1R - 177

REPORTS

DATE: 7/25/200/

July 25, 2001

Supplemental Expert Report of Hicks Consultants Regarding Robert A. McCasland et. al. v. Mewbourne Oil Company

HINKLE, HENSLEY, SHANOR & MARTIN

Hinkle, Hensley, Shanor & Martin 400 Penn Plaza, Suite 700 Post Office Box 10 Roswell, New Mexico 88202

.T. Hicks Consultants, Ltd.

4665 Indian School NE, Sutte 106, Albuquerque, NM 87110

FIGURES

Figure 1: Photograph of Conoco Federal #2	6
Figure 2: Photograph of the dune field southeast of the McCasland Windmill Well	
Figure 3: Photograph of backflow from the storage tank	14
Figure 4: Photomosaic of the area north of Conoco Federal #2	14
Figure 5: Stiff Diagram of the water from the McCasland Storage Tank	30
Figure 6: Stiff Diagram of the water from the McCasland Windmill	3 0
Figure 7: Stiff Diagram of the water from MW-3	
Figure 8: Stiff Diagram of the unimpaired water from the Ogallala Aquifer	
Figure 9: Stiff Diagram of the water from an oil well in Lea County	
Figure 10: Stiff Diagram of the groundwater from the White Sands National Monument	32

TABLES

Table 1: Water AnalysesTable 2: Field Measurements for Mewbourne Oil ProjectTable 3: Chemical Analyses of Soil at Conoco Federal #2

PLATES

Plate 1: Location Map Plate 2: Access to the site Plate 3: Topographic Map Plate 4: Groundwater Map of Lea County Plate 5: Poteniometric Surface Map August 1999 Plate 6: Detailed Site Map Conoco Federal #2 Plate 7: Poteniometric Surface Map at McCasland Windmill Site Plate 8: HGS Data, Cl Federal #2 Plate 9: Hicks Data, Cl Federal #2 Plate 10: Trilinear Diagram

1.0 Executive Summary

This report describes the investigation by R.T. Hicks Consultants Ltd. (Hicks Consultants) into an area we call the McCasland Windmill Site. Hicks Consultants was retained in 1998 to investigate the cause of atypical chloride concentrations in groundwater near the site.

Located in Lea County, New Mexico, this windmill is adjacent to Conoco Federal #2, a plugged and abandoned oil well formerly operated by Mark Production. The law firm of Hinkle, Hensley, Shanor & Martin, L.L.P., retained Hicks Consultants on behalf of Mewbourne Oil Company, the successor corporate name of Mark Production. The owner of the surface land on which Conoco Federal #2 is located is Robert McCasland and a partnership of McCasland family members. Hereafter, we refer to the owners as the McCasland Ranch. The Federal government has leased mineral rights for the land to Mewbourne.

In 1989, McCasland Ranch drilled a windmill-driven water supply well about 35 feet from Conoco Federal #2. In January 1998, at the request of McCasland Ranch, New Mexico Oil Conservation Division (NMOCD) representatives examined the water supply well and reported that the well exhibited chloride concentrations that were higher than typical Ogallala groundwater. On January 21, 1998, NMOCD first notified Mewbourne Oil Company of the chloride in groundwater. At this time, they requested additional information and investigations. It is Mewbourne's belief that the rationale for NMOCD's requirements is the proximity of Mewbourne's activities to the subject windmill.

In their notification, NMOCD did not present any technical information indicating that any activities of Mewbourne caused the observed chloride in groundwater. In March 1998, Mewbourne obtained water samples

from the well and found that calcium and chloride concentrations did appear unusually high. In June 1998, NMOCD required Mewbourne to conduct an investigation to determine if oil field operations had caused the chloride in groundwater. Hicks Consultants investigated the area of the McCasland Ranch water supply well to respond to NMOCD requests.

Our investigation showed:

- 1. The McCasland water supply well (henceforth called the McCasland windmill well) near Conoco Federal #2, three monitor wells installed by experts for McCasland Ranch, and monitor well Mew A, installed by Hicks Consultants, draw water from a thin sand and/or gravel zone near the base of the Ogallala Formation.
- 2. The drillers log for the McCasland windmill well shows that this well also draws water from an "anhydrite" formation.
- 3. The saturated thickness of the water-bearing zone near the McCasland windmill well is only 10–15 feet, which is less than most Ogallala supply wells.
- 4. Mewbourne files and NMOCD files show that December 28, 1970 is the spud date for Conoco Federal #2.
- 5. On March 1, 1974, the Conoco Federal #2 was plugged and abandoned by Mark Production Company. We understand that Mark Production followed applicable U.S. Geological Survey rules and standard industry practice in plugging and abandoning the well.
- 6. The water chemistry of the McCasland windmill well, the associated water storage tank (henceforth called the McCasland water storage tank), and monitor well MW-3 near the McCasland windmill are very similar. The chemistry of these three wells differs from the chemistry of typical Ogallala groundwater and water produced from oil wells in Lea County.
- 7. The water chemistry of monitor well Mew A, MW-1, MW-2, and several nearby windmills are very similar. The chemistry of these wells are similar to typical Ogallala groundwater and all analyzed constituents are below the maximum concentrations established by the Water Quality Control Commission Regulations.
- 8. Field tests conducted in August 1999 demonstrate that, after four hours of pumping, the McCasland windmill well delivered water that showed 50% less dissolved solids than water of the McCasland water storage tank.

- 9. In 1999, Hicks Consultants observed water flowing from the McCasland water storage tank into the McCasland windmill well. Although a check valve had been installed between the storage tank and the well, the valve was permitting water to leak into the well.
- 10. The water storage tank at the McCasland windmill well is a former oil field storage tank. The tank has a fixed roof, minimizing water loss through evaporation.
- 11. The chemistry of the McCasland windmill well is consistent with a mixture of typical Ogallala groundwater and the 1999 sample of water stored in the McCasland storage tank.
- 12. Soil samples from the area near Conoco Federal #2 exhibit chloride concentrations below 20 mg/kg. We observed no evidence that the area north of Conoco Federal #2 was actually used as a reserve pit.
- 13. In June 2000, NMOCD provided comments on the Hicks Consultants report of September 1999. In August 2000, Hicks Consultants responded to the NMOCD comments and then met with NMOCD on August 31, 2000. At this meeting, NMOCD agreed that sustained pumping of the McCasland windmill well might be the best and quickest way to improve the quality of the water and return the well to service.
- 14. In a letter dated November 15, 2000 to Mr. Robert McCasland, NMOCD recommended disposal of the water in the storage tank, repair of the check valve, sustained pumping of the windmill and monitoring the results of pumping.
- 15. Because we found no evidence that McCasland Ranch conducted the program requested by NMOCD, we performed the test in March, 2001. While pumping the McCasland windmill well at 1.0 to 1.7 gallons per minute (gpm) for approximately 2 days, we measured the specific conductance (SC) of pumped groundwater. We pumped approximately 3000 gallons from the windmill. We observed little variability of groundwater SC over time. Analyses of samples from this program also reveal a chemistry profile similar to past analyses.
- 16. Specific conductance of water derived from Mew A, MW-1, and MW-2 is consistent with typical Ogallala groundwater. Chemical analyses are also consistent with typical Ogallala groundwater.

- 17. Specific conductance of the McCasland windmill well is 480% higher than the SC of Mew A, MW-1, and MW-2 and 150% higher than the SC of MW-3. Chemical analyses reveal this same relationship.
- 18. Specific conductance of water in the McCasland water storage tank is 760% higher than the SC of typical unimpaired Ogallala groundwater, 240% higher than MW-3, and 160% higher than the McCasland windmill well. Analytical results show this same relationship.
- 19. During a field program in March 2001, we observed water leaking from the base of the windmill water storage tank. At this time, the water storage tank was nearly empty. In August 1999, the tank had contained six to eight feet of water.
- 20. In 1999, we measured groundwater elevations in the area of the McCasland windmill well. We found that groundwater flowed southeast at a gradient of 0.004.
- 21. With installation of monitoring wells by consultants to McCasland Ranch in Spring 2001, we determined that groundwater at the windmill site flows to the east northeast. The measured hydraulic gradient is 0.003.
- 22. After drilling and well development, monitoring well Mew A continually produced 20 gallons/minute of water.
- 23. In our analysis of an aquifer test conducted by HydroGeologic Services, Inc. in January 2001, we calculated a hydraulic conductivity of 0.3. This value is 10 times less than the average hydraulic conductivity for the Ogallala as reported in the literature. This low value, however, is consistent with the observed difference in sustainable pumping rates (25 gpm for Mew A vs. 1 gpm for MW-2).
- 24. Steady state simulation modeling of two different scenarios using MODFLOW modeling environment predicts that the observed chloride in groundwater impacts could not be caused by a casing leak at Conoco Federal #2.

Based on these findings, we conclude:

- A. The plugged and abandoned Conoco Federal #2 oil well is not releasing oil field-produced water to the Ogallala Formation. The chemistry of the water observed in the McCasland windmill well and MW-3 could not be produced by mixing produced water with Ogallala ground water at this location.
- B. If there were elevated chloride concentrations in soil, that would indicate a release of produced water from the reserve pit during the 1971-1974 productive life of Conoco Federal #2. Soil samples within and adjacent to the possible reserve pit area did not detect elevated chloride content. Trained individuals found no evidence of stressed vegetation or other indications of chloride disposal and/ or spills. Soil near Conoco Federal #2 is not the source of calcium chloride observed in the McCasland windmill well.
- C. There is no evidence (soil samples, production records, etc.) to support a conclusion that activity of Mewbourne or Mark Production caused the observed chloride in groundwater at the McCasland windmill well.
- D. Activities of Mewbourne up-gradient (northwest) of monitor well Mew A have not caused chloride in Ogallala groundwater.
- E. The cause of the chloride in groundwater at the windmill site cannot be determined with existing data. The cause may be natural or man-made. But no evidence shows that activities of Mark Production or Mewbourne contributed to the observed elevated levels of chloride in the McCasland windmill well.
- F. If the chloride was caused by man, it will naturally dissipate over time and will not affect other wells. If the chloride is a result of nature, individuals should not construct wells in similar lithologies (e.g. anhydrite or gypsum).
- G. Mewbourne should not be required to conduct remediation, additional investigation or inquiry at this site.
- H. NMOCD or McCasland Ranch should monitor the site and restrict additional water supply development at the location of Conoco Federal #2.

2.0 Introduction

Mewbourne Oil operates oil wells adjacent to the well commonly known as Conoco Federal #2, which was plugged and abandoned by Mark Production in 1974. Mewbourne Oil (Mewbourne) is the successor corporate name of Mark Production. The owner of the surface land on

which Conoco Federal #2 is located is McCasland Ranch. Mewbourne operated the Conoco Federal #2 as a lessee under a lease with the Federal government which owns the mineral estate. Conoco Federal #2 is in Section 30, T20S, R39E (1980 FEL 660 FSL) in Lea County, New Mexico. Plate 1 shows the location of the well relative to Hobbs, New Mexico. Plate 2 displays the oil field road network and access to the site.

In 1989, McCasland Ranch installed a windmill-driven water supply well about 35 feet from Conoco Federal #2 (referred to hereafter as the McCasland windmill well). The cover of this report and Figure 1 show the well site of Conoco Federal #2 and the McCasland windmill well. Figure 1: Photograph of Conoco Federal #2 (foreground) relative to the McCasland windmill well and water storage tank.

3.0 Pre-Investigation Review of Published Data and Past Practices

In order to properly design the investigation, Hicks Consultants conducted a literature search to obtain information on the geology and hydrogeology in southern Lea County, near the McCasland windmill site. We obtained well logs from the Office of the State Engineer (OSE) for water wells within five miles of the McCasland windmill site (the Site). We examined Mewbourne files as well as information at the Hobbs office of the NMOCD for additional information regarding drilling, production, and plugging of Conoco Federal #2.

3.1 Physical Setting

Plate 3 is a topographic map presenting the locations of the McCasland windmill site and the nearby water supply wells. Plate 4, a groundwater map of southern Lea County, shows that the McCasland windmill well is near the boundary (shown as a dashed line) between Triassic rocks and saturated Tertiary and Quaternary rocks. West of the boundary, the Tertiary Ogallala Formation, which is the principal aquifer of the area, is unsaturated (dry). Plate 4 also presents depth to water and total depths of nearby wells. As this plate shows, wells within the area mapped as Ogallala suggest a saturated thickness (difference between depth to water and total well depth) ranging from 2 feet to 125 feet, with both extremes occurring near the boundary. The 1988 driller's log of the McCasland windmill well identifies the base of the Ogallala at 88 feet. We have included all relevant drilling logs in this report as Appendix A.

The log for the McCasland windmill well shows anhydrite $(CaSO_4)$ from 70 to 88 feet below land surface. Gypsum $(CaSO_4 - 2H_2O)$ is a more common sulfate mineral that is often confused with anhydrite. Of nine water wells within a five-mile radius of the site, well logs show that only one other well encountered anhydrite (see Appendix A). This well is located in Section 24, T20S, R38E, approximately two miles northwest of the site, and is labeled in the log as McCasland Well No. 3. In this well log, the recorded anhydrite layer lies between 54 and 58 feet.

3.2 History of Conoco Federal #2

We investigated available records from Conoco Federal #2 for any indications of a potential source of chloride or calcium to the surrounding aquifer. Mewbourne files and NMOCD files show that December 28, 1970 is the spud date for Conoco Federal #2. The drilling log from December 1970 refers to the use of 200 sacks of regular 2% CaCl at a depth of 1,663 feet below grade. Calcium chloride is typically used at low concentrations such as this to accelerate the curing of cement grout used in setting well casing. This description of the 200 sacks of 2% calcium chloride is the only written indication that such material was used at the site.

The drilling records also describe the 1971 stimulation program for Conoco Federal #2. On January 21, 1971, a contractor injected 17,500 gallons of acid (probably hydrochloric acid) into the Conoco Federal #2. The acid strength ranged from 3% to 20%. Over 14 days, in January and February 1971, the well produced 92 barrels of oil and 349 barrels of formation water. On February 24, 1971, the contractor injected 2000 gallons of 15% acid into the Conoco Federal #2. Well records indicate that the water and oil recovered from subsequent swabbing flowed into a test tank.

On March 1, 1974, the Conoco Federal #2 was plugged and abandoned by Mark Production Company. Mewbourne personnel report that Mark Production followed applicable U.S. Geological Survey procedures and standard industry practice in plugging and abandoning the well. Plugs were set at depths of 6,000 feet, 4,100 feet, 3,000 feet, and 1,710 feet below grade, and at the surface. We saw no evidence from the abandonment record to suggest that the well casing may be leaking or otherwise impairing the surrounding aquifer. Roy C. Williamson, Jr., P.E. reached the same conclusion in his written expert report.

Finally, we asked several Mewbourne employees if they had any information or recollection regarding the location of the reserve pit, drilling methods, etc. While no current employees were present when the

well was drilled or plugged in the early 1970s, several suggested that the layout of the caliche pad strongly suggested the existence of a reserve pit due north of the well. The Mewbourne employees also stated that the water storage tank used to store water pumped from the McCasland windmill well appeared to have been formerly used for oil field operations. Mr. McCasland confirmed that the water storage tank was formerly used as an oil field tank.

4.0 Field Investigations and NMOCD Review

Hicks Consultants carried out three field investigations of the study area: a groundwater sampling in September 1998, a monitor well drilling and sampling program in July and August 1999, and a well sampling program in March 2001. In January 2001, HydroGeologic Services installed three monitor wells near the McCasland windmill, performed a pumping test, and obtained groundwater samples. We understand that Mr. Gregory Bybee of ECD and Mr. Eddie Seay supervised a windmill inspection, pumping, and sampling program in November 2000.

4.1 September 1998 Groundwater Sampling

On September 1, 1998, under the direct supervision of Mr. Randall Hicks, Ms. Melissa Snodgrass of Hicks Consultants examined the area surrounding the site with Mr. Jerry Elgin of Mewbourne. Ms. Snodgrass visited the four water wells shown on Plate 3 (which include the McCasland windmill well) and collected water samples from three of them.

Assaigai Analytical Laboratories received samples from this first field program on September 2, 1998. The laboratory analyzed each sample for major cations and anions, and calculated the ion balance for all three wells. Table 1 summarizes the results from these analyses as well as analyses from all field programs. The chain- of-custody forms and copies

of the original certificates of analysis are included in this report as Appendix B; in these forms, the McCasland windmill well is labeled Fed #2.

MCCASLAND WINDMILL WELL: The well installation includes the well, the windmill used for pumping, a water storage tank, and a water trough into which the storage tank discharges. During our investigation, the water trough exhibited a thick salt crust along the water surface and feathery yellow algae along the tank surfaces. Hicks Consultants collected a water sample from the standpipe of this windmill (see Table 2 for sample results).

MEW #2 & MEW #3: The water well labeled MEW #2 on the chain of custody form is approximately two miles north of the Site (also see Plate 3). Another water supply well, MEW #3, is located 1.5 miles north of the Site. Mr. Elgin stated that livestock used water from these two wells. Our field investigation showed that water troughs at both of these wells contained green algae, tadpoles, and other aquatic species. The edges of the tanks contained only a thin layer of salt encrustation. Livestock were near both tanks. Because the wind during the site visit was not sufficient to cause the windmills to pump, water samples could not be collected from the wells themselves. Hicks Consultants collected a water sample from the MEW #2 water trough. No sample was taken from MEW #3.

MEW #4: The fourth water well, MEW #4, is approximately two miles northwest of the Site. We believe this is the well referred to in the well logs (Appendix A) as McCasland No. 3—it is within a quarter mile of the location given on the well log and no other wells are nearby. Our investigation revealed that the water trough of this well contained some green algae; salt encrustation was considerably less than in the water trough at the McCasland windmill well, though greater than in MEW #2 and MEW #3. Site evidence suggests that livestock drink from this well. Because the windmill was not pumping during the site visit, Hicks Consultants collected a water sample from the MEW #4 water trough.

According to analysis of samples taken during Hicks Consultants' September 1998 sampling event, the McCasland windmill well exhibited a laboratory conductivity of 7,800 μ mhos/cm, with a cation content dominated by calcium and chloride. The water from MEW #2 showed a conductivity of 1,160 μ mhos/cm. Carbonate was the highest anion concentration, at 275 mg/L; the cations calcium and sodium were each approximately 100 mg/L. In MEW #4, calcium and sulfate were the dominant cations and anions, respectively. The specific conductance of MEW #4 was 3,700 μ mhos/cm.

HINKLE LAW FIRM — Supplemental Expert Report July 2001

4.2 July/August 1999 Monitor Well Drilling and Soil Sampling Program

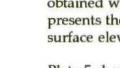

On July 29, 1999, Mr. Corky Glenn of Glenn's Water Well Service obtained water levels from the four wells shown on Plate 3. Table 2 presents the results of this survey. As Table 2 indicates, we obtained surface elevation data from the U.S. Geological Survey topographic map.

Plate 5 shows the potentiometric surface derived from water level measurements. Although the well casing elevations are not surveyed, the flat terrain permits an estimate of the well head elevation to within 2-4 feet. The relatively steep hydraulic gradient (steep relative to the land surface), and large distance between wells permits an accurate estimate of the direction of groundwater flow, despite the margin of error associated with obtaining casing elevations from the topographic map. This map shows the regional groundwater flow is from the northwest to the southeast at a gradient of 0.004, similar to that presented in Plate 4.

The March 9, 1999, investigation plan proposed one monitor well down-gradient from the Site to determine the extent of chloride in groundwater. The presence of an extensive sand dune field south and east of the Site limited access to potential drilling locations southeast (the presumed downgradient direction) of the Site (see Figure 2). Along the predicted southeast flow path, one feasible well location was within the original oil well pad, about 120 feet from the McCasland windmill well. The other location was more than 4,000 feet southeast, along a service road that transverses the dune field. Because we

hypothesized that the source of calcium chloride may be associated with the drilling operations (e.g., a former reserve pit), drilling a potential conduit between groundwater and the potential source was not prudent. We eliminated a location on the well pad from further consideration. The second location was simply too far from the potential source area. Figure 2: Photograph of the dune field southeast of the McCaslnad windmill well.

Due to the logistical constraints of constructing a monitor well directly southeast, we requested a modification of our approved investigation plan (August 11, 1999). We proposed a monitor well location 100 feet south and 600 feet east of the McCasland windmill, adjacent to a caliche service road. The NMOCD approved the proposed modification.

Mr. Hicks and Eades Well Drilling Service mobilized to the site to begin drilling on August 16, 1999. A representative of McCasland Ranch was present to observe drilling activities. Drill cuttings became relatively moist (68 feet below grade), causing Eades to convert from air drilling to water drilling. Eades used about two gallons of a polymer-based drilling fluid to condition the water. Drilling stopped at 91 feet, after penetration of the Triassic Dockum Group, or "Red Beds."

As the well log shows (Appendix A), the unsaturated zone extends from ground surface to 73 feet. Light brown to reddish brown sand with minor clay and caliche characterize the unsaturated zone. The 15-foot thick zone of saturation lies between the water table (73 feet) and the top of the "Red Beds" (Triassic Dockum Group) at 88 feet below grade. The saturated zone is dominantly sandy gravel, a typical lithology found at the base of the Ogallala Formation. We observed abundant white clay in drill cuttings from the uppermost three feet of the Dockum Group (88–91 feet below grade). At 91 feet below grade, the drilling fluid changed from clear to deep red and the cuttings showed red claystone.

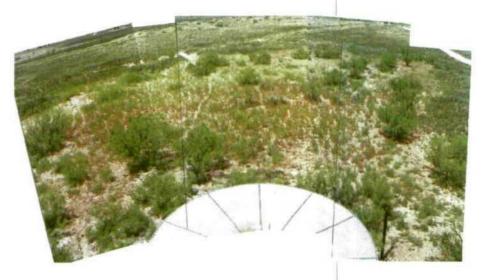
After circulation of clear water from the water truck to remove cuttings, Eades completed the well with 20 feet of well screen (91–71 feet below grade) as shown in Appendix A. Eades developed the well by pumping for 35 minutes at 15–20 gpm. Produced water, which discharged to the mud pit, was completely clear and free of silt or clay after five minutes of pumping. After 13 minutes of pumping, specific conductance stabilized at 876 micro-seimens/meter (compensated for temperature). The temperature of the discharged water dropped from nearly 25 degrees C to a relatively constant 20 degrees C at the end of pumping.

We obtained groundwater samples from the development pump at the end of pumping. The McCasland Ranch representative also obtained samples. Table 2 shows the results of the analyses from Assaigai Analytical Laboratory. Appendix B contains copies of the original certificates of analyses and the chain-of-custody forms for this event.

The approved investigation plan also called for sampling of the McCasland windmill well and three other nearby (up-gradient) water supply wells. Because the field conductance of the newly-drilled monitor well suggested water chemistry similar to the three up-gradient windmill

wells, we elected to forego additional sampling of these three wells. We did obtain water samples from the McCasland windmill well and its associated water storage tank.

Figure 3: Photograph of backflow from the storage tank


At 1:30 p.m., we switched the windmill from standby to active operation. After breaking the connection between the windmill and storage tank, we noted that water from the tank flowed back toward the well casing when the windmill ceased pumping. We separated the flow pipe to permit the windmill to pump without causing additional backflow from the tank to the well casing (see Figure 3). At 4:22 p.m., we obtained a sample of the backflow discharge from the water storage tank. At or about this same time, the representative of McCasland Ranch obtained a sample of the backflow and a sample from the McCasland windmill well. The windmill

pumped about 20 gallons per hour during the afternoon. About 5 p.m., the windmill pumped relatively continuously, discharging about 1 gpm. We sampled the windmill discharge at 5:15 p.m. Table 2 also presents these analytical results.

Figure 4: Photomosaic of the area north of Conoco Federal #2

To determine if past oil exploration or production activities had resulted in a spill or release of calcium chloride or other oilfield material near Conoco Federal #2, the investigation plan required soil sampling within the suspected reserve pit and other locations where oilfield material may have been stored/disposed. The layout of the caliche pad relative to Conoco

Federal #2 suggested that the reserve pit was north of the former oil well. Figure 4 is a photomosaic of the area north of the oil well, showing the observed changes in vegetation that suggests a former reserve pit in this

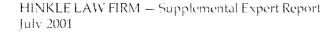
location. Using a backhoe, we excavated three test holes within the suspected reserve pit and one test excavation on the caliche pad. Mewbourne employees suggested that materials might have been stored west of the well during drilling, stimulation, workover, or plugging operations.

Plate 6 shows the locations of the test excavations relative to Conoco Federal #2, the caliche pad and the McCasland windmill. In Test Pit #1, the backhoe encountered cured grout and one bag of hardened cement and clean, dry eolian sand. The excavation, which was about 9 feet deep, 3 feet wide and 12 feet long, encountered no evidence of drilling mud, plastic liners, or salt. We did not find any material that suggested this area was used for disposal of waste. Using the backhoe, we obtained two samples from this excavation: one from the bottom of the excavation (9 feet) and one from the side of the excavation at 5 feet.

We excavated Test Pit #2 in a similar manner. The area surrounding Test Pit #2 exhibited less plant growth than the remainder of the disturbed area north of Conoco Federal #2. We hypothesized that salt disposal may have hindered plant growth. In this excavation, we encountered only clean, dry eolian sand, without any evidence of calcium chloride. We did not find any material to suggest that this area was used for disposal of waste. Using the backhoe, we obtained two samples from this excavation: one from the bottom of the excavation (9 feet) and one from the side of the excavation at 5 feet.

Along the western edge of the disturbed area, we found old wire rope and other material at the surface that suggested past disposal of exploration and production waste. However, when we excavated Test Pit #3 through this debris, we penetrated only clean, dry, eolian sand. We did not find any material that suggested this area was used for disposal of waste. Using the backhoe, we obtained two samples from this excavation: one from the bottom of the excavation (7 feet) and one from the side of the excavation at 5 feet.

On the caliche drill pad, west of Conoco Federal #2, we selected an area of limited vegetation for Test Pit #4. Here, we hypothesized that calcium chloride spills and/or disposal may have limited plant growth. Again, we encountered only clean, dry eolian sand below the caliche pad. We did not find any material to suggest that this area was used for disposal of waste. Using the backhoe, we obtained two samples from this excavation: one from the bottom of the excavation (7 feet) and one from the side of the excavation at 5 feet.


Although the McCasland Ranch representative did not elect to split samples from the test excavations, he observed the entire soil sampling program. On August 18, 1999, we mixed about 500 grams of each sample with about 500 grams of distilled water. After stirring the mixture and waiting about five minutes, we decanted the fluid and measured its specific conductance. The table below presents the results of this screening analysis.

Soil Conductance at Conoco Federal #2

Sample Location	Depth	Conductivity uS/cm	Notes
Test Pit #1	5 ft	18.1	Submitted to Laboratory
	9 ft	6.6	
Test Pit #2	5 ft	13.5	
	9 ft	20.7	Submitted to Laboratory
Test Pit #3	5 ft	13	
	7 ft	18.2	Submitted to Laboratory
Test Pit #4	5 ft	13.4	
	7 ft	28	Submitted to Laboratory
Distilled Water	NA	3.1	

We submitted the four samples showing the highest conductance to the laboratory for analysis of major cations and anions. The results of the laboratory analyses are in Table 3.

For the Mew A monitor well sample, we requested analyses for volatile organic compounds—calcium, sodium, chloride, sulfate, carbonate, and total dissolved solids (TDS). For samples from the McCasland windmill well, water storage tank, and soil samples, we requested only the aforementioned cations and anions.

On September 3, 1999, Hicks Consultants submitted a report on the above referenced activities to NMOCD. All of the data presented in the 1999 report is reproduced herein.

4.4 June 2000 NMOCD Comments and August 2000 Hicks Consultants Response

In a letter dated June 16, 2000, NMOCD provided comments on the Hicks Consultants report of September 1999. In August 2000, Hicks Consultants responded to the NMOCD comments and then met with NMOCD on August 31, 2000. At this meeting, NMOCD agreed that sustained pumping of the McCasland windmill well might be the best and quickest way to improve the quality of the water and return the well to service.

In a letter dated November 15, 2000 to Mr. Robert McCasland, NMOCD recommended disposal of the water in the storage tank, repair of the check valve, sustained pumping of the windmill, and monitoring the results of pumping. To date, NMOCD has not requested further investigation of the site by Mewbourne.

4.5 November 2000 Sampling and Windmill Inspection Program of ECD and Eddie Seay

We understand that in November 2000, on behalf of McCasland Ranch, Mr. Bybee and Mr. Seay oversaw windmill inspection activities and sampling at the McCasland windmill site. Mr. Bill Olson of NMOCD participated in some of these activities. During this program, some of which is described in the ECD report (Appendix C), Messrs. Bybee and Olson obtained water samples from the windmill. These analyses are presented in Table 1.

4.6 January 2001 Monitor Well Drilling Sampling Program of HydroGeologic Services

In January 2001, on behalf of McCasland Ranch, HydroGeologic Services (HGS) constructed three monitor wells at the McCasland windmill site, obtained water samples from these wells, conducted a pumping test of MW-2, and measured the depth to groundwater. Appendix C contains their report.

4.7 March 2001 Field Program

The objective of Hicks Consultants' March 2001 field programs was (1) to verify results and data presented in HGS's February 2001 report and (2) to implement the program NMOCD requested in their November 15, 2000 letter to Mr. Robert McCasland. At the time of our investigation, Mr. McCasland had not reported to the NMOCD any results or submitted a workplan for the requested program.

PUMPING AND SAMPLING THE MCCASLAND WINDMILL WELL: On March 27, 2001, we initiated pumping of the McCasland windmill well by placing an electrically powered submersible pump into the well. We pumped the well at 1.0 to 1.7 gallons per minute (gpm) for approximately 2 days. The well was able to continually produce water at this rate. However, higher flowrates resulted in complete drawdown and would have subsequently damaged the pump. Therefore, we attempted to maintain the pumping rate at about 1.0 gpm. The total volume of groundwater pumped from the well was approximately 3,000 gallons.

While pumping, we discharged groundwater produced from the McCasland well into a nearby stock tank. To prevent overflow of the stock tank, we contracted with Kelly Maclaskey Oilfield Services to remove and dispose of water in the stock tank.

During the pumping period, we collected four groundwater samples from the well. We collected these samples at 13:05 and 14:20 on 03/27, 17:40 on 03/28 and 15:30 on 03/29. We submitted these samples to Assaigai Analytical Laboratories for analysis of cations, anions, and TDS. Table 1 presents the results of these analyses.

In addition to the samples, we continually monitored the conductance of groundwater produced from the well. Groundwater conductance showed little variability. The average groundwater conductance was 3,902 mmhos/cm with a standard deviation of 258 mmhos/cm.

MONITORING WELL, STORAGE TANK AND PRODUCED WATER SAMPLING: During the March 2001 field program, we collected groundwater samples and measured groundwater conductance at the following monitoring wells: MW1, MW2, MW3, and Mew A. We also collected a water sample from the storage tank used to hold water produced by the windmill and a composite sample of produced water from nearby oil wells. The water sample of the storage tank was collected from its base by loosening a flow valve.

The monitoring wells produced water at a rate of about 1-2 gpm. This pumping rate agrees with the HGS test pumping of January 2001.

Like the water samples of the windmill, we submitted all water samples to Assaigai Analytical Laboratories for analysis of major cations, anions, and TDS. Table 1 presents the results of the analyses.

The McCasland water storage tank was nearly empty during the March 2001 site visit. In 1999, Hicks Consultants noted that the storage tank contained approximately 6-8 feet of standing water. ECD, in their undated report titled "Estimated Cost of Cleanup of Groundwater McCasland Ranch", indicated that the tank water level was about 4-6 feet from the tank base ("several feet above the level of the valve") on November 28, 2000. Our inspection of the storage tank in 2001 revealed leakage from the tank in several locations. We estimate the leakage rate at approximately 20-100 milliliters per minute (less than 0.25 gallons per hour). This leakage may have caused the loss of the 6-8 feet of standing water observed in 1999 and/or the loss of the 4-6 feet of water noted by ECD.

Before sampling or pumping, we measured depth to water in all monitoring wells and the McCasland windmill well. Table 3 presents the results of our depth to water survey and provides previously recorded depth to water measurements. The table shows that the HGS depth to water measurements, presumably collected soon after well drilling, are less than those obtained by Hicks Consultants for MW-1 and MW-2, but more (indicating a deeper water level) than our measurement of MW-3. Table 3 shows the depth to groundwater from the different field programs. Plate 7 displays the water table map from our depth data and the HGS well casing survey data.

5.0 Supplemental Investigation and Data Evaluation

5.1 May 2, 2001 Tank Inspection and Soil Inspection

Previous reports of Hicks Consultants hypothesized that residual oilfield waste in the water storage tank could be the source of observed chloride and calcium in groundwater. During past discussions with NMOCD, NMOCD maintained that previous soil excavations simply looked for the reserve pit (the presumed source of chloride) in the wrong location. This field program's purpose was collecting data to support or discount these hypotheses. The tank investigation did not reveal residual oilfield waste. We did observe a thin (0.01-inch) scale deposit throughout much of the lower portion of the tank. We excavated two test pits with a backhoe to determine if the former reserve pit was located south, rather than north, of Conoco Federal #2. In two test pits, the locations of which are displayed on Plate 6, we found no evidence of waste disposal, or accidental spill residuum. Both test pits revealed dry eolian sand, similar to that observed in previous soil excavations.

5.2 Evaluation of HGS Aquifer Test

We performed an independent analysis of the HGS aquifer test data. The RGE data were collected at MW-2 as the well was pumped and then allowed to recover. We analyzed the recovery data from the aquifer test using a standard method for the determination of aquifer transmissivity

which is the product of hydraulic conductivity and aquifer thickness. The method is described in Physical and Chemical Hydrogeology by Domenico and Schwartz (1998).

Our analysis determined a horizontal hydraulic conductivity of the saturated unit near MW-2 of 0.3 feet per day (feet/day). Rio Grande Environment's (RGE) analysis of the pump test data provided a horizontal hydraulic conductivity of 0.87 feet/day. These evaluations using different approaches show excellent agreement. Appendix D presents our independent analysis of the data.

5.3 Aquifer Simulation Modeling

We used numerical modeling to evaluate the impacts of two possible chloride release scenarios in the area of the McCasland windmill. The scenarios were:

- (1) An ongoing brine release from the annulus of Conoco Federal #2. We simulated the leak as an injection well. For this simulation, we used a flow domain constructed from data collected by HGS and RGE,
- (2) A brine release as above, but with a flow domain based on water level measurements collected by Hicks Consultants in March 2001, and the hydraulic conductivity determined from our analysis of HGS pump test data.

We employed the modeling environment Visual MODFLOW to perform the simulations, using MODFLOW to simulate groundwater flow and MT3DMS to simulate the transport of chloride. Waterloo Hydrogeologic manufactures visual MODFLOW. Appendix E contains information that describes some of the capabilities of the modeling environment as well as documentation about MODFLOW and MT3DMS.

Scenario 1: Casing Leak with HGS and RGE Data

For this scenario, we created a model domain similar to the one used by RGE to analyze the pump test data collected by HGS. Our only modification was to enlarge the modeling area in order to better assess the transport of chloride. We employed aquifer parameters determined by RGE and the hydraulic gradient and flow direction determined by HGS.

We used a horizontal area of 992-feet by 480-feet with the 992-foot side of the rectangle domain aligned parallel to the direction of groundwater

flow. The aquifer consisted of 4 horizontal layers each 15-feet thick. We used finer-grid spacing ($\ddot{A}x=\ddot{A}y=2ft$) near the windmill and coarser-grid ($\ddot{A}x=\ddot{A}y=16ft$) spacing near the domain boundaries. The total simulation time was 30 years (10950 days).

The boundaries of the model consisted of an impermeable aquifer bottom, "no flow" boundaries to the north and south, and specified head boundaries to the east and west. A "no flow " boundary is a term of art used to signify that groundwater flows parallel to this boundary, but will not cross it. We selected values for the specified head boundaries that created a hydraulic gradient equal to that measured by HGS, 0.05 feet/ foot. These values were 59.9 feet for the west specified head boundary and 10.3 feet for the east specified head boundary.

We used a recharge rate of 0.4 inches per year (in/yr). This recharge rate represents a regional average for the Ogallala aquifer in Lea County, NM (Nicholson and Clebsch, 1961). We assigned this recharge a chloride concentration of 127 mg/l, which we calculated by averaging chloride analysis of MW-1 and MW-2. We believe the water chemistry of MW-1 and MW-2 represents background water quality typically encountered in this region of the Ogallala aquifer.

We also assigned a concentration of 127 mg/l as the initial chloride concentration of the model domain. We defined the western (up gradient) boundary as a specified concentration and assigned it a concentration of 127-mg/l chloride to account for background chloride in groundwater that flows into the model domain.

To simulate a casing leak at the Conoco Federal #2, we used the injection well feature of the model with an injection rate of 0.001 gallons per minute (gpm) and a chloride concentration of 120,000 mg/l. The release was located in the upper-most model layer at an interval of 10 to 15 feet below the water table. The injection rate was determined by trial-and-error. We began with a release rate of 0.1 gpm and decreased the release rate until the injection well stopped creating a measurable groundwater mound around the injection well. A groundwater mound is a region of aquifer where groundwater elevations. Site data show no evidence of water table mounding near the Conoco Federal #2. The 0.001 gpm rate is the maximum possible rate justified by field data. The source concentration was based on an analysis of a composite sample of brine from three nearby oil and gas wells. These wells were the Carter 1, 2, and 3 (see Table 1).

We used the following values determined by RGE for the aquifer characteristics: horizontal hydraulic conductivity of 0.87 feet per day (feet/day), vertical hydraulic conductivity of 0.48 feet/day, storativity of 0.0001, and specific yield of 0.16.

We used a value of 8 feet as the longitudinal dispersivity (A_L) of the aquifer. This value is an average for sand and alluvial aquifers that we calculated from a dispersivity value compiled by Gelhar (1992).

Visual MODFLOW's default settings were used to calculate the transverse horizontal dispersivity (a_{TH}) and vertical transverse dispersivity (a_{TV}) . The default settings calculate these parameters acquiring to the following relationships:

$$a_{TH} = 0.1 * a_{L}$$

 $a_{TV} = 0.01 * a_{L}$

Plate 8 shows the predicted distribution of chloride in groundwater along a west to east cross-section after a 30-year release at Conoco Federal #2. The cross-section passes through the McCasland Windmill. Blue, vertical contours are groundwater equipotential lines and represent water table elevation. Green contours represent chloride concentration in mg/l. Arrows indicate the direction of groundwater flow.

The model predicts that chloride from a casing leak at Conoco Federal #2 would not cause concentrations above 130-mg/l chloride at the windmill well.

Note that the steep hydraulic gradient (0.05 feet/feet) causes the eastern portions of the upper model layers to go "dry." The dry cells are colored brown in plate 8. This is a function not of the model, but of the unrealistically steep gradient presented in the HGS report.

Scenario 2: Casing Leak with Hicks Consultants' Data

This simulation differs from scenario 1 in that we used aquifer properties, a hydraulic gradient, and a groundwater flow direction determined by Hicks Consultants rather than HGS and RGE.

For this simulation, we created a model domain with the same horizontal dimensions (992-feet by 480-feet), same release source (injection well), same simulation time (30 years), similar grid spacing, and same recharge condition (0.4 in/yr) as scenario 1. In addition, we also used a background chloride concentration of 127 mg/l to define the constant concentration of the west boundary, the chloride content of recharge

water, and the initial chloride concentration of the flow domain.

Rather than use four horizontal layers like scenario 1, we used a single layer with a thickness of 21 feet. This thickness represents the average saturated thickness of the Ogallala aquifer in the area of the McCasland Windmill well (see HGS boring logs for MW-1 – MW-3). We used a single layer because all monitoring wells are screened over the entire saturated thickness of the aquifer. Given the thin saturated thickness and small hydraulic gradient (0.005 feet/foot), we determined from our field data that groundwater flow at the site is primarily horizontal. We measured a hydraulic gradient of 0.005 feet/foot in March 2001.

Like Scenario 1, the boundaries of the model consisted of an impermeable aquifer bottom, no flow boundaries to the north and south, and specified head boundaries to the east and west. We specified the head of the west boundary at 23.3 feet and the head of the east boundary at 18.3 feet in order to define our measured hydraulic gradient of 0.005 feet/foot.

We introduced aquifer heterogeneity by using a smaller hydraulic conductivity value near the McCasland windmill well and a higher hydraulic conductivity in areas distal to the windmill well. Near the windmill well, hydraulic conductivity was assigned a value of 0.3 feet/ day, the value calculated in our analysis of the recovery data. For the area several hundred feet from the windmill well, we employed a hydraulic conductivity of 3.0 feet/day. Field data support this conductivity contrast. Mew A located 630 feet east of the windmill well can sustain a 20 gpm pumping rate, whereas the McCasland windmill well, MW-1, MW-2, and MW-3 produce only 1 gpm. We attribute this water yielding difference to aquifer heterogeneity and, therefore, included it in this simulation. The hydraulic conductivity of 3.0 feet/day is the lowest value we found in published reports on the Ogallala aquifer (Nativ and Smith, 1987).

Other values of aquifer characteristics were a specific yield of 0.13 and longitudinal dispersivity of 8 feet. The longitudinal dispersivity was calculated as described in Scenario 1 as were the horizontal and vertical transverse dispersivities. The value of the specific yield represents a median value for the Ogallala aquifer in eastern New Mexico and west Texas (Nativ and Smith, 1987).

Plate 9 presents the results of this simulation. The plate is in plan view. Red contours represent chloride concentration in mg/l, blue contours are water table elevation, and arrows show the direction of groundwater flow. Using the more realistic hydraulic gradient, the model predicts about 130 mg/l chloride at the windmill, and 127 mg/l chloride at MW-3. The model also predicts that Mew A will show chloride concentrations

above background. The simulation does not agree with field conditions, which show 775 mg/l and 1564 mg/l chloride at MW-3 and McCasland windmill well, respectively and background chloride levels at Mew A.

Results of this simulation demonstrate that a casing leak from Conoco Federal #2 could not cause the observed impairment at the windmill well.

5.4 Literature Research of Bromine and Chlorine in Groundwater

Because of concern due to salination of groundwater, many researchers have studied the intrusion of chloride in groundwater. We searched the World Wide Web and the University of New Mexico Libraries for research on the subjects of salt-water impairment and determination of chloride sources. Many investigations have relied upon ratios of stable cations and anions such as chloride and bromide to determine the origin of salt-water intrusion into fresh water supplies. Dr. Alan Dutton of the Bureau of Economic Geology at the University of Texas at Austin has conducted several studies pertaining to the origin of brine into groundwater. Two of Dr. Dutton's studies seem particularly relevant to the McCasland windmill well issue.

The first study, "Identification of Sources and Mechanisms of Salt-Water Pollution Affecting Ground-Water Quality: A Case Study, West Texas," (1990) discusses methods to identify different sources of chloride intrusion to shallow ground water (less than 400 feet below ground surface). This study states that ratios of several types of ions such as Br/ Cl can be used to distinguish between salt water intrusion from dissolution of halite (natural sodium chloride in the ground), and salt water intrusion from oil and gas production in the eastern Midland Basin. The authors state that differentiation of chloride sources using such ratios is clearest when the Total Dissolved Solids are above 10,000 mg/l. In the 1990 paper, the authors site a study written by Richter and Kreitler (1986) that states : "Whether these ionic ratios can be used to distinguish between salt-water sources where salinity is less than 5,000 mg/l has not been determined."

We telephoned Dr. Dutton in Austin to discuss the matter further. Dr. Dutton stated that he believed that using Cl/Br ratios of water below 10,000 TDS was probably not valid in part due to analytical instrumentation accuracy errors for bromine at concentrations that are around 1-4 parts per million. We also conducted email correspondence with Dr. Kenneth Rainwater of Texas Technological University in

HINKLE LAW FIRM — Supplemental Expert Report July 2001

Lubbock. Dr. Rainwater, a professor and researcher at Texas Tech University, stated that the bromine concentrations in groundwater at Texas Tech are normally between 1-4 parts per million.

Another study, "Origin, distribution, and movement of brine in the Permian Basin (U.S.A.): A model for displacement of connate brine," (Dutton, 1993) is a discussion of different types of naturally occurring brines in the Permian Basin. The introduction of the paper includes discussion of Ca-Cl brine, defined by a low Na/Cl (<.8) molal ratio and a Ca/SO_4 +HCO₃ equivalent ratio much greater than 1. The body of the paper states that most areas in the Permian Basin, including the Midland Basin, are indicative of Na-Cl brines. However, the Permian Basin in the southeastern portion of New Mexico, known as the Delaware Basin, is an area where Ca-Cl brine is not uncommon. The paper then states that Cl/ Br weight ratios are low in Ca-Cl brine. We calculated the molal ratio of Carter #1,2,3 (oil wells near the McCasland windmill). The molal ratio is approximately 0.55, well below 0.8. We also calculated the Ca/ SO_4 +HCO₃ ratio; that ratio is 16, well above 1. Therefore, we believe that the McCasland windmill well is in an area of naturally occurring Ca-Cl brine. This type of oilfield brine (produced water) exhibits a Cl/Br ratio close to that of natural groundwater.

Finally, we examined the chloride and bromine concentrations of natural groundwater near White Sands National Monument. Here gypsum (CaSO₄ -2H₂O), a mineral similar to anhydrite, is common. Chemical data from the U.S. Geological Survey Water-Resources Investigations Report 93-4192 are shown in Table 1. Chloride concentration exceeds 1,000 mg/l in most wells and bromide ranges from 0.31 to 21.0 mg/l. The average Cl/Br ratio of these data is greater than 2000.

6.0 Discussion of Plantiff's Hypotheses Regarding the Source of Chloride

6.1 Hydrogeology of the Ogallala Formation

The lithologic logs of monitor well Mew A, MW-1, MW-2, and MW-3 suggest that the principal water-bearing zone is a coarse-grained sand and gravel unit at the base of the Ogallala Formation. This saturated, coarse-grained basal unit is typical of the Ogallala Formation (Nicholson and Clebsch, 1961). We observed no evidence of evaporites (e.g. anhydrite or gypsum) in these logs.

Nevertheless, the driller's log for the McCasland windmill well describes "anhydrite" as the dominant lithology of the saturated zone. One other nearby windmill (Mew 4 on Plate 3 and State Engineer File L-10,044 #3 in Appendix A) also describes "anhydrite" within the saturated zone. Evaporites like anhydrite or gypsum are described as "common as a secondary mineral" (Nicholson and Clebsch, 1961) in the Chinle Formation (red beds) which underlie the Ogallala. The driller's log for windmill well Mew 4 (see Plate 3) also describes anhydrite in the saturated zone. These data suggest that the McCasland windmill well and, perhaps Mew 4, may penetrate a portion of the Chinle Formation that contains gypsum and other evaporite minerals. These evaporite minerals could contribute chloride, sodium, calcium, and other constituents to groundwater. Such an occurrence would be uncommon, but not unique.

Mew A, a 4-inch well similar to MW-2 and the McCasland windmill well, produced 15-20 gpm for more than 30 minutes without significant water level drawdown. Although the lithology of the HGS wells (MW-1, MW-2 and MW-3) appear similar to that encountered in Mew A, perhaps the area near the windmill well is finer-grained due to the presence of evaporite minerals such as anhydrite. The relatively uniform water production characteristics of all wells in the area near the McCasland windmill suggest a lower hydraulic conductivity than the area near Mew A. An earlier hypothesis regarding poor well development techniques at the windmill site causing the observed poor production from the monitor wells and windmill no longer appears valid. Pumping 700 gallons of water from MW-2 during the pumping test should have been sufficient to fully develop the well, and the pumping test data represent the condition of the aquifer, not the efficiency of the wells.

Plate 5 shows the potentiometric surface derived from August 1999 water level measurements in four windmills and in the monitor well Mew A. These data support a regional groundwater flow direction from the northwest to the southeast at a gradient of 0.004, similar to that reported by Nicholson and Clebsch (1961).

At the McCasland windmill site, we observed a slightly different groundwater flow direction and a minor difference of hydraulic gradient. The groundwater flow direction is east-northeast at a gradient of 0.003. Our observations, presented in Plate 7, represent the potentiometric surface at the McCasland windmill site during the time of our study. Periodically, climatic conditions, such as drought, could cause groundwater at the McCasland windmill site to flow east-southeast, similar to the observed regional flowpath. Conversely, a low permeability zone near the McCasland windmill could cause perturbations in the flow direction. At the windmill site, groundwater may always flow eastnortheast.

This groundwater flow direction, away from the windmill, does not support the plaintiff's hypothesis that a casing leak contributes chloride to the windmill water.

Natural evaporite minerals, such as gypsum, can cause high concentrations of chloride in groundwater. This relationship is observed near White Sands National Monument. Evaporite minerals at the windmill site may be the cause of the observed chloride in groundwater.

6.2 Groundwater, Produced Water, and Storage Tank Chemistry

Analytical results from the August 1999 investigation of the McCasland windmill well differ from the results of the August 1998 sampling event, as well as from the results obtained by Mewbourne in its March 1998 investigation (see Table 1). Although 1999 analyses show the water to be still dominated by calcium chloride, the total dissolved solids analysis is 50% less than the results from March 1998. The concentration of other cations and anions in analyses from the 1999 investigations are also significantly lower than the result from the 1998 analysis.

However, the August 1999 laboratory analysis of the McCasland water storage tank (McCasland Tank in Table 1) is very similar to the 1998 analyses of the McCasland windmill well. The calcium, chloride, sodium, and sulfate concentrations are about 25% higher in the 1999 analysis of the water storage tank than in the 1998 analyses of the windmill well. In contrast, the sulfate and magnesium concentrations of the water storage tank (1999) are essentially the same as the 1998 analyses of the windmill well. The analyses and our observation of a leaking check valve between the storage tank and windmill well suggest that the 1998 samples from the McCasland windmill well were a mixture of water from the Ogallala and backflow from the well's water storage tank.

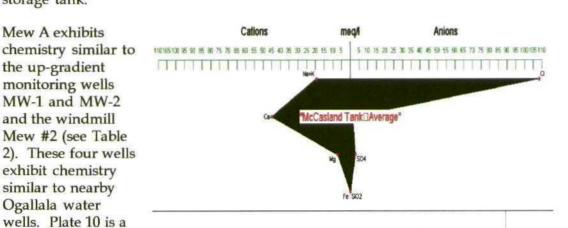
The observed higher TDS of the water in the storage tank than the water pumped from the McCasland windmill well may be explained if residual oilfield material, calcium chloride, cattle salt licks, or other occult material was once in the adjacent storage tank. An alternate explanation is evaporation of water from the storage tank over a ten-year period and the consequential increase in salinity of the stored water. We understand that the windmill has not been used very much since the well was originally drilled. Evaporation could cause the TDS to increase in the storage tank. However, we observed the storage tank leaking on two occasions: at our March 2001 field program and the May 2001 field program. We also observed patches on the tank suggesting past leakage. If leakage from the tank occurred in the past, combined with periodic pumping to re-fill the storage tank, then concentration of salt in the tank due to evaporation is less likely.

Despite the difference in TDS, the "chemical signature" of the tank water is essentially the same as the water derived from the windmill. Figures 5 and 6 are Stiff diagrams that display the chemical constituents in water from the tank and the windmill. The similar shape of the diagram indicates that the waters exhibit similar chemical "signatures." The elongated triangle on the upper right of the figures show that both waters are dominated by the chloride anion. The left side of the figures show

that calcium is the dominant cation. The cations sodium and magnesium are also present in these samples. The anions sulfate and bicarbonate are present in low concentrations.

Figure 5: Stiff Diagram of the water from the McCasland Storage Tank

MW-3 presents the same general composition as the windmill and storage tank.

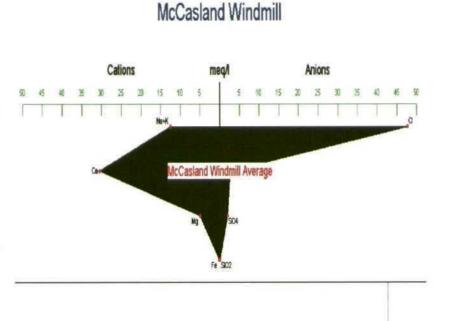

Mew A exhibits

the up-gradient

monitoring wells MW-1 and MW-2 and the windmill

Mew #2 (see Table

exhibit chemistry similar to nearby Ogallala water wells. Plate 10 is a

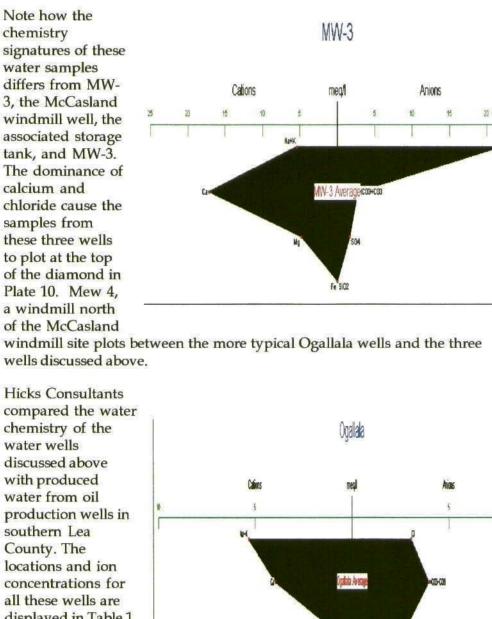

McCasland Tank

Piper tri-linear diagram that displays the chemical "signature" in a manner somewhat different from the Stiff diagrams but using the same chemical concepts. Plate 10 plots all samples shown in Table 1. In this plate, Ogallala water contains nearly equal amounts of sodium, calcium,

Figure 6: Stiff Diagram of the water from the McCasland Windmill

chloride and bicarbonate. Thus these waters plot near the middle of the cation and anion triangles at the bottom of the plate. As a result of this "balanced" chemistry, these waters plot in the center of the uppermost diamond of the Plate. Figure 8 is

a Stiff diagram



25

CI

showing the chemical composition of these low-chloride Ogallala well samples.

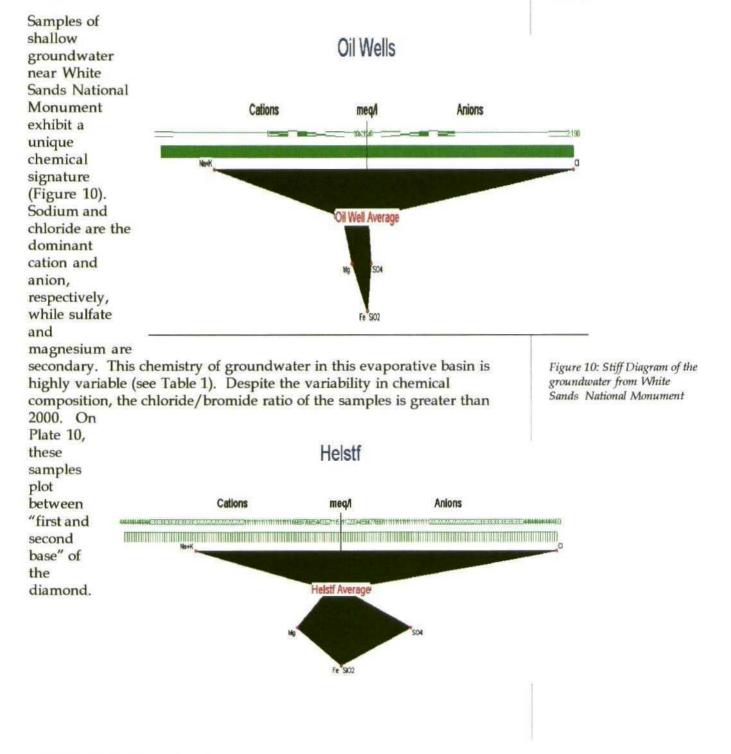
Figure 7: Stiff Diagram of the water from MW-3

4 80

Figure 8: Stiff Diagram of the unimpaired water from the Ogallala Aquifer

格

compared the water chemistry of the water wells discussed above with produced water from oil production wells in southern Lea County. The locations and ion concentrations for all these wells are displayed in Table 1. Figure 9 shows that produced water in this area is dominated by sodium and


HINKLE LAW FIRM - Supplemental Expert Report July 2001

chloride. Calcium and carbonate are present in equal amounts, but

significantly less than sodium or chloride. On Plate 10, these samples are concentrated on the right-hand corner of the diamond. As mentioned earlier, bromine is not exceptionally concentrated in produced water of this particular chemical signature.

Figure 9: Stiff Diagram of the water from an Oil well in Lea County

According to <u>Groundwater Hydrology</u> (D. Todd, Wiley 1980) one can use a Piper Tri-linear diagram to verify the composition ("signature") of a mixture of two waters:

Simple mixtures of two source waters can be identified; for example, an analysis of any mixture of two waters will plot on a straight line AB on the diagram, where A and B are the positions of the analyses of the two component waters.

Ogallala groundwater mixed with sodium chloride-rich produced water from a casing leak would plot between the Ogallala and produced water groupings. As Plate 10 illustrates, the McCasland windmill well does not plot on a line between these two groupings. This evaluation further demonstrates that observed chloride in groundwater at the McCasland windmill well is not the result of a casing leak or other release of oil fieldproduced water. In fact, the water in MEW 4, MW-3, and the McCasland windmill is more similar to the natural groundwater near White Sands Missile Range than a mixture of Ogallala and produced water.

6.3 Lithology and Chemistry of the Soil Zone at the McCasland Windmill Site Well Pad

Despite the observed difference between the vegetation due north of Conoco Federal #2 and the surrounding countryside (see Figure 4), there was no evidence of drilling mud and/or oil field waste. Obviously, the area north of Conoco Federal #2 was disturbed by oil field operations and minor amounts of debris (cement, wire rope, etc.) were placed in the pit. The chemical analyses of soil, which show chloride values below 20 mg/ kg, do not suggest disposal of any material such as calcium chloride.

We also excavated three additional observations trenches: adjacent to the windmill well, adjacent to Conoco Federal #2, and adjacent to the watering trough. Our examination of the subsurface found natural eolian sand with no evidence of waste disposal or releases. These data suggest that:

- disposal of bentonite drilling mud did not occur near Conoco Federal #2;
- disposal of calcium chloride did not occur near Conoco Federal #2; and material in soil near Conoco Federal #2 is not the source of the calcium chloride observed in the McCasland windmill well.

R.T. HICKS CONSULTANTS, LTD.

6.4 Modeling Results

The modeling results do not support the hypothesis that an ongoing hypothetical casing leak from Conoco Federal #2 is the source of chloride at the site. Using two different flow domains (HGS and Hicks Consultants), the model did not predict sufficient up gradient migrations of chloride to account for the concentration observed in the windmill well.

7.0 Conclusions

We evaluated the plaintiff's hypothesis to explain the observed chemistry of the McCasland windmill well. Hicks Consultants has:

- · sampled surface soil
- · sampled groundwater
- · drilled, sampled and measured water levels in monitor wells
- · conducted a pumping test
- performed simulation modeling of flow domains
- · examined the historical practices used by Mark Production
- examined the storage tank
- · sampled and measured water levels at nearby windmills

Throughout the course of a three-year investigation, a significant volume of data are available to test these hypothesis. We have summarized all of these data in this report.

No hydrogeologic data or modeling support the hypothesis that a casing leak from Conoco Federal # 2 is releasing brine and attendant chloride to groundwater.. Groundwater flows from Conoco Federal #2 to the east, away from the McCasland windmill. Any chloride released from the well would migrate east and not "uphill" to the windmill.

No groundwater chemistry data support this hypothesis. The sodium/ calcium ratio of the windmill water is significantly different from that of the subsurface brine that would originate from a casing leak. The trilinear diagram demonstrates that a mixture of produced water of the area and normal Ogallala water (i.e. Mew A) of the area would not produce the chemistry we observe in the McCasland windmill. The

R.T. HICKS CONSULTANTS, LTD.

bromine concentration of the windmill and MW-3 is within the range of natural Ogallala groundwater. Additionally, Bein and Dutton, (1993) and Richter, Dutton and Kreitler (1990) state that using bromine/ chloride ion ratios to determine the source of salinity is not valid for the observed conditions near the McCasland windmill well. This area of the Permian Basin contains Halite Ca-Cl brines (as discussed earlier). Therefore, we conclude that a casing leak has not impaired the McCasland windmill well water quality.

The size of the chloride-rich groundwater zone is very small. Excellent quality Ogallala groundwater exists only 50 feet west (up gradient) of the McCasland windmill well in MW-1 and MW-2. Excellent quality Ogallala groundwater exists 600 feet down gradient (east) of the McCasland Windmill well in Mew A. Chloride concentration in MW-3, which is about 100 feet south (cross-gradient) from the McCasland windmill well, is 33% of the chloride concentration observed in the windmill. Assuming this chloride concentration gradient is relatively uniform to the south, then chloride concentration in groundwater would meet New Mexico groundwater standards within 240 feet south of the windmill well. We conclude the size of the chloride-rich groundwater zone is less than 480 feet (north-south) by 500 feet (east-west).

No evidence supports a conclusion that activity of Mark Production or Mewbourne Oil caused the observed chloride in groundwater at the McCasland windmill site. We found no evidence of high chloride concentrations in soil from samples taken throughout the area surrounding Conoco Federal #2. We found no evidence of historical practices that suggest disposal of chloride-rich material by Mark Production. Monitoring well data demonstrate that Mewbourne's activities up gradient from the McCasland windmill site have not impaired groundwater quality.

We conclude that the cause of the chloride-rich groundwater zone at the McCasland windmill site cannot be determined with existing data. The cause may be natural or man-made.

If the calcium and chloride in groundwater at the site is a result of natural gypsum or anhydrite in the saturated zone, as the preponderance of existing data suggest, then mechanical means cannot "restore" groundwater quality. The observed groundwater quality is natural. The New Mexico Oil Conservation Division cannot require a remedy or any regulatory action under this condition.

HINKLE LAW FIRM — Supplemental Expert Report July 2001

R.T. HICKS CONSULTANTS, LID.

If an unknown man-made source caused the chloride-rich groundwater zone, the New Mexico Oil Conservation Division has the regulatory authority to require a responsible party to implement a remedy. However, available data do not permit identification of the responsible party. In fact, the preponderance of data suggests the chloride is a natural phenomenon. Because our investigations conducted to date fully satisfy all regulatory obligations of Mewbourne in this matter, the NMOCD or other parties must perform additional investigation to confirm the exact cause of the chloride in groundwater. Drilling a boring/well near the windmill may determine if the chloride is natural or man-made. This boring/well, chemical analyses and professional labor for this effort would cost about \$5,000. If the boring/well suggests that the chloride is man-made, collecting the additional evidence to identify a responsible party would cost about \$15,000. This second effort involves historical research, additional borings/wells, chemical analyses, etc.

Given the small zone of chloride-rich groundwater at the McCasland windmill site, we conclude that the neither the New Mexico Oil Conservation Division nor other parties would implement a \$20,000 program to identify the source of the impacted zone.

If a subsequent investigation suggests that man caused the chloride-rich zone of groundwater and additional investigation clearly identified a responsible party, then the New Mexico Oil Conservation Division would permit a monitored natural attenuation remedy at the site. The cost of implementing this approach at the site is a \$200.00 to \$300.00 per year monitoring program for 10-20 years. Installation of a pumping system in MW-1 or MW-2 to supply sufficient high-quality water to permit increased cattle grazing would be part of this remedy. The total present value cost of this effective remedy is about \$5,000.

We conclude that the New Mexico Oil Conservation Division would not require installation of a reverse osmosis, pump-and-treat groundwater remedy as suggested by ECD.

We conclude that the investigations conducted to date fully satisfy the regulatory obligations of Mewbourne in this matter. Mewbourne should not conduct additional investigation or inquiry at this site. Mewbourne should not implement any groundwater restoration program at this site.

R.T. HICKS CONSULTANTS, LTD.

8.0 References

Basabilvazo G. T., R. G. Myers, and E. L. Nickerson. 1994. Geohydrology of the High Energy Laser System Test Facility Site, White Sands Missile Range, Tularosa Basin, South-Central New Mexico. U.S. Geological Survey Water-Resources Investigation Report 93-4192. U.S. Geological Survey, Denver, Colorado, 59 p.

Bein A., and A. R. Dutton. 1993. Origin, Distribution, and Movement of Brine in the Permian Basin (USA): A Model for Displacement of Connate Brine. Geological Society of America Bulletin, Volume 105. 695-707 p.

Domenico, P., and F. Schwartz. 1982. Physical and Chemical Hydrogeology. John Wiley and Sons, Inc., New York. 506 p.

Gelhar, L. W., C. Welty, and K. R. Rehfeldt. 1992. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resources Research, Volume 8, Number 7, 1955-1974 p.

HydroGeologic Services, Inc (HGS). 2001. McCasland Ranch Initial Site & Groundwater Investigation Hobbs, New Mexico. Prepared for McCasland Ranch, January, 2001.

Nativ, R., and D. A. Smith. 1987. Hydrogeology and Geochemistry of the Ogallala Aquifer, Southern High Plains. Journal of Hydrology, Volume 91, 217-253 p.

Nicholson, A., Jr., and A. Clebsch, Jr. 1961. Geology and Ground Water Conditions in Southern Lea County, New Mexico. U.S. Geological Survey Ground-Water Report 6. New Mexico Bureau of Mines & Mineral Resources, Socorro, New Mexico, 123 p.

Richter, B. C., A. R. Dutton, C. W. Kreitler. 1990. Identification of Sources and Mechanisms of Salt-Water Pollution Affecting Ground-Water Quality: A Case Study, West Texas. Bureau of Economic Geology Report of Investigation No. 191. University of Texas at Austin, Austin, Texas, 43 p.

TABLES

1

È

11.5

		Source	5	e E	δ	¥	<u>م</u>	Ra	r Z	Ū	L	Nitrate	Nitrite	Nitrate Nitrite PhosphorusOrtho P.	Ortho P.
Carter 1, 2, 3		Hicks Sampling													
	4/3/01	2001	8630	1.37	3590	1700	4.3	44800	ND	125000	DN	127			ND
Conoco Fed #2 3/	3/10/71	Mewbourne Oil Data	7199		4014			58745		113462					
		Roswell Geologic Society													
		Nicholson and Clebsch													
Oil Well 83	1956	1961	5240	0	2527			30900		62000					
		Roswell Geologic Society													
		Nicholson and Clebsch													
Oil Well 89	1956	1961	300	100	QN			10000		12000					
		Roswell Geologic Society													
		Nicholson and Clebsch													
Oil Well 90	1956	1961	5330	113	1830			43700		82300					
		Roswell Geologic Society													
		Nicholson and Clebsch													
Oil Well 92	1956	1961	3375	10	0			19500		44325					
		Roswell Geologic Society													
		Nicholson and Clebsch				_									
Oil Well 93	1956	1961	7000	75	0			47500		103898					

Table 1: Water Analyses

- - -----

ļ

1

I.

1

4	
U	

I I R

li

in La H

0

Well #	Sulfate	HC03	Conductivity	TDS	Bromine	Silver	Arsenic	Barium	Cadmium	Chromium	Mercury	Lead 2	Selenium	Benzene	Toluene	e Ethylbenzer	Sulfate HCO3 Conductivity TDS Bromine Silver Arsenic Barium Cadmium Chromium Mercury Lead Selenium Benzene Toluene Ethylbenzene Total Xylenee Total	HGT 25
Carter 1, 2, 3																		
Production Wells	1110	237	296000	196000														
Conoco Fed #2	1700	243																
	0000			00720														
UII Well 83	2080			934UU														
Oil Well 89	3200	710		37000														
Oil Well 90	2250	428		141300													 	
Oil Well 92	1689	744		81208													 	
Oil Well 93	1402	469		166800														

Table 1: Water Analyses

Page 2 of 6

: |

i

i

11

H Lil

.

1

i.

Ortho P.		Q		Î	Q	2.5		1						QN		QN	Г <u> </u>	Q		Q	2	Q	!
Nitrate Nitrite PhosphorusOrtho P.									43	Ð		43							ç	2	ũ		
Nitrite	DN	QN			QN	0.5	QN	0.2	QN	DN		DN		QN		QN		QN		Ĩ		Q	:
Nitrate	2.2	2.69	2.445	£	1	0.5	1.6	1.5	1.8	1.7	2.4	1.8		1.42		1.52		1.48	1 64222	V 1	-	Q	-
u.	QN	QN			QN	0.5	QN	0.2	Q	Q	1	QN		Q		QN		QN			CN CN	Q	
σ	2450	5230	3840	1771	1930	5000	1130	1400	1500	1100	1300	1500	1340	1420	1290	1580	1450	1620	27 0871	002	870	679	774.5
Zn		1.21	1.21		3.8									0.27		0.08		0.05	ų F	CO.T		Q	1
R	447	438	442.5	285	373		244		344	334	194			247		258		266	977 COC	188	143	97.6	120.3
S		31.5	31.5		21.8									23.8		24.1		23.4	72 77E	E.1.E.1.2		23.2	23.2
¥	9.4	11.7	10.55	7.4	8.3		6.2		8.9	8.5	9.07			6.9		7.5		7.4	23302 2 CCCA 13	9	σ	- 2	. 8
Mg	87.4	94.5	90.95	90	73.9		48.4		64.6	62.3	46.9			52.9		56.7		57.1	ררכא 14	38	57 3	50.9	59.1
Fe	0.27	2.94	1.605		19.9		1.93							0.07		QN		QN	5 7 2	2		0.15	0.15
S	916	893	904.5	700	749		411		692	869	525			531		592		610	617	308	303	295	344
Source	Hicks (Sept. 99 Report)	Hicks Sampling 2001		Hicks (Sept. 99 Report)	Hicks (Sept. 99 Report)	Bybee NMOCD Files	Hicks (Sept. 99 Report)	Bybee NMOCD Files	HGS (Jan. 01 Report)	HGS (Jan. 01 Report)	Olson NMOCD Files	HGS (Jan. 01 Report)	Bybee NMOCD Files	Hicks Sampling 2001	Bybee NMOCD Files	Hicks Sampling 2001	Bybee NMOCD Files	Hicks Sampling 2001		Ruhae NMOCD Files	HGS (Jan. 01 Report)	Hicks Sampling 2001	
Date	8/17/99	3/28/01		3/31/98	9/1/98	1/25/99	8/16/99	9/17/99	11/28/00	11/28/00	11/28/00	12/26/00	12/27/01	3/27/01	3/28/01	3/28/01	3/29/01	3/29/01		8/16/00	1/8/01	3/27/01	
Well #	McCasland Tank	McCasland Tank	McCasland Tank Average	McCasland Windmill	McCasland Windmilt	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	McCasland Windmill	"McCasland Water well"	WW-3	WM-3	MW-3 Average

......

0

Table 1: Water Analyses

ļ

I

I

l

| ;

Page 3 of 6

l ;

3.10

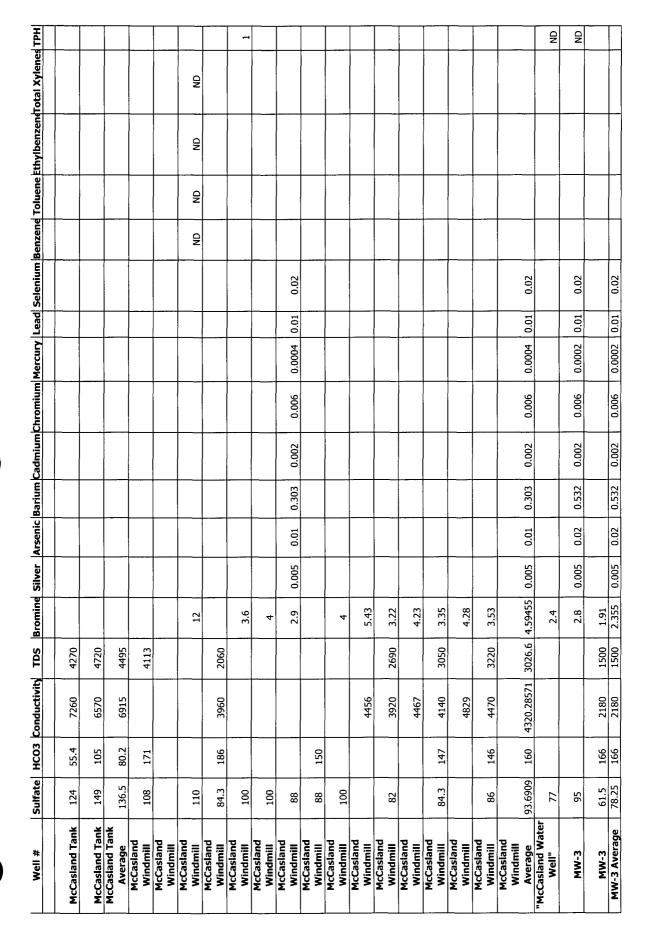


Table 1: Water Analyses

Page 4 of 6

 \mathbb{C}

- 11

ŀ

0

Ortho P.	-												Ð			Q				Q	QN	[2	1.9	Ţ						<u> </u>		<u></u>
Nitrate Nitrite Phosphorus Ortho P.												QN			Q														_						
Nitrite													QN			Q			QN	Q	QN			<u>s</u>	2	Q									
Nitrate												1,8	1.37	1.585	1.1	0.62	0.86		m	3.3	1.66	2.65333		0,0		0.5							0.5		4.6
Ľ												Q	Q		Q	Q			QN	0.3	QN	0.3		6.0	-	0.6					_		1.8		3.6
σ	750	46000	33000	4500	46000	12000	28300	2400	670	1200	935	100	133	116.5	130	146	138		121	120	105	115.333		114	5	453			32		61		208		50
Zn													Q			Q					QN		4			Q									
Ra	2100	28000	17000	4400	3800	1200	10880	2500	2000	2300	2150	67.4	59.2	63.3	70.8	62	66.4	81	76.5		59	72.1667	Ş	50T		275			71		_		563		100
Si	0.03	0.0076	0.014	0.019	0.016	0.02	0.01532	0.025	0.022	0.021	0.0215		22.2	22.2		28.1	28.1				24	24	r c	72./		22									
×	29	450	270	98	86	34	190	53	27	60	43.5	4.4	4.2	4.3	4.5		4.75	4	4		3.5	3.83333	;	77		15.5									
БМ	410	4800	2200	550	680	210	1688	420	370	510	440	12.7	13.3	13	14.2	15.4	14.8	16	15		10.4	13.8		18.9		52.8							31		20
Fe	0.03	1.1	0.6	0.09	0.1	0.08	0.394	0.05		0.04	0.04		QN			1.13	1.13		pu		0.06	0.06		0.0		0.6									
S	440	760	1000	590	720	370	688	390	69	360	214.5	90.4	92.2	91.3	83.4	95.8	89.6	88	86.3		85.2	86.5	, co	29.2		310			68				20		40
Source	USGS Report 93-4192		USGS Report 93-4192	USGS Report 93-4192	USGS Report 93-4192		HGS (Jan. 01 Report)	Hicks Sampling 2001		HGS (Jan. 01 Report)	Hicks Sampling 2001		Bybee NMOCD Files	Hicks (Sept. 99 Report)	Bybee NMOCD Files	Hicks Sampling 2001		Hicks	Ruhee NMOCD Files	Hicks	(Sert. 99 Report)	USGS	Nicholson and Clebsch	1961	USGS	NICHUSON AND CIEDSUN	nses	Nicholson and Clebsch 1961	nses	Nicholson and Clebsch 1961					
Date	5/14/90	06/6/9	6/10/90	6/11/90	6/11/90	6/11/90		7/2/90	11/21/84	4/3/89		1/8/01	3/27/01		1/8/01	3/27/01		8/16/99	8/17/99	8/20/99	3/27/01		00, 170	06/T/A	CC 10-2 1-	9/1/98			9/19/29		9/9/58		8/1/42	-	7/31/54
Well #	HELSTF-1	HELSTF-2	HELSTF-2	HELSTF-2	HELSTF-2	HELSTF-2	AverageHELSTF-2	HELSTF-3	MAR-CW	MAR-CW	AverageMAR-CW	T-WM	MW-1	MW-1 Average	MW-2	Z-WM	MW-2 Average	Mewbourne A	Mewbourne A	Mewbourne A	Mewbourne A	Mewbourne A Average		Windmill #7		Mewbourne 4			Ogallala 7		Ogallala 29		Ogaliaia 30		Ogallala 31

Table 1: Water Analyses mg/l

T

÷

ļ.

Page 5 of 6

(

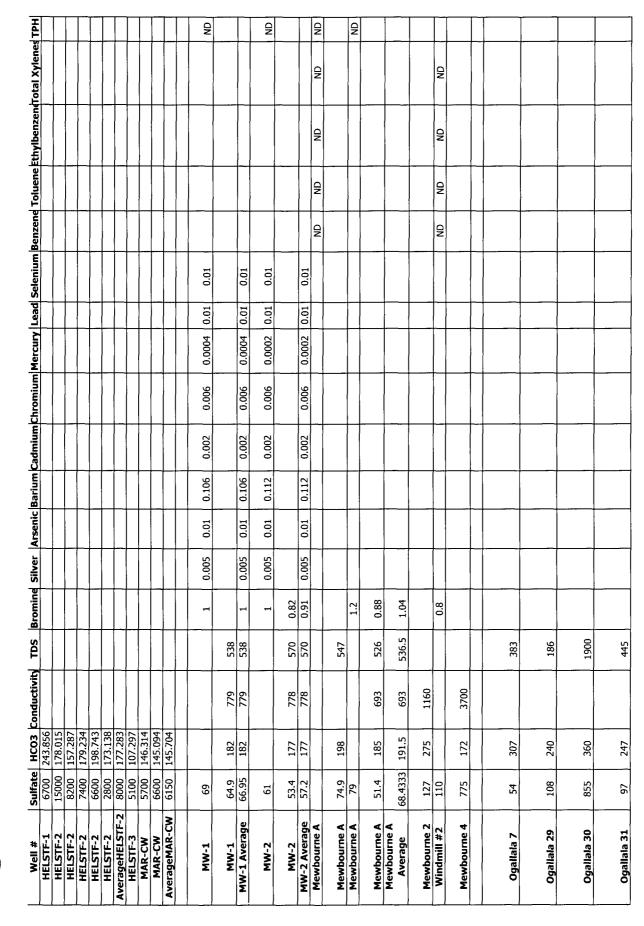


Table 1: Water Analyses

Table 2: Field Measurments for Mewbourne Oil Project

Well Name on Plate 4		Distance between ground and measuring point	Depth to Groundwate	er	Groundwater Elevation
McCasland Windmill	3558	·	1	78	3481
Mew #2	3545		1 5	5.5	3490.5
Mew #3	3540	1.	5	57	3484.5
Mew #4	3572		1	58	3515
Mewbourne A	3553		1 72	.99	3481.01

	RTHicks Survey (feet above (+) / below (-) MW2)	*TOC (feet)	DTW (feet)	Hicks's relative elevation (feet)	HGS's relative elevation (feet)
Mew A	-4.81	95.19	73.21	21.98	
MW1	-0.58	99.42	79.87	19.55	20.19
MW2	0.00	100.00	80.51	19.49	22.77
MW3	-1.35	98.65	79.53	19.12	16.78
Windmill	-1.25	98.75	79.50	19.25	

*datum 200 feet below MW2 top of screen

11 11

D

i

i

Table 3: Chemical Analyses of Soil at Conoco Federal #2

	Chloride	Fluoride	Sulfate	Sulfate Calcium	Iron	Mg	X	Sodium
Test Pit #1, 6 feet deep	5.1	pu	23.8	2880	1390	1470	292	pu
Test Pit #2, 9 feet deep	6.2	1.9	31.1	413	2250	348	428	106
Test Pit #3, 7 feet deep	2.1	pu	9.8	257	1270	150	238	pu
Test Pit #4, 7 feet deep	15.4	pu	11.7	1530	1740	242	338	62.7

1

11.

. | |

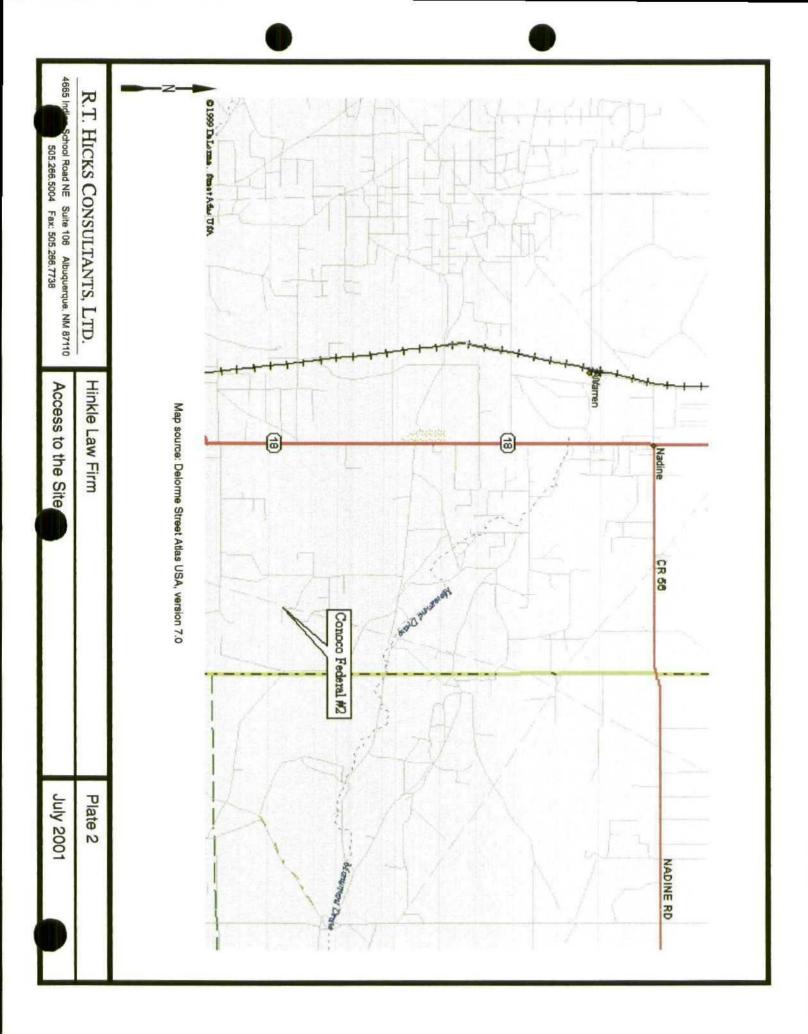
I I

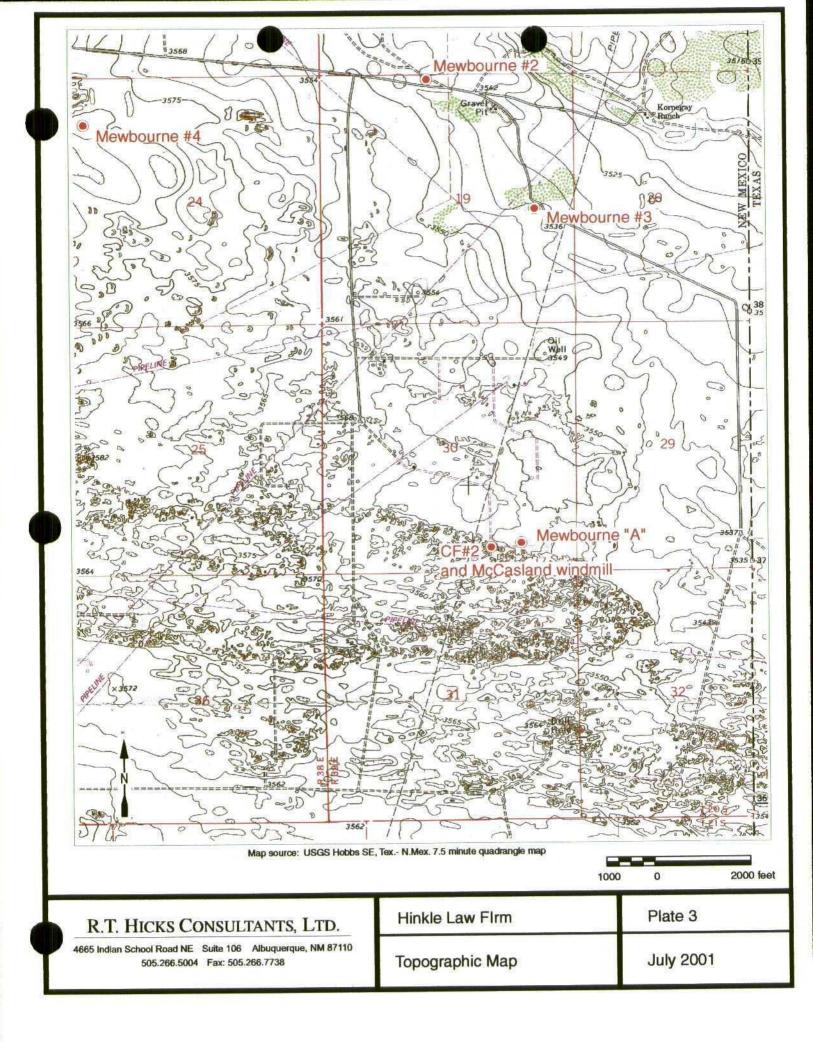
\$

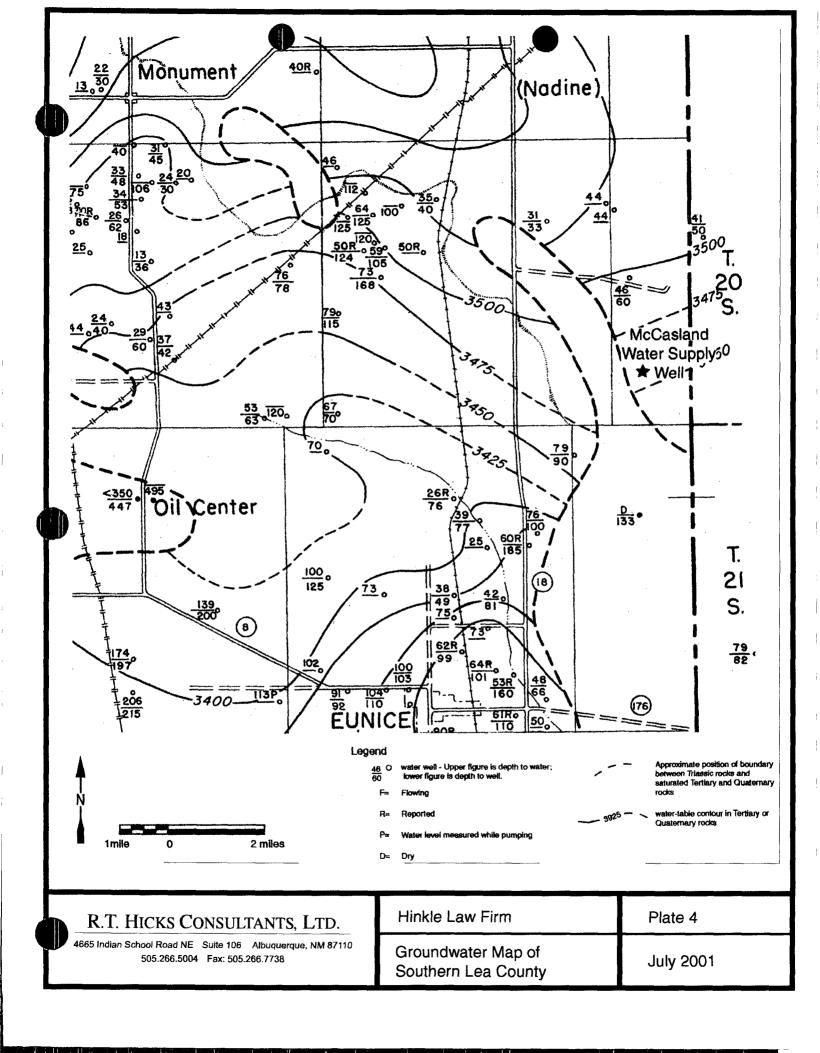
PLATES

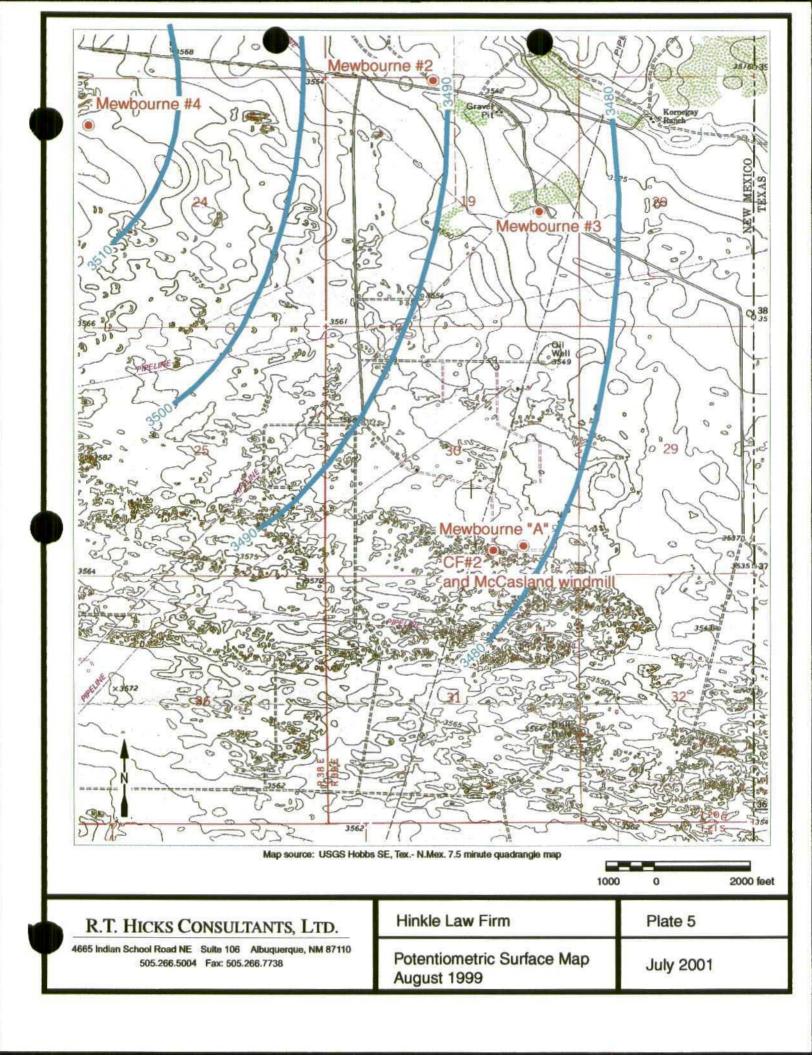
-

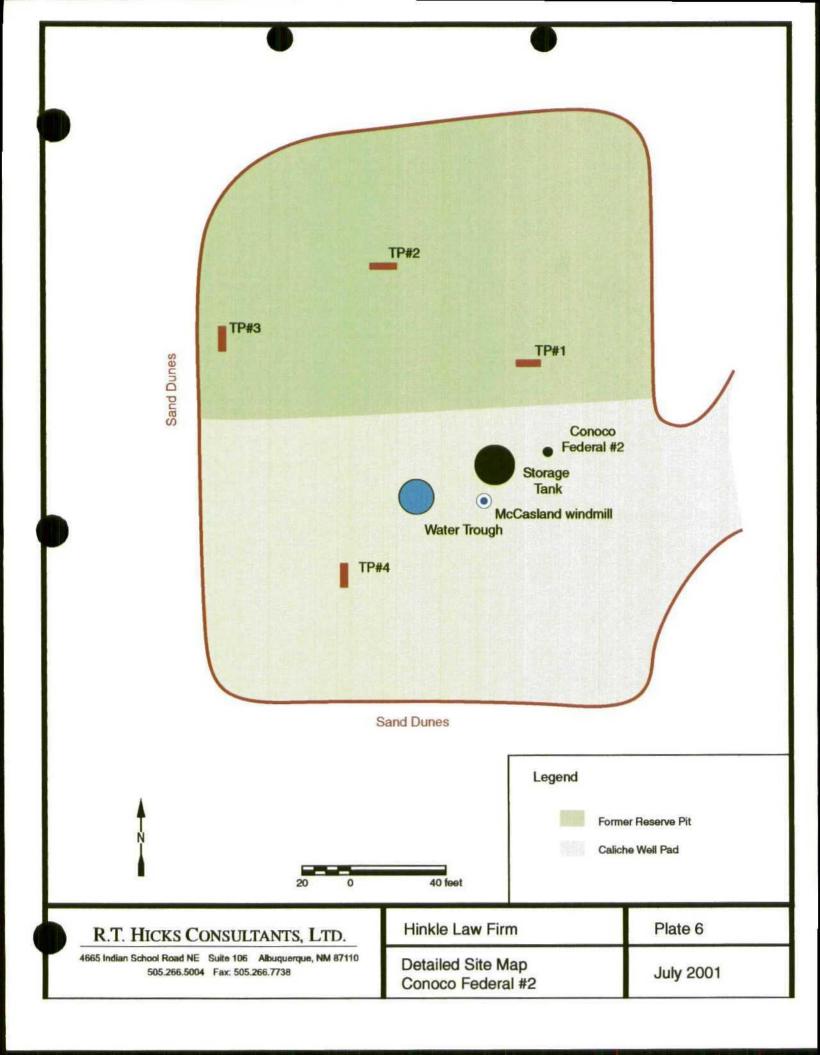
Ţ

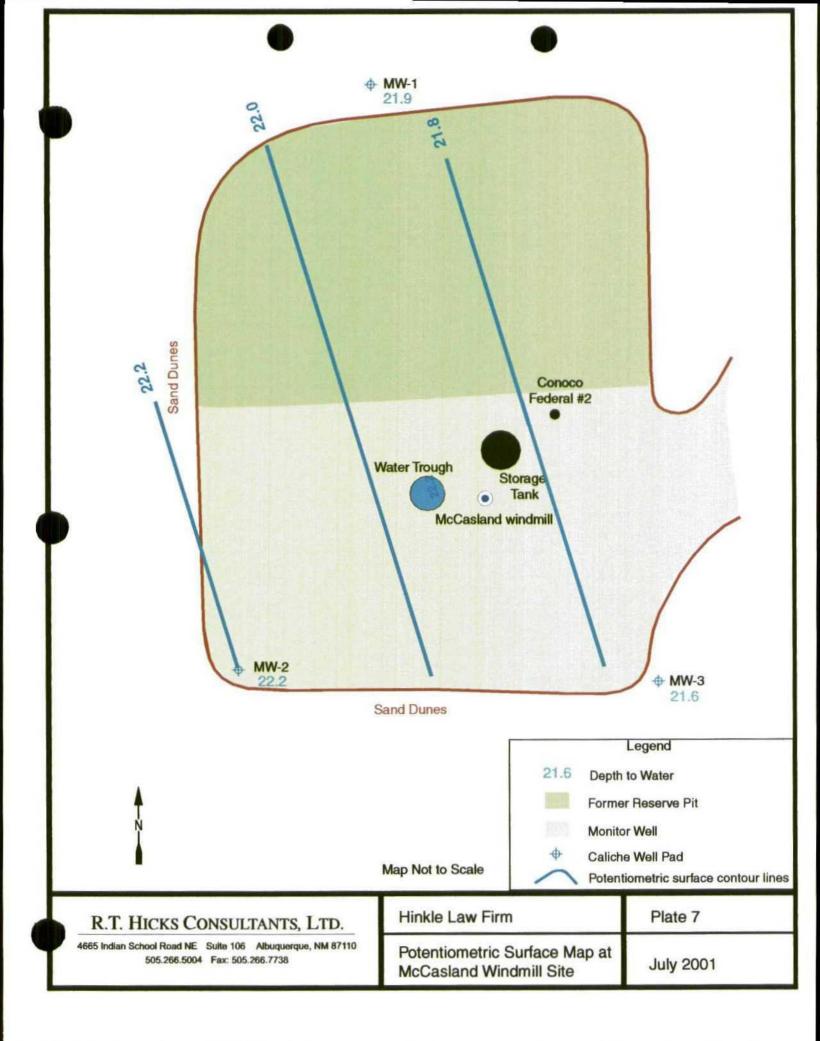

0


0


1. | 11


i.





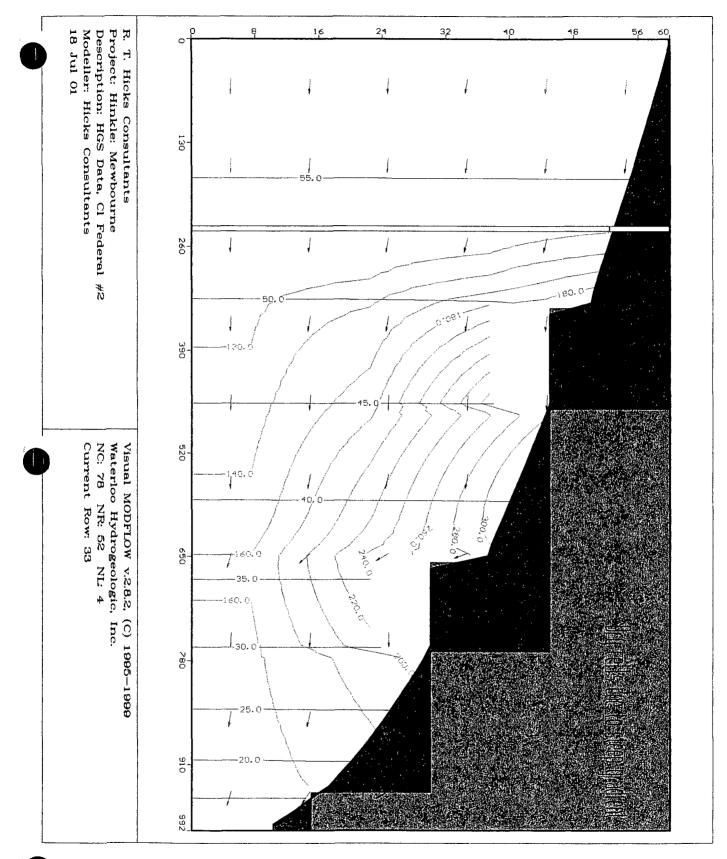
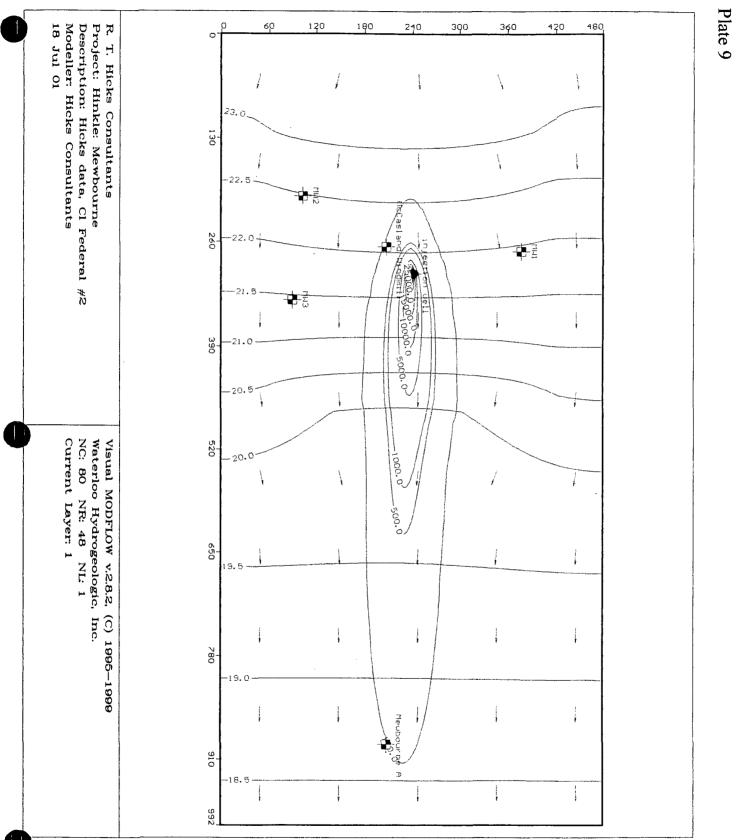
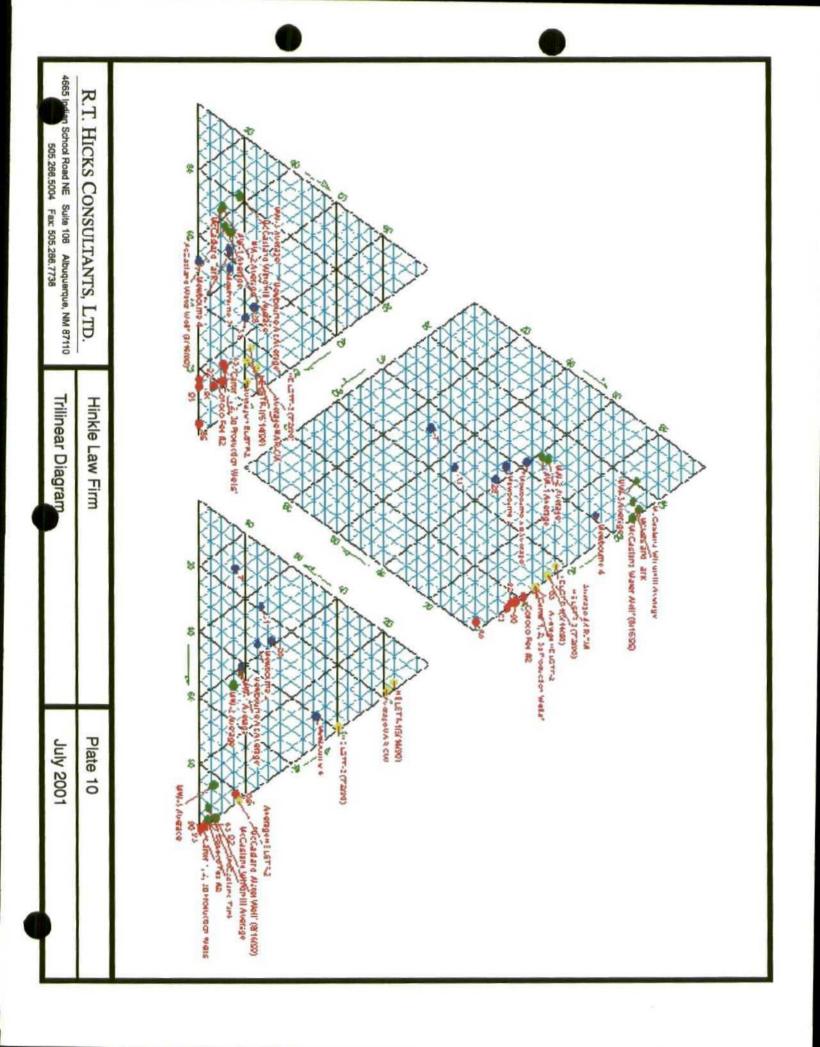




Plate 8

APPENDIX A

P

	4665 India	n Sch	ool Rd. NE #106 Wexico 87110		Mewbourne Project Nam	-CO2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Mewbourne A
L	ogger	1	R. Hicks		Hinkle Client		
)riller	<u>}</u>	Eades Drilling	т	20S R39E S	30 38	
and the second se	ethod		Air/Water Rotary	- 1 A	80 FEL 560		
	rt Date		8/16/99		Lea County		
En	d Date		8/16/99		New Mexico		
	Sample		Description		Lith	Well	Construction
Depth	Number	PID		Grade			No pad
		1	0-3 Brown blow sand				
		1	4-6 Red sand, some				
			consolidated				Neat Cement Grout5
			7-12 Red/Brn blow sand	10			feet to surface
			13-16 White/lt. brown caliche sand				
	1		17-28 Lt brn sand w/ caliche	20		a na bha An Anna	
			streaks				Bentonite Plug 25-5
			29-31 Hard sand It. Brn/red	30			
		1	32-44 White/brown sand,				
			minor clay, w/ caliche				
				40			
			45-54 Brn sand, some clay,			「「「「」「「」」の「「」」の「「」」の「「」」の「「」」の「「」」の「「」	
		1	wt. Caliche @ 54-55				
				50			91-25 Grade 5 grave pack - Brady Texas
			55-61 Red/brn sand, some caliche				
ļ				60			
l			62-73 Brn sand, v. minor				
			caliche, moist @68				
				70			
			73 thin gravel	 	- Conditional Condition		
ļ			74-78 Brn sand	 			04 74 0 005
			79-88 Sandy gravel with sand, some caliche	80			91-71 0.035 inch slotted screen
	1		88-91 White and red clay	90			
	Į	1	91 Red Claystone	1			2 8.

	Ĺ)) ز	d June 1972
-		Se	sction 1. GENERAL INFO	RMATION	e .	••	
(A) Owner of	wellD	allas McCasl	and		Owner'	s Well No2	· · · ·
City and S	ost Office Add	P.O. Eunic	Box 206 e. NM 88231	······································			
			44 an				
						308	
•			% of Section <u>30</u> T				
b. Tract b	lo	_ of Map No	of the				
			of the Coun			<u>,</u>	
d. X= the		. feet, Y⊐	feet, N.M. (Coordinate Syst	em	······	Zone in Grant.
(B) Drilling C	ontractor	Dallas	McCasland	L	icense No	WD 1196	
Address	P.O. Box	206, Eunice	NM 88231				•
			d <u>12-17-88</u> T				
Elevation of lar	id surface or _		at well is.	ſ	t. Total depth	of well9() ft.
Completed well	is 🛛 s	allow 🗋 artes	ian. Dej	oth to water up	on completion	of well4(<u>) </u>
		Section	2. PRINCIPAL WATER-B	EARING STRA	TA		
Depth From	in Feet To	Thickness in Feet	Description of Wat	er-Bearing Form	nation	Estimated (gallons per	
58	70	12	Gray sand			5	

Diameter	Pounds	Threads		on 3. RECORD	OF CASING Length	1	Perfor	rations
(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of Shoe	From	To
5" LD	2.4	PVC	0	90	?20	None	50	90
	1	1			1	[1

		Section	4, RECORD OF M	UDDING AND CI	EMENTING
Depth ir	n Feet	Hole	Sacks	Cubic Feet	Method of Placement
From, •	То	Diameter	of Mud	of Cement	
					None

	Section 5. PLUGGIN	G RECORD			
Plugging Contractor					
Address			Depth	in Feet	Cubic Feet
Plugging Method		No	Тор	Bottom	of Cement
Date Well Plugged		1			
Plugging approved by:		2			
					1
	State Engineer Representative	4		1	I
	FOR USE OF STATE EN	GINEER ONLY	,	'مەر <u>ئىنىڭ بىلار يورىكە بىرە بىرە</u>	والمتحدثين بالمتكر فكالمكار بالمكرية

		State Engl	neer Representative	4		
Date Received		1	FOR USE OF STATE EN	IGINEER ONLY		
Date Vecelved	January 9,	, 1989	Quad		FWL	FSL
File No	L-10,044	#2	UseEX	P	ocation No 20.3	39.30.430 FEL & 660' FSL
(THIS IS N	IOW STOCK WELL	NO. L	-10,056)		1980.	FEL & 660 FSL

Depth in		Thickness		Color and Type of Material Encountered	
From	To	in Feet		Color and Type of material Encountered	
Surface	15	15	Sand		
15	25	10	Caliche		
	45	15	Broken Anhy	ydrite	}
45.	58	13	Hard Anhyd	rite with gray lime	
58.	70	.12	Gray sand		
70	88	12	Anhydrite		
88	90	2	Red Bed		
			······································		
				· · · · · · · · · · · · · · · · · · ·	
				·· ···································	1
				· ·	·····
	·· · · · · · · · · ·				
		+			
		<u> </u>		······	
		+			
		<u> </u>			
		+			
		+			
		+	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
		+			
		+		<u></u>	
			<u> </u>		
		+			
		Section	7 REMARKS AND	ADDITIONAL INFORMATION	
. '		occuon	/		STA
					8 33 NH 189
					HN CL

gned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above demibed hole.

And alla Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All r s, except Section 5, s' is answered as completely and accurate' ossible when any well is drilled, repaired or deepend. this form is used as a period of the Section 1(a) and Section 1 be comp

	العرب	5 1 m ²	(U. NGINEER OFFICE WELL RECORD		
		s	Section 1. GENERAL INFORMATION		
treat or	well <u>Dall</u> Post Office Addi State	P.O.	d Box 206 ce, NM 88231	Owner's Well	1 No'
i was drilled	i under Permit N . SW	oL-10,(044 and is located in the: _ 4 of Section24 Township20S		<u>38E N.M.P.M.</u>
b. Tract	No	of Map No	of the		
c. Lot N	00	f Block No.	of the		
		in	County.		
Subdi d. X=	vision, recorded	feet, Y=	feet, N.M. Coordinate System		
Subdi d. X= the Drilling (vision, recorded	feet, Y= Da	feet, N.M. Coordinate System	<u></u>	Grant.
Subdi d. X= the Drilling (Contractor P.O. Box	feet, Y= Da 206, Eunice	feet, N.M. Coordinate System	nse No. <u>WD</u>	Grant.
Subdi d. X= the Drilling (iresi ling Began	vision, recorded Contractor P.O. Box 12-28-88	feet, Y= Da 206, Eunice	feet, N.M. Coordinate System	nse NoWD	Grant. 1196 ' ize of hole 6 ¹ / ₄ in.
Subdi d. X= the Drilling (ires) ling Began vation of la	Contractor P.O. Box 12-28-88	feet, Y= Da 206, Eunice	feet, N.M. Coordinate System 	nse No. <u>WD</u> ary S fotal depth of we	Grant. 1196 ' ize of hole 6 ¹ / ₄ in.
Subdi d. X= the Drilling (ires) ling Began vation of la	Contractor P.O. Box 12-28-88	feet, Y= Da 206, Eunice Complete allow artes	feet, N.M. Coordinate System 	nse No. <u>WD</u> ary S fotal depth of we completion of we	Grant. <u>1196</u> ize of hole <u>6¹x</u> in. <u>58</u> ft.
Subdi d. X= the Drilling (ires) ling Began vation of la npleted we	Contractor P.O. Box 12-28-88	feet, Y= Da 206, Eunice Complete allow artes	feet, N.M. Coordinate System 11138 McCasland Lice at well is ft. 1 sian.	nse No. <u>WD</u> ary S fotal depth of we completion of we	Grant. <u>1196</u> ize of hole <u>6¹x</u> in. <u>58</u> ft.

	1					
	L	L	Section 3. RECORD	OF CASING	<u></u>	
Diameter	Pounds	Threads	Depth in Feet	Length	Type of Shoe	Perforations
(inches)	per foot	per in.	Ton Bottom	(feet)	type of shoe	From To

(inches)	per foot	per in.	Тор	Bottom	(feet)	Type of Shoe	From	To
45" ID	2.0	PVC			20'	none	38	56
		1						

			Section	4. RECORD OF M	UDDING AND C	EMENTING
	Depth	in Feet	Hole	Sacks	Cubic Feet	Math at of Planard
	From	To	Diameter	of Mud	of Cement	Method of Placement
						None
			ll-			
i.						
L			1			

Section 5. I	PLUGGING	RECORD
--------------	----------	--------

				No.	Depth	in Feet	Cubic Feet	
				NO. [Top	Bottom	of Cement	
				1			[
ugging approv	ed by:			2				
			·	3				
		State Engineer Rep	resentative	4			[
ate Received	January		SE OF STATE ENGINE Quad				. FSL	
•	L-10.044	13	UseEXP.			20.38.24	11333	
File No	- 201011		Use		ocation No	201201211	22555	

Depth From	n Feet To	Thickness in Feet	Color and Type of Material Encountered	
0	5	5	Red clay	
5	15	10	Caliche	;
	46	21	Anhydrite	
46 [.]	54	8	Gray sand	
54	58	4	Anhydrite	
58		1	Red bed	
		1		
		1		
		· ·		
		1 .		
		+		<u></u>
		+		
		+		
	<u> </u>	+		
-		+		
		+		
		+		
	<u> </u>			
	1	Sectio	on 7. REMARKS AND ADDITIONAL INFORMATION	
		50040		
This	well was d	rilled 600	ېنې دې اې د مې	
			С ў з	
			30 HH 189	۱۱ می ۲
			68	
ben ibed ho	ined hereby c le.	ertifies that, to	the best of his knowledge and belief, the foregoing is a true and correct record of the	: abc
	•		Pulles Miller	
		1	Driller	

.

rRUC est di rately rd, on	TIONS strict o as pos	: Thi ffice ssible	s form of the when A and	shou State any Section	ld be exec Engineer well is dr on 5 need		RECO iplicate, ons, excej ired or o ted.		written, and su ll be answered as this form is use	bmitted to the completely and d as a plugging
1	·				A) Owner			1 -	STER	
T			<u> </u>		A) Owner treet and			and the second se	+ A	
	ł			1	street and	Libo	S	<u> </u>	State	ודר הל
	{	<u> </u>			Vell was d	irilled und	er Perm	It No. 4-3	519 and	is located in the
·	7/6	FEL	-		= 1/2 1/1			of Section 32		Rge. 39 E
+				-10	(B) Drillin	ng Contrac	N			e No. 11/24
ľ	1633	FNL	-	s	street and	Number	317	D. Forsk	e /U	
				-10	City _H	1 00	5		State	<u>11 m:</u>
ł					Orilling w			3- 2	<u> </u>	1960
 (P)	lat of 64	0 acre	 at)	I	Drilling w	as complet	ed	3-20	<u> </u>	19 60
-			•	feet	above sea	level		Total dep	th of well	13345
te wh	ether v	vell i	s shallo	w or	artesian	SHA	LFOG	Depth to wat	er upon complet	ion 60
tion 2				//71. 1		CIPAL WATER-BEARING STRATA				
10. -	From	h in F	To		kness in Feet		De	scription of Water	-Bearing Formation	L ·
				1 1			at sire ti.			
			30 1st water Sand 31 2nd wille Sand							
	100	+			, <u> </u>			ma w	une on	
+										
			<u></u>	!				······································		***************************************
	3					RECOR	D OF CA	SING		
in.	Poun ft.		Three		De	pth Bottom	Feet	Type Shoe	Perfo From	rations i To
			in		Top		133	no stare	60	133
<u>e</u>			U.el.	ard.	6	133	122	· ro state	00	
	1									1
	1				†					1
ction	· · · · · · · · · · · · · · · · · · ·			<u> </u>				ND CEMENTING		
Dept From	h in Fee	1	Diam Hole i		Tons Clay		icks of an interview of the second se		Methods Used	
					<u> </u>					
					1					
	.1				1					
ction	£					DUC	SING REC			
	-	_1	a	- 4 -					Tionno N	0
		~ ~								
							•			
										19
naain	g appro								igs were placed a	
	J		•				[Depth of I	Plug	
			1		Basin Su	pervisor	·	Io. From	To No.	of Sacks Used
			1.	TEE	NGINEER (ONLY	7			
	F OP	USF	OFRT		- Guiden (A 14 14 14				
	FOR	USE	OF ST.	, ; []				1 1	1	1
	FOR J() Receiv	11:10	Valit!	ાસ્મ ાસ્મ	ZIVIS Q		-			
	33	11:10	Valit!	ાસ્મ ાસ્મ	USIS D	c				
	33	11:10	Valit!	ાસ્મ ાસ્મ	21.718 0960					· · · · · · · · · · · · · · · · · · ·

.

Use 11 Location No. 19.39.31.200

22.94

Section 6	1	G OF WELL						
From	In Feet To	Thickness in Feet	Color	Type of Material Encountered				
0	8	8	•	Sut Sail				
8	28	20		Clearlie				
	53	25		Sandy Clay				
23.	60	7		Hard Rack				
60	80.	20		1 st ruater Sind				
80	95.	15		Sandy Clay				
95	100	5		Hard Rach				
100	131.	31		and reater				
131_	133	2		Red Bed				
				3587				
				LSElev				
				Depth to KT.				
	<u> </u>			Loc. No. 19. 39. 31. 22342				
<u></u>	+			Hydro. Survey Field Chack X				
<u></u>				SOURCE OF ALTITUDE GIVEN				
·	·			Interpolated from Topo. Sheet				
•				Determined by Inst. Leveling				
<u></u>	-		ļ	Other				
			L					
)							
				· · · · · · · · · · · · · · · · · · ·				
<u></u>								
			1					

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

ł

N. L. Fulling in 74

)

WELL RECORD Section 1. GENERAL INFORMATION Owner's Well No Owner's Well No Owner's Well No Street or Post Office Address <u>E. Naclina Fid</u>			
 (A) Owner of well Jayson UsseryOwner's Well No			
Street or Post Office Address <u>E. Nadina Rd.</u> City and State <u>Hobba. New Mexico 88240</u> Well was drilled under Permit No. <u>L-10.557</u> and is located in the : a1/41/2 N1/21/4 of Section <u>31</u> Township <u>19S</u> Range <u>39E</u> N.M.P.M.			
Well was drilled under Permit No. <u>L-10.557</u> and is located in the : a1/41/2 N1/21/4 of Section <u>31</u> Township <u>19S</u> Range <u>39E</u> N.M.P.M.			
a1/41/2 N1/21/4 of Section <u>31</u> Township <u>19S</u> Range <u>39E</u> N.M.P.M.			
Range <u>39E</u> N.M.P.M.			
b. Tract No of Map No,of the			
•			
c. Lot No of block No of the			
Subdivision, recorded in County.			
d. X=feet,Y=feet,N.M. Coordinate System			
Zone inthe			
(B) Drilling Contractor Alan G. Eades License No. WD-1044			
Address 1200 E. Bender Blvd., Hobbs, New Mexico 88240			
Drilling Began <u>5-4-98</u> Completed <u>5-4-98</u> Type Tools <u>Rotary</u> Size of hole <u>7_7</u>			
Elevation of land surface or at well isft. Total depth of well 135	ft.		
Completed well is 🔀 shallow 🗔 artesian Depth to water upon completion of well 75	ft.		
Section 2. PRINCIPAL WATER-BEARING STRATA			
Depth in Feet Thickness Description of Water-Bearing Formation Estimated Y			
From To in Feet Description of Valier Southy Contracts (callons per) 75 135 60 Water Sand with Sandstone Stringers 35	ninute)		
http://www.lana.com/www.lana.com/www.lana.com/www.lana.com/www.lana.com/www.lana.com/www.lana.com/www.lana.com/			
Section 3. RECORD OF CASING			
Diameter Pounds Threads <u>Depth in Feet</u> Length Type of Shoe <u>Partoration</u> (INCHES) per foot per in. Too Bottom (feet) Type of Shoe From T	я [0		
	35		
Section 4. RECORD OF MUDDING AND CEMENTING			
Depth in Feet Hole Sacks Cubic Feet Method of Placement			
Erom To Diameter of Mud of Cement			
Section 5. PLUGGING RECORD Plugging Contractor			
Address No. Too Bottom of Cen			
Plugging Method			
Date Well Plugged			
Plugging approved by:			
4			
Date Received 06/14/96			
Quad FWL FSL File No. L-10,557 Use Domestic Location No. 19.39.31.33			
File No. L-10,557 Use Domestic Location No. 19.39.31.			

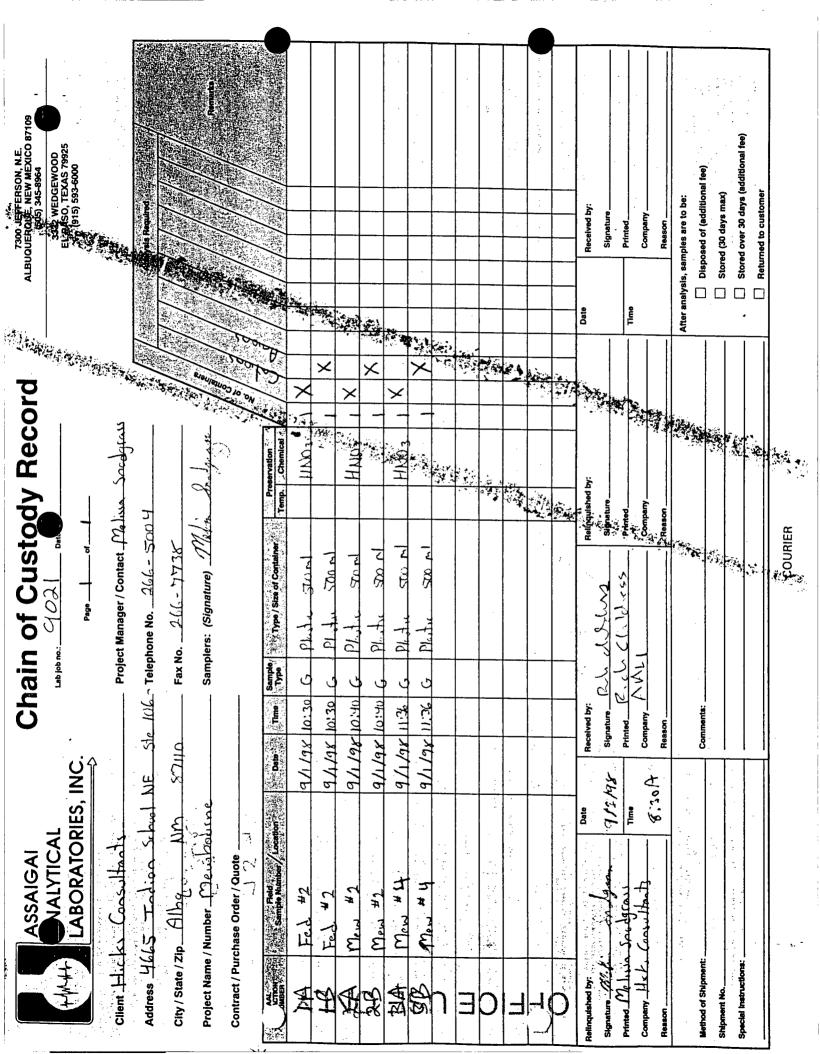
i

(

Section 6. LOG OF HOLE					
Depth	In Feet	Thickness In Feet	Color and Type of Material Encountered		
From 0	<u> </u>	1	Top Soll		
1	32	31	Caliche		
32	34	2	Sandstone		
34	73	39	Sand & Sandstone Stringers		
73	75	2	Sandstone		
75	135	60	Water Sand with Sandstone Stringers		
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	_				
ļ					
			\`		
			Jayson Ussery		

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and bellef, the foregoing is a true and correct record of the above described hole.


an Driller

NO SWELL NEW HEXICO

INSTRUCTIONS:

This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

APPENDIX B

ļ

ASSAIGAI ANALYTICAL LABORATORIES, INC.

7300 Jefferson, NE • Albuquerque, New Mexico 87109 • (505) 345-8964 • FAX (505) 345-7259

3332 Wedgewood, E-5 • El Paso, Texas 79925 • (915) 593-6000 • FAX (915) 593-7820 127 Eastgate Drive, 212-C • Los Alamos, New Mexico 87544 • (505) 662-2558

RT HICKS CONSULTING, LTD attn: RANDY HICKS 4665 INDIAN SCH. NE 106 ALBUQUERQUE, NM 87110

	* explanation of codes
B	analyte detected in Method Blank
E	result is estimated
H	analyzed out of hold time
N	tentatively identified compound
S	subcontracted
1-9	see footnote

M Mage

Assaigai Analytical Laboratories, Inc.

Certificate of Analysis

William P I

Client: RT HICKS CONSULTING, LTD Project: 9809021 MEWBOURNE

Client Sample ID	FED #2			Sa Ma	trix WAT	ER_GR	2AB		Sample Collected	09/01/98 10:30:00
	QC Group	CAS #		- Poquit	Linite	Dilution Factor	Detection Limit	•	Sequence	R(Date
h ion		<u>CA3 #</u>		Result	Units	Factor	Linin		Sequence	Date
—			Test: EPA-200.7 ICP							
9809021-01A	M98659	7440-70-2	Calcium	749	mg/L	100	0.4	:	MW. 1998. 1267-24	09/23/98
	M98659	7439-89-6	Iron	19.9	mg / L	1	0.2		MW.1998.1233-68	09/15/98
	M98659	7439-95-4	Magnesium	73.9	mg/L	, 1	0.2		MW.1998.1233-68	
	M98659	7440-09-7	Potassium	8.3	mg / L	· 1	0.4	i	MW.1998.1233-68	
	M98659	7440-21-3	Silicon	21.8	mg / L	1	0.5		MW.1998.1233-68	•
	M98659	7440-23-5	Sodium '	373	; mg/L	1	0.4		MW.1998.1233-68	
	M98659	7440-66-6	Zinc	3.8	mg/L	; 1	0.7		MW. 1998. 1233-68	
			Test: SM 1030F							
9809021-01A	MT.1998.2460		Anion Sum	59.57117	meq/L	1	0		MT.1998.2460-1	09/22/98
	MT.1998.2460		Cation Sum	61.00287	meq/L	1	0	, 	MT.1998.2460-1	
•	MT.1998.2460		Cation-Anion Balance	1	%	1	0		MT.1998.2460-1	
			Test: EPA-120.1							
9809021-01B	CON9831	}	Conductivity	7,800	umhos/cm	1 1	1		MT.1998.2440-4	09/22/98
			Test: EPA-300.0 anions							
9809021-01B	W98293		Chloride	1930	mg/L	1000	0.5		MW. 1998. 1251-12	09/19/98
	W98286		Fluoride	ND	mg/L	1	0.5		MW.1998.1221-30	09/10/98
	W98286	}	Nitrate, as N	1.0	mg/L	1 1	0.2	н	MW.1998.1221-30	
1	W98286		Nitrite, as N	ND	mg/L	1	0.2	н	MW.1998.1221-30	
	W98286		Orthophosphorus, as P	ND	mg/L	1	0.4	н	MW.1998.1221-30	
	W98286		Sulfate	112	mg / L	1	0.5		MW. 1998. 1221-30	
	and the second s				i					Ĺ
1 of	the second s		Client Reports	2.0			Rej	oort Da	ate 9/25/98 1	01:20 P
ACCR			REPRODUCTION OF THIS REPORT IN LI THIS REPORT MAY NOT BE USED IN ANY M PRODUCT ENDORSEMENT BY THE NATION	ANNER BY THE CLIEN	T OR ANY OTHER	THIRD PARTY	TO CLAIM			

						· · · ·				~~
9809021-01B	AL K0934		Test: EPA-310.1			······	·····			
3609021-01B	ALK9831		Alkalinity, Total	117	mg/L	1	2		MT.1998.2343-2	09/14/98
Client Sample ID	MEW #2			San Mat		ER_GR	AB	· <u></u> ,,	Sample Collected	09/01/9
									Collected	10:40:0
Fraction	QC Group	CAS#		Result	<u>Units</u>	Dilution Factor	Detection Limit	*	Sequence	Run <u>Date</u>
			Test: EPA-200.7 ICP							
9809021-02A	M98659	7440-70-2	Calcium	99.3	mg / L	1	0.4		MW. 1998. 1233-71	09/15/98
	M98659	7439-89-6	Iron	0.6	mg/L	1	0.2		MW.1998.1233-71	
	M98659	7439-95-4	Magnesium	18.9	mg/L	1	0.2		MW. 1998. 1233-71	
	M98659	7440-09-7	Potassium	17.0	mg/L	1	0.4		MW.1998.1233-71	
	M98659	7440-21-3	Silicon	23.7	mg/L	1	0.5	: 	MW.1998.1233-71	
	M98659	7440-23-5	Sodium	103	mg / L	1	0.4		MW.1998.1233-71	
	M98659	/440-00-0	Zinc	ND	i mg/L	1	0.7		MW.1998.1233-71	
			Test: SM 1030F							
9809021-02A	MT.1998.2435		Anion Sum	10.41981	meq/L	1	0		MT.1998.2435-2	09/22/98
	MT.1998.2435	ļ	Cation Sum	11.49764	meq/L	1	0	!	MT.1998.2435-2	
	MT.1998.2435] 	Cation-Anion Balance	5	. %	. 1	0		MT.1998.2435-2	
			Test: EPA-120.1							(
0021-02B	CON9831		Conductivity	1,160	umhos/cm	1	1 1		MT.1998.2440-3	09/22/98
			Test: EPA-300.0 anions	· · · · · · · · · · · · · · · · · · ·						
9809021-028	W98290		Chloride	114	mg/L	20	0.5		MW.1998.1241-33	09/16/9/
	W98286		Fluoride	0.9	mg/L	1	0.5		MW.1998.1221-31	09/10/9
	W98286		Nitrate, as N	0.5	mg / L	1	0.2	H :	MW.1998.1221-31	
	W98286		Nitrite, as N	ND	mg / L	1	0.2	н	MW.1998.1221-31	
	W98286		Orthophosphorus, as P	ND	mg / L	1	0.4	н	MW.1998.1221-31	•
	W98290		Sulfate	127	mg / L	2	0.5		MW.1998.1241-32	09/15/9
			Test: EPA-310.1							
9809021-02B	ALK9831	l	Alkalinity, Total	275	mg/L	1	· 2	i	MT.1998.2343-3	09/14/9
Client Sample ID	MEW #4	1		Sa Ma	atrix WA	TER_GI	RAB		Sample Collected	09/01 11:36
						Dilution	Detectio	n		Run
Fraction	QC Group	CAS #		Result	Units	Factor	Limit	٠	Sequence	Date
9809021-03A	M98659	7440-70-2	Test: EPA-200.7 ICP	310	mg/L	1	0.4	Ţ 	MW.1998,1233-72	09/15/
500502 1-03M	M98659	7439-89-6	Iron	0.6	mg/L	1	0.2	+{	MW.1998.1233-72	
۰	M98659	7439-95-4	Magnesium	52.8	mg/L		0.2	┼╌╌┥	MW.1998.1233-72	
	M98659	7440-09-7	Potassium	15.5	mg/L	1 1	0.4	+i	MW, 1998. 1233-72	
	M98659	7440-21-3	Silicon	22.0	mg/L	1	0.5	+	MW, 1998. 1233-72	
	M98659	7440-23-5	Sodium	275	mg/L		0.4	+	MW,1998.1233-72	í
. 3	· ./	L						- <u>I</u>		
2.of			Client Reports	2.0			Po	port Da	te 9/25/98 1	-01-201

Client: RT HICKS CONSULTING, LTD

oject: 9809021 MEWBOURNE

9809021-03A	M98659	7440-66-6	Zinc	ND	mg/L	1	0.7		MW.1998.1233-72	09/15/98
			Test: SM 1030F							
9809021-03A	MT,1998.2435		Anion Sum	32.45269	meq/L	1	0		MT.1998.2435-3	09/22/98
	MT.1998.2435		Cation Sum	32.24483	meq/L	1	0		MT.1998.2435-3	
	MT.1998.2435		Cation-Anion Balance	0	%	1	Ö		MT.1998.2435-3	
			Test: EPA-120.1							
9809021-03B	CON9831	[Conductivity	3,700	umhos/cm	1	1		MT.1998.2440-5	09/22/98
			Test: EPA-300.0 anions							
9809021-03 B	W98291		Chloride	453	mg/L	50	0.5		MW.1998.1241-38	09/16/98
	W98286		Fluoride	0.6	mg/L	1	0.5		MW.1998.1221-32	09/10/98
	W98286		Nitrate, as N	0.5	mg/L	1	0.2	н	MW.1998.1221-32	
	W98286]	Nitrite, as N	ND	mg/L	1	0.2	н	MW.1998.1221-32	
	W98286		Orthophosphorus, as P	1.9	mg/L	1	0.4	н	MW.1998.1221-32	
	W98291		Sulfate	775	mg / L	25	0.5		MW.1998.1241-37	09/16/98
			Test: EPA-310.1							
9809021-03B	ALK9831		Alkalinity, Total	172	mg/L	1	2	;	MT.1998.2343-4	09/14/98

*** Sample specific analytical Detection Limit is determined by multiplying the sample Dilution Factor by the listed method Detection Limit. ***
*** Results relate only to the items tested. ***

Ś

3 of 3

											_		
Paso Texas 79925		10		PAYMENTS.	•				1 • •	60.00 55.00	• • •	30.00	\$375.00
3332 Wedgewood, Suite E-5	98-09-021 934607	NET 30 DAYS		MASTERCARD F				DISCOUNT	1 1 1 1 1 1 1 1 1 1				SUBTOTAL SUBTOTAL E AMOUNT
3332	##	TERMS		AND M				QTY	 		4 - 1 - 1	1	ιp
	ORD INVOICE			VISA				PRICE	1 • •	60.00 55.00	• • •	-	INVOICE
,		ical Labs 187199-0430	ABLE	LABS ACCEPTS					1 4 1 1 4 1 4 4 1 1 1 1 1 1 1 1 1	_		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TOTAL
	I4:18:03	Analytical 90430 ue, NM 871	RECEIVABLE	1 1				REMARK	CATIONS ANIONS	CATIONS	CATIONS	 	
		<u>Assaigai An P.O. Box 90</u> Albuquerque	UNTS	- 220 / NALYT				REI	. 7 .	۲.	5		1 1 1 1
8	/25/98			기					20	PA 200	PA 200	 PA 120	1 1 1 1
Mexico 871	60	REMIT TO	ATTEN	ASSAIGAI					- E -	Щ	Э	ICE/EP	1 1 1 1
lerque. New		.106			.106			ION	METALS-ICP/E IDE/EPA 300	1	TALS-I EPA 3	CONDUCTANCE/E	
l.E. • Albuqu	,	LTD E STE 10			LTD E STE		102	DESCRIPTION	WATER METALS CHLORIDE/EPA	WATER METALS CHLORIDE/EPA	WATER METALS- CHLORIDE/EPA		
Jelferson, N		SULTING, L SCHOOL NE NM 87110					T RTHC01	DES	WATER CHLORJ	CHIA	WATI	SPEC	1 1 1 1
ABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico 87109			ŚŚ		CONSULTING, AN SCHOOL N UE, NM 871	S	CLIENT PROJECT	CODE	W2007 WICCL	W2007 WTCCL	W2007 WICCL	WCOND	1 1 1 1
TORIES, I		I CKS I ND I DUERQ	RANDY HICKS	DURNE	IHIO	/ HICKS	പ	A	 	02A W 02B W		M	1 1 1 1 1
I ABORAT			RAND	MEWBOURNE	RT HICKS 4665 IND ALBUQUER	RANDY	09/02/98 09/25/98			00	000		
ANALYTICAL 1 AB	E 1	INVOICE TO	ATTEN	WORK ID P.O. #	REPORT TO	ATTEN	RECEIVED REPORTED		SPECIALS			rs rs	
ANALYTIC	PAGE	NI		МО Р	C ^w	. 4	REC! REP(SPE(STS	j j

I.

Terms: Net 30, 1 1/2% Per Month (APR 18%)

Analysis Laboratory

ECD Environmental McCausland Greg Bybee Project Manager: **Project Number:** Project: Client:

Date Received: Sample Matrix: **Date Collected:**

1/25/99 1/28/99 Aqueous

Inorganic Compounds

mg/L) 0-Phosphate-P (mg/L)		0.5	300.0
Sulfate (mg/L)	011	0.5	300.0
Nitrate-N (ing/L)	*<0.5 *3.3	0.1	300.0
Bromide (rhg/L)	12 0.8	0.1	300.0
Nithite-N (mg/L)	*<0.5 UN	0 1	300.0
Chtoride (mg/L)	5,000	0.1	300.0
Floride (mgA.)	-:05 1.0	0.1	300.0
Sample ID	#1 Windmill #2 Windmill		
HEAL LAB ID	9901105-1 9812121-2	Detection Lifenits	Method

*Sample run outside of the EPA hotding time of 48 hours.

1	~	

Hall Environmental Analysis Laboratory

Client:	ECD Environmental
Project:	McCaustand
Project Manager. Greg Bybee	Greg Bybee
Project Number:	

1/25/99	1/28/99	Aqueous	٨A
Date Collected:	Date Received:	Sample Matrix:	Date Extracted:

EPA Method - 8021 Units: PPB(ug/L)

HEAL	Ci element	9	T also de	Ethyl-	Total	N-B %	Dilution	Date
	oguipte in	Delizene		benzene	Xylenes	Recovery	Factor	Analyzed
9901105-1	#1 Windmill	QN	C N	QN	QN	64	2	1/28/59
9901105-2	#2 Windmill	QN	02 2	Cit I	QN	0	-	117.8/59
Reag Bik.	·	QN	QN	ON	QN	98	~~	1/28/39

0.5	
0.5	
0.5	
0.5	

MRL

.

7300-JEFFEBSCN, M.E. ALBUONEROUE, NEW MEXICO 87109 604) 345-804 3322 WEDGEWOOD EL PASO, TEXAB 78925 915] 543-6009 127 EASTGATE DRIVE, 212-C LOS ALABOS, NEW MEJDO 97544 9009 602-3556				PAPALE B/31 B-34 - 2/1-2/1-2/1-2/1-2/1-2/1-2/1-2/1-2/1-2/1-	There contact by:	After cardinals, exception are to box: Disposed of (additioned free) Bitmed (20 days mean) Charles are 30 days (patticened free) Retermed to cuesses
Chain of Custode Record	Teleghane No. 2466 - 5024 Fax No. 2166 - 3733 Samptors: (Signutura) - Landeutitit	Sail Gutto	W RADi WINN 5 W Proti - Volts 5 W Plechi - S	All directions of the second s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COURIER
CIM R.T. HICKS CONSULTA &	City / State / 216 J. J. D. 19 Not SCH NIE Project Hams / Number MEW BOURNE Contract / Purchase Order / Quote	CF2 TP4 74 CF2 TP3 74	CFZ_TP1 61t M-M-CAYAND AllWANIL MEWYDURNE A MEWYDURNE A H EALAUD W.M. TANK	07A CE 2 TP2 91 8/16		

•

1

ASSAIGAI ANALYTICAL LABORATORIES, INC.

7300 Jefferson, NE • Albuquerque, New Mexico 87109 • (505) 345-8964 • FAX (505) 345-7259

3332 Wedgewood Dr., Suite N • El Paso, Texas 79925 • (915) 593-6000 • FAX (915) 593-7820 127 Eastgate Drive, 212-C • Los Alamos, New Mexico 87544 • (505) 662-255 Explanation of codes

RT HICKS CONSULTING, LTD attn: MICHELLE HUNTER/RANDY HICKS 4665 INDIAN SCH. NE 106 ALBUQUERQUE, NM 87110

B	analyte detected in Method Blank
E	result is estimated
H	analyzed out of hold time
N	tentatively identified compound
S	subcontracted
1-9	see footnote
L	

9/2/99 12:02:40 PM

Report Date

Assaigai Analytical Laboratories, Inc.

Certificate of Analysis

Client: RT HICKS CONSULTING, LTD Project: 9908178 MEWBOURNE

tem	P	Jeast.
William P. Biava: I	mesider	t of Assainal Analytical Labo

Miliam P. Biava: President of Assaigai Analytical Laboratories, Inc.

Client Sample_ID	CF2 TP4 7FT	•		Sample SOI Matrix	L			mple llected	08/18/99 16:10:00
						Dilution	Detection		Run
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date
9908178-01/	A	EPA 300.0							
W99178	MW.1999.984-59	,	Nitrate, as N	1.7	mg / Kg	2	0.2	<u> </u>	08/20/99
W99178	MW.1999.984-59		Nitrite, as N	ND	mg / Kg	2	0.2		08/20/99
9908178-01/	A	EPA 300.0							
W99178	MW.1999.984-59	1	Chloride	15.4	mg / Kg	2	0.5	1	08/20/99
W99178	MW.1999.984-59		Fluoride	ND	mg / Kg	2	0.5		08/20/99
W99178	MW.1999.984-59		Sulfate	11.7	mg / Kg	2	0.5	1	08/20/99
9908178-01 M99964	MW.1999,1010-63	SW846 3050A/6	Calcium	1530	mg / Kg	1	15		08/25/99
M99964	MW.1999.1010-63	7439-89-6	Iron	1740	mg / Kg	1	15		08/25/99
M99964	MW.1999.1010-63	7439-95-4	Magnesium	242	mg / Kg	1	10		08/25/99
M99964	MW.1999.1010-63	7440-09-7	Potassium	338	mg / Kg	1	10	1	08/25/99
M99964	MW.1999.1010-63	7440-23-5	Sodium	62.7	mg / Kg	1	15		08/25/99
Client Sample ID	CF2 TP3 7F	Г		Sample SO Matrix	IL.			ample ollected	08/16/9 16:20:0
					····	Dilution	Detection		Run
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date
9″ (1)2	2A	EPA 300.0							_
ý. 🖤	MW.1999.984-64		Nitrate, as N	1.2	mg / Kg	2	0.2		08/20/99
			and the second sec				-		

Page 1 of 5

Member: American Council of Independent Laboratories, Inc. REPRODUCTION OF THIS REPORT IN LESS THAN FULL REQUIRES THE WRITTEN CONSENT OF AAL. THIS REPORT MAY NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIKD PARTY TO CLAIM PRODUCT ENDORSEMENT BY ANY ACCREDITATION PROGRAM.

2.0

Client Reports

RT HICKS CONSULTING, LTD

oject: 9908178 MEWBOURNE

W99178	MW.1999.984-64		Nitrite, as N	ND	mg / Kg	2	0.2		08/20/99
908178-02	A	EPA 300.0							
<i>N</i> 99178	MW.1999.984-64		Chloride	2.1	mg / Kg	2	0.5		08/20/99
V99178	MW.1999.984-64		Fluoride	ND	mg / Kg	2	0.5		08/20/99
V99178	MW.1999.984-64		Sulfate	9.8	mg / Kg	2	0.5		08/20/99
908178-02	A	SW846 3050A/60	10A ICP						
199964	MW.1999.1010-64	7440-70-2	Calcium	257	mg / Kg	1	15		08/25/99
199964	MW.1999.1010-64	7439-89-6	Iron	1270	mg / Kg	1	15		08/25/99
199984	MW.1999.1010-64	7439-95-4	Magnesium	150	mg / Kg	1	10		08/25/99
199964	MW.1999.1010-64	7440-09-7	Potassium	238	mg / Kg	1	10		08/25/99
199964	MW.1999.1010-64	7440-23-5	Sodium	ND	mg / Kg	1	15		08/25/99
Client	CF2 TP1 6F1			Sample SOIL	· · · · · · · · · · · · · · · · · · ·		Sar	nple	08/16/9
Sample ID		· · · · · · · · · · · · · · · · · · ·		Matrix SON	-		Col	lected	18:00:0
						Dilution	Detection		Run
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date
908178-0	3A	EPA 300.0							
N99178	MW.1999.984-67		Nitrate, as N	3.0	mg / Kg	2	0.2		08/20/99
	MW.1999.984-87		Nitrite, as N	ND	mg / Kg	2	0.2	L	08/20/99
9908178-0	3A	EPA 300.0							
W99178	MW.1999.984-67		Chloride	5.1	mg / Kg	2	0.5		08/20/99
W99178	MW.1999.984-67		Fluoride	ND	mg / Kg	2	0.5		08/20/99
W99178	MW.1999.984-67		Sulfate	23.8	mg / Kg	2	0.5		08/20/99
9908178-0	3A	SW846 3050A/6	010A ICP						
M99964	MW.1999.1010-65	7440-70-2	Calcium	2880	mg / Kg	1	15		08/25/99
M99964	MW.1999.1010-65	7439-89-6	Iron	1390	mg / Kg	1	15		08/25/99
M99964	MW.1999.1010-65	7439-95-4	Magnesium	1470	mg / Kg	1	10		08/25/99
M99964	MW.1999.1010-65	7440-09-7	Potassium	292	mg / Kg	1	10		08/25/99
M99964	MW.1999.1010-65	7440-23-5	Sodium	ND	mg / Kg	1	. 15		08/25/99
•	•								
Client Sample ID	MCCASLAN	ID WINDMIL	L	Sample W Matrix		······		mple ollected	08/16/ 17:15:
		······	· · ·			Dilution	Detection		Run
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date
9908178-0		EPA200.7 ICP			<u> </u>				00/04/04
M99951	MW.1999.997-63	7440-70-2	Calcium	411	mg / L	1	0.4		08/21/99
	MW.1999.997-63	7439-89-6	Iron	1.93	mg/L	1 1	0.05		08/21/9
M99951									1 00/04/04
M99951	MW.1999.997-63	7439-95-4	Magnesium	48.4	mg / L	1	0.1	<u> </u>	08/21/9
						1	0.1		08/21/9

Page 2 of 5

M

MW.1999.997-63

7440-23-5

Sodium

244

1

mg / L

0.2

08/21/99

D

RT HICKS CONSULTING, LTD

Project:

9908178 MEWBOURNE

9908178-04B		EPA 300.0							
W99182	MW.1999.984-17		Nitrate, as N	1.6	mg / L	1	0.1	Н	08/19/99
W99182	MW.1999.984-17		Nitrite, as N	ND	mg / L	1	0.1	н	08/19/99
9908178-04B	i	EPA 120.1							-
CON9943	MT.1999.2013-4		Conductivity	3,960	umhos/cm	1	1		08/25/99
9908178-04B	i	EPA 300.0							_
W99182	MW.1999.998-4		Chloride	1130	mg / L	100	0.5		08/20/99
W99182	MW.1999.984-17		Fluoride	ND	mg / L	1	0.5		08/19/99
W99182	MW.1999.984-17		Sulfate	84.3	mg / L	1	0.5		08/19/99
9908178-04C	;	EPA 160.1							
TD9923	MT.1999.1995-8		Total Dissolved Solids	2,060	mg / L	1	10		08/19/99
9908178-04C	;	EPA 310.1							-
ALK9936	MT.1999.2068-1		Alkalinity, Carbonate	ND	mg / L	1	2	T	08/27/99
ALK9936	MT.1999.2056-2		Alkalinity, Total	186	mg / L	1	2		08/27/99

Client	MEWBOURI	NE A		Sample W Matrix				mple llected	08/16/99 15:35:00
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
9908178-0	5A	EPA200.7 ICP							
M99951	MW.1999.997-64	7440-70-2	Calcium	86.3	mg / L	1	0.4		08/21/99
M99951	MW.1999.997-84	7439-89-6	Iron	ND	mg / L	1	0.05	1	08/21/99
M99951	MW.1999.997-64	7439-95-4	Magnesium	15.0	mg / L	1	0.1		08/21/99
M99951	MW.1999.997-64	7440-09-7	Potassium	4.0	mg / L	1	0.2		08/21/99
M99951	MW.1999.997-64	7440-23-5	Sodium	76.5	mg / L	1	0.2		08/21/99
9908178-0	5B	EPA 300.0							
W99182	MW.1999.984-19		Nitrate, as N	3.0	mg / L	1	0.1	н	08/19/99
W99182	MW.1999.984-19		Nitrite, as N	ND	mg / L	1	0.1	н	08/19/99
. · 9908178-0	5B	EPA 120.1				·			
CON9943	MT.1999.2013-5		Conductivity	891	umhos/cm	1	1		08/25/99
9908178-0	5B	EPA 300.0							
W99182	MW.1999.984-20		Chloride	121	mg / L	10	0.5	1	08/19/99
W99182	MW.1999.984-19		Fluoride	ND	mg / L	1	0.5		08/19/99
W99182	MW.1999.984-19		Sulfate	74.9	mg / L	1	0.5		08/19/99
9908178-0)5C	EPA 160.1							
TD9923	MT.1999.1995-9		Total Dissolved Solids	547	mg / L	1	10		08/19/99
									0.00.40 DA

Page 3 of 5

RT HICKS CONSULTING, LTD 9908178 MEWBOURNE Projec

q

ALK9936	MT.1999.2068-2		Alkalinity, Carbonate	ND	mg/L	1	2	08/27/
ALK9938	MT.1999.2056-3		Alkalinity, Total	198	mg / L	1	2	08/27/9
9908178-0)5D	SW846 8260A	Purgeable VOCs by GC/MS					
X99266	XG.1999.711-2	71-43-2	Benzene	ND	ug/L	1	1	08/20/
X99266	XG.1999.711-2	100-41-4	Ethylbenzene	ND	ug / L	1	1	08/20/
X99266	XG.1999.711-2		Naphthalene	ND	ug / L	1	5	08/20
X99266	XG.1999.711-2	95-47-6	o-Xylene	ND	ug / L	1	1	08/20
X99266	XG.1999.711-2		p/m Xylenes	ND	ug/L	1	2	08/20
	XG.1999.711-2	108-88-3	Toluene	ND	ug / L	4		08/20

Client Sample ID	MCCASLAN	D WM TAN	K	Sample W Matrix				mple llected	08/16/9 14:22:0
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
•			•						
9908178-06		EPA200.7 ICP	······		·····		_,		-
M99951	MW.1999.1007-30	7440-70-2	Calcium	916	mg / L	11	0.4		08/23/99
M99951	MW.1999.997-85	7439-89-6	Iron	0.27	mg / L	1	0.05		08/21/99
M9995	MW.1999.997-65	7439-95-4	Magnesium	87.4	mg / L	1	0.1		08/21/99
M 🗾	MW.1999.997-65	7440-09-7	Potassium	9.4	mg / L	1	0.2		08/21/99
M99951	MW.1999.997-65	7440-23-5	Sodium	447	mg / L	1	0.2		08/21/99
9908178-00	6B	EPA 300.0							
W99182	MW.1999.984-21	[Nitrate, as N	2.2	mg / L	1	0.1	н	08/19/99
W99182	MW.1999.984-21		Nitrite, as N	ND	mg / L	1	0.1	н	08/19/99
9908178-0	6B	EPA 120.1							
CON9943	MT.1999.2013-6		Conductivity	7,260	umhos/cm	1	1		08/25/99
9908178-0	6B	EPA 300.0							
W99182	MW.1999.998-5		Chloride	2450	mg / L	100	0.5		08/20/99
W99182	MW.1999.984-21		Fluoride	ND	mg / L	1	0.5		08/19/99
W99182	MW.1999.984-22		Sulfate	124	mg / L	10	0.5	1	08/19/99
9908178-0	6C	EPA 160.1							
TD9923	MT.1999.1995-10		Total Dissolved Solids	4,270	mg / L	1	10	<u> </u>	08/19/99
9908178-0	6C	EPA 310.1							
			Alkalinity, Carbonate	ND	mg / L	1	2	T	08/27/99
ALK9936	MT.1999.2068-3	1 1							

Page 4 of 5

RT HICKS CONSULTING, LTD

Project: 9908178 MEWBOURNE

α

Client Sample ID	CF2 TP2 9'			Sample Matrix	•			mple llected	08/16/99 18:10:00
						Dilution	Detection		Run
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date
9908178-0	7A	EPA 300.0							
W99178	MW.1999.984-70		Nitrate, as N	1.4	mg / Kg	2	0.2		08/20/99
W99178	MW.1999.984-70		Nitrite, as N	ND	mg / Kg	2	0.2		08/20/99
9908178-0	7A	EPA 300.0							
W99178	MW.1999.984-70	[Chloride	6.2	mg / Kg	2	0.5	T	08/20/99
W99178	MW.1999.984-70		Fluoride	1.9	mg / Kg	2	0.5		08/20/99
W99178	MW.1999.984-70		Sulfate	31.1	mg / Kg	2	0.5		08/20/99
9908178-0)7A	SW846 3050A/6	010A ICP						
M99964	MW.1999.1010-66	7440-70-2	Calcium	413	mg / Kg	1	15	T	08/25/99
M99964	MW.1999.1010-68	7439-89-6	Iron	2250	mg / Kg	1	15		08/25/99
M99964	MW.1999.1010-66	7439-95-4	Magnesium	348	mg / Kg	1	10		08/25/99
M99964	MW.1999.1010-66	7440-09-7	Potassium	428	mg / Kg	1	10		08/25/99
M99964	MW.1999.1010-66	7440-23-5	Sodium	106	mg / Kg	1	15	+	08/25/99

*** Sample specific Detection Limit is determined by multiplying the sample Dilution Factor by the listed Reporting Detection Limit. ***
*** ND = Not detected: less than the sample specific Detection Limit. Results relate only to the items tested. ***

CATION-ANION BALANCE FOR 99-8178-06

.

.....

She

. .

ł

CATION	mg/L	CONV. F	CONV. FACTOR meq/L	meq/L	ANION	mg/L	CONV. F	CONV. FACTOR meq/L	meq/L
Ca	916		0.0499	45.7084	Alk CO3 as CaCO3		0	0.02	0
Fe	0.27		0.05372	0.014504	Alk HCO3 as CaCO3	55	55.4	0.01	0.554
¥	9.4		0.02558	0.240452	C	2450	00	0.02821	69.1145
Mg	87.4		0.08229	7.192146	SO4	÷.	24	0.02082	2.58168
Na	447		0.0435	19.4445	NO3 as N	N	2.2	0.07143	0.157146
					Br		0	0.01252	0
					Ŀ.	0	0.5	0.05264	0.02632
					PO4 as P		0	0.0968	0
					SiO3 as Si		0	0.07122	0
CATION SUM	MUX			72.6	ANION SUM				72.43365
CATION-♪	CATION-ANION BALANCE (%) =	NCE (%)	11	O					
Measured	Measured Conductivity (if available)	/ (if availa	ble)	7260					
lon Sum C	lon Sum Check - (0.9*EC)/100 Lo (1.1*EC)/100 Hi	EC)/100 C)/100 H	i Lo	65.34 79.86					
Measured TDS Calculated TDS	Measured TDS (if available) Calculated TDS	lable)		4270 4070.01					

Page 1

She

I

 $|_{\ell}$

1

CATION-ANION BALANCE FOR 99-8178-05

. '

CATION mg/L	mg/L	CONV. F	CONV. FACTOR meg/L	neq/L	ANION	mg/L	CO	CONV. FACTOR meq/L	meq/L
Ca	86.3	3	0.0499	4.30637	Alk CO3 as CaCO3		0	0.02	0
Fe	0.05	2	0.05372	0.002686	Alk HCO3 as CaCO3		198	0.01	1.98
×	-	4	0.02558	0.10232	G		121	0.02821	3.41341
Mg	15	2	0.08229	1.23435	S04		74.9	0.02082	1.559418
Na	76.5	ю	0.0435	3.32775	NO3 as N		ო	0.07143	0.21429
					Br		0	0.01252	0
					Ŀ		0.5	0.05264	0.02632
					PO4 as P		0	0.0968	0
					SiO3 as Si		0	0.07122	0
CATION SUM	MU			8.973476	ANION SUM				7.193438
CATION-₽	CATION-ANION BAL	ANCE (%) =	11	11					
Measured	Measured Conductivity (if available)	ty (if availa	ble)	891					
lon Sum C	lon Sum Check - (0.9*EC)/100 Lo (1.1*EC)/100 Hi	- (0.9*EC)/100 L((1.1*EC)/100 Hi	C	8.019 9.801					
Measured TDS Calculated TDS	Measured TDS (if available) Calculated TDS	iilable)		547 500.05					

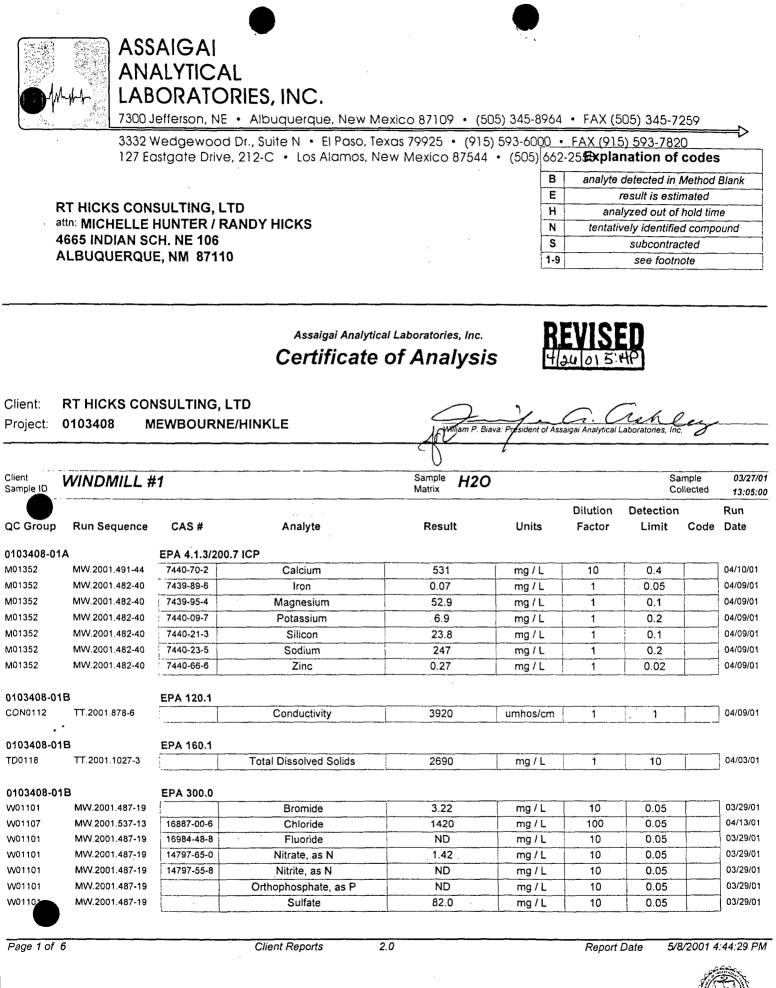
Page 1

1

•

(

CATION-ANION BALANCE FOR 99-8178-04


CATION mg/L	g/L	CONV. FACTOR meq/L	: meq/L	ANION	mg/L	CONV. FACTOR meq/L	meq/L
Ca	411	0.0499	9 20.5089	Alk CO3 as CaCO3	0	0.02	0
Fe	1.93	0.05372	2 0.10368	Alk HCO3 as CaCO3	186	0.01	1.86
×	6.2	0.02558	8 0.158596	C	1130	0.02821	31.8773
Mg	48.4	0.08229	9 3.982836	SO4	84.3	0.02082	1.755126
Na	244	0.0435	5 10.614	NO3 as N	1.6	0.07143	0.114288
				Br	0	0.01252	0
				ц.,	0.5	0.05264	0.02632
				PO4 as P	0	0.0968	0
				SiO3 as Si	0	0.07122	0
CATION SUM			35.36801	ANION SUM			35.63303
CATION-ANION BALANCE (%) =	N BALA	NCE (%) =	0				
Measured Conductivity (Iductivity	/ (if available)	3960				
lon Sum Check - (0.9*EC)/100 Lo (1.1*EC)/100 Hi	k - (0.9*E (1.1*E	- (0.9*EC)/100 Lo (1.1*EC)/100 Hi	35.64 43.56				

2060 2039.53

Measured TDS (if available) Calculated TDS Page 1

7300 JEFFERSON N.E. ALBUQUERQUE, NEW MEXICO 87 (505) 345-8964 (505) 345-8964 (505) 345-8964 (505) 662-2558 (305) 662-2558	Analysis Required		Alord	1-10 DAY	710 041		Date Received by: Signature Signature Time Printed Company Reason	After analysis, samples are to be: Disposed of (additional fee) Stored (30 days max) Stored over 30 days (additional fee) Returned to customer
	Project Manager / Contact $20 \text{ Muse } 14000 \text{ Manager / Contact}$ Telephone No. (505) $2/c/c - 500 \text{ Manager / Contact}$ Fax No. $(5c5)$ $2/c/c - 736$ Samplers : (signature) 26000	Time Sample Preservation Type Type Size of Container H H Chemical	> > > > > = = = = = = = = = =				Received by: Relinquished by: Signature Signature Printed Parken Company Company Reason Reason	Comments: 7-10 DA-1 NULUND ON TDS Na CL Ca PLEASE CALL JUR SANNES MARKE UL REJUTS TUR SANNES MARKE
Clark ASSAIGAL ANTICAL LABORATORIES, INC.	Address <u>HUIS</u> <u>Tridicit</u> <u>210</u> City / State / Zip <u>H/ Surgerance</u> <u>Nul</u> Project Name / Number <u>Project Nul</u> Contract / Purchase Order / Quote		" " her busit A "		Whilestand Tauk C3/36		Relinquished by: Signature / M/ / / / Date Signature / M/ / / Bate Printed / Aury/all / ht / Time Company CT+C 7:300, Reason Av Au	Method of Shipment:

T300 JEFERSON NE. ALBUQUEROUL, NEW MEXICO 87109 (505) 345-8964 (505) 345-8964 (505) 345-8964 (915) 592-8000 EL PASO, TEXAS 79925 EL PASO, TEXAS 79925 (915) 593-8000 (915)				· · .		and the second		a set and a set and a set a	After analysis, samples are to be: Disposed of (additional fee) Stored (30 days max) Stored over 30 days (additional fee) Returned to customer	
Lab Job No. O 1034 34 Date Lab Job No. O 1034 34 Date Page / of / o	Time Sample : 2017 Type / Size of Container. 2017 Preservation	Recention Liter Caliers	1730 10465					Received by: Relinquished by: Relinquished by: Signature Signature Signature Printed Company Masson Reason Reason	Comments:	COURIER
SAIGAI RTHE CO LICAL MISSION BORATORIES, INC. C-U S Indian Selo Miller Jureque, Nur Imber Vilente, Nur Imber Vilente, Nur se Order / Quote	ber / Location	nedu. // # 3	$re/co + \pi$. Util	(12)	30	a trans		 Relinquished by a Date Signature Signature Printed Outwords Time Company N. c N. 5 Course March Time Reason N. 195.5	Method of Shipment:	• • • •

Member: American Council of Independent Laboratories, Inc

REPRODUCTION OF THIS REPORT IN LESS THAN FULL REQUIRES THE WRITTEN CONSENT OF AAL THIS REPORT MAY NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY ANY ACCREDITATION PROGRAM.

RT HICKS CONSULTING, LTD

CI

Project: 0103408 MEWBOURNE/HINKLE

0103408-0	18	EPA 310.1						
ALK016	TT.2001.801-11		Alkalinity, Bicarbonate	148	mg / L	1	2	04/02/01
ALK016	TT.2001.801-11		Alkalinity, Carbonate	ND	mg / L	1	2	04/02/01
0103408-0	18	SM 1030F						
CATBAL	TT.2001.1028-1	:	Cation-Anion Balance	4	%	1	0	04/25/01

Client Sample ID	MEWBOURI	NE A		Sample H2 Matrix	0		mple llected	03/27/0 11:00:0	
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
0103408-0	3A	EPA 4.1.3/200	.7 ICP						
M01352	MW.2001.482-43	7440-70-2	Calcium	85.2	mg / L	1	0.4	r	04/09/01
101352	MW.2001.482-43	7439-89-6	Iron	0.06	mg/L	1	0.05		; 04/09/01
101352	MW.2001.482-43	7439-95-4	Magnesium	10.4	mg / L	1	0.1		04/09/01
101352	MW.2001.482-43	7440-09-7	Potassium	3.5	mg / L	1	0.2		04/09/01
101352	MW.2001.482-43	7440-21-3	Silicon	24.0	mg / L	1	0.1		04/09/0
A01352	MW.2001.482-43	7440-23-5	Sodium	59.0	mg / L	1	0.2	<u>+</u>	04/09/0
101352	MW.2001,482-43	7440-66-6	Zinc	ND	mg / L	1	0.02		04/09/0
)103408-0	3B	EPA 120.1							
ON0112	TT.2001.878-7		Conductivity	693	umhos/cm	1	1		04/09/0
103408-0	38	EPA 160.1							
D0118	TT.2001.841-11		Total Dissolved Solids	526	mg / L	1	10		04/03/0
		· · · · · · · · · · · · · · · · · · ·		······		<u> </u>	· · · · · · · · · · · · · · · · · · ·	1	1
103408-0	3B	EPA 300.0							_
V01101	MW.2001.487-20		Bromide	0.88	mg / L	10	0.05		03/29/0
V01101	MW.2001.487-20	16887-00-6	Chloride	105	- mg / L	10	0.05		03/29/0
V01101	MW.2001.487-20	16984-48-8	Fluoride	ND	mg / L	10	0.05		03/29/0
V01101	MW.2001.487-20	14797-65-0	Nitrate, as N	1.66	mg / L	10	0.05		03/29/0
V01101	MW.2001.487-20	14797-55-8	Nitrite, as N	ND	mg / L	10	0.05		03/29/0
V01101	MW.2001.487-20	1	Orthophosphate, as P	ND	mg / L	10	0.05		03/29/0
N01101	• MW.2001.487-20		Sulfate	51.4	mg / L	10	0.05		03/29/0
0103408-0	3B	EPA 310.1							
ALK016	TT.2001.801-12		Alkalinity, Bicarbonate	185	mg / L	1	2	1	04/02/0
ALK016	TT.2001.801-12		Alkalinity, Carbonate	ND	mg / L	1	2		04/02/0
	120	SM 1030F							
0103408-0	198								

Page 2 of 6

RT HICKS CONSULTING, LTD 0103408 Project: **MEWBOURNE/HINKLE**

Cli

ence CAS # EPA 4.1.3/20 2-44 7440-70-2 2-44 7439-89-6 2-44 7439-95-4 2-44 7440-09-7 2-44 7440-09-7 2-44 7440-21-3 2-44 7440-23-5 2-44 7440-66-6 EPA 120.1 -9 EPA 160.1 -12 EPA 300.0	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon Sodium Zinc Conductivity Total Dissolved Solids	Result 92.2 ND 13.3 4.2 22.2 59.2 ND 779	Units mg / L mg / L	Dilution Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Detection Limit 0.4 0.05 0.1 0.2 0.1 0.2 0.02	Code	04/09/01 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01
2-44 7440-70-2 2-44 7439-89-6 2-44 7439-95-4 2-44 7440-09-7 2-44 7440-21-3 2-44 7440-23-5 2-44 7440-66-6 EPA 120.1 -12 EPA 160.1 -12 EPA 300.0	Calcium Iron Magnesium Potassium Silicon Sodium Zinc Conductivity	ND 13.3 4.2 22.2 59.2 ND	mg / L mg / L mg / L mg / L mg / L mg / L	1 1 1 1 1 1	0.05 0.1 0.2 0.1 0.2 0.2 0.02		04/09/01 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01
2-44 7439-89-6 2-44 7439-95-4 2-44 7440-09-7 2-44 7440-21-3 2-44 7440-23-5 2-44 7440-66-6 EPA 120.1 -9 EPA 160.1 -12 EPA 300.0	Iron Magnesium Potassium Silicon Sodium Zinc Conductivity	ND 13.3 4.2 22.2 59.2 ND	mg / L mg / L mg / L mg / L mg / L mg / L	1 1 1 1 1 1	0.05 0.1 0.2 0.1 0.2 0.2 0.02		04/09/01 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01
2-44 7439-95-4 2-44 7440-09-7 2-44 7440-21-3 2-44 7440-23-5 2-44 7440-66-6 EPA 120.1 -9 EPA 160.1 -12 EPA 300.0	Magnesium Potassium Silicon Sodium Zinc Conductivity	13.3 4.2 22.2 59.2 ND	mg / L mg / L mg / L mg / L mg / L	1 1 1 1 1	0.1 0.2 0.1 0.2 0.02		04/09/01 04/09/01 04/09/01 04/09/01 04/09/01
2-44 7440-09-7 2-44 7440-21-3 2-44 7440-23-5 2-44 7440-66-6 EPA 120.1 -9 EPA 160.1 -12 EPA 300.0	Potassium Silicon Sodium Zinc Conductivity	4.2 22.2 59.2 ND	mg / L mg / L mg / L mg / L mg / L	1 1 1 1	0.2 0.1 0.2 0.02		04/09/01 04/09/01 04/09/01 04/09/01
2-44 7440-21-3 2-44 7440-23-5 2-44 7440-66-6 EPA 120.1 -9 EPA 160.1 -12 EPA 300.0	Silicon Sodium Zinc Conductivity	22.2 59.2 ND	mg / L mg / L mg / L	1 1 1	0.1 0.2 0.02		04/09/01 04/09/01 04/09/01
2-44 2-44 2-44 EPA 120.1 -9 EPA 160.1 EPA 300.0	Sodium Zinc Conductivity	59.2 ND	mg / L mg / L	1	0.2		04/09/01 04/09/01
2-44 7440-66-6 EPA 120.1 -9 EPA 160.1 EPA 300.0	Zinc Conductivity	ND	mg / L	1	0.02		04/09/01
EPA 120.1 -9 -12 EPA 160.1 EPA 300.0	Conductivity					1	
-9 EPA 160.1 -12 EPA 300.0		779	umhos/cm	1	1		
EPA 160.1 -12 EPA 300.0		779	umhos/cm	1	1	1	
-12 EPA 300.0	Total Dissolved Solids					i	04/09/01
-12 EPA 300.0	Total Dissolved Solids						
EPA 300.0	Total Dissolved Solids	538		1	10	·	04/03/01
·			mg / L		10	L	04/03/01
7.04							
37-21	Bromide	1.01	mg / L	10	0.05		03/29/01
16887-00-6	Chloride	133	mg / L	10	0.05		03/29/01
16984-48-8	Fluoride	ND	mg / L	10	0.05		03/29/01
37-21 14797-65-0	Nitrate, as N	1.37	mg / L	10	0.05		03/29/01
14797-55-8	Nitrite, as N	ND	mg / L	10	0.05		03/29/01
37-21	Orthophosphate, as P	ND	mg / L	10	0.05		03/29/01
37-21	Sulfate	64.9	mg / L	10	0.05		03/29/01
EPA 310.1							
1-13	Alkalinity, Bicarbonate	182	mg / L	1	2	1	04/02/01
1-13	Alkalinity, Carbonate	ND	mg / L	1	2		04/02/01
SM 1030F							
	Cation-Anion Balance	4	%	1	· · ·		04/16/01
	14797-55-8 187-21 187-21	AB7-21 14797-55-8 Nitrite, as N AB7-21 Orthophosphate, as P AB7-21 Sulfate EPA 310.1 D1-13 Alkalinity, Bicarbonate D1-13 Alkalinity, Carbonate SM 1030F	A87-21 14797-55-8 Nitrite, as N ND A87-21 Orthophosphate, as P ND A87-21 Sulfate 64.9 EPA 310.1 Alkalinity, Bicarbonate 182 01-13 Alkalinity, Carbonate ND SM 1030F SM 1030F SM 1030F	14797-55-8 Nitrite, as N ND mg / L 187-21 Orthophosphate, as P ND mg / L 187-21 Sulfate 64.9 mg / L 187-21 Sulfate 64.9 mg / L 187-21 Alkalinity, Bicarbonate 182 mg / L 01-13 Alkalinity, Carbonate ND mg / L SM 1030F SM 1030F SM 1030F SM 1030F SM 1030F	NB7-21 14797-55-8 Nitrite, as N ND mg / L 10 187-21 Orthophosphate, as P ND mg / L 10 187-21 Orthophosphate, as P ND mg / L 10 187-21 Sulfate 64.9 mg / L 10 EPA 310.1 Alkalinity, Bicarbonate 182 mg / L 1 01-13 Alkalinity, Carbonate ND mg / L 1 SM 1030F SM 10100F SM 10100F SM 10100F SM 10100F SM 10100F SM 10100F	H87-21 14797-55-8 Nitrite, as N ND mg / L 10 0.05 187-21 Orthophosphate, as P ND mg / L 10 0.05 187-21 Sulfate 64.9 mg / L 10 0.05 EPA 310.1 D1-13 Alkalinity, Bicarbonate 182 mg / L 1 2 SM 1030F SM 1030F SM 1030F SM 1030F SM 1030F SM 1030F SM 1030F	NB7-21 14797-55-8 Nitrite, as N ND mg / L 10 0.05 187-21 Orthophosphate, as P ND mg / L 10 0.05 187-21 Sulfate 64.9 mg / L 10 0.05 EPA 310.1 D1-13 Alkalinity, Bicarbonate 182 mg / L 1 2 SM 1030F SM 1030F

0103408-05A EPA 4.1.3/200.7 ICP 04/09/01 M01352 MW.2001.482-45 7440-70-2 95.8 mg / L 1 0.4 Calcium 0.05 04/09/01 1 7439-89-6 M01352 MW.2001.482-45 Iron 1.13 mg / L 04/09/01 M01352 MW.2001.482-45 7439-95-4 15.4 mg / L 1 0.1 Magnesium 0.2 04/09/01 MW.2001.482-45 7440-09-7 5.0 M0135 Potassium mg / L 1

Page 3 of 6

5/8/2001 4:44:29 PM Report Date

RT HICKS CONSULTING, LTD

CI

Project: 0103408 MEWBOURNE/HINKLE

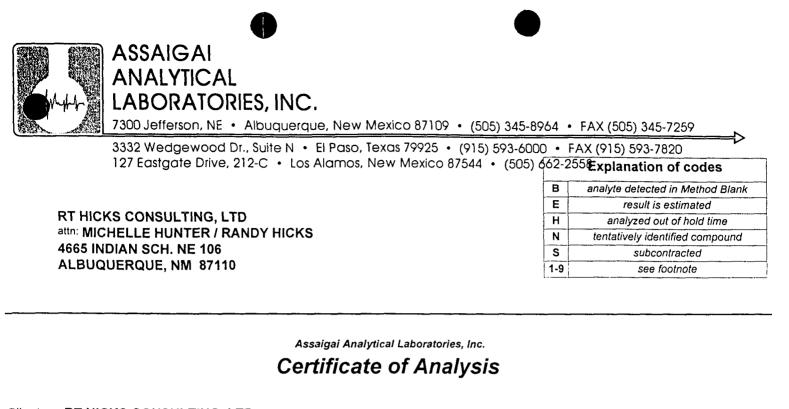
M01352	MW.2001.482-45	7440-21-3	Silicon	28.1	mg / L	1	0.1		04/09/01
VI01352	MW.2001,482-45	7440-23-5	Sodium	62.0	mg / L	1	0.2		04/09/01
M01352	MW.2001.482-45	7440-66-6	Zinc	ND	mg / L	1	0.02		04/09/01
0103408-056	з	EPA 120.1							
CON0112	TT.2001.878-10		Conductivity	778	umhes/cm	1	1		04/09/01
0103408-056	з	EPA 160.1							
TD0118	TT.2001.841-6		Total Dissolved Solids	570	mg / L	1	10		04/03/01
								- <u></u>	
) 103408-058 V01101		EPA 300.0	Dramida	0.00		10	0.05	·	02/20/04
V01101	MW.2001.487-22 MW.2001.487-22	16997.00.6	Bromide	0.82	mg / L	10	0.05		03/29/01
V01101		16887-00-6	Chloride	146	mg / L	10	0.05		03/29/01
	MW.2001.487-22	16984-48-8	Fluoride	ND	mg / L	10	0.05		03/29/01
N01101	MW.2001.487-22 MW.2001.487-22	14797-65-0	Nitrate, as N	0.62	mg / L	10	0.05		03/29/01
W01101 W01101		14797-55-8	Nitrite, as N	ND	mg / L	10	0.05		03/29/01
	MW.2001.487-22 MW.2001.487-22		Orthophosphate, as P Sulfate	ND	mg / L	10	0.05		03/29/01
W01101	10100.2001.407-22	L	Sunate	53.4	mg / L	10	0.05	1]	03/29/01
0103408-05	В	EPA 310.1						- r	
ALK016	TT.2001.801-14	i	Alkalinity, Bicarbonate	177	mg / L	1	2		04/02/01
ALK016	TT.2001.801-14	· · · · · · · · · · · · · · · · · · ·	Alkalinity, Carbonate	ND	mg/L	1	2		04/02/01
0103408-05	в	SM 1030F							
	B TT.2001.933-3	SM 1030F	Cation-Anion Balance	1	%	1	0		04/16/01
CATBAL Client		SM 1030F	Cation-Anion Balance	1 Sample H2 Matrix		<u> </u>	Sa	imple	04/16/01 03/27/ 17:20:
CATBAL Client Sample ID	TT.2001.933-3 MW-3			Sample H2 Matrix	0	Dilution	Sa Cc Detection	lected	03/27/ 17:20: Run
CATBAL Client Sample ID	TT.2001.933-3	SM 1030F	Cation-Anion Balance	Sample H2			Sa Cc	ollected	03/27/ 17:20: Run
CATBAL Client Sample ID QC Group 0103408-06	TT.2001.933-3 MW-3 Run Sequence A	CAS # EPA 4.1.3/200	Analyte).7 ICP	Sample H2 Matrix Result	O Units	Dilution Factor	Sa Cc Detection Limit	lected	03/27, 17:20 Run Date
CATBAL Client Sample ID QC Group 0103408-06 M01352	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2	Analyte).7 ICP Calcium	Sample Matrix H2 Result 295	O Units mg / L	Dilution Factor	Sa Cc Detection Limit	lected	03/27, 17:20: Run Date 04/09/0
CATBAL Client Sample ID QC Group 0103408-06 M01352 M01352	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6	Analyte 0.7 ICP Calcium Iron	Sample H2 Matrix Result 295 0.15	Units mg / L mg / L	Dilution Factor	Sa Cc Detection Limit 0.4 . 0.05	lected	03/27, 17:20 Run Date 04/09/0 04/09/0
CatBAL Client Sample ID QC Group 0103408-06 M01352 M01352 M01352	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4	Analyte 0.7 ICP Calcium Iron Magnesium	Sample Matrix H2 Result 295 0.15 50.9	Units mg / L mg / L mg / L	Dilution Factor	Sa Cc Detection Limit 0.4 . 0.05	lected	03/27, 17:20 Run Date 04/09/0 04/09/0 04/09/0
CATBAL Client Sample ID QC Group 0103408-06 VI01352 VI01352 VI01352 VI01352	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4 7440-09-7	Analyte 0.7 ICP Calcium Iron	Sample H2 Matrix Result 295 0.15	O Units mg / L mg / L mg / L mg / L	Dilution Factor	Sa Cc Detection Limit 0.4 0.05 0.1 0.2	lected	03/27 17:20 Run Date 04/09/0 04/09/0 04/09/0 04/09/0
CATBAL Client Sample ID QC Group 0103408-06 M01352 W01352 W01352 W01352	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4 7440-09-7 7440-21-3	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2	O Units mg / L mg / L mg / L mg / L mg / L	Dilution Factor 1 1 1 1 1	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1	lected	03/27 17:20 Run Date 04/09/0 04/09/0 04/09/0 04/09/0 04/09/0
CATBAL Client Sample ID 0103408-06 M01352 M01352 M01352 M01352 M01352 M01352	TT.2001.933-3 MWV-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4 7440-09-7 7440-21-3 7440-23-5	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon Sodium	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2 97.6	O Units mg / L mg / L mg / L mg / L mg / L mg / L	Dilution Factor 1 1 1 1 1 1 1	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1 0.2	lected	03/27 17:20 Run Date 04/09/0 04/09/0 04/09/0 04/09/0 04/09/0
CATBAL Client Sample ID QC Group 0103408-06 M01352 M01352 M01352 M01352 M01352 M01352	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4 7440-09-7 7440-21-3	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2	O Units mg / L mg / L mg / L mg / L mg / L	Dilution Factor 1 1 1 1 1	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1	lected	03/27 17:20 Run Date 04/09/0 04/09/0 04/09/0 04/09/0 04/09/0 04/09/0
CATBAL Client Sample ID QC Group 0103408-06 M01352 M01352 M01352 M01352 M01352 M01352 M01352	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4 7440-09-7 7440-21-3 7440-23-5	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon Sodium	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2 97.6	O Units mg / L mg / L mg / L mg / L mg / L mg / L	Dilution Factor 1 1 1 1 1 1 1	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1 0.2	lected	03/27 17:20 Run Date 04/09/0 04/09/0 04/09/0 04/09/0 04/09/0 04/09/0
CATBAL Client Sample ID C Group 0103408-06 101352 101352 101352 101352 101352 101352 101352 101352 101352 101352 1013408-06	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4 7440-09-7 7440-21-3 7440-23-5 7440-23-5 7440-66-6	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon Sodium	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2 97.6	O Units mg / L mg / L mg / L mg / L mg / L mg / L	Dilution Factor 1 1 1 1 1 1 1	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1 0.2	lected	03/27 17:20 Run Date 04/09/0 04/09/0 04/09/0 04/09/0 04/09/0 04/09/0
0103408-05 CATBAL Client Sample ID QC Group 0103408-06 M01352 M01352 M01352 M01352 M01352 M01352 M01352 M01352 M01352 0103408-06 CON0112	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4 7440-09-7 7440-21-3 7440-23-5 7440-23-5 7440-66-6	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon Sodium Zinc	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2 97.6 ND	O Units mg / L mg / L	Dilution Factor	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1 0.2 0.02	lected	03/27, 17:20: Run Date 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01
CATBAL Client Sample ID QC Group 0103408-06 M01352 M01352 M01352 M01352 M01352 M01352 M01352 0103408-06 CON0112	TT.2001.933-3 MW-3 Run Sequence A MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49 MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-95-4 7440-09-7 7440-21-3 7440-23-5 7440-66-6 EPA 120.1	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon Sodium Zinc	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2 97.6 ND	O Units mg / L mg / L	Dilution Factor	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1 0.2 0.02	lected	03/27, 17:20: Run Date 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01
CATBAL Client Sample ID QC Group 0103408-06 M01352 M01352 M01352 M01352 M01352 M01352 0103408-06 CON0112 0103408-06 TD0118	TT.2001.933-3 MWV-3 Run Sequence A MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-89-6 7439-95-4 7440-09-7 7440-21-3 7440-23-5 7440-23-5 7440-66-6 EPA 120.1 EPA 160.1	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon Sodium Zinc Conductivity	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2 97.6 ND 2180 2180	O Units mg / L mg / L	Dilution Factor	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1 0.2 0.1 0.2 0.02	lected	03/27/ 17:20: Run
CATBAL Client Sample ID QC Group 0103408-06 M01352 M01352 M01352 M01352 M01352 0103408-06 CON0112 0103408-06	TT.2001.933-3 MWV-3 Run Sequence A MW.2001.482-49	CAS # EPA 4.1.3/200 7440-70-2 7439-95-4 7440-09-7 7440-21-3 7440-23-5 7440-66-6 EPA 120.1	Analyte 0.7 ICP Calcium Iron Magnesium Potassium Silicon Sodium Zinc Conductivity	Sample Matrix H2 Result 295 0.15 50.9 7.0 23.2 97.6 ND 2180 2180	O Units mg / L mg / L	Dilution Factor	Sa Cc Detection Limit 0.4 0.05 0.1 0.2 0.1 0.2 0.1 0.2 0.02	lected	03/27, 17:20: Run Date 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01 04/09/01

Cli RT HICKS CONSULTING, LTD Project: 0103408 MEWBOURNE/HINKLE

QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
Client Sample ID	MCCASLAN	ID TANK		Sample H2C Matrix)			mple illected	03/28/0 06:43:0
CATBAL	TT.2001.933-4		Cation-Anion Balance	2	%	1	0		04/16/01
0103408-06	В	SM 1030F							
ALK016	TT.2001.801-15		Alkalinity, Carbonate	ND	mg / L	1	2		04/02/01
ALK016	TT.2001.801-15		Alkalinity, Bicarbonate	166	mg / L	1	2		04/02/01
0103408-061	3	EPA 310.1							
N01101	MW.2001.487-23		Sulfate	61.5	mg / L	10	0.05		03/29/01
N01101	MW.2001.487-23		Orthophosphate, as P	ND	mg / L	10	0.05		03/29/01
W01101	MW.2001.487-23	14797-55-8	Nitrite, as N	ND	mg / L	10	0.05		03/29/01
W01101	MW.2001.487-23	14797-65-0	Nitrate, as N	ND	mg / L	10	0.05		03/29/01
W01101	MW.2001.487-23	16984-48-8	Fluoride	ND	mg / L	10	0.05		03/29/01
V01112	MW.2001.514-2	16887-00-6	Chloride	679	mg / L	50	0.05		04/05/01

0103408-0		EPA 4.1.3/200						
M0135	MW.2001.491-45	7440-70-2	Calcium	893	mg / L	10	0.4	04/10/01
M013	MW.2001.482-50	7439-89-6	Iron	2.94	mg / L	1	0.05	04/09/01
M01352	MW.2001.482-50	7439-95-4	Magnesium	94.5	mg / L	1	0.1	04/09/01
M01352	MW.2001.482-50	7440-09-7	Potassium	11.7	mg / L	1	0.2	04/09/01
M01352	MW.2001.482-50	7440-21-3	Silicon	31.5	mg / L	1	0.1	04/09/01
M01352	MW.2001.482-50	7440-23-5	Sodium	438	mg / L	1	0.2	04/09/01
M01352	MW.2001.482-50	7440-66-6	Zinc	1.21	mg / L	1	0.02	04/09/01
0103408-0)7B	EPA 120.1						
CON0112	TT.2001.878-12		Conductivity	6570	umhos/cm	1	1	04/09/01
				······································				
0103408-0)7B	EPA 160.1						
TD0118	TT.2001.1027-4		Total Dissolved Solids	4720	mg / L	1	10	04/03/01
0103408-0)7 _. B	EPA 300.0						
W01101	MW.2001.487-24		Bromide	5.76	mg / L	10	0.05	03/29/01
W01107	MW.2001.537-14	16887-00-6	Chloride	2620	mg / L	500	0.05	04/13/01
W01101	MW.2001.523-1	16984-48-8	Fluoride	ND	mg / L	10	0.05	03/29/01
W01101	MW.2001.487-24	14797-65-0	Nitrate, as N	2.69	mg / L	10	0.05	03/29/01
W01101	MW.2001.487-24	14797-55-8	Nitrite, as N	ND	mg / L	10	0.05	03/29/01
W01101	MW.2001.487-24		Orthophosphate, as P	ND	mg / L	10	0.05	03/29/01
W01101	MW.2001.487-24	1	Sulfate	149	mg / L	10	0.05	03/29/01
		۱						
0103408-0	07B	EPA 310.1						
ALK016	TT.2001.801-16		Alkalinity, Bicarbonate	105	mg / L	1	2	04/02/01
ALK016	TT.2001.801-16) <u> </u>	Alkalinity, Carbonate	ND	mg / L	1	2	04/02/01

Page 5 of 6


RT HICKS CONSULTING, LTD

Project: 0103408 MEWBOURNE/HINKLE

0103408-07	в	SM 1030F		•			
CATBAL	TT.2001.1028-2	Cation-Anion Balance	6	%	1	0	04/25/01

*** Sample specific Detection Limit is determined by multiplying the sample Dilution Factor by the listed Reporting Detection Limit. ***
*** ND = Not detected: less than the sample specific Detection Limit. Results relate only to the items tested. ***

Client Sample ID	WINDMILL #	3		Sample H2 Matrix	0			ample ollected	03/28/0 18:30:0
	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
•	•		·						
)103434-01 //01366	A MW.2001.491-58	EPA 4.1.3/200	Calcium	592	mg / L	10	0.4		04/10/01
VI01366	MW.2001.491-58	7439-89-6	Iron	592 ND	mg/L mg/L	10	0.05		04/09/01
A01366	MW.2001.482-66	7439-95-4	Magnesium	56.7	mg/L mg/L	1	0.05		04/09/01
M01366	MW.2001.482-66	7440-09-7	Potassium	7.5	mg/L	<u>'</u>	0.1	+	04/09/01
A01366	MW.2001.482-66	7440-21-3	Silicon	24.1	mg / L		0.2		04/09/01
M01366	MW.2001.482-66	7440-23-5	Sodium	258	mg/L	1	0.1		04/09/01
W01366	MW.2001.482-66	7440-66-6	Zinc	0.08	mg / L	1	0.02		04/09/01
0103434-0 ⁻	B	EPA 120.1							
CON0112	TT.2001.878-15		Conductivity	4140	umhos/cm	1	1		04/09/01
• 0103434-0 ⁻		EPA 160.1							
TD0118	TT.2001.1027-5		Total Dissolved Solids	3050	mg / L	1	10		04/03/01
0103434-0 [.]	IB	EPA 300.0							
W01101	MW.2001.487-30		Bromide	3.35	mg / L	10	0.05		03/30/01
W01112	MW.2001.514-3	16887-00-6	Chloride	1580	mg / L	100	0.05		04/05/01
W01101	MW.2001.487-30	16984-48-8	Fluoride	ND	mg / L	10	0.05		03/30/01
W01101	MW.2001.487-30	14797-65-0	Nitrate, as N	1.52	mg / L	10	0.05		03/30/01
W01101	MW.2001.487-30	14797-55-8	Nitrite, as N	ND	mg / L	10	0.05		03/30/01
W01101	MW.2001.487-30	1	Orthophosphate, as P	ND	mg / L	10	0.05		03/30/01
W0112	MW.2001.487-30		Sulfate	84.3	mg / L	10	0.05		03/30/01

Member: American Council of Independent Laboratories, Inc. REPRODUCTION OF THIS REPORT IN LESS THAN FULL REQUIRES THE WRITTEN CONSENT OF AAL. THIS REPORT MAY NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIKD PARTY TO CLAIM PRODUCT ENDORSEMENT BY ANY ACCREDITATION PROGRAM.

Cli RT HICKS CONSULTING, LTD

Project: 0103434 MEWBOURNE/HINKLE

0103434-018	3	EPA 310.1							
ALK016	TT.2001.801-19		Alkalinity, Bicarbonate	147	mg / L	1	2		04/02/01
ALKO16	TT.2001.801-19		Alkalinity, Carbonate	ND	mg / L	1	2		04/02/01
0103434-016	3	SM 1030f							
CATBAL	TT.2001.1028-3		Cation-Anion Balance	4	%	1	0		04/25/01
Client Sample ID	WINDMILL #	#4		Sample H2 Matrix	0			mple	03/29/ 17:30:
			یون جی میں اور میں اور			Dilution	Detection		Run
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	
0103434-02	A	EPA 4.1.3/200	.7 ICP						
401366	MW.2001.491-59	7440-70-2	Calcium	610	mg/L	10	0.4		04/10/01
M01366	MW.2001.482-67	7439-89-6	Iron	ND	mg / L	1	0.05	<u> </u>	04/09/01
M01366	MW.2001.482-67	7439-95-4	Magnesium	57.1	mg / L	1	0.1		04/09/01
M01366	MW.2001.482-67	7440-09-7	Potassium	7.4	mg / L	1	0.2	+	04/09/01
M01366	MW.2001.482-67	7440-21-3	Silicon	23.4	mg / L	1	0.1	1	04/09/01
M01366	MW.2001.482-67	7440-23-5	Sodium	266	mg / L	1	0.2	1	04/09/01
M01366	MW.2001.482-67	7440-66-6	Zinc	0.05	mg / L	1	0.02		04/09/01
010340-1-02	в	EPA 120.1							
CON0112	TT.2001.878-16		Conductivity	4470	umhos/cm	1	1		04/09/01
0103434-02	R	EPA 160.1							
TD0118	TT.2001.1027-6	LFA 100.1	Total Dissolved Solids	3220	mg / L	1	10		04/03/01
	_								
0103434-02		EPA 300.0							
W01101	MW.2001.487-31		Bromide	3.53	mg / L	10	0.05		03/30/01
W01107	MW.2001.537-16	16887-00-6	Chloride	1620	mg/L	200	0.05	<u> </u>	04/13/01
W01101	MW.2001.487-31	16984-48-8	Fluoride	ND	mg/L	10	0.05		03/30/01
W01101	MW.2001.487-31	14797-65-0	Nitrate, as N	1.48	mg / L	10	0.05		03/30/01
W01101	MW.2001.487-31	14797-55-8	Nitrite, as N	ND	mg / L	10	0.05		03/30/01
W01101	MW.2001.487-31		Orthophosphate, as P	ND	mg / L	10	0.05		03/30/01
W01101 , •	MW.2001.487-31		Sulfate	86.0	mg / L	10	0.05		03/30/01
0103434-02	B	EPA 310.1							
ALK016	TT.2001.801-20		Alkalinity, Bicarbonate	146	mg / L	1	2		04/02/01
ALK016	TT.2001.801-20		Alkalinity, Carbonate	ND	mg / L	1	2		04/02/01
0103434-02	2B	SM 1030f							
									04/25/01

C RT HICKS CONSULTING, LTD Project: 0103434 MEWBOURNE/HINKLE

*** Sample specific Detection Limit is determined by multiplying the sample Dilution Factor by the listed Reporting Detection Limit. ***
*** ND = Not detected: less than the sample specific Detection Limit. Results relate only to the items tested. ***

Page 3 of 3

emistry	cli Area
Table: Wate	McCasland

Mewbourne A 8/17/99	86.3	pu	15	4		76.5		121	pu	ო	pu		74.9	150		547			4.31	1.23	0.10	1.50	1.56	3.41	5.64	6.47	76%	22%	2%	23%	24%	53%
McCasland Tank 8/17/99	916	0.27	87.4	9.4		447		2450	pu	2.2	pu		124			4270			45.71	7.19	0.24	0.00	2.58	69.11	53.14	71.70	86%	14%	%0	%0	4%	86%
McCasland WM 8/17/99	411	1.93	48.4	6.2		244		1130	pu	1.6	pu		84.3			2060			20.51	3.98	0.16	0.00	1.76	31.88	24.65	33.63	83%	16%	1%	%0	5%	95%
McCasland WM 9/1/98	749	19.9	73.9	8.3	21.8	373	3.8	1930	ND	-	QN	QN	112	117	7800		ber liter		37.38	6.08	1.16	1.17	2.33	54.45	44.62	57.95	84%	14%	3%	2%	4%	94%
McCasland WM 3/31/98	200		06	7.4		285		1771		с			108	171		4113	Milliequivalents per liter		34.93	7.41	0.19	1.71	2.25	49.96	42.53	53.92	82%	17%	%0	3%	4%	93%
Mew #4 9/1/98	310	0.6	52.8	15.5	22	275	QN	453	0.6	0.5	QN	1.9	775	172	3700		-		15.47	4.34	1.35	1.72	16.14	12.78	21.17	30.63	73%	21%	6%	6%	53%	42%
N	99.3	0.6	18.9	17	23.7	103	QN	114	0.9	0.5	QN	QN	127	275	1160				4.96	1.56	1.47	2.75	2.64	3.22	7.98	8.61	62%	19%	18%	32%	31%	37%
																		ר Factor			0.0256											
	l/gц	hg/l	l/gu	l/gu	l/brl	рд/ј	l/grl	l/gu	рд/ј	рд/ј	hg/l	l/gu	l/gu	l/grl	pmhos/cm			Conversion Factor	0.0499	0.08229	0.0435	0.01	0.02082	0.02821								
Lab ID Date	Ca	Fe	Mg	¥	S	Na	Zn	G	Ē	Nitrate	Nitrite	Ortho. P	Sulfate	Carbonate	nductivity	TDS	Br	-	Ca+2							Total Anions	% Ca+2	% Mg +2	% Na + K	% HCO3 -1	% SO4 -2	% Cl -1

`ر

l

MW-3 3/27/01 205	230 0.015	50.9	7	23%	98%	pu	679%	pu	pu	pu	pu	61.5	166	2180	1500	1.91	
Windmill #4 (1730) 3/29/01	o pu	57.4	7.4	23.4	266	0.05	1620	pu	1.48	pu		86	146	4470	3220	3.53	
McCasland Tank 3/28/01 803	033 2.94	94.5	11.7	31.5	438	1.21	5230	pu	2.69	pu	pu	149	105	6570	4720	5.76	
Mewbourne A 3/27/01 85.2	0.06	10.4	3.5	24	59	pu	105	pu	1.66	pu	pu	51.4	185	693	526	0.88	
Lab ID Date	т е	Mg	¥	Si	Na	Zn	ō	Ē	Nitrate	Nitrite	Ortho. P	Sulfate	Carbonate	Conductivity	TDS	Br	Ca+2 Mg +2 Mg +2 Na +K HCO3 -1 SO4 -2 Cl -1 SO4 -2 Cl -1 % Na + K % SO4 -2 % SO4 -2 % Cl -1

ASSAIGAI ANALYTICAL LABORATORIES, INC.

7300 Jefferson, NE • Albuquerque, New Mexico 87109 • (505) 345-8964 • FAX (505) 345-7259

	3	79925 • (915) 593-6000 • FAX (915) 593-7820 Mexico 87544 • (505) 662-2558 planation of codes
E result is estimated		B analyte detected in Method Blank
		E result is estimated

RT HICKS CONSULTING, LTD attn: MICHELLE HUNTER / RANDY HICKS 4665 INDIAN SCH. NE 106 ALBUQUERQUE, NM 87110

662-2	558 planation of codes
В	analyte detected in Method Blank
E	result is estimated
н	analyzed out of hold time
N	tentatively identified compound
S	subcontracted
1-9	see footnote

Assaigai Analytical Laboratories, Inc.

Certificate of Analysis

Client: Project:

RT HICKS CONSULTING, LTD 0104039 MEWBORNE

William P. Biava: President of Assaigai Analytical Laboratories, Inc.

Client Sample ID	CARTER #1	,2,3		Sample W Matrix			Sa Co	04/03/01 12:00:00	
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Run Date
0104039-0 [.]	IA	EPA 4.1.3/200	.7 ICP						
M01382	MW.2001.596-26	7440-70-2	Calcium	8630	mg/L	100	0.4	E	04/24/01
M01382	MW.2001.546-19	7439-89-6	Iron	1.37	mg/L	10	0.05		04/17/01
M01382	MW.2001.546-19	7439-95-4	Magnesium	3590	mg / L	10	0.1		04/17/01
M01382	MW.2001.546-19	7440-09-7	Potassium	1700	mg / L	10	0.2	1	04/17/01
M01382	MW.2001.546-19	7440-21-3	Silicon	4.3	mg / L	10	0.1		04/17/01
M01382	MW.2001.596-27	7440-23-5	Sodium	44800	mg / L	1000	0.2		04/24/01
M01382	MW.2001.546-19	7440-66-6	Zinc	ND	mg / L	10	0.02	1	04/17/01
0104039-0 CON0114	1B TT.2001.1095-8	EPA 120.1	Conductivity	296000	umhos/cm	10	·		05/01/01
0104039-0 TD0119	• 1B TT.2001.1085-1	EPA 160.1	Total Dissolved Solids	196000	mg / L	1			04/05/01
0104039-0	18	EPA 300.0	· · · · · · · · · · · · · · · · · · ·	<u>,</u>					2
W01112	MW.2001.514-4	16887-00-6	Chloride	125000	mg / L	10000	0.05		04/05/01
W01105	MW.2001.628-1	16984-48-8	Fluoride	ND	mg / L	20	0.05		04/04/01
W01105	MW.2001.628-1	14797-65-0	Nitrate, as N	127	mg / L	20	0.05		04/04/01
W01105	MW.2001.628-1		Orthophosphate, as P	ND	mg / L	20	0.05	-	04/04/01
W01105	MW.2001.555-12		Sulfate	1110	mg / L	100	0.05	1	04/04/01
0104039-0	1B	EPA 310.1							-
ALKO	TT.2001.928-2		Alkalinity, Bicarbonate	237	mg / L	1	2		04/14/01
Page 1 of	2		Client Reports 2	2.0		Report	Date 5/2	2/2001 1	:21:22 PM

American Council of Independent Laboratories, Inc. REPRODUCTION OF THIS REPORT IN LESS THAN FULL REQUIRES THE WRITTEN CONSENT OF AAL. THIS REPORT MAY NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY ANY ACCREDITATION PROGRAM.

CIE RT HICKS CONSULTING, LTD

Project: 0104039 MEWBORNE

ALK017	TT.2001.928-2	Alkalinity, Carbonate	ND	mg / L	1	2	04/14/01
0104039-0 CATBAL	1B TT.2001.1100-1	SM 1030F Cation-Anion Balance	13	%	1	0	05/02/01

*** Sample specific Detection Limit is determined by multiplying the sample Dilution Factor by the listed Reporting Detection Limit. ***
*** ND = Not detected: less than the sample specific Detection Limit. Results relate only to the items tested. ***

١,

{

(

R.T. HICKS CONSULTING, LTD.

WATER SA	AMPLE FIELD DATA SHEET
	SAMPLE ID: PROJECT NAME: Rewbourne O.' LOCATION/WELL NO: Dird.n.'ll ater Treatment Effluent Other 2 4 6 Other
CASING ELEVATION (feet/MSL):	VAPL VOLUME IN CASING (gal.): 16 50. ACTUAL PURGE VOL. (gal.):
DATE SAMPLED:	Start (2400 Hr) End (2400 Hr)
	RECORD OF PURGING
TIME VOLUME pH (2400 Hr) (gal.) (units) 135 35 136 136 149 1315 1315 74.5 128.5 1425 128.5 128.5 D.O. (ppm):	
	SAMPLES COLLECTED
# of Containers 80 ml VOAs SVOCs *RCRA* Metals, Metals	SAMPLES COLLECTED # of Containers # of Containers Anions & Cations Rad: Nitrogen Species Iron: Plate Counts Other:
WELL INTEGRITY: <u>Sconderent</u> REMARKS: <u>1.4 galimin @ 15</u> <u>21.5 gal min @ 15145</u>	140, 1.7 gal/min@ 1315, 1.6 gal and 0 1400 punip 2 @ 16:20, 5-20-2 15:30
REMARKS ABOUT WELL RECOVERY	
Signature:	Reviewed By: Page of

1 | 1

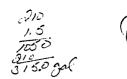
1

VOLUME / UNIT LENGTH FOR CASING DIAMETERS

Nominal	Gal	./Ft.	Liters/Ft.				
Pipe Size	Sch. 40	Sch. 80	Sch. 40	Sch.80			
1.5	.106	.092	.401	.348			
2.0	.174	.153	.658	.579			
4.0	.661	.597	2.50	2.26			
6.0	1.50	1.35	5.68	5.11			

VOLUME / UNIT LEN	IGTH FOR TUBI	NG DIAMETERS
Tbg. I.D.	Gal/Ft.	Mis/Ft.
1/4"	.0026	9.65
3/8"	.0057	21.71
1/2"	.0102	38.60

	CONVERSIONS	
To Convert	Into	Multiply By
Ft. of Water	Lbs/Sq In (PSI)	.434
Lbs/Sq In	Ft. of Water	2.31
Cubic Ft.	Gallons	7.48
Gallons	Liters	3.78
Liters	Gallons	.264
Feet	Meters	.305
Inches	Centimeters	2.54


Additional remarks

Win #1 fat a 1305 [~ 5le gal Wr #2 Late @ 1420 [~ 18 70]

.

Page ____of ____

R.T. HICKS CONSULTING, LTD.

(CLIENT NAME:	Sec la	se!		SA	MPLE ID:		
	PURGED BY:				PROJE	CT NAME:		
						NELL NO:		
						Other Other		
	CASING ELEVA	TION (feet/MSL)			STANDING (COLUMN OF WATER:		
	DEPTH TO LNAPL	. (feet):	TO DNAP	L	VOLUME IN	CASING (gal.):		
	DEPTH	TO WATER (feet)	:			RGE VOL. (gal.):		
	DEPTI	H OF WELL (feet)	: 			VATER AFTER PURGI	NG:	·····
C	DATE SAMPLED:			St	art (2400 Hr)	En	d (2400 Hr)	
				RECO	RD OF PURGING	2		
03/2		VOLUME (gal.) らんご	pH (units) <u>4040</u>	_ <u> </u>	E.C. hhos/cm @ \$\$(C)	TEMPERATURE (°F)	COLOR (visual)	TURBIDITY (visual)
	1830		4,190	>				
03/2			LAFO					<u> </u>
/	D.O, (ppr	ו):		ODOR:	<u> </u>			
	Field QC samples co	ollected at this we	ll:	Para	meters field filtered	at this well:		
				<u>SAMP</u>	LES COLLECTE	<u>2</u>		
t	# of Containe	-		# of Container:		# of Contain		
		80 ml VOAs SVOCs			 Anions & Cations Nitrogen Species 			
		"RCRA" Metal:	s, Metals		 Plate Counts 			
	WELL INTEGRITY:						I ОСК#. 	
			· · · · · · · · · · · ·					
	REMARKS:	398	2	10	<u></u>			
			- archoo			·	· · · · · · · · · · · · · · · · · · ·	
	REMARKS ABOUT	WELL RECOVER	RY					
	_							

·y - • 🔽

VOLUME / UNIT LENGTH FOR CASING DIAMETERS

Nominal	Gal	/Ft.	Liters/Ft.				
Pipe Size	Sch. 40	Sch. 80	Sch. 40	Sch.80			
1.5	.106	.092	.401	.348			
2.0	.174	.153	.658	.579			
4.0	.661	.597	2.50	2.26			
6.0	1.50	1.35	5.68	5.11			

VOLUME / UNIT LENGTH FOR TUBING DIAMETERS						
Tbg. I.D.	Gal/Ft.	Mis/Ft.				
1/4"	.0026	9.65				
3/8"	.0057	21.71				
1/2"	.0102	38.60				

	CONVERSIONS				
To Convert	Into	Multiply By			
Ft. of Water	Lbs/Sq In (PSI)	.434			
Lbs/Sg In	Ft. of Water	2.31			
Cubic Ft.	Gallons	7.48			
Gallons	Liters	3.78			
Liters	Gallons	.264			
Feet	Meters	.305			
Inches	Centimeters	2.54			

Additional remarks

Page _____of _____

,

R.T. HICKS CONSULTING, LTD.

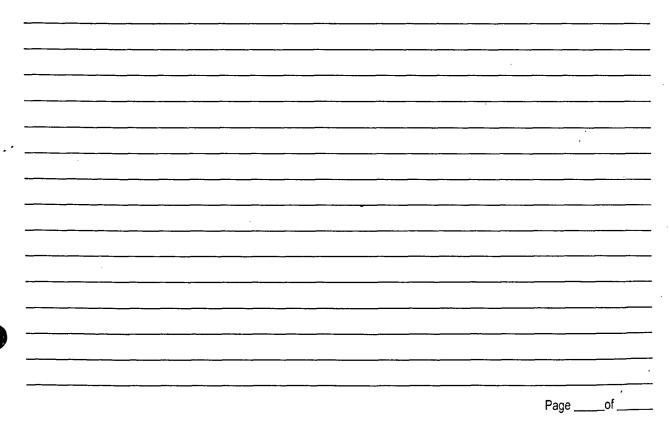
CLIENT NAME: <u>Hinkle</u> PURGED BY: <u>JPA</u> SAMPLED BY: <u>JPA</u>			S	AMPLE ID:			
				_ PROJECT NAME: <u>Mewbourne O.1</u> LOCATION/WELL NO: _MW-1			
			LOCATION				
TYPE: Ground Wa	iter <u>K</u> s			Treatment Effluent Other 4 6 Other			
CASING DIAMETER (inches):	.5	2 4 6				
CASING ELEVAT	CASING ELEVATION (feet/MSL):		STANDING	STANDING COLUMN OF WATER:5.45'			
DEPTH TO LNAPL (
			S' ACTUAL P	URGE VOL. (gal.):	7		
DEPTH	OF WELL (feet):	95	DEPTH TO	WATER AFTER PURG	ING:		
DATE SAMPLED:			Start (2400 Hr)	En	id (2400 Hr)		
			RECORD OF PURGIN	IG			
TIME (2400 Hr)	VOLUME (gal.)	pH (units)	E.C. (µmhos/cm @ 25°C)	TEMPERATURE (°F)	COLOR (visual)	TURBIDIT) (vísual)	
1530	2.5		840				
1540	<u> 7. 5 </u>		847				
 D.O. (ppm);			 ODOR:				
Field QC samples coll		:	Parameters field filtere				
			SAMPLES COLLECT	 ED			
# of Containers			# of Containers # of Conta		iners		
	80 ml VOAs		Anions & Cation	ns	Rad:		
	SVOCs		Nitrogen Specie	es			
	"RCRA" Metals,	Metals	Plate Counts		Other:		
WELL INTEGRITY: _					_ LOCK#:		
REMARKS:							
•••••••							
				· · · · · · · · · · · · · · · · · · ·		<u></u>	
REMARKS ABOUT V	VELL RECOVER	Y					
						of	

 $\left\{ \right.$

•• • •1

VOLUME / UNIT LENGTH FOR CASING DIAMETERS

Nominal	Gal./Ft.		Liter	s/Ft.
Pipe Size	Sch. 40	Sch. 80	S <u>ch</u> . 40	Sch.80
1.5	.106	.092	.401	.348
2.0	.174	.153	.658	.579
4.0	.661	.597	2.50	2.26
6.0	1.50	1.35	5.68	5.11


VOLUME / UNIT LEN	NG DIAMETERS	
Tbg. I.D.	Gal/Ft.	Mis/Ft.
1/4"	.0026	9.65
3/8"	.0057	21.71
1/2"	.0102	38.60

o Convert	Into	Multiply By
Ft. of Water	Lbs/Sg In (PSI)	.434
Lbs/Sq In	Ft. of Water	2.31
Cubic Ft.	Gallons	7.48
Gallons	Liters	3.78
Liters	Gallons	.264
Feet	Meters	.305
Inches	Centimeters	2.54

Additional remarks

1(

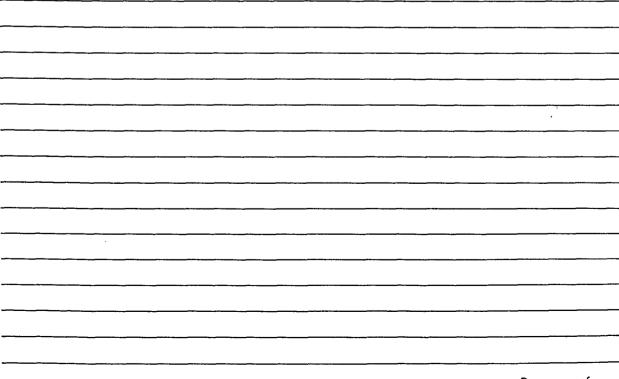
R.T. HICKS CONSULTING, LTD.

WATER SAMPLI	EFIELD	DATA SI	HEET	
CLIENT NAME: <u>Hin Klc</u> PURGED BY: <u>HA</u> SAMPLED BY: <u>HA</u> TYPE: Ground Water <u>Surface Water</u> CASING DIAMETER (inches): 1.5 <u>2</u>	PROJEC _ LOCATION/W Treatment Effluent _	Other	ewbour	re A
CASING ELEVATION (feet/MSL): DEPTH TO LNAPL (feet): <u>/ / / </u> TO DNAPL <u>/ / / / / / / / / / / / / / / / / / /</u>	VOLUME IN C	DLUMN OF WATER: ASING (gal.):2 GE VOL. (gal.): ATER AFTER PURG	<u>я.д</u> 5(о	
DATE SAMPLED: 03/27/01	Start (2400 Hr)	Er	nd (2400 Hr)	
RECO	ORD OF PURGING			
<u>1033</u> <u>9</u> <u>1055</u> <u>28</u> <u>1112</u> <u>35</u> <u>1120</u> <u>49</u> D.O. (ppm): ODOR: _	E.C. 254 254 739 737 <u>Aorc</u> rameters field filtered a	TEMPERATURE (°F)	COLOR (visual) Cleac Clear Clear Clear	TURBIDITY (visual) <u>None</u> <u>None</u> <u>None</u>
SAM	PLES COLLECTED			
# of Containers # of Containing 80 ml VOAs SVOCs "RCRA" Metals, Metals WELL INTEGRITY: WELL INTEGRITY: Co REMARKS: Act S.	Anions & Cations Nitrogen Species Plate Counts	# of Contain	Rad: Iron: Other:	
REMARKS ABOUT WELL RECOVERY	eviewed By:		Page/	of

• • • •

VOLUME / UNIT LENGTH FOR CASING DIAMETERS

Nominal	Gai	./Ft.	Liters/Ft.		
Pipe Size	Sch. 40	Sch. 80	Sch. 40	Sch.80	
1.5	.106	.092	.401	.348	
2.0	.174	.153	.658	.579	
4.0	.661	.597	2.50	2.26	
6.0	1.50	1.35	5.68	5.11	


VOLUME / UNIT LENGTH FOR TUBING DIAMETERS Tbg. I.D. Gal/Ft.

1/4"	.0026	9.65
3/8"	.0057	21.71
1/2"	.0102	38.60

	CONVERSIONS	
To Convert	Into	Multiply By
Ft. of Water	Lbs/Sq In (PSI)	.434
Lbs/Sq In	Ft. of Water	2.31
Cubic Ft.	Gallons	7.48
Gallons	Liters	3.78
Liters	Gallons	.264
Feet	Meters	.305
Inches	Centimeters	2.54

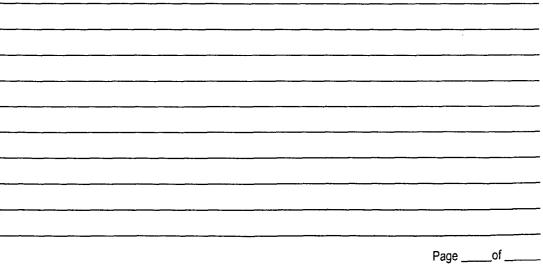
Additional remarks

.

Page _____of _____

	linkle		S/	AMPLE ID:		
PURGED BY:	SP A		PROJE	CT NAME:	kubou!	ne C
SAMPLED BY:	OPA		LOCATION/	WELL NO:	w-2	···
~		face Water	Treatment Effluen	t Other		
CASING DIAMETER	(inches): 1.5	2	46	Other	€	
CASING ELEVA	TION (feet/MSL):		STANDING	COLUMN OF WATER:	18.74	, •
	(feet):			CASING (gal.):		
			ACTUAL PL	IRGE VOL. (gal.):	37	
DEPTH	OF WELL (feet):	19	DEPTH TO	WATER AFTER PURG	ING:	
DATE SAMPLED:			Start (2400 Hr)	Er	nd (2400 Hr)	
		E		G		
TIME (2400 Hr) 1440	VOLUME (gal.)	pH (units)	E.C. (µmhos/cm@25°C) Я43		COLOR (visual)	TURBIDIT (visual)
D.O. (ppm)):	ODOF	२:			<u> </u>
Field QC samples co	llected at this well:		Parameters field filtered	d at this well:		
		<u>s</u>	SAMPLES COLLECTE	D		
# of Container	-	# of Co	ontainers	# of Contain		
	_ 80 ml VOAs SVOCs		Anions & Cation Nitrogen Species			
·	_ "RCRA" Metals, M	etals	Plate Counts	·		,
WELL INTEGRITY:	······································				LOCK#:	
REMARKS:	ent day at	kight flow	Santa Su	stained flow	<u>e 60.3</u>	5 gpm
All Server	le containe	6 Guepe.	chen termen	Redela	Cu mound.	<u>. د مرابع می د</u> .
dellie voi	Chale. W	<u>ili ning n</u>	allacions in	dans har off		
	winimill m	ay rave int.	awan chis offer	4		
L' Providence 10						
REMARKS ABOUT	WELL RECOVERY					

ļ., . ,


VOLUME / UNIT LENGTH FOR CASING DIAMETERS

Nominal	Gal./Ft.		Liter	s/Ft.
Pipe Size	Sch. 40	Sch. 80	Sch. 40	Sch.80
1.5	.106	.092	.401	.348
2.0	.174	.153	.658	.579
4.0	.661	.597	2.50	2.26
6.0	1.50	1.35	5.68	5.11

VC	VOLUME / UNIT LENGTH FOR TUBING DIAMETERS					
	Tbg. I.D.	Gal/Ft.	Mis/Ft.			
	1/4"	.0026	9.65			
	3/8"	.0057	21.71			
	1/2"	.0102	38.60			

CONVERSIONS				
To Convert	Into	Multiply By		
Ft. of Water	Lbs/Sq In (PSI)	.434		
Lbs/Sq In	Ft. of Water	2.31		
Cubic Ft.	Gallons	7.48		
Gallons	Liters	3.78		
Liters	Gallons	.264		
Feet	Meters	.305		
Inches	Centimeters	2.54		

Additional remarks

.

• 🖗 🔹

R.T. HICKS CONSULTING, LTD.

CLENT NAME: ALA SAMPLE ID: PURGED BY: ALA LOCATION/WELL NO: ALA-3 TYPE: GOUND Mater X Surface Water Treatment Effluent Other 3.0 CASING DAMETER (inches): 15 2 4 A 6 Other CASING DAMETER (inches): 15 2 4 A 6 Other CASING BLEVATION (ident/MSL): STANDING COLUMN OF WATER. MAT DEPTH TO UNATER (ident): A.TUAL PURGE VOL (igat): A.TUAL PURGE VOL (igat			WATE	R SAI	MPLE FIELD	DATA SI	HEET	
PURGED BY: DAL LOCATION/WELL NO: Austrace O. SAMPLED BY: DAL LOCATION/WELL NO: Austrace O. CASING DIAMETER (inches): 1.5 2 4 6 Other O CASING ELEVATION (feet/MSL): STANDING COLUMN OF WATER: JL/7.7 D D O D CASING ELEVATION (feet/MSL): STANDING COLUMN OF WATER: JL/7.7 D		PURGED BY: <u>JPA</u> SAMPLED BY: <u>JPA</u>			S	SAMPLE ID:		
SAMPLED BY: DPA LOCATION/WELL NO: Image: Additional systems of the system of the								ne Oil
TYPE: Ground Water					LOCATION	WELL NO:	w-3	
CASING DIAMETER (inches): 1.5 2 4X 6 Other CASING ELEVATION (feet/MSL): STANDING COLUMN OF WATER: //:7/ DEPTH TO LNAPL (feet): .// 29.32 DEPTH TO WATER (feet): .// 29.32 DEPTH TO WATER (feet): .// 29.32 DEPTH TO WATER (feet): .// 29.32 ACTUAL PURGE VOL (gal): .// 37.1 DEPTH OF WELL (feet): .// 24 DEPTH TO WATER (feet): .// 24 DATE SAMPLED: Start (2400 Hr) EC TEMPERATURE COLOR TURBIDIT (2400 Hr) E.C. TIME YOLUME (gal): .// 24 .// 7/.2 .// 24 .// 7/.2 .// 24 .// 7/.2 .// 24 .// 7/.2 .// 24 .// 7/.2 .// 24 .// 7/.2 .// 24 .// 7/.2								
DEPTH TO LNAPL (feet):							-	
DEPTH TO WATER (feet): * 79.32 ACTUAL PURGE VOL (gal.): £9.1 DEPTH OF WELL (feet): 94 DEPTH TO WATER AFTER PURGING: 81.87 DATE SAMPLED:		CASING ELEV	ATION (feet/MSL):		STANDING	COLUMN OF WATER:	14.7'	
DEPTH OF WELL (feet): 94 DEPTH TO WATER AFTER PURGING: 81.87 DATE SAMPLED:		DEPTH TO LNAPI	L (feet): <u></u>	TO DNAP		,		
DATE SAMPLED: Start (2400 Hr) End (2400 Hr) RECORD OF PURGING TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDIT (2400 Hr) (gal.) (units) (units) (units) (visual) (visual)								
RECORD OF PURGING TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDIT 1710 14 23co 121/2 11/2/2<		DEPT	H OF WELL (feet):	94	DEPTH TO	WATER AFTER PURG	ING: <u>81.8</u>	57
TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDIT [2400 H/) (gal.) (units) (un		DATE SAMPLED: _	<u></u>		Start (2400 Hr)	En	nd (2400 Hr)	
(2400 Hr) (gal) (units) (µmhos/cm @ 25°C) (°F) (visual) 1710 14 23 co					RECORD OF PURGIN	<u>1G</u>		
1717 21 1120 1120 1725 35 2550 1120 D.O. (ppm): ODOR: 1120 1120 Field QC samples collected at this well: Parameters field filtered at this well: 1120 Field QC samples collected at this well: Parameters field filtered at this well: 1120 SAMPLES COLLECTED # of Containers # of Containers # of Containers # of Containers # of Containers # of Containers # of Containers # of Containers # of Containers # of Containers # of Containers WELL INTEGRITY:		(2400 Hr)		•	(µmhos/cm @ 25°C)			TURBIDITY (visual)
1725 35 2556 D.O. (ppm): ODOR:			21			<u> </u>		,
Field QC samples collected at this well: Parameters field filtered at this well: SAMPLES COLLECTED # of Containers # of Containers								
Field QC samples collected at this well: Parameters field filtered at this well: SAMPLES COLLECTED # of Containers # of Containers		 D.O. (ppp	n).	<u></u>			<u></u>	
# of Containers # of Containers # of Containers				1:		ed at this well:		
		-			SAMPLES COLLECT	ED		
		# of Containe			# of Containers	# of Contain	ners	
"RCRA" Metals, Metals Plate Counts Other:								
WELL INTEGRITY: LOCK#:LOCK#:				Matala		es		· · · · · · · · · · · · · · · · · · ·
REMARKS: & pumping at windowill day have interested that contact	• *				Plate Counts		Other:	
		WELL INTEGRITY:	· · · · · · · · · · · · · · · · · · ·				_ LOCK#:	<u> </u>
		REMARKS: 📥 🍂	unifine at	wincom	Il pay love with	1 and the	and c	
REMARKS ABOUT WELL RECOVERY							61	
REMARKS ABOUT WELL RECOVERY								
		REMARKS ABOUT	WELL RECOVER	RY				
Signature: Page of		Signature			Reviewed Du		Page	of

VOLUME / UNIT LENGTH FOR CASING DIAMETERS

ominal Gal./Ft.		ninal Gal./Ft.		Liter	s/Ft.
Sch. 40	Sch. 80	Sch. 40	Sch.80		
.106	.092	.401	.348		
.174	.153	.658	.579		
.661	.597	2.50	2.26		
1.50	1.35	5.68	5.11		
	<u>Sch. 40</u> .106 .174 .661	Sch. 40 Sch. 80 .106 .092 .174 .153 .661 .597	Sch. 40 Sch. 80 Sch. 40 .106 .092 .401 .174 .153 .658 .661 .597 2.50		

VOLUME / UNIT LENGTH FOR TUBING DIAMETERS Tbg. I.D. Gal/Ft.

1/4"	.0026	9.65
3/8"	.0057	21.71
1/2"	.0102	38.60

CONVERSIONS				
To Convert	Into	Multiply By		
Ft. of Water	Lbs/Sq In (PSI)	.434		
Lbs/Sq in	Ft. of Water	2.31		
Cubic Ft.	Gallons	7.48		
Gallons	Liters	3.78		
Liters	Gallons	.264		
Feet	Meters	.305		
Inches	Centimeters	2.54		

Additional remarks

..

Page _____of _____

÷

•

Client: ECD Environmental Project: McCasland Project Manager: Greg Bybee Project Number: -

Date Collected: 9/17/99 Date Received: 9/17/99 Sample Matrix: Aqueous

2

Inorganic Compounds

		(
o-Phosphate-P (mg/L)	<1.0	0.5	300.0	9/17/99
Sulfate (mg/L)	100	0.5	300.0	9/17/99
Nitrate (mg/L)	1.5	0.1	300.0	9/17/99
Nitrite (mg/L)	<0.2	0.1	300.0	9/17/99
Bromide (mg/L)	3.6	0.1	300.0	9/17/99
Chloride (mg/L)	1,400	0.1	300.0	9/27/99
Floride (mg/L)	<0.2	0.1	300.0	9/17/99
Sample ID	McCasland Windmill			
HEAL LAB ID	9909073-1	Detection Limits	Method	Date Analyzed

APPENDIX C

McCASLAND RANCH INITIAL SITE & GROUNDWATER INVESTIGATION HOBBS, NEW MEXICO

January, 2001

Prepared For:

McCasland Ranch

Prepared By:

HydroGeologic Services, Inc. 8600 Beverly Hills NE Albuquerque, New Mexico 87122 505-856-6498

TABLE OF CONTENTS

1.0	INTRODUCTION	1-1
2.0	FIELD INVESTIGATION	2-1
3.0	AQUIFER TEST	3-1
4.0	CONCLUSIONS/RECOMMENDATIONS	4-1

1.0 INTRODUCTION

This report identifies the geologic field investigation which was performed for the McCasland Ranch. High levels of chloride, bromide and conductivity have been identified in the water trough and windmill well which the livestock drink from which lead to this investigation. The apparent source of the chloride contamination is from an abandoned oil/gas well which is located approximately 40 feet from the windmill well.

The site is located approximately 10 miles south of Hobbs, New Mexico to the east of State Highway 18 (mile marker 41) in Township 20 South, Range 39 East, Section 30. Open space, ranching and oil/gas operations are principle of the land in the immediate area. Vegetation is sparse in the site vicinity and consists of mesquite covered dunes (5 to 15 feet high) and yucca plants. The climate at the site area is characterized by low precipitation, a rapid rate of evaporation, and a high annual temperature and can be classified as semi-arid conditions.

2.0 FIELD INVESTIGATION

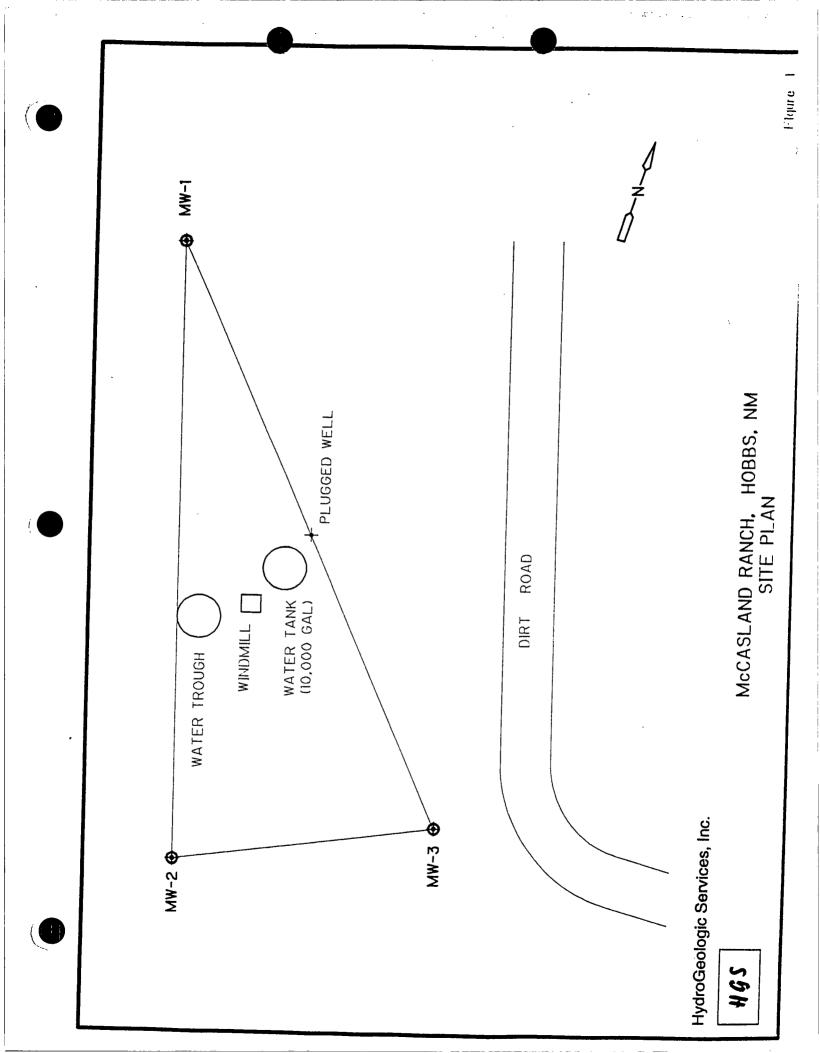
A field investigation was performed at the McCasland Ranch to help confirm the source and identify the extent of the chloride groundwater contamination. The investigation consisted of mobilizing a Speedstar 30K air/mud rotary drill rig with a 900cfm/350 psi compressor to the site. Three soil borings were advance to approximately 100 feet below surface grade each using the air rotary drilling method and converted into groundwater monitoring wells which the locations can be identified in the Site Plan (Figure 1). While the soil borings were being advanced to determine the subsurface conditions, soil samples were collected every 10 feet or change in lithology and recorded by a Certified Professional Geologist. The monitor wells were installed in a triangular formation around the plugged oil/gas well to help determine the site specific groundwater flow direction (Figure 2) and help determine the extent of the contamination.

The three soil borings were very similar in lithologies as can be viewed in Figures 4, 5, & 6. Soil boring MW-1 consisted of a silty sand layer (SM) from surface to 5 feet, a red brown clay layer (CL) from 5 feet to 14 feet, a caliche layer (SC/CL) with varying colors from 14 feet to 75 feet, a silty sand with fine gravels layer from 75 feet to 92.5 feet (water bearing zone), and a red clay layer (red bed) at 92.5 feet to total depth of 96 feet. Soil boring MW-2 consisted of a silty sand layer from surface to 6 feet, a brown clay layer from 6 feet to 17 feet, a caliche layer with varying colors from 17 feet to 80.5 feet, a sand with silt layer from 80.5 feet to 98.5 feet (water bearing), and a red clay layer from 98.5 feet to total depth of 101 feet. Soil boring MW-3 consisted of sand with silt layer from 19 feet to 81 feet, a red-brown clay layer from 81 feet to 92 (water bearing) and a red clay layer from 92 feet to total depth.

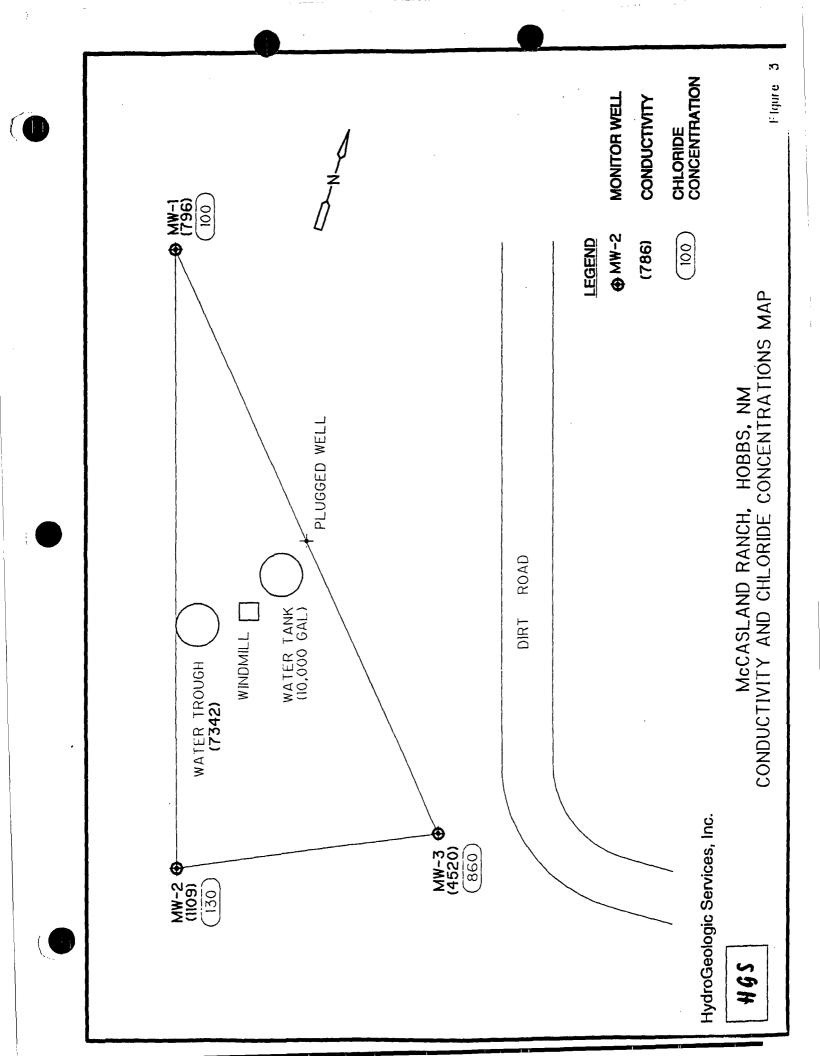
Each soil boring was converted into a groundwater monitoring well which consisted of 4-inch Schedule 40, flush threaded PVC blank casing with 20 feet of 0.020 inch factory slotted screen. Clean 10/20 graded silica sand was installed by tremie method around the screen to approximately 2 feet above the screen overlain by a minimum 4-foot bentonite seal hydrated with potable water every two feet. A bentonite grout seal was installed by the tremie method from the bentonite seal to surface. A 6-inch diameter by 5-foot long steel protective casing with locking cap was installed surrounded by a 2' x 2' x 4" concrete pad to complete the well. Each well was developed by bailing a minimum three well volumes prior to installing temporary pumps to further develop the wells until clear of sediment.

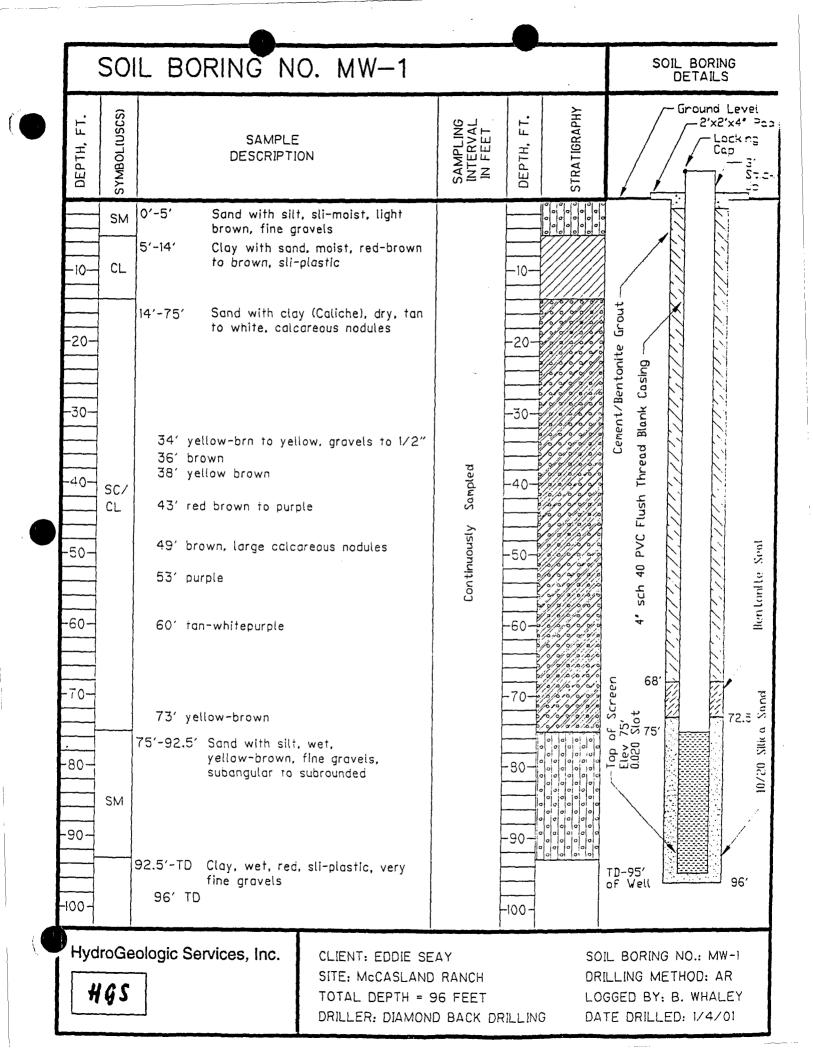
Each well was surveyed with a transit and rod to determine the top of casing (TOC) and groundwater elevations to the nearest 0.01 of a foot. Specifics of each well are as follows:

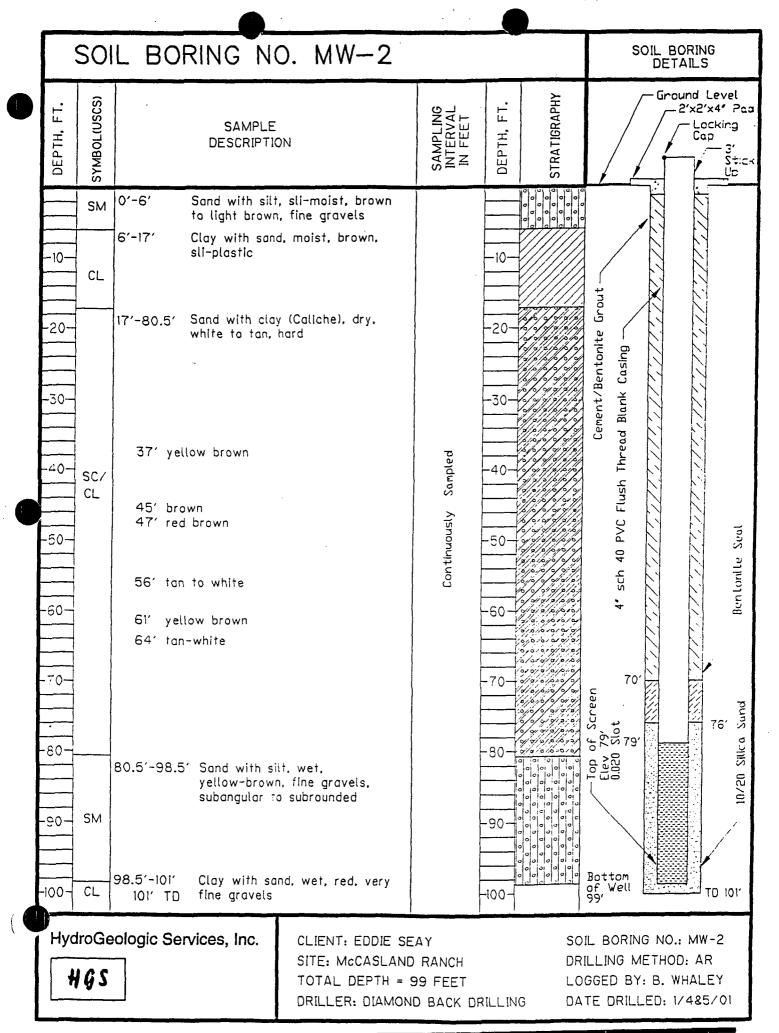
Approximation

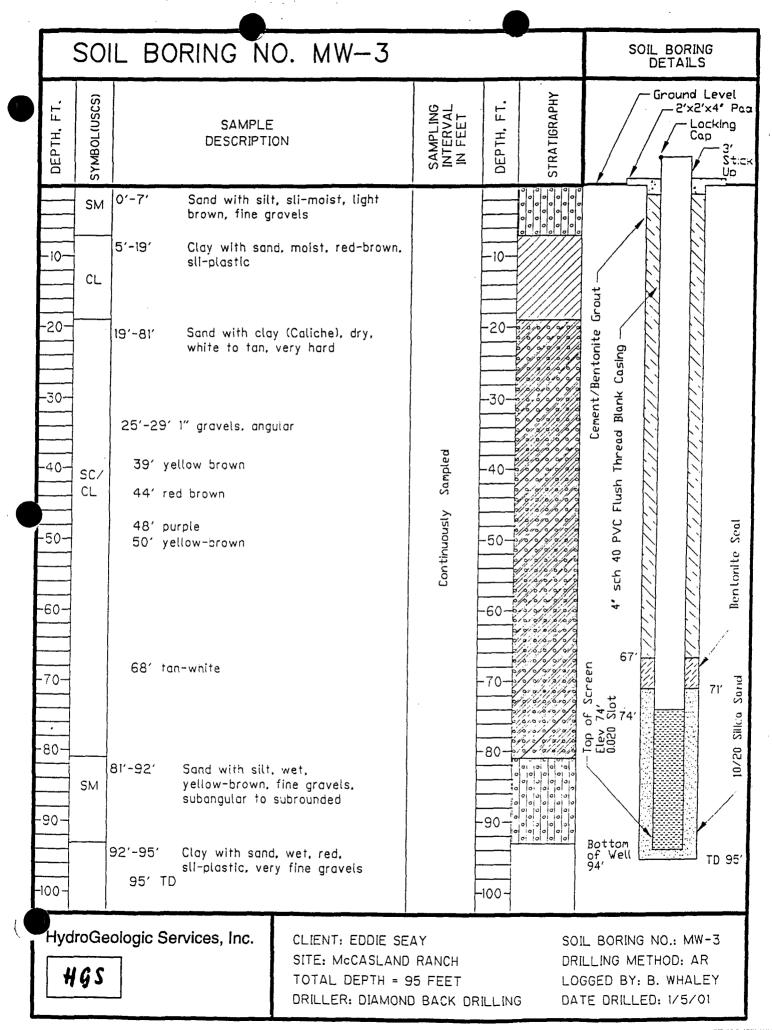

Monitor Well #	Top of Casing Elevation (FT)	Depth to Water from TOC (FT)	Groundwater Elevation (FT)
MW-1	99	78.81	20.19
MW-2	100	77.23	22.77
MW-3	98.5	81.72	16.78

Groundwater at the site appears to be flowing to the east-northeast direction with a gradient of 0.05 ft/ft. (Figure 2).


After well development, the wells were sampled for chloride concentrations, bromide, pH, and conductivity. The results are as follows:


- -

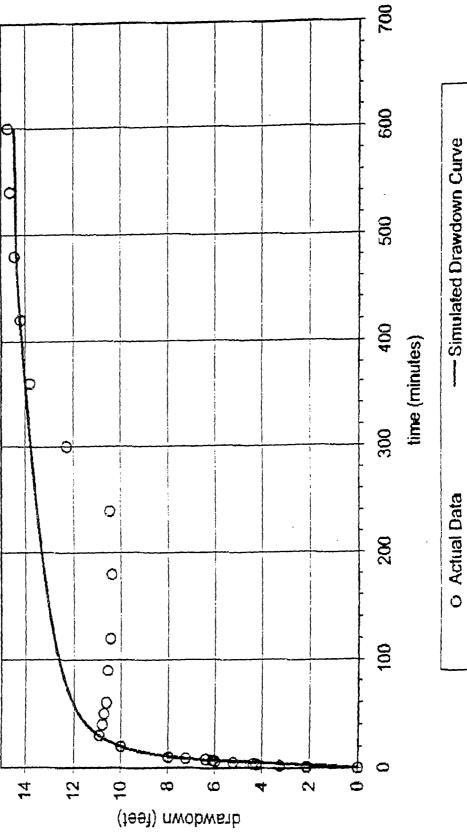

Monitor Well # MW-1	Chloride ppm 100	Bromide ppm	pH 7.04	Conductivity
MW-2	130	1	7.04	796 1109
MW-3	8 60	2.8	8.32	4520



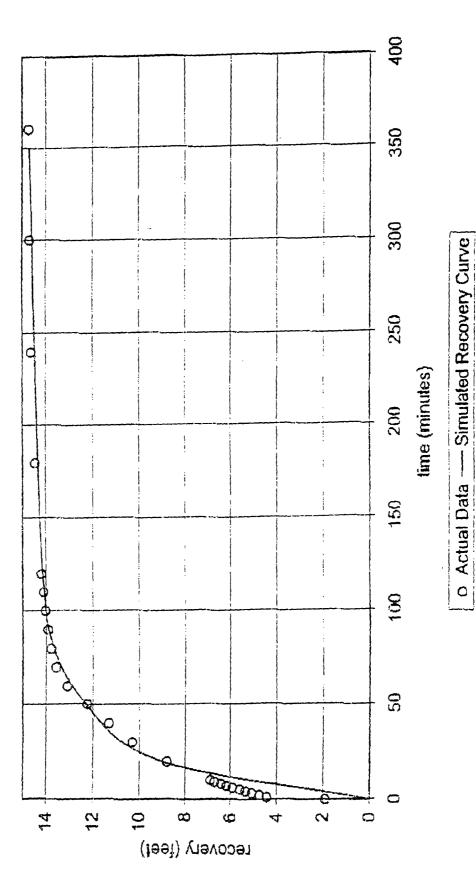
والأكالي بالتلائي والتكافي فالمتحد والمستوان والتقافي والمتحدي والمحد والمتحد والمتحد والمحد والمحد والمحد

3.0 AQUIFER TEST

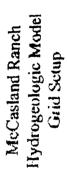
A 700 minute constant rate pump test was performed to determine the hydraulic characteristics of the water bearing formation. The pump test was performed in Monitor well MW-2 while MW-1 & MW-3 were used as observation wells. Prior to the pump test a step test was performed to determine the pumping rate for the constant rate test. It was determined that a pumping rate of 1 gallon per minute (GPM) was all the aquifer could handle without pumping under. HydroGeologic Services, Inc. (HGS) performed the pump test while Rio Grande Environmental (RGE) performed the pump test model.

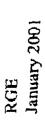

Due to the relatively high conductivity of the aquifer matrix, drawdown was not observed at either monitoring well, MW-1 and MW-3. Therefore, only the drawdown and recovery recorded at the pumping well MW-2 was analyzed. RGE utilized MODFLOW to analyze the drawdown data from MW-2. The MODFLOW model was set up an run using the graphic user interface, Groundwater Vistas. The model consists of three 15-foot thick layers and was approximately 300-feet by 300-feet. Constant head cells were positioned in the upper and lower layers of the model to simulate the relatively steep gradient across the site. The pumping well was positioned in the center of the model in the upper layer. The grid spacing was designed to reduce boundary effects within the vicinity of the pumping well. The model setup is shown in the attached figures.

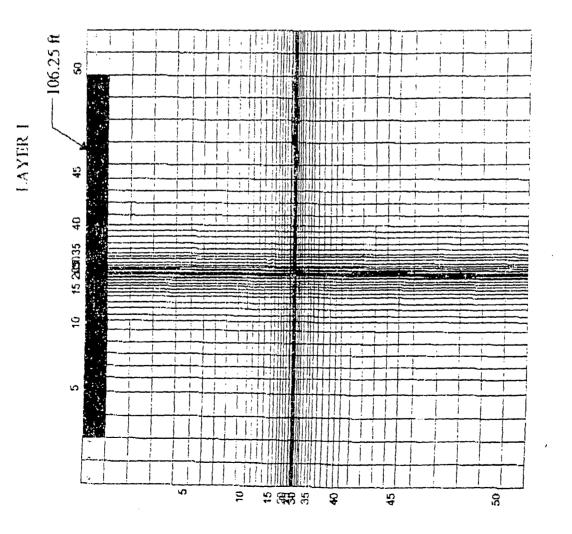
Based on the model results, RGE estimated aquifer properties are as follows:


Horizontal Hydraulic Conductivity	Kx	0.87 feet/day
Vertical Hydraulic Conductivity	Kz	0.48 feet/day
Specific Yield	Sy	0.16
Storativity	S	0.0001

An iterative process was employed to achieve these estimates by comparing simulated drawdown verses the actual drawdown observed at MW-2 during pumping. The attached chart illustrates the match of the simulated and actual data. In addition, mass balance summaries from the model (steady-state and transient and simulated drawdown/head charts are included.

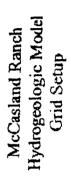

Hydrogeologic Pump Test Analysis Results Drawdown @ MW-2 McCastand Ranch, New Mexico

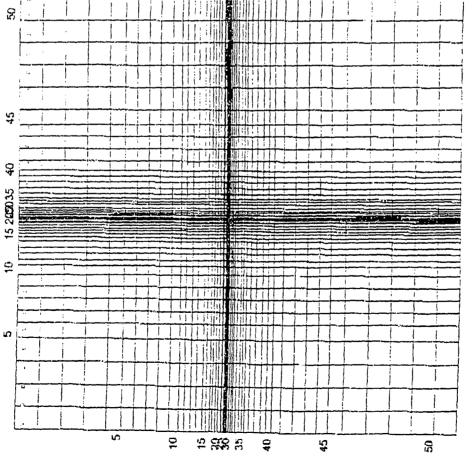

Hydrogeologic Pump Test Analysis Results Recovery @ MW-2 McCasland Ranch, New Mexico



6

÷

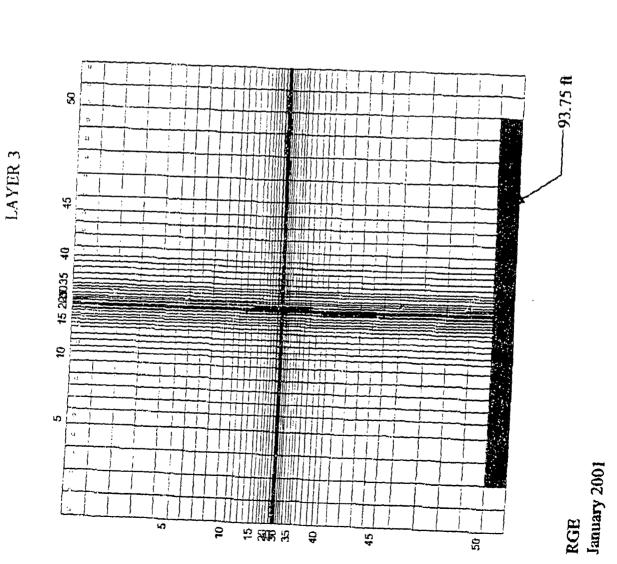

Constant Head


Well

Legend

🔇 wei

	2001
RGE	January



LAYER 2

į

ì

McCasland Ranch Hydrogeologic Model Grid Setup

MASS BALANCE SUMMARY MODFLOW MODEL STEADY-STATE SIMULATION

Туре	row	column	layer	segment	reach	flux
Recharge Inflow	1	1	1	τo	0	0
Recharge outflow	1	1	1	0	0	0
ET inflow	1	1	1	0	0	0
ET outflow	1	1	1	0	0	Û
Qz Top Inflow	1	1	1	Ö	Ó	0
Qz Top outflow	1	1	1	ō	Q	٥
Qz Bottom inflow	t	1	1	0	0	٥
Qz Bottom outflow	, t	1	1	0.	0	7722.883342
Storage inflow	1	1	1	0	0	Ċ
Storage outflow	1	1	1	0	0	0
CH	1	3	1	ō	Ō	876.105225
CH	1	4	1	õ	ō	451.609467
CH	1	5	1	õ	ō	289.386444
CH	1	6	1	ō	õ	227,496033
CH	1	7	1	ō	0	225.047838
CH	1	8	1	õ	ā	223.31279
CH	1	9	1	õ	ō.	222,054932
CH	4	10	1	õ	ō	165.934616
CH	1	11	1	ã	ō	110.393799
CH	4	12	1	Q	õ	110.237068
CH	1 -1	13	, 1	0	õ	110.103745
CH	•	14	1 1	õ	õ	109.991185
	1 -	15	4	õ	ŏ	82.431702
CH	1	16	t t	õ	Ö	54.929098
CH	1	10	1	0	â	54.91082
CH CH	1	18	1	õ	0	54,894466
CH	1	19	1	ŏ	Ö	54.87999
СН	1	20	4	0	õ	41.151672
CH	1	20	4	õ	õ	27.430897
CH	1	21	1	õ	0	21.942823
CH	1	22	1	Ö	Ö	16.456085
CH	1	23	1	0	c	10.970258
	1			0	0	8.227457
CH		25	1	0	0	10.989638
CH	1	26	1			16.453827
СН	1	27	1	0	0	
CH	1	28	1	0	0	21.937325
CH	1	29	1	0	0	27.420027 27.418411
CH	1	30	1	0	0	
CH	1	31	1	0	0	41.124977
CH	1	32	1	0	0	54.829426
СН	1	33	1	0	0	54.82658
СН	1	34	1	0	0	54.825317
СН	1	35	1	0	0	54.825623
СН	1	36	1	0	0	82.241951
CH	1	37	1	Q	0	109.67083
СH	1	38	1	0	0	109.700806
СН	1	39	1	0	0	109.744171

RGE January 2001

MASS BALANCE SUMMARY MODFLOW MODEL STEADY-STATE SIMULATION

Туре	row	column	layer	segmen	гөа	ch flux
CH	1	40	1	0		
CH	1	41	1	õ	0	
CH	1	42	1	Ŭ.	0	
CH	1	43	1	0		
CH	1	44	4	-	0	220.070100
СН	1	45	4	0	0	
СН	, t	46	4	0	0	278.218262
СН	1			0	0	421.739838
CH	4	47	1	0	0	431.575287
CH	4	48	1	0	Ø	452.105621
Total IN	1	49	1	0	́ 0	878.655029
Total OUT	1	1	1	0	0	7723.0487
Recharge inflow	1	1	1	o	0	7722.883342
Recharge outflow	1	1	1	O	۵	0
ET inflow	1	1	1	0	0	0
ET outflow	1	1	1	Q	0	0
	1	1	1	0	0	0
Oz Top inflow	1	1	2	0	Ó	7722.883342
Qz Top outflow	1	1	2	0	Ō	0
Qz Battern inflow	1	1	2	0	õ	0
Qz Bottom outflow	1	1	2	ō	ő	7722.560049
Storage Inflow	1	1	2	õ	ŏ	0
Storage outflow	1	1	2	õ	õ	Ğ
Total IN	1	1	2	õ	ŏ	7722.883342
Total OUT	1	1	2	õ	ŏ	7722.560049
Recharge Inflow	1	1	1	õ	õ	0
Recharge outflow	1	1	1	õ	ŏ	0
ET inflow	1	1	1	õ	0	0
ET outflow	4	1	1	ō	õ	-
Qz Top inflow	1	1	3	0		0
Qz. Top outflow	1	1	3	0	0	7722.560049
Qz Bottom inflow	•	1	3	0	0	0
Qz Bottom outflow	1	1	3	0	0	0
Storage inflow	1	1	3	-	0	0
Storage outflow	1	4	3	0	0	0
СН	51	3	3	0	0	0
СН	51	4		0	0	-878.555176
CH	51	5	3	0	0	-451.991302
CH	51		3	0	0	-289.445984
СН	51	6 7	3	0	0	-227.447586
СН	51	7	3 3 3	0	0	-224.921738
СН	51	8	3	0	0	-223.115784
CH		9	3	0	0	-221.79248
СН	51	10	3 3 3	0	0	-165.698471
CH	51 54	11	3	0	Ō	-110.219841
СН	51		3	0	Ō	-110.05182
CH	51	13	3 3	0	ō	-109.80802
CH	51				0.	-109.78643
	51		3		0	
				-	~	-82.273064

RGE January 2001

MASS BALANCE SUMMARY MODFLOW MODEL STEADY-STATE SIMULATION

5

Туре	row	column	layer	E o o marca a		· ·
CH	51	16	3	segment		
СН	51	17	3	0	0	-54.821316
CH	51	18	3	0	0	-54.8016 66
СН	51	19	3	0	0	-54.78413
CH	51	20	3	0 0	0	-54.768635
CH	51	21	3		0	-41.067604
CH	51	22	3	0	0	-27.374641
СН	51	23	3	0	0	-21.89772
CH	51	24	3	0	0	-16.422211
CH	51	25	3	0	. 0	-10.947655
CH	51	26	3	0	0	-8.210497
CH	51	27	3	0	0	-10.947012
CH	51	28	3	0	0	-16.41987
СН	51	29	3	0	0	-21.892019
CH	51	30	3	0	0	-27.363358
СН	51	31	3	0	0	-27.381731
ĊH	51	32	3	0	0	-41.039967
СН	51	33	3	0	0	-54.716198
CH	51	34	3	0	0	-54.713842
CH	51	35	3	0	0	-54.712841
CH	51	36	3	0	0	-54.713795
СН	51	37	3	0	0	-82.075752
CH	51	38	3	0	0	-109.452827
СН	51	39	3	0	0	-109.487946
CH	51	40	3	0 0	0	-109.537651
CH	51	41	3	0	0	-109.802808
CH	51	42	3		0	-164.558
CH	51	43	3	0		-219.783188
СН	51	44	3	0		-220.374878
CH	51	45	3	0		-221.172775
CH	51	46	3	0		277.971849
CH	51	47	3	0		421.528442
CH	51		3	0	0 -	431.592529
СН	51	49	3 3	0	0 -	452.435085
Total IN	1		3	0		878.888184
Total OUT	1		3	0		722.560049
Grand Total IN	0	-		0	0 7	722.643522
Grand Total OUT	Ō))	0		7723.0487
Grand Total ERROR	ō	0 (0	0 7	722.643522
	-	Ψ (,	0	0	0.005248

MASS BALANCE SUMMARY MODFLOW MODEL TRANSIENT SIMULATION

속 수학 문제 문제

Туре	row	column	layer	segment	reach	กีบx
	1	1	1	0	0	0
Recharge inflow	1	1	1	. Ū	Ó	0
Recharge outflow	1	1		· Õ	0	0
ET inflow	1	1	1	Ō	0	0
ET outflow	1	1	1	õ	Ō	0
Qz Top inflow	1	1	1	ā	Ō	0
Qz Top outflow	4	1	1	Ō	Ō	0
Qz Bottom inflow	1	1	. 1	õ	Ó	7670.60385
Qz Bottom outflow	1	1	1	Ũ	Ō	4,854854
Storage inflow	1		1	ů 0	Ö	44.036839
Storage outflow	1	1	1	Ŭ Ŭ	õ	878.084351
CH	1		1	0	ő	450.614748
СН	1	4 5		0	0	288.846484
СН	1	5	1	0 0	Ö	226.860234
CH	1	7	1	0 Q	Ċ	224.417969
CH	1	6	1	0	ő	222.672745
CH	1	9	1	0	ő	221.405502
CH	1		1	0	0	185.441513
CH	1	10	T A	0	C Q	110.082271
CH	1	11	ا م	õ	ő	109.903282
CH	1	12	1	0	ő	109.767677
CH	1	13	1	0	0	109.552885
СН	1	14	1	_	0 0	82.176605
СН	1	15	1	0	0	54.758396
CH	1	16	3	0	0	54.73962
CH	1	17	(ب	0	Ŭ	54.722805
CH	1	13	1	Û		54.707882
СН	1	19	1	0	0	41.022318
CH	1	20	1	0	Ů	27.344536
CH	1	21	1	0	0	21.373667
CH	1	22	1	0	0	16.404192
CH	1	23	1	0	Ú O	10.404752
CH	1	24	1	0	0	
CH	1	25	1	0	0	8.201483
CH	1	26	1	0	0	10.934992
СН	1	27	1	0	Û	16.401833
CH	1	28	1	0	0	21.867958
CH	1	29	1	0	0	27.333244
СН	1	30	1	0	٥	27.331564
CH	1		1	0	0	40.994579
CH	1	32	1	0	0	54.655357
ĊН	1	33	1	0	0	54.652321
СН	1	34	1	0	0	54,650913
CH	1	35	1	0	0	54.851119
CH	1	36	1	0	0	81.980118
CH	1	37	1	٥	0	109.321762
CH	1	38	1	0	Ő	109,352074
CH	1	39	1	٥	ð	109.396057
			•	-		

MASS BALANCE SUMMARY MODFLOW MODEL TRANSIENT SIMULATION

ويحيره والمعادية والمعا

Туре	row	column	layer	saament	Manuh	8
СН	1	40	14901	segment	reach	flux
CH	1	41		O O	0	109.454437
СН	1	42	i 4	0	0	164.31987
CH	1	43		. 0	0	219.439667
CH	1		1	0	0	219.99498
СН	1	44	1	۵	0	220.752579
СН	1	45	1	0	Ö	277.384786
СН	1	46	1	0	0	420.509338
СН		47	1	0	0	430.391632
CH	1	48	1	0	0	451.049683
Well	1	49	- 1	0 '	0	878.517212
Total IN	25	25	1	0	Ō	0
Total OUT	1	1	1	0	-	7714.629698
	1	1	1	Ō		7714.640689
Recharge inflow	1	1	1	Ō	õ	0
Recharge outflow	1	1	1	ō	õ	-
ET inflow	1	1	1	ŏ	ŏ	0
ET outflow	1	1	1	ŏ	õ	0
Qz Top inflow	1	1	2	õ		0
Qz Top outflow	1	1	2	0	0	7670.60385
Qz Bottom inflow	1	1	2	0	0	0
Qz Bottom outflow	1	1	2		0	0
Storage Inflow	1	4	2	0		865.489799
Storage outflow	1	1	2	0	0	16.211513
Total IN	1	1	2	0	0	21.451806
Total OUT	1	1	2	0		386.815363
Recharge inflow	i	1	2	0		886.941605
Recharge outflow		4	•	0	Q	٥
ET inflow		4	1	0	0	٥
ET outflow	4	i A	7	0	0	O
Qz Top inflow	1	1	1	0	0	0
Oz Top outflow	1	1	3	0	0 76	65.489799
Qz Bottom inflow	1	1	3	0	0	Ö
Qz Eottom outflow	1	1	3	0	0	ŏ
Storage inflow	1	1	3	0	0	ō
Storage cutflow	1	1	3	0	0	38.800561
CH	1	1	3	0	٥	0
CH	51	3	З	0	0-8	78.349548
СН	51	4	3	0	0 -48	50.514282
СН	51	5	3	Õ	0 -28	88.491425
CH	51	6	3	Ō		6.715851
CH	51	7	3	õ		
CH	51	8	3	õ		4.222872
CH	51	9	3	0		2.450058
	51	10	3			1.158878
CH	51	11	3	0		5.242188
CH CH	51	12	3	0		9.923119
CH	51	13		0		9.75946
СН	51	13	3	0	0 -109	.619606
	÷ 1	T	3	0	0 -109	.500989

MASS BALANCE SUMMARY MODFLOW MODEL TRANSIENT SIMULATION

Туре	row		•			
CH	51	column	layer	segment	reach	flux
СН	51	15 16	3	0	٥	-82.060417
CH	51	10	3	0	¢	-54.679989
CH	51	18	3	0	0	-54.880522
CH	51	18	3	0	0	-54.643082
СН	51	20	3	0	0	-54.62759
СН	51	20	3	0	0	-40.961769
СН	51	21	Э	O	0	-27.304029
СН	51	22	Э З	0	0	-21.84119
СН	51	23		0	0	-16.379782
CH	51	25	3 3	0 -	0	-10.919352
CH	51	26	3	0	0	-8.18926
СН	51	27	3	0	0	-10.918683
CH	51	28	3	0	0	-16.377344
CH	51	29	3	0	0	-21.835282
CH	51	30	3	0	0	-27.292313
CH	51	31	3	0	0	-27.290585
СН	51	32	3	. 0	0	-40.93298
CH	51	33	3	0	0	-54.573059
CH	51	34	3	0	0	-54.559904
CH CH	51	35	3	0	0	-54.56842
CH	51	36	3	0		-54.568615
CH	51	37	3	0	0	81.858415
CH	51	38	3	0		09.157257
CH	51	39	3	0		09.188507
CH	51	40	3	Ő		09.233887
CH	51	41	3	õ	÷ ,	09.294106
CH	51	42	3	0		84.083588
ĊH	51	43	3	õ		19.134613
СН	51	44	3	0		19.704407
CH	51	45	3	õ		20.479891
CH	51	46	3	0		7.073395
СН	51	47	3	õ		0.118011
CH	ธา	48	3	õ		0.122131
Total IN	51	49	3	ŏ	-	0.951385
Total OUT	1	1	3	õ	-	78.81189
Grand Total IN	1	1	3	Ö		04.29038
Grand Total QUT	0	Ó	0	υ		4.351263
Grand Total ERROR	0	0	0	õ		9.841773
IOLAI ERKOK	0	0	0	Õ		.839908
				U	0	-0.00255

4.0 CONCLUSIONS/RECOMMENDATIONS

- 1. Based on the recently installed monitoring wells, groundwater flow direction is to the East-Northeast at a gradient of 0.05 ft/ft.
- 2. Chloride contamination has been identified in MW-3 at 860 ppm.
- 3. The source of contamination appears to be from the plugged oil/gas well. If the well was not pressure grouted correctly the chloride contamination could migrate up through the well annulus.
- 4. Additional wells are needed (min 3 to 5) to determine the extent of the chloride plume.
- 5. The initial pump test served its purpose to help define the characteristics of the aquifer. When designing a pump and treat system, more information is needed. HGS suggest performing another pump test of longer duration (min. 24 hrs) with an observation within 10-feet of the pumping well.
- 6. To prevent further chloride contamination of the the aquifer, HGS suggests properly abandoning the upper portion of the plugged oil/gas well. The well should be overdrilled using the Air Rotary Casing Hammer (ARCH) method with 9 5/8" drive pipe to a minimum 200 feet and backfilled with grout from the bottom up to assure the a proper seal.

ESTIMATED COST OF CLEANUP OF GROUNDWATER McCASLAND RANCH

i

The McCasland Ranch is approximately 15 minutes south of Hobbs, New Mexico on state road 18. There is oil production throughout the property. The fresh water zone is less than 100 feet from the surface. Water samples taken from various windmills on the property have shown one windmill with elevated levels of inorganic compounds (anions). This particular windmill has been tested several times since March 31,1998. Due to the continued indication of contamination in this area, it has become necessary to develop a program to treat the affected groundwater.

In order to formulate a reasonable cost of cleanup of the groundwater on the McCasland Ranch, three areas must be considered. The first is the elimination of the source of the contamination. The second is the definition of the boundaries of the plume. The final is the treatment of the impacted groundwater. A breakdown of all estimated costs is attached.

The source of the contamination must be eliminated in order to provide the most efficient and cost effective cost of cleanup of the impacted groundwater. Due to the fact that the levels of contamination have not significantly diminished in the last 2 years, it is reasonable to believe that the contamination is ongoing. The impacted groundwater contains elevated levels of both chloride and bromide. This is consistent with an impact from oil field type contamination

The recently placed monitor well, approximately 175 feet up gradient (MW1) from both the windmill and plugged well, had diminished levels of both chloride (100 ppm) and bromide (1 ppm). The monitor well approximately 125 feet down gradient (MW3) from both the windmill and plugged well had elevated levels of both chloride (870 ppm) and bromide (2.8 ppm). This information indicates that the contamination has occurred somewhere between the two monitor wells.

There are three check valves between the large holding tank and bottom of the windmill. These were inspected on November 28, 2000. The windmill pump was removed and the well developed with an electric pump. The water well service operator, Mr. Jay Anthony, inspected the check valves on the windmill pump. In addition, while the pipe was disconnected from the large water holding tank, the valve was opened. No water leaked from the tank. The water level was several feet above the level of the valve. The only other source of contamination between the two monitor wells is the plugged well approximately 50 feet northeast of the windmill. The plugged well is the most likely source of contamination. In order to formulate a cost for the elimination of the source of the contamination, Maryo Marrs Casing Pullers of Kermit, Texas was contacted. After a description of the problem, a cost for the replugging of the well was formulated. This cost is only an estimate. The costs may increase depending on what is encountered once the well is entered.

Once the source has been eliminated, it would be necessary to delineate the groundwater contamination plume. This could be accomplished with the installation of monitor wells. Because the direction and southwestern boundary of the contamination has already been established, a limited number of monitor wells should be necessary to profile the existing plume. After a discussion with Mr. Bill Whaley CPG of HydroGeologic Services, Inc., an estimate of 3 to 5 additional wells should be sufficient.

Treatment of the groundwater would be accomplished by pumping out the contaminated water and running it through the system. Some or all of the monitor wells could be utilized to extract the groundwater to be treated. After considering several technologies, a reverse osmotic (RO) system was the most cost effective for the removal of the target contaminates.

Once the system had been installed the treatment of the groundwater would occur over several years. The length of time is dependent on the size of the plume, amount of contamination encountered and the mobility of the groundwater. An estimate for the duration of the treatment is between 8 to 10 years.

Additional costs not discussed previously would be the continued sampling and chemical analysis of the water. This analysis would occur before and after treatment on a quarterly basis. Maintenance of the treatment system would occur on an annual basis.

ECD Environmental, Inc.

Estimated Cost of Cleanup

Replugging Plugged Well Drill Rig, Pulling Unit and hands:	\$20,000 to \$25,000
Profile groundwater contamination 3 to 5 monitor wells pumps and piping	\$9.500 ea. \$1,800 ea.
Installation reverse osmosis system 150 gal/day 800 gal/day 3000gal/day Annual maintenance	\$ 3,900 \$ 4,995 \$11,900 \$ 2,000
Quarterly sampling and analysis Sampler, laboratory analysis	\$10.000/yr
Total and of also	

Total cost of cleanup

Low \$153.800 High \$213.400

Article 1: General

1.1 The words "we", "us", and "our" refer to TraceAnalysis. You will deliver samples to us for analysis, accompanied, or preceded by, a signed Chain of Custody/Analysis Request defining the scope and timing of our work and stating either the testing criteria you require or identifying the agency to which the results will be submitted.

TraceAnalysis, Inc. General Terms and Conditions

Article 2: Our General Responsibilities

2. and observations will be conducted using test procedures and laboratory protocols as specified in accepted Chain of Custody/Analysis Request. If you direct a manner of making tests that varies from our standard or recommended procedures, you agree to hold us harmless from all claims, damages, and expenses arising out of your direction.

2.3 We will not release information regarding our services for you or any information that we receive from you, except for information that is in the public domain and except as we are required by law.

Article 3: Your General Responsibilities

3.1 On each Chain of Custody/Analysis Request you will designate a representative who has authority to transmit instructions, receive information, and make decisions relative to our work.

3.2 You will respond in a reasonable time to our request for decisions, authorization for changes, additional compensation, or schedule extensions.

3.3 For each Chain of Custody/Analysis Request you will either provide us with the exact methods for analysis of each fraction or you will identify the regulations and agency under which or for which the analysis are to be prepared. If permits, consent orders, work plans, quality assurance plans, or correspondence with regulatory agencies address laboratory requirements, you will provide us with copies of the relevant provisions prior to our initiation of the analyses.

Article 4: Reports and Records

4.1 We will furnish copies of each report to you as specified in the Chain of Custody and Analysis Request. We will retain analytical data for seven years and financial data for three years relating to the services performed following transmittal of our final report.

4.2 If you do not pay for our services as agreed, you agree that we may retain all reports and work not yet delivered to you. You also agree that our work will not be used by you for any purpose unless paid for.

Article 5: Delivery and Acceptance of Samples

5.1 Until we accept delivery of samples by notation on chain of custody documents or otherwise in writing accept the samples, you are responsible for loss of or damage to samples. Until so accepted, we have no responsibility as to samples.

5.2 As to any samples that are suspected of containing hazardous substances or radioactive material, such that would make special handling required, you will specify the suspected or known substances and level and type of radioactive activity. This information will be given to us in writing as a part of the Chain of Custody/Analysis Request and will precede or accompany samples suspected of containing hazardous substances. 5.3 Samples accepted by us remain your property while in our custody. We will retain samples for a period of 14 days following the date of submission or our report. We will extend the retention period if you so direct.

Following the retention period we will dispose of non-hazardous samples. We may return highly hazardous, acutely toxic, or radioactive samples and samples containers and residues to you. You agree to accept them, 5.4 Regardless of a prior acceptance, we may refuse acceptance or revoke acceptance of samples if we determine that the samples present a risk to health, safety, or the environment, or that we are not authonzed to

accept them. If we revoke acceptance of any sample, you will have it removed from our facilities promptly.

Article 6: Changes to Task Orders

6.1 No persons other than the designated representatives for each Chain of Custody/Analysis Request are authorized to act regarding changes to a Chain of Custody/Analysis Request. We will notify you promptly if we identify any activity that we regard as a change to the terms and conditions of a Chain of Custody/Analysis Request. Our notice will include the date, nature, circumstance, and cause of the activity regarded as a change. We will specify the particular elements of project performance for which we may seek an equitable adjustment.

6.2 You will respond to the notice provided for in paragraph 6.1 promptly. Changes may be made to a Chain of Custody/Analysis Request througn issuance of an amendment. The amendment will specify the reason for the change and, as appropriate, include any modified budgets, schedules, scope of work, and other necessary provisions.

6.3 Until agreement is reached concerning the proposed change, we may regard the situation as a suspension directed by you.

Article 7: Compensation

7.1 Our reciping for the work is predicated upon your acceptance of the conditions and allocations of risks and responsibilities described in this agreement. You agree to pay for services as stated in our proposal and acceptance you or according to our then current standard pricing documents if there is no other written agreement as to price. An estimate or statement of probable cost is not a firm figure unless stated as such.

7.2 Therwise agreed to elsewhere, you agree to pay invoices within 30 days of receipt unless, within 15 days from receipt of the invoice, you notify us in writing of a particular item that is alleged to be incorrect. You is pay the uncontested portions of the invoices within 30 days of receipt. You agree to pay interest on unpaid balances beginning 60 days after receipt of invoice at the rate of 1.5% per month, but not to exceed the maximum rate allowed by law.

7.3 If you direct us to invoice another, we will do so, but you agree to be ultimately responsible for our compensation until you provide us with that third party's written acceptance of all terms of our agreement and until we agree to the substitution.

7.4 You agree to compensate us for our services and expenses if we are required to respond to legal process related to our services for you. Compensable services include hourly charges for all personnel involved in the response and attorney fees reasonably incurred in obtaining advice concerning the response, the preparation of the testifier, and appearances related to the legal process.

7.5 If we are delayed by, or the period of performance is materially extended because of, factors beyond our control, or if project condition or the scope or amount of work change, or if the standards or methods of testing change, we will give you timely notice of the change and we will receive an equitable adjustment of our compensation.

Article 8: Risk Allocation, Disputes, and Damages

8.1 Neither we nor you will be liable to the other for special, incidental, consequential or punitive losses or damages, including but not limited to those ansing from delay, loss of use, loss of profits or revenue, or the cost of capital.

9.2 We will not be liable to you for damages unless suit is commenced within two years of injury or loss or within two years of the date of the completion of our services, whichever is earlier. In no event will we be liable to you unless you have notified us of the discovery of the negligent act, error, omission or breach within 30 days of the date of its discovery and unless you have given us an opportunity to investigate and to recommend ways of mitigating your damages.

8.3 In the event you fail to pay us within 90 days following the invoice date, we may consider the default a total breach of our agreement and we may, at our option, terminate all of our duties without liability to you or to others.

8.4 If it is claimed by a third party that we did not complete an acceptable analysis, at your request will seek further review and acceptance of the completed work by the third party and use your best efforts to obtain that acceptance. We will assist you as oirected.

8.5 You and we agree that disputes will be submitted to "Alternative Dispute Resolution" (ADR) as a condition precedent to litigation and other remedies provided by law. Each of us agrees to exercise good faith efforts to resolve disputes through mediation unless we both agree upon another ADR procedure. All disputes will be governed by the law of the place where our services are rendered, or if our services are rendered in more than one state, you and we agree that the law of the place that services were first rendered will govern:

8.6 If either of us makes a claim against the other as to issues out of the performance of this agreement, the prevailing party will be entitled to recover its reasonable expenses of litigation, including reasonable attorney's fees. If we bring lawsuit against you to collect our involced fees and expenses, you agree to pay our reasonable collection expenses including attorney fees.

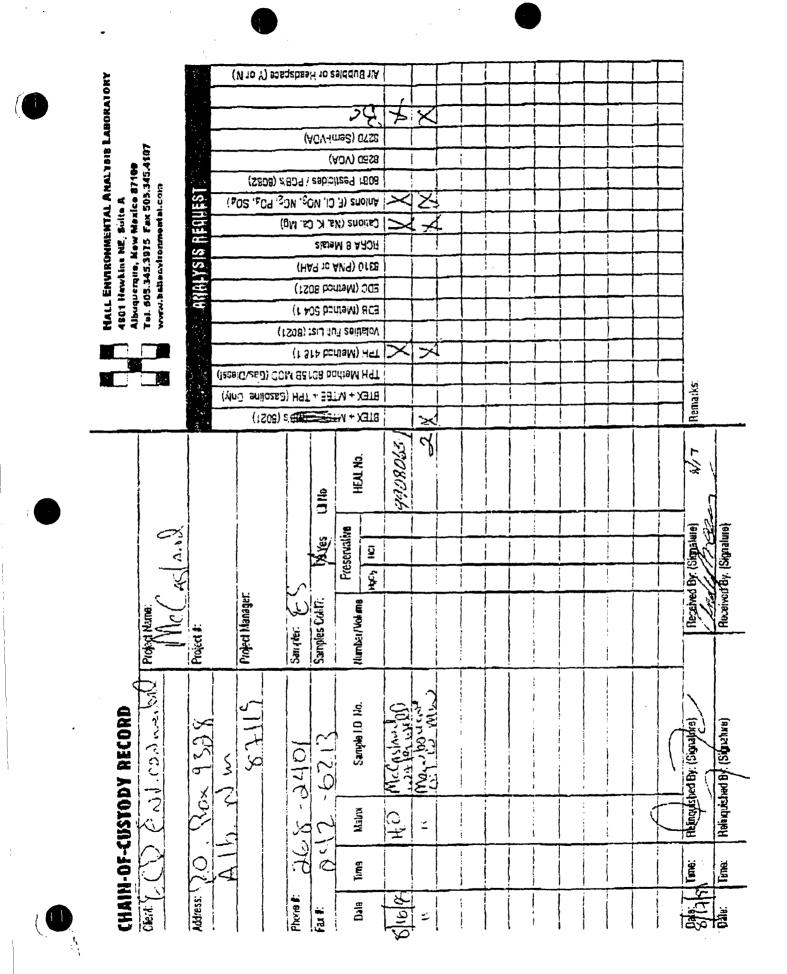
Article 9: Indemnities

9.1 We will indemnify and hold you harmless from and against demands, damages, and expenses caused by our negligent acts and omissions and breach of contract and by the negligent acts and omissions and breach of contract of persons for whom we are legally responsible. You will indemnify and hold us harmless from and against demands, damages, and expenses caused by your negligent acts and omissions and breach of contract of persons for whom we are legally responsible. You will indemnify and hold us harmless from and against demands, damages, and expenses caused by your negligent acts and omissions and breach of contract and by the negligent acts and omissions for whom you are legally responsible. These indemnities are subject to specific limitations provided for in this agreement.

Article 10: Miscellaneous Provisions

10.1 This agreement constitutes the entire agreement between you and us, and it supersedes all prior agreements. Any term, condition, prior course of dealing, course of performance, usage of trade, understanding, purchase order conditions, or other agreement purporting to modify, vary, supplement, or explain any provision of this agreement is of no effect until placed in writing and signed by both parties subsequent to the date of this agreement. In no event will the printed terms or conditions stated in a purchase or work order, other than an agreed upon Chain of Custody/Analysis Request, be considered a part of this agreement, even if the document is signed by both of us.

ther party will assign this agreement without the express written approval of the other, but we may subcontract laboratory procedures with your approval as we deem necessary to meet our obligations to you.


of the provisions of this agreement are held to be invalid or unenforceable in any respect, the remaining terms will be in full effect and the agreement will be construed as if the invalid or unenforceable matters included in it. No waiver of any default will be waiver of any tuture default.

10.4 . . vou or we will have any liability for nonperformance caused in whole or in part by causes beyond our reasonable control. Such causes include but are not limited to Acts of God, civil unrest and war, labor timest and strikes, equipment failures, matrix interference, acts of authorities, and failures of subcontractors that could not be reasonably anticipated.

10.5 You: may stop our work by giving a written suspension or termination directive, but once work has been suspended, we need not resume work until we agree to change in scope, schedule, and compensation. Upon suspension or termination, we will use reasonable care to preserve samples provided that you agree to compensate us for any additional effort, but we will have no responsibility for meeting holding time limitations after the effective time of a suspension or termination girective. We will be compensated for service rendered and expenses incurred prior to termination that cannot reasonable be avoided.

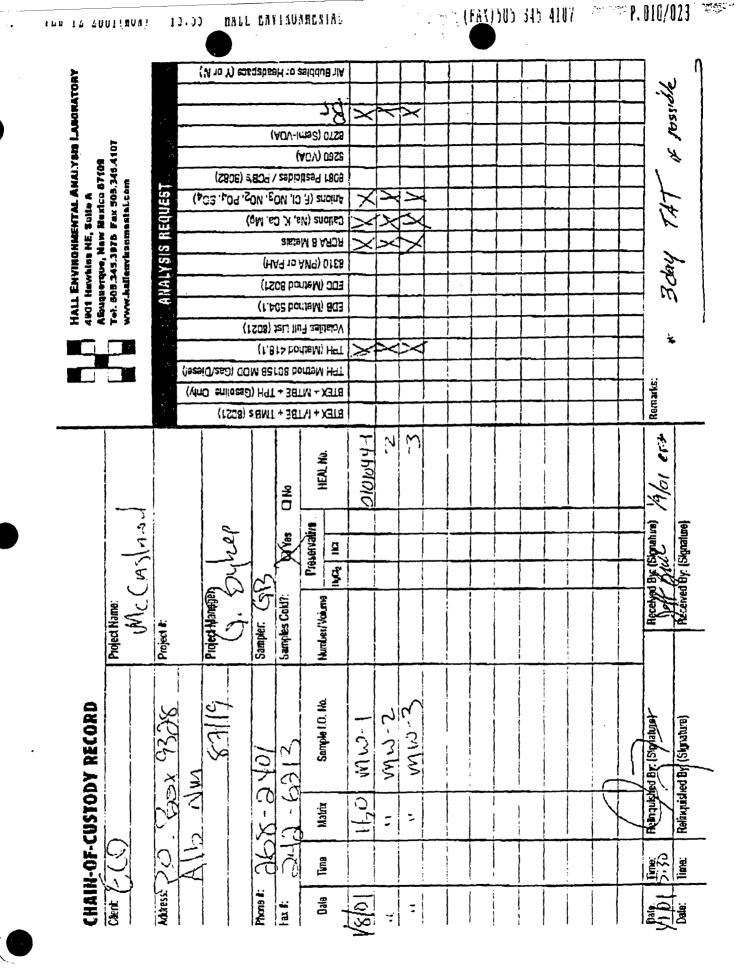
-				-		piebr	nsta mo	ierent fr	tib ti en	nīT briunā mu old														T
o	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST				£z#	r - 12		2	7/24	an ac		K								 				
D	S R	٩	((k d)		-	nd	00	Julo	אר גאיני	1					· ·								
Pag	LYSI	010					·			Hq ,221 ,001		 	$\left - \right $								ł			
	NAI	2 C	н я́	(-	908/5808 2/608 1808 28082/608			$\left - \right $								{			1
	Q					·		929/D0		V .ime& 2M\Q											1		~	
	ΥA	R	EQ.	- Mel				*	29/809	C-W2 AN 85	1										RKS:		E)	AM 2
	0	HOOL	ANALYSIS REQUEST	(II)ar	<u> </u>				s	CLP Pesticide		 							+	 	REMARKS		512	1
	SUS			5 — 5 —						CLP Semi Voli											<u> </u>			-19
	Ц Ч Ч	LAB Order ID #		- re		6	196.01			CLP Metals Ag										+		z		
	N.	0 Ŭ Ŭ			08/200					pA slateM lato	-						-+-		+	+	-AB USE ONLY	z >	F	⎷
	CHA	ΓĀ								20728 HA	1								\square			ا، 🕲	viev -	ł
										TEX 80218/60									+	 	LA	Intact	Temp	•
				_						ATEX 80218/6	-								+			Intact Heads	Temp_ Log-in	
							Τ	Ţ	U N N	LIME	12.30	1230												Ť
	Dr., Ste A 79922-1028	Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443	15-4	8177	•			1	SAMPLING	JTAC	13	1 23-11			-								2:001	
	Ripley D Texas 7	585 5) 58 5) 58 588-	$ \langle \rangle $	- Co - 1			12	\mathbf{A}									_							
	4 teu Ripley Dr., Paso, Texas 799) (91) (91) (888)	5	\sim			101	$\left \right\rangle$	NE C	NONE CE	<u> </u>							_					-	
	4160	ta ta	628	200			1 N	0	PRESERVATIVE METHOD	190H								_			Time:	Time:	C Time:	
				T	\downarrow				MEI	7OS2⊦									-				1 S	
		•	515	<u></u>					۲.	19HSO	-										Date:	Date:	Date:	
ĺ		Ĕ	$\langle \! \! \! \rangle$	\ر. ت	1		ame:	ang)	[HNO3 HCT		3		_							ă \		ă I	
)=		Phone #:	÷			Project Name:	Sampler Signature:		1.Jr	<u>'</u>		\vdash	\rightarrow									1	ľ
	,		Pho	Fax #: /			Proje	Sam	XIE	вглаее		<u> </u>	┝━╌┼		-			_					in the second se	ł
	•			7505				1	MATRIX	- HIV	+											\	So C	Ţ
			1.510-2	J.				Ì			¥				_									ĺ
			1.51	Q	1					RƏTAN	+	<u> </u>									by:		at La	
			3	NN	1				tun	omA\smulo\	12	500 H									ived	ived .	ived i	ł
		I raceAnalysis,	en l	L.					SR3	+ CONTAINE	-			_	_						Received by	Received by:	Received at Laboratory by	ł
			1 C	-4.5								mi(l)									тіте: /600	Time:	Jime	
) Orserva	ب ب	J .	ľ				Ш	1 de	windmi		ł				ĺ			1 00	-		
	[ر م م	3	1530					0 00	(wind	Ĕ									0		7	
	6		\square	(díz	0					FIELD CODE	1230	0				Ì					Date: 11/J	Date:	Date:	
		۰ ۵ ۵۵	Û.	Street, City, Z						1 <u>2</u>	17	05187100									-			
	an Avenuciation Texas 79424	-129(1-129) 1296	Z	reet, -	811	ove)	·				2	20									the second	1		
	I Ave Texas	3) 794 5) 794 378-				n ab		Ë	l		10	110									K a	×	ž	
þ	6701 Aberdeen Avenu Lubbock, Texas 79	Tei (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296	Company Name: NN	0	Contact Person:	rvoice to: f different from above)		roject Location:		Ē	87110087855.	0	┝──╁				+		+		kg par	elinquished by:	alinquished by:	
B	01 Ab Lubl	- Fa	pany	Nddress: しゃくの	act F	nvoice to: If different	roject #:	sct Lc	J	LAB # LAB USE ONLY	986							ļ			alinquished	iquist	Iduist	1
F I	6		щõ	lpb/	luo	N I	Į	jo	ι	OF L	12	L			_						<i>f</i>	. 	Ţ	

·-, .

CUISTODY RECORD CUISTODY RECORD Project Ham: Project Ha	ALYSIS LABORA 1108 11/	(Z808) S.604	201, 10, 3) SnoinA Sebricase9 7608 (ACV) 3658 ADV-Ime2) 3758				
Tolget Hant: Tolget Hant: Tolget Hant:	Hall Envinonment 4001 Itaulua NE, Su Albuqueruae, Hew Me Tel: 545.345.2475 Fa www hallenvironmen	97 WD: 97 WD:	EDB (Method 50 EDC (Method 83 EDC (PVA 31 94 EG10 (PVA 31 94 ACEA 8 Metals				
Project Name: MAC Car.S. Car.A. Project II: Project II: Sampher: Sampher: Sampher: And Preservative Mandus/Wahine India Preservative Mandus/Wahine India Preservative Preservative		8.1) 56 MOD (Castierer) 72H (Castierer)	+ 387M + X378 768 horison H97 794 (Method 41				
Project Nam Mr. Project Nam Project I: Project I: Samples Col		14016	HYPES CIN servative	Xmi 99-540			
F-CUSTODY RECORD Latin Sample (D. (b) Latin Sample (D. (b) District (L) (c) District (L) (c) Dist	Project Nama:						
F-CUSTO	DY RECORD		Sample I.D. (lo.	5 35 0			
	0F-CUST0	ALC.	Taria Matrix	44 Ad			12

1

AND A REAL AND A REAL POINT AND A REAL POINT AND A


AND THE ENCLERING

	Lubbock, TX 79424 (806) 798-9882 • Fax (806) 798-8434		(N 10 Y) 60	edabeaH	10 26	Nidduß niA							[]
	(43						ļ			ļ	ļ	ļ	ļ	ļ				4
	8-8					ુર્સ	\geq	×	\mathbf{X}		<u> </u>				<u> </u>			4
	62		(5001 2		_	ил) нат						·	·					4
	(9)					195) 0728						<u> </u>					<u> </u>	4
2	(80	sT				8260 IVO												-
Y.	м X	REQUEST			_	.7) znolnA 8081 r803	F	.7.	$\overline{}$									
ife	15. 15.	ĒC				I) anoite0	×	_	2									-
Su	5.4					18 ARCH		$\frac{\times}{\times}$										-
Šr.,	X.	ANALYSIS				NA) 0168		7										-
ų	<u>,</u> 8	AL			_	EDC (W6											<u> </u>	-
69	2 gr	AN				EDB (Me									<u>├</u> ──╁	{-		-
21	নুতু					8010108									1	\rightarrow		-
51,	(8C		* <u>_*</u>	بمنكاستك يمكابعكاء		BM) H9T									i			1
			(leseiCv	2 NOD (33	108 b	critelin H9T									1			1
			(lind) an	bट्ट) मना	+ 38.	IN - XELE		!									_	- V
			(0)	(605/209	981M	BTEX + N												Ramadas
					No	HEAL No.	1-4211100	<i>к</i>										1/30
					a	S										Ì		
					63	Preservalivo										<u> </u> 		
	<u> </u>	i			N'Ves	esa												
	F	1								j								
	Project Name: McCarl Aur	Project #:	Project Manager:	Sampler: CV	Samples Col.1?:	NumherNolume	1st purce	(100									Rucchind Br. (Signature)
CHAIN-OF-CUSTODY RECORD		32.5	1	-3401	- 6013	No.	16 Mal 144 9 13 3 14 11 1 St Pure	helve hereles	Mc Cashaw (Black									(Sig)dare) [Signatura]
1-0F-GUST((LC)	PO. Box	91162 min .0118	<u>705) NGK</u>	Fax #: 049 - 6013	Date Time Matrix E		× ×	8									11340) 1. 70 Retroutstyfilly (Skylduch) 113400 1. 70 Retrouted D) (Skylduch) 2014: Rina: Retrouted D) (Skynature)
HAIN	(Jient:	dress:		ta entre	X H:	ate -	ulath						<u> </u>					3

LO LA ZUUL(MUN) IDIDA MALL CAVIAUANENIA

(FAX) 505 345 4107 P. 023/023

:

1 • • • • •

Hall Environmental Analysis Laboratory

January 12, 2001

Greg Bybee ECD Environmental PO Box 9328 Albuquerque, NM 87119 TEL: (505) 758-7685 FAX (505) 758-7601

RE: McCasland

Order No.: 0101044

Dear Greg Bybee:

Halt Environmental Analysis Laboratory received 3 samples on 1/9/01 For the analyses presented in the following report

These were analyzed according to EPA procedures or equivalent.

Detection limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely.

Andy Freeman, Senior Project Manager Nancy McDuiffe, Assistant Laboratory Manager

> 4901 Hawkins NE, Seite A, Albuquerque, NM 37109 Pr (505) 345-3975, Fax (505) 345-4107

TH HOAT (HAN)

Hall Environmental Analysis Laboratory

Date: 12-Jan-01 CLIENT: ECD Environmental Client Sample ID: MW-1 Lab Order: 0101044 Collection Date: 1/8/01 Project: McCasland Lab ID: \$0101C44-01 -- # Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Data A - 1
ANIONS BY 300.0					Date Analyzed
Bromige		300			
Chionge	1.0	0.50	mg/L	5	Acalyst: SDU
Flucride	100	0.50	mg/L	5	1/10/0*
Nitrate (As NHistorite (As N)	ND	0.50	mg'L	5	1/10/01
Phosphorus, Dissolved	1.8	0.50	ma/L	ž	
Orthopnoschale (As P)	ND	2.5	mg/L	3	1/10/01
Sullate				3	1/10/01
	59	25	mgiL	Ē	1/10/01
PH BY 416.1	F .		•	-	W FOR C
Peuroleum Hydrocarbons, TR		18.1			Analyst: JT
	DND	1.0	mg/L	t	11101

Qualifiers:

ND - Not Detected at the Reporting Limit

2 - Analyte detented below quantitation limits

B - Analytic detected in the associated infection B ank

- * Value exceeds Maximum Containinant Level
- 3 Spike Repovery outside recepted recovery limits
- R RPD putside accepted money limits E - Villue above quantitudion range

Page 1 of 3

14141

HVV11M

11.2

Hall Environmental Analysis Laboratory

Date: 12-Jan-01

CLIENT: Lab Order:	ECD Environmental 0101044			Client Su Collecti	niple ID: MW- on Date: 1/8/01	
Project: Lab 1D:	McCasiand 010:044-02				Matrix: AQU	EOUS
Analyses		Result	Limit	Qual Units	DF	Date Analyzed
ANIONS BY 3	00.0	E	300 <i>n</i> 50	mail		Analyst: SDU

1
1
t
•
1
1
Analyst: JT
۱ بر

Qualifiers:

ND - Not Delected at the Reporting Limit

- 2 Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exerceds Maximum Consummant Level
- 3 Spike Recovery outside accepted recovery limits
- R RED numide accepted recovery limits
- E + Value above quantitation longs

Page 2 of 3

Hall Environmental Analysis Laboratory

Date: 12-Jan-01

CLIENT: Lab Order:	ECD Environmental 0101044					le ID: MW-	1 M
Project: Lab ID:	McCasland 0101044-03			-	M	atrix: AQ切	EQUS
Analyses		Resuit	Limit	Qual Ur	i s	DF	Date Analyzed
ANIONS BY 3	00.0	E	300				Anglyst SDU
Bromide		2.8	0.50	mg	<i>.</i>	5	1/10/01
Chloride		870	10	mạ	r <u>t_</u>	- CC	1/12/01
fiuoride		ND	0.50	פרי	"L	5	1/10/01
Nizate (As N)	Ninte (As N)	1.0	C.50	mg		5	1/10:01
Phasphorus, D Orthopnosphal		ND	1.5	'ng	el.	5	1/10/01
Sulfate		95	2.5	тg	i.	5	1/10/01
TPH BY 419.1		E	418.1				Analyst: JT
Peroleum Hyd	Incarbons, TR	ND	1.0	rg	'L	1	1/11/01

Qualifiers:

- MD Not Detected at the Reporting Listin
- 1 Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value receds Maximum Containinant Level
- $\boldsymbol{\xi}$ = Spike Recovery suitable second recovery limits
- R RPC cutoldo recepted recevery limits
- 5 Value abave quantitation range

Page 3 of 3

	13.32 BALL GATTAUANERIAL	(raajous 545 4)	107 Y. 000/025 - «
JAN-12-31 12:CE	Frant SVC ANALYTICAL	+2087230291	-918 P.01/08 Jos-015
SVL ANALYTICAL,		82837-C526 8 Dt.cnms (208)784-12	250 g Part (200)763-6891

REPORT OF ANALYTICAL RESULTS

	HALL ENVIRONMENTAL	SVL JCB No. : SVL SAMPLE No.:	
CLIENT SAMPLE ID: Sample Collected: Sample Receipt : Date of Report :	1/08/01 1/11/01	Matrix:	water

Determination	Result	Units	Dilution 3	isthod	Test Date Refera	nce
Cation Sum Calcium Potassium Magnesium Sodium Silver Arsenic Barium Cadmium Chromium Mercury Lead Selenium	8.1C 90.4 4.4 12.7 67.4 <0.005 0.01 0.106 <0.002 <0.006 <0.0004 <0.005 0.01	<pre>meg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m</pre>	1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	50108 50108 50108 50108 50108 50108 50108 50108 50108 50108 50108 50108	1/11/01 1/11/01 1/11/01 1/11/01 1/11/01 1/11/01 1/11/01 1/12/01 1/12/01 1/12/01 1/12/01 1/12/01 1/12/01	2222222222222

REFERENCES: 1) "Notwoods for Charical Analysia of Water and Wastes", EPA-103/4-73-10; 2) "Inot Mathema for Evaluating Solid Mastee, Jrd Edition", 50 846, 1994; 3) "standard Matheds for the Dismination of Water and Mastewater", 18th ED, 1992; 4) ASIX Mathed; 3) 40 GFR, Part 261

Reviewed By:_

Birlin 2 con

DETE 1/12/01 1/12/21 12:50

······································		يىغا مەيلەردە بىر يەرىي ^{ر.} - «مىيەردە
Post-It Fax Note 7671	Date	19501 ►
TEPHNIE FLORES	FTREL	\$A
COPPALENU.		to AL YTIC AL
Phane 6	Phone 4	
7.505) 345-4107	Fexa	

JAN-12-01	12:DE	From THE ANALYT	ICAL				+208783	0891	T·	-016	P.02/06	Job-015
NL ANALYTI				Keilogg,	Idaba	83837-0925		Phones	(258)794-13	50	. 10	x= (308;743-689)

.

REPORT OF ANALYTICAL RESULTS

CLIENT	EALL ENVIRONMENTAL	SVL JDB No. :	
CLIENT SAMPLE ID: Sampla Collected:	1/08/01	SVL SAMPLE No.:	·
Sample Rescipt : Date of Report :		Matrix:	WATER

Determ	ination	Result	Dnits	Dilution	Hethod	Test Date	Refezence
Cation	Sum	0.53	meg/L	1		1/11/	01
Calciu	r .	83.4	mg/L	1	60102	1/11/	01 2
Potass.	i um	4.5	ng/L	1	50108	1/11/	01 2
Magnes.	ium	14.2	mg/L	Ĩ	EDIOB	1/11/	$\overline{01}$ $\overline{2}$
Sodium		70.9	mg/L	1	GOIDE	1/11/	
Silver		<0.005	mg/L	1	50103	1/11/	
Arseni	c	<0.01	mg/L	ī	60105	1/11/	
Barium		0.112	mg/L	ī	6010B	1/11/	
Cadada	m	<0.002	mg/L	1	5010E	1/11/	
Chromi		<0.306	mg/L	ī	5010B	1/11/	
Mercur	Y	<0.0002	mg/L	1	7472	1/11/	
Lead	•	<0.005	mg/L	1	60108	1/11/	
Seleni	ure.	<0.01	mg/L	ĩ	501)B	1/11/	

REFERENCES: 1) "Mothods for Chemical Analysis of Metor and Wastor, 234-600/4-70-00; 2) "Test Asthods for Evaluating Solid Wastos, Jod Edition", 59 546, 1994; 3) "Standard Methods for the Examination of Mator and Wastewater, 1984; 4) ASTH Method, 5) 43 CTR, Part 261

Reviewad Sy:

In Erm -7

THE LE LOUI (RUNT 15.74 HALL EATINUABENIAL

Date 1/12/01

(FANDUD 545 4107 P. 006/023

ILU 14 LUCI (RUNY 10.02 MALL CAVIAUANENIAL

JAN-12-31 12:07 From: SVE ANALYTICAL

(FAX) 505 345 4107 P. 907/023 .

1 1 1 1 1 1 1

+2087330851

T-CIS P.C3/06 Job-015

SVL ANALYTICAL, INC.

.

Que Covernant Gulen	P.O. 5cm 921	Fallogy.	IJANO	03817-9925	8.	Phone: (203)784-1250	TELL (198)783-3691
	 	 					 •

REPORT OF ANALYTICAL RESULTS

	CLIENT	HALL ENVIRONMENTAL	SVL JOB NO. : SVL SAMPLE NO.:	96636
ļ	CLIENT SAMPLE ID: Sample Collected:	1/08/01	SVL SAMPLE NO.:	203003
	Sample Receipt		Matrix:	WATER

	Determination	Result	Units	Dilution Method	Test Date Refer	ence
	Cation Sum	31.6	mag/L	1	1/14/01	
}	Calcium	393	mg/L	1 60108	1/11/01	2
}	Potassium	9.0	mg/L	1 601CB	1/11/01	2
i	Magnesium	67.3	mg/L	1 50105	1/11/01	2
1	Sodium	.143	mg/L	1 60108	1/11/01	2
	Silver	<0.005	mg/L	1 6010B	1/11/01	2
	Arsenic	0.02	mg/L	1 601CB	1/11/01	2
	Berium	0.532	mg/L	1 60103	1/11/01	2
1	Cadmium	<0.002	mg/L	1 60108	1/11/01	2
1	Chromium	<0.006	ng/L	1 60108	1/11/01	
	Mercury	<0.0002	Ing/L	1 7470	1/11/01	2
	Lead	<0.005	mg/L	1 60109	1/11/01	2
1	Selenium	0.02	ng/L	1 60105	1/11/01	2

REFERENCES: 1) "Nothers for Chemical Analysis of Mater and Masters", EDR-660/4-76-26; 7) "Tway Methods for Perluating Solid Wester, 3rd Metters, 5W 845, 1994; 3) "Standard Hethins for the Schminston of Meter and Westerster, 18th ED. 1982; 4) ASTA Hernod; 5) 40 CTR, Part 161

Reviewed By:

nhy

Date 1/12/01 1/12/01 11/58

FED-12-2001(HUN) 15:55 HALL ENVIRONMENTAL

JAN-12-01 12:17 From: SVL ANALYTICAL

+2087630891

T-016 P.04/05 Job-015

(FAX) 505 345 4107 P. 008/023

SVL ANALYTICAL, INC.

Quality Control Report

"Part I Prep Blank and Laboratory Control Sample"

CLIORT :HALL	CLIORU :HALL ENVIRONMENTAL SVL JOB NO. 196636										
Analyte	Nethod	Matrix	Units .	Prep Blank	True-LCS-	Found	LCS NR	Date .			
Silver	6010B	WATER	mg/L	<0.005	1.00	0.984	98.4	1/11/01			
Arsenic	50102	WATER	mg/L	<0.01	1.00	1.01	101.0	1/11/01			
Barium	6010B	WATER	mg/L	<0.002	1.00	0.994	99.4	1/11/01			
calcium	6010B	WATER	mg/L	<0.06	20.0	18.9	94.5	1/11/01			
Cadmium	60103		mg/L	<0.002	1.00	1.00	100.0	1/11/01			
Chromium	6010B	WATER	thg/I	<0.006	2.00	1.00	100.0	1/11/01			
Potassium	60108	WATER	mg/L	<1.C	30.0	28.0	93.3	1/11/01			
Magnasium	60108	WATER	mg/L	<0.04	20.0	18.6	93.0	1/11/01			
Socium	6010B	WATER	mg/L	<0.1	20.0	18.1	90.5	1/11/01			
Lezd	6010B	WATER	mg/L	<0.005	2.00	0.987	98.7	1/11/01			
Solenium	SOLOB	WATTER	mg/L	<0.01	2.20	0.97	97.0	1/11/02			
Marcury	7470	WATER	ng/I	<0.0002	0,0050	0.0048	96.0	1/11/01			

LEGEND:

LAS - Laboratory Cantrol Sample

PLOS LR = LCS Ferdedt Recovery

E/A = Not Applicable

1/12/01 11:50

TEO 14-2001 (NUN) 13:35 HALL ENVIRONMENTAL

... (FAX) 505-345-4107

+2017836851

P.009/023

JAN-12-31 12:07 From: SVE ANALYTICAL

۰.

SVL ANALYTICAL, INC.

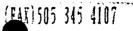
T-016 P.C5/05 Job-015

Quality Control Report

Part II Duplicate and Spike Analysis

										196636 1 Test	
Təst	Mathod	Hatrix		Units	Rosult	Found	RPDA	Result	SPR ADD	\$R	Date
- <u>-</u>	6010B	WATER	1	mg/L	<0.005	<0.005	UDL	1.01	2.00	101.0	1/11/0
8	5010B	NATER	1	ng/L	0.01	0.01	0.0	1.34	1.00	103.0	1/11/0
la.	6010B	NATER	1	mg/L	0.105	D.113	6.4	1.10	1.00	99.4	1/11/0
a.	6010B	WATER	1	mg/L	80.4	85.0	5.6	95.9	20.0	77.5	1/11/0
: <u>-</u>	60108	WATER		20/2	<0.002	<0.002	200	2.998	1.00	99.8	1/12/0
12	6010B	WATER	1	ng/L	<0.005	<0.006	UDI	1.01	1.00	101.0	. 1/12/0
C	6010B	WATER	L	mg/L	4.4	4.5	2.2	32.9	30.0	95.0	1/11/0
lg 🛛	5010B	WATER	1	mg/L	12.7	13.4	5.4	30.a	20.0	90.5	1/11/0
ra.	6010B	WATER	1	Dg/L	67.4	71.0	5.2	83.0	20.0 A	78.0	1/11/0
מי	6010B	XATER	1	ng/L	<0.205	<0.005	JOL	0.988	1.00	38.8	1/12/0
la		NATER		ng/L	0.01	<0.01	200.0	1.00	1.00	99.0	1/11/0
lg	7470	RITAN	1	ng/L	<0.0004	<0.0004	UDL	0,0022	0.0020	110.0	1/11/0

LEGEND:


ADDE = ((EAH - DOD)/((dAH + DUP)/2) = 200) . REDE = ((SPR - REC)/((2PX + REC)/2) = 100) UTL - South SAN & DUP NOT Setected.

GPIET 105 dolume, & - Post Digest Spike; IR - Permer Ascovery M/A - Set Analysed; 1 > 48 - Acoult pare than 4X the Spike Added QC Sample 1: SVL SAN No.: 253063 Client Sample ID: 0101044-010

A is Suplicate/MED column indicates MED.

FER-12-2001(NUN) 13:34 HALL ENVIRONMENTAL

. Alternation

(I
-V	

Hall Environmental Analysis Laboratory

Dute: 26-Dec-09

CLIENT: Lab Order: Project:	ECD Environmental 0011:54 McCasland			Client Samp Collection	le ID: McC. Date: 11/28	asland Winemill 1st Purge				
Lab ID:	0011154-01		Matrix: AQUECUS							
Analyses		Result	Limit	Qual Units	DF	Date Analyzed				
ANICNS BY 300.0		٤	300			Ana yst: SDU				
Bromide		4.0	0.50	mg/L	5	12/1/CD				
Chlonde		1500	20	mg/L:	200	12/14/00				
Fluoride		ND	0.50	mg/L	5	12,1,00				
Nitroger, Nitra	te (As N)	15	0.55	mg/L	5	72/100				
Nitrogan Nitri	6 (As N)	ND	2.5	mg/L	5	12/1/00				
Phosphorus, I Orthophespha		43	2.5	mgA	5	12: 30				
Suifete		100	2.5	ma/l	5	12/1/20				

Qualifiers:

NO - Not Detected at the Reporting Lucat

- 2 Analyte detected below quantitation limits
- 8 Analyte detected in the associated Method Black
- * Volce exceeds Maximum Contemport Level

c - Spike Recovery outside Accepted recovery limits
 R - RPD putpide accepted recovery limits
 E - Value above quantitation range

Page 1 of 3

· CTHV

ł

Hall Envi	ironmental Analysi	is Labora	itory	Date: 26-Dec-00				
CLIENT:	ECD Environmental	Client Sample ID: McCasland Blank						
Lab Order:	0011154			Collection 1	Date: 11/38	/00		
Project: Lab ID:	McCasland	Matrix: AQUEOUS						
Analyses		Result	Limit (Qual Units	DF	Date Analyzed		
ANIONS BY 3	02.0	E	300			Analyst SEU		
Bromide		0.20	0.10	mg/L	1	12/1/00		
Chloride		27	Q.10	ang/L	:	12:1/00		
Fluotde		03.0	0.10	mgrL	1	12/1/00		
Nitrogen, N tra	ice (As N)	3.0	0.10	mg/L	•	12/1/00		
Nitrogen, Nitri	le (As N)	ND	G.50	-12 <u>-14</u>	1	12/1/00		
Phosphorus, C Orthophosona		212	0 30	mgrL	1	12/1/00		
Sullate		36	0.50	mgrL	1	12/1/00		

Quailfiers:

ND - Not Detected at the Reporting Limit

- 2 Analyte detected below quantitation limit:
- B Analyse detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level

S - Spike Recovery cursive econter recovery limits R - RFD DUBING MODER OF MOOVERY ADDIS

E « Volue above quasistation ranga

Page 3 of 3

······································		IN THE PLANE	U	1018 CPC CULLAR	rasinasinasinasinasinasinasinasinasinasin
		•			
SVL ANALYTICAL,	INC.				
One Covernment Culch M	P.O. Box 925 #	Xellogy, Maka	82837-0323 #	Phone: (208)?34=1250	# Fax: (200)733-0891

REPORT OF ANALYTICAL RESULTS

	HALL ENVIRONMENTAL	SVL JOB NO. : SVL SAMPLE NG.:	
CLIENT SAMPLE ID: Sample Collected: Sample Receipt : Date of Report :	11/28/00 12/C7/00	Matrix:	

Determination	Result	Units	Dilution	Nethod	Test Date Referen	ce
Calcium Potassium Magnesium Sodium	692 8.9 64.6 344	ng/L ng/L ng/L ng/L	I 1	6010B 6010B	12/13/00 12/13/00	2222

REFERENCES: 1) "Nothods for Chonical Analysis of Nator and Nartos", EFX-600/4-79-10: 1) "Then Nothods for Evaluating Molid Meeros, Jul Edition", SK 646, 1394: 1; "Standard Methods for the Dessinstion of Mater and Mastemater", 18th ID, 1992; 4) ASTM Method; 5) 40 CFN, Next 151

outeny fits

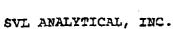
Per-Date 12/15/00 13/11/00 10/19 Reviewed Ey:

SVL ANALYTICAL, INC. One Government Calch # P.O. Jox 9	29 <u>n</u> 74	allogg, Idaho	43837-0929 -	Phanes (208)784-1250	• Fax: (203)703-4091

-------- mun muravantator

REPORT OF ANALYTICAL RESULTS

CLIENT : HALL ENVIRONMENTAL	SVL JCB No. : 96370 SVL SAMPLE No.: 250971
CLIENT SAMPLE ID: 0011154-025 Sample Collected: 11/28/00 Sample Receipt : 12/07/00 Date of Report : 12/15/00	SVL SAMPLE NO.: 290971 Matrix: WATER


	Determination	Result	Units	Dilution	Method	Test Date Re	ference
	Calcium	699	mg/L	1	5010B	12/13/00	2
	Fotassium	9.5	mg/L	1	6010B	12/13/00	
1	Magnesium	62.3	mg,'L	1	E010B	12/13/00	2
1	Sodium	334	mg/L		6010B	12/13/00	_
ł	Silver	<0.005	mc/L		6010B	12/13/00	
ţ	Arsenic	0.61	mg/L		6010B	12/13/00	-
	Barium	0.303	mg/L		6C103	12/13/00	2
	Cadmium	<0.002	mg/L	1	6010B	12/13/00	2
ł	Chromium	<0.006	mg/L	ī	50102	12/13/00	2
:	Mercury	0.0004	mg/L	2	7470	12/14/00	2
]	Lead	0.005	mg/L	1	6010E	12/13/00	2
1	Selenium	0.02	mg/L	1	60105	12/13/00	2

REFERENCES: 1; "Notheds for Control Stalysis of Heter and Mapleor, SDA-600/4-79-30; 2) "Test Methods for Evaluating Solid Heatte, Ord Edition", 6N 016, 1994; 0) "Standard Methods for the Disautation of Neter and Hestewater", 1955, 29, 1992; 4) ASIN Method; 5) 40 CTR, Fart 241

Reviewed By: Brake (1.1.

Date 12/15/00 12/15/00 10:29

(raa)juj jaj 4107 🔄 "P.010/023

The PE SAAT MANA'

Quality Control Report

e . . .

1

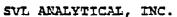
ł

Part I Prep Blank and Laboratory Control Sample

Analyta	Method	Matrix	Units	Prep Blank	True-LCS-	Found	LCS BR	Date
Silver	6010B	WATER	mg/L	<0.005	1.00	0.991	99.1	12/13/0
Arvenic	6010E	WATER	mg/L	<0.01	2.00	0.99	99.0	12/13/0
Bariun	6C10B	WATER	mg/L	<0.302	1.00	0.994	99.4	12/13/0
Calcium	6010B	WATER	mg/L	<0.04	20.0	21.0	105.0	12/13/0
Cadmium			mg/L	<0.002	1.00	0.9\$5	98.5	12/13/0
chromium	6010B			<0.006	1.00	0.397	99.7	12/13/0
Potapeium	6010B	WATER	mg/L	<1.2	30.0	30.2	100.7	12/13/0
Hagneslum	1EDLOB	WATER	mg/L	<0.04	20.0	19.6	98.3	12/13/0
sodium	5010B	WATER	mg/L	<0.1	20.0	20.3	101.5	12/13/0
Lead	60103	WATER	12/L	<0.005	1.00	2.985	98.5	12/13/0
selenium	6010B	WATER		0.01	1_00		93.3	12/13/0
Marcury	7470	WATER	mg/L	<0.0302	0.0050	0.0032	104.0	12/14/0

LIGEND:

ICS - Laboratory Control Sample


LCS 1R = CCS Parcent Ascomery

N/A - Not Applicable

12/12/00 12/19

---- LA AUDITHONS 13:30 HUPP PRESSION PARTY

Quality Control Report

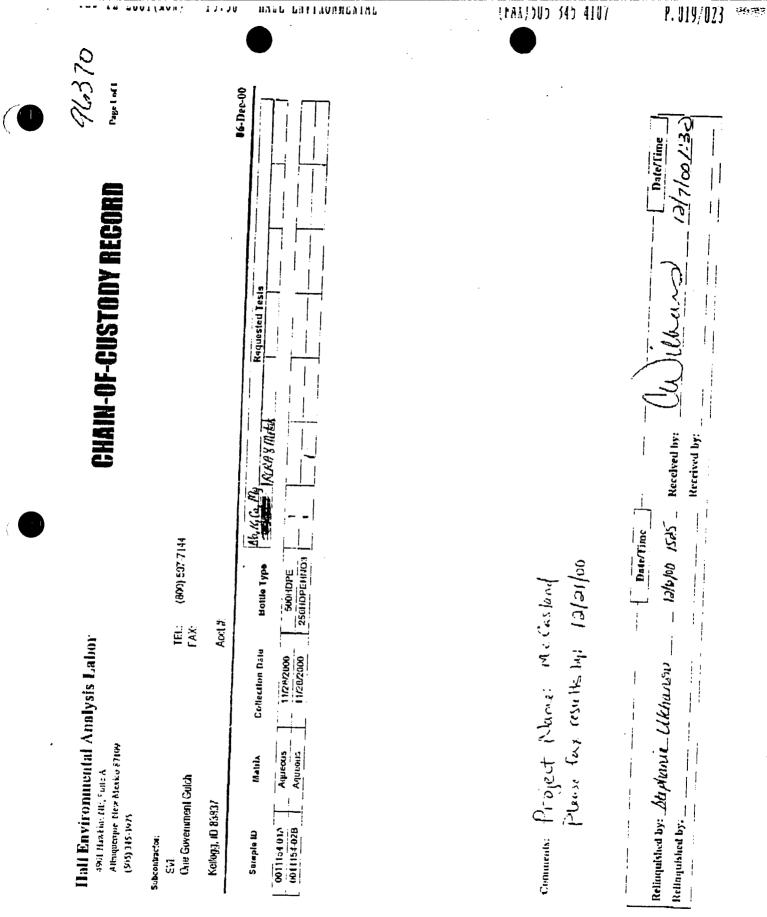
- 71 es 1

Part II Duplicate and Spike Analysis"

CLIGI	ar ilahi	2 ENVIRO	nmental 	LEID	Duplicate o	r MSD	Ма	svi trix spike	Job No	:96370 Test
Teat	Mathod	Matrix		Result	• ·	RPDS	Regult	SPK ADD	8 R	Date
g	6010B	WATER	l mg/L	<0.005	<0.005	CDL	1.08	1.00	108.0	12/13/0
s	6010B	WATER	1 mg/L	0.01	0.01	. 0.0	1.07	1.00	105.0	12/13/0
a	6010B	WATER	1 mg/L	0.303	0.303	2.0	1.27	1.00	96.7	12/13/0
a	60108	WATER	1 mg/L	698	594	J.6	694	20.0	R >45	12/13/0
d	6010B	WATER	l mg/L	<0.002	<0.002	UDL	0.954	1.00	95.4	12/13/0
r	6010B	WACER	1 mg/L	<0.08G	<0.005	UDL	0.972	1.00	97.2	12/13/0
	6010B	WATER	1 mg/L	8.3	8.4	1.2	41.0	30.0	109.3	12/13/0
g	6010B	WATER	1 mg/L	62.3	61.5	1.3	91.C	20.0	93.5	12/13/0
a	6010B	NATER	1 mg/L	334	330	· 1.2	348	20.0	R >45	12/13/0
E	60108	WATER	1 mg/L	0.005	0.005	i 19.2	0.971	1.00	96.6	12/12/0
e '	60103		1 mg/L	0.02	0.02	5.0	2.05	1.00	103.0	12/13/0
g	7470		1 mg/L	0.0004	<0.0004	200.0	0.0022	0.0020	90.0	12/14/0

LEGEND:

REDA = /(SAH - DUP(/(IBAH - DUP)/2) = 1001


GDL - Born SAN 4 DUP not detected.

RPD& = ([SPR = ASD]/((SPR = NSD)/2) + 100) M in Duplicate/MSD rolumn indicates MSD.

SPIRE ADD column, A = Post Digset Opins, AR = Persone Recovery E/A = det Analysed; 1 > 46 = Recult mare thus 4X the Spike Added QC Sample 1: SVE BAN NC.: 250971 Client Sample ID: 0011154-02B

12/12/00 10:12

HALL LEFTAVENUATEL

:

CLIENT: ETO Favirements! CLIENT: ETO Favirements! West Cluter: 0011154 Froject: MiCutadiad Sample Di MiCutadia Sample Di MiCutadiad Sample Di MiCutadiad Micutadia Sample Di MiCutadiad Sample Di MiCutadiad Sample Di MiCutadiad Micutadia Micutadia Sample Di MiCutadiad Micutadia Micut	Code: E100 Units: InglKg Analysis Ibate: 12.114100 ID: WC_101214A Seqtuo: 5814 POL Saytvalue SFK flef Val SstrFC Lowdhini: HighLinii 0.30 0 0 9 1 Analysis Ibate: 12.114100 0.30 0 30 9 5 Seqtuo: 5814 0.30 0 0 9 9 9 9 0.30 0 0 5 Analysis Ibate: 12/1400 0.30 0 0 9 9 9 9 0.30 0 0 15 15 15 16 1.5 1.5 1.5 1.5 1.6 1.71400 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.5 1.5 1.5 1.6 1.71400 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.71400 1.6 1.6 1.6 1.71400 1.71400 1.6 1.6 1.6 1.6 1.71400 1.6 1.5 1.6 1.71400	Code: E300 Intis: mg/kg Analysis Date: 1.114/00 Prep Date: ID: Wc. Wc. 9021 Prep Date: 9034 PD: SPK Ref Val Skfrsf. Luwihin: Highlund RPD Ref Val SRPD PD: SPK Ref Val Skfrsf. Luwihin: Highlund RPD Ref Val SRPD PD: SPK Ref Val Skfrsf. Luwihin: Highlund RPD Ref Val SRPD 0.30 0.30 1.5 String String String 0.30 0.30 1.6 String String 0.30 1.5 String String String 1.5 1.5 String String String 1.5 String String String String 1.5 1.5 String String String 1.5 1.5 String String String 1.5 1.5 String String String 1.5 1.
ID RJM Test Coder E300 Units: rng/kg Analysis Date: 1214/00 Prep Date Raudt Pol Wei LD. Wei 200 Units: rng/kg Analysis Date: 1214/00 Prep Date Runub: Wei LD. Wei 200 Units: rng/kg Analysis Date: 1214/00 Prep Date Runub: Wei 200 Units: rng/kg Sterker. Sterker. Sterker. Sterker. ND 0.30 N.90 Sterker. Sterker. Lood Late Sterker. Sterker. ND 0.30 N.90 N.90 Sterker. Sterker. Lood Late Sterker. ND 0.30 N.90 N.90 Sterker. Lood Late Sterker. Lood Late ND 0.30 N.90 Sterker. Lood Late Sterker. Lood Late Sterker. ND 1.0 1.0 No Sterker. Lood Late Merker. Sterker. ND 1.0 1.0 No Sterker. Lood Late Merker. Merker. ND 1.0 1.0 No Sterker. Lood Late Merker. Merker. ND 1.0 No No No No No No ND	Dr. R.314 Test Code E 300 Units: mg/kg Analysis Dae: 1214/00 Prop Dae: Rinu D. Wc. Jol 244 Seque: 5814 Prop Dae: Seque: 5814 Prop Dae: Rinu D. Wc. Jol 244 Seque: 5814 Seque: 5814 Prop Dae: Rinu D. W. Jol 244 Seque: 5814 Seque: 5814 Prop Dae: Rinu D. 0.30 0.40 Saths: 5814 Seque: 5814 Seque: 5814 Rinu D. 0.30 0.40 Saths: 5814 Seque: 6814 Seque: 6814 Rinu D. 0.30 0.40 Saths: 5816 Unit: mj/L Analysis Dae: 12100 Plop RPD field Rinu D. 0.30 1.5 Seque: 6616 Unit: mj/L Analysis Dae: 12100 Plop Ode: Rinu D. VC_outrant Rinu Hight: mL Hight: Rinu Rinu Rinu Rinu Rinu Rinu Rinu Rinu	Method B Method S Run D. WC_101214A Analysis Date: 121400 Prep Date: Run D. WC_201214A SeqNo: 614 Run D. WC_201214A SeqNo: 614 Run D. WC_201214A SeqNo: 614 Run D. 0.30 1.30 1.30 Run D. 0.30 1.30 1.31 Run D. 0.30 1.30 1.31 Run D. 0.30 1.31 1.32 Run D. 0.30 1.31 1.31 Run D. 1.31 1.31 1.41 Run D. 1.31 1.41
ID: RJN4 Test Code: E 100 Units: mg/Kg Analysis I Jaze: 1211/00 Prep Date Rueut POL sayk value SPK Ret Val SeqAo: 584 SeqAo: 584 Rueut POL sayk value SPK Ret Val Sarter LowLuni: Hightunii RPD Ret Val SRD Rueut 0.30 0.30 0.30 Sarter LowLuni: Hightunii RPD Ret Val Sarter Rueut 0.30 0.30 0.30 No Sarter LowLuni: Hightunii RPD Ret Val Sarter Ru 0.30 15 No Sarter LowLuni: Hightunii RPD Ret Val Sarter Ru 0.30 1.5 Sarter LowLuni: Hightunii RPD Ret Val Sarter Ru 1.5 Ru No Sarter LowLunii Hightunii RPD Ret Val Ru 0.30 R No Sarter LowLunii Hightunii RPD Ret Val Ru 0.30 R No Sarter LowLunii Hightunii RPD Ret Val Ru 0.30 R No Sarter LowLunii Hightunii RPD Ret Val Ru 0.10 N	ID: RJN4 Test Code: E300 Inits: ng/Kg Analysis Date: 1211400 Prep Date Rundb WC_901214A Seque: 6814 Prep Date Rundb WC_901214A Seque: 6814 Srep Date Rundb 0.30 Srep indicender E30 Inits: ng/Ke Prep Date Rundb 0.30 0.30 Srep indicender E30 Prep Date Rundb 0.30 0.30 Srep indicender E30 Prep Date Rundb 0.30 0.30 Srep indicender E30 Prep Date Rundb 0.30 1.5 Srep indicender E30 Prep Date Rundb 1.5 Srep indicender E30 Prep Pate Prep Date Rundb FG_ Undicender E30 Undicender E30 Prep Pate Rundb FG_ Undicender E30 Undicender E30 Prep Pate Rundb FG_ Undicender E30 Undicender E30 Prep Pate Rundb FG_ Scather 6418 Prep Pate Prep Pate Rundb FG_ Undicender 140 RPD FerVul Prep Pate Rundb FG_ Undicender Pate Scather 6418 Prep Pate Rundb FG_ FG_ Louture H90 Prep Pate Rundb	Test Coder 310 Iniv: RugKg Analysis Date: 17.114100 Prep Date: Run LD WG_4001214A Seq.No Sint R Prep Date: Run LD WG_4001214A Seq.No Sint R Prep Date: Rin LD WG_4001214A Seq.No Sint R Prep Date: Rin LD WG_4001214A Seq.No Sint R Prep Date: Rin D 0.30 No Sint R Seq.No Sint R Rin D 0.30 No No Sint R Prevalue Sint R Rin D 0.30 No No Sint R Prevalue Sint R Rin D 0.30 No No Sint R Prevalue Sint R Rin D 0.30 No No Sint R Prevalue Sint R Rin D 0.30 No No No No No No Rin D 0.30 No No No No No No Rin D No
ID Test Code: E300 Inits: mg/kg Analysis Date: 121400 Per Date Run D. WG_01214A Service 5814 YRPD RPUtini MD 0.30 Silvice 5814 YRPD RPUtini MD 0.30 Silvice 5814 YRPD RPUtini MD 0.30 Silvice 5814 YRPD Ref Val MD 0.30 Silvice Silvice 5814 MD 0.30 Silvice Silvice Silvice MD 0.30 Silvice Silvice Silvice Silvice MD 0.30 Silvice Silvice Silvice Silvice Silvice MD Silvice Silvice Silvice Silvice S	ID Test Code: E300 Inits: mg/kg Analysis Date: 121400 Per Date Run D. WG_01214A Setha: 5814 YRP0 Per Date Run D. WG_0130 Setha: 5814 YRP0 Per Date HD 0.30 Setha: 5814 YRP1 Per Date HD 0.30 Setha: 5814 SRP0 Per Date HD 0.30 Setha: 581 Setha: 581 Per Date HD 0.30 Setha: 581 Setha: 591 Per Date Run D C4 Ver Ver Val Setha: 6414 Per Date Run D C4 Setha: 6414 Per Date Per Date HD D1<	Test Code: E 500 Units: Totalysis Date: 17.11400 Prep Date: Rin Lo. WC_101214A SerFeC Lowdind: Highlumit RPD RPUtinit Rin 0.30 SerFeC Lowdind: Highlumit RPD RPUtinit Rin 0.30 1.5 Analysis Date: 7.11400 Prep Date: Rin 0.30 1.5 Run (J. Analysis Date: 7.1400 Rin 0.30 1.5 Run (J. Markeis Date: 1.7400 Rin 0.15 Scopta: Scopta: Scopta: 6.014 Run (J. WC. 010 Run (J. Markeis Date: 1.7400 Run (J. WC. 010 Run (L. Markeis Date: 1.7400 Run (J. WC. 010 Run (Hight.mut RPD Ref Val 2.84PG Run (J. WC. 010 Run (Hight.mut RPD Ref Val 2.84PG Run (J. 010 Run (J.<
Rugati FOL GPV value SrFr fref Val SrFr fref Val <t< th=""><th>Readt PQL LINN value S/RFC Low/Linit Highlinit RPD RefVal S/RPD RPD InterVal ND 0.30 0.30 5.0</th><th>Gaut PQL Silvadue Sifver. Loadinit Hightimat RPD Ref Val SRPD RPDLimit RD 0.30 0.30 0.30 1<!--</th--></th></t<>	Readt PQL LINN value S/RFC Low/Linit Highlinit RPD RefVal S/RPD RPD InterVal ND 0.30 0.30 5.0	Gaut PQL Silvadue Sifver. Loadinit Hightimat RPD Ref Val SRPD RPDLimit RD 0.30 0.30 0.30 1 </th
(f) 0.36 (1) 0.30 (1) 0.30 (1) 0.30 (1) 0.30 (1) 0.30 (1) 0.30 (1) 0.30 (1) 15 (1) 15 (1) 15 (1) 15 (1) 15 (1) 15 Run (0, Weigen Strik field Val Stephter Gut Run (1) Weigen Strik field Val Run (1) Weigen Strik field Val Run (1) Weigen Strik field Val Run (1) 0.19 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1)	HD 0.30 110 0.30 110 0.30 110 0.30 111 0.30 111 0.30 112 1.5 113 1.5 110 0.30 111 1.5 112 1.5 113 1.5 110 1.5 111 W.C. of rate and the model of the rate of the rat	MD 0.30 R10 0.30 R10 0.30 R10 0.30 R10 0.30 R10 0.30 R10 0.30 R11 0.30 R11 0.30 R11 1.5 R12 1.5 R13 1.5 R10 1.5 R11 Marksis Data 12/100 R12 Nacksis Data 12/100 R13 Rep Bate R14 Nacksis Data 12/100 R15 Ladata 12/100 R10 0.19 R10 0.19 R10 0.19 R10 0.19 R10 0.19 R11 0.19 R12 Ancheis Data 12/100 R13 Rep R14
III 0.30 RI 0.15 RI 0.15 RI 0.15 RI 0.15 RI 0.15 RI 0.15 RI 0.16 RI 0.17 RI 0.12 RI 0.13 RI 0	110 0.30 110 0.30 110 0.30 110 0.30 110 0.30 110 0.30 111 0.30 111 0.30 111 0.30 111 0.30 111 0.30 111 0.30 111 0.30 111 0.30 112 0.30 113 0.40 114 0.40 115 0.40 116 0.10 111 0.40 111 0.40 111 0.40 111 0.40 111 0.40 111 0.40 111 0.40 112 0.40 113 0.40 114 0.40 115 0.40 116 0.40 117 0.40 118 0.40	111 0.30 111 0.30 111 0.30 111 0.30 111 0.30 111 0.30 111 1.5 112 1.5 113 1.5 113 1.5 113 1.5 113 1.5 113 1.5 114 Ausbeis Data 12/100 115 1.6 110 W.S. 201201A 111 W.S. 201201A 112 1.1 113 0.10 114 0.10 115 0.10 116 0.10 111 0.10 112 0.10 113 0.10 114 0.10 115 0.10
ND 0.30 HD 0 HD 0 10 0.30 HD 0.30 HD 0.30 HD 0.30 HD 0.30 HD 15 HD Marks Data 121100 Hanlu, weiget Data Anaksis Data 121100 Runuli, weiget Data Seqito: 6018 Runuli, weiget Data Seqit	N1) 0.20 R10 0.90 R10 0.90 R10 0.90 R10 0.90 R10 15 R10 W.S. M.M. Maksis Data 12/100 R11 W.S. SYKferVal Ran IG. W.S. Softa Ran IG. W.S. Softa Ran IG. W.S. SYKferVal Ran IG. 0.19 Ran IG. 0.10 Ran IG. 10.11 Ran IG.	ND 0.30 RD 0 RD 0.30 RD 0.30 RD 1.5 RD 1.5 RD 1.5 RD 0.30 RD 1.5 RD 1.6 <
HD D R0 0.30 R0 0.30 R1 0.30 R1 0.30 R1 0.30 R1 0.30 R1 0.30 R1 15 R1 Markysis Data 12100 Rankli. Wc. 001201A Rankli. Wc. 001201A Rankli. Septetic. K10 0.10 R10 0.10 R11 10.10	H0 0 R1 0.30 110 1.5 110 1.5 110 1.5 110 1.5 111 Marksis Data 121100 112 Marksis Data 121100 113 Ran IG 114 Marksis Data 121100 115 Ran IG 116 1.5 117 Marksis Data 121100 118 1.6 110 0.10 111 0.10 112 0.10 113 0.10 114 0.10 115 0.10 116 0.10 111 0.50 112 0.50 113 0.50 114 0.50 115 0.50 116 0.50 118 0.50 119 0.50	HD 0 R0 0.30 R0 0.30 R0 1.5 R0 1.5 R0 1.5 R0 Unis: molit R0 Unis: molit R0 With R0 With R0 Unis: molit R0 With R0 With R0 Mathematic Bate 12/100 R0 With R0 With R0 Mathematic Bate 12/100 R0 With R0 Mathematic Bate 12/100 R0 With R0 Mathematic Bate 12/100 R0 Mathematic Bate 12/100 R0 With R0 Mathematic Bate 12/100 R0 Mate 12/100 R0
All 0.30 110 1.5 110 1.5 110 1.5 110 1.5 110 1.5 111 1.5 111 1.5 111 1.5 111 Must Site Code: E30tl 111 Must Site Code: E30tl 111 Must Site Code: E30tl 111 Must Site Code: G100 111 Must Site Code: G100 111 Must Site Code: G100 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 111 0.10 1111 0.10 1111	ND 0.300 110 15 110 15 110 15 110 15 110 15 111 Verp Date 111 Weight 111 Markysis Data 111 Markysis Data 111 Markysis Data 111 Markysis Data 111 Markysis SFK frei Val 112 Markysis 113 Markysis 114 Markysis 115 Markysis 111 Markysis 112 Markysis 113 Markysis 114 Markysis 115 Markysis 112 Markysis 113 Markysis 114 Markysis 115 Markysis 118 Markysis 119 Markysis 111 Markysis 112 Markysis 113 Markysis 114 Markysis 115 Markysis	RID 0.30 110 U.30 110 U.5 1110 U.5 1110 U.5 1110 U.5 1110 WC 001201A 1110 WC 001201A 1110 WC 001201A 1110 U.5 1110 U.1 1111 U.1 1111 U.1
TiD 1.5 TiD 1.5 TiD 1.5 Run (D. WS_001201A Analysis Data 121100 Prep Date. Run (D. WS_001201A Seqto: 6618 Prep Date. Run (D. WS_001201A Seqto: 6618 Prep Date. Rus of TG_ VrK value SrK rice! Val %RFC Loo Lant. Nu 0.10 10 10 10 10 Rub 0.50 10.50 10 10 10 Rub 0.50 10.50 10 10 10	rtb 1.5 rtb 1.5 rtb 1.5 rtb 1.5 rtb 1.5 rtb 1.5 Run (D. WC_001201A Run (D. WC_01010 Run (D. 0.10 Run	11 1.5 11 1.5 11 1.5 11 1.5 11.5 1.5 11.6 Unfis: mg/L Anabysis Data 12/100 11.8 Wei Lio Wei Bolt Run Lio Wei Bolt Seqtto: 6618 Run Lio Wei Bolt Seqtto: 6618 Run Lio Wei Sfr Krei Val %RFC Run Lio 0.19 1.0 Run Lio 0.10 1.0 Run Lio 1.0 1.0 Run Lio 1.0 1.0 Run Lio 1.0 1.0
IID 15 IN R235 Test Corte: E304 Unfis: mg/L Arabysis Data 12/100 Prep Date. Run ID WC 001201A Seqita: 601a Prep Date. Run ID WC 001201A Sr8 frei Val RRFC Luntimut Hightamt RPD/iml Run ID 0.10 0.10 110 0.10 Prep Date. Prep Date. Nu 0.10 0.10 110 0.10 Prep Date. Prep Date. ND 0.10 0.10 110 0.10 Prep Date. ND 0.10 110 0.10 Prep Prep Prep Prep Prep Prep Prep Prep	ID 15 13 ID 15 Tost Corte: E304 Unfis: mg/L Anabysis Data 12/100 Prep Date. Run ID WC Seqfta: 6618 Seqfta: 6618 Run ID WC SFK frei Val %RFC Lund innit. Hight mill. RPD Ref. Val %RPD Ref. Val Nu 6.10 10 10 10 10 10 10 Run ID 0.10 10	ID 15 Test Corte: E30ti Unifs: mg/l. Anabysis Data 12/100 Prep Date. Run ID: WC_001201A Seqito: 6u1d Run ID: 0.0 10 11 Run ID: 0.10 11 11
Fatch (I) R235 Tinst Corte: E 304 Unfis: mg/L Analysis Data 12/100 Parch 204e. Run (D. W2_001201A Scopto: 6014 Scopto: 6014 Run (D. W2_001201A Scopto: 6014 %RPC Particular Run (D. W2_001201A Scopto: 6014 %RPC Particular Run (D. W2_001201A Sr/K fiel/Val %RPC LuxLandt Hight.ml RPD/Ref Val %RPC Run 0.10 0.10 0.10 10 0.10 10 Parce Particular Run 10 0.10 10 0.10 10 10 Parce Parce Run 11 0.50 10 10 10 10 Parce Parce Otherpland 11 0.50 10 10 10 Parce Parce Parce	Fiatch (I) R235 Tost Code: E300 Unfis: mg/L Anslysis Date 1/100 Pate Run (L) WS_001201A Seqtor: 6614 Seqtor: 6614 Pate Run (L) WS_001201A Seqtor: 6614 Seqtor: 6614 Run (L) WS_001201A Srk Frei Val R.F.C. Lootinut Run (L) 0.10 0.10 10 20 Run 0.10 0.10 10 20 Run 0.10 10 10 20	Test Corte: E300 Units: mg/L Anabysis Data 12/100 Parp Date. Run ID WC_001201A Seqito: 6010 Parp Parp Parp Parp Parp Parp Parp Parp
Run Li, Work Seque: 6ute Rush PG Value Seque: 6ute Rush PG Value Seque: 6ute Hu C Value Seque: 6ute Hu C Value Seque: 6ute Hu C Value Seque: 6ute Hu 0.10 0.10 10 10 0.10 10 10 11 0.10 10 10 11 0.10 10 10 11 0.10 10 10 11 0.10 10 10	Run Li, Work Seque: 6uta Rusht PG. With Mathematical Strict Val Seque: Rusht PG. With Mathematical Strict Val Seque: Rusht PG. With Mathematical Strict Val Seque: Rusht PG. PG. PG. Rusht PG. PG. PG. Rusht PG. PG. PG. PG. PG.	Run (L. W.2. 001201A Scalto: 6018 P.G. J.K. value SPK free Val %RFG Lux Linut Hight.mit RPD Ref Val %ARPO RPDUmit 0.19 0.19 0.10 0.10 0.10 0.10 0.10 0.10
Rustoft PGL of Kvalus SFK fiel Val XRFC Lund Irrut Hight and RPD Ref Val 24RPO (RPDUina) NU 0.40 NU 0.40 NU 0.40 NU 0.40 NU 0.50 NU	Runt FG_ off-color o	FG_ JFK file Val %RFG Luxuant Hghtant RPD Ref Val %RPD film 6.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
nthe photophotom I I I I I I I I I I I I I I I I I I I	nto de la construcción de la con	
UD UB UB UB UB UB UB UB	RD RU RU Dutreptusephato Cutre	
či) RU RU Dubreplasta Cubreplasta Ru Ru	ki) RU RU Allequeete Alle Allequeete	
140 111 ՕւՈւզեւեցելաներ 140	140 111 111 111 111 111 111 111	
ાક્ષાં કુલ્લા છે. આ ગામ આ ગામ છે. આ ગામ આ ગામ આ ગામ આ ગામ આ ગા આ ગામ આ ગ	22	
99	9	

TAADUD SAD AIU/ F. J20/025

1

St Code: E340 Units: Molysis Date: 12/14 rtD: WC_001214A Seq40: 5815 rtD1: WC_001214A Seq40: 5815 rt01 SPK value SFK Ret Val Molysis Date: 0.30 3 0 90.3 85 0.30 3 0 90.3 15 0.30 3 0 90.3 15 1.5 1.2 0 97.1 85 115 1.5 1.2 0 97.1 85 115 1.5 1.2 0 97.1 85 115 1.5 1.2 0 97.1 85 115 1.5 1.2 0 97.1 85 115 1.5 1.2 0 97.1 85 115 1.5 1.2 0 97.1 85 115 0.10.1 SPK value SFK Ret Val Molysis Date: 121 0.11 SPK value SFK Ret Val Seq40: 5811 0.11 SPK Ret Val Molysis Date: 115 0.11 112 112 112 115 0.11 112 112 112	vironmental	Hall Environmental Analysis Laboratory	llory							Date: 26-Dec-04	(40-00C)-	
Unit of the point of t	ECD Fa	vironmental	 				, !	!		AMAR	k repo	RT
(D: R1)01 Test Coole: E300 Units: mojKij Analyzis: Faier 1214/00 PrepDater (rusui) V.C001214.A Sequis: Sequ	-	ind			-				Laboratory	Coutrol S	pike - gen	leric
Hunit2, Wc. G01714,A Steples BIIS Ituali Irol SPK value SFK Ref Val SFK Ref Val SFK Ref Val SFK Polline 298 0.30 $\frac{3}{6}$ 0 99.3 $\frac{65}{65}$ 115 0 298 0.30 $\frac{3}{6}$ 0 99.3 $\frac{65}{65}$ 115 0 1165 0.30 $\frac{1}{3}$ 0 90.10 65 115 0 1165 0.30 12 0 90.1 85 115 0 1165 15 12 0 90.1 85 115 0 1165 15 12 0 91.1 85 115 0 1161 TristCode E100 Intrinued Hightani HPU Ref Val 560 15 1162 1152 12 12 66 95 115 570 16 1162 0 115 115 115 115 266 231	CS-RJ04	Batch ID: RJ01	Test Code:	E300	Units: mg/Kg		Analysis	Date: 12/14	100	Prep Da	<u>a</u> i	
Itemath Ired SPR value SPR			Hun (D;	YVC_001214A			Septo:	5815				
2.98 0.30 5 0 99.3 85 115 0 5/60 0 0 95.2 65 115 0 90523 0.30 6 0 95.2 65 115 0 1105 0.30 12 0 0.11 85 115 0 1105 115 12 0 0.11 85 115 0 560 15 12 0 0.11 85 115 0 560 15 12 0 0.11 85 115 0 1152 12 12 0 0.11 85 115 0 1152 12 12 0 0.11 114 114 114 11644 Route 116 116 115 115 116 11644 0.11 111 11 111 11 111 11 114 116		Kesul		SPK value	SPK Ref Val	MREC №		tight in t	HPD Ref Val	Odły,	RPDLImit	Qua
		2.98		С 	n	E GA	65		,		1	:
06:3 0.30 0.6 0.0 0.0 6.0 0.0 6.0 0.0 1.0 0.0 1.105 0 1.2 0 9.0 10 85 115 0 1.105 1.3 0 9.0 9.0 8.5 115 0 1.105 1.5 1.2 0 9.0 9.5 115 0 5.010 1.5 1.5 0 9.5 115 0 11.152 1.5 1.5 0 9.5 115 0 11.152 1.5 1.5 0 9.5 115 0 10.110.110.110.110.110.110.110.110.110.		5 769	0.30	ų	9	95,2	85	115	Ei			
306 1.30 3 0 101 65 115 0 011 65 115 0 5.010 1.2 1.2 0 0.11 65 115 0 5.010 1.5 1.5 0 0.11 65 115 0 11.22 1.5 0.2 0.12 1.044 1.044 1.044 1.044 1.044 1.06 0.01		0.623	0.34	06	0	101	65	115	0			
Orthophrechaste 510 13 6 0 07.1 65 11.5 0 71.5 0 113.2 15 15 2 0 0 0 0 15 0	Nitroyen. Hituate (As M)	3.016	d.30		0	101	58	115	c			
	Ne (As N)			-		07.1	58 6	51	0			
	Dissolved Orthop		15	6 12	a a	91.6 96.0	85 85	51 51	60			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
Runit: WC_001214A SeqNo: 561 FigNo and The Model FigNo and FigNo an	lcsd	HJCP ID R304		E300	նդես գոր		Analysis	Date: 12/14	00	Piero Ca	ÿ	
Nearth POL SPK NaTvo SSK Ret Val SK Ret Val			Run ID:	WC_DU1214A			SeqNo:	5819				
2.59:4 0.30 3 6 96.8 85 115 2.03 2.56 16 5 7.55 0.30 6 0 9.5 112 5.789 2.00 15 5 9.5 0.70 6 0 9.5 15 15 5.789 2.00 15 7 95 0.70 17 0.75 3 0 36.5 15 1.65 2.21 15 1 14 0.80 1.7 0 36.1 6.623 2.27 15 1 14 0.80 1.7 0 9.1 85 115 165 2.17 15 1 14 1.126 1.5 1.2 0 9.1 85 115 152 2.31 15 Ratch th R255 113 11.35 11.3 11.35 11.35 11.35 11.35 11.35 11.3 11.35 2.00 15 Ratch th R255 13 13 13 11.35 11.35 11.35 11.35 11.35 11.35 Ratch th R255 13			POL	SPK value		KREC		HighLaul	RPD Ref Val	048%	RPDI Int	Qual
5.753 0.20 6 0 91.3 85 11.5 5.769 2.00 15 7.95 0.769 0.72 7.6 7 85 11.5 0.623 2.27 16 7.95 0.76 1.7 0 1.7 0 1.7 0 2.17 16 1<14			0.30	6	c	96.8	65	115	:	2.50	2	
0.009 0.73 6.6 7 0.5 55 115 0.623 2.27 15 1 1.4 0.50 1.5 1.5 0.5 5.5 1.5 1.5 1.5 1 1.4 0.50 1.5 1.5 1.5 1.5 1.5 1.5 1 1.4 0.50 1.5 1.5 1.5 1.5 1.5 1.5 1 1.20 1.5 1.5 1.5 0.5 1.5 1.5 1.5 1.5 11/20 1.5 1.5 1.2 0 93.6 Units 11.5 11.52 2.31 15 Harch ID 10255 Yest Code: E300 Units. m.g.L Arralysis Date: 12/1/00 Prep f0.3de: 15 Recult F/U SFK value SFK Ref Val Sectio: 6819 6819 Recult F/U SFK value SFK Ref Val Sectio: 6819 610 11.4.0 0.10 3 0 95.2 0 0 2.31 85 115 0 19 11 11.5 11.4.0 0.10 3 0 95.2 0 0 11.4.1 0.10 3 0 95.2 <td></td> <td>5 6 4 5</td> <td>0.30</td> <td>ې ټ</td> <td>3</td> <td>54.3</td> <td>85</td> <td>9</td> <td>5.763</td> <td>2.00</td> <td>15</td> <td></td>		5 6 4 5	0.30	ې ټ	3	54.3	85	9	5.763	2.00	15	
2.93 0.543 0.543 0.545 0.21 15 </td <td>:</td> <td>600.0</td> <td>0 : •</td> <td>9 U</td> <td>c :</td> <td>102</td> <td>5<u>8</u></td> <td>115</td> <td>0 623</td> <td>2.27</td> <td><u>.</u></td> <td></td>	:	600.0	0 : •	9 U	c :	102	5 <u>8</u>	115	0 623	2.27	<u>.</u>	
5.001 1.5 6 0 91.7 85 11.5 5.616 2.03 15 11.20 1.5 1.5 1.5 1.5 1.5 5.616 2.03 15 11.21 11.52 1.5 1.5 5.616 2.03 15 11.01 11.152 11.152 2.11/h0 Prep Date: 2.11/h0 Prep Date: 11.01 Wc_001201A 5 5 5 6.819 2.03 15 11.01 Wc_001201A 5 0 1.7.3 85 115 0 1 11.01 Wc_0013 3 0 17.3 85 115 0 1 11.4.3 0.53 12 0 95.2 0 95.2 0 1 1	lrate (As 11) tute (As 11)		2 9 ≠ =	r (00	5 92 0 92 0	27 27	9 F	3.016 1.555	2.21	-91 -91	
11 20 15 12 1 11.52 2.34 15 10 11255 Test Loda: E.300 Units. n:94. Arralysis Date: 17/1/00 Prep Date: 10 11255 Test Loda: E.300 Units. n:94. Arralysis Date: 17/1/00 Prep Date: 10 11255 Test Loda: E.300 Units. n:94. Seque: 6819 11 11 WC_001201A Seque: 6819 11 11 WC_001201A MREC 1 cvul init Hightlimit 11 11 0.10 J U U/J 85 11 11 0.50 12 0 95.2 05 115 0	Dissolved Unlied		5	. °C	. 0	210	58 58	<u> </u>	5.616	2 03	2 22	•
Ratch ID Yest Lode: E300 Unus. n:gd. Aralysis.Date: 12/100 Prep Date: 12/100 Run ID: WC_001201A Geqtlo: 6619 Recult E418 SFX value SPK Ref Val Xesult E418 SFX value SPK Ref Val Xesult E418 SFX value SPK Ref Val Xesult E418 SFX value SPK Ref Val Xest 11.43 0.19 3 0 11.43 0.50 12 0 95.2 05			5 -		÷	986	51	115	24.11	2.34	5	
Recult Hus ID: WC_001201A Geqtlo: 6619 Recult H12 SFX value SPK Ref Val &REC 1 cvul init Hightlinht RPD Ref Val %HPD 2.919 0.19 3 0 17.3 85 115 0 11.43 0.50 12 0 95.2 05 135 0	Gaughts ID. Ics	Batch ID: 18235	Test Code:		Units. night		Arialysis	Date: 12/1/	2	Prep D:	Ket.	
Result E428 SFX value SPK Rel Val KREC 1 cwlinit RPD Raf Val %HPD RPDLinit 2:919 0.19 3 0 17.3 85 115 0 11.43 0.50 12 0 95.2 05 115 0			Run ID:	WC_001201A			Seque:	6819				
2.519 0.10 5 0 <u>95.2</u> 05 115 115		Recult	10A	SPK value		%REC	t cwi knit	HighLinit		(1.414%)	RPDUmi	Qual
11.43 0.50 12 0 95.2 05 115	Hidrogen, Ndrala (As N)	2.519	0.10	n	0	E./U		115			! :	; ;
		11.43	0.50	12	o	95.2	05 [.]	115	0			
							į]		: : :		:

13()) HALL ENTINUMENTED the the would have

(FAX/DUN 343 4107 - F. 921/023 - 844

ì

1	

QC SUMMARY REPORT Laboratory Control Spike Duplicate	Prep Data: Ref Val %RPD RPDLinit Qual U
	Analysis Date: 12/1/00 GoqNu. 6625 Lowlanit HighLonit H2/D Rcf 65 115 85 115
	Test Crate: E300 Units: mgyl Runa M1: Wvc_001201A H Prut. SrPK value SrPK Het Var %SREC H 0 10 3 n 98.8 3 0.60 12 G 97.0
ECD Environmental 0011154 AcCasLind	Sample to Tead Hatch (I): R2AS Cleart ID, Anable Anable (As N) 2 ach Ndogen, Antala (As N) 2 ach Sulfate (II. 63

THE 12 SUBLINUAL

11.71	NALL	CATTAUNICRIAL

.

S - Spiller Reuntery mutside accepted accounty limits it - RIV) entride accepted recovery finads

1) - Aualyte detected in the associated Method Rtank

~

J - Analyte detected in low quantitation funds NO Not Exected at the Reporting Limit

Uunlificrs:

Hall Environmental Analysis Laboratory

Hall Environmental Analysis Laboratory 4901 Hawkins NE, Stel A Albuquerque, NM 87109

-U 14107

8/16/99

ECD Environmental P. O. Box 9328 Albuquerque: NM 87119

Dear Mr. Greg Bycee:

Enclosed are the results for the analyses that were requested. These were done according to EPA procedures or equivalent

Detection limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications,

Sincerely:

Scott Hallenback Naboratory Manager

Project: 9901105/McCausland

4901 Hawkins NE, Suite A, Albuquerque, INM 87109 Ph (505) 345-3975, Fax (505) 345-4107

	1	
(
Ĺ		,

Hall Environmental Analysis Laboratory

11122144473

I I

11+17

HARD BALLAVANDALAD

ECD Environmental		: Ging Byhee	۰
Client:	Project:	Project Manager:	Project Number:

Date Collected: Date Received; Sample Matrix; Date Extracted; 4

8/16/99 8/17/60 Arjue aus MA

8021	
EPA Method -	Unite: PPB unit.

Г	
	Analyzed Analyzed A/18/59 B/18/59
1) intion	Factor 1
HPH %	Recovery 10.3
1 2 5 74.0	
Total	Xyianes 1 III) ND
Elinyi	
Toliteile	
Fienzene	
LATRE	an an
Sample ID	9408053 2 Revisione Oil Co taw hu Reag. alk
HEAL LABID	9:000053 2 Reag. dlk

MR

:

₩. ₩ -____ Hall Environmental Analysis Laboratory 2 1

Cllent: ECD Environmental Project: McCasland Project Manager: Greg Bybee Project Number: -

İ

ANT AN TANATURA

Date Collected: NA Date Received: NA Sample Matrix: Aqueous Date Extracted: NA

8021 QC: BS/BSD 8/16

Compound	Sample Amount (uc/L)	Sc ca	Recovery M Rac	Dup	<u>% Duo</u>	RPD
MTEE	<2.5	40.0	44.0 110	42.5	107	3
6enzene	⊴2.5	20 C	20.6 .03	20.8	104	1
Toluene	< <u>0.5</u>	20.0	20.5 103	20 2	101	
Etrylcenzene	< C 5	20.0	20 7 104	20.3	102	
Total Xylenes	<05	60.0	61.5 103	61.1		2
1,3,5 TME	<0.5	20.0	20 5 104		102	1
1.2,4-TMB	دن ج			25.4	102	2
		20.0	20.6 103	20 ð	:03	G

навы саттауальатаь

Hall Environmenta! Analysis Laboratory

Client: Project: Project Manager: Project Number: .

11147

ECD Environmental McCasland Greg Bybee

Date Collected:	8/18/99
Date Received:	ai: 7/99
Sample Matrix:	Aquebus
Extraction Date:	5/20/99

EPA Method - 418.1

HEALIC	Olient iD	Dilution	(IPH (mg/4)	Analysis Date
3938063-1	McCasland Writer Well	1	ND	6/20/25
9908083-2	Mewburne Oll Co MW	4	ND	3/20/99
Extraction Blank	-	1	ND	3/20/99

04/00		Mal		i
Sample ID	Sample Amount	<u>3cike</u>	<u>Recovers</u>	<u>% Recovery</u>
Blank Solke 8/20	<1.0	50	4 5	90
<u>Sample (D.</u>	Sample Arnount	<u>Dublicate</u>	<u>RPD</u>	
Blank Duplicate F/11	<1.0	<1.0	NA	

Client: ECN) Environmental Project: McGasland Project Manager: Greg Nybee Project Number:

Date Collected: 8/16/99 Date Received: 0/17/99 Sample Matrix, Aqueous

Inorganic Compounds

HEAL LAB (D	Sample II)	Floride (ingil)	Chloride (mg/t.)	Bronude (ngu-)	Nitrite (mg/t)	Nitrate (mg/L)	Sulfate (mg/L)	0-Phosphate P (ing/L)
1-200303-1	McCastand Water Well	0.2	720	2.4	ISN .	15		CN
2500505-2	Weadourne On Lo NW	0.3	021	7	•			Ciz
Detection		(.)	0.1	0.1	0.1	1 1	0.5	0.5
l irals								
Method		300.0	300.0	300 C	300.0	300.0	300.0	300.0
Date Analyred			Dischart.					

11.17

ENERGY LABORATORIES, INC. RO. 50X 30916 - 1120 \$00014 2776 STREET • BILLINGS, MT 58197-0816 - PHONE (406) 252-6325 FAX (406) 252-6069 • 1-810-735-4498 • E-MAIL all @energy.isb.com

	the state of the s
Here and the second	
·斯特尔德国王·斯特特别的东西和美国人的新生活和特别的人名 法法律的法律法律法律法律法律法律法律法律法律法律法律法律法律法律法律法律法律法	
	the second s
LABORATORY ANALYSIS REPORT	
The start of the	
	and the second
Halt Environmental Laboratory Project ID: MCCASLAND PROJ. #990806	
I'V THE ENVIRONMENT ADDRESSOR	
Nancy McDuffle	
4901 Hawkins NE	
A SUCHEWKING OF A SUCHE AND A SUCH A	
The standard	· · · · · · · · · · · · · · · · · · ·
Citta A see a second second second a complete a second second second second second second second second second	
	· · · · · · · · · · · · · · · · · · ·
Albuquerque, NM, 37109 Sample Date: 16-Aug-99	
Received at lab: 20-Aug-99	76 A 11 P 00
High the man of the provent monophy portion of Westernands and a strategy of the strategy of t	
计正确定义 计操作 网络拉拉斯拉拉 法法律法律法律法 法法律法律法律法律法律法律法律法律法律法律法律法律法律法	
Construction of the second s	· · · · · · · · · · · · · · · · · · ·

[1] A. S. Markov, S. M. Markov, and A. Markov, Markov, Nucl. Phys. 4, 100 (1990).	and the second	Reporting Regulator			
	Resnus Units Qu	i	Meund	Ancivze	1
Calcum	308 mg/1	i	EPA 200.7	25-Aug-99 1533	RLH
Magacaum	38 mg/.	1	EPA 200.7	25-Aug-99 1533	RLH
Potassium	б mgʻl	i	EPA 200.7	22-Анд-59 1533	RLH
Sodium	188 mg/l	1	EPA 200.7	25-Aug-99 1533	RLH

ENERGY LABORATORIES, INC.

P.O. 30X 30315 - 1120 SOUTH 27TH STREET + BILLINGS. MT 53137-0916 - PHONE (406) 252-6325 FAX (406) 252-5369 + 1-803-735-469 + E-MAIL all @anergyteb.com

printer and Called and an an an and an an an and a second structure and a second structure and a second second	فالاستاج كالكري ويصاورها والتقوير والمتعادية	والألباط البريد بيريونين أليريس والمتشاع فاختلا فالمتحد المتكال والمراجع والمراجع والمراجع والمراجع
- provide the second s second second se second second s		(1):"我们的你们就是你们,我们就能回来了,我们就是你的,你们也能能了。""""我是你都是我们的
	LABORATORY ANALYSIS RE	
	- THOONATORI SHAFT LITE UP	
	and the second	
a second		
Hall Environmentai Laboratory	Project ID: MCCASLAND	IROJ. #2908563
I Han Durn on menung Laboratory		
	Sumple ID: MEWBOURNE	
Nancy McDuffle	Sample ID: MEWLOURNE	
4901 Hawkins NE	arotory ID:	
AND A REAL PROPERTY AND		
	ule Matrix: Water	the second s
Sume A	Dig maner cover a final statement of California	
albuquerque, NM 87109	mole Date: IGAug-99	
	and a second	
	ised at lab:	Keported: 20-AUC-99
1 Sector and the sector of		
	a ha ha an	
and an and the product of the second s	enter many a result of the second	

in capacitation and		Reporting Regula			
and the second	Resnits - Units - Qual	Linit Lin	it - Method	Anulyzer	i Carto
Cilcium	68 mg/l	1	EPA 200.7	13-Aug-99 1535	RLH
Magnesium	16 mg/l	1	EPA 209.7	25-Aug-99 1535	RLH
Pemssium	4 mg/l	1	EPA 200.7	25-Aug-99 1535	RLH
Socium	81 mg/l	1	EPA 200.7	25-Aug-99 1535	RLH

TTYEN HUTE FULLERED THE

Lab Nos. 99-56021-1

1111 (444)

υu

QUALITY ASSURANCE DATA FACKAGE

This report includes the results of quality assurance tests performed with the sample analyses. They are performed to determine if the methodology is in control and to monitor the laboratory's policy to produce accurate and practice results.

	Depiiro	ne Analysis	Spiked	đik		ation Verification	
Constituents		g/l (ppm)		Analysis,	Sample Analysis, <u>ms/i (opm:</u>	Adceptance Range, mg/L(pem)	Date <u>Angivage</u>
Calciem Magnesium Pothsalum Sodium	. 59 37 73 329	59 37 13 324	102 104 104 101	<1 <1 <1 <1	51 52 52 53	45+55 45-55 45-35 45-35	08/25/99 08/25/99 08/25/99 08/25/99

Hall Environmental Analysis Laboratory

September 3, 1999

1111110011

Hall Environmental Analysis Laboratory 4901 Hawkins NE, Ste, A Albuquerque, NM 87109

11.41

ECD Environmental P. O. Box 9328 Albuquerque, NM 87119

Dear Mr. Bybee:

Enclosed are the results for the analyses that were requested. These were done according to EPA procedures or equivalent.

Detection limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND brik sign) has been made

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely

Andy Freeman Assistant Laboratory Manager

Project: 9908063/McCasland

4901 Hawkins NE, Suite A, Albuquerque, NM 87109 Ph (505) 345-3975, Fax (505) 345-5107

.

Environmental	Laboratory
Hall Envir	Analysis L

Client:	ECD Environmental
Project:	McCaustand
Project Manager: Greg Bythee	Greg Bybee
Project Number:	

1/25/99	1/28/99	Aqueous	NA.
Date Collected:	Date Received:	Sample Matrix:	Date Extracted:

EPA Method - 8021 Units: PP6(ug/L)

• •• • •

-

HEAL	Sample ID	виллав	Toluene	Ethyl	Total		Dilution	Liale
	44 Minerall				Aylenea	Recovery	Lactor	Analyzed 1120/00
							N ·	SELUTI
	HI IDIHAA 7#					50	÷	65/8//1
Reag bit	2	[1]]	<u>D</u> Y	01	QN	98	+	1/2/8/99

	R	
Į	Σ	j

0.5 05 05

0.5

PALE DZ

· ·

-

.

.

.

Hall Environmental

Client: ECD Environmental Project: McCaustand Project Manager: Greg Bythee Project Numtuer:

Date Collected:1/25/99Date Received:1/28/98Sample Matrix:Aqueous

Inorganic Compounds

HEAL LAB ID	Sample ID	Flaride (mgA.)	Chloride (ng/L)	Nihite-N (n)g/L)	Bromide (rixg/L)	Z	Sulfate (mg/L)	o-Phosphate-P (mg/i.)
9901105-1	#1 Windmill	<u>5 0:-</u>	5, 200	÷<0.5	12	1<0.5	110	<2.5
5812121-2	#2 Windmitt	5	67	94	8	č.	110	Q
Defection Limits		0.1	0.1	c	0.1	01	50	0.5
Meth od		300.0	300.0	300.0	300.0	300.0	300.0	300.0
Date Analyzed		1/28/99	1/29/99	1/28/99	1/28/09	1/28/99	1/28/99	1/28/99

•••• •• •

"Sample run outside of the EPA holding time of 48 hours.

i t

PHONE (815) 073-7001 - 2111 BEECHMOOD - ABILENE, TX 71003

PHONE (603) 383-2328 + 101 E. MARLAND - HOBBS. NM \$8240

ANALYTICAL REBULTS FOR MEWBOURNE OIL CO. ATTN: ROSS MURPHY P.O. BOX 6270 HOBBS, NM 88241 FAX TO:

Receiving Date: 03/31/98 Reporting Date: 04/03/98 Project Number: NOT GiVEN Project Name: NOT GIVEN Project Location: NOT GIVEN Sampling Data: 03/31/98 Sample Type, GROUNDWATER Sample Condition: COOL & INTACT Sample Received By: GP Analyzed By: AH

ANALYSIS DATE: 4/3/98 4/1/98	Ns Ca Mg K Conductivity	NO:	Conductivity	К (Mg	Ca	Ns	
I33543-1 D-R WINDMILL 295 700 60 7.4 6410 Invality Control NR 50 50 NR 1445 Invality Control NR 50 50 NR 1445 Invality Control NR 50 60 NR 1445 Invality Control NR 60 60 NR 1445 Invality Control NR 60 60 NR 1445 Accuracy NR 100 100 NR 102 Accuracy NR 100 100 NR 102 elative Percent Difference NR 8.0 4.0 NR 0.3 ETHODS: SM3500-Ca-OBE00-Mg EI 0C49 120.1 120.1 Ci SO4 CO3 HCO3 pH (mp/L) (mp/L) (mp/L) (mp/L) (mp/L) (s.L.) VALYSIS EATE: 4/3/98 4/1/98 4/1/98 4/1/98 3543-1 D-K WINDMILL 1771 108 01 171 7.23 <th>(mg/L) (mg/L) (mg/L) (u mnos/cm)</th> <th>(mg/L</th> <th>(umnos/cm)</th> <th>(mg/L) {</th> <th>(mg/L)</th> <th>(mg/L)</th> <th>(mg/L)</th> <th>SAMPLEID</th>	(mg/L) (mg/L) (mg/L) (u mnos/cm)	(mg/L	(umnos/cm)	(mg/L) {	(mg/L)	(mg/L)	(mg/L)	SAMPLEID
H3543-1 D-K WINDMILL 285 700 50 7.4 6410 Duality Control NR 50 60 NR 1445 True Value CC NR 50 60 NR 1445 Frue Value CC NR 50 60 NR 1445 6 Accuracy NR 100 150 NR 102 Relative Percent Difference NR 8.0 4.0 NR 0.3 AETHODS: SM3500-Ca-D3500-Mg El 3046 120.1 120.1 Ci SO4 CO3 HCO3 pH (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) NALYSIS DATE: 4/3/98 4/1/98 4/1/98 4/1/98 3543-1 D-K WINDMILL 1771 108 0 171 7.23	4/2/98: 4/1/98: 4/1/98: 4/1/98: 4/1/98	4/1/98	4/1/98	4/1/98	4/1/081	4/1/98;	4/2/98	TE:
NR S0 601 NR 1413 6 Accuracy NR 100 100 NR 102 Relative Percent Difference NR 8.0 4.0 NR 0.3 AETHODS: SM3500-Ca-OB500-Mg El 00491 120.1		3.00	6410	7.41	the state of the local division of the local		285	D-K WINDMILL
Interval NR SO SO SO NR 1413 6 Accuracy NR 100 100 NR 102 Relative Percent Difference NR 8.0 4.0 NR 0.3 AETHODS: SM3500-Ca-OB500-Mg El 0049 120.1 0.4 1.2 1	NR 50 50 NR 1445	5.07	1445	NR	50,	501	- NR	{
% Accuracy NR 100 100 100 102 Relative Percent Difference NR 8.0 4.0 NR 0.3 METHODS: SM3500-Ca-OB500-Mg El 0049 120.1 Ci SO4 CO3 HCO3 pH (mp/L) (mp/L) (mp/L) (mp/L) (mp/L) ANALYSIS DATE: 4/3/98 4/1/98 4/1/98 4/1/98 13543-1 D-K WINDMILL 1771 108 01 171 7.23		5.00	· · · · · · · · · · · · · · · · · · ·	the second se				
Relative Percent Difference NRI 8.0 4.01 NRI 0.3 AETHODS: SM3500-Ca-OB500-Mg El 00491 120.11 Ci SO4 CO3 PH (mp/L) (mp/L) (mp/L) (mp/L) NALYSIS DATE: 4/2/981 4/1/981 4/1/981 3543-1 D-K WINDMILL 1771 108 01 171		101	and the second			The state of the second se	and the second state of th	
Ci SO4 CO3 PH (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (a.L.) ANALYSIS DATE: 4/3/981 4/1/981 4/1/981 4/1/981 4/1/981 4/3/981 1/1/1 108 01 171 7.231		0.2			and the second se	the second s	The second s	nt Difference
(mg/L) (mg/L) (mg/L) (mg/L) (a.L.) (NALYSIS DATE: 4/3/981 4/1/981 4/1/981 4/1/981 4/1/981 13543-1 D-K WINDMILL 1771 108 01 171 7.23	SM3500-Ca-DB500-Mg E! 3049 120.1	353.2	120.1	00491	CO-Mg E!	00-Ca-085	SM35	
ANALYSIS DATE: 4/3/98 4/100 4/1	CI 504 CO3 HCO3 PH	TDS	• pH	HCO3	CO3	504	Ċ;¯	
H3543-1 D-K WINDMILL 1771 108 01 171 7.23	(mol) (mol) (mol) (mol) $(a.L.)$	(mg/L)	(3.L.)	(mort.)	(mg/L)	(mg/L)	(mg/L)	
	4/3/981 4/1/981 4/1/981 4/1/981 4/1/981	4,2/98	4/1/98	4/1/981	4/1/98	4/1/981	4/3/981	and the second sec
Uality Control 458 100 NR NR 8.96 Ua Value QC 5C0 100 NR NR 7.00 Accuracy 93.8 100 NR NR 99.3	1771 108 0 171 7.23	4113	7.23	171	01	108	1771	D-K WINDMILL
Calify Calify 4551 100 NR NR 6.951 rue Value QC 6C0 100 NR NR 7.001 Accuracy 93.61 100 NR NR 49.31 //								
Accuracy 93.8 100 NR 7.001 Accuracy 93.8 100 NR 89.3 7.001	4551 100 NRI NRI 6.961	NR	6.95		and the second			
93.81 100 NRI NR 95.31 /	500 100 NRI NRI 7.001	-NR	7.001	and the second second	the second s		and the second secon	····
	93.61 100; NRI NRI \$5.31	NR	\$9.31				والمراجعة المحاولين والمحاولين والمتحود والمتحافظ	1 MId.
Relative Percent Difference 1 3.4 5.0 NRI NR 0.7			0.71	NR	NRI	5.01	1 3.41	
METHODS: SM4500-CI-81 375.4 310.1 310.1 150.1 5	SM4500-CI-81 975.4 310.1 310.1 150.1 5	5 100.1	150.1	310.1	310.1	375.4	SM4500-C1-81	

otter, Chamist

04/02/98 Data

HIGH SUME Stability and Demenges. Certificat's tablety and clearly exclusive rangedy for any owint strained, whether black in contract or time, and be broken us the amount paid by clearly or analyses. As claims, including these for negligience and any other cause whethere's half be deemed whethere include the writing and vocaned by Cardinal with them; 30) cars after contraction or the appreciate as claims, including these for negligience and any other cause whethere's half be deemed writing and vocaned by Cardinal with them; 30) cars after contraction or the appreciate service, in no event shall Cardinal De bases in successful damages, including, writing similar busines investigated uses of these of post of the appreciated of cardinal or constrained in a substitution estimates or successory event is as a used of an other early of an end of hereiner such chim is based upon any or the appreciated reasons or otherwrise.

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas 79424 El Paso, Texas 79922

800 • 378 • 1296 888 • 588 • 3443 E-Mail: lab@traceanalysis.com

FAX 806 • 794 • 1298 915 • 585 • 3443 FAX 915•585•4944

Analytical and Quality Control Report

Report Date:

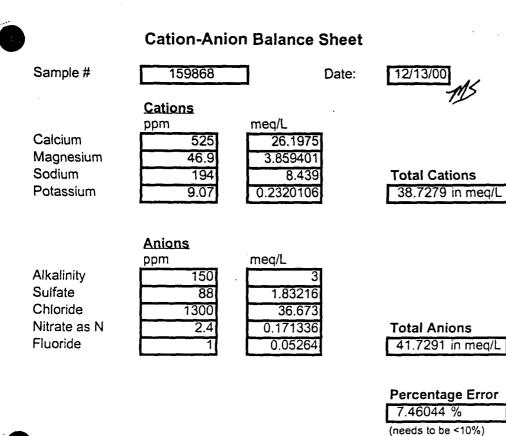
December 13, 2000

Order ID Number: A00120106

🚓 Bill Olson OCD 2040 S. Pacheco Santa Fe. NM 87505

Project Number: N/A Project Name: McCasland Project Location: N/A

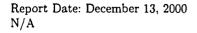
Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis. Inc.


			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
159868	0011281230 (Windmill)	Water	11/28/00	12:30	12/1/00

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(cs) in which your sample(s) were analyzed.

This report consists of a total of 14 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis. Inc.

Dr. Blair Leftwich. Director


OTHER INFORMATION

TDS EC

0 0

Measure EC and Cation Sums Measure EC and Anion Sums Calculated TDS/Conductivity Measure TDS and Cation Sums Measure TDS and Anion Sums

0 Range should be:	0	to	0
0 Range should be:	0	to	0
0 Range should be:	0.55	to	0.77
0 Range should be:	0.55	to	0.77
0 Range should be:	0.55	to	0.77

Analytical and Quality Control Report

Sample: 159868 - 0011281230 (Windmill)

Analysis: Analyst:	Alkalinity RS	Analytical Method: Preparation Method:	E 310.1 N/A	QC Batch: Prep Batch:	QC07123 PB06239	Date Analyzed: Date Prepared:	12/5/00 12/5/00
Param		Flag	Result	Un	its	Dilution	RDL
Hydroxide	Alkalinity		<1.0	mg/L as	CaCo3	1	1
Carbonate	Alkalinity		<1.0	mg/L as	CaCo3	1	1
Bicarbonat	e Alkalinity		150	mg/L as	CaCo3	1	1
Total Alka	linity		150	mg/L as	CaCo3	1	1

Sample: 159868 - 0011281230 (Windmill)

Analysis: Analyst:	Conductivity JS	Analytical Method: Preparation Method:		•	•	Date Analyzed: Date Prepared:	
Param		Flag F	lesult	Units		Dilution	RDL
Specific Co	nductance		4300	µMHOS/c	m	1	

Sample: 159868 - 0011281230 (Windmill)

Analysis: Analyst:	Dissolved Metals SSC	Analytical Preparatio	Method: n Method:	É 200.7 E 3005A	QC Batch: Prep Batch:	-	Date Analyzed: Date Prepared:	12/6/00 12/4/00	
Param		Flag	Result	;	Units	Dilution		RDL	
Dissolved (Calcium		525		nig/L	1		0.50	
Dissolved M	Jagnesium		46.9	1	mg/L	1		0.50	
Dissolved F	Potassium		9.07		mg/L	1		0.50	
Dissolved S	Sodium		194		mg/L	1		0.50	

Sample: 159868 - 0011281230 (Windmill)

Analysis: Analyst:	Hg. Total SSC	Analytical M Preparation			QC Batch: Prep Batch:	QC07302 PB06362	Date Analyzed: Date Prepared:	12/11/00 12/11/00
Param		Flag	Rc	sult	Units	Dilu	tion ,	RDL
Total Merc	ury		< 0.0	0002	mg/L	1		0.0002

Sample: 159868 - 0011281230 (Windmill)

Analysis.	Ion Chromatog	raphy (IC) Analy	tical Method:	E 300.	.0 QC Batch:	QC07064 Date Analyzed: 12/1/00
Analyst:	JS	_ Prepa	aration Method:	N/A	Prep Batch:	PB06189 Date Prepared: 12/1/00
Param	Flag	/ Result	Units	Dilut	ion	RDL
CL		1300	mg/L	1		0.50
Fluoride		1.0	mg/L	1		0.20
Nitrate-N	1	$\langle 2.4 \rangle$	mg/L	1		0.20
Sulfate		88	mg/L	1		0.50

¹Sample out of hold time for NO3.

Report Date: December 13, 2000 N/A Order Number: A00120106 McCasland Page Number: 3 of 14 N/A

Sample: Analysis: Analyst:	159868 TDS JS	3 - 0011281230 (W Analytical Method: Preparation Method:	E 160.1	QC Batch: Prep Batch:	QC07152 PB06268	Date Analyzed: Date Prepared:	12/5/00 12/4/00
Param		Flag	Result	t	Units	Dilution	RDL
Total Disso	lved Solids	; ;	2700	D	mg/L	1	10

Sample: 159868 - 0011281230 (Windmill)

Analysis:	Total Metals	Analytical Method:	S 6010B	QC Batch:	QC07156	Date Analyzed:	12/6/00
Analyst:	RR	Preparation Method:	E 3010A	Prep Batch:	PB06176	Date Prepared:	12/4/00
Param		Flag Re	sult	Units	Dilut	ion	RDL
Total Alun	ninum	<	< 0.5	mg/L	1		0.50
Total Arser	nic	<(0.01	mg/L	1		0.01
Total Bariı	um	0.	237	mg/L	1		0.01
Total Boro	n	<	<0.5	mg/L	1		0.50
Total Cadr	nium	<0.	002	mg/L	1		0.002
Total Chro	mium	<0.	005	mg/L	1		0.005
Total Coba	ilt	<	0.01	mg/L	1		0.01
Total Copp	ber	(0.02	mg/L	1		0.01
Total Iron		().02	mg/L	1		0.02
Total Lead		<(0.01	mg/L	1		0.01
Total Mang	ganese	<(0.01	mg/L	1		0.01
Total Moly	bdenum	<(0.02	mg/L	1		0.02
Total Nicke	el	<(0.01	mg/L	1		0.01
Total Selen	iium	<(0.01	mg/L	1		0.01
Total Silica	1		7.66	mg/L	1		0.50
Total Silver	r	<().01	mg/L	1		0.01
Total Zinc		<	:0.1	mg/L	1		0.10

Sample: 159868 - 0011281230 (Windmill)

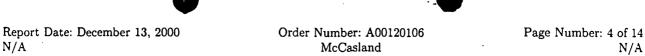
Analysis: Analyst:	pH RS		al Method: ion Method:	E 150.1 N/A	QC Batch: Prep Batch:	QC07119 PB06243	Date Analyzed: Date Prepared:	$\frac{12}{1}/00}{12}/1/00}$
Param		Flag	Resu	lt	Units	Dilutio	n	RDL
pН		3	7.	5	s.u.	1		1

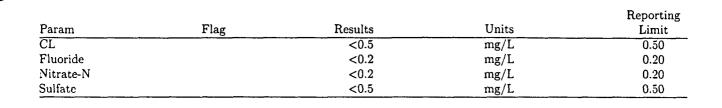
Quality Control Report Method Blank

Sample:	Method	Blank	
---------	--------	-------	--

 Param
 Flag
 Results
 Units
 Reporting

 Specific Conductance
 15
 μMHOS/cm


QC07062


²Sample was run out of holding time, but was tested the day it was received.

QCBatch:

N/A

QC07064

QCBatch:

Sample: Method Blank QCBatch: QC07123

Param	Flag	Results	Units	Reporting Limit
Hydroxide Alkalinity		<1.0	mg/L as CaCo3	1
Carbonate Alkalinity		<1.0	mg/L as CaCo3	1
Bicarbonate Alkalinity		<4.0	mg/L as CaCo3	1
Total Alkalinity		<4.0	mg/L as CaCo3	1

Sample: Method Blank QCBatch: QC07152

				Reporting
Param	Flag	Results	Units	Limit
Total Dissolved Solids	3	31	mg/L	10

Sample: Method Blank

N/A

Sample: Method Blank

QCBatch: QC07156

				Reporting
Param	Flag	Results	Units	Limit
Total Aluminum		<0.5	mg; L	0.50
Total Arsenic		<0.01	mg/L	0.01
Total Barium		< 0.01	mg. L	0.01
Total Boron		<0.5	mg, L	0.50
Total Cadmium		< 0.002	mg L	0.002
Total Chromium		< 0.005	mg/L	0.005
Total Cobalt		< 0.01	mg/L	0.01
Total Copper		< 0.01	mg/L	0.01
Total Iron		< 0.02	mg/L	0.02
Total Lead		< 0.01	mg/L	0.01
Total Manganese		< 0.01	mg/L	0.01
Total Molybdenum		< 0.02	mg/L	0.02
Total Nickel		< 0.01	mg/L	0.01
Total Selenium		< 0.01	mg/L	0.01
Total Silica		<0.5	mg/L	0.50
Total Silver		< 0.01	mg/L	0.01
Total Zinc		<0.1	mg/L	0.10

Sample: Method Blank

QCBatch:

QC07192

³Blank was high due to rust from the oven getting into the crucible.

Report Date: December 13, 2000 N/A		Order Number: A00120106 McCasland		Page Number: 5 of 14 N/A
				Reporting
Param	Flag	Results	Units	Limit
Dissolved Calcium		< 0.50	mg/L	0.50
Dissolved Magnesium		< 0.50	mg/L	0.50
Dissolved Potassium		<0.50	mg/L	0.50
Dissolved Sodium		<0.50	mg/L	0.50

Sample: Method Blank QCBatch: QC07302

				Reporting
Param	Flag	Results	Units	Limit
Total Mercury		< 0.0002	mg/L	0.0002

Quality Control Report Lab Control Spikes and Duplicate Spikes

Sample:	LCS	QC B	atch: QC0	7064						
		Sample			Spike Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
ĈL		11.64	mg/L	1	12.50	< 0.5	93		80 - 120	25
Fluoride		2.40	mg/L	1	2.50	< 0.2	96		80 - 120	20
Nitrate-N		2.40	mg/L	1	2.50	< 0.2	96		80 - 120	20
Sulfate	<u> </u>	11.80	mg/L	1	12.50	< 0.5	94		80 - 120	20

Sample: LCSD

QC Batch: QC07064

					Spike					
		Sample			Amount	Matrix	17		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
CL		11.66	mg/L	1	12.50	<0.5	93	0	80 - 120	25
Fluoride		2.45	mg/L	1	2.50	< 0.2	98	$\frac{2}{2}$	80 - 120	20
Nitrate-N		2.42	mg/L	1	2.50	< 0.2	96	1	80 - 120	20
Sulfate		11.92	mg/L	1	12.50	<0.5	95	1	80 - 120	20

Sample: LCS QC Batch: QC07156

		Sample			Spike Amount	Matrix	%		% Rcc.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Total Aluminum		1.96	mg/L	1	2	<0.5	98		75 - 125	20
Total Arsenic		0.996	mg/L	1	1	< 0.01	99		75 - 125	20
Total Barium		2.16	mg/L	1	2	< 0.01	108		75 - 125	20
Total Boron		0.979	mg/L	1	1	<0.5	97		75 - 125	20
Total Cadmium		0.207	mg/L	1	0.20	< 0.002	103		75 - 125	20

Continued ...

Report Date: December 13. 2000 $\rm N/A$

Order Number: A00120106 McCasland

Page Number: 6 of 14 N/A

									Co	ntinued
					Spike					•
		Sample			Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Total Chromium	_	0.439	mg/L	1	0.40	< 0.005	109		75 - 125	20
Total Cobalt		1.06	mg/L	1	1	< 0.01	106		75 - 125	20
Total Copper		0.48	mg/L	1	0.40	< 0.01	120		75 - 125	20
Total Iron		2.22	mg/L	1	2	< 0.02	111		75 - 125	20
Total Lead		1.05	mg/L	1	1	< 0.01	105		75 - 125	20
Total Manganese		0.214	mg/L	1	0.20	< 0.01	107		75 - 125	20
Total Molybdenum		1.06	mg/L	1	1	< 0.02	106		75 - 125	20
Total Nickel		1.04	mg/L	1	1	< 0.01	104		75 - 125	20
Total Selenium		0.913	mg/L	1	1	< 0.01	91		75 - 125	20
Total Silica		0.661	mg/L	1	0.50	<0.5	132		75 - 125	20
Total Silver		0.208	mg/L	1	0.20	< 0.01	104		75 - 125	20
Total Zinc		0.242	mg/L	1	0.20	<0.1	121		75 - 125	20

Sample: LCSD

QC Batch: QC07156

					Spike					
		Sample			Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Total Aluminum		1.9	mg/L	1	2	<0.5	95	3	75 - 125	20
Total Arsenic		0.98	mg/L	1	1	< 0.01	98	$\frac{2}{2}$	75 - 125	20
Total Barium		2.09	mg/L	- 1	2	< 0.01	104	3	75 - 125	20
Total Boron		0.938	mg/L	1	1	< 0.5	93	4	75 - 125	20
Total Cadmium		0.202	mg/L	1	0.20	< 0.002	101	2	75 - 125	20
Total Chromium		0.433	mg/L	1	0.40	< 0.005	108	1	75 - 125	20
Total Cobalt		1.03	mg/L	1	1	< 0.01	103	3	75 - 125	20
Total Copper		0.4	mg/L	1	0.40	< 0.01	100	18	75 - 125	20
Total Iron		2.12	mg/L	1	2	< 0.02	106	5	75 - 125	20
Total Lead		1.02	mg/L	1	1	< 0.01	102	3	75 - 125	20
Total Manganese		0.207	mg/L	1	0.20	< 0.01	103	3	75 - 125	20
Total Molybdenum		1.04	mg/L	1	1	< 0.02	104	2	75 - 125	20
Total Nickel		1	mg/L	1	1	< 0.01	100	4	75 - 125	20
Total Selenium		0.889	mg/L	1	1	< 0.01	88	3	75 - 125	20
Total Silica		0.646	mg/L	1	0.50	< 0.5	129	2	75 - 125	20
Total Silver		0.2	mg/L	1	0.20	< 0.01	100	4	75 - 125	20
Total Zinc		0.198	mg/L	1	0.20	< 0.1	99	20	75 - 125	20

Sample: LCS

QC Batch: QC07192

Param	Flag	Sample Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec.	RPD	% Rec. Limit	RPD Limit
Dissolved Calcium		1020	mg/L	1	1000	< 0.50	102		75 - 125	20
Dissolved Magnesium		972	mg/L	1	1000	< 0.50	97		75 - 125	20
Dissolved Potassium		936	mg/L	1	1000	< 0.50	94		75 - 125	20
Dissolved Sodium		965	mg/L	1	1000	<0.50	98		75 - 125	20

Sample: LCSD

QC Batch: QC07192

Report Date: December 13, 2000 Order Number: A00120106 Page Number: 7 of 14 McCasland N/A
Spike
Sampla

		Sample			\mathbf{Amount}	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Dissolved Calcium		1020	mg/L	1	1000	< 0.50	102	0	75 - 125	20
Dissolved Magnesium		988	mg/L	1	1000	< 0.50	99	2	75 - 125	20
Dissolved Potassium		941	mg/L	1	1000	<0.50	94	0	75 - 125	20
Dissolved Sodium		979	mg/L	1	1000	<0.50	98	1	75 - 125	20

Sample: LCS QC Batch: QC07302

					Spike					
		Sample			Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Total Mercury		0.00111	mg/L	1	0.001	< 0.0002	111	··	80 - 120	20

Sample: LCSD

QC Batch: QC07302

		Sample			Spike Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Total Mercury		0.00111	mg/L	1	0.001	< 0.0002	111	0	80 - 120	20

Quality Control Report Matrix Spikes and Duplicate Spikes

Sample: MS

QC Batch: QC07064

					Spike					
		Sample			Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
CL		121.36	mg/L	1	62.50	63	93		82 - 100	25
Fluoride		13.55	mg/L	1	12.50		94		81 - 109	20
Nitrate-N		13.81	mg/L	1	12.50		95		74 - 111	20
Sulfate		113.28	mg/L	1	62.50		94		81 - 106	20

Sample: MSD

QC Batch: QC07064

		Sample			Spike Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
CL	<u> </u>	121.34	mg/L	1	62.50	63	93	()	82 - 100	25
Fluoride		13.60	mg/L	1	12.50		94	0	81 - 109	20
Nitrate-N		13.90	mg/L	1	12.50		96	1	74 - 111	20
Sulfate		112.49	mg/L	1	62.50		93	1	81 - 106	20

Report Date: December 13, 2000	Order Number: A00120106		Page Number: 8 of 14
N/A	McCasland	•	N/A

Sample: MS

QC Batch: QC07156

		<u> </u>			Spike		~		~ ~	
_		Sample			Amount	Matrix	_%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Total Aluminum		2.06	mg/L	1	2	<0.5	103		75 - 125	20
Total Arsenic		0.938	mg/L	1	1	< 0.01	93		75 - 125	20
Total Barium		2.1	mg/L	1	2	0.237	93		75 - 125	20
Total Boron		0.806	mg/L	1	1	< 0.5	80		75 - 125	20
Total Cadmium		0.174	mg/L	1	0.20	< 0.002	87		75 - 125	20
Total Chromium		0.379	mg/L	1	0.40	< 0.005	94		75 - 125	20
Total Cobalt		0.878	mg/L	1	1	< 0.01	87		75 - 125	20
Total Copper		0.389	mg/L	1	0.40	0.02	92		75 - 125	20
Total Iron		1.92	mg/L	1	2	0.02	95		75 - 125	20
Total Lead		0.896	mg/L	1	1	< 0.01	89		75 - 125	20
Total Manganese		0.186	mg/L	1	0.20	< 0.01	93		75 - 125	20
Total Molybdenum		0.928	mg/L	1	1	< 0.02	92		75 - 125	20
Total Nickel		0.904	mg/L	1	1	< 0.01	90		75 - 125	20
Total Selenium		0.858	mg/L	1	1	< 0.01	85		75 - 125	20
Total Silica		8.08	mg/L	1	0.50	7.66	84		75 - 125	20
Total Silver		0.184	mg/L	1	0.20	< 0.01	92		75 - 125	20
Total Zinc	·····	0.249	mg/L	1	0.20	<0.1	124		75 - 125	20

Sample: MSD

QC Batch: QC07156

					Spike					
		Sample			Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Total Aluminum		2.06	mg/L	1	2	< 0.5	103	0	75 - 125	20
Total Arsenic		0.95	mg/L	1	1	< 0.01	95	1	75 - 125	20
Total Barium		2.1	mg/L	1	2	0.237	93	0	75 - 125	20
Total Boron		0.771	mg/L	1	1	< 0.5	77	4	75 - 125	20
Total Cadmium		0.175	mg/L	1	0.20	< 0.002	87	0	75 - 125	20
Total Chromium		0.39	mg/L	1	0.40	< 0.005	97	3	75 - 125	20
Total Cobalt		0.882	mg/L	1	1	< 0.01	88	0	75 - 125	20
Total Copper		0.385	mg/L	1	0.40	0.02	91	1	75 - 125	20
Total Iron		1.95	mg/L	1	2	0.02	96	2	75 - 125	20
Total Lead		0.897	mg/L	1	1	< 0.01	89	0	75 - 125	20
Total Manganese		0.186	mg/L	1	0.20	< 0.01	93	0	75 - 125	20
Total Molybdenum		0.922	mg/L	1	1	< 0.02	92	1	75 - 125	20
Total Nickel		0.911	mg/L	1	1	< 0.01	91	1	75 - 125	20
Total Selenium		0.874	mg/L	1	1	< 0.01	87	2	75 - 125	20
Total Silica		8.03	mg/L	1	0.50	7.66	73	13	75 - 125	20
Total Silver		0.183	mg/L	1	0.20	< 0.01	91	0	75 - 125	20
Total Zinc		0.252	mg/L	1	0.20	<0.1	126	1	75 - 125	20

Sample: MS

QC Batch: QC07192

					Spike					
		Sample			Amount	Matrix	П.		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Dissolved Calcium		1570	mg/L	1	1000	525	104		75 - 125	20
									Contr	nued

Continued ...

Report Date: December 13, 2000 N/A

Order Number: A00120106 McCasland Page Number: 9 of 14 N/A

									Co	ntinued
		Sample			Spike Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Dissolved Magnesium		1010	mg/L	1	1000	46.9	96		75 - 125	20
Dissolved Potassium		978	mg/L	1	1000	9.07	97		75 - 125	20
Dissolved Sodium		1160	mg/L	1	1000	194	97		75 - 125	20

Sample: MSD QC Batch: QC07192

					Spike					
		Sample			Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Dissolved Calcium		1560	mg/L	1	1000	525	104	1	75 - 125	20
Dissolved Magnesium		1020	mg/L	1	1000	46.9	97	1	75 - 125	20
Dissolved Potassium		974	mg/L	1	1000	9.07	96	0	75 - 125	20
Dissolved Sodium		1160	mg/L	1	1000	194	97	0	75 - 125	20

Sample: MS QC Batch: QC07302

					Spike					
		Sample			Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rec.	RPD	Limit	Limit
Total Mercury		0.00108	mg/L	1	0.001	< 0.0002	108		80 - 120	20

Sample: MSD QC Batch: QC07302

					Spike					
		Sample			Amount	Matrix	%		% Rec.	RPD
Param	Flag	Result	Units	Dil.	Added	Result	Rcc.	RPD	Limit	Limit
Total Mercury		0.00114	mg/L	1	0.001	< 0.0002	114	5	80 - 120	20

Quality Control Report Duplicate Samples

Sample: Duplicate	•	QC Batch: QC07062						
Param	Flag	Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit	
Specific Conductance	<u>~</u>	4282	4300	µMHOS/cm	1	0	20	

Sample: Duplicate

QC Batch: QC07119

Report Date: December 13, 2000	Order Number: A00120106	P	age Number: 10 of 14
N/A	McCasland		N/A

Param	Flag	Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit	
pH		8.6	8.6	s.u.	1	0	1.2	

Sample: Duplicate QC Batch: QC07123

Param	Flag	Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit
Hydroxide Alkalinity		<1.0	<1.0	mg/L as CaCo3	1	0	11
Carbonate Alkalinity		<1.0	<1.0	mg/L as CaCo3	1	0	11
Bicarbonate Alkalinity		104	108	mg/L as CaCo3	1	4	11
Total Alkalinity		104	108	mg/L as CaCo3	1	4	11

Sample: Duplicate QC Batch	: QC07152	
----------------------------	-----------	--

		Duplicate	Sample				RPD	
Param	Flag	Result	Result	Units	Dilution	RPD	Limit	
Total Dissolved Solids		3735	3700	mg/L	1	1	11	

Quality Control Report Continuing Calibration Verification Standards

Sample: CCV (1)

QC Batch: QC07062

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Specific Conductance		$\mu \mathrm{MHOS/cm}$	1413	1388	98	80 - 120	12/1/00

Sample: ICV (1) QC Batch: QC07062

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Specific Conductance		µMHOS/cm	1413	1398	98	80 - 120	12/1/00

Sample: CCV (1) QC Batch: QC07064

Param	Flag	Units	CCVs Truc Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Bromide		mg/L	2.50	2.53	101	80 - 120	12/1/00
CL		mg/L	12.50	11.57	92	80 - 120	12/1/00
Fluoride		mg/L	2.50	2.41	96	80 - 120	12/1/00
					· · · · · · · · · · · · · · · · · · ·		Continued

Report Date: December 13, 2000 N/A			Ord	er Number: A0 McCaslanc	Page Number: 11 of 14 N/A		
Continued	!		CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Nitrate-N		mg/L	2.50	2.40	96	80 - 120	12/1/00
Sulfate	<u> </u>	mg/L	12.50	11.92	95	80 - 120	12/1/00

Sample:	ICV ((1)	QC Batch: QC07064
oampic.	101		

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analvzed
Bromide		mg/L	2.50	2.54	101	80 - 120	12/1/00
CL		mg/L	12.50	11.72	93	80 - 120	12/1/00
Fluoride		mg/L	2.50	2.41	96	80 - 120	12/1/00
Nitrate-N		mg/L	2.50	2.45	98	80 - 120	12/1/00
Sulfate		mg/L	12.50	11.97	95	80 - 120	12/1/00

Sample: CCV (1) QC Batch: QC07119

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
pН		s.u.	7	7.0	100	\$0 - 120	12/1/00

Sample: ICV (1) QC Batch: QC07119

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
pН		s.u.	7	7.0	100	80 - 120	12/1/00

Sample: CCV (1) QC Batch: QC07123

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Hydroxide Alkalinity		mg/L as CaCo3	0	<1.0	0	50 - 120	12/5/00
Carbonate Alkalinity		mg/L as CaCo3	0	232	0	\$0 - 120	12/5/00
Bicarbonate Alkalinity		mg/L as CaCo3	0	6.0	0	80 - 120	12/5/00
Total Alkalinity		mg/L as CaCo3	250	238	95	80 - 120	12/5/00

Sample: ICV (1)

QC Batch: QC07123

Report Date: December 13, 2000 N/A		Orde	Order Number: A00120106 McCasland				
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Hydroxide Alkalinity		mg/L as CaCo3	0	<1.0	0	80 - 120	12/5/00
Carbonate Alkalinity		mg/L as CaCo3	0	244	0	80 - 120	12/5/00
Bicarbonate Alkalinity		mg/L as CaCo3	0	2.0	0	80 - 120	12/5/00
Total Alkalinity		mg/L as CaCo3	250	246	98	80 - 120	12/5/00

Sample: CCV (1) QC Batch: QC07152

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	1007	100	80 - 120	12/5/00

Sample: ICV (1) QC Batch: QC07152

			CCVs	CCVs	CCVs	Percent	5
Param	Flag	Units	True Conc.	Found Conc.	Percent Recovery	Recovery Limits	Date Analyzed
Total Dissolved Solids		mg/L	1000	995	99	80 - 120	12/5/00

Sample: CCV (1) QC Batch: QC07156

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Aluminum		mg/L	5	4.64	92	75 - 125	12/6/00
Total Arsenic		mg/L	2.50	2.41	96	75 - 125	12/6/00
Total Barium		mg/L	5	4.92	98	75 - 125	12/6/00
Total Boron		mg/L	2.50	2.24	89	75 - 125	12/6/00
Total Cadmium		mg/L	0.50	0.483	96	75 - 125	12/6/00
Total Chromium		mg/L	1	0.96	96	75 - 125	12/6/00
Total Cobalt		mg/L	2.50	2.43	97	75 - 125	12/6/00
Total Copper		mg/L	1	0.961	96	75 - 125	12/6/00
Total Iron		mg/L	5	4.91	98	75 - 125 -	12/6/00
Total Lead		mg/L	2.50	2.41	96	75 - 125	12/6/00
Total Manganese		mg/L	0.50	0.486	97	75 - 125	12/6/00
Total Molybdenum		mg/L	2.50	2.42	96	75 - 125	12/6/00
Total Nickel		mg/L	2.50	2.41	96	75 - 125	12/6/00
Total Selenium		mg/L	2.50	2.45	98	75 - 125	12/6/00
Total Silica		mg/L	2.50	2.46	98	75 - 125	12/6/00
Total Silver		mg/L	0.50	0.484	96	75 - 125	12/6/00
Total Zinc		mg/L	0.50	0.488	97	75 - 125	12/6/00

Sample: ICV (1) QC Batch: QC07156

Report Date: December 13, 2000 N/A			umber: A0012 McCasland	Page Number: 13 of 14 N/A			
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Total Aluminum	<u>~</u>	mg/L	5	4.88	97	75 - 125	12/6/00
Total Arsenic		mg/L	2.50	2.45	98	75 - 125	12/6/00
Total Barium		mg/L	5	5.09	101	75 - 125	12/6/00
Total Boron		mg/L	2.50	2.63	105	75 - 125	12/6/00
Total Cadmium		mg/L	0.50	0.495	99	75 - 125	12/6/00
Total Chromium		mg/L	1	0.986	98	75 - 125	12/6/00
Total Cobalt		mg/L	2.50	2.51	100	75 - 125	12/6/00
Total Copper		mg/L	1	1.01	101	75 - 125	12/6/00
Total Iron		mg/L	5	5.07	· 101	75 - 125	12/6/00
Total Lead		mg/L	2.50	2.47	98	75 - 125	12/6/00
Total Manganese		mg/L	0.50	0.502	100	75 - 125	12/6/00
Total Molybdenum		mg/L	2.50	2.52	100	75 - 125	12/6/00
Total Nickel		nıg/L	2.50	2.52	100	75 - 125	12/6/00
Total Selenium		mg/L	2.50	2.48	99	75 - 125	12/6/00
Total Silica		mg/L	2.50	2.53	101	75 - 125	12/6/00
Total Silver		mg/L	0.50	0.504	100	75 - 125	12/6/00
Total Zinc		mg/L	0.50	0.495	99	75 - 125	12/6/00

Sample: CCV (1) QC Batch: QC07192

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Dissolved Calcium		nıg/L	25	25.8	100	75 - 125	12/6/00
Dissolved Magnesium		mg/L	25	25.6	100	75 - 125	12/6/00
Dissolved Potassium		mg/L	25	24.2	96	75 - 125	12/6/00
Dissolved Sodium		mg/L	25	23.8	96	75 - 125	12/6/00

Sample: ICV (1) QC Batch: QC07192

			CCVs True	CCVs Found	CCVs Percent	Percent Recoverv	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Calcium		mg/L	25	25.9	100	75 - 125	12/6/00
Dissolved Magnesium		mg/L	25	25.6	100	75 - 125 ·	12/6/00
Dissolved Potassium		mg/L	25	23.9	96	75 - 125	12/6/00
Dissolved Sodium		mg/L	25	24.7	96	75 - 125	12/6/00

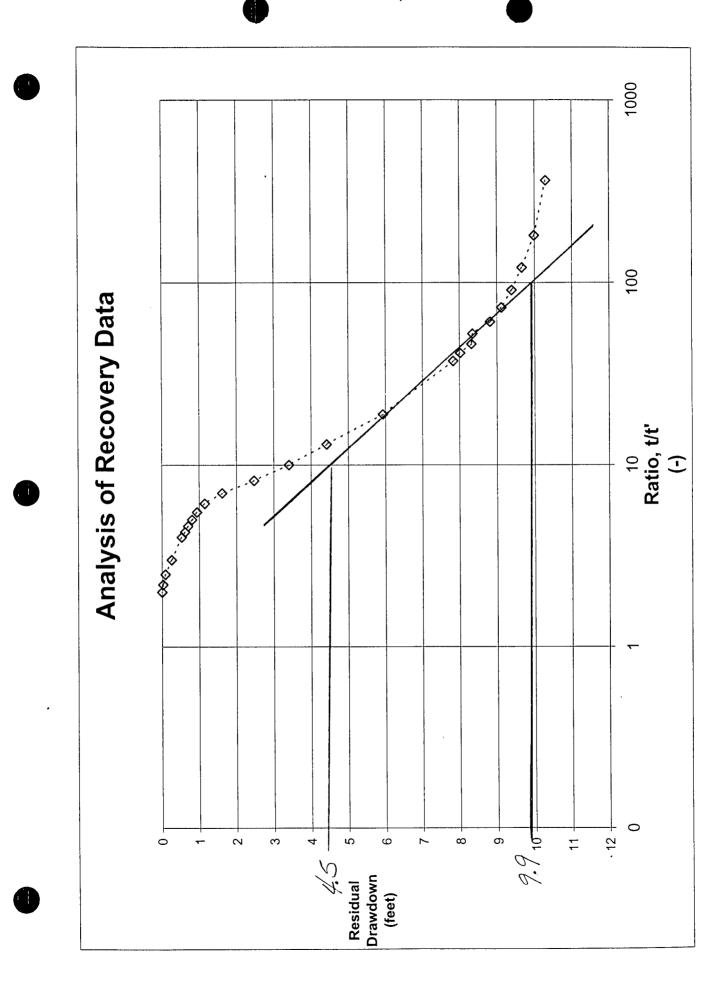
Sample: CCV (1) QC Batch: QC07302

			CCVs True	CCVs Found	CCVs Percent	Percent Recoverv	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Mercury		mg/L	0.001	0.00104	104	80 - 120	12/11/00

Sample: ICV (1) QC Batch: QC07302

ļ

Report Date: December 13, 2000 N/A			Orde	r Number: A00 McCasland	Page Number: 14 of 14 N/A		
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Mercury		mg/L	0.001	0.00106	106	80 - 120	12/11/00


APPENDIX D

Determination of aquifer transmissivity and hydraulic conductivity (K) based on the analysis of HGS recovery data. After 360 minutes of pumping DTW at MW-2 was 92.82 feet (see Exhibit 10: Whaley Deposition). Calculations and graphical approach presented in Domenico, Patrick and Schwartz, Franklin. 1982. Physical and Chemical Hydrogeology. John Wiley and Sons, Inc., New York. pp. 114-115.

Table D-1: HGS Recovery Data and Residual Drawdown Calculation	covery Data ar	nd Residual Drav	vdown Calculation	
Time Since	Time Since			
Pumping Stopped,	Pumping			Residual
	Started, t		Depth to Water	Drawdown
(min)	(min)	Ratio, t/t'	(feet)	(feet)
0.0	360.0	1	92.82	12.81
1.0	361.0	361.0	90.31	10.30
2.0	362.0	181.0	90.00	66.6
3.0	363.0	121.0	89.67	9.66
4.0	364.0	91.0	89.40	9.39
5.0	365.0	73.0	89.13	9.12
6.0	366.0	61.0	88.83	8.82
7.0	367.0	52.4	88.36	8.35
8.0	368.0	46.0	88.33	8.32
0.6	369.0	41.0	88.03	8.02
10.0	370.0	37.0	87.84	7.83
20.0	380.0	19.0	85.94	5.93
30.0	390.0	13.0	84.43	4.42
40.0	400.0	10.0	83.42	3.41
50.0	410.0	8.2	82.48	2.47
60.0	420.0	7.0	81.63	1.62
70.0	430.0	6.1	81.16	1.15
80.0	440.0	5.5	80.95	0.94
0.06	450.0	5.0	80.82	0.81
100.0	460.0	4.6	80.71	0.70
110.0	470.0	4.3	80.63	0.62
120.0	480.0	4.0	80.54	0.53
180.0	540.0	3.0	80.27	0.26
240.0	600.0	2.5	80.10	0.09
300.0	660.0	2.2	80.04	0.03
360.0	720.0	2.0	80.01	0.00
Calculations:				
Parameter	er	Value	units	explanation / equation
				T = 2.3 + Q / (4 + pi + delta s); where Q is the pumping rate (1 gallon per minute), pi is

-1-4:-Ċ . 1

1 1 0 5 ĥ T = 2.3 * Q / (4 * pi * delta s); where Q is the pumping rate (1 gallon per minur 3.14, and delta s is the residual drawdown per log cycle (see attached graph) saturated thickness at MW-2 K = T / b21 feet 0.3 feet/day 48.9 gpd/ft Saturated Thickness (b) Hydraulic Conductivity (K) Transmissivity (T)

APPENDIX E

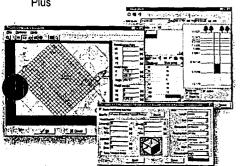
Visual MOLFLOW Pro

COULDI

Fully Integrates MODFLOW, MODPATH, MT3DMS, RT3D, Zone Budget, and Win³² MODFLOW Suite

Visual MODFLOW Pro incorporates even more innovative tools to help you complete your groundwater flow and contaminant transport models. Visual MODFLOW Pro is based on the world-recognized Visual MODFLOW package and fully-integrates calibration techniques using WinPEST, and 3D visualization and animation effects using the Visual MODFLOW 3D-Explorer. These added components give environmental professionals extra power for building, calibrating, and presenting model results in one reliable software package.

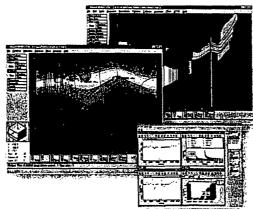
Model Design Features


The Visual MODFLOW Pro interface is built on proven technology and contains a logical menu structure that guides you through the steps required to effectively build, calibrate and evaluate your groundwater flow and contaminant transport models.

Model design features include:

Interactive model display using aerial and cross-sectional views

- Standard point-and-click functionality for assigning model input data
- Import AutoCAD (.dxf) files or bitmap image (.bmp) files for site base maps
- Rotate and align the model grid over the site base map
- Graphical grid design tools and automatic grid smoothing for improved data convergence
- Grid Cell Elevation Editor for on-the-fly modifications to individual cells elevations


- Import variable layer surface elevations from ASCII (X,Y,Z) files and Surfer (.grd) files
- Import time schedules for transient boundary conditions and observation points
- Assign multi-level observation wells and create observation groups for localized calibration analysis
- Import groundwater recharge and recharge concentrations from the WHI UnSat Suite Plus

Model Display Features

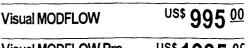
The ability to visualize and interpret the simulation results is almost as important as creating the model in the first place. In order to get the most out of the model that you build, it is critical that you have the tools necessary to properly analyze the results.

- Contour maps and color maps of model properties and simulation results such as heads, drawdown, concentrations, water table elevations, layer elevation, layer thickness, net recharge, flux between layers, and head difference between layers
- Flow velocity vectors and pathlines
- Color-coded plot of steady-state and transient pathlines with time markers
- Detailed graphical summaries of global and local mass budgets
- Model calibration plots and statistical summaries including mean error, absolute mean error, standard deviation, root mean square of the error, and normalized root mean square of the error
- Export screen display to graphics formats such as Enhanced Windows Metafile (.emf), AutoCAD (.dxf), and ESRI Shape (.shp) files
- Export model results to 2D or 3D ASCII text files supported by virtually ANY 3D visualization software
- Print full-color, high-resolution plots to any printer or plotter

Grid Independent Boundary Conditio Values, and Support for MODFLOW 2

Simulation Capabilities

- Full integration of MT3DMS for multi-species contaminant transport simulations
- Full integration of RT3D for reactive transport simulations including:
 - -Instantaneous BTEX degradation -Multi-path BTEX degradation -Reductive dechlorination of TCE/PCE -Sequential decay reactions -Rate-limited sorption reactions -Double-monod kinetic reactions
- Supports MT3D⁹⁹ for faster and more stable reactive transport simulations
- Seamless integration with the Win³² MODFLOW Suite (runs MODFLOW, MODPATH, MT3DMS, RT3D, & Zone Budget as a 32-Bit Windows Application)
- Interactive display of solution convergence for on-the-fly modification of solver settings and graphical display of transient simulation results
- Includes the WHS Solver (faster and more stable than PCG2)
- Built-in batch processing of multiple simulations for sensitivity analyses

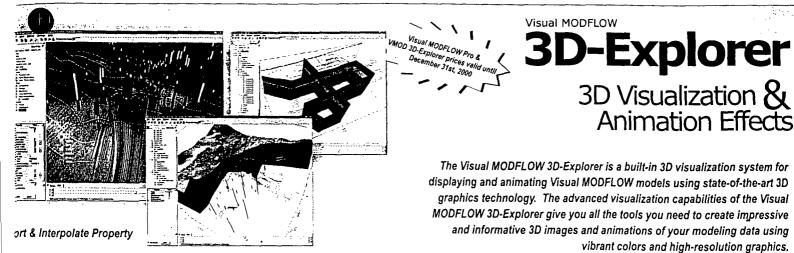


Hardware Requirement

- PC Pentium, 64 Mb RAM
- 55 Mb free disk space
- Monitor with SVGA display
- Windows 95/98/NT/2000 installed

Documentation

- Visual MODFLOW User's Guide
- Official Reference Manuals are included on the installation CD-ROM in Portable Document Format


For order information, please see page 26.

Visual MODFLOW Pro Combines Visual MODFLOW, WinPEST, VMOD 3D Explorer

Visual MODFLOW, Visual MODFLOW 3D-Explorer, and WinPEST into one powerful modeling environment!

Create High-Impact 3D Images Directly From the Visual MODFLOW Pro Interface!

Model Display Features

- 2D and 3D model grid lines
- 3D pumping wells and observation wells
- Soil property zones and boundary conditions
- Contour maps and color maps of heads, draw-
- down, water table elevation, and multi-species concentrations
- 3D volumetric groundwater plumes
- athlines with time markers
- Image overlays using AutoCAD (.dxf) files and bitmap (.bmp) files

Model Animation Effects

- Multi-species groundwater plume migration
- Seasonal water level fluctuations
- Water table drawdown due to pumping
- Sequential degradation of contaminants

Is it Really Too Good To Be True?

With the growing popularity of programs like WinPEST, non-linear parameter estimation technology has become the preferred method for assisting in the calibration of groundwater models. Not only does the application of this technology have the potential to reduce calibration time enormously, it can also open up new possibilities for creative, yet scientifically rigorous, model design. By applying WinPEST's powerful parameter estimation methods to your Visual MODFLOW models, you will gain valuable insight into the strengths and weaknesses of your dataset. In addition, WinPEST will allow you to make professional judgements about the degree of uncertainty associated with model predictions, and to make decisions regarding the appropriate levels of model complexity.

With Win-EST, you're free to unleash your creativity in a the calibration and data interpretation process while the program carries out the numerically intensive calculations.

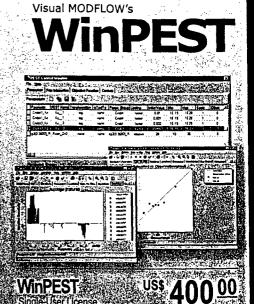
Advanced Viewing Features

The Visual MODFLOW 3D-Explorer gives you a complete selection of 3D objects to represent the physical and chemical characteristics of your model such as:

- Horizontal and vertical slices
- Irregular shaped cross-sections
- Multiple 3D volumetric isosurfaces
- Irregular shaped 3D cut-away regions

Contour Maps and Color Maps

Plot contour maps and color maps of all distributed model parameters on any slice (horizontal or vertical) or cross-section through the model. Distributed model properties include soil property zones and simulated heads, drawdown, water table elevations, and multispecies concentrations.


3D Volumetric Isosurfaces

Multiple 3D volumetric isosurfaces can be created for any distributed model property including soil property zones and simulated heads, drawdown, water table elevations, and multi-species concentrations.

Cut-away Views

Cut-away views of the model can be created using any horizontal or vertical slice, or any cross-section through the model domain. The cut-away view allows you to see what is occurring inside the model domain, at any location, while still maintaining a true 3D perspective of the site.

Visual MODFLOW 3D-Explorer Single-User License

Universities 25% discount Governmen//Research - 15% discount

Benefits of WinPEST

- Save you time and money by reducing countless hours spent calibrating your model
- Improve the quality and reliability of your model
- Improve your sensitivity analysis capabilities
 Give you the graphical tools to interpret and
- Give you the graphical tools to interpret and display calibration parameters

Why WinPEST?

WinPEST offers many advantages over other similar parameter estimation codes. With its powerful inversion engine and the ability to set upper and lower bounds on parameters, WinPEST has achieved outstanding results in the calibration of models of all kinds. Its unparalleled ability to work with large and complex models is further enhanced by the possibilities it offers for user interaction in the calibration process.

Automated Model Calibration Using Non-Linear Parameter Estimation and Predictive Analysis

Request your free WHI demonstration CD-ROM today!

U.S. Geological Survey

modflow(1)

NAME

modflow - Modular three-dimensional finite-difference
 ground-water model

ABSTRACT

MODFLOW is a three-dimensional finite-difference groundwater model that was first published in 1984. It has a modular structure that allows it to be easily modified to adapt the code for a particular application. Many new capabilities have been added to the original model. OFR 00-92 (complete reference below) documents a general update to MODFLOW, which is called MODFLOW-2000 in order to distinguish it from earlier versions.

MODFLOW-2000 simulates steady and nonsteady flow in an irregularly shaped flow system in which aquifer layers can be confined, unconfined, or a combination of confined and unconfined. Flow from external stresses, such as flow to wells, areal recharge, evapotranspiration, flow to drains, and flow through river beds, can be simulated. Hydraulic conductivities or transmissivities for any layer may differ spatially and be anisotropic (restricted to having the principal directions aligned with the grid axes), and the storage coefficient may be heterogeneous. Specified head and specified flux boundaries can be simulated as can a head dependent flux across the model's outer boundary that allows water to be supplied to a boundary block in the modeled area at a rate proportional to the current head difference between a "source" of water outside the modeled area and the boundary block. MODFLOW is currently the most used numerical model in the U.S. Geological Survey for groundwater flow problems.

In addition to simulating ground-water flow, the scope of MODFLOW-2000 has been expanded to incorporate related capabilities such as solute transport and parameter estimation.

METHOD

The ground-water flow equation is solved using the finitedifference approximation. The flow region is subdivided into blocks in which the medium properties are assumed to be uniform. In plan view the blocks are made from a grid of mutually perpendicular lines that may be variably spaced. Model layers can have varying thickness. A flow equation is written for each block, called a cell. Several solvers are provided for solving the resulting matrix problem; the user can choose the best solver for the particular problem. Flow-rate and cumulative-volume balances from each type of inflow and outflow are computed for each time step.

HISTORY

MODFLOW-2000 Version 1.2 2001/04/12 - Added support for using vendor-specific options for opening unformatted (binary)

files. On personal computers, this can make it possible for programs compiled by different compilers to write files that have the same structure. The formula used to calculate dimensionless, scaled sensitivities of simulated equivalents to observations for log-transformed parameters is changed. Other changes include bug fixes and clarification of output. The MODFLOW-2000 distribution now includes Release Notes in the file release.txt in the doc directory -- this file describes in detail changes to MODFLOW-2000 for each version.

MODFLOW-2000 Version 1.1 2001/01/17 - Added IBS, HUF, LAK, ETS, and DRT Packages. Added HYDMOD option. The EVT Package was modified as described in the LAK documentation to include the option (NEVTOP=3) to apply ET to the uppermost wet cell in a vertical column of cells as done in the RCH Package.

MODFLOW-2000 Version 1.0 2000/07/20 - Enhanced modular structure that facilitates the addition of broader capabilities such as parameter estimation and solute transport. New data input methods are included to support parameter estimation. Vertical cell dimensions are specified in a separate discretization file. A new package called the LPF Package has been added as an alternative to the BCF Package.

The MODFLOW-2000 documenation report (OFR 00-92) does not include the STR Package; however, this code has been upgraded to use parameters and is included in this version of MODFLOW-2000. Revised STR input instructions can be found in file str6.pdf, which is included in the doc directory that is part of the distribution for MODFLOW-2000.

The ADV Package has been modified for use with MODFLOW-2000. Changes in input instructions are contained in file adv.txt, which is also in the doc distribution directory.

The RES and FHB Packages are included in MODFLOW-2000 without modification. These will work as before, but they do not incorporate parameters or observations.

The IBS, TLK, and GFD Packages are not included in this release. They require modification in order to work within MODFLOW-2000.

Note that MODFLOW-2000 sends some messages to the computer display. Some Fortran compilers make use of a reserved file unit, for example unit 6, for output to the display. If such compilers are used, it is important to avoid using a reserved unit for any files in the MODFLOW name file.

MODFLOW-96 Version 3.3 2000/05/02 - Error fixed in IBS code that caused incorrect values for critical head to be written when the option is invoked to save these values in an external file (variable IHCSV>0). The error did not affect the actual interbed storage calculations, and none of the other model results, such as computed head and budget flows, are affected by the correction. There are no changes to any other packages.

MODFLOW-96 Version 3.2 1998/01/09 - The Flow and Head Boundary Package, Version 1, (FHB1) has been added. This package allows for assignment of transient specified-flow and specified-head boundaries in applications of MODFLOW-96. The FHB1 package is documented in U.S. Geological Survey Open-File Report 97-571.

- MODFLOW-96 Version 3.1 1997/03/11 Calls to the Horizontal Flow Barrier (HFB) Package have been corrected in the main program. The main program for Version 3.0 incorrectly calls the HFB1RP module where it should call the HFB1FM module.
- MODFLOW-96 Version 3.0 1996/12/03 Updated version of overall model, which is called MODFLOW-96. A number of changes were made to make MODFLOW easier to use and easier to enhance. MODFLOW-96 can use existing input data sets, and has the same computational methods. Any package added to the original model (now referred to as MODFLOW-88) will also work with MODFLOW-96.

The Preconditioned Conjugate Gradient Package, Version 2 (PCG2) has been updated. This requires a minor change in input data compared to the documentation in U.S. Geological Survey Water-Resources Investigations Report (WRIR) 90-4048 (full reference below). WRIR 90-4048 specifies two lines of input data. All of the data are the same except the seventh value on the 2nd line. This value is named IPCGCD in WRIR-4048, but it has been replaced by a value named DAMP. That is, IPCGCD is no longer part of the input data. DAMP can be used to reduce oscillation when the solver is having difficulty converging due to excessive oscillation. The value of DAMP is multiplied times the head change calculated each iteration at all cells. Thus, if DAMP is 0.5, the head change is cut in half. If DAMP is 1.0, then PCG2 behaves as it did prior to the addition of this capability. DAMP should be set equal to 1.0 except when there is indication of excessive oscillation. If the value of DAMP is specified as 0.0 or less, it is automatically changed to 1.0.

Also the sign of the C.B. STORAGE cell-by-cell budget data in the TLK1 Package was changed to match the standard sign convention in MODFLOW. The change to TLK1 does not impact computed heads or the overall volumetric budget; it only affects data written to a cell-by-cell budget file.

MODFLOW-88 Version 2.6 1996/09/20 - Added Reservoir package (RES1) as documented in U.S. Geological Survey Open-File Report 96-364. Problem fixed for IBS package. Although subsidence is only meant to be active for layers in which IBQ>0, sometimes MODFLOW performed subsidence calculations when IBQ<0. Note that this was a problem only if negative IBQ values were specified. That is, the code has always worked correctly for IBQ=0 and IBQ>0.

MODFLOW-88 Version 2.5 1995/06/23 - Added direct solution package
 (DE45).

MODFLOW-88 Version 2.4 1995/06/15 - Added transient leakage package

(TLK1).

- MODFLOW-88 Version 93/08/30 Release with PCG2, BCF3, STR1, HFB1, ISB1, CHD1, and GFD1 additions.
- MODFLOW-88 Version 87/07/24 Fortran 77 version published in U.S. Geological Survey Techniques of Water-Resources Investigations 6-A1.
- MODFLOW Version 83/12/28 Fortran 66 version published in U.S. Geological Survey Open-File Report 83-875.

DATA REQUIREMENTS

In order to use MODFLOW, initial conditions, hydraulic properties, and stresses must be specified for every model cell in the finite-difference grid.

OUTPUT OPTIONS

Primary output is head, which can be written to the listing file or into a separate file. Other output includes the complete listing of all input data, drawdown, and budget data. Budget data are printed as a summary in the listing file, and detailed budget data for all model cells can be written into a separate file.

SYSTEM REQUIREMENTS

MODFLOW-2000 is written in Fortran 77 with the following extensions: use of variable names longer than 6 characters, Fortran 90 statements for dynamic memory allocation, and a call to SUBROUTINE GETCL to retrieve command-line arguments. Generally, the program is easily installed on most computer systems. The code has been used on UNIX-based computers and DOS-based 386 or greater computers having a math coprocessor and 4 mb of memory.

PROCESSES

This version of MODFLOW includes the following processes:

GWF1 -- Ground-Water Flow Process SEN1 -- Sensitivity Process OBS1 -- Observation Process PES1 -- Parameter-Estimation Process

· PACKAGES

This version of MODFLOW includes the following packages:

BAS6	Basic Package
BCF6	Block-Centered Flow Package
LPF1	Layer-Property Flow Package
RIV6	River Package
DRN6	Drain Package
WEL6	Well Package
GHB6	General Head Boundary Package
RCH6	Recharge Package
EVT6	Evapotranspiration Package
CHD6	Time-Variant Specified-Head Package
HFB6	Horizontal Flow Barrier Package
SIP5	Strongly Implicit Procedure Package
SOR5	Slice Successive Over-Relaxation Package

- PCG2 -- Version 2 of Preconditioned Conjugate Gradient Package
- DE45 -- Direct solver
- STR6 -- Streamflow-Routing Package
- ADV2 -- Advective-Transport Observation Package
- RES1 -- Reservoir Package (RES is the file type in the MODFLOW name file)
- FHB1 -- Flow and Head Boundary Package (FHB is the file type in the MODFLOW name file)
- IBS6 -- Interbed Storage (subsidence) Package (IBS is the file type in the name file)
- HUF1 -- Hydrogeologic-Unit Flow Package
- LAK3 -- Lake Package
- ETS1 -- Evapotranspiration with a Segmented Function Package
- DRT1 -- Drains with Return Flow Package

ADDITIONAL CAPABILITIES:

HYDMOD -- Hydrograph option

DOCUMENTATION

The basic documentation is contained in the following five reports:

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model --User guide to modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, 121 p.

Hill, M.C., Banta, E.R., Harbaugh, A.W., and Anderman, E.R., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model --User guide to the Observation, Sensitivity, and Parameter-Estimation Processes and three post-processing programs: U.S. Geological Survey Open-File Report 00-184, 210 p.

Harbaugh, A.W., and McDonald, M.G., 1996, User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96-485, 56 p.

Harbaugh, A.W., and McDonald, M.G., 1996, Programmer's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96-486, 220 p.

McDonald, M.G., and Harbaugh, A.W., 1988, A modular threedimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A1, 586 p.

The BCF6 code is documented in several places. It includes the capabilities of BCF1, BCF2, and BCF3 Packages. The primary documentation is in the basic model documentation (TWRI 6-A1, OFR 96-485, and OFR 96-486).

BCF2 documentation describes the addition of the capability to convert dry cells to wet:

McDonald, M.G., Harbaugh, A.W., Orr, B.R., and Ackerman, D.J., 1992, A method of converting no-flow cells to variable-head cells for the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 91-536, 99 p.

BCF3 documentation describes the addition of alternate interblock transmissivities.

Goode, D.J., and Appel, C.E., 1992, Finite-difference interblock transmissivity for unconfined aquifers and for aquifers having smoothly varying transmissivity: U.S. Geological Survey Water-Resources Investigations Report 92-4124, 79 p.

Version 2 of Preconditioned Conjugate Gradient Package is documented in:

Hill, M.C., 1990, Preconditioned conjugate-gradient 2 (PCG2), a computer program for solving ground-water flow equations: U.S. Geological Survey Water-Resources Investigations Report 90-4048, 43 p.

The Streamflow-Routing Package is documented in:

Prudic, D.E., 1989, Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model: U.S. Geological Survey Open-File Report 88-729, 113 p.

The Time-Variant Specified-Head Package is documented in:

Leake, S.A., and Prudic, D.E., 1991, Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A2, 68 p.

The Horizontal-Flow Barrier Package is documented in:

Hsieh, P.A., and Freckleton, J.R., 1993, Documentation of a computer program to simulate horizontal-flow barriers using the U.S. Geological Survey modular threedimensional finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 92-477, 32 p.

The DE45 Package is documented in:

Harbaugh, A.W., 1995, Direct solution package based on alternating diagonal ordering for the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 95-288, 46 p.

The RES1 Package is documented in:

Fenske, J.P., Leake, S.A., and Prudic, D.E., 1996, Documentation of a computer program (RES1) to simulate leakage from reservoirs using the modular finitedifference ground-water flow model (MODFLOW): U.S. Geological Survey Open-File Report 96-364, 51 p.

The FHB1 Package is documented in:

Leake, S.A., and Lilly, M.R., 1997, Documentation of a computer program (FHB1) for assignment of transient specified-flow and specified-head boundaries in applications of the modular finite- difference ground-water flow model (MODFLOW): U.S. Geological Survey Open-File Report 97-571, 50 p.

The ADV Package is documented in:

Anderman, E.R. and Hill, M.C., 1997, Advective-transport observation (ADV) package, a computer program for adding advective-transport observations of steady-state flow fields to the three-dimensional ground-water flow parameter-estimation model MODFLOWP: U.S. Geological Survey Open-File Report 97-14, 67 p.

HYDMOD is documented in:

Hanson, R.T. and Leake, S.A., 1999, Documentation of HYDMOD, a program for extracting and processing time-series data from the U.S. Geological Survey's modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Open-File report 98-564, 57 p.

The IBS Package is documented in:

Leake, S.A. and Prudic, D.E., 1991, Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 6, Chapter A2, 68 p.

The HUF Package is documented in:

Anderman, E.R., and Hill, M.C., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Documentation of the Hydrogeologic-Unit Flow (HUF) Package: U.S. Geological Survey Open-File Report 00-342, 89 p.

The LAK Package is documented in:

Merritt, L.M. and Konikow, L.F., 2000, Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground-water flow model and the MOC3D solute-transport model: U.S. Geological Survey Water-Resources Investigations Report 00-4167, 146 p.

The ETS and DRT Packages are documented in:

Banta, E.R., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Documentation of packages for simulating evapotranspiration with a segmented function (ETS1) and drains with return flow (DRT1): U.S. Geological Survey Open-File Report 00-466, 127 p. REFERENCES

MODFLOW is widely used in the USGS and throughout the world.

Belitz, K., and Phillips, S.P., 1993, Numerical simulation of ground-water flow in the central part of the western San Joaquin Valley, California: U.S. Geological Survey Water-Supply Paper 2396, 69 p.

Prince, K.R., Franke, O.L., and Reilly, T.E., 1988, Quantitative assessment of the shallow ground-water flow system associated with Connetquot Brook, Long Island, New York: U.S. Geological Survey Water-Supply Paper 2309, 28 p.

TRAINING

Modeling of Ground-Water Flow Using Finite-Difference Methods (GW2096TC), offered annually at the USGS National Training Center.

Advanced Finite-Difference Modeling of Ground-Water Flow (GW3099TC), offered annually at the USGS National Training Center.

Calibration and uncertainty of Ground-Water Models (GW3089TC), offered annually at the USGS National Training Center.

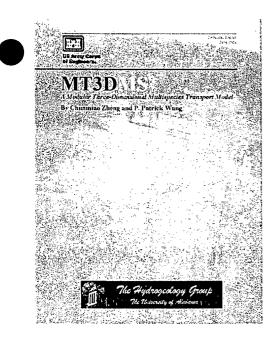
CONTACTS

Operation: U.S. Geological Survey Office of Ground Water Arlen Harbaugh 411 National Center Reston, VA 20192

harbaugh@usgs.gov

The USGS MODFLOW fact sheet (a short description of the MODFLOW model) can be retrieved using the World-Wide Web at site:

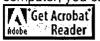
http://water.usgs.gov/public/pubs/FS/FS-121-97/


See

http://water.usgs.gov/software/ordering_documentation.html

for information on ordering printed copies of USGS publications.

SEE ALSO


http://water.usgs.gov/nrp/gwsoftware/modflow2000/mf2k.txt

- Abstract & Introduction
- Download MT3DMS Documentation in PDF Format
- Download MT3DMS (executables, source code and examples)
- Bug Fixes and Upgrades
- Comments and Feedback

Note:

- 1. Some distribution files are compressed by WinZIP. WinZip is needed to uncompress the distribution files. If necessary, you can download PKUNZIP or WinZip from http://www.shareware.com.
- 2. Acrobat Reader **4.0** is needed to view or print the MT3DMS documentation. Note that some graphics may not show up in Acrobat Reader 3.0. If you don't already have Acrobat Reader 4.0 installed in your computer, you can download it from:

Abstract

This manual describes the next-generation of the modular three-dimensional transport model, MT3D, with significantly expanded capabilities, including the addition of, 1) a third-order total-variationdiminishing (TVD) scheme for solving the advection term that is mass conservative but does not introduce excessive numerical dispersion and artificial oscillation; 2) an efficient iterative solver based on generalized conjugate gradient methods and the Lanczos/ORTHOMIN acceleration scheme to remove stability constraints on the transport time stepsize; 3) options for accommodating nonequilibrium sorption and dual-domain advection-diffusion mass transport; and 4) a multicomponent program structure that can accommodate add-on reaction packages for modeling general biological and geochemical reactions.

A

The new modular multispecies transport model, referred to as MT3DMS in this manual, is unique in that it includes the three major classes of transport solution techniques in a single code, i.e., the standard finite difference method; the particle-tracking-based Eulerian-Lagrangian methods; and the higher-order finite-volume TVD method. Since no single numerical technique has been shown to be effective for all transport conditions, the combination of these solution techniques, each having its own strengths and limitations, is believed to offer the best approach for solving the most wide-ranging transport problems with desired efficiency and accuracy.

MT3DMS can be used to simulate changes in concentrations of miscible contaminants in groundwater considering advection, dispersion, diffusion and some basic chemical reactions, with various types of boundary conditions and external sources or sinks. The basic chemical reactions included in the model are equilibrium-controlled or rate-limited linear or non-linear sorption, and first-order irreversible or reversible kinetic reactions. More sophisticated, multispecies chemical reactions can be simulated by add-on reaction packages. MT3DMS can accommodate very general spatial discretization schemes and transport boundary conditions, including: 1) confined, unconfined or variably confined/unconfined aquifer layers; 2) inclined model layers and variable cell thickness within the same layer; 3) specified concentration or mass flux boundaries; and 4) the solute transport effects of external hydraulic sources and sinks such as wells, drains, rivers, areal recharge and evapotranspiration. MT3DMS is designed for use with any block-centered finite-difference flow model, such as the U.S. Geological Survey modular finite-difference groundwater flow model, MODFLOW, under the assumption of constant fluid density and full saturation. However, MT3DMS can also be coupled with a variably saturated or density-dependent flow model for simulation of transport under such conditions.

Introduction

Purpose and Scope

The modular three-dimensional transport model referred to as MT3D was originally developed by Zheng (1990) at S. S. Papadopulos & Associates, Inc., and subsequently documented for the Robert S. Kerr Environmental Research Laboratory of the United States Environmental Protection Agency. In the past several years, various versions of the MT3D code have been commonly used in contaminant transport modeling and remediation assessment studies. This manual describes the next-generation of MT3D with significantly expanded capabilities, including the addition of, 1) a third-order total-variation-diminishing (TVD) scheme for solving the advection term that is mass conservative but does not introduce excessive numerical dispersion and artificial oscillation; 2) an efficient iterative solver based on generalized conjugate gradient methods to remove stability constraints on the transport time stepsize; 3) options for accommodating nonequilibrium sorption and dual-domain advection-diffusion mass transport; and 4) a multi-component program structure that can accommodate add-on reaction packages for modeling general biological and geochemical reactions.

Key Features

The new mass transport model documented in this manual is referred to as MT3DMS, where MT3D stands for the Modular <u>3-D</u>imensional Transport model while MS denotes the Multi-Species structure

for accommodating add-on reaction packages. MT3DMS has a comprehensive set of options and capabilities for simulating advection, dispersion/diffusion, and chemical reactions of contaminants in groundwater flow systems under general hydrogeologic conditions. This section summarizes the key features of MT3DMS.

MT3DMS is unique in that it includes three major classes of transport solution techniques in a single code, i.e., the standard finite difference method; the particle-tracking-based Eulerian-Lagrangian methods; and the higher-order finite-volume TVD method. Since no single numerical technique has been shown to be effective for all transport conditions, the combination of these solution techniques, each having its own strengths and limitations, is believed to offer the best approach for solving the most wide-ranging transport problems with desired efficiency and accuracy.

In addition to the explicit formulation of the original MT3D code, MT3DMS includes an implicit formulation that is solved with an efficient and versatile solver. The iterative solver is based on generalized conjugate gradient (GCG) methods with three preconditioning options and the Lanczos/ORTHOMIN acceleration scheme for non-symmetrical matrices. If the GCG solver is selected, dispersion, sink/source, and reaction terms are solved implicitly without any stability constraints. For the advection term, the user has the option to select any of the solution schemes available, including the standard finite-difference method, the particle tracking based Eulerian-Lagrangian methods, and the third-order TVD method. The finite-difference method can be fully implicit without any stability constraint to limit transport step sizes, but the particle tracking based Eulerian-Lagrangian methods and the third-order TVD method still have time step constraints associated with particle tracking and TVD methodology. If the GCG solver is not selected, the explicit formulation is automatically used in MT3DMS with the usual stability constraints. The explicit formulation is efficient for solving advection-dominated problems in which the transport stepsizes are restricted by accuracy considerations. It is also useful when the implicit solver requires a large number of iterations to converge or when the computer system does not have enough memory to use the implicit solver.

MT3DMS is implemented with an optional, dual-domain formulation for modeling mass transport. With this formulation, the porous medium is regarded as consisting of two distinct domains, a mobile domain where transport is predominately by advection and an immobile domain where transport is predominately by molecular diffusion. Instead of a single "effective" porosity for each model cell, two porosities, one for the mobile domain and the other for the immobile domain, are used to characterize the porous medium. The exchange between the mobile and immobile domains is specified by a mass transfer coefficient. The dual-domain advective-diffusive model may be more appropriate for modeling transport in fractured media or extremely heterogeneous porous media than the single porosity advective-dispersive model, provided that the porosities and mass transfer coefficients can be properly characterized.

MT3DMS retains the same modular structure of the original MT3D code, similar to that implemented in the U.S. Geological Survey modular three-dimensional finite-difference groundwater flow model, MODFLOW, (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 1996). The modular structure of the transport model makes it possible to simulate advection, dispersion/diffusion, source/sink mixing, and chemical reactions separately without reserving computer memory space for unused options; furthermore new packages involving other transport processes and reactions can be added to the model readily without having to modify the existing code.

As in the original MT3D code, MT3DMS is developed for use with any block-centered finitedifference flow model such as MODFLOW and is based on the assumption that changes in the concentration field will not affect the flow field significantly. After a flow model is developed and calibrated, the information needed by the transport model can be saved in disk files which are then retrieved by the transport model. Since most potential users of a transport model are likely to have been familiar with one or more flow models, MT3DMS provides an opportunity to simulate contaminant transport without having to learn a new flow model or to modify an existing flow model to fit the transport model. In addition, separate flow simulation and calibration outside the transport model can result in substantial savings in computer memory. The model structure also saves execution time when many transport runs are required while the flow solution remains the same. Although this report describes only the use of MT3DMS in conjunction with MODFLOW, MT3DMS can be linked to any other block-centered finite-difference flow model in a simple and straightforward fashion.

MT3DMS can be used to simulate changes in concentrations of miscible contaminants in groundwater considering advection, dispersion, diffusion and some basic chemical reactions, with various types of boundary conditions and external sources or sinks. The chemical reactions included in the model are equilibrium-controlled or rate-limited linear or non-linear sorption, and first-order irreversible or reversible kinetic reactions. It should be noted that the basic chemical reaction package included in MT3DMS is intended for single-species systems. An add-on reaction package such as RT3D (Clement, 1997) or SEAM3D (Widdowson and Waddill, 1997) must be used to model more sophisticated multi-species reactions. MT3DMS can accommodate very general spatial discretization schemes and transport boundary conditions, including: 1) confined, unconfined or variably confined/unconfined aquifer layers; 2) inclined model layers and variable cell thickness within the same layer; 3) specified concentration or mass flux boundaries; and 4) the solute transport effects of external hydraulic sources and sinks such as wells, drains, rivers, areal recharge and evapotranspiration.

Organization of the Report

This report covers the theoretical, numerical and application aspects of the MT3DMS transport model. Following this introduction, Chapter 2 gives a brief overview of the physical-mathematical basis and various functional relationships underlying the transport model. Chapter 3 explains the basic ideas behind the various solution schemes implemented in MT3DMS. Chapter 4 discusses the computer implementation of the numerical solution schemes. Chapter 5 describes the program structure and design of the MT3DMS code, which has been divided into a main program and a number of packages, each dealing with a single aspect of the transport simulation. Chapter 6 provides detailed model input instructions and discusses how to set up a simulation. Chapter 7 describes the benchmark and example problems that were used to test the MT3DMS code and illustrate its applications. The appendices include information on the iterative solver, the computer memory requirements of the MT3DMS model, the interface between MT3DMS and a flow model, several post-processing programs, and tables of abbreviated input instructions.

Acknowledgments

The original MT3D code was developed at S. S. Papadopulos & Associates, Inc. and documented for the U.S. Environmental Protection Agency. The contributions of Charles Andrews, Gordon Bennett and Stavros Papadopulos to the conception and development of MT3D are gratefully acknowledged. The current work was funded, in part, by the U.S. Army Corps of Engineers Waterways Experiment Station (WES) under contract DACA39-96-K-0016 to the University of Alabama. We are indebted to several WES scientists, including Mark Dortch, Mansour Zakikhani, Dave Richards, Jeff Holland and

MT3DMS HOME PAGE

Carlos Ruiz for their encouragement and support. We are grateful to Chris Neville, Daniel Feinstein, T.P. Clement, Marianne Guerin, Norm Jones, Mark Widdowson, and Ying Ouyang for helpful suggestions and discussions, and to Erin Feehley and Diana Sturm for code testing and editorial assistance. We also wish to thank Chris Neville, Mark Dortch, Daniel Feinstein and Erin Feehley who reviewed a draft version of this report and provided many valuable comments. Finally, we acknowledge the contribution of T.-Z. Mai in the Department of Mathematics at the University of Alabama who developed and provided the documentation for the solution routine of the GCG iterative solver (Appendix A).

Goto to HydroGroup Home Page

Go to MT3D Resources Main Page

Last modified: June 14, 2001