1R - 277

REPORTS

DATE: 20043

RECEIVED

UNOCAL CORPORATION
2003 ANNUAL GROUNDWATER MONITORING REPORT
FORMER UNOCAL SOUTH VACUUM UNIT
LEA COUNTY, NEW MEXICO

FEB 13 2004

Oil Conservation Division Environmental Bureau

OCTOBER 24, 2003 MW-3 Prepared For: 3193 3791 **Unocal Corporation** 3792 Real Estate & Remediation P. O. Box 1283 Nederland, Texas 77627 MW-1 MW-5 MW-4 MW-2 STATE HIGHWAY 529 MW-6 3790 3189 3188 3787 Abandoned Oil Field 3786 Supply Well -< 250 (L 05339) 3785 3783 3183 3184 3181 3782 ⊗Windmill 3118 3719 (L 05339) 3780 3719 3716 3784 3782 3780 3111 3181 3718 3185

P. O. Box 7624 Midland, Texas 79708

2003 Annual Groundwater Monitoring Report Unocal Corporation Real Estate and Remediation Services Former Unocal South Vacuum Unit Lea County, New Mexico

Prepared by:

Trident Environmental

P. O. Box 7624 Midland, Texas 79708 (915) 682-0808 FAX (915) 682-0727

SBMITTED BY:

Gilbert J. Van Deventer, REM

Project Manager

DATE:

10-24-03

TABLE OF CONTENTS

1.0	Executive Summary	1
2.0	Groundwater Sampling Procedures	3
3.0	Groundwater Elevations, Hydraulic Gradient and Flow Direction	3
4.0	Groundwater Quality Conditions	7
5.0	Fate and Transport Modeling Results	12
6.0	Conclusions	19
7.0	Recommendations	20

FIGURES

Figure 1	Groundwater Elevation Map	5
Figure 2	Groundwater Elevation Versus Time Graph	6
Figure 3	Chloride Concentration Map	8
Figure 4	TDS Concentration Map	9
Figure 5	Chloride Concentrations Versus Time (MW-1 through MW-6)	10
Figure 6	TDS Concentrations Versus Time (MW-1 through MW-6)	11
Figure 7A	32-Year Chloride Plume Simulation (1971 – 2003)	13
Figure 7A	32-Year TDS Plume Simulation (1971 – 2003)	14
Figure 8A	50-Year Chloride Plume Simulation (2003 – 2053)	15
Figure 8B	50-Year TDS Plume Simulation (2003-2053)	16
Figure 9A	160-Year Chloride Plume Simulation (2003-2163)	17
Figure 9B	90-Year Chloride Plume Simulation (2003-2093)	18
	TABLES	
Table 1	Summary of Groundwater Elevations and Chloride and TDS Concentration	ıs 4
	APPENDICES	
Appendix A	Laboratory Analytical Reports and Chain-of-Custody Documentation	
Appendix B	Monitoring Well Sampling Data Forms	
Appendix C	Description of Fate and Transport Modeling	

1.0 Executive Summary

Trident Environmental (Trident) was retained by ENSR Corporation (ENSR) and Unocal Real Estate and Remediation Services (Unocal) to perform the 2003 annual groundwater sampling and monitoring operations at the Former Unocal South Vacuum Unit in Lea County, New Mexico. This report documents the 2003 annual sampling event performed by Trident at the site on July 2, 2003. This report also contains the historical groundwater elevation and analytical data and includes data from all monitoring wells (MW-1 through MW-6) on site. The sampling event was conducted in accordance with the November 2, 2000 Groundwater Remediation Plan submitted by Unocal and the requirements specified in the New Mexico Oil and Conservation Division (OCD) letter dated February 8, 2001.

Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions at the Former Unocal South Vacuum Unit are evident:

- Chloride and TDS concentrations in MW-1, near the source area, have generally
 decreased since 1996. Similarly, chloride and TDS levels have decreased in the closest
 downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS
 concentrations in the remaining wells (MW-2, MW-3, MW-5, and MW-6) have remained
 relatively consistent with previous levels.
- The fate and transport modeling results continue to support the contention that the
 chloride and total dissolved solids (TDS) plume is not likely to impact existing sources of
 water supply, the closest of which, a livestock well, lies approximately 3,200 feet south of
 the source.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,460 feet southeast of the source in approximately 160 years before concentrations return to levels below the New Mexico Water Quality Control Commission (WQCC) standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,100 feet in approximately 90 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.

- Based on the modeling results and predicted natural attenuation processes (advection and dispersion), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former emergency overflow pit.
- Groundwater elevations have been steadily decreasing at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995.

Unocal has performed exemplary remedial actions to the source area, including plugging of the SWD well in 1971 and encapsulating the former surface impoundment area with solidification material in 1995, thus eliminating the threat of any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions for site closure:

- Continue the natural attenuation annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2004 annual groundwater monitoring report to OCD in January 2005 to document natural attenuation conditions.
- Provide a means for supplying freshwater in the event there is a need for municipal, domestic, livestock, and/or irrigation water in the plume area.

2.0 Groundwater Sampling Procedures

Each of the six monitoring wells, MW-1 through MW-6, was gauged for depth to groundwater using a Solinst Model 101 electronic water indicator immediately prior to purging operations. A total of 35 gallons of groundwater was purged from each site monitoring well (5 to 9 gallons per well) using a decontaminated 2-inch diameter PVC bailer. After purging, groundwater samples were collected and parameters were measured using a Hydac Model 910 pH-Conductivity-Temperature meter. Water samples for each monitoring well were transferred into 500 milliliter (ml) plastic containers for laboratory analysis of total dissolved solids (TDS) (EPA Method 160.1) and chloride (EPA Method 325.3). For each set of samples, chain of custody forms documenting sample identification numbers, collection times, and delivery times to the laboratory were completed. All water samples were placed in an ice-filled cooler immediately after collection and transported to SPL, Inc. in Houston, Texas for analysis.

3.0 Groundwater Elevations, Hydraulic Gradient and Flow Direction

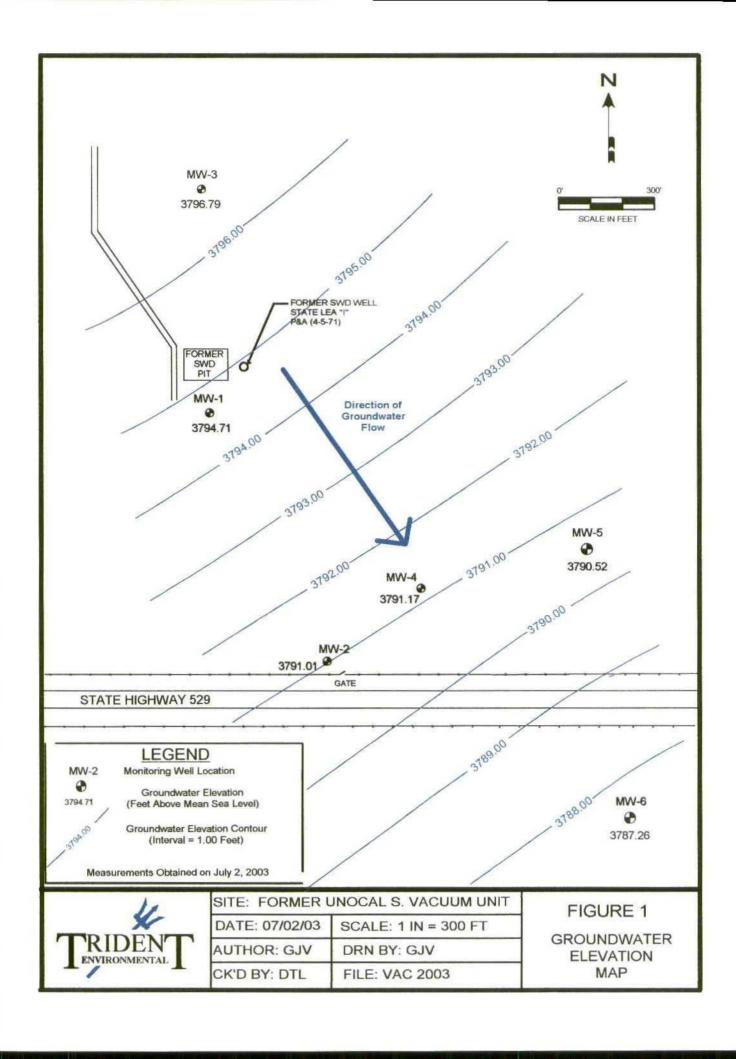
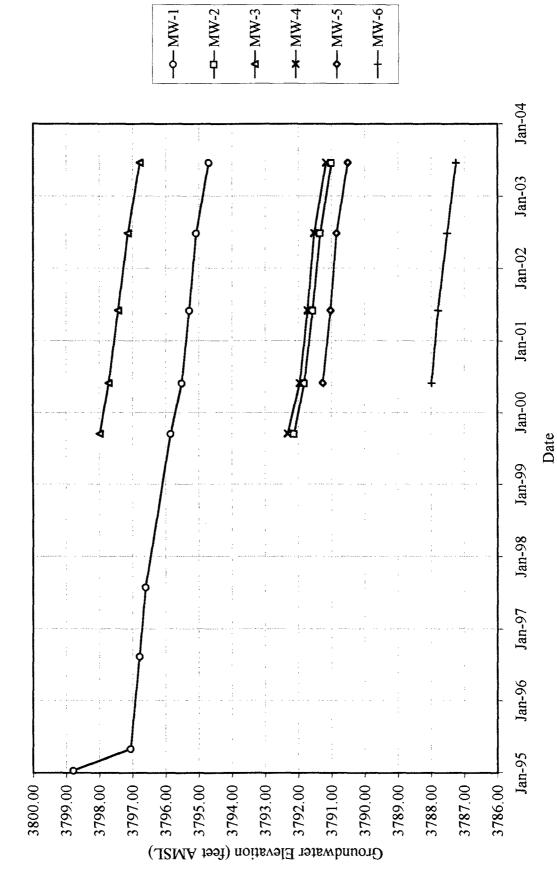

Depth to groundwater varies from approximately 48 to 68 feet below ground surface at the site. Groundwater elevations are summarized in Table 1. A groundwater gradient map indicating the direction of groundwater flow is illustrated in Figure 1. A historical groundwater elevation graph is shown in Figure 2. The groundwater gradient direction is to the southeast with a hydraulic gradient of approximately 0.004 ft/ft. According to published reports (*Ground-Water Conditions in Northern Lea County, New Mexico*, Ash, 1963 and *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, Nicholson and Clebsch, 1961) the groundwater encountered at the site is that of the Tertiary Ogallala Formation. The Ogallala Formation unconformably overlies the impermeable red-beds of the Triassic Chinle Formation at an elevation of approximately 3700 feet above mean sea level (AMSL). Based on the current groundwater elevations measured on site and published data referenced, the saturated thickness of the Ogallala Formation at the site ranges from approximately 87 to 97 feet.

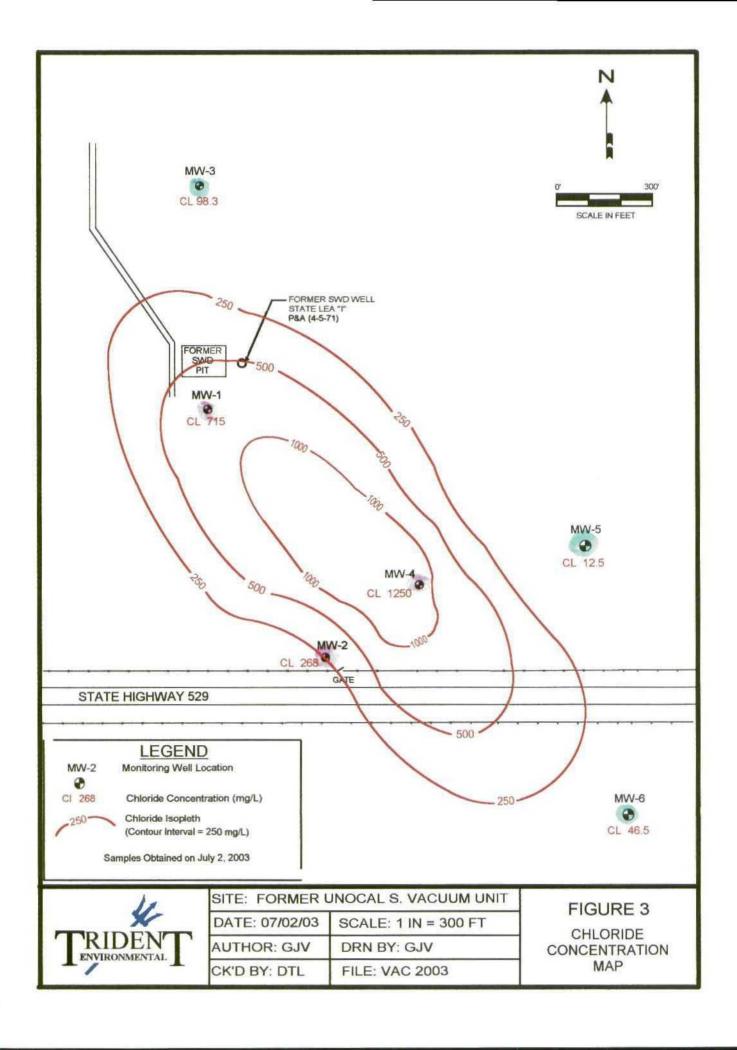
Table 1
Summary of Groundwater Elevations and Chloride and TDS Concentrations
Former Unocal South Vacuum Unit

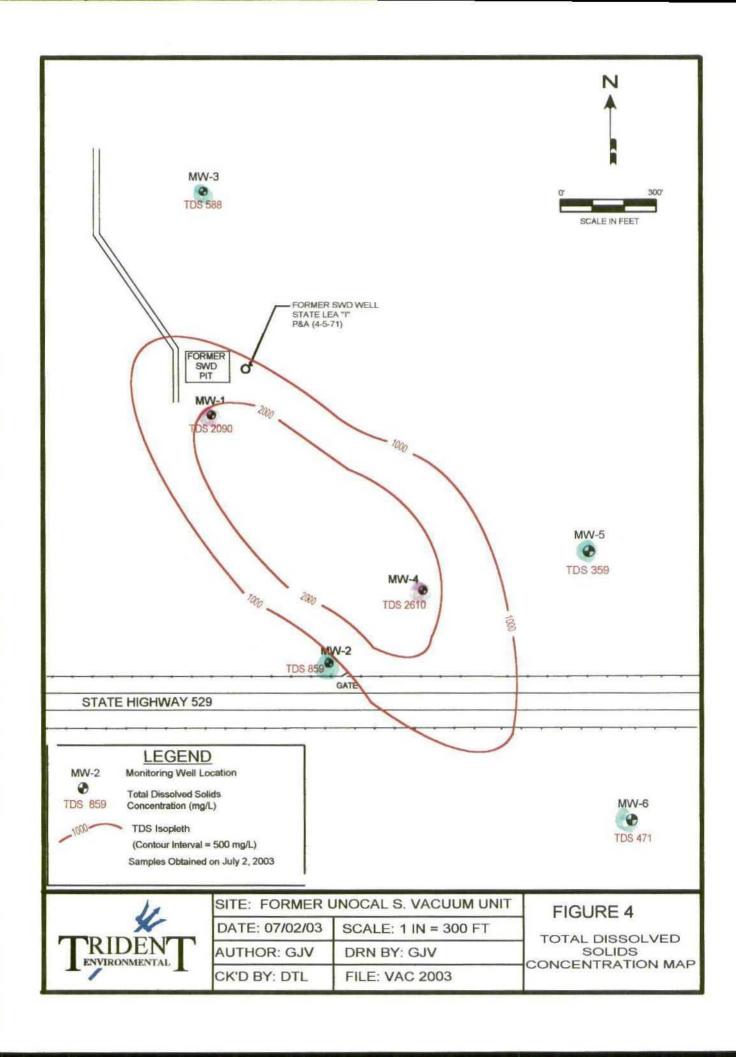

Former Unocal South Vacuum Unit Ground Top of							
Monitoring Well	Sample Date	Ground Surface Elevation (feet AMSL)	Top of Casing Elevation (feet AMSL)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)	Chloride (mg/L)	TDS (mg/L)
	01/27/95	3856.76	3858.37	59.57	3798.80	1174	2250
	05/18/95	3856.76	3858.37	61.30	3797.07	983	2251
	08/28/96	3856.76	3858.37	61.57	3796.80	1420	2730
	08/13/97	3856.76	3858.37	61.75	3796,62	1400	2800
MW-1	12/14/98	3858.37	3858.37	NM	NM	1400	2400
IVI W - I	09/30/99	3856.76	3858.37	62.51	3795.86	1094	2318
	06/14/00	3856.76	3858.37	62.85	3795.52	927	2040
	06/18/01	3856.76	3858.37	63.07	3795.30	813	1790
	07/11/02	3856.76	3858.37	63.28	3795.09	784	1680
	07/02/03	3856.76	3858.37	63.66	3974.71	715	2090
i	09/30/99	3839.11	3841.64	49.51	3792.13	298	922
	06/14/00	3839.11	3841.64	49.81	3791.83	317	852
MW-2	06/18/01	3839.11	3841.64	50.06	3791.58	288	878
	07/11/02	3839.11	3841.64	50.29	3791.35	284	808
	07/02/03	3839.11	3841.64	50.63	3791.01	268	859
	09/30/99	3862.20	3864.73	66.74	3797.99	73.6	427
	06/14/00	3862.20	3864.73	67.01	3797.72	75.5	433
MW-3	06/18/01	3862.20	3864.73	67.29	3797.44	86.4	495
	07/11/02	3862.20	3864.73	67.59	3797.14	103	509
	07/02/03	3862.20	3864.73	67.94	3796.79	98.3	588
	09/30/99	3849.87	3852.51	60.18	3792.33	1576	2981
	06/14/00	3849.87	3852.51	60.55	3791.96	1500	2910
MW-4	06/18/01	3849.87	3852.51	60.78	3791.73	1530	3180
	07/11/02	3849.87	3852.51	60.98	3791.53	1290	2660
	07/02/03	3849.87	3852.51	61.34	3791.17	1250	2610
	06/14/00	3856.59	3859.84	68.57	3791.27	13.7	274
3.637 E	06/18/01	3856.59	3859.84	68.80	3791.04	13.6	322
MW-5	07/11/02	3856.59	3859.84	68.98	3790.86	15.5	308
	07/02/03	3856.59	3859.84	69.32	3790.52	12.5	359
	06/14/00	3855.32	3858.78	70.79	3787.99	48	382
NAVV	06/18/01	3855.32	3858.78	70.98	3787.80	50.8	431
MW-6	07/11/02	3855.32	3858.78	71.26	3787.52	50	422
	07/02/03	3855.32	3858.78	71.52	3787.26	46.5	471
		Water	Quality Control	Commission (W	QCC) Standards	250	1000
43 COT 41	3.7	1 DECC D	1 70 60 .	373 (37 3 (

AMSL – Above Mean Sea Level; BTOC – Below Top of Casing; NM – No Measurement Groundwater flow direction is to the southeast with a gradient of approximately 0.004 feet/foot. Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

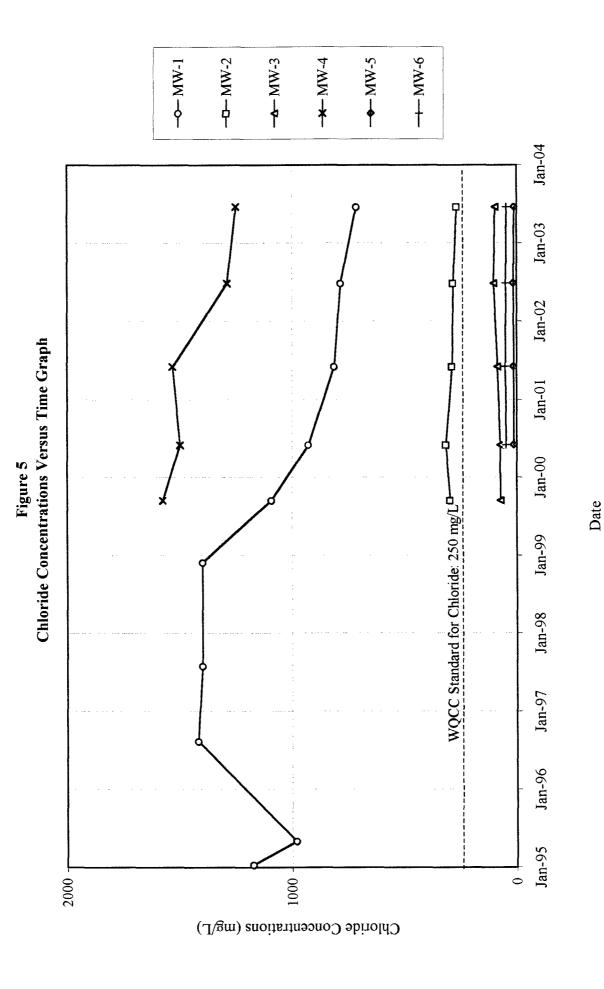
2003 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit

Figure 2
Historical Groundwater Elevations

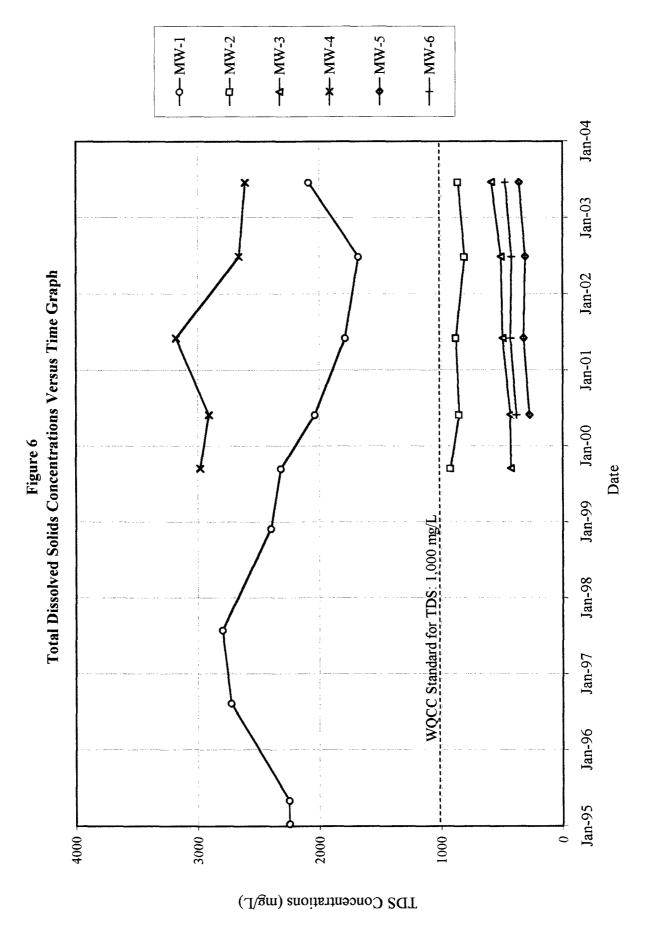



4.0 Groundwater Quality Conditions

Groundwater sample analytical results are presented in Table 1. The WQCC standards are presented for comparison. Those constituents that recorded concentrations above the WQCC standards are highlighted in boldface type. The WQCC standard of 250 mg/L for chloride was exceeded in MW-1 (715 mg/L), MW-2 (268 mg/L), and MW-4 (1,250 mg/L). The WQCC standard of 1,000 mg/L for TDS was exceeded in MW-1 (2,090 mg/L) and MW-4 (2,610 mg/L). The groundwater samples obtained from upgradient monitoring well MW-3 and downgradient wells MW-5 and MW-6 had chloride and TDS concentrations below WQCC standards.

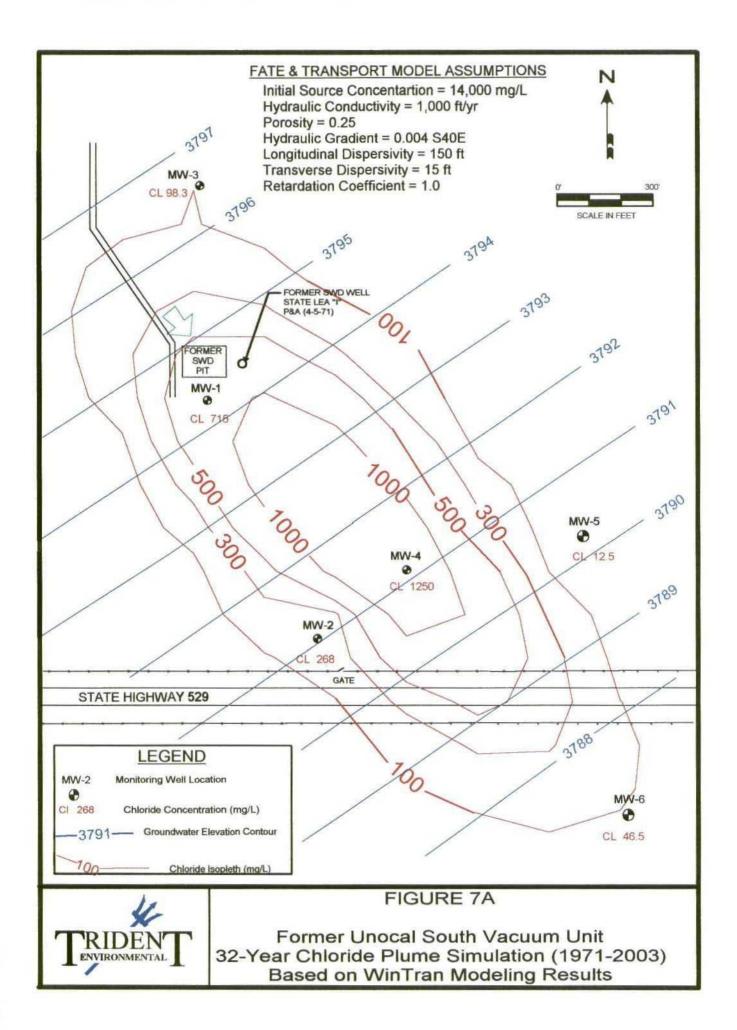

The chloride and TDS concentrations are depicted graphically in Figure 3 and 4, respectively. The concentration isopleths were drawn utilizing the Surfer® (version 6.0) contour modeling program (Kriging method). Since this contouring program does not take into account the known groundwater gradient, some of the isopleths were manually converged into a more southeasterly orientation. Graphs depicting historical TDS and chloride concentrations in monitoring wells MW-1through MW-6 are shown in Figures 5 and 6.

Chloride and TDS concentrations in MW-1, near the source area, have consistently decreased since 1996, with the exception of an increase in TDS concentrations during the latest sampling event. Similarly, chloride and TDS levels have decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS concentrations in the monitoring wells MW-3, MW-5, and MW-6 have slightly increased since 2000, whereas chloride and TDS levels in MW-2 have remained relatively consistent with previous years.

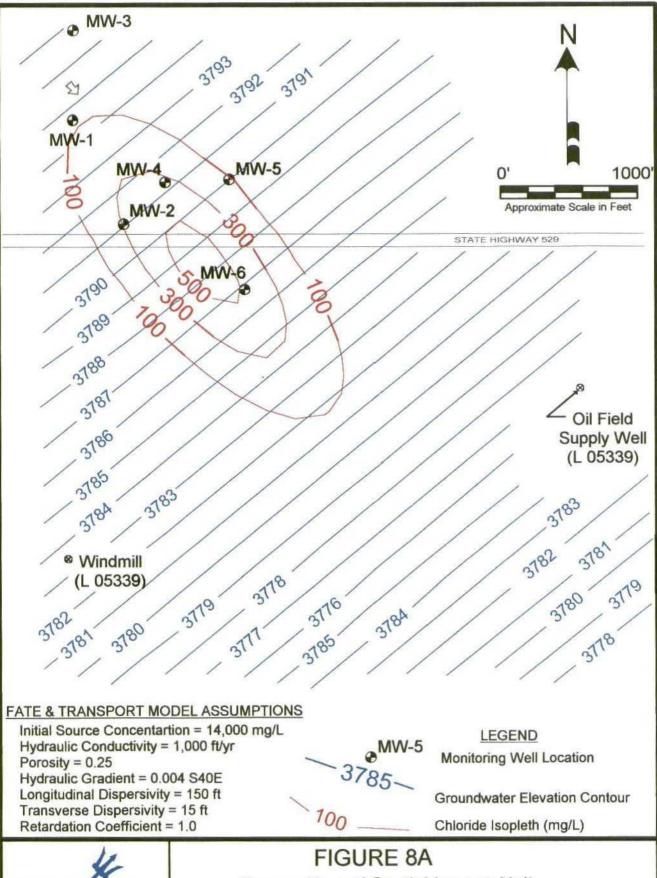


2003 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit

2003 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit

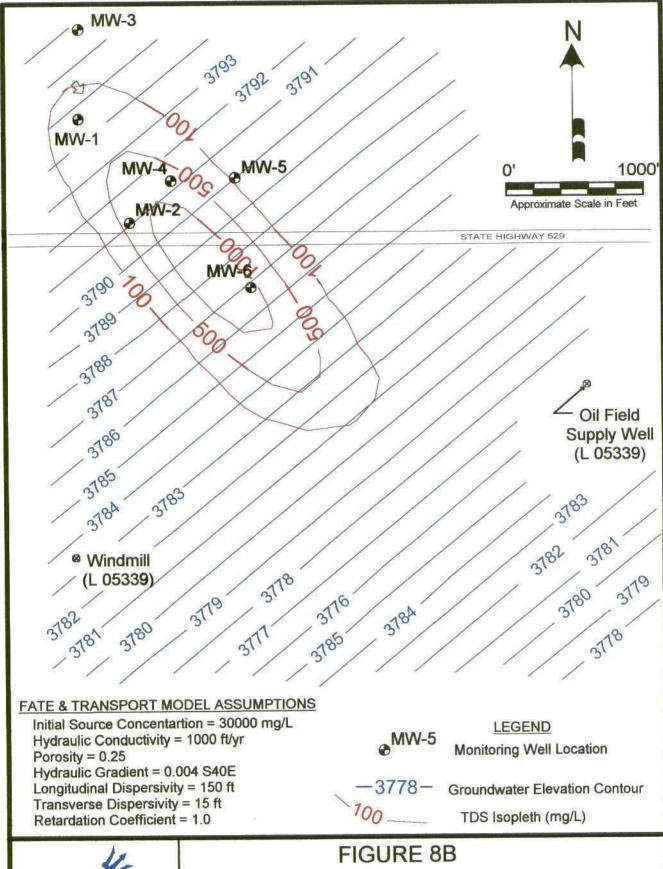

5.0 Fate and Transport Modeling Results

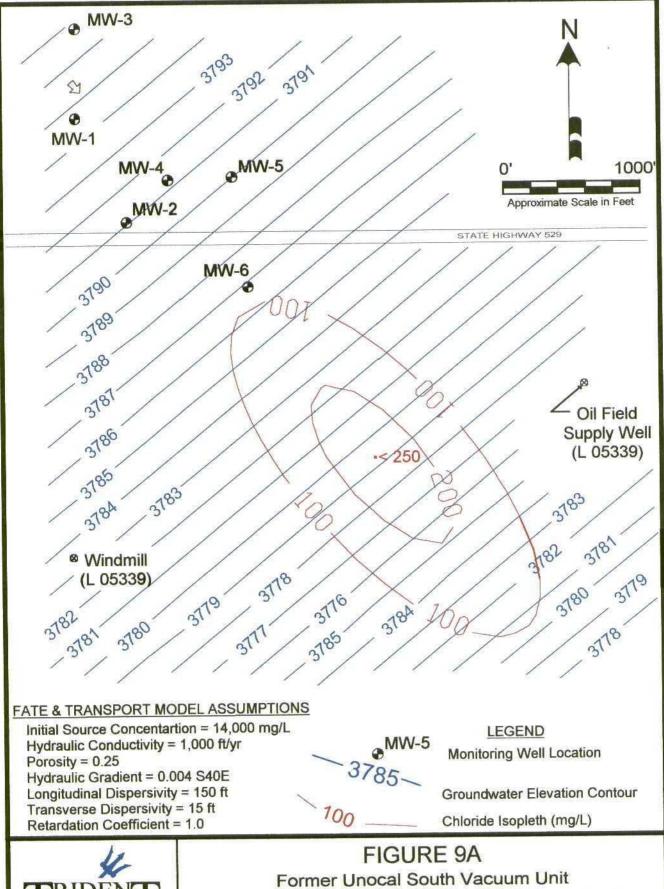

Fate and transport modeling was performed by Trident to simulate the movement of the chloride and TDS groundwater plume over time. Simulations were conducted using the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. A more detailed discussion of the flow and transport parameters used, assumptions, model calibrations, and simulation results are described in Appendix C.


Figures 7A and 7B show the close match achieved by the chloride and TDS modeling simulations as compared to the current observed plume (Figures 3 and 4). Hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume, as depicted in Figures 8A and 8B (50 years from now). Advective flow moves the center of plume mass downgradient by a distance of approximately 750 feet from the former SWD pit and approximately 300 feet upgradient from well MW-4.

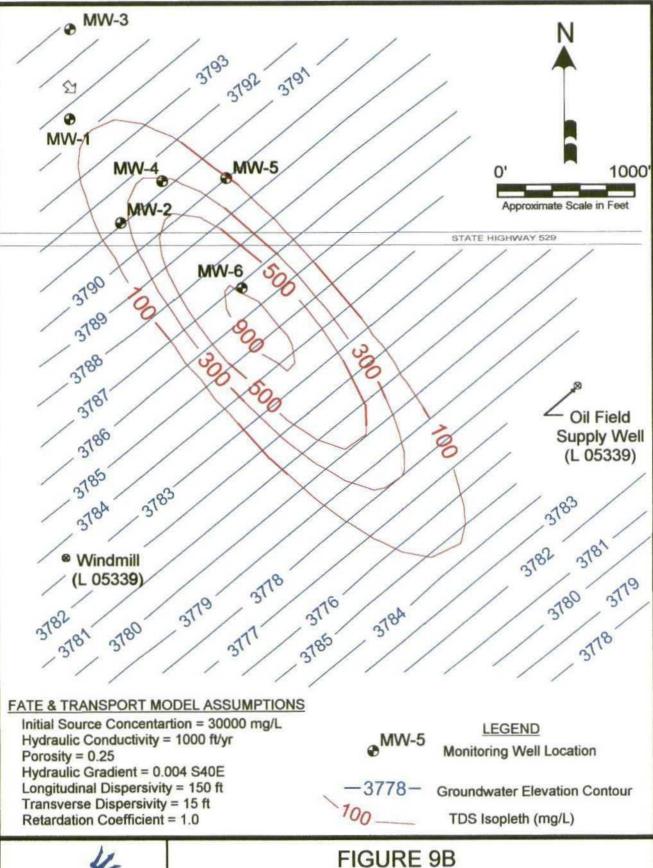
Continued attenuation by dilution and dispersion of the plume, after the maximum chloride and TDS concentrations decrease to levels below WQCC standards, is shown in Figures 9A (year 2160) and 9B (year 2093), respectively. The center of the chloride plume is approximately 3,460 ft away from the pit and well source in the year 2160. The center of the TDS plume is approximately 2,100 ft away from the pit and well source in the year 2093.

The portions of the chloride and TDS plumes that are above WQCC standards do not reach any of the identified potential receptors at any time during their attenuation. The updated fate and transport model is consistent with that determined in the two previous annual reports, however the plumes attenuate sooner and at a reduced terminal distance as a result of inputting the most recent chloride and TDS concentrations.





Former Unocal South Vacuum Unit 50-Year Chloride Plume Simulation (2003-2053) Based on WinTran Modeling Results



Former Unocal South Vacuum Unit 50-Year TDS Plume Simulation (2003-2053) Based on WinTran Modeling Results

160 Year Chloride Plume Simulation (2003-2163) Based on WinTran Modeling Results

Former Unocal South Vacuum Unit 90-Year TDS Plume Simulation (2003-2093) Based on WinTran Modeling Results

6.0 Conclusions

Conclusions relevant to groundwater conditions and the remediation performance at the Former Unocal South Vacuum Unit are presented below.

- Chloride and TDS concentrations in MW-1, near the source area, have generally
 decreased since 1996. Similarly, chloride and TDS levels have decreased in the closest
 downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS
 concentrations in the remaining wells (MW-2, MW-3, MW-5, and MW-6) have remained
 relatively consistent with previous levels.
- The fate and transport modeling results continue to support the contention that the
 chloride and total dissolved solids (TDS) plume is not likely to impact existing sources of
 water supply, the closest of which, a livestock well, lies approximately 3,200 feet south of
 the source.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,460 feet southeast of the source in approximately 160 years before concentrations return to levels below the New Mexico Water Quality Control Commission (WQCC) standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,100 feet in approximately 90 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.
- Based on the modeling results and predicted natural attenuation processes (dispersion and dilution), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former emergency overflow pit.
- Groundwater elevations have been steadily decreasing at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995.

7.0 Recommendations

Unocal has performed exemplary remedial actions to the source area, including plugging of the SWD well in 1971 and encapsulating the former surface impoundment area with solidification material in 1995, thus eliminating the threat of any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions for site closure:

- Continue the natural attenuation annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2004 annual groundwater monitoring report to OCD in January 2005 to document natural attenuation conditions.
- Provide a means for supplying freshwater in the event there is a need for municipal, domestic, livestock, and/or irrigation water in the plume area.

APPENDICES

APPENDIX A

LABORATORY ANALYTICAL REPORTS

AND

CHAIN-OF-CUSTODY DOCUMENTATION

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Certificate of Analysis Number:

03070239

Report To:

Trident Environmental

Gil Van Deventer

P.O. Box 7624

Midland

ΤX

79708-7624

ph: (432) 682-0808

fax: (915) 682-0028

Project Name:

Former Unocal South Vacuum Unit

Site:

Midland, TX

Site Address:

PO Number:

APS1400C

State:

New Mexico

State Cert. No.:

Date Reported:

7/11/2003

This Report Contains A Total Of 14 Pages

Excluding This Page

And

Chain Of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Unocal Corporation

Certificate of Analysis Number: 03070239

Report To: Project Name: Former Unocal South Vacuum Unit Site: Midland, TX Trident Environmental Gil Van Deventer Site Address: P.O. Box 7624 APS140OC PO Number: Midland State: **New Mexico** TX 79708-7624 State Cert. No.: ph: (432) 682-0808 fax: (915) 682-0028 Date Reported: 7/11/2003

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Elessa Sommers
Senior Project Manager

7/11/2003

Date

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Certificate of Analysis Number:

03070239

Report To:

Fax To:

Trident Environmental

Gil Van Deventer

P.O. Box 7624

Midland

TX

79708-7624

ph: (432) 682-0808

Trident Environmental

Gil Van Deventer

fax:

fax: (915) 682-0028

Project Name:

Former Unocal South Vacuum Unit

Site:

Midland, TX

Site Address:

PO Number:

APS140OC

State:

New Mexico

State Cert. No.:

Date Reported:

7/11/2003

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COCID	HOLD
W-1	03070239-01	Water	7/2/2003 11:10:00 AM	7/8/2003 9:30:00 AM	10412	
W-2	03070239-02	Water	7/2/2003 9:10:00 AM	7/8/2003 9:30:00 AM	10412	
MW-3	03070239-03	Water	7/2/2003 11:00:00 AM	7/8/2003 9:30:00 AM	10412	
№ -4	03070239-04	Water	7/2/2003 10:20:00 AM	7/8/2003 9:30:00 AM	10412	
W-5	03070239-05	Water	7/2/2003 10:10:00 AM	7/8/2003 9:30:00 AM	10412	
MW-6	03070239-06	Water	7/2/2003 12:20:00 PM	7/8/2003 9:30:00 AM	10412	

issa Sommers
Project Manager

7/11/2003

Date

Joel Grice Laboratory Director

Ted Yen
Quality Assurance Officer

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-1

Collected: 07/02/2003 11:10

SPL Sample ID:

03070239-01

Site: Midland, TX

Analyses/Method	Result	Rep.Limit	*****	Dil. Factor QUAL	Date Analyzed	Analyst	Seq. #
CHLORIDE, TOTAL			MCL	E325.3	Units: mg	g/L	
Chloride	715	10		10	07/10/03 11:00	RA	1761372
TOTAL DISSOLVED SOLIDS			MCL	E160.1	Units: mg	g/L	
Total Dissolved Solids (Residue,Filterable)	2090	20		2	07/08/03 18:00	E_S	1758616

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-2 Collected: 07/02/2003 9:10 SPL Sample ID: 03070239-02

		Site	: Mid	lland, TX			
Analyses/Method	Result	Rep.Limit		Dil. Factor QUAL	Date Analyzed	Analyst	Seq. #
CHLORIDE, TOTAL			MCL	E325.3	Units: m	g/L	
Chloride	268	10		10	07/10/03 11:00	RA	1761373
TOTAL DISSOLVED SOLIDS			MCL	E160.1	Units: m	g/L	
Total Dissolved Solids (Residue,Filterable)	859	10		1	07/08/03 18:00	E_S	1758617

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-3

Collected: 07/02/2003 11:00

SPL Sample ID:

03070239-03

Site:	Mid	land,	ΤX
-------	-----	-------	----

Analyses/Method	Result	Rep.Limit		Dil. Factor QUAL	Date Analyzed Ana	ilyst Seq. #
CHLORIDE, TOTAL			MCL	E325.3	Units: mg/L	
Chloride	98.3	1		1	07/10/03 11:00 RA	1761374
TOTAL DISSOLVED SOLIDS			MCL	E160.1	Units: mg/L	
Total Dissolved Solids (Residue,Filterable)	588	10		1	07/08/03 18:00 E_S	1758618

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-4

Collected: 07/02/2003 10:20

SPL Sample ID:

03070239-04

Site: Midland, TX

Analyses/Method	Result	Rep.Limit		Dil. Factor QUAL	Date Analyzed Analyst	Seq. #
CHLORIDE, TOTAL			MCL	E325.3	Units: mg/L	
Chloride	1250	50		50	07/10/03 11:00 RA	1761375
TOTAL DISSOLVED SOLIDS			MCL	E160.1	Units: mg/L	
Total Dissolved Solids (Residue, Filterable)	2610	20		2	07/08/03 18:00 E_S	1758619

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-5

Collected: 07/02/2003 10:10

SPL Sample ID:

03070239-05

Oite. Imalana, ix	Site:	Midland	d,	TX
-------------------	-------	---------	----	----

Analyses/Method	Result	Rep.Limit		Dil. Factor QI	UAL	Date Analyzed	Analyst	Seq. #
CHLORIDE, TOTAL			MCL	E325	5.3	Units: mg	g/L	
Chloride	12.5	1		1		07/10/03 11:00	RA	1761376
TOTAL DISSOLVED SOLIDS			MCL	E160	0.1	Units: mg	g/L	
Total Dissolved Solids (Residue, Filterable)	359	10		1		07/08/03 18:00	E_S	1758620

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

^{* -} Surrogate Recovery Outside Advisable QC Limits

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-6 Collected: 07/02/2003 12:20 SPL Sample ID: 03070239-06

Site: Midland, TX

	_		J. 11110			
Analyses/Method	Result	Rep.Limit		Dil. Factor QUAL	Date Analyzed Analyst	Seq. #
CHLORIDE, TOTAL			MCL	E325.3	Units: mg/L	
Chloride	46.5	1		1	07/10/03 11:00 RA	1761377
TOTAL DISSOLVED SOLIDS			MCL	E160.1	Units: mg/L	
Total Dissolved Solids (Residue, Filterable)	471	10		1	07/08/03 18:00 E_S	1758621

- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Former Unocal South Vacuum Unit

Analysis:

RunID:

Total Dissolved Solids

Method:

E160.1

WorkOrder:

03070239

Lab Batch ID:

R88990

Method Blank

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

07/08/2003 18:00

WET_030708S-1758599

Units: Analyst:

E_S

03070239-05A

MW-5

Analyte	Result	Rep Limit
Total Dissolved Solids (Residue, Filterable)	ND	10

Laboratory Control Sample (LCS)

RunID:

WET_030708S-1758601

Units:

ma/L

Analysis Date:

07/08/2003 18:00

Analyst:

E_S

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Total Dissolved Solids (Residue, Filtera	200	201	100	95	107

Sample Duplicate

Original Sample:

03070194-05

RunID:

WET_030708S-1758602

Units:

mg/L

Analysis Date:

07/08/2003 18:00

Analyst: E_S

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Total Dissolved Solids (Residue, Filtera	ND	ND	0	20

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

7/11/2003 8:04:50 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Unocal Corporation

Former Unocal South Vacuum Unit

Analysis:

Total Dissolved Solids

lethod:

RunID:

nalysis Date:

E160.1

WorkOrder:

03070239

Lab Batch ID:

R88990A

Method Blank

WET_030708S-1758599

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

07/08/2003 18:00

E_S Analyst:

03070239-01A

MW-1

03070239-02A

MW-2

03070239-03A

03070239-04A

MW-3 MW-4

Analyte Result Rep Limit

03070239-06A

MW-6

Total Dissolved Solids (Residue, Filterable) ND 10

Laboratory Control Sample (LCS)

RunID:

WET_030708S-1758601

Units:

mg/L

Analysis Date:

07/08/2003 18:00

Analyst: E_S

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit	
Total Dissolved Solids (Residue, Filtera	200	201	100	95	107	

Sample Duplicate

Original Sample:

03070236-01

RunID:

WET_030708S-1758613

Units:

mg/L

Analysis Date:

07/08/2003 18:00

Analyst:

E_S

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Total Dissolved Solids (Residue, Filtera	19200	19320	1	20

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

7/11/2003 8:04:50 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Unocal Corporation

Former Unocal South Vacuum Unit

Analysis:

Chloride, Total

lethod:

nalysis Date:

Chloride

BunID:

E325.3

325.3

WorkOrder:

03070239

Lab Batch ID:

R89135

Method Blank

WET_030710B-1761366 07/10/2003 11:00 Units: Analyst: mg/L RA

Lab Sample ID 03070239-01A

Samples in Analytical Batch:

Client Sample ID

03070239-02A

MW-1

03070239-03A

MW-2 MW-3

03070239-04A

MW-4

Analyte Result Rep Limit

ND 1.0

03070239-05A 03070239-06A MW-5 MW-6

Laboratory Control Sample (LCS)

RunID:

WET_030710B-1761368

Units: mg/L

Analysis Date:

07/10/2003 11:00

Analyst: RA

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chloride	233	232.3	100	90	110

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

03070146-01

RunID:

WET_030710B-1761370

Units:

mg/L

Analysis Date:

07/10/2003 11:00

Analyst: RA

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
hloride	42.88	50	94.69	103.6	50	94.69	103.6	0	20	85	115

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

The percent recoveries for QC samples are correct as reported. Due to significant figures and rounding, the reported RPD may differ from the displayed RPD values but is correct as reported.

7/11/2003 8.04:51 AM

Sample Receipt Checklist And Chain of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Wo	orkorder:	03070239		Receive	d By:	R_R	
Dat	te and Time Received:	7/8/2003 9:30:00 AM		Carrier r	ıame:	FedEx	
Ter	mperature:	2		Chilled b	y:	Water Ice	1 m
1.	Shipping container/co	poler in good condition?	Yes 🔽	No 🗀	Not Prese	ent 🗌	
2.	Custody seals intact of	on shippping container/cooler?	Yes 🗹	No 🗌	Not Prese	ent 🗌	
3.	Custody seals intact of	on sample bottles?	Yes 🗌	No 🗌	Not Prese	ent 🗹	
4.	Chain of custody pres	sent?	Yes 🗹	No 🗌			
5.	Chain of custody sign	ned when relinquished and received?	Yes 🗸	No 🗌			
6.	Chain of custody agre	ees with sample labels?	Yes 🗸	No 🗌			
7.	Samples in proper co	ntainer/bottle?	Yes 🗹	No 🗌			
8.	Sample containers in	tact?	Yes 🗹	No 🗌			
9.	Sufficient sample volu	ume for indicated test?	Yes 🗹	No 🗀			
10.	All samples received	within holding time?	Yes 🗸	No 🗌			
11.	Container/Temp Blank	k temperature in compliance?	Yes 🗹	No 🗌			
12.	Water - VOA vials hav	e zero headspace?	Yes	No 🗌	Not Applic	cable 🗹	
13.	Water - pH acceptable	e upon receipt?	Yes 🗌	No 🗌	Not Applic	cable 🗹	
	CDI Degradation		Contact Date 9	T:			
	SPL Representative Client Name Contacted		Contact Date &	inile:			!
	Non Conformance						
	Client Instructions:						
			ACT 1766. ARRIVED F CAMPA 75 76 AC				

APPENDIX B

MONITORING WELL SAMPLING DATA FORMS

	CLIENT:	Unocal Corporation		_	WELL ID	:MW-1	
S	ITE NAME:					DATE	:7/2/03
PRO	DJECT NO.		V-107				: Van Deventer
PURGING	METHOD	:	☑ Hand Ba	iled 🗌 Pu	ımp If Pu	ımp, Type:	
SAMPLIN	IG METHO	D :	☑ Disposat	ole Bailer [Direct	from Discl	harge Hose Other:
DESCRIE	BE EQUIPM	ENT DECC	NTAMINAT	ION METH	OD BEF	ORE SAMI	PLING THE WELL:
☑ Glove	s 🗹 Alcono	ox 🗹 Disti	lled Water F	Rinse 🔲	Other:		
DISPOSA	AL METHOD	OF PURG	E WATER:	☐ Surface	e Dischar	ne □ Dru	ums ☑Disposal Facility
						_ · ·	
	EPTH OF V O WATER:			Feet Feet			
	OF WATER			Feet		3.1	_Minimum Gallons to purge 3 well volumes
WELL DI	AMETER:	2.0	HICH				
TIME	VOLUME PURGED		COND. mS/cm	рΗ	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2	79.0°F	2210	7.06	ing/L		
	5	73.4°F	2090	6.99			
1110							Collected sample
COMME	NTS:	Sample co	llected at 11	10, placed	into 500	ml plastic	container, and put on ice in cooler.
Paramete	ers obtained	using a Hy	dac Model 9	10 pH-Tem	perature	-Conductiv	rity meter.
							C:/FORMS/SAMPLING DATA FORM

	CLIENT:	Und	cal Corpora	tion	_	WELL ID:	MW-2
SI	TE NAME:	Former U	nocal S. Vad	cuum Unit	_	DATE:	7/2/03
PRO	JECT NO.		V-107		. ;		Van Deventer
PURGING	METHOD	:	☑ Hand Ba	iled 🔲 Pu	ımp If Pu	ımp, Type:	
SAMPLIN	G METHO	o:	✓ Disposat	ole Bailer [] Direct	from Disch	narge Hose
DESCRIB	E EQUIPM	ENT DECC	NTAMINAT	ION METH	OD BEF	ORE SAME	PLING THE WELL:
☑ Glove	s 🗹 Alcond	ox 🗹 Disti	lled Water F	Rinse 🔲	Other:		
DISPOSA	L METHOD	OF PURG	F WATER	Surface	e Dischar	ne ∏ Dru	ıms ☑Disposal Facility
DEPTH T	EPTH OF V O WATER:		50.63	Feet Feet			
				Feet		10.0	Minimum Gallons to purge 3 well volume
WELL DI	AMETER:						
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
***	4	74.0°F	1014	8.37			
	10	73.2°F	1172	8.36			
0910							
· · · · · · · · · · · · · · · · · · ·							
		<u></u> _					
COMMEN	NTS:	Sample co	llected at 09	10, placed	into 500	ml plastic c	container, and put on ice in cooler.
Paramete	rs obtained	using a Hy	dac Model 9	10 pH-Tem	perature	-Conductiv	ity meter.
						···	C:/FORMS/SAMPLING DATA FO

CL	LIENT:	Uno	cal Corpora	tion		WELL ID:	MW-3
SITE	NAME:	Former U	nocal S. Va	cuum Unit	_	DATE:	7/2/03
PROJEC	T NO.		V-107				Van Deventer
	•				_		
PURGING ME	THOD		☑ Hand Ba	iled 🗌 Pu	ımp If Pu	mp, Type:	
SAMPLING M	ETHO	D :	☑ Disposat	ole Bailer [Direct	from Disch	arge Hose Other:
DESCRIBE E	QUIPM	ENT DECO	NTAMINAT	ION METH	OD BEFO	ORE SAMP	LING THE WELL:
☑ Gloves ☑	Alcono	x 🗹 Disti	lled Water F	Rinse 🔲	Other:		
DISPOSAL MI	ETHOD	OF PURG	E WATER:	☐ Surface	e Discharç	ge 🗌 Dru	ms ☑Disposal Facility
TOTAL DEPT DEPTH TO W HEIGHT OF V WELL DIAME	ATER: VATER	COLUMN:	67.94 9.06			4.4	Minimum Gallons to purge 3 well volumes
1 (18/12 1	LUME RGED		COND. mS/cm	рН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
	5	76.6°F	690	7.67			
1100							
COMMENTS:		Sample col	lected at 11	00, placed	into 500 i	nl plastic c	ontainer, and put on ice in cooler.
Parameters of	otained	using a Hy	dac Model 9	10 pH-Tem	perature-	Conductivi	ty meter.
-							C:/FORMS/SAMPLING DATA FORM

	CLIENT:	Und	cal Corpora	tion	_	WELL ID:	MW-4
s	ITE NAME:	Former U	nocal S. Vad	cuum Unit	_	DATE:	7/2/03
PRO	DJECT NO.		V-107				Van Deventer
	•				•		
PURGING	G METHOD	:	☑ Hand Ba	iled □ Pu	ımp if Pu	ımp, Type:	
SAMPLIN	IG METHOI	D :	☑ Disposat	ole Bailer [☐ Direct	from Disch	arge Hose
DESCRIE	BE EQUIPM	ENT DECC	NTAMINAT	ION METH	OD BEF	DRE SAMF	PLING THE WELL:
☑ Glove	es 🗹 Alcono	x 🗹 Disti	lled Water F	Rinse 🔲	Other:		
DISPOSA	METHOR	OF PURG	E WATER	☐ Surface	a Dischar	ne 🗆 Dru	ms ☑Disposal Facility
					District	ac 🗀 Dia	ms Episposai i dointy
DEPTH T	EPTH OF V O WATER:	VELL:		Feet Feet			
HEIGHT	OF WATER	COLUMN:	9.66			4.7	Minimum Gallons to purge 3 well volumes
WELL DI	AMETER:	2.0	Inch				
TIME	VOLUME		COND.	pН	DO	Turb	PHYSICAL APPEARANCE AND REMARKS
	PURGED 3	°C / °F 79.9°F	<i>m</i> S/cm 4110	7.53	mg/L		
	6	75.2°F	3600	7.47			
1020	0	75.2 F	3000	7.47			
1020							
<u> </u>							
COMME	NTS.	Sample co	llected at 10	20 nlaced	into 500	ml nlastic c	ontainer, and put on ice in cooler.
			dac Model 9				
- didinot	J.J ODIGINOG	aonig a riy	ado inidadi s	10 pri-1011	-poruturo	Conductiv	
							C:/FORMS/SAMPLING DATA FORM

	CLIENT:	Uno	cal Corpora	tion	_	WELL ID:	MW-5		
SITE NAME: Former Unocal S. Vacuum Unit				cuum Unit	_	DATE:	7/2/03		
PROJECT NO. V-107							Van Deventer		
	•				-				
PURGIN	G METHOD	:	☑ Hand Ba	iled □ Pι	ımp if Pu	mp, Type:			
SAMPLING METHOD:									
DESCRI	BE EQUIPM	ENT DECC	NTAMINAT	ION METH	OD BEF	ORE SAMP	PLING THE WELL:		
☑ Glove	es 🗹 Alcono	x 🗹 Disti	lled Water F	Rinse 🔲	Other:				
DISPOS	AL METHOD	OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Dru	ms ☑Disposal Facility		
DEPTH THEIGHT	DEPTH OF VIOLENTO WATER:	COLUMN:	69.32 5.68	Feet		2.8	Minimum Gallons to purge 3 well volumes		
WELL DI	AMETER:	2.0	Inch						
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	5	71.4°F	3600	7.60					
1010									
	ļ <u></u>								
L	<u></u>								
COMME	NTS:	Sample co	lected at 10	10, placed	into 500 i	ml plastic c	ontainer, and put on ice in cooler.		
Paramet	ers obtained	using a Hy	dac Model 9	10 pH-Tem	perature-	-Conductivi	ty meter.		
-					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		C:/FORMS/SAMPLING DATA FORM		

	CLIENT: Unocal Corporation			WELL ID:		MW-6	
s	ITE NAME:	Former U	nocal S. Vac	cuum Unit	_	DATE	:7/2/03
PRO	DJECT NO.		V-107				: Van Deventer
PURGIN	G METHOD:	:	☑ Hand Ba	iled 🗌 Pu	ımp If Pu	ımp, Type:	
SAMPLIN	NG METHO	D :	☑ Disposat	ole Bailer [Direct	from Disch	narge Hose Other:
DESCRIE	BE EQUIPM	ENT DECC	NTAMINAT	ION METH	OD BEF	ORE SAME	PLING THE WELL:
☑ Glove	es 🗹 Alcond	ox 🗹 Disti	lled Water F	Rinse 🔲	Other:		
DISPOSA	AL METHOD	OF PURG	E WATER:	☐ Surface	e Dischar	ge 🗌 Dru	ıms ☑Disposal Facility
TOTAL D	EPTH OF V	VFII:	76 00	Feet			
DEPTH 1	O WATER:		71.52	Feet			
	OF WATER AMETER:			Feet		2.2	_Minimum Gallons to purge 3 well volume
	•						—
TIME	VOLUME PURGED	·	COND. mS/cm	рН	DO mg/L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.5	73.1°F	51.3	7.39			
_	5	73.0°F	51.0	7.51			
1220							
						- · · · · · · · · · · · · · · · · · · ·	

_							
<u></u>	-						<u> </u>
····							
							
_					-		
	 						
			<u> </u>	L			
COMME							container, and put on ice in cooler.
Paramete	ers obtained	using a Hy	dac Model 9	10 pH-Tem	nperature	-Conductiv	ity meter.
	·						C:/FORMS/SAMPLING DATA FO

APPENDIX C

DESCRIPTION OF FATE AND TRANSPORT MODELING

Description of Fate and Transport Modeling

Conceptual Model

Produced water containing high concentrations of chloride, and resultant high levels of total dissolved solids (TDS), was reportedly discharged into a surface pit and adjoining injection well for a period of about 10 years, until the well was plugged and abandoned in 1971. The chloride and TDS plume continued to migrate southeastwards for the next approximately 30 years after the source input was stopped, producing the configuration and constituent concentration distribution observed currently. Extrapolating from current conditions for decades into the future, taking account of both advective flow and attenuation by hydrodynamic dispersion, enables prediction of the probable distance that the residual plume will travel as well as the gradually declining concentrations in the plume.

Basic Site Data

Information about site conditions was obtained from data in a TRW Inc. "Report of Additional Groundwater Investigation, Former Unocal South Vacuum Unit, Lea County, New Mexico" (July 18, 2000). This included lithologic records from well installations, water level data, and water quality analytical results.

Simulation Model

Simulations were conducted with the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. The Windows interface allows for rapid data input, processing, parameter manipulation and optimization, and output in multiple formats. The fundamental mathematics of the model solutions, model verification (benchmarked against MODFLOW), and use of WinTran is documented in the "Guide to Using WinTran" published by ESI.

Base Map

A simplified site base map, edited with TurboCAD (Version 7), was exported to a universal drawing exchange file (DXF) file format. The DXF base map was imported into WinTran, which preserves the original units of measurement.

Flow Parameters

Input requirements for the steady-state groundwater flow simulation include: hydraulic gradient and direction of flow, hydraulic conductivity, aquifer top and bottom elevations, and reference head. The values used were based on the following sources:

- Hydraulic gradient measured gradient of 0.004 feet/foot from July 2, 2003 site measurements reported by Trident.
- Direction of flow measured direction of approximately S 40° E from July 2, 2003 site measurements reported by Trident.

- Hydraulic conductivity no site measurements were available; therefore, a literature value based on the saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. Fetter (1988, Table 4.5, p. 80) cites an average range of 10⁻⁵ to 10⁻³ cm/sec for hydraulic conductivity of silty sands and fine sands. A conservative upper limit was selected, and converted from S.I. unit to 2.8 ft/day, or approximately 1000 ft/yr.
- Aquifer top and bottom elevations bottom elevation of Ogallala Formation at 3700 feet reported by Trident. The top elevation for an unconfined aquifer must be greater than the reference head. An elevation of 4000 feet was assumed.
- Reference head measured unconfined head of 3795.5 feet adjacent to the former pit and upgradient well MW-1 from July 2003 measurements reported by Trident.

Transport Parameters

Input requirements for the contaminant transport numerical simulation include: longitudinal and transverse dispersivity, porosity, diffusion coefficient, contaminant half-life, and retardation coefficient. The values used were based on the following sources:

- Longitudinal and transverse dispersivity no site measurements were available; therefore, a literature value based on the plume length was selected. Fetter (1993, Section 2.11, pp. 71-77) notes the apparent scale-dependency of longitudinal dispersivity, which typically may be about 0.1 times the flow length. For the current site scale and plume length of approximately 1500 feet, a value of 150 feet was selected for longitudinal dispersivity. According to the WinTran user's guide (ESI, 1995, p.11), longitudinal dispersivity is usually 5 to 10 times higher than transverse dispersivity; therefore, a value of 30 feet (i.e., one-fifth of the longitudinal value) was selected for transverse dispersivity.
- Porosity no site measurements were available; therefore a literature value based on saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. A range of 0.25 to 0.50 is typically given for unconsolidated "sand" (e.g., Freeze & Cherry, 1979, Table 2.4, p. 37); however, the Ogallala Formation is predominantly very fine grained, compacted and partly cemented, and may also fit within the range of 0.05 to 0.30 for sandstone. Fetter (1988, Table 4.3 and Figure 4.10, pp. 74-75) cites an average value of 0.20 for the specific yield of very fine sands. Specific retention of silty fine sand is approximately 0.05, for a total porosity of 0.25, which is the value selected for the transport modeling. WinTran uses the porosity term to estimate groundwater velocity, and actually requires an effective porosity value. Fetter (1988, Section 4.4, pp. 84-85) notes that pores of most sediments down to clay size are interconnected and that the effective porosity is virtually equal to the total porosity.
- Diffusion coefficient this parameter is normally only relevant for very slow fluid movement, and is commonly assumed to be zero for advective-dominated transport, as in the present case.
- Contaminant half-life this parameter accounts for chemical decay (e.g., radioisotopes, biological transformation of organic molecules); however, the species of interest in the present case are inorganic ions and are not expected to decay to any appreciable extent.

A conservative value of 1000 years was used, which produces a negligible decay coefficient of less than 0.001 yr⁻¹.

Retardation coefficient – this parameter accounts for sorption processes that slow the
movement of contaminants relative to the groundwater velocity. Inorganic ions such as
chloride are commonly taken as conservative tracers in groundwater and are not
considered to be retarded; therefore, a value of 1.0 was selected for the retardation
coefficient.

Flow Model Calibration

The vicinity of the site where water level measurements were recorded in July 2, 2003 is simulated closely by the flow model. It is known that groundwater levels in the Ogallala Formation are decreasing slowly (less than 0.5 ft/yr), but this effect cannot be reproduced in the steady-state flow model. Water levels were probably somewhat higher than the present day during the period of brine disposal and initial transport. Even if the declining trend continues into the future, it does not affect the transport model solution for long extrapolation times, since sufficient saturated thickness remains (i.e., above the assumed aquifer base elevation of 3700 feet) for a valid flow and transport solution.

The average groundwater velocity may be estimated using the darcy expression: $v = (k \cdot i) / n$ where k is the hydraulic conductivity (fl/yr), i is the hydraulic gradient (fl/foot), and n is the effective porosity (unitless). The resultant average velocity is 16 fl/yr.

Transport Model Calibration

The objective of the transport modeling was to first obtain a plume configuration with concentration values that closely match current observed values. This was done by simulating an initial contaminant release to groundwater for a period of 11 years (c. 1960 to 1971) with a constant source concentration located at the pit and injection well, then simulating a 28-year transport period (c. 1971 to 1999) with no further contaminant input but restarting the model from the end of Year 11 by retaining the mass of contaminant from the initial plume. The model was again run for 4 years (1999 to 2003) at one-year increments after entering in the known concentrations at each monitoring well. An iterative approach was needed to optimize the initial source concentration so that the plume at Year 39 resembled the actual plume conditions in 1999. An initial value of 14,000 mg/L for chloride and 30,000 mg/L for TDS were found to produce the best match. The initial chloride value was also chosen because it is typical of chloride concentrations within the producing formation (Devonian) in the South Vacuum Oil Field according to chemists at Martin Water Laboratories (verbal communication, 12-05-01). Actual disposal concentrations during the 1960s are unknown, and may have been higher than these values, but it is presumed that some attenuation and dilution may have occurred in the vadose zone, which is currently 48 to 68 feet thick. WinTran does not account for vadose zone transport, and the source input is treated as an injection well with instantaneous transfer of contaminant mass to groundwater.

Figures 7A and 7B show the close match achieved by the chloride and TDS simulations compared to the current observed plume.

Simulation of Fate and Transport

Estimation of chloride and TDS fate and transport was achieved by restarting the transport model from the end of Year 43 (2003) by retaining the distribution of contaminant mass and projecting for a further 50 years into the future. As depicted in Figures 8A and 8B, dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume. Advective flow moves the center of plume mass downgradient by a distance of approximately 750 feet from the former source area (SWD pit) and approximately 300 feet upgradient from well MW-4.

Running the model for 160 years in the future (Year 2160) produces a chloride plume center concentration of 248 mg/L (below the WQCC standard of 250 mg/L) as shown in Figure 9A. The center of the chloride plume is approximately 3,460 ft away from the former pit and well source at that time.

Running the model for 93 years in the future (Year 2093) produces a TDS plume center concentration of 995 mg/L (below the WQCC standard of 1,000 mg/L) as shown in Figure 9B. The center of the TDS plume is approximately 2,100 ft away from the pit and well source at that time

These results support the contention that the chloride and TDS plume is not likely to impact any existing sources of water supply, the closest of which is a windmill (NM File No. L05339) approximately 3,000 feet south of the source.

The trend of decreasing concentration is not linear (exponential e^{-kt} function). Interestingly, the center of the plume moves at a greater rate (22 feet/year) over successive time intervals than would be assumed from the groundwater velocity alone (16 feet/year), due to the added effect of dispersion.

.