GW-361

REPORTS

YEAR(S):

2005-2003

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION

Property at:

HOBBS STATION Off County Road 61 Hobbs, Lea County, New Mexico

> October 7, 2005 Project No. 0105013

> > Prepared for:

TEPPCO, L.P. 2929 Allen Parkway, Suite 3200 Houston, Texas 77019 Attention: Mr. David Smith, P.G.

Prepared by:

RECEIVED

OCT 1 0 2005

ENVIRONMENTAL DEPT.

B. Chris Mitchell, P.G. Principal Geoscientist

Rusty Simpson, P.G., C.P.G. Senior Technical Review

Southwest

3030 LBJ Freeway, Suite 700 Dallas, Texas 75234 Ph: (214) 722-7531

Fax: (214) 722-7632

TABLE OF CONTENTS

EXECUTIVE SUMMARY	. 1
1.0 INTRODUCTION	. 4 . 4 . 5 . 6
2.0 SENSITIVE RECEPTOR SURVEY	. 6
3.0 FIELD ACTIVITIES 3.1 Borings and Monitoring Wells 3.2 Soil and Groundwater Sampling.	. 7
4.0 LABORATORY ANALYTICAL METHODS	. 8
5.0 DATA EVALUATION	. 9
6.0 MONITORED NATURAL ATTENUATION EVALUTION	1 1
7.0 FINDINGS AND RECOMMENDATIONS	1 1
LIST OF APPENDICES	
Appendix A: Figure 1 – Topographic Map Figure 2 – Site Vicinity Map Figure 3 – Site Plan	
Appendix B: Tables	
Appendix C: Water Well Search Report	
Appendix D: Boring Logs	
Appendix E: Laboratory Analytical Reports & Chain of Custody Documentation	

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION

HOBBS STATION
Off County Road 61
Hobbs, Lea County, New Mexico
SWG Project No. 0105013

EXECUTIVE SUMMARY

The TEPPCO Hobbs Station is located off County Road (CR) 61, south-southwest of Hobbs, New Mexico, referred to hereinafter as the "site" or "subject site". The site consists of approximately 35 acres developed as a crude oil storage facility associated with crude oil pipeline operations.

During the completion of due diligence activities during the acquisition of select ARCO assets by TEPPCO, soil borings MW-1, MW-2, MW-4 and B-5 were advanced at the station by ALPHA TESTING, INC. (ALPHA) in March, 2003. Soil borings MW-1, MW-2 and MW-4 were subsequently converted to permanent groundwater monitoring wells. The objective of due diligence activities was to evaluate the presence of petroleum hydrocarbons in the on-site soil and groundwater as a result of the operations historically associated with the Site.

In addition, an existing monitoring well previously installed under the direction of ARCO, labeled MW-3, was identified on the north-northeast portion of the site during the completion of the due diligence activities. No other existing monitoring wells were observed during the 2003 investigation activities.

Petroleum hydrocarbon constituent concentrations identified in on-site soils during the ALPHA Environmental Site Investigation (ESI) dated May 23, 2003, which exceed the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division's (OCD's) *Remediation Action Levels* were limited to the TPH DRO concentration of 621 mg/Kg associated with the soil sample collected from soil boring MW-2. The TPH DRO concentration was resubmitted for polynuclear aromatic hydrocarbon (PAH) analysis. The identified PAH constituent concentrations do not exceed the New Mexico Environment Department (NMED) *Tier 1 Soil Concentrations Protective Of Groundwater*.

ANA X

Petroleum hydrocarbon constituent concentrations identified in on-site groundwater during the ALPHA ESI dated May 23, 2003, which exceed the New Mexico Water Quality Commission (NMWQC) *Ground Water Standards* were limited to the benzene concentration of 0.0637 mg/L associated with the groundwater sample collected from monitoring well MW-3(ARCO).

The objective of the Supplemental Environmental Site Investigation (SESI) conducted by Southwest Geoscience (SWG) was to further evaluate the presence of petroleum hydrocarbons in the on-site soil and groundwater in the vicinity of monitoring well MW-3, previously installed under the direction of ARCO. One (1) boring, MW-3R, was advanced at the site and converted to a permanent groundwater monitoring well. Soil boring MW-3R was advanced adjacent to monitoring well MW-3, previously installed by ARCO.

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the TPH DRO concentration identified in the soil sample collected from soil boring MW-3R exceeds the remediation action level of 100 mg/kg. However, based on the results of the TX 1005/1006 analysis, TPH concentrations were not identified above the laboratory method detection limits.

ANG X

In addition, SWG compared the identified TPH concentrations to the NMED TPH Screening Guidelines dated June 24, 2003. Due to the absence of TPH Screening Values for crude oil in this guidance document, SWG compared the identified TPH concentrations to the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel. Based on the laboratory analytical results, the TPH DRO concentration identified in the soil sample collected from soil boring MW-3R does not exceed the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel of 880 mg/kg.

Based on the laboratory analytical results, TPH GRO/DRO concentrations were identified in the groundwater sample collected from monitoring well MW-3R; however, the identified concentrations do not exceed the applicable New Mexico Water Quality Control Commission (WQCC) Human Health Standards for Groundwater¹.

ults, s of COC

Based on SWG's review of the historic and current laboratory analytical results, the primary lines of evidence with regard to natural attenuation of chemicals of concern (COCs) demonstrate a clear trend of stable of decreasing COC concentrations in groundwater over time and with distance away from potential source(s). $200 \times 25 \times 200 \times 20$

Based on the results of this SESI, SWG presents the following recommendations:

- Report the results of the investigation to the New Mexico Energy, Minerals and Natural Resources Department OCD and coordinate site activities through the OCD;
- o Based on the COC concentrations identified in the on-site soil and groundwater, the trend of decreasing COC concentrations in groundwater over time, the absence of beneficial use of groundwater in the vicinity of monitoring well MW-3R, the anticipated future use of the site (crude oil X pipeline facility) and the direction of groundwater flow, SWG recommends TEPPCO request regulatory closure from the NMEMNRD OCD in accordance with Section VII of the OCD's Guidelines for Remediation of Leaks, Spills & Releases dated August 13, 1993; X No Account Characteristics
- If soils or groundwater located on the site are to be disturbed during future excavations or construction activities, proper procedures should be followed with respect to worker health and safety, and any affected soil or groundwater encountered should be properly characterized,

¹ Human Health Standards for Groundwater for groundwater with a total dissolved concentration (TDS) of less than 10,000 mg/L.

treated and/or disposed in accordance with applicable local, state or federal regulations.

1.0 INTRODUCTION

1.1 Site Description

The TEPPCO Hobbs Station is located off County Road (CR) 61, south-southwest of Hobbs, New Mexico, referred to hereinafter as the "site" or "subject site". The site consists of approximately 35 acres developed as a crude oil storage facility associated with crude oil pipeline operations.

A topographic map is included as Figure 1, a site vicinity map is included as Figure 2, and a site plan is included as Figure 3 of Appendix A.

1.2 Site Background

During the completion of due diligence activities during the acquisition of select ARCO assets by TEPPCO, soil borings MW-1, MW-2, MW-4 and B-5 were advanced at the station by ALPHA TESTING, INC. (ALPHA) in March, 2003. Soil borings MW-1, MW-2 and MW-4 were subsequently converted to permanent groundwater monitoring wells. The objective of the due diligence activities was to evaluate the presence of petroleum hydrocarbons in the on-site soil and groundwater as a result of the operations historically associated with the Site.

In addition, an existing monitoring well previously installed under the direction of ARCO, labeled MW-3, was identified on the north-northeast portion of the site during the completion of the due diligence activities. No other existing monitoring wells were observed during the 2003 investigation activities.

SWG's review of the ALPHA TESTING, INC. Environmental Site Investigation (ESI) dated May 23, 2003, identified the following findings:

"Based on the results of the ESI, the on-site soils in the vicinity of soil borings MW-1, MW-2, and B-5 appear to be affected by petroleum hydrocarbons.

Based on the results of the ESI, the on-site groundwater in the vicinity of monitor wells MW-1, MW-2, MW-3 and MW-4 appears to be affected by petroleum hydrocarbons.

ALPHA compared the identified petroleum hydrocarbon constituent concentrations in on-site soils and groundwater to the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division's (OCD's) Remediation Action Levels and the New Mexico Water Quality Commission (NMWQC) Ground Water Standards for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.).

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's Remediation Action Levels, the identified TPH DRO concentrations associated with the soil samples collected from soil borings MW-1 and B-5 and the identified ethylbenzene and TPH GRO concentrations associated with the soil sample collected from soil boring MW-2 do not exceed their respective action levels.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's Remediation Action Levels, the identified TPH DRO concentration associated with the soil sample collected from soil boring MW-2 exceeds the remediation action level of 100 mg/kg.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the NMWQC Ground Water Standards, the identified toluene, ethylbenzene, xylenes, TPH DRO/GRO and PAH concentrations associated with the groundwater samples collected from monitor wells MW-1, MW-2, MW-3 and MW-4 do not exceed the respective groundwater standards.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the NMWQC Ground Water Standards, the identified benzene concentration associated with the groundwater sample collected from monitor well MW-3 exceeds the groundwater standard of 10 μg/L."

Due to the exceedance of the OCD's Remediation Action Level of 100 mg/kg for Total Petroleum Hydrocarbons (TPH), ALPHA resubmitted the soil sample for polynuclear aromatic hydrocarbon (PAH) analysis. The OCD does not have published cleanup standards for PAHs; therefore, SWG compared the identified PAH concentrations to the New Mexico Environment Department (NMED) Tier 1 Soil Concentrations Protective Of Groundwater. Based on SWG's review, the identified PAH concentrations do not exceed the Tier 1 Soil Concentrations Protective Of Groundwater.

A groundwater monitoring event was subsequently conducted by ALPHA in May, 2004 to further evaluate the magnitude of petroleum hydrocarbon constituents in the on-site groundwater. During the completion of sampling activities, on-site personnel indicated the location of two additional groundwater monitoring wells previously Location installed under the direction of ARCO, labeled MW-1 and MW-2. ALPHA sampled monitoring wells MW-1(ARCO), MW-2(ARCO), MW-1, MW-2 and MW-4. However, the groundwater table appeared to have dropped below the total depth of monitoring well MW-3(ARCO); therefore, no groundwater sample was collected.

Analytical tables which include the historical soil and groundwater analytical data are provided in Appendix B.

Scope of Work 1.3

Southwest Geoscience (SWG) has conducted a Supplemental Environmental Site Investigation (SESI) at the Hobbs Station based on the results of the ALPHA ESI dated May 23, 2003. The objective of the SESI was to further evaluate the presence of petroleum hydrocarbons in the on-site soil and groundwater in the vicinity of monitoring well MW-3, previously installed under the direction of ARCO. SWG's SESI was conducted in accordance with SWG's Proposal P01051017 dated April 20, 2005 and authorized on June 9, 2005.

Standard of Care 1.4

SWG's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time

period. SWG makes no warranties, express or implied, as to the services performed hereunder. Additionally, SWG does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client, as detailed in our proposal.

1.5 Additional Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and SWG cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this LSI. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. SWG's findings, and recommendations are based solely upon data available to SWG at the time of these services.

1.6 Reliance

This report has been prepared for the exclusive use of TEPPCO, L.P., and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of TEPPCO, L.P. and SWG. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, SESI report, and SWG's Agreement. The limitation of liability defined in the agreement is the aggregate limit of SWG's liability to the client.

2.0 SENSITIVE RECEPTOR SURVEY

During the completion of field activities, a sensitive receptor survey, which included a ½-mile radius search for registered water wells and a 500-foot walking survey for unregistered water wells and potential sensitive human and ecological receptors, was performed in the vicinity of the site.

During the completion of the 500-foot receptor survey, SWG inspected the site vicinity for dwellings, schools, hospitals, day care centers, nursing homes, businesses and subsurface utilities located within 500 feet of the site. In addition, sensitive receptors such as surface water bodies, parks, recreational areas, wildlife sanctuaries and wetlands areas located within 500 feet of the site were evaluated, if present. The site is located within an agricultural rangeland and oil and gas production and storage setting. SWG did not observe the above referenced sensitive receptors in the vicinity of the site.

3.0 FIELD ACTIVITIES

3.1 Borings and Monitoring Wells

SWG's field activities were conducted on July 25, 2005 by Mr. B. Chris Mitchell, an SWG environmental professional. As part of the approved scope of work, one (1) boring, MW-3R, was advanced at the site and converted to a permanent groundwater monitoring well. Soil boring MW-3R was advanced adjacent to monitoring well MW-3, previously installed by ARCO.

Figure 3 is a site plan which indicates the approximate location of the soil boring/monitoring well in relation to pertinent structures and general site boundaries (Appendix A).

Drilling services were performed under the supervision of a State of New Mexico licensed Water Well Driller using an air-rotary drilling rig. An SWG professional was present to observe the drilling procedures. Soil samples were collected using a one foot core barrel sampler. Drilling equipment was cleaned using a high pressure washer prior to beginning the project and before beginning each soil boring. Sampling equipment was cleaned using an Alconox® wash and potable water rinse prior to the beginning of the project and before collecting each soil sample.

Soil samples were collected continuously and observed to document soil lithology, color, moisture content and evidence of petroleum hydrocarbon impact. The soil samples were field-screened using a calibrated photoionization detector (PID) to indicate the presence of volatile organic compounds.

The lithology encountered during the advancement of soil boring MW-3R consisted of a brown silty clay from the surface to a depth of approximately 2 feet below grade surface (bgs). A tan caliche was encountered from a depth of 2 feet bgs to a depth of approximately 18 feet bgs. The tan caliche was underlain by a pale pink caliche from a depth of 18.0 to 33.0 feet bgs. A reddish purple quartzite lens was encountered from a depth of approximately 33 to 34 feet bgs. The quartzite lens was underlain by a reddish tan sand from a depth of 34 to 40.0 feet bgs. The sand was underlain by a red sand with fragmented sandstone from a depth of 40.0 bgs to the terminus of the soil boring at a depth of 48.0 feet bgs. Detailed lithologic descriptions are presented on the soil boring logs included in Appendix D.

Groundwater was encountered at a depth of approximately 37 feet bgs during the advancement of monitoring well MW-3R.

The groundwater flow direction and the depth to shallow groundwater likely vary depending upon seasonal variations in rainfall and the depth to the soil/bedrock interface. Without the benefit of on-site groundwater monitoring wells surveyed to a datum, groundwater flow direction beneath the site cannot be determined. Based on field observations, the general groundwater flow direction appears to follow topography, which grades toward the southwest.

Petroleum odors and PID readings ranging up to 1,342 parts per million (ppm) were detected in the soil samples collected from soil boring MW-3R. The highest PID reading was observed in the soil sample collected from a depth of 36 to 37 feet bgs (capillary fringe) in soil boring MW-3R. The soil boring log is included in Appendix D.

Subsequent to advancement, soil boring MW-3R was converted to a permanent monitoring well. The monitoring well was completed using the following methodology:

- Installation of 15.0 feet of 2-inch diameter, 0.010-inch machine slotted PVC well screen with a threaded bottom cap;
- Installation of 33.0 feet of 2-inch diameter, threaded flush joint PVC riser piper to just above the ground surface;
- Addition of a pre-sieved 20/40 grade annular silica sand pack from the bottom of the boring to at least 0.5-feet above the top of the well screen;
- Addition of a hydrated bentonite seal above the sand pack filter zone;
- Addition of grout to the surface; and,
- Installation of an above grade monitoring well cover with locking well cap.

Monitoring well construction details are presented on the soil boring log for this monitoring well which is included in Appendix D.

The monitoring well was developed by surging and removing groundwater with a new, disposable, polypropylene bailer until the groundwater was relatively free of fine-grained sediment. Approximately twenty-five gallons of groundwater was removed from the monitoring well during the development activities.

3.2 Soil and Groundwater Sampling

SWG's soil sampling program involved submitting one soil sample from the soil boring for laboratory analysis. The soil sample was collected from the zone exhibiting the highest PID reading, which was the capillary fringe zone. Soil sample intervals are presented along with the soil sample analytical results in Table 1 (Appendix B) and included on the boring log in Appendix D.

A groundwater sample was collected from the monitoring well utilizing a dedicated disposable bailer.

Soil and groundwater samples were collected and placed in laboratory prepared glassware, sealed with custody tape and placed on ice in a cooler, which was secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to Severn Trent's analytical laboratory in Corpus Christi, Texas for normal turnaround.

4.0 LABORATORY ANALYTICAL METHODS

The soil samples collected from each boring and the groundwater samples collected from the monitoring wells were analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) using EPA SW-846 method #8021B and TPH DRO/GRO utilizing EPA method SW-846# 5030B/8015Bmodified. In addition, the soil sample was analyzed utilizing Texas Commission on Environmental Quality (TCEQ) Method TX1005/1006 to speciate the identified petroleum hydrocarbons.

< ANA

Laboratory results are summarized in the tables included in Appendix B. The executed chain-of-custody form and laboratory data sheets are provided in Appendix E.

5.0 **DATA EVALUATION**

5.1 Soil Samples

SWG compared the petroleum hydrocarbon constituent concentrations identified in the on-site soils to the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division's (OCD's) Remediation Action Levels for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.) in accordance with the OCD's Guidelines for Remediation of Leaks, Spills and Releases.

In addition, SWG analyzed the soil sample utilizing TCEQ Method TX1005/1006 to χ $\Delta\lambda\Delta$ evaluate the aliphatic and aromatic fractions associated with the identified TPH concentration. The inverse weighted average (TPH Mass Fractions) of the aliphatic and aromatic fractions derived from the TPH Method TX 1006 analysis are typically utilized to establish cleanup values for the complete TPH mixture (i.e., the whole product), for each applicable exposure pathway. However, the TX 1005/1006 analysis did not identify petroleum hydrocarbon concentrations above the laboratory method detection limits.

- KOT IN NM

Based on the laboratory analytical results, benzene, toluene and xylenes concentrations were not identified in the soil sample collected from soil boring MW-3R above the laboratory method detection limits.

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's Remediation Action Levels, the identified ethylbenzene concentration associated with the soil sample collected from soil boring MW-3R does not exceed the remediation action level of 50 mg/kg for Total BTEX.

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's Remediation Action Levels, the identified TPH DRO concentration associated with the soil sample collected from soil boring MW-3R exceeds the remediation action level of 100 mg/kg. However, based on the results of the TX 1005/1006 analysis, TPH concentrations were not identified above the laboratory method detection limits.

In addition, SWG compared the identified TPH concentrations to the New Mexico Environmental Department TPH Screening Guidelines dated June 24, 2003. Due Cruto∈ to the absence of TPH Screening Values for crude oil, SWG compared the identified TPH concentrations to the lower of the published NMED Screening Paparet Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene Based on the laboratory analytical results, the TPH DRO concentration identified in the soil sample collected from soil boring MW-3R does not exceed the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel of 880 mg/kg.

The results of the soil sample analyses are summarized in Table 1, included in Appendix B.

5.2 Groundwater Samples

SWG compared the petroleum hydrocarbon constituent concentrations identified in on-site groundwater to the New Mexico Water Quality Commission (NMWQC) Ground Water Standards for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.) in accordance with the Guidelines for Remediation of Leaks, Spills and Releases.

Based on the laboratory analytical results, benzene, toluene, ethylbenzene and/or xylenes concentrations were not identified in the groundwater sample collected from monitoring well MW-3R above the laboratory method detection limits.

Based on the laboratory analytical results, TPH GRO/DRO concentrations were identified in the groundwater sample collected from monitoring well MW-3R; however, the identified concentrations do not exceed the applicable NMWQC Groundwater Water Standards.

The results of the groundwater sample analyses are summarized in Table 2 included in Appendix B.

6.0 MONITORED NATURAL ATTENUATION EVALUATION

SWG conducted a natural attenuation screening to evaluate the site for remediation by monitored natural attenuation. Natural attenuation of petroleum hydrocarbons is recognized as a viable remedial alternative where favorable subsurface conditions prevail. The ASTM guidance document, <u>Standard Guide for Remediation of Ground Water by Natural Attenuation at Petroleum Release Sites</u>, was utilized as the standard for evaluating natural attenuation.

Natural attenuation is the process by which contaminants in the environment are degraded, or reduced in concentration by various means including volatilization, adsorption, desorption, dispersion, dilution, diffusion, biodegradation, and abiotic degradation. Natural attenuation is achieved when one or more of these processes brings about a reduction in the total mass, toxicity, mobility, volume, or concentration of a contaminant. The presence or absence of key indicator parameters will indicate the degree to which (if any) natural attenuation may occur. Monitored natural attenuation is the measurement or analysis of these key indicator parameters over time to establish trends that document that a reduction in total mass, toxicity, mobility, volume, or concentration of a contaminant is taking place. Several of the indicator parameters such as Oxygen, Conductivity, pH, Temperature, and Oxidation-Reduction Potential can be measured in the field. The remaining indicator parameters such as Alkalinity, Nitrate, Ferrous Iron, Ferric Iron, Carbon Dioxide, Sulfate and Methane are submitted to the laboratory for analysis.

Primary Lines of Evidence

Primary lines of evidence consist of historical groundwater data that demonstrate a clear trend of stable of decreasing COC concentrations in groundwater over time and with distance away from the source at appropriate monitoring or sampling points. $\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \end{array}$

Based on SWG's review of the current and historical groundwater data, COC concentrations exhibit a decreasing trend in groundwater samples collected during sample events conducted in 2003 to 2005.

7.0 FINDINGS AND RECOMMENDATIONS

SWG's field activities were conducted on July 25, 2005 by Mr. B. Chris Mitchell, an SWG environmental professional. As part of the approved scope of work, one (1) boring was advanced and converted to a permanent groundwater monitoring well. Boring MW-3R was advanced adjacent to monitoring well MW-3, previously installed by ARCO.

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified ethylbenzene concentration associated with the soil sample collected from soil boring MW-3R does not exceed the remediation action level of 50 mg/kg for Total BTEX.

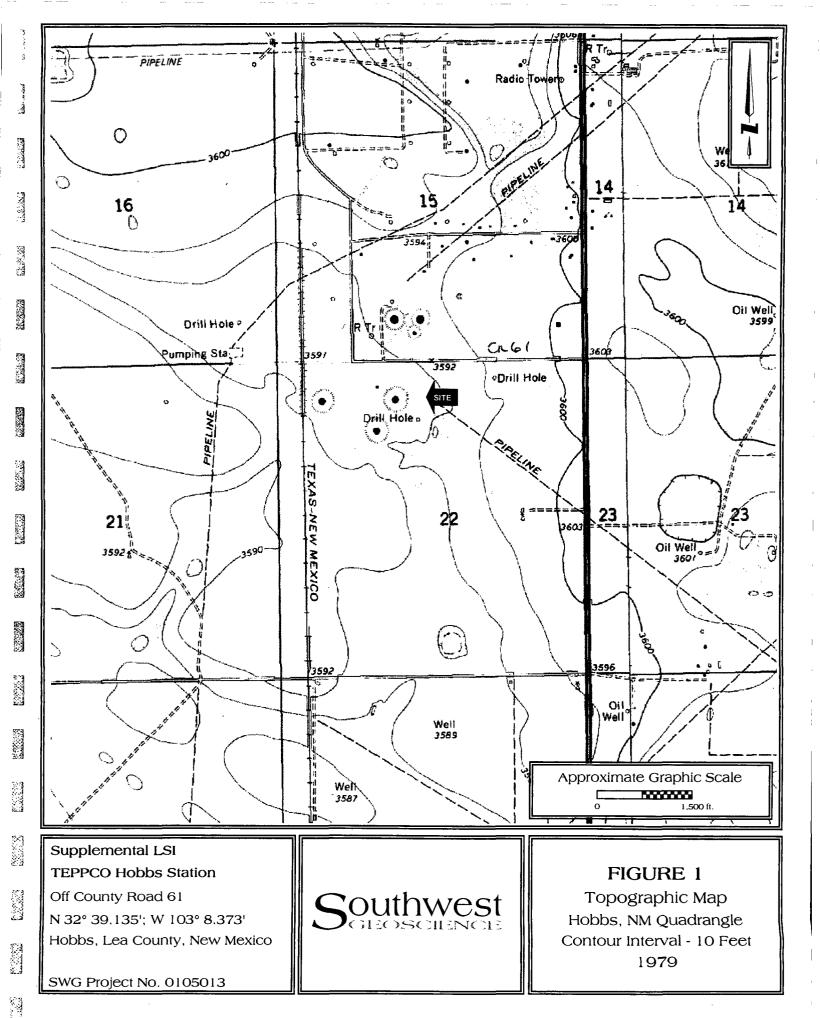
Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified TPH DRO concentration associated with the soil sample collected from soil boring MW-3R exceeds the remediation action level of 100 mg/kg. However, based on the results of the TX 1005/1006 analysis, TPH concentrations were not identified above the laboratory method detection limits.

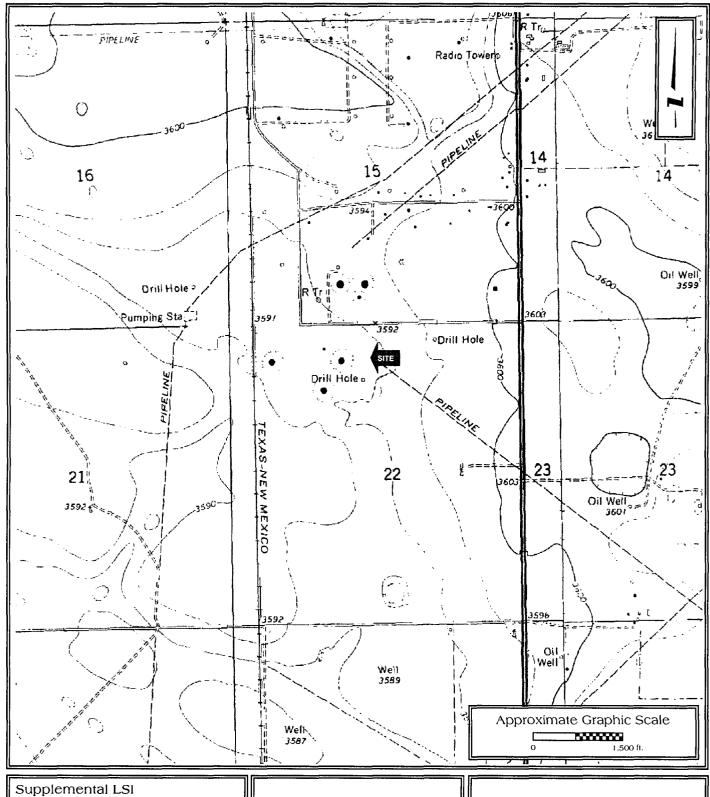
In addition, SWG compared the identified TPH concentrations to the New Mexico Environmental Department *TPH Screening Guidelines* dated June 24, 2003. Due to the absence of TPH Screening Values for crude oil, SWG compared the identified TPH concentrations to the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel. Based on the laboratory analytical results, the TPH DRO concentration identified in the soil sample collected from soil boring MW-3R does not exceed the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel of 880 mg/kg.

Based on the laboratory analytical results, TPH GRO/DRO concentrations were identified in the groundwater sample collected from monitoring well MW-3R; however, the identified concentrations do not exceed the applicable NMWQC Groundwater Water Standards.

Based on SWG's review of the historic and current laboratory analytical results, the primary lines of evidence with regard to natural attenuation of chemicals of concern (COCs) demonstrate a clear trend of stable of decreasing COC concentrations in groundwater over time and with distance away from potential source(s).

Based on the results of this SESI, SWG presents the following recommendations:

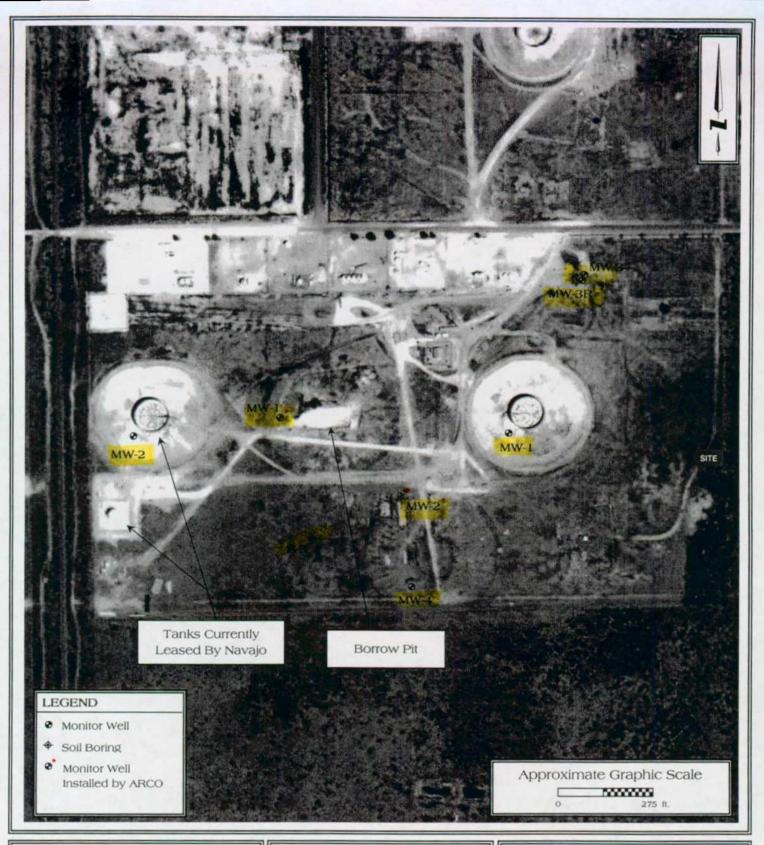

 Report the results of the investigation to the New Mexico Energy, Minerals and Natural Resources Department OCD and coordinate site activities through the OCD;



- o Based on the COC concentrations identified in the on-site soil and groundwater, the trend of decreasing COC concentrations in groundwater over time, the absence of beneficial use of groundwater in the vicinity of monitoring well MW-3R, the anticipated future use of the site (crude oil pipeline facility) and the direction of groundwater flow, SWG recommends TEPPCO request regulatory closure from the NMEMNRD OCD in accordance with Section VII of the OCD's Guidelines for Remediation of Leaks, Spills & Releases dated August 13, 1993;
- o If soils or groundwater located on the site are to be disturbed during future excavations or construction activities, proper procedures should be followed with respect to worker health and safety, and any affected soil or groundwater encountered should be properly characterized, treated and/or disposed in accordance with applicable local, state or federal regulations.

Southwest

APPENDIX A
Figures



Supplemental LSI
TEPPCO Hobbs Station
Off County Road 61
N 32° 39.135'; W 103° 8.373'
Hobbs, Lea County, New Mexico

SWG Project No. 0105013

Southwest

FIGURE 1
Topographic Map
Hobbs, NM Quadrangle
Contour Interval - 10 Feet
1979

Supplemental LSI TEPPCO Hobbs Station

Off County Road 61 N 32° 39.135'; W 103° 8.373' Hobbs, Lea County, New Mexico

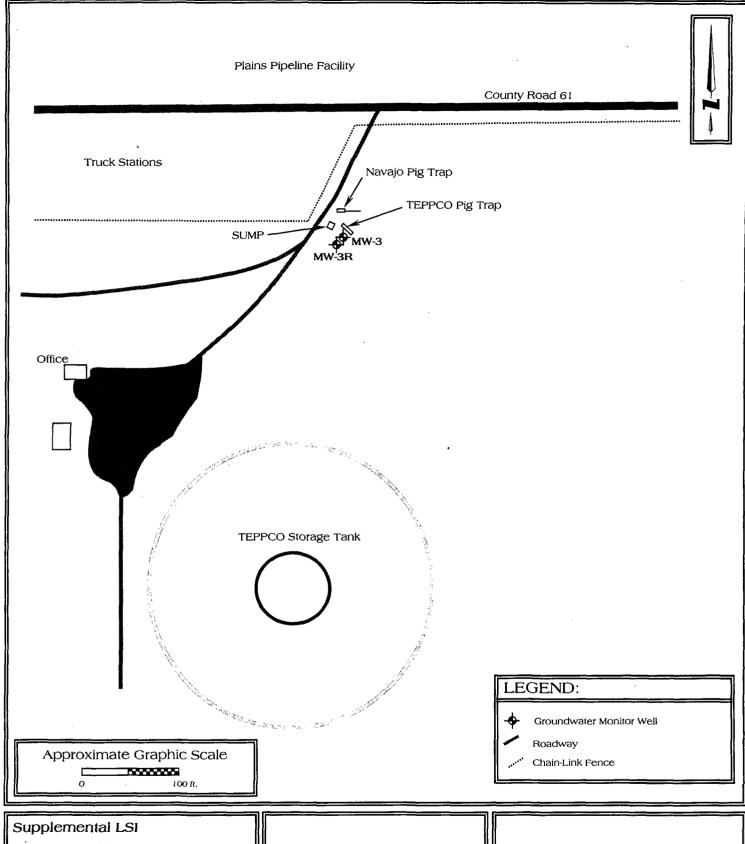
SWG Project No. 0105013

IN ADDITION THE PARTY

Southwest

FIGURE 2

Site Vicinity Map 2002 Aerial Photograph Source: USGS



Supplemental LSI **TEPPCO Hobbs Station** Off County Road 61 N 32° 39.135'; W 103° 8.373' Hobbs, Lea County, New Mexico

SWG Project No. 0105013

FIGURE 2

Site Vicinity Map 2002 Aerial Photograph Source: USGS

Supplemental LSI TEPPCO Hobbs Station

Off County Road 61 N 32° 39.135'; W 103° 8.373' Hobbs, Lea County, New Mexico

SWG Project No. 0105013

Southwest

FIGURE 3
Site Plan

ENVIRONMENTAL SITE INVESTIGATION

on

HOBBS STATION

Off County Road 61 Hobbs, New Mexico

ALPHA Project No. E03211 May 23, 2003

Prepared for:

TEPPCO Crude Oil, LP c/o TEPPCO, LP

2929 Allen Parkway Houston, Texas 77019

PREPARED BY:

B. Chris Mitchell, P.G.

3. Cl. Il

Environmental Department Manager

Jim L. Hillhouse

Senior Technical Review

ALPHA TESTING, INC.

2209 Wisconsin St., Suite 100

Dallas, Texas 75229

Phone: (972) 620-8911 Fax: (972) 620-1302

TABLE OF CONTENTS

EXE	CUTIVE SUMM	1ARY	1
1.0 I	NTRODUCTIO	N AND BACKGROUND	3
2.0 F	TELD EXPLOR	ATION	4
2.1		Of Soil Borings	
2.2		g of Soil Borings	
2.3	=	Monitor Wells	
2.4	Soil & Ground	lwater Sampling Program	6
20 1	DOD . TODY	ANALYTICAL BROODAN AND DECLUTE	-
		ANALYTICAL PROGRAM AND RESULTS	
3.1			
3.2	Groundwater		8
4.0	FINDINGS AN	D RECOMMENDATIONS	10
4.1	Data Evaluation	n	10
4	4.1.1 Soil		10
		ter	
4.2	Recommendation	ons	12
	FIGURES	Figure 1: Topographic Map	
		Figure 2: Site Plan	
		Figure 3: Site Vicinity Map	
	Appendix A	SOIL BORING LOGS	
	Appendix B	LABORATORY ANALYTICAL DATA &	
		CHAIN-OF-CUSTODY DOCUMENTATION	

EXECUTIVE SUMMARY

ALPHA TESTING, INC. (ALPHA) has conducted an Environmental Site Investigation (ESI) at the site located south of County Road 61 to the west of State Highway 18 in Hobbs, New Mexico. ALPHA's scope of work is based on the Modified Environmental Site Assessment conducted by HBC Engineering, Inc. (HBC) and the information provided by TEPPCO Crude Oil, LP (TEPPCO).

The objective of the ESI was to evaluate the presence of petroleum hydrocarbons in the onsite soil and groundwater as a result of the operations historically associated with the Site.

ALPHA's ESI was conducted on March 19 and 20, 2003, by an ALPHA environmental professional. Four soil borings (MW-1, MW-2, MW-4 & B-5) were advanced on-site during the completion of this ESI. Monitor well MW-3 had been previously installed by others at the station under the direction of ARCO. Soil boring MW-1was advanced in a topographically down-gradient position to the southwest of the 55,000 bbls. crude oil storage tank currently operated by TEPPCO. Soil boring MW-2 was advanced in a topographically down-gradient position to the southwest of the 55,000 bbls. crude oil storage tank currently operated by Navajo Pipeline Company. Soil boring MW-4 was advanced on the southern portion of the site in the vicinity of the former on-site 55,000 bbls. crude oil storage tank, and soil boring B-5 was advanced in the vicinity of the small volume storage tank formerly located in the central portion of the Site.

Based on the results of the ESI, the on-site soils in the vicinity of soil borings MW-1, MW-2, and B-5 appear to be affected by petroleum hydrocarbons.

Based on the results of the ESI, the on-site groundwater in the vicinity of monitor wells MW-1, MW-2, MW-3 and MW-4 appears to be affected by petroleum hydrocarbons.

ALPHA compared the identified petroleum hydrocarbon constituent concentrations in on-site soils and groundwater to the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division's (OCD's) Remediation Action Levels and the New Mexico Water Quality Commission (NMWQC) Ground Water Standards for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.).

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified TPH DRO concentrations associated with the soil samples collected from soil borings MW-1 and B-5 and the identified ethylbenzene and TPH GRO concentrations associated with the soil sample collected from soil boring MW-2 do not exceed their respective action levels.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified TPH DRO concentration associated with the soil sample collected from soil boring MW-2 exceeds the remediation action level of 100 mg/kg.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the NMWQC *Ground Water Standards*, the identified toluene, ethylbenzene, xylenes, TPH DRO/GRO and PAH concentrations associated with the groundwater samples collected from monitor wells MW-1, MW-2, MW-3 and MW-4 do not exceed the respective groundwater standards.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the NMWQC *Ground Water Standards*, the identified benzene concentration associated with the groundwater sample collected from monitor well MW-3 exceeds the groundwater standard of $10~\mu g/kg$.

ALPHA recommends that additional subsurface investigation activities be conducted to further evaluate the magnitude and extent of petroleum hydrocarbon affected soil and groundwater at the site.

The release of oilfield wastes or products should be reported to the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division in accordance with Section 116 of 19.15.3 NMAC.

Based on the laboratory results of the ESI, the soil cuttings and/or groundwater generated during the installation and sampling of soil borings/monitor wells MW-1, MW-2, MW-3, MW-4 and B-5 should be characterized, treated and/or disposed in accordance with applicable municipal, state, and federal regulations.

If affected soil located on the site is to be disturbed during future excavations, proper procedures should be followed with respect to worker health and safety, and any affected soil encountered should be properly handled and/or disposed in accordance with local and state regulations.

ENVIRONMENTAL SITE INVESITGATION Hobbs Station Off County Road 61 Hobbs, New Mexico

1.0 INTRODUCTION AND BACKGROUND

ALPHA TESTING, INC. (ALPHA) has conducted an Environmental Site Investigation (ESI) at the site located south of County Road 61 to the west of State Highway 18 in Hobbs, New Mexico. ALPHA's scope of work is based on the Modified Environmental Site Assessment conducted by HBC Engineering, Inc. (HBC) and the information provided by TEPPCO Crude Oil, LP (TEPPCO).

The TEPPCO Hobbs Station consists of approximately 35 acres. The Hobbs Station is developed as a crude oil storage facility associated with crude oil pipeline operations. An existing monitor well labeled MW-3 was identified during the completion of the Modified Environmental Site Assessment conducted by HBC on the northeastern portion of the facility. As a result of the Modified Environmental Site Assessment completed by HBC, potential areas of concern included each of the two current on-site crude oil storage tanks owned by TEPPCO and the three former crude oil storage tank locations historically associated with the facility.

The objective of the ESI was to evaluate the presence of petroleum hydrocarbons in the onsite soil and groundwater as a result of the operations historically associated with the identified potential areas of concern associated with the Site.

ALPHA has observed the degree of care and skill generally exercised by the profession under similar circumstances and conditions in performing this environmental exploration. Observations and findings developed by ALPHA must be considered as opinions and conclusions based solely on the conditions which were observed during the site investigation. No warranties or representations, expressed or implied, are made as to the condition of the site beyond that observed by ALPHA during its site investigation.

This study and report have been prepared on behalf of and for the reliance of TEPPCO Crude Oil, LP solely for use in an environmental evaluation of the site and limited to the scope of work outlined in this report. The scope of services performed in execution of this study may not be appropriate to satisfy the needs of other users, and any use or re-use of this document regarding the findings, conclusions, or recommendations will be at the risk of the said user.

2.0 FIELD EXPLORATION

2.1 Advancement Of Soil Borings

ALPHA's ESI was conducted on March 19 and 20, 2003, by an ALPHA environmental professional. Four soil borings (MW-1, MW-2, MW-4 & B-5) were advanced on-site during the completion of this ESI. Monitor well MW-3 had been previously installed at the station by others under the direction of ARCO. Soil boring MW-1 was advanced in a topographically down-gradient position to the southwest of the 55,000 bbls. crude oil storage tank currently operated by TEPPCO. Soil boring MW-2 was advanced in a topographically down-gradient position to the southwest of the 55,000 bbls. crude oil storage tank currently operated by Navajo Pipeline Company. Soil boring MW-4 was advanced on the southern portion of the site in the vicinity of the former on-site 55,000 bbls. crude oil storage tank, and soil boring B-5 was advanced in the vicinity of the small volume storage tank formerly located in the central portion of the site. Figure 1 shows the boundaries of the site and surface topography on the USGS topographic quadrangle map of Hobbs, New Mexico. Figure 2 is a site plan which indicates the location of the soil borings advanced on-site in relation to the pertinent structures and site boundaries.

Each of the soil borings were advanced using a truck-mounted air rotary drilling rig under the supervision of a State of New Mexico licensed water well driller. Soil samples were collected continuously utilizing a core barrel sampler. Sampling and drilling equipment were decontaminated by high pressure cleaning prior to commencement of the project and between the advancement of each soil boring.

The lithology encountered during the advancement of soil boring MW-1 consisted of clayey sand with caliche from the surface to a depth of 3.0 feet below grade surface (bgs). A pale pinkish white caliche was encountered from a depth of 3.0 to 30.0 feet bgs. A brownish red sand was encountered from a depth of 30.0 to 35.0 feet bgs. The sand was underlain by a brownish red sand with fragmented sandstone from a depth of 35.0 bgs to the terminus of the soil boring at a depth of 45.0 feet bgs. The lithologies encountered during the completion of soil borings MW-2, MW-4 and B-5 were similar to that encountered during the installation of soil boring MW-1, with the exception of quartzite encountered in soil borings MW-2 and MW-4.

2.2 Field Screening of Soil Borings

During the advancement of soil borings on-site, soil samples were collected continuously and examined to document lithology, color, moisture content and visual or olfactory evidence of impairment. In addition, headspace analyses was conducted by placing a composite soil

sample collected from each one-foot interval into a plastic ziplock bag. The plastic bag was sealed and then placed in a warm area to promote volatilization. The air above the sample, the headspace, was then evaluated using a photoionization detector (PID) capable of detecting volatile organic compounds.

ALPHA did detect olfactory evidence indicating the presence of VOCs in association with the soil samples collected from soil boring MW-2. Results of the headspace analyses for the soil samples collected from soil boring MW-2 ranged from non-detect to 38 parts per million (ppm). The highest headspace reading from MW-2 was identified in the soil sample collected from the vadose zone at a depth of 34 to 35 feet bgs. The headspace results should be considered a qualitative field measurement and should not be interpreted as a quantitative analysis. The boring logs providing soil descriptions and headspace analyses readings are presented in Appendix A.

2.3 Installation of Monitor Wells

During the completion of ESI activities, groundwater was encountered at an approximate depth of 36 feet bgs during the installation of soil boring MW-1, 35 feet bgs during the installation of soil boring MW-2, and 37 feet bgs during the installation of soil boring MW-4. Subsequent to advancement, soil borings MW-1, MW-2 and MW-4 were converted to groundwater monitor wells. The monitor wells were completed using the following methodology:

- Installation of approximately 15.0 feet of 2-inch inside diameter, 0.010-inch machine slotted polyvinyl chloride (PVC) well screen assembly with a threaded bottom cap;
- Installation of 2-inch inside diameter, threaded, flush joint PVC riser pipe to the surface:
- Addition of a graded 20/40 annular sand pack from the bottom of the boring to approximately 2 feet above the top of the well screen;
- Addition of 2.5 feet of bentonite seal:
- Addition of cement grout to the annular space to the ground surface; and,
- Installation of an 8-inch diameter circular, flush mount or above grade monitor well cover with locking well cap.

Construction details associated with each of the monitor wells are presented on the soil boring logs for monitor wells MW-1, MW-2 and MW-4 which are included in Appendix A.

Subsequent to completion, each monitor well was developed by surging and removing groundwater utilizing a dedicated disposable bailer until fluids were generally free of finegrained sediment.

Soil cuttings and groundwater generated during the advancement of the on-site soil borings, the development of monitor wells MW-1, MW-2 and MW-4 and the purging of monitor well MW-3 were contained within DOT approved, labeled 55-gallon drums. The soil cuttings and development water were stored temporarily on-site pending receipt of laboratory analyses.

2.4 Soil & Groundwater Sampling Program

ALPHA's soil and groundwater sampling program consisted of the following:

Soil borings/Monitor Wells MW-1, MW-2, MW-4

- Collection of one soil sample from each of the soil borings from the zone exhibiting the highest concentration of VOCs based on visual, olfactory or PID evidence, from the capillary fringe zone, from a change in lithology or from the bottom of the boring; and,
- Collection of one groundwater sample utilizing a dedicated disposable bailer and/or low-flow sampling equipment, subsequent to purging activities.

Monitor Well MW-3

• Collection of one groundwater sample utilizing a dedicated disposable bailer and/or low-flow sampling equipment, subsequent to purging activities of the existing on-site monitor well.

Soil boring B-5

• Collection of one soil sample from the soil boring from the zone exhibiting the highest concentration of VOCs based on visual, olfactory or PID evidence, from the capillary fringe zone, from a change in lithology or from the bottom of the boring.

Soil and groundwater samples were collected in laboratory prepared glassware, sealed with custody tape and placed on ice in a cooler which was secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to ERMI Environmental Laboratories, Inc. in Allen, Texas.

3.0 LABORATORY ANALYTICAL PROGRAM AND RESULTS

3.1 Soil

The soil samples collected from the soil borings were analyzed for total petroleum hydrocarbons (TPH) utilizing EPA Method SW-846 #0015 Diesel Range Organics (DRO)/Gasoline Range Organics (GRO) and benzene, toluene, ethylbenzene and xylenes (BTEX) utilizing EPA Method SW-846 #8021. In addition, the soil sample which exhibited the highest concentration of TPH was analyzed for polynuclear aromatic hydrocarbons (PAHs) utilizing EPA Method SW-846 #8310.

Laboratory results associated with the soil sample collected from the Site are summarized in the tables below:

TABLE 3.1A SOIL SAMPLE ANALYSES									
Sample I.D.	Date	Sample Depth (feet)	Benzene (µg/kg)	Toluene (μg/kg)	Ethyl benzene (µg/kg)	Xylenes (μg/kg)	TOTAL BTEX (μg/kg)	TPH DRO (mg/kg)	TPH GRO (mg/kg)
New Mexico Energy, Minerals & Natural Resources Department, Oil Conservation Division, Remediation Action Level		10,000	-	•	-	50,000	100	100	
MW-1	March 19, 2003	35-36	<10.0	<10.0	<10.0	<30.0	<60.0	5.13	<1.0
MW-2	March 19, 2003	34-35	<10.0	<10.0	57.9	<10.0	57.9	621	12.6
MW-4	March 20, 2003	36-37	<10.0	<10.0	<10.0	<30.0	<60.0	<2.9	<1.0
B-5	March 19, 2003	14-15	<10.0	<10.0	<10.0	<30.0	<60.0	5.77	<1.0

 $\mu g/kg = micrograms per kilogram$ mg/kg = milligrams per kilogram

TABLE 3.1B SOIL SAMPLE ANALYSES							
Sample I.D.	Date	РАН	Observed Concentration (μg/kg)				
MW-2 (34-35)	March 19, 2003	Acenaphthene	489				
W - 2 (34-33)	Watch 19, 2003	Acenaphthylene	291				
		Anthracene	193				
		Benzo(a)anthracene	<41.7				
		Benzo(a)pyrene	<41.7				
		Benzo(b)fluoranthene	51.2				
		Benzo(g,h,i)perylene	48.3				
		Benzo(k)fluoranthene	105				
		Chrysene	102				
		Dibenzo(a,h)anthracene	28.8				
		Fluoranthene	570				
		Fluorene	<8.33				
		Indeno(1,2,3-cd)pyrene	244				
		Naphthalene	<41.7				
		Phenanthrene	296				
İ		Pyrene	23.0				

 $\mu g/kg = micrograms \ per \ kilogram$

3.2 Groundwater

The groundwater samples collected from the monitor wells were analyzed for total petroleum hydrocarbons (TPH) utilizing EPA Method SW-846 #0015 DRO/GRO and BTEX utilizing EPA Method SW-846 #8021. In addition, the groundwater sample which exhibited the highest concentration of TPH was analyzed for PAHs utilizing EPA Method SW-846 #8310.

Laboratory results associated with the groundwater samples collected from the site are summarized in the tables below:

TABLE 3.2A **GROUNDWATER SAMPLE ANALYSES**

Sample I.D.	Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Xylenes (μg/L)	TPH DRO (mg/L)	TPH GRO (mg/L)
New Mexico Water Quality Control Commission Ground Water Standards		10	750	750	620	-	-
MW-1	March 20, 2003	<1.0	<1.0	<1.0	<3.0	2.44	<0.05
MW-2	March 20, 2003	<1.0	<1.0	<1.0	<3.0	0.493	<0.05
MW-3	March 20, 2003	63.7	2.49	197	6.23	18.0	1.95
MW-4	March 20, 2003	<1.0	<1.0	<1.0	<3.0	0.829	<0.05

 $\mu g/L = micrograms per liter$ mg/L = milligrams per liter

TABLE 3.2B **GROUNDWATER SAMPLE ANALYSES**

GROON WATER SAMILEE ANALIGES							
Sample I.D. Date		РАН	Observed Concentration (μg/L)	New Mexico Water Quality Control Commission Ground Water Standards			
MW-3	March 20, 2003	Acenaphthene	<2.5	-			
101 00 -3	Water 20, 2003	Acenaphthylene	4.85	-			
		Anthracene	15.0	-			
		Benzo(a)anthracene	0.290	-			
	}	.Benzo(a)pyrene	0.394	0.7			
		Benzo(b)fluoranthene	< 0.01	-			
		Benzo(g,h,i)perylene	0.545	_			
		Benzo(k)fluoranthene	1.32	-			
		Chrysene	1.7	-			
		Dibenzo(a,h)anthracene	0.623	_			
		Fluoranthene	16.1	_			
		Fluorene	9.18	-			
		Indeno(1,2,3-cd)pyrene	2.1	-			
		Naphthalene	29.0	30			
		Phenanthrene	7.67	-			
		Pyrene	0.506	-			

 $\mu g/L = micrograms per liter$

4.0 FINDINGS AND RECOMMENDATIONS

4.1 Data Evaluation

4.1.1 Soil

The laboratory analyses of the soil sample collected from soil boring MW-1 did not indicate BTEX or TPH GRO concentrations above the method detection limits; however, the laboratory analysis did indicate a TPH DRO concentration of 5.13 mg/kg.

The laboratory analyses of the soil sample collected from soil boring MW-2 did not indicate benzene, toluene or xylenes concentrations above the method detection limits; however, the laboratory analysis did indicate a ethylbenzene concentration of 57.9 μ g/kg, a TPH DRO concentration of 621 mg/kg and a TPH GRO concentration of 12.6 mg/kg. In addition, the laboratory analysis of the soil sample collected from soil boring MW-2 exhibited PAHs including an acenaphthene concentration of 489 μ g/kg, an acenaphthylene concentration of 291 μ g/kg, an anthracene concentration of 193 μ g/kg, a benzo(b)fluoranthene concentration of 51.2 μ g/kg, a benzo(g,h,i)perylene concentration of 48.3 μ g/kg, a dibenzo(a,h)anthracene concentration of 105 μ g/kg, a chrysene concentration of 102 μ g/kg, an indeno(1,2,3-cd)pyrene concentration of 244 μ g/kg, a phenanthrene concentration of 296 μ g/kg and a pyrene concentration of 23.0 μ g/kg.

The laboratory analyses of the soil sample collected from soil boring MW-4 did not indicate BTEX or TPH DRO/GRO concentrations above the method detection limits.

The laboratory analyses of the soil sample collected from soil boring B-5 did not indicate BTEX or TPH GRO concentrations above the detection limits of the laboratory equipment; however, the laboratory analysis did indicate a TPH DRO concentration of 5.77 mg/kg.

Based on the results of the ESI, the on-site soils in the vicinity of soil borings MW-1, MW-2, and B-5 appear to be affected by petroleum hydrocarbons.

ALPHA compared the identified petroleum hydrocarbon constituent concentrations in on-site soils to the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division's (OCD's) *Remediation Action Levels* for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.).

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's Remediation Action Levels, the identified TPH DRO

concentrations associated with the soil samples collected from soil borings MW-1 and B-5 and the identified ethylbenzene and TPH GRO concentrations associated with the soil sample collected from soil boring MW-2 do not exceed their respective action levels.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified TPH DRO concentration associated with the soil sample collected from soil boring MW-2 exceeds the remediation action level of 100 mg/kg.

4.1.2 Groundwater

The laboratory analyses of the groundwater sample collected from monitor well MW-1 did not indicate BTEX or TPH GRO concentrations above the method detection limits; however, the laboratory analysis did indicate a TPH DRO concentration of 2.44 mg/L.

The laboratory analyses of the groundwater sample collected from monitor well MW-2 did not indicate BTEX or TPH GRO concentrations above the method detection limits; however, the laboratory analysis did indicate a TPH DRO concentration of 0.493 mg/L.

The laboratory analyses of the groundwater sample collected from monitor well MW-3 indicated a benzene concentration of 63.7 μ g/L, a toluene concentration of 2.49 μ g/L, a ethylbenzene concentration of 197 μ g/L, a xylenes concentration of 6.23 μ g/L, a TPH DRO concentration of 18 mg/L and a TPH GRO concentration of 1.95 mg/L. In addition, the laboratory analysis of the groundwater sample collected from monitor well MW-3 exhibited PAHs including an acenaphthylene concentration of 4.85 μ g/L, an anthracene concentration of 15.0 μ g/L, a benzo(a)anthracene concentration of 0.29 μ g/L, a benzo(b)pyrene concentration of 0.394 μ g/L, a benzo(g,h,i)perylene concentration of 0.545 μ g/L, a benzo(k)fluoranthene concentration of 1.32 μ g/L, a chrysene concentration of 1.7 μ g/L, a dibenzo(a,h)anthracene concentration of 0.623 μ g/L, a fluoranthene concentration of 16.1 μ g/L, a fluorene concentration of 9.18 μ g/L an indeno(1,2,3-cd)pyrene concentration of 2.1 μ g/L, a naphthalene concentration of 29.0 μ g/L a phenanthrene concentration of 7.67 μ g/L and a pyrene concentration of 0.506 μ g/L.

The laboratory analyses of the groundwater sample collected from monitor well MW-4 did not indicate BTEX or TPH GRO concentrations above the method detection limits; however, the laboratory analysis did indicate a TPH DRO concentration of 0.829 mg/L.

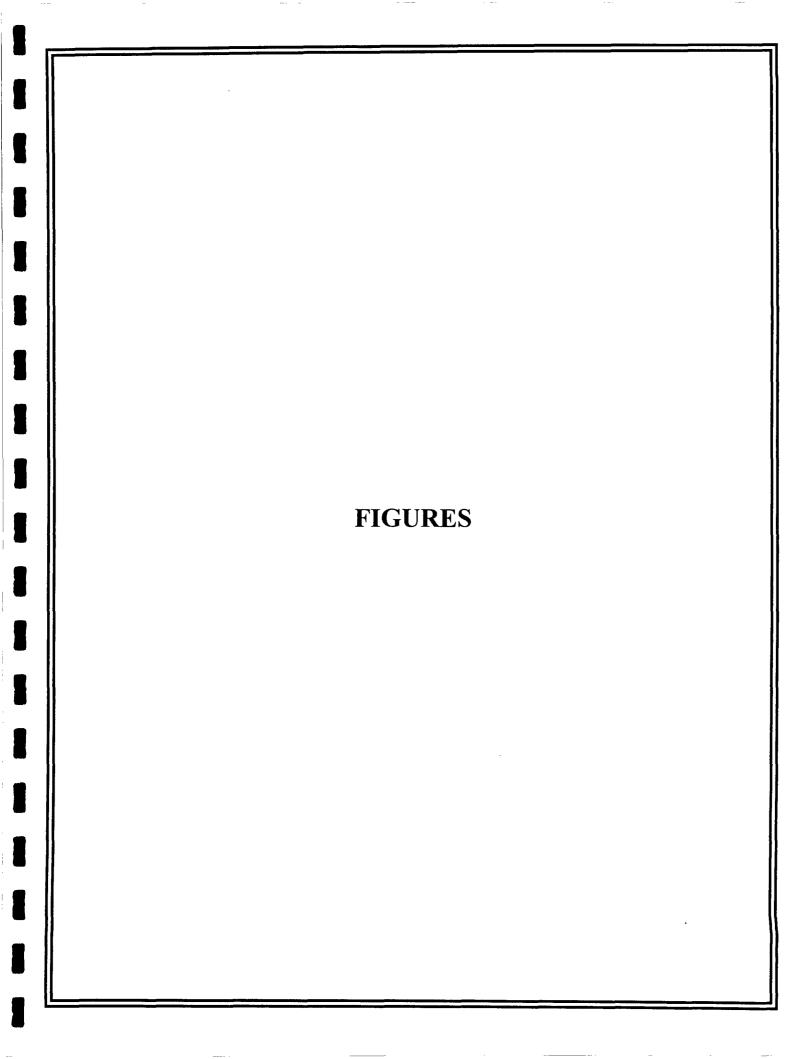
Based on the results of the ESI, the on-site groundwater in the vicinity of monitor wells MW-1, MW-2, MW-3 and MW-4 appears to be affected by petroleum hydrocarbons.

ALPHA compared the identified petroleum hydrocarbon constituent concentrations in on-site

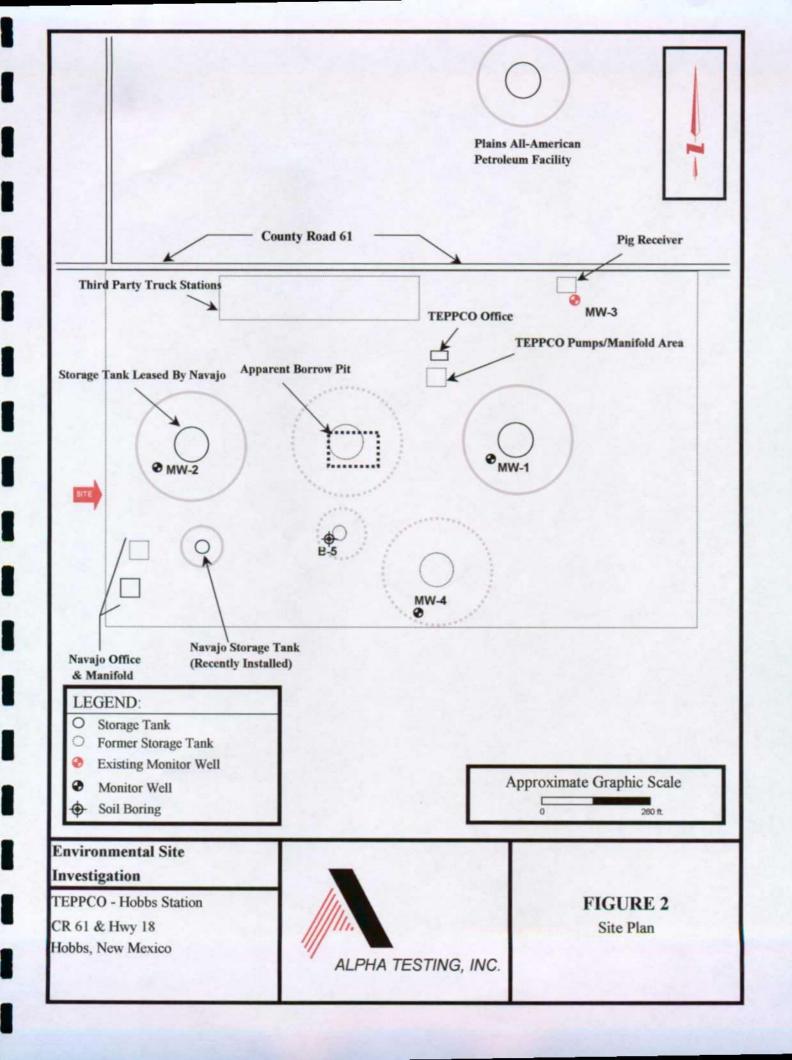
groundwater to the New Mexico Water Quality Commission (NMWQC) Ground Water Standards for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.).

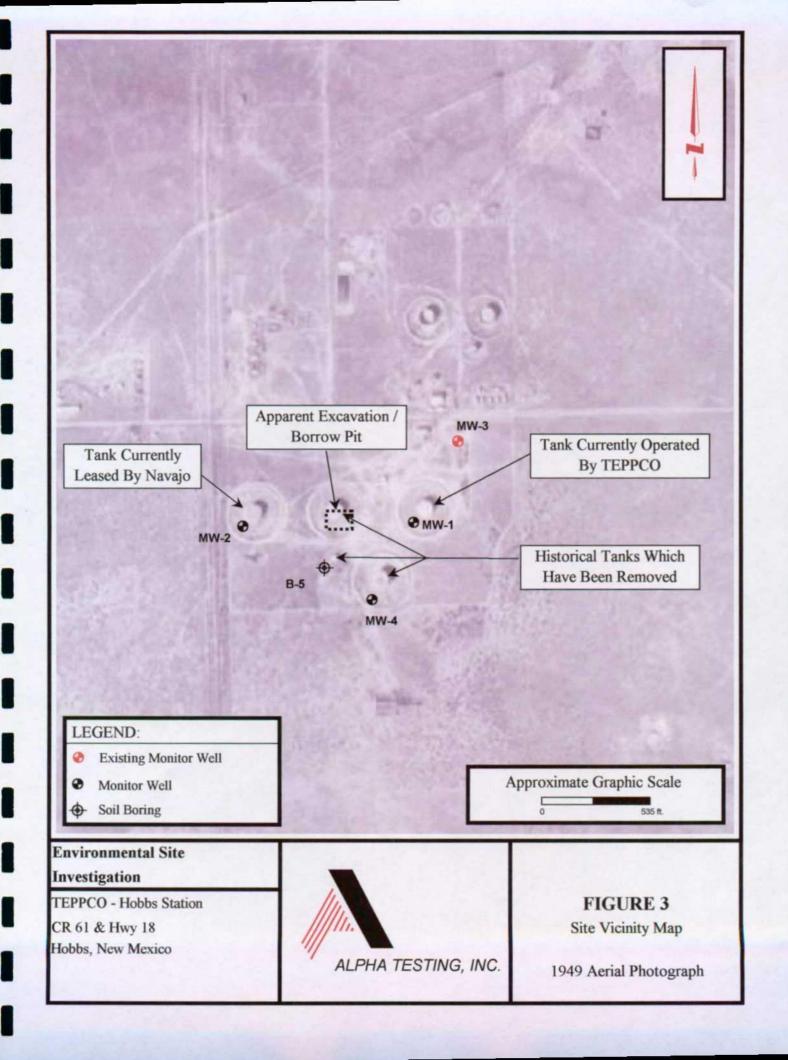
Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the NMWQC *Ground Water Standards*, the identified toluene, ethylbenzene, xylenes, TPH DRO/GRO and PAH concentrations associated with the groundwater samples collected from monitor wells MW-1, MW-2, MW-3 and MW-4 do not exceed the respective groundwater standards.

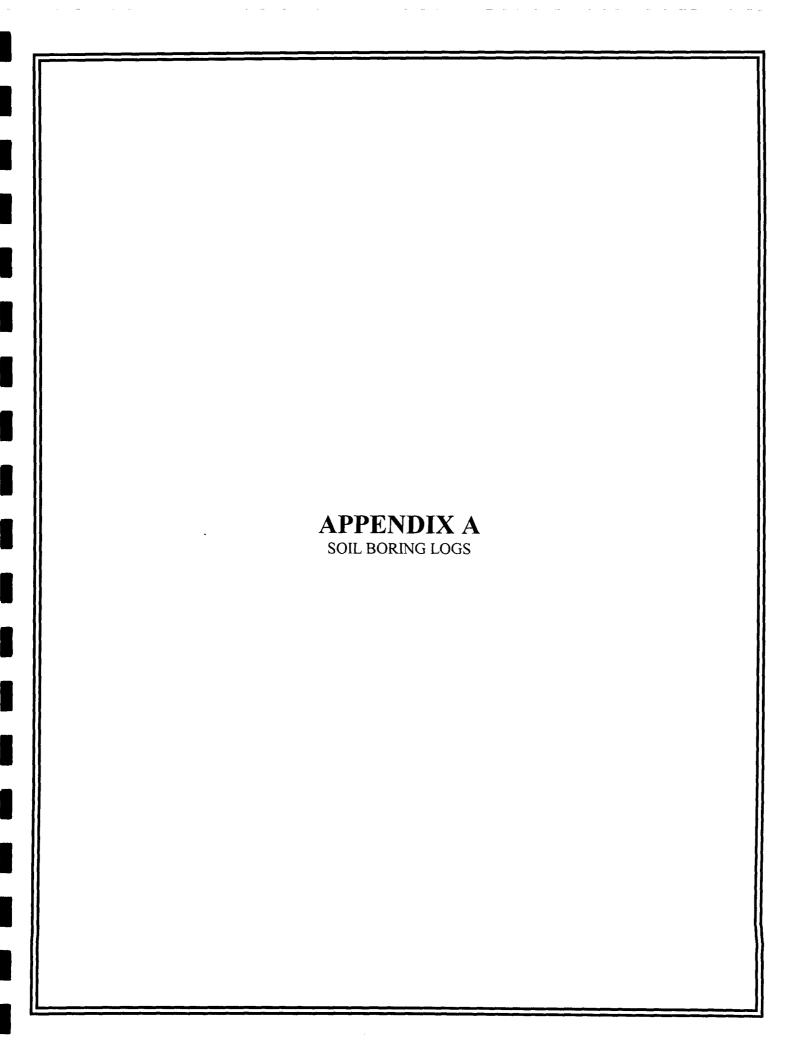
Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the NMWQC *Ground Water Standards*, the identified benzene concentration associated with the groundwater sample collected from monitor well MW-3 exceeds the groundwater standard of $10~\mu g/kg$.


4.2 Recommendations


ALPHA recommends that additional subsurface investigation activities be conducted to further evaluate the magnitude and extent of petroleum hydrocarbon affected groundwater at the site.


The release of oilfield wastes or products should be reported to the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division in accordance Section 116 of 19.15.3 NMAC.


Based on the laboratory results of the ESI, the soil cuttings and/or groundwater generated during the installation and sampling of soil borings/monitor wells MW-1, MW-2, MW-3, MW-4 and B-5 should be characterized, treated and/or disposed in accordance with applicable municipal, state, and federal regulations.


If affected soil located on the site is to be disturbed during future excavations, proper procedures should be followed with respect to worker health and safety, and any affected soil encountered should be properly handled and/or disposed in accordance with local and state regulations.

RECORD OF SUBSURFACE EXPLORATION

Client:TEPPCO, LP	Soil Boring / Well Number: MW-1	
Project Name: Hobbs Station	Project #: <u>E03211</u>	
Project Location: County Road 61 & Highway 18, Hobbs, New Mexic		
Project Manager: BCM	Aprroved By: BCM	
DRILLING & SAMPLING INFORMAITON		
Date Started: March 19, 2003 Hammer Wt. N/A		
Date Completed: March 19, 2003 Hammer Drop: N/A		
Drilling Company: Straub Corporation Sampler OD: 4"	BORING	AND
Driller: Martin Straub Bore Hole Dia: 6" Geologist: BCM		
Boring Method: Air Rotary	tided Spin	NOIES
Doing Wellou. All Notary	Readi Start	
SOIL CLASSIFICATION SURFACE ELEVATION:	Stratum Depth Scale Sample Interval % Recovery Groundwater Depth FID/PID Readings (ppm)	
Clayey Sand w/ Caliche, Pale Reddish Brown, Dry, No O		
		:
Caliche, Pale Pinkish White, Dry, No Odor		
-8 8	5]	
1		
-1		
11	10 -1 1 1	
41		į
		ļ
4 1		}
	20 - 0	ĺ
	25 - 0	
-8 8		
X X		
	30 7 1 1	
Sand, Brownish Red, Dry to Moist, No Odor		
Sand w/ Sandstone Brownish Bod Wat No Oder	35 — 0	
Sand w/ Sandstone, Brownish Red, Wet, No Odor	MW-1/55 38) $\nabla \frac{0}{0}$	
Sand, Brownish Red, Dry to Moist, No Odor		
	40 -	
((=)		
磁量 组		

CB - FIVE FOOT CORE BARREL SS - DRIVEN SPLIT SPOON ST - PRESSED SHELBY TUBE

GROUNDWATER DEPTH

AT COMPLETION

AT WELL STABILIZATION

BORING METHOD

RECORD OF SUBSURFACE EXPLORATION

Client: TEPPCO, LP	Soil Borii	ng / Well	l Nu	mbe	r:	MW-	-2
Project Name: Hobbs Station	Project #	# :				E032	
Project Location: County Road 61 & Highway 18, Hobbs, New Mexico	Drawn B	sy:				BCM	
Project Manager: BCM	Aprroved	d By:				BCM	1
DRILLING & SAMPLING INFORMAITON		[;		<u> </u>		
Date Started: March 19, 2003 Hammer Wt. N/A			ĺ				
Date Completed: March 19, 2003 Hammer Drop: N/A		— I) }	
Drilling Company: Straub Corporation Sampler OD: 4"		—					BORING AND
Driller: Martin Straub Bore Hole Dia: 6" Geologist: BCM		-				mda	SAMPLING NOTES
Boring Method: Air Rotary			_		epth) sgu	SAMPLING NOTES
Boring Metriod: Air Rotary			erva	_	ter D	adir	
SOIL CLASSIFICATION	Stratum Depth Depth	ale mple	Sample Interval	% Recovery	Groundwater Depth	FID/PID Readings (ppm)	
SURFACE ELEVATION:	<u> </u>	S S S	Sa	%	Ğ		
_ Clayey Sand w/ Caliche, Pale Reddish Brown, Dry, No Odor	\;\;\;\	4 1				0	•
		1 1				0	
	,,,,,]				0	· ·
Caliche, Pale Pinkish White, Dry, No Odor	5	-				0	
		1 1		1		0	
] [.	0	
11		1 1	i	1		0	Ì
	10	7				0	
31])			0	
		4					
		1 1	ı	1)	0	
1	15] [ı			0	
4 1	岜	1 1	Ì	' j		0	
11	弄	-			ŀ	0	
	H 20] [Ì	0	ļ
		4 1	Į		Į	0	
		1		ı	}	0].
] [ĺ		ţ	0	į
	25	4	- 1		[Ō	
		4	ı	ļ	ŀ	0	
]			ł	0	
Quartzite w/ Sand, Dark Reddish Brown & Pink, Dry,		4 1	ļ		[0	1
No Odor	30 -	-	ı	1	ŀ	0	
		1	- {	- }	<u> </u>	0	}
Sand w/ Gravel, Pale Tan, Dry to Moist, Slight Petroleum	000	1 1	- 1			0	
Odor	0.00	MW-2(34-35)		- }	-	0 38	Gray Petroleum Hydrocarbon
	Po p. 35				∇		Staining
Sand, Brownish Red, Moist to Wet, No Odor		4 1	١	-		0	-
報 ■		4 1		- 1	}	0	į
Odor Sand, Brownish Red, Moist to Wet, No Odor	40 -	1	- 1	-	∇	0	\(\frac{1}{2}\)
	*** **** **** **** **** **** **** **** ****	7		-		0	ĺ
()		4 1		-	-	0	1
		1		- 1	}	0	Į
<u>₩</u>		1_1			_	0	

CB - FIVE FOOT CORE BARREL SS - DRIVEN SPLIT SPOON ST - PRESSED SHELBY TUBE ▼ AT COMPLETION
▼ AT WELL STABILIZATION

BORING METHOD

RECORD OF SUBSURFACE EXPLORATION

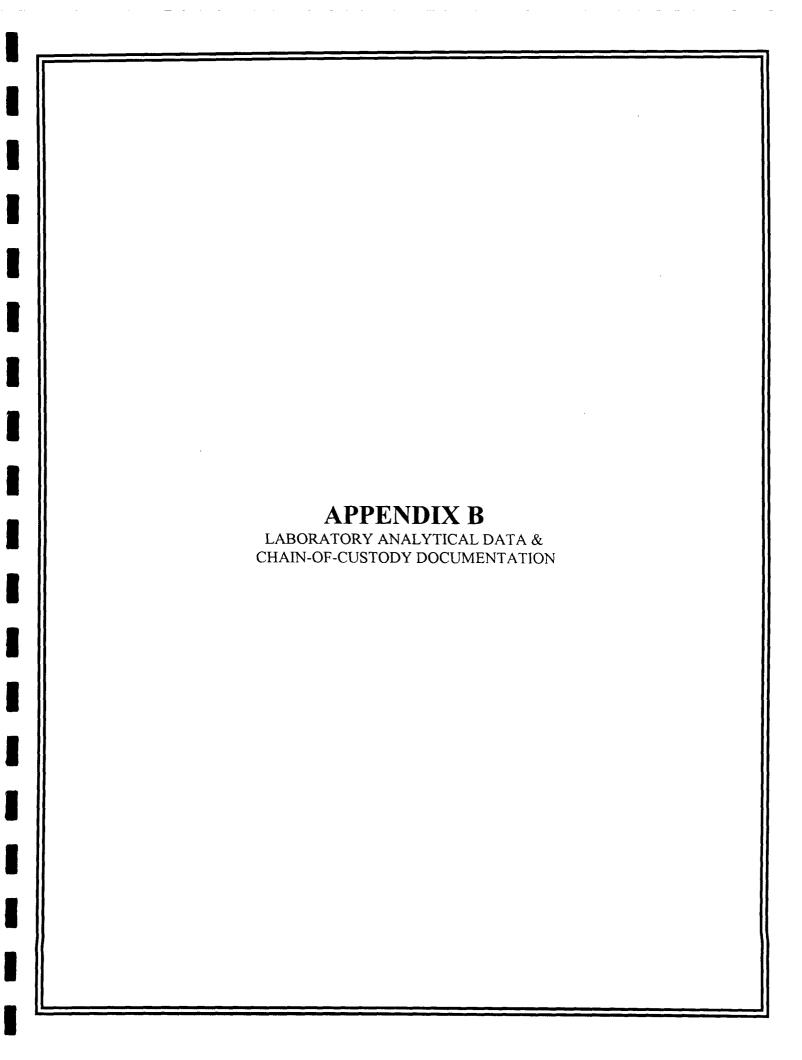
Client: TEPPCO, LP	_ Soil Boring / Weil Number:
Project Name: Hobbs Station	_ Project #:
Project Location: County Road 61 & Highway 18, Hobbs, New Mexico	
Project Manager: BCM	Aprroved By: BCM
DRILLING & SAMPLING INFORMAITON	
Date Started: March 20, 2003 Hammer Wt. N/A	
Date Completed: March 20, 2003 Hammer Drop: N/A	
Drilling Company: Straub Corporation Sampler OD: 4"	
Driller: Martin Straub Bore Hole Dia: 6"	BORING AND
Geologist: BCM	SAMPLING NOTES
Boring Method: Air Rotary	dings
SOIL CLASSIFICATION	Sample Interval Sample Interval Sample Interval We Recovery Groundwater Depth FID/PID Readings (ppm) ROBING AND
รู้ รู้ ชื่อ SURFACE ELEVATION:	
Clayey Sand, Pale Reddish Brown, Dry, No Odor	0
Caliche, Pale Pinkish White, Dry, No Odor	-
-	
	□
11	
41	
Caliche w/ Interbedded Quartizite, Pale Pinkish White & Tan,	
Dry No Odor	+
Caliche, Pale Pinkish White, Dry, No Odor	15
- 1 1	20 — 0
	25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -
[8 8:	
<u> </u>	
	30 7 1 0
Sand, Light Tan to Reddish Brown, Dry to Wet, No Odor	
接 〓は	
Sand, Light Tan to Reddish Brown, Dry to Wet, No Odor	35 - 0
	0 0 0
<u>(\$∃\$)</u>	
<u>\$</u> ≡\$	
	40 —
(2) [2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	
	- - - - - - - - - -

SAMPLER TYPE
CB - FIVE FOOT CORE BARREL
SS - DRIVEN SPLIT SPOON ST - PRESSED SHELBY TUBE

GROUNDWATER DEPTH

 ∇ AT COMPLETION f V AT WELL STABILIZATION

BORING METHOD


RECORD OF SUBSURFACE EXPLORATION

Client: <u>TEPPCO, LP</u>				/ vve					
Project Name: Hobbs Station								E0321	1
Project Location: County Road 61 & High	way 18, Hobbs, New Mexico							ВСМ	
Project Manager:BCM		Aprro	oved E	3y:				BCM	
						Т			
DRILLING & SAMPLING									
Date Started: March 19, 2003				-					
Date Completed: March 19, 2003	Hammer Drop: <u>N/A</u>			-					
Orilling Company: Straub Corporation				-					
Priller: Martin Straub	Bore Hole Dia: 6"			_				(mc	BORING AND
Geologist: BCM							뮱	d) s	SAMPLING NOTES
Boring Method: Air Rotary					Zal		r De	ading	
SOUL CLASSIL	FICATION	T _E		60	Sample Interval	% Recovery	Groundwater Depth	FID/PID Readings (ppm)	
SOIL CLASSI	FICATION	tratur lepth	epth	Sample No.	ampli	Rec	rounc	IId/OI	
Clayey Sand, Tan, Dry, No Odor		1, 1,	°	ωz	S	8	9	0	
Clayey Garia, Fari, Dry, No Odor			1 -	1					
		1,;;;	-	1	[0	
Caliche, Pale Pinkish White, Dry,	No Odor	, , ,	1 -	ł				0	
Canone, rate Finkish White, Dry,	INO OUOI		-	}				0	
			5 -					0	
			-					0	
			-	-				0	
								0	
			_			١ .		0	
J			10					0	
			Ϊ.					0	
			_					0	
			١.					0	
\							[0	
			46 —	8-5(14-15)				0	
			15 —						
		1 1]				[
		1 1	_				_ [
			_				▼		
		1					√ [
			20 —				<u> </u>		
			_				ı		
		i i	-	1		Í	Ì		
							ŀ		
			-				ŀ	\neg	
1			25 —			Ì	}	\dashv	
			-				}	\dashv	
1			-		İ	ļ	ŀ		
			-	}		Ì	}		
			-		ı	ļ	-		
			зо —	Ì			- }		
			-]	Ì				
			4	l			-		
			` _				L		
				Ì		- [L		
1		1 1				- 1	Γ		

CB - FIVE FOOT CORE BARREL
SS - DRIVEN SPLIT SPOON ST - PRESSED SHELBY TUBE

 $\begin{array}{cc} & \textbf{GROUNDWATER DEPTH} \\ \nabla & \text{AT COMPLETION} \\ \Psi & \text{AT WELL STABILIZATION} \end{array}$

BORING METHOD

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 1 of 10

Project:

Hobbs Station

Project #:

E03211

Print Date/Time:

03/28/03 1421

Attached is our analytical report for the samples received for your project. Below is a list of your individual sample descriptions with our corresponding laboratory number. We also have enclosed a copy of the Chain of Custody that was received with your samples and a form documenting the condition of your samples upon arrival. Please note any unused portion of the samples may be discarded upon expiration of the EPA holding time for the analysis performed or after 30 days from the above report date, unless you have requested otherwise.

Sample Identification

Laboratory ID #	Client Sample ID	<u>Matrix</u>	Sampled Date/Time	Received Date/Time
0303634-01	MW-1 (35-36)	Solid	03/19/03 1205	03/21/03 1030
0303634-02	MW-2 (34-35)	Solid	03/19/03 1525	03/21/03 1030
0303634-03	MW-4 (36-37)	Solid	03/20/03 0910	03/21/03 1030
0303634-04	B-5 (14-15)	Solid	03/19/03 1700	03/21/03 1030

Thank you for the opportunity to serve your environmental chemistry analysis needs. If you have any questions or concerns regarding this report please contact our Customer Service Department at the phone number below.

Respectfully submitted,

Kendall K. Brown

President

Gendall X. Brown

Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 🎸 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 2 of 10

Project:

Hobbs Station

Project #:

E03211

Print Date/Time:

03/28/03 1421

<u>Laboratory ID #:</u> 0303634-01

Sample Type

Grab

Matrix Solid Sample Collected By B. Chris Mitchell

Customer

Sample Description MW-1 (35-36)

Sample Date/Time 03/19/03 1205

	Analyte(s)	l Result) *SRL	**MRL	Units	Method #	Analysis) Date/Time	Analyst	Flag
				MIXE	Units	metrou #	Date/ Time	Allalyst	- 14g
_	Total Petroleum Hydro	ocarbons - DRC)						
	TPH Diesel	5.13	2.90	2.90	mg/kg	EPA 8015B mod	03/26/03 1915	PMS	
	Surrogate: a-Pinene		33 %	40-130		EPA 8015B mod	03/26/03 1915	PMS	Q-03
	Surrogate: Triacontane		84 %	70-130		EPA 8015B mod	03/26/03 1915	PMS	
	Total Petroleum Hydro	carbons - GRC							
_	TPH Gasoline	ND	1.00	1.00	mg/kg	EPA 8015B mod	03/26/03 2022	SW	
	Surrogate: 4-Bromofluorob	oenzene	107 %	70-130		EPA 8015B mod	03/26/03 2022	SW	
	втех								
_	Benzene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2022	sw	
	Ethyl Benzene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2022	SW	
۱	Toluene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2022	SW	
	Xylenes (total)	ND	30.0	3.00	ug/kg	EPA 8021B	03/26/03 2022	SW	
	Surrogate: 4-Bromofluorol.	penzene	107 %	70-130		EPA 8021B	03/26/03 2022	SW	

Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123

Long Distance: (800) 228-ERMI FAX: (972) 727-1175

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 3 of 10

Project:

Hobbs Station

Project #:

E03211

Print Date/Time:

03/28/03 1421

Laboratory ID #: 0303634-02

Sample Type Grab

<u>Matrix</u> Solid

Sample Collected By

B. Chris Mitchell

Customer

Sample Description MW-2 (34-35)

Sample Date/Time 03/19/03 1525

	Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
	Total Petroleum Hydro	ocarbons - DRO							R-01
_	TPH Diesel	621	29.0	2.90	mg/kg	EPA 8015B mod	03/26/03 1859	PMS	
	Surrogate: a-Pinene		16 %	40-130		EPA 8015B mod	03/26/03 1859	PMS	Q-03
-	Surrogate: Triacontane		40 %	70-130		EPA 8015B mod	03/26/03 1859	PMS	Q-03
	Total Petroleum Hydro	ocarbons - GRO							
_	TPH Gasoline	12.6	1.00	1.00	mg/kg	EPA 8015B mod	03/26/03 2050	SW	
	Surrogate: 4-Bromofluorol	benzene	127 %	70-130		EPA 8015B mod	03/26/03 2050	SW	
Ì	BTEX								
_	Benzene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2050	SW	
	Ethyl Benzene	57.9	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2050	SW	
٥	Toluene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2050	SW	
	Xylenes (total)	ND	30.0	3.00	ug/kg	EPA 8021B	03/26/03 2050	SW	
	Surrogate: 4-Bromofluorol	penzene	127 %	70-130		EPA 8021B	03/26/03 2050	SW	

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 FAX: (972) 727-1175 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013 nelap Louisiana: 02007

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 4 of 10

Project:

Hobbs Station

Project #:

E03211

Print Date/Time:

03/28/03 1421

<u>Laboratory ID #:</u> 0303634-03

Sample Type

Grab

Matrix Solid Sample Collected By B. Chris Mitchell

Customer

FAX: (972) 727-1175

Sample Description MW-4 (36-37)

Sample Date/Time 03/20/03 0910

	Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
B.	Total Petroleum Hydro	ocarbons - DRO							
	TPH Diesel	ND	2.90	2.90	mg/kg	EPA 8015B mod	03/26/03 1921	PMS	
	Surrogate: a-Pinene		47 %	40-130		EPA 8015B mod	03/26/03 1921	PMS	
	Surrogate: Triacontane		85 %	70-130		EPA 8015B mod	03/26/03 1921	PMS	
	Total Petroleum Hydro	ocarbons - GRO							
	TPH Gasoline	ND	1.00	1.00	mg/kg	EPA 8015B mod	03/26/03 2118	SW	
	Surrogate: 4-Bromofluoro	benzene	107 %	70-130		EPA 8015B mod	03/26/03 2118	SW	
l	BTEX								
	Benzene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2118	SW	
	Ethyl Benzene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2118	SW	
	Toluene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2118	SW	
	Xylenes (total)	ND	30.0	3.00	ug/kg	EPA 8021B	03/26/03 2118	SW	
	Surrogate: 4-Bromofluoroi	benzene	107 %	70-130		EPA 8021B	03/26/03 2118	SW	

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123

Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. . Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 5 of 10

Project: **Hobbs Station**

Project #:

E03211

Print Date/Time:

03/28/03 1421

Laboratory ID #:

Sample Type

Grab

<u>Matrix</u> Solid

Sample Collected By

Customer B. Chris Mitchell

0303634-04

Sample Description B-5 (14-15)

Sample Date/Time 03/19/03 1700

	Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
	Total Petroleum Hydro	ocarbons - DRO)	<u> </u>					
_	TPH Diesel	5.77	2.90	2.90	mg/kg	EPA 8015B mod	03/26/03 1927	PMS	
	Surrogate: a-Pinene		50 %	40-130		EPA 8015B mod	03/26/03 1927	PMS	
-	Surrogate: Triacontane		86 %	70-130		EPA 8015B mod	03/26/03 1927	PMS	
ì									
-	Total Petroleum Hydro	ocarbons - GRC							
	TPH Gasoline	ND	1.00	1.00	mg/kg	EPA 8015B mod	03/26/03 2146	SW	
	Surrogate: 4-Bromofluoro	benzene	103 %	70-130		EPA 8015B mod	03/26/03 2146	SW	
l	BTEX								
_	Benzene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2146	SW	
	Ethyl Benzene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2146	SW	
	Toluene	ND	10.0	1.00	ug/kg	EPA 8021B	03/26/03 2146	SW	
	Xylenes (total)	ND	30.0	3.00	ug/kg	EPA 8021B	03/26/03 2146	SW	
	Surrogate: 4-Bromofluoro	benzene	103 %	70-130		EPA 8021B	03/26/03 2146	SW	

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 FAX: (972) 727-1175 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 6 of 10

Project: H

Hobbs Station

Project #:

E03211

Print Date/Time: 03/28/03 1421

Total Petroleum Hydrocarbons - DRO - Quality Control

Analyte(s)	Result	*SRL	[Units]	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3C24026 - EP	A 3550B Sonicati	on Extraction								
Blank (3C24026-BLK Prepared: 03/24/03 15	1) 600 Analyzed: 03/24/	/03 2134								•
TPH Diesel	ND	2.90	mg/kg							
Surrogate: a-Pinene	1.42		mg/kg	2.86		50	40-130)		
Surrogate: Triacontane	2.83		mg/kg	2.86		99	70-130)		
Laboratory Control S Prepared: 03/24/03 15										
TPH Diesel	29.8	2.90	mg/kg	28.6		104	60-140)		
Surrogate: a-Pinene	1.98		mg/kg	2.86		69	40-130)		
Surrogate: Triacontane	2.67		mg/kg	2.86		93	70-130)		
Laboratory Control S Prepared: 03/24/03 15										
TPH Diesel	30.2	2.90	mg/kg	28.6		106	60-140) 1	30	
Surrogate: a-Pinene	1.88		mg/kg	2.86		66	40-130)		
Surrogate: Triacontane	2.75		mg/kg	2.86		96	70-130)		
Matrix Spike (3C2402 Prepared: 03/24/03 15		03 2017		S	ource: 0303	589-01				
TPH Diesel	269	14.5	mg/kg	28.6	178	318	70-130)		Q-0
Surrogate: a-Pinene	1.40		mg/kg	2.86		49	40-130)		
Surrogate: Triacontane	2.26		mg/kg	2.86		79	70-130)		
Matrix Spike Duplicat Prepared: 03/24/03 15			2 17 Years 10 /	S	ource: 0303	589-01				
TPH Diesel	210	14.5	mg/kg	28.6	178	112	70-130) 25	30	
Surrogate: a-Pinene	1.13		mg/kg	2.86		40	40-130)		
Surrogate: Triacontane	1.86		mg/kg	2.86		65	70-130)		Q-0

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 7 of 10

Project: H

Hobbs Station

Project #:

E03211

Print Date/Time:

03/28/03 1421

Total Petroleum Hydrocarbons - GRO - Quality Control

Analyte(s)	Result	*SRL	[Units]	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3C26033 - EPA	A 5035 Purge-and	-Trap and Ex	traction-V	OCs in S	Soil					-
Blank (3C26033-BLK1 Prepared: 03/26/03 173		3 1743					-			
TPH Gasoline	ND	0.100	mg/kg							
Surrogate: 4-Bromofluorobenzene	0.0565		mg/kg	0.0500		113	70-130			
Laboratory Control Sa Prepared: 03/26/03 173										
TPH Gasoline	0.467	0.100	mg/kg	0.500		93	70-130			
Surrogate: 4-Bromofluorobenzene	0.0506		mg/kg	0.0500		101	70-130			
Laboratory Control Sa Prepared: 03/26/03 173										
TPH Gasoline	0.471	0.100	mg/kg	0.500		94	70-130	0	20	
Surrogate: 4-Bromofluorobenzene	0.0513		mg/kg	0.0500		103	70-130			
Matrix Spike (3C26033 Prepared: 03/26/03 173		3 1925		Sc	ource: 03036	634-01				-
TPH Gasoline	0.472	0.100	mg/kg	0.500	ND	94	70-130			
Surrogate: 4-Bromofluorobenzene	0.0537		mg/kg	0.0500		107	70-130			
Matrix Spike Duplicate Prepared: 03/26/03 173		3 1953		So	ource: 03036	34-01				
TPH Gasoline	0.452	0.100	mg/kg	0.500	ND	90	70-130	4	20	
Surrogate: 4-Bromofluorobenzene	0.0554		mg/kg	0.0500		111	70-130			

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 8 of 10

Project: Hobbs Station

Project #: E03211

Print Date/Time:

03/28/03 1421

BTEX - Quality Control

				Spike	Source		%REC		RPD	
Analyte(s)	Result	*SRL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch 3C26033 - EP	A 5035 Purge-and	-Trap and Ex	traction-V	OCs in S	Soil					
Blank (3C26033-BLK Prepared: 03/26/03 17		03 1743								
Benzene	ND	1.00	ug/kg							
Ethyl Benzene	ND	1.00	ug/kg							
Toluene	ND	1.00	ug/kg							
Xylenes (total)	ND	3.00	ug/kg							
Surrogate: 4-Bromofluorobenzene	56.5		ug/kg	50.0		113	70-130)		
Laboratory Control S Prepared: 03/26/03 17										
Benzene	52.2	1.00	ug/kg	50.0		104	70-130)		
Ethyl Benzene	53.8	1.00	ug/kg	50.0		108	70-130)		
Toluene	55.7	1.00	ug/kg	50.0		111	70-130)		
Xylenes (total)	161	3.00	ug/kg	150		107	70-130)		
Surrogate: 4-Bromofluorobenzene	50.6		ug/kg	50.0		101	70-130)		
Laboratory Control S Prepared: 03/26/03 17	Sample Duplicate (30 730 Analyzed: 03/26/0	C26033-BSD1) 03 1857						1.00 %		
Benzene	50.8	1.00	ug/kg	50.0		102	70-130	3	20	
Ethyl Benzene	52.0	1.00	ug/kg	50.0		104	70-130	3	20	
Toluene	53.7	1.00	ug/kg	50.0		107	70-130	4	20	
Xylenes (total)	156	3.00	ug/kg	150		104	70-130	3	20	
Surrogate: 4-Bromofluorobenzene	51.3		ug/kg	50.0		103	70-130)		
Matrix Spike (3C2603 Prepared: 03/26/03 17		3 1925		Sc	ource: 0303	634-01				
Benzene	50.6	1.00	ug/kg	50.0	ND	101	70-130)		
Ethyl Benzene	52.5	1.00	ug/kg	50.0	ND	105	70-130			
Toluene	53.7	1.00	ug/kg	50.0	ND	107	70-130			
Xylenes (total)	156	3.00	ug/kg	150	ND	104	70-130			
Surrogate: 4-Bromofluorobenzene	53.7		ug/kg	50.0	_	107	70-130			

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 9 of 10

Project:

Hobbs Station

Project #:

E03211

Print Date/Time:

03/28/03 1421

BTEX - Quality Control

Analyte(s)	Result	*SRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3C26033 - EPA	-		traction-V	OCs in	Soil (conti	nued)				
Matrix Spike Duplicate Prepared: 03/26/03 173				S	ource: 0303	634-01				
Benzene	51.8	1.00	ug/kg	50.0	ND	104	70-130	2	20	
Ethyl Benzene	53.7	1.00	ug/kg	50.0	ND	107	70-130	2	20	
Toluene	54.8	1.00	ug/kg	50.0	ND	110	70-130	2	20	
Xylenes (total)	160	3.00	ug/kg	150	ND	107	70-130	3	20	
Surrogate: 4-Bromofluorobenzene	55.4		ug/kg	50.0		111	70-130	l		

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page: Page 10 of 10 Project: Hobbs Station

Project #: E03211

Print Date/Time: 03/28/03 1421

Notes and Definitions

The results presented in this report were generated using those methods given in 40 CFR Part 136 for Water and Wastewater samples and in SW-846 for RCRA/Solid Waste samples.

Q-02 The recovery of an analyte(s) in the MSs was outside the acceptable range due to interference, large dilutions

required for analysis or a combination of these factors. The recovery of this analyte(s) in the LCSs was within the

required limits.

Q-03 The recovery of the surrogate(s) were outside of the acceptable range due to matrix interferences and/or large

dilutions required for the analysis of this sample. The results presented should, therefore, be considered an

estimated concentration(s).

R-01 The higher reporting limit(s) is due to dilutions required for analysis as a result of a high concentration of target

and/or non-target parameters in this sample.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate

MS/MSD Matrix Spike/Matrix Spike Duplicate

RPD Relative Percent Difference

mg/kg milligrams per kilogram

mg/l milligrams per liter

ug/kg micrograms per kilogram

ug/l micrograms per liter

exc Not covered under scope of NELAP accreditation.

*Sample Reporting Limit **Method Reporting Limit The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain-of-Custody

Bethany Tech Center 400 W. Bethany, Suite 190 Allen, Texas 75013 972-727-1123 (Local) * 800- 228-ERMI (Long Distance) 972-727-1175 (Fax)

196980 Fer. @ 0.8°C

=	-	11		0														T					-	T	2				1
			ĵĝ										_	·-				_				<u> </u>	_	_	2990	<u>ن</u> ا	::	103	
		9	Pricin																						Time:	Time:	Time:	Time{	ļ
		Expedite	(Call for Pricing)	YSE				_																	5.			60	
		Û	Ö	ANAL												_									3-21			1215	Ī
				TED	-			.						·		-									Date:	Date:	Date:	Date 3	
		Ø	1	REQUESTED ANALYSES																									
		Normal		RE(_											_		_											
		ll				12	08	# 9	178 X	400	<u>s)</u>	グン	1/	E.	\		<u>\</u>		/	/					1		7	1/6	-
		TAT:			(0Z)	14	la;	X	کے	108	3/	HC	1	\			\	/	\					1/1/1		\wedge	11de	
٦			1302	0				0	9			0	ğ	Grab	Z	ゝ	ス	ろ	X	X	Ş	¥			22	` (Ú	1	
			17) 	17				Sample Type	-								,			Ø		4	12	
		75009	972/620						E03211				Sai	Comp.					7	-					<u>ښ</u>	<u>ښ</u>	, (A)	WE	
		25	973						`					ative	7.5	3	7.4	7.4	#//>.h	YH	2///	1/4	,		Received By:	Received By:	Received By	by: /	ķ
			ber:				iber:		Jumbe					Preservative	3	4.(đ,	ħ.	,	7.4	1.04	4.			Rece	Rece	Rece	ERM	
		Zip Code:	Fax Number:			Zip Code:	Fax Number:		Project Number:		Zip Code:	}	jo #	Bottles		7		_			3			-	700	030		Received for ERMI by:	ļ
		Zip	Fa		i	Zip	Fa		Pro		Zip	7	#	 Bot		. ,	1	1	<u> </u>	+	4	5		_	Time: 9 0	Time:	Time:	leceiv	Soe Boueres for Torm
	00	'							9			R		Matrix	ڍا	ī	5	L	14.50	0	ø	٥			シ	ij			à
	\	2									3	£, (Š	Soil	So	Soll	SolL		Ŧ	¥	4			2-5	2			
	SVITE	State:				State:					State:			ËG	مر	25	910	1300	וונע	12	S S	50	W		Date: 3~	Date:	Date:	Date:	
	ST,	Ś				Ś					S	Signature:	Sample	-	3-19-03 1205	3-19-03 1525	650		11 60	3.20.03 945	3.20 B 103.C	3.20.03 1205		3	e				
- [1		=						٦	8)		Sign		Oate Oate	3.A.	3.19.	3.20.03	3.19.03	3.20.03	3.20	3.20	3.8	2					İ	
	SUN		58-						STATION	thy		m			(*	,	1):							H	1			l
	US CONSA		168-029						1	*		Mirann	eldm		35-36	34-35	36-3	14-12		4	M	7		1	9	1			
l					ent):			er:	HOBBS	19			Field Sample	l.D.	${f \sim}$	Ų	() 7	S	HW-	•	33	TE -		7	7	Digit .		į	
	708	ALAS	(972)		differ			dmy	H	४	-	the			J-∝H	3	TE,	13.5	Ĭ	A A	Ĭ	I		\	8	M		int:	
	4	Z	7	<u>غ</u>	ess (if			rder /	ne:	9	thosos	3. (_			MZ H		_							d By:	d By:	d By:	hipme	
	SS:	,	elephone:	Billing Name:	Billing Address (if different):		relephone:	Purchase Order Number:	Project Name:	SS:	th	er:	ERMI	Use Only	13030310	30363402 MW-2	5.45 3 Carles	46 363634							Relinquished By:	Relinquished By:	Relinquished By:	Method of Shipment:	
Contact	Address:	City:	Telep	Billin	3illing	City:	Telep	Purch	Proje	Address:	City:	Sampler	1 2 3	ns C	ઉઠ3	305	3	263			******				3eling	Reling	Reling	Metho	

WHITE: Original to be returned with Report; YELLOW: ERMI copy; PINK: Customer Copy

Lab Number(s):	0303634
Lan Number of	<u> </u>

ERMI

Sample Preservation Documentation *

On Ice (Circle One) YES OR NO (Check if sent with dry ice _____)

Parameters	Containers	Required Preservation	Sample	Circle pH
raiqiileteis	# Size		Container	Note any discrepancy
Metals		pH < 2	Glass or Plastic	pH < 2
Dissolved Metals		Unpreserved prior to being filtered, Cool 4° C	Glass or Plastic	-
Semivolatiles,, Pesticides, PCBs, Herbicides		Cool 4° C	Glass only with Teflon lid	
VOA (BTEX, MTBE, 624, 8260, TPH-GRO)		Cool 4° C, pH < 2 Zero Head Space	40 ml VOA vial	DO NOT OPEN
VOA (TPH-1005)		Cool 4° C, pH < 2 Zero Head Space Please check if collected in pre-weighed vials	40 ml VOA vial	DO NOT OPEN
Phos., NO ₃ /NO ₂ , NH ₃ N, COD, TKN, TOC		Cool 4° C , pH < 2	Glass or Plastic	pH < 2
TDS, BOD, CBOD, Cond, pH, TSS, F, SO ₄ , Cr ⁵⁺ , Cl, Alk, Sulfite		Cool 4° C	Glass or Plastic, Plastic only if F	
Oil & Grease, TPH, Phenols		Cool 4° C, pH < 2	Glass only with Teflon lid	pH < 2
Cyanide		Cool 4° C, pH > 12	Glass or Plastic	pH > 12
Sulfide		Cool 4° C, pH > 9	Glass or Plastic	pH > 9
Bacteria		Cool 4° C	Plastic Sterile Cup	
Soil, Sludge, Solid, Oil, Liquid	5 802 5 An	Cool 4° C Note: please check if collected in pre-weighed vials		

Comments:

Preservation Checked By

Date

Time

OR.

^{*} This form is used to document sample preservation. Circle parameter requested. Fill in number and size of containers received. Check pH (adjust if needed) and note if different from what is required. Make a notation of any samples not received on ice. Note any incorrect sample containers or preservation on chain-of-custody.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. . Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 1 of 10

Project: **Hobbs Station**

Project #:

E03211

Print Date/Time:

03/27/03 1446

Attached is our analytical report for the samples received for your project. Below is a list of your individual sample descriptions with our corresponding laboratory number. We also have enclosed a copy of the Chain of Custody that was received with your samples and a form documenting the condition of your samples upon arrival. Please note any unused portion of the samples may be discarded upon expiration of the EPA holding time for the analysis performed or after 30 days from the above report date, unless you have requested otherwise.

Sample Identification

Laboratory ID #	Client Sample ID	<u>Matrix</u>	Sampled Date/Time	Received Date/Time
0303635-01	MW-1	Aqueous	03/20/03 1115	03/21/03 1030
0303635-02	MW-2	Aqueous	03/20/03 0945	03/21/03 1030
0303635-03	MW-3	Aqueous	03/20/03 1035	03/21/03 1030
0303635-04	MW-4	Aqueous	03/20/03 1205	03/21/03 1030

Thank you for the opportunity to serve your environmental chemistry analysis needs. If you have any questions or concerns regarding this report please contact our Customer Service Department at the phone number below.

Respectfully submitted,

Kendall K. Brown

Generall K. Brown

Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 🏈 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 2 of 10

Project: **Hobbs Station**

Project #:

E03211

Print Date/Time:

03/27/03 1446

B. Chris Mitchell

Sample Collected By

Customer

Laboratory ID #: 0303635-01

Sample Type

Grab

Matrix Aqueous

Sample Date/Time 03/20/03 1115

Sample Description

MW-1

Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
Total Petroleum Hydro	ocarbons - DRC)						
TPH Diesel	2.44	0.100	0.100	mg/l	EPA 8015B mod	03/26/03 1826	PMS	
Surrogate: a-Pinene		65 %	40-130		EPA 8015B mod	03/26/03 1826	PMS	
Surrogate: Triacontane		90 %	70-130		EPA 8015B mod	03/26/03 1826	PMS	
Total Petroleum Hydro	ocarbone - GPC	,						
_			0.0500	n	EDA 901ED mod	00/05/00 4447	CIA	
TPH Gasoline	ND	0.0500	0.0500	mg/l		03/25/03 1417		
Surrogate: 4-Bromofluorol	benzene	95 %	70-130		EPA 8015B mod	03/25/03 1417	SW	
втех								
Benzene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1417	SW	
Ethyl Benzene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1417	SW	
Toluene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1417	SW	
Xylenes (total)	ND	3.00	3.00	ug/l	EPA 8021B	03/25/03 1417	SW	
Surrogate: 4-Bromofluorol	benzene	95 %	70-130		EPA 8021B	03/25/03 1417	sw	

*Sample Reporting Limit **Method Reporting Limit The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123

Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 3 of 10

Project: Hob

Hobbs Station

Project #:

E03211

Print Date/Time:

03/27/03 1446

Laboratory ID #:

0303635-02

Sample Type Grab Matrix Aqueous Sample Collected By B. Chris Mitchell

Customer

Sample Description

MW-2

Sample Date/Time 03/20/03 0945

	Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
	Total Petroleum Hydro	ocarbons - DRO							
	TPH Diesel	0.493	0.100	0.100	mg/l	EPA 8015B mod	03/26/03 1820	PMS	
	Surrogate: a-Pinene		68 %	40-130		EPA 8015B mod	03/26/03 1820	PMS	
	Surrogate: Triacontane		102 %	70-130		EPA 8015B mod	03/26/03 1820	PMS	
	Total Petroleum Hydro	ocarbons - GRO							
_	TPH Gasoline	ND	0.0500	0.0500	mg/l	EPA 8015B mod	03/25/03 1349	SW	
	Surrogate: 4-Bromofluorol	benzene	100 %	70-130		EPA 8015B mod	03/25/03 1349	SW	
1	втех								
	Benzene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1349	SW	
_	Ethyl Benzene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1349	SW	
	Toluene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1349	SW	
_	Xylenes (total)	ND	3.00	3.00	ug/l	EPA 8021B	03/25/03 1349	SW	
	Surrogate: 4-Bromofluorol	benzene	100 %	70-130		EPA 8021B	03/25/03 1349	SW	

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Dis

Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 4 of 10

Project: **Hobbs Station**

E03211 Project #:

Print Date/Time:

03/27/03 1446

Customer

Laboratory ID #: 0303635-03

Sample Type Grab

Matrix Aqueous Sample Collected By

B. Chris Mitchell

Sample Description

MW-3

Sample Date/Time 03/20/03 1035

Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
Total Petroleum Hyd	rocarbons - DRO							R-01
TPH Diesel	18.0	1.00	0.100	mg/l	EPA 8015B mod	03/27/03 1048	PMS	
Surrogate: a-Pinene		98 %	40-130		EPA 8015B mod	03/27/03 1048	PMS	
Surrogate: Triacontane		75 %	70-130		EPA 8015B mod	03/27/03 1048	PMS	
Total Petroleum Hyd	frocarbons - GRO							
TPH Gasoline	1.95	0.100	0.0500	mg/l	EPA 8015B mod	03/25/03 1605	sw	R-01
Surrogate: 4-Bromofluoi	robenzene	124 %	70-130		EPA 8015B mod	03/25/03 1605	SW	
втех								
Benzene	63.7	2.00	1.00	ug/l	EPA 8021B	03/25/03 1605	SW	R-01
Ethyl Benzene	197	2.00	1.00	ug/l	EPA 8021B	03/25/03 1605	SW	R-01
Toluene	2.49	2.00	1.00	ug/l	EPA 8021B	03/25/03 1605	SW	R-01
Xylenes (total)	6.23	6.00	3.00	ug/l	EPA 8021B	03/25/03 1605	SW	R-01
Surrogate: 4-Bromofluor	robenzene	124 %	70-130		EPA 8021B	03/25/03 1605	SW	

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 5 of 10

Project: Hobbs Station

Project #:

E03211

Print Date/Time:

03/27/03 1446

Sample Collected By

Customer

<u>Laboratory ID #:</u> 0303635-04

MW-4

Sample Description

Sample Type

Grab

Matrix

Aqueous

B. Chris Mitchell

Sample Date/Time 03/20/03 1205

Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
Total Petroleum Hydroca	arbons - DRO							
TPH Diesel	0.829	0.100	0.100	mg/l	EPA 8015B mod	03/26/03 1814	PMS	
Surrogate: a-Pinene		66 %	40-130		EPA 8015B mod	03/26/03 1814	PMS	
Surrogate: Triacontane		107 %	70-130		EPA 8015B mod	03/26/03 1814	PMS	
Total Petroleum Hydroca	arbons - GRO							
TPH Gasoline	ND	0.0500	0.0500	mg/l	EPA 8015B mod	03/25/03 1514	sw	
Surrogate: 4-Bromofluoroben	nzene	106 %	70-130		EPA 8015B mod	03/25/03 1514	SW	
втех								
Benzene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1514	sw	
Ethyl Benzene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1514	SW	
Toluene	ND	1.00	1.00	ug/l	EPA 8021B	03/25/03 1514	sw	
Xylenes (total)	ND	3.00	3.00	ug/l	EPA 8021B	03/25/03 1514	SW	
Surrogate: 4-Bromofluoroben	zene	106 %	70-130		EPA 8021B	03/25/03 1514	SW	

*Sample Reporting Limit **Method Reporting Limit The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 6 of 10

Project: **Hobbs Station**

Project #:

E03211

Print Date/Time:

03/27/03 1446

Total Petroleum Hydrocarbons - DRO - Quality Control

Analyte(s)	Result] *SRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3C25046 - EPA	3510C Separato	ory Funnel Ex	traction							
Blank (3C25046-BLK1) Prepared: 03/25/03 161		03 1741								
TPH Diesel	ŃD	0.100	mg/l							
Surrogate: a-Pinene	0.0550		mg/l	0.100		55	40-130)		
Surrogate: Triacontane	0.0912		mg/l	0.100		91	70-130)		
Laboratory Control Sar Prepared: 03/25/03 1610								-		
TPH Diesel	0.991	0.100	mg/l	1.00		99	80-120)		
Surrogate: a-Pinene	0.0689		mg/l	0.100		69	40-130)		
Surrogate: Triacontane	0.0913		mg/l	0.100		91	70-130)		
Laboratory Control Sai Prepared: 03/25/03 1610										
TPH Diesel	1.02	0.100	mg/l	1.00		102	80-120	3	30	
Surrogate: a-Pinene	0.0692		mg/l	0.100		69	40-130)		
Surrogate: Triacontane	0.0940		mg/l	0.100		94	70-130	1		
Matrix Spike (3C25046- Prepared: 03/25/03 1610		03 1758		So	ource: 0303	432-07				
TPH Diesel	1.01	0.100	mg/l	1.00	ND	101	70-130)		
Surrogate: a-Pinene	0.0606		mg/l	0.100		61	40-130)		
Surrogate: Triacontane	0.0953		mg/l	0.100		95	70-130	•		
Matrix Spike Duplicate Prepared: 03/25/03 1610		03 1803		Sc	ource: 0303	432-07			*	-
TPH Diesel	0.975	0.100	mg/l	1.00	ND	98	70-130	4	30	
Surrogate: a-Pinene	0.0550		mg/l	0.100		55	40-130			
Surrogate: Triacontane	0.0966		mg/l	0.100		97	70-130			

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 7 of 10

Project: Hobbs Station

Project #: E03211

Print Date/Time:

03/27/03 1446

Total Petroleum Hydrocarbons - GRO - Quality Control

Analyte(s)	ı Result	*SRL	I Units I	Spike Level	Source Result	ı%RECI	%REC Limits	RPD	RPD Limit	Flag
Batch 3C25016 - EPA				mples			· · = -			
Blank (3C25016-BLK1 Prepared: 03/25/03 104		3 1117								
TPH Gasoline	ND	0.0500	mg/l							
Surrogate: 4-Bromofluorobenzene	0.0539		mg/l	0.0500		108	70-130	ı		
Laboratory Control Sa Prepared: 03/25/03 104										
TPH Gasoline	0.518	0.0500	mg/l	0.500		104	70-130			
Surrogate: 4-Bromofluorobenzene	0.0566		mg/l	0.0500		113	70-130			
Laboratory Control Sa Prepared: 03/25/03 104										
TPH Gasoline	0.529	0.0500	mg/l	0.500		106	70-130	2	20	
Surrogate: 4-Bromofluorobenzene	0.0527		mg/l	0.0500		105	70-130			
Matrix Spike (3C25016 Prepared: 03/25/03 104		3 1252		Se	ource: 0303	635-02				
TPH Gasoline	0.544	0.0500	mg/l	0.500	ND	109	70-130			
Surrogate: 4-Bromofluorobenzene	0.0556		mg/l	0.0500		111	70-130			
Matrix Spike Duplicate Prepared: 03/25/03 104		3 1320		Sc	ource: 0303	635-02				
TPH Gasoline	0.538	0.0500	mg/l	0.500	ND	108	70-130	1	20	
Surrogate: 4-Bromofluorobenzene	0.0539		mg/l	0.0500		108	70-130			

Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 8 of 10

Project: F

Hobbs Station

Project #:

E03211

Print Date/Time:

03/27/03 1446

BTEX - Quality Control

Analyte(s)	Result	*SRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3C25016 - EPA	5030B Purge-ar	d-Trap for A	queous Sa	mples		<u> </u>				
Blank (3C25016-BLK1) Prepared: 03/25/03 104) 8 Analyzed: 03/25/0	03 1117	· · · · · · · · · · · · · · · · · · ·							
Benzene	ND	1.00	ug/l							
Ethyl Benzene	ND	1.00	ug/l							
Toluene	ND	1.00	ug/l							
Xylenes (total)	ND	3.00	ug/l							
Surrogate: 4-Bromofluorobenzene	53.9		ug/l	50.0		108	70-130			
Laboratory Control Sa Prepared: 03/25/03 104										
Benzene	48.9	1.00	ug/l	50.0		98	70-130			
Ethyl Benzene	50.2	1.00	ug/l	50.0		100	70-130			
Toluene	52.1	1.00	ug/l	50.0		104	70-130			
Xylenes (total)	151	3.00	ug/l	150		101	70-130			
Surrogate: 4-Bromofluorobenzene	56.6		ug/l	50.0		113	70-130			
Laboratory Control Sa Prepared: 03/25/03 104										
Benzene	49.8	1.00	ug/l	50.0		100	70-130	2	20	
Ethyl Benzene	51.0	1.00	ug/l	50.0		102	70-130	2	20	
Toluene	53.0	1.00	ug/l	50.0		106	70-130	2	20	
Xylenes (total)	154	3.00	ug/l	150		103	70-130	2	20	
Surrogate: 4-Bromoffuorobenzene	52.7		ug/l	50.0		105	70-130			
Matrix Spike (3C25016 Prepared: 03/25/03 104		13 1252		So	urce: 0303	635-02				
Benzene	50.6	1.00	ug/l	50.0	ND	101	70-130			
Ethyl Benzene	52.0	1.00	ug/l	50.0	ND	104	70-130			
Toluene	53.7	1.00	ug/l	50.0	ND	107	70-130			
Xylenes (total)	156	3.00	ug/l	150	ND	104	70-130			
Surrogate: 4-Bromofluorobenzene	55.6		ug/l	50.0		111	70-130			

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123

Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 9 of 10

Project: Hob

Hobbs Station

Project #:

E03211

Print Date/Time:

03/27/03 1446

BTEX - Quality Control

					-						
Analyte(s)	Res	sult	*SRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3C25016 - EF	PA 5030B P	urge-and	-Trap for A	queous S	amples (continued)			-	
Matrix Spike Duplica Prepared: 03/25/03 10	ate (3C25016 048 Analyzed	-MSD1) 1: 03/25/03	1320		s	ource: 0303	635-02				
Benzene	48.4		1.00	ug/l	50.0	ND	97	70-130	4	20	
Ethyl Benzene	51.6		1.00	ug/l	50.0	ND	103	70-130	0	20	
Toluene	52.1		1.00	ug/l	50.0	ND	104	70-130	3	20	
Xylenes (total)	155		3.00	ug/l	150	ND	103	70-130	0	20	
Surrogate: 4-Bromofluorobenzene	53.9			ug/l	50.0		108	70-130)		

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 10 of 10

Project:

Hobbs Station

Project #:

E03211

Print Date/Time:

03/27/03 1446

Notes and Definitions

The results presented in this report were generated using those methods given in 40 CFR Part 136 for Water and Wastewater samples and in SW-846 for RCRA/Solid Waste samples.

R-01

The higher reporting limit(s) is due to dilutions required for analysis as a result of a high concentration of target

and/or non-target parameters in this sample.

ND

Analyte NOT DETECTED at or above the reporting limit

dry

Sample results reported on a dry weight basis

LCS/LCSD

Laboratory Control Sample/Laboratory Control Sample Duplicate

MS/MSD

Matrix Spike/Matrix Spike Duplicate

RPD

Relative Percent Difference

mg/kg

milligrams per kilogram milligrams per liter

mg/l

micrograms per kilogram

ug/kg

micrograms per liter

ug/l

Not covered under scope of NELAP accreditation.

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123

Long Distance: (800) 228-ERMI

Chain-of-Custody

Bethany Tech Center 400 W. Bethany, Suite 190 Allen, Texas 75013 972-727-1123 (Local) * 800- 228-ERMI (Long Distance) 872-727-1175 (Fax)

196980 Fec. @ 0.8°C.

30000 Leadure G	1	See Reverse for Terms and Conditions	
6 Date 5/2/10 5 Time (C.X.)	1747/1	Date: Received for ERMI By: 111-12 (Method of Shipment:
Date: Time:	$\sum_{i=1}^{n}$	Date: Time: Received By:	Relinquished By:
Date: Time:		Date: 3. 21.3 Time: 03.0 Received By:	Relinquished By: Segregor I
Date: 3-21-5 Time: 090	7 12	Date: 3 - 2/-7 Time:	Se cel
			the distribution
	\	1205 Hzo 5 4.C/Hy x	MW-4 3:20:03/1205
	/	1035 H, O 7 4°C/M	HW-3 3.20.4 1031
		1 H20 7 404	
	`	1 H20	
	`	0 Soil 1 4°C	3-5(14-15) 3-19-03
	`	910 Soil 1	7) 3.20.03
	/	- Soil 2	MW-2(34-35) 3-19-03 1525
		X 7.h 1 7108 5021	MW-1 (35-36) 3.19.03/1205
<u> </u>	工	Time Matrix Bottles Preservative Comp. Grab	I.D. Date
72	Ha	iple # of Sample Type	Field Sample Sample
) 	8)	B. Celin	they Miramu Signature:
25	100	State: NM / Zip Code:	40003
	ر_	1	CR 61 + HY 18
) à 6	X.	4 Project Number: 603211 6	HOBBS STATION
	100	0	Purchase Order Number:
08	19	Fax Number:	
	מבי	State: Zip Code:	
	\ (`		Billing Address (if different):
REQUESTED ANALYSES 0		0	
٦		Fax Number: (472) 620 - 1302	(422) 620-8911
Normal X Expedite	TAT:	State: 7 Zip Code: 75349	ALAS
		: Sula 100	2209 Wiscousm ST.
			CHOIS HITCHEN
nts: '	Comments	i INC, 0	743
			0 / V / V

WHITE: Original to be returned with Report; YELLOW: ERMI copy; PINK: Customer Copy

Lab Number(s):	<u> </u>

ERMI

Sample Preservation Documentation *

On Ice (Circle One) YES OR NO (Check if sent with dry ice _____)

					
Parameters	Conta #	iners Size	Required Preservation	Sample Container	Circle pH Note any discrepancy
Metals			pH < 2	Glass or Plastic	pH < 2
Dissolved Metals			Unpreserved prior to being filtered, Cool 4° C	Glass or Plastic	
Semivolatiles,, Pesticides, PCBs, Herbicides	5'	HR	Cool 4° C	Glass only with Teflon lid	-
VQA (BTEX,) MTBE, 624, 8260, TPH-GRO)	b	40	Cool 4° C, pH < 2 Zero Head Space	40 ml VOA vial	DO NOT
VOA (TPH-1005)			Cool 4° C, pH < 2 Zero Head Space Please check if collected in pre-weighed vials	40 ml VOA vial	DO NOT OPEN
Phos., NO₃/NO₂, NH₃N, COD, TKN, TOC			Cool 4° C, pH < 2	Glass or Plastic	pH < 2
TDS, BOD,CBOD, Cond, pH, TSS, F, SO ₄ , Cr ⁶⁺ ,Cl,A!k, Sulfite			Cool 4° C	Glass or Plastic, Plastic only if F	
Oil & Grease, 7PH, Phenols	8	ith ame	Cool 4° C , pH < 2	Glass only with Teflon lid	pH < 2
Cyanide			Cool 4° C , pH > 12	Glass or Plastic	pH > 12
Sulfide			Cool 4° C , pH > 9	Glass or Plastic	pH > 9
Bacteria	=		Cool 4° C	Plastic Sterile Cup	
Soil, Sludge, Solid, Oil, Liquid			Cool 4° C Note: please check if collected in pre-weighed vials		

Comments:

Preservation Checked By

3)/3 Date

Time

^{*} This form is used to document sample preservation. Circle parameter requested. Fill in number and size of containers received. Check pH (adjust if needed) and note if different from what is required. Make a notation of any samples not received on ice. Note any incorrect sample containers or preservation on chain-of-custody.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page: Page 1 of 6

Project: Hobbs Station

Project #: E03211

Print Date/Time: 04/16/03 1740

Attached is our analytical report for the samples received for your project. Below is a list of your individual sample descriptions with our corresponding laboratory number. We also have enclosed a copy of the Chain of Custody that was received with your samples and a form documenting the condition of your samples upon arrival. Please note any unused portion of the samples may be discarded upon expiration of the EPA holding time for the analysis performed or after 30 days from the above report date, unless you have requested otherwise.

Sample Identification

<u>Laboratory ID # Client Sample ID</u>

Matrix <u>Sampled Date/Time</u> <u>Received Date/Time</u>

0303847-01 MW-2 (34-35)

Solid 03/19/03 1525 03/31/03 0815

Thank you for the opportunity to serve your environmental chemistry analysis needs. If you have any questions or concerns regarding this report please contact our Customer Service Department at the phone number below.

Respectfully submitted,

endall X. Brown

Kendall K. Brown

President

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bethany Tech Center • Suite 190 400 W. Bethany Rd. . Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 1 of 6

Project: **Hobbs Station**

Project #:

E03211

Print Date/Time:

04/16/03 1740

Attached is our analytical report for the samples received for your project. Below is a list of your individual sample descriptions with our corresponding laboratory number. We also have enclosed a copy of the Chain of Custody that was received with your samples and a form documenting the condition of your samples upon arrival. Please note any unused portion of the samples may be discarded upon expiration of the EPA holding time for the analysis performed or after 30 days from the above report date, unless you have requested otherwise.

Sample Identification

Laboratory ID # Client Sample ID

Matrix

Sampled Date/Time

Received Date/Time

0303847-01

MW-2 (34-35)

Solid

03/19/03 1525

03/31/03 0815

Thank you for the opportunity to serve your environmental chemistry analysis needs. If you have any questions or concerns regarding this report please contact our Customer Service Department at the phone number below.

Respectfully submitted,

Genball K. Brown Kendall K. Brown President

Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 🕡 🞸

Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. . Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 2 of 6

Project: **Hobbs Station**

Project #:

E03211

Print Date/Time:

04/16/03 1740

Customer

Laboratory ID #: 0303847-01

Sample Type

Grab

<u>Matrix</u> Solid

Sample Collected By

B. Chris Mitchell

Sample Description MW-2 (34-35)

Sample Date/Time 03/19/03 1525

Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
Semivolatile Polynucle	ear Aromatic Hyd	rocarbons	 		<u>.</u>			
Acenaphthene	489	16.7	16.7	ug/kg	EPA 8310	04/11/03 0623	SW	
Acenaphthylene	291	41.7	41.7	ug/kg	EPA 8310	04/11/03 0623	SW	
Anthracene	193	16.7	16.7	ug/kg	EPA 8310	04/11/03 0623	SW	
Benzo(a)anthracene	ND	41.7	41.7	ug/kg	EPA 8310	04/11/03 0623	SW	
Benzo(a)pyrene	ND	41.7	41.7	ug/kg	EPA 8310	04/11/03 0623	SW	
Benzo(b)fluoranthene	51.2	6.66	6.66	ug/kg	EPA 8310	04/11/03 0623	SW	
Benzo(g,h,i)perylene	48.3	6.66	6.66	ug/kg	EPA 8310	04/11/03 0623	SW	
Benzo(k)fluoranthene	105	1.66	1.66	ug/kg	EPA 8310	04/11/03 0623	SW	
Chrysene	102	0.833	0.833	ug/kg	EPA 8310	04/11/03 0623	SW	
Dibenz(a,h)anthracene	28.8	3.33	3.33	ug/kg	EPA 8310	04/11/03 0623	SW	
Fluoranthene	570	16.7	16.7	ug/kg	EPA 8310	04/11/03 0623	SW	
Fluorene	ND	8.33	8.33	ug/kg	EPA 8310	04/11/03 0623	SW	
Indeno(1,2,3-cd)pyrene	244	4.16	4.16	ug/kg	EPA 8310	04/11/03 0623	SW	
Naphthalene	ND	41.7	41.7	ug/kg	EPA 8310	04/11/03 0623	SW	
Phenanthrene	296	3.73	3.73	ug/kg	EPA 8310	04/11/03 0623	SW	
Pyrene	23.0	8.33	8.33	ug/kg	EPA 8310	04/11/03 0623	SW	
Surrogate: Nitrobenzene		116 %	40-130		EPA 8310	04/11/03 0623	sw	

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123

Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 3 of 6

Project: **Hobbs Station**

Project #:

E03211

Print Date/Time:

04/16/03 1740

Semivolatile Polynuclear Aromatic Hydrocarbons - Quality Control

Result *SRL Units Level Result %REC Limits RPD Limits	I F1==
Blank (3D01026-BLK1)	Flag
Prepared: 04/01/03 1335 Analyzed: 04/11/03 0311	
Acenaphthylene ND 41.7 ug/kg Benzo(a)anthracene ND 16.7 ug/kg Benzo(a)anthracene ND 41.7 ug/kg Benzo(a)pyrene ND 41.7 ug/kg Benzo(b)fluoranthene ND 6.66 ug/kg Benzo(b)fluoranthene ND 6.66 ug/kg Benzo(k)fluoranthene ND 6.66 ug/kg Benzo(k)fluoranthene ND 6.66 ug/kg Benzo(k)fluoranthene ND 1.66 ug/kg Benzo(k)fluoranthene ND 1.66 ug/kg Benzo(k)fluoranthene ND 1.67 ug/kg Pluoranthene ND 1.67 ug/kg Pluoranthene ND 1.67 ug/kg Indeno(1,2,3-cd)pyrene ND 41.6 ug/kg Naphthalene ND 41.7 ug/kg Naphthalene ND 3.73 ug/kg Naphthalene ND 3.73 ug/kg Pyrene ND 8.33 ug/kg Surrogate: Nitrobenziene 323 ug/kg 333 68 40-130 Surrogate: Nitrobenziene 323 ug/kg 333 97 40-130 Laboratory Control Sample (3D01026-BS1) Prepared: 04/01/03 1335 Analyzed: 04/11/03 0349 Acenaphthylene 465 16.7 ug/kg 333 77 1-139 Anthracene ND 16.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 91 12-135 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(b)fluoranthene 12.3 6.66 ug/kg 33.3 95 1-199 Dibenz(a,h)parthracene ND 41.7 ug/kg 33.3 95 1-199 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.33 ug/kg 33.3 95 1-159 Dibenz(a,h)parthracene 122 3.3	
Anthracene ND 16.7 ug/kg Benzo(a)anthracene ND 41.7 ug/kg Benzo(b)fluoranthene ND 6.66 ug/kg Benzo(g,h,i)perylene ND 6.66 ug/kg Benzo(g,h,i)perylene ND 6.66 ug/kg Benzo(g,h,i)perylene ND 1.66 ug/kg Benzo(g,h,i)perylene ND 0.833 ug/kg Dibenz(a,h)anthracene ND 16.7 ug/kg Rluoranthene ND 16.7 ug/kg Naphthalene ND 41.7 ug/kg Naphthalene ND 3.73 ug/kg Naphthalene ND 3.73 ug/kg Pyrene ND 3.73 ug/kg Surrogate: Nitrobenzene ND 3.73 ug/kg Surrogate: Nitrobenzene ND 3.73 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg Surrogate: Nitrobenzene ND 8.33 ug/kg 9.7 40-130 Laboratory Control Sample (3D01026-BS1) Perepared: 04/01/03 1335 Analyzed: 04/11/03 0349 Acenaphthylene 255 41.7 ug/kg 333 77 1-139 Anthracene ND 16.7 ug/kg 13.3 68 1-126 Benzo(a)pyrene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 91 12-135 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 1-116 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 1-116 Benzo(k)fluoranthene 12.3 6.66 ug/kg 13.3 92 1-116 Benzo(k)fluoranthene 12.3 6.66 ug/kg 33.3 95 1-199 Dibenz(a,h)nlperylene 47.7 6.66 ug/kg 13.3 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 95 1-199 Dibenz(a,h)nnthracene 122 3.33 ug/kg 33.3 95 1-199 Dibenz(a,h)nnthracene 58.9 8.33 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 33.3 99 1-116 Naphthalene 312 41.7 ug/kg 33.3 99 1-116 Naphthalene 312 41.7 ug/kg 33.3 99 1-116	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Chrysene	
Chrysene	
Dibenz(a,h)anthracene	
Fluoranthene	
Fluorene ND	
Naphthalene	
Phenanthrene ND 3.73 ug/kg Pyrene ND 8.33 ug/kg Surrogate: Decafluorobiphenyl 225 ug/kg 333 68 40-130 Surrogate: Nitrobenzene 323 ug/kg 333 97 40-130 Surrogate: Nitrobenzene 323 ug/kg 333 97 40-130 Surrogate: Nitrobenzene 323 ug/kg 333 97 40-130 Surrogate: Nitrobenzene 325 Ug/kg 333 97 40-130 Surrogate: Nitrobenzene 465 16.7 ug/kg 667 70 1-124 Acenaphthylene 255 41.7 ug/kg 333 77 1-139 Anthracene ND 16.7 ug/kg 33.3 68 1-126 Senzo(a)anthracene ND 41.7 ug/kg 33.3 91 12-135 Senzo(a)pyrene ND 41.7 ug/kg 33.3 91 12-135 Senzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Senzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Senzo(g,h,i)perylene 47.7 6.86 ug/kg 33.3 92 6-150 Senzo(g,h,i)nthracene 11.6 1.66 ug/kg 33.3 ug/kg 33.3 95 1-199 Sibenz(a,h)anthracene 122 3.33 ug/kg 33.3 ug/kg 33.3 92 1-110 Sibenz(a,h)anthracene 122 3.33 ug/kg 33.3 39 14-123 Sibenz(a,h)anthracene 58.9 8.33 ug/kg 66.7 88 1-42 Sibenz(a,h)anthracene 58.9 8.33 ug/kg 66.7 88 1-42 Sibenz(a,h)anthracene 58.9 8.33 ug/kg 66.7 88 1-142 Sibenz(a,h)anthracene 312 41.7 ug/kg 333 94 1-122 Sibenz(a,h)anthracene 312 41.7 ug/kg 333 94 1-125 Sibenz(a,h)anthracene 312 41.7 ug/kg 333 33 34 34 34 34 34	
Pyrene ND 8.33 ug/kg 333 68 40-130	
Surrogate: Decaffuorobiphenyl 225 Ug/kg 333 333 68 40-130	
Surrogate: Nitrobenzene 323 ug/kg 333 97 40-130 Laboratory Control Sample (3D01026-BS1) Prepared: 04/01/03 1335 Analyzed: 04/11/03 0349 Acenaphthene 465 16.7 ug/kg 667 70 1-124 Acenaphthylene 255 41.7 ug/kg 333 77 1-139 Anthracene ND 16.7 ug/kg 13.3 68 1-126 Benzo(a)anthracene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 78 1-128 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(b)fluoranthene 11.6 1.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 u	
Laboratory Control Sample (3D01026-BS1) Prepared: 04/01/03 1335 Analyzed: 04/11/03 0349 Acenaphthene 465 16.7 ug/kg 333 77 1-139 Anthracene ND 16.7 ug/kg 13.3 68 1-126 Benzo(a)anthracene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 78 1-128 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(g,h,i)perylene 47.7 6.66 ug/kg 13.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 129.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 33.3 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Prepared: 04/01/03 1335 Analyzed: 04/11/03 0349 Acenaphthene 465 16.7 ug/kg 333 77 1-124 Acenaphthylene 255 41.7 ug/kg 333 77 1-139 Anthracene ND 16.7 ug/kg 13.3 68 1-126 Benzo(a)anthracene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 78 1-128 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 95 1-199 Fluorene 58.9 8.33 ug/kg 33.3 95 1-199 Fluorene 58.9 8.33 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 33.3 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Acenaphthene 465 16.7 ug/kg 667 70 1-124 Acenaphthylene 255 41.7 ug/kg 333 77 1-139 Anthracene ND 16.7 ug/kg 13.3 68 1-126 Benzo(a)anthracene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 78 1-128 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluorene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142	
Acenaphthylene 255 41.7 ug/kg 333 77 1-139 Anthracene ND 16.7 ug/kg 13.3 68 1-126 Benzo(a)anthracene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 78 1-128 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116	
Anthracene ND 16.7 ug/kg 13.3 68 1-126 Benzo(a)anthracene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 78 1-128 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 94 1-122	
Benzo(a)anthracene ND 41.7 ug/kg 33.3 91 12-135 Benzo(a)pyrene ND 41.7 ug/kg 33.3 78 1-128 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 26.7 96 1-155	
Benzo(a)pyrene ND 41.7 ug/kg 33.3 78 1-128 Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 66.7 96 1-155	
Benzo(b)fluoranthene 12.3 6.66 ug/kg 13.3 92 6-150 Benzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Benzo(g,h,i)perylene 47.7 6.66 ug/kg 53.3 89 1-116 Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Benzo(k)fluoranthene 11.6 1.66 ug/kg 13.3 87 1-159 Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Chrysene 31.7 0.833 ug/kg 33.3 95 1-199 Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Dibenz(a,h)anthracene 122 3.33 ug/kg 133 92 1-110 Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Fluoranthene 29.8 16.7 ug/kg 33.3 89 14-123 Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Fluorene 58.9 8.33 ug/kg 66.7 88 1-142 Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Indeno(1,2,3-cd)pyrene 30.1 4.16 ug/kg 33.3 90 1-116 Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Naphthalene 312 41.7 ug/kg 333 94 1-122 Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Phenanthrene 25.7 3.73 ug/kg 26.7 96 1-155 Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Pyrene 64.4 8.33 ug/kg 66.7 97 1-140	
Surrogate: Decaffuorohiphenyl 212 ug/kg 333 C4 40 420	
Surrogate: Decafluorobiphenyl 212 ug/kg 333 64 40-130	
Surrogate: Nitrobenzene 340 ug/kg 333 102 40-130	

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 4 of 6

Project: Hobbs Station

Project #: E03211

Print Date/Time:

04/16/03 1740

Semivolatile Polynuclear Aromatic Hydrocarbons - Quality Control

Analyte(s)	Result	*SRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3D01026 - EPA :	3550B Sonica	tion Extraction	(continue	d)						
Laboratory Control Sam Prepared: 04/01/03 1335	nple Duplicate	(3D01026-BSD1)			···				-	
Acenaphthene	440	16.7	ug/kg	667		66	1-124	6	20	
Acenaphthylene	280	41.7	ug/kg	333		84	1-139		20	
Anthracene	ND	16.7	ug/kg	13.3		73	1-126	_	20	
Benzo(a)anthracene	ND	41.7	ug/kg	33.3		93	12-135		20	
Benzo(a)pyrene	ND	41.7	ug/kg	33.3		68	1-128	-	20	
Benzo(b)fluoranthene	13.0	6.66	ug/kg	13.3		98	6-150		20	
Benzo(g,h,i)perylene	49.6	6.66	ug/kg	53.3		93	1-116		20	
Benzo(k)fluoranthene	12.2	1.66	ug/kg	13.3		92	1-159	-	20	
Chrysene	32.9	0.833	ug/kg	33.3		99	1-199	_	20	
Dibenz(a,h)anthracene	128	3.33	ug/kg	133		96	1-110		20	
Fluoranthene	31.4	16.7	ug/kg	33.3		94	14-123		20	
Fluorene	59.6	8.33	ug/kg	66.7		89	1-142		20	
Indeno(1,2,3-cd)pyrene	32.7	4.16	ug/kg	33.3		98	1-116		20	
Naphthalene	313	41.7	ug/kg	333		94	1-122	_	20	
Phenanthrene	25.8	3.73	ug/kg	26.7		97	1-155	_	20	
Pyrene	64.6	8.33	ug/kg	66.7		97	1-140	_	20	
Surrogate: Decafluorobiphenyl	200	0.00	ug/kg	333		60	40-130	_		
Surrogate: Nitrobenzene	325		ug/kg	333		98	40-130			
Matrix Spike (3D01026-N	/IS1)				ource: 030:	2047.04				
Prepared: 04/01/03 1335				_						
Acenaphthene	362	16.7	ug/kg	667	489	0	1-124			Q-
Acenaphthylene	324	41.7	ug/kg	333	291	10	1-139			
Anthracene	215	16.7	ug/kg	13.3	193	165	1-126			Q-
Benzo(a)anthracene	51.4	41.7	ug/kg	33.3	ND	102	12-135			_
Benzo(a)pyrene	61.1	41.7	ug/kg	33.3	ND	183	1-128			Q-
Benzo(b)fluoranthene	45.7	6.66	ug/kg	13.3	51.2	0	6-150			Q-
Benzo(g,h,i)perylene	159	6.66	ug/kg	53.3	48.3	208	1-116			Q-
Benzo(k)fluoranthene	123	1.66	ug/kg	13.3	105	135	1-159			
Chrysene	63.9	0.833	ug/kg	33.3	102	0	1-199			Q-
Dibenz(a,h)anthracene	190	3.33	ug/kg	133	28.8	121	1-110			Q-
Fluoranthene	525	16.7	ug/kg	33.3	570	0	14-123			Q-
Fluorene	118	8.33	ug/kg	66.7	ND	177	1-142			Q-
ndeno(1,2,3-cd)pyrene	134	4.16	ug/kg	33.3	244	0	1-116			Q-
Naphthalene	263	41.7	ug/kg	333	ND	79	1-122			
Phenanthrene	330	3.73	ug/kg	26.7	296	127	1-155			
Pyrene	92.6	8.33	ug/kg	66.7	23.0	104	1-140			
Surrogate: Nitrobenzene	302		ug/kg	333		91	40-130			

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERM) FAX: (972) 727-1175

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 5 of 6

Project: Hobbs Station

Project #:

E03211

Print Date/Time:

04/16/03 1740

Semivolatile Polynuclear Aromatic Hydrocarbons - Quality Control

Analyte(s)	Result	*SRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3D01026 - EPA 3	550B Sonicat	ion Extraction	(continue	d)			,,,			
Matrix Spike Duplicate (3D01026-MSD1)				0047.04				
Prepared: 04/01/03 1335	Analyzed: 04/11	/03 0544		S	ource: 030	3847-01				
Acenaphthene	369	16.7	ug/kg	667	489	0	1-124	2	20	Q-02
Acenaphthylene	371	41.7	ug/kg	333	291	24	1-139	14	20	
Anthracene	249	16.7	ug/kg	13.3	193	421	1-126	15	20	Q-02
Benzo(a)anthracene	54.8	41.7	ug/kg	33.3	ND	112	12-135	6	20	
Benzo(a)pyrene	67.9	41.7	ug/kg	33.3	ND	204	1-128	11	20	Q-02
Benzo(b)fluoranthene	86.3	6.66	ug/kg	13.3	51.2	264	6-150	62	20	Q-02,Q-0 4
Benzo(g,h,i)perylene	139	6.66	ug/kg	53.3	48.3	170	1-116	13	20	Q-02
Benzo(k)fluoranthene	143	1.66	ug/kg	13.3	105	286	1-159	15	20	Q-02
Chrysene	66.2	0.833	ug/kg	33.3	102	0	1-199	4	20	Q-02
Dibenz(a,h)anthracene	200	3.33	ug/kg	133	28.8	129	1-110	5	20	Q-02
Fluoranthene	618	16.7	ug/kg	33.3	570	144	14-123	16	20	Q-02
Fluorene	130	8.33	ug/kg	66.7	ND	195	1-142	10	20	Q-02
Indeno(1,2,3-cd)pyrene	369	4.16	ug/kg	33.3	244	375	1-116	93	20	Q-02,Q-0 4
Naphthalene	272	41.7	ug/kg	333	ND	82	1-122	3	20	
Phenanthrene	370	3.73	ug/kg	26.7	296	277	1-155		20	Q-02
Pyrene	99.4	8.33	ug/kg	66.7	23.0	115	1-140		20	
Surrogate: Nitrobenzene	322		ug/kg	333		97	40-130			

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERM) FAX: (972) 727-1175

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page: Page 6 of 6

Project: Hobbs Station

Project #: E03211

Print Date/Time:

04/16/03 1740

Notes and Definitions

The results presented in this report were generated using those methods given in 40 CFR Part 136 for Water and Wastewater samples and in SW-846 for RCRA/Solid Waste samples.

Q-02 The recovery of an analyte(s) in the MSs was outside the acceptable range due to interference, large dilutions

required for analysis or a combination of these factors. The recovery of this analyte(s) in the LCSs was within the

required limits.

Q-04 The RPD of the target analyte(s) in the MS/MSD is outside of established limits. The RPD of this same analyte(s)

in the LCS/LCSD is within acceptable limits. Therefore, the data were reported and are acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate

MS/MSD Matrix Spike/Matrix Spike Duplicate

RPD Relative Percent Difference

mg/kg milligrams per kilogram

mg/l milligrams per liter

ug/kg micrograms per kilogram

ug/l micrograms per liter

exc Not covered under scope of NELAP accreditation.

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERM) FAX: (972) 727-1175

Bethany Tech Center
400 W. Bethany, Suite 190
Allen, Texas 75013
972-727-1123 (Local) * 800- 228-ERMI (Long Distance)
972-727-1175 (Fax)

PMD Rec. @ 0.8.C

Page L of Z

Revised 10/09/96		idns	See Reverse for Terms and Conditions	everse for T	See R	PINK	YEL SW ERMI	אווא ביין:	ered the property of the prope
6 1118	11/2	No Co	Received for ERMI By: /	Received for	-	Date:		ment:	Method of Shipment:
Date: Time:	T		Received B	Time:	_	Date:		y:	Relinquished By:
	1		Received By	Time:	27.5	Date: 5		1: 600 min	Relinquished By:
Date: 5.21.7 Time: 6.70	7	2 X	Received By:	Time: 0/0.	?-	Date:		in the co	Relinquished By:
	<u>۔</u>						,	PAR A	
						1	2		
		٤	11.C/1	<u>:</u>	1120	700 1245	200	7. N. T.	
	,	×	140.1	7	H, C	5501 BA	3.700	HW - 3	
		¥	1.17.1	7	1,0	10.63 JUS	ے کر	M1.) - 2	
		7	11/10.1	b	υźη	SIII 1902	2.51	HW-1	
		×	7.11	, ,	ا کر اد	1111 (011	11	1 < (111 15)	1030363404
		٧.	7.11)	ار چر ۱۲	2003 200) 77	1. 1.1 h MH	05036343
	,	S.	11 o C	(-)	717	19 63 1828) 19	12-12 Jan 1	204605050
	•	· \$	17.0	_	ار دوا ل	19.0-1205) 19	1 5c) 1-MH	030363401
		Comp. Grab	Preservative (Bottles	Matrix	Time	Date ©	I.D.	Use Only
77		Sample Type		# of		Sample		Field Sample	ERMJ
	1 /			1	4,000	Signature:	ı	(PRI) Plikitu	Sampler: (
	40		le:	Zip Code:	N-1	State:		-	City: Horse
No.	15						t-4 18	CK (1 4 11	Address:
704	9	7211	Project Number: 60	Project	0		ا کی	HIPAL IN	Project Name:
10	K U			,		_		Number:	Purchase Order Number:
2 60	16		mber:	Fax Number:					Telephone:
22	120		e.	Zip Code:		State:		1	City:
	=)			ŧ.				(if different):	Billing Address
REQUESTED ANALYSES •	0								Billing Name:
		176-102	mber: / / = :)	Fax Number:			111.3	10251 (21)	Telephone:
ī: Normal 🏹 Expedite 🔲	TAT:	4	le:	Zip Code:	11.	State:		MIN	~)
					1100	11 500	CW 100	15/11:10:51	
	!						7111	CHES MITE	Contact:
Comments:	O Con		Here	-	/ <i>C</i> ,	Ja, LNC	7637126	e: ACIHA	Company Name:

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 1 of 6

Project: Hobbs Station

Project #:

E03211

Print Date/Time:

04/15/03 1623

Attached is our analytical report for the samples received for your project. Below is a list of your individual sample descriptions with our corresponding laboratory number. We also have enclosed a copy of the Chain of Custody that was received with your samples and a form documenting the condition of your samples upon arrival. Please note any unused portion of the samples may be discarded upon expiration of the EPA holding time for the analysis performed or after 30 days from the above report date, unless you have requested otherwise.

Sample Identification

Laboratory ID # Client Sample ID

<u>Matrix</u>

Sampled Date/Time

Received Date/Time

0303755-01

MW-3

Aqueous

03/20/03 1035

03/26/03 1645

Thank you for the opportunity to serve your environmental chemistry analysis needs. If you have any questions or concerns regarding this report please contact our Customer Service Department at the phone number below.

Respectfully submitted,

endall K. Brown

Kendall K. Brown

President

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123

Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 2 of 6

Project: **Hobbs Station**

Project #: E03211

Print Date/Time:

04/15/03 1623

Laboratory ID #: 0303755-01

Sample Type

Grab

Matrix Aqueous Sample Collected By B. Chris Mitchell

Customer

Sample Description

MW-3

Sample Date/Time 03/20/03 1035

Analyte(s)	Result	*SRL	**MRL	Units	Method #	Analysis Date/Time	Analyst	Flag
Semivolatile Polynuclea	r Aromatic Hyd	rocarbons	<u></u>				· <u>··</u>	
Acenaphthene	ND	2.50	2.50	ug/l	EPA 8310	04/10/03 0924	sw	
Acenaphthylene	4.85	1.25	1.25	ug/l	EPA 8310	04/10/03 0924	SW	
Anthracene	15.0	5.00	0.500	ug/l	EPA 8310	04/10/03 0729	SW	R-01
Benzo(a)anthracene	0.290	0.0250	0.0250	ug/l	EPA 8310	04/10/03 0924	SW	
Benzo(a)pyrene	0.394	0.0250	0.0250	ug/l	EPA 8310	04/10/03 0924	SW	
Benzo(b)fluoranthene	ND	0.0100	0.0100	ug/l	EPA 8310	04/10/03 0924	SW	
Benzo(g,h,i)perylene	0.545	0.200	0.200	ug/l	EPA 8310	04/10/03 0924	SW	
Benzo(k)fluoranthene	1.32	0.0100	0.0100	ug/l	EPA 8310	04/10/03 0924	SW	
Chrysene	1.70	0.0250	0.0250	ug/l	EPA 8310	04/10/03 0924	SW	
Dibenz(a,h)anthracene	0.623	0.100	0.100	ug/l	EPA 8310	04/10/03 0924	SW	
Fluoranthene	16.1	0.125	0.125	ug/l	EPA 8310	04/10/03 0924	SW	
Fluorene	9.18	0.250	0.250	ug/l	EPA 8310	04/10/03 0924	SW	
Indeno(1,2,3-cd)pyrene	2.10	0.125	0.125	ug/l	EPA 8310	04/10/03 0924	SW	
Naphthalene	29.0	1.25	1.25	ug/l	EPA 8310	04/10/03 0924	SW	
Phenanthrene	7.67	0.100	0.100	ug/l	EPA 8310	04/10/03 0924	SW	
Pyrene	0.506	0.0500	0.0500	ug/l	EPA 8310	04/10/03 0924	sw	
Surrogate: Nitrobenzene	-	92 %	40-130		EPA 8310	04/10/03 0924	sw	

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERMI FAX: (972) 727-1175

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 3 of 6

Project: Hobbs Station

Project #:

E03211

Print Date/Time:

04/15/03 1623

Semivolatile Polynuclear Aromatic	Hydrocarbons	- Quality Control
-----------------------------------	--------------	-------------------

Analyte(s)	Result	*SRL	Units	Spike Level I	Source Result	ı%REC	%REC Limits	RPD	RPD Limit	1	Flag
					. 1004.11						
Batch 3C27034 - EPA	3510C Separat	ory Funnel Ext	traction								
Blank (3C27034-BLK1) Prepared: 03/27/03 1015	Analyzed: 04/13	/03 1447									
Acenaphthene	ND	2.50	ug/l								
Acenaphthylene	ND	1.25	ug/l								
Anthracene	ND	0.500	ug/l								
Benzo(a)anthracene	ND	0.0250	ug/l								
Benzo(a)pyrene	ND	0.0250	ug/l								
Benzo(b)fluoranthene	ND	0.0100	ug/l								
Benzo(g,h,i)perylene	ND	0.200	ug/l								
Benzo(k)fluoranthene	ND	0.0100	ug/l								
Chrysene	ND	0.0250	ug/l								
Dibenz(a,h)anthracene	ND	0.100	ug/l								
Fluoranthene	ND	0.125	ug/l								
Fluorene	ND	0.250	ug/l								
Indeno(1,2,3-cd)pyrene	ND	0.125	ug/l								
Naphthalene	ND	1.25	ug/l								
Phenanthrene	ND	0.100	ug/l								
Pyrene	ND	0.0500	ug/l								
Surrogate: Nitrobenzene	10.7		ug/l	10.0		107	40-130)			
Laboratory Control San								.,			
Prepared: 03/27/03 1015	•										
Acenaphthene	18.9	2.50	ug/l	20.0		94	1-124				
Acenaphthylene	10.4	1.25	ug/l	10.0		104	1-139				
Anthracene	ND	0.500	ug/l	0.400		84	1-126				
Benzo(a)anthracene	1.18	0.0250	ug/l	1.00		118	12-135				
Benzo(a)pyrene	1.04	0.0250	ug/l	1.00		104	1-128	3			
Benzo(b)fluoranthene	0.477	0.0100	ug/l	0.400		119	6-150				
Benzo(g,h,i)perylene	1.75	0.200	ug/l	1.60		109	1-116				
Benzo(k)fluoranthene	0.461	0.0100	ug/l	0.400		115	1-159				
Chrysene	1.21	0.0250	ug/l	1.00		121	1-199)			
Dibenz(a,h)anthracene	3.60	0.100	ug/i	4.00		90	1-110				
Fluoranthene	1.12	0.125	ug/l	1.00		112	14-123				
Fluorene	2.27	0.250	ug/l	2.00		114	1-142	?			
Indeno(1,2,3-cd)pyrene	1.15	0.125	ug/l	1.00		115	1-116				
Naphthalene	11.2	1.25	ug/l	10.0		112	1-122				
Phenanthrene	0.933	0.100	ug/l	0.800		117	1-155				
Pyrene	2.24	0.0500	ug/l	2.00		112	1-140	1			
Surrogate: Decafluorobiphenyl	7.41		ug/l	10.0		74	40-130	1			
Surrogate: Nitrobenzene	8.97		ug/i	10.0		90	40-130)			

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Louisiana: 02007 Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page:

Page 4 of 6

Project: Hobbs Station

Project #:

E03211

Print Date/Time:

04/15/03 1623

Semivolatile Polynuclear Aromatic Hydrocarbons - Quality Control

Analyte(s)	Result	*SRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3C27034 - EPA	3510C Separa			continue	ed)					
Laboratory Control Sa	<u> </u>					· · · · · · · · · · · · · · · · · · ·				
Prepared: 03/27/03 101	5 Analyzed: 04/1	0/03 0300								
Acenaphthene	14.7	2.50	ug/l	20.0		74	1-124	25	20	C-
Acenaphthylene	8.06	1.25	ug/l	10.0		81	1-139		20	C-
Anthracene	ND	0.500	ug/l	0.400		74	1-126		20	
Benzo(a)anthracene	1.00	0.0250	ug/l	1.00		100	12-135	17	20	
Benzo(a)pyrene	0.915	0.0250	ug/l	1.00		92	1-128	13	20	
Benzo(b)fluoranthene	0.407	0.0100	ug/l	0.400		102	6-150	16	20	
Benzo(g,h,i)perylene	1.53	0.200	ug/l	1.60		96	1-116	13	20	
Benzo(k)fluoranthene	0.388	0.0100	ug/l	0.400		97	1-159	17	20	
Chrysene	1.04	0.0250	ug/l	1.00		104	1-199	15	20	
Dibenz(a,h)anthracene	2.97	0.100	ug/l	4.00		74	1-110	19	20	
Fluoranthene	0.990	0.125	ug/l	1.00		99	14-123	12	20	
Fluorene	1.72	0.250	ug/l	2.00		86	1-142	28	20	C-
Indeno(1,2,3-cd)pyrene	1.04	0.125	ug/l	1.00		104	1-116	10	20	
Naphthalene	8.32	1.25	ug/l	10.0		83	1-122	30	20	C-
Phenanthrene	0.766	0.100	ug/l	0.800		96	1-155	20	20	
Pyrene	1.87	0.0500	ug/l	2.00		94	1-140	18	20	
Surrogate: Decafluorobiphenyl	5.07		ug/l	10.0		51	40-130			
Surrogate: Nitrobenzene	6.48		ug/l	10.0		65	40-130			
Matrix Spike (3C27034-										
Prepared: 03/27/03 1015	5 Anályzed: 04/1	0/03 0338		S	ource: 0302	588-02				
Acenaphthene	15.9	2.50	ug/l	20.0	ND	80	1-124			
Acenaphthylene	7.91	1.25	ug/l	10.0	ND	79	1-139			
Anthracene	ND	0.500	ug/l	0.400	ND	71	1-126			
Benzo(a)anthracene	1.05	0.0250	ug/l	1.00	ND	105	12-135			
Benzo(a)pyrene	1.04	0.0250	ug/l	1.00	0.0344	101	1-128			
Benzo(b)fluoranthene	0.507	0.0100	ug/l	0.400	0.119	97	6-150			
Benzo(g,h,i)perylene	1.76	0.200	ug/i	1.60	0.218	96	1-116			
Benzo(k)fluoranthene	0.499	0.0100	ug/l	0.400	0.102	99	1-159			
Chrysene	1.08	0.0250	ug/l	1.00	0.0631	102	1-199			
Dibenz(a,h)anthracene	3.57	0.100	ug/l	4.00	ND	89	1-110			
Fluoranthene	1.36	0.125	ug/l	1.00	ND	136	14-123			C-(
Fluorene	2.55	0.250	ug/l	2.00	0.447	105	1-142			
Indeno(1,2,3-cd)pyrene	1.18	0.125	ug/l	1.00	0.195	98	1-116			
Naphthalene	11.2	1.25	ug/l	10.0	ND	112	1-122			
Phenanthrene	0.898	0.100	ug/l	0.800	0.195	88	1-155			
Pyrene	1.97	0.0500	ug/l	2.00	ND	98	1-140			
Surrogate: Decafluorobiphenyl	4.56		ug/l	10.0		46	40-130			
Surrogate: Nitrobenzene	6.14		ug/l	10.0		61	40-130			

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERMI

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page: P

Page 5 of 6

Project: Hobbs Station

Project #: E03211

Print Date/Time:

04/15/03 1623

Semivolatile Polynuclear Aromatic Hydrocarbons - Quality Control

		•		•		•				
Analyte(s)	Result	*SRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 3C27034 - EPA 3	510C Separat	ory Funnel Ext	raction (continue	ed)					
Matrix Spike Duplicate (3 Prepared: 03/27/03 1015				s	ource: 0302	588-02				
Acenaphthene	14.5	2.50	ug/l	20.0	ND	72	1-124	9	20	
Acenaphthylene	6.68	1.25	ug/l	10.0	ND	67	1-139	17	20	
Anthracene	ND	0.500	ug/l	0.400	ND	72	1-126	1	20	
Benzo(a)anthracene	1.08	0.0250	ug/l	1.00	ND	108	12-135	3	20	
Benzo(a)pyrene	1.11	0.0250	ug/i	1.00	0.0344	108	1-128	7	20	
Benzo(b)fluoranthene	0.519	0.0100	ug/l	0.400	0.119	100	6-150	2	20	
Benzo(g,h,i)perylene	1.84	0.200	ug/l	1.60	0.218	101	1-116	4	20	
Benzo(k)fluoranthene	0.511	0.0100	ug/l	0.400	0.102	102	1-159	2	20	
Chrysene	1.10	0.0250	ug/l	1.00	0.0631	104	1-199	2	20	•
Dibenz(a,h)anthracene	3.86	0.100	ug/l	4.00	ND	96	1-110	8	20	
Fluoranthene	1.41	0.125	ug/l	1.00	ND	141	14-123	4	20	C-0
Fluorene	2.31	0.250	ug/l	2.00	0.447	93	1-142	10	20	
Indeno(1,2,3-cd)pyrene	1.22	0.125	ug/l	1.00	0.195	102	1-116	3	20	
Naphthalene	10.4	1.25	ug/l	10.0	ND	104	1-122	7	20	
Phenanthrene	0.909	0.100	ug/l	0.800	0.195	89	1-155	1	20	
Pyrene	2.11	0.0500	ug/l	2.00	ND	106	1-140	7	20	
Surrogate: Nitrobenzene	4.74		ug/l	10.0		47	40-130	ı		

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 Long Distance: (800) 228-ERMI FAX: (972) 727-1175

Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013

Kansas: E-10288 Florida: E-87681

Report of Sample Analysis

Alpha Testing, Inc.

2209 Wisconsin Street, Suite 100

Dallas TX, 75229

ATTN: Chris Mitchell

Page 6 of 6 Page:

Project: **Hobbs Station**

Project #: E03211

Print Date/Time: 04/15/03 1623

Notes and Definitions

The results presented in this report were generated using those methods given in 40 CFR Part 136 for Water and Wastewater samples and in SW-846 for RCRA/Solid Waste samples.

C-01 The RPD was greater than expected.

C-02 The recovery was greater than expected

The higher reporting limit(s) is due to dilutions required for analysis as a result of a high concentration of target R-01

and/or non-target parameters in this sample.

ND Analyte NOT DETECTED at or above the reporting limit

Sample results reported on a dry weight basis dry

LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate

MS/MSD Matrix Spike/Matrix Spike Duplicate

RPD Relative Percent Difference

mg/kg milligrams per kilogram

milligrams per liter mg/l

micrograms per kilogram ug/kg ug/l

micrograms per liter

Not covered under scope of NELAP accreditation.

*Sample Reporting Limit **Method Reporting Limit
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Local: (972) 727-1123 FAX: (972) 727-1175 Long Distance: (800) 228-ERMI

Chain-of-Custody

Page /

400 W. Belhany, Suite 190 Allen, Texas 75013 972-727-1123 (Local) * 800- 228 ERM) (Long Distance) 972-727-1175 (Fax) Bethany Tech Center

196980 Rec. @ 0.8°C O | Comments: ないしん。

290 Revised 10/09/96 0 Time{(~..(Call for Pricing) Time: Time: Time: Expedite REQUESTED ANALYSES Date: 3-2 Date 5/ Date: Date: Ø Normal TAT: から 0 9 Fax Number: (472) 620 - 1302 Grab Sample Type E03211 Comp. 75009 Received By: Received for **ERMI** By: 11 Received By Receivéd By 74/つ。カ かって西 4.C/KG 4.0/140 Preservative 7.4 7.4 Project Number: Fax Number: Zip Code: Zip Code: Zip Code: Time: 30 3. 21.3 Time: 1030 Bottles 9 Time: 9 420 420 Sulty 100 Soil Matrix ナクロ Soil Seit Soll Date: 3- 2/ 9 Date: Date: Date: State: State: 3-19-03 1525 3.19.03 (700 3.20.03 1205 State: 3.A.03 [205 <u></u>E**0** 3.20.03 910 3.20.03 1115 3.20 B 1035 3.20.03 945 Signature: ST. 뎩 Oate Oate Hry 18 C/SCUNS A STATION とお称れ 168-029 CHES MIRAM (36-37) 35-36 34-35 14-15 Field Sample 40.7 HW - 3 アシーム HW-HOBBS <u>.</u> Billing Address (if different): 3 477 CHPais 208 B-5(Purchase Order Number MW-2 HW- 4 1-3E チャイン Method of Shipment: Company Name: Hebby Relinquished By: Relinquished By: Relinquished By Project Name: 020362502 Salestor to 0303636 6303635 21 Billing Name: Telephone: Telephone: Use Only Sampler: Address: ERMI Address: Contact: ĊĬĶ: City:

See Reverse for Terms and Condi

WHITE: Original to be returned with Report; YELLOW: ERMI copy; PINK: Customer Copy