GW-359

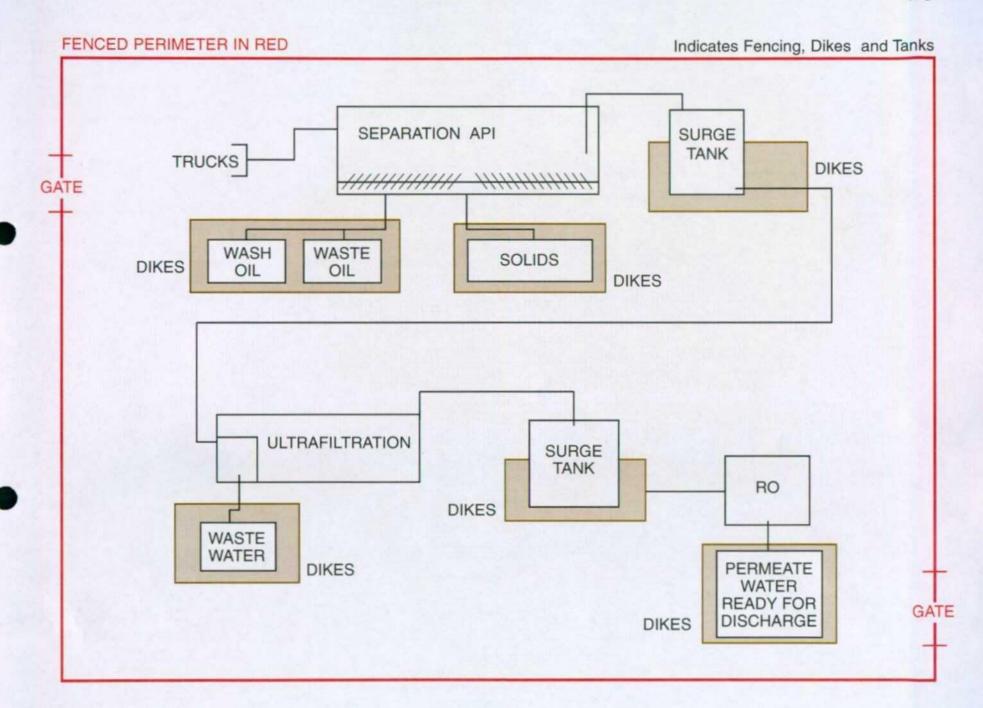
PERMITS, RENEWALS, & MODS Application

District I
1625 N. French Dr., Hobbs, NM 83240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazus Road, Aztoc, NM 87410
District IV
220 S. St. Francis Dr., Santa Fc. NM 87505

State of New Mexico Energy Minerals and Natural Resources

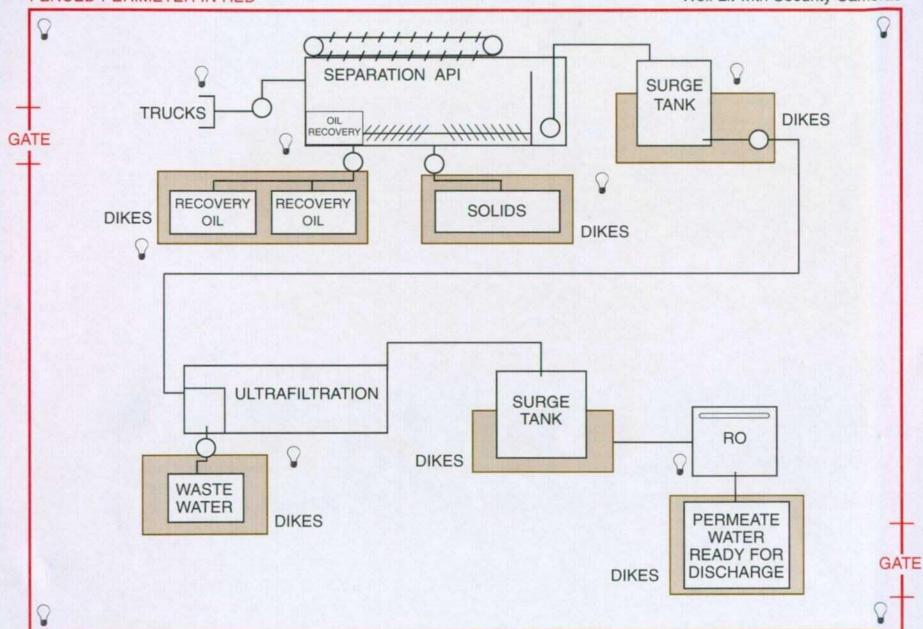
Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-137 Revised June 10, 2003

Submit Original Plus I Copy to Santa Fe I Copy Appropriate District Office


APPLICATION FOR WASTE MANAGEMENT FACILITY (Refer to the OCD Guidelines for assistance in completing the application)

Centralized Commercial ☐ Other Evaporation Injection 1. Type: Treating Plant Solids/Landfarm 2. Operator: Kyle J. Mucas Address: # 5 (R 3177 Aztec N.M. 87410 Contact Person: Kyle T. Bucas Phone: 505-334-0504/793-0271 Township ____ /4 Section Range Submit large scale topographic map showing exact location 4. Is this a modification of an existing facility? Yes 5. Attach the name and address of the landowner of the facility site and landowners of record within one mile of the site. 6. Attach description of the facility with a diagram indicating location of fences, pits, dikes, and tanks on the facility. 7. Attach designs prepared in accordance with Division guidelines for the construction/installation of the following: pits or ponds, leak-detection systems, aerations systems, enhanced evaporation (spray) systems, waste treating systems, security systems, and landfarm facilities. 8. Attach a contingency plan for reporting and clean-up for spills or releases. 9. Attach a routine inspection and maintenance plan to ensure permit compliance. 10. Attach a closure plan. 11. Attach geological/hydrological evidence demonstrating that disposal of oil field wastes will not adversely impact groundwater. Depth to and quality of ground water must be included. 12. Attach proof that the notice requirements of OCD Rule 711 have been met. 13. Attach a contingency plan in the event of a release of H₂S. 14. Attach such other information as necessary to demonstrate compliance with any other OCD rules, regulations and orders. 15. CERTIFICATION I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief. Name: Kyle J. Burns Title: Owner Loperator

Signature: Kyle J. See Date: 1/17/05 E-mail Address: R Burn & My Exist. Com

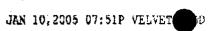

Application for waste management facility

- # 5. No site location as been determined at this time.
- # 6. See drawing labeled # 6.
- #7. See drawing labeled #7.
- #8. In the event of a spill or release plant operators will fallow the fallowing procedure. First step is to apply the correct personal safety equipment if necessary and take the necessary actions to minimize the spill or release, Second step is to contact the proper authorities or hazardous material clean-up crew and management, last step the management will contact the EPA and/or OCD and notify the environmental division. Clean-ups will enforce the (RCRA) rule.
- #9. See logs labeled # 9. Operators will maintain a daily log of plant operations, this will include plant filtration equipment, any chemicals that maybe onsite and tank levels. Operators will routinely monitor the facility piping, tanks, dikes, and outfall perimeter. Also all monitors will be placed on a preventative maintenance program.
- # 10. Closure of the facility will concur with rule 711 and the financial assurance aspect. All equipment will be sold back, fluids will be hauled of to the proper location and piping will be deconstructed and scraped. OCD and EPA will be notified thirty days or greater of the facility closure.
- #11. No site location has been determined at this time.
- # 12. The notice requirements of rule 711 are not meet at this time. I have no facility and am currently waiting for OCD and EPA to comply with the idea of a discharge plant so I can move forward. After the OCD approves the idea I will then find a site location. At that time I will notify surface owners and the public. I will also assume financial assurance.
- # 13. We do not for see an exposure radius of more than 36 feet. In compliance with Pasquill-Gifford derived equation. In the event of an H2S release that would be harmful to human health a procedure would be fallowed. First there will be H2S monitors, wind socks and proper SCBAs. If the monitors detected a harmful degree of H2S an alarm would sound, the operator on site would have a contingency plan. First the operator would apply the proper PPE and minimize the leak. Next the operator will notify management who would then contact the local or state authorities. Management would then contact OCD and comply with the necessary actions to contain the escape. Further steps will be implemented if necessary to prevent any harmful H2S releases.

Facility Will be Manned 24 Hours Well Lit with Security Cameras

FENCED PERIMETER IN RED

7-Jan-05


Zaw Water											
Data	Unit	Data Point	Norma! Value	Time 0100	Time 0700	71me 1300	Time 1900				
Turbidity	NTU	AIT-7037									
Conductivity	jumhas	ęр									
Total Dissolved Solids	ppm	6P		· · · · · · · · · · · · · · · · · · ·							
Clearwell Total Hardness	med	Ciserycii					1				
Clearwell Calcium Hardness	ppm	Clearwell									
рH	ρН	8P	6-8								
Flow Totalizer	apm	DCS									
UF 9kg Raw H ₂ O Chlorine Residual	Dom	UF Row HO	> 0								
CO ₂	mag	Raw Water	< 15								

ZeeWeed #1									
			Normal	Time	Time	Time	Time		
Date	Unit	Deta Point	Value	0100	9790	1300	1900		
Permeate Turbidity	NTU	AIT-3537-1	c0.2						
Feed Flow rate	gpm	F1T-7020-1	350						
Pre-backpulse Permeate Flow Rate	3pm	FIT-3520-1	350						
During Backpulse Flow Rate	gpm	FIT-3520-*	609						
After Sackpulse Permeste Flow Rate	gpm	FIT-3520-1	350						
Selere Badepulse TMP	psi	PDI-3423-1	<-8				,		
During Backpulse TMP	psi	PDI-3423-1	48						
After Backpulse TMP	pai	PDI-3423-1	<-8						
Recovery Rate	%	FFI-3820-1	90	T		1			

25eWood #2										
Bata	12.24	0.4.0	Normal	Time	7ime 0700	7ime 1300	Time 1900			
Date Permeate Turbidity	Unit NTU	Oats Point AIT-3537-2	Value ≺02	0100	0700	1300	1900			
Feed Flow rate	gpm	FIT-7020-2	350							
Pre-backpulse Permeate Flow Rate	gpm	FIT-3520-2	350							
During Backpulse Flow Rate	gpm	FIT-3520-2	609							
After Backpusse Permeate Flow Rate	gpm	FIT-3520-2	350							
Befers Backpulse TMP	DIS	FDI-3423-2	C.3							
During Backpulse TMF	psi	PDI-3423-2	₹ 8							
After Backpulse TMP	DS:	PDI-3423-2	c.8							
Recovery Rate	%	FF1-3820-2	80							

Vitra Filtration Permonts (SeeWeed #1, & #2)											
			Normal	Time	Time	Time	Time				
Detp	Unit	Data Point	Value	0100	0700	1300	1900				
Permeste Particle Count	mioron	AIT-3536-1	5-100								
Permeate Particle Count	micron	AIT-3536-2	1-15								
Vacuum Pump Pressure	in/Hg	PI-9241	22								
Clearwell Chlorine Residuel	ppm	Clearweil	≻C								

(Temporary) Chemical Usego Tracking - Log in End of Shift Reports.								
Tank Consumed Consumed Amount Remaining At End of Shift							9hift	
Chemical	Capacity	Yestarday	Today	0.100		1300	1	
A CALL STORY			TIME	THE WAY				

Date: 7-Jan-05

		Centrid	e Filter	· · · · · · · · · · · · · · · · · · ·			
			Norma!	Time	Time	Time	Time
Data	Unit	Data Point	Value	0100	0700	1300	1900
Differential Pressure, A Filter	p6:		1-48				
Differential Pressure, B Filter	D81		1:48				

	1	i st Pass Rev	erre Octo	tis .			
			Normal	Time	Tirne	Time	Time
Data	Unit	Data Point	Value	0100	0700	1300	1900
RO Feed Residual Chlorine	cpm	ANT-155	02-08				
RO Feed Temperature	26	TE_212	45° - 85°				
RO Feed Conductivity	pinhos	ANE-8506					
RO Feed ORP	mV	ANE-8506	<450				
RO Feed pH	pН	AIT-4133	8.4				
Membrane Inlet Pressure	ps	PIT-4123	135-249				
1" Pass - 1" Stage DP, A Train	pš	PDT-331	20				
1 ⁸ Pass - 1 ⁸ Stage CP, B Train	ps.	POT-332	20				
1 ^{et} Pess - 1 ^{et} Stage DP, C Train	ps.	PDT-333	20				
1 st Pass - 2 nd Stage DP, A Tráin	D8	PDT-334	20				
1 st Pass - 2 nd Stage DP, B Train	DB	PDT-335	20				
1 st Pass - 2 nd Stage DP, C Train	ps	PDT-336	30	9.3			
Concentrate Flow, A Train	gpm	FE-348	113				
Concentrate Flow, B Train	gom	FE-248	113		1		
Concentrate Flow, C Train	gpr-	FF-249	113				
Permeste Flow, A Train	gpm.	FE-247	264				
Parmette Flow, B Train	gom	FE-216	264				
Permeats Flow, C Train	ppm	FE-220	264				
Permeate Conductivity, A Train	umhos	ANE-120	130-2213				
Permests Conductivity, 8 Train	_{i-i} mhos	ANE-128	130-2213				
Permente Conductivity, C Train	umhes	ANE-127	130-2213				
Permeate Recycle to Clearwe'l	gpm		3.5				

2 st Pase Reverse Compals											
Data	Unit	Data Point	Normai Value	Time 0100	Time 0700	Time 1300	Time 1900				
RO Feed Pressure	psi	PIT-4323	35	***************************************							
Membrane Inlet Pressure	psi	Pt"-4223	135-248								
1 ⁸ Stage Interstage Pressura	pai	P!"-4224	115-228								
2 ^{hd} Stage Interstage Pressure	psi	P17-4228	95-208								
Concentrate Prosoure	pai	PIT-4225	75-158								
Concentrate Flow	apm	FiT-4220	79								
Pormosto Pressure	psi	PIT-4227	8-13			,					
Permante Flow	gem	FIT-4221	320								
Permeate Conductivity	umhos	AIT-4231	3-40								