

GENERAL CORRESPONDENCE

YEAR(S):

State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505 OIL CONSERVATION DIVISION 2040. S. 1 Pacheco St. Santa, Fe, New Mexico 87505

New Herica DRUG FREE H's a State of Yind

January 12, 1995

CERTIFIED MAIL RETURN RECEIPT NO: P-667-242-203

Mr. Kevin Brooks Reef Chemical Corporation 2559 West 1-20 Odessa, Texas 79766

RE: REEF CHEMICAL HOBBS FACILITY

Dear Mr. Brooks:

The New Mexico Oil Conservation Division (OCD) is in receipt of Reef Chemical Corporation's (RCC) November 23, 1994 "POSSIBLE GROUND WATER CONTAMINATION, 4700 CARLSBAD HIGHWAY, HOBBS, NEW MEXICO" and November 28, 1994 "REEF CHEMICAL CORPORATION, 4700 CARLSBAD HIGHWAY, HOBBS, NM, CORRECTION TO NOTIFICATION OF POSSIBLE GROUND WATER CONTAMINATION" which were submitted on behalf of RCC by their consultant F.A. International, Inc. These documents contain notification to the OCD of a water well at RCC's Hobbs Facility containing ground water contaminated with chloride and total dissolved solids in excess of New Mexico Water Quality Control Commission ground water standards.

The OCD requests that RCC provide the OCD with any available information related to potential onsite or offsite contaminant sources at RCC's Hobbs Facility.

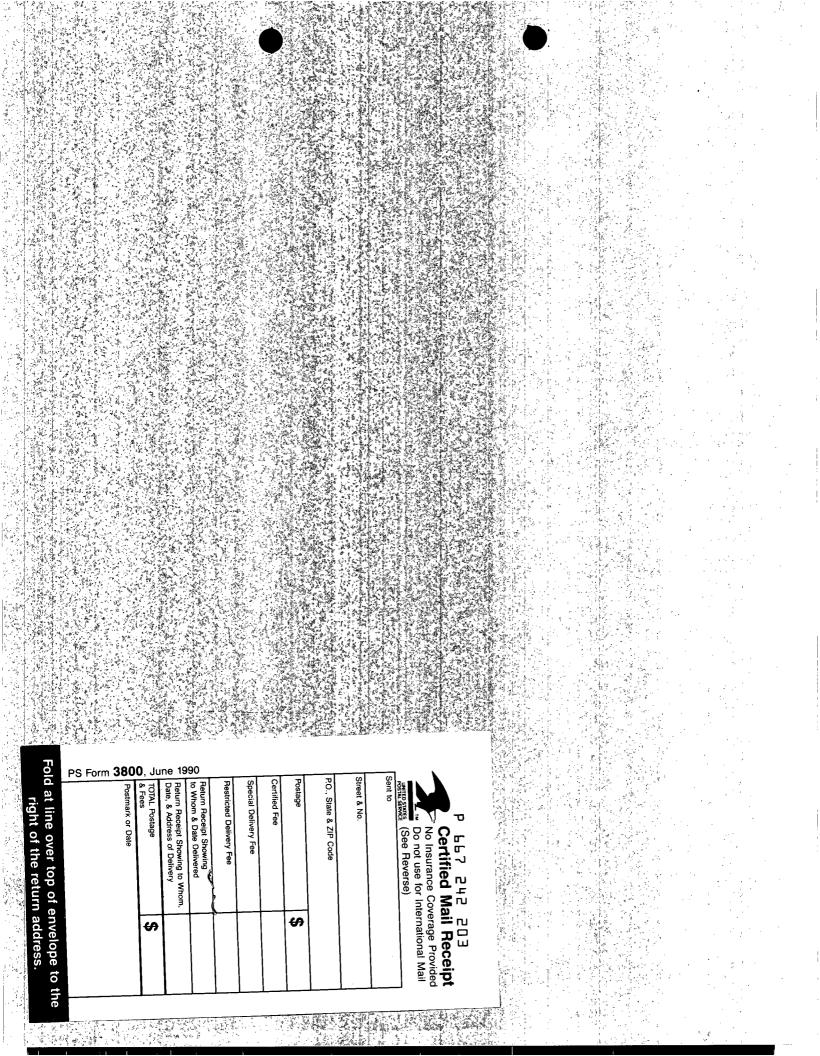
The OCD thanks you for bringing this matter to our attention.

If you have any questions, please contact me at (505) 827-7154.

Sincerely

William C. Olson Hydrogeologist Environmental Bureau

xc: Jerry Sexton, OCD Hobbs District Supervisor Wayne Price, OCD Hobbs District Office


VILLAGRA BUILDING 408 Galistoo Forestry and Resources Conservation Division P.O. Box 1948 87504-1948 9627-5830 Park and Recreation Division P.O. Box 1147 87504-1147

827-7465

2040 South Pacheco

Office of the Secretary 827-5950 Administrative Services 827-5925 Energy Conservation & Management 827-5900

Mining and Minerals 827-5970 Oil Conservation 827-7131

F.A. INTERNATIONAL, INC.

CONSULTING SERVICES

P.O. BOX 60841 MIDLAND, TX 79711 TEL.: (915) 333-2255 (915) 367-8777 FAX: (915) 333-3317

RECEIVED

NOV 3 0 1994

OIL CONSERVATION DIV. SANTA FE

Mr. Roger Anderson Environmental Bureau Chief New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

RE: REEF CHEMICAL CORPORATION; 4700 CARLSBAD HIGHWAY, HOBBS, NM CORRECTION TO NOTIFICATION OF POSSIBLE GROUND WATER CONTAMINATION

Dear Mr. Anderson,

November 28, 1994

This is to correct the earlier notification dated November 23, 1994 of possible ground water contamination wherein we informed you that Reef Chemical did not use the water at that site since the yard was connected to city water. We were in error about the city water connection. This site does not have a connection to city water. Bottled water is purchased for drinking purposes at this site.

If you should have any questions, please feel free to contact me at (915) 333-2255.

Sincerely,

Frank J. Call Safety Consultant

FJC/elr

cc: Wayne Price, New Mexico Oil Conservation Division Kevin Brooks, Reef Chemical File

F.A. INTERNATIONAL, INC.

CONSULTING SERVICES

P.O. BOX 60841 MIDLAND, TX 79711 TEL.: (915) 333-2255 (915) 367-8777 FAX: (915) 333-3317

November 23, 1994

RECEIVED

NOV 2 9 1994

Mr. Roger Anderson Environmental Bureau Chief New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

OIL CONSERVATION DIV. SANTA FE

RE: POSSIBLE GROUND WATER CONTAMINATION 4700 CARLSBAD HIGHWAY, HOBBS, NEW MEXICO

Dear Sir,

As part of our due diligence for Reef Chemical, prior to leasing the above listed yard in Hobbs, New Mexico we collected a water sample from a water well located on the property. This sample (a copy attached) revealed high chloride content, very hard water, and high dissolved solids count.

During a recent visit to this site by Wayne Price of your office in Hobbs, Reef Chemical was informed of a need to advise you personally about this possible contamination. Reef Chemical is the leaser of the property and this contamination existed at this site prior to Reef Chemical taking possession of the yard. Reef Chemical does not use this water supply as the site is supplied by city water. It is the intention of Reef Chemical to meet all environmental rules and regulations and to be in compliance at all times.

If you should have any questions about this problem, please do not hesitate to contact me at (915) 333-2255.

Sincerely,

Frank [] Call Safety Consultant

FJC/elr

Enclosure

cc: Wayne Price, New Mexico Oil Conservation Division Kevin Brooks, Reef Chemical File

DATE COLLE	ECTED DATE RECEIVED DATE MPLETED SAMPLE CODE			
03/22/				
CUSTOMER				ATIONAL
FRANK		WATERCH	/LA	STING BORATORIES MG
817 CE	ENTRAL		Cleveta	Wilson Mills Road VIII, OK# 44 1 43 9-2525
UDESSA	A, TX 79761-			
L) .	DRINH	KING	r r
DEALER A	DDRESS	WATE		
		ANAL	Y 515	
		RESUI	TS	
NOTE:	<pre>"*" indicates that the MCL (Maxim exceeded, or in the case of pl "ND" indicates that none of this contain at or above our detection leve "**" Result may be invalid due to or because the sample has exc "BD" Bacteria destroyed due to lac because the sample has exceed TNTC-Too Numerous To Count NBS</pre>	H is eithe ontaminant el. lack of "T eeded the k of colle	r too hi has bee ime Coll 30-hour ction ir hour tim	gh OR too low. In detected ected" time frame. Iformation or he frame.
	Analysis performed	MCL D (mg/l)	etectior Level	•
	Microbiological:			
	Total coliform (organism/100ml)	······································	0	ND
	Inorganic chemicals - metals:	-	-	
	ייייייייייייייייייייייייייייייייייייי			10 100 000 100 000 000 000 000 000 000
	Aluminum Arsenic		0.1 0.010	ND 0.016
	B arium Cadmium	,	0.30	ND
	Cadmidm Chromium		0.002 0.004	ND ND
	Copper	1.3	0.004	0.015
	Iron Lead		0.020 0.002	
	Manganese	0.05	0.004	0.017
	Mercury Nickel	0.002 0.1	0.001 0.02	ND ND
	Selenium	0.05	0.002	
	STIVE		0.002	
	Sodium Zinc	5.0	1.0	
	Inorganic chemicals - other, ar			
	an an a constant and an			
	Alkalinity (Total as CaCO3)		10 0	190
				1255*
	Chloride Fluoride	250 4.0	5.0 0.5	1255* 2.6
	Chloride Fluoride Nitrate as N	250 4.0 10	5.0 0.5 0.5	2.6 2.6
	Chloride Fluoride Nitrate as N Nitrite as N	250 4.0 10 1.0	5.0 0.5 0.5	2.6 2.6 ND
	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100	250 4.0 10 1.0 250	5.0 0.5 0.5 0.5 5.0 10.0	2.6 2.6 ND 107 510*
	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units)	250 4.0 10 1.0 250) 6.5-8.5	5.0 0.5 0.5 0.5 5.0 10.0	2.6 2.6 ND 107 510* 7.4
	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units)	250 4.0 10 250) 6.5-8.5 500 1.0	5.0 0.5 0.5 5.0 10.0 20.0 0.1	2.6 2.6 ND 107 510* 7.4 2365* 0.9
	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units)	250 4.0 10 1.0 250) 6.5-8.5 500 1.0	5.0 0.5 0.5 5.0 10.0 20.0 0.1	2.6 2.6 ND 107 510* 7.4 2365* 0.9
	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units) Organic chemicals - trihalomet	250 4.0 10 1.0 250) 6.5-8.5 500 1.0 hanes:	5.0 0.5 0.5 5.0 10.0 20.0 0.1	2.6 2.6 ND 107 510* 7.4 2365* 0.9
· ·	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units) Organic chemicals - trihalomet Bromoform	250 4.0 10 1.0 250) 6.5-8.5 500 1.0 hanes:	5.0 0.5 0.5 5.0 10.0 20.0 0.1	2.6 2.6 ND 107 510* 7.4 2365* 0.9
· ·	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units) Organic chemicals - trihalomet	250 4.0 10 1.0 250) 6.5-8.5 500 1.0 hanes:	5.0 0.5 0.5 5.0 10.0 20.0 0.1	2.6 2.6 ND 107 510* 7.4 2365* 0.9
	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units) Organic chemicals - trihalomet Bromoform Bromodichloromethane Chloroform Dibromochloromethane	250 4.0 10 1.0 250) 6.5-8.5 500 1.0 hanes:	5.0 0.5 0.5 5.0 10.0 20.0 0.1 0.004 0.002 0.002 0.002 0.004	2.6 2.6 ND 107 510* 7.4 2365* 0.9 ND ND ND ND ND
· ·	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units) Organic chemicals - trihalomet Bromoform Bromodichloromethane Chloroform	250 4.0 10 1.0 250) 6.5-8.5 500 1.0 hanes:	5.0 0.5 0.5 5.0 10.0 20.0 0.1 0.004 0.002 0.002 0.002 0.004	2.6 2.6 ND 107 510* 7.4 2365* 0.9 ND ND ND ND
· · · · · · · · · · · · · · · · · · ·	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units) Organic chemicals - trihalomet Bromoform Bromodichloromethane Chloroform Dibromochloromethane Total THMs (sum of four above)	250 4.0 10 1.0 250) 6.5-8.5 500 1.0 hanes:	5.0 0.5 0.5 5.0 10.0 20.0 0.1 0.004 0.002 0.002 0.002 0.004	2.6 2.6 ND 107 510* 7.4 2365* 0.9 ND ND ND ND ND
· · · · · · · · · · · · · · · · · · ·	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units) Organic chemicals - trihalomet Bromodichloromethane Chloroform Dibromochloromethane Total THMs (sum of four above) Organic chemicals - volatiles: Benzene	250 4.0 10 1.0 250) 6.5-8.5 500 1.0 hanes: 0.1	5.0 0.5 0.5 5.0 10.0 20.0 0.1 0.004 0.002 0.002 0.004 0.002	2.6 2.6 ND 107 510* 7.4 2365* 0.9 ND ND ND ND ND ND ND
	Chloride Fluoride Nitrate as N Nitrite as N Sulfate Hardness (suggested limit = 100 pH (Standard Units) Total Dissolved Solids Turbidity (Turbidity Units) Organic chemicals - trihalomet Bromodichloromethane Chloroform Dibromochloromethane Total THMs (sum of four above) Organic chemicals - volatiles:	250 4.0 10 1.0 250) 6.5-8.5 500 1.0 hanes:	5.0 0.5 0.5 5.0 10.0 20.0 0.1 0.004 0.002 0.002 0.002 0.004 0.002	2.6 2.6 ND 107 510* 7.4 2365* 0.9 ND ND ND ND ND ND ND

i

4

l

Analysis performed	page	2. Sample MCL (mg/l)	Detection	
Trichloroethylene		0.005	0.001	ND
1,4-Dichlorobenzene		0.075	0.001	ND
1,1-Dichloroethylene		0.007	0.001	ND
1,1,1,-Trichloroethane		0.20	0.001	ND
Bromobenzene			0.002	ND
Bromomethane		100 G.H. 100	0.002	ND
Chlorobenzene	,	0.1	0.001	ND
Chloroethane			0.002	ND
Chloromethane			0.002	ND
2-Dichlorotoluene			0.001	ND
4-Dichlorotoluene			0.001	ND
Dibromochloropropane (DBC	CP)		0.001	ND
Dibromomethane		a	0.002	ND
1,2-Dichlorobenzene		0.6	0.001	ND
1,3-Dichlorobenzene			0.001	ND
Dichlorodifluoromethane			0.002	ND
1,1-Dichloroethane		ware again party	0.002	ND
Trans-1,2-Dichloroethyle	ne	0.1	0.002	ND
cis-1,2-Dichloroethylene		0.07	0.002	ND
Dichloromethane		0.005	0.002	ND
1,2-Dichloropropane	_	0.005	0.002	ND
trans-1,3-Dichloropropene	3	**** **** ****	0.002	ND
1-3-Dichloropropene 2,2-Dichloropropane			0.002 0.002	ND
1,1-Dichloropropene			0.002	ND ND
1,3-Dichloropropane			0.002	ND
Ethylbenzene		0.7	0.001	ND
Ethylenedibromide (EDB)			0.001	ND
Styrene		0.1	0.001	ND
1,1,1,2-Tetrachloroethan	9	Mag 1445 Petr	0.002	ND
1,1,2,2-Tetrachloroethan		···· · · · · · · · · · · · · · · · · ·	0.002	ND
Tetrachloroethylene (PCE		0.005	0.002	ND
1,2,3-Trichlorobenzene	•	1986 1941 with	0.002	ND
1,2,4-Trichlorobenzene		499.4 100.4 00.91	0.002	ND
1,1,2-Trichloroethane		0.005	0.002	ND
Trichlorofluoromethane		9900 arrs 4888	0.002	ND
1,2,3-Trichloropropane			0.002	ND
Toluene		1.0	0.001	ND
Xylene		10	0.001	ND

certify that the analyses performed for this report are accurate, and that the laboratory tests were conducted i methods approved by the U.S. Environmental Protection Agency or variations of these EPA methods. iese test results are intended to be used for informational purposes only and may not be used for regulatory

mpliance CA m 2 ESIDENT, NATIONAL TESTING LABORATORIES, INC.

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION HOBBS DISTRICT OFFICE

BRUCE KING GOVERNOR

POST OFFICE BOX 1980 HOBBS, NEW MEXICO 88241-1980 (505) 393-6161

NMOCD Inter-Correspondence

To:

From:

Date:

Reference: NMOCD District I Action Plan for contaminated water wells.

Subject: Water Well Study In The Hobbs Airport-Carlsbad Highway Area.

Comments:

Dear Roger,

Jerry has requested that I send you information (see attachment) concerning possible water well contamination at two service companies located on the Carlsbad highway across from the Hobbs Airport and Country Club. These companies are Reef Chemical and Nowsco (previsiously Acid Engineering Co. DP # GW-017).

These two companies are in close proximity to the Scurlock Permian Brine well DP # BW -012. Jerry has indicated to me that this brine station has had a history of repeated leaks and spills.

The District's plan of action at this time is to set up a meeting with Permian and arrange for them to use the water out of the Reef well. Over a period of time this should clean up the well.

DRUG F

Also during our investigation it was discovered that another service company (Davis Tool Co.) was discharging their waste water into a leech\drain field. We have recommended to them that they should probably change their operation. We are planning on checking on this in three months to give them ample opportunity to complete this change.

Please don't hesitate to call or write if you require more information concerning these issues. Also, we appreciate any recommendations you might have on these procedures.

cc: Jerry Sexton-District I Supervisor

Attachments-1

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION HOBBS DISTRICT OFFICE

BRUCE KING GOVERNOR

POST OFFICE BOX 1980 HOBBS, NEW MEXICO 88241-1980 (505) 393-6161

NMOCD Inter-Correspondence

To: Jerry Sexton-District I Supervisor

Wayne Price-Environmental Engineer District I From:

November 28, 1994 Date:

Reference: Requested Information for Jerry Sexton.

Subject: Water Well Study In The Hobbs Airport- Carlsbad Highway Area.

Comments:

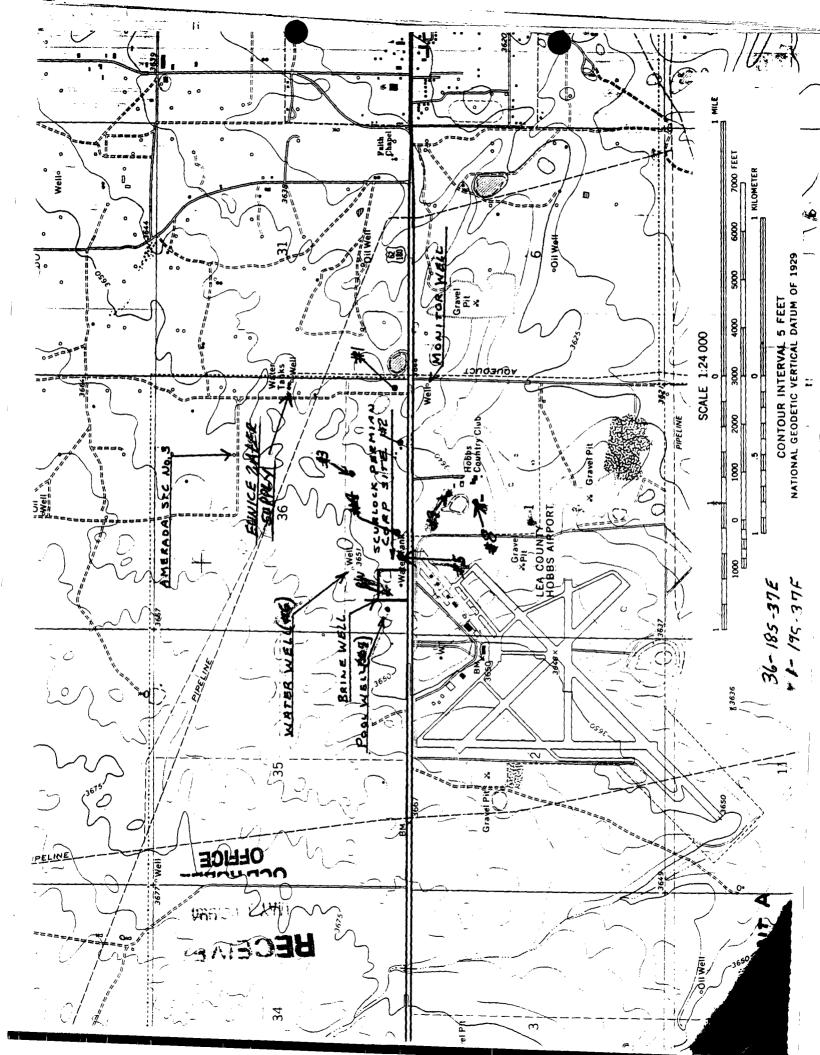
Dear Jerry,

Please find enclosed the analytical results of the field samples taken from various water wells located near the Hobbs Airport. I have also included a map showing the location of the wells.

Please note that well #4 (Nowsco) and well #5 (Reef Chemical) exceeded the ground water standards set by the State of New Mexico. The results for Reef were actually derived from previous analytical work submitted to the NMOCD by Reef. I have included these results for your review.

Please note that during my visit to collect water well samples at the Davis Tool Co., I discovered that they are presently discharging waste water from their facility into a septic\leech field. Also, it appears they have not segregated their present waste streams of exempt and non-exempt waste. From discussions with the owner, Mr. Butch McCarty, who recently purchased this business, is unaware of any wrong doing.

Please advise on what actions we should take on this matter concerning Davis Tool Co.


DRUG FRE

Recommendations:

In keeping with our NMOCD Environmental Bureau's policy, I informed the two companies listed above that they should notify our Environmental Bureau of possible ground water contamination. Also, Roger Anderson has ask me to always copy him on any site visits to such facilities. I have done this with copies already sent to you. I have not notified them of Davis Tool Co. visit as of to date. I will wait until I discuss the matter with you.

Please advise and let me know what we should do next or if you need any further information or need my assistance.

Thanks!

Water Well Study Hobbs Airport Area

Name: Add:	ress\location:	Chlorides: ppm	Conductivity: umhos	Volatiles: btex: ova
#1 Davis Tool	4700 Carlsbad hwy	127	750	nd
#2 Penroc		21	500	nd
#3 Reeco Well So	er. Carlsbad hwy	35	480	nd
#4 Nowsco	5514 Carlsbad hwy	480	1690	nd
#5 Reef Chem.	5700 Carlsbad hwy.	1255 *	2365 tds *	nd *
#6 Permian	1/4 mi north of Reef	42	500	nd
#7 Pool Co.	5730 Carlsbad hwy	35	480	nd
Hobbs Country C.	lub:			
#8 Jockey pu		35	610	nd
#9 Swimming	Pool(OLD)	57	620	nd
City of HObbS	1000 w. Bdwy.	103	720	nd
Blank Water	-	<1	7	nd

Note:

All water samples were water white clear and no visible solids present.
All water samples were field screened for volatile organics using a PID and olfactory senses; none were detected by these methods and are marked as "nd".
Chemical analysis for Reef Chemical were supplied to NMOCD by Reef.; no water sample

taken.

4. See attached map for reference to water well locations. They are shown as #(1) for example.

F.A. INTERNATIONAL, INC.

CONSULTING SERVICES

November 23, 1994

Mr. Roger Anderson Environmental Bureau Chief New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

RE: POSSIBLE GROUND WATER CONTAMINATION 4700 CARLSBAD HIGHWAY, HOBBS, NEW MEXICO

Dear Sir,

As part of our due diligence for Reef Chemical, prior to leasing the above listed yard in Hobbs, New Mexico we collected a water sample from a water well located on the property. This sample (a copy attached) revealed high chloride content, very hard water, and high dissolved solids count.

During a recent visit to this site by Wayne Price of your office in Hobbs, Reef Chemical was informed of a need to advise you personally about this possible contamination. Reef Chemical is the leaser of the property and this contamination existed at this site prior to Reef Chemical taking possession of the yard. Reef Chemical does not use this water supply as the site is supplied by city water. It is the intention of Reef Chemical to meet all environmental rules and regulations and to be in compliance at all times.

If you should have any questions about this problem, please do not hesitate to contact me at (915) 333-2255.

Sincerely,

Frank J/ Call Safety Consultant

FJC/elr

Enclosure

cc: Wayne Price, New Mexico Oil Conservation Division-Kevin Brooks, Reef Chemical File

Not TRUFA!

BDY 2 8 1994

Analysis performed		Detection	9630916 ¦ Level !Detected
Trichloroethylane	0.005	0.001	ND
1,4-Dichlorobenzene	0.075	0.001	ND
1,1-Dichloroethylene	0.007	0.001	ND
1,1,1,-Trichloroethane	0.20	0.001	ND
Bromobenzene		0.002	ND
Bromomethane		0.002	ND
Chloropenzena	0.1	0.001	ND
Chloroethane		0.002	ND
Chloromethane		0.002	ND
2-Dichlorotoluene		0.001	ND
4-Dichlorotoluene		0.001	ND
Dibromochloropropane (DBCP)	* ** **	0.001	ND
Dibromomethane		0.002	ND
1,2-Dichlorobenzene	0.6	0.001	ND
1,3-Dichlorobenzene		0.001	ND
Dichlorodifluoromethane		0.002	ND
1,1-Dichloroethane		0.002	ND
Trans-1,2-Dichloroethylene	0.1	0.002	ND
cis-1,2-Dichloroethylene	0.07	0.002	ND
Dichloromethane	0.005	0.002	ND
1,2-Dichloropropane	0.005	0.002	ND
trans-1,3-Dichloropropene		0.002	ND
1-3-Dichloropropene		0.002	ND
2.2-Dichloropropane		0.002	ND
1,1-Dichloropropene		0.002	ND
1,3-Dichloropropane		0.002	ND
Ethylbenzene	0.7	0.001	ND
Ethylenedibromide (EDB)	die wert van	0.001	ND
Styrene	0.1	0.001	ND
1,1,1,2-Tetrachloroethane	···· ···	0.002	ND
1,1,2,2-Tetrachloroethane		0.002	ND
Tetrachloroethylene (PCE)	0.005	0.002	ND
1,2,3-Trichlorobenzene		0.002	ND
1,2,4-Trichlorobenzene		0.002	ND
1,1,2-Trichloroethane	0.005	0.002	ND
Trichlorofluoromethane		0.002	ND
1,2,3-Trichloropropane		0.002	ND
Taluene	1.0	0.001	ND
Xylene	10	0.001	ND

RECEIVED

NDV 2 8 1994 OCD HOBBS OFFICE

certify that the analyses performed for this report are accurate, and that the laboratory tests were conducted u methods approved by the U.S. Environmental Protection Agency or variations of these EPA methods. hese test results are intended to be used for informational purposes only and may not be used for regulatory ompliance

LESIDENT. NATIONAL TESTING LABORATORIES. INC CA Ì

REV. 3-92

CUSTOMER	ADDRESS		WATERC	TES	TTONAL TING
FRANK		/	IMIEKU.	/ LABO	ORATORIES INC
817 CE	NTRAL			6555 Wi Cievoland (216) 449	ilson Mills Road 1, OH 44143 2525
DDESSA	, TX 79761-				
L		1	תואר	KING	
DEALER A	DDRESS	1			
{			WATE	K	
ł			ANAI	YSIS	
1		•	RESU		
L		·	NESU	LIS	
NOTE:	exceeded, "ND" indicates	that the MCL (Maximu or in the case of pl that none of this co	i is eith Intaminar	er too hig	jh OR too low
	"**" Result may	e our detection leve be invalid due to l	al. Lack of "	Time Colle	acted"
	or because	the sample has exce	eeded the	30-hour t	time frame.
		estroyed due to lack a sample has exceeded			
	TNTC-Too Numero			eria Submit	
	Analysis perf	nrmad I	MCL	Detection	1 1 2 4 2 1
	Analysis peri	onieu (Detection Level	
	Minnebiologia				
	Microbiologic	.18:			
	Total colifor	m (organism/100ml)	0	0	ND
	Inorganic ch	nemicals - metals:			
	Aluminum		0.2	0.1	ND
	Arsenic		0.05	0.010	0.016
	Barium Cadmium		2.0 0.005	0.30 0.002	ND ND
	Chromium	RECEIVED	0.1	0.004	ND
	Copper Iron		1.3 0.3	0.004 0.020	0.015 0.36*
	Lead	NOV 2 8 1994	0.3	0.020	0,36* ND
	Manganese Mercury	OCD HOBBS	0.05	0.004 0.001	0.017
	Nickel	OFFICE	0.002	0.001	ND ND
	Gelenium		0.05	0.002	ND
	Silver Sodium		0.1	0.002	ND 680
	Zinc		5.0	0.004	0.36
	Inorganic c	hemicals other or	d physic	al factors	********
	-		-		· · ·
	Alkalinity (Chloride	Total as CaCO3)	250	10.0 5.0	190 1255*
	Fluoride		4.0	0.5	2.6
	Nitrate as N		10	0.5	2.6
	Nitrite as N Sulfate		1.0 250	0.5 5.0	ND 107
	Hardness (su	ggested limit = 100)	10.0	510*
	pH (Standard	Ūnits)	6.5-8. 500	.5 20.0	7.4
	Total Dissol Turbidity (1	urbidity Units)	1.0	0.1	2365* 0.9
		micals - trihalomet		ar an	un bar da an in in gu ng ng ng ng ng ng ng
	Bromoform Bromodichlo	romethane	· · · ·	0.004 0.002	ND ND
	Chloroform			0.002	ND
	Dibromochlo		<u> </u>	0.004	ND
		(sum of four above)		0.002	ND
I		emicals - volatiles:			
1	Benzene		0.005		ND
1	Vinyl Chlor		0.002		ND
	Carbon Tetr 1,2 Dichlor		0.005		
				,	