1R - 2/9

GENERAL CORRESPONDENCE

YEAR(S): 2000 -> 1794

RICE Operating Company

From the desk of:

Carolyn Doran Haynes

3-17-00

Bill Olson.

It appears we are finally getting the oil! Bot aller's team has been a big part of agressively going afterest. I would like to comment about MW.3. This is a very despirel (155') and also has large casing (4°). Before sampling, we are now using a pump to junge the required casing volume. In the past, I can't confirm that this was accomplished, and the analytical results maybe a testimony to that (upon compaison from years past.) This year, I will also be researching techniques to recover Cl. without wasting precious water. We (Boballin . S) will review any protocol (before implementing) with you for your input + gurdener. Thanks so much. Carolyn Haynes

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

CERTIFIED MAIL RETURN RECEIPT NO. Z 577 009 727

MAR 2 0 2000

March 17, 2000

Mr. William C. Olson NM Energy, Minerals, and Natural Resources Dept. Oil Conservation Division, Environmental Bureau 2040 S. Pacheco Santa Fe, NM 87505

RE: 1999

1999 MONITOR WELL REPORT GROUNDWATER REMEDIATION/MONITORING PIPELINE LEAK, WEST COUNTY ROAD SITE HOBBS SWD SYSTEM SW/4 NW/4 JCT. N-6, SEC 5,6, T19S, R38E, LEA COUNTY, NEW MEXICO

Dear Mr. Olson:

Rice Operating Company (ROC) appreciates this opportunity to submit the 1999 Monitor Well Report for the Hobbs Salt Water Disposal System Junction N-6 Release Site in the SW/4 NW/4 of Sections 5, 6, T19S, R38E, Lea County, NM. This monitoring site is situated just south of the intersection of Highway 62-180 and the South Loop of the Hobbs West County Road by-pass.

The 1999 quarterly monitoring events for the seven monitor wells were scheduled and conducted by Safety and Environmental Solutions, Inc. (SES) of Hobbs. Analytical results were conducted by Cardinal Larboratories of Hobbs. The 1999 MW Report was compiled by SES.

ROC has contracted with SES for Year 2000 monitor well sampling and SES will schedule all major events with a 48-hour advance notice to the NMOCD. All sampling activities will be conducted pursuant to NMOCD guidelines.

ROC has actively worked toward recovering the phase-separated hydrocarbon (PSH) at the Recovery Well MW-1. The high-volume submersible pump was removed March 13, 1999 because PSH recovery was negligible compared to the water volume pumped (and disposed.) Manual bailing of the PSH did not realize distinct improvement in reducing the PSH layer, so a

HOBBS SWD System Groundwater Monitoring March 17, 2000 Page 2 of 2

skimmer-type pump was installed in September 1999. This pumping program is monitored weekly to optimize PSH recovery, and it appears the PSH layer is now shrinking. The Recovery Well MW-1 oil-recovery cumulative results are summarized in the attached table. The monitor wells water-elevation and analytical cumulative results are also attached.

All recovered fluids from the skimmer pump operation and the monitor well sampling events are discharged into the into the Hobbs SWD System pipeline for disposal.

ROC is the service provider (operator) for the Hobbs Salt Water Disposal System and has no ownership of any portion of pipeline, well or facility. The Hobbs SWD System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

Thank you for your consideration concerning this yearly summary of groundwater monitoring information. If you have any questions or if I can be of any service, please don't hesitate to call.

RICE OPERATING COMPANY

Carolyn Doran Haynes

Operations Engineer

Enclosure:

1999 Year Report

Summary Tables

Carolyn Doran Haynes

Cc: file.

Ms. Donna Williams,

NMOCD, District I Office 1625 N. French Drive

Hobbs, NM 88240

QUARTERLY SUMMARY OF RECOVERY SYSTEM OPERATIONS WATER AND CRUDE OIL RECOVERY VOLUMES

	WE	ST COUNTY	ROAD SPI	ILL SITE, H	IOBBS SW	D SYSTEM
Ground	dwater Re	covery Oper				ecovery Operations
Date	Time Pumped (hours)	Volume Recovered (gal)	Avg Pump Rate (GPM)	Volume Recovered (gal)	Cumulative Volume (gal)	Description
JAN 1996	0	0	0.0		,	No recovery operations
FEB 1996	0	0	0.0	0.00		pending regulatory approval &
MAR 1996	0	0	0.0	0.00	0.00	facility installation
1ST QTR	0	0	0.0	0.00	0.00	
APR 1996	0	0	0.0	30.75	30.75	
MAY 1996	0	0	0.0	7.85	38.60	
JUN 1996	19	19,140	1.1	2.38	40.98	Groundwater Monitoring Event
2ND QTR	19	19,140	0.4	40.98		_
JUL 1996	0	0	0.0	6.50	47.48	
AUG 1996	0	0	0.0	3.27	50.75	Groundwater Monitoring Event
SEP 1996	0	. 0	0.0	3.75		
3RD QTR	0	0	0.0	13.52	54.50	
OCT 1996	0	0	0.0	5.00	59.50	
NOV 1996	528	262,080	6.1	1.70	61.20	Groundwater Monitoring Event
DEC 1996	720	561,600	13.0	3.00		
4TH QTR	1,248	823,680	6.4	9.70	64.20	
1996						
TOTALS	1,267	842,820	1.7	64.20	64.20	
JAN 1997	744	580,320	13.0	3.10	67.30	
FEB 1997	672	485,280	13.0	2.80	70.10	
MAR 1997	744	426,240	9.5	2.60	72.70	
1ST QTR	2,160	1,491,840	11.8	8.50	72.70	
APR 1997	0	0	0.0	2.25	74.95	Groundwater Monitoring Event
MAY 1997	408	325,440	7.3	4.45		
JUN 1997	672	524,160	12.1	2.80	82.20	
2ND QTR	1,080	849,600	6.5	9.50	82.20	
JUL 1997	600	465,120	10.4	2.50	84.70	Groundwater Monitoring Event
AUG 1997	744	580,320	13.0	2.10	86.80	
SEP 1997	720	561,600	13.0	3.00	89.80	
3RD QTR	2,064	1,607,040	12.1	7.60	89.80	
OCT 1997	744	580,320	13.0	3.10	92.90	
NOV 1997	720	541,440	12.5	3.00	95.90	
DEC 1997	48	34,560	0.0	3.70	99.60	Groundwater Monitoring Event
4TH QTR	1,512	1,156,320	8.5	9.80	99.60	
1997						Total Crude oil recovered from
TOTALS	6.816	5,104,800	9.7	35.40	99.60	Apr 96 to Dec 97

	WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM								
Ground	dwater Re	covery Oper	ations	Crude Oil Recovery Operations					
Date	Time Pumped (hours)	Volume Recovered (gal)	Avg Pump Rate (GPM)	Volume Recovered (gal)	Cumulative Volume (gal)	Description			
JAN 1998	O	0	0.0						
FEB 1998	240	144,000	3.6	1	ľ	Groundwater Monitoring Event			
MAR 1998	744	446,400	10.0						
1ST QTR	984	590,400	4.5						
APR 1998	696	167,040	0.0	2.90	113.60				
MAY 1998	744	178,560	4.0	3.10	ł				
JUN 1998	740	172,800	4.0	3.00	119.70	1			
2ND QTR	2,180	518,400	2.7	9.00					
JUL 1998	576	138,240	4.0	2.40	122.10				
AUG 1998	0	0	0.0	19.50		Groundwater Monitoring Event			
SEP 1998	0	0	0.0	4.63	146.23				
3RD QTR	576	138,240	1.3	26.53	146.23				
OCT 1998	0	0	0.0	8.26	154.49				
NOV 1998	0	0	0.0	11.63	166.12				
DEC 1998	0	0	0.0	10.63	176.75	Groundwater Monitoring Event			
4TH QTR	0	0	0.0	30.52	176.75				
1998 TOTALS	3,740	1,247,040	2.1	77.15	176.75	Total Crude oil recovered from Apr 96 to Dec 98			
JAN 1999	610.5	127,153	2.5	3.10	179.85				
FEB 1999	672	68,554	1.8	2.80	182.65				
MAR 1999	292.4	6,418	0.4	0.60	183.25	Pulled pump March 13			
1ST QTR	1,575	202,125	1.6	6.50	183.25				
APR 1999	0	73	0.0	16.56	199.81	Recovered w/ manual bailer			
MAY 1999	0	41	0.0	10.55	210.36	Recovered w/ manual bailer			
JUN 1999	0	0	0.0	0.00	210.36				
2ND QTR	0	114	0.0	. 27.11	210.36				
JUL 1999	0	0	0.0	0.00	210.36				
AUG 1999	0	0	. 0.0	19.50	229.86	Recovered w/ manual bailer			
SEP 1999	0	0	0.0	0.00	229.86				
3RD QTR	0	0	0.0	19.50	229.86				
OCT 1999	116.5	75	0.0	32.00		Installed skimmer-type pump			
NOV 1999	112	151	0.0	60.00	321.86				
DEC 1999	58.5	19	0.0	15.00	336.86				
4TH QTR	287	245	0.0	107.00	336.86				
1999 TOTALS	1,862	202,484	0.4	160.11	336.86	Total Crude oil recovered from Apr 96 to Dec 99			

SUMMARY OF 1996, 1997, 1998, 1999 RECOVERED VOLUMES

WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM

Groun	idwater Re	covery Opera	ations	Crude Oil Recovery Operations			
Date	Time Pumped (hours)	Volume Recovered (gal)	Avg Pump Rate (GPM)	Volume Recovered (gal)	Cumulative Volume (gal)	Description	
1996 TOTALS	1,267	842,820	1.7	64.20	64.20	Total Crude oil recovered from Apr 96 to Dec 96	
1997 TOTALS	6,816	5,104,800	9.7	35.40	99.60	Total Crude oil recovered from Apr 96 to Dec 97	
1998 TOTALS	3,740	1,247,040	2.1	77.15	176.75	Total Crude oil recovered from Apr 96 to Dec 98	
1999 TOTALS	1,862	202,484	0.4	160.11	336.86	Total Crude oil recovered from Apr 96 to Dec 99	
4=YEAR TOTAL	13,685	7,397,144		336.86	336,86	Total Crude Oil recovered from April 1996 to December 1999	

SUMMARY OF GROUNDWATER MEASUREMENTS by QUARTER WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM

		Depth to	Water	Casing	Surface	LNAPL
Well	Date Gauged	Water	Elevation	Elevation	Elevation	Thickness
IWW	07/26/95	35.75	62.26	98.01	97.8	0.00
IWW	06/24/96	35.50	62.51	98.01	97.8	0.00
IWW	08/02/96	35.60	62.41	98.01	97.8	0.00
IWW	11/22/96	37.00	61.01	98.01	97.8	0.00
IWW	07/02/97	37.00	61.01	98.01	97.8	0.00
IWW	08/07/97	37.78	60.23	98.01	97.8	0.00
iww .	12/06/97	37.51	60.50	98.01	97.8	0.00
IWW	02/14/98	37.14	60.90	98.04	97.8	0.00
IWW	04/07/99	38.06	60.11	98.17	97.8	0.00
IWW	06/28/99	38.18	59.99	98.17	97.8	0.00
IWW	09/17/99	38.23	59.94	98.17	97.8	0.00
IWW	12/13/99	38.44	59.73	98.17	97.8	0.00
MW-1	07/26/95	42.09	57.91	100.00	97.3	N/A
MW-1	06/24/96	40.73	59.27	100.00	97.3	N/A
MW-1	08/07/97	39.00	62.50	100.00	97.3	1.83
MW-1	02/14/98	39.26	60.86	100.00	97.3	0.15
MW-1	10/26/98	40.50	60.05	100.00	97.3	0.67
MW-1	04/07/99	42.17	57.83	100.00	97.3	
MW-1	06/28/99	44.67	55.33	100.00	97.3	
MW-1	09/17/99	free	product		free	product
MW-1	12/13/99	free	product		free	product
MW-2	07/26/95	37.45	60.46	97.91	98.5	0.00
MW-2	06/18/96	35.16	62.75	97.91	98.5	0.00
MW-2	06/24/96	35.24	62.67	97.91	98.5	0.00
MW-2	08/02/96	35.30	62.61	97.91	98.5	0.00
MW-2	11/22/96	37.00	60.91	97.91	98.5	0.00
MW-2	07/02/97	36.70	61.21	97.91	98.5	0.00
MW-2	08/07/97	37.80	60.11	97.91	98.5	0.00
MW-2	12/06/97	37.32	60.59	97.91	98.5	0.00
MW-2	02/14/98	37.70	60.24	97.94	98.5	0.00
MW-2	04/07/99	37.83	60.06	97.89	98.5	0.00
MW-2	06/28/99	37.92	59.97	97.89	98.5	0.00
MW-2	09/17/99	38.00	59.89	97.89	98.5	0.00
MW-2	12/13/99	38.15	59.74	97.89	98.5	0.00
MW-3	07/26/95	34.97	62.57	97.54	98.1	0.00
MW-3	06/24/96	35.54	62.00	97.54	98.1	0.00
MW-3	08/02/96	36.60	60.94	97.54	98.1	0.00
MW-3	11/22/96	35.70	61.84	97.54	98.1	0.00
MVV-3	07/02/97	36.20	61.34	97.54	98.1	0.00
MW-3	08/07/97	36.80	60.74	97.54	98.1	0.00
MW-3	12/06/97	36.80	60.74	97.54	98.1	0.00
MW-3	02/14/98	36.88	60.77	97.65	98.1	0.00
MW-3	04/07/99	38.52	59.13	97.65	98.1	0.00
MW-3	06/28/99	38.60	59.05	97.65	98.1	0.00
MW-3	09/17/99	38.58	59.07	97.65	98.1	0.00
MW-3	12/13/99	38.75	58.90	97.65	98.1	0.00

	24.0	Depth to	Water	Casing	Surface	LNAPL
Well	Date Gauged	Water	Elevation	Elevation	Elevation	Thickness
MW-4	07/26/95	37.40	62.95	100.35	100.8	0.00
MW-4	06/24/96	37.20	63.15	100.35	100.8	0.00
MW-4	08/02/96	35.80	64.55	100.35	100.8	0.00
MW-4	11/22/96	38.25	62.10	100.35	100.8	0.00
MW-4	07/02/97	38.30	62.05	100.35	97.4	0.00
MW-4	08/07/97	37.50	62.85	100.35	97.4	0.00
MW-4	12/06/97	39.30	61.05	100.35	97.4	0.00
MW-4	02/14/98	No data		99.93	97.4	0.00
MW-4	04/07/99	40.01	60.25	100.26	97.4	0.00
MW-4	06/28/99	40.80	59.46	100.26	97.4	0.00
MW-4	09/17/99	40.16	60.10	100.26	97.4	0.00
MW-4	12/13/99	40.35	59.91	100.26	97.4	0.00
MW-5	07/26/95	33.91	62.25	96.16	96.0	0.00
MW-5	06/18/96	33.61	62.55	96.16	96.0	0.00
MW-5	06/24/96	33.72	62.44	96.16	96.0	0.00
MW-5	08/02/96	33.58	62.58	96.16	96.0	0.00
MW-5	11/22/96	34.60	61.56	96.16	96.0	0.00
MW-5	07/02/97	34.97	61.19	96.16	96.0	0.00
MW-5	08/07/97	35.70	60.46	96.16	96.0	0.00
MW-5	12/06/97	35.76	60.40	96.16	96.0	0.00
MW-5	02/14/98	35.30	60.91	96.21	96.0	0.00
MW-5	04/07/99	36.28	60.17	96.45	96.0	0.00
MW-5	06/28/99	36.40	60.05	96.45	96.0	0.00
MW-5	09/17/99	36.49	59.96	96.45	96.0	0.00
MW-5	12/13/99	36.64	59.81	96.45	96.0	0.00
MW-6	07/26/95	35.69	62.83	98.52	98.8	0.00
MW-6	06/18/96	35.56	62.96	98.52	98.8	0.00
MW-6	06/24/96	35.68	62.84	98.52	98.8	0.00
MW-6	08/02/96	35.68	62.84	98.52	98.8	0.00
MW-6	11/22/96	37.29	61.23	98.52	98.8	0.00
MW-6	07/02/97	37.10	61.42	98.52	98.8	0.00
MW-6	08/07/97	38.20	60.32	98.52	98.8	0.00
MW-6	12/06/97	37.74	60.78	98.52	98.8	0.00
MW-6	02/14/98	No data		98.53	98.8	0.00
MW-6	04/07/99	38.27	60.17	98.44	98.8	0.00
MW-6	06/28/99	38.37	60.07	98.44	98.8	0.00
MW-6	09/17/99	38.45	59.99	98.44	98.8	0.00
MW-6	12/13/99	38.62	59.82	98.44	98.8	0.00
MW-7	07/26/95	37.92	60.57	98.49	98.8	0.00
MW-7	06/24/96	35.76	62.73	98.49	98.8	0.00
MW-7	08/02/96	36.10	62.39	98.49	98.8	0.00
MW-7	11/22/96	36.84	61.65	98.49	98.8	0.00
MW-7	07/02/97	37.38	61.11	98.49	98.8	0.00
MW-7	08/07/97	37.30	61.19	98.49	98.8	0.00
MW-7	12/06/97	37.81	60.68	98.49	98.8	0.00
MW-7	02/14/98	No data		98.53	98.8	0.00
MW-7	04/07/99	38.40	60.04	98.44	98.8	0.00
MW-7	06/28/99	38.46	59.98	98.44	98.8	0.00
MW-7	09/17/99	38.56	59.88	98.44	98.8	0.00
MW-7	12/13/99	38.73	59.71	98.44	98.8	0.00

SUMMARY OF WATER SAMPLE ANALYTICAL RESULTS 1995 - 1999 WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM

	WEST COO	NII KUAD		LOBBO 21	AD 2121EM		
the effective points are to tend that he will be the	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TDS	Chloride
			(ppm)	(ppm)	(ppm)		(mg/l)
		35 Y 46 S 20 A 2 A 3 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4	Market Report & Market Control of the Control of th	Carlotta Control of the Control of t	DOUGH COME NOTE COME THE	Contract to the first sector a region of the production	250
						25,106	14,091
	N/A		N/A	N/A	N/A	4,374	
02/18/98	3.4000	0.5700	0.9600	0.7400	5.6700	493	100
12/12/98						840	43
04/07/99	2.8500	1.3300	2.5200	2.5500	9.2500	1820	1286
07/21/95	0.0470	0.0120	0.0330	<0.0010	0.0920	N/A	132
06/19/96	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	649	96
08/12/96	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	N/A	N/A
11/25/96	0.0019_	0.0012	0.0018	<0.0030	0.0049	443	44
04/03/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	497	50
07/02/97	0.0060_	0.0070	0.0030	0.0110	0.0270	399	44
12/06/97	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	414	40
12/06/97	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	N/A	N/A
02/18/98	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	455	36
08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	457	45
12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	422	47
04/06/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	464	40
06/28/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	426	44
09/17/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	528	45
12/14/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	596	41
07/21/95	0.0020	<0.0010	<0.0010	<0.0030	0.0020	N/A	256
07/21/95	0.0440	0.0610	0.0480	0.0420	0.1950	N/A	N/A
06/19/96	0.1320	<0.0010	<0.0010	<0.0010	0.1320	2,684	160
11/25/96	1.1700	0.0011	0.0047	0.0150	1.1908	13,890	6,850
04/03/97	0.2920	<0.0010	0.0010	0.0050	0.2980	7764	3249
07/02/97	0.0020	<0.0010	<0.0010	<0.0030	0.0020	3065	1290
12/06/97	0.0120	<0.0020	<0.0020	<0.0060	0.0120	4610	1450
12/06/97	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	N/A	N/A
	04/07/99 07/21/95 06/19/96 08/12/96 11/25/96 04/03/97 07/02/97 12/06/97 12/06/97 02/18/98 08/16/98 12/12/98 04/06/99 06/28/99 09/17/99 12/14/99 07/21/95 07/21/95 06/19/96 11/25/96 04/03/97 07/02/97	Date Benzene Sampled (ppm) Standards 0.010 07/24/95 2.8710 07/24/95 N/A 02/18/98 3.4000 12/12/98 3.4000 02/18/98 3.4000 12/12/98 0.0470 06/19/96 <0.0010 08/12/96 <0.0010 08/12/96 <0.0010 04/03/97 <0.0010 04/03/97 <0.0020 12/06/97 <0.0020 12/16/98 <0.0020 04/06/99 <0.0020 08/16/98 <0.0020 04/06/99 <0.0020 05/14/99 <0.0020 07/21/95 0.0020 07/21/95 0.0040 06/19/96 0.1320 11/25/96 1.1700 04/03/97 0.0020 12/06/97 0.0020	Date Benzene (ppm) Toluene (ppm) Standards 0.010 0.750 07/24/95 2.8710 <0.0200	Date Sampled Benzene (ppm) Toluene (ppm) Ethylbenzene (ppm) Standards 0.010 0.750 0.750 07/24/95 2.8710 <0.0200	Date Sampled (ppm) (pp	Date Sampled Copm Copm	Sampled (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (mg/l)

Well	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TDS	Chloride
Name	Sampled	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(mg/l)	(mg/l)
NMWQCC		0.010	0.750		0,620	N/A	1,000	250
MW-3 (SPL)	02/18/98	0.0016	<0.0010	<0.0010	<0.0010	0.0016	2,967	1,700
MW-3	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	3,980	1,672
MW-3	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1,498	614
MW-3	04/07/99	0.9530	0.0020	0.0040	<0.0060	N/A	20,470	11,770
MW-3	06/28/99	0.6730	<0.0020	0.0020	<0.0060	N/A	15,660	8,567
MW-3	09/17/99	0.7150	<0.0020	<0.0020	<0.0060	N/A	17,730	8,922
MW-3	12/14/99	0.7610	<0.0020	0.0030	<0.0060	N/A	18,120	9,093
MW-4	08/10/95	<0.0010	<0.0010	<0.0010	0.0670	0.0670	N/A	332
MW-4	06/19/96	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	1,114	312
MW-4	11/25/96	0.0029	0.0011	0.0019	<0.0030	0.0059	953	240
MW-4	04/03/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	877	196
MW-4	07/02/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	788	206
MW-4	12/06/97	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	974	264
MW-4	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1,152	294
MW-4	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	910	344
MW-4	04/07/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1,088	297
MW-4	06/28/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1,080	279
MW-4	09/17/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1,187	300
MW-4	12/14/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1,260	372
MW-5	07/24/95	<0.0200	<0.0200	<0.0200	<0.0200	.<0.0200	1,481	106
MW-5	06/19/96	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	506	44
MW-5	11/25/96	0.0012	0.0012	0.0016	<0.0030	0.0040	506	70
MW-5	04/03/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	509	50
MW-5	07/02/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	458	50
MW-5	12/06/97	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	506	52
MW-5 (SPL)	12/06/97	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	N/A	N/A
MW-5 (SPL)	02/18/98	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	426	44
MW-5	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	505	42
MW-5	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	421	47
MW-5	04/07/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	491	40

Page 2 of 4

Well	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TDS	Chloride
Name	Sampled	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(mg/l)	(mg/l)
NMWQCC		0.010	0.750	0.750	0.620	N/A	1,000	250
MW-5	06/28/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	449	44
MW-5	09/17/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	484	49
MW-5	12/14/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	596	45
MW-6	07/21/95	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	N/A	96
MW-6	06/19/96	0.0230	<0.0010	<0.0010	<0.0030	0.0230	524	48
MW-6	11/25/96	0.0160	0.0013	0.0023	0.0047	0.0243	477	38
MW-6	04/03/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	404	80
MW-6	07/02/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	419	38
MW-6	12/06/97	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	445	28
MW-6 (SPL)	12/06/97	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	N/A	N/A
MW-6	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	225	20
MW-6	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	363	20
MW-6	04/06/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	436	20
MW-6	06/28/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	378	28
MW-6	09/17/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	428	24
MW-6	12/13/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	576	24
MW-7	07/24/95	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	3,218	382
MW-7	06/19/96	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	1,127	359
MW-7	11/25/96	0.0011	<0.0010	<0.0010	<0.0030	<0.0030	1,090	334
MW-7	04/03/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	1166	344
MW-7	07/02/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	1092	264
MW-7	12/06/97	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	806	188
MW-7 (SPL)	12/06/97	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	N/A	N/A
MW-7	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	802	212
MW-7	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	853	262
MW-7	04/06/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1000	245
MW-7	06/28/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	938	255
MW-7	09/17/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1685	255
MW-7	12/13/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	996	258
WHW	08/16/96	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	473	32

Page 3 of 4

Well	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TDS	Chloride
Name	Sampled	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(mg/l)	(mg/l)
NMWQCC		0.010	0.750	0.750	0.620	N/A	1,000	250
WHW	N/A	N/A	N/A	N/A	N/A	N/A	898	68
CMW	08/16/96	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	448	68
CMW	N/A	N/A	N/A	N/A	N/A	N/A	490	52
GHW	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	722	76
GHW	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	703	78
IWW	07/24/95	0.7770	<0.0200	<0.0200	0.0300	0.8070	13,889	7,178
IWW	06/19/96	0.0320	<0.0010	<0.0010	<0.0030	0.0320	1,817	828
IWW	11/25/96	0.6550	<0.0010	0.0026	<0.0030	0.6576	10,147	5,300
IWW	04/03/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	1468	760
IWW	07/02/97	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	663	200
IWW	12/06/97	<0.0020	0.0060	<0.0020	0.0060	0.0120	931	328
IWW (SPL)	12/06/97	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	N/A	N/A
IWW (SPL)	02/18/98	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	491	67
IWW	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	491	67
IWW	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	369	74
IWW	04/06/99	0.0630	<0.0020	<0.0020	<0.0060	<0.0060	3310	2275
IWW	06/28/99	0.0130	<0.0020	<0.0020	<0.0060	<0.0060	2780	1893
IWW	09/17/99	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	626	166
IWW	12/13/99	0.0040	<0.0020	<0.0020	<0.0060	<0.0060	1260	505
MW-1	07/24/95	2.8710	<0.0200	0.0120	0.2710	3.1540	25,106	14,091
MW-1	07/24/95	N/A	N/A	N/A	N/A	N/A	4,374	
MW-1 (SPL)	02/18/98	3.4000	0.5700	0.9600	0.7400	5.6700	493	100
MW-1 (SPL)	12/12/98				-		840	43
MW-1	04/07/99	2.8500	1.3300	2.5200	2.5500	9.2500	1820	1286

Analysis was performed by Cardinal Laboratories in Hobbs, New Mexico.

Samples labeled (SPL) analyzed by Southern Petroleum Laboratories, Houston, Texas.

Benzene, toluene, eythlbenzene, and xylene (BTEX); total dissolved solids (TDS); and chloride analyses were conducted using EPA Methods 8020; 160.1, and 352.3, respectively.

Results presented in bold print exceed NMWQCC human health standards for ground water.

All results are reported in milligrams per liter (mg/l): parts per million (ppm).

RICE Operating Company

122 West Taylor • Hobbs, NM 88240 Phone: (505) 393-9174 • Fax: (505) 397-1471

APR 1 4 1999

OIL CONSERVATION DIVIS

April 12, 1999

Mr. William C. Olson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

RE:

Groundwater Monitoring

Pipeline Leak, West County Road Site, Hobbs SWD System SW/4, NW/4 of Section 5, T19S, R38E, NMPM, Lea County, Hobbs, NM

Dear Mr. Olson:

Rice Operating Company (ROC) has been conducting groundwater monitoring and hydrocarbon contamination recovery at the above-referenced site since early 1996. The summary of activities and results that is compiled in this report will bring the project record up to date.

Field Operations

Recovery well MW-1, monitor wells MW-2, MW-3, MW 4, MW5, MW6, MW7, and the inactive water well at the site (IWW) have been gauged, developed, and sampled at various times throughout the last three years. The sampling events were performed by Mr. Jerry Brian with Quest Personnel Inc., and Mr. F. Wesley Root, formerly of Rice Operating Company. Recovery Well MW-1 was also pumped and bailed throughout the years to recover phase-separated hydrocarbons. Volumes are summarized in Appendix A.

Sampling and Analytical Procedures

Prior to development and sampling the monitor wells were in most instances gauged to obtain water level measurements. These water level measurements were assessed as elevation levels and are summarized in Appendix B. The wells were surge-bailed to remove any fine granulated materials and then purged by manual bailing prior to collecting groundwater samples for laboratory analysis.

After purging, a water sample was obtained and placed into a one-liter glass jar and into two 40-milliliter sample vials with zero headspace, labeled for sample identification, sealed with QA/QC seals, and preserved at 4° C in accordance with EPA Method 600/4-82-029. A chain-of-custody documenting the sample collection times and delivery time to the laboratory was completed. The samples were transported to Cardinal Laboratories in Hobbs, New Mexico or shipped to SPL in Houston, TX for analysis. The samples were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX), total dissolved solids (TDS), and chloride using EPA Methods SW 846-

8260, 600/4-79-02-160.1, and 600/4-79-02-325.3, respectively. Analytical summary for each year and copies of laboratory results accompanied by chain of custody are in Appendix C.

Analytical Results

Analytical results from the water samples recorded BTEX levels below NMWQCC Standard limits for wells MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, the inactive water well IWW, and the Gray House Well, GHW. The recovery well, MW-1, was found to have phase-separated hydrocarbons on the fluid column.

TDS and Chloride analysis of the water samples obtained from the wells recorded concentrations below the New Mexico Water Quality Control Commission human health standards for groundwater (TDS < 1,000 ppm; Chloride < 250 ppm) at MW-1, MW-2, MW-5, MW-6, IWW, and GHW.

Planned Activities for 1999

Sampling events will be accomplished approximately quarterly for the 1999 year. The first sampling event of 1999 occurred April 6 and 7 and was conducted by Safety and Environmental Solutions of Hobbs, NM. Ms. Donna Williams of the OCD witnessed the event. Cardinal Laboratory of Hobbs, NM received the properly preserved samples for analysis of BTEX, TDS, major anions and cations, pH and specific gravity.

The remaining sampling events are scheduled for June, September, and December 1999. Each sampling event will be summarized and included in the annual report to be submitted to the OCD in March 2000.

The recovery well, MW-1 will be routinely monitored for phase-separated hydrocarbons. These hydrocarbons will be manually bailed from the well and the volume recorded. It may become necessary to install a skimming-type pump in order to accomplish this hydrocarbon recovery more quickly. All water and hydrocarbon volumes recovered will be recorded and the fluid will be discharged into the RICE pipeline and disposed through the Hobbs SWD System, as stated in the Phase III Cleanup Implementation Plan approved by the OCD.

Please contact me at (505) 393-9174, fax (505) 397-1471 if you have any questions.

Sincerely,

Carolyn Doran Haynes

Operations Engineer

Attachments:

Appendices A, B, C

Carolyn Doran Haynes

Cc:

Donna Williams, NMOCD Hobbs Office, 1625 N. French Dr., Hobbs, NM 88240

File

APPENDIX A

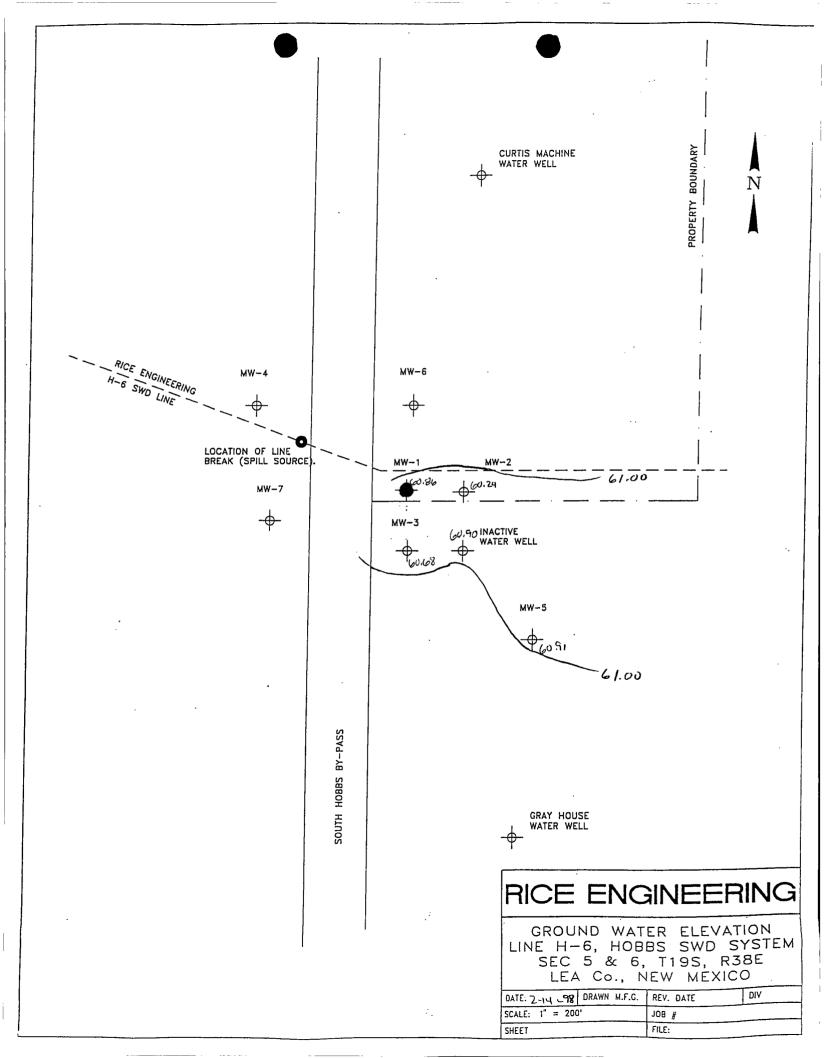
QUARTERLY SUMMARY OF RECOVERY SYSTEM OPERATIONS WATER AND CRUDE OIL RECOVERY VOLUMES WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM

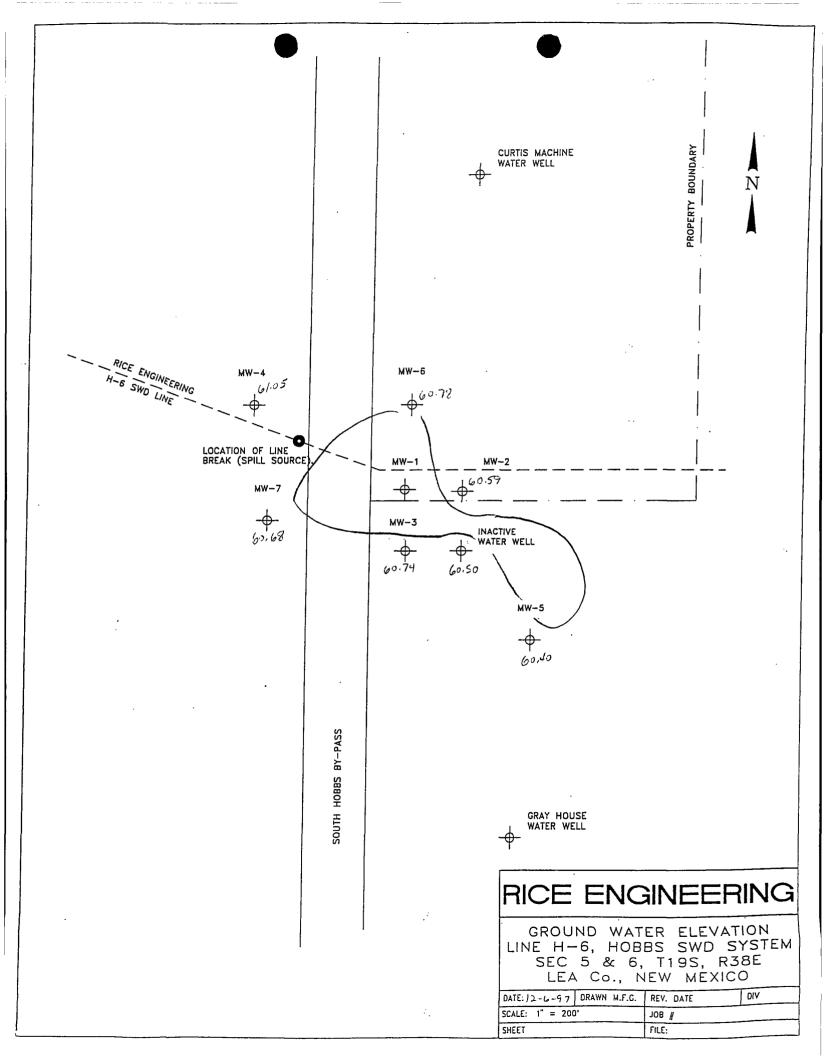
I Ground	lwater Re	covery Oper	ations	September C	Crude Oil Recovery Operations			
Date	Time	Volume	Avg Pump	Volume	Cumulative			
	Pumped	Recovered	Rate	Recovered				
	(hours)	(gal)	(GPM)	(gal)	(gal)			
JAN 1996	0	0	0.0	0.00	0.00	No recovery operations		
FEB 1996	0	0	0.0	0.00	0.00	pending regulatory approval &		
MAR 1996	0	0	0.0	0.00	0.00	facility installation		
1ST QTR	0	0	0.0	0.00	0.00			
APR 1996	0	0	0.0	30.75	30.75			
MAY 1996	0	0	0.0	7.85	38.60			
JUN 1996	19	19,140	1.1	2.38	40.98	Groundwater Monitoring Event		
2ND QTR	19	19,140	0.4	40.98	40.98	·		
JUL 1996	0	0	0.0	6.50	47.48			
AUG 1996	0	0	0.0	3.27	50.75	Groundwater Monitoring Event		
SEP 1996	0	0	0.0	3.75				
3RD QTR	0	0	0.0	13.52	54.50			
OCT 1996	0	0	0.0	5.00	59.50			
NOV 1996	528	262,080	6.1	1.70	61.20	Groundwater Monitoring Event		
DEC 1996	720	561,600	13.0	3.00				
4TH QTR	1,248	823,680	6.4	9.70	64.20			
1996								
TOTALS	1,267	842,820	1.7	64.20	64.20			
JAN 1997	744	580,320	13.0	3.10	67.30			
JAN 1997 FEB 1997	744 672	580,320 485,280	13.0 13.0	3.10 2.80	67.30 70.10			
JAN 1997 FEB 1997 MAR 1997	744 672 744	580,320 485,280 426,240	13.0 13.0 9.5	3.10 2.80 2.60	67.30 70.10 72.70			
JAN 1997 FEB 1997 MAR 1997 1ST QTR	744 672 744 2,160	580,320 485,280	13.0 13.0 9.5 11.8	3.10 2.80 2.60 8.50	67.30 70.10 72.70 72.70			
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997	744 672 744 2,160 0	580,320 485,280 426,240 1,491,840	13.0 13.0 9.5 11.8 0.0	3.10 2.80 2.60 8.50 2.25	67.30 70.10 72.70 72.70 74.95	Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997	744 672 744 2,160 0 408	580,320 485,280 426,240 1,491,840 0 325,440	13.0 13.0 9.5 11.8 0.0 7.3	3.10 2.80 2.60 8.50 2.25 4.45	67.30 70.10 72.70 72.70 74.95 79.40			
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997	744 672 744 2,160 0 408 672	580,320 485,280 426,240 1,491,840 0 325,440 524,160	13.0 13.0 9.5 11.8 0.0 7.3 12.1	3.10 2.80 2.60 8.50 2.25 4.45 2.80	67.30 70.10 72.70 72.70 74.95 79.40 82.20			
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR	744 672 744 2,160 0 408 672 1,080	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50	67.30 70.10 72.70 72.70 74.95 79.40 82.20 82.20	Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997	744 672 744 2,160 0 408 672 1,080 600	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50	67.30 70.10 72.70 72.70 74.95 79.40 82.20 82.20 84.70			
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997 AUG 1997	744 672 744 2,160 0 408 672 1,080 600 744	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120 580,320	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5 10.4 13.0	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50 2.50 2.10	67.30 70.10 72.70 72.70 74.95 79.40 82.20 82.20 84.70 86.80	Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997 AUG 1997 SEP 1997	744 672 744 2,160 0 408 672 1,080 600 744 720	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120 580,320 561,600	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5 10.4 13.0 13.0	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50 2.10 3.00	67.30 70.10 72.70 72.70 74.95 79.40 82.20 82.20 84.70 86.80 89.80	Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997 AUG 1997 SEP 1997 3RD QTR	744 672 744 2,160 0 408 672 1,080 600 744 720 2,064	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120 580,320 561,600 1,607,040	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5 10.4 13.0 13.0	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50 2.50 2.10 3.00 7.60	67.30 70.10 72.70 72.70 74.95 79.40 82.20 84.70 86.80 89.80 89.80	Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997 AUG 1997 SEP 1997 3RD QTR OCT 1997	744 672 744 2,160 0 408 672 1,080 600 744 720 2,064	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120 580,320 561,600 1,607,040 580,320	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5 10.4 13.0 13.0 12.1	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50 2.50 2.10 3.00 7.60	67.30 70.10 72.70 72.70 74.95 79.40 82.20 82.20 84.70 86.80 89.80 89.80	Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997 AUG 1997 SEP 1997 3RD QTR OCT 1997 NOV 1997	744 672 744 2,160 0 408 672 1,080 600 744 720 2,064 744	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120 580,320 561,600 1,607,040 580,320 541,440	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5 10.4 13.0 13.0 13.0 12.5	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50 2.50 2.10 3.00 7.60 3.10 3.00	67.30 70.10 72.70 72.70 74.95 79.40 82.20 84.70 86.80 89.80 89.80 92.90 95.90	Groundwater Monitoring Event Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997 AUG 1997 SEP 1997 SEP 1997 3RD QTR OCT 1997 NOV 1997 DEC 1997	744 672 744 2,160 0 408 672 1,080 600 744 720 2,064 744 720 48	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120 580,320 561,600 1,607,040 580,320 541,440 34,560	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5 10.4 13.0 13.0 12.1	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50 2.10 3.00 7.60 3.10 3.00 3.70	67.30 70.10 72.70 72.70 74.95 79.40 82.20 82.20 84.70 86.80 89.80 89.80 92.90 95.90 99.60	Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997 AUG 1997 SEP 1997 3RD QTR OCT 1997 NOV 1997	744 672 744 2,160 0 408 672 1,080 600 744 720 2,064 744	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120 580,320 561,600 1,607,040 580,320 541,440	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5 10.4 13.0 13.0 13.0 12.5	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50 2.50 2.10 3.00 7.60 3.10 3.00	67.30 70.10 72.70 72.70 74.95 79.40 82.20 84.70 86.80 89.80 89.80 92.90 95.90	Groundwater Monitoring Event Groundwater Monitoring Event		
JAN 1997 FEB 1997 MAR 1997 1ST QTR APR 1997 MAY 1997 JUN 1997 2ND QTR JUL 1997 AUG 1997 SEP 1997 SEP 1997 3RD QTR OCT 1997 NOV 1997 DEC 1997	744 672 744 2,160 0 408 672 1,080 600 744 720 2,064 744 720 48	580,320 485,280 426,240 1,491,840 0 325,440 524,160 849,600 465,120 580,320 561,600 1,607,040 580,320 541,440 34,560	13.0 13.0 9.5 11.8 0.0 7.3 12.1 6.5 10.4 13.0 13.0 12.1	3.10 2.80 2.60 8.50 2.25 4.45 2.80 9.50 2.10 3.00 7.60 3.10 3.00 3.70	67.30 70.10 72.70 72.70 74.95 79.40 82.20 82.20 84.70 86.80 89.80 89.80 92.90 95.90 99.60	Groundwater Monitoring Event Groundwater Monitoring Event		

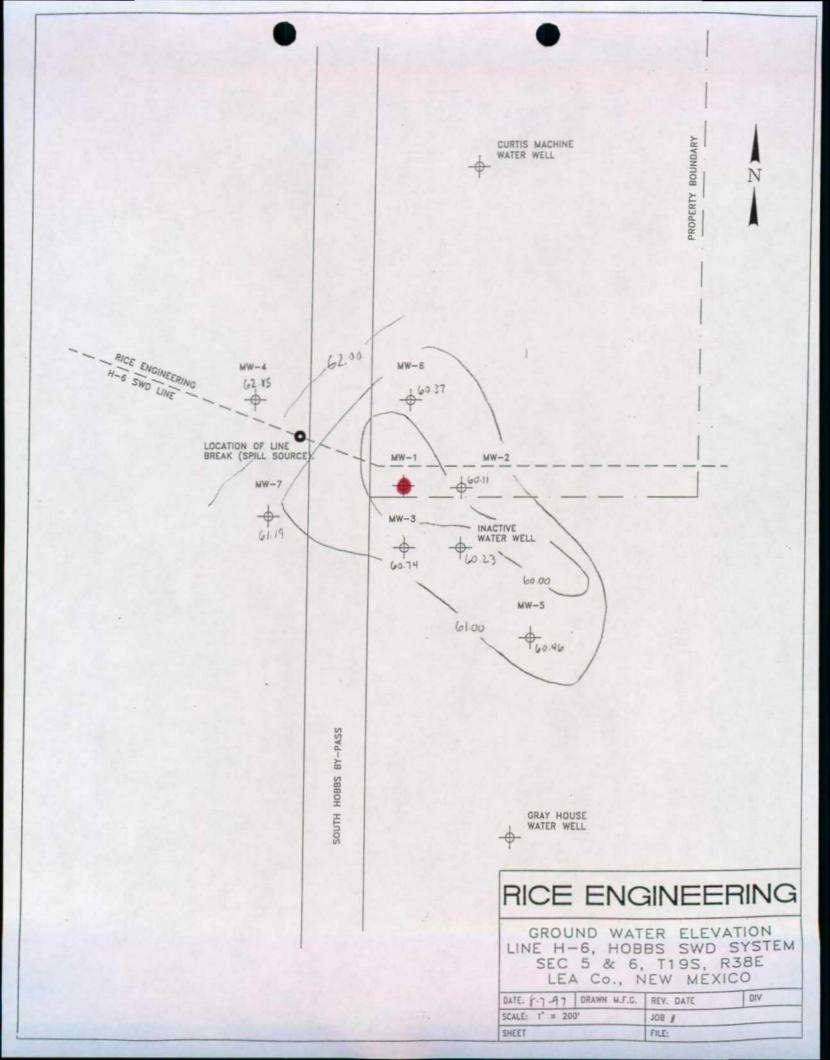
QUARTERLY SUMMARY OF RECOVERY SYSTEM OPERATIONS WATER AND CRUDE OIL RECOVERY VOLUMES WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM

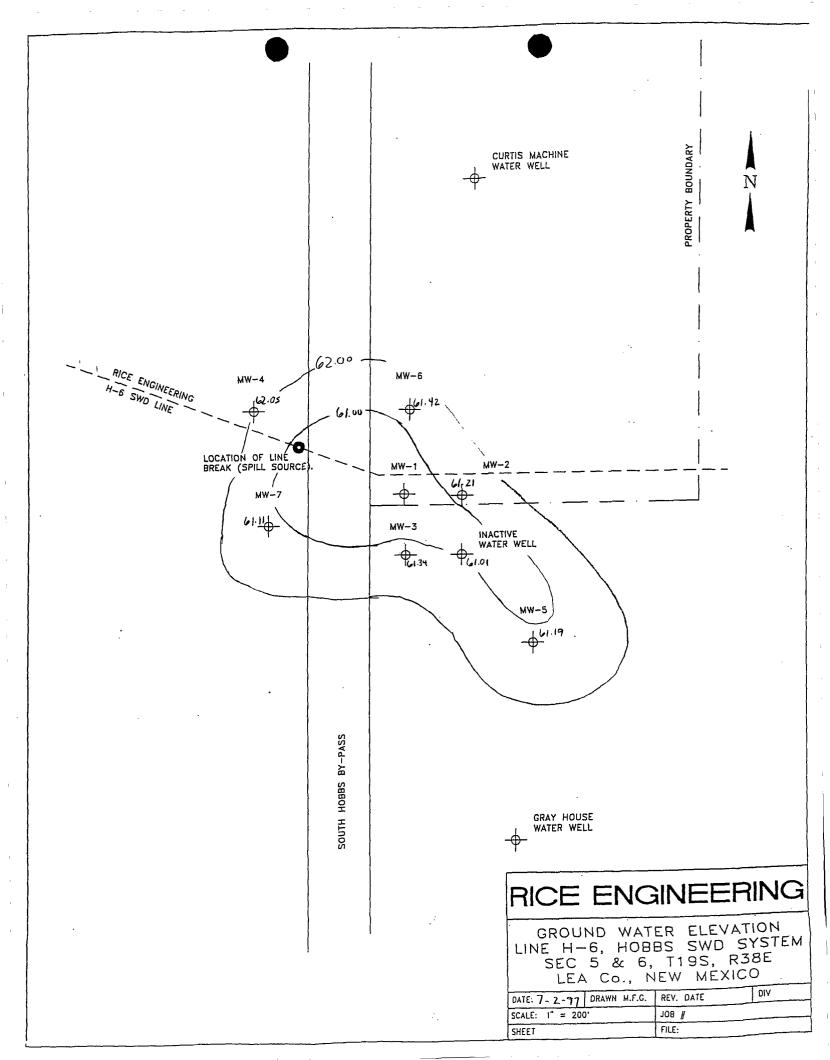
Groundwater Recovery Operations				Crude Oil Recovery Operations			
Date	Time Pumped (hours)	Volume Recovered (gal)	Avg Pump Rate (GPM)	Volume Recovered (gal)	Cumulative		
JAN 1998 FEB 1998 MAR 1998	0 240 744	0 144,000 446,400	0.0 3.6 10.0	3.25 3.10	104.35 707.60 110.70	Groundwater Monitoring Event	
1ST QTR	984	590,400	4.5	11.10	110.70		
APR 1998 MAY 1998	696 744	167,040 178,560	0.0 4.0	2.90 3.10	116.70	·	
JUN 1998 2ND QTR	740 2,180	172,800 518,400	4.0 2.7	3.00 9.00			
JUL 1998 AUG 1998 SEP 1998	576 0 0	138,240 0 0	4.0 0.0 0.0	2.40 19.50 4.63	122.10	Groundwater Monitoring Event	
3RD QTR	576	138,240	1.3	26.53			
OCT 1998 NOV 1998 DEC 1998 4TH QTR	0 0 0	0 0 0	0.0 0.0 0.0 0.0	8.26 11.63 10.63 30.52	154.49 166.12	Groundwater Monitoring Event	
1998 TOTALS	3,740	1,247,040	2.1	77.15		Total Crude oil recovered from Apr.96 to Dec 98	

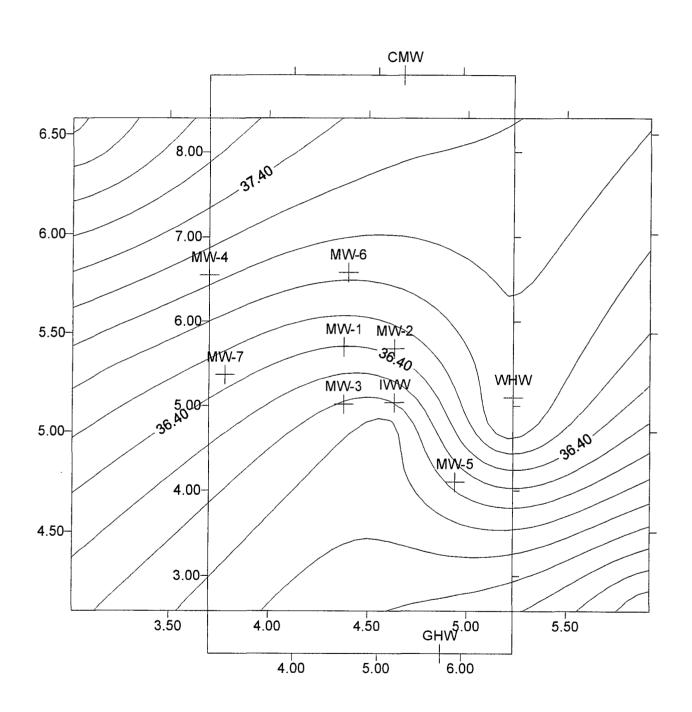
		MMARY OF ST COUNTY	•	-		
Ground	lwater Re	covery Oper	ations	С	rude Oil R	ecovery Operations
Date	Time Pumped (hours)	Volume Recovered (gal)	Avg Pump Rate (GPM)	Volume Recovered (gal)	Cumulative Volume (gal)	Description
1996 TOTALS	1,267	842,820	1.7	64.20	64.20	Total Crude oil recovered from Apr 96 to Dec 96
1997 TOTALS	6,816	5,104,800	9.7	35.40	99.60	Total Crude oil recovered from Apr 96 to Dec 97
1998 TOTALS	3,740	1,247,040	2.1	77.15	176.75	Total Crude oil recovered from Apr 96 to Dec 98
3=YEAR TOTAL	11,823	7,194,660		176.75	176.75	

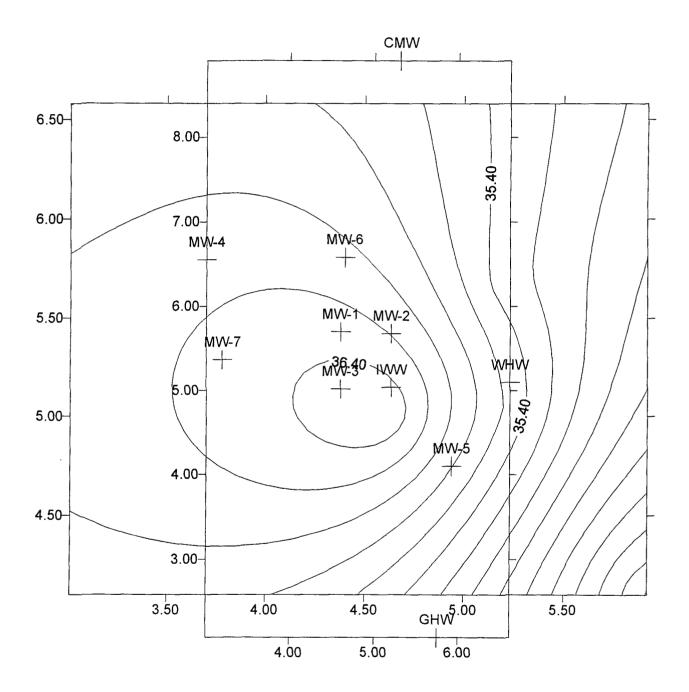

APPENDIX B

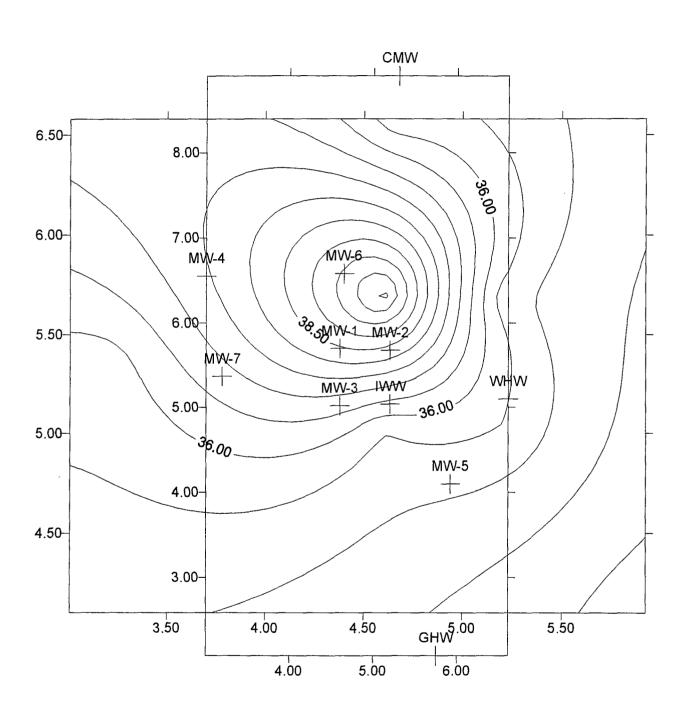

SUMMARY OF GROUNDWATER MEASUREMENTS by QUARTER WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM

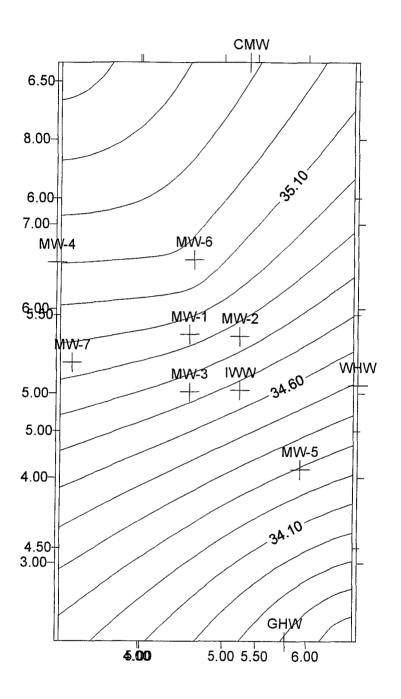

Well	Date	Depth to	Water	Casing	Surface	LNAPL
Name	Gauged	Water	Elevation	Elevation	Elevation	Thickness
IWW	07/26/95	35.75	62.26	98.01	97.8	0.00
MW-1	07/26/95	42.09	57.91	100.00	97.3	N/A
MW-2	07/26/95	37.45	60.46	97.91	98.5	0.00
MW-3	07/26/95	34.97	62.57	97.54	98.1	0.00
MW-4	07/26/95	37.40	62.95	100.35	100.8	0.00
MW-5	07/26/95	33.91	62.25	96.16	96.0	0.00
MW-6	07/26/95	35.69	62.83	98.52	98.8	0.00
MW-7	07/26/95	37.92	60.57	98.49	98.8	0.00
MW-2	06/18/96	35.16	62.75	97.91	98.5	0.00
MW-5	06/18/96	33.61	62.55	96.16	96.0	0.00
MW-6	06/18/96	35.56	62.96	98.52	98.8	0.00
IWW	06/24/96	35.50	62.51	98.01	97.8	0.00
MW-1	06/24/96	40.73	59.27	100.00	97.3	N/A
MW-2	06/24/96	35.24	62.67	97.91	98.5	0.00
MW-3	06/24/96	35.54	62.00	97.54	98.1	0.00
MW-4	06/24/96	37.20	63.15	100.35	100.8	0.00
MW-5	06/24/96	33.72	62.44	96.16	96.0	0.00
MW-6	06/24/96	35.68	62.84	98.52	98.8	0.00
MW-7	06/24/96	35.76	62.73	98.49	98.8	0.00
IWW	08/02/96	35.60	62.41	98.01	97.8	0.00
MW-2	08/02/96	35.30	62.61	97.91	98.5	0.00
MW-3	08/02/96	36.60	60.94	97.54	98.1	0.00
MW-4	08/02/96	35.80	64.55	100.35	100.8	0.00
MW-5	08/02/96	33.58	62.58	96.16	96.0	0.00
MW-6	08/02/96	35.68	62.84	98.52	98.8	0.00
MW-7	08/02/96	36.10	62.39	98.49	98.8	0.00
IWW	11/22/96	37.00	61.01	98.01	97.8	0.00
MW-2	11/22/96	37.00	60.91	97.91	98.5	0.00
MW-3	11/22/96	35.70	61.84	97.54	98.1	0.00
MW-4	11/22/96	38.25	62.10	100.35	100.8	0.00
MW-5	11/22/96	34.60	61.56	96.16	96.0	0.00
MW-6	11/22/96	37.29	61.23	98.52	98.8	0.00
MW-7	11/22/96	36.84	61.65	98.49	98.8	0.00

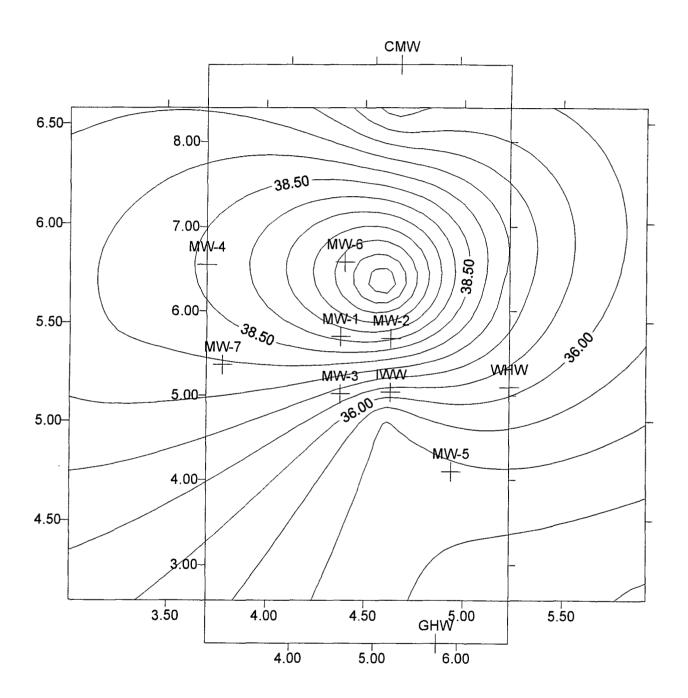

Well Name	Date Gauged	Depth to Water	Water Elevation	Casing Elevation	Surface Elevation	LNAPL Thickness
IWW	07/02/97	37.00	61.01	98.01	97.8	0.00
MW-2	07/02/97	36.70	61.21	97.91	98.5	0.00
MW-3	07/02/97	36.20	61.34	97.54	98.1	0.00
MW-4	07/02/97	38.30	62.05	100.35	97.4	0.00
MW-5	07/02/97	34.97	61.19	96.16	96.0	0.00
MW-6	07/02/97	37.10	61.42	98.52	98.8	0.00
MW-7	07/02/97	37.38	61.11	98.49	98.8	0.00
IWW	08/07/97	37.78	60.23	98.01	97.8	0.00
MW-1	08/07/97	39.00	62.50	100.00	97.3	1.83
MW-2	08/07/97	37.80	60.11	97.91	98.5	0.00
MW-3	08/07/97	36.80	60.74	97.54	98.1	0.00
MW-4	08/07/97	37.50	62.85	100.35	97.4	0.00
MW-5	08/07/97	35.70	60.46	96.16	96.0	0.00
MW-6	08/07/97	38.20	60.32	98.52	98.8	0.00
MW-7	08/07/97	37.30	61.19	98.49	98.8	0.00
IWW	12/06/97	37.51	60.50	98.01	97.8	0.00
MW-2	12/06/97	37.32	60.59	97.91	98.5	0.00
MW-3	12/06/97	36.80	60.74	97.54	98.1	0.00
MW-4	12/06/97	39.30	61.05	100.35	97.4	0.00
MW-5	12/06/97	35.76	60.40	96.16	96.0	0.00
MW-6	12/06/97	37.74	60.78	98.52	98.8	0.00
MW-7	12/06/97	37.81	60.68	98.49	98.8	0.00
IWW	02/14/98	37.14	60.90	98.04	97.8	0.00
MW-1	02/14/98	39.26	60.86	100.00	97.3	0.15
MW-2	02/14/98	37.70	60.24	97.94	98.5	0.00
MW-3	02/14/98	36.88	60.68	97.56	98.1	0.00
MW-4	02/14/98	No data		99.93	97.4	0.00
MW-5	02/14/98	35.30	60.91	96.21	96.0	0.00
MW-6	02/14/98	No data	İ	98.53	98.8	0.00
MW-7	02/14/98	No data		98.53	98.8	0.00
MW-1	10/26/98	40.50	60.05	100.00	97.3	0.67


į









APPENDIX C

SUMMARY OF WATER SAMPLE ANALYTICAL RESULTS 1998 WEST COUNTY ROAD SPILL SITE. HOBBS SWD SYSTEM

		WEST 00		OFILL SITE, I				
Well	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TDS	Chloride
Name	Sampled	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(mg/l)	(mg/l)
NMWQCC	Standards	0.010		<u> </u>	0,620	N/A	1,000	250
MW-1 (SPL)	02/18/98	3.4000	0.5700	0.9600	0.7400	5.6700	493	100
MW-1 (SPL)	12/12/98						840	43
MW-2 (SPL)	02/18/98	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	455	36
MW-2	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	457	45
MW-2	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	422	47
MW-3 (SPL)	02/18/98	0.0016	< 0.0010	<0.0010	<0.0010	0.0016	2,967	1,700
MW-3	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	3,980	1,672
MW-3	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1,498	614
MW-4	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	1,152	294
MW-4	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	910	344
MW-5 (SPL)	02/18/98	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	426	44
MW-5	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	505	42
MW-5	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	421	47
MW-6	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	225	20
MW-6	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	363	20
MW-7	08/16/98	<0.0020	<0.0020	< 0.0020	<0.0060	<0.0060	802	212
MW-7	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	853	262
IWW (SPL)	02/18/98	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	491	67
IWW	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	491	67
IWW	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	369	74
GHW	08/16/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	722	76
GHW	12/12/98	<0.0020	<0.0020	<0.0020	<0.0060	<0.0060	703	78
<u> </u>							L	

Analysis was performed by Cardinal Laboratories in Hobbs, New Mexico.

Samples labeled (SPL) analyzed by Southern Petroleum Laboratories, Houston, Texas.

Benzene, toluene, eythibenzene, and xylene (BTEX); total dissolved solids (TDS); and chloride analyses were conducted using

EPA Methods 8020, 160.1, and 352.3, respectively.

Results presented in bold print exceed NMWQCC human health standards for ground water.

All results are reported in milligrams per liter (mg/l); parts per million (ppm):

SUMMARY OF WATER SAMPLE ANALYTICAL RESULTS 1997 WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM Chloride Benzene TDS Well Date Toluene Ethylbenzene **Xvlenes** Total BTEX (mg/l)(mq/l)Name Sampled (maga) (maa) (mag) (mag) (mag) N/A 250 NMWQCC 0.010 0.750 0.750 0.620 1.000 Standards MW-2 < 0.0010 < 0.0010 < 0.0030 < 0.0030 497 50 04/03/97 < 0.0010 44 07/02/97 0.0060 0.0070 0.0030 0.0110 0.0270 399 MW-2 414 40 < 0.0020 MW-2 12/06/97 < 0.0020 < 0.0020 < 0.0060 < 0.0060 < 0.0010 < 0.0010 < 0.0010 N/A MW-2 (SPL) 12/06/97 < 0.0010 < 0.0010 N/A 0.0010 0.2980 3249 04/03/97 0.2920 < 0.0010 0.0050 7764 MW-3 0.0020 3065 1290 0.0020 MW-3 07/02/97 < 0.0010 < 0.0010 < 0.0030 1450 MW-3 12/06/97 0.0120 < 0.0020 < 0.0020 < 0.0060 0.0120 4610 < 0.0010 < 0.0010 N/A 12/06/97 < 0.0010 < 0.0010 N/A MW-3 (SPL) < 0.0010 877 196 < 0.0010 < 0.0010 < 0.0010 < 0.0030 < 0.0030 04/03/97 MW-4 206 < 0.0010 < 0.0030 < 0.0030 788 MW-4 07/02/97 < 0.0010 < 0.0010 < 0.0020 < 0.0060 974 264 < 0.0020 < 0.0020 MW-4 12/06/97 < 0.0060 50 < 0.0010 < 0.0010 < 0.0030 < 0.0030 509 MW-5 04/03/97 < 0.0010 < 0.0010 50 MW-5 07/02/97 < 0.0010 < 0.0010 < 0.0030 < 0.0030 458 MW-5 < 0.0020 < 0.0020 < 0.0020 < 0.0060 < 0.0060 506 52 12/06/97 < 0.0010 < 0.0010 < 0.0010 < 0.0010 N/A N/A <0.0010 MW-5 (SPL) 12/06/97 < 0.0010 < 0.0030 < 0.0030 80 MW-6 04/03/97 < 0.0010 < 0.0010 404 < 0.0010 < 0.0030 38 MW-6 07/02/97 < 0.0010 < 0.0010 < 0.0030 419 < 0.0020 28 < 0.0020 < 0.0020 < 0.0060 < 0.0060 445 12/06/97 MW-6 < 0.0010 < 0.0010 < 0.0010 N/A < 0.0010 N/A MW-6 (SPL) 12/06/97 < 0.0010 344 MW-7 < 0.0010 < 0.0010 < 0.0010 < 0.0030 < 0.0030 1166 04/03/97 < 0.0010 < 0.0010 < 0.0030 < 0.0030 1092 264 MW-7 07/02/97 < 0.0010 <0.0060 < 0.0020 < 0.0060 806 188 < 0.0020 < 0.0020 MW-7 12/06/97 < 0.0010 < 0.0010 < 0.0010 N/A N/A < 0.0010 < 0.0010 MW-7 (SPL) 12/06/97 < 0.0010 < 0.0030 < 0.0030 760 04/03/97 < 0.0010 1468 ĪWW < 0.0010 < 0.0010 < 0.0010 < 0.0030 < 0.0030 663 200 07/02/97 < 0.0010 **IWW** 12/06/97 < 0.0020 0.0060 < 0.0020 0.0060 0.0120 931 328 WW < 0.0010 < 0.0010 < 0.0010 N/A N/A

Analysis was performed by Cardinal Laboratories in Hobbs, New Mexico.

Samples labeled (SPL) analyzed by Southern Petroleum Laboratories, Houston, Texas.

Benzene, toluene, eythlbenzene, and xylene (BTEX); total dissolved solids (TDS); and chloride analyses were conducted using

< 0.0010

EPA Methods 8020, 160.1, and 352.3, respectively.

12/06/97

IWW (SPL)

Results presented in bold print exceed NMWQCC human health standards for ground water.

< 0.0010

All results are reported in milligrams per liter (mg/l): parts per million (ppm):

SUMMARY OF WATER SAMPLE ANALYTICAL RESULTS 1995 & 1996 WEST COUNTY ROAD SPILL SITE, HOBBS SWD SYSTEM Well Date Benzene Toluene Ethylbenzene **Xvienes** Total BTEX TDS Chloride Name Sampled (maga) (mag) (maa) (mag) (mg/l)(maa) (mg/l) NMWQCC Standards 0.010 0.750 0.750 0.620 N/A 1.000 250 MW-1 07/24/95 2.8710 < 0.0200 0.0120 0.2710 3.1540 25,106 14.091 MW-1 07/24/95 N/A N/A N/A N/A N/A 4,374 MW-2 07/21/95 0.0470 0.0330 0.0120 0.0920 < 0.0010 N/A 132 MW-2 06/19/96 < 0.0010 < 0.0010 < 0.0010 < 0.0030 < 0.0030 649 96 MW-2 08/12/96 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 N/A N/A MW-2 11/25/96 0.0019 0.0012 0.0018 < 0.0030 0.0049 443 44 MW-3 (S) 07/21/95 0.0020 < 0.0010 <0.0010 < 0.0030 N/A 0.0020 256 MW-3 07/21/95 0.0440 0.0610 0.0480 0.1950 0.0420 N/A N/A MW-3 06/19/96 0.1320 < 0.0010 < 0.0010 < 0.0010 0.1320 2.684 160 MW-3 1.1700 0.0011 11/25/96 0.0047 0.0150 1.1908 13.890 6.850 MW-4 08/10/95 < 0.0010 < 0.0010 < 0.0010 0.0670 0.0670 N/A 332 MW-4 06/19/96 < 0.0010 < 0.0010 < 0.0010 < 0.0030 < 0.0030 1.114 312 MW-4 11/25/96 0.0029 0.0019 0.0011 < 0.0030 0.0059 953 240 MW-5 07/24/95 < 0.0200 < 0.0200 < 0.0200 <0.0200 < 0.0200 1,481 106 MW-5 06/19/96 < 0.0010 < 0.0010 < 0.0010 < 0.0030 < 0.0030 506 44 MW-5 11/25/96 0.0012 0.0012 0.0016 < 0.0030 0.0040 506 70 <0.0010 MW-6 07/21/95 < 0.0010 < 0.0010 <0.0010 < 0.0010 N/A 96 MW-6 06/19/96 0.0230 < 0.0010 < 0.0010 < 0.0030 0.0230 524 48 MW-6 11/25/96 0.0160 0.0023 0.0013 0.0047 0.0243 477 38 MW-7 07/24/95 < 0.0200 < 0.0200 < 0.0200 < 0.0200 < 0.0200 3,218 382 MW-7 06/19/96 < 0.0010 < 0.0010 < 0.0010 < 0.0030 < 0.0030 1,127 359 MW-7 0.0011 11/25/96 < 0.0010 < 0.0010 < 0.0030 < 0.0030 1,090 334 IWW 07/24/95 0.7770 < 0.0200 < 0.0200 0.0300 13,889 0.8070 7,178 WW 06/19/96 0.0320 < 0.0010 < 0.0010 < 0.0030 0.0320 1.817 828 ww 11/25/96 0.6550 < 0.0010 0.0026 <0.0030 0.6576 5,300 10.147 CMW N/A N/A N/A N/A N/A N/A 490 52 CMW 08/16/96 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 448 68 WHW N/A N/A N/A N/A N/A N/A 898 68

< 0.0010

< 0.0010

< 0.0010

473

32

Analysis was performed by Cardinal Laboratories in Hobbs. New Mexico.

Benzene, toluene, eythibenzene, and xylene (BTEX), total dissolved solids (TDS); and chloride analyses were conducted using

< 0.0010

EPA Methods 8020, 160.1, and 352.3, respectively.

08/16/96

WHW

Results presented in bold print exceed NMWQCC human health standards for ground water.

< 0.0010

MW-3 (S) = shallow sample from monitor well 3;IWW = inactive on-site well; WHW = Wilson house water well; CMW = Curtis machine shop water well.

All results are reported in milligrams per liter (mg/l): parts per million (ppm).

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR RICE OPERATING CO. ATTN: F. WESLEY ROOT 122 W. TAYLOR HOBBS, NM 22840 FAX TO: (505) 397-1471

Sampling Date: 12/12/98

Sample Type: GROUNDWATER
Sample Condition: COOL & INTACT

FERATING

B, NM

Sample Received By: BC

Analyzed By: AH

Receiving Date: 12/14/98
Reporting Date: 12/16/98
Project Number: NOT GIVEN
Project Name: NOT GIVEN
Project Location: NOT GIVEN

LAB NUMBER SAMPLE ID	CI	pH	TDS
	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DATE	12/15/98	12/15/98	12/15/98

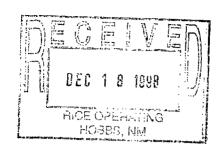
ANALYSIS [DATE	12/15/98	12/15/98	12/15/98
H3961-1	MVV-6	20	7.18	363
H3961-2	MVV-4	344	7.27	910
H3961-3	MW-7	262	7.39	853
H3961-4	IWW	74	7.64	369
H3961-5	MW-5	47	7.59	421
H3961-6	MW-2	47	7.52	422
H3961-7	MW-3	614	7.36	1498
H3961-8	GRAY WELL	78	7.29	703
H3961-9	MVV-1	43	7.68	840
Quality Control		1301	7.09	NR
True Value QC		1319	7.00	NR
% Recovery		98.6	101	NR
Relative Per	cent Difference	0.2	1.4	1.2

_					
	METHODS:	EPA 600/4-79-020	4500 CI B*	150.1	160.1

*Standard Method

Surges fla Cooke

Date 12/16/48


H3961-2.XLS

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR RICE OPERATING CO. ATTN: F. WESLEY ROOT 122 W. TAYLOR HOBBS, NM 22840 FAX TO: (505) 397-1471

Receiving Date: 12/14/98
Reporting Date: 12/16/98
Project Number: NOT GIVEN
Project Name: NOT GIVEN
Project Location: NOT GIVEN

Sampling Date: 12/12/98

Sample Type: GROUNDWATER
Sample Condition: COOL & INTACT

Sample Received By: BC Analyzed By: BC/AH

LAB NO.	SAMPLE ID	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL BENZENE (mg/Kg)	TOTAL XYLENES (mg/Kg)
ANALYSIS E	ATE	12/14/98	12/14/98	12/14/98	12/14/98
H3961-1	MW-6	<0.002	<0.002	<0.002	<0.006
H3961-2	MW-4	<0.002	<0.002	<0.002	<0.006
H3961-3	MW-7	<0.002	<0.002	<0.002	<0.006
H3961-4	IWW	<0.002	<0.002	<0.002	<0.006
H3961-5	MW-5	<0.002	<0.002	<0.002	<0.006
H3961-6	MW-2	<0.002	<0.002	<0.002	<0.006
H3961-7	MW-3	<0.002	<0.002	<0.002	<0.006
H3961-8	GRAY WELL	<0.002	<0.002	<0.002	<0.006
Quality Cont	rol	0.096	0.097	0.094	0.288
True Value QC		0.100	0.100	0.100	0.300
% Recovery		95.5	97.4	94.4	95.8
Relative Per	cent Difference	1.1	0.1	6.1	4.4

METHOD: EPA SW 846-8260

Chemist

Date

H3961-1.XLS

ARDINAL LABORATORIES, INC. 2111 Beechwood, Abilene, TX 79603 101 East Marland, Hobbs, NM 88240

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

•	•				•	
(915) 673-7001	Fax (915)	673-7020 (505) 393-2326	Fax	(505)39	3-2476

Project Manager: F.		(915) 673-7001 Fax	(915	67	3-70	20	(50	5) 3	93-2	2326	Fax	(505) 39:	3-2476									Pag	ge/_	_ of <u>_ </u>		
Address: [22 West Taylo Company: AOC City: H-66 State: MM Zip: 83240 Attn: F, West V, Taylo Address: 122 W, Taylo Address: 122 W, Taylo Address: 123 W, Taylo Address: 123 W, Taylo Address: 124 W, Taylo Address: 125 W,	Company Name: /	RICE Operative C	1 (3/10)	D AZ	v u												A	NALY	SIS	REC	UES	T				
Address: 122 West Taylea City: Hob6s State: MM Zip: 83240 Attn: F, Log slay Root Address: 122 W, Taylea City: Hob6s State: MM Zip: 88240 Project #: Project Owner: Project Name: Project Location: Fax #: 505-397-1471 FOR LAB USE ONLY LAB I.D. Sample I.D.	Project Manager:	F. Wesley Root							B		10	PO#	: N/A						T							
City: Ho-66s State: MM ZIp: 88240 Attn: F, Waster, Root Address: 122 W. Taylan. Fax #: 505-393-9174 Address: 122 W. Taylan. Fax #: 505-393-9174 State: MM ZIp: 88240 Project Mame: Project Name: Project Location: For LAB USE ONLY LAB I.D. Sample	Address: /22	West Taylor							Con	npany	r. F	POC						1	1	}						
Phone #: 505-393-9/74		•	p:	88	240)			Attn	: F.	We	sLey /	Root							j					İ	
Fax #: 505-397-1471 City: Ho66s State: MM Zip: 89240 Project Name: Project Owner: State: MM Zip: 89240 Project Name: Project Location: Fax #: 505-393-9174 Project Location: Fax #: 505-397-1471 Pax #: 505-397-1471	Phone #: 505-3	393-9174							Add	ress:	12.2	W. T	CLOR						1							
Project Name: Project Name: Phone #: 505-393-9/74 Project Location: Fax #: 505-397-1471 FOR LAB USE ONLY A WATRX PRES. SAMPLING SAMPLI														'	Ì			1	- 1	Ì						
Project Location: Fax #: 505-393-9474			r:										88240		l					1				ĺ	,	
Project Location: Fax #: 505 - 397 - 1471	Project Name:								Pho	ne #:	500									l					1	
Column C	Project Location:																	į		-					ł	
	FOR LAB USE ONLY		T	Τ		MA	TRIX		\Box					1	ĺ	v		}							ļ	
FRASE NOTE: Listility and Damages. Cardina's Eability and clear's excusive ramedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the cleart for the analysis. At claims including those for medigences and any other cause whatsoewer shall be deemed walved unless made in writing and received by Cardinal within 30 days after completiones. In the clarat for the applicable and contracting the claration of the applicable and contracting the contraction of use, or to so of ours, or loss of ones, or loss	LAB I.D.	Sample I.D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER	WASTEWATER	OIL	SLUDGE	отнек:	ACID: ICE / COOL	OTHER:	DATE	TIME	B7EX	Yo	Chlorid	Yns									
-3 MW-7 G 4 V V IZ-12-98 II/30 V V V V V V V V V V V V V V V V V V V	HB961-1	MW-6	_		_				_		 	12-12-98	10:45	V	V	V	V									
TWW G 4 V V /2-12-78 /2:45 V V V V C C W V C C W C C W C W C C W C W				_	r	_	<u> </u>		_	1	$\coprod \!$	12-12-98	11:15	r	1	V	V									
-S MW-S G 4 V V 12-12-78 12:30 V V V V V V C C MW-Z G 4 V V V V V V V V V V V V V V V V V V			_	_	1		_		_	V	1			V	V	V	V				_				<u> </u>	
-6 MW-2 G 4 V I2-I2-78 I2:I5 V V V V V I I2-I2-78 I2:I5 V V V V V I I2-I2-78 I2:I5 V V V V V V I I2-I2-78 I2:I5 V V V V V V V V V V V V V V V V V V V			_	-			-		_	_ V				V	1	V							<u> </u>		<u> </u>	
PLEASE NOTE: Liability and Damages. Cardraf's liability and client's exclusive remedy for any claim artising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All cliables including those for negigence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardraf within 30 days after completion of the applicable specific. In no event shall Cardraf be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, and all costs of collections, including altiturer's feets.						_	_			<u></u>				V		V	2				ļ			<u> </u>	<u> </u>	
- GRAY Well G 4 V 12-14-98 12:30 V V V V V P PLEASE NOTE: Liability and Damages. Cardna's Eability and client's exclusive ramedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardnal within 30 days after completion of the applicable and all costs of collections, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, and all costs of collections, including attorney's fees.		NW-S					4		_		1 − 1′			V	V	V	1							<u> </u>	<u> </u>	
PLEASE NOTE: Liability and Damages. Cardnal's Sability and clear's exclusive remedy for any clean arising whether based in contract or tort, shall be finited to the amount paid by the cleart for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed whether whatsoever shall be deemed whether whatsoever shall be deemed whether whatsoever shall be deemed whether whatsoever shall be deemed whether whatsoever shall be deemed whether whatsoever shall be deemed whatsoever shall be deemed whether what only and received by Cardnal within 30 days after completion of the applicable part of the state of 24% per anount more than 30 days after completion of the applicable part of the state of 24% per anount from the original date of invoice, and all expects of collections, including attorney's fees.				_	+		-		_					V		V	V					L	<u> </u>		<u> </u>	
PLEASE NOTE: Liability and Damages. Cardna's Eability and clear's exclusive remedy for any claim arising whether based in contract or tort, shall be Emited to the amount paid by the clear for the analyses. At claims including those for negligence and any other cause whatsoever shall be deemed walved unless made in writing and received by Cardnal within 30 days after completion of the applicable analyses. At claims including those for negligence and any other cause whatsoever shall be deemed walved unless made in writing and received by Cardnal within 30 days after completion of the applicable 30 days past due at the rate of 24% per annum from the original date of invoice, and all costs of collections, including attorney's fees.	-8						-	\vdash						V	 	1	 					<u> </u>	<u> </u>	<u> </u>	 	
analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be lightle for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subcidaries, and all costs of collections, including attorney's fees.	ļ	MW-1	_G	12	1"	-	+-		_	1	├∤	12-14-78	12:30		1	V	1				ļ		ļ	<u> </u>	<u> </u>	
Sampler Relinquished: Date:	analyses. All claims including thou service. In no event shall Cardina affiliates or successors arising ou	e for negligence and any other cause whats I be Eable for incidental or consequental dam t of or related to the performance of services	oever si 1998, in heneyn	hall be ncludin ider by	deemed v without i Cardinal,	waived u Imitation regards	inless II i, busin ess of v	nade in ess int whether	erruptic	g and rece ons, loss (elved by of use, o	Cardinal within or loss of profits	30 days after co incurred by client love stated reaso	npietion of i, its subside ns or othe	the applications, rwise.		Addin	30 day and all	s past du costs of	e at the n	ate of 249	6 per annu	un from the			

amiliates of Successors arising out of of Territor to atte		
Sampler Relinquished:	Date:/// Received By:	Phone Result Yes No Additional Fax #:
	14/490 -	Fax Result:
1 Bin	Time: 00 PM V. Celarley Nort	REMARKS:
	<u> </u>	
Relinquished By:	Date: Received By: (Lab Staff)	
7. Waster Root	Time: 15 Bullethalloon	
Delivered By: (Circle One)	Sample Condition CHECKED F	ίΨ:
DO:::101.00	Cool Intact (Initials)	i e e e e e e e e e e e e e e e e e e e
Sampler - UPS - Bus - Other:	Yes Yes	
Sampler - 075 - Dus - Sinci.	□ No □ No	

[†] Cardinal cannot accept verbal changes. Please fax written changes to 915-673-7020.

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: F. WESLEY ROOT 122 WEST TAYLOR HOBBS, NM 88240 FAX TO: (505) 397-1471

Receiving Date: 08/17/98 Reporting Date: 08/18/98 Project Number: NOT GIVEN

Project Name: WEST COUNTY ROAD

Project Location: HOBBS SWD SYSTEM, LEA CO. NM

Sampling Date: 08/16/98

Sample Type: GROUNDWATER
Sample Condition: COOL & INTACT

Sample Received By: AH

Analyzed By: BC

LAB NO.	SAMPLE ID	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL BENZENE (mg/Kg)	TOTAL XYLENES (mg/Kg)
ANALYSIS I	DATE	08/17/98	08/17/98	08/17/98	08/17/98
H3794-1	MW-7	<0.002	<0.002	<0.002	<0.006
H3794-2	MW-4	<0.002	<0.002	<0.002	<0.006
H3794-3	MW-6	<0.002	<0.002	<0.002	<0.006
H3794-4	MW-5	<0.002	<0.002	<0.002	<0.006
H3794-5	MW-2	<0.002	<0.002	<0.002	<0.006
H3794-6	MW-3	<0.002	<0.002	<0.002	<0.006
H3794-7	IWW	<0.002	<0.002	<0.002	<0.006
H3794-8	GRAY WELL	<0.002	<0.002	<0.002	<0.006
Quality Cont	irol	0.092	0.090	0.088	0.270
True Value (2C	0.100	0.100	0.100	0.300
% Recovery		91.5	90.4	88.4	90.1
Relative Per	cent Difference	8.5	8.1	5.6	5.1

METHOD: EPA SW 846-8260

Chemist

8/18/98

AUG 2 1 1998

HOBBS, NM

ARDINAL LABORATORIES, IN

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES, INC.
2111 Beechwood, Abilene, TX 79603 101 East Marland, Hobbs, NM 88240 (915) 673-7001 Fax (915) 673-7020 (505) 393-2326 Fax (505) 393-2476

Company Name: R	ice Operating Con	20A	NY														NAL	YSIS	REC	QUES	T				
Project Manager:	ice Operating Con F. Wasley Root	,					B			0	PO#														
Address: 122 U	Jest TAYLOR						Co	mpa	ny:	R	OC.														
city: Hobbs	State: NM Zip	: 8	385	.40			Att	n: f	·W	lest	ey Ros	+													1
Phone #: 505-39	73-9174										W, TA														}
Fax#: 505 - 30	17-1471								Hol																•
Project #:	Project Owner	: H	566s	SWO	Sys	ten	Sta	te:	NN	٨	Zlp:	88240							·						. 1
Project Name: Wes	st County Road										5-393	-9174													
ct Location: Ha	obbs SWD System, Le	Α (0.	NM			Fax	(#:	5	0,5	- 397 -	1471													İ
FOR LAB USE ONLY					MATR	IX		P	RES.	1	SAMPLI	NG							'						Ì
LAB I.D.	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	SOIL	SLUDGE	OTHER:	ACID:	ICE / COOL	OTHER:	DATE	TIME	BTEX	TDS	Chloride										
13794-1	MW-7	G	3	V		1					8-16-98	14:30	V	V	5										
-2	MW-4	G	3	V							8-16-18	14:45	V	V	V										
-3	MW-6	6	3	٧						_ [3-16-78	15:15	V	V	V										
-4	MW- 5	G	3	V			ļ				3-16-98		V	V	V			ļ					<u> </u>		
5	MW Z	G	3	V	_ _	ļ	L		_	_	3-16-98		V	V	V			L	<u></u>			<u> </u>			
-6	MW-3	G	3		_		 		_		3-16-98		V	V	V					ļ			<u> </u>		
	IWW	G	3	V		4_	_	Ш	_		3-16-78		V	U	V		<u> </u>	ļ	ļ			<u> </u>	ļ		
-8	GRAY WELL	G	3	$\vee \bot$	++	-	┨—		\dashv	4	8-16-98	16:30	V	V	V	ļ	<u> </u>	ļ — —		 		├ ─	 		
		╀	╂	┞┼	1-1	+	╀	-	}	+			 	 				<u> </u>	ļ		-	-	 	}	
PLEASE NOTE: Liability and Dam	ages. Cardinal's liability and client's exclusive	remed	y for a	ny chaim ari	sing whe	her bas	ed in c	ontrac	or tort.	, shall	be limited to the	amount paid by	the client i	or the		<u> </u>	Ten	ns and C	onditions:	Interest w	ill be char	ged on all :	accounts mo	ere than	ــــا
service. In no event shall Cardinal	e for negligence and any other cause whatsoe be liable for incidental or consequental dama;	ges, In	cluding	without Ilmi	tation, bu	sinese i	nterrup	tions, I	oss of	U\$8, O	r loss of profits	incurred by clien	t, its subsid	faries,	able	•				rate of 249 ns, includin			original dat	te of Invoice	• .
affiliates or successors arising out Sampler Relinquish	of or related to the performance of services Date:/	nereund	er by (ved		er suc	h claim	la bas	ed upo	on any of the ab	Phone Re			□ No	Addit	ional F	ax #:							
Jan &	3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16	75_	5,	61	/		D.	7			Fax Resu REMARK		Yes	□ No	<u> </u>									
Delinguished Du	Time;	;0	0	Paca	Wed .	M	7 0	21-	#1																
Relinquished By:		'>/G) K)	M	nun	ا .۷۰	1	`()																1	
Delivered By: (C	ircle One)			Sar Co	npie C el la Yes No	ondit	ion s			CKE	D BY: als)														•


[†] Cardinal cannot accept verbal changes. Please fax written changes to 915-673-7020.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

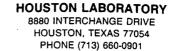
March 4, 1998

Mr. F. Wesley Root RICE OPERATING COMPANY 122 West Taylor Hobbs, NM 88240

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on February 18, 1998. The sample(s) was assigned to Certificate of Analysis No.(s) 9802849 and analyzed for all parameters as listed on the chain of custody.

The pH, Carbonate, and Bicarbonate parameters were received out of holding time. The analyses were still performed by the laboratory.

Any data flag or quality control exception associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s).


If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Electa Brown

Client Services Representative

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 98-02-849

Approved for Release by:

Electa Brown, Client Services Representative

Greg Grandits
Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

Certificate of Analysis No. 9802849-01

HOUSTON LABORATORY
8880 INTERCHANGE DRIVE
HOUSTON, TEXAS 77054

PHONE (713) 660-0901

122 West Taylor Hobbs, NM 88240

P.O. #:

DATE: 3/4/98

Attn: F. Wesley Root

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

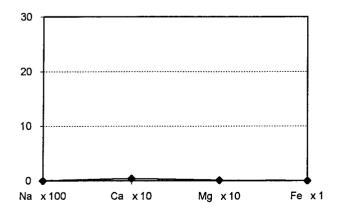
SAMPLED BY: Rice Operating Co.

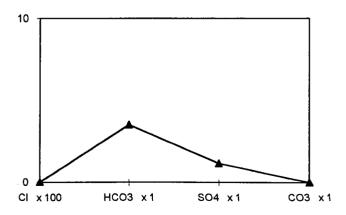
SAMPLE ID: MW-5

PROJECT NO:

MATRIX: Water

DATE SAMPLED: 2/14/1998 16:25:00 P


DATE RECEIVED: 2/18/98


ANALYTICAL DATA

<u>ION</u>	mg/L	meq/L	WET CHEMISTRY	RESULT
Sodium, Na (Calc.)	16.5409	0.72	Total Dissolved Solids	
Calcium, Ca	81	4.04	(calc.) mg/L	425.641
Magnesium, Mg	14	1.15		
Chloride, Cl	44	1.24	Specific Gravity	
Bicarbonate, CaCO	214	3.51	60/60 deg. F.	1.0070
Sulfate SO4	56	1.17		
Carbonate, CaCO3	0	0.00	Resistivity	
Iron, Fe(Total)	0	0.00	(Mohm-cm) 75 deg. F.	1.4460
Barium, Ba	0.1	0.00	-	
			pН	
			pH units	7.74
•			^	

MINERAL ANALYSIS PATTERN

(Number Below Ion Name meg/liter/Scale Unit)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

rtificate of Analysis No. H9-9802849-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 03/03/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

MATRIX: WATER

PROJECT NO:

SAMPLED BY: Rice Operating Co

DATE SAMPLED: 02/14/98 16:25:00

SAMPLE ID: MW-5 DATE RECEIVED: 02/18/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μ g/L
Surrogate	% Recovery		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene Method 8020A *** Analyzed by: VHZ Date: 02/18/98	100		
Barium, Total Method 6010B *** Analyzed by: PS Date: 02/19/98 08:10:00	0.10	0.05	mg/L
Calcium, Total Method 6010B *** Analyzed by: PS Date: 02/19/98 08:10:00	81	1	mg/L
Iron, Total Method 6010B *** Analyzed by: PS Date: 02/19/98 08:10:00	ND	0.2	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

⁽P) - Practical Quantitation Limit

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9802849-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root DATE: 03/03/98

PROJECT NO:

PROJECT: Hobbs SWD System

SITE: Lea Co, NM MATRIX: WATER

SAMPLED BY: Rice Operating Co DATE SAMPLED: 02/14/98 16:25:00

SAMPLE ID: MW-5 DATE RECEIVED: 02/18/98

	ANALYTI	CAL DATA		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
Potassium, To Method 6010B Analyzed by: Date:	* * *	ND	20	mg/L
Magnesium, Too Method 6010B Analyzed by: Date:	***	14	1	mg/L
Acid Digestion Method 3010A Analyzed by: Date:	***	02/19/98		
Chloride Method 325.3 Analyzed by: Date:		44	2	mg/L
Carbonate, as Method SM 450 Analyzed by: Date:	00-CO2D **	ND	1	mg/L
Bicarbonate, a Method SM 450 Analyzed by: Date:	00-CO2D **	214	1	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9802849-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 03/03/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

SAMPLED BY: Rice Operating Co

SAMPLE ID: MW-5

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 02/14/98 16:25:00

DATE RECEIVED: 02/18/98

		ANALYTICAL	DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Sodium, Total Method CALCU Analyzed by: Date:	LATION	10:00:00	16	1	mg/L
pH Method 150.1 Analyzed by: Date:		10:22:00	7.74		pH units
Resistivity Method 120.1 Analyzed by: Date:		15:30:00	1.446	0.001	Mohms-cm
Sulfate Method 375.4 Analyzed by: Date:		09:15:00	56	25	mg/L
Specific Grave ASTM D1429 Analyzed by: Date:	-	17:00:00	1.007		g/cm3
Total Dissolve Method CALCUI Analyzed by: Date:	LATION	10:00:00	426	1	mg/L

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. 9802849-02

HOUSTON LABORATORY
8880 INTERCHANGE DRIVE
HOUSTON, TEXAS 77054
PHONE (713) 660-0901

122 West Taylor Hobbs, NM 88240

P.O. #:

DATE: 3/4/98

Attn: F. Wesley Root
PROJECT: Hobbs SWD System

PROJECT NO:

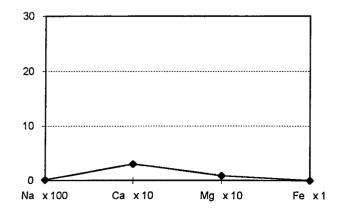
SITE: Lea Co, NM

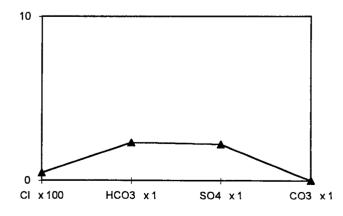
MATRIX: Water

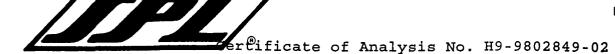
SAMPLED BY: Rice Operating Co.

DATE SAMPLED: 2/14/1998 16:15:00 P

SAMPLE ID: MW-3


DATE RECEIVED: 2/18/98


ANALYTICAL DATA


<u>ION</u> Sodium, Na (Calc.) Calcium, Ca	<u>mg/L</u> 299.966 607	<u>meg/L</u> 13.05 30.29	WET CHEMISTRY Total Dissolved Solids (calc.) mg/L	<u>RESULT</u> 2966.87
Magnesium, Mg	111	9.13	(carc.) mg L	2700.07
Chloride, Cl	1700	47.95	Specific Gravity	
Bicarbonate, CaCO	141	2.31	60/60 deg. F.	1.0140
Sulfate SO4	107	2.23		
Carbonate, CaCO3	0	0.00	Resistivity	
Iron, Fe(Total)	0.7	0.03	(Mohm-cm) 75 deg. F.	0.2060
Barium, Ba	0.2	0.00		
·			pH pH units	7.40

MINERAL ANALYSIS PATTERN

(Number Below Ion Name meq/liter/Scale Unit)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 03/03/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

MATRIX: WATER

SAMPLED BY: Rice Operating Co

DATE SAMPLED: 02/14/98 16:15:00

SAMPLE ID: MW-3

DATE RECEIVED: 02/18/98

PROJECT NO:

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	1.6	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μ g/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	1.6		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene	97		
Method 8020A ***			
Analyzed by: VHZ			
Date: 02/18/98			
Barium, Total	0.20	0.05	mg/L
Method 6010B ***			J.
Analyzed by: PS			
Date: 02/19/98 08:10:00			
Calcium, Total	607	1	mg/L
Method 6010B ***			5/
Analyzed by: PS			
Date: 02/19/98 08:10:00			
Iron, Total	0.7	0.2	mg/L
Method 6010B ***		• • =	5, –
Analyzed by: PS			
Date: 02/19/98 08:10:00			

⁽P) - Practical Quantitation Limit ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9802849-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 03/03/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

a Co, NM MATRIX: WATER

SAMPLED BY: Rice Operating Co **SAMPLE ID:** MW-3

DATE SAMPLED: 02/14/98 16:15:00 DATE RECEIVED: 02/18/98

PROJECT NO:

ANALYTI	CAL DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Potassium, Total Method 6010B *** Analyzed by: PS Date: 02/19/98 08:10:00	ND	20	mg/L
Magnesium, Total Method 6010B *** Analyzed by: PS Date: 02/19/98 08:10:00	111	1	mg/L
Acid Digestion-Aqueous, ICP Method 3010A *** Analyzed by: EE Date: 02/19/98 07:40:00	02/19/98		
Chloride Method 325.3 * Analyzed by: TV Date: 02/25/98 11:00:00	1700	50	mg/L
Carbonate, as CaCO3 Method SM 4500-CO2D ** Analyzed by: JS Date: 02/19/98 10:22:00	ND	1	mg/L
Bicarbonate, as CaCO3 Method SM 4500-CO2D ** Analyzed by: JS Date: 02/19/98 10:22:00	141	1	mg/L

ND - Not detected.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9802849-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 03/03/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

MATRIX: WATER

PROJECT NO:

SAMPLED BY: Rice Operating Co

DATE SAMPLED: 02/14/98 16:15:00

SAMPLE ID: MW-3

DATE RECEIVED: 02/18/98

		ANALYTICAL	DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Sodium, Total Method CALCU Analyzed by: Date:	LATION	10:00:00	300	1	mg/L
pH Method 150.1 Analyzed by: Date:		10:22:00	7.40		pH units
Resistivity Method 120.1 Analyzed by: Date:		15:30:00	0.206	0.001	Mohms-cm
Sulfate Method 375.4 Analyzed by: Date:		09:15:00	107	25	mg/L
Specific Grav: ASTM D1429 Analyzed by: Date:	-	17:00:00	1.014		g/cm3
Total Dissolve Method CALCUI Analyzed by: Date:	LATION	10:00:00	2967	1	mg/L

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. 9802849-03

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

© Client: Rice Operating Company 122 West Taylor

Hobbs, NM 88240

Attn: F. Wesley Root

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

SAMPLED BY: Rice Operating Co.

SAMPLE ID: MW-1

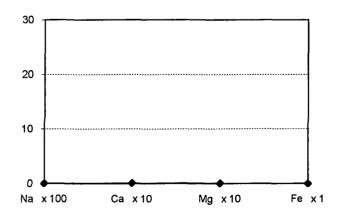
P.O. #:

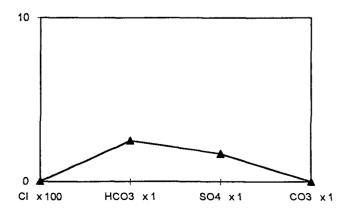
DATE: 3/4/98

PROJECT NO:

MATRIX: Water

DATE SAMPLED: 2/14/1998 16:35:00 P


DATE RECEIVED: 2/18/98


ANALYTICAL DATA

			-	
<u>ION</u>	mg/L	meq/L	WET CHEMISTRY	<u>RESUL'</u>
Sodium, Na (Calc.)	98.2628	4.27	Total Dissolved Solids	
Calcium, Ca	24	1.20	(calc.) mg/L	493.453
Magnesium, Mg	9	0.74	-	
Chloride, Cl	100	2.82	Specific Gravity	
Bicarbonate, CaCO	151	2.47	60/60 deg. F.	1.0140
Sulfate SO4	81	1.69	-	
Carbonate, CaCO3	0	0.00	Resistivity	
Iron, Fe(Total)	0	0.00	(Mohm-cm) 75 deg. F.	1.1230
Barium, Ba	0.19	0.00	•	
			pН	
			pH units	7.88
·			•	

MINERAL ANALYSIS PATTERN

(Number Below Ion Name meq/liter/Scale Unit)

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9802849-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 03/03/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

MATRIX: WATER

PROJECT NO:

SAMPLED BY: Rice Operating Co

DATE SAMPLED: 02/14/98 16:35:00

SAMPLE ID: MW-1

DATE RECEIVED: 02/18/98

ANALYTICAL			
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	3400	10 P	μg/L
TOLUENE	570	10 P	μg/L
ETHYLBENZENE	960	10 P	μg/L
TOTAL XYLENE	740	10 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	5670		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	113		
4-Bromofluorobenzene	117		
Method 8020A ***			
Analyzed by: VHZ Date: 02/18/98			
Barium, Total	0.19	0.05	mg/L
Method 6010B ***	0.15	0.05	mg/ b
Analyzed by: PS			
Date: 02/19/98 08:10:00			
Calcium, Total	24	1	mg/L
Method 6010B ***			3.
Analyzed by: PS			
Date: 02/19/98 08:10:00			
Iron, Total	ND	0.2	mg/L
Method 6010B ***			
Analyzed by: PS			
Date: 02/19/98 08:10:00			
Potassium, Total	30	20	mg/L
Method 6010B ***			
Analyzed by: PS			
Date: 02/19/98 08:10:00			

⁽P) - Practical Quantitation Limit ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

rtificate of Analysis No. H9-9802849-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 03/03/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

MATRIX: WATER SAMPLED BY: Rice Operating Co

SAMPLE ID: MW-1

DATE SAMPLED: 02/14/98 16:35:00 DATE RECEIVED: 02/18/98

PROJECT NO:

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Magnesium, Total Method 6010B *** Analyzed by: PS Date: 02/19/98 08:10:00	9	1	mg/L
Acid Digestion-Aqueous, ICP Method 3010A *** Analyzed by: EE Date: 02/19/98 07:40:00	02/19/98		
Chloride Method 325.3 * Analyzed by: TV Date: 02/25/98 11:00:00	100	5	mg/L
Carbonate, as CaCO3 Method SM 4500-CO2D ** Analyzed by: JS Date: 02/19/98 10:22:00	ND	1	mg/L
Bicarbonate, as CaCO3 Method SM 4500-CO2D ** Analyzed by: JS Date: 02/19/98 10:22:00	151	1	mg/L
Sodium, Total Method CALCULATION Analyzed by: DAM Date: 03/03/98 10:00:00	98	1	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 03/03/98

rtificate of Analysis No. H9-9802849-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

PROJECT: Hobbs SWD System

PROJECT NO:

MATRIX: WATER

SITE: Lea Co, NM SAMPLED BY: Rice Operating Co DATE SAMPLED: 02/14/98 16:35:00

SAMPLE ID: MW-1 DATE RECEIVED: 02/18/98

		ANALYTICAL	DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
pH Method 150.1 Analyzed by: Date:	JS	10:22:00	7.88	TIMII	pH units
Resistivity Method 120.1 Analyzed by: Date:	JS	15:30:00	1.123	0.001	Mohms-cm
Sulfate Method 375.4 Analyzed by: Date:		09:15:00	81	25	mg/L
Specific Gravi ASTM D1429 Analyzed by: Date:	-	17:00:00	1.014		g/cm3
Total Dissolved Method CALCULA Analyzed by: 1 Date: 0	ATION	10:00:00	493	1	mg/L

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9802849-04

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 03/04/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

SAMPLED BY: Rice Operating Co

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 02/14/98 17:15:00

DATE RECEIVED: 02/18/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	97		
4-Bromofluorobenzene	97		
Method 8020A ***			
Analyzed by: VHZ			
Date: 02/19/98			
Chloride	36	1	mg/L
Method 325.3 *			
Analyzed by: TV			
Date: 02/25/98 11:00:00			
Total Dissolved Solids	455	1	mg/L
Method 160.1 *			
Analyzed by: KS			
Date: 02/19/98 09:00:00			

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA
**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.
***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

⁽P) - Practical Quantitation Limit

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertaficate of Analysis No. H9-9802849-05

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 03/03/98

PROJECT: Hobbs SWD System

SITE: Lea Co, NM

MATRIX: WATER

PROJECT NO:

SAMPLED BY: Rice Operating Co

DATE SAMPLED: 02/14/98 17:20:00

SAMPLE ID: IWW DATE RECEIVED: 02/18/98

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND	LIMIT 1.0 P 1.0 P 1.0 P 1.0 P	μg/L μg/L μg/L μg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: VHZ Date: 02/19/98	% Recovery 97 97		
Chloride Method 325.3 * Analyzed by: TV Date: 02/25/98 11:00:00	67	1	mg/L
Total Dissolved Solids Method 160.1 * Analyzed by: KS Date: 02/19/98 09:00:00	491	1	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

⁽P) - Practical Quantitation Limit

QUALITY CONTROL DOCUMENTATION

PL BATCH QUALITY CONTROL REPORT **
METHOD 8020

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id:

HP_U980218101200

LABORATORY CONTROL SAMPLE

SPIKE COMPOUNDS	Method Blank Result <2>	Spike Added <3>	Result Recovery		QC Limits(**) (Mandatory) % Recovery Range
Benzene	ND	50	51	102	61 - 119
Toluene	ND	50	53	106	65 - 125
EthylBenzene	ND	50	53	106	70 - 118
O Xylene	ND	50	52	104	72 - 117
M & P Xylene	ND	100	110	110	72 - 116

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Dupli	Spike cate	MS/MSD Relative %	QC Limits(***) (Advisory)	
			Result	Recovery	Result	Recovery	Difference	RPD	
	<2>	<3>	<1>	<4>	<1>	<5>		Max.	Recovery Range
BENZENE	ND.	20	19	95.0	20	100	5.13	21	32 - 164
TOLUENE	ND	20	18	90.0	20	100	10.5	20	38 - 159
ETHYLBENZENE	ND	20	19	95.0	20	100	5.13	19	52 - 142
O XYLENE	ND	20	18	90.0	19	95.0	5.41	18	53 - 143
M & P XYLENE	ND	40	39	97.5	41	102	4.51	17	53 - 144

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH (SPL ID):

Sequence Date: 02/18/98

Method Blank File ID:

Sample File ID: U_B3069.TX0

SPL ID of sample spiked: 9802628-04A

Blank Spike File ID: U_B3064.TX0

Matrix Spike File ID: U_B3066.TX0

Matrix Spike Duplicate File ID: U_B3067.TX0

Analyst: VHZ

9802628-06A 9802849-01A 9802849-02A 9802849-03A

9802628-04A 9802628-01A 9802820-01A 9802628-05A

PL BATCH QUALITY CONTROL REPORT ** METHOD 8020

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: HP_U980218220700

LABORATORY CONTROL SAMPLE

S P I K E C O M P O U N D S	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery	QC Limits(**) (Mandatory) % Recovery Range
Benzene	ND	50.0	40	80.0	61 - 119
Toluene	ND	50.0	41	82.0	65 - 125
EthylBenzene	ND	50.0	41	82.0	70 - 118
O Xylene	ND	50.0	41	82.0	72 - 117
M & P Xylene	ND	100.0	83	83.0	72 - 116

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix	Spike	Matrix Duplic	Spike	MS/MSD Relative %	QC Limits(***) (Advisory)	
	<2>	<3>	Result	Recovery	Result	Recovery	Difference	RPD Max.	Recovery Range
BENZENE TOLUENE ETHYLBENZENE O XYLENE M & P XYLENE	ND ND ND ND	20 20 20 20 40	20 20 20 20 38	100 100 100 100 95.0	19 18 18 18	90.0 90.0 90.0	5.13 10.5 10.5 10.5 14.1	21 20 19 18 17	32 - 164 38 - 159 52 - 142 53 - 143 53 - 144

* = Values outside QC Range due to Matrix Interference (except RPD)

« = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

% Recovery = [(<1> - <2>) / <3>] x 100

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)| / [(<4> + <5>)] x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

Matrix Spike Duplicate File ID: U_B3096.TX0 SAMPLES IN BATCH (SPL ID):

Sequence Date: 02/18/98

Method Blank File ID:

Sample File ID: U B3097.TX0

SPL ID of sample spiked: 9802833-06A

Blank Spike File ID: U_B3094.TX0

Matrix Spike File ID: U_B3095.TX0

Analyst: VHZ

9802833-02A 9802833-03A 9802833-04A 9802833-05A

9802751-04A 9802718-04A 9802718-02A 9802718-03A

9802396-01A 9802803-01A 9802833-06A 9802849-04A

9802849-05A 9802833-01A

ICP Spec* scopy Method 6010 Quality Control Report

Matrix: Water

Units: m

Analyst: PS HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 73054 10 Charles (713) 680,0901

Date:021998 Time:0810 File Name: 21998C10

2/20/93

Laboratory Control Sample

Laboratory Control Cample										
Element	Mth. Blank	True Value	Result	% Recovery	Lower Limit	Upper Limit				
Silver										
Aluminum										
Arsenic										
Barium	ND	2.00	1.97	98	1.60 -	2.40				
Beryllium										
Calcium	ND	20.00	19.87	99	16.00	24.00				
Cadmium										
Cobalt										
Chromium										
Copper										
Iron	ND	2.00	1.99	99	1.60	2.40				
Potassium	ND	20.00	20.81	104	16.00	24.00				
Magnesium	ND	20.00	20.54	103	16.00	24.00				
Manganese										
Sodium										
Nickel										
Lead										
Antimony										
Selenium										
Thallium										
Vanadium			_							
Zinc										

Work Orders in Batch Work Order Fractions

98-02-849 01B-03B

Matrix Spike - Spike Duplicate Results Work Order Spiked: 9802849-01B

Watrix Spik	Sample	Spike		rix Spike		Matrix Spike Duplicate			Spike	QC
Element	Result	Added	Result	Recovery	Result	Recovery		imits covery	RPD %	Limits %
Silver						T	†			
Aluminum							1			
Arsenic										
Barium	0.1011	10.0	9.936	98.3	10.24	101.4	80	120	3.0	20.0
Beryllium										
Calcium	81.1	100.0	179.4	98.3	184.7	103.6	80	120	5.3	20.0
Cadmium										
Cobalt										
Chromium										
Copper										
Iron	0.0269	10.0	9.932	99.1	10.26	102.3	80	120	3.3	20.0
Potassium	7.351	100.0	102.4	95.0	112.8	105.4	80	120	10.4	20.0
Magnesium	13.86	100.0	117.1	103.2	120.8	106.9	80	120	3.5	20.0
Manganese										
Sodium										
Nickel										
Lead										
Antimony										
Selenium										
Thallium										
Vanadium										
Zinc										

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

* SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 02/26/98

Analyzed on: 02/25/98

Analyst: TV

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Chloride
Method 325.3 *

SPL Sample ID Number	Blank Value MG/L	LCS Concentration MG/L Measured Concentration MG/L		% Recovery	QC Limits Recovery		
LCS	ND	170.0	169.27	99.6	94 - 106		

-9802B45

Samples in batch:

9802849-01C	9802849-02C	9802849-03C	9802849-04B
9802849-05B	9802887-06E	9802888-01H	9802888-06H
9802888-07H	9802889-08E	9802890-13E	9802890-14E
9802908-11H	9802908 - 12H	9802A08-07A	9802A10-01F
0000760-005			

9802A69-09F

COMMENTS:

LCS=SPL ID#94453182-12

SPL QUALITY CONTROL REPORT **

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Aqueous Reported on: 02/26/98

Analyzed on: 02/25/98 Analyst: TV

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

> Chloride Method 325.3 *

SPL Sample	Method	ethod Sample Spike		Matrix Spike Matrix Spike Duplicate		RPD	1	QC LIMITS Advisory)		
ID Number		Result MG/L	Added MG/L	Result MG/L	,	Result MG/L	Recovery %	(%)	RPD Max	% REC
9802849-02C	ND	33.15	50.0	82.95	99.6	83.13	100	0.4	5	92 -109

-9802B44

Samples in batch:

9802849-01C

9802849-02C

9802849-03C

9802849-04B

9802849-05B 9802888-01H 9802888-06H

9802888-07H

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/19/98

Analyzed on: 02/19/98

Analyst:

JS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Carbonate, as CaCO3 Method SM 4500-CO2D **

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9802849-01C	ND	ND	0	. 5

-9802898

Samples in batch:

9802849-01C

9802849-02C

9802849-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/19/98

Analyzed on: 02/19/98

Analyst:

JS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Bicarbonate, as CaCO3 Method SM 4500-CO2D **

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9802849-01C	214	215	0.5	5

-9802899

Samples in batch:

9802849-01C

9802849-02C 9802849-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/19/98

Analyzed on: 02/19/98

Analyst:

JS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

рН Method 150.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration pH units	Duplicate Sample pH units	RPD	RPD Max.
9802849-01C	7.74	7.72	0.3	1.0

-9802894

Samples in batch:

9802834-03A

9802849-01C

9802849-02C

9802849-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/19/98

Analyzed on: 02/19/98

Analyst:

JS

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

> Resistivity Method 120.1 *

SPL Sample ID Number	Blank Value Mohms-cm	Concentration	Measured Concentration Mohms-cm	% Recovery	QC Limits Recovery	
LCS	ND	1408.8	1409.2	100	90 - 110	

-9802893

Samples in batch:

9802849-01C

9802849-02C

9802849-03C

COMMENTS:

LCS ID#: 94453170-21

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/19/98

Analyzed on: 02/19/98

Analyst:

JS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Resistivity
Method 120.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration Mohms-cm	Duplicate Sample Mohms-cm	RPD	RPD Max.
9802849-01C	1.446	1.446	0	1.0

-9802892

Samples in batch:

9802849-01C

9802849-02C

9802849-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/27/98

Analyzed on:

02/27/98

Analyst:

EM

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample ID Number	Value Concentration Comg/L mg/L		Measured Concentration mg/L	% Recovery	QC Limits Recovery	
LCS	ND	8.48	7.45	87.9	82	- 111

-9802B93

Samples in batch:

9802849-01C	9802849-02C	9802849-03C	9802887-06E
9802888-01G	9802888-06G	9802888-07G	9802889-08E
9802890-13E	9802890-14E	9802908-11G	9802908-12G

COMMENTS:

SPL LCS#: 94453182-12

SPL QUALITY CONTROL REPORT **

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Aqueous Reported on: 02/27/98 Analyzed on: 02/27/98

Analyst:

EM

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample	Method	Sample	Spike	Matrix Spike		Matrix Spike Duplicate		RPD	QC LIMITS (Advisory)	
ID Number		Result mg/L	Added mg/L	Result mg/L	Recovery %	Result mg/L	Recovery %	(%)	RPD Max	% REC
9802887-06E	ND	10.62	10.00	19.02	84.0	19.51	88.9	5.7	9.5	84 -120

-9802B92

Samples in batch:

9802849-01C 9802887-06E 9802888-01G 9802888-06G 9802888-07G 9802908-11G 9802889-08E 9802908-12G 9802890-14E 9802890-13E

* SPL QUALITY CONTROL REPORT **

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Matrix: Aqueous

Reported on: 02/27/98 Analyzed on: 02/27/98

Analyst:

EM .

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample	Method	Sample	Spike	Matrix Spike		Matrix Spike Duplicate		RPD		QC LIMITS (Advisory)	
ID Number		Result mg/L	I .	Result mg/L		Result mg/L	Recovery %	(%)	RPD Max	% R	EC
9802849-02C	ND	4.28	10.00	14.13	98.5	14.54	103	4.5	9.5	84 -	120

-9802B94

Samples in batch:

9802849-02C

9802849-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/25/98

Analyzed on: 02/24/98

Analyst:

KS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Specific Gravity ASTM D1429

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration g/cm3	Duplicate Sample g/cm3	RPD	RPD Max.
9802849-01C	1.007	1.009	0.2	1.0

-9802A72

Samples in batch:

9802849-01C

9802849-02C

9802849-03C

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

SPL QUALITY CONTROL REPORT **

Matrix:

Aqueous

Reported on:

02/20/98

Analyzed on: 02/19/98

Analyst:

ET

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Total Dissolved Solids Method 160.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9802832-01D	1710	1780	4.0	5

-9802925

Samples in batch:

9802832 - 01D	9802832-02D	9802832-03D	9802836-01D
9802836-02D	9802836-03D	9802849-04B	9802849-05B
9802863-01H	9802884-03C		

CHAIN OF CUSTODY AND SAMPLE RECEIPT CHECKLIST

	-	980	2	844	9				CI	HAIN	OF	cus	TOD	Y RI	COI	RD N	10										_	-	01
we were	st Com					. ,-			СН	ECK O	NE 90	X CHLY	CT/DT								REQU	_				0	THE		REMARKS
Hobbs SWD	System	Lea	Co	. //	VN	?			QUA	ATERLY	MONITO	PHING	X 5001			n	34				n		F698.3	33	C				
wce					-				SITE	MVESTI	GATION	, ,	L) 5461		}	WITHINGE	JAMIN MITE	(•1•)	0	C (52+) SBN	C	5	H 10 H	HERBICIDES 3	CHIMBLITY	2 g	1.		
CONBULTANT NAME & ADD	Rice	oper	art	ting	C	cimo:	any		204	. FOR DIS	BPOSAL		1 5442			Ě	IJ ¥	8	610	2		B	3 96.5	Ŷ	3	Solids	*		
122 W. I									WAT	en for	DISPOS.	AL	5443			文里	8	ב נו	D	כ או	C DOMS	EDIS MOND DESEL CO	E/Q	PESTCODES C	C >	1			
CONSULTANT CONTACT _									A48.	eample)	R - SYS	0-16	1 5462	2	{	8	90	000	818	D/A	254	C	D SS	PESTC	WS SWI	sc(.ve	++		
PHONE 505-393-	9174	F/	NX .	505-	-39	7-1	471		WAT	er sam	PLE - BY	1 O-M	· 5463	AUNER	N.		3	0	n	¥.	S	3	Š	CS	C YTHASOPHOS	Dissolved		וש ו	
LED BY	1. Br	m							отн	en		E 04K		9 9 8 8	CONTAINER SIZE	87EX 802 3	BTEXCAS MORCCARBONS PIOFID	14 A	DIMPAHEDIO 3	SEU VOLESPPL	TPHFR 4181 3	TPHGC BOTS Need GAS 33	TOP WETALS 3 VOL 3 SEM-VOL 3 PEST 3	EP TOX METALS 3	CYTATTY 3	Total	MINERAL	Chlorides	
SAMPLEID	DATE	TIME	COMP	anne	ню	MAT SOIL		LVOGE	OTHER	ME IN	HOD PINE	BERVED NON	On≪	Ş	8	<u></u>	37	ठ्र	3	3	Ē	Ē	ठ्ठे	8	3	۲	Ē	ಲ	
MW-5	2-14-78	16125		V	٧								ICE	Z.	4000	X													
MW-5	2-14-78	16:25		V	ν								IC E	2	H											·	X		
MW-3	2-14-78	16:15		V	V								ICE	2	40mg	X		<u> </u>											
MW-3	2-14-78	16:15		V	V								/ce	2	Lt												X		
MW-1	2-14-78	16:35		v	v								/C.E	1	400	X											<u> </u>		
MW-1	2-14-78	16:35		V	V								ice	2	Lt										_		X		
MW-2	2-14-78	173/5	<u> </u>	81	1/								1¢E	2	40,0	42													
MW-Z	214-73	17:15		V	v					\prod			KE	1	Lt											X		X	
IWW	2-14-18	17/20		1/	v								/CE	2	40,	X													
Siw	2-14-98	17:20		V	V								ICI	: /	Lt								\perp	L		X		X	<u></u>
																		L											
		Ļ		1	_																								
RELINGUISHED BY: (-	2/16	910	7:15	5		_		SIGN.			DATE -/6-7		ME 1/3	1	L NO.:								1 10	00	<u>09</u>]	2		2. €
RELINGUISHED BY:	SIGNATURE)	DATE 2-/2-9		TIME		RECE	IVE D	BY:	SIGN	TURE		DATE 2-18-9	- 1	ME			ONT	CT:	-le	cta	Bro			ONE:				FAX	:
REUNQUISHED BY:		DATE		TIME	_				SIGN	ATURE		DATE		ME	70	<u>PIN AP</u> MAYS HOUF	0		<u> </u>	EWA.	¥ME)			DAYS HER () XX (VORA	ML)		

THE LABORATORY MUST PROVIDE A COPY OF THIS CHAIN OF CUSTODY WITH INVOICE AND RESULTS CARBONATE, BICARBONATE, PH
DISTRIBUTION: PINK Sampling Coordinator - WHITE & YELLOW Accompanies Shipman - WHITE Rotumed with Rooph Resistivity, Sulfate, Specific GRAVITY
MINERAL FAHERN - BARIUM, CALCIUM, IRAN, POTASSIUM, MAGNESIUM, Sedium, Chloride, TPS

SPL Houston Environmental Laboratory

Sample Login Checklist

70
_

SPL Sample ID:

9802849

			Yes	No
1	Chain-of-Custody (COC) form is pre	esent.		
2	COC is properly completed.		/	
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the ship	oping container.	✓ <u> </u>	
5	If yes, custody seals are intact.		/	
6	All samples are tagged or labeled.		/	
7	If no, Non-Conformance Worksheet			
8	Sample containers arrived intact	/		
9	Temperature of samples upon arrival	l:	2	° C
10	Method of sample delivery to SPL:	SPL Delivery		
		Client Delivery		
		FedEx Delivery (airbill #)		
		Other: UK	125046	2501100009
11	Method of sample disposal:	SPL Disposal		\checkmark
		HOLD		
		Return to Client		

Name:		Date:
	IM MUS	2/18/98

ANALYTICAL RESULTS FOR RICE OPERATING CO. ATTN: F. WESLEY ROOT 122 W.TAYLOR HOBBS, NM 88240 FAX TO: 505-397-1471

Receiving Date: 12/08/97 Reporting Date: 12/11/97 Project Number: NOT GIVEN

Project Number: NOT GIVEN Project Name: WEST CO. RD.

Project Location: HOBBS SYSTEM, LEA CO. NM

Sampling Date: 12/06/97

Sample Type: GROUNDWATER Sample Condition: COOL & INTACT

Sample Received By: BC

Analyzed By: AH

LAB NUMBER SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS DATE	12/09/97	12/09/97	12/09/97	12/09/97
H3357-1 MW-4	<0.002	<0.002	<0.002	<0.006
H3357-2 MW-7	<0.002	<0.002	<0.002	<0.006
H3357-3 MW-6	<0.002	<0.002	<0.002	<0.006
H3357-4 MW-5	<0.002	<0.002	<0.002	<0.006
H3357-5 MW-3	0.012	<0.002	<0.002	<0.006
H3357-6 MW-2	<0.002	<0.002	<0.002	<0.006
H3357-7 IWW	<0.002	0.006	<0.002	0.006
Quality Control	0.104	0.096	0.093	0.288
True Value QC	0.100	0.100	0.100	0.300
% Accuracy	104	95.8	93.1	96.0
Relative Percent Difference	4.8	3.9	0.3	0.7

METHOD: EPA SW 846-8260, gc/ms

Senjur A Coolu

DEC 1 3 1997

DEC 1 3 1997

WW9

ANALYTICAL RESULTS FOR RICE OPERATING CO. ATTN: F. WESLEY ROOT 122 W.TAYLOR HOBBS, NM 88240 FAX TO: 505-397-1471

Receiving Date: 12/08/97 Reporting Date: 12/11/97 Project Number: NOT GIVEN

Project Name: WEST CO. RD.

Project Location: HOBBS SYSTEM, LEA CO. NM

Sampling Date: 12/06/97

Sample Type: GROUNDWATER Sample Condition: COOL & INTACT

Sample Received By: BC

Analyzed By: AH

		TDS	CI
LAB NUMBER	SAMPLE ID	(mg/L)	(mg/L)

ANALYSIS DATE	•	12/09/97	12/09/97
H3357-1 N	/W-4	974	264
H3357-2 N	/IW-7	806	188
H3357-3 N	/IW-6	445	28
H3357-4 N	/IW-5	506	52
H3357-5 N	/W-3	4610	1450
H3357-6 N	/W-2	414	40
H3357-7	WW	931	328
Quality Control		NR	500
True Value QC		NR	500
% Recovery		NR	100
Relative Percent D	Difference	0.3	4.0

METHODS: EPA 600/4-79-02 160.1 325.3

Swylf for Cook

DEC 1 3 1997

PICE OPERATING HODBS, NM

Date Date

ARDINAL LABORATORIES. INC.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

2111 Beechwood, Abilene, TX 79803 101 East Marland, Hobbs, NM 88240

Page / of / (915) 673-7001 Fax (915) 673-7020 (505) 393-2326 Fax (505) 393-2476 Company Name: RICE Operating Company ANALYSIS REQUEST Project Manager: Wesley Root PO #: 122 West TAYLOR Company: ROC Address: Attn: F. Wesley Root State: NM Zip: 88240 Phone #: 505 - 393 - 9174 Address: 122 W. TAYLOR City: Hobbs Fax #: 505 - 397 - 1471 Project Owner: Hobbs System Zip: 88240 Project #: State: NM West Co. Rd. Project Name: Phone #: 505-593-9/74 Project Location: Hobbs System, Lea Co. NM Fax#: 505-397-1471 AB USE ONLY PRES. SAMPLING # CONTAINERS
GROUNDWATER hlorid WASTEWATER SOIL (G)RAB OR (C)O SD LAB I.D. Sample I.D. ICE / COO OIL SLUDGE OTHER: ACID: DATE TIME MW-4 12-6-9> 12:10 MW-7 2-6-97 12:35 V MW-6 v 12-6-97 14:30 MW-5 12-6-97 14:40 MW-3 12-6-97 14:50 MW-Z 12-6-97 15:10 IWW 12-6-97 16:20 V PLEASE MOTE: Liability and Damagee. Cardinar's Sability and ofers's exclusive remedy for any claim anteing whether based in contract or tort, shall be finited to the amount paid by the client for the Terms and Conditions: interest will be charged on all accounts more than 30 days past due at the rate of 24% per annum from the original date of involce, analyses. All claims including those for negligence and any other cause whatsoever shall be deemed welved unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be table for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, and all costs of collections, including attorney's fees. affiliates or suggestors actaing out of or related to the performance of services hereunder by Cardinal, regardess of whether such claim is based upon any of the above stated reasons or otherwise Sampler Relinguished: ☐ No Additional Fax #: Received By: Phone Result D Yes Fax Result: Yes □ No REMARKS: Time: 15 1.00 Relinquished By: Received By: (Lab Staff) Sample Condition Delivered By: (Circle One)

(Initials)

Sampler - UPS - Bus - Other:

Cool Intact
Yes Yes
No No

[†] Cardinal hannot accept verbal changes. Please fax written changes to 915-673-7020.

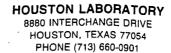
PHONE (713) 660-0901

December 19, 1997

Mr. F. Wesley Root RICE OPERATING COMPANY 122 West Taylor Hobbs, NM 88240

The following report contains analytical results for samples received at Southern Petroleum Laboratories (SPL) on December 10, 1997. The samples were assigned to Certificate of Analysis No.(s) 9712600 and analyzed for all parameters as listed on the chain of custody.

Any data flag or quality control exception associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s).


If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

Electa Brown

Client Services Representative

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 97-12-600

Approved for Release by:

Electa Brown, Client Services Representative

Date

Greg Grandits
Laboratory Director

Idelis Williams Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Company: Site:

Rice Operating Company West Co Road Lea Co, NM

Project No:

Project:

Hobbs SWD System

ANALYTICAL DATA NOTE: ND - Not Detected

SPL ID MATRIX	CLIENT ID DATE SAMPLED	BENZENE PQL	TOLUENE PQL	ETHYLBENZ.	XYLENE PQL	TPH-IR	TPH-GC	LEAD	MTBE
9712600-01 WATER	MW-7 12/06/97 12:35:00	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L				
9712600-02 WATER	MW-6 12/06/97 14:30:00	ND 1.0μg/L	ND 1.0µg/L	ND 1.0μg/L	ND 1.0μg/L				
9712600-03 WATER	MW-5 12/06/97 14:40:00	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L				
9712600-04 WATER	MW-3 12/06/97 14:50:00	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L				
9712600-05 WATER	MW-2 12/06/97 15:10:00	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L				
9712600-06 WATER	IWW 12/06/97 16:20:00	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L				
9712600-07 WATER	MW-3 12/06/97	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L	ND 1.0μg/L				

BTEX - Method 8020A ***

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9712600-01

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 12/19/97

PROJECT: Hobbs SWD System

SITE: West Co Road Lea Co, NM

SAMPLED BY: Rice Operating

SAMPLE ID: MW-7

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 12/06/97 12:35:00

DATE RECEIVED: 12/10/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION	UNITS
		LIMIT	
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	100		
4-Bromofluorobenzene	97		
Method 8020A ***			
Analyzed by: VHZ			_
Date: 12/12/97			

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

⁽P) - Practical Quantitation Limit

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/19/97

ertificate of Analysis No. H9-9712600-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 12/06/97 14:30:00

DATE RECEIVED: 12/10/97

PROJECT: Hobbs SWD System

Lea Co, NM SITE: West Co Road

SAMPLED BY: Rice Operating

SAMPLE ID: MW-6

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	$\mu { t g}/{ t L}$
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/L

Surrogate % Recovery 1,4-Difluorobenzene 93 4-Bromofluorobenzene 100

Method 8020A *** Analyzed by: VHZ

Date: 12/12/97

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9712600-03

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 12/19/97

PROJECT: Hobbs SWD System

SITE: West Co Road Lea Co, NM

Date: 12/12/97

SAMPLED BY: Rice Operating

SAMPLE ID: MW-5

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 12/06/97 14:40:00

DATE RECEIVED: 12/10/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		$\mu g/L$
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene	100		

ND - Not detected.

Method 8020A ***
Analyzed by: VHZ

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

DATE: 12/19/97

ertificate of Analysis No. H9-9712600-04

Rice Operating Company 122 West Taylor Hobbs, NM 88240

PROJECT: Hobbs SWD System

ATTN: F. Wesley Root

PROJECT NO:

SITE: West Co Road Lea Co, NM MATRIX: WATER DATE SAMPLED: 12/06/97 14:50:00

SAMPLED BY: Rice Operating SAMPLE ID: MW-3 DATE RECEIVED: 12/10/97

ANALYTICAL	DATA		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
BENZENE	ND	1.0 P	μg/L
TOLUENE	ND	1.0 P	μg/L
ETHYLBENZENE	ND	1.0 P	μg/L
TOTAL XYLENE	ND	1.0 P	μg/L
TOTAL VOLATILE AROMATIC HYDROCARBONS	ND		μg/L
Surrogate	% Recovery		
1,4-Difluorobenzene	93		
4-Bromofluorobenzene	97		
Method 8020A ***			
Analyzed by: VHZ			
Date: 12/12/97			

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9712600-05

Rice Operating Company

122 West Taylor Hobbs, NM 88240

ATTN: F. Wesley Root

DATE: 12/19/97

PROJECT: Hobbs SWD System

SITE: West Co Road Lea Co, NM

Date: 12/12/97

SAMPLED BY: Rice Operating

SAMPLE ID: MW-2

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 12/06/97 15:10:00

DATE RECEIVED: 12/10/97

PARAMETER	DATA RESULTS	DETECTION	UNITS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENE TOTAL VOLATILE AROMATIC HYDROCARBONS	ND ND ND ND ND	LIMIT 1.0 P 1.0 P 1.0 P 1.0 P	μg/L μg/L μg/L μg/L
Surrogate 1,4-Difluorobenzene 4-Bromofluorobenzene Method 8020A *** Analyzed by: VHZ	% Recovery 97 97		-

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9712600-06

Rice Operating Company 122 West Taylor

Hobbs, NM 88240

ATTN: F. Wesley Root

O TEICH NO.

DATE: 12/19/97

PROJECT: Hobbs SWD System

SITE: West Co Road Lea Co, NM

SAMPLED BY: Rice Operating

SAMPLE ID: IWW

PROJECT NO:

MATRIX: WATER

DATE SAMPLED: 12/06/97 16:20:00

DATE RECEIVED: 12/10/97

A	NALYTICAL	DAT.	A.			
PARAMETER			RESULTS		ECTION	UNITS
				LIM		
BENZENE			ND	1.0	P	μg/L
TOLUENE			ND	1.0	P	μg/L
ETHYLBENZENE			ND	1.0	P	μg/L
TOTAL XYLENE			ND	1.0	P	μg/L
TOTAL VOLATILE AROMATIC HYD	ROCARBONS		ND			μg/L
Surrogate		%	Recovery			
1,4-Difluorobenzene			100			
4-Bromofluorobenzene			100			
Method 8020A ***						
Analyzed by: VHZ						_
Date: 12/12/97						

ND - Not detected.

(P) - Practical Quantitation Limit

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA
**Ref: Standard Methods for Examination of Water & Wastewater, 18th ed.
***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

QUALITY CONTROL DOCUMENTATION

μg/L

Units:

PL BATCH QUALITY CONTROL REPORT **
METHOD 8020/602

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Batch Id: VARD971212120700

LABORATORY CONTROL SAMPLE

SPIKE	Method Blank Result <2>	Spike Added <3>	Blank Result <1>	Spike Recovery	QC Limits(**) (Mandatory) % Recovery Range
Benzene	ND	50	53	106	61 - 119
Toluene	ND	50	55	110	65 - 125
EthylBenzene	ND	50	53	106	70 - 118
O Xylene	ND	50	52	104	72 - 117
M & P Xylene	ND	100	110	110	72 - 116

MATRIX SPIKES

SPIKE COMPOUNDS	Sample Results	Spike Added	Matrix Spike		Matrix Duplie	Spike	MS/MSD Relative %	QC Limits(***) (Advisory)				
	<2>	<3>	Result	Recovery	Result	Recovery	Difference	RPD Max.	Recovery Range			
BENZENE	ND	20	19	95.0	17	85.0	11.1	21	32 - 164			
TOLUENE	ND	20	19	95.0	18	90.0	5.41	20	38 - 159			
ETHYLBENZENE	ND	20	19	95.0	18	90.0	5.41	19	52 - 142			
O XYLENE	ND	20	19	95.0	18	90.0	5.41	18	53 - 143			
M & P XYLENE	ND	40	38	95.0	36	90.0	5.41	17	53 - 144			

Analyst: VHZ

Sequence Date: 12/13/97

SPL ID of sample spiked: 9712274-06A

Sample File ID: D_L7332.TX0

Method Blank File ID:

Blank Spiké File ID: D_L7374.TX0

Matrix Spike File ID: D_L7329.TX0

Matrix Spike Duplicate File ID: D_L7330.TX0

* = Values Outside QC Range. « = Data outside Method Specification limits.

NC = Not Calculated (Sample exceeds spike by factor of 4 or more)

ND = Not Detected/Below Detection Limit

 $% Recovery = {(<1> - <2>) / <3> } x 100$

LCS % Recovery = (<1> / <3>) x 100

Relative Percent Difference = |(<4> - <5>)|/[(<4> + <5>) x 0.5] x 100

(**) = Source: SPL-Houston Historical Data (1st Q '97)

(***) = Source: SPL-Houston Historical Data (1st Q '97)

SAMPLES IN BATCH (SPL ID) :

9712600-04A 9712600-05A 9712600-06A 9712600-07A 9712274-01A 9712274-02A 9712274-07A 9712334-01A 9712334-03A 9712336-02A 9712336-04A 9712336-01A 9712336-05A 9712336-03A 9712405-01A 9712405-03A 9712274-06A 9712600-01A 9712600-02A 9712600-03A

CHAIN OF CUSTODY AND SAMPLE RECEIPT CHECKLIST

9712600

									CI	HAII	N O	F CI	JST	ODY	RE	COR	RD N	I O												: 12-6-97 	
1.1.4	Ca P								CH	ECK C	ME 6	OX O	MLYC	T/DT						ANAL HECK							0	THEF	R	REMARK	s
Hobbs SWD S			Co,	N	M							TORNO	×	5481			٤ ع	MTBE	C (s		C		n	H€AB⊃	C 530	γЭ					
wc.			1.						ł	MVES				\$441			WITHINTEE	¥	NBS (+15) 3	U 01	8S (+25)	сс	DESE	PEST 3	HERBC!	CNTABLITY					
COMPLETANT NAME & ADDR				,			14			FOR D				2443 2443				8	0		ח	C	DIS MO	\Q_2	CS						
122 West TAY	•			_	86	70			1								X	8	37		בענע	ន	_	SE SE	200	C YIM					
PHONE 505-373		•			33	77-	147]					5463	INERS	SIZE		38	738		אר מי	3	3031	Š	n R	COPPOSATITY					
SAMPLED BY	Bion	<u> </u>							1						OF CONTAINERS	CONTAINER SI	BTEX 602 3	BTEXCAS HYDROCARBONS PIOFID	VOLEWIPPL 3 EXPTINES	0153 HV	VALES P	C 1811 5	TPYGG BOIS WOOLGAS O	C STATE	EP TOX LETALS 3 PESTODES3 HERECOES 3	REACTIVITY 3					
SAMPLETO	DATE	TIME	00	GRAD	ню	MATT SOIL		H VDØF	OTHER					onen jCL²		8	五	BTEV	ठ	3	8	Ě	F	ğ	EP 70	3					
MW-7	12-6-97	12:33		V	v								V	v		40,1	V														
MW-6	12-6-97	14,30		V	V								v	1	1	40mc	V														
MW-5	12-6-97	14:40		V	V								v	v	1	40ml	V	<u> </u>	ļ						_	_		4	S		
MW-3	12-6-97	 	 	V	4					\sqcup			V	1	1	40 m		ļ	ļ	_		ļ		<u> </u>	_	ļ					
MW-2	12-6-97	1	 		V	-				$\left\{ -\right\}$			V	1	_	40 pul	_	-	}		-		-	<u> </u>	├		 	<u> </u>			
IWW	12-697	16,20		V	V	-	\vdash			$\left\{ -\right\}$			V	10	1	40m	4	-	-	-	-	 	-	-	-	-	├	-		 	
				-	+-	-				+			-	 	╁╌	-	-	├-	-	-	-	-	-	-	┼	-	-	-	 	 	
				-	+	 -			-	+				┼─	+-	┼	+	+	┼	-	-	-	-	+	-	 	\vdash	-	 		
	1	1	 	-	\vdash	1				\dagger	-			 	+-	-	+-	-	\vdash	+	-	-	-	┼	-	 	+	 	+-		
		1			T							-		 	+-	1	+	ightharpoonup	\dagger	 	1	 	-	+-	 	†	 	 	+-		
					1			7						1	\top	1			T		T				\dagger	1	1	T	1	1900	
RELINQUISHED BY: (5	SIGNATURE)	DATE /2/8	YIV .	TIME		W.	1	BY	SIGN	TUR	E)	1 1	0 47	TIA	ME D		L NO :								 -						
RELINQUISHED BY: (SIGNATURE)	DATE		TIME		RECE	NED	BY:	SIGN	ATUR	E)	↓	ATE		ME				ACT:						ONE:				FA)	(:	
		-			_											-{	RN AF		Q TIM	E (ÇH	ECK	ONE	· · · · ·								
REUNOUISHED BY: (:	SIGNATURE)	DATE		TIME	E	RECE	(VEC	D BY:	(SIGN	ATUR	E)	۵	ATE	TIA	ME	t	AYS HOUF										NORM				
			$oldsymbol{\perp}$									1		L_				· .						UI.	· 75: P1 (<i></i>					

THE LABORATORY MUST PROVIDE A COPY OF THIS CHAIN OF CUSTODY WITH INVOICE AND RESULTS

SPL Houston Environmental Laboratory

Sample Login Checklist

Da	te: 11me: 1000		
SP	L Sample ID:		
	9712400		
		<u>Yes</u>	<u>No</u>
1	Chain-of-Custody (COC) form is present.	/	
2	COC is properly completed.		
3	If no, Non-Conformance Worksheet has been completed.		
4	Custody seals are present on the shipping container.		
5	If yes, custody seals are intact.		
6	All samples are tagged or labeled.	/	
7	If no, Non-Conformance Worksheet has been completed.		
8	Sample containers arrived intact		
9	Temperature of samples upon arrival:		

		Client Delivery	
		FedEx Delivery (airbill #)	3283607585
		Other:	
11	Method of sample disposal:	SPL Disposal	
		HOLD	
		Return to Client	
	_		
Nai	me:	Date:	

SPL Delivery

10 Method of sample delivery to SPL:

190

ANALYTICAL RESULTS FOR RICE OPERATING CO. ATTN: WES ROOT 122 W. TAYLOR HOBBS, NM 88240 FAX TO:

Receiving Date: 07/02/97 Reporting Date: 07/08/97 Project Number: 129

Project Name: SPILL SITE

Project Location: W. COUNTY RD., HOBBS, NM

Sampling Date: 07/02/97

Sample Type: GROUNDWATER
Sample Condition: COOL & INTACT

Sample Received By: BC Analyzed By: BC/AH

LAB NUMBER	SAMPLE ID	TDS (mg/L)	CI (mg/L)	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS DAT	E:	07/08/97	07/03/97	07/03/97	07/03/97	07/03/97	07/03/97
H3037-1	MW-2	399	44	0.006	0.007	0.003	0.011
H3037-2	MW-3	3065	1290	0.002	<0.001	<0.001	<0.003
H3037-3	MW-4	788	206	<0.001	<0.001	<0.001	<0.003
H3037-4	MW-5	458	50	<0.001	<0.001	<0.001	<0.003
H3037-5	MW-6	419	38	<0.001	<0.001	<0.001	<0.003
H3037-6	MW-7	1092	264	<0.001	<0.001	<0.001	<0.003
H3037-7	IAW	663	200	<0.001	<0.001	<0.001	<0.003
Quality Control		NR	200	0.087	0.086	0.088	0.264
True Value QC		NR	200	0.100	0.100	0.100	0.300
% Accuracy		NR	100	87	86	88	88
Relative Percent	t Difference	NR	0	4.4	0.9	0.9	2.4

METHODS:

TDS- EPA 600/4-79-020, 160.1; CI-EPA 600/4-79-020, 325.3 BTEX-EPA SW-846-8020

Burgess J. A. Cooke, Ph. D.

Date

PHONE	915) 673-700); .	2111	BEECHWOCD	ABILENE.	-4 -3	b.
					 		_

PHONE (505) 393-2325 . 101 E. MARLAND . HC985, YM 38240

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

LABORATOR							ļ							1			4.87	A T 37	OTO :		Page		of_
roject Manager:	-TECH SERVICES	~~					B	ri i	TC	3		PO					AIN	ALY	212	REQ	UEST		Г
Address: P.O. B	<u> </u>				<u>.</u>														1			1	
11.1.							Con						W									- {	
City: Midlan): 79	110)-//	157		Attn			کٹ_	R	207]]	Ì	
. 4	550-4913						Add											1					
	750-49/3						_		40K								S]	}	1		
Project #: 12							Stat	6:	44	14	<u>,</u>	ZIp:					19	ļ			1 1		
Project Name: 5	DILL SIte						Pho	ne#	<u>:</u>				·				1 2	Ì	1		1 1		
roject Location:	West County Ro	ad		402	BAS		Fax	_						· 			10			1			
	/	1				MAT	RIX			***	ISERT+	T14#	SAM	PLING			<i>\\</i>			1			
LAB LD. #	Sample I.D.	COMP(C) OR GRAB(G)		GROUNDWATER	WASTEWATER	SOIL	ØF.	SLUDGE	OTHER:	ACID:	KCE / COOL	OTHER:	DATE	TIME	87EX	7205	Waldes						
43037-1	MW-Z	6	4	\bigvee	_		<u> </u>		<u> </u>		V		7-2-97		V	1	1		<u> </u>	<u> </u>			
دح	MW-3	15	4	V		ļ	<u> </u>	<u> </u>	<u> </u>	<u>. </u>	V		7-2-97		1/	V	1		ļ		1		L
-3	MW-4	6	4	V	ļ	<u> </u>	<u> </u>	<u> </u>			V	<u> </u>	7-297	11:20	V	1	/	<u> </u>	 				\perp
- 4	MW-5	6	4	V		├	<u> </u>			ļ	V	_	7-2-97	2:35	1	V	V	} -	 	 			ļ
	MW. 6	1/2	4	V		 			 		V	_	7.2.97		V	IV,	0	ļ	 	 	11		Ļ
	WW-7	G	4	V		├	-	 	-	 	V	<u> </u> -	7-2.97	11:00	V	V	1	↓		 			1
<u> </u>	WZAW	B	4	,	-	-	-		-	-	~	-	7.27	3:00	V	V	V	-	-	-			 -
		l	 -	 -	 	+	↓	 	 	I			!	ļ		 	 	} -			4		+

Sampler Relinguished: Jan D. Smith	Date: 7-2-97 Time: 00	Received By:		□ No Additional Fax #: □ No
Reinquished By:	Date: 7/2/47	Received By: (Lab Staff)	Cooks	
Delivered By: (Circle One)		Sample Condition Cool Intact	CHECKED BY: (Initials)	
UPS - Fed Ex - Bus - Other:		Yes Yes		

ANALYTICAL RESULTS FOR RICE OPERATING CO. ATTN: WES ROOT 122 W. TAYLOR HOBBS, NM 88240 FAX TO:

Receiving Date: 04/03/97

Reporting Date: 04/07/97 Project Number: 129

Project Name: HOBBS SPILL SITE, LINE H-6 (E-TECH)

Project Location: HOBBS, NM

Sampling Date: 04/03/97

Sample Type: GROUNDWATER
Sample Condition: COOL & INTACT

Sample Received By: AH

Analyzed By: BC

LAB NUMBER	SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS DA	E	04/05/97	04/05/97	04/05/97	04/05/97
H2896-1	MW-2	<0.001	<0.001	<0.001	<0.003
H2896-2	MW-3	0.292	<0.001	0.001	0.005
H2896-3	MW-4	<0.001	<0.001	<0.001	<0.003
H2896-4	MW-5	<0.001	<0.001	<0.001	<0.003
H2896-5	MW-6	<0.001	<0.001	<0.001	<0.003
H2896-6	MW-7	<0.001	<0.001	<0.001	<0.003
H2896-7	WW	<0.001	<0.001	<0.001	<0.003
Quality Control		0.107	0.105	0.110	0.331
True Value QC		0.100	0.100	0.100	0.300
% Accuracy		107	105	110	110
Relative Percen	t Difference	3.2	4.4	4.1	5.7

METHOD: EPA SW 846-8260

Suy eff flo Cathe

Date

ANALYTICAL RESULTS FOR RICE OPERATING CO. ATTN: WES ROOT 122 W. TAYLOR

Receiving Date: 04/03/97 Reporting Date: 04/09/97 HOBBS, NM 88240

FAX TO:

Sampling Date: 04/03/97

Sample Type: GROUNDWATER
Sample Condition: COOL & INTACT

Sample Received By: AH Analyzed By: AH/BC

Project Number: 129

Project Name: HOBBS SPILL SITE, LINE H-6 (E-TECH)

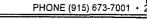
Project Location: HOBBS, NM

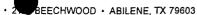
	Na	Ca	Mg	K	Conductivity	T-Alkalinity
LAB NUMBER SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(umhos/cm)	(mgCaCO3/L)
ANALYSIS DATE:	04/09/97	04/04/97	04/04/97	04/04/97	04/04/97	04/04/97
H2896-1 MW-2	165	78	18	2.4	904	268
H2896-2 MW-3	1692	115	263	19.0	11200	184
H2896-3 MW-4	76	117	29	1.9	1354	208
H2896-4 MW-5	66	74	21	2.5	872	236
H2896-5 MW-6	82	70	20	1.3	779	232
H2896-6 MW-7	327	70	17	3.8	2199	308
H2896-7 WW	552	61	23	9.0	3230	232
Quality Control	NR.	NR	NR	NR	1413	NR
True Value QC	NR	NR	NR	NR	1413	NR
% Recovery	NR	NR	NR	NR	100	NR
Relative Percent Difference	NR	NR	NR	NR	0	NR
METHODS:	SM3	3500-Ca-D	3500-Mg E	8049	120.1	310.1
	CI [—]	SO4	CO3	нсоз	pН	TDS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DATE:	04/04/97	04/04/97	04/04/97	04/04/97	04/04/97	04/04/97

	CI [—]	SO4	CO3	HCO3	рН	TDS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DATE:	04/04/97	04/04/97	04/04/97	04/04/97	04/04/97	04/04/97
H2896-1 MW-2	50	110	0	327	7.40	497
H2896-2 MW-3	3249	300	0	224	7.14	7764
H2896-3 MW-4	196	92	0	254	7.18	877
H2896-4 MW-5	50	103	0	288	7.73	509
H2896-5 MW-6	80	88	0	283	7.19	404
H2896-6 MW-7	344	162	0	376	7.84	1166
H2896-7 WW	760	150	0	283	7.38	1468
Quality Control	480	105	NR	NR	7.00	NR
True Value QC	500	100	NR	NR	7.00	NR
% Recovery	96.0	105	NR	NR	100	NR
Relative Percent Difference	0	4.8	NR	NR	0	0.2
METHODS:	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

Gayle A Potter Chemist

Date


PHO	NE	91																			1
 		_	==	 _	_	_	_		_	_	_	_	 _	_	_	 	_	 	-		
_				 						-		. ~	 	_						-	


CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

LABURATUR																					Page	of	
Company Name: 🚖	TECH SERVICES								South to a								AN	ALY	SIS	REQ	JEST		
Project manager:	514 D. Souith						B_{I}	LL	TC	<u>)</u>		PO	#:										
Address: F.O.	cx 5/151						Con	npan	ıy: /	Ric		Ë	uginee	ring									
City: Midlan	1cl State: TX ZI	p: 79	77/	0			Attn	:	W	25	E								}	}			
Phone #: (9/5)	550-4913						Address:																
Fax #: (915)							City	: /	100	38	 S				l				1	}			
Project #: アスタ							City: HOBBS State: N.M. Zip:										Amious						
Project Name: 140,	OBS SPILL SITE,	Lix)E	H-	6		Pho										1						_
Project Location: /	HOBBS N.M.						Fax	#:]				l				1
					MAT	RIX			784	.SERTA	T148	SAM	PLING	1		27		}					
LAB LD. #	Sample I.D.	COMP(C) OR GRAB(G)		GROUNDWATER	WASTEWATER	BOIL	OIL OIL	SLUDGE	OTHER:	ACID:	KE/COOL	OTHER:	DATE	TIME	87ex	7.25	Major Cations						
	MW-2	6	14	$ \checkmark $					<u> </u>		V		4-3-97	1345	\checkmark	V	V						
	mw-3.	6	4	V							V	<u></u>	4:3-97	1030	<u> </u>	V	\ <u>\</u>						
	M14 - 4	6	4	\vee						_	V		4-3-97	1150	V	/	V						
	MW-5	6	4	V				<u> </u>	<u> </u>	<u> </u>	V	_	4-3-77			1V	1/	1	<u> </u>				
	MW-6	6	4	14	ļ			<u> </u>	ļ		V	<u> </u>	4-3-97		V	V	V	ļ					
	MW -7	6	4	V	_			<u> </u>	ļ		V	_	4-3-97		\perp	V	1		<u> </u>				
	WW	6	4	V	<u> </u>			ļ			V	_	4-3-97	1245	<u> </u>	V	1/		ļ	 			
		4	 	 	 	 -			<u> </u>			_	 				ļ		 	 			
		+									 	-	ļ		 	 	<u> </u>	<u> </u>	 -				
L	ordinal's had why and chent's exclusive remedy for any claim a		<u> </u>	<u> </u>	<u> </u>	<u> </u>		L		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				

PLEASE NOTE. Lightily and Damages. Cardinal's had my and cleant's exclusive remedy for any claim ansing, whether based in contract of fort, shall be unded to the amount paid by cleant for analyses. All claims, including those for represent and any other cause whatbower shall be germed waived unless made in mining and received by Cardinal adminismry (30) days after compression of the applicable in no event shall Cardinal be hable for incidental or consequential damages, including, without himstands, business interruptions, toos of use, or ross of profits incurred by cleant as substitutions are although on some statements and or successors arising out of or relations to time performance of services and ended by Cardinal. Legardless of whether such claims stated upon any time above stated reasons or otherwise.

Sampler Relinguished:	4.3-97	Received By:		Phone Result □ Yes □ No Additional Fax #: Fax Results: □ Yes □ No
Get & Arried	Time:			REMARKS: Result to Wes Root @
Reinquished By:	Date: 4-3-97	Received By: (Lab Staff)		
	Time: 35	Amy Hill		RICE Engineering
Delivered Bv: (Circle One)		Sample Condition	CHECKED BY:	
UPS - Fed Ex - Bus - Other:	!	Cool Vintact Cool Yes No No No	(Initials)	

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

PHONE (806) 796-2800 • 5262 34th ST. • LUBBOCK, TX 79407

ANALYTICAL RESULTS FOR RICE ENGINEERING & OPERATING ATTN: WESLEY ROOT 122 W. TAYLOR HOBBS, NM 88240 FAX TO:

Receiving Date: 11/25/96 Reporting Date: 12/02/96

Sampling Date: 11/25/96

Project Number: NOT GIVEN

Sample Type: GROUNDWATER Sample Condition: COOL & INTACT

Project Name: SPILL SITE, LINE H6/E-TECH SERVICE

RDINAL

LABORATORIES

Sample Received By: BC

Project Location: HOBBS, NM

Analyzed By: BC

LAB NUMBER	SAMPLE ID	BENZENE (ppb)	TOLUENE (ppb)	ETHYL BENZENE (ppb)	TOTAL XYLENES (ppb)
ANALYSIS DA	ΓE	11/26/96	11/26/96	11/26/96	11/26/96
H2716-1	MW-2	1.9	1.2	1.8	<3
H2716-2	MW-3	1170	1.1	4.7	15
H2716-3	MW-4	2.9	1.1	1.9	<3
H2716-4	MW-5	1.2	1.2	1.6	<3
H2716-5	MW-6	16.1	1.3	2.3	4.7
H2716-6	IWW	655	<1	2.6	<3
H2716-7	MW-7	1.1	<1	<1	<3
Quality Control		94.8	89.3	90.3	270
True Value QC		100	100	100	300
% Accuracy		94.8	89.3	90.3	90.0
Relative Percer	nt Difference	5.0	1.5	1.6	2.2

METHOD: EPA SW 846-8020, 5030, Gas Chromatography

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

PHONE (806) 796-2800 • 5262 34th ST. • LUBBOCK, TX 79407

ANALYTICAL RESULTS FOR RICE ENGINEERING & OPERATING ATTN: WESLEY ROOT

122 W. TAYLOR

HOBBS, NM 88240

Sampling Date: 11/25/96

Sample Type: GROUNDWATER Sample Condition: COOL & INTACT

Sample Received By: BC

Analyzed By: BC/WL

FAX TO:

Project Location: HOBBS, NM

METHODS: EPA 600/4-79-02

Project Number: NOT GIVEN

Receiving Date: 11/25/96

Reporting Date: 12/06/96

Project Name: SPILL SITE, LINE H6/E-TECH SERV.

LAB NUMBER	SAMPLE ID	Na	Ca	Mg	K		SO4	CO3	HCO3
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
ANALYSIS DA	TE:	12/6/96	12/2/96	12/2/96	11/27/96	11/26/96	11/27/96	12/6/96	12/6/96
H2716-1	MW-2	23.6	71.6	25.5	3.90	44.0	88.1	0	229
H2716-2	MW-3	3761	642	215	47.8	6850	760	0	366
H2716-3	MW-4	48.3	146	41.8	1.89	240	97.7	0	251
H2716-4	MW-5	1.5	81.6	39.9	1.25	70.0	97.9	0	212
H2716-5	MW-6	12.2	89.6	25.3	1.25	38.0	98.8	0	244
H2716-6	IWW	3310	216	114	49.0	5300	395	0	503
H2716-7	MW-7	181	109	36.5	3.74	334	148	0	242
0				15	10	205	50.4	ND	ND.
Quality Control	····	NR	NR	NR	NR	205	52.4	NR	NR
True Value QC		NR	NR	NR	NR	200	50.0	NR	NR
% Accuracy		NR	NR	NR	NR	102	105	NR	NR
Relative Percen	t Difference	NR	1.1	2.0	NR	1.0	0.3	NR	NR

Wer L

Std. Methods

3111B

3111B

3111B

3111B

Wei Li, Chemist

12-6-86

2320B

2320B

352.3

375.4

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

PHONE (806) 796-2800 • 5262 34th ST. • LUBBOCK, TX 79407

ANALYTICAL RESULTS FOR RICE ENGINEERING & OPERATING ATTN: WESLEY ROOT 122 W. TAYLOR HOBBS, NM 88240

FAX TO:

Receiving Date: 11/25/96 Reporting Date: 12/02/96

Project Number: NOT GIVEN
Project Name:SPILL SITE, LINE H6/E-TECH SERVICE

Project Location: HOBBS, NM

Analysis Date: 11/26/96 Sampling Date: 11/25/96

Sample Type: GROUNDWATER
Sample Condition: COOL & INTACT

Sample Received By: BC

Analyzed By: BC

		TDS
LAB NUMBER	SAMPLE ID	(mg/L)
H2716-1	MW-2	443
H2716-2	MW-3	13890
H2716-3	MVV-4	953
H2716-4	MVV-5	506
H2716-5	MVV-6	477
H2716-6	IWW	10147
H2716-7	MW-7	1090
Quality Control		NR
True Value QC		NR
% Accuracy		NR
Relative Percent [1.7	

METHOD: EPA 600/4-79-020, 160.1

Chemist Cook

Date

1	
W.	

ARDINAL LABORATORIES

PHONE: (505) 393-2326 · 101 E. MARLAND · HOBBS, NEW MEXICO 88240

SEND REPORT TO: F. WESLEY ROOT RICE ZNG

RICE 2NG H2716-1,2,3,4,8,6,7

Chain of Custody Record

Project I.D. SPILL SITE, LINE H-6, #129
Project Location Hoses N.M.
Sampled By BILL D. SMITH
Client Name E-TECH SERVICES RICE ENS-
Address A-O. Box 51/51, Midlaud TK 1970
Telephone (915) 520-9893.

Sample Number	Date	Ттте	Composite	Grab	Sample Location	Number of Containers	Ana Red	alysi quire		Jasel	Catter	D D	1015		Remaype sample, pro		etc.)
1	/1-25	1445		√	MW-Z	3	V		V					Lut	att cool	Cowal	e.
2	1/-25	1345		\checkmark	<i>ww-</i> 3	3	1/	1/							1	. [
}	1/-25	1045		1	MW-4	3	V	V:	i/								
4	1.25	1200		1/	MW-5	3	V		1/		·				<u> </u>		
5	1-25	1245			MW-6.	3		V	V		·						
<u>b</u>		1530		<u> </u>	J-W.W.	3	V	V	V						<u> </u>		1
7	1/.25	/130		$\sqrt{}$	MW-7	3	V	<u>'/</u>	<u>/</u>		ļ				}		
				÷ .													
3														<u> </u>	· · · · · · · · · · · · · · · · · · ·		
														 		<u></u>	
				}		<u> </u>											
Ship of the control o									Shlpp ød/0	Pollvorod							

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

ANALYTICAL RESULTS FOR RICE ENGINEERING CORP ATTN: GLYNN PARKER 122 W. TAYLOR HOBBS, NM 88240 FAX TO:

Receiving Date: 08/12/96 Reporting Date: 08/14/96 Project Number: NOT GIVEN

Project Number: NOT GIVEN
Project Name: HOBBS SPILL SITE

Project Location: SEC. 5 T.195 R.38E, LEA CO., NM

Sampling Date: 08/12/96

Sample Type: GROUNDWATER
Sample Condition: COOL & INTACT

Sample Received By: BC

108

1.0

107

0.4

Analyzed By: BC

TOTAL **XYLENES** TOLUENE ETHYLBENZEN BENZENE LAB NUMBER SAMPLE ID (ppb) (ppb) (ppb) (ppb) ANALYSIS DATE 8/13/96 8/13/96 8/13/96 8/13/96 H2602-1 MW#2 <1 <1 <1 **Quality Control** 100.3 93.4 89.8 273 True Value QC 85.8 83.4 254 88.2

114

0.5

METHOD: EPA SW 846-8020, 5030, Gas Chromatography

Burgess U. A. Gooke, Ph. D.

Relative Percent Difference

% Accuracy

Date

109

0.8

Environmental Analytical Services

ARDINAL LABORATORIES

118 S. Commercial Ave. Farmington, NM 87401 505-326-4669 FAX 505-326-4535 101 E. Marland Hobbs, NM 88240 505-393-2326 FAX 505-393-2476

12602 -1 Chain	of	Custody	Record
Ullalli	UI	Gustouy	11000.

Project I.D. Hobbs Spill Site
Project Location Sec 5 T. 195 R. 38E Lea Co. A.
Sampled By Hlynn Parker
Client Name Rice Eng. CORP.
Address 122 W. Taylor - Hobbs N. M. 8824
Telephone (505) 393-9174 Fax (505) 397-1471

Number	Date	Time	Composite	Grab	Sample Location	Number of Containers	Ana	llysis	d					Remarks (Type sample, preservation, etc.)
	8/4/96	1100			MW #2	2	X.							
					·	•				: :,	. 1			
							-							į
					·				,				<u>_</u>	••-
ز														
							<u> </u>							;
									·	·		· ·	•	
]		·								·
										:				
leleas	ed by:	(Slona	hite)		Date Time Received by: (Signature)		PLEASE	HOTE:	Liebii	Ity and	Damage	. Card	inel's	Hability and client's

leleased by: (Signature)	Date	Time	Received by: (Signature)	
Glynn Parker	8/13/96	1 13 ki	B. Cooki	
leleased by: (Signature)	Date	Time	Received by: (Signature)	

PLEASE NOTE: Liability and Damages. Cardinal's liability and ellent's exclusive remedy for any claim scising, whether based in contract or tort, shall be limited to the amount paid by client for the analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

PHONE (806) 796-2800 • 5262 34th ST. • LUBBOCK, TX 79407

ANALYTICAL RESULTS FOR

E-TECH SERVICE

ATTN: BILL D. SMITH

P.O. BOX 51151

MIDLAND, TX 79710

FAX TO: RICE ENGINEERING, HOBBS, NM.

Sample Date: 06/19/96

Sample Type: Water

Sample Condition: Glass, Intact

Sample Received By: BC

Analyzed By: BC

Receiving Date: 06/19/96 Reporting Date: 06/29/96 Project Number: #129 Project Name: Hobbs Spil Site Project Location: Hobbs, NM

Burett & Roch

		BENZEN	IE TOLUEN	ETHYL IE BENZENE	TOTAL XYLENES
LAB NUMB H2562-1-7	ER SAMPLE ID	(ppb)	(ppb)	(ppb)	(ppb)
ANALYSIS	DATE	6/20/96	6/20/96	6/20/96	6/20/96
H2562-1	MW-6	23	<1	<1	<3
H2562-2	MW-5	<1	<1	<1	<3
H2562-3	MW-2	<1	<1	<1	>3
H2562-4	MW-3	132	<1	<1	<1
H2562-5	WW	32	<1	<1	<3
H2562-6	MW-4	<1	<1	<1	<3
H2562-7	MW-7	<1	<1	<1	<3
Quality Con	trol	100	93	86	283
True Value	QC	95	86	87	252
% Accuracy		105	108	98	113
Relative Per	cent Difference	8.6	4.3	4.1	1.1

METHOD: EPA SW 846-8020, 5030, Gas Chromatography

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

PHONE (806) 796-2800 • 5262 34th ST. • LUBBOCK, TX 79407

ANALYTICAL RESULTS FOR

E-TECH SERVICE ATTN: BILL D. SMITH P.O. BOX 51151

MIDLAND, TX 79710

FAX TO: RICE ENGINEERING, HOBBS, NM.

Receiving Date: 06/19/96 Reporting Date: 06/29/96 Project Number: #129

Project Name: Hobbs Spill Site Project Location: Hobbs, NM Analysis Date: 06/28/96 Sample Date: 06/19/96 Sample Type: Water

Sample Condition: Glass, Intact

Sample Received By: BC

Analyzed By: BC

		TDS
LAB NUMBER	SAMPLE ID	(mg/L)
H2562-1	MW-6	524
H2562-2	MVV-5	506
H2562-3	MW-2	649
H2562-4	MW-3	2684
H2562-5	ww	1817
H2562-6	MW-4	1114
H2562-7	MW-7	1130
Quality Control	MW-7D	1127
True Value QC		1130
% Accuracy		99
Relative Percent I	Difference	N/A

METHOD: EPA 600/4-79-020, 160.1

Chémist

Date

Receiving Date: 06/19/96

Reporting Date: 06/29/96 Project Number: #129

Project Name: Hobbs Spill Site

Project Location: Hobbs, NM

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

PHONE (806) 796-2800 • 5262 34th ST. • LUBBOCK, TX 79407

ANALYTICAL RESULTS FOR E-TECH SERVICE ATTN: BILL D. SMITH P.O. BOX 51151 MIDLAND. TX 79710

FAX TO: RICE ENGINEERING, HOBBS, NM.

Sample Date: 06/19/96

Sample Condition: Glass, Intact

Sample Received By: BC Analyzed By: WL & GP

Sample Type: Water

LAB NUMBER SAMPLE ID Na Ca Mg K CI SO4 CO3 HCO3 H2562 ppm ppm ppm ppm ppm ppm ppm ppm 6/28/96 6/28/96 6/28/96 6/28/96 6/28/96 ANALYSIS DATE: 6/28/96 6/28/96 6/28/96 H2562-1 3 48 81 0 MW-6 40 87 16 288 44 76 0 H2562-2 MW-5 45 79 15 3 264 6 96 66 0 H2562-3 MW-2 85 20 273 74 0 15 1004 120 H2562-4 MW-3 160 41 273 544 H2562-5 WW 466 80 24 6 828 75 0 190 H2562-6 MW-4 5 312 239 119 25 160 105 H2562-7 MW-7 7 359 0 283 254 84 17 499 105 97 Quality Control 0.95 2.09 0.499 4.95 101 500 100 100 100 True Value QC 0.5 105 97 % Accuracy 104 99 99 99 101 95 5.2 0.1 0.1 4.8 3 Relative Percent Difference 1.3 1.5 1.2 352.3 METHODS: EPA 600/4-79-02 375.4 3111B 2320B 2320B 3111B Std. Methods 3111B 3111B

Wei L

Wei Li. Chemist

7-11-96

Date

FH2562 #H-2562

1	
	ARDINAL LABORATORIES
سرر	ARDINAL LABORATORIES PHONE: (505) 393-2326 • 101 E. MARLAND • HOBBS, NEW MEXICO 88240

Chain	of Cu	ıstody	Record

Project I.D. # 129 (#H-2562)
Project Location Hopes Salu Site
Sampled By BILL D. Sourth
Client Name E-TECH SERVICE
Address P.O. Box -51151, Malbud IX
Telephone (9/5) 520-70/8

									•					
			te te			of Sigs	An Re	alysi quir	is ed			Pin	7/	
Sample Number	Date	Пте	Composite	Grab	Sample Location	Number of Containers		X (V)	105	1821	ation	X/	//	Remarks (Type sample, preservation, etc.)
					·	<u> </u>		<u> </u>	Z	<u>Z</u>			_	(1) pe sample, preservation, etc.,
1	6-18	630		X	MW-Co	4	V	1/	1/					
		1645		X	MW-5	4	V	V	W					
2	018			X	MW-Z	4	V	V	V					
4	6-19	1415		X	MW-3	4	1	V	V	1				
	1-19	1500		V	(1)./1/-	4/	1	V	V				:	
10	114	17:10		X	m W-4	2/	V	V	V					
47	7	173			mw-7	4	1/	V	V					
	10-77	7 /30		i.		 '	1					-		
	 						 		ļ			 		
						 	 	 	 	 		 		· · · · · · · · · · · · · · · · · · ·
]						 	 	 	-			 		
	<u> </u>					 	 		 	 		 	ļ	
	l		L	L	Date Time Received by: (Signature)	٦	L	11.51			L	J	L	Shipped/Dalivared
Releas	od by:	(Slgnal	lo.o)	- 1	Date Time Medived by (Signature)		110 ma	11KS. 7	-H.ブ ナ0	Ric	- LE	Evs	-	Simples/Converse
1/1/2	W	N1	Jui	UK	979 73		. <i>ن با</i> -	41 41	111.		1.4	70		
Takha.	od by	Chark	tero))	Oato Timo Received by (Signature) 6-19 345	HE P	9	Mur	\mathcal{W}^{ϵ}	5 /C	41	8-10	ech	1

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

January 29, 1996

CERTIFIED MAIL RETURN RECEIPT NO. Z-765-962-544

Mr. Dave Abbott
Division Engineer
Rice Engineering Corporation
122 West Taylor
Hobbs, New Mexico 88240

RE: GROUND WATER REMEDIATION PLAN

RICE ENGINEERING PRODUCED WATER GATHERING LINE

LEA COUNTY, NEW MEXICO

Dear Mr. Abbott:

The New Mexico Oil Conservation Division (OCD) has completed a review of Rice Engineering Corporation's (REC) December 22, 1995 "GROUNDWATER CONTAMINATION, RICE ENGINEERING PRODUCED WATER GATHERING PIPELINE, LEA COUNTY, NEW MEXICO" which was received by the OCD on January 10, 1996. This document contains REC's remedial action plan for remediation of ground water contamination related to a leak from an REC produced water gathering line in Unit E of Section 5, T19S, R38E NMPM Lea County, New Mexico.

The remedial action plan, as contained in the above referenced document, is approved with the following conditions:

1. Ground water from the monitor wells will be sampled and analyzed on a quarterly basis for concentrations of benzene, toluene, ethylbenzene, xylene (BTEX), total dissolved solids (TDS) and major cations and anions using EPA approved methods.

NOTE: Since there is no New Mexico Water Quality Control Commission (WQCC) ground water standard for total petroleum hydrocarbons (TPH), the OCD does not require that REC sample and analyze ground water for TPH.

2. Target ground water cleanup levels for the site will be all applicable WQCC ground water standards related to the materials spilled including, but not limited to, those for BTEX, TDS, chloride and polynuclear aromatic hydrocarbons.

Mr. Dave Abbott January 29, 1996 Page 2

- 3. The quarterly reports will be submitted to the OCD by January 1, April 1, July 1 and October 1 of each respective year with the first report due on April 1, 1996. The reports will contain:
 - a. A description of all remediation and monitoring activities which occurred during the period, conclusions and recommendations.
 - b. A summary of the laboratory analytic results of water quality sampling of the monitor wells. The results for each monitor well will be presented in tabular form and will show past and present sampling results.
 - c. A quarterly water table elevation map using the water table elevation of the ground water in all monitor wells.
 - d. The volume of fluids recovered from each recovery well during the quarter and the cumulative volume recovered to date.
- 4. REC will notify the OCD at least one week in advance of all scheduled activities such that the OCD has the opportunity to witness the events and/or split samples.
- 5. All original documents submitted for approval will be submitted to the OCD Santa Fe Office with copies provided to the OCD Hobbs District Office.

Please be advised that OCD approval does not relieve REC of liability should contamination exist which is outside the scope of work plan, or if the proposed remedial action plan fails to the adequately remediate contamination at the site. In addition, OCD approval does not relieve REC of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please call me at (505) 827-7154.

Sincerely,

William C. Olson

Hydrogeologist

Environmental Bureau

Z 765 962 544

Receipt for Certified Mail No Insurance Coverage Provided Do not use for International Mail (See Reverse)

,					
Sent to					
Street and No.					
P.O., State and ZIP Code					
Postage	\$				
Certified Fee					
Special Delivery Fee					
Restricted Delivery Fee					
Return Receipt Showing to Whom & Date Delivered					
Return Receipt Showing to Whom, Date, and Addressee's Address					
TOTAL Postage & Fees	\$				
Postmark or Date					

Fold at line over top of envelope to the right of the return address

RICE Engineering Corporation

122 WEST TAYLOR

TELEPHONE (505) 393-9174

HOBBS, NEW MEXICO 88240

December 22, 1995

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504

ATTENTION: BILL OLSON

RE: GROUNDWATER CONTAMINATION

RICE ENGINEERING PRODUCED WATER

GATHERING PIPELINE

LEA COUNTY, NEW MEXICO

Dear Mr. Olson:

Enclosed is the work plan for Phase III Cleanup of the above referenced Groundwater Impact area. This area is located on the western edge of Section 5, T19S, R38E, NMPM, Lea County.

If there are any questions or additional information needed, please contact us at this office.

Sincerely,

RICE ENGINEERING CORPORATION

Division Engineer

DA/pf

Enclosures

bcc: LBG - REC - Midland

Jerry Sexton - NMOCD - Hobbs Wayne Price - NMOCD - Hobbs Wes Root - ESCI - Hobbs

File

RICE Engineering Corporation

122 WEST TAYLOR TELEPHONE (505) 393-9174

HOBBS, NEW MEXICO 88240

PHASE III - CLEANUP IMPLEMENTATION

1) The cleanup of the aquifer is at this time proposed to be performed utilizing Monitor Well #1 and the existing domestic well as recovery wells.

This is proposed to minimize the drainage by these wells of unimpacted water to as high a degree as possible. The New Mexico State Engineers Office will be contacted for approval of the expected total water production volumes.

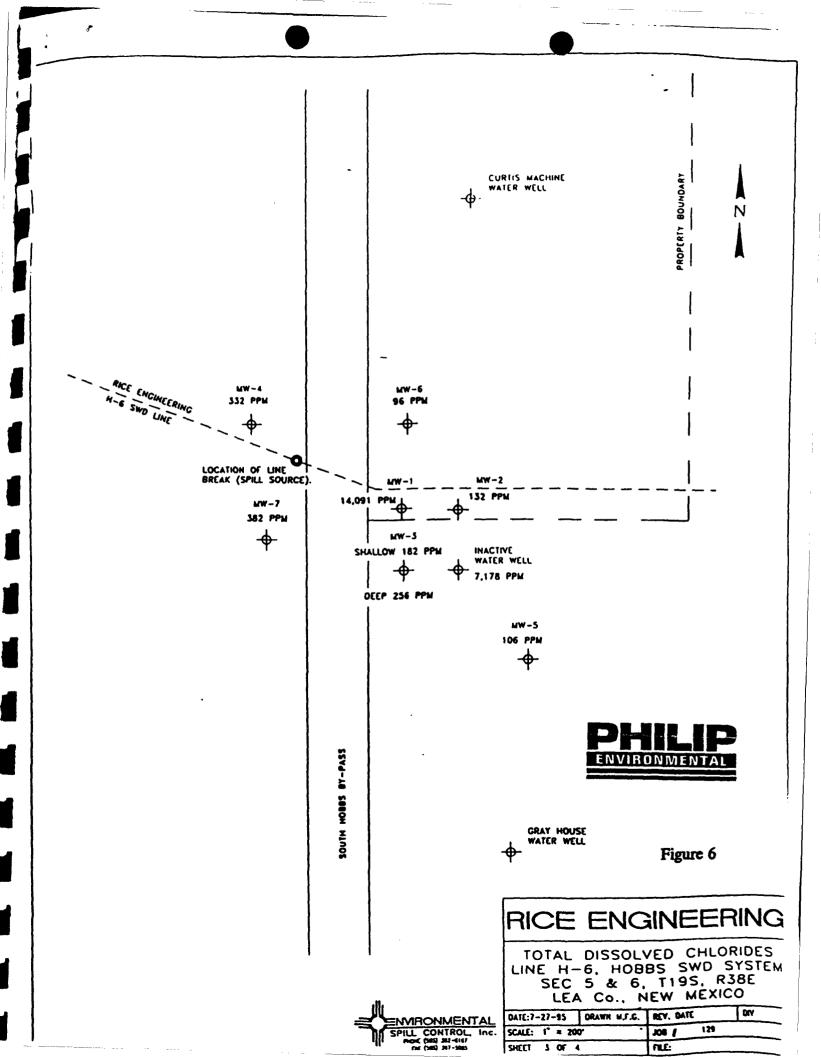
The impacted water from the cleanup producing wells will be sampled biweekly for a (2) two month period and then monthly and quarterly depending on the change pattern. The impacted waters are planned to be discharged into the pipeline from which the spill originated and disposed in (2) two Rice Engineering operated Hobbs Salt Water Disposal System oil and gas produced water Class II permitted disposal wells. These wells inject those waters into the San Andres from 4,200' to 5,500'. The producing wells will be produced at Rates to effect proper draw down and/or to yield total water volumes that the SWD System can accept.

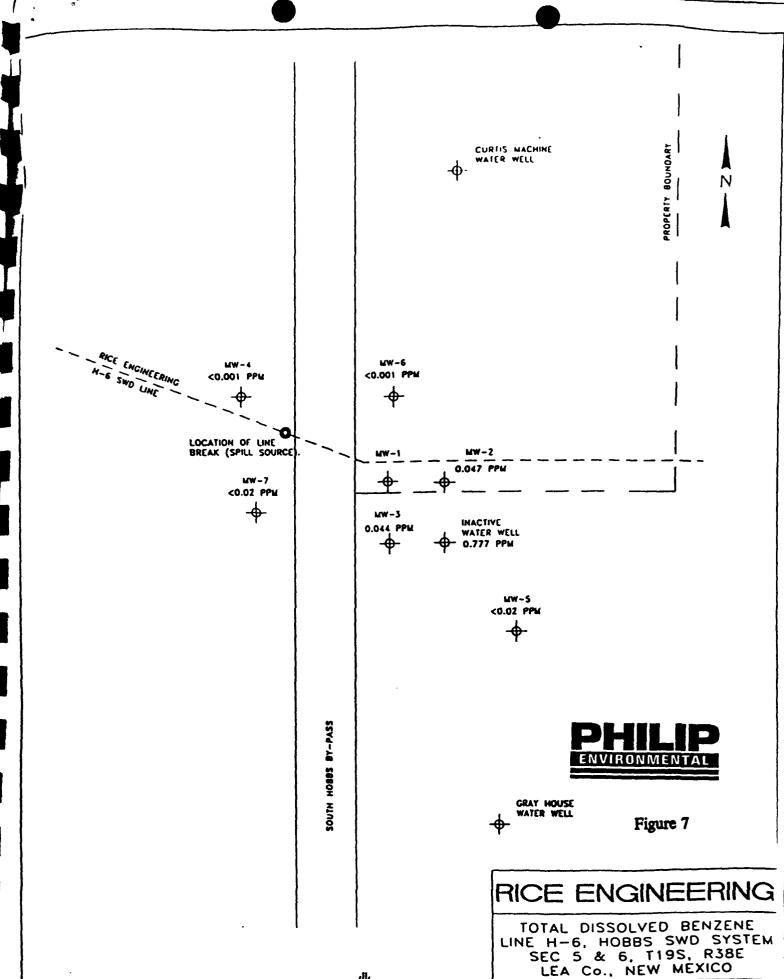
The water samples will be analyzed during the cleanup phase for chlorides, total petroleum hydrocarbons and total dissolved solids. Target levels to be reached for these impacted levels will be < 100 ppm TPH, < 250 ppm chlorides and < 1500 ppm TDS. Upon indication that impacted waters have been removed, samples will be analyzed according to the New Mexico Water Quality Control Commission Ground Water Standards as necessary to confirm cleanup has progressed to the needed levels. Any laboratory performing analysis of samples will be certified and instructed to conduct such tests according to applicable standards for analytical methods. From time to time, second confirmation analysis will be performed by the same or other laboratories.

3) It is planned that the impacted overlying rock and aquifer sands will not be removed. The monitor wells will be sampled as long as necessary or at least a one year period after the impacted waters are removed from the aquifer resulting in acceptable levels. This monitoring will give evidence if further downward migration has resulted. It is expected that with the small rainfall amounts in this area and the fairly impermeable shallow rock and caliche layer that no downward leaching would occur.

Phase III Page 2

4) During the development and production periods of all wells and facilities, all personnel will be equipped with proper safety equipment. Upon starting of phase III, where exposure to the general public is determined possibly due to detected high levels of hazardous gas discharge, monitoring and alarm equipment will be installed and utilized.

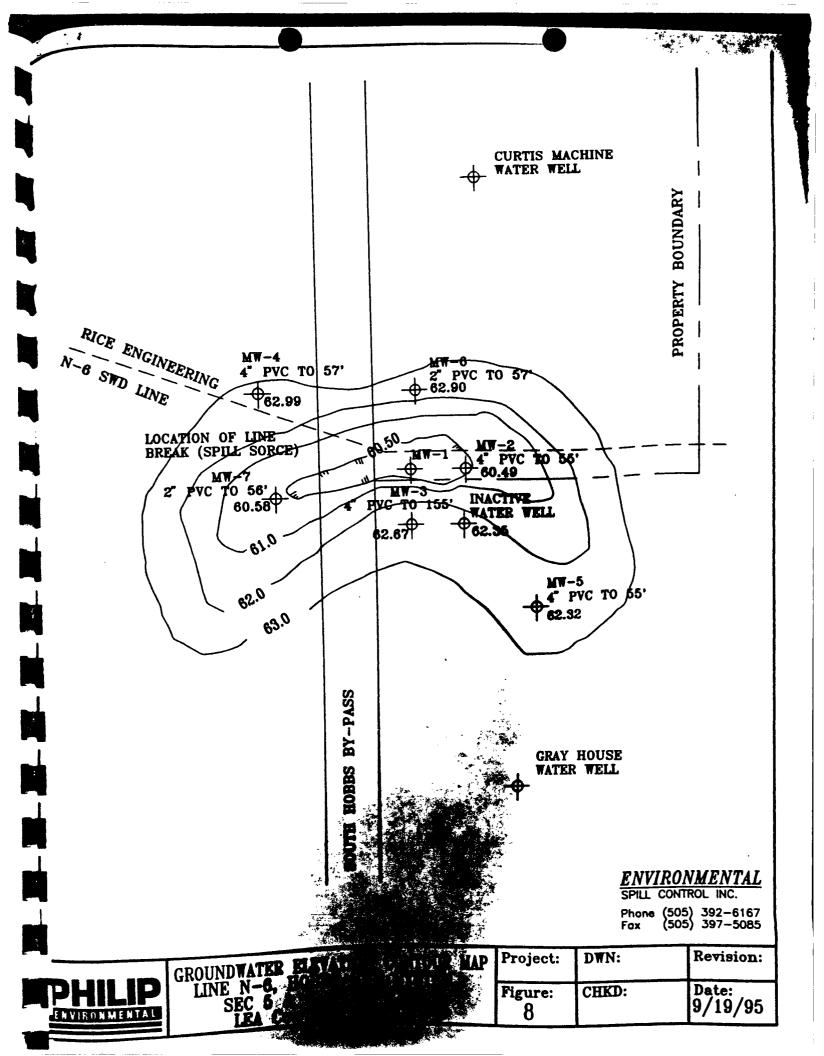

Prepared by:


RICE ENGINEERING CORPORATION

Dave Abbott

Division Engineer

DA/pf



ENVIRONMENTAL DATE:7-27-95 DRAWN M.F.G. REV. DATE DIV

SPILL CONTROL, Inc. SCALE: 1° = 200° - 308 / 129

FM (303) 391-3805 SHEET 4 OF 4 FILE:

NEW MEXICO ENERGY, MUNERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe, New Mexico 87505

October 23, 1995

CERTIFIED MAIL
RETURN RECEIPT NO. Z-765-962-430

Mr. Dave Abbott
Division Engineer
Rice Engineering Corporation
122 West Taylor
Hobbs, New Mexico 88240

RE: GROUND WATER CONTAMINATION

RICE ENGINEERING PRODUCED WATER GATHERING LINE

LEA COUNTY, NEW MEXICO

Dear Mr. Abbott:

The New Mexico Oil Conservation Division (OCD) has completed a review of Rice Engineering Corporation's (REC) undated "PHASE II ENVIRONMENTAL INVESTIGATION, RICE ENGINEERING, SOUTH HOBBS BY-PASS SALTWATER PIPELINE LEAK" which was received by the OCD on September 25, 1995. This document contains the results of REC's investigation of the extent of contamination related to a leak from an REC produced water gathering line in Unit E of Section 5, T19S, R38E NMPM Lea County, New Mexico.

The above referenced investigation report is satisfactory. Based upon a review of the above referenced document, the OCD requests that REC submit a remedial action plan to the OCD by December 22, 1995. The remedial action plan will contain:

- 1. A work plan for containing and remediating contaminated ground water.
- 2. A ground water monitoring plan.
- 3. An implementation schedule.

If you have any questions, please contact me at (505) 827-7154.

Sincerely

William C. Olson Hydrogeologist

Environmental Bureau

xc: Jerry Sexton, OCD Hobbs District Supervisor

Wayne Price, OCD Hobbs Office

Z 765 962 430

Receipt for
Certified Mail
No Insurance Coverage Provided
Do not use for International Mail
(See Reverse)

1	Sent to						
	Street and No.						
	P.O., State and ZIP Code						
	Postage	\$					
	Certified Fee						
	Special Delivery Fee	•					
	Restricted Delivery Fee						
	Return Receipt Showing to Whom & Date Delivered						
	Return Receipt Showing to Whom, Date, and Addressee's Address						
	TOTAL Postage & Fees	\$					
	Postmark or Date						
		_					

Fold at line over top of envelope to the right of the return address

Bill Olson

From: To: Wayne Price Roger Anderson

Cc: Subject: Bill Olson; Wayne Price; Jerry Sexton Amaco-Rice Engr. west ct. rd.-Hearing

Date:

Friday, September 22, 1995 3:18PM

Priority: High

Dear Roger,

Amoco's attroney Lynn Eortka indicated he was going to subpoena me for a hearing on Thursday Sept. 28. After discussing this issue with him it appears that Amoco and Bravo are at odds on the Rice Engr. Line leak on west county rd. It appears that the way the contract is written if any lawsuits are lodged against the parterns, then somehow the contract allows certain partners to be left out depending on the volumes and quantities of material they ship down the line.

The questions they are going to ask are related to the legal aspect of wheather NMOCD is actually sueing or if we are seeking voluntary complaince.

Therefore I recommend that either you, Bill Olson or even one of our attroneys be there. Mr. Eortka didn't mind who, just as long as this person has a good working knowledge of how the NMOCD proceeds in these type of cases.

Please let me know.

State of New Mexico ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT Santa Fe, New Mexico 87505

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

MEMORANDUM OF MEETING OR CONVERSATION

						
Telephone	Telephone Personal Time 093		0	Oate	9/18/95	
	Originating Party			01	ther Parties	
Anbrey	Kenyon - citi	Z en	Bill	Olson	- Envir. Bureau	
/	/					
Subject		1 6 1	<u> </u>		/	
Kice En	glucery - Hobi	bs South A	Syfor55	Con	trainction	
Discussion						
Printal	hi a ct. t.	·				
He oun	s land on which	h contamination	in Occur	rel (a	est side of bypuss)	
He regues	ted to be copie	d on all	cossesson	marce	est side at bypuss)	
	·					
	ubrey Kenyon					
- P.	nbrey Kenyon 0. Box 476 bhs, NNI 8	0.01/-				
110	chis , Mr; &	18-290				
	<u> </u>					
Conclusions or	Agreements					
	, /	Α	·			
OCD W	OCD will send him copies at all future correspondence					
		·			· v	
)istribution	/	Sic	ned /)	2/)	` n	
Jerry -	Sexton } OCD	Hobbs	ned Bl	W C	Jhn	
Wayne	Price 5	V / O 11 + -				
tile						

OIL CONSERVATION DIVISION

MEMORANDUM OF MEETING OR CONVERSATION

Telephone Personal	Time 9:10 A	Date	9/18/95				
Originating Party Other Parties							
AUBREY KENYON	AUBREY KENYON						
Subject RICE EWAR.	LINE LEAM.	- Wet R	OAP				
		· · · · · · · · · · · · · · · · · · ·					
Discussion 440 467							
MR. KENYO	N 15 PROPER	ity own,	FIFANT.				
PE QUEST	FD INfo	on funkt	propont.				
·.	:						
-							
		•					
Constitutions on Agreements							
Conclusions or Agreements							
FINAL REPORT OVE	5 BAT 30	1995 ADV	SED MP.				
FINAL REPORT DUE SEPT 30 1995 ADVISED MA. KENYON HE IS NELSONE TO REVIEW + ZOTY OUR							
FILES ALL PUB	ive preand:	·					
			1				
Distribution CC: JEARY SE	son si	gned Mape	Lui				

Bill Olson

From:

Wayne Price

To:

Bill Olson

Cc: Subject: Wayne Price; Jerry Sexton

Rice Engr. w.cty.rd. phase II Invest. Wednesday, July 19, 1995 11:29AM

Date: Priority:

High

Dear Bill,

This is a progress report for your review.

Rice has drilled a shallow MW#3 due south approx. 100-150' from the initial well TD of this well is at approx. 45-50'. They drilled in this direction because of the electromagnetic survey ran which indicates there is a possible plume in this direction.

The initial results indicate this well to be clean. Rice has requested to deepen this well to extend down into the aquifer to determine if the contamination is deeper.

Their consultant Sharon Hall with Phillip is suppose to contact you to discuss this with you.

I have reviewed their work plan and this approach appears to be consistant with the plan.

The orginal well MW#1 has approx. 10 ' of product on top of the water table. This measurement was made during or right after dynamic pumping conditions.

Telephone call Olson to Price. @ approx. 11:15 am

Bill per our telephone conversation, I am going to relay the message that on all the other wells that both hydrocarbons and salt water contamination should be screened to determine if any contamination is present at various levels.

OIL CONSERVATION DIVISION

2040 S. Pacheco Santa Fe, New Mexico 87505

July 19, 1995

CERTIFIED MAIL
RETURN RECEIPT NO. E-765-962-376

Mr. Dave Abbott
Division Engineer
Rice Engineering Corporation
122 West Taylor
Hobbs, New Mexico 88240

RE: GROUND WATER CONTAMINATION
RICE ENGINEERING PRODUCED WATER GATHERING LINE
LEA COUNTY, NEW MEXICO

Dear Mr. Abbott:

The New Mexico Oil Conservation Division (OCD) is in receipt of Rice Engineering Corporation's (REC) June 5, 1995 correspondence requesting a 90 day extension of the timetable for submission of a ground water investigation report related to a leak from an REC produced water gathering line in the SW/4, NW/4 of Section 5, T19S, R38E NMPM Lea County, New Mexico.

Your request for an extension of the time schedule to submit an investigation report on the extent of ground water contamination at the above referenced site is granted. REC will submit the investigation report to the OCD by September 30, 1995.

If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist

Environmental Bureau

xc: Jerry Sexton, OCD Hobbs District Supervisor Wayne Price, OCD Hobbs Office

Z 765 962 376

Receipt for Certified Mail

No Insurance Coverage Provided
Do not use for International Mail

	(266 U6A6(26)	
	Sent to	
	Street and No.	
	P.O., State and ZIP Code	
	Postage	\$
	Certified Fee	
	Special Delivery Fee	7
2	Restricted Delivery Fee	
re rorm 3000 , March 1993	Return Receipt Showing to Whom & Date Delivered	
Marc	Return Receipt Showing to Whom, Date, and Addressee's Address	
5	TOTAL Postage & Fees	\$
	Postmark or Date	
Ę		
Č		
	·	

Fold at line over top of envelope to the right of the return address

BILL OLSCAU
NHOCH

L CONCERN - OR DIVISION REPORTED

25 加 - 日 8 52

MEMORANDUM OF MEETING OR CONVERSATION

		····	
Telephone Person	Time 9:51	Am	7-13-95
<u>Originat</u>	ting Party	0	ther Parties
DAVE ABBOTT - RU	CE ENGR.		
Cub in a			
Subject WEST Co.	ROMA PROJIECT -		
Discussion			
NotifiE	THEY AKE G TI OS GROUXA I PILL 8 MW'S	101 TO 3	THE !
PHASE	TI of GROUNT	MATRIC INS	stigation
ZILL D	RILL 8 MW'S	- SIANT IR	7 7/17/25
	<u>. </u>		
•			
	· _ · _ · _ · _ · _ · _ · _ · _ · _ · _	·	
Conclusions or Agreements			
Concres foris or Agreements			
		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>		
••			
0. A	<u> </u>	Signed	
<u> Distribution</u>		Signed / Mixed	

RICE Engineering Corporation

OIL CONSERT: ON DIVISION RECT OFD

122 WEST TAYLOR

TELEPHONE (505) 393-9174 95 JILA 15 PM 8 52

HOBBS, NEW MEXICO 88240

June 5, 1995

Attn: Mr. Bill Olson New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504-2088

Dear Mr. Olson;

Our spill site phase II investigation of the plume of contamination, has not yet began due to surface owners issues that will not allow access on their properties. It is our position, at this time, to petition the Oil Conservation Division for a 90 day extension that will allow time for resolution of the issues with the surface owners. This extension would also allow ample time for the phase II completion and a completed Hydrological study. If you should have any further questions, please contact this office at your earliest convenience.

Sincerely,

Division Engineer

DA/lr

LBG cc:

JW Neal

Sharon Hall

File

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE. NEW MEXICO 87505 (505) 827-7131

March 8, 1995

CERTIFIED MAIL RETURN RECEIPT NO. P-667-242-217

Mr. Jerry D. Hillard Division Manager Rice Engineering Corporation 122 West Taylor Hobbs, New Mexico 88240

RE: GROUND WATER CONTAMINATION INVESTIGATION WORK PLAN RICE ENGINEERING PRODUCED WATER GATHERING LINE LEA COUNTY, NEW MEXICO

Dear Mr. Hillard:

The New Mexico Oil Conservation Division (OCD) has completed a review of Rice Engineering Corporation's (REC) January 13, 1995 "GROUNDWATER IMPACT, RICE ENGINEERING PRODUCED WATER GATHERING PIPELINE, LEA COUNTY, NEW MEXICO". This document contains REC's work plan for investigating the extent of ground water contamination related to a leak from a REC produced water gathering line in the SW/4, NW/4 of Section 5, T19S, R38E NMPM Lea County, New Mexico.

The above work plan is approved with the following conditions:

- 1. All monitor wells will be constructed as set out below:
 - a. If the well is to be screened across the water table interface, a minimum of 15 feet of well screen will be installed with at least 10 feet of well screen below the water table and 5 feet of well screen above the water table.
 - b. An appropriately sized gravel pack will be set around the well screen from the bottom of the hole to 2-3 feet above the top of the well screen.
 - c. A 2-3 foot bentonite plug will be placed above the gravel pack.

Mr. Jerry Hillard March 8, 1995 Page 2

- d. The remainder of the hole will be sealed with cement containing 3-5 % bentonite.
- 2. REC will develop each well upon completion using EPA approved procedures.
- 3. REC will sample ground water from all monitor wells. Ground water from these monitor wells will be sampled and analyzed for concentrations of benzene, toluene, ethylbenzene, xylene (BTEX), major cations and anions, heavy metals and polynuclear aromatic hydrocarbons using EPA approved methods.

NOTE: The OCD will not require REC to analyze ground water samples for heavy metals and PAH's, if, REC can provide the OCD with an analysis of the produced water from this line showing that these constituents do not exceed New Mexico Water Quality Control Commission ground water standards.

- 4. REC will submit a report on the investigation to the OCD by June 30, 1995. The report will contain:
 - a. A description of all activities which occurred during the investigation, conclusions and recommendations.
 - b. A summary of the laboratory analytic results of water quality sampling of the monitor wells.
 - c. A water table elevation map using the water table elevation of the ground water in all monitor wells.
 - d. A geologic log and as built well completion diagram for each well.
- 5. REC will notify the OCD at least one week in advance of all scheduled activities such that the OCD has the opportunity to witness the events and or split samples.
- 6. All original documents submitted for approval will be submitted to the OCD Santa Fe Office with copies provided to the OCD Hobbs District Office.

Please be advised that OCD approval does not relieve REC of liability should the investigation activities determine that contamination exists which is beyond the scope of the work plan or

Mr. Jerry Hillard March 6, 1995 Page 3

if the activities fail to adequately determine the extent of contamination related to REC's activities. In addition, OCD approval does not relieve REC of responsibility for compliance with any other federal, state or local laws and/or regulations.

If you have any questions, please call me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist

Environmental Bureau

xc: Jerry Sexton, OCD Hobbs District Supervisor

Wayne Price , OCD Hobbs Office

Certified Mail Receipt
No insurance Coverage Provided
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for International Mail
No not use for Inter

Bill Olson

From:

Date sent:

Jerry Sexton Mon, Mar 6, 1995 2:57PM Bill Olson

To:

Subject:

Registered: Jerry Sexton

Your message

To:

Jerry Sexton

Subject:

Rice Engineering Investigation Work Plan

Date: Mon, Mar 6, 1995 2:33PM

was accessed on Date:

Mon, Mar 6, 1995 2:57PM

Bill Olson

From:

To:

Cc:

Wayne Price Bill Olson Wayne Price

Subject: Date:

Rice Engineering Work Plan Mon, Mar 6, 1995 3:55PM

Priority:

High

Dear Bill,

Jerry Sexton and I have reviewed the work plan and find it satisfactory.

REPLY MESSAGE

FORM NO. PK100R-3 LOT 65601 AVAILABLE FROM BUSINESS ENVELOPE MANUFACTURERS, INC. DEER PARK, N.Y. 11729 800-645-5235 NY (516) 667-8500

BILL OLSON 2040 S. PACHECO ST.	RICE ENGINEERING CORPORATION 122 WEST TAYLOR STREET
SANTA FE, NM 87505	HOBBS, NEW MEXICO 88240 (505) 393-9174
SUBJECT: LETTER - GROUNDWATER IMPACT	DATE: 1/26/95
ENCLOSED IS A COPY OF THE LETTER WE M	MAILED TO YOU ON JANUARY 13, 1995 CONCERNING
SITE ASSESSMENT OF GROUNDWATER IMPACT ARE	EA.
PLEASE REPLY TO > SIGNED: CEVILY TO	illand
	RECEIVED
	•
	JAN 3 1 1995
	OIL CONSERVATION DIV. SANTA FE

DETACH YELLOW COPY - SEND WHITE AND PINK COPIES WITH CARBONS INTACT

ITEM NO. PK100R-3 AVAILABLE FROM BUSINESS ENVELOPE MANÚFACTURERS, INC \cdot DEER PARK, N.Y. \cdot ANAHEIM, CALIF.

SIGNED:

DATE:

THIS COPY FOR PERSON ADDRESSED

RICE Engineering Corporation

122 WEST TAYLOR

TELEPHONE (505) 393-9174

HOBBS. NEW MEXICO 88240

January 13, 1995

RECEIVED

JAN 3 1 1995

OIL CONSERVATION DIV. SANTA FE

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division P. O. Box 2088 Santa Fe, New Mexico 87504

Attention: Roger C. Anderson

Re:

Groundwater Impact

Rice Engineering Produced Water

Gathering Pipeline Lea County, New Mexico

Dear Mr. Anderson:

Enclosed is the work plan for Site Assessment of the above referenced Groundwater Impact area. This area is located on the western edge of Section 5, T19S, R38E, NMPM, Lea County.

If there are any questions or additional information needed, please contact us at this office.

Yours very truly,

RICE ENGINEERING CORPORATION

Jerry Hillard Division Manager

Enclosures

HOBBS SWD SYSTEM SPILLSITE INVESTIGATION PLAN SECTION 5 & 6, TOWNSHIP 19 SOUTH, RANGE 38 EAST LEA COUNTY, NEW MEXICO

PHASE I - DISCOVERY AND DETERMINATION OF GROUNDWATER IMPACT

A leak was discovered April 29, 1994 on a buried produced water line, South of the Carlsbad Highway on West County Road, approximately 1/2 mile south of Walker Machine Shop. The line is an eight (8) inch poly line, buried at a depth of 2.5 feet at the bottom of the west borrow ditch, which runs under West County Road from the West to the East. The leak was located and repaired on the west side of the road. The impact from the leak was mostly on the east side of the road due to the drainage of the conduit installed in an eastward down slope. The leak appears to have been caused by heavy equipment when the borrow ditches were being excavated for storm water control.

A. Oral Notification of the Oil Conservation Division (OCD) 4-29-94 and written notice 5-3-94.

The OCD advised that samples should be taken on the impacted soil removed from the ditchline to make the repair. The soil was spread out along the ditchline, fertilized, watered and allowed to set for 6 days. A composite sample was taken and analyzed, showing TPH of 7,721 ppm and chlorides of 680 ppm. (Sample results indicated on attachment 1)

Two additional samples were taken following this analysis. One at the ditch bottom and the other approximately half-way down one ditch wall. These samples did have a hydrocarbon odor. The lab analyses showed TPH of 17,817 ppm bottom, 16,665 ppm wall, chlorides of 160 ppm bottom and 3,278 ppm wall. The OCD indicated they felt at this point there was a high possibility of deep chloride penetration. (Sample results indicated on attachment 1)

- B. Per recommendation from the OCD, a bore hole was drilled to 40 feet from ground level using an auger rig to determine the extent of impacted area of the site. The bore hole was located next to the pipeline in the ditch bottom. The boring indicated moderate presence of hydrocarbons down to the 40 foot level and a shallow water groundwater zone was indicated by some moisture in the cuttings. This bore hole was plugged with cement and the ditchline backfilled.
- C. In further consideration of the recommendation of the OCD, a monitor well was drilled using an air rig, 15 feet to the southeast of the first bore hole. (Well no. 1 on attached plat) A

4 3/4 inch hole was drilled to a total depth of 65 feet. At the top of the hole immediately under the cover soil unconsolidated rock materials were encountered down to around 10 feet. Sand and caliche was then drilled down to 35 feet where a hard sandstone layer was encountered. This layer extended about 6 feet upon which groundwater was incurred immediately below. Hydrogen sulfide was encountered at this point requiring proper safety equipment. Representatives from the OCD were present during drilling and took samples along with Environment Spill Control Incorporated.

The decision was made to ream out the hole to 6 1/2 inches in order to set 4 1/2 inch flush joint casing, which would allow for the installation of a downhole pump to test the water. The hole was reamed to 65 feet, casing set with 10 feet of screened slotted tailpipe in the water and 5 feet out. The bottom of the casing is at 55 feet, leaving 10 feet of rathole. Water level was gauged afterward standing at 37 feet, apparent fluid head of the Aquifer.

D. The State Engineer was consulted as to the designation of the groundwater. We were informed that this would be the expected top of the Ogallala Aquifer.

PHASE II - IMPACTED AREA ASSESSMENT

Currently, the information as to the extent of area coverage and depth of impact is from only two sources, the spillsite monitor well and a currently unused domestic water well 163 feet to the Southeast of the site monitor well. A sample taken from the one monitor well show TPH of 3.8 ppm, chlorides of 17,495 ppm and Total Dissolved Solids (TDS) of 36,200 ppm. A sample from the domestic well to the Southeast has a TPH of 1.4 ppm, chlorides of 4,879 ppm and TDS of 10,446. One other sampled domestic well, approximately 450 feet east, had TPH of 0.3 ppm, chlorides of 36 ppm and TDS of 440 ppm. (See Attachment no. 2 for all water analyses) Known hydrology and geology of the Ogallala aquifer of this area indicates a reservoir fluid movement to the southeast direction and a probable total thickness of the sand of around 150'. It is felt that the direction of search for the impacted area extent should concentrate mostly in this direction.

It is being considered to perform an Electromagnetis Survey of the area to help define the suspected direction and extent of impacted waters. If this survey is utilized, the below investigation well plan could be changed. The objective of wells at that point would be to confirm the areal extent of impact indicated by the Electromagnetic Survey. If this extent is confirmed, then subsequent well drilling would need to be only for contaminant removal and monitoring.

It is planned, at this time, to start the impacted area assessment by drilling the following monitor and/or test wells.

A) A well 100' to the east of Well no. 1 (plat well no. 2)

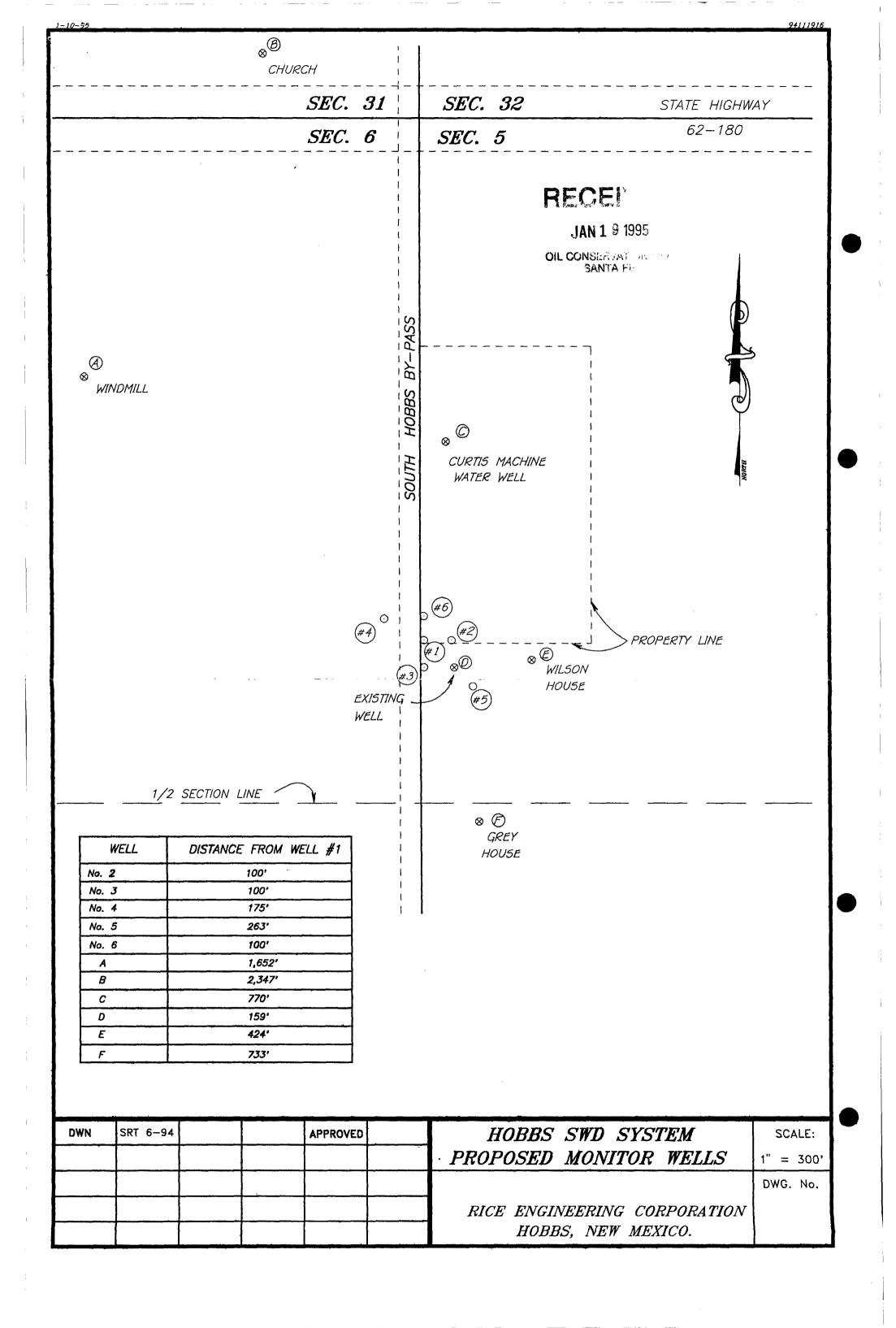
This well will be located 7' to 10' to the south of the direct easterly line due to back cover of the pipeline.

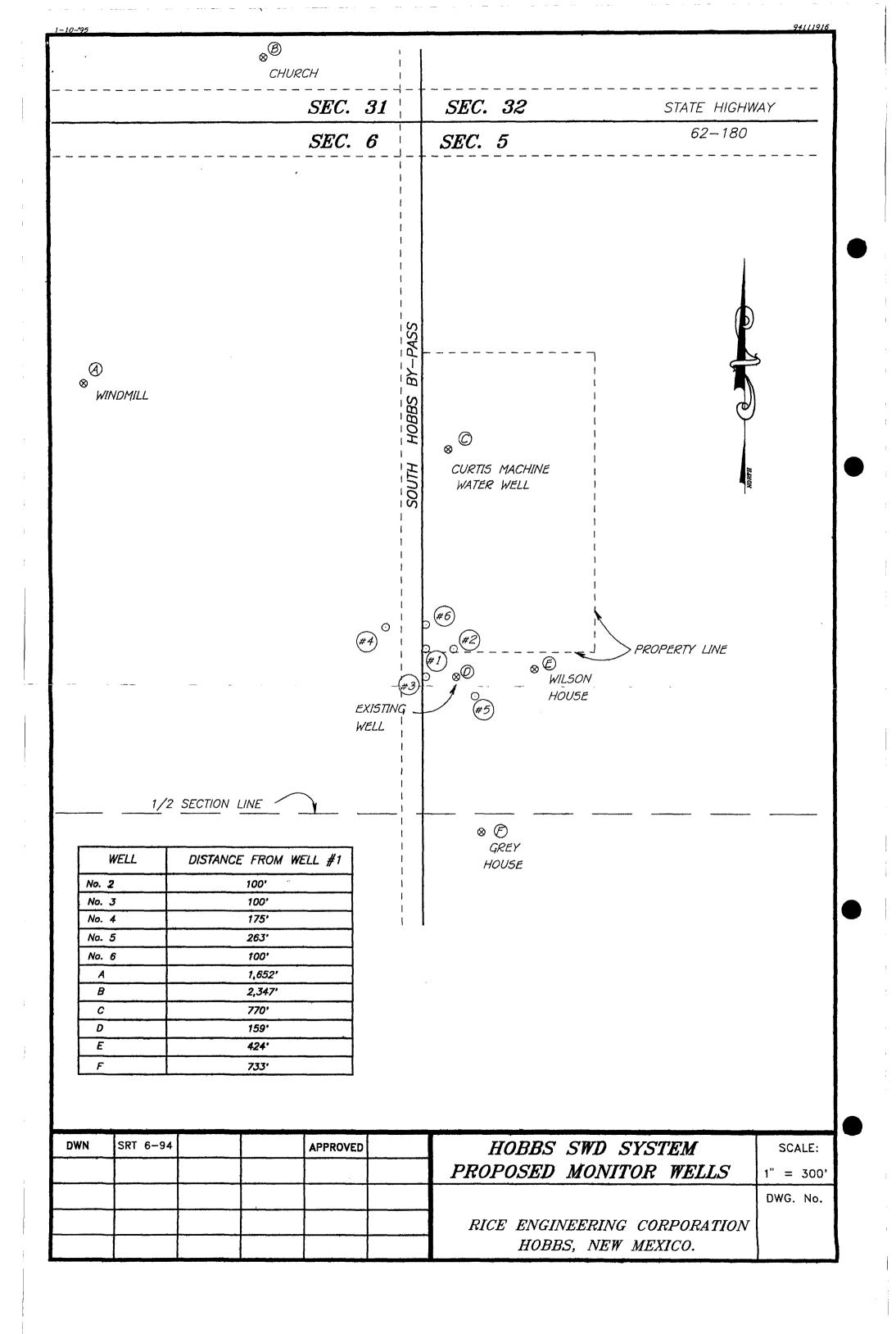
- B) A well 100' to the south of Well no. 1 (plat well no. 3)
- C) A well 175' to the west northwest of Well no. 1 This well will be located adjacent to the pipeline. (plat well no. 4)
 - D) A well 100' to the southeast of the existing domestic well that is 163' southeast of Well no. 1 (plat well no. 5)
 - B) a well 100' to the north of well no. 1 (Plat well no. 6)

Each well will be specifically drilled to a depth which indicates elevated levels of TPH and chlorides concentrations, then the well will be drilled 15 ft. deeper. The well will be drilled until elevated levels are reached or the well is at the bottom of the aquifer which is estimated to be 250 ft. in this particular area. If impacted waters are encountered in any well, additional wells will be drilled to define the extent of impact.

It is understood that past experience with impacted fluids entry of this type into the Ogallala has indicated the more dense waters move downward to the lower level of the aquifer. Rice has been informed that in some cases, though, there is an interval in the sand formation which effectively separates the sand into two or

more layers.


ATTACHMENT 1
Soil and Well Cuttings Analysis


Date	Source	TRPHC ppm	CHLORIDES ppm
5/11/94	Ditch Cuttings	7,721	680
5/16/94	Ditch Bottom	17,817	160
5/16/94	Ditch Wall	16,665	3,278
5/18/94	Borehole-39' deep 40' deep		2,359 2,479
5/23/94	Test Well- Surface 10' 20' 30' 40' 50'	2,610 5,360 14,400 9,720 4,870 2,200	
5/23/94	West Side Road Auger Hole-8' deep	11,000	

ATTACHMENT 2

Water Analysis

Date	Source	TRPHC ppm	Chlorides ppm	TDS ppm
5/31/94	Well #1	3.8	17,494	36,200
6/1/94	Well A	2.8	68	898
6/1/94	Well B	0.1	204	1,026
6/1/94	Well C	0.3	52	490
5/31/94	Well D	1.4	4,878	10,446
5/31/94	Well E	0.3	36	440
6/7/94	Well P	<1	40	421

RICE Engineering Corporation

TELEPHONE (505) 393-9174

HOBBS, NEW MEXICO 88240

November 11, 1994

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division P. O. Box 2088 Santa Fe, New Mexico 87504

122 WEST TAYLOR

Attention: Roger C. Anderson

Groundwater Impact

Rice Engineering Produced Water

Gathering Line

Lea County, New Mexico

Dear Mr. Anderson:

As we discussed on November 3, 1994, we need to request an extension for time to submit the work plan. We, therefore, request that an extension be granted to allow the plan to be submitted on or before January 13, 1995.

If there are any questions, please contact me at this office.

Yours very truly,

RICE ENGINEERING CORPORATION

Jerry D. Hillard Division Manager

JDH/cp

Gave verbal DL con at 11/3/94 meeting between Och and Rice. Will War

Oco/Pre Engineers Meetin 1/3/94 1445 hrs

porticipants - Bill O/son - OCD Envir. Annea Bill Le May - "Director Resen Anderson - "Envir Baren Dave Davis / - ""

Jerry Hillard - Rice Engineering

Jim Hoss - ""

Rem Carroll - CCD Legal

J.H. Into

Hillar - Lenky discount 4/29/94 handout map at site (handout #1) beak on table south sypess History work in 1988 Injert Line runs unday speed 11 mas longer for roan constantion Borrow pet was locator our line Diving borrow pit operations like was apparently nicked.

Conduit was used in some round crossing Damp, area discounce in 4/29 Deportanto Jorg Sestion Experietal like forme leade Extrisine Confermination found Or. Her knowith wells - evidence et, courtain, with eligible - approsed 63 deeps - simpler well - contaminated

* - sampled exist, well in wer for TDI, Cl, TPH

- existing well at 10,000 pm TDS

- other wells appear closen

- no samples for BTEX

- Constructed copining since they caused leak

- Country paid not responsible

- Graparad complaint against country

Will submit work plan on most by 1/13/95

1445 hadat 41 000/Rice meetily

			hardall 41				
	×	CHURCH SEC. SEC.		SEC.		STATE HIGHWAY	
	⊗ WINDMILL		SOUTH HOBBS BY-PASS	⊗ CURTIS WATER	MACHINI WELL		
	2 SECTION LINE	#4 EXIST. WELL	ا و ب	*5 *1°*6 - *2 *2	HOU	PROPERTY LINE	
			1	HO	USE		
WELL	DISTANCE FROM W	ELL #1	1				
No. 2	263'		1				
No. 3	100°		i				
No. 4	175'		ı				
No. 5	100°		1				
No. 6	163'		1				
Church	2,347'		1	l			
Windmill	1,652'						
Existing Well	159'						
Wilson House 424' Gray House 733'							
Curtis Machine Water Well	770'						
WN SRT 6-94	APP	ROVED	7	F	OBBS :	SWD SYSTEM	SCALE:
						MONITOR WELLS	1" = 500
							DWG. No
							J 200. N

RICE ENGINEERING CORPORATION HOBBS, NEW MEXICO.

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

July 22, 1994

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE. NEW MEXICO 87504 (505) 827-5800

ANITA LOCKWOOD CABINET SECRETARY

CERTIFIED MAIL RETURN RECEIPT NO. P-111-334-148

Mr. Jerry D. Hillard Division Manager Rice Engineering Corporation 122 West Taylor Hobbs, New Mexico 88240

GROUND WATER CONTAMINATION RE:

RICE ENGINEERING PRODUCED WATER GATHERING LINE

LEA COUNTY, NEW MEXICO

Dear Mr. Hillard:

The New Mexico Oil Conservation Division (OCD) is in receipt of Rice Engineering Corporation's (REC) July 15, 1994 "GROUNDWATER IMPACT RICE ENGINEERING PRODUCED WATER GATHERING LINE, LEA COUNTY, This document requests a 90 day extension of the NEW MEXICO". timetable for submission of a work plan for investigating the extent of ground water contamination related to a leak from a REC produced water gathering line in the SW/4, NW/4 of Section 5, T19S, R38E NMPM Lea County, New Mexico.

Your request for an extension of the time schedule to submit a work plan for investigation of the extent of ground water contamination at the above referenced site is granted. REC will submit the work plan by November 1, 1994.

If you have any questions, please contact me at (505) 827-5812.

Sincerely,

Roger C. Anderson

Bureau Chief

Jerry Sexton, OCD Hobbs District Supervisor xc:

Wayne Price, OCD Hobbs Office

DIL CONSERVE FUN DIVISION

REC ED

RICE Engineering Corporation

TELEPHONE (505) 393-9174 122 WEST TAYLOR

*94 JU 20 RM 8 50

HOBBS, NEW MEXICO 88240

July 15, 1994

State Of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division P.O. Box 2088 Santa Fe, New Mexico 87504 Attn: Roger C. Anderson

Re: Groundwater Impact

Rice Engineering Produced Water

Gathering Line

Lea County, New Mexico

Dear Mr. Anderson:

In your letter of May 31, 1994, you stated that the OCD requested that Rice would submit a work plan by August 1, 1994. Due to settlement of issues related to this incident, Rice Engineering respectfully requests that a 90 day extension be granted to the time which the plan is desired to be submitted.

If there are any questions, please contact me at this office.

Yours very truly,

RICE ENGINEERING CORPORATION

Jerry Hillard

Division Manager

Jerry Sexton, OCD Hobbs District Supervisor

Wayne Price, OCD Hobbs Office

MARCEE . . . IN DIVISION

1 3 50

Bill Olson

MEMORANDUM OF MEETING OR CONVERSATION

Business said to the control of the	1				
Telephone	Personal	Time	sn.	Date	6/16/94
	Originating Part	<u>Y</u>		0	ther Parties
JERRY HIL	LAFD - RIZE ENGI	K-			
Subject	·····				
Subject RIC	E LINE LEAK-	art ct pb	(HOBBS	NM)	1/4-5 of US 188
					
Discussion	MO UILIAAA GI	AVE ME A .			IARY of Activities
······································	put. Historica	100 /10 /1 0	7.9	<u>- ') </u>	HILY OF HELIVENS
	Attnaten.	(
:. •					
					
Conclusions or	Agreements I 2	ice forvara	70	BILL .	SAUTA fe
					SANTA fe
					
••					
istribution CC: ROGER A	INAFASON	Siç	gned	MP	

RECEIVED

OCU NUBBS

OFFICE

DIARY of ACTIVITIES West County Road Spill Hobbs Salt Water Disposal System

4/29/94

At around 3:00 pm, I was called by Billy Walker, Area Foreman to come to a spill site on the south part of the West County road near Curtis Machine Shop. Upon arrival, I was shown two dug holes exposing the 8 inch pipeline crossing the roadway, one at the west end of the conduit and one on the borrow ditch wall. The hole at the conduit end showed no leakage while the one in the ditch exposed the conduit which had holes on it's wall allowing water to escape. This excavation was at the point where the surface detection of spill was at. There had been no digging on the east side of the roadway at this point. It was suspected that a leak in the internal plastic pipeline could exist inside the underroad conduit. It was decided to begin search on the east side for water escape from the conduit. Water escape from the east end of the conduit was found. Water was diverted away from this pipeline to allow the repair. The OCD and the City Environmental Department was notified about the leak.

4/30/94

The pipeline was dug out far enough on the east end to allow the cutting and removal of the crossing pipe from the conduit. Upon removal, it was detected that a cut or nick of the top part of the pipe had been made on the western portion. Upon measuring the cut distance from the pipe segment removed, it was determined that the cut would have been located at the bottom of the west ditch. Digging here showed that the conduit had been damaged and severe corrosion had resulted from water loss. Part of the damaged conduit was removed and replaced being topped with a concrete blanket to prevent recurring damage. The repaired internal plastic pipe was attempted to be inserted back through the conduit but stopped, indicating partial collapse near the east end which was still covered.

5/1/94

The conduit was uncovered on the eastern side of the crossing after which 15 feet was removed and the 8 inch plastic pipe reinserted and connected. The line was placed back in service with the wet ditch cuttings left at the surface.

5/2/94

Jerry Sexton of the OCD was contacted and taken out to the spillsite to question as what options were considered about disposal or cleanup. Mr. Sexton advised we should test the soil for hydrocarbon and salt content. He also contacted Wayne Price for his opinion. Mr. Price also came to the location saying we should initially spread the material and test after a short period of reclamation. He said his concern was mainly that there had been downward migration of the contaminate liquids and if the levels on the ditch cuttings were at unacceptable levels, samples should be gathered of the ditch bottom.

5/3/94

I was able to contact Mr. Curtis, owner and operator of the machine shop to the north of the spill site and on whose lot the spill occurred on the east side of the road. We asked Mr. Curtis for permission to spread the ditch cutting out to the north of the pipeline for reclamation procedures. He had no objection as he at the

time had no plans for usage of this segment of the property. Contact was made with Dirtworks for them to begin the spreading and treatment of the soils on the soils on next day.

- 5/4/94 Dirtworks spread the contaminated soil and rock cuttings out to the north.
- 5/5/94 Dirtworks sprayed the site with fertilizer and water.
- A composite sample was taken of the removed and spread ditch cuttings. The composite was conducted by dividing the area into 10 foot on each side squares and taking one sample from each, then combining and mixing the composite. The sample was taken to Cardinal Laboratories.
- The results of the analysis were receved showing that the aggregate sample had a total petroleum hydrocarbon (TPH) content of 7,721 ppm and Chlorides of 680 ppm. This is considered to be an excessive level. Mr. Price was contacted and he advised that guidelines would call for a sample of the lower level solids at the ditch bottom.
- Samples were taken from the ditch bottom by removing the sand pad and pipe cover next to the pipeline at a point estimated to be near the end of the origonal conduit. Upon digging a depth of around 6 inches, clean appearing caliche was found. Mr. Price was contacted and came to the site. A sample was also taken from the ditch wall at a point about 3 feet down on the north side. The sample was taken at a point where non rocky solids could be found. Both of the samples had no appearance of contamination as would be given if they had been in contact with produced water, i.e. the black or gray color due to hydrocarbon or Iron Sulfide. However, both samples gave hydrocarbon odors.
- Received analysis of the two samples. The bottom was 17,817 TPH and 160 chlorides and the side was 16,665 TPH and 3278 chlorides. Cardinal laboratories stated this analysis did not represent aromatics and light fractions. Our reasoning was that the soil should have had appearance of hydrocarbon presence at this level. We took two more samples to another laboratory and receved similar analysis. We advised the OCD of the results. Mr. Price advised us that the next step should be to bore a hole at the spill point to assess depth of contamination.
- Abbott Bros. Rat Hole service was contacted to drill a test hole at the site. The hole bored was approximately 5 ft. west of the ditch bottom sample site. The cuttings from the beginning point to the total depth of 40 ft below ground level showed a dark color indicating iron sulfide presence. All cuttings had strong hydrocarbon odor. Samples taken at the bottom of the hole gave a chloride content of 2479 ppm. No analysis of hydrocarbon content was performed. Water content was seen at one point approximately 36 ft. in depth.

5/20/94 The 40 ft. test borehole was plugged with a 2 yd mixture of 19 sx. type 10 ment, 800# sand and 222 gal water. The cement level drifted down approximately one foot. The ditch cuttings were placed back in the ditchline.

5/23/94 Environmental Spill Control rigged up Auger-Air to drill a well into the Ogallalla for test and monitoring purposes. The well is located approximately 15 ft southeast of the 40 ft borehole next to the pipeline. Samples were taken each 10 ft below the surface and analyzed for hydrocarbons. The first point where the appearance of iron sulfide was found was at 15 ft and remained to total depth. Water was encountered at 41 ft. The well was drilled to 65 ft with a 4 3/4 in. bit. The hydrocarbons were as follows:

Depth	TPH
10'	5,360
20'	14,400
30'	9,720
40'	4,870
50'	2,200

It was decided that the hole should be reamed to 6 1/4 in diameter to allow pumping of the water zone for a period before a sample would be taken. The hole was reamed this day and 4 1/2 in PVC casing set at 55 ft. The casing had 15 ft slotted and screened interval set so that 5 ft is above the Ogallalla top at 41 ft. The casing was set with gravel pack to cover the screened interval, bentonite interval above gravel and then cement grout to the surface. The static fluid level inside the casing was 37 ft from surface.

5/25/94 The base at the surface and the casing cap were installed this day.

5/26/94 Materials and equipment for the downhole pump assembly was accumulated

The pump and tubing was installed. Power supply was set up to use a generator for the temporary use. The water was produced into a rental tank and transported by truck to the System Disposal well E-15. Approval for test production of the well was given by the OCD. Samples of water were taken from the domestic water well at the Wilson residence approximately 450 ft east and an unused well on the Kenyon lot about 163 ft southeast of the test well.

5/28/94 Continued pumping of the test well.

5/29/94 Continued pumping of the test well.

5/30/94 Shut the pump down to allow for the required 24 hr static period before testing. 1665 bbls water was produced.

5/31/94

Took sample of water from the test well. A meeting of the Hobbs System partners was conducted this morning. The parties were advised of the events up until that time and questioned for suggestion and approval to continue with needed steps. We were instructed to draft a plan to be submitted to the OCD for the site reclamation. The plan was to be directed to the System parties for their review before submitting it to the OCD. After this plan is prepared, an AFE is then to be prepared and sent out to the System partners. They will evaluate the question of whether to attempt to resolve the County to assume liability for the situation and be responsible for all expenditures. We were to begin filing of the Claim toward the County due to the elapsed time ruling and then be directed to continue pursuit of the claim upon receipt of the response of the AFE. We were also directed to check all similar road crossings in the Hobbs SWD System for potential problems like that in this situation. Analysis of the waters from the other domestic wells was received after the meeting adjourned. The well 450 ft east had 0.3 ppm TPH . 36 ppm Chlorides, and 440 ppm TDS while the well 163 ft southeast had 1.4 ppm TPH, 4,879 ppm Chlorides and 10,446 ppm TDS.

6/1/94

Samples were taken from three other wells to the north of the test well. One is at the Curtis Machine Shop approximately 500 ft north northeast, another at a church building north of Highway 62-180 and a windmill estimated to be over 2000 ft west

6/2/94

The analysis of the water from the test well at yhe spill sitewas received: 3.8 TPH,17,495 Chlorides and 36,200 TDS.

6/6/94

Analysis of the waters from the other three wells was received.

	TPH	Chlorides	TDS
Church	0.1	204	1026
Curtis Machine	0.3	52	490
Windmill	2.8	68	633

6/7/94

Contact was made with the landowner to the south of the lot where the contaminated unused domestic well is located. Authority to obtain a sample was obtained. Minutes of the Meeting and the Draft Site Plan were sent out to the System partners along with water disposal volumes for the times around the creation of the leak and recent times before the discovery of the leak and after its repair. it was stated in the minutes that information had been provided that the work apparently responsible for the leak was performed by the County Road Department personnell between September 13 to 26 of 1988.

6/8/94

Analysis of the water from the above well was received. Less than 1.0 TPH, 88 ppm Chlorides and 898 ppm TDS. Jerry Hillard met with Clifford Gladewell of O' Neal and Associates who was investigating the situation for the State Highway Department. He said his objective was to determine if the State or the State's

contractor could be responsible for the situation. A copy of the Draft Site Reclamation and Cleanup plan was taken to Jerry Sexton of the

6/10/94

Rice Engineering was contacted today by Aubrey Kenyon, owner of the surface south of the pipeline crossing on the east side of the roadway. Mr. Kenyon states he considers that the lot must be purchased by the System or he will take legal action for damages. He informed us that he was not able to sell the property in the past due to the contaminated water.

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY

May 31, 1994

POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

CERTIFIED MAIL RETURN RECEIPT NO. P-111-334-119

Mr. Jerry D. Hillard Division Manager Rice Engineering Corporation 122 West Taylor Hobbs, New Mexico 88240

RE: GROUND WATER CONTAMINATION

RICE ENGINNERING PRODUCED WATER GATHERING LINE

LEA COUNTY, NEW MEXICO

Dear Mr. Hillard:

The New Mexico Oil Conservation Division (OCD) is in receipt of Rice Engineering Corporation's (REC) May 26, 1994 "NOTIFICATION OF PRODUCED WATER CONTAMINATION". This document contains notification of ground water contamination related to a leak from a REC produced water gathering line in the SW/4, NW/4 of Section 5, T19S, R38E NMPM Lea County, New Mexico.

Although this document states REC's intent to submit a work plan for identifying the extent of ground water contamination at the site, no date for submission of the work plan was provided. Therefore, the OCD requests that REC submit the above referenced work plan to OCD by August 1, 1994.

If you have any questions, please contact me at (505) 827-5812.

Sincerely,

Roger C. Anderson

Bureau Chief

xc: Jerry Sexton, OCD Hobbs District Supervisor

Wayne Price, OCD Hobbs Office

P 111 334 119

Receipt for
Certified Mail
No Insurance Coverage Provided
Do not use for International Mail
(See Reverse)

\$
\$

RICE Engineering Corporation RECE SED DIVISION

122 WEST TAYLOR TELES

TELEPHONE (505) 393-9174

HOBBS. NEW MEXICO 88240 94 MA . 31 AM 8 50

May 26, 1994

Mr. William J. Lemay State of New Mexico Oil Conservation Division P. O. Box 2088 Santa Fe, NM 87501

Re: Notification of Produced Water Contamination

Dear Mr. Lemay:

Please accept this letter as notice of groundwater contamination due to accidental cutting of a produced water gathering line in the SW/4 of the NW/4 of Section 5, Township 19 South, Range 38 East in the Lea County, New Mexico.

As of this date, we have drilled a monitor well to a total depth of 65 feet that encountered groundwater at 41 feet. Field laboratory analysis of this groundwater indicated contamination while the monitor well was drilled. Our plan is to test the well and have a laboratory analysis of the water recovered during the initial well testing.

Currently we are in the process of identifying all surface owners and will contact them and notify them of the situation.

We are currently drafting a plan to identify the extent of the plume of contamination along with recommendations for remediation of the site to be submitted for approval at a later date. At the time, however, there is question as to who is the responsible party for costs associated with this project. No execution of the plans for spill site identification or reclamation will be performed until determination of the party responsible for expenses involved. If you have any questions, please contact me at (505) 393-9174.

Yours very truly,

RICE ENGINEERING CORPORATION

Jerry D. Hillard Division Manager

cc: LBG

DA

TM

JDH/cp

RICE Engineering Corporation

122 WEST TAYLOR

TELEPHONE (505) 393-9174

HOBBS, NEW MEXICO 88240

May 26, 1994

Mr. William J. Lemay State of New Mexico Oil Conservation Division P. O. Box 2088 Santa Fe, NM 87501

Re: Notification of Produced

Water Contamination

Dear Mr. Lemay:

accept this letter as notice of groundwater contamination due to accidental cutting of a produced water gathering line in the SW/4 of the NW/4 of Section 5, Township 19 South, Range 38 East in the Lea County, New Mexico.

As of this date, we have drilled a monitor well to a total depth of 65 feet that encountered groundwater at 41 feet. laboratory analysis of this groundwater indicated contamination while the monitor well was drilled. Our plan is to test the well and have a laboratory analysis of the water recovered during the initial well testing.

Currently we are in the process of identifying all surface owners and will contact them and notify them of the situation.

We are currently drafting a plan to identify the extent of the plume of contamination along with recommendations for remediation of the site to be submitted for approval at a later date. At the time, however, there is question as to who is the responsible party for costs associated with this project. No execution of the plans for spill site identification or reclamation will be performed until determination of the party responsible for expenses involved. If you have any questions, please contact me at (505) 393-9174.

Yours very truly,

RICE ENGINEERING CORPORATION

Jerry D. Hillard Division Manager

cc: LBG

DA

TM