1R - 156

REPORTS

DATE: 1997

1997 Annual Groundwater Monitoring and Sampling Report GPM - Monument Booster Station Lea County, New Mexico

DECEMBER 1, 1997

RECEIVED

....

....

...

ě

.

....

.

DEC 1 5 1997

Environmental Bureau Oil Conservation Division Prepared For:

GPM Gas Corporation 4044 Penbrook Odessa, Texas 79762

Prepared By:

BDM International, Inc. 415 West Wall, Suite 1818 Midland, Texas 79701

1997 Annual Groundwater Monitoring and Sampling Report GPM - Monument Booster Station Lea County, New Mexico

Prepared by:

BDM International, Inc. 415 West Wall Street, Suite 1818 Midland, Texas 79701 (915) 682-0008 FAX (915) 682-0028

SUBMITTED BY:

Gilbert J. Van Deventer, REM Project Manager

REVIEWED BY:

•

aht Lattente

For Michael W. Selke, RG Senior Program Director

DATE:

12-1-97

DATE:

12/1/97

TABLE OF CONTENTS

ē

•

۲

•

•

Ŏ

ŏ

1.0	Executive Summary1
2.0	Chronology of Events
3.0	Procedures
4.0	Groundwater Elevations, Gradient and Flow Direction
5.0	Groundwater Quality Conditions
	5.1 Distribution of Hydrocarbons in Groundwater
. t	5.2 Distribution of Dissolved Metals and Major Ions in Groundwater
6.0	Intrinsic Bioremediation Assessment
7.0	Remediation System Performance
8.0	Conclusions
9.0	Recommendations

FIGURES

Figure 1a	Groundwater Elevation Map (2/5/97)	7
Figure 1b	Groundwater Elevation Map (8/11/97)	8
Figure 2	Groundwater Elevation Versus Time	9
Figure 3a	BTEX Concentration Map (1/22/97)	. 14
Figure 3b	BTEX Concentration Map (8/12/97)	. 15
Figure 4	Benzene Concentrations Versus Time	. 16
Figure 5	Dissolved Oxygen Concentrations Versus Time	.22
Figure 6	Nitrate Concentrations Versus Time	.23
Figure 7	Sulfate Concentrations Versus Time	.24

•

•

ŏ

•

.

TABLES

Table 1	Summary of Purging and Sampling Methods	5
Table 2	Summary of Groundwater Elevations	10
Table 3	Summary of Dissolved BTEX Concentrations	13
Table 4	Summary of Metal Analytical Results	18
Table 5	Summary of Major Cation and Anion Analytical Results	20
Table 6	Summary of Biological Parameter Results	23
Table 7	Product Recovery Volumes	26

APPENDICES

Appendix A Laboratory Analytical Reports and Chain-of-Custody Documentation

1.0 Executive Summary

BDM International, Inc. (BDM) was retained by GPM Gas Corporation (GPM) to perform the sampling and monitoring operations at the Monument Booster Station. This 1997 annual report documents the two semi-annual sampling events performed by BDM at the GPM Monument Booster Station on January 22, 1997 and August 11, 1997. The report also contains the historical groundwater elevation and analytical data since the beginning of the project in May 1995. This monitoring and sampling program was conducted in accordance with the guidelines specified by Mr. Bill Olson of the New Mexico Oil Conservation Division (OCD) as specified in his letter dated January 31, 1997.

Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions and remediation system performance at the Monument Booster Station are evident:

- BTEX concentrations in all of the sampled monitoring wells were non-detectable and below New Mexico Water Quality Control Commission (WQCC) standards with the exception of benzene in MW-7 (0.317 mg/l).
- Benzene concentrations in MW-7 fluctuate over time but have declined from a high of 1.130 mg/l on January 17, 1996 to a concentration of 0.317 mg/l on August 11, 1997.
- As of August 11, 1997, a total of approximately 73 gallons of free product (condensate) has been removed from monitoring wells MW-1 and MW-5 using a combination of gravity siphoning, hand bailing and pneumatic pump recovery methods. Free product thicknesses have been less than 0.01 feet since the installation of pneumatic product recovery pumps in MW-1 and MW-5 on January 27, 1997.
- The dissolved-phase hydrocarbons in groundwater are contained within the boundaries of the facility.
- The fact that there has been no increase of BTEX concentrations over detection limits in downgradient monitoring wells MW-3, MW-4 and MW-6 is strong evidence that natural attenuation processes have kept the plume from migrating.
- Continued semi-annual monitoring is necessary to demonstrate that the plume is maintaining a steady state or receding condition and to evaluate the effectiveness of intrinsic bioremediation in limiting the migration or elimination of the dissolved hydrocarbon plume.

The following recommendations are suggested for the remediation system and monitoring operations at the Monument Booster Station.

- Continue free product recovery operations since the present system has been effective in recovering free product from MW-1 and MW-5.
- Continue the sampling and monitoring program on a semi-annual basis. The next sampling event is scheduled during the first quarter of 1998.
- Since the groundwater is not adversely impacted with inorganic constituents, as reported throughout the previous two years, analysis of dissolved metals and major ions is an

unnecessary expense. Further analysis of the WQCC metals and major ions should be discontinued with the exception of manganese, chloride, sulfate, nitrate, fluoride and TDS.

ē

•

0

2.0	Chronology	of Events
2.0	CILICIOLOGY	OF FACING

0

July 1992	Benge Construction Company of Lovington, New Mexico removed three underground storage tanks (USTs) near the main compressor building for ENRON at the Hobbs Compressor Station #2). The USTs formally contained used oil and pipeline liquids (oil and/or natural gas liquid condensate). Hydrocarbon-impacted soils were removed from the used oil and pipeline liquids UST tank holds.
February 4, 1994	Geoscience Consultants Ltd (GCL) installed two monitoring wells (MW-1 and MW-2) during a subsurface investigation for ENRON. Hydrocarbon-impacted groundwater was confirmed in MW-1.
May 17, 1994	Benge Construction Company returned during a subsurface investigation conducted by Daniel B. Stevens and Associates (DBS&A) and removed an additional amount of hydrocarbon-impacted soils from the pipeline liquids and used oil UST tank holds. The amount of hydrocarbon-impacted soils removed
A set of the set of	from the used oil and pipeline liquids UST tank holds in 1992 and 1994 was not well documented, however it was estimated by DBS&A that a total of 1,064 cubic yards were excavated from the two tank holds based on the amount of backfill required to fill the excavations.
May 16-19, 1994	Six soil borings (SB-1 through SB-6) were completed as temporary drive point wells for ENRON by DBS&A to delineate the horizontal extent of hydrocarbon-impacted soils and groundwater.
October 7, 1994	The OCD requested ENRON to provide a work plan to completely define the extent of groundwater contamination at the Hobbs Compressor Station #2 site.
November 1994	GPM Gas Corporation (GPM) acquired ownership and operation of the Monument Booster Station (formerly Hobbs Compressor Station #2) from ENRON.

February 23, 1995 GPM submitted a subsurface investigation work plan to the OCD to address the groundwater conditions at Monument Booster Station.

- April 5, 1995 The OCD approved the subsurface investigation work plan for Monument Booster Station.
- May 8-10, 1995 GCL completed a subsurface investigation for GPM to delineate the extent of the hydrocarbon-impacted groundwater. The investigation included the installation and sampling of four monitoring wells (MW-1D, MW-3, MW-4, and MW-5) and one soil boring (SB-7).
- July 28, 1995GPM submitted the Subsurface Investigation and Preliminary Remedial
Response report for the Monument Booster Station to the OCD.
- August 24, 1995 The OCD approved GPM's recommendations for remedial action. The OCD requested a work plan for an additional monitoring well, new recovery well and product recovery system.

1997 Annual Sampling and Monitoring Report GPM - Monument Booster Station

BDM International, Inc.

September 29, 1995	GPM submitted the Remediation and Monitoring Work Plan for the Monument Booster Station to the OCD.
October 25, 1995	The OCD approved the remediation and monitoring work plan for Monument Booster Station.
November 14-16, 1995	GCL installed two additional monitoring wells (MW-6 and MW-7) and conducted the fourth quarter 1995 sampling event at Monument Booster Station.
January 18, 1996	GCL conducted the first quarter 1996 sampling event at Monument Booster Station.
April 24, 1996	GCL conducted the annual (second quarter 1996) sampling event at Monument Booster Station. The annual report included recommendations to the OCD for remedial response.
January 22, 1997	BDM International, Inc. (formerly GCL) conducted the first quarter 1997 sampling event at Monument Booster Station.
January 31, 1997	The OCD completed the review of the annual report for the second quarter 1996 sampling event and approved the groundwater monitoring modifications for Monument Booster Station.
January 31, 1997	BDM International, Inc. (BDM) and GPM installed an automated pneumatic product recovery pump system in monitoring wells MW-1 and MW-5 to replace the hand bailing and gravity siphoning techniques used previously.
August 11, 1997	BDM conducted the annual (third quarter 1997) sampling event at Monument Booster Station.

•

3.0 Procedures

Prior to sampling, the on-site monitoring wells (MW-1 through MW-7) were gauged for depth to groundwater using a Keck Model KIR-96 oil/water interface probe. Immediately prior to collecting groundwater samples, each monitoring well was purged of a minimum of three well casing volumes of water using clean, decontaminated PVC bailers. A total of 129 gallons and 119 gallons of water was purged from monitoring wells MW-1D, MW-2, MW-3, MW-4, MW-6, and MW-7 during the January 22, 1997 and August 11, 1997 sampling events, respectively. Groundwater samples were obtained using a new, decontaminated, disposable bailer for each well after purging. Groundwater parameters, including pH, conductivity, temperature, and dissolved oxygen (DO) were measured after purging using a Hydac Model 910 pH/conductivity meter and a YSI Model 51B DO meter.

The first set of water samples were transferred into air-tight, septum-sealed, 40-ml glass VOA sample vials with zero head space for analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8020. A duplicate sample of MW-7 was collected during both sampling events. The next set of water samples were transferred into appropriately preserved containers for analysis of nitrate (NO₃) and sulfate (SO₄), to assess the efficacy of intrinsic bioremedial activity currently taking place. During the annual sampling event on August 11, 1997, a third and fourth set of water samples were transferred into appropriately preserved containers. A summary of purging and sampling methods is provided in Table 1 below. Chain-of-custody (COC) forms documenting sample identification numbers, collection times, and delivery times to the laboratories were completed for each set of samples. The water samples were placed in an ice-filled cooler immediately after collection and shipped to Trace Analysis, Inc. of Lubbock, Texas for laboratory analysis.

Table 1										
Summary of Purging and Sampling Methods										
Monitoring Sample Purge Purge Sampling Groundwater Analytes										
Well No.	Date	Method	Volume	Method)					
			(gallons)							
MW-1D	1/22/97	Bailer	4	Disposable bailer	BTEX and Bio-indicators					
	8/11/97	Bailer	9	Disposable bailer	BTEX, Metals, Ions, Bio-indicators					
MW-2	1/22/97	Bailer	25	Disposable bailer	BTEX and Bio-indicators					
	8/11/97	Bailer	25	Disposable bailer	BTEX, Metals, Ions, Bio-indicators					
MW-3	1/22/97	Bailer	25	Disposable bailer	BTEX and Bio-indicators					
	8/11/97	Bailer	18	Disposable bailer	BTEX, Metals, Ions, Bio-indicators					
MW-4	1/22/97	Bailer	25	Disposable bailer	BTEX and Bio-indicators					
	8/11/97	Bailer	15	Disposable bailer	BTEX, Metals, Ions, Bio-indicators					
MW-6	1/22/97	Bailer	25	Disposable bailer	BTEX and Bio-indicators					
	8/11/97	Bailer	25	Disposable bailer	BTEX, Metals, Ions, Bio-indicators					
MW-7	1/22/97	Bailer	25	Disposable bailer	BTEX and Bio-indicators					
	8/11/97	Bailer	25	Disposable bailer	BTEX, Metals, Ions, Bio-indicators					
BTEX - benzer	ne, toluene, e	thylbenzene	, xylenes							
WQCC Metals	s - Ag, Al, As	, B, Ba, Cd,	Co, Cu, Cr, l	Fe, Hg, Pb, Mn, Mo, Ni, S	Se, and Zn					
viajor ions - 1	DS, Ca, Na, 1	Mg, F, CI, H	CO_3 , SO_4		· · · · · · · · · · · · · · · · · · ·					

Bio-indicatoras - DO, NO3, SO4

MW-1 and MW-5 not sampled due to presence of product.

4.0 Groundwater Elevations, Hydraulic Gradient and Flow Direction

Based on the most recent gauging data collected by BDM on August 11, 1997, the groundwater conditions at the Monument Booster Station are characterized below.

- The depth to the water table across the site varies from approximately 22 to 29 feet below ground surface
- The hydraulic gradient is approximately 0.007 feet/foot
- The direction of groundwater flow is to the southeast

The direction of groundwater flow and hydraulic gradient have remained consistent for the past two and a half years. Groundwater elevation maps depicting the water table elevation and direction of groundwater flow using the gauging data obtained during the two 1997 sampling events are presented in Figure 1a (January 22, 1997) and Figure 1b (August 11, 1997). Gauging data for monitoring wells MW-1 and MW-1D were not incorporated into the water table elevation maps due to the presence of product in MW-1 and nonconformity of the data for MW-1D.

Figure 2 depicts the changes in groundwater elevations in monitoring wells MW-1 through MW-7 with time. Historical groundwater elevations and depth to water measurements are summarized in Table 2.

FIGURE 2

GROUNDWATER ELEVATION VS. TIME

ł

Table 2											
	Summary of Groundwater Elevations										
		Mon	ument Booster	Station							
Ground Groundwater Monitoring Surface Top of Casing Depth Below Groundwater PSH											
Monitoring	}	Surface	Top of Casing	Depth Below	Groundwater	PSH					
Well	Gauging	Elevations	Elevations	Top of Casing	Elevation	Thickness					
Number	Date	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)					
MW-1	V-1 5/16/95 3588.85 3591.15		3591.15	28.05	3565.17	2.52					
	11/21/95	3588.85	3591.15	27.03	3565.65	1.86					
	1/18/96	3588.85	3591.15	27.62	3565.32	2.18					
	4/24/96	3588.85	3591.15	27.39	3565.47	2.09					
	1/22/97	3588.85	3591.15	27.68	3565.27	2.20					
	8/11/97	3588.85	3591.15	26.03	3565.14	0.02					
MW-1D	5/16/95	3589.06	3591.31	26.04	3565.27	0.00					
	11/21/95	3589.06	25.54	3565.77	0.00						
	1/18/96	3589.06	3591.31	25.89	3565.42	0.00					
	4/24/96	3589.06	3591.31	25.70	3565.61	0.00					
	1/22/97	3589.06	3591.31	25.85	3565.46	0.00					
	8/11/97	3589.06	3591.31	26.03	3565.28	0.00					
• MW-2	5/16/95	3594.13	3596.30	29.28	3567.02	0.00					
	11/21/95	3594.13	3596.30	29.09	3567.21	0.00					
-	1/18/96	3594.13	3596.30	29.15	3567.15	0.00					
	4/24/96	3594.13	3596.30	29.10	3567.20	0.00					
	1/22/9 7	3594.13	3596.30	29.15	3567.15	0.00					
	8/11/97	3594.13	3596.30	29.38	3566.92	0.00					
MW-3	5/16/95	3581.46	3583.86	22.72	3561.14	0.00					
	11/21/95	3581.46	3583.86	22.12	3561.74	0.00					
	1/18/96	3581.46	3583.86	22.25	3561.61	0.00					
	4/24/96	3581.46	3583.86	22.25	3561.61	0.00					
	1/22/97	3581.46	3583.86	23.02	3560.84	0.00					
	8/11/97	3581.46	3583.86	23.18	3560.68	0.00					
MW-4	5/16/95	3586.10	3588.77	26.45	3562.32	0.00					
	11/21/95	3586.10	3588.77	25.79	3562.98	0.00					
	1/18/96	3586.10	3588.77	25.90	3562.87	0.00					
	4/24/96	3586.10	3588.77	25.98	3562.79	0.00					
	1/22/97	3586.10	3588.77	26.50	3562.27	0.00					
	8/11/97	3586.10	3588.77	26.77	3562.00	0.00					
MW-5	5/16/95	3589.62	3592.16	28.10	3564.06	0.00					
	11/21/95	3589.62	3592.16	28.24	3564.54	0.76					
	1/18/96	3589.62	3592.16	28,45	3564.33	0.75					
	4/24/96	3589.62	3592.16	28.41	3564.40	0.79					
	1/22/97	3589.62	3592.16	28.45	3564.18	0.57					
	8/11/97	3589.62	3592.16	28.13	3564.10	0.09					

* Elevations initially surveyed by John W. West Engineering Company of Hobbs, NM.

The monitoring well casings were marked on the north side to provide consistent reference points for future gauging operations.

** Groundwater Elevation Corrected for phase-separated hydrocarbons (PSH) = Top of Casing Elevation - [Groundwater Depth - (SG x PSH Thickness)]. Groundwater direction is to the southeast with a hydraulic gradient of approximately 0.007 feet/foot.

	Table 2 (Continued)										
	Summary of Groundwater Elevations										
		Monu	iment Booster	Station							
		Ground		Groundwater							
Monitoring		Surface	Top of Casing	Depth Below	Groundwater	PSH					
Well	Gauging	Elevations	Elevations	Top of Casing	Elevation	Thickness					
Number	Date	(Feet)	(Feet)	(Feet)							
MW-6	11/16/95	3586.15	3587.93	24.71	3563.22	0.00					
	1/18/96	3586.15	3587.93	24.11	3563.82	0.00					
	4/24/96	3586.15	3587.93	24.94	3562.99	0.00					
	1/22/97	3586.15	3587.93	25.44	3562.49	0.00					
	8/11/97	3586.15	3587.93	25.64	3562.29	0.00					
MW-7	11/21/95	3588.06	3589.40	25.16	3564.24	0.00					
	1/18/96	3588.06	3589.40	25.48	3563.92	0.00					
	4/24/96	3588.06	3589.40	25.33	3564.07	0.00					
	1/22/97	3588.06	3589.40	25.56	3563.84	0.00					
	8/11/97	3588.06	3589.40	25.73	3563.67	0.00					

Elevations initially surveyed by John W. West Engineering Company of Hobbs, NM.

•

0

The monitoring well casings were marked on the north side to provide consistent reference points for future gauging operations.

** Groundwater Elevation Corrected for phase-separated hydrocarbons (PSH) = Top of Casing Elevation - [Groundwater Depth - (SG x PSH Thickness)].

Groundwater direction is to the southeast with a hydraulic gradient of approximately 0.007 feet/foot.

1997 Annual Sampling and Monitoring Report GPM - Monument Booster Station

BDM International, Inc.

5.0 Groundwater Quality Conditions

5.1 Distribution of Hydrocarbons in Groundwater

A historical listing of benzene, toluene, ethylbenzene and xylene (BTEX) concentrations obtained from the on site monitoring wells is summarized in Table 3. Hydrocarbon concentration maps depicting the BTEX concentrations for the two 1997 sampling events are presented in Figure 3a (January 22, 1997) and Figure 3b (August 11, 1997). Figure 4 depicts benzene concentrations versus time in groundwater from May 1995 to August 11, 1997 for the on site monitoring wells.

Based on the most recent analytical data for samples collected by BDM on August 11, 1997, the distribution of hydrocarbons at the Monument Booster Station is described below.

- BTEX concentrations in all of the sampled monitoring wells were non-detectable and below New Mexico Water Quality Control Commission (WQCC) standards with the exception of benzene in MW-7 (0.317 mg/l).
- Benzene concentrations in MW-7 fluctuate over time but have declined from a high of 1.130 mg/l on January 17, 1996 to a concentration of 0.317 mg/l on August 11, 1997.
- 5.2 Distribution of Dissolved Metals and Major Ions in Groundwater

Historical groundwater sample analytical results for New Mexico Water Quality Control Commission (WQCC) metals and major ions are presented in Tables 4 and 5, respectively. The WQCC standards are also listed in the tables for comparison. Constituents with concentrations above the WQCC standards are highlighted in boldface type. The laboratory reports and COC documentation are included in Appendix A.

As with the 1996 annual sampling event, the WQCC metal results for the 1997 annual sampling event indicate no constituents exceeded the WQCC standards with the exception of manganese in MW-1D, MW-6, and MW-7, and boron in MW-6.

The elevated levels of manganese in MW-1D (0.35 mg/l), MW-6 (0.3 mg/l) and MW-7 (0.37 mg/l) may be due to the reduced chemical environment caused by the presence of dissolved hydrocarbons. Under this condition, certain metal ions (particularly manganese and iron) have a greater affinity to go into the dissolved state resulting in higher concentrations. In contrast, non-impacted wells MW-2, MW-3, and MW-4 have no detectable concentrations of manganese. A boron concentration of 0.79 mg/l in MW-6 slightly exceeds the WQCC standard for irrigation use of 0.75 mg/l. Small amounts of boron (< 1 mg/l) in agricultural water are essential to plant growth and boron concentrations of a few tenths of a mg/l are common (USGS Water-Supply Paper 2254, 1989, pg.129). Since boron is not a constituent for the gas processing activities on site, its presence is likely due to natural conditions. Based on the results of the metal analyses during the annual sampling event the groundwater in the site area is not adversely affected or impacted with dissolved metals.

The major cation and anion analyses for the annual 1997 sampling event indicate no constituents exceeded the WQCC standards with the exception of fluoride in MW-7 (1.8 mg/l) and TDS in MW-2 (1,100 mg/l).

Table 3										
Summary of Dissolved BTEX Concentrations										
		Monument l	Booster Station							
Monitoring	Sampling	Benzene	Toluene	Ethylbenzene	Xylenes					
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)					
MW-1D	5/16/95	0.018	0.006	0.015	0.016					
	11/15/95	0.003	< 0.001	0.002	0.001					
	1/18/96	0.004	< 0.001	0.003	0.009					
	4/24/96	< 0.001	< 0.001	< 0.001	< 0.001					
	1/22/97	0.001	< 0.001	0.001	< 0.001					
	8/11/97	<0.001	< 0.001	<0.001	< 0.001					
MW-2	5/16/95	< 0.001	< 0.001	< 0.001	< 0.001					
	11/15/95	0.044*	0.002*	0.006*	0.009*					
	1/18/96	< 0.001	< 0.001	< 0.001	< 0.001					
	4/24/96	< 0.001	< 0.001	< 0.001	< 0.001					
	1/22/97	< 0.001	< 0.001	< 0.001	< 0.001					
	8/11/97	< 0.001	< 0.001	< 0.001	< 0.001					
MW-3 5/16/95		< 0.001	< 0.001	< 0.001	< 0.001					
	11/15/95	< 0.001	< 0.001	< 0.001	< 0.001					
	1/18/96	< 0.001	< 0.001	< 0.001	< 0.001					
	4/24/96	< 0.001	< 0.001	< 0.001	< 0.001					
	1/22/97	< 0.001	< 0.001	< 0.001	< 0.001					
	8/11/97	< 0.001	< 0.001	< 0.001	< 0.001					
MW-4	5/16/95	< 0.001	< 0.001	< 0.001	< 0.001					
	11/15/95	0.045*	0.002*	0.006*	0.010*					
	1/18/96	0.003	< 0.001	< 0.001	< 0.001					
	4/24/96	< 0.002	< 0.002	< 0.002	< 0.002					
1/22/97		0.002	< 0.001	< 0.001	< 0.001					
	8/11/97	0.001	< 0.001	< 0.001	< 0.001					
MW-5	5/16/95	0.265	0.009	0.261	0.050					
MW-6	11/16/95	0.003	< 0.001	0.001	0.003					
	1/17/96	0.002	< 0.001	< 0.001	< 0.001					
ļ	4/24/96	< 0.001	< 0.001	< 0.001	< 0.001					
	1/22/97	0.001	< 0.001	< 0.001	< 0.001					
	8/11/97	<0.001	< 0.001	< 0.001	0.001					
MW-7	11/15/95	0.465	< 0.001	0.205	0.163					
	1/17/96	1.130	0.003	0.476	0.365					
	4/24/96	0.585	< 0.002	0.251	0.013					
	1/22/97	0.896	< 0.005	0.240	0.330					
	8/11/97	0.317	0.020	0.155	0.049					
WQCC S	Standards	0.010	0.75	0.75	0.62					

Analyses performed by Trace Analysis, Inc., Lubbock, Texas.

0

All samples analyzed for BTEX using EPA Method 8020 except for samples obtained on May 16, 1995 (EPA Method 8240).

Values listed in **boldface** type indicate concentrations exceed New Mexico Water Quality Control Commission (WQCC) standards.

Monitoring wells MW-1 and MW-5 (after May 16, 1995) were not sampled (due to presence of phase-separated hydrocarbons).

* BTEX cross-contamination occurred on samples obtained from monitoring wells MW-2 and MW-4 during the November 15, 1995 sampling event.

state and period of a state

FIGURE 4

BENZENE VERSUS TIME

Fluoride concentrations during the annual sampling event remain near or slightly above the WQCC standard of 1.6 mg/l as compared to the initial sampling event in May 1995. Since fluoride is not a constituent for the gas processing activities on site, its presence is likely due to natural conditions as it is a common natural occurrence in groundwater (USGS Water-Supply Paper 2254, 1989, pgs.120-123.

0

TDS concentrations continue to be exceeded only in monitoring well MW-2. Based on the extensive oil and gas production in the area and the upgradient location of MW-2, the elevated TDS levels probably originated from an upgradient, off-site source or are an insignificant aberration from background levels.

Table 4 Summary of Metal Analytical Results Monument Booster Station										
Constituent	Date	MW-1 (mg/l)	MW-1D (mg/l)	MW-2 (mg/l)	MW-3 (mg/l)	MW-4 (mg/l)	MW-5 (mg/l)	MW-6 (mg/l)	MW-7 (mg/l)	WQCC Standards (mg/l)
Aluminum (Al)	05-16-96 04-24-96 08-11-97	0.55 NA NA	1.34 0.2 <0.2	13.10 <0.2 0.32	0.88 <0.2 <0.2	8.04 <0.2 <0.2	0.24 NA NA	0.2 0.23	0.3 <0.2	5
Arsenic (As)	05-16-96 04-24-96 08-11-97	<0.1 NA NA	<0.1 <0.012 <0.1	<0.1 0.011 <0.1	<0.1 0.019 <0.1	<0.1 0.008 <0.1	<0.1 NA NA	0.238 <0.1	 0.004 <0.1	0.1
Barium (Ba)	05-16-96 04-24-96 08-11-97	0.13 NA NA	0.12 <0.2 <0.2	0.08 <0.2 <0.2	0.05 <0.2 <0.2	0.10 <0.2 <0.2	0.14 NA NA	 0.2 <0.2	 0.3 <0.2	1
Boron (B)	05-16-96 04-24-96 08-11-97	0.85 NA NA	0.22 0.11 <0.2	0.37 0.38 <0.2	0.09 <0.03 <0.2	0.14 0.06 <0.2	0.39 NA NA	0.22	0.6 <0.2	0.75
Cadmium (Cd)	05-16-96 04-24-96 08-11-97	0.01 NA NA	<0.01 <0.02 <0.002	0.01 <0.02 <0.002	<0.01 <0.02 <0.002	<0.01 <0.02 <0.002	<0.01 NA NA	<0.02 <0.002	<0.02 <0.002	0.01
Cobalt (Co)	05-16-96 04-24-96 08-11-97	<0.05 NA NA	<0.05 <0.03 <0.02	<0.05 0.03 <0.02	<0.05 <0.03 <0.02	<0.05 <0.03 <0.02	<0.05 NA NA	<0.03 <0.02	<0.0 <0.02	0.05
Copper (Cu)	05-16-96 04-24-96 08-11-97	<0.05 NA NA	<0.05 <0.02 0.15	<0.05 <0.02 0.20	<0.05 <0.02 0.26	<0.05 <0.02 0.22	<0.05 NA NA	<0.02 0.22	<0.02 0.18	1
Chromium (Cr)	05-16-96 04-24-96 08-11-97	0.01 NA NA	<0.01 <0.05 <0.05	0.02 0.06 NA	0.01 <0.05 <0.05	0.02 <0.05 <0.05	0.02 NA NA	0.06 <0.05	<0.05 <0.05	0.05
Iron (Fe)	05-16-96 04-24-96 08-11-97	25.58 NA NA	4.6 0.06 0.28	5.82 0.07 0.24	0.53 0.17 0.14	4.68 0.08 0.08	1.75 NA NA	0.15	 <0.03 0.43	1
Lead (Pb)	05-16-96 04-24-96 08-11-97	<0.1 NA NA	<0.1 <.0001 <0.005	<0.1 0.005 <0.005	<0.1 <0.001 <0.005	<0.1 <0.001 <0.005	<0.1 NA NA	<0.001 <0.005	<0.001 <0.005	0.05
Manganese (Mn)	05-16-96 04-24-96 08-11-97	0.67 NA NA	0.31 0.37 0.35	0.12 <0.01 <0.01	0.08 <0.01 <0.01	0.11 <0.01 <0.01	0.58 NA NA	0.28	0.38	0.2

Table 4 (continued) Summary of Metal Analytical Results Monument Booster Station										
Constituent	Date	MW-1 (mg/l)	MW-1D (mg/l)	MW-2 (mg/l)	MW-3 (mg/l)	MW-4 (mg/l)	MW-5 (mg/l)	MW-6 (mg/l)	MW-7 (mg/l)	WQCC Standards (mg/l)
Mercury (Hg)	05-16-96 04-24-96 08-11-97	<0.001 NA NA	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 NA NA	<0.001 <0.001	<0.001 <0.001	0,002
Molybdenum (Mo)	05-16-96 04-24-96 08-11-97	0.07 NA NA	0.09 <0.1 <0.1	0.05 <0.1 <0.1	0.07 <0.1 <0.1	0.07 <0.1 <0.1	0.07 NA NA	 <0.1 <0.1	 <0.1 <0.1	1
Nickel (Ni)	05-16-96 04-24-96 08-11-97	<0.05 NA NA	<0.05 <0.2 <0.2	<0.05 <0.2 <0.2	<0.05 <0.2 <0.2	<0.05 <0.2 <0.2	<0.05 NA NA	 <0.2 <0.2	 <0.2 <0.2	0.2
Selenium (Se)	05-16-96 04-24-96 08-11-97	<0.2 NA NA	<0.2 <0.05 <0.01	<0.2 <0.05 0.018	<0.2 <0.05 0.015	<0.2 <0.05 0.024	<0.2 NA NA	<0.05 0.027	<0.05 <0.01	0.05
Silver (Ag)	05-16-96 04-24-96 08-11-97	<0.01 NA NA	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 NA NA	 <0.01 <0.01	 <0.01 <0.01	0.05
Zinc (Zn)	05-16-96 04-24-96 08-11-97	0.03 NA NA	0.06 <0.02 0.07	0.05 <0.02 0.18	0.04 0.03 0.04	0.05 <0.02 0.23	0.04 NA NA	<0.02 0.12	<0.02 0.06	10

Analyses performed by Trace Analysis, Inc. using EPA Methods 200.7, 239.2, 270.2, and 272.2

New Mexico Water Quality Control Commission (WQCC) Standards are listed as specified in Regulation 3-103.

Bold values indicate concentrations exceed WQCC groundwater standards.

NA Indicates monitoring well was not sampled (due to presence of free product).

--- Indicates monitoring well was installed after this sampling date.

Samples were not filtered on 05-17-95, therefore results indicate total (dissolved and undissolved) metal concentrations.

Samples were filtered with a 45 mm element on 04-24-96, therefore results indicate dissolved metal concentrations.

Dissolved oxygen readings measured using a YSI Model 51B or comparable model dissolved oxygen meter.

		Sumn	nary of Major Mor	Table : Cation and nument Boos	5 Anion Analy ter Station	ytical Results				
Constituent	Date	MW-1 (mg/l)	MW-1D (mg/l)	MW-2 (mg/l)	MW-3 (mg/l)	MW-4 (mg/l)	MW-5 (mg/l)	MW-6 (mg/l)	MW-7 (mg/l)	WQCC Standards (mg/l)
Total Dissolved Solids (TDS)	05-16-95 04-24-96 08-11-97	NA NA NA	634 702 770	1,478 1,318 1,100	516 598 670	716 759 800	692 NA NA	929 810	 828 860	1,000
Calcium (Ca)	05-16-95 04-24-96 08-11-97	12.8 NA NA	123 125 120	315 246 170	99.7 103 100	160 149 140	122 NA NA	 174 150	 109 100	NS
Fluoride (F)	05-16-95 04-24-96 08-11-97	NA NA NA	1.8 1.6 1.9	1.1 1.1 1.3	1.8 1.5 1.5	1.2 1.1 1.1	1.4 NA NA	0.9 0.85	 1.8 1.8	1.6
Magnesium (Mg)	05-16-95 04-24-96 08-11-97	1.6 NA NA	46.2 31.8 29	72.0 51.5 35	25.0 23.6 22	37.2 31.6 29	52.9 NA NA	37.2 33	 47.3 44	NS
Sodium (Na)	05-16-95 04-24-96 08-11-97	14.5 NA NA	79.1 78.8 69	154.5 166 120	76.1 75.8 69	82.5 85.8 80	110.7 NA NA			NS
Bicarbonate (HCO ₃)	05-16-95 04-24-96 08-11-97	NA NA NA	333 297 260	197 222 190	166 286 200	277 288 310	532 NA NA	 484 500	5.2 410	NS
Chloride (Cl)	05-16-95 04-24-96 08-11-97	NA NA NA	77 124 180	812 314 200	188 134 140	152 167 140	80 NA NA	 186 160		250
Nitrate (NO ₃ -N)	05-16-95 04-24-96 08-11-97	NA NA NA	1.37 <0.1 <1.0	7.42 0.3 9	5.62 0.3 9.4	3.69 0.1 <1.0	0.56 NA NA	 <0.1 <1.0	 <0.1 <1.0	10.0
Sulfate (SO4)	05-16-95 04-24-96 08-11-97	NA NA NA	174 169 110	509 443 290	115 95 75	136 115 96	67 NA NA		 149 76	600

÷

Analyses performed by Trace Analysis, Inc. using EPA Methods 160.1, 200.7, 340.2, 375.4, 353.3, 4500 C1-B, and 310.1 New Mexico Water Quality Control Commission (WQCC) Standards are listed as specified in Regulation 3-103.

Indicates monitoring well was installed after this sampling date. Indicates monitoring well was not sampled (due to presence of free product). Indicates no standard established or applicable. NA

NS

Values in **boldface** type indicate concentrations exceed WQCC groundwater standards.

6.0 Intrinsic Bioremediation Assessment

•

Electron acceptors can be used by in situ microorganisms to achieve significant hydrocarbon degradation, therefore our suite of analytes included dissolved oxygen, (DO), sulfate (SO_4) and nitrate as nitrogen (NO_3) . Electron acceptor results (biological parameters) are summarized in Table 6. Changes in dissolved oxygen, nitrate and sulfate concentrations with time are depicted in Figures 5, 6, and 7, respectively.

Hydrocarbon-impacted wells (MW-1D and MW-7) are compared against non-impacted wells (MW-2, MW-3, MW-4, and MW-6) to observe whether or not significant differences are observed in electron acceptor concentrations that may be related to subsurface biodegradation. The following trends in the electron acceptor data are observed:

- An overall decrease in nitrate and sulfate concentrations since May 1995 is evident in all of the monitoring wells which may indicate the use of these receptors by micro-organisms in the course of hydrocarbon degradation.
- Generally, dissolved oxygen levels have been lower within the hydrocarbon-impacted plume area compared to the downgradient and upgradient wells indicating active aerobic biodegradation conditions.
- Dissolved oxygen concentrations have increased significantly during the January 22, 1997 and August 11, 1997 sampling events compared to previous sampling events.

Since the determination of the presence of an adequate population of total aerobic bacteria and hydrocarbon degrading bacteria has been made, continued monitoring of bacteria populations is not being conducted. This change in procedure was discussed with and approved by Bill Olson (OCD) on February 12, 1997 (personal communication with Gilbert Van Deventer, BDM).

	Summerv	of Biological Param	eter Results	
	Summary	numant Boostar Sta	tion	
Monitoring	Sampling	Dissolved Oxygen	Nitrate - NO.	Sulfate - SC
Well	Date	(mg/L)	(mg/L)	(mg/L)
MW-1D	5/16/95	1.05	1 37	174
MW-1D	11/15/95	1.05	< 0.01	119
	1/18/96	4.8	0.6	168
	4/24/96	2.6	< 0.1	169
	1/22/97	7.0	< 0.1	83
	8/11/97	3.6	< 0.1	110
MW-2	5/16/95	6.48	7.42	509
	11/15/95	6.13	NA	NA
	1/18/96	6.2	NA	NA
	4/24/96	1.5	0.3	443
	1/22/97	9.0	2.1	310
	8/11/97	7.6	9.0	290
MW-3	5/16/95	6.85	5.62	115
	11/15/95	1.29	NA	NA
	1/18/96	4.9	NA	NA
	4/24/96	1.0	0.3	95
	1/22/97	8.75	2.7	76
	8/11/97	9.20	9.4	75
MW-4	5/16/95	4.85	3.69	136
	11/15/95	1.30	NA	NA
	1/18/96	4.0	NA	NA
	4/24/96	1.9	0.1	115
	1/22/97	9.0	< 0.1	100
	8/11/97	3.5	< 0.1	96
MW-6	11/16/95	5.40	0.06	233
	1/18/96	4.1	< 0.05	93
	4/24/96	1.7	< 0.1	70
	1/22/97	11.0	< 0.1	37
	8/11/97	3.7	< 0.1	37
MW-7	11/15/95	1.6	5.00	418
	1/18/96	4.8	6.54	180
	4/24/96	2.1	0.2	149
	1/22/97	13.2	< 0.1	25
	8/11/97	3.0	< 0.1	76

Figure 5 Dissolved Oxygen Concentrations Versus Time

················

Figure 6 Nitrate Concentrations Versus Time

Figure 7 Sulfate Concentration Versus Time

.

7.0 Remediation System Performance

ě

0

۲

•

ŏ

0

•

•

The remediation system at the Monument Booster Station consists of two Xitech pneumatic product recovery systems. The product recovery pumps were installed in monitoring wells MW-1 and MW-5 on January 31, 1997 to replace the hand bailing and gravity siphoning techniques used previously. As of August 11, 1997, a total of approximately 73 gallons of free product (condensate) have been removed from monitoring wells MW-1 and MW-5. Product recovery volumes are listed in Table 7.

	Tat	ole 7	
	Product Reco	very Volumes	
C C	GPM - Monumer	nt Booster Static	n
m · · · · · · · · · · · · · · · · · · ·			Cumulative
	Product	Product	Product
	Recovery	Recovered	Recovered
Date	Method	(Gallons)	(Gallons)
	MV	V-1	
7/24/95	Bail	10	10
7/25/95	SWAP	1	11
7/27/95	SWAP	1	12
3/8/96	Pump	12	24
1/27/97	Pump	4	28
1/31/97	Pump	2	30
2/7/97	Pump	2	32
2/19/97	Pump	10	42
8/11/97	Pump	23	65
	MV	V-5	
2/7/97	Pump	2	2
2/19/97	Pump	0	2
8/11/97	Pump	6	8
Total Volume	of Product Recov	ered On Site:	73
Product recovery meth	nods used:		
Bail: Hand bailing u	ising PVC bailer		
SWAP: Gravity siph	non demonstration		
Pump: Xitech ADJ	1000 Smart Skimmer (Product Recovery Sys	tem) (0.01 foot)

8.0 Conclusions

۲

Conclusions relevant to groundwater conditions and the remediation performance at the Monument Booster Station are presented below.

- A benzene concentration of 0.317 mg/l in MW-7 was the only occurrence in which WQCC standards were exceeded.
- Benzene concentrations in MW-7 fluctuate over time but have declined from a high of 1.130 mg/l on January 17, 1996 to a concentration of 0.317 mg/l on August 11, 1997.
- Based on the results of the metal analyses during the annual sampling event, the groundwater in the site area is not adversely affected or impacted with dissolved metals.
- As of August 11, 1997, a total of approximately 73 gallons of free product (condensate) have been removed from monitoring wells MW-1 and MW-5 using a combination of gravity siphoning, hand bailing and pneumatic pump recovery methods.
- Since the installation of the pneumatic product recovery system in monitoring wells MW-1 and MW-5 on January 31, 1997, free product thicknesses have been maintained at less than 0.01 feet.
- The dissolved-phase hydrocarbons in groundwater are contained within the boundaries of the facility.
- The fact that there has been no increase of BTEX concentrations over detection limits in downgradient monitoring wells MW-3, MW-4 and MW-6 is strong evidence that natural attenuation processes have kept the plume from migrating
- Continued semi-annual monitoring is necessary to demonstrate that the plume is maintaining a steady state or receding condition and to evaluate the effectiveness of intrinsic bioremediation in limiting the migration or elimination of the dissolved hydrocarbon plume.

9.0 Recommendations

õ

•

ē

•

۲

The following recommendations are proposed for the remediation system and monitoring operations at the Monument Booster Station.

- Continue free product recovery operations since the present system has been effective in recovering free product from MW-1 and MW-5.
- Continue the sampling and monitoring program on a semi-annual basis. The next sampling event is scheduled during the first quarter of 1998.
- Since the groundwater is not adversely impacted with inorganic constituents, as reported throughout the previous two years, analysis of dissolved metals and major ions is an unnecessary expense. Further analysis of the WQCC metals and major ions should be discontinued with the exception of manganese, chloride, sulfate, nitrate, fluoride and TDS.

APPENDIX A

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

6701 Aberdeen Aven		ock, Texas 79424	806•7	94•1296	FAX 806 • 794 •	1298	• •	4. 4 L
	BDM Ir	iternation	al					. ,
Date: Sep 03, 1997	Attenti	on Gil Vanl	DeVenter		Lab Receiv	ng # : 9	708000228	
Date Rec: 8/13/97	Midland	Marr, Surce	TX	79701	Sampling L	dition:	Intact and	Cool
Project: N/A	,				Sample Rec	eived By:	JH	
Proj Name: GPM Monument Booster Proj Loc: N/A					-	-		
					ETHYL-	Μ,Ρ,Ο	TOTAL	
TA# Field Code	MATRIX		BENZENE (mg/L)	TOLUENE (mg/L)	BENZENE (mg/L)	XYLENE (mg/L)	BTEX (mg/L)	_
T79483 MW-6	Water		<0.001	<0.001	<0.001	0.001	0.001	•
T79484 MW-3	Water	•	<0.001	<0.001	<0.001	<0.001	<0.001	•
T79485 MW-4	Water		0.001	<0.001	<0.001	<0.001	0.001	
T79486 MW-2	Water		<0.001	<0.001	<0.001	<0.001	<0.001	
T79487 MW-7	Water		0.317	0.020	0.155	0.049	0.541	
179488 MW-10	Water		0.279	<0.001	0.148	0.021	0.448	;
175405 MN-74	·			<0.005				3
Method Blank			<0.001	<0.001	<0.001	<0.001		•
Reporting Limit			0.001	0.001	0.001	0.001		
QC			0.099	0.101	0.100	0.314		
			•					
					• .			
RPD			0	1	· · · O	1		
<pre>% Extraction Accuracy</pre>			98	102	100	107		
<pre>% Instrument Accuracy</pre>			99	101	100	105		
TEST PREP METHOD	PREP DATE	·ANALYSIS METHOD	AN CO	ALYSIS (MPLETED	CHEMIST	QC: (mg/L)	SPIKE: (mg/L)	- -
EPA 5030 8	/18/97	EPA 602	8	/18/97	AG	0.100 ea	0.1ea	

Septembe	6701 Ab er 02, 1997	erdeen A	venue	Lubbock, ANALYTIC	Texas 7942 CAL RES	24 ULTS FOR	•794•1296	FA	X 806•79 Pre	4∙1298 p Date: (08/14/97			
Receiving	Date: 08/13/97		.1	BDM					Ana	alysis Dat	e: 08/18/	97'		÷ *1
Sample Ty	ype: Water			Attention:	Gil Van I	Deventer			Sar	npling Da	ate: 08/11	/97 		-
Unarge Co Project Lo	DOE NO.: 2398/4L			415 West Midland T	vvall, Sul X . 70701	te 1818			Sar Sar	npie Con npie Poo	aition: Inta aived by:		Al-	÷.
COC# 131	178		: :	mulanu, i	A 13101	DISSOLVE		S	Pro	iect GP	eiveu by. M - Monu	un ment Boo	ster	
		;	Ca	Mg	Na	Hg	As	Cr	Ag	Ba	AI	Cu	Fe	
TA#	FIELD CODE		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	.(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Г79483	9708111315 MW-6		,150	33	110	<0.001	<0.10	<0.05	, <0.01	<0.20	0.23	0.22	0.21	
F79484	9708111330 MW-3		100	22	69	<0.001	<0.10	<0.05	<0.01	- <0.20	<0.20	0.26	0.14	
T79485	9708111415 MW-4		140	29	80	<0.001	<0.10	<0.05	<0.01	<0.20	< 0.20	0.22	0.08	
179480	9/08111535 WWV-2		1/0	30	120		<0.10	<0.05	<0.01	<0.20 <0.20	0.32	0.20	0.24	
1/940/	9700111000 WWV-7		120	20	60	<0.001	<0.10	<0.00	,>0.01	~0.20	<0.20	0.10	0.43	
00	Quality Control		51	23 47	48	0.0042	53	5 1 v a	10	5.1	5.20	52	51	
REPORTI	NG LIMIT		0.01	0.01	0.40	0.001	0.10	0.05	0.01	0.20	0.20	0.02	0.03	•
RPD			2	3	3	21	7	1	2	1	. 8	0	4	
% Extracti	ion Accuracy		94	. 96	101	85	125	95 3		88	. 81	86	109	
% Instrum	ent Accuracy		101	94	95	83	106	. 101 🤶	_100	ີ 102 🤇	· 103	103	101	
		Mn	Мо	Ni	Zn	B	Se	Cd	S Pb	Co	Be	V	j 🗄 U 👘	
		(mg/L)	<u>(mg/L)</u>	<u>(mg/L)</u>	<u>(mg/L)</u>	(mg/L)	(mg/L)	(mg/L)	• (mg/L)	(mg/L)	<u>(mg/L)</u>	(mg/L)	<u>(mg/L)</u>	1
T79483	9708111315 MW-6	0.30	<0.10	<0.20	0.12	0.79	0.027	<0.002	<0.005	<0.02	() <0.01 ()	<0.05	; ≤ <1.0 ; ;	in ring a
T79484	9708111330 MW-3	<0.01	<0.10	<0.20	0.04	<0.20	0.015	(<0.002) ≺0.002	~~0.005	SS <0.02 ;	"i <0.01	<0.05	<1.0	
179485	9708111415 MVV-4	<0.01	> <0.10	 <0.20 ··· <0.20 ··· 	0.23	<0.20	0.024		>>0,000 2>0,005	<0.02				
179480	9708111030 WW-2	<0.01 0.27	~0.10	<0.20	0.10	<0.20			<0.000	<0.02		<0.05		1999. 19
1/940/ T70400	9700111000 MWV-7	0.37	<0.10	~0.20	0.00	<0.20	0.010	· <0.002		<0.02	<0.01	<0.05	S < 1.0.3	
00	Quality Control	5.1	5.1	5.0	5.07	5.5	5.2	4 9	5 1	5 1	5.1	-0.00 5.2	- 1.U - 1 Q	
		0.01	0.10	0.20	0.02	0.0 0 20		0.002	0.005		0.1	0.05	10	
		1	0	0	1	3	1999 (1999) 1999 (1999)	10	2	1	<u></u> 1	2	14	
% Extract	ion Accuracy	95	96	89	91	91	95	.90	83	93	101	91		
% Instrum	nent Accuracy	101	101	100	103	110	103	98	102	102	102	101	98	
METHOD	S: EPA SW 846-3005.	6010B, 7	7470.								دهن د مدر در (د			
CHEMIST	T: Ca, Mg, Na, As, Cr, A	g, Ba, A	I, Cu, Fe, I	Mn, Mo, Ni,	Zn, B, S	e, Cd, Pb, Co), U. RR	Hg: HC						
TOTAL N	ETALS SPIKE: 100 mg	/L Ca, N	lg, Na; 0.0	05 mg/L Hg	y; 2.0 mg	/L As, Cr, Ba	, Al, Fe, Mr	n, Mo, Ni,	Zn, Se, (Cd, Pb, C	0,			
	Be, V, U; 0.4 mg/L A	. <mark>g;</mark> 1.0 m	ig/L Cu, B.								М.			14 %. Udd
	Be, V, U; 0.4 mg/L A	.g; 1.0 m	g/L Cu, B.						7- 8 6-					i.

.......

		6701 Aberdeen Av	venue Lu	bbock, Texas 794	24 806•	794•1296	FAX 806 • 7	794•1298			· · ·
				ANALYTICAL I BDM	RESULTS FO	R					
Au	aust 27.	1997		Attention: Gilv	Suite 1818		Pren D:	ate: 08/14/97			
Re	ceiving D	Date: 08/13/97	• •	Midland, TX 7	9701	•	Analysi	s Date: 08/14/97	7		
Sa	mple Typ	be: Water				·. · · · ·	Samplir	ng Date: 08/11/9	7		
Ch	arge Coo	le No.: 2398/4L					Sample	Condition: Intac	t & Cool		
Pro	oject Loca	ation: NA		, ;		3	Sample	Received by: JH	-		•
CC	DC# 1317	'8		1		• • • • •	Project:	GPM - Monum	ent Booster	4	· •
			•	_ : _ · ·				· · ·			. 1
						FUIOPIDE	тре	ALKA	LINITY		
ТА	#	FIELD CODE	(mg/L)	(mg/L)	(mg/L)	(mg/L)	iDS (mg/L	.) HC03	s Cacos) 3 C03	4 1-	• : !
T 7	9483	9708111315 MW-6	160	<1.0	37	0.85	810	500	<1.0		- ::::;
Т7	9484	9708111330 MW-3	140	9.4	75	1.5	670	200	<1.0	e l	
T7	9485	9708111415 MW-4	140	<1.0	96	1,1	800	310	<1.0	小教授的	
Т7	9486	9708111430 MW-2	200	9.0	290	1.3	1,100) 190	<1.0		. • .
T7	9487	9708111535 MW-7	180	<1.0	76	1.8	860	410	<1.0		· · ·
Т7	9488	9708111600 MW-1d	180	<1.0	110	1.9	770	260	<1.0		
QC	2	Quality Control	24	10	25	1.1					
RF	סי		4	2	- 1 -5.5	1	0.	0	0		
%	Extractio	n Accuracy	97	100	102	99			-		
%	Instrume	nt Accuracy	95	99	101	106		a da			
			10	10	10	0.1		10	1.0		•

CHLORIDE SPIKE: 25 mg/L CHLORIDE. NITRATE-N SPIKE: 10 mg/L NITRATE-N. SULFATE SPIKE: 25 mg/L SULFATE. FLUORIDE SPIKE: 0.5 mg/L FLUORIDE. CHLORIDE QC: 24 mg/L CHLORIDE. NITRATE-N QC: 10 mg/L NITRATE-N. SULFATE QC: 25 mg/L SULFATE. FLUORIDE QC: 1.0 mg/L FLUORIDE

8-27-91

Date

Director, Dr. Blair Leftwich

The All

901

ALL UIL

		BDM Internat 415 West Wa Suite 1818	tional, II	, Inc.																						1	317	78
		Midland, TX (915) 682-00 FAX: (915) 68	7970 08 82-00	1 28												•				С	h	ai	n	01	f	Cu	sto	ody
۳ ¹⁸ ۲۰		······														-			Dat	e_1	8 -	12	- 1	יF	age_	<u> </u>	Of_	/
ab Name Truce A	alper In	L												Ar	naly	sis	Req	ues	t							ЧС		
ddress <u>6701 r</u>	berder.	N. K. (1.). Å																							1	J		
elenhone SUD 3	72-174	<u>14 L.4</u>		2	s		. <u>e</u>		punoc	-	ß			v									able			m.		ners
		· · · · · · · · · · · · · · · · · · ·	6	les	hend	_	omatic 610/80	40 to	Comp 270	Carbor	falide	418.1		mi-Vo sticide			Ŧ	8)					Amen	den (0	ź	*	ontai
amplers (SIGNATURES)	Red		genated tiles 601/8	natic Votat 8020	nols, Sub F 8040	icides/PCE 8080	nuclear An	tile Compo MS 624/82	MS 625/8	1 Organic (C) 415/906	I Organic 1 K) 9020	oleum	/BTEX Ified 8015	P. Vol., Se licides. Pe	P. Metals	IA IIS(8)	ity Pollutal als (13)	1 Metals (1 C/STLC	h Point	osivity	ctivity	Grease	vide Total/	mical Oxyg and (COD	28.0	, e.M.	+	nber of C
Sample Number	Matrix	Location	L Hab	Aron 602/	Pher 604/	Pest 608/	Pot Pyd Hyd	V ota GC/I	Base	E O	Ē	Petr Hydi	TPH Mod	로 불	1 1 1	Meta	Priol	3Ĕ	Flas	Cor	Rea	Oil 8	Cyai	Den Den	ž	13	Z	
170811 1315	Water	MW-6		\checkmark																					1	1.	1	5
170811330	Liate-	MW-3		1	1																				<u>v</u>	1	1	5
170811 1415	Witer	MW-4		1																							1	5
1708111430	Water	MW-Z		V]											1	1	5
17081110051	Water	MW-7		V																								5
170811 1600	(1) ate	M1/- 1 /																									./	5
97041116W	Unde	141-71	ţ	1	<u>+</u>	n	````		1			2	M	1	1								f · · · -	·· [· ·····	+*	v	¥	- 5
17001100		<u></u>		Ľ.∠		-14	JP	11 6	N-1	<u> </u>	Q. 1]	1.18	Y	1		· -											. 6-
												†																
<u></u>								<u> </u>													- <u>-</u>							
Project Information		Sample Be	ceint		I	Reli	ngijis	shed	By		<u> </u>	<u> </u>	1	. Re) elinai	Jishe	d By	1				2. R	elinai	uishec	d By	L	<u> </u>	3.
roject COM M	+ 12 . 1.	Total No. of Containers				1	Ś	Ú.	h-	Ľ.	\star	^{-}c	92	5	·								•					
oject Director G. V.	Deventer	Chain of Custody Seals	 ;			(Sign	ature)	an l)e 1	o , Se		8-	1 1 m	e) Si	gnatur	e)					(Tin	ne) (Si	gnatur	re)				(Time
harge Code No. 2348	/46	Rec'd Good Condition/C	Cold			(Print	ed Na	me) L				- Ω 1 ζα	(Date	e) (Pr	inted I	Vame)					(Da	te) (P	rinted	Name)				(Date)
hipping ID. No.	77 0	Conforms to Record				Com	pany)		<u> </u>	en jer	21 'U	[<u>2</u> !		(C	ompan	y)			·· ·				ompan	iy)	••••			
901 742 1	158	Lab No.				Hec	eiveo	зву					1	. He	eceiv	ed By	/					2. R	eceiv	ed By	/ (Lat	orato	ry)	3.
ia: Greghour	1 TNA	180		_	- <u>e</u>	(Sign	ature)		• •				(Tim	e) (Si	gnatur	e)	· - ·	- · · ·	·		(Tin	ne) (Si		re)			• •	(Time
pecial Instructions/Comm	ents: x To+.	al dissolved meta	15 î. 	Α Ι ,	R»,	(Print	ed Na	me)					(Date	e) (Pr	inted f	Vame)					(Da	te) (P	rinted I	Name)				(Date)
	i crire	, , , , , , , , , , , , , , , , , , ,	0, r	41	、 、	h								1								T						

2 4

6

		•••••••• RACEANALYS	IS. INC				
January 27, Receiving Dat Sample Type:	6701 Aberdeen Avenue 1997 te: 01/23/97 Water	Lubbock, Texas 79424 ANALYTICAL RESULTS BDM INTERNATIONAL, Attention: Gil Van 415 W. Wall, Suite Midland, TX 79701	B06•794•1296 FOR INC. nDeventer 1818	FAX 806•794• Prep Date: Analysis Da Sampling Da Sample Cond	01/24/97 te: 01/24 te: 01/22 ition: I 8	↓/97 /97 & C	
Charge Code 1 Project Loca COC# 10291	No: P/2398/11 tion: Monument Booster	Station		Sample Rece Project Nam ETHYL-	ived by: e: GPM M,P,O	JH TOTAL	
TA#	FIELD CODE	BENZEN (mg/L	TOLUENE (mg/L)	BENZENE (mg/L)	XYLENE (mg/L) <0.001	BTEX (mg/L) <0.001	
T66166 T66167 T66168 T66169	9701221530 MW-2 9701221610 MW-3 9701221700 MW-4 9701221730 MW-6	<0.00 <0.00 0.00	01 <0.001 02 <0.001 01 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 0.002 0.001	
T66170 T66171 T66172 T66173	9701221800 MW-1d 9701221830 MW-7 9701221855 MW-7d 9701221900 Trip Blar	0.00 0.89 0.91	01 <0.001 96 <0.005 11 <0.005 01 <0.001	0.001 0.240 0.219 <0.001	<0.001 0.330 0.350 <0.001	1.47 1.48 <0.001	
QC	Quality Control	0.0	97 0.098 01 0.001	0.099	0.301		
Reporting Li	.m1L		1 1	0	1		
<pre>% Extraction % Instrument</pre>	Accuracy Accuracy	1	04 105 97 98	106 99	106		
METHODS: EI CHEMIST: RV BTEX SPIKE J	PA SW 846-5030, 8020. AND QC: 0.100 mg/L BTE	к. РЗ	:		1-2	7-91	

5

Sec. 2. 1.

いた

- **1**. Director, Dr. Blair Leftwich Director, Dr. Bruce McDonell Date

Lubbock, Texas 79424		֥	
806•794•1296			
FAX 806•794•1298			
	ANALYTICAL RESULTS FOR		
	BDM INTERNATIONAL. INC.		
	505 Marguette NW. Suite 110	0	
	Albuquerque, NM 87102		
		Prep Date: 01/23/97	
January 28, 1997		Analysis Date: 01/23	/97
Receiving Date: 01/23/97		Sampling Date: 01/23	/97
Sample Type: Water		Sample Condition: Int	act & Co
Charge Code No: P/2398/1	.1	Sample Received by:	JH
Project Location: Monumer	it Booster Station	Project: GPM	
		NITRATE-N	SULFATI
TA#	FIELD CODE	(mg/L)	(mg/L)
T66166	9701221530 MW-2	2.1	310
T66167	9701221610 MW-3	2.7	76 ·
T66168	9701221700 MW-4	<1.0	100
T66169	9701221730 MW-6	<1.0	.37
T66170	9701221800 MW-10	<1.0	83 -
00	9/01221030 MW- 7	9 P	25
		3.0	23
			-
	TM	. 1.0	1.0
REPORTING LIM	IT	1.0	1.0
REPORTING LIM	<pre>III (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</pre>	1.0	1.0
REPORTING LIM RPD		1.0 5	1.0 0
REPORTING LIM RPD & Extraction	IT Accuracy	1.0 5 103	1.0 0 103
REPORTING LIM RPD % Extraction % Instrument	IT Accuracy Accuracy	1.0 5 103 100	1.0 0 103 100
REPORTING LIM RPD % Extraction % Instrument	IT Accuracy Accuracy	1.0 5 103 100	1.0 0 103 100
REPORTING LIM RPD % Extraction % Instrument METHODS: EPA	IT Accuracy Accuracy 300.0.	1.0 5 -103 100	1.0 0 103 100
REPORTING LIM RPD % Extraction % Instrument METHODS: EPA CHEMIST: MS	IT Accuracy Accuracy 300.0.	1.0 5 103 100	1.0 0 103 100
REPORTING LIM RPD % Extraction % Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPI	IT Accuracy Accûracy 300.0. KE: 200 mg/L Nitrate-N.	1.0 5 103 100	1.0 0 103 100
REPORTING LIM RPD % Extraction % Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPI NITRATE-N QC:	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N.	1.0 5 103 100	1.0 0 103 100
REPORTING LIM RPD & Extraction & Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPI NITRATE-N QC: SULFATE SPIKE	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. : 500 mg/L Sulfate.	1.0 5 103 100	1.0 0 103 100
REPORTING LIM RPD & Extraction & Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPII NITRATE-N QC: SULFATE SPIKE SULFATE QC:	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. : 500 mg/L Sulfate. 25 mg/L Sulfate.	1.0 5 -103 100	1.0 0 103 100
REPORTING LIM RPD & Extraction & Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPI NITRATE-N QC: SULFATE SPIKE SULFATE QC:	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. : 500 mg/L Sulfate. 25 mg/L Sulfate.	1.0 5 103 100	1.0 0 103 100
REPORTING LIM RPD & Extraction & Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPII NITRATE-N QC: SULFATE SPIKE SULFATE QC:	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. 10 mg/L Nitrate-N. 500 mg/L Sulfate. 25 mg/L Sulfate.	1.0 5 103 100	1.0 0 103 100
REPORTING LIM RPD & Extraction & Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPII NITRATE-N QC: SULFATE SPIKE SULFATE QC:	IT Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. : 500 mg/L Sulfate. 25 mg/L Sulfate.	1.0 5 103 100 (-28-7)	1.0 0 103 100
REPORTING LIM RPD & Extraction & Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPII NITRATE-N QC: SULFATE SPIKE SULFATE QC:	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. : 500 mg/L Sulfate. 25 mg/L Sulfate. Junc t, Dr. Blair Leftwich	$1.0 \\ 5 \\ 103 \\ 100 \\ -28-77 \\ DATE$	1.0 0 103 100
REPORTING LIM RPD % Extraction % Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPIN NITRATE-N QC: SULFATE SPIKE SULFATE QC: Director Director	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. : 500 mg/L Sulfate. 25 mg/L Sulfate. 25 mg/L Sulfate.	1.0 5 103 100 (-28-7) DATE	1.0 0 103 100
REPORTING LIM RPD % Extraction % Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPIN NITRATE-N QC: SULFATE SPIKE SULFATE QC: Director Director	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. 10 mg/L Nitrate-N. 500 mg/L Sulfate. 25 mg/L Sulfate. 25 mg/L Sulfate. The Blair Leftwich 5, Dr. Blair Leftwich 5, Dr. Bruce McDonell	1.0 5 103 100 100 100 100 100 100 100 100 100	1.0 0 103 100
REPORTING LIM RPD & Extraction & Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPIN NITRATE-N QC: SULFATE SPIKE SULFATE QC: Director Director	IT Accuracy Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. : 500 mg/L Sulfate. 25 mg/L Sulfate. Z5 mg/L Sulfate. Dr. Blair Leftwich Dr. Bruce McDonell	1.0 5 103 100 -28-77 DATE	1.0 0 103 100
REPORTING LIM RPD % Extraction % Instrument METHODS: EPA CHEMIST: MS NITRATE-N SPIN NITRATE-N QC: SULFATE SPIKE SULFATE QC: Director Director	IT Accuracy 300.0. KE: 200 mg/L Nitrate-N. 10 mg/L Nitrate-N. : 500 mg/L Sulfate. 25 mg/L Sulfate. 25 mg/L Sulfate.	1.0 5 1000 1000 1000 1000 1000 1000 1000 10	1.0 0 103 100

															-1	5	5	K			b	X			r	Ĺ	<u> N</u>	1-	
GCL Environmental Science and Engineering ABDM International Company	Albuquerque 505 Marquette N Albuquerque, NM (505) 842-0001 FAX: (505) 842-0	W, Ste. 1100 1 87102 1595	U M 4221 Lanh (301) FAX:	id Atla Forbe am, M (459-9 (301)	ntic R es Blva ID 20 9677 459-3	legion d., Ste 706-4 3064	9. 240 325			U N/ PO D Las C (505) FAX:	ASA-V Irawer Cruces 524-5 (505)	VSTF MM 5353 524-5	8800 5315)4	•				Dat	C •/			n १२	of P	N age	⁰ Cu	10 St	29 0(ו איני
Lab Name _TRACE_ AN	IALYSIS													Ar	naly	sis l	Req	Jes	t									<u> </u>	
Address 6701_ABE LUBBOCK Telephone $(806)_79$ Samplers (SIGNATURES) Sample Number 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530 9701221530	RDEENE_AVI TX 79424 14-1296 14-1296 14-20 14	Location <u>Mw-2</u> <u>Mw-2</u> <u>Mw-3</u> <u>Mw-4</u> <u>Mw-6</u> <u>Mw-6</u> <u>Mw-7</u> <u>Mw-7</u> <u>Mw-7</u> <u>Mw-7</u>	Halogenated	TOLOCOMINE AND ANTALE VORTINES	Phenols. Sub Phenols 604/8040	Pesticides/PCB 608/8080	Polynuclear Aromatic Hydrocarbons 610'8310	Volatile Compounds GC/MS 624/9240	Base/Neu/Acid Compounds GC/MS 625/8270	Total Organic Carbon (TOC) 415'9060	Total Organic Halides (TOX) 9020	Petroleum Hydrocarbons 418.1	TPH/BTEX Modified 8015	TCLP- Vol. Semi-Vo. Herbicides. Pesticides	TCLP- Metals	ACRA Metals(8)	Priority Pollutant Metals (13)	CAM Metals (18)	Flash Pomt	Corrosivity	Reactivity	Oil & Grease		Chemical Oxygen Demand (COD)				1	Number of Containers
	<u> </u>	Comple Re		<u> </u>		Reli	nouis	shed f	 3v				1	. Re	lina	lished	l By					2. IRe	elina	lished	By			$\not\vdash$	
Project Information Project Director G I Via n Charge Code No. 3 I Via n Shipping ID. No.	Dury w Stan Tot Dury m te Dury Re Dury Con Lat	al No. of Containers ain of Custody Seals c'd Good Condition/(nforms to Record o No.				(Sign (Sign (Sign (Print	ed Nar ed Nar pany) eived			s Ne	<u>د</u>	1/2:	(Date (Date (Date (Date	a) (Pri	gnatur inted N ompany oCeive gnatur	e) lame) y) ed By e) lame)	· · · · · · · · · · · · · · · · · · ·			2	(Tin (Da' (Tin (Da	не) (Si le) (Pr - (Сс 2. Ri - (Si не) (Si le) (Pr	gnatur inted N ompan eceiv gratur gratur gratur	e) $\frac{1}{2}$ $\frac{1}{$				9 ster	

GCL		Jue		lid Atl	antic F	Regior	1				ASA-1	NSTF													N	0	10	29	1
Environmental Science and Engineering BDM International Company	505 Marquett Albuquerque (505) 842-00 FAX: (505) 8	te NW, Ste. 1100 , NM 87102 01 42-0595	422 Lani (301 FAX	1 Fort ham, I) 459 :: (301	965 Blv MD 20 -9677) 459-1	d., St 706-4 3064	ə. 240 1325			PO D Las ((505) FAX:	rawe Cruce: 524- (505)	r MM s, NM 5353) 524-9	880 5315	04						С	h	ai	n	of	f C	Cu	st	00	ły
																			Dat	te_/	12	2	97	Р	age_	1	Of	; 1	
Lab Name TRACE AN	ALYSIS			.	r		—. <i>_</i>		<u> </u>	<u> </u>	·			Ar	naly	vsis I	Req	lues	t 						<u> </u>		TT		
LUBHOCK Telephone (806) 79	TX 79424 4-1296	4		4	nois		atic //8310	ds	spunoduu	nođ	des	11		Vol. ides									enable		15				tainers
Samplers (SIGNATURES)	~		genated biles 601/8010	B020 - 2	iols, Sub Phe 8040	icides/PCB 8080	nuclear Arom ocarbons 610	tile Compoun MS 624/8240	ANeu/Acid Co MS 625/8270	l Organic Car C) 415/9060	l Organic Hal () 9020	ocarbons 416	/BTEX filed 8015	P- Vol., Semi- icides, Pestic	P- Metals	A lis(8)	ity Pollutant als (13)	I Metals (18) C/STLC	h Point	osivity	ctivity	Grease	nide Total/Am	mical Oxygen and (COD)	. N.				nber of Con
Sample Number	Matrix	Location	Hato Volat	Aror 602/1	Pher 604/	Pesti 608/	Polyi Hydr	Colar	Base	E DE	at 1 0 1 0 1	Hydr Hydr	Modi	1 Herb H	10	RCR Meta	Prior	MA MA E	Flas	Corr	Read	ĨÕ	Cyar	Dener		 		┝	NUN
1701221530	420	mw-2	_	2	<u> </u>																				1				
1701221610	420	- Mul-3,	/	2																						<u> </u>	┼──│		
1701221700	1.20	mul-		2																									
1701221730	HZU	Mu-6		2																							-		
1701221500	170	MW-1d		7	·								<u> </u>												<u> .</u>				
4701221830	1170	NN11)-1		12	. -																				1				
(1) 1221355	1/20	mu-ld		12		d	1.8	<u>[i (</u>	a	12		of	_N	Λı	<u>) -</u>	11											. !		[
1701221900	170	HHEOMANNY	.t.	12																									
					- <u> </u>]					}		_													
	lf			Ì		Reli	nouis	hed	Bv					 Re		uisho	 1 Bv	I				2 B	elina	uisthed		<u> </u>			3
Project Information		Total No. of Container	eceipt			7	`	ניטווו)	;		1	.). })	yn ry	uisnei	<i></i>						omq		,				0.
Project Director / IV	Dene de	Chain of Custody Sea	s			(Sign	ature)	11	<u>```</u>	14	, ·	No	(Tim	e) Sig	gnatur	re)					(Tin	ne) (S	ignaturi	B)					(Time)
Charge Code No. 3100-	008	Rec'd Good Condition	Cold			(Signature) () (1) (1) (1) (1) (Printed Name) (1) (1) (1)				_		(Dat	e) (Pri	inted I	Name)					(Da	ite) (P	rinted N	lame)					(Date)	
Shipping ID. No.	-	Conforms to Record				Corr	ipany)		·					(Co	трал	iy)	,					2 10	ompan	y)					
11	· /	Lad NO.					Giveu	Ъ						- Ine	CEIV	eu D)	,					2.11	eceiv	eu ву	(Lab	UIALO	iy)		J.
VIA: GTY LA LUININ			<u></u>			(Sign	ature)						(Tim	0) (Siç	gnatur	re)					(Tin	ne) (S	ignatur	6)	<u></u>				(Time
Special instructions/Comme	5015.					(Prin	led Nar	ne)					(Dat	e) (Pri	inted I	Name)					(Da	te) (P	rinted N	Name)					(Date)
						Con	pany)								mpan	1y)						- 10	aborato						

"(

Distribution: White, Canary-Laboratory • Pink, GCL

