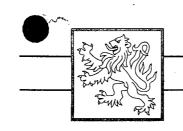

REPORTS

DATE:

6 98-

SUBSURFACE ENVIRONMENTAL ASSESSMENT REPORT COOPER-JAL UNIT SOUTH INJECTION STATION LEA COUNTY, NEW MEXICO


Prepared for:

Ike Tavarez

Senior Geologist/Project Manager

Mark J. Larson Senior Project Manager

Highlander Environmental Corp.

Midland, Texas

Table of Contents

<u>Sections</u>	<u>on</u>		<u>Page</u>
LIST	OF TA	ABLES	ii
LIST	OF FI	GURES	iii
LIST	OF A	PPENDICES	iv
1.0	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Previous Investigations	1
		1.2.1 <u>Environmental Spill Control, Inc. Investigations</u>	1
		1.2.2 Highlander Environmental Corp. Investigation	3
	1.3	Regulatory Correspondence	4
2.0	<u>SITE</u>	<u>E SETTING</u>	4
	2.1	<u>Topography</u>	4
	2.2	<u>Soils</u>	5
	2.3	Geology	5
	2.4	Groundwater	6
3.0	<u>SUB</u>	SURFACE ASSESSMENT ACTIVITIES	6
	3.1	Electromagnetic (EM-34) Terrain Conductivity Survey	6
	3.2	Monitor Well Drilling and Installation	8
	3.3	Groundwater Sampling and Analysis	10
	3.4	Water Well Survey	12
4.0	<u>CON</u>	ICLUSIONS	13
5.0	PRO	POSED REMEDIATION PLAN	15

i

H:\Oil-Gas\996\Cooper-Jal Report

Highlander Environmental Corp.

List of Tables

<u>Table</u>

- 1. Summary of Monitor Well Drilling and Completion Details
- 2. Summary of Inorganic Analysis of Groundwater Samples From Monitor Wells
- 3. Summary of Water Wells Within 1-Mile

H:\Oil-Gas\996\Cooper-Jal Report

ii

List of Figures

Figure

- 1. Site Location and Topographic Map
- 2. Site Drawing
- 3. Structure Contour Map of Top of Triassic-age Chinle Formation
- 4. Depth-to-Groundwater, 5/18/98
- 5. Groundwater Potentiometric Surface (Shallow), 5/18/98
- 6. Groundwater Potentiometric Surface (Deep), 5/18/98
- 7. Ogallala Formation Saturated Thickness, 5/18/98
- 8. EM-34 40 Meter HD Conductivity Map
- 9. EM-34 40 Meter VD Conductivity Map
- **10.** Isopleth Map of Chloride Concentration (Shallow)
- 11. Isopleth Map of Chloride Concentration (Deep)
- 12. Isopleth Map of TDS Concentration (Shallow)
- 13. Isopleth Map of TDS Concentration (Deep)
- 14. Water Wells Within 1-Mile
- 15. Proposed Recovery Well Location

H:\Oil-Gas\996\Cooper-Jal Report

Midland, Texas

iii

List of Appendices

Appendix

- A. Correspondence
- B. EM-34 Field Sheets
- C. Borehole Sample Logs
- D. Monitoring Well Construction Diagrams
- E. Trace Analysis, Inc. Laboratory Reports
- F. Water Well Records

Midland, Texas

iv

SUBSURFACE ENVIRONMENTAL ASSESSMENT REPORT COOPER-JAL UNIT SOUTH INJECTION STATION LEA COUNTY, NEW MEXICO

1.0 INTRODUCTION

Highlander Environmental Corp. (Highlander) has been requested by Texaco Exploration and Production, Inc. (Texaco) to perform a subsurface environmental assessment of the Cooper-Jal Unit South Injection Station (Site), located approximately 5.5 miles northwest of Jal, New Mexico. The Site is situated in the northwest quarter (NW/4), NW/4, SE/4, Section 24, Township 24 South, Range 36 East, Lea County, New Mexico. Figure 1 presents a Site location and topographic map. Figure 2 presents a Site drawing.

1.1 Background

The Site is used as an oil field tank battery and injection station. The Site includes numerous aboveground storage tanks, pumps, associated piping and equipment. Previously, an unlined emergency overflow pit was located at the Site. The pit was used for temporary storage of produced water. The pit was located near the west side of the Site and measured approximately 50' x 170' x 12'. The pit was operated until August 1996, when it was permanently closed. Figure 2 shows the approximate location of the pit.

1.2 <u>Previous Investigations</u>

1.2.1 Environmental Spill Control, Inc. Investigation

Environmental Spill Control, Inc. (ESCI), Hobbs, New Mexico, was contracted by Texaco to conduct a subsurface investigation of the pit prior to its closure. The purpose of the investigation was to determine if a release had occurred from the pit and if soil and groundwater

1

had been affected. The investigation consisted of drilling five (5) boreholes in and around the pit, and collection of soil samples for laboratory testing. The boreholes were drilled from 15 and 100 feet below ground surface (BGS). Soil samples were collected and analyzed for total petroleum hydrocarbons (TPH). The highest TPH concentration reported in the soil samples was 14,890 parts per million (PPM) from a location near the south end of the pit. The soil samples were also analyzed for benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX), which reported no levels of these constituents above the test method detection limits. A soil sample was also tested for RCRA metals by Toxicity Characteristic Leaching Procedure (TCLP), and reported no concentrations above the test method detection limits. The investigation was documented in a report submitted to Texaco on October 14, 1993. A copy of the report is presented in Appendix A.

On July 5, 1996, Texaco filed a notice of intent to close the pit with the OCD (Appendix A). Texaco contracted Western Environmental Consultants (WEC), Hobbs, New Mexico, to supervise closure of the pit. Globe Construction Co., Inc., Hobbs, New Mexico was contracted to excavate the pit. Closure of the pit began on August 1, 1996. Approximately 1,248 cubic yards of hydrocarbon affected soil was removed from the pit and disposed at Parabo, Inc., Eunice, New Mexico. Soil samples from the bottom of the excavation were analyzed for TPH and confirmed that all hydrocarbon-impacted soil had been removed. Approximately 1,091 cubic yards of clay was placed in the bottom of the excavation as a "buffer zone". The excavation was filled to grade with approximately 3,360 cubic yards of caliche, which was placed over the clay. The pit closure activities were documented in a report dated August 30, 1996, which was forwarded to Texaco (Appendix A). Texaco submitted the pit closure report to the OCD on December 13, 1996. On January 17, 1997 and July 10, 1997, the OCD requested Texaco to provide additional information before it could approve final closure of the pit. The request included information of the vertical extent of chloride in soil beneath the pit. On July 14, 1997, Texaco responded to the OCD's request for additional information, however, information concerning the vertical extent of chloride in soil was not available.

H:\Oil-Gas\996\Cooper-Jal Report

2

1.2.2 Highlander Environmental Corp. Investigation

On August 22, 1997, Highlander conducted an investigation to define the vertical extent of chloride in soil beneath the pit. The investigation consisted of installation of a rotary drilled borehole (BH-1) near the southeast corner of the pit. The borehole was drilled to approximately 100 feet BGS, and soil samples were collected from 15-17 feet BGS, and every ten (10) feet thereafter (i.e., 20'-22', 30-32', 40-42', etc.) to 100 feet. The soil samples were analyzed for chloride and reported concentrations from 580 milligrams per kilogram (mg/kg) from 15'-17' to 2,500 mg/kg from 80'-82'.

On September 9-10, 1997, following receipt of the initial sample results, the depth of the borehole was extended to approximately 173 feet BGS. The borehole was terminated in shale (clay) of the Triassic-age Chinle Formation. Soil samples were collected at 110'-112', 120'-122', 130'-132' and 140'-142' BGS. Groundwater was encountered at 142 feet BGS. The soil samples were analyzed for chloride, and reported levels from 500 mg/kg (110'-112' BGL) to 1,200 mg/kg (130'-132'). The chloride level decreased to 210 mg/kg when groundwater was encountered. The soil samples was visually examined for lithology, and a borehole sample log was prepared. The borehole sample log and laboratory reports were submitted to the OCD on October 10, 1997 (Appendix A).

Following review of the October 10, 1997 report, the OCD required Texaco to install a monitor well near borehole BH-1 to evaluate potential impacts from chloride. On September 10, 1997, Highlander supervised installation of monitor well MW-1 adjacent to borehole BH-1. Scarborough Drilling, Inc. drilled the well to a depth of approximately173 feet BGS. The well was constructed with 2-inch diameter schedule 40 PVC screen and casing. The well screen was placed from about 128 to 173 feet BGS. Following installation, the well was developed and groundwater samples were collected and analyzed for major cations and antions. Chloride was reported in the groundwater sample at 8,500 milligrams per liter (mg/L), and exceeded the New Mexico Water Quality control Commission (WQCC) domestic water supply standard of 250 mg/L

(20 NMAC 6.2, 3103 B). A total dissolved solids (TDS) concentration of 15,000 mg/L was also reported in the groundwater sample, and exceeded the WQCCC standard of 1,000 mg/L. Highlander reported the results to Texaco on October 10, 1997. The report, titled, "Preliminary Investigation Findings, Notification of Release and Proposed Additional Investigations, Emergency Overflow Pit (Closed), Texaco Exploration and Production, Inc., Cooper-Jal Unit South Injection Station and Tank Battery, NW/4, SE/4, Section 24, Township 24 South, Range 36 East, Lea County, New Mexico", was also submitted to the OCD (Appendix A).

1.3 <u>Regulatory Correspondence</u>

On December 16, 1997, the OCD approved the investigation plan submitted on October 10, 1997. The OCD required a report to be submitted by March 13, 1998. However, due to drilling contractor delays, and the need to install additional monitor wells, Highlander was required to request extensions for delivery of the report. Extensions were requested in writing on March 2, 1998 and April 16, 1998, and verbal approval was granted by Mr. William C. Olson with the Environmental Bureau of the OCD. A due date of June 13, 1998 was proposed for submittal of a final report.

2.0 SITE SETTING

2.1 <u>Topography</u>

The topography slopes gently from northwest to southeast toward Monument Draw located approximately 7.5 miles southeast of the Site. The Site is situated at an elevation of approximately 3,315 feet above mean sea level (AMSL). Storm water runoff generally follows the topography and flows to the southeast.

2.2 <u>Soils</u>

The Pyote and Maljamar fine sand (PU) underlies the Site. The Pyote and Maljamar fine sand consists of approximately 45% Pyote fine sand, 45% Maljamar fine sand and 10% inclusions of Palomas and Kermit soils. This soil is restricted to southern Lea County, New Mexico, and is used for range, wildlife habitat and recreational areas. The soil has a moderately rapid permeability and rapid water intake. The Pyote-Maljamar fine sand consists of a surface layer of light-brown fine sand, approximately 0 to 30 inches thick. A reddish-yellow fine sandy loam subsoil underlies the surface layer, approximately 10 inches thick. The subsoil is underlain by approximately 8 inches of light-brown fine sandy loam, followed by about 12 inches of pink fine sandy loam.

2.3 <u>Geology</u>

The Site is located within the Central Basin Platform of the Permian Basin, and is underlain by the Pliocene-age Ogallala Formation. The Ogallala Formation consists of unconsolidated deposits of reddish-brown fine-grained calcareous sand and minor deposits of clay, silt and gravel (Nicholson and Clebsch, 1961). Locally, the Ogallala Formation also contains thin beds of red to dark red, very hard to crystalline sandstone and is capped by a dense layer of caliche, commonly referred to as "caprock". Based on Site-specific data, the Ogallala Formation is about 164 to 173 feet thick.

The Ogallala Formation is underlain by the Triassic-age Chinle Formation. The Chinle Formation consists of red and green mudstone, minor fine-grained sandstone and siltstone. The Chinle Formation has a maximum thickness of about 1,270 feet. Beneath the Site, the surface of the Chinle Formation has been eroded. About 5.4 feet of topographic relief was observed on the pre-Ogallala surface beneath the Site. The elevation of the surface of the Chinle Formation ranges from about 3144.95 feet AMSL near well MW-8, to 3150.35 feet AMSL near well MW-7. Figure 3 presents a structure contour map of the surface of the Chinle Formation, and indicates a

topographically high area in the vicinity of well MW-7.

2.4 <u>Groundwater</u>

Groundwater occurs under unconfined conditions in the Ogallala Formation (commonly referred to as the Ogallala aquifer). On May 18, 1998, groundwater occurred at depths from 130.66 feet BGS (MW-3) to 135.42 feet BGS (MW-2). Figure 4 presents a depth-to-groundwater map for May 18, 1998. On May 18, 1998, the elevation of the upper (shallow) portion of the Ogallala aquifer ranged from 3184.59 feet AMSL at well MW-2A (up gradient) to 3179.91 feet AMSL at well MW-9A (down gradient). Groundwater flow in the shallow portion of the Ogallala aquifer was from northwest to southeast at a gradient of approximately 0.003 feet per foot. Figure 5 presents a groundwater potentiometric surface map for the shallow portion of the Ogallala aquifer. On May 18, 1998, the elevation of the lower (deeper) portion of the Ogallala aquifer ranged from 3185.56 feet AMSL at well MW-3 (up gradient) to 3179.90 feet AMSL at well MW-9 (down gradient). Groundwater flow in the deep portion of the Ogallala aquifer was also from northwest to southeast at a gradient of approximately 0.003 feet per foot. Figure 6 presents a groundwater potentiometric surface map for the deep portion of the Ogallala aquifer on May 18, 1998. The groundwater flow direction reported on May 18, 1998 was consistent with published information (Nicholson and Clebsch, 1961). Figure 7 presents a saturated thickness map for the Ogallala aquifer. Referring to Figure 7, the saturated thickness of the Ogallala aquifer ranged from 30.86 feet (MW-10) to 40.34 feet (MW-3). The saturated thickness decreases from west to east, which is likely due to eastward thinning of the Ogallala Formation. Recharge to the Ogallala aquifer occurs through infiltration of precipitation.

3.0 SUBSURFACE ASSESSMENT ACTIVITIES

3.1 <u>Electromagnetic (EM-34) Terrain Conductivity Survey</u>

An electromagnetic (EM-34) terrain conductivity survey was conducted at the Site on

6

January 13 - 14, 1998 and May 7, 1998. Highlander conducted the EM-34 survey to determine areas of elevated terrain conductivity, which typically correlates with areas of elevated chloride in soil and groundwater. The EM-34 instrument measures terrain conductivity by imparting an alternating electrical current to the instrument transmitter coil, which is positioned near the earth's surface. A magnetic field, produced as the current passes through the transmitter coil, induces small electrical currents into the subsurface soil. The electrical currents produce a secondary magnetic field, which is sensed, with the primary magnetic field by a receiver coil. The terrain conductivity, which is linearly proportional to the ratio of the secondary magnetic field to the primary magnetic field, is displayed in analog form representing millimhos per meter (mmhos/m). The EM-34 instrument detects changes in ground conductivity, and was selected for use at the Site since produced (brine) water may have been discharged from the Pit. The instrument's exploration capability is dependent on the spacing between the transmitter coil and receiver coils (horizontal or vertical). The depth of exploration for the EM-34 ranges from 24.6 to 196.8 feet BGS.

The EM-34 survey was performed in the horizontal dipole (HD) and vertical dipole (VD) modes, using a 40-meter intercoil separation, which yielded exploration depths of 0 to 98.4 feet (HD mode) and 0 to 196.9 feet (VD mode). Prior to conducting the EM-34 survey, grids measuring approximately 100 x 100 feet were established at the Site to allow accurate collection and plotting of data. Initially, the area measured approximately 800 x 800 feet. However, on May 7, 1998, the area was expanded to 1100 x 1400 feet. A background station, free of cultural interference (i.e., overhead and underground power lines, pipelines, fences, etc.), was selected northwest of the Site. The background station consisted of three (3) measurement points (A, B and C), at which HD and VD measurements were collected. The background measurements were compared to Site measurements to determine areas of elevated terrain conductivity. Cultural interference in the form of above ground and below ground pipe lines, as well as underground and overhead power lines were observed at the Site. Figure 2 presents a Site drawing showing the locations of the EM-34 measurement stations and observed cultural interference.

7

At each measurement station, terrain conductivity measurements were collected in the HD and VD modes. The measurements were recorded on field forms and later transferred to drawings. Figure 8 presents the EM-34 terrain conductivity map for the 40-meter HD survey and Figure 9 presents the EM-34 terrain conductivity map for the 40-meter VD survey. Referring to Figure 8, the EM-34 -40 meter HD survey recorded background readings from 14 to 15 mmhos/m. Measurements greater than two to nearly three times background were recorded near the former pit. The elevated EM-34 readings suggest that chloride impacts to unsaturated zone soils may have occurred. A broad area of slightly elevated terrain conductivity (i.e., 16 to 22 mmhos/m) readings trends from northwest to southeast across the Site, and generally corresponds with the groundwater flow direction. Several anomalies, possibly associated with below ground and above ground pipelines, were observed near stations South 300 and East 400, South 200 and East 1100, and from South 700 and East 400 to South 700 and East 800.

Referring to Figure 9, the 40 meter VD survey recorded measurements nearly 100 times background near the former pit. This area corresponds with elevated readings observed from the 40 meter HD survey. The EM-34 measurements suggest that chlorides have migrated vertically into the deeper portion of the Ogallala Formation. A broad area of elevated EM-34 readings, approximately two to three times background, trending northwest to southeast, was observed in the area observed in the HD mode, also suggesting that chlorides have migrated vertically and encountered groundwater. This area of elevated EM-34 readings (greater than 100 mmhos/m) was also observed in the vicinity of well MW-7, and corresponds to the erosional feature observed on the Chinle Formation. An area of west to east readings from stations South 800 and East 900 to East 1100 are likely associated with above ground or below ground pipelines. Appendix B presents the EM-34 field sheets.

3.2 Monitor Well Drilling and Installation

From February 9 - 13, and May 12 - 14, 1998, Highlander personnel supervised drilling and

H:\Oil-Gas\996\Cooper-Jal Report

8

Highlander Environmental Corp.

installation of thirteen (13) monitor wells. Scarborough Drilling, Inc., Lamesa, Texas drilled the wells, using a truck-mounted water rotary drilling rig. Samples of cuttings were collected during drilling and visually examined for lithologic properties. Lithologic sample logs were prepared for each borehole, based on the visual examination. Appendix C presents the borehole sample logs.

Based on the EM-34 survey (January 13 - 14, 1998), Highlander selected locations for installation of five deep monitor wells (MW-2 through MW-5) and three shallow monitor wells (MW-2A, MW-4A and MW-5A). Well MW-3 was located hydraulically up gradient (northwest) of the Site, and was installed as a background well location. Well MW-2 was located east of the pit and in the central location of the Site, where elevated EM-34 terrain conductivity measurements were recorded. Wells MW-4, MW-5 and MW-6 were installed south, southeast and east of the Site, respectively, to evaluate down gradient groundwater quality. The monitoring wells were drilled to depths ranging from about 170 to 173 feet BGS, and completed using two (2) inch diameter schedule 40 PVC threaded casing and factory slotted screen. The well screen, approximately ten (10) feet in length, was positioned near the base of the Ogallala aquifer to determine the extent, if any, of density stratification from chloride. The well screen was surrounded by a filter pack consisting of 8-16 graded silica sand. The sand was placed to a depth approximately 3 to 5 feet above the screen. A layer of bentonite pellets, approximately 3 to 5 feet thick, was placed in the annulus above the sand. The remainder of the annulus was filled with Portland cement and bentonite grout.

The OCD, as a condition of its approval of the investigation plan, required that Texaco install a minimum of three shallow monitor wells to investigate the presence of phase-separated hydrocarbons on the groundwater and density stratification of chloride in groundwater. The shallow wells (MW-2A, MW-4A and MW-5A) were installed adjacent to the deep wells at each corresponding location. The wells were drilled to depths from 141 to 145 feet BGS, and the well screens, approximately 15 feet in length, were positioned in the boreholes, with approximately five feet of screen above the groundwater level observed in the adjacent deep monitor well. The well screens were surrounded with a filter pack, consisting of 8-16 graded silica sand, which was placed in the annulus of the borehole to a depth approximately 3 to 5 feet above the screen. The remainder of the borehole was completed as previously mentioned. The wells are secured with locking caps and

steel protectors that were placed around the PVC casing and cemented into a concrete pad measuring about 3 x 3 feet.

Following receipt of the laboratory report of groundwater samples collected from the monitor wells, it was determined that additional monitor wells were necessary to fully delineate the extent of chloride impact to groundwater. On May 7, 1998, Highlander expanded the area of the EM-34 survey. Locations were selected for four additional deep monitor wells (MW-7 through MW-10) and one additional shallow monitor well (MW-10), following an evaluation of the expanded EM-34 terrain conductivity survey results. The OCD permitted the monitor wells to be installed with fifteen feet of screen, rather than ten feet of screen, as previously required, which allowed for use of a submersible pump for purging, due to additional groundwater yields. Table 1 presents a summary of monitor well drilling and completion details. Appendix D presents construction diagrams for the monitor wells.

Scarborough Drilling, Inc., using the drilling rig and a retrievable bailer, developed the monitoring wells. Water removed from the wells was containerized in 55-gallon drums, and later disposed by Chaparral Services, Inc., Eunice, New Mexico, at an OCD approved disposal well. The bailer and drilling rig were thoroughly decontaminated between wells using high-pressure hot water. Soil displaced during drilling was piled next to the monitor wells. Piper Surveying, Inc., Gardendale, Texas, a New Mexico licensed professional land surveyor, surveyed the monitor wells for elevation.

3.3 Groundwater Sampling and Analysis

From February 25 - 27, 1998, Highlander personnel collected groundwater samples from wells MW-1 through MW-6, including shallow wells MW-2A, MW-4A and MW-5A. Prior to sample collection, the wells were purged of groundwater using dedicated disposable polyethylene bailers. Water purged from the wells was placed in 55-gallon drums and disposed by Chaparral Services, Inc., Eunice, New Mexico, at an OCD approved disposal well. The samples were placed

in laboratory prepared containers, and submitted under chain-of-custody control to Trace Analysis, Inc., Lubbock, Texas. The samples were analyzed for BTEX, polynuclear aromatic hydrocarbons (PAH), WQCC metals, TDS, major cations and anions. The samples for metals were field filtered at the time of sample collection. No concentrations of BTEX, PAH or metals were reported above the test method detection limits in the groundwater samples.

On May 12 and 13, 1998, groundwater samples were collected from wells MW-7 through MW-10, including MW-9A. Since samples from wells MW-1 through MW-6, including MW-2A, MW-4A and MW-5A, did not report detectable levels of BTEX, PAH or metals, samples from wells MW-7 through MW-10 and MW-9A were only analyzed for TDS, major cations and anions. The wells were purged of groundwater using electric submersible pump. The purged water was placed in 55-gallon drums and disposed by Chaparral Services, Inc., Eunice, New Mexico, at an OCD approved disposal well. Appendix E presents the laboratory report. The TDS and general chemistry analyses are summarized in Table 2.

The WQCC standards for chloride, TDS and sulfate are 250 mg/L (chloride), 1,000 mg/L (TDS) and 600 mg/L (sulfate), for domestic drinking water. Concentrations of chloride were reported in shallow well groundwater samples from 190 mg/L (MW-5A) to 1,600 mg/L (MW-4A). Figure 10 presents an isopleth map for chloride in shallow groundwater. The chloride levels reported in groundwater from shallow wells MW-2A (280 mg/L), MW-9A (600 mg/L) and MW-4A (1,600 mg/L), exceeded the WQCC standard. The chloride level reported in groundwater from well MW-5A (190 mg/L) was below the domestic water supply standard. The area of chloride impact in the shallow portion of the aquifer correlates with the EM-34 data, and indicates that limited lateral dispersion has occurred.

Referring to Figure 11, chloride in groundwater samples from the deep monitor wells ranged from 270 mg/L (MW-8) to12, 000 mg/L (MW-4). Wells MW-2 and MW-4 were re-sampled on April 9, 1998, and reported chloride at 8,200 mg/L (MW-2) and 13,000 mg/L (MW-4). Based on the laboratory tests, chloride levels in groundwater samples from all wells, including the up gradient

11 .

well, MW-3, exceeded the WQCC standard of 250 mg/L. The area of elevated chloride correlates with elevated EM-34 readings. Based on these data, the area of impacted groundwater was defined.

Figures 12 and 13 present isopleth maps of TDS concentrations in the shallow and deep portions of the Ogallala aquifer, respectively. Referring to Figure 12, the TDS concentrations in groundwater from the shallow wells ranged from 740 mg/L (MW-5A) to 2,200 mg/L (MW-9A). Groundwater samples from all wells, except well MW-5A, exceeded the WQCC domestic water supply standard of 1,000 mg/L. The distribution of TDS in the shallow portion of the aquifer correlates with the distribution of chloride. The distribution of TDS in the deep portion of the aquifer (Figure 13) also correlates with the distribution of chloride. Groundwater samples from all wells, including the background well (MW-3) exceeded the WQCC standard for TDS. On April 9, 1998, groundwater samples were collected from wells MW-2 and MW-4, and reported TDS concentrations of 15,000 mg/L (MW-2) and 23,000 mg/L (MW-5). Based on these data, the area of elevated TDS in the deep portion of the aquifer was defined.

Sulfate exceeded the WQCC standard of 600 mg/L in groundwater from deep wells MW-2 990 mg/L), MW-4 (1,500 mg/L), and MW-5 (910 mg/L). The only shallow well reporting sulfate above the WQCC standard was well MW-9A (770 mg/L).

3.4 <u>Water Well Survey</u>

Highlander conducted a review of the New Mexico State Engineer's files to locate water wells within 1-mile of the Site. A total of three (3) wells were identified. The wells are located northwest (up gradient) of the Site. Figure 14 presents a map showing the locations of the water wells. Table 3 presents a summary of the water well drilling and completion details. Appendix F presents the water well records.

Referring to Table 3, Humble Oil Company drilled two of the wells in about 1941. These wells were likely drilled during early development of the oil field and used as a source of water for

12

the drilling rigs. The third well was drilled on behalf of Mr. Fred Cooper, and appears to be a domestic water well. It is unlikely that impacts detected in groundwater at the Site will affect these wells. There were no down gradient receptors identified from the water well search.

4.0 <u>CONCLUSIONS</u>

- On May 18, 1998, groundwater occurred at depths from 130.66 feet BGS (MW-3) to 135.42 feet BGS (MW-2). The elevation of the upper (shallow) portion of the Ogallala aquifer ranged from 3184.59 feet AMSL at well MW-2A (up gradient) to 3179.91 feet AMSL at well MW-9A (down gradient). The elevation of the lower (deeper) portion of the Ogallala aquifer ranged from 3185.56 feet AMSL at well MW-3 (up gradient) to 3179.90 feet AMSL at well MW-9 (down gradient). Groundwater flow in the shallow and deep portions of the Ogallala aquifer was from northwest to southeast at a gradient of approximately 0.003 feet per foot. The groundwater flow direction was consistent with published information.
- 2. The EM-34-40 meter HD survey recorded measurements at background stations A, B and C ranging from 14 to 15 mmhos/m. Measurements greater than two to nearly three times background were recorded in the vicinity of the former pit and central area of the Site, suggesting that that impacts to the unsaturated zone soils have occurred. A broad area of slightly elevated terrain conductivity (i.e., 16 to 22 mmhos/m) readings trends from northwest to southeast across the Site, and generally corresponds with the groundwater flow direction. Several anomalies observed near stations South 300 and East 400, South 200 and East 1100, and from South 700 and East 400 to South 700 and East 800, are possibly associated with below ground and above ground pipelines.
- 3. The 40 meter VD survey recorded measurements approximately 100 times background in the vicinity of the former pit and central area of the Site, suggesting

that the subsurface impact has migrated vertically into the deeper portion of the Ogallala Formation. A broad area of elevated EM-34 readings, approximately two to three times background, trending northwest to southeast, was observed in the general area of elevated readings observed in the HD mode, also suggesting that chloride may have migrated vertically and encountered groundwater. The area of elevated readings generally trends with the direction of groundwater flow. An area of elevated EM-34 readings (greater than 100 mmhos/m) was also observed in the vicinity of well MW-7, and may correspond to the erosional feature observed on the surface of the Triassic-age Chinle Formation. An area of west to east readings from stations South 800 and East 900 to East 1100 are likely associated with above ground or below ground pipelines. The EM-34 VD readings near the southern and eastern margins of the survey area, except anomalies previously mentioned, decrease to near background or less, indicating that that the area of soil and groundwater potentially impacted by chlorides was defined.

- 4. Laboratory results of groundwater sample analysis did not report any concentrations of BTEX, PAH or metals. Chloride, TDS and sulfate were reported in the groundwater above the WQCC domestic water supply standards of 250 mg/L (chloride), 1,000 mg/L (TDS) and 600 mg/L (sulfate). Concentrations of chloride reported in shallow well groundwater samples ranged from 190 mg/L (MW-5A) to 1,600 mg/L (MW-4A), and exceeded the WQCC standard at wells MW-2A (280 mg/L), MW-9A (600 mg/L) and MW-4A (1,600 mg/L). The chloride level reported in groundwater from well MW-5A (190 mg/L) was below the domestic water supply standard.
- 5. Chloride in groundwater samples from the deep monitor wells (MW-1 through MW-10) ranged from 270 mg/L (MW-8) to12, 000 mg/L (MW-4). The WQCC domestic water supply standard for chloride (250 mg/L) was also exceeded at the up gradient well (MW-3). Based on the EM-34 readings and laboratory analysis of groundwater

samples, the area of impacted groundwater in the deep portion of the aquifer was defined.

- 6. The TDS concentrations reported in groundwater samples from the shallow wells ranged from 740 mg/L (MW-5A) to 2,200 mg/L (MW-9A), and exceeded the WQCC domestic water supply standard of 1,000 mg/L in all wells, except well MW-5A. The distribution of TDS in the deep portion of the aquifer is generally consistent with the distribution of chloride in the deep portion of the aquifer. The TDS samples from all wells in the deep portion of the aquifer exceeded the WQCC standard for domestic water supplies. Background well MW-3 reported TDS at 1,500 mg/L.
- 7. A survey of records from the New Mexico State Engineer's file revealed records for three (3) water wells within 1-mile of the Site. The wells are located northwest (up gradient) of the Site and it is unlikely that impacts at the Site will affect the wells. There were no down gradient receptors identified from the water well search.
- Sulfate exceeded the WQCC standard of 600 mg/L in groundwater from deep wells MW-2 990 mg/L), MW-4 (1,500 mg/L), and MW-5 (910 mg/L). Shallow well MW-9A (770 mg/L) also reported sulfate above the WQCC standard.

5.0 PROPOSED REMEDIATION PLAN

Based on the findings, concentrations of chloride, TDS and sulfate in groundwater exceed the WQCC standards of 250 mg/L, 1,000 mg/L and 600 mg/L, respectively. The impact is greatest approximately 100 feet south of the Site. The impact decreases in concentration to near the WQCC standards approximately 700 feet south to southeast (down gradient) of the Site. Based on a review of records from the New Mexico State Engineer's office, there are no identifiable groundwater receptors south and southeast of the Site. Texaco proposes to implement a groundwater recovery

program to reduce the levels of chloride, TDS and sulfate in the groundwater.

The groundwater recovery system will consist of approximately three (3) recovery wells. However, the final determination regarding the number of recovery wells will be based on a pumping test, which will be performed following installation of the initial well. The initial well will be installed in the area of greatest concentration, near wells MW-4 and MW-4A. The proposed recovery well location is shown on Figure 15. The recovery well will be installed in a borehole drilled to the top of the Triassic-age Chinle Formation. The well will be screened from the bottom of the borehole to approximately five (5) feet above groundwater. The well will be constructed with PVC casing and screen of sufficient diameter for installation of a pitless adapter and electric submersible pump. The well will be constructed in accordance with State of New Mexico water well construction standards. The electric submersible pump will be equipped with an amperage (Coyote) controller, which has an adjustable timer for establishing pumping and resting cycles. The timer will be adjusted to allow sufficient recharge to occur in the aquifer between pumping cycles.

Following installation of the initial recovery well, Highlander will perform a pumping test of sufficient duration (i.e., 12 to 24 hours) to obtain data to perform a computer model for purposes of establishing capture zones. Based on the computer model results, a final determination will be made as to the number and locations of recovery wells needed to obtain capture of the contaminant plume. The recovery wells will be constructed in accordance with the procedures presented above.

Recovered fluid will be conveyed from the well(s) to the Cooper-Jal Unit South Injection Station for placement into the injection stream. The fluids will be transferred through suitable diameter HDPE piping, which will be placed underground or aboveground. The piping will be pressure tested to 3 pounds per square inch (psi) prior to system start-up. A flow meter will be installed at each well to record the volume of fluid recovered.

The recovery well will be monitored weekly during operation and the volume of recovered groundwater will be recorded at the flow meter. Groundwater samples will be collected every six

H:\Oil-Gas\996\Cooper-Jal Report

16

(6) months (semi-annually) from all wells, and analyzed for chloride, TDS and sulfate. During each semi-annual monitoring event, depth-to-groundwater measurements will be obtained from the recovery well and monitor wells. These measurements will be used to prepare a groundwater potentiometric map to evaluate the performance of the groundwater recovery system, and determine if pumping from the recovery well has decreased the concentration of chloride in groundwater. An annual report will be prepared and submitted to the OCD during April of each calendar year. The report will summarize the groundwater volumes recovered, laboratory analysis and potentiometric maps. Based on the recovery system performance evaluation, recommendations will be made to modify the recovery system (i.e., installation of additional recovery wells), continue or discontinue the current recovery program.

17

References

Nicholson, Alexander, Jr. and Alfred Clebsch, Jr., 1961, Geology and Ground-water Conditions in Southern Lea County, New Mexico; New Mexico State Bureau of Mines and Mineral Resources, Ground-water Report 6, 123 p.

Turner, M.T., et. al., 1974, Soil Survey of Lea County, New Mexico; U.S. Department of Agriculture, Soil Conservation Service, 89 p.

Ronit Nativ, 1988, Hydrogeology and Hydrogeochemistry of the Ogallala Aquifer, Southern High Plains, Texas Panhandle and Eastern New Mexico; The University of Texas at Austin, Bureau of Economic Geology, Report of Investigation No. 177, 64 p.

TABLES

Summary of Monitor Well Drilling and Completion Details, Texaco Exploration and Production Inc., Cooper Jal Unit South Injection Station, Lea County, New Mexico Table 1:

Ĩ		Drilled	Ground	Top of Casing	Screen	Depth-to Groundwater
Monitor	Date	Depth	Elevation	Elevation	Interval	feet BGS
Well	Drilled	feet BGS	feet AMSL	feet AMSL	feet BGS	5/18/98
MW-1	9/10/97	173	3320.17	3320.00	153-173	135-22
MW-2	2/12/98	173	3319.86	3319.40	163-173	135-46
*MW-2A	2/13/98	145	3319.86	3319.39	130-145	135-27
MW-3	2/9/98	171	3316.22	3318.21	161-171	130-66
MW-4	2/10/98	171	3317.64	3319.74	161-171	133-91
*MW-4A	2/11/98	143	3317.47	3319.58	128-143	133-57
MW-5	2/11/98	171	3318.95	3321.10	161-171	135-27
*MW-5A	2/12/98	141	3318.96	3321.07	126-141	135-09
MW-6	2/13/98	170	3319.13	3321.15	120-170	134-71
7-WM	5/14/98	166	3316.35	3318.39	151-166	134-15
MW-8	5/12/98	170	3314.95	3317.14	155-170	132-17
MW-9	5/12/98	164	3310.79	3312.79	149-164	130-89
*MW-9A	5/14/98	142	3310.44	3312.56	127-142	130-53
MW-10	5/13/98	166	3317.26	3319.30	151-166	135-14
Notes:	All wells drille	ed by Scarborc	ough Drilling Inc.,	Lamesa, Texas, and o	completed with 2	All wells drilled by Scarborough Drilling Inc., Lamesa, Texas, and completed with 2" Schedule 40 PVC scree

and casing (screw thread)

Denotes shallow well location Denotes depth in feet below ground surface 1. *: 2. BGS: 3. AMSL:

Denotes elevation in feet above mean sea level

Table 2: Summary of Inorganic Analysis of Groundwater Samples from Monitor Wells,Texaco Exploration and Production, Inc., Cooper-Jal Unit South Injection StationLea County, New Mexico

					<u> </u>										_		_	_	=
Hardness		3,900	2,850	3,660	4,800	508	705	7,870	7,800	1,710	5,430	362	631	810	720	770	1,240	780	
Sodium	mg/L	4,300	2,900	2,650	3,430	215	237	5,300	5,400	620	2,400	117	205	165	170	200	334	190	
Calcium	mg/L	520	285	840	1,100	144	200	1,700	1,740	470	1,400	107	180	214	190	207	338	211	
Magnesium	mg/L	630	520	380	490	36	50	880	840	130	470	23	44	99	60	61	96	62	
Potassium	mg/L	50	116	30	29	9	11	48	42	11	31	3.5	6.2	13	12	12	12	11	
Alkalinity	g/L as CaCo	280	280	210	290	190	190	230	240	180	180	170 -	200	230	200	190	280	240	
Sulfate	mg/L	1,100	570	760	066	330	406	1,300	1,500	410	910	180	400	340	390	470	770	450	
Chloride	mg/L	8,500	5,600	5,900	8,200	280	452	12,000	13,000	1,600	6,600	190	260	430	270	350	600	360	
TDS	mg/L	15,000	9,300	9,400	15,000	1,200	1,500	22,000	23,000	3,300	12,000	740	1,200	1,200	1,200	1,300	2,200	1,400	
Hd	S.U.	7.1	7.4	7.4	7	7.9	7.9	7.1	6.7	7.6	7.2	6.1	7.7	7.5	7.4	7.6	7.3	7.3	
Sample	Date	09/16/97	02/25/98	02/25/98	04/09/98	02/26/98	02/27/98	02/27/98	04/09/98	02/27/98	02/26/98	02/26/98	02/26/98	05/14/98	05/13/98	05/14/98	05/14/98	05/14/98	
Monitor	Well	MW-1		MW-2		MW-2A	MW-3	MW-4		MW-4A	MW-5	MW-5A	9-MM	7-WM	8-WM	6-WW	MW-9A	MW-10	

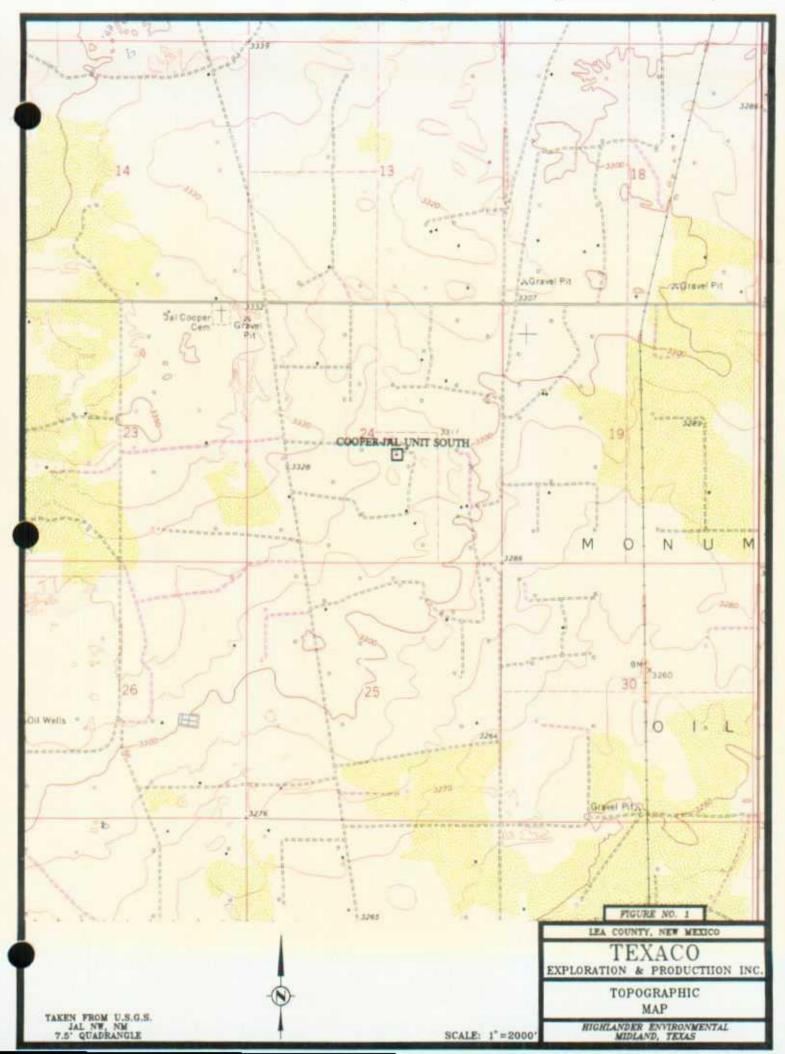
Notes: All analysis performed by Trace Analysis, Inc., Lubbock, Texas

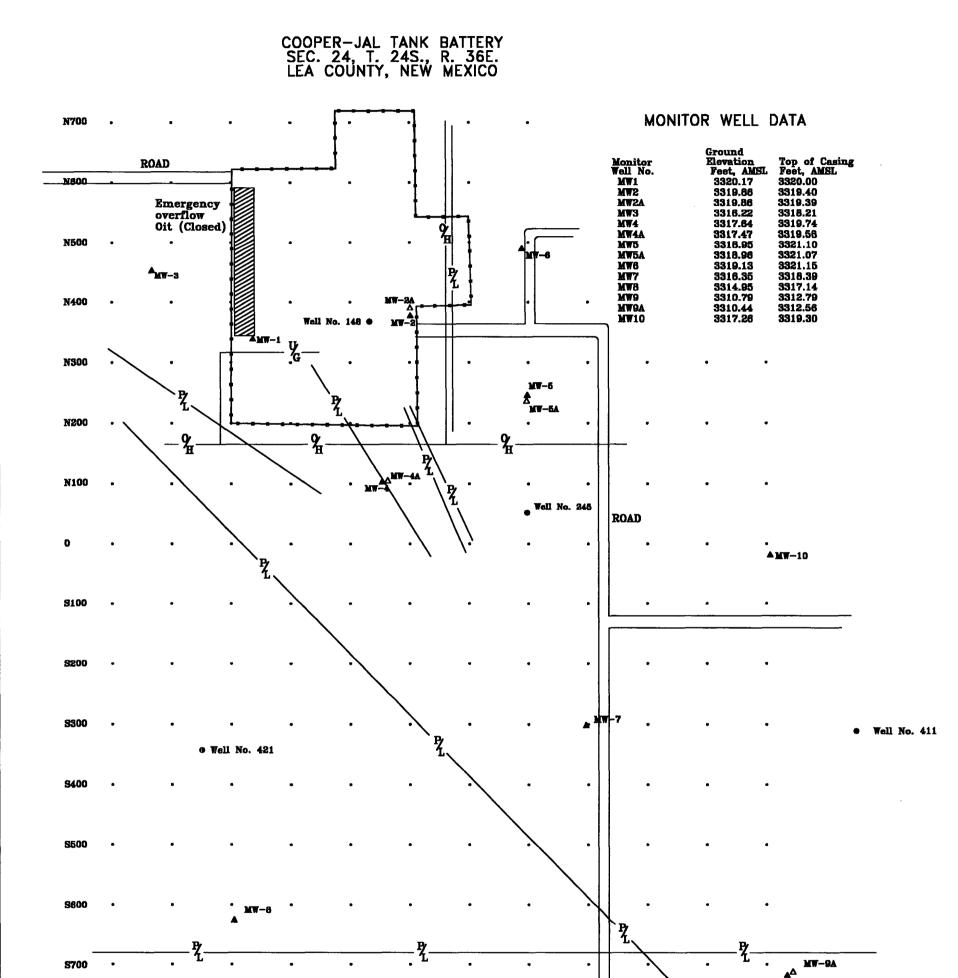
S.U.: Denotes Standard Units
 mg/L: Denotes concentration in milligrams per liter

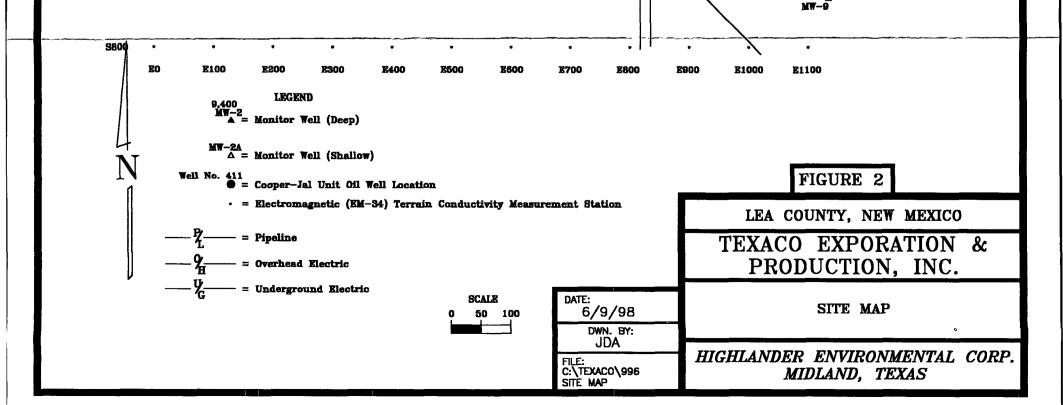
Table 3:Summary of Water Well Drilling and Completion DetailsTexaco Exploration and Production, Inc.,Cooper-Jal Unit South Injection Station,Lea County, New Mexico

Highlander Well Number	Owner	Date Drilled	Location	Drilled, Depth, feet BGS	Screen Interval feet BGS	Drilled, Depth, Screen Interval Depth-to-Groundwater feet BGS feet BGS feet BGS
-	Humble Oil Co.	Sept. 1941	SE/4, NW/4, SW/4	160	Unknown	Unknown
	E.E. Hunter Well #1	о О	Sec. 13, T-24-S, R-36-E			
2	Humble Oil Co.	Unknown	NZE/4, SW/4, SW/4	160	Unknown	Unknown
	E.E. Humble Well #2	Ю	Sec. 13, T-24-S, R-36-E			
ю	Fred B. Cooper	arch 7-10, 19	NE/4, NE/4	180	159-175	Unknown
	Jal, New Mexico	S	Sec. 23, T-24-S, R-36-E			

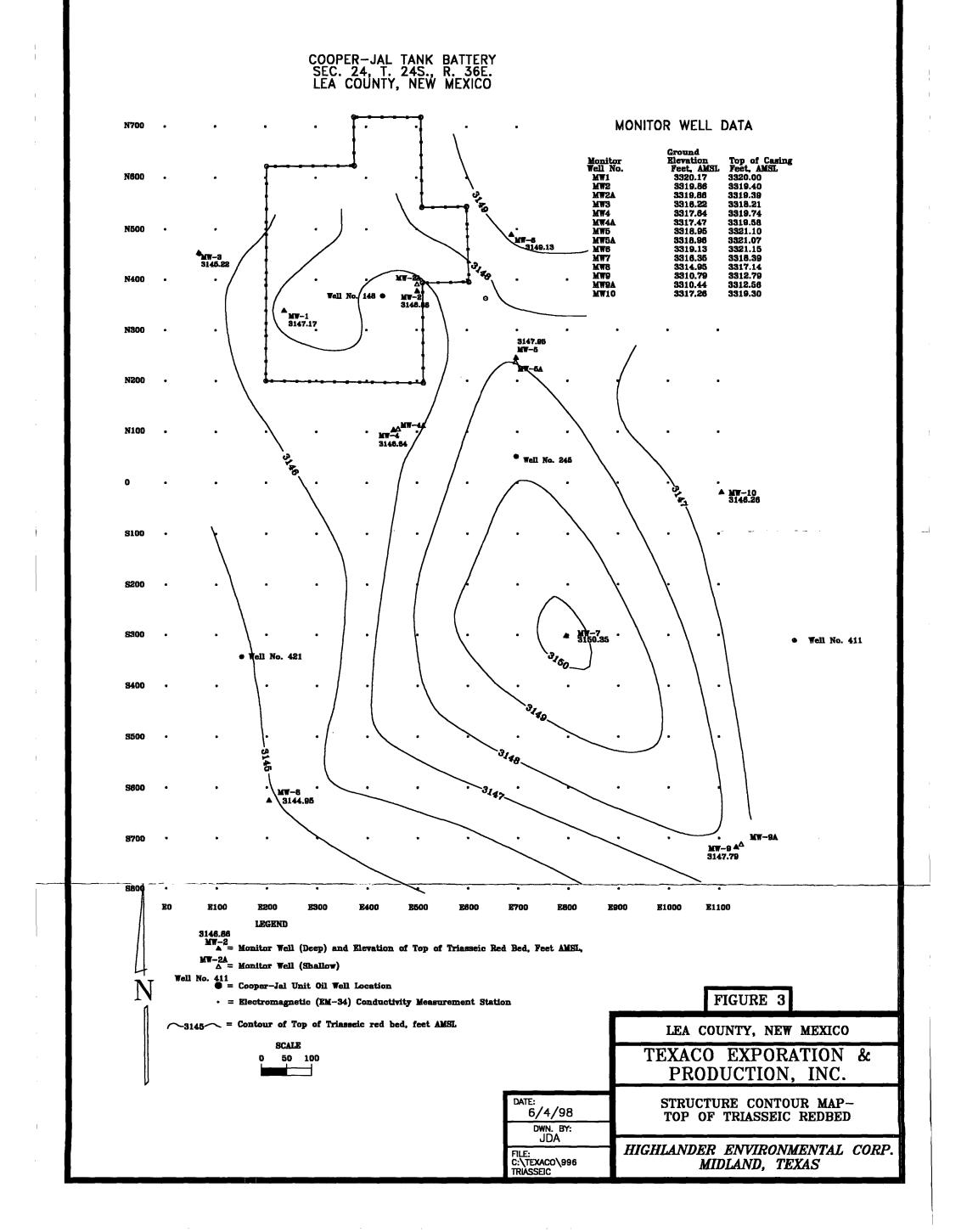
Information obtained from New Mexico State Engineer, Roswell, New Mexico Note:

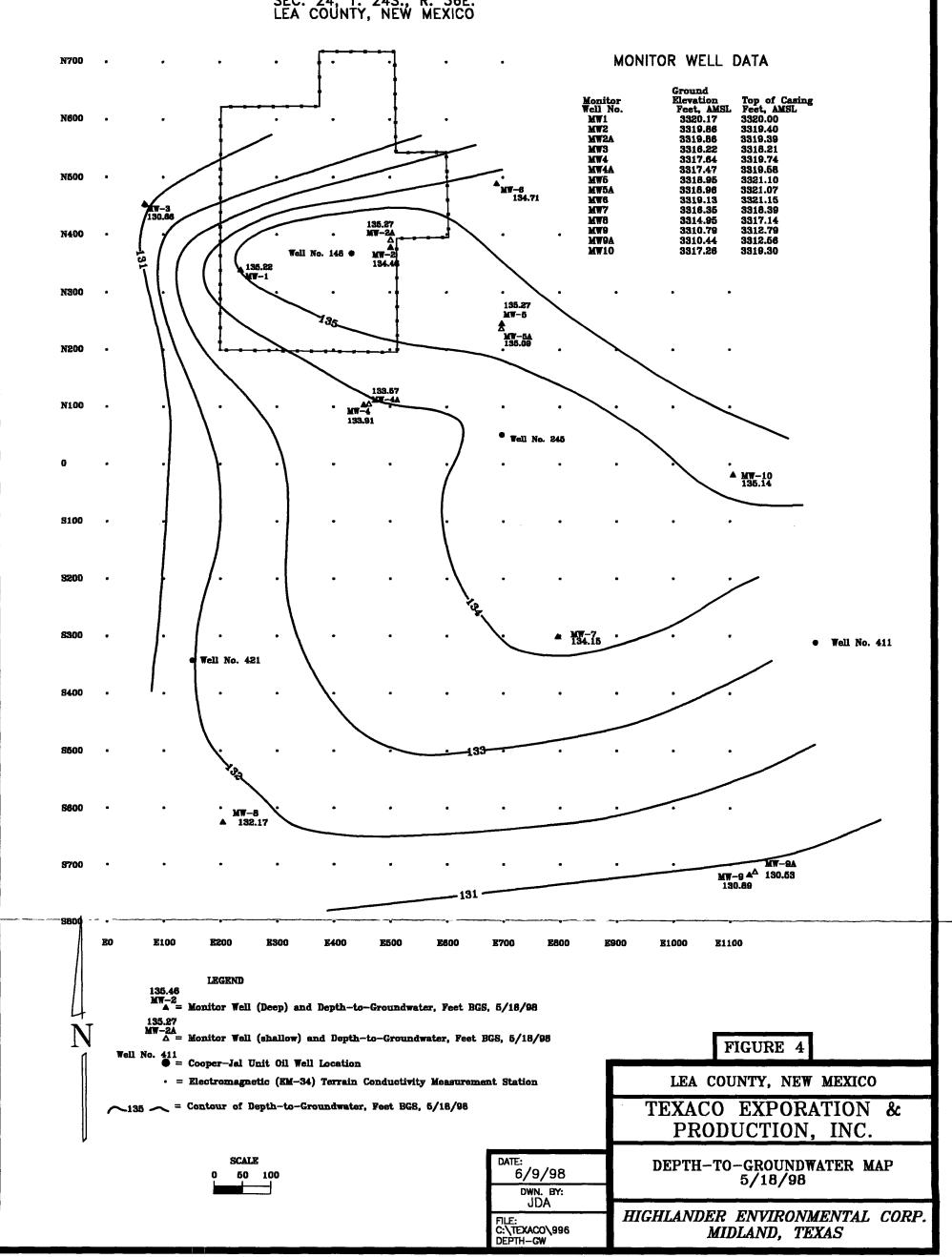

1. BGS: Denotes depth in feet below ground surface

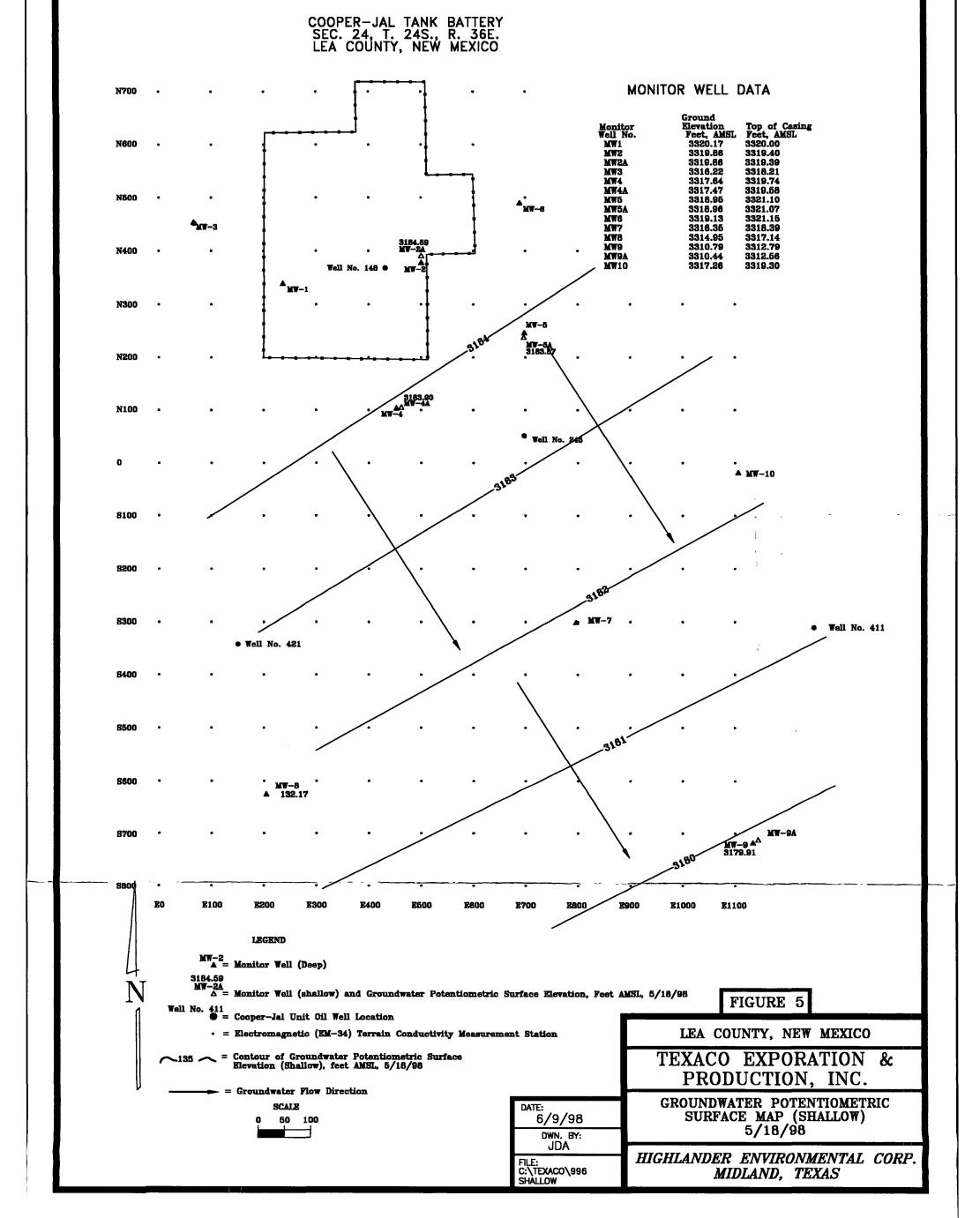

FIGURES


H:\Oil-Gas\996\Cooper-Jal Report

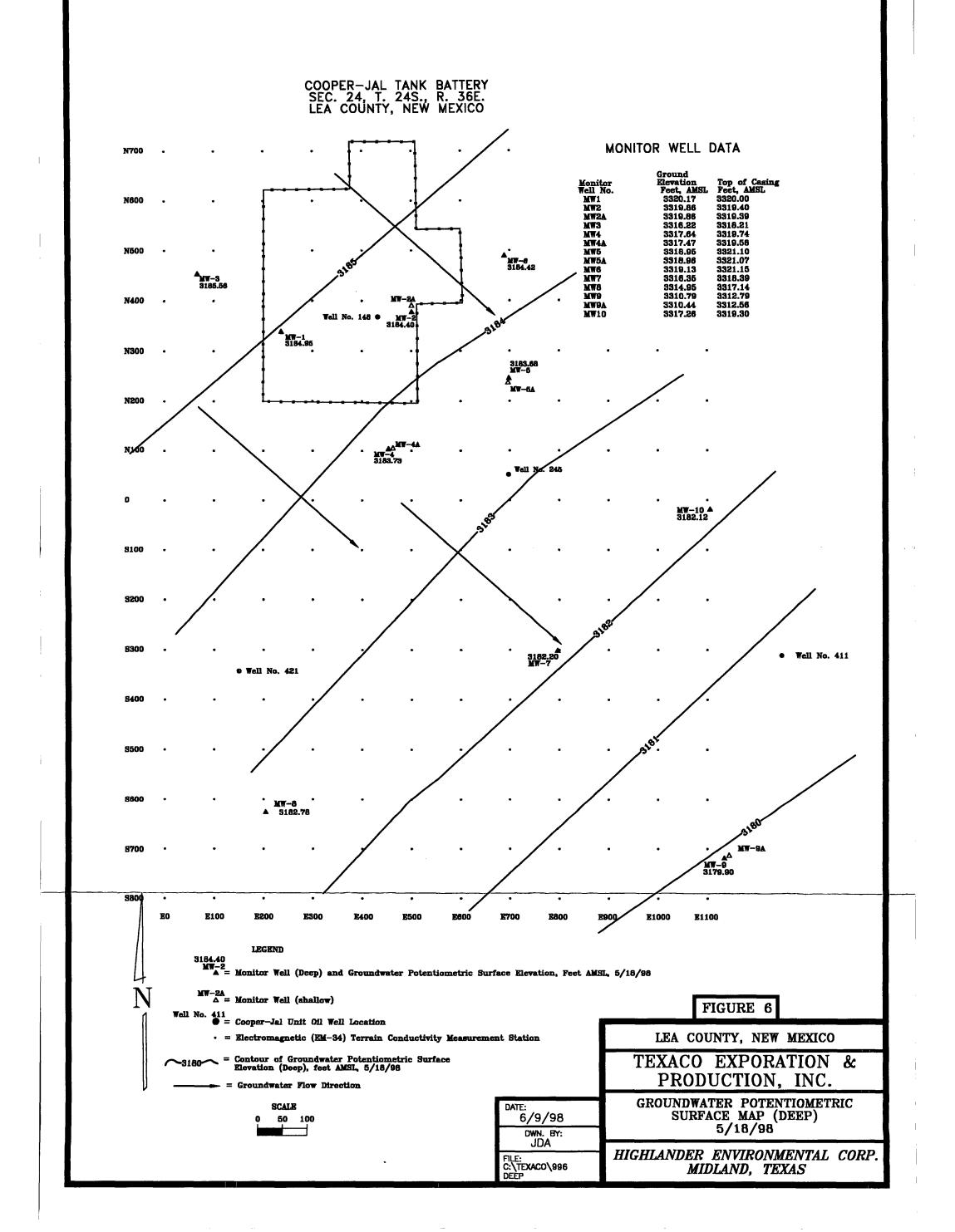
.

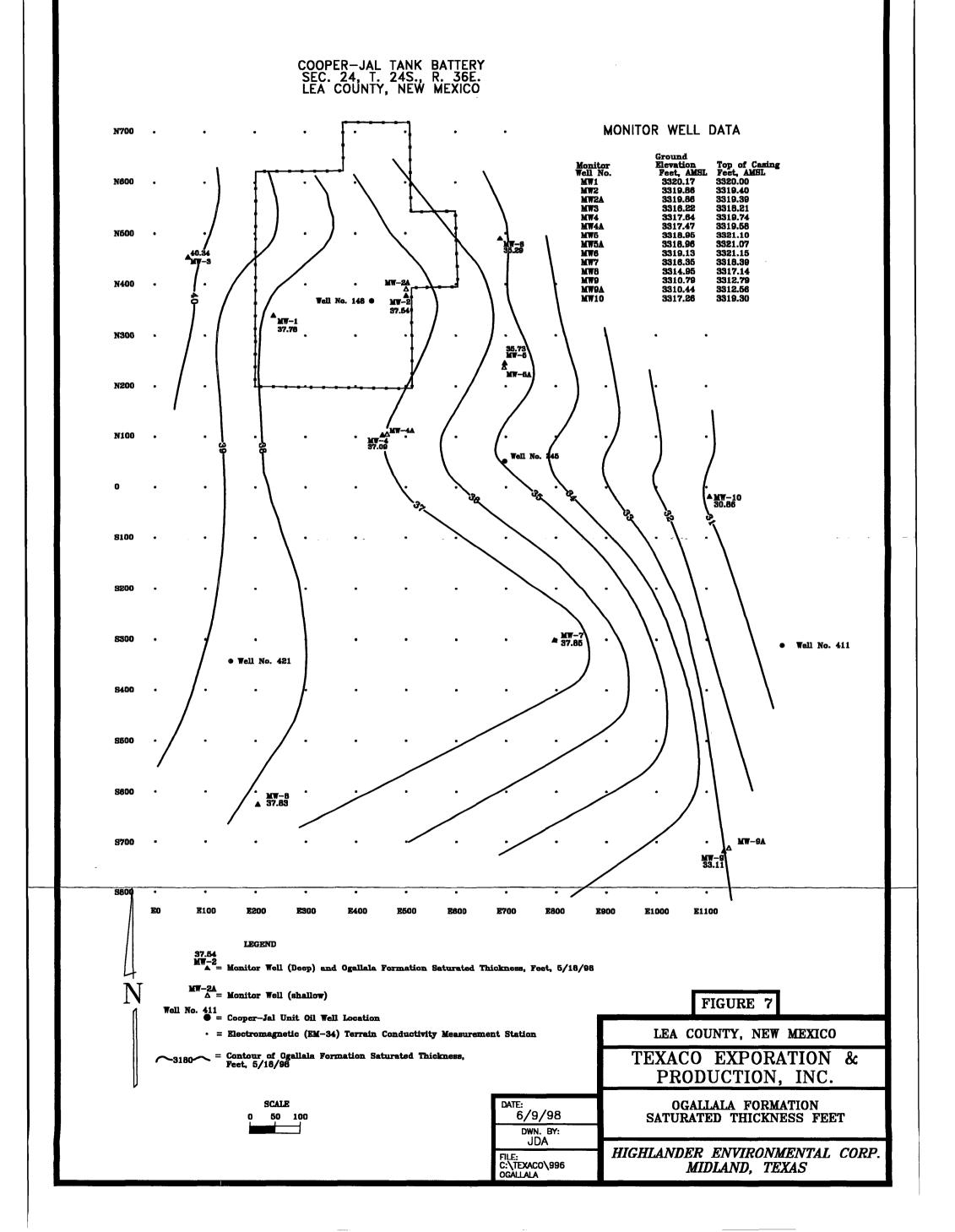




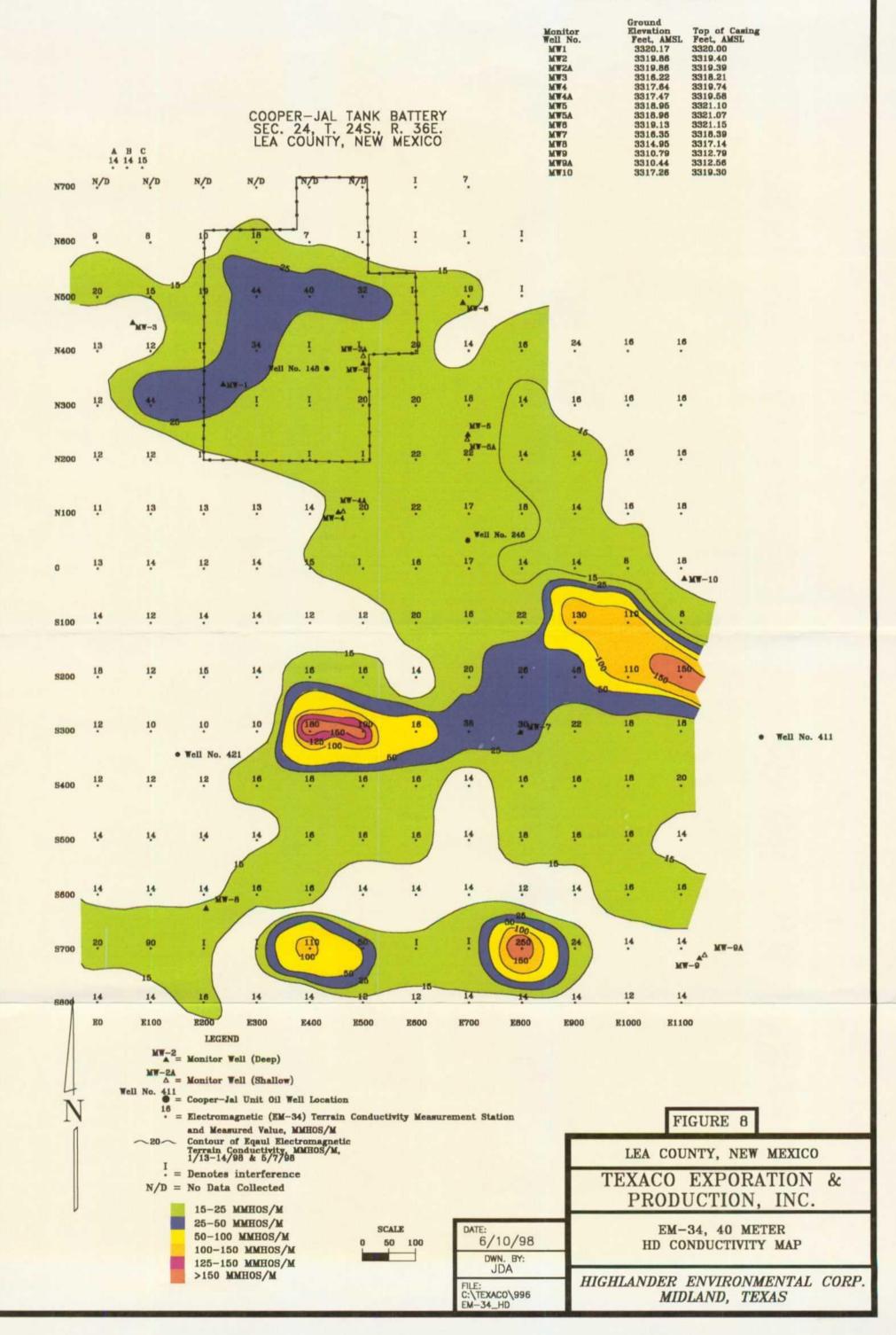


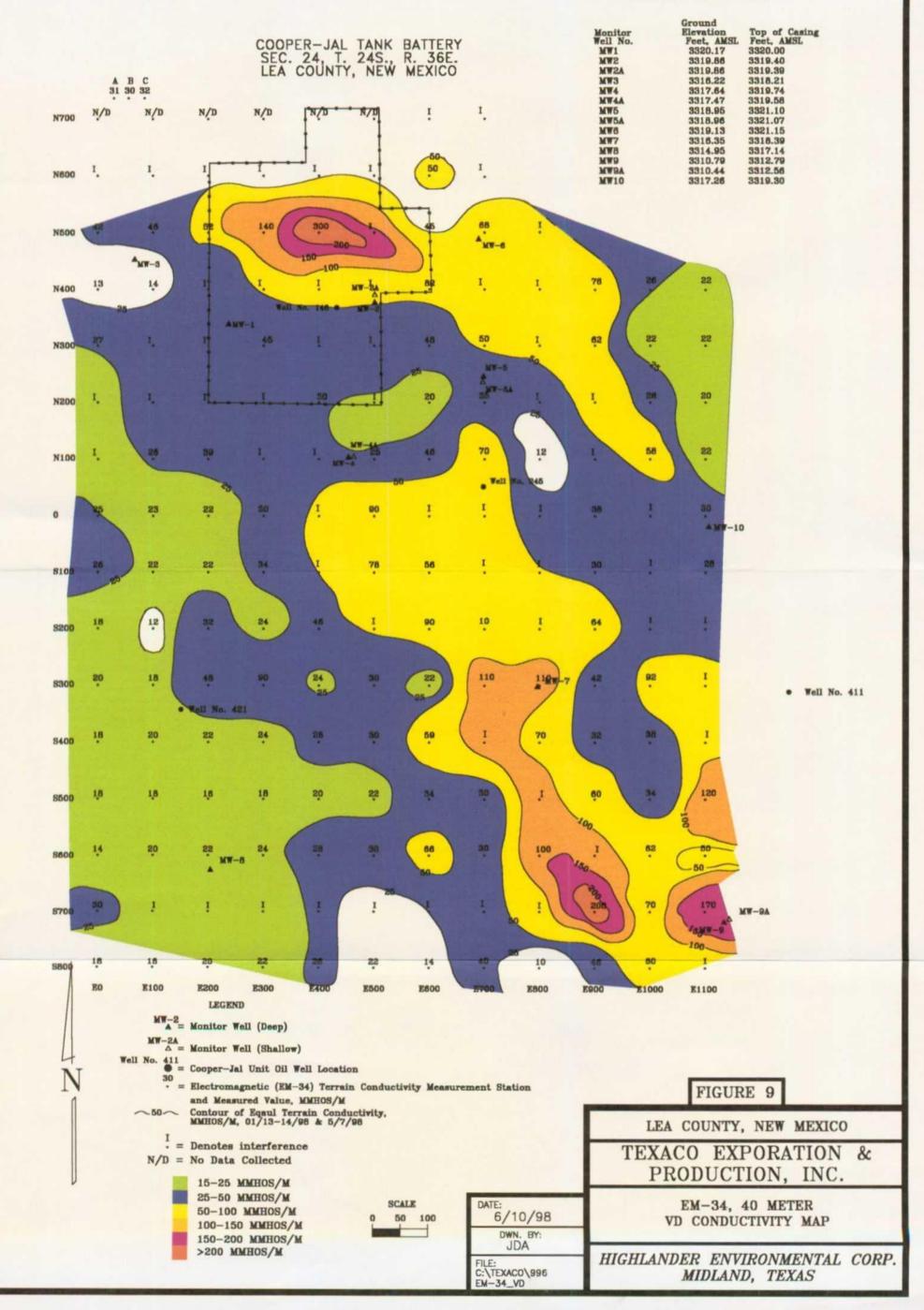
₹♥

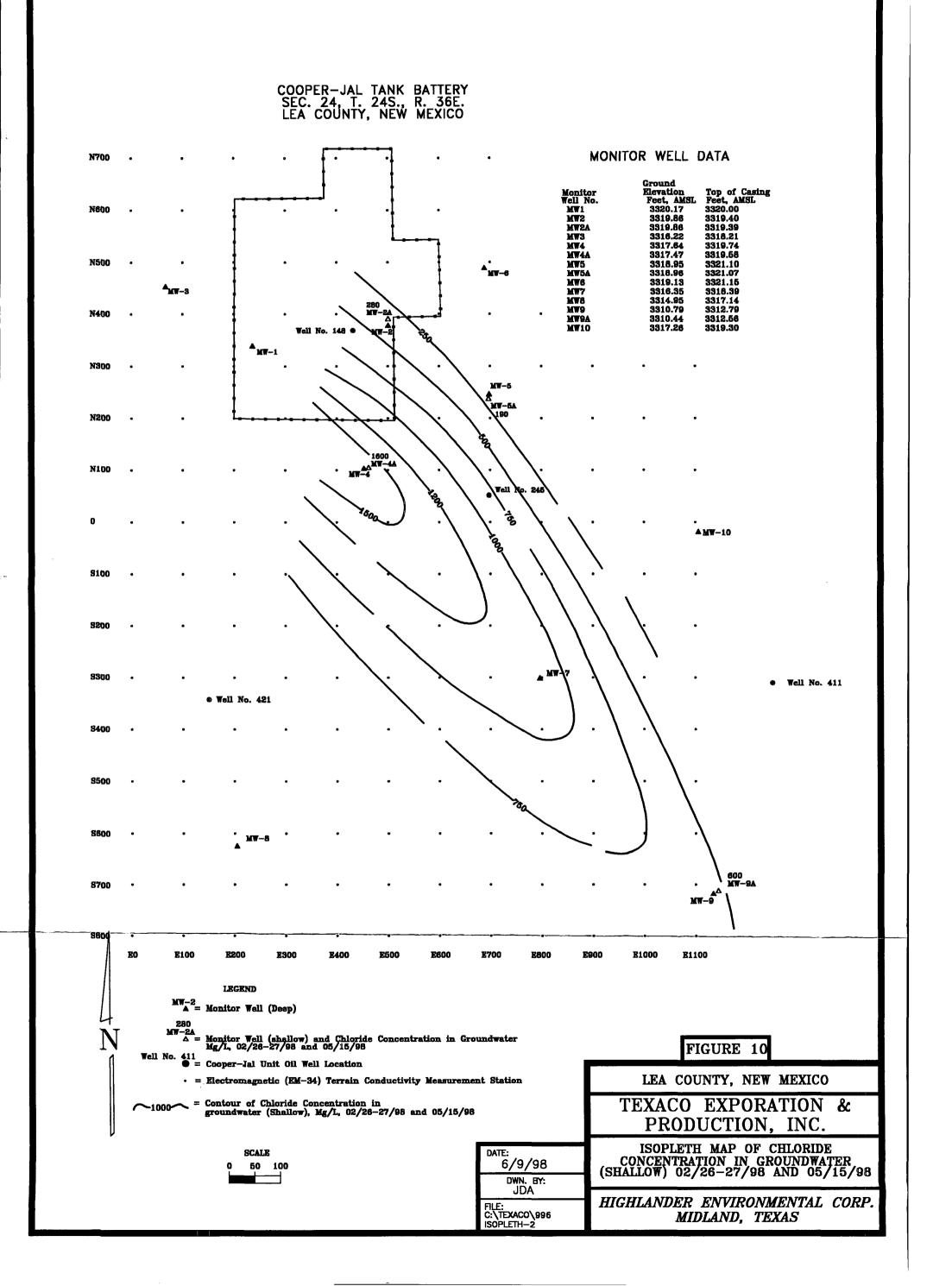


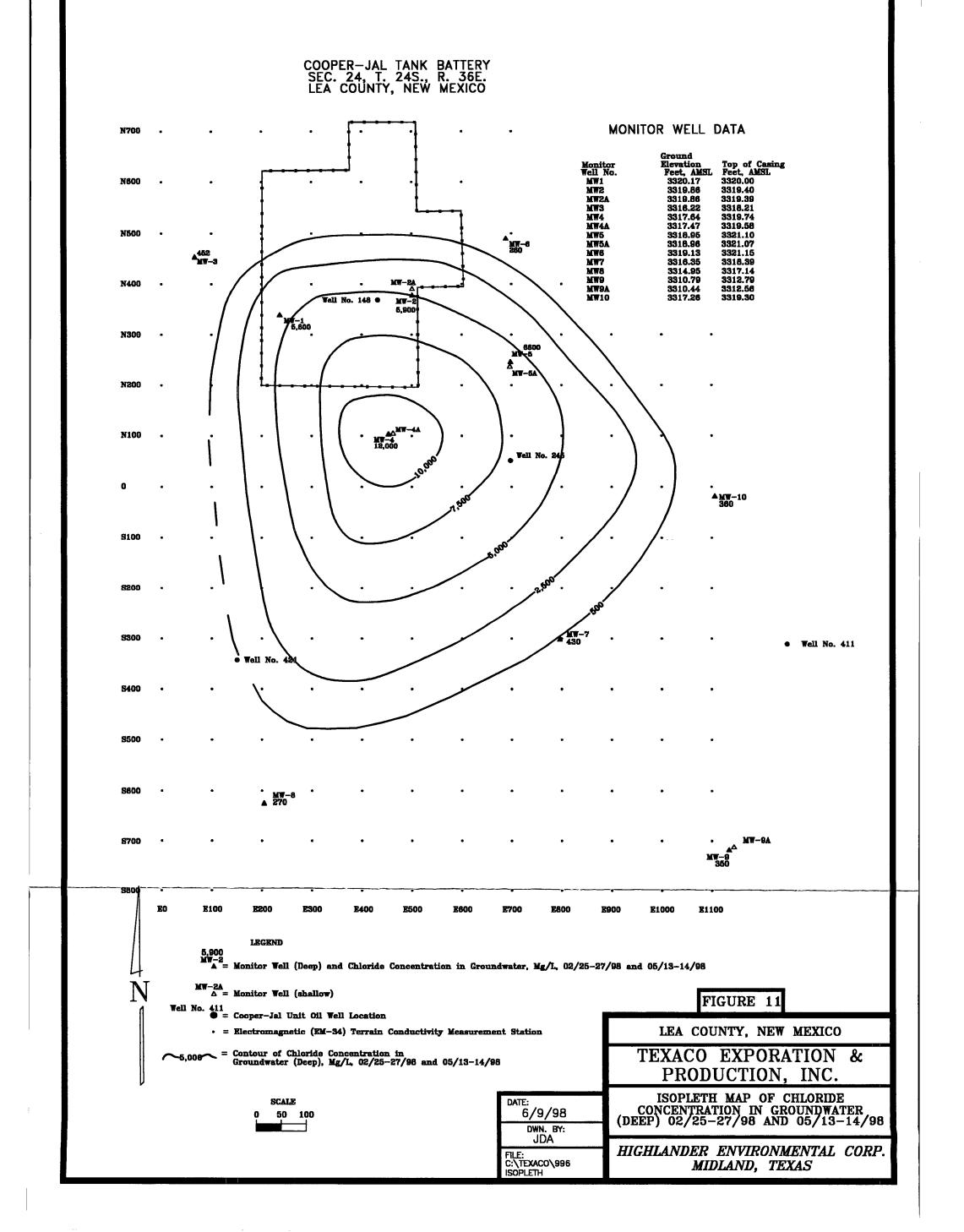


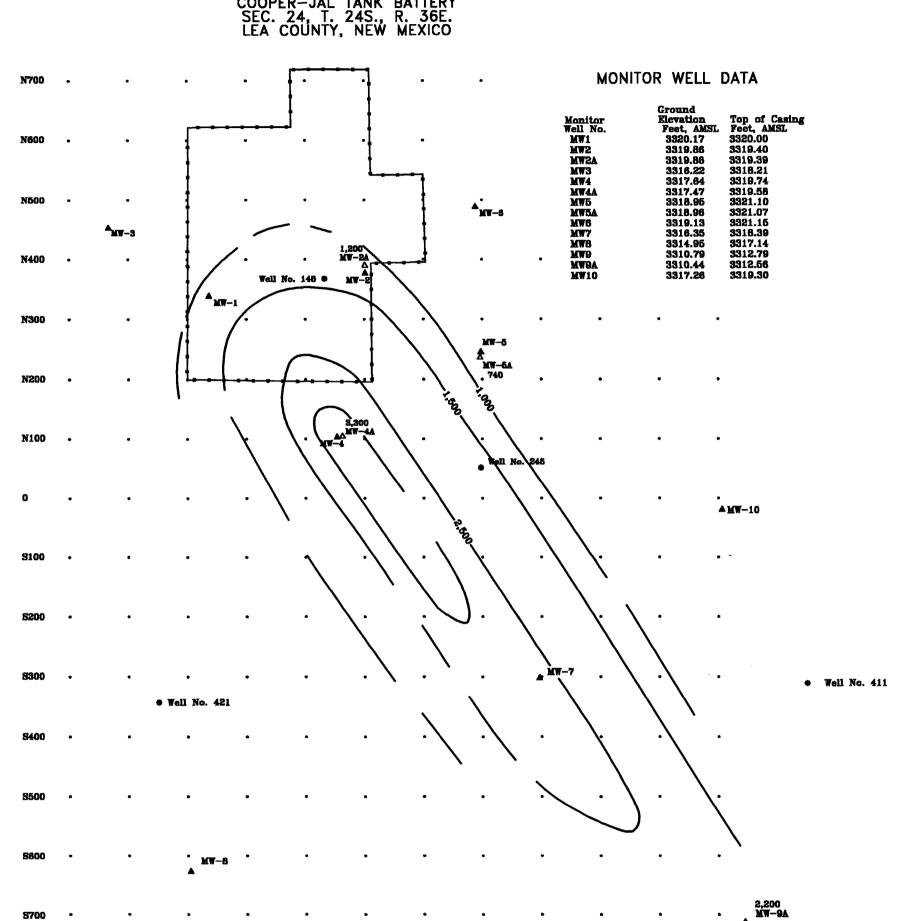
COOPER-JAL TANK BATTERY SEC. 24, T. 24S., R. 36E. LEA COUNTY, NEW MEXICO

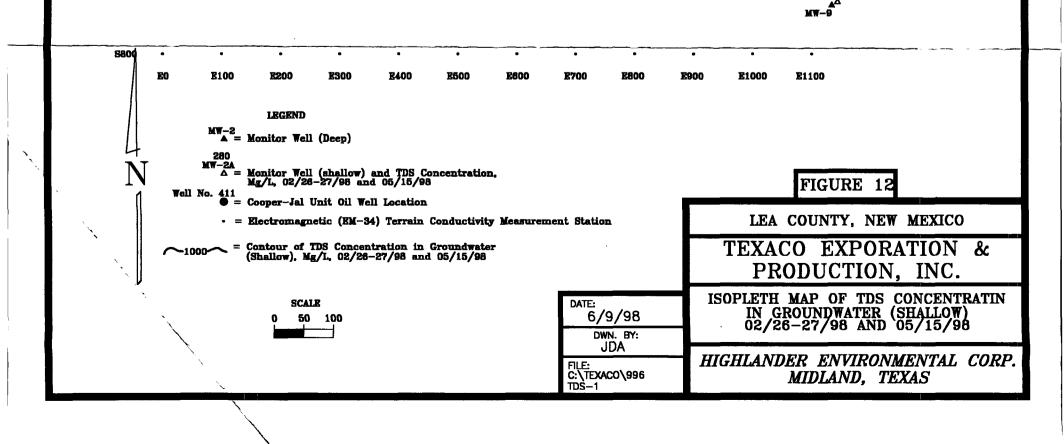


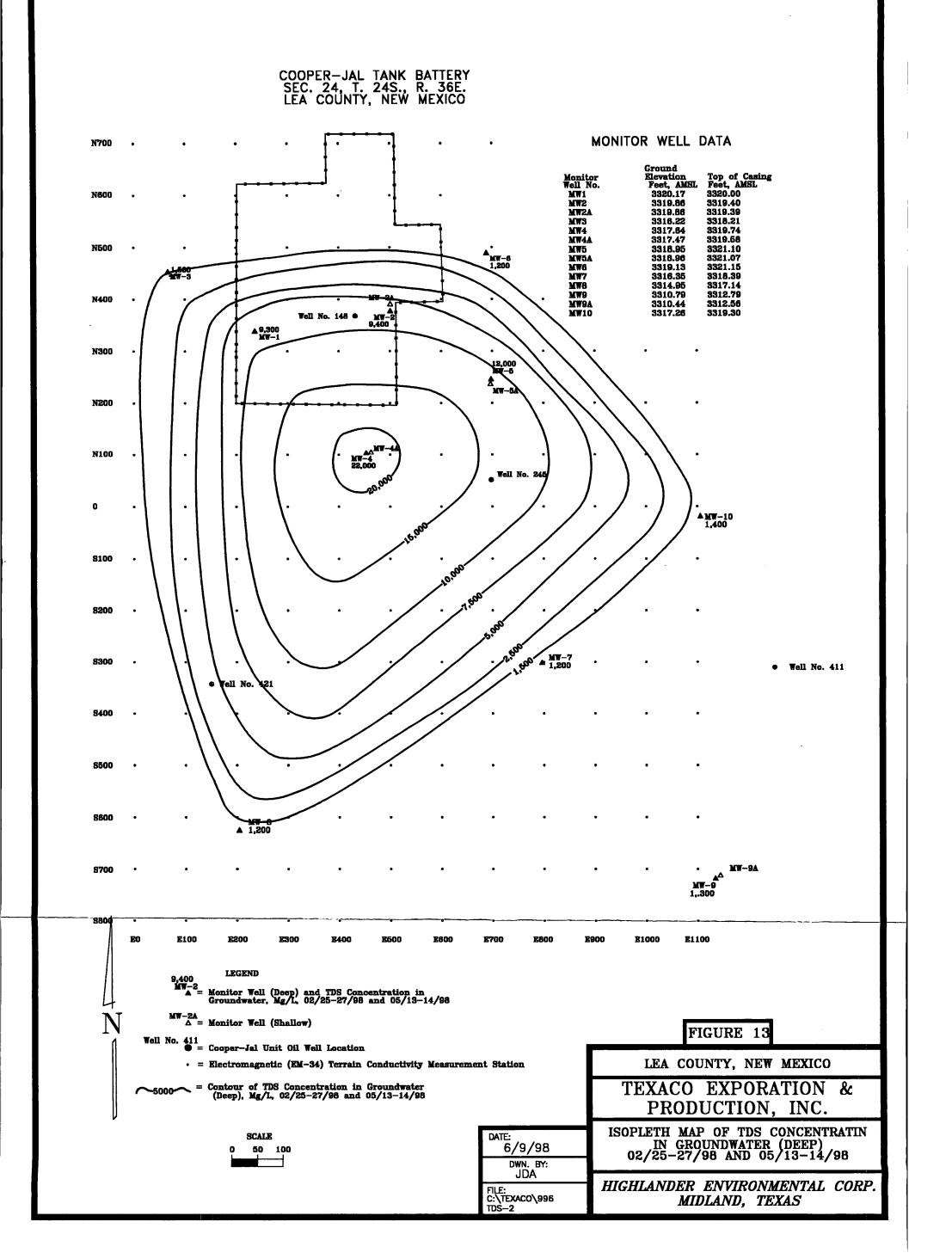

ć

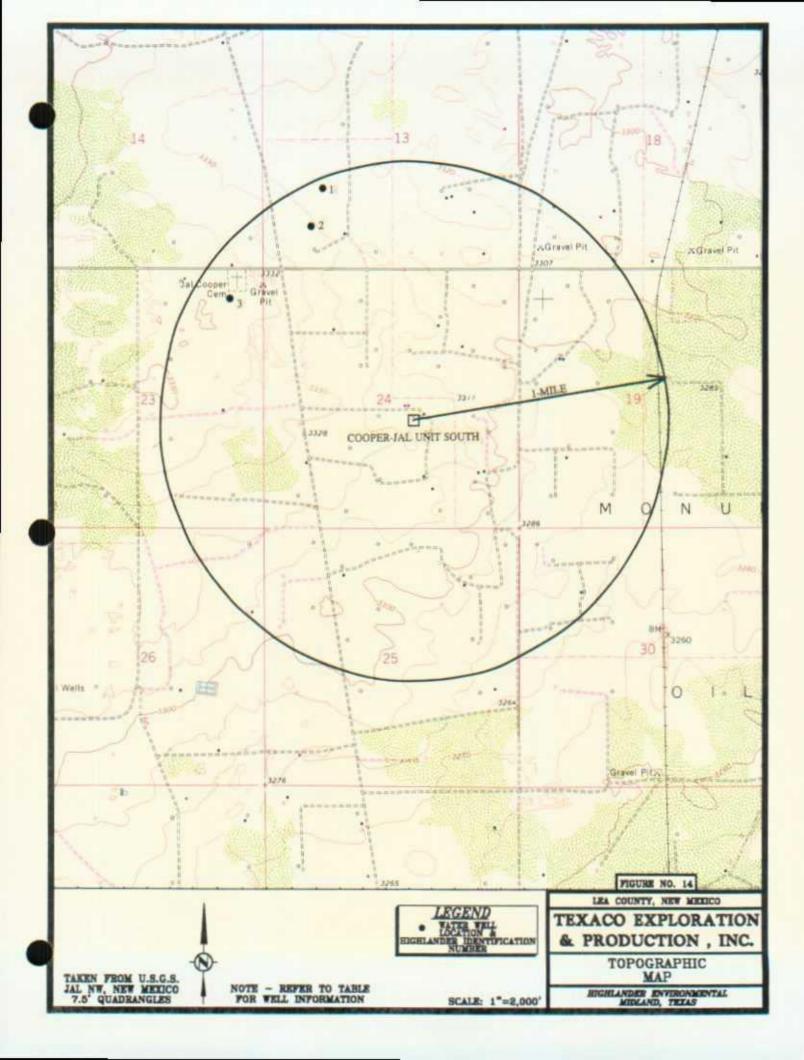


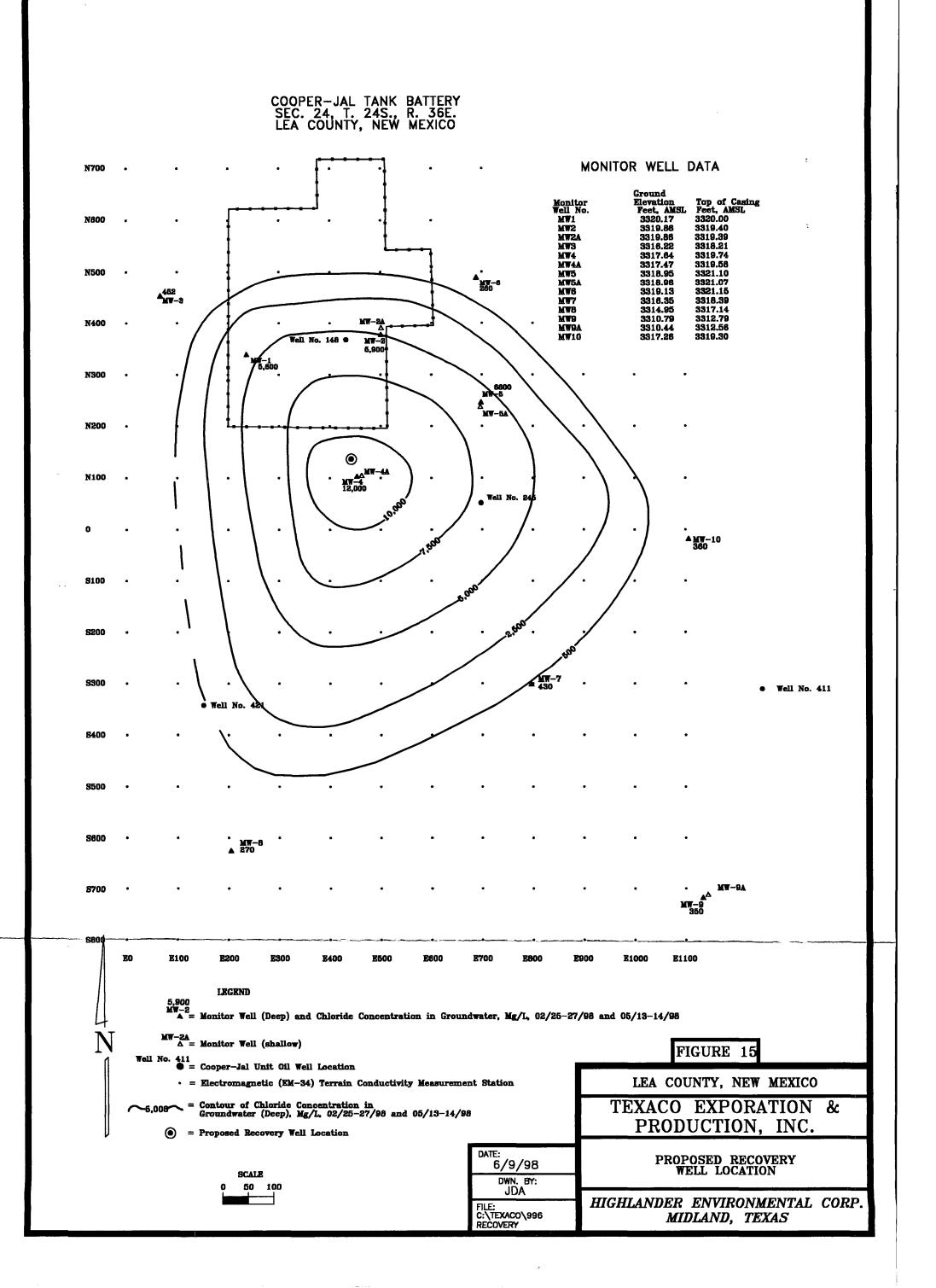

MONITOR WELL DATA




MONITOR WELL DATA







COOPER-JAL TANK BATTERY SEC. 24, T. 24S., R. 36E. LEA COUNTY, NEW MEXICO

APPENDICES

H:\Oil-Gas\996\Cooper-Jal Report

APPENDIX A

Correspondence

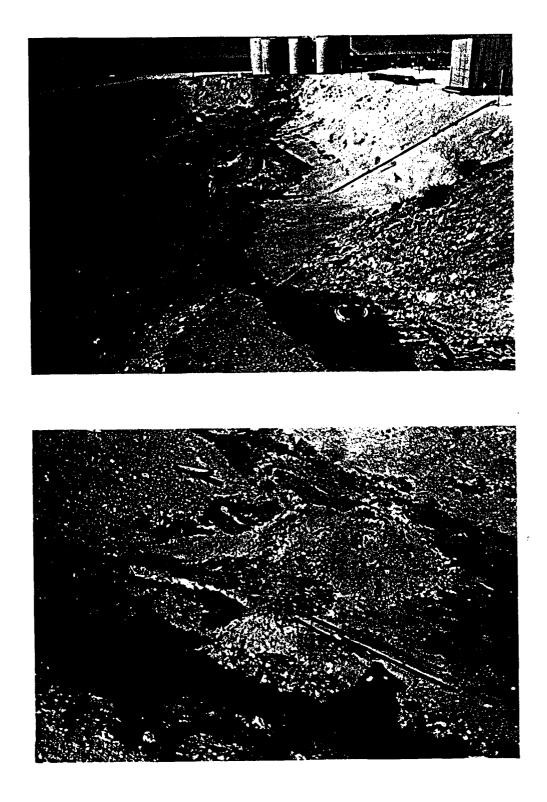
H:\Oil-Gas\996\Cooper-Jal Report

DATE: October 14, 1993

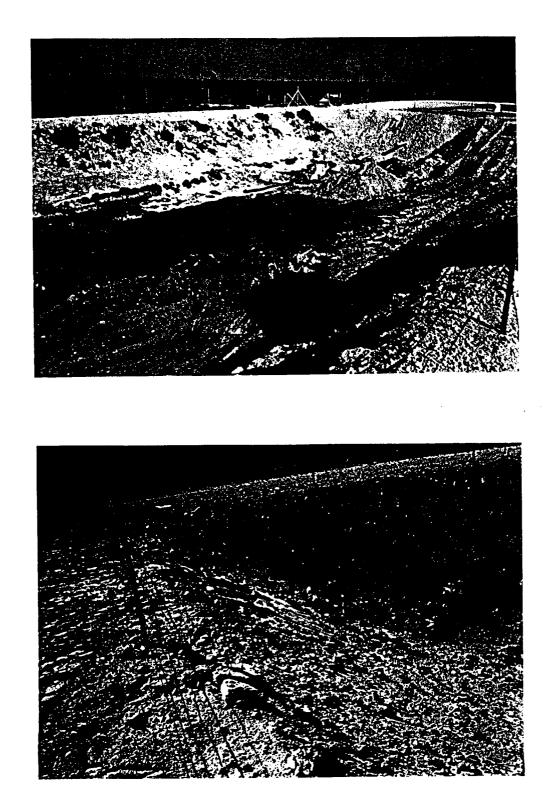
TO: Texaco, USA P.O. Box 730 Hobbs, New Mexico 88241-0730

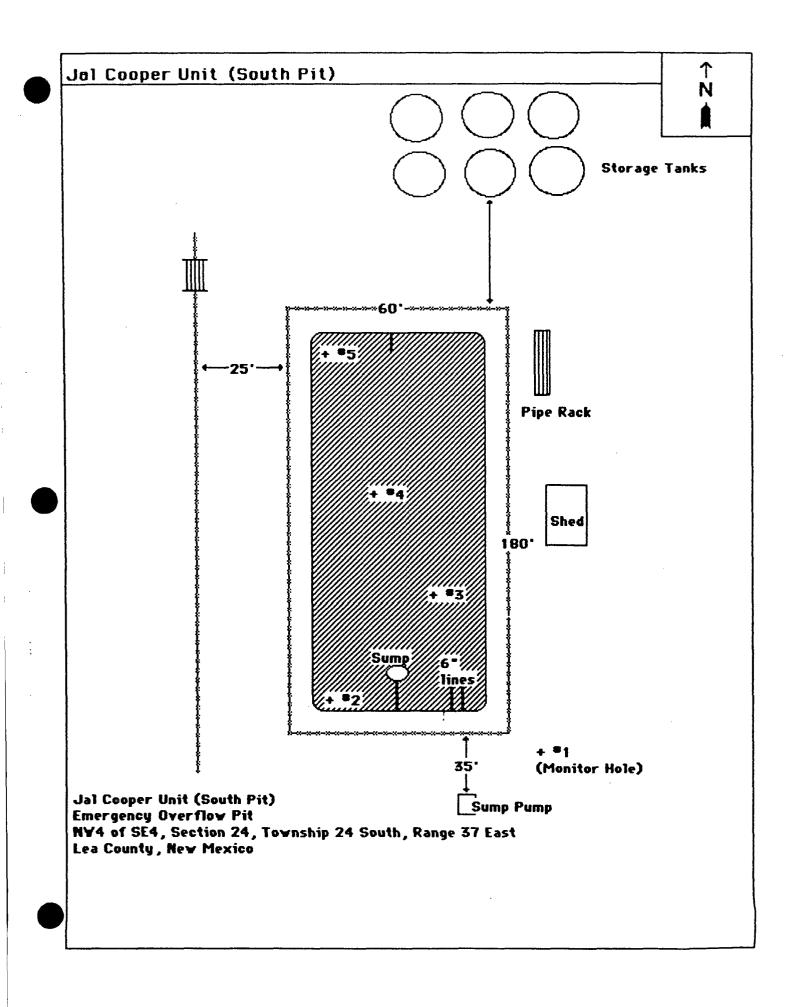
FROM: Eddie Slavens and Allen Hodge ENVIRONMENTAL SPILL CONTROL, INC.

ATTN: Mr. Larry Lehman


RE: Site Assessment on Jal Cooper Unit South Pit

The pit is an inground, unlined earthen pit that is basically dry that has the approximate dimensions of 50 feet by 170 feet. There is approximately 8,500 square feet of surface area in the pit and it is 12 feet from grade to the surface of the pit.


The monitor hole (number 1) was drilled approximately 20 feet out from the southeast corner of the main pit to a depth of 100 feet to check for contamination and the presence of groundwater. At the surface, analyses indicated 61 parts per million (ppm) of Total Petroleum Hydrocarbons (TPH) with 11 ppm of TPH at 100 feet. The next hole (number 2) was drilled in the southwest corner of the pit to a depth of 30 feet to check for contamination. At the surface, analyses indicated 64 ppm of TPH at 46 ppm of TPH at 10 feet. We further observed 20 ppm of TPH at 20 feet and 16 ppm of TPH at 30 feet. The next hole (number 3) was drilled in the south-eastern half of the pit to a depth of 15 feet. At the surface analyses indicated 14,890 ppm of TPH with 1,970 ppm at 10 feet and 86 ppm at 15 feet.


The next hole (number 4) was drilled in the center of the pit to a depth of 15 feet. At the surface, we observed 10,780 ppm of TPH and 1,740 ppm at 10 feet with 83 ppm of TPH at 15 feet. The last hole (number 5) was drilled in the northwest corner to a depth of 15 feet. At the surface, analyses indicated 9,380 ppm of TPH and 1,510 ppm at 10 feet with 79 ppm of TPH at 15 feet. Excavating the pit to 10 feet to remove the hydrocarbon contamination within Oil Conservation Division (OCD) guidelines, there is approximately 6,296 cubic yards of total material that would have to be excavated due to the degree of slope required for safety purposes. The Benzene, Toluene, Ethylbenzene, Xylene (BTEX) samples taken on the pit were all within closure guidelines for the OCD.

Jal Cooper South NW4 of SE4, Section 24, T24S, R37E Lea County, New Mexico

Jal Cooper South NW4 of SE4, Section 24, T24S, R37E Lea County, New Mexico

ENVIRONMENTAL SPILL CONTROL, INC.

6210 Lovington Highway P.O. Box 5890 Hobbs, NM 88240 (505) 392-6167 (800) 390-6167

SOIL ANALYSIS REPORT

DATE: 10/01/93 CLIENT: TEXACO SUPERVISOR: A. HODGE FACILITY: JAL COOPER

1	TPH		DEPTH	LOCATION
SAMPLE NO. 1:	64	PPM	SURFACE	SOUTHWEST END #2
SAMPLE NO. 2:	46	PPM	10"	SOUTHWEST END #2
SAMPLE NO. 3:	20	PPM	20'	SOUTHWEST END #2
SAMPLE NO. 4:	16	PPM	30'	SOUTHWEST END #2
SAMPLE NO. 5:	10,780	PPM	SURFACE	CENTER #4
SAMPLE NO. 6:	1,740	PPM	10'	CENTER #4
SAMPLE NO. 7:	83	PPM	15'	CENTER #4
SAMPLE NO. 8:	9,380	PPM	SURFACE	NORTHWEST CORNER #5
SAMPLE NO. 9:	1,510	PPM	10'	NORTHWEST CORNER #5
SAMPLE NO. 10:	79	PPM	15'	NORTHWEST CORNER #5
SAMPLE NO. 11:		PPM		· ·
SAMPLE NO. 12:		PPM		
SAMPLE NO. 13:		PPM	!	

COMMENTS: Drilled one hole at South end of pit. Soil was clean from surface to bottom. The rig could not get down into the pit, so we took the backhoe and dug as far as the backhoe could reach. The ground was very soft at the bottom of the pit. Soil tested clean at a depth of 15'.

ENVIRONMENTAL SPILL CONTROL, INC.

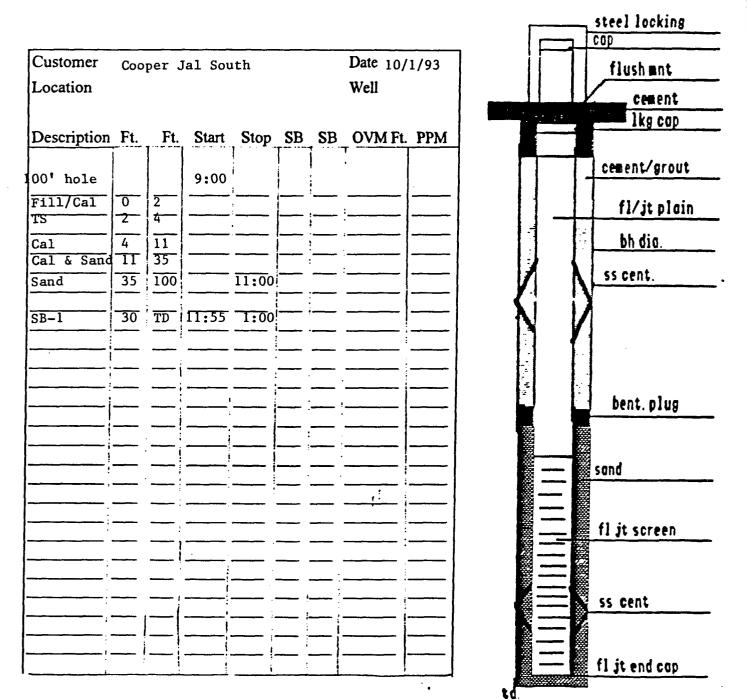
6210 Lovington Highway P.O. Box 5890 Hobbs, NM 88240 (505) 392-6167 (800) 390-6167

SOIL ANALYSIS REPORT

FACILITY: JAL COOPER

DATE: 10/01/93 CLIENT: TEXACO SUPERVISOR: A. HODGE

TPH	DEPTH	LOCATION
SAMPLE NO. 1: 61 SAMPLE NO. 2: 11 SAMPLE NO. 3: 14,890 SAMPLE NO. 4: 1970 SAMPLE NO. 4: 1970 SAMPLE NO. 5: 86 SAMPLE NO. 5: 86 SAMPLE NO. 6: SAMPLE NO. 7: SAMPLE NO. 7: SAMPLE NO. 9: SAMPLE NO. 10: SAMPLE NO. 11:	PPM SURFACE PPM 100" PPM SURFACE PPM 10' PPM 15' PPM 15' PPM PPM PPM PPM PPM PPM	LOCATION SOUTHEAST CORNER #1 SOUTHEAST CORNER #1 SOUTHEAST HALF #3 SOUTHEAST HALF #3 SOUTHEAST HALF #3
SAMPLE NO. 13:	PPM	


COMMENTS: Drilled monitor hole to a depth of 100' and no water was found in drilling.

PHONE (505) 392-6167

FAX (505) 392-8788

P.O. BOX 5890 * HOBBS, NM 88241

"Don't Treat Your Soil Like Dirt!"

October 11, 1993

Environmental Spill Control Mr. Allen Hodge P.O. Box 5890 Hobbs, NM 88241

Sample Matrix: Soil

Project: Jal Cooper South Submitted By: Allen Hodge

Date Received: 9/30/93 Date Reported: 10/11/93

(CHEMICAL AN	ALYSIS REPO	RT
Parameter	Value	Units	Test Method
Sample ID: Surface Wate	r T		
Benzene	<0.1	mg/kg	8020/5030
Toluene	<0.1	mg/kg	
Ethylbenzene	<0.1	mg/kg	
Xylene (omp)	<0.1	mg/kg	
Sample ID: Bottom Wate	er 100'		
Benzene	<0.1	mg/kg	8020/5030
Toluene	<0.1	mg/kg	
Ethylbenzene	<0.1	mg/kg	
Xylene (omp)	<0.1	mg/kg	

page 2 Jal Cooper South Cont.

Parameter	Value	Units	Test Method
Sample ID: Surface Cente	er		
Benzene	<0.1	mg/kg	8020/5030
Toluene	<0.1	mg/kg	
Ethylbenzene	<0.1	mg/kg	
Xylene (omp)	<0.1	mg/kg	
Sample ID: Bottom Cent	er 15'		
Benzene	<0.1	mg/kg	8020/5030
Toluene	<0.1	mg/kg	
Ethylbenzene	<0.1	mg/kg	
Xylene (omp)	<0.1	mg/kg	
Sample ID: South Surface	2		
Benzene	<0.1	mg/kg	8020/5030
Toluene	<0.1	mg/kg	
Ethylbenzene	<0.1	mg/kg	
Xylene (omp)	<0.1	mg/kg	
Sample ID: South Botton	n 15'		
Benzene	<0.1	mg/kg	8020/5030
Toluene	<0.1	mg/kg	
Ethylbenzene	<0.1	mg/kg	
Xylene (omp)	⊲0.1	mg/kg	

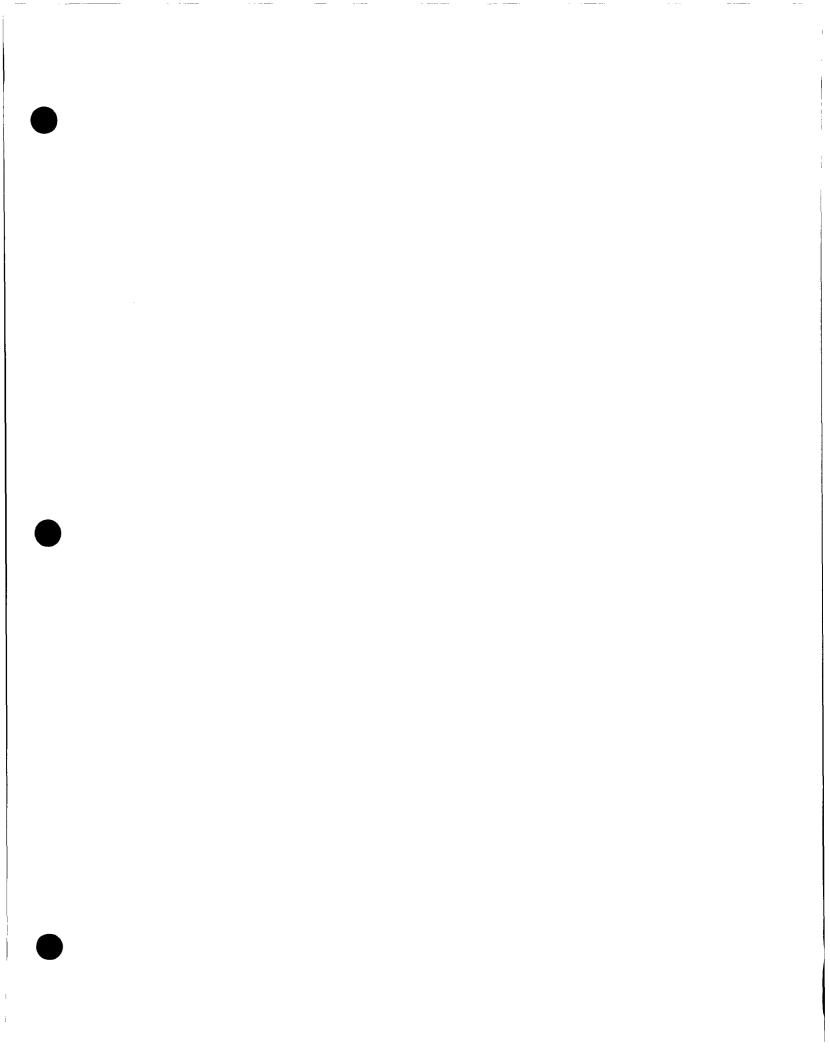
page 3 Jal Cooper South Cont.

Parameter	Value	Units	Test Method
Sample ID: North Surface	2		
Benzene	<0.1	mg/kg	8020/5030
Toluene	<0.1	mg/kg	
Ethylbenzene	<0.1	mg/kg	
Xylene (omp)	<0.1	mg/kg	
Sample ID: North Botton	n 15'		
Benzene	<0.1	mg/kg	8020/5030
Toluene	<0.1	mg/kg	
Ethylbenzene	<0.1	mg/kg	
Xylene (omp)	<0.1	mg/kg	

ŗ

Total QC (Quality Control) Tot. BTEX QC:Blank spiked with 24 ug/l BTE and 48 ug/l (m,p)Xylene, 24 ug/l (o) Xylene Detection Limits 0.1 mg/kg

	Result (ug/l)	% Accuracy
Benzene	25.7	107
Toluene	23.8	9 9
Ethylbenzene	23.5	98
Xylene (mp)	47.3	9 9
Xylene (o)	23.8	<u>99</u>


page 4 Jal Cooper South Cont.

Parameter	Value (ppm)	EPA Limit (ppm)	<u>OC</u>	% Accuracy	Detection Limit
Sample ID: Jal Co	oper South 1' TCLP				
Arsenic (As)	<0.1	5.0	5.0	100	0.1
Selenium (Se)	<0.2	1.0	1.0	100	0.2
Chromium (Cr)	<0.1	5.0	5.1	102	0.1
Cadmium (Cd)	<0.1	1.0	1.0	100	0.1
Lead (Pb)	<0.1	5.0	4.9	98	0.1
Barium (Ba)	<0.1	100	100	100	1.0
Mercury (Hg)	<0.001	0.20	0.020	100	0.001
Silver (Ag)	<0.01	5.0	5.0	100	0.01

Methods: EPA SW 846-1311, 6010, 7471 TCLP Metals QC: Blank spiked with 5.0 ppm As, Cr, Pb and Ag; 1.0 ppm Se and Cd; 100 ppm Ba; and 0.020 ppm Hg.

!

Kirk Robinson

EXICO ENERGY MINERALS AND NATURA RESOURCES DEPARTMENT

POST OFFICE BOX 1980 HOBBS, NEW MEXICO 88241-1980 (505) 393-6161

Paula S. Ives Engineering Assistant Texaco E&P Inc. 205 E. Bender Hobbs, NM 88240

Ro: C-103 Pit Closure

Attention: Paula S. Ives,

Please find enclosed the "OCD Approval Conditions" and "Pit Closure Form" attached to the recent C-103 submitted by you for a pit closure in unit j section 24-Ts 24s-R 36e Cooper Jal Unit South Injection Station. These conditions are hereby incorporated into your approval process.

If you require any further assistance concerning this matter please do not hesitate to call (505-393-6161) or write.

Sincerely yours,

Wayne Price-Environmental Engineer

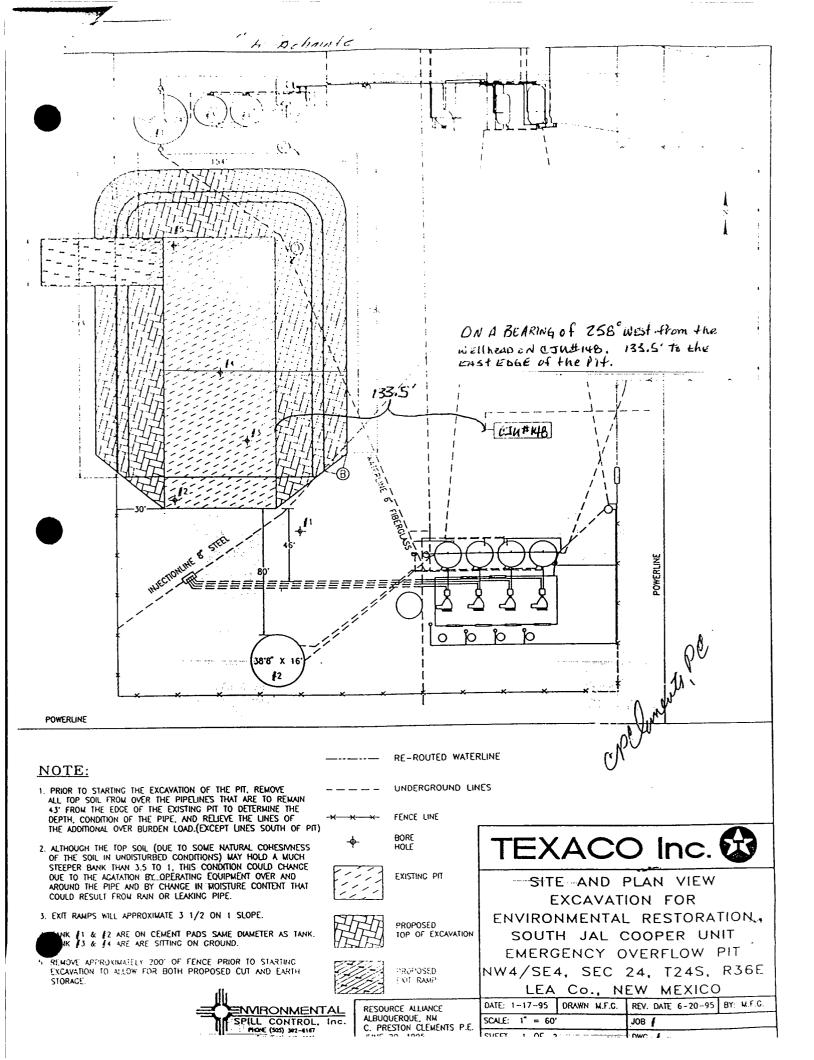
• • • • • • • •

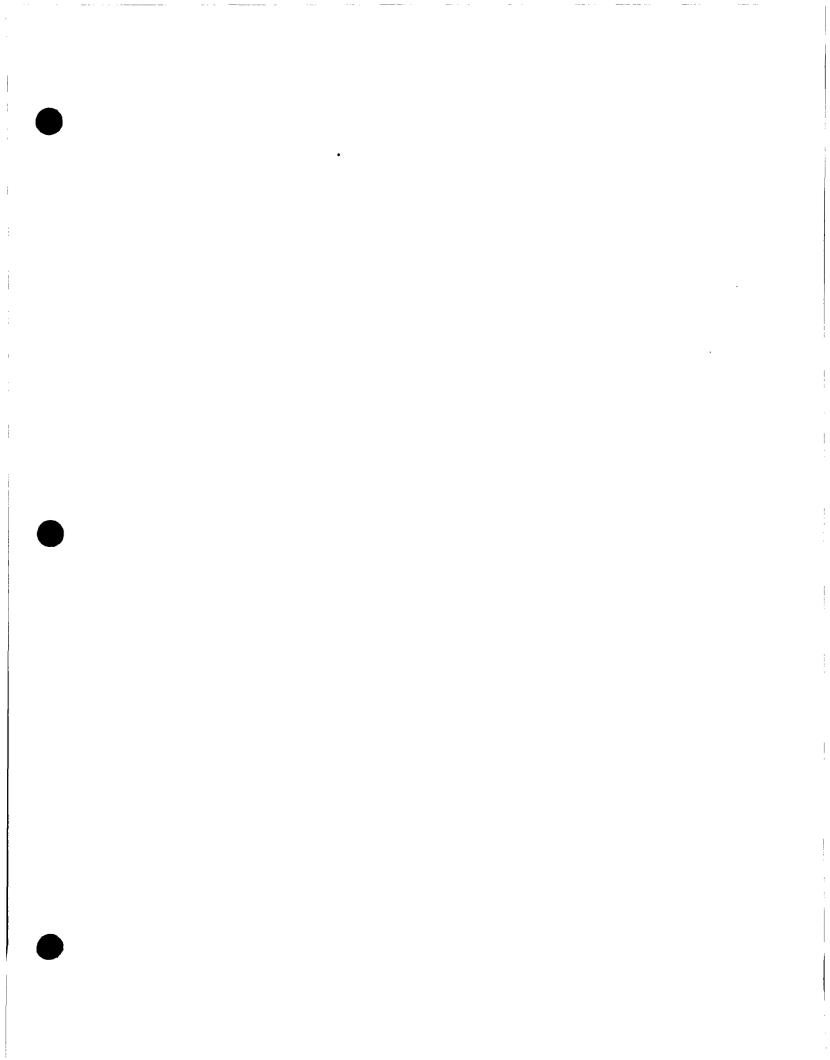
cc: Jerry Sexton-NMOCD District I Supervisor Bill Olson-NMOCD Hydrogeologist-Environmental Bureau Paul Kautz-Geologist

attachments-1 approval conditions 1 Pit Closure form.

	_	f New Mexico atural Resources Departr	nent	Form C-103
.e				Revised 1-1-89
<u>ا تت.</u> Box 1980, Hobbs, NM 88240. STRICT II	OIL CONSERV P.O. B	ATION DIVIS 80x 2088	ION WELL API NO.	
0. Barrawer DD, Artesia, NM 88	B210 Santa Fe, New	Mexico 87504-2088	5. Indicate Type of Lease STA	
STRISTI			6. State Oil / Gas Lease No.	
000 Rio Brazos Rd., Aztec, NM 874 SUNDRY N	410 IOTICES AND REPORTS O	N WELL		
(DO NOT USE THIS FORM FOR PR DIFFERENT RES	ROPOSALS TO DRILL OR TO I SERVOIR. USE "APPLICATION M C-101) FOR SUCH PROPOS	DEEPEN OR PLUG BACH N FOR PERMIT	COOPER JAL UNIT SOUT	
	AS /ELL OTHER Emerg.	Overflow Pit	STATION	
Name of Operator TEXACO E	EXPLORATION & PRODUCTIO	ON INC.	8. Well No.	
Address of Operator 205 E. Bei	nder, HOBBS, NM 88240		9. Pool Name or Wildcat	
Well Location				
Unit Letter J			Feet From The	
Section 24	Township <u>24S</u>		NMPMLea	
	10. Elevation (Show wheth	er DF, RKB, RT,GR, etc.)		
. Check	Appropriate Box to Indic	ate Nature of Notice	, Report, or Other Data	
NOTICE OF INTENT	ION TO:		SUBSEQUENT REPOR	RT OF:
	PLUG AND ABANDON			SING
	CHANGE PLANS		LLING OPERATION	
PULL OR ALTER CASING				_
OTHER:				
50 feet X 170 feet. We intent to ex yards of contaminated soil out of th the TPH under the OCD guidelines ground water.	ne pit and use vertical mixing and	dilution to lower	LUL 23 CELUTUS OFFICE	1998 the form p.f. T cul Form p.f.
I hereby certify that the information above is true and c SIGNATURE	complete the best of my knowledge and belie TITLE	Engineering Accie	tant DATE	7/1/96
TYPE OR PRINT NAME	Paula S. Ives		Telephone N	····
	Orig. Signed by Paul Kautz			
(This state Use) APPROVED BY	Geologist TITLE_		DATE	UL 5 1995
CONDITIONS OF APPROVAL, IF ANY: OCD APP	ROLAL COND	ITIONS FO	FR RCRA EXER	pp 12 pt vert 0

OCD APPROVAL CONDITIONS FOR RCRA EXEMPT UNLINED PIT CLOSURES


- 1. The following closure actions will be performed in accordance with OCD's February 1993 "SURFACE IMPOUNDMENT CLOSURE GUIDELINES":
 - a. Vertical and horizontal extent of contamination will be determined either prior to, during or upon completion of remedial actions.
 - b. Contaminated soils will be remediated to the OCD's recommended <u>levels or a risk assessment will be provided which shows that</u> an alternate cleanup level is protective of surface water, ground water, human health and the environment.
 - c. Final soil contaminant concentrations will be determined upon completion of remedial actions.
 - d. Soil samples for verification of completion of remedial actions will be sampled and analyzed for benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbons.
- 2. All wastes removed from a specific site will be disposed of at an OCD approved facility.
- 3. The OCD Santa Fe Office's Environmental Bureau Chief and the OCD Hobbs District Office will be notified within 24 hours of the discovery of ground water contamination related to a pit closure.
- 4. Upon completion of all closure activities, a completed OCD "Pit Remediation and Closure Report" form containing the results of all pit closure and soil remediation activities will be submitted to the OCD for approval. The report will include the concentrations and application rates of any materials or additives used to enhance bioremediation of the contaminants and the final concentrations of any soils landfarmed onsite or the final disposition of soils removed from the site. To simplify the approval process, the OCD requests that the final pit closure reports be submitted only upon completion of all closure activities including onsite remediation or landfarming of contaminated soils.
- 5. All original documents will be submitted to the OCD Hobbs Office for approval with copies provided to the OCD Santa Fe Office.
- 6. OCD approval does not relieve you of liability should closure activities determine that contamination exists which is beyond the scope of the work plan or if the closure activities fail to adequately remediate contamination related to your activities. In addition, OCD approval does not relieve you of responsibility for compliance with other federal, state or local laws and regulations.


OIL CONSEP OIL CONSEP 200 Reg Brizon Kd. Adde. NM 87410 2040 S. PAC SANTA FE, N		SUBHIT 1 COPY TO APPROPRIATE DISTRICT OFFICE AND 1 COPY TO SANTA FE OFFICE (Revised 3/9/94)
Operator: <u>TERACE E & PINC.</u>	Telephone:	505/394/2585
Address: P. J. Box 1060, 301 Te	XAS AVE. Eunice N.M. 88	23 /
Facility Or: Coopers JAC UNIT. Well Name	South Injuctions Plant over No.	S P. F
Location: Unit or Qtr/Qtr Sec	Sec <u>CY</u> T <u>Z4S</u> R <u>36</u> County	lea
Pit Type: Separator Dehydrator_	Other <u>EmerGency</u> OVERI	New
Land Type: BLM, State, Fee	e, Other_ <u>frivate</u>	
Footage from refere		24C
Direction from ref	erence: Degrees Eas Wes	st North of st South
Direction from refo Depth To Ground Water: (Vertical distance from contaminants to seasonal high water elevation of ground water)	Less than 50 feet	of st South (20 points) (10 points)
Depth To Ground Water: (Vertical distance from contaminants to seasonal high water elevation of	Less than 50 feet 50 feet to 99 feet Greater than 100 feet	of st South (20 points) (10 points)
Depth To Ground Water: (Vertical distance from contaminants to seasonal high water elevation of ground water) Wellhead Protection Area: (Less than 200 feet from a private domestic water source, or; less than	Less than 50 feet 50 feet to 99 feet Greater than 100 feet Yes No	of st South (20 points) (10 points) (0 Points) (20 points) (20 points) (20 points) (20 points) (20 points)

•

Date Remediation Sta	rted: <u>61-96</u>	Date Completed:	8-8-96
Remediation Method:	Excavation X	Approx. cubic yards	1248
(Check all appropriate sections)	Landfarmed X	Insitu Bioremediati	a
	other Dilution		· · · · · · · · · · · · · · · · · · ·
Remediation Location	a: Onsite Off	site <u>Sundannee Servi</u>	
name and location of offsite facility)		PALABO DISPISAL 1	Encelity
	Of Remedial Action	WEST FENCE WAS L'EIT	CUCDAND RAMID WAS
		bettom, Buildazo-was user	•
		Sumpticks thant to	
		AND ON pit bottom to co	
		N Ne lined it with clay -	
zone of filled to the		· · · · · · · · · · · · · · · · · · ·	
		Yes Depth	
Final Pit: Closure Sampling: (if multiple samples,	Sample location _	Composite Example of	pit buttom.
Closure Sampling: (if multiple samples, attach sample results and diagram of sample	Sample location Sample depth24		pit buttom
Closure Sampling: (if multiple samples, attach sample results			p.t. buttom
Closure Sampling: (if multiple samples, attach sample results and diagram of sample	Sample depth _24		
Closure Sampling: (if multiple samples, attach sample results and diagram of sample	Sample depth $\underline{24}$ Sample date $\underline{6-5-}$	96Sample tin	
Closure Sampling: (if multiple samples, attach sample results and diagram of sample	Sample depth <u>29</u> Sample date <u>8-5-</u> Sample Results	<u>96</u> Sample tin <u><!--.0</u--></u>	
Closure Sampling: (if multiple samples, attach sample results and diagram of sample	Sample depth <u>29</u> Sample date <u>8-5-</u> Sample Results Benzene(ppm) Total BTEX(p	<u>96</u> Sample tin <u><!--.0</u--></u>	
Closure Sampling: (if multiple samples, attach sample results and diagram of sample	Sample depth <u>29</u> Sample date <u>8-5-</u> Sample Results Benzene(ppm) Total BTEX(p Field headsp	<u>96</u> Sample tin <u><!--.0</u--> pm) <u>< /.0</u> ace(ppm) <u>< /.0</u></u>	
Closure Sampling: (if multiple samples, attach sample results and diagram of sample	Sample depth <u>29</u> Sample date <u>8-5-</u> Sample Results Benzene(ppm) Total BTEX(p	<u>96</u> Sample tin <u><!--.0</u--> pm) <u>< /.0</u> ace(ppm) <u>< /.0</u></u>	
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths)	Sample depth <u>24</u> Sample date <u>B-5-</u> Sample Results Benzene(ppm) Total BTEX(p Field headsp TPH <u>142</u>	<u>96</u> Sample tin <u><!--.0</u--> pm) <u>< /.0</u> ace(ppm) <u>< /.0</u></u>	ne <u>4':30pm</u>
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths) Ground Water Sample	Sample depth <u>24</u> Sample date <u>B-5-</u> Sample Results Benzene(ppm) Total BTEX(p Field headsp TPH <u>142</u> Yes No _	<u>96</u> Sample tin <u><!--.∂</u--> pm) <u>< 1.0</u> ace(ppm) <u>< 1.0</u></u>	ne <u>4'30pm</u>
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths) Ground Water Sample I HEREBY CERTIFY TH OF MY KNOWLEDGE AND	Sample depth <u>24</u> Sample date <u>6-5-</u> Sample Results Benzene(ppm) Total BTEX(p Field headsp TPH <u>142</u> Yes No HAT THE INFORMATION D BELIEF	$\frac{2}{26}$ Sample tin $\frac{2}{.0}$ pm) $\frac{2}{.0}$ ace(ppm) $\frac{2}{.0}$ V (If yes, attach sam	ne <u>4'30pm</u> ple results)

į.

Western Environmental Consultants

PO Box 1816 Phone (505) 392-5021 Hobbs, New Mexico 88241 Fax (505) 397-2597

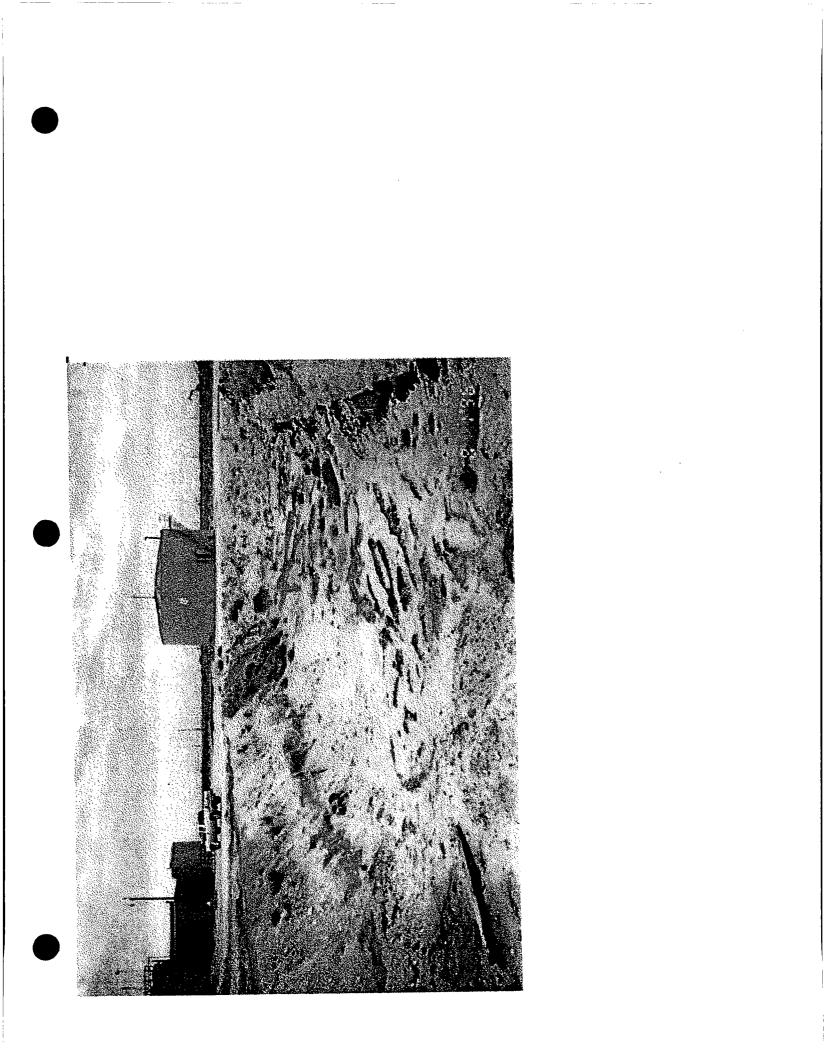
August 30, 1996

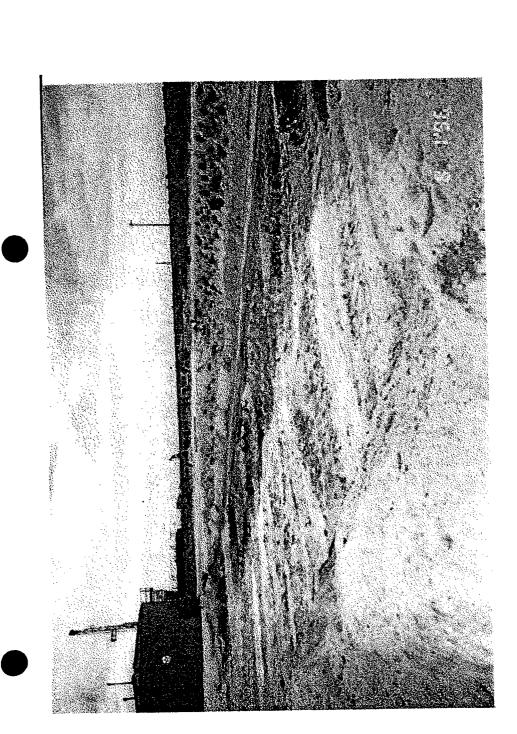
Texaco E & P Inc. 205 E. Bender Blvd. Hobbs, NM 88240

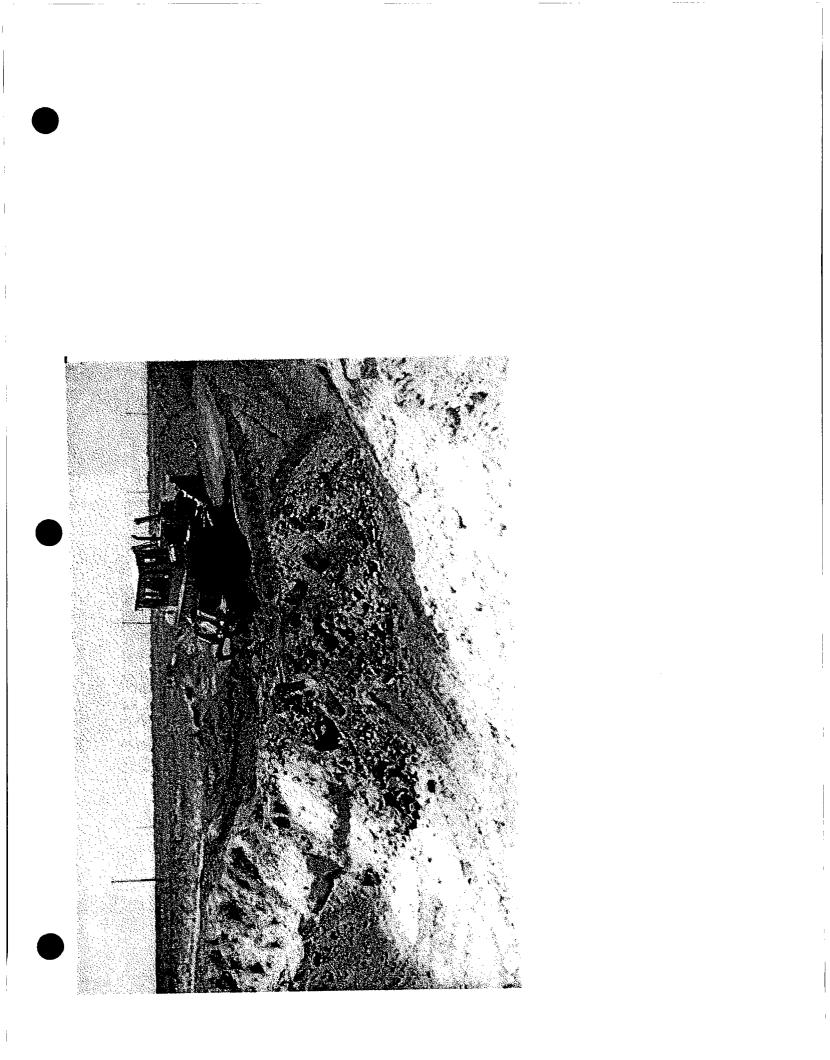
Attn: Mr. Aaron Dobbs

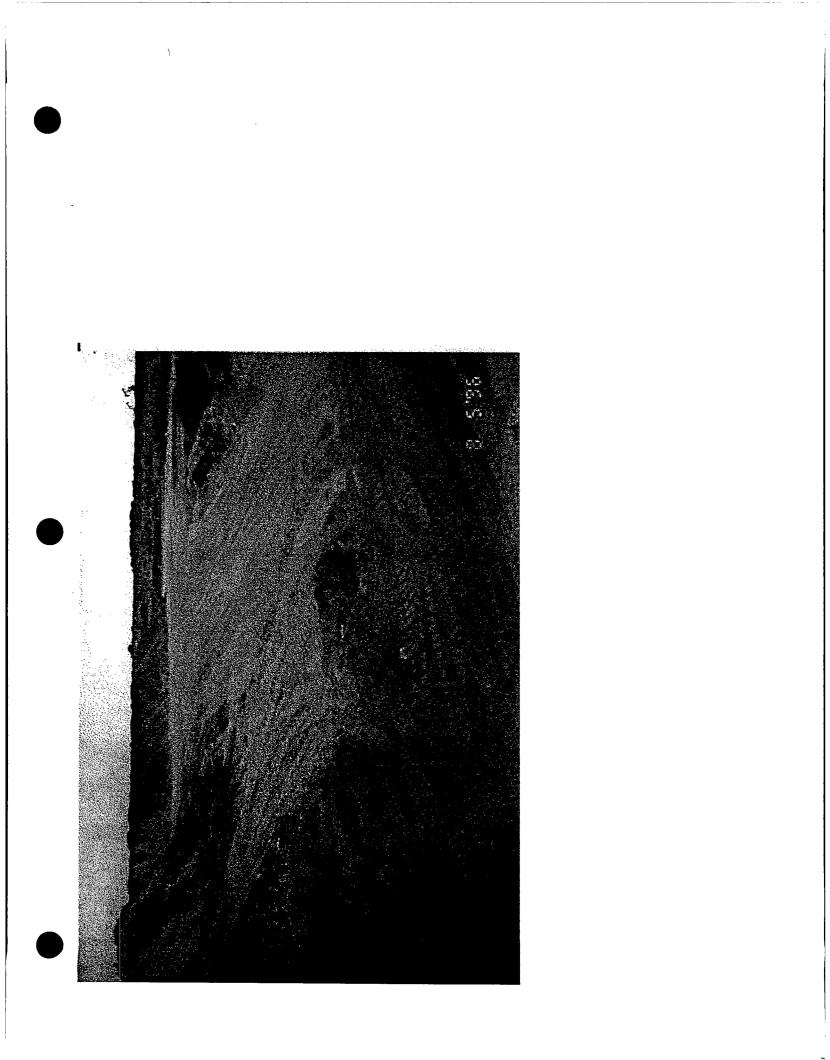
Re: Closure report for the South Jal Cooper overflow pit.

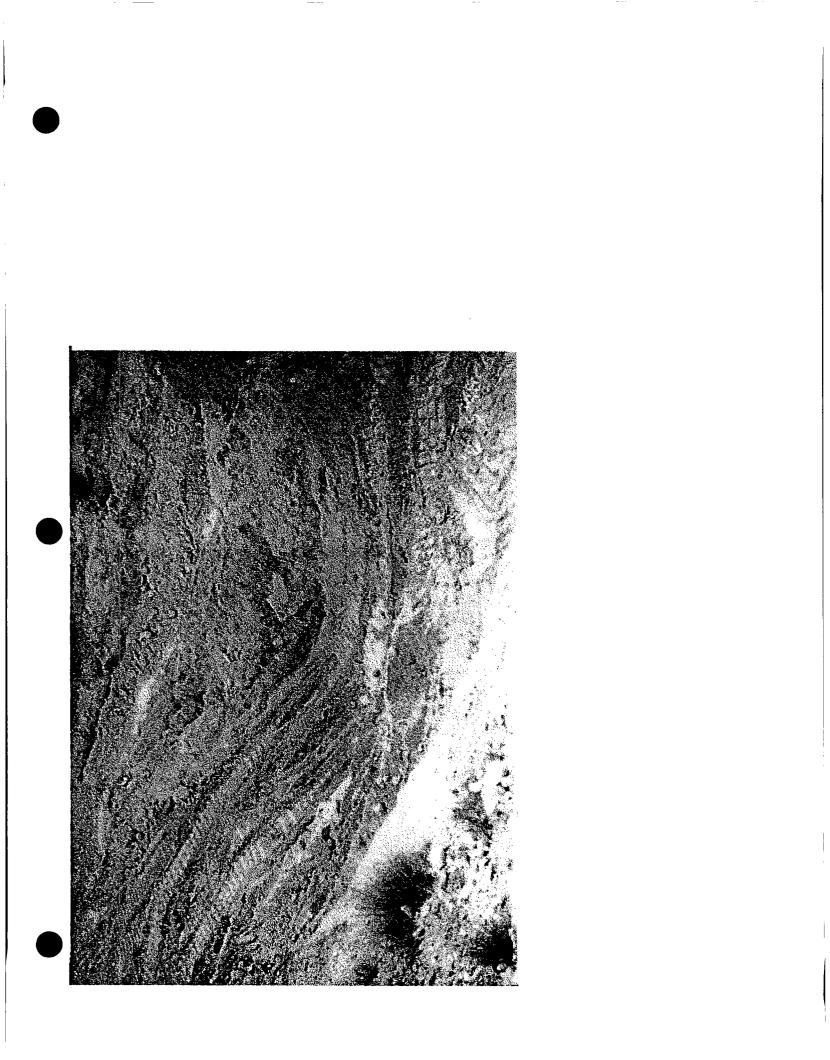
Dear Mr. Dobbs

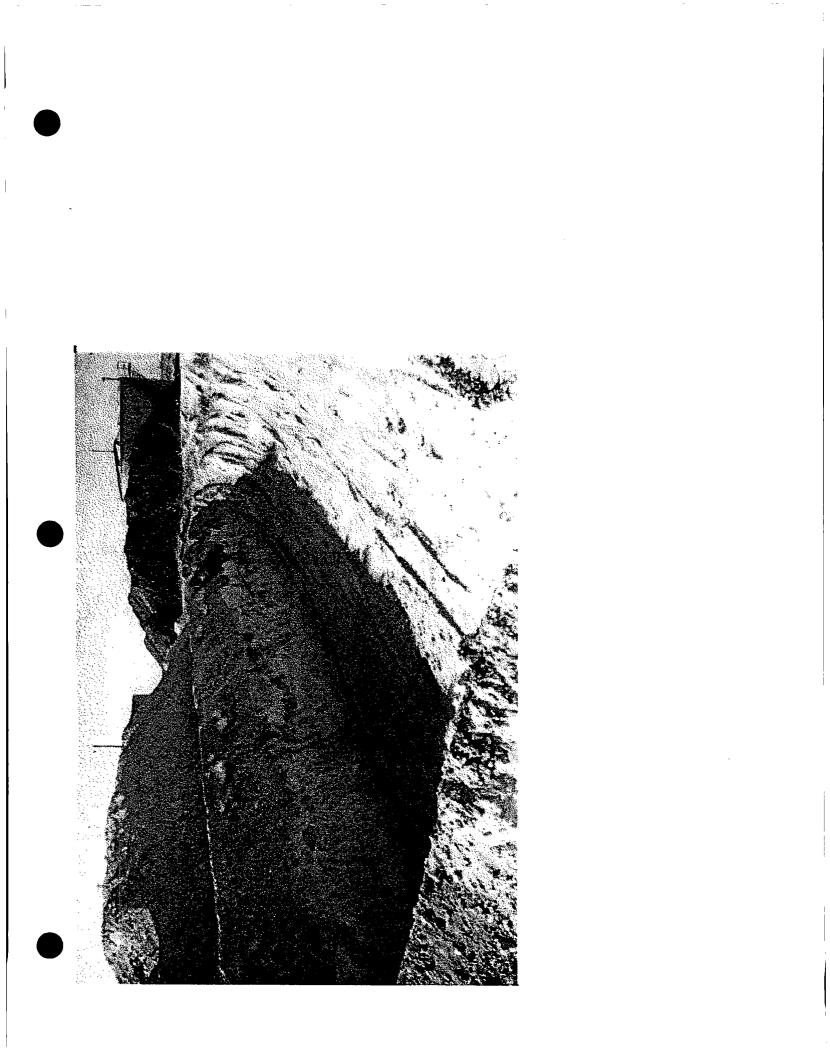

We would like to take this time to thank you and Texaco for this opportunity to be of service to you. The following is a report on the closure of the South Jal Cooper overflow pit.

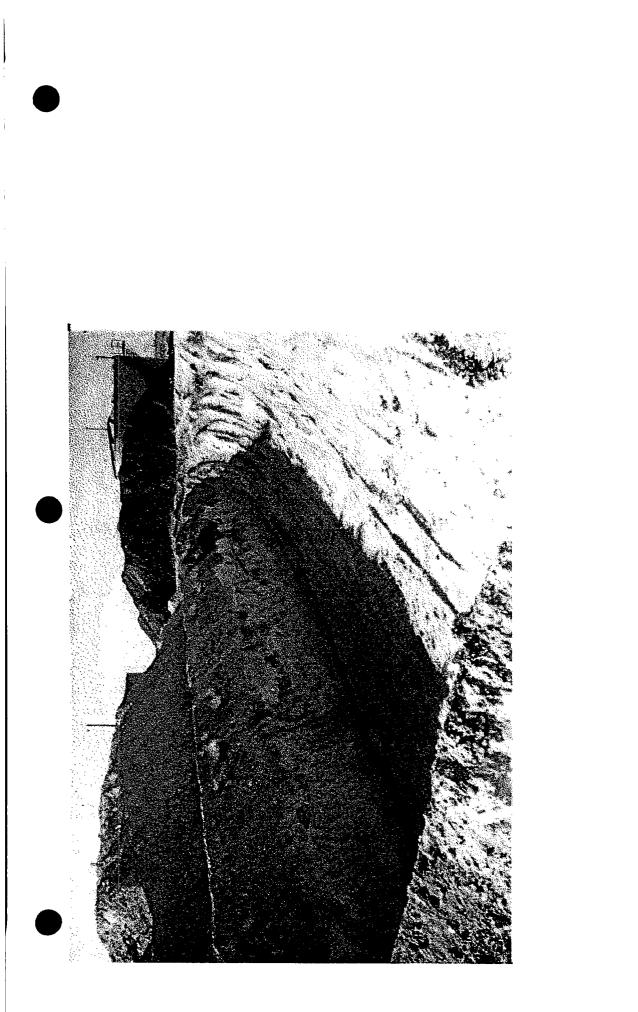

The closure of the pit began on 08/01/96 with Globe Construction mobilizing equipment so they could begin loading and hauling the impacted soils to Eunice for disposal at Parabo Disposal Facility. The fence was moved back to allow excavation equipment access to the overflow pit. A bulldozer was used to push up impacted soils for the loader to pick-up and load into the dump trucks to haul off to disposal facility. TPH tests were run on impacted soils being hauled to the disposal facility and were also run on overflow pit bottom to confirm that all impacted soils had been addressed. You may refer to soil report for these levels. At the same time we were hauling impacted soils to the disposal facility we were back hauling clay for the overflow pit bottom buffer zone. Once we were finished hauling impacted soils on 08/05/96 samples were taken again of the overflow pit bottom to confirm that all impacted soils had been removed. On 08/06/96 we started pushing clay into the bottom of the overflow pit. While dozer was pushing the clay into the bottom we were at the same time hauling in caliche fill material to finish filling overflow pit. On 08/08/96 closure of the overflow pit was completed. On 08/09/96 finals photos were taken after construction equipment had been removed from site. There was 1248 cyds. of impacted soils removed for disposal, 1091 cyds. of clay used to line the overflow pit bottom and 3360 cyds. of clean caliche used to backfill rest of overflow pit.

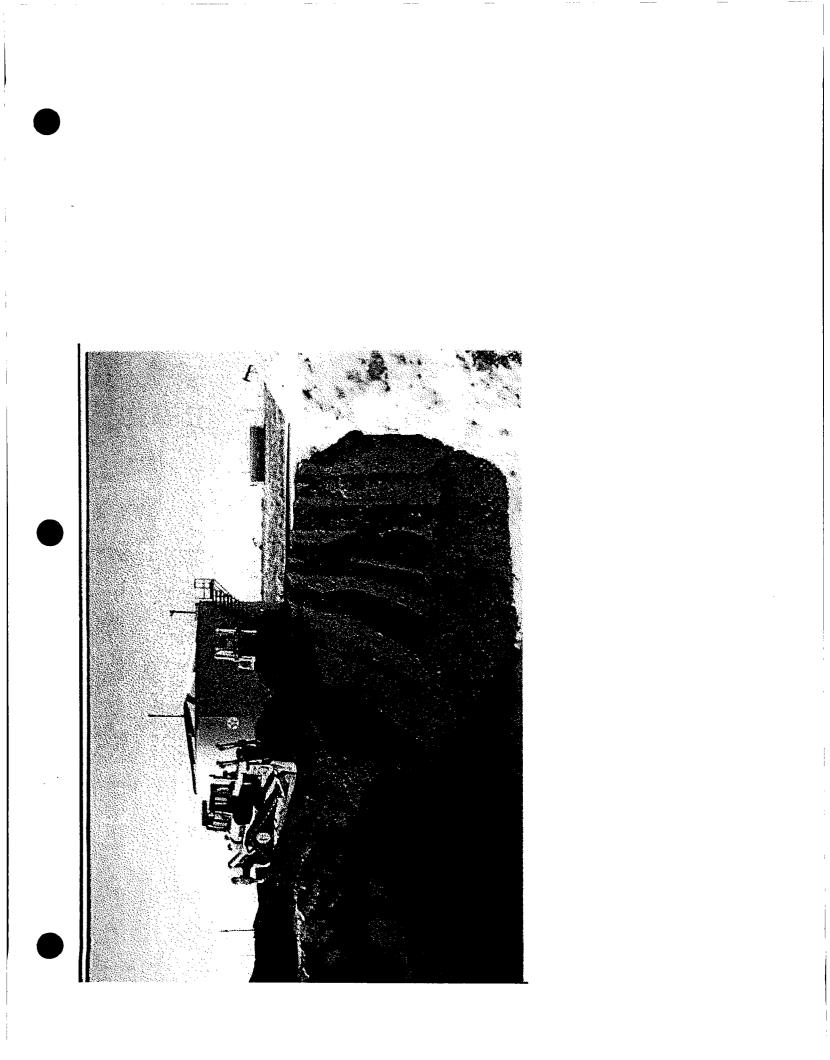

If you have any questions or need additional information in regards to this matter, please call me on my mobile at 505-370-1464 or at 505-392-5021.

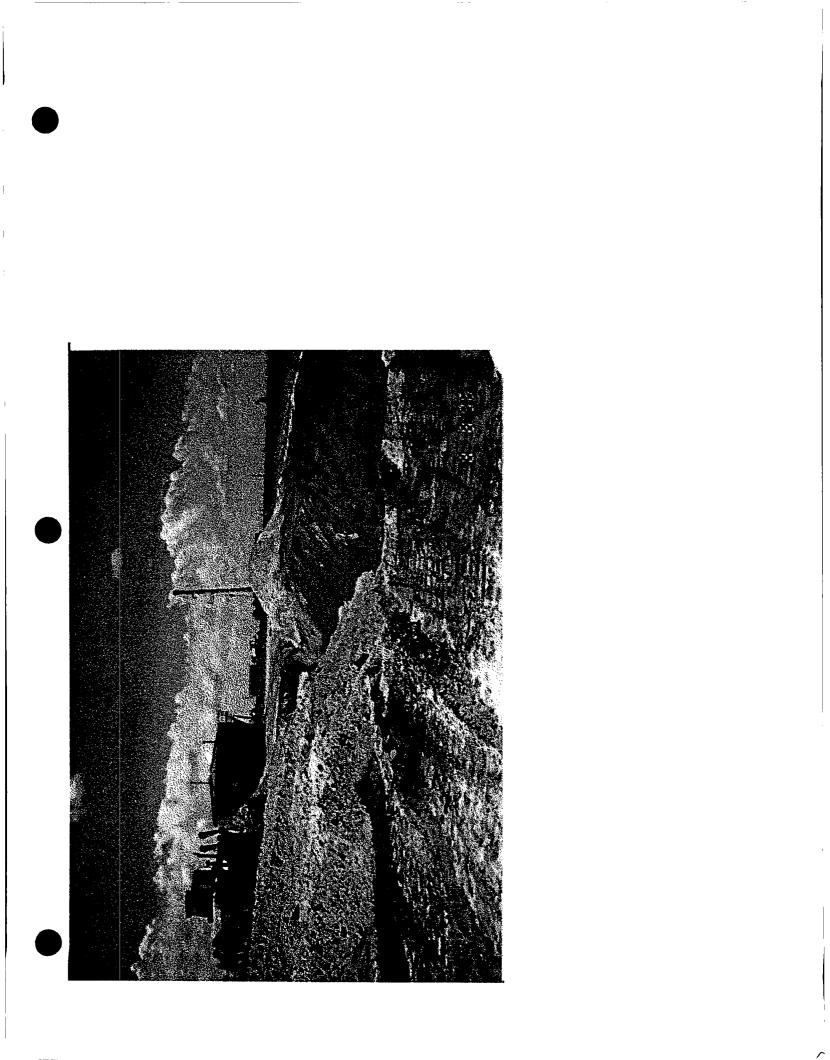

Sincerely,

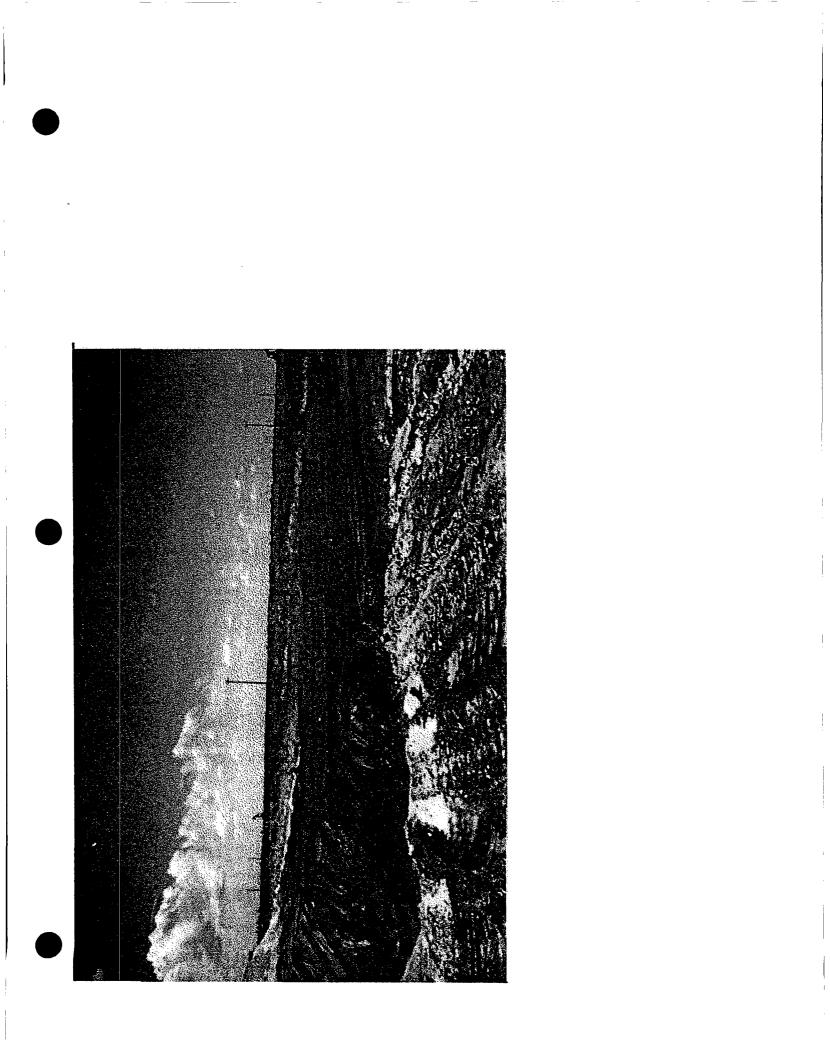

Allen Hodge, REM Western Environmental Consultants

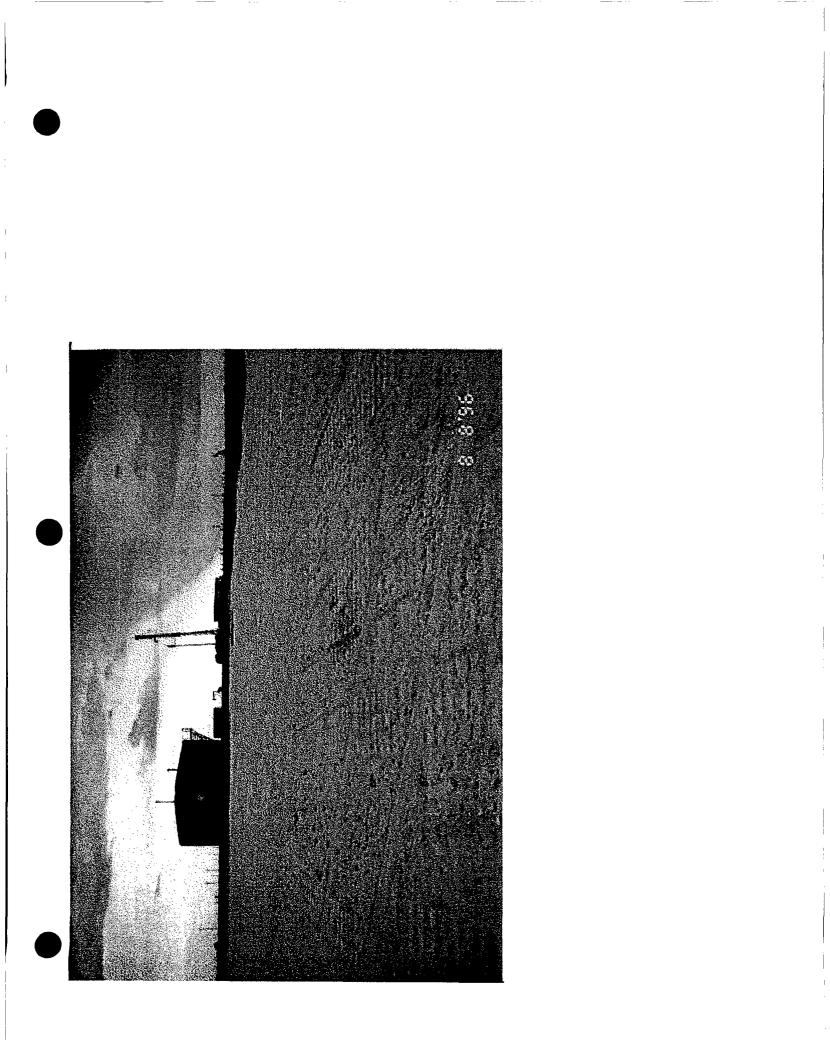


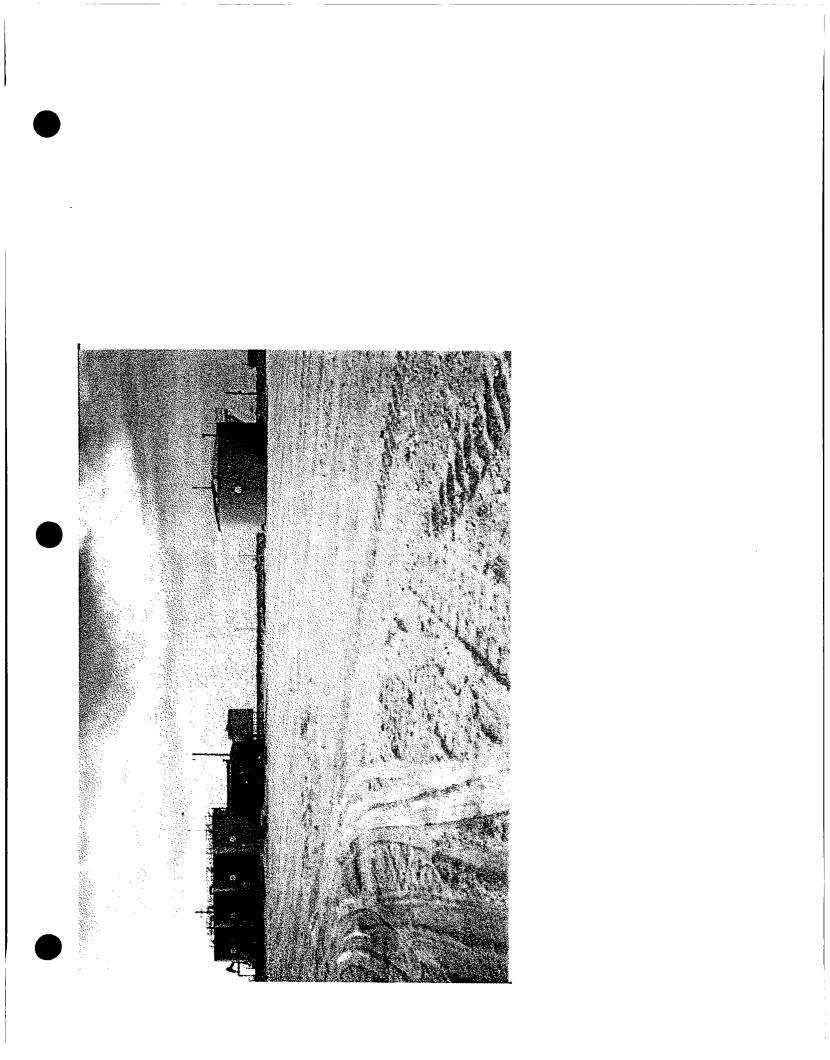


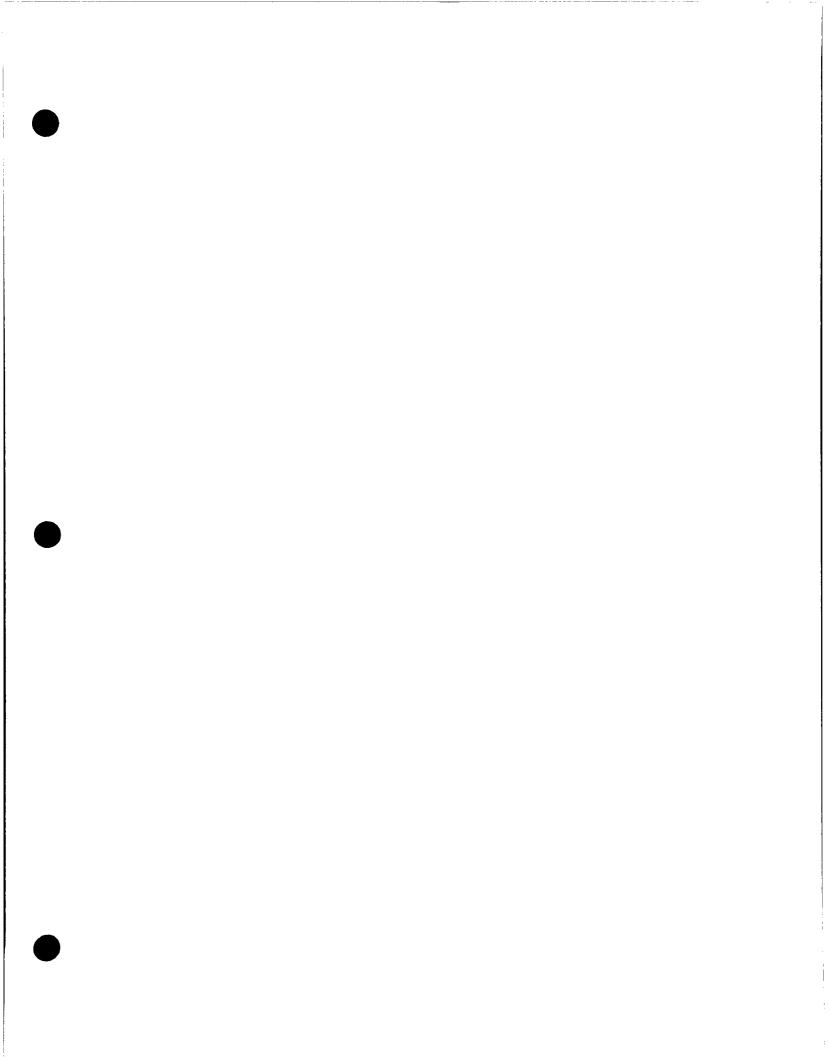












till

see dlori

ON Page #12

AGE (2

4.

12 6. ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION HOBBS DISTRICT OFFICE

January 17, 1996

POST OFFICE BOX 1980 HOBBS, NEW MEXICO 88241-1980 (505) 393-6161

Paula S. Ives Engineering Assistant Texaco E&P Inc. (TEPI) 205 E. Bender Hobbs, NM 88240

Pit Closure-Cooper Jal Unit Injection Station. Re: J-sec24-Ts24s-R36e.

Attention: Paula Ives

The New Mexico Oil Conservation Division (NMOCD) is in receipt of the pit closure form dated 12/13/96 submitted for the above referenced facility.

In order for the NMOCD to properly evaluate this closure please provide the following information.

Laboratory and/or field data sheets for the bottom hole and final 1. remediated soil samples required per NMOCD guidelines.

Please verify the actual depth to ground water. This information can be obtained from the NM St. Engr's office located in Roswell; NM. (505-622-6521) .

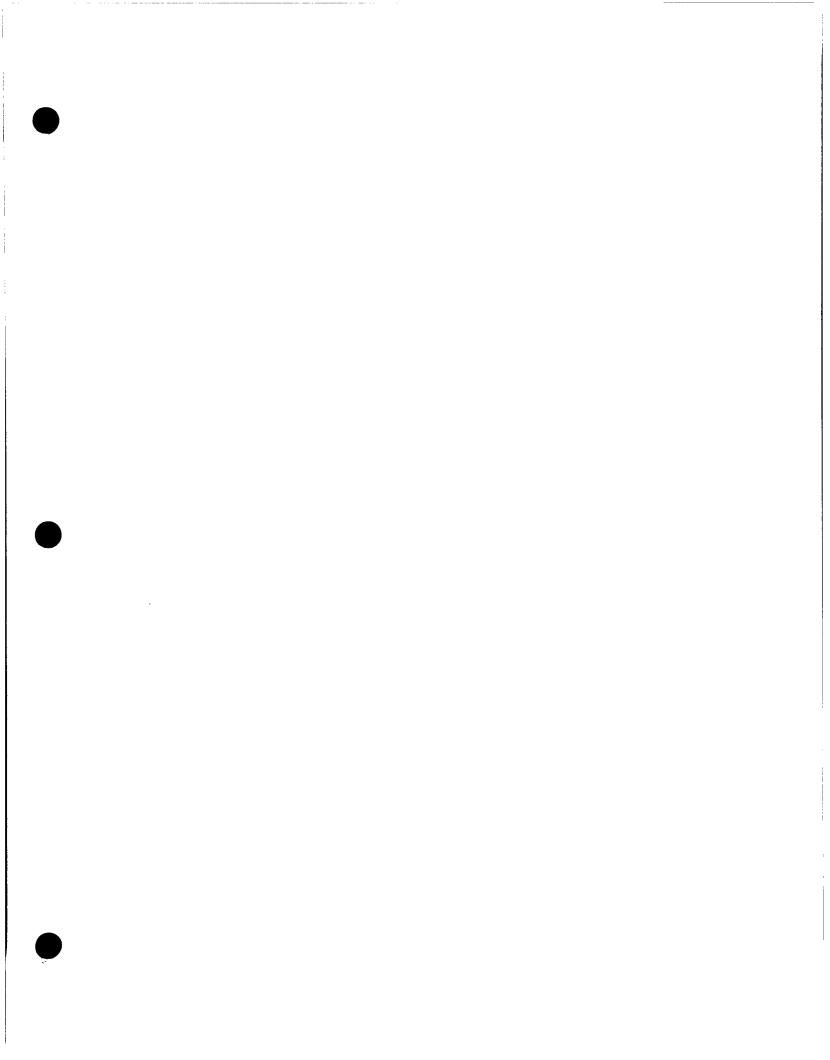
Please provide documentation for all contaminated soils shipped off-site. Please include quantities, manifest, invoices, etc.

Please provide information on the bottom hole clay liner, such as type, thickness, compaction data, hydraulic conductivity, etc.

tach picture Provide any other pertinent information such as pictures, field logs, etc. 5.

> Since this pit was an emergency overflow which was designed to primarily hold "produced oilfield waters", did TEPI evaluate the vertical extent of the salt migration.

If you require any further assistance concerning this matter please do not hesitate to call (505-393-6161) or write.


Sincerely yours,

Inve.

Wayne Price-Environmental Engineer

cc:

Jerry Sexton-NMOCD District I Supervisor Bill Olson-NMOCD Hydrogeologist-Environmental Bureau

OIL CONSERVATION DIVISION HOBBS DISTRICT OFFICE

> POST OFFICE BOX 1980 HOBBS, NEW MEXICO 88241-1980 (505) 393-6161

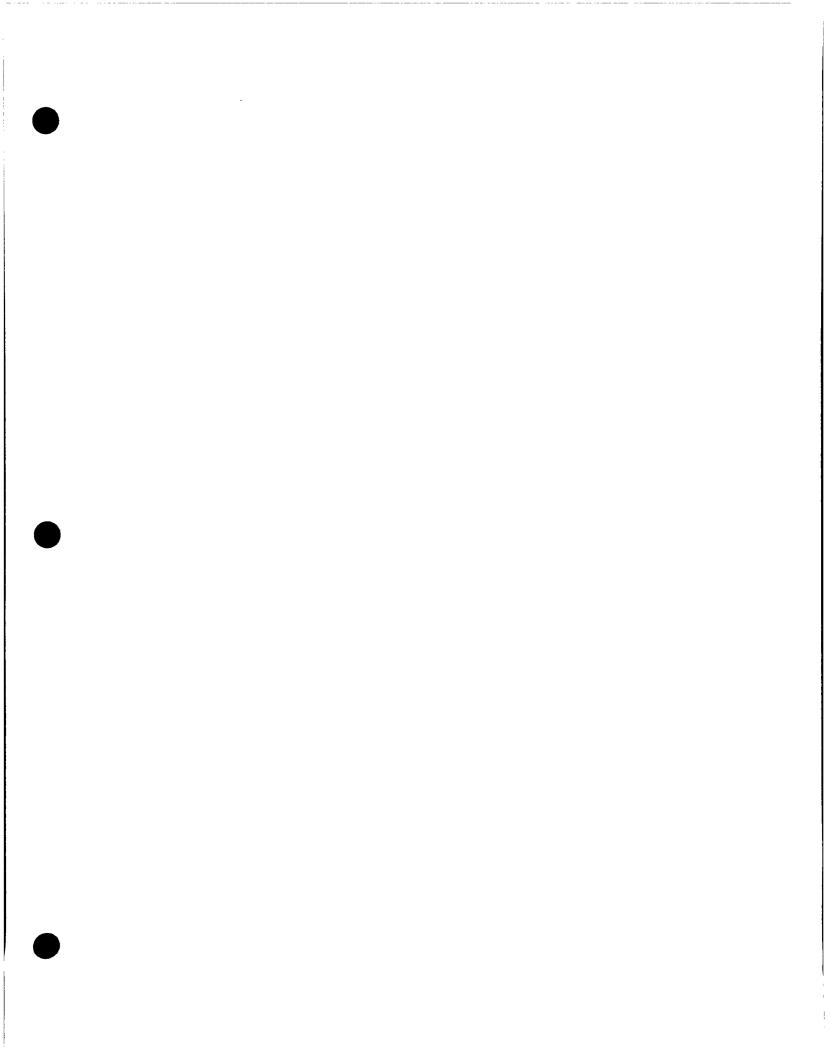
July 10, 1997

Mr. Rodney Bailey EHS Coordinator Texaco E&P Inc. 205 E. Bender Hobbs, NM 88240

New Mexico Oil Conservation Division (NMOCD) District I office request information concerning the status for the pit closure project referenced below:

1. Cooper-Jal Unit Injection Station, J-sec 24-Ts24s-R36e;

In order for the NMOCD to issue approval on closure please address the issues in letter dated January 17, 1996 (Price-Ives).


If you require any further information or assistance please do not hesitate to call (505-393-6161) or write this office.

Sincerely Yours,

Wayne Price-Environmental Engineer

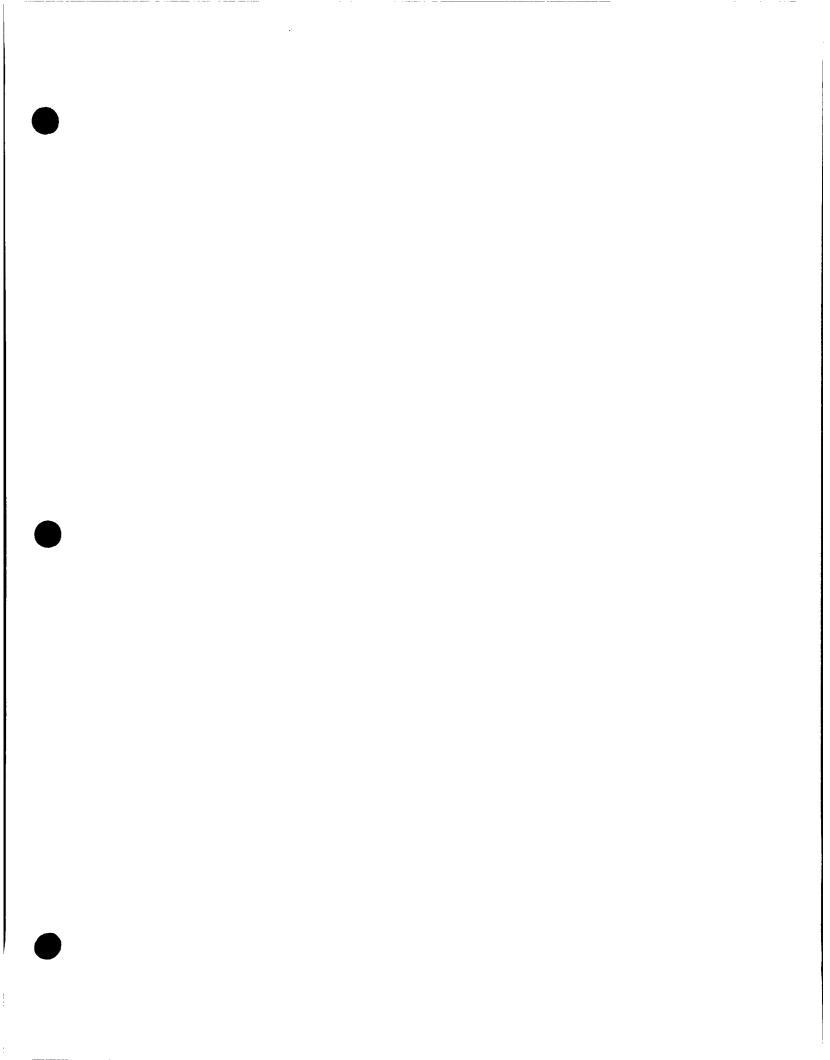
cc: Chris Williams-NMOCD District I Supervisor

file: wprbtex

Date: July 14, 1997

Wayne Price Environmental Engineer NMOCD Energy, Minerals & Resources Department

RE: Pit Closure-Cooper Jal Unit Injection Station. J-sec 24, T 24S, R 36E


The following information is submitted for approval on the closure of Cooper Jal Unit Injection Station pit. Information requested from NMOCD letter dated January 17, 1996:

- Laboratory and /or field data sheets for bottom hole and final remediated soil samples required per NMOCD guidelines.
 A copy of this document is attached.
- Verify the actual depth of ground water. The State Engineers Office in Roswell, Mr Johnny Hernandez, stated there are no wells in section 24. The section West contains one well at a depth of 149.69' to water. The section North contains one well at a depth of 131.17' to water. The section East contains one well at a depth of 123.9' to water.
- 3. Documentation for all contaminated soils shipped off site. Copies of all manifest, including invoices and quantities are attached.
- 4. Provide information on bottom clay liner. Liner type is "CH". Thickness is 2.5' grid rolled with a dozer. Hydraulic conductivity is 10 to the 7+.
- 5. Provide any other information such as pictures, field logs, etc. Copies of pictures and closure report from Western Environmental are included.
- 6. Did TEPI evaluate the vertical extent of the salt migration? Vertical salt migration was not determined.

If you have any questions please contact me at 505-397-0422

todney C

Rodney Bailey EHS Coordinator Hobbs Operating Unit

Highlander Environmental Corp.

Midland, Texas

October 10, 1997

Mr. William C. Olson Environmental Bureau New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505

Re: Preliminary Investigation Findings, Notification of Release and Proposed Additional Investigations, Emergency Overflow Pit (Closed), Texaco Exploration and Production, Inc., Cooper-Jal Unit South Injection Station and Tank Battery, NW/4, SE/4, Section 24, Township 24 South, Range 36 East, Lea County, New Mexico

Dear Mr. Olson:

Highlander Environmental Corp. (Highlander) has been retained by Texaco Exploration and Production, Inc. (Texaco) to conduct a preliminary subsurface investigation of a former emergency overflow pit at the Cooper-Jal Unit South Injection Station (Site), located approximately six (6) miles northwest of Jal, New Mexico. The Site is situated in the northwest quarter (NW/4) of the SE/4, Section 24, Township 24 South, Range 37 East, Lea County, New Mexico.

Background

The Site is currently the location of an oil and gas field tank battery and injection station. Previously, the Site included an unlined earthen emergency produced water overflow pit, which measured approximately 50' x 170' x 12'. The pit was operated until its closure in August 1996. Prior to closure, an assessment was performed by Environmental Spill Control, Inc., Hobbs, New Mexico. The purpose of the assessment was to conduct a preliminary subsurface evaluation to determine the horizontal and vertical extent of hydrocarbon impact. The assessment consisted of drilling five (5) boreholes in and adjacent to the pit, and collection of soil samples for laboratory testing. The boreholes were drilled between 15 and 100 feet below ground level (BGL), and soil samples were collected and analyzed for total petroleum hydrocarbons (TPH). The highest TPH concentration reported was 14,890 parts per million (ppm) from a shallow sample obtained near the southern one-half of the pit. The soil samples were also analyzed for benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX), and reported no levels above the test method detection limits. A sample was also tested for RCRA metals by Toxicity Characteristic Leaching Procedure (TCLP), and reported no concentrations above the test method detection limits. The results were reported to Texaco on October 14, 1993.

Mr. William C. Olson October 10, 1997 Page 2

Closure of the pit began on August 1, 1996. Approximately 1,248 cubic yards of affected soil was removed from the pit and transferred to Parabo, Inc., Eunice, New Mexico for disposal. Soil samples from the bottom of the excavation were analyzed for TPH to confirm that all impacted soil had been removed. Approximately 1,091 cubic yards of clay was placed in the base of the excavation as a "buffer zone", and 3,360 cubic yards of caliche was placed over the clay and backfilled to grade. On August 30, 1996, WEC issued a closure (letter) report.

On December 13, 1996, a pit closure report was submitted to the Oil Conservation Division (OCD), and on January 17, 1997 and July 10, 1997, the OCD requested Texaco to submit additional information, including an evaluation of the vertical extent of salt migration. On July 17, 1997, Texaco submitted additional information, except information pertaining to the vertical salt migration, which was not available.

Preliminary Subsurface Investigation

On August 22, 1997, Highlander personnel supervised drilling of a borehole adjacent to the southeast corner of the pit. The borehole was drilled to an approximate depth of 100 feet BGL, and soil samples were collected from 15-17 feet BGL, and every ten (10) feet thereafter (i.e., 20'-22', 30-32', 40-42', etc.). The samples were analyzed for chloride and reported concentrations from 580 milligrams per kilogram (mg/kg) from 15'-17' to 2,500 mg/kg from 80'-82'. The chloride levels below 82 feet BGL varied in concentration from 540 mg/kg (120'-122') to 1,200 mg/kg (130'-132'). Table 1 presents a summary of the laboratory test results. Appendix A presents the laboratory data reports.

On September 9-10, 1997, additional soil samples collected to 173 feet BGL to further delineate the vertical extent of chloride migration. Groundwater was observed at approximately 142 feet BGL and shale (red bed) was encountered at 173 feet BGL. The soil samples were collected every ten feet (i.e., 110'-112', 120'-122', 130'-132' and 140'-142'), and chloride concentrations ranged from 500 mg/kg (110'-112' BGL) to 1,200 mg/kg (130'-132'). The chloride level in the sample from 140'-142' BGL was 210 mg/kg, and indicated that groundwater had been encountered. The soil samples were visually examined for lithology, and a borehole sample log was prepared (Appendix B).

On September 10, 1997, borehole BH was completed as a groundwater monitoring well (MW-1), and a groundwater sample was collected and analyzed for major ions and cations. The chloride level in the groundwater sample was 8,500 milligrams per liter (mg/L) and exceeded the New Mexico Water Quality control Commission (WQCC) standard of 250 mg/L (20 NMAC 6.2, 3103 B). The TDS level was 15,000 mg/L. Appendix A presents the laboratory report. Appendix B presents the monitoring well construction record.

Mr. William C. Olson October 10, 1997 Page 3

Proposed Investigation

Highlander proposes to conduct an electromagnetic (EM-34) terrain conductivity survey to evaluate the area of elevated chloride in soil and groundwater. The EM-34 measures the conductivity of oil and groundwater by imparting an alternating electrical current to a transmitter coil which is positioned near the earth's surface. The magnetic field produced as the current passes through the transmitter coil induces small electrical currents into the subsurface soil. The electrical currents produce a secondary magnetic field which is sensed with the primary magnetic field by a receiver coil. The terrain conductivity which is linearly proportional to the ratio of the secondary magnetic field to the primary magnetic field is displayed on an analog scale in millimhos/meter (mmhos/m). The EM-34 has an effective depth of investigation of approximately 200 feet BGL. The EM-34 survey will be conducted using a grid station approach. A 50' x 50' grid network will be established across the Site and measurements will be collected at each grid intersection. A background station will also be established and compared to Site measurements.

Based on the EM-34 survey results, a minimum of three (3) additional monitor wells may be installed to evaluate the extent of the chloride impact. The wells will drilled to the to the top of the red bed (shale) using a truck-mounted rotary drill rig. The monitor wells will be constructed using two (2) inch diameter schedule 40 PVC threaded casing and factory slotted screen. The well screen, approximately forty (40) feet in length, will placed across the entire saturated thickness of the groundwater interval. The well screen will be surrounded with a graded silica sand to a depth approximately 2 feet above the screen. A layer of bentonite pellets, approximately 2-4 feet thick, will be placed in the borehole above the sand pack and hydrated with potable water. The remainder of the borehole will be filled with cement and bentonite grout to about one (1) foot below ground. The wells will be secured with locking steel protectors anchored in a concrete pad measuring approximately 3 feet by 3 feet. The wells will be surveyed by a New Mexico registered land surveyor to determine the approximate ground and top of casing elevations.

Following installation, the wells will be developed by pumping with an electric submersible pump. Water removed from the wells will be placed in an appropriate container (i.e., 55-gallon drums, portable tank, etc.) until disposed is arranged. Groundwater samples will be collected and analyzed for anions, cations, and TDS. Groundwater samples will be delivered to the laboratory via overnight delivery and under chain of custody control. Soil samples may also be collected from a background location and analyzed for chloride.

Highlander will conduct an inventory of water wells within 1-mile radius of the Site for the purpose of identifying possible receptors. The water well search will include a review of records available from the New Mexico State Engineer's Office and visual survey.

Mr. William C. Olson October 10, 1997 Page 4

All down hole equipment associated with the investigation (i.e., drill rods, bit, water level indicator, submersible pump, etc.) will be thoroughly decontaminated between wells. Soil cuttings from drilling will be stockpiled next to the borehole until disposal is arranged.

Data Evaluation and Reporting

Upon receipt of analytical data from the laboratory, Highlander will assemble all data in tables for presentation in a report. The report will contain discussions of field sampling techniques and laboratory results. Highlander will compare the laboratory test results for soil and groundwater samples to applicable New Mexico OCD or WQCC action levels or cleanup standards. The report will also present a discussion of the EM-34 survey and findings. Detailed Site drawings will be presented in the report, and may include the EM-34 survey results, groundwater potentiometric surface contours, depth-to-groundwater and chloride concentrations.

Highlander will schedule the proposed field activities following your review and approval. Please call if you have questions.

Sincerely, Highlander Environmental Corp.

Mark J. Larson Senior Project Manager

Encl. cc:

Mr. Rodney Bailey, TEPI Mr. Robert Browning, TEPI Mr. Wayne Price, OCD-Hobbs District

TABLES

Table 1:Summary of Laboratory Analysis of Soil Samples,
Texaco Exploration and Production, Inc.,
Cooper-Jal South Injection Station Emergency Overflow Pit,
Lea County, New Mexico

Borehole Number	Sample Date	Sample Depth, Feet BGL	Chloride mg/kg
BH-1	8/22/97	15-17	580
		20-22	970
		30-32	580
		40-42	1,800
		50-52	1,400
		60-62	1,300
		70-72	1,100
		80-82	2,500
		90-92	770
		100-102	750
BH-11-1	9/09/97	110-112	500
		120-122	540
		130-132	1,200
		140-142	210

Notes:

1. BGL: Denotes sample depth in feet below ground

2. mg/kg: Denotes concentration in milligrams per killogram

APPENDIX A

Laboratory Reports

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 AX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705

August 28, 1997 Receiving Date: 08/26/97 Sample Type: Soil Project No: NA Project Location: Lea County, NM Prep Date: 08/28/97 Analysis Date: 08/28/97 Sampling Date: 08/22/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco Cooper-Remo\ Jal Central TB

TA#	FIELD CODE	CHLORIDE (mg/kg)
T80349	BH-1 (15-17')	580
T80350	BH-1 (20-22')	970
T80351	BH-1 (30-32'	580
T80352	BH-1 (40-42')	1,800
T80353	BH-1 (50-52')	1,400
QC	Quality Control	510

Reporting Limit	0.5
RPD	2
% Extraction Accuracy	100
% Instrument Accuracy	102

METHODS: SM 4500 CI-B. CHEMIST: JS CHLORIDE SPIKE: 10,000 mg/kg Chloride. CHLORIDE QC: 500 mg/L CHLORIDE.

DATE

Director, Dr. Blair Leftwich

6701 Aberdeen Avenue Lubbock, Texas 79424 806 • 794 • 1296 AX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705

September 02, 1997 Receiving Date: 08/26/97 Sample Type: Soil Project No: NA Project Location: Lea County, NM Prep Date: 08/29/97 Analysis Date: 08/29/97 Sampling Date: 08/22/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco Cooper-Remov Jal Central TB

TA#	FIELD CODE	CHLORIDE (mg/kg)
T80354	BH-1 (60-62')	1,300
Т80355	BH-1 (70-72')	1,100
T80356	BH-1 (80-82')	2,500
QC	Quality Control	504

Reporting Limit

RPD	3
% Extraction Accuracy	88
% Instrument Accuracy	100
•	•

METHODS: SM 4500 CI-B. CHEMIST: JS CHLORIDE SPIKE: 10,000 mg/kg Chloride. CHLORIDE QC: 500 mg/L CHLORIDE.

Director, Dr. Blair Leftwich

DATE

0.5

YSIS, INC

6701 Aberdeen Avenue Lubbock, Texas 79424 606•794•1296 FAX 806•794•1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705

September 11, 1997 Receiving Date: 08/26/97 Sample Type: Soil Project No: NA Project Location: Lea County, NM Prep Date: 09/08/97 Analysis Date: 09/08/97 Sampling Date: 08/22/97 Sample Condition: Intact & Cool Sample Received by: JH Client/Project: Texaco Cooper-Remo\ Jal Central TB

TA#	FIELD CODE	CHLORIDE (mg/kg)
 T80357	BH-1 (90-92')	770
T80358	BH-2 (100-102')	750
QC	Quality Control	26
Departing Limit		20
Reporting Limit		20

RPD	0
% Extraction Accuracy	102
% Instrument Accuracy	102

METHODS: EPA 300.0. CHEMIST: RC CHLORIDE SPIKE: 25 mg/kg Chloride. CHLORIDE QC: 25 mg/L CHLORIDE.

Director, Dr. Blair Leftwich

9-11-97

DATE

YSIS, INC CE

∠#~

JEST ethod No.)	əp	, m	608 PH, TD ec. (Air)	PLM (ASbe PLM (Asbe Alpha Beu Bob, TSS, Bob, TSS, Pest, 808/ PCB's 8080							Date: X/22/	AIRBILL #	OTHER:	RUSH Charges	Authorized: Yes No	
ANALYSIS REQUEST (Circle or Specify Method		8560/624 es B& Cd	4 Vol. 8240/0 1163 1163 1163 1163 1163 1163 1163 116	CC.MS Semi GC.MS Volati RCLP Semi RCL TCLP Volati	14/10/	1400-					SAMPLED BY. (Print & Sign)	SAMPLE SHIPPED BY: (Circle) FEDEX	HAND DELIVERED UPS	HIGHLANDER CONTACT PERSON:		
of Custody	HIGHLANDEK EN VIKUNMENTAL CUKF. 1910 N. Big Spring St. Midland, Texas 79705 Fax (915) 682-4559 Fax (915) 682-3946	CLIENT NAME: SITE MANAGER. 29 PRESERVATIVE OLPO	Tel lentel TB CONTA	BLEX 8050		~					Red modifiered By: Signature) Date: 2/25/91 Received BY: (Signature) L. Date: 6 25/91	Date:	RELINQUISHED BY: (Signature) Date: RECEIVED BY: (Signature) Date: Time:	RECEIVING LABORATORY: LABORATORY: CILVED BY: (Signature)	AUDICESS:	NDITION WHEN RECEIVED: MATRIX: W-Water A-Air SD-Solid REMARKS: S-Soli SL-Sludge 0-Other

ļ

|

ļ

ł

ļ

ļ

1

Ì

6701 Aberdeen Avenue Lubbock, Texas 79424 206 • 794 • 1296 FAX 806 • 794 • 1298

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705

September 29, 1997 Receiving Date: 09/16/97 Sample Type: Soil Project No: NA Project Location: Lea Co., NM Prep Date: 09/26/97 Analysis Date: 09/26/97 Sampling Date: 09/09/97 Sample Condition: Intact & Cool Sample Received by: JH Client Name: Texaco E & P Project Name: Texaco Cooper-Jal Central TB

CHLORIDE

TA#	FIELD CODE	(mg/kg)	
T81670	B11-1 (110-112')	500	
T81671	B11-1 (120-122')	540	
T81672	B11-1 (130-132')	1,200	
T81673	B11-1 (140-142')	210	
QC	Quality Control	20.9	
REPORTING LIMIT		20	
RPD		2	
% Extraction Accuracy		85	
% Instrument Accuracy		88*	

METHODS: EPA 300.0. CHEMIST: RC CHLORIDE SPIKE: 25 mg/kg CHLORIDE. CHLORIDE QC: 22 mg/L CHLORIDE.

9-29-92 DATE

Director, Dr. Blair Leftwich

T										 	1						ļ			- 013		 		
						<u> </u>	7. 1.1	• >	• `		+	<u>_</u>					<u> </u>			23			No	
						<u></u>	1-1-1-		<u>· `</u>	<u> </u>		-								5.2		rges	÷	
							əqsy) MId								<u> </u>					5	R: Results by:	RUSH Charges	iorize	
3	No.)						ile ammad Is ammad												Date: Time:	ARBILL # [35	ER: Resu	RUS	Auth Yes	
	, ° o			əbi	old) ,		BOD' LZS,				1-	1					ļ		а́н	AIRB	OTHER			
	Rethod Method	<u> </u>					Pcst. 808					-+									\uparrow	\geq		
	REQU			52	9/0228		mes sw.39					1				1				S	S	No	4	P
PAGE:	ANALYSIS REQUEST or Specify Metho			Þä	38 \0 828	3/0778	CC'NS AºI'												Sign	(Circle) BUS	5	PERSON	$\hat{\mathcal{T}}$	٦ ×
PA	ALY S					Volatile	RCI Semi										$\left\{ - \right\}$		at &	BY: (V	(
	ം					zəli	TCLP Volat								1				(Pri	ED	G2	CONT		į I
	(Circl						Total Metal TCLP Metal					\dashv							BK	Idiths	TINE	DER		
			-11 40	-3 8	<u> </u>		PAH 8270		<u> </u>	1	+-	\pm							SAMPLED BY: (Print & Sign)	SAMPLE SHIPPED BY: FEDEX	HAND DELIVERED	HIGHLANDER CONTACT		
							Hdl			\square									SAM	SAMPLI FEDEX	HAN	HIG		
							NTBE 8020,				_	\dashv							5					•
		1			60		COOL YUNG		1	1									H			ll C		
Custody Record	-			o	PRESERVATIVE METHOD	·· ·· ·	NONE		1	1								1	25				لد	
	Ξl	2		394	ERV		ICE												Fin				10	RKS
ġ		K		682-3946	M		EONH		ļ								<u> </u>	ļ	Date: Time:	Date:	Date: Time:		88	REMARKS
ρ		<u>C</u>		I	<u>щ</u>		HCL		<u> </u>			_			<u> </u>					Date	Å Ë		0	
t		S		(915)	SHENI		LITTERED (-	+		-+							+		ŀ		TIME:	
h	יוצ	1		6)		-		[\uparrow	1-		\dashv		<u> </u>	+	1	1				l I			
+	ן ב מ	Y		Fax																	1	600	<u>}</u>	SD-Solid 0-0ther
1	3	2				U.													nati	mati	TEL	atter 1	26	
	וו	ENVIRONMENTAL CORP.				1	z												RECEIVED BY: (Signature)	is)	RECEIVED BY: (Signature)	(Signaturg)	9/11/0	A-Air SL-Sludge
५ (5 ;	X	1910 N. Big Spring St. Midland, Texas 79705		L	10	SAMPLE IDENTIFICATION	-		-	~	_									VA O	FILL RANGE		-1V-12
¢	3	Z	207 797		~		1FIC.	:	<u>،</u> ا	Ì		105)							CEIVE	EN EN	CEIVE			
•;	CIIAILI	0	rii S		VAGER:	15	-/-		1 :	7	ſ	.							REC	E E E E E E E E E E E E E E E E E E E	RE		D H N H N H N H	1 # A
2	Ĩ	K	Sp Xa:		NAG 1		MPLE IDEN	01			x	141							R	চাৰ	1			#-T ater S-Soil
	ן <i>ר</i>	Z	Че Че		SITE MANAGER	J.					1.	3							٤ľ	100				. –
7	and	Z	щ ц			.	ST S												23	15			20	MATRIX:
			N. ap(i i i i i i i i i i i i i i i i i i i													5	6				X
4	اي	2	d lo			NA		1		3	11	12							Date: Time:	Date: Time:	Date:	2 Z III		
	e	E	19. M			ROJECT	ERAB		, -		>	$\overline{}$							-			1	6	
	<u>d</u> a	8				PROJECT NAME:	KATRIX COMP.	1						ļ		1	1	1].				STATE:	ė
	Request	5		~				\vdash	<u>}_`</u>	<u>, 1-</u> ,		<u>רי</u>			-		+	-	_ ا	م م	11	1	STA	CEIVE
		LA		555	2		TIME													NB)	ature	4		N RE
	Analysis	HIGHLANDER		(915) 682-4559			 ધ્ર	1		1		5		-				+	(Signature)	RELINQUISHED BY: (SIEDetyel)	(Sign	RECEIVING LABORATORY:		SAMPLE CONDITION WHEN RECEIVED: MATRIX:
	Σ,	3		68;	E -		DATE	1			2	121							BY		ä	ORAT		NOLL
	13	H		15)	CLIENT NAME:	PROJECT NO.:	LAB I.D. NUMBER	81hm	2 2	- - -	1	R		<u> </u>			-	+	RELINQUISHED BY:		復	E		IdNo
		and the second second			1 5-	1 <u>2</u>				- 1 6 -		<u> 4</u>				1			193.4	193 -		119	ADDRESS: CITY: CONTACT:	10

816

ł

ļ

		HARDNESS	3,900			- 1
	FAX 806+794+1298 Prep Date: 09/19/97 Analysis Date: 09/19/97 Sampling Date: 09/16/97 Sample Condition: Intact & Cool Sample Received by: JH Project Name: Texaco E & P	SODIUM HAF (mg/L)	4,300 53	<0.40 0.4 528-106%	2 104 105	9.2 4. 97 Date
	FAX 806+794+1298 Prep Date: 09/19/97 Analysis Date: 09/19/97 Sampling Date: 09/16/97 Sample Condition: Intact & Co Sample Received by: JH Project Name: Texaco E & P	CALCIUM (mg/L)	520 52	0.01	2 94 103	ł
, INC.	806• 754• 1296 FOR IS CORP.	MAGNESIUM (mg/L)	630 51	1.0 528-106%	- 1 02	
• CEANALYSIS	Libbock. Texas 79424 806 • 754 • ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	POTASSIUM (mg/L)	8 20	<0.30 1.0 528-106%	- 1 99 105	CALCIUM, SODIUM. CIUM, SODIUM. Muich
ULLULULTRAC	5701 Aberseen Avenue Jubbo AN AN Sepetmber 24, 1997 Atte Receiving Date: 09/18/97 191 Sample Type: Water Mid Project No: 996 Nid Project Location: Texaco/Cooper-Jal Central Unit Lea County	Field Code	MW-1 Quality Control		×.	105%. MAGNESIUM, CAL SNESIUM, CAL
In the second se	5701 A Sepetmber 24, 1997 Receiving Date: 09/18/97 Sample Type: Water Project No: 996 Project Location: Texaco/ Lea Co	ΤA#	T81829 QC	METHOD BLANK Reporting Limit HIGH*	RPD % Extraction Accuracy % Instrument Accuracy	*Note: High is out of limits of 95-105%. METHODS: EPA SW 846-6010. CHEMIST: RR SPIKE: 100 mg/L POTASSIUM, MAGNESI QC: 50 mg/L POTASSIUM, MAGNESI QC: 50 mg/L POTASSIUM, MAGNESI
10'd						ASS:01 70-05-qa2

September 20, 1937 Attention: Ike Tavarez Prep Date: 04/1897 Receiving Date: 04/1897 Sample Conflicor. Intact & Cool Sample Conflicor. Intert &	5701 Aberdeen Averue Lubbock, Texes 79424 806+794+1296 FAX 805+794+1298 ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP.	Lubsock, ANALYTI HIGHLAN	Lubcock, Texes 79424 806 • 79 ANAL YTICAL RESULTS FOR HIGHLANDER SERVICES CORP	806+794+1296 S FOR SES CORP.	FAX 805•	FAX 805•754•1298
pH TDS CHLORIDE SULFATE (s.u.) (mg/L) (mg/L) (mg/L) 7.1 15,000 8,500 1,100 7.0 22 25 7.0 22 25 7.0 22 25 100 21 101 100 50 50 100 50 50	September 29, 1997 Receiving Date: 09/18/97 Sample Type: Water Project No: 996 Project Location: Texaco/Cooper-Jal Central Unit Lea County	Attention 1910 N. E Midland,	: Ike Tavarez Big Spring Stre TX 79705	je	Prep Date: Analysis Da Sampling D Sample Co Sample Reo Project Nan	09/18/97 te: 09/16/97 ate: 09/16/97 dition: Intact & Cool seived by: JH be:Texaco E & P
7.1 15,000 8,500 1,100 7.0 - 22 25 25 0 2 0 100 100 - 1 101 100 - 100 100 100 ALKALINITY/TDS/pH: JS	FIELD CODE	рН (s.u.)	TDS (mg/L)	CHLORIDE (mg/L)	SULFATE (mg/L)	ALKALINITY (mg/L as CaCo3)
0 2 2 0 100 91 101 90 100 100 ALKALINITY/TDS/pH: JS		7.1 7.0	15,000 	8,500 22	1,100 25	280
ALKALINITY/TDS/pH: JS	RPD % Extraction Accuracy % Instrument Accuracy	0 100	~	0 <mark>6</mark> 80	1 101 100	0
ALKALINITY/TDS/pH: JS	REPORTING LIMIT	I	I	50	50	1.00
	METHODS: EPA 300.0, 310.1, 340.2, 150.1, 160.1 CHEMIST: CHLORIDE/SULFATE/FLUORIDE: RC SPIKE: 25 mg/L CHLORIDE; 25 mg/L SULFATE. QC: 23 mg/L CHLORIDE; 25 mg/L SULFATE.		HITY/TDS/PF	SL SL		5-29-97

L

İ

i

i.

į.

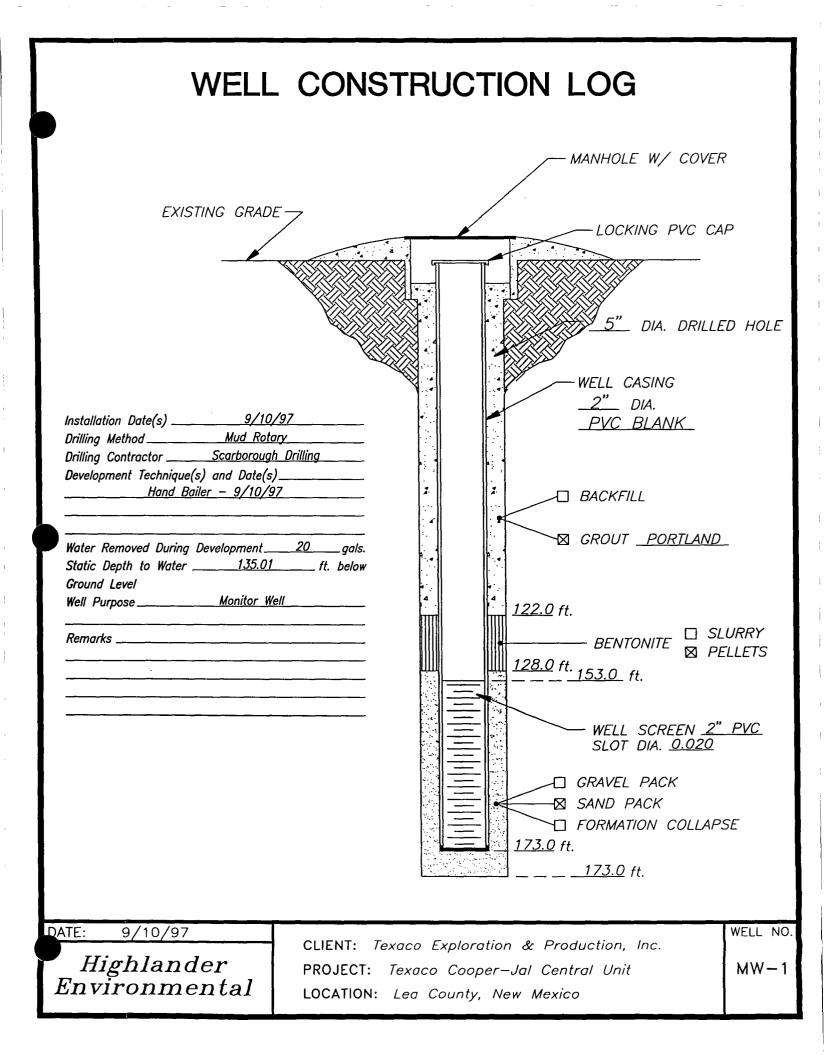
	Z P Cool	HARDNESS	3,900	I	,		(5-9-
LILANUL	•1298 10/02/97 te: 10/02/97 ate: 09/16/97 ndition: Intact & ceived by: JH re: Texaco E {	(mg/l)	4,300 51	0.4	0 102 102		Date
Mullul	FAX 806• /94• 1298 Prep Date: 10/02/97 Analysis Date: 10/02/97 Sampling Date: 09/16/97 Sample Condition: Intact & Cool Sample Received by: JH Project Name: Texaco E & P	CALCIUM (mg/L)	520 52	0.01	109		•
, INC.	806•794•1296 S FOR ES CORP. at	MAGNESIUM (mg/L)	630 51	0.01	o <u>40</u> 10		-
• NALYSIS	ESULTS ERVICE warez ng Stree 05	POTASSIUM (mg/L)	22	0.3	1 109 104	SODIUM. IIUM.	
E	01 Aberdeen Avenue Lu 8/97 caco/Cooper-Jal Central Uni a County	Field Code	MW-1 Quality Control		uracy	METHODS: EPA SW 846-6010. CHEMIST: RR SPIKE: 100 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM. QC: 50 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM.	Director, Dr. Blair Leftwich
	6701 At October 06, 1997 Receiving Date: 09/18/97 Sample Type: Water Project No: 996 Project Location: Texaco/ Lea Co	TA#	T81829 QC	Reporting Limit	RPD % Extraction Accuracy % Instrument Accuracy	METHODS: EPA SW 846-6010. CHEMIST: RR SPIKE: 100 mg/L POTASSIUM, QC: 50 mg/L POTASSIUM, MAG	

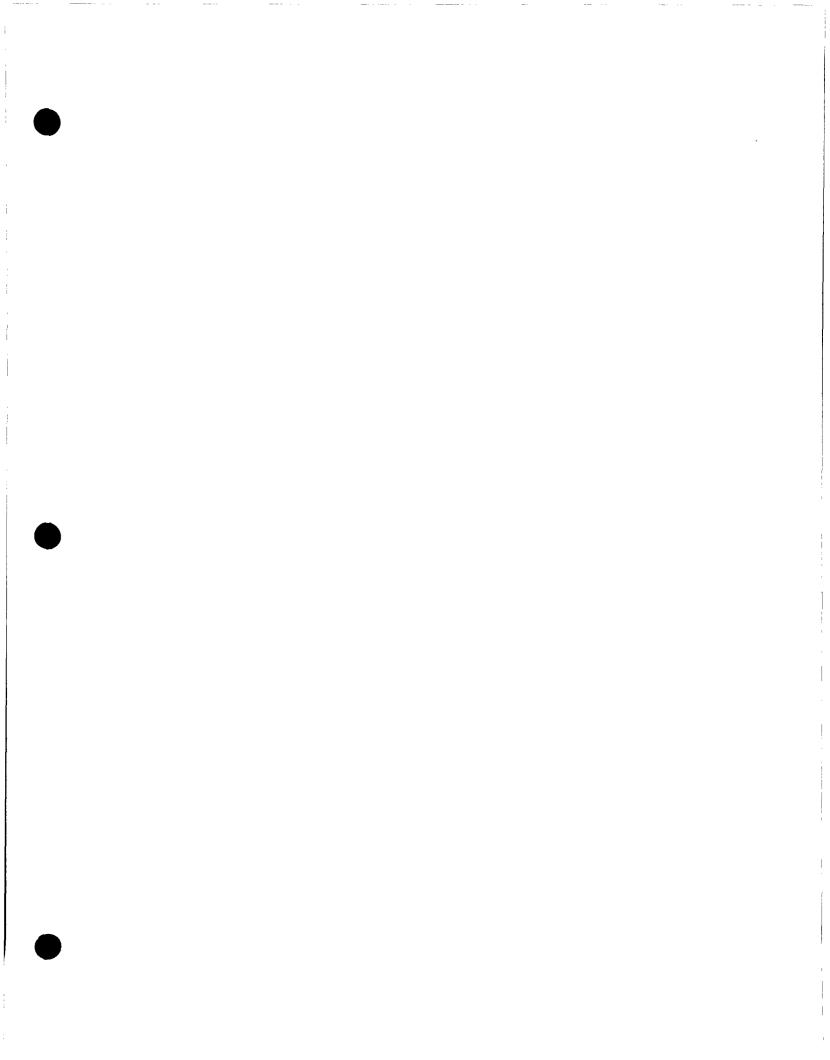
6701 Aberdeen Avenue Lubbock, Texas 79424 806+794+1296 FAX 806+794+1298 6701 Aberdeen Avenue Lubbock, Texas 79424 806+794+1296 FAX 806-794+1298 ANALYTICAL RESULTS FOR ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Prep Date: 09/18/97 September 29, 1997 Attention: Ike Tavarez Prep Date: 09/18/97 Prep Date: 09/18/97 Semple Type: Water Midland, TX 79705 Sampling Date: 09/18/97 Sampling Date: 09/18/97 Project No: 996 Project Location: Texaco/Cooper-Jal Central Unit TX 79705 Sample Condition: Intact & Cool Project Location: Texaco/Cooper-Jal Central Unit Lea County Project Name: Texaco E & P	pH TDS CHLORIDE SULFATE ALKALINITY (s.u.) (mg/L) (mg/L) (mg/L as CaCo3)	7.1 15,000 8,500 1,100 280 7.0 — 22 25 —	0 1 1 0 100 1 2 91 1 101 1 100 100	50 50 1.00	340.2, 150.1, 160.1. EFELUORIDE: RC ALKALINITY/TDS/pH: JS mg/L SULFATE. 3/L SULFATE.
6701 Aberdeen Avenue September 29, 1997 Receiving Date: 09/18/97 Sample Type: Water Project No: 996 Project Location: Texaco/Cooper-Jal Central Unit Project Location: Texaco/Cooper-Jal Central Unit	TA# FIELD CODE	T81829 MW-1 QC Quality Control	RPD % Extraction Accuracy % Instrument Accuracy	REPORTING LIMIT	METHODS: EPA 300.0, 310.1, 340.2, 150.1, 160.1. CHEMIST: CHLORIDE/SULFATE/FLUORIDE: RC SPIKE: 25 mg/L CHLORIDE; 25 mg/L SULFATE. QC: 23 mg/L CHLORIDE; 25 mg/L SULFATE.

_											. 1					,	<u></u>			5					
					• •	100	T ;	11110						·						-759-			No	MASA	Ġ.
								· 1/1												S	1	RUSH Charges	į	Ē	Highlander Environmental Corp
					- 1			atou (Asber MIA (Asber												ARBIL # 155-	Respitts by:	ISH CI	Yes	J G	genta
3	No.)						pH, TDS	demme Sp		_									Date: Time:	RBILL	Re	~~>	5	വ	dronn
	QUEST Method				- the	10[4]) ' <u>'</u>	809	Pest. 808/			-									AL AL	5	5		L	ing L
	EQUE				07	9/0728		BCB's 8080 PCB's 8080												5		1	"	Ϋ́	lande
į	YSIS RI Specify			·····,		· · · · · · · · · · · · · · · · · · ·		CC'ME API								×.			Sign)	剥	C-NU-S-D-D-D			SHEET	High
PAGE:							Aolactic	RCI TCLP Semi											k K	3Y: ((Į			Ŵ	Py to
	ANA ile or						zəl	TCLP VOLA											(Print	SAMPLE SHIPPED BY: (Circle) FEDEX		HIGHLANDER CONTACT	ماريس	À	old copy
	, (Circle							Total Metal							├				0 <i>BY</i> :	SHIP		¥ .	10	HE HE	Return Gold
								0758 HA9		P-P-	eren er				1			• 2	SAMPLED	DEX	HAND DELIVERED	a la	14	ACHED	Retu
							209/	TPH MTBE 8020			· 	·							NS.	SE.		ž	•	F	copy
							Z09,	BTEX 8020/											्रम			8	-	4 T	
						IVE		NONE			· 			<u> .</u>											AollaY 1
r J					682-3946	PRESERVATIVE METHOD		NOME ICE	<u>></u>		<u> · · ·</u>												4	SEE	Lab retains
C		2			8-2 2-2	RESE		EONH						· ·					ii ii				9:304	REMARKS SE	49
Record		CURP			ဖန	۵. ۱		НСГ	-				ļ						Date: Time:	Date: Time:	Date: Time:		0		! •
					(915)	SHINI	(N/)	LITTERED () NUMBER OF	N		<u> </u>						· ·						TINE:		k copy
Custor S	z I	UNTAL							77				<u> </u>			1 .			$ \mathbb{R} $			2		olid	Pini
ť		Y.		• •	Fax		1												The second secon	(ure)	(en	(Fiered D)	44	SD-Solid 0-Other	aceive
5		Σ					lum	. ·										-	Signature	(Signature)	(Olg hature)	NSC NSC	2		2.89
- '	11	E	نب	ດ		2	1	NO					.						XII A		Ä	THE R		A-Air SI-Sludge	ount
and Chain of	۲ (۲	N.	ъл 1	Midland, Texas 79705		site manager- //: /augicz-	1	Lec, Courty. sample identification] .	1	· .	12	RECEIVED BY	REFEREN BY		6	A-Air S1-Siv	- Accounting receives Pink
		5	in	~		14 1 V C	len ha	DENTIFIC									`	.*	RECEI	RECE	RECE	E.) ä	3-	
Ч а		X	Spi	as		AGE								ŀ							7	2	29	To S-	tite o
C	2	Z	ρÛ	lex		KAN K	Derl-JA	LCC , (AMPLE II		ľ			:					1		2					
Υ		S	Ë,	<u> </u>		SITE	201	N NS		•										56				MATRIX	retai
- F C	4 I	E	ż	and					1111										91	619				R	AGE
÷	ا اړ	2	10	[d]			N. N.	1								ľ			Date: Time:	Date: Time:	Date	•• _{••}		•	Kar
U C F	ű]	E	19.	W	•		PROJECT NAME	EVAS		1						<u> </u>			-	1			iii		- Project Manager retains White copy
Ī	neanhau	3						KATRIX TOMP.	<u>} </u>	<u> </u>				\vdash		+		╂──		4	ŀ		STATE: PHONE:	ដ	
		LA.	1910 N. Big Spring St.		559	A. H.		TIME						1					ature)	R	ature)			I RECEIV	Please fill out all conies
	Allalysis	HI			(915) 682-4559			DATE	100	<u>.</u>	- 		+	+			+		r (Signature)	NN	(Signi	NTORY:		N THEN	out a
	T B	10			9 (NC NE	32	J		1	<u> </u>								A A		A C	ABOR		DITIO	
		H			(915	CLIENT-NAME: 10 YI/10	PROJECT NO:	LAB I.D. NUMBER	SK29	X								$\left \right\rangle$	RELINQUISH	REMNOUSHED BY: N. BIE D. Y. B. C. B. B. D. B.	RELINQUISHED BY: (Signal	RECEIVING LABORATORY:	CUTY:	SAMPLE CONDITION WHEN RECEIVED.	Pleas

APPENDIX B

Borehole Sample and Well Construction Logs


SAMPLE LOG


MW-1

Boring/Well: Client: Project: Total Depth: Date Installed:

Texaco Exploration and Production, Inc. Texaco / Cooper-Jal Central Tank Battery 173 feet 9/9/97 - 9/10/97

DEPTH (Ft)	SAMPLE DESCRIPTION
0-5	Top soil, brown, fine grain sand, loose soil, some traces of clay matrix
5-10	Tan, fine grain sand, loose, some traces of caliche, clay encountered at 8.0'
10-15	80% clay material matrix, and 20 % tan, fine grain sand, loose
15-20	90% tan, fine grain sand, loose, and 10% white caliche, friable
20-30	90% tan, fine grain sand, loose, and 10% white caliche, friable
30-35	Caliche and limestone layer, dense formation, trace of fine grain sand
35-40	Tan, fine grain sand, clean, loose
40-50	Tan, fine grain sand, clean, loose
50-60	Tan, fine grain sand, clean, loose, some nodules of white caliche, friable
60-70	Tan, fine grain sand, clean, loose
70-80	Tan, fine grain sand, clean, loose, traces of white caliche layers, some dense
80-90	Tan, fine grain sand, clean, loose, traces of white caliche layers, friable, some dense
90-100	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
100-110	Tan, fine grain sand, clean, loose, traces of white caliche layers, damp
110-120	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
120-130	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
140-150	Tan, fine grain sand, clean, loose, traces of cemented sandstone, moist at 140 '
150-160	Tan, fine grain sand, clean, loose, traces of layered cemented sandstone
160-170	Tan, fine grain sand, clean, loose, traces of thin layered cemented sandstone
170-173	Tan, fine grain sand, clean, loose, traces thin layers of cemented sandstone, redbed encountered at 173.0'
173	Redbed

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE, NEW MEXICO 87505 (505) 827-7131

December 16, 1997

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT NO. P-410-431-234</u>

Mr. Rodney Bailey Texaco E&P Inc. 205 E. Bender Hobbs, New Mexico 88240

RE: COOPER-JAL UNIT LEA COUNTY, NEW MEXICO

Dear Mr. Bailey:

The New Mexico Oil Conservation Division (OCD) has reviewed Texaco Exploration & Development's (TEXACO) October 10, 1997 "PRELIMINARY INVESTIGATION FINDINGS, NOTIFICATION OF RELEASE AND PROPOSED ADDITIONAL INVESTIGATIONS, EMERGENCY OVERFLOW PIT (CLOSED), TEXACO EXPLORATION AND PRODUCTION, INC., COOPER-JAL UNIT SOUTH INJECTION STATION AND TANK BATTERY, NW/4, SE/4, SECTION 24, TOWNSHIP 24 SOUTH, RANGE 36 EAST, LEA COUNTY, NEW MEXICO". This document which was submitted on behalf of TEXACO by their consultant Highlander Environmental Corp. contains TEXACO's work plan for investigating the extent of ground water contamination related to an unlined emergency pit at the Cooper-Jal Unit South Injection Station located in Unit J, Section 24, T24S, R36E NMPM, Lea County, New Mexico.

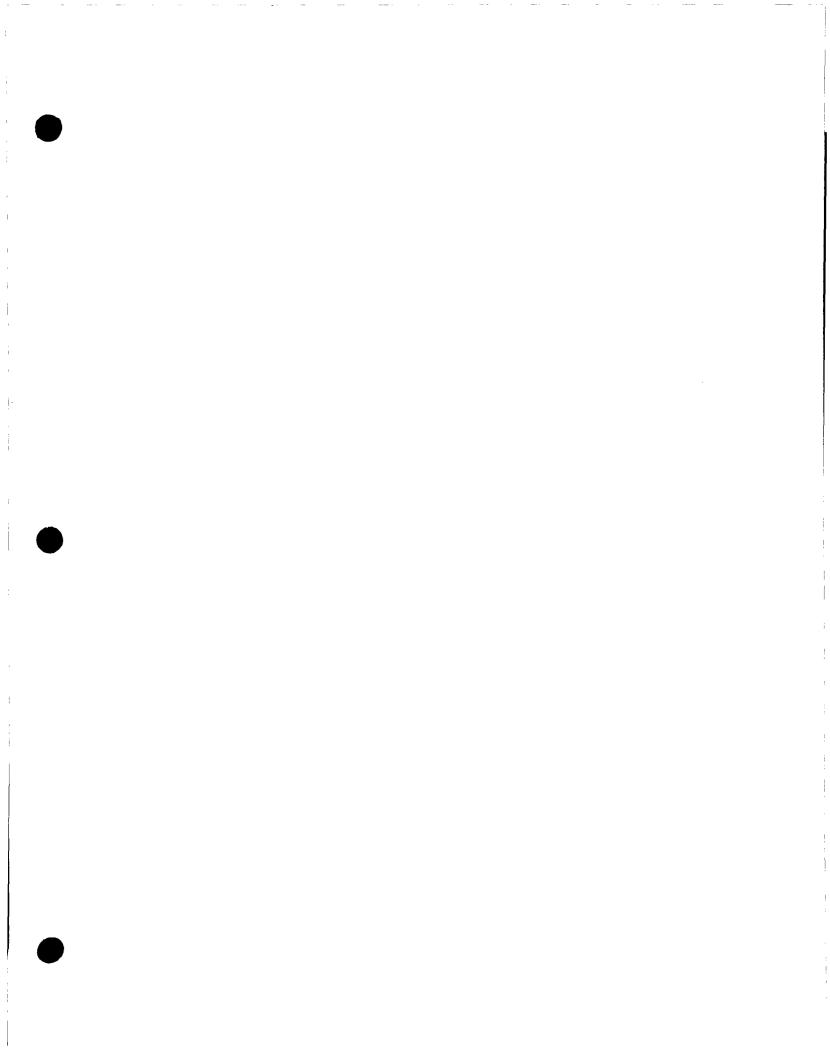
The above referenced work plan is approved with the following conditions:

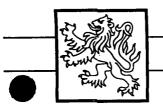
- 1. Due to the apparent presence of a salt density driven plume, the OCD requires that TEXACO install shallow and deep nested monitor wells at each location.
 - a. The shallow nested monitoring wells will be constructed with 15 feet of well screen, with 10 feet of screen below the top of the water table and 5 feet of screen above the water table. The remainder of the well will be constructed as outlined in the above referenced work plan.

Mr. Rodney G. Bailey December 16, 1997 Page 2

- b. The deep nested monitoring wells will be constructed with 10 feet of well screen placed directly on the top of the red beds. The remainder of the well will be constructed as outlined in the above referenced work plan.
- 2. TEXACO will sample and analyze ground water from all monitor wells for benzene, toluene, ethylbenzene and xylene (BTEX), major cations and anions, total dissolved solids (TDS), WQCC metals and polynuclear aromatic hydrocarbons (PAH) using EPA approved methods and quality assurance/quality control (QA/QC).
- 3. All wastes generated will be disposed of at an OCD approved facility.
- 4. TEXACO will submit a comprehensive report on all of the investigations to the OCD by March 13, 1998. The report will be submitted to the OCD Santa Fe Office with a copy provided to the OCD Hobbs District Office. The report will contain:
 - a. A description of all past and present investigation activities including conclusions and recommendations.
 - b. A summary of all past and present soil and water quality sampling results including copies of the laboratory analytical data sheets and associated QA/QC data.
 - c. Geologic logs and well completion diagrams for all past and present monitor wells and boreholes.
 - d. A site map showing the location of all monitor wells, boreholes and relevant site features.
 - e. A water table elevation map constructed using the water table elevation of ground water in all site monitor wells.
- 5. TEXACO will notify the OCD at least 1 week in advance of all scheduled activities such that the OCD has the opportunity to witness the events and split samples.

Please be advised that OCD approval does not relieve TEXACO of liability should the investigation actions fail to adequately define the extent of contamination related to TEXACO's activities, or if contamination exists which is outside the scope of the work plan. In addition, OCD approval does not relieve TEXACO of responsibility for compliance with any other federal, state or local laws and regulations.


Mr. Rodney G. Bailey December 16, 1997 Page 3


If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

xc: Wayne Price, OCD Hobbs Office Mark J. Larson, Highlander Environmental Corp.

Highlander Environmental Corp.

Midland, Texas

March 2, 1998

Mr. William C. Olson, Hydrogeologist State of New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Re: Request for Extension for Report Submittal, Texaco Exploration and Production, Inc., G. L. Erwin "A&B" Federal NCT-2 Tank Battery and Cooper-Jal Unit South Injection Station, Lea County, New Mexico

Dear Mr. Olson:

Highlander Environmental Corp. (Highlander) has been retained by Texaco Exploration and Production, Inc. (Texaco) to conduct subsurface investigations at the above-referenced facilities (Sites). The investigations are being conducted in accordance with work plans approved by the New Mexico Oil Conservation Division (OCD), which requires submittal of a final report by March 1, 1998, for the G. L. Erwin Site and March 13, 1998, for the Cooper-Jal Unit.

As of February 28, 1998, Highlander has completed the fieldwork associated with the Sites. However, the laboratory analysis is not complete, therefore, it is necessary to request extensions for submittal of the final reports. Highlander requests an extension of 30 days from the deadline for each Site in order to receive and evaluate the laboratory data, and prepare the reports. The final report for the G. L. Erwin Site will be submitted by April 1, 1998 and by April 13, 1998 for the Cooper-Jal Site.

Highlander appreciates your consideration of this request. Please call if you have any questions.

Sincerely, Highlander Environmental Corp.

Mark J. Larson Senior Project Manager

cc:

Rodney Bailey, Texaco Exploration and Production, Inc.

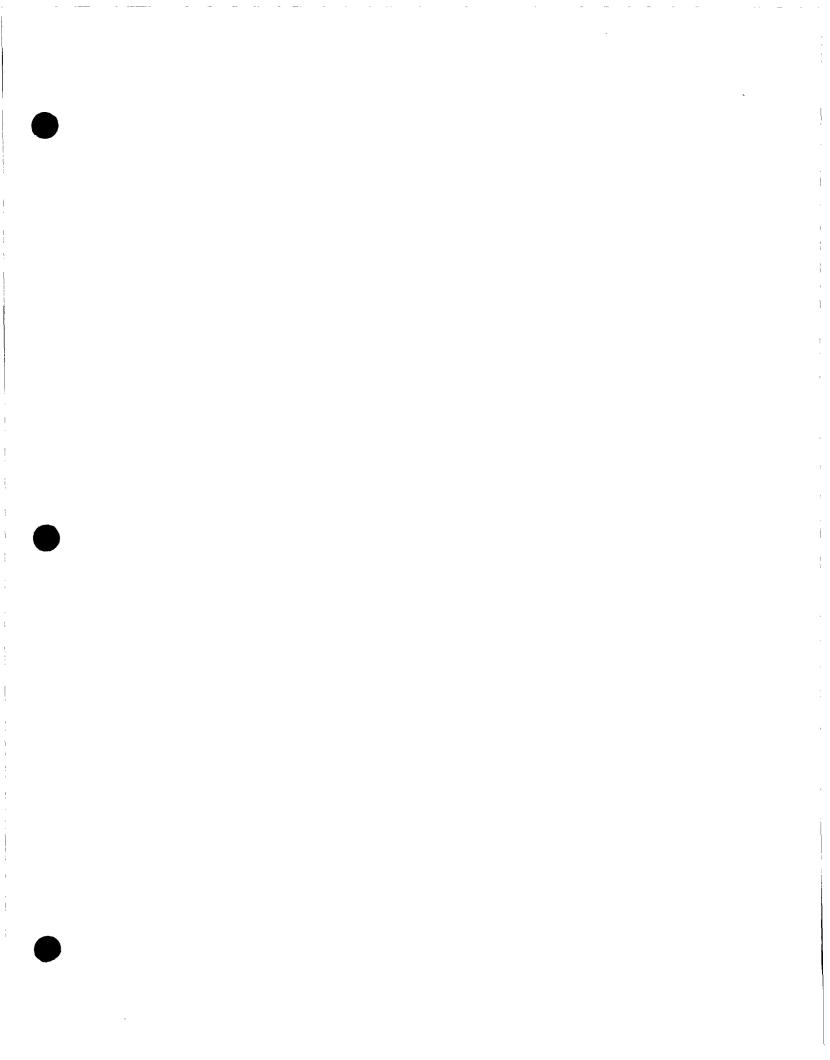
March 2, 1998

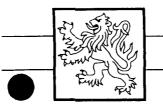
Mr. William C. Olson Hydrogeologist **Environmental Bureau** State of New Mexico **Oil Conservation Division** 2040 South Pacheco Santa Fe, New Mexico 87505

Re: Request for Extension for Report Submittal, Texaco Exploration and Production, Inc., G. L. Erwin "A&B" Federal NCT-2 Tank Battery and **Cooper-Jal Unit South Injection Station, Lea County, New Mexico**

Dear Mr. Olson:

Highlander Environmental Corp. (Highlander) has been retained by Texaco Exploration and Production, Inc. (Texaco) to conduct subsurface investigations at the above-referenced facilities (Sites). The investigations are being conducted in accordance with work plans approved by the New Mexico Oil Conservation Division (OCD), which requires submittal of a final report by March 1, 1998, for the G. L. Erwin Site and March 13, 1998, for the Cooper-Jal Unit.


As of February 28, 1998, Highlander has completed the fieldwork associated with the Sites. However, the laboratory analysis is not complete, therefore, it is necessary to request extensions for submittal of the final reports. Highlander requests an extension of 30 days from the deadline for each Site in order to receive and evaluate the laboratory data, and prepare the reports. The final report for the G. L. Erwin Site will be submitted by April 1, 1998 and by April 13, 1998 for the Cooper-Jal Site.


Highlander appreciates your consideration of this request. Please call if you have any questions.

> Sincerely, Highlander Environmental Corp.

Mark J. Larson Senior Project Manager Rodney Bailey, Texaco Exploration and Production, Inc.

cc:

Highlander Environmental Corp.

Midland, Texas

April 16, 1998

Mr. William C. Olson, Hydrogeologist Environmental Bureau Oil Conservation Division Energy, Minerals and Natural Resources Department 2040 S. Pacheco Santa Fe, New Mexico 87505

Re: Request for Extension for Continuance of Subsurface Investigation, Texaco Exploration & Production, Inc., Cooper-Jal Unit South Injection Station, Lea County, New Mexico

Dear Mr. Olson:

This letter is written on behalf of Texaco Exploration & Production, Inc. (Texaco) and confirms our telephone conversation of April 15, 1998, regarding a time extension request for completion of investigations associated with the above-referenced matter. Highlander Environmental Corp. (Highlander) has been retained by Texaco to conduct the investigations.

Highlander has completed its initial investigations conducted in accordance with its work plan titled, "Preliminary Investigation Findings, Notification of Release and Proposed Additional Investigations, Emergency Overflow Pit (Closed), Texaco Exploration and Production, Inc., Cooper-Jal Unit South Injection Station and Tank Battery, NW/4, SE/4, Section 24, Township 24 South, Range 36 East, Lea County, New Mexico" (October 10, 1997). The New Mexico Oil Conservation Division (OCD) conditionally approved the work plan on December 16, 1997. The OCD requested that a report be submitted to the OCD by March 13, 1998. Due to the drilling contractor's schedule and receipt of data from the analytical laboratory, Highlander requested a thirty (30) day extension for submittal of the report. The extension was verbally approved by the OCD on March 9, 1998. Currently, Highlander has completed its investigations and has determined that additional investigations are required to determine the extent of impact to groundwater.

Per our April 15, 1998 telephone conversation, Highlander requests a sixty (60) day extension to complete the additional investigations. The additional investigations may include electromagnetic (EM-34) terrain conductivity surveying south and east of the Cooper-Jal South Injection Station, drilling and installation of groundwater monitoring wells, and collection and analysis of groundwater samples. Since it appears that the impact is principally associated with the deeper portion of the groundwater Mr.

William C. Olson April 16, 1998 Page 2

system, the additional wells, if installed, will be constructed as deep wells with approximately 10 feet of well screen placed directly on top of the red beds. The remainder of the well will be constructed as outlined in the work plan dated October 10, 1997.

Highlander appreciates your consideration of this request. Please call if you have questions.

Sincerely, Highlander Environmental Corp.

Mark J. Larson Senior Project Manager

cc: Mr. Rodney Bailey, Texaco Mr. Wayne Price, OCD-Hobbs District

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2049 S. PACHECO SANTA FE, NEW MEXICO 97505 (505) 927-7131

December 16, 1997

CERTIFIED MAIL RETURN RECEIPT NO. P-410-431-234

Mr. Rodney Baile / Texaco E&P Inc. 205 E. Bender Hobbs, New Mexico 88240

RE: COOPER-JAL UNIT LEA COUNTY, NEW MEXICO

Dear Mr. Bailey:

The few Mexico Oil Conservation Division (OCD) has reviewed Texaco Exploration & Decomposition (TEXACO) October 10, 1997 "PRELIMINARY INVESTIGATION FINDINGS, NOTIFICATION OF RELEASE AND PROPOSED ADDITIONAL INVESTIGATIONS, EMERGENCY OVERFLOW PIT (CLOSED), TEXACO EXPLORATION AND PRODUCTION, INC., COOPER-JAL UNIT SOUTH INJECTION STATION AND TANK BATTFRY, NW/4, SE/4, SECTION 24, TOWNSHIP 24 SOUTH, RANGE 36 EAST, LEA COUNTY, NEW MEXICO". This document which was submitted on behalf of TEXACO by their consultant Highlander Environmental Corp. contains TEXACO's work plan for investigating the extent of ground water contamination related to an unlined emergency pit at the Cooper-Jal Unit South Injection Station located in Unit J, Section 24, T24S, R36E NMPM, Lea County, New Mexico.

The above referenced work plan is approved with the following conditions:

- 1. Due to the apparent presence of a salt density driven plume, the OCD requires that TEXACO install shallow and deep nested monitor wells at each location.
 - a. The shallow next of monitoring wells will be constructed with 15 feet of well screen, with 10 feet of screen below the top of the water table and 5 feet of screen above the water table. The remainder of the well will be constructed as outlined in the above referenced work plan.

Mr. Rodney G. Bailey December 16, 1997 Page 2

- b. The deep nested monitoring wells will be constructed with 10 feet of well screen placed directly on the top of the red beds. The remainder of the well will be constructed as outlined in the above referenced work plan.
- 2. TEXACO will sample and analyze ground water from all monitor wells for benzene, toluene, ethylbenzene and xylene (BTEX), major cations and anions, total dissolved solids (TDS), WQCC metals and polynuclear aromatic hydrocarbons (PAH) using EPA approved methods and quality assurance/quality control (QA/QC).
- 3. All wastes generated will be disposed of at an OCD approved facility.
- 4. TEXACO will submit a comprehensive report on all of the investigations to the OCD by March 13, 1998. The report will be submitted to the OCD Santa Fe Office with a copy provided to the OCD Hobbs District Office. The report will contain:
 - a. A description of all past and present investigation activities including conclusions and recommendations.
 - b. A summary of all past and present soil and water quality sampling results including copies of the laboratory analytical data sheets and associated QA/QC data.
 - c. Geologic logs and well completion diagrams for all past and present monitor wells and boreholes.
 - d. A site map showing the location of all monitor wells, boreholes and relevant site features.
 - e. A water table elevation map constructed using the water table elevation of ground water in all site monitor wells.
- 5. TEXACO will notify the OCD at least 1 week in advance of all scheduled activities such that the OCD has the opportunity to witness the events and split samples.

Please be advised that OCD approval does not relieve TEXACO of liability should the investigation actions fail to adequately define the extent of contamination related to TEXACO's activities, or if contamination exists which is outside the scope of the work plan. In addition, OCD approval does not relieve TEXACO of responsibility for compliance with any other federal, state or local laws and regulations.

Mr. Rodney G. Bailey December 16, 1997 Page 3

If you have any questions, please contact me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist Environmental Bu eau

xc:

Wayne Price, OCD Hobbs Office Mark J. Larson, Highlander Environmental Corp. April 16, 1998

Mr. William C. Olson, Hydrogeologist Environmental Bureau Oil Conservation Division Energy, Minerals and Natural Resources Department 2040 S. Pacheco Santa Fe, New Mexico 87505

Re: Request for Extension for Continuance of Subsurface Investigation, Texaco Exploration & Production, Inc., Cooper-Jal Unit South Injection Station, Lea County, New Mexico

Dear Mr. Olson:

This letter is written on behalf of Texaco Exploration & Production, Inc. (Texaco) and confirms our telephone conversation of April 15, 1998, regarding a time extension request for completion of investigations associated with the above-referenced matter. Highlander Environmental Corp. (Highlander) has been retained by Texaco to conduct the investigations.

Highlander has completed its initial investigations conducted in accordance with its work plan titled, "Preliminary Investigation Findings, Notification of Release and Proposed Additional Investigations, Emergency Overflow Pit (Closed), Texaco Exploration and Production, Inc., Cooper-Jal Unit South Injection Station and Tank Battery, NW/4, SE/4, Section 24, Township 24 South, Range 36 East, Lea County, New Mexico" (October 10, 1997). The New Mexico Oil Conservation Division (OCD) conditionally approved the work plan on December 16, 1997. The OCD requested that a report be submitted to the OCD by March 13, 1998. Due to the drilling contractor's schedule and receipt of data from the analytical laboratory, Highlander requested a thirty (30) day extension for submittal of the report. The extension was verbally approved by the OCD on March 9, 1998. Currently, Highlander has completed its investigations and has determined that additional investigations are required to determine the extent of impact to groundwater.

Per our April 15, 1998 telephone conversation, Highlander requests a sixty (60) day extension to complete the additional investigations. The additional investigations may include electromagnetic (EM-34) terrain conductivity surveying south and east of the Cooper-Jal South Injection Station, drilling and installation of groundwater monitoring wells, and collection and analysis of groundwater samples. Since it appears that the impact is principally associated with the deeper portion of the groundwater Mr.

William C. Olson April 16, 1998 Page 2

system, the additional wells, if installed, will be constructed as deep wells with approximately 10 feet of well screen placed directly on top of the red beds. The remainder of the well will be constructed as outlined in the work plan dated October 10, 1997.

Highlander appreciates your consideration of this request. Please call if you have questions.

Sincerely, Highlander Environmental Corp.

Mark J. Larson Senior Project Manager

cc: Mr. Rodney Bailey, Texaco Mr. Wayne Price, OCD-Hobbs District

APPENDIX B

EM-34 Field Sheets

H:\Oil-Gas\996\Cooper-Jal Report

PROFILE NO: GRID SPACING: NOTES:	Base Station 25' E - W	25' CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	1/13/98 12:50 13:00
STATION. NO.	TATION 20 METER SCALE 20 ME NO. HD V		20 METER VD READING	SCALE	NOTES
А	14	100	31	100	
В	14	100	30	100	
С	15	100	32	100	
		1	Î		

Notes:

PROFILE NO: GRID SPACING: NOTES:	N 0 100' W-E	EM-34 TERRAIN CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	1/13/98 & 5/7/98 13:05 13:18
NÔ.	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
E 0	13	100	25	100	
E100	14	100	23	100	
E 200	12	100	22	100	
E 300	14	100	30	100	
E 400	15	100	1	100	P/L (NW/SE) appx 15'E
E 500	I	100	90	100 / 300	P/L (NW/SE) appx 40'E
E 600	16	100	<u> </u>	100	
E 700	17	100	1	100	P/L (W/S) appx 20'W
E 800	14	100	1	100	
E 900	14	100	38	100	
E 1000	8	100	<u> </u>	100	
E 1100	18	100	30	100	

Notes:

I

	PROFILE NO: GRID SPACING: NOTES:	N 100 100' E - W	CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	1/13/98 & 5/7/98 13:22 13:32
	STATION NO:	20 METER HD READING		20 METER VD READING	SCALE	NOTES
	E 0	11	100	I	100	
	E 100	13	100	26	100	
	E 200	13	100	39	100	
	E 300	13	100	1	100	P/L (NW/SE) appx 15'E
	E 400	14	100		100	
	E 500	20	100	25	100	P/L's (2)(NW/SE) appx 45'E & 65'E
	E 600	22	100	46	100	
	E 700	17	100	70	100 / 300	CJU Well #245 60'N
	E 800	18	100	12	100	
'	E 900	14	100	I	100	
	E 1000	16	100	58	100 / 300	
	E 1100	18	100	22	100	

Notes:

1. I: Denotes interference

İ

TEXACO E & P G.L. ERWIN TANK BATTERY LEA COUNTY, NEW MEXICO

PROFILE NO: GRID SPACING: NOTES:	N 200 100' W - E	EM-34 TERRAIN CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	1/13/98 & 5/7/98 13:35 13:48
STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
E 0	12	100		100	E-W O/H appx 5'N
E 100	12	100	<u> </u>	100	O/H appx 20'N
E 200	<u> </u>	100	<u> </u>	100	O/H (E-W) 30'N (Intersects N-S O/H)
E 300	1	100	<u> </u>	100	P/L (NW/SE) appx 15'N
E 400	1	100	30	100	P/L (NW/SE) at station
E 500	<u> </u>	100	I	100	P/L's (2) 20'E & 35'E (SE-NW)
E 600	22	100	20	100	
E 700	22	100	35	100	CJU Well #245 40'S
E 800	14	100	I	100	
E 900	14	100		100	
E 1000	16	100	28	100	
E 1100	16	100	20	100	
·					

Notes:

(PROFILE NO: GRID SPACING: NOTES:	N 300 100' E - W	CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	1/13/98 & 5/7/98 14:31 14:40
	STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
	E 0	12	100	27	100	Old lease road (NW/SE) appx 10'N
	E 100	4	100	<u> </u>	100	
	E 200	<u> </u>	100	l	100	O/H (N-S) appx 5'W
	E 300	<u> </u>	100	45	100	
	E 400	1	100	<u> </u>	100	
	E 500	20	100	<u> </u>	100	P/L (NW-SE) appx 65'E
ľ	E 600	20	100	48	100	
	E 700	18	100	50	100 / 300	O/H appx 30'N (E-W)
	E 800	14	100	<u> </u>	100	
'	E 900	16	100	62	100 / 300	
	E 1000	16	100	22	100	
	E 1100	16	100	22	100	

Notes:

1

TEXACO E & P G.L. ERWIN TANK BATTERY LEA COUNTY, NEW MEXICO

PROFILE NO: GRID SPACING: NOTES:	N 400 100' W - E	CONDUCTIVITY SURVEY		DATE: START TIME _ END TIME:	1/13/98 & 5/7/98 14:40 14:50
STATION NO:	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
E 0	13	100	13	100	P/L (NW/SE)
E 100	12	100	14	100	P/L (NW/SE) appx 10'S
E 200	1	100	<u> </u>	100	O/H (N-S) appx 5'W
E 300	34	100	<u> </u>	100	U/G Electric (E-W) appx 30'N
E 400	I	100	1	100	
E 500	I	100	<u> </u>	100	
E 600	20	100	82	100 / 300	E-W lease road appx 30'N
E 700	14	100	<u> </u>	100	E-W lease road appx 30'N
E 800	16	100	- 1	100	
E 900	24	100	76	100 / 300	
E 1000	16	100	26	100	
E 1100	16	100	22	100	

Notes:

1. I: Denotes interference

L

PROFILE NO: GRID SPACING: NOTES:	N 500 100' E - W	CONDUCTIVITY SURVEY		DATE: START TIME: END TIME:	1/13/98 14:50 15:00
STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
E 0	20	100	42	100 -	
E 100	15	100	46	100	
E 200	19	100	52	100 / 300	
E 300	44	100	140	300	
E 400	40	100	300	300	
E 500	32	100	1	100	
E 600	I	100	45	100	
E 700	19	100	68	100 / 300	
E 800	<u> </u>	100		100	

Notes:

1. I: D

Denotes interference

PROFILE NO: GRID SPACING: NOTES:	N 600 100' W - E			DATE: START TIME END TIME:	1/14/98 08:06 08:10
STATION NO.	20 METER HD READING	SCALE	VD	SCALE	NOTES States
E 0	9	100	I	100	
E 100	8	100	-	100	
E 200	10	100	Ι	100	
E 300	18	100	1	100	
E 400	7	100	l	100	
E 500	I	100	I	100	
E 600	1	100	50	100 / 300	
E 700	<u> </u>	100	l	100	P/L appx 35'N (E-W)

Notes: 1. I: Denotes interference

i

FILE NO: SPACING: S:	N 700 100' E - W	CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	1/14/98 08:10 08:20
STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	SCALE.	NOTES
E 0	N/D		N/D		
E 100	N/D		N/D		
E 200	N/D		N/D		
E 300	N/D		N/D		
E 400	N/D		N/D		
E 500	N/D		N/D		
E 600	I	100	1	100	P/L (E-W) 5'S (twins NE appx 20'W)
E 700	7	100	1	100	P/L (E-W) appx 35'N

Notes:

1

1. I: D

Denotes interference

PROFILE NO: GRID SPACING:	S 100 100'	CONDUCTIVITY SURVEY S		-	
NOTES:	W - E 20 METER			END TIME:	12:40
NÔ.	HD READING				
EO	14	100	26	100	
E 100	12	100	22	100	
E 200	14	100	22	100	
E 300	14	100	34	100	
E 400	12	100	Ι.	1	
E 500	12	100	78	100	
E 600	20	100	56	100	
E 700	16	100	I	I	No Reading
E 800	22	100	I	l	No Reading
E 900	130	300	30	300	
E 1000	110	300	1	1	No Reading
E 1100	8	100	28	100	

Notes:

PROFILE NO: GRID SPACING: NOTES:	S 100 100' W - E	CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	5/7/98 12:50
STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
E 0	18	100	18	100	West edge reseve pit
E 100	12	100	12	100	In reserve pit
E 200	15	100	32	100	
E 300	14	100	24	100	
E 400	16	100	46	100	
E 500	16	100	1	<u> </u>	Crossing Line
E 600	14	100	90	100	
E 700	20	100	10	100	
E 800	26	100	1	I	No Reading
E 900	46	100	64	100	
E 1000	110	300	I	1	Electrical Overload Line
E 1100	150	300	<u> </u>	I	Electrical Overload Line

Notes:

1. I: Der

Denotes interference

PROFILE NO: GRID SPACING: NOTES:	S 300 100' W - E	CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	5/7/98 <u>1:10</u> 1:35
STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
E 0	12	100	20	100	West of pad
E 100	10	100	18	100	On pad
E 200	10	100	48	100	On Pad
E 300	10	100	90	100	
E 400	180	300	24	100	
E 500	190	300	30	100	
E 600	76	100	22	100	
E 700	38	100	110	300	
E 800	30	100	110	300	
E 900	22	100	42	100	
E 1000	18	100	92	100	
E 1100	18	100	<u> </u>	1	Edge of reserve pit (west edge)

Notes: 1. I:

Denotes interference

PROFILE NO: GRID SPACING: NOTES:	S 400 100' W - E	EM-34 TERRAIN CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	5/7/98 1:36
STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	ŞCALE	NOTĘS Motęs was was
E 0	12	100	18	100	West of pad (off pad)
E 100	12	100	20	100	On Pad (Well #421)
E 200	12	100	22	100	On Pad (Well #421)
E 300	16	100	24	100	
E 400	18	100	28	100	
E 500	16	100	30	100	
E 600	16	100	59	100	
E 700	14	100		I	
E 800	16	100	70	100	
E 900	16	100	32	100	
E 1000	18	100	38	100	
E 1100	20	100	<u> </u>	1	
]					
	· · · · · · · · · · · · · · · · · · ·				
L					

Notes:

I: Denotes interference

1.

PROFILE NO: GRID SPACING: NOTES:	S 500 100' W - E	EM-34 TERRAIN CONDUCTIVITY SURVEY		DATE: START TIME END TIME:	5/7/98 2:33 3:11
STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
E 0	14	100	18	100	
E 100	14	100	18	100	
E 200	14	100	16	100	
E 300	14	100	18	100	
E 400	16	100	20	100	
E 500	16	100	22	100	
E 600	16	100	34	100	
E 700	14	100	30	300	
E 800	18	100	I	I	Pipeline crossing
E 900	16	100	60	100	
E 1000	16	100	34	100	
E 1100	14	100	120	300	

Notes:

PROFILE NO: GRID SPACING: NOTES:	S 600 100' W - E	EM-34 TERRAIN CONDUCTIVITY SURVEY			5/7/98 3:12 3:45
STATION NO.	20 METER HD READING	nti sulle Statisticae	20 METER VD READING		NOTES
E 0	14	100	14	100	
E 100	14	100	20	100	
E 200	14	100	22	100	
E 300	16	100	24	100	
E 400	16	100	28	100	
E 500	14	100	30	100	
E 600	14	100	66	100	
E 700	14	100	30	100	
E 800	12	100	100	300	
E 900	14	100	I	I	
E 1000	16	100	62	300	
E 1100	16	100	50	300	
	· · · · · · · · · · · · · · · · · · ·				

Notes: 1. I: Denotes interference

_

L

PROFILE NO:	S 700	EM-34 TERRAIN		DATE:	5/7/98
GRID SPACING:	100'	CONDUCTIV	ITY SURVEY	-	6:00
NOTES:	E - W			END TIME:	6:36
STATION NO.	20 METER® HD READING	SCALE* *	20 METER** VD READING	SCALE	NOTES
E (N) O	20	100	30	100	
E (S) 100	90	100	I	Ι	
E 200	I	I	l	l	
E 300	1	1	I	I	Edge road
E 400	110	100	1	1	No Reading
E 500	50	100	<u> </u>	1	
E 600	1	<u> </u>	<u> </u>	1	
E 700		1	1	1	
E 800	250	100	1	i	No Reading
E 900	24	100	200	300	
E 1000	14	100	70	100	
E 1100	14	100	170	300	
ļ					

Notes:

PROFILE NO: GRID SPACING: NOTES:	S 800 100'	EM-34 TERRAIN CONDUCTIVITY SURVEY		-	5/7/98 6:30
STATION NO.	20 METER HD READING	SCALE	20 METER VD READING	SCALE	NOTES
N 0	14	100	18	100	
E 1000	14	100	18	100	
E 200	16	100	20	100	
E 300	14	100	22	100	
E 400	14	100	26	100	
E 500	12	100	22	100	
E 600	12	100	14	100	
E 700	14	100	40	300	East of road
E 800	14	100	10	100	
E 900	14	100	46	100	
E 1000	12	100	60	300	
E 1100	14	100		I	
	· · · · · · · · · · · · · · · · · · ·				

Notes:

Ì

ł

i

1. I: Denotes

Denotes interference

APPENDIX C

Borehole Sample Logs

H:\Oil-Gas\996\Cooper-Jal Report

SAMPLE LOG

Boring/Well:MW-1Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryTotal Depth:173 feetDate Installed:9/9/97 - 9/10/97

DEPTH (Ft)	SAMPLE DESCRIPTION
0-5	Top soil, brown, fine grain sand, loose soil, some traces of clay matrix
5-10	Tan, fine grain sand, loose, some traces of caliche, clay encountered at 8.0'
10-15	80% clay material matrix, and 20 % tan, fine grain sand, loose
15-20	90% tan, fine grain sand, loose, and 10% white caliche, friable
20-30	90% tan, fine grain sand, loose, and 10% white caliche, friable
30-35	Caliche and limestone layer, dense formation, trace of fine grain sand
35-40	Tan, fine grain sand, clean, loose
40-50	Tan, fine grain sand, clean, loose
50-60	Tan, fine grain sand, clean, loose, some nodules of white caliche, friable
60-70	Tan, fine grain sand, clean, loose
70-80	Tan, fine grain sand, clean, loose, traces of white caliche layers, some dense
80-90	Tan, fine grain sand, clean, loose, traces of white caliche layers, friable, some dense
90-100	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
100-110	Tan, fine grain sand, clean, loose, traces of white caliche layers, damp
110-120	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
120-130	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
140-150	Tan, fine grain sand, clean, loose, traces of cemented sandstone, moist at 140 '
150-160	Tan, fine grain sand, clean, loose, traces of layered cemented sandstone
160-170	Tan, fine grain sand, clean, loose, traces of thin layered cemented sandstone
170-173	Tan, fine grain sand, clean, loose, traces thin layers of cemented sandstone, redbed encountered at 173.0'
173	Redbed-clay

SAMPLE LOG

Boring/Well:MW-2Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:173 feetDate Installed:2/12/98

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Top soil, brown, fine grain sand, loose soil, caliche encountered at 3.0'
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
50-60	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
60-70	Tan, fine grain sand, clean, loose, small layer of cemented sandstone
70-80	Tan, fine grain sand, clean, loose, small layer of cemented sandstone
80-90	Tan, fine grain sand, clean, loose, small layer of cemented sandstone
90-100	Tan, fine grain sand, clean, loose, small layer of cemented sandstone
100-110	Tan, fine grain sand, clean, loose, traces of white caliche layers, some dense
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone
120-130	Tan, fine grain sand, clean, loose, and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, traces of white caliche layers, damp
140-150	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
150-160	Tan, fine grain sand, clean, loose, trace of gravel, damp
160-170	Tan, fine grain sand, clean, and gravel, trace of red clay
170-173	Tan, fine grain sand and gravel, loose, red clay - Redbed encountered at 173'
	TD - 173'

SAMPLE LOG

Boring/Well:MW-2AClient:Texaco Exploration aProject:Texaco / Cooper-JalLocation:Lea County, New MTotal Depth:145 feetDate Installed:2/13/98

Texaco Exploration and Production, Inc. Texaco / Cooper-Jal Central Tank Battery Lea County, New Mexico 145 feet 2/13/98

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Top soil, brown, fine grain sand, loose soil, caliche encountered at 3.0'
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
50-60	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
60-70	Tan, fine grain sand, clean, loose, small layer of cemented sandstone
70-80	Tan, fine grain sand, clean, loose, small layer of cemented sandstone
80-90	Tan, fine grain sand, clean, loose, small layer of cemented sandstone
90-100	Tan, fine grain sand, clean, loose, small layer of cemented sandstone
100-110	Tan, fine grain sand, clean, loose, traces of white caliche layers, some dense
110-120	Tan, fine grain sand, clean, loose ,trace of cemented sandstone
120-130	Tan, fine grain sand, clean, loose, and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, traces of white caliche layers, damp
140-145	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
	TD – 145'

Boring/Well:MW-3Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:171 feetDate Installed:2/9/98

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Top soil, brown, fine grain sand, loose soil
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone, sandy at 31'
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	50% tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
50-60	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25% small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	75% tan, fine grain sand, clean, loose, 25% small layers of cemented sandstone
90-100	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
100-110	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone, becoming sandy with depth
120-130	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-150	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
150-160	Tan, fine grain sand, clean, loose, trace of gravel, damp
160-170	Tan, fine grain sand, clean, and gravel, trace of red clay
170-171	Tan, fine grain sand and gravel, loose, and red clay - Redbed encountered at 171'
	TD – 171'

Boring/Well:MW-4Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:171 feetDate Installed:2/10/98

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Brown, fine grain sand, loose soil
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	50% tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
50-60	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20 % small layers of cemented sandstone
90-100	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
100-110	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone, becoming sandy with depth
120-130	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-150	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
150-160	Tan, fine grain sand, clean, loose, trace of gravel, damp
160-170	Tan, fine grain sand, clean, and gravel layer encountered at 165', trace of red clay
170-171	Tan, fine grain sand and gravel, loose, red clay - Redbed encountered at 171'
	TD – 171'

Boring/Well:MW-4AClient:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:143feetDate Installed:2/11/98

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Brown, fine grain sand, loose soil
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	50% tan, fine grain sand, loose, 50 % dense layers of cemented sandstone, traces of white caliche
50-60	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20 % small layers of cemented sandstone
90-100	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
100-110	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone
120-130	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-143	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
	TD – 143'

Boring/Well:MW-5Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:171 feetDate Installed:2/10/98

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Brown, fine grain sand, loose soil
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	80% tan, fine grain sand, loose, 20 % dense layers of cemented sandstone, traces of white caliche
50-60	80 % tan, fine grain sand, loose, 20% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20 % small layers of cemented sandstone
90-100	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
100-110	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone
120-130	Tan, fine grain sand, clean, loose, trace of cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-150	Tan, fine grain sand, clean, loose, traces of cemented sandstone
150-160	Tan, fine grain sand, clean, loose, and trace of gravel, traces of clay
160-171	Tan, fine grain sand, clean, loose, and gravel - white, yellow, and red clay encountered at 171'
	TD - 171

Boring/Well:MW-5AClient:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:141 feetDate Installed:2/12/98

SAMPLE DESCRIPTION
Brown, fine grain sand, loose soil
Tan, fine grain sand, loose, some traces of cemented sandstone layers
Tan, fine grain sand, loose, dense layers of cemented sandstone
Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
80% tan, fine grain sand, loose, 20 % dense layers of cemented sandstone, traces of white caliche
80 % tan, fine grain sand, loose, 20% dense layers of cemented sandstone, traces of white caliche
75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80% tan, fine grain sand, clean, loose, 20% small layers of cemented sandstone
70 % tan, fine grain sand, loose ,30% dense layers of cemented sandstone
70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
Tan, fine grain sand, clean, loose, trace of cemented sandstone
Tan, fine grain sand, clean, loose, trace of cemented sandstone, damp
Tan, fine grain sand, clean, loose, damp
TD - 141'

Boring/Well:MW-6Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:170 feetDate Installed:2/13/98

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Brown, fine grain sand, loose soil, dense caliche layer encountered at 2'
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	80% tan, fine grain sand, loose, 20% dense layers of cemented sandstone, traces of white caliche
50-60	80 % tan, fine grain sand, loose, 20% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20 % small layers of cemented sandstone
90-100	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
100-110	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone, becoming sandy with depth
120-130	Tan, fine grain sand, clean, loose, trace of cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-150	Tan, fine grain sand, clean, loose, traces of cemented sandstone
150-160	Tan, fine grain sand, clean, loose, and trace of gravel
160-170	Tan, fine grain sand, clean, loose, and gravel - white, and redbed -red clay encountered at 170'
	TD – 170

Boring/Well:MW-7Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:166 feetDate Installed:5/14/98

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Brown, fine grain sand, loose soil
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	50% tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
50-60	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25% small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25% small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20% small layers of cemented sandstone
90-100	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
100-110	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone, becoming sandy with depth
120-130	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-150	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
150-160	Tan, fine grain sand, clean, loose, trace of gravel
160-166	Tan, fine grain sand, clean, and gravel layer encountered at 165', red clay @ 166'
	TD - 166'

Boring/Well:MW-8Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:170 feetDate Installed:5/12/98

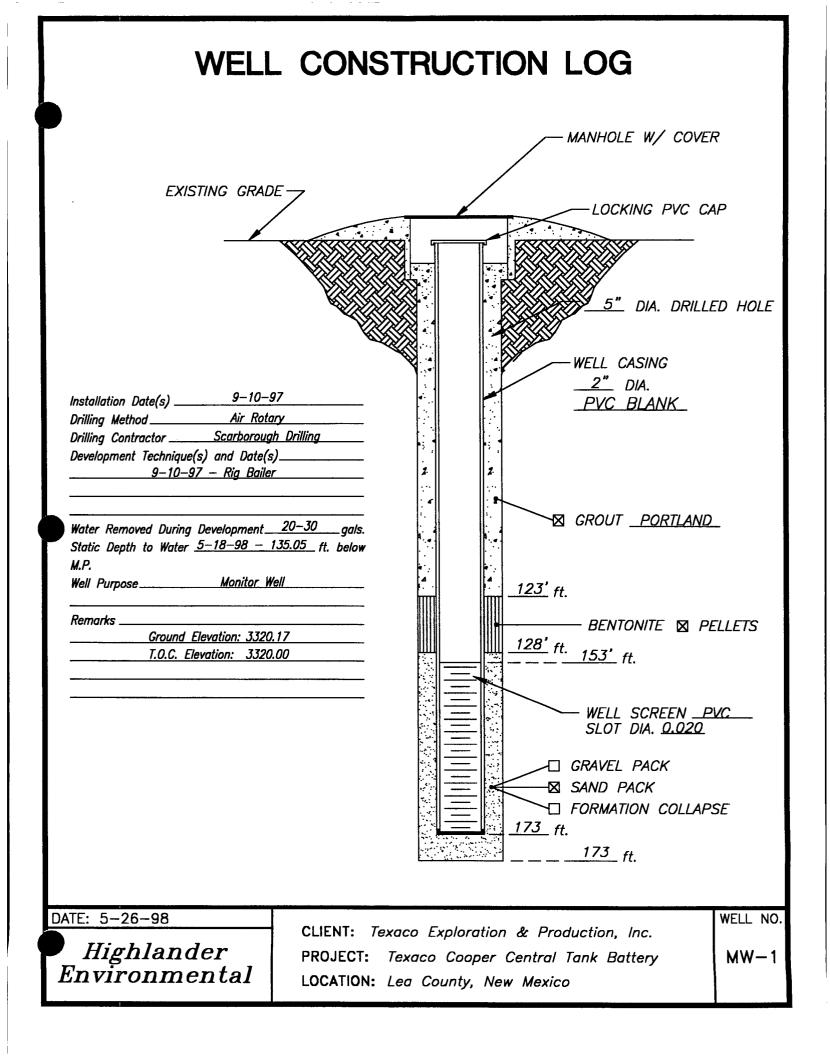
DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Brown, fine grain sand, loose soil
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	50% tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
50-60	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20 % small layers of cemented sandstone
90-100	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
100-110	50 % tan, fine grain sand, loose, 50% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone, becoming sandy with depth
120-130	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-150	Tan, fine grain sand, clean, loose, traces of white caliche layers and cemented sandstone, damp
150-160	Tan, fine grain sand, clean, loose, trace of gravel, damp
160-170	Tan, fine grain sand, clean, and gravel layer encountered at 165', redbed encountered at 170'
	TD - 170'

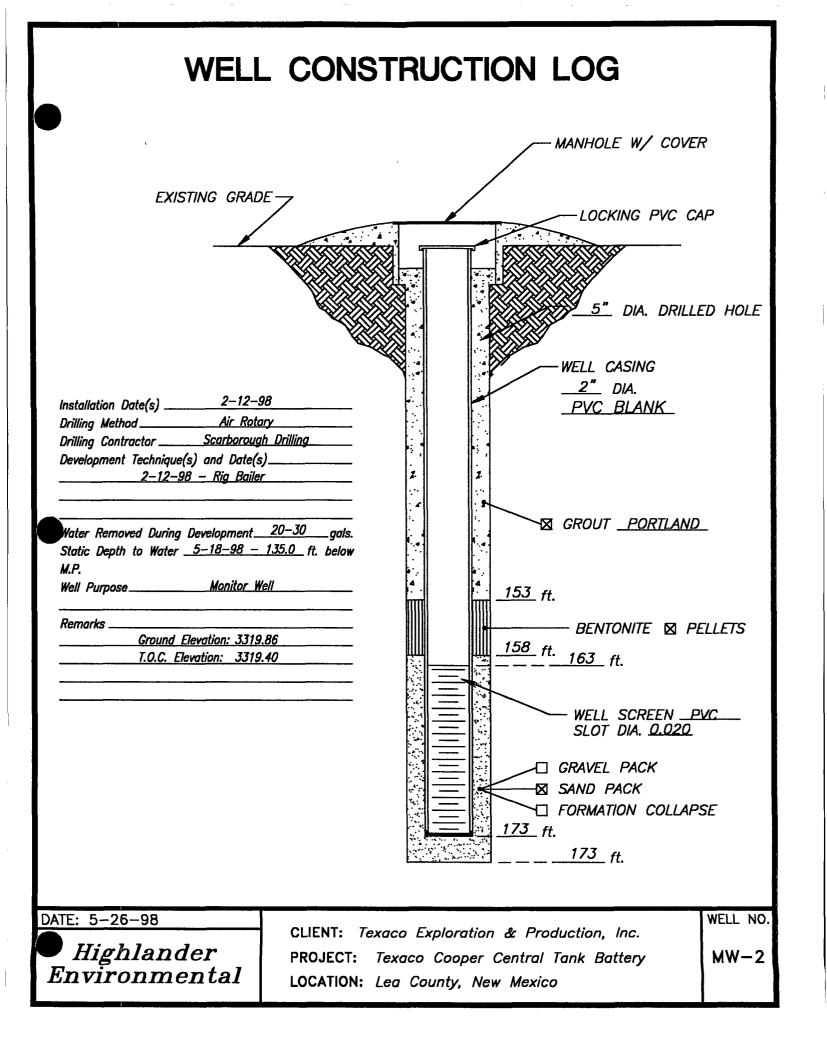
Boring/Well:MW-9Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:164 feetDate Installed:5/12/98

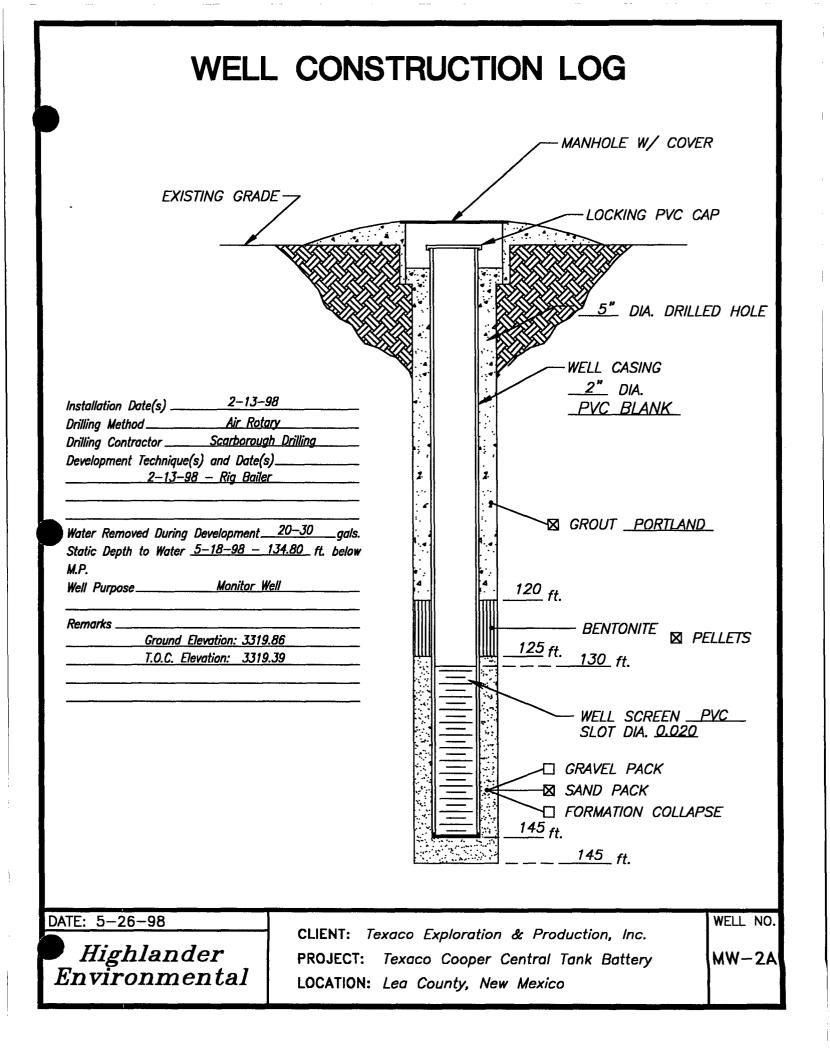
DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Tan, fine grain sand, loose soil, dense caliche layer encountered at 3'
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	80% tan, fine grain sand, loose, 20% dense layers of cemented sandstone, traces of white caliche
50-60	80 % tan, fine grain sand, loose, 20% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20% small layers of cemented sandstone
90-100	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
100-110	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone, becoming sandy with depth
120-130	Tan, fine grain sand, clean, loose, trace of cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-150	Tan, fine grain sand, clean, loose, traces of cemented sandstone
150-164	Tan, fine grain sand, clean, loose, and gravel, and redbed-red clay encountered at 163'
	TD-164'

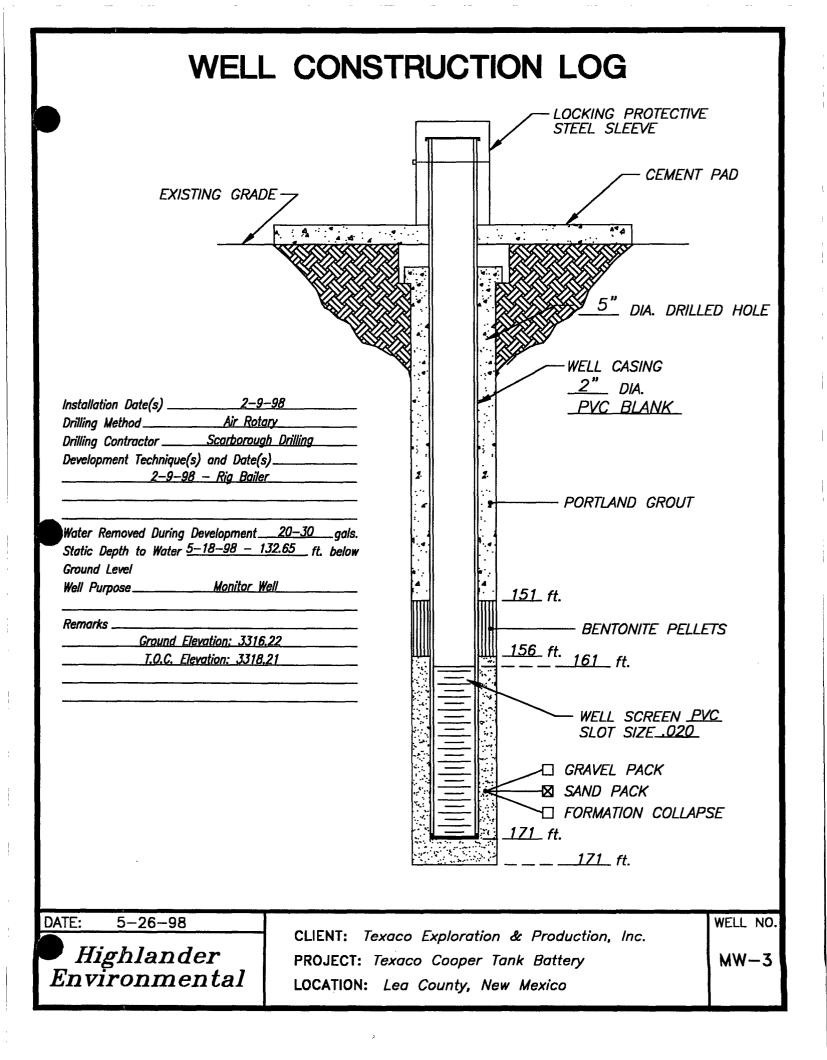
Boring/Well:MW-9AClient:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:142 feetDate Installed:5/14/98

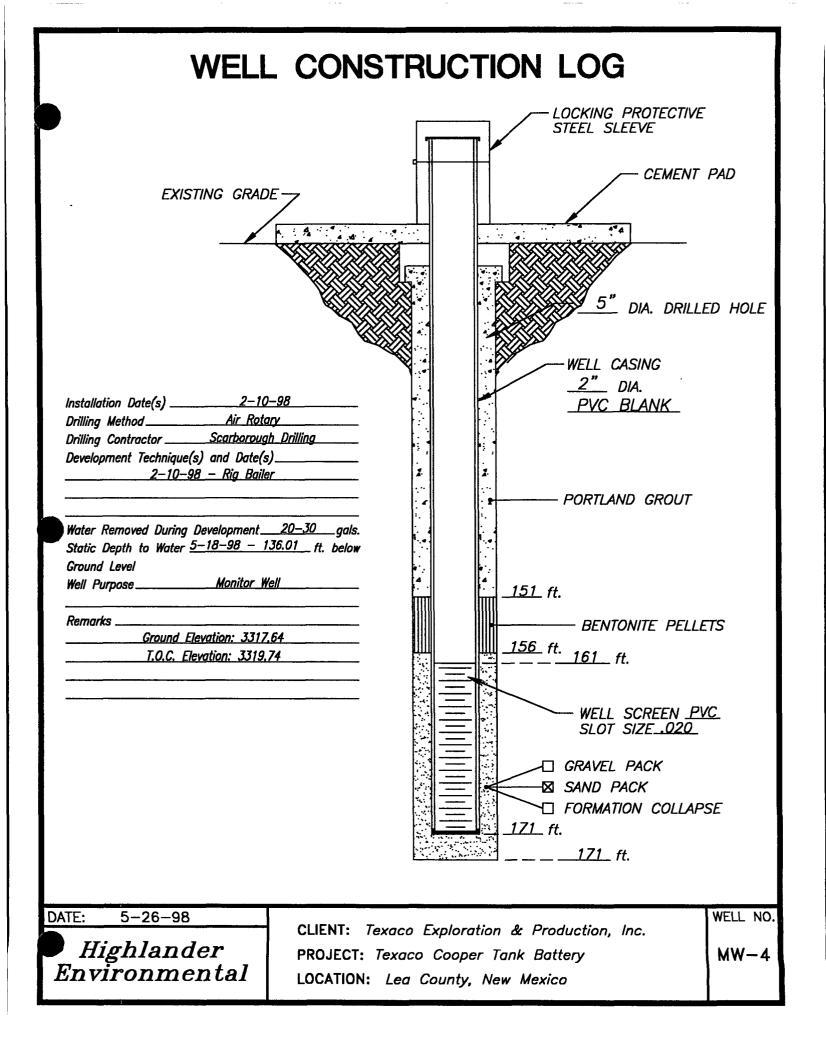
DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Tan, fine grain sand, loose soil, dense caliche layer encountered at 3'
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	80% tan, fine grain sand, loose, 20 % dense layers of cemented sandstone, traces of white caliche
50-60	80 % tan, fine grain sand, loose, 20% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20 % small layers of cemented sandstone
90-100	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
100-110	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone, becoming sandy with depth
120-130	Tan, fine grain sand, clean, loose, trace of cemented sandstone, damp
130-142	Tan, fine grain sand, clean, loose, damp
	TD - 142'

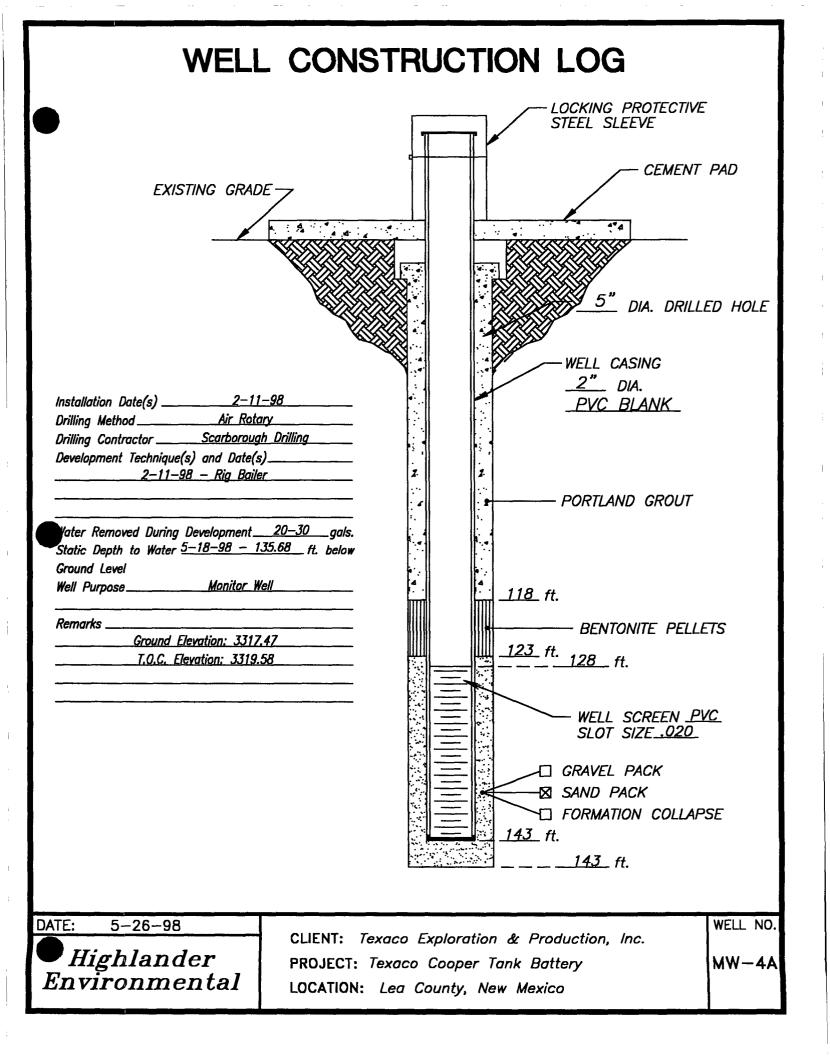

Boring/Well:MW-10Client:Texaco Exploration and Production, Inc.Project:Texaco / Cooper-Jal Central Tank BatteryLocation:Lea County, New MexicoTotal Depth:166 feetDate Installed:5/13/98

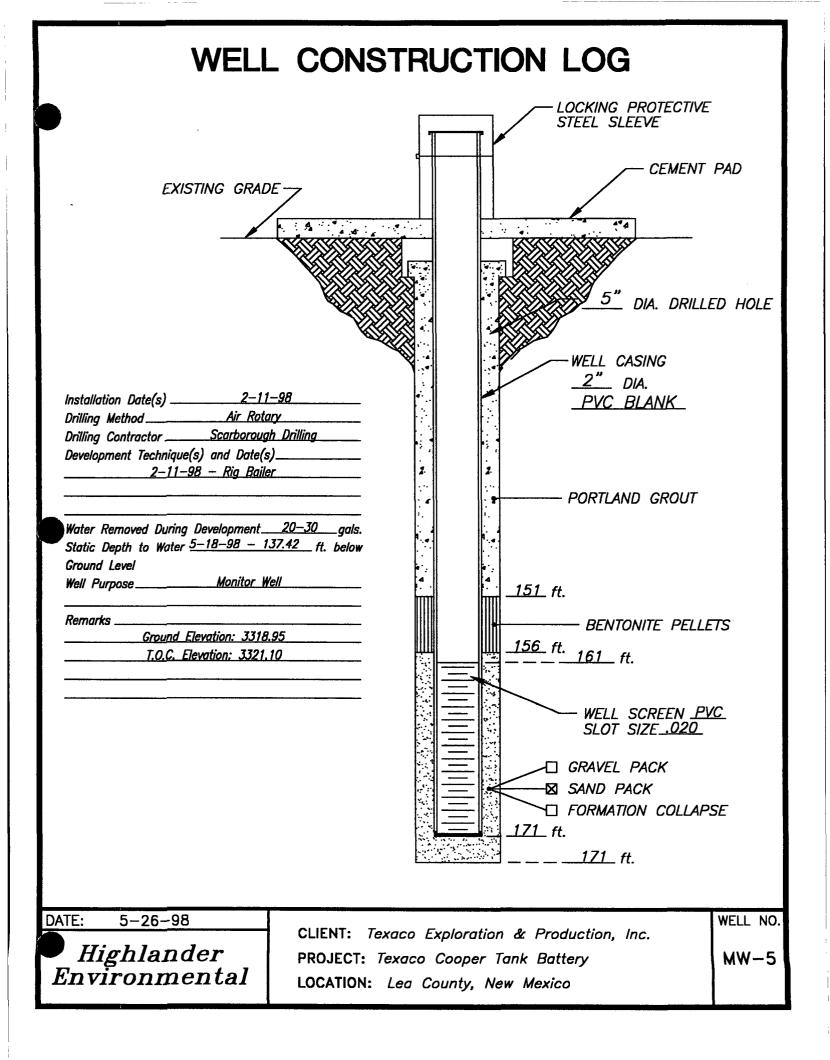

DEPTH (Ft)	SAMPLE DESCRIPTION
0-10	Brown, fine grain sand, loose soil
10-20	Tan, fine grain sand, loose, some traces of cemented sandstone layers
20-30	Tan, fine grain sand, loose, dense layers of cemented sandstone
30-40	Tan, fine grain sand, loose, dense layers of cemented sandstone, traces of white caliche
40-50	80% tan, fine grain sand, loose, 20 % dense layers of cemented sandstone, traces of white caliche
50-60	80 % tan, fine grain sand, loose, 20% dense layers of cemented sandstone, traces of white caliche
60-70	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
70-80	75% tan, fine grain sand, clean, loose, 25 % small layers of cemented sandstone
80-90	80% tan, fine grain sand, clean, loose, 20% small layers of cemented sandstone
90-100	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
100-110	70 % tan, fine grain sand, loose, 30% dense layers of cemented sandstone
110-120	Tan, fine grain sand, clean, loose, trace of cemented sandstone
120-130	Tan, fine grain sand, clean, loose, trace of cemented sandstone, damp
130-140	Tan, fine grain sand, clean, loose, damp
140-150	Tan, fine grain sand, clean, loose, traces of cemented sandstone
150-160	Tan, fine grain sand, clean, loose, and trace of gravel, traces of clay
160-166	Tan, fine grain sand, clean, loose, and gravel @ 164', yellow and red clay encountered at 171'
	TD – 166'

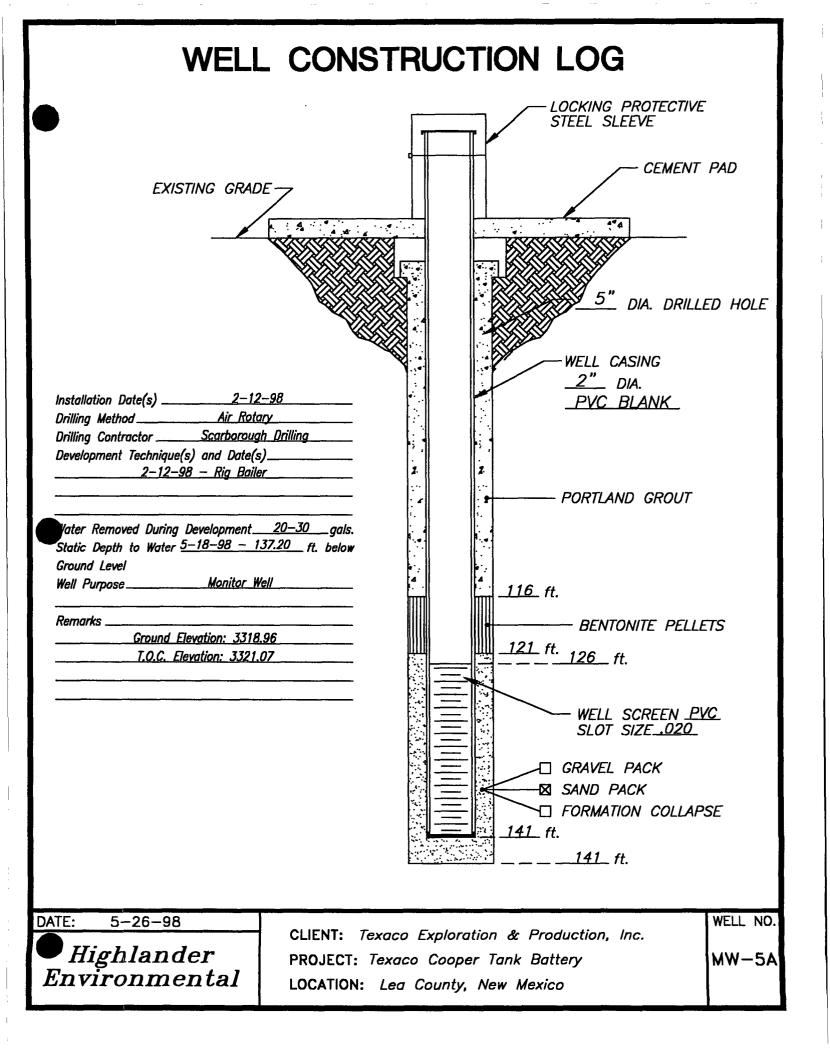

APPENDIX D

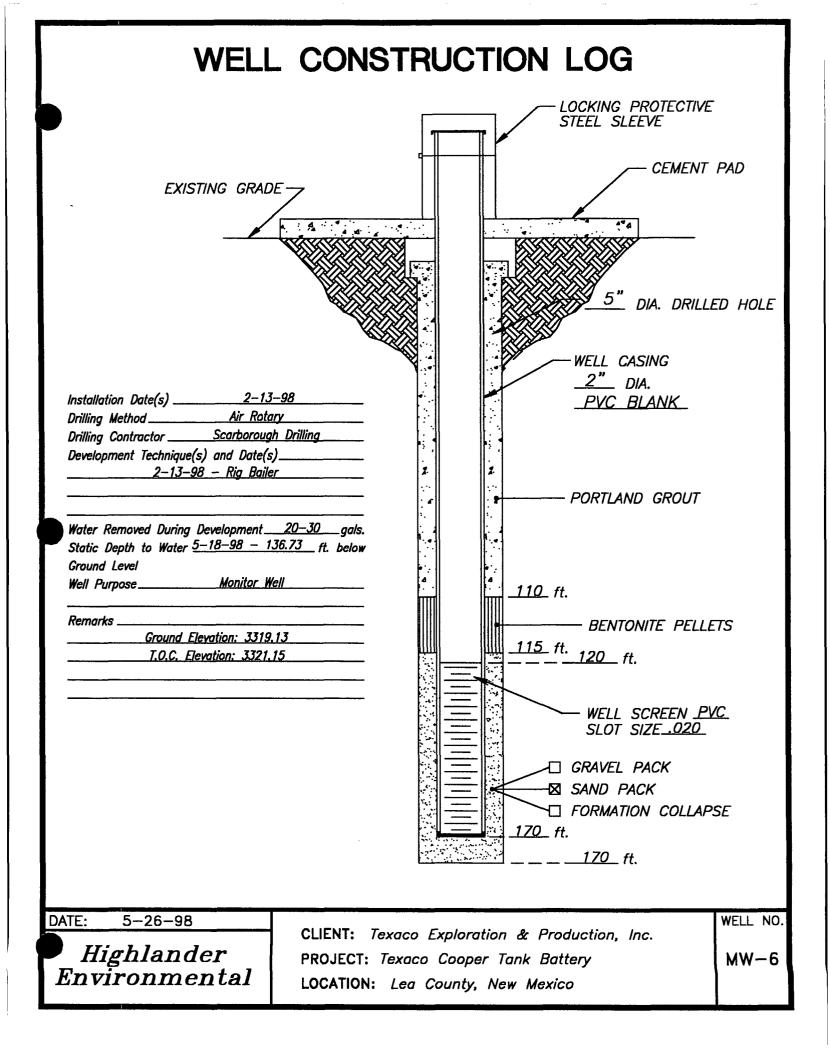

Monitor Well Construction Diagrams

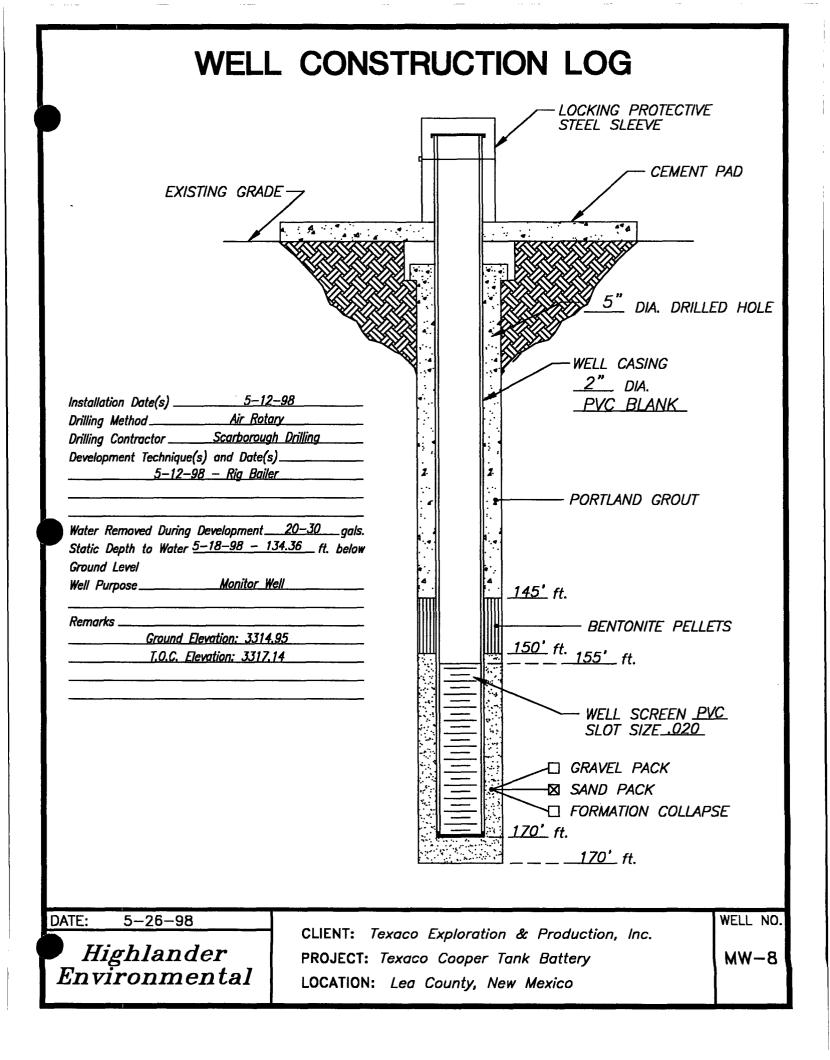

H:\Oil-Gas\996\Cooper-Jal Report

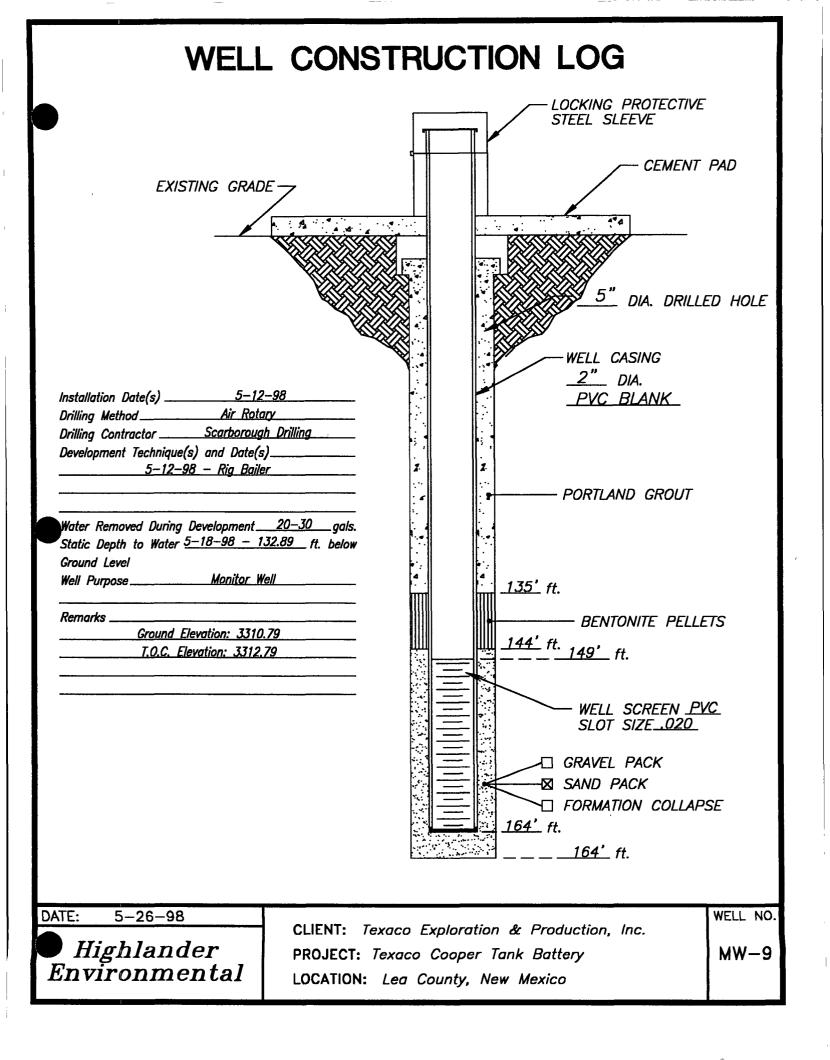


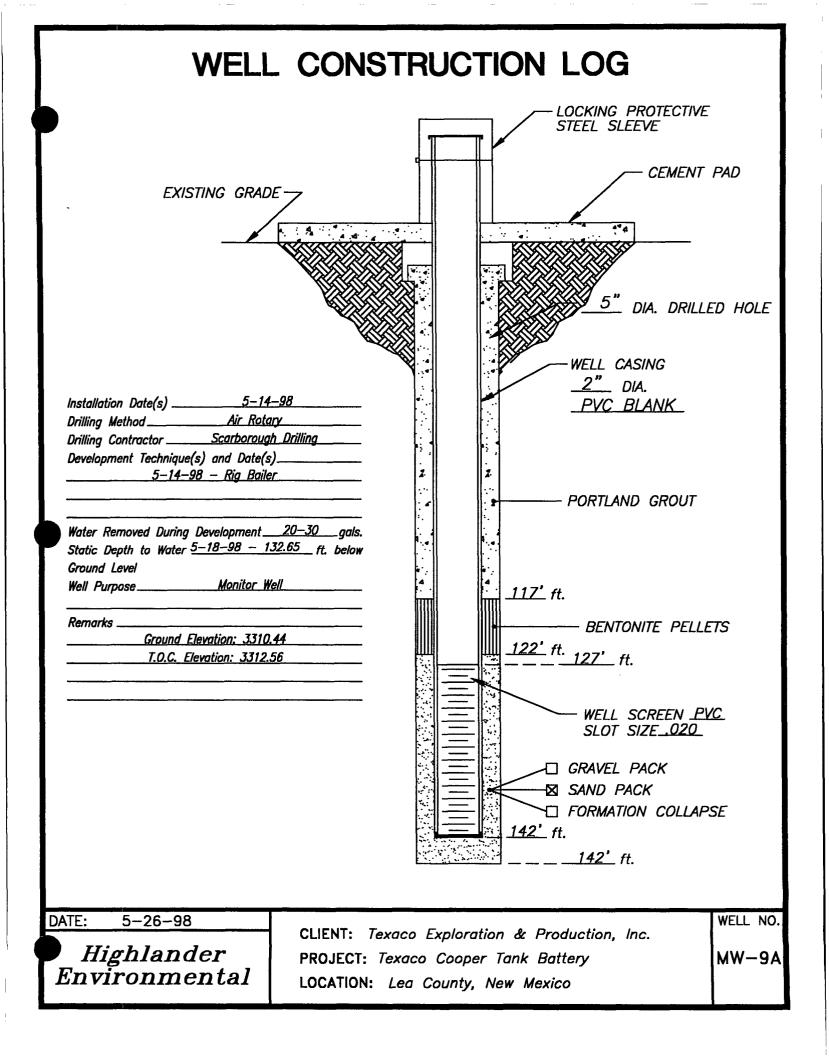


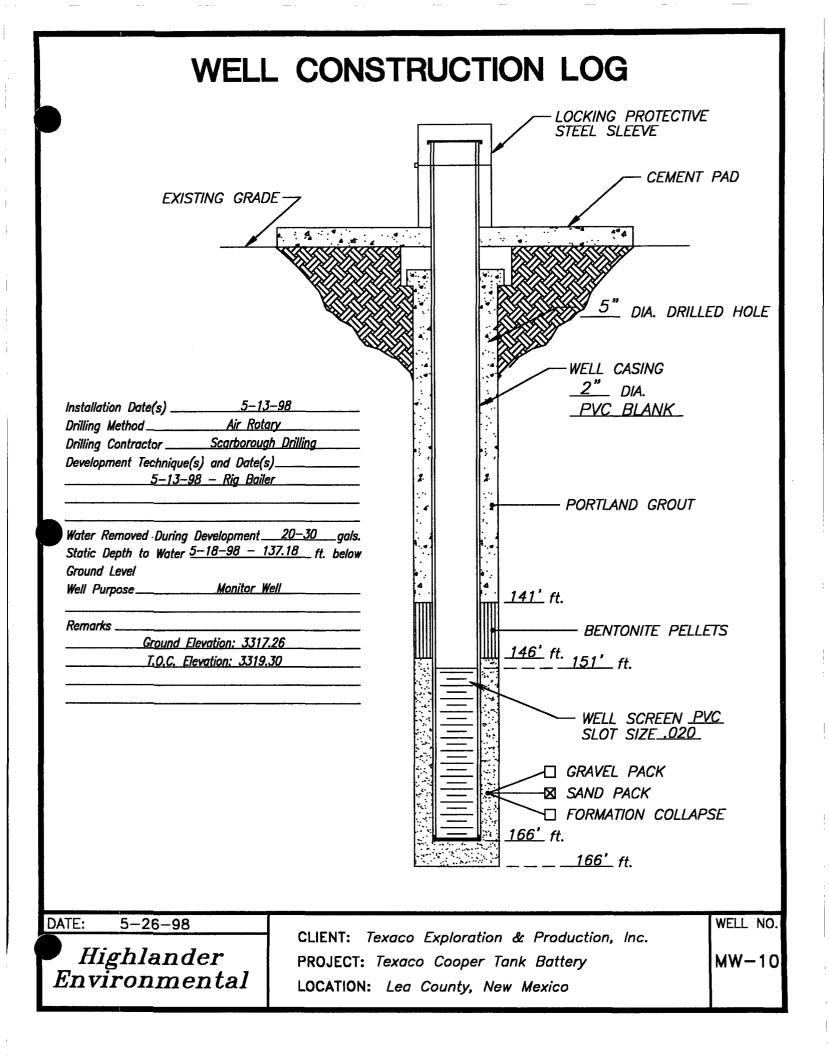












WELL CONSTRUCTION LOG LOCKING PROTECTIVE STEEL SLEEVE CEMENT PAD 4 <u>5"</u> DIA. DRILLED HOLE WELL CASING <u>_2"</u> DIA. Installation Date(s) _____ 5-14-98 PVC BLANK Drilling Method ______ Air Rotary Drilling Contractor <u>Scarborough Drilling</u> Development Technique(s) and Date(s)_ <u> 5–14–98 – Rig Bailer</u> 1 - PORTLAND GROUT Water Removed During Development <u>20–30</u> gals. Static Depth to Water <u>5-18-98 - 136.19</u> ft. below Ground Level Well Purpose Monitor Well <u>141'</u> ft. Remarks ____ ----- BENTONITE PELLETS Ground Elevation: 3316.35 <u>146'</u> ft. <u>151'</u> ft. T.O.C. Elevation: 3318.39 - WELL SCREEN <u>PVC</u> SLOT SIZE <u>020</u> GRAVEL PACK - SAND PACK FORMATION COLLAPSE <u>166'</u> ft. ___<u>166'</u> ft. WELL NO. DATE: 5-26-98 CLIENT: Texaco Exploration & Production, Inc. Highlander Environmental MW-7 **PROJECT:** Texaco Cooper Tank Battery LOCATION: Lea County, New Mexico

APPENDIX E

Trace Analysis, Inc. Reports

H:\Oil-Gas\996\Cooper-Jal Report

	6701 Aberdeen Avenue Lubbock, ANALY	Lubbock, Texas 79424 806 ANALYTICAL RESULTS FOR	ock, Texas 79424 806•794•1296 FAX 806•794• LYTICAL RESULTS FOR	FAX 806•794•1298	94●1298
September 29, 1997 Receiving Date: 09/18/97 Sample Type: Water Project No: 996 Project Location: Texaco/Cooper-Jal Central Unit Lea County		HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	CES CORP.	Prep Date: 09/18/97 Analysis Date: 09/18 Sampling Date: 09/16 Sample Condition: In Sample Received by: Project Name:Texao	Prep Date: 09/18/97 Analysis Date: 09/18/97 Sampling Date: 09/16/97 Sample Condition: Intact & Cool Sample Received by: JH Project Name:Texaco E & P
TA# FIELD CODE	pH (s.u.)	TDS (mg/L)	CHLORIDE (mg/L)	SULFATE (mg/L)	ALKALINITY (mg/L as CaCo3)
T81829 MW-1 QC Quality Control	7.1 7.0	15,000 —	8,500 22	1,100 25	280
RPD % Extraction Accuracy % Instrument Accuracy	0 0	N	0 <mark>0</mark> 0	- 101 100	0
REPORTING LIMIT	I	. 1	50	50	1.00
METHODS: EPA 300.0, 310.1, 340.2, 150.1, 160.1. CHEMIST: CHLORIDE/SULFATE/FLUORIDE: RC SPIKE: 25 mg/L CHLORIDE; 25 mg/L SULFATE. QC: 23 mg/L CHLORIDE; 25 mg/L SULFATE.	- M	ALKALINITY/TDS/pH: JS	SL .Hq		5

deen Av deen Av MWV-1 MMGN MAGN	Multilutulutulutulutulutulutulutulutulutu	Field Code (mg/L) (mg/L) (mg/L) (mg/L)	MV-1 50 630 520 4,300 3,900 Quality Control 52 51 51 52 51	0.3 0.01 0.04	1 0 1 0 109 104 109 102 104 101 103 102	METHODS: EPA SW 846-6010. CHEMIST: RR SPIKE: 100 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM. QC: 50 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM.
---	---	--	---	---------------	---	--

PAGE: 100 OF: 100 PAGE: 100 PAGE: 100 PAGE (Circle or Specify Method No.)			qe 2 Ck be	560/624 si B# CQ	/602 s Ag As b)/608 608 608 608 9/408 608 608 608 740,608 608 740,608 608 740,608 608 740,608 608 740,7020 740,7020 740,7000000000000000000000000000000000	MTBE 8020, TPH 100, Total 8270 Total 8270 Total 826, Total 826, Rci 820, Rci 92, Total 96, Rci 90, Rci 90, Rci 90, Rci 90, Rci 90,						SAMPLED BY: (Print & Sign) Date:	SAMPLE SHIPPED BY: (Circle) FFDFY BUS AIRBIIL #		HIGHLANDER CONTACT PERSON: RESULTS OF RUSH Charges	1/16 lawarde 2 Authorized. Yes No	
Analysis Request and Chain of Custody Record	HIGHLANDER ENVIRONMENTAL CORP.	1910 N. Big Spring St. Widlend Teves 70705	(915) 682-4559 MILLIALLU, ICAAS (915) 682-3946 Fax (915) 682-3946	CLIENT-NAME E' SITE MANAGER- ION/CO E = PRESERVATIVE	PROJECT NAMES	Itex BTEX BOZOJ Itex NONE NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER						RELINGUISTO BY/Signature) Date: 9/17/14 RECEIVED BY: (Signature) Date: 1/17/14	Date:	RECEIVED BY: (Signature)	Time:	ADDRESS:	ONDITION WHEN RECEIVED: MATRIX: W-Water A-Air SD-Solid S-Solid S1-Studies 0-Other

									1									9-910				Shol
T									,									1		<u> </u>		
						<u> </u>												29				MASAR
				11.62	7 ;	12/11	<u> </u>											<u> </u>		8	No	¥
$\left \right $					(5015	PLM (Asbes												22	py:	harg	201.	4
5						elefi enqla												1	Results by:	RUSH Charges	Yes	له ا
5	No.)					q2 ammad											Date: Time:		i la l		5	لولي الم
			əbi	Chlor	SAT ,Hq	BOD, TSST ,											95	AIRBILL # 155-		L.	t.	~ 4
	YSIS REQUEST Specify Method					Pest. 808														\sim	5	- [-]
	ANALYSIS REQUEST or Specify Metho					PCB's 8080												6	K	0	-	EET
	Ify BE					CC.MS SM.DD											Sign)	a se	Nosa	ı		
PAUE.	SIS		V	69/096	8/0768	BCI BCI											& Si	j j	PEI		1	HS
4	ALY r S			sa	Volatile	ims2 gini											at 8	BY:	ACT	· ·		- V(
	ANA e or					TCLP Volati							 				SAMPLED BY: (Print	SAMPLE SHIPPED BY: (Circle) FEDEX FEDEX BUS	HAND DELIVERED 01.3 HIGHLANDER CONTACT PERSON:		Part Part -	ACHED SHEET FOR MY
	Circle					TCLP Metals											9Y:	ddll	HIGHLANDER CON	1.		ACHED
ļ	<u></u>	əs ah da	I CL I	Ba Cd	e <u>A 3</u> A e	Total Metal											ED 1	S SI	NDE	I. I.,	<u> </u>	T
						0728 HA9		 									MPL	NPL NEX			11	Y Y
						HdL							<u> </u>				SAJ	SAA FEI		ł		レ
						MTBE 8020												1				F
	L	L			209/	NSOB XITE											. 5			×	<u> </u>	Ā
				IVE													·					
Ţ	J		46	PRESERVATIVE METHOD		NONE						I										SEE
Percerd	5 6	2	682-3946	SER		ICE	<u>></u>		<u> </u>												9-30A	SEE
ç	5 c	Ľ	2	NE		EONH					-						Date: . Time: .	Date: Time:	Date: . Time: .	1	$\widetilde{\mathcal{C}}$	N N
۹ م		S	68	4		ТЭН	ļ										Da Tir	Da	a ri		0	
	<u>ן ר</u>	د	5)		(N/)	ELLERED (Y	\geq						1								1	X
7110404	2		(915)	SHAN	CONTA	NUMBER OF		1													TIME:	
2	5	-															1	L V		ノ	1	olid Ser
+		V	Fax														re)	<u>(</u> 2	(je	<u>ଖ୍ୟା</u>	1	SD–Solid 0–0ther
	3 5				1.11												1atu	zatu	Olg nature)	IJ	44	30
Ć	2	5			· · ·												(Signature)	(Sig)	1810) 1810)	S	8	9
4	- {	ى نى 🖪	,	.1	1	NO											34	RECEIVED BY: (Signature)	F.	PERCENTION AND AND AND AND AND AND AND AND AND AN	-7	A-Air SL-Sludge
ب (5 J	Z v č		× .	<i>د.</i> بر	ÅTT.											1 03	ព្	a)	27	6	A-Air SL-Slu
¢	-	$\sum \omega_{0}$	>	ER- Levent (Z	11	SAMPLE IDENTIFICATION										•.	RECEIVED BY:	EIVI	RECEIVED BY		$\sum_{i=1}^{n}$	
	Ξl	5 E ^	•	R.	~	ež ' (REC	REC	87.)	Lg	DATE	6
rind Choin		id c	3		/ .	Ĩ												· · · · · · · ·			7	W-Water S-Soil
ε	515			MAN		JE									ļ			ĘΣ	1			\mathbb{P}^{n}
_		ے ہے۔ <		E	Ľ,	SAMPL											Í I	20				×
7		⋜⋍∊	ĩ	SIT	1.11	1 × 0											EH	1			ZIP	MATRIX:
Ċ	נ ק	JZ P	í	}	風く	-	111				1	1						6-3				W
		EK ENVIKONMI 1910 N. Big Spring St Midland Texas 79705	5		PROJECT NAME:												Date: Time:	Date: Time:	Date: Time:			
+	n !		1		T V												IN IS	12 E	4Ë			
(request	₹ 01 ≥	i .		NEC /	GRAB		1]				<u>ن</u> ق	
į	귀	F			PRC	KATRIX COMP.	<u>)</u>	<u> </u>		<u> </u>	ļ	ļ									ATE: PHONE:	ä
Ì	มี เ	4												+	<u> </u>	<u> </u>	1	Ř			STATE: PHO	EIVE
ρ	۲ •	A	59	F		TIME	1					1					ure)	IJ) Ie		1,1	RECI
t	<u>n 1</u>	Ľ.	45			E											nati	6 B	näti			EN I
1	Allalysis	HIGHLANDER ENVIRONMENTAL CORP. 1910 N. Big Spring St. Midland Texas 79705	(915) 682-4559		•	ម្រ	\langle									,	RELINQUISHED BY: (Signature)	REMNOUTSHED BY. WEREALTER	RELINQUISHED BY: (Signature)	RECEIVING LABORATORY: ADDRESS:		SAMPLE CONDITION WHEN RECEIVED: MATRIX: W-W4Lef A-Air SD-Solid S-Solid SL-Sludge 0-Other
Ì	<u>> (</u>	5	68	8	PROJECT NO.	DATE	11										BK	A	Ξ.	ORAT		NOL
6	3	Ž	5)	CLIENT NAME:	Ň							+						₿ ₹	គ្ន	Ē		Lian
۶	E F	4	91;	E	ECI	LAB I.D. NUMBER	SK29	-									HSIC	ES J	HSIO	k z s	CITY: CONTACT:	S
			\sim	1 51	12		111	2	1	1	1	1	1	1	1	1	S .	102	õ	E S	19	194

Date: Mathematical Services Services </th <th></th> <th>HUULUULWWWULUULUULUULUULUULUWULUWWW 6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A</th> <th>4725 Ripley Avenue, Suite A El Paso, Tex 7.125 Ripley Avenue, Suite A El Paso, Tex 7.25 Fipley Avenue, Suite A El Paso, Tex 7.25 Fipley Avenue, Suite A El Paso, Tex</th> <th></th> <th>Texas 79424 800•378•1296 Texas 79922 888•588•343 E-Mail: lab@traceanalysis.com</th> <th>806 • 794 • 1296 915 • 585 • 3443</th> <th>16 FAX 806 • 794 • 1298 3 FAX 915 • 585 • 4944</th> <th>1298 4944</th> <th>``</th> <th>79424 800-378-1296 806-794-1296 FAX 806-794-1298 79922 888-588-3443 915-585-3443 FAX 915-585-4944 79827 888-588-3443 915-585-3443 FAX 915-585-4944 79827 888-588-3443 915-585-3443 FAX 915-585-4944</th>		HUULUULWWWULUULUULUULUULUULUWULUWWW 6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A	4725 Ripley Avenue, Suite A El Paso, Tex 7.125 Ripley Avenue, Suite A El Paso, Tex 7.25 Fipley Avenue, Suite A El Paso, Tex 7.25 Fipley Avenue, Suite A El Paso, Tex		Texas 79424 800•378•1296 Texas 79922 888•588•343 E-Mail: lab@traceanalysis.com	806 • 794 • 1296 915 • 585 • 3443	16 FAX 806 • 794 • 1298 3 FAX 915 • 585 • 4944	1298 4944	``	79424 800-378-1296 806-794-1296 FAX 806-794-1298 79922 888-588-3443 915-585-3443 FAX 915-585-4944 79827 888-588-3443 915-585-3443 FAX 915-585-4944 79827 888-588-3443 915-585-3443 FAX 915-585-4944
Cit ETHYL- M, P, O Field Code MATRIX BENZENE TOLUENE BENZENE XYLENE Mm-1 Water (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Mm-1 Water 0.001 <0.001 <0.001 <0.001 <0.001 Mm-1 Water <0.001 <0.001 <0.001 <0.001 <0.001 Mm-2 Water <0.001 <0.001 <0.001 <0.001 <0.001 Mm-5 Water <0.001 <0.001 <0.001 <0.001 <0.001 Mm-6 Water <0.001 <0.001 <0.001 <0.001 <0.001	: Mar Rec: act: Name:	98 /Cooper-Jal		- ຍູດ ເ	ronmental rez St. TX 79	5	ab Rec amplin ample ample	# : 2/; on: d By:	00015 - 2/27/ ct and	98 Cool
WM-1 Water <0.001	Fie.	a county, Code	MATRIX		BENZENE (mg/L)	TOLUENE (mg/L)		M, P, O XYLENE (mg/L)	TOTAL BTEX (mg/L)	
Mm-2 Water <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <td></td> <td></td> <td>Water</td> <td></td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td></td>			Water		<0.001	<0.001	<0.001	<0.001	<0.001	
Mw-2A Water < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.01			Water		<0.001	<0.001	<0.001	<0.001	<0.001	
MW-3 Water <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0101 </td <td></td> <td></td> <td>Water</td> <td></td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td></td>			Water		<0.001	<0.001	<0.001	<0.001	<0.001	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Water		<0.001	<0.001	<0.001	<0.001	<0.001	
Mm-4A Water <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 </td <td></td> <td></td> <td>Water</td> <td></td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td></td>			Water		<0.001	<0.001	<0.001	<0.001	<0.001	
MM-5 Water <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <td></td> <td></td> <td>Water</td> <td></td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td></td>			Water		<0.001	<0.001	<0.001	<0.001	<0.001	
Mw-SA Water <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 </td <td></td> <td></td> <td>Water</td> <td></td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td></td>			Water		<0.001	<0.001	<0.001	<0.001	<0.001	
MW-6 Water <0.001 <0.001 <0.001 <0.001 Blank <0.001			Water		<0.001	<0.001	<0.001	<0.001	<0.001	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Water	·	<0.001	<0.001	<0.001	<0.001	<0.001	
thing Limit $0.001 0.001 0.001 0.001 0.001$ 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.101 0.302 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Blank				<0.001	<0.001	<0.001	<0.001		
0.094 0.098 0.101 0.302 traction Accuracy strument Accuracy PREP PREP 104 105 104 105 94 98 101 101 PREP PREP ANALYSIS ANALYSIS CHEMIST 007 METHOD DATE METHOD COMPLETED 007 EPA 5030 3/4/98 EPA 8021B 3/4/98 JG 0.100 ea	Reporting Lim	uit			0.001	0.001	0.001	0.001		
1 1 1 1 1 1 1 traction Accuracy 104 105 104 105 105 strument Accuracy 94 98 101 101 101 FREP PREP ANALYSIS ANALYSIS ANALYSIS 01 101 METHOD DATE PREP ANALYSIS ANALYSIS CHEMIST QC: METHOD 3/4/98 EFA 8021B 3/4/98 JG 0.100 ea	δC				0.094	0.098	0.101	0.302		
traction Acuracy 104 105 104 105 strument Accuracy 94 98 101 101 101 The preponent Acuracy 94 98 101 101 101 PREP PREP ANALYSIS ANALYSIS CHEMIST 001 METHOD DATE METHOD COMPLETED 0.100 ea 10 0.100 ea	RPD				1	[]	Ч	Ţ		
strument Accuracy 94 98 101 101 101 PREP PREP PREP ANALYSIS ANALYSIS CHEMIST QC: METHOD DATE METHOD COMPLETED (mg/L) EPA 5030 3/4/98 EFA 8021B 3/4/98 JG 0.100 ea		Accuracy			104	105	104	105		
PREP PREP PREP ANALYSIS ANALYSIS CHEMIST QC: METHOD DATE METHOD COMPLETED (mg/L) EPA 5030 3/4/98 EFA 8021B 3/4/98 JG 0.100 ea	Instrument	Accuracy			94	98	101	101		
EPA 5030 3/4/98 EFA 8021B 3/4/98 JG 0.100 ea 0.1 R 3 3 3 3 3 3 3 3	TEST	PREP METHOD	PREP DATE	ANALYSIS METHOD	ANAL COMP		CHEMIST	QC: (mg/L)	SPIKE: (mg/L)	
	BTEX				3/1	4/98	JG	.100	1	-
			Je Co			1	00			ŗ

ċ

ſ,

;

ALLA.	ULIME AL MULTER ANALYSIS,		ILLINLIA		RACE	• ANA	SISX	INC				ULUMUL		
			6701 Aberdeen Avenue, Suitt 4725 Ripley Avenue, Suite A	6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A	 Lubbock, Texas 79424 El Paso, Texas 79922 	Texas 79424 8 Texas 79922 8	800•378•1296 888•588•3443	806•794•1296 915•585•3443		FAX 806 - 794-1298 FAX 915 - 585-4944				
						E-Mail: lab@traceanalysis.com	eanalysis.com		Prep Date:	03/04/98				
March 23, 1998 Receiving Date:	March 23, 1998 Receiving Date: 03/03/98			HIGHLA	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES	ILTS FOR VICES			Analysis Date: 03/05/98 Sampling Date: 02/25-27/98	ate: 03/05/ Date: 02/29	98 5-27/98			
Sample Type: V Project No: 996 Project Location	Sample Type: Water Project No: 996 Project Location: NA			Attention 1910 N. Midland,	Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705	St. St.			Sample Condition: Intact & Sample Received by: VW Client Name: Texaco E & Project Name: Texaco Co Jal Center T	indition: intact & c ceived by: VW ie: Texaco E & P me: Texaco Cooj Jal Center TB	sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper - Jal Center TB			
					DISSID	LVED MET	DISSOLVED METALS (mg/L)	÷						
TA#	Field Code	D	As	Se	PC	ບັ	Pp	Ag	Ba	Ö	Б	Ľ	Z	Hg
T92323	MW-1	<0.10	<0.10	<0.05	<0.01	<0.05	<0.05	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.0010
T92324	MW-2	<0.10	<0.10	<0.05	<0.01	<0.05	<0.05	<0.05	<0.10	<0.10	<0.10	<0.10	0.14	<0.0010
T92325	MW-2A	<0.10	<0.10	<0.05	<0.01	<0.05	<0.05	<0.05	<0.10 6.10	<0.10 6.10	<0.10 6.50	<0.10	 40.10 40.10 40.10 	<0.0010
T92326		<0.10	<0.10	<0.05	<0.01	<0.05	<0.05	<0.05	<0.10	0.10 6.40	<0.10 6.6	-0.10 -0.10	0.12	
T92327-		<0.10	<0.10 6	<0.05	<0.01	<0.05	0.05 0.05	0.05 70.05	<0.10 6.10	<0.10 6.6	<0.10 6.0		01.0	
T92328	MW-4A	<0.10	<0.10	0.05 0.05	-0.07	-0.05 20.05	0.02 20.02	20.U2	01.10 01.0	01.00	0.0			
T92329	MW-5	0.10 0.10	 40.10 40.10 40.10 	<0.05 20.05	-0.07	20.0>	c0.0>	<0.05 0.05	<0.10 <0.10	0.10	<0.10 <0.10	010×	<pre>>0.10</pre>	<0.0010
192331 T92331		0.10 0.10	0 0 0 0	<0.05	<0.0 0.05	<0.05 <0.05	<0.05	<0.05	<0.10	<0.10 <0.10	<0.10	<0.10	<0.10	<0.0010
		5.0	0.96	0.98	0.95	1.0	0.97	0.21	0.95	1.0	1.0	0.99	0.96	0.0052
CCV		5.2	0.90	1.0	0.96	0.98	0.97	0.20	0.97	1.0	0.98	1.0	0.95	0.0054
Reporting Limit	ıg Limit	0.10	0.10	0.05	0.01	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.0010
RPD		4	0	0	0	0	0	0	0	0	0	0	7	7
% Extra	% Extraction Accuracy	85	96	65*	65*	47*	44*	126*	75	115	75	65*	73*	105
% Instru	% Instrument Accuracy	102	63	66	95	6 6	97	100	96	100	66	66	95	104
*NOTE: CHEMIS	*NOTE: Extraction Accuracy is out of accepted limits of 75-125%. CHEMIST: As, Se, Cd, Cr, Pb, Ag, Ba, Cu, Fe, Mn, Zn, U: RR Hg:	r racy is out r, Pb, Ag, Ba	of accepte , Cu, Fe, M	d limits of In, Zn, U: RF		ЧС								
METHO	METHODS: EPA SW 846-3005, 6010B, 7470.	3-3005, 6010	B, 74/0.				1 72. 0 EO	Vo. 1	- / u	0 0050 mg				
DISSOL	DISSOLVED METALS SPIKE: 2.5 mg/L As; 2.0 mg/L 5e, Ca, Cr, Pb, Ba, Cu, Fe, Mn, Zn, 0.50 mg/L Cu; 5.0 mg/L U; 0.0050 mg/L Hg. DISSOLVED METALS CV: 1.0 mg/L As, Se, Cá, Cr, Pb, Ba, Fe, Mn, Zn; 0.20 mg/L Ag; 100 mg/L Cu; 5.0 mg/L U; 0.0050 mg/L Hg.	1KE: 2.5 mg 1. 1.0 mg/L /	As, Se, Cd,	ng/L se, ca Cr, Pb, Ba,	l, Ur, Po, Ba Fe, Mn, Zn;	1, cu, re, M 0.20 mg/L	n, zn, u.su Ag; 100 mg	/L Cu; 5.0	.v mg/c 0, mg/L U; 0.0	050 mg/L 1	Hg.			
		Ø.	5			5	۲- م م - ۲ - ۲	3.			•			
			,											

i

i

Ì

Date

Director, Dr. Blair Leftwich

.

| | |

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705 806•794•1296 FAX 806•794•1298 915•585•3443 FAX 915•585•4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/25/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -

Jal Center TB

Extraction Date: 03/02/98

РАН	Reporting	T92323			Analysis	Date: 03/09/98
8270 Compounds (mg/L)	Limit	MW-1	QC	RPD	%EA	\$IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
hracene	0.001	ND	69	14	75	86
Fluoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo[a] anthracene	0.001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo[b]fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo[a]pyrene	0.001	ND	71	40*	75	89
Indeno [1,2,3-cd] pyrene	0.001	ND	71	40*	75	89
Dibenz [a,h] anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

ND = Not Detected

SURROGATES

Nitrobenzene-d5 SURR

2-Fluorobiphenyl SURR

Terphenyl-d14 SURR

*NOTE: RPD out of standard range.

METHODS: EPA SW 846-8270, 3510.

TMIST: MB

% RECOVERY

60

60

70

3-13-98

Director, Dr. Blair Leftwich

DATE

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705

806•794•1296 FAX 806•794•1298 915•585•3443 FAX 915•585•4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/25/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -

Jal Center TB

Extraction Date: 03/03/98

РАН	Reporting	T92324			Analysis	Date: 03/09/98
8270 Compounds (mg/L)	Limit	MW-2	QC	RPD	*EA	%IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
racene	0.001	ND	69	14	75	86
Fluoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo[a] anthracene	0.001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo[b]fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo [a] pyrene	0.001	ND	71	40*	75	89
Indeno [1,2,3-cd] pyrene	0.001	ND	71	40*	75	89
Dibenz[a,h]anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

ND = Not Detected

SURROGATES

Nitrobenzene-d5 SURR

2-Fluorobiphenyl SURR

Terphenyl-d14 SURR

*NOTE: RPD out of standard range.

METHODS: EPA SW 846-8270, 3510.

MIST: MB

% RECOVERY

50

50 70

3-13-98

Director, Dr. Blair Leftwich

DATE

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705 806•794•1296 FAX 806•794•1298 915•585•3443 FAX 915•585•4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/26/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -

Jal Center TB

Extraction Date: 03/02/98

PAH	Reporting	T92325			Analysis	Date: 03/09/98
8270 Compounds (mg/L)	Limit	MW-2A	QC	RPD	%EA	%IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
hracene	0.001	ND	69	14	75	86
Fluoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo[a] anthracene	0.001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo[b]fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo [a] pyrene	0.001	ND	71	40*	75	89
Indeno [1,2,3-cd] pyrene	0.001	ND	71	40*	75	89
Dibenz[a,h]anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

ND = Not Detected

SURROGATES

Nitrobenzene-d5 SURR

2-Fluorobiphenyl SURR

Terphenyl-d14 SURR

*NOTE: RPD out of standard range.

METHODS: EPA SW 846-8270, 3510.

EMIST: MB

% RECOVERY

60

60

60

3-13-98

Director, Dr. Blair Leftwich

DATE

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705

806•794•1296 FAX 806 • 794 • 1298 915•585•3443 FAX 915•585•4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/27/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -

Jal Center TB

Extraction Date: 03/03/98

PAH	Reporting	T92326			Analysis D	ate: 03/09/98
8270 Compounds (mg/L)	Limit	MW-3	QC	RPD	%EA	%IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
racene	0.001	ND	69	14	75	86
luoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo[a]anthracene	0,001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo[b]fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo[a]pyrene	0.001	ND	71	40*	75	89
Indeno [1, 2, 3-cd] pyrene	0.001	ND	71	40*	75	89
bibenz[a,h]anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

ND = Not Detected

SURROGATES	% RECOVERY
Nitrobenzene-d5 SURR	0** (35-114)
2-Fluorobiphenyl SURR	15
Terphenyl-d14 SURR	70

*NOTE: RPD out of standard range.

**NOTE: Surrogate Recovery out of standard range.

HODS: EPA SW 846-8270, 3510.

CHEMIST: MB

3-13-58

Director, Dr. Blair Leftwich

DATE

Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705

806 • 794 • 1296 FAX 806 • 794 • 1298 915•585•3443 FAX 915•585•4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/27/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -

Jal Center TB

Extraction Date: 03/03/98

РАН	Reporting	T92327		_	Analysis	Date: 03/09/98
8270 Compounds (mg/L)	Limit	MW - 4	QC	RPD	%EA	%IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
thracene	0.001	ND	69	14	75	86
Fluoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo[a] anthracene	0.001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo[b]fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo [a] pyrene	0.001	ND	71	40*	75	89
Indeno[1,2,3-cd]pyrene	0.001	ND	71	40*	75	89
Dibenz[a,h]anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

ND = Not Detected

SURROGATES

Nitrobenzene-d5 SURR

2-Fluorobiphenyl SURR

Terphenyl-d14 SURR

*NOTE: RPD out of standard range.

METHODS: EPA SW 846-8270, 3510.

EMIST: MB

% RECOVERY

75 75

3-13-98

DATE

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705

806 • 794 • 1296 FAX 806 • 794 • 1298 915•585•3443 FAX 915•585•4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/27/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -

Jal Center TB

Extraction Date: 03/03/98

РАН	Reporting	T92328			Analysis	Date: 03/09/98
8270 Compounds (mg/L)	Limit	MW-4A	QC	RPD	%EA	%IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
hracene	0.001	ND	69	14	75	86
Fluoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo[a]anthracene	0.001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo [b] fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo [a] pyrene	0.001	ND	71	40*	75	89
Indeno [1, 2, 3-cd] pyrene	0.001	ND	71	40*	75	89
Dibenz[a,h] anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

ND = Not Detected

SURROGATES

Nitrobenzene-d5 SURR

2-Fluorobiphenyl SURR

Terphenyl-d14 SURR

*NOTE: RPD out of standard range.

METHODS: EPA SW 846-8270, 3510.

MIST: MB

% RECOVERY

60

60

60

3-13-98

Director, Dr. Blair Leftwich

DATE

ANALYTICAL RESULTS FOR
HIGHLANDER SERVICES
Attention: Ike Tavarez
1910 N. Big Spring St.
Midland, TX 79705

Reporting

*343 FAX 915*585*4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/26/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -

Jal Center TB

Extraction Date: 03/03/98

Analysis Date: 03/09/98

						<u>Date:</u> 03/03/30
8270 Compounds (mg/L)	Limit	MW - 5	QC	RPD	%EA	%IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
thracene	0.001	ND	69	14	75	86
Fluoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo [a] anthracene	0.001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo[b]fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo[a]pyrene	0.001	ND	71	40*	75	89
Indeno [1, 2, 3-cd] pyrene	0.001	ND	71	40*	75	89
Dibenz[a,h] anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

T92329

ND = Not Detected

SURROGATES

Nitrobenzene-d5 SURR 2-Fluorobiphenyl SURR

PAH

Terphenyl-d14 SURR

*NOTE: RPD out of standard range.

METHODS: EPA SW 846-8270, 3510.

EMIST: MB

% RECOVERY 70

70

3-13-98

Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705 806•794•1296 FAX 806•794•1298 915•585•3443 FAX 915•585•4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/26/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper ~

Jal Center TB

Extraction Date: 03/03/98

PAH	Reporting	T92330			Analysis	Date: 03/09/98
8270 Compounds (mg/L)	Limit	MW-5A	QC	RPD	%EA	%IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
racene	0.001	ND	69	14	75	86
Fluoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo[a] anthracene	0.001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo[b]fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo[a]pyrene	0.001	ND	71	40*	75	89
Indeno [1,2,3-cd] pyrene	0.001	ND	71	40*	75	89
Dibenz [a, h] anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

ND = Not Detected

SURROGATES

Nitrobenzene-d5 SURR

2-Fluorobiphenyl SURR

Terphenyl-d14 SURR

*NOTE: RPD out of standard range.

METHODS: EPA SW 846-8270, 3510.

MIST: MB

% RECOVERY

60

60

3-13-58

Director, Dr. Blair Leftwich

Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705 806•794•1296 FAX 806•794•1298 915•585•3443 FAX 915•585•4944 March 13, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Sampling Date: 02/26/98 Sample Condition: I & C Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -

Jal Center TB

Extraction Date: 03/03/98

РАН	Reporting	T92331			Analysis	Date: 03/09/98
8270 Compounds (mg/L)	Limit	MW - 6	QC	RPD	%EA	%IA
Naphthalene	0.001	ND	69	14	75	86
Acenaphthylene	0.001	ND	69	12	90	86
Acenaphthene	0.001	ND	69	18	90	86
Fluorene	0.001	ND	70	18	90	88
Phenanthrene	0.001	ND	70	14	75	88
thracene	0.001	ND	69	14	75	86
Fluoranthene	0.001	ND	70	21*	80	88
Pyrene	0.001	ND	70	19	85	88
Benzo [a] anthracene	0.001	ND	72	31*	75	90
Chrysene	0.001	ND	72	32*	90	90
Benzo[b]fluoranthene	0.001	ND	76	40*	60	95
Benzo[k]fluoranthene	0.001	ND	69	40*	90	86
Benzo [a] pyrene	0.001	ND	71	40*	75	89
Indeno[1,2,3-cd]pyrene	0.001	ND	71	40*	75	89
Dibenz[a,h]anthracene	0.001	ND	73	40*	75	91
Benzo[g,h,i]perylene	0.001	ND	71	40*	75	89

ND = Not Detected

SURROGATES

Nitrobenzene-d5 SURR

2-Fluorobiphenyl SURR

. Terphenyl-d14 SURR

*NOTE: RPD out of standard range.

METHODS: EPA SW 846-8270, 3510.

EMIST: MB

% RECOVERY

35

3-13-58

DATE

FAX 806 • 794 • 1298 FAX 915•585•4944 TRACEANALYSIS, INC. 806 • 794 • 1296 915•585•3443 Lubbock, Texas 79424 800•378•1296 888 • 588 • 3443 El Paso, Texas 79922 6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper -(mg/L as CaCo3) Sample Condition: Intact & Cool C03 <<u>1</u>.0 <1.0 **ALKALINITY** 1.0 1.0 1.0 Sampling Date: 02/25-27/98 I Jal Central TB Sample Received by: VW Analysis Date: 03/03/98 HC03 280 190 190 230 <u>1</u>,0 Prep Date: 03/03/98 SULFATE (mg/L) 570 330 406 1,300 24 24 50 9,300 1,200 1,500 22,000 (mg/L) TDS HIGHLANDER SERVICES CORP. l 1 ANALYTICAL RESULTS FOR E-Mail: lab@traceanalysis.com 1910 N. Big Spring Street CHLORIDE (mg/L) Attention: Ike Tavarez 5,600 280 452 12,000 23 23 20 Midland, TX 79705 pH (s.u.) 7.4 7.9 7.9 7.7 7.0 7.0 I CYANIDE (mg/L) <0.010 <0.010 <0.010 <0.010 0.039 0.039 0.010 Receiving Date: 03/03/98 FIELD CODE Sample Type: Water Project Location: NA REPORTING LIMIT MW-2A **MW-3 MW-1 MW-4** Project No: 996 March 26, 1998 T92325 T92326 T92327 [92323 SO SO TA# <u></u>2

CHLORIDE CV: 25 mg/L CHLORIDE. SULFATE CV: 25 mg/L SULFATE. CYANIDE CV: 0.040 mg/L CYANIDE. CHLORIDE/SULFATE: JS TDS/ALKALINITY/CYANIDE: RS/JS METHODS: EPA 150.1, 160.1, 300.0, 310.1, 335.2. CHLORIDE SPIKE: 1,250 mg/L CHLORIDE. SULFATE SPIKE: 1,250 mg/L SULFATE. CYANIDE SPIKE: 0.040 mg/L CYANIDE. CHEMIST: pH: CS

0 8 8

2

3 3 0 0

100

% Extraction Accuracy % Instrument Accuracy

RPD

I

ო წ წ

0

Director, Dr. Blair Leftwich

26-58

Date

	()03/98 2/26-27/98 2/26-27/98 by: VW by: VW acc & P, Inc acco E & P, Inc acco E & P, Inc acco E & P, Inc ALKALINITY ALKALINITY	C03	0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1.	1.0	-	
86/20/2	e: 03/03/98 ate: 02/26-27/98 dition: Intact & Cool eived by: VW : Texaco E & P, Inc. : Texaco E & P, Inc. e: Texaco Cooper - Jal Central TB ALKALINITY (mo/l as CaCo3)	HC03	180 170 200	1.0	-	
LULALALALALALALALALALALALALALALALALALAL	Analysis Date: 03/03/98 Sampling Date: 02/26-27/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper - Jal Central TB ALKALINITY SI II FATF (mo/l as CaCo3)	(mg/L)	410 910 400 24 24	50	- 96 96	<u>v</u>
C MULLILL ••1296 FAX 800 ••3443 FAX 911	N-EQN	(mg/L)	4.5 5.9 3.4 7.1 1.33 1.33	0.01	2 115 99	IDE/N03-N/SULFATE: J 25 mg/L CHLORIDE. 1.0 mg/L FLUORIDE. 33 mg/L N03-N. 25 mg/L SULFATE. 0.040 mg/L CYANIDE. プー スピー デタ
S, INC.	JR CORP. TDS	(mg/L)	3,300 12,000 1,200 1,200	I	م	ORIDE/N03-N/SULI CV: 25 mg/L CHLC CV: 1.0 mg/L FLUC 1.333 mg/L N03-N :V: 25 mg/L SULFA :V: 0.040 mg/L CYA
EANALYSIS Fexas 79424 800-378-1296 Fexas 79922 888-588-3443 E-Mail: lab@traceanalysis.com	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705 FI LIORIDF CHI ORIDF TD	(mg/L)	1,600 6,600 190 23 23	50	0 6 16	1. FLUORIDE/CHLORIDE/N03-N/SULFATE: JS CHLORIDE CV: 25 mg/L CHLORIDE. FLUORIDE CV: 1.0 mg/L CHLORIDE. N03-N CV: 1.333 mg/L N03-N. SULFATE CV: 25 mg/L SULFATE. CYANIDE CV: 0.040 mg/L CYANIDE.
EI Paso, Texas 79424 EI Paso, Texas 79922 E-Mail: Jab@	ANALYTICAL RESULT HIGHLANDER SERVIC Attention: Ike Tavarez 1910 N. Big Spring Stre Midland, TX 79705 FI LIORIDF CHLORI	(mg/L)	0.59 0.48 0.86 1.39 0.96 0.88	0.1	16 89 92	35.2, 352.1. ts/JS FLU
LULL Suite 9 Suite A	I	ыч (s.u.)	7.6 7.9 7.0 7.0		0 0	, 310.1, 3 ANIDE: F
6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A	CYANIDE	(mg/L)	 <0.010 <0.010 <0.010 <0.039 <0.039 	0.010	ი 88 88	150.1, 160.1, 300.0, 340.2, 310.1, 335.2, TDS/ALKALINITY/CYANIDE: RS/JS 125 mg/L CHLORIDE. 1.0 mg/L FLUORIDE. 33 mg/L N03-N. 125 mg/L SULFATE. 0.040 mg/L CYANIDE.
International and the series of the serie	March 26, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Project Location: NA	FIELD CODE	MW-4A MW-5 MW-5A MW-6	REPORTING LIMIT	RPD % Extraction Accuracy % Instrument Accuracy	METHODS: EPA 150.1, 160.1, 300.0, 340.2, 310.1, 335.2, 352.1 CHEMIST: pH: CS TDS/ALKALINITY/CYANIDE: RS/JS FI CHLORIDE SPIKE: 125 mg/L CHLORIDE. FLUORIDE SPIKE: 1.0 mg/L FLUORIDE. N03-N SPIKE: 13.33 mg/L N03-N. SULFATE SPIKE: 125 mg/L SULFATE. CYANIDE SPIKE: 0.040 mg/L CYANIDE.
	March 26, 1998 Receiving Date: Sample Type: W Project No: 996 Project Location:	TA#	T92328 T92329 T92330 T92331 ICV CCV	REPORI	RPD % Extrac % Instrun	METHOI CHEMIS CHLORII FLUORII N03-N SI SULFATI CYANIDE

March 26, 1998 March 26, 1998 Receiving Date: 03/03/98 Sample Type: Water Project No: 996 Project Location: NA Ta# Field Code T92323 MW-1 T92325 MW-2 T92325 MW-5 T92326 MW-5 T92328 MW-5 T92329 MW-5 T92329 MW-5 T92330 MW-5 T92331 MW-6 CCV Setraction Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy % Instrument Accuracy	MULLIAL TACEANALYSIS, INC. MULLIAL UNLIAL 6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 800•378•1296 806•794•1296 FAX 806•794•1298 6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79922 888•588•3443 915•585•4944 725 Ripley Avenue, Suite 9 Lubbock, Texas 79922 888•588•3443 915•585•4944 725 Ripley Avenue, Suite 9 Lubbock, Texas 79922 888•588•3443 915•585•4944 8703 Aberdeen Avenue, Suite 9 Lubbock, Texas 79922 888•588•3443 915•585•4944 8704 Street Prep Date: 03/15/98 Analysis Date: 03/15/98 Altention: Ike Tavarez Sampling Date: 02/25-27/98 Sample Condition: Intact & Cool 910 N. Big Spring Street Sample Received by: VW Sample Received by: VW Sample Received by: VW Midland, TX 79705 Project Name: Texaco Cooper - Jal C Project Name: Texaco Cooper - Jal C	POTASSIUM MAGNESIUM CALCIUM SODIUM HARDNESS -ield Code (mg/L) (mg/L) (mg/L) (mg/L (mg/L)	116 520 285 2.900	30 380	A 57 36 144 215	11 50 200 237	48 880 1,700 5,300	A 11 130 470	31 470 1,400 2,400	3.5 23 107	6.2 44 180	50 50		0.20 0.20 0.20	0 7 0	144 132 124 1 05 100 100 100	BO 100 RPD and % Extraction Accuracy. 7, SM 2340B.	SPIKE: 100 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM.
---	---	---	-------------------	--------	-----------------	---------------	--------------------	--------------	--------------------	------------	------------	-------	--	----------------	-------	---------------------------------	--	--

ļ

Date

Director, Dr. Blair Leftwich

	TRACEANALYSIS.		
6701 Aberdeen Avenue, Suit 4725 Ripley Avenue, Suite A	El Paso, Texas 79922 888•588•3443	806•794•1296 FAX 806•794 915•585•3443 FAX 915•585	
	E-Mail: lab@traceanalysis.com		
	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street		
	Midland, TX 79705	Prep Date: 03/18	
March 23, 1998		Analysis Date: 03	
Receiving Date: 03/03/98		Sampling Date: 0	
Sample Type: Water		Sample Condition	
Project No: 996 Project Location: NA		Sample Received Client Name: Tex	
Project Location. NA		Project Name: Te	· •
			Center TB
		NITRATE-N	FLUORIDE
TA#	FIELD CODE	(mg/L)	(mg/L)
T92323	MW-1	5.7	1.78
T92324	MW-2	4.9	1.03
T92325	MW-2A	6.4	1.13
T92326	MW-3	8.5	1.07
T92327	MW-4	8.7	0.49
ICV		1.1	1.00
ccv		1.2	0.94
Reporting Limit		0.01	0.1
RPD		6	1
% Extraction Accuracy		91	99
% Instrument Accuracy		91	97
METHODS: EPA 340.2, 353.3.			

CHEMIST: JS NITRATE-N SPIKE: 13.33 mg/L NITRATE-N. NITRATE-N CV: 1.333 mg/L NITRATE-N. FLUORIDE SPIKE: 1.0 mg/L FLUORIDE. FLUORIDE CV: 1.0 mg/L FLUORIDE.

-

DATE

3-23-98

Director, Dr. Blair Leftwich

			ļ		_(1.5	<u>'?</u>]]	<u>4?][</u>]	1431	7	7			$\overline{}$			Ń				SSS			-
$\langle \cdot \rangle$	Ş	!)	17	25	7		inai	W J	af All	7	2		~	\mathbf{x}	Y	\ -	$\overline{}$	\mathbf{X}			7589758		n (en)
			$\left - \right $	•				(soji	səqsy) MJq												3	Regults RYP	rized: (
	OF:		\square			-			aise angla											e e	_ → '	Results Results	Authorized Yes	
•		No.)	1			əpi	Chlor		Gamma Sp											Date	AIRBILL OTHER:	<u> </u>		4
		QUEST Method							Pest. 808/											イ	A O		1	A
_							70/0170		PCB's 8080													÷	12	30
$\hat{\mathbf{O}}$	ü								CC'NE API					· · · · · · · · · · · · · · · · · · ·						Sign)	The second	ERSO	1	P
	PAGE:								RCI											*2		T PI	5	
		ANA					S		TCLP Semi											SAMPLED BY (Print	SAMPLE SHIPPED BY: FEDEX HAND DELIVERED	HIGHLANDER CONTACT PERSON	Ŕ	
		Circle		98 8F	H Pd	Cr I	Ba Cd		TCLP Metal											A.	SAMPLE SHIPPED FEDEX HAND DELIVERED	C K	100	
)		s a _H	र वत	Cr.	Ba Cd	sa ya s	RCRA Metal						_						LE SH	ANDE		
			\vdash	_					PAH 6270	• >	- >	. >	· `	- \	· >	. >	. •	•		AMPI	SAMPL FEDEX HAND	IICHL),	
									WTBE 8050						<u> </u>					- N	N 74 74			-
	⊢							209,	NCC 8020	>	>	>	>	2	>)	2	<u> </u>		2X				
		_				10	PRESERVATIVE METHOD	W	NONE N	N										100		G		1
		Necord	^ •			682-3946	ESERVAT METHOD		ICE	~	~	1				$\overline{\mathbf{x}}$	~	<hr/>		m-r			par	KS
		ין כ ו כ	CORP.			2-3	RESE ME	clut	升 ЕОЛН	2		~	$\overline{\}$	~	1		1			- [⁻¹] i i i	 	 	50	REMARKS:
			0			68	d.		ТЭН											Date: Time:	Date: Time: Date:	Time:	shi	
			Ũ	l		15)	CURN		FILTERED (7	ア	\mathbf{x}	2	11	>			>		╡.			6	
	-	3		1		(91	Saan	VINOJ	NUMBER OF	1	<u>v</u>	7.0	มา		5		1	5		5				
		2	\checkmark			Fax														1 1	() (i		1200	SD-Solid 0-Other
		<u>custoay</u>	ENTA	ļ.		~~		M												All of Jay	(Signature) (Signature)	ature	No.	SI 0
	۲	_{ا ا} د					l	[-]	_												(Sig	(Sign	98	dge
	4	10	$\overline{\mathcal{Z}}$	St	05		2 2	d'	SAMPLE IDENTIFICATION											RECEIVED BY:	RECEIVED BY: (Signature) RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	3-3-98	A-Air SL-Sludge
	1	-	ENVIRONM	50	79705		R. Care	entre	FICA											EX.	EIVEI		1000	
		Unain	õ	Big Spring			3 8	69	ENTI											REC	REC	RECE	DATE	/£)_=
	2	na	Ř	Sp	Midland, Texas		SITE MANAGER	ľ,	IQI 1															W-Water
		د		, pu	Ley		₹¢	15	MPLI			4			-		-			2 NA	11 1.4			
	7	and	5	Ē			SITE	C-rav	SA			MW1-24	M	1	7	5	SA AS	9		No	4.5		ZIP:	MATRIX:
		an	E	ż	pu				-	MW-	MW-2	3	1					1		nu	~[7]			W
	1				dla			NAN N		2	1 n	3	MW-	MW-	- 34	in un	ことと	MW-		Date: Time:	Date: Time:	Time:		
		e B		91	Mid			ECT	BAAD	$\left \right\rangle$		-		2	2	2						N		
		Request					1×	PROJECT NAME	сомь						$\dot{\Box}$					1		IŘ	STATE: PHONE	
		e e	Z	• }			H	1	XIATAM	-2,		1.	3	د	3	3	3	a			Ö	\square	STAT	EIVEI
		4	N,			559	ď.		TIME	2	÷5	2' 12	51.2	15	i.	2 3	2.2	2:5			iture.		1	REC
		Analysis	HIGHLANDER			(915) $682 - 4559$	w				st: 1 8/2/C	1			21276 1:3"	2/31/5x 2.00	×. v.	9/01/98 2:3	+	BY (Signature)		rory		WHEN
		ys Ns				682	С Ш	بر ا	DATE	12495	X	22/2c/6	82/LC/C	, c	1 2	36	85/76/0	e Si		12		DRATC	12	NOI
	17	lal	H			5)	NAM CO	SNG 1		R	<u>, d</u>			1		•	1	\$ \$	⊧_ <	N	HED	LABC	NE	TIONC
	{	AI	Ę			(91	CLIENT NAME: 104900 E	PROJECT NO.	LAB I.D. NUMBER	92323	34	35	26	40	38	29	30	$\frac{3}{2}$		RELINQUISTER	RELINQUISHED BY (Signature)	RECEIVING LABORATORY:	CITY: CONTACE NAN	SAMPLE CONDITION WHEN RECEIVED:
レイント							Σβ	PRI	LAE NUI	6	S.									RELIN	N'H	SECE	ADDR UTY.	AMP

4232

i

Drd PAGE: 1 OF: 1 ANALYSIS REQUEST	(circle of opecity method	э <u>с</u>	5 <i>8</i> H		qe Q	₽J ₽8	'SO 'SO 858, 510 ST 510 ST	/// 208/ 208/ 208/ 208/ 208/ 209/ 209/ 209/ 209/ 209/ 209/ 209/ 209	PCLP Metel PCLP Voleti RCLP Semi RCL Voleti RCL Voleti RCI RCL PCB'S 808/ RCI RCL RCL RCL RCL RCL RCL RCL RCL RCL RCL										SAMPLED BY. (Print & Sign) Date:	SAMPLE SHIPPED BY: (Circle)		HIGHLANDER CONTACT PERSON:	14.1 1 Come - C2 Authorized		REMARKS:
and Chain of Custody Record		EIN VINUUMEIN LAL UUNT	N. Big Spring St.	Midland, Texas 79705	Fax (915)	SX3	IN I WAY C	pri-Jel Cortin 72.	HCT EITTERED (NUMBER OF SAMPLE IDENTIFICATION	U-1	1.2 5 V	1.24	M		1, 4,A	12 S	54 54	· 6	RECEIVED BY: (Signature) Date:	BY: (Signature)	RECEIVED BY: (Signature) Date:	RECEIVED BY: (Signature)		DATE: TIME:	MATRIX: (W-Water A-Air SD-Solid R S-Soli SL-Sludge 0-Other
Analysis Request a		-	1910 1	Midla	(915) 682 - 4559	CLIENT NAME:		PROJECT NO.: PROJECT NAME: 996	LAB I.D. DATE TIME TIME COMP. COMP. COMP.	1.100 - 5 N , MW	11111 - 14 -54 - 12/-7	x		mm - M stell	M 1 / N 02.1	~ m/ 1 (~ 00 5 3/m/	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	W W1 - 9.5 2 10/10/1	RELINQUISHED' BY: (Signature) Date:	b	RELINQUISHED BY: (Signature) Date:	RECEIVING LABORATORY: /////	S	CONTACT: PHONE:	SAMPLE CONDITION WHEN RECEIVED:

ool Inc. er - Jal TB	HARDNESS	4,800 7,800 	1 1			80 (5)
/13/98 04/15/98 :: 04/09/98 ion: Intact & Co /ed by: VW Texaco E & P, I Texaco Coope	(mg/L) Muldos	3,430 5,400 25 24	0.50 <0.50	2 45* 96		4 - 15 Date
Prep Date: 04, Analysis Date: Sample Condit Sample Receiv Client Name: ⁻ Project Name:	CALCIUM (mg/L)	1,100 1,740 25 25	0.50 <0.50	2 155* 100		
OR CORP.	MAGNESIUM (mg/L)	490 840 23 23	0.50 <0.50	3 110 92		
ANALYTICAL RESULTS F HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	POTASSIUM (mg/L)	29 25 25	0.50 <0.50	111 100	igh dilution.	IUM, SODIUM. Wich
	Field Code	MW-2 MW-4			very for Na, Ca due to h	METHODS: EPA 200.7. CHEMIST: RR SPIKE: 100 mg/L POTASSIUM, MAGNESIUM, ' CV: 25 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM CV: 25 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM
April 15, 1998 Receiving Date: 04/10/9 Sample Type: Water Project No: 996 Project Location: NA	TA#	T95935 T95936 ICV CCV	Reporting Limit METHOD BLANK	RPD % Extraction Accuracy % Instrument Accuracy	*NOTE: No spike reco	METHODS: EPA 200.7. CHEMIST: RR SPIKE: 100 mg/L POTA CV: 25 mg/L POTASSIL
	April 15, 1998 Analysis Date: 04/13/98 April 15, 1998 April 15, 1998 April 15, 1998 Attention: Ike Tavarez Receiving Date: 04/10/98 Attention: Ike Tavarez Sample Type: Water Analysis Date: 04/15/98 Project No: 996 Sample Condition: Intact & Cool Project Location: NA Project Location: NA	15, 1998 15, 1998 Frep Date: 04/13/98 15, 1998 Analysis Date: 04/10/98 Prep Date: 04/13/98 910 N. Big Spring Street Analysis Date: 04/15/98 910 N. Big Spring Street Sampling Date: 04/15/98 15, 1998 Sampling Date: 04/16/98 1910 N. Big Spring Street Sampling Date: 04/09/98 1910 N. Big Spring Street Sample Condition: Intact & Cool 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Spring Street Sample Received by: VW 1910 N. Big Street Sample Received by: VW 1010 N. Big Street Sample Street 1010 N. Big Street Sample Street 1010 N. Big Street Sample Street	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. 1998 Attention: Ike Tavarez Analysis Date: 04/15/98 Type: Water 04/10/98 Sampling Date: 04/15/98 Type: Water 1910 N. Big Spring Street Sampling Date: 04/15/98 Vo: 996 Sample Condition: Intact & Cool Sample Condition: Intact & Cool Vo: 996 Sample Received by: WW Sample Received by: WW Location: NA Field Code Midland, TX 79705 Field Code Midland, TX 79705 Sample Received by: WW Mouton: NA Mouton Madens: Texaco E & P, Inc Midland, TX 79705 Sample Received by: WW Mouton: Intact & Cool Vo: 996 Midland, TX 79705 Sample Received by: WW Midland, TX 79705 Sample Received by: W Moutoc B Midland, TX 79705 Madens: Itexaco E & P, Inc Project Name: Texaco E & P, Inc Project Name: Mouto Madens: Itexaco E & P, Inc Project Name: Texaco E & P, Inc MWv4 Mouto Madens: Mu/L Maden MWv4 25 23 25 25 23 25 25	1998 1998 1998 1998 1990 1996 1990 1990 1990 1990 1990 1990	1998 ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Prep Date: 04/15/98 1998 Attention: Ike Tavarez Attention: Ike Tavarez Analysis Date: 04/15/98 Type: Water Attention: Ike Tavarez Sample Received by: VM Type: Water Sample Received by: VM Condition: Intact & Cool Vo: 996 Sample Received by: VM Condition: Intact & Cool vocation: NA POTASSIUM MAGNESIUM CALCLUM Attendor Tyto: 0.50 Cool Cool Vo: 996 Midland, TX 79705 Sample Received by: VM Location: NA POTASSIUM MAGNESIUM CALCLUM Location: NA MW-4 23 25 23 MW-4 25 23 25 24 MM-4 0.50 0.50 0.50 0.50 D BLANK 0.50 0.50 0.50 0.50 Modeuracy 110 155* 45*	1998 ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Prep Date: 04/13/98 1998 Attention: Ike Tavarez Analysis Date: 04/13/98 1900 Attention: Ike Tavarez Sampling Date: 04/15/98 1901 Nidland, TX 79705 Sampling Date: 04/15/98 1905 Midland, TX 79705 Sampling Date: 04/15/98 1906 Midland, TX 79705 Sampling Date: 04/09/98 1906 Midland, TX 79705 Sample Condition: Intact & Coll 1907 Sample Condition: Intact & Coll Sample Condition: Intact & Coll 1908 Midland, TX 79705 Sample Condition: Intact & Coll 1909 Midland, TX 79705 Sample Condition: Intact & Coll 1909 Midland, TX 79705 Sample Condition: Intact & Coll 1909 Midland, TX 79705 Sample Condition: Intact & Coll 1909 Midland, TX 79705 Sample Condition: Intact & Coll 1909 Midland, TX 79705 Sample Condition: Intact & Coll 1900 Midland, TX 79705 Midland, TX 79705 1900 Midland, TX 79705 Sample Condition: Intact & Coll 1900 Midland, TX 7970 Sample Condition: Intact & Coll 1900 Midland, TX 7970 Sample Condition: Intact & Coll 1900 Midland, Midland Midland

V LAULANUARIAM VLAULANUARIAM VLAULANULANUARIAM AND VALANUALUANUARIAM VLAULANUALUVALUVALUVALUVALUVALUVALUVALUVALUVALU	e 9 Lubbock, El Paso,	Texas 79424 800 • 378 • 1296 Texas 79922 888 • 588 • 3443 E-Mail: lab@traceanalysis.com	96 806•794•1296 43 915•585•3443 3m	36 FAX 806•794•1298 13 FAX 915•585•4944	298 944	
April 15, 1998 Receiving Date: 04/10/98 Sample Type: Water Project No: 996 Project Location: NA	ANALYTIC HIGHLANE Attention: 1910 N. Biç Midland, T	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	R ORP.		Prep Date: 04/10/98 Analysis Date: 04/10 Sampling Date: 04/06 Sample Condition: In Sample Received by: Client Name: Texaco Project Name: Texaco	Prep Date: 04/10/98 Analysis Date: 04/10/98 Sampling Date: 04/09/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper - Jal TB
TA# FIELD CODE	рН (s.u.)	CHLORIDE (mg/L)	TDS (mg/L)	SULFATE (mg/L)	ALKALINITY (mg/L as CaCo3) HC03 C03	INITY CaCo3) C03
T95935 MW-2 T95936 MW-4 ICV CCV	7.0 6.7 7.0 7.0	8,200 13,000 11 11	15,000 23,000 	990 1,500 12	290 240	∧ 1.0 1.0
REPORTING LIMIT	I	2.0	1	0.5	1.0	1.0
RPD % Extraction Accuracy % Instrument Accuracy	0 0	2 84 3	m	1 97 97	0	°
METHODS: EPA 150.1, 160.1, 300.0, 310.1. CHEMIST: pH: CS TDS/ALKALINITY: RS CHLORIDE SPIKE: 1,250 mg/L CHLORIDE. SULFATE SPIKE: 1,250 mg/L SULFATE	CHLORIDE/SUL	/SULFATE: JS CHLORIDE CV: 12.5 mg/L CHLORIDE SULFATE CV: 12.5 mg/L SULFATE.	: 12.5 mg/L CHLORII 12.5 mg/L SULFATE	HLORIDE. LFATE.		

- ----

333	PAGE: OF:	ANALYSIS REQUEST (Circle or Specify Method No.)			196 52 4 52	9270/62 260/62 35 85 85 85 85 85 85 85 85 85 85 85 85 85	۲۹۵۲ (۸۱۲) ۲۹۳ (۲۹۳) ۲۹۳ (۲۹۳) ۲۹۹ (۲۹۹) ۲۹۹ ۲۹۹ (۲۹۹) ۲۹۹ (۲۹۹) ۲۹۹ (۲۹) ۲۹) ۲۹۹ (۲۹) ۲۹) ۲۹۹ (۲۹) ۲۹)	МТВЕ 8020/ МТВЕ 8020/ ПРН РІ.М. (Азбез ПРН РСІ.Р. Мецаіз ПСІ.Р. Мецаіз ПСІ.Р. Мецаіз ПСІ.Р. Мецаіз КСІ СС.МЗ Зеті ВОВ., ТЗЗ., І РСІ.Р. Мецаіз ПСІ.Р. Мецаіз КСІ СС.МЗ Зеті ВОВ., ТЗЗ., І КСІ СС.МЗ Зеті ВСІ.Р. Мецаіз КСІ КСІ СС.МЗ Зеті КСІ КСІ КСІ ВОВ., ТЗЗ., І КСІ КСІ КСІ КСІ КСІ КСІ КОВ. КОВ. КСІ КОВ. <							M SAMPLED BY FOTME & Sign) V T KARE K.	FEDEX HAND DELIVERED BY: (Crede) AIRBILL # HAND DELIVERED UPS OTHER:	TACT PERSON:		HTT ACHED.	ilow copy Return Gold copy to Highlander Environmendal Corp	
		ally Citatil Of Custoury Necolu	HIGHLANDER ENVIRONMENTAL CORP.	land, Texas 79705	Fax (915) 682-3946	SITE MANAGER / L. I avar e Z. B METHOD	oper-Jel TS. CONT	NONE ICE HNO3 LITERED (NUMBER OF SAMPLE IDENTIFICATION	MW-2_	mw-4				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4:35 m REGENTIE BY: (Signature) John Date: 41914	4-1-58 RECEIVED BY: (Signature) 10, 30 (M) DECEIVED BY: (Signature)	RECEIVED BY: (Signature) //CG W	DATE: 4-10-98 TIME: 11	MATRIX: W-Water A-Air SD-Solid REMARKS: SL-Sludge 0-Other L ST A	- Accounting receives Pink copy - Lab retains Ye	
15935 24°		Allalysis hequest	HIGHLANDER		(915) 682-4559	CLIENT NAME S & P. L.C.	PROJECT NO: 796 LERONECT NAME?	LAB I.D. DATE TIME IX NUMBER DATE TIME IX MATRIX		36 4.9.56 11.15 W				Ł	RELINQUESTED BY (Signature) Date.	42	RY: TFUL	CITY: STATE: STATE: CONTACT: PHONE: ,	SAMPLE CONDITION WHEN RECEIVED: 600 4 MATRIX: (#-Mater)	Please Fill out all copies - Project M. \bigwedge	¥ • 72

0F: /	NC)						ec. (Air) (soj)	səqsy) M1 səqsy) M1 q2 amma q2 br>amma q2 amma a amma a amma a amma a amma a amma a amma a a amma a a amma a a a a a a a a a a a a a a a a a a a	7 0						//Date://	AIRBILL #	OTHER: Results by:	RUSH Charges	Authorized: Yes No		ivironmental Corp.
PAGE: (ANALYSIS RE	Circle or Specify Method			52 t t C- b	9270/62 260/624 25 85 85 85 7 62	5 Ag As 1608 162 162 162 162 1608 1608 1608 1608 1608 1608 1608 1608	Pest. 808/6 C.MS 908/6 C.MS 908/6 C.MS 701 C.MS 701 C.MS 701 C.MS 701 C.MS 701 C.MS 701 Metels Metel	4 4 9 9 9 9 9 1						SAMPLED BY- (Print & Sign) V 7	BY: (Circle) BUS	DELLVERED UPS	HIGHLANDER CONTACT PERSON:			copy Return Gold copy to Highlander Environmental Corp
	custoay kecora	CORP	• • • • • • • • • • • • • • • • • • • •		(915) 682-3946	R PRESERVATIVE METHOD	(ĮN / .	LEX 8050/ .0NE .CF 	N >> DI H H						 Date: 1 1 1/1	Date: Time:	Date: Time:		TIME:	REMARKS:	Pink copy - Lab retains Yellow c
	ID OI CUSTOO	HIGHI ANDER ENVIRONMENTAL CORP		79705 79705	Fax	ú 1 2	1 TZ.	SAMPLE IDENTIFICATION			-				RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	DATE	A-Air SD-Solid SL-Sludge 0-0ther	- Accounting receives
-	est and Unain	FP FNVIP		1910 N. Big Spring St Midland, Texas 79705		SITE MANAGER	PROJECT NAME	SAMPLE IDE	1/1/1/	MW 4					Date: Control Date:				ZIP:	MATRIX: W-W S-Si) oject Manager retains White c
	Analysis kequest	UN V INDIN		· · ·	(915) 682-4559	CLIENT NAME: C Tow		LAB I.D. DATE TIME REP.	20	1.15					RELINQUISTED BY/ (Signature)	RELINQUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	RECEIVING LABORATORY: // (CUTY: STATE: PHONE.	ONDITION WHEN REC	Please Fill out all copies - Project Manager retains White copy

I

. !

.

CEANALYSIS, INC. MULLIULUULUULUULUULUULUULUULUULUULUULUULU		Central TB	HARDNESS (mg/L as CaCO3	810	770	1,240	780	1 1		ł		1 1	So
	•1298 •4944 38	06/06/98 05/13-15/98 ion: Intact & Cool ed by: VW Fexaco E & P, Inc. Texaco/Cooper-Jal Central TB	Lea County SODIUM (mg/L)	165	200	334	190 10	50 52	ļ	0.50	~	97 102	6 - 0 - 50 Date
CAMULULLA	806 • 794 • 1296 FAX 806 • 794 • 1298 915 • 585 • 3443 FAX 915 • 585 • 4944 Prep Date: 05/21/98	Analysis Date: 06/06/98 Sampling Date: 05/13-15/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco/Cooper-J	CALCIUM (mg/L)	214	207	338	211 	50 53	}	0.50	0	107 104	
XSIS, IN	806•79 915•58		MAGNESIUM (mg/L)	66	61	96	62 5	49 53	1	0.50	*	108	· [
ILL TRACEANAI	Lubbock, Texas 79424 El Paso, Texas 79922 E-Mail: lab@tra	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	POTASSIUM (mg/L)	13	12	12	± :	49 52		0.50		105	METHODS: EPA 200.7, SM 2340B. CHEMIST: RR SPIKE: 100 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM. CV: 50 mg/L POTASSIUM, MAGNESIUM, CALCIUM, SODIUM.
ILIALA UMALAULA ILIALA UMALAUALA ILIALA MALTRA	6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A	June 08, 1998 Receiving Date: 05/19/98 Sample Type: Water Project No: 996 Project Location: Lea County	Field Code	MW-7	6-WW	MW-9A	MW-10			Limit		% Extraction Accuracy % Instrument Accuracy	METHODS: EPA 200.7, SM 2340B. CHEMIST: RR SPIKE: 100 mg/L POTASSIUM, MAGNESIUM, CALC CV: 50 mg/L POTASSIUM, MAGNESIUM, CALCIUM, CV: 50 mg/L POTASSIUM, MAGNESIUM, CALCIUM,
		June 08, 1998 Receiving Date: Sample Type: W Project No: 996 Project Location	TA#	T98771	T98773	T98774	T98775			Reporting Limit	RPD	% Extraction %	METHODS: EF CHEMIST: RR SPIKE: 100 mg CV: 50 mg/L P

..

CEANALYSIS, INC, MULLALALALALALALALALALALALALALALALALALAL	al Central TB	HARDNESS (mg/L as CaCO3	720	1	ł	1	1		-50
10000000000000000000000000000000000000	21/98 06/05/98 05/13-15/98 on: Intact & Cool ed by: VW exaco E & P, Inc. Texaco/Cooper-Jal Central TB	Lea County SODIUM (mg/L)	170	50	50	0.50	5 100 100		6-0-
INC MULLILIAU	Prep Date: 05/21/98 Analysis Date: 05/05/98 Sampling Date: 05/13-15/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco/E & P, Inc. Project Name: Texaco/Cooper-J	CALCIUM (mg/L)	190	50	50	0.50	5 95 100		
LYSIS, IN 800-378-1296 806-75 888-588-3443 915-55	analysis.com CRP.	MAGNESIUM (mg/L)	60	49	50	0.50	8 98 98		
UNTRACEANAI ue, Suite 9 Lubbock, Texas 79424 80 Suite A El Paso, Texas 79922 88	E-Mail: lab@traceanalysis.com ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP. Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	POTASSIUM (mg/L)	12	48	49	0.50	o 48 9	IESIUM, CALCIUM, SODIUM. JM, CALCIUM, SODIUM.	L.
Image: Constraint of the second se	June 08, 1998 Receiving Date: 05/19/98 Sample Type: Water Project No: 996 Project Location: Lea County	Field Code	MW-8			Limit	RPD % Extraction Accuracy % Instrument Accuracy	METHODS: EPA 200.7, SM 2340B. CHEMIST: RR SPIKE: 150 mg/L POTASSIUM, MAGNESIUM, CALCI CV: 50 mg/L POTASSIUM, MAGNESIUM, CALCIUM,	
	June 08, 1998 Receiving Date: Sample Type: W Project No: 996 Project Location:	TA#	T98772	<u>c</u>	CCV	Reporting Limit	RPD % Extracti % Instrum	METHODS: EF CHEMIST: RR SPIKE: 150 mg CV: 50 mg/L P(

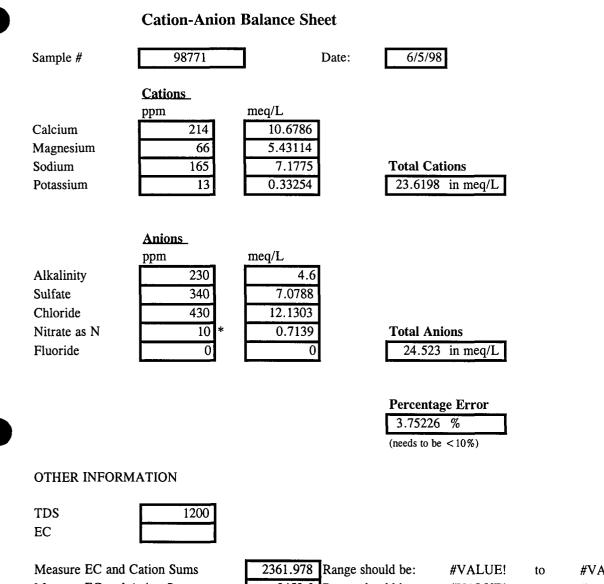
- - -

CEANALYSIS, INC, MULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	Prep Date: 05/19/98 Analysis Date: 05/19/98 Sampling Date: 05/14/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco/Cooper-Jal Central TB Lea County	ALKALINITY SULFATE (mg/L as CaCo3) (mg/L) HC03 C03	340 230 <1.0 12 12	0.5 1.0 1.0	1 0 0 85 101	Blank spikes used due to matrix difficulties. Blank spikes in range.		6 - 5-58 Date	
, INC		TDS (mg/L)	1,200	I	- 6	matrix difficul		1	
ALYSIS	E-Ivial. Iduoutaceanalysis.com ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	CHLORIDE (mg/L)	430 12 2	0.5	59* 99	es used due to	ALKALINITY: CS		
CACEAN Lubbock, Texas 79224 El Paso, Texas 79922	T-Well: Inducate analysis to ANALYTICAL RESULTS I HIGHLANDER SERVICES Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	рН (s.u.)	7.5 7.0 7.0	I	o õ		TDS: RS A		
ULULULULULULULULULULULULULULULULULULUL	June 05, 1998 Receiving Date: 05/19/98 Sample Type: Water Project No: 996 Project Location: Lea County	TA# FIELD CODE	T98771 MW-7 ICV CCV	REPORTING LIMIT	RPD % Extraction Accuracy % Instrument Accuracy	LRB SPIKES: Chloride - RPD = 1 % Extraction Accuracy = 101 % Instrument Accuracy = 99 *NOTE: Chloride matrix % Extraction Accuracy low.	METHODS: EPA 310.1, 300.0, 160.1, 150.1. CHEMIST: pH: CS CHLORIDE/SULFATE: JS SPIKE: 62.5 mg/L CHLORIDE; 62.5 mg/L SULFATE. QC: 12.5 mg/L CHLORIDE; 12.5 mg/L SULFATE.	Director, Dr. Blair Leftwich	

1

İ

i.


HLLULLULULULULULULULULULULULULULULULULU	Prep Date: 05/19/98 Analysis Date: 05/19/98 Sampling Date: 05/13-14/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco/Cooper-Jal Central TB Lea County ALKALINITY	SULFATE (mg/L as CaCo3) (mg/L) HC03 C03	390 200 <1.0 470 190 <1.0 12	0.5 1.0 1.0	0 0 0 92 100		6 - 5 - 5 8 Date
INC.		TDS (mg/L)	1,200 1,300 	ł	1		I
EANALYSIS, Texas 79424 800-378-1296 8 Texas 79922 888-588-3443 9 Femail: lab@traceanalysis.com	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	CHLORIDE (mg/L)	270 350 12	0.5	0 92 88	ALKALINITY: CS	
ACEAN/ Lubbock, Texas 79424 El Paso, Texas 79922 E-Mail: Tab@	ANAL YTIC HIGHLANE Attention: 1 1910 N. Big Midland, T	Hq (s.u.)	7.6 7.6 7.0 7.0	. 1	0 00	TDS: RS	
Image: State of the state	June 05, 1998 Receiving Date: 05/19/98 Sample Type: Water Project No: 996 Project Location: Lea County	TA# FIELD CODE	T98772 MW-8 T98773 MW-9 ICV CCV	REPORTING LIMIT	RPD % Extraction Accuracy % Instrument Accuracy	METHODS: EPA 310.1, 300.0, 160.1, 150.1. CHEMIST: pH: CS CHLORIDE/SULFATE: JS SPIKE: 62.5 mg/L CHLORIDE; 62.5 mg/L SULFATE. QC: 12.5 mg/L CHLORIDE; 12.5 mg/L SULFATE.	Director, Dr. Blair Leftwich

ļ

- -----

	4725 Kipley Avenue, Suite A	cuopock, lexas / 3424 El Paso, Texas 79922 E-Mail: lab@	Texas 79424 800 • 378 • 1296 Texas 79922 888 • 588 • 3443 E-Mail: lab@traceanalysis.com	806•794•1296 915•585•3443	FAX 915•585•4944	FAX 915•585•4944	
June 05, 1998 Receiving Date: 05/19/98 Sample Type: Water Project No: 996 Project Location: Lea County		ANALYTICAL RESUL1 HIGHLANDER SERVId Attention: Ike Tavarez 1910 N. Big Spring Str Midland, TX 79705	ANALYTICAL RESULTS FOR HIGHLANDER SERVICES CORP Attention: Ike Tavarez 1910 N. Big Spring Street Midland, TX 79705	R ORP.	Prep Date: 05/19/98 Analysis Date: 05/19/98 Sampling Date: 05/14-15/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco E & P. Inc. Project Name: Texaco/Cooper-J	9/98 05/19/98 05/14-15/98 on: Intact & Cc ed by: VW exaco E & P, I Eexaco/Coope Lea County	Prep Date: 05/19/98 Analysis Date: 05/19/98 Sampling Date: 05/14-15/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco/Cooper-Jal Central TB Lea County
TA# FIELD CODE		pH (.u.s)	CHLORIDE (mg/L)	TDS (mg/L)	SULFATE (mg/L)	ALKALINI Y (mg/L as CaCo3) HC03 C03	CaCo3) C03
T98774 MW-9A T98775 MW-10 ICV CCV		7.3 7.0 7.0	600 360 12 12	2,200 1,400 -	770 450 12	280 240 	<1.0<1.0<1.0
REPORTING LIMIT		I	0.5	I	0.5	1.0	1.0
RPD % Extraction Accuracy % Instrument Accuracy	-	o 0	0 88 86 86	- 8	- 00 00	0	°
METHODS: EPA 310.1, 300.0, 160.1, 150.1. CHEMIST: pH: CS CHLORIDE/SULFATE: JS SPIKE: 62.5 mg/L CHLORIDE; 62.5 mg/L SULFATE QC: 12.5 mg/L CHLORIDE; 12.5 mg/L SULFATE.	1, 300.0, 160.1, 150.1. CHLORIDE/SULFATE: JS LORIDE, 62.5 mg/L SULFATE. RIDE; 12.5 mg/L SULFATE.	TDS: RS	ALKALINITY: CS				
	(fr)				6-5-50	0	

Measure EC and Carlon Sums Measure EC and Anion Sums Calculated TDS/Conductivity Measure TDS and Cation Sums Measure TDS and Anion Sums

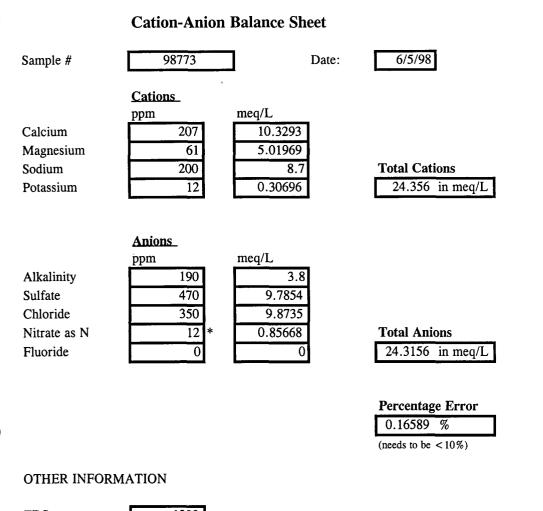
2361.978	Range should be:	#VALUE!	to	#VALUE!
2452.3	Range should be:	#VALUE!	to	#VALUE!
#VALUE!	Range should be:	0.55	to	0.77
0.5080488	Range should be:	0.55	to	0.77
0.4893365	Range should be:	0.55	to	0.77

Sample #	98772	Date:	6/5/98
Calcium Magnesium Sodium Potassium	Cations_ ppm 190 60 170 12	meq/L 9.481 4.9374 7.395 0.30696	Total Cations 22.1204 in meq/L
Alkalinity Sulfate Chloride Nitrate as N Fluoride	Anions_ ppm 200 390 270 111 *	meq/L 4 8.1198 7.6167 0.78529 0	Total Anions 20.5218 in meq/L Percentage Error

Cation-Anion Balance Sheet

_	Percentage Error						
Γ	7	.49	761	%			
	_						

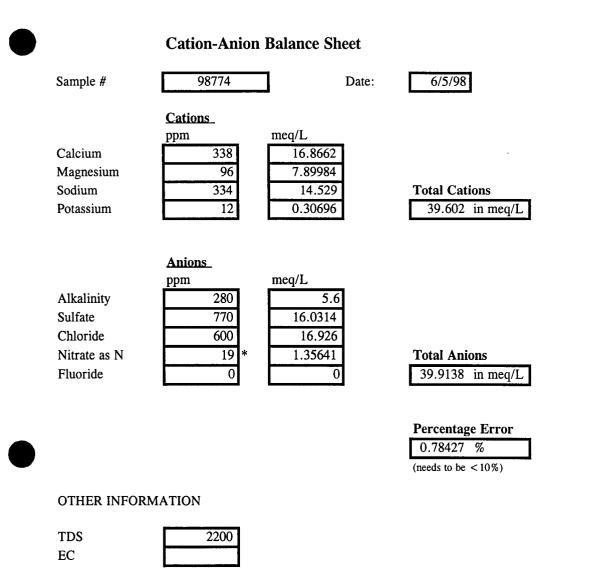
(needs to be <10%)


OTHER INFORMATION

TDS EC

Measure EC and Cation Sums Measure EC and Anion Sums Calculated TDS/Conductivity Measure TDS and Cation Sums Measure TDS and Anion Sums

2212.036	Range should be:	#VALUE!	to	#VALUE!
2052.179	Range should be:	#VALUE!	to	#VALUE!
#VALUE!	Range should be:	0.55	to	0.77
0.5424867	Range should be:	0.55	to	0.77
0.5847443	Range should be:	0.55	to	0.77


TDS EC

Measure EC and Cation Sums Measure EC and Anion Sums Calculated TDS/Conductivity Measure TDS and Cation Sums Measure TDS and Anion Sums

2435.595	Range should be:	#VALUE!	to	#VALUE!
2431.558	Range should be:	#VALUE!	to	#VALUE!
#VALUE!	Range should be:	0.55	to	0.77
0.5337505	Range should be:	0.55	to	0.77
0.5346366	Range should be:	0.55	to	0.77

Measure EC and Cation Sums Measure EC and Anion Sums Calculated TDS/Conductivity Measure TDS and Cation Sums Measure TDS and Anion Sums

3960.2	Range should be:	#VALUE!
3991.381	Range should be:	#VALUE!
#VALUE!	Range should be:	0.55
0.5555275	Range should be:	0.55
0.5511877	Range should be:	0.55

#VALUE!

#VALUE!

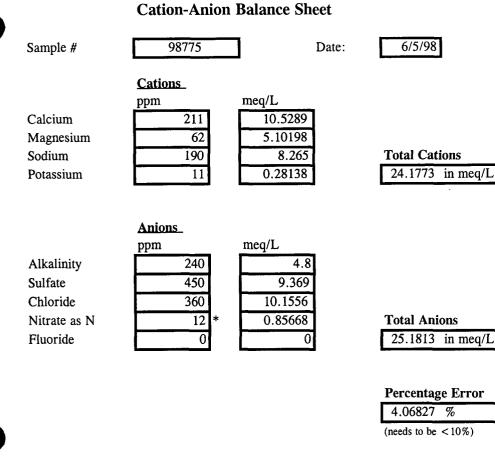
0.77

0.77

0.77

to

to


to

to

to

*NOTE: Nitrate is an estimated concentration

OTHER INFORMATION

TDS EC

ļ.

Measure EC and Cation Sums Measure EC and Anion Sums Calculated TDS/Conductivity Measure TDS and Cation Sums Measure TDS and Anion Sums

2417.726	Range should be:	#VALUE!	to	#VALUE!
2518.128	Range should be:	#VALUE!	to	#VALUE!
	Range should be:	0.55	to	0.77
0.5790565	Range should be:	0.55	to	0.77
0.5559686	Range should be:	0.55	to	0.77

Analysis Request a	and Chain of Custody	y Record	PAGE: ANALYSIS REQUEST	or: 1
HICHI A NDFR	HIGHI A NDER ENVIRONMENTAI	LOR P	ircle	od No.)
1910 N.	V. Big Spring St.			
(915) 682-4559	Fax (9	(915) 682-3946	¢ Cr	əpi
CLIENT VAME E & D. Two	SITE MANAGER	PRESERVATIVE METHOD	s 260/62 8 8	9172 CHIOL
PROJECT NO: QG C PROJECT NAME	Proce-Jol Centrel 73.	209	Ag As Ag As B240/85 B240/85 Volatile Volatile	וכ. יכ. אוי דעא:
LAB I.D. NUMBER DATE TIME RY D. RAB	Certy . IDENTIFICATION	LEX 8050 LEX 8050 LEX 8050 LONE LONE LILEKED (X	ьеяг вовуе С.В. е вовуе С.Т.К. 2600 С.Т.К. 2600 С.Т.К. 2600 С.Т.К. 2600 С.Т.К. 2600 С.Т.К. 2600 С.Т.К. 46161 С.Т.Г. 2600 С.Т.К. 46161 2610 С.Т.К. 46161 2610 2610 2610 2610 2610 2610 2610	d .227 ,000 bibh Beta bish Beta bish Beta bish (ASbea bish (ASbea
	1-11 1-11	a N N H H	d D D D D U U U U U U U U	7 0 8
2/1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/				×
X ~ 02.7 25/21/5	6.			×
x ~ 500 313/5/	MW-9A			×
× ~ ~ ~	- 10			×
KELINQUSTELYBY: (Sthrature)	SHIP 45 RECEIVED BY: (Signature)	Date: 2-1(2/ d.S.	SAMPLED BY APTIM & SWEY & 2	Date:
Ā	5/18/18 10/18/18/ RECEIVED BY: (Signature)		SAMPLE SHIPPED BY: (Circle) FEDEX	
	RECEIVED BY: (Signature)	Date:	DELIVERED	OTHER: CLESTICA
RECEIVING LABORATORY: ADDRESS:	RECEIVED BY: (Signature)	Wilnechen M	HIGHLANDER CONTACT PERSON:	RUSH Charges
CITY: STATE: CITY: CONTACT: PHONE:	ZIP: DATE: 5 - 19-59 TIME:	1. 9. 35- AU	1/4/ 1000-	Authorized: Yes No
SAMPLE CONDITION WHEN RECEIVED:	MATRIX: W-Wate A-Air SD-Solid	REMARKS:	F 6-88L	

I

i .

		TRACEANALY	SIS, INC. MILLIUM
	6701 Aberdeen Avenue, Suit 4725 Ripley Avenue, Suite A	-	/8 • 1296 806 • 794 • 1296 FAX 806 • 794 • 1298 /8 • 3443 915 • 585 • 3443 FAX 915 • 585 • 4944 /sis.com
-	April 02, 1998	ANALYTICAL RESULTS FO HIGHLANDER ENVIRONM Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705	
	Receiving Date: 03/03/98 Sample Type: Water		Sample Condition: Intact & Cool
	Project No: 996 Project Location: NA		Sample Received by: VW Client Name: Texaco E & P, Inc. Project Name: Texaco Cooper - Jal Center TB
	TA#	FIELD CODE	CHLORIDE (mg/L)
	T92323	MW-1	5,400
	T92324	MW-2	5,800
	T92327	MW-4	12,000
	Т92328	MW-4A	1,400
	T92329	MW-5	6,600
	ICV		490
	CCV		489
	REPORTING LIMIT		0.5
	RPD		0
	% Extraction Accuracy		- 98
	% Instrument Accuracy		98

METHODS: EPA SM 4500 CI-B. CHEMIST: JS CHLORIDE SPIKE: 5,000 mg/L CHLORIDE. CHLORIDE CV: 500 mg/L CHLORIDE.

4-2-98

Director, Dr. Blair Leftwich

DATE

APPENDIX F

Water Well Records

H:\Oil-Gas\996\Cooper-Jal Report

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed. E. E. Hunter Well #1 Section 1

	(A) Owner of well Humble Oil Co	·
	Street and Number	
	City	
	Well was drilled under Permit No SE <u>4</u> NW <u>4</u> SW <u>4</u> of Section <u>13</u>	
	(B) Drilling ContractorED Burke	License No
	Street and Number	
	Drilling was commenced	
(Plat of 640 acres)	Drilling was completed	9 19 41

Elevation at top of casing in feet above sea level______Total depth of well______State whether well is shallow or artesian_______Depth to water upon completion______

Section 2 PRINCIPAL WATER-BEARING STRATA

No.	Depth in Feet		Thickness in	Description of Water-Bearing Formation		
NO.	From	То	Feet			
1						
2						
3						
4						
5						

ection 3	3	RECORD OF CASING						RECORD OF CASING					
Dia	Pounds	Threads	Depth		Feet	Feet Type Shoe	Perfor	stions					
in.	ft.	in	Top	Bottom	reet	Type Shoe ~	From	To					
		1											

Section 4 RECORD OF MUDDING AND CEMENTING

Depth is	1 Feet	Diameter	Tons	No. Sacks of	Methods Used
From	То	Hole in in.	Clay	Cement	Methods Used
					······································
		+		<u> </u>	· · · · · · · · · · · · · · · · · · ·

Section 5

PLUGGING RECORD

Name of Plugging Contractor.		License 1	ło
Street and Number	City	State	
Tons of Clay used	Tons of Roughage used	Type of roughage	
Plugging method used	Da	te Plugged	19
Plugging approved by:	Cemer	nt Plugs were placed	as follows:

roved by: Cement Plugs were placed as follows:

Basin Supervisor	No.	From	To	No. of Sacks Used
FOR USE OF STATE ENGINEER ONLY				
Date Received Copied from USGS Well Schedule by A. Nicholson in July1954				
File NoUse		L	ocation No.	24.36.13.3144

24.36.13.314 E.E.Hunter Well #1 Humble Oil Co.

,

.

tion 6				
Depth rom	in Feet	Thickness in Feet	Color	Type of Material Encountered
0	3			So11
3	13			Soft white lime
13	35			Brown sand
35	45			Grey sand
45	50			Brown sand rock
50	60			Brown soft sand
60	91			Dry brown sand
91	115			Lime
15	138			Dry sand
38	158			Water Sand
58	160			Red Clay
				15 Hov
				Depth-ic Trc 36 Elev of KTrc 7.60_//
		<u> -</u>		
		<u> </u>		In No 24. 34. 13. 3144
	······································			Loc. No. 24. 36. 13. 3144 Hydro. Survey Field Check X (Not Found)
			<u></u>	
				SOURCE OF ALTITUDE GIVEN
	·····			Interpolated Serie Jope Short X
				Determined by first, Leveling
		├		Other
		├────┤		

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

Ed Burke Well Driller

Form WR-23

STATE ENGINEER OFFICE WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed. E. E. Hunter Well #2

Section 1	L
-----------	---

Section 1	(A) Owner of well Humble Oil Co.	
	Street and Number	
	Well was drilled under Permit No <u>NE 14</u> SW 14 of Section 13. (B) Drilling Contractor. <u>Ed Burke</u> Street and Number.	and is located in the Twp. 24S Rge.36E License No.
	City Drilling was commenced Drilling was completed	State
(Plat of 640 acres)	Diming was completed	

160'Total depth of well..... Elevation at top of casing in feet above sea level.....Depth to water upon completion..... State whether well is shallow or artesian_

Section	2		PRINCIPAL	WATER-BEARING STRATA
No.	Depth in Feet		Thickness in	Description of Water-Bearing Formation
NO.	From	To	Feet	
1				
2				
3				
4				
5				1

Dia	Pounds	Threads	Depth		Feet	Den Char	Perfor	tions
in.	ft.	in	Top	Bottom	reet	Type Shoe -	From	To
				1 1		├ 		

RECORD OF MUDDING AND CEMENTING Section 4

Depth From	in Feet To	Diameter Hole in in.	Tons Clay	No. Sacks of Cement	Methods Used
					······································

Section 5

PLUGGING RECORD

Name of Plugging Contractor		License	No
Street and Number	City	State	
Tons of Clay used	ge used	Type of rougha	ge
Plugging method used			

Plugging method used. P

Plugging approved by:	Cement Plugs were placed as follows:					
	No.	Depth	of Plug	N	1	
Basin Supervisor		From	To	No. of Sacks Used		
FOR USE OF STATE ENGINEER ONLY						
Date Received <u>Copied from USGS Well</u> Schedule (24.36.13.314) by A. Nicholson July 1954.	 					
File NoUse		Lo	eation No.	24.36.13.3322		

24.36.13.233

Humble Oil Co. E.E. Hunter Well #2

Depth in Feet				Type of Material Encountered		
From	To	in Feet	Color			
0	3			Soil		
3	13			Soft White lime		
13	35			Brown sand		
35	45	-		Grey sand		
45	50			Brown sand rock		
50	60			Brown soft sand		
60	91			Dry brown sand		
91	115			Lime		
15	138			Dry sand		
38	158			Water sand		
58	160			Red clay		
	1	1	·······	L S E'ev		
				Depth to KTrc_ <u>153</u>		
		1				
	<u> </u>					
				In No 24 3/ 13, 3322		
				Loc. No. 24, 34, 13, 3322 Hydro. Survey Field Check X (NOT FOUND)		
				SOURCE OF ALLITIDE GIVEN		
				Interpretation for Short X		
			·····	Determination by Just Leveling		
				Citter		

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

ED Burke Well Driller ····· 🖌

STATE ENGINEER	OFFICE
WELL RECO	RD

Revised June 1972

ſ	•				-						~	فر	
---	---	--	--	--	---	--	--	--	--	--	---	----	--

Section 1. C	GENERAL INFORMATION
--------------	---------------------

(A) Owner of well Fred B. (Cooper			
(A) Owner of well <u>Fred</u> B. Street or Post Office Address <u>St.</u> City and State <u>Jal</u> , New	Mexico 88252			
Well was drilled under Permit NoC				
a. <u>NE ¼ NE4</u> ¥		Township24-S	Range <u>36-E</u> N.M	1. Р.М.
b. Tract No of Map N	0, of the		1995 f .1	
c. Lot No of Block No. Subdivision, recorded in	Lea of the	County.		
d. X= feet, Y=			Zo	
(B) Drifling Contractor W. L.	Van Noy	License No.	WD-208	
Address P. O. Box 75	Uil Center, New	Mexico 88266	·	
Drilling Began <u>Mar. 7</u> Con	pleted <u>Mar.10, 19</u>	277pe toolsspudder_	Size of hole <u>10</u>	in.
Elevation of land surface or	at wel	l is ft. Total de	pth of well 180	ft.
Completed well is 🛛 shallow 🗖	artesian.	Depth to water upon complet	ion of well <u>160</u>	ft.
Se	ction 2. PRINCIPAL WATER	R-BEARING STRATA		
Depth in Feet Thicknes	s Description of V	Water-Bearing Formation	Estimated Yield	

Depth in Feet		Thickness	Description of Water-Bearing Formation	Estimated Yield		
From	То	in Feet	Description of water-bearing remation	(gallons per minute)		
165	180	15	fine water sand.			
		++	· · · · · · · · · · · · · · · · · · ·			
		<u> </u>				

Section 3. RECORD OF CASING								
Diameter (inches)	Pounds	Threads	Depth in Feet		Length	Type of Shoe	Perforations	
	per foot	per in.	Тор	Bottom	(feet)	Type of shoe	From	To
7	welde	1	0	180	180	none	159	175
			_					

Section 4. RECORD OF MUDDING AND CEMENTING

Depth in Feet		Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of Mud	of Cement	Method of Flacement
		} 1		1	
		I			1

Section 5. PLUGGING RECORD

Plugging Contractor		Depth in Feet		
Plugging Method	No	Тор	Bottom	Cubic Feet of Cement
Date Well Plugged				
Plugging approved by:	-2			ļ
State Engineer Representative	4		1	<u> </u>
FOR USE OF STATE EN Date Received March 17, 1977	GINEER ONLY			
Quad	.	FW	L	FSL

File No. CP-564

-----•

•

Use Dom & Stk. Location No. 24.36.23. 220

	Section 6, LOG OF HOLE			
	in Feet	Thickness in Feet	Section 6, LOG OF HOLE (
From O	<u> </u>	: 5	top soil	
5	25	20	caliche	
	165			
25	ļ	140	course said	
165	180	15	fine water sand.	
<u> </u>				
		~		
			·	
	· · · · · · · · · · · ·			
			/	

			()	
	 gravel p	Section 7.	REMARKS AND ADDITIONAL INFORMATION	
	graver p	ackeu		
			REMARKS AND ADDITIONAL INFORMATION STATE - HOLMER RCSWELL N. M. 20	
			2. 7. T. 3. 0, 60	
			20 FFICE	

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

· _-

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted the appropriate district office tions, except Section 5, shall be answered as completely and accura to possible when any well is