethane	0.767	0.767	0.723	0.691	0.639	0.717	7.6	
1,2-Dichloropropane		0.433			0.403	0.439	7.6	*
cia-1,3-Dichloropropene	0.675	0.619	0.599	0.540	0.508	0.588	11.2	
Trichloroethene	0.467			0.366	0.357	0.394	11.0	
Dibromochloromethane	0.518	0.496	0.557	0.502	0.489	0.512	5.3	
1,1,2-Trichloroethane .	0.389	0.311	0.363	0.313	0.300	0.335	11.5	
Benzene	1.101	0.982	0.930	0.858	0.798	0.934	12.5	
Trans-1,3-Dichloropropen	e 0.612	0.522	0.532	0.487	0.462	0.523	10.9	
2-Chloroethylvinyl ether	0.259	0.062	0.276	0.252	0.246	0.219	40.4	
Bromoform	0.313	0.322	0.379	0.364	0.362	0.348	8.3	* *
4-Methyl-2-Pentanone	0.437	0.351	0.521	0.526	0.511	0.469	16.0	
2-Hexanone	0.376	0.363	0.314	0.313	0.293	0.332	10.8	
Tetrachloroethene	0.466	0.392	0.340	0.353	0.330	0.376	14.7	
1,1,2,2-Tetrachloroethan	e 0.709	0.647	0.696			0.654	8.0	* *
Toluene	0.907	0.831	0.760	0.752	0.677	0.785	11.1	*
Chlorobenzene	1.054	0.981	0.992	0.952	0.893	0.974	6.0	* *
Ethylbenzene	0.634	0.564	0.535	0.511	0.467	0.542	11.5	*
Styrene						0.921	13.7	
Xylene (total)						0.581	11.1	
Toluene-d8						1.372	1.3	
Bromofluorobenzene						0.989	3.5	
1,2-Dichloroethane-d4 .						2.984	6.2	
Benzene-d6	-					0.980	4.5	

Response Factor (number is the amount of ug/L)

AVE RF - Average Response Factor

*RSD - - Percent Relative Standard Deviation

CCC - - Calibration Check Compounds (*)

SPCC - - System Performance Check Compounds (**)

(1) - - Minimum AVE RF for Bromoform is 0.250

Form VI

Order # 92-09-118 09/16/92 13:54

Client: ANALYTIKEM

TEST PESULTS BY SAMPLE

Page 2

Sample: 01A A8972-1

Job: RE REACTIVITY

Collected: 09/03/92

•				<u>Detection</u>	<u>n Oate</u>	
Test Name	Method	Result	Units	<u>_imit</u>	Started	<u>Analyst</u>
REACTIVITY CYANIDE	SW-846 7 3.3	<0.40	ppm	0.40	09/14/92	JA
REACTIVITY SULFIDE	SW-846 7.3.4	245	ppm	20	09/14/92	SJ

Sample: 02A A8972-2

Job: RE REACTIVITY

Collected: 09/03/92

•				<u>Detectio</u>	<u>n Date</u>	
Test Name	<u>Method</u>	<u> Resuit</u>	Units	<u>Limit</u>	Started	Analyst
REACTIVITY CYANIDE	SW-846 7 3.3	<0.40	ppm	0.40	09/14/92	JA
REACTIVITY SULFIDE	SW-846 7 3.4	146	ppm	20	09/14/92	SJ

Sample: 03A A8972-3

Job: RE REACTIVITY

Collected: 09/03/92

_				<u>Detectio</u>	<u>n Date</u>	
Test Name	<u>Method</u>	Result	Units	Limit	Started	Analyst
REACTIVITY CYANIDE	\$W-846 7.3.3	<0.40	ppm		09/14/92	
REACTIVITY SULFIDE	SW-846 7 3.4	241	ppm	20	09/14/92	L2

SOUTHWESTERN LABORATORIES QUALITY CONTROL LOG

MDI.

PARAMETER SelfielmATRIX Linet ANALYST Plack DATE (1.1962 TIME 700) 11-14 4 RECOVERY 736/2 . _ MEASURED CONCENTRATION 7 (/5 ر-- j-#1 281-THEORETICAL CONCENTRATION 世でも十 9.3 - 0.9 10177 81- 20- 60- 26 STANDARDS 01/ BLANK 92 -05-08-14-54 LAB NUMBERS/SAMPLE ID NUMBERS IN THIS RUN: ABSORBANCE QUALITY CONTROL DUPLICATES AND SPIKES (1/) -METHOD OF ANALYSIS 376. CALIBRATION STANDARDS/BLANK 7 92-69-131-141 - 1251 -92.09 L.R. (r) =

TICAL A 100		S. RECOVER	
MPLE + THEORE	THEO.	CONC.	
D SAMPLE - SA	SAMPLE	CONC.	
LION: SPIKE	SPIKED SAMPLE	CONC.	
PERCENT RECOVERY CALCULATION; SPIKED SAMPLE - SAMPLE + THEORLTICAL A 100		RANGE ZPRECISION	
CENT REC		KANGE	
PER	DIL.	FACTOR	
	REPL.	CONC.	
	FIRST DIL.	FACTOR	
	FIRST	CONC.	
		1-SAMPLE 1D !	

	;	,			
S. RECOVERY			on a ferman and designation of the contract of		
CONC. CONC.					
j					
CONC.					
ACTOR RANGE TPRECISION CONC.	Q				
KANCE	/				
FACTOR					
CONC.	152				
FACTOR					
CONC.	153				
LAB 1-SAMPLE 1D 1 CONC. FACTOR CONC. FA	92.05-159-24 153				

SOUTHWESTERN LABORATORIES QUALITY CONTROL LOG

	SOUTHWESTERN LABO	LABORATORIES QUALITY CONTROL LOG	ALITY CONTR Seuscie	. 100 TO	1001
HETHUD OF ANALYSIS EP # 335,3 PARAMETER CALL MATRIX 120	335.3 PARAMETER	CN-W MATRIX	1/2 O ANAL	ANALYST The FLY DATE 14 SEPTIME OSCI	COSCULINE OSCO
CALIBRATION STANDARDS/BLANK	ABSORBANCE	STANDARDS	THEORETICAL	MEASURED CONCENTRATION	4 RECOVERY
5000 DS	3.25	BLANK			
6).05	9375	S.0 ES	500	\2\0\Z.	/0/
0.70	18.125		500	3//5	/c.x
0,50	8500				
L.R.(1) 99995					
LAB NUMBERS/SAMPLE ID NUMBERS IN THIS RUN:	S IN THIS RUN:				
CKN 92-09-059-1	1	118-623)	37-06.	1. 57-80-45:1-481-30-45: (Ex)-81-1:47-60-43:	7.33.1
45-08-158-6234		3013 1	4.8.00-30-13	(h	:
					-

QUALITY CONTROL DUPLICATES AND SPIKES

PERCENT RECOVERY CALCULATION; SPIKED SAMPLE SAMPLE & THEORITICAL & 1100

			,	:		
T RECOSER	/0/	752				
THEO.	-752	UST.				
SAMPLE CONC.	C	2				
SAMPLE CONC.	Ang	1621				
ZPRECISION						
KANGE	0	0				
DIL. FACTOR	75.89.4					
REPL.	4002	رد ه>				
DII FACTOR	12 5 5A1					
FIRST CONC.	(~)>	((0)				
FIRST LAB #-SAMPLE ID # CONC.	92-08-1592 Ken	(00> 4-45/-60-19				

ANALYTIKEM - HOUSTON SILVER QUALITY CONTROL LO EPA SW-846:7750, AA

DATE/TIME OF ANALY	rsis:215ep	92/135	0		PAGE	OF <u>3</u>
LAB NUMBER-		CO	MMENTS		CHECK STANDARDS	CONCENTRATION
SAMPLE	<u> </u>				SAMPLE BLAN	
A907 (12) A8931-	men	d bank	lank	Co AST	METHOD BLAN	
A9027-					ERAZ PESTO	1.012/1.0
(1-6) A9007A-LT	AQ027	معدا	<2 m	alko.	INTERNAL STE).
AB972- (IT-ST)				3		
A9021-1						
			-			
MATRIX			MS			
SPIKE LAB NUMBER-	PRECISION		LICATE	SPIKE	ACCURAC MS	Y MSD
SAMPLE	MS % REC.	MSD % REC.	% RPD	AMOUNT	RESULT % RE	
A9007-mB	107	_	_	0.1	0.107 107	
A9007-2	112	106	5.5	0.1	0.112 11	2 0.106 106
A8931-MB	115	_	-		0.115 11	
A9931-1	107	90	17.2	\ \	0.107 10	0.090 90
A9027-mB	86	_		0.2	0.172 80	
A 9027-6	88	90	2.2	*	0.176 8	8 0.179 90
A9007A-mB	88			0.1	0.088 8	
A 9007A-Extract SI	1 82				0.082 8	2
A 9007A-6T	72	V			0.072 7	2 1 1
A8972-NB	72				0.072	12
- Extracted	14 84				0.084 8	4
-17	85				0.085 8	5
-2T	87				0.087 8	37 4 4
CONTROL LIMITS:	AQUEOUS,	9-12	%RPD,	78-116 %	REC.	
	SOLIDS,	SAME	%RPD	SAME 9	6REC.	
	OUT OF	<u>3</u> _pu	PLICATE	ES WERE OUTS	SIDE OF QC LIMI	rs
0				COVERIES WEF	RE OUTSIDE OF	QC LIMITS
ANALYST: Buch	6 Salde	10 /c	me ?	QNOC: 🗘	pan ~	-HORAL

ANALYTIKEM - HOUSTON SILVER QUALITY CONTROL LO EPA SW-846:7750, AA

LAB NUMBER- SAMPLE		CO	MMENTS		CHECK	1	CONCENT FOUND/TI	
					SAMPLE E	1		
	 				METHOD	i		
					P.E. STD.			
	<u> </u>				INTERNA	L STD.		
				•				
MATRIX	<u></u>		MS					
SPIKE LAB NUMBER-	PRECISION	DU! MSD	PLICATE	COLLE	ACC!	JRACY	MSD	
SAMPLE	% REC.	MSD % REC.	% RPD	SPIKE AMOUNT		F REC.	RESULT	% REC.
+8972-3T	86		-	0.1	0.086	36	_	
A9021-mB	88	1	1	1	0.088		1	1
1-15068	87	91	4.5	→	0.087	87	0091	91
				<u> </u>				
		· · · · · · · · · · · · · · · · · · ·						
				!			İ	
								
						<u> </u>		
			 					
			1					
CONTROL LIMITS:	AOUEOUS	9_12	0% B B D	78_116 04	DEC.			
				78-116 % SAME: %				
_		CAME	70NFU,	SAME: %	meu.			
	_ OUT OF	<u>/</u>	PLICATE	S WERE OUTS	IDE OF QC	LIMITS		
	OUT OF	4		OVERIES WER				

AMALYTIKEK - HOUSTO ICAP QUALITY CONTROL LOG

X	
T-OG	

D2.00 - / -	IME: 2	4 SEPTS	12/085.	3	ZPA SW	-846:6	010			PAGE	1 07 3	
LAB I	D	A8972 CIT->3		150	A 4041- (L-210) A:	A 96	41- e) TT4	A9666-				
NOS	.				7		,,,,					
		<u> </u>										
PARAMI	ETER	As	Se	Zn	Pb	دلح	N;	Cr		Cu 11.00	Ba	
PE	ERA-3	1.08	9.08	1.00	1.00	1.00	0.544		1.00_	1.00	· /	
STDS												
10022	.110		1			<u> </u>						
48972- ms/msd		106	98		108	107		100			104	
%RPI)											
SPIKE	AMT.	2.0	2.0		1.0	0.1		0.2			2.0	
A 8972- MS/MSD		102	99		97	99		97			116	
%RPI	D											
SPIKE	AMT.	2.0	2.0		1.0	0.1		0.2			2.0	
A 8972 ks/ksd		96	97		76	100		93			78	
%RPI	Ď											
SPIKE	AMT.	2.0	2.0		1.0	0.1		0.2			2.0	<u> </u>
A8972- ms/msd	2T %REC	11/	96		77	80		78			80	
%RP	D			•								
SPIKE	AMT.	2.0	2.0		1.0	0.1		0.2			2.0	
CONTRO	L LIMI	TS:										
	S %RPD	,		1					<u> </u>			1
AQUEOU	, ,	•	1	-								1

ANALYST: James Wath Jum DA/QC: Je DEMC

ANAL TTIKEM - HOUSTON ICAP QUALITY CONTROL LOG

DATE/TIME: 2	4 SEPT 9	2/0853		EP' SW	T-846:6	010			PAGE ?) OF	3
	AS	<u>ا</u>	24	Pb	Cd	N;	Cr	Be	Cu	Ba	
18972-37		1									
48/MSD %REC	1/2	112		82	78		70			62	
%RPD					, ,						
SPIKE AMT.	2.0	2.0		1.0	0.1		0.2			2.0	
	2.0	12.			0 . ,		0.2		+		
A9021-MB MB/MBD &REC			88	88	90	88	86		99		
%RPD											
SPIKE AMT.			1.0	1.0	0.1	1.0	0.2		0.2		
A9021-1			88/	193/	88/	91/	88/		192/		
MS/MSD %REC			86	92	86	90	89		91		
%RPD			2.30	1.08	2.30	1.10	1.13		1.09		
SPIKE AMT.			1.0	1.0	0.1	1.0	0. 2		0.2		
19041-mB	-										
MS/MSD %REC			93	93	92	94	91		104	94	
%RPD											
SPIKE AMT.			1.0	1-0	0.1	1.0	0.2		0.2	2.0	
A9041-3			77/	79/	65.	84/	84/		*	85/	
MS/MSD %REC			88	83	72	88	89		/ *	85	
%RPD			13.33	4.94	10.22	4.65	5.78		2.43	D	
SPIKE AMT.			1.0	1.0	0.1	1.0	0.2		0.2	2.0	
A9041-MB											
MS/MSD %REC			89	91	87	88	120		104	94	
%RPD											
SPIKE AMT.			(-0	1.0	0.1	1.0	0.2		0.2	2.0	
ONTROL LIMIT	s:				-1						
1,RPD	Ţ	<u> </u>		T		T -	<u> </u>	T		T	
AQUEOUS ZREC											
SOLIDS VARE											
SOLIDS TREC	. 1	1	ł	l l	1	1	1	1	i	1	

ANALYST: Janus Mattins/JM QA/QC: Jeop McDey JM

INALYTIKEM - HOUSTON TOUCH QUALITY CONTROL LOG

DATE/TIME: 2	4 SEPT9	76 _Pb	Cal	EPA 65	9-346:6 Cr	010 13e	Cu	Ba	ъу. E 3	OF	ك
19041-10	84/	188/	87/	89/	* /	<u> </u>	92/	81			
13/MSD &REC	777	84	95	88	^*		92	82			
%RPD	8.70	4.65	8.79	1.13	0.66		0	1.23			
SPIKE AMT.	1.0	1.0	0.1	1.0	0.2		0.2	2.0			
19062-MB 18/MBD %REC		86			88		82				
%RPD											
SPIKE AMT.		1.0			0.2		0.2				
49062-1 IS/MSD %REC		81/			66/71		72/	·			
%RPD		0			7.30		2.74				
SPIKE AMT.		1.0			0.2		0.2				
MS/MSD %REC											
%RPD											
SPIKE AMT.											
IS/MSD %REC											
%RPD											
SPIKE AMT.											
IS/MSD %REC											
%RPD							 				
SPIKE AMT.											
NTROL LIMIT	s:									<u> </u>	<u> </u>
QUEOUS XRPD XREC.											
OLIDS ZRPD ZREC.									-		
COMMENTS:	OUT OUT	OF 23	DUP SPI	LICATE KE REC	S WERE	OUTSI S WERE	DE OF	QC LIM	ITS QC LIM	ITS	

Parameter , Nethxi of		Matrix: Soil atte/Time: 9-16-92/1740						
inb Numbers	l'altection Limits	Calibrat Stds./01				Check	Co	orcentivati.ion
	_			reorbance/(one.	Standards		Found/True
<u>A 9007-6</u>	l .					Sangile D.		L S' zu
A8972-12.	3					Method D.	lank	
						P.E. Std		[ç m
						Internal	std.	[7n
		Correla						
		Cocffic						
	_	Conment	:s: # *	Samples n duplin				
				sample				
		analy	red i	u duplie	eate			
								
		nkornal Om	1:1 01					
* Below MI	DL	nternal Qua.	Dity Con	mior party	cates arx	l Spikes		
Lab No Sample ID	Sample Conc.	Duplicate Conc.	lvinge	Percent	Spiked	Sample Result	Spike Added	l'ercent Recovery
A 9007-6						<u> </u>		
#A8972-1		<u> </u>			·	-		
110016	-				·	-		
					<u></u>			

Annivote Freluis

ANALYTIKEM - HOUST MERCURY QUALITY CONTROL LOG EPA SW-846:7470, 7471 AA

LAB NUMBER- SAMPLE		CO	MMENTS			CHECK STANDAR	1	CONCENT FOUND/TI	
-71-6P8A						SAMPLE E			
A 9007 A-6T						METHOD			•
A 9027-						EPA 109		0.0105	/2 . 610
1-6 A9002-1						P.E. STD.		0.0075	/o.∞15
		-				MIERNA	LSID.		76.001
		···		· · · · · · · · · · · · · · · · · · ·					
MATRIX	 		ıs						
	RECISION		PLICATE				JRACY	MSD	
LAB NUMBER- SAMPLE	MS % REC.	MSD % REC.	% RPD	SPIK. AMOU		MS RESULT	% REC.	RESULT	% REC.
A8972- extract bik	106	_	_	0.005		0.0053			
A2972-1T	98	-	_	1		0.0049	98		
74-61P8A	102	_	_]			0,0051	102		
A8972 -3T	98		1			0.0019	98		
A 9007A- CATIOCT	98	_	_			0.0079	98		
A9007A-6T	100		-			0.0050	100	<u> </u>	
A 4031-4	९ ४	98	0			c.co49	98	0.0049	819
A9003-1	90	90	0		1	0.0045	90	0.0045	90
METHOD BLANK	102	_	<u> </u>		Ψ	0.0051	102	<u> </u>	- -
		1					-		
CONTROL LIMITS: A	QUEOUS, OLIDS,								

AnalytiKEM LABORATORIES COUSTON
QUALITY CONTROL LOG- MATRIX SPIKE RECOVERY AND PRECISON

SW-846: METHOD 8 A8972

MATRIX: SOIL SAMPL A8972-1

COMPOU SPI	KE SAMPI DED RESUL	LE MS LT RESULT	REC% RE		QC C% RPD RPD	LIMITS REC%
DIESEL	250	34 299	i 106 :	446 10	05 : 39 20.0	0 . 20-150
Tanda	Miles 9	1/20/92	Brendal	Savile	9/5	30/12
ANALYST	DATE	,	QA/QC APPR	, OVAL	DAT	Ē

ANALYTIKEM LABORATORIES QUALITY CONTROL LOG-FORTIFIED BLANK AND METHOD BLANK TPH ANALYSIS LAB NO. A8972

BLANK EXTRACTION DATE:

9/15/92

NO TPH DETECTED AT STATED

METHOD DETECTION LIMIT

MB5243LS

FORTIFIED METHOD BLANK

FB5244LS

AMOUNT(MG/L) AMOUNT(MG/L) PERCENT SPIKED RECOVERY

250

290

116

COMMENTS:

ANALYST SIGNATURE DATE

DACC COORDINATOR DATE

ONVILLA COMMON TO

/Conc.

varameter: PH corracion en Salid

Mother of Analysis: EPA SW-846 9040

Page: _____ of ___

Matrix: Bigned Solid AB

Date/Time: 9-16-92/1620

Numbera	Datection Limits	Calibration Stds./Olk	Λυεοιμανία
A8972-123 A 9 007-6	0.01 unit	Buffer 10.00 4.00	Calib.
		Correlation Coefficient	
		Conments:	

Check Standards	Concentration Found/True
Sample Dlank	[fin
Method Blank	EZin
P.E. Std.	Ežui
Interpal Std.	7.04 units
cers Buffer 70	7.04 unts

		Internal	Quality	Control	Diplicates	arxi	Spikes
•	Below MDL				•		

Lab No Sample ID	Sample Conc.	Duplicate Conc.	lcange	lito Lercent	Spiked Result	Sample Result	Spilke Added	Percent Recovery
A8972 -	8.57	82.8	0.01	0.1				
A 9007-6	7.39	7.32	0.07	1.0				
	<u> </u>							

1.0 in

AnalytiKEM-Houston

Billing Summary 10/02/92 14:22

EXXON Project No.: 1 009-001-150				Lab Number: A8972				
	Test	Code	Description	Number	Cost	Total		
1.	Ag	TCL-HOU	TCLP SILVER	3	15.62	46.86		
2.	As	TCI-HOU	TCLP ARSENIC	3	15.62	46.86		
3.	BNA	HOU	SEMIVOLATILE ORGANICS	3	450.00	1350.00		
4.	Ba	TCL-HOU	TCLP BARIUM	3	15.62	46.86		
5.	CORR	-SHOU	CORROSIVITY ON SOLID	3	65.00	195.00		
	}		No Charge-Unable to Analyze	1 3	-65.00	-195.00		
6.	Cd	TCL-HOU	TCLP CADMIUM	3	15.62	46.86		
7.	Cr	TCL-HOU	TCLP CHROMIUM	3	15.63	46.89		
8.	FP	-SHOU	IGNITABILITY ON SOLID	3	35.00	105.00		
9.	H2S	-S-REA-SWL	HYDROGEN SULFIDE, REACTIVE/SLD	3	35.00	105.00		
10.	HCN	-S-REA-SWL	HYDROCYANIC ACID, REACTIVE/SLD	3	35.00	105.00		
11.	Hg	TCL-HOU	TCLP MERCURY	3	15.63	46.89		
12.	Pb	TCL-HOU	TCLP LEAD	3	15.63	46.89		
13.	Se	TCI-HOU	TCLP SELENIUM	3	15.63	46.89		
14.	TCLP	-SHOU	TOXICITY CHAR. LEACH. PROC.	3	100.00	300.00		
15.	TPH	-S-GC -HOU	PETROLEUM HYDROCARBON BY GC	3	100.00	300.00		
16.	AOV	HOU	VOLATILE ORGANIC ANALYSES	j 3	225.00	675.00		
17.	ZHE	-SHOU	ZERO HEADSPACE EXTRACTION/SLD	3	150.00	450.00		
18.	рĦ	-S-COR-HOU	PH CORROSION ON SOLID	3	10.00	30.00		
19.	1		Sample Disposal Charge	İ	\$	6.50 32		
	Tota	al:				3827.50		

ENSR Consulting and Engineering 3000 Richmond Avenue Houston, Texas 77098 (713) 520-9900 (713) 520-6802 (FAX)

Mr. Roger C. Anderson Bureau Chief Environmental Bureau Oil Conservation Division Land Office Building, State of New Mexico P.O. Box 2088 Santa Fe, New Mexico 87504-2088

Re:

Waste Classification of Contaminated Soils from the former Exxon Chemical Company Facility at 2607/2609 West Marland Boulevard and Exxon Chemical Company Facility at 1715 Dal Paso, Hobbs, New Mexico

Dear Mr. Anderson:

As discussed in our meeting on July 31, 1992 you requested that a waste classification of the contaminated soils be made prior to submittal of a work plan to the OCD for a removal action. ENSR collected samples from both sites on September 3, 1992 in the areas of concern, as discussed in our meeting. Therefore, the purpose of this letter is to notify the New Mexico Oil Conservation Division (OCD) that contaminated soils from the Exxon Chemical facilities, referenced above, should be classified as non-hazardous for disposal purposes based on the attached analytical data.

Samples, DP-1 from the Dal Paso site and MR-1 from the Marland site, were collected from trenches through areas of known hydrocarbon and/or lead soil contamination. These contaminated areas had been identified through previous sampling conducted by ENSR in January 1992. Sample DP-2 was collected from the Dal Paso site in a trench at the base of the collapsed septic tank, as you requested. The soil surrounding the septic tank was suspected to have contained oily wastes prior to its being taken out of service in 1984. As shown by the attached analytical data, as well as past analytical data, the soils from the septic tank area do not appear to be contaminated with metals or hydrocarbons and therefore will not be addressed in the work plan for a removal action.

All three samples were collected as composite samples, as requested. Each was composited from at least five sample points within the known or suspected contaminated soil areas.

We expect to submit work plans to your offices by December 23, 1992 for your approval. After obtaining OCD approval ENSR expects to begin field work within 30 days, weather permitting.

ENSR is currently considering disposal of the contaminated soils at the CRI landfill near Hobbs. ENSR will request OCD authorization for disposal when the work plan is submitted.

ENSR

November 18, 1992 Mr. Roger C. Anderson Page 2

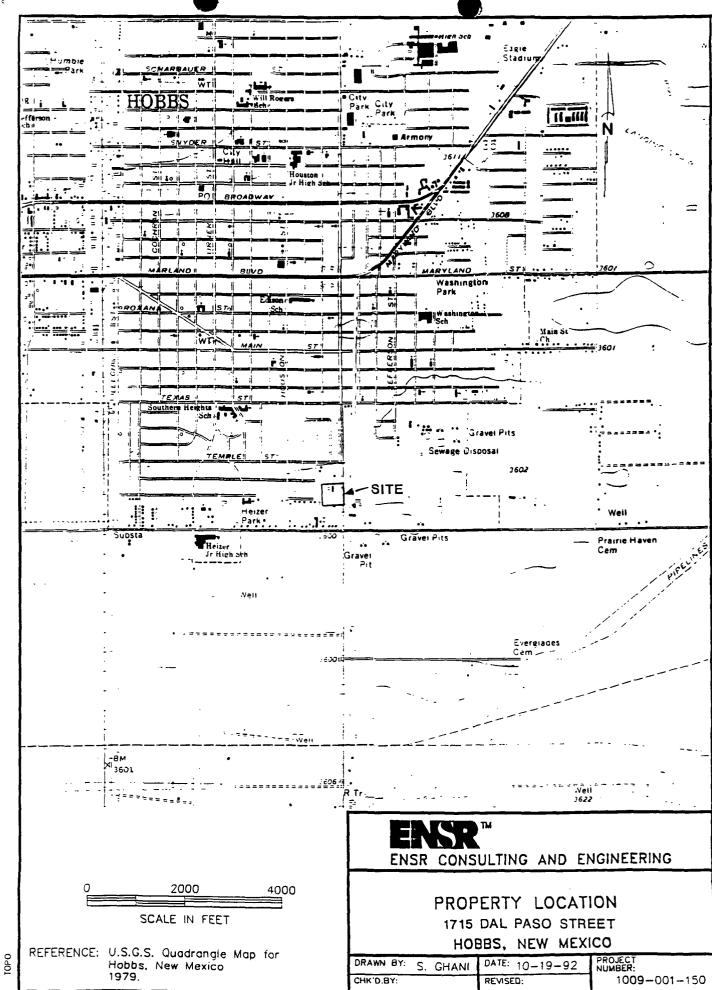
If you have any questions or comments please contact me at (713) 520-9900.

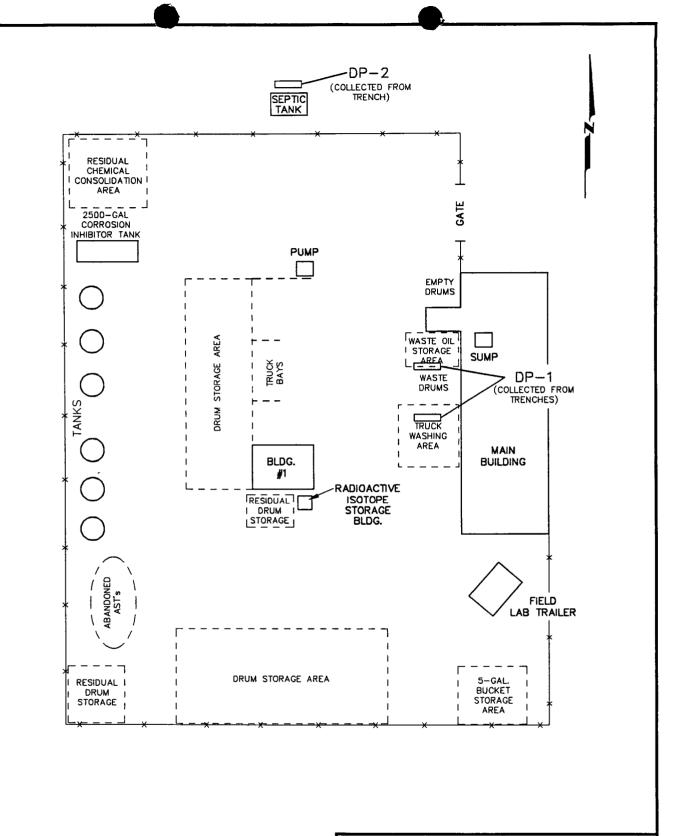
Jay Swindle

Project Manager

Sincerely,

J. Scott Kuykendall Staff Geologist


JSK:JS/db


Attachments

Reference No. 1009-001-150

J. Som Kykulel

cc: Brown McCarroll and Oaks Hartline

ENSR CONSULTING & ENGINEERING

SITE PLOT PLAN
WITH SAMPLE LOCATIONS
1715 DAL PASO STREET
HOBBS, NEW MEXICO

DRAWN: SJF/SG DATE: 11-12-92 PROJECT NUMBER: 1009-001-150

NOT TO SCALE

Summary of Analytical Results Exxon Chemical Company Facility 1715 Dal Paso Street Hobbs, New Mexico Date Sampled: 9-3-92

Analytical Parameters	Regulatory Threshold Limit	Sample II Depth:		Sample I Depth	D: DP-2 : 6'-8'
TCLP Metals (mg/l)		Level Detected	Detection Limit	Level Detected	Detection Limit
Arsenic	5.0	<0.2	0.2	<0.2	0.2
Barium	100.0	1.2	0.5	1.2	0.5
Cadmium	1.0	<0.010	0.010	<0.010	0.010
Chromium	5.0	< 0.05	0.05	< 0.05	0.05
Lead	5.0	0.1	0.02	0.02	0.02
Mercury	0.2	<0.001	0.001	< 0.001	0.001
Selenium	1.0	<0.2	0.2	<0.2	0.2
Silver	5.0	<0.01	0.01	< 0.01	0.01
TCLP Volatiles (μg/l)					
Pyridine	5,000	<13	13	<10	10
Vinyl Chloride	200	<10	10	<10	10
1,1-Dichloroethene	700	<5	5	<5	5
Chloroform	6,000	<5	5	<5	5
1,2-Dichloroethane	500	<5	5	<5	5
Methyl Ethyl Ketone	200,000	<10	10	<10	10
Carbon Tetrachloride	500	<5	5	<5	5
Trichloroethene	500	<5	5	<5	5
Benzene	500	<5	5	<5	5
Tetrachloroethene	700	<5	5	<5	5
Chlorobenzene	100,000	<5	5	<5	5
TCLP Semivolatiles (μg/l)		Level Detected	Detection Limit	Level Detected	Detection Limit
1,4-Dichlorobenzene	7,500	<13	13	<10	10
2-Methylphenol	200,000	<13	13	<10	10
4-Methylphenol	200,000	<13	13	<10	10
3-Methylphenol	200,000	<13	13	<10	10

Summary of Analytical Results Exxon Chemical Company Facility 1715 Dal Paso Street Hobbs, New Mexico Date Sampled: 9-3-92

Analytical Parameters): DP-1 0'-2'	Sample ID: DP-2 Depth: 6'-8'		
Hexachloroethane	3,000	<13	13	<10	10	
Nitrobenzene	2,000	<13	13	<10	10	
Hexachlorobuta- diene	500	<13	13	<10	10	
2,4,6-Trichlorophenol	2,000	<13	13	<10	10	
2,4,5-Trichlorophenol	400,000	<66	66	<50	50	
2,4-Dinitrotoluene	130	<13	13	<10	10	
Hexachlorobenzene	130	<13	13	<10	10	
Pentachlorophenol	100,000	<66	66	<50	50	
RCRA Characteristics						
pН	2 <ph<12.5< td=""><td>8.57 units</td><td>0.01 units</td><td>8.13 units</td><td>0.01 units</td></ph<12.5<>	8.57 units	0.01 units	8.13 units	0.01 units	
Corrosivity	>6.35 MMPY	Unable to analyze due to matrix		Unable to analyze due to matrix		
Ignitability	<140°F	Unable to analyze due to matrix		Unable to analyze due to matrix		
Reactivity - HCN - H ₂ S	250 mg/kg 500 mg/kg	<0.40 mg/kg 245 mg/kg	0.40 mg/kg 20 mg/kg	<0.40 mg/kg 146 mg/kg	0.40 mg/kg 20 mg/kg	

A Registered Limited Liability Partnership Including Professional Corporations

300 Crescent Court Suite 1400 Dallas, Texas 75201-6929 (214) 999-6100 Fax (214) 999-6170 1400 Franklin Plaza 111 Congress Avenue Austin, Texas 78701-4043 (512) 472-5456 Fax (512) 479-1101 1300 Wortham Tower 2727 Allen Parkway Houston, Texas 77019-2100 (713) 529-3110 Fax (713) 529-4639

November 12, 1992

Writer's Direct Number:

(512) 479-9752

RECEIVED

NOV 1 3 1992

Mr. Carl Baldwin
County Commissioner
Lee County Courthouse
Lovington, New Mexico 88240

OIL CONSERVATION DIV

VIA FEDERAL EXPRESS

poli, New Mexico 88240

Re: Cleanup of Facilities Owned or Formerly Operated by Exxon Corporation

Dear Mr. Baldwin:

As we discussed on Tuesday, November 10, 1992, Exxon Chemical Company, a division of Exxon Corporation, (Exxon) is working with the New Mexico Oil Conservation Division (OCD) to conduct a cleanup of two properties that were owned or operated by Exxon in the City of Hobbs. The purpose of this letter is to (1) briefly review the history of the sites; (2) briefly describe the proposed cleanup plan; and (3) advise you of an opportunity to review and comment on the proposed plans.

The first property is located at 1715 Dal Paso Street in the City of Hobbs (see enclosed maps). Exxon acquired the property in 1987 from NL Industries, Inc. (NLI). The property is currently used as office space only. When Exxon first acquired the property in 1987, it used the facility to store and distribute oil field chemicals. NLI also used the property for storing and distributing oil field chemicals. Dry chemicals were stored inside the buildings on the site; liquid chemicals were stored in above-ground tanks and drums in the yard area. The chemicals were used for the maintenance of oil wells and included paraffin solvents, corrosion inhibitors, scale inhibitors, emulsion breakers, desalting compounds, microbiocides, surfactants, defoamers, and water clarifiers. Soils at the facility became contaminated as a result of periodic product spills and leaks over many years of facility usage.

The second property is located at 2607/2609 West Marland Street in the City of Hobbs (see enclosed maps). It is currently owned by Electro-Support Systems, Inc. Exxon acquired the lease to the property from NLI in 1987 and terminated the lease in 1989. During the period of Exxon's operations, the facility was used for the storage and distribution of oil field chemicals similar to those described above. The products were

Mr. Carl Baldwin November 12, 1992 Page 2

stored in above-ground tanks and drums in the yard area. Soils at this site are also contaminated with constituents from the oil field products.

As required by the laws of the State of New Mexico, Exxon notified the OCD regarding the contaminated soils at the properties and have been working with that agency to develop appropriate cleanup plans. Toward that end, Exxon has prepared an Engineering Evaluation/Cost Analysis, which discusses several cleanup alternatives. A copy of the Engineering Evaluation/Cost Analysis for each site is enclosed. To allow public participation in the remedy selection process, Exxon intends to publish a notice in the Hobbs News Sun on November 16, 1992. Exxon hereby invites the County to review these documents and to call me or Mr. J. Paul Reed, Exxon's Environmental Coordinator, at (713) 671-8676 for more information.

Very truly yours,

Patricia E. Carls

I:\PS\CARLST\140995.1 13232.68180

Enclosures

cc:

(via Federal Express)

R. Anderson, OCD

R. Littleton, County Commissioner

B. Goff, County Commissioner

M. Hughes, County Commissioner

I. Azisky, County Commissioner

S. Vincent, County Commissioner

A Registered Limited Liability Partnership Including Professional Corporations

300 Crescent Court Suite 1400 Dallas, Texas 75201-6929 (214) 999-6100 Fax (214) 999-6170 1400 Franklin Plaza 111 Congress Avenue Austin, Texas 78701-4043 (512) 472-5456 Fax (512) 479-1101 1300 Wortham Tower 2727 Allen Parkway Houston, Texas 77019-2100 (713) 529-3110 Fax (713) 529-4639

November 12, 1992

Writer's Direct Number:

(512) 479-9752

RECEIVED

Mr. Robert Løve

Mayor

City of Hobbs

City Hall

300 North Turner

Høbbs, New Mexico 88240

NOV 1 3 1992

OIL CONSERVATION DIV.

VIA FEDERAL EXPRESS

Re:

Cleanup of Facilities Owned or Formerly Operated by Exxon Corporation

Dear Mr. Love:

As we discussed on Tuesday, November 10, 1992, Exxon Chemical Company, a division of Exxon Corporation, (Exxon) is working with the New Mexico Oil Conservation Division (OCD) to conduct a cleanup of two properties that were owned or operated by Exxon in the City of Hobbs. The purpose of this letter is to (1) briefly review the history of the sites; (2) briefly describe the proposed cleanup plan; and (3) advise you of an opportunity to review and comment on the proposed plans.

The first property is located at 1715 Dal Paso Street in the City of Hobbs (see enclosed maps). Exxon acquired the property in 1987 from NL Industries, Inc. (NLI). The property is currently used as office space only. When Exxon first acquired the property in 1987, it used the facility to store and distribute oil field chemicals. NLI also used the property for storing and distributing oil field chemicals. Dry chemicals were stored inside the buildings on the site; liquid chemicals were stored in above-ground tanks and drums in the yard area. The chemicals were used for the maintenance of oil wells and included paraffin solvents, corrosion inhibitors, scale inhibitors, emulsion breakers, desalting compounds, microbiocides, surfactants, defoamers, and water clarifiers. Soils at the facility became contaminated as a result of periodic product spills and leaks over many years of facility usage.

The second property is located at 2607/2609 West Marland Street in the City of Hobbs (see enclosed maps). It is currently owned by Electro-Support Systems, Inc. Exxon acquired the lease to the property from NLI in 1987 and terminated the lease in 1989. During the period of Exxon's operations, the facility was used for the storage and

Mr. Robert Love November 12, 1992 Page 2

distribution of oil field chemicals similar to those described above. The products were stored in above-ground tanks and drums in the yard area. Soils at this site are also contaminated with constituents from the oil field products.

As required by the laws of the State of New Mexico, Exxon notified the OCD regarding the contaminated soils at the properties and have been working with that agency to develop appropriate cleanup plans. Toward that end, Exxon has prepared an Engineering Evaluation/Cost Analysis, which discusses several cleanup alternatives. A copy of the Engineering Evaluation/Cost Analysis for each site is enclosed. To allow public participation in the remedy selection process, Exxon intends to publish a notice in the Hobbs News Sun on November 16, 1992. Exxon hereby invites the City to review these documents and to call me or Mr. J. Paul Reed, Exxon's Environmental Coordinator, at (713) 671-8676 for more information.

Very truly yours,

Patricia E. Carls

I:\PS\CARLST\140966.1 13232.68180

Enclosures

cc:

(via Federal Express)
R. Gallagher, City Manager
R. Doss, City Engineer
M. Gray, Fire Chief
K. Anderson, OCD

A Registered Limited Liability Partnership Including Professional Corporations

300 Crescent Court Suite 1400 Dallas, Texas 75201-6929 (214) 999-6100 Fax (214) 999-6170 1400 Franklin Plaza 111 Congress Avenue Austin, Texas 78701-4043 (512) 472-5456 Fax (512) 479-1101 1300 Wortham Tower 2727 Allen Parkway Houston, Texas 77019-2100 (713) 529-3110 Fax (713) 529-4639

November 12, 1992

Writer's Direct Number:

(512) 479-9752

RECEIVED

NOV 1 3 1992

Ms. Cris Adams
Hobbs Public Library
509 North Shipp
Hobbs, New Mexico 88240

OIL CONSERVATION DIV SANTA FE

VIA FEDERAL EXPRESS

Re:

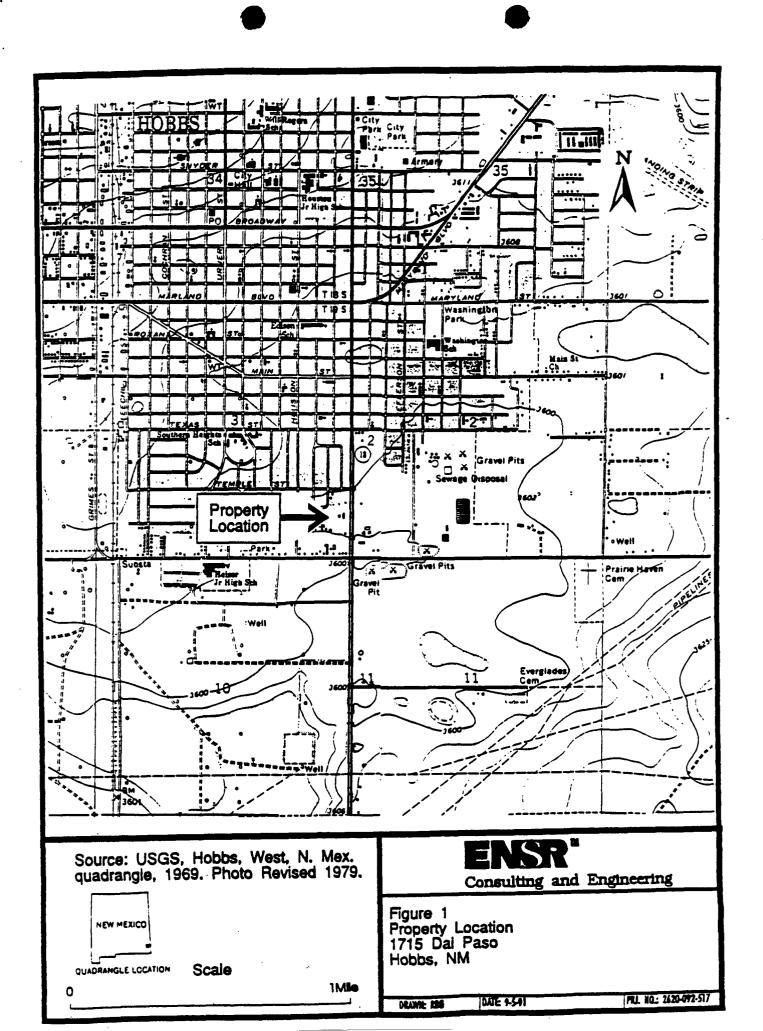
Exxon Chemical Company; Public Document Repository

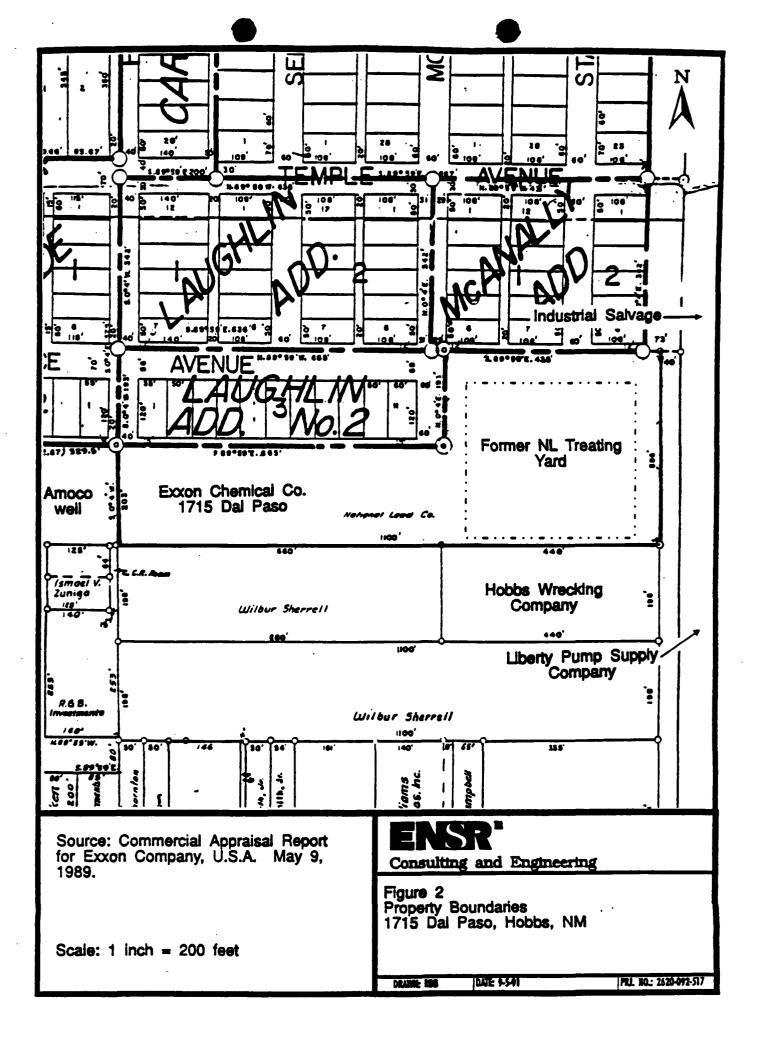
Dear Ms. Adams:

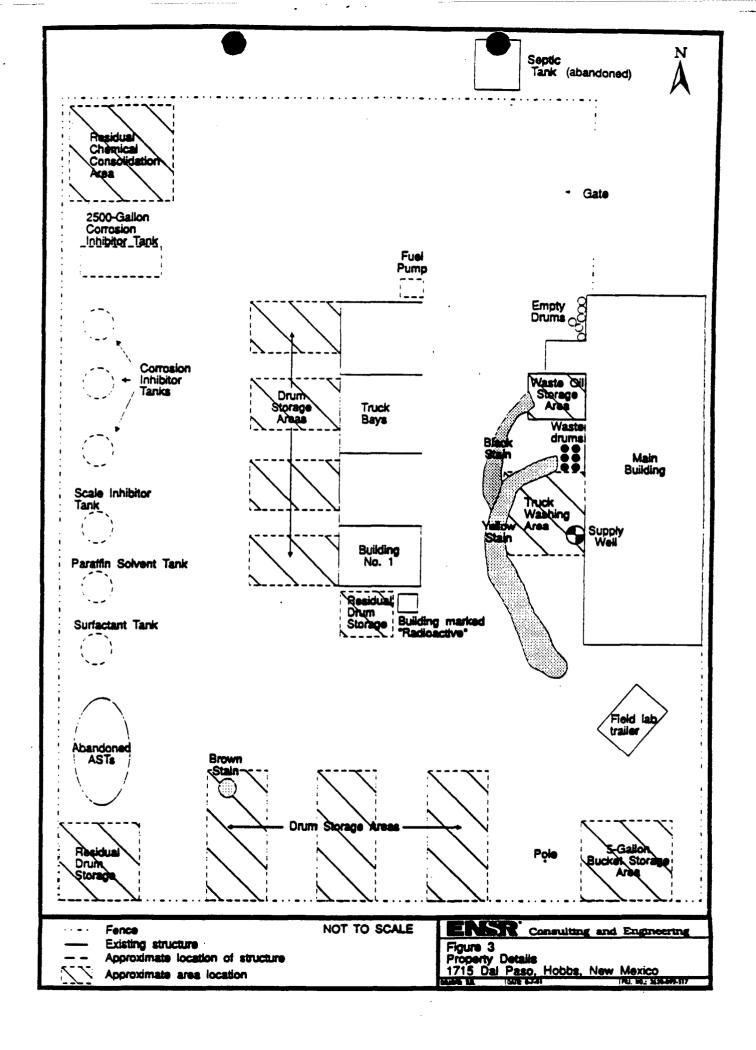
As we discussed last week, I am the attorney for Exxon Chemical Company, a division of Exxon Corporation (Exxon), on an environmental matter involving property located in the City of Hobbs. Federal law requires Exxon to make certain documents available for public review for a period of thirty days. Accordingly, I am enclosing one copy of each of the following documents: Engineering Evaluation/Cost Analysis (Dal Paso Street); Engineering Evaluation/Cost Analysis (West Marland Street).

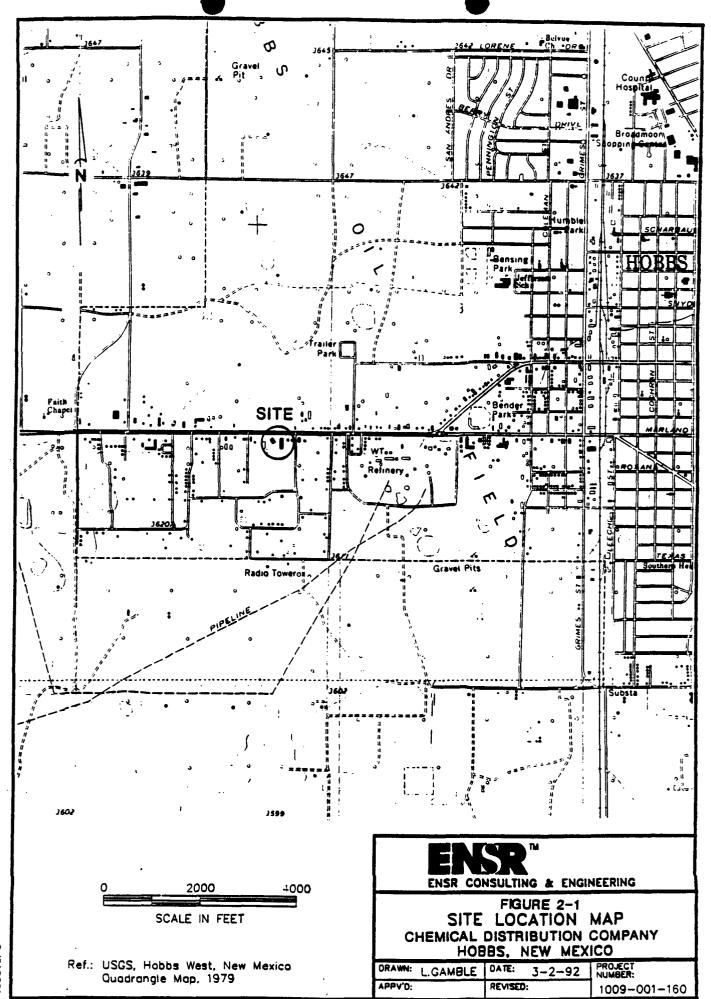
These documents must be made available for public review from November 16, 1992 through December 16, 1992. I understand that you and your staff can accommodate Exxon's needs by making the documents available at the Reference Desk.

Thank you for your cooperation and assistance in this matter. Please feel free to call me collect if you have any questions or need additional information.


Very truly yours,


Patricia E. Carls


I:\PS\CARLST\141360.1 13232.68180


Enclosure

cc: VR. Anderson, OCD (via Federal Express)

00910P0

UNDEVELOPED LAND RAVEN PUMP CO. PROPERTY WEST MARLAND BOULEVARD MAIN BUILDING FORMER GATE 5 GALLON BUCKET STORAGE AREA SEPTIC TANK FORMER BLDG. DIESEL NO. 1 TANK FORMER 750 GALLON **ASTs** DRAINAGE DITCH FORMER TRUCK PARKING AREA LEAMCO-RUTHCO WRIGHT-DALCO PROPERTY PROPERTY FORMER DRUM STORAGE AREAS FORMER EMPTY DRUM STORAGE AREA **AMOCO** PROPERTY NOT TO SCALE LEGEND EXISTING STRUCTURE ENSR CONSULTING & ENGINEERING FIGURE 2-2 FENCE SITE PLOT PLAN CHEMICAL DISTRIBUTION COMPANY . GAS PIPELINE HOBBS, NEW MEXICO DRAWN: L.GAMBLE DATE: PROJECT NUMBER: 3-2-92 APPV'D: REVISED: 1009-001-160

CF100907

BROWN McCARROLL & OAKS HARTLINE CONSER.

Attorneys

ONOCEL MA

N DIVISION

RED: ZED

A Registered Limited Liability Partnership Including Professional Corporations

'92 NOT 13 AM 8 45

300 Crescent Court Suite 1400 Dallas, Texas 75201-6929 (214) 999-6100 Fax (214) 999-6170 1400 Franklin Plaza 111 Congress Avenue Austin, Texas 78701-4043 (512) 472-5456 Fax (512) 479-1101 1300 Wortham Tower 2727 Allen Parkway Houston, Texas 77019-2100 (713) 529-3110 Fax (713) 529-4639

November 10, 1992

Writer's Direct Number:

(512) 479-9752

Hobbs News Sun 201 North Thort Hobbs, New Mexico 88240

RECEIV 3 1992

VIA FEDERAL EXPRESS
(Standard Overnight)

Atta: Marcella Joyce

Re: Public Notice

OIL CONSERVA

Dear Ms. Joyce:

Enclosed is a Public Notice item to be published in the Monday, November 16, 1992 edition of the <u>Hobbs News Sun</u>. Because this is a legal notice, I will need a Publisher's Affidavit confirming that the notice was indeed published on November 16, 1992. The affidavit should include a clipping of the notice as it appeared in the newspaper. Please send any bill for this service to me at the above address.

Thank you for your cooperation in this matter. Please feel free to call me if you have any questions or need additional information.

Very truly yours,

Patricia E. Carls

I:\PS\CARLST\141365.1 13232.68180

Enclosure

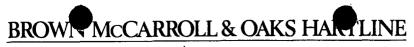
cc: R. Anderson, OCD

NOTICE

Exxon Chemical Company, a division of Exxon Corporation ("Exxon") plans to conduct Removal Action Activities at two sites located in the City of Hobbs. The sites are located at 1765 Dal Paso Street, and at 2607/2609 West Marland Boulevard. An Engineering Evaluation/Cost Analysis has been prepared. This document is available for review at:

Hobbs Public Library 509 North Shipp Hobbs, New Mexico 88240.

The soils at the two properties are contaminated with constituents from chemicals used in oil field production and drilling that were spilled or leaked onto the ground. Exxon intends to (1) remove the contaminated soils as per State requirements; (2) dispose of the soils on an authorized off-site landfill; and (3) backfill the property with clean soil from an off-site source.


Written comments on the Engineering Evaluation/Cost Analysis may be submitted on or before December 16, 1992 to:

Mr. J. Paul Reed Environmental Coordinator Exxon Chemical Company 8230 Stedman Houston, Texas 77029.

141005.1 13232.68180 participants Rosen Ambrem Sill Olson Chris Entire Kerth Hopson - Brown, McCarrol & Dales Harthin Patricia Cards - 11 11 Jay, Swingle - ENSR Vint Reed - Exxon P.K. Denin site mentisotin coport \$2 sites in Hobbi J.S. Dite Del Paso south of Holhs on Emine Huy These I I muestigation Metals (totals) above TC levels (ced to
1) charle for TCLP on metals at sixtace
2) charle 11, 11, 11 " septic tank prior to closure Exxon will submit work plan for remarkation 2.) West Merland site

7/31/92 Exxon Holls Clemore / Faility 9:30am

ン

A Registered Limited Liability Partnership Including Professional Corporations

300 Crescent Court Suite 1400 Dallas, Texas 75201-6929 (214) 999-6100 Fax (214) 999-6170 1400 Franklin Plaza 111 Congress Avenue Austin, Texas 78701-4043 (512) 472-5456 Fax (512) 479-1101 1300 Wortham Tower 2727 Allen Parkway Houston, Texas 77019-2100 (713) 529-3110 Fax (713) 529-4639

July 2, 1992

Writer's Direct Number:

(512) 479-9752

RECEIVED

Mr. Roger Anderson
Energy, Minerals & Natural
Resources Department
Oil Conservation Division
P.O. Box 2088
Santa Fe, New Mexico 87504-2088

JUL 0 7 1992 OIL CONSERVATION DIV. SANTA FE

Re: Exxon Chemical Company Sites in Hobbs, New Mexico

Dear Mr. Anderson:

Thank you for taking the time on Tuesday, June 30, 1992 to discuss the referenced matter. As I mentioned, Exxon Chemical Company (Exxon) has completed Phase I and Phase II environmental audits of two oil field service satellite facilities in Hobbs, New Mexico. As is detailed in the enclosed reports, the contaminated soils discovered at these sites may require remediation. Therefore, we would like to meet with you at 9:30 a.m. on Friday, July 31, 1992 to discuss this matter.

The enclosed reports describe the sites' current use, former uses, and present condition. In brief, Exxon acquired the sites in Hobbs from NL Industries, Inc. in November 1987. Exxon took title to the site on Dal Paso Street and assumed the lease to the site on West Marland Street. The Dal Paso Street site is still an active facility. However, the lease on the West Marland Street has been terminated. The property on Dal Paso Street was used by Exxon and NL Industries, Inc. for storing and distributing oil field chemicals. The chemicals were stored in drums and in above-ground storage tanks. The property on West Marland Street was used by Exxon and NL Industries, Inc. primarily for office space, but the yard area may have been used intermittently for chemical storage. Exxon and NL Industries, Inc. are currently discussing certain issues relating to the cleanup of these properties.

The meeting on July 31, 1992 will be attended by a representative of Exxon Chemical Company, Paul Reed; a representative of ENSR Consulting and Engineering, Jay Swindle; myself and Keith Hopson from this firm; and perhaps representatives from NL Industries, Inc. Now that site data has been developed, we need to explore what may

Mr. Roger Anderson July 2, 1992 Page 2

be necessary. We would appreciate the agency's input on appropriate action and cleanup levels as well as other aspects possibly involved in such a project.

We look forward to meeting with you on Friday, July 31, 1992. In the meantime, please do not hesitate to call if you have any questions or need additional information.

Very truly yours,

Patricia E. Carls

I:\PS\CARLST\117347.1 13232.68180

Enclosures

icc:

K. Hopson

S. Oaks

IN DIVISION REGE 170

A Registered Limited Liability Partnership Including Professional Corporations

92 SEP 74

300 Crescent Court Suite 1400 Dallas, Texas 75201-6929 (214)999-6100 Fax (214) 999-6170

1400 Franklin Plaza 111 Congress Avenue Austin, Texas 78701-4043 (512) 472-5456 Fax (512) 479-1101

81300 Wortham Tower 2727 Allen Parkway Houston, Texas 77019-2100 (713) 529-3110 Fax (713) 529-4639

September 9, 1992

Writer's Direct Number:

(512) 479-9752

Mr. Roger C. Anderson Chief, Environmental Bureau Oil Conversation Division State of New Mexico Energy, Minerals & Natural Resources Department P. O. Box 2088 Land Office Building Santa Fe, New Mexico 87504-2088

Cleanup of Properties in Hobbs, New Mexico by Exxon Corporation

Dear Mr. Anderson:

On behalf of Exxon Corporation (Exxon), I would like to express our thanks to you and your staff for taking the time to meet with us on July 31, 1992 to discuss the cleanup of two sites owned or formerly operated by Exxon. The sites are on Marland Street and Dal Paso Street in Hobbs, New Mexico.

As required by Rule 1-203 of the New Mexico Water Quality Control Commission Regulations, Exxon notified the Oil Conservation Division of discharges at the facilities in Hobbs. As is detailed in the environmental site assessment reports for each of the facilities, Exxon has discovered evidence of soil contamination at the two facilities. Because the Oil Conservation Division does not have jurisdiction over hazardous waste, you requested that Exxon collect in situ representative samples of the contaminated soils at both sites and analyze the samples according to the Toxicity Characteristic Leaching Procedure (TCLP) to verify that the contaminant levels are not greater than the hazardous waste toxicity characteristic levels set forth at 40 C.F.R. § 261.24. Such sampling was conducted on Thursday, September 3, 1992.

We also understood from our meeting that, if the sampling results confirm that no hazardous waste is present at both sites, Exxon must submit brief workplans describing the proposed cleanup activities for your review and approval. We also understood that the cleanup work at the sites would be governed primarily by Rule 1-203 of the New Mexico Water Quality Control Commission Regulations, as well as the October 29, 1991 Guidelines

Mr. Roger C. Anderson September 9, 1992 Page 2

for Surface Impoundment Closures (the "Guidelines"). However, we also understood that the agency may use its discretion in interpreting and enforcing the Guidelines. We also understand that submission of the workplans coupled with our July 31, 1992 meeting constitutes compliance with any applicable State notification requirements.

We expect the TCLP sampling results to be available in October 1992. If the sampling results confirm that no hazardous wastes are present at the sites, we intend to prepare workplans for your review and approval. We anticipate that such workplans will be submitted prior to the end of 1992. Upon completion of the OCD-approved workplans, a final report confirming completion of the workplan will be submitted to your Agency.

Please let me know if I have inadvertently misstated our understanding or if you have any questions or need additional information. We look forward to working with you on these projects.

Very truly yours,

Patricia E. Carls

I:\PS\CARLST\128756.1

cc:

- D. Sigman
- P. Reed
- J. Smith
- J. Young