

MONITORING REPORTS

DATE: 2005

October 11, 2005

Environmental, Health, Safety and Regulatory Compliance

2929 Allen Parkway, 70019 P.O. Box 2521 Houston, Texas 77252-2521 Office 713/759-3636 Fax 713/759-3931

VIA CERTIFIED MAIL No.: 7004 0750 0003 2947 8620 RETURN RECEIPT REQUESTED

Mr. Paul Sheeley Environmental Engineer Specialist New Mexico Oil Conservation Division 1625 N. French Dr. Hobbs, New Mexico 88240

Re: TEPPCO Hobbs Station, Hobbs, New Mexico Supplemental Environmental Site Investigation

Dear Mr. Sheeley:

TEPPCO Crude Oil, L.P. (TEPPCO) is submitting the attached *Supplemental Environmental Site Investigation* report describing the soil and groundwater monitoring results obtained during investigation of the TEPPCO Hobbs Station. During March 2003, TEPPCO performed a due diligence investigation of this station following acquisition of the station from ARCO. This due diligence investigation established that groundwater was affected by benzene concentrations in excess of New Mexico Water Quality Control Commission (WQCC) Ground Water Standards at monitor well location MW-3. A copy of this due diligence report entitled: *Environmental Site Investigation* of *Hobbs Station*, dated May 23, 2003 has been provided with this correspondence.

It has not been possible to obtain additional water samples from MW-3 to verify the March 2003 sample results, since water levels in this area have dropped below the wear screen elevation. In order to verify if groundwater in the vicinity of MW-3 remained impacted above regulatory levels, a replacement well (MW-3R) was installed adjacent to MW-3 on July 25, 2005. The groundwater samples from this monitor well indicate no benzene concentrations remain above method detection limits.

Soil samples obtained at two locations (MW-2 and MW-3R) exceed the New Mexico Oil Conservation Division's (OCD's) Remediation Action Levels of 100 mg/kg. However, analyses of the soil sample from MW-3R by Texas Commission on Environmental Quality (TCEQ) Method TX 1005, constituent concentrations were below method detection limits. Also, these results were compared to New Mexico Environmental

Mr. Paul Sheeley Re: TEPPCO Hobbs Station October 11, 2005 Page 2 of 3

Department (NMED) *TPH Screening Guidelines*, dated June 24, 2003. Although there are no screening values established for crude oil, a comparison was made to Diesel #2, #3/#6 Fuel Oil Kerosene and Jet Fuel. The soil sample from MW-3R does not exceed the lower of the NMED screening guidelines (conservative Residential Direct Exposure) of 880 mg/kg.

Based on the decreasing constituent concentrations in groundwater over time, the absence of groundwater receptors near the station, the industrial use of the station and the impractability of soil removal in accordance with NMOCD Section VI.A.1.(b), TEPPCO respectfully requests that OCD approval for closure of this site be granted based on Section VII of the OCD's *Guidelines for Remediation of Leaks, Spills and Releases*.

Please do not hesitate to contact me at (713) 759-3866 if you have any questions concerning the contents of the attached reports.

Sincerely,

David R. Smith, P.G. Remediation Scientist

Attachments

cc: w/o Attachments Chris Mitchell – Southwest Geoscience, Dallas, TX

Southwest

<u>.</u>

.

• • •

Environmental & Hydrogeologic Consultants

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION

_

Property at:

HOBBS STATION Off County Road 61 Hobbs, Lea County, New Mexico

> October 7, 2005 Project No. 0105013

Environmental & Evdrogeologic Consultants

Young a survey of the second second second

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION

Property at:

HOBBS STATION Off County Road 61 Hobbs, Lea County, New Mexico

> October 7, 2005 Project No. 0105013

> > Prepared for:

TEPPCO, L.P. 2929 Allen Parkway, Suite 3200 Houston, Texas 77019 Attention: Mr. David Smith, P.G.

Prepared by:

B. Chris Mitchell, P.G. Principal Geoscientist

RECEIVED

OCT 1 0 2005

ENVIRONMENTAL DEPT.

Rusty Sinfoson, P.G., C.P.G. Senior Technical Review

Singles, Said

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY 1					
1.0	INTRODUCTION41.1Site Description41.2Site Background41.3Scope of Work51.4Standard of Care51.5Additional Limitations61.6Reliance6					
2.0	SENSITIVE RECEPTOR SURVEY6					
3.0	FIELD ACTIVITIES73.1 Borings and Monitoring Wells73.2 Soil and Groundwater Sampling8					
4.0	LABORATORY ANALYTICAL METHODS					
5.0	DATA EVALUATION95.1 Soil Samples95.2 Groundwater Samples10					
6.0	MONITORED NATURAL ATTENUATION EVALUTION					
7.0	FINDINGS AND RECOMMENDATIONS					
LIST	OF APPENDICES					
Αρρε	endix A: Figure 1 – Topographic Map Figure 2 – Site Vicinity Map Figure 3 – Site Plan					
Appe	endix B: Tables					
Appe	endix C: Water Well Search Report					
Appe	endix D: Boring Logs					
Appendix E: Laboratory Analytical Reports & Chain of Custody Documentation						

And the second s

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION

HOBBS STATION Off County Road 61 Hobbs, Lea County, New Mexico SWG Project No. 0105013

EXECUTIVE SUMMARY

The TEPPCO Hobbs Station is located off County Road (CR) 61, south-southwest of Hobbs, New Mexico, referred to hereinafter as the "site" or "subject site". The site consists of approximately 35 acres developed as a crude oil storage facility associated with crude oil pipeline operations.

During the completion of due diligence activities during the acquisition of select ARCO assets by TEPPCO, soil borings MW-1, MW-2, MW-4 and B-5 were advanced at the station by ALPHA TESTING, INC. (ALPHA) in March, 2003. Soil borings MW-1, MW-2 and MW-4 were subsequently converted to permanent groundwater monitoring wells. The objective of due diligence activities was to evaluate the presence of petroleum hydrocarbons in the on-site soil and groundwater as a result of the operations historically associated with the Site.

In addition, an existing monitoring well previously installed under the direction of ARCO, labeled MW-3, was identified on the north-northeast portion of the site during the completion of the due diligence activities. No other existing monitoring wells were observed during the 2003 investigation activities.

Petroleum hydrocarbon constituent concentrations identified in on-site soils during the ALPHA Environmental Site Investigation (ESI) dated May 23, 2003, which exceed the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division's (OCD's) *Remediation Action Levels* were limited to the TPH DRO concentration of 621 mg/Kg associated with the soil sample collected from soil boring MW-2. The TPH DRO concentration was resubmitted for polynuclear aromatic hydrocarbon (PAH) analysis. The identified PAH constituent concentrations do not exceed the New Mexico Environment Department (NMED) *Tier 1 Soil Concentrations Protective Of Groundwater*.

Petroleum hydrocarbon constituent concentrations identified in on-site groundwater during the ALPHA ESI dated May 23, 2003, which exceed the New Mexico Water Quality Commission (NMWQC) *Ground Water Standards* were limited to the benzene concentration of 0.0637 mg/L associated with the groundwater sample collected from monitoring well MW-3(ARCO).

The objective of the Supplemental Environmental Site Investigation (SESI) conducted by Southwest Geoscience (SWG) was to further evaluate the presence of petroleum hydrocarbons in the on-site soil and groundwater in the vicinity of monitoring well MW-3, previously installed under the direction of ARCO. One (1) boring, MW-3R, was advanced at the site and converted to a permanent groundwater monitoring well. Soil boring MW-3R was advanced adjacent to monitoring well MW-3, previously installed by ARCO.

1

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the TPH DRO concentration identified in the soil sample collected from soil boring MW-3R exceeds the remediation action level of 100 mg/kg. However, based on the results of the TX 1005/1006 analysis, TPH concentrations were not identified above the laboratory method detection limits.

outhwest

Based on the laboratory analytical results, TPH GRO/DRO concentrations were identified in the groundwater sample collected from monitoring well MW-3R; however, the identified concentrations do not exceed the applicable New Mexico Water Quality Control Commission (WQCC) Human Health Standards for Groundwater¹.

Based on SWG's review of the historic and current laboratory analytical results, the primary lines of evidence with regard to natural attenuation of chemicals of concern (COCs) demonstrate a clear trend of stable of decreasing COC concentrations in groundwater over time and with distance away from potential source(s).

Based on the results of this SESI, SWG presents the following recommendations:

- Report the results of the investigation to the New Mexico Energy, Minerals and Natural Resources Department OCD and coordinate site activities through the OCD;
- Based on the COC concentrations identified in the on-site soil and groundwater, the trend of decreasing COC concentrations in groundwater over time, the absence of beneficial use of groundwater in the vicinity of monitoring well MW-3R, the anticipated future use of the site (crude oil pipeline facility) and the direction of groundwater flow, SWG recommends TEPPCO request regulatory closure from the NMEMNRD OCD in accordance with Section VII of the OCD's *Guidelines for Remediation of Leaks, Spills & Releases* dated August 13, 1993;
- If soils or groundwater located on the site are to be disturbed during future excavations or construction activities, proper procedures should be followed with respect to worker health and safety, and any affected soil or groundwater encountered should be properly characterized,

¹ Human Health Standards for Groundwater for groundwater with a total dissolved concentration (TDS) of less than 10,000 mg/L.

treated and/or disposed in accordance with applicable local, state or federal regulations.

1.0 INTRODUCTION

1.1 Site Description

The TEPPCO Hobbs Station is located off County Road (CR) 61, south-southwest of Hobbs, New Mexico, referred to hereinafter as the "site" or "subject site". The site consists of approximately 35 acres developed as a crude oil storage facility associated with crude oil pipeline operations.

A topographic map is included as Figure 1, a site vicinity map is included as Figure 2, and a site plan is included as Figure 3 of Appendix A.

1.2 Site Background

During the completion of due diligence activities during the acquisition of select ARCO assets by TEPPCO, soil borings MW-1, MW-2, MW-4 and B-5 were advanced at the station by ALPHA TESTING, INC. (ALPHA) in March, 2003. Soil borings MW-1, MW-2 and MW-4 were subsequently converted to permanent groundwater monitoring wells. The objective of the due diligence activities was to evaluate the presence of petroleum hydrocarbons in the on-site soil and groundwater as a result of the operations historically associated with the Site.

In addition, an existing monitoring well previously installed under the direction of ARCO, labeled MW-3, was identified on the north-northeast portion of the site during the completion of the due diligence activities. No other existing monitoring wells were observed during the 2003 investigation activities.

SWG's review of the ALPHA TESTING, INC. Environmental Site Investigation (ESI) dated May 23, 2003, identified the following findings:

"Based on the results of the ESI, the on-site soils in the vicinity of soil borings MW-1, MW-2, and B-5 appear to be affected by petroleum hydrocarbons.

Based on the results of the ESI, the on-site groundwater in the vicinity of monitor wells MW-1, MW-2, MW-3 and MW-4 appears to be affected by petroleum hydrocarbons.

ALPHA compared the identified petroleum hydrocarbon constituent concentrations in on-site soils and groundwater to the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division's (OCD's) Remediation Action Levels and the New Mexico Water Quality Commission (NMWQC) Ground Water Standards for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.).

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's Remediation Action Levels, the identified TPH DRO concentrations associated with the soil samples collected from soil borings MW-1 and B-5 and the identified ethylbenzene and TPH GRO concentrations associated with the soil sample collected from soil boring MW-2 do not exceed their respective action levels.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's Remediation Action Levels, the identified TPH DRO concentration associated with the soil sample collected from soil boring MW-2 exceeds the remediation action level of 100 mg/kg.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the NMWQC Ground Water Standards, the identified toluene, ethylbenzene, xylenes, TPH DRO/GRO and PAH concentrations associated with the groundwater samples collected from monitor wells MW-1, MW-2, MW-3 and MW-4 do not exceed the respective groundwater standards.

Based on ALPHA's comparison of the identified petroleum hydrocarbon constituent concentrations to the NMWQC Ground Water Standards, the identified benzene concentration associated with the groundwater sample collected from monitor well MW-3 exceeds the groundwater standard of 10 μ g/L."

Due to the exceedance of the OCD's *Remediation Action Level* of 100 mg/Kg for Total Petroleum Hydrocarbons (TPH), ALPHA resubmitted the soil sample for polynuclear aromatic hydrocarbon (PAH) analysis. The OCD does not have published cleanup standards for PAHs; therefore, SWG compared the identified PAH concentrations to the New Mexico Environment Department (NMED) Tier 1 *Soil Concentrations Protective Of Groundwater*. Based on SWG's review, the identified PAH concentrations do not exceed the Tier 1 *Soil Concentrations Protective Of Groundwater*.

A groundwater monitoring event was subsequently conducted by ALPHA in May, 2004 to further evaluate the magnitude of petroleum hydrocarbon constituents in the on-site groundwater. During the completion of sampling activities, on-site personnel indicated the location of two additional groundwater monitoring wells previously installed under the direction of ARCO, labeled MW-1 and MW-2. ALPHA sampled monitoring wells MW-1(ARCO), MW-2(ARCO), MW-1, MW-2 and MW-4. However, the groundwater table appeared to have dropped below the total depth of monitoring well MW-3(ARCO); therefore, no groundwater sample was collected.

Analytical tables which include the historical soil and groundwater analytical data are provided in Appendix B.

1.3 Scope of Work

Southwest Geoscience (SWG) has conducted a Supplemental Environmental Site Investigation (SESI) at the Hobbs Station based on the results of the ALPHA ESI dated May 23, 2003. The objective of the SESI was to further evaluate the presence of petroleum hydrocarbons in the on-site soil and groundwater in the vicinity of monitoring well MW-3, previously installed under the direction of ARCO. SWG's SESI was conducted in accordance with SWG's Proposal P01051017 dated April 20, 2005 and authorized on June 9, 2005.

1.4 Standard of Care

SWG's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. SWG makes no warranties, express or implied, as to the services performed hereunder. Additionally, SWG does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client, as detailed in our proposal.

outnwest

1.5 Additional Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and SWG cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this LSI. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. SWG's findings, and recommendations are based solely upon data available to SWG at the time of these services.

1.6 Reliance

This report has been prepared for the exclusive use of TEPPCO, L.P., and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of TEPPCO, L.P. and SWG. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, SESI report, and SWG's Agreement. The limitation of liability defined in the agreement is the aggregate limit of SWG's liability to the client.

2.0 SENSITIVE RECEPTOR SURVEY

During the completion of field activities, a sensitive receptor survey, which included a ½-mile radius search for registered water wells and a 500-foot walking survey for unregistered water wells and potential sensitive human and ecological receptors, was performed in the vicinity of the site.

SWG completed a field inventory of registered and unregistered water wells located within 500 feet of the central portion of the site. Additionally, a records inventory of water wells located within a 0.5 mile of the site was completed and included as Appendix C. The results of the water well search conducted during the investigation activities did not identify the beneficial use of groundwater within a one-half mile radius of the site.

During the completion of the 500-foot receptor survey, SWG inspected the site vicinity for dwellings, schools, hospitals, day care centers, nursing homes, businesses and subsurface utilities located within 500 feet of the site. In addition, sensitive receptors such as surface water bodies, parks, recreational areas, wildlife sanctuaries and wetlands areas located within 500 feet of the site were evaluated, if present. The site is located within an agricultural rangeland and oil and gas production and storage setting. SWG did not observe the above referenced sensitive receptors in the vicinity of the site.

3.1 Borings and Monitoring Wells

SWG's field activities were conducted on July 25, 2005 by Mr. B. Chris Mitchell, an SWG environmental professional. As part of the approved scope of work, one (1) boring, MW-3R, was advanced at the site and converted to a permanent groundwater monitoring well. Soil boring MW-3R was advanced adjacent to monitoring well MW-3, previously installed by ARCO.

outhwest

Figure 3 is a site plan which indicates the approximate location of the soil boring/monitoring well in relation to pertinent structures and general site boundaries (Appendix A).

Drilling services were performed under the supervision of a State of New Mexico licensed Water Well Driller using an air-rotary drilling rig. An SWG professional was present to observe the drilling procedures. Soil samples were collected using a one foot core barrel sampler. Drilling equipment was cleaned using a high pressure washer prior to beginning the project and before beginning each soil boring. Sampling equipment was cleaned using an Alconox[®] wash and potable water rinse prior to the beginning of the project and before collecting each soil sample.

Soil samples were collected continuously and observed to document soil lithology, color, moisture content and evidence of petroleum hydrocarbon impact. The soil samples were field-screened using a calibrated photoionization detector (PID) to indicate the presence of volatile organic compounds.

The lithology encountered during the advancement of soil boring MW-3R consisted of a brown silty clay from the surface to a depth of approximately 2 feet below grade surface (bgs). A tan caliche was encountered from a depth of 2 feet bgs to a depth of approximately 18 feet bgs. The tan caliche was underlain by a pale pink caliche from a depth of 18.0 to 33.0 feet bgs. A reddish purple quartzite lens was encountered from a depth of approximately 33 to 34 feet bgs. The quartzite lens was underlain by a reddish tan sand from a depth of 34 to 40.0 feet bgs. The sand was underlain by a red sand with fragmented sandstone from a depth of 40.0 bgs to the terminus of the soil boring at a depth of 48.0 feet bgs. Detailed lithologic descriptions are presented on the soil boring logs included in Appendix D.

Groundwater was encountered at a depth of approximately 37 feet bgs during the advancement of monitoring well MW-3R.

The groundwater flow direction and the depth to shallow groundwater likely vary depending upon seasonal variations in rainfall and the depth to the soil/bedrock interface. Without the benefit of on-site groundwater monitoring wells surveyed to a datum, groundwater flow direction beneath the site cannot be determined. Based on field observations, the general groundwater flow direction appears to follow topography, which grades toward the southwest.

Petroleum odors and PID readings ranging up to 1,342 parts per million (ppm) were detected in the soil samples collected from soil boring MW-3R. The highest PID reading was observed in the soil sample collected from a depth of 36 to 37 feet bgs (capillary fringe) in soil boring MW-3R. The soil boring log is included in Appendix D.

Subsequent to advancement, soil boring MW-3R was converted to a permanent monitoring well. The monitoring well was completed using the following methodology:

- Installation of 15.0 feet of 2-inch diameter, 0.010-inch machine slotted PVC well screen with a threaded bottom cap;
- Installation of 33.0 feet of 2-inch diameter, threaded flush joint PVC riser pipe to just above the ground surface;
- Addition of a pre-sieved 20/40 grade annular silica sand pack from the bottom of the boring to at least 0.5-feet above the top of the well screen;
- Addition of a hydrated bentonite seal above the sand pack filter zone;
- Addition of grout to the surface; and,
- Installation of an above grade monitoring well cover with locking well cap.

Monitoring well construction details are presented on the soil boring log for this monitoring well which is included in Appendix D.

The monitoring well was developed by surging and removing groundwater with a new, disposable, polypropylene bailer until the groundwater was relatively free of fine-grained sediment. Approximately twenty-five gallons of groundwater was removed from the monitoring well during the development activities.

3.2 Soil and Groundwater Sampling

SWG's soil sampling program involved submitting one soil sample from the soil boring for laboratory analysis. The soil sample was collected from the zone exhibiting the highest PID reading, which was the capillary fringe zone. Soil sample intervals are presented along with the soil sample analytical results in Table 1 (Appendix B) and included on the boring log in Appendix D.

A groundwater sample was collected from the monitoring well utilizing a dedicated disposable bailer.

Soil and groundwater samples were collected and placed in laboratory prepared glassware, sealed with custody tape and placed on ice in a cooler, which was secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to Severn Trent's analytical laboratory in Corpus Christi, Texas for normal turnaround.

4.0 LABORATORY ANALYTICAL METHODS

The soil samples collected from each boring and the groundwater samples collected from the monitoring wells were analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) using EPA SW-846 method #8021B and TPH DRO/GRO utilizing EPA method SW-846# 5030B/8015Bmodified. In addition, the soil sample was analyzed utilizing Texas Commission on Environmental Quality (TCEQ) Method TX1005/1006 to speciate the identified petroleum hydrocarbons.

Laboratory results are summarized in the tables included in Appendix B. The executed chain-of-custody form and laboratory data sheets are provided in Appendix E.

5.0 DATA EVALUATION

5.1 Soil Samples

SWG compared the petroleum hydrocarbon constituent concentrations identified in the on-site soils to the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division's (OCD's) *Remediation Action Levels* for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.) in accordance with the OCD's *Guidelines for Remediation of Leaks*, *Spills and Releases*.

In addition, SWG analyzed the soil sample utilizing TCEQ Method TX1005/1006 to evaluate the aliphatic and aromatic fractions associated with the identified TPH concentration. The inverse weighted average (TPH Mass Fractions) of the aliphatic and aromatic fractions derived from the TPH Method TX 1006 analysis are typically utilized to establish cleanup values for the complete TPH mixture (i.e., the whole product), for each applicable exposure pathway. However, the TX 1005/1006 analysis did not identify petroleum hydrocarbon concentrations above the laboratory method detection limits.

Based on the laboratory analytical results, benzene, toluene and xylenes concentrations were not identified in the soil sample collected from soil boring MW-3R above the laboratory method detection limits.

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified ethylbenzene concentration associated with the soil sample collected from soil boring MW-3R does not exceed the remediation action level of 50 mg/kg for Total BTEX.

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified TPH DRO concentration associated with the soil sample collected from soil boring MW-3R exceeds the remediation action level of 100 mg/kg. However, based on the results of the TX 1005/1006 analysis, TPH concentrations were not identified above the laboratory method detection limits.

In addition, SWG compared the identified TPH concentrations to the New Mexico Environmental Department *TPH Screening Guidelines* dated June 24, 2003. Due to the absence of TPH Screening Values for crude oil, SWG compared the identified TPH concentrations to the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel. Based on the laboratory analytical results, the TPH DRO concentration identified in the soil sample collected from soil boring MW-3R does not exceed the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel of 880 mg/kg.

The results of the soil sample analyses are summarized in Table 1, included in Appendix B.

5.2 Groundwater Samples

SWG compared the petroleum hydrocarbon constituent concentrations identified in on-site groundwater to the New Mexico Water Quality Commission (NMWQC) *Ground Water Standards* for sites affected by a release of oilfield products (i.e. crude oil, condensate, etc.) in accordance with the *Guidelines for Remediation of Leaks, Spills and Releases.*

nithwest

Based on the laboratory analytical results, benzene, toluene, ethylbenzene and/or xylenes concentrations were not identified in the groundwater sample collected from monitoring well MW-3R above the laboratory method detection limits.

Based on the laboratory analytical results, TPH GRO/DRO concentrations were identified in the groundwater sample collected from monitoring well MW-3R; however, the identified concentrations do not exceed the applicable NMWQC Groundwater Water Standards.

The results of the groundwater sample analyses are summarized in Table 2 included in Appendix B.

6.0 MONITORED NATURAL ATTENUATION EVALUATION

SWG conducted a natural attenuation screening to evaluate the site for remediation by monitored natural attenuation. Natural attenuation of petroleum hydrocarbons is recognized as a viable remedial alternative where favorable subsurface conditions prevail. The ASTM guidance document, <u>Standard Guide for Remediation of Ground</u> <u>Water by Natural Attenuation at Petroleum Release Sites</u>, was utilized as the standard for evaluating natural attenuation.

Natural attenuation is the process by which contaminants in the environment are degraded, or reduced in concentration by various means including volatilization, adsorption, desorption, dispersion, dilution, diffusion, biodegradation, and abiotic degradation. Natural attenuation is achieved when one or more of these processes brings about a reduction in the total mass, toxicity, mobility, volume, or concentration of a contaminant. The presence or absence of key indicator parameters will indicate the degree to which (if any) natural attenuation may occur. Monitored natural attenuation is the measurement or analysis of these key indicator parameters over time to establish trends that document that a reduction in total mass, toxicity, mobility, volume, or concentration of a contaminant is taking place. Several of the indicator parameters such as Oxygen, Conductivity, pH, Temperature, and Oxidation-Reduction Potential can be measured in the field. The remaining indicator parameters such as Alkalinity, Nitrate, Ferrous Iron, Ferric Iron, Carbon Dioxide, Sulfate and Methane are submitted to the laboratory for analysis.

Primary Lines of Evidence

Primary lines of evidence consist of historical groundwater data that demonstrate a clear trend of stable of decreasing COC concentrations in groundwater over time and with distance away from the source at appropriate monitoring or sampling points.

Based on SWG's review of the current and historical groundwater data, COC concentrations exhibit a decreasing trend in groundwater samples collected during sample events conducted in 2003 to 2005.

7.0 FINDINGS AND RECOMMENDATIONS

SWG's field activities were conducted on July 25, 2005 by Mr. B. Chris Mitchell, an SWG environmental professional. As part of the approved scope of work, one (1) boring was advanced and converted to a permanent groundwater monitoring well. Boring MW-3R was advanced adjacent to monitoring well MW-3, previously installed by ARCO.

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified ethylbenzene concentration associated with the soil sample collected from soil boring MW-3R does not exceed the remediation action level of 50 mg/kg for Total BTEX.

Based on SWG's comparison of the identified petroleum hydrocarbon constituent concentrations to the OCD's *Remediation Action Levels*, the identified TPH DRO concentration associated with the soil sample collected from soil boring MW-3R exceeds the remediation action level of 100 mg/kg. However, based on the results of the TX 1005/1006 analysis, TPH concentrations were not identified above the laboratory method detection limits.

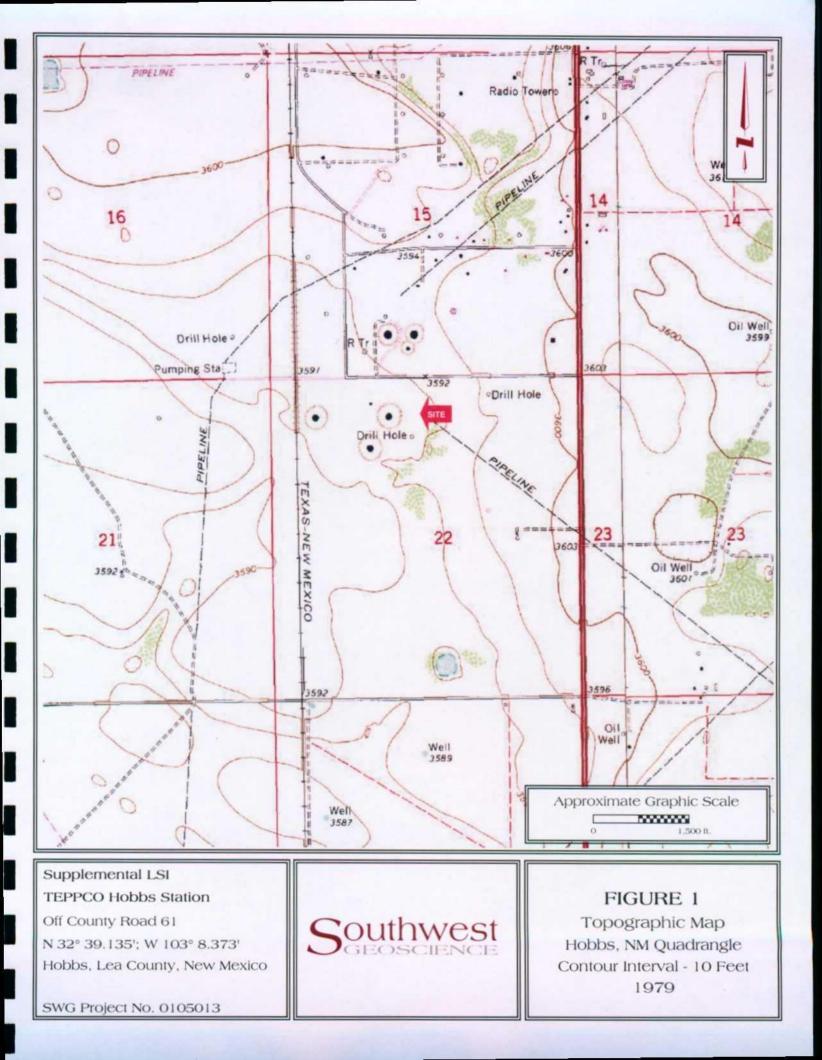
In addition, SWG compared the identified TPH concentrations to the New Mexico Environmental Department *TPH Screening Guidelines* dated June 24, 2003. Due to the absence of TPH Screening Values for crude oil, SWG compared the identified TPH concentrations to the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel. Based on the laboratory analytical results, the TPH DRO concentration identified in the soil sample collected from soil boring MW-3R does not exceed the lower of the published NMED Screening Guidelines (Residential Direct Exposure) for Diesel #2, #3/#6 Fuel Oil, Kerosene and Jet Fuel of 880 mg/kg.

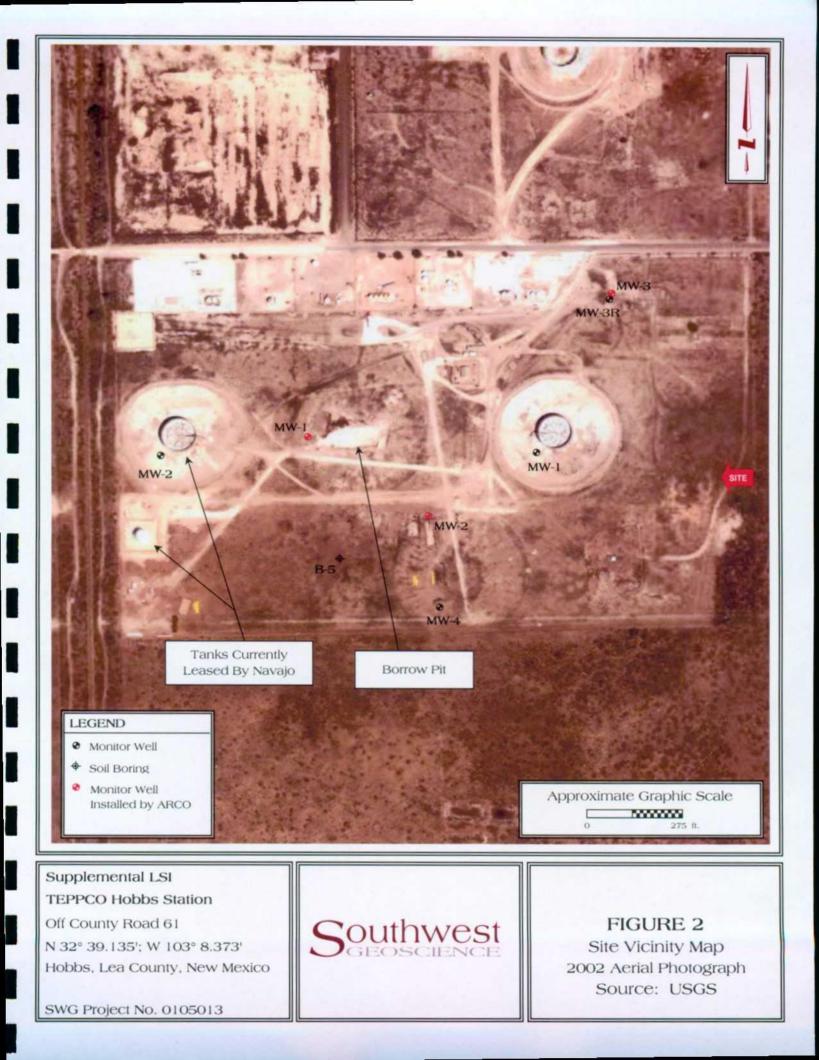
Based on the laboratory analytical results, TPH GRO/DRO concentrations were identified in the groundwater sample collected from monitoring well MW-3R; however, the identified concentrations do not exceed the applicable NMWQC Groundwater Water Standards.

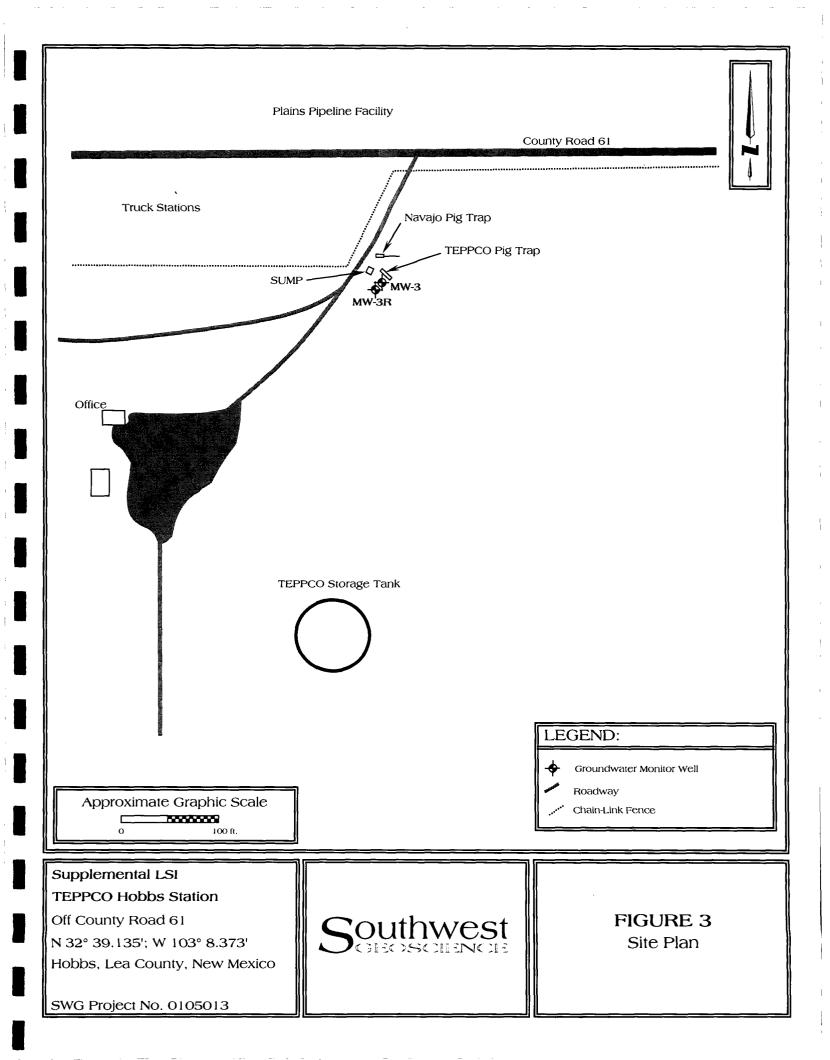
Based on SWG's review of the historic and current laboratory analytical results, the primary lines of evidence with regard to natural attenuation of chemicals of concern (COCs) demonstrate a clear trend of stable of decreasing COC concentrations in groundwater over time and with distance away from potential source(s).

Based on the results of this SESI, SWG presents the following recommendations:

 Report the results of the investigation to the New Mexico Energy, Minerals and Natural Resources Department OCD and coordinate site activities through the OCD; Hobbs Station, Off CR 61, Hobbs, New Mexico SWG Project No. 0105013 October 7, 2005




- Based on the COC concentrations identified in the on-site soil and groundwater, the trend of decreasing COC concentrations in groundwater over time, the absence of beneficial use of groundwater in the vicinity of monitoring well MW-3R, the anticipated future use of the site (crude oil pipeline facility) and the direction of groundwater flow, SWG recommends TEPPCO request regulatory closure from the NMEMNRD OCD in accordance with Section VII of the OCD's Guidelines for Remediation of Leaks, Spills & Releases dated August 13, 1993;
- If soils or groundwater located on the site are to be disturbed during future excavations or construction activities, proper procedures should be followed with respect to worker health and safety, and any affected soil or groundwater encountered should be properly characterized, treated and/or disposed in accordance with applicable local, state or federal regulations.



APPENDIX A

Figures

APPENDIX B

Tables

I.

TABLE 1 SOIL ANALYTICAL RESULTS													
Sample I.D. Date Sample Depth Benzene Toluene Ethylbenzene Xylenes Total BTEX TPH TPH													
New Mexico Energy, Minerais & Natural Resources Department, Oil Conservation Division, Remediation Action Level			10,000	NE	NE	NE	50,000	100	100	100		100	
MW-1	3.19.03	35 to 36	<10.0	<10.0	<10.0	<30.0	<60.0	<1.0	5.13	NA	NA	NA	NA
MW-2	3.19.03	34 to 35	<10.0	<10.0	57.9	<30.0	58	12.6	621	NA	NA	NA	NA
MW-3R	7.25.05	36 to 37	<49	<98.6	540	<296	540	11	730	<60	<60	<60	<60
MW-4	3.20.03	36 to 37	<10.0	<10.0	<10.0	<30.0	<60.0	<1.0	<2.9	NA	NA	NĂ	NA
B-5	3.19.03	14 to 15	<10.0	<10.0	<10.0	<30.0	<60.0	<1.0	5.77	NA	NA	NA	NA
NA- Not Analy	med												

NA= Not Analyzed

				TABLE 2NALYTICAL RESULTSRAROMATIC HYDROCARI	30NS	
Sample I.D.	Date	Sample Depth (feet)	Constituent	Observed Concentration (mg/kg)	New Mexico Energy, Minerals & Natural Resources Department, Oil Conservation Division, Remediation Action Level	New Mexico Environment Department, Tier i Soll Concentrations Protective of Groundwater - No Transport Zone in The Unsaturated Zone
MW-2	3.19.03	34 10 35	Acenaphthene	0.489	NE	187.95
			Acenaphthylene	0.291	NE	NE
	i		Anthracene	0.193	NE	4499.81
	5		Benzo(a)anthracene	<0.0417	NE	7.48
			Benzo(a)pyrene	<0.0417	NE	4.74
			Benzo(b)fluoranthene	0.0512	NE	25.68
	l i		Benzo(g,h,i)perylene	0.0483	NE	NE
			Benzo(k)fluoranthene	0.105	NE	25.68
	1		Chrysene	0.102	NE	810.27
	1		Dibenzo(a,h)anthracene	0.0288	NE	3.74
			Fluoranthene		NE	1247.59
	ł		Fluorene		NE	196.12
	l		Indeno(1,2,3-cd)pyrene		NE	NE
			Naphthalene		NENE	0.68
	í		Phenanthrene		NE	270.07
			Pyrene	0.023	NE	1301.71

NE = Not Established

TABLE 3SOIL ANALYTICAL RESULTSPETROLEUM HYDROCARBON MASS FRACTIONS

Sample ID	Date	Sample Depth	(IX 1005) TPH Result C ₆ - C ₃₅ (mg/Kg)	Hydrocarbon Fraction	Observed Concentration (mg/Kg)	Mass Fraction (mg/Kg)	Mass Fraction Total
MW-3R	7.25.05	36 to 37	<60	Aliphatic C6	<60	0.00E+00	0.00E+00
				Aliphatic C6-C8	<60	0.00E+00	
		ļ		Aliphatic >C8-C10	<60	0.00E+00] [
				Aliphatic >C10-C12	<60	0.00E+00] [
		1		Aliphatic >C12-C16	<60	0.00E+00]]
				Aliphatic >C16-C21	<60	0.00E+00	} }
				Aliphatic >C21-C35	<60	0.00E+00	3 1
		[Aromatic C7-C8	<60	0.00E+00] [
				Aromatic >C8-C10	<60	0.00E+00	
		1		Aromatic >C10-C12	<60	0.00E+00]]
				Aromatic >C12-C16	<60	0.00E+00]
		}	l i	Aromatic >C16-C21	<60	0.00E+00]
				Aromatic >C21-C35	<60	0.00E+00	1

TABLE 4 GROUNDWATER ANALYTICAL RESULTS											
Sample I.D.	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	TPH GRO (mg/L	TPH DRO (mg/L				
	Quality Commission (NMWQC) Water Standards	10	750	750	620	NE	NE				
	Monitori	ng Wells In	itsalled by	ARCO							
MW-1	5.11.04	<1.0	<1.0	<1.0	<3.0	NA	0.124				
MW-2	5.11.04	<1.0	<1.0	<1.0	<3.0	NA	<0.10				
MW-3	3.20.03	63.7	2.49	197	6.23	1.95	18				
	5.11.04			Water Volume f	or Sample	Collection	<u> </u>				
	Monitorin	g Wells Int	salled by 7	ГЕРРСО							
MW-1	3.20.03	<1.0	<1.0	<1.0	<3.0	<0.05	2.44				
	5.11.04	<1.0	<1.0	<1.0	<3.0	<0.05	1.31				
MW-2	3.20.03	<1.0	<1.0	<1.0	<3.0	<0.05	0.493				
	5.11.04	<1.0	<1.0	<1.0	<3.0	<0.05	<0.10				
MW-3R	7.25.05	<2.0	<2.0	<2.0	<6.0	0.074	2.4				
MW-4	3.20.03	<1.0	<1.0	<1.0	<3.0	<0.05	0.829				
	5.11.04	<1.0	<1.0	<1.0	<3.0	<0.05	<0.10				

NE = Not Established

A				RESULTS ROCARBONS				
P	Sample I.D.	Date	Constituent	Observed Concentration (µg/L)	New Mexico Energy, Minerals & Natural Resources Department, Oil Conservation Division, Remediation Action Level	New Mexico Water Quality Control Commission Ground Water Standards		
	MW-3	3.20.03	Acenaphthene	<2.5	NE			
		i i	Acenaphthylene	4.85	NE	-		
			Anthracene	15	NE	-		
			Benzo(a)anthracene	0.29	NE			
	,	Benzo(a)pyren						
			Benzo(b)fluoranthene	<0.01	NE	-		
			Benzo(g,h,i)perylene	Benzo(g,h,i)perylene 0.545 NE				
			Benzo(k)fluoranthene	1.32	-			
			Chrysene	1.7	NE	-		
	{ }		Dibenzo(a,h)anthracene	0.623	NE			
			Fluoranthene	16.1	NE			
	1		Fluorene	9.18	NE	-		
			Indeno(1,2,3-cd)pyrene		NE	-		
	1		Naphthalene	29	NE	30		
	1		Phenanthrene	7.67	NE	-		
			Pyrene	0.506	NE	-		

NE = Not Established

APPENDIX C

Water Well Search Report

Water Well Report[™]

Wednesday, September 21, 2005

CLIENT

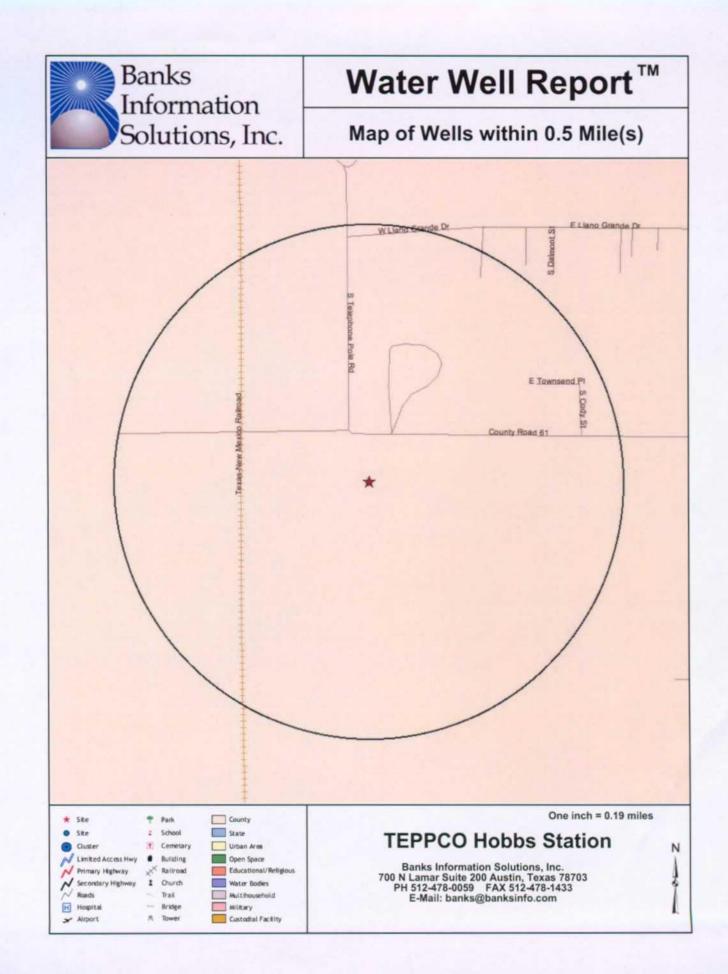
SOUTHWEST GEOSCIENCE- DALLAS

3030 LBJ Freeway, # 700

Dallas, TX 75234

SITE

TEPPCO Hobbs Station


Off County Road 61

Hobbs, NM 88240

092105-5

PO #: 0105013

700 N Lamar Suite 200 Austin, Texas 78703 PH 512.478.0059 FAX 512.478.1433 E-mail banks@banksinfo.com

Water Well Report[™]

DETAILS

Banks Information Solutions, Inc. Performed A Thorough Groundwater Well Search And No Wells Were Found.

WANG, Dozens OF WATER WELLS OSED

700 N Lamar Suite 200 Austin, Texas 78703 PH 512.478.0059 FAX 512.478.1433 E-mail banks@banksinfo.com

Water Well Report[™]

DISCLAIMER

Banks Information Solutions, Inc. Water Well Report[™] is prepared from existing state water well databases and/or additional file data/records research conducted at the State Engineers Office located in Santa Fe, New Mexico. In New Mexico, water wells are located within a grid system using section, township, and range. The locations of these wells on the enclosed map were plotted using a GIS program, ArcView 3.2, with the aid of the section, township, and range of the wells provided by the drillers logs.

Banks Information Solutions, Inc. has performed a thorough and diligent search of all groundwater well information provided and recorded with the New Mexico State Engineers Office. All mapped locations are based on information obtained from the NMSEO. Although Banks performs quality assurance and quality control on all research projects, we recognize that any inaccuracies of the records and mapped well locations could possibly be traced to the appropriate regulatory authority or the actual driller. It may be possible that some water well schedules and logs have never been submitted to the regulatory authority by the water driller and, thus, may explain the possible unaccountability of privately drilled wells. It is uncertain if the above listing provides 100% of the existing wells within the area of review. Therefore, Banks Information Solutions, Inc. cannot fully guarantee the accuracy of the data or well location(s) of those maps and records maintained by the New Mexico State Engineer regulatory authorities.

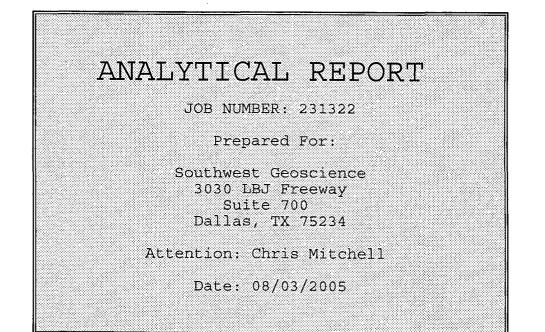
APPENDIX D

Soil Boring/Monitor Well Logs

DRILLING & SAMPLING INFORMAITON ate Started: 7.25.05 ate Completed: 7.25.05		Projec	ct #: <u>(</u>	01050	13				
illing Company: Straub Corporation									
iller: <u>Martin Straub</u> eologist: <u>B. Chris Mitchell</u>		- nch							
bring Method: AR	_Screen Size:).010-inc	h						
ore Hole Dia: <u>8"</u>	Screen Length Casing Length								
ORING METHOD A - HOLLOW STEM AUGERS A - CONTINUOUS FLIGHT AUGERS - GEOPROBE - AIR ROTARY SAMPLER TYPE CB - FIVE FOOT CORE BARREL SS - DRIVEN SPLIT SPOON ST - PRESSED SHELBY TUBE	GROUND ⊻ AT COMPLET ⊻ AT WELL STA	WATER ION	DEPT	н	Interval	y	Groundwater Depth	Readings (ppm)	BORING AND SAMPLING NOTES
SOIL CLASSIFICATION		Stratum Depth	Depth Scale	Sample No.	Sample	% Recovery	Groundw	FID/015	
Silty Clay, Brown, Dry, No Odor								0	and a second
Caliche, Tan, Dry, No Odor				Ì			-	0	
							L	0	
			5 —				- H	0	
			-				- H	0	
			-					0	
								0	
			10					0	
			10 -					0	
]					0	
								0	
							⊢	0	
			15			100%	┢	0	
			-				-	0	
			- 1				F	0	
Caliche, Pale Pink, Dry, No Odor			-					0	
			20				L	0	
				:			╞	0	
							⊢	0	
			-				┢	0	
							F	0	
			²⁵					0	
								0	
]				┝	0	
							┝	6	
			30			100%	┢	4	
			-			100%	F	94	
			1			100%	- H	165	
Quartzite, Reddish Purple, Dry, Slight Petrole	um Odor					100%		NR	
Sand, Reddish Tan, Moist, Petroleum Odor			1			100%		63	

SOIL BORING/MONITOR WELL LOG

	DRILLING & SAMPLING INFORMAITON		-				MW-3R				
	Started: 7.25.05										
	g Company: Straub Corporation										
Driller	Martin Straub	-									
	Geologist: <u>B. Chris Mitchell</u> well Diam: <u>2-inch</u>										
	g Method: <u>AR</u> Screen Size: <u>(</u> Hole Dia: <u>8"</u> Screen Length										
	Casing Length										
HSA - H CFA - C GP - GE		ION		val	Depth	FID/PID Rcadings (ppm)	BORING AND SAMPLING NOTES				
Wenlior Well Detail	SOIL CLASSIFICATION	Sıratum Depth	Depth Scale Sample No.	Sample Interval	% Recovery Groundwater Depth	/PID Read					
Monli Well [SURFACE ELEVATION:	Dep	Depth Scale Sampl No.	San	ero 1	EID/					
	Sand, Reddish Tan, Moist to Wet, Petroleum Odor			1	00%	189					
			MW-3R (36-37)		00%	1342					
				1	¥	11					
				1	00%	5					
-8			40		00%	3					
	Sand w/ Fragmented Sandstone, Red, Dry, No Odor			1 F	00%	4					
18				╎┝							
						0					
-8			45	I I	00%	0					
] -			0					
			-		-	0					
	Bottom of Boring @ 48'	<u> analogo</u>									
]			50								
		Ì]						
							1				
				{ }							
1 [55								
			_								
- 1				11							
4											
1											
1			60								
-] -	11							
			[-{								
1			65 —								
+						$\left - \right $					
1 1		· ·	1 1								
		-					Couthwoot				
Strein and State		S. La Manuari de Statur	an a				Southwest				
							- 1 X In 10 10 X X X X 10 1 X 1				


APPENDIX E

Laboratory Data Reports & Chain-of-Custody Documentation

J

J

· Men Signature

Name: Chip Meador

Title: Laboratory Director

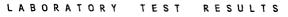
E-Mail: cmeador@stl-inc.com

8/9/05

Date

Severn Trent Laboratories 1733 N. Padre Island Drive Corpus Christi, TX 78408

PHONE: 361/289-2673 FAX..: 361/289-2471


14 TOTAL # OF PAGES

· -- -- · · · ---

	IPLE INFORMATION Date: 08/03/2005
Job Number.: 231322	Project Number: 98000082
Customer: Southwest Geoscience	Customer Project ID: 0105017
Attn: Chris Mitchell	Project Description: PROJECT-TLK

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
231322-1	MW-3R	Water	07/25/2005	15:45	07/26/2005	09:45
		Page 1				

Date: 08/03/2005

CUSTOMER: Southwest Geoscience

PROJECT: 0105017

Customer Sample ID: MW-3R Date Sampled.....: 07/25/2005 Time Sampled.....: 15:45 Sample Matrix....: Water

Job Number: 231322

SEVERN TRENT STL

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	тесн
SW846 8015BMod	Total Volatile Petroleum Hydrocarbons TVPH - Gasoline Range Organics	74	50	ug/L	08/01/05	rh
SW-846 8021B	Volatile Organics - Aromatics Benzene Ethylbenzene Toluene Xylenes (total)	ND ND ND ND	2 2 2 6	ug/L ug/L	07/28/05 07/28/05 07/28/05 07/28/05	rh rh
SW-846 3520C	Extraction (Continuous Liq/Liq) DROs Continuous Liquid-Liquid Extraction	Complete			07/27/05	scm
SW846 8015BMod	Total Extractable Petroleum Hydrocarbons TEPH - Diesel Range Organics	2.4	0.50	mg/L	07/28/05	dml
					}	

Laboratory Sample ID: 231322-1 Date Received.....: 07/26/2005 Time Received.....: 09:45

ATTN: Chris Mitchell

USTOMER: S	outhwest Geoscience	PROJE	CT: 0105017		ATTN:	Chris Mitchell		
QC Type	Descriptio		Reag. Code	Lab	1	ion Factor	Date	Time
	I: SW846 8015BMod ription.: Total Volatile P	etroleum Hydrocark		ug		Analyst.	: rh	
2CV	Continuing Calibration V	erification	GAS050505C			0	8/01/2	005 090
Para	meter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
PH - Gasoli	ne Range Organics	531.694		500.000000		106.3	%	75-125
CCV	Continuing Calibration V	erification	GAS050505C			C	8/01/2	005 115
Para	ameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	: *	Limits
PH - Gasoli	ne Range Organics	498.539		500.000000)	99.7	%	75-125
1B	Method Blank		080105			(18/01/2	2005 100
Para	ameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
PH - Gasoli	ine Range Organics	12.794						
4S	Matrix Spike		GAS050505D	231322-1			J8/01/7	2005 110
Para	ameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	: *	Limits
PH - Gasoli	ne Range Organics	618.305		500.00000) 74.304	108.8	%	60-137
4SD	Matrix Spike Duplicate		GAS050505D	231322-1)8/01/a	2005 112
Para	ameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	t *	Limits
PH - Gasoli	ine Range Organics	571.680	618.305	500.00000	0 74.304	99.5 7.8	% R 3	60-137 30
5B	Spiked Blank		GAS050505D				08/01/	2005 09.
Para	ameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Resul	t *	Limits
PH - Gasoli	ine Range Organics	536.550		500.00000	0	107.3	%	41-135
	d: SW-846 8021B cription.: Volatile Organic	s - Aromatics		: u		Analyst	: r	h
ccv	Continuing Calibration \	Verification	V070105ccc				07/28/	2005 09
Para	ameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Resul	t *	Limits
nzene		117.602 103.947		100.00000		117.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	80-120 80-120

1733 North Padre Island Drive • Corpus Christi, TX 78408 • Tel: 361 289 2673 • Fax: 361 289 2471 • www.stl-inc.com

QUALITY CONTROL RESULTS

Report Date.: 08/03/2005

Parameter, luene lenes (total) p-Xylenes Xylene CCV Con Parameter, enzene chylbenzene prt-Butyl Methyl H luene lenes (total) p-Xylenes Xylene CCV Con	inuing Calibration V Test Description	QC Result 111.091 311.837 208.754 103.083 /erification QC Result 114.758 100.620 85.946 106.882 299.961 200.533 99.428	V070105CCC QC Result V070105CCC QC Result V070105CCC QC Result	True Value 100.000000 100.000000 100.000000 300.000000 200.000000 100.000000 100.000000 True Value 100.000000	Orig. Orig.	Value Value Value Value	Calc. Result 111.1 103.9 104.4 103.1 07 Calc. Result 114.8 100.6 85.9 107.0 100.0 100.3 99.4	7/28/; * - % % % % % % % % % % % % % % % % % %	Limits 80-120 80-120 80-120 2005 205 Limits 80-120 80-1
Parameter, luene lenes (total) p-Xylenes Xylene CCV Con Parameter, enzene hylbenzene clenes (total) p-Xylenes Xylene CCV Con Parameter, enzene hylbenzene ert-Butyl Methyl E hylbenzene clenes (total)	Test Description inuing Calibration V Test Description ther (MTBE) inuing Calibration V Test Description	QC Result 111.091 311.837 208.754 103.083 /erification QC Result 114.758 100.620 85.946 106.982 299.961 200.533 99.428 /erification QC Result 110.064 95.910	QC Result V070105ccc QC Result	100.000000 300.000000 200.000000 100.000000 True Value 100.000000 100.000000 100.000000 300.000000 200.000000 100.000000 100.000000 100.000000	Orig. Orig.	Value	Calc. Result 111.1 103.9 104.4 103.1 07 Calc. Result 114.8 100.6 85.9 107.0 100.0 100.3 99.4 07 Calc. Result 07 Calc. Result	* _ % % % % % % % % % % % % % % % % % % %	Limits 80-120 80-120 80-120 80-120 2005 205 Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120 2005 093 Limits
luene lenes (total) p-Xylenes Xylene CCV Com Parameter, nzene hylbenzene rt-Butyl Methyl f luene lenes (total) p-Xylenes Xylene CCV Com Parameter, nzene hylbenzene rt-Butyl Methyl f luene lenes (total)	inuing Calibration V Test Description Ther (MTBE) Inuing Calibration V	111.091 311.837 208.754 103.083 /erification QC Result 114.758 100.620 85.946 106.982 299.961 200.533 99.428 /erification QC Result 110.064 95.910	QC Result V070105ccc	100.000000 300.000000 200.000000 100.000000 True Value 100.000000 100.000000 100.000000 300.000000 200.000000 100.000000 100.000000 100.000000	Orig. Orig.	Value	111.1 103.9 104.4 103.1 07 Calc. Result 114.8 100.6 85.9 107.0 100.0 100.3 99.4 07 Calc. Result	7/28/; * - % % % % % % % % % % % % % % % % % %	80-120 80-120 80-120 2005 205 Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120
lenes (total) p-Xylenes Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl f luene lenes (total) p-Xylenes Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl f luene lenes (total)	Test Description (MTBE) (Inuing Calibration V Test Description	311.837 208.754 103.083 /erification QC Result 114.758 100.620 85.946 106.982 299.961 200.533 99.428 /erification QC Result 110.064 95.910	QC Result	300.000000 200.000000 100.000000 True Value 100.000000 100.000000 100.000000 200.000000 200.000000 100.000000 100.000000 True Value 100.000000	Orig. Orig.		103.9 104.4 103.1 07 Calc. Result 114.8 100.6 85.9 107.0 100.0 100.3 99.4 07 Calc. Result	% % % //28/: * 	80-120 80-120 80-120 2005 205 Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 2005 093 Limits
p-Xylenes Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl f luene (lenes (total) p-Xylenes Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl f luene (lenes (total)	Test Description (MTBE) (Inuing Calibration V Test Description	208.754 103.083 /erification QC Result 114.758 100.620 85.946 106.982 299.961 200.533 99.428 /erification QC Result 110.064 95.910	QC Result	200.000000 100.000000 True Value 100.000000 100.000000 100.000000 200.000000 200.000000 100.000000 100.000000 100.000000	Orig. Orig.		104.4 103.1 07 Calc. Result 114.8 100.6 85.9 107.0 100.0 100.3 99.4 07 Calc. Result	% % //28/: //28/: * - % % % % % % % % % % % % % % % % % %	80-120 80-120 2005 205 Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120 2005 093 Limits
Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl f luene lenes (total) p-Xylenes Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl f luene lenes (total)	Test Description (MTBE) (Inuing Calibration V Test Description	103.083 /erification QC Result 114.758 100.620 85.946 106.982 299.961 200.533 99.428 /erification QC Result 110.064 95.910	QC Result	100.000000 True Value 100.000000 100.000000 100.000000 200.000000 200.000000 100.000000 True Value 100.000000	Orig. Orig.		103.1 07 Calc. Result 114.8 100.6 85.9 107.0 100.0 100.3 99.4 07 Calc. Result	% */28// * % % % % % % % % % % % % % % % % % %	80-120 2005 205 Limits 80-120 80-120 80-120 80-120 80-120 80-120 2005 093 Limits
Parameter, nzene hylbenzene rt-Butyl Methyl Methyl Methyl Methyl luene lenes (total) p-Xylenes Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl Me	Test Description (MTBE) (Inuing Calibration V Test Description	QC Result 114.758 100.620 85.946 106.982 299.961 200.533 99.428 /erification QC Result 110.064 95.910	QC Result	True Value 100.000000 100.000000 100.000000 300.000000 200.000000 100.000000 100.000000 True Value 100.000000	Orig.		Calc. Result 114.8 100.6 85.9 107.0 100.0 100.3 99.4 07 Calc. Result	* % % % % % 7/29/ *	Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120 2005 093 Limits
nzene hylbenzene rt-Butyl Methyl Meth	ther (MTBE) inuing Calibration V Test Description	114.758 100.620 85.946 106.982 299.961 200.533 99.428 Verification QC Result 110.064 95.910		100.000000 100.000000 100.000000 300.000000 200.000000 100.000000 100.000000 True Value 100.000000	Orig.		114.8 100.6 85.9 107.0 100.0 100.3 99.4 07 Calc. Result	7/29/ *	80-120 80-120 80-120 80-120 80-120 80-120 80-120 2005 093 Limits
hylbenzene rt-Butyl Methyl Met	inuing Calibration V Test Description	100.620 85.946 106.982 299.961 200.533 99.428 /erification 		100.000000 100.000000 300.000000 200.000000 100.000000 100.000000 True Value 100.000000	Orig.	Value	100.6 85.9 107.0 100.0 100.3 99.4 07 Calc. Result	% % % 7/29/ *	80-120 80-120 80-120 80-120 80-120 80-120 2005 093 Limits
rt-Butyl Methyl	inuing Calibration V Test Description	85.946 106.982 299.961 200.533 99.428 /erification 		100.000000 100.000000 200.000000 100.000000 100.000000 True Value 100.000000	Orig.	Value	85.9 107.0 100.0 100.3 99.4 07 Calc. Result	% % % 7/29/ *	80-120 80-120 80-120 80-120 80-120 2005 093 Limits
Vlene Vlenes (total) Ap-Xylenes Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl F Vlenes (total)	inuing Calibration V Test Description	106.982 299.961 200.533 99.428 /erification 		100.000000 300.000000 200.000000 100.000000 True Value 100.000000	Orig.	Value	107.0 100.0 100.3 99.4 07 Calc. Result	% % % 7/29/ *	80-120 80-120 80-120 80-120 2005 09 Limits
P-Xylenes Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl F luene (tenes (total)	Test Description	200.533 99.428 /erification 		200.000000 100.000000 True Value 100.000000	Orig.	Value	100.3 99.4 07 Calc. Result	% % 7/29/ 	80-120 80-120 2005 093 Limits
Xylene CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl F oluene (lenes (total)	Test Description	99.428 Verification QC Result 110.064 95.910		100.000000	Orig.	Value	99.4 07 Calc. Result	% 7/29/ 	80-120 2005 093 Limits
CCV Con Parameter, nzene hylbenzene rt-Butyl Methyl F luene lenes (total)	Test Description	Verification QC Result 		True Value 100.000000	Orig.	Value	O7 Calc. Result	7/29/	2005 093 Limits
Parameter, nzene hylbenzene rt-Butyl Methyl E luene lenes (total)	Test Description	QC Result 110.064 95.910		True Value 100.000000		Value	Calc. Result	*	Limits
nzene hylbenzene rt-Butyl Methyl B luene lenes (total)	<u> </u>	110.064 95.910	QC Result	100.000000		Value			
hylbenzene rt-Butyl Methyl B luene lenes (total)	ther (MTBE)	95.910					110 1	0/	
rt-Butyl Methyl B luene lenes (total)	ther (MTBE)			100.000000			95.9	%	80-120
lenes (total)		01.1/2		100.000000			81.2	% %	80-120 80-120
		102.300		100.00000			102.3	%	80-120
		285.633 190.532		300.000000 200.000000			95.2 95.3	% %	80-120 80-120
Xylene		95.101		100.000000			95.1	%	80-120
MB Meti	od Blank		072805					7/28/	2005 105
Parameter	Test Description	QC Result	QC Result	True Value	Orig.	Value	Calc. Result	*	Limits
nzene		0.059	······································		·	·· _, · · _ = ·	······································		<u> </u>
hylbenzene rt-Butyl Methyl E	ther (MTBE)	0.149 ND							
luene		0.096							
lenes (total) p-Xylenes		0.413							
p-Xylenes Xylene	. •	0.291							
MB Metl	od Blank		072805				0.	7/28/	2005 21
	Test Description	QC Result	QC Result	True Value	Orig.	Value	Calc. Result	*	Limits
nzene hylbenzene		0.137 0.272							
rt-Butyl Methyl E	ther (MTBE)	ND							
luene lenes (total)		0.207							

QUALITY CONTROL RESULTS

Report Date.: 08/03/2005

&p-Xylenes 5-Xylene		0.574 0.232			<u> </u>						
Paran	neter/Test Description	QC Result	QC Resul	t True	Value	Orig.	Value	Calc.	Result	*	Limits
МВ	Method Blank		072805						07	7/28/	/2005 21
QC. Type	Description	<u>ז</u>	Reag.	Code	Lab	ID	Dilutio	n Fact	tor	Date	e Tim
CUSTOMER: So	uthwest Geoscience	PROJE	CT: 0105017	7			ATTN: Ch	ris M	itchell		

MS Matrix Spike		V070105SBW	231330-2		07	/29/	2005 0744
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
Benzene	20.912		20.000000	0.021	104.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50-147
thylbenzene	16.844		20.00000	0.027	84.1	%	35-147
ert-Butyl Methyl Ether (MTBE)	90.833		100.000000	ND	90.8	%	48-150
Toluene	18.684		20.000000	0.019	93.3	%	40-143
<pre>ylenes (total)</pre>	36.679		40.000000	0.067	91.5	%	43-149
&p-Xylenes	18.535		20.000000	0.065	92.3	%	25-150
-Xylene	18.144		20.00000	0.002	90.7	%	57-138

MSD Matrix Spike Duplicate		V070105SBW	231330-2		07,	/29/2005 0839
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
Benzene	20.996	20.912	20.000000	0.021	104.9	% 50-147 R 20
thylbenzene	17.106	16.844	20.000000	0.027	85.4 1.5	% 35-147 R 20
tert-Butyl Methyl Ether (MTBE)	84.430	90.833	100.000000	ND	84.4 7.3	% 48-150 R 20
oluene	18.930	18.684	20.00000	0.019	94.6 1.3	% 40-143 R 20
Xylenes (total)	37.306	36.679	40.00000	0.067	93.1 1.7	% 43-149 R 20
&p-Xylenes	18.837	18.535	20.000000	0.065	93.9 1.6	% 25-150 R 20
o-Xylene	18.469	18.144	20.00000	0.002	92.3 1.8	% 57-138 R 20

SB Spiked Blank		V070105SBW			07	/28/	2005 0959
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	*	Limits
enzene	23.811		20.00000	0	119.1	%	78-121
Ethylbenzene	21.220		20.00000	0	106.1	%	72-120
tert-Butyl Methyl Ether (MTBE)	107.930		100.00000	0	107.9	%	79-132
oluene	22.301		20.00000	0	111.5	%	72-120
ylenes (total)	45.44		40.00000	0	113-6	%	81-127
N&p-Xylenes	23.544		20.00000	0	117.7	%	80-129
o-Xylene	21.896		20.0000	0	109.5	%	80-127

Page 5 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

QC T	MER: Southwest	Geoscience Description		CT: 0105017 Reag. Coc	le Lab	ID		hris Mitchell on Factor	Date	Time
		: SW846 8015BMod. : Total Extractable	Petroleum Hydroc		: mg			Analyst.	: d	ml
LCD		atory Control Sample		DR72705X				<u> </u>	7/28/	
PH - 1	Diesel Range C	est Description Organics	QC Result 805.548	QC Result 714.981	True Value 1000.000000	Orig.)	/alue	Calc. Result 80.6 11.9		Limits 29-120 30
LCS	Labora	atory Control Sample		DR72705X				0		2005 111
LCS		atory Control Sample est Description	QC Result	DR72705X QC Result	True Value	Orig. '	/alue	O Calc. Result	7/28/	2005 111 Limits
LCS PH - I		est Description			True Value	·	/alue	<u> </u>	7/28/	Limits
	Parameter/Te Diesel Range (est Description	QC Result			·	Value	Calc. Result 71.5	7/28/	Limits

i.

SEVERN TRENT STL

Page 6 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

SURROGATE RECOVERIES REPORT

Report Date.: 08/03/2005

CUSTOMER: Southwest Geoscience

Job Number.: 231322

PROJECT: 0105017

ATTN: Chris Mitchell

	od h		xtractable	Petroleum Hydroc		de: 8015DR dml	Equipme	nt Code	: TPH #4	
Surrogate				Units						
o-Terpheny	(Surrogate)			mg/L						
Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
		MB	- <u></u>	22.563	50.000	45	26-141	·	07/28/2005	1114
		LCS		31.206	50.000	62	26-141		07/28/2005	1118
		LCD		34.464	50.000	69	26-141		07/28/2005	1123
231322-1			1	30,751	50.000	62	26-141		07/28/2005	1127

Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
		CCV	1.00	20.131	20.000000	100.7	66-120		07/28/2005	0905
		S8	1.00	18,125	20.000000	90.6	66-120		07/28/2005	
		MB	1.00	17.703	20.000000	88.5	66-120		07/28/2005	
231326-1			1.00	17.911	20.000000	89.6	66-120		07/28/2005	
231326-2			1.00	17.362	20.000000	86.8	66-120		07/28/2005	1242
231322-1			1.00	17.508	20.000000	87.5	66-120		07/28/2005	1337
231330-2			1.00	17.206	20.000000	86.0	66-120		07/28/2005	1431
231330-3			1.00	17.524	20.000000	87.6	66-120		07/28/2005	1526
231330-4			1.00	17.356	20.000000	86.8	66-120		07/28/2005	1620
231330-5			1.00	17.432	20.000000	87.2	66-120		07/28/2005	1714
231330-6			1.00	17.037	20.000000	85.2	66-120		07/28/2005	1809
231332-1			1.00	16.886	20.00000	84.4	66-120		07/28/2005	1903
231332-2			1.00	17.370	20.00000	86.8	66-120		07/28/2005	1957
		CCV	1.00	18.822	20.000000	94.1	66-120		07/28/2005	2052
		MB	1.00	16.605	20.000000	83.0	66-120		07/28/2005	2146
231332-3			1.00	16.907	20.00000	84.5	66-120		07/28/2005	2241
231332-4			1.00	16.829	20.00000	84.1	66-120		07/28/2005	2335
231332-5			1.00	16.804	20.00000	84.0	66-120		07/29/2005	0029
231332-6			1.00	16.636	20.00000	83.2	66-120		07/29/2005	0124
231341-4			1.00	16.808	20.000000	84.0	66-120		07/29/2005	0218
231341-5			1.00	16.938	20.000000	84.7	66-120		07/29/2005	0312
231341-6			1.00	16.662	20.000000	83.3	66-120		07/29/2005	0407
231341-7			. 1. 00	-16.525	20.000000	82.6	66-120 -		07/29/2005	0501
231326-3			1.00	16.550	20.000000	82.8	66-120		07/29/2005	0556
231349-4			1.00	16.730	20.00000	83.7	66-120		07/29/2005	0650
231330-2		MS	1.00	17.195	20.000000	86.0	66-120		07/29/2005	0744
231330-2		MSD	1.00	17.205	20.000000	86.0	66-120		07/29/2005	0839
		CCV	1.00	18.297	20.00000	91.5	66-120		07/29/2005	0933

SURROGATE RECOVERIES REPORT

PROJECT: 0105017

Report Date.: 08/03/2005

CUSTOMER: Southwest Geoscience

ATTN: Chris Mitchell

Surrogate				Units						
Trifluoroto	luene		L	ıg∕L						
Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
		CCV	1.00	21.571	20.000000	107.9	71-120		07/28/2005	0905
-		SB	1.00	18.454	20.000000	92.3	71-120		07/28/2005	0959
		MB	1.00	17.745	20.000000	88.7	71-120		07/28/2005	1054
231326-1			1.00	17.626	20.000000	88.1	71-120		07/28/2005	
231326-2			1.00	17.694	20.000000	88.5	71-120		07/28/2005	
231322-1			1.00	18.125	20.000000	90.6	71-120		07/28/2005	
231330-2			1.00	17.607	20.000000	88.0	71-120		07/28/2005	
231330-3			1.00	17.703	20.000000	88.5	71-120		07/28/2005	
231330-4			1.00	17.939	20.000000	89.7	71-120		07/28/2005	
231330-5			1.00	17.886	20.000000	89.4	71-120		07/28/2005	
231330-6			1.00	17.406	20.000000	87.0	71-120		07/28/2005	
231332-1			1.00 1.00	17.023	20.000000	85.1	71-120		07/28/2005	
231332-2		CCV	1.00	17.231 19.136	20.000000 20.000000	86.2 95.7	71-120 71-120		07/28/2005	
		MB	1.00	17.126	20.000000	85.6	71-120		07/28/2005 07/28/2005	
231332-3		MD	1.00	17.202	20.000000	86.0	71-120		07/28/2005	
231332-4			1,00	16.974	20.000000	84.9	71-120		07/28/2005	
231332-5			1.00	16.899	20.000000	84.5	71-120		07/29/2005	
231332-6			1.00	16.835	20.000000	84.2	71-120		07/29/2005	
231341-4			1.00	16.836	20.000000	84.2	71-120		07/29/2005	
231341-5			1.00	17.086	20.000000	85.4	71-120		07/29/2005	
231341-6			1.00	16.812	20.000000	84.1	71-120		07/29/2005	
231341-7			1.00	16.743	20.000000	83.7	71-120		07/29/2005	
231326-3			1.00	16.829	20.000000	84.1	71-120		07/29/2005	0556
231349-4			1.00	17.396	20.000000	87.0	71-120		07/29/2005	0650
231330-2		MS	1.00	16.757	20.000000	83.8	71-120		07/29/2005	0744
231330-2		MSD	1.00	16.933	20.000000	84.7	71-120		07/29/2005	
-		CCV	1.00	18.424	20.000000	92.1	71-120		07/29/2005	0933
	od		olatile Peti	roleum Hydrocarbo		de: 8015G rh	Equipmer	nt Code	e: BTEX#4GC	
				Units					_	-
BFB (Surrog	ate)			սց/ւ						
		······································								
Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
		ccv		24.052	20.00	120.3	41-135		08/01/2005	0901
		SB		20,196	20.00	101.0	41-135		08/01/2005	
		- MB		21.381	20.00	106.9	41-135		08/01/2005	
231322-1				24.426	20.00	122.1	41-135		08/01/2005	1030
231322-1		MS		23.958	20.00	119.8	41-135		08/01/2005	
231322-1		MSD		23.547	20.00	117.7	41-135		08/01/2005	
		CCV		20.472	20.00	102.4	41-135		08/01/2005	1159

LABORATORY CHRONICLE

Date: 08/03/2005

CUSTOMER: Southwest Geoscience PROJECT: 0105017 ATTN: Chris Mitchell

Lab ID: 231322-1	Client ID: MW-3R	Date Re	cvd: 07/	26/2005	Sample	Date: 07/25/2	2005	
METHOD	DESCRIPTION	RUN#	BATCH#	PREP BT	#(S)	DATE/TIME A	NALYZED	DILUTION
SW-846 3520C	Extraction (Continuous Liq/Liq) DROs	1	109021			07/27/2005	1100	
SW846 8015BMod	Total Extractable Petroleum Hydrocarbons	1	109091			07/28/2005	1127	1
SW846 8015BMod	Total Volatile Petroleum Hydrocarbons	1	109182			08/01/2005	1030	
SW-846_8021B	Volatile Organics - Aromatics	1	109107			07/28/2005	1337	1.00

QUALITY ASSURANCE METHODS

REFERENCES AND NOTES

Report Date: 08/03/2005

- (1) EPA 600/4-79-020, Methods for Chemical Analysis of Water and Wastes, March 1983
- (2) EPA SW-846, Test Methods for Evaluating Solid Waste, Third Edition, September 1986, and Updates I, II, IIA, IIB, and III
- (3) Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992
- (4) Methods of Organic Chemical Analysis of Municipal and Industrial Wastewater, Federal Register, Vol. 49, No. 209, October 1984 and 40 CFR Part 136 amendments
- (5) EPA 600/2-78-054, Field and Laboratory Methods Applicable to Overburdens and Minesoils
- (6) Methods of Soil Analysis, American Society of Agronomy, Agronomy No. 9, 1965
- (7) ASTM, Section 11 Water and Environmental Technology, Volume 11.01 Water (1), 1991
- (8) American Society for Testing and Materials, Petroleum Products, Lubricants, and Fossil Fuels, Section 5, Volumes 05.01 - 05.05
- (9) Hach Handbook of Water Analysis, 1979

Comments:

The test results in this report meet all NELAP requirements for parameters for which accreditation is held. Any exceptions to NELAP requirements are noted in the case narrative. The case narrative is an integral part of this report.

According to 40CFR Part 136.3, pH, total residual chlorine, dissolved oxygen, sulfite, and temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH, Client Provided), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Data in the QC report may differ from final results due to digestion and/or dilution of sample into analytical ranges. The "Time Analyzed" may not be the actual time of analysis. The "Date Analyzed" is the actual date of analysis. Sludge samples are reported on a wet weight basis (i.e., not corrected for percent moisture) unless otherwise indicated.

Quality Control acceptance criteria are based either on limits specified in the referenced method or on actual laboratory performance.

All data is reported on sample "as received" unless noted.

Sample IDs with a "-00" at the end indicate a blank spike or blank spike duplicate associated with the numbered sample.

SAMPLE RESULT IDENTIFICATION

- ND = Not detected at a value greater than the reporting limit
- TNTC = Too numerous to count

BLANK QC SAMPLE IDENTIFICATION

- MB Method Blank ICB Initial Calibration Blank
- CCB Continuing Calibration Blank

SPIKE QC SAMPLE IDENTIFICATION

MSMethod (Matrix) SpikeMSDMethod (Matrix) Spike DuplicatePDSPost Digestion/Distillation SpikeSBSpiked BlankSBDSpiked Blank Duplicate

opiked Brank Dupticate

QUALITY ASSURANCE METHODS

REFERENCES AND NOTES

Report Date: 08/03/2005

REFERENCE STANDARD QC SAMPLE IDENTIFICATION

LCS	Laboratory Control Standard
RS	Reference Standard
ICV	Initial Calibration Verification Standard
CCV	Continuing Calibration Verification Standard
ISA/ISB	ICP Interference Check Sample
DSC	Distilled Standard Check

DUPLICATE QC SAMPLE IDENTIFICATION

- MD Method (Matrix) Duplicate
- ED Extraction Duplicate
- DD Digestion Duplicate
- PDD Post Digestion Duplicate
- PSD Post Digestion/Distillation Spike Duplicate

Analyses performed by a subcontract laboratory are indicated on the analytical and/or quality control reports under "technician" using the following codes:

SUBCONTRACT LABORATORIES

Severn Trent Laboratories:

Los Angeles, CA	*la	Houston, TX	*he
Aurora, CO	*au	North Canton, OH	*nc
Tampa, FL	*ta	Valparaiso, IN	*vp
Sacramento, CA	*sa	Chicago, IL	*ch
Pensacola, FL	*pe	Tallahassee, FL	*tl

Other:

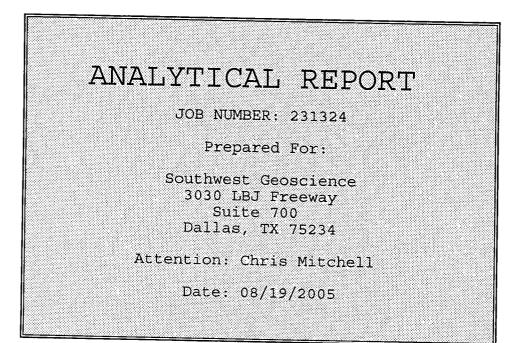
Client provided data *cp Non-STL Subcontract Lab *xx

EXPLANATION OF QC FLAGS

- B This flag is used to indicate that an analyte is present in the method blank as well as in
- the sample. It indicates that the client should consider this when evaluating the results. D - This flag indicates that surrogates were diluted out of calibration range and cannot be
- quantified.
- E Indicates that a sample result is an estimate because the concentration exceeded the calibration range of the instrument.
- F Indicated that a initial calibration verification or continuing calibration verification recovery is outside the specified quality control limits.
- I Used to indicate matrix interference.
- X Indicates that a surrogate recovery is outside the specified quality control limits.
- Y Used to identify a spike or spike duplicate recovery is outside the specified quality control limits.
- Z Used to indicate a relative percent difference (RPD) for a duplicate analysis is outside the specified quality control limits.
- * Indicates a relative percent difference for a duplicate analysis is outside the specified quality control limits.
- ^ Used to indicate that a standard is outside specified quality control limits.

EXPLANATION OF DATA QUALIFIERS

- B Indicates that a value for an inorganic analysis is an estimate. It is used when a compound is
 - determined to be present but at a concentration less than the quantitation limit of the method. J - Indicates that a value for an organic analysis is an estimate. It is used when a compound is determined to be present based on chromatographic pattern or mass spectral data, but at a
 - concentration less than the quantitation limit of the method. This flag is also used when estimating the concentration of a tentatively identified compound.
 - U Indicates that a value is less than the MDL or was not detected.


TRENT ST														N OLIN V		
TRENT J						Č C	HA	IN	OF	C	UST	OD	r RE) .	· · ·
CUSTOMER INFORMATION			PROJE	CT INFO	RMATION	A State of the Sta		· · · · · · · · · · · · · · · · · · ·					1	TTT	./	· · ·
COMPANY: SOUTHWEST GEOSCIE		ROJEC	T NAME/NU	MBER:	010501	7	-RS		ĨĘ.	14	x/ x	(S)	/ /		/ .	
SEIND REPORT TO: CHRIS MITCHEL	L		BILLI	NG INFOR			B	5		B,	A	20/ /			/	
ADDRESS: 3030 LBS FREETWA	I. BI	LL TO:						15/1	<u>}</u>	Sel a	14 4					
SUITE 700		DDRES	S:				OF CONTAINERS	ANALYSISA	્રિઝે	Sw # BIT	19-0-19 19-0-19-19-19-19-19-19-19-19-19-19-19-19-19-	805/B)			:	
DALLAS TX 7523	4		····						3		الحي ا	/ /	' /	/ /	LAB JO	B NO.
PHONE: (214) 722-7537	Ph	IONE:			<u> </u>		NUMBER		<u>\$</u> /2	3/}	X		/ /		*	
FAX: (214) 722-7632	FA				NO:		<u>S</u>	1	5/3	$\frac{1}{2}$	y /		:			/
SAMPLE NO. SAMPLE DESCRIPTION	SAN	APLE ATE	SAMPLE	SAMPLE		PRESERV		[]		17	. /			REMAR	KS/PREC	AUTIONS
MW-3R		5.05	1545	1420	NOA 9/1 un	4°C/Her	8	1		1						
					7		1									
			_			\square			-							
				ote									_			
		E	TREE	y							_					····
	THOR		TRIES		· · · · ·	·					_				<u></u>	
No tur					· · · · · ·									 		
						<u> </u>								ļ		· · · · · · · · · · · · · · · · · · ·
SAMPLER: B. CHRIS MITCHEN	<u> </u>		SHIPMENT	METHOD:	FED (<u> </u>				A	IRBILL	NO.:	0	215	· .	
	· · · · · · · · · · · · · · · · · · ·				IOURS 🗆	5 DAYS				3			10	Manage of Managers' advanced	4 Mar . 199 6 1 198 7 198	
CINATURE:	DATE		Relinquish Nature:	ED BY:			DAT	ГЕ 	E255.1	275 - 5 - C & A &	NQUIS URE:	HED, BY				DATE
PRINTED NAME/COMPANY: SIL	TIME		NTED NAME		·	· · · · · · · · · · · · · · · · · · ·	TIM	F				E/COM	ΡΔΝΥ			TIME
					• Ball and starts (From the second	_				·		Same?	and a straight		
T RECEIVED BY: FEWEX	DATE	123. N.	ECEIVED B'	Y Bertheling			DAT	<u>с</u>	S. 145	RECE GNAT	IVED I URE:		<u>a traditiv</u>	<u></u>		DATE
PRINTED NAME/COMPANY:	TIME			COMPANY	:		TIM	E		_		E/COM	PANY;	·	······	TIME
																8222-560 (12/02
,			JEVERI		Padre Isla	ATORIES	э, IIV	.								

Corpus Christi, TX 78408 Phone: (361) 289-2673 / Fax: (361) 289-2471

*HUSH TURNAROUND MAY REQUIRE SURCHARGE

rpjsckl	Job Sample Receipt Checklist Report	V2
Job Number.: 231322 Location.: 572 Customer Job ID:	· · ·	Date of the Report: 07/26/2005 Project Manager: tlk
Questions ?	(Y/N) Comments	
How did samples arrive?		
Custody seal on shipping container?		
If "yes", custody seal intact?	Y	
Custody seals on sample containers?	N	
If "yes", custody seal intact?		
Samples chilled?	Y	
Temperature blank in cooler?	Y	
Temp of cooler acceptable? (0.05 to 6.	.00 deg C) Y 3.6 C	
Samples received intact (good condition	on)? Y	
Volatile samples acceptable? (no heads	space)Y	
Correct containers used?	Y	
Adequate sample volume provided?	Υ	
Samples preserved correctly?	Y	
Samples received within holding-time?	Y	
Agreement between COC and sample labe	ls?Y	,
Additional		7/2/2 22
Comments		7/2600
Sample Custodian Signature	•••••••	4

Signature

Name: /Chip Meador

Title: Laboratory Director

E-Mail: cmeador@stl-inc.com

8/22/05 Date

Severn Trent Laboratories 1733 N. Padre Island Drive Corpus Christi, TX 78408

PHONE: 361/289-2673 FAX..: 361/289-2471

TOTAL # OF PAGES___ 19

CASE NARRATIVE

Job Number 231324

August 19, 2005

Aromatic Volatile Organic (BTEX) Analysis (EPA 8021B)

Please note that initially the sample analysis for total xylene on STL Corpus Christi 231324 has reportable concentration. Upon review and confirmation by GC/MS the preliminarily reported value was retracted. All associated quality control was acceptable. No deviations from standard operating procedures were noted for this sample delivery group.

Gasoline Range Organics (GRO) Analysis (EPA 8015B mod.)

It was noted during the analysis that the surrogate recoveries for bromofluorobenzene on STL Corpus Christi sample 231324-001 and its method spike (MS)/method spike duplicate (MSD) were outside of the normal laboratory acceptance criteria (QC batch # 109193). It was also noted that the MS/MSD recoveries for this sample were outside of the normal acceptance criteria. It is suspected that the recoveries were due to matrix interferences inherent in the sample. All other associated quality control was acceptable.

Diesel Range Organics (DRO) Analysis (EPA 8015B mod.)

It was noted during the analysis that the surrogate recoveries for o-terphenyl on STL Corpus Christi sample 231324-001 method spike (MS) and method spike duplicate (MSD) were outside of the normal laboratory acceptance criteria (QC batch # 109146). It was also noted that the MS recovery for this sample was outside of the normal acceptance criteria. It is suspected that the recoveries were due to matrix interferences inherent in the sample. All other associated quality control was acceptable.

Please contact me at 361-289-2673 or <u>tkellogg@stl-inc.com</u> if you have further questions or if I can be of further assistance.

inothy L. Hellogg

Timothy L. Kellogg Project Manager

	PLE INFORMATION Date: 08/19/2005
Job Number.: 231324	Project Number: 98000082
Customer: Southwest Geoscience	Customer Project ID: 0105017
Attn: Chris Mitchell	Project Description: PROJECT-TLK

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
231324-1	MW-3R (36-37)	Soil	07/25/2005	13:15	07/26/2005	09:45
				<u> </u>	<u> </u>	

LABORATORY TEST RESULTS

Date: 08/19/2005

CUSTOMER: Southwest Geoscience

PROJECT: 0105017

ATTN: Chris Mitchell

Laboratory Sample ID: 231324-1

Date Received.....: 07/26/2005 Time Received.....: 09:45

Customer Sample ID: MW-3R (36-37) Date Sampled.....: 07/25/2005 Time Sampled.....: 13:15 Sample Matrix....: Soil

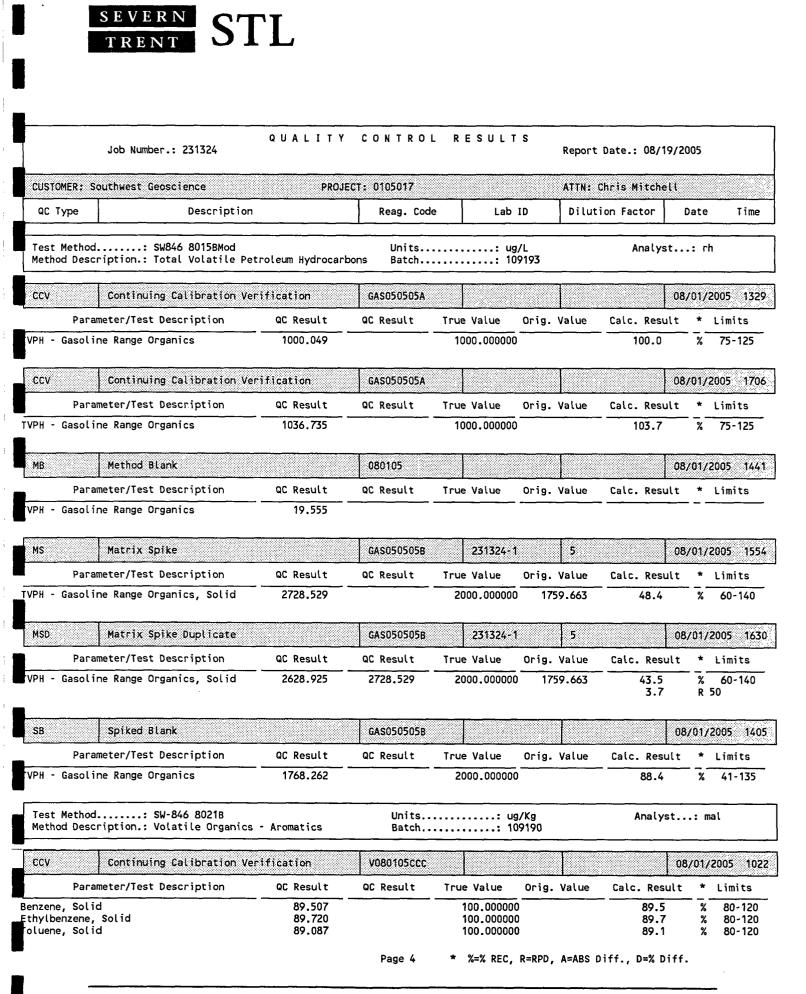
					100000000 - 200000000	Les services
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
EPA 160.3 Mod.	% Solids (@ 104 deg. C)	83.2	0.1	%	07/26/05	dev
EPA 160.3 Mod.	Moisture (@ 104 deg. C)	16.8	0.1	%	07/26/05	dev
SW-846 5030B	Methanol Extraction - BTEX	Complete			08/01/05	mal
SW846 8015BMod	Total Volatile Petroleum Hydrocarbons TVPH - Gasoline Range Organics, Solid*	11000	1500	ug/Kg	08/01/05	rh
SW-846 8021B	Volatile Organics - Aromatics Benzene, Solid* Ethylbenzene, Solid* Toluene, Solid* Xylenes (total), Solid*	ND 540 ND ND	49 49 98.6 296	ug/Kg ug/Kg ug/Kg ug/Kg	08/01/05 08/01/05 08/01/05 08/01/05	mai mal
SW846 3550B Mo	Extraction (Ultrasonic) DROs Ultrasonic Extraction	Complete			07/28/05	scm
TCEQ TX1006	Petroleum Hydrocarbon Fractionation Fractionation - Soils	Complete			08/11/05	scm
TCEQ TX1006	Characterization of C6 to C35 TPH nC6 Aliphatic, Solid* >C6 to C8 Aliphatics, Solid* >C8 to C10 Aliphatics, Solid* >C10 to C12 Aliphatics, Solid* >C12 to C16 Aliphatics, Solid* >C16 to C21 Aliphatics, Solid* >C21 to C35 Aliphatics, Solid* >C7 to C8 Aromatics, Solid* >C7 to C10 Aromatics, Solid* >C10 to C12 Aromatics, Solid* >C10 to C12 Aromatics, Solid* >C10 to C12 Aromatics, Solid* >C16 to C21 Aromatics, Solid* >C16 to C21 Aromatics, Solid* >C21 to C35 Aromatics, Solid*	ND ND ND ND ND ND ND ND ND ND ND ND ND N	60 60 60 60 60 60 60 60 60 60 60 60 60	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	08/15/05 08/15/05 08/15/05 08/15/05 08/15/05 08/15/05 08/15/05 08/15/05 08/15/05 08/15/05	bec bec bec bec bec bec bec bec bec bec
TCEQ TX1005	Petroleum Hydrocarbons Extraction n-Pentane Extraction - Solids & Wastes	Complete			08/04/05	tpm
SW846 8015BMod	Total Extractable Petroleum Hydrocarbons TEPH - Diesel Range Organics, Solid*	730	20	mg/Kg	07/28/05	dml
TCEQ TX1005	Total Petroleum Hydrocarbons Petroleum Hydrocarbons (C6 to C12), Solid* Petroleum Hydrocarbons (>C12 to C28), Solid* Petroleum Hydrocarbons (>C28 to C35), Solid* TPH (C6 to C35), Solid*	ND ND ND ND	60 60 60 60	mg/Kg mg/Kg mg/Kg mg/Kg	08/05/05 08/05/05 08/05/05 08/05/05	idmi dmi

In Description = Dry Wgt.

SEVERN	CTI
TRENT	SIL

QUALITY CONTROL RESULTS

PROJECT: 0105017


Report Date.: 08/19/2005

ATTN: Chris Mitchell

CUSTOMER: Southwest Geoscience

Me	thod Descri		160.3 Mod. sture/%Solids olids (@ 104 de	g. C)	***************************************	·····: 10		***************************************	: dev ode.: %SOLID	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits	Date	Time
MD MD	231305-1 231305-8		91.6 91.6			91.2 91.5	0.4	R 20 R 20	07/26/2005	
1										

MD MD	231305-1 231305-8		8.4 8.4			8.8 8.5	4.7	R 20 R 20	07/26/2005 07/26/2005	
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits	Date	Time
Me	thod Descri	ption.: Mois	160.3 Mod. sture/%Solids sture (@ 104 de	g. C)		·····:::::::::::::::::::::::::::::::::			t: dev ode.: MOIST	

1733 North Padre Island Drive • Corpus Christi, TX 78408 • Tel: 361 289 2673 • Fax: 361 289 2471 • www.stl-inc.com

·						
Job Number.: 231324	QUALITY	CONTRO	LRESULT		t Date.: 08/19/	2005
CUSTOMER: Southwest Geoscience	PROJE	ст: 0105017		ATTN:		
QC Type Description	n	Reag. Cod	e Labi	ID Dilut	tion Factor	Date Time
CCV Continuing Calibration V	erification	V080105ccc			0	8/01/2005 102
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
lenes (total), Solid	265.656		300.000000		88.6	% 80-120
kp-Xylenes, Solid Xylene, Solid	175.690 89.966		200.000000 100.000000		87.8 90.0	% 80-120 % 80-120
CCV Continuing Calibration V	erification	V080105CCC			 0	8/02/2005 064
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
enzene, Solid	91.513		100.000000		91.5	% 80-120
chylbenzene, Solid Dluene, Solid	93.622 93.107		100.000000		93.6 93.1	% 80-120 % 80-120
vlenes (total), Solid	276.592		300.000000		92.2	% 80-120 % 80-120
kp-Xylenes, Solid	182,587		200.000000		91.3	% 80-120
Xylene, Solid	94.005		100.000000		94.0	% 80-120
CCV Continuing Calibration V						
<u></u>						8/02/2005 080
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	
enzene, Solid thylbenzene, Solid	94.930 96.984		100.000000		94.9 97.0	% 80-120 % 80-120
bluene, Solid	96.056		100.000000		96.1	% 80-120 % 80-120
/lenes (total), Solid	285.405		300.000000		95.1	% 80-120
p-Xylenes, Solid	189.005		200.000000		94.5	% 80-120
Xylene, Solid	96.400		100.000000		96.4	% 80-120
CCV Continuing Calibration V	erification	V080105CCC			0	8/02/2005 10:
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	<u>ana kangangan si tar</u> a
enzene, Solid	89.084		100.000000		89.1	80-120
thylbenzene, Solid	92.440		100.000000		92.4	% 80-120
oluene, Solid	91.154		100.000000		91.2	% 80-120
/lenes (total), Solid &p-Xylenes, Solid	272.056 180.081		300.000000 200.000000		90.7 90.0	% 80-120 % 80-120
Xylene, Solid	91.975		100.000000		92.0	% 80-120 % 80-120
MB Method Blank		080105				8/01/2005 13
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
	0 000					
enzene, Solid thylbenzene Solid	0.000					
thylbenzene, Solid	0.000					
	0.000					

SEVERN TRENT STL

Page 5 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

QUALITY CONTROL RESULTS

Report Date.: 08/19/2005

CUSTOMER: Sc	outhwest Geoscience	PROJ	ECT: 0105017			ATTN:			
ас туре	Description	٦	Reag. Code	e	Lab ID	Dilut	ion Factor	Date	Time
MS	Matrix Spike		V080105SBS	231:	60-6		c	8/02/	2005 0403
Paran	neter/Test Description	QC Result	QC Result	True Valu	ue Orig	Value	Calc. Result	*	Limits
enzene, Solic thylbenzene, Toluene, Solic Xylenes (total &p-Xylenes, S -Xylene, Soli	Solid d L), Solid Solid	7.771 8.542 8.607 18.479 9.139 9.340		10.00 10.00 20.00 10.00	00000 00000 00000 00000 00000 00000	0.000 0.000 0.000 0.114 0.114 0.000	77.7 85.4 86.1 91.8 90.2 93.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	68-127 63-130 69-123 66-136 65-136 70-137

MSD Matrix Spike Duplicate		V080105SBS	231360-6		08,	/02/2005 0525
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
Benzene, Solid	8.104	7.771	10.000000	0.000	81.0	% 68-127 R 30
thylbenzene, Solid	9.177	8.542	10.00000	0.000	91.8 7.2	% 63-130 R 30
Toluene, Solid	9.061	8.607	10.00000	0.000	90.6 5.1	% 69-123 R 30
ylenes (total), Solid	19.67	18.479	20.00000	0.114	97.8 6.2	% 66-136 R 30
m&p-Xylenes, Solid	9.768	9.139	10.00000	0.114	96.5 6.7	% 65-136 R30
-Xylene, Solid	9.902	9.340	10.00000	0.000	99.0 5.8	% 70-137 R 30

Parameter/Test Description	QC Result	QC Result	True Value	Drig. Value	Calc. Result	* Limits
enzene, Solid	9.521		10.000000	<u> </u>	95.2	% 74-125
thylbenzene, Solid	10.013		10.00000		100.1	% 81-127
oluene, Solid	9.870		10.00000		98.7	% 80-128
ylenes (total), Solid	21.467		20.00000		107.3	% 80-138
&p-Xylenes, Solid	10.717		10.00000		107.2	% 80-141
-Xylene, Solid	10.750		10.00000		107.5	% 80-136
Test Method: TCEQ TX1006 Method Description.: Characterizati	on of C6 to C35 TPH		mg		Analyst	.: bec
LCD Laboratory Control Sam	ple Duplicate	TX50815B			08,	/15/2005 124
Parameter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
C6-C35 Aliphatic and Aromatic Fracti	ons 169.1	186.2	237.79		71.1	% 60-140

Page 6 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

	Job Number.: 231324				керог	t Date.: 08/19/	
USTOMER: So	outhwest Geoscience	PROJE	ECT: 0105017		ATTN:		
QC Type	Description		Reag. Coc	le Lab	ID Dilu	tion Factor	Date Time
LCS	Laboratory Control Sample		TX50815A			0	8/15/2005 122
Para	meter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
6-C35 Alipha	atic and Aromatic Fractions	186.2		251.35		74.1	% 60-140
MB	Method Blank		081105			0	8/15/2005 121
Para	meter/Test Description	QC Result	QC Result	True Value	Orig. Value	Calc. Result	* Limits
8 to C10 AL 10 to C12 A 12 to C16 A 16 to C21 A 21 to C35 A	phatics, Solid iphatics, Solid liphatics, Solid liphatics, Solid liphatics, Solid liphatics, Solid atic and Aromatic Fractions	ND ND ND ND ND ND ND					
7 to C8 Aron 8 to C10 Aron 10 to C12 An 12 to C16 An 14 to C21 An 15 to C35 An MS Paran	matics, Solid omatics, Solid romatics, Solid romatics, Solid romatics, Solid romatics, Solid Matrix Spike meter/Test Description atic and Aromatic Fractions	ND ND ND ND ND QC Result 170.4	TX50815C QC Result	231324- True Value 257.92	1 Orig. Value ND	0 	
7 to C8 Aron 8 to C10 Aron 10 to C12 An 12 to C16 An 14 to C21 An 15 to C35 An MS Paran	omatics, Solid romatics, Solid romatics, Solid romatics, Solid romatics, Solid Matrix Spike meter/Test Description	ND ND ND ND QC Result		True Value	Orig. Value ND	Calc. Result 66.1	<u>* Limits</u> % 60-140
7 to C8 Aron 8 to C10 Aron 10 to C12 An 12 to C16 An 16 to C21 An 21 to C35 An MS Paran 6-C35 Alipha	omatics, Solid romatics, Solid romatics, Solid romatics, Solid romatics, Solid Matrix Spike meter/Test Description atic and Aromatic Fractions	ND ND ND ND QC Result	QC Result	True Value 257.92	Orig. Value ND	Calc. Result 66.1	% 60-140 8/15/2005 132
7 to C8 Aron 8 to C10 Aron 10 to C12 An 12 to C16 An 12 to C16 An 16 to C21 An 21 to C35 An MS Paran 6-C35 Alipha MSD Paran	omatics, Solid romatics, Solid romatics, Solid romatics, Solid romatics, Solid Matrix Spike meter/Test Description atic and Aromatic Fractions	ND ND ND ND QC Result 170.4	QC Result	True Value 257.92 231324-	Orig. Value ND	Calc. Result 66.1	* Limits % 60-140 18/15/2005 132
7 to C8 Aron 8 to C10 Aron 10 to C12 Aron 12 to C16 Aron 12 to C16 Aron 16 to C21 Aron 21 to C35 Aron MS Parar 6-C35 Alipha MSD Parar 6-C35 Alipha Test Method Description	omatics, Solid romatics, Solid romatics, Solid romatics, Solid matrix, Solid Matrix Spike meter/Test Description atic and Aromatic Fractions Matrix Spike Duplicate meter/Test Description atic and Aromatic Fractions	ND ND ND ND QC Result 170.4 QC Result 173.2	QC Result TX50815D QC Result 170.4 Units carbons Batch	True Value 257.92 231324- True Value 254.21	Orig. Value ND 1 Orig. Value ND	Calc. Result 66.1 0 Calc. Result 68.1 1.6 Analyst.	* Limits % 60-140 18/15/2005 132 * Limits % 60-140 R 30 : dml
7 to C8 Aron 8 to C10 Aron 10 to C12 Aron 12 to C16 Aron 12 to C16 Aron 16 to C21 Aron 21 to C35 Aron MS Parar 6-C35 Alipha 6-C35 Alipha Test Method Method Description	omatics, Solid romatics, Solid romatics, Solid romatics, Solid Matrix Spike meter/Test Description atic and Aromatic Fractions Matrix Spike Duplicate meter/Test Description atic and Aromatic Fractions atic and Aromatic Fractions : SW846 8015BMod. ription.: Total Extractable P Laboratory Control Sample	ND ND ND ND QC Result 170.4 QC Result 173.2 Petroleum Hydrod	QC Result TX50815D QC Result 170.4 Units Carbons Batch DR72705X	True Value 257.92 231324- True Value 254.21 	Orig. Value ND 1 Orig. Value ND 19/L 09146	Calc. Result 66.1 0 Calc. Result 68.1 1.6 Analyst.	* Limits % 60-140 18/15/2005 132 * Limits % 60-140 R 30 : dml
7 to C8 Aron 8 to C10 Aron 10 to C12 An 12 to C16 An 16 to C21 An 21 to C35 An MS Paran 6-C35 Alipha MSD Paran 6-C35 Alipha Test Method Method Descr LCS Paran	omatics, Solid romatics, Solid romatics, Solid romatics, Solid matrix, Solid Matrix Spike meter/Test Description atic and Aromatic Fractions Matrix Spike Duplicate meter/Test Description atic and Aromatic Fractions	ND ND ND ND QC Result 170.4 QC Result 173.2	QC Result TX50815D QC Result 170.4 Units carbons Batch	True Value 257.92 231324- True Value 254.21	Orig. Value ND Orig. Value Orig. Value 09146 Orig. Value	Calc. Result 66.1 0 Calc. Result 68.1 1.6 Analyst.	* Limits % 60-140 18/15/2005 132 * Limits % 60-140 R 30 : dml 163

Page 7

* %=% REC, R=RPD, A=ABS Diff., D=% Diff.

SEVERN	CTI
TRENT	SIL

	thurst Council						
QC Type	uthwest Geoscience Description	PROJ	ECT: 0105017 Reag. Code	e Lab	<u>г</u>	TTN: Dilution Factor	Date Time
ad type							
MB	Method Blank		072805				7/28/2005 162
Parame	eter/Test Description	QC Result	QC Result	True Value	Orig. Va	lue Calc. Result	: * Limits
PH - Diesel R	Range Organics, Solid	ND		<u></u>			
MS	Matrix Spike		DR72705X	231324-	1	2	07/28/2005 165
Parame	eter/Test Description	QC Result	QC Result	True Value	Orig. Va	lue Calc. Result	: * Limits
PH - Diesel R	ange Organics, Solid	3243		1000.00000	0 1789	145.4	% 20-143
MSD	Matrix Spike Duplicate		DR72705X	231324-	1	2	07/28/2005 170
Parame	eter/Test Description	QC Result	QC Result	True Value	Orig. Va	lue Calc. Result	t * Limits
PH - Diesel R	Range Organics, Solid	2419	3243	1000.00000	0 1789	63.0 29.1	% 20-143 R 30
Test Method	Range Organics, Solid : TCEQ TX1005 iption.: Total Petroleum Hyc		Units	1000.00000	ng/L		R 30
Test Method Method Descri	: TCEQ TX1005	drocarbons	Units	m	ng/L	29.1 Analyst	R 30
Test Method Method Descri	: TCEQ TX1005 iption.: Total Petroleum Hyc	drocarbons	Units Batch	m	ng/L	29.1 Analyst	R 30 : dml 08/05/2005 112
Test Method Method Descri	: TCEQ TX1005 iption.: Total Petroleum Hyd Laboratory Control Sample D eter/Test Description	drocarbons Duplicate	Units Batch TE50715A	m 	ng/L 09363 Orig. Va	29.1 Analyst	R 30 : dml 08/05/2005 112
Test Method Method Descri LCD Parame PH (C6 to C35)	: TCEQ TX1005 iption.: Total Petroleum Hyd Laboratory Control Sample D eter/Test Description	drocarbons Duplicate QC Result	Units Batch TE50715A QC Result		ng/L 09363 Orig. Va	29.1 Analyst	R 30 : dml 08/05/2005 112 t <u>* Limits</u> % 76-133
Test Method Method Descri LCD Parame PH (C6 to C35) LCS	Laboratory Control Sample C eter/Test Description	drocarbons Duplicate QC Result	Units Batch TE50715A QC Result 251.35		ng/L 09363 Orig. Va	29.1 Analyst	R 30 : dml 08/05/2005 112 t * Limits % 76-133 R 30 08/05/2005 111
Test Method Method Descri LCD Parame PH (C6 to C35) LCS	Laboratory Control Sample Control Sample Control Sample Control Sample Control Sample Control Sample Control Sample Control Sample	Duplicate QC Result 237.79	Units Batch TE50715A QC Result 251.35 TE50715A		orig. Va	29.1 Analyst	R 30 : dml 08/05/2005 112 t * Limits % 76-133 R 30 08/05/2005 111
Test Method Method Descri LCD Parame PH (C6 to C35) LCS Parame PH (C6 to C35)	Laboratory Control Sample Control Sample Control Sample Control Sample Control Sample Control Sample Control Sample Control Sample	drocarbons Duplicate QC Result 237.79 QC Result	Units Batch TE50715A QC Result 251.35 TE50715A	True Value 250.00000	orig. Va	29.1 Analyst lue Calc. Result 95.1 5.5 lue Calc. Result 100.5	R 30 : dml 08/05/2005 112 t * Limits % 76-133 R 30 08/05/2005 111 t * Limits
Test Method Method Descri LCD Parame PH (C6 to C35) LCS Parame PH (C6 to C35) MB	Laboratory Control Sample C cater/Test Description Caboratory Control Sample C cater/Test Description Caboratory Control Sample cater/Test Description Control Sample	drocarbons Duplicate QC Result 237.79 QC Result	Units Batch TE50715A QC Result 251.35 TE50715A QC Result	True Value 250.00000	orig. Va	29.1 Analyst lue Calc. Result 95.1 5.5 lue Calc. Result 100.5	R 30 : dml 08/05/2005 112 t * Limits 76-133 R 30 08/05/2005 111 t * Limits % 76-133

Page 8 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

	Job Number.: 231324	QUALITY	CONTROL	RESULT	S	Report	Date.: 08/1	9/2005	
CUSTOMER: S	outhwest Geoscience	PROJ	ECT: 0105017			ATTN:		-	
QC Type	Description		Reag. Code	Lab	ID	Dilut	ion Factor	Dat	e Time
MS	Matrix Spike		TE50715A	231324-1				08/05	/2005 1141
Para	meter/Test Description	QC Result	QC Result	True Value	Orig.	Value	Calc. Resu	lt *	Limits
PH (C6 to C3	35), Solid	257.92		250.000000		0.00	103.2	3	65-142
MSD	Matrix Spike Duplicate		TE50715A	231324-1				08/05	/2005 1150
Para	ameter/Test Description	QC Result	QC Result	True Value	Orig.	Value	Calc. Resu	lt *	Limits
PH (C6 to C3	35), Solid	254.21	257.92	250.00000		0.00	101.7		65-142

257.92

250.000000

1.4

% 65-142 R 30

Page 9 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

SURROGATE RECOVERIES REPORT

Report Date.: 08/19/2005

Code: TPH #4

CUSTOMER: Southwest Geoscience

PROJECT: 0105017

ATTN: Chris Mitchell

Method:	Total Extractable Petroleum Hydrocarbons	Method Code:	8015DR
Batch	109146	Analyst	dml Equipment

o-Terpheny	/l (Surrogate	>	m	lg/L						
Lab ID	Matrix	QC Туре	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
	Solid	 MB		26.443	50.000	53	32-141		07/28/2005	1627
	Solid	LCS		36.009	50.000	72	32-141		07/28/2005	1632
231324-1	Solid		2	34.842	50.000	139	32-141		07/28/2005	1651
231324-1	Solid	MS	2	56.007	50.000	224	32-141	х	07/28/2005	1656
231324-1	Solid	MSD	2	52.803	50.000	211	32-141	х	07/28/2005	1700

Surrogate	
BFB (Surrogate)	ug/Kg

Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
	Solid	CCV	1.00	14.443	20.00000	72.2	42-142	·	08/01/2005	1022
	Solid	SB	1.00	14.596	20.00000	73.0	42-142		08/01/2005	1144
	Solid	MB	1.00	14.615	20.00000	73.1	42-142		08/01/2005	1305
231324-1	Solid		0.82	18.843	16.393443	114.9	42-142		08/01/2005	1427
231348-1	Solid		1.00	19.973	20.00000	99.9	42-142		08/01/2005	1548
231348-2	Solid		1.00	14.753	20.00000	73.8	42-142		08/01/2005	1710
231348-3	Solid		1.00	12,780	20.00000	63.9	42-142		08/01/2005	1832
231360-1	Solid		1.00	13.045	20.00000	65.2	42-142		08/01/2005	1953
231360-3	Solid		1.00	12.990	20.00000	65.0	42-142		08/01/2005	2237
231360-4	Solid		1.00	12.723	20.00000	63.6	42-142		08/01/2005	2358
231360-5	Solid		1.00	12.567	20.00000	62.8	42-142		08/02/2005	0120
231360-6	Solid		1.00	12.698	20.00000	63.5	42-142		08/02/2005	0241
231360-6	Solid	MS	1.00	12.582	20.00000	62.9	42-142		08/02/2005	0403
231360-6	Solid	MSD	1.00	13.686	20.00000	68.4	42-142		08/02/2005	0525
I.	Solid	CCV	1.00	14.196	20.00000	71.0	42-142		08/02/2005	0646
	Solid	CCV	1.00	14.959	20.00000	74.8	42-142		08/02/2005	0808
231360-2	Solid		2.00	14.455	10.00000	144.6	42-142	х	08/02/2005	0929
	Solid	CCV	1.00	14.252	20.00000	71.3	42-142		08/02/2005	1051

Trifluoro	toluene		u	g/Kg						
Lab ID	Matrix	QC Туре	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
	Solid	CCV	1.00	15.839	20.00000	79.2	55-155	·	08/01/2005	102
	Solid	SB	1.00	15.948	20.00000	79.7	55-155		08/01/2005	114
	Solid	MB	1.00	16.225	20.00000	81.1	55-155		08/01/2005	130

SURROGATE RECOVERIES REPORT

Report Date.: 08/19/2005

CUSTOMER: Southwest Geoscience

PROJECT: 0105017 ATTN: Chris Mitchell

Surrogate				Units						
Trifluoroto	oluene			ug/Kg						
Lab ID	Matrix	QC Type	Dilution	Result	True Value	Percent Recovery	Limits	Flag	Date	Time
231324-1	Solid		0.82	15.994	16.393443	97.5	55-155		08/01/2005	1427
231348-1	Solid		1.00	14.046	20.00000	70.2	55-155		08/01/2005	
231348-2	Solid		1.00	15.566	20.00000	77.8	55-155		08/01/2005	
231348-3	Solid		1.00	13.982	20.00000	69.9	55-155		08/01/2005	1832
231360-1	Solid		1.00	14.062	20.00000	70.3	55-155		08/01/2005	1953
231360-3	Solid		1.00	13.985	20.00000	69.9	55-155		08/01/2005	2237
231360-4	Solid		1.00	13.605	20.00000	68.0	55-155		08/01/2005	2358
231360-5	Solid		1.00	13.633	20.00000	68.2	55-155		08/02/2005	0120
231360-6	Solid		1.00	13.887	20.00000	69.4	55-155		08/02/2005	0241
231360-6	Solid	MS	1.00	13.295	20.00000	66.5	55-155		08/02/2005	0403
231360-6	Solid	MSD	1.00	14.699	20.00000	73.5	55-155		08/02/2005	0525
	Solid	CCV	1.00	15.629	20.00000	78.1	55-155		08/02/2005	0646
	Solid	CCV	1.00	16.939	20.00000	84.7	55-155		08/02/2005	0808
231360-2	Solid		2.00	66.189	10.000000	661.9	55-155	Х	08/02/2005	0929
	Solid	CCV	1.00	15.337	20.00000	76.7	55-155		08/02/2005	1051
			olatile Pet	roleum Hydrocarbo		de: 8015G				
Batch	h		······		Analyst	rh	Equipmer	nt Code	:	
Surrogate				Units				<u></u>		
Surrogate BFB (Surrog	gate)			Units ug/L						
<u>.</u>	gate) Matrix	QC Type	Dilution		True Value	Percent Recovery	Limits	Flag	Date	Time
BFB (Surro		QC Туре ССV	Ł	ug/L	True Value	Percent Recovery	Limits 41-135	Flag		
BFB (Surro			Ł	ug/L Result	•	·		Flag	Date 08/01/2005 08/01/2005	1329
BFB (Surro		- ccv	Dilution	ug/L Result 22.563	20.00	112.8	41-135	Flag	08/01/2005	1329
BFB (Surro		CCV SB	Dilution	ug/L 	20.00	112.8 118.1	41-135 41-135	Flag	08/01/2005 08/01/2005	1329 1409 144
BFB (Surroy Lab ID 231324-1 231324-1	Matrix Solid Solid	CCV SB	Dilution 5 5	result 22.563 23.616 22.755	20.00 20.00 20.00	112.8 118.1 113.8	41 - 135 41 - 135 41 - 135		08/01/2005 08/01/2005 08/01/2005	1329 1409 144 1518
BFB (Surroy Lab ID 231324-1	Matrix Solid	CCV SB MB	Dilution	Result 22.563 23.616 22.755 104.275 142.652 123.867	20.00 20.00 20.00 20.00 20.00	112.8 118.1 113.8 521.4	41-135 41-135 41-135 28-150	x	08/01/2005 08/01/2005 08/01/2005 08/01/2005	1329 1405 1447 1518 1554
BFB (Surroy Lab ID 231324-1 231324-1	Matrix Solid Solid	CCV SB MB MS	Dilution 5 5	Result 22.563 23.616 22.755 104.275 142.652	20.00 20.00 20.00 20.00 20.00 20.00	112.8 118.1 113.8 521.4 713.3	41-135 41-135 41-135 28-150 28-150	x	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005	1329 1405 1441 1518 1554 1630
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 231324-1 Metho	Matrix Solid Solid Solid Solid	CCV SB MB MS MSD CCV	Dilution 5 5 5 5	Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Cod	112.8 118.1 113.8 521.4 713.3 619.3 114.0 de: TX1005	41-135 41-135 41-135 28-150 28-150 28-150 41-135	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005	1405 1441 1518 1554 1630
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 231324-1 Metho	Matrix Solid Solid Solid	CCV SB MB MS MSD CCV	Dilution 5 5 5 5	Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Cod	112.8 118.1 113.8 521.4 713.3 619.3 114.0	41-135 41-135 41-135 28-150 28-150 28-150 41-135	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005	1329 1405 1441 1518 1554 1630
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 231324-1 Metho	Matrix Solid Solid Solid Solid	CCV SB MB MS MSD CCV	Dilution 5 5 5 5	Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Cod	112.8 118.1 113.8 521.4 713.3 619.3 114.0 de: TX1005	41-135 41-135 41-135 28-150 28-150 28-150 41-135	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005	1329 1405 1441 1518 1554 1630
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 231324-1 Methe Batcl Surrogate	Matrix Solid Solid Solid Solid	CCV SB MB MS MSD CCV : Total Pr : 109363	Dilution 5 5 5 etroleum Hy	Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Cod	112.8 118.1 113.8 521.4 713.3 619.3 114.0 de: TX1005	41-135 41-135 41-135 28-150 28-150 28-150 41-135	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005	1329 1405 1441 1518 1554 1630
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 231324-1 Batch Batch Surrogate	Matrix Solid Solid Solid od	CCV SB MB MS MSD CCV : Total Pr : 109363	Dilution 5 5 5 etroleum Hy	ug/L Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805 rdrocarbons Units	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Cod	112.8 118.1 113.8 521.4 713.3 619.3 114.0 de: TX1005	41-135 41-135 41-135 28-150 28-150 28-150 41-135	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005	1329 1405 1441 1518 1554 1630
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 231324-1 Methe Batcl Surrogate	Matrix Solid Solid Solid od h l (Surrogate) Matrix	CCV SB MB MS CCV : Total P(: 109363	Dilution 5 5 5 etroleum Hy Dilution	ug/L Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805 rdrocarbons Units mg/L Result	20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Coo Analyst	112.8 118.1 113.8 521.4 713.3 619.3 114.0 de: TX1005 : dml	41-135 41-135 28-150 28-150 28-150 41-135 Equipmen	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 e: TPH #1	1329 1405 1441 1518 1554 1630 1706
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 Methe Batcl Surrogate o-Terpheny	Matrix Solid Solid Solid od h h h h Solid	CCV SB MB MSD CCV : Total Pr : 109363	Dilution 5 5 5 etroleum Hy Dilution	ug/L Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805 rdrocarbons Units mg/L Result 95.15	20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Con Analyst	112.8 118.1 113.8 521.4 713.3 619.3 114.0 de: TX1005 	41-135 41-135 41-135 28-150 28-150 28-150 41-135 Equipmer	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 e: TPH #1 Date 08/05/2005	1329 1405 1444 1518 1554 1630 1700
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 Methe Batcl Surrogate o-Terpheny	Matrix Solid Solid Solid od h h h b Solid Solid	CCV SB MB MSD CCV : Total PO : 109363	Dilution 5 5 5 5 etroleum Hy Dilution 1	ug/L Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805 rdrocarbons Units mg/L Result 95.15 97.42	20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Cod Analyst True Value 100.00 100.00	112.8 118.1 113.8 521.4 713.3 619.3 114.0 de: TX1005 	41-135 41-135 41-135 28-150 28-150 28-150 41-135 Equipmer Limits 65-143 65-143	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/05/2005 08/05/2005	1329 140 144 1514 1554 1630 1700
BFB (Surroy Lab ID 231324-1 231324-1 231324-1 Methe Batcl Surrogate o-Terpheny	Matrix Solid Solid Solid od h h h h Solid	CCV SB MB MSD CCV : Total Pr : 109363	Dilution 5 5 5 etroleum Hy Dilution	ug/L Result 22.563 23.616 22.755 104.275 142.652 123.867 22.805 rdrocarbons Units mg/L Result 95.15	20.00 20.00 20.00 20.00 20.00 20.00 20.00 Method Con Analyst	112.8 118.1 113.8 521.4 713.3 619.3 114.0 de: TX1005 	41-135 41-135 41-135 28-150 28-150 28-150 41-135 Equipmer	X X X	08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 08/01/2005 e: TPH #1 Date 08/05/2005	1322 1402 1444 1515 1633 1700 Tim 1100 1111 112

1733 North Padre Island Drive · Corpus Christi, TX 78408 · Tel: 361 289 2673 · Fax: 361 289 2471 · www.stl-inc.com

SURROGATE RECOVERIES REPORT

Report Date.: 08/19/2005

CUSTOMER: Southwest Geoscience

PROJECT: 0105017

ATTN: Chris Mitchell

Surrogate				Units						
o-Terphenyl (Surrogate))	mg/L							
Lab ID	Matrix	QC Туре	Dilution	n Result	True Value	Percent Recovery	Limits	Flag	Date	Time
231324-1	Solid	MS	1	101.51	100.00	102	65-143	• ••••••	08/05/2005	1141
231324-1	Solid	MSD	1	100.84	100.00	101	65-143		08/05/2005	1150
231406-1	Solid		1000	9.15	100.00	9150	65-143	х	08/05/2005	1208
231410-1	Solid		1	109.84	100.00	110	65-143		08/05/2005	1225
231410-2	Solid		1	103.24	100.00	103	65-143		08/05/2005	1234
231410-3	Solid		1	97.01	100.00	97	65-143		08/05/2005	1243
231414-1	Solid		10	98.52	1000.00	99	65-143		08/05/2005	1252
231421-1	Solid		1	77.04	100.00	77	65-143		08/05/2005	1300
231421-2	Solid		1	93.49	100.00	93	65-143		08/05/2005	1309
231424-1	Solid		1	100.23	100.00	100	65-143		08/05/2005	1318
231424-2	Solid		1	102.35	100.00	102	65-143		08/05/2005	1327
231398-1	Solid		3	35.45	100.00	106	65-143		08/05/2005	1344
231406-2	Solid		500	3.78	100.00	1890	65-143	Х	08/05/2005	1353
231427-1	Solid		10	21.26	100.00	213	65-143	x	08/05/2005	1402

LABORATORY CHRONICLE

Date: 08/19/2005

CUSTOMER: Southwest Geoscience PROJECT: 0105017 ATTN: Chris Mitchell Lab ID: 231324-1 Client ID: MW-3R (36-37) Date Recvd: 07/26/2005 Sample Date: 07/25/2005 METHOD DESCRIPTION RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION SW-846 5030B BTEX Extraction-Solid 109177 08/01/2005 1 1012 TCEQ TX1006 Characterization of C6 to C35 TPH 109684 08/15/2005 1255 SW846 3550B Mo Extraction (Ultrasonic) DROs 109081 07/28/2005 1 1030 EPA 160.3 Mod. Moisture/%Solids 109001 07/26/2005 1430 TCEQ TX1006 Petroleum Hydrocarbon Fractionation 109545 08/11/2005 0630 TCEQ TX1005 Petroleum Hydrocarbons Extraction 109319 08/04/2005 1328 SW846 8015BMod Total Extractable Petroleum Hydrocarbons 109146 07/28/2005 1651 2 TCEQ TX1005 Total Petroleum Hydrocarbons 109363 08/05/2005 1132 1 1 SW846 8015BMod Total Volatile Petroleum Hydrocarbons 109193 08/01/2005 1518 1 5 SW-846 8021B Volatile Organics - Aromatics 109190 08/01/2005 0.82 1427

QUALITY ASSURANCE METHODS

REFERENCES AND NOTES

Report Date: 08/19/2005

- (1) EPA 600/4-79-020, Methods for Chemical Analysis of Water and Wastes, March 1983
- (2) EPA SW-846, Test Methods for Evaluating Solid Waste, Third Edition, September 1986, and Updates I, II, IIA, IIB, and III
- (3) Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992
- (4) Methods of Organic Chemical Analysis of Municipal and Industrial Wastewater, Federal Register, Vol. 49, No. 209, October 1984 and 40 CFR Part 136 amendments
- (5) EPA 600/2-78-054, Field and Laboratory Methods Applicable to Overburdens and Minesoils
- (6) Methods of Soil Analysis, American Society of Agronomy, Agronomy No. 9, 1965
- (7) ASTM, Section 11 Water and Environmental Technology, Volume 11.01 Water (1), 1991
- (8) American Society for Testing and Materials, Petroleum Products, Lubricants, and Fossil Fuels, Section 5, Volumes 05.01 - 05.05
- (9) Hach Handbook of Water Analysis, 1979

Comments:

The test results in this report meet all NELAP requirements for parameters for which accreditation is held. Any exceptions to NELAP requirements are noted in the case narrative. The case narrative is an integral part of this report.

According to 40CFR Part 136.3, pH, total residual chlorine, dissolved oxygen, sulfite, and temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH, Client Provided), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Data in the QC report may differ from final results due to digestion and/or dilution of sample into analytical ranges. The "Time Analyzed" may not be the actual time of analysis. The "Date Analyzed" is the actual date of analysis. Sludge samples are reported on a wet weight basis (i.e., not corrected for percent moisture) unless otherwise indicated.

Quality Control acceptance criteria are based either on limits specified in the referenced method or on actual laboratory performance.

All data is reported on sample "as received" unless noted.

Sample IDs with a "-00" at the end indicate a blank spike or blank spike duplicate associated with the numbered sample.

SAMPLE RESULT IDENTIFICATION

- ND = Not detected at a value greater than the reporting limit
- TNTC = Too numerous to count

BLANK QC SAMPLE IDENTIFICATION

- MB Method Blank ICB Initial Calibration Blank
- CCB Continuing Calibration Blank

SPIKE QC SAMPLE IDENTIFICATION

MS	Method (Matrix) Spike
MSD	Method (Matrix) Spike Duplicate
PDS	Post Digestion/Distillation Spike
SB	Spiked Blank
SBD	Spiked Blank Duplicate

QUALITY ASSURANCE METHODS

REFERENCES AND NOTES

Report Date: 08/19/2005

REFERENCE STANDARD QC SAMPLE IDENTIFICATION

LCS	Laboratory	Control	Standard

- RS Reference Standard
- ICV Initial Calibration Verification Standard
- CCV Continuing Calibration Verification Standard
- ISA/ISB ICP Interference Check Sample
- DSC Distilled Standard Check

DUPLICATE QC SAMPLE IDENTIFICATION

- MD Method (Matrix) Duplicate
- ED Extraction Duplicate
- DD Digestion Duplicate
- PDD Post Digestion Duplicate
- PSD Post Digestion/Distillation Spike Duplicate

Analyses performed by a subcontract laboratory are indicated on the analytical and/or quality control reports under "technician" using the following codes:

SUBCONTRACT LABORATORIES

Severn Trent Laboratories:

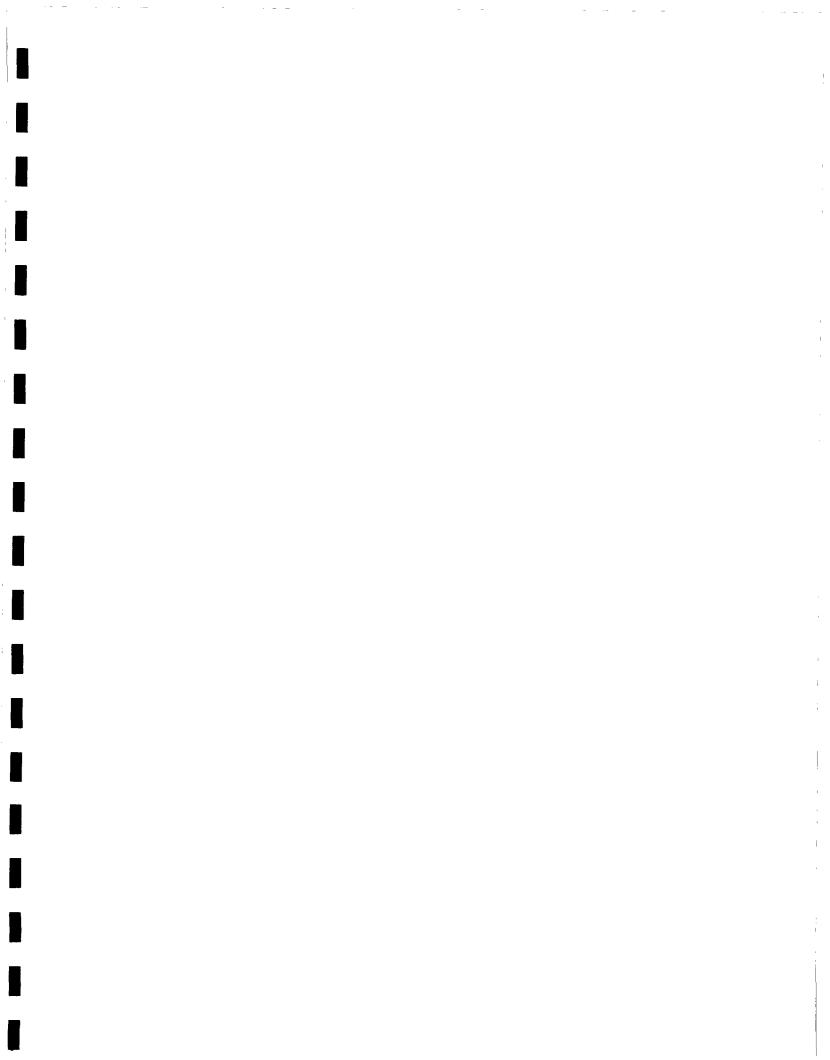
Los Angeles, CA	*la	Houston, TX	*he
Aurora, CO	*au	North Canton, OH	*nc
Tampa, FL	*ta	Valparaiso, IN	*vp
Sacramento, CA	*sa	Chicago, IL	*ch
Pensacola, FL	*pe	Tallahassee, FL	*tl

Other:

Client provided data *cp Non-STL Subcontract Lab *xx

EXPLANATION OF QC FLAGS

- B This flag is used to indicate that an analyte is present in the method blank as well as in
- the sample. It indicates that the client should consider this when evaluating the results. D - This flag indicates that surrogates were diluted out of calibration range and cannot be quantified.
- E Indicates that a sample result is an estimate because the concentration exceeded the calibration range of the instrument.
- F Indicated that a initial calibration verification or continuing calibration verification recovery is outside the specified quality control limits.
- I Used to indicate matrix interference.
- X Indicates that a surrogate recovery is outside the specified quality control limits.
- Y Used to identify a spike or spike duplicate recovery is outside the specified quality control limits.
- Z Used to indicate a relative percent difference (RPD) for a duplicate analysis is outside the specified quality control limits.
- * Indicates a relative percent difference for a duplicate analysis is outside the specified quality control limits.
- ^ Used to indicate that a standard is outside specified quality control limits.


EXPLANATION OF DATA QUALIFIERS

- B Indicates that a value for an inorganic analysis is an estimate. It is used when a compound is determined to be present but at a concentration less than the quantitation limit of the method.
- J Indicates that a value for an organic analysis is an estimate. It is used when a compound is determined to be present based on chromatographic pattern or mass spectral data, but at a concentration less than the quantitation limit of the method. This flag is also used when estimating the concentration of a tentatively identified compound.
- U Indicates that a value is less than the MDL or was not detected.

LE DUSDERAS STL8222-560 (12/02) **REMARKS/PRECAUTIONS** LAB. JOB NO. DATE DATE TIME TIME 7. V. 20 10 30 - 30 - 36 CHAIN OF CUSTODY RECORD 0215 PRINTED NAME/COMPANY. PRINTED NAME/COMPANY ALROUTINE D OTHER 3. RELINQUISHED BY: AIRBILL NO .: 00H-5108, 3. RECEIVED BY SIGNATURE: MARSIGNATURE: M-SA8 28 LEGUEST BEQUESTADD ANALYSIS METHOD the I0 DAYS 1733 N. Padre Island Drive Corpus Christi, TX 78408 Phone: (361) 289-2673 / Fax: (361) 289-2471 **SEVERN TRENT LABORATORIES, INC.** DATE DATE TIME 4 CONTAINERS **NUMBER OF** SAMPLE CONTAINER PRESERV. T2 HOURS 5 DAYS SOIL NOR/SHATC, £ 105010 **PROJECT INFORMATION** FUCX **BILLING INFORMATION** PO NO: PRINTED NAME/COMPANY: PRINTED NAME/COMPANY SHIPMENT METHOD: PROJECT NAME/NUMBER: 2. RELINQUISHED BY D 48 HOURS SAMPLE 7.25.05 SIGNATURE: 1315 SIGNA ADDRESS: Faranstr, BILL TO: SAMPLE 7.25.05 PHONE: Ę 24 HOURS 1143o DATE DATE TIME COMPANY: Southwest Greascience r. verhole Lifeter SEND REPORT TO: CHILLS MITCHELL **CUSTOMER INFORMATION** SAMPLE DESCRIPTION MW-3R (36-37 SAME DAY 3030 LBJ FREEWIN HEGST 722-7632 PRINTED NAME/COMPANY: Sいら 722-753 CHRIS DALLAS Y Surte too Δ SE v Elvid REQUIRED TURNAROUND* PRINTED NAME/COMPANY: TRENT RELINQUISHED BY: (2H) (मत) SIGNATURE: **FRECEIVED BY:** m SAMPLE NO. ADDRESS: SIGNATURE SAMPLER: PHONE: FAX:

> SURCHARGE REQUIRE HSUR!* INNOYANYUI

rpjsckl Job Sample Receipt Checklist Report	V2
Job Number.: 231324 Location.: 57203 Check List Number.: 1 Description.: Customer Job ID: Job Check List Date.: Project Number.: 98000082 Project Description.: PROJECT-TLK Customer: New Client Contact.: New Client	Date of the Report: 07/26/2005 Project Manager: tlk
Questions ? (Y/N) Comments	· ·
How did samples arrive?Y FED EX Chain-of-Custody Present?Y Custody seal on shipping container?Y If "yes", custody seal intact?Y Custody seals on sample containers?N If "yes", custody seal intact?	
Samples chilled?Y Temperature blank in cooler?Y	
Temp of cooler acceptable? (0.05 to 6.00 deg C) Y 3.6 C Samples received intact (good condition)?Y	
Volatile samples acceptable? (no headspace) NA Correct containers used? Y Adequate sample volume provided? Y	
Samples preserved correctly?	7/26 IP
Comments Sample Custodian Signature	()F

