

REPORTS

DATE: 11/93-PH15ETT

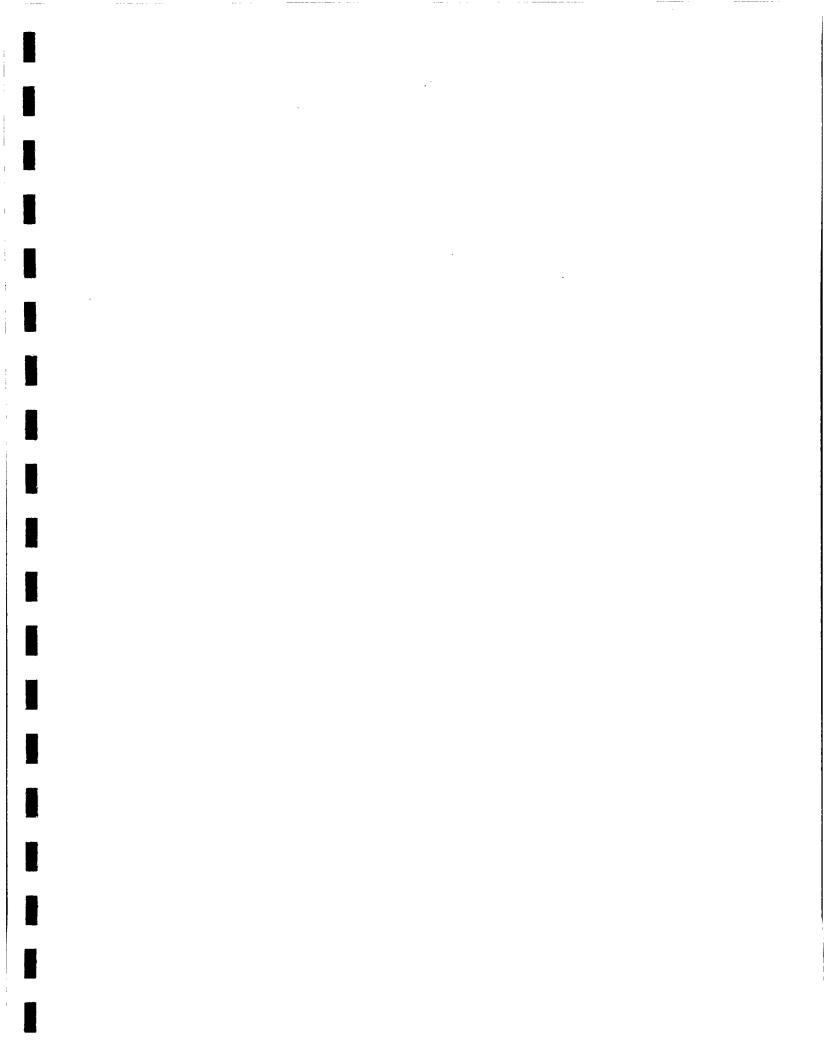
Brown McCarroll & Oaks Hartline

Austin, Texas

Phase III Removal ActionReportExxon Chemical CompanyFacility1715 Dal Paso StreetHobbs, New Mexico

ENSR Consulting and Engineering

November 1993


5

Document Number 1009-005-111

RECEIVED

NOV 1 5 1993

OIL CONSERVATION DIV SANTA FE

Brown McCarroll & Oaks Hartline Austin, Texas

Phase III Removal Action Report Exxon Chemical Company Facility 1715 Dal Paso Street Hobbs, New Mexico

ENSR Consulting and Engineering

November 1993

Document Number 1009-005-111

CONTENTS

EXE	CUTI	VE SUM	MARY E-1
1.0	INTF	RODUCT	TION
2.0	FAC		ACKGROUND
	2.1	Previou	is Investigations
3.0	FIEL		/ITIES
	3.1	Program	m Objectives
	3.2	Remov	al Action Activities
		3.2.1	Excavation and Sampling in Impacted Areas
			3.2.1.1 Main Building Area Excavation
			3.2.1.2 Septic Tank Area Excavation 3-4
		3.2.2	Storage of Excavated Soils 3-6
		3.2.3	Sampling and Disposal of Excavated Soils
		3.2.4	Main Building Sump
		3.2.5	Restoration of the Yard Area 3-7
4.0	FIEL	D AND	LABORATORY QA/QC CONTROL 4-1
	4.1	Sample	e Handling and Preservation Methods 4-1
	4.2	Decont	amination of Sampling Equipment 4-1
	4.3	Chain-c	of-Custody Control and Record Keeping Procedures
	4.4	Field Q	A/QC Sampling
	4.5	Labora	tory QA/QC Methods 4-2
5.0	ANA	LYTICA	L RESULTS
	5.1	Analytic	cal Data
	5.2	Summa	arized Analytical Results 5-1

APPENDIX

Í

/

Analytical Data Packages

LIST OF TABLES

Analytical Results for Verification Soil Samples	5-3
Analytical Results of Sample of Contaminated Caliche in Floor of Septic Tank -	
2	5-5
Analytical Results of Waste Classification Sample from Contents of Septic	
Tank - 2	5-6
Analytical Results of In-situ Waste Classification Samples	5-7
Analytical Results of Waste Classification Sample of Sump Liquid	5-8
	2

1009R005.03

LIST OF FIGURES

2-1	Site Location	2-2
2-2	Property Boundaries	2-3
2-3	Fenced Yard Area Site Plot Plan	2-4
3-1	Verification Sample Locations	3-3

EXECUTIVE SUMMARY

ENSR Consulting and Engineering (ENSR) and its subcontractor, Forklift Enterprises, Inc., performed a Removal Action at the Exxon Chemical Company (Exxon) facility located at 1715 Dal Paso Street in Hobbs, New Mexico in July and August 1993. The objective of the Removal Action was to remove hydrocarbon contaminated soils noted during previous investigations.

ENSR conducted a Phase I Preliminary Assessment of the Dal Paso facility in August 1991. As a result of the Phase I findings, ENSR conducted a Phase II Site Inspection in January 1992. The objectives of the Site Inspection were to :

- identify the presence and nature of known or suspected contamination in areas identified during the Phase I Preliminary Assessment, and
- delineate the horizontal and vertical extent of contamination that may require removal.

The analytical results of soil samples collected during the Site Inspection revealed one area within the facility yard with Total Petroleum Hydrocarbon (TPH) concentrations exceeding the State of New Mexico action level of 100 mg/kg and two areas (including the area of TPH contamination) with elevated levels of total lead. Both of the areas, the waste oil storage area and the immediately adjacent truck washing area, are located at the rear of the main building.

Based upon the findings of the Preliminary Assessment and the Site Inspection, ENSR prepared a workplan for a Phase III Removal Action at the Dal Paso facility. The workplan entitled "Removal Action Workplan for Facility Owned by Exxon Chemical Company in Hobbs, New Mexico (1715 Dal Paso Street)" was prepared in February 1993 and was submitted to the State of New Mexico Oil Conservation Division (OCD) for approval. The OCD granted approval of the workplan in May 1993.

The objectives of the Removal Action were to:

- remove the contaminated soil identified during the Phase I Preliminary Assessment and the Phase II Site Inspection which exceeded the State of New Mexico action levels for TPH and contained elevated levels of total lead;
- dispose of the contaminated soil at a nearby landfill;

ENSR

- collect verification samples from the excavation to ensure that all contaminated soils above State of New Mexico action levels have been removed; and
- backfill and compact the excavation with clean soil and restore surface conditions by covering the area with a new layer of crushed rock(caliche).

To accomplish these objectives, ENSR:

- removed approximately 1488 cubic yards of contaminated soil from the main building area and the newly discovered septic tank (see below);
- disposed of the contaminated soil at the Controlled Recovery, Inc.(CRI) landfill near Hobbs, New Mexico;
- collected verification samples from the excavations to confirm that the contaminated soil above State action levels had been removed; and
- backfilled and compacted the excavations with clean soil and covered the main building excavation with a new layer of caliche.

During the Removal Action a second septic tank (Septic Tank-2) containing heavily hydrocarbon contaminated soil was discovered just east of the previously known and investigated septic tank (Septic Tank-1). The contaminated soil within the septic tank was excavated and removed down to a layer of dense, highly fractured native caliche at an approximate depth of 16 feet. At this point, further excavation was not practical because of the difficulty of digging into the dense rock. The contamination extended below the excavation floor to an unknown depth within the fractures in the caliche. With OCD approval the contamination was left in place.

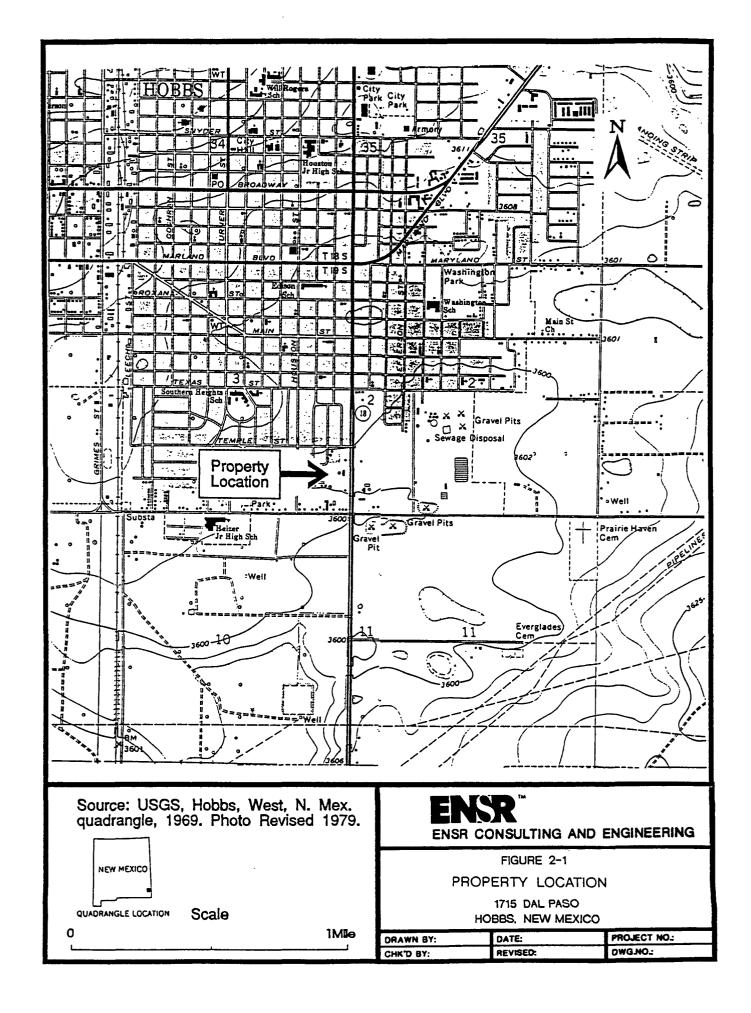
1.0 INTRODUCTION

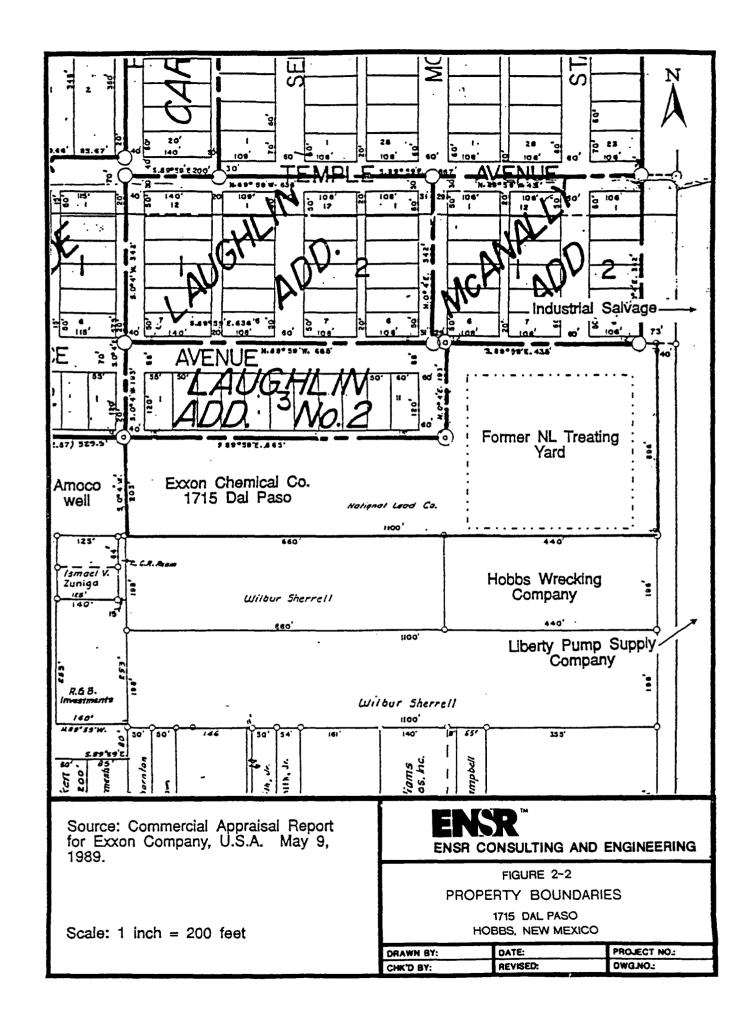
A Phase I Preliminary Assessment was conducted by ENSR at the Dal Paso site in August and September 1991. The Preliminary Assessment identified areas of the facility yard that required further investigation. Consequently, ENSR conducted a Phase II Site Inspection at the facility in January 1992. Based upon the findings of both the Preliminary Assessment and the Site Inspection, ENSR prepared a workplan for a Phase III Removal Action at the site. Following Oil Conservation Division(OCD) approval of the workplan in May 1993, ENSR and its subcontractor, Forklift Enterprises Inc., performed a Phase III Removal Action at the site in July and August 1993.

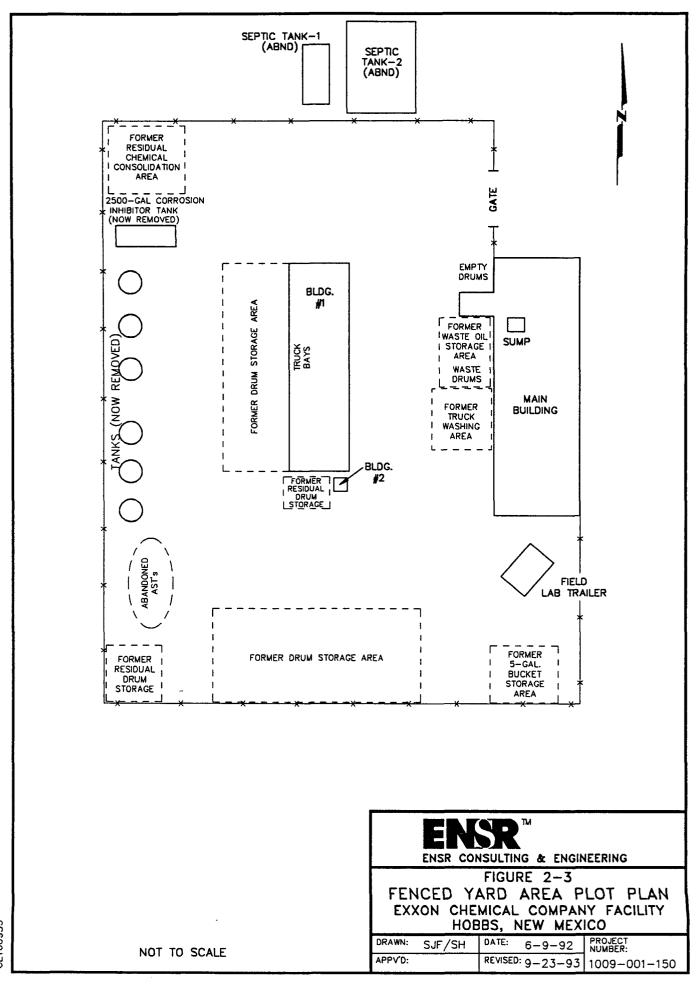
2.0 FACILITY BACKGROUND

Exxon purchased the site at 1715 Dal Paso Street in Hobbs, New Mexico in 1987. NL Treating operated the site from 1969 to 1987. Previously, NL McCullough operated the site from the 1940s to 1969. NL Treating and NL McCullough shared the site from 1969 to 1984.

The subject property covers approximately 7 acres in Lea County and consists of a fenced yard area adjacent to a vacant field extending north, south, and west from the fenced area. The fenced yard area contains three buildings and former storage areas for aboveground tanks and drums. A trailer is located just outside the fenced area adjacent to the main building on Dal Paso Street. The buildings inside the fenced area are:


- the main building containing a storage area and office space,
- a building containing truck bays and storage space (Building No. 1 on the site plot plan) to the west of the main building, and
- a small building (Building No. 2 on the site plot plan) formerly used for storage of radioactive materials.


The site location is shown on Figure 2-1. The property boundaries are shown on Figure 2-2, and a Site Plot Plan is shown on Figure 2-3.


Exxon currently uses the property for administrative purposes only. With the exception of the office trailer, the property and buildings are currently vacant and unused. NL used the property as a storage yard for chemicals used in oil and gas production. NL McCullough used the property to store materials and equipment used in the oil well service industry.

2.1 **Previous Investigations**

ENSR conducted a Phase I Preliminary Assessment in 1991 at the Dal Paso site. Investigatory activities included site visits, interviews with personnel that worked at the facility, facility records review, and state agency or EPA files research. The results were presented to Brown McCarroll and Oaks Hartline in a June 1992 report entitled "Phase I Environmental Due Diligence Assessment of Exxon Chemical Company 1715 Dal Paso Street, Hobbs, New Mexico."

CE100953

The Preliminary Assessment revealed areas of the facility yard that required additional investigation. As a result, ENSR conducted a Phase II Site Inspection at the site in January 1992. The findings were presented to Brown McCarroll and Oaks Hartline in a June 1992 report entitled "Phase II Site Inspection, Exxon Chemical Company Facility, 1715 Dal Paso Street, Hobbs, New Mexico."

The Site Inspection identified, through soil sample analysis and visual observation, two areas of hydrocarbon and/or lead contamination at the rear of the main building within the facility yard. Soil sample analysis confirmed the presence of TPH contamination above the State action level of 100 mg/kg as well as elevated levels of total lead in those areas. The contaminated areas are:

- waste oil storage area, and
- truck washing area.

Both areas are shown on Figure 2-2. Later waste characterization sampling of these two above areas revealed TCLP lead concentrations to be below 5 mg/l, thereby classifying the soils as nonhazardous for disposal purposes.

ENSR

3.0 FIELD ACTIVITIES

ENSR Consulting and Engineering and its subcontractor, Forklift Enterprises Inc., performed the Removal Action at the Dal Paso site in July and August 1993.

3.1 Program Objectives

The objectives of the Removal Action were to excavate, remove, and dispose of contaminated soils that exceeded the OCD action levels for TPH and/or contained elevated levels of total lead.

The Removal Action used the OCD-approved workplan and the following OCD guidelines for the clean-up of hydrocarbon-contaminated soils:

- TPH 100 mg/kg (EPA 8015(m), EPA 418.1),
- BETX (Total) 100 mg/kg (TCLP, 8020), and
- Lead 5 mg/l (TCLP).

3.2 Removal Action Activities

3.2.1 Excavation and Sampling in Impacted Areas

Hydrocarbon and lead contaminated soil was removed from the following two areas at the rear of the facilities main building:

- waste oil storage area, and
- truck washing area.

These areas were excavated due to the analytical results of soil samples collected during the Site Inspection as well as the physical evidence of contamination noted during the Site Inspection. Contamination was shown by soil sample analysis to exist from the surface to a depth of approximately 6 inches.

During the Removal Action activities, an exploratory trench was cut into an area just east of the previously investigated septic tank, Septic Tank-1, to determine whether a second septic tank existed at the site. This activity revealed the presence of a previously unknown septic tank, Septic Tank-2. A layer of very heavily hydrocarbon-contaminated soil was found in the bottom of the trench. The newly discovered septic tank had been filled with sand and abandoned at an

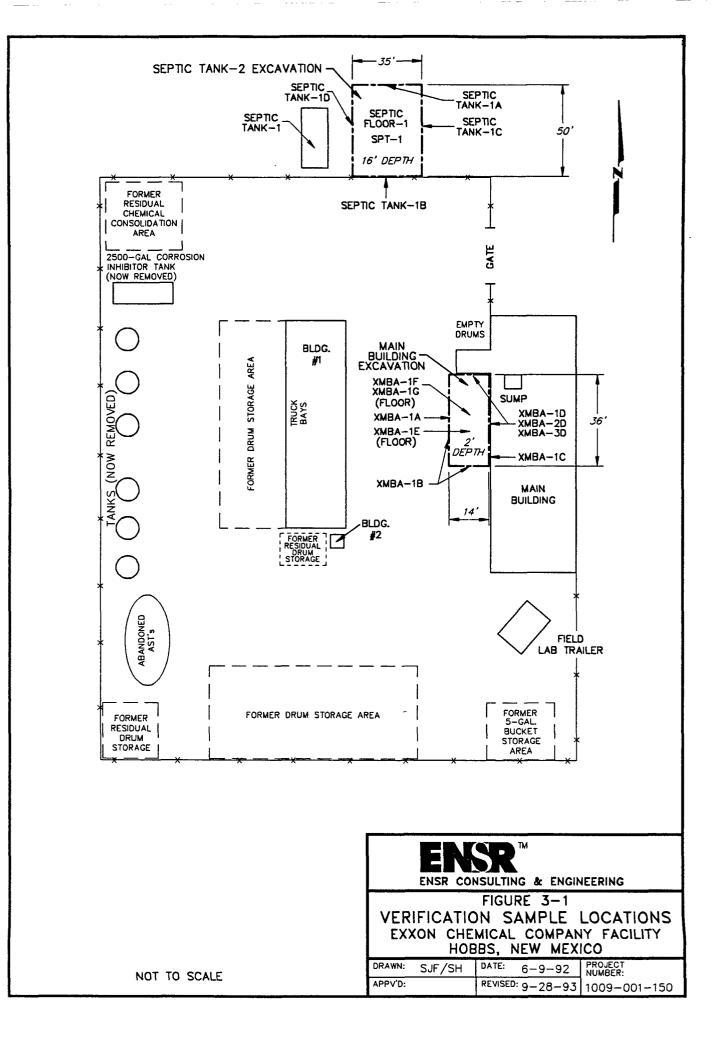
1009R005.03

11/01/93 (Mon) 4:16pm

undetermined time in the past. Prior to its discovery, the location of Septic Tank-2 was a slightly elevated, sandy area adjacent to Septic Tank-1 that was covered with scattered grass and weeds.

The contaminated soil within the septic tank was excavated during the Removal Action. The contaminated soil was excavated down to a depth of approximately 16 feet, where a layer of dense, highly fractured native caliche was encountered. At this point, further excavation was not practical because of the dense rock. The contamination within the rock extended to an unknown depth. With OCD approval, the excavation was terminated and the remaining contamination was sampled and then left in place.

Verification samples were collected from both the main building and the septic tank excavations prior to backfilling with clean soil. Front end loaders, backhoes, and a bulldozer were utilized at various times to remove the contaminated soil.


Approximately 1,488 cubic yards of contaminated soil was removed from the main building area and the second septic tank area. The excavations are shown on Figure 3-1. The analytical results of the soil samples collected during the Removal Action are presented in Section 5.0.

3.2.1.1 Main Building Area Excavation

The main building area excavation consisted of the following two immediately adjacent areas that were excavated together:

- waste oil storage area, and
- the truck washing area.

The two areas were shown by analysis of soil samples collected during the Site Inspection to have elevated levels of total lead and/or hydrocarbon contamination exceeding the State action of 100 mg/kg of TPH. The excavation was rectangular in shape and measured approximately 36 feet by 17 feet with a 2 to 2.5 foot depth. The depth of the hydrocarbon contamination observed during removal activities varied from approximately 6 inches in the western portion of the excavation to approximately 2.5 feet along the east wall of the excavation beneath the main building wall. A petroleum odor was detected during removal activities that ranged from slight

CE100994

in the western portion of the excavation to strong beneath the concrete slab that was removed from the eastern portion of the excavation.

Initially, four composite verification soil samples were collected from the excavation walls (XMBA-1A through XMBA-1D) and three composite verification soil samples (XMBA-1E through XMBA-1G,) including one QA/QC field duplicate, were collected from the excavation floor. Analytical results showed all of the samples except one, XMBA-1D, to be within acceptable regulatory limits for TPH, BETX, and TCLP lead. Sample XMBA-1D had a TPH concentration of 389 mg/kg but was below detection limit for BETX and TCLP lead.

Sample XMBA-1D was collected from the sidewall beneath the concrete slab along the east side of the excavation. Following receipt of the analytical data, the slab was removed to allow for further excavation. Upon removing the slab, a thin layer of heavily hydrocarbon-contaminated soil was observed just beneath the slab. The layer of contaminated soil appeared to be approximately 3 to 4 inches thick. The contaminated soil beneath the slab was excavated to a maximum depth of 2.5 feet along the west wall of the main building. Following the additional excavation, the area was resampled. Composite verification sample XMBA-2D was collected from the excavation wall beneath the west wall of the building. Analysis of sample XMBA-2D revealed a TPH concentration of 148 mg/kg which was still above the action level of 100 mg/kg. A small amount of additional soil was removed, and a third verification sample was collected from the area. Analysis of sample XMBA-3D indicated all analytical parameters to be within acceptable regulatory limits. The area was then backfilled with clean soil and compacted. A layer of caliche was then spread across the area. The verification sample locations are shown on Figure 3-2. The analytical results of the main building soil samples are presented on Table 5-1.

3.2.1.2 Septic Tank Area Excavation

As part of the Removal Action the previously known and abandoned septic tank (Septic Tank-1) at the site was to be backfilled with clean soil. Earlier sampling of soils adjacent to the septic tank, during and after the Site Inspection, revealed no contamination to be present. The debris within the septic tank, consisting of concrete chunks of the collapsed roof and various steel pipe and rods, was removed and transported to the City of Hobbs landfill. The septic tank was then backfilled with clean soil and compacted.

Following the backfilling of the above septic tank (Septic Tank-1), an exploratory trench was dug with a backhoe in a slightly elevated sandy area that was covered with weeds and grass immediately to the east of Septic Tank-1. The purpose of the trench was to investigate the possible existence of a second septic tank at the facility. At a depth of approximately 6 feet, very

heavily hydrocarbon-contaminated soil was encountered indicating the presence of the second septic tank (Septic Tank-2). The contaminated soil from the newly discovered septic tank was sampled for waste classification prior to removal as required by the OCD. The sample, SPT-2, was analyzed for:

- TCLP volatile organic compounds,
- TCLP semi-volatile organic compounds,
- TCLP metals, and
- the RCRA characteristics of reactivity, corrosivity, flashpoint, and ph.

Analysis of sample SPT-2 indicated soil contamination was nonhazardous but its TPH concentration exceeded the State action level of 100 mg/kg at 9,241 mg/kg. Trace amounts of barium, mercury, and selenium were detected but were well below regulatory limits. No volatile or semi-volatile organic compounds were detected sample SPT-2. The analytical results of sample SPT-2 are presented on Table 5-3.

Excavation of the TPH-contaminated soil began after the analytical results of sample SPT-2 were received and submitted to the OCD. The upper sand fill and the underlying contaminated soil were excavated down to the top of a dense layer of highly fractured native caliche at an approximate depth of 16 feet. During excavation a clay pipe was observed protruding from the southeastern portion of the east wall at an approximate depth of two to three feet. The pipe appeared to be coming from the main building which contained the sump. Approximately 30 yards of sand from the upper few feet of fill within the septic tank did not exhibit any physical evidence of contamination and was not transported off-site. Hydrocarbon contamination was evident within the fractured native caliche beneath Septic Tank-2 and extended to an undetermined depth. With OCD approval, some contaminated caliche was left in place because it extended beyond the practical limits of the excavation. The resulting excavation measured approximately 50 feet by 35 feet with a depth of 16 feet.

Following the excavation of Septic Tank-2 four composite verification samples, Septic -1A through Septic-1D, were collected from the excavation walls and analyzed for TPH and BETX(the samples were not analyzed for TCLP lead since lead was found to be below detection limit in the Septic Tank-2 waste classification sample, SPT-2). Sample analysis indicated the soil of all four walls to be within acceptable regulatory limits. At the request of the OCD a sample, Septic floor-1, was collected from the contaminated caliche in the excavation floor and analyzed for:

- Total volatile organic compounds,
- Total semi-volatile organic compounds,
- Total RCRA metals, and

• TPH.

Analysis of sample Septic Floor-1 revealed the contaminated caliche to be nonhazardous, with a TPH concentration of 1,489 mg/kg. Several metals as well as several volatile and semi-volatile organic compounds were found at concentrations above detection limits. Arsenic, barium, chromium, and mercury were detected at concentrations of 4.8 mg/kg, 134.0 mg/kg, 9.0, and 0.15 mg/kg, respectively. The volatile compounds ethylbenzene and total xylenes were detected at concentrations of 8.726 mg/kg and 23.675 mg/kg, respectively. The semi-volatile compounds naphthalene, 2-methylnaphthalene, phenanthrene, and bis(2-ethylhexyl)phthalate were detected at concentrations of 0.226 mg/kg, 2.149 mg/kg, 0.233 mg/kg, and 0.836 mg/kg, respectively.

Following receipt of the analytical results of the septic tank excavation verification samples, the excavation was backfilled with clean soil and compacted.

The septic tank excavation soil sample locations are shown on Figure 3-3. The analytical results of the septic tank samples are presented on Table 5-2.

3.2.2 Storage of Excavated Soils

Most of the contaminated soil was loaded directly onto the trucks during excavation activities. Initially, however, excavated contaminated soils were stored on site when insufficient trucks were available to transport the soil directly to the landfill. The soil was placed on and covered by plastic sheeting until the soil could be transported to the CRI landfill.

3.2.3 Sampling and Disposal of Excavated Soils

In addition to the waste classification sample, SPT-2, collected from the contaminated soil within the second septic tank, other Removal Action waste classification samples were collected. At the request of the OCD, two in-situ waste classification soil samples were collected at the site prior to the Removal Action field activities. One of the samples, DP-1, was collected from the contaminated areas at the rear of the main building and the second sample, DP-2, was collected from soil adjacent to Septic Tank-1. Both samples were analyzed for:

- TCLP volatile organic compounds,
- TCLP semi-volatile organic compounds,
- TCLP metals, and
- RCRA characteristics (corrosivity, reactivity, flashpoint, ph).

The analytical results of the waste classification samples indicate that the soil should be classified as nonhazardous. The analytical results are presented on Table 5-3.

Permission was sought from the OCD to dispose of the excavated soils at the CRI landfill near Hobbs, New Mexico. The OCD approved disposal of the excavated soil when it approved the Removal Action workplan in May 1993. The OCD approval originally applied to soil excavated from the main building area, as no contamination had been found in the soil adjacent to Septic Tank-1. Following discovery of the hydrocarbon-contaminated soil within the second septic tank, additional approval was sought from the OCD to dispose of these soils at the CRI landfill as well. The OCD granted approval to dispose of the soil at CRI shortly before Septic Tank-2 excavation activities commenced. Approximately 1,488 cubic yards of contaminated soil removed from both excavations was disposed of at the landfill during the Removal Action.

3.2.4 Main Building Sump

During the Removal Action, the sand and debris filled sump inside the main building was to be cleaned out and filled with concrete. The sand and debris and a small amount of hydrocarbonstained sand from the base of the sump was removed and disposed of at the CRI landfill. During removal of the sump contents, a second cell to the sump was discovered. The second cell was covered by a concrete slab with a small dirt and dust covered lid that was not observed until the contents of the original cell were being removed. The second cell contained approximately 20 gallons of water that was covered with a blue-green sheen. The liquid was sampled for waste classification. The sample, Sump Liquid-1, was analyzed for:

- TCLP volatile organic compounds,
- TCLP semi-volatile organic compounds,
- TCLP metals, and
- RCRA characteristics of reactivity, corrosivity, flashpoint, and ph.

Analysis of the sample revealed concentrations of barium and mercury that were well below regulatory limits. Resultingly, the sump liquid is nonhazardous for disposal. The analytical results of this sample are presented on Table 5-5.

3.2.5 Restoration of the Yard Area

The excavated areas were backfilled and compacted with clean sand from a local sandpit. The source of the backfill sand was the same as that used for backfill for the West Marland site. Since the backfill had been sampled for TPH and BETX prior to backfilling the excavations at the

West Marland site, no additional backfill sampling was conducted during the Dal Paso site Removal Action.

A layer of caliche was spread across the main building excavation after backfilling to replace the caliche removed for excavation activities.

ENSR

4.0 FIELD AND LABORATORY QA/QC CONTROL

4.1 Sample Handling and Preservation Methods

Once samples were collected, they were placed in appropriate pre-cleaned jars. Labels, written in indelible ink, were then affixed to the sample containers.

Samples were wrapped in protective material to prevent breakage and placed in rigid, thermally insulated coolers. Sealed bags of ice were used to ensure proper preservation. Samples were sent to the Analytikem laboratory in Houston, Texas and to Environ Express laboratory in La Porte, Texas.

4.2 Decontamination of Sampling Equipment

Sampling equipment was decontaminated between each sample. The decontamination procedure for the equipment used in sample collection was:

- Scrubbing equipment with solution of alconox (non-phosphate detergent) and distilled (D.I.) water,
- Rinsing equipment with D.I. water, and
- Allowing equipment to air dry.

The decontamination procedure served to remove any contamination from the sampling equipment between samples to prevent sample cross-contamination.

4.3 Chain-of-Custody Control and Record Keeping Procedures

Proper Chain-of-Custody (COC) procedures were followed. A COC form was completed and shipped with the samples to the laboratory. The COC form served to document sample custody from the time of collection to its receipt by the laboratory.

All chain-of-custody forms are presented with the complete laboratory data packages in Appendix A. All field activities were documented in a log dedicated to this Removal Action. The logbook is stored in the project files in the ENSR Houston, Texas office.

4.4 Field QA/QC Sampling

QA/QC sampling in the field consisted of duplicate soil sampling and collection of an equipment blank sample.

One duplicate soil sample was collected during the Removal Action. The purpose of the duplicate sample was to verify the accuracy of the analytical instruments used to analyze the samples at the laboratory. The duplicate sample was collected by placing the soil to be sampled in a clean stainless steel mixing bowl and mixing the material thoroughly. The soil was then split between two sample jars. The duplicate sample collected at the site was composite verification sample XMBA-1G, which was a duplicate of XMBA-1F. The duplicate sample was analyzed for the same parameters (TPH, BETX, and TCLP lead) as the sample it duplicated.

The equipment blank sample, Eq. Blk., was also analyzed for TPH and BETX. The equipment blank sample was collected by pouring D. I. water over a freshly decontaminated stainless steel hand trowel during soil sample collection. The rinsate was collected directly into the sample jars. Equipment blank sampling verifies the efficiency of the sampling equipment decontaminating procedure.

The analytical results of the QA/QC sampling are presented on Table 5-1.

4.5 Laboratory QA/QC Methods

Laboratory quality control measures included the use of internally generated spike samples, and other instrument or calibration checks. The quality control measures are:

Check Standards

Check standards, at concentrations representing the midpoint of the calibration curve, were analyzed at a frequency of once every 10 to 15 samples. Results were used to verify the standard calibration curve used.

Spiked Samples

One out of every 10 samples was spiked with a known quantity of standard. For these spikes, two aliquots of a sample were taken; one was spiked and both were extracted and analyzed. The results were used to detect sample matrix interferences.

Duplicates

One duplicate analysis was performed for every 10 samples.

Method Blanks

One method blank was analyzed for every 10 samples.

Laboratory QA/QC results are included in the laboratory data packages in Appendix A.

5.0 ANALYTICAL RESULTS

This section presents the analytical results of the samples collected during the Removal Action at the former Exxon facility. This section also presents the analytical results of the waste classification sample collected prior to the Removal Action. The complete laboratory data packages with the analytical methods used and all laboratory QA/QC procedures are listed in Appendix A.

5.1 Analytical Data

Table 5-1 presents the analytical results for the verification soil samples collected from the main building excavation and the field QA/QC samples.

Table 5-2 presents the analytical results of the samples collected from the septic tank-2 excavation floor.

Table 5-3 presents the analytical results of the waste classification sample collected from the contaminated soil within Septic Tank-2 and Table 5-4 presents the analytical results of the waste classification samples collected prior to the Removal Action field activities.

5.2 Summarized Analytical Results

<u>TPH</u>

With the exception of the two soil samples collected from the floor of septic tank-2, all final verification soil samples were below detection limit for TPH. The TPH concentration of the two Septic Tank-2 floor samples, SPT-2 and Septic floor-1, were 9,241 mg/kg and 1,489 mg/kg, respectively.

<u>BETX</u>

All of the final verification soil samples were within acceptable regulatory limits for total BETX. The total BETX concentrations ranged from below detection limit to 0.032 mg/kg in XMBA-1F. The total BETX concentration of sample Septic floor-1, collected from the contaminated caliche in the floor of Septic Tank-2 was 32.401 mg/kg.

OTHER ANALYTICAL

Analysis of the septic tank floor sample, Septic floor-1, found the following contaminants listed below to exceed detection limit. The detection limits are in parenthesis.

Metals

Arsenic	4.8 mg/l	(0.1 mg/l)
Barium	134.0 mg/l	(0.1 mg/l)
Chromium	9.0 mg/l	(0.1 mg/l)
Mercury	0.15 mg/l	(0.01 mg/l)

Volatile Organic Compounds

Ethylbenzene	8.726 mg/kg	(0.500 mg/kg)
Total Xylene	23.675 mg/kg	(0.500 mg/kg)

Semi-Volatile Compounds

Naphthalene	0.226 mg/l	(0.250 mg/kg)
2-Methylnaphthalene	2.149 mg/kg	(0.250 mg/kg)
Phenanthrene	0.233 mg/kg	(0.250 mg/kg)
Bis(2-ethylhexyl)phthalate	0.836 mg/kg	(0.250 mg/kg)

1009R005.03

Table 5-1 Summary of Analytical Results Main Building Area Excavation Verification Soil Samples

: |

!

(d) Gradue Level Det. Limit Det. Limit	Sample ID	Date	Sample Type	Depth	Ĕ	TPH Benz mg/kg mg/	Ben. mg	Benzene mg/kg	Ethylb mg	Ethylbenzene mg/kg	Tolu mg	Toluene mg/kg	Xyle mg	Xylenes mg/kg
7-27-93 C 0' - 2' 389 25			(G) Grab (C) Composite		Level Det.		Level Det.		Level Det.	Det. Limit	Level Det.		Lavel Det.	Det. Limit
8-03-93 C 0' - 2 1/2 148 25 - - 0.001 0.001 0.002 0.001 0.003 8-10-93 C 0' - 2 1/2 - - - - 0.001 0.002 0.001 0.008 7-27-93 C 2 1/2' - - - - 0.002 0.001 0.010	XMBA-1D	7-27-93	c	0' - 2'	389	25	ł	1	1	1	1	1		1
B-10-93 C 0' - 2 1/2 - - - - 0.002 0.001 0.010 7-27-93 C 2 1/2' - - - - - 0.032 0.032	XMBA-2D ¹	8-03-93	v	0' - 2 1/2	148	25	ł	1	0.001	0.001	0.002	0.001	0.008	0.003
7-27-93 C 2 1/2' 0.032	XMBA-3D ²		v	0' - 2 1/2	1	1	1	1	1	1	0.002	0.001	0.010	0.003
	XMBA-1F		v	2 1/2'	1	1	I	I	ł	1	1	1	0.032	0.003

² Second resample of XMBA-1D area after additional excavation.

Note:

Concentrations of TCLP lead were all below detection limit.

ļ

-

Table 5-1Summary of Analytical ResultsSeptic Tank - 2 ExcavationVerification Soil Samples

.

Table 5-2Summary of Analytical ResultsComposite Sample of Contaminated Caliche in Floor of Septic Tank - 2

Date Sampled: 8-26-93	ate Sampled: 8-26-93 Sample ID: Septic Floor					
	Total RCRA Metals					
Analytical Parameter	Concentration Detected mg/kg	Detection Limit mg/kg				
Arsenic	4.8	0.1				
Barium	134.0	0.1				
Chromium	9.0	0.1				
Mercury	0.15	0.01				
Tota	I Semi-Volatile Organic Compo	ounds				
Parameter	Concentration mg/kg	Detection Limit mg/kg				
Naphthalene	0.226	0.250				
2-Methyinaphthalene	2.149	0.250				
Phenanthrene	0.233	0.250				
Bis(2-ethylhexyl)phthalate	0.836	0.250				

Table 5-3 **Summary of Analytical Results** Septic Tank - 2 Waste Classification Sample

Date Sampled: 8-10-93 Analytical Parameter Regulatory Level Detected Detection Limit TCLP Metals (mg/l) Threshold Limit Barium 100.0 2.6 0.1 Mercury 0.2 0.04 0.01 Selenium 1.0 0.1 0.1 TPH (mg/kg) 100 948 25 1. No TCLP volatile or semi-volatile organic compounds were dectected above detection limit.

2. RCRA characteristics were within regulatory limits.

Sample ID: Septic Tank - 2

Table 5-4 Summary of Analytical Results In-Situ Waste Classification Samples

Date Sampled: 9-3-92 Analtyical Parameters	Regulatory Threshold Limit	28 400066000000, baadddd y baaddadda	ID: DP-1 ⁽¹⁾ h: 0'-2'	Sample Type: Composit Sample ID: DP-2 ⁽²⁾ Depth: 6'-8'		
TCLP Metals (mg/l)		Level Detected	Detection Limit	Level Detected	Detection Limit	
Barium	100.0	1.2	0.5	1.2	0.5	
Lead	5.0	0.1	0.02	0.02	0.02	

RCRA characteristics were within regulatory limits.

Table 5-5 Summary of Analytical Results Sump Liquid Waste Classification Sample

Date Sampled: 9-15-93

. |

Sample ID: Sump Liquid - 1

- ----

Analytical Parameter TCLP Metals (mg/l)	Regulatory Threshold Limit	Level Detected	Detection Limit
Barium	100.0	4.5	0.1
Mercury	0.2	0.16	0.01

Analytical Data Packages

1

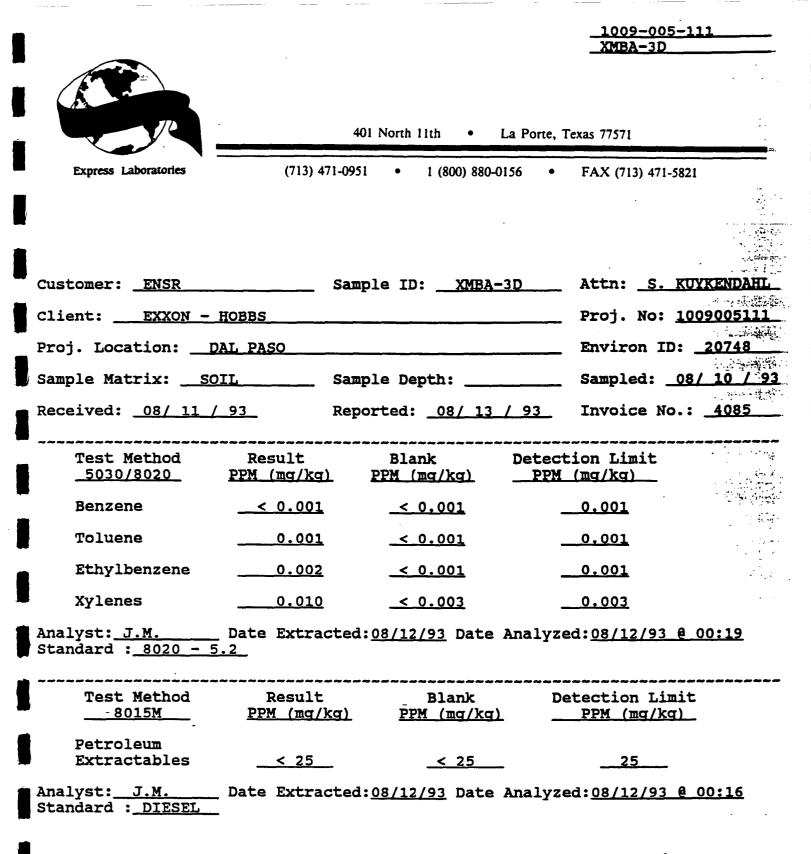
			_1009- 	-005-111
			a de la companya de	
		Article and a second se	: ,	
		North 11th • La Port	e, Texas 77571	
Express Laboratories	(713) 471-0951	• 1 (800) 880-0156	• - FAX (713)	471-5821
			•	
		ان المراجع الم المراجع المراجع		
	an a			
Customer: <u>ENSR</u>	Samp	le ID:	Attn:	S. KUYKENDAHL
Client: <u>EXXON</u> -	HOBBS		Proi. 1	Io: <u>1009005111</u>
Proj. Location:	DAT. PASO			ID: 20747
Sample Matrix: <u>S</u>	orn samp.	le Depth:	Sampled	l: <u>08/10/9</u> :
Received: <u>08/11</u>	<u>/ 93</u> Repo	rted: <u>08/13/93</u>	_ Invoice	No.: <u>4085</u>
• And a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Test Method <u>8015M</u>	Result PPM (mg/kg)	Blank PPM (mg/kg)	Detection PPM (mo	
Petroleum Extractables	_9,241	_< 25	25	
Analyst: <u>J.M.</u> Standard : <u>DIESEL</u>	_ Date Extracted:	- 08/12/93 Date Analy	yzed: <u>08/12</u>	<u>/93 @ 01:06</u>
			n E. K.	

John E. Keller, Ph.D.

	401 1	North 11th • I	La Porte, Te	xas 77571	<u></u> [.]
Express Laboratories	(713) 471-0951	• 1 (800) 880-0	156 •	FAX (713).471	-5821
					مرد المرد المرد المرد المرد الم المرد المرد الم
stomer: <u>ENSR</u>	Sampl	e ID: <u>SPT-2</u>		Attn: <u>S.</u>	KUYKENDAI
ient: <u>EXXON - HO</u>	BBS			Proj. No:	100900511
oj. Location: <u>DAL</u>	PASO			Environ I	D: 20747
				•	م الم الم الم الم الم الم الم الم الم ال
	Samp l	o Donth.		Campled	<u> </u>
mple Matrix: <u>SOIL</u> eceived: <u>08/11/9</u>	3Repor	e Depth: ted: <u>08/17</u>	من جد جد جد جد حد مد	Sampled:	A Provident No.
	3Repor	چنو دی ^{ن د} انه دی موه دد .	من جد جد جد جد حد مد		A Provident No.
	3Repor	ted: <u>08/17</u>	1311) Dete		o.: <u>4085</u>
Metals Arsenic	3Repor	ted: <u>08/17</u> ETALS (METHOD Results mg/1 < 0.1	<u>1311)</u> Deta Limit	Invoice N ection t mg/kg	o.: <u>4085</u>
Metals Arsenic Barium	3Repor TCLP RCRA M Method 7061 7080	ted: <u>08/17</u> ETALS (METHOD Results mg/l < 0.1 2.6	<u>1311)</u> Deta Limit	Invoice N ection t mg/kg .1 .1	o.: <u>4085</u> <u>Max</u> Conc. 5.0 100.0
Metals Arsenic Barium Cadmium Chromium	3Repor <u>TCLP RCRA M</u> Method 7061 7080 7130 7190	ted: <u>08/17</u> ETALS (METHOD Results mg/1 < 0.1 2.6 < 0.1 < 0.1 < 0.1	1311) Deta Limit	Invoice N ection t mg/kg .1 .1 .1 .1	O.: <u>4085</u> Max Conc. 5.0 100.0 1.0 5.0
Metals Arsenic Barium Cadmium Lead	3Report	ted: <u>08/17</u> ETALS (METHOD Results mg/1 < 0.1 2.6 < 0.1 < 0.1 < 0.1 < 0.1	1311) Dete Limit	Invoice N ection t mg/kg .1 .1 .1 .1	o.: <u>4085</u> Max Conc. 5.0 100.0 1.0 5.0 5.0 5.0
Metals Arsenic Barium Cadmium Chromium	3Repor <u>TCLP RCRA M</u> Method 7061 7080 7130 7190	ted: <u>08/17</u> ETALS (METHOD Results mg/1 < 0.1 2.6 < 0.1 < 0.1 < 0.1	1311) Dete Limit 0 0 0 0 0	Invoice N ection t mg/kg .1 .1 .1 .1	O.: <u>4085</u> Max Conc. 5.0 100.0 1.0 5.0

John E. Keller, Ph.D.

A01 North 11th St. La Porte, Texas 77571


Attn: Steve Henning Certificate #: 30811002 Sample ID: 20747 SPT-2 Date Received: 08/11/93

Invoice #:

TOXICITY CHARACTERISTIC CONSTITUENTS AND REGULATORY LEVELS

	Concentration	Detect Lin		Regulatory Level
Analyte	mg/Kg	포영	1 / K a	ng/Kg
Ben443R	שאר	u	.005	U.5
Carbon tetrachloride	ND		.005	0.5
Chlorobanzana	ND		.005	100.0
Chloroform	ND		.005	6.0
o-Cresol	ND	0	.005	200.0
m-Cresol	ND	0	.005	200.0
p-Cresol	ND	0	.005	200.0
Cresol	ND	0	.005	200.0
1,4-Dichlorobenzene	ND	0	.005	7.5
1,2-Dichloroethane	NU	U	.005	0.5
1,1-Dichlorethylene	ND	-	.005	0.7
2,4-Dinitrotoluene	ND	0	.005	0.13
Hexachlorobenzene	ND	-	.005	0.13
Hexachloro-1, 3-butadie		0	.005	0.5
Hexachloroethane	ND	0	.005	3.0
Methyl ethyl ketone	ND		.005	200.0
Nitrobenzene	ND	0	.005	2.0
Pentachlorophenol	ND	0	.005	100.0
Pyridine	ND	0	.005	5.0
Tetrachloroethylene	ND	0	.005	0.7
Trichloroothylone	ND	0	.005	0.5
2,4,5-Trichlorophenol	ND	0	.005_	400.0
2,4,6-Trichlorophenol	ND	0	.005	2.0
Vinyl Chloride	ND		.005	0.2
Parameter Method	<u>s Reaulta</u>	<u>Units</u>	Analyst	Date
Re. Sulfide SW 7.	3.3.2 <0.10	mg/Kg	GAB	08/12/93
Po Cyanido QU 7	2 / 1 /0 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CID	00/10/00
Corrisivity SW 90	45 9.25		GAB	08/12/93
Ignitability SW 10	10 >230	°F	GAB	08/12/93

Michael A. Sommer II, Ph.D.

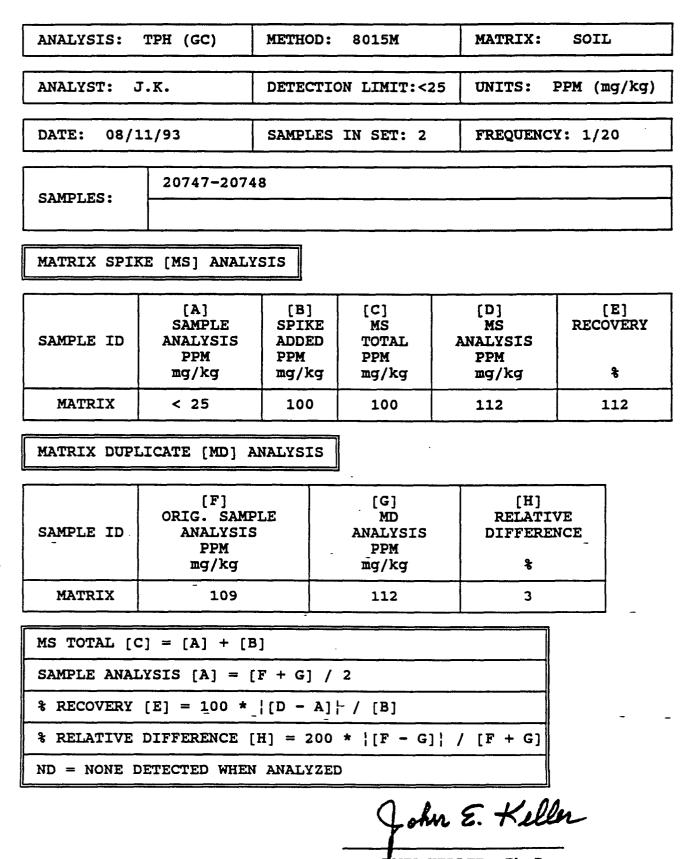
John E. Keller ohn E. Keller, Ph.D.

ANALYSIS: B	TEX	METHOD: 5030/8020	MATRIX: SOIL
ANALYST: J	.M.	DETECTION LIMIT: 1	UNITS: PPM (mg/kg)
DATE: 08/	10/93	SAMPLES IN SET: 18	FREQUENCY: 1/20
	20665, 20	669, 20671, 20686-2069	3, 20748, 20752-20756
SAMPLES:	20760		

MATRIX SPIKE [MS] / MATRIX SPIKE DUPLICATE [MSD] ANALYSIS

	[A] SAMPLE	[B] SPIKE	[C]	[D]	[E]	[F]	[G]	QC	LIMITS
SAMPLE	ANALYSIS PPB	ADDED PPB	MS ANALYSIS PPB	MS REC- OVERY	MSD ANALYSIS PPB	MSD REC- OVERY	REL DIFF	RD	REC RANGE
MATRIX	ug/kg	ug/kg	ug/kg	8	ug/kg	\$	8	ક્ષ	RANGE \$
BENZENE	< 1	100	86	86	95	95	10	20	51-107
TOLUENE	< 1	100	83	83	93	93	11	20	44-108
ETHYLBENZENE	< 1	100	77	77	88	88	13	20	47-111
XYLENES	< 3	300	267	89	290	97	9	20	43-119

MS RECOVERY [D] = 100 * |[C - A]| / [B] -


MSD RECOVERY [F] = 100 * |[E - A]| / [B]

% RELATIVE DIFFERENCE [G] = 200 * |[D - F]| / [D + F]

ND = NONE DETECTED WHEN ANALYZED

John E. Keller

JOHN KELLER, Ph.D

JOHN KELLER, Ph.D

Project Name		Sample	Profe	Far No. (713) 471-5821				
Ider's Atfiliation: NSR CYE Prono ts to: Scort KUTKermul tax S iss: 3000 Rich hu brussin 727 brussin 50MC No. 10. (Sample		Project Location				Jime: Check One Aflave 55 dave
ts to: Scott Kutkennul tax Sissi Scott Kutkennul tax Sissi Scott Rich hu ALEUSTUN DAD			Sampler's Name (PRINT): Sampler's (Signature)		Urron (Jal)	() CNDALL	T A B	Y ANALYSIS
SS: 3000 Rich M. KLOUSTUN TXJ eti: SAMC No.(0000		Sampler Remarks:				11111	/////
ELEUSTUR TYN	640	121	I bu	BUS				
SAMC		Lab Re	narks:				$\cdot $ \cap \cdot	
	/ / /					100 A	< - Ca	
Lab Number Sample No./ Kendification	Date	Grab	Sample Container (Siza/Mat.)	Sudje, Etc.)	Preser- vative			
20747 SPT-2	8-10-93	7	Sort J	Jies	Dat	<u>,</u>		HGL
C-1921	5-10-93	2	Yon	Se, 1	yec			TCLP Les
C-105	8-10.93	7	yon	(o, /	14°C			FCUP
C-1-CS	5-10-95	2	Yor	501/	J.h			LP ToL
SPT-2	8-10-93	2	yor	Se, /	C/pC			1 9
C-1-05	5-10-33		Yor	20,1	4°C			Plash punt Reactivity
e-IJS	26-01-5	-7	yon	1105	4°C			EXTRA
V 507-2	-	2	yor	So, 1	\mathcal{I}_{p}	-		Exina
20748 XMSA-3D	5-10-2	7	Yon	/ روكر	Che	2		DUE: 8-12-13 1111, 24-4085
					,			
(Signature) (Signature)		11-10-9	9.7 (Signature)	-Tellhuk	14		Uaro: 8// The: /025	Intact
Relinquished by: (Signature)		Date: Time:	Received By: (Signature)				Date:	Intact

			· · · · · · · · · · · · · · · · · · ·	9-005-111 8A-1A
	·····			
		401 North 11th •	La Porte, Texas 77571	···· ~ ·
Express Laboratories	(713) 471-09	51 • 1 (800) 880	-0156 • FAX (713) 4	471-5821
Customer: <u>ENSR</u>	San	ple ID: <u>XMBA-</u>	<u>1A</u> Attn: <u>_</u> S	. KUYKENDAHL
Client: <u>EXXON</u>			Proj. No	: <u>1009005111</u>
Proj. Location:	DAL PASO, HOBBS		Environ	ID: <u>20297</u>
Sample Matrix: <u>S</u>	OIL Sam	ple Depth:	Sampled:	07/27/93
Received: <u>07/28</u>	<u>/ 93</u> Reg	oorted: <u>07/29</u>	<u>/ 93</u> Invoice	No.: <u>4015</u>
Test Method 	Result <u>PPM (mg/kg)</u>	Blank <u>PPM (mg/kg)</u>	Detection Limit PPM_(mg/kg)	
Benzene	< 0.001	< 0.001	0.001	
Toluene	< 0.001	< 0.001	0.001	i di anti i su
Ethylbenzene	< 0.001	< 0.001	0.001	n a start and a start a
Xylenes	< 0.003	< 0.003	0.003	, u
Analyst: <u>J.M.</u> Standard : <u>8020 -</u>	_ Date Extracted	1: <u>07/29/93</u> Date	Analyzed: <u>07/29/9</u>	<u>93 @ 01:06</u>
Test Method 8015M	Result		Detection I	Limit
Petroleum Extractables	< 25	_< 25	25	
Analyst: J.M. Standard : <u>DIESEL</u>	_ Date Extracted	1: <u>07/29/93</u> Date	Analyzed: <u>07/29/9</u>	03 @ 02:34

John E. Keller, Ph.D.

					005-111
			· · · · · · · · · · · · · · · · · · ·	XMBA-	and an of Station and a state of the state o
			1997 - 19		مېرىنى ئېرىمىنى ئېرىنى يېرىنى ئېچىلەر ئەتلىكى يېرىنىتە يېرىنىيە يېرىنىيە
R		401 North 11th •	La Porte, Tex	as 77571	
Express Laboratories	. (713) 471	-0951 • 1 (800) 8	80-0156 •	FAX (713) 471-	5821
l				• .	
	···= ··· · · · · · · ·		· ····		
Customer: ENSR	s	Sample ID: <u>XMBA</u>	-1A A		KUYKENDAHL
Client: <u>EXXON</u>				Proj. No:	. LEANANNE
Proj. Location:	DAL PASO, HOB	BS	ر المراجع المر المراجع المراجع	Inviron ID	Patter and the second
Sample Matrix:		Sample Depth:		Sampled:	
Received: <u>07/28</u>	· ·	Reported: <u>08/0</u>		Invoice No	
~~~~~	• •• •• •• •• •• •• •• •• •• •• •• •• •		ه هين هين جين جين جين هين هين هين جين هين هين هين هين	,	
Test Method 	Result PPM (mg/l)	Blank PPM (mg/l)	Detectio	on Limit (mg/l)	
Lead (TCLP)	_< 1	< 1	t	L	

Analyst: J.K. Date Extracted: 07/29/93 Date Analyzed: 07/29/93 @ 16:03 Standard : 7420 - 5.2

John E. Keller, Ph.D.

			1009-00	
			XMBA-11	3
		401 North 11th • La	Porte, Texas 77571	
Express Laboratories	(713) 471-09	951 • 1 (800) 880-0156	• FAX (713) 471-58	21
				in t
Customer: <u>ENSR</u>	Sai	nple ID: <u>XMBA-1B</u>	Attn: <u>S. K</u>	JYKENDAHL
Client: <u>EXXON</u>			Proj. No: <u>1(</u>	09005111
Proj. Location: <u> </u>	DAL PASO, HOBBS		Environ ID:	20298
Sample Matrix: <u>SC</u>	DIL San	nple Depth:	Sampled: <u>07</u>	7/27/93
Received: <u>07/28</u>	-	ported: <u>07/29/</u>	93 Invoice No.:	4015
Test Method 5030/8020	Result <u>PPM (mg/kg)</u>		etection Limit PPM (mg/kg)	
Benzene	< 0.001	< 0.001	0.001	-up the - set of a grad
Toluene	< 0.001	< 0.001	0.001	
Ethylbenzene	< 0.001	< 0.001	0.001	
Xylenes	< 0.003	< 0.003	0.003	من م
Analyst: <u>J.M.</u> Standard : <u>8020 - 5</u>	Date Extracted	1: <u>07/29/93</u> Date Ana	alyzed: <u>07/29/93 @</u>	01:41
Test Method 8015M	Result <u>PPM (mg/kg)</u>	Blank <u>PPM (mg/kg)</u>	Detection Limit <u>PPM (mg/kg)</u>	
Petroleum Extractables	< 25	_<_25	25	٩.
Analyst: <u>J.M.</u> Standard : <u>DIESEL</u>	Date Extracted	1: <u>07/29/93</u> Date Ana	alyzed: <u>07/29/93 @</u>	03:23
• •				:
-		. 1	ohn E. Keller	·•• •
			hn E. Keller, Ph.I	
<b>£</b>		-		

l i

	1009-005-11	1
	XMBA-1B	
	7	
401 North 11th • La Porte,	1 exas 77571	
Express Laboratories (713) 471-0951 • 1 (800) 880-0156 •	FAX (713) 471-5821	1949 - 2049 - 27 1947 - 27 1947 - 27
Customer: <u>ENSR</u> Sample ID: <u>XMBA-1B</u>	Attn: <u>S. KUYKEN</u>	A State of
Client: <u>EXXON</u>	Proj. No: <u>100900</u>	<u>5111</u>
Proj. Location: <u>DAL PASO, HOBBS</u>	Environ ID: 202	98
Sample Matrix: <u>SOIL</u> Sample Depth:	Sampled: 07/27	/-93
Received: <u>07/28/93</u> Reported: <u>08/02/93</u>	Invoice No.: <u>40</u>	1 <u>5</u>
	میں میں غیر میں جن جن میں میں میں میں میں اس میں میں میں میں میں م	
	- ************************************	
	. *	
	tion Limit	
	tion Limit <u>M (mg/l)</u>	
<u>1311/7420 PPM (mg/l) PPM (mg/l) PP</u>		
<u>1311/7420 PPM (mg/l) PPM (mg/l) PP</u>		
<u>1311/7420</u> <u>PPM (mg/l)</u> <u>PPM (mg/l)</u> <u>PP</u> Lead (TCLP) <u>&lt; 1</u> <u>&lt; 1</u> Analyst: <u>J.K.</u> Date Extracted: <u>07/29/93</u> Date Analyz	<u>M (mg/l)</u>	3
<u>1311/7420 PPM (mg/l) PPM (mg/l) PP</u> Lead (TCLP) <u>&lt; 1</u>	<u>M (mg/l)</u>	3
<u>1311/7420</u> <u>PPM (mg/l)</u> <u>PPM (mg/l)</u> <u>PP</u> Lead (TCLP) <u>&lt; 1</u> <u>&lt; 1</u> Analyst: <u>J.K.</u> Date Extracted: <u>07/29/93</u> Date Analyz	<u>M (mg/l)</u>	3
<u>1311/7420</u> <u>PPM (mg/l)</u> <u>PPM (mg/l)</u> <u>PP</u> Lead (TCLP) <u>&lt; 1</u> <u>&lt; 1</u> Analyst: <u>J.K.</u> Date Extracted: <u>07/29/93</u> Date Analyz	<u>M (mg/l)</u>	3
<u>1311/7420</u> <u>PPM (mg/l)</u> <u>PPM (mg/l)</u> <u>PP</u> Lead (TCLP) <u>&lt; 1</u> <u>&lt; 1</u> Analyst: <u>J.K.</u> Date Extracted: <u>07/29/93</u> Date Analyz	<u>M (mg/l)</u>	3
<u>1311/7420</u> <u>PPM (mg/l)</u> <u>PPM (mg/l)</u> <u>PP</u> Lead (TCLP) <u>&lt; 1</u> <u>&lt; 1</u> Analyst: <u>J.K.</u> Date Extracted: <u>07/29/93</u> Date Analyz Standard : <u>7420 - 5.2</u>	<u>M (mg/l)</u>  ed: <u>07/29/93 @ 16:0</u>	3
<u>1311/7420</u> <u>PPM (mg/l)</u> <u>PPM (mg/l)</u> <u>PP</u> Lead (TCLP) <u>&lt; 1</u> <u>&lt; 1</u> Analyst: <u>J.K.</u> Date Extracted: <u>07/29/93</u> Date Analyz Standard : <u>7420 - 5.2</u>	<u>M (mg/l)</u>	3

			<u>1009-00</u> 	
				·
	4	401 North 11th • L	a Porte, Texas 77571	
Express Laboratories	(713) 471-09	51 • 1 (800) 880-01	56 • FAX (713) 471-582	1
Customer: <u>ENSR</u>	Sam	ple ID: <u>XMBA-1C</u>		
Client: <u>EXXON</u>			Proj. No: <u>10</u>	
Proj. Location:				
Sample Matrix: <u>S</u>	<u>DIL</u> Sam	ple Depth:	Sampled: <u>07</u>	<u>/ 27 / 93</u>
Received: <u>07/28</u>	<u>/ 93</u> Rep	orted: <u>07/29/</u>	<u>93</u> Invoice No.:	4015
Test Method 5030/8020	Result <u>PPM (mg/kg)</u>	Blank <u>PPM (mg/kg)</u>	Detection Limit PPM (mg/kg)	میں ہے۔ میں میں میں جو میں بینے میں میں میں ا
Benzene	_< 0.001	< 0.001	0.001	· 
Toluene	< 0.001	< 0.001	0.001	
Ethylbenzene	< 0.001	< 0.001	0.001	
Xylenes	< 0.003	< 0.003	0.003	
Standard : <u>8020 -</u>	5.2		nalyzed: <u>07/28/93 @</u>	
	Result <u>PPM (mg/kg)</u>	Blank	Detection Limit PPM (mg/kg)	
Petroleum Extractables	< 25	< 25	25	
Analyst: <u>J.M.</u> Standard : <u>DIESEL</u>	_ Date Extracted -	: <u>07/29/93</u> Date A	nalyzed: <u>07/29/93 @</u>	<u>04:13</u>

John E. Keller, Ph.D.

					005-111
				<u>XMBA-</u>	•1C
		401 North 11th •	La Porte, 1	exas 77571	
Express Laboratories	(713) 471-	-0951 • 1 (800) 88	0-0156 •	FAX (713) 471	-5821
					· ••··
Customer: <u>ENSR</u>	S	ample ID: <u>XMBA-</u>	-1C	Attn: <u>S.</u>	KUYKENDAHL
Client: <u>EXXON</u>				Proj. No:	1009005111
				-	
Proj. Location: <u>DA</u>	L_PASO, HOBB	<u>S</u>		Environ ID	: _20299
Sample Matrix: <u>SOI</u>	L S	ample Depth:		Sampled: _	07/ 27 / 93
Received: <u>07/28/</u>	<u>93</u> R	eported: <u>08/0</u> 2	2 / 93	Invoice No	.: 4015
ین وی بی وی بی دی این این این این وی وی بی ایک این وی وی بی این این وی وی وی این این این وی وی وی وی وی	سے ہے جب میں ہیں جب میں جب جب میں میں جب	ه چې وېو هې وې		~~~~~	
Test Method	Result	Blank	Detect	ion Limit	
1311/7420	<u>PPM (mg/l)</u>	PPM (mg/l)		(mg/1)	and the second
					. •
	· ·				. •
Lead (TCLP)	< 1	_< 1		<u> </u>	

Analyst: J.K. Date Extracted: 07/29/93 Date Analyzed: 07/29/93 @ 16:03 Standard : 7420 - 5.2

John E. Keller

John E. Keller, Ph.D.

			<u>1009-005-111</u> XMBA-1D
	40	I North 11th • La	Porte, Texas 77571
Express Laboratories	(713) 471-0951	• 1 (800) 880-0156	• FAX (713) 471-5821
Customer: <u>ENSR</u>	Samp	ole ID: <u>XMBA-1D</u>	
Client: <u>EXXON</u>			Proj. No: <u>1009005111</u>
Proj. Location: <u>D</u>		· · ·	Environ ID: <u>20300</u>
Sample Matrix: <u>SO</u>	IL Samp	ole Depth:	Sampled: <u>07/27/93</u>
Received: <u>07/28/</u>		orted: <u>07/29/</u>	
Test Method 5030/8020	Result		etection Limit PPM (mg/kg)
Benzene	< 0.001	< 0.001	0.001
Toluene	< 0.001	< 0.001	0.001
Ethylbenzene	< 0.001	< 0.001	0.001
Xylenes	< 0,003	< 0.003	0.003
Analyst: J.M. Standard : <u>8020 - 5</u>		<u>07/28/93</u> Date Ana	alyzed: <u>07/28/93 @ 19:09</u>
Test Method 8015M	Result <u>PPM (mg/kg)</u>	Blank <u>PPM (mg/kg)</u>	Detection Limit <u>PPM (mg/kg)</u>
Petroleum Extractables	389	< 25	
Analyst: J.M. Standard : <u>DIESEL</u>	Date Extracted:	<u>07/29/93</u> Date Ana	alyzed: <u>07/29/93 @ 05:04</u>

John E. Keller, Ph.D.

401 North 11th         Laboratories           (713) 471-0951         1 (800) 880-011	
Customer:ENSR	Proj. No: <u>1009005111</u> Environ ID: <u>20300</u> Sampled: <u>07/ 27 / 93</u>
Test Method Result Blank <u>1311/7420 PPM (mg/l)</u> PPM (mg/l) Lead (TCLP) <u>&lt; 1 _&lt; 1</u>	Detection Limit <u>PPM (mg/l)</u>
Analyst: <u>J.K.</u> Date Extracted: <u>07/29/93</u> Date A Standard : <u>7420 - 5.2</u>	nalyzed: <u>07/29/93_@_16:03</u>

John E. Keller, Ph.D.

			<u>1009-00</u> XMBA-11	
	4	01 North 11th • La	a Porte, Texas 77571	·····
Express Laboratories	(713) 471-095	1 • 1 (800) 880-012	56 • FAX (713) 471-582	1
Customer: <u>ENSR</u>		ple ID: <u>XMBA-1E</u>	Attn: <u>S. K</u>	YKENDAHL
Client: <u>EXXON</u>			Proj. No: <u>10</u>	09005111
Proj. Location:	AL PASO, HOBBS		Environ ID:	20301
Sample Matrix: <u>S</u>	OIL Sam	ple Depth:	Sampled: _07	/ 27 / 93
Received: _07/ 28_/	93 Rep	orted: <u>07/29/</u>	93 Invoice No.:	4015
Test Method 5030/8020	Result <u>PPM (mg/kg)</u>	Blank PPM (mg/kg)	Detection Limit PPM (mg/kg)	
Benzene	0.001	< 0.001	0.001	······································
Toluene	< 0.001	< 0.001	0.001	
Ethylbenzene	< 0.001	< 0.001	0.001	
Xylenes	< 0.003	< 0.003	0.003	
Analyst: <u>J.M.</u> Standard : <u>8020 - 9</u>		: <u>07/28/93</u> Date A	nalyzed: <u>07/28/93 @</u>	<u>19:46</u>
Test Method 8015M	Result <u>PPM (mg/kg)</u>	Blank <u>PPM (mg/kg)</u>	Detection Limit PPM (mg/kg)	
Petroleum Extractables	< 25	< 25	25	
Analyst: <u>J.M.</u> Standard : <u>DIESEL</u>	Date Extracted	: <u>07/29/93</u> Date A	nalyzed: <u>07/29/93_@</u>	05:54

John E. Keller, Ph.D.

	•			<u>   1009–0</u> <u>XMBA–1</u>	05-111 E
		401 North 11th •	La Porte, T	exas 77571	
Express Laboratories	(713) 471-(	0951 • 1 (800) 88	0-0156 •	FAX (713) 471-58	321
					2017 1941 1947 1947 1947 1947
Customer: <u>ENSR</u>	Sa	ample ID: <u>XMBA</u>	<u>-1E</u>	Attn: <u>S. K</u>	
Client: <u>EXXON</u>	·	·····		Proj. No: <u>1</u>	009005111
Proj. Location:	DAL PASO, HOBBS	5		Environ ID:	20301
Sample Matrix: <u>S</u>	DILSa	ample Depth:		Sampled: <u>0</u>	7/ 27 / 93
Received: <u>07/28</u>	<u>/_93</u> Re	eported: <u>08/0</u>	2 / 93	Invoice No.	: _4015
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	an an an an an an an an an	هي ه	من م
Test Method _1311/7420	Result <u>PPM (mg/l)</u>	Blank <u>PPM (mg/l)</u>		ion Limit (mg/l)	
Lead (TCLP)	< 1	_< 1		1	

Analyst: <u>J.K.</u> Date Extracted:<u>07/29/93</u> Date Analyzed:<u>07/29/93 @ 16:03</u> Standard :<u>7420 - 5.2</u>

John E. Keller, Ph.D.

			<u>1009-005-</u> XMBA-1F	-111
				-
	4	01 North 11th • La F	Porte, Texas 77571	
Express Laboratories	(713) 471-095	• 1 (800) 880-0156	• FAX (713) 471-5821	
Customer: <u>ENSR</u> Client: <u>EXXON</u>	Sam	ple ID: <u>XMBA-1F</u>	Attn: <u>S. KUYK</u> Proj. No: <u>1009</u>	
Proj. Location: <u>D</u>	AL PASO, HOBBS		Environ ID: _2	
Sample Matrix: <u>SO</u>	<u>IL</u> Sam	ple Depth:		27 / 93
Received: <u>07/28/</u>	<u>93</u> Rep	orted: <u>07/29/</u> 9	3 Invoice No.: _	4015
Test Method 5030/8020	Result <u>PPM (mg/kg)</u>		tection Limit PPM (mg/kg)	· · · ·
Benzene	_<_0.001	< 0.001	0.001	•
Toluene	< 0.001	< 0.001	0.001	an an an Andreas
Ethylbenzene	<_0.001	< 0.001	0.001	
Xylenes	0.032	< 0.003	0.003	24a
Analyst: J.M. Standard : <u>8020 - 5</u>		: <u>07/29/93</u> Date Ana	lyzed: <u>07/29/93 @ 08</u>	:10
Test Method 8015M	Result <u>PPM (mg/kg)</u>	Blank <u>PPM (mg/kg)</u>	Detection Limit 	, an an an an an an an an
Petroleum Extractables	_< 25	< 25	25	
Analyst: J.M. Standard : <u>DIESEL</u>	Date Extracted	: <u>07/29/93</u> Date Ana	lyzed: <u>07/29/93 @ 06</u>	:43
		· ·		
-	· .			,
B		Joh	n E. Keller, Ph.D.	

John E. Keller, Ph.D.

-

				1009-00	
				XMBA-11	?
IR IR		401 North 11th •	La Porte, T	exas 77571	
Express Laboratories	(713) 47				
	(713) 47		80-0130	FAX (713) 471-582	21
				·	
Customer: <u>ENSR</u>	:	Sample ID: <u>XMBA</u>	-1F	Attn: <u>S. KU</u>	IYKENDAHL
Client: <u>EXXON</u>				Proj. No: <u>10</u>	09005111
Proj. Location:	DAL PASO, HOBI	BS		Environ ID:	20302
Sample Matrix:	<u> </u>	Sample Depth:		Sampled: <u>07</u>	/ 27 / 93
Received: <u>07/28</u>	<u>/_93</u>	Reported: <u>08/0</u>	2 / 93	Invoice No.:	<u>4015</u>
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	و بين ويه ويه ويه ينه ويه ويه ويه دي وي وي وي وي	منه هم هم هم هم هم هم من	. مه به ده مه مه ده به مه مه د	ده چه چه چه چه چه چه چه چه خو ه خه خو	
Test Method					
Test Method _1311/7420_	Result <u>PPM (mg/l)</u>	Blank <u>PPM (mg/l)</u>		ion Limit (mg/l)	
Lead (TCLP)	< 1	< 1		1	
Analyst: J.K.	_ Date Extract	ted: <u>07/29/93</u> Dat	e Analyzed	1: <u>07/29/93</u> @	16:03
Standard : 7420 - 5	5.2		-		
-					

John E. Keller

John E. Keller, Ph.D.

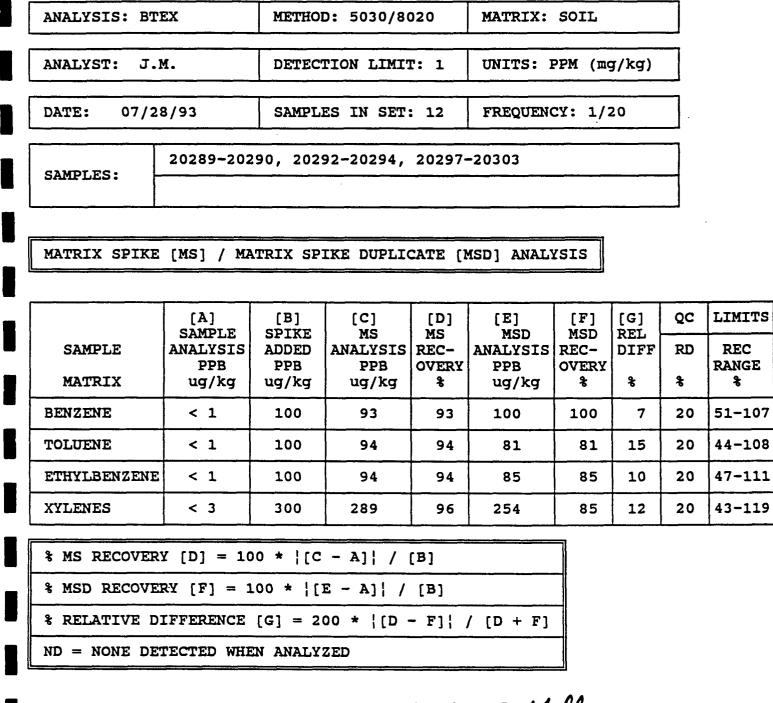
			<u>1009-00</u> XMBA-10	
Express Laboratories	(713) 471-0		Porte, Texas 77571 • FAX (713) 471-582	21
Customer: <u>ENSR</u>		mple ID: <u>XMBA-1G</u>	 FAX (713) 471-38. Attn: <u>S. KU</u> Proj. No: <u>10</u> 	IYKENDAHL
Proj. Location: <u> </u>	DAL PASO, HOBBS		Environ ID:	20303
Sample Matrix: <u>S</u>	<u>)IL</u> Sa	mple Depth:	Sampled: _07	/ 27 / 93
Received: <u>07/28</u>	<u>/ 93 </u> Re	ported: <u>07/29/</u> 9	3_ Invoice No.:	4015
Test Method 5030/8020	Result PPM (mg/kg)	Blank De <u>PPM (mg/kg)</u>	etection Limit PPM (mg/kg)	1
Benzene	< 0.001	< 0.001	0.001	
Toluene	< 0.001	< 0.001	0.001	م من الم من الم
Ethylbenzene	< 0.001	< 0.001	0.001	
Xylenes	< 0.032	< 0.003	0.003	
Analyst: <u>J.M.</u> Standard : <u>8020 - 5</u>		d: <u>07/29/93</u> Date Ana	alyzed: <u>07/29/93 @</u>	04:38
Test Method 8015M	Result <u>PPM (mg/kg)</u>	Blank <u>PPM (mg/kg)</u>	Detection Limit PPM (mg/kg)	
Petroleum Extractables	_< 25	< 25	25	
Analyst: J.M. Standard : <u>DIESEL</u>	_ Date Extracte -	d: <u>07/29/93</u> Date Ana	alyzed: <u>07/29/93 @</u>	07:32

John E. Keller, Ph.D.

				1009-005	-111
				XMBA-1G	
		401 North 11th	• La Porte, 1	exas 77571	2000 - 200 - 20 - 2
Express Laboratories	(713) 471-(0951 • 1 (800)	880-0156 •	FAX (713) 471-5821	
Customer: <u>ENSR</u>	Sa	ample ID: <u>XM</u>	BA-1G	Attn: <u>S. KUY</u>	KENDAHL
Client: <u>EXXON</u>				Proj. No: <u>100</u>	9005111
Proj. Location:D	AL PASO, HOBBS	5		Environ ID: _	20303
Sample Matrix: <u>SO</u>	<u>IL</u> Sa	ample Depth:	<u></u>	Sampled: <u>07/</u>	27 / 93
Received: <u>07/28/</u>	<u>93</u> Re	eported: <u>08/</u>	02 / 93	Invoice No.:	4015
Test Method <u>1311/7420</u> Lead (TCLP)	Result <u>PPM (mg/l)</u> _< <u>1</u>	Blank <u>PPM (mg/l)</u> _< 1		ion Limit (mg/1)	

. ____ . .

Analyst: J.K. ____ Date Extracted: 07/29/93 Date Analyzed: 07/29/93 @ 16:03 Standard : 7420 - 5.2


John E. Keller, Ph.D.

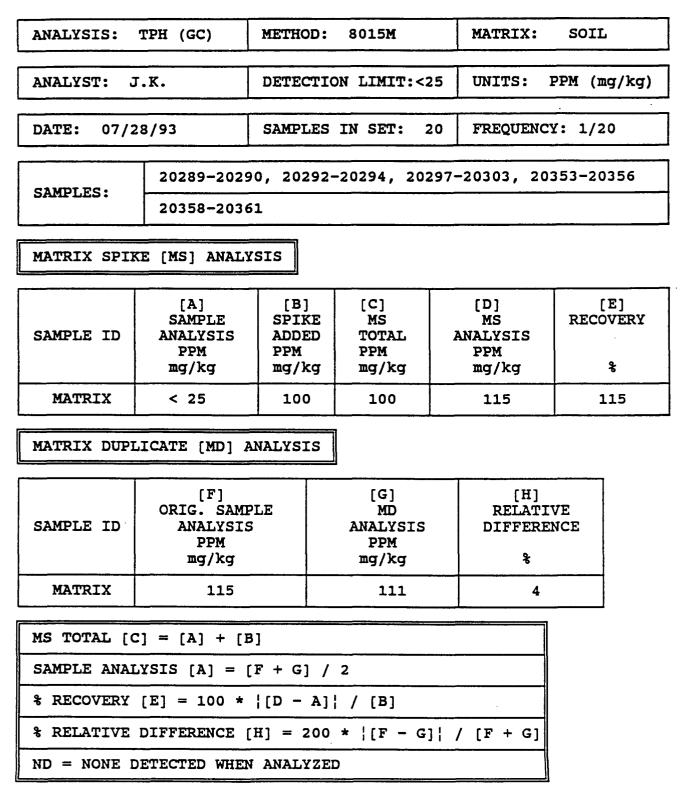
. 1

···· -. . 1 ς.

			1.0/	9-005-111
				BLK
				الله الي معالية المراجعة المراجع المراجع مراجع المراجع ال
		401 North 11th •	La Porte, Texas 77571	
Express Laboratories	(713) 471-0	0951 • 1 (800) 880	0-0156 • FAX (713)	471-5821
Customer: ENSR	Sa	ample ID: <u>EO E</u>	<u>BLK</u> Attn: _	. KUYKENDAHL
Client: <u>EXXON</u>			Proj. No	: <u>1009005111</u>
Proj. Location:	DAL PASO, HOBBS	<u>s</u>	Environ	ID: 20304
Sample Matrix:W			Sampled:	07/ 27 / 93
Received: _07/_28		eported: <u>07/29</u>	· ·	No.: 4015
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Test Method 5030/8020	Result PPB (uq/l)	Blank PPB_(ug/l)	Detection Limit	
			FFB(00/_1)	
Benzene	< 1	< 1	<u> </u>	
Toluene	_< 1	< 1	<u> </u>	
Ethylbenzene	< 1	< 1	1	
Xylenes	< 3	_< 3	3	
Analyst: J.M.		ed: <u>07/28/93</u> Date	Analyzed: <u>07/28/9</u>	<u>93 @ 11:37</u>
Standard : <u>8020 - 5</u>	<u>5.2</u>			
Test Method 8015M	Result <u>PPM (mg/l)</u>	Blank <u>PPM (mg/</u> ]	Detection I L) PPM (mg	
Petroleum Extractables	< 25	_ < 25	25	
Analyst: <u>J.M.</u> Standard : <u>DIESEL</u>	_ Date Extracte	ed: <u>07/28/93</u> Date	Analyzed: <u>07/28/9</u>	93 @ 21:34

John E. Keller, Ph.D.




John E. Keller JOHN KELLER, Ph.D

----

-----

ANALYSIS: BTH	EX	METHO	D: 602		MATRIX:	WATER			
ANALYST: J.M	1.	DETECT	TION LIMI	F: 1	UNITS: 1	PB (uc	g/l)		
DATE: 07/28,	/93	SAMPLI	ES IN SET	: 18	FREQUENC	CY: 1/2	20		
	20178, 20	)235-2024	42, 20259	-20263	, 20286, 2	20295-2	20296		
SAMPLES:	20304								
MATRIX SPIKE	[MS] / M2	ATRIX SP	IKE DUPLI	CATE []	ISD] ANALY	(SIS			
	[A] SAMPLE	[B] SPIKE	[C]	[D]	[E] 	[F]	[G]	QC	LIMITS
SAMPLE	ANALYSIS PPB	ADDED PPB	MS ANALYSIS PPB	MS REC- OVERY	MSD ANALYSIS PPB	MSD REC- OVERY	REL DIFF	RD	REC RANGE
MATRIX	(ug/l)	(ug/l)	(ug/1)	ક	(ug/l)	१	*	96	*
BENZENE	< 1	100	98	98	100	100	2	20	49-117
TOLUENE	< 1	100	102	102	105	105	3	20	53-117
ETHYLBENZENE	< 1	100	104	104	108	108	4	20	53-119
WIIT DUDO		200				100	4	20	56-116
XYLENES	< 3	300	312 -	104	324	108	•		
-	< 3	300	312	104	324	108			1
* MS RECOVERY				l	324				1
	Y [D] = 10	00 * ¦[C	- A]¦ /	[B]	324				1
* MS RECOVERY	Y [D] = 10 RY [F] = 1	00 * ¦[C	- A]¦ / E - A]¦ /	[B] [B]					1

John E. Kellen JOHN KELLER, Ph.D



ohn E. Kellen

JOHN KELLER, Ph.D

----

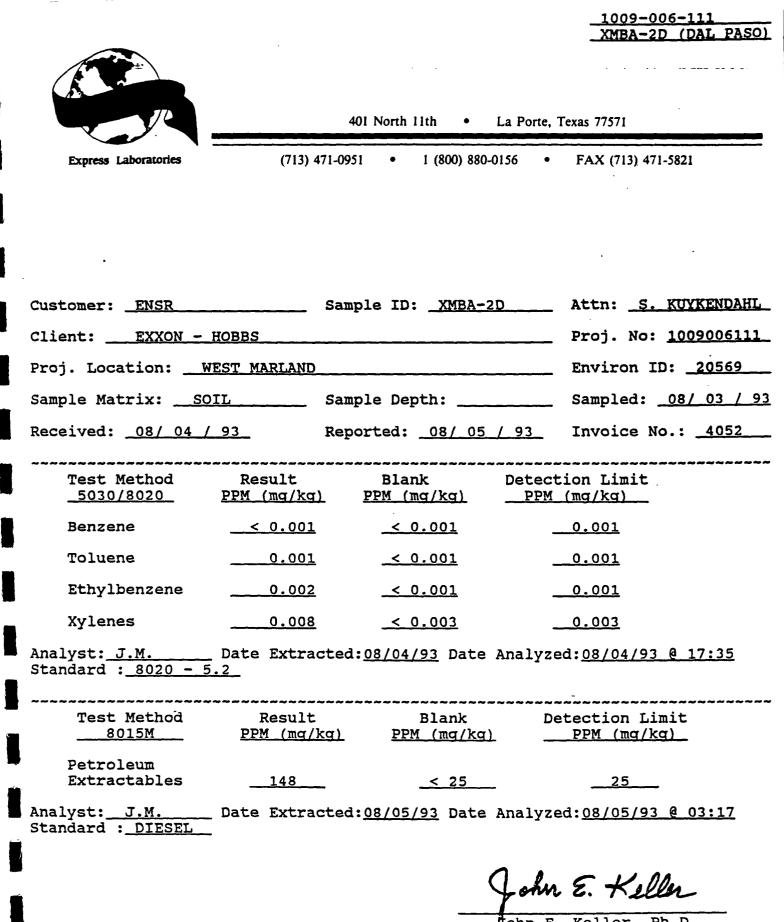
ANALYSIS:	TPH (GC)	METHOD:	8015M	MATRIX:	WATER
ANALYST: 2	J.K.	DETECTI	ON LIMIT:<2	25 UNITS:	PPM (mg/l)
DATE: 07/2	27/93	SAMPLES	IN SET: 14	FREQUENC	Y: 1/20
SAMPLES:	20235-20242	2, 20264	-20268, 203	304	
MATRIX SPIN	KE [MS] ANALYS	SIS			
SAMPLE ID	[A] SAMPLE ANALYSIS PPM mg/kg	[B] SPIKE ADDED PPM mg/kg	[C] MS TOTAL PPM mg/kg	[D] MS ANALYSIS PPM mg/kg	[E] RECOVERY %
MATRIX	< 25	100	100	106	106
MATRIX DUPI	LICATE [MD] AI	NALYSIS			
SAMPLE ID	[F] ORIG. SAMPI ANALYSIS PPM mg/kg	LE	[G] MD ANALYSIS PPM mg/kg	[H] RELATI DIFFERE %	
MATRIX	106		104	2	
MS TOTAL [C	C] = [A] + [B]	]			
SAMPLE ANAI	LYSIS [A] = []	F + G] /	2		
* RECOVERY	[E] = 100 *	[D - A]	/ [B]		
<pre>% RELATIVE</pre>	DIFFERENCE []	H] = 200	) * ¦[F - G	]¦ / [F + G]	
ND = NONE I	DETECTED WHEN	ANALYZI	2D		

John E. Kellen John Keller, Ph.D

___

- ---- - - - -

Ì


Ì

Ĩ

ANALYST: A	ROEHRICK	DETECTI	ON LIMIT:	1 U	NITS: P	PM (mg/l)
DATE: 07/29	9/93	SAMPLES	IN SET: 7	FI	REQUENCY	¥: 1/20
SAMPLES:	20297-2030	3	·····	<u>-</u>		
MATRIX SPIN	KE [MS] ANALY:	SIS				
SAMPLE ID	[A] SAMPLE ANALYSIS PPM mg/l	[B] SPIKE ADDED PPM mg/l	[C] MS TOTAL PPM mg/l	I ANAI PI	D] AS LYSIS PM g/l	[E] RECOVER
MATRIX	< 1	10	10		9	90
MATRIX DUPI	ICATE [MD] ANALYSIS					
SAMPLE ID	[F] ORIG. SAMP ANALYSIS PPM mg/l	LE	[G] MD ANALYSIS PPM mg/l		[H] RELATI DIFFERE %	
MATRIX	9		9		0	-
MS TOTAL [(	C] = [A] + [B]	]				
	LYSIS [A] = [:		2			
* RECOVERY	[E] = 100 *	[D - A]	¦ / [B]	·		
<pre>% RELATIVE</pre>	DIFFERENCE []	H] = 200	*  [F - G]	] / []	F + G]	

John E. Keller OHN KELLER, Ph.D

DS-1/1 Erclect			(713) 471-05 Fax No.	(713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821	9				
liation:			Project Dっ/	Project Location D.らし	-Ha	bhs	Tum Arc	n Around Time: Cf day     2 days	Turn Around Time: Check One
Kurve		Sampler's Sampler's:	Nam (Sign	E C	Kurk	UTKENDA		BORATORY ANALYS Reference EPA Method #	LABORATORY ANALYSIS Reference EPA Method #
Results to: 100 AC/10 LL tax 7/ 5-520 6802		amp	Sampler Remarks:	k	C				////
000 RICHMO		F	DH Pr	1 6 C			<u> </u>  - 	01	
City: HOUSTOC XX JOGS		Lab Remarks:	arks:				Ľ	(ET 2)	
No. (	) (					08	X		
Lab Number Banne No./ Newtification	Date and Time Grab	quioc)	Sample Container (Siza/Mal.))	Sample Type (Liquid, Skudge, Elic.)	Preser- vative	REFERENCE OF	WK (	2010	
-1 PT- ASMX LESOE	a d	51	/or	کرمک	すで	7 7	2		
YMB F	- 2	7	Lor	SolL	yoc	د ۲	3		
20299 NMBA-1C	30-93	7	Lor	Soil	いっ	د ۲	2		
20300 XMBA-1D	12-92 12-92	5	/or	2016	<i>7.</i> 7	7 7	2		
20301 XMBA-16 1:3	72	57	102	roit	1.0	7	2		
20302 XMRA-1F	56-02	7	tor.	Sorc	40	7	7		
20303 XM BA-16	42-(C	2	lor	Sort	ų.c	1	1		
20304 Eq bik	22-93	3	202	KROINES-	Q°C	ر ر	10 25		
	- 62	Y	ĩ	Solc	d'C	) /	<b>`</b>		DUE: 1-29-93
	16-	7		Sorc	45	<u>ر</u>	<u>,</u>		
Reinquished by: / Scott Lin Lall		Date: フ-ン)-97 Time:/4/S		The Man	ľ.			Date: 7/2 0 Time: //20	
Relinquished by: (Signature)		Date: Time:	Received By: (Signature)					Date: ·	Intact



ohn E. Keller, Ph.D.

		1009-006-111 XMBA-2D (DAL PASO)
	401 North 11th • La Porte,	Texas 77571
Express Laboratories	(713) 471-0951 • 1 (800) 880-0156 •	FAX (713) 471-5821
		· · · · ·
Customer: <u>ENSR</u>	Sample ID: <u>XMBA-2D</u>	Attn: <u>S. KUYKENDAHL</u>
Client: <u>EXXON - HOBBS</u>		Proj. No: <u>1009006111</u>
Proj. Location: <u>WEST M</u>	ARLAND	Environ ID: <u>20569</u>
Sample Matrix: <u>SOIL</u>	Sample Depth:	Sampled: <u>08/03/93</u>
Received: <u>08/04/93</u>	Reported: <u>08/06/93</u>	Invoice No.: <u>4052</u>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		tion Limit <u>M (mg/l)</u>
Lead (TCLP) _<	1	1
Standard : <u>7420 - 5.2</u>	Extracted: <u>08/06/93</u> Date Analyzo	ed: <u>08/06/93 @ 08:03</u>
-	\frown	

John E. Keller, Ph.D.

ANALYSIS: B	rex	METHOD: 5030/8020	MATRIX: SOIL
ANALYST: J	.M.	DETECTION LIMIT: 1	UNITS: PPM (mg/kg)
DATE: 08/	04/93	SAMPLES IN SET: 20	FREQUENCY: 1/20
SAMPLES:	20531-2	0540, 20569-20577, 20580	

MATRIX SPIKE [MS] / MATRIX SPIKE DUPLICATE [MSD] ANALYSIS

	[A] SAMPLE	[B] SPIKE	[C] MS	[D] MS	[E] MSD	[F] MSD	[G] REL	QC	LIMITS
SAMPLE	ANALYSIS	ADDED	ANALYSIS	REC-	ANALYSIS	REC-	DIFF	RD	REC
MATRIX	PPB ug/kg	PPB ug/kg	PPB ug/kg	OVERY %	PPB ug/kg	OVERY %	8	8	RANGE %
BENZENE	< 1	100	88	88	82	82	7	20	51-107
TOLUENE	< 1	100	91	91	85	85	7	20	44-108
ETHYLBENZENE	< 1	100	95	95	87	87	9	20	47-111
XYLENES	< 3	300	281	94	261	87	8	20	43-119

ૠ	MS RECOVERY $[D] = 100 * [[C - A]] / [B]$
જ	MSD RECOVERY $[F] = 100 * [E - A] / [B]$
*	RELATIVE DIFFERENCE $[G] = 200 * [D - F] / [D + F]$

ND = NONE DETECTED WHEN ANALYZED

_

John E. Kellen

JOIN KELLER, Ph.D

L

ANALYSIS:	TPH (GC)	METHOD:	8015M	MATRIX:	SOIL		
ANALYST: J	r.K.	DETECTIO	ON LIMIT:<	25 UNITS:	PPM (mg/kg)		
DATE: 08/0	03/93	SAMPLES	IN SET:	L6 FREQUENC	Y: 1/20		
SAMPLES:	20507-2050	9, 20512.	-22524				
MATRIX SPIK	KE [MS] ANALY	SIS					
SAMPLE ID	[A] SAMPLE ANALYSIS PPM mg/kg	[B] SPIKE ADDED PPM mg/kg	[C] MS TOTAL PPM mg/kg	[D] MS ANALYSIS PPM mg/kg	[E] RECOVERY %		
MATRIX	RIX < 25 100 100 95 95						
MATRIX DUPI SAMPLE ID	[F] ORIG. SAMP: ANALYSIS PPM mg/kg		[G] MD ANALYSIS - PPM mg/kg	[H] RELATI DIFFERE %	1		
MATRIX			95	0			
SAMPLE ANAL	(E] = [A] + [B] (E] = 100 *	F + G] /					

JOHN KELLER, Ph.D

......

- ------

I

····									
ANALYST: A.	ROEHRICK	DETECTI	ON LIMIT:	1	UNITS: P	PM (mg/l)			
DATE: 08/06	DATE: 08/06/93 SAMPLES IN SET: 16 FREQUENCY: 1/20								
SAMPLES:									
MATRIX SPIN	KE [MS] ANALY:	SIS							
SAMPLE ID	[A] SAMPLE ANALYSIS PPM mg/l	[B] SPIKE ADDED PPM mg/l	[C] MS TOTAL PPM mg/l	1	[D] MS ANALYSIS PPM mg/l	[E] RECOVERI %			
MATRIX < 1 10 10 10 100									
MATRIX DUPI	LICATE [MD] A	NALYSIS							
SAMPLE ID	[F] ORIG. SAMP ANALYSIS PPM mg/l		[G] MD ANALYSIS PPM mg/l		[H] RELATIV DIFFEREI %				
MATRIX	10		10		0				
MS TOTAL [C	C] = [A] + [B]]							
SAMPLE ANAI	LYSIS [A] = []	F + G] /	2						
* RECOVERY	[E] = 100 *	[D - A]	/ [B]						
<pre>% RELATIVE</pre>	DIFFERENCE []	H] = 200	* [F - G]] /	/ [F + G]				

John E. Kellen JOHN KELLER, Ph.D

Eigres Laboratoria	CH ENVIR	CHAIN OF CUSTODY RECORD NVIRON EXPRESS LABORATORIES 401 North 11th, La Porte, Texas 77571 (713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821	DY RECORD DY RECORD ABORATO (c, Texas 77571 0) 880-0156 71-5821	RIES		Page	5
Project Name			2				a: Check One
Samoler's Affiliation:	Surger's	Name (PRINT: 1	$\overline{\mathbf{u}}$	ARLAND			2 days L 5 days
C & E		Sampler's: <i>(Signature)</i>	222	- Lall	 }	LABUHAIUHY ANALYSIS Reference EPA Method #	Y ANALYSIS
Results to: Scott Kuy Kennan tax 520 682		21	H bu A	5100		/////	/////
pro					\square		
Laars	Lab Remarks:	rks:					
Involce to: SAME. No. () (< 	
Lab Number Sample No/ Date and Mentification Time	Grab Comp	Sample Sample Sam Container Type (SizaMaat) Sludg	Sample Type (Liquid Studge, Etc.) valve				
20569 XMEA-2D (DA) Pro) 0-23-9	3 - 40	tor X2 Sor	1 400	5	· ~ ·	×	
Floca-IA	3 ~ 4	yr Se,	1 40	1 1 1			
-E-3 21/-	7 7 4	loc Sou	1 4.0	っつ	1		
20572 Floon - 1 C 1544	, u	for Son	1 40	C L L			
-/D	2	you Son	1 240	1 1 ()			
Flour JE)	Yon Sar	1 40		7		
- 1 F	۰ ۱	for So,	1 40	י ג ג			
20576 Floun - 1 6 1300	7 1	or ISa,	γ / γ	5	j		
1 Flour- 1 H	37	or Sor	$1 d^{e}$	2 7	<u> </u>		675:85-93
		••••					
Relinquished by: () . Lull	- 33	Received By: (Signetur)	the			Date: 8/4 Time: /0/5	Intact
Relinquished by: (Signature)		Received By: (Signeture)				Date: Time:	Intact
		5					

			1009-005 SEPTIC-1	
	4	401 North 11th • L	a Porte, Texas 77571	
Express Laboratories	(713) 471-09.	51 • 1 (800) 880-01.	56 • FAX (713) 471	-5821
Customer: <u>ENSR</u>	Sam	ple ID:SEPTIC	-1A Attn: <u></u>	KUYKENDAHL
Client: <u>EXXON</u> -	HOBBS		Proj. No:	1009005111
Proj. Location:	DAL PASO		Environ II	5. State -
Sample Matrix: <u>S</u>)IL Sam	ple Depth:	Sampled: _	08/26/93
Received: <u>08/27</u>	<u>93</u> Rep	orted: <u>08/30/</u>	<u>93</u> Invoice No	4153
Test Method 5030/8020	Result PPM (mg/kg)	Blank I PPM (mg/kg)	Detection Limit PPM (mg/kg)	
Benzene	< 0.001	< 0.001	0.001	ار میش مربع میشود مربع میشود
Toluene	< 0.001	< 0.001	0.001	
Ethylbenzene	< 0.001	< 0.001	0.001	
Xylenes	< 0.003	< 0.003	0.003	
Analyst: J.M. Standard : <u>8020 - S</u>	5.2_			<u>e_22:33</u>
Test Method 8015M	Result	Blank <u>PPM (mg/kg)</u>	Detection Lin	
Petroleum Extractables	< 25	< 25	25	
Analyst: <u>J.M.</u> Standard : <u>DIESEL</u>	Date Extracted	: <u>08/28/93</u> Date A	nalyzed: <u>08/28/93</u>	@ 22:30

John E. Keller, Ph.D.

	· .			1009-005 SEPTIC-1	
					• المتحديد •
					الله المراجع ال المراجع المراجع المراجع المراجع المراجع
714		401 North 11th •	La Porte, Tex	as 77571	
Express Laboratories	(713) 471-09	51 • 1 (800) 880	-0156 •	FAX (713) 471	-5821
				• ,	
			-		to a de la Carle Constante
Customer: <u>ENSR</u>		ple ID: <u>SEPT</u>	IC-1B 2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	KUYKENDAHL
Client: <u>EXXON</u> -	HOBBS		1	Proj. No:	1009005111
Proj. Location:D	AL PASO		1	Inviron ID	: 21323
Sample Matrix: <u>SO</u>	<u>IL</u> Sam	ple Depth:		Sampled: _	08/ 26 / 93
Received: <u>08/ 27 /</u>	<u>93</u> Rep	orted: <u>08/30</u>	/ 93]	Invoice No	.: 4153
میں جو اس میں اور					وی وی وی وی وی وی وی وی وی
Test Method 5030/8020	Result PPM (mg/kg)	Blank PPM (mg/kg)	Detectio		
Benzene	< 0.001	< 0.001		0.001	
Toluene	<_0.001	< 0.001	(0.001	
Ethylbenzene	< 0.001	< 0.001		.001	
Xylenes	< 0.003	< 0.003		0.003	* .
Analyst: J.M. Standard : <u>8020 - 5</u>	Date Extracted	: <u>08/28/93</u> Date	Analyzed:	08/28/93	<u>@ 23:08</u>
Test Method 8015M	Result <u>PPM (mg/kg)</u>			ection Lim PPM (mg/kg	
Petroleum					_ ·
Extractables	< 25	< 25	-	25	
Analyst: <u>J.M.</u> Standard : <u>DIESEL</u>	Date Extracted	: <u>08/28/93</u> Date	Analyzed:	08/28/93	<u>e 23:19</u>
2		_ ·		-	_
8		·	John !	E. Kell	In

John E. Keller, Ph.D.

ł

ł

			<u>1009-005-11</u> Septic-1C	1
	40	l North 11th • La		
Express Laboratories	(713) 471-0951	• 1 (800) 880-011	56 • FAX (713) 471-5821	
				and a state of the
Customer: <u>ENSR</u>	Samp	le ID: <u>SEPTIC</u>		KENDAHL
Client: <u>EXXON</u> -	HOBBS		Proj. No: <u>100</u>	· · · · · · · · · · · · · · · · · · ·
Proj. Location:	DAL PASO		Environ ID:	21324
Sample Matrix: <u>S</u>	DIL Samp	le Depth:	Sampled: _08/	26 / 93
Received: <u>08/27</u>	<u>/ 93</u> Repo	orted: <u>08/30 /</u>	<u>93</u> Invoice No.:	4153
Test Method 5030/8020	Result PPM (mg/kg)		Detection Limit PPM (mg/kg)	
Benzene	< 0.001	< 0.001	0.001	and the second secon
Toluene	< 0.001	< 0.001	0.001	
Ethylbenzene	0.002	< 0.001	0.001	
Xylenes	0.005	< 0.003	0.003	
Analyst: J.M. Standard : 8020 - 9		<u>08/28/93</u> Date An	nalyzed: <u>08/28/93_@_2</u>	<u>3:42</u>
Test Method 8015M	Result <u>PPM (mg/kg)</u>	Blank <u>PPM (mg/kg)</u>	Detection Limit PPM (mg/kg)	
Petroleum Extractables		< 25	25	
Analyst: J.M. Standard : DIESEL	Date Extracted:	<u>08/29/93</u> Date An	nalyzed: <u>08/29/93 @ 0</u>	0:07
Scandard . DIESER	-			lar (
		C	Lohn E. Keller	1000 - 200 1000 - 200 1000 - 200 1000 - 200

John E. Keller, Ph.D.

			1000 005-1	****
			<u>1009-005-1</u> SEPTIC-1D	
				a second a s
		401 North 11th •	La Porte, Texas 77571	
Express Laboratories	(713) 471-0	951 • 1 (800) 880-0	9156 • FAX (713) 471-58	21
			······································	
Customer: <u>ENSR</u>	Sa	mple ID: <u>SEPTI</u>	<u>C-1D</u> Attn: <u>S. K</u>	IYKENDAHI
Client: <u>EXXON</u> -	HOBBS		Proj. No: 10	09005111
Proj. Location:			Environ ID:	21225
	· · · ·			
Sample Matrix: <u>S</u>	OIL Sa	mple Depth:	Sampled: 08	3/ 26 / 29
Received: <u>08/ 27</u>	<u>/ 93 Re</u> j	ported: <u>08/30</u>	<u>/ 93</u> Invoice No.:	4153
Test Method	Result	Blank	Detection Limit	
5030/8020	PPM (mg/kg)	PPM (mg/kg)	PPM (mg/kg)	
Benzene	< 0.001	< 0.001	0,001	
Toluene	< 0.001	•		
		< 0.001	0.001	
Ethylbenzene	< 0.001	< 0.001	0.001	
Xylenes	< 0.003	< 0.003	0.003	
Analyst: <u>J.M.</u> Standard : <u>8020 - !</u>	_ Date Extracted	-	Analyzed: <u>08/29/93 @</u>	00:52
Test Method	Result	Blank	Detection Limit	
8015M	PPM (mg/kg)	PPM (mg/kg)		- · · · · · · · ·
Petroleum		-	-	
Extractables	_< 25	< 25	25	
Analyst: <u>J.M.</u> Standard : <u>DIESEL</u>	Date Extracted	d: <u>08/29/93</u> Date i	Analyzed: <u>08/29/93</u> @	00:56
		-	-	-
		l l	John E. Kelle	2

			1009-005-111 SEPTIC FLOOP	
				· ··· ····
	401 North 1	1th • La Porte, T	exas 77571	
Express Laboratories (713) 471-0951 •	1 (800) 880-0156 •	FAX (713) 471-5821	· ·
Customer: <u>ENSR</u>	Sample ID:	SEPTIC FLOOR	Attn: <u>S. KUYF</u>	CENDAHL
Client: <u>EXXON - HOBBS</u>	<u> </u>	<u></u>		The state
Proj. Location: <u>DAL PASO</u>			-	terre and the
Sample Matrix: <u>SOIL</u>	Sample Dep	th:	Sampled: 08/	26 / 93
Received: <u>08/27/93</u>	Reported:	08/30/93	Invoice No.: _	4153
		Blank De (mg/kg)	tection Limit	
Petroleum Extractables <u>1,4</u>	89	< 25	25	
Analyst: <u>J.M.</u> Date Ex Standard : <u>DIESEL</u>	tracted: <u>08/29/</u>	<u>93</u> Date Analyze	d: <u>08/29/93 @ 01</u>	L :45
		John E.	<u>E. Killn</u> Keller, Ph.D.	

.

. ...

11 1 - 2

			_1009-00 	
	401	North 11th •	La Porte, Texas 77571	
Express Laboratories	(713) 471-0951	• 1 (800) 880-	0156 • FAX (713) 47	1-5821
			• •	
	Campl		<u>C FLOOR</u> Attn: <u>S</u>	PITY PINA HI
Customer: <u>ENSR</u> Client: <u>EXXON - HOBBS</u>	Sampi	e ID: <u>SEPTIC</u>	<u>Proj.</u> No:	
Proj. Location: <u>DAL PASO</u>		· · · ·	Environ 1	D: 21326
Sample Matrix: <u>SOIL</u>	. –	-		Se in Pro
Received: <u>08/27/93</u>	Repor	ted: <u>08/31</u>	<u>/93</u> Invoice P	No.: <u>4153</u>
	<u>totai</u>	. RCRA METALS		
Metals	Method	Results mg/l	Detection Limit mg/kg	Max Conc.
Arsenic Barium	7061 7080	4.8 134.0	0.1 0.1	5.0 100.0
Cadmium Chromium	7130 7190	< 0.1 9.0	0.1	1.0 5.0
Lead	7420	<-0.1	0.1	5.0
Mercury Selenium	7470 7741	0.15	0.01 0.1	0.2
Silver	7760	< 0.1 < 0.1	0.1	5.0
Analyst: <u>A.R.</u> Date	Fytracted	08/20/92 Dat	te Analyzed: <u>08/30</u>	/93 A 14:00
Maryse. <u>A.K.</u> Date	BALL GULEU	<u>vg/Jv/JJ</u> Dd	ee Muaty 264. 00/30	

John E. Keller, Ph.D.

Environ Express Laboratories 401 North 11th St. La Porte, Texas 77571

Attn: Steve Henning

Invoice #:

.....

Certificate #: 30827003 Sample ID: 21326 Septic Floor-1 Date Received: 08/27/93

BASE/NEUTRAL & ACID EXTRACTABLES (METHOD 625)

Base/Neutral Extractables

	Concentration mg/Kg	n Detection Limit mg/Kg
Bis(2-chloroethyl)ether	ND	0.250
1,3 Dichlorobenzene	ND	0.250
1,4 Dichlorobenzene	ND	0.250
1,2 Dichlorobenzene	ND	0.250
Bis(2-chloroisopropyl)ether	ND	0.250
Hexachloroethane	ND	0.250
N-Nitrosodi-n-propylamine	ND	0.250
Nitrobenzene	ND	0.250
Isophorone	ND	0.250
Bis(2-Chlorosthoxy)methane	ND	0.250
Hexachlorocyclopentadiene	ND	0.250
1,2,4 Trichlorobenzene	ND	0.250
Naphthalene	0.226	0.250
Hexachlorobutadiene	ND	0.250
Acenaphthylene	ND	0.250
Dimethyl phthalate	ND	0.250
2,6 Dinitrotoluene	ND	0.250
Acenaphthene	ND	0.250
2-Chloronaphthalene	ND	0.250
2,4 Dinitrotoluene	ND	0.250
Fluorene	ND	0.250
4-Chlorophenyl phenyl ether	ND	0.250
Diethyl phthalate	` ND	0.250
2-Methylnaphthalene	2.149	0.250

Michael A. Sommer II, Ph.D.

CONSOLIDATED SCIENCES, INCORPORATED 1418 SOUTHMORE PASADENA, TEXAS 77502 (713) 920-1696 FAX (713) 920-1648

Environ Express Laboratories Certificate #: 30827003 Sample ID: 21326 Spectic Floor-1 Date Received: 08/27/93

BASE/NEUTRAL & ACID EXTRACTABLES (METHOD 625)

Base/Neutral Extractables

	Concentration mg/Kg	Detection Limit mg/Kg
4-Bromophenyl phenyl ether	ND	0.250
Hexachlorobenzene	ND	0.250
Phenanthrene	0.233	0.250
Anthracene	ND	0.250
Di-n-butylphthalate	ND	0.250
Fluoranthene	ND	0.250
Pyrene	ND	0.250
Benzidine	ND	0.250
Benzyl Butyl phthalate	ND	0.250
Chrysene	ND	0.250
Benzo(a) anthracene	ND	0.250
3,3-Dichlorobenzidine	ND	0.250
Di-n-octylphthalate	ND	0.250
Bis(2-ethylhexyl)phthalate	0.836	0.250
Benzo(b)fluoranthene	ND	0,250
Benzo(k)fluoranthene	ND	0.250
Benzo(a) pyrene	ND	0.250
Indeno(1,2,3-cd) pyrene	ND	0.250
Dibenzo(a,h)anthracene	ND	0.250
Benzo(ghi)perylene	ND	0.250
N-Nitrosodimethylamine	ND	0.250
N-Nitrosodiphenylamine	ND	0.250

Michael A. Sommer II, Ph.D.

CONSOLIDATED SCIENCES, INCORPORATED 1416 SOUTHMORE PASADENA, TEXAS 77502 (713) 920-1696 FAX (713) 920-1648 20-1 95:21 ロヨ州 26-1 - 135

Environ Express Laboratories Certificate #: 30827003 Sample ID: 21326 Septic Floor-1 Date Received: 08/27/93

Acid Extractables

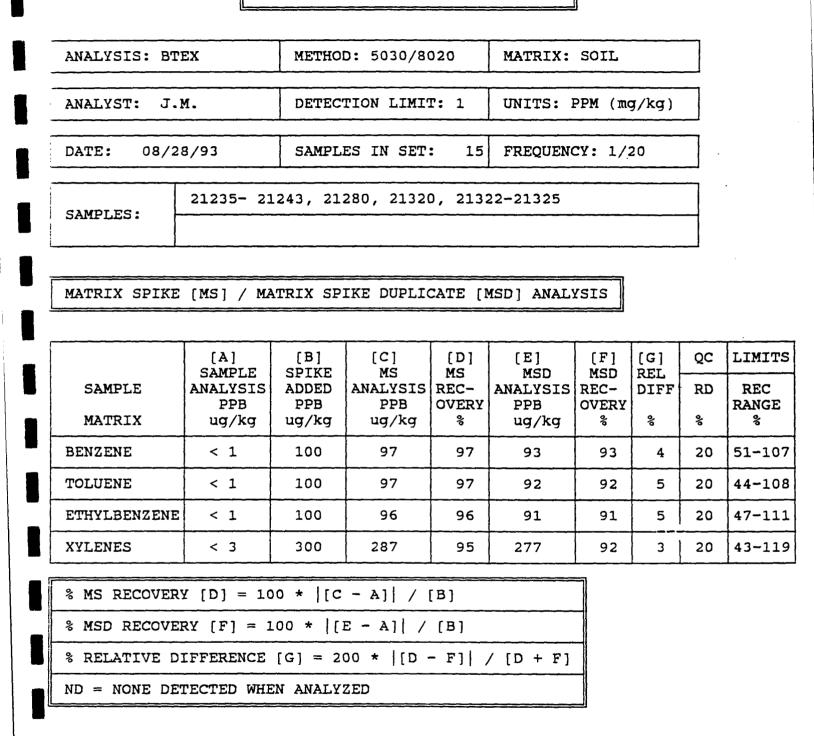
	Concentration mg/Kg	n Detection Limit mg/Kg
Phenol	ND	0.250
2-Chlorophenol	ND	0.250
2-Nitrophenol	ND	0.250
2,4-Dimethylphenol	ND	0.250
2,4-Dichlorophenol	ND	0.250
4-Chloro-3-methylphenol	ND	0.250
2,4,6-Trichlorophenol	ND	0.250
2,4-Dinitrophenol	ND	0.250
4-Nitrophenol	ND	0.250
2-Methyl-4,6-dinitrophenol	ND	0.250
Pentachlorophenol	ND	0.250

Surrogate Recoveries:

2-Fluorophenol	140	Ł
Phenol-d5	105	*
Nitrobenzene	104	\$
2-Fluorobiphenyl	103	*
Terphenyl-d14	90	\$

Michael A. Sommer II, Ph.D.

Environ Express Laboratorie CONSCI Certificate #: 30827003 Sample ID: 21326 Septic Floor-1 Date Received: 08/27/93


VOLATILE ORGANICS (METHOD 624)

Parameter

	Concentratio	on Detection
	mg/Kg	Limit mg/Kg
	ND	0.500
Chloromethane	ND	0.500
Bromomethane	ND	0.500
Vinyl chloride Chloroethane	ND	0.500
Methylene chloride	ND	0.500
Trichlorofluoromethans	ND	0.500
1,1-Dichlorosthene	ND	0.500
1,1-Dichloroethane	ND	0.500
trans-1,2-Dichloroethene	ND	0.500
Chloroform	ND	0.500
1,2 Dichloroethane	ND	0.500
1,1,1-Trichloroethane	ND	0.500
Carbon tetrachloride	ND	0.500
Bromodichloromethane	ND	0.500
1,2-Dichloropropane	ND	0.500
trans-1, 3-Dichloropropene	ND	0.500
Trichloroethene	ND	0.500
Велгеле	ND	0.500
1,1,2-Trichloroethane	ND	0.500
cis-1,3-Dichloropropene	ND	0.500
2-Chloroethylvinyl ether	ND	0.500
Bromoform	ND	0.500
1,1,2,2-Tetrachloroethane	ND	0.500
Tetrachloroethene	ND	0.500
Toluene	ND	0.500
Chlorobenzene	ND	0.500
Ethyl benzene	8.726	0.500
Dibromochloromethane	ND	0.500
1,2-Dichlorobenzene	ND	0.500
1,3-Dichlorobenzene	ND	0.500
1,4-Dichlorobenzene	ND	0.500
m+p-Xylene	11.532	0.500
о-Хуlеле	12.143	0.500
Styrene	ND	0.500

Michael A. Sommer II, Ph.D.

CONSOLIDATED SCIENCES, INCORPORATED 1416 SOUTHMORE PASADENA, TEXAS 77502 (713) 920-1696 FAX (713) 920-1648

m E. Kolly

JOHN KELLER, Ph.D

ANALYSIS:	TPH (GC)	METHOD	: 8015M	MATRIX:	SOIL
ANALYST:	л.к.	DETECT	ION LIMIT: <2	25 UNITS:	PPM (mg/kg
DATE: 08/2	28/93	SAMPLES	5 IN SET: 5	FREQUENC	Y: 1/20
SAMPLES:	21322-2132	6			
MATRIX SPIN	KE [MS] ANALY	SIS			
SAMPLE ID	[A] SAMPLE ANALYSIS PPM mg/kg	[B] SPIKE ADDED PPM mg/kg	[C] MS TOTAL PPM mg/kg	[D] MS ANALYSIS PPM mg/kg	[E] RECOVERY %
MATRIX	< 25	100	100	86	86
MATRIX DUPI	LICATE [MD] A	NALYSIS			
SAMPLE ID	[F] ORIG. SAMP ANALYSIS PPM mg/kg	LE	[G] MD ANALYSIS PPM mg/kg	[H] RELATI DIFFERE	_
SAMPLE ID MATRIX	ORIG. SAMP ANALYSIS PPM	LE	MD ANALYSIS PPM	RELATI DIFFERE	-

ANALYSIS: 1			: 1311/7420	MATRIX:	
ANALYST: A	ROEHRICK	DETECT	ION LIMIT:	1 UNITS: P	PPM (mg/l)
DATE: 08/29	9/93	SAMPLE:	S IN SET: 18	B FREQUENC	Y: 1/20
SAMPLES:	21326,2213	41-2135	7		
MATRIX SPIN	KE [MS] ANALY:	SIS			
SAMPLE ID	[A] SAMPLE ANALYSIS PPM mg/l	[B] SPIKE ADDED PPM mg/l	[C] MS TOTAL PPM mg/l	[D] MS ANALYSIS PPM mg/l	[E] RECOVERY %
21326	< 1	10	10	7	70
MATRIX DUPLICATE [MD] ANALYSIS [F] [G] [H] ORIG. SAMPLE MD RELATIVE SAMPLE ID ANALYSIS ANALYSIS PPM PPM PPM					
21326	mg/1 7				
MS TOTAL [C	C] = [A] + [B]]			
	LYSIS [A] = [2]		/ 2		
% RECOVERY	[E] = 100 *	[D - A] / [B]		
% RELATIVE	DIFFERENCE []	H] = 200) * [F - G] / [F + G]	
ND = NONE	DETECTED WHEN	ANALYZ	ED		
			~	m E. Kel	

	EPPrese	ENVIRON Espesa Laborator	EN		CHAIN OF CUSTODY RECORD VIRON EXPRESS LABORATORIES 401 North 11th, La Porte, Texas 77571 (713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821	CORD LATORIE 77571 156	Ø	Page	6
Project No.	Project Name		11	Proje	Project Location	Ę		Tum Around	Turn Around Time: Check One
Sampler's Affiliation:			Sam	Sampler's Name (PRINT): Sampler's Vsimetime!	16%	17K 1	1005	LABORAT	"Z "
Results to:	677- phone	530 9900	Sam	Sampler Remarks:	1. A. 1. A. 1.				/////
Address:	EN RICHMON	1		1	SIUS re			7 ////	
	XT		Lab	Lab Remarks:				Ŕ	
8	No. (0308	X	
Lab Number	Field Sample No/ Kientification	eta Bota Bota Bota	Grab	Sample Container (Siza/Mat.)	Sample Type (Lquid, Sludge, Etc.)	Preser- vative			
21322	Sciptic - 1A	17251 55-98-5	7	Earum		5./7	د ۲		
21323	SEPTIC - 10	22-20-5	7	Bozum	Sinc	Joly	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
21324	Septic . 1C	5-7e-8	7		کري ز	7.5	L L		
21325	Scric-1D	5-76-51	7	Sorum	کاروک	46	7		005:8-30 43
21326	Sentic Elever 1	5	<u>ذ</u>	Sonum	5000	2.17	>		
-	1 2	13-9C-8		Bozum	کاروک	45			cchinalou
	Scritic Flow-1	13-25-99	1	Brun	كممدر	2.17			1 ot is L
		1320	ذ ا	Ruz um	ی رہ کر ا	4 t,	•		RCRA META
	Sepric floor 1	1370	7	Bortum	Solu	J.h			EXTRA
Relinquished by				ر المعالمة المحالية ا 1. معالمة المحالية ال	2 : 9 ;	<		Dates: 8/27	27 Intact
(Signature) (amints ()		5.2 C The //15	_	PUMer	ler		Time:/00	
Relinquished by: (Signature)			Date:	Received By: (Signature)	×			Date:	Intact

		1009005-111 SUMP LIOUID-1
	401 North 11th • La Porte,	Texas 77571
Express Laboratories	(713) 471-0951 • 1 (800) 880-0156 •	FAX (713) 471-5821
	· .	
Customer: <u>ENSR</u>	Sample ID: <u>SUMP LIO-1</u>	Attn: <u>B. ESTES</u>
Client: <u>EXXON - HOBB</u>		Proj. No: <u>1009005111</u>
Proj. Location: <u>DAL</u>	PASO	Environ ID: <u>21909</u>
Sample Matrix: <u>LIOUI</u> Received: <u>09/15/93</u>	D Sample Depth:	Sampled: <u>09/15/93</u>
Received: <u>09/15/93</u>	Reported: <u>09/ 28 / 93</u>	Invoice No.: <u>4230</u>
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

TCLP RCRA METALS (METHOD 1311)

Metals	Method	Results mg/l	Detection Limit mg/l	Max Conc
Arsenic	7061	< 0.1	0.1	5.0
Barium	7080	4.5	0.1	100.0
Cadmium	7130	< 0.1	0.1 -	1.0
Chromium	7190	< 0.1	0.1	5.0
Lead	7420	< 0.1	0.1	5.0
Mercury	- 7470	0.16	0.01	0.2
Selenium	7741	< 0.1	0.1	_1.0
Silver	7760	< 0.1	0.1	5.0

Analyst: J.K. Date Extracted: 09/23/93 Date Analyzed: 09/23/93 @ 13:45

John E. Keller, Ph.D.

TEL No.

mba labs/houston labs

MICRO BIOLOGICAL AND BIOCHEMICAL ASSAY LABS P.O. BOX 9461 HOUSTON, TEXAS 77261 TELEPHONE (713)928-2701 (800)472-1485 FAX (713)928-9063 LABORATORY IDENTIFICATION

J54187 - 1

of 1 Pege 1

ANALYSIS CERTIFICATE

10/10/93

CUSTOMEN IDENTI		custom Enviro	en on Express La	sboratories		CONTACT/CONTR Roxanne Whee	
PROJECT	PROJECT NAME			PO #		RELEASE #	CHARGE
DATE RECEIVED	DATE COMPLETED	MATRIX	TYPE GR	PRESERV REFRIG	CONTAINER GLASS	DATE SAMPLED 09/17/93	Time sampled 00:00

PARAMETER Preparation TCLP ZHE	Done	DET. LIMIT	EPA1311	
respection TCLP Semivolatiles Ext	Done	50 EU	EPA1311	09/21/93 NG
ICLP VOA'S		~	EFRIJII	09/21/93 NG
Benzene	<0.02	mg/l	SW846-8240	09/23/93 YA
Carbon Tetrachloride	<0,02	mg/l	5 4846-824 0	09/23/93 YA
Chlorobenzane	<0.02	mg/l	SW846-8240	09/23/93 YA
Chloroform	<0.02	mg/l	54846-8240	09/23/93 YA
1,2 Dichloroethane	<0.02	mg/l	54846-8240	
1,1 Dichloroethylene	<0.02	mg/l	SW846-8240	
Methyl Ethyl Ketone	<0.02	ma/l	SW846-8240	
Tetrachloroethylene	<0.02	ng/l	SUB46-8240	• • • • • • • • • • • • • • • • • • • •
Trichloroethylene	<0.02	mg/l	SW846-8240	09/23/93 YA 09/23/93 YA
Vinyl Chloride	<0.02	mg/l	54846-8240	09/23/93 YA 09/23/93 YA
ICLP Semi-volatiles				U9/23/93 1A
o cresol	<0.02	tng∕l	54646-8270	AD /38 /07 - MA
m cresol	<0.02	mg/t	SUB46-8270	09/28/93 YA
p cresol	<0.02	mg/t	SHB46-8270	09/28/93 YA
cresol	⊲0.02	mg/l	SW846-8270	09/28/93 YA
1,4 Dichlorobenzene	<0.02	ng/t	SW846-8270	09/28/93 YA
2,4 Dinitrotoluene	<0.02	mg/i	SU846-8270	09/28/93 YA
Kexach Lorobenzene	<0.02	mg/l	SW846-8270	09/28/93 YA
Hexachlorobutadiane	<0.02	mg/l	SW846-8270	09/28/93 YA
Nexachloroethane	<0.02	mg/t	SV846-8270	09/28/93 YA
Nitrobenzene	<0.02	•	···· 	09/28/93 YA
Pentachlorophenol	<0.02	mg/l mg/l	SW846-8270	09/28/93 YA
Pyridine	<0.02		SW846-8270	09/28/93 YA
2,4,5 Trichlorophenol	<0.02	mg/l	SW846-8270	09/28/93 YA
2,4,6 Trichlorophenol	<0.02	mg/l	SW846-8270	09/28/93 TA
-		. mg/1	SW846-8270	09/28/93 YA

Approved By :

hr &

- -

----- Lab Director/Lab Manager

THESE RESULTS PERTAIN ONLY TO THE BAMPLEIST DEBCRIBED ON THIS REPORT, AND CANNOT BE MODIFIED/REPRODUCED WITHOUT THE WRITTEN PERMISSION FROM MBA LABS AND/OR THE CLIENT.

.......

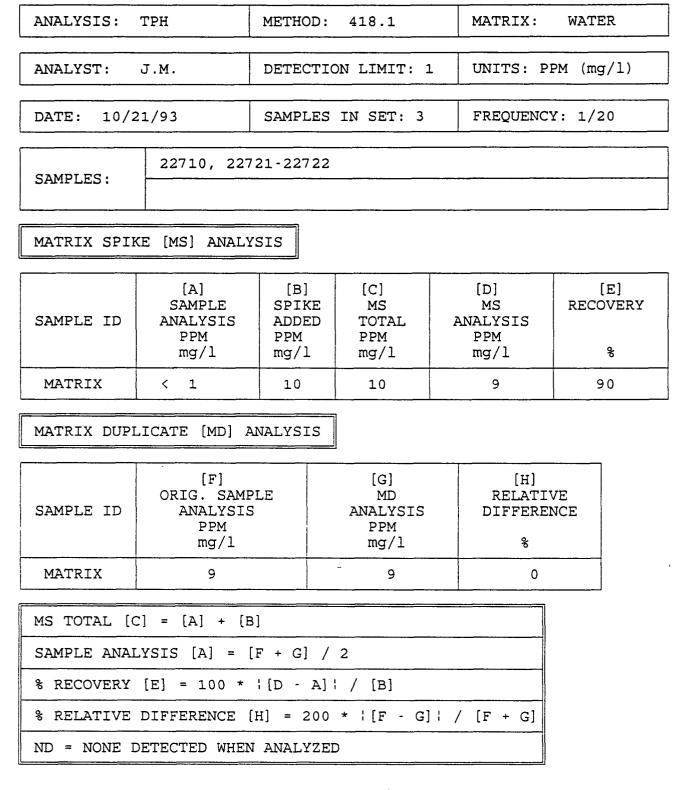
ANALYSIS: LEAD (TCLP) METHOD: 1311/7420 MATRIX: SOIL								
ANALYST: A	. ROEHRICK	DETECTIO	ON LIMIT:	1 UNITS: P	PM (mg/l)			
DATE: 09/22	2/93	SAMPLES	IN SET: 5	5 FREQUENC	Y: 1/20			
SAMPLES:	21909-21912	2, 21917						
MATRIX SPI	KE [MS] ANALY:	SIS						
SAMPLE ID	[A] SAMPLE ANALYSIS PPM mg/l	[B] SPIKE ADDED PPM mg/l	[C] MS TOTAL PPM mg/l	[D] MS ANALYSIS PPM mg/l	[E] RECOVERY %			
MATRIX	< 1	10	10	11	110			
MATRIX DUPLICATE [MD] ANALYSIS [F] [G] [H] ORIG. SAMPLE MD RELATIVE								
SAMPLE ID	ANALYSIS PPM mg/l		ANALYSIS PPM mg/l	DIFFERE %				
SAMPLE ID MATRIX	PPM		PPM	DIFFERE				
MATRIX	PPM mg/l		PPM mg/l	DIFFERE				
MATRIX MS TOTAL [0	PPM mg/l 11		PPM mg/l 11	DIFFERE				
MATRIX MS TOTAL [(SAMPLE ANA)	PPM mg/l 11 C] = [A] + [B]	F + G] /	PPM mg/l 11 2	DIFFERE				
MATRIX MS TOTAL [0 SAMPLE ANA] % RECOVERY	PPM mg/1 11 C] = [A] + [B] LYSIS [A] = [1	F + G] /	PPM mg/l 11 2 ; / [B]	DIFFERE %				

John E. Keller JOHN KELLER, Ph.D

1

ANALYST: A	. ROEHRICK	DETECTI	ON LIMIT:	1 UNITS: H	PPM (mg/l)				
DATE: 09/22	2/93	SAMPLES	IN SET: 5	5 FREQUENC	CY: 1/20				
SAMPLES:	21909-2191	2, 21917							
MATRIX SPI	KE [MS] ANALY	SIS							
SAMPLE ID	[A] SAMPLE ANALYSIS PPM mg/l	[B] SPIKE ADDED PPM mg/l	[C] MS TOTAL PPM mg/l	[D] MS ANALYSIS PPM mg/1	[E] RECOVERY %				
MATRIX	< 1	10	10	9	90				
MATRIX DUPLICATE [MD] ANALYSIS									
[F] ORIG. SAMPL SAMPLE ID ANALYSIS PPM mg/l			[G] MD ANALYSIS PPM mg/l		RELATIVE DIFFERENCE				
MATRIX	9 -		9	0					
MS TOTAL [(C] = [A] + [B]	<u></u>						
SAMPLE ANA	LYSIS (A) = (F + G] /	2						
<pre>% RECOVERY</pre>	[E] = 100 *	[D - A]	/ [B]						
<pre>% RECOVERY [E] = 100 * ! [D - A] ! / [B]</pre>									
<pre>% RELATIVE</pre>	DIFFERENCE [H] = 200							

John E. Kellen OHN KELLER, Ph.D


						CHAIN UP CUSI UP		1			Fagu		3	
		Express	ENVIRON Exprese Laboratoria		NN	IRON EXP 401 North 11t (713) 471-0 Fax No	ENVIRON EXPRESS LABORATORIES 401 North 11th, La Porte, Texas 77571 (713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821	ATORIE 7571 56	Ĩ			<u> </u>		
Project No.		Project Name				Proje	Project Location				TumA	min Drug	Tum Around Time: Check One	
1009005-111	-111	EXXON - Hobbs,	bs, New Mexico	<u>sxic</u>	ò	Ŭ	Dal Paso				🗌 1 day		2 days 🕎 5 days	
Sampler's Affiliation: FORKLIFT ENTE	RPRISES,	INC., for ENSR	SR		mple	Sampler's Name (PRINT): Sampler's: <i>(Signature) C</i>	4.1	GLADE HARRISON,	JR.		LABC Ref	BORATOR Reference Ef	ABORATORY ANALYSIS Reference EPA Method #	
Results to:	ENSR	phone 71. fax /13-7	phone 713-520-990 fax 713-520-6802	o	nplei	Sampler Remarks:	<i>a k</i>		`				////	
Address:	3000 Richmond Ave.	ive.								$\overline{}$		01	////	
City:	Houston, Texas	77098		Ы	Rer	Lab Remarks:				$\overline{\ }$.4EI			
Invoice to:	ENSR	No. ((608			》 入		
Lab Number	Field Sample No./ Identification	4o/ Moi	Dette and Time	Grath	gmod	Semple Container (Size/Mat,1)	Sample Type (Lquid, Sludge, Elc.)	Preser- vative	ALLER LO	WK (101 101 101 101 101 101 101 101 101 101	3 45 1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2		
31909	Sump Liquid	- 1	411593 120	×			Liquid	' ₄°C			X	ХX		
								-						
												-		
						÷								
													1/1 1 7 4 2 3 0	n,
(Signature)		targison 12	K	Date Time	Dater///5/1/3 Time: Z.P.M	h3 Received By: (Signature)	× ///	Aller	1. v.			Datas///S	Intact D/230	
Relinquished by: (Signature)	y: ' ' '	~		Date: Time:		Received By: (Signature)	ä				-	Date: Time:	Intact	

İ

OCT-27-93 07.02 FROM.	ENVIRON EXPRESS LABS	ID, 713 471	WASH BAY	PAGE 2 SUMP
	401 North 11th	• La Porte, T	exas 77571	
Express Laboratories	(713) 471-0951 • 1 (800) 880-0156 •	FAX (713) 471-58	21
Customer: <u>ENSR</u>	Sample ID:(W	UMP LIQUID-1	Attn: S. K	TVKENDAT.T.
	ICAL - HOBBS, N.M.			
Proj. Location:				
	ID Sample Depth			
Received: <u>10/ 21 / 9</u>		0/ 22 / 93		
ین بین چې چې چې چې چې چې د د د د د د د د د د د	کار این است. است است است است است است است این این این این این است	مید به به به نبه نظ خط خط مه وه به به به به به		ین که دور دو بور بور دو دو ا
Test Method	Result Blank PM (mg/l) PPM (mg/		ion Limit (mg/l)	
· · ·				
Petroleum Extractables	< 0.5 < 0.5		2.5	
Analyst: <u>J.M.</u> D. Standard : <u>418.1 - 6.</u>	ate Extracted: <u>10/21/93</u> 5.1	Date Analyzed	1: <u>10/21/93 @</u>	15:00
-				
		0.	- 10 00	
		John E.	E. Killn Keller, Ph.E	
) 		-

Í

i · ·

ohn E. Keller

OHN KELLER, Ph.D

mba labs/houston labs

MICRO BIOLOGICAL AND BIOCHEMICAL ASSAY LABS P.O. BOX 9461 HOUSTON, TEXAS 77261 YELEPHONE (713)928-2701 (800)472-1485 FAX (713)928-9083

> Page 1 et 2

LABORATORY IDENTIFICATION

154657 - 2

ANALYSIS CERTIFICATE

CUSTOMER IDENTIFICATION	10/26/93 Customos Environ Express Laboratories	
PROJECTS PROJECT NAME	100	
DATE RECEIVED OATE COMPLETED MATTER 10/21/93 10/22/93 VATER	CA PRESERV CONTAINER	0478 SANFLED TIME SAMPLED 00:00

Sump Liquip-1

Met
sx [
VG1
[
NG I

4 bagel Approved By :

Lab Director/Lab Manager

THEEF RESULTS PERTAIN ONLY TO THE SAMPLE AS DESCRIBED ON THE REPORT, AND CANNOT SE MODIFIED REPROJUCED WITHOUT THE WHITTEN PERMISSION FROM MOA LASS AND/OR THE CLEWNY.

ZULY SUU, ON TULL TURES MEL

mba labs/houston labs

MICRO BIOLOGICAL AND BIOCHEMICAL ASSAY LABS P.O. 80X 8461 HOUSTON, TEXAS 77281 TELEPHONE (713)928-2701 (800)472-1485 FAX (713)928-8083

154657 - 2

LABORATORY IDENTICATION

Page 2 of 2

QUALITY CONTROL CERTIFICATE

TOMER DENTIREATION			·	10/26/93			
2722	Envi	Con Express	Laborati	eries	CONTACTA	ONTRACTOR	
Sumplia		·			toxanne		
PARAMETER	UNITS	LAFID	SAMP		LE DVE STIL	AR AND MA	CO BLAN
				AREACODES ENCOU		A CONTRACTOR OF CONTRACTOR	IACSU
Flash Point 0/22/93 <u>\$4846-9030.7342</u>	Degn #	J54585 - 1	>150	>150		0	
Reactive Suifide	MO/kg	J\$4629 - 1	4	<1		۵	
						-	
		-					

Lab Director/Lab Manager

Thise results platain only to the samplesi described on the agary, and cannot be madineproduced without the written permission from Maa lare and/or The climit. ** S.R - Saedovery risid - relative & difference strole - saedovery largatory control cample

SUL 28.01 NO. 101 TU-82 MAL

	BA	Eliver	I I I I I I I I I I I I I I I I I I I	Ĩ	CHAIN NVIRON 401 No (713	L OF CU: EXPRE with 11th, L) 471-0951 Fax No. (7	CHAIN OF CUSTODY RECORD SNVIRON EXPRESS LABORATORIES 401 North 11th, La Porte, Texas 77571 (713) 471-0951 / (800) 880-0156 Fax No. (713) 471-5821	ORD ATORIE 7571 56	S.		Page			
Project No.		Project Name	:			Project Location	ocation				Tum Art	ound Time: Cl	Turn Around Time: Check One 1 day	
	Sampler's Affiliation:			Sam	Sampler's Name (PRINT):	ne (PRIN						RATORY Tence EF	LABORATORY ANALYSIS Beference EPA Method #	[
_	Results to: FNN I RUN	phone 41	1.004		Sampler S. (Sugnature) Bamoler Remarks: /	rks:	NF EL	-	ľ				1111	
Address:	-			ROT	T10/22	N		12	٩			01		
City:					Lab Remarks:)		$\left \right\rangle$	$\overline{\ }$		EI DI		
Involce to:	1	No. ((00		2/00/2	Z		
Lab Number	Erekd Sample No/ Kdentification	lon/	Dette and Time	danD qmoJ	Bample Container (Size/Mat.)	a Fer Liter	Sample Type (Liquid, Skudge, Etc.)	Preser- vative	127/20/		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\langle \rangle$		
	12122				INUCZ1	1:1 1:1		161			\times			I
	22122	2			11	K		-			X		PUSH1	
													10/22	
													-)	
												/		П
				\rightarrow										
	-			+										
Relinquished by: ((Signature)	I'MA MANY			Date: // Time://	2.2	Received By: (Signature)					ă Ĕ	Date: Time:	Intact	
Relinquished by: (Signature)	H. J. J.	l luni		Date: Time:	•	Received By: (Signature)					ā Ē	Date: Time:	Intact	Ι
]

AnalytiKEM An American NuKEM Company

AnalytiKEM Inc. 2925 Richmond Avenue Houston, TX 77098 713/520-1495 713/520-9900 Fax: 713/523-7107

Octuber 2, 1992

າໝີ ເມັນ 1.00 ເປັນເປັນເປັນເປັນ

ENSR 3000 Richmond

Houston, TX 77098

Attention: Scott Kuykendall

Attached are reports of chemical analyses of samples received September 9, 1992. These analyses are:

Count	Test	Code	Test Name	Test Method	Sampled	Matrix
3	Ag	TCL-HOU	TCLP SILVER	EPA SW-846: 7760, ATOMIC ABSORPTION		TCLP_EXT
3	As	TCI-HOU	TCLP ARSENIC	EPA SW-846: 6010, ICP		TCLP_EXT
3	BNA	HOU	SEMIVOLATILE ORGANICS	EPA SW-846: 3520,8270, LLE,GC/MS		TCLP_EXT
3	8a	TCL-HOU	TCLP BARIUM	EPA SW-846: 6010, ICP		TCLP_EXT
3	CORR	-SHOU	CORROSIVITY ON SOLID	EPA SW-846: 1110, NACE STEEL COUPON	09/03/92	SOIL
3	Cđ	TCL-HOU	TCLP CADMIUM	EPA SW-846: 6010, ICP		TCLP_EXT
3	Cr	TCL-HOU	TCLP CHROMIUM	EPA SW-846: 6010, ICP		TCLP_EXT
3	FP	-SHOU	IGNITABILITY ON SOLID	EPA SW-846: 1010, PENSKY MARTIN	09/03/92	SOIL
3	H2S	-S-REA-SWL	HYDROGEN SULFIDE, REACTIVE/SLD	EPA SW-846: 7.3.4.2, 9030	09/03/92	SOIL
3	HCN	-S-REA-SWL	HYDROCYANIC ACID, REACTIVE/SLD	EPA SW-846: 7.3.3.2, 9010	09/03/92	SOIL
3	Нg	TCL-HOU	TCLP MERCURY	EPA SW-846: 7470, COLD VAPOR		TCLP_EXT
3	РЪ	TCL-HOU	TCLP LEAD	EPA SW-846: 6010, ICP		TCLP_EXT
3	Se	TCI-HOU	TCLP SELENIUM	EPA SW-846: 6010, ICP		TCLP_EXT
3	VOA	HOU	VOLATILE ORGANIC ANALYSES	EPA SW-846: 8240, GC/MS		TCLP_EXT
3	рH	-S-COR-HOU	pH CORROSION ON SOLID	EPA SW-846: 9045	09/03/92	SOIL

Data contained in this report reflect a full quality control review and have met all applicable standards established by AnalytiKEM. AnalytiKEM quality assurance protocols are in accordance with EPA guidelines.

Should you have any questions, do not hesitate to contact me at (713) 520-1495.

LAB NO. A8972 CONT.

LAB NO. A8972 CONT.

Very Truly Yours,

Analynike Larry Frantz Lab Director

LF/lis

Enclosures: Analytical Summary, Analytical Report, Chain of Custody, Sample Receipt Checklist, Quality Control Logs, ANALYTIKEM ID #A8972-1T, ANALYTIKEM ID #A8972-2T, ANALYTIKEM ID #A8972-3T, SWL CERT. #92-09-118-01, SWL CERT. #92-09-118-02, SWL CERT. #92-09-118-03

LAB NO. A8972 PROJECT 1009-001-150 EXXON PAGE 2

AnalytiKEM An American NuKEM Company

SAMPLE DISPOSAL LETTER

AnalytiKEM Inc. 2925 Richmond Avenue Houston, TX 77098 713/520-1495 713/520-9900 Fax: 713/523-7107

DATE: 10/02/92

TO: Scott Kuykendall

FROM: Larry Frantz, Lab Director

PROJ. NO.: 1009-001-150 LAB NO.: A8972 RECEIVED:09/09/92 EXXON

It is the policy of AnalytiKEM Laboratories to dispose of unanalyzed portions of samples thirty days following submittal of the hard copy data package. Samples from lab number A8972 are due for disposal on November 6, 1992.

Please indicate your preference for disposal below and return this form to Lab Receiving personnel by October 23, 1992. No response will be interpreted as permission to dispose of the samples on November 6, 1992 and charge your project accordingly.

- ()A. AnalytiKEM's preferred policy for disposal is to dispose of unused samples, including samples not analyzed, by drumming and transporting by a federally licensed hazardous waste transportation firm at a cost of \$6.50/Field ID. In an effort to present all relative charges in a timely manner, disposal charges will appear upon this project's billing summary unless this letter is returned with instructions indicating otherwise.
- ()B. AnalytiKEM will return remaining samples, including samples not authorized for analysis to the originating site at our expense.
 ADDRESS OF THE ORIGINATING SITE:
- ()C. AnalytiKEM will hold your sample at a cost of \$20.00/Field ID per quarter for refrigerated storage or \$6.50/Field ID per quarter for ambient storage. The project will be billed in advance each quarter based upon the number of samples in storage at the beginning of the quarter. The minimum storage fee per project will be \$50.00 to cover administrative costs.

() Refrigerated () Ambient ____ Number of Samples or ALL

Should you have any questions, do not hesitate to contact me at (713) 520-1495. SIGNATURE: LF/lis

LAB NO. A8972 PROJECT 1009-001-150 EXXON

EXX 22851

Analysis Request and Chain of Custody Record Record	Project Location Project Location Prosent And Valance Prosent And Valance Prosent And Valance Prosent And Valance Prosent Lel De Leo Leo Leo Leo Leo Leo Leo Leo Leo Le	Pate Coc Scal Ho Date: 4-3-7 Received by: Imme: 200 (Signature) Imme: 200 (Signature) Time: (Signature) Time: (Signature) Time: (Signature) Time: (Signature) Time: (Signature) Date: (Signature) Time: (Signature) Date: (Signature) Date:
BODE AD 3 B 13 Analytikem An American Nuke M Company 2925 Richmond Avenue HOUSTON, TX 77098 (713) 520-1495 FAX: (71	Citing Comp Comp Citing Citin	OLV ESSUE SQL SQL Samplers (Sgpaur) Relinquished by Sgnature) SQL Ex Strupton Relinquished by Signature) REMARKS: Relinquished by Signature) Structure)

AnalytiKEM An American NuKEM Company 2925 BICHMOND AVENUE HOUST	01 X 77048	27:22 39661-063 (612)	(713) 533, 7107	Analysis Request and Chain of Custody Record	Chain of Custo	dy Record
	1 00 (Project Location	/morlow	
Field Date Sample No / Time		Sample Type (Liquid Sludge, Etc.)	Preser- valive	YSIS F		LABORATOWY REMAHKS
7-2 -0-3-52 (-2 -0-3-22 (-2 -0-3-52		20,1	1-2-1	lactivity - fl	(Lanch 200	
MR-1 4100 MR-1 4100	C Tell X2	So.1	1000	TCLP VOA	Vunn - Con	toretan.
52-5-4 1-NN		Se. 1 So. 1	4°C	TCLP (GC) TPH (GC)		19-2-2-2 2-19-2-
20011 - 1-110 20011 - 1-110 -6-8-1-1-110	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Se, / Sa,)) of	Phyleure switch	() ash pure	
Contractor Section	Relinquished by:	2 hat	Date: 9- 3	S-32 Received by: (Signature)	Date:	COC Seal No.
Attiliation	Relinquished by: (Signature)	· · · /	Date:	Received by: (Signature)	Date:	
	Relinquished by: (Signature)		Date: Time:	Received by Laboratory; (Signature)	Date: C	tolde:
REMARKS:	EXX22853	953		Data Results To:		Laboratory No.

-

-

|

ANAL'TIKEM LABORATORIES SAMPLE RECEIPT CHECKLIST

---- -

----- -

Client & ion	Projecu Number <u>005</u>	Laboratory
1Shipped		Notes: 7-ed. En #546353133
Hand Delivere	d	Dotieket
2COC Present o	n Receipt	Notes:
No COC	-	
3COC Tape on S Container No COC Tape o Container	-	Notes:
4Samples Broke	n/Leaking	Notes: / 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sample Intact		
Other (See No		Kesty danges
5Ambient on Re		Notes: Azz Balon,
Chilled on Re		
6Samples Prese Correctly Improper Pres	erved	Notes:
N/A (None Rec	commended)	
Other (See No	otes)	
7Received With Time Not Received Holding Time N/A (None Rec	Within	Notes:
Other (See No	otes)	
8COC Tapes on	Samples	Notes:
No COC Tapes	on Samples	
9Discrepancies and Sample La No Discrepanc	abels	Notes: <u>See Bol</u>
N/A (No COC H	Received)	
Inspected and Logged in	n by: <u>Sc</u>	Q = 9 - 5 = 5 Q = 0 Date/Time $G' = 0$ Date/
Additional Comments:	£ 00 2 200 2 11 7 20	aland have arrive
Luca Be The	no mere	ni lalas Scott K
Calleda-G-	8-52-9	and the sension los
12 lust & Con	aling t	- man compre lone
Jthe Kay Tall	3 m TCLP	"Jold lan dien met have

EXX22854

Analytical Summary 10/13/92 11:12

Lab Number: A897 Project: 1009 EXXON	9-001-150					
Lab ID Field ID	1 DP-1	2 DP-2	3 MR-1	1T DP-1/ TCLP		3T MR-1/ TCLP
Test Matrix	SOIL	SOIL	SOIL		TCLP_EXT	
AgTCL-HOU						<0.01* MG/L
(MDL)				(0.01)*	(0.01)*	(0.01)*
AsTCI-HOU			· 		<0.2* MG/L	<0.2* MG/L
(MDL)				(0.2)*	(0.2)*	(0.2)*
BNAHOU	1				UG/L	ATTACHE UG/L
(MDL)				()*	()*	()*
BaTCL-HOU	i .			•	,	1.2* MG/L
(MDL)	1			(0.5)*	(0.5)*	(0.5)*
CORR -SHOU (MDL)	SEE REM* ()*	SEE REM* ()*	SEE REM* ()*			
CdTCL-HOU			*=	MG/L	MG/L	<0.010* MG/L
(MDL)	1) L	(0.010)*	(0.010)*	(0.010)
CrTCL-HOU	 			•		<0.05* MG/L
(MDL)	 	l L		(0.05)*	(0.05)*	(0.05)*
FP -SHOU (MDL)	SEE REM*	•	SEE REM*			
H2S -S-REA-SWL	PPM	PPM	PPM			
(MDL)	()*	()*	()*	1	1	ł

* Please see attached Analytical Report for remarks.

Signatures of approval indicate quality assurance-quality control verification of analytical results, billing and enclosed documentation. Approvals: <u>Classica</u>, Date: <u>10/3/92</u> <u>Jarry</u> Date: <u>10/3/92</u>

***** CONTINUED *****

EXX 22855

i.

Analytical Summary 10/13/92 11:12

Lab Proj EXXO		72 9-001-150					
Te		1 DP-1 SOIL	2 DP-2 SOIL	3 MR-1 SOIL	1T DP-1/ TCLP TCLP_EXT	2T DP-2/ TCLP TCLP_EXT	3T MR-1/ TCLP TCLP_EXT
HCN	-S-REA-SWL (MDL)	PPM	ATTACHED PPM ()*	ATTACHED PPM ()*			
Hg	TCL-HOU (MDL)						<0.001* MG/L (0.001)*
Pb	TCL-HOU (MDL)					MG/L	0.02 MG/L (0.02)*
Se	TCI-HOU (MDL)				•		<0.2* MG/L (0.2)*
TPH	-S-GC -HOU (MDL)	MG/KG	<25 MG/KG (25)	270J* MG/KG (460)*			
VOA	нои (MDL)	Ì			ATTACHED UG/L ()*	ATTACHED UG/L ()*	ATTACHED UG/L ()*
pH	-S-COR-HOU (MDL)	8.57 UNITS (0.01)	8.13 UNITS (0.01)	8.06 UNITS (0.01)			

* Please see attached Analytical Report for remarks.

Page 2

EXX 22856

Analytical Report 10/13/92 11:10

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: DP-1 Lab ID: 1 Matrix: SOIL	(COMPOSIT	Time Samı	oled: 09/03/92 oled: 830 eived:09/09/92
(Test Code) Parameter (Test Name) (Test Method)	Concen-	Units	Method Detection Limit	Date/Time Analysis Performed
CORR -SHOU CORROSIVITY ON SOLID EPA SW-846: 1110, NACE STEEL COUPON	SEE REM* *1			1 1
FP -SHOU IGNITABILITY ON SOLID EPA SW-846: 1010, PENSKY MARTIN	SEE REM* *2,3		1	
H2S -S-REA-SWL HYDROGEN SULFIDE, REACTIVE/SLD EPA SW-846: 7.3.4.2, 9030	ATTACHED *4	PPM		09/14/92
HCN -S-REA-SWL HYDROCYANIC ACID, REACTIVE/SLD EPA SW-846: 7.3.3.2, 9010	ATTACHED *4	PPM		09/14/92
TPH -S-GC -HOU PETROLEUM HYDROCARBON BY GC EPA SW-846: 8015 MOD, GC	34	MG / KG	25	Ext.: 09/15/92 Anal.:09/16/92
PH -S-COR-HOU PH CORROSION ON SOLID EPA SW-846: 9045	8.57	UNITS	0.01	09/16/92 1620

*1 *UNABLE TO ANALYZE DUE TO SOLID MATRIX
*2 ABSORPTION OF WATER OR MANUAL FRICTION
*3 FLASHPOINT N/A, NON-LIQUID MATRIX NO FIRE CAUSED BY IGNITION
*4 SEE SWL CERT. #92-09-118-01

Analytical Report 10/13/92 11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: DP-2 Lab ID: 2 Matrix: SOIL	(COMPOSIT	Time Sam	pled: 09/03/92 pled: 930 eived:09/09/92
(Test Code) Parameter (Test Name) (Test Method)	Concen-	Units	Method Detection Limit	Date/Time Analysis Performed
CORR -SHOU CORROSIVITY ON SOLID EPA SW-846: 1110, NACE STEEL COUPON	SEE REM* *1			
FP -SHOU IGNITABILITY ON SOLID EPA SW-846: 1010, PENSKY MARTIN	SEE REM* *2,3			
H2S -S-REA-SWL HYDROGEN SULFIDE, REACTIVE/SLD EPA SW-846: 7.3.4.2, 9030	ATTACHED *4	PPM		09/14/92
HCN -S-REA-SWL HYDROCYANIC ACID, REACTIVE/SLD EPA SW-846: 7.3.3.2, 9010	ATTACHED *4	PPM		09/14/92
TPH -S-GC -HOU PETROLEUM HYDROCARBON BY GC EPA SW-846: 8015 MOD, GC	<25	MG / KG	25	Ext.: 09/15/92 Anal.:09/16/92
PH -S-COR-HOU PH CORROSION ON SOLID EPA SW-846: 9045	8.13	UNITS	0.01	09/16/92 1620

*1 *UNABLE TO ANALYZE DUE TO SOLID MATRIX

*2 ABSORPTION OF WATER OR MANUAL FRICTION

*3 FLASHPOINT N/A, NON-LIQUID MATRIX NO FIRE CAUSED BY IGNITION

*4 SEE SWL CERT. #92-09-118-02

Analytical Report 10/13/92 11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: MR-1 Lab ID: 3 Matrix: SOIL	(COMPOSIT	Time Sam	oled: 09/03/92 pled: 1100 eived:09/09/92
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
CORR -SHOU CORROSIVITY ON SOLID EPA SW-846: 1110, NACE STEEL COUPON	SEE REM* *1			1 1
FP -SHOU IGNITABILITY ON SOLID EPA SW-846: 1010, PENSKY MARTIN	SEE REM* *2,3			1 1
H2S -S-REA-SWL HYDROGEN SULFIDE, REACTIVE/SLD EPA SW-846: 7.3.4.2, 9030	ATTACHED *4	PPM		09/14/92
HCN -S-REA-SWL HYDROCYANIC ACID, REACTIVE/SLD EPA SW-846: 7.3.3.2, 9010	ATTACHED *4	PPM		09/14/92
TPH -S-GC -HOU PETROLEUM HYDROCARBON BY GC EPA SW-846: 8015 MOD, GC	270J* *5	MG / KG	460	Ext.: 09/15/92 Anal.:09/16/92
PH -S-COR-HOU PH CORROSION ON SOLID EPA SW-846: 9045	8.06	UNITS	0.01	09/16/92 1620

*1 *UNABLE TO ANALYZE DUE TO SOLID MATRIX
*2 ABSORPTION OF WATER OR MANUAL FRICTION
*3 FLASHPOINT N/A, NON-LIQUID MATRIX NO FIRE CAUSED BY IGNITION
*4 SEE SWL CERT. #92-09-118-03
*5 RESULT DETECTED BELOW MDL

Page 3

Analytical Report 10/13/92 11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: DP- Lab ID: 1T Matrix: TCL		Date Samı Time Samı Date Rece	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	1	Method Detection Limit	Date/Time Analysis Performed
Ag – -TCL-HOU TCLP SILVER EPA SW-846: 7760, ATOMIC ABSORPTION	<0.01* *1	MG/L	0.01	09/21/92 1350
As – -TCI-HOU TCLP ARSENIC EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853
BNAHOU SEMIVOLATILE ORGANICS EPA SW-846: 3520,8270, LLE,GC/MS	ATTACHE *2,1	D UG/L		Ext.: 09/18/9 Anal.:09/23/9
BaTCL-HOU TCLP BARIUM EPA SW-846: 6010, ICP	1.2*	MG/L	0.5	09/24/92 853
CdTCL-HOU TCLP CADMIUM EPA SW-846: 6010, ICP	<0.010* *1	MG/L	0.010	09/24/92 853
Cr – -TCL-HOU TCLP CHROMIUM EPA SW-846: 6010, ICP	<0.05* *1	MG/L	0.05	09/24/92 853
HgTCL-HOU TCLP MERCURY EPA SW-846: 7470, COLD VAPOR	<0.001* *1	MG/L	0.001	09/22/92
PbTCL-HOU TCLP LEAD EPA SW-846: 6010, ICP	0.1*	MG/L	0.02	09/24/92

*1 *RESULT IS NOT SPIKE CORRECTED *2 SEE ANALYTIKEM ID #A8972-1T Page 4

***** CONTINUED *****

Analytical Report 10/13/92 11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: DP-1/T Lab ID: 1T Matrix: TCLP_E		Date Samı Time Samı Date Rece	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
SeTCI-HOU TCLP SELENIUM EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853
VOAHOU VOLATILE ORGANIC ANALYSES EPA SW-846: 8240, GC/MS	ATTACHED *2,1	UG/L		Ext.: 09/17/92 Anal.:09/17/92

*1 *RESULT IS NOT SPIKE CORRECTED *2 SEE ANALYTIKEM ID #A8972-1T

(--) = (--) = (--) = (--)

EXX22861

Page 5

· ··-----

Analytical Report 10/13/92 11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: DP-2/TCLP Lab ID: 2T Matrix: TCLP_EXT		Date Sampled: / / Time Sampled: Date Received:09/09/92		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
AgTCL-HOU TCLP SILVER EPA SW-846: 7760, ATOMIC ABSORPTION	<0.01* *1	MG/L	0.01	09/21/92 1350	
AsTCI-HOU TCLP ARSENIC EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853	
BNAHOU SEMIVOLATILE ORGANICS EPA SW-846: 3520,8270, LLE,GC/MS	ATTACHED *2,1	UG/L		Ext.: 09/18/92 Anal.:09/23/92	
BaTCL-HOU TCLP BARIUM EPA SW-846: 6010, ICP	1.2*	MG/L	0.5	09/24/92 853	
CdTCL-HOU TCLP CADMIUM EPA SW-846: 6010, ICP	<0.010* *1	MG/L	0.010	09/24/92 853	
CrTCL-HOU TCLP CHROMIUM EPA SW-846: 6010, ICP	<0.05* *1	MG/L	0.05	09/24/92 853	
HgTCL-HOU TCLP MERCURY EPA SW-846: 7470, COLD VAPOR	<0.001* *1	MG / L	0.001	09/22/92 1600	
PbTCL-HOU TCLP LEAD EPA SW-846: 6010, ICP	0.02	MG / L	0.02	09/24/92 853	
I		1	1	1	

*1 *RESULT IS NOT SPIKE CORRECTED *2 SEE ANALYTIKEM ID #A8972-2T

***** CONTINUED *****

Analytical	Report
10/13/92	11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: DP-2/TCLP Lab ID: 2T Matrix: TCLP_EXT		Date Sampled: / / Time Sampled: Date Received:09/09/92	
(Test Code) Parameter (Test Name) (Test Method)	Concen-	Units	Method Detection Limit	Date/Time Analysis Performed
SeTCI-HOU TCLP SELENIUM EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853
VOAHOU VOLATILE ORGANIC ANALYSES EPA SW-846: 8240, GC/MS	ATTACHED *2,1	UG/L		Ext.: 09/17/92 Anal.:09/17/92

*1 *RESULT IS NOT SPIKE CORRECTED
*2 SEE ANALYTIKEM ID #A8972-2T

Page 7

AnalytiKEM-Houston

· ----

Analytical Report 10/13/92 11:11

EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: MR-1/1 Lab ID: 3T Matrix: TCLP_F		Date Sampled: / / Time Sampled: Date Received:09/09/92			
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed		
AgTCL-HOU TCLP SILVER EPA SW-846: 7760, ATOMIC ABSORPTION	<0.01* *1	MG/L	0.01	09/21/92 1350		
ASTCI-HOU TCLP ARSENIC EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853		
BNAHOU SEMIVOLATILE ORGANICS EPA SW-846: 3520,8270, LLE,GC/MS	ATTACHED *2,1	UG/L		Ext.: 09/18/92 Anal.:09/23/92		
BaTCL-HOU TCLP BARIUM EPA SW-846: 6010, ICP	1.2*	MG/L	0.5	09/24/92 853		
CdTCL-HOU TCLP CADMIUM EPA SW-846: 6010, ICP	<0.010* *1	MG/L	0.010	09/24/92 853		
Cr – -TCL-HOU TCLP CHROMIUM EPA SW-846: 6010, ICP	<0.05* *1	MG/L	0.05	09/24/92 853		
Hg – -TCL-HOU TCLP MERCURY EPA SW-846: 7470, COLD VAPOR	<0.001* *1	MG / L 	0.001	09/22/92 1600		
PbTCL-HOU TCLP LEAD EPA SW-846: 6010, ICP	0.02	MG/L	0.02	09/24/92 853		

*1 *RESULT IS NOT SPIKE CORRECTED *2 SEE ANALYTIKEM ID #A8972-3T

AnalytiKEM-Houston

	Analytical Repor 10/13/92 11:12			
EXXON Proj. No.: 1009-001-150 Lab No.: A8972	Field ID: MR-1/ Lab ID: 3T Matrix: TCLP_		Date Samı Time Samı Date Rece	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Se – -TCI-HOU TCLP SELENIUM EPA SW-846: 6010, ICP	<0.2* *1	MG/L	0.2	09/24/92 853
VOA – – –HOU VOLATILE ORGANIC ANALYSES EPA SW-846: 8240, GC/MS	ATTACHED *2,1	UG/L		Ext.: 09/17/92 Anal.:09/17/92

*1 *RESULT IS NOT SPIKE CORRECTED *2 SEE ANALYTIKEM ID #A8972-3T

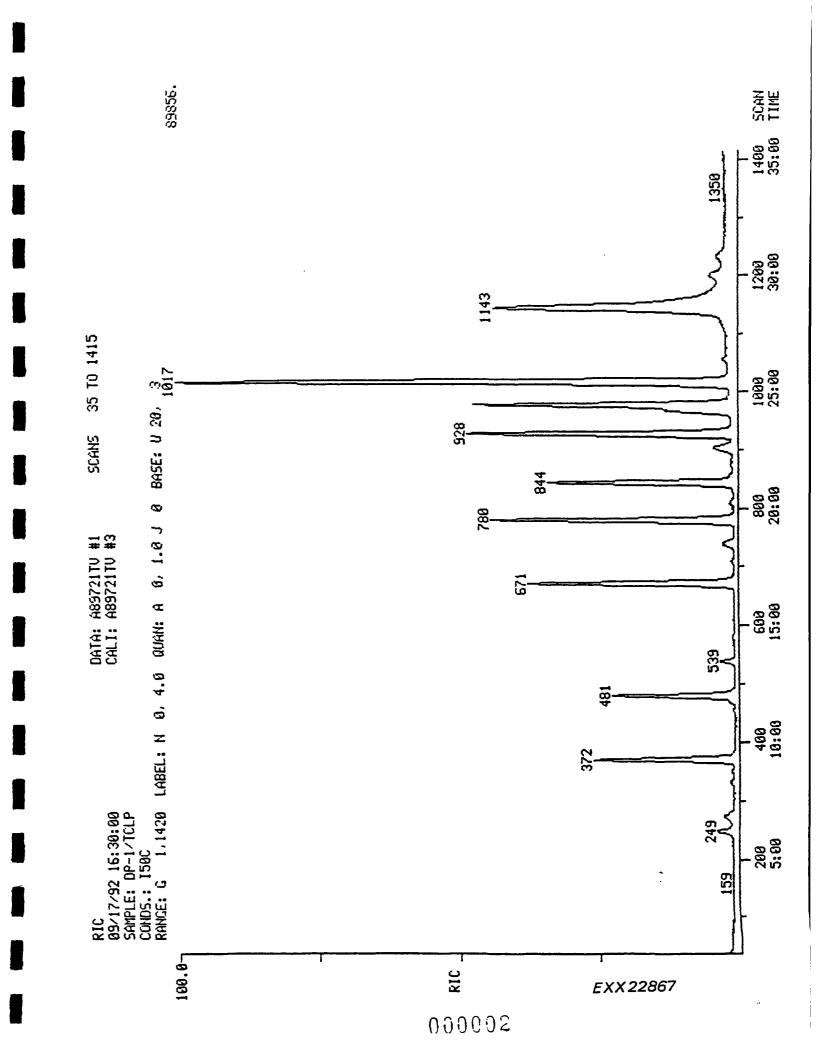
EXX 22865

ļ.

ORGANICS ANALYSIS DATA SHEET

Laboratory Name:	AnalytiKEM-Hou	Concentration:	LOW	Date Extracted:	<u> 09/17/92</u>
Lab Sample ID:	<u>A8972-1T</u>	Sample Matrix:	WATER	Date Analyzed:	<u>09/17/92</u>
Client Sample ID:	DP-1-TCLP	Percent Moisture:	100.0	Dilution Factor:	1.0

TCLP VOLATILE COMPOUNDS


CAS Number	c	uq/L		CAS Number	¢	ug/	/L
75-01-4	Vinyl Chloride	10	<	79-01-6	Trichloroethene	5	<
75-35-4	1,1-Dichloroethene	5	<	71-43-2	Benzene	5	<
67-66-3	Chloroform	5	<	127-18-4	Tetrachloroethene	5	<
107-06-2	1,2-Dichloroethane	5	<	108-90-7	Chlorobenzene	5	<
78-93-3	2-Butanone .	10	<				
56-23-5	Carbon Tetrachloride	5	<				

The Lab ID for data on this page is A89721TV.

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample. Data not spike corrected.

EXX 22866

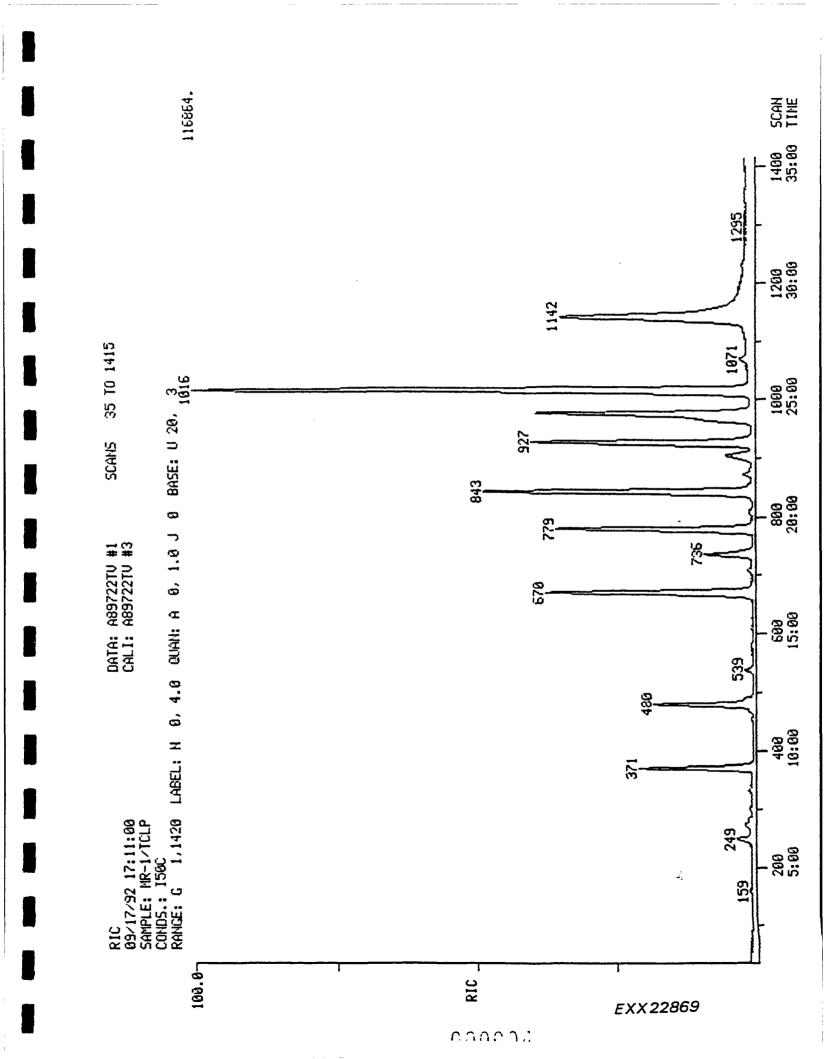
-

ORGANICS ANALYSIS DATA SHRET

Laboratory Name:	AnalytiKEM-H.u	Concentration:	LOW	Date Extracted:	09/17/92
Lab Sample ID:	A8972-2T	Sample Matrix:	WATER	Date Analyzed:	09/17/92
Client Sample ID:	MR-1-TCLP	Percent Moisture:	100.0	Dilution Factor:	1.0

TCLP VOLATILE COMPOUNDS

CAS Number	r	 ua/	L	CAS Number	É	uq	/L
75-01-4	Vinyl Chloride	10	<	79-01-6	Trichloroethene		<
75-35-4	1,1-Dichloroethene	5	<	71-43-2	Benzene	5	<
67-66-3	Chloroform	5	<	127-18-4	Tetrachloroethene	5	<
107-06-2	1,2-Dichloroethane	5	<	108-90-7	Chlorobenzene	5	<
78-93-3	2-Butanone	10	<				
56-23-5	Carbon Tetrachloride	5	<				

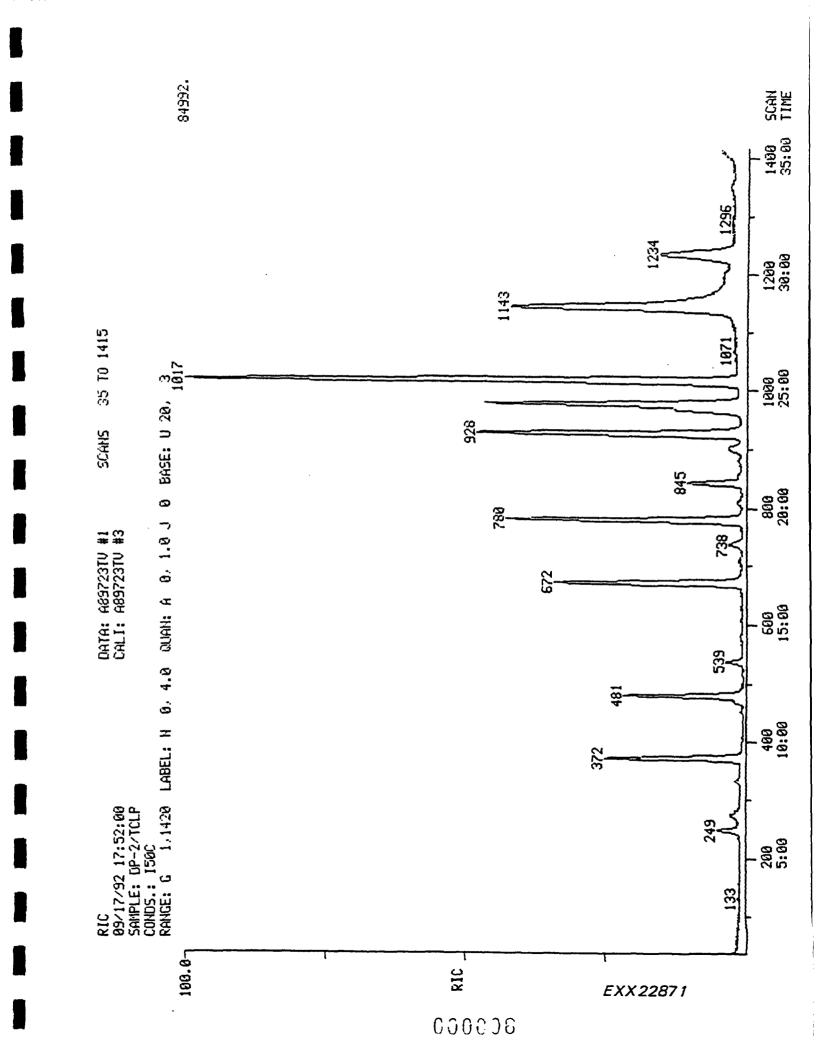

The Lab ID for data on this page is A89722TV.

---- -

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample. Data not spike corrected.

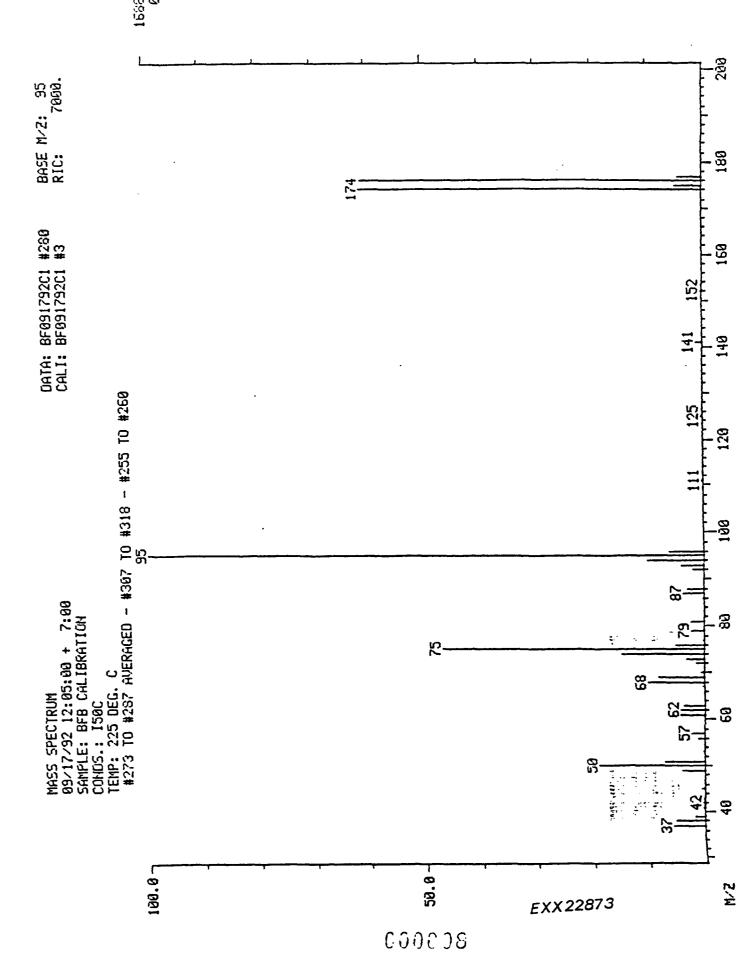
ORGANICS ANALYSIS DATA SHEET

Laboratory Name:	AnalytiKEM-Hou	Concentration:	LOW	Date Extracted:	<u>09/17/92</u>
Lab Sample ID:	A8972-3T	Sample Matrix:	WATER	Date Analyzed:	<u>09/17/92</u>
Client Sample ID:	DP-2-TCLP	Percent Moisture:	100.0	Dilution Factor:	1.0


TCLP VOLATILE COMPOUNDS

CAS Number	<u> </u>	_uq/	<u>'L</u>	CAS Numbe	r	uq/	<u>L</u>
75-01-4	Vinyl Chloride			79-01-6	Trichloroethene		<
75-35-4	1,1-Dichloroethene	5	<	71-43-2	Benzene	5	<
67-66-3	Chloroform	5	<	127-18-4	Tetrachloroethene	5	<
107-06-2	1,2-Dichloroethane	5	<	108-90-7	Chlorobenzene	5	<
78-93-3	2-Butanone	10	<			•	
56-23-5	Carbon Tetrachloride	5	<				

The Lab ID for data on this page is A89723TV.


< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample. Data not spike corrected.

BROMOFLUOROBENZENE

09/17/5 Instrum #273 t	Report 72 12:05:00 + nent: I50C to #287 averag umber: E		Cali: I Analys 17 to #31		;1 #	3 RIC: Acct.	7000. No.: 8506-090	כ
			Ion Abu	undance C	riteria	3		
m∕z	Intensity	% RA	Min %	Max %	Mass	Actual	Status	
50	317.	18.8	15.0	40. 0	75	18.8	PASS	
75	795.	47.1	30.0	60. 0	95	47.1	PASS	
95	1688.	100. 0	100.0			100.0	PASS	
96	104.	6.2	5.0	9.0	75	6.2	PASS	
173	٥.	0. 0	****	2.0	174	0.0	PASS	
174	1032.	61.1	50.0		95	61.1	PASS	
175	81.	4.8	5.0	9.0	174	7.8	PASS	
176	1024.	60.7	95 . 0	101.0	174	99. Z	PASS	
177	71.	4. 2	5.0	9.0	176	6. 9	PASS	

E

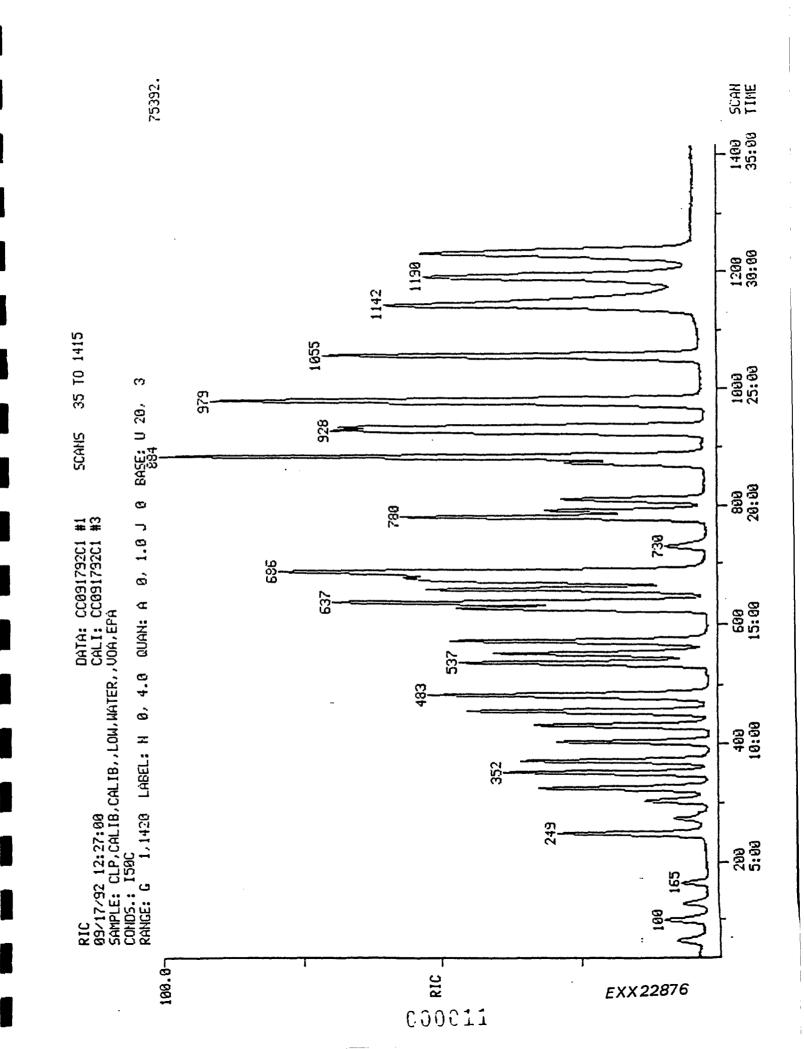
1563. **9**.

	2 12:05:00 BFB CALIB				792C1 792C1		Bas RIC	se m∕z: 95 S: 7000
	o #287 ave	raged — #	307 to #3	318 -	#255 t	o #260	I	
36 177	0.00	0.	Minima Maxima	Min #	Inten: O		0.	
Mass	% RA	Inten.			•			
	S 0.12	2.						
37? 38?	S 5.51 S 5.09	93. 86.						
39?	S 1.66	28.						
41?	S 0.18	3.						
42?	S 0.18	3.						
45?	S 0.59	10.						
49?	S 3.91	66.						
50?	S. 18.78	317.						
51?	5 6.93	117.						
53?	S 0.18	Э.						
56?	S 1.13	19.						
57?	5 - 2.13	36.						
60?	S 0.06	1.						
61? 62?	5 4.03 5 4.03	68. 68.						
63?	5 4.03 5 3.50	59.						
67?	S 0.18	З.						
68?	S 10.01	169.						
69	S 8.12	137.						
70	S 0.65	11.						
72	S 1.36	. 23.						
73	5 3.14	53.						
74	S 14.57	246.						
75	S 47.10	795.						
76	S 4.86	82.						
77 79	S 0.24 S 2.31	4.						
81	S 2.07	37. 35.						
84	S 0.12	~	_					
86	S 0.18	3.	-					
87	5 3.67	62.						
88	8 2.67	45.						
92	5 🚆 2. 01	34.						
93	S 3.97	67.						
94	5 9.83	166.						
95	S 100.00	1688.						
96	S 6.16	104.						
111	5 0.24	4.						
113	S 0.06	1.						
125	S 0.18	3.						
129	S 0.06	1.						
141 152	S 1.01 S 0.18	17.						
152	5 0.18 5 0.12	3. 2.						
174	S 61.14	1032.						
175	5 4.80	81.						EXX 22874
176	S 60.66	1024.						LAA 22014
177	S 4.21	71.						

ļ

CONTINUING CALIBRATION CHECK VOLATILE HSL COMPOUNDS

Case No: STAND	Region:	Calibration Date:	09/17/92
Contractor: AnalytiKEM-Hou		Time:	12:27
Contract No:		Laboratory ID:	CC)91792C1
Instrument ID: 150C		Initial Cali. Date:	09/15/92


Minimum RF for SPCC is 0.300 (1) Maximum %D for CCC is 25%

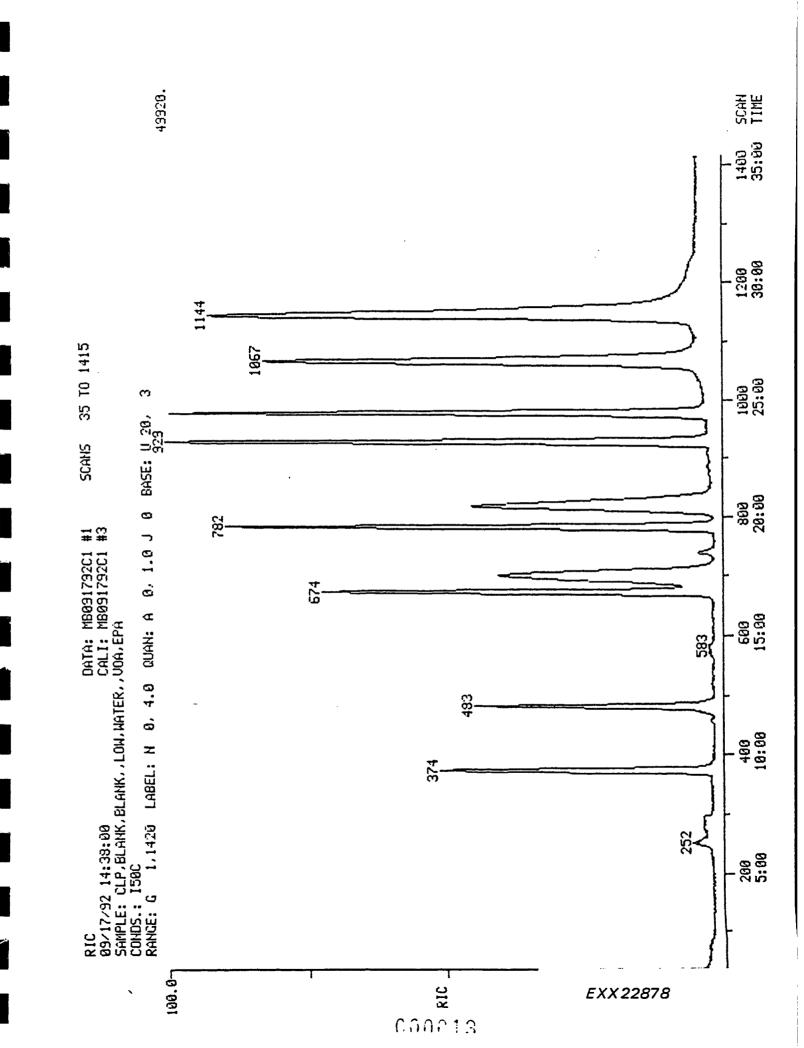
Compound	AVE_RF	<u>RF(50)</u>	₹ D	<u>· CCC</u>	SPCC
Chloromethane	0.985	0.770	21.8		* *
Bromomethane	0.988	0.840	15.0		
Vinyl Chloride	0.998	0.777	22.1	*	
Chloroethane	0.640	0.474	25.9		
fethylene Chloride	1.380	1.168	15.4		
Acetone	0.279	0.714	-155.9		
Carbon Disulfide	1.959	2.150	-9.7		
L,1-Dichloroethene	1.425	1.316	7.6	*	
1,1-Dichloroethane	3.633	3.118	14.2		* *
rans-1,2-Dichloroethene	1.663	1.447	13.0		
Chloroform	4.353	3.833	11.9	*	
L,2-Dichloroethane	3.140	2.821	10.2		
-Butanone	0.026	0.057	-119.2		
1,1,1-Trichloroethane	0.694	0.671	3.3		
Carbon Tetrachloride	0.522	0.496	5.0		
Vinyl Acetate	0.090	0.091	-1.1		
Bromodichloromethane	0.717	0.706	1.5		
L,2-Dichloropropane	0.439	0.413	5.9	*	
cis-1,3-Dichloropropene	0.588	0.578	1.7		
Frichloroethene	0.394	0.377	4.3		
Dibromochloromethane	0.512	0.505	1.4		
1,1,2-Trichloroethane	0.335	0.319	4.8		
Benzene	0.934	0.906	3.0		
<pre>Frans-1,3-Dichloropropene</pre>		0.498	4.8		
Bromoform		0.333	4.3		* *
4-Methyl-2-Pentanone		0.548	-16.8		
2-Hexanone		0.572	-72.3		
Tetrachloroethene		0.363	3.5		
1,1,2,2-Tetrachloroethane	0.654	0.657	-0.5		* *
Foluene	0.785	0.357		<u>ـ</u>	л А.
Chlorobenzene		0.744	5.2	*	ـــــــ
		0.897	7.9		* *
Ethylbenzene			3.1	*	
Styrene		1.046	-13.6		
$Xylene (total) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	0.581	0.651	-12.0		

RF(50) - Response Factor from daily standard file at 50 ug/l AVE RF - Average Response Factor from initial calibration Form VI **%D - - - Percent** Difference CCC - - Calibration Check Compounds (*) SPCC - - System Performance Check Compounds (**) (1) - - Mininum RF for Bromoform is 0.250

Form VII

VOLATILE ORGANICS ANALISIS DATA SHEET

Laboratory Name:	AnalytiKEM-Hou	Concentration:	LOW	Date Extracted:	<u>09/17/92</u>
Lab Sample ID:	MB091792C1	Sample Matrix:	WATER_	Date Analyzed:	<u>09/17/92</u>
Client Sample ID:	MB091792C1	Percent Moisture:	100.0	Dilution Factor:	1.0


VOLATILE COMPOUNDS

CAS Number	•	uq/	L	CAS Number		uq/	L
74-87-3	Chloromethane	10	<	78-87-5	1,2-Dichloropropane	5	<
74-83-9	Bromomethane	10	<	10061-01-5	cis-1,3-Dichloropropene .	5	<
75-01-4	Vinyl Chloride	10	<	79-01-6	Trichloroethene	5	<
75-00-3	Chloroethane	10	<	124-48-1	Dibromochloromethane	5	<
75-09-2	Methylene Chloride	6		79-00-5	1,1,2-Trichloroethane	5	<
67-64-1	Acetone	5	*	71-43-2	Benzene	5	<
75-15-0	Carbon Disulfide	5	<	10061-02-6	Trans-1,3-Dichloropropene	5	<
75-35-4	1,1-Dichloroethene	5	<	110-75-8	2-Chloroethylvinyl ether .	10	<
75-34-3	1,1-Dichloroethane	5	<	75-25-2	Bromoform	5	<
156-60-5	trans-1,2-Dichloroethene .	5	<	108-10-1	4-Methyl-2-Pentanone	10	<
67-66-3	Chloroform	5	<	591-78-6	2-Hexanone	10	<
107-06-2	1,2-Dichloroethane	5	<	127-18-4	Tetrachloroethene	5	<
78-93-3	2-Butanone	10	<	79-34-5	1,1,2,2-Tetrachloroethane	5	<
71-55-6	1,1,1-Trichloroethane	5	<	108-88-3	Toluene	5	<
56-23-5	Carbon Tetrachloride	5	<	108-90-7	Chlorobenzene	5	<
108-05-4	Vinyl Acetate	5	<	100-41-4	Ethylbenzene	5	<
75-27-4	Bromodichloromethane	5	<	100-42-5	Styrene	5	<
				1330-20-7	Xylene (total)	5	<

The Lab ID for data on this page is MB091792C1.

= - Reported value is less than the detection limit.

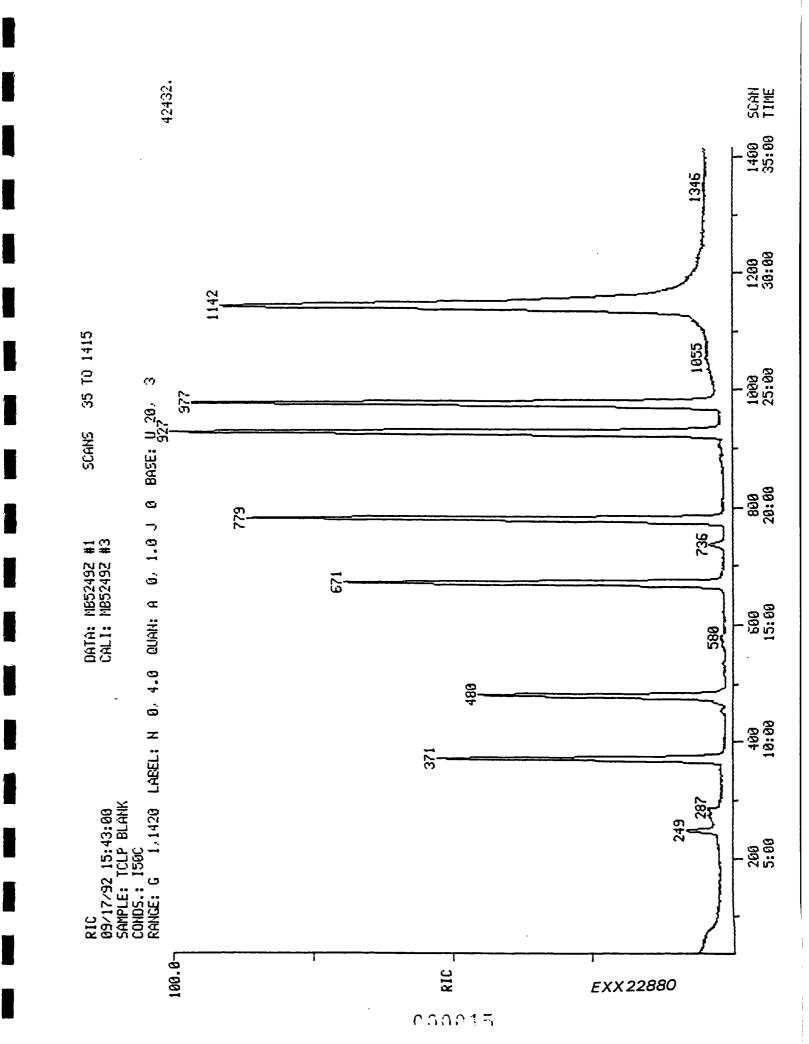
< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

ORGANICS ANALISIS DATA SHEET

· - --- -----

Laboratory Name:	AnalytiKEM-Hou	Concentration:	LOW	Date Extracted:	<u>09/17/92</u>
Lab Sample ID:	MB5249Z	Sample Matrix:	WATER	Date Analyzed:	<u>09/17/92</u>
Client Sample ID:		Percent Moisture:	100.0	Dilution Factor:	1.0

TCLP VOLATILE COMPOUNDS


CAS Number		uq/I		CAS Number		ua/	<u>L</u>
75-01-4	Vinyl Chloride	10	<	79-01-6 Trichloroethene	•	5	<
75-35-4	1,1-Dichloroethene	5	<	71-43-2 Benzene	•	5	<
67-66-3	Chloroform	5	<	127-18-4 Tetrachloroethene	٠	5	<
107-06-2	1,2-Dichloroethane	5	<	108-90-7 Chlorobenzene	•	5	<
78-93-3	2-Butanone	10	<				
56-23-5	Carbon Tetrachloride	5	<				

The Lab ID for data on this page is MB52492.

< - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample. Data not spike corrected.

EXX 22879

0.00014

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: <u>ANALYTIKI</u>	EM-HOU	Contract:	
Lab Code: <u>HOUSTON</u>	Case No.: <u>A8972</u>	SAS No.:	SDG No.: <u>A8972</u>

	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(TOL) #	(BFB)#	(DCE) #		OUT
			=====			===
01	DP-1-TCLP	101	101	112	109	0
02	DP-1-TCLP-MS	100	103	112	103	0
03	DP-2-TCLP	102	100	110	106	0
04	MR-1-TCLP	96	97	113	109	0
05	TCLP_BLANK	102	98	109	109	0
06	MB091792C1	100	98	111	111	0

QC LIMITS

SMC1 (TOL) = Toluene-d8(88-110)SMC2 (BFB) = Bromofluorobenzene(86-115)SMC3 (DCE) = 1,2-Dichloroethane-d4(76-114)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

ORGANICS ANALYSIS DATA SEKET

Laboratory Name:	<u>AnalytiKEM-Hou</u>	Concentration:	LOW	Date Extracted:	<u>09/17/92</u>
Lab Sample ID:	<u>A8972-1TMS</u>	Sample Matrix:	WATER	Date Analyzed:	<u>09/17/92</u>
Client Sample ID:	DP-1-TCLP-MS	Percent Moisture:	100.0	Dilution Factor:	1.0

TCLP VOLATILE COMPOUNDS

CAS Number						ug/L	<u>%</u> R	CAS Number		uq/L %
75-01-4	Vinyl Chloride	•	•	•	•		36	79-01-6	Trichloroethene	49 98
75-35-4	1,1-Dichloroethene	•	•	•	•	43	86	71-43-2	Benzene	49 93
67-66-3	Chloroform	•	•	•	•	47	94	127-18-4	Tetrachloroethene	54 /03
107-06-2	1,2-Dichloroethane	•		•		48 4	96	108-90-7	Chlorobenzene	50 100
78-93-3	2-Butanone	•	•	•	•	57 I				JAB
56-23-5	Carbon Tetrachlorid	е				54 l	08			

The Lab ID for data on this page is A89721TVMS. Data not spike corrected.

l

Í

INITIAL CALIBRATION DA"A VOLATILE HSL COMPOUNDS

-	Case No: Contractor:	STAND AnalytikEM-Hou	Region:	• <u>•••</u>
	Contract No:			

Instrument ID: 150C Calibration Date: <u>09/15/92</u>

Min AVE RF for SPCC is 0.300 (1) Max %RSD for CCC is 30%

Laboratory ID	IC09	15020C1		15100C1	ICO	915200Cl			
			91592C1		915150C1				CCC*
Compound		RF(20)				RF(200)	AVE RF	3 RSD	SPCC*
Chloromethane			1.110	0.718	0.832		0.985	22.6	* *
Bromomethane			1.036	1.054	0.835		0.988	18.4	
Vinyl Chloride			0.985	0.953	0.912		0.998	14.2	*
Chloroethane			0.636	0.633	0.572		0.640	11.8	
Methylene Chloride		1.676	1.292	1.333	1.308		1.380	12.1	
Acerone			0.531	0.140	0.136		0.279	72.7	
Carbon Disulfide			1.164	2.426	2.579		1.959	33.5	
1,1-Dichloroethene			1.420	1.363	1.365		1.425	12.2	*
1,1-Dichloroethane			3.466	3.670	3.519		3.633	8.4	* *
trans-1,2-Dichloroether			1.636	1.649	1.544	1.458	1.663	13.2	
Chloroform			4.191	4.463			4.353	10.1	*
1,2-Dichloroethane			3.025	3.321			3.140	9.9	
2-Butanone		0.041	0.040	0.019	0.017	0.015	0.026	49.1	
1,1,1-Trichloroethane			0.761		0.660	0.598	0.694	10.9	
Carbon Tetrachloride .		0.563	0.543	0.504	0.519	0.483	0.522	6.0	
Vinyl Acetate		. 0.071	0.041	0.129	0.120	0.087	0.090	40.2	
Bromodichloromethane .			0.767	0.723	0.691	0.639	0.717	7.6	
1,2-Dichloropropane .		0.488	0.433	0.454	0.417	0.403	0.439	7.6	*
cis-1,3-Dichloropropene			0.619	0.599	0.540	0.508	0.588	11.2	
Trichloroethene			0.392	0.387	0.366	0.357	0.394	11.0	
Dibromochloromethane .	• • •	0.518	0.496	0.557	0.502	0.489	0.512	5.3	
1,1,2-Trichloroethane			0.311				0.335	11.5	
Benzene			0.982	0.930			0.934	12.5	
Trans-1,3-Dichloroprope			0.522				0.523	10.9	
2-Chloroethylvinyl ethe			0.062				0.219	40.4	
Bromoform			0.322				0.348	8.3	* *
4-Methyl-2-Pentanone .			0.351				0.469	16.0	
2-Hexanone			0.363				0.332	10.8	
Tetrachloroethene			0.392				0.376	14.7	
1,1,2,2-Tetrachloroetha			0.647				0.654	8.0	
Toluene				-			0.785	11.1	
Chlorobenzene							0.974	6.0	
Ethylbenzene							0.542	11.5	
Styrene							0.921	13.7	
Xylene (total)							0.581	11.1	
Toluene-d8			1.375				1.372	1.3	
Bromofluorobenzene							0.989	3.5	
1,2-Dichloroethane-d4							2.984	6.2	
Benzene-d6		_					0.980	4.5	
	• • •	. 1.043	0.990	0.979	0.941	0.937	0.980	4.3	
Response Factor (num	ber is	the amou	nt of ug	/L)					
AVE RF - Average Res	ponse F	actor	-						
ARSD Percent Rel	-		Deviatio	n					
CCC Calibration									
SPCC System Perf				(**)					
(1) Minimum AVE			-	• •			EXX22	:883	

Response	Factor (number is the amount of ug/L)
AVE RF -	Average Response Factor
1RSD	Percent Relative Standard Deviation
ccc	Calibration Check Compounds (*)
SPCC	System Performance Check Compounds (**)
(1)	Minimum AVE RF for Bromoform is 0.250

Form VI

Order # 92-09-118 09/16/92 13:54 Client: ANALYTIKEM

TEST RESULTS BY SAMPLE

Page 2

Sample: 01A A8972-1 Job: RE REACTIVITY Collected: 09/03/92

<u>Test Name</u> REACTIVITY CYANIDE REACTIVITY SULFIDE

Test Name

 Method
 Result
 Units

 SW-846
 7.3.3
 <0.40</td>
 ppm

 SW-846
 7.3.4
 245
 ppm

DetectionDateLimitStarted0.4009/14/922009/14/92SJ

Sample: 02A A8972-2 Job: RE REACTIVITY

Collected: 09/03/92

REACTIVITY CYANIDE REACTIVITY SULFIDE
 Detection
 Date

 Method
 Result
 Units
 Limit
 Started
 Analyst

 SW-846
 7.3.3
 <0.40</td>
 ppm
 0.40
 09/14/92
 JA

 SW-846
 7.3.4
 146
 ppm
 20
 09/14/92
 SJ

Sample: 03A A8972-3 Job: RE REACTIVITY Collected: 09/03/92

 Detection
 Date

 Test Name
 Method
 Result
 Units
 Limit
 Started
 Analyst

 REACTIVITY CYANIDE
 SW-846 7.3.3
 <0.40</td>
 ppm
 0.40
 09/14/92
 JA

 REACTIVITY SULFIDE
 SW-846 7.3.4
 241
 ppm
 20
 09/14/92
 SJ

•	OS	DTHWEST	LERN L/	ABORAT(FORIES QUA	SOUTHWESTERN LABORATORIES QUALITY CONTROL LOG	201 102		HDL.	
METHOD OF ANALYSIS 376.1	376.		PARAMETER		S. I fieldmathix	Letter ANA	LYST <u>' </u>	ANALYST Concharts Chedien	{	
CALIBRATION STANDARDS/BLANK	NDS/BLANK	ABSORBANCE	ANCE	STA	STANDARDS	CONCENTRATION		CONCENTRATION		A RECOVERY
					BL.ANK					
					OK	H-C + 2 H	1 17	ر- ر-	7391	3,2
L.R. (r) =										
LAB NIIMBERS/SAMPLE ID NUMBERS	ID NUMBER	S IN THIS RUN:	RUN:							
t1-121-62-66	4 - 62		くびょう	14 - 34	4 , 9.2	- 60 -	H1 281	((¹ 7	07-73	, <i>h</i> /- L
15 - 10 - 26		(1)			ł	-13				
	•		•							
QUALITY CONTROL DUPLICATES AND SPIKES	LICATES A	ND SPIKES		PERC	CENT RECO	PERCENT RECOVERY CALCULATION:	ł	SPIKED SAMPLE - SAMPLE + THEORETICAL A 100	PLE + THEORI	ETICAL A 100
LAB 1-SAMPLE ID 1	FIRST CONC.	DIL. FACTOR	REPL.	DIL. FACTOR	RANGE	ZPRECISION	SPIKED SAMPLE CONC.	SAMPLE CONC.	THEO. CONC.	% RECOVERY
						0				
42-10-10 101	× ; ;		2							
· ·										
								- EX)	EXX22885	
								ł		
				1						
	- · · - · -									

Y ELTIME OF CU	101	10.2			/- { }	ΟΚΕΤΙCΑΙ. Α ΙΟΟ	4 RECOVERN	104	135			
мы. <i>Ч Усто;</i> {					08-13.	IPLE + THE	THEO.	~255.	UST.	 ç		
)() MDI. <u>Auren</u> Date 14) データア Set TIME MEASURED CONCENTRATION A RECOVER	ې ن۶۲	<i>ح //4</i>			-80-63 (1-	SPIKED SAMPLE - SAMPLE + THEORETICAL	SAMPLE CONC.	5	3	EXX22886	-	
NTROLLOG Analyst <u>Ja</u> Ion c	ۍ ۲				72-05-137-		SAMPLE CONC.	بانناله.	1692.			
SUUTIIVESTERN LABORATORIES QUALITY CONTROL LOG SUU 840 ZP A 335 3 PARAMETER CALU MATRIX 12 ANALYST AL IBLANK ABSORBANCE STANDARDS CONCENTRATION CC	ىرى كى ئ	•			· []	PERCENT RECOVERY CALCULATION:	ZPRECISION					
JRATORIES QU クィリーム CALU HATRIX STANDARDS	BLANK CA 0.50				57-0-63	CENT RECO	RANGE	0	0			
NBORAT クテバ SR <u>CN</u> U	[<u> </u>			7- <i>115-</i> W	13d	DIL. FACTOR	12.21	11.4			_
SOUTHWESTERN LAT SW 846 EPA353 parameter s/blank absorbance	3.25	18.00		S RUN:	152-09-	S	REPL. CONC.	2027				
UTIINES 576 335-3 Absor				S IN THI	(/- / / / / / / / / / / / / / / / / / /	4D SPIKE	DIL. FACTOR	11 5 541 25-2m	1125C			1
	0.0J	0.10	1. v. c.	ID NUMBER	15 1KN 82-09-099-099-41	LICATES A	FIRST CONC.	KC.2X	(00)			
ANALYSIS V STANDAR	520 0.01		.27775.	SAMPLE	-156-	ITROL DUPI	1.E ID #	2-2-6-12-29	- 159-4			
$S_{\rm V}$ method of analysis EPA calibration standards/blank			L.R. (r) =	I A NIIMBERS/SAMPLE ID NUMBERS IN THIS RUN:	REHN 81-08-099-1	QUALITY CONTROL DUPLICATES AND SPIKES	LAB #-SAMPLE 1D #	10-26	4-42-60-62			

111 216 PREEDOR 9 - THEFT OF A FUE VIE CORE

ANALYTIKEM - HOUSTON	
SILVER QUALITY CONTROL LOG	
EPA SW-846:7760, AA	

LAB NUMBER- SAMPLE		COI	MMENTS		CHECK STANDARDS	CONCENTRATION FOUND/TRUE
					SAMPLE BLAN	
A9007 (12) A8931-	mes	had b	Rock	for ADT	METHOD BLAN	
(1-5) A9027-					ERAZ PESTD	1.012/1.0
(1-6) A9007A-LT	AQ027	t was	< a me	lko .	INTERNAL STD	
A5972- (1T-3T)				<u>,</u>		
A9021-1						
				······		
MATRIX			MIS			
SPIKE PI	RECISION MS	DUF MSD	LICATE	SPIKE	ACCURAC	Y MSD
SAMPLE	% REC.	% REC.	% RPD	AMOUNT	RESULT & RE	C. RESULT % REC
A9007-mB	107	-		0.1	0.107 107	
A9007-2	112	106	5.5	0.1	0.112 112	2 0.106 106
A8931-MB	115	-	-		0.115 11	
A9931-1	107	90	17.2		0.107 107	0.090 90
A9027-mB	86		-	0.2	0.172 86	
A9027-6	88	90	2.2	Ý.	0.176 88	3 0.179 90
A9007A-mB	88		-	0.1	0.088 88	3
A 9007A-Extract AIL	82			1.	0,082 82	2
A9007A-6T	72	-			0.072 7	
A8972-MB	72					2
-Extract offic	84					4
-17	85					5
-ƏT	87				0.087 8	7 1 1
CONTROL LIMITS: A	QUEOUS,	9-12	%RPD,	78-116 %	6REC.	
S	OLIDS,	SAME	%RPD,	SAME 9	%REC. EX	x x 22887
1 -		3		S WEBE OUTS	SIDE OF QC LIMIT	-S

ANALYTIKEM - HOUSTON SILVER QUALITY CONTROL LOG EPA SW-846:7760, AA

i.

LAB NUMBER-		COI	MMENTS		CHECK CONCENTRATIO				
SAMPLE					STANDAR		FUUNDIT		
	_				SAMPLE B	1			
		.=			METHOD	BLANK			
					P.E. STD.				
	╡ ───			•	INTERNAL	STD.	,		
MATRIX			MS						
SPIKE LAB NUMBER-	PRECISION	• • • • •	LICATE			JRACY	MSD		
SAMPLE	MS % REC.	MSD % REC.	\$ RPD	SPIKE AMOUNT	MS RESULT	⊊ REC.	RESULT	% RE	
A8972-3T	86			01	0.086		-	-	
A9021-mB	88	.].		1	0.088	88		J.	
	1	91			0.087	87	0.091	91	
A9021-1	87	71	4.5		0.087	0/			
								<u> </u>	
1 		1						<u> </u>	
								<u> </u>	
		1							
		<u> </u>	1			1			
· · · · · · · · · · · · · · · · · · ·		 						1	
		 		1					
				<u> </u>					
CONTROL LIMITS:	AQUEOUS,	9-12	%RPD,	78-116 %	REC.				
	SOLIDS,	SAME	%RPD.	SAME %	%REC.	ΕX	(X 22888		
D	OUT OF	ارم /	PLICATE	S WERE OUTS		LIMITS			
						-			

ANALYTIKEN - HOUSTON ICAP QUALITY CONTROL LOG

		4 SEPT9 A 8972			292 5W	-846:6 A 96		A9862-		PAGE	/ OF	
LAB 3	[D	(17->3			((-+10) A:			1,3,5,6				
NO:	5											
PARAM	ETER	As	Se	Zn	РЪ	CJ	N:	Cr	Be	Cu	Ba	
PE	ERA-3	1.08	9.08	0.984	0.985	1.01	0.944		1.00	1.00	1.00	
STDS												
8972-	MB				1						1.14	
S/MSD		106	98		108	107		100			104	
%RP:		<u> </u>	1		<u> </u>		<u> </u>		1			
SPIKE		2.0	2.0		1.0	0.1		0.2	1		2.0	
8972- 15/MSD	EB %rec	102	99		97	99		97			116	1
%RP	D											
SPIKE	AMT.	2.0	2.0		1.0	0.1		0.2			2.0	
8972 s/msd	- IT %rec	96	97		76	100		93			78	
%RP	D											
SPIKE	AMT.	2.0	2.0		1.0	0.1		0.2			2.0	
48972 IS/MSD	-2 <i>T</i> %rec	[[]	96		77	80		78			80	
%RP	D			-								
SPIKE	AMT.	2.0	2.0		0.1	0.1		0.2	-		2.0	
ONTRO	L LIMI							•				<u>-</u> -
QUEOU	/ AREC	•										1
OLIDS	%RPD %REC		1	1		1						1
	0		$\frac{-c}{2}$		PLICA"	ES WEI	RE OUT	SIDE O	F QC	LIMITS OF QC I	LIMITS	
COMME			<u> </u>		LAL KE		LE: WI			xx 2288		
	$\overline{\Lambda}$			<u>DA</u>	- /						10	
ALYST	: +	aner	Ma	thi	5/10	1.	QA/QC		<u>L</u>	TICK	illeg !	Π

ANALITIKEM - HOUSTON ICAP QUALITY CONTROL LOG

DATE/TIME: 24 SEPT940853 EP: 8W-846:6010 PAGE 2 OF 3												
	AS	<u>کو</u>	2 n	PЬ	Cd	N;	Cr	Be	Cn	Ba		
48972-37 18/MSD %REC	112	112		82	78		70			62		
%RPD												
SPIKE AMT.	2.0	2.0		1.0	0.1		0.2			2.0		
A9021-MB MB/MSD &REC			88	88	90	88	86		99			
%RPD												
SPIKE AMT.			1.0	1.0	0.1	1.0	0.2		0.2			
A9021-1 MS/MSD %REC			88	93 92	88 86	91/90	88	•	92/91			
%RPD			2.30	1.08	2.30	1.10	1.13		1.09			
SPIKE AMT.			1.0	1.0	0.1	1.0	0.2		0.2			
A9041-mb MS/MED. %REC D:>S			93	93	92	୧୳	91		104	94		
%RPD												
SPIKE AMT.			1.0	(.0	0.1	1.0	0.2		0.2	2.0		
A9041-3 MS/MSD %REC			77	79/ 83	65. 72	84	84		* *	85		
%RPD			13.33	4.94	10.22	4.65	5.78		2.43	Ð		
SPIKE AMT.			1.0	1.0	0.1	1.0	0.2		0.2	2.0		
A9041-mB MS/MSD %REC			89	२।	87	88	120		104	94		
%RPD												
SPIKE AMT.			(-0	1.0	0.1	1.0	0.2		0.2	2.0		
CONTROL LIMIT	s:											
AQUEOUS ZRPD												
SOLIDS 7RPD 7REC.			1									
 2	- OUT - OUT	OF	S DUP Z SPI	LICATE KE REC	S WERE	OUTSI S WERI	IDE OF E OUTSI	QC LI IDE OF	MITS QC LIN	IITS		
COMMENTS: -	<u> </u>			<u></u>		<u> </u>		EX	X 22890	_		
NALYST: Lane Mattins / im 22/20: JeORMatle IM												

					XEM - H ITY CON						
DATE/TINE	: 24 SEPT	72/0853		EPA ST	₩-346:6	010			PASE 3	OP	3
	<u>Zn</u>	<u>Pb</u>	Cd	<i>N</i> ;	<u>Cr</u>	Be	Cu	Ba			
49041-10 13/MED &RE	c 84 77	88	87 95	89 88	* *		92 92	81 82			
%RPD	8.70	4.65	8.79	1.13	0.66		0	1.23			
SPIKE AMT	• 1,0	1.0	0.1	1.0	0.2		0.2	2.0			
19062-MB 18/M8D %RE	c	86			88		82				
%RPD											
SPIKE AMT	•	1.0			0.2		0.2				
49062 - 1 15/MSD %RE	c	81			66		72/74	,			
%RPD		0			7.30		2.74				
SPIKE AMT	•	1.0		 	0.2		0.2				
IS/MSD. %RE	с										
%RPD											
SPIKE AMT	•										
IS/MSD %RE	c										
%RPD											ł
SPIKE AMT	•										
15/MSD %RE	c		_								
%RPD						1			-it		1
SPIKE AMT	•							EX.	X 22891		
NTROL LIM	ITS:				<u></u>	<u></u>			<u></u>		
QUEOUS ZR	PD EC.						_				
SOLIDS 7R	PD EC.			-	_						
COMMENTS:		OF <u>u</u> OF <u>2</u> ihe los	$\frac{1}{3}$ DUI 3 SPI $\frac{1}{5}$	PLICAT IKE RE	ES WERE COVERIE	COUTS	IDE OF E OUTS	QC LI	MITS QC LIMI	TS	

ANALYST: Jour Fille

QA/QC: Jeormake

ITM

ع

Sm

AnalytikEM-Houston

QUALITY CONTROL LOG

Parameter: <u>Ignitability en Solid</u> Methics of Analysis: EPA SW -846, 1010

Page: _____ of l Matrix: Soil Date/Time: 9-16-92/1740

Lab Numbers	l'Atection Limits	Calibrat Stds./01		sorbance/Co	nc.	Check Standards	1	Ioncentration Found/True
- A 9007-6						Sangele D1	ank	
A8972-123				-		Method B1	ank	ET
						P.E. Std.		E E E
	_					Internal	std.	<u>Γ</u> .τ.
	-		·····					
		Correla	icnt:					
		Conment	.s: * 🛧	Samples a duplie				
		anclys	eed i	<u>r duplie</u>	ate_			
						L		
* Below MI		nternal Qua.	Lilty Cont	crol Mplic	ates an	d Spikes		
* Below MI Lab No Sample ID	I Sample Conc.	nternal Qua. Duplicate Conc.	Lilty Cont Range	Percent NPU	Spiked Result	Sample	Spilk	
Lab No Sample ID	Sample Conc.	Duplicate		Percent	Spiked	Sample		-
Lab No	Sample Conc.	Duplicate		Percent	Spiked	Sample		-
Lab No Sample ID	Sample Conc.	Duplicate		Percent	Spiked	Sample		-

Analysis Fraglers

MAR Approval: Sovan- blocs

ANALYTIKEM - HOUSTON MERCURY QUALITY CONTROL LOG EPA SW-846:7470, 7471 AA

LAB NUMBER- SAMPLE		СОЛ	MMENTS			CHECK STANDAR	1	CONCENT FOUND/TH	
A8972-17-						SAMPLE E	BLANK		
A 9007A-6T						METHOD	BLANK		•
A9027-						EPA IOS P.E. STD.		0.0105	0.010
A9003-1						CN S		0.0075	/0.0015
MATRIX SPIKE P	RECISION	M תוח	IS PLICATE			ACCI	JRACY		
LAB NUMBER-	MS	MSD		SPIK	E	MS		MSD	
SAMPLE	% REC.	% REC.	% RPD	AMOU	JNT	RESULT	% REC.	RESULT	% REC.
A8972- extract bik	106		-	0.00	5	0.0053	106		
Azana-IT	98					0.0049	98	-	
A8972-2T	102		-			0,0051	102	-	
A8972-3T	98	_	-			0.0049	98	-	
A 9007A. BIK	98	-	-			0.0079	98	-	-
A9007A-67	100	_	-			0.0050	100	-	<u> </u>
A 9027-4	98.	98	0			c.co49	98	0.0049	812
A9003-1	90.	90	0		11	0.0045	90	0.0045	90
METHOD BLANK	102	-	-		Ψ_{-}	0.0051	102		<u> </u>
							1		<u> </u>
CONTROL LIMITS:	AQUEOUS.	11-15	%RPD.	81-123	%RE				
	OLIDS,						EX	X 22893	
\bigcirc	OUT OF	ລ ວບ	PLICAT	ES WERE (DUTSI	DE OF QC	LIMITS		

AnalytiKEM LABORATORIES - HOUSTON QUALITY CONTROL LOG- MATRIX SPIKE RECOVERY AND PRECISON SW-846: METHOD 8 A8972 MATRIX: SOIL SAMPL A8972-1

COMPOU	SPIKE	SAMPLE	MS		MSD		QC	LIMITS
!	ADDED	RESULT	RESULT	REC%	RESULT	REC% R	PD RPD	REC%
DIESEL	250	34	299	106	446	165	39 20.0	0 20-150
	, ,		/					
	, 1	1 1	· /	D	, DD			1 /
Aan	<u>da /10</u>	12 7/30	1/92	Nen	la 1. Jao	ile	9/	30/92
			,	0.100.11			/	
ANALYST		DATE		QA/QC AI	PROVAL		DAT	E

EXX 22894

ANALYTIKEM LABORATORIES QUALITY CONTROL LOG-FORTIFIED BLANK AND METHOD BLANK TPH ANALYSIS LAB NO. A8972

> BLANK EXTRACTION DATE: 9/15/92

NO TPH DETECTED AT STATED METHOD DETECTION LIMIT MB5243LS

FORTIFIED METHOD BLANK FB5244LS

AMOUNT(MGZ) AMOUNT(MGZ) PERCENT SPIKED RECOVERED RECOVERY

290

250

11ó

COMMENTS:

92

ANALYST SIGNATURE DATE

29/92 Binda P. Sauls 9 OAOC COORDINATOR

AnalycikEM-Houscon

UNTILL COMPORTER

varanceer: <u>PH corracion en Salid</u> Method of Amlysis: EPA SW -846, 9040

Page: _____ OE [_____ Natrix: frighted Solid AB Date/Time: <u>9-16-92/1620</u>

Lab Numbers	Detection Limits	Calibration Stds./Olk	Absorbance/Conc.	Check Standards	Concentration Found/True
A8972-123	0.01 unit	Buffer 10.00	7000	Sample Blank	Ľ Ť XI
<u>A8972-123</u> A 9 007-6	*	Buffer 10.00 4.00	p lelib.	Method Blank	E.E.r.
			5	P.E. Std.	Ežz
				Interpal Std. Bentie 7.0	7.04 units
				cers Buffes 7	7.04 units
		Correlation Coefficient			
		Conments:			

Internal Quality Control Duplicates and Spikes

		· ····			·	,		· · · · · · ·
Lab No Sample ID	Sample Conc.	Duplicate Conc.	Range	Percent NrD	Spiked Result	Sample Result	Spike Added	Percent Recovery
AF8972-1	8.57	8.58	0.01	0.)				
A9007-6	7.39	7.32	0.07	1.0				
						EXX 22	890	

Analyst:

Below MDL

finelin's

NA/OC ALLINAL: COST - EDe

Billing Summary 10/02/92 14:22

Project No.: 1009-001-150

EXXON

Lab Number: A8972

	Test	Code	Description	Number	Cost	Total
1.	Ag	TCL-HOU	TCLP SILVER	3	15.62	46.86
2.	As	TCI-HOU	TCLP ARSENIC	3	15.62	46.86
3.	BNA	HOU	SEMIVOLATILE ORGANICS	3	450.00	1350.00
4.	Ba	TCL-HOU	TCLP BARIUM	3	15.62	46.86
5.	CORR	-SHOU	CORROSIVITY ON SOLID	3	65.00	195.00
	1		No Charge-Unable to Analyze	3	-65.00	-195.00
6.	Cđ	TCL-HOU	TCLP CADMIUM	3	15.62	46.86
7.	Cr	TCL-HOU	TCLP CHROMIUM	3	15.63	46.89
8.	FP	-SHOU	IGNITABILITY ON SOLID	3	35.00	105.00
9.	H2S	-S-REA-SWL	HYDROGEN SULFIDE, REACTIVE/SLD	3	35.00	105.00
10.	HCN	-S-REA-SWL	HYDROCYANIC ACID, REACTIVE/SLD	3	35.00	105.00
11.	Hg	TCL-HOU	TCLP MERCURY	3	15.63	46.89
12.	Pb	TCL-HOU	TCLP LEAD	3	15.63	46.89
13.	Se	TCI-HOU	TCLP SELENIUM	3	15.63	46.89
14.	TCLP	-SHOU	TOXICITY CHAR. LEACH. PROC.	3	100.00	300.00
15.	TPH	-S-GC -HOU	PETROLEUM HYDROCARBON BY GC	3	100.00	300.00
16.	VOA	HOU	VOLATILE ORGANIC ANALYSES	3	225.00	675.00
17.	ZHE	-SHOU	ZERO HEADSPACE EXTRACTION/SLD	3	150.00	450.00
	•		pH CORROSION ON SOLID	3	10.00	30.00
19.			Sample Disposal Charge			5.50 32
	Tota	al:			 	3827.50